Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


INTELLIGENT ENERGY LIMITED

INTELLIGENT ENERGY LIMITED Patent applications
Patent application numberTitlePublished
20160141648COOLANT PURIFICATION - A fuel cell system comprises an antimicrobial patterned surface. The fuel cell system may comprise a fuel cell stack, a coolant reservoir, and a coolant flow path configured to supply coolant from the coolant reservoir to the fuel cell stack. One or more of the fuel cell stack, the coolant reservoir and the coolant flow path may comprise the antimicrobial patterned surface.05-19-2016
20160138579PUMP ASSEMBLY - A pump assembly comprising: a chamber; a compressible conduit provided along a periphery of the chamber; a sun member provided within the chamber; and a planet member arranged to orbit around the sun member, the planet member having: a first portion engaged with the sun member; and a second portion configured to be engaged with a section of the compressible conduit in order to cause the section to be constricted, wherein the first portion has a different texture to the second portion.05-19-2016
20160087297COOLING SYSTEM FOR FUEL CELLS - A fuel cell assembly has a fuel cell with a membrane electrode assembly disposed between an anode fluid flow plate and a cathode fluid flow plate. The cathode flow plate defines a flow channel for conveying oxidant to the membrane electrode assembly. The flow channel has an inlet and an outlet. A plasma discharge fan is configured to generate air flow into said inlet. The plasma discharge fan may also be configured to generate ozone flow into the inlet, thereby enhancing electrochemical reaction at the cathode side of the membrane electrode assembly. A plurality of the fuel cells may be configured in a stack arrangement, whereby the inlets for the plurality of fuel cells in the stack form an air inlet face of the fuel cell stack. The plasma discharge fan may comprise a plate structure disposed over the stack air inlet face, being configured to deliver a generally uniform air flow into the stack air inlet face over substantially its entire area.03-24-2016
20160087294Hydrogen-Generating Fuel Cell Cartridges - The present application is directed to a gas-generating apparatus (03-24-2016
20160083250FUEL SUPPLY APPARATUS - A fuel supply apparatus comprising; a reaction chamber for hosting a reaction when a fuel generating fluid and a fuel generating substance are brought together to generate fuel, a plurality of discrete fuel generating fluid chambers, each chamber being separately rupturable; and, a heater assembly adapted to, when in use, selectively rupture the fuel generating fluid chambers to supply fuel generating fluid to the reaction chamber.03-24-2016
20160072141A WATER SEPARATOR - A liquid separator (03-10-2016
20160072138FUEL CELL SYSTEM - A fuel cell system (03-10-2016
20160065057FUEL CELL DC-DC CONVERTER - A method and system for supplying power to a portable electronic device includes supplying current from one or more fuel cells to a DC-DC converter and regulating a current limit of the DC-DC converter as a function of a measured temperature of at least one of the power supply system and the portable electronic device. The current limit can vary as an inverse function of the measured temperature. The current limit can be an input current limit of the DC-DC converter or an output current limit of the DC-DC converter. Current produced by the one or more fuel cells can decrease proportionally to a decrease of the current limit of the DC-DC converter, reducing the heat produced by the one or more fuel cells and thereby reducing the measured temperature. A temperature sensor can be located on or near the one or more fuel cells. A temperature sensor can be located on an internal housing of the portable electronic device.03-03-2016
20160064753METHODS FOR OPERATING A FUEL CELL SYSTEM - Purge valves that are manually turned ON but are automatically or electrically turned OFF as the fuel cell production of electricity reaches a predetermined level, e.g., steady state or thereabout are disclosed. The purge valve may be opened at system start-up, or may be opened at system shut-down so that the purge valve is armed and the fuel cell system is purged at the next start-up. Also disclosed is an integrated fluidic interface module that contains various fluidic components including one of these purge valves. The integrated fluidic interface module can operate passively or without being actively controlled by a processor. Methods of operating a fuel cell system, wherein the fuel cell system is purged at system start-up, are also disclosed. The purging automatically stops when the anode plenum is fully purged and replaced with fuel.03-03-2016
20160062381APPARATUS COMPRISING AN ENERGY SOURCE - Apparatus comprising an energy source (03-03-2016
20160056485FLUIDIC INTERFACE MODULE FOR A FUEL CELL SYSTEM - Purge valves (I 02-25-2016
