SEERSTONE LLC Patent applications |
Patent application number | Title | Published |
20160039677 | DIRECT COMBUSTION HEATING - An electrode includes a network of compressed interconnected nanostructured carbon particles such as carbon nanotubes. Some nanostructured carbon particles of the network are in electrical contact with adjacent nanostructured carbon particles. Electrodes may be used in various devices, such as capacitors, electric arc furnaces, batteries, etc. A method of producing an electrode includes confining a mass of nanostructured carbon particles and densifying the confined mass of nanostructured carbon particles to form a cohesive body with sufficient contacts between adjacent nanostructured carbon particles to provide an electrical path between at least two remote points of the cohesive body. The electrodes may be sintered to induce covalent bonding between the nanostructured carbon particles at contact points to further enhance the mechanical and electrical properties of the electrodes. | 02-11-2016 |
20160031710 | CARBON OXIDE REDUCTION WITH INTERMETALLIC AND CARBIDE CATALYSTS - A method of reducing a gaseous carbon oxide includes reacting a carbon oxide with a gaseous reducing agent in the presence of an intermetallic or carbide catalyst. The reaction proceeds under conditions adapted to produce solid carbon of various allotropes and morphologies, the selective formation of which can be controlled by means of controlling reaction gas composition and reaction conditions including temperature and pressure. A method for utilizing an intermetallic or carbide catalyst in a reactor includes placing the catalyst in a suitable reactor and flowing reaction gases comprising a carbon oxide with at least one gaseous reducing agent through the reactor where, in the presence of the catalyst, at least a portion of the carbon in the carbon oxide is converted to solid carbon and a tail gas mixture containing water vapor. | 02-04-2016 |
20160030926 | Compositions of Matter Comprising Nanocatalyst Structures, Systems Comprising Nanocatalyst Structures, and Related Methods - Methods of forming and producing nanocatalysts mounted on or within nanofiber or nanotube structures are disclosed. The mounting structures prevent the nanocatalysts from agglomerating and retain the nanocatalysts in a reactor. The nanocatalysts may be grown over a bulk catalyst material without treating the nanotubes after forming the nanotubes. The resulting nanocatalysts remain catalytically active immediately after formation of the mounting supports and are effective in a wide variety of reactions. Systems are disclosed for reacting reaction gases to form mounting structures with at least one embedded nanocatalyst in the growth tips. The mounting structures may catalyze a different, subsequent reaction than the nanofiber formation reaction, which may take place in the same or a different reactor. Methods of forming a mass of nanocatalysts and catalyzing a reaction with the mass of nanocatalysts are disclosed. Systems are disclosed for forming a mass of nanocatalysts and catalyzing another reaction with the mass of nanocatalysts. | 02-04-2016 |
20160030925 | METHODS AND SYSTEMS FOR FORMING CATALYTIC ASSEMBLIES, AND RELATED CATALYTIC ASSEMBLIES - A method of forming a catalytic assembly comprises forming a support structure comprising at least one surface comprising at least one catalyst material. At least one mounted nanocatalyst is formed on the at least one support structure, the at least one mounted nanocatalyst comprising a nanoparticle of the at least one catalyst material bound to a nanostructure. A catalytic assembly and system for producing a catalytic assembly are also described. | 02-04-2016 |
20160027934 | ELECTRODES COMPRISING NANOSTRUCTURED CARBON - An electrode includes a network of compressed interconnected nanostructured carbon particles such as carbon nanotubes. Some nanostructured carbon particles of the network are in electrical contact with adjacent nanostructured carbon particles. Electrodes may be used in various devices, such as capacitors, electric arc furnaces, batteries, etc. A method of producing an electrode includes confining a mass of nanostructured carbon particles and densifying the confined mass of nanostructured carbon particles to form a cohesive body with sufficient contacts between adjacent nanostructured carbon particles to provide an electrical path between at least two remote points of the cohesive body. The electrodes may be sintered to induce covalent bonding between the nanostructured carbon particles at contact points to further enhance the mechanical and electrical properties of the electrodes. | 01-28-2016 |
20160023902 | SYSTEMS FOR PRODUCING SOLID CARBON BY REDUCING CARBON OXIDES - An apparatus for producing solid carbon and water by reducing carbon oxides with a reducing agent in the presence of a catalyst includes a reactor configured to receive reaction gas comprising at least one carbon oxide, at least one reducing agent, and water. The apparatus includes at least one mixing means configured to mix the reagents to form a combined feed, a first heat exchanger configured to heat the combined feed, at least one heater configured to further heat the combined feed, and a reaction vessel configured to receive the combined feed. The reaction vessel is configured to contain a catalyst, to maintain predetermined reaction conditions of temperature and pressure, and has an output configured to deliver a tail gas to the first heat exchanger. The system also includes a product separator, a water separation unit, and a product packaging unit. | 01-28-2016 |
20160016862 | Methods and Systems for Forming a Hydrocarbon Product - A method of forming a hydrocarbon product comprises reacting at least one carbon oxide and at least one lower hydrocarbon in the presence of a plurality of catalyst-containing structures each comprising a nanofiber bound to at least one catalyst nanoparticle to form at least one higher hydrocarbon. Other methods of forming a hydrocarbon are also disclosed, as is a system forming a hydrocarbon product. | 01-21-2016 |
