Class / Patent application number | Description | Number of patent applications / Date published |
062119000 | Condensing and evaporating | 51 |
20080276633 | Process for Cooling Down a Hot Flue Gas Stream - A process for cooling down a hot flue gas stream comprising water vapour and carbon dioxide, the process comprising: (a) heat exchange between the hot flue gas stream and a cooling water stream so that the hot flue gas stream is cooled to a cooled down gas stream at a temperature at which at least part of the water vapour therein has condensed and the cooling water stream increases in temperature; (b) combining the condensed water vapour and the cooling water stream to produce a combined water stream; (c) separation of the cooled down gas stream from the combined water stream; (d) cooling the combined water stream by contact with air from the atmosphere and by evaporation of a portion of the combined water stream; (e) using at least part of any non-evaporated and cooled water of the combined water stream as at least part of the cooling water stream for cooling the hot flue gas stream in step (a); and (f) storing any non-evaporated and cooled water of the combined water stream that is not used in step (e) and using the stored water later as at least part of the cooling water stream in step (a). | 11-13-2008 |
20090056348 | MOTORIZED BALL VALVE CONTROL SYSTEM FOR FLUID COOLED HEAT EXCHANGER - A vapor compression cooling system having a control unit adapted to receive working fluid pressure or temperature, environment temperature or relative humidity, compressor digital output, or other cooling system information to control a condenser cooling fluid control valve to minimize flow changes through the valve. | 03-05-2009 |
20090056349 | COMPOSITIONS COMPRISING 3,3,4,4,5,5,6,6,6-NONAFLUORO-1-HEXENE - Disclosed herein are 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexene compositions for use in refrigeration and air conditioning systems, particularly in centrifugal compressor systems. Also disclosed are 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexene in combination with at least one bromofluorocarbon, ketones, alcohols, chlorocarbons, ethers, esters, 4-chloro-1,1,2,3,3,4-hexafluorobutene, N-(difluoromethyl)-N,N-dimethylamine, or mixtures thereof, which are azeotropic or near azeotropic. | 03-05-2009 |
20090158757 | System and method for controlling the cooling of variable heat loads in heat generating devices - The present invention offers an improvement over prior art cooling systems by accounting for rapid changes in thermal load. The circulation rate of refrigerant in a cooling cycle is set so that the two phase mixture exiting the cold plate evaporator device stays within a saturation dome of all mixtures between a saturated liquid and a saturated vapor. Furthermore, the two phase mixture exiting the cold plate evaporator device is allowed to move within the saturation dome so that the exit quality of the two phase mixture leaving the cold plate evaporator device changes with the heat load being removed. In this way, rapid changes in heat load are removed from the component or components in contact with the cold plate evaporator device without having to change the circulation rate of refrigerant in the cycle. Only the exit quality of the vapor leaving the cold plate/evaporator changes. | 06-25-2009 |
20090165474 | HYBRID CONTAINER COOLER - A means to conserve substantial amounts of heat and water, and there by reduce capital and operating costs, by combining salient features of strictly forced convection container cooler or strictly evaporative container cooler in to a hybrid container cooler in which heat removed from cooling the containers is recovered for use, typically in the same processes, upstream of the point of recovery. The recovery and reuse of heat correspondingly reduces water evaporated, which is now conserved. The cooler also features suction of cooling air at close to vapor pressure at cooling and substantially reducing volume of this air that is recycled, and is at a relatively constant temperature. | 07-02-2009 |
20090173088 | Condenser and metering device in refrigeration system for saving energy - A refrigeration system includes an evaporator, a compressor compressing a refrigerant coming out of the evaporator, a condensing unit which includes a finned tube guiding the refrigerant from the compressor back to the evaporator; and an energy saving arrangement. The energy saving arrangement includes a water-cooling device frequently introducing a predetermined amount of water to a surface of the finned tube to water-cool the refrigerant within the finned tube for enhancing a cooling efficiency of the condensing unit while being energy efficient. The energy saving arrangement further includes a metering device for controllably pumping the refrigerant from the condensing unit to the evaporator especially when a pressure inside the condensing unit is lower than a threshold pressure. | 07-09-2009 |
