Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


SOLEXEL, INC.

SOLEXEL, INC. Patent applications
Patent application numberTitlePublished
20160087579SMART PHOTOVOLTAIC CELLS AND MODULES - A solar photovoltaic module laminate for electric power generation is provided. A plurality of solar cells are embedded within module laminate and arranged to form at least one string of electrically interconnected solar cells within said module laminate. A plurality of power optimizers are embedded within the module laminate and electrically interconnected to and powered with the plurality of solar cells. Each of the distributed power optimizers capable of operating in either pass-through mode without local maximum-power-point tracking (MPPT) or switching mode with local maximum-power-point tracking (MPPT) and having at least one associated bypass switch for distributed shade management.03-24-2016
20160035918THREE-DIMENSIONAL THIN-FILM SOLAR CELLS - A three-dimensional thin-film solar cell 02-04-2016
20150349708SOLAR PHOTOVOLTAIC MODULE POWER CONTROL AND STATUS MONITORING SYSTEM UTILIZING LAMINATE-EMBEDDED REMOTE ACCESS MODULE SWITCH - A solar photovoltaic module laminate for electric power generation is provided. The module comprises a plurality of solar cells embedded within the module laminate and electrically interconnected to form at least one string of electrically interconnected solar cells within said module laminate. And at least one remote-access module switch (RAMS) power electronic circuit embedded within the module laminate electrically interconnected to and powered with said at least one string of electrically interconnected solar cells and serving as a remote-controlled module power delivery gate switch.12-03-2015
20150159292APPARATUS AND METHODS FOR UNIFORMLY FORMING POROUS SEMICONDUCTOR ON A SUBSTRATE - This disclosure enables high-productivity controlled fabrication of uniform porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.06-11-2015
20150140721PATTERNING OF SILICON OXIDE LAYERS USING PULSED LASER ABLATION - Various laser processing schemes are disclosed for producing various types of hetero junction and homo-junction solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.05-21-2015
20150101761SOLAR PHOTOVOLTAIC BLINDS AND CURTAINS FOR RESIDENTIAL AND COMMERCIAL BUILDINGS - Solar photovoltaic window blind slats for power generation from internal and external light sources are provided are provided. A plurality of solar cells are attached to at least two sides of a slat core. Distributed maximum power point tracking optimizer components are associated with each solar cell. The solar cells and corresponding distributed maximum power point tracking optimizer components on each slat side are connected in electrical series.04-16-2015
20150068592SOLAR CELL METALLIZATION - An interdigitated back contact solar cell is provided. The solar cell comprises a solar cell substrate having a light receiving frontside and a backside comprising base and emitter regions. A first level metal (M1) layer is positioned on the substrate backside contacting the base and emitter regions. A second level metal (M2) layer is connected to the first level metal (M1) layer and comprises a base busbar and an emitter busbar. The first level metal comprises substantially orthogonal interdigitated metallization and substantially parallel interdigitated metallization positioned under and corresponding to the base and emitter busbars on the second level metal (M2). The substantially parallel interdigitated metallization of M1 collects carriers of opposite polarity of the corresponding busbar.03-12-2015
20150061086THREE-DIMENSIONAL SEMICONDUCTOR TEMPLATE FOR MAKING HIGH EFFICIENCY THIN-FILM SOLAR CELLS - A semiconductor template having a top surface aligned along a (100) crystallographic orientation plane and an inverted pyramidal cavity defined by a plurality of walls aligned along a (111) crystallographic orientation plane. A method for manufacturing a semiconductor template by selectively removing silicon material from a silicon template to form a top surface aligned along a (100) crystallographic plane of the silicon template and a plurality of walls defining an inverted pyramidal cavity each aligned along a (111) crystallographic plane of the silicon template.03-05-2015
20150056742ANNEALING FOR DAMAGE FREE LASER PROCESSING FOR HIGH EFFICIENCY SOLAR CELLS - Annealing solutions providing damage-free laser patterning utilizing auxiliary heating to anneal laser damaged ablation regions are provided herein. Ablation spots on an underlying semiconductor substrate are annealed during or after pulsed laser ablation patterning of overlying transparent passivation layers.02-26-2015
20150020877HIGH-EFFICIENCY SOLAR PHOTOVOLTAIC CELLS AND MODULES USING THIN CRYSTALLINE SEMICONDUCTOR ABSORBERS - Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects as well as Fabrication methods and structures for forming thin film back contact solar cells are described.01-22-2015
20140370650MONOLITHICALLY ISLED BACK CONTACT BACK JUNCTION SOLAR CELLS USING BULK WAFERS - According to one aspect of the disclosed subject matter, a method for forming a monolithically isled back contact back junction solar cell using bulk wafers is provided. Emitter and base contact regions are formed on a backside of a semiconductor wafer having a light receiving frontside and a backside opposite said frontside. A first level contact metallization is formed on the wafer backside and an electrically insulating backplane is attached to the semiconductor wafer backside. Isolation trenches are formed in the semiconductor wafer patterning the semiconductor wafer into a plurality of electrically isolated isles and the semiconductor wafer is thinned. A metallization structure is formed on the electrically insulating backplane electrically connecting the plurality of isles.12-18-2014
