Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Bypass, e.g., compressor unloading

Subclass of:

062 - Refrigeration

062132000 - AUTOMATIC CONTROL

062190000 - Refrigeration producer

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
062196100 Bypass, e.g., compressor unloading 61
20090031738REFRIGERATING MACHINE - A refrigerating machine includes a compressor for compressing a refrigerant, a radiator for radiating heat from the refrigerant discharged from the compressor, an expander for expanding the refrigerant discharged from the radiator, and an evaporators for evaporating the refrigerant discharged from the expanders, all connected in series. The refrigerating machine also includes a refrigerant flow regulator for regulating the amount of refrigerant flowing into the expander and a controller for controlling the compressor and the refrigerant flow regulator. At a stop of the compressor, the controller controls the refrigerant flow regulator to reduce the amount of refrigerant flowing into the expander.02-05-2009
20090031739AIR CONDITIONER - An air conditioner performs a refrigerant quantity judging operation to judge the refrigerant quantity in a refrigerant circuit, and includes a heat source unit, utilization units, expansion mechanisms, a first refrigerant gas pipe, a second refrigerant gas pipe, a refrigerant liquid pipe, switching mechanisms, bypass circuits, bypass circuit opening/closing element, and a controller. The switching mechanism can switch between a first state and a second state. The bypass circuit opening/closing element are provided in the bypass circuits that bypass the first refrigerant gas pipe to the second refrigerant gas pipe, and open and close the bypass circuits. The controller opens the bypass circuit opening/closing element before performing the refrigerant quantity judging operation.02-05-2009
20090071177Refrigerant Air Conditioner - A sufficient heating capacity can be displayed even in cold districts with atmospheric temperatures of −10° C. or less by improving the heating capacity in the refrigerant air conditioner much more than that of conventional gas injection cycles.03-19-2009
20090241569HEAT PUMP TYPE HOT WATER SUPPLY OUTDOOR APPARATUS - A heat pump type hot water supply outdoor apparatus, in a compressor, a water heat exchanger, a first expansion valve, a medium pressure receiver, a second expansion valve, and an air heat exchanger are connected circularly, has an injection circuit, which is a bypass for a part of the refrigerant between the medium pressure receiver and the second pressure reduction unit, to inject the part of refrigerant into a compression chamber of the compressor, and has a third expansion valve and an internal heat exchanger for carrying out heat exchange between the refrigerant whose pressure is reduced by the third expansion valve and the refrigerant between the medium pressure receiver and the second expansion valve, a pressure detection sensor for detecting a condensing pressure, and a controller for starting an injection control by the third expansion valve at the time when the condensing pressure detected by the pressure sensor or the condensing temperature calculated from the condensing pressure becomes a first predetermined value or more and stopping the injection control at the time when the condensing pressure or the condensing temperature becomes a second predetermined value which is smaller than the first predetermined value, or less. With this arrangement, an appropriate injection control can be realized and a high hot water supply/heating capability operation can be carried out.10-01-2009
20090260379Refrigerator with reservoir - A refrigerator is disclosed, which is capable of minimizing consumption of power while satisfying refrigerating performance of a freezing compartment by having a reservoir that stores a surplus refrigerant exceeding a required amount to independently cool the freezing compartment. The refrigerator includes a refrigerating compartment, a freezing compartment, and a refrigeration cycle including first and second evaporators respectively corresponding to the refrigerating compartment and the freezing compartment. The refrigeration cycle includes a first refrigeration cycle to refrigerate both the first and the second evaporators, and a second refrigeration cycle to refrigerate any one of the first and the second evaporators independently, and the second refrigeration cycle includes a bypass path bypassing the other one of the first and the second evaporators, and a reservoir mounted on the bypass path to adjust a circulated refrigerant amount by storing part of the refrigerant being circulated along the second refrigeration cycle.10-22-2009
20090266094Air Conditioning System with Cold Thermal Storage and Evaporator Temperature Control - A system and method of operating a vehicle air conditioning system having an engine driven, fixed capacity refrigerant compressor and a compressor clutch is disclosed. The method may comprises setting a preliminary evaporator air temperature target; charging a cold storage apparatus in the vehicle air conditioning system; determining if the cold storage apparatus has reached a predetermined threshold; if the cold storage apparatus has reached a predetermined threshold, determining a new evaporator air temperature target by: determining a maximum allowable dewpoint evaporator air temperature for maintaining a passenger compartment humidity below a predetermined value; determining a maximum allowable mode evaporator air temperature based on a mode to which the vehicle air conditioning system is set; and setting the evaporator air temperature target to the lower of the dewpoint evaporator air temperature and the mode evaporator air temperature. The compressor clutch is controlled to achieve the evaporator air temperature target.10-29-2009
