Class / Patent application number | Description | Number of patent applications / Date published |
060390100 | Excess pressure relief | 6 |
20100180564 | Systems and Methods for Mitigating a Flashback Condition in a Premixed Combustor - A method may mitigate a flashback condition in a gas turbine. The gas turbine may include a fuel nozzle. The method may include detecting the flashback condition in the fuel nozzle, and interrupting a flow of fuel to the fuel nozzle. | 07-22-2010 |
20140109544 | High Pressure Relief Valve Closure - In one featured embodiment, a closure sleeve for a valve comprises a sleeve body surrounding a center axis and defined by an overall length extending from an upstream end to a downstream end. The sleeve body has an internal cavity that is enclosed at the downstream end and is open at the upstream end. The internal cavity is defined in part by a piston contact surface that is defined by an inner diameter. The piston contact surface is configured to slide against a piston to be received within the internal cavity, and a ratio of the inner diameter to the overall length is between 1.0 and 1.5. | 04-24-2014 |
20140215998 | GAS TURBINE ENGINES WITH IMPROVED COMPRESSOR BLADES - A rotor blade for a compressor includes a pressure sidewall; a suction sidewall coupled to the pressure sidewall at a leading edge and a trailing edge; and a through hole extending between the pressure sidewall and the suction sidewall. | 08-07-2014 |
20160025014 | HIGH TEMPERATURE DISK CONDITIONING SYSTEM - A gas-circulation system for conditioning a disk of an aircraft may comprise a first takeoff port configured to extract a combusted gas and a second takeoff port configured to extract an uncombusted gas. A first valve may comprise an inlet in fluid communication with the first and second takeoff ports and an outlet of the first valve in fluid communication with the disk. | 01-28-2016 |
20160031563 | FOLDABLE GUIDING VENTILATOR COVER FOR AN AIRCRAFT ENGINE ASSEMBLY - For gains in terms of aerodynamic performance levels, an aircraft engine assembly includes a turbomachine, a fastening strut for the turbomachine, and at least one foldable ventilator cover which surrounds the turbomachine and which includes: a first cover sector which includes a first end portion which is mounted so as to be articulated to the fastening strut, along a first articulation axis, and a second cover sector which includes a first end portion which is mounted so as to be articulated to a second end portion of the first cover sector, along a second articulation axis parallel with the first articulation axis. The second end portion is mounted so as to be guided at one side and the other thereof by a thrust inverter cover of the engine assembly and an air inlet structure of this assembly, respectively. | 02-04-2016 |
20160090863 | METHOD AND APPARATUS FOR DECONGEALING A LUBRICATING FLUID IN A HEAT EXCHANGER APPARATUS - A decongealing channel for use in a heat exchanger apparatus, including a supersaturated solution contained therein and an actuation component in fluid communication with a lubricating fluid coupled to the decongealing channel. The actuation component is responsive to a change in pressure exerted thereon by the lubricating fluid so as to actuate an exothermic response in the supersaturated solution. The heat exchanger apparatus is disposed in a bypass fan duct of an aircraft engine. The heat exchanger apparatus including a manifold portion, one or more flow through openings extending therethrough the manifold portion to define one or more flow through channels having contained therein the lubricating fluid. In addition, the manifold portion including one or more additional openings extending therethrough to define one or more decongealing channels. Further disclosed is an engine including the heat exchanger apparatus and a method of decongealing a lubricating fluid in the heat exchanger apparatus. | 03-31-2016 |