LEXTAR ELECTRONICS CORP. Patent applications |
Patent application number | Title | Published |
20140186981 | LIGHT EMITTING DIODE AND FABRICATION METHOD THEREOF - A fabrication method of a light-emitting diode including forming an epitaxial layer on a first substrate; forming a metal pad and a stress release ring on the epitaxial layer, wherein the stress release ring surrounds the metal pad; performing a substrate replacement process to transfer the epitaxial layer, the metal pad, and the stress release ring onto a second substrate, wherein the metal pad and the stress release ring are disposed between the epitaxial layer and the second substrate; patterning the epitaxial layer to expose a portion of the stress release ring; and removing the stress release ring to suspend a portion of the epitaxial layer. Moreover, a light emitting diode is provided. | 07-03-2014 |
20130279198 | LIGHT MODULE AND LIGHT GUIDE DEVICE THEREOF - A light guide device includes N+1 light guide plates and N linear plane splitters. The light guide plates include a light outlet face, a light guiding face and a reflection face. The volume of the light guide device is defined by the light outlet face opposite to the light guiding face. The light guiding face has a plurality of first microstructures for diverting the light. The reflection face extends from the light outlet face toward a splitting portion. The linear plane splitters have a first and a second splitting portion. The first and second splitting portions of the i | 10-24-2013 |
20130256722 | LIGHT EMITTED DIODE - The present invention relates to a light emitted diode (LED). The LED includes a metal mirror, a bonding substrate, a distributed bragg reflector (DBR), a buffer layer, and a LED epitaxial structure. The bonding substrate is arranged under the metal mirror. The DBR is arranged on the metal mirror. The buffer layer is arranged on the DBR. The LED epitaxial structure is arranged on the buffer layer. | 10-03-2013 |
20130242570 | LIGHT-EMITTING DEVICE - A light-emitting device includes a lower housing, a supporting frame, a light-emitting component, and an upper housing. The lower housing has a capacious recess and a pair of first fastening parts. The capacious recess is located between the first fastening parts. The supporting frame is disposed in the capacious recess. The light-emitting component is disposed on the supporting frame. The upper housing has a pair of second fastening parts. The second fastening parts and the first fastening parts are fastened each other, so that the upper housing covering the supporting frame and the light-emitting component is combined with the lower housing. | 09-19-2013 |
20130200814 | LED LIGHTING APPARATUS AND DIMMING METHOD THEREOF - An LED lighting apparatus and a dimming method thereof are disclosed. The LED lighting apparatus is coupled to a power source through a power switch. The method includes providing a first lighting unit and a second lighting unit; detecting whether or not the power switch has been turned on; and gradually adjusting a light mixing ratio between the first lighting unit and the second lighting unit according to a turn-on duration of the power switch and storing a color temperature value, accordingly. | 08-08-2013 |
20130200408 | SOLID-STATE LIGHT EMITTING DEVICE - An exemplary embodiment of the present disclosure provides a solid-state light emitting device. The solid-state light emitting device includes a stair-type bowl, a plurality of light emitting chips, and an encapsulation glue. The stair-type bowl includes a base and a ring stair structure. The ring stair structure includes a plurality of ring tread surfaces and a plurality of ring riser surfaces connected to the ring tread surfaces. The ring stair structure is connected to the base. The base has a bottom surface. The ring stair structure surrounds the bottom surface and protrudes from the bottom surface. The light emitting chips are respectively disposed above the ring tread surfaces and the bottom surfaces. The stair-type bowl is filled with the encapsulation glue. The encapsulation glue covers the light-emitting chips. | 08-08-2013 |
20130176718 | LUMINOUS CIRCUIT AND LUMINOUS DEVICE HAVING THE SAME - A luminous circuit and a luminous device having the same are provided. The luminous circuit may include a first conducting wire and a second conducting wire connected to a positive terminal and a negative terminal of a power supply, respectively. The luminous circuit may further include N light-emitting circuits electrically and sequentially coupled between the first conducting wire and the second conducting wire in a parallel connection fashion beginning from a location in proximity of the power supply. Each of the light-emitting circuits corresponds to a light-emitting element, and jth light-emitting element is better than ith light-emitting element in lighting efficiency, wherein 1≦i07-11-2013 | |
