Class / Patent application number | Description | Number of patent applications / Date published |
060659000 | Including heat, steam, or compressed gas storage means | 39 |
20090025388 | METHOD AND SYSTEM FOR GENERATION OF POWER USING STIRLING ENGINE PRINCIPLES - A heat engine enclosing a chamber in housing has two zones maintained at different temperatures. The first zone receives heat energy from an external power source. The second zone is connected to the hot zone by two conduits, such that a fluid (e.g., air, water, or any other gas or liquid) filling the chamber can circulate between the two zones. The expansion of the fluid in the hot zone and the compression of the fluid in the cold zone drive the rotation of the housing to provide a power output. The fluid may be pressurized to enhance efficiency. A cooling fluid provided in a stationary reservoir maintains a preferred operating temperature difference between the hot zone and the cold zone. A heat storage structure containing a fluid with a high heat capacity may be provided as a heat reservoir. | 01-29-2009 |
20090090109 | GRANULAR THERMAL ENERGY STORAGE MEDIUMS AND DEVICES FOR THERMAL ENERGY STORAGE SYSTEMS - The invention provides compositions for use in thermal energy storage systems, including thermal energy storage mediums, fluid channeling devices and thermally conductive heat transfer elements, and methods for storing thermal energy. A thermal energy storage system is provided, comprising: (a) a granular thermal energy storage medium comprising at least a first size class and a second size class; wherein the individual granules of each size class deviate from the average granular size for that size class by no more than about ±50%; wherein first size class is the largest size class; wherein the ratio of the average size of the first size class to the average size of the second size class is at least about 2:1; and (b) one or more conduits disposed within the medium, and arranged to receive a source of thermal energy. | 04-09-2009 |
20090100835 | CAES system with synchronous reserve power requirements - A CAES system ( | 04-23-2009 |
20090158740 | CO2 CAPTURE DURING COMPRESSED AIR ENERGY STORAGE - A compressed air energy storage system including a gas inlet pipe, at least one air compressor stage attached to the gas inlet pipe and adapted for compression of a gas, a heat transfer system to cool the gas during or after compression, at least one absorption bed attached to the heat transfer system, at least one compressed gas reservoir having an inlet and an outlet, the compressed gas reservoir being attached at its inlet to the absorption bed, at least one preheater stage that is attached to the outlet of the compressed gas reservoir for heating a compressed gas before expansion but after storage in the compressed gas reservoir, and at least one gas expander that is attached to the preheater stage and is adapted for the expansion of the compressed gas. | 06-25-2009 |
20090173072 | FLEXIBLE ASSEMBLY OF RECUPERATOR FOR COMBUSTION TURBINE EXHAUST - A recuperator includes a heating gas duct; an inlet manifold; a discharge manifold; and a once-through heating area disposed in the heating-gas duct through which a heating gas flow is conducted. The once-through heating area is formed from a plurality of first single-row header-and-tube assemblies and a plurality of second single-row header-and-tube assemblies. Each of the plurality of first single-row header-and-tube assemblies including a plurality of first heat exchanger generator tubes is connected in parallel for a through flow of a flow medium therethrough and further includes an inlet header connected to the inlet manifold. Each of the plurality of second single-row header-and-tube assemblies including a plurality of second heat exchanger generator tubes is connected in parallel for a through flow of the flow medium therethrough from respective first heat exchanger generator tubes, and further includes a discharge header connected to the discharge manifold. Each of the inlet headers is connected to the inlet manifold via a respective at least one of a plurality of first link pipes and each of the discharge headers is connected to the discharge manifold via a respective at least one of a plurality of second link pipes. Each of the heat exchanger tubes of each of the first and second single-row header-and-tube assemblies have an inside diameter that is less than an inside diameter of any of the plurality of first and second link pipes. | 07-09-2009 |
20090282828 | Heat engine/ heat pump using centrifugal fans - An engine/heat pump is shown. Most of its parts rotate around the same central axis. It comprises two doubly connected chambers. Blades in each chamber substantially rotate with the chamber and may be firmly attached to the walls of the chamber, thus forming a modified centrifugal pump with axial input and discharge. An expandable fluid is rotated outward by one of the pumps and then heat is added for an engine or removed for a heat pump as the fluid is being sent to the outer part of the second pump. The fluid travels toward the center of the second pump, thus impelling the pump in the rotation direction. Then heat is removed for an engine or added for a heat pump as the fluid leaves the second pump and travels back to the first pump near the center of rotation of both pumps. Rotation energy of the fluid is typically much larger than the circulation energy. A modified centrifugal pump with axial discharge having a casing rotating with the blades is also claimed. | 11-19-2009 |