20100107669THREE-WAY SOLENOID VALVE, ROTARY COMPRESSOR, AND REFRIGERATION CYCLE EQUIPMENT - A three-way solenoid valve includes a valve box in which a first valve seat and an outflow port are provided at one end and a second valve seat is provided at an apart position. A solenoid unit, provided with the valve body, is located at the other end of the valve box. A circular sealing projection divides the internal space of the valve box into a first chamber and a second chamber. A first inflow port is open in the first chamber, and a second inflow port is open in the second chamber. The first inflow port communicates with the outflow port when the valve body is in contact with the second valve seat. The second inflow port communicates with the outflow port through an internal flow path when the valve body is in contact with the first valve seat.05-06-2010
20100115975REFRIGERANT VAPOR COMPRESSION SYSTEM AND METHOD OF TRANSCRITICAL OPERATION - A refrigerant vapor compression system includes a flash tank economizer defining a separation chamber is disposed in the refrigerant circuit intermediate a refrigerant heat rejection heat exchanger and a refrigerant heat absorption heat exchanger. A primary expansion valve is interdisposed in the refrigerant circuit in operative association with and upstream of the refrigerant heat absorption heat exchanger and a secondary expansion valve is interdisposed in the refrigerant circuit in operative association and upstream of the flash tank economizer. A refrigerant vapor injection line establishes refrigerant flow communication between an upper portion of the separation chamber and an intermediate pressure stage of the system's compression device and a suction pressure portion of the refrigerant circuit. A refrigerant liquid injection line establishes refrigerant flow communication between a lower portion of said separation chamber and an intermediate pressure stage of the compression device and a suction pressure portion of the refrigerant circuit.05-13-2010
20100229578AIR CONDITIONING SYSTEM FOR A MOTOR VEHICLE - An auxiliary air conditioning system (09-16-2010
20100229579METHOD AND APPARATUS FOR DEHUMIDIFICATION - An HVAC system including a compressor, a condenser and an evaporator connected in a closed refrigerant loop. The evaporator includes a plurality of refrigerant circuits. The evaporator also includes at least one distributor configured to distribute and deliver refrigerant to each circuit of the plurality of circuits. The plurality of circuits are arranged into a first and second set of circuits. The evaporator also includes a valve configured and disposed to isolate the first set of circuits from refrigerant flow from the condenser and provide flow of refrigerant from the compressor in a dehumidification operation of the HVAC system.09-16-2010
20100326105REFRIGERATING DEVICE, IN PARTICULAR FOR AIRCRAFT - The invention relates to a refrigerating device (12-30-2010
20110113802AIR CONDITIONER - A multi-chamber air conditioner including a heat-source side refrigerant circuit in which a compressor, an outdoor heat exchanger, a first heat exchanger, a refrigerant flow-rate controller, and a second heat exchanger are connected in series, a first use-side refrigerant circuit in which the first heat exchanger and an indoor heat exchanger are connected in series, and a second use-side refrigerant circuit in which the second heat exchanger and the indoor heat exchanger are connected in series, and a heat-source side refrigerant circulating in the heat-source side refrigerant circuit and a use-side refrigerant circulating in the use-side refrigerant circuit are heat-exchanged in the first heat exchanger. The heat-source side refrigerant circulating in the heat-source side refrigerant circuit and the use-side refrigerant circulating in the use-side refrigerant circuit are heat-exchanged in the second heat exchanger.05-19-2011
20110132012FLOW CONTROL - The present invention relates to a device for controlling the flow through an oil cooler, comprising at least one oil tank (06-09-2011
20110154840REFRIGERATING APPARATUS - An object of the present invention is to keep an appropriate amount of a refrigerant to be circulated through a refrigerant circuit and prevent an overload operation of compression means due to high pressure abnormality in a refrigerating apparatus which obtains a supercritical pressure on a high pressure side. The refrigerating apparatus which obtains the supercritical pressure on the high pressure side comprises a refrigerant amount regulation tank connected to the refrigerant circuit on the high pressure side via a communicating circuit; a communicating circuit which connects the upper part of this tank to a medium pressure region of the refrigerant circuit; a communicating circuit which connects the lower part of the tank to the medium pressure region of the refrigerant circuit; an electromotive expansion valve of the communicating circuit; an electromagnetic valve of the communicating circuit; an electromagnetic valve of the communicating circuit; and control means for controlling these valves to collect a refrigerant circulated through the refrigerant circuit in the tank and discharging the refrigerant to the refrigerant circuit.06-30-2011
20110192183REFRIGERANT SYSTEM - Provided is a refrigerant system including a high-pressure bypass tube guiding a refrigerant of a high-pressure tube to flow into an indoor unit tube by bypassing a high-pressure valve. Thus, impact and noise that may be generated when an operation mode of an indoor unit is switched to a heating mode may be minimized.08-11-2011
