Entries |
Document | Title | Date |
20080223046 | Method for providing auxiliary power to an electric power plant using fischer-tropsch technology - A method for meeting both base-load and peak-load demand in a power production facility. By integrating a Fischer-Tropsch (FT) hydrocarbon production facility with an electrical power generating facility, peak-load power demand can be met by reducing the temperature of the FT reactor thereby increasing the quantity of tail gases and using FT tail gases to fuel a gas turbine generator set. The method enables rapid power response and allows the synthesis gas generating units and the FT units to operate with constant flow rates. | 09-18-2008 |
20080229754 | METHOD AND SYSTEM FOR FAULT ACCOMMODATION OF MACHINES - A method for multi-objective fault accommodation using predictive modeling is disclosed. The method includes using a simulated machine that simulates a faulted actual machine, and using a simulated controller that simulates an actual controller. A multi-objective optimization process is performed, based on specified control settings for the simulated controller and specified operational scenarios for the simulated machine controlled by the simulated controller, to generate a Pareto frontier-based solution space relating performance of the simulated machine to settings of the simulated controller, including adjustment to the operational scenarios to represent a fault condition of the simulated machine. Control settings of the actual controller are adjusted, represented by the simulated controller, for controlling the actual machine, represented by the simulated machine, in response to a fault condition of the actual machine, based on the Pareto frontier-based solution space, to maximize desirable operational conditions and minimize undesirable operational conditions while operating the actual machine in a region of the solution space defined by the Pareto frontier. | 09-25-2008 |
20080271459 | Method and system for regulating a cooling fluid within a turbomachine in real time - A method and system for regulating a cooling fluid within a turbomachine in real time. The system may an external flow conditioning system for adjusting at least one property of the cooling fluid, wherein the external flow conditioning system comprises an inlet portion and an outlet portion. The system may also include at least one heat exchanger; at least one control valve; at least one bypass orifice; at least one stop valve; and a control system. | 11-06-2008 |
20080314045 | COMBUSTION CHAMBER WITH BURNER AND ASSOCIATED OPERATING METHOD - A method for operating a combustion chamber of a gas turbine, in particular of a power plant is provided. The combustion chamber includes at least one burner with a catalytic pilot burner. The method includes actuating the pilot burner at low power of the combustion chamber, generating a synthesis gas with a high proportion of hydrogen as a reaction product. The method further includes actuating the pilot burner at high power of the combustion chamber, generating a synthesis gas with a low proportion of hydrogen gas. An annular combustion chamber of a gas turbine, is also provided. The combustion chamber includes a plurality of burners distributed annularly. Each burner includes a catalytic pilot burner and a common air supply for the burner and the pilot burner is also provided. The common air supply distributes the supplied air with constant division between the burner and the pilot burner. | 12-25-2008 |
20090007566 | NOx ADJUSTMENT METHOD FOR GAS TURBINE COMBUSTORS - A method for controlling NOx emissions from a gas turbine having a fuel adjustment system may include setting an outer nozzle fuel flow to achieve a desired level of combustion dynamics for at least one of a plurality of combustion chambers, determining a delta adjustment value for a center nozzle fuel flow that will result in a desired level of NOx emissions from the gas turbine, and adjusting the center nozzle fuel flow according to the determined delta adjustment value to obtain the desired level of NOx emissions from the gas turbine. | 01-08-2009 |
20090056341 | METHOD AND APPARATUS FOR FACILITATING COOLING OF A STEAM TURBINE COMPONENT - A method of operating a power plant is provided. The method includes channeling saturated steam at a first pressure to a pressure control device, superheating the steam by decreasing the pressure of the saturated steam from the first pressure to a second pressure using the pressure control device, and channeling the superheated steam towards a steam turbine component to facilitate cooling the component. | 03-05-2009 |
20090056342 | Methods and Systems for Gas Turbine Part-Load Operating Conditions - A method and system for operating at partial load a gas turbine system having a compressor, a combustor, and a turbine. The method and system may include the steps of lowering a flow of fuel to the combustor, extracting air from the compressor so as to lower a flow of air to the compressor, and returning the extracted air to the turbine or a component of the gas turbine system other than the combustor. Extracting air from the compressor raises a combustion temperature within the combustor. Raising the combustion temperature maintains a combustion exhaust below a predetermined level, maintains stable combustion, and extends turbine turndown values. | 03-05-2009 |
20090064682 | METHOD AND SYSTEM TO DETERMINE COMPOSITION OF FUEL ENTERING COMBUSTOR - Disclosed is a method and system for determining composition of a fuel entering a combustor. The method includes determining a temperature of the fuel entering the combustor, calculating a first estimated total fuel flow utilizing fuel properties and fuel nozzle effective area (A | 03-12-2009 |
20090071165 | METHOD OF OPERATING A GAS TURBINE POWER PLANT - In a method of operating a gas turbine during shut down, the gas turbine is decelerated and closure of compressor inlet guide vanes ( | 03-19-2009 |
20090094988 | MULTI-CYCLE UNDERSEA POWER SYSTEM - A method of operating an internal combustion engine, such as a diesel engine, includes an air cycle and an exhaust cycle. During the air cycle, atmospheric air and fuel are combusted within the engine. During the exhaust cycle, no atmospheric air is introduced into the engine. Instead, exhaust gas is recirculated into to the engine. The exhaust gas provides a working fluid for a compression ignition cycle and the fuel is capable of air-independent combustion. | 04-16-2009 |
20090107149 | CURRENT-PROTECTED DRIVER CIRCUIT FOR IGNITION EXCITER UNIT - Methods and apparatus are provided for driving an ignition exciter unit. An apparatus is provided for a driver circuit for use with an ignition exciter unit, the driver circuit having an input terminal and an output terminal. A first current-protected circuit is coupled to the input terminal and the output terminal, wherein the first current-protected circuit is current-limited. A second current-protected circuit coupled to the input terminal and the output terminal. The driver circuit further comprises a controller coupled to the first current-protected circuit and the second current-protected circuit. The controller is configured to activate the first current-protected circuit for a first time interval and activate the second current-protected circuit after the first time interval and prior to when the ignition exciter unit begins operating. | 04-30-2009 |
20090120097 | Isotropic recycling engine - An engine or motor that generates electrical energy by the use of isotropic principles in conjunction with the expansion of fuel materials when constant heat is applied to flammable fuels such as propane, C | 05-14-2009 |
20090199566 | CO2 EMISSION-FREE ENERGY PRODUCTION BY GAS TURBINE - The invention relates to a method for reducing the CO | 08-13-2009 |
20090211259 | Method for Starting Up a Gas and Steam Turbine System - The invention relates to a method for starting a gas and steam turbine system which comprises a gas turbine system which comprises at least one gas turbine, in addition to at least one steam turbine system which comprises at least one steam turbine and at least one steam system. Heat produced by the working fluid and which is released in the gas turbine is guided to the steam system in order to produce steam which drives the steam turbine. According to the invention, during starting, the gas turbine is started prior to the steam turbine and the steam turbine is started in the presence of the first steam in the system and is impinged upon by said steam. | 08-27-2009 |
20090217672 | Fuel Ratio Control in a Combustion Apparatus with Multiple Fuel Supply Lines - A combustion apparatus is provided which includes an incoming fuel supply line that supplies fuel in a plurality of fuel-supply lines to one or more burners, the burners being associated with a combustion volume. A temperature sensor is located in the apparatus so as to yield temperature information relating to a component part of the apparatus, which is to be prevented from overheating The apparatus also includes a control arrangement, which detects the temperature-sensor output and, depending on that output, varies the fuel supplies to one or more of the burners in such a way as to maintain the temperature of the component part below a maximum value, while keeping the fuel in the incoming fuel supply line substantially constant. The control unit preferably also strives to adjust the operating conditions of the apparatus so that pressure oscillations are kept below a maximum value. | 09-03-2009 |
20090272118 | Operation of Dual Gas Turbine Fuel System - The present application provides a method of operating a dual gas fuel delivery system comprising selecting a manifold and fuel flow split; setting the stroke of a high-energy gas control valve based on the fuel split; measuring the primary manifold nozzle pressure ratio across a primary manifold nozzle outlet; comparing the primary manifold nozzle pressure ratio against a primary manifold specification limit; adjusting the stroke of a primary low energy gas control valve to maintain the pressure ratio across the primary manifold nozzle outlet within the primary manifold specification limit; measuring the secondary manifold nozzle pressure ratio across a secondary manifold nozzle outlet; comparing the secondary manifold nozzle pressure ratio against a secondary manifold specification limit; and adjusting the stroke of a secondary low energy gas control valve to maintain the pressure ratio across the secondary manifold nozzle outlet within the secondary manifold specification limit. | 11-05-2009 |
20090272119 | JET FUEL COMPOSITIONS AND METHODS OF MAKING AND USING SAME - Provided herein are, among other things, jet fuel compositions and methods of making and using the same. In some embodiments, the fuel compositions comprise at least a fuel component readily and efficiently produced, at least in part, from a microorganism. In certain embodiments, the fuel compositions provided herein comprise a high concentration of at least a bioengineered fuel component. In further embodiments, the fuel compositions provided herein comprise amorphane. | 11-05-2009 |
20090277182 | FUEL LANCE - A lance is presented for introducing fuel into a second burner of a combustion chamber of a gas turbine installation with sequential combustion, having a first and a second combustion chamber. The lance includes a foot and a shank which projects from it. In an installed state of the lance the foot extends perpendicularly or at an angle to a main flow direction of the burner. The shank extends centrally in the burner and generally parallel to the main flow direction. At least one projecting arm, having at least one nozzle for introducing fuel, is arranged such that it extends from the shank. A respective end of the at least one arm is oriented in the main flow direction and extends generally parallel to the main flow direction. | 11-12-2009 |
20090282834 | Combined Vortex reducer - A vortex reducer for the guidance of bleed airflows ( | 11-19-2009 |
20090293491 | Gas Turbine For A Thermal Power Plant, And Method For Operating Such A Gas Turbine - Disclosed is a gas turbine for a thermal power plant, especially a gas turbine, comprising a rotatable rotor and a duct which can be penetrated by a gas and in which turbine blades for driving the rotor are disposed. The inventive gas turbine is characterized by a blocking device which at least partially prevents the gas from penetrating the duct in a closed position. | 12-03-2009 |
20090293492 | COMBUSTION APPARATUS - A fuel valve for a turbine engine, the valve has a fuel inlet connected to a supply of fuel and a purge inlet connected to a supply of purge air. Opening and closing apparatus within the valve selectively supplies air or fuel to a valve outlet. The opening and closing apparatus are movable in sequence from a first position where both the purge air and fuel to the outlet is disabled to a second position where the purge air is enabled and the fuel is disabled to a third position where the purge air is disabled and the fuel is enabled. | 12-03-2009 |
20090301095 | PASSIVE BOUNDARY LAYER BLEED SYSTEM FOR NACELLE INLET AIRFLOW CONTROL - A gas turbine engine system includes a nacelle having a pressure side and a suction side. A passage extends between the pressure side and the suction side that permits airflow from the pressure side to the suction side. The passage receives turbulent airflow over the nacelle to produce a laminar airflow over the nacelle aft of the passage to thereby reduce drag on the nacelle. | 12-10-2009 |
20090313999 | METHOD AND APPARATUS FOR CONTROLLING FUEL IN A GAS TURBINE ENGINE - A method and system for controlling fuel in a gas turbine engine including a fuel supply system channeling fuel to a combustor are provided. The system includes a first heat exchanger configured to transfer heat between a working fluid and a first cooling medium. The system also includes a second heat exchanger in series flow communication with the first heat exchanger wherein the second heat exchanger is configured to transfer heat between the working fluid and a second cooling medium. The system further includes a modulating valve configured to control the flow of at least one of the first and the second cooling media to maintain a temperature of the first or second cooling medium substantially equal to a predetermined limit. | 12-24-2009 |
20090314000 | COANDA PILOT NOZZLE FOR LOW EMISSION COMBUSTORS - A low emission combustor includes a combustor housing defining a combustion chamber. A secondary nozzle is disposed along a centerline of the combustion chamber and configured to inject air or a first mixture of air and fuel on a downstream side of the combustion chamber. The secondary nozzle includes an air inlet configured to introduce a first fluid including air, a diluent, or combinations thereof into the secondary nozzle. At least one fuel plenum is configured to introduce a second fluid including a fuel, another diluent, or combinations thereof into the secondary nozzle and over a predetermined profile proximate to the fuel plenum. The predetermined profile is configured to facilitate attachment of the second fluid to the profile to form a fluid boundary layer and to entrain incoming first fluid through the fluid boundary layer to promote mixing of the first fluid and the second fluid and fuel to produce the first fluid. A plurality of primary fuel nozzles are disposed proximate on an upstream side of the combustion chamber and located around the secondary nozzle and configured to inject air or a second mixture of air and fuel to an upstream side of the combustion chamber. | 12-24-2009 |
20090314001 | METHOD OF STARTING AND STOPPING GAS TURBINE AND START-AND-STOP CONTROL DEVICE - An object of the present invention is to provide a method of starting and stopping a gas turbine and a start-and-stop control device, which are capable of solving a problem of a failure in normally igniting a fuel gas due to a purge gas (nitrogen gas) remaining in a fuel gas pipe and thereby igniting the fuel gas stably. For this purpose, the start-and-stop control device performs control at the time of starting the gas turbine by sequentially performing: first exhaust gas duct purge for pushing out a fuel gas remaining in an exhaust gas duct with compressed air from a compressor; fuel gas pipe purge for pushing out nitrogen gas remaining in a fuel gas pipe between a fuel gas shutoff valve and a combustor at the time of stopping the gas turbine by the fuel gas by opening a fuel gas shutoff valve; and second exhaust gas duct purge for pushing out the fuel gas remaining in the exhaust gas duct at the time of the fuel gas pipe purge by the compressed air from the compressor, and then the fuel gas is supplied to the combustor by opening the fuel gas shutoff valve again and ignited. | 12-24-2009 |
20090320489 | METHOD AND SYSTEM FOR INCREASING MODIFIED WOBBE INDEX CONTROL RANGE - A system and method for controlling the temperature of a fuel gas. The system and method includes mixing an intermediate pressure feedwater stream from the heat recovery steam generator with a high pressure feedwater stream from the heat recovery steam generator, then using that mixture to heat the fuel gas mixture. The system and method may provide for improved control over the Modified Wobbe Index of the fuel gas, which may allow for greater variation in the composition of the fuel gas. | 12-31-2009 |
20090320490 | Gas Turbine Combustor - A gas turbine combustor is provided, which comprises: a combustion chamber having an axial direction and a radial direction; air passages for feeding an air stream into the combustion chamber which are oriented such that the flowing direction for each air stream flowing into the combustion chamber includes an angle with the combustion chamber's radial direction so as to introduce a swirl in the in-flowing air and an angle of at least 60° with the combustion chamber's axial direction; and fuel injection openings which are located in the air passages. Each air passage defines a turning flow path with a turning between 70° and 150° in a radial direction of the combustion chamber and a turning between 0° and 235° in an axial direction of the combustion chamber. | 12-31-2009 |
20090320491 | DUAL CLUTCH ARRANGEMENT - A dual clutch arrangement is disclosed herein. The dual clutch arrangement includes a first input rotatable member. The dual clutch arrangement also includes an output rotatable member. The dual clutch arrangement also includes a first clutch coupling the first input rotatable member and the output rotatable member such that the first input rotatable member drives the output rotatable member in rotation. The first clutch is operable to be overrun. The dual clutch arrangement also includes a second input rotatable member. The dual clutch arrangement also includes a second clutch operable to selectively couple the second input rotatable member and the output rotatable member such that the second input rotatable member drives the output rotatable member in rotation. The first clutch is overrun when the second clutch is engaged. The dual clutch arrangement can be one exemplary way of practicing the method of operating a turbine engine to produce thrust for a vehicle, directing air into the turbine engine with a fan during said operating step, and changing a speed of the fan during said operating step to change a bypass ratio of the turbine engine. | 12-31-2009 |
20100000221 | Method for producing fuel and power from a methane hydrate bed using a gas turbine engine - A method of producing natural gas fuel from gas hydrate beds is provided wherein a gas turbine engine is operated thereby producing power and hot exhaust. A portion of the heat from the hot exhaust is transferred to water and the heated water is passed downhole and brought into thermal contact with a hydrate bed thereby dissociating hydrate and producing hydrate gas. Sufficient fuel is then passed to the engine for operation. | 01-07-2010 |
20100011778 | Environmentally friendly methods and systems of energy production - A process of energy production is disclosed. The process includes integrating three or more energy production technologies such that a first byproduct of a first energy production technology is applied to a second energy production technology and a second byproduct of the second energy production technology is applied to a third energy production technology. The process also includes operating the integrated energy production technologies to produce energy such that at least a portion of the first byproduct is utilized in an operation of the second energy production technology and a portion of the second byproduct is utilized in an operation of the third energy production technology. | 01-21-2010 |
20100018214 | Energy Production from Algae in Photo Bioreactors Enriched with Carbon Dioxide - A system and method for energy production. The system includes a kiln for burning limestone and dolomite into clinker, two photo bioreactors for growing algae and pipeworks for feeding co | 01-28-2010 |
20100024429 | APPARATUS, SYSTEM AND METHOD FOR HEATING FUEL GAS USING GAS TURBINE EXHAUST - An apparatus, a system and a method by which fuel gas to drive a heat source is heated are provided. The apparatus includes a first gas passage by which at least a portion of the fuel gas is transported from an inlet to an outlet, the outlet being fluidly coupled to the heat source, a plurality of heat pipes in thermal communication, at respective first ends thereof, with the portion of the fuel gas transported by the first gas passage, and a heating element, fluidly coupled to the heat source to receive exhaust of the heat source, through which respective second ends of the heat pipes extend to be in position to be heated by the exhaust. | 02-04-2010 |
20100024430 | METHOD FOR OPERATING A FIRING SYSTEM - A method for operating a firing system with a combustion chamber, in which a fuel is preheated and is supplied in the preheated state for combustion in the combustion chamber. The preheated temperature of the fuel is set higher for a part load of the firing system than with a basic load. In addition, the preheated temperature of the fuel is set using a variable obtained from the combustion in particular a load of the firing system. A firing system is also provided. | 02-04-2010 |
20100043442 | DIMPLED SERRATED FINTUBE STRUCTURE - Disclosed is a fin tube for thermal energy transfer of turbomachine exhaust including a tube disposable in an exhaust stream of a turbomachine and a plurality of fins extending from an outer surface of the tube. Each fin includes a plurality of adjacent fin segments which are separated by a serration. At least one fin segment of the plurality of fin segments includes at least one dimple thereon. The at least one dimple increases a turbulence of exhaust flow across the at least one fin segment and increases a surface area of the at least one fin segment thereby increasing a thermal energy transfer capability of the fin tube. Further disclosed is a combined cycle power plant utilizing the fin tube and a method for operating the combined cycle power plant. | 02-25-2010 |
20100043443 | METHOD AND APPARATUS FOR SUPPRESSING AEROENGINE CONTRAILS - An aircraft comprising a gas turbine engine that exhausts a plume of gases in use, the aircraft comprises an ultrasound generator having an ultrasonic actuator and a waveguide to direct ultrasonic waves at the exhaust plume to avoid the formation of contrails. | 02-25-2010 |
20100050652 | Method of Controlling a Fuel Split - A method of controlling a fuel split of a pilot fuel flow and a main fuel flow in a gas turbine combustor during a load reduction is provided. The rate of change of fuel flow demand is monitored and an additional pilot fuel flow is added. The amount of additional pilot fuel flow depends on the rate of the change in fuel flow demand. | 03-04-2010 |
20100050653 | COMBUSTOR SYSTEM AND METHOD OF REDUCING COMBUSTION INSTABILITY AND/OR EMISSIONS OF A COMBUSTOR SYSTEM - A combustor system including a combustion chamber and at least one burner connected to the combustion chamber is provided. The combustion chamber includes a flow entrance which connects the burner to the combustion chamber, a flow exit through which combustion gases exit the combustion chamber, a chamber volume which extends between the flow entrance and the flow exit, and an inner chamber wall separating a cooling fluid channel from the chamber volume. A fuel supply line is present in the cooling fluid channel for supplying fuel to the cooling fluid. A method for reducing combustion instability and/or emissions of a combustor system is also provided. | 03-04-2010 |
20100064694 | COMBUSTOR, METHOD OF SUPPLYING FUEL TO SAME, AND METHOD OF MODIFYING SAME - An object of this invention is to suppress adhesion of a flame to periphery of air hole outlets arranged on an air hole plate. | 03-18-2010 |
20100071380 | POWER PLANT AND OPERATING METHOD - A method for operating a power plant ( | 03-25-2010 |
20100077765 | High-Pressure Fluid Compression System Utilizing Cascading Effluent Energy Recovery - A high-pressure system and method utilizing an input fluid. The system includes a reactor treating a material to produce an effluent having an energy content, a plurality of stages compressing the input fluid in a stepwise manner providing a high-pressure reactor input stream to the reactor, and a cascading effluent energy recovery system mechanically communicating with the plurality of stages. The cascading effluent energy recovery system imparts a portion of the energy content of the effluent into each of the plurality of stages powering that stage. The method includes receiving an input fluid, compressing the input fluid over a plurality of stages producing the high-pressure stream, providing the high-pressure stream to the reactor, recovering a portion of the energy content of the effluent at each of the plurality of stages, and using each the portion of the energy in compressing the input fluid at a corresponding respective stage. | 04-01-2010 |
20100089066 | COOL FLAME COMBUSTION - A combustion process for burning fuel in a combustion chamber is provided. The process includes supplying fuel and air to a burner, the amount of air supplied being at least as much as required for stoichiometric combustion of the fuel and subsequent dilution of the combustion process. The process also includes injecting the fuel and all the air from the burner directly into the combustion chamber in a substantially unmixed state as a fuel stream within an air stream. Fuel is injected from a nozzle, which is nested within an air nozzle. The fuel nozzle ejects a fuel stream of such thickness that the fuel burns in the combustion chamber as a diffusion flame with a high surface-to-volume ratio at or close to the stoichiometric fuel/air ratio. The flow of air through the air nozzle is subject to the venturi effect. | 04-15-2010 |
20100095681 | Method and apparatus for using compressed air to increase the efficiency of a fuel driven turbine generator - A method and apparatus is shown for increasing the efficiency of a fuel driven turbine generator, and in particular, a system comprising a turbo compressor and turbo expander device that produces super chilled air that can be mixed with ambient air to produce relatively cool dry inlet air that can be introduced under pressure into the fuel driven generator to increase the efficiency thereof. A separation compartment with a passageway extending normal to the travel direction of the chilled air is preferably used to remove ice particles and particulates from the cool inlet air to avoid damage to the turbine blades. Additional efficiency increasing apparatuses such as heat exchangers and steam driven turbine generators and chillers that use heat from the compressors, as well as thermal energy storage systems that store chilled water produced by releasing compressed air are contemplated. | 04-22-2010 |
20100107647 | TOROIDAL BOUNDARY LAYER GAS TURBINE - A device comprising a combustion toroid for receiving combustion-induced centrifugal forces therein to continuously combust fluids located therein and an outlet for exhaust from said combustion toroid. | 05-06-2010 |
20100115959 | FUEL METERING PUMP CALIBRATION METHOD - A system and method for accurately supplying fuel flow to a gas turbine engine from a fuel metering pump regardless of variations in operating conditions of the fuel metering pump. The system determines an updated flow characteristic curve for an electrically powered positive displacement pump that is configured to supply fluid via a valve that is configured to open at a predetermined fluid inlet pressure. Electrical current is supplied to the pump to thereby cause the pump to supply the fluid to the valve. The electrical current supplied to the pump is monitored to determine when the valve opens, and one or more points on the updated flow characteristic curve are determined based on the determination of when the valve opens. | 05-13-2010 |
20100115960 | Gas Turbine Installation with Flue Gas Recirculation - A method and installation are disclosed which can, for example, provide for reliable, low-Nox-emission operation of a gas turbine installation with hydrogen-rich fuel gas. An exemplary gas turbine installation includes an arrangement for flue gas recirculation into a compressor inlet and for fuel gas dilution. Oxygen content in combustion air can be reduced by recirculation of recooled flue gas, and the fuel gas can be diluted with compressed flue gas. The oxygen reduction in the combustion air can lead to minimum residual oxygen in the flue gas which can be used for fuel gas dilution. As a result of the flue gas recirculation, water content in the combustion air can be increased by feedback of the water which results as a combustion product. The oxygen reduction, increased water content, and fuel dilution can reduce the flame velocity of hydrogen-rich fuel gases and enable a robust, reliable and low-emission combustion. | 05-13-2010 |
20100146981 | Turbine Inlet Air Heat Pump-Type System - A heating and cooling system for inlet air of a turbine compressor. The heating and cooling system may include a thermal energy storage tank charging loop, a cooling loop in communication with the thermal energy storage charging loop, and a heating loop in communication with the cooling loop and the inlet air of the turbine compressor. | 06-17-2010 |
20100146982 | BLAST FURNACE IRON PRODUCTION WITH INTEGRATED POWER GENERATION - An integrated system for blast furnace iron making and power production based upon higher levels of oxygen enrichment in the blast gas is disclosed. The integrated system leads to; 1) enhanced productivity in the blast furnace, 2) more efficient power production, and 3) the potential to more economically capture and sequester carbon dioxide. Oxygen enhances the ability of coal to function as a source of iron reductant and to be gasified within the blast furnace thereby generating an improved fuel-containing top gas. | 06-17-2010 |
20100146983 | BURNER FOR A COMBUSTOR OF A TURBOGROUP | 06-17-2010 |
20100154427 | FLOW RESTRICTOR FOR LUBRICATION LINE - A flow restrictor is provided for a lubrication circulation system. The flow restrictor comprises a body configured to obstruct a flow of lubricant within the lubricant circulation system. The body has one or more through holes communicating with upstream and downstream portions of the lubrication circulation system. Each of the one or more holes has a cross-sectional area sufficiently small, and a length sufficiently long, to prevent turbulent lubricant flow therethrough at temperatures below a first predetermined reference temperature. The one or more holes have sufficient aggregate cross-sectional area to allow a desired lubricant flow rate through the body at temperatures at or above a second predetermined reference temperature. | 06-24-2010 |
20100154428 | METHOD AND SYSTEMS FOR OPERATING A COMBINED CYCLE POWER PLANT - An embodiment of the present invention may provide a variable speed booster, which receives air from a compressor of a gas turbine through an intercooler, to supply air at a relatively constant pressure to an air processing unit. An embodiment of the present invention may provide a speed adjustable booster turbine to energize a variable speed booster; which provides air at a relatively constant pressure to an air processing unit. | 06-24-2010 |
20100154429 | Water Purification - A water purification system has a water electrolysis system, combustion water vapor production, and condensation chambers; hydrogen and oxygen channels; and a water vapor conduit. The water electrolysis system generates hydrogen and oxygen from water. The hydrogen and oxygen are transported to the oxygen chamber in channels. The hydrogen is combusted in the oxygen in the combustion chamber to generate heated water vapor. The water vapor production chamber generates water vapor from water. The water vapor conduit is disposed between the water vapor production chamber and the condensation chamber. Heated water vapor from the combustion chamber traveling from the combustion chamber into the condensation chamber generates a vacuum on the water vapor conduit, drawing water vapor from the water vapor production chamber into the condensation chamber. The condensation chamber receives water vapor from both the combustion chamber and the water vapor production chamber. Water vapor from the combustion chamber and the water vapor production chamber are condensed into purified liquid water. | 06-24-2010 |
20100180603 | FUEL NOZZLE FOR A TURBOMACHINE - A turbomachine includes a compressor, a turbine, and a combustor operatively connected to the turbine. The turbomachine further includes a cap member mounted to the combustor. The cap member includes a first surface and a second surface. A combustion chamber is defined within the combustor. An injection nozzle is supported at the second surface of the cap member. The injection nozzle includes a first end that extends through an inner flow path to a second end. The first end is configured to receive an amount of a first fluid and the second end is configured to receive an amount of a second fluid. A mixture of the first and second fluids is discharged from the second end of the injection nozzle. | 07-22-2010 |
20100186417 | USE OF INERT GASES FOR SHIELDING OXIDIZER AND FUEL - A method for protecting a burner from being heated excessively during the combustion of a fuel in a combustion chamber is provided. The fuel is injected through a fuel nozzle at the same time as an inert gas in the surroundings of the injected fuel is injected into the combustion chamber in such a manner that the fuel is separated spatially from an oxidizer by the inert gas until an ignitable mixture of the fuel is produced. | 07-29-2010 |
20100192591 | BURNER FOR A GAS TURBINE AND METHOD FOR FEEDING A GASEOUS FUEL IN A BURNER | 08-05-2010 |
20100205974 | METHOD FOR COMPUTER-AIDED CONTROL AND/OR REGULATION USING NEURAL NETWORKS - A method for a computer-aided control of a technical system is provided. The method involves use of a cooperative learning method and artificial neural networks. In this context, feed-forward networks are linked to one another such that the architecture as a whole meets an optimality criterion. The network approximates the rewards observed to the expected rewards as an appraiser. In this way, exclusively observations which have actually been made are used in optimum fashion to determine a quality function. In the network, the optimum action in respect of the quality function is modeled by a neural network, the neural network supplying the optimum action selection rule for the given control problem. The method is specifically used to control a gas turbine. | 08-19-2010 |
20100205975 | INTEGRAL SUCTION DEVICE WITH ACOUSTIC PANEL - An inlet flow control system disposed within a nacelle includes a panel on an inner surface of that nacelle. The panel includes a noise attenuation layer that dissipates noise energy. A vacuum source generates a pressure differential across the noise attenuation layer for drawing airflow through the panel and away from an inner surface of the nacelle. | 08-19-2010 |
20100212325 | COMBUSTION SYSTEM - Fuel and air are injected in a first poloidal flow in a first poloidal direction within a first annular zone of an annular combustor. A first combustion gas from the at least partial combustion of the fuel and air is discharged into an annular transition zone of the annular combustor and transformed to a second combustion gas therein within an at least partial second poloidal flow followed by an at least partial third poloidal flow in the annular transition zone, wherein the direction of the second poloidal flow is opposite to that of the first and third poloidal flows. The second combustion gas is discharged into a second annular zone of the annular combustor, and then transformed to a third combustion gas therein before being discharged therefrom, responsive to which a back pressure is generated in the annular combustor. | 08-26-2010 |
20100218506 | Methods and Systems for Controlling Gas Turbine Clearance - Systems and methods for controlling the clearance in a gas turbine are provided. A temperature of a shaft of the gas turbine may be determined, and a desired temperature of an inner turbine shell of the turbine may be determined based upon the temperature of the shaft. The desired temperature of the inner turbine shell may be associated with a turbine clearance at which the gas turbine may be ignited. The temperature of the inner turbine shell may be altered by controlling the temperature of a gas that is circulated within the inner turbine shell, and a determination may be made that the temperature of the inner turbine shell exceeds the desired temperature. The gas turbine may be ignited subsequent to the determination that the temperature of the inner turbine shell exceeds the desired temperature. | 09-02-2010 |
20100223932 | Gas Turbine Burner and Method of Mixing Fuel and Air in a Swirling Area of a Gas Turbine Burner - A gas turbine burner, comprising at least one swirler, the swirler having at least one air inlet opening, at least one air outlet opening positioned downstream to the air inlet opening and at least one swirler air passage extending from the at least one air inlet opening to the at least one air outlet opening which is delimited by swirler air passage walls; a fuel injection system which comprises fuel injection openings arranged in at least one swirler air passage wall so as to inject fuel into the swirler air passage; and an air injection system which comprises air injection openings arranged in at least one swirler air passage wall and positioned downstream of the fuel injection openings for injecting air into the swirler air passage. | 09-09-2010 |
20100229566 | TWO-SHAFT GAS TURBINE SYSTEM - Disclosed herein is a highly-reliable two-shaft gas turbine system in which the rotational speed of a compressor exceeds its rated rotational speed when the combustion temperature during rated operation is set to the rated combustion temperature of a simple-cycle gas turbine system and in which the drive force for the compressor can be balanced with the output from a high-pressure turbine without turbine efficiency being compromised. | 09-16-2010 |
20100236251 | TEMPERATURE MEASURING DEVICE, GAS TURBINE HAVING A TEMPERATURE MEASURING DEVICE AND METHOD FOR DIRECTLY DETERMINING THE TEMPERATURE IN A COMBUSTION CHAMBER - A temperature measuring device is provided. The temperature measuring device measures the temperature in a combustion system, in particular for that of a combustion system of a gas turbine. The temperature measuring device is equipped with a heat absorbing element disposed in or on the combustion system, a measurement end disposed remotely from the combustion system having, disposed thereon, a temperature sensor measuring the temperature of the measurement end, a heat conducting element which connects the heat absorbing element to the measurement end in a thermally conductive manner, and a cooling device acting on the heat conducting element in a quantifiable manner for heat removal. A gas turbine having a temperature measuring device and method for directly determining the temperature in a combustion chamber are also provided. | 09-23-2010 |
20100236252 | SWIRL GENERATOR, METHOD FOR PREVENTING FLASHBACK IN A BURNER HAVING AT LEAST ONE SWIRL GENERATOR AND BURNER - A swirl generator, a method for preventing flashback in a burner with a swirl generator and a burner are provided. The swirl generator includes a central fuel distributor element, an outer wall enclosing the central fuel distributor element and bounding an axial flow channel for combustion air, swirl vanes extending in a radial direction to the outer wall and giving the flowing combustion air a tangential flow component, and a separating wall enclosing the central fuel distributor element and being positioned radially within the outer wall. The separating wall divides the flow channel into a radially inner channel segment and a radially outer channel segment. The radially inner channel segment allows the combustion air to pass without giving it a tangential flow component or while giving it a tangential flow component counter to the orientation of the tangential flow component in the radially outer channel segment. | 09-23-2010 |
20100242487 | THERMALLY DECOUPLED CAN-ANNULAR TRANSITION PIECE - A turbomachine includes a plurality of injection nozzles arranged in a can-annular array and a transition piece including at least one wall that defines a combustion flow passage. A dilution orifice is formed in the at least one wall of the transition piece. The dilution orifice guides dilution gases to the combustion flow passage. A heat shield member is mounted to the at least one wall of the transition piece in the combustion flow passage. The heat shield member includes a body having a first surface and an opposing second surface through which extends a dilution passage. The dilution passage is off-set from the dilution orifice. The heat shield member is spaced from the at least one wall of the transition piece defining a flow region between the at least one wall and the second surface. | 09-30-2010 |
20100242488 | GAS TURBINE ENGINE AND METHOD OF OPERATION - Provided are gas turbine engines | 09-30-2010 |
20100251725 | Combustor and Method for Modifying the Same - This invention is intended to maintain combustor reliability. | 10-07-2010 |
20100269513 | Thimble Fan for a Combustion System - The present application describes a combustion liner. The combustion liner may include a number of air mixing holes and a number of thimble fans positioned thereon. | 10-28-2010 |
20100269514 | FLUIDIZABLE ALGAE-BASED POWDERED FUEL AND METHODS FOR MAKING AND USING SAME - An algae-based powdered fuel is configured to be fluidized in a gas stream. The algae-based powdered fuel is manufactured by drying an algae slurry to produce a powdered composition and then comminuting the powdered composition to produce the fuel. The algae-based powdered fuel can be combusted in a gas turbine to generate electricity and/or to propel an aircraft. | 10-28-2010 |
20100275607 | Thermal Management Using Topological Isomerization of Fuel - Embodiments of a system are disclosed that include a heat source, an endothermic process module, and a fuel source configured to supply fuel to the endothermic process module and to receive isomerized fuel from the endothermic process module. A controller includes logic instructions operable to receive information regarding temperature of fuel received by the endothermic process module, and regulate application of heat from the heat source to the fuel at the endothermic process module. The endothermic process module includes a catalyst that increases the thermal carrying capacity of the fuel by isomerizing fuel from the fuel source. | 11-04-2010 |
20100275608 | Systems and Methods for Rapid Turbine Deceleration - The present application provides for a gas turbine engine system for turbine deceleration during shutdown procedures. The gas turbine engine system may include a rotor extending through a turbine, a generator engaged with the rotor, and a starting system in communication with the rotor. The starting system may reverse the operation of the generator so as to apply torque to the rotor during the shutdown procedures. | 11-04-2010 |
20100281875 | Dynamic control of a gas turbine engine compressor during rapid transients - A gas turbine engine is disclosed that has with two or more compressors. A first one of the compressors include a compressor variable geometry mechanism that may be in the form of adjustable vanes, bleed valves, or the like. A first one of the compressors is turned at a first speed and the second one of the compressors is turned at a second speed. The first speed is maintained approximately constant while the second speed varies and position of the compressor variable geometry mechanism is modulated in accordance with the second speed of the second one of the compressors to regulate surge margin for the first one of the compressors. | 11-11-2010 |
20100281876 | FUEL BLANKETING BY INERT GAS OR LESS REACTIVE FUEL LAYER TO PREVENT FLAME HOLDING IN PREMIXERS - A premixer for a gas turbine combustor includes a first passage configured to inject a highly reactive fuel; and a second passage configured to inject an inert gas or a less reactive fuel or a mixture of both. The second passage is configured to form a layer of the inert gas or less reactive fuel or the mixture of both that blankets a layer of the highly reactive fuel. Another premixer includes a plurality of nozzles, each nozzle including a pair of concentric tubes, the pair of concentric tubes including a first tube configured to inject a highly reactive fuel and a second tube surrounding the first tube and configured to dispense an inert gas or a less reactive fuel or a mixture of both that blankets the highly reactive fuel. | 11-11-2010 |
20100287942 | Dry Low NOx Combustion System with Pre-Mixed Direct-Injection Secondary Fuel Nozzle - A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber. | 11-18-2010 |
20100287943 | METHODS AND SYSTEMS FOR INDUCING COMBUSTION DYNAMICS - Methods and systems are provided for inducing combustion dynamics within turbine engines to remove combustion deposits within the turbine engine during operation of the turbine engine. | 11-18-2010 |
20100287944 | AVAILABILITY IMPROVEMENTS TO HEAVY FUEL FIRED GAS TURBINES - Maintenance operations for a hot gas path of a gas turbine require shutdown and cooled down conditions. When a gas turbine is shut down, thermal gradients in the rotor cause stresses that limit the life of the major components. As the cooling rate is increased to reduce the time, the stresses are increased, reducing rotor life. A method and equipment are provided to reduce the overall cycle time for the maintenance, yet mitigate the life penalties, thereby providing greater power production while maintaining (or potentially extending) rotor life. The method includes small hold times during the turbine shutdown and startup and slower turbine ramp rates during cooldown and startup, which more than offset thermal stresses from a forced cooldown, considerably shortening the overall operation. | 11-18-2010 |
20100293958 | DESWIRLING EXHAUST MIXER - An exhaust mixer for a gas turbine engine including a plurality of circumferentially distributed alternating inner and outer lobes, where each of the inner lobes is configured with a circumferential offset between the base and the tip thereof, and a direction of the circumferential offset defined from the base to the tip of each of the inner lobes is the same for all of the inner lobes and opposite to that of a swirl component of a main gas path flow entering the exhaust mixer. | 11-25-2010 |
20100300107 | METHOD AND FLOW SLEEVE PROFILE REDUCTION TO EXTEND COMBUSTOR LINER LIFE - A gas turbine includes a combustor liner having at least one hole formed therein. The gas turbine also includes a flow sleeve that at least partially surrounds the liner thereby forming a plenum between the flow sleeve and the liner, the plenum having an airflow therethrough, a portion of the airflow passing through the at least one hole in the liner and into the liner thereby reducing the mass of the airflow in the plenum. The flow sleeve has an axial profile that is reduced in cross section dimension at a predetermined axial location of the flow sleeve, thereby reducing a width of the plenum at the predetermined axial location. The reduction at the cross section dimension in the flow sleeve increases a velocity of the airflow in the plenum at the predetermined axial location, the increased velocity airflow increasing transfer of heat away from the liner. | 12-02-2010 |
20100313571 | GAS TURBINE - In a gas turbine, a plurality of burners, which are arranged concentrically to the rotational axis in a regular arrangement, each directing hot gas through an associated combustion chamber outlet into a turbine, at the inlet of which a second plurality of stator blades are arranged in a ring, uniformly spaced apart around the rotational axis. Cooling openings are provided, which are distributed over the circumference, through which cooling air is injected into the hot gas flow at the combustion chamber outlet. An improvement of the flow conditions in the hot gas is achieved by the cooling openings being divided into first cooling opening groups and second cooling opening groups. The arrangement of the first cooling opening groups corresponds to the arrangement of the stator blades, and in that the arrangement of the second cooling opening groups corresponds to the regular arrangement of the burners. | 12-16-2010 |
20100319352 | PRECHORDED TURBINE NOZZLE - A turbine nozzle includes radially inner and outer bands integrally joined to opposite ends of an airfoil. The outer band has forward and aft hooks extending radially outwardly at axially opposite ends. And the hooks have different prechorded circumferential curvatures. | 12-23-2010 |
20100319353 | Multiple Fuel Circuits for Syngas/NG DLN in a Premixed Nozzle - A fuel/air premixer for use in a burner in a combustion system of an industrial gas turbine includes an air inlet, a fixed nozzle geometry, and an annular mixing passage. The fuel/air premixer mixes fuel and air in the annular mixing passage for injection into a combustor reaction zone. A plurality of fuel sources are connected with the fixed nozzle geometry, and each of the fuel sources is cooperable with the fixed nozzle geometry to effect multiple fuel flow variations including variations in fuel type, fuel blend, volumetric flow, and pressure ratios. | 12-23-2010 |
20100319354 | LOW CARBON EMISSIONS COMBINED CYCLE POWER PLANT AND PROCESS - A low carbon emissions, combined cycle power plant utilizes vortex nozzles ( | 12-23-2010 |
20100319355 | HEATING A REACTION CHAMBER - An air/fuel mixture is received in an oxidation reaction chamber. The air/fuel mixture has a low concentration of fuel, for example, below a lower explosive limit (LEL). The mixture is received while a temperature of a region in the oxidation reaction chamber is below a temperature sufficient to oxidize the fuel. The temperature of the region is raised to at least the oxidation temperature (the temperature sufficient to oxidize the fuel) primarily using heat energy released from oxidizing the air/fuel mixture in a different region in the reaction chamber. | 12-23-2010 |
20100326081 | METHOD FOR MITIGATING A FUEL SYSTEM TRANSIENT - The present invention takes the form of a method that may reduce the effect of a transient of a fuel system. Essentially, an embodiment of the present invention incorporates a pressure control cell (PCC) with the fuel system. The PCC may be considered an additional volume that removes some of the fuel remaining in the fuel system during a transient event. During a transient event, when a rapid reduction of fuel is required for a fuel circuit, fuel may be allowed to exit a manifold of the fuel system and enter the PCC. This fuel may now be stored within the PCC and may no longer be available to the combustion can. A benefit of the present invention may be a reduced possibility of an undesired increase in rotor speed, and a lean blowout event. | 12-30-2010 |
20100326082 | METHODS AND APPARATUS FOR COMBUSTOR FUEL CIRCUIT FOR ULTRA LOW CALORIFIC FUELS - A method for controlling a gas turbine combustion system includes supplying an ultra low calorific fuel to a combustor of the combustion system through a first fuel circuit, controlling a supply of the ultra low calorific fuel through a second fuel circuit as required to control the volumetric flow of the ultra low calorific fuel through the combustor, and combusting the ultra low calorific fuel in the combustor. | 12-30-2010 |
20110000217 | MANAGING SPOOL BEARING LOAD USING VARIABLE AREA FLOW NOZZLE - A turbine engine provides a spool supporting a turbine. The spool is arranged in a core nacelle and includes a thrust bearing. A fan is arranged upstream from the core nacelle and is coupled to the spool. A fan nacelle surrounds the fan and core nacelle and provides a bypass flow path that includes a fan nozzle exit area. A flow control device is adapted to effectively change the fan nozzle exit area. A controller is programmed to monitor the thrust bearing and command the flow control device in response to an undesired load on the thrust bearing. Effectively changing the fan nozzle exit area with the flow control device actively manages the bearing thrust load to desired levels. | 01-06-2011 |
20110000218 | GAS TURBINE AND METHOD OF OPENING CHAMBER OF GAS TURBINE - A gas turbine includes a combustor chamber that houses a combustor unit configured to include a combustor that burns fuel to generate combustion gas for rotating a rotor, a turbine unit chamber that houses a turbine-unit rotor blade and a disk that rotate upon reception of the combustion gas, a combustor casing that forms the combustor chamber, and a casing that is configured to include the combustor casing in which a divided portion on a surface orthogonal to a rotation axis of the rotor is not formed in the combustor casing, but is formed in a portion on a downstream side of flow of the combustion gas lower than the combustor casing. | 01-06-2011 |
20110016870 | METHOD AND APPARATUS FOR IMPROVED GAS TURBINE EFFICIENCY AND AUGMENTED POWER OUTPUT - A method and apparatus for improved gas turbine efficiency and augmented power output employs a combustion turbine for electrical or mechanical power generation system in a simple or combined power generation cycle which contains air-to-fuel heat exchanger. The heat exchanger cools down portion of hot compressor discharge air utilized for cooling of hot gas turbine components, such as vanes and blades. Colder component cooling air allows for higher combustor firing temperatures thereby improving gas turbine efficiency and allowing for augmented power output. Simultaneously the heat exchanger pre-heats natural gas utilized for driving the gas turbine unit prior to entering a combustor of the gas turbine, which also allows for significant improvement of the cycle efficiency. Thus, both effects of the heat exchanger installation result in gas turbine efficiency improvements and lowering power generation cycle heat rate because of the lower energy requirements for pre-heating fuel in the combustor and allowing higher combustor temperatures due to the colder component cooling air. | 01-27-2011 |
20110016871 | GAS TURBINE PREMIXING SYSTEMS - Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through a premixing zone to form a fuel-air mixture. The combustor also includes a downstream mixing panel configured to mix additional combustion fuel with the fuel-air mixture to form a combustion mixture. | 01-27-2011 |
20110016872 | OXYFUEL GAS TURBINE SYSTEM AND METHOD - A gas turbine includes a compressor with a plurality of pressure plates, a combuster downstream from the compressor, and a turbine downstream from the combustor and axially aligned with the compressor. The combustor produces combustion gases that flow to the turbine. A first manifold connected to the combustor contains a first process gas for combustion in the combustor. A second manifold connected upstream of the turbine contains a second process gas, and a portion of the second process gas flows to the plurality of pressure plates. | 01-27-2011 |
20110016873 | FUEL CONTROL METHOD AND FUEL CONTROL APPARATUS FOR GAS TURBINE AND GAS TURBINE - A fuel control method for a gas turbine with a combustor being formed of at least two groups of a pluralities of main nozzles for supplying fuel, and that supplies fuel from the main nozzles of all groups upon ignition of the combustor (S | 01-27-2011 |
20110016874 | Cooling Arrangement for a Combustion Chamber - A cooling arrangement for a surface of a wall in a gas turbine engine, the wall having a plurality of effusion holes each with an outlet onto the surface for supplying an effusion flow to the surface and an inlet, the inlets of the effusion holes being arranged at the peripheries of groups tessellated on an opposing surface of the wall, each inlet being located on the peripheries of three groups. The arrangement comprises a second wall spaced apart from the opposing surface having impingement orifices each for directing a flow of air in use to a respective impingement location on the opposing surface, each group having a centrally positioned impingement location. | 01-27-2011 |
20110016875 | GUIDE VANE HAVING HOOKED FASTENER FOR A GAS TURBINE - A stator vane for a gas turbine includes a vane airfoil which extends in the longitudinal direction of the vane and which is delimited by a leading edge and a trailing edge, and also an outer platform, the inner side of which is exposed to the hot gas which flows through the gas turbine, and on which provision is made for a hook-like fastening element, projecting outwards in the region of the trailing edge, for fastening the stator vane on a casing of the gas turbine, which fastening element, on its side facing the trailing edge, has a locating slot above the trailing edge for the fixing of a heat shield which adjoins the outer platform of the stator vane in the flow direction of the hot gas. With such a stator vane, the service life can be extended by provision being made on the outer platform of the stator vane between the locating slot and the trailing edge of structure for reducing the thermal and mechanical stresses in the region of the transition between trailing edge and outer platform. | 01-27-2011 |
20110041507 | Integral Liner and Venturi for Eliminating Air Leakage - A combustion liner assembly for a gas turbine combustor includes a plurality of fuel nozzles disposed circumferentially about a central axis of the combustor, and a venturi section disposed downstream of the fuel nozzles and connected to a head end of the liner assembly. The venturi section defines an annular throat area downstream of the fuel nozzles. A liner sleeve is connected to and commences at a downstream end of the venturi section. At least a portion of the venturi section serves as a liner upstream of the liner sleeve. | 02-24-2011 |
20110041508 | Burner - A burner for a gas turbine including a burner housing is provided. Provided is a lean-rich partially premixed low emission burner for a gas turbine combustor providing stable ignition and combustion process at all engine load conditions. At the upstream end of that burner a pilot combustor creates a flow of an unquenched concentration of radicals and heat. Respectively provided is a plurality of quarl sections surrounding the exit of the pilot combustor, a main combustion room defined downstream the pilot combustor and at least a first channel defined as an annular space between an upstream quarl section and the closest downstream quarl section providing air and fuel to a main flame in the combustion room. | 02-24-2011 |
20110041509 | GAS TURBINE ENGINE COOLING SYSTEM AND METHOD | 02-24-2011 |
20110056208 | REVERSED-FLOW CORE FOR A TURBOFAN WITH A FAN DRIVE GEAR SYSTEM - A gas turbine engine comprises a fan drive gear system, a low spool connected to the fan drive gear system, and a high spool disposed aft of the low spool. The low spool comprises a rearward-flow low pressure compressor disposed aft of the fan drive gear system, and a forward-flow low pressure turbine disposed aft of the low pressure compressor. The high spool comprises a forward-flow high pressure turbine disposed aft of the low pressure turbine, a combustor disposed aft of the high pressure turbine, and a forward-flow high pressure compressor disposed aft of the combustor. | 03-10-2011 |
20110056209 | METHOD OF OPERATING THERMAL EQUIPMENT FED WITH ALUMINUM AND TITANIUM IN ORDER TO REDUCE HIGH-TEMPERATURE CORROSION AND FOULING - The invention provides methods of operating thermal equipment, for example, gas turbines and methods for protecting hot parts of thermal equipment from, for example, corrosion by ash from an alkali metal or from lead; fouling by ash of an alkaline-earth metal, lead or a transition metal; and the combined effects of an alkali metal, lead, an alkaline-earth metal or a transition metal; | 03-10-2011 |
20110061395 | METHOD OF FUEL STAGING IN COMBUSTION APPARATUS - In one embodiment, a method is provided fuel staging for a trapped vortex (TVC) combustion apparatus comprising an inlet premixer, for injecting fuel-air mixture into the inlet of the combustion apparatus and a vortex premixer, for injecting fuel-air mixture into the recirculating vortex. The combustion apparatus may be part of an engine, such as a gas turbine engine. The method comprises varying the relative proportion of mixture introduced through the inlet and vortex premixers as a function of load. | 03-17-2011 |
20110067408 | SYSTEMS AND METHODS FOR CLOSED LOOP EMISSIONS CONTROL - Certain embodiments of the invention may include systems and methods for controlling combustion emission parameters associated with a gas turbine combustor. The method can include providing an optical path through a gas turbine exhaust duct, propagating light along the optical path, measuring exhaust species absorption of the light within the gas turbine exhaust duct, and controlling at least one of the combustion parameters based at least in part on the measured exhaust species absorption. | 03-24-2011 |