20140360567BACK CONTACT SOLAR CELLS USING ALUMINUM-BASED ALLOY METALLIZATION - Methods and structures for photovoltaic back contact solar cells having multi-level metallization with at least one aluminum-silicon alloy metallization layer are provided.12-11-2014
20140326295SYSTEMS AND METHODS FOR MONOLITHICALLY ISLED SOLAR PHOTOVOLTAIC CELLS AND MODULES - According to one aspect of the disclosed subject matter, a monolithically isled solar cell is provided. The solar cell comprises a semiconductor layer having a light receiving frontside and a backside opposite the frontside and attached to an electrically insulating backplane. A trench isolation pattern partitions the semiconductor layer into electrically isolated isles on the electrically insulating backplane. A first metal layer having base and emitter electrodes is positioned on the semiconductor layer backside. A patterned second metal layer providing cell interconnection and connected to the first metal layer by via plugs is positioned on the backplane.11-06-2014
20140318611MULTI-LEVEL SOLAR CELL METALLIZATION - Fabrication methods and structures relating to multi-level metallization for solar cells as well as fabrication methods and structures for forming thin film back contact solar cells are provided.10-30-2014
20140147944RESISTANCE COMPONENT EXTRACTION FOR BACK CONTACT BACK JUNCTION SOLAR CELLS - Methods and structures for extracting at least one electric parametric value from a back contact solar cell having dual level metallization are provided.05-29-2014
20140146854TEMPERATURE CALIBRATION AND CONTROL FOR SEMICONDUCTOR REACTORS - Non-contact and non-invasive temperature measurement structures and methods for thermal processing systems which neither damage nor contaminate the thermal processing environment are provided.05-29-2014
20140127834METHODS FOR LIQUID TRANSER COATING OF THREE-DIMENSIONAL SUBSTRATES - Methods here disclosed provide for selectively coating the top surfaces or ridges of a 3-D substrate while avoiding liquid coating material wicking into micro cavities on 3-D substrates. The substrate includes holes formed in a three-dimensional substrate by forming a sacrificial layer on a template. The template includes a template substrate with posts and trenches between the posts. The steps include subsequently depositing a semiconductor layer and selectively etching the sacrificial layer. Then, the steps include releasing the semiconductor layer from the template and coating the 3-D substrate using a liquid transfer coating step for applying a liquid coating material to a surface of the 3-D substrate. The method may further include coating the 3-D substrate by selectively coating the top ridges or surfaces of the substrate.05-08-2014
20140102531SYSTEMS AND METHODS FOR MONOLITHICALLY INTEGRATED BYPASS SWITCHES IN PHOTOVOLTAIC SOLAR CELLS AND MODULES - Structures and methods for a solar cell having an integrated bypass switch are provided. According to one embodiment, an integrated solar cell and bypass switch comprising a semiconductor layer having background doping, a frontside, and a backside is provided. A patterned first level metal is positioned on the layer backside and an electrically insulating backplane is positioned on the first level metal. A trench isolation pattern partitions the semiconductor layer into a solar cell region and at least one monolithically integrated bypass switch region. A patterned second level metal is positioned on the electrically insulating backplane and which connects to the first level metal through the backplane to complete the electrical metallization of the monolithically integrated solar cell and bypass switch structure.04-17-2014
20140033971HIGH PRODUCTIVITY SPRAY PROCESSING FOR SEMICONDUCTOR METALLIZATION AND INTERCONNECTS - Processing equipment for the metallization of a plurality of workpieces are provided. The equipment comprising a controlled atmospheric region isolated from external oxidizing ambient with at least one deposition zone for the application of a metal layer on a workpiece. A transport system moves the workpiece positioned in a batch carrier plate through the controlled atmospheric region.02-06-2014
20140017846SYSTEMS AND METHODS FOR ENHANCED LIGHT TRAPPING IN SOLAR CELLS - Methods for improving the light trapping characteristics of crystalline silicon solar cells are provided. In one embodiment, the backside surface of a crystalline silicon solar cell substrate is textured with a pulsed laser beam. The textured backside surface of the crystalline silicon solar cell substrate is then annealed to remove damage from the laser texturization process.01-16-2014
20130330872ION IMPLANTATION FABRICATION PROCESS FOR THIN-FILM CRYSTALLINE SILICON SOLAR CELLS - A front contact thin-film solar cell is formed on a thin-film silicon solar cell. Emitter regions, selective emitter regions, and a back surface field are formed through ion implantation processes. In one embodiment, front contact thin-film solar cell is formed on a thin-film silicon solar cell. Emitter regions, selective emitter regions, base regions, and a back surface field are formed through ion implantation processes.12-12-2013
20130319520THREE-DIMENSIONAL THIN-FILM SEMICONDUCTOR SUBSTRATE WITH THROUGH-HOLES AND METHODS OF MANUFACTURING - A three-dimensional thin-film semiconductor substrate with selective through-holes is provided. The substrate having an inverted pyramidal structure comprising selectively formed through-holes positioned between the front and back lateral surface planes of the semiconductor substrate to form a partially transparent three-dimensional thin-film semiconductor substrate.12-05-2013
20130288425END POINT DETECTION FOR BACK CONTACT SOLAR CELL LASER VIA DRILLING - Methods and structures for fabricating photovoltaic back contact solar cells having multi-level metallization using laser via drilling end point detection are provided.10-31-2013
