HeartFlow, Inc. Patent applications |
Patent application number | Title | Published |
20160140313 | METHOD AND SYSTEM FOR IMAGE PROCESSING TO DETERMINE PATIENT-SPECIFIC BLOOD FLOW CHARACTERISTICS - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 05-19-2016 |
20160133015 | METHOD AND SYSTEM FOR IMAGE PROCESSING TO DETERMINE PATIENT-SPECIFIC BLOOD FLOW CHARACTERISTICS - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 05-12-2016 |
20160132657 | METHOD AND SYSTEM FOR FACILITATING PHYSIOLOGICAL COMPUTATIONS - A system for noninvasively determining at least one physiological characteristic of a patient may include at least one computer system configured to, using a three-dimensional surface mesh model created using patient-specific imaging data, create a three-dimensional combined surface and volume mesh model, including at least a first model portion that has a different spatial resolution than at least a second model portion. The computer system may be further configured to input the three-dimensional surface and volume mesh model into a fluid simulation system and determine a measurement of the physiological characteristic, using the fluid simulation system. | 05-12-2016 |
20160128661 | METHOD AND SYSTEM FOR IMAGE PROCESSING TO DETERMINE PATIENT-SPECIFIC BLOOD FLOW CHARACTERISTICS - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 05-12-2016 |
20160125161 | SYSTEMS AND METHODS FOR SIMULATION OF HEMODIALYSIS ACCESS AND OPTIMIZATION - Systems and methods are disclosed for simulating or optimizing hemodialysis access. One method includes receiving a patient-specific anatomic model of a patient's vasculature; computing a pre-treatment hemodynamic characteristic of a pre-treatment geometry of a portion of the anatomic model; simulating a post-treatment geometry of a vascular access in the portion of the anatomic model; computing a post-treatment hemodynamic characteristic of the post-treatment geometry of the portion of the anatomic model having the vascular access; and generating a representation of the pre-treatment hemodynamic characteristic or the post-treatment hemodynamic characteristic. | 05-05-2016 |
20160117819 | METHOD AND SYSTEM FOR IMAGE PROCESSING TO DETERMINE PATIENT-SPECIFIC BLOOD FLOW CHARACTERISTICS - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 04-28-2016 |
20160117816 | METHOD AND SYSTEM FOR IMAGE PROCESSING TO DETERMINE PATIENT-SPECIFIC BLOOD FLOW CHARACTERISTICS - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 04-28-2016 |
20160117815 | METHOD AND SYSTEM FOR IMAGE PROCESSING TO DETERMINE PATIENT-SPECIFIC BLOOD FLOW CHARACTERISTICS - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 04-28-2016 |
20160113726 | METHOD AND SYSTEM FOR IMAGE PROCESSING TO DETERMINE PATIENT-SPECIFIC BLOOD FLOW CHARACTERISTICS - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 04-28-2016 |
20160113528 | METHOD AND SYSTEM FOR IMAGE PROCESSING TO DETERMINE PATIENT-SPECIFIC BLOOD FLOW CHARACTERISTICS - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 04-28-2016 |
20160110867 | METHOD AND SYSTEM FOR IMAGE PROCESSING TO DETERMINE PATIENT-SPECIFIC BLOOD FLOW CHARACTERISTICS - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 04-21-2016 |
20160110866 | METHOD AND SYSTEM FOR IMAGE PROCESSING TO DETERMINE PATIENT-SPECIFIC BLOOD FLOW CHARACTERISTICS - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 04-21-2016 |
20160110517 | METHOD AND SYSTEM FOR IMAGE PROCESSING TO DETERMINE PATIENT-SPECIFIC BLOOD FLOW CHARACTERISTICS - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 04-21-2016 |
20160104281 | SYSTEMS AND METHODS FOR VALIDATING AND CORRECTING AUTOMATED MEDICAL IMAGE ANNOTATIONS - Systems and methods are disclosed for manipulating image annotations. One method includes receiving an image of an individual's anatomy; automatically determining, using a processor, one or more annotations for anatomical features identified in the image of the individual's anatomy; determining a dependency or hierarchy between at least two of the one or more annotations for anatomical features identified in the image of the individual's anatomy; and generating, based on the dependency or hierarchy, a workflow prompting a user to manipulate the one or more annotations for anatomical features identified in the image of the individual's anatomy. | 04-14-2016 |
20160103972 | METHOD AND SYSTEM FOR SENSITIVITY ANALYSIS IN MODELING BLOOD FLOW CHARACTERISTICS - Embodiments include systems and methods for determining cardiovascular information for a patient. A method includes receiving patient-specific data regarding a geometry of the patient's vasculature; creating an anatomic model representing at least a portion of the patient's vasculature based on the patient-specific data; and creating a computational model of a blood flow characteristic based on the anatomic model. The method also includes identifying one or more of an uncertain parameter, an uncertain clinical variable, and an uncertain geometry; modifying a probability model based on one or more of the identified uncertain parameter, uncertain clinical variable, or uncertain geometry; determining a blood flow characteristic within the patient's vasculature based on the anatomic model and the computational model of the blood flow characteristic of the patient's vasculature; and calculating, based on the probability model and the determined blood flow characteristic, a sensitivity of the determined fractional flow reserve to one or more of the identified uncertain parameter, uncertain clinical variable, or uncertain geometry. | 04-14-2016 |
20160103816 | SYSTEMS AND METHODS FOR VALIDATING AND CORRECTING AUTOMATED MEDICAL IMAGE ANNOTATIONS - Systems and methods are disclosed for manipulating image annotations. One method includes receiving an image of an individual's anatomy; automatically determining, using a processor, one or more annotations for anatomical features identified in the image of the individual's anatomy; determining a dependency or hierarchy between at least two of the one or more annotations for anatomical features identified in the image of the individual's anatomy; and generating, based on the dependency or hierarchy, a workflow prompting a user to manipulate the one or more annotations for anatomical features identified in the image of the individual's anatomy. | 04-14-2016 |
20160085936 | SYSTEMS AND METHODS FOR TREATMENT PLANNING BASED ON PLAQUE PROGRESSION AND REGRESSION CURVES - Systems and methods are disclosed for evaluating a patient with vascular disease. One method includes receiving patient-specific data regarding a geometry of the patient's vasculature; creating an anatomic model representing at least a portion of a location of disease in the patient's vasculature based on the received patient-specific data; identifying one or more changes in geometry of the anatomic model based on a modeled progression or regression of disease at the location; calculating one or more values of a blood flow characteristic within the patient's vasculature using a computational model based on the identified one or more changes in geometry of the anatomic model; and generating an electronic graphical display of a relationship between the one or more values of the calculated blood flow characteristic and the identified one or more changes in geometry of the anatomic model. | 03-24-2016 |