20110067409 | Air Cooled Turbine Component Having an Internal Filtration System - A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium. | 03-24-2011 |
20110072826 | CAN TO CAN MODAL DECOUPLING USING CAN-LEVEL FUEL SPLITS - In exemplary embodiments, a gas turbine system is provided. The gas turbine system can include a compressor configured to compress air and combustor cans in flow communication with the compressor, the combustor cans being configured to receive compressed air from the compressor and to combust a fuel stream. The gas turbine system can also include a multi-circuit manifold coupled to the combustor cans and configured to provide a split fuel stream from the fuel stream to the combustor cans. | 03-31-2011 |
20110072827 | COOLING SYSTEM FOR A GAS TURBINE AND CORRESPONDING OPERATION METHOD - An operation method for a gas turbine including: compressing a working fluid by means of a compressor; feeding this compressed working fluid into at least one combustion chamber where it is overheated; expanding this overheated working fluid in at least one expansion turbine to produce energy; carrying out a first tapping of the compressed work fluid from the compressor to feed it into a first cavity of the turbine for cooling; carrying out a second tapping of the working fluid downstream from the first tapping to feed it into a second cavity of the turbine upstream from the first cavity, for cooling; and fluidly connecting the first tapping to the second tapping to selectively feed the first tapping by means of a part of the second tapping during partial load operation conditions to keep the temperature of the first cavity within the acceptable limits for the resistance of the materials. | 03-31-2011 |
20110072828 | GAS TURBINE ENGINE SYSTEM PROVIDING SIMULATED BOUNDARY LAYER THICKNESS INCREASE - A gas turbine engine system for an aircraft includes a nacelle having a fan cowl with an inlet lip section and a core cowl, at least one compressor and at least one turbine, at least one combustor between the compressor and the turbine, a bleed passage, and a controller. The bleed passage includes an inlet for receiving a bleed airflow and an outlet that discharges the bleed airflow in an upstream direction from the outlet. The controller identifies an operability condition and selectively introduces the bleed airflow near a boundary layer of the inlet lip section in response to the operability condition. | 03-31-2011 |
20110083442 | APPARATUS AND METHOD FOR COOLING NOZZLES - A nozzle includes a nozzle body and a cavity defined at least in part by the nozzle body. A plenum extends through the nozzle body into the cavity. At least one passage through the plenum provides fluid communication between the plenum and the cavity. Orifices through the nozzle body and circumferentially spaced around the nozzle body provide fluid communication through the nozzle body. A method for cooling a face of a nozzle having a nozzle body that defines a cavity includes flowing a fuel through the cavity and inserting a plenum through the nozzle body into the cavity. The method further includes flowing a fluid through the plenum so that the fluid impinges on the face of the nozzle to remove heat. | 04-14-2011 |
20110083443 | STORAGE OF ELECTRICAL ENERGY WITH THERMAL STORAGE AND RETURN THROUGH A THERMODYNAMIC CYCLE - A device and a method for using overcapacities in the power grid is provided. In case of an oversupply of energy, the energy is transferred to a thermal storage device directly via a heating element and in the discharge case of the thermal storage device the heat is removed from the thermal storage device and made available to a thermodynamic cycle whereby electrical energy is produced. The heat from the thermal storage device is used to preheat air in an air feed line to a combustion chamber, or fuel is pre-heated using heat from the thermal storage device. | 04-14-2011 |
20110088404 | REHEAT GAS TURBINE - An external-reheat gas turbine and method are disclosed. A gas turbine system can include a compressor, an expander, a combustor disposed between the compressor and the expander, a boiler disposed between the compressor and the expander, a conduit including chargeable air and in thermal communication with the boiler and an external free heat source coupled to the boiler. | 04-21-2011 |
20110094234 | FUEL FLEXIBLE COMBUSTOR SYSTEMS AND METHODS - The present application provides a combustor. The combustor may include a number of nozzles, a first fuel source with a low reactivity fuel therein, a second fuel source with a high reactivity fuel therein, and a primary valve for varying the flow of the low reactivity fuel and the high reactivity fuel delivered to the nozzles. | 04-28-2011 |
20110094235 | COMBUSTOR HEADEND GUIDE VANES TO REDUCE FLOW MALDISTRIBUTION INTO MULTI-NOZZLE ARRANGEMENT - A combustor for a gas turbine includes a plurality of nozzles provided in an array; a baffle plate configured to provide a desired air flow distribution to the array of nozzles; and a casing comprising a plurality of holes in an outer surface. The casing extends from a headend of the combustor to the baffle plate. A method of distributing an air flow in a combustor of a gas turbine includes providing an air flow to the outer surface of the casing; directing the air flow around the baffle plate; and distributing the air flow through the baffle plate to the array of nozzles. | 04-28-2011 |
20110094236 | SYSTEM AND METHOD OF USING A COMPRESSED AIR STORAGE SYSTEM WITH A GAS TURBINE - A power generation system includes a first compressor, a second compressor, a combustor configured to receive compressed air from the second compressor to produce an exhaust stream, a first turbine, and a power turbine. The first turbine is configured to receive the exhaust stream, generate a rotational power from the exhaust stream, output the rotational power to a second compressor, and output the exhaust stream. The system includes a coupling device configured to couple and decouple the first compressor to/from a second turbine, an electrical generator coupled to an output of the power turbine and configured to output electrical power, and a controller configured to cause the coupling device to mechanically decouple the second turbine from the first compressor, and cause the coupling device to direct compressed air from an air storage cavern to an inlet of the second compressor. | 04-28-2011 |
20110094237 | THERMAL POWER PLANT WITH CO2 SEQUESTRATION - A method for separation of CO | 04-28-2011 |
20110100015 | GAS TURBINE SYSTEM TO INHIBIT COKE FORMATION AND METHODS OF USE - A gas turbine comprising a liquid fuel supply system configured to provide a liquid fuel to a combustion system of the gas turbine; and an additive injection system in fluid communication with the liquid fuel supply system, wherein the additive injection system is configured to mix an additive blend with the liquid fuel to form a liquid fuel-additive mixture configured to inhibit coke formation in the liquid fuel supply system. | 05-05-2011 |
20110100016 | APPARATUS AND METHODS FOR FUEL NOZZLE FREQUENCY ADJUSTMENT - A combustion liner cap assembly includes a cylindrical sleeve with a cantilevered fuel nozzle mounted therewithin; and a plurality of support rods. Each support rod has a first end supported by the cylindrical sleeve and a second end configured to contact the cantilevered fuel nozzle. Each support rod is adjustable in effective length to provide an adjustable compression force against the cantilevered fuel nozzle. A method for adjusting a resonant frequency of a cantilevered fuel nozzle mounted in a cylindrical sleeve is provided. A plurality of support rods extend between the cylindrical sleeve and the cantilevered fuel nozzle. An associated gas turbine has at least some combustion and rotor tones of interest. The method includes adjusting an effective length of the support rods to adjust compressive forces exerted against the cantilevered fuel nozzle to increase a resonant frequency of the fuel nozzle to be greater than the combustion and rotor tones of interest. | 05-05-2011 |
20110107767 | SECONDARY FUEL NOZZLE VENTURI - The present application provides a secondary fuel nozzle assembly for a combustor. The secondary fuel nozzle assembly may include a liner, a fuel passage leading to a pilot burner tip, and a venturi extending from the liner and downstream of the pilot burner tip. | 05-12-2011 |
20110107768 | Variable Performance Valve - A variable performance valve for use in a fuel nozzle is presented. The valve includes a spring, an inner spool having a port, an outer sleeve, and an orifice, which in a fuel nozzle application may be a calibration orifice. In a low flow condition, the inlet to downstream pressure is the spring force divided by the area on which the pressure acts. At low flow the orifice does not cause any appreciable pressure drop. As the flow increases, a pressure drop develops across the orifice. Since the pressure drop across the valve cannot be greater than the spring force divided by valve area, the valve is forced to open to compensate. As flow is increased, the valve will stroke completely open and the pressure drop at the port becomes negligible and the pressure drop across the orifice is nearly 100% of the pressure drop across the valve. | 05-12-2011 |
20110107769 | IMPINGEMENT INSERT FOR A TURBOMACHINE INJECTOR - A turbomachine includes a compressor, a turbine operatively coupled to the compressor, and a combustion assembly fluidly linking the compressor and the turbine. The combustion assembly includes at least one injector having a burner tube including an outer wall portion and an inner wall portion that define a mixing zone. A swirler arranged within the mixing zone. The swirler includes a plurality of vanes, with at least one of the plurality of vanes having a wall section including an outer surface and an inner surface that define a hollow interior portion. An insert member is arranged within the hollow interior portion. The insert member includes at least one guide element that is disposed and configured to deliver a fluid flow to the hollow interior portion to flow over the wall section of the at least one of the plurality of vanes. | 05-12-2011 |
20110113786 | COMBINED CYCLE POWER PLANT WITH INTEGRATED ORGANIC RANKINE CYCLE DEVICE - A combined cycle power plant includes a gas turbomachine having a compressor portion and a turbine portion, a heat recovery steam generator (HRSG) operatively coupled to the turbine portion of the gas turbomachine, and an organic Rankine cycle (ORC) device fluidly coupled to the HRSG. The ORC device includes an organic fluid passing through a closed loop system operatively coupled to a turbine. Heated fluid from the HRSG elevates a temperature of the organic fluid flowing through the closed loop system. Thermal energy from the organic fluid is converted to mechanical energy in the turbine. | 05-19-2011 |
20110120135 | TURBULATED AFT-END LINER ASSEMBLY AND COOLING METHOD - A turbine includes a transition portion where a combustor section joins a transition piece. The combustor section includes a combustor liner having an aft end that joins a transition piece body of the transition piece. A reduced thickness portion at the aft end of the combustor liner is covered by a cover sleeve to form an air flow passage on the aft end of the combustor liner. Apertures in the forward portion of the cover sleeve allow cooling air to flow into air flow passage. A plurality of turbulators project radially outward from the reduced thickness portion of the combustor sleeve towards said cover sleeve. An arch shaped resilient seal structure is positioned between the cover sleeve and the transition piece body. Supports formed on the reduced thickness portion of the combustor liner bear against the inside of the cover sleeve to prevent the cover sleeve from deforming inward due to a force applied by the seal, thereby ensuring that the air flow passage remains open. | 05-26-2011 |
20110126545 | SYSTEMS AND METHODS FOR CONTROLLING FUEL MIXING - Systems and methods for controlling fuel mixing are provided. One or more parameters associated with the operation of a machine configured to receive a combined fuel may be identified. A fuel flow of the combined fuel that is provided to the machine may be determined. Based at least in part on the identified parameters, a ratio of a first fuel type included in the combined fuel to the determined fuel flow may be determined. The first fuel type may have a heating value that is greater than a second fuel type included in the combined fuel. A flow of the first fuel type may be set based at least in part on the ratio. Subsequent to setting the flow of the first fuel type, an energy content of the fuel flow of the combined fuel may be determined, and the flow of the first fuel type may be adjusted based at least in part on the determined energy content. | 06-02-2011 |
20110126546 | METHOD FOR SWITCHING OVER A GAS TURBINE PLANT FROM GASEOUS FUEL TO LIQUID FUEL AND VICE-VERSA - In a method for switching over a gas turbine plant from gaseous fuel ( | 06-02-2011 |
20110138814 | Aircraft Engine Airflow Modulation Apparatus and Method for Engine Bay Cooling and Cycle Flow Matching - The present invention relates to a system and method of LO airflow modulation for use with a DTSA engine. A DTSA engine is positioned within an aircraft fuselage and the second DTSA turbine fan includes it own dedicated decoupled air inlet duct that is formed co-centrically about the housing. An airflow modulator member is positioned in duct to form the duct wall when the modulator is in a closed position. The Modulator member is pivotally connected to the duct wall, and is movable by an actuator to a second open position that allows airflow to escape the third stream duct, and provide airflow to both the DTSA fan blades as well as engine bay for cooling. The method of the present invention provides airflow modulation to an aircraft employing a DTSA engine, said method including the receiving of airflow from a supersonic aircraft intake; sensing a number of parameters, including, but not limited to aircraft speed, temperature, engine load and/or altitude. Calculating an efficient amount of airflow to provide to the DTSA turbine blades thorough a decoupled airstream; and directing movement of a modulator vane located in the intake duct to vary airflow to the DTSA turbine. | 06-16-2011 |
20110138815 | SWIRLER FOR MIXING FUEL AND AIR - A swirler for mixing fuel and air is provided. The swirler includes a plurality of vanes arranged on a reference circle diameter which, together with a first longitudinal end face of the vanes disposed on a first wall and a second wall disposed on an opposing second longitudinal end face of the vanes, form a flow channel. In this arrangement at least one injection orifice in the first wall and at least one further injection orifice in the second wall open into a flow channel. The arrangement of the at least two mutually opposing injection orifices in the wall of the swirler makes for a homogeneous distribution of the fuel in the flow channel and ensures a uniform mixing of the air with the fuel. This results in uniform and low-NOx combustion of the fuel/air mixture in a burner. | 06-16-2011 |
20110138816 | DRIVING DEVICE AND AN OPERATION METHOD OF A COMPRESSOR - It is desired to obtain a technique which enables turning of a compressor driven by a multi-shaft gas turbine. The multi-shaft gas turbine has a high-pressure side shaft and a low-pressure side shaft. A compressor drive device applies a drive force to a compressor connected to the low-pressure side shaft of the multi-shaft gas turbine. The compressor drive device includes: a motor which generates a drive force; and a control unit which controls the motor so as to generate an rpm when turning the compressor. If the torque generated by the gas turbine is insufficient, the control unit controls the motor so as to carry out a helper motor operation for increasing the torque. | 06-16-2011 |
20110146287 | ADJUSTING MOTOR POWER - An example power management arrangement includes a motor controller configured to communicate power to a motor drive bridge to drive a motor. The motor controller is configurable to selectively receive power from each of a first power supply and a second power supply. The voltage of the power from the first power supply is different than a voltage of the power from the second power supply. An example power adjusting method includes receiving power at a motor controller, adjusting a voltage of the received power using the motor controller, communicating the power with the adjusted voltage from the motor controller to a motor drive bridge to drive a motor. | 06-23-2011 |
20110146288 | METHOD OF CONTROLLING A FUEL FLOW TO A TURBOMACHINE - An embodiment of the invention applies a physics based approach to determine the mass flowrate of the fuel required for a robust ignition mode. This approach uses a closed-loop controls methodology. Here, a turbine control system receives a plurality of operating data. The turbine control system utilizes at least one algorithm, which applies an energy balance to the received operating data. The operating data may include, but is not limited to, airflow data, data from the fuel system, data related to the shaft work, exhaust data, and data related to the heat loss. This energy balance is used to determine the required mass flow rate. | 06-23-2011 |
20110146289 | POWER EXTRACTION METHOD - A method of extracting power is disclosed comprising the steps of generating a pressurized airflow, directing a first portion of the pressurized airflow towards a tip-fan of an aft fan stage, directing a second portion of the pressurized airflow towards a circumferential row of air-turbine blades of the aft fan stage to drive the aft fan stage and driving an external load using the aft fan stage and a power drive system. | 06-23-2011 |
20110154827 | TURBOFAN ENGINE WITH HP AND LP POWER OFF-TAKES - A turbofan gas turbine engine is provided having a unique power off-take shaft and gear system. Other gas turbine engine types are also contemplated herein. Two power off-takes are provided, one each for the low pressure spool and high pressure spool. The power off-takes extend across a core flow path of the turbofan engine between the low and high pressure shafts to a fan frame of the turbofan. A drive gear is provided near the front end of the high pressure shaft, and another drive gear is provided on the low pressure shaft near the drive gear for the high pressure shaft. Both gears are located in a sump of the gas turbine engine. The power off-take shafts are coupled to the drive gears. Two power devices are coupled to the power off-take shafts and are located in the fan frame. The power devices can be electric generators or motors. | 06-30-2011 |
20110162379 | APPARATUS AND METHOD FOR SUPPLYING FUEL - A nozzle includes first, second, and third ports each angled to direct a first, second, and third fluid in a first, second, and third rotational direction, respectively. The first, second, and third fluids are selected from the group consisting of a first fuel, a second fuel, a diluent, and a compressed working fluid. A method for supplying fuel through a nozzle includes injecting a first fluid through first ports in a first rotational direction, injecting a second fluid through second ports in a second rotational direction, and injecting a third fluid through third ports in a third rotational direction. The method further includes selecting the first, second, and third fluids from the group consisting of a first fuel, a second fuel, a diluent, and a compressed working fluid. | 07-07-2011 |
20110173986 | Adaptive Gas Turbine Vane Separator System and Method - An adaptive vane separator system is provided for use with an inlet filter house of a gas turbine engine system. The vane separator system is coupled to the inlet filter house. The vane separator system includes a slide rail and a plurality of vanes rotatably coupled to the slide rail. The inlet filter house is configured to channel air to an air inlet of a turbine engine. A drive motor is coupled to the vane separator system. The drive motor is operable to selectively move at least one of the vanes to facilitate reducing an amount of moisture channeled through the air inlet. | 07-21-2011 |
20110173987 | EXHAUST DUCT WITH BYPASS CHANNEL - An exhaust duct for directing a stream of combustion gases in a gas turbine engine is provided. The exhaust duct comprises an inlet for receiving the stream of combustion gases from a turbine section of the gas turbine engine; an outlet in fluid communication with the inlet; and a transition portion defining a passage between the inlet and the outlet. The passage comprises a discontinuous annular region having a first side portion and a second side portion that are separated by a flow splitter. At least one bypass channel interconnects the first side portion and the second side portion of the discontinuous annular region. | 07-21-2011 |
20110179799 | SYSTEM AND METHOD FOR HIGH EFFICIENCY POWER GENERATION USING A CARBON DIOXIDE CIRCULATING WORKING FLUID - The present invention provides methods and system for power generation using a high efficiency combustor in combination with a CO | 07-28-2011 |
20110179800 | METHOD FOR OPERATING A GAS TURBINE AND GAS TURBINE - A gas turbine ( | 07-28-2011 |
20110185741 | INJECTION NOZZLE AND METHOD FOR OPERATING AN INJECTION NOZZLE - An injection nozzle ( | 08-04-2011 |
20110185742 | Solar hybrid combined cycle gas and steam power plant - A solar hybrid combined cycle gas-steam power plant and method including a solar unit, a gas turbine unit and a steam turbine unit. The solar unit includes a receiver. The gas turbine unit includes a gas turbine with a waste heat boiler arranged downstream, and a steam turbine with a feed water heater. The power plant includes a heat transfer medium cycle for transferring solar heat. The heat transfer medium cycle is coupled to the gas turbine unit through a gas turbine heat exchanger and to the steam turbine unit through a solar boiler. Alternatively to the gas turbine unit and the steam turbine unit, the solar hybrid combined cycle power plant includes an integrated gas-steam turbine having a waste heat boiler arranged downstream, wherein the heat transfer medium cycle is coupled to the integrated gas-steam turbine through the gas turbine heat exchanger and through the solar boiler. | 08-04-2011 |
20110192168 | METHOD AND SYSTEM FOR REDUCING POWER PLANT EMISSIONS - A method for operating a power plant to facilitate reducing emissions, wherein the power plant includes a gas turbine engine assembly and a carbon dioxide (CO | 08-11-2011 |
20110197591 | AXIALLY STAGED PREMIXED COMBUSTION CHAMBER - A combustor for a gas turbine includes a plurality of radially outer nozzles arranged in an annular array, each of the radially outer nozzles having an outlet end located to supply fuel and/or air to a first combustion chamber. A center nozzle has an outlet end located axially upstream of the outlet ends of the radially outer nozzles, and is configured and arranged to supply fuel and air to a second combustion chamber axially upstream of the first combustion chamber. The second combustion chamber opens into the first combustion chamber and has a length sufficient to maintain a center nozzle flame confined to the second combustion chamber. | 08-18-2011 |
20110197592 | COIL ARRANGEMENT FOR AIR INTAKE SYSTEM FOR GAS TURBINE AND METHODS - An air intake system for a gas turbine includes one or more coils in airflow communication with an inlet arrangement. Each coil is constructed and arranged to have a respective upstream face velocity that is intended to be within 20% of the other coils. Each coil utilizes a working fluid of a predetermined temperature range conveyed there through and a plurality of spaced fins. The fins are spaced apart to permit air to flow between adjacent fins as air flows through the coil. At least one of the coils has a number of fins per inch that is different from the number of fins per inch of the other coils. Alternatively, each individual coil has at least one section with fewer or greater numbers of fins per inch that the other sections of that coil. | 08-18-2011 |
20110203289 | POWER GENERATION SYSTEM INCORPORATING MULTIPLE RANKINE CYCLES - A power generation system ( | 08-25-2011 |
20110214430 | ACCELERATED COOLING OF A GAS TURBINE - In a method for the fast cooling down of a gas turbine ( | 09-08-2011 |
20110214431 | TURBINE GUIDE VANE SUPPORT FOR A GAS TURBINE AND METHOD FOR OPERATING A GAS TURBINE - A turbine guide vane support for an axial-flow gas turbine is provided. The support includes a tubular wall having an inflow-side end and an outflow-side end for a hot gas flowing in the interior of the turbine guide vane support in a flow path of the gas turbine. Cooling channels for a coolant are provided in the wall. The cooling channels extend from a coolant inlet to a coolant outlet, respectively. At least one of the cooling inlets and one of the cooling outlets, respectively, is disposed at the outflow-side end of the turbine guide vane support, wherein the cooling channel associated with the respective inlet and outlet extends up to the inflow-side end of the turbine guide vane support and transitions to a redirecting area from which the respective cooling channel further extends to the outflow-side end. | 09-08-2011 |
20110214432 | SYSTEM AND METHOD FOR GENERATION OF HIGH PRESSURE AIR IN AN INTEGRATED GASIFICATION COMBINED CYCLE SYSTEM - An integrated gasification combined cycle system. In one embodiment (FIG. | 09-08-2011 |
20110219776 | AERODYNAMIC FLAME STABILIZER - A flame stabilizer is in fluid communication with a combustor of a gas turbine engine. The flame stabilizer has a body with an aerodynamic shape that creates a flow recirculation zone by injection of fluid through a plurality of holes in the body of the flame stabilizer. The aerodynamic shape of the body reduces pressure loss in the combustor, particularly when no fuel is being provided to the combustor. In addition, the magnitude of the flow recirculation zone can be modulated by selectively adjusting the flow rate of fluid through the holes, or by selectively adjusting the size of the holes. | 09-15-2011 |
20110219777 | POWER GENERATION PROCESS WITH PARTIAL RECYCLE OF CARBON DIOXIDE - Disclosed herein is a power generation process in which a portion of the carbon dioxide generated by gaseous fuel combustion is recycled back to the power generation process, either pre-combustion, post-combustion, or both. The power generation process of the invention may be a combined cycle process or a traditional power generation process. The process utilizes sweep-based membrane separation. | 09-15-2011 |
20110219778 | POWER GENERATION PROCESS WITH PARTIAL RECYCLE OF CARBON DIOXIDE - Disclosed herein is a power generation process in which a portion of the carbon dioxide generated by gaseous fuel combustion is recycled back to the power generation process, either pre-combustion, post-combustion, or both. The power generation process of the invention may be a combined cycle process or a traditional power generation process. The process utilizes sweep-based membrane separation. | 09-15-2011 |
20110225975 | METHOD FOR CONTROLLING AN ELECTRICAL DEICING SYSTEM - The present invention relates to a method for commanding and controlling at least one resistive heating element ( | 09-22-2011 |
20110232292 | COMBINED FUEL AND AIR STAGED POWER GENERATION SYSTEM - A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated. | 09-29-2011 |
20110232293 | FUEL HEAT MANAGEMENT SYSTEM - A fuel heat management system comprises a fuel line for conveying fuel, and a fuel/oil heat exchanger which receives fuel flowing through the fuel line. The fuel heat management system further comprises an oil line for circulating oil from an engine oil system to the fuel/oil heat exchanger and back to the engine oil system. The fuel/oil heat exchanger brings the oil and the fuel into heat exchange relationship. The fuel heat management system further comprises an air/oil heat exchanger which receives oil flowing through the oil line, the air/oil heat exchanger bringing the oil and air into heat exchange relationship. The fuel heat management system further comprises an air/fuel heat exchanger which receives fuel flowing through the fuel line, the air/fuel heat exchanger bringing the fuel and air into heat exchange relationship. | 09-29-2011 |
20110239655 | PROCESS AND APPARATUS FOR MANUFACTURE OF FERTILIZER PRODUCTS FROM MANURE AND SEWAGE - This invention discloses systems and methods for conversion of manure to novel fertilizer and/or soil builder products useful as input for organic farming operations. The equipment systems comprise a gas turbine generator unit (preferred heat source), a dryer vessel and a processing unit, wherein the connection between the gas turbine and the dryer vessel directs substantially all the gas turbine exhaust into the dryer vessel and substantially precludes the introduction of air into the dryer vessel. The dryer vessel receives the manure for contact with the turbine exhaust gases to convert the manure to a dry material, which is passed to the processing unit where it is formed into granules, pellets or other desired form for the final dry fertilizer product. The method comprises drying, heating and converting the manure to form novel self binding fertilizer and soil builder type products for organic farming and other uses. | 10-06-2011 |
20110247342 | SYSTEM AND METHOD FOR A COMBUSTOR NOZZLE - A nozzle includes a center body and a shroud circumferentially surrounding at least a portion of the center body to define an annular passage between the center body and the shroud. The nozzle further includes a bimetallic guide between the center body and the shroud. A method for supplying fuel to a combustor includes flowing a working fluid through a nozzle, injecting the fuel into the nozzle, and mixing the fuel with the working fluid to create a fuel and working fluid mixture. The method further includes swirling the fuel and working fluid mixture, sensing flame holding in the nozzle, and reducing the swirl in the fuel and working fluid mixture. | 10-13-2011 |
20110247343 | GAS TURBINE ENGINE SYSTEMS AND RELATED METHODS INVOLVING VANE-BLADE COUNT RATIOS GREATER THAN UNITY - Gas turbine engine systems and related methods involving vane-blade count ratios greater than unity are provided. In this regard, a representative turbine stage for a gas turbine engine includes a first set of rotatable blades operative to be positioned downstream of and adjacent to a first set of vanes, a number of blades of the first set of blades being less than a number of vanes of the first set of vanes. | 10-13-2011 |
20110252804 | Method And System For Providing A Splitter To Improve The Recovery Of Compressor Discharge Casing - A splitter is provided for improving a pressure recovery of a compressor discharge casing (CDC) by substantially aligning a fluid vortex about a longitudinal axis of a gas turbine engine. The CDC includes an annular wall that extends generally axially along at least a portion of the CDC. The CDC is configured to house a first combustor and a second combustor. The splitter extends from the annular wall between the first and second combustors. The splitter includes a first surface that is configured to direct fluid towards the first combustor and a second surface that is configured to direct fluid towards the second combustor. | 10-20-2011 |
20110252805 | COMBUSTOR LINER COOLING AT TRANSITION DUCT INTERFACE AND RELATED METHOD - A combustor assembly for a turbine includes a combustor and a combustor liner; a first flow sleeve surrounding the combustor liner forming a first substantially axially-extending flow annulus radially therebetween. The first flow sleeve has a first plurality of apertures formed about a circumference thereof for directing compressor discharge air as cooling air radially into said first flow annulus. A transition piece is connected to the combustor liner, the transition piece adapted to carry hot combustion gases to the turbine, and a second flow sleeve surrounds the transition piece forming a second substantially axially-extending flow annulus radially therebetween. The second flow sleeve has a second plurality of apertures for directing compressor discharge air as cooling air radially into the second flow annulus, the first substantially axially-extending flow annulus connecting with the second substantially axially-extending flow annulus. A resilient annular seal structure is disposed radially between an aft end portion of the combustor liner and a forward end portion of said transition piece, the resilient annular seal structure configured to form a first annular cavity radially between the forward end portion of the transition piece and the aft end portion of said combustor liner. At least one transfer tube radially extends from the second flow sleeve through the second flow annulus to the transition piece, and is arranged to supply compressor discharge cooling air radially from an area outside the first and second substantially axially extending flow annuli directly to the resilient annular seal structure and to the aft end of the combustor liner. | 10-20-2011 |
20110259014 | REFINERY RESIDUALS PROCESSING FOR INTEGRATED POWER, WATER, AND CHEMICAL PRODUCTS - Systems and methods are provided for processing refinery residuals. In one embodiment, the system may include a gasifier configured to produce syngas from refinery residuals. A gas turbine engine may produce power from the syngas, and the power may be provided to a desalination system. A portion of the syngas may be provided to a shift reactor. | 10-27-2011 |
20110259015 | Tangential Combustor - A combustion section for a gas turbine includes a casing defining a chamber, a plurality of combustor cans disposed in the casing and oriented in an annular pattern, and a plurality of transition pieces each coupled with one of the combustor cans. The transition pieces direct products of combustion from the combustor cans into contact with rotating buckets of the gas turbine. Each of the transition pieces is angled in two planes to effect turning of the products of combustion and to shorten the gas turbine. | 10-27-2011 |
20110265485 | FLUID COOLED INJECTION NOZZLE ASSEMBLY FOR A GAS TURBOMACHINE - A turbomachine includes a fluid cooled injection nozzle assembly. The fluid cooled injection nozzle assembly includes an inner conduit portion that includes a body portion having first end portion to a tip end portion. The body portion includes an outer surface and an inner surface. A cooling element extends through the inner conduit portion. The cooling element includes a body element having a first end section that extends to a second end section. The body element includes an outer surface and an inner surface that defines a cooling passage. The outer surface of the body element is spaced from the inner surface of the inner conduit portion to define a return channel. Fluid passing through the cooling passage impinges upon and convectively cools the tip end portion, enters the return channel and is directed out from the nozzle member. | 11-03-2011 |
20110277482 | MODEL-BASED COORDINATED AIR-FUEL CONTROL FOR A GAS TURBINE - A coordinated air-fuel controller and associated method provide a fuel controller, a combustion air controller and a steady-state air versus fuel model. The fuel controller generates a fuel control output signal and the combustion air controller generates a combustion air control output signal. The fuel controller determines a preliminary fuel control signal based on at least one of first and second loop control signals, and determines the fuel control output signal based on the preliminary fuel control signal. The steady-state air versus fuel model processes the preliminary fuel control signal to determine an expected steady-state combustion air control signal. The combustion air controller determines a preliminary combustion air control signal based on at least one of a third loop control signal and a fourth loop control signal, and determines the combustion air control output signal based on the preliminary combustion air control signal and the expected steady-state combustion air control signal. | 11-17-2011 |
20110277483 | GAS TURBINE ENGINE WITH EJECTOR - The present inventions include a boundary layer ejector fluidically connecting boundary layer bleed slots from an external surface of an aircraft to reduce aircraft/nacelle/pylon drag, reduce jet noise and decrease thrust specific fuel consumption. In one embodiment a boundary layer withdrawn through the boundary layer bleed slots is entrained with an exhaust flow of a gas turbine engine. In another embodiment a boundary layer withdrawn through the boundary layer bleed slots is entrained with a flow stream internal to the gas turbine engine, such as a fan stream of a turbofan. A moveable shroud can be used to open and close a passage of an ejector which can be used to assist in withdrawing a boundary layer or entrain an ambient air. A lobed mixer can be used in some embodiments to effect mixing between the boundary layer and a primary fluid of the ejector. | 11-17-2011 |
20110283708 | LANDFILL GAS UTILIZATION - A method for utilizing landfill gas is disclosed herein. The method includes the step of collecting landfill gas. The method also includes the step of fueling a turbine engine that is at least part of a power generation system with the landfill gas to generate power. The method also includes the step of cooling one or more components of the power generation system with the landfill gas prior to the fueling step. A power generation system capable of practicing the method is also disclosed. A landfill gas utilization system capable of practicing the method is also disclosed. | 11-24-2011 |
20110283709 | FLUIDIZED BED COMBUSTION - A method and a power plant for combustion of carbonaceous fuel for production of electrical power are described. The plant is a pressurized fluidized bed combustion plant wherein the compressor(s) ( | 11-24-2011 |
20110289929 | TURBOMACHINE FUEL NOZZLE - A turbomachine includes a compressor, a turbine operatively coupled to the compressor, and a combustor fluidly linking the compressor and the turbine. The combustor includes at least one fuel nozzle. The at least one fuel nozzle includes a flow passage including a body having first end that extends to a second end through at least one flow channel having a flow area. A fuel inlet is provided at the first end of the body. The fuel inlet is configured to receive at least one fuel. A fuel outlet is provided at the second end of the body. A control flow passage is fluidly connected to the body between the first and second ends. The control flow passage is configured and disposed to deliver a control flow into the fuel nozzle. The control flow establishes a selectively variable effective flow area of the flow passage. | 12-01-2011 |
20110289930 | System and Method for Exhaust Gas Use in Gas Turbine Engines - In one embodiment, a system is provided that includes a first gas turbine engine. The first gas turbine engine has a first compressor configured to intake air and to produce a first compressed air and a first combustor configured to combust a first mixture to produce a first combustion gas. The first mixture has a first fuel, at least a first portion of the first compressed air, and a second combustion gas from a second gas turbine engine. The first gas turbine engine also includes a first turbine configured to extract work from the first combustion gas. | 12-01-2011 |
20110289931 | GAS TURBINE FUEL METERING UNIT - A fuel system for a turbine engine is provided. The fuel system includes a positive displacement pump driven by an electric motor. The pump is rotated in a first direction to deliver fuel to the turbine engine, and a second direction for evacuating fuel from the turbine engine. A shut-off check valve is open in a first direction in response to a first differential pressure created by the pump in the first direction. The shut-off check valve is biased to a closed position when the pump is rotating in the second direction. An ecology check valve is biased to a closed position in the first direction and open in the second direction in response to a second differential pressure created by the pump. The check valves open and close automatically in response to the pressures generated by the positive displacement pump in each of the first and second rotational directions. In this manner, simple, reliable valves are utilized to regulate the flow of fuel in the fuel system. | 12-01-2011 |
20110302925 | Method and Apparatus for Controlling the Operation of a Gas Turbine - An apparatus for controlling the operation of a gas turbine engine to enable the engine to utilize low calorific value gas, such as low quality landfill gas, said apparatus comprising a gas compressor for compressing gas to be combusted in the combustion chamber of the engine, means for supplying a low calorific value gas to an input of said compressor, and means for mixing a non-combustible gas, such as air, with said low calorific-value gas supplied to the compressor to control the power output of the engine while maintaining a substantially constant flow rate of gas through the compressor. | 12-15-2011 |
20110302926 | METHOD OF OPERATING A GAS TURBINE POWER PLANT AND GAS TURBINE POWER PLANT - A method of operating a gas turbine power plant with a first gas turbine group, including a first turbine assembly, and a second gas turbine group, including a compressor assembly and a second turbine assembly which are mechanically coupled to one another, and useful work is extracted by a device being included in the plant, where a flue gas stream is produced by a combustion device, which is placed in a gas flow stream upstream of the second turbine assembly, where the second turbine assembly and compressor assembly are balanced to each other such that work produced by the second turbine assembly is consumed by the compressor assembly, and where the first turbine assembly is balanced to the device for the extraction of useful work such that work produced by the first turbine assembly is consumed by the device for the extraction of useful work. | 12-15-2011 |
20110308255 | Combined cycle power plant - A combined cycle power plant with integrated coal gasification is provided. The power plant includes a gas turbine, a fuel system connected upstream of a combustion chamber of the gas turbine, which includes a gasification device for fossil fuel and a gas line branching off from the gasification device and opening out into the combustion chamber of the gas turbine, whereby a saturator for saturating the fuel with steam is connected into the gas line upstream of the combustion chamber, whereby a flushing line is provided which opens into the gas line between the gasification device and saturator. | 12-22-2011 |
20110314830 | OIL SUPPLY SYSTEM WITH MAIN PUMP DEAERATION - An oil supply system for a gas turbine engine with a centrifugal air/oil separator in fluid communication with the scavenge system to receive the used oil mixture and extract oil and air therefrom, a supply pump in serial connection with the main oil outlet of the separator and in fluid communication with the bearing cavities to deliver the oil thereto, an oil tank in fluid communication with the overflow oil outlet of the separator, and at least one make-up pump having an inlet in fluid communication with the tank and having an outlet in fluid communication with the scavenge system. | 12-29-2011 |
20110314831 | SECONDARY WATER INJECTION FOR DIFFUSION COMBUSTION SYSTEMS - Emissions and combustion dynamics of a turbine engine are managed through a combustor system that injects water into the primary fuel flow and supplies a secondary water steam to the flame zone of the combustor through a central, secondary liquid nozzle or of the fuel nozzle assembly. | 12-29-2011 |
20120006032 | SYSTEMS, METHODS, AND APPARATUS FOR CONFIRMING IGNITION IN A GAS TURBINE - Certain embodiments of the invention may include systems, methods, and apparatus for confirming ignition in a gas turbine. According to an example embodiment of the invention, a method is provided for confirming ignition associated with a gas turbine combustor. The method can include receiving one or more permissive signals associated with one or more gas flow control valves, receiving one or more fuel supply pressure signals, receiving one or more fuel igniter signals, and receiving one ore more compressor pressure discharge (CPD) signals. The method can also include determining an ignition status associated with the gas turbine combustor based at least in part on the one or more permissive signals, the one or more fuel supply pressure signals, the one or more fuel igniter signals, and a qualified change in the one or more CPD signals. The method can also include outputting an ignition status signal based on the determined ignition status. | 01-12-2012 |
20120006033 | Combustor and Combustor Screech Mitigation Methods - The present application provides for a combustor for use with a gas turbine engine. The combustor may include a cap member and a number of fuel nozzles extending through the cap member. One or more of the fuel nozzles may be provided in a non-flush position with respect to the cap member. | 01-12-2012 |
20120006034 | HYBRID COOLING OF A GAS TURBINE ENGINE - A method for cooling components of a gas turbine engine, having first and second sets of components that require cooling, includes removing thermal energy from cooling air, directing the cooling air from which thermal energy has been removed to the first set of components of the gas turbine engine, and transferring thermal energy away from the second set of components of the gas turbine engine using a vaporization cycle of a vapor cooling assembly. Use of the vaporization cycle offsets thermal energy removed from the cooling air. | 01-12-2012 |
20120011854 | FLAME TOLERANT SECONDARY FUEL NOZZLE - A combustor for a gas turbine engine includes a plurality of primary nozzles configured to diffuse or premix fuel into an air flow through the combustor; and a secondary nozzle configured to premix fuel with the air flow. Each premixing nozzle includes a center body, at least one vane, a burner tube provided around the center body, at least two cooling passages, a fuel cooling passage to cool surfaces of the center body and the at least one vane, and an air cooling passage to cool a wall of the burner tube. The cooling passages prevent the walls of the center body, the vane(s), and the burner tube from overheating during flame holding events. | 01-19-2012 |
20120017597 | HYBRID POWER GENERATION SYSTEM AND A METHOD THEREOF - A hybrid power generation system includes a gas turbine engine system and a supercritical rankine cycle system. The gas turbine engine system includes a first compressor, an intercooler, and a second compressor. A first compressor is configured to compress an inlet airflow to produce a first outlet airflow at a first pressure. An intercooler is coupled to the first compressor and configured to cool the first outlet airflow exiting the first compressor to produce a second outlet airflow. A second compressor is coupled to the intercooler and configured to compress the second outlet airflow exiting the intercooler to produce a third outlet airflow at a second pressure. The supercritical rankine cycle system is coupled to the gas turbine engine system. The supercritical rankine cycle system is coupled to the intercooler to circulate a working fluid in heat exchange relationship with the first outlet airflow to heat the working fluid at a supercritical pressure from a first temperature to a second temperature above a critical temperature of the working fluid and to cool the first outlet airflow exiting the first compressor. | 01-26-2012 |
20120017598 | METALLIC CERAMIC SPOOL FOR A GAS TURBINE ENGINE - A method and apparatus are disclosed for a gas turbine spool design combining metallic and ceramic components in a way that controls clearances between critical components over a range of engine operating temperatures and pressures. In a first embodiment, a ceramic turbine rotor rotates just inside a ceramic shroud and separated by a small clearance gap. The ceramic rotor is connected to a metallic volute. In order to accommodate the differential rates of thermal expansion between the ceramic rotor and metallic volute, an active clearance control system is used to maintain the desired axial clearance between ceramic rotor and the ceramic shroud over the range of engine operating temperatures. In a second embodiment, a ceramic turbine rotor rotates just inside a ceramic shroud which is part of a single piece ceramic volute/shroud assembly. As temperature increases, the ceramic volute expands at approximately the same rate as ceramic shroud and tends to increase the axial clearance gap between the ceramic rotor and ceramic shroud, but only by a small amount compared to a metallic volute attached to the shroud in the same way | 01-26-2012 |
20120017599 | ANNULAR GAS TURBINE COMBUSTOR - A combustor assembly includes a convergent segment followed by a divergent segment to advantageously improve combustion. The combustor assembly includes a first segment beginning at a forward end that transitions to a second segment past a transition segment in a direction along a combustor axis toward an aft end. The reduction in cross-sectional area within the first segment provides desirable fuel and air mixing properties. The convergent first segment in combination with the divergent second segment decreases residence time of fuel-air mixture within the combustor chamber that decreases production of undesirable emissions from the combustor assembly. | 01-26-2012 |
20120023953 | METHODS FOR CONTROLLING FUEL SPLITS TO A GAS TURBINE COMBUSTOR - Methods for controlling fuel splits to a combustor of a gas turbine are disclosed. The methods may include determining a combustion reference temperature of the gas turbine, measuring a biasing parameter of the gas turbine, determining at least one fuel split biasing value based on the combustion reference temperature and the biasing parameter and adjusting a nominal fuel split schedule based on the at least one fuel split biasing value. | 02-02-2012 |
20120023954 | POWER PLANT AND METHOD OF OPERATION - A power plant and method of operation that comprises at least one main air compressor and at least one gas turbine assembly. The assembly comprises a turbine combustor for mixing compressed ambient gas with a recirculated low oxygen content gas flow and a fuel stream to form a combustible mixture and for burning the combustible mixture and forming the recirculated low oxygen content flow. The assembly comprises a recirculation loop for recirculating the recirculated low oxygen content gas flow from the turbine to the turbine compressor. The assembly comprises an integrated inlet bleed heat conduit that fluidly connects the at least one gas turbine assembly to an input of the at least one main air compressor and delivers at least a portion of the recirculating low oxygen content gas flow from the at least one gas turbine assembly to the input of the at least one main air compressor. | 02-02-2012 |
20120023955 | POWER PLANT AND METHOD OF OPERATION - A power plant and method of operation are provided. The power plant comprises at least one main air compressor and at least one gas turbine assembly. Each gas turbine assembly comprises a turbine combustor for mixing a compressed ambient gas with a recirculated low oxygen content gas flow and a fuel stream to form a combustible mixture for burning to form the recirculated low oxygen content gas flow. A turbine is arranged to be driven by the recirculated low oxygen content gas flow from the turbine combustor. The assembly includes a recirculation loop for recirculating the recirculated low oxygen content gas flow from the turbine to a turbine compressor and a gas flow extraction stream for extracting a portion of the recirculated low oxygen content gas flow for delivery to a carbon monoxide catalyst unit. A portion of the compressed ambient gas is directed to the carbon monoxide catalyst unit. | 02-02-2012 |
20120023956 | POWER PLANT AND METHOD OF OPERATION - A power plant and method of operation is provided. The power plant comprises at least one main air compressor, an oxidizer unit configured to deliver a compressed oxygen-rich gas flow to at least one gas turbine assembly. Each assembly comprises a turbine combustor for mixing the compressed oxygen-rich gas flow with a recirculated gas flow and a fuel stream to burn a combustible mixture and form the recirculated gas flow. The assembly also comprises a recirculation loop for recirculating the recirculated gas flow from a turbine to a turbine compressor. The assembly further comprises a recirculated gas flow extraction path for extracting a portion of the recirculated gas flow from the assembly and delivering this to a gas separation system. The gas separation system separates the portion of the recirculated gas flow into a nitrogen portion and a carbon dioxide portion. | 02-02-2012 |
20120023957 | POWER PLANT AND METHOD OF OPERATION - A power plant arrangement and method of operation is provided. The power plant arrangement includes at least one main air compressor and at least one gas turbine assembly. Each assembly includes a turbine combustor for mixing a portion of compressed ambient gas with a portion of a recirculated low oxygen content gas flow and a fuel stream for burning to form the recirculated low oxygen content gas flow. A recirculation loop for recirculating at least a portion of the recirculated low oxygen content gas flow from the turbine to a turbine compressor is provided. At least one auxiliary apparatus is fluidly connected to the main air compressor and may be at least partially powered by the compressed ambient gas flow. | 02-02-2012 |
20120023958 | POWER PLANT AND CONTROL METHOD - Ambient air is compressed into a compressed ambient gas flow with a main air compressor. The compressed ambient gas flow having a compressed ambient gas flow rate is delivered to a turbine combustor and mixed with a fuel stream having a fuel stream flow rate and a portion of a recirculated low oxygen content gas flow to form a combustible mixture. The combustible mixture is burned and forms the recirculated low oxygen content gas flow that drives a turbine. A portion of the recirculated low oxygen content gas flow is recirculated from the turbine to the turbine compressor using a recirculation loop. The compressed ambient gas flow rate and the fuel stream flow rate are adjusted to achieve substantially stoichiometric combustion. An excess portion, if any, of the compressed ambient gas flow is vented. A portion of the recirculated low oxygen content gas flow is extracted using an extraction conduit. | 02-02-2012 |
20120023959 | POWER PLANT AND METHOD OF USE - A power plant arrangement and method of operation are provided. The power plant arrangement comprises at lease one main air compressor and one or more gas turbine assemblies. Each assembly comprises a turbine combustor for mixing a portion of a compressed ambient gas flow with a portion of a recirculated low oxygen content gas flow and a fuel stream, and burning the combustible mixture to form the recirculated low oxygen content flow. The assembly further comprises a turbine compressor, fluidly connected to the turbine combustor, and connected to a turbine shaft that is arranged to be driven by rotation of a turbine. The assembly also comprises a recirculation loop for recirculating at least a portion of the recirculated low oxygen content gas flow from the turbine to the turbine compressor. | 02-02-2012 |
20120023960 | POWER PLANT AND CONTROL METHOD - Ambient air is compressed into a compressed ambient gas flow with a main air compressor. The compressed ambient gas flow having a compressed ambient gas flow rate is delivered to a turbine combustor and mixed with a fuel stream having a fuel stream flow rate and a portion of a recirculated gas flow to form a combustible mixture. The combustible mixture is burned and forms the recirculated gas flow that drives a turbine. The recirculated gas flow is recirculated from the turbine to the turbine compressor using a recirculation loop. At least one emission level is measured by at least a first emission sensor in the recirculated gas flow and at least a first control signal is generated. The fuel stream flow rate is adjusted based on the at least a first control signal to achieve substantially stoichiometric combustion. | 02-02-2012 |
20120023961 | GAS TURBINE ENGINE HAVING CORE AUXILIARY DUCT PASSAGE - A method of controlling a gas turbine engine having a core engine including a core passage and an auxiliary duct passage includes sensing an operability condition, and diverting a portion of a core airflow through the auxiliary duct passage in response to sensing the operability condition. | 02-02-2012 |
20120031100 | Generating Power Using an Ion Transport Membrane - In some implementations, a system may include a compressor, a heat exchanger and an ITM. The compressor is configured to receive an air stream and compress the air stream to generate a pressurized stream. The heat exchanger is configured to receive the pressured stream and indirectly heat the pressurized stream using heat from an oxygen stream from an Ion Transport Membrane (ITM). The ITM is configured to receive the heated pressurized stream and generate an oxygen stream and the non-permeate stream, wherein the non-permeate stream is passed to a gas turbine burner and the oxygen stream is passed to the heat exchanger. | 02-09-2012 |
20120031101 | GAS TURBINE WITH FLOW SEPARATION AND RECIRCULATION - A method is provided for CO | 02-09-2012 |
20120036859 | COMBUSTOR TRANSITION PIECE WITH DILUTION SLEEVES AND RELATED METHOD - A gas turbine transition piece adapted to carry combustion gases in a hot gas path extending between a gas turbine combustion chamber and a first stage of the gas turbine, includes a hollow duct having a forward end adapted for connection to a combustor liner and an aft end adapted for connection to a first stage nozzle. One or more dilution air holes are located proximate the forward end, the dilution holes each fitted with a hollow sleeve penetrating into the hot gas path within the hollow duct, the hollow sleeves adapted to supply cooling air into the hot gas path. | 02-16-2012 |
20120036860 | GAS TURBINE PLANT WITH EXHAUST GAS RECIRCULATION AND ALSO METHOD FOR OPERATING SUCH A PLANT - A gas turbine plant is provided with exhaust gas recirculation and includes a main gas turbine having a main compressor and main turbine driving a main generator, and a combustion chamber, with an outlet connected to the inlet of the main gas turbine, has a fuel feed, and via the recuperator's high-pressure side obtains combustion air from the main gas turbine's compressor outlet. The outlet of the main turbine and the inlet of the main compressor are connected via the recuperator's low-pressure side and a cooler for exhaust gas recirculation. On the recuperator's low-pressure side, a charging unit, with a compressor and a turbine is arranged, and draws in air via an air intake and by the outlet of its compressor is connected to the recuperator's low-pressure side outlet and by the inlet of its turbine is connected to a surplus-gas extraction line on the recuperator's low-pressure side. | 02-16-2012 |
20120042656 | GAS TURBINE ENGINE WITH EXHAUST RANKINE CYCLE - A closed-loop organic Rankine cycle apparatus to extract waste heat from the exhaust gas from a gas turbine engine is disclosed wherein the closed loop includes at least one additional heat exchanger. An additional heat exchanger for heating fuel may be in one of three locations relative to the ORC turbine and condensing heat exchanger. One location is a preferred location for adding heat to all fuels (liquid, gaseous and/or cryogenic). Another location is a practical location for adding heat to very cold or cryogenic fuels such as CNG or LNG. The closed-loop organic Rankine cycle apparatus, besides extracting waste heat from the exhaust gases, may also include an additional heat exchanger to recover heat from a compressor on a gas turbine engine prior to entering an intercooler on a gas turbine engine. | 02-23-2012 |
20120042657 | METHOD AND DEVICE FOR FEEDING A TURBOMACHINE COMBUSTION CHAMBER WITH A REGULATED FLOW OF FUEL - High-pressure fuel is supplied at a controlled rate to a combustion chamber via a position-controlled valve and a variable-restriction stop-and-pressurizing cut-off valve. A value representative of the real mass flow rate of fuel as delivered is calculated by a calculation unit on the basis of information representative of the pressure difference between the inlet and the outlet of the cut-off valve and of the flow section through the cut-off valve, e.g. as represented by the position X of the slide of the cut-off valve. The position-controlled valve has a variable position that is controlled by the calculation unit as a function of the difference between the calculated value representative of the real mass flow rate and a value representative of a desired mass flow rate. | 02-23-2012 |
20120055166 | COMBINED CYCLE POWER AUGMENTATION BY EFFICIENT UTILIZATION OF ATOMIZING AIR ENERGY - A combined cycle power plant includes a gas turbine having a first compressor, a second compressor downstream of the first compressor, and a regenerative heat exchanger between the first and second compressors. A steam generator is downstream of the gas turbine and receives exhaust from the gas turbine. A closed loop cooling system through the regenerative heat exchanger and the steam generator transfers heat from the regenerative heat exchanger to the steam generator. A method for operating a combined cycle power plant includes compressing a working fluid in a compressor and cooling the compressed working fluid with a regenerative heat exchanger so as to create a cooled compressed working fluid. The method further includes transferring heat from the regenerative heat exchanger to a steam generator. | 03-08-2012 |
