Leco Corporation Patent applications |
Patent application number | Title | Published |
20160035558 | Multi-Reflecting Mass Spectrometer - To improve spatial and energy acceptance of multi-reflecting time-of-flight, open traps, and electrostatic trap analyzers, a novel ion mirror is disclosed. Incorporation of immersion lens between ion mirrors allows reaching the fifth order time per energy focusing simultaneously with the third order time per spatial focusing including energy-spatial cross terms. Preferably the analyzer has hollow cylindrical geometry for extended flight path. The time-of-flight analyzer preferably incorporates spatially modulated ion mirror field for isochronous ion focusing in the tangential direction. | 02-04-2016 |
20160035552 | Method and System for Tandem Mass Spectrometry - A method of data independent MS-MS analysis is disclosed. The method comprises ramping or stepping in small steps of a wide (at least 10 amu) parent mass window in a first parent selecting mass spectrometer (MS1), arranging rapid ion transfer through a collisional cell, either by axial gas flow or by an axial DC field or by a travelling RF wave, frequently pulsing an orthogonal accelerator with a string of time-encoded pulses, analyzing fragment ions in a multi-reflecting time-flight mass spectrometer, acquiring data in a data logging format, and decoding signal strings corresponding to the entire scan of parent masses, such that fragment spectra are formed based on time correlation between fragment and parent masses. Frequent pulsing is expected to recover parent and fragment time correlation with an accuracy of approximately 1 Th, in spite of using much wider mass window in the first MS. | 02-04-2016 |
20150279650 | Cylindrical Multi-Reflecting Time-of-Flight Mass Spectrometer - A method and apparatus are disclosed for improving resolution and duty-cycle of a multi-reflecting TOF mass spectrometer (MR-TOF) by arranging a cylindrical analyzer having an appropriate radial deflection means, means for limiting ion divergence in the tangential direction and a pulsed source providing ion packet divergence of less than 1 mm*deg. There are disclosed embodiments for fifth-order focusing cylindrical ion minors. Separate embodiments provide parallel tandem MS-MS within a single cylindrical MR-TOF. | 10-01-2015 |
20150268181 | COMBUSTION TUBE - A combustion tube comprises a generally cylindrical body with an outwardly extending tube stop spaced from one end of the combustion tube for engaging a combustion tube mounting assembly and fixing the tube in a precise position. Near the opposite end of the tube is an enlarged opening for receiving an upper seal assembly of a combustion furnace with the outer annular shoulder of the upper end of the tube having a rolled edge to facilitate the insertion of the tube through the seal in the upper seal assembly of the furnace. The combustion tube is made of quartz glass to withstand the temperatures encountered in the furnace. The combustion tube is specifically designed and adapted to be precisely positioned in an induction furnace with an easy tube removal system for the furnace. | 09-24-2015 |
20150233642 | CONCENTRIC HEATER FOR A CYLINDRICAL COMBUSTION TUBE - A heater for a cylindrical combustion tube employed in an analytical instrument includes a curved resistive heating element shaped to at least partially surround a cylindrical combustion tube in spaced relationship to the combustion tube. The resistive heating element includes a plurality of alternately staggered slots to define serpentine current flow paths for the resistive heating element. In a preferred embodiment the resistive heating element circumscribes at least 180° and preferably is generally U-shaped. | 08-20-2015 |
20150144779 | Electron Impact Ion Source With Fast Response - A closed electron impact ion source with overall opening area of less than 30 mm | 05-28-2015 |
20150125247 | CRUCIBLE SHUTTLE ASSEMBLY - A crucible handling shuttle includes a pair of opposed dual crucible-gripping arms mounted on a rotatable head and moves between an induction furnace pedestal and a crucible loading station, such that one pair of arms pick up a crucible loaded with a preweighed sample, the shuttle moves to the induction furnace, where the other pair of arms grip and remove a spent crucible. The shutter head then rotates to deposit the new sample-holding crucible onto the pedestal and subsequently moves out of the furnace area to a sample disposal chute positioned between the crucible loading station and the furnace, whereupon the spent crucible is dropped for disposal. The shuttle head is then rotated and moved to the loading station to pick up a new crucible. | 05-07-2015 |
