Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Upstream operation

Subclass of:

062 - Refrigeration

062600000 - CRYOGENIC TREATMENT OF GAS OR GAS MIXTURE

062617000 - Separation of gas mixture

062640000 - Air

062643000 - Distillation

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
062644000 Upstream operation 46
20080223075Process and Apparatus for the Separation of Air by Cryogenic Distillation - A process for separating air by cryogenic distillation in a column system comprising a high pressure column and a low pressure column comprises compressing all the feed air in a first compressor to a first outlet pressure, sending a first part of the air at the first outlet pressure to a second compressor and compressing the air to a second outlet pressure, cooling at least part of the air at the second outlet pressure in a heat exchanger liquefying at least part of the air at the second outlet pressure and sending the liquefied air to at least one column of the column system wherein at least 50% of the liquefied air sent to the column system has been compressed in the second compressor, cooling a second part of the air at the first outlet pressure in the heat exchanger and expanding at least part of the second part of the air in an expander from the first outlet pressure to the pressure of a column of column system and sending the expanded air to that column, at least partially vaporizing an auxiliary fluid, eventually further warming said auxiliary fluid in the heat exchanger, sending at least part of this auxiliary fluid to a third compressor to a third outlet pressure, introducing at least part of said auxiliary fluid at said third outlet pressure in the heat exchanger, cooling said auxiliary fluid and at least partially liquefying said auxiliary fluid, removing said auxiliary stream from the heat exchanger and expanding it to a fourth pressure level before reintroducing it in the heat exchanger where it will be partially vaporized as above-mentioned, removing liquid from a column of the column system and vaporizing the liquid by heat exchange in the heat exchanger.09-18-2008
20080307828Air separation method and apparatus - A compressed air stream is cooled to a temperature suitable for its rectification within a lower pressure heat exchanger and a boosted pressure air stream is liquefied or converted to a dense phase fluid within a higher pressure heat exchanger in order to vaporize pumped liquid products. Thermal balancing within the plant is effectuated with the use of waste nitrogen streams that are introduced into the higher and lower pressure heat exchangers. The heat exchangers are configured such that the flow area for the subsidiary waste nitrogen stream within the higher pressure heat exchanger is less than that would otherwise be required so that the subsidiary waste nitrogen streams were subjected to equal pressure drops in the higher and lower pressure heat exchangers. This allows the higher pressure heat exchanger be fabricated with a reduced height and therefore a decrease in fabrication costs.12-18-2008
20090241595DISTILLATION METHOD AND APPARATUS - A distillation method and apparatus having application to the distillation of air in which liquid production make is varied by varying the pressure ratio across a turboexpander used in generating refrigeration. The pressure ratio is varied by varying the pressure of a compressed stream fed to the turboexpander. This is done by solely compressing such compressed stream by a first booster compressor during a low rate of production of liquid products. During a high rate of production of liquid products, the compressed stream is also compressed within a second booster compressor. The second booster compressor is driven by a variable speed drive to allow a variety of liquid production rates between the low level of liquid production and the high level of liquid production.10-01-2009
20090314031Air Separation Process and Apparatus Using Cryogenic Distillation - An air distillation unit comprises an air distillation column (12-24-2009
20100180633APPARATUS - Apparatus for treating a gaseous hydrocarbon fraction to obtain a gaseous fraction and a liquid fraction which apparatus comprises a shell-and-tube heat exchanger and a distillation column, wherein the shell-and-tube heat exchanger comprises an inlet and an outlet for cooling fluid which inlet and outlet are in fluid communication with the tube side of the heat exchanger, and an inlet for the gaseous hydrocarbon fraction at the upper end of the heat exchanger which inlet is in fluid communication with the shell side of the heat exchanger, and a conduit for guiding hydrocarbons from the heat exchanger to the distillation column which distillation column comprises an outlet for gas at its upper end and an outlet for liquid at its lower end, and process in which such apparatus is used.07-22-2010