20120060504 | APPARATUS AND METHOD FOR COOLING A COMBUSTOR - A combustor includes a combustion chamber and an interior wall circumferentially surrounding at least a portion of the combustion chamber and defining an exterior surface. A plurality of turbulators are on the exterior surface. The combustor further includes means for preferentially directing fluid flow across a predetermined position of the turbulators. A method for cooling a combustion chamber includes locating a plurality of turbulators to an exterior surface of the combustion chamber and preferentially directing fluid flow across a predetermined position of the plurality of turbulators. | 03-15-2012 |
20120067053 | COMBUSTOR SYSTEM - A gas turbine engine having a ramburner is disclosed. The ramburner is disposed downstream of a gas turbine engine combustor and receives an engine exhaust flow from the gas turbine engine combustor. The ramburner also accepts a bypass air. Fuel is injected into the ramburner and a combustion reaction is auto-initiated based upon local gas temperatures. No mechanical flame holders need be used. A slidable valve may be used to vary the amount of bypass air into the ramburner. A movable cowl and a plug nozzle form an exit flow path of the gas turbine engine. The movable cowl can be positioned to vary a throat area and exit area of the gas turbine engine based upon the operation of the ramburner, which may be influenced by the amount of bypass air entering the ramburner. | 03-22-2012 |
20120067054 | HIGH EFFICIENCY POWER PRODUCTION METHODS, ASSEMBLIES, AND SYSTEMS - The present disclosure provides methods, assemblies, and systems for power production that can allow for increased efficiency and lower cost components arising from the control, reduction, or elimination of turbine blade mechanical erosion by particulates or chemical erosion by gases in a combustion product flow. The methods, assemblies, and systems can include the use of turbine blades that operate with a blade velocity that is significantly reduced in relation to conventional turbines used in typical power production systems. The methods and systems also can make use of a recycled circulating fluid for transpiration protection of the turbine and/or other components. Further, recycled circulating fluid may be employed to provide cleaning materials to the turbine. | 03-22-2012 |
20120067055 | SYSTEM AND METHOD FOR MANAGING THERMAL ISSUES IN GAS TURBINE ENGINES - The present invention generally relates to a system that enables one to address various thermal management issues in advanced gas turbine engines. In one embodiment, the present invention relates to a method to extract heat from an air stream, utilize a significant fraction for on-board power generation, and reject a small quantity of heat to the fuel stream safely at, for example, a lower temperature. In another embodiment, the present invention relates to a method to extract heat from an air stream, utilize a significant fraction for on-board power generation, and reject a small quantity of heat to the fuel stream safely at, for example, a lower temperature with no potential air/fuel contact is disclosed. | 03-22-2012 |
20120073304 | TURBOMACHINE INCLUDING A CERAMIC MATRIX COMPOSITE (CMC) BRIDGE - A turbomachine includes a turbine section including a turbine inlet. A transition piece includes a transition piece inlet and a transition piece outlet. A ceramic matrix composite (CMC) bridge member links the transition piece outlet and the turbine inlet. | 03-29-2012 |
20120079829 | TURBOMACHINE INCLUDING A MIXING TUBE ELEMENT HAVING A VORTEX GENERATOR - A turbomachine includes a compressor section, a combustor operatively connected to the compressor section, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a plurality of mixing tube elements. Each of the plurality of mixing tube elements includes a conduit having a first fluid inlet, a second fluid inlet arranged downstream from the first fluid inlet, a discharge end arranged downstream from the first and second fluid inlets, and a vortex generator arranged between the first and second fluid inlets. The vortex generator is configured and disposed to create multiple vortices within the conduit to mix first and second fluids passing through each of the plurality of mixing tube elements. | 04-05-2012 |
20120079830 | SENSOR COMMUNICATION SYSTEM AND MACHINE HAVING THE SAME - A sensor communication system includes an electromagnetic waveguide disposed adjacent to at least one component of a machine. The electromagnetic waveguide can be configured to convey a fluid within the machine. The sensor communication system can also include a sensor assembly, which includes a sensor operable to sense at least one condition and a transmitter at least partially positioned in the electromagnetic waveguide. The transmitter can be operatively coupled to the sensor and be operable to emit a signal corresponding to the at least one condition sensed by the sensor. The sensor communication system can also include a receiver at least partially positioned in the electromagnetic waveguide and operable to wirelessly receive the signal emitted by the transmitter. | 04-05-2012 |
20120085099 | TUNABLE SEAL IN A GAS TURBINE ENGINE - A system and method for tuning a gas turbine combustion system having a plurality of seals positioned between the combustion system and the turbine inlet is disclosed. The system and method provide ways of permitting a predetermined amount of compressed air to bypass the combustion system and enter the turbine so as to control emissions and dynamics of the combustion system. The seals contain a plurality of holes to meter airflow passing therethrough and are positioned such that they can be removed from the engine and modified to increase or decrease the amount of air passing therethrough. | 04-12-2012 |
20120090325 | ETHANOL PRODUCTION SYSTEM FOR ENHANCED OIL RECOVERY - A process for enhancing the energy output of an ethanol production facility has the steps of producing ethanol and stillage from a feedstock, anaerobically digesting said stillage so as to produce carbon dioxide and methane, compressing the methane, compressing the carbon dioxide, and, passing the compressed carbon dioxide to an oil-bearing formation. The compressed carbon dioxide is injected under pressure into the oil-bearing formation so as to produce live crude and natural gas. The compressed methane is delivered to a combustion turbine so as to produced power and an exhaust. The exhaust of the combustion turbine is passed to a steam turbine so as to produce steam and power. | 04-19-2012 |
20120090326 | POWER PLANT - A power plant includes a gas turbine unit adapted to feed flue gases into a diverter where they are divided into a recirculated flow that is fed into a mixer together with fresh air to form a mixture that is fed to a gas turbine unit compressor inlet, and a discharged flow, that is fed into a CO | 04-19-2012 |
20120090327 | POWER PLANT AND METHOD FOR ITS OPERATION - The power plant includes a gas turbine unit adapted to feed flue gases into a diverter where they are divided into a recirculated flow and a discharged flow. The recirculated flow is fed into a mixer together with fresh air to form a mixture that is fed to the gas turbine unit. The gas turbine unit includes a combustion chamber where a fuel is burnt together with the mixture. A control unit is provided, that is supplied with information regarding the fuel C2+ and/or H | 04-19-2012 |
20120090328 | POWER PLANT - A power plant includes a gas turbine unit adapted to feed whose flue gases into a boiler of a steam turbine unit, to be then diverted into a recirculated flow and discharged flow. The recirculated flow is mixed with fresh air forming a mixture that is fed into a gas turbine unit compressor. The discharged flow is fed into a CO | 04-19-2012 |
20120090329 | SYSTEMS AND METHODS INVOLVING MULTIPLE TORQUE PATHS FOR GAS TURBINE ENGINES - Systems and methods involving multiple torque paths of gas turbine engines are provided. In this regard, a representative spool assembly for a gas turbine engine, which incorporates a compressor, a turbine and a gear assembly, includes: a shaft operative to be driven by the turbine; a first spool segment operative to couple the shaft to the compressor; and a second spool segment operative to couple the shaft to the gear assembly. The first spool segment and the second spool segment are not coupled to each other. | 04-19-2012 |
20120096868 | Integrated Gasification Combined Cycle System with a Nitrogen Cooled Gas Turbine - The present application provides an integrated gasification combined cycle system. The integrated gasification combined cycle system may include a nitrogen source, a combustor, and a turbine. A flow of nitrogen from the nitrogen source passes through and cools the turbine and then flows into the combustor. | 04-26-2012 |
20120096869 | UTILIZING HEAT DISCARDED FROM A GAS TURBINE ENGINE - Various embodiments are disclosed to utilize various fuels, including liquid natural gas fuels, to improve engine efficiency in gas turbine engines. In one configuration, a fuel is heated by a heat exchanger utilizing waste exhaust heat of a gas turbine engine. In another configuration, LNG fuel is heated using a pre-cooler for the inlet air stream of a gas turbine engine. In another configuration, fuel is injected into the pressurized air, downstream of the air-to-air intercooler. In yet another configuration, fuel is pumped through the engine's intercooler or a secondary heat exchanger exchanging heat with the compressed air stream between the low-pressure compressor and high-pressure compressor. In another configuration, the fuel is first heated by the intercooler and then further heated by a heat exchanger utilizing waste exhaust heat of the gas turbine engine. | 04-26-2012 |
20120102962 | HEAT EXCHANGER FOR A COMBINED CYCLE POWER PLANT - A combined cycle power plant includes a gas turbomachine, a steam turbomachine operatively connected to the gas turbomachine, a heat recovery steam generator (HRSG) operatively connected to the gas turbomachine and the steam turbomachine, and a cooling system fluidly connected to the gas turbomachine. The cooling system is configured and disposed to pass a coolant through the gas turbomachine to absorb heat. A condensate system is fluidly connected to the steam turbine and the HRSG. The condensate system is configured and disposed to deliver a steam condensate from the steam turbine to the HRSG. A heat exchange member is fluidly connected to the cooling system and the condensate system. The heat exchange member is configured and disposed to transfer heat entrained in the coolant to the steam condensate. | 05-03-2012 |
20120102963 | GAS TURBINE COMBUSTOR WITH MOUNTING FOR HELMHOLTZ RESONATORS - A combustor liner may include an annular inner liner and an annular outer liner with a plurality of air holes thereon. The outer liner may be positioned circumferentially around the inner liner such that an annular cooling space is defined between the inner and the outer liner. The combustor liner may also include at least one resonator coupled to the outer liner such that a base of the resonator is separated from the outer liner to form a gap with an external surface of the outer liner. The combustor liner may also include a throat extending from the base of the resonator penetrating the inner liner and the outer liner. The combustor liner may further include a grommet assembly that allows for relative thermal expansion between the inner liner and the outer liner proximate the throat. | 05-03-2012 |
20120102964 | TURBOMACHINE INCLUDING A CARBON DIOXIDE (CO2) CONCENTRATION CONTROL SYSTEM AND METHOD - A turbomachine includes a compressor section, a turbine section operatively connected to the compressor section, a combustor fluidly connected between the compressor section and the turbine section, and a carbon dioxide (CO | 05-03-2012 |
20120102965 | Method for improved efficiency for high hydrogen - A method for operating a hydrogen-fueled gas turbine is provided wherein a supply of fuel is passed to a gas turbine combustor, and a supply of nitrogen and sufficient air to provide at least sufficient compressed air to the gas turbine for fuel combustion is passed to a compressor. A sufficient portion of the compressor discharge flow is passed to a combustor for fuel rich combustion of the fuel flow to the combustor and the fuel is combusted to produce hot combustion gases that are, in turn, passed to a turbine. | 05-03-2012 |
20120102966 | OPERATION CONTROL METHOD FOR GAS TURBINE AND OPERATION CONTROLLER FOR GAS TURBINE - An operation control method for a gas turbine comprising the steps of: making a molten salt map in a liquid phase state by calculating a dew point and a solidus temperature of molten salt for causing high-temperature corrosion on high-temperature components of the turbine due to impurities using a thermodynamic equilibrium calculation on the basis of the impurities contained in low-quality fuel and operation data of the gas turbine, indicating a surface temperature and a pressure of the high-temperature components of the turbine on the molten salt map to determine a superposition state thereof on a region of molten salt in a liquid phase, predicting a lifetime of the high-temperature components of the gas turbine by estimating a corrosion rate thereof, and controlling the flow rate of the low-quality fuel supplied to a combustor on the basis of the prediction of the lifetime of the high-temperature components so that an area of surface temperature and pressure regions of the high-temperature components superposing on the region of molten salt in the liquid phase on the molten salt map is reduced. | 05-03-2012 |
20120111015 | SELF-OSCILLATING FUEL INJECTION JETS - A combustor structure includes a combustor fuel-air mixing apparatus having a mainstream airflow region. One or more concavities are disposed within the mainstream airflow region of the fuel-air mixing apparatus. At least one fuel injection hole is disposed within an upstream base region of at least one concavity. Passing a stream of air through the main airflow region causes fuel injected into the upstream base region of at least one concavity to passively mix with a naturally oscillating vortex of air within the concavity. | 05-10-2012 |
20120111016 | END-FED LIQUID FUEL GALLERY FOR A GAS TURBINE FUEL INJECTOR - A fuel injector for a gas turbine engine may include an injector housing extending along a longitudinal axis and configured to be fluidly coupled to a combustor of the turbine engine. The fuel injector may also include a flow path for a fuel air mixture to the combustor extending longitudinally within the injector housing, and a gallery for liquid fuel encircling the flow path. The gallery may include a plurality of fuel spokes that are configured to deliver liquid fuel from the gallery to the flow path. The gallery may extend from a feed end to a terminal end that overlaps the feed end. The feed end may be a region where liquid fuel enters the gallery and the terminal end may be a region where the gallery terminates. | 05-10-2012 |
20120111017 | PARTICULATE DEFLAGRATION TURBOJET - A turbine engine, such as for example a jet engine or turbojet, that is fueled by particulate fuel, such as cornstarch or other similar particulate products, that burn under deflagration conditions. The engine is modified from a standard engine in that the dry inlet air is compressed before being premixed with the particulate fuel in a pre-deflagration mixing chamber located immediately upstream of the burners. The mixed fuel is then burned in the deflagration burners to provide turning force for the turbines of the turbine engine. | 05-10-2012 |
20120111018 | TIP TURBINE ENGINE WITH REVERSE CORE AIRFLOW - A tip turbine engine provides increased efficiency while eliminating or reducing the number of axial compressor stages by moving the core airflow inlet aft of the fan. As a result, the core airflow entering the core airflow inlet is the fan exhaust, which is already at an increased pressure. A portion of the fan exhaust is guided radially inward, then axially forward and then radially outward through compressor chambers in the hollow fan blades for further, centrifugal compression. | 05-10-2012 |
20120117974 | AIR FLOW DELIVERY AND FUEL CONSUMPTION CONTROL FOR AIRCRAFT AIR MANAGEMENT AND AUXILIARY POWER SYSTEMS - A turbine controller controls the operation of a gas turbine generator used to drive an electric generator of an aircraft. The turbine controller controls the gas turbine generator according to air flow demand signals indicative of air flow required by an air management system that regulates cabin pressure and temperature of the aircraft. | 05-17-2012 |
20120117975 | GAS TURBINE ENGINE SYSTEMS AND RELATED METHODS INVOLVING VANE-BLADE COUNT RATIOS GREATER THAN UNITY - An exemplary gas turbine engine includes a turbine section operative to impart rotational energy to a compressor section. The turbine section includes at least a low-pressure turbine and a high-pressure turbine, and a ratio of a number of stages in the low-pressure turbine to a number of stages in the high-pressure turbine is 2. | 05-17-2012 |
20120131923 | SYSTEM AND METHOD FOR PREMIXER WAKE AND VORTEX FILLING FOR ENHANCED FLAME-HOLDING RESISTANCE - A combustion system premixer includes one or more streamwise vortex generators configured to passively redirect surrounding high velocity air into at least one of wake and vortex regions within a combustion system fuel nozzle in response to air passing through the premixer. The streamwise vortex generators operate to minimize turbulent flow structures, thus improving air/fuel mixing, and enhancing resistance to flame-holding and flash-back within the premixer. | 05-31-2012 |
20120131924 | Gas Turbine Combustor and Fuel Supply Method Used for the Same - An object of the invention is to provide a reliable gas turbine combustor that can provide lowered NOx and combustion stability. The gas turbine combustor includes a combustion chamber to which fuel and air are supplied; a first burner located on the upstream side of the combustion chamber, the first burner jetting fuel into the combustion chamber and jetting air into the combustion chamber in a swirling manner; a plurality of second burners arranged around the first burner and supplying a premixed gas of air and fuel to the combustion chamber; an annular bulkhead disposed between the first burner and the second burners and having an inclined surface formed to broaden toward the downstream side of the combustion chamber; and a plurality of air jet ports formed in the inclined surface of the annular bulkhead and adapted to jet air into the combustion chamber. | 05-31-2012 |
20120131925 | COMBUSTOR SYSTEMS AND METHODS FOR USING SAME - Systems and methods for an oxy-fuel type combustion reaction are provided. In one or more embodiments, a combustion system can include at least two mixing zones, where a first mixing zone at least partially mixes oxygen and carbon dioxide to produce a first mixture and a second mixing zone at least partially mixes the first mixture with a fuel to produce a second mixture. The combustion system can also include a combustion zone configured to combust the second mixture to produce a combustion product. In one or more embodiments, the first mixture can have a spatially varied ratio of oxygen-to-carbon dioxide configured to generate a hot zone in the combustion zone to increase flame stability in the combustion zone. | 05-31-2012 |
20120144837 | Low Emission Power Generation and Hydrocarbon Recovery Systems and Methods - Methods and systems for oxyfuel based low emission power generation in hydrocarbon recovery processes are provided. One system includes a plenum and is configured to encourage post-combustor conversion of gaseous components such that a desired chemical state is achieved. Another system includes a steam reformer for reforming a control fuel stream to generate a reformed control fuel stream characterized by an increase in hydrogen, as compared to the control fuel stream. | 06-14-2012 |
20120144838 | COMBINED CYCLE POWER AUGMENTATION BY EFFICIENT UTILIZATION OF ATOMIZING AIR ENERGY - A combined cycle power plant includes a gas turbine having a first compressor, a second compressor downstream of the first compressor, and a regenerative heat exchanger between the first and second compressors. A steam generator is downstream of the gas turbine and receives exhaust from the gas turbine. A closed loop cooling system through the regenerative heat exchanger and the steam generator transfers heat from the regenerative heat exchanger to the steam generator. A method for operating a combined cycle power plant includes compressing a working fluid in a compressor and cooling the compressed working fluid with a regenerative heat exchanger so as to create a cooled compressed working fluid. The method further includes transferring heat from the regenerative heat exchanger to a steam generator. | 06-14-2012 |
20120151932 | TRAPPED VORTEX COMBUSTOR AND METHOD OF OPERATING THEREOF - A trapped vortex combustor includes a trapped vortex cavity having a first surface and a second surface. A plurality of fluidic mixers are disposed circumferentially along the first surface and the second surface of the trapped vortex cavity. At least one fluidic mixer includes a first open end receiving a first fluid stream, a coanda profile in the proximity of the first open end, a fuel plenum to discharge a fuel stream over the coanda profile, and a second open end for receiving the mixture of the first fluid stream and the fuel stream and discharging the mixture of the first fluid stream and the fuel stream in the trapped vortex cavity. The coanda profile is configured to enable attachment of the fuel stream to the coanda profile to form a boundary layer of the fuel stream and, to entrain the incoming first fluid stream to the boundary layer of the fuel stream to form a mixture of the first fluid stream and the fuel stream. | 06-21-2012 |
20120151933 | METHOD AND SYSTEM FOR FEEDING AND VENTILATING WITH AIR A PLANT OF AN AIRCRAFT AUXILIARY POWER UNIT - A system and a method for ventilating a plant including an auxiliary power unit (APU) in an aircraft compartment are disclosed. The compartment is ventilated in an independent manner with individualized air feeds to each item of equipment concerned. According to one embodiment, a system for feeding and ventilating an aircraft auxiliary power source plant includes an APU and items of equipment mounted in connection with the APU. The APU is fitted with an exhaust nozzle which leads into a gas discharger mounted outside the compartment. Separate and independent ducts channel air between air inlets made through the compartment, and the APU and items of equipment. At least one ventilation duct that is separate and independent from the other ducts is coupled to an air inlet of the compartment in order to ventilate the APU and the items of equipment of the plant. | 06-21-2012 |
20120151934 | RECUPERATOR WITH WIRE MESH - A recuperator for use in transferring heat from gas turbine exhaust gases to compressed air inlet gases before combustion. The recuperator utilizes a plurality of planar or curved layers filled with metal wire mesh and bounded by thin metal sheets to form a heat exchanger having high effectiveness, low weight, and low pressure drop. The use of wire is a unique feature of the recuperator that makes it significantly low-cost compared with the prior art. Accordingly, the recuperator presented herein may be incorporated into a micro- or mini-turbine system for electric power generation or for developing thrust in airborne vehicles, aircraft, and helicopters. | 06-21-2012 |
20120159957 | WATER SELF-SUFFICIENT TURBINE SYSTEM - The present invention provides a water self-sufficient turbine system comprising: (a) a combustion turbine comprising a combustion chamber disposed between an upstream compressor coupled to a downstream turbine section; (b) a water recovery unit configured to contact a first liquid desiccant with a water-rich exhaust gas stream produced by the combustion turbine, and produce a water-enriched liquid desiccant and a water-depleted exhaust gas stream; and (c) a desiccant regenerator unit configured to contact the water-enriched liquid desiccant with hot compressed air to separate water from the water-enriched liquid desiccant to provide water-rich compressed air and to regenerate the first liquid desiccant; wherein the combustion turbine is configured to supply hot compressed air to the desiccant regenerator unit and receive water-rich compressed air from the desiccant regenerator unit, and wherein the desiccant regenerator unit is configured to supply the first liquid desiccant to the water recovery unit. | 06-28-2012 |
20120159958 | GAS TURBINE ENGINE FLOW PATH MEMBER - A gas turbine engine is disclosed having a compressor, combustor, and turbine and a flow path therethrough. A flow path member is disposed between an inner surface of the flow path and a rotating shaft that couples the compressor and turbine. The flow path member directs a cooling fluid along a path to cool a portion of the gas turbine engine between the inner surface and the rotating shaft. The flow path member is retained to permit radially free motion and can also be retained to permit axially free motion. The flow path member can have feed holes that permit the cooling fluid to pass. | 06-28-2012 |
20120159959 | System and Method for Fuel and Air Mixing in a Gas Turbine - A gas turbine system including a source of gas coupled to a source of fuel wherein the gas and the fuel are combined to form a mixture of gas and fuel prior to the mixture being introduced to a fuel nozzle of the gas turbine system. | 06-28-2012 |
20120167576 | METHOD AND SYSTEM FOR POWERING A VEHICLE - A method and system operating an aircraft system are provided. The gas turbine engine system includes a low-pressure (LP) shaft, a high-pressure (HP) shaft, a constant speed mechanical drive assembly having an input and an output, the input mechanically coupled to the LP shaft, the output mechanically coupled to a constant frequency (CF) electrical generator, and an accessory gearbox assembly having an input and an output, the input mechanically coupled to the HP shaft, the output mechanically coupled to a variable frequency (VF) electrical generator. | 07-05-2012 |
20120167577 | GAS TURBINE SYSTEM AND PROCESS - A gas turbine system and process include a compressor component configured to compress fluid to form a compressed fluid stream, a combustor configured to receive at least a first portion of the compressed fluid stream and at least partially combust a syngas to form a combustor discharge stream, and a turbine component positioned to receive the combustor discharge stream and to form a turbine component stream. In the system and process, a cool stream directed from a second system cools the turbine component stream. | 07-05-2012 |
20120167578 | FLAME HOLDING INHIBITOR FOR A LEAN PRE-NOZZLE FUEL INJECTION DIFFUSER AND RELATED METHOD - A flame holding inhibitor includes a base portion and an upstanding support extending away from the base portion; at least one delta-wing-shaped flap on the upstanding support, each having a relatively pointed end and a relatively broad end. | 07-05-2012 |
20120167579 | FUEL ANTI-ICING AND APU COMPARTMENT DRAIN COMBINATION - A heat exchanger has a first passage to be connected to a source of fuel. The heat exchanger has an outlet to communicate the fuel downstream. A second passage connects to a source of air. The air passes adjacent to the first passage to heat fuel in the first passage. A jet pump is positioned downstream of the second passage to receive air from the second passage. The jet pump includes a tap connected to a housing compartment to drain fluid from the compartment. A method is also disclosed. | 07-05-2012 |
20120167580 | SUPERCRITICAL OR MIXED PHASE MULTI-PORT FUEL INJECTOR - A system includes a turbine engine with a fueling system including a valve fluidly coupled to a fuel supply on an upstream side and fluidly coupled to fueling passages on a downstream side. The valve maintains the fuel supply at a pressure greater than an ambient pressure. The system includes nozzle exits corresponding to the fueling passages, and the fueling passages flow fuel from the valve to each of the nozzle exits monotonically downward. The valve is a check valve or a controlled valve. The valve maintains the fuel supply at a pressure such that fuel in the fuel supply is a continuous fluid phase. The fuel leaves the nozzle exits to the combustion chamber of the turbine engine. | 07-05-2012 |
20120174590 | SYSTEM AND METHOD FOR CONTROLLING COMBUSTOR OPERATING CONDITIONS BASED ON FLAME DETECTION - A system is disclosed that includes a combustor having an end cover and at least one fuel nozzle assembly extending from an inner face of the end cover. A cartridge may extend through the end cover and into the fuel nozzle assembly. The cartridge may define an opening for receiving light emitted from within the combustor. Additionally, a fiber optic cable may be disposed within the cartridge and may be configured to capture at least a portion of the light received through the opening. | 07-12-2012 |
20120174591 | Fuel Line System, Method for Operating of a Gas Turbine, and a Method for Purging the Fuel Line System of a Gas Turbine - A fuel line system for a gas turbine and a method for purging the same is provided. Parts of the line system may be purged using a comparatively low quantity of purging medium. To this end, a control valve is provided in each of the fuel line segments located immediately upstream of the fuel injection nozzles, the control characteristics of the control valve being adjustable by means of a fluid or gaseous control medium | 07-12-2012 |
20120180493 | APPARATUS AND METHOD FOR CONTROLLING OXYGEN EMISSIONS FROM A GAS TURBINE - A combined cycle power plant includes a first compressor that produces a compressed working fluid and a turbine downstream of the first compressor. The turbine includes stationary components and rotating components and produces an exhaust. A heat exchanger downstream of the turbine receives the exhaust from the turbine, and a second compressor downstream of the heat exchanger and upstream of the turbine receives the exhaust from the heat exchanger and provides a flow of exhaust to the turbine. A method for reducing oxygen emissions from a gas turbine includes flowing an exhaust from a turbine to a heat exchanger and removing heat from the exhaust. The method further includes increasing the pressure of the exhaust to produce a pressurized exhaust and flowing the pressurized exhaust back to the turbine to remove heat from the turbine. | 07-19-2012 |
20120180494 | TURBINE FUEL NOZZLE ASSEMBLY - According to one aspect of the invention, a fuel nozzle assembly for a turbine includes an inner conduit and a flange coupled to the inner conduit thereby forming a chamber for flow of a gas fuel. In addition, the flange includes a diaphragm member coupled to the inner conduit, the diaphragm member being configured to flex in response to relative movement between the inner conduit and the flange. | 07-19-2012 |
20120180495 | SYSTEM AND METHOD FOR INJECTING FUEL - According to various embodiments, a system includes a staggered multi-nozzle assembly. The staggered multi-nozzle assembly includes a first fuel nozzle having a first axis and a first flow path extending to a first downstream end portion, wherein the first fuel nozzle has a first non-circular perimeter at the first downstream end portion. The staggered multi-nozzle assembly also includes a second fuel nozzle having a second axis and a second flow path extending to a second downstream end portion, wherein the first and second downstream end portions are axially offset from one another relative to the first and second axes. The staggered multi-nozzle assembly further includes a cap member disposed circumferentially about at least the first and second fuel nozzles to assemble the staggered multi-nozzle assembly. | 07-19-2012 |
20120186261 | SYSTEM AND METHOD FOR A GAS TURBINE EXHAUST DIFFUSER - In one aspect, an exhaust diffuser for a gas turbine is disclosed. The exhaust diffuser may generally include an inner casing and an outer casing spaced radially apart from the inner casing so as to define a passage for receiving exhaust gases of the gas turbine. Additionally, the exhaust diffuser may include a fluid outlet configured to inject a fluid into the exhaust gases flowing through the passage. | 07-26-2012 |
20120186262 | GAS TURBINE COMBUSTOR AND METHOD FOR OPERATING - A combustor for a gas turbine engine includes a radially inboard liner, a radially outboard liner, and a bulkhead that cooperatively define an annular combustion chamber, a plurality of first fuel injectors that are disposed in the bulkhead, and a plurality of second fuel injectors that are disposed in at least one of the inboard liner and the outboard liner aftward of the bulkhead. A method is also provided for operating the combustor of the gas turbine engine wherein fuel distribution between the forward combustion zone and the downstream combustion zone is selectively varied in response to the power operating mode of the gas turbine engine with an objective to control NOx formation. | 07-26-2012 |
20120186263 | POWER GENERATION PLANT - A power-generation plant | 07-26-2012 |
20120192567 | GAS TURBINE ENGINE FLANGE ASSEMBLY INCLUDING FLOW CIRCUIT - One embodiment is a unique apparatus having a gas turbine engine flange assembly. Another embodiment is a unique system having a gas turbine engine flange assembly. Still other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engine flange assemblies. Further embodiments, forms, objects, features, advantages, aspects, embodiments and benefits shall become apparent from the following descriptions, drawings, and claims. | 08-02-2012 |
20120198856 | TURBINE COMBUSTOR CONFIGURED FOR HIGH-FREQUENCY DYNAMICS MITIGATION AND RELATED METHOD - A turbomachine combustor includes a combustion chamber; a plurality of micro-mixer nozzles mounted to an end cover of the combustion chamber, each including a fuel supply pipe affixed to a nozzle body located within the combustion chamber, wherein fuel from the supply pipe mixes with air in the nozzle body prior to discharge into the combustion chamber; and wherein at least some of the nozzle bodies of the plurality of micro-mixer nozzles have axial length dimensions that differ from axial length dimensions of other of the nozzle bodies. | 08-09-2012 |
20120204568 | Turbine Inlet Air System - The present application provides a turbine inlet air system. The turbine inlet air system may include a small droplet coalescer, a moisture eliminator positioned about the small droplet coalescer, and a filter downstream of the small droplet coalescer and the moisture eliminator. | 08-16-2012 |
20120204569 | APPARATUS AND METHODS FOR ELIMINATING CRACKING IN A TURBINE EXHAUST SHIELD - Undue flexing and cracking of an internal exhaust shield of a turbine is eliminated by isolating thermally-induced movement in the shield from that of strut apparatus passing therethrough to a surrounding outer exhaust casing. Methods and apparatus are disclosed. | 08-16-2012 |
20120210721 | DISTRIBUTED BLEED SYSTEM TEMPERATURE MANAGEMENT - A distributed bleed system temperature management scheme utilizes a distributed, closed loop temperature protection function. By allowing consumer systems to limit the consumer flow to meet a specified bleed system outlet temperature (which may be different for each consumer or group of consumers), each system can be penalized according to their level of importance. The closed loop approach allows optimization of the performance reduction instead of relying on conservative assumptions as is done with conventional systems. In some embodiments, each consumer system may have a different temperature limit at which the consumed flow is limited to maintain a given bleed system exit temperature. The temperature setpoints may be separated by a minimum temperature, based on sensor and controls tolerances, to ensure that the flow limiting functions do not interact with each other. | 08-23-2012 |
20120210722 | APPARATUS, METHOD, AND SYSTEM FOR SEPARATING PARTICLES FROM A FLUID STREAM - A rotating machine and associated method is disclosed that includes one or more cooling channels for providing a cooling fluid to a component. The cooling channels pass through a rotating component. The rotating machine further includes one or more particle separation slots in the rotating component in fluid communication with the one or more channels for removing particulate contamination. | 08-23-2012 |
20120210723 | GAS TURBINE GENERATOR SET - A gas turbine generator set includes a compressor unit including at least one compressor, at least one generator and at least one combustion chamber. Exhaust gases from at least one turbine are recirculated for a further thermal utilization. At least one cooling fluid compressor is configured to compress a cooling fluid including at least one of fresh air and a portion of the recirculated exhaust gases for a cooling of thermally loaded parts. | 08-23-2012 |
20120210724 | METHOD OF MATCHING THERMAL RESPONSE RATES BETWEEN A STATOR AND A ROTOR AND FLUIDIC THERMAL SWITCH FOR USE THEREWITH - A method for mitigating restart pinch during a hot restart. The method comprises providing a gas turbine engine including a stator and a rotor rotatably situated within the casing of the stator and providing an external heat source capable of selectively supplying auxiliary heat to the casing. The method further comprises operating the gas turbine engine for a first period of time at a steady state condition without supplying the auxiliary heat to the casing and supplying the auxiliary heat to the casing for a second period of time when shutting down the gas turbine after operating at the steady state condition for the first period of time. | 08-23-2012 |
20120216542 | Combustor Mixing Joint - The present application and the resultant patent provide a mixing joint for adjacent can combustors. The mixing joint may include a first can combustor with a first combustion flow and a first wall, a second can combustor with a second combustion flow and a second wall, and a flow disruption surface positioned about the first wall and the second wall to promote mixing of the first combustion flow and the second combustion flow. | 08-30-2012 |
20120216543 | DIFFUSING GAS TURBINE ENGINE RECUPERATOR - A gas turbine engine recuperator including exhaust passages providing fluid flow communication between an exhaust inlet and an exhaust outlet, the exhaust inlet being oriented to receive exhaust flow from a turbine of the engine and the exhaust outlet being oriented to deliver the exhaust flow to atmosphere, the exhaust inlet having a smaller cross-sectional area than that of the exhaust outlet, and a cross sectional area of each exhaust passage progressively increasing from the exhaust inlet to the exhaust outlet such as to diffuse the exhaust flow. Air passages are in heat exchange relationship with the exhaust passages and provide fluid flow communication between an air inlet and an air outlet designed to sealingly engage respective plenums of the gas turbine engine. | 08-30-2012 |
20120216544 | SWIRL REDUCING GAS TURBINE ENGINE RECUPERATOR - A gas turbine engine recuperator recuperator including exhaust passages providing fluid flow communication between an exhaust inlet and an exhaust outlet, the exhaust inlet being oriented to receive exhaust flow from a turbine of the engine and the exhaust outlet being oriented to deliver the exhaust flow to atmosphere, the exhaust passages having an arcuate profile in a plane perpendicular to a central axis of the recuperator to reduce a swirl of the exhaust flow. Air passages are in heat exchange relationship with the exhaust passages and providing fluid flow communication between an air inlet and an air outlet, design to sealingly respective plenum of the gas turbine engine. | 08-30-2012 |
20120216545 | ENVIRONMENTAL CONTROL SYSTEM SUPPLY PRECOOLER BYPASS - A precooler for cooling compressor bleed air for an environmental control system includes a heat exchanger in fluid communication with a source of cooling air and operable for cooling the bleed air. A variable bypass valve between a bleed air source and environmental control system is operable for bypassing at least a portion of the compressor bleed air around the heat exchanger. The cooling air may be a portion of fan air modulated by a variable fan air valve. The bleed air source may be selectable between the low pressure bleed air source and a high pressure bleed air source. One method includes flowing the compressor bleed air from a single low pressure source only and increasing thrust sufficiently to meet a minimum level of pressure of the bleed air during one engine out aircraft operating condition during approach or loitering. | 08-30-2012 |
20120216546 | METHOD AND DEVICE FOR TURBO GENERATOR COOLING - A method and apparatus for the operation of a gas turbine unit with an evaporative intake air cooling system in the intake air pathway, wherein the return water flow of the evaporative intake air cooling system is used for the cooling of components of the gas turbine unit and/or of a generator coupled to the gas turbine unit and/or of another element coupled to the gas turbine unit, and a gas turbine unit adapted to be operated using this method. | 08-30-2012 |
20120216547 | POWER PLANT FOR CO2 CAPTURE - An exemplary fossil fuel fired power plant is disclosed with minimum impact of the CO2 capture system on a power part of the plant. A power plant is disclosed which is ready for the retrofit of a CO2 capture plant, and a method is disclosed for retrofitting an existing plant into a power plant with CO2 capture. A power plant part is disclosed which can provide steam and power to operate CO2 capture system, and provide a CO2 capture system, which has the capacity to remove CO2 from flue gas flow of the power part, and of the additional power plant part. | 08-30-2012 |
20120227409 | AIRCRAFT FUEL SYSTEM COOLING FLOW DEVICE - A cooling system includes a housing having an aperture intersecting a passage that includes first and second passage portions. A plug is arranged in the aperture in an interference fit in a first position at a first temperature condition to block the passage and fluidly separate the first and second passage portions. A biasing element is arranged in the housing and is configured to move the plug from the first position to a second position at a second temperature condition to fluidly connect the first and second passage portions. | 09-13-2012 |
20120227410 | ACTIVE PATTERN FACTOR CONTROL FOR GAS TURBINE ENGINES - A method of actively controlling pattern factor in a gas turbine engine includes the steps of issuing fuel into a combustion chamber of a gas turbine engine through one or more circumferentially disposed fuel injectors, determining an initial circumferential pattern factor in the combustion chamber, and adjusting fuel flow through one or more selected fuel injectors based on the initial circumferential pattern factor, to yield a modified circumferential pattern factor in the combustion chamber. The step of determining the circumferential pattern factor can include the steps of detecting a chemiluminescent signature within the combustor, correlating the chemiluminescent signature to an equivalence ratio, and computing the initial circumferential pattern factor based on the equivalence ratio. Alternatively, the step of determining the circumferential pattern factor can include the steps of measuring temperatures at a plurality of circumferential positions at the combustor exit and computing the initial circumferential pattern factor based on the measured temperatures. | 09-13-2012 |
20120234013 | RECIRCULATING PRODUCT INJECTION NOZZLE - Combustion systems and the related methods operate to supply a stream of combustion products to a turbine in a gas turbine engine by forming an outer recirculation zone of recirculating combustion products within a combustor and by forming an inner recirculation zone inboard of the outer recirculation zone. The inner and outer recirculation zones are formed by imparting swirl to compressor discharge air passing through an outer air swirler and an inner air swirler radially inboard of the outer air swirler. Fuel is injected from an outer fuel injector into the outer recirculation zone, and fuel is also injected from an inner fuel injector into the inner recirculation zone. | 09-20-2012 |
20120240588 | HYBRID SLINGER COMBUSTION SYSTEM - A hybrid combustor combines two distinct fuel injection sources to spray fuel in the combustor. The combustor combines a rotary fuel slinger for spraying fuel in a first combustion zone during high power level and cruise conditions and a set of fuel nozzles for spraying fuel in a second combustion zone during lower power level and starting conditions. | 09-27-2012 |
20120240589 | POWER PLANT AND POWER PLANT OPERATING METHOD - According to one embodiment, there is provided a power plant operating method. The method includes calculating by a turbine output calculating unit a turbine output based on an exponential value of a steam pressure measured at an arbitrary point downstream from the repeater, calculating by a power generator output calculating unit a power generator output generated by the power generator, detecting by an output deviation detecting unit a deviation between the turbine output and the power generator output, detecting by a power load unbalance detecting unit power load unbalance when the deviation exceeds a preset value, and outputting by a control unit a rapid close command to regulator valves of the steam turbine when the power load unbalance is detected. | 09-27-2012 |
20120240590 | GAS TURBINE POWER PLANT WITH FLUE GAS RECIRCULATION AND OXYGEN-DEPLETED COOLING GAS - A method is disclosed for operating a gas turbine power plant having a gas turbine, a heat recovery steam generator and an flue gas splitter which splits flue gases into a first flue gas flow for recirculation into an inlet flow of the gas turbine and into a second flue gas flow for discharge to an environment. An oxygen-depleted gas can be used in an open cooling system for cooling hot gas parts of the gas turbine. A split compressor intake can be provided for separate feed of recirculated flue gas and fresh air into a compressor intake. Compressor blades can include a separating band which blocks intermixing of recirculated flue gas and fresh air during compression. | 09-27-2012 |
20120240591 | METHOD FOR SHUTTING DOWN A GENERATOR TO PREPARE THE GENERATOR FOR RESTART - A method and apparatus for shutting down a generator to prepare the generator for restart is disclosed. A power down sequence of a gas turbine of the generator is initiated from an operating state. A purge gas is forced into the gas turbine to extinguish a combustion flame in the gas turbine. The purge gas is swept through the gas turbine to displace the fuel from the gas turbine using a coast down airflow through the gas turbine during the power down sequence to prepare the generator for restart. | 09-27-2012 |
20120247113 | SYSTEM AND METHOD FOR AIR EXTRACTION FROM GAS TURBINE ENGINES - The disclosed embodiments relate to a system and method that allows air to be extracted from a plurality of gas turbine engines and fed to a downstream process, even in situations in which one or more of the gas turbine engines are operating in a part load condition. For example, in an embodiment, a method includes monitoring signals representative of a header pressure of a header, or a pressure of extraction air flow from one or more gas turbine engines to the header, or both, and maintaining substantially continuous flows of extraction air from the gas turbine engines to the header. The substantially continuous flows are maintained when the gas turbine engines are under symmetric and asymmetric load conditions. | 10-04-2012 |
20120247114 | Water Cooling System For Intercooled Turbines - An intercooled gas turbine is provided having an air cooled heat exchanger and a chiller disposed to remove heat from the cooling medium of the intercooler heat exchanger. During peak hours when the turbine is in operation, the air cooled heat exchanger is used primarily to cool the cooling medium of the intercooler heat exchanger. During off peak hours when the turbine is idle, the air cooled heat exchanger is used to remove heat from the condenser of a chiller system associated with a gas turbine inlet air cooling system. An additional liquid to liquid heat exchanger may be provided in-line between the intercooler heat exchanger and the air cooled heat exchanger to further cool the intercooler heat exchanger cooling medium using chilled water before the cooling medium passes back into the intercooler heat exchanger. The chilled water may be provided directly from the chillers, or from a thermal energy storage tank, or from the cooling coils of a turbine inlet air cooling system. | 10-04-2012 |
20120247115 | Gas compressor operating method and gas turbine equipped with gas compressor - In a method for operating a gas compressor which compresses gas whose supply conditions change and which is equipped with an intake-flow regulating mechanism, a limit pressure ratio that defines the operational upper limit of the pressure ratio relative to the intake flow rate of the gas compressor or the degree of opening of the intake-flow regulating mechanism to prevent surging in the gas compressor is corrected by multiplying a reference limit pressure ratio calculated from the design conditions of the gas compressor by a first correction factor calculated depending on a detected operating-state value of the gas compressor. | 10-04-2012 |
20120247116 | METHOD FOR SWITCHING OVER A GAS TURBINE BURNER OPERATION FROM LIQUID TO GAS FUEL AND VICE-VERSA - A method is provided for switching over a gas turbine burner operation from liquid fuel to gas fuel and vice-versa, with the burner comprising nozzles for feeding a premixed gas fuel, nozzles for injecting a pilot gas fuel and nozzles for injecting a liquid fuel. According to the method, while the liquid fuel and the premix gas fuel are regulated to switch over from liquid fuel to gas fuel operation or vice-versa, the pilot gas fuel is controlled at a substantially constant flow rate. | 10-04-2012 |
20120247117 | VEHICLE SYSTEM - A system is disclosed one form of which is an aircraft that includes a pod capable of housing a work providing device. The pod can also include a thermal conditioning system and a power generation device that can be powered from the work providing device. The pod can provide thermal conditioning services and power services to a payload aboard the aircraft. In one non-limiting form the payload is a directed energy member that can be cooled using the thermal conditioning system and powered using the power generation device. | 10-04-2012 |
20120255309 | UTILIZING STEAM AND/OR HOT WATER GENERATED USING SOLAR ENERGY - Methods, systems, and apparatus by which steam and/or hot water generated using solar energy may be utilized to generate electricity or work are disclosed herein. A method in one instance may involve driving a first turbine using a fluid having energy obtained from a main energy source other than solar energy, and using solar energy-generated hot water and/or steam as an auxiliary energy input to drive the first turbine. An apparatus in one instance may include (1) a first turbine in fluid communication with and driven by a fluid heated by a main energy source other than solar energy in fluid communication with (2) a solar steam and/or hot water generator that utilizes solar energy to generate hot water and/or steam or other working fluid as an auxiliary energy input source for the first turbine. | 10-11-2012 |
20120260660 | Stoichiometric Exhaust Gas Recirculation Combustor - The present application provides a stoichiometric exhaust gas recovery turbine system. The stoichiometric exhaust gas recovery turbine system may include a main compressor for compressing a flow of ambient air, a turbine, and a stoichiometric exhaust gas recovery combustor. The stoichiometric exhaust gas recovery combustor may include a combustion liner, an extended flow sleeve in communication with the main compressor, and an extraction port in communication with the turbine. The extended flow sleeve receives the flow of ambient air from the main compressor so as to cool the combustion liner and then the flow of ambient air splits into an extraction flow to the turbine via the extraction port and a combustion flow within the combustion liner. | 10-18-2012 |
20120260661 | COMPRESSION RAMP BOUNDARY LAYER REMOVAL - An inlet for removal of a boundary layer from an incoming air flow of an engine is disclosed. The inlet includes at least one compression element proximate to an inlet aperture of the engine. The compression element is selectably moveable between a first position and a second position along an axis. A boundary layer removal aperture is open when the compression element is in the first position and the boundary layer removal aperture is closed when the compression element is in the second position. | 10-18-2012 |
20120260662 | RADIATION SHIELD FOR A GAS TURBINE COMBUSTOR - A method is disclosed for directing flow to a combustor embedded in a recuperator while shielding the recuperator from radiative heat transfer from the combustor. The radiation heat shield also serves as a structural component to center the combustor within the recuperator core cavity and to allow motion between the combustor and recuperator as temperatures vary. The disclosure is illustrated by the example a gas turbine engine comprising three turbomachinery spools, an intercooler, a recuperator and a combustor. Thermal efficiency of such an engine can be increased by raising the high pressure turbine inlet temperature. It is a specific goal of the present disclosure to reduce radiative heating of a recuperator by a combustor which is housed substantially inside the recuperator. | 10-18-2012 |
20120260663 | FUEL SUPPLY ARRANGEMENT - A fuel supply arrangement for supplying fuel to a turbine engine, the arrangement having a fuel injector in fluidical connection with a first manifold via a first conduit and a second fuel manifold via a second conduit, wherein the first conduit is in fluidical connection with a valve having two outlets, the first outlet fluidically connecting the valve with at least one pilot vent in the injector, and the second outlet fluidically connecting the valve with at least one main vent in the injector via a second valve, the second conduit in fluidical connection with at least one further main vent in the injector via a third valve. | 10-18-2012 |
20120260664 | FUEL INJECTOR ARRANGEMENT HAVING AN IGNITER - An arrangement for a combustion chamber the arrangement comprising a combustion chamber, an injector for injecting fuel into the combustion chamber and an igniter for supplying a spark for igniting fuel so injected, wherein the injector has a passage through which air is supplied to the combustion chamber in use, the igniter being positioned upstream of the combustion chamber such that a spark generated by the igniter is conveyed along the passage by the injector air. | 10-18-2012 |
20120266601 | SYSTEM AND METHOD FOR REMOVING HEAT FROM A TURBOMACHINE - The present invention provides systems and methods of removing heat from internal areas of a turbomachine. Embodiments of the present invention may incorporate a suction device and a control system. Operatively, these elements may collectively discharge remnants of a heated fluid and/or gas from those internal areas. | 10-25-2012 |
20120266602 | Aerodynamic Fuel Nozzle - The present application and the resultant patent provide a combustor for a turbine engine. The combustor may include a number of fuel nozzles with one or more of the fuel nozzles including a swirler assembly. The swirler assembly may include a number of stages with a number of fueled structures and a number of unfueled structures. | 10-25-2012 |
20120266603 | MULTI-LAYER CERAMIC COMPOSITE POROUS STRUCTURE - An article of manufacture includes a first ceramic matrix composite (CMC) sheet having a number of flow passages therethrough, and an open-cell foam layer bonded to the first CMC sheet. The open-cell foam layer is an open-cell foam. The article of manufacture includes a second CMC sheet bonded to the open-cell foam layer, the second CMC sheet having a thermal and environmental barrier coating and having a number of flow passages therethrough. | 10-25-2012 |
20120266604 | FUEL NOZZLE AND METHOD FOR OPERATING A COMBUSTOR - A fuel nozzle and a method for operating a combustor are disclosed. The method includes flowing a fuel and an oxidizer through a fuel nozzle, the fuel nozzle comprising an inner tube, an intermediate tube, and an outer tube each configured for flowing one of the fuel or the oxidizer therethrough. At least one of the inner tube, the intermediate tube, or the outer tube includes a plurality of swirler vanes. The method further includes imparting a swirl to the fuel and the oxidizer in the fuel nozzle, and exhausting the fuel and the oxidizer from the fuel nozzle into a combustion zone. | 10-25-2012 |
20120272654 | FULLY IMPINGEMENT COOLED VENTURI WITH INBUILT RESONATOR FOR REDUCED DYNAMICS AND BETTER HEAT TRANSFER CAPABILITIES - A venturi assembly for a turbine combustor includes a first outer annular wall and a second intermediate annular wall radially spaced from each other in substantially concentric relationship. The first outer annular wall and said second intermediate annular wall shaped to define a forward, substantially V-shaped throat region, and an aft, axially extending portion. A third radially innermost annular wall is connected to the second intermediate annular wall at an aft end of said throat region. A first plurality of apertures is provided in the first outer annular wall in the substantially V-shaped throat region, and a second plurality of apertures is provided in the aft, axially extending portion of said second intermediate annular wall so that cooling air flows through the first and second pluralities of apertures to impingement cool the third radially innermost annular wall. | 11-01-2012 |
20120272655 | SYSTEMS AND METHODS FOR POWER GENERATION USING OXY-FUEL COMBUSTION - A system and a method of generating energy in a power plant using a turbine are provided. The system includes an air separation unit providing an oxygen output; a plasma generator that is capable of generating plasma; and a combustor configured to receive oxygen and to combust a fuel stream in the presence of the plasma, so as to maintain a stable flame, generating an exhaust gas. The system can further include a water condensation system, fluidly-coupled to the combustor, that is capable of producing a high-content carbon dioxide stream that is substantially free of oxygen. The method of generating energy in a power plant includes the steps of operating an air separation unit to separate oxygen from air, combusting a fuel stream in a combustor in the presence of oxygen, and generating an exhaust gas from the combustion. The exhaust gas can be used in a turbine to generate electricity. A plasma is generated inside the combustor, and a stable flame is maintained in the combustor. | 11-01-2012 |
20120272656 | MULTIPLE CORE VARIABLE CYCLE GAS TURBINE ENGINE AND METHOD OF OPERATION - A gas turbine engine system includes a fan assembly, a low pressure compressor, a low pressure turbine, a plurality of engine cores including a first engine core and a second engine core, and a control assembly. A primary flowpath is defined through the fan assembly, the low pressure compressor, the low pressure turbine, and the active engine cores. Each engine core includes a high pressure compressor, a combustor downstream from the high pressure compressor, and a high pressure turbine downstream from the combustor. The control assembly is configured to control operation of the plurality of engine cores such that in a first operational mode the first and the second engine cores are active to generate combustion products and in a second operational mode the first engine core is active to generate combustion products while the second engine core is idle. | 11-01-2012 |
20120272657 | MEMBRANE TECHNOLOGY FOR USE IN A POWER GENERATION PROCESS - Disclosed herein is a power generation process in which a portion of the carbon dioxide generated by gaseous fuel combustion is recycled back to the power generation process, either pre-combustion, post-combustion, or both. The power generation process of the invention may be a combined cycle process or a traditional power generation process. The process utilizes sweep-based membrane separation. | 11-01-2012 |
20120279226 | HULA SEAL WITH PREFERENTIAL COOLING - An annular seal for use between coupled combustor components includes a segmented annular solid edge portion and a plurality of alternating spring fingers and slots extending from the solid edge portion and arranged about a circumference of the solid edge portion, wherein one or more of the plurality of spring fingers or one or more of the plurality of straight and angled slots have non-uniform width dimensions. | 11-08-2012 |
20120279227 | METHOD FOR THE CAPTURE AND DISPOSAL OF CARBON DIOXIDE IN AN ENERGY CONVERSION PROCESS - An energy conversion process that also exports by-product CO | 11-08-2012 |
20120279228 | GAS COOLER AND METHOD FOR COOLING GAS - There is disclosed a gas cooler | 11-08-2012 |
20120285173 | LOBED SWIRLER - A swirler including an annular housing with limiting walls. At least two vanes are arranged in the annular housing including the sidewalls of the swirler. The leading edge area of each vane has a profile, which is oriented parallel to a main flow direction prevailing at the leading edge position, wherein the profiles of the vanes turn from the main flow direction prevailing at the leading edge position to impose a swirl on the flow, and wherein, with reference to a central plane of the vanes the trailing edges are provided with at least two lobes in opposite transverse directions. A burner for a combustion chamber of a gas turbine including such a swirler and at least one nozzle having its outlet orifice at or in a trailing edge of the vane and to a method of operation of such a burner. | 11-15-2012 |
