Class / Patent application number | Description | Number of patent applications / Date published |
060652000 | Of accommodating, fluctuating or peak loads | 17 |
20090301089 | System and Method for Rapid Isothermal Gas Expansion and Compression for Energy Storage - The invention relates to systems and methods for rapidly and isothermally expanding gas in a cylinder. The cylinder is used in a staged hydraulic-pneumatic energy conversion system and includes a gas chamber (pneumatic side) and a fluid chamber (hydraulic side) and a piston or other mechanism that separates the gas chamber and fluid chamber while allowing the transfer of force/pressure between each opposing chamber. The gas chamber of the cylinder includes ports that are coupled to a heat transfer subassembly that circulates gas from the pneumatic side and exchanges its heat with a counter flow of ambient temperature fluid from a reservoir or other source. | 12-10-2009 |
20100083660 | Retrofit Of Simple Cycle Gas Turbine For Compressed Air Energy Storage Application Having Expander For Additional Power Generation - A Compressed Air Energy Storage (CAES) system includes a first combustion turbine assembly ( | 04-08-2010 |
20120000201 | SYSTEM AND METHOD FOR GENERATING AND STORING TRANSIENT INTEGRATED ORGANIC RANKINE CYCLE ENERGY - A system and method are provided for using the thermal mass of an ORC, the working fluid, the oil loop, the cooling fluid loop and all components, to provide additional transient power to an electrical grid. A pre-heater transfers heat from the cooling fluid to a low temperature (LT) ORC loop working fluid. A LT ORC loop expander generates transient power to support stabilization of the electrical grid. A heat exchanger transfers heat from the thermal oil to a high temperature (HT) ORC loop working fluid. A HT ORC loop expander generates transient power to support stabilization of the electrical grid. | 01-05-2012 |
20120111008 | ALTERNATIVE PARTIAL STEAM ADMISSION ARC FOR REDUCED NOISE GENERATION - A diaphragm for a steam turbine is disclosed that has at least one arc of admission. The arc of admission has a plurality of nozzles arranged about the circumference of the diaphragm and are configured to eject a working fluid at succeeding rotor blades axially-spaced from the diaphragm. The flow area of the first few nozzle vanes in the arc of admission is gradually increased along the arcuate length of the diaphragm, thereby mitigating the load impulse absorbed by each rotor blade as it enters the arc of admission. The flow area of the last few nozzle vanes in the arc of admission is gradually decreased so that each rotor blade does not suddenly go from full load impulse to zero and thereby contribute to the fatigue of the rotor blade and create unwanted noise. | 05-10-2012 |
20120117969 | METHOD FOR OPERATING A POWER PLANT - A method for operating a hybrid power plant comprising fuel-operated heating and solar energy heating of carrier fluids, wherein a first portion of total power provided by the power plant is based on fuel-operated heating of carrier fluids and a second portion of the total power is based on solar energy heating of carrier fluids, the heat absorbed by a solar energy heated carrier fluid is transferred to a carrier fluid circuit of a fuel-operated part of the power plant. When a sudden increase or reduction of the total power provided by the power plant is required as compared to a basic state, the second portion is first increased or reduced over a short time period in order to provide a positive or negative reserve power. Subsequently, the first portion is slowly increased or reduced and the second portion based on solar energy heating is correspondingly reduced or increased again. | 05-17-2012 |
20130327043 | METHOD FOR REGULATING A BRIEF INCREASE IN POWER OF A STEAM TURBINE - A method is provided for regulating a brief increase in power of a steam turbine that has an upstream fossil-fired once-through steam generator having a plurality of economizer, evaporator and superheater heating surfaces which form a flow path and through which a flow medium flows. The flow of the flow medium through the fossil-fired once-through steam generator is increased in order to achieve the brief increase in power of the steam turbine. The method involves using desired enthalpy value at the outlet of an evaporator heating surface as a control variable for determining a desired value for the flow of the flow medium through the fossil-fired once-through steam generator. The desired enthalpy value is reduced in order to achieve the brief increase in power of the steam turbine. | 12-12-2013 |
20140060051 | THERMOELECTRIC ENERGY STORAGE SYSTEM - A thermoelectric energy storage system and method are provided for storing electrical energy by transferring thermal energy to a thermal storage in a charging cycle, and for generating electricity by retrieving the thermal energy from the thermal storage in a discharging cycle. The thermoelectric energy storage includes a working fluid circuit configured to circulate a working fluid through a heat exchanger, and a thermal storage conduit configured to transfer a thermal storage medium from a thermal storage tank through the heat exchanger. The working fluid includes a zeotropic mixture. The working fluid is in a mixed vapor and liquid phase and has continuously rising or continuously falling temperature during heat transfer due to the working fluid including the zeotropic mixture. | 03-06-2014 |
20140090378 | CONTROL SYSTEM FOR MATCHING THE OUTPUT OF A STEAM TURBINE TO A CHANGED LOAD - The invention relates to a control system for matching the output of a steam turbine ( | 04-03-2014 |
20140102102 | METHOD AND A SYSTEM FOR MAINTAINING CONSTANT POWER OUTPUT IN LOW PRESSURE STAGES OF STEAM TURBINE UNDER VARIABLE EXTRACTION OF WORKING FLUID - The various embodiments herein provide a method and a system for maintaining a constant power output from the low pressure stages of an extraction-condensing type steam turbine under the large variations of extraction or bleed. The method comprises of keeping the flow of working fluid to the low pressure stages constant for a wide range of variations in extraction. The embodiments herein utilizes a pressure reducing and de-superheating stations (PRDS) and an Auxiliary Quick Start™ turbine to maintain the constant flow of working fluid or alternatively two pressure reducing and de-superheating stations (PRDS) for the same. The Auxiliary Quick Start™ turbine or PRDS is used to maintain the constant power output from the low pressure stages of the extraction-condensing type steam turbine. | 04-17-2014 |