20130288418METHOD FOR FABRICATING A THREE-DIMENSIONAL THIN-FILM SEMICONDUCTOR SUBSTRATE FROM A TEMPLATE - A method is presented for fabrication of a three-dimensional thin-film solar cell semiconductor substrate from a template. A semiconductor template having three-dimensional surface features comprising a top surfaces substantially aligned along a (100) crystallographic plane of semiconductor template and a plurality of inverted pyramidal cavities defined by sidewalls substantially aligned along a (111) crystallographic plane is formed according to an anisotropic etching process. A dose of relatively of high energy light-mass species is implanted in the template at a uniform depth and parallel to the top surfaces and said sidewalls defining the inverted pyramidal cavities of the template. The semiconductor template is annealed to convert the dose of relatively of high energy light-mass species to a mechanically-weak-thin layer. The semiconductor template is cleaved along the mechanically-weak-thin layer to release a three-dimensional thin-film semiconductor substrate from the semiconductor template.10-31-2013
20130284255High-Efficiency Thin-Film Solar Cells - A three-dimensional solar cell comprising a semiconductor substrate with an inverted pyramidal cavity, emitter metallization regions on ridges on the surface of the semiconductor substrate which define an opening of the inverted pyramidal cavity, and base metallization regions on a region which form the apex of the inverted pyramidal cavity. A method for fabricating a three-dimensional thin-film solar cell from an inverted pyramidal three-dimensional thin-film silicon substrate by doping ridges on the surface of the semiconductor substrate which define an opening of an inverted pyramidal cavity on the substrate to form an emitter region, and doping a region which forms the apex of the inverted pyramidal cavity to form a base region. Adding a surface passivation layer to the surface of the substrate. Selectively etching the passivation layer from the emitter region and base region. Then concurrently metallizing the emitter region and base region.10-31-2013
20130280887Method For Releasing a Thin-Film Substrate - The present disclosure relates to methods for selectively etching a porous semiconductor layer to separate a thin-film semiconductor substrate (TFSS) having planar or three-dimensional features from a corresponding semiconductor template. The method involves forming a conformal sacrificial porous semiconductor layer on a template. Next, a conformal thin film silicon substrate is formed on top of the porous silicon layer. The middle porous silicon layer is then selectively etched to separate the TFSS and semiconductor template. The disclosed advanced etching chemistries and etching methods achieve selective etching with minimal damage to the TFSS and template.10-24-2013
20130241038STRUCTURE AND METHOD FOR CREATING A REUSABLE TEMPLATE FOR DETACHABLE THIN FILM SUBSTRATES - A structure and method operable to create a reusable template for detachable thin semiconductor substrates is provided. The template has a shape such that the 3-D shape is substantially retained after each substrate release. Prior art reusable templates may have a tendency to change shape after each subsequent reuse; the present disclosure aims to address this and other deficiencies from the prior art, therefore increasing the reuse life of the template.09-19-2013
20130233378HIGH-EFFICIENCY PHOTOVOLTAIC BACK-CONTACT SOLAR CELL STRUCTURES AND MANUFACTURING METHODS USING SEMICONDUCTOR WAFERS - A back contact back junction solar cell using semiconductor wafers and methods for manufacturing are provided. The back contact back junction solar cell comprises a semiconductor wafer having a doped base region, a light capturing frontside surface, and a doped backside emitter region. A frontside and backside dielectric layer and passivation layer provide enhance light trapping and internal reflection. Backside base and emitter contacts are connected to metal interconnects forming a metallization pattern of interdigitated fingers and busbars on the backside of the solar cell.09-12-2013
20130228221MANUFACTURING METHODS AND STRUCTURES FOR LARGE-AREA THIN-FILM SOLAR CELLS AND OTHER SEMICONDUCTOR DEVICES - Fabrication methods and structures relating to multi-level metallization for solar cells as well as fabrication methods and structures for forming back contact solar cells are provided.09-05-2013
20130213469HIGH EFFICIENCY SOLAR CELL STRUCTURES AND MANUFACTURING METHODS - Fabrication methods and structures relating to multi-level metallization for solar cells as well as fabrication methods and structures for forming back contact solar cells are provided.08-22-2013
20130171808DOUBLE-SIDED REUSABLE TEMPLATE FOR FABRICATION OF SEMICONDUCTOR SUBSTRATES FOR PHOTOVOLTAIC CELL AND MICROELECTRONICS DEVICE MANUFACTURING - This disclosure presents manufacturing methods and apparatus designs for making TFSSs from both sides of a re-usable semiconductor template, thus effectively increasing the substrate manufacturing throughput and reducing the substrate manufacturing cost. This approach also reduces the amortized starting template cost per manufactured substrate (TFSS) by about a factor of 2 for a given number of template reuse cycles.07-04-2013
20130171767ION IMPLANTATION AND ANNEALING FOR HIGH EFFICIENCY BACK-CONTACT BACK-JUNCTION SOLAR CELLS - A back contact back junction thin-film solar cell is formed on a thin-film semiconductor solar cell. Preferably the thin film semiconductor material comprises crystalline silicon. Emitter regions, selective emitter regions, and a back surface field are formed through ion implantation and annealing processes.07-04-2013
20130167915HIGH-EFFICIENCY PHOTOVOLTAIC BACK-CONTACT SOLAR CELL STRUCTURES AND MANUFACTURING METHODS USING THREE-DIMENSIONAL SEMICONDUCTOR ABSORBERS - Back contact back junction three dimensional solar cell and methods for manufacturing are provided. The back contact back contact back junction three dimensional solar cell comprises a three-dimensional substrate. The substrate comprises a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer is positioned on the doped backside emitter region. Backside emitter contacts and backside base contacts connected to metal interconnects and selectively formed on three-dimensional features of the backside of three-dimensional solar cell.07-04-2013