20130175670 | ZENER DIODE STRUCTURE AND MANUFACTURING METHOD THEREOF - An exemplary embodiment illustrates a zener diode structure, wherein the zener diode structure includes a first-type semiconductor layer, a second-type semiconductor layer, a first electrode, a second electrode, and an insulation layer. The second-type semiconductor layer is disposed in a designated area in the first-type semiconductor layer. The first electrode is disposed on the bottom side of the first-type semiconductor layer. The second electrode is disposed above the first-type and the second-type semiconductor layers in corresponding to the central area of the second-type semiconductor layer. The insulation layer is disposed above the first-type and the second-type semiconductor layers surrounding the second electrode. The disclosed zener structure having the insulation layer can reduce the short circuit issue resulting from overflow of an adhesive material during the zener diode packaging process. | 07-11-2013 |
20130168705 | SOLID-STATE LIGHT-EMITTING DEVICE AND SOLID-STATE LIGHT-EMITTING PACKAGE THEREOF - A solid-state light-emitting package includes a leadframe, a light-emitting chip, and a sealant. The leadframe includes a first electrode and a second electrode. The first electrode has at least one first contact end, and the second electrode has at least one second contact end. The light-emitting chip is electrically connected to the first electrode and the second electrode and is disposed between the first contact end and the second contact end. The sealant covers the leadframe and the light-emitting chip and has a first surface and a second surface. The first surface is the light output surface for the light-emitting chip. The first electrode and the second electrode are bent toward the first surface, where the first contact end and the second contact end are exposed by the first surface. | 07-04-2013 |
20130162147 | PLANT ILLUMINATION APPARATUS - A plant illumination apparatus includes a light source module including a first light source and a second light source generating lights having different wavelengths, an environment-detecting module detecting an external environment to obtain a real-time environment parameter, and a control module connected to the light source module and the environment-detecting module. The control module includes a processor unit and a storage unit storing a database of plant growing environment parameters. The processor unit loads at least one preset growing environment parameter corresponding to a plant growth timing from the database of plant growing environment parameters, and compares the preset growing environment parameter with the real-time environment parameter to output at least one comparison result. The processor unit adjusts the first light source and the second light source according to the comparison result, so that an adjusted environment parameter matches the preset growing environment parameter. | 06-27-2013 |
20130155561 | OVER VOLTAGE PROTECTION CIRCUIT AND DRIVER CIRCUIT USING THE SAME - An over voltage protection circuit, adapted for placing between a power pin of a chip and a power terminal is provided. The over voltage protection circuit includes a voltage detection unit, a current limiting component, and a switch component. The voltage detection unit is coupled between the power terminal and a ground, for outputting a setting voltage according to the voltage level at the power terminal. The current limiting component is coupled between the power terminal and the power pin of the chip. The switch component is coupled between the power pin of the chip and the ground, wherein the switch component is further coupled to the voltage detection unit and controlled by the setting voltage. When the voltage level at the power terminal is higher than a first predetermined value, the switch component conducts to cut off voltage received by the chip. | 06-20-2013 |
20130032776 | LIGHT EMITTING DIODE STRUCTURE AND MANUFACTURING METHOD THEREOF - A light emitting diode structure and a manufacturing method thereof are disclosed. The structure includes a substrate, an N type semiconductor layer, and active layer, a P type semiconductor layer, a current diffusion layer, and a metal electrode. The metal ions of the P type semiconductor layer may bond with hydrogen after process thermal annealing, and metal hydride may be generated. The metal hydride may be directly formed on the surface of the P type semiconductor layer and may be used as the current blocking layer. Since the metal hydride may be directly formed on the surface of the P type semiconductor layer, its structure is flat, which resolve the problem having the electrodes peeled off from the solder wire. | 02-07-2013 |