20140130499 | STEAM TURBINE INSTALLATION AND METHOD FOR OPERATING THE STEAM TURBINE INSTALLATION - A steam turbine installation that has a steam turbine, a steam generator and a feed water pre-heating unit operated by process steam is provided. The steam turbine has an overload bypass line with which main steam can be fed to the feed water pre-heating unit between the steam turbine input and the extraction point during overload operation of the steam turbine, wherein the feed water pre-heating unit has an auxiliary extraction line that is connected to the overload bypass line in such a way that process steam can be extracted from the steam turbine during partial load operation of the steam turbine and added to the feed water pre-heating unit for the additional pre-heating of feed water. | 05-15-2014 |
20140202157 | THERMAL ENERGY STORAGE FOR COMBINED CYCLE POWER PLANTS - Thermal storage systems that preferably do not create substantially any additional back pressure or create minimal additional back pressure and their applications in combined cycle power plants are disclosed. In one embodiment of the method for efficient response to load variations in a combined cycle power plant, the method includes providing, through a thermal storage tank, a flow path for fluid exiting a gas turbine, placing in the flow path a storage medium comprising high thermal conductivity heat resistance media, preferably particles, the particles being in contact with each other and defining voids between the particles in order to facilitate flow of the fluid in a predetermined direction constituting a longitudinal direction, arrangement of the particles constituting a packed bed, dimensions of the particles and of the packed bed being selected such that a resultant back pressure to the gas turbine is at most a predetermined back pressure. | 07-24-2014 |
20140208753 | METHOD FOR ENERGY STORAGE TO UTILIZE INTERMITTENT RENEWABLE ENERGY AND LOW-VALUE ELECTRICITY FOR CO2 CAPTURE AND UTILIZATION - A power plant includes a boiler, a steam turbine, a generator driven by that steam turbine, a condenser, a post combustion processing system and an energy storage system including at least one electrochemical cell to store excess electrical energy generated by the generator during period valley demand and release thermal energy for power plant operations at other times. | 07-31-2014 |
20140238020 | Method for the controlling and feeding of a power plant and power plant - The subject of the invention is a method for the controlling and feeding of power plants, in particular coal fired power plants comprising a steam turbine connected to a turbogenerator. The method consists in that in periods of low power consumption the power is transferred from the turbine shaft to a compressor and the air compressed therein is pumped by compressors to the tanks of a compressed air terminal until a pressure close to the pressure of steam fed to turbine blades is reached. When energy demand increases, compressed air from the tanks is fed through nozzles onto the turbine blades along with superheated steam produced in a boiler. The subject of the invention is also a system for collecting compressed air and feeding it to the turbine. | 08-28-2014 |
20140373543 | Electric Induction Fluid Heaters for Fluids Utilized in Turbine-Driven Electric Generator Systems - A fluid latent heat absorption electric induction heater is provided for raising the temperature of a fluid supplied to a fluid-driven turbine in a turbine-driven electric power generation system. The fluid latent heat absorption electric induction heater alternatively transfers heat to the fluid by induced susceptor heating, or a combination of inductor Joule heating and induced susceptor heating. The fluid may be water-steam for powering a steam-driven turbine or another fluid used in a phase change system for driving a fluid-driven turbine in a turbine-driven electric power generation system. | 12-25-2014 |
20150020527 | STEAM TURBOMACHINE HAVING A BYPASS CIRCUIT FOR THROTTLE FLOW CAPACITY ADJUSTMENT - A steam turbomachine includes a housing having a shell that defines a steam flow path, a first stage bowl cavity formed in the shell, a first stage including a plurality of first stage nozzles and a plurality of first stage buckets arranged downstream of the plurality of first stage nozzles, a second stage including a plurality of second stage nozzles and a plurality of second stage buckets arranged downstream of the plurality of second stage nozzles. The second stage is arranged downstream of the first stage along the steam flow path. A bypass circuit is formed in the shell. The bypass circuit extends from a first end fluidically connected to the first stage bowl cavity to a second end fluidically exposed to the steam flow path upstream of the second stage. A valve element is positioned in, and selectively blocks, the bypass circuit. | 01-22-2015 |
20150107251 | POWER REGULATION AND/OR FREQUENCY REGULATION IN A SOLAR THERMAL STEAM POWER PLANT - A method for setpoint value adjustment of a setpoint value, particularly for automatic power and/or frequency or primary and/or secondary frequency regulation, in a solar thermal steam power plant having a primary heat source that is not freely adjustable and an additional heat source and also to a solar thermal steam power plant is provided. A present power range for this solar thermal steam power plant is ascertained for at least one prescribed time during operation of the solar thermal steam power plant. This present power range is limited by an upper and a lower control range limit. For the setpoint value adjustment, a currently prescribed setpoint value for the solar thermal steam power plant is set in the present power range if the currently prescribed setpoint value is outside the present power range. | 04-23-2015 |
20150337688 | METHOD FOR CONTROLLING A THERMAL POWER PLANT USING REGULATED VALVES - The invention relates to a method of controlling a thermal power plant for electricity generation, said power plant comprising at least one heat source ( | 11-26-2015 |