20130167904THREE-DIMENSIONAL THIN-FILM SOLAR CELLS - A three-dimensional thin-film solar cell 07-04-2013
20130164883LASER ANNEALING APPLICATIONS IN HIGH-EFFICIENCY SOLAR CELLS - Various laser processing schemes are disclosed for producing various types of hetero-junction and homo-junction solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.06-27-2013
20130154061ANODIZING APPARATUS, AN ANODIZING SYSTEM HAVING THE SAME, AND A SEMICONDUCTOR WAFER - An anodizing apparatus for causing an anodizing reaction to substrates immersed in an electrolyte solution. The apparatus includes a storage tank for storing the electrolyte solution, a holder for holding a plurality of substrates in liquid-tight contact with circumferential surfaces of the substrates, a moving mechanism for moving the holder between a transfer position outside the storage tank and a treating position inside the storage tank, and a closing device disposed in the storage tank for cooperating with the holder to complete a liquid-tight closure of the circumferential surfaces of the substrates held by the holder. Chemical reaction treatment is carried out with the circumferential surfaces of the substrates placed in a liquid-tight state. After the chemical reaction treatment is completed, the closing device is made inoperative and the holder is moved away from the treating position to unload the substrates from the storage tank.06-20-2013
20130141833MOBILE ELECTROSTATIC CARRIERS FOR THIN WAFER PROCESSING - In one embodiment, there is provided a carrier comprising a top semiconductor layer having isolated positive electrode regions and isolated negative electrode regions separated by a frontside trench through the top semiconductor layer at least to an underlying insulating layer positioned between the top semiconductor layer and a bottom semiconductor layer. A dielectric layer covers the top exposed surfaces of the carrier. Backside trenches through the bottom semiconductor layer at least to the insulating layer form isolated backside regions corresponding to the frontside positive and negative electrode regions. Backside contacts positioned on the bottom semiconductor layer and coupled to the positive and negative electrode regions allow for the electric charging of the frontside electrode regions.06-06-2013
20130140838MOBILE VACUUM CARRIERS FOR THIN WAFER PROCESSING - This disclosure presents mobile vacuum carriers that may be used to support thin substrates that would otherwise be too brittle to transport and process. This disclosure relates to the processing of thin semiconductor substrates and has particular applicability to the fields of photovoltaic solar cells, semiconductor microelectronic integrated circuits, micro-electro-mechanical systems (MEMS), optoelectronic devices (such as light-emitting diodes, lasers, photo detectors), data storage devices, etc.06-06-2013
20130137244METHOD AND APPARATUS FOR RECONDITIONING A CARRIER WAFER FOR REUSE - The disclosed subject matter pertains to deposition of thin film or thin foil materials in general, but more specifically to deposition of epitaxial monocrystalline or quasi-monocrystalline silicon film (epi film) for use in manufacturing of high efficiency solar cells. In operation, methods are disclosed which extend the reusable life and to reduce the amortized cost of a reusable substrate or template used in the manufacturing process of silicon and other semiconductor solar cells.05-30-2013
20130130430SPATIALLY SELECTIVE LASER ANNEALING APPLICATIONS IN HIGH-EFFICIENCY SOLAR CELLS - Various laser processing schemes are disclosed for producing various types of hetero-junction emitter and homo-junction emitter solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.05-23-2013
20130125950SELF-ACTIVATED FRONT SURFACE BIAS FOR A SOLAR CELL - A self-activated front surface bias for photovoltaic solar cell assembly is provided. The solar cell assembly comprises a front surface electrical bias activated by electrical energy generated by the solar cell assembly. The front surface bias improves generation efficiency for said solar cell assembly.05-23-2013
20130000715ACTIVE BACKPLANE FOR THIN SILICON SOLAR CELLS - Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects are described. The method comprises depositing an interdigitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, attaching a prepeg backplane to the interdigitated pattern of base electrodes and emitter electrodes, forming holes in the prepeg backplane which provide access to the first layer of electrically conductive metal, and depositing a second layer of electrically conductive metal on the backside surface of the prepeg backplane forming an electrical interconnect with the first layer of electrically conductive metal through the holes in the prepeg backplane.01-03-2013
20120305063HIGH-EFFICIENCY PHOTOVOLTAIC BACK-CONTACT SOLAR CELL STRUCTURES AND MANUFACTURING METHODS USING THIN PLANAR SEMICONDUCTOR ABSORBERS - Back contact back junction solar cell and methods for manufacturing are provided. The back contact back junction solar cell comprises a substrate having a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer and patterned reflective layer on the emitter form a light trapping backside mirror. An interdigitated metallization pattern is positioned on the backside of the solar cell and a permanent reinforcement provides support to the cell.12-06-2012