20150051843 | Systems and Methods to Process Data in Chromatographic Systems - A system and method for processing data in chromatographic systems is described. In an implementation, the system and method includes processing data generated by a chromatographic system to generate processed data, analyzing the processed data, and preparing and providing results based on the processed data. | 02-19-2015 |
20150036714 | FURNACE COMBUSTION TUBE AND MOUNTING ASSEMBLY - A combustion tube mounting system releasably mounts a combustion tube to an aperture in the floor of a furnace housing. The combustion tube has a base assembly with a cam and can be manually or automatically unlocked by cam pins in the floor for selectively engaging the cam for lowering the combustion tube from the floor of the furnace. When a new combustion tube is placed on the lower seal assembly and raised, it automatically aligns and engages the upper furnace seal and engages cams on the floor of the furnace housing which lock the combustion tube in place as it is introduced into the furnace. | 02-05-2015 |
20150036713 | COMBUSTION TUBE AND SEAL ASSEMBLY - A combustion tube mounting system releasably mounts a combustion tube to an aperture in the floor of a furnace housing. The combustion tube has a base assembly with a cam and can be manually or automatically unlocked by cam pins in the floor for selectively engaging the cam for lowering the combustion tube from the floor of the furnace. When a new combustion tube is placed on the lower seal assembly and raised, it automatically aligns and engages the upper furnace seal and engages cams on the floor of the furnace housing which lock the combustion tube in place as it is introduced into the furnace. | 02-05-2015 |
20150023383 | CYLINDRICAL COMBUSTION TUBE AND MOUNTING ASSEMBLY - A combustion tube mounting system releasably mounts a combustion tube to an aperture in the floor of a furnace housing. The combustion tube has a base assembly with a cam and can be manually or automatically unlocked by cam pins in the floor for selectively engaging the cam for lowering the combustion tube from the floor of the furnace. When a new combustion tube is placed on the lower seal assembly and raised, it automatically aligns and engages the upper furnace seal and engages cams on the floor of the furnace housing which lock the combustion tube in place as it is introduced into the furnace. | 01-22-2015 |
20140284472 | Ion Mobility Spectrometer - A method and apparatus are disclosed for improving ion mobility spectrometry by using a fast and spatially wide ion gate based on local RF field barrier opposed to a switching DC field. The improvement accelerates the ion mobility analysis and improves charge throughput and dynamic range of the IMS. The invention is particularly suited for rapid dual gas chromatography. In one important embodiment, the accelerated IMS is coupled to a multi-reflecting time-of-flight mass spectrometer with a fast encoded orthogonal acceleration. There are described methods of comprehensive and orthogonal separation in multiple analytical dimensions. | 09-25-2014 |
20140267679 | INDENTATION HARDNESS TEST SYSTEM HAVING AN AUTOLEARNING SHADING CORRECTOR - An indentation hardness test system is provided that includes: a frame including an attached indenter; a movable stage for receiving a part attached to the frame; a camera; a display; a processor; and a memory subsystem. The processor performs the steps of: (a) capturing images of different portions of the part; (b) for each image, computing an average intensity; (c) computing an average intensity across all images; (d) for each pixel, computing PixelAverageDelta | 09-18-2014 |
20140088923 | SYSTEMS AND METHODS TO PROCESS DATA IN CHROMATOGRAPHIC SYSTEMS - A system and method for processing data in chromatographic systems is described. In an implementation, the system and method includes processing data generated by a chromatographic system to generate processed data, analyzing the processed data, and preparing and providing results based on the processed data. | 03-27-2014 |