20160016800 | REACTORS, SYSTEMS, AND METHODS FOR FORMING SOLID PRODUCTS - A reactor includes a vessel, a gas inlet, a solid outlet, a catalyst support configured to at least partially retain a catalyst material and allow a tail gas to pass therethrough, and a tail gas outlet. The gas inlet is in fluid communication with the solid outlet. A system for producing a solid product includes a reactor, a compressor, a heater, a make-up reactive gas inlet, and a solids discharge means for removing the solid product from the solid outlet of the reactor. Methods of forming solid products include providing a catalyst material in a vessel having a porous catalyst support, delivering a reactive gas to the vessel, reacting the reactive gas to form a solid product and a tail gas in the vessel, passing the tail gas through a portion of the catalyst material to separate the solid product from the tail gas, and removing the solid product. | 01-21-2016 |
20160016794 | METHODS OF PRODUCING HYDROGEN AND SOLID CARBON - A method for producing hydrogen, includes heating a process feed gas stream, flowing the process feed gas stream into a first reaction zone, flowing the intermediate gas stream into a second reaction zone, removing the solid carbon product from the second reaction zone, removing the tail gas stream from the second reaction zone, and removing hydrogen from the tail gas stream. The process gas stream includes methane and steam. The first reaction zone contains a first catalyst, and at least a portion of the process feed gas stream is converted into an intermediate gas stream in the first reaction zone. The second reaction zone contains a second catalyst, and at least a portion of the intermediate gas stream is converted into a tail gas stream and a solid carbon product in the second reaction zone. | 01-21-2016 |
20150078982 | METHODS AND SYSTEMS FOR CAPTURING AND SEQUESTERING CARBON AND FOR REDUCING THE MASS OF CARBON OXIDES IN A WASTE GAS STREAM - Methods of capturing or sequestering carbon include introducing a reaction gas stream to a catalytic converter to convert a portion of the carbon in the carbon oxide to solid carbon and a tail gas stream containing water vapor, removing the solid carbon from the catalytic converter for use, disposal, or storage, and recycling at least a portion of the tail gas stream to the catalytic converter. Methods may also include removing a portion of the water from the tail gas stream. The tail gas stream includes a portion of the initial process gas stream and at least a portion of water vapor produced in the catalytic converter. Methods may also include removing water vapor from various streams and reacting the carbon oxide with a reducing agent in the presence of a catalyst. Systems for capturing or sequestering carbon from a gaseous source containing carbon oxides are also described. | 03-19-2015 |
20150078981 | METHODS FOR USING METAL CATALYSTS IN CARBON OXIDE CATALYTIC CONVERTERS - A method of reducing a gaseous carbon oxide includes reacting a carbon oxide with a gaseous reducing agent in the presence of a steel catalyst. The reaction proceeds under conditions adapted to produce solid carbon of various allotropes and morphologies the selective formation of which can be controlled by means of controlling reaction gas composition and reaction conditions including temperature and pressure. A method for utilizing a steel catalyst for reducing carbon oxides includes placing the steel catalyst in a suitable reactor and flowing reaction gases comprising a carbon oxide with at least one gaseous reducing agent through the reactor where, in the presence of the steel catalyst, at least a portion of the carbon in the carbon oxide is converted to solid carbon and a tail gas mixture containing water vapor. | 03-19-2015 |
20150064097 | CARBON NANOTUBES HAVING A BIMODAL SIZE DISTRIBUTION - A composition comprising a mixture of carbon nanotubes having a bi-modal size distribution are produced by reducing carbon oxides with a reducing agent in the presence of a catalyst. The resulting mixture of nanotubes include a primary population of multiwall carbon nanotubes having characteristic diameters greater than 40 nanometers, and a secondary population of what are apparently single wall nanotubes with characteristic diameters of less than 30 nanometers. The resulting mixture may also contain one or more other allotropes and morphologies of carbon in various proportions. The mixture of carbon nanotubes has specific apparently uncommon properties, including unusual resistivity and density | 03-05-2015 |
20150064096 | METHODS AND SYSTEMS FOR THERMAL ENERGY RECOVERY FROM PRODUCTION OF SOLID CARBON MATERIALS BY REDUCING CARBON OXIDES - A method of thermal energy recovery from production of at least one solid carbon material comprises reacting at least one carbon oxide material and at least one gaseous reducing material at a temperature of greater than or equal to about | 03-05-2015 |
20150064092 | METHODS AND REACTORS FOR PRODUCING SOLID CARBON NANOTUBES, SOLID CARBON CLUSTERS, AND FORESTS - Methods of producing fibrous solid carbon forests include reacting carbon oxides with gaseous reducing agents in the presence of a catalyst having a predetermined grain size to cause growth of fibrous solid carbon forests upon a surface of the metal. The fibrous solid carbon forests are substantially perpendicular to the surface of the metal thus creating the “forests”. A bi-modal forest composition of matter is described in which a primary distribution of fibrous solid carbon comprises the forest and a secondary distribution of fibrous solid carbon is entangled with the primary distribution. A reactor includes a catalyst, a means for facilitating the reduction of a carbon oxide to form solid carbon forests on a surface of the catalyst, and a means for removing the solid carbon forest from the surface of the metal catalyst. | 03-05-2015 |
20140141248 | METHOD FOR PRODUCING SOLID CARBON BY REDUCING CARBON OXIDES - A method for production of various morphologies of solid carbon product by reducing carbon oxides with a reducing agent in the presence of a catalyst. The carbon oxides are typically either carbon monoxide or carbon dioxide. The reducing agent is typically either a hydrocarbon gas or hydrogen. The desired morphology of the solid carbon product may be controlled by the specific catalysts, reaction conditions, and optional additives used in the reduction reaction. The resulting solid carbon products have many commercial applications. | 05-22-2014 |