20120272490METHOD FOR RELEASING A THIN SEMICONDUCTOR SUBSTRATE FROM A REUSABLE TEMPLATE - The present disclosure relates to methods and apparatuses for releasing a thin semiconductor substrate from a reusable template. The method involves forming a mechanically weak layer conformally on a semiconductor template. Then forming a thin semiconductor substrate conformally on the mechanically weak layer. The thin semiconductor substrate, the mechanically weak layer and the template forming a wafer. Then defining the border of the thin-film semiconductor substrate to be released by exposing the peripheral of the mechanically weak layer. Then releasing the thin-film semiconductor substrate by applying a controlled air flow parallel to said mechanically weak layer wherein the controlled air flow separates the thin semiconductor substrate and template according to lifting forces.11-01-2012
20120225515LASER DOPING TECHNIQUES FOR HIGH-EFFICIENCY CRYSTALLINE SEMICONDUCTOR SOLAR CELLS - Various laser processing schemes are disclosed for producing various types of hetero-junction and homo-junction solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.09-06-2012
20120192789DEPOSITION SYSTEMS AND PROCESSES - This disclosure enables gas recovery and utilization for use in deposition systems and processes. The system includes a thin-film semiconductor layer deposition system comprising a deposition reactor, precursor gas feeds, and a gas recovery system.08-02-2012
20120180867THREE-DIMENSIONAL THIN-FILM SOLAR CELLS - A three-dimensional thin-film solar cell 07-19-2012
20120178203LASER ANNEALING FOR ALUMINUM DOPING AND FORMATION OF BACK-SURFACE FIELD IN SOLAR CELL CONTACTS - Various laser processing schemes are disclosed for producing various types of hetero junction and homo-junction solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.07-12-2012
20120174861THREE-DIMENSIONAL SEMICONDUCTOR TEMPLATE FOR MAKING HIGH EFFICIENCY THIN-FILM SOLAR CELLS - A semiconductor template having a top surface aligned along a (100) crystallographic orientation plane and an inverted pyramidal cavity defined by a plurality of walls aligned along a (111) crystallographic orientation plane. A method for manufacturing a semiconductor template by selectively removing silicon material from a silicon template to form a top surface aligned along a (100) crystallographic plane of the silicon template and a plurality of walls defining an inverted pyramidal cavity each aligned along a (111) crystallographic plane of the silicon template.07-12-2012
20120174860TEMPLATE FOR THREE-DIMENSIONAL THIN-FILM SOLAR CELL MANUFACTURING AND METHODS OF USE - A template 07-12-2012
20120171804PATTERNING OF SILICON OXIDE LAYERS USING PULSED LASER ABLATION - Various laser processing schemes are disclosed for producing various types of hetero junction and homo-junction solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.07-05-2012
20120167819METHOD FOR RECONSTRUCTING A SEMICONDUCTOR TEMPLATE - The disclosed subject matter pertains to deposition of thin film or thin foil materials in general, but more specifically to deposition of epitaxial monocrystalline or quasi-monocrystalline silicon film (epi film) for use in manufacturing of high efficiency solar cells. In operation, methods are disclosed which extend the reusable life and to reduce the amortized cost of a substrate or template used in the manufacturing process of silicon solar cells. Further, methods are disclosed which provide for the conversion of a low quality starting surface into an improved quality starting surface of a silicon wafer.07-05-2012
20120145553APPARATUS AND METHODS FOR UNIFORMLY FORMING POROUS SEMICONDUCTOR ON A SUBSTRATE - This disclosure enables high-productivity controlled fabrication of uniform porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.06-14-2012
20120125256APPARATUS AND METHOD FOR REPEATEDLY FABRICATING THIN FILM SEMICONDUCTOR SUBSTRATES USING A TEMPLATE - Mechanisms are disclosed by which a semiconductor wafer, silicon in some embodiments, is repeatedly used to serve as a template and carrier for fabricating high efficiency capable thin semiconductor solar cells substrates. Mechanisms that enable such repeated use of these templates at consistent quality and with high yield are disclosed.05-24-2012
20120122272HIGH-THROUGHPUT FLAT TOP LASER BEAM PROCESSING FOR BACK CONTACT SOLAR CELLS - Flat top beam laser processing schemes are disclosed for producing various types of hetero-junction and homo-junction solar cells. The methods include base and emitter contact opening, back surface field formation, selective doping, and metal ablation. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.05-17-2012
20120103408BACKPLANE REINFORCEMENT AND INTERCONNECTS FOR SOLAR CELLS - Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects are described. The method comprises depositing an interdigitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, forming electrically conductive emitter plugs and base plugs on the interdigitated pattern, and attaching a backplane having a second interdigitated pattern of base electrodes and emitter electrodes at the conductive emitter and base plugs to form electrical interconnects.05-03-2012
20120085278HIGH PRODUCTIVITY THIN FILM DEPOSITION METHOD AND SYSTEM - High productivity thin film deposition methods and tools are provided wherein a thin film semiconductor material layer with a thickness in the range of less than 1 micron to 100 microns is deposited on a plurality of wafers in a reactor. The wafers are loaded on a batch susceptor and the batch susceptor is positioned in the reactor such that a tapered gas flow space is created between the susceptor and an interior wall of the reactor. Reactant gas is then directed into the tapered gas space and over each wafer thereby improving deposition uniformity across each wafer and from wafer to wafer.04-12-2012
20120028399LASER PROCESSING FOR HIGH-EFFICIENCY THIN CRYSTALLINE SILICON SOLAR CELL FABRICATION - Laser processing schemes are disclosed for producing various types of hetero-junction and homo-junction solar cells. The methods include base and emitter contact opening, selective doping, and metal ablation. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.02-02-2012