20090313997 | Unitary engine and energy accumulation system - A unitary, hybrid engine which includes an internal combustion engine which is used both for locomotive and heat generation externally of the cylinders of the combustion engine, wherein the generated heat is employed in conjunction with an evaporator to generate steam, which is then stored in an energy accumulator which retains the stored energy by way of a pressured water containment unit. The pressurized water containment unit accretes the energy and, upon attainment of a predetermined pressure and liquid level, the steam is transmitted to one or more of the cylinders of the unitary engine to provide the motive power to the unitary engine. The engine includes control systems to permit the sole use of steam during such times as may be required for environmental or pollution control requirements. | 12-24-2009 |
20100107635 | THERMAL STORAGE DEVICE - To provide an indicator for indicating current amounts and predicted amounts of cold energy and heat energy stored in a thermal storing device. | 05-06-2010 |
20100162702 | Rankline-Brayton Engine Powered Solar Thermal Aircraft - A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat. | 07-01-2010 |
20100218500 | Installation and Methods for Storing and Methods for Storing and Restoring Electrical Energy Using a Piston-Type Gas Compression and Expansion Unit - The present invention relates to an installation and to methods for storing and returning electrical energy, comprising first and second lagged enclosures containing porous refractory material through which a gas is caused to flow by causing the gas to flow through first and second compression/expansion groups interposed in the pipe circuit between the top and bottom ends respectively of said first and second enclosures, each compression/expansion group comprising a piston moved in translation in a cylinder, each group operating in a different mode, either in compression mode or in expansion mode, one of the two compression/expansion groups receiving a gas at a temperature that is higher than the other group, such that in compression mode it is driven by an electric motor that consumes electrical energy for storage E | 09-02-2010 |
20100251711 | Energy Storage - An apparatus for storing energy includes a compression chamber for receiving a gas, a compression piston for compressing gas contained in the compression chamber, a first heat store for receiving and storing thermal energy from gas compressed by the compression piston, an expansion chamber for receiving gas after exposure to the first heat store, an expansion piston for expanding gas received in the expansion chamber, and a second heat store for transferring thermal energy to gas expanded by the expansion piston. The cycle used by the apparatus has two different stages that can be split into separate devices or combined into one device. | 10-07-2010 |
20100251712 | Advanced Adiabatic Compressed Air Energy Storage System - An adiabatic Compressed Air Energy Storage (CAES) system includes a low pressure compressor structure ( | 10-07-2010 |
20110005226 | System and method for storing, dissiminating, and utilizing energy in the form of gas compression and expansion including thermo-dynamic battery - Thermo-dynamic battery is a energy storage unit for converting compressed gas energy into consumable electrical power for application uses with any device that requires electrical power to function. A method for storing electrical energy in the form of compressed gas and converting the same energy to electric power includes compressing gas and storing the compressed gas for release to drive a generator. A system and method for storing, disseminating, and utilizing energy in the form of gas compression and expansion comprises a method for expanding compressed gas in at least two stages and further provides for storing energy in the form of compressed gas through compression in at least two stages. Apparatus is provided to operate in accordance with the described procedure to contribute at or about 90% efficiency. | 01-13-2011 |
20110100010 | ADIABATIC COMPRESSED AIR ENERGY STORAGE SYSTEM WITH LIQUID THERMAL ENERGY STORAGE - An adiabatic compressed air energy storage (ACAES) system includes a compressor system, an air storage unit, and a turbine system. The ACAES system further includes a thermal energy storage (TES) system that includes a container, a plurality of heat exchangers, a liquid TES medium conduit system fluidly coupling the container to the plurality of heat exchangers, and a liquid TES medium stored within the container. The TES system also includes a plurality of pumps coupled to the liquid TES medium conduit system and configured to transport the liquid TES medium between the plurality of heat exchangers and the container, and a thermal separation system positioned within the container configured to thermally isolate a first portion of the liquid TES medium at a lower temperature from a second portion of the liquid TES medium at a higher temperature. | 05-05-2011 |