20120291444 | METHOD OF OPERATING A GAS TURBINE ENGINE - A method of operating a gas turbine engine includes directing a stream of liquid fuel to the combustor through a nozzle of a dual fuel injector. The method may also include directing a first quantity of compressed air to the stream of liquid fuel proximate the nozzle, and directing a second quantity of compressed air to the stream of liquid fuel downstream of the nozzle. The second quantity of compressed air may be larger than the first quantity of compressed air. The method may further include delivering the compressed air and the stream of liquid fuel to the combustor in a substantially unmixed manner. | 11-22-2012 |
20120291445 | METHOD FOR OPERATING A GAS TURBINE POWER PLANT WITH EXHAUST GAS RECIRCULATION - An exemplary method is disclosed for operating a gas turbine power plant with exhaust gas recirculation, in which the exhaust gas recirculation is, for example, disengaged during starting and shutting down of the gas turbine, and in which the engaging or disengaging of the exhaust gas recirculation can be carried out in dependence upon an operating state of the gas turbine. An exemplary gas turbine power plant with exhaust gas recirculation is also disclosed which can include a control element, the closing speed of which is such that the control element can be closed within a time which is less than a time for exhaust gases to flow from the turbine through an HRSG. | 11-22-2012 |
20120291446 | Combustor - A highly-reliable combustor is provided that allows flash back of flame into a premixer to be suppressed. | 11-22-2012 |
20120297780 | ACTIVE FUEL TEMPERATURE CONTROL - A system for managing fuel temperature in an engine includes a source of hot pressurized air and a turbine for converting hot pressurized air into cool expanded air. The system further includes a fuel tank for storing fuel, a fuel conduit fluidly connected to the fuel tank, and a first heat exchanger located on the fuel conduit. The first heat exchanger places the cool expanded air from the turbine in a heat exchange relationship with the fuel, thereby cooling the fuel. | 11-29-2012 |
20120297781 | HEATING SYSTEM FOR USE IN A TURBINE ENGINE AND METHOD OF OPERATING SAME - A method of operating a turbine engine including coupling a heating assembly to the turbine engine for selectively heating a compressor casing. A sensor transmits a first monitoring signal indicative of a speed of a rotor assembly to a controller. The controller determines whether the turbine engine is operating in a first operating mode based at least in part on the received first monitoring signal, wherein during the first operating mode a minimum clearance distance is defined between the rotor assembly and the compressor casing. The compressor casing of the turbine engine is heated to increase the clearance distance between the compressor casing and the rotor assembly, if the turbine engine is in the first operating mode. | 11-29-2012 |
20120297782 | SYSTEM AND METHOD FOR TURBINE COMBUSTOR MOUNTING ASSEMBLY - A system includes a gas turbine combustor, which includes a combustion liner disposed about a combustion region, a flow sleeve disposed about the combustion liner, an air passage between the combustion liner and the flow sleeve, and an aerodynamic mounting assembly disposed in the air passage. The aerodynamic mounting assembly is configured to retain the combustion liner within the flow sleeve. The aerodynamic mounting assembly includes a flow sleeve mount coupled to the flow sleeve and a liner stop coupled to the combustion liner. The flow sleeve mount includes a first portion of an aerodynamic shape and the liner stop includes a second portion of the aerodynamic shape, which is configured to direct an airflow into a wake region downstream of the aerodynamic mounting assembly. The flow sleeve mount and the liner stop couple with one another to define the aerodynamic shape. | 11-29-2012 |
20120297783 | SYSTEM AND METHOD FOR FLOW CONTROL IN GAS TURBINE ENGINE - A system includes a gas turbine combustor, which includes a combustion liner disposed about a combustion region, a flow sleeve disposed about the combustion liner, an air passage between the combustion liner and the flow sleeve, and a structure extending between the combustion liner and the flow sleeve. The structure obstructs an airflow path through the air passage. The gas turbine combustor also includes an aerodynamic wake reducer configured to redirect an airflow around the structure to reduce a wake region downstream of the structure. | 11-29-2012 |
20120297784 | SYSTEM AND METHOD FOR FLOW CONTROL IN GAS TURBINE ENGINE - A system includes a gas turbine combustor, which includes a combustion liner disposed about a combustion region, a flow sleeve disposed about the combustion liner, an air passage between the combustion liner and the flow sleeve, and an airflow guide vane disposed in the air passage. The airflow guide vane includes an upstream vane portion and a downstream vane portion. The upstream vane portion is oriented at an angle from an axial axis of the gas turbine combustor. The downstream vane portion is aligned with the axial axis. The airflow guide vane is configured to remove a circumferential swirl of an airflow upstream of the airflow guide vane to straighten the airflow downstream of the airflow guide vane along the axial axis. | 11-29-2012 |
20120297785 | SYSTEM AND METHOD FOR FLOW CONTROL IN GAS TURBINE ENGINE - A system includes a gas turbine combustor, which includes a combustion liner disposed about a combustion region, a flow sleeve disposed about the combustion liner, an air passage between the combustion liner and the flow sleeve, and a structure between the combustion liner and the flow sleeve. The structure obstructs an airflow through the air passage. The gas turbine combustor also includes a wake reducer disposed adjacent the structure. The wake reducer directs a flow into a wake region downstream of the structure. | 11-29-2012 |
20120297786 | SYSTEM AND METHOD FOR FLOW CONTROL IN GAS TURBINE ENGINE - A system includes a gas turbine combustor, which includes a combustion liner disposed about a combustion region, a flow sleeve disposed about the combustion liner, an air passage between the combustion liner and the flow sleeve, a fuel injector disposed downstream of the combustion liner and the flow sleeve, a liner mount extending between the combustion liner and the flow sleeve, and a crossfire tube extending between the combustion liner and the flow sleeve. The fuel injector, the liner mount, and the crossfire tube are aligned with one another in a flow enhancing arrangement along a common axis in an axial direction relative to an axis of the gas turbine combustor. The flow enhancing arrangement reduces an air flow disturbance caused by the fuel injector, the liner mount, and the crossfire tube. | 11-29-2012 |
20120297787 | FLOW STRAIGHTENER AND MIXER - A combined flow straightener and mixer is disclosed as well as a burner for a combustion chamber of a gas turbine having such a mixing device. At least two streamlined bodies are arranged in a structure comprising the side walls of the mixer. The leading edge area of each streamlined body has a profile, which is oriented parallel to a main flow direction prevailing at the leading edge position, and with reference to a central plane of the streamlined bodies, the trailing edges are provided with at least two lobes in opposite transverse directions. The periodic deflections forming the lobes from two adjacent streamlined bodies are out of phase. | 11-29-2012 |
20120297788 | Method of determining a combustor exit temperature and method of controlling a gas turbine - A method of determining an exit temperature of a gas exiting a combustor of a gas turbine includes determining a mass flow and a temperature of fuel being delivered to the combustor; determining a mass flow and a temperature of air being delivered to the combustor, determining a temperature dependence of the specific heat capacity of a burnt mixture of the fuel and the air being delivered to the combustor; and determining an exit temperature of the burnt mixture exiting the combustor. The exit temperature is determined based on the determined mass flow and temperature of the fuel, the determined mass flow and temperature of the air, and the determined temperature dependence of the specific heat capacity of the burnt mixture. | 11-29-2012 |
20120304660 | TURBOMACHINE COMBUSTORS HAVING DIFFERENT FLOW PATHS - An example turbomachine assembly includes a first combustor configured to combust fuel and compressed air and a second combustor configured to combust fuel and compressed air. Flow moves through the first combustor in a first direction and flow moves though the second combustor in a second direction different than the first direction. The first combustor is axially spaced from the second combustor. | 12-06-2012 |
20120312023 | THERMAL MANAGEMENT SYSTEMS AND METHODS FOR AUXILIARY POWER UNITS - An auxiliary power unit (APU) is provided and configured to be mounted in an APU compartment that defines an inlet opening. The APU includes a power section having components lubricated with oil; an intake duct coupled to the inlet opening and the power section and configured to direct a first portion of air flow through the inlet opening into the power section; an oil cooler coupled to the power section and configured to cool the oil of the power unit; a cooling duct coupled to the oil cooler and the intake opening; an inlet door mounted at the inlet opening and configured to open and close the inlet opening, the inlet door further configured to be positioned in at least a first open position and a second open position; and a thermal management system configured to adjust the inlet door between the first open position and the second open position based on one or more operating temperatures within the APU. | 12-13-2012 |
20120312024 | LATE LEAN INJECTION WITH ADJUSTABLE AIR SPLITS - A gas turbine engine is provided and includes a combustor having a first interior in which a first fuel is combustible, a turbine into which products of at least the combustion of the first fuel are receivable, a transition zone, including a second interior in which a second fuel and the products of the combustion of the first fuel are combustible, a plurality of fuel injectors which are configured to supply the second fuel to the second interior in any one of a single axial stage, multiple axial stages, a single axial circumferential stage and multiple axial circumferential stages, a compressor, by which air is supplied to the first and second interiors for the combustion therein, and a control system configured to control relative amounts of the air to the first and second interiors and relative amounts of the first and second fuels supplied to the first and second interiors. | 12-13-2012 |
20120317988 | SYSTEMS AND METHODS FOR IMPROVING THE EFFICIENCY OF A COMBINED CYCLE POWER PLANT - Systems and methods for improving the efficiency of a power generation facility utilize heat energy to preheat inlet-air that is supplied to the compressor of a turbine or to preheat fuel that is burned in the turbine. The heat energy used to preheat the inlet-air can be drawn from a heat recovery steam generator (HRSG) that produces steam using at least part of the exhaust gas of the turbine. The heat energy can be obtained from one or more predetermined points within the HRSG, such as a feed water line exiting a drum of the HRSG or a feed line connecting an economizer of the HRSG to a drum of the HRSG. The fluid drawn from the predetermined point passes through a heat exchanger or a preheater to remove the heat energy used for preheating. The fluid is then returned to the HRSG immediately downstream from the point from which it was drawn. | 12-20-2012 |
20120317989 | SYSTEMS AND METHODS FOR COMBUSTOR EMISSIONS CONTROL - The present application thus provides a gas turbine engine system. The gas turbine engine system may include a gas turbine engine, a nitrogen oxides reduction system in communication with a flow of combustion gases downstream from the gas turbine engine, and a nitrogen oxides controller to control the ratio of nitrogen dioxide to nitrogen oxides in the flow of combustion gases entering the nitrogen oxides reduction system. | 12-20-2012 |
20120317990 | SYSTEMS AND METHODS FOR DETECTING COMBUSTOR CASING FLAME HOLDING IN A GAS TURBINE ENGINE - In a gas turbine engine that includes a compressor and a combustor, wherein the combustor includes a primary fuel injector within a fuel nozzle and a secondary fuel injector that is upstream of the fuel nozzle and configured to inject fuel into a flow annulus of the combustor, a method for detecting a flame holding condition about a fuel injector. The method may include the steps of: detecting an upstream pressure upstream of the secondary fuel injector; detecting a downstream pressure downstream of the secondary fuel injector; determining a measured pressure difference between the upstream pressure and the downstream pressure; and comparing the measured pressure difference to an expected pressure difference. | 12-20-2012 |
20120324899 | OIL BYPASS CHANNEL DEAERATOR FOR A GEARED TURBOFAN ENGINE - An assembly includes a gas turbine engine, a compartment wall, and a gutter system. The gas turbine engine has a spool connected to a fan shaft via a gear system. The compartment wall is positioned radially outward from the gear system. The gutter system is positioned radially outward from the gear system for capturing lubricating liquid slung from the gear system and positioned radially inward of the compartment wall. The gutter system includes a gutter and a flow passage fluidically connected to the gutter. The flow passage has a plurality of holes that allow the lubricating liquid to pass through the flow passage into a space between the flow passage and the compartment wall. | 12-27-2012 |
20120324900 | PHASE AND AMPLITUDE MATCHED FUEL INJECTOR - A fuel injector for a turbine engine may include a body member disposed about a longitudinal axis, and a barrel member located radially outwardly from the body member. The fuel injector may also include an annular passageway extending between the body member and the barrel member from a first end to a second end. The first end may be configured to be fluidly coupled to a compressor of the turbine engine and the second end may be configured to be fluidly coupled to a combustor of the turbine engine. The fuel injector may also include a perforated plate positioned proximate the first end of the passageway. The perforated plate may be configured to direct compressed air into the annular passageway with a first pressure drop. The fuel injector may also include at least one fuel discharge orifice positioned downstream of the perforated plate. The at least one fuel discharge orifice may be configured to discharge a fuel into the annular passageway with a second pressure drop. The second pressure drop may have a value between about the first pressure drop and about 1.75 times the first pressure drop. | 12-27-2012 |
20120324901 | TANDEM FAN-TURBINE ROTOR FOR A TIP TURBINE ENGINE - A tandem fan-turbine rotor assembly for a tip turbine engine includes a hollow fan blade rotor and a solid fan blade rotor. The hollow fan blade rotor includes a first fan blade rotor hub, hollow fan blades, and an inducer. The solid fan blade rotor includes a second fan blade rotor hub, solid fan blades, an exo-ring, and tip turbine blades. The exo-ring connects the solid fan blades at their maximum outward radial extent. The tip turbine blades are connected to the exo-ring and extend radially outward from the exo-ring. The hollow fan blade rotor and the solid fan blade rotor rigidly attach to each other at the first and second fan blade rotor hubs. | 12-27-2012 |
20120324902 | METHOD OF MAINTAINING SURFACE-RELATED PROPERTIES OF GAS TURBINE COMBUSTOR COMPONENTS - A method and coating for maintaining surface-related properties of a gas turbine combustor component having a wall formed of a nickel-base alloy containing a gamma prime precipitate strengthening phase, interior and exterior surfaces defined by the wall, and at least one hole in the wall that fluidically connects the interior and exterior surfaces of the combustor component. A diffusion coating composition is applied at least within the hole, and then heated to form a diffusion aluminide coating in at least an in-wall surface region of the wall that surrounds and defines the hole. The aluminiding coating forms a diffusion zone that contains a sufficient amount of aluminum intermetallics to inhibit depletion of the gamma prime precipitates in the wall and inhibit degradation and cracking in the in-wall surface region surrounding the hole. | 12-27-2012 |
20120324903 | HIGH EFFICIENCY COMPACT GAS TURBINE ENGINE - This disclosure relates to a highly efficient gas turbine engine architecture utilizing multiple stages of intercooling and reheat, ceramic technology, turbocharger technology and high pressure combustion. The approach includes utilizing a conventional dry low NOx combustor for the main combustor and thermal reactors for the reheat apparatuses. In a first configuration, there are three separate turbo-compressor spools and a free power turbine spool. In a second configuration, there are three separate turbo-compressor spools but no free power spool. In a third configuration, all the compressors and turbines are on a single shaft. Each of these configurations can include two stages of intercooling, two stages of reheat and a recuperator to preheat the working fluid before it enters the main combustor. | 12-27-2012 |
20130000311 | GAS TURBINE ENGINE STAGED FUEL INJECTION - A fuel injection array for a gas turbine engine includes a plurality of bluff body injectors and a plurality of swirler injectors. A control operates the plurality of bluff body injectors and swirler injectors such that bluff body injectors are utilized without all of the swirler injectors at least at low power operation. The swirler injectors are utilized at higher power operation. | 01-03-2013 |
20130000312 | TURBOMACHINE COMBUSTOR ASSEMBLY INCLUDING A VORTEX MODIFICATION SYSTEM - A turbomachine combustor assembly includes a combustor body, and a combustor liner arranged within the combustor body and defining a combustion chamber. The combustor liner includes a venturi portion arranged within the combustion chamber. A fluid passage is defined between the combustor body and the combustor liner, and at least one turbulator is arranged in the fluid passage. The at least one turbulator is configured and disposed to create vortices in the fluid passage. A vortex modification system is arranged at the fluid passage and is configured and disposed to disrupt the vortices in the fluid passage. | 01-03-2013 |
20130000313 | HYDRAULIC FLUID TRANSFER COUPLING - A hydraulic fluid transfer coupling has a stator, a first coaxial rotor, and a second coaxial rotor. The first rotor is radially inwards of the stator, the second rotor is radially outwards of the stator, at least part of the first rotor axially overlapping with the stator, and at least part of the second rotor axially overlapping with the stator. The first rotor carries one or more first rotating fluid lines, and the second rotor carries one or more second rotating fluid lines. The stator carries one or more first static fluid lines and second static fluid lines. Each pair of a first rotating fluid line and the corresponding first static fluid line are fluidly coupled and each pair of a second rotating fluid line and the corresponding second static fluid line are fluidly coupled. Hydraulic fluid is transferable between each static fluid line and the corresponding rotating fluid line. | 01-03-2013 |
20130008170 | SUBSONIC SWEPT FAN BLADE - A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be driven at a at a design speed by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool. Rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades includes an airfoil body. The leading edge of the airfoil body has a swept profile such that, at the design speed, a component of a relative velocity vector of a working gas that is normal to the leading edge is subsonic along the entire radial span. | 01-10-2013 |
20130008171 | METHOD OF CONTROLLING SPEED TRANSIENTS IN A TURBINE ENGINE - A method of controlling an engine in which a fuel flow setpoint is determined, the method comprising:
| 01-10-2013 |
20130014512 | Ceramic Matrix Composite Combustor Vane Ring AssemblyAANM Jarmon; David C.AACI KensingtonAAST CTAACO USAAGP Jarmon; David C. Kensington CT USAANM Smith; Peter G.AACI WallingfordAAST CTAACO USAAGP Smith; Peter G. Wallingford CT US - A vane assembly has an outer support ring, an inner support ring, an outer liner ring, an inner liner ring, and a circumferential array of vanes. Each vane has a shell extending from an inboard end to an outboard end and at least partially through an associated aperture in the inner liner ring and an associated aperture in the outer liner ring. There is at least one of: an outer compliant member compliantly radially positioning the vane; and an inner compliant member compliantly radially positioning the vane. | 01-17-2013 |
20130014513 | CONNECTION FOR GENERATOR IN A GAS TURBINE ENGINEAANM Barnett; BarryAACI MarkhamAACO CAAAGP Barnett; Barry Markham CAAANM Alecu; DanielAACI TorontoAACO CAAAGP Alecu; Daniel Toronto CAAANM Eleftheriou; AndreasAACI WoodbridgeAACO CAAAGP Eleftheriou; Andreas Woodbridge CA - A gas turbine engine having an electric generator includes a transmission shaft extending along a longitudinal axis of the engine and drivingly interconnecting a turbine shaft of the engine and a rotor shaft of the electric generator. The transmission shaft is engaged by splined mating connections with the turbine shaft and the rotor shaft. The transmission shaft has a shear neck defining a reduced radial wall thickness with respect to a remainder of the transmission shaft such as to provide a weakened region of the transmission shaft. An annular support structure, concentric with and surrounding the transmission shaft, is axially located between the shear neck and a forward end of the transmission shaft engaged to the turbine shaft, and includes a bearing operable to rotationally support the transmission shaft. | 01-17-2013 |
20130019603 | INSERT FOR GAS TURBINE ENGINE COMBUSTOR - A combustor of a gas turbine engine includes a heat shield panel mounted to a support shell and an insert adjacent to the support shell and the heat shield panel. | 01-24-2013 |
20130019604 | MULTI-STAGE AMPLIFICATION VORTEX MIXTURE FOR GAS TURBINE ENGINE COMBUSTOR - A multi-stage vortex mixer for a combustor of a gas turbine engine includes a vortex amplifier stage in communication with a first stage amplifier, the vortex amplifier stage in communication with a dilution hole. | 01-24-2013 |
20130019605 | METHOD FOR OPERATING A FIRING PLANT - A method for operating a firing plant with at least one combustion chamber and at least one burner, especially a gas turbine, includes an operating characteristic for operating the combustion chamber close to the lean extinction limit defined as a burner group staging ratio (BGV | 01-24-2013 |
20130025286 | GAS TURBINE ENGINE WITH AFT CORE DRIVEN FAN SECTION - A gas turbine engine includes a low spool along an engine axis with a forward fan section and a low pressure turbine section. A high spool along the engine axis with a high pressure turbine section and an aft core driven fan section (CDFS), the aft core driven fan section (CDFS) axially aft of the high pressure turbine section along the engine axis. | 01-31-2013 |
20130025287 | DISTRIBUTED COOLING FOR GAS TURBINE ENGINE COMBUSTOR - A combustor component of a gas turbine engine includes a refractory metal core (RMC) microcircuit for self-regulating a cooling flow. | 01-31-2013 |
20130025288 | MICROCIRCUIT COOLING FOR GAS TURBINE ENGINE COMBUSTOR - A combustor component of a gas turbine engine includes a refractory metal core (RMC) microcircuit. | 01-31-2013 |
20130025289 | COMBUSTOR PORTION FOR A TURBOMACHINE AND METHOD OF OPERATING A TURBOMACHINE - A turbomachine combustor portion includes a combustion chamber. A center injection nozzle is arranged within the combustion chamber and includes a center nozzle inlet and a center nozzle outlet. An outer premixed injection nozzle is positioned radially outward of the center injection nozzle and includes an outer nozzle inlet and an outer nozzle outlet that is arranged upstream of the center nozzle outlet. A late lean injector is positioned downstream of the center nozzle and the outer premixed nozzle. The combustor portion includes a first combustion zone arranged downstream of the outer nozzle outlet, a second combustion zone arranged downstream of the center nozzle outlet, and a third combustion zone arranged further downstream of the center nozzle outlet. The center injection nozzle, outer premixed injection nozzle, and late lean injector are selectively operated to establish a combustion flame front in the first, second, and third combustion zones. | 01-31-2013 |
20130025290 | INGESTION-TOLERANT LOW LEAKAGE LOW PRESSURE TURBINE - A turbine section of a gas turbine engine includes first and second rotor stages connected by an arm. The first rotor stage has a first set of blades connected to a first rotor disk at a first blade attachment. The second rotor stage has a second set of blades connected to a second rotor disk at a second blade attachment. A cover plate extends from a downstream side of the first blade attachment to an upstream side of the second blade attachment. The cover plate is spaced from the arm so as to define a flow path from the first blade attachment to the second blade attachment. | 01-31-2013 |
20130025291 | SYSTEM AND METHOD FOR PROTECTION OF HIGH TEMPERATURE MACHINERY COMPONENTS - A system comprises a plurality of components disposed to define a gas path. At least one component comprises a silicon-bearing substrate over which is disposed a coating, and the coating comprises a recession-resistant material exposed to the gas path. A silicon source is disposed in fluid communication with the gas path and is configured to be delivered to the gas path to maintain, in gas flowing in the gas path over the coating, a silicon mass concentration in the range from about 1.8×10 | 01-31-2013 |
20130025292 | REVERSIBLE SOLID OXIDE FUEL CELL STACK AND METHOD FOR PREPARING SAME - A reversible SOFC monolithic stack is provided which comprises: 1) a first component which comprises at least one porous metal containing layer ( | 01-31-2013 |
20130031910 | Efficient Selective Catalyst Reduction System - The present application provides a gas turbine engine system. The gas turbine engine system may include a gas turbine engine producing a flow of combustion gases, an emissions reduction system in communication with the gas turbine engine, a flow of ammonia to be injected into the flow of combustion gases, and a source of compressed gas to vaporize the flow of ammonia. | 02-07-2013 |
20130031911 | APU SELECTIVE COOL DOWN CYCLE - An APU has a control for controlling a load on the APU from an associated aircraft. The control further receives information with regard to a temperature challenge around the APU. If the temperature challenge exceeds a predetermined threshold, then the control operates the APU with a reduced load in a cool down cycle to reduce the heat load from the APU on an associated tail cone. A method is also disclosed. | 02-07-2013 |
20130036743 | TURBOMACHINE COMBUSTOR ASSEMBLY - A combustor assembly includes a combustor body having a combustion chamber, and a nozzle support mounted to the combustor body. The nozzle support includes a central opening, and a plurality of openings extending about the central opening. A central flame tolerant nozzle assembly is positioned within the central opening, and a plurality of micro-mixer nozzle assemblies are mounted in respective ones of the plurality of openings about the central flame tolerant nozzle assembly. Each of the central flame tolerant nozzle assembly and the plurality of micro-mixer nozzle assemblies are configured and disposed to deliver an air-fuel mixture into the combustion chamber. | 02-14-2013 |
20130036744 | METHOD FOR OPERATING A GAS TURBINE AND GAS TURBINE UNIT USEFUL FOR CARRYING OUT THE METHOD - A method for operating a gas turbine ( | 02-14-2013 |
20130036745 | GAS TURBINE COMBUSTOR HAVING COUNTERFLOW INJECTION MECHANISM AND METHOD OF USE - In accordance with certain embodiments, a system and method of use includes a counterflow injection mechanism. The counterflow injection mechanism includes a fuel-air injection mechanism having fuel and air passages leading to fuel and air injection openings, wherein the fuel and air injection openings are disposed at an off-center position and a generally counterflow direction relative to a generally lengthwise flow axis of a gas turbine combustor. | 02-14-2013 |
20130042624 | EXHAUST TEMPERATURE BASED MODE CONTROL METHOD FOR GAS TURBINE AND GAS TURBINE - Gas turbine, computer readable medium, and method for controlling an operating point of the gas turbine that includes a compressor, a combustor and a turbine is provided. The method includes determining a turbine pressure ratio, calculating a primary to lean-lean mode transfer threshold reference curve as a function of the turbine pressure ratio, determining at a first time when an exhaust temperature associated with the operating point is higher than an exhaust temperature of the primary to lean-lean mode transfer threshold reference curve for the same turbine pressure ratio, and changing, after a predetermined time after the first time, a split fuel quantity from a first value to a second value if the exhaust temperature associated with the operating point remains higher than the exhaust temperature of the primary to lean-lean mode transfer threshold reference curve. | 02-21-2013 |
20130047622 | PULSE FILTRATION APPARATUS - A pulse filtration apparatus of a power plant including an air separation unit (ASU) and a gas turbine engine is provided. The apparatus includes a conduit to transmit fluid from the ASU to a combustor of the gas turbine engine and a tap. The tap includes a first end fluidly coupled to the conduit, a second end opposite the first end and fluidly coupled to components of a filter housing disposed upstream from a compressor of the gas turbine engine and a main member fluidly interposed between the first and second ends. The tap is configured to remove fluid from the conduit and to transmit the removed fluid to the components of the filter housing. | 02-28-2013 |
20130047623 | ACCESSORY GEARBOX BUFFER COOLING AIR PUMP SYSTEM - A buffer air pump provides pressurized cooling air for cooling components of the gas turbine engine. The buffer air pump is supported on and/or within an accessory gearbox and draws bypass air in through an inlet manifold. An impeller supported within a scroll housing pressurizes the incoming bypass air and directs the pressurized air through passages to a component requiring cooling. The buffer air pump draws in relatively cool air from the bypass flow, pressurizes the air with the impeller and sends the air through conduits and passages within the gas turbine engine to the component that requires cooling such as a bearing assembly. | 02-28-2013 |
20130047624 | DISTRIBUTED LUBRICATION SYSTEM - A gas turbine engine includes a spool, a gearbox having gearing driven by the spool, and a lubrication system. The lubrication system includes a first heat exchanger positioned in a first air flow path, a second heat exchanger positioned in a second air flow path, and a lubrication pump fluidically connected to both the first heat exchanger and the second heat exchanger. A first air fan is driven by the gearbox for inducing air flow through the first air flow path. A second air fan is driven by an electric motor for inducing air flow through the second air flow path. | 02-28-2013 |
20130055721 | METHOD AND APPARATUS FOR SEGREGATED OIL SUPPLY AND SCAVENGE IN A GAS TURBINE ENGINE - A gas turbine engine oil supply and scavenge apparatus includes: a stationary first frame comprising a first hub and a first outer ring interconnected by an array of radially-extending hollow first struts; a forward wet cavity defined radially inboard of the first frame, having a first rolling element bearing disposed therein; a supply line extending from the first outer ring through one of the first struts and communicating with the forward wet cavity, the supply line adapted to discharge oil to the forward wet cavity; a stationary second frame comprising a second hub and a second outer ring interconnected by an array of radially-extending hollow second struts, the second frame disposed aft of the first frame; and a scavenge path communicating with the forward wet cavity and adapted to remove oil-air mist from the forward wet cavity, the scavenge path defined at least in part by the second frame. | 03-07-2013 |
20130055722 | PIN FIN ARRANGEMENT FOR HEAT SHIELD OF GAS TURBINE ENGINE - A heat shield unit for a gas turbine engine combustor comprises a panel body secured to a combustor liner. A first surface of the body is oriented toward a combustion zone of a combustor. A second surface is oriented toward the liner. The body is separated into upstream and downstream portions. Pin fins project from the second surface of the body. The pin fins are arranged in arrays of at least two different densities of volume of pin fins per unit volume. One density, lower than the second density, is in the upstream portion and another in the downstream portion of the body. Connectors connect the body to the liner with a line between the upstream and downstream portions of the body aligned with fluid-coolant injection apertures in the liner. A gas turbine engine combustor and a method for cooling a heat shield unit in a combustor liner of a gas turbine engine are also provided. | 03-07-2013 |
20130061595 | Speed Card-Controlled Override Fuel Pump Assist - A system and method for supplementing fuel feed pressure and flow within an aircraft fuel system. The fuel system includes boost and override fuel pumps delivering fuel from the tanks to a fuel manifold, and a jettison fuel pump. The method includes the steps of: (a) sensing whether the aircraft engine is operating near maximum power; (b) upon sensing the condition, operating the jettison fuel pump in fluid interconnection with the override fuel pump to deliver fuel to the fuel manifold; and (c) upon sensing the cessation of the condition, deactivating the jettison fuel pump. The system includes a monitoring circuit signaling when the aircraft engine speed is greater than a predetermined threshold, and a fuel system control circuit operating a jettison fuel pump enable circuit portion in response to the signal while omitting other jettisoning operations. The jettison fuel pump consequently functions as an override fuel pump assist. | 03-14-2013 |
20130067922 | Ultrasonic Water Atomization System for Gas Turbine Inlet Cooling and Wet Compression - The present application provides an inlet air cooling system for cooling a flow air in a gas turbine engine. The inlet air cooling system may include an inlet filter house, a transition piece, an inlet duct, and an inlet ultrasonic water atomization system positioned about the inlet filter house, the transition piece, or the inlet duct to cool the flow of air. | 03-21-2013 |
20130067923 | COMBUSTOR AND METHOD FOR CONDITIONING FLOW THROUGH A COMBUSTOR - A combustor includes an end cover and a casing adjacent to the end cover, wherein the end cover and casing at least partially define a volume inside the combustor. The combustor further includes an end cap that extends radially across at least a portion of the combustor, at least one nozzle arranged in the end cap to provide fluid communication through the end cap, and means for conditioning flow through the volume. A method for conditioning flow through a combustor includes flowing a working fluid through a volume at least partially defined by an end cover, a casing, and an end cap that extends radially across at least a portion of the combustor and flowing the working fluid across an annular insert adjacent to the end cover. | 03-21-2013 |
20130067924 | COMBUSTIBLE FLUID FUEL - Disclosed are combustible fluid fuels that in some embodiments include a high-explosive component. | 03-21-2013 |
20130067925 | METHOD FOR OPERATING A COMBUSTION DEVICE - A method for operating a combustion device includes supplying a fuel and an oxidizer into the combustion device and burning them. According to the method, during at least a part of a transient operation, an additional fluid is supplied together with the fuel, and its amount is regulated to counteract combustion pulsations. | 03-21-2013 |
20130067926 | Multiple Tube Premixing Device - The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes. | 03-21-2013 |
20130074508 | Fuel Heating in Combined Cycle Turbomachinery - Combined cycle efficiency can be improved by heating fuel in a gas turbine fuel line in two stages using (i) hot water from an HP economizer of a heat recovery steam generator (HRSG) in a second stage and (ii) hot water from an IP economizer of the HRSG and water output flow from the second stage in a first stage. Efficiency may be further improved by adding one or more fuel preheaters using hot water from the IP feedpump and sequential injections of hot water into the fuel. | 03-28-2013 |
20130074509 | TURBOMACHINE CONFIGURED TO BURN ASH-BEARING FUEL OILS AND METHOD OF BURNING ASH-BEARING FUEL OILS IN A TURBOMACHINE - According to one aspect of the exemplary embodiment, a turbomachine includes a compressor portion, a combustor fluidly connected to the compressor portion, and a turbine portion fluidly connected to the combustor portion and mechanically coupled to the compressor portion. The combustor portion is configured and disposed to burn ash-bearing fuel oils. The turbine portion includes a first stage having a first plurality of airfoils, and a second stage having a second plurality of airfoils. The first plurality of airfoils have a trailing edge discharge member. The second plurality of airfoils is clocked circumferentially relative to the first plurality of airfoils. The first plurality of airfoils are configured and disposed to direct an ash depleted flow upon corresponding adjacent ones of the second plurality of airfoils. | 03-28-2013 |
20130074510 | COMBUSTOR AND METHOD FOR SUPPLYING FUEL TO A COMBUSTOR - A combustor includes an end cap having an upstream surface axially separated from a downstream surface and a cap shield circumferentially surrounding the upstream and downstream surfaces. A first circuit of tubes extends from the upstream surface through the downstream surface. A first fuel plenum is in fluid communication with the first circuit of tubes. A second circuit of tubes extends from the upstream surface through the downstream surface. A second fuel plenum downstream from the first fuel plenum is in fluid communication with the second circuit of tubes. A method for supplying fuel to a combustor includes flowing a working fluid through tubes, flowing fuel or diluent from a first fuel plenum through a first circuit of tubes, and flowing fuel or diluent from a second fuel plenum through a second circuit of tubes, wherein the second fuel plenum is downstream from the first fuel plenum. | 03-28-2013 |
20130074511 | METHOD OF OPERATING A GAS TURBINE AND GAS TURBINE - A gas turbine system comprises a gas turbine having a low pressure compression stage and a high pressure compression stage, a combustion chamber, and an expansion stage connected to the combustion chamber. The low pressure compression stage and the high pressure compression stage are connected with each other via an intercooling stage, wherein the low pressure compressed air stream from the low pressure compression stage is chilled to an intercooling temperature that is lower than the ambient temperature of the air source from which the air stream was supplied to the low pressure compression stage of the gas turbine. | 03-28-2013 |
20130081400 | COMBUSTOR WITH A PRE-NOZZLE MIXING CAP ASSEMBLY - The present application and the resulting patent provide a pre-nozzle mixing cap assembly positioned about a cap member of a combustor for mixing a flow of air and a flow of fuel. The pre-nozzle mixing cap assembly may include a fuel plenum in communication with the flow of fuel and a number of tubes in communication with the flow of air and extending through the fuel plenum. Each of the tubes may include a number of fuel holes therein such that the flow of fuel in the fuel plenum passes through the fuel holes and mixes with the flow of air. | 04-04-2013 |
20130081401 | IMPINGEMENT COOLING OF COMBUSTOR LINERS - A gas turbine engine may include an impingement cooled double-walled liner, having an inner liner and an outer liner, disposed around a combustion space of the turbine engine. The double-walled liner may extend from an upstream end to a downstream end. The gas turbine engine may also include a plurality of nozzles extending radially inwards through the outer liner to direct cooling air towards the inner liner. Each nozzle of the plurality of nozzles may extend radially inwards from a first distal end to a second proximal end. The plurality of nozzles may be arranged such that a radial gap between the second end of a nozzle and the outer liner decreases from the upstream end to the downstream end. The at least one nozzle of the plurality of nozzles may include multiple air holes at the second end. | 04-04-2013 |
20130081402 | TURBOMACHINE HAVING A GAS FLOW AEROMECHANIC SYSTEM AND METHOD - A turbomachine including an improved backflow margin includes a combustor portion fluidly connected to a turbine portion. The turbine portion includes a gas path, a first stage having a first plurality of airfoil members arranged along the gas path, and a second stage having a second plurality of airfoil members arranged along the gas path downstream from the first stage. The first plurality of airfoil members are configured to intercept combustion gases from the combustor portion at a first momentum and create a wake zone having a second momentum that is lower than the first momentum. The turbomachine includes a gas flow aeromechanics system configured and disposed to improve gas flow aeromechanics along the gas path by circumferentially clocking the second plurality of airfoil members relative to the first plurality of airfoil members to intercept the wake zone at the second momentum. | 04-04-2013 |
20130086916 | Low Emission Power Generation Systems and Methods - Methods and systems for C0 | 04-11-2013 |
20130091850 | METHOD AND SYSTEM FOR REDUCING HOT SOAKBACK - A method for cooling a gas turbine engine includes supplying power to a motor to generate mechanical motion and translating the mechanical motion of the motor to a shaft of the gas turbine engine to rotate a compressor stage and a turbine stage after the engine has been shutdown to circulate air within the engine and cool engine components. A system for preventing hot soakback in an auxiliary power unit includes a starter motor, a compressor, a turbine, a shaft connected to at least one stage of the compressor and at least one stage of the turbine, a gearbox for connecting the starter motor to the shaft, a temperature sensor and a controller. The controller receives information from the temperature sensor and instructs the starter motor to rotate and drive the shaft when the temperature sensor senses a temperature above a low limit temperature threshold. | 04-18-2013 |
20130091851 | METHOD AND A DEVICE FOR PRODUCING A SETPOINT SIGNAL - A method and device producing a setpoint signal representing a flow rate of fuel that a metering unit having a slide valve is to supply to a fuel injection system of a combustion chamber in a turbine engine, the position of the valve depending on the setpoint signal. The method: obtains a first signal representing a measurement as delivered by a flow meter of a flow rate of fuel injected into the chamber; evaluates a second signal representing the flow rate of fuel injected into the chamber based on a measurement of the position of the valve; estimates a third signal representative of the measurement delivered by the flow meter by applying a digital model of the flow meter to the second signal; and produces the setpoint signal by adding a compensation signal to the first signal, the compensation signal obtained by subtracting the third signal from the second signal. | 04-18-2013 |
20130091852 | OPERATING METHOD FOR HYDROGEN/NATURAL GAS BLENDS WITHIN A REHEAT GAS TURBINE - A gas turbine is operated using a varying blend of a first fuel, preferably natural gas, and a second fuel that is hydrogen. The hydrogen concentration is varied depending on operating conditions in order to reduce emissions of CO and NOx, and/or to mitigate LBO. The fuel mixture is varied using a controller based on a combination of factors in a modular operation concept to address different issues according to relevant load limitations. A method of operating a gas turbine according to this modular operational concept is also provided. | 04-18-2013 |
20130091853 | Stoichiometric Combustion With Exhaust Gas Recirculation and Direct Contact Cooler - Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes a gas turbine system configured to stoichiometrically combust a compressed oxidant and a fuel in the presence of a compressed recycle exhaust gas and expand the discharge in an expander to generate a gaseous exhaust stream and drive a main compressor. A boost compressor can receive and increase the pressure of the gaseous exhaust stream and inject it into an evaporative cooling tower configured to use an exhaust nitrogen gas having a low relative humidity as an evaporative cooling media. The cooled gaseous exhaust stream is then compressed and recirculated through the system as a diluent to moderate the temperature of the stoichiometric combustion. | 04-18-2013 |
20130091854 | Stoichiometric Combustion of Enriched Air With Exhaust Gas Recirculation - Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes a gas turbine system configured to stoichiometrically combust a compressed oxidant derived from enriched air and a fuel in the presence of a compressed recycle exhaust gas and expand the discharge in an expander to generate a recycle exhaust stream and drive a main compressor. A boost compressor receives and increases the pressure of the recycle exhaust stream and prior to being compressed in a compressor configured to generate the compressed recycle exhaust gas. To promote the stoichiometric combustion of the fuel and increase the CO | 04-18-2013 |
20130098046 | INTEGRATED THERMAL SYSTEM FOR A GAS TURBINE ENGINE - An integrated thermal system for a gas turbine engine includes an Air-Oil Cooler and an Air-Air PreCooler within a housing, the Air-Air PreCooler downstream of the Air-Oil Cooler. | 04-25-2013 |
20130098047 | COMPARTMENT COOLING FOR A GAS TURBINE ENGINE - A gas turbine engine includes a first pump driven by a spool, an air-oil cooler downstream of the first pump. A second pump driven by the spool and an air-air precooler downstream of the second pump, the air-air precooler downstream of the air-oil cooler. A compartment is downstream of the precooler to receive a cooling air from the precooler. | 04-25-2013 |
20130098048 | DIFFUSION NOZZLES FOR LOW-OXYGEN FUEL NOZZLE ASSEMBLY AND METHOD - A fuel nozzle assembly has been conceived for a combustor in a gas turbine including a first passage and fourth passage connectable to a source of gaseous fuel, a second passage connectable to a source of a gaseous oxidizer, and a third passage coupled to a source of a diluent gas, wherein the first passage is a center passage and is configured to discharge gaseous fuel from nozzles at a discharge end of the center passage, the second passage is configured to discharge the gaseous oxidizer through nozzles adjacent to the nozzles for the center passage, the third passage discharges a diluent gas through nozzles adjacent to the nozzles for the second passage, and the fourth passage is configured to discharges the gaseous fuel downstream of the discharge location for the first, second and third passages. | 04-25-2013 |
20130098049 | SYSTEM AND METHOD FOR CONTROLLING AND REDUCING NOx EMISSIONS - A system includes a gas production source configured to produce a gas stream comprising nitrogen oxides (NO | 04-25-2013 |
20130098050 | GAS TURBINE ENGINE WITH INTERCOOLING TURBINE SECTION - A gas turbine engine includes a fan section and an intercooling turbine section along an engine axis aft of a fan section and forward of a combustor section. | 04-25-2013 |
20130098051 | AUXILIARY POWER UNIT BLEED CLEANING FUNCTION - An auxiliary power unit is operable to provide bleed air to a vehicle system. A method includes diverting substantially all of the bleed air to an exhaust for a selected time period commencing with startup of the auxiliary power unit. After the selected time period, at least a portion of the bleed air is diverted to the vehicle system. | 04-25-2013 |
20130098052 | METHOD AND ARCHITECTURE FOR RECOMBINING THE POWER OF A TURBOMACHINE - A method and architecture for recombining power of a turbomachine improving on problems of size, mass, or reliability. In the method energy is recovered in an exhaust nozzle and converted and recirculated using a mechanical and/or electrical power recombining mechanism. An example of an architecture of a turbomachine includes a main turbine engine and a heat exchanger positioned in the exhaust nozzle and coupled, via pipes, to an independent system that converts thermal energy into mechanical energy. This independent system is connected to a localized mechanical recombination mechanism via a power shaft to supply power to a power transmission shaft according to aircraft requirements. | 04-25-2013 |
20130104556 | SYSTEM AND METHOD FOR REDUCING COMBUSTION DYNAMICS AND NOX IN A COMBUSTOR | 05-02-2013 |
20130104557 | GAS TURBINE ENGINE COOLING VALVE | 05-02-2013 |
20130104558 | TURBOMACHINE AND METHOD OF OPERATING A TURBOMACHINE TO PERFORM A FUEL CHANGE OVER AT A HIGH LOAD | 05-02-2013 |
20130104559 | GAS TURBINE ENGINE THERMAL MANAGEMENT SYSTEM | 05-02-2013 |
20130104560 | GAS TURBINE ENGINE WITH INTERCOOLING TURBINE SECTION | 05-02-2013 |
20130111913 | MULTI-COMBUSTOR TURBINE - A system for the gradual oxidation of fuel is disclosed. The system includes an oxidizer that has a reaction chamber with an inlet and an outlet. The reaction chamber is configured to receive a fluid comprising an oxidizable fuel through the inlet. The oxidizer is configured to maintain a flameless oxidation process. The system also includes a heating chamber with an inlet and an outlet. The inlet of the heating chamber is in fluid communication with the outlet of the reaction chamber. The heating chamber is configured to receive the fluid from the reaction chamber and selectably heat the fluid. | 05-09-2013 |
20130111914 | AIRCRAFT IGNITION SYSTEM AND METHOD OF OPERATING THE SAME - An aircraft ignition system having a power circuit, a control circuit, and a discharge circuit and coupled to the spark plugs of an aircraft engine. The power circuit may include two independent power sources; e.g., alternator power (such as a permanent magnet alternator) and power from aircraft or DC power bus. The control circuit may control one or more aspects of the discharge circuit, e.g., the ignition timing. And the discharge circuit may trigger a capacitive discharge ignition event to the spark plugs. | 05-09-2013 |
20130118178 | SYSTEM FOR PURGING GAS FUEL CIRCUIT FOR A GAS TURBINE ENGINE - A system includes a multi-fuel gas turbine configured to operate on both a liquid fuel system and a gas fuel system, wherein the multi-fuel gas turbine comprises a compressor, a combustor, and a turbine. The system also includes a gas fuel purge system configured to purge a gas fuel circuit of the gas fuel system during liquid fuel operation of the gas turbine, wherein the gas fuel purge system is configured to sequentially purge the gas fuel circuit with air and steam. | 05-16-2013 |
20130118179 | POWER PLANT WITH CO2 CAPTURE - A method is provided for operating a combined cycle power plant having at least one gas turbine, a heat recovery steam generator (HSRG), a steam turbine and a CO2 capture system. The method includes recirculating a first partial flow of flue gases from the HRSG. The method also includes capturing CO2 from a second partial flow of flue gases from the HRSG; and operating a supplementary firing to increase the net power output of the plant and to at least partly compensate the power consumption of the CO2 capture system. A combined cycle power plant is also provided. The plant includes at least one gas turbine, at least one heat recovery steam generator, at least one steam turbine at least one CO | 05-16-2013 |
20130125552 | GAS TURBINE ENGINE LOCKOUT REDUCTION - A method is provided of reducing lockout time of a gas turbine engine which includes: an inlet, a compressor, a combustor, a turbine, and an exhaust duct, where the compressor and the turbine are carried on a turbomachinery rotor and each include an array of blades mounted for rotation inside a casing of the engine. The method includes: operating the engine at a first power output; shutting down operation of the engine without substantially reducing the power output beforehand, wherein thermomechanical changes occur in the engine subsequent to shutdown that tend to reduce a radial clearance between at least one of the blades and the casing; and subsequent to shutting down the engine, (1) heating the casing and/or (2) pumping an airflow of ambient air into the inlet and through the casing, past the rotor, and out the exhaust duct, so as to reverse at least partially the thermomechanical changes. | 05-23-2013 |
20130125553 | Swirler Assembly with Compressor Discharge Injection to Vane Surface - A swirler assembly in a gas turbine combustor includes a hub, a shroud, and a plurality of vanes connected between the hub and the shroud. The vanes include a high pressure side on which air and fuel impinge the vanes and a low pressure side. An air circuit is provided in each of the plurality of vanes receiving discharge air from a compressor. Each of the air circuits includes an air entry passage into the vanes and an air exit passage on the low pressure side of the vanes. | 05-23-2013 |
20130125554 | Systems and Methods For Exhaust Gas Extraction - The present techniques are directed to a combustor for a gas turbine. For example, an embodiment provides a spool piece for the combustor. The spool piece includes an oxidant injection port configured for injection of an oxidant proximate to a flame in the combustor and a recycle-gas extraction port configured for an extraction of a recycle gas from the combustor, wherein the recycle gas is isolated from the oxidant prior to the use of the oxidant in a flame. | 05-23-2013 |
20130125555 | Systems and Methods For Optimizing Stoichiometric Combustion - Provided are more efficient techniques for operating gas turbine systems. In one embodiment a gas turbine system comprises an oxidant system, a fuel system, a control system, and a number of combustors adapted to receive and combust an oxidant from the oxidant system and a fuel from the fuel system to produce an exhaust gas. The gas turbine system also includes a number of oxidant-flow adjustment devices, each of which are operatively associated with one of the combustors, wherein an oxidant-flow adjustment device is configured to independently regulate an oxidant flow rate into the associated combustor. An exhaust sensor is in communication with the control system. The exhaust sensor is adapted to measure at least one parameter of the exhaust gas, and the control system is configured to independently adjust each of the oxidant-flow adjustment devices based, at least in part, on the parameter measured by the exhaust sensor. | 05-23-2013 |
20130133331 | SYSTEM AND METHOD FOR REDUCING COMBUSTION DYNAMICS IN A TURBOMACHINE - A turbomachine includes a combustion chamber, and at least one pre-mixer mounted to the combustion chamber. The at least one pre-mixer includes a main body having a first end portion that extends to a second end portion. The first end portion is configured to receive an amount of fuel and an amount of air and the second end portion defines an exit plane from which a fuel-air mixture discharges into the combustion chamber. The turbomachine also includes a combustion dynamics reduction system operatively coupled to the at least one pre-mixer. The combustion dynamics reduction system includes at least one of a boundary layer perturbation mechanism and an acoustic wave introduction system which disrupt a flow pattern of the fuel-air mixture within the at least one pre-mixer. | 05-30-2013 |
20130139514 | COMBUSTOR LINER SUPPORT AND SEAL ASSEMBLY - A method is disclosed herein for reducing binding between a combustor liner of a gas turbine engine and a free-standing ring disposed about the combustor liner. The method comprises the step of disposing a rolling assembly to roll between the combustor liner and the free-standing ring during relative radial displacement. | 06-06-2013 |
20130139515 | Integral gas turbine, flywheel, generator, and method for hybrid operation thereof - A power plant incorporating attributes of a gas turbine engine, flywheel, and electrical generator (hereafter turbine/flywheel or TF) in a single compact unit, having a compressor arrayed with magnets which weight the periphery of the TF. Intermittent combustion periods accelerate the TF to a first rotational velocity, then combustion ceases, and the inlet/outlet of the TF are sealed, causing it to self-evacuate. Conductive coils surround the TF. Magnetic flux between the magnets and coils acts as a motor/generator, electrically powering a load, and absorbing electrical power therefrom via regenerative braking; power out decelerating the TF (now a flywheel), power in accelerating it. A pressure accumulator accepts the TF exhaust, and is pressurized by the combustion periods. Between combustion periods, exhaust in the accumulator expands in a small pump/motor that drives a generator, routing electricity to the TF to raise its rotational velocity. | 06-06-2013 |
20130139516 | COOLING SYSTEM FOR GAS TURBINE LOAD COUPLING - A gas turbine is provided. The gas turbine comprises a compressor, a power turbine, a load coupling connecting the gas turbine to a load, a gas turbine package comprising a turbomachinery compartment housing the gas turbine, a load-coupling guard at least partly surrounding the load coupling, a cooling air circulation system for circulating cooling air in the turbomachinery compartment, and a cooling air channeling configured to circulate a cooling air flow from the cooling air circulation system in the load-coupling guard sufficient to remove heat from the load coupling. | 06-06-2013 |
20130139517 | Solar Assisted Gas Turbine System - This invention is intended to provide a solar assisted gas turbine system significantly reduced in the number of heat collectors and downsized in heat collector installation site area requirement. | 06-06-2013 |
20130145769 | Gas Turbine Engine with Variable Overall Pressure Ratio - A gas turbine engine has a variable overall pressure rate (“OPR”). The engine includes a high pressure compressor having at least a primary stage having a set of primary rotors and a secondary stage having a set of secondary rotors. A clutch is provided to selectively engage the secondary rotors with the primary rotors. Engagement of the clutch may be controlled based on the vehicle travel mode, such as disengaging during a takeoff mode to reduce turbine entry temperature and engaging during a loiter mode to increase OPR. | 06-13-2013 |
20130145770 | SUBSTITUTION DEVICE FOR AIRCRAFT ENGINE - A substitution device for replacing a turbojet type of aircraft engine, with a nacelle comprising protective covers, and a support mast having two engine mounts, each of said protective covers being mounted to pivot between an open position and a closed position, said substitution device comprising a body, two anchors attaching to the engine mounts of the engine support mast, and bearing portions adapted to receive support portions belonging to the protective covers. A method for installing such a substitution device in a nacelle, which makes it possible to close the engine covers and authorize the movement of the aircraft. | 06-13-2013 |
20130152592 | GAS TURBINE ENGINE EXHAUST DIFFUSER INCLUDING CIRCUMFERENTIAL VANE - A flow passage defined between an inner and an outer boundary for guiding a fluid flow in an axial direction. A flow control vane is supported at a radial location between the inner and outer boundaries. A fluid discharge opening is provided for discharging a flow of the compressed fluid from a trailing edge of the vane, and a fluid control surface is provided adjacent to the fluid discharge opening and extends in the axial direction at the trailing edge of the vane. The fluid control surface has a curved trailing edge forming a Coanda surface. The fluid discharge opening is selectively provided with a compressed fluid to produce a Coanda effect along the control surface. The Coanda effect has a component in the radial direction effecting a turning of the fluid flow in the flow path radially inward or outward toward one of the inner and outer boundaries. | 06-20-2013 |
20130152593 | GAS TURBINE AND FUEL INJECTOR FOR THE SAME - A fuel injector for a gas turbine engine may include an injector housing having a central cavity configured to be fluidly coupled to a combustor of the turbine engine. The central cavity may also be configured to direct a first fuel into the combustor substantially unmixed with air. The fuel injector may also include an annular air discharge outlet circumferentially disposed about the downstream end of the central cavity. The air discharge outlet may be configured to discharge compressed air into the combustor circumferentially about the first fuel from the central cavity. The fuel injector may also include an annular fuel discharge outlet circumferentially disposed about the air discharge outlet at the downstream end. The fuel discharge outlet may be configured to discharge a second fuel into the combustor circumferentially about the compressed air from the air discharge outlet. | 06-20-2013 |
