Entries |
Document | Title | Date |
20080236134 | Exhaust Gas Simulation System With Dual Path Temperature Control For Control Of Exhaust Temperature - A temperature control system and method for use with an exhaust flow simulation system. A typical exhaust flow simulator is a burner-based system, in which exhaust from a combustive burner is exhausted through an exhaust line. A temperature control section divides the exhaust from the burner line into two paths: a cool path and an uncooled (hot) path. The cool path uses a heat exchanger to cool the exhaust. The cool path also has a control valve that controls the relative portions of hot and cool exhaust, which are re-mixed downstream the valve into an exhaust line. Various embodiments have different configurations for the two paths. | 10-02-2008 |
20080236135 | Combined power plant - A combined power plant that is capable of reducing the time required for restarting is provided. The combined power plant includes a gas turbine power generating unit having a gas turbine; a steam turbine power generating unit having a steam turbine; a steam supplying unit for supplying steam to the gas turbine and the steam turbine; a first steam pipe for guiding the steam from the steam supplying unit to the gas turbine; a second steam pipe for guiding the steam from the gas turbine to the steam supplying unit; a first control unit for controlling the inflow of the steam from the first steam pipe to the gas turbine; a second control unit for controlling the outflow of the steam from the gas turbine to the second steam pipe; a discharge unit for discharging the steam from inside the gas turbine to outside the gas turbine; a fluid supplying unit for introducing a fluid in order to push out the steam from inside the gas turbine; and a bypass pipe for guiding the steam in the first steam pipe to the second steam pipe. | 10-02-2008 |
20080289316 | COMBINED-CYCLE POWER PLANT AND STEAM THERMAL POWER PLANT - A combined-cycle power plant, a steam thermal power plant, and a method for operating the power plant, which are capable of effectively utilizing raw fuel produced from medium- or small-scaled gas fields and oil fields. Raw fuel produced from a gas field is separated into a gas component and a liquid component by a separator. The gas component is burnt in a combustor of a gas turbine, and resulting motive power is converted to electricity by a power generator. The liquid component separated by the separator is burnt in a steam generator to generate steam that is supplied to a steam turbine. Resulting motive power of the steam turbine is converted to electricity by a power generator. Since the electricity generated by the power generators is AC power, the AC power is converted by a converter to DC power that is transferred from the vicinity of the gas field to a consuming area via a cable. | 11-27-2008 |
20090000267 | SYSTEM AND METHODS FOR HEAT RECOVERY STEAM GENERATORS HOT PURGING - A method for operating an energy system includes calculating an auto-ignition temperature of a fuel in use with the energy system, storing the auto-ignition temperature in a system memory, unloading a gas turbine associated with the energy system to a pre-determined range of operations, controlling a temperature of the exhaust flow discharged from the gas turbine, opening an exhaust bypass damper to a pre-determined position to enable a pre-determined volume of air to enter an exhaust flow path defined within the energy system, and releasing the energy system for normal operation after a pre-determined amount of time has elapsed. | 01-01-2009 |
20090064656 | METHOD FOR OPERATING A COMBINED-CYCLE POWER PLANT, AND COMBINED-CYCLE POWER PLANT USEFUL FOR CARRYING OUT THE METHOD - A method involved operating a combined-cycle power plant ( | 03-12-2009 |
20090077944 | GAS TURBINE TOPPING DEVICE IN A SYSTEM FOR MANUFACTURING SULFURIC ACID AND METHOD OF USING TURBINE TO RECOVER ENERGY IN MANUFACTURE OF SULFURIC ACID - A gas turbine topping device, which is disposed upstream of a steam-raising section, is used for generating power in the manufacture of sulphuric acid. A sulfur-burning combustor generates hot sulfur dioxide while a pressure-exchanging ejector mixes the hot combustion gases with a cooler gas (e.g. pressurized air, pressurized N | 03-26-2009 |
20090126338 | Combined cycle power generating plant - A combined cycle power generating plant that can realize a reduction in the start-up time includes a gas turbine, a steam turbine, a steam supplying section that supplies steam to the gas turbine, a first steam pipe that directs steam from the steam supplying section to the gas turbine, a second steam pipe that directs steam from the gas turbine to the steam turbine, a first release section that carries out control such that the supply destination of steam that is directed to the first steam pipe is one of either the outside of the gas turbine or the outside of the first steam pipe, a second release section that carries out control such that the supply destination of steam that is directed to the second steam pipe is one of either the outside of the steam turbine or the outside of the second steam pipe, and a bypass pipe that directs at least a portion of the steam inside the first steam pipe to the second steam pipe between the gas turbine and the second steam pipe. | 05-21-2009 |
20090145103 | Conversion of combined cycle power plant to compressed air energy storage power plant - An apparatus and method converts a power generation combined cycle (CC) power plant to a load management compressed air energy storage (CAES) power plant. The CC power plant includes at least one combustion turbine, a heat recovery steam generator (HRSG) to receive exhaust heat from an associated combustion turbine, a steam turbine associated with the HRSG, and an electric generator associated with the steam turbine. An air storage stores compressed air. At least one compressor supplies the air storage with compressed air so that off peak energy can be converted to compressed air energy stored in the air storage. Compressed air from the storage is received by the HRSG and the HRSG provides heat to compressed air received from the air storage. The steam turbine receives heated compressed air from the HRSG and expands the heated compressed air to produce power. | 06-11-2009 |
20090145104 | COMBINED CYCLE POWER PLANT WITH RESERVES CAPABILITY - A combined cycle (CC) power plant comprises a gas turbine; a steam turbine; a condenser; a heat recovery steam generator (HRSG), the HRSG comprising an attemperator and a high pressure superheater and attemperator, the high pressure superheater and attemperator disposed at a discharge terminal of the high pressure superheater and attemperator and at a discharge terminal of the HRSG reheater; a generator, and a fuel supply. The steam turbine is connected by multiple conduits to the heat recovery steam generator (HRSG) and the steam turbine exhaust is connected to the condenser wherein support multiple ancillary and reserves to load follow, execute regulation, and meet intermediate power generation service needs in an expedited start process. | 06-11-2009 |
20090193787 | Apparatus and Method for Start-Up of a Power Plant - A power plant is provided which includes a gas turbine having a compressor for producing compressed air and a combustor for combusting the compressed air with a combustible fuel to produce a heated combustion gas. The power plant also includes a heat recovery steam generator for generating a flow of steam from an exhaust of the gas turbine and a steam turbine for expanding the flow of steam from the heat recovery steam generator. The steam turbine has a rotor having a rotor bore disposed axially therein. The power plant also includes a conduit for directing at least a portion of the compressed air or at least a portion of the heated combustion gas from the gas turbine to the rotor bore of the steam turbine, wherein the compressed air or the heated combustion gas may warm the rotor bore of the steam turbine. | 08-06-2009 |
20090205310 | POWER GENERATION SYSTEM HAVING AN EXHAUST GAS ATTEMPERATING DEVICE AND SYSTEM FOR CONTROLLING A TEMPERATURE OF EXHAUST GASES - An exhaust gas attemperating device is provided. The exhaust gas attemperating device includes a conduit in fluid communication with a gas turbine. The conduit is configured to receive exhaust gases from the gas turbine and has one or more apertures extending therethrough. The exhaust gas attemperating device further includes one or more atomizing nozzles extending through the apertures of the conduit. The atomizing nozzle is configured to inject a liquid through the aperture into the conduit, such that the liquid evaporates and decreases a temperature and an oxygen concentration of the exhaust gases in the conduit. | 08-20-2009 |
20090235634 | SYSTEM FOR EXTENDING THE TURNDOWN RANGE OF A TURBOMACHINE - A system for heating the inlet-air of a gas turbine is provided. The system may incorporate an external energy source to increase the temperature of the inlet-air. The system may extend the turndown of a gas turbine operating at partload. | 09-24-2009 |
20100005775 | COMBINED CYCLE POWERED RAILWAY LOCOMOTIVE - A combined cycle power plant for a railway locomotive is disclosed. In one embodiment, the power plant comprises two prime movers operating independently of one another. The waste energy of one prime mover is used as the energy source of the other prime mover. The shaft work of each prime mover is connected to a common load. The shaft work of the first prime mover is directly connected to the load, whereas the shaft work of the second prime mover is selectively coupled or decoupled to the load using a clutch. | 01-14-2010 |