20110113781 | SYSTEM AND METHOD FOR SECONDARY ENERGY PRODUCTION IN A COMPRESSED AIR ENERGY STORAGE SYSTEM - A method, system, and apparatus including a compressed air energy storage (CAES) system including a compression train with a compressor path, a storage volume configured to store compressed air, a compressed air path configured to provide passage of compressed air egressing from the compression train to the storage volume, and a heat recovery system coupled to at least one of the compressor path and the compressed air path and configured to draw heat from at least one of the compressor path and the compressed air path to a first liquid. The compression train is configured to provide passage of compressed air from a first compressor to a second compressor. The heat recovery system includes a first evaporator configured to evaporate the first liquid to a first gas and a first generator configured to produce electricity based on an expansion of the first gas. | 05-19-2011 |
20120036853 | Adiabatic Compressed Air Energy Storage Process - A compressed air energy storage system including a compressor adapted to receive a process gas and output a compressed process gas. A heat transfer unit may be coupled to the compressor and adapted to receive the compressed process gas and a heat transfer medium and to output a cooled process gas and a heated heat transfer medium. A compressed gas storage unit may be coupled to the heat transfer unit and adapted to receive and store the cooled process gas. A waste heat recovery unit may be coupled to the heat transfer unit and adapted to receive the heated heat transfer medium. | 02-16-2012 |
20120055160 | AIR CURRENT GENERATING SYSTEM AND METHOD - An air current generating system and method, includes an air source, a passage ( | 03-08-2012 |
20130104549 | THERMAL ENERGY STORAGE AND RECOVERY WITH A HEAT EXCHANGER ARRANGEMENT HAVING AN EXTENDED THERMAL INTERACTION REGION | 05-02-2013 |
20130111903 | STORAGE AND RECOVERY OF THERMAL ENERGY BASED ON COUNTER CURRENT PRINCIPLE OF HEAT TRANSFER MEDIUM TRANSPORTATION - A thermal energy storage device is provided. The device has a heat exchanger arrangement for guiding a flow of a heat transfer medium between a first end and a second end of the heat exchanger arrangement, and a heat storage material surrounding the heat exchanger arrangement. The heat exchanger arrangement transports the heat transfer medium from the first end to the second end if the thermal energy storage device is in a first operational mode, in which the heat storage material is supposed to receive thermal energy from the heat transfer medium, and transports the heat transfer medium from the second end to the first end if the thermal energy storage device is in a second operational mode, in which the heat storage material is supposed to release thermal energy to the heat transfer medium. | 05-09-2013 |
20130111904 | THERMAL ENERGY STORAGE AND RECOVERY DEVICE AND SYSTEM HAVING A HEAT EXCHANGER ARRANGEMENT USING A COMPRESSED GAS - A thermal energy storage and recovery device is disclosed which includes a heat exchanger arrangement configured for guiding a flow of a heat transfer medium between a first end and a second end, and a heat storage material surrounding the heat exchanger arrangement so that a thermal interaction region is formed for thermally coupling the heat transfer medium with the heat storage material. The heat exchanger arrangement is sealed against the heat storage material so that, when in a first operational mode, in which the heat storage material is supposed to receive thermal energy from the heat transfer medium, a compressed gas is usable as the heat transfer medium for transferring thermal energy from the heat transfer medium to the heat storage material. | 05-09-2013 |
20130118170 | THERMAL ENERGY STORAGE SYSTEM - A variety of energy storage and retrieval systems are described. Generally “hot” and “cold thermal reservoirs are provided. The “hot” reservoir holds both liquid and saturated vapor phase working fluid. The “cold” reservoir holds working fluid at a lower temperature than the hot reservoir. A heat engine/heat pump unit: (a) extracts energy from vapor passing from the hot reservoir to the cold reservoir via expansion of the vapor in a manner that generates mechanical energy to facilitate retrieval of energy; and (b) compresses vapor passing from the cold reservoir to the hot reservoir to facilitate the storage of energy. In some embodiments, the heat engine/heat pump takes the form of a reversible positive displacement heat engine that can act as both an expander and a compressor. To facilitate the storage and retrieval of electrical energy, an electric motor/generator unit may be mechanically coupled to the heat engine/heat pump unit. | 05-16-2013 |
20130298559 | STEAM POWER PLANT WITH HIGH-TEMPERATURE HEAT RESERVOIR - A steam power plant is suggested having, parallel to the high-pressure preheater passage (VW | 11-14-2013 |
20130312417 | INCREASED POWER IN COMPRESSED-GAS ENERGY STORAGE AND RECOVERY - In various embodiments, energy is stored or recovered via super-atmospheric compression and/or expansion of gas in conjunction with substantially adiabatic compression and/or expansion from or to atmospheric pressure. | 11-28-2013 |