20160066861 | METHOD AND SYSTEM FOR QUANTIFYING LIMITATIONS IN CORONARY ARTERY BLOOD FLOW DURING PHYSICAL ACTIVITY IN PATIENTS WITH CORONARY ARTERY DISEASE - Embodiments include a system for determining cardiovascular information for a patient with coronary artery disease. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart and create a model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create, for a given level of physical activity, a physics-based model of blood flow through the patient's heart simulated during a selected level of physical activity; determine and normalize one or more values of at least one blood flow characteristic within the patient's heart during the simulated level of physical activity; and compare the one or more normalized values of the at least one blood flow characteristic to a threshold to determine whether the level of physical activity exceeds an acceptable level of risk. | 03-10-2016 |
20160063175 | SYSTEMS AND METHODS FOR AUTOMATICALLY DETERMINING MYOCARDIAL BRIDGING AND PATIENT IMPACT - Embodiments include computer-implemented methods and systems for reporting the presence of myocardial bridging in a patient, the method comprising detecting, within a patient-specific model representing at least a portion of the patient's heart based on patient-specific anatomical image data regarding a geometry of the patient's heart, a segment of an epicardial coronary artery at least partially surrounded by the patient's myocardium to determine the presence of myocardial bridging; and computing, using at least one computer processor, at least one physical feature of the myocardial bridging to identify the severity of the myocardial bridging. | 03-03-2016 |
20160058303 | SYSTEMS AND METHODS FOR DETERMINATION OF BLOOD FLOW CHARACTERISTICS AND PATHOLOGIES THROUGH MODELING OF MYOCARDIAL BLOOD SUPPLY - Systems and methods are disclosed for evaluating a patient with vascular disease. One method includes receiving one or more vascular models associated with either the patient or with a plurality of individuals; receiving observed perfusion information associated with the patient; and estimating, using one or more computer processors, one or more blood flow characteristics or one or more pathological characteristics of the patient based on the observed perfusion information and the one or more vascular models. | 03-03-2016 |
20160042145 | SYSTEMS AND METHODS FOR TREATMENT PLANNING BASED ON PLAQUE PROGRESSION AND REGRESSION CURVES - Systems and methods are disclosed for evaluating a patient with vascular disease. One method includes receiving patient-specific data regarding a geometry of the patient's vasculature; creating an anatomic model representing at least a portion of a location of disease in the patient's vasculature based on the received patient-specific data; identifying one or more changes in geometry of the anatomic model based on a modeled progression or regression of disease at the location; calculating one or more values of a blood flow characteristic within the patient's vasculature using a computational model based on the identified one or more changes in geometry of the anatomic model; and generating an electronic graphical display of a relationship between the one or more values of the calculated blood flow characteristic and the identified one or more changes in geometry of the anatomic model. | 02-11-2016 |
20160005212 | SYSTEMS AND METHODS FOR VISUALIZING ELONGATED STRUCTURES AND DETECTING BRANCHES THEREIN - Computer implemented methods are disclosed for acquiring, using a processor, digital data of a portion of an elongate object, and identifying, using a processor, a centerline connecting a plurality of points within the portion of the elongate object. The methods also may include defining a first half-plane along the centerline, traversing a predetermined angular distance in a clockwise or counter clockwise direction from the first half-plane to a second half-plane to define an angular wedge, and calculating, using a processor, a view of the angular wedge between the first half-plane and the second half-plane and generating an electronic view of the angular wedge. | 01-07-2016 |
20150363946 | SYSTEMS AND METHODS FOR DATA AND MODEL-DRIVEN IMAGE RECONSTRUCTION AND ENHANCEMENT - Systems and methods are disclosed for image reconstruction and enhancement, using a computer system. One method includes acquiring a plurality of images associated with a target anatomy; determining, using a processor, one or more associations between subdivisions of localized anatomy of the target anatomy identified from the plurality of images, and local image regions identified from the plurality of images; performing an initial image reconstruction based on image acquisition information of the target anatomy; and updating the initial image reconstruction or generating a new image reconstruction based on the image acquisition information and the one or more determined associations. | 12-17-2015 |
20150342537 | SYSTEMS AND METHODS FOR REPORTING BLOOD FLOW CHARACTERISTICS - Embodiments include a system for displays cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart and create a model representing at least a portion of the patient's heart based on the patient-specific data. The computer system may determine at least one value of the blood flow characteristic within the patient's heart based on the model. The computer system may also display a report comprising a representation of at least one artery corresponding to at least a portion the model, and display one or more indicators of the value of the blood flow characteristic on a corresponding portion of the at least one artery. | 12-03-2015 |
20150324545 | SYSTEMS AND METHODS FOR DETERMINING BLOOD FLOW CHARACTERISTICS USING FLOW RATIO - Embodiments include a system for determining cardiovascular information for a patient which may include at least one computer system configured to receive patient-specific data regarding a geometry of an anatomical structure of a patient; create a model representing at least a portion of the anatomical structure; create a physics-based model relating to a blood flow characteristic within the anatomical structure; determine a first blood flow rate at at least one point of interest in the model; modify the model; determine a second blood flow rate at a point in the modified model corresponding to the at least one point of interest in the model; and determine a fractional flow reserve value as a ratio of the second blood flow rate to the first blood flow rate. | 11-12-2015 |