20120021560TRUNCATED PYRAMID STRUCTURES FOR SEE-THROUGH SOLAR CELLS - The present disclosure presents a partially-transparent (see-through) three-dimensional thin film solar cell (3-D TFSC) substrate. The substrate includes a plurality of unit cells. Each unit cell structure has the shape of a truncated pyramid, and its parameters may be varied to allow a desired portion of sunlight to pass through.01-26-2012
20120017988PYRAMIDAL THREE-DIMENSIONAL THIN-FILM SOLAR CELLS - A pyramidal three-dimensional thin-film solar cell, comprising a pyramidal three-dimensional thin-film solar cell substrate comprising a plurality of pyramid-shaped unit cells with emitter junction regions and doped base regions, emitter metallization regions and base metallization regions. Optionally, the pyramidal three-dimensional thin-film solar cell may be mounted on a rear mirror for improved light trapping and conversion efficiency.01-26-2012
20120017971SOLAR MODULE STRUCTURES AND ASSEMBLY METHODS FOR THREE-DIMENSIONAL THIN-FILM SOLAR CELLS - Solar module structures 01-26-2012
20120012160SOLAR MODULE STRUCTURES AND ASSEMBLY METHODS FOR PYRAMIDAL THREE-DIMENSIONAL THIN-FILM SOLAR CELLS - Solar module structures and methods for assembling solar module structures. The solar module structures comprise pyramidal three-dimensional thin-film solar cells arranged in solar module structures. The pyramidal three-dimensional thin-film solar cell comprises a pyramidal three-dimensional thin-film solar cell substrate with emitter junction regions and doped base regions. The three-dimensional thin-film solar cell further includes emitter metallization regions and base metallization regions. The three-dimensional thin-film solar cell substrate comprises a plurality of pyramid-shaped unit cells. The solar module structures may be used in solar glass applications, building façade applications, rooftop installation applications as well as for centralized solar electricity generation.01-19-2012
20110284068PASSIVATION METHODS AND APPARATUS FOR ACHIEVING ULTRA-LOW SURFACE RECOMBINATION VELOCITIES FOR HIGH-EFFICIENCY SOLAR CELLS - The disclosed subject matter provides a method and structure for obtaining ultra-low surface recombination velocities from highly efficient surface passivation in crystalline silicon substrate-based solar cells by utilizing a bi-layer passivation scheme which also works as an efficient ARC. The bi-layer passivation consists of a first thin layer of wet chemical oxide or a thin hydrogenated amorphous silicon layer. A second layer of amorphous hydrogenated silicon nitride film is deposited on top of the wet chemical oxide or amorphous silicon film. This deposition is then followed by annealing to further enhance the surface passivation.11-24-2011
20110272013TEMPLATE FOR THREE-DIMENSIONAL THIN-FILM SOLAR CELL MANUFACTURING AND METHODS OF USE - A template for three-dimensional thin-film solar cell substrate formation for use in three-dimensional thin-film solar cells. The template comprises a substrate which comprises a plurality of posts and a plurality of trenches between said plurality of posts. The template forms an environment for three-dimensional thin-film solar cell substrate formation.11-10-2011
20110265867TEMPLATE FOR THREE-DIMENSIONAL THIN-FILM SOLAR CELL MANUFACTURING AND METHODS OF USE - A template for three-dimensional thin-film solar cell substrate formation for use in three-dimensional thin-film solar cells. The template comprises a substrate which comprises a plurality of posts and a plurality of trenches between said plurality of posts. The template forms an environment for three-dimensional thin-film solar cell substrate formation.11-03-2011
20110256654DOUBLE-SIDED REUSABLE TEMPLATE FOR FABRICATION OF SEMICONDUCTOR SUBSTRATES FOR PHOTOVOLTAIC CELL AND MICROELECTRONICS DEVICE MANUFACTURING - This disclosure presents manufacturing methods and apparatus designs for making TFSSs from both sides of a re-usable semiconductor template, thus effectively increasing the substrate manufacturing throughput and reducing the substrate manufacturing cost. This approach also reduces the amortized starting template cost per manufactured substrate (TFSS) by about a factor of 2 for a given number of template reuse cycles.10-20-2011
20110124145TEMPLATE FOR THREE-DIMENSIONAL THIN-FILM SOLAR CELL MANUFACTURING AND METHODS OF USE - A template 05-26-2011
20110120882POROUS SILICON ELECTRO-ETCHING SYSTEM AND METHOD - It is an object of this disclosure to provide high productivity, low cost-of-ownership manufacturing equipment for the high volume production of photovoltaic (PV) solar cell device architecture. It is a further object of this disclosure to reduce material processing steps and material cost compared to existing technologies by using gas-phase source silicon. The present disclosure teaches the fabrication of a sacrificial substrate base layer that is compatible with a gas-phase substrate growth process. Porous silicon is used as the sacrificial layer in the present disclosure. Further, the present disclosure provides equipment to produce a sacrificial porous silicon PV cell-substrate base layer.05-26-2011
20110030610HIGH-PRODUCTIVITY POROUS SEMICONDUCTOR MANUFACTURING EQUIPMENT - This disclosure enables high-productivity fabrication of semiconductor-based separation layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers), optical reflectors (made of multi-layer/multi-porosity porous semiconductors such as porous silicon), formation of porous semiconductor (such as porous silicon) for anti-reflection coatings, passivation layers, and multi-junction, multi-band-gap solar cells (for instance, by forming a variable band gap porous silicon emitter on a crystalline silicon thin film or wafer-based solar cell). Other applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further the disclosure is applicable to the general fields of Photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.02-10-2011