20100024382 | HEAT RECOVERY STEAM GENERATOR FOR A COMBINED CYCLE POWER PLANT - A combined cycle power plant includes a gas turbomachine system including a compressor and a gas turbine that extracts work from gases at a first temperature. The combined cycle power plant also includes a steam turbomachine system including at least one steam turbine that extracts work from gases at a second temperature. The combined cycle power plant further includes a heat recovery steam generator having a main housing fluidly connected to the gas turbine. The heat recovery steam generator includes a plurality of heat pipes that extend within the main housing in fluid communication with the gases at the first temperature. The plurality of heat pipes are also in fluid communication with the gases at the second temperature. The plurality of heat pipes absorb heat from the gases at the first temperature and pass the heat into the gases at the second temperature to form gases at a third temperature. | 02-04-2010 |
20100024383 | SYSTEM AND METHOD FOR USE IN A COMBINED OR RANKINE CYCLE POWER PLANT - A system is provided and includes a first condenser configured to fluidly receive a first steam supply and tower water and to output a first water supply, a second condenser configured to fluidly receive a first portion of a second steam supply and the first water supply and to output a second water supply, and a vapor-absorption-machine (VAM) configured to fluidly receive a second portion of the second steam supply and the second water supply by which a refrigeration cycle is conducted to thereby cool at least one of the tower water and a third water supply used to cool the tower water. | 02-04-2010 |
20100024384 | MODE OF WORK OF GAS-STEAM POWER UNIT WITH THE CLOSED CONTOUR OF CIRCULATION OF GAS - This invention relates to gas-steam power plants with the closed contour of circulation of gas and can be used at nuclear power plants. They heat up gas in a heater ( | 02-04-2010 |
20100071342 | INTEGRATED GAS TURBINE EXHAUST DIFFUSER AND HEAT RECOVERY STEAM GENERATION SYSTEM - Systems and methods for integrating heat exchanger elements of HRSG systems with gas turbine exhaust diffusers are provided in the disclosed embodiments. The systems and methods may include integrating heat exchanger elements, such as steam pipes, with various components of an exhaust diffuser. For example, the heat exchanger elements may be integrated with inlet turning vanes, exhaust frame struts, exit guide vanes, associated support structures, and other components of the exhaust diffuser. In addition, the heat exchanger elements may be integrated with multiple components of a single exhaust diffuser. Moreover, the heat exchanger elements may be integrated with the components of the exhaust diffuser within an airfoil, which may encompass both the heat exchanger elements and the individual component of the exhaust diffuser. The use of airfoils may help ensure certain aerodynamic properties of the heated exhaust gas flowing across the exhaust diffuser components. | 03-25-2010 |
20100077722 | PEAK LOAD MANAGEMENT BY COMBINED CYCLE POWER AUGMENTATION USING PEAKING CYCLE EXHAUST HEAT RECOVERY - Systems and methods for augmenting the power generation capabilities of combined cycle power generation systems by more effectively recovering heat from exhaust gases of peaking cycle gas turbines are provided in the disclosed embodiments. In certain embodiments, the present techniques may include receiving superheated steam from a heat recovery steam generation (HRSG) unit. Heated exhaust gas from a peaking cycle gas turbine may be used to transfer heat to the superheated steam received from the HRSG. The systems used to transfer heat to the superheated steam may include a supplementary superheater located in an exhaust path of the peaking cycle gas turbine. The superheated steam exiting the supplementary superheater may be delivered to a steam turbine of a combined cycle power generation system, where the superheated steam may be used as a power source. Optionally, a peaking cycle attemperator may be used to ensure that the temperature of the superheated steam delivered to the steam turbine does not exceed a predetermined temperature level, thereby protecting the steam turbine and associated equipment. | 04-01-2010 |
20100089023 | INTAKE AIR HEATING SYSTEM OF COMBINED CYCLE PLANT - A gas turbine | 04-15-2010 |
20100089024 | Method for operating a gas and steam turbine plant and a gas and steam turbine plant for this purpose - A method for operating a gas and steam turbine plant is provided. In the plant, the flue gas that escapes from a gas turbine is routed through a waste gas steam generator and where a flow medium that is used to drive a steam turbine is conducted in a flow medium circuit that includes several pressure stages. At least one of the pressure stages has an evaporator circuit with a steam collection drum that has a plurality of downpipes connected to the steam collection drum and a plurality of rising pipes downstream of the downpipes that are likewise connected to the steam collection drum and are heated by the flue gas in the waste heat steam generator. The height of the fluid column formed by the flow medium in the downpipes is monitored and a transient dry operation of the evaporator circuit can thus be detected and safeguarded against. | 04-15-2010 |
20100095648 | Combined Cycle Power Plant - A combined cycle power plant including a gas turbine, a steam turbine and a heat recovery generator, for thermally connecting the gas turbine and the steam turbine. The heat recovery steam generator has a duct for receiving hot exhaust gas from the gas turbine. The heat recovery steam generator is also associated with a heating system for receiving feed water for heating to steam. A heat pipe having a first end disposed within the duct operates to remove heat there from. A second end of the heat pipe disposed within the heating system operates to transfer heat to the feed water. | 04-22-2010 |
20100101207 | TURBINE DEVICE - The invention relates to a turbine device comprising a gas turbine portion and concentrically with the gas turbine portion arranged steam turbine portion, where the gas turbine portion and the steam turbine portion have a common rotor ( | 04-29-2010 |
20100107595 | COMBINED CYCLE POWER PLANT - A combined cycle power plant includes at least one gas turbine, at least one steam turbine and a heat recovery boiler in combination to produce electricity and/or process steam. The heat recovery boiler has a duct for receiving and confining gas turbine exhaust gas from the gas turbine. Heat transfer tubes for heating water and steam for use in the bottoming steam cycle (steam turbine and/or process steam) are disposed within the heat recovery boiler and have exterior surfaces in fluid communication with the gas turbine exhaust gas and interior surfaces in circulatory fluid communication with water and/or steam. A cellular material is attached to the exterior surfaces of the heat transfer tubes and operates to enhance heat transfer from the gas turbine exhaust gas to the water and/or steam. | 05-06-2010 |
20100146929 | Method for Increasing the Efficiency of a Combined Gas/Steam Power Station With Integrated Gasification Combined Cycle - The invention relates to a method for increasing the efficiency of a combined gas/steam power station ( | 06-17-2010 |
20100146930 | Low Grade Heat Recovery System for Turbine Air Inlet - A heating and cooling system for inlet air of a gas turbine engine in a combined cycle power plant having a steam turbine. The heating and cooling system may include a fluid coil positioned about the gas turbine engine, a heat exchanger in communication with the fluid coil, and a condenser in communication with the steam turbine and the heat exchanger such that waste heat from the steam turbine is forwarded to the fluid coil. | 06-17-2010 |
20100175366 | AMMONIA INJECTION SYSTEM FOR PEAKER CYCLE - An ammonia injection system including an aqueous ammonia store adapted to store aqueous ammonia. The system also includes an ammonia pump having in input coupled to the aqueous ammonia store and a pump output. The system also includes and an ammonia vaporizer coupled to the pump output and having a vaporizer input configured for connection an output of low pressure super-heater, the vaporizer including a grid output adapted for connection to an ammonia injection grid. | 07-15-2010 |
20100180567 | Combined Power Augmentation System and Method - An electrical generation system including a first gas turbine and a a heat recovery steam generator coupled to the gas turbine and including a low pressure super-heater having a low pressure super-heater output. The electrical generation system also includes a second gas turbine, an output duct coupled to the second gas turbine and a supplemental low pressure super-heater within the output duct and thermally coupled to the low pressure super-heater output. | 07-22-2010 |
20100199630 | Compact combined cycle vortex turbine engine with internal steam generator and vapor innercooling - A compact, combined cycle gas and steam turbine engine for lower temperature,lower RPM's, and higher torque than a standard gas turbine, while maintaining the lower turbine weight ratio over internal combustion engines. This turbine has a cylindrical combustion chamber, containing a tube boiler spiraled around the inside, in a manner to create a vortex type combustion gas flow, which drives the primary turbine blades. The steam created in this boiler tube jetted against the secondary turbine blades adds torque. The hot combustion gasses are compressed, and passed into the steam stream to reheat and reexpand the steam, which also lowers the exhaust temperature. Unlike most turbine cylinders which turn the inside cylinder this is the only one which turns the outward cintrifical pressured cylinder, which means greater efficiency. The circular exhaust has air induction to increase power and help cool a normally hot exhaust. Water vapor and cooled exhaust from the manifold is ducted between the combustion chamber and outter wall for intercooling the engine and increasing output of the fuel. Existing electronic controls may easily be added. | 08-12-2010 |