20150310607 | SYSTEMS AND METHODS FOR CORRECTION OF ARTIFICIAL DEFORMATION IN ANATOMIC MODELING - Systems and methods are disclosed for correcting for artificial deformations in anatomical modeling. One method includes obtaining an anatomic model; obtaining information indicating a presence of an artificial deformation of the anatomic model; identifying a portion of the anatomic model associated with the artificial deformation; estimating a non-deformed local area corresponding to the portion of the anatomic model; and modifying the portion of the anatomic model associated with the artificial deformation, based on the estimated non-deformed local area. | 10-29-2015 |
20150302631 | SYSTEMS AND METHODS FOR IMAGE-BASED OBJECT MODELING USING MULTIPLE IMAGE ACQUISITIONS OR RECONSTRUCTIONS - Systems and methods are disclosed for integrating imaging data from multiple sources to create a single, accurate model of a patient's anatomy. One method includes receiving a representation of a target object for modeling; determining one or more first anatomical parameters of the target anatomical object from at least one of one or more first images of the target anatomical object; determining one or more second anatomical parameters of the target anatomical object from at least one of one or more second images of the target anatomical object; updating the one or more first anatomical parameters based at least on the one or more second anatomical parameters; and generating a model of the target anatomical object based on the updated first anatomical parameters. | 10-22-2015 |
20150302578 | SYSTEMS AND METHODS FOR IMAGE-BASED OBJECT MODELING USING MULTIPLE IMAGE ACQUISITIONS OR RECONSTRUCTIONS - Systems and methods that involve integrating imaging data from multiple sources to create a single, accurate model of a patient's anatomy. One method includes receiving a representation of a target object for modeling; determining one or more first anatomical parameters of the target anatomical object from at least one of one or more first images of the target anatomical object; determining one or more second anatomical parameters of the target anatomical object from at least one of one or more second images of the target anatomical object; updating the one or more first anatomical parameters based at least on the one or more second anatomical parameters; and generating a model of the target anatomical object based on the updated first anatomical parameters. | 10-22-2015 |
20150279060 | SYSTEMS AND METHODS FOR DATA AND MODEL-DRIVEN IMAGE RECONSTRUCTION AND ENHANCEMENT - Systems and methods are disclosed for image reconstruction and enhancement, using a computer system. One method includes acquiring a plurality of images associated with a target anatomy; determining, using a processor, one or more associations between subdivisions of localized anatomy of the target anatomy identified from the plurality of images, and local image regions identified from the plurality of images; performing an initial image reconstruction based on image acquisition information of the target anatomy; and updating the initial image reconstruction or generating a new image reconstruction based on the image acquisition information and the one or more determined associations. | 10-01-2015 |
20150278976 | SYSTEMS AND METHODS FOR USING GEOMETRY SENSITIVITY INFORMATION FOR GUIDING WORKFLOW - Systems and methods are disclosed for using geometry sensitivity information for guiding workflows in order to produce reliable models and quantities of interest. One method includes determining a geometric model associated with a target object; determining one or more quantities of interest; determining sensitivity information associated with one or more subdivisions of the geometric model and the one or more quantities of interest; and generating, using a processor, a workflow based on the sensitivity information. | 10-01-2015 |
20150278727 | SYSTEMS AND METHODS FOR USING GEOMETRY SENSITIVITY INFORMATION FOR GUIDING WORKFLOW - Systems and methods are disclosed for using geometry sensitivity information for guiding workflows in order to produce reliable models and quantities of interest. One method includes determining a geometric model associated with a target object; determining one or more quantities of interest; determining sensitivity information associated with one or more subdivisions of the geometric model and the one or more quantities of interest; and generating, using a processor, a workflow based on the sensitivity information. | 10-01-2015 |
20150272448 | SYSTEMS AND METHODS FOR DETERMINING BLOOD FLOW CHARACTERISTICS USING FLOW RATIO - Embodiments include a system for determining patient cardiovascular information which includes at least one computer system configured to receive patient-specific data regarding a geometry of an anatomical structure of a patient; create a model representing at least a portion of the anatomical structure of the patient based on the patient-specific data; determine a first blood flow rate at at least one point of interest in the model by using relations of individual-specific anatomic data to functional estimates of blood flow characteristics generated from a plurality of individuals; modify the model; determine a second blood flow rate at a point in the modified model corresponding to the at least one point of interest by using the relations of individual-specific anatomic data to functional estimates of blood flow characteristics; and determine a fractional flow reserve value as a ratio of the second blood flow rate to the first blood flow rate. | 10-01-2015 |
20150269352 | SYSTEMS AND METHODS FOR MODELING CHANGES IN PATIENT-SPECIFIC BLOOD VESSEL GEOMETRY AND BOUNDARY CONDITIONS - Systems and methods are disclosed for modeling changes in patient-specific blood vessel geometry and boundary conditions resulting from changes in blood flow or pressure. One method includes determining, using a processor, a first anatomic model of one or more blood vessels of a patient; determining a biomechanical model of the one or more blood vessels based on at least the first anatomic model; determining one or more parameters associated with a physiological state of the patient; and creating a second anatomic model based on the biomechanical model and the one or more parameters associated with the physiological state. | 09-24-2015 |
