Class / Patent application number | Description | Number of patent applications / Date published |
062113000 | Transferring heat between diverse function portions of refrigeration cycle | 32 |
20090025404 | COMBINED RECEIVER AND HEAT EXCHANGER FOR A SECONDARY REFRIGERANT - A refrigeration system includes a first circuit configured to circulate a first refrigerant. The first circuit includes an evaporator. The refrigeration system also includes a second circuit configured to circulate a second refrigerant. The second circuit includes a receiver associated with the evaporator such that the second refrigerant within the receiver is in a heat exchange relationship with the first refrigerant within the evaporator. | 01-29-2009 |
20090173086 | METHOD FOR OPERATING A REFRIGERATING DEVICE COMPRISING EVAPORATORS WHICH ARE CONNECTED IN PARALLEL AND REFRIGERATING DEVICE THEREFOR - A method for operating a refrigerator includes supplying an evaporator of a second compartment with coolant and flushing the coolant out of the evaporator of the second compartment so that it can be used for an evaporator of a first compartment, closing a coolant circuit to the evaporator of the second compartment, and supplying only the evaporator of the first compartment with coolant. | 07-09-2009 |
20090188264 | Modular in-frame pumped refrigerant distribution and heat removal system - An apparatus, method and system are provided for a modular in-frame pumped refrigerant distribution system. Specifically, a micro-channel heat exchanger is positioned in an equipment cabinet close to equipment that generates heat. More specifically, the micro-channel heat exchanger may be positioned on a) a shelf above the equipment, b) the back side of the equipment, or c) a shelf below the equipment. The micro-channel heat exchanger is operable to receive a refrigerant supplied by an external heat exchanger along a primary flow path, transfer heat from air above and/or near the equipment to a coil of the micro-channel heat exchanger, circulate the refrigerant to extract the heat, and return the refrigerant with an extracted portion of generated heat to the external heat exchanger along a secondary flow path. The external heat exchanger may remove extracted heat from a building via a building chilled water system or an outdoor condenser unit. | 07-30-2009 |
20090205344 | ENERGY-SAVING CLIMATIC TEST CHAMBER AND METHOD OF OPERATION - Climatic test chamber ( | 08-20-2009 |
20090205345 | THERMAL ENERGY STORAGE AND COOLING SYSTEM UTILIZING MULTIPLE REFRIGERANT AND COOLING LOOPS WITH A COMMON EVAPORATOR COIL - Disclosed is a method and device for a refrigerant-based thermal energy storage and cooling system with multiple condensing units utilizing a common evaporator coil. The disclosed embodiments provide a refrigerant-based ice storage system with increased reliability, lower cost components, and reduced power consumption and ease of installation. | 08-20-2009 |
20090211277 | SYSTEM AND METHOD FOR COOLING A HEAT GENERATING STRUCTURE - According to one embodiment of the disclosure, a cooling system for a heat generating structure comprises a first cooling segment and a second cooling segment. The first cooling segment and the second cooling segment each respectively comprise a cooling segment conduit and at least one cooling segment tube. The cooling segment conduits are operable to receive a fluid coolant and dispense of the fluid coolant after the fluid coolant has received thermal energy. The at least one cooling segment tubes are in thermal communication with both the cooling segment conduits and the heat generating structure. The at least one cooling segment tubes have a cooling fluid operable to transfer thermal energy from the heat generating structure to the cooling segment conduits. The cooling segment conduits transfer thermal energy from the cooling fluid to the fluid coolant. A heat transfer rate associated with the first cooling segment is substantially similar to a heat transfer rate associated with the second cooling segment. | 08-27-2009 |