20100199631 | POWER PRODUCTION PROCESS WITH GAS TURBINE FROM SOLID FUEL AND WASTE HEAT AND THE EQUIPMENT FOR THE PERFORMING OF THIS PROCESS - The power production process with a gas turbine where as primary power source solid fossil fuels, alternative fuels and wastes at their combustion with air or oxygen can be utilized. The operating medium is the steam-gas mixture of gas supplied by a compressor ( | 08-12-2010 |
20100229523 | CONTINUOUS COMBINED CYCLE OPERATION POWER PLANT AND METHOD - A combined cycle power plant includes a gas turbine, a steam turbine, a generator coupled to the gas turbine and a generator coupled to the steam turbine, and an auxiliary boiler operatively coupled to the steam turbine. The power plant is continuously operated in a combined cycle mode during operating of the gas turbine by starting the steam turbine first. | 09-16-2010 |
20100242429 | SPLIT FLOW REGENERATIVE POWER CYCLE - Split flow regenerative power cycle systems are provided. The systems can include a gas turbine configured to generate a split flow exhaust stream having a first exhaust stream and a second exhaust stream, a regenerator operatively coupled to the gas turbine and configured to receive the first exhaust stream, and a heat recovery steam generator operatively coupled to the gas turbine and configured to receive a second exhaust stream. The systems can include generating a gas turbine exhaust stream from a gas turbine, splitting the exhaust stream to a first exhaust stream and a second exhaust stream, directing the first exhaust stream from the gas turbine to a first regenerative power cycle and directing the second exhaust stream from the gas turbine to a second heat recovery power cycle. | 09-30-2010 |
20100242430 | COMBINED CYCLE POWER PLANT INCLUDING A HEAT RECOVERY STEAM GENERATOR - A combined cycle power plant includes a gas turbomachine, a steam turbomachine operatively coupled to the gas turbomachine, and a heat recovery steam generator operatively coupled to the gas turbomachine and the steam turbomachine. The heat recovery steam generator includes a high pressure reheat section provided with at least one high pressure superheater and at least one reheater. The combined cycle power plant further includes a controller operatively connected to the gas turbomachine, the steam turbomachine and the heat recovery steam generator. The controller is selectively activated to initiate a flow of steam through the heat recovery steam generator following shutdown of the gas turbomachine to lower a temperature of at least one of the high pressure superheater and the at least one reheater and reduce development of condensate quench effects during HRSG purge of a combined cycle power plant shutdown. | 09-30-2010 |
20100251689 | MULTIPLE STAGE GAS TURBINE ENGINE - A gas turbine engine ( | 10-07-2010 |
20100281844 | STEAM TURBINE POWER SYSTEM AND METHOD OF ASSEMBLING THE SAME - A method of assembling a steam turbine power system with a coolant source is provided. The method includes providing a first steam turbine train including a first high pressure turbine assembly, a first low pressure turbine assembly coupled in flow communication with the first high pressure turbine assembly, and a first condenser coupled in flow communication with the first low pressure turbine assembly. The method also includes providing a second steam turbine train including a second high pressure turbine assembly, a second low pressure turbine assembly coupled in flow communication with the second high pressure turbine assembly, and a second condenser coupled in flow communication with the second low pressure turbine assembly. The method further includes coupling cooling tubes to the first condenser and the second condenser, the cooling tubes configured to deliver coolant from the coolant source through the first condenser, from the first condenser through the second condenser, and from the second condenser back to the coolant source. | 11-11-2010 |
20110011057 | Method for Removal of Entrained Gas in a Combined Cycle Power Generation System - A combined cycle power generation system ( | 01-20-2011 |
20110030335 | COMBINED-CYCLE STEAM TURBINE AND SYSTEM HAVING NOVEL COOLING FLOW CONFIGURATION - Embodiments of the invention relate generally to turbines and, more particularly, to steam turbines, single-shaft combined-cycle turbines, and turbine systems having novel startup cooling flow configurations. In one embodiment, the invention provides a single-shaft combined-cycle turbine comprising: a gas turbine; a steam turbine including: a high-pressure section; an intermediate-pressure section; and a low-pressure section having a plurality of stages; a turbine shaft disposed within and between both the gas turbine and the steam turbine; a first cooling steam flow inlet adjacent a first of the plurality of stages of the low-pressure section; and a second cooling steam flow inlet adjacent a second of the plurality of stages of the low-pressure section. | 02-10-2011 |
20110099971 | SYSTEM AND METHOD FOR IMPROVING PERFORMANCE OF AN IGCC POWER PLANT - In certain embodiments, a system includes a gas cleaner. The gas cleaner includes a solvent to clean a syngas. The system also includes a heat exchanger configured to heat a liquid to generate a vapor. The system further includes a vapor absorption refrigeration (VAR) cycle coupled to the gas cleaner and the heat exchanger. The VAR cycle is configured to cool the solvent. In addition, the vapor drives the VAR cycle. | 05-05-2011 |
20110138771 | Method of Operating a Gas Turbine Power Plant with Auxiliary Power to Reduce Emissions - A method of operating a gas turbine power plant including an auxiliary power output for reducing power plant emissions. A heat recovery steam generator receives an expanded working medium from a gas turbine and removes heat from the expanded working medium to form a reduced temperature exhaust gas and to generate steam from the heat removed from the expanded working medium. A steam turbine and generator assembly operates on the steam to produce an auxiliary plant output. A selective catalytic reduction (SCR) system is provided for receiving the reduced temperature exhaust gas; and an auxiliary fan is powered by the auxiliary plant output to supply dilution air for further reducing the temperature of the exhaust gas to prior to passing the exhaust gas through the SCR system. | 06-16-2011 |
20110146225 | INTAKE AIR HEATING SYSTEM OF COMBINED CYCLE PLANT - A gas turbine is driven by a combustion gas produced when BFG compressed by a gas compressor and air compressed by a compressor are burned in a combustor. Steam is generated from a waste heat boiler by utilization of heat of an exhaust gas from the gas turbine, and a steam turbine is driven by this steam. An electric generator generates electricity upon driving of the turbines. A condensing heat exchanger is disposed in an air intake duct, and part of steam from the waste heat boiler flows through the heat exchanger to heat intake air. The amount of steam that flows through the heat exchanger is adjusted by adjusting the degree of opening of a steam control valve by a control device. By so doing, the ignition performance of the gas turbine in a BFG-fired gas turbine combined cycle plant is enhanced even in an extremely cold district. | 06-23-2011 |
20110162341 | CLUTCHED TURBINE WHEELS - Solutions for clutching turbine wheels are disclosed. In one embodiment, an apparatus includes: a turbine rotor shaft; a plurality of turbine wheels affixed to the turbine rotor shaft; an independent turbine wheel engagably attached to the turbine rotor shaft; and a clutch operably connected to the turbine rotor shaft, the clutch configured to couple and decouple the independent turbine wheel from the turbine rotor shaft. | 07-07-2011 |
20110162342 | SYSTEM AND METHOD FOR LOW EMISSIONS COMBUSTION - A turbine system comprises a compressor for compressing air to generate a compressed flow, an air separation unit for receiving and separating at least a portion of the compressed flow into oxygen and a low-oxygen stream, a combustor for receiving and combusting at least a portion of the low-oxygen stream, a portion of the compressed flow and a fuel to generate a high temperature exhaust gas, and a turbine for receiving and expanding the high temperature exhaust gas to generate electricity and a reduced temperature low-NOx exhaust gas. | 07-07-2011 |
20110173948 | COMBINED CYCLE ELECTRIC POWER GENERATION PLANT AND HEAT EXCHANGER - A loss of heat that can be recovered in a heat recovery steam generator is eliminated, whereby a combined cycle electric power generation plant with high heat recovery efficiency is provided. A combined cycle electric power generation plant is adopted that includes a heat recovery steam generator | 07-21-2011 |
20110185701 | TURBINE EQUIPMENT AND POWER GENERATING PLANT - A working fluid consisting essentially of CO | 08-04-2011 |