20130029476 | DICING PROCESS AND DICING APPARATUS - A dicing process is provided for cutting a wafer along a plurality of predetermined scribe lines into a plurality of dies that are releasably adhered to a release film. The dicing process includes: (a) disposing a wafer-breaking carrier on a supporting device, the wafer-breaking carrier having a chipping unit; (b) disposing the wafer above the supporting device such that the chipping unit is at a position corresponding to the scribe lines; and (c) adhering a release surface of the release film to the wafer by applying a force to the release film to contact the chipping unit of the wafer-breaking carrier with the wafer, such that the wafer is split along the scribe lines into the dies. | 01-31-2013 |
20130026491 | LED STRUCTURE AND METHOD FOR MANUFACTURING THEREOF - The present invention discloses a LED structure and a method for manufacturing the LED structure. The LED structure includes a substrate, a reflection layer, a first conducting layer, a light emitting layer, and a second conducting layer. The substrate has a plurality of grooves, and the reflection layer is disposed inside the plurality of grooves. The reflection layer is formed as a reflection block inside each of the grooves. The first conducting layer is disposed on the substrate, that is, the reflection layer is disposed between the first conducting layer and the substrate. The light emitting layer and the second conducting layer are sequentially disposed on the first conducting layer. The light emitting layer generates light when a current pass through the light emitting layer. Accordingly, the light generated by the light emitting layer can be emitted to the same side of the LED structure. | 01-31-2013 |
20120228659 | LIGHT-EMITTING DIODE WITH METAL STRUCTURE AND HEAT SINK - A light-emitting diode has a metal structure, a light-emitting chip, and a bowl structure. The metal structure has a platform and a heat sink. The platform has a top face, a first side, and a second side opposite to the first side. A first reflector and a second reflector respectively extend from the first side and the second side. The heat sink extends below the top face and has a drop from the bottom surfaces of the first reflector and the second reflector. The light-emitting chip is disposed on the top face. The bowl structure covers the outer surface of the metal structure and shields the bottom surfaces of the first reflector and the second reflector. A thermal dispassion surface of the heat sink is exposed from the bowl structure. An inner surface of bowl wall has a plurality of reflection structures to promote the light extraction efficiency. | 09-13-2012 |
20120195049 | LAMP - A lamp module is provided, including an insulative member, a cover lens connected to the insulative member, and a light module disposed between the insulative member and the cover lens. The light module can emit light through the cover lens for illumination. | 08-02-2012 |
20120193664 | SEMICONDUCTOR LIGHT EMITTING STRUCTURE - A semiconductor light emitting structure includes a substrate, a first semiconductor layer, an active layer, a second semiconductor layer and two electrodes. The substrate has a top surface and a bottom surface. The top surface is not parallel to the bottom light emitting surface of the active layer. The first semiconductor layer is disposed on the top surface. The active layer is disposed on at least one portion of the first semiconductor layer. The second semiconductor layer is disposed on the active layer. In an embodiment, the top surface can be realized by an oblique surface, a curved surface or a zigzag surface. | 08-02-2012 |
20120193663 | LIGHT EMITTING DIODE AND FABRICATION METHOD THEREOF - A fabrication method of a light-emitting diode including forming an epitaxial layer on a first substrate; forming a metal pad and a stress release ring on the epitaxial layer, wherein the stress release ring surrounds the metal pad; performing a substrate replacement process to transfer the epitaxial layer, the metal pad, and the stress release ring onto a second substrate, wherein the metal pad and the stress release ring are disposed between the epitaxial layer and the second substrate; patterning the epitaxial layer to expose a portion of the stress release ring; and removing the stress release ring to suspend a portion of the epitaxial layer. Moreover, a light emitting diode is provided. | 08-02-2012 |
20120164768 | Light-Emitting Diode Package and Wafer-Level Packaging Process of Light-Emitting Diode - A wafer-level packaging process of a light-emitting diode is provided. First, a semiconductor stacked layer is formed on a growth substrate. A plurality of barrier patterns and a plurality of reflective layers are then formed on the semiconductor stacked layer, wherein each reflective layer is surrounded by one of the barrier patterns. A first bonding layer is then formed on the semiconductor stacked layer to cover the barrier patterns and the reflective layers. Thereafter, a carrying substrate having a plurality of second bonding layers and a plurality of conductive plugs electrically insulated from each other is provided, and the first bonding layer is bonded with the second bonding layer. The semiconductor stacked layer is then separated from the growth substrate. Next, the semiconductor stacked layer is patterned to form a plurality of semiconductor stacked patterns. Next, each semiconductor stacked pattern is electrically connected to the conductive plug. | 06-28-2012 |