20110021006METHOD FOR RELEASING A THIN SEMICONDUCTOR SUBSTRATE FROM A REUSABLE TEMPLATE - The present disclosure relates to methods and apparatuses for releasing a thin semiconductor substrate from a reusable template. The method involves forming a mechanically weak layer conformally on a semiconductor template. Then forming a thin semiconductor substrate conformally on the mechanically weak layer. The thin semiconductor substrate, the mechanically weak layer and the template forming a wafer. Then defining the border of the thin-film semiconductor substrate to be released by exposing the peripheral of the mechanically weak layer. Then releasing the thin-film semiconductor substrate by applying a controlled air flow parallel to said mechanically weak layer wherein the controlled air flow separates the thin semiconductor substrate and template according to lifting forces.01-27-2011
20110014742METHOD OF CREATING REUSABLE TEMPLATE FOR DETACHABLE THIN FILM SUBSTRATE - A structure and method operable to create a reusable template for detachable thin semiconductor substrates is provided. The template has a shape such that the 3-D shape is substantially retained after each substrate release. Prior art reusable templates may have a tendency to change shape after each subsequent reuse; the present disclosure aims to address this and other deficiencies from the prior art, therefore increasing the reuse life of the template.01-20-2011
20100304522ION IMPLANTATION FABRICATION PROCESS FOR THIN-FILM CRYSTALLINE SILICON SOLAR CELLS - A front contact thin-film solar cell is formed on a thin-film crystalline silicon substrate. Emitter regions, selective emitter regions, and a back surface field are formed through ion implantation processes. In yet another embodiment, a back contact thin-film solar cell is formed on a thin-film crystalline silicon substrate. Emitter regions, selective emitter regions, base regions, and a front surface field are formed through ion implantation processes.12-02-2010
20100304521Shadow Mask Methods For Manufacturing Three-Dimensional Thin-Film Solar Cells - Methods for manufacturing three-dimensional thin-film solar cells using a template. The template comprises a template substrate comprising a plurality of three-dimensional surface features. The three-dimensional thin-film solar cell substrate is formed by forming a sacrificial layer on the template, subsequently depositing a semiconductor layer, selectively etching the sacrificial layer, and releasing the semiconductor layer from the template. Select portions of the three-dimensional thin-film solar cell substrate are then doped with a first dopant, while other select portions are doped with a second dopant. Next, selective emitter and base metallization regions are formed using a PECVD shadow mask process.12-02-2010
20100300518THREE-DIMENSIONAL THIN-FILM SEMICONDUCTOR SUBSTRATE WITH THROUGH-HOLES AND METHODS OF MANUFACTURING - A method for the fabrication of a three-dimensional thin-film semiconductor substrate with selective through-holes is provided. A porous semiconductor layer is conformally formed on a semiconductor template comprising a plurality of three-dimensional inverted pyramidal surface features defined by top surface areas aligned along a (100) crystallographic orientation plane of the semiconductor template and a plurality of inverted pyramidal cavities defined by sidewalls aligned along the (111) crystallographic orientation plane of the semiconductor template. An epitaxial semiconductor layer is conformally formed on the porous semiconductor layer. The epitaxial semiconductor layer is released from the semiconductor template. Through-holes are selectively formed in the epitaxial semiconductor layer with openings between the front and back lateral surface planes of the epitaxial semiconductor layer to form a partially transparent three-dimensional thin-film semiconductor substrate.12-02-2010
20100294356INTEGRATED 3-DIMENSIONAL AND PLANAR METALLIZATION STRUCTURE FOR THIN FILM SOLAR CELLS - A method operable to produce integrated 3-dimension and planar metallization structure for thin film solar cells is provided. This method involves depositing a thin film on a template mask, the template mask having both substantially flat and textured areas. The thin film is then released from the template mask. Emitters are formed on the thin film. Finally, metallization of the substantially flat areas takes place.11-25-2010
20100294333STRUCTURE AND METHOD FOR IMPROVING SOLAR CELL EFFICIENCY AND MECHANICAL STRENGTH - The present disclosure presents a three-dimensional thin film solar cell (3-D TFSC) substrate having enhanced mechanical strength, light trapping, and metal modulation coverage properties. The substrate includes a plurality of unit cells, which may or may not be different. Unit cells are defined as a small self-contained geometrical pattern which may be repeated. Each unit cell structure includes a wall enclosing a trench. Further, the unit cell includes an aperture having an aperture diameter. For the purposes of the present disclosure, the dimensions of interest include wall thickness, wall height, and aperture diameter. A pre-determined variation in these dimensions among unit cells across the substrate produces specific advantages.11-25-2010
20100279494Method For Releasing a Thin-Film Substrate - The present disclosure relates to methods for selectively etching a porous semiconductor layer to separate a thin-film semiconductor substrate (TFSS) having planar or three-dimensional features from a corresponding semiconductor template. The method involves forming a conformal sacrificial porous semiconductor layer on a template. Next, a conformal thin film silicon substrate is formed on top of the porous silicon layer. The middle porous silicon layer is then selectively etched to separate the TFSS and semiconductor template. The disclosed advanced etching chemistries and etching methods achieve selective etching with minimal damage to the TFSS and template.11-04-2010