20140033714 | REGENERATIVE THERMAL ENERGY SYSTEM AND METHOD OF OPERATING THE SAME - A regenerative thermal energy system includes a heat exchange reactor that includes a top entry portion, a lower entry portion, and a bottom discharge portion. The system also includes at least one fluid source coupled in flow communication with the at least one heat exchange reactor at the lower entry portion. The system also includes at least one cold particle storage source coupled in flow communication with the at least one heat exchange reactor at the top entry portion. The system further includes at least one thermal energy storage (TES) vessel coupled in flow communication with the heat exchange reactor at each of the bottom discharge portion and the top entry portion. The heat exchange reactor is configured to facilitate direct contact and counter-flow heat exchange between solid particles and a fluid. | 02-06-2014 |
20140075945 | SYSTEM COMBINING POWER GENERATION APPARATUS AND DESALINATION APPARATUS - In a system combining a power generation apparatus and a desalination apparatus, the power generation apparatus includes a circulation circuit in which a first heat exchanger, an expander, a second heat exchanger having a space, the second heat exchanger for evaporating seawater and generating water vapor, and a working medium pump are connected in series, and a power generator, and the desalination apparatus includes a suction pump for suctioning a gas in the space, a control device for driving the suction pump in such a manner that an atmospheric pressure in the space becomes a saturated water vapor pressure, a condenser for condensing the water vapor led from the space, and a sweet water storage tank for storing sweet water (W) condensed in the condenser. | 03-20-2014 |
20140116050 | WASTE HEAT RETRIEVAL SYSTEM OF VEHICLE - A waste heat retrieval system of a vehicle may include a reservoir disposed in a lower side of a exhaust gas boiler and in which a predetermined space is formed, a retrieval line that connects the exhaust gas boiler with the reservoir, a retrieval supply control valve disposed to open or close the retrieval line, and a control portion that controls the retrieval supply control valve to open the retrieval line such that working fluid of the exhaust gas boiler is returned to the reservoir if a retrieval condition is satisfied. Accordingly, the working fluid of the exhaust gas boiler in a waste heat retrieval system may be retrieved to the reservoir and therefore the freezing problem of the working fluid can be substantially resolved. | 05-01-2014 |
20140196456 | STORAGE ENERGY GENERATION METHOD UTILIZING NATURAL ENERGY AND GENERATION SYSTEM THEREOF - A storage energy generation method utilizing natural energy and a generation system thereof generates electricity through natural energy such as wind power or solar energy and then compresses air, or directly compresses air, then generates electricity to an electric grid through the compressed air which is deemed as a power resource. An electric station utilizing integrated energy generates electricity to drive an air compression device, further then produces compressed air as an energy storage medium and stores compressed air in an air storage device, and then regards the compressed air as a main or auxiliary driving energy to other electric stations, such that a function of stabilizing and adjusting peak load can be realized. | 07-17-2014 |
20140238022 | SYSTEM FOR STORING ENERGY BY MEANS OF COMPRESSED AIR - A plant for storing energy by means of compressed air, in which: a storage volume accommodates air at elevated pressure p | 08-28-2014 |
20140338329 | INSTALLATION FOR STORING THERMAL ENERGY - An installation for storing thermal energy which can be obtained, for example, at times of overcapacities, from regenerative energy and then be stored is provided. The energy stored in a heat accumulator, a cold accumulator and in an additional heat accumulator can be, when needed, reconverted into electrical energy by circuits via a generator (G) while using a compressor and a turbine. The working gas is humidified by a humidification column, ideally until saturation, whereby, advantageously, a greater mass flow can be obtained at a lower volume flow. For this reason, more economical components can be used while simultaneously a high yield of the installation is achieved. | 11-20-2014 |
20140338330 | ENERGY STORAGE INSTALLATION WITH OPEN CHARGING CIRCUIT FOR STORING SEASONALLY OCCURRING EXCESS ELECTRICAL ENERGY - An energy storage device for storing thermal energy, with a charging circuit for a working gas, is provided, having a compressor, heat accumulator and expansion turbine, the compressor and expansion turbine arranged on a common shaft, and the compressor connected on the outlet side to the inlet of the expansion turbine via a first line for the working gas, the heat accumulator wired into the first line, wherein the compressor is connected on the inlet side to a line, which is open to the atmosphere, and the expansion turbine is connected on the outlet side to a line, which is open to the atmosphere such that a circuit open to the ambient air is formed, wherein the expansion turbine is connected to the heat accumulator via a line for a hot gas such that the working gas in the expansion turbine can be heated by heat from the heat accumulator. | 11-20-2014 |