20110192184AIR-CONDITIONING APPARATUS AND RELAY UNIT - To obtain an air-conditioner apparatus that can achieve energy-saving without making refrigerant circulate up to an indoor unit and whose construction work is easy. A refrigeration cycle is configured by connecting a compressor, a four-way valve, a heat source side heat exchanger, expansion valves, and intermediate heat exchangers by piping. A heat medium circulation circuit is configured by connecting intermediate heat exchangers, pumps, and use side heat exchangers by piping. The outdoor unit that is installed in a space such as outdoors of the building and accommodates the compressor, the four-way valve, and the heat source side heat exchanger, and the relay unit that is installed in a non-subject space which is different from an indoor space and is on a installation floor separated by two or more floors and accommodates the expansion valves, the pump, and intermediate heat exchangers are connected by two pipelines. The relay unit and an indoor unit that accommodates use side heat exchangers and is installed at a position where an indoor space can be air-conditioned are connected by two pipelines from outside of the wall which is a partition between inside and outside of the room.08-11-2011
20110259027HEAT PUMP TYPE HOT WATER SUPPLY APPARATUS - A heat pump-type hot water supply apparatus may be provided that includes: a refrigeration cycle circuit (including a compressor, an outdoor heat exchanger, expansion devices, and an indoor heat exchanger); a hot water supply heat exchanger connected to the refrigeration cycle circuit to use the first refrigerant discharged from the compressor for a hot water supply; a cascade heat exchanger connected to the refrigeration cycle circuit to allow the first refrigerant passing through the hot water supply heat exchanger to evaporate a second refrigerant and thereafter, to be condensed, expanded, and evaporated in the refrigeration cycle circuit; a heat storage compressor compressing the second refrigerant evaporated in the cascade heat exchanger, a heat storage tank to heat water using the second refrigerant compressed by the heat storage compressor, and a heat storage expansion device to expand the second refrigerant condensed in the heat storage tank.10-27-2011
20120031130RELAY UNIT AND AIR CONDITIONING APPARATUS - A relay unit connected to one or a plurality of outdoor units and a plurality of indoor units by different pipeline systems, respectively, so as to exchange heat between a refrigerant circulating through the outdoor unit and a heat medium different from the refrigerant and to circulate the heat medium through the indoor unit, provided with a valve block unit in which a plurality of valve blocks integrated with at least a plurality of branch pipes connected to the indoor unit, a plurality of main pipes which become channels for the heat medium relating to the heat exchange, and heat medium flow direction switching devices that switch the main pipes to communicate with the branch pipes are connected.02-09-2012
20120174610REFRIGERATION CYCLE APPARATUS - A refrigeration cycle apparatus includes a refrigeration cycle formed by a first compressor, a radiator, an expander that expands a refrigerant that has passed through the radiator, and an evaporator. A bypass piping has one end connected to a discharge piping of the expander and the other end connected to a suction piping of the first compressor. A pressure sensor and a temperature sensor detect the suction pressure and suction temperature of the expander as physical quantities of the refrigerant to be sucked into the expander. A bypass valve controls the flow rate of the refrigerant. A control device determines the appropriate discharge pressure of the expander on the basis of the suction pressure and suction temperature of the expander, and opens the bypass valve when the pressure at which the expander discharges the refrigerant is higher than the determined appropriate discharge pressure.07-12-2012
20120227429COOLING SYSTEM - A cooling system having a pumped loop cooling system and an embedded vapor compression loop system for cooling air inside an enclosed space such as a container both when the required air temperature inside container is warmer or cooler than the outside ambient air temperature. The pumped loop cooling system is positioned within the container except for a condenser positioned outside the container. The vapor compression loop system is positioned outside the container and includes a liquid to liquid heat exchanger which cools the fluid in the pumped loop system when the condenser is selectively bypassed when the temperature inside the container is higher than the temperature outside the container.09-13-2012
20120260687CENTRIFUGE - A centrifuge including: a rotor configured to be driven by a motor and to hold a sample, a centrifuge inverter, a chamber accommodating the rotor, a temperature sensor configured to detect the temperature of the chamber, a cooling machine configured to cool the chamber and including a compressor, a compressor inverter, a compressor motor configured to be controlled in a variable speed and a control device, wherein the control device carries out a feedback control of the compressor motor based on a preset temperature and a detected temperature of the temperature sensor when the rotation number of the compressor motor is larger than a predetermined rotation number, and the control device carries out an intermittent control for turning ON-OFF the cooling function of the compressor when the rotation number of the compressor motor is smaller than a predetermined rotation number.10-18-2012