20090183518 | REFRIGERANT-BASED THERMAL ENERGY STORAGE AND COOLING SYSTEM WITH ENHANCED HEAT EXCHANGE CAPABILITY - Disclosed is a method and device to increase the cooling load that can be provided by a refrigerant-based thermal energy storage and cooling system with an improved arrangement of heat exchangers. This load increase is accomplished by circulating cold water surrounding a block of ice, used as the thermal energy storage medium, through a secondary heat exchanger where it condenses refrigerant vapor returning from a load. The refrigerant is then circulated through a primary heat exchanger within the block of ice where it is further cooled and condensed. This system is known as an internal/external melt system because the thermal energy, stored in the form of ice, is melted internally by a primary heat exchanger and externally by circulating cold water from the periphery of the block through a secondary heat exchanger. | 07-23-2009 |
20090249808 | Evaporative Cooling for an Aircraft Subsystem - Apparatus, systems, and methods provide for the cooling of an aircraft subsystem. According to embodiments described herein, coolant is routed through a heat-producing subsystem to absorb heat from the subsystem and to maintain the subsystem at a desired temperature. Bleed air from an aircraft engine is cooled, dehumidified, and routed to a cooling mechanism. In the cooling mechanism, a portion of the heated coolant is evaporated into the dehumidified bleed air, cooling the remaining coolant. The reduced-temperature coolant is routed back to the subsystem to absorb further heat. Humid air from the cooling mechanism and drying process may be utilized by other aircraft subsystems. | 10-08-2009 |
20090293516 | Method and Apparatus - An energy transferring system comprises a sealed circuit ( | 12-03-2009 |
20100050670 | WEB COATING APPLICATOR WITH COOLING AND MATERIAL RECOVERY - Apparatus and method for applying a water-based emulsion of silicone fluid to a printed web required to be cooled, such that evaporative cooling of the web is promoted in addition to coating of said web with a silicone material. Water evaporated following the application of the silicone fluid to the web is recovered by condensation on the applicator(s) and reapplied to the web, thus economizing the amount of silicone fluid mixture necessary to provide both cooling and enhanced slip characteristics necessary for further handling and processing of the web. The condensation step is effected by containing the evaporated water from the web within a compact enclosure enveloping both the applicator(s) and the web, and optionally chilling said applicator(s) with a cooling medium, preferably water, by means of said cooling medium flowing through at least one of the applicators. In certain embodiments, in addition to condensing the evaporated water, the airborne silicone mist created in the coating step is captured and is returned to the fluid applicator. | 03-04-2010 |
20100146996 | DATA CENTER COOLING ENERGY RECOVERY SYSTEM - A method and associated system is provided for cooling of a data center. The method includes providing coolant to multiple cooling elements in the data center using a heat pump refrigeration cycle to cool the coolant and provide a high temperature at the condenser. This allows the reclaiming of at least a portion of the heat removed from the refrigeration cycle using a heat engine. The engine is disposed between the refrigeration condenser and the ambient environment or cooling medium. | 06-17-2010 |
20100229576 | HYDROCOOLER WITH THERMAL STORAGE - A hydrocooler system for cooling produce. The hydrocooler system comprises a hydrocooler tank configured to contain a fluid used to saturate and cool the produce, and a thermal storage device positioned in the hydrocooler tank and configured to receive a refrigerant. The thermal storage device is configured to generate a thermal storage medium from the fluid on the thermal storage device in response to the flow of refrigerant through the thermal storage device. | 09-16-2010 |
20100326101 | Self-Contained Water Generation System - A self-contained water generation system is disclosed. The present system allows for the generation of water using only wind power and standard air conditioning components. A wind turbine drives, directly or indirectly, a compressor that compresses refrigerant and provides the refrigerant to a condenser and evaporator. During the evaporation of the refrigerant, water is condensed and collected for use. The components of the water generation system may be configured in a housing and movably mounted atop a column so that the housing can rotate about the column, allowing the wind turbine maximize the use of wind forces. | 12-30-2010 |