20150269351 | SYSTEMS AND METHODS FOR MODELING CHANGES IN PATIENT-SPECIFIC BLOOD VESSEL GEOMETRY AND BOUNDARY CONDITIONS - Systems and methods are disclosed for modeling changes in patient-specific blood vessel geometry and boundary conditions resulting from changes in blood flow or pressure. One method includes determining, using a processor, a first anatomic model of one or more blood vessels of a patient; determining a biomechanical model of the one or more blood vessels based on at least the first anatomic model; determining one or more parameters associated with a physiological state of the patient; and creating a second anatomic model based on the biomechanical model and the one or more parameters associated with the physiological state. | 09-24-2015 |
20150269350 | SYSTEMS AND METHODS FOR MODELING CHANGES IN PATIENT-SPECIFIC BLOOD VESSEL GEOMETRY AND BOUNDARY CONDITIONS - Systems and methods are disclosed for modeling changes in patient-specific blood vessel geometry and boundary conditions resulting from changes in blood flow or pressure. One method includes determining, using a processor, a first anatomic model of one or more blood vessels of a patient; determining a biomechanical model of the one or more blood vessels based on at least the first anatomic model; determining one or more parameters associated with a physiological state of the patient; and creating a second anatomic model based on the biomechanical model and the one or more parameters associated with the physiological state. | 09-24-2015 |
20150269349 | SYSTEMS AND METHODS FOR MODELING CHANGES IN PATIENT-SPECIFIC BLOOD VESSEL GEOMETRY AND BOUNDARY CONDITIONS - Systems and methods are disclosed for modeling changes in patient-specific blood vessel geometry and boundary conditions resulting from changes in blood flow or pressure. One method includes determining, using a processor, a first anatomic model of one or more blood vessels of a patient; determining a biomechanical model of the one or more blood vessels based on at least the first anatomic model; determining one or more parameters associated with a physiological state of the patient; and creating a second anatomic model based on the biomechanical model and the one or more parameters associated with the physiological state. | 09-24-2015 |
20150254418 | METHODS AND SYSTEMS FOR PREDICTING SENSITIVITY OF BLOOD FLOW CALCULATIONS TO CHANGES IN ANATOMICAL GEOMETRY - Embodiments include methods and systems and for determining a sensitivity of a patient's blood flow characteristic to anatomical or geometrical uncertainty. For each of one or more of individuals, a sensitivity of a blood flow characteristic may be obtained for one or more uncertain parameters. An algorithm may be trained based on the sensitivities of the blood flow characteristic and one or more of the uncertain parameters for each of the plurality of individuals. A geometric model, a blood flow characteristic, and one or more of the uncertain parameters of at least part of the patient's vascular system may be obtained for a patient. The sensitivity of the patient's blood flow characteristic to one or more of the uncertain parameters may be calculated by executing the algorithm on the blood flow characteristic of at least part of the patient's vascular system, and one or more of the uncertain parameters. | 09-10-2015 |
20150245775 | SYSTEMS AND METHODS FOR ESTIMATING ISCHEMIA AND BLOOD FLOW CHARACTERISTICS FROM VESSEL GEOMETRY AND PHYSIOLOGY - Systems and methods are disclosed for determining individual-specific blood flow characteristics. One method includes acquiring, for each of a plurality of individuals, individual-specific anatomic data and blood flow characteristics of at least part of the individual's vascular system; executing a machine learning algorithm on the individual-specific anatomic data and blood flow characteristics for each of the plurality of individuals; relating, based on the executed machine learning algorithm, each individual's individual-specific anatomic data to functional estimates of blood flow characteristics; acquiring, for an individual and individual-specific anatomic data of at least part of the individual's vascular system; and for at least one point in the individual's individual-specific anatomic data, determining a blood flow characteristic of the individual, using relations from the step of relating individual-specific anatomic data to functional estimates of blood flow characteristics. | 09-03-2015 |
20150178979 | SYSTEMS AND METHODS FOR VISUALIZING ELONGATED STRUCTURES AND DETECTING BRANCHES THEREIN - Computer implemented methods are disclosed for acquiring, using a processor, digital data of a portion of an elongate object, and identifying, using a processor, a centerline connecting a plurality of points within the portion of the elongate object. The methods also may include defining a first half-plane along the centerline, traversing a predetermined angular distance in a clockwise or counter clockwise direction from the first half-plane to a second half-plane to define an angular wedge, and calculating, using a processor, a view of the angular wedge between the first half-plane and the second half-plane and generating an electronic view of the angular wedge. | 06-25-2015 |
20150161348 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 06-11-2015 |
20150161326 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 06-11-2015 |
20150150530 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 06-04-2015 |
20150088015 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patients heart based on the three-dimensional model and the physics-based model. | 03-26-2015 |
20150086100 | SYSTEMS AND METHODS FOR VISUALIZING ELONGATED STRUCTURES AND DETECTING BRANCHES THEREIN - Computer implemented methods are disclosed for acquiring, using a processor, digital data of a portion of an elongate object, and identifying, using a processor, a centerline connecting a plurality of points within the portion of the elongate object. The methods also may include defining a first half-plane along the centerline, traversing a predetermined angular distance in a clockwise or counter clockwise direction from the first half-plane to a second half-plane to define an angular wedge, and calculating, using a processor, a view of the angular wedge between the first half-plane and the second half-plane and generating an electronic view of the angular wedge. | 03-26-2015 |
20150086093 | METHODS AND SYSTEMS FOR ASSESSING IMAGE QUALITY IN MODELING OF PATIENT ANATOMIC OR BLOOD FLOW CHARACTERISTICS - Systems and methods are disclosed for assessing the quality of medical images of at least a portion of a patient's anatomy, using a computer system. One method includes receiving one or more images of at least a portion of the patient's anatomy; determining, using a processor of the computer system, one or more image properties of the received images; performing, using a processor of the computer system, anatomic localization or modeling of at least a portion of the patient's anatomy based on the received images; obtaining an identification of one or more image characteristics associated with an anatomic feature of the patient's anatomy based on the anatomic localization or modeling; and calculating, using a processor of the computer system, an image quality score based on the one or more image properties and the one or more image characteristics. | 03-26-2015 |