20130019624AIR-CONDITIONING AND HOT WATER SUPPLY COMBINATION SYSTEM - Provided is an air-conditioning and hot water supply combination system capable of maintaining a high hot water supply capacity and achieving high efficiency even under high-temperature outside air conditions by appropriately controlling the degree of superheat and the degree of subcooling of a heat exchanger. In an air-conditioning and hot water supply combination system, when an evaporating pressure or an evaporating temperature calculated from the evaporating pressure reaches a first predetermined value or higher, the degree of superheat of a refrigerant on a low-pressure gas side of a subcooling heat exchanger or the degree of subcooling of the refrigerant on a high-pressure liquid side of the subcooling heat exchanger is controlled by the opening degree of a low-pressure bypass pressure reducing mechanism, such that the evaporating pressure or the evaporating temperature calculated from the evaporating pressure is less than or equal to the first predetermined value.01-24-2013
20130036757REFRIGERATION CYCLE APPARATUS - A refrigeration cycle apparatus 02-14-2013
20130042640REFRIGERATION CYCLE APPARATUS AND REFRIGERANT CIRCULATION METHOD - An internal heat exchanger and a first flow control valve are connected in series between a condenser and a refrigerant inlet of an ejector. A gas refrigerant outlet of a gas-liquid separator is connected to a suction port of a compressor. A first bypass circuit connects a refrigerant outlet of the condenser to an intermediate pressure portion of the compressor via a second flow control valve and the internal heat exchanger. A second bypass circuit connects a refrigerant outlet of the internal heat exchanger to the liquid refrigerant outlet of the gas-liquid separator via a third flow control valve. While the second flow control valve is opened such that the refrigerant flows through the first bypass circuit, the fourth flow control valve is switched to be opened or closed, and the third flow control valve is switched to be closed or opened.02-21-2013
20130152614THERMAL MANAGEMENT MODULE AND COOLING SYSTEM COMPRISING SUCH A THERMAL MANAGEMENT MODULE - A thermal management module for the distribution as required of coolant flows in an electric vehicle, including a valve arrangement (06-20-2013
20130233008AIR-CONDITIONING APPARATUS - An air-conditioning apparatus includes a refrigerant circuit including a low-pressure shell structure compressor into which a refrigerant flowing through an injection pipe flows, a first heat exchanger, a second heat exchanger, a first expansion device, a refrigerant flow switching device, and a second expansion device configured to allow the refrigerant which has passed through the first expansion device and flows from the second heat exchanger to the first heat exchanger to have an intermediate pressure, the compressor, the first heat exchanger, the second heat exchanger, the first expansion device, the refrigerant flow switching device, and the second expansion device being connected by pipes to constitute the refrigerant circuit, and further includes a controller that controls an amount of refrigerant flowing through the injection pipe into a compression chamber. A part of a high-pressure refrigerant flowing from the first heat exchanger to the second heat exchanger flows through the injection pipe.09-12-2013
20140053587REFRIGERATION CYCLE APPARATUS - A refrigeration cycle apparatus includes a controller configured to control opening and closing of a solenoid valve and that of a solenoid valve depending on any of a time when a compressor is activated, a time when the compressor is in normal operation, a time when a temperature of a motor of the compressor rises in the normal operation, and a time when the compressor stopped due to low-pressure cutoff is activated.02-27-2014
20140090409AIR-CONDITIONING APPARATUS - An air-conditioning apparatus includes a controller which calculates a composition ratio of a refrigerant mixture using a high-pressure-side pressure of a refrigerant discharged from a compressor, a low-pressure-side pressure of a refrigerant to be sucked into the compressor, a high-pressure-side temperature of a refrigerant at an inlet side of a second expansion device in a high/low pressure bypass pipe, and a low-pressure-side temperature of a refrigerant at an outlet side of the second expansion device in the high/low pressure bypass pipe and which determines whether to open or close a bypass-channel opening/closing device.04-03-2014
20140260386AIR CONDITIONING SYSTEM INCLUDING PRESSURE CONTROL DEVICE AND BYPASS VALVE - An air conditioning system includes: first and second utilization side heat exchangers and a heat source side heat exchanger respectively connected in series; a compressor connected between the first utilization side heat exchanger and the heat source side heat exchanger; an expansion valve connected between the first utilization side heat exchanger and the second utilization side heat exchanger; a pressure control device connected between the second utilization side heat exchanger and the heat source side heat exchanger; and a bypass valve connected between the expansion valve and the heat source side heat exchanger. The bypass valve provides a variable amount of liquid refrigerant flowing from the expansion valve to the heat source side heat exchanger. The pressure control device and the bypass valve cooperate with each other to keep a temperature of the compressor below a maximum allowable temperature predetermined for the compressor.09-18-2014