20110041530 | AMINE STABILIZERS FOR FLUOROOLEFINS - The present invention relates to compositions comprising at least one fluoroolefin and an effective amount of stabilizer that may be an amine or a mixture of an amine with other stabilizers. The stabilized compositions may be useful in cooling apparatus, such as refrigeration, air-conditioning, chillers, and heat pumps, as well as in applications as foam blowing agents, solvents, aerosol propellants, fire extinguishants, and sterilants. | 02-24-2011 |
20110132008 | ABSORPTION HEAT PUMP SYSTEMS AND METHODS FOR IMPROVING ENERGY GRADE OF LOW TEMPERATURE WASTE HEAT - An absorption heat pump system and a method for increasing the energy grade using the excess heat at a low temperature are provided. The absorption heat pump system comprises a heat pump generator ( | 06-09-2011 |
20110259022 | EPOXIDE AND FLUORINATED EPOXIDE STABILIZERS FOR FLUOROOLEFINS - The present invention relates to compositions comprising at least one fluoroolefin and an effective amount of stabilizer that may be an epoxide, fluorinated epoxide or oxetane, or a mixture thereof with other stabilizers. The stabilized compositions may be useful in cooling apparatus, such as refrigeration, air-conditioning, chillers, and heat pumps, as well as in applications as foam blowing agents, solvents, aerosol propellants, fire extinguishants, and sterilants. | 10-27-2011 |
20120031122 | Method to improve heating temperature of heat pump and second-type high temperature absorption heat pump - The method to improve the heating temperature of heat pump and the second-type high temperature absorption heat pump both belong to the field of heat pump technology. We can get the corresponding second-type high temperature absorption heat pump based on the second-type low temperature absorption heat pump as following ways. In the second-type low temperature absorption heat pump, we add the new added steam bleeding chamber, the new added absorber, then new added throttle or the new added liquid refrigerant pump, the new added solution pump and the new added solution heat exchanger. And some pipes are connected in a reasonable way. Or we adjust the connection of some pipes too. Then we can achieve correspondingly the three-stage high temperature second-type absorption heat pump or the high temperature second-type absorption heat pump with multi-terminal heating or the recuperative high temperature second-type absorption heat pump by combining some other components. | 02-09-2012 |
20120031123 | Heat Transfer Arrangement and Electronic Housing Comprising a Heat Transfer Arrangement and Method of Controlling Heat Transfer - A heat transfer arrangement ( | 02-09-2012 |
20120042669 | CHILLER APPARATUS CONTAINING CIS-1,1,1,4,4,4-HEXAFLUORO-2-BUTENE AND METHODS OF PRODUCING COOLING THEREIN - Disclosed herein are chiller apparatus containing cis-HFO-1336mzz. These chillers may be centrifugal chillers or positive displacment (e.g., screw) chillers and may comprise flooded evaporators or direct expansion evaporators. Also disclosed herein are methods for producing cooling comprising evaporating cis-HFO-1336mzz in the vicinity of a body to be cooled. | 02-23-2012 |
20120085110 | TERPENE, TERPENOID, AND FULLERENE STABILIZERS FOR FLUOROOLEFINS - The present invention relates to compositions comprising at least one fluoroolefin and an effective amount of stabilizer that may be a terpene, terpenoid or fullerene; or a mixture of a terpene, terpenoid or fullerene with other stabilizers. The stabilized compositions may be useful in cooling apparatus, such as refrigeration, air-conditioning, chillers, and heat pumps, as well as in applications as foam blowing agents, solvents, aerosol propellants, fire extinguishants, and sterilants. | 04-12-2012 |
20120090339 | DEVICE AND METHOD FOR PROVIDING ADDITIONAL HEAD TO SUPPORT A REFRIGERATION LIQUID FEED SYSTEM - The disclosure relates to a refrigerant device and a method for providing additional head to support a refrigeration liquid feed system. The refrigerating device comprises a refrigerant liquid container, a sinking conduit and a rising conduit, the sinking conduit extending downwardly to a connection with the rising conduit, the rising conduit extending upwardly from the connection with the sinking conduit. The refrigerating device further comprises an evaporator having an inlet connected downstream to the rising conduit and an outlet connected to the refrigerant liquid container via a return conduit, and a gas injector connected to the rising conduit, adapted to supply gas in order to allow gas to rise together with liquid refrigerant in the rising conduit, thereby reducing the total density of the mixture of liquid refrigerant and gas relative the density of liquid refrigerant. | 04-19-2012 |