20130152594 | GAS TURBINE AND FUEL INJECTOR FOR THE SAME - A fuel injector for a gas turbine engine includes an injector housing having a central cavity configured to fluidly couple with a combustor of the gas turbine engine. The fuel injector may include a fuel nozzle at the upstream end of the central cavity. The fuel nozzle may be configured to direct a first fuel into the central cavity. The fuel injector may also include an annular air inlet disposed circumferentially about the fuel nozzle at the upstream end of the central cavity, and an annular air discharge outlet circumferentially disposed about the exit opening of the central cavity. The fuel injector may further include an annular fuel discharge outlet circumferentially disposed about the air discharge outlet. The fuel discharge outlet may be configured to discharge a second fuel into the combustor circumferentially around the air discharge outlet. | 06-20-2013 |
20130152595 | PROCESS FOR THE ENHANCEMENT OF POWER PLANT WITH CO2 CAPTURE AND SYSTEM FOR REALIZATION OF THE PROCESS - Improved methods and systems for power plants with CO2 capture and especially power plants with CO2 capture for enhanced oil recovery (EOR) purposes. | 06-20-2013 |
20130152596 | FOSSIL FUEL-FIRED POWER STATION HAVING A REMOVAL APPARATUS FOR CARBON DIOXIDE AND PROCESS FOR SEPARATING CARBON DIOXIDE FROM AN OFFGAS FROM A FOSSIL FUEL-FIRED POWER STATION - A fossil fuel-fired power station having a removal apparatus for carbon dioxide which is located downstream of a combustion facility and through which an offgas containing carbon dioxide may flow is provided. The removal apparatus comprises an absorption unit and a desorption unit. The desorption unit is connected to a renewable energy source. | 06-20-2013 |
20130160455 | SYSTEM AND METHOD OF EXPANDING A FLUID IN A HERMETICALLY-SEALED CASING - An expander-generator is disclosed. The expander-generator is disposed within a hermetically-sealed housing and includes a high-pressure expander stage and a low-pressure expander stage. A working fluid, such as ammonia, is introduced into the high and low pressure expander stages and expanded therein so as to provide rotational torque to a shaft. A generator, such as a motor, pump, or compressor, may be coupled to a free end of the shaft such that rotation of the shaft will provide useful work for the generator. | 06-27-2013 |
20130160456 | SYSTEM AND METHOD FOR CONTROLLING OXYGEN EMISSIONS FROM A GAS TURBINE - A system for controlling oxygen emissions from a gas turbine includes a combustor, a plenum downstream from the combustor, and a turbine downstream from the plenum that produces an exhaust. A compressor downstream from the turbine receives the exhaust and produces a compressed exhaust. A compressed exhaust plenum downstream from the compressor provides fluid communication to the combustor and the plenum. A method for controlling oxygen emissions from a gas turbine includes flowing an exhaust from a turbine and increasing the pressure of the exhaust to produce a compressed exhaust. The method further includes flowing a first portion of the compressed exhaust to an inlet of a combustor and flowing a second portion of the compressed exhaust to a plenum between the turbine and the combustor. | 06-27-2013 |
20130167544 | FUEL INJECTOR - A gas turbine engine fuel injector is disclosed having a plurality of fuel injection circuits that are structured to deliver fuel to air passageways. In one non-limiting embodiment, one of the fuel injection circuits includes a plain jet airblast injector that delivers fuel to an air passageway. In some applications the plain jet can extend across the air passageway and deliver a fuel to an opposite surface to form a fuel film. The fuel film can then be sheared between an air in the air passageway and an air in a nearby air passageway. Another of the fuel injection circuits includes a fuel filmer structured to deliver fuel to an air passageway that can then be sheared by an air in the air passageway and an air in the air passageway that included the plain jet airblast injector. | 07-04-2013 |
20130167545 | COMBUSTOR SYSTEM FOR USE IN TURBINE ENGINES AND METHODS OF OPERATING A TURBINE ENGINE - A combustor system for use in a turbine engine is provided. The turbine engine includes turbine assembly that includes a fluid inlet, a fluid outlet, and a combustion gas path defined therebetween. The combustor system includes a first combustor assembly and a second combustor assembly. The first combustor assembly is coupled to the turbine assembly for channeling a first flow of combustion gases through the turbine assembly. The first combustor assembly is oriented adjacent to the turbine assembly inlet to channel the first flow of combustion gases to the turbine assembly through the turbine assembly inlet. The second combustor assembly is coupled to the turbine assembly along the combustion gas path for channeling a second flow of combustion gases through the turbine assembly. | 07-04-2013 |
20130167546 | GAS TURBINE ENGINE COMBUSTOR - A combustor is provided in which a fuel and working fluid can be injected in an annulus. In one form the fuel and working fluid is circumferentially flowed within the annulus and traverses the annulus in an axial direction from one side to another side where the flow exits. The working fluid and air can be co-axially admitted to the combustor and in one form the working fluid can be swirled about the fuel dispensed from a fuel injector. The combustor can provide for a rich burning zone. In one embodiment the combustor is configured as an inter-turbine combustor having an outlet at one axial side of the combustor. A lean burn region can be created within a flow path of the turbine. | 07-04-2013 |
20130167547 | TURBINE ENGINE AND METHOD FOR FLOWING AIR IN A TURBINE ENGINE - According to one aspect of the invention, a gas turbine engine includes a combustor, a fuel nozzle placed in an end of the combustor, and a passage configured to receive an air flow from a compressor discharge casing, wherein the passage directs the air flow into a chamber downstream of the nozzle, wherein a chamber pressure is lower than a compressor discharge casing pressure. The gas turbine engine also includes a flow control device configured to control the air flow from the compressor discharge casing into the passage. | 07-04-2013 |
20130167548 | METHOD AND APPARATUS FOR OPERATING A GAS TURBINE ENGINE - A gas turbine includes a compressor, a combustor downstream from the compressor and a heat transfer system, wherein the heat transfer system receives a compressed working fluid from the compressor. A fluid coupling between the heat transfer system and the combustor, wherein the fluid coupling receives the compressed working fluid from the heat transfer system. A conditioner in fluid communication with the compressor and a fluid coupling between the heat transfer system and the conditioner, wherein the fluid coupling receives a cooling media from the heat transfer system. A method for operating the gas turbine includes flowing a compressed working fluid from the compressor to the heat transfer system, transferring heat energy from the compressed working fluid to the heat transfer system, flowing the compressed working fluid from the heat transfer system to a combustor, and flowing a cooling media from the heat transfer system to a compressor inlet. | 07-04-2013 |
20130174563 | COMBUSTOR FUEL NOZZLE AND METHOD FOR SUPPLYING FUEL TO A COMBUSTOR - A combustor fuel nozzle includes a center body and an inner shroud that circumferentially surrounds at least a portion of the center body. The inner shroud has a downstream surface. The fuel nozzle includes an inner passage between the center body and the inner shroud, an outer passage that circumferentially surrounds at least a portion of the inner shroud and a first plurality of fuel ports extending substantially radially outward through the center body. The first plurality of fuel ports is upstream from the downstream surface of the inner shroud. A method for supplying fuel to a combustor fuel nozzle includes flowing a working fluid through an inner passage between a center body and an inner shroud, injecting a fuel from the center body against the inner shroud, and flowing a portion of the working fluid through an outer passage that surrounds at least a portion of the inner shroud. | 07-11-2013 |
20130174564 | SYSTEM AND METHOD FOR OPERATING A GAS TURBINE - A method for determining a cooling flow parameter of a cooling medium supplied through a gas turbine is disclosed. The method may generally include receiving a signal associated with a first value of a combustion product parameter at a location within a combustion zone of the gas turbine, receiving a signal associated with a second value of a combustion product parameter at a location downstream of the combustion zone, comparing the first and second values of the combustion product parameter and determining a cooling flow parameter of the cooling medium based on the comparison of the first and second values. | 07-11-2013 |
20130174565 | METHOD FOR OPERATING A GAS TURBINE - A method for operating a gas turbine, which is optionally operated with a gaseous fuel (A) having a gaseous mass flow ({dot over (m)} | 07-11-2013 |
20130174566 | METHOD FOR REMOVING CARBON DIOXIDE, AND ALSO GAS TURBINE INSTALLATION WITH CARBON DIOXIDE REMOVAL - A method for capturing carbon dioxide is provided. In a first absorption process, carbon dioxide is absorbed by contacting a supplied carbon dioxide-containing natural gas with a first substream of a solvent. In this process a carbon dioxide-depleted natural gas and carbon dioxide-enriched solvent are formed. Then in a combustion process, the carbon dioxide-depleted natural gas is burnt, with a carbon dioxide-containing exhaust gas being formed. Then, in a second absorption process, carbon dioxide is absorbed by contacting the carbon dioxide-containing exhaust gas with a second substream of the solvent. In this process an exhaust gas freed from carbon dioxide and carbon dioxide-enriched solvent are formed. Then, in a desorption process, the first substream and the second substream of the carbon dioxide-enriched solvent are combined and carbon dioxide is desorbed by supplying heating energy, with carbon dioxide-depleted solvent being formed. | 07-11-2013 |
20130180253 | SYSTEM AND METHOD FOR SUPPLYING A WORKING FLUID TO A COMBUSTOR - A system for supplying a working fluid to a combustor includes a fuel nozzle, a combustion chamber, and fuel injectors circumferentially arranged around the combustion chamber. A combustor casing surrounds the combustion chamber. A distribution manifold encloses the fuel injectors, and a plenum passes through the combustor casing. A method for supplying a working fluid to a combustor includes flowing a working fluid from a compressor through a combustion chamber, diverting a portion of the working fluid into a plenum, and flowing the diverted portion of the working fluid outside of the compressor and the combustor. The method further includes flowing the diverted portion of the working fluid through a combustor casing and through a distribution manifold that encloses fuel injectors circumferentially arranged around the combustion chamber. | 07-18-2013 |
20130180254 | SYSTEM AND METHOD FOR SUPPLYING A WORKING FLUID TO A COMBUSTOR - A system for supplying a working fluid to a combustor includes a fuel nozzle and a combustion chamber downstream from the fuel nozzle. A flow sleeve circumferentially surrounds the combustion chamber, and fuel injectors provide fluid communication to the combustion chamber. A distribution manifold circumferentially surrounds the fuel injectors and defines an annular plenum. A fluid passage through the distribution manifold provides fluid communication through the distribution manifold. A radial cross-sectional area of the annular plenum varies around the flow sleeve. A method for supplying a working fluid to a combustor includes flowing a working fluid through a combustion chamber, diverting a portion of the working fluid through a distribution manifold that circumferentially surrounds fuel injectors circumferentially arranged around the combustion chamber, and changing at least one of a pressure or flow rate of the diverted portion of the working fluid. | 07-18-2013 |
20130180255 | RATIONAL LATE LEAN INJECTION - A combustor section of a gas turbine includes a combustor liner, a sleeve and a fuel-air mixing tube. The combustor liner defines a combustion chamber. The sleeve surrounds the combustor liner. The combustor liner and the sleeve define an annular flow space. The fuel-air mixing tube is configured to channel a mixture of fuel and air and includes an inlet and an outlet. The inlet is in fluid communication with an exterior of the sleeve, and the outlet is in fluid communication with the combustion chamber. The combustor casing encloses the combustor section upstream relative to the inlet of the mixing tube and extends downstream. The sleeve and the combustor casing define a discharge air space. The discharge space is in fluid communication with the mixing tube. The fuel supplying device is located exteriorly of the combustor casing and is configured to inject fuel into the mixing tube. | 07-18-2013 |
20130180256 | TURBINE FUEL NOZZLE ASSEMBLY AND METHOD FOR OPERATING A TURBINE - According to one aspect of the invention, a fuel nozzle assembly for a turbine includes an outer conduit of a fuel nozzle and a cap assembly to receive at least a portion of the fuel nozzle. The assembly also includes a spring disposed about the outer conduit and within an annular recess of the cap assembly, wherein the spring provides frictional damping to resist movement of the fuel nozzle. | 07-18-2013 |
20130180257 | COMBUSTOR FOR GAS TURBINE ENGINE - A combustor with a liner where each of the walls has a respective circumferential row of dilution holes defined therethrough adjacent a junction between the primary zone and the dilution zone. In the primary zone, the inner surface of each of the walls is covered by at least one heat shield attached thereto and spaced apart therefrom to allow air circulation between the inner surface and the at least one heat shield, the walls each having a plurality of cooling holes defined therethrough having a smaller diameter than that of the dilution holes. In the dilution zone, the inner surface of each of the walls is free of heat shields, and the walls each have a plurality of effusion cooling holes defined therethrough and having a smaller diameter than that of the dilution holes. | 07-18-2013 |
20130180258 | PROCESS FOR PRODUCING AN OXYGEN-CONTAINING COMPOUND - The subject of the invention is a process for producing an oxygen-containing compound chosen from C | 07-18-2013 |
20130186094 | Axial Flow Fuel Nozzle with a Stepped Center Body - An axial flow fuel nozzle for a gas turbine includes a plurality of annular passages for delivering materials for combustion. An annular air passage receives compressor discharge air, and a plurality of swirler vane slots are positioned adjacent an axial end of the annular air passage. A first next annular passage is disposed radially inward of the annular air passage and includes first openings positioned adjacent an axial end of the first annular passage and downstream of the swirler vane slots. A second next annular passage is disposed radially inward of the first annular passage and includes second openings positioned adjacent an axial end of the second annular passage and downstream of the first openings. | 07-25-2013 |
20130186095 | Gas turbine with motive fluid driven jet-compressor - A gas turbine prime mover for stationary and motor vehicle application. The gas turbine employs jet compression energized by a pressurized motive fluid to entrain a depressurized suction fluid from the turbine discharge. Combined suction and motive fluids circulate through the combustor or other heating source and the turbine while motive fluid, separated from the turbine discharge, preheats pressurized motive fluid in a heat recovery recuperator or regenerator. Additional features include recovery of heat loss from heating source loss and sub-ambient compression cooling of motive fluid. Cycle efficiency of 70% is attained. | 07-25-2013 |
20130186096 | METHOD FOR MONITORING A FUEL CIRCUIT SHUT-OFF VALVE - The invention relates to a method for monitoring the operation of a fuel circuit shut-off valve comprising an LPSOV, a flow regulator, the shut-off valve, characterised in that it comprises:
| 07-25-2013 |
20130192234 | BUNDLED MULTI-TUBE NOZZLE ASSEMBLY - A method for reducing emissions in a turbo machine is disclosed. The method includes providing fuel to a multi-tube nozzle and reducing the differences in the mass flow rate of fuel into each tube. An improved multi-tube nozzle is also disclosed. The nozzle includes an assembly that reduces the difference in the mass flow rate of fuel into each tube. | 08-01-2013 |
20130192235 | INTERNAL MANIFOLD FOR TURNING MID-TURBINE FRAME FLOW DISTRIBUTION - A mid-turbine frame (MTF) for a gas turbine engine includes an inner manifold directing air to a turbine rotor of the gas turbine engine. | 08-01-2013 |
20130192236 | Method For Transferring Fuel - A method for transferring fuel includes flowing water to at least one nozzle of a main fuel circuit. Also included is flowing oil to the at least one nozzle of the main fuel circuit. Further included is flowing liquid fuel to the at least one nozzle of the main fuel circuit, wherein flowing water to the at least one nozzle of the main fuel circuit occurs prior to flowing oil to the at least one nozzle of the main fuel circuit and flowing liquid fuel to the at least one nozzle of the main fuel circuit. | 08-01-2013 |
20130192237 | FUEL INJECTOR SYSTEM WITH FLUIDIC OSCILLATOR - A fuel injector system for a turbine engine may include a center body disposed about a longitudinal axis and a barrel housing positioned radially outwardly from the center body to define an annular passageway therebetween. The fuel injector may also include one or more fuel discharge outlets positioned in the annular passageway. The one or more fuel discharge outlets may be configured to discharge pulses of a fuel into the annular passageway. The fuel injector may further include one or more fluidic oscillators fluidly coupled to the one or more fuel discharge outlets. The one or more fluidic oscillators may be configured to induce pulsations in the fuel discharged by the one or more fuel discharge outlets. | 08-01-2013 |
20130192238 | BUFFER SYSTEM THAT COMMUNICATES BUFFER SUPPLY AIR TO ONE OR MORE PORTIONS OF A GAS TURBINE ENGINE - A gas turbine engine includes a buffer system that communicates a buffer supply air to a portion of the gas turbine engine. The buffer system includes a first bleed air supply having a first pressure, a second bleed air supply having a second pressure that is greater than the first pressure, and a valve that selects between the first bleed air supply and the second bleed air supply to communicate the buffer supply air to the portion of the gas turbine engine. | 08-01-2013 |
20130192239 | GAS TURBINE ENGINE BUFFER SYSTEM - A gas turbine engine includes a buffer system that includes a first circuit and a second circuit. The first circuit can communicate a first buffer supply air to a first portion of the gas turbine engine and the second circuit can communicate a second buffer supply air to a second portion of the gas turbine engine. | 08-01-2013 |
20130192240 | BUFFER SYSTEM FOR A GAS TURBINE ENGINE - A buffer system for a gas turbine engine includes a heat exchanger having a first inlet and outlet and a second inlet and outlet. The first outlet is configured to provide a cooled pressurized fluid. First and second air sources are selectively fluidly coupled to the first inlet. A third air source is fluidly coupled to the second inlet. Multiple fluid-supplied areas are located remotely from one another and are fluidly coupled to the first outlet. The multiple fluid-supplied areas include multiple bearing compartments. A method of providing pressurized air in a gas turbine engine includes selectively providing pressurized air from multiple air sources to a heat exchanger to cool the pressurized air. The cooled pressurized air is distributed to multiple fluid-supplied areas within the gas turbine engine. | 08-01-2013 |
20130192241 | GAS TURBINE ENGINE VARIABLE AREA FAN NOZZLE CONTROL - A method of managing a gas turbine engine operating line includes detecting an air speed and a fan speed. A data table is referenced that includes a desired variable area fan nozzle position based upon air speed and fan speed. The detected air speed and detected fan speed are compared to the data table to determine a target variable area fan nozzle position. An actual variable area fan nozzle position is adjusted to the target variable area fan nozzle position. | 08-01-2013 |
20130192242 | SPEED SENSOR PROBE LOCATION IN GAS TURBINE ENGINE - A gas turbine engine includes a fan, a fan drive gear system coupled to drive the fan, a compressor section including a first compressor and a second compressor and a turbine section. The turbine section includes a first turbine coupled to drive a first spool, which is coupled at a first axial position to a compressor hub that is coupled to drive the first compressor. The first spool is also coupled at a second axial position to a fan drive input shaft that is coupled to drive the fan drive gear system. A second turbine is coupled through a second spool to drive the second compressor. A speed sensor probe is operable to determine a rotational speed of the first spool. The speed sensor probe is located axially aft of the first axial position and the second axial position. | 08-01-2013 |
20130199192 | SYSTEM AND METHOD FOR GAS TURBINE NOX EMISSION IMPROVEMENT - In one embodiment of the present disclosure, a gas turbine system for NOx emission reduction and part load efficiency improvement is described. The system includes a gas turbine having a compressor which receives inlet-air. A direct-contact heat exchanger heats and humidifies the inlet-air before the inlet-air flows to the compressor. Heating the inlet-air reduces an output of the gas turbine and extends the turndown range. Humidifying the inlet-air can lower NOx emissions from the gas turbine unit. | 08-08-2013 |
20130199193 | TUNGSTEN CARBIDE INSERTS AND METHOD - Systems and methods provide for wear reduction in a combustion system of a gas turbine. A system for wear reduction includes: at least one substantially H-shaped block, the substantially H-shaped block being configured to secure a transition piece of a gas turbine combustor to a support piece; a first insert including a tungsten carbide in a metal matrix, the metal matrix being selected from a group including cobalt and nickel; and a brazing material which is used in brazing the first insert to the at least one substantially H-shaped block in at least one location on an interior wear surface of the at least one substantially H-shaped block. | 08-08-2013 |
20130199194 | COMBUSTOR HEAD ARRANGEMENT - A combustor head arrangement including a heatshield including an aperture therethrough. A meter panel having a cold side and a hot side, an aperture and a slot. At least one of the meter panel and the heatshield has a retaining feature on the cold side; one of the meter panel and the heatshield has an anti-rotation feature. The arrangement includes a burner seal sized to fit through the aperture in the meter panel from the hot side towards the cold side. The burner seal has a tang configured to pass through the slot when the burner seal is in a first orientation and to be retained by the retaining feature and the anti-rotation feature when the burner seal is rotated to a second orientation. Also a method of assembling the combustor head. | 08-08-2013 |
20130199195 | SYSTEM AND METHOD FOR HIGH EFFICIENCY POWER GENERATION USING A CARBON DIOXIDE CIRCULATING WORKING FLUID - The present invention provides methods and system for power generation using a high efficiency combustor in combination with a CO | 08-08-2013 |
20130205795 | TURBOMACHINE FLOW IMPROVEMENT SYSTEM - A turbomachine includes a housing that defines a flow path, and a stage arranged within the housing. The stage includes a plurality of rotating airfoil members and a first plurality of stationary airfoil members. A second plurality of stationary airfoil members is arranged directly adjacent to the first plurality of stationary airfoil members. A flow improvement system is associated with each of the first and second pluralities of stationary airfoil members. The flow improvement system establishes a predetermined clocking of each of the first plurality of stationary airfoil members relative to each of the second plurality of stationary airfoil members to improve flow characteristics along the flow path. | 08-15-2013 |
20130205796 | HEAT INTEGRATION IN CO2 CAPTURE - A power plant for combustion of carbonaceous fuels with CO | 08-15-2013 |
20130213048 | DIESEL ENGINE/GAS TURBINE COMPOUND ENGINE FOR A MEANS OF TRANSPORT - A compound engine for a means of transportation, includes a diesel engine and a gas turbine with at least one compressor and with at least one turbine. The diesel engine and the gas turbine are interconnected in such a manner that during continuous duty operation the compound engine is configured to be operated only by way of the diesel engine, and the diesel engine is optionally operated on its own or together with a compressor and a turbine of the gas turbine as a turbocharger for the diesel engine. The compound engine is configured to be operated by way of the diesel engine or the gas turbine. | 08-22-2013 |
20130219902 | BURNER PRESSURE TRANSDUCER THERMAL MANAGEMENT DESIGN - A system for reducing moisture in a burner pressure sensing line in a gas turbine engine. A water trap is mounted on the burner pressure sensing line with an inlet for receiving burner pressure air and an outlet for transferring burner pressure air to the sensor. A heat sink is positioned inside the water trap for condensing moisture contained in the burner pressure air. Finned tubes are used to passively control the temperature of the burner pressure line. A deadheaded chamber provides an alternative location for the moist air to condense when the gas is compressed at higher pressure. | 08-29-2013 |
20130219903 | Gas Turbine Combustor and Method for Operating Same - Disclosed is a gas turbine combustor for stably burning low-BTU gases, such as blast furnace gases, that are heavily laden with CO | 08-29-2013 |
20130219904 | Methods of Operation of A Gas Turbine With Improved Part Load Emissions Behavior - In a method for the low-CO emissions part load operation of a gas turbine with sequential combustion, the air ratio (λ) of the operative burners ( | 08-29-2013 |
20130219905 | METHOD OF OPTIMIZING THE SPECIFIC FUEL CONSUMPTION OF A TWIN ENGINE HELICOPTER AND TWIN ENGINE ARCHITECTURE WITH CONTROL SYSTEM FOR IMPLEMENTING IT - A method and architecture to reduce specific fuel consumption of a twin-engine helicopter without compromising safety conditions regarding minimum amount of power to be supplied, to provide reliable in-flight restarts. The architecture includes two turbine engines each including a gas generator and with a free turbine. Each gas generator includes an active drive mechanism keeping the gas generator rotating with a combustion chamber inactive, and an emergency assistance device including a near-instantaneous firing mechanism and mechanical mechanism for accelerating the gas generator. A control system controls the drive mechanism and emergency assistance devices for the gas generators according to the conditions and phases of flight of the helicopter following a mission profile logged beforehand in a memory of the system. | 08-29-2013 |
20130227953 | SYSTEM AND METHOD FOR REDUCING COMBUSTION DYNAMICS IN A COMBUSTOR - A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend from the upstream surface through the downstream surface. A divider inside a tube bundle defines a diluent passage that extends axially through the downstream surface, and a diluent supply in fluid communication with the divider provides diluent flow to the diluent passage. A method for reducing combustion dynamics in a combustor includes flowing a fuel through tube bundles, flowing a diluent through a diluent passage inside a tube bundle, wherein the diluent passage extends axially through at least a portion of the end cap into a combustion chamber, and forming a diluent barrier in the combustion chamber between the tube bundle and at least one other adjacent tube bundle. | 09-05-2013 |
20130232982 | GRADUAL OXIDATION AND AUTOIGNITION TEMPERATURE CONTROLS - Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber. | 09-12-2013 |
20130232983 | GRADUAL OXIDATION AND MULTIPLE FLOW PATHS - Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber. | 09-12-2013 |
20130232984 | GRADUAL OXIDATION WITH HEAT CONTROL - Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber. | 09-12-2013 |
20130232985 | GRADUAL OXIDATION WITH HEAT TRANSFER - Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber. | 09-12-2013 |
20130239576 | AEROSPACE ENGINE WITH AUGMENTING TURBOJET - A gas turbine engine system includes a fan section, a low pressure compressor section downstream of the fan section, a first engine core downstream from the low pressure compressor section, a second engine core downstream from the low pressure compressor section, and a flowpath control mechanism configured to selectively restrict fluid flow through the second engine core. The first engine core includes a first engine core compressor section, a first engine core combustor downstream of the first engine core compressor section, and a first engine core turbine section downstream of the first engine core combustor. The second engine core includes a second engine core compressor section, a second engine core combustor downstream of the second engine core compressor section, and a second engine core turbine section downstream of the second engine core combustor. | 09-19-2013 |
20130239577 | HYBRID GAS TURBINE ENGINE-ELECTRIC MOTOR/GENERATOR DRIVE SYSTEM - A method of operating a drive system for a load is disclosed. The drive system may have an electric motor/generator and a gas turbine engine. The engine may have a combustor, and main and pilot flow paths via which fuel is supplied to the combustor. The engine may be operable in low and standard emissions modes. A proportion of the fuel that is supplied to the combustor via the pilot flow path may be greater in the standard emissions mode than in the low emissions mode. The method may include determining an engine power requirement of the load, and whether the engine power requirement of the load is sufficiently large to operate the engine in the low emissions mode. Additionally, the method may include operating the electric motor/generator if the engine power requirement of the load is not sufficiently large to operate the engine in the low emissions mode. | 09-19-2013 |
20130239578 | INTERNAL THERMAL MANAGEMENT FOR MOTOR DRIVEN MACHINERY - A motor driven assembly includes a motor having a motor inlet and a motor outlet, a shaft, and a rotor spaced radially outwards from the shaft. A cooling flow passage is located between the shaft and the rotor. The cooling flow passage fluidly connects the motor inlet and the motor outlet. A compressor is in fluid communication with the motor outlet. The compressor includes a compressor outlet that is in fluid communication with the motor inlet. | 09-19-2013 |
20130247576 | APPARATUS, SYSTEM AND METHOD FOR OBSERVING COMBUSTOR FLAMES IN A GAS TURBINE ENGINE - A fuel injector for a gas turbine engine is disclosed which includes a nozzle body for issuing fuel and air into a combustor, and an on-axis optical probe located within the nozzle body for observing combustor flame radiation, wherein the optical probe includes a plurality of optical fiber bundles extending to a distal end of the probe, and a shaped lens is supported at the distal end of the probe to provide a multi-directional field of view of combustion characteristics and properties in an operating gas turbine engine combustor. | 09-26-2013 |
20130255267 | SYSTEM AND METHOD OF IMPROVING EMISSION PERFORMANCE OF A GAS TURBINE - A power generation system and method of generating power with reduced NO | 10-03-2013 |
20130255268 | TURBINE ENGINE HEAT RECUPERATOR SYSTEM - A gas turbine engine recuperator system includes a heat recuperator positioned in a gas turbine exhaust gas duct for recovering heat from turbine exhaust gases to preheat a compressor flow being supplied to the combustor. A continuous bleed flow of the turbine exhaust gases is provided to bypass the heat recuperator. The continuous bleed flow of the turbine exhaust gases is adjustable to reduce turbine exhaust gas pressure loss at a high engine operation level and to provide efficient heat recovery at low and/or medium engine operation levels. | 10-03-2013 |
20130255269 | COMBUSTOR HAVING A BEVELED GROMMET - A combustor includes a shell that at least partially defines a combustion chamber and a grommet mounted in the shell. The grommet has a body that defines a passage through the grommet that is operable to communicate air from outside the combustion chamber into the combustion chamber. The body carries a first surface, an opposite, second surface and a third surface that defines the passage and joins the first surface and the second surface. The third surface includes a bevel surface with respect to at least one of the first surface and the second surface. | 10-03-2013 |
20130263605 | Diffusion Combustor Fuel Nozzle - The present application thus provides a fuel nozzle for use with one or more flows of fuel and a flow of air in a combustor. The fuel nozzle may include one or more gas fuel passages for the one or more of flows of fuel, a swirler with one or more air chambers therein surrounding the gas fuel passages, and a collar with one or more curtain slots surrounding the swirler. The flow of air is divided between a swirler flow through the air chambers and a curtain flow through the curtain slots. | 10-10-2013 |
20130269355 | METHOD AND SYSTEM FOR CONTROLLING AN EXTRACTION PRESSURE AND TEMPERATURE OF A STOICHIOMETRIC EGR SYSTEM - The present invention provides a system and method that yields an exhaust stream that includes a relatively high concentration of a desirable gas and is also substantially oxygen-free. This desirable gas includes, but is not limited to: Carbon Dioxide (CO2), Nitrogen (N2), or Argon. The present invention also provides a way to control the physical property of the exhaust stream. | 10-17-2013 |
20130269356 | METHOD AND SYSTEM FOR CONTROLLING A STOICHIOMETRIC EGR SYSTEM ON A REGENERATIVE REHEAT SYSTEM - Embodiments of the present invention provide a S-EGR process that yields an exhaust stream that includes a relatively high concentration of a desirable gas and is also substantially oxygen-free. This desirable gas includes, but is not limited to: Carbon Dioxide (CO2), Nitrogen (N2), or Argon. | 10-17-2013 |
20130269357 | METHOD AND SYSTEM FOR CONTROLLING A SECONDARY FLOW SYSTEM - Embodiments of the present invention provide to a cooling and sealing air system for reheat gas turbine powerplant operating in a configuration that includes stoichiometric exhaust gas recirculation configuration. A user may have the flexibility in determining where the cooling and sealing flow derives. This may include and enhanced oil recovery system, a concentrated carbon system, etc. | 10-17-2013 |
20130269358 | METHODS, SYSTEMS AND APPARATUS RELATING TO REHEAT COMBUSTION TURBINE ENGINES WITH EXHAUST GAS RECIRCULATION - A method of controlling a power plant that includes a working fluid and a recirculation loop, wherein the power plant includes a combustion system having an upstream combustor operably connected to a high-pressure turbine and a downstream combustor operably connected to a low-pressure turbine. The method includes: recirculating the working fluid through the recirculation loop; controlling a compressed oxidant amount supplied to the upstream combustor and the downstream combustor; controlling a fuel amount supplied to the upstream combustor and the downstream combustor; controlling the power plant such that each of the upstream combustor and the downstream combustor periodically operates at a preferred stoichiometric ratio; and selectively extracting the working fluid from a first extraction point associated with the upstream combustor and a second extraction point associated with the downstream combustor based upon which combustors operates at the preferred stoichiometric ratio. | 10-17-2013 |
20130269359 | COMBUSTOR FLOW SLEEVE WITH SUPPLEMENTAL AIR SUPPLY - A gas turbine combustor includes a combustor liner enclosing a combustion chamber; at least one fuel nozzle arranged to provide fuel to the combustion chamber; a flow sleeve surrounding the combustor liner forming a passage radially between the combustor liner and the flow sleeve for supplying air to the combustion chamber, the flow sleeve configured to permit air to flow substantially axially into the passage via a substantially annular flow sleeve inlet. A downstream end of the flow sleeve is formed to include an annular manifold provided with plural outlets about a circumference of the downstream end of the flow sleeve and adapted to supply supplemental air from an external variable air source substantially radially into the passage to thereby maintain axial air flow boundary layer attachment at the flow sleeve inlet. | 10-17-2013 |
20130283807 | SYSTEM AND METHOD FOR SUPPLYING A WORKING FLUID TO A COMBUSTOR - A system for supplying a working fluid to a combustor includes a fuel nozzle, a combustion chamber downstream from the fuel nozzle, and a flow sleeve that circumferentially surrounds the combustion chamber. Injectors circumferentially arranged around the flow sleeve provide fluid communication through the flow sleeve and into the combustion chamber. A valve upstream from the injectors has a first position that permits working fluid flow to the injectors and a second position that prevents working fluid flow to the injectors. A method for supplying a working fluid to a combustor includes flowing a working fluid through a combustion chamber, diverting a portion of the working fluid through injectors circumferentially arranged around the combustion chamber, and operating a valve upstream from the injectors to control the working fluid flow through the injectors. | 10-31-2013 |
20130283808 | SYSTEM AND METHOD FOR COOLING A GAS TURBINE WITH AN EXHAUST GAS PROVIDED BY THE GAS TURBINE - A system for cooling a gas turbine with an exhaust gas provided by the gas turbine generally includes an exhaust gas recirculation system including an exhaust gas scrubber. The exhaust gas recirculation system is disposed downstream from the gas turbine and may receive at least a portion of the exhaust gas provided by the gas turbine. The system may also include a moisture separator located downstream from the exhaust gas recirculation system, and a cooling circuit configured to connect to one or more cooling circuit inlets. The one or more cooling circuit inlets may provide fluid communication between the cooling circuit and the gas turbine. | 10-31-2013 |
20130283809 | FUEL INJECTOR WITH PURGED INSULATING AIR CAVITY - A fuel injector includes a flow path for fuel air mixture to a combustor extending longitudinally through the fuel injector. The fuel injector may also include a liquid fuel gallery at least partially encircling the flow path. The gallery may include a plurality of fuel spokes configured to deliver liquid fuel from the gallery to the flow path. The fuel injector may also include an annular outer housing circumferentially positioned about the gallery to form an insulating air cavity at least partially around the gallery. The outer housing may include at least one purge hole to provide communication between the insulating air cavity and outside the outer housing of the injector. | 10-31-2013 |
20130291547 | PURGE METHOD AND PURGE UNIT FOR GAS TURBINE COMBUSTOR - A purging method and a purge unit for a gas turbine combustor capable of effectively preventing deviation of an exhaust gas environmental regulation value from a regulation range in the case of using a dual-fuel type gas turbine combustor. The gas turbine combustor is provided with nozzles. Which communicate with an oil fuel line where oil fuel flows and a gas fuel line where gas fuel flows and are capable of switching injection fuel between the oil fuel and the gas fuel. A purging method for the gas turbine includes a first purge step of purging the oil fuel line by at least water immediately after the injection fuel is switched to the gas fuel from the oil fuel and a second purge step of purging the oil fuel line by at least water immediately before the injection fuel is switched to the oil fuel from the gas fuel. | 11-07-2013 |
20130291548 | COMBUSTOR MIXING JOINT AND METHODS OF IMPROVING DURABILITY OF A FIRST STAGE BUCKET OF A TURBINE - The present application and the resultant patent provide a method of improving durability of a first stage bucket of a turbine of a gas turbine engine. The method may include the steps of generating a first combustion flow in a first can combustor and a second combustion flow in a second can combustor, wherein the first can combustor and the second can combustor meet at a joint comprising a flow disruption surface; passing the first combustion flow and the second combustion flow over the flow disruption surface and to a mixing region; substantially mixing the first combustion flow and the second combustion flow in the mixing region to form a mixed combustion flow; and passing the mixed combustion flow to a first stage bucket of a turbine. | 11-07-2013 |
20130298564 | COOLING SYSTEM AND METHOD FOR TURBINE SYSTEM - A cooling system and a method for cooling a liner in a turbine system are disclosed. The cooling system includes a liner defining a temperature boundary between a hot side and a cold side. The liner includes a hot side surface and a cold side surface and defines a hole extending between the hot side surface and the cold side surface. The hole defines a peripheral edge. The cooling system further includes an insert. The insert includes a tube extending through the hole, the tube including an outer surface. The outer surface and the peripheral edge define a generally continuous peripheral gap therebetween. The insert further includes a plate connected to the tube and disposed in the hot side. The plate extends outwardly from the tube such that working fluid flowing through the gap is redirected by the plate to form a film proximate the hot side surface. | 11-14-2013 |
20130298565 | GAS TURBINE ENGINE SYSTEMS AND RELATED METHODS INVOLVING MULTIPLE GAS TURBINE CORES - Gas turbine engine systems and related methods involving multiple gas turbine cores are provided. In this regard, a representative gas turbine engine includes: an inlet; a blade assembly mounted to receive intake air via the inlet; and multiple gas turbine cores located downstream of the blade assembly, each of the multiple gas turbine cores being independently operative in a first state, in which rotational energy is provided to rotate the blade assembly, and a second state, in which rotational energy is not provided to rotate the blade assembly. | 11-14-2013 |
20130298566 | ELECTRICAL RAFT WITH MAP - An electrical raft | 11-14-2013 |
20130298567 | METHOD AND APPARATUS FOR GENERATING MOTIVE POWER - A cooling medium supply apparatus has a sensing means and a cooling medium pump mechanism which is powered by a gas turbine engine assembly. The gas turbine engine assembly is self-contained with a fuel supply, an ignition system and a starting system. The sensing means monitors the presence of a primary supply of a cooling medium, and on detecting a loss of the primary supply, actuates the gas turbine assembly to provide a secondary supply of the cooling medium. | 11-14-2013 |
20130305728 | Systems and Methods for Minimizing Coking in Gas Turbine Engines - Embodiments of the disclosure can provide systems and methods for minimizing coking in gas turbine engines. According to one embodiment, there is disclosed a system for minimizing coking in a gas turbine engine. The system may include a gas turbine compartment, a fuel component disposed within the gas turbine compartment, and a thermoelectric element disposed at least partially about the fuel component. The thermoelectric element may be configured to exchange heat with the fuel component. | 11-21-2013 |
20130305729 | TURBOMACHINE COMBUSTOR AND METHOD FOR ADJUSTING COMBUSTION DYNAMICS IN THE SAME - A turbomachine combustor includes a combustor cap having a cap surface and a wall that define, at least in part, a resonator volume. A plurality of injection nozzle members extend from the cap surface. Each of the plurality of injection nozzle members include an inner nozzle member and a plurality of outer nozzle members. An adjustable conduit extends through the wall into the resonator volume. The adjustable conduit includes an internal passage having a dimensional parameter. A combustor dynamics mitigation system is operably connected to the combustor cap. The combustor dynamics mitigation system includes a controller configured and disposed to control one a size of the resonator volume and the dimensional parameter of the adjustable conduit to modify combustor dynamics in the combustor. | 11-21-2013 |
20130305730 | METHOD FOR PREHEATING FUELS IN A GAS TURBINE ENGINE - A method and apparatus are disclosed which are directed generally to gas turbine engine systems and specifically to a method utilizing a heat pipe or pipes associated with a thermal oxidizer for preheating a fuel-air mixture. This preheating of a fuel-air mixture allows a substantial reduction in size a thermal oxidizer used as a combustor so that it can be used with all fuels, especially natural gas. | 11-21-2013 |
20130305731 | METHODS AND APPARATUS FOR PROVIDING FLUIDIC INSERTS INTO AN EXHAUST STREAM TO REDUCE JET NOISE FROM A NOZZLE - A method, an apparatus, and a computer program product are provided in connection reducing jet noise from a convergent-divergent nozzle that includes a divergent section through which at least portion of an exhaust gas flows at supersonic speeds. In one example, an apparatus is equipped with one or more injection ports arranged on the divergent section of the convergent-divergent nozzle, one or more delivery pipes coupled to each of the one or more injection ports on the exterior surface side of the divergent section and operable to transport an injection gas from a source to the divergent section through the one or more injection ports, and a controller operable to control at least one parameter associated with introduction of the injection gas. In an aspect, each of the one or more injection ports provides an opening from an interior surface to an exterior surface of the divergent section. | 11-21-2013 |
20130305732 | MIXING ELEMENT FOR GAS TURBINE UNITS WITH FLUE GAS RECIRCULATION - The invention pertains to fluegas recirculation in gas turbines, and specifically to an intake section upstream of the inlet of a compressor of a gas turbine unit with fluegas recirculation. The intake section includes at least one section with a flow path defined by sidewalls in which the fresh airflow of the intake air is flowing along a principal airflow direction, including at least one mixing duct extending into the flow path from at least one sidewall. The mixing duct includes an intake at the at least one sidewall for receiving recirculated fluegas, as well as including at least one outlet opening distanced from said sidewall for blowing recirculated fluegas out of the mixing duct into the airflow. | 11-21-2013 |
20130305733 | APPARATUS AND METHOD FOR PROVIDING DAMPER LIQUID IN A GAS TURBINE ENGINE - A method for distributing liquid in a gas turbine engine is disclosed. The method includes rotating a fan shaft coupled to a spool via a fan drive gear system. The spool drives rotation of the fan shaft through the fan drive gear system during operation of the gas turbine engine. A pump is driven via the fan shaft. Liquid is supplied from a sump to the pump under a first operating condition. Liquid is supplied from an auxiliary reservoir to the pump under a second operating condition. Liquid is pumped to a damper. | 11-21-2013 |
20130312421 | FUEL CONTROL SYSTEM FOR A GAS TURBINE ENGINE - A fuel valve for a gas turbine engine includes a passageway configured to direct a fuel to the engine and a flow restriction positioned in the passageway. The fuel valve may also include a first pressure sensor coupled to the passageway upstream of the restriction through an upstream port, and a second pressure sensor coupled to the passageway downstream of the restriction through a downstream port. The fuel valve may further include a third pressure sensor coupled to the upstream port through a first branch port, and a fourth pressure sensor coupled to the downstream port through a second branch port. | 11-28-2013 |
20130312422 | Liquid Cartridge with Passively Fueled Premixed Air Blast Circuit for Gas Operation - A gas/liquid fuel nozzle assembly includes a premixing tube bundle having an array of mixing tubes, a fuel plenum delivering fuel to the mixing tubes, a cartridge tube disposed within the fuel plenum, and a liquid fuel cartridge disposed in the cartridge tube. The liquid fuel cartridge is spaced from the cartridge tube to define an annulus. The cartridge tube and the fuel plenum are constructed in fluid communication such that gas fuel in the plenum is injected into the annulus. | 11-28-2013 |
20130318981 | ADAPTIVE FAN WITH COLD TURBINE - A disclosed gas turbine engine includes a first fan section including a plurality of fan blades rotatable about an axis, a compressor in fluid communication with the first fan section, a combustor in fluid communication with the compressor and a first turbine section in fluid communication with the combustor. The first turbine section includes a low pressure turbine that drives the first fan section. A second fan section is supported between the first fan section and the compressor and is driven by a second turbine section disposed between the second fan section and the compressor for driving the second fan section. | 12-05-2013 |
20130318982 | TURBINE COOLING APPARATUS - The present disclosure describes a turbine blade for a turbine section of a gas turbine engine. The turbine blade includes an airfoil, a platform extending from one side of the airfoil, a root extending from the platform, and at least one purging fin. The at least one purging fin is connected to the root and an underside of the platform, and the at least one purging fin extends along a wall of the root. | 12-05-2013 |
20130318983 | AIRCRAFT ENERGY MANAGEMENT SYSTEM INCLUDING ENGINE FAN DISCHARGE AIR BOOSTED ENVIRONMENTAL CONTROL SYSTEM - An aircraft energy management system including a cabin air compressor adapted to be coupled to a source of fan discharge air at a first pressure during an inflight operating mode and adapted to be coupled to a ram intake air during a ground operating mode. The system further including an environmental control system mechanically coupled to a compressor exit of the cabin air compressor. The aircraft energy management system configured to provide a conditioned fluid flow to an aircraft cabin, cockpit or de-icing system. | 12-05-2013 |
20130318984 | Gas Turbine Compressor Inlet Pressurization Having a Torque Converter System - A supercharging system for a gas turbine system includes a compressor, a combustor, a turbine and a shaft. The supercharging system includes a fan assembly that provides an air stream and a torque converter coupled to the shaft and the fan assembly. The supercharging system also includes a subsystem for conveying a first portion of the air stream output to the compressor; and a bypass subsystem for optionally conveying a second portion of the air stream output to other uses. | 12-05-2013 |
20130318985 | CONTROL OF STEAM TEMPERATURE IN COMBINED CYCLE POWER PLANT - A combined cycle power plant may include a gas turbine comprising a feed forward signal generator and configured to operate in one of one or more firing modes and generate exhaust gas and a heat recovery steam generator configured to receive the exhaust gas and extract thermal energy from the exhaust gas to generate steam. The feed forward signal generator may be configured to generate a feed forward signal that is used to control the temperature of the steam generated by the heat recovery steam generator. | 12-05-2013 |
20130318986 | IMPINGEMENT COOLED COMBUSTOR - The present application thus provides a combustor for use with a gas turbine engine. The combustor may include a turbine nozzle and a liner cooling system integral with the turbine nozzle. The liner cooling system may include a liner with one or more cooling features thereon and an impingement sleeve. | 12-05-2013 |
20130318987 | SUPERCHARGED COMBINED CYCLE SYSTEM WITH AIR FLOW BYPASS TO HRSG AND FAN - A supercharging system includes a fan providing an air flow, and a prime mover that drives the fan. A duct directs a first portion of the air flow to a gas turbine system, a main bypass subsystem diverts a second portion of the air flow to a heat recovery steam generator; and a drive bypass subsystem that diverts a third portion of the air flow to the prime mover. The prime mover may be one of an aeroderivative gas turbine, a gas turbine, a reciprocating engine, a steam turbine and an induction motor and a variable frequency drive. | 12-05-2013 |
20130318988 | AIRCRAFT ENGINE WITH TURBINE HEAT EXCHANGER BYPASS - An aircraft engine, in particular a helicopter engine, having a one or multi-stage compressor system (V), a combustion chamber (BK) connected downstream therefrom, and a one- or multi-stage turbine system (HT, NT) connected downstream therefrom, a compressor heat exchanger system (WV), a turbine heat exchanger system (WT), and a bypass means for optionally guiding the working medium through or past at least one turbine heat exchanger (WT) of the turbine heat exchanger system. | 12-05-2013 |
20130318989 | APPARATUS AND A METHOD OF MANUFACTURING AN ARTICLE FROM POWDER MATERIAL - An apparatus for manufacturing an article from powder material including a first table, a second table rotatably mounted on the first table about a first axis and a third table rotatably mounted on the second table about a second axis. A hollow canister is supported by the third table. A vibrator is arranged to vibrate the canister. A first device is arranged to rotate the second table about the first axis and a second device is arranged to rotate the third table about the second axis. A hopper is arranged to supply powder material into the canister and a valve controls the flow of powder material from the hopper into the canister. A processor is arranged to control the valve, the vibrator, the first device and the second device to control the filling and packing density of the canister. | 12-05-2013 |
20130318990 | External Combustion Engine with a General Wheel Power Rotation Motor - General Wheel Rotation Power Motor (GWRPM) systems, apparatus, devices and methods of using a pressure generation, storage and control element; a pressure conversion to rotational force unit with reverse and neutral capability and components to transfer said rotational force to a power accumulator/multiplier whereby useful rotational force can be applied to varied applications. Pressure can be generated from an internal combustion engine (ICE), a pressurized air source, and the like. | 12-05-2013 |
20130327048 | COMBUSTOR LINER WITH CONVERGENT COOLING CHANNEL - A combustor liner includes a heat shield, a shell, a series of trip strips, and a series of projecting walls. The heat shield has a shield cold side. The shell is attached to the heat shield and includes a shell hot side facing the shield cold side, a shell cold side facing away from the shield cold side, and a row of cooling holes. The trip strips run parallel to each other and all project from the shield cold side the same distance. Each projecting wall runs parallel to, and opposite of, a corresponding trip strip and projects from the shell hot side such that the distance to which each projecting wall projects is greater for projecting walls farther from the row of cooling holes, creating successive gaps between the projecting walls and corresponding trip strips that decrease from the row of cooling holes to create a convergent channel. | 12-12-2013 |
20130327049 | COMBUSTOR LINER WITH REDUCED COOLING DILUTION OPENINGS - A combustor liner is arcuate in shape and defines an axis and a circumferential direction. The combustor liner includes a first row of dilution openings and a second row of dilution openings. The first row runs in the circumferential direction. The second row runs parallel to the first row and is axially spaced from the first row. Each dilution opening of the second row overlaps in an axial direction a portion of each of two adjacent dilution openings of the first row. | 12-12-2013 |
20130327050 | CONTROLLING FLAME STABILITY OF A GAS TURBINE GENERATOR - A method and apparatus for controlling a flame stability at a gas turbine generator is disclosed. The method includes forming combustible mixtures at a plurality of fuel nozzles of a combustor of the gas turbine generator; altering an oxygen concentration of at least one of the combustible mixtures at a selected fuel nozzle of the plurality of fuel nozzles; and burning the combustible mixtures at the plurality of fuel nozzles to control the flame stability at the gas turbine generator. | 12-12-2013 |
20130327051 | POWER PLANT WITH SOLAR ENERGY SYSTEM - A power plant ( | 12-12-2013 |
20130327052 | EXHAUST SYSTEM FOR GAS TURBINES - An exhaust system is provided for mitigating condensate formation in a common exhaust stack and for effecting improved heat transfer. Reduced condensate formation and improved heat transfer is achieved by inducing non-laminar flow through the common exhaust stack and a heat exchanger operatively coupled to the common exhaust stack. Heat transfer is further improved by dew point control. Non-laminar flow is induced by connecting more than one gas turbine to the common exhaust stack through non-laminar flow inducing arrangements. The various coupling arrangements also add structural rigidity to the common exhaust stack for increased stack height and improved plume dispersion. | 12-12-2013 |
20130340438 | METHOD OF REDUCING COMBUSTION INDUCED OSCILLATIONS IN A TURBINE ENGINE - Systems and methods for operating a turbine engine having a plurality of fuel injectors arranged circumferentially in a combustor, with each fuel injector having a main fuel supply and a pilot fuel supply, includes supplying fuel to the plurality of fuel injectors through the main fuel supply to create a circumferential thermal gradient in the combustor. | 12-26-2013 |
20140000269 | COMBUSTION NOZZLE AND AN ASSOCIATED METHOD THEREOF | 01-02-2014 |
20140000270 | STAND-BY OPERATION OF A GAS TURBINE | 01-02-2014 |
20140000271 | Systems and Methods For Controlling Stoichiometric Combustion In Low Emission Turbine Systems | 01-02-2014 |
20140007581 | FUEL FLEXIBLE FUEL INJECTOR - A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture. | 01-09-2014 |
20140020394 | SYSTEM AND METHOD FOR TURBOMACHINE HOUSING VENTILATION - An air intake includes a conduit, an inlet, an inlet duct, an outlet duct, an outlet, and a fan. The inlet is configured to removably couple with the fan and to direct the second airflow in a first direction. The inlet duct is coupled to the inlet and directs the second airflow in a second direction around the conduit and a third direction into a turbomachine enclosure. The outlet duct receives the second airflow from a fourth direction substantially opposite to the third direction and directs the second airflow in the second direction. The outlet is configured to removably couple with the fan and to direct the second airflow in a fifth direction. The fan within the air intake is removably coupled to the inlet or to the outlet and is configured to positively or negatively pressurize the turbomachine enclosure with the second airflow based on the fan disposition. | 01-23-2014 |
20140020395 | METHOD FOR MODIFYING GAS TURBINE PERFORMANCE - A method for enhancing one or more performance parameters of a gas turbine having at least one row of clocked airfoils may generally include choosing a first, a second and a third row of airfoils where the third row is clocked relative to the first row. An unsteady computational fluid dynamics model may be used to determine at least one wake parameter of a working fluid flowing from the second row of the airfoils to the third row of the airfoils. At least one design parameter of the airfoils of the second row may be modified, and the unsteady computational fluid dynamics model may then be used to determine the effect of the airfoil design parameter modification on the at least one wake parameter. The effect on the wake parameter may be compared to a predetermined target range. | 01-23-2014 |
20140020396 | METHOD OF AUTOMATICALLY REGULATING AN AIRCRAFT POWER PLANT, A DEVICE, AND AN AIRCRAFT - The present invention relates to an automatic method of regulating a power plant ( | 01-23-2014 |
20140020397 | COMBUSTION CHAMBER WITH A WALL SECTION AND A BRIM ELEMENT - A combustion chamber for a gas turbine is proposed. The combustion chamber has a wall section and a brim element. The wall section has an inlet aperture for injecting a cooling medium into the combustion chamber. The brim element is mounted to an inner face of the wall section. The brim element is formed in such a way that a projected area of the brim element onto the inner face along a direction of a normal of the inner face at least partially covers the inlet channel. | 01-23-2014 |