20140062306 | SYSTEM AND METHOD OF DETERMINING EFFECTIVE GLOW DISCHARGE LAMP CURRENT - The embodiments of the invention include a method for controlling plasma conditions of a glow discharge system using the integrated electron (or ion) pulse area extracted from the total lamp current. The method of using an integrated electron/ion pulse area for controlling plasma conditions allows for controlled analysis of conductive, non-conductive and layered materials without the need for estimation of plasma voltages. The method allows for control of sputter rates and plasma emissions that cannot be achieved using other methods such as capacitive divider calculations where actual thicknesses and dielectric constants are not known or predefined. | 03-06-2014 |
20140014831 | CORRECTING TIME-OF-FLIGHT DRIFTS IN TIME-OF-FLIGHT MASS SPECTROMETERS - A method of correcting time-of-flight drift in a mass spectrometer by identifying mass spectral peaks of ions in spectra, detecting ions having substantially the same mass across spectra, determining a time-of-flight drift of the detected ions, and correcting the time-of-flight drift of the detected ions by applying a correction factor to each respective time-of-flight. | 01-16-2014 |
20130313425 | Electrostatic Trap Mass Spectrometer With Improved Ion Injection - A method of mass spectral analysis in an analytical electrostatic trap ( | 11-28-2013 |
20130206978 | TIME-OF-FLIGHT MASS SPECTROMETER WITH ACCUMULATING ELECTRON IMPACT ION SOURCE - An accumulating ion source for a mass spectrometer that includes a sample injector ( | 08-15-2013 |
20130140453 | MASS SPECTROMETER WITH SOFT IONIZING GLOW DISCHARGE AND CONDITIONER - An ion source ( | 06-06-2013 |
20130056627 | Open Trap Mass Spectrometer - An open electrostatic trap mass spectrometer is disclosed for operation with wide and diverging ion packets. Signal on detector is composed of signals corresponding to multiplicity of ion cycles, called multiplets. Using reproducible distribution of relative intensity within multiplets, the signal can be unscrambled for relatively sparse spectra, such as spectra past fragmentation cell of tandem mass spectrometer, past ion mobility and differential ion mobility separators. Various embodiments are provided for particular pulsed ion sources and pulsed converters such as orthogonal accelerators, ion guides, and ion traps. The method and apparatus enhance the duty cycle of pulsed converters, improve space charge tolerance of the open trap analyzer and extends the dynamic range of time-of-flight detectors. | 03-07-2013 |
20130048852 | Electrostatic Mass Spectrometer with Encoded Frequent Pulses - A method, apparatus and algorithms are disclosed for operating an open electrostatic trap (E-trap) or a multi-pass TOF mass spectrometer with an extended flight path. A string of start pulses with non equal time intervals is employed for triggering ion packet injection into the analyzer, a long spectrum is acquired to accept ions from the entire string and a true spectrum is reconstructed by eliminating or accounting overlapping signals at the data analysis stage while using logical analysis of peak groups. The method is particularly useful for tandem mass spectrometry wherein spectra are sparse. The method improves the duty cycle, the dynamic range and the space charge throughput of the analyzer and of the detector, so as the response time of the E-trap analyzer. It allows flight extension without degrading E-trap sensitivity. | 02-28-2013 |
20130023057 | BIDIRECTIONAL BALLAST - An analyzer with a combustion furnace includes a flow path of byproducts of combustion coupled to a bidirectional ballast chamber by valves which are sequentially actuated for alternately filling and exhausting byproducts of combustion from opposite sides of the chamber during combustion. Alternately, a plurality of low volume ballast chambers are employed. A method of determining the concentration of elements in a sample includes the steps of combusting a sample; and alternately collecting and exhausting the byproduct gases of combustion in opposite sides of a bidirectional ballast. The bidirectional ballast chamber has an outer wall defining a chamber with sealed enclosures at opposite ends of the wall, a movable piston positioned within the chamber, and gas ports associated with the chamber on opposite sides of the piston. | 01-24-2013 |
20130004277 | CRUCIBLE SHUTTLE ASSEMBLY AND METHOD OF OPERATION - A crucible handling shuttle includes a pair of opposed dual crucible-gripping arms mounted on a rotatable head and moves between an induction furnace pedestal and a crucible loading station, such that one pair of arms pick up a crucible loaded with a preweighed sample, the shuttle moves to the induction furnace, where the other pair of arms grip and remove a spent crucible. The shutter head then rotates to deposit the new sample-holding crucible onto the pedestal and subsequently moves out of the furnace area to a sample disposal chute positioned between the crucible loading station and the furnace, whereupon the spent crucible is dropped for disposal. The shuttle head is then rotated and moved to the loading station to pick up a new crucible. | 01-03-2013 |