20120117991 | HEAT TRANSFER PROCESS - The present invention relates to the use of a refrigerant in organic Rankine cycle systems comprising at least one hydrofluoroolefin, having at least four carbon atoms represented by the formula (I) R | 05-17-2012 |
20120312039 | WINDOW AIR CONDITIONER - Technologies are generally described for a window and a method for cooling a room including a window. In some examples, the window may include a first pane and a second pane spaced from and in optical communication with the first pane defining a generator chamber. An evaporator chamber may be disposed in the window with a pressure so that the evaporator chamber is effective to receive heat from the room and boil a refrigerant to produce a first vapor. An absorber chamber may be effective to receive and condense the first vapor on an absorbent to produce a solution. The generator chamber may be effective to receive heat through the first pane, receive the solution and heat the solution to produce a second vapor. A condenser chamber may be effective to receive the second vapor and cool the second vapor to produce the refrigerant. | 12-13-2012 |
20130074532 | METHOD FOR OPERATING A COOLING SYSTEM - In a method for operating a cooling system for cooling food on board an aircraft, a partial amount of refrigerant, which, in the rest state, is stored in a receiving space of a refrigerant container in the gaseous state of aggregation, is discharged from the receiving space of the refrigerant container into a cooling circuit of the cooling system. The partial amount of the refrigerant is directed into a liquefier arranged in the cooling circuit and converted to the liquid state of aggregation. The partial amount of the refrigerant liquefied by the liquefier is directed through a heat exchanger arranged in the receiving space of the refrigerant container. The remaining refrigerant, stored in the receiving space of the refrigerant container in the gaseous state of aggregation, is converted to the liquid state of aggregation by heat energy transfer to the partial amount of the refrigerant flowing through the heat exchanger. | 03-28-2013 |
20130091880 | COOLING SYSTEM AND COOLING METHOD - Cooling system and cooling method that enable preventing breakdown of coolant pump is provided. The cooling system, includes: evaporator for evaporating coolant by heat exchange with indoor air as an object of air conditioning; condenser for cooling and condensing coolant evaporated by evaporator; coolant liquid storage section that communicates with condenser and stores coolant liquid flowing in from condenser; coolant pump that communicates with coolant liquid storage section and pressure-transmits coolant liquid toward evaporator, the coolant liquid flowing in from coolant liquid storage section; coolant liquid detection units for individually detecting whether or not liquid level of coolant liquid stored in coolant liquid storage section is higher than or equal to respective plural heights including first height and second height higher than first height in coolant liquid storage section; and control unit that changes motor rotation speed of coolant pump, corresponding to detection result input from coolant liquid detection units. | 04-18-2013 |
20130091881 | COOLING SYSTEM AND METHOD FOR CONTROLLING COOLING SYSTEM - A cooling system includes an evaporator for evaporating a refrigerant to cool an object to be cooled; a refrigerant-supply-flow-rate regulator for regulating a flow rate of the refrigerant to be supplied to the evaporator; a condenser for condensing the refrigerant by cooling the refrigerant by use of a chilled fluid; and a chilled-fluid-flow-rate regulator for regulating a flow rate of the chilled fluid to be supplied to the condenser, the refrigerant condensed by the condenser being to be pressurized to be supplied to the evaporator. The chilled-fluid-flow-rate regulator regulates a flow rate of the fluid, to be supplied to the evaporator, for a temperature of the refrigerant condensed to come to a predetermined target refrigerant-liquid temperature, and the refrigerant-supply-flow-rate regulator regulates a flow rate of the refrigerant, to be supplied to the evaporator, for a temperature of the object cooled to come to a predetermined target cooling temperature. | 04-18-2013 |