20140020398 | Methods of Varying Low Emission Turbine Gas Recycle Circuits and Systems and Apparatus Related Thereto - Systems and methods are provided for varying the exhaust gas recycle circuit of low emission gas turbines. In one or more embodiments, the systems and methods incorporate alternatives to the use of a direct contact cooler. In the same or other embodiments, the systems and methods incorporate alternatives intended to reduce or eliminate the erosion or corrosion of compressor blades due to the presence of acidic water droplets in the recycled gas stream. | 01-23-2014 |
20140020399 | METHOD AND DEVICE FOR GENERATING ELECTRICITY AND GYPSUM FROM WASTE GASES CONTAINING HYDROGEN SULFIDE - The invention relates to a method and an apparatus for generating current from hydrogen sulphide-containing exhaust gases, particularly from the natural gas industry. | 01-23-2014 |
20140026583 | FLUID MANAGEMENT APPARATUS AND METHOD - A fluid management apparatus and method, the apparatus including: a fluid conduit for the passage of a dispersion containing particulate matter; a laser arranged to provide laser light inside the fluid conduit; wherein, in use, the laser light heats the particulate matter sufficiently to generate incandescence; one or more sensors for detecting the incandescence of the particulate matter so as to determine a characteristic of the dispersion; and an electromagnetic wave generator operable to provide electromagnetic waves inside the fluid conduit at a position downstream of the laser light so as to vaporise at least a portion of the dispersion. | 01-30-2014 |
20140026584 | COMPRESSED AIR ENERGY STORAGE SYSTEM HAVING VARIABLE GENERATION MODES - A method of operating a compressed air energy storage (CAES) system includes operating a compressor train of the CAES system, thereby compressing air. The method further includes, while operating the compressor train: inter-cooling a first portion of the compressed air; further compressing the inter-cooled first portion; after-cooling the further compressed first portion; supplying the after-cooled first portion to a storage vessel; supplying a second portion of the compressed air to a combustor; combusting the second portion; and operating a turbine train of the CAES system using the combusted second portion. | 01-30-2014 |
20140026585 | CERAMIC-TO-METAL TURBINE VOLUTE ATTACHMENT FOR A GAS TURBINE ENGINE - A means of attachment applicable to mating parts which have substantially different coefficients of thermal expansion is disclosed. The means of attachment substantially reduces the friction between the mating surfaces while still keeping the mating parts centered with respect to one another. The approach is based on radial recessed faces wherein the radial faces slide relative to each other. There may be three or more recessed/raised faces on each mating component, which when mated, maintain the alignment between the mating parts while allowing differential growth of the mating parts. This approach also the provides a much larger bearing surface for the attachment than a radial pin/slot approach, for example, and substantially eliminates areas of high stress concentration. It is thus a more robust design for components that undergo many thousands of thermal cycles. | 01-30-2014 |
20140026586 | REHEAT BURNER AND METHOD OF MIXING FUEL/CARRIER AIR FLOW WITHIN A REHEAT BURNER - The invention refers to a reheat burner that includes a flow channel for a hot gas flow with a lance arranged along said flow channel, protruding into the flow channel for injecting a fuel over an injection plane perpendicular to a channel longitudinal axis, wherein the channel and lance define a vortex generation zone upstream of the injection plane and a mixing zone downstream of the injection plane in the hot gas flow direction. The mixing zone provides at least one axially region having different cross sectional areas along its longitudinal axis with continuously changing shape, or having non circular cross section areas which change location along its longitudinal axis by continuously rotation around the longitudinal axis. | 01-30-2014 |
20140033727 | METHOD OF COOLING A DOWNHOLE GAS GENERATOR - A method for cooling a downhole gas generator that includes a combustion housing and a plurality of annular cooling jacket segments. A flow of water is provided into inlet ports, and out of outlet ports, of each of the plurality of annular cooling jacket segments, for cooling the downhole gas generator. The flow of water into the inlet ports, and out of the outlet ports is regulated to provide optimal cooling of the downhole gas generator, and to also optimize the flow of water through the plurality of apertures of the combustion housing and into the combustion chamber, to minimize heat damage to the combustion housing. | 02-06-2014 |
20140033728 | GAS TURBINE ASSEMBLY AND CORRESPONDING OPERATING METHOD - The invention relates to a gas turbine assembly which substantially includes at least one compressor, at least one first burner, at least one second burner that is connected downstream of the first burner, and at least one turbine that is connected downstream of the second burner. At least the first and second burner form a component of a tubular or quasi-tubular combustion chamber element in the flow direction of the combustion path of the burners. The combustion chamber element being closed or quasi-closed and extending between the compressor and the turbine. The combustion chamber elements are arranged around the rotor of the gas turbine assembly in the shape of a ring. | 02-06-2014 |
20140033729 | METHOD FOR MOUNTING AN AIRCRAFT ENGINE ON A PYLON, AND ENGINE FASTENER FOR IMPLEMENTING SAID METHOD - A method for mounting an aircraft engine on a pylon includes positioning at least a first shear pin either in a first opening provided in a front engine fastener which is previously attached to the engine using connecting rods, or in a first bore provided in a front surface of the pylon; prepositioning the assembly including the engine and the front engine fastener relative to the pylon by placing the first shear pin opposite a receiving cavity, the receiving cavity being either the first bore, if the first shear pin has been positioned in the first opening, or the first opening, if the first shear pin has been positioned in the first bore; and inserting the first shear pin into the receiving cavity. | 02-06-2014 |
20140041392 | Regenerative Gas Generator - Systems, methods, and computer program products are disclosed that overcome the deficiencies of traditional steam engines and internal combustion engines. In an embodiment, a system is disclosed for generating reaction products having elevated temperature and pressure. The system comprises a first chamber including a reactor to decompose hydrogen peroxide to generate oxygen and water vapor. The system further comprises a second chamber including a reactor to catalytically combust a mixture of the generated oxygen and a fuel to generate reaction products having elevated temperature and pressure. The system further comprises a passageway to receive reaction products exiting the second chamber and to channel the reaction products to come into contact with external surfaces of the first and second chambers to thereby transfer heat to the first and second chambers, and an outlet to allow the reaction products to exit the system. | 02-13-2014 |
20140047846 | TURBINE COMPONENT COOLING ARRANGEMENT AND METHOD OF COOLING A TURBINE COMPONENT - A turbine component cooling arrangement includes a combustor liner defining a combustor chamber, wherein the combustor liner includes an outer surface and an inner surface. Also included is a channel disposed along the outer surface, wherein the channel is configured to receive a cooling flow through at least one aperture extending through a liner ring disposed proximate the outer surface of the combustor liner. Further included is at least one outlet orifice extending between the channel and the combustor chamber through the inner surface for routing the cooling flow along the inner surface within the combustor chamber. | 02-20-2014 |
20140053564 | LINER BRACKET FOR GAS TURBINE ENGINE - A hanger for a gas turbine exhaust system includes an exhaust duct attachment structure associated with an exhaust duct and a liner attachment structure associated with a liner spaced radially inwardly of the exhaust duct. The exhaust duct attachment structure and the liner attachment structure cooperate to suspend the liner within the exhaust duct such that the exhaust duct and liner are movable relative to each other. At least one resilient member generates a resilient biasing force between the exhaust duct attachment structure and the liner attachment structure. | 02-27-2014 |
20140053565 | System and Method for Processing Greenhouse Gases - A system for processing greenhouse gases including a collection subsystem configured to collect a gaseous mixture including carbon dioxide and methane, a combustion subsystem configured to combust the methane in the gaseous mixture and output a gaseous combustion effluent, wherein the combustion subsystem generates electrical energy, water and additional quantities of carbon dioxide, and a separation subsystem configured to separate the carbon dioxide from the gaseous combustion effluent. | 02-27-2014 |
20140053566 | METHOD FOR MIXING A DILUTION AIR IN A SEQUENTIAL COMBUSTION SYSTEM OF A GAS TURBINE - The invention relates a method for mixing a dilution air with a hot main flow in a sequential combustion system of a gas turbine, wherein the gas turbine essentially comprises at least one compressor, a first combustor which is connected downstream to the compressor The hot gases of the first combustor are admitted to at least one intermediate turbine or directly or indirectly to at least one second combustor, wherein the hot gases of the second combustor are admitted to a further turbine or directly or indirectly to an energy recovery. The method comprising a coaxial injection of first combustor liner cooling air with second combustor liner cooling air having a sufficient excess pressure margin with respect to the second combustor liner cooling air | 02-27-2014 |
20140060061 | Systems and Methods for Removing Impurities from Heavy Fuel Oil - The present application provides a fuel delivery system for use with a flow of heavy fuel oil for a gas turbine engine. The fuel delivery system may include one or more fuel lines in communication with the gas turbine engine and a magnesium mixing system positioned upstream of the one or more fuel lines. The magnesium mixing system may include a flow of magnesium and a flow of a carrier fluid, a carrier mixing chamber to mix the flow of magnesium and the flow of the carrier fluid to form a mixed carrier flow, and a heavy fuel oil mixing chamber to mix the flow of heavy fuel oil and the mixed carrier flow. | 03-06-2014 |
20140060062 | METHOD, APPARATUS AND SYSTEM FOR CONTROLLING SWIRL OF EXHAUST IN A GAS TURBINE - Change in swirl of gas turbine exhaust gases at off-design conditions is a key driver of exhaust diffuser inefficiency that adversely impact the gas turbine performance. Conventional ways to control swirl such as blowing, suction, and vortex generation are undesirable since they require parasitic power, are complex to design, and dilute the exhaust gas energy. To address such short comings, shape memory devices are incorporated into struts of an exhaust diffuser of a gas turbine. The shape memory devices change shape in accordance with heat, which can be applied through memory device heaters. By controlling the memory device heaters, the heat applied to the shape memory devices can be controlled. The shapes of the struts can be altered through altering the shapes of the memory device in consideration of load conditions to increase the efficiency. | 03-06-2014 |
20140060063 | Systems and Methods For Suppressing Combustion Driven Pressure Fluctuations With a Premix Combustor Having Multiple Premix Times - A combustor having a combustion chamber is provided with an external flow sleeve and a combustor liner surrounding the combustion chamber. A plurality of flow channels are provided on the combustor liner and a plurality of nozzles are disposed at predetermined locations on the flow channels. The locations of the nozzles are selected to provide different mixing times for fuel injected through the nozzles. | 03-06-2014 |
20140060064 | METHOD OF INCREASING ELECTRICITY OUTPUT DURING HIGH DEMAND - The present disclosure relates to a method of operating a combined cycle power generating system. The method includes combusting a fuel in a gas turbine, generating electricity and a steam of flue gas, producing a stream of steam in a heat recovery steam generator, producing a stream of concentrated carbon dioxide using an absorption unit and a solvent regeneration unit, forwarding the steam stream to a steam turbine and transferring the heat energy in the stream exiting the steam turbine to the solvent regeneration unit, and a thermal storage unit for storing heat energy. The method also includes operating a thermal storage unit, at least for a period of time, in a heat storing mode, in which a stream of steam from the stream exiting the steam turbine is condensed and transfers heat energy to heat storing means in the thermal storage unit, and operating the thermal storage unit, at least for a period of time, in a heat releasing mode, in which heat energy stored in the thermal storage unit is transferred to the solvent regeneration unit. The present disclosure further relates to a combined cycle power generating system as well as a combined cycle power plant including such a system. | 03-06-2014 |
20140075951 | MID-TURBINE FRAME BUFFER SYSTEM - A mid-turbine frame buffer system for a gas turbine engine includes a mid-turbine frame that supports a shaft by a bearing. An air compartment and a bearing compartment are arranged radially inward of the mid-turbine frame. The bearing compartment is arranged within the air compartment and includes first and second contact seals arranged on either side of the bearing. The air compartment includes multiple air seals. A high pressure compressor is fluidly connected to the air compartment and is configured to provide high pressure air to the air compartment. A method of providing pressurized air to a buffer system includes sealing a bearing compartment with contact seals, surrounding the bearing compartment with an air compartment, and supplying high pressure air to the air compartment. | 03-20-2014 |
20140075952 | METHOD FOR THE ELIMINATION OF ROTATIONAL STALL IN A TURBINE ENGINE - A method for eliminating rotational stall in a compressor of a turbine engine, includes automatically detecting surge in the turbine engine; automatically shutting-down the turbine engine; in the event surge is detected, automatically restoring a surge margin; and automatically re-igniting the turbine machine. | 03-20-2014 |
20140083106 | HEAT EXCHANGER SYSTEMS AND METHODS FOR CONTROLLING AIRFLOW COOLING - Heat exchanger systems and methods for controlling airflow cooling are provided. One system includes a bypass pre-cooler having a housing, an inlet configured to receive core engine airflow into the housing from one or more aircraft ducts, a heat exchanger within the housing and a bypass section within the housing having an airflow path separate from the heat exchanger. The bypass pre-cooler also includes a valve coupled to the inlet and configured to switch airflow between the heat exchanger and the bypass section and an outlet coupled to the heat exchanger and the bypass section. | 03-27-2014 |
20140083107 | Method for Setting a Gear Ratio of a Fan Drive Gear System of a Gas Turbine Engine - A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a fan section including a fan rotatable about an axis and a speed reduction device in communication with the fan. The speed reduction device includes a star drive gear system with a star gear ratio of at least 1.5. A fan blade tip speed of the fan is less than 1400 fps. | 03-27-2014 |
20140083108 | METHOD FOR CONTROLLING COOLING SYSTEM OF GAS TURBINE, CONTROL DEVICE PERFORMING THE SAME, AND GAS TURBINE PLANT COMPRISING THE CONTROL DEVICE - A gas turbine cooling system of the present invention includes a cooler that cools compressed air extracted from an air compressor to make cooling air, a cooling air compressor that supplies the cooling air to a combustion liner of a combustor, and an IGV that regulates a flow rate of the cooling air. The control device of the gas turbine cooling system includes a target value setting part that determines a target value with respect to a flow rate equivalent value of the cooling air according to detected temperature of the cooling air, a correction driving amount calculation part that obtains a correction driving amount which reduces a deviation of detected flow rate equivalent value of the cooling air with respect to the target value, and a drive command output part that outputs a drive command corresponding to the correction driving amount to the IGV. | 03-27-2014 |
20140083109 | Systems and Methods For Carbon Dioxide Capture In Low Emission Combined Turbine Systems - Systems, methods, and apparatus are provided for generating power in combined low emission turbine systems and capturing and recovering carbon dioxide from the exhaust. In one or more embodiments, the exhaust from multiple turbine systems is combined, cooled, compressed, and separated to yield a carbon dioxide-containing effluent stream and a nitrogen-containing product stream. Portions of the recycled exhaust streams and the product streams may be used as diluents to regulate combustion in each combustor of the turbine systems. | 03-27-2014 |
20140090386 | GEARED TURBOFAN WITH FAN AND CORE MOUNTED ACCESSORY GEARBOXES - A disclosed accessory drive system provides for the reduction in the overall diameter of the outer nacelle by splitting the number of accessory components between a first gear box mounted within the outer nacelle and a second gearbox mounted to the core engine. The first gear box mounted to the fan case of the gas turbine engine drives a first plurality of accessory components. The second gear box mounted to a core engine case of the gas turbine engine drives a second plurality of accessory components. | 04-03-2014 |
20140090387 | FUEL HEATING SYSTEM FOR A POWER PLANT AND METHOD OF HEATING FUEL - A fuel heating system for a power plant includes an exhaust structure having an interior region for receiving an exhaust gas therein. Also included is a fluid injection arrangement comprising a first fluid duct for transferring a fluid, the first fluid duct extending at least partially throughout the interior region of the exhaust structure for heating the fluid. Further included is a heat exchanger for receiving the fluid and a liquid fuel, the fluid heating the liquid fuel during passage of the liquid fuel through the heat exchanger. | 04-03-2014 |
20140090388 | OFF-TAKE POWER RATIO - An example method of allocating power within a gas turbine engine includes driving an off-take power delivery assembly using a first amount of power from a spool, the first amount of power corresponding to an off-take power requirement of a gas turbine engine; and driving the spool of the gas turbine engine using a second amount of power, wherein a ratio of the first amount of power to the second amount of power is greater than or equal to 0.009. | 04-03-2014 |
20140090389 | VARIABLE LENGTH COMBUSTOR DOME EXTENSION FOR IMPROVED OPERABILITY - The present invention discloses a novel apparatus and method for operating a gas turbine combustor having a structural configuration proximate a pilot region of the combustor which seeks to minimize the onset of thermo acoustic dynamics. The pilot region of the combustor includes a generally cylindrical extension having an outlet end with an irregular profile which incorporates asymmetries into the system so as to destroy any coherent structures. | 04-03-2014 |
20140090390 | FLAMESHEET COMBUSTOR DOME - The present invention discloses a novel apparatus and way for controlling a velocity of a fuel-air mixture entering a gas turbine combustion system. The apparatus comprises a hemispherical dome assembly which directs a fuel-air mixture along a portion of the outer wall of a combustion liner and turns the fuel-air mixture to enter the combustion liner in a manner coaxial to the combustor axis and radially outward of a pilot fuel nozzle so as to regulate the velocity of the fuel-air mixture. | 04-03-2014 |
20140090391 | COMBUSTER WITH RADIAL FUEL INJECTION - A combustor for a gas turbine engine includes an forward fuel injection system in communication with a combustion chamber and a downstream fuel injection system that communicates with the combustion chamber downstream of the forward fuel injection system. | 04-03-2014 |
20140096529 | SYSTEM AND METHOD FOR FUEL AND STEAM INJECTION WITHIN A COMBUSTOR - A system includes a gas turbine combustor configured to combust a fuel and an oxidant, such as O | 04-10-2014 |
20140096530 | AIR MANAGEMENT ARRANGEMENT FOR A LATE LEAN INJECTION COMBUSTOR SYSTEM AND METHOD OF ROUTING AN AIRFLOW - An air management arrangement for a late lean injection combustor system includes a combustor liner defining a combustor chamber. Also included is a sleeve surrounding at least a portion of the combustor liner, the combustor liner and the sleeve defining a cooling annulus for routing a cooling airflow from proximate an aft end of the combustor liner toward a forward end of the combustor liner. Further included is a cooling airflow divider region configured to split the cooling airflow into a first cooling airflow portion and a second cooling airflow portion, wherein the first cooling airflow portion is directed to at least one primary air-fuel injector, wherein the second cooling airflow portion is directed to at least one lean-direct injector extending through the sleeve and the cooling annulus for injection of the second cooling airflow portion into the combustor chamber. | 04-10-2014 |
20140096531 | COMPRESSED AIR ENERGY SYSTEM INTEGRATED WITH GAS TURBINE - An apparatus performs a power cycle involving expansion of compressed air utilizing high pressure (HP) and low pressure (LP) air turbines located upstream of a gas turbine. The power cycle involves heating of the compressed air prior to its expansion in the HP and LP air turbines. Taking into consideration fuel consumption to heat the compressed air, particular embodiments may result in a net production of electrical energy of ˜2.2-2.5× an amount of energy consumed by substantially isothermal air compression to produce the compressed air supply. Although pressure of the compressed air supply may vary over a range (e.g. as a compressed air storage unit is depleted), the gas turbine may run under almost constant conditions, facilitating its integration with the apparatus. The air turbines may operate at lower temperatures than the gas turbine, and they may include features of turbines employed to turbocharge large reciprocating engines. | 04-10-2014 |
20140102110 | MID-TURBINE FRAME WITH TENSIONED SPOKES - A mid-turbine frame located in a gas turbine engine axially aft of a high-pressure turbine and fore of a low-pressure turbine includes an outer frame case, an inner frame case, and at least a first spoke connecting the outer frame case to the inner frame case. The first spoke is tightened so as to be in tension during substantially all operating conditions of the gas turbine engine. | 04-17-2014 |
20140109586 | METHOD FOR OPERATING A GAS TURBINE WITH SEQUENTIAL COMBUSTION AND GAS TURBINE FOR CONDUCTING SAID METHOD - The invention discloses a method for operating a gas turbine with sequential combustion, which gas turbine includes a compressor, a first combustor with a first combustion chamber and first burners, which receives compressed air from the compressor, a second combustor with a second combustion chamber and second burners, which receives hot gas from the first combustor with a predetermined second combustor inlet temperature, and a turbine, which receives hot gas from the second combustor. The CO emission for part-load operation is reduced by reducing the second combustor inlet temperature for base-load operation of the gas turbine, and increasing the second combustor inlet temperature when decreasing the gas turbine load (RL | 04-24-2014 |
20140116061 | COUPLING ELEMENT FOR TORQUE TRANSMISSION IN A GAS TURBINE ENGINE - A gas turbine engine having a coupling element for coupling a first shaft to a second shaft, the second shaft being substantially axially aligned with the first shaft, the coupling element provided with an exterior surface that engages an opposing interior surface of the first shaft and an interior surface that engages an opposing exterior surface of the second shaft to facilitate torque transfer between the first shaft and the second shaft when rotated together, wherein the coupling element and at least one of the first and second shafts cooperate to define at least one fluid passageway therebetween. | 05-01-2014 |
20140116062 | METHOD AND SYSTEM FOR COMBUSTING BOIL-OFF GAS AND GENERATING ELECTRICITY AT AN OFFSHORE LNG MARINE TERMINAL - A system for combusting boil-off gas and generating electricity at an offshore LNG marine terminal distant from an onshore LNG facility is disclosed. BOG produced as a result of LNG transfer between an onshore LNG facility and an LNG carrier, is combusted to produce power which drives an electrical generator producing electricity. None or a reduced amount of BOG needs to be returned to an onshore LNG facility, as some of the BOG is combusted at the offshore marine terminal. | 05-01-2014 |
20140123657 | EXTERNAL COOLING FLUID INJECTION SYSTEM IN A GAS TURBINE ENGINE - A cooling fluid air injection system for use in a gas turbine engine includes at an external cooling fluid source, at least one rotor cooling pipe, which is used to inject cooling fluid from the source into a rotor chamber, a piping system that provides fluid communication between the source and the rotor cooling pipe(s), a blower system for conveying the cooling fluid through the piping system and the rotor cooling pipe(s) into the rotor chamber, and a valve system. The valve system is closed during full load engine operation to prevent cooling fluid from the source from passing through the piping system, and open during less than full load engine operation to allow cooling fluid from the source to pass through the piping system. | 05-08-2014 |
20140123658 | System for Reducing Vibrational Motion in a Gas Turbine System - A system, including a combustor cap assembly, including a first plate configured to divide a combustion chamber from a head end chamber of a combustor, a first sleeve disposed about the first plate, and a first stiffening rib coupled to the combustor cap assembly, wherein the combustor cap assembly is configured to mount in a combustor, and the first stiffening rib is configured to damp vibration caused by combustion dynamics in the combustor. | 05-08-2014 |
20140123659 | SYSTEM AND METHOD FOR PROTECTING COMPONENTS IN A GAS TURBINE ENGINE WITH EXHAUST GAS RECIRCULATION - A system includes a gas turbine engine that includes a combustor section having one or more combustors configured to generate combustion products, a turbine section having one or more turbine stages between an upstream end and a downstream end, an exhaust section disposed downstream from the downstream end of the turbine section, and a fluid supply system coupled to the exhaust section. The one or more turbine stages are driven by the combustion products. The exhaust section has an exhaust passage configured to receive the combustion products as an exhaust gas. The fluid supply system is configured to route a cooling gas to the exhaust section. The cooling gas has a temperature lower than the exhaust gas. The cooling gas includes an extracted exhaust gas, a gas separated from the extracted exhaust gas, carbon dioxide, carbon monoxide, nitrogen oxides, or a combination thereof. | 05-08-2014 |
20140123660 | SYSTEM AND METHOD FOR A TURBINE COMBUSTOR - A system includes a turbine combustor, which includes a first wall disposed about a combustion chamber, a second wall disposed about the first wall, and a third wall disposed about the second wall. The third wall is configured to combine an exhaust gas with an oxidant and the combustion chamber is configured to combust a mixture of a fuel, the oxidant, and the exhaust gas. | 05-08-2014 |
20140123661 | AXIAL SWIRLER - An axial swirler, in particular for premixing of oxidizer and fuel in gas turbines, includes a series of swirl vanes with a streamline cross-section. Each swirl vane has a leading edge, a trailing edge, and a suction side and a pressure side extending each between the leading and trailing edges. The swirl vanes are arranged around a swirler axis, wherein the leading edges extend essentially in radial direction. Flow slots are formed between the suction side of each swirl vane and the pressure side of its nearest neighboring swirl vane. Furthermore, at least one swirl vane has a discharge flow angle between a tangent to its camber line at its trailing edge and the swirler axis that is monotonically increasing with increasing radial distance from the swirler axis. The invention also relates to a burner with such a swirler and a method of operating the burner. | 05-08-2014 |
20140123662 | LIQUID BIO-FUELS - Liquid bio-fuels and processes for their production are provided. The liquid bio-fuels can have improved stability, less corrosiveness, and/or an improved heating value. | 05-08-2014 |
20140130504 | SYSTEM FOR COOLING A HOT GAS COMPONENT FOR A COMBUSTOR OF A GAS TURBINE - A system for cooling a hot gas path component for a combustor generally includes an impingement sleeve that circumferentially surrounds an outer surface of the hot gas path component. A first cooling chamber is defined between the impingement sleeve and a first portion of the outer surface of the hot gas path component. A second cooling chamber is disposed downstream from the first cooling chamber. The second cooling chamber is defined between the impingement sleeve and a second portion of the outer surface of hot gas path component. An inlet extends through the impingement sleeve so as to define a first flow path into the first cooling chamber. An outlet defines a second flow path between the first cooling chamber and the second cooling chamber. | 05-15-2014 |
20140130505 | CROSS-FIRE TUBE PURGING ARRANGEMENT AND METHOD OF PURGING A CROSS-FIRE TUBE - A cross-fire tube purging arrangement includes a cross-fire tube extending from proximate a combustor chamber to proximate an adjacent combustor chamber for fluidly coupling the combustor chamber and the adjacent combustor chamber. Also included is a compressed air supply arrangement for selectively delivering a compressed air to the cross-fire tube, the compressed air supply arrangement comprising a regulating component for controlling delivery of the compressed air to the cross-fire tube. | 05-15-2014 |
20140137561 | SYSTEM AND METHOD FOR REDUCING MODAL COUPLING OF COMBUSTION DYNAMICS - A system for reducing modal coupling of combustion dynamics includes a plurality of combustors, and at least one fuel injector in each of the plurality of combustors. The system also includes structure for dithering a combustion instability frequency in at least one combustor in the plurality of combustors. A method for reducing modal coupling of combustion dynamics includes flowing a compressed working fluid at a temperature to a plurality of combustors and flowing a fuel to at least one fuel injector in each of the plurality of combustors. The method further includes dithering at least one of the temperature of the compressed working fluid flowing to the plurality of combustors or the fuel flow to the at least one fuel injector in at least one combustor in the plurality of combustors. | 05-22-2014 |
20140137562 | Hydrogen Generator Having a Thermal Actuator - A hydrogen generator having one or more actuators coupled to one or more heating elements in which the actuator(s) are used to improve the transfer of thermal energy from heating element(s) to one or more fuel units contained within the generator. In one embodiment, an actuator allows insertion and/or removal of packaged fuel units without the need of removing the heating element(s) and/or the actuator(s). When the actuator is in a retracted state (e.g., a low temperature state), the packaged fuel unit may be inserted and/or removed from a cavity of the hydrogen generator. When the actuator is in an extended state (e.g., a higher temperature state), the actuator forces contact between itself or the heating element and the fuel unit when a prescribed operating temperature is reached. | 05-22-2014 |
20140137563 | DUAL REHEAT TOPPING CYCLE FOR IMPROVED ENERGY EFFICIENCY FOR COMPRESSED AIR ENERGY STORAGE PLANTS WITH HIGH AIR STORAGE PRESSURE - A method for operating a compressed air energy storage system is provided. The method can include compressing a process gas with a compressor train to produce a compressed process gas and storing the compressed process gas in a compressed gas storage unit. The method can also include extracting the compressed process gas from the compressed gas storage unit to an expansion assembly through a feed line. A valve assembly fluidly coupled to the feed line can be actuated to control a mass flow of the compressed process gas from the compressed gas storage unit to the expansion assembly. The method can further include heating the compressed process gas in a preheater fluidly coupled to the feed line upstream from the expansion assembly, and generating a power output with the expansion assembly. | 05-22-2014 |
20140144148 | Cooled Combustor Seal - A cooled combustor seal having a plurality of channels enabling cooling air to pass from outside of a combustion chamber to cool an area inside the combustion chamber around the seal is disclosed. The channels may be provided through a slider, a housing, and/or a washer of the combustor seal. One set of channels or multiple of sets of channels may be provided in the combustor seal. Each of these sets of channels may be in the slider, housing, or washer. The cooled combustor seal may be used in conjunction with an igniter to purge a cavity between the seal and the igniter. | 05-29-2014 |
20140144149 | Fuel Plenum Annulus - Embodiments of the disclosure include a combustor assembly. The combustor assembly may include one or more fuel plenums. The combustor assembly may also include one or more fuel distribution plates disposed within the fuel plenums. Moreover, the combustor assembly may include a number of mixing tubes disposed at least partially within the fuel plenums and extending through the fuel distribution plates. In certain aspects, the mixing tubes may each include a reduced diameter about the fuel distribution plates to form an annulus therebetween. | 05-29-2014 |
20140144150 | FUEL NOZZLE FOR USE IN A TURBINE ENGINE AND METHOD OF ASSEMBLY - A fuel nozzle for use in a turbine engine is provided. The fuel nozzle includes a fuel injector configured to discharge a flow of fuel therefrom and a premixer tube coupled in flow communication with the fuel injector. The premixer tube is configured to receive the fuel flow and a flow of air at an upstream end of the premixer tube, wherein the fuel and air are progressively mixed as the fuel and air are channeled through the length of the premixer tube. | 05-29-2014 |
20140144151 | Engine Compressor Wash System - A gas turbine engine includes: a compressor; a combustor downstream of the compressor along a gaspath; a turbine downstream of the combustor along the gaspath; a plurality of wash nozzles having outlets along the gaspath; and at least one inlet fitting coupled to the wash nozzles to bound a wash flowpath from an inlet port of the at least one inlet fitting to said outlets of said nozzles. The plurality of stages include: a stage upstream of blades of one compressor section; and another stage between said blades of one compressor section and blades of another compressor section. | 05-29-2014 |
20140150437 | NOISE ATTENUATION FOR ENGINES THAT DRIVE A LOAD - Systems, methods and apparatus for noise attenuation of a generator set are disclosed. The generator set includes an internal combustion engine enclosed within a compartment that substantially isolates the internal combustion from ambient air and a load connected to the internal combustion engine. A heat exchanger is disposed within or coupled to the compartment and is operable to cool air in the compartment without directly exchanging ambient air with compartment air. | 06-05-2014 |
20140150438 | SYSTEM AND METHOD FOR OPERATING A GAS TURBINE IN A TURNDOWN MODE - A system for operating a thermal power plant during off-peak demand intervals includes a gas turbine having a compressor, a combustor connected to a fuel control system, a turbine and a sensor configured to sense ambient conditions around the gas turbine. The fuel control system and the sensor are in communication with a controller. The controller is configured to receive a user input that corresponds to a value for an operational boundary condition of the thermal power plant and to monitor ambient conditions through the sensor. The controller is further configured to generate a predicted emissions level value for the gas turbine based on the monitored ambient conditions and to generate a command signal to adjust at least one operational parameter of the gas turbine based at least in part on the predicted emissions level value and the value of the operational boundary condition of the thermal power plant. | 06-05-2014 |
20140150439 | Lubrication System for Gas Turbine Engines - A lubrication system is disclosed. The lubrication system may be used in conjunction with a gas turbine engine for generating power or lift. The lubrication system utilized a flow scheduling valve which reduces lubricant flow to at least one component based on an engine load. The lubrication system may further include a main pump which may be regulated by an engine speed. Thus, a lubrication system which provides a lubricant to engine components based on the load and speed of the engine is possible. The system may improve efficiency of the engine by reducing the power previously spent in churning excess lubricant by at least one engine component as well as reducing the energy used by a lubricant cooler in cooling the excess lubricant. The lubricant cooler size may also be minimized to reduce weight and air drag due to the reduced lubricant flow. | 06-05-2014 |
20140150440 | GAS TURBINE ENGINE WITH A LOW SPEED SPOOL DRIVEN PUMP ARRANGEMENT - A gas turbine engine includes, among other things, a propulsion assembly situated to rotate about an engine central axis. Operation of the propulsion assembly requires a first amount of fluid during a first operating condition and a second, greater amount of the fluid during a second operating condition. A first pump is operatively associated with a low speed spool that rotates with a low pressure turbine. The first pump has a first fluid delivering capacity corresponding to at least the first amount. A second pump has a second fluid delivering capacity configured to correspond to at least a difference between the first amount and the second amount. The first pump provides the fluid for propulsion assembly during the first and second operating conditions and the second pump provides the fluid for propulsion assembly operation only during the second operating condition. | 06-05-2014 |
20140150441 | POWER PLANT AND METHOD FOR GENERATING ELECTRICAL POWER - The present invention relates to a power plant for generating electrical power having a burner unit, wherein thermal energy can be produced by burning a fuel, a turbine unit, wherein a rotational movement can be produced with the thermal energy, and a generator unit which is driven by the rotational movement to generate electrical power. The power plant is characterised according to the invention in that in order to produce the thermal energy, in addition to the burner unit, an electric heating unit is provided, through which electrical energy can be converted into thermal energy to drive the turbine unit. In addition the invention relates to a method for generating electrical power. | 06-05-2014 |
20140150442 | GAS TURBINE CENTRIPETAL ANNULAR COMBUSTION CHAMBER AND METHOD FOR FLOW GUIDANCE - A gas-turbine combustion chamber arrangement includes at least one centrifugal compressor as well as one centripetal annular combustion chamber, with a stator vane arrangement being provided between the centrifugal compressor and the annular combustion chamber. The stator vane arrangement for diverting the air flowing out of the centrifugal compressor is designed at an angle α of 20° to 30°, preferably 25°, relative to the engine axis, so the airflow is passed at essentially this angle α to the combustion chamber. The inflow area into the combustion chamber for supplying air is designed at an angle of 20° to 30°, preferably 25°, relative to the meridional plane, and the center axes of the burners or of the injection nozzles of the combustion chamber are arranged inclined at an angle β of 30° to 40°, preferably 35°, relative to a meridional plane passing through the engine axis. | 06-05-2014 |
20140157785 | FUEL SUPPLY SYSTEM FOR GAS TURBINE - A system includes a fuel supply system. The fuel supply includes a primary fuel supply, a fuel additive supply, and a common pipeline coupled to the primary fuel and fuel additive supplies. The primary fuel supply includes a primary fuel having a first average molecular weight. The fuel additive includes a fuel additive having a second molecular weight that is greater than the first average molecular weight. The common pipeline is configured to direct a mixture of the primary fuel and the fuel additive into a fuel nozzle. | 06-12-2014 |
20140165575 | NOZZLE SECTION FOR A GAS TURBINE ENGINE - A gas turbine engine includes a fan section and an intercooling turbine section along an engine axis aft of a fan section and forward of a combustor section. | 06-19-2014 |
20140165576 | ACTIVE CONTROL FUEL NOZZLE SYSTEM - It is desirable for a gas turbine system to operate in a wide range operating conditions. However, under certain conditions there exist dynamic boundaries that limit a combustor from reaching its designated condition. Perturbation devices formed of electromagnetic plates can be incorporated into fuel nozzles of the combustor to influence the dynamics so that the range of operating conditions can be widened. The perturbation devices vibrate according to the perturbation signals provided from a dynamics controller. The vibration characteristics of the perturbation devices can be controlled by controlling the attributes of the perturbation signals. The vibrations influence the dynamics of fluid—fuel, oxidant, or both—flowing past the perturbation devices within the fuel nozzles. | 06-19-2014 |
20140165577 | Systems and Methods for Late Lean Injection Premixing - A late lean injection combustor assembly may include a first interior in which a first fuel supplied thereto is combustible, a flow sleeve annulus including a second interior in which a second fuel supplied thereto is combustible, at least one fuel injector disposed about the second interior, and at least one elongate premixing conduit disposed about the flow sleeve annulus and in fluid communication with the at least one fuel injector. The at least one elongate premixing conduit may be in fluid communication with a compressor discharge air and the second fuel such that the compressor discharge air and the second fuel are premixed within the elongate premixing conduit before entering the second interior by way of the at least one fuel injector. | 06-19-2014 |
20140165578 | Ovate Swirler Assembly for Combustors - In accordance with one aspect of the disclosure, a swirler is disclosed. The swirler may include an outer shroud and inner shroud. The inner shroud may be positioned radially inside the outer shroud. At least one of the outer shroud and inner shroud may have a major diameter greater than that of a minor diameter such that the shrouds define an ovate shape. The swirler may further include a plurality of vanes which may be positioned between the inner and outer shrouds. | 06-19-2014 |
20140165579 | High Pressure Turbine Speed Calculation from Fuel System Hydraulic Pressures - The speed of a high-pressure turbine of a gas turbine engine may be determined using known centrifugal pump affinity relationships for a fuel pressure apparatus, fuel pressure apparatus input and output pressures, and gear ratios for a mechanical linkage between the high-pressure turbine and the fuel pressure apparatus. The technique avoids wear-related variations in gas pressure based measurements and also applies to fuel pressure apparatus using both single pump and multiple pump configurations. | 06-19-2014 |
20140165580 | FUEL ROUTING SYSTEM OF A GAS TURBINE ENGINE AND METHOD OF ROUTING FUEL - A fuel routing system of a gas turbine engine includes a primary fuel circuit in communication with a fuel source and a fuel distribution manifold. Also included is a secondary fuel circuit extending from the primary fuel circuit to a plurality of fuel nozzles configured to direct fuel to a plurality of combustor chambers. Further included is a main fuel flow control valve disposed in the primary fuel circuit for restricting a fuel flow to the fuel distribution manifold upon removal of an electrical load operably coupled to the gas turbine engine. Yet further included is a plurality of check valves disposed between the secondary fuel circuit and the primary fuel circuit for restricting the fuel flow between the secondary fuel circuit and the primary fuel circuit. | 06-19-2014 |
20140165581 | Systems and Methods for Controlling Mode Transfers of a Combustor - Systems and methods for controlling mode transfers of a turbine combustor are provided. According to one embodiment, a system may include a controller to control a combustor, and a processor communicatively coupled to the controller. The processor may be configured to receive current operating conditions, target operating limits, and combustor transfer functions. The combustor transfer functions may be evaluated to estimate operating limits associated with one or more combustion modes under the current operating conditions. The estimated operating limits associated with the one or more combustor modes may be compared to the target operating limits, and, based on the comparison, at least one of the combustion modes may be selected. The combustor may then be selectively transferred to the selected combustion mode. | 06-19-2014 |
20140174093 | GAS TURBINE ENGINE LUBE OIL SYSTEM - A gas turbine engine lube oil system ( | 06-26-2014 |
20140174094 | APU Exhaust Housing Perforated Ring - According to one embodiment of the present disclosure, an exhaust apparatus for an auxiliary power unit is disclosed. The exhaust apparatus may include an exhaust housing including a perforated body surrounding an exhaust airflow of the auxiliary power unit. The perforated body may include an outer surface, an inner surface, and a plurality of holes through which ambient air passes to mix with the exhaust airflow, the plurality of holes extending through the body from the outer surface to the inner surface. | 06-26-2014 |
20140174095 | Heating Medium Supply System, Integrated Solar Combined Cycle Electric Power Generation System and Method of Controlling These Systems - A heating medium supply system is provided which, even when a temperature fluctuation of a heating medium occurs continuously, is capable of relieving a bad thermal influence upon a heat exchanging device due to the temperature fluctuation. The heating medium supply system includes: a heating system configured to heat a liquid heating medium by sunlight; a heat exchanging device configured to heat feedwater; heating medium supply piping for circulating the heating medium; a heating medium temperature detecting device, a heating medium flow rate detecting device and a first heating medium flow control valve; and a control device capable of calculating a value of supply thermal energy from results of detections by the heating medium temperature detecting device and the heating medium flow rate detecting device and controlling an operation of the heating medium flow control valve based on the value of supply thermal energy thus calculated. | 06-26-2014 |
20140182296 | APPARATUS AND METHOD OF BURNING SEWAGE SLUDGE AND GENERATING POWER THEREOF - The disclosure is concerned with generating power using new organic fuel that is generated at wastewater purification plants in the form of sewage sludge with moisture content up to 90-95%. The world supplies this new orgabic fuel in very high quantites that are estimated to be more than 25-40 gr of dry mass/man/day. The new composite fuel comprises a coal suspension with the new dispersed medium, which is the liquid sewage sludge. The composite fuel is introduced into a furnace for combustion and generating power. | 07-03-2014 |
20140190172 | PARALLEL CASCADED CYCLE GAS EXPANDER - A multi-stage, two-flow, axial flow expander close-coupled to a driven machine, such as a generator. The expander includes one or more expansion stages separated by a series of flow stream dividers that separate each expansion stage into outer and inner expander flowpaths. Working fluid at a first temperature is directed into the outer expander flowpath for expansion, and working fluid at a second, lesser temperature is directed into the inner expander flowpath for expansion. Expansion of the working fluid drives the driven machine. | 07-10-2014 |
20140196461 | DETECTING FLASHBACK BY MONITORING ENGINE-DYNAMIC SPIKES - A tuning process is provided for dynamically tuning a gas-turbine (GT) engine to correct for flashback events without directly measuring occurrences of the flashback events at the GT engine. Initially, readings are taken that measure low-frequency dynamics at the GT engine. A determination of whether flashback criteria are met by an instantaneous signal that quantifies a detected spike within the measured low-frequency dynamics is carried out, where the flashback criteria include the following: identifying the spike overcomes a multiple of an average of the low-frequency dynamics measured over a predefined period of time; and identifying the spike overcomes a preestablished minimum amplitude. Upon the spike meeting the flashback criteria, a count is added to a running record of spikes, which is compared to an alarm limit. If the alarm limit is triggered, action(s) are invoked to address the flashback events, such as adjusting fuel-flow splits of the GT engine. | 07-17-2014 |
20140196462 | SYSTEMS AND METHODS FOR IMPLEMENTING ENGINE CYCLE COUNT - Systems and methods for implementing engine cycle counts are disclosed. One method may include determining, by at least one processor, a plurality of cycles associated with an engine; determining a category, by at least one processor, for each of the plurality of cycles based at least in part on an acceleration value associated with each of the plurality of cycles; and predicting, by at least one processor, a life cycle associated with the engine based at least in part on the determined category. | 07-17-2014 |
20140196463 | HIGH EFFICIENCY, HIGH PRESSURE GAS TURBINE ENGINE FUEL SUPPLY SYSTEM AND METHOD - A gas turbine engine fuel supply system includes a primary gear pump and a secondary gear pump. The primary gear pump always actively delivers fuel to the downstream fuel system, and is sized to supply 100% of the burn flow needed at a select low demand condition. The secondary gear pump is sized to make up the remainder of the flow at high demand conditions, and actively delivers fuel to the downstream fuel system only during those conditions. To supply discharge fuel pressures in excess of gear pump capability, a supercharger pump is disposed upstream of the primary and secondary gear pumps. The supercharger pump is preferably activated only during high demand conditions as an additional energy conservation measure. | 07-17-2014 |
20140196464 | SYSTEM AND METHOD FOR PROTECTING COMPONENTS IN A GAS TURBINE ENGINE WITH EXHAUST GAS RECIRCULATION - A system includes a gas turbine engine that includes a turbine section having one or more turbine stages between an upstream end and a downstream end, an exhaust section disposed downstream from the downstream end of the turbine section, and a fluid supply system coupled to the exhaust section. The fluid supply system is configured to route an inert gas to the exhaust section. | 07-17-2014 |
20140202165 | OXIDIZING FUEL IN MULTIPLE OPERATING MODES - A fuel oxidizer system is operated in a first operating mode. In the first operating mode, a mixture that includes fuel from a fuel source is compressed in a compressor of the fuel oxidizer system; the fuel of the compressed mixture is oxidized in a reaction chamber of the fuel oxidizer system; and the oxidized fuel is expanded to generate rotational kinetic energy. The fuel oxidizer system is operated in a second operating mode. In the second operating mode, fuel from the fuel source is directed to bypass the compressor, and the fuel that bypassed the compressor is oxidized in the reaction chamber. | 07-24-2014 |
20140208758 | GAS TURBINE WITH EXTENDED TURBINE BLADE STREAM ADHESION - A gas turbine may include turbine blades configured to improve stream adhesion by selectively attracting or reducing repulsion of charged particles carried by a combustion gas stream. | 07-31-2014 |
20140208759 | APPARATUS AND METHOD FOR REDUCING OIL MIST INGESTION IN A HEAVY DUTY GAS TURBINE ENGINE - A lubrication system for a heavy duty gas turbine includes a bearing lubrication assembly coupled to the bearing and an oil and vapor extraction assembly disposed in a cavity defined by a bell mouth hood in an air inlet duct. A high volume vacuum blower is coupled to the oil and vapor extraction assembly to provide a relative negative pressure. An oil and vapor separator is disposed downstream from the high volume vacuum blower. The lubrication system also includes a control subsystem that maintains a cavity pressure lower than an air inlet pressure. | 07-31-2014 |
20140208760 | GAS TURBINE ENGINE WITH TRANSMISSION - A gas turbine engine with a transmission having a first rotatable member coupled to an engine spool, a second rotatable member coupled to a compressor rotor, and coupled rotatable members defining at least first and second alternate transmission paths between the first and second members. Each transmission path defines a different fixed transmission ratio of a rotational speed of the second member on a rotational speed of the first member. | 07-31-2014 |
20140208761 | BI-DIRECTIONAL VENTILATION SYSTEMS FOR USE WITH AIRCRAFT AND RELATED METHODS - Bi-directional nacelle ventilation and cooling systems for use with aircraft and related methods are disclosed. An example apparatus includes a passageway to fluidly couple an opening formed in a nacelle of an aircraft engine and an engine compartment of the nacelle. The opening provides an inlet into the engine compartment when passive airflow is available to vent or cool the engine compartment and the opening to provide an outlet from the engine compartment when forced air is needed to vent or cool the engine compartment. A fan is positioned in the passageway to provide the forced air when the passive air is unavailable. | 07-31-2014 |
20140208762 | COMPRESSOR WASH WITH AIR TO BEARING BUFFERING SYSTEM - A system and method for washing a gas turbine engine. The method for washing the gas turbine engine includes coupling a pressurized air supply assembly to an air supply and to a secondary air system, cranking a compressor rotor assembly of the gas turbine engine, supplying pressurized offline buffer air from the air supply to the pressurized air supply assembly, and spraying a cleaner into the compressor. | 07-31-2014 |
20140208763 | COMBUSTION CHAMBER WALL - An annular wall for a combustion chamber of a turbomachine. The wall presents a hot side and a cold side and includes at least one primary hole for enabling a first flow of air flowing on the cold side of the wall to penetrate to the hot side of the wall to feed combustion of fuel inside the combustion chamber, and together with a plurality of cooling holes, each having a diameter no greater than 1 mm, to enable a second flow of air flowing on the cold side of the wall to penetrate to the hot side of the wall to cool the hot side of the wall. The plurality of cooling holes can also dilute combustion gas resulting from the combustion by using the flow of air penetrating to the hot side of the wall through the cooling holes. | 07-31-2014 |
20140216044 | GAS TURBINE ENGINE COMBUSTOR HEAT SHIELD WITH INCREASED FILM COOLING EFFECTIVENESS - A heat shield for a gas turbine engine includes a hot side with one or more raised features that extend therefrom. | 08-07-2014 |
20140216045 | GAS TURBINE WITH IMPROVED POWER OUTPUT - The application provides an apparatus for augmenting the power produced by a Brayton-cycle gas turbine system of the type having an air compressor for producing compressed air, a combustor for heating said compressed air and a fuel and producing hot gases, and a gas turbine responsive to the hot gases for driving said air compressor and a load, and for producing exhaust gases. The apparatus comprises a heat exchanger interposed between a source of ambient air and the air compressor, a storage containing R744 refrigerant, connections though which said R744 refrigerant is exchanged with the heat exchanger, and a refrigerant compressor fluidly connected to said storage for circulating at least a portion of the R744 refrigerant | 08-07-2014 |
20140216046 | Integrated Ion Transport Membrane and Combustion Turbine System - Integrated gas turbine combustion engine and ion transport membrane system comprising a gas turbine combustion engine including a compressor with a compressed oxygen-containing gas outlet; a combustor comprising an outer shell, a combustion zone in flow communication with the compressed oxygen-containing gas outlet, and a dilution zone in flow communication with the combustion zone and having one or more dilution gas inlets; and a gas expander. The system includes an ion transport membrane oxygen recovery system with an ion transport membrane module that includes a feed zone, a permeate zone, a feed inlet to the feed zone in flow communication with the compressed oxygen-containing gas outlet of the compressor, a feed zone outlet, and a permeate withdrawal outlet from the permeate zone. The feed zone outlet of the membrane module is in flow communication with any of the one or more dilution gas inlets of the combustor dilution zone. | 08-07-2014 |
20140230444 | System and Method for Reducing Back Pressure in a Gas Turbine System - In a first embodiment, a system, including an exhaust duct configured to flow an exhaust gas, and an air injection system coupled to the exhaust duct, wherein the air injection system comprises a first air injector configured to inject air into the exhaust duct to assist flow of the exhaust gas through the exhaust duct. | 08-21-2014 |
20140230445 | Fuel Combusting Method - The present techniques are directed to systems and a method for combusting a fuel in a gas turbine. An exemplary method includes providing a fuel to a combustor on a gas turbine, providing an oxidant to the combustor, and combusting the fuel and the oxidant in the combustor to produce an exhaust gas. At least a portion of the exhaust gas is passed through a water-gas shifting catalyst to form a low CO content product gas. | 08-21-2014 |
20140238032 | METHODS AND APPARATUS FOR RAPID SENSING OF FUEL WOBBE INDEX - A sensor apparatus and methods for facilitating combustion of a gaseous fuel are provided. The sensor apparatus comprises a combustion apparatus defining a combustion chamber therein. The combustion apparatus is configured to combust a fuel-air mixture within the combustion chamber to produce at least one combustion product. At least one optical diagnostic apparatus is coupled to the combustion apparatus for measuring at least one property of the at least one combustion product within the combustion chamber. A controller is coupled to the at least one optical diagnostic apparatus, and is configured to determine the Wobbe index of the fuel in real-time based on the measured at least one property of the at least one combustion product and pre-determined combustion state data stored within the controller. | 08-28-2014 |
20140238033 | Systems and Methods to Control Combustion Dynamic Frequencies - Systems and methods for frequency separation in a gas turbine engine are provided herein. The systems and methods for frequency separation in a gas turbine engine may include determining a hot gas path natural frequency, determining a combustion dynamic frequency, and modifying a compressor discharge temperature to separate the combustion dynamic frequency from the hot gas path natural frequency. | 08-28-2014 |
20140238034 | TURBOMACHINE COMBUSTOR ASSEMBLY AND METHOD OF OPERATING A TURBOMACHINE - A turbomachine combustor assembly includes a combustor body having a combustor outlet, and a combustion liner arranged within the combustor body. The combustion liner defines a combustion chamber. An injection nozzle is arranged within the combustor body upstream from the combustion chamber. The injection nozzle is configured and disposed to deliver a first fluid toward the combustion chamber. A fluid module is mounted to the combustor body downstream from the combustion chamber. The fluid module includes a fluid module body that defines a fluid zone, a first injector member mounted to the fluid module body and configured to deliver a second fluid into the fluid zone at a first orientation, and a second injector member mounted to the fluid module body and configured to deliver a third fluid into the fluid zone at a second orientation that is distinct from the first orientation. | 08-28-2014 |