20110185702 | FUEL HEATER SYSTEM INCLUDING HOT AND WARM WATER SOURCES - A system is provided and includes first and second water supplies at first and second relatively high and low temperatures, respectively, a heat exchanger, coupled to the water supplies, through which fuel and relative amounts of the water supplies at the first and second temperatures flow for fuel heating and a controller, operably interposed between the water supplies and the heat exchanger, to select and/or modulate the relative amounts of the water supplies permitted to flow through the heat exchanger to heat the fuel to a temperature based on a heating requirement to meet a modified wobbe index (MWI) rating. | 08-04-2011 |
20110265444 | ENERGY RECOVERY AND STEAM SUPPLY FOR POWER AUGMENTATION IN A COMBINED CYCLE POWER GENERATION SYSTEM - A power generation system ( | 11-03-2011 |
20110265445 | Method for Reducing CO2 Emissions in a Combustion Stream and Industrial Plants Utilizing the Same - Disclosed herein are methods for reducing CO | 11-03-2011 |
20110289899 | COMBINED CYCLE POWER PLANT WITH FLUE GAS RECIRCULATION - An exemplary method for the operation of a CCPP with flue gas recirculation to reduce NOx emissions and/or to increase the CO2 concentration in the flue gases to facilitate CO2 capture from the flue gases as well as a plant designed to operate is disclosed. To allow a high flue gas recirculation ration (rFRG) an imposed combustion inhomogeneity ratio (ri) is used for flame stabilization. The imposed combustion inhomogeneity ratio (ri) is controlled as function of the flue gas recirculation rate (rFRG) and/or combustion pressure. Oxygen or oxygen enriched air to the gas turbine inlet gases or to the combustor is admixed to enhance operatability. | 12-01-2011 |
20110308230 | INTEGRATED COAL GASIFICATION COMBINED CYCLE PLANT - Provided is an integrated coal gasification combined cycle apparatus that can operate a coal pulverizer using gas turbine exhaust gas as drying gas even when the concentration of oxygen in the gas turbine exhaust gas to be used as the drying gas is temporarily increased. In the integrated coal gasification combined cycle plant using combustion exhaust gas from a gas turbine as the drying gas for a coal pulverizer and adjusting the temperature of the drying gas by mixing outlet gas from a denitration device installed inside an exhaust gas boiler and outlet gas from the exhaust gas boiler, an auxiliary burner is started when the concentration of oxygen in the drying gas is increased to a predetermined value or more and is installed so as to adjust the concentration of oxygen in the drying gas using the combustion exhaust gas generated thereby. | 12-22-2011 |
20120031069 | COMBINED CYCLE POWER GENERATING DEVICE - A combined cycle power generating device in which the exhaust heat of the gas turbine reheats the steam discharged out of the high pressure chamber of the steam turbine so that the reheated steam is supplied to the intermediate-pressure chamber in order to increase the power output of the steam turbine, wherein the cooling steam that has cooled the gas turbine is supplied to the intermediate-pressure chamber via a cooling steam inlet different from the inlet of the reheat steam that is reheated by the exhaust heat of the gas turbine, so that the cooling steam is used for cooling purpose, the temperature of the cooling steam being higher than the temperature of the steam discharged out of the high pressure chamber. | 02-09-2012 |
20120036828 | Combined Cycle Power Plant Including a Heat Recovery Steam Generator - A combined cycle power plant includes a gas turbomachine, a steam turbomachine operatively coupled to the gas turbomachine, and a heat recovery steam generator operatively coupled to the gas turbomachine and the steam turbomachine. The heat recovery steam generator includes a high pressure reheat section provided with at least one high pressure superheater and at least one reheater. The combined cycle power plant further includes a controller operatively connected to the gas turbomachine, the steam turbomachine and the heat recovery steam generator. The controller is selectively activated to initiate a flow of steam through the heat recovery steam generator following shutdown of the gas turbomachine to lower a temperature of at least one of the high pressure superheater and the at least one reheater and reduce development of condensate quench effects during HRSG purge of a combined cycle power plant shutdown. | 02-16-2012 |
20120073260 | SYSTEM AND METHOD TO GENERATE ELECTRICITY - A split heat recovery steam generator (HRSG) arrangement including a first HRSG coupled to a turbine and thereby receptive of a portion of the exhaust gases to deliver the portion of the exhaust gases to a compressor, a second HRSG coupled to the turbine and thereby receptive of a remaining portion of the exhaust gases, which includes an NOx catalyst and a CO catalyst sequentially disposed therein to remove NOx and CO from the exhaust gases and an air injection apparatus to inject air into the second HRSG between the NOx catalyst and the CO catalyst to facilitate CO consumption at the CO catalyst. | 03-29-2012 |
20120102913 | APPARATUS FOR REDUCING EMISSIONS AND METHOD OF ASSEMBLY - A heat recovery steam generator (HRSG) is coupled to a gas turbine engine that discharges a flow of exhaust gases including oxides of nitrogen (NO | 05-03-2012 |
20120159923 | SYSTEM AND METHOD FOR USING GAS TURBINE INTERCOOLER HEAT IN A BOTTOMING STEAM CYCLE - A steam cycle power plant includes a gas turbine, a gas turbine intercooler, a steam turbine, and a heat recovery steam generator (HRSG). The gas turbine intercooler recovers unused heat generated via the gas turbine and transfers substantially all of the recovered heat for generating extra steam for driving the steam turbine. | 06-28-2012 |
20120159924 | SYSTEM AND METHOD FOR INCREASING EFFICIENCY AND WATER RECOVERY OF A COMBINED CYCLE POWER PLANT - A combined cycle power plant includes a gas turbine, a condensing stage, a steam turbine, and a heat recovery steam generator (HRSG). The HRSG is configured to generate steam for driving the steam turbine in response to heat transferred from exhaust gas received from the gas turbine at a first temperature and to transmit the exhaust gas to the condensing turbine at a second temperature that is lower than the first temperature. | 06-28-2012 |
20120167546 | COMBINED-CYCLE POWER PLANT - A method involves operating a combined-cycle power plant ( | 07-05-2012 |
20120198811 | POWER GENERATION SYSTEM AND METHODS FOR MONITORING OPERATION OF SAME - A method of monitoring a power generation system that includes a steam turbine that is coupled to a gas turbine engine. The method includes calculating, by a control system, a gas turbine engine power output that is based at least in part on a predefined power generation system power output and a predefined steam turbine power output. The power generation system is operated to generate a power output that is approximately equal to the predefined power generation system power output. A signal indicative of a sensed operating power output of the gas turbine engine is transmitted from a sensor to the control system. A condition of the steam turbine is determined based at least in part on the sensed operating gas turbine engine power output and the calculated gas turbine engine power output. | 08-09-2012 |
20120204533 | WASTE HEAT RECOVERY SYSTEM AND METHOD OF USING WASTE HEAT - A waste heat recovery system is provided. The waste heat recovery system includes a gas separation apparatus that includes a chamber and at least one membrane positioned within the chamber. The gas separation apparatus is configured to produce a retentate that includes at least a combustible gas and a permeate that includes at least a waste gas, wherein the waste gas includes at least a noncombustible gas. Moreover, the waste heat recovery system includes a burner that is coupled to the gas separation apparatus, wherein the burner is configured to receive the permeate and to combust the permeate such that heat is generated from the permeate. Further, a heat recovery steam generator is coupled to the burner and configured to recover heat generated by the burner. | 08-16-2012 |
20120227372 | POWER PLANT FOR CO2 CAPTURE - A power plant is provided including a steam power plant and/or a combined cycle power plant. A water steam cycle of the plant includes two steam turbine arrangements; the first turbine arrangement includes steam turbines with at least two pressure levels and a second turbine arrangement having at least one back pressure turbine configured to expand steam to the supply pressure of a CO2 capture system. A method for operating the plant includes operating the first steam turbine arrangement to produce power during all steady state operating points of the steam cycle and at least a part of the second steam turbine arrangement is bypassed to the system and/or is operated to produce power and to release low-pressure steam to the system when the system is in operation. Both steam turbine arrangements are operated using all available steam to produce power when the system is not in operation. | 09-13-2012 |
20120233978 | APPARATUS FOR STARTING UP COMBINED CYCLE POWER SYSTEMS AND METHOD FOR ASSEMBLING SAME - A method for assembling a combined cycle power generation system includes coupling a gas turbine in flow communication with a heat recovery steam generator (HRSG). The method also includes coupling a steam turbine in flow communication with the HRSG via at least one steam conduit. The method further includes coupling at least one heating element to a portion of the at least one steam conduit. The method also includes operatively coupling at least one controller to the at least one heating element. The method further includes programming the at least one controller to vary a rate of temperature change in the portion of the at least one steam conduit. | 09-20-2012 |