20130145782 | WATER CONDENSER - A water condenser includes a fan which draws a primary airflow through an upstream refrigerant evaporator, through an air-to-air heat exchanger and in one embodiment also an air-to-water heat exchanger uses cold water collected as condensate from the evaporator, the airflow to the evaporator being pre-cooled by passing through the air-to-air heat exchanger and the air-to-water heat exchanger prior to entry into the evaporator wherein the airflow is further cooled to below its dew point so as to condense moisture onto the evaporator far gravity collection. The evaporator is cooled by a closed refrigerant circuit. The refrigerant condenser for the closed refrigerant circuit may employ the fan drawing the airflow through the evaporator or a separate fan, both of which drawing an auxiliary airflow separate from the airflow through the evaporator through a manifold whereby bath the auxiliary airflow and the airflow through the evaporator, or just the auxiliary airflow are guided through the condenser and corresponding fan. | 06-13-2013 |
20130145783 | POWER SAVING COMPRESSOR AND CONTROL LOGIC - An air conditioner control method may entail measuring an evaporator first temperature at an exit side of the evaporator, maintaining the evaporator first temperature, measuring a length of time that the evaporator maintains the evaporator first temperature, providing a user-set evaporator target temperature; and reducing a rate of refrigerant compressed by a compressor based on a relationship between the length of time that the evaporator maintains the evaporator first temperature and the evaporator target temperature. Furthermore, an air conditioner control method utilizing a condenser and a cold storage unit may entail turning off an air conditioner compressor, maintaining operation of a condenser cooling fan, closing a thermostatic expansion valve, opening a bleed port to bypass the thermostatic expansion valve, and receiving a liquid refrigerant into the cold storage unit from the condenser after the refrigerant passes through a thermostatic expansion valve bleed port and the evaporator. | 06-13-2013 |
20130227974 | Method and device for cooling pool water efficiently and effectively - The present invention teaches a method and device for cooling the pool water efficiently and effectively during the warm days for a comfortable use of a pool. A mechanically detachable pool water cooling device is configured to an existing circulation or filtration infrastructure in the pool. The water cooling device includes a uniquely designed water splashing and mist generating nozzle, mechanisms to increase or decrease the height of the device, and a manual or remote control for run and stop operation for the device. Configuring the pool water cooling device to an existing circulation or filtration infrastructure eliminates the need for any additional source of energy to operate the water cooling device. The utility of the present invention extends to numerous residential, and commercial applications. | 09-05-2013 |
20130227975 | COOLING SYSTEM WITH A PLURALITY OF SUBCOOLERS - A cooling system, in particular for use on board an aircraft, includes a cooling circuit allowing circulation of a two-phase refrigerant therethrough, an evaporator disposed in the cooling circuit, and a condenser disposed in the cooling circuit. A plurality of subcoolers is arranged in series in the cooling circuit downstream of the condenser. | 09-05-2013 |
20130233004 | COOLING SYSTEM FOR OPERATION WITH A TWO-PHASE REFRIGERANT - A cooling system particularly suitable for use on board an aircraft includes a cooling circuit allowing circulation of a two-phase refrigerant therethrough. An evaporator in the cooling circuit has a refrigerant inlet and a refrigerant outlet. A condenser in the cooling circuit has a refrigerant inlet and a refrigerant outlet. A detection device is configured to output a signal indicative of the state of aggregation of the refrigerant in a connecting portion of the cooling circuit which connects the refrigerant outlet of the evaporator to the refrigerant inlet of the condenser. A control device is configured to control at least one of the temperature and the pressure of the refrigerant in the connecting portion of the cooling circuit in dependence on the signal output by the detection device such that the refrigerant in the connecting portion of the cooling circuit is maintained in its gaseous state of aggregation. | 09-12-2013 |