20100242537PROCESS AND APPARATUS FOR CRYOGENIC AIR SEPARATION - The process and the apparatus in accordance with the invention relate to cryogenic separation of air in a distillation column system that has at least one single column (09-30-2010
20110138855OXYGEN PRODUCTION METHOD AND APPARATUS - A method and apparatus for producing an oxygen product in which air is separated in an installation including air separation units having higher and lower pressure columns. A pumped liquid stream generated within the installation, that can be a pumped liquid oxygen stream, is warmed within a main heat exchanger through indirect heat exchange with a compressed air stream to produce a liquid air stream. An impure oxygen stream is rectified within an auxiliary column to produce an oxygen containing stream that is introduced into the lower pressure column of each of the air separation units and intermediate liquid streams, composed of the liquid air stream or another air-like stream, reflux the lower pressure columns and the auxiliary column and optionally the higher pressure column of each of the air separation units.06-16-2011
20110146343Process And Apparatus For The Separation Of Air By Cryogenic Distillation - A process for the cryogenic separation of air using a multiple column distillation system comprising at least a higher pressure column (“HP column”) and a lower pressure column (“LP column”), comprising: feeding cooled feed air to the high pressure column for separation into high pressure nitrogen-enriched overhead vapor and crude liquid oxygen; feeding at least one low pressure column feed stream comprising nitrogen and oxygen to the low pressure column for separation into nitrogen-rich overhead vapor and liquid oxygen; refluxing the low pressure column with a liquid stream from or derived from the high pressure column; feeding expanded air to an auxiliary separation column for separation into auxiliary column nitrogen-rich overhead vapor and oxygen-rich liquid and removing the nitrogen rich overhead vapour as a product stream; feeding bottom liquid from the auxiliary column to an intermediate location of the low pressure column; and refluxing the auxiliary column with a nitrogen rich liquid stream from or derived from the HP column.06-23-2011
20110192194CRYOGENIC SEPARATION METHOD AND APPARATUS - A method and apparatus for separating a mixture, for example air, within a cryogenic rectification plant that utilizes a banked heat exchanger arrangement. In such arrangement, a lower pressure heat exchanger is used to cool part of the mixture and a higher pressure heat exchanger is used to heat one or more pumped liquid streams composed of separated nitrogen-rich and oxygen-rich fractions and thereby produce pressurized product streams. A boosted pressure stream, that can be part of the air, is utilized to supply most of the heat exchange duty in the higher pressure heat exchanger. In addition, a heat exchange stream, that can also be part of the mixture, can be partially cooled in the higher pressure heat exchanger and then further cooled in the lower pressure heat exchanger to decrease the warm end temperature difference of the higher pressure heat exchanger and therefore, the required refrigeration for the plant.08-11-2011
20110197630Process and Apparatus for the Separation of Air by Cryogenic Distillation - A process and apparatus for the separation of air by cryogenic distillation is provided.08-18-2011
20110214453PROCESS AND DEVICE FOR CRYOGENIC AIR FRACTIONATION - The process and the device serve for cryogenic air fractionation, in particular for supplying an oxygen-enriched (product stream to an oxyfuel power plant. The distillation column system for nitrogen/oxygen separation has a high-pressure column (09-08-2011
20120125045AIR SEPARATION METHOD AND APPARATUS - A method and apparatus for separating air in which an argon refining column of a distillation column system is reboiled with a liquid air stream. The argon refining column further refines crude argon produced by a crude argon column connected to a lower pressure column of the distillation column system. At least one intermediate reflux stream is formed, at least indirectly, from at least part of the liquid air stream, and is introduced into the lower pressure column at a level thereof above where a crude liquid oxygen column bottoms of a higher pressure column of such system is further refined to increase a liquid to vapor ratio below said level and therefore, argon recovery from the argon refining column.05-24-2012