20090320506 | REFRIGERANT SYSTEM WITH EXPANSION DEVICE BYPASS - A refrigerant system is provided with an expansion device that may be a thermostatic expansion device or an electronic expansion device. A bypass line selectively allows a portion of refrigerant to bypass the expansion device and to flow through a fixed restriction expansion device such as an orifice positioned in parallel configuration with the main expansion device. A valve selectively enables or blocks refrigerant flow through this bypass line depending on the volume of refrigerant required to circulate through the refrigerant system as defined by environmental conditions and a mode of operation. The valve can be a simple shutoff valve or a three-way valve selectively allowing or blocking refrigerant flow through a particular refrigerant line or lines. In one embodiment, the expansion device is the main expansion device for the refrigerant system. In the other embodiment, the expansion device is a vapor injection expansion device for expanding refrigerant for performing an economizer function. The present invention allows the use of a smaller expansion device, which can be more precisely controlled, while still allowing the accommodation of higher refrigerant mass flow when necessary. | 12-31-2009 |
20100024449 | Method for controlling hot water circulation system associated with heat pump - Disclosed is a method for controlling a hot water circulation system associated with a heat pump. The present invention gives a freezing burst prevention operation function to a water-refrigerant heat-exchanger which performs heat exchange between a refrigerant and water, making it possible to remove a phenomenon that the water-refrigerant heat-exchanger installed out of the space where a user lives is frozen to be damaged. | 02-04-2010 |
20100031677 | REFRIGERANT SYSTEM WITH VARIABLE CAPACITY EXPANDER - A refrigerant system incorporates a variable capacity expander. A bypass line selectively bypasses at least a portion of the refrigerant approaching the expander to the intermediate expansion point within the expander. In this manner, the refrigerant expansion process is controlled more efficiently than in the prior art. | 02-11-2010 |
20100043463 | REFRIGERATOR OR FREEZER WITH ENHANCED EFFICIENCY - A refrigerator or a freezer comprises a primary refrigeration system ( | 02-25-2010 |
20100043464 | Heat Pump and Method of Heating Fluid - A heat pump comprising an evaporator, a compressor and a heat exchanger is provided. The evaporator transfers heat from taken in air to a first fluid and expels the taken in air at a temperature cooler than ambient temperature. The compressor compresses and pumps the first fluid. The heat exchanger comprises a first passage for the heated compressed first fluid driven by the compressor and a second passage for a second fluid driven by thermal convection. A heat pump comprising a second heat exchanger that receives heated compressed first fluid from the compressor which heats compressed first fluid from the heat exchanger is also provided. Additionally, methods and systems for heating a fluid are also provided. | 02-25-2010 |
20100043465 | Heat pump system and method of controlling the same - Provided are a heat pump system and a method of controlling the same. In a heating operation, a refrigerant circulating in an air-conditioning device is heat-exchanged with a working fluid heated by a heating device so as to be heated, and the heating device is controlled according to a temperature of the working fluid. Thus, various types of heating members are conveniently used as the heating device for heating the refrigerant. | 02-25-2010 |
20100236263 | Air Conditioning System for Communication Equipment and Controlling Method thereof - An air conditioner for communication equipment is provided. The air conditioner includes an indoor module disposed at an indoor space of a base station having communication equipment and including an indoor heat exchanger and an indoor ventilator, an outdoor module disposed at an outside of the base station and including an outdoor ventilator, a brine cooling cycle including first and second outdoor brine heat exchangers, and first and second brine coolers, the indoor heat exchanger, and a brine pump, which are connected through a brine pipe, a first refrigerant cooling cycle including an expansion valve, the first brine cooler, a compressor, and a first outdoor refrigerant heat exchanger, which are connected through a first refrigerant pipe, and a second refrigerant cooling cycle including an expansion valve, the second brine cooler, a compressor, and a second outdoor refrigerant heat exchanger, which are connected through a second refrigerant pipe. | 09-23-2010 |
20110079030 | Cooling And Climate Conditioning System For A Vehicle - A cooling system for a vehicle comprises a compressor for compressing refrigerant, the compressor being adapted to be driven by a power source installed in the vehicle, a condenser for receiving compressed refrigerant from the compressor, an expansion device for expanding refrigerant from the condenser, and a liquid-to-liquid heat exchanger for receiving refrigerant from the expansion device and exchanging heat between the refrigerant and a liquid. The liquid may comprise a coolant, and a pump may be provided for pumping the coolant through the heat exchanger to a point of use such as a cooling garment to cool personnel on board the vehicle. Alternatively, the liquid may be a drinkable liquid which is pumped through the heat exchanger to a suitable dispensing system to provide an on-board supply of cool drinking liquid. | 04-07-2011 |