20130283834 | PHENOL STABILIZERS FOR FLUOROOLEFINS - The present invention relates to compositions comprising at least one fluoroolefin and an effective amount of stabilizer that may be at least one phenol or a mixture of at least one phenol with other stabilizers. The stabilized compositions may be useful in cooling apparatus, such as refrigeration, air-conditioning, chillers, and heat pumps, as well as in applications as foam blowing agents, solvents, aerosol propellants, fire extinguishants, and sterilants. | 10-31-2013 |
20130291575 | COOLING SYSTEM AND METHOD FOR OPERATING SAME - An air conditioning system for appropriately controlling the air conditioning capacity by preventing occurrence of cavitation of a refrigerant pump and a method of operating the system are provided. | 11-07-2013 |
20130319024 | Dual Port Heat Pipe Structure For Switchgear - A cooling apparatus is provided for a switchgear. The switchgear has an enclosure having a plurality of compartments. The cooling apparatus includes at least one evaporator constructed and arranged to be mounted in one of the compartments. The evaporator includes an evaporator plate having surfaces defining passage structure therein, and a cover plate covering a portion of the evaporator plate to seal the passage structure. A condenser is located at a higher elevation than the evaporator. First and second conduits fluidly connect the evaporator plate with the condenser. A working fluid is in the passage structure so as to be heated to a vapor state at the evaporator, with the first fluid conduit transferring the vapor to the condenser and with the second fluid conduit passively returning condensed working fluid back to the passage structure of the evaporator. | 12-05-2013 |
20140000300 | COOLING SYSTEM AND COOLING METHOD | 01-02-2014 |
20140020415 | HEAT DISTRIBUTION IN A MOTOR VEHICLE - A device and method for heat distribution in a hybrid motor vehicle are provided. The device includes an engine cooling circuit; and a refrigerant circuit for a combined operation in a refrigeration heat pump mode and a reheating mode, includes an evaporator, a compressor, a heat exchanger to supply heat from the refrigerant to air being conditioned for a passenger compartment; and a heat exchanger to transfer heat between a refrigerant of the refrigerant circuit and coolant of the engine cooling circuit, wherein the heat exchanger operates as an evaporator for the heat transfer, and as a condenser for the heat transfer from the condensing refrigerant to the coolant. | 01-23-2014 |
20140020416 | EPOXIDE AND FLUORINATED EPOXIDE STABILIZERS FOR FLUOROOLEFINS - The present invention relates to compositions comprising at least one fluoroolefin and an effective amount of stabilizer that may be an epoxide, fluorinated epoxide or oxetane, or a mixture thereof with other stabilizers. The stabilized compositions may be useful in cooling apparatus, such as refrigeration, air-conditioning, chillers, and heat pumps, as well as in applications as foam blowing agents, solvents, aerosol propellants, fire extinguishants, and sterilants. | 01-23-2014 |
20140033748 | METHODS AND SYSTEMS TO INCREASE EVAPORATOR CAPACITY - Embodiments to increase the capacity of the evaporator of a vapor-compression refrigeration system are described. The refrigeration system may be configured to have a first stage suction line heat exchanger and a second stage suction line heat exchanger. The refrigerant exiting the evaporator can be heated by the first heat exchanger. A thermal bulb of an expansion device, such as a thermostatic expansion valve (TXV) can be positioned downstream of the first heat exchanger. The thermal bulb is capable of regulating a variable volume of refrigerant through the expansion device in response to temperature changes. Thus, the superheat refrigerant vapor region in the evaporator can be reduced, thereby increasing the efficiency of the refrigeration system. The refrigerant exiting the evaporator is a liquid/vapor refrigerant mixture. The mixture can be vaporized to a refrigerant vapor in the first heat exchanger. | 02-06-2014 |
20140075974 | HEAT EXCHANGER ARRANGEMENT FOR HEAT UPTAKE AND AIR CONDITIONING SYSTEM OF A MOTOR VEHICLE - The invention concerns an air conditioning system for conditioning the air of a passenger compartment of a motor vehicle including a housing with a first flow channel and a second flow channel for conducting air and a refrigerant circuit with an evaporator and a condenser. The evaporator is arranged in the first flow channel and the condenser in the second flow channel. The air conditioning system is designed for cooling and heating the passenger compartment and for a reheat operation. The setting of the operating mode is done only via the controlling of air guidance mechanisms. One of the heat exchangers evaporator or condenser is arranged with a part of the heat transfer surface in both the first and the second flow channel. | 03-20-2014 |