20120160227 | WAFER SPLITTING APPARATUS AND WAFER SPLITTING PROCESS - A wafer splitting apparatus suitable for splitting a plurality of chip regions of a wafer into a plurality of independent dice is provided. The wafer splitting apparatus includes a splitting knife body and at least a vibrating hammer. The splitting knife body is disposed at one side of the wafer, and has a first surface facing the wafer. The first surface stretches over a plurality of chip regions in all extending directions of the first surface passing through a center of the first surface. The splitting knife body is disposed between the wafer and the vibrating hammer, and the vibrating hammer is suitable for knocking the splitting knife body in a direction toward the wafer to make the splitting knife body move toward the wafer, so as to split the chip regions of the wafer into a plurality of independent dice. A wafer splitting process is also provided. | 06-28-2012 |
20120140059 | INSPECTION MACHINE, INSPECTING METHOD AND INSPECTING SYSTEM - An inspection machine capable of inspecting optical property and electrical property of a light emitting device is provided. The inspection machine includes a substrate table, a probe mechanism, a heating apparatus, a cooling apparatus, an image-sensing apparatus, a temperature-sensing apparatus and a moving mechanism. The probe mechanism is capable of moving toward the light emitting device to contact therewith. The heating apparatus is capable of heating the light emitting device within a first temperature range. The cooling apparatus is capable of cooling the light emitting device within a second temperature range. The image-sensing apparatus senses a light emitting image provided from the light emitting device. The temperature-sensing apparatus senses the present temperature of the light emitting device. The image-sensing apparatus is disposed on the moving mechanism. The moving mechanism is capable of moving the image-sensing apparatus. An inspecting method and an inspecting system for the inspection machine are also provided. | 06-07-2012 |
20120120668 | LIGHT EMITTING DIODE - A light emitting diode includes a casing, a frame in the casing, one or a plurality of light emitting chip, and a packaging polymer; the frame being provided 5 with a placement area to receive placement of the light emitting chip, and an electrode area separated from the placement area; a sectional fall being disposed at where appropriately on the placement area to increase contact area between the frame and the casing and improve the relative stability between the casing and the frame. | 05-17-2012 |
20120022687 | METHOD FOR TRANSFERRING CHIP AND APPARATUS FOR TRANSFERRING CHIP - A method for transferring chips is provided for fixing one of the chips on a blue tape without sorting. A blue tape, a plurality of chips disposed thereon and a mapping data are provided, wherein the chips are disposed on the same blue tape, belong to the same wafer, and belong to a plurality of specifications. The specifications include a first specification and a second specification. The mapping data include the specifications the chips belonging to and the positions of the chips relative to the blue tape. According the mapping data, the chips belonging to the first specification are moved from the blue tape and fixed to a package carrier corresponding to the first specification. According the mapping data, the chips belonging to the second specification are moved from the blue tape and fixed to a package carrier corresponding to the second specification. A chip transferring apparatus is also provided. | 01-26-2012 |
20110318858 | METHOD FOR FABRICATING LIGHT EMITTING DIODE CHIP - A method for fabricating a light emitting diode chip is provided. Firstly, a semiconductor device layer is formed on a substrate. Afterwards, a current spreading layer is formed on a portion of the semiconductor device layer. Then, a current blocking layer and a passivation layer are formed on a portion of the semiconductor device layer not covered by the current spreading layer. Finally, a first electrode is formed on the current blocking layer and the current spreading layer. Moreover, a second electrode is formed on the semiconductor device layer. | 12-29-2011 |