20150074610 | METHOD AND SYSTEM FOR PROVIDING INFORMATION FROM A PATIENT-SPECIFIC MODEL OF BLOOD FLOW - Embodiments include a system for providing blood flow information for a patient. The system may include at least one computer system including a touchscreen. The at least one computer system may be configured to display, on the touchscreen, a three-dimensional model representing at least a portion of an anatomical structure of the patient based on patient-specific data. The at least one computer system may also be configured to receive a first input relating to a first location on the touchscreen indicated by at least one pointing object controlled by a user, and the first location on the touchscreen may indicate a first location on the displayed three-dimensional model. The at least one computer system may be further configured to display first information on the touchscreen, and the first information may indicate a blood flow characteristic at the first location. | 03-12-2015 |
20150073767 | METHOD AND SYSTEM FOR PROVIDING INFORMATION FROM A PATIENT-SPECIFIC MODEL OF BLOOD FLOW - Embodiments include a system for providing blood flow information for a patient. The system may include at least one computer system including a touchscreen. The at least one computer system may be configured to display, on the touchscreen, a three-dimensional model representing at least a portion of an anatomical structure of the patient based on patient-specific data. The at least one computer system may also be configured to receive a first input relating to a first location on the touchscreen indicated by at least one pointing object controlled by a user, and the first location on the touchscreen may indicate a first location on the displayed three-dimensional model. The at least one computer system may be further configured to display first information on the touchscreen, and the first information may indicate a blood flow characteristic at the first location. | 03-12-2015 |
20150073766 | METHOD AND SYSTEM FOR PROVIDING INFORMATION FROM A PATIENT-SPECIFIC MODEL OF BLOOD FLOW - Embodiments include a system for providing blood flow information for a patient. The system may include at least one computer system including a touchscreen. The at least one computer system may be configured to display, on the touchscreen, a three-dimensional model representing at least a portion of an anatomical structure of the patient based on patient-specific data. The at least one computer system may also be configured to receive a first input relating to a first location on the touchscreen indicated by at least one pointing object controlled by a user, and the first location on the touchscreen may indicate a first location on the displayed three-dimensional model. The at least one computer system may be further configured to display first information on the touchscreen, and the first information may indicate a blood flow characteristic at the first location. | 03-12-2015 |
20150066818 | SYSTEMS AND METHODS FOR PREDICTING LOCATION, ONSET, AND/OR CHANGE OF CORONARY LESIONS - Systems and methods are disclosed for predicting the location, onset, or change of coronary lesions from factors like vessel geometry, physiology, and hemodynamics. One method includes: acquiring, for each of a plurality of individuals, a geometric model, blood flow characteristics, and plaque information for part of the individual's vascular system; training a machine learning algorithm based on the geometric models and blood flow characteristics for each of the plurality of individuals, and features predictive of the presence of plaque within the geometric models and blood flow characteristics of the plurality of individuals; acquiring, for a patient, a geometric model and blood flow characteristics for part of the patient's vascular system; and executing the machine learning algorithm on the patient's geometric model and blood flow characteristics to determine, based on the predictive features, plaque information of the patient for at least one point in the patient's geometric model. | 03-05-2015 |
20150065848 | SYSTEMS AND METHODS FOR PREDICTING LOCATION, ONSET, AND/OR CHANGE OF CORONARY LESIONS - Systems and methods are disclosed for predicting the location, onset, or change of coronary lesions from factors like vessel geometry, physiology, and hemodynamics. One method includes: acquiring, for each of a plurality of individuals, a geometric model, blood flow characteristics, and plaque information for part of the individual's vascular system; training a machine learning algorithm based on the geometric models and blood flow characteristics for each of the plurality of individuals, and features predictive of the presence of plaque within the geometric models and blood flow characteristics of the plurality of individuals; acquiring, for a patient, a geometric model and blood flow characteristics for part of the patient's vascular system; and executing the machine learning algorithm on the patient's geometric model and blood flow characteristics to determine, based on the predictive features, plaque information of the patient for at least one point in the patient's geometric model. | 03-05-2015 |
20150065846 | SYSTEMS AND METHODS FOR PREDICTING LOCATION, ONSET, AND/OR CHANGE OF CORONARY LESIONS - Systems and methods are disclosed for predicting the location, onset, or change of coronary lesions from factors like vessel geometry, physiology, and hemodynamics. One method includes: acquiring, for each of a plurality of individuals, a geometric model, blood flow characteristics, and plaque information for part of the individual's vascular system; training a machine learning algorithm based on the geometric models and blood flow characteristics for each of the plurality of individuals, and features predictive of the presence of plaque within the geometric models and blood flow characteristics of the plurality of individuals; acquiring, for a patient, a geometric model and blood flow characteristics for part of the patient's vascular system; and executing the machine learning algorithm on the patient's geometric model and blood flow characteristics to determine, based on the predictive features, plaque information of the patient for at least one point in the patient's geometric model. | 03-05-2015 |