20140318163AIR-CONDITIONING APPARATUS - An air-conditioning apparatus is capable of completing heat medium freeze prevention control more quickly by performing heat medium temperature rise control for raising the temperature of a cooled heat medium and includes a controller that adjusts a current opening degree of a bypass device at a bypass pipe to an opening degree, and that makes an adjustment such that the flow passage resistance in the case of the opening degree becomes equal to the flow passage resistance in the case of an opening degree before an expansion device is adjusted to a minimum opening degree.10-30-2014
20150135751REFRIGERATION CYCLE APPARATUS - The air-conditioning apparatus includes a compressor; a heat source side heat exchanger; a use side pressure-reducing mechanism; a use side heat exchanger and an accumulator connected by a pipe so that a refrigerant circulates therethrough; a high-low pressure bypass pipe; a high-low pressure bypass unit installed in the high-low pressure bypass pipe; and a unit controller configured to perform a refrigerant amount detection operation in which an operation frequency of the compressor is controlled so that a value of an evaporating temperature becomes an evaporating temperature target value of the compressor to discharge a liquid-state refrigerant of the refrigerant from the accumulator, and control an opening degree of the high-low pressure bypass unit in performing the refrigerant amount detection operation.05-21-2015
20150308701AIR-CONDITIONING APPARATUS - An air-conditioning apparatus includes a refrigerant circuit formed by connecting pipes, a compressor including a compression chamber and an injection port through which refrigerant is introduced into the compression chamber, a first heat exchanger, a subcooling heat exchanger that includes a first flow passage and a second flow passage and exchanges heat between refrigerant flowing in the first flow passage and refrigerant flowing in the second flow passage to subcool the refrigerant flowing in the first flow passage, a first expansion device, a second heat exchanger, and an accumulator In addition, a first bypass pipe connects the second flow passage of the subcooling heat exchanger with a segment of the pipes, positioned on a refrigerant inflow side of the accumulator; an expansion device to adjust a flow rate of the refrigerant flowing in the first bypass pipe; a second bypass pipe that connects a segment of the pipes with the injection port, the segment being positioned between the first heat exchanger and the second heat exchanger; and an expansion device to adjust a flow rate of the refrigerant flowing in the second bypass pipe.10-29-2015
20150316284AIR-CONDITIONING APPARATUS - Provided is an air-conditioning apparatus capable of performing a cooling and heating mixed operation, including: a heat source unit including a compressor; a plurality of indoor units; a relay unit; a first relay unit-side bypass pipe configured to cause a part of refrigerant, which is discharged from the compressor and flows into the relay unit, to flow between a heat source unit-side heat exchanger and an indoor unit-side heat exchanger; a second relay unit-side flow rate control device provided to the first relay unit-side bypass pipe; and a controller configured to control an opening degree of the second relay unit-side flow rate control device so that, in an operation in which the heat source unit-side heat exchanger functions as an evaporator, a discharge temperature of a discharge refrigerant discharged from the compressor is equal to or lower than a heat-resistant temperature of the compressor.11-05-2015
20150330655AIR-CONDITIONING APPARATUS - An air-conditioning apparatus includes a compressor for compressing and discharging refrigerant; an outdoor heat exchanger for exchanging heat between the refrigerant and a heat medium that enters the outdoor heat exchanger; an indoor heat exchanger for exchanging heat between the refrigerant and a surrounding medium of use; a bypass pipe for bypassing the refrigerant that is to enter the outdoor heat exchanger; and a bypass flow control valve arranged on the bypass pipe, for adjusting a flow of the refrigerant that is to enter the outdoor heat exchanger, in which the outdoor heat exchanger includes a first passage through which the refrigerant flows, and a second passage through which the heat medium flows, and in which the first passage allows the refrigerant to flow upward.11-19-2015
20150330686SOLENOID CONTROL METHODS FOR DUAL FLOW HVAC SYSTEMS - Provided are a method and apparatus for reducing a refrigerant pressure difference within an HVAC system having a controller, one or more compressors, and at least two paths of refrigerant piping comprising alternative paths for refrigerant flow through the HVAC system. A valve is coupled to each refrigerant piping path for permitting, or preventing, refrigerant flow through each of the alternate paths of refrigerant piping. The controller may open at least one valve for a defined period of time in response to a triggering input to allow a refrigerant pressure difference within the HVAC system to dissipate across the opened valve.11-19-2015
20150338120AIR-CONDITIONING APPARATUS - An air-conditioning apparatus includes a first branch unit, a fourth flow control device arranged in each of a plurality of pipes split from a first connection pipe side and connected to each indoor-side heat exchanger, and a solenoid valve arranged in each of pipes split from a pipe connecting each fourth flow control device and each indoor-side heat exchanger. An opening degree of the fourth flow control device is controlled based on a state of refrigerant to be caused to flow into the fourth flow control device.11-26-2015