20120240549 | Combined Cycle Power Plant - A combined cycle power plant in which a gas turbine engine generates power, a heat recovery steam generator (HRSG) produces steam from high energy fluids produced from the generation of power in the gas turbine engine and a steam turbine engine generates additional power from the steam produced in the HRSG. The combined cycle power plant includes a heating element fluidly interposed between the steam turbine engine and the HRSG to heat fluid output from the steam turbine engine, which is to be fed to the HRSG and a control system to control an amount the fluid output from the steam turbine engine is heated by the heating element based on differences between HRSG and ambient temperatures. | 09-27-2012 |
20120260621 | Combined Cycle Power Plant - A combined cycle power plant is provided and includes a gas turbine engine to generate power from combustion of a fuel and air mixture, a heat recovery steam generator (HRSG) disposed downstream from the gas turbine engine to receive heat energy from the gas turbine engine from which steam is produced, the HRSG including a superheating element and a drum element, and a steam turbine engine to be receptive of the steam produced in the HRSG and to generate power from the received steam, the HRSG further including a valve operably disposed to isolate the superheating element from the drum element when a risk of condensate formation in the HRSG exists. | 10-18-2012 |
20120304617 | COMBINED CYCLE POWERED RAILWAY LOCOMOTIVE - A combined cycle power plant for a railway locomotive is disclosed. In one embodiment, the power plant comprises two prime movers operating independently of one another. The waste energy of one prime mover is used as the energy source of the other prime mover. The shaft work of each prime mover is connected to a common load. The shaft work of the first prime mover is directly connected to the load, whereas the shaft work of the second prime mover is selectively coupled or decoupled to the load using a clutch. | 12-06-2012 |
20120324861 | Compression Installation - A compressor plant with at least one gas turbine having a gas turbine compressor and with a steam turbine is disclosed, wherein a steam generation plant which is assigned to the gas turbine is operated with exhaust gases of the gas turbine, such that the steam generated in the steam generation plant drives the stream turbine. There is assigned at least one additional compressor for compressing a process medium. The compressor is connected directly to the gas turbine and/or the steam turbine such that the assigned compressor is driven in each case directly by the gas turbine and/or the steam turbine. | 12-27-2012 |
20120324862 | SYSTEMS AND METHODS FOR STEAM TURBINE WHEEL SPACE COOLING - The present application provides a steam turbine system. The steam turbine system may include a high pressure section, an intermediate pressure section, a shaft packing location positioned between the high pressure section and the intermediate pressure section, a source of steam, and a cooling system. The cooling system delivers a cooling steam extraction from the source of steam to the shaft packing location so as to cool the high pressure section and the intermediate pressure section. | 12-27-2012 |
20130000272 | SYSTEM FOR FUEL GAS MOISTURIZATION AND HEATING - Embodiments of the present invention may provide to a gas turbine a fuel gas saturated with water heated by a fuel moisturizer, which receives heat form a flash tank. A heat source for the flash tank may originate at a heat recovery steam generator. The increased mass flow associated with the saturated fuel gas may result in increased power output from the associated power plant. The fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain. | 01-03-2013 |
20130014484 | SYSTEM AND METHOD FOR SEPARATING CO2 FROM COMBUSTION EXHAUST GAS BY MEANS OF MCFC MULTISTACKSAANM Caprile; LucianoAACI GenovaAACO ITAAGP Caprile; Luciano Genova ITAANM Passalacqua; BiagioAACI CamogliAACO ITAAGP Passalacqua; Biagio Camogli ITAANM Torazza; ArturoAACI GenovaAACO ITAAGP Torazza; Arturo Genova IT - A system for separating CO | 01-17-2013 |
20130097993 | HEAT RECOVERY STEAM GENERATOR AND METHODS OF COUPLING SAME TO A COMBINED CYCLE POWER PLANT - A heat recovery steam generator uses heat energy extracted from the exhaust gas of a gas turbine to produce steam. The steam is provided to steam turbines of a combined cycle power plant. Intermediate pressure steam generated by an intermediate pressure evaporator is routed to first and second intermediate pressure superheaters. Also, steam exhausted from a high pressure steam turbine of a combined cycle power plant is reheated by first and second reheaters within the heat recovery steam generator. The steam output by the intermediate pressure superheaters is provided to an interstage admission port of an intermediate pressure steam turbine, and steam output by the first and second reheaters is provided as the main input steam for the intermediate pressure steam turbine of the combined cycle power plant. | 04-25-2013 |
20130097994 | MULTI-FLUID TURBINE ENGINE - A multi-fluid turbine engine includes a turbine, a first working fluid inlet passage, and a second working fluid inlet passage. The turbine may include a first working fluid portion and a second working fluid portion. The first working fluid passage may be configured to introduce a first working fluid to the first working fluid portion to perform work on the first working fluid portion, and the second working fluid inlet passage may be configured to introduce a second working fluid to the second working fluid portion to perform work on the second working fluid portion. The first working fluid inlet passage and the second working fluid passage may be independent of each other. | 04-25-2013 |
20130104519 | AMMONIA INJECTION SYSTEMS | 05-02-2013 |
20130118146 | Twin-Shaft Gas Turbine - A twin-shaft gas turbine can be used for 50 and 60 Hz power generation without using a reducer. A gas generator includes a compressor that generates compressed air, a burner that burns a fuel mixed with the compressed air received from the compressor so as to generate combustion gas, and a high-pressure turbine that is rotationally driven by the combustion gas received from the burner and generates driving force for the compressor. An output turbine includes a low-pressure turbine that is driven by exhaust gas received from the high-pressure turbine and a power generator that is driven by the low-pressure turbine. A control device reduces opening degree of IGV of the compressor and thereby reduces power of the compressor, and the rotational frequency of the gas generator is increased in a full-speed no-load operating state of the power generator. | 05-16-2013 |
20130125525 | GAS TURBINE POWER PLANT WITH A GAS TURBINE INSTALLATION, AND METHOD FOR OPERATING A GAS TURBINE POWER PLANT - A gas turbine power plant and a method for operating a gas turbine power plant are provided. The power plant includes a gas turbine installation which may supply a mains supply network with electric power and includes a compressor and an associated first gas turbine. Differing from previous gas turbine installations, the compressor of the gas turbine installation and the first gas turbine of the gas turbine installation are decoupled from each other. A second turbine is provided which drives compressor. As a result, the compressor of the gas turbine installation is operated independently of the first gas turbine. Influences on the mains supply network side, such as generating deficiencies in the main supply network, which act upon the first gas turbine as a result of speed reduction, are also not able to have an impact upon the compressor which is decoupled from the first gas turbine. | 05-23-2013 |
20130160424 | Method for Operating a Combined Cycle Power Plant - In a method for operating a combined cycle power plant ( | 06-27-2013 |
20130167504 | METHOD FOR REGULATING A SHORT-TERM POWER INCREASE OF A STEAM TURBINE - A method for regulating a short-term power increase of a steam turbine with an upstream waste-heat steam generator is provided. The steam turbine has a number of economizer, evaporator and super heater heating surfaces forming a flow path for a flow medium. The flow medium is tapped off from the flow path in a pressure stage and is injected into the flow path on the flow-medium side between two super heater heating surfaces of the respective pressure stage. Amount of flow medium injected is regulated with a characteristic value which is a discrepancy between the outlet temperature of the final super heater heating surface and a predetermined temperature nominal value. The temperature nominal value is reduced and the characteristic value is temporarily increased more than in proportion to the discrepancy for a time period of the reduction for achieving a short-term power increase of the steam turbine. | 07-04-2013 |
20130180228 | SUPERCRITICAL HEAT RECOVERY STEAM GENERATOR REHEATER AND SUPERCRITICAL EVAPORATOR ARRANGEMENT - A supercritical heat recovery steam generator includes a duct defining an interior area and having a gas inlet and a gas outlet. The duct is configured to convey gas from the gas inlet to the gas outlet. A portion of the duct between the gas inlet and the gas outlet defines an exhaust gas flow segment of the interior area. A supercritical evaporator is disposed in the interior area and a reheater is disposed in the interior area. The reheater and the supercritical evaporator are disposed in the exhaust gas flow segment, adjacent to each other with respect to the flow of the exhaust gas. | 07-18-2013 |