20110079031 | Cooling And Climate Conditioning System For A Vehicle - A cooling system for a vehicle comprises a compressor for compressing refrigerant, the compressor being adapted to be driven by a power source installed in the vehicle, a condenser for receiving compressed refrigerant from the compressor, an expansion device for expanding refrigerant from the condenser, and a liquid-to-liquid heat exchanger for receiving refrigerant from the expansion device and exchanging heat between the refrigerant and a liquid. The liquid may comprise a coolant, and a pump may be provided for pumping the coolant through the heat exchanger to a point of use such as a cooling garment to cool personnel on board the vehicle. Alternatively, the liquid may be a drinkable liquid which is pumped through the heat exchanger to a suitable dispensing system to provide an on-board supply of cool drinking liquid. | 04-07-2011 |
20110079032 | HEAT PUMP WITH MICROCHANNEL HEAT EXCHANGERS AS BOTH OUTDOOR AND REHEAT EXCHANGERS - A heat pump refrigerant system has a compressor for delivering a compressed refrigerant to a reversing refrigerant flow control device. The reversing refrigerant flow control device selectively delivers refrigerant to an outdoor heat exchanger in a cooling mode of operation, and to an indoor heat exchanger in a heating mode of operation. Refrigerant from an outdoor heat exchanger passes through an expansion device to an indoor heat exchanger in a cooling mode, and from the indoor heat exchanger through an expansion device and to the outdoor heat exchanger in a heating mode. A reheat circuit includes a reheat heat exchanger positioned to be in the path of air delivered over the indoor heat exchanger and into an environment to be conditioned. The reheat heat exchanger and outdoor heat exchanger both are provided by microchannel heat exchangers. The reheat circuit is utilized to minimize or prevent refrigerant charge migration while operating at a wide spectrum of environmental conditions or switching between modes of operation. | 04-07-2011 |
20110088419 | Thermodynamic Cycle for Cooling a Working Fluid - A supersonic cooling system operates by pumping liquid. Because the supersonic cooling system pumps liquid, the compression system does not require the use of a condenser. The compression system utilizes a compression wave. An evaporator of the compression system operates in the critical flow regime where the pressure in an evaporator tube will remain almost constant and then ‘jump’ or ‘shock up’ to the ambient pressure. | 04-21-2011 |
20110120158 | REFRIGERATING SYSTEM - A refrigerating system including an air conditioning system and a cooler system is provided. An air conditioner-side refrigerant passage may be connected to a cooler-side refrigerant passage to allow refrigerant to flow between the air conditioning system and the cooler system. Thus, if a cooler-side compressor experiences abnormal operation, cooler-side refrigerant may be compressed by an air conditioner-side compressor so as to maintain cooling performance of the refrigerating system. | 05-26-2011 |
20110138824 | METHOD FOR CARRYING OUT A HEAT TRANSFER BETWEEN ALTERNATELY WORKING ADSORBERS AND DEVICE - The invention relates to a method for carrying out a heat transfer between alternately working adsorbers (Ad | 06-16-2011 |
20110146308 | ELECTROCALORIC COOLING - Techniques are generally described for devices for cooling using electrocaloric material as refrigerant and methods for cooling using electrocaloric material. An example cooling system may comprise a refrigerant unit having an electrocaloric membrane disposed between a heat sink and a cooling load. The electrocaloric membrane may alternate between thermal contact with the heat sink and cooling load. The electrocaloric membrane may also be subjected to alternating electric fields for polarizing and depolarizing the electrocaloric membrane in a manner that promotes heat transfer from the cooling load to the heat sink. | 06-23-2011 |