20150051886 | SYSTEMS AND METHODS FOR IDENTIFYING PERSONALIZED VASCULAR IMPLANTS FROM PATIENT-SPECIFIC ANATOMIC DATA - Embodiments include methods of identifying a personalized cardiovascular device based on patient-specific geometrical information, the method comprising: generating a patient specific model of at least a portion of a patient's vasculature from image data of the patient's vasculature and one or more measured or estimated physiological or phenotypic parameters of the patient; determining pathology characteristics from cardiovascular geometry of the patient specific model; defining an objective function for a device based on design considerations and one or more estimates of hemodynamic and mechanical characteristics; optimizing the objective function, by simulating at least one change in devices and evaluating the objective function using fluid dynamic or structural mechanic analyses; and using the optimized objective function to either (i) select a device from a set of available devices or (ii) manufacture a desired device. | 02-19-2015 |
20150051885 | SYSTEMS AND METHODS FOR IDENTIFYING PERSONALIZED VASCULAR IMPLANTS FROM PATIENT-SPECIFIC ANATOMIC DATA - Embodiments include methods of identifying a personalized cardiovascular device based on patient-specific geometrical information, the method comprising acquiring a geometric model of at least a portion of a patient's vascular system; obtaining one or more geometric quantities of one or more blood vessels of the geometric model of the patient's vascular system; determining the presence or absence of a pathology characteristic at a location in the geometric model of the patient's vascular system; generating an objective function defined by a plurality of device variables and a plurality of hemodynamic and solid mechanics characteristics; and optimizing the objective function using computational fluid dynamics and structural mechanics analysis to identify a plurality of device variables that result in desired hemodynamic and solid mechanics characteristics. | 02-19-2015 |
20150051884 | SYSTEMS AND METHODS FOR IDENTIFYING PERSONALIZED VASCULAR IMPLANTS FROM PATIENT-SPECIFIC ANATOMIC DATA - Embodiments include methods of identifying a personalized cardiovascular device based on patient-specific geometrical information, the method comprising acquiring an anatomical model of at least part of the patient's vascular system; performing, using a processor, one or more of geometrical analysis, computational fluid dynamics analysis, and structural mechanics analysis on the anatomical model; and identifying, using the processor, a personalized cardiovascular device for the patient, based on results of one or more of the geometrical analysis, computational fluid dynamics analysis, and structural mechanics analysis of anatomical model. | 02-19-2015 |
20150038860 | METHOD AND SYSTEM FOR MODELING BLOOD FLOW WITH BOUNDARY CONDITIONS FOR OPTIMIZED DIAGNOSTIC PERFORMANCE - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 02-05-2015 |
20140379318 | METHOD AND SYSTEM FOR DETERMINING TREATMENTS BY MODIFYING PATIENT-SPECIFIC GEOMETRICAL MODELS - Systems and methods are disclosed for evaluating cardiovascular treatment options for a patient. One method includes creating a three-dimensional model representing a portion of the patient's heart based on patient-specific data regarding a geometry of the patient's heart or vasculature; and for a plurality of treatment options for the patient's heart or vasculature, modifying at least one of the three-dimensional model and a reduced order model based on the three-dimensional model. The method also includes determining, for each of the plurality of treatment options, a value of a blood flow characteristic, by solving at least one of the modified three-dimensional model and the modified reduced order model; and identifying one of the plurality of treatment options that solves a function of at least one of: the determined blood flow characteristics of the patient's heart or vasculature, and one or more costs of each of the plurality of treatment options. | 12-25-2014 |
20140355859 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 12-04-2014 |
20140303510 | SYSTEMS AND METHODS FOR NUMERICALLY EVALUATING VASCULATURE - Systems and methods are disclosed for providing a cardiovascular score for a patient. A method includes receiving, using at least one computer system, patient-specific data regarding a geometry of multiple coronary arteries of the patient; and creating, using at least one computer system, a three-dimensional model representing at least portions of the multiple coronary arteries based on the patient-specific data. The method also includes evaluating, using at least one computer system, multiple characteristics of at least some of the coronary arteries represented by the model; and generating, using at least one computer system, the cardiovascular score based on the evaluation of the multiple characteristics. Another method includes generating the cardiovascular score based on evaluated multiple characteristics for portions of the coronary arteries having fractional flow reserve values of at least a predetermined threshold value. | 10-09-2014 |
20140303495 | SYSTEMS AND METHODS FOR NUMERICALLY EVALUATING VASCULATURE - Systems and methods are disclosed for providing a cardiovascular score for a patient. A method includes receiving, using at least one computer system, patient-specific data regarding a geometry of multiple coronary arteries of the patient; and creating, using at least one computer system, a three-dimensional model representing at least portions of the multiple coronary arteries based on the patient-specific data. The method also includes evaluating, using at least one computer system, multiple characteristics of at least some of the coronary arteries represented by the model; and generating, using at least one computer system, the cardiovascular score based on the evaluation of the multiple characteristics. Another method includes generating the cardiovascular score based on evaluated multiple characteristics for portions of the coronary arteries having fractional flow reserve values of at least a predetermined threshold value. | 10-09-2014 |
20140292752 | METHOD AND SYSTEM FOR PROVIDING INFORMATION FROM A PATIENT-SPECIFIC MODEL OF BLOOD FLOW - Embodiments include a system for providing blood flow information for a patient. The system may include at least one computer system including a touchscreen. The at least one computer system may be configured to display, on the touchscreen, a three-dimensional model representing at least a portion of an anatomical structure of the patient based on patient-specific data. The at least one computer system may also be configured to receive a first input relating to a first location on the touchscreen indicated by at least one pointing object controlled by a user, and the first location on the touchscreen may indicate a first location on the displayed three-dimensional model. The at least one computer system may be further configured to display first information on the touchscreen, and the first information may indicate a blood flow characteristic at the first location. | 10-02-2014 |