20110318855 | METHOD FOR FABRICATING LIGHT EMITTING DIODE CHIP - A method for fabricating a light emitting diode chip is provided. Firstly, a semiconductor device layer is formed on a substrate. Afterwards, a current spreading layer is formed on a portion of the semiconductor device layer. Then, a current blocking layer and a passivation layer are formed on a portion of the semiconductor device layer not covered by the current spreading layer. Finally, a first electrode is formed on the current blocking layer and the current spreading layer. Moreover, a second electrode is formed on the semiconductor device layer. | 12-29-2011 |
20110284911 | LIGHT EMITTING DIODE CHIP AND MANUFACTURING METHOD THEREOF - A light emitting diode (LED) chip includes a substrate, a light emitting semiconductor device, a first electrode, and a second electrode. The light emitting semiconductor device has a recess and includes a first portion and a second portion. The first portion is disposed on the substrate and located between the second portion and the substrate. The recess penetrates the second portion and exposes an exposed region of the first portion. The transverse sectional area of the first portion and the transverse sectional area of the second portion increase along a direction away from the substrate. The first electrode is disposed on the exposed region of the first portion and electrically connected to the first portion. The second electrode is disposed on and electrically connected to the second portion. | 11-24-2011 |
20110241064 | LIGHT EMITTING DIODE - A LED chip including a substrate, a semiconductor device layer, a current blocking layer, a current spread layer, a first electrode and a second electrode is provided. The semiconductor device layer is disposed on the substrate. The current blocking layer is disposed on a part of the semiconductor device layer and includes a current blocking segment and a current distribution adjusting segment. The current spread layer is disposed on a part of the semiconductor device layer and covers the current blocking layer. The first electrode is disposed on the current spread layer, wherein a part of the current blocking segment is overlapped with the first electrode. Contours of the current blocking segment and the first electrode are similar figures. Contour of the first electrode and is within contour of the current blocking segment. The current distribution adjusting segment is not overlapped with the first electrode. | 10-06-2011 |
20110233594 | LIGHT-EMITTING DIODE PACKAGE - An LED package including a lead-frame, at least an LED chip and an encapsulant is provided. The lead-frame has a roughened surface, the LED chip is disposed on the lead-frame and electrically connected to the lead-frame, and the roughened surface is suitable to scatter the light emitted from the LED chip. In addition, the encapsulant encapsulates the LED chip and a part of the lead-frame, and the rest part of the lead-frame is exposed out of the encapsulant. | 09-29-2011 |
20110165706 | Method for Fabricating LED Chip Comprising Reduced Mask Count and Lift-Off Processing - A method for fabricating a light emitting diode chip is provided. In the method, a half-tone mask process, a gray-tone mask process or a multi-tone mask process is applied and combined with a lift-off process to further reduce process steps of the light emitting diode chip. In the present invention, some components may also be simultaneously formed by an identical process to reduce the process steps of the light emitting diode chip. Consequently, the fabricating method of the light emitting diode provided in the present invention reduces the cost and time for the fabrication of the light emitting diode. | 07-07-2011 |
20110165705 | Method for Fabricating LED Chip Comprising Reduced Mask Count and Lift-Off Processing - A method for fabricating a light emitting diode chip is provided. In the method, a half-tone mask process, a gray-tone mask process or a multi-tone mask process is applied and combined with a lift-off process to further reduce process steps of the light emitting diode chip. In the present invention, some components may also be simultaneously formed by an identical process to reduce the process steps of the light emitting diode chip. Consequently, the fabricating method of the light emitting diode provided in the present invention reduces the cost and time for the fabrication of the light emitting diode. | 07-07-2011 |
20110159623 | Method for Fabricating LED Chip Comprising Reduced Mask Count and Lift-Off Processing - A method for fabricating a light emitting diode chip is provided. In the method, a half-tone mask process, a gray-tone mask process or a multi-tone mask process is applied and combined with a lift-off process to further reduce process steps of the light emitting diode chip. In the present invention, some components may also be simultaneously formed by an identical process to reduce the process steps of the light emitting diode chip. Consequently, the fabricating method of the light emitting diode provided in the present invention reduces the cost and time for the fabrication of the light emitting diode. | 06-30-2011 |