20110265501 | System and a method of energy recovery from low temperature sources of heat - A system of energy recovery from low temperature sources of heat, comprising components of Organic Renkine Cycle (ORC) including a turbine from which an ORC vapor is withdrawn, a condenser in which the ORC vapor withdrawn from the turbine condenses into an ORC condensate, a pump which circulates the ORC working medium, a heat exchanger which is supplied with a heat carrier from a lower temperature heat source and in which the ORC working liquid, and an ARC Condenser in which the ORC working liquid is heated or evaporates to produce ORC working vapor which is supplied to the turbine; components of an absorption refrigeration cycle (ARC) including an absorption refrigeration machine which receives heat and vaporizes a liquid refrigerant of the ARC to produce an ARC refrigerant vapor which is supplied to the ARC condenser to heat the ORC working liquid; and an additional component increasing a temperature difference between the ORC condensate and the heat carrier from the low temperature heat source. | 11-03-2011 |
20110265502 | HIGH-EFFICIENCY HEAT PUMPS - As discussed herein, a first aspect of the present invention provides a high-efficiency heat pump that includes a frame, as well as a first circuit, a first compressor, a condenser heat exchanger, a first electronic expansion valve, an evaporator heat exchanger, and a controller. The first circuit, the first compressor, the condenser heat exchanger, the first electronic expansion valve, and the evaporator heat exchanger can be supported by the frame. The first compressor, the condenser heat exchanger, the first electronic expansion valve, and the evaporator heat exchanger can be connected to the first circuit. The controller can be in electronic communication with the first electronic expansion valve, and the controller can be configured to control operation of the first electronic expansion valve and/or the second electronic expansion valve. | 11-03-2011 |
20110308261 | PRESSURE-REDUCING ELEMENT FOR SPLITTING THE RECOOLING VOLUME FLOW IN SORPTION MACHINES - The invention relates to the use of a pressure-reducing element or splitting volume flows in a sorption machine, wherein a single volume flow from a recooling device is split into at least two volume flows. A first volume flow flows through at least one tube of a first tube section into a condenser and a second volume flow through at least one tube of a second tube section into an absorber, at least one of the two tube sections leading away from the recooling device or at least one of the two tube sections leading back to the recooling device comprising at least one pressure-reducing element. | 12-22-2011 |
20120102989 | INTEGRATED RECEIVER AND SUCTION LINE HEAT EXCHANGER FOR REFRIGERANT SYSTEMS - A refrigeration system may be provided with a space-saving suction-line heat exchanger. The heat exchanger may be incorporated into a receiver. As heated liquid refrigerant enters and flows through the receiver, it may transfer heat into the heat exchanger. The heat exchanger may be connected to a suction line of the system so that refrigerant vapor and an oil-refrigerant mixture may be heated as it passes from an evaporator and into an inlet of a compressor. | 05-03-2012 |
20120111034 | HEAT EXCHANGE ASSEMBLY WITH INTEGRATED HEATER - A heat exchange assembly and apparatus and method employing the heat exchange assembly are provided. The heat exchange assembly includes a coolant-to-refrigerant heat exchanger and a heater. The heat exchanger includes a coolant inlet and a coolant outlet for passing a coolant through the heat exchanger, and a refrigerant inlet and a refrigerant outlet for separately passing a refrigerant through the heat exchanger. The heat exchanger cools coolant passing through the heat exchanger by dissipating heat from coolant passing through the heat exchanger to refrigerant passing through the heat exchanger. The heater is integrated with the heat exchanger and applies an auxiliary heat load to refrigerant passing through the heat exchanger to facilitate ensuring that refrigerant passing through the heat exchanger absorbs at least a specified minimum heat load, for example, to ensure that refrigerant egressing from the refrigerant outlet of the heat exchanger is superheated vapor refrigerant. | 05-10-2012 |
20120111035 | COOLANT-BUFFERED, VAPOR-COMPRESSION REFRIGERATION APPARATUS AND METHOD WITH CONTROLED COOLANT HEAT LOAD - Apparatus and method are provided for cooling an electronic component. The apparatus includes a coolant-cooled structure in thermal communication with the component(s) to be cooled, and a coolant-to-refrigerant heat exchanger coupled in fluid communication with the coolant-cooled structure via a coolant loop to receive coolant from and supply coolant to the coolant-cooled structure. The apparatus further includes a refrigerant loop coupled in fluid communication with the coolant-to-refrigerant heat exchanger, and the heat exchanger cools coolant passing therethrough by dissipating heat from the coolant in the coolant loop to refrigerant in the refrigerant loop. A controllable coolant heater is associated with the coolant loop for providing an adjustable heat load on the coolant in the coolant loop to ensure at least a minimum heat load is dissipated from the coolant to the refrigerant passing through the heat exchanger. | 05-10-2012 |