20100267245HIGH EFFICIENCY EPITAXIAL CHEMICAL VAPOR DEPOSITION (CVD) REACTOR - The present disclosure presents a chemical vapor deposition reactor having improved chemical utilization and cost efficiency. The wafer susceptors of the present disclosure may be used in a stackable configuration for processing many wafers simultaneously. The reactors of the present disclosure may be reverse-flow depletion mode reactors, which tends to provide uniform film thickness and a high degree of chemical utilization.10-21-2010
20100267186METHOD FOR FABRICATING A THREE-DIMENSIONAL THIN-FILM SEMICONDUCTOR SUBSTRATE FROM A TEMPLATE - A method is presented for fabrication of a three-dimensional thin-film solar cell semiconductor substrate from a template. A semiconductor template having three-dimensional surface features comprising a top surfaces substantially aligned along a (10-21-2010
20100203711Trench Formation Method For Releasing A Thin-Film Substrate From A Reusable Semiconductor Template - A method is provided for fabricating a thin-film semiconductor substrate by forming a porous semiconductor layer conformally on a reusable semiconductor template and then forming a thin-film semiconductor substrate conformally on the porous semiconductor layer. An inner trench having a depth less than the thickness of the thin-film semiconductor substrate is formed on the thin-film semiconductor substrate. An outer trench providing access to the porous semiconductor layer is formed on the thin-film semiconductor substrate and is positioned between the inner trench and the edge of the thin-film semiconductor substrate. The thin-film semiconductor substrate is then released from the reusable semiconductor template.08-12-2010
20100175752High-Efficiency Thin-Film Solar Cells - A three-dimensional solar cell comprising a semiconductor substrate with an inverted pyramidal cavity, emitter metallization regions on ridges on the surface of the semiconductor substrate which define an opening of the inverted pyramidal cavity, and base metallization regions on a region which form the apex of the inverted pyramidal cavity. A method for fabricating a three-dimensional thin-film solar cell from an inverted pyramidal three-dimensional thin-film silicon substrate by doping ridges on the surface of the semiconductor substrate which define an opening of an inverted pyramidal cavity on the substrate to form an emitter region, and doping a region which forms the apex of the inverted pyramidal cavity to form a base region. Adding a surface passivation layer to the surface of the substrate. Selectively etching the passivation layer from the emitter region and base region. Then concurrently metallizing the emitter region and base region.07-15-2010
20100148319Substrates for High-Efficiency Thin-Film Solar Cells Based on Crystalline Templates - A three-dimensional thin-film semiconductor substrate having a plurality of ridges on the surface of the semiconductor substrate which define a base opening of an inverted pyramidal cavity and walls defining the inverted pyramidal cavity is provided. And a fabrication method for a 3-D TFSS by forming a porous silicon layer on a silicon template having a top surface aligned along a (100) crystallographic orientation plane of the silicon template and a plurality of walls each aligned along a (111) crystallographic orientation plane of the silicon template and forming an inverted pyramidal cavity. The porous silicon layer forms substantially conformal on the silicon template. Then forming a substantially conformal epitaxial silicon layer on the porous silicon layer and releasing the epitaxial silicon layer from the silicon template.06-17-2010
20100148318Three-Dimensional Semiconductor Template for Making High Efficiency Thin-Film Solar Cells - A semiconductor template having a top surface aligned along a (100) crystallographic orientation plane and an inverted pyramidal cavity defined by a plurality of walls aligned along a (111) crystallographic orientation plane. A method for manufacturing a semiconductor template by selectively removing silicon material from a silicon template to form a top surface aligned along a (100) crystallographic plane of the silicon template and a plurality of walls defining an inverted pyramidal cavity each aligned along a (111) crystallographic plane of the silicon template.06-17-2010
20100116316TRUNCATED PYRAMID STRUCTURES FOR SEE-THROUGH SOLAR CELLS - The present disclosure presents a partially-transparent (see-through) three-dimensional thin film solar cell (3-D TFSC) substrate. The substrate includes a plurality of unit cells. Each unit cell structure has the shape of a truncated pyramid, and its parameters may be varied to allow a desired portion of sunlight to pass through.05-13-2010
20090042320METHODS FOR LIQUID TRANSFER COATING OF THREE-DIMENSIONAL SUBSTRATES - Methods here disclosed provide for selectively coating the top surfaces or ridges of a 3-D substrate while avoiding liquid coating material wicking into micro cavities on 3-D substrates. The substrate includes holes formed in a three-dimensional substrate by forming a sacrificial layer on a template. The template includes a template substrate with posts and trenches between the posts. The steps include subsequently depositing a semiconductor layer and selectively etching the sacrificial layer. Then, the steps include releasing the semiconductor layer from the template and coating the 3-D substrate using a liquid transfer coating step for applying a liquid coating material to a surface of the 3-D substrate. The method may further include coating the 3-D substrate by selectively coating the top ridges or surfaces of the substrate. Additional features may include filling the micro cavities of the substrate with a filling material, removing the filling material to expose only the substrate surfaces to be coated, coating the substrate with a layer of liquid coating material, and removing said filling material from the micro cavities of the substrate.02-12-2009

Patent applications by SOLEXEL, INC.

Website © 2016 Advameg, Inc.