20150338121AIR-CONDITIONING APPARATUS - An air-conditioning apparatus includes: a first bypass pipe connected to an inlet-side passage of an accumulator through a second expansion device, a second passage of a subcooling heat exchanger for exchanging heat between refrigerant flowing through the second passage of the subcooling heat exchanger and refrigerant flowing through a first passage of the subcooling heat exchanger, and a first opening and closing device; a second bypass pipe branched from the first bypass pipe between the subcooling heat exchanger and the first opening and closing device and connected to an injection port of a compressor through a second opening and closing device; and a third bypass pipe branched from a refrigerant pipe between a heat source-side heat exchanger and a use-side heat exchanger and connected to a refrigerant pipe between an inlet side of the compressor and an outlet side of the accumulator through a third expansion device.11-26-2015
20150338154MULTI-COMPARTMENT TRANSPORT REFRIGERATION SYSTEM WITH ECONOMIZER - A multi-compartment transport refrigeration system includes a compressor having suction port, discharge port and intermediate inlet port; a heat rejecting heat exchanger; an economizer heat exchanger having a first refrigerant flow path and a second refrigerant flow path therethrough; a first evaporator expansion device; a first evaporator having an inlet coupled to the first evaporator expansion device and an outlet coupled to a compressor inlet path, the first evaporator for cooling a first compartment of a container; a second evaporator expansion; a second evaporator having an inlet coupled to the second evaporator expansion device, the second evaporator for cooling a second compartment of the container; an economizer expansion device coupled to the first refrigerant flow path, the economizer expansion device directing refrigerant from the first refrigerant flow path to the second refrigerant flow path, the second refrigerant flow path coupled to the intermediate inlet port.11-26-2015
20150345842AIR CONDITIONER - This air conditioner performs a cooling operation and a heating operation in parallel with each other with an outdoor unit and indoor units connected together through two communication pipes. The air conditioner includes a switching mechanism changing the directions of refrigerants flowing through the communication pipes depending on whether a heating dominant operation is being performed in a first load region where a cooling load is relatively light or a second load region where the cooling load is heavier than in the first load region. In the second load region, the switching mechanism allows a low-pressure refrigerant to flow from the indoor units to the outdoor unit through the second communication pipe thicker than the first communication pipe to reduce a performance deterioration due to the pressure loss involved with the heating dominant operation.12-03-2015
20150354842REFRIGERANT SOCKET AND AIR CONDITIONER HAVING THE SAME - A refrigerant socket includes an accommodating body and a pipeline assembly. The pipeline assembly includes a refrigerant pipe connecting to the accommodating body and having an inner section inside the accommodating body and an outer section outside the accommodating body; a switch placed at the inner section and away from a free end thereof, the switch being used to selectively allow or block a flow inside the refrigerant pipe; a refrigerant pumping pipe communicating between the free end of the inner section and the switch; and at least one joint communicates between the free end of the inner section and the switch. Therefore, even if the diameter of the refrigerant pipe does not match an air conditioner indoor unit, connection can still be made without the need of removing the original piping, thereby avoiding wasting refrigerant.12-10-2015
20150354860A COOLING DEVICE - By means of the present invention, a cooling device (12-10-2015
20150362235AIR-CONDITIONING APPARATUS - An air-conditioning apparatus includes: a first bypass pipe connected to an inlet-side passage of an accumulator through a second expansion device a second passage of a subcooling heat exchanger for exchanging heat between refrigerant flowing through the second passage of the subcooling heat exchanger and refrigerant flowing through a first passage of the subcooling heat exchanger, and a first opening and closing device; a second bypass pipe branched from the first bypass pipe between the subcooling heat exchanger and the first opening and closing device and connected to an injection port of a compressor through a second opening and closing device; and a third bypass pipe branched from a refrigerant pipe between a heat source-side heat exchanger and a use-side heat exchanger and connected to a refrigerant pipe between an inlet side of the compressor and an outlet side of the accumulator through a third expansion device.12-17-2015
20160003490AIR-CONDITIONING APPARATUS - For each of a plurality of use-side heat exchangers, a plurality of heat medium flow switching devices respectively corresponding to the plurality of use-side heat exchangers are entirely or partially integrated, and the thus obtained integrated heat medium flow switching device is driven by a single driving device.01-07-2016
20160069600COMPRESSING DEVICE - A compressing device of the present invention comprises a compressor, a heat exchanger, an expander, a power recovery unit, a condenser, a pump, a bypass flow passage for bypassing the expander, and a bypass valve. When a bypass condition for allowing a working medium to circulate through the bypass flow passage is satisfied, the bypass valve is caused to be opened, thereby allowing the working medium to circulate between the heat exchanger and the condenser through the bypass flow passage. As a result, a compressed gas discharged from the compressor is cooled by the working medium in the heat exchanger. This configuration makes it possible to cool the compressed gas by the working medium in the heat exchanger regardless of operation conditions of the expander.03-10-2016