20130192193 | Solar Assisted Combined Cycle Power Plant - Disclosed is a solar assisted combined cycle power plant having a compressor that pressurizes combustion air, a combustor that mixes and burns the combustion air and gas turbine fuel to generate a high-temperature combustion gas, a gas turbine that drives the compressor by using the combustion gas, an exhaust heat recovery steam generator that obtains steam from thermal energy of a gas exhausted from the gas turbine, and a steam turbine that is driven by using the steam obtained by the exhaust heat recovery steam generator. The solar assisted combined cycle power plant includes a solar collector to turn supplied water to warm water; a heat accumulator that stores pressurized hot water from the solar collector and the exhaust heat recovery steam generator; and a spray device that handles the pressurized hot water as spray water and sprays the spray water onto the air to be taken into the compressor. | 08-01-2013 |
20130199150 | STEAM INJECTION ASSEMBLY FOR A COMBINED CYCLE SYSTEM - A steam injection assembly for a combined cycle system includes a heat recovery system having at least one superheater configured to generate a steam supply. Also included is a gas turbine system having an inlet and a compressor, wherein the inlet receives an air supply and the steam supply for combined injection into the compressor. | 08-08-2013 |
20130199151 | Steam Generator for Combined Cycle Gas Turbine Plant - A steam generator for the generation of steam from recovered heat from the flue gases of the gas cycle of a combined cycle gas turbine power plant comprising at least one high pressure drum; at least one intermediate pressure drum; at least one low pressure drum; steam outlet means to enable extraction of auxiliary process steam from a location downstream of at least one drum. A combined cycle gas turbine power plant including the above. | 08-08-2013 |
20130205749 | STEAM TURBINE PLANT WITH VARIABLE STEAM SUPPLY - A steam turbine plant has a steam turbine and an inlet steam collection line with an inlet steam collection line segment is provided. The inlet steam collection line supplies a steam consumer and is introduced into outlet steam flow of the steam turbine at an inlet steam introduction point of the inlet steam collection line segment. A supply steam device has a switching armature for connecting the supply steam device to the inlet steam collection line segment upstream of the inlet steam introduction point. The armature is triggered and switched such that if outlet steam pressure in the inlet steam collection line segment is lower than target pressure, the inlet steam collection line segment is connected to the supply steam device for conducting steam and disconnected between the armature and the inlet steam introduction point, otherwise the supply steam device is separated from the inlet steam collection line segment. | 08-15-2013 |
20130312386 | COMBINED CYCLE POWER PLANT WITH CO2 CAPTURE PLANT - A combined cycle power plant includes a CO2 capture system operatively integrated with a liquefied natural gas LNG regasification system, where cold energy from the regasification process is used for cooling processes within the CO2 capture system or processes associated with it. These cooling systems include systems for cooling lean or rich absorption solutions for the CO2 capture or the cooling of flue gas. The LNG regasification system is arranged in one or more heat exchange stages having and one or more cold storage units. The power plant with CO2 capture can be operated at improved overall efficiencies. | 11-28-2013 |
20130333349 | TURBINE EXHAUST DUCT DESIGN FOR AIR COOLED CONDENSERS - A double turbine exhaust duct design and an inline V turbine exhaust duct design that both eliminate the need for the standard T-piece in a turbine exhaust duct assembly, substantially reducing the steam-side pressure drop, minimizing the sub-cooling in the steam cycle (the temperature difference between ACC condensate temperature out and turbine steam temperature), thus improving the overall efficiency of the steam cycle plant heat rate. | 12-19-2013 |
20130340405 | COMBINED CYCLE POWER PLANT - A combined cycle power plant with a gas and steam turbine system arranged on a single shaft and integrated with a cogeneration plant having a heat consumer such as a district heating system or industrial plant, including one or more steam extractions at an intermediate-pressure steam turbine that are arranged at the upper casing half-shell of the turbine and extraction steam lines that lead the extracted steam to heat exchangers of the cogeneration plant. The steam extraction outlets are arranged either singly at or near the uppermost point of the casing or in pairs to either side of the uppermost point of the casing. The specific arrangement of the extractions allows a floor-mounting of the single-shaft combined cycle power plant and as such a cost and space efficient realization of the power plant. | 12-26-2013 |
20140020359 | SEAL APPARATUS OF TURBINE AND THERMAL POWER SYSTEM - A sealing device for a turbine has a sealing member provided in a gap between a rotor and a stator arranged to surround the rotor, and a fluid path provided within the stator, to introduce, into the stator, a cooling medium used to cool stationary blades extending radially inward from the stator, and to flow the cooling medium at least to an upstream side of the sealing member. | 01-23-2014 |
20140033676 | UNIQUE METHOD OF SOLAR INTEGRATION IN COMBINED CYCLE POWER PLANT - A method of integrating a supplemental steam source into a combined cycle plant comprising a gas turbine engine, generator and heat recovery steam generator (HRSG) by providing a solar steam generation subsystem that captures and transfers heat using solar radiation to produce supplemental superheated steam; providing a steam turbine operatively connected to the gas turbine; and injecting a portion of the steam formed by solar radiation into one or more intermediate stages of the high pressure section of the steam turbine. The exemplary method uses steam produced by the HRSG (having one, two or three pressure levels and with or without reheat), as well as steam produced by a solar steam generation subsystem when the plant is operating at full capacity. Significantly, the throttle pressure of the high pressure steam turbine remains substantially the same when the solar steam generation is either active or inactive. | 02-06-2014 |
20140041359 | RAPID STARTUP HEAT RECOVERY STEAM GENERATOR - A rapid startup heat recovery steam generator (HRSG) comprises a gas inlet, a high pressure section, an optional intermediate pressure section, an optional low pressure section, and a gas outlet. At least one of the pressure sections includes a vertical steam separator. | 02-13-2014 |
20140053529 | SYSTEM AND METHOD FOR HIGH EFFICIENCY POWER GENERATION USING A CARBON DIOXIDE CIRCULATING WORKING FLUID - The present invention provides methods and system for power generation using a high efficiency combustor in combination with a CO | 02-27-2014 |
20140060002 | REGENERATIVE TURBINE FOR POWER GENERATION SYSTEM - Disclosed is a power generation system and method. The system includes a combustor, and a turbine driven by products of the combustor. The turbine includes at least one disk supporting a plurality of airfoils, and the airfoils each have an internal passage formed therein. The system further includes a passage for routing a coolant within the system. A portion of the passage is provided by the internal passages of the airfoils, and another portion of the passage is provided between the airfoils and the combustor. The system also includes a generator driven by the turbine to generate electric power. | 03-06-2014 |
20140060003 | TURBOMACHINE HAVING A FLOW MONITORING SYSTEM AND METHOD OF MONITORING FLOW IN A TURBOMACHINE - A turbomachine includes a turbine portion having a housing enclosing one or more turbine stages. Each of the one or more turbine stages includes a plurality of turbine buckets. The plurality of turbine buckets include an upstream portion and a downstream portion. A first sensor is mounted in the turbine portion at the upstream portion of plurality of turbine buckets and a second sensor is mounted in the turbine portion at the downstream portion of the plurality of turbine buckets. A controller is operatively coupled to the first and second sensors. The controller is configured and disposed to detect a change in flow between the upstream portion and the downstream portion and signal an alarm if the change in flow falls below a predetermined threshold value. | 03-06-2014 |
20140069078 | Combined Cycle System with a Water Turbine - The present application and the resultant patent provide a combined cycle system with a flow of feed water therein. The combined cycle system may include a gas turbine, a steam turbine, a heat exchanger with the flow of feed water flowing therethrough, an expansion source for expanding the flow of feed water, and a supplemental power generation system positioned between the heat exchanger and the expansion source and driven by the flow of feed water. | 03-13-2014 |
20140090356 | HEAT RECOVERY STEAM GENERATOR AND POWER PLANT - A heat recovery steam generator has a plurality of heat exchangers, including superheaters | 04-03-2014 |
20140102072 | MULTI-SHAFT, MULTI-SPEED COMBINED CYCLE POWER SYSTEM - Various embodiments include power systems. In a particular embodiment, the power system includes a combined-cycle power system having: a first shaft having a first group of components coaxially mounted thereon, the first group of components including: a first steam turbomachine; a first gas turbomachine; and a reheat combustor; and a second shaft separated from the first shaft, the second shaft having a second group of components coaxially mounted thereon, the second group of components including: a second steam turbomachine; a second gas turbomachine; and a duct fluidly coupled to the second gas turbomachine and the reheat combustor, the duct for providing exhaust from the second gas turbomachine to the reheat combustor. | 04-17-2014 |