20120260693COMPRESSION METHOD AND AIR SEPARATION - A compression method, a multistage compression system incorporating such method and an air separation method and plant utilizing such compression method and system in which a gas is compressed in a series of compression stages to produce a compressed gas and each of the compression stages incorporate a variable speed compressor. In such compression method and system, the compressed air is produced at a pressure that remains stable during both normal operational conditions and during turn down conditions during which the flow rate of the gas is reduced. This reduction is accomplished by reducing the speed of the compressor in an initial compression stage such that the compressor operates along a peak efficiency operating line at which the pressure ratio is directly proportional to the flow rate and such that the lower turn down flow rate is obtained at a reduced pressure which is made up in successive compression stages.10-18-2012
20130042647Production Of High-Pressure Gaseous Nitrogen - The present invention is an improved process for producing elevated pressure nitrogen. This method includes providing an air separation unit with at least two columns, an LP column and an MP column, and cooling a compressed feed air stream in a heat exchanger, then expanding the resulting cooled feed air stream in an expander, thereby producing a quantity of work and a cooled inlet air stream, feeding the cooled inlet air stream into the LP column. Then extracting a nitrogen stream from the MP column, and warming a first portion of the nitrogen stream in the heat exchanger, thereby producing a product nitrogen stream. Then compressing a second portion of the nitrogen stream in a compressor, thereby producing medium pressure nitrogen stream, and introducing the medium pressure nitrogen stream into an LP column vaporizer. Then extracting a second nitrogen stream from the LP column, and cooling the second nitrogen stream in a condenser thereby producing a liquid nitrogen stream. Then introducing a first portion of the liquid nitrogen stream into the LP column, increasing the pressure of a second portion of the liquid nitrogen stream, thereby producing a pressurized liquid nitrogen stream, and introducing a first portion of the pressurized liquid nitrogen stream into the MP column, and export a second portion of the pressurized liquid nitrogen stream as product.02-21-2013
20130047666METHOD AND DEVICE FOR OBTAINING PRESSURIZED NITROGEN AND PRESSURIZED OXYGEN BY LOW-TEMPERATURE SEPARATION OF AIR - The invention relates to a method and device for obtaining pressurized nitrogen and pressurized oxygen by low-temperature separation of air. Compressed and purified feed air is cooled down in a main heat exchanger and introduced into a distillation column system comprising at least one high-pressure column and one low-pressure column. The distillation column system for nitrogen-oxygen separation in addition contains a residual gas column operating at a pressure which is lower than the operating pressure of the low-pressure column. A liquid crude oxygen fraction from the high-pressure column (02-28-2013
20150114037AIR SEPARATION METHOD AND APPARATUS - A method and apparatus for separating air in which an oxygen-rich liquid stream is pumped and then heated within a heat exchanger to produce an oxygen product through indirect heat exchange with first and second boosted pressure air streams. The first boosted pressure air stream is cold compressed at an intermediate temperature of the heat exchanger, reintroduced into the heat exchanger at a warmer temperature and then fully cooled and liquefied. The second boosted pressure air stream, after having been partially cooled, is expanded to produce an exhaust stream that is in turn introduced into a lower pressure column producing the oxygen-rich liquid. The second boosted pressure air stream is partially cooled to a temperature no greater than the intermediate temperature at which the cold compression occurs so that both the first and second boosted pressure air streams are able to take part in the heating of the oxygen-rich stream.04-30-2015
20150369535AIR SEPARATION PLANT, METHOD FOR OBTAINING A PRODUCT CONTAINING ARGON, AND METHOD FOR CREATING AN AIR SEPARATION PLANT - An air separation plant for obtaining product containing argon by low temperature separation of compressed, cooled feed air. The air separation plant comprises a high-pressure column, a multi-part low-pressure column having a base segment and a head segment and a multi-part crude argon column having a base segment and a head segment. An oxygen-enriched flow is obtained from part of the feed air in the high pressure column, an argon-enriched flow is obtained from part of the oxygen-enriched flow in the low-pressure column, and an argon-rich flow is obtained from part of the argon-enriched flow in the crude argon column. Liquid flow is transferred from a lower region of the head segment of the low-pressure column and from a lower region of the base segment of the crude argon column into an upper region of the base segment of the low-pressure column.12-24-2015