20140238035 | METHOD FOR ADJUSTING A NATURAL GAS TEMPERATURE FOR A FUEL SUPPLY LINE OF A GAS TURBINE ENGINE - The method for adjusting a natural gas temperature for a fuel supply line of a gas turbine engine includes measuring by infrared analysis the natural gas percentage content of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2), calculating the nitrogen (N2) percentage content as the complement to 100 of the measured percentage content of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), carbon dioxide (CO2), calculating an index indicative of the natural gas energy content and adjusting the natural gas temperature on the basis of the index. | 08-28-2014 |
20140250896 | COMBUSTOR HEAT SHIELD WITH CARBON AVOIDANCE FEATURE - The build-up of carbon deposition on the front face of a combustor heat shield is discouraged by jetting air out from the front face of the heat shield with sufficient momentum to push approaching fuel droplets or rich fuel-air mixture way from the heat shield. | 09-11-2014 |
20140250897 | TIP-CONTROLLED INTEGRALLY BLADED ROTOR FOR GAS TURBINE ENGINE - An integrally bladed rotor for a gas turbine engine includes a hub, a plurality of blades radially extending from the hub and being integrally formed therewith. The hub having a rim from which the blades project and a pair of axially opposed split hub members extending at least radially inward from the rim. Each of the split hub members has a radially outer flex arm portion extending form the hub and a radially inner moment flange portion. At least one moment inducing element separately formed from the hub is mounted axially between the opposed split hub members and acts on the moment flange portions of the opposed split hub members to generate an inward bending moment on the flex arm portions of the opposed split hub members during rotation of the rotor, thereby deflecting the rim and the blades of the rotor radially inwardly. | 09-11-2014 |
20140250898 | BLEED AIR SYSTEMS FOR USE WITH AIRCRAFTS AND RELATED METHODS - Bleed air systems for use with aircrafts and related methods are disclosed. An example apparatus includes a turbo-compressor including a compressor has a compressor inlet fluidly coupled to a low-pressure compressor of an aircraft engine and an intermediate port of a high-pressure compressor of the aircraft engine. The compressor inlet to receive fluid from either the low-pressure compressor or the high-pressure compressor based on a first system parameter of the aircraft. A turbine has a turbine inlet fluidly coupled to the intermediate port of the high pressure compressor and a high-pressure port of the high pressure compressor of the aircraft engine. The turbine inlet to receive fluid from either the intermediate port of the high-pressure compressor or the high-pressure port of the high-pressure compressor based on a second system parameter of the aircraft. | 09-11-2014 |
20140250899 | GAS TURBINE ENGINE THERMALLY CONTROLLED FLOW DEVICE - An apparatus includes a gas turbine engine flow device having an inner member and a surrounding member. The inner member has a first coefficient of thermal expansion; and the surrounding member at least partially surrounds the inner member and has a second coefficient of thermal expansion that is different from the first coefficient of thermal expansion. The surrounding member includes at least two walls that form a variable flow gap therebetween. The inner member is oriented relative to the at least two walls of the surrounding member such that, based on the difference in the first and second coefficients of thermal expansion, the inner member expands relatively greater than the surrounding member or the surrounding member expands relatively greater than the inner member, according to a temperature change to correspondingly enlarge or reduce the size of the variable flow gap between the at least two walls. | 09-11-2014 |
20140250900 | GAS TURBINE POWER PLANT WITH CARBON DIOXIDE SEPARATION - The invention relates to a gas turbine power plant, having a gas turbine, a waste heat steam generator following the gas turbine, an exhaust gas recooler, an exhaust gas blower, a carbon dioxide separation plant which separates the carbon dioxide contained in the exhaust gases from these and discharges it to a carbon dioxide outlet. A bypass chimney is arranged in the gas turbine power plant between the outlet of the waste heat steam generator and the exhaust gas blower and is connected to a fail-safe open connection both in the throughflow direction from the exhaust gas line to the bypass chimney and in the throughflow direction from the bypass chimney to the exhaust gas line. The invention relates, further, to a method for operating a gas turbine power plant of this type, in which the exhaust gas blower is regulated. | 09-11-2014 |
20140260284 | System and Method for Loading a Combined Cycle Power Plant - A system including a gas turbine system configured to transition between a first load state and a second load state, wherein the gas turbine system comprises an airflow control module configured to adjust an airflow through the gas turbine system between a minimum airflow condition and a maximum airflow condition, and a controller configured to control the gas turbine system to operate with a load path between a first load path corresponding to the minimum airflow condition and a second load path corresponding to the maximum airflow condition, wherein the controller is configured to control the gas turbine system to transition between the first load state and the second load state using the load path between the first and second load paths. | 09-18-2014 |
20140260285 | Gas-to-Liquid Heat Exchange System with Multiple Liquid Flow Patterns - Systems and methods for the design of a heat recovery steam generator (HRSG) or similar system that is designed to extract heat from hot gases flowing through a duct which utilizes an external liquid-to-liquid heat exchanger for preheating feedwater. The systems and methods allow for multiple water flow patterns to adjust the temperature of the feedwater into the gas duct. | 09-18-2014 |
20140260286 | LOCALIZED FLUE GAS DILUTION IN HEAT RECOVERY STEAM GENERATOR - A heat recovery steam generator (HRSG) ( | 09-18-2014 |
20140260287 | GAS TURBINE FIRING TEMPERATURE OPTIMIZATION BASED ON SULFUR CONTENT OF FUEL SUPPLY - Gas turbine firing temperature optimization based on a measured sulfur content of a fuel supply of the gas turbine system is provided. In one embodiment, a system includes a diagnostic system configured to determine a maximum firing temperature for a combustor of a gas turbine system. The diagnostic system may determine the maximum firing temperature based on a predetermined sulfur content to maximum firing temperature correlation and an actual sulfur content of a fuel supplied to the combustor. The diagnostic system may also be configured to provide an indicator for a change in an actual firing temperature in the combustor of the gas turbine system. The diagnostic system may provide the indicator in response to the determined maximum firing temperature differing from the actual firing temperature of the combustor of the gas turbine system. | 09-18-2014 |
20140260288 | SYSTEM AND METHOD FOR START-UP OF A COMBINED CYCLE POWER PLANT - In accordance with one aspect of the present technique, a method is disclosed. The method includes modifying one or more operational parameters of a gas turbine (GT) to increase an exhaust gas temperature above a standard start-up temperature. The method also includes receiving at least one of GT operational data, heat recovery steam generator (HRSG) operational data, and steam turbine (ST) operational data from a plurality of sensors. The method further includes predicting a ST roll-off time based on at least one of the GT operational data, the HRSG operational data, and the ST operational data. The method further includes modifying the one or more operational parameters of the GT to satisfy one or more ST roll-off permissives at the predicted ST roll-off time. | 09-18-2014 |
20140260289 | MULTI-PASSAGE DIFFUSER WITH REACTIVATED BOUNDARY LAYER - A diffuser is disclosed that includes a splitter having a blunt forebody useful in re-starting a boundary layer. The blunt forebody can be used to create a static pressure bow wave and interaction with a passing fluid stream that reduces a thickness of boundary layer formed on an opposing wall. The re-start in boundary layer can be used in a way that allows an upstream portion of the diffuser to be sized approaching a separation limit and a downstream portion of the diffuser to also be sized approaching a separation limit. In some forms the passages split by the blunt forebody can be sized relative to each other to balance flow between the branches. | 09-18-2014 |
20140260290 | POWER-GENERATING APPARATUS AND METHOD - A power-generating apparatus includes a compressor section and a combustor section positioned downstream of the compressor section. The combustor section defines a combustion chamber operable to receive compressed fluid from the compressor section. The apparatus includes a turbine section positioned downstream of the combustor section operable to receive combustion gases from the combustion chamber and convert the combustion gases into kinetic energy. The apparatus also includes a waste container positioned downstream of the turbine section and exposed to the discharged exhaust gases. The waste container can hold waste material that receives the hot exhaust gas and combusts, further heating the exhaust gases. The apparatus also includes a conduit having an inlet fluidly communicating with the turbine section and receiving the exhaust gases. The apparatus also includes a heat exchanger operably disposed between the compressor section and the combustor section to heat the compressed fluid. | 09-18-2014 |
20140260292 | GAS TURBINE AND METHOD FOR GUIDING COMPRESSED FLUID IN A GAS TURBINE - A gas turbine having a combustion chamber with exhaust section through which combustion gas is exhaustable, plenum chamber and compressor are provided. The plenum chamber is coupled to the compressor wherein a first quantity of compressed fluid is injectable therein at a radially inner wall of the plenum chamber. A guide vane section with at least one airfoil is coupled to the exhaust section so combustion gas is flowable against the airfoil. The exhaust section and guide vane section are housed inside the plenum chamber. The airfoil has a first flow chamber where a second quantity of compressed fluid is flowable through the guide vane section from the compressor in the direction from the inner wall to a outer wall of the plenum chamber before being discharged. The second quantity of compressed fluid streamable through the guide vane section is larger than the first quantity of the compressed fluid. | 09-18-2014 |
20140283522 | MULTI-INJECTOR MICROMIXING SYSTEM - Embodiments of the present disclosure are directed to a system having components for premixing fuel and air prior to combustion within a combustion chamber. The system includes a plurality of mixing tubes configured to receive and to mix fuel and air. Each mixing tube is paired with a fuel injector, and the fuel injector is positioned axially within a portion of the mixing tube. Fuel is injected from the fuel injector into the respective mixing tube, and air flows radially into each mixing tube through one or more apertures formed on the mixing tube. The fuel and air are mixed within the mixing tube and are deposited into a combustion chamber for combustion. | 09-25-2014 |
20140283523 | SYSTEM AND METHOD FOR CONTROLLED FUEL BLENDING IN GAS TURBINES - A system includes a gas turbine engine having a combustor, and a fuel blending system. The fuel blending system further includes a first fuel supply configured to supply a first fuel, a second fuel supply configured to supply a second fuel, a first fuel circuit, a second fuel circuit, and a controller. The first fuel circuit may be configured to blend the first fuel and the second fuel to form a first to form a first fuel mixture. The second fuel circuit may be configured to blend the first fuel and the second fuel to form a second fuel mixture. The controller may be configured to regulate blending of the first fuel mixture and the second fuel mixture based on a measured operating parameter of the combustor. | 09-25-2014 |
20140290260 | SYSTEM AND METHOD FOR GENERATING NITROGEN FROM A GAS TURBINE - A system includes a gas turbine. The gas turbine includes a first compressor configured to provide a first portion of a discharge air to a combustor. The gas turbine also includes the combustor configured to combust a mixture of the first portion of the discharge air and fuel to generate an exhaust gas and to provide the exhaust gas to a turbine. The gas turbine also includes an exhaust outlet coupled to the turbine and configured to enable the exhaust gas to exit the gas turbine. The system also includes a nitrogen purification system coupled to the gas turbine. The nitrogen purification system includes a membrane nitrogen generator configured to receive a second portion of the discharge air from the compressor or a portion of the exhaust gas from the exhaust outlet, wherein the membrane nitrogen generator is configured to generate nitrogen from the second portion of the discharge air or the portion of the exhaust gas. | 10-02-2014 |
20140290261 | COMPENSATION FOR GAS TURBINE ENGINE FUEL VALVE CHARACTERISTICS - A method for operating a gas turbine engine fuel system with a fuel control valve is disclosed. The method includes metering fuel through the fuel control valve with an effective flow area versus command data set. The method also includes detecting that a change in an effective flow area of the fuel control valve has occurred. The method further includes modifying the effective flow area versus command data set to reflect the detected change in the effective flow area of the fuel control valve. | 10-02-2014 |
20140290262 | LOW FLOW CORRECTION FOR GAS TURBINE ENGINE FUEL VALVE CHARACTERISTICS - A method for controlling a gas turbine engine fuel control valve during low flow conditions includes positioning the fuel control valve in an operating position. The method also includes determining a fuel control valve flow sensor flow rate while in the operating position and determining a corrected effective flow area (“Cda”) of the fuel control valve. The method further includes generating Cda versus command data with the corrected Cda and the operating position and inserting the generated Cda versus command data into the nominal Cda versus command data set when nominal Cda versus command data is not known at the operating position. | 10-02-2014 |
20140290263 | PARTIAL OXIDATION REACTION WITH CLOSED CYCLE QUENCH - The present disclosure relates to a power production system that is adapted to achieve high efficiency power production with complete carbon capture when using a solid or liquid hydrocarbon or carbonaceous fuel. More particularly, the solid or liquid fuel first is partially oxidized in a partial oxidation reactor. The resulting partially oxidized stream that comprises a fuel gas is quenched, filtered, cooled, and then directed to a combustor of a power production system as the combustion fuel. The partially oxidized stream is combined with a compressed recycle CO | 10-02-2014 |
20140290264 | CONTROL OF THE GAS COMPOSITION IN A GAS TURBINE POWER PLANT WITH FLUE GAS RECIRCULATION - The invention relates to a method for operating a gas turbine power plant with exhaust gas recirculation. In the method a setpoint concentration of one component of the inlet gas and/or of the hot working gas and/or of the exhaust gas of the gas turbine is determined in a first step, in accordance with the operating conditions of the gas turbine, from a combination of a setpoint value of a control loop, a feedforward control signal and a correction value. In a second step, the position of a control element is adjusted in accordance with the setpoint/actual deviation in the concentration of the component. The invention furthermore relates to a gas turbine power plant for carrying out the method. | 10-02-2014 |
20140298816 | SIMPLE CYCLE GAS TURBOMACHINE SYSTEM HAVING A FUEL CONDITIONING SYSTEM - A simple cycle gas turbomachine includes a compressor portion, and a turbine portion having an outlet. At least one combustor is fluidically connected to the compressor portion and the turbine portion. An exhaust member includes an inlet, fluidically connected to the outlet of the turbine portion, a first outlet and a second outlet. A fuel conditioning system includes a heat exchange member provided with a first circuit having an exhaust gas inlet fluidically connected to the second outlet of the exhaust member and an exhaust gas inlet, a second circuit having an inlet fluidically connected to a source of fuel and an outlet fluidically connected to the at least one combustor. A conditioned fluid conduit is fluidically connected between a source of conditioned fluid and one of the combustor assembly and the first outlet of the exhaust member. | 10-09-2014 |
20140305127 | SYSTEM AND METHOD FOR AUGMENTING GAS TURBINE POWER OUTPUT - A system for augmenting gas turbine power output includes a compressed air supply, and a compressed air storage plenum in fluid communication with the compressed air supply. The compressed air storage plenum is configured to store a compressed air from the compressed air supply for later use. The system further includes an inlet plenum sealingly coupled to an inlet of the gas turbine. The inlet plenum is in fluid communication with the compressed air storage plenum so as to route the compressed air from the compressed air storage plenum into the inlet of the compressor during augmented operation of the gas turbine. | 10-16-2014 |
20140305128 | METHOD FOR OPERATING A COMBUSTION CHAMBER AND COMBUSTION CHAMBER - A combustion chamber including a body with a fuel supply duct for supplying a fuel into the body and a carrier air supply duct for supplying air into the body. An adjusting system adjusts the carrier air mass flow supplied into the body according to the features of the fuel. | 10-16-2014 |
20140305129 | GAS TURBINE ENGINE SUPPORT STRUT ASSEMBLY - Support strut assembly for supporting a casing of a functional unit of gas turbine is provided having a strut body for supporting the casing to ground, a ball pivot element mounted to the strut body and a rocker lever mounted to the ball pivot element. The rocker lever inserts into a bearing bore of a support body as part of the casing or ground, the rocker lever inserts into the bearing bore via clearance fit so a pivotal point is generated at a first contact area between the rocker lever and an inner surface of the bearing bore, the rocker lever pivots within the bearing bore around the pivotal point. An elastomeric springing damping element is mounted to the rocker lever between the rocker lever and the a support body providing centering force and damping pivoting of the rocker lever with respect to the support body around the pivotal point. | 10-16-2014 |
20140311153 | COMBUSTOR ASSEMBLY FOR A GAS TURBINE ENGINE - A combustor assembly for a gas turbine engine includes a hanger and a combustor liner fixed to the hanger such as, for example, by an annular weld joint. The combustor liner has an inner surface extending along an axis and is operable to define either a radial outer boundary or a radial inner boundary of the combustion chamber. The combustor assembly also includes a heat shield at least partially overlapping and confronting the inner surface of the combustor liner along the axis, with the heat shield releasably engaged with the hanger. | 10-23-2014 |
20140311154 | FLOW MERGING DEVICE FOR A FLUID SYSTEM OF A GAS TURBINE ENGINE - A gas turbine engine is disclosed having a working fluid system capable of moving a working fluid. The working fluid system includes a flow union member capable of combining different streams of working fluid. In one form the flow union member is a T-shape, but other embodiments can take on other shapes. The flow union member is configured to receive separate streams of working fluid. One of the separate streams is routed around another of the separate streams and the streams are combined. In one form the outlet of the flow union member includes an annular flow stream of one of the separate streams that surrounds a core flow of the other of the separate flow streams. | 10-23-2014 |
20140311155 | FLOW SPLITTER FOR A FLUID SYSTEM OF A GAS TURBINE ENGINE - A gas turbine engine is disclosed having a working fluid system capable of moving a working fluid. The working fluid system includes a flow splitter capable of splitting the working fluid into different streams. In one form the flow splitter member is a T-shape, but other embodiments can take on other shapes. The flow splitter can include an internal scoop used to split the flow. In one form internal scoop is annular in shape and includes a turn to direct a split flow. | 10-23-2014 |
20140318141 | HOT STREAK ALIGNMENT FOR GAS TURBINE DURABILITY - Embodiments of hot streak alignment for gas turbine durability include structures and methods to align hot streaks with the leading edges of aligned first stage nozzle vanes in order to improve mixing of the hot streaks with cooling air at a stator nozzle of a first stage turbine and reduce usage of cooling air at first stage non-aligned stator nozzle vanes disposed adjacent to the aligned stator vanes. | 10-30-2014 |
20140318142 | BIO-FUEL COMPOSITION AND METHOD FOR MANUFACTURE OF BIO-FUEL COMPOSITION - The present invention provides a liquid bio-fuel mixture comprising: a liquid condensate product of bio-mass fast pyrolysis; a bio-diesel component; and an alcohol component. The liquid bio-fuel mixture is macroscopically single phase. The alcohol component is selected from methanol, a C | 10-30-2014 |
20140318143 | MULTI-CIRCUIT BUFFER SYSTEM FOR A GAS TURBINE ENGINE - A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a shaft, a first bearing structure and a second bearing structure that support the shaft. Each of the first bearing structure and the second bearing structure includes a bearing compartment that contains a lubricant and a seal that contains the lubricant within the bearing compartments. A buffer system is configured to pressurize the seals to prevent the lubricant from escaping the bearing compartments. The buffer system includes a first circuit configured to supply a first buffer supply air to the first bearing structure, a second circuit configured to supply a second buffer supply air to the second bearing structure, and a controller configured to select between at least two bleed air supplies to communicate the first buffer supply air and the second buffer supply air. | 10-30-2014 |
20140318144 | DEVICE AND METHOD FOR SLOW TURNING OF AN AERODERIVATIVE GAS TURBINE - An aeroderivative gas turbine, including a gas generator, a gas generator rotor, a power turbine section, and a slow turning device, wherein said slow turning device is designed and arranged to keep said rotor in rotary motion after turbine shut-down. | 10-30-2014 |
20140331683 | MULTIVARIABLE CONTROLS OF HEAT RECOVERY STEAM GENERATION SYSTEM - A method of controlling a heat recovery steam generator (HRSG) includes measuring a first regulated output of the HRSG and a second regulated output of the HRSG. The method includes comparing the first regulated output to a first setpoint defining a first target output to generate a first error signal and comparing the second regulated output to a second setpoint defining a second target output to generate a second error signal. The method also includes generating, by a controller implementing a multivariable control algorithm having as inputs the first error signal and the second error signal, control signals to control the HRSG to adjust values of the first regulated output and the second regulated output. | 11-13-2014 |
20140331684 | ROTARY UNITS, ROTARY MECHANISMS, AND RELATED APPLICATIONS - The invention relates to rotary units and rotary mechanisms that are suitable for use in numerous applications. Rotary units typically include rotational components that are configured to rotate. In some embodiments, for example, multiple rotary units are assembled in rotary mechanisms such that neighboring pairs of rotational components counter-rotate or contra-rotate relative to one another during operation of the rotary mechanisms. Rotational components generally include one or more implements that are structured to perform or effect one or more types of work as the rotational components rotate relative to one another in a given rotary mechanism. In certain embodiments, implements are configured to rotate and/or to effect the movement of other components as rotational components rotate. In some embodiments, engines include rotary mechanisms and are used in, for example, ground vehicles, marine vehicles, aircraft, or devices. | 11-13-2014 |
20140338349 | Combustion Nozzle with Floating Aft Plate - The present application provides a combustion nozzle for use with a gas turbine engine. The combustion nozzle may include a number of mixing tubes, an outer shell surrounding the mixing tubes, and a floating aft plate assembly. The floating plate assembly may enclose the outer shell. The mixing tubes may extend through the aft plate assembly. | 11-20-2014 |
20140338350 | GAS TURBINE WITH COULOMBIC THERMAL PROTECTION - A gas turbine is configured to operate with a high temperature combustion gas stream. The gas turbine may include a combustor that provides a combustion gas stream including charged particles and at least one turbine stage including at least one high temperature surface that may be driven with a voltage selected to repel the charged particles. The at least one high temperature surface may output a film-cooling layer including cool air, the film-cooling layer being stabilized by Coulombic forces between the voltage and the charged particles. | 11-20-2014 |
20140338351 | GAS TURBINE ENGINE COMBUSTOR WITH TAILORED TEMPERATURE PROFILE - A method of tailoring a combustor flow for a gas turbine engine includes controlling an airflow into a swirler to be generally uniform and controlling an airflow into a quench zone to provide a desired pattern factor. | 11-20-2014 |
20140345287 | METHOD AND SYSTEM FOR COMBUSTION CONTROL BETWEEN MULTIPLE COMBUSTORS OF GAS TURBINE ENGINE - A system includes a first combustor having a first combustion chamber, a first head end with a first plurality of fuel nozzles, and a first effusion plate. The first effusion plate has a first plurality of openings for the first plurality of fuel nozzles, and the first effusion plate has a first plurality of openings configured to enable air flow into the first combustion chamber. The system includes a second combustor having a second combustion chamber, a second head end with a second plurality of fuel nozzles, and a second effusion plate. The second effusion plate comprises a second plurality of air ports configured to enable air flow into the second combustion chamber, such that the first plurality of air ports in the first effusion plate have differences relative to the second plurality of air ports in the second effusion plate. | 11-27-2014 |
20140345288 | TURBOMACHINE ASSEMBLY FOR RECOVERING WASTE HEAT AND METHOD OF USING SAME - A turbomachine assembly for recovering waste heat generally has a compressor section that is configured to generate a compressed fluid flow and to channel the compressed fluid flow within the turbomachine assembly. A turbine section is coupled to the compressor section via a rotating member such that portions of the rotating member are located within the compressor section and the turbine section, respectively. The turbine section is in flow communication with the compressor section such that the compressed fluid flow is received by the turbine section. At least one heat exchanger is positioned at least partly within the turbine section where the heat exchanger receives waste heat energy. The heat exchanger transfers energy from the waste heat into the compressed fluid flow to increase at least one parameter of the compressed fluid flow contributing to the generation of a power output. | 11-27-2014 |
20140345289 | GAS TURBOMACHINE COMBUSTOR ASSEMBLY INCLUDING A LIQUID FUEL START-UP SYSTEM - A turbomachine combustor assembly includes a combustor body, a combustion chamber defined within the combustor body, one or more combustion nozzles positioned to direct a combustible fluid into the combustion chamber, and a fuel start-up system fluidly connected to the combustion chamber. The fuel start-up system is configured and disposed to combine a liquid fuel and a combustible gas to form an ignition fuel. A pilot nozzle is fluidly connected to the fuel start-up system. The pilot nozzle is configured and disposed to deliver an atomized cloud of the ignition fuel toward the combustion chamber. | 11-27-2014 |
20140345290 | METHOD FOR STABILIZING A GRID FREQUENCY WITH A GAS TURBINE IN MIXED FUEL OPERATION - A method for stabilising a network frequency with a gas turbine that can be operated using syngas and an additional fuel is provided. The mass-flow of the additional fuel, supplied to operate the gas turbine, can be increased more quickly than that of the syngas and, in order to stabilise a network frequency, a ratio of the mass-flow of syngas to that of the additional fuel, for operating said gas turbine, is modified by the mass-flow of said additional fuel being modified while the mass-flow of the syngas remains the same. | 11-27-2014 |
20140352314 | GAS TURBINE ENGINE FUEL SYSTEM WITH ECOLOGY VALVE - A gas turbine engine fuel system has an ecology valve for withdrawing residual fuel from primary and secondary fuel manifolds upon engine shut-down. The ecology valve has primary and secondary reservoirs respectively connected in fluid flow communication with the primary and secondary fuel manifolds. The valve further has a reciprocating piston movable from a retracted position when engine start-up is initiated to an extended position which the piston assumes under normal engine running conditions. The movement of the reciprocating piston between the retracted and extended positions controls the flow of fuel from and to the primary and secondary reservoirs. A cross-bleed passage is defined in the reciprocating piston. The cross-bleed passage connects the primary and secondary reservoirs in fluid flow communication only when the piston is in its extended position. In this way, the cross-bleed flow between the primary and secondary fuel manifolds may be initiated only at the end of the engine start-up phase. | 12-04-2014 |
20140352315 | COOLED COOLING AIR SYSTEM FOR A GAS TURBINE - In an aircraft including a gas turbine engine having a compressor including a compressor booster, a turbine, and a nacelle, a system for cooling compressor discharge air provided to the turbine to cool the turbine includes a heat exchanger provided in a nacelle compartment of the gas turbine engine configured to cool the compressor discharge air by exchanging heat from the compressor discharge air to a cooling fluid; and a cooling fluid circuit configured to circulate cooling fluid through the heat exchanger and a heat sink, wherein the heat sink is at least one of an inlet of the nacelle compartment, an inlet of the compressor booster, or outlet guide vanes of the gas turbine engine. | 12-04-2014 |
20140352316 | Combustor Leakage Control System - The present application provides a combustor with a radial penetration. The combustor may include a combustion chamber, a liner surrounding the combustion chamber, a flow sleeve surrounding the liner, a penetration tube extending through the liner and the flow sleeve with the radial penetration positioned within the penetration tube, a flange extending from the penetration tube about the flow sleeve, and a ferrule positioned about the flange and the radial penetration so as to limit leakage about the radial penetration. | 12-04-2014 |
20140352317 | INTERCOOLED GAS TURBINE WITH CLOSED COMBINED POWER CYCLE - A turbine engine includes a fan that provides an air flow to the turbine engine as compressor intake air and as compressor bypass air, a first stage compressor positioned to receive the compressor intake air and output a first stage compressed air, and a boiler positioned to cool the first stage compressed air using a fluid. A second stage compressor is positioned to receive the cooled first stage compressed air. A pump is configured to pump the fluid as a liquid into the boiler, extract energy from the first stage compressed air, and cause the cooling of the first stage compressed air. | 12-04-2014 |
20140360199 | METHOD OF OPERATING A GAS TURBINE POWER PLANT WITH EXHAUST GAS RECIRCULATION AND CORRESPONDING GAS TURBINE POWER PLANT - The invention relates to a method for operating a gas turbine, in which an oxygen-reduced gas and fresh air are delivered to a compressor of the gas turbine in a radially staged manner, the fresh air being delivered via an outer sector of the inlet cross section in relation to the axis of rotation of the compressor, and the oxygen-reduced gas being delivered via an inner sector of the inlet cross section in relation to the axis of rotation of the compressor. | 12-11-2014 |
20140360200 | GAS TURBINE POWER PLANT WITH EXHAUST GAS RECIRCULATION - What is described is a method for operating a gas turbine power plant, in which fresh air is delivered to a compressor inlet and is accelerated in the compressor inlet and a recirculated first exhaust gas substream is delivered into a region of the compressor inlet in which the fresh air is accelerated to an extent such that the difference between total pressure and static pressure in the fresh air is greater than or equal to a pressure difference which is required in order to suck a target mass flow of the recirculated first exhaust gas substream into the compressor inlet. What is described, further, is a gas turbine power plant with a gas turbine, the compressor inlet of which is divided into two sectors which the flow duct of the compressor adjoins, a feeder for fresh air being connected to the first sector and a recirculation line for recirculating the first exhaust gas substream being connected to the second sector, and the second sector reaching so close to the compressor that, when the gas turbine is in operation, the static pressure at the outlet of the second sector is so low that the difference between total pressure and static pressure is greater than or equal to a pressure difference which is required in order to suck a target mass flow of the recirculated first exhaust gas substream into the compressor inlet. | 12-11-2014 |
20140366546 | VARIABLE FREQUENCY DRIVE POWER RIDE THRU - A gas turbine engine includes a compressor, a combustor adjacent the compressor, a turbine adjacent the combustor, a shaft, a motor, a variable frequency drive, a stored energy source and a ride thru unit. The motor is coupled to the shaft. The variable frequency drive is electrically connected to the motor and to an AC power source. The ride thru unit electrically connects to the variable frequency drive, the AC power source and the stored energy source. The ride thru unit includes at least one DC to DC voltage converter. | 12-18-2014 |
20140366547 | GAS TURBINE EFFICIENCY AND REGULATION SPEED IMPROVEMENTS USING SUPPLEMENTARY AIR SYSTEM CONTINUOUS AND STORAGE SYSTEMS AND METHODS OF USING THE SAME - The present invention discloses a novel apparatus and methods for augmenting the power of a gas turbine engine, improving gas turbine engine operation, and reducing the response time necessary to meet changing demands of a power plant. Improvements in power augmentation and engine operation include additional heated compressed air injection, steam injection, water recovery, exhaust tempering, fuel heating, and stored heated air injection. | 12-18-2014 |
20140366548 | TURBINE ENGINE GEARBOX - A gas turbine engine comprises a fan, a compressor, a combustor, and a fan drive turbine rotor. The fan drive turbine drives the fan through a gear reduction. The gear reduction includes at least two double helical gears in meshed engagement. Each of the at least two double helical gears are disposed to rotate about respective axes, and each have a first plurality of gear teeth axially spaced from a second plurality of gear teeth by a spacer. Each of the first plurality of gear teeth has a first end facing the spacer and each of the second plurality of gear teeth has a first end facing the spacer. Each first end of the first plurality of gear teeth is circumferentially offset from each first end of the second plurality of gear teeth. A method is also disclosed. | 12-18-2014 |
20140366549 | PREPARATION OF EXHAUST GAS FROM A GAS TURBINE FOR EXHAUST GAS RECIRCULATION - A method of operating a turbine unit, wherein recirculated exhaust gas is contacted with a cooling and absorption liquid in a packed bed. An exhaust gas treatment system for a turbine unit, wherein an exhaust gas recirculation line comprises a gas cooling and cleaning device having a packed bed for contacting the exhaust gas with a cooling and absorption liquid. A combined cycle power generating system, wherein an exhaust gas recirculation line comprises a gas cooling and cleaning device having a packed bed for contacting the exhaust gas from a gas turbine with a cooling and absorption liquid and wherein water utilized as a cooling medium for condensation of steam originating from a steam turbine, and the cooling and absorption liquid, are passed to a cooling tower. | 12-18-2014 |
20140373551 | GAS TURBINE AIR INJECTION SYSTEM CONTROL AND METHOD OF OPERATION - The present invention discloses a novel apparatus and methods for controlling an air injection system for augmenting the power of a gas turbine engine, improving gas turbine engine operation, and reducing the response time necessary to meet changing demands of a power plant. Improvements in control of the air injection system include ways directed towards preheating the air injection system, including using an gas turbine components, such as an inlet bleed heat system to aid in the preheating process. | 12-25-2014 |
20150007574 | SYSTEMS AND METHODS FOR CONTROL OF A GAS TURBINE - A system includes a gas turbine system including a compressor, a combustor, and a turbine. The system also includes a controller communicatively coupled to the gas turbine system and configured to control operations of the gas turbine system. The system further includes a life consumption model configured to determine an operating life of the gas turbine system based on both a health status of one or more components of the gas turbine system and operating conditions of the gas turbine system. The controller is configured to utilize at least the life consumption model to derive a control action for the gas turbine system. | 01-08-2015 |
20150007575 | POWER PLANT WITH INTEGRATED FUEL GAS PREHEATING - The invention refers to a CCPP comprising a gas turbine, a water steam cycle with a steam turbine and a HRSG with at least two pressure levels, and a fuel preheater for preheating the fuel of the gas turbine. The fuel preheater includes a first heat exchanger for preheating the fuel to a first elevated temperature, which is connected to a feed water line from a pressure level of the HRSG, which is below the highest HRSG pressure level, and a second heat exchanger for further preheating the fuel gas to a second elevated temperature, which is connected to the high pressure feed water with the highest pressure level of the HRSG. The disclosure further refers to a method for operating a CCPP with such a fuel preheater. | 01-08-2015 |
20150007576 | GAS TURBINE POWER PLANT WITH NON-HOMOGENEOUS INPUT GAS - The invention relates to a method for operating a gas turbine which includes a compressor with annular inlet area, at least two burners, a combustion chamber and a turbine. According to the method, at least one first partial intake flow, consisting of oxygen-reduced gas which has an oxygen concentration which is lower than the average oxygen concentration of the compressor intake flow, and at least one second partial intake flow, consisting of fresh air, are fed to the compressor in an alternating manner in the circumferential direction of the inlet area. In addition, the invention relates to a gas turbine power plant with a gas turbine, the compressor inlet of which includes at least one first segment and at least one second segment which are arranged in an alternating manner around a compressor inlet in the circumferential direction, wherein a feed for an oxygen-reduced gas is connected to the first segment and a fresh air feed is connected to the second segment of the compressor inlet. | 01-08-2015 |
20150007577 | COMBINED CYCLE POWER PLANT AND METHOD FOR OPERATING SUCH A COMBINED CYCLE POWER PLANT - The invention relates to a combined cycle power plant including a gas turbine the exhaust gas outlet of which is connected to a heat recovery steam generator, which is part of a water/steam cycle, whereby, for having a large power reserve and at the same time a higher design performance when operated at base load, the gas turbine is designed with a steam injection capability for power augmentation. For having a large power reserve at improved and optimized design performance when the plant is being operated at base load, the gas turbine includes at least one combustor, and a compressor for providing cooling air for that gas turbine, which is extracted from the compressor and cooled down in at least one cooling air cooler. The steam for steam injection is generated in said cooling air cooler, whereby said steam is injected into an air side inlet or outlet of said cooling air cooler and/or directly into said at least one combustor. The heat recovery steam generator is equipped with a supplementary firing, which is at least a single stage supplementary firing to increase the high pressure steam production and providing augmentation power as power reserve to a grid when required. | 01-08-2015 |
20150007578 | METHOD FOR OPERATING A COMBINED CYCLE POWER PLANT AND COMBINED CYCLE POWER PLANT FOR CONDUCTING SAID METHOD - The invention relates to a method for operating a combined cycle power plant, which includes a steam turbine powertrain with a high-pressure steam turbine, an intermediate pressure steam turbine and a low-pressure steam turbine, whereby intermediate pressure steam flowing from the exit of the high-pressure steam turbine to the inlet of the intermediate pressure steam turbine is reheated by means of the reheat device, and which is connected to a solar thermal plant, that generates additional solar steam for being used by said steam turbine powertrain. The output of the solar steam generator is used more effectively, and the overall plant performance, flexibility and operability are enhanced by at least part of the additional solar steam reaching the intermediate pressure steam turbine without being reheated in said reheat device. | 01-08-2015 |
20150007579 | METHOD FOR OPERATING A COMBINED CYCLE POWER PLANT AND COMBINED CYCLE POWER PLANT FOR USING SUCH METHOD - The invention discloses a method for operating a combined cycle power plant with an integrated CO2 capture unit, wherein flue gas of a gas turbine is led along an flue gas path through a heat recovery steam generator, a flue gas cooling circuit and a CO2 absorber. A reduction in effort is achieved by operating the gas turbine to have a back-pressure at its exit, which compensates most or all of the pressure loss of the flue gas along the flue gas path. | 01-08-2015 |
20150013341 | Exhaust Mixer with Offset Lobes - An exhaust mixer for a gas turbine engine where each outer lobe has at the downstream end a circumferential offset in a direction corresponding to that of the swirl component of the flow entering the mixer. The mixer has a crest line having at least a downstream portion curved with respect with respect to a circumferential direction of the mixer and/or a center line at the downstream end tilted with respect to a radial line extending to the tip of the outer lobe to define the circumferential offset. A method of mixing a core flow and a bypass flow surrounding the core flow with an annular mixer is also provided. | 01-15-2015 |
20150020529 | GAS TURBINE EMISSIONS CONTROL SYSTEM AND METHOD - Embodiments of the present disclosure are directed towards a system including a gas turbine engine configured to produce exhaust gas, a selective catalytic reduction system configured to produce processed exhaust gas from the exhaust gas, and a control system. The control system includes a first controller configured to regulate operation of the selective catalytic reduction system, a second controller configured to regulate operation of the gas turbine engine, and an optimizer configured to coordinate operation of the first controller and the second controller to simultaneously maximize a first level of an emissions compound in the exhaust gas and regulate injection of a reductant into the selective catalytic reduction system to reduce a second level of the emissions compound in the processed exhaust gas to a first desired level of the emissions compound in the processed exhaust gas. | 01-22-2015 |
20150020530 | GAS TURBINE EMISSIONS CONTROL SYSTEM AND METHOD - Embodiments of the present disclosure are directed towards a system including a gas turbine engine, a selective catalytic reduction system, and a control system configured to regulate operation of the selective catalytic reduction system based at least partially on preset variations in an emissions compound of exhaust gases produced by the gas turbine engine. | 01-22-2015 |
20150033748 | SYSTEM AND METHOD FOR AN OXIDANT HEATING SYSTEM - A system includes an oxidant compressor and a gas turbine engine. The gas turbine engine includes a combustor section having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and route an exhaust flow to the turbine combustor and the oxidant compressor is configured to compress and route an oxidant flow to the turbine combustor. The gas turbine engine also includes an inlet oxidant heating system configured to route at least one of a first portion of the combustion products, or a second portion of the exhaust flow, or any combination thereof, to an inlet of the oxidant compressor. | 02-05-2015 |
20150033749 | SYSTEM AND METHOD OF CONTROLLING COMBUSTION AND EMISSIONS IN GAS TURBINE ENGINE WITH EXHAUST GAS RECIRCULATION - In one embodiment, a system includes a turbine combustor having a combustor liner disposed about a combustion chamber, a head end upstream of the combustion chamber relative to a downstream direction of a flow of combustion gases through the combustion chamber, a flow sleeve disposed at an offset about the combustor liner to define a passage, and a barrier within the passage. The head end is configured to direct an oxidant flow and a first fuel flow toward the combustion chamber. The passage is configured to direct a gas flow toward the head end and to direct a portion of the oxidant flow toward a turbine end of the turbine combustor. The gas flow includes a substantially inert gas. The barrier is configured to block the portion of the oxidant flow toward the turbine end and to block the gas flow toward the head end within the passage. | 02-05-2015 |
20150040571 | METHOD FOR FUEL SPLIT CONTROL TO A GAS TURBINE USING A MODIFIED TURBINE FIRING TEMPERATURE - A method for controlling fuel splits to a controller is provided that includes comparing a combustor operating parameter to a predefined combustor operating parameter range. If the combustor operating parameter is outside its respective range, then a modified turbine firing temperature is calculated. The modified turbine firing temperature may then be used to determine the fuel splits to the combustor using a nominal fuel splits lookup table. | 02-12-2015 |
20150040572 | GAS TURBINE ENGINE COMBUSTOR WITH FLUIDIC CONTROL OF SWIRLERS - A system and method for controlling air flow through a combustor swirler assembly that includes an inner swirler and an outer swirler. A bistable fluidic amplifier that includes an air inlet, a first air outlet, a second air outlet, and a control port is disposed upstream of the combustor swirler assembly. A flow of compressed is directed into the air inlet of the bistable fluidic amplifier and, based on the control air pressure at the control port, the flow of compressed air supplied to the air inlet is selectively directed to either the first air outlet or the second air outlet. | 02-12-2015 |
20150040573 | GAS TURBINE WITH IMPROVED PART LOAD EMISSIONS BEHAVIOR - In a method for the low-CO emissions part load operation of a gas turbine with sequential combustion, the opening of the row of variable compressor inlet guide vanes is controlled depending on the temperatures of the operative burners of the second combustor and simultaneously the number of operative burners is kept at a minimum. This leads to low CO emissions at partial load of the gas turbine. | 02-12-2015 |
20150047363 | High Frequency-Stabilized Combustion in Aircraft Gas Turbines - A gas turbine includes a combustion chamber and a microwave source to produce microwave radiation. The gas turbine is arranged to guide the microwave radiation into a cavity of the combustion chamber. Due to the microwave radiation, in the cavity of the combustion chamber, combustion in the cavity may be supported and thus lean operation of the gas turbine is made possible. | 02-19-2015 |
20150052902 | DUAL FLOW AIR INJECTION INTRATURBINE ENGINE AND METHOD OF OPERATING SAME - A jet engine having an air intake and a compression section having first and second separate flow paths coupled to the air intake, the second flow path containing a fuel rich, fuel air mixture having an equivalence rate above the mixture flammability limit, the first flow path containing only air, a burner turbine section, the compression section being coupled directly to the burner turbine section, and means for injecting air from the first flow path into the fuel rich fuel air mixture of the said flow path in the burner turbine section to generate intraturbine diffusion layer burning of said fuel air mixture. | 02-26-2015 |
20150052903 | ALIGNMENT AND MEASURING TOOL FOR A TURBOMACHINE - An alignment and measuring tool for turbomachine combustor includes a support member configured and disposed to operatively connect to a combustor casing mounting element having an opening, and an indexing element connected to the support member. The indexing element includes an opening provided with a first recess zone and a second recess zone. A ferrule including an opening is configured and disposed to be positioned across a combustion liner opening. A cap member is supported upon the support member and arranged within the opening of the indexing element. A rod is arranged in the cap member and extends from a first end to a second end through an intermediate portion. The rod includes an adjustable cone member slidingly mounted upon the intermediate portion. The adjustable cones is configured and disposed to nest in the combustor liner opening. | 02-26-2015 |
20150059347 | METHOD FOR CONTROLLING COUPLING BETWEEN A FIRST MACHINE AND A SECOND MACHINE - A method for controlling coupling between a first machine including a first rotating shaft having an associated first positional phase angle defined by a first shaft indicia and a second machine including a second rotating shaft having an associated second positional phase angle defined by a second shaft indicia. A rotational speed and rotational angle of the first shaft are monitored, and rotation of the second shaft is controlled by bringing the second shaft to a predetermined rotational speed relative to the first shaft speed. Acceleration of the second shaft is controlled such that the second shaft indicia is within a predetermined angle relative to the first shaft indicia upon the second shaft being brought to the predetermined rotational speed, at which point the first and second shafts are coupled such that the second shaft indicia is within the predetermined angle relative to the first shaft indicia. | 03-05-2015 |
20150059348 | SYSTEM AND METHOD FOR CONTROLLING FUEL DISTRIBUTIONS IN A COMBUSTOR IN A GAS TURBINE ENGINE - The present disclosure relates to a gas turbine engine system having a plurality of combustors, wherein a first combustor includes one or more fuel nozzles and one or more fuel injectors positioned downstream from the fuel nozzles. The gas turbine engine may also include a first valve disposed along a fuel delivery line between a fuel circuit and the first combustor to adjust a first flow of the fuel to the first combustor. The gas turbine engine may also include a second valve disposed along a fuel delivery line between the first valve and at least one of the one or more fuel injectors to adjust a second flow of the fuel to at least one of the one or more fuel injectors. | 03-05-2015 |
20150059349 | COMBUSTOR CHAMBER COOLING - A gas turbine engine combustor which is cooled by a hybrid cooling apparatus and method. Heat shields cooled by impingement cooling air are present at an upstream section of the combustor liners and exhausted impingement cooling air is substantially discharged outside of the primary zone of the combustor chamber. The single-skinned downstream section of the combustor liners is cooled by effusion cooling. | 03-05-2015 |
20150059350 | SYSTEM AND METHOD OF RECIRCULATING EXHAUST GAS FOR USE IN A PLURALITY OF FLOW PATHS IN A GAS TURBINE ENGINE - A method includes generating an exhaust gas from combustion gases with a turbine; recirculating the exhaust gas along an exhaust recirculation flow path; reducing moisture within the exhaust gas along the exhaust recirculation path with an exhaust gas processing system; providing the exhaust gas to a first exhaust gas inlet of an exhaust gas compressor for compression; and providing the exhaust gas from the exhaust recirculation path to a second exhaust gas inlet separate from the first exhaust gas inlet for cooling, preheating, sealing, or any combination thereof. | 03-05-2015 |
20150068213 | METHOD OF COOLING A GAS TURBINE ENGINE - A method of cooling a gas turbine engine is provided. The method includes removing a load from the gas turbine engine. The method also includes operating the gas turbine engine at a rated speed of the gas turbine engine. The method further includes modulating an angle of at least one stage of inlet guide vanes disposed proximate an inlet of a compressor section of the gas turbine engine, wherein modulating the angle modifies a flow rate of an inlet flow for reducing a cooling time of the gas turbine engine. | 03-12-2015 |
20150068214 | LOW THERMAL MASS JOINT - A gas turbine engine includes a tangential on-board injector (TOBI) fluidly connected to a compressor section. A diffuser case structurally supports a combustor section and the tangential on-board injector via at least one low thermal mass joint. | 03-12-2015 |
20150075170 | METHOD AND SYSTEM FOR AUGMENTING THE DETECTION RELIABILITY OF SECONDARY FLAME DETECTORS IN A GAS TURBINE - Systems and methods for operating a gas turbine combustion system by generating a flame detection signal are provided. A set of modeled parameters expected when there is a flame in a secondary combustion zone is calculated. A set of measured gas turbine parameters is measured. A flame validation signal based on the set of measured parameters and the set of modeled parameters is generated. The systems include a subsystem that calculates a set of modeled parameters expected when there is a flame in the secondary combustion zone and a subsystem that measures a set of measured parameters. A subsystem generates a flame validation signal based on the set of measured parameters and the set of modeled parameters. | 03-19-2015 |
20150075171 | TURBOMACHINE COMBUSTOR ASSEMBLY - A turbomachine combustor assembly includes a combustor body, and a combustor liner arranged within the combustor body. The combustor liner defines a combustion chamber having a head end and a discharge end. A plurality of combustor nozzles are arranged in an annular array at the head end of the combustion chamber, and a fluid delivery nozzle is arranged substantially centrally within the annular array at the head end of the combustion chamber. The fluid delivery nozzle includes a first end portion that extends to a second end portion through a wall portion. The wall portion includes at least one combustion chamber outlet. The fluid delivery nozzle is configured to deliver a non-combustible fluid into the at least one of the plurality of combustor nozzles and the combustion chamber. | 03-19-2015 |
20150075172 | FLAMESHEET COMBUSTOR CONTOURED LINER - The present invention discloses a novel apparatus and way for reducing the recirculation zone at the inlet end of a combustor. The recirculation zone is reduced by altering the geometry of the inlet end through a tapering of the liner wall thickness and a tapering of the thermal barrier coating to reduce the bluff body effect at the combustion liner inlet end. | 03-19-2015 |
20150082799 | High Efficiency Hydrogen Turbine - Hydrogen is combusted in Oxygen to generate extremely high temperature steam. By feeding the combustion generated steam directly into a steam turbine, unprecedented high conversion efficiency to electricity is achieved. | 03-26-2015 |
20150089951 | POWER GENERATION AND CO2 CAPTURE WITH TURBINES IN SERIES - In various aspects, a method for producing electricity by operating two or more turbines in series is provided. The method can include introducing, at least part of, the exhaust from an upstream turbine into a combustion chamber of a downstream turbine. In one aspect, exhaust from the upstream turbine is introduced into the downstream turbine's combustion chamber via the downstream turbine's compression chamber. | 04-02-2015 |
20150101339 | ENERGY EFFICIENT PUMP SYSTEM - A fuel system for a gas turbine engine, which includes a combustor section and an actuator, includes a fuel source, a combustor system, and an actuation system. The combustor system includes a combustor pump that is fluidly connected to the fuel source and to the combustor section, with the combustor pump being mechanically connected to and powered by an electric motor. The actuation system includes an actuator pump that is fluidly connected to the fuel source and to the actuator, with the actuator pump being mechanically connected to and powered by a gearbox or an electric motor. | 04-16-2015 |
20150107257 | FLUSHING THE EXHAUST GAS RECIRCULATION LINES OF A GAS TURBINE - A method and gas turbine are provided for the reliable purging of an exhaust gas recirculation line of the gas turbine with exhaust gas recirculation without the use of additional blow-off fans. A blow-off flow of the compressor is used for the purging of the exhaust gas recirculation line. The gas turbine can include at least one purging line which connects a compressor blow-off point to the exhaust gas recirculation line. | 04-23-2015 |
20150113995 | ISOTHERMAL COMPRESSION TYPE HEAT ENGINE - The present invention relates to an isothermal compression type heat engine using air as a heat working medium. It is technically characterized as follows. An air compressor is used to replace an adiabatic air compressor. Two engineering courses being air compression and expansion work are performed separately in different engine members, so as to significantly increase a working pressure of the heat engine. Temperature gradient type heat preservation composite tubes are disposed to recycle remaining heat of exhaust gas with high efficiency, so as to distinctly improve the heat efficiency of the heat engine. When necessary, the isothermal air compressor and a low-temperature refrigerating device are used in coordination, so that toxic and harmful gas components in the exhaust gas are automatically condensed and liquefied, and are separated from clean gas under a artificial low-temperature environment, and then are collected to be used as chemical raw materials, so as to implement zero discharge and zero pollution of toxic and harmful materials in the exhaust gas of the engine. | 04-30-2015 |
20150121887 | AUTOMATED CONTROL OF PART-SPEED GAS TURBINE OPERATION - A method of controlling operability of a gas turbine during part-speed operation includes identifying that a combustion system of the gas turbine is operating at part-speed, the combustion system including a fuel source, fuel circuits and valves operably interposed between the fuel source and the fuel circuits, respectively, defining first and second boundaries based on first and second parameters and automatically controlling each of the valves to control fuel flow to each of the fuel circuits in accordance with the defined first and second boundaries. | 05-07-2015 |
20150121888 | GAS TURBINE ONLINE WASH CONTROL - A gas turbine online wash control system may obtain geospatial data for an area in which a gas turbine is located. The gas turbine online wash control system may determine wash control parameters for the gas turbine based on the geospatial data. | 05-07-2015 |
20150121889 | AIRCRAFT NOZZLE - A nozzle for an aircraft powerplant is disclosed which provides two separate flow paths. A flow path is provided in the nozzle for a core flow of the powerplant and another flow path is provided for a bypass flow of the powerplant. The nozzle can have a variety of configurations including, but not limited to, 2D and axisymmetric. Either or both the flow paths can be convergent, divergent, or convergent-divergent, and the flow paths need not be similar between the two. Actuators are provided to manipulate the configuration of the flow paths and the areas of the flow paths. For example, throat and/or exit areas can be manipulated. | 05-07-2015 |
20150121890 | HIGH VELOCITY COMBUSTOR - A combustor provides reaction anchoring by injecting a voltage or charge into an exothermic reaction such as aflame, and anchoring the exothermic reaction to a conductive surface positioned adjacent to a fuel jet nozzle. | 05-07-2015 |