20120228502 | CIRCUIT AND METHOD FOR CONTROLLING AN IR SOURCE FOR AN ANALYTICAL INSTRUMENT - A pulse-width-modulated voltage is applied to an IR emitter during the on-time of a primary drive voltage having a frequency of about 2.5 Hz in order to control the power to a predetermined desired level. The secondary modulation is at about 800 Hz. The lower response time of the emitter will, in effect, filter the higher frequency, and it will appear that an average power is being applied to the emitter during the on-time. | 09-13-2012 |
20120213678 | SAMPLE LOADING CAROUSEL - An improved sample handling carousel is mounted to an analytical furnace at an acute angle and includes sample holding cavities which are readily visible at eye level to an operator. The rotary carousel can be easily removed from a stepwise driven drive shaft for filling the carousel at a remote location, such as a weighing station, or can be filled directly while mounted on the drive shaft. A tray is positioned below the carousel and has a slot for dropping a sample when one of the sample holding cavities aligns with the slot in the tray. In a preferred embodiment of the invention, the carousel is made of aluminum or a transparent polymeric material, such as acrylic. | 08-23-2012 |
20120213244 | VACUUM CLEANING STRUCTURE FOR ELECTRODE FURNACE - An electrode for a resistance analytical furnace has a crucible-engaging surface and an end spaced from the crucible-engaging surface having a plurality of grooves formed therein. A manifold mounted on the end of the electrode defines a dust recovery plenum and includes an outlet communicating with the plenum for coupling to a vacuum source to remove debris from the electrode. The improved electrode and electrode cleaning manifold positioned on the electrode provides a turbulent airflow for removal of dust and debris from an analytical furnace. | 08-23-2012 |
20120198690 | REMOVABLE FINAL SCRUBBER TUBE - A final scrubber in the inert carrier gas flow path of an elemental analyzer includes a manifold with valves for selectively bypassing a quick disconnect final scrubber housing that includes a filter tube and sealed gas fittings. The housing includes alignment members and a latch for positioning and locking the housing onto and in sealed engagement with the instrument's manifold. A switch detects the presence of the housing, and a control circuit controls valves to direct the inert gas flow though the filter tube or bypass the filter tube when the housing is removed. With this system, the final scrubber can be removed and replaced quickly without the use of tools while the carrier gas continues to flow though the furnace without interruption. Also, the valves can be closed to allow for segmented leak detection of the instruments gas flow path. | 08-09-2012 |
20120039749 | PRESSURIZED GAS PURGE SEAL FOR COMBUSTION FURNACE - An analytical combustion furnace has an input port for receiving a holder for an analytical sample. A purge block is coupled to the input port of the combustion furnace and has an input end for receiving the holder and a gas inlet and a gas outlet. A door selectively closes the input end of the purge block, and a pressurized seal is coupled between the purge block and the door. A source of purging gas is coupled to the gas inlet of the purge block for pressurizing the seal. The gas outlet of the purge block communicates with the seal to allow purging gas to escape the area of the seal. In one embodiment, a pressurized seal surrounds a push rod, which seal is pressurized by a purging gas to continuously purge the entry of the push rod into the purge block, thereby eliminating atmospheric contamination. | 02-16-2012 |
20120036673 | COMBUSTION FURNACE AUTO CLEANER - An automatic cleaning assembly for an analytical furnace is detachable from the filter chamber above the combustion tube. The cleaning assembly includes a rotating brush which is lowered through the filter chamber and into the combustion tube while a vacuum is drawn through the lower seal of the combustion tube. This results in a higher vacuum pressure differential and improved flow rate for removing dust from the filter of the furnace and the combustion tube. | 02-16-2012 |
