Class / Patent application number | Description | Number of patent applications / Date published |
029597000 | Commutator or slip ring assembly | 11 |
20090126184 | Method of making an armature - An armature for an electric motor has a lamination stack on a shaft with a commutator mounted on one end of the shaft. Magnet wires wound in slots in the lamination stack, the commutator and armature shaft are at least partially encapsulated in thermoset. The commutator has a commutator ring divided into a plurality of segments with slots between the segments that are filled with a second plastic when the commutator is made by molding a core of the second plastic, such as phenolic, in the commutator ring before the commutator ring is mounted on the armature shaft. Prior to molding the thermoset, the commutator ring is sealed. The seal prevents the thermoset from flowing into the slots between the commutator ring segments or over the commutator ring. | 05-21-2009 |
20090260220 | Fuel pump,motor device for the same, and method for manufacturing the same - A fuel pump includes a pump portion for pumping fuel. The fuel pump further includes a magnet having magnetic poles circumferentially alternate with each other. The fuel pump further includes an armature on a radially inside of the magnet. The armature includes a rotor core provided with a coil formed of a wire. The armature is rotatable for driving the pump portion. A commutator, which is in a substantially disc shape, is provided to an axial end of the armature for rectifying electricity supplying to the coil. The rotor core has an axial end having an outer circumferential periphery defining a commutator-side collar portion extending toward the commutator. The coil is formed by winding the wire between an outer circumferential periphery of the commutator and the commutator-side collar portion. | 10-22-2009 |
20110314659 | BALANCE RING FOR A VEHICULAR ELECTRIC MACHINE AND METHODS FOR THE PRODUCTION THEREOF - Methods for fabricating a balance ring for a vehicular electric machine are provided. In one embodiment, the method includes the steps of providing a first metal layer having a first planar surface, providing a second metal layer having a second planar surface, cladding the second planar surface to the first planar surface to form a composite structure, and removing a portion of the composite structure to form an annular ring. | 12-29-2011 |
20120222288 | Method For Forming A Power Tool - An electric motor has a stator in which an armature is disposed. The armature has a lamination stack having slots in which magnet wires are wound. An armature shaft extends coaxially through the lamination stack and a commutator is disposed on the armature shaft to which ends of the magnet wires are electrically coupled. The magnet wires are at least partially encased in thermally conductive plastic. When the thermally conductive plastic is molded, a balancing feature is formed of the thermally conductive plastic. In aspects, the balancing feature can include a layer of the plastic from which plastic can be removed during balancing; one or more balancing rings adjacent axial sides of the lamination stack from which plastic can be removed to balance the armature; or one or more balancing rings having one or more pockets therein in which one or more weights are disposed to balance the armature. | 09-06-2012 |
20130031774 | LOW COST ELECTRICAL MOTOR COMPONENTS MANUFACTURED FROM CONDUCTIVE LOADED RESIN-BASED MATERIALS - Electric motor components are formed of a conductive loaded resin-based, material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are metals or conductive non-metals or metal plated non-metals. The micron conductive fibers may be metal fiber or metal plated fiber. Further, the metal plated fiber may be formed by plating metal onto a metal fiber or by plating metal onto a non-metal fiber. Any platable fiber may be used as the core for a non-metal fiber. Superconductor metals may also be used as micron conductive fibers and/or as metal plating onto fibers in the present invention. | 02-07-2013 |
20130055554 | METHOD OF FORMING A POWER TOOL - A method for forming an armature for an electric motor includes: securing a lamination stack having slots therein on an armature shaft, securing a commutator on one end of the armature shaft, winding magnet wires in the slots in the lamination stack and securing ends of the magnet wires to the commutator, the magnet wires having armature lead wires that extend from the slots to the commutator; and molding plastic over the magnet wires to encase at least the armature lead wires in plastic. Alternatively and/or additionally, plastic is molded over the magnet wires to retain them in the slots and to support the armature lead wires and prevent them from vibrating when the armature rotates during operation. | 03-07-2013 |
20130263439 | METHOD FOR PRODUCING A STATOR - A description is given of a method for producing a stator for an electrical machine as an internal rotor, in particular an electric motor. This method involves providing a multiplicity of separate pole teeth, which are wound. The ends of the winding wire of the pole teeth are connected to one another to create a flexible annular pole tooth assembly, and the flexible assembly is inserted into an injection mould and centered. The assembly located in the mould is encapsulated or sealed in a moulding compound. In this way, a dimensionally stable stator with particularly good insulating properties can be produced. | 10-10-2013 |
20130291371 | METHOD OF FORMING A POWER TOOL - A method of manufacturing an armature for an electric motor, includes: placing a commutator and a lamination stack on an armature shaft, winding magnet wire in slots in the lamination stacks to form coils, attaching ends of the magnet wire to the commutator, and molding plastic around the magnet wire and around the shaft of the armature at ends of the lamination stack. A spinning inertia of the armature is adjusted by adjusting at least one of a mass of the plastic molded and a distribution of the plastic molded. Alternatively and/or additionally, at least one of a resonant frequency and critical speed of the armature is adjusted by adjusting at least one of a geometry of the plastic molded, the physical properties of the plastic and the mechanical properties of the plastic. | 11-07-2013 |
20140360008 | METHOD OF FORMING A POWER TOOL - A method of manufacturing an armature for an electric motor, includes: placing a commutator and a lamination stack on an armature shaft, winding magnet wire in slots in the lamination stacks to form coils, attaching ends of the magnet wire to the commutator, and molding plastic around the magnet wire and around the shaft of the armature at ends of the lamination stack. A spinning inertia of the armature is adjusted by adjusting at least one of a mass of the plastic molded and a distribution of the plastic molded. Alternatively and/or additionally, at least one of a resonant frequency and critical speed of the armature is adjusted by adjusting at least one of a geometry of the plastic molded, the physical properties of the plastic and the mechanical properties of the plastic. | 12-11-2014 |
20150101180 | METHOD AND SYSTEM FOR REPAIRING OR SERVICING A WYE RING - A method for repairing or servicing a wye ring of a generator includes the steps of, dismantling the generator to gain access to the wye ring, determining a fault location in the wye ring; and attaching a patch to the wye ring in an area of the fault location. The patch provides an electrical path around the fault location so that the generator is repaired. | 04-16-2015 |
20150143689 | BRUSH HOLDER APPARATUS, BRUSH ASSEMBLY, AND METHOD - Devices and methods of use for brush holder assemblies are disclosed. Brush holder assemblies including a mounting block and a brush holder are disclosed. Also illustrated is a brush holder assembly including a first portion in sliding engagement with a second portion. In some embodiments the brush holder includes a channel, such that at least a portion of the mounting block is disposed within the channel of the brush holder. | 05-28-2015 |