20140075975 | HEAT EXCHANGER ASSEMBLY FOR HEAT ABSORPTION AND CLIMATE CONTROL SYSTEM OF A MOTOR VEHICLE - A heat exchanger assembly for cooling of air includes a blower, an air duct and a heat exchanger integrated in a coolant circuit designed to allow coolant to flow therethrough and air to be applied to it. Heat from the air is transferred to the vaporizing coolant. The blower is arranged upstream of the heat exchanger in the airflow direction so that waste from the blower heats the air before reaching the heat exchanger. The heat exchanger is designed as tubular heat exchanger with tubes arranged in rows having a double-row design. A method for operating a climate control system for a combined refrigeration system and heat pump operation for cooling and for heating, and a method for identifying and prevention of icing of the evaporator of the climate control system are also disclosed. | 03-20-2014 |
20140090407 | Multifunctional refrigerant container and method of operating such a refrigerant container - A refrigerant container, which is in particular suitable for use in a cooling system designed for operation with a two-phase refrigerant, includes a receiving space for receiving a refrigerant that is disposed in an interior of the refrigerant container. Disposed in the receiving space of the refrigerant container is a heat exchanger allowing passage of a further refrigerant therethrough and being configured to remove heat from refrigerant in the liquid and/or gaseous state of aggregation that is received in the receiving space in order to supercool the refrigerant and/or convert the refrigerant to the liquid state of aggregation. | 04-03-2014 |
20140137581 | PUMPED TWO PHASE FLUID ROUTING SYSTEM AND METHOD OF ROUTING A WORKING FLUID FOR TRANSFERRING HEAT - A pumped two phase fluid routing system includes an evaporator. The evaporator includes a base portion having an input liquid port for receiving a working fluid and an output liquid port for expelling a liquid. The evaporator also includes a wick portion including a plurality of vapor grooves and a plurality of vapor vents for providing a vapor flow path of a vapor formed within the evaporator. The evaporator further includes a lid portion disposed in close proximity to the wick portion and receiving heat for formation of the vapor, the lid portion having a vapor port for expelling the vapor. The fluid routing system also includes a first liquid line in fluid communication with the base portion for receiving the expelled liquid. The fluid routing system further includes a vapor line in fluid communication with the lid portion for receiving the expelled vapor. | 05-22-2014 |
20140137582 | PUMPED LIQUID COOLING SYSTEM USING A PHASE CHANGE FLUID WITH ADDITIONAL SUBAMBIENT COOLING - Provided is a cooling system wherein a first two-phase refrigerant can be circulated by a pump through an evaporator, to a first condenser, to a refrigerant-to-refrigerant heat exchanger and back to the pump. By providing the refrigerant-to-refrigerant heat exchanger in series with the condenser, a first environment can be cooled without having to operate a vapor compression circuit when an ambient temperature outside the first environment is a predetermined amount below an ambient temperature in the first environment. | 05-22-2014 |
20140298834 | METHOD AND SYSTEM FOR HYBRID COOLING SYSTEMS - Systems and methods are provided for a hybrid cooling system is provided that includes a load center with a load center inlet and a load center outlet. The system also includes a condenser that has a condenser inlet and a condenser outlet. The load center outlet is fluidically coupled to the condenser inlet. The system further includes a cooling tower that has a cooling tower inlet and a cooling tower outlet. The condenser outlet is fluidically coupled to the cooling tower inlet. The system includes an evaporator that has an evaporator inlet and an evaporator outlet. The cooling tower outlet is fluidically coupled to the evaporator inlet, and the evaporator outlet is fluidically coupled to the load center inlet. | 10-09-2014 |
20140338377 | HEAT PUMP UNIT AND METHOD FOR COOLING AND/OR HEATING BY MEANS OF SAID HEAT PUMP UNIT - A heat pump unit ( | 11-20-2014 |
20150328961 | SMELL GENERATION TIME PREDICTING DEVICE AND SMELL GENERATION TIME PREDICTING METHOD USING THE SAME - A smell generation time predicting device is used for a vehicle air conditioner which includes an evaporator installed in an internal path of an air conditioner case and configured to, when the air conditioner is turned on, cool an air blown into a vehicle room. The device includes a first temperature detector, a second temperature detector, and a control unit. The first temperature detector and the second temperature detector are installed at a downstream side of the evaporator in a mutually spaced-apart relationship. The control unit is configured to, when the air conditioner is turned off, predict a smell generation time in the evaporator depending on a temperature difference between the air temperatures detected by the first temperature detector and second temperature detector. | 11-19-2015 |