20140275947 | METHODS AND SYSTEMS FOR ASSESSING IMAGE QUALITY IN MODELING OF PATIENT ANATOMIC OR BLOOD FLOW CHARACTERISTICS - Systems and methods are disclosed for assessing the quality of medical images of at least a portion of a patient's anatomy, using a computer system. One method includes receiving one or more images of at least a portion of the patient's anatomy; determining, using a processor of the computer system, one or more image properties of the received images; performing, using a processor of the computer system, anatomic localization or modeling of at least a portion of the patient's anatomy based on the received images; obtaining an identification of one or more image characteristics associated with an anatomic feature of the patient's anatomy based on the anatomic localization or modeling; and calculating, using a processor of the computer system, an image quality score based on the one or more image properties and the one or more image characteristics. | 09-18-2014 |
20140275946 | METHODS AND SYSTEMS FOR ASSESSING IMAGE QUALITY IN MODELING OF PATIENT ANATOMIC OR BLOOD FLOW CHARACTERISTICS - Systems and methods are disclosed for assessing the quality of medical images of at least a portion of a patient's anatomy, using a computer system. One method includes receiving one or more images of at least a portion of the patient's anatomy; determining, using a processor of the computer system, one or more image properties of the received images; performing, using a processor of the computer system, anatomic localization or modeling of at least a portion of the patient's anatomy based on the received images; obtaining an identification of one or more image characteristics associated with an anatomic feature of the patient's anatomy based on the anatomic localization or modeling; and calculating, using a processor of the computer system, an image quality score based on the one or more image properties and the one or more image characteristics. | 09-18-2014 |
20140275945 | METHODS AND SYSTEMS FOR ASSESSING IMAGE QUALITY IN MODELING OF PATIENT ANATOMIC OR BLOOD FLOW CHARACTERISTICS - Systems and methods are disclosed for assessing the quality of medical images of at least a portion of a patient's anatomy, using a computer system. One method includes receiving one or more images of at least a portion of the patient's anatomy; determining, using a processor of the computer system, one or more image properties of the received images; performing, using a processor of the computer system, anatomic localization or modeling of at least a portion of the patient's anatomy based on the received images; obtaining an identification of one or more image characteristics associated with an anatomic feature of the patient's anatomy based on the anatomic localization or modeling; and calculating, using a processor of the computer system, an image quality score based on the one or more image properties and the one or more image characteristics. | 09-18-2014 |
20140270427 | METHODS AND SYSTEMS FOR ASSESSING IMAGE QUALITY IN MODELING OF PATIENT ANATOMIC OR BLOOD FLOW CHARACTERISTICS - Systems and methods are disclosed for assessing the quality of medical images of at least a portion of a patient's anatomy, using a computer system. One method includes receiving one or more images of at least a portion of the patient's anatomy; determining, using a processor of the computer system, one or more image properties of the received images; performing, using a processor of the computer system, anatomic localization or modeling of at least a portion of the patient's anatomy based on the received images; obtaining an identification of one or more image characteristics associated with an anatomic feature of the patient's anatomy based on the anatomic localization or modeling; and calculating, using a processor of the computer system, an image quality score based on the one or more image properties and the one or more image characteristics. | 09-18-2014 |
20140249792 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 09-04-2014 |
20140249791 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 09-04-2014 |
20140249790 | METHOD AND SYSTEM FOR DETERMINING TREATMENTS BY MODIFYING PATIENT-SPECIFIC GEOMETRICAL MODELS - Systems and methods are disclosed for evaluating cardiovascular treatment options for a patient. One method includes creating a three-dimensional model representing a portion of the patient's heart based on patient-specific data regarding a geometry of the patient's heart or vasculature; and for a plurality of treatment options for the patient's heart or vasculature, modifying at least one of the three-dimensional model and a reduced order model based on the three-dimensional model. The method also includes determining, for each of the plurality of treatment options, a value of a blood flow characteristic, by solving at least one of the modified three-dimensional model and the modified reduced order model; and identifying one of the plurality of treatment options that solves a function of at least one of: the determined blood flow characteristics of the patient's heart or vasculature, and one or more costs of each of the plurality of treatment options. | 09-04-2014 |
20140249784 | METHOD AND SYSTEM FOR SENSITIVITY ANALYSIS IN MODELING BLOOD FLOW CHARACTERISTICS - Embodiments include systems and methods for determining cardiovascular information for a patient. A method includes receiving patient-specific data regarding a geometry of the patient's vasculature; creating an anatomic model representing at least a portion of the patient's vasculature based on the patient-specific data; and creating a computational model of a blood flow characteristic based on the anatomic model. The method also includes identifying one or more of an uncertain parameter, an uncertain clinical variable, and an uncertain geometry; modifying a probability model based on one or more of the identified uncertain parameter, uncertain clinical variable, or uncertain geometry; determining a blood flow characteristic within the patient's vasculature based on the anatomic model and the computational model of the blood flow characteristic of the patient's vasculature; and calculating, based on the probability model and the determined blood flow characteristic, a sensitivity of the determined fractional flow reserve to one or more of the identified uncertain parameter, uncertain clinical variable, or uncertain geometry. | 09-04-2014 |
20140247970 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 09-04-2014 |
20140243663 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 08-28-2014 |