20160003538ARGON CONDENSATION SYSTEM AND METHOD - An argon reflux condensation system and method in which a plurality of once-through heat exchangers are connected to an argon column of an air separation plant to condense argon-rich vapor streams for production of reflux to the argon column. Condensation of the argon-rich vapor streams is brought about through indirect heat exchange with crude liquid oxygen streams that partially vaporize and are introduced into a lower pressure column of the plant for further refinement. The flow rate of the crude liquid oxygen streams are sensed and controlled at locations in the plant where the crude liquid oxygen is in a liquid state and in proportion to the size of the once-through heat exchangers. Feed stream flow rate to the argon column is controlled in response to air flow rate to the plant and product flow rate is controlled in response to the feed stream flow rate to the argon column.01-07-2016
20160123661AIR SEPARATION APPARATUS - A cryogenic air separation method and apparatus in which first and second liquid streams are produced. The first liquid stream has a higher oxygen content than air and can consist of a higher pressure distillation column bottoms and the second liquid stream, for instance, air, has a lower oxygen content than the first liquid stream and an argon content no less than the air. The second liquid stream is subcooled through indirect heat exchange with the first liquid stream and both of such streams are introduced into the lower pressure column. The second liquid stream is introduced into the lower pressure column above that point at which the crude liquid oxygen column bottoms or any portion thereof is introduced into the lower pressure column to increase a liquid to vapor ratio below the introduction of the second liquid stream and therefore, reduce the oxygen present within the column overhead.05-05-2016
20160123662METHOD AND DEVICE FOR OXYGEN PRODUCTION BY LOW-TEMPERATURE SEPARATION OF AIR AT VARIABLE ENERGY CONSUMPTION - A method and device to produce oxygen by the low-temperature separation of air at variable energy consumption. A distillation column system comprises a high-pressure column, a low-pressure column and a main condenser, a secondary condenser and a supplementary condenser. Gaseous nitrogen from the high-pressure column is liquefied in the main condenser in indirect heat exchange with an intermediate liquid from the low-pressure column. A first liquid oxygen stream from the bottom of the low-pressure column is evaporated in the secondary condenser in indirect heat exchange with feed air to obtain a gaseous oxygen product. The supplementary condenser serves as a bottom heating device for the low-pressure column and is heated by means of a first nitrogen stream from the distillation column system, which nitrogen stream was compressed previously in a cold compressor.05-05-2016
20160187060METHOD AND DEVICE FOR DISCHARGING COMPONENTS THAT ARE LESS VOLATILE THAN OXYGEN FROM AN AIR SEPARATION PLANT - A method and plant for discharging components that are less volatile than oxygen from an air separation plant that contains a main heat exchanger a side condenser and a two-column distillation column system for nitrogen-oxygen separation. The side condenser is constructed as a condenser-evaporator and is arranged in a vessel. A part of the feed air is cooled in the main heat exchanger and liquefied at least in part in the side condenser. A first oxygen fraction is withdrawn in the liquid state from the low-pressure column, introduced into the vessel of the side condenser and in part vaporized. A purge stream is taken off from the bottom of the vessel in the liquid state and discharged or withdrawn as end product. The vessel has a mass transfer section above the side condenser, which mass transfer section corresponds to more than one theoretical plate and fewer than 10 theoretical plates.06-30-2016
062645000 Flowline expansion engine 24
20100251766REFRIGERATION GENERATION METHOD AND SYSTEM - The present invention provides a method and apparatus for generating refrigeration in a process operating at sub-ambient temperatures in which the refrigeration is generated by a turboexpander. The turboexpander is coupled to a generator controlled so that its speed is maintained at a setpoint through electromagnetic braking and its power output is maintained at line matching voltage and frequency. The speed control of the generator therefore, also controls the speed of the turboexpander. The setpoint is calculated to be equal to a product of an operational efficiency parameter, U/C10-07-2010
20100275648EFFICIENTLY COMPRESSING NITROGEN IN A COMBINED CYCLE POWER PLANT - A system and method for reduction of diluent gaseous nitrogen (DGAN) compressor power in combined cycle power plant. A vapor absorption chiller (VAC) may be utilized to generate and transmit cooled fluid, such as water, to one or more heat exchangers located upstream and/or downstream of at least one compressor of the DGAN compressor system. Utilization of these heat exchangers may cool the temperature of the nitrogen, which may allow for less energy to be expended by the DGAN in compression of the nitrogen.11-04-2010