062196200 For plural compressor cylinders 1
20220136507COMPRESSOR AND AIR CONDITIONING SYSTEM - A compressor and an air conditioning system. The compressor includes two compressing structures and an intermediate gas supplement structure. A communication pipe is provided between a gas exhaustion port of one compressing structure and a gas suction port of another compressing structure in the two compressing structures. The intermediate gas supplement structure is in communication with the communication pipe. At least one compressing structure is provided with a gas supplement structure. In the compressor and the air conditioning system, the gas supplement structure is provided to at least one compressing structure, so that at least two levels of gas supplement to the compressor are provided.05-05-2022
062196300 Direct bypass of compressor 5
20080216499PRESSURE EQUALIZATION SYSTEM - A system to equalize pressure connected to a compressor for use in HVAC&R system is provided. The system includes a component in fluid communication between a high pressure side and an intermediate pressure side of the compressor. The component is configured to permit flow of refrigerant between the high pressure side and the intermediate pressure side at least when the compressor is not in operation.09-11-2008
20080314055Refrigerant System Unloading By-Pass Into Evaporator Inlet - A refrigerant system has at least one unloader valve selectively communicating refrigerant between the compressor compression chambers and a point upstream of the evaporator. When the compressor is run in unloaded mode, partially compressed refrigerant is returned to a point upstream of the evaporator. In an unloaded mode, a higher refrigerant mass flow rate passes through the evaporator, as compared to prior art where the by-passed refrigerant was returned downstream of the evaporator. This increases system efficiency by more effectively returning oil which otherwise might be left in the evaporator back to the compressor. Also, the amount of refrigerant superheat entering the compressor in unloaded operation is reduced as compared to the prior art compressor systems, wherein the by-passed refrigerant is returned directly to the compressor suction line. Reduced refrigerant superheat increases system efficiency, improves motor performance and reduces compressor discharge temperature. Also, by moving the unloader line further away from the compressor, the compressor replacement is simplified as there is no connecting unloader line directly in front of the compressor.12-25-2008
20090095001Liquid Evaporation Cooling Apparatus - In an apparatus comprising: an evaporator 04-16-2009
20100043468PULSE WIDTH MODULATION WITH DISCHARGE TO SUCTION BYPASS - A pulse width modulation control is provided for a suction valve located on a suction line. When the flow rate through a refrigerant system needs to be reduced, the suction valve is rapidly cycled from an open position to a closed position. A bypass line connecting compressor discharge to compressor suction with a bypass valve and a discharge valve positioned on the discharge side of the compressor are also provided. When the control closes the suction valve, it also closes the discharge valve to prevent the refrigerant to backflow into the bypass line, and, at the same time, the control opens the bypass valve. Opening of the bypass valve reduces discharge pressure, leading to reduction in compressor power consumption and subsequent operating efficiency gain.02-25-2010
20130104582REFRIGERATION SYSTEM FOR COOLING A CONTAINER05-02-2013
062196400 Condensor bypass 5
20080307808Capacity Variable Device for Rotary Compressor and Driving Method of Air Conditioner Having the Same - In a capacity variable device for a rotary compressor and an operation method of an air conditioner having the same in accordance with the present invention, a valve hole (12-18-2008
20080307809Capacity Variable Type Rotary Compressor and Driving Method Thereof - Disclosed are a capacity variable type rotary compressor and a driving method thereof. In the compressor, bypass holes (12-18-2008
20090158762Refrigerant control of a heat-recovery chiller - A chiller includes a main condenser that has a refrigerant condensate sump with an internal weir or standpipe that maintains at least a minimum liquid seal between the outlets of the main condenser and a heat-recovery condenser. The main condenser is used for normal cooling operation, and the heat-recovery condenser is for supplying an external process with heat that would otherwise be wasted. In addition to providing a liquid seal, the sump and weir combination provides a reliable source of liquid refrigerant to cool the chiller's compressor motor and creates a trap for collecting foreign particles that might exit either of the chiller's two condensers.06-25-2009
20120324933CONDENSER BYPASS FOR TWO-PHASE ELECTRONICS COOLING SYSTEM - An electronics cooling system utilizing a refrigerant fluid that evaporates to remove heat from electronics and is condensed back to liquid through heat exchange with a cold medium (air or water). The refrigerant fluid is circulated via a liquid pump between the condenser and heated evaporators. A bypass circuit is provided to divert flow around the condenser during conditions of cold ambient temperatures, which is controlled by a feedback loop using a mechanical or electronic control valve. This prevents the refrigerant fluid temperature from becoming very low and potentially inducing condensation on the outside of the refrigerant tubing from the warm and moist indoor air.12-27-2012