20160053798A SECURING DEVICE - The disclosure relates to a securing device (02-25-2016
20160043416FLUID MANIFOLD ATTACHED BY INTERFACE TO FUEL STORAGE FOR FUEL CELL SYSTEM - An electrochemical cell system includes a fluid manifold having a layered structure. The fluid manifold includes at least one conduit layer having a first side and a second side. The at least one conduit later has at least one conduit channel.02-11-2016
20160029342ENERGY RESOURCE SYSTEM - An energy resource management server comprising: means for receiving energy availability messages from remote energy resources and geographic location indicators indicative of the geographical location of said remote energy resources; means for receiving energy request messages from remote energy resources and geographic location indicators indicative of the geographical location of said remote energy resources; a processor configured to determine counterparties in an energy resource transfer based on received energy availability messages and received energy request messages and the geographical location of the remote energy resources, and to transmit, to one or both of the counterparties, location information of the other counterparty of the determined counterparties.01-28-2016
20160002031HYDROGEN GENERATION SYSTEMS AND METHODS UTILIZING SODIUM SILICIDE AND SODIUM SILICA GEL MATERIALS - Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.01-07-2016
20150376002Water Reactive Hydrogen Generation System and Method With Separation of Waste Products From Water Reactive Materials - A water reactive hydrogen generation system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is used in a fuel cell or other application. The water reactive hydrogen generation system includes a reactant fuel chamber, a reactor chamber (zone), a water solution inlet, a hydrogen output port, and a material delivery device. The material delivery device can include a drive screw and a sliding piston to move the fuel material into the reactor zone when a reaction is initiated. As the reaction takes place, the reaction waste product is removed from the reaction zone to allow additional reactant fuel materials and aqueous solutions to be introduced and to continue the hydrogen-generating reaction. A reaction waste product created is exchanged for additional reactant fuel material at determined intervals to allow the reaction to continue until the reactant fuel is exhausted.12-31-2015
20150372327SEALING APPARATUS FOR A FUEL CELL STACK - A fuel cell stack assembly comprises a stack of fuel cells, each fuel cell having an air flow conduit with an input/output ventilation aperture disposed on a ventilation face of the stack, the ventilation apertures forming an array over said ventilation face of the stack. A membrane is moveable between a first configuration in which the ventilation face is occluded and a second configuration in which the ventilation face is not occluded. The membrane is rollable between the first configuration and the second configuration. Ventilation of the fuel cell stack is thereby controlled by the position of the membrane, e.g. during fuel cell start up and/or shut down procedures or for hydration control of the fuel cells.12-24-2015
20150349357PUMP ASSEMBLY FOR A FUEL CELL SYSTEM - A pump assembly including a first subassembly and a second subassembly. The first subassembly includes a fluid conduit; an inlet fluidly coupled to the liquid reactant dispenser and the fluid conduit; an outlet fluidly coupled to a reaction chamber and the fluid conduit; and a diaphragm, defining a portion of the fluid conduit, that flexes to pump the liquid reactant from the inlet to the outlet. The diaphragm preferably includes an actuation point coupled to the diaphragm, wherein the liquid reactant is substantially contained within the first subassembly during pumping. The second subassembly is couplable to the first subassembly, and is fluidly isolated from the liquid reactant. The second subassembly includes an actuator that couples to the actuation point, wherein operation of the actuator causes pumping action.12-03-2015
20150346140HYDROGEN QUALITY MONITOR - A pair of fuel cells are configured as a hydrogen purity monitor. A first cell, acting as a reference cell, is configured to generate electrical current from the electrochemical reaction of hydrogen and oxidant and has a first fuel inlet configured to receive hydrogen from a first hydrogen source. A second fuel cell, acting as a test cell, is configured to generate electrical current from the electrochemical reaction of hydrogen and oxidant and has a second fuel inlet configured to receive hydrogen from a second hydrogen source. A control system is configured to apply an electrical load to each fuel cell and determine an electrical output of each fuel cell. The control system has a comparator for comparing the electrical outputs of the first and second fuel cells and a purity monitor output configured to give an indication of hydrogen purity based on an output of the comparator.12-03-2015