20110120186Method And Device For Producing Air Gases In A Gaseous And Liquid Form With A High Flexibility And By Cryogenic Distillation - A method of producing at least one air gas using cryogenic distillation is provided. The expanded streams coming from the two turbines are combined and then split into two fractions. The first fraction is sent to the medium-pressure column of the system in gaseous form, whereas the second fraction is returned to the cold end of the heat exchange line. At a temperature T05-26-2011
20110138856SEPARATION METHOD AND APPARATUS - A method and apparatus for producing an oxygen product in which air is separated in an installation including one or more air separation units having higher and lower pressure columns. An exhaust stream produced from a turboexpander and optionally an impure oxygen stream such as that derivable from higher pressure column bottoms is rectified within an auxiliary column to produce an oxygen containing stream that is introduced into the lower pressure column of each of the air separation units to increase the capacity of such columns. The pressure within the auxiliary column is set by the pressure of the exhaust stream such that a nitrogen-rich vapor stream extracted from the top of the auxiliary column can be used in regenerating adsorbent within a pre-purification unit utilized in connection with the installation.06-16-2011
20110146344Process And Apparatus For The Separation Of Air By Cryogenic Distillation - In a process for the production of nitrogen and of oxygen enriched liquid by separation of air by cryogenic distillation, a first stream of air is sent to an exchanger to form a first cooled air stream, the first cooled air stream is sent to a bottom reboiler of a column, condensed air is sent from the bottom reboiler to a top condenser of the column, vaporized air is sent from the top condenser to a first compressor, air is sent from the first compressor to the column, air is sent to a second compressor and from the second compressor to the exchanger to produce a cooled second air stream, the cooled second air stream is sent to a first turboexpander and from the turbo expander to the column, bottom liquid is removed from the column and gaseous nitrogen is removed from the top of the column.06-23-2011
20120167622METHOD AND FACILITY FOR PRODUCING OXYGEN THROUGH AIR DISTILLATION - In a method for producing oxygen through the distillation of air supplied by air at atmospheric pressure so as to produce a first and second compressed air flow, and through a first purification unit (07-05-2012
20170234614METHOD FOR THE CRYOGENIC SEPARATION OF AIR AND AIR SEPARATION PLANT08-17-2017
062646000 Spaced initial charging 17
20080216511Nitrogen production method and apparatus - Method and apparatus for distilling nitrogen from a gaseous mixture containing nitrogen and oxygen. Oxygen-enriched bottoms liquid is partially vaporized within a first heat exchanger to condense part of the column overhead to produce reflux. Thereafter, the partially vaporized oxygen-enriched liquid is phase separated. A second oxygen-enriched liquid stream composed of at least part of the liquid phase is used to substantially condense all or part of the vapor stream derived from said phase separation, thereby to form a nitrogen-rich liquid stream. At least part of the nitrogen-rich liquid stream is reintroduced into the column to increase nitrogen recovery. The second oxygen-enriched liquid stream is then used to condense a second part of the reflux for the column.09-11-2008
20080223076Cryogenic Distillation Method and Installation for Air Separation - The invention relates to a method and installation for separation of air by means of cryogenic distillation. According to the invention, all of the air is brought to a high pressure greater than the medium pressure and purified. Part of the purified air flow (09-18-2008
20080223077Air separation method - An air separation method in which a liquid air stream, produced by vaporizing a pumped liquid oxygen stream, is introduced into a lower pressure column and optionally, a higher pressure column of an air separation unit. The liquid air stream is subcooled by extracting a main air feed to the higher pressure column from a main heat exchanger at a temperature warmer than the liquid air stream to increase argon recovery in an argon column connected to the lower pressure column. This temperature is selected such that the liquid air stream approaches an average temperature of the return streams being fed into the main heat exchanger from the higher and lower pressure columns at a range between about 0.2K and about 3K.09-18-2008