20150354872 | AIR CONDITIONER WITH SELECTIVE FILTERING FOR AIR PURIFICATION - A split air conditioner has a cabinet with a fan and evaporator for mounting within a structure. The cabinet includes a filter or a stacked filter system positioned in the flow path between an air inlet and an air outlet for filtering contaminants from the air. Movable filters are provided for selectively bypassing the filters to provide a greater or lesser degree of filtration of the air. Preferably, the filters are high performance HEPA-like filter having substantially less pressure drop . | 12-10-2015 |
20150354873 | REFRIGERANT MANAGEMENT IN A HVAC SYSTEM - Methods and systems to manage refrigerant levels in a chiller system are provided. An evaporator of the chiller system may be configured to have a spill over port allowing oil containing refrigerant to spill over through the spill over port. The spill over port may be positioned at a place that corresponds to a desired refrigerant level in the evaporator. The spill over refrigerant may be directed into a heat exchanger that is configured to substantially vaporize refrigerant of the spill over refrigerant to a slightly superheat temperature. A method of maintaining a proper refrigerant level in the evaporator may include regulating a refrigerant flow to the evaporator so that the vaporized refrigerant of the spill over refrigerant is maintained at the slightly superheat temperature. | 12-10-2015 |
20150377527 | LEVEL CONTROL IN AN EVAPORATOR - A heating, ventilation and air-conditioning (HVAC) a falling film evaporator in flow communication with a condenser. The falling film evaporator includes a separator to separate vapor from liquid refrigerant and a plurality of evaporator tubes through which a volume of thermal energy transfer medium is flowed. A distribution system is operably connected to the separator to distribute a flow of liquid refrigerant over the plurality of evaporator tubes. A primary feed conduit delivers a flow of refrigerant to the separator, and at least one secondary feed conduit is in flow communication with the primary feed conduit. At least one auxiliary valve is located at the secondary feed conduit to regulate flow into the separator from the primary feed conduit. At least one sensor senses a level of a refrigerant pool in the evaporator. The sensor is operably connected to the at least one auxiliary valve to control operation thereof. | 12-31-2015 |
20160025391 | Passive organic working fluid ejector refrigeration method - The present invention relates to a passive type organic working fluid ejector refrigeration method. The liquid organic working fluid of the reservoir is added to evaporator using gravity. Then the refrigerant absorbs heat during evaporation in the evaporator. When the refrigerant temperature and pressure increases to a certain value, the self-operated pressure regulator valve automatically opens and the ejector begins to work. After condensing in the condenser, the working fluid divided into two streams. One stream returns to the reservoir and the other one flows into the cooling evaporator of refrigeration cycle to produce chilled water about 12° C. When the liquid refrigerant is completely evaporated in the evaporator, the self-operated pressure regulator valve opens and the working fluid flows into the evaporator from the reservoir. A certain quality of the working fluid is closed in the evaporator, preparing for a new work cycle as above-mentioned. The system of the present invention can use organic fluid as the working fluid to utilize the low-temperature heat sources range from 60 to 200° C., using groundwater, river (sea) water or air as cold source and using gravity to transport liquid working fluid. | 01-28-2016 |
20160102894 | Method and Control Device for Optimizing Cooling of a High Voltage Accumulator by Means of an Air-Conditioning System - A control device, and a method for operating the control device, optimizes cooling of a high-voltage accumulator using an air-conditioning system in a vehicle. A coolant flow which is insufficient is detected by an evaporator for the high-voltage accumulator and, as a result, heat losses inside a condenser of the air-conditioning system are reduced for increasing the flow of the coolant. | 04-14-2016 |