Class / Patent application number | Description | Number of patent applications / Date published |
060641300 | With direct fluid contact | 7 |
20080271453 | Immanuel system to produce electricity through geothermal energy - A system for producing electricity by pumping a mixture of melted sodium/potassium metals through tubing within the walls of equipment which extends downward to the geothermal zone of the earth. The mixture of melted metals passes through a first heat exchange area producing steam, then passes downward through an insulated low pressure vacuum area from where it is pumped from the tubing into a high pressure, super conductive heat transfer zone at the bottom of the equipment located in the geothermal zone. The geothermal heated mixture of melted metals passes through insulated tubing in the insulated vacuum area into a super heat exchange area passing through water forming steam and into a super steamer producing super heated steam. The super heated steam passes through a line into turbines producing electricity. | 11-06-2008 |
20090120091 | Power generation system - A geothermal power system for production of power, and in particular electrical energy, utilizing naturally occurring geothermal energy sources and a method for identifying and converting manmade and natural geological formations into a substantial source of energy and at the same time providing remediation of environmental and safety hazards. Utilizing surface air that is substantially cooler than the geothermal temperature of the subterranean cavern an induced air flow will be produced. This naturally induced air flow will be harnessed and provide the energy to the system power plants for production of electrical energy. The system includes a hydroelectric power system, a geothermal well, underground farms, heat recovery systems, a source of renewable biomass material, and air and water remediation systems. | 05-14-2009 |
20100031653 | METHOD AND DEVICE FOR THE UTILIZATION OF SUPERCRITICAL SUBSURFACE STEAM IN COMBINATION WITH SUPERCRITICAL THERMAL AND HYDRAULIC POWER STATIONS - Disclosed are a method and a device for utilizing supercritical subsurface steam as combined supercritical thermal and hydraulic power stations at an efficiency of 50 percent, using molten bath superdeep drilling technology, a hydrofrac process, and the special properties of the supercritical subsurface steam, such as the drastic increase in the thermal capacity, reduced viscosity, and inorganic solubility. The multifunctional use of said technologies and physical properties of supercritical subsurface steam in the inventive method allows a supercritical subsurface boiler to be tapped rapidly and at a low cost at a great depth while making it possible to produce electricity, power, process steam, and heat almost anywhere at one tenth of the cost of conventional fuel technologies and comparable expenses. The supercritical process steam obtained from a closed forced subsurface-nature circuit is used in supercritical power stations featuring state-of-the-art steam turbine technology while the remaining pressure in the subsurface fluid is used for directly generating power and/or electricity after dissipating heat via hydraulic turbines. | 02-11-2010 |
20110041500 | SUPPLEMENTAL HEATING FOR GEOTHERMAL ENERGY SYSTEM - Extracting energy from a naturally-occurring underground hot rock formation includes enabling fluid to flow, at least partially under the influence of gravity, through a fluid injection well to the hot rock formation, converting the kinetic energy of the flowing fluid into electricity, using at least a portion of the generated electricity to preheat the fluid before it reaches the hot rock formation, heating the fluid with the hot rock formation and, subsequently, extracting energy from the heated fluid for use in connection with an application. | 02-24-2011 |
20110048005 | Loop geothermal system - One embodiment of a system of geothermal energy production containing a production fluid circulated entirely within a continuous subterranean pipeline ( | 03-03-2011 |
20110247328 | Power generation system - A geothermal power system for production of power, and in particular electrical energy, utilizing naturally occurring geothermal energy sources and a method for identifying and converting manmade and natural geological formations into a substantial source of energy and at the same time providing remediation of environmental and safety hazards. Utilizing surface air that is substantially cooler than the geothermal temperature of the subterranean cavern an induced air flow will be produced. This naturally induced air flow will be harnessed and provide the energy to the system power plants for production of electrical energy. The system includes a hydro electric power system, a geothermal well, heat recovery systems, a source of renewable biomass material, and air and water remediation systems. | 10-13-2011 |
20140109573 | POWER SYSTEMS UTILIZING TWO OR MORE HEAT SOURCE STREAMS AND METHODS FOR MAKING AND USING SAME - A power systems utilizing at least two heat source streams with substantially different initial temperatures, where the systems include a simple vaporization, separation, and energy extraction subsystem, a recycle subsystem, and a condensation and pressurization subsystem and methods for making and using same. | 04-24-2014 |