20090078001Cryogenic Distillation Method and System for Air Separation - Methods and apparatus for air separation by cryogenic distillation in a double or triple air separation column. The column in the system with the highest operating pressure is said to be operating at medium pressure. All the air to be distilled is pressurized to a high pressure, which is about 5 bar greater than the medium pressure. The air is purified at this high pressure, and a portion of the purified air is cooled in a heat exchange line, while another portion is expanded in a turbine. Part of the cooled air is drawn from the exchange line with a cold booster, which is mechanically coupled to at least one turbine. An energy dissipation device is also provided which is coupled to the turbine not coupled to the cold booster. The energy dissipation device is either another booster, an oil break system, or an electrical generator.03-26-2009
20090205368DISTILLATION METHOD AND APPARATUS - A distillation apparatus and method in which first and second compressed streams are formed from a compressed feed stream, for example, compressed air. The first compressed stream is fully cooled within a main heat exchanger so that it is substantially condensed. The second compressed stream is partly cooled within the main heat exchanger and then introduced into a turboexpander at a temperature such that the turboexpander exhaust stream is superheated. Part of the first compressed stream is mixed with the exhaust stream to produce a combined stream that is no more than 10° C. above saturation temperature at the pressure of the exhaust stream. The combined stream is introduced into a distillation column unit to produce one or more products that are enriched in components of the feed to be separated. In such manner the turboexpansion can occur at a higher temperature and with increased refrigerating effect.08-20-2009
20100175426Power Management For Gasification Facility - Systems and methods for controlling power needs of a gasification facility are described. The systems include an ice refrigeration storage unit for supplying refrigeration to the larger consumers of cooling in the gasification facility. The methods include manipulating the ice refrigeration storage unit to minimize the utilization of power during peak price periods and maximize the utilization of power during offpeak price periods.07-15-2010
20100242538CRYOGENIC RECTIFICATION METHOD - The present invention provides a method of rectifying an oxygen, nitrogen and argon containing feed stream that employs high and low pressure columns and an argon column. Refrigeration is imparted through turboexpansion of a nitrogen-rich vapor stream withdrawn from the high pressure column. The nitrogen-rich vapor stream has a sufficiently high flow rate that the flow of both vapor and liquid within the low pressure column is decreased to such an extent that the diameter of the low pressure column can be made substantially equal to or less than that of the high pressure column. The use of the argon column allows recovery of the oxygen to be increased over that which would otherwise be obtained given the draw of the nitrogen-rich vapor. The argon column can be an argon rejection column in which the separated argon is discarded as waste.09-30-2010
20110067444Processes and Device for Low Temperature Separation of Air - The process and device serve for the low-temperature separation of air in a distillation-column system includes at least one separation column. A main air stream is compressed in an air compressor at a first pressure and is then purified. A first air stream, which is formed from at least one part of the purified main air stream, is further compressed at a second pressure that is higher than the first pressure. From the further compressed first air stream, a throttling stream and a turbine stream are branched off. The throttling stream is cooled down and liquefied or pseudo-liquefied in a main heat exchanger and is then passed on to expansion equipment. The expanded throttling stream is conducted into the distillation-column system. The turbine stream is cooled down in the main heat exchanger and under an intermediate temperature of the main heat exchanger is conducted into an expansion machine.03-24-2011
20110083469Process and Device for Obtaining Liquid Nitrogen by Low Temperature Air Fractionation - A device for obtaining liquid nitrogen by low-temperature air fractionation in a distillation column system for nitrogen-oxygen separation includes a high-pressure column; a low-pressure column; a high-pressure column top condenser which is constructed as a condenser-evaporator and comprises a liquefaction compartment and an evaporation compartment; a low-pressure column top condenser which is constructed as a condenser-evaporator and comprises a liquefaction compartment and an evaporation compartment. A throttle stream is formed by one part of a purified feed air that is liquefied or pseudoliquefied in a main heat exchanger. The throttle stream is expanded, and at least some of the expanded throttle stream is introduced as refrigerant stream into the evaporation compartment of the high-pressure column top condenser.04-14-2011
