Class / Patent application number | Description | Number of patent applications / Date published |
060264000 | Including motive fluid treating means | 10 |
20090158704 | Gas Turbine Engine - Variation in the available mixing plane areas in an exhaust arrangement of a gas turbine engine enables alteration and configuration for better thermal cycle performance of that engine. A shaped centre fairing is associated with an exit nozzle and a bypass duct such that channels between the fairing, nozzle exit and duct can be adjusted to change the available areas. Such variation is achieved by relative axial displacement, typically of the exit nozzle using an appropriate mechanism. | 06-25-2009 |
20100170224 | PLASMA ENHANCED BOOSTER AND METHOD OF OPERATION - A booster system is disclosed, comprising a first rotor stage having a plurality of first rotor blades spaced circumferentially around a rotor hub with a longitudinal axis and having a first pitch-line radius extending from the longitudinal axis, a last rotor stage located axially aft from the first rotor stage, the last rotor stage comprising a plurality of last rotor blades spaced circumferentially around the longitudinal axis and having a second pitch-line radius extending from the longitudinal axis, and a gooseneck duct located axially aft from the last rotor stage and capable of receiving an airflow, the gooseneck duct comprising an inlet end and an exit end located at a distance axially aft from the inlet end and having at least one plasma actuator mounted in the gooseneck duct. | 07-08-2010 |
20100251696 | PLASMA ENHANCED RAPIDLY EXPANDED GAS TURBINE ENGINE TRANSITION DUCT - A plasma enhanced rapidly expanded duct system includes a gas turbine engine inter-turbine transition duct having radially spaced apart conical inner and outer duct walls extending axially between a duct inlet and a duct outlet. A conical plasma generator produces a conical plasma along the outer duct wall. An exemplary embodiment of the conical plasma generator is mounted to the outer duct wall and including radially inner and outer electrodes separated by a dielectric material. The dielectric material is disposed within a conical groove in a radially inwardly facing surface of the outer duct wall. An AC power supply is connected to the electrodes to supply a high voltage AC potential to the electrodes. | 10-07-2010 |
20110005196 | METHOD AND APPARATUS FOR INCREASING THRUST OR OTHER USEFUL ENERGY OUTPUT OF A DEVICE WITH A ROTATING ELEMENT - A turbine arrangement is provided for use in a gas turbine engine that includes a combustion chamber and a nozzle. The turbine arrangement includes a source of liquid and a turbine blade assembly that is rotatable about a central shaft. The blade assembly further includes a plurality of turbine blades, the blade having a forward edge that faces the combustion chamber and an opposite rear edge. A hollow interior of at least one blade is in fluid communication with the source of liquid. The blade (e.g. a rear edge thereof) including a plurality of openings in communication with the hollow interior and sized to produce liquid droplets for discharge downstream of the turbine blade to generate a gas (e.g., steam) due to contact with hot gases generated by the combustion chamber. The rotation of the turbine blades and discharge of the liquid in droplet form causes the liquid droplets to travel in a non-linear pattern resulting in conversion of the liquid droplets to the gas and an increase in volume for the hot gases, thereby resulting in the hot gases leaving the nozzle with increased thrust. | 01-13-2011 |
20110030341 | DEVICE WITH SECONDARY JETS REDUCING THE NOISE GENERATED BY AN AIRCRAFT JET ENGINE - An aircraft jet engine including a wall centered about a longitudinal axis and surrounding a stream of gas ejected at a downstream end of the wall in the direction of the axis, primary ducts distributed at the periphery of the downstream end of the wall configured on command each to eject a jet of primary fluid to interact with the ejected stream of gas, the primary ducts of each pair converging towards one another near the downstream end of the wall so that the primary jets ejected form two sides of a triangle that meet at the vertex thereof in a view projected onto a plane perpendicular to a transverse plane, and secondary ducts each associated with each pair of primary ducts and configured on command to eject a jet of secondary fluid directed into the triangle formed by the primary jets. | 02-10-2011 |
20110061362 | ARRANGEMENT FOR CONTROLLING FLUID JETS INJECTED INTO A FLUID STREAM - In an air mixing arrangement wherein a primary fluid is introduced through an opening in a wall to be mixed with a secondary fluid flowing along the wall surface, the opening is airfoil shaped with its leading edge being orientated at an attack angle with respect to the secondary fluid flow stream so as to thereby enhance the penetration and dispersion of the primary fluid stream into the secondary fluid stream. The airfoil shaped opening is selectively positioned such that its angle of attack provides the desired lift to optimize the mixing of the two streams for the particular application. In one embodiment, a collar is provided around the opening to prevent the secondary fluid from contacting the surface of the wall during certain conditions of operation. Multiple openings maybe used such as the combination of a larger airfoil shaped opening with a smaller airfoil shaped opened positioned downstream thereof, or a round shaped opening placed upstream of an airfoil shaped opening. Pairs of openings and associated collars maybe placed in symmetric relationship so as to promote mixing in particular applications, and nozzles maybe placed on the inner side of wall to enhance the flow characteristics of the primary fluid. | 03-17-2011 |
20110083419 | SYSTEMS AND METHODS FOR BYPASSING AN INLET AIR TREATMENT FILTER - A method of assembling an inlet air filter assembly for use with a turbine engine system. The method includes coupling an inlet hood to an air filter enclosure, such that an airflow path is defined between the inlet hood and the air filter enclosure. A pre-filter is coupled to the inlet hood, such that the pre-filter is positioned within the airflow path. A filter bypass assembly is coupled to the pre-filter for moving the pre-filter from an operating position to a bypass position during operation of the turbine engine system. | 04-14-2011 |
20110265447 | GAS TURBINE ENGINE EXHAUST MIXER - A gas turbine engine exhaust mixer has a plurality of circumferentially distributed alternating inner and outer lobes. The outer lobes protrude into the annular bypass passage of the engine, whereas the inner lobes protrude into the main gas path passage of the engine. The inner and outer lobes respectively define alternating troughs and crest with radial interconnecting walls therebetween. The mixer has a jagged trailing edge including a plurality of tabs extending from each radial wall between the troughs and the crests. | 11-03-2011 |
20160032864 | GAS TURBINE ENGINE EXHAUST EJECTOR/MIXER - An ejector/mixer for a gas turbine engine includes an annular wall having upstream end adapted to be fastened to an engine case and a downstream end forming a plurality of lobes. A support member interconnects the lobes, and includes an annular blade located radially inwardly of the bight of the lobes. The lobes extend radially inwardly downstream relative to the annular wall and the support member includes an annular blade and has spaced apart joint surfaces spaced apart to coincide with the joint surfaces of a respective lobes. The spaced-apart joint surfaces of the support member being profiled to mate with the corresponding joint surface of the lobes. | 02-04-2016 |
20180023513 | ROCKET ENGINE AND IGNITION SYSTEM | 01-25-2018 |