20140360191 | ENERGY STORAGE APPARATUS FOR THE PREHEATING OF FEED WATER - An energy storage apparatus for the storage of thermal energy is provided, with a charging circuit, having a compressor, a heat store and an expansion turbine, the compressor connected on the outlet side to the inlet of the expansion turbine via a first line for a first working gas, and the heat store inserted into a second line, and the first line connected to a first heat exchanger, in which the first line and the second line are coupled thermally, and, furthermore, having a discharge circuit which has a water/steam circuit equipped with a steam generator and which has at least one feed water preheater preceding the steam generator with respect to the direction of flow of the water in this water/steam circuit, and thermal coupling between the charging circuit and discharge circuit achieved by the feed water preheater, in particular achieved solely by the feed water preheater. | 12-11-2014 |
20150027122 | ENERGY STORAGE POWER PLANT AMD METHOD FOR OPERATING SUCH A POWER PLANT - An energy storage power plant for harvesting electric energy, and suitable for converting electric energy into thermal energy is provided. The thermal energy can be temporarily stored in at least two thermal stores until demanded and retrieved to increase the energy content of water in a water circuit upon demand. The power plant has the at least two thermal stores, each has at least one converting device that allows electric energy to be directly or indirectly converted into thermal energy, the thermal stores being thermally chargeable by temporarily storing thermal energy, wherein one thermal store is for storing sensible heat and one thermal store is for storing latent heat; and at least one energy generating unit operated using the water in the water circuit, the energy content of the water having been increased by the temporary storage of thermal energy, in order to generate electric energy when operated. | 01-29-2015 |
20150300209 | SYSTEMS, METHODS, AND DEVICES FOR POWER STORAGE, RECOVERY, AND BALANCING - An energy processing apparatus includes an energy input unit, a bulk storage unit, an auxiliary unit, and an energy output unit. The energy input unit can include conduits/devices for the input of electrical/thermal energy sources. The bulk storage unit can include a system, conduits/devices for electrical/thermal energy storage/release. The auxiliary unit can include a system, conduits/devices for the production of material products. The energy output unit can contain conduits/devices for the output of electrical energy. The energy input unit can be connected to the bulk storage unit, auxiliary unit, and energy output unit by conduits/devices for the transfer of electrical/thermal energy. The bulk storage unit and auxiliary unit can be connected by conduits/devices for the transfer of material products and/or thermal energy. | 10-22-2015 |
20150345522 | COMPRESSED GAS ENERGY STORAGE SYSTEM - Embodiments of the present invention use compressed air to store and deliver electrical, mechanical, and/or thermal power with high round-trip efficiency. Various embodiments may be scalable for use in a variety of environments—from wind farms to power plants to motor vehicles. An energy storage system according to the present invention can operate as a stand-alone storage system that connects electrically to the grid, it can be tightly integrated with a wind turbine, and/or it can be co-located with a thermal power generation facility and operate with even higher efficiency by scavenging low-grade waste heat. | 12-03-2015 |
20160097603 | HEAT ACCUMULATOR AND METHOD FOR OPERATING A HEAT ACCUMULATOR - A heat accumulator having a housing to receive a heat storage medium, a heat storage medium received in the housing, and a heat exchanger, in which a heat carrier fluid can be transported and which is arranged so that heat can be transferred from the heat storage medium to the heat carrier fluid. The heat accumulator comprises an electrical heating means which is configured to convert electrical energy into heat energy. The electrical heating means is arranged so that it heats the heat storage medium during operation, wherein the heat storage medium heated by the electrical heating means is a metal. In addition a corresponding method is disclosed. | 04-07-2016 |
20160108761 | CONCRETE AND TUBE HOT THERMAL EXCHANGE AND ENERGY STORE (TXES) INCLUDING TEMPERATURE GRADIENT CONTROL TECHNIQUES - A thermal heat capture, storage, and exchange arrangement, includes at least one thermal exchange and storage (TXES) array, with each TXES array including one or more TXES elements that receive a fluid flow of a heat source fluid and a working fluid, with the TXES elements providing for a transfer of thermal energy between the heat source fluid and the TXES elements. A manifold system provides the working fluid to an input of the TXES elements and receives the working fluid from an output of the TXES elements. At least one heat engine operable with the TXES array extracts heat from the TXES array and converts it to mechanical energy, with the heat engine being selectively connected to the manifold system of a TXES array to pass the working fluid through the TXES elements, such that a transfer of thermal energy between the working fluid and the TXES elements occurs. | 04-21-2016 |
20170234171 | COMPRESSED FLUID STORAGE POWER GENERATION DEVICE | 08-17-2017 |
20180023421 | SOLAR POWER PLANT COMPRISING A FIRST HEAT TRANSFER CIRCUIT AND A SECOND HEAT TRANSFER CIRCUIT | 01-25-2018 |
20190145285 | STEAM TURBINE PLANT | 05-16-2019 |