Class / Patent application number | Description | Number of patent applications / Date published |
062502000 | Diverse fluids | 16 |
20080209941 | THERMAL ENERGY STORAGE AND COOLING SYSTEM WITH ISOLATED PRIMARY REFRIGERANT LOOP - Disclosed are a method and device for a refrigerant-based thermal storage system wherein a condensing unit and an ice-tank heat exchanger can be isolated through a second heat exchanger. The disclosed embodiments provide a refrigerant-based ice storage system with increased reliability, lower cost components, and reduced power consumption compared to non-isolated systems. | 09-04-2008 |
20080229780 | System and Method for Separating Components of a Fluid Coolant for Cooling a Structure - According to one embodiment of the invention, a cooling system for a heat-generating structure includes a heating device, a cooling loop, and a separation structure. The heating device heats a flow of fluid coolant including a mixture of water and antifreeze. The cooling loop includes a director structure which directs the flow of the fluid coolant substantially in the form of a liquid to the heating device. The heating device vaporizes a substantial portion of the water into vapor while leaving a substantial portion of the antifreeze as liquid. The separation structure receives, from the heating device, the flow of fluid coolant with the substantial portion of the water as vapor and the substantial portion of the antifreeze as liquid. The separation structure separates one of the substantial portion of the water as vapor or the substantial portion of the antifreeze as liquid from the cooling loop while allowing the other of the substantial portion of the water as vapor or the substantial portion of the antifreeze as liquid to remain in the cooling loop. | 09-25-2008 |
20090084129 | HEAT EXCHANGER AND REFRIGERATION CYCLE APPARATUS HAVING THE SAME - A heat exchanger including a plurality of first refrigerant tubes, and a plurality of second refrigerant tubes separated from the plurality of first refrigerant tubes in an air flow direction. Further, a diameter of a respective refrigerant tube of the plurality of first refrigerant tubes is smaller than a diameter of a respective refrigerant tube of the plurality of second refrigerant tubes. | 04-02-2009 |
20090095014 | WORKING FLUID OF A BLEND OF 1,1,1,2-TETRAFLUOROETHANE, 1,1,1,2,3,3,3-HEPTAFLUOROPROPANE, AND 1,1,1,3,3,3-HEXAFLUOROPROPANE AND METHOD AND APPARATUS FOR USING - There is a working fluid for a heating and cooling. The fluid is a blend of from about 1% to about 98% by weight 1,1,1,2,3,3,3-heptafluoropropane, from about 1% to about 98% by weight 1,1,1,3,3,3-hexafluoropropane, and from about 1% to about 98% by weight 1,1,1,2-tetrafluoroethane. The 1,1,1,2,3,3,3-heptafluoropropane, 1,1,1,3,3,3-hexafluoropropane, and 1,1,1,2-tetrafluoroethane are from about 90% or more by weight of the blend. There are also an apparatus that uses the blend and methods for heating and cooling using the blend. | 04-16-2009 |
20110079043 | APPARATUS INCLUDING HYDROFLUOROETHER WITH HIGH TEMPERATURE STABILITY AND USES THEREOF - An apparatus is provided that includes a device and a mechanism for heat transfer that includes a provided hydrofluoroether having high temperature stability. Also provided is a method of transferring heat and a composition that includes a provided hydrofluoroether. | 04-07-2011 |
20120144857 | LOW-TEMPERATURE AND AVERAGE-TEMPERATURE REFRIGERATION - The invention relates to binary compositions of 2,3,3,3-tetrafluoropropene and difluoromethane, as a heat transfer fluid in compression, low-temperature and average temperature refrigeration systems, with exchangers operating in counterflow mode or in split flow mode with counterflow tendency. The invention also relates to a heat transfer method. | 06-14-2012 |
20120304687 | REFRIGERATION APPARATUS - Use of a double bond-containing hydrofluoroolefin refrigerant causes a problem that it generates hydrogen fluoride by cleavage and decomposition under influence of oxygen, leading to degradation of the materials and the refrigeration oil used in the refrigeration apparatus and causing troubles in the refrigeration apparatus. | 12-06-2012 |
20130061630 | HEAT EXCHANGER - In an evaporator having plate-type construction, a plurality of stack plates are stacked atop one another such that a first fluid passage for a first fluid as a refrigerant and a second fluid passage for a second fluid as a coolant is provided and are formed between the stack plates. The stack plates have first apertures for supply and return of the first fluid, second apertures for supply and return of the second fluid, a first inlet opening and outlet opening for entry and exit of the first fluid, a second inlet opening and outlet opening for entry and exit of the second fluid, and an expansion valve for the first fluid that is built onto or integrated into the rest of the heat exchanger. The evaporator incorporates a shutoff unit for the first fluid that is built onto or integrated into the rest of the heat exchanger. | 03-14-2013 |