20110159614 | Method for Fabricating LED Chip Comprising Reduced Mask Count and Lift-Off Processing - A method for fabricating a light emitting diode chip is provided. In the method, a half-tone mask process, a gray-tone mask process or a multi-tone mask process is applied and combined with a lift-off process to further reduce process steps of the light emitting diode chip. In the present invention, some components may also be simultaneously formed by an identical process to reduce the process steps of the light emitting diode chip. Consequently, the fabricating method of the light emitting diode provided in the present invention reduces the cost and time for the fabrication of the light emitting diode. | 06-30-2011 |
20110159613 | Method for Fabricating LED Chip Comprising Reduced Mask Count and Lift-Off Processing - A method for fabricating a light emitting diode chip is provided. In the method, a half-tone mask process, a gray-tone mask process or a multi-tone mask process is applied and combined with a lift-off process to further reduce process steps of the light emitting diode chip. In the present invention, some components may also be simultaneously formed by an identical process to reduce the process steps of the light emitting diode chip. Consequently, the fabricating method of the light emitting diode provided in the present invention reduces the cost and time for the fabrication of the light emitting diode. | 06-30-2011 |
20110159612 | Method for Fabricating LED Chip Comprising Reduced Mask Count and Lift-Off Processing - A method for fabricating a light emitting diode chip is provided. In the method, a half-tone mask process, a gray-tone mask process or a multi-tone mask process is applied and combined with a lift-off process to further reduce process steps of the light emitting diode chip. In the present invention, some components may also be simultaneously formed by an identical process to reduce the process steps of the light emitting diode chip. Consequently, the fabricating method of the light emitting diode provided in the present invention reduces the cost and time for the fabrication of the light emitting diode. | 06-30-2011 |
20110057207 | WHITE-LIGHT EMITTING DEVICE - An white-light emitting device including a carrier, light emitting diode (LED) chips, and a wavelength converting material is provided. The LED chips are disposed on and electrically connected to the carrier. An equivalent wavelength of the first light emitted from the LED chips and divided into groups is λ. A variation of peak wavelengths of the LED chips in one group is smaller than 5 nm. λ meets an equation: | 03-10-2011 |
20110045622 | FABRICATING METHOD OF LIGHT EMITTING DIODE CHIP - In a fabricating method of an LED, a first-type doped semiconductor material layer, a light emitting material layer, and a second-type doped semiconductor material layer are sequentially formed on a substrate. The first-type and second-type doped semiconductor material layers and the light emitting material layer are patterned to form a first-type doped semiconductor layer, an active layer, and a second-type doped semiconductor layer. The active layer is disposed on a portion of the first-type doped semiconductor layer. The second-type doped semiconductor layer is disposed on the active layer and has a first top surface. A wall structure is formed on the first-type doped semiconductor layer that is not covered by the active layer, and the wall structure surrounds the active layer and has a second top surface higher than the first top surface of the second-type doped semiconductor layer. Electrodes are formed on the first-type and second-type doped semiconductor layers. | 02-24-2011 |
20100285626 | FABRICATION METHOD OF LIGHT EMITTING DIODE - A fabrication method of light emitting diode is provided. A first type doped semiconductor layer is formed on a substrate. Subsequently, a light emitting layer is formed on the first type doped semiconductor layer. A process for forming the light emitting layer includes alternately forming a plurality of barrier layers and a plurality of quantum well layers on the first type doped semiconductor layer. The quantum well layers are formed at a growth temperature T | 11-11-2010 |
20100261299 | PACKAGING PROCESS OF LIGHT EMITTING DIODE - A packaging process of a light emitting diode (LED) is provided. First, an LED chip is bonded with a carrier to electrically connect to each other. After that, the carrier is heated to raise the temperature thereof. Next, an encapsulant is formed on the heated carrier by a dispensing process to encapsulate the LED chip, wherein the viscosity of the encapsulant before contacting the carrier is lower than that of the encapsulant after contacting the carrier. Thereafter, the encapsulant is cured. | 10-14-2010 |