20150121891 | OXIDATION SYSTEM FOR TREATMENT OF LOW-CONCENTRATION METHANE GAS PROVIDED WITH MULTIPLE OXIDIZERS - A low-concentration methane gas oxidation system includes a single heat source device, and an oxidation device which catalytically oxides a low-concentration methane gas by using heat from the single heat source device. The oxidation device includes a plurality of oxidation lines each including each of a plurality of branching low-concentration gas supply passages which branch, in parallel, from a supply passage which supplies the low-concentration methane gas, and each of a plurality of catalyst oxidizers provided on each of the plurality of branching low-concentration gas supply passages. | 05-07-2015 |
20150121892 | GAS TURBINE POWER PLANT WITH FLUE GAS RECIRCULATION AND CATALYTIC CONVERTER - The invention pertains to a power plant including a gas turbine, a heat recovery boiler arrangement with at least a boiler inlet, and an outlet side with a first exit connected to a stack and a second exit connected to a flue gas recirculation, which connects the second exit to the compressor inlet of the gas turbine. The heat recovery boiler arrangement includes a first boiler flue gas path from the boiler inlet to the first boiler exit, and a separate second boiler flue gas path from the boiler inlet to the second boiler exit. Additionally, a supplementary firing and a subsequent catalytic NOx converter are arranged in the first boiler flue gas path. Besides the power plant a method to operate such a power plant is an object of the invention. | 05-07-2015 |
20150128604 | GAS TURBINE ENGINE FLOW PATH GEOMETRY - A flow path surface of a gas turbine engine at the location of a bladed component is disclosed in which the flow path surface includes a cylindrical upstream side and a conical downstream side. The bladed component is located at the intersection of the cylindrical upstream side and the conical downstream side. The cylindrical upstream side can extend from a leading edge of the bladed component, or a point upstream of it, to a location between the leading edge and trailing edge of the component. The conical downstream side can extend past the trailing edge of the bladed component. The bladed component can be a fan blade or a compressor blade. | 05-14-2015 |
20150128605 | TURBOFAN WITH VARIABLE BYPASS FLOW - A gas turbine engine is disclosed with a bypass flow path having a bypass nozzle positioned downstream of a fan; a core flow path having a compressor, a combustor, a turbine and an exhaust nozzle; an auxiliary duct fluidly connecting the core flow path and the bypass flow path downstream of the turbine; and a control valve operably connected to the auxiliary duct to control fluid flow from the core flow path into the bypass flow path. | 05-14-2015 |
20150143810 | INDUSTRIAL GAS TURBINE EXHAUST SYSTEM DIFFUSER INLET LIP - An integrated single-piece exhaust system (SPEX) with modular construction that facilitates design changes for enhanced aerodynamics, structural integrity or serviceability. The SPEX defines splined or curved exhaust path surfaces, such as a series of cylindrical and frusto-conical sections that mimic curves. The constructed sections may include: (i) a tail cone assembly fabricated from conical sections that taper downstream to a reduced diameter; or (ii) an area-ruled cross section axially aligned with one or more rows of turbine struts; or both features. Modular inner and outer diameter inlet lips enhance transitional flow between the last row blades and the SPEX, as well as enhance structural integrity. Modular strut collars have large radius profiles between the SPEX annular inner diameter and outer diameter flow surfaces, for enhanced airflow and constant thickness walls for uniform heat transfer and thermal expansion. Scalloped mounting flanges enhance structural integrity and longevity. | 05-28-2015 |
20150143811 | SYSTEM AND METHOD FOR HEATING A CATALYST IN AN EXHAUST TREATMENT SYSTEM OF A TURBINE ENGINE - A system includes a catalyst system having at least one catalyst to treat an exhaust gas from a gas turbine system, and a thermal storage system having at least one storage tank to store thermal energy in a medium, wherein the system is configured to transfer heat from the medium to the at least one catalyst. | 05-28-2015 |
20150143812 | Exhaust Plume Cooling - An exhaust plume cooling device for cooling an exhaust gas plume to reduce deleterious heat effects on impinged and surrounding surfaces. The device is supportable in a position downstream of an exhaust nozzle of an exhaust gas plume-producing engine and configured to periodically interrupt the flow of exhaust gases. | 05-28-2015 |
20150292401 | Systems, Methods and Apparatuses for Interconnection of Rotating Components - One embodiment is an apparatus comprising a first rotational component including an elongated connecting element fixed thereto and extending axially therefrom through a second rotational component to an end structure. The connecting element is connected to the end structure to compress the second rotational component between the end structure and the first rotational component. | 10-15-2015 |
20150292403 | Methods for Producing a Fuel Gas Stream - Methods and systems for dynamically planning a well site are provided herein. Methods include flowing a raw gas stream though a suction scrubber to form a feed gas stream and compressing the feed gas stream to form a compressed gas stream. Methods include cooling the compressed gas stream in a cooler to produce a cooled gas stream. Methods include feeding the cooled gas stream into a gas treatment system, using a turboexpander, to produce a conditioned gas and a waste stream. Methods include heating the conditioned gas in a heat exchanger, where the conditioned gas is a superheated, sweetened, gas. Methods also include burning the conditioned gas in a turbine generator and mixing the waste stream into the raw gas stream upstream of the suction scrubber. | 10-15-2015 |
20150292409 | GAS TURBINE ENGINE HEAT MANAGEMENT SYSTEM - A heat management system of a gas turbine engine for cooling oil and heating fuel, includes an oil circuit having parallel connected first and second branches. The first branch includes a fuel/oil heat exchanger and a first fixed restrictor in series and the second branch includes an air cooled oil cooler and a second fixed restrictor. The first and second fixed restrictors limit respective oil flows through the first and second branch differently, in response to viscosity changes of the oil caused by temperature changes of the oil during engine operation to modify oil distribution between the first and second branches. | 10-15-2015 |
20150292744 | SYSTEM AND METHOD FOR CONTROL OF COMBUSTION DYNAMICS IN COMBUSTION SYSTEM - The present disclosure generally relates to a system with a gas turbine engine including a first combustor and a second combustor. The first combustor includes a first end cover with a first geometry and the second combustor includes a second end cover with a second geometry. The first geometry has one or more geometric differences relative to the second geometry. | 10-15-2015 |
20150300250 | TWO SPOOL GAS GENERATOR TO CREATE FAMILY OF GAS TURBINE ENGINES - A method of configuring a plurality of gas turbine engines includes the steps of configuring each of the engines with respective ones of a plurality of propulsors. Each propulsor includes a propulsor turbine and one of a fan and a propeller. Each of the engines is configured with respective ones of a plurality of substantially mutually alike gas generators, with the respective propulsor turbine driven by products of combustion downstream of the gas generator. | 10-22-2015 |
20150300261 | FUEL HEATING SYSTEM FOR USE WITH A COMBINED CYCLE GAS TURBINE - A fuel heating system for use with a combined cycle gas turbine including a turbine outlet configured to channel a flow of exhaust gas towards a heat recovery steam generator is provided. The system includes a heat exchanger configured to channel a flow of fuel therethrough, and a plurality of heat transfer devices that each include an evaporator portion in thermal communication with the flow of exhaust gas and a condenser portion selectively thermally exposed to the flow of fuel. Each of the plurality of heat transfer devices are configured to conduct different grade heat from the exhaust gas to regulate a temperature of the fuel. | 10-22-2015 |
20150300263 | METHOD OF OPERATING A GAS TURBINE ENGINE BURNING VANADIUM-CONTAMINATED LIQUID FUEL - A method of operating of a gas turbine engine to inhibit vanadic corrosion of the gas turbine engine is provided. The gas turbine engine burns a vanadium-contaminated fuel and includes a component configured to be in contact with combustion gases. The method includes introducing into a combustion system of the gas turbine engine a first oxide and at least one second oxide. The first oxide includes magnesium oxide, and the at least one second oxide includes at least one of aluminum oxide, iron (III) oxide, titanium dioxide, and silicon dioxide. The method further includes cleaning at least a portion of the component using a cleaning agent containing a liquid vector and at least one descaling material that is suspended in the liquid vector. The at least one descaling material is an inorganic material. | 10-22-2015 |
20150300293 | Reverse Core Turbine Engine Mounted Above Aircraft Wing - A gas turbine engine has a fan inlet and a fan configured to deliver air to an exhaust nozzle. A core gas turbine engine. including in serial order extending further into the engine, a core turbine section, a combustor and a core compressor section. A core engine inlet duct is spaced from the fan inlet. A method is also described. | 10-22-2015 |
20150300647 | Air-Fuel Micromix Injector Having Multibank Ports for Adaptive Cooling of High Temperature Combustor - A method of using a combustor for high temperature combustion. The combustor is equipped with a showerhead type micromix air-fuel injector. The injector faceplate has its ports concentrically arranged into “banks”, to which delivery of fuel can be controlled on a bank-by-bank basis. During combustor operation, the temperature of the air into the combustor is monitored. If the temperature is above a predetermined threshold, fuel is delivered to fewer than all banks of ports. As a result, the bank(s) of ports to which fuel is not delivered inject only air into the combustion chamber, and the other bank(s) of ports inject the air-fuel mixture as usual. | 10-22-2015 |
20150308293 | SYSTEM AND METHOD FOR A GAS TURBINE ENGINE - A system includes a gas turbine engine configured to combust an oxidant and a fuel to generate an exhaust gas, a catalyst bed configured to treat a portion of the exhaust gas from the gas turbine engine to generate a treated exhaust gas, a differential temperature monitor configured to monitor a differential temperature between a first temperature of the portion of exhaust gas upstream of the catalyst bed and a second temperature of the treated exhaust gas downstream of the catalyst bed, and an oxidant-to-fuel ratio system configured to adjust a parameter to maintain an efficacy of the catalyst bed based at least in part on the differential temperature in order to maintain a target equivalence ratio. | 10-29-2015 |
20150308297 | POWER GENERATION SYSTEM AND METHOD FOR OPERATING POWER GENERATION SYSTEM - The invention addresses the problem of providing a power generation system capable of effectively using the heat of the exhaust air discharged from an SOFC and also providing a method for operating the power generation system. The power generation system has a gas turbine, a fuel cell, an exhaust air circulation line, an exhaust fuel gas supply line, a turbine, an exhaust heat recovery boiler, and at least one exhaust air heat exchanger. The turbine is equipped with a high-pressure turbine, a medium-pressure turbine, and a low-pressure turbine. The exhaust heat recovery boiler is equipped with a high-pressure steam circulation mechanism, a medium-pressure steam circulation mechanism, and a low-pressure steam circulation mechanism. The exhaust air heat exchanger exchanges heat between the steam exchanging heat with the exhaust gas in the high-pressure steam circulation mechanism or the medium-pressure steam circulation mechanism and flowing toward the turbine and the exhaust gas flowing through the exhaust air circulation line, thereby increasing the temperature of the steam and decreasing the temperature of the exhaust gas. | 10-29-2015 |
20150308298 | Flexible Energy Balancing System - An energy balancing system is provided that ensures continuous energy output to compensate for energy fluctuations commonly associated with wind power generation. The flexible energy balancing system employs a base load high-pressure steam boiler that is associated with one or more steam turbine generators. The steam turbine generators are also associated with one or more heat recovery steam generators whose temperature is controlled by the exhaust from combustion turbine generators and the base load high-pressure steam boiler. The energy balancing system can be selectively tuned to quickly compensate for energy fluctuations associated with wind power generation. | 10-29-2015 |
20150308336 | CARBONYLS REMOVAL SYSTEM - A method to limit the deposition of metals from a syngas stream on a gas turbine comprising the steps of feeding the syngas stream to a pressure swing adsorption vessel of a pressure swing adsorption system, the syngas stream comprises carbonyls, the pressure swing adsorption vessel configured to perform a pressure swing adsorption cycle: adsorbing the carbonyls on a carbonyl selective adsorbent, leaving a turbine feed stream, reducing the pressure of the pressure swing adsorption vessel to a purge pressure less than the adsorbing pressure, purging the carbonyls from the carbonyl adsorbed adsorbent to create a tail gas stream, re-pressurizing the regenerated carbonyl adsorbent to the adsorbing pressure, feeding the tail gas stream to an incinerator configured to oxidize the carbonyls in the tail gas stream to metal oxides and carbon dioxide, and feeding the turbine feed stream to the gas turbine. | 10-29-2015 |
20150308689 | POWER GENERATION SYSTEM AND METHOD OF OPERATING POWER GENERATION SYSTEM - A power generation system includes: a combustor operative to combust a fuel; a power generator operative to utilize energy obtained from the combustor when generating electric power; a fuel supplier operative to supply the fuel to the combustor; an air supplier operative to supply combustion air to the combustor; a discharged gas passage through which a discharged gas from the combustor flows; a CO detector operative to detect CO in the discharged gas; a temperature detector operative to detect a temperature of the discharged gas; and control circuitry operative to, when the discharged gas is flowing through the discharged gas passage, perform at least one of an operation of detecting an abnormality of the discharged gas passage based on a difference between detected temperatures of the temperature detector relative to a difference between heated amounts of the discharged gas heated by a heater and an operation of detecting the abnormality of the discharged gas passage based on the difference between the detected temperatures of the temperature detector relative to a difference between outputs of at least one of the fuel supplier and the air supplier. | 10-29-2015 |
20150315953 | METHODS OF DETERMINING SENSOR PROBE LOCATION IN A CLOSED LOOP EMISSIONS CONTROL SYSTEM - Methods of determining a desired sensor probe location in a closed loop emissions control (CLEC) system of a gas turbine engine are provided. One method includes determining, at different locations, a plurality of temperature contour profiles for exhaust flowing through an exhaust duct, selecting an emissions component entrained in the exhaust to be measured, and determining a desired sensor probe installation location based on the emissions component to be measured and based on the plurality of temperature contour profiles. | 11-05-2015 |
20150315966 | Hypersonic Vehicle Base Drag Reduction and Improved Inlet Performance Through Venting Forebody Bleed Air to Base Area Using Open Core Ceramic Composites - A system and method of air routing for an air-breathing engine is disclosed. Air enters the front of a scramjet engine via an inlet region. The inlet region is connected to a duct, which extends to the aft region of the scramjet engine where a base area of the air-breathing engine is located. The duct walls are formed using a porous structure fluidly coupled to apertures in both the inlet region and the base area. The air that enters the inlet region is routed through the porous walls of the duct and expelled at the base area. This expulsion of air through apertures in the base area causes base pressure to increase, which reduces base drag. Additionally, pulling air through perforations in the inlet region reduces the amount of low momentum flow entering the engine, which improves engine performance. | 11-05-2015 |
20150315970 | BASELOAD EFFICIENCY IMPROVEMENT BY USING CHILLED WATER IN EVAPORATIVE COOLER IN LNG APPLICATION - A heat exchange circuit in a gas turbine includes an evaporative cooling medium circuit circulating an exchange medium, and a cooling source containing fuel. The cooling source is coupled with a supply line in a heat exchange relationship with the evaporative cooling medium circuit. The exchange medium is cooled by the fuel in the supply line, and the evaporative cooling medium circuit directs the cooled exchange medium through the evaporative cooler. The fuel is heated by the evaporative cooling medium circuit, and the supply line directs the heated fuel to the one or more combustors of the gas turbine. The cooler turbine inlet air results in increased baseload output. | 11-05-2015 |
20150315976 | GAS TURBINE ENGINE VARIABLE AREA FAN NOZZLE CONTROL - A method of managing a gas turbine engine includes the steps of detecting an airspeed and detecting a fan speed. A parameter relationship is referenced related to a desired variable area fan nozzle position based upon at least airspeed and fan speed. The detected airspeed and detected fan speed is compared to the parameter relationship to determine a target variable area fan nozzle position. An actual variable area fan nozzle position is adjusted in response to the determination of the target area fan nozzle position and at least one threshold. | 11-05-2015 |
20150315980 | GAS TURBINE ENGINE FUEL SYSTEM - The present application discloses a fuel system for a gas turbine engine. The engine includes a main alternating current electrical generator driven by an engine shaft such that the electrical output frequency of the electrical generator varies in dependence on shaft rotational speed. The fuel system includes a variable flow fuel pump for providing a fuel flow to the engine, a frequency and/or voltage controller configured to provide electrical power having at least one of a predetermined output frequency and a predetermined voltage, and a variable speed electric motor configured to drive the fuel pump. The electric motor includes an induction motor having a stator and at least a first rotor, the stator having first and second sets of stator windings. Each set of stator windings is configured to impart a torque on the rotor in use. | 11-05-2015 |
20150315992 | METHODS AND SENSOR MODULE FOR CONTROLLING COMBUSTION EMISSION PARAMETERS IN A COMBUSTION SYSTEM - Methods and a sensor module for use in controlling operation of a gas turbine system are provided herein. The sensor module is coupled within a combustion system and is configured to obtain an aspirated exhaust sample of exhaust flowing through an exhaust duct. The exhaust is generated by the combustion system. The aspirated exhaust sample is analyzed to determine a plurality of exhaust parameters. The sensor module also controls at least one combustion system parameter in a closed loop emission control (CLEC) system based on at least one of the plurality of exhaust parameters. | 11-05-2015 |
20150316265 | AIR DIRECTED FUEL INJECTION - A combustion chamber for a gas turbine is provided. The combustion chamber has a pilot burner device, a fuel injector, an ignitor unit and an air blast injector. The pilot burner device has a pilot body with a pilot surface facing an inner volume of the combustion chamber. The fuel injector has a fuel outlet for injecting a fuel into the inner volume, wherein the fuel outlet is arranged at the pilot surface. The ignitor unit is arranged at the pilot surface such that fuel which passes the ignitor unit is ignitable. The air blast injector is adapted for injecting an air blast into the inner volume, wherein the air blast injector includes an air blast outlet arranged at the pilot surface such that the air blast is injectable in the direction to the fuel outlet and the ignitor unit for directing the fuel to the ignitor unit. | 11-05-2015 |
20150330254 | Compact Nacelle With Contoured Fan Nozzle - A gas turbine engine including a fan, compressor, combustor and a turbine arranged in series and surrounded by a nacelle. An engine core cowl is disposed within the nacelle. Each of these elements shares a central longitudinal axis. The nacelle length may be non-uniform around the circumference of the nacelle. | 11-19-2015 |
20150330634 | COMBUSTION LINER WITH BIAS EFFUSION COOLING - A system and method for improving the cooling to a portion of a combustion liner of a gas turbine combustor is disclosed. The combustion liner is cooled by supplying air through a plurality of cooling holes arranged in axially spaced rows in an upper and lower portion of the liner. The cooling holes are spaced accordingly so as to direct additional cooling flow to an area of the combustion liner not receiving sufficient flow due to maldistributions of air from the compressor discharge. | 11-19-2015 |
20150337729 | MULTI-STAGED THERMAL POWERED HYDRIDE GENERATOR - An electric generator is driven by a gas turbine by using the impelling power of subatmospheric pressure hydrogen/deuterium released from hydrogen storage alloy contained in a first container and heated by indirect heat exchange with a heating medium while reabsorbing the hydrogen discharged from the gas turbine in a second hydrogen storage alloy contained in a second container and cooled by indirect heat exchange with a cooling medium. Alternately switching heating and cooling media contact with the hydride alloys maintains hydrogen gas flow as it is the pressure differential between the inlet pressure and the outlet pressure that is performing the work. Great volumes of hydrogen throughput, at subatmospheric pressures, operate the turbine. Electric energy is continuously and efficiently obtained from the electric generator. The principles can also be applied to other metal hydrides devices, e.g., pumps, compressors etc. | 11-26-2015 |
20150338101 | TURBOMACHINE COMBUSTOR INCLUDING A COMBUSTOR SLEEVE BAFFLE - A turbomachine combustor includes a combustor body extending from a head end to a discharge end. The combustor body includes a combustor liner defining a combustion chamber. A combustor sleeve surrounds the combustor liner. The combustor sleeve is spaced from the combustor liner forming a passage. The combustor sleeve includes at least one opening. A baffle is arranged in the passage. The baffle includes a curvilinear surface extending from the combustor sleeve across the at least one opening toward the head end of the combustor body. The baffle is configured and disposed to compress a fluid flow passing through the passage toward the head end. | 11-26-2015 |
20150345389 | Multi Stage Air Flow Management - In accordance with one aspect of the disclosure, a multi stage air flow management system for a gas turbine engine is disclosed. The system may include an inlet provided in a nacelle of a gas turbine engine. A first passage may communicate a flow of air from the inlet to a first engine component of the gas turbine engine and a second passage may communicate a flow of air to a second engine component of the gas turbine engine. | 12-03-2015 |
20150345789 | COMBUSTOR HEAT SHIELD - A heat shield for a combustor of a gas turbine engine has a heat shield adapted to be mounted to a combustor wall with a back face of the heat shield in spaced-apart facing relationship with an inner surface of the combustor wall to define an air gap. Rails extend from the back face of the heat shield across the air gap. Grooves are defined in at least one of the rails. The rail grooves are in fluid flow communication with the air gap when the heat shield is mounted to the combustor wall. | 12-03-2015 |
20150354366 | GAS TURBINE ENGINE COMPONENT HAVING CONTOURED RIB END - A component according to an exemplary aspect of the present disclosure includes, among other things, a wall and at least one rib that protrudes from the wall and extends to a rib end, the rib end having a curved transition portion near a location where the at least one rib meets the wall. | 12-10-2015 |
20150354453 | PARTICLE TOLERANT TURBOSHAFT ENGINE - A gas turbine engine includes a core engine section which includes a compressor section and a core turbine section. The core engine is configured to rotate about a core axis. A drive turbine is configured to rotate about a drive turbine axis. A bypass passage connects an intake to the gas turbine engine directly with an exhaust of the drive turbine. | 12-10-2015 |
20150354821 | Cumbustor Liners with U-Shaped Cooling Channels - A combustor having U-shaped cooling channels is disclosed. The combustor may include a shell having an impingement hole, a liner spaced from the shell and having an effusion hole; a first partition spanning between the shell and the liner, a second partition spaced from the first partition and spanning between the shell and the liner; and a U-shaped channel defined between the shell and the liner and defined in part by the wall, the channel having upstream and downstream ends both adjacent the first partition and separated by the wall, wherein the impingement hole communicates with the upstream end and the effusion hole communicates with the downstream end. | 12-10-2015 |
20150354822 | TURBINE STAGE COOLING - A turbine injection system for a gas turbine engine includes a first end operable to receive air from a heat exchanger, a second end operable to distribute mixed cooling air to a turbine stage, an opening downstream of said first end and a mixing plenum downstream of said first end and said opening. The opening provides a direct fluid pathway into said turbine injection system. | 12-10-2015 |
20150361884 | SELF-PURGING FUEL INJECTOR SYSTEM FOR A GAS TURBINE ENGINE - A self-purge system for a fuel injector system of a gas turbine engine includes an accumulator in communication with a fuel passage to selectively purge the fuel passage. | 12-17-2015 |
20150361887 | GAS TURBINE ENGINE WITH GEARED TURBOFAN AND OIL THERMAL MANAGEMENT SYSTEM WITH UNIQUE HEAT EXCHANGER STRUCTURE - An oil supply system for a gas turbine engine has a lubricant pump delivering lubricant to an outlet line. The outlet line is split into at least a hot line and into a cool line, with the hot line directed primarily to locations associated with an engine that are not intended to receive cooler lubricant, and the cool line directed through one or more heat exchangers at which lubricant is cooled. The cool line then is routed to a fan drive gear system of an associated gas turbine engine. A method and apparatus are disclosed. The heat exchangers include at least an air/oil cooler wherein air is pulled across the air/oil cooler to cool oil. The air/oil cooler is provided with an ejector tapping compressed air from a compressor section to increase airflow across the air/oil cooler. | 12-17-2015 |
20150361889 | IMPINGEMENT COOLED WALL ARRANGEMENT - An impingement cooled wall arrangement includes a flow diverter arranged in the cooling flow path between the cooled wall and a sleeve to divert a cross flow away from a second aperture. The flow diverter extends in downstream direction of the cross flow beyond the second aperture with a first leg extending along one side of the second aperture in downstream direction of the cross flow and a second leg extending along the other side of the second aperture. No impingement cooling aperture is arranged in a first convective cooling section of the wall between the upstream end and downstream end of the flow diverter outside the section shielded by the diverter. | 12-17-2015 |
20150361891 | Air-Oil Heat Exchangers with Minimum Bypass Flow Pressure Loss - A geared turbofan engine having a bypass ratio of at least six (6) includes a nacelle that encloses a fan assembly and at least part of an engine case that houses an engine core. The fan assembly is disposed fore of the engine case. The nacelle and engine case defining an annular fan duct for air flow that passes through the fan but that bypasses the engine core. The nacelle includes a fore end and an aft end that defines a fan nozzle with the engine case. The engine case includes an inlet and an outlet. The inlet is connected to a duct that extends within the engine case to the outlet. The duct accommodates an air-oil heat exchanger between the inlet and outlet of the duct, which may be used for the gearbox dedicated to reducing the speed of the fan as compared to the low pressure turbine. | 12-17-2015 |
20150362191 | COMBUSTOR HEAT SHIELD - A heat shield for a combustor of a gas turbine engine has a heat shield adapted to be mounted to a combustor wall with a back face of the heat shield in spaced-apart facing relationship with an inner surface of the combustor wall to define an air space. Concentric rails extend from the back face of the heat shield across the air space surrounding a nozzle opening in the heat shield. Effusion holes are provided between the concentric rails and extend between the back and front faces. Fins may be placed between the effusion holes. | 12-17-2015 |
20150362192 | GAS TURBINE ENGINE COMBUSTOR LINER ASSEMBLY WITH CONVERGENT HYPERBOLIC PROFILE - A liner assembly for a combustor of a gas turbine engine according to one disclosed non-limiting embodiment of the present disclosure includes a support shell with a convex profile which faces the heat shield. A further embodiment of the foregoing embodiment of the present disclosure is where the convex profile is defined by a hyperbolic cosine function. A further embodiment of any of the foregoing embodiments of the present disclosure is where the convex profile provides an approximate 4.5 inlet-to-exit area ratio. A further embodiment of any of the foregoing embodiments, of the present disclosure wherein the convex profile provides a flow acceleration toward approximately 0.5 Mach towards an end of a convergent section. | 12-17-2015 |
20150362195 | APPARATUS AND METHODS FOR TREATING AND/OR UTILIZING A GASEOUS MEDIUM - Example apparatus and methods providing for the improved chemical conversion of the combustible components of a gaseous medium are disclosed. In some examples, the apparatus includes a guiding body that guides the flow of the gaseous medium within a reaction chamber of the apparatus. In some examples, the guiding body of the disclosed apparatus is configured to stabilize a residence period of the gaseous medium in the reaction chamber. In some examples, the guiding body results in a flow path of the gaseous medium within the reaction chamber being optimized and/or maximized, and/or results in a short circuit flow of the gaseous medium in the reaction chamber being suppressed. In some disclosed examples, the guiding body causes at least a portion of the flow path of the gaseous medium within the reaction chamber to take the form of a cyclone flow. | 12-17-2015 |
20150369126 | METHOD FOR RECIRCULATION OF EXHAUST GAS FROM A COMBUSTION CHAMBER OF A COMBUSTOR OF A GAS TURBINE AND GAS TURBINE FOR DONCUTING SAID METHOD - A method for recirculation of exhaust gas from a combustion chamber of a combustor of a gas turbine back to the supply side of the combustor provides a partial flow of the exhaust gas in the combustion chamber directly extracted from the combustion chamber and internally fed back to an entrance of the combustor through an internal channel of the combustor. | 12-24-2015 |
20150369128 | AUXILIARY LUBRICANT SUPPLY PUMP STAGE INTEGRAL WITH MAIN LUBRICANT PUMP STAGE - A disclosed lubrication pump includes a main pump stage, an auxiliary pump stage, and scavenger pump stages. The lubrication pump therefore may be driven by a common shaft of the accessory gearbox. | 12-24-2015 |
20150369487 | GAS TURBINE ENGINE COMPONENT WITH UPSTREAM-DIRECTED COOLING FILM HOLES - A component within a gas turbine engine includes a surface with one or more upstream-directed cooling film holes therethrough. | 12-24-2015 |
20150377146 | EROSION SUPPRESSION SYSTEM AND METHOD IN AN EXHAUST GAS RECIRCULATION GAS TURBINE SYSTEM - In an embodiment, a method includes flowing an exhaust gas from a turbine of a gas turbine system to an exhaust gas compressor of the gas turbine system via an exhaust recirculation path; evaluating moist flow parameters of the exhaust gas within an inlet section of the exhaust gas compressor using a controller comprising non-transitory media programmed with instructions and one or more processors configured to execute the instructions; and modulating cooling of the exhaust gas within the exhaust recirculation path, heating of the exhaust gas within the inlet section of the exhaust gas compressor, or both, based on the evaluation. | 12-31-2015 |
20150377148 | METHOD AND SYSTEM FOR COMBUSTION CONTROL FOR GAS TURBINE SYSTEM WITH EXHAUST GAS RECIRCULATION - In one embodiment, a system includes at least one sensor configured to communicate a signal representative of blower vane position, wherein the blower vane is disposed in a blower of an exhaust gas recirculation system receiving exhaust from a gas turbine system and recycling the exhaust gas back to the gas turbine system. The system further includes a controller communicatively coupled to the at least one sensor, wherein the controller is configured to execute a control logic to derive a reference value for the blower vane position, and wherein the controller is configured to apply a direct limit, an model-based limit, or a combination thereof, to the reference value to derive a limit-based value, and wherein the controller is configured to position the blower vane based on the limit-based value. | 12-31-2015 |
20150377485 | COMBUSTION INSTABILITY CONTROL DEVICE AND CONTROL METHOD FOR SAME - A gas turbine combustion instability control device has a combustion unit provided with a hollow combustion chamber, a gas turbine connected to the inside of the combustion chamber and a dynamic pressure sensor which is provided to the inside of the combustion chamber and measures the combustion dynamics of the inside of the combustion chamber; a diagnosis module which processes combustion dynamic pressure signals (p) according to the combustion dynamics measured by the dynamic pressure sensor to calculate the kurtosis value (k) of the dynamic pressure signals, and compares the same with a kurtosis reference value (k | 12-31-2015 |
20160003149 | METHOD AND APPARATUS FOR HANDLING PRE-DIFFUSER AIRFLOW FOR COOLING HIGH PRESSURE TURBINE COMPONENTS - A gas turbine engine is provided comprising a compressor section, a combustor section, a diffuser case module, and a manifold. The diffuser case module includes a multiple of struts within an annular flow path from said compressor section to said combustor section, wherein at least one of said multiple of struts defines a mid-span pre-diffuser inlet in communication with said annular flow path. The manifold is in communication with said mid-span pre-diffuser inlet and said compressor section. | 01-07-2016 |
20160003163 | GAS TURBINE ENGINE WITH SHORT TRANSITION DUCT - A turbine section for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a fan drive turbine including a fan drive duct, the fan drive turbine being configured to drive a fan section through a geared architecture at a speed that is less than an input speed to the geared architecture. A fan drive turbine includes a fan drive duct, the fan drive turbine being configured to drive a fan section through a geared architecture at a speed that is less than an input speed to the geared architecture. At least one upstream turbine is configured to drive at least one compressor. The at least one upstream turbine includes a turbine duct defining a conical flow path having a conical inlet defined by a first diameter and a conical outlet defined by a second diameter greater than the first diameter. The conical outlet is in fluid communication with the fan drive duct downstream of the conical outlet. At least one row of shrouded rotor blades defines at least a portion of the conical flow path. A method of designing a gas turbine engine is also disclosed. | 01-07-2016 |
20160003164 | COMPACT AERO-THERMO MODEL STABILIZATION WITH COMPRESSIBLE FLOW FUNCTION TRANSFORM - Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode, wherein the open loop model generates a current state model as a function of the dynamic states and the model input, wherein a constraint on the current state model is based a series of cycle synthesis modules, each member of the series of cycle synthesis modules modeling a component of a cycle of the control system and including a series of utilities, the utilities are based on mathematical abstractions of physical properties associated with the component. The series of cycle synthesis modules may include a flow module for mapping a flow curve relating a compressible flow function to a pressure ratio and for defining a solution point located on the flow curve and a base point located off the flow curve. | 01-07-2016 |
20160010466 | GAS TURBINE ENGINE COMPONENT WITH TWISTED INTERNAL CHANNEL | 01-14-2016 |
20160010467 | GAS TURBINE ENGINE COMPONENT COOLING CHANNELS | 01-14-2016 |
20160010507 | RETRACTABLE EXHAUST LINER SEGMENT FOR GAS TURBINE ENGINES | 01-14-2016 |
20160010551 | METHOD AND SYSTEM FOR POWER PRODUCTION WTIH IMPROVED EFFICIENCY | 01-14-2016 |
20160010552 | METHOD AND APPARATUS FOR HANDLING PRE-DIFFUSER AIRFLOW FOR COOLING HIGH PRESSURE TURBINE COMPONENTS | 01-14-2016 |
20160010554 | METHOD AND APPARATUS FOR HANDLING PRE-DIFFUSER AIRFLOW FOR USE IN ADJUSTING A TEMPERATURE PROFILE | 01-14-2016 |
20160010555 | METHOD AND APPARATUS FOR COLLECTING PRE-DIFFUSER AIRFLOW AND ROUTING IT TO COMBUSTOR PRE-SWIRLERS | 01-14-2016 |
20160010560 | SEALING FEATURES FOR A GAS TURBINE ENGINE | 01-14-2016 |
20160017803 | GAS TURBINE ENGINE DE-ICING SYSTEM - A de-icing system for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a forward assembly and a rear assembly adjacent to the forward assembly. One of the forward assembly and the rear assembly is rotatable relative to the other to generate an amount of air friction between said forward and rear assemblies. | 01-21-2016 |
20160017806 | GAS TURBINE ENGINE COMPONENT HAVING SHAPED PEDESTALS - A component according to an exemplary aspect of the present disclosure includes, among other things, a first wall, a second wall and at least one row of shaped pedestals extending between the first wall and the second wall. The at least one row of shaped pedestals includes a first set of C-shaped pedestals and a second set of C-shaped pedestals adjacent to the first set of C-shaped pedestals. | 01-21-2016 |
20160017815 | EXPANDING SHELL FLOW CONTROL DEVICE - A gas turbine engine includes a bypass flowpath between an outer engine case structure and a core engine. The bypass flow exits the engine through a nozzle. A flow control device that can expand or contract is arranged around the nozzle to control the bypass flow and includes a plurality of overlapping arcuate segments. A method of controlling a bypass flow includes providing a flow control device with overlapping segments that defines a bypass flow path, and actuating the segments to change the amount of overlap between segments and therefore the size of the bypass flow path. | 01-21-2016 |
20160025342 | ACTIVE COOLING OF GROMMET BOSSES FOR A COMBUSTOR PANEL OF A GAS TURBINE ENGINE - A liner assembly for a combustor of a gas turbine engine according to one disclosed non-limiting embodiment of the present disclosure includes a grommet with a multiple of grommet cooling passages. | 01-28-2016 |
20160032830 | GAS TURBINE ENGINE ARCHITECTURE WITH NESTED CONCENTRIC COMBUSTOR - A gas turbine engine includes an inner annular combustor radially inboard of an outer annular combustor. An outer variable turbine vane array is downstream of the outer annular combustor and an inner variable turbine vane array downstream of the inner annular combustor. | 02-04-2016 |
20160032837 | REAR MOUNT ASSEMBLY FOR GAS TURBINE ENGINE - A gas turbine engine with a rear mount assembly including link rods interconnecting the bypass duct wall and the core portion and connecting assemblies connected to the bypass duct wall. Each connecting assembly has inner and outer surfaces bordering an opening through which an outer end of a respective link rod extends. The outer surface is accessible from outside the bypass duct wall. A first locking member is engaged to the outer end in a first locked position, and includes an abutment portion located radially inwardly of the inner surface and abutting the inner surface, and an outer portion protruding radially outwardly through the opening beyond the outer surface. A second locking member is engaged the outer end in a second locked position, and has an abutment portion located radially outwardly of the outer surface and abutting the outer surface. A method of supporting a core portion is also discussed. | 02-04-2016 |
20160040596 | TURBOMACHINE SYSTEM INCLUDING AN INLET BLEED HEAT SYSTEM AND METHOD OF OPERATING A TURBOMACHINE AT PART LOAD - A turbomachine system includes a compressor portion having at least one compressor extraction, a turbine portion operatively connected to the compressor portion, and a combustor assembly including at least one combustor fluidically connected to the compressor portion and the turbine portion. A heat recovery steam generator (HRSG) is fluidically connected to the turbine portion, and an air inlet system is fluidically connected to the compressor portion. An inlet bleed heat (IBH) system is fluidically connected to each of the compressor portion, the air inlet system and the HRSG. An inlet bleed heat (IBH) system includes a first conduit having a first valve fluidically connecting the compressor extraction and the air inlet system, and a second conduit including a second valve connecting one of the HRSG and a secondary stream source with the first conduit. | 02-11-2016 |
20160040597 | METHOD FOR REDUCING THE CO EMISSIONS OF A GAS TURBINE, AND GAS TURBINE - A method for reducing the CO emissions of a gas turbine having a compressor, a turbine and an air preheater positioned upstream of the compressor, that permits technically simpler regulation without losses in terms of the quality of the reduction of the CO emissions. The heat transfer power of the air preheater is regulated on the basis of a minimum value for the inlet temperature of the compressor, wherein the minimum value is predefined as a function of the absolute power of the gas turbine. | 02-11-2016 |
20160040884 | Multi-Stage Combustor - The present application provides a combustor for use with a gas turbine engine. The combustor may include a primary stage nozzle in communication with a linear actuator and a number of stationary secondary nozzles surrounding the primary stage nozzle in whole or in part. The linear actuator varies the position of the primary stage nozzle with respect to the stationary secondary nozzles. | 02-11-2016 |
20160054001 | COMBUSTOR PANEL T-JUNCTION COOLING - A heat shield for a combustor of a gas turbine engine includes an outer edge surface with an outlet of an edge cooling passage, the edge cooling passage oriented to direct cooling air generally upstream relative to a combustion gas flow. | 02-25-2016 |
20160061060 | COMBINED CYCLE POWER PLANT THERMAL ENERGY CONSERVATION - A combined cycle power plant comprises a compressor, a combustion section including a compressor discharge casing which is disposed downstream from the compressor, a turbine disposed downstream from the combustion section and an exhaust duct disposed downstream from the turbine section. The compressor, the compressor discharge casing, the turbine and the exhaust duct define a primary flow passage through the gas turbine. A heat recovery steam generator is in thermal communication with the exhaust duct and in fluid communication with a steam turbine. A blower is in fluid communication with the primary flow passage upstream from the heat recovery steam generator such that the blower draws compressed air from the primary flow passage during turning gear operation of the gas turbine. | 03-03-2016 |
20160061061 | COMBINED CYCLE POWER PLANT THERMAL ENERGY CONSERVATION - A combined cycle power plant includes a gas turbine having a primary flow passage, a heat recovery steam generator having a heat exchanger disposed downstream from the primary flow passage, an exhaust stack in fluid communication with the primary flow passage and disposed downstream from the heat recovery steam generator and a reversible turning gear coupled to a rotor shaft of the gas turbine. The reversible turning gear counter rotates the rotor shaft during turning gear counter rotation operation of the gas turbine and reverses flow of combustion exhaust gas from the exhaust stack through the heat exchanger and back into the primary flow passage of the gas turbine, thereby conserving thermal energy stored in the heat recovery steam generator. A method for conserving thermal energy of a combined cycle power plant during counter rotation turning gear operation of the gas turbine is also disclosed. | 03-03-2016 |
20160069568 | DILUTION GAS OR AIR MIXER FOR A COMBUSTOR OF A GAS TURBINE - The invention referring to a sequential combustor arrangement including a first burner, a first combustion chamber, a mixer arrangement for admixing a dilution air to the hot gases leaving the first combustion chamber during operation, a second burner, and a second combustion chamber arranged sequentially in a fluid flow connection. The mixer is adapted to guide combustion gases in a hot gas flow path extending between the first combustion chamber. The second burner including a duct having an inlet at an upstream end adapted for connection to the first combustion chamber and an outlet at a downstream end adapted for connection to the second burner. The mixer includes at least one group of injection pipes pointing inwards from the side walls of the mixer for admixing the dilution air to cool the hot flue gases leaving the first combustion chamber. The injection pipes are distributed circumferentially along the side wall of the mixer and wherein the injection pipes having a conical or quasi-conical shape addressed to the center of the mixer. | 03-10-2016 |
20160076383 | FILM COOLED ARTICLE - A film cooled component includes multiple film cooling holes. At least one of the film cooling holes has an elliptical cross sectional opening along the exterior surface of the film cooled component. | 03-17-2016 |
20160076461 | DUAL FUEL GAS TURBINE THRUST AND POWER CONTROL - An aircraft, controller, and method for simultaneously using a liquid fuel and a gaseous fuel. The use of natural gas and other similar fuels in gas turbines engines can enable an aircraft to operate less expensively. However, aircraft often use liquid fuels en route to the gas turbine engine burners for secondary purposes, such as oil cooling and hydraulic pressure. The aircraft, controllers, and methods described herein feed a minimal quantity of liquid fuel to an engine to satisfy the secondary purposes while simultaneously feeding a quantity of gaseous fuel to the engine to satisfy a thrust command for the engine. | 03-17-2016 |
20160076772 | COMBUSTOR DOME DAMPER SYSTEM - The present invention discloses a novel apparatus and way for controlling combustion dynamics in a premix combustion system. The apparatus comprises a hemispherical dome assembly with a plurality of dome dampers having a predetermined damper volume and air supply with the damper in fluid communication with the combustion chamber. The dome dampers are pressurized with a volume of air to dampen pressure waves received from the combustion chamber. One or more combustor frequencies can be targeted through use of the present invention. | 03-17-2016 |
20160084502 | TURBINE ENGINE DIFFUSER ASSEMBLY WITH AIRFLOW MIXER - A diffuser assembly is provided for a turbine engine. This diffuser assembly includes a. diffuser module with a combustor plenum and a mixing chamber. The diffuser module is configured to receive first and second airflows into the mixing chamber and direct a mixed airflow out of the mixing chamber. The diffuser module includes a mixer configured to mix the first and the second airflows together within the mixing chamber to provide the mixed airflow. | 03-24-2016 |
20160090914 | DIFFUSER CASE STRUT FOR A TURBINE ENGINE - An inner diffuser case for a turbine engine includes a fore gas path edge and an aft gas path edge defining a strut, wherein each of the fore gas path edge and the aft gas path edge include a gas path opening, a support cone structure extending radially outward from the strut, wherein the support cone structure is operable to structurally connect the strut to a turbine engine case, a diffuser case skirt structure extending radially inward from the strut, wherein the diffuser case skirt structure is operable to structurally connect the diffuser case strut to an inner support structure of the turbine engine, and at least one direct feed air passage passing radially through the strut including a radially outward upper mixing chamber opening and a radially inward direct air feed opening, the direct air feed opening is connected to a direct air feed. | 03-31-2016 |
20160102613 | METHOD AND APPARATUS FOR COOLING THE AMBIENT AIR AT THE INLET OF GAS COMBUSTION TURBINE GENERATORS - Embodiments provide a method and apparatus to lower the temperature and heat content of the ambient air at the inlet to a gas combustion turbine to enhance power generation. Embodiments can use multiple, staged direct contact air chillers, variable flow secondary water chilling systems, constant flow primary water chilling systems with water chilling units arranged for parallel chilled water flow, and a coolant water circulation system used for heat rejection with open cooling towers. Alternatives can use a chilled water thermal storage system, and/or waste heat to drive at least part of the water chilling process. With the included apparatus a method to allow adiabatic air chilling is available for operation during periods of lower ambient air conditions when needs for power augmentation may not be as great. | 04-14-2016 |
20160102615 | DIVERTING SYSTEM - The present invention generally relates to a diverting system to be used in a combined-cycle power plant. According to the invention, the diverting system is integrated within the by-pass stack and carries out, in a sole component, the functions of by-passing the hot exhaust flow in a single-cycle configuration or guiding it through the HRSG, acting as a diffusor, in an open combined-cycle configuration. | 04-14-2016 |
20160102864 | SEALING DEVICE FOR A GAS TURBINE COMBUSTOR - The present invention discloses a novel apparatus and way for sealing a portion of a gas turbine combustor in order to regulate the flow of compressed air into an annular passage adjacent to a combustion liner. A compressible seal is utilized having a first annular portion, a second annular portion, and a transition portion, the compressible seal regulates airflow passing through the compressible seal via a plurality of openings and/or axially extending slots. | 04-14-2016 |
20160123190 | METHOD AND SYSTEM FOR GAS TURBINE EXTRACTION - A method and system to extract gas from a gas turbine having at least one gas extraction mechanism placed at the turbine section that extracts exhaust gas directly from the turbine stages through the turbine casing, providing a first exhaust gas path that extends from the turbine section through the exhaust section to the exhaust gas outlet, and a second exhaust gas path for extracted exhaust gas extending directly from the turbine stages inside the turbine casing to a duct outside of the turbine casing. The gas extraction system and method can be applied to a cogeneration system. | 05-05-2016 |
20160123229 | SYSTEM AND METHOD FOR PROVIDING AIR-COOLING, AND RELATED POWER GENERATION SYSTEMS - A cooling system for providing chilled air is disclosed, including a cooling coil; an evaporator and absorber contained within a vacuum chamber; and a desiccant that absorbs water vapor from the cooling process. The system also includes an external heat source for treating the desiccant; along with a regenerator to make the desiccant re-useable. At least one heat exchanger is also included, along with a source of make-up water in communication with the cooling coil. Related processes are also disclosed, along with a gas turbine engine that includes or is arranged in association with the cooling system. | 05-05-2016 |
20160123230 | CURVED PLATE/FIN HEATER EXCHANGER - A plate/fin heat exchanger includes multiple stacked panels defining a curvature. Each of the panels has a first corrugated sheet defining a first set of passages and a second corrugated sheet defining a second set of passages. Each of the corrugated sheets includes multiple aligned corrugations, and the corrugations of the first corrugated sheet are not aligned with the corrugations of the second corrugated sheet. Each of the corrugations has a corrugation height defined as a length of said corrugation tangential to a curvature of the plate/fin heat exchanger, and wherein each of the first corrugated sheets includes axially aligned corrugations defining a wedge shaped radial cross section. | 05-05-2016 |
20160138480 | APPLICATION OF PROBABILISTIC CONTROL IN GAS TURBINE TUNING, RELATED CONTROL SYSTEMS, COMPUTER PROGRAM PRODUCTS AND METHODS - Various embodiments include a system having: at least one computing device configured to tune a set of gas turbines (GTs) by performing actions including: commanding each GT in the set of GTs to a base load level, based upon a measured ambient condition for each GT; commanding each GT in the set of GTs to adjust a respective output to match a nominal mega-watt power output value, and subsequently measuring an actual emissions value for each GT; and adjusting an operating condition of each GT in the set of GTs based upon a difference between the respective measured actual emissions value and a nominal emissions value at the ambient condition. | 05-19-2016 |
20160146104 | Angled Core Engine - A system, which may be used as a propulsion system, includes a propulsor section having a fluid operated device or free turbine, a fluid source such as a gas generator for creating an exhaust gas, and a fluid passageway for delivering the exhaust gas to the fluid operated device or free turbine. The fluid operated device may be used to drive a rotary device such as a fan. | 05-26-2016 |
20160153658 | COMBUSTOR WALL FOR A GAS TURBINE ENGINE AND METHOD OF ACOUSTIC DAMPENING | 06-02-2016 |
20160160683 | VENTILATION OF A PIECE OF ELECTRONIC EQUIPMENT OF A TURBOMACHINE - A piece of electronic equipment of a turbomachine, including a wall of which the inner surface defines at least one channel for the passage of a ventilating air stream of which the outlet opens on an outer surface of the wall with a view to discharging the ventilating air stream towards the outside of the equipment, wherein, at the outlet, a mechanism for diverting and/or guiding at least a portion of the discharged air stream, over at least a part of the outer surface of the wall. | 06-09-2016 |
20160160760 | SELF-OPENING COOLING PASSAGES FOR A GAS TURBINE ENGINE - A turbine component for a gas turbine engine includes a multiple of self-opening cooling passages each of which defines a self-opening cooling passage axis that extends through a gas path surface. | 06-09-2016 |
20160160761 | Gas Turbine Engine With Single Turbine Driving Two Compressors - A gas turbine engine comprises a lower pressure compressor and a higher pressure compressor. A single turbine drives both the lower pressure compressor and the higher pressure compressor through a gear reduction. The gear reduction includes an actuator and at least two available speeds, such that the lower pressure compressor can selectively be operated at either of at least two speeds relative to the higher pressure compressor. A method of operating a gas turbine engine is also disclosed. | 06-09-2016 |
20160161118 | DAMPER FOR A GAS TURBINE - A damper for a gas turbine combustion chamber as shown in FIG. | 06-09-2016 |
20160167801 | AIRCRAFT FUEL SYSTEM WITH FUEL RETURN FROM ENGINE | 06-16-2016 |
20160169105 | AERO BOOST - GAS TURBINE ENERGY SUPPLEMENTING SYSTEMS AND EFFICIENT INLET COOLING AND HEATING, AND METHODS OF MAKING AND USING THE SAME | 06-16-2016 |
20160169514 | Gas Turbine Engine Diffuser-Combustor Assembly Inner Casing | 06-16-2016 |
20160169517 | COUNTER-SWIRL DOUBLET COMBUSTOR WITH PLUNGED HOLES | 06-16-2016 |
20160177678 | MOBILE ELECTRIC POWER GENERATION FOR HYDRAULIC FRACTURING OF SUBSURFACE GEOLOGICAL FORMATIONS | 06-23-2016 |
20160177826 | PROCESS AND CONFIGURATION TO OBTAIN A COMPRESSED GAS | 06-23-2016 |
20160177832 | MIXER FOR ADMIXING A DILUTION AIR TO THE HOT GAS FLOW | 06-23-2016 |
20160177836 | GAS TURBINE FUEL PIPE COMPRISING A DAMPER | 06-23-2016 |
20160178200 | SEPARATE FEEDINGS OF COOLING AND DILUTION AIR | 06-23-2016 |
20160186668 | METHOD FOR OPERATING A GAS TURBINE - A disclosed method for operating a gas turbine includes controlling an oxidizer supply to the gas turbine combustion chamber and/or a fuel supply to the gas turbine combustion chamber in order to maintain the flame temperature or a parameter indicative thereof within a given range. | 06-30-2016 |
20160186997 | ATTACHMENT SCHEME FOR A CERAMIC BULKHEAD PANEL - A turbine engine includes a compressor section, a combustor in fluid communication with the compressor section, and a turbine section in fluid communication with the combustor section. The combustor includes a combustor region defined by at least one bulkhead panel and at least one heat shielding panel inside the combustor region. The at least one heat shielding panel is connected to the bulkhead panel via at least one cooled fastener. | 06-30-2016 |
20160195011 | SPLIT GEAR SYSTEM FOR A GAS TURBINE ENGINE | 07-07-2016 |
20160195022 | GEARED TURBOFAN ARCHITECTURE FOR REGIONAL JET AIRCRAFT | 07-07-2016 |
20160195271 | BURNER FOR A GAS TURBINE AND METHOD FOR REDUCING THERMOACOUSTIC OSCILLATIONS IN A GAS TURBINE | 07-07-2016 |
20160195273 | COMBUSTOR WALL WITH METALLIC COATING ON COLD SIDE | 07-07-2016 |
20160201571 | TURBOMACHINE HAVING A GAS FLOW AEROMECHANIC SYSTEM AND METHOD | 07-14-2016 |
20160201909 | GAS TURBINE ENGINE WALL ASSEMBLY WITH SUPPORT SHELL CONTOUR REGIONS | 07-14-2016 |
20160201916 | SYSTEM AND METHOD FOR AN OXIDANT PASSAGEWAY IN A GAS TURBINE SYSTEM WITH EXHAUST GAS RECIRCULATION | 07-14-2016 |
20160376918 | AIRCRAFT VAPOUR TRAIL CONTROL SYSTEM - The invention concerns an aircraft propulsion system having an engine core within which fuel is combusted to produce an exhaust containing water produced from the combustion of fuel, at least one propulsive fan for generating a mass flow of air which mixes with the exhaust of the engine core, and one or more sensor arranged to sense a condition indicative of vapour trail formation by the exhaust flow from the engine; and a controller arranged to control the ratio of the mass flow of water in the exhaust to the mass flow of air propulsed by the propulsive fan such that the ratio is reduced upon sensing of said condition by the one or more sensor. | 12-29-2016 |
20160376998 | SHROUDLESS ADAPTIVE FAN WITH FREE TURBINE - A disclosed gas turbine engine includes a first fan section including a plurality of fan blades rotatable about an axis, a compressor in fluid communication with the first fan section, a combustor in fluid communication with the compressor and a first turbine section in fluid communication with the combustor. The first turbine section includes a low pressure turbine that drives the first fan section. A second fan section is supported between the first fan section and the compressor and is driven by a second turbine section disposed between the second fan section and the compressor for driving the second fan section. | 12-29-2016 |
20160377000 | METHOD FOR OPERATING A GAS TURBINE INSTALLATION AND THE SAME - A method for operating a gas turbine installation with a measured compressor inlet temperature (Ti-actual) and a virtually constant turbine inlet temperature (TiTiso), wherein to provide safe operation of the gas turbine installation, an increase in a calculated exhaust gas temperature (ATK) is compensated by a reduced mass flow (m) of a flow medium flowing through a compressor of the gas turbine installation. An arrangement for operating the gas turbine installation includes a functional unit and a gas turbine installation with a compressor, a turbine, a control system for operating the method. | 12-29-2016 |
20170234218 | Turbine Stator Vane with Multiple Outer Diameter Pressure Feeds | 08-17-2017 |
20170234229 | FUEL DRAIN SYSTEM AND METHOD | 08-17-2017 |
20180023472 | ENGINE, ROTARY DEVICE, POWER GENERATOR, POWER GENERATION SYSTEM, AND METHODS OF MAKING AND USING THE SAME | 01-25-2018 |
20220136416 | GAS TURBINE PLANT AND EXHAUST CARBON DIOXIDE RECOVERY METHOD THEREFOR - A gas turbine plant includes an exhaust line, a carbon dioxide recovery device configured to recover carbon dioxide contained in an exhaust gas, a circulation line connected to a gas turbine, a first valve device, a bypass line bypassing the carbon dioxide recovery device, a second valve device provided on the bypass line, a third valve device provided at a position between the bypass line and the carbon dioxide recovery device, a densitometer configured to detect a carbon dioxide concentration in the exhaust gas, and a control device configured to adjust opening degrees of the first valve device, the second valve device, and the third valve device based on an operation state of the gas turbine and the carbon dioxide concentration. | 05-05-2022 |