20150329357HYDROGEN GENERATION SYSTEMS UTILIZING SODIUM SILICIDE AND SODIUM SILICA GEL MATERIALS - Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.11-19-2015
20150318566FLUIDIC DISTRIBUTION SYSTEM AND RELATED METHODS - Embodiments of the present invention relate to a fluid distribution system. The system may include one or more electrochemical cell layers, a bulk distribution manifold having an inlet, a cell layer feeding manifold in direct fluidic contact with the electrochemical cell layer and a separation layer that separates the bulk distribution manifold from the cell feeding manifold, providing at least two independent paths for fluid to flow from the bulk distribution manifold to the cell feeding manifold.11-05-2015
20150303503COMPUTING DEVICE - The invention relates to a computing device comprising: an outer covering having at least a first portion which is an oxygen-permeable microstructure, wherein the first portion is integrally formed with the outer covering; an electronic component within the outer covering; and a fuel cell with an oxidant inlet that is in fluid communication with the first portion of the outer covering.10-22-2015
20150295269Fuel Cell Components - A strip of fuel cell components (10-15-2015
20150288019Fuel Cell Components - The invention relates to a strip of fuel cell components comprising a plurality of fuel cell components spaced apart in a first direction and a support structure connected to the plurality of fuel cell components. The plurality of fuel cell components comprise a first surface. The support structure comprises two lateral fold regions between adjacent fuel cell components such that the support structure is foldable in order for the first surfaces of the plurality of fuel cell components to face in the same direction when folded.10-08-2015
20150280261CELL VOLTAGE MONITORING CONNECTOR SYSTEM FOR A FUEL CELL STACK - A fuel cell stack assembly comprising an electrical connection system for cell voltage monitoring is described. The fuel cell stack (10-01-2015
20150274522RADIAL FLOW REACTOR SYSTEMS AND RELATED METHODS - The present disclosure provides liquid/solid phase reactor systems that generate product gases. The present disclosure also provides for methods of generating gas using the systems of the present disclosure.10-01-2015
20150255810EXCESS COOLANT FLUID FEED TO FUEL CELL STACKS - A fuel cell stack assembly has a plurality of fuel cells each having a fluid coolant conduit. A coolant feed inlet manifold has a coolant inlet, and the coolant feed inlet manifold is coupled to each fluid coolant conduit for distribution of coolant to each fuel cell. The coolant feed inlet manifold also has a discharge conduit located at one end of the coolant feed inlet manifold. The discharge conduit is configured to discharge excess coolant from the coolant feed inlet manifold. By supplying excess coolant to the coolant feed inlet manifold problems arising due to very low coolant flow rates through the fluid coolant conduits in the fuel cells can be reduced or eliminated.09-10-2015
20150255806CURRENT COLLECTOR FOR A FUEL CELL - A fuel cell stack assembly has a plurality of cells in a stack configuration. Each cell comprises a membrane-electrode assembly disposed between an anode flow plate and a cathode flow plate. A current collector plate is disposed at each end of the stack and a compression assembly maintains the stack under compression. At least one of the current collector plates is formed as a printed circuit board having a first face disposed against a cathode flow plate or an anode flow plate of an outermost cell in the stack and a second face opposite the first face. The first face includes an electrically conductive layer disposed on a substrate of the printed circuit board to serve as a stack current collector electrode. Electrical components such as temperature sensors can be mounted on the printed circuit board such that they lie in or adjacent to a flow channel extending along an adjacent face of the anode or cathode flow plate. The printed circuit board can provide laterally extending connection tabs for electrical connection to the current collector electrode and to the electrical components.09-10-2015
20150236361COOLANT FLUID FEED TO FUEL CELL STACKS - A fuel cell stack assembly has a plurality of cells each having a fluid coolant conduit. A coolant feed manifold has a first inlet and a second inlet and is coupled to each fluid coolant conduit for distribution of fluid coolant within each cell. A pump is coupled for delivery of fluid coolant to the coolant feed manifold through the first and second inlets. A flow control assembly is configured to periodically modify the relative flow rates of fluid coolant through the first and second inlets so that stagnant regions in the coolant feed manifold are avoided. The flow control assembly may also be adapted to periodically interrupt the flow path between the pump and the manifold such that the fluid coolant is delivered to the manifold intermittently, thereby enabling low water flows below a minimum set point of the pump.08-20-2015