20140102073 | THERMAL ENERGY STORAGE - Thermal energy storage is leveraged to store thermal energy extracted from a bottom cycle heat engine. The thermal energy stored in the thermal energy storage is used to supplement power generation by the bottom cycle heat engine. In one embodiment, a thermal storage unit storing a thermal storage working medium is configured to discharge thermal energy into the working fluid of the bottom cycle heat engine to supplement power generation. In one embodiment, the thermal storage unit includes a cold tank containing the thermal storage working medium in a cold state and a hot tank containing the working medium in a heated state. At least one heat exchanger in flow communication with the bottom cycle heat engine and the thermal storage unit facilitates a direct heat transfer of thermal energy between the thermal storage working medium and the working fluid used in the bottom cycle heat engine. | 04-17-2014 |
20140109547 | METHOD FOR OPERATING A RECIRCULATING WASTE HEAT STEAM GENERATOR - A method for operating a recirculating waste heat steam generator is provided, in which in a pressure stage of the recirculating waste heat steam generator, the feed water mass flow is guided on the basis of a specified desired value in order to control the water level in a drum. The method should give a recirculating waste heat steam generator a particularly high degree of efficiency and simultaneously a particularly high level of operational flexibility. For this purpose the thermal input introduced into an evaporator of the pressure stage is used as input variable in the determination of the desired value. | 04-24-2014 |
20140123622 | Combined Cycle Power Plant with Absorption Heat Transformer - A combined cycle power plant utilizes an absorption heat transformer to improve plant efficiency. A heat recovery steam generator receives exhaust from a gas turbine and generates steam for input to a steam turbine. The heat recovery steam generator includes a low pressure economizer, an intermediate pressure economizer and a high pressure economizer. The absorption heat transformer is in fluid communication with the low pressure economizer. The absorption heat transformer includes a feed water circuit that draws exhaust water from the low pressure economizer for heating by the absorption heat transformer and directs heated water to at least one of the intermediate pressure economizer and the high pressure economizer. | 05-08-2014 |
20140123623 | GAS TURBOMACHINE SYSTEM INCLUDING AN INLET CHILLER CONDENSATE RECOVERY SYSTEM - A gas turbomachine system includes a compressor portion including an inlet portion, a turbine portion fluidically connected to, and mechanically linked with, the compressor portion, and a combustor assembly including at least one combustor fluidically connected to the turbine portion. An inlet system is fluidically connected to the inlet portion of the compressor portion. The inlet system includes an inlet chiller. An inlet chiller condensate recovery system is fluidically connected to the inlet system. The inlet chiller condensate recovery system includes an inlet fluidically connected to the inlet chiller and an outlet fluidically connected to one of the compressor portion and the combustor assembly. | 05-08-2014 |
20140130476 | HEAT RECOVERY STEAM GENERATOR AND POWER PLANT - An auxiliary burner configured to heat exhaust gas on an upstream side of any one of heat exchangers, and a fuel supply system configured to supply fuel to the auxiliary burner. To avoid damage of a heat-transfer pipe by exhaust gas of high temperature, a reference value on which the restriction on the charging quantity to be supplied to the auxiliary burner is based is set, and the charging quantity of fuel to the auxiliary burner is restricted so as not to exceed a limit defined by the reference value. | 05-15-2014 |
20140174053 | HEAT RECOVERY STEAM GENERATOR AND POWER PLANT - According to the embodiment of the present invention, there are provided a first stage auxiliary burner configured to heat up the exhaust gas in the upstream side of the superheater, a second stage auxiliary burner configured to heat up the exhaust gas in the upstream side of the evaporator, a fuel supply system configured to distribute fuel so as to be supplied to the first stage auxiliary burner and the second stage auxiliary burner. Distribution of fuel charged to each of the first stage auxiliary burner and the second stage auxiliary burner is controlled in accordance with a predetermined distribution ratio of each charging quantity to whole charging quantity in all the range thereof. | 06-26-2014 |
20140216001 | AIR COOLING SYSTEM AND METHOD FOR A HEAT RECOVERY STEAM GENERATOR INLET - The air cooling system and method for a heat recovery steam generator (HRSG) inlet provides a combined cycle power plant utilizing a powerful fan coupled to ductwork connected to pipes that enter the HRSG inlet duct coupled to an exhaust duct of a Combustion Turbine (CT) for lowering the temperature of the CT exhaust gas provided to the heat recovery steam generator by the CT. The cool air injection system is utilized during low load operation or startup of the CT to ensure that spray water from an inter-stage desuperheater in an HRSG is fully evaporated prior to entering the downstream superheater or reheater. A feedback system includes temperature elements measuring the mix temperature that regulates the cooling air injection rate into the HRSG inlet. | 08-07-2014 |
20140237988 | Integrated Cooling, Heating, and Power Systems - One exemplary embodiment of this invention provides a single-effect absorption chiller including an absorber operatively connected to a solution heat exchanger and a generator, and a condenser in fluid communication with the absorber, wherein the absorber is sized and configured to receive a feed of water from a source of water and to transfer heat to the feed of water and then to convey the feed of water to the condenser without further heat conditioning of the feed of water prior to its entry into the condenser, and wherein the condenser is sized and configured to receive the feed of water from the absorber and to transfer heat to the feed of water, thereby cooling the condenser without resorting to an external heat exchanger such as a conventional cooling tower. | 08-28-2014 |
20150020499 | CONTROL VALVE CONTROL METHOD AND CONTROL DEVICE, AND POWER GENERATING PLANT UTILIZING SAME - A gas turbine plant including a gas turbine and a compressor is provided with a steam turbine plant including a steam turbine and a condenser, and, an exhaust heat recovery boiler. Steam from the exhaust heat recovery boiler is directly flown to the condenser of the steam turbine plant through a bypass control valve. A pressure sensor detects pressure in a turbine bypass system. A controller outputs, based on a set value from an input device and a process value from the pressure sensor, an open level instruction value to the control value so as to make the process value consistent with the set value in a predetermined sampling cycle. A corrector corrects the set value from the input device in a direction in which the open level instruction value decreases when the open level instruction value from the controller becomes a value that substantially fully opens the control valve. | 01-22-2015 |
20150107218 | Combined Cycle Plant - A combined cycle plant including a gas turbine, a heat recovery boiler for generating steam using exhaust heat of the gas turbine, and a steam turbine for feeding the steam generated by the heat recovery boiler from the heat recovery boiler through a steam system, characterized in that, the steam system is disposed so as to branch to a first steam system for introducing the steam to a first stage entrance of the steam turbine and a second steam system for introducing the steam to a stage entrance on a downstream side of the first stage of the steam turbine, and a flow rate of the steam fed to the steam turbine via the first steam system and the second steam system is adjusted on the basis of a steam flow rate generated by the heat recovery boiler. | 04-23-2015 |
20150113939 | COMBINED CYCLE POWER PLANT WITH IMPROVED EFFICIENCY - A CCPP includes a gas turbine, a HRSG, a steam turbine a flash tank and first and second supply lines. The gas turbine, the HRSG and the steam turbine are interconnected to generate power. The gas turbine may include an air preheating system to preheat the air supplied in the gas turbine to enable expedite combustion therein. The flash tank is fluidically connected at a cold end of the HRSG to extract waste hot water from the cold end. Further, the first supply line is configured to interconnect the flash tank and the steam turbine to supply of flash steam to the steam turbine. Furthermore, the second supply line is configured to interconnect the flash tank and the air preheating system to supply hot flash condensate thereto. | 04-30-2015 |
20150113940 | SYSTEMS, METHODS, AND DEVICES FOR LIQUID AIR ENERGY STORAGE IN CONJUNCTION WITH POWER GENERATING CYCLES - Systems, methods, and devices are provided for liquid air energy storage in conjunction with power generating cycles. A system can comprise a power generation apparatus and an energy storage apparatus. The energy storage apparatus can comprise a thermal energy storage unit, and the power generation apparatus and energy storage apparatus can be interconnected via the thermal energy storage unit enabling energy transfer from a first cycle of one of the power generation apparatus and energy storage apparatus to a second cycle of the other apparatus. | 04-30-2015 |