20110289964SEPARATION METHOD AND APPARATUS - Separation method and apparatus for separating a gaseous mixture, for example, air, in a cryogenic rectification plant in which a compressed stream is divided into subsidiary streams that are extracted from a main heat exchanger of the plant at higher and lower temperatures. The two streams are then combined and expanded in a turboexpander to generate refrigeration for the plant. The flow rates of the two streams are adjusted to control inlet temperature of a turboexpander supplying plant refrigeration and to minimize potential deviation of the turboexpander exhaust from a saturated vapor state. Control of the expansion ratio can advantageously be applied to allow variable liquid production from the rectification plant.12-01-2011
20130192300DEVICE FOR LOW-TEMPERATURE SEPARATION OF AIR - The device serves for the cryogenic separation of air. It has the following features: a main heat exchanger and a supercooling countercurrent heat exchanger (08-01-2013
20150316318SYSTEM AND METHOD FOR PRODUCTION OF ARGON BY CRYOGENIC RECTIFICATION OF AIR - A system and method for producing argon that uses a higher pressure column, a lower pressure column, and an argon column collectively configured to produce nitrogen, oxygen and argon products through the cryogenic separation of air. The present system and method also employs a once through argon condensing assembly that is disposed entirely within the lower pressure column that is configured to condense an argon rich vapor stream from the argon column against the oxygen-enriched liquid from the higher pressure column to produce an argon liquid product. The control system is configured for optimizing the production of argon product by ensuring an even flow split of the oxygen-enriched liquid is distributed to the argon condenser cores and by adjusting the flow rate of the argon removed from the argon condensing assembly to maintain the liquid/vapor balance in the argon condensing assembly within appropriate limits.11-05-2015
20160003534METHOD AND APPARATUS FOR THE CRYOGENIC SEPARATION OF AIR - A method and the apparatus for the cryogenic separation of air in an air separation plant which has a main air compressor, a main heat exchanger and a distillation column system with a high-pressure column and a low-pressure column. All of the feed air is compressed in the main air compressor to a first air pressure which is at least 3 bar higher than the operating pressure of the high-pressure column. A first part of the compressed total air flow, as first air flow at the first air pressure, is cooled and liquefied or pseudo-liquefied in the main heat exchanger, then expanded and introduced into the distillation column system. A second part of the compressed total air flow, as second air flow, is post-compressed in an air post-compressor to a second air pressure and at least part is further compressed in a first turbine-driven post-compressor to a third air pressure.01-07-2016
20160131425SYSTEM AND METHOD FOR PRODUCTION OF CRUDE ARGON BY CRYOGENIC RECTIFICATION OF AIR - A system and method for producing argon that uses a higher pressure column, a lower pressure column, and an argon column collectively configured to produce nitrogen, oxygen and argon products through the cryogenic separation of air. The present system and method also employs a once through argon condensing assembly that is disposed entirely within the lower pressure column that is configured to condense an argon rich vapor stream from the argon column against the oxygen-enriched liquid from the higher pressure column to produce an argon liquid product. The control system is configured for optimizing the production of argon product by ensuring an even flow split of the oxygen-enriched liquid is distributed to the argon condenser cores and by adjusting the flow rate of the argon removed from the argon condensing assembly to maintain the liquid/vapor balance in the argon condensing assembly within appropriate limits.05-12-2016
20160153711METHOD AND SYSTEM FOR AIR SEPARATION USING A SUPPLEMENTAL REFRIGERATION CYCLE06-02-2016
20160153712SYSTEM AND METHOD FOR PRODUCTION OF ARGON BY CRYOGENIC RECTIFICATION OF AIR06-02-2016
20160200446ON-BOARD AIRCRAFT NITROGEN ENRICHED AIR AND COOLING FLUID GENERATION SYSTEM AND METHOD07-14-2016
062647000 Spaced initial charging 1
20090188280PROCESS AND DEVICE FOR LOW-TEMPERATURE SEPARATION OF AIR - The process and the device are used for low-temperature separation of air with a distilling-column system for nitrogen-oxygen separation (07-30-2009
Website © 2025 Advameg, Inc.