20150225232Pump Assembly For A Fuel Cell System - The invention is a hydrogen generator including a housing, a reaction area, a fluid reservoir, a pellet comprising a first reactant within the reaction area, a fluid comprising a second reactant within the fluid reservoir, a fluid flow path between the fluid reservoir and the reaction area, and a hydrogen outlet. The fluid flow path comprises a follower assembly biased toward the pellet, the follower assembly includes an articulated joint and a follower, and the second reactant can react with the first reactant in the reaction area to produce hydrogen gas and byproducts.08-13-2015
20150221970FUEL CELL STACK ASSEMBLY - The invention relates to a fuel cell stack assembly (08-06-2015
20150188158FUEL CELL SYSTEM - A method of starting operation of a fuel cell system which includes at least a fuel cell stack the method includes opening an anode inlet valve to allow fuel to enter an anode volume of the fuel cell stack; then operating an air compressor in fluid communication with a cathode air inlet of the fuel cell stack to allow air to enter a cathode volume of the fuel cell stack monitoring the temperature of the cathode inlet and/or outlet operating a water injection system to inject water into the cathode volume once the temperature of fluid passing through the cathode inlet and/or outlet exceeds a preset level, wherein a current drawn from the fuel cell stack is limited to prevent a voltage measured across one or more cells in the fuel cell stack from falling below a first voltage threshold.07-02-2015
20150155565BIPOLAR PLATE FOR A FUEL CELL - A bipolar plate for a fuel cell, the bipolar plate comprising an anode sheet defining an anode surface and a cathode sheet defining a cathode surface. A cavity is defined between the anode sheet and the cathode sheet. One or more openings are provided in the cathode sheet and extend between the cathode surface and the cavity. The cavity is configured to receive coolant/oxidant for cooling the anode and cathode sheets and also provide at least a portion of the coolant/oxidant to the exterior of the cathode sheet through the one or more openings.06-04-2015
20150151265Hydrogen Generator with Improved Volume Efficiency - A hydrogen generator with improved volume efficiency and a method of producing hydrogen gas with the hydrogen generator are disclosed. A fluid containing a reactant is transported from a reactant storage area to a reaction area. Hydrogen gas passes through, and an effluent pass from the reaction area into the effluent storage area that is in a volume exchanging relationship with one or both of the reactant storage area and the reaction area. An initially compressed filter is disposed in the effluent storage area to remove solids from the hydrogen gas. The filter is attached to a moveable partition separating the effluent storage area from the reactant storage area and/or the reaction area, and the filter expands as the volume of the effluent storage area increases.06-04-2015
20150132678FUEL CELL PLATE ASSEMBLIES AND METHOD OF ASSEMBLING FUEL CELL PLATE ASSEMBLIES - A method of assembling a fuel cell plate assembly, the method comprising: 05-14-2015
20150118591FUEL CELL STACK ASSEMBLY - A fuel cell stack assembly comprises a plurality of fuel cells in a stack, the stack defining two opposing parallel end faces. An end plate assembly is provided at each opposing end face of the stack. The end plate assemblies are coupled together to thereby maintain the fuel cells in the stack under compression. At least one of the end plate assemblies comprises: a master plate defining a master compression face having a first portion and a second portion; a first slave plate defining a first slave compression face; and a second slave plate defining a second slave compression face. The first slave compression face faces the first portion of the master compression face and when assembled, is in compressive relationship therewith, and the second slave compression face faces the second portion of the master compression face and when assembled, is also in compressive relationship therewith.04-30-2015
20150086810FAN AND PCB MOUNTING IN FUEL CELL STACK ASSEMBLIES - A fuel cell stack assembly (03-26-2015
20150071830HYDROGEN PRODUCING FUEL CARTRIDGE - Disclosed herein is a method of producing hydrogen, including selectively applying heat to a fuel within a canister thermally insulated and inside a cartridge, firing fuel to facilitate decomposition and release hydrogen, and, removing said hydrogen from said cartridge via a fluid communication means.03-12-2015