20150128558 | SOLAR FIRED COMBINED CYCLE WITH SUPERCRITICAL TURBINE - Mechanical work for electric power generation is obtained from thermal energy in a plant arranged for introduction of solar energy, available intermittently, by reflecting and concentrating solar radiation to directly heat a flow medium such as the exhaust gas from a combustion turbine directed into a steam generating boiler/evaporator. Steam generators and staged turbines recover and extract energy optimally at particular temperature, pressure and flow parameters in a closed thermodynamic cycle. Solar energy that is available intermittently is injected into the cycle to elevate the energy of the flow medium, in particular to produce supercritical steam. A steam turbine optimized for expanding supercritical steam is deployed during periods of available solar radiation by a controllable clutch and other switching and valve arrangements. The exhaust from the supercritical steam turbine can be coupled to downstream staged turbines optimized for successively lower pressures and higher flow rates. | 05-14-2015 |
20150143793 | SELECTIVE PRESSURE KETTLE BOILER FOR ROTOR AIR COOLING APPLICATIONS - A system for use in a combined cycle power plant including gas and steam turbines includes a single kettle boiler and a valve system. The valve system is operated such that feedwater from a first source passes into the kettle boiler during certain operating conditions, whereas feedwater from a second source passes into the kettle boiler during other operating conditions, wherein the first and second sources have feedwater under different pressures. Rotor cooling air extracted from a compressor section of the gas turbine is cooled with the feedwater in the kettle boiler, wherein at least a portion of the feedwater is evaporated in the kettle boiler by heat transferred to the feedwater from the rotor cooling air to create steam, wherein the valve system is operated to selectively deliver the steam to a first or second steam receiving unit depending on the operating conditions. | 05-28-2015 |
20150330263 | COMBINED CYCLE POWER PLANT SYSTEM AND RELATED CONTROL SYSTEMS AND PROGRAM PRODUCTS - Various embodiments include a system having: at least one computing device configured to monitor a combined-cycle (CC) power plant during a transient event by performing actions including: determining whether a change in an operating condition of a component of the CC power plant is unintentional, the determining including comparing control system instructions for the component of the CC power plant with a reference look-up table, the reference look-up table including correlation data for the control system instructions for the component and historical data about the operating condition of the component; and providing instructions to a control system of the CC power plant to modify the operating condition in the CC power plant in response to determining that the change in operating condition of the component is unintentional. | 11-19-2015 |
20150354545 | DISPATCHABLE SOLAR HYBRID POWER PLANT - A solar hybrid power plant comprises a combustion turbine generator, a steam power system, a solar thermal system, and an energy storage system. Heat from the solar thermal system, from the energy storage system, or from the solar thermal system and the energy storage system is used to generate steam in the steam power system. Heat from the combustion turbine generator exhaust gas may be used primarily for single phase heating of water or steam in the steam power system. Alternatively, heat from the combustion turbine generator exhaust gas may be used in parallel with the energy storage system and/or the solar thermal system to generate steam, and additionally to super heat steam. Both the combustion turbine generator and the steam power system may generate electricity. | 12-10-2015 |
20150377078 | BOILER OPERATION METHOD AND BOILER - A boiler according to the present invention is equipped with: a water supply system ( | 12-31-2015 |
20160003551 | HEAT EXCHANGER AND GAS TURBINE PLANT PROVIDED THEREWITH - The heat exchanger is provided with a body, multiple heat transfer tubes ( | 01-07-2016 |
20160017762 | GAS TURBINE UNIT OPERATING MODE AND DESIGN - Gas turbine unit (GTV) provides compressed air and steam methane-hydrogen mixture to a combustion chamber to enrich combustion products and cooling by evaporation or superheating of water steam. The temperature of heat exchange processes of the gas turbine unit is increased by additional fuel combustion in the steam-methane-hydrogen mixture postcombustion flow extracted at the output from the additional free work gas turbine, and before supply of steam-methane-hydrogen mixture to the combustion chamber it is previously cooled to the temperature of 200+240° C. with simultaneous differential condensation of water steam. The condensate is processed for preparation of methane steam-gas mixture and low pressure water steam which is passed through the additional free work gas turbine. | 01-21-2016 |
20160069264 | Gas turbine engine with turbine cooling and combustor air preheating - A gas turbine engine, especially an industrial gas turbine engine for electrical power production, where a second compressor is used to supply a second compressed air at a higher pressure to a stage of stator vanes in the turbine section of the engine for cooling of the stage of stator vanes, and where the heated compressed air used to cool the stator vanes is then discharged into the combustor to be burned with a fuel and produce a hot gas stream that is passed through the turbine. an intercooler can be used with the second compressor to lower the temperature of the second compressed air used for cooling the stator vanes. | 03-10-2016 |
20160115867 | WATER DELIVERY SYSTEM FOR GAS TURBINE COMPRESSOR - A water delivery system for a gas turbine compressor having a plurality of blade stages positioned about a rotating shaft is provided. The plurality of blade stages are configured to compress an airflow. The water delivery system includes a nozzle system to inject water between at least one pair of the plurality of blade stages; and a controller controlling whether the water injected by the nozzle system is injected at a first pressure that augments power output during an operation mode of the plurality of blade stages and a second, lower pressure that washes at least some of blades of the plurality of blade stages during a wash mode of the plurality of blade stages. | 04-28-2016 |
20160186659 | GAS TURBINE COMBINED CYCLE FACILITY AND WATER-SURFACE FACILITY - A gas turbine combined cycle (GTCC) facility ( | 06-30-2016 |
20220136411 | Hybrid power generation equipment and control method thereof - Disclosed is a hybrid power generation facility. The hybrid power generation facility includes a gas turbine including a compressor configured to compress air introduced from an outside, a combustor configured to mix the compressed air with fuel and to combust the air and fuel mixture, and a turbine configured to produce power with first combustion gas discharged from the combustor, a boiler including a combustion chamber and a burner installed in the combustion chamber and into which the first combustion gas discharged from the turbine of the gas turbine is introduced, a steam turbine through which steam generated in the combustion chamber passes, a first GT (gas turbine) pipeline connected between the turbine of the gas turbine and the burner, a first air pipeline connected to the first GT pipeline to supply oxygen to the burner, a first oxygen sensor installed at an inlet of the burner to measure an oxygen concentration of a fluid flowing into the burner, and a first GT damper installed in the first GT pipeline to control a flow rate of the fluid flowing through the first GT pipeline according to the oxygen concentration measured by the first oxygen sensor. | 05-05-2022 |
20220136412 | Hybrid power generation equipment - Disclosed is a hybrid power generation facility. The hybrid power generation facility includes a gas turbine including a compressor configured to compress air introduced from an outside, a combustor configured to mix the compressed air with fuel and to combust the air and fuel mixture, and a turbine configured to produce power with first combustion gas discharged from the combustor, a boiler including a combustion chamber and configured to burn a mixture of the first combustion gas and air, a first water heat exchanger configured to pass second combustion gas discharged from the boiler and to heat water through heat exchange with the second combustion gas, a water supply device configured to supply water to the first water heat exchanger, a steam turbine through which steam generated in the combustion chamber passes, and a first air preheater configured to pass second combustion gas discharged from the first water heat exchanger and to pass air supplied to the boiler. | 05-05-2022 |
20220136414 | FACILITY FOR GENERATING MECHANICAL ENERGY BY MEANS OF A COMBINED POWER CYCLE - A facility for generating mechanical energy by means of a combined power cycle is disclosed herein, which includes at least means for carrying out a closed or semi-closed, constituent regenerative Brayton cycle, which uses water as a heat-transfer fluid, means for carrying out at least one Rankine cycle, a constituent fundamental Rankine cycle, interconnected with the regenerative Brayton cycle, and a heat pump (UAX) including a closed circuit that regenerates the constituent regenerative Brayton cycle, as well as to the method for generating energy using the facility. | 05-05-2022 |