20130067951 | WASTE HEAT UTILIZING DEVICE FOR AIR COMPRESSOR - A waste heat utilization device for an air compressor includes: a discharge path of an oil free air compressor; a circulation path along which a low boiling point medium circulates; an evaporator provided on the circulation path to heat and evaporate the low boiling point medium using the potential heat of the compressed air; and a preheater provided on an upstream side of the evaporator to preheat the low boiling point medium using the potential heat of the compressed air. A scroll type expansion machine is rotated by the low boiling point medium evaporated by the evaporator and increased in pressure, and power is generated by a power generator connected to a rotary shaft of the scroll type expansion machine. The low boiling point medium discharged from the scroll type expansion machine is then cooled and condensed by a condenser. | 03-21-2013 |
20130133361 | AIR-CONDITIONING APPARATUS - An air-conditioning apparatus once transfers energy to a heat medium other than a refrigerant and introduces the heat medium to another refrigeration cycle to achieve safety improvement and high efficiency. | 05-30-2013 |
20140102130 | SYSTEMS AND METHODS FOR USING TWO REFRIGERANTS, AUGMENTATION AND EXPANSION VALVES TO ENHANCE MECHANICAL ADVANTAGE - A mechanical leverage system comprising an expansive side and a compressive side, wherein the compressive side comprises a compressor which is in controlled fluid communication with a first evaporator and a first condenser, wherein the expansive side comprises an expander which is in controlled fluid communication with a second evaporator and a second condenser, wherein the second evaporator absorbs heat from a space such as an attic and drives the expander, and thus, the compressor to which the expander is connected, and wherein there is a difference between the properties of the refrigerant used in the expansive side and the compressive side, such that the difference in refrigerant properties influences the mechanical advantage ratio of the system. | 04-17-2014 |
20150353801 | Heat Transfer Fluids, Systems, Efficiencies and Methods - Heat transfer compositions, methods, efficiencies, and systems are disclosed. The compositions have four or more heat transfer components/constituents that have been selected such that the compositions provide an operating performance and energy efficiency that are comparable to, or better than, the performance of R22 and currently available R22 replacements. The four or more constituents have sequenced boiling temperatures that work together to extend the phase change, thereby elongating the heat absorption phase and increasing efficiency. In some embodiments the heat transfer constituents include 15-25% by weight R32, 1-5% by weight R125, 50-70% by weight R134a, and 10-20% by weight R227ea. The compositions may also include 0.5-3.5% by weight R236. | 12-10-2015 |
20160002517 | MIXTURE REFRIGERANT AND AIR CONDITIONER USING THE SAME - A mixture refrigerant includes: 50 wt. % to 70 wt. % of R32, R1234ze, and R125. An air conditioner includes a mixture refrigerant containing 50 wt. % to 70 wt. % of R32, R1234ze, and R125. | 01-07-2016 |
20160023971 | Process for Preparing C3-6 (Hydro)Fluoroalkenes by Dehydrohalogenating C3-6 Halo(Hydro)Fluoroalkanes in the Presence of a Zinc/Chromia Catalyst - The invention relates to a process for preparing a C3-6 (hydro)fluoroalkene comprising dehydrohalogenating a C3-6 hydro(halo)fluoroalkane in the presence of a zinc/chromia catalyst, wherein the C | 01-28-2016 |
20160040094 | REFRIGERATOR OIL COMPOSITION AND REFRIGERATOR SYSTEM - Provided is a refrigerating machine oil composition, which is to be used for a refrigerant including a mixture of an unsaturated fluorinated hydrocarbon compound, a saturated fluorinated hydrocarbon compound and CO | 02-11-2016 |
20160108300 | USE OF PVE LUBRICANTS WITH SUBSTITUTE REFRIGERANTS IN A MOBILE AIR CONDITIONING SYSTEM - A heat transfer composition for use in a mobile air-conditioning system in a vehicle, includes a first component comprised of a hydrofluoroolefin refrigerant. A second component of the composition includes a polyvinylether lubricant. The heat transfer composition is compatible for use in a mobile air-conditioning system when the mobile air-conditioning system is powered by a mechanically driven compressor, and is also compatible for use in the mobile air-conditioning system when the mobile air-conditioning system is powered by an electrically driven compressor built-in to the mobile air-conditioning system. | 04-21-2016 |