20100258827 | LIGHT-EMITTING DIODE PACKAGE AND WAFER-LEVEL PACKAGING PROCESS OF LIGHT-EMITTING DIODE - A wafer-level packaging process of a light-emitting diode is provided. First, a semiconductor stacked layer is formed on a growth substrate. A plurality of barrier patterns and a plurality of reflective layers are then formed on the semiconductor stacked layer, wherein each reflective layer is surrounded by one of the barrier patterns. A first bonding layer is then formed on the semiconductor stacked layer to cover the barrier patterns and the reflective layers. Thereafter, a carrying substrate having a plurality of second bonding layers and a plurality of conductive plugs electrically insulated from each other is provided, and the first bonding layer is bonded with the second bonding layer. The semiconductor stacked layer is then separated from the growth substrate. Next, the semiconductor stacked layer is patterned to form a plurality of semiconductor stacked patterns. Next, each semiconductor stacked pattern is electrically connected to the conductive plug. | 10-14-2010 |
20100258818 | LIGHT EMITTING DIODE CHIP AND MANUFACTURING METHOD THEREOF - The present invention provides a manufacturing method of an LED chip. First, a device layer is formed on a growth substrate, wherein the device layer has a first surface connected to the growth substrate and a second surface. Next, a plurality of first trenches are formed on the second surface of the device layer. Then, a protection layer is formed on the side walls of the first trenches. After that, the second surface is bonded with a supporting substrate and the device layer is then separated from the growth substrate. Further, a plurality of second trenches corresponding to the first trenches are formed in the device layer to form a plurality of LEDs, wherein the second trenches extend from the first surface to the bottom portions of the first trenches. Furthermore, a plurality of electrodes are formed on the first surface of the device layer. | 10-14-2010 |
20100237367 | LIGHT EMITTING DIODE PACKAGE - A light emitting diode (LED) package includes a carrier, an LED chip, an encapsulant, a plurality of phosphor particles, and a plurality of anti-humidity particles. The LED chip is disposed on and electrically connected to the carrier. The encapsulant encapsulates the LED chip. The phosphor particles and the anti-humidity particles are distributed within the encapsulant. A first light emitted from the LED chip excites the phosphor particles to emit a second light. Some of the anti-humidity particles are adhered onto a surface of the phosphor particles, while the other anti-humidity particles are not adhered onto the surface of the phosphor particles. The anti-humidity particles absorb H | 09-23-2010 |
20100221494 | METHOD FOR FORMING SEMICONDUCTOR LAYER - A method for forming a semiconductor layer includes following steps. First, an epitaxial substrate having at least a first growth region and at least a second growth region is provided. An area ratio of C plane to R plane in the first growth region is greater than 52/48. An epitaxial process is then performed on the epitaxial substrate to form a semiconductor layer. During the epitaxial process, a semiconductor material is selectively grown on the first growth region, and then the semiconductor material is laterally overgrown on the second growth region and covers the same. | 09-02-2010 |
20100167434 | METHOD FOR FABRICATING LIGHT EMITTING DIODE CHIP - A method for fabricating a light emitting diode chip is provided. Firstly, a semiconductor device layer is formed on a substrate. Afterwards, a current spreading layer is formed on a portion of the semiconductor device layer. Then, a current blocking layer and a passivation layer are formed on a portion of the semiconductor device layer not covered by the current spreading layer. Finally, a first electrode is formed on the current blocking layer and the current spreading layer. Moreover, a second electrode is formed on the semiconductor device layer. | 07-01-2010 |
20100148189 | LIGHT EMITTING DIODE - A LED chip including a substrate, a semiconductor device layer, a current blocking layer, a current spread layer, a first electrode and a second electrode is provided. The semiconductor device layer is disposed on the substrate. The current blocking layer is disposed on a part of the semiconductor device layer and includes a current blocking segment and a current distribution adjusting segment. The current spread layer is disposed on a part of the semiconductor device layer and covers the current blocking layer. The first electrode is disposed on the current spread layer, wherein a part of the current blocking segment is overlapped with the first electrode. Contours of the current blocking segment and the first electrode are similar figures. Contour of the first electrode and is within contour of the current blocking segment. The current distribution adjusting segment is not overlapped with the first electrode. | 06-17-2010 |