20130192285REFRIGERATOR - A refrigerator is provided. The refrigerator includes an evaporator configured to evaporate a coolant and to cool a storage compartment, a compressor configured to compress the coolant evaporated in the evaporator, a condenser configured to condense the coolant compressed in the compressor, a hot line configured to receive condensed coolant, a first capillary tube configured to receive condensed coolant from the hot line, a second capillary tube configured to receive condensed coolant and arranged to allow bypassing of the hot line, a first coolant configured to adjust flow of condensed coolant from the hot line to the first capillary tube and a second coolant adjusting valve configured to control flow of condensed coolant from the condenser to the hot line and the second capillary tube.08-01-2013
062197000 Of expansion zone 6
20110030403HEAT EXCHANGER UNIT - A heat exchanger unit includes first and second plate heat exchangers disposed in series along a refrigerant flow direction. A refrigerant flows from the first plate heat exchanger to the second plate heat exchanger when the heat exchanger unit operates as an evaporator to heat the refrigerant, and the refrigerant flows from the second plate heat exchanger to the first plate heat exchanger when the heat exchanger unit operates as a condenser to cool the refrigerant. The first and second plate heat exchangers have first and second gas-liquid mixing structures to promote gas-liquid mixing of the refrigerant when the heat exchanger unit heats the refrigerant. The first and second gas-liquid mixing structures are configured such that pressure loss becomes larger when the gas-liquid mixing action becomes higher and such that the gas-liquid mixing action of the first gas-liquid mixing structure is higher than the gas-liquid mixing action of the second gas-liquid mixing structure.02-10-2011
20120167606REFRIGERATION CYCLE APPARATUS - In a refrigeration cycle apparatus that recovers power in an expander, obtaining a refrigeration cycle apparatus that is capable of reliably starting up the expander compared to conventional refrigeration cycle apparatuses. The refrigeration cycle apparatus includes a refrigerant circuit having a first compressor, a radiator, an expander and an evaporator connected in series with a piping; and a second compressor disposed between the first compressor and the radiator, the second compressor being driven by power recovered by the expander. The second compressor being a positive displacement compressor. The refrigeration cycle apparatus, further including a pressure regulating device (a bypass and an on-off valve) that maintains a pressure on a discharge side of the second compressor to be lower than a pressure on a suction side of the second compressor at least until the second compressor is started up.07-05-2012
20150096321REFRIGERATION APPARATUS - A refrigeration apparatus uses R32 as a refrigerant, and includes a compressor, a condenser, an expansion mechanism, an evaporator, an intermediate injection channel and a suction injection channel. The intermediate injection channel guides a part of the refrigerant flowing from the condenser toward the evaporator to the compressor, causing the refrigerant to merge with intermediate-pressure refrigerant of the compressor. The suction injection channel guides a part of the refrigerant flowing from the condenser toward the evaporator to the suction passage, causing the refrigerant to merge with low-pressure refrigerant sucked into the compressor.04-09-2015
062198000 Of serially arranged evaporator 1
20110167851Refrigerant cycle device with ejector - A refrigerant cycle device having an ejector includes a first evaporator for evaporating refrigerant flowing out of the ejector, a first passage portion for guiding refrigerant to a refrigerant suction port of the ejector, a throttle unit located in the first passage portion, a second evaporator located in the first passage portion downstream of the throttle unit, a bypass passage portion for guiding hot gas refrigerant from a compressor into the second evaporator, a bypass opening and closing unit provided in the bypass passage portion. Furthermore, a second passage portion is branched from the bypass passage portion downstream of the bypass opening and closing unit, and a flow control unit is provided in the second passage portion to prevent a flow of refrigerant from the first evaporator to the second evaporator through the second passage portion. Therefore, defrosting of both the first and second evaporators can be suitably performed.07-14-2011
062199000 Through an evaporator, i.e., parallel 2
062200000 Individual flow controllers and sensors 2
20100269527METHOD FOR CONTROLLING A VAPOUR COMPRESSION SYSTEM - A method for controlling a vapour compression system, such as a refrigeration system, preferably an air condition system, comprising at least two evaporators. While monitoring a superheat (SH) at a common outlet for the evaporators, the amount of available refrigerant is controlled in response to the SH and in order to obtain an optimum SH value. The available refrigerant is distributed among the evaporators in accordance with a distribution key. The distribution key is preferably obtained while taking individual consideration to operating conditions for each of the evaporators into account. Thereby the vapour compression system can be operated in such a way that each of the evaporators is operated in an optimal manner, and in such a way that the system in general is operated in an optimal manner.10-28-2010
20190143789REFRIGERANT HAMMER ARRESTOR AND REFRIGERANT LOOP INCORPORATING THAT REFRIGERANT HAMMER ARRESTOR05-16-2019

Patent applications in class Bypass, e.g., compressor unloading

Patent applications in all subclasses Bypass, e.g., compressor unloading

Website © 2025 Advameg, Inc.