20110192969 | METHOD AND APPARATUS FOR ION MANIPULATION USING MESH IN A RADIO FREQUENCY FIELD - Ion manipulation systems include ion repulsion by an RF field penetrating through a mesh. Another comprises trapping ions in a symmetric RF field around a mesh. The system uses macroscopic parts, or readily available fine meshes, or miniaturized devices made by MEMS, or flexible PCB methods. One application is ion transfer from gaseous ion sources with focusing at intermediate and elevated gas pressures. Another application is the formation of pulsed ion packets for TOF MS within trap array. Such trapping is preferably accompanied by pulsed switching of RF field and by gas pulses, preferably formed by pulsed vapor desorption. Ion guidance, ion flow manipulation, trapping, preparation of pulsed ion packets, confining ions during fragmentation or exposure to ion to particle reactions and for mass separation are disclosed. Ion chromatography employs an ion passage within a gas flow and through a set of multiple traps with a mass dependent well depth. | 08-11-2011 |
20110150609 | CRUCIBLE SHUTTLE ASSEMBLY AND METHOD OF OPERATION - A crucible handling shuttle includes a pair of opposed dual crucible-gripping arms mounted on a rotatable head. The shuttle is removably plugged into a sliding block of a carriage to move between a furnace and a crucible loading station. The carriage includes mechanical, electrical, and pneumatic plugs or sockets which couple to mating sockets or plugs of the shuttle. A linear actuator extends between the carriage and the furnace base to raise and lower the carriage and shuttle coupled thereto. | 06-23-2011 |
20110075696 | EASILY REMOVABLE COMBUSTION TUBE - A combustion tube mounting system releasably mounts a combustion tube to an aperture in the floor of a furnace housing. The combustion tube has a base assembly with a cam and can be manually or automatically unlocked by cam pins in the floor for selectively engaging the cam for lowering the combustion tube from the floor of the furnace. When a new combustion tube is placed on the lower seal assembly and raised, it automatically aligns and engages the upper furnace seal and engages cams on the floor of the furnace housing which lock the combustion tube in place as it is introduced into the furnace. | 03-31-2011 |
20110071788 | METHOD AND APPARATUS FOR THE CALCULATION OF COAL ASH FUSION VALUES - The IT and FT values for coal and coke samples can be accurately predicted by applying equations to determined ST and HT temperatures. For reducing atmospheres, the equations are IT=C | 03-24-2011 |
20090090861 | DATA ACQUISITION SYSTEM FOR A SPECTROMETER - A data acquisition system and method are described that may be used with various spectrometers. The data acquisition system may include an ion detector, an initial/transient processing module, and a spectra processing module. The initial/transient processing module is provided for processing the ion detection signals and for supplying processed signals to the spectra processing module. The transient processing module may contiguously sample the ion detection signals at a rate of at least 1.5 GHz. The spectra processing module may generate spectra from the transients at a rate of at least 50 spectra per second. The initial processing module may be configured to have a sensitivity that is sufficient to detect a single ion received within one of over at least 100 transients and to detect and quantify a number of ions simultaneously striking said ion detector up to at least 10 simultaneously striking ions. | 04-09-2009 |
20090014642 | DATA ACQUISITION SYSTEM FOR A SPECTROMETER USING HORIZONTAL ACCUMULATION - A data acquisition system and method are described that may be used with various spectrometers. The data acquisition system may include an ion detector, an initial processing module, and a spectra processing module. The initial processing module is provided for receiving, sampling, and processing ion detection signals received from the ion detector, and for supplying processed signals to the spectra processing module. The initial processing module includes a horizontal accumulation circuit that combines a fractional number of adjacent samples of the ion detection signals into bins. The number of adjacent samples to combine into bins may vary as a function of: (1) the time of arrival at the ion detector corresponding to that sample; (2) the mass corresponding to that sample; (3) the resolution corresponding to that sample; and/or (4) an operational mode of the spectrometer. The spectra processing module receives the processed signals and generates spectra. | 01-15-2009 |