20150061600WATER REACTIVE HYDROGEN FUEL CELL POWER SYSTEM - A hydrogen fuel cell system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The fuel cell system includes a fuel cell, a fuel cartridge, and a supply of pressurized aqueous solution to generate power for portable power electronics. The fuel cartridge includes a top cap with an overmolded face seal gasket that provides an offset injection point on the fuel cartridge. The aqueous solution is delivered into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user of the electronics.03-05-2015
20150050575FUEL CELL FLUID DISTRIBUTION - A bipolar fuel cell plate (02-19-2015
20150030951Fuel Cell Assembly - A fuel cell assembly comprising an enclosure having a fuel cell stack mounted therein. The fuel cell stack has an inlet face for receiving coolant/oxidant fluid and an outlet face for expelling said coolant/oxidant fluid. The fuel cell stack further includes a pair of end faces extending transversely between the inlet face and outlet face. The enclosure defines a flow path for the coolant/oxidant fluid that is configured to guide the coolant/oxidant fluid to the inlet face, from the outlet face, and over at least one of the end faces.01-29-2015
20150030950Fuel Cell Assembly - A fuel cell assembly comprising an enclosure having a fuel cell stack mounted therein, and an inlet opening into the enclosure. The fuel cell stack having an inlet face for receiving coolant/oxidant fluid. The fuel cell assembly further comprises a delivery gallery extending from the inlet in the enclosure to the inlet face of the fuel cell stack, the delivery gallery having a first region and a second region separated by an aperture. The delivery gallery and aperture are configured such that, in use, coolant/oxidant fluid within the first region of the delivery gallery is turbulent, and coolant/oxidant fluid within the second region of the delivery gallery has a generally uniform pressure.01-29-2015
20140220473Fuel Cell Assembly - The invention relates to fuel cell assemblies, and in particular to improvements relating to sealing of such assemblies, embodiments of which include a fuel cell assembly (08-07-2014
20140220466Fuel Cell System - A fuel cell (FC) system operating as its own hydrogen leak detector. The system including at least one cathode and cathode conduit for passage of oxidant to to the cathode and a housing containing one or more FCs and defining a plenum around the FC. A ventilation system forces air from the plenum into the cathode conduit and a control system monitors the FC voltage and detects a drop in voltage attributable to hydrogen in the cathode conduit. A control system may include actual cell voltage monitoring of the FC or of one or more cells in the FC stack and a processor for receiving inputs indicative of the operation of the FC or FC stack and/or to determine an expected voltage of FC(s) being monitored and whether the difference between the actual and expected voltage(s) exceeds a predetermined threshold indicative of a predetermined level of hydrogen in the cathode conduit.08-07-2014
20140057196MAINS POWER ADAPTOR COMPRISING A FUEL CELL - A mains power adaptor (02-27-2014
20140011105REVERSE FLOW RELIEF VALVE FOR A FUEL CELL SYSTEM - A method of shutting down operation of a fuel cell system is disclosed, comprising a fuel cell stack, the method comprising the sequential steps of: i) ceasing a supply of fuel to the fuel cell stack; ii) closing a shut-off valve on an exhaust line in fluid communication with a cathode system of the fuel cell system, the cathode system comprising a cathode fluid flow path passing through the fuel cell stack; iii) pressurizing the cathode system with an air compressor in fluid communication with a cathode air net port in the fuel cell stack; and iv) ejecting water from the cathode flow path.01-09-2014
20090325037FUEL CELL FLUID DISTRIBUTION PLATES - A fluid flow field plate for use in a fuel cell, the plate comprising a first plurality of channels formed in a first surface thereof and extending across the first surface in a predetermined pattern, the plate having a folded region along a lateral edge, the folded region comprising a plenum and an interface region, the plenum having a longitudinal axis substantially parallel to an edge of the plate, the interface region comprising two adjacent and facing portions of the first surface.12-31-2009
20090311569GASKETS FOR FUEL CELLS - A gasket for sealing internal surfaces of a fuel cell and formed of compressible material, the gasket comprising a first sealing surface and a second sealing surface for providing a fluid seal against opposing faces of a first fluid flow field plate and a second fluid flow field plate respectively, the gasket further comprising a third sealing surface for sealing against an outer perimeter region of a first surface of a membrane electrode assembly, the third sealing surface being entirely enclosed within a boundary defined by an inner perimeter of the second sealing surface.12-17-2009

Patent applications by INTELLIGENT ENERGY LIMITED

Website © 2016 Advameg, Inc.