20140236553 | METHOD AND SYSTEM FOR PROVIDING INFORMATION FROM A PATIENT-SPECIFIC MODEL OF BLOOD FLOW - Embodiments include a system for providing blood flow information for a patient. The system may include at least one computer system including a touchscreen. The at least one computer system may be configured to display, on the touchscreen, a three-dimensional model representing at least a portion of an anatomical structure of the patient based on patient-specific data. The at least one computer system may also be configured to receive a first input relating to a first location on the touchscreen indicated by at least one pointing object controlled by a user, and the first location on the touchscreen may indicate a first location on the displayed three-dimensional model. The at least one computer system may be further configured to display first information on the touchscreen, and the first information may indicate a blood flow characteristic at the first location. | 08-21-2014 |
20140236492 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 08-21-2014 |
20140222406 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 08-07-2014 |
20140207432 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 07-24-2014 |
20140173486 | METHOD AND SYSTEM FOR PROVIDING INFORMATION FROM A PATIENT-SPECIFIC MODEL OF BLOOD FLOW - Embodiments include a system for providing blood flow information for a patient. The system may include at least one computer system including a touchscreen. The at least one computer system may be configured to display, on the touchscreen, a three-dimensional model representing at least a portion of an anatomical structure of the patient based on patient-specific data. The at least one computer system may also be configured to receive a first input relating to a first location on the touchscreen indicated by at least one pointing object controlled by a user, and the first location on the touchscreen may indicate a first location on the displayed three-dimensional model. The at least one computer system may be further configured to display first information on the touchscreen, and the first information may indicate a blood flow characteristic at the first location. | 06-19-2014 |
20140164969 | METHOD AND SYSTEM FOR PROVIDING INFORMATION FROM A PATIENT-SPECIFIC MODEL OF BLOOD FLOW - Embodiments include a system for providing blood flow information for a patient. The system may include at least one computer system including a touchscreen. The at least one computer system may be configured to display, on the touchscreen, a three-dimensional model representing at least a portion of an anatomical structure of the patient based on patient-specific data. The at least one computer system may also be configured to receive a first input relating to a first location on the touchscreen indicated by at least one pointing object controlled by a user, and the first location on the touchscreen may indicate a first location on the displayed three-dimensional model. The at least one computer system may be further configured to display first information on the touchscreen, and the first information may indicate a blood flow characteristic at the first location. | 06-12-2014 |
20140155770 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 06-05-2014 |
20140148693 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patients heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 05-29-2014 |
20140107935 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 04-17-2014 |
20140073977 | SYSTEMS AND METHODS FOR ESTIMATING BLOOD FLOW CHARACTERISTICS FROM VESSEL GEOMETRY AND PHYSIOLOGY - Systems and methods are disclosed for estimating patient-specific blood flow characteristics. One method includes acquiring, for each of a plurality of individuals, a geometric model and estimated blood flow characteristics of at least part of the individual's vascular system; executing a machine learning algorithm on the geometric model and estimated blood flow characteristics for each of the plurality of individuals; identifying, using the machine learning algorithm, features predictive of blood flow characteristics corresponding to a plurality of points in the geometric models; acquiring, for a patient, a geometric model of at least part of the patient's vascular system; and using the identified features to produce estimates of the patient's blood flow characteristic for each of a plurality of points in the patient's geometric model. | 03-13-2014 |
20140073976 | SYSTEMS AND METHODS FOR ESTIMATING ISCHEMIA AND BLOOD FLOW CHARACTERISTICS FROM VESSEL GEOMETRY AND PHYSIOLOGY - Systems and methods are disclosed for determining individual-specific blood flow characteristics. One method includes acquiring, for each of a plurality of individuals, individual-specific anatomic data and blood flow characteristics of at least part of the individual's vascular system; executing a machine learning algorithm on the individual-specific anatomic data and blood flow characteristics for each of the plurality of individuals; relating, based on the executed machine learning algorithm, each individual's individual-specific anatomic data to functional estimates of blood flow characteristics; acquiring, for an individual and individual-specific anatomic data of at least part of the individual's vascular system; and for at least one point in the individual's individual-specific anatomic data, determining a blood flow characteristic of the individual, using relations from the step of relating individual-specific anatomic data to functional estimates of blood flow characteristics. | 03-13-2014 |
20140046642 | METHOD AND SYSTEM FOR PROVIDING INFORMATION FROM A PATIENT-SPECIFIC MODEL OF BLOOD FLOW - Embodiments include a system for providing blood flow information for a patient. The system may include at least one computer system including a touchscreen. The at least one computer system may be configured to display, on the touchscreen, a three-dimensional model representing at least a portion of an anatomical structure of the patient based on patient-specific data. The at least one computer system may also be configured to receive a first input relating to a first location on the touchscreen indicated by at least one pointing object controlled by a user, and the first location on the touchscreen may indicate a first location on the displayed three-dimensional model. The at least one computer system may be further configured to display first information on the touchscreen, and the first information may indicate a blood flow characteristic at the first location. | 02-13-2014 |
20130211728 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 08-15-2013 |
20130151163 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 06-13-2013 |
20130064438 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 03-14-2013 |
20130054214 | METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW - Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model. | 02-28-2013 |