20120125022 | COOLING SYSTEM - A cooling system for a heat source includes a heat source loop, a refrigerant loop, and a controller. The heat source loop provides a closed fluid path for a process fluid and fluidly connects a valve, a bypass leg and/or a heat exchange leg having a heat exchanger, and a pump. The process fluid is disposed within a portion of the loop and is subject to heat transfer from the heat source. The valve is disposed downstream of the heat source portion of the loop, wherein the valve is selectively operable to direct process fluid to the bypass leg and/or the heat exchanger leg. The refrigerant loop provides a closed fluid path for a fluid refrigerant and fluidly connects the heat exchanger, a refrigerant compressor, a refrigerant condenser, and a refrigerant regulator. The controller is in communication with the valve and is adapted to control the valve to regulate an amount of process fluid entering the bypass leg and the heat exchanger leg. | 05-24-2012 |
20120125023 | FREE COOLING REFRIGERATION SYSTEM - A refrigeration system includes a chiller with an integrated free cooling system and refrigeration system. In certain embodiments, the chiller may be a single package unit with all equipment housed within the same support frame. The chiller may generally include three modes of operation: a first mode that employs free cooling, a second mode that employs free cooling and implements a refrigeration cycle, and a third mode that uses the free cooling system provide additional cooling capacity for the refrigeration system. The free cooling system includes an independent loop configured to transfer heat from a cooling fluid circulating within the free cooling system to the ambient air. | 05-24-2012 |
20120312036 | TEMPERATURE CONTROL SYSTEM WITH REFRIGERANT RECOVERY ARRANGEMENT - A temperature control system includes a compressor, a condenser, an evaporator, a receiver, and an accumulator. A valve is positioned between the evaporator and the receiver. An evacuation line has a first end in fluid communication with heat transfer fluid between the valve and the receiver, and a second end in fluid communication with the accumulator. The evacuation line provides for flow of the heat transfer fluid from both of the first heat exchanger and the receiver to the accumulator during an evacuation mode of operation of the temperature control system. The valve can take the form of a check valve or an expansion valve without a bleed port. | 12-13-2012 |
20130312441 | HEAT EXCHANGER WITH INTEGRATED SUBCOOLER - A heat exchanger assembly includes a plurality of tubes, each having an inlet end and an outlet end. An inlet header is configured to receive a cooling fluid and to distribute the cooling fluid to the inlet ends of the plurality of tubes. An outlet header includes an outer shell and defines an outlet chamber. The outlet chamber is configured to receive cooling fluid discharged from the outlet ends of the plurality of tube. A supply conduit supplies the cooling fluid to the inlet header. The supply conduit includes a conduit portion extending through the outlet header. | 11-28-2013 |
20150007594 | Heat Reclaiming Refrigeration System Using Compound Multi Heat Sink Condenser - A method, and or process, of achieving a double-wall heat recovery refrigeration condenser system, capable, within a single compound condenser, of energy transfer to a heat recovery heat sink, or multiple heat recovery heat sinks, as well as a heat rejection sink, in, any combination of, or all of, the individual heat sinks, in any ratio, requiring no change in the amount of active working fluid, typically a refrigerant, charge requirement. The compound condenser thus eliminates the need for working fluid storage, and controls for controlling said storage, found in typical multi heat sink condenser systems, and also, thus eliminates the complexity associated with said controls and storage. This manner of condenser is used as part of a vapor compression refrigeration system to typically, but not exclusively, reclaim heat from a refrigeration process, for the purpose of heating water. | 01-08-2015 |
20160178244 | Carbon Dioxide Based Auxiliary Cooling System | 06-23-2016 |