Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


CARDIOVASCULAR SYSTEMS, INC.

CARDIOVASCULAR SYSTEMS, INC. Patent applications
Patent application numberTitlePublished
20150213733SIMULATION DEVICE - A simulation system may include a base with a working surface, an artery element configured to simulate an artery with a blockage and adapted to receive a distal portion of a handheld manually manipulated device, and a vascular pathway arranged on the working surface and configured for securing the artery element to the base.07-30-2015
20150094745ATHERECTOMY DEVICE WITH ECCENTRIC CROWN - An atherectomy device may include an elongated, flexible drive shaft having a distal end for insertion into a vasculature of a patient and having a proximal end opposite the distal end remaining outside the vasculature of the patient, a handle coupled to the proximal end of the drive shaft for controlling the drive shaft, and a head arranged proximate the distal end of the drive shaft wherein the head may include a middle portion having a substantially uninterrupted outer surface and substantially conically-shaped first and second end portions, wherein the middle portion and substantially conically-shaped end portions all have a bore extending therethrough adapted to frictionally engage a drive shaft.04-02-2015
20150089785METHOD OF ATTACHING AN ELEMENT TO A DRIVE SHAFT - A method for attaching a head to a drive shaft may include winding a wire to create a drive shaft, selecting a head, forming a tapered tip on a distal end of the drive shaft, placing the head on the tapered tip such that a distal end of the tapered tip extends from a distal end of the head, engaging the distal end of the tapered tip and turning down the drive shaft to create a turned down portion, advancing the head proximally over the turned down portion, and disengaging the distal end of the tapered tip wherein the drive shaft frictionally engages the head.04-02-2015
20140316451ROTATIONAL ATHERECTOMY DEVICE WITH BIASING CLUTCH - A rotational atherectomy system may include a drive shaft, a motor, and a clutch with a threshold torque where the clutch may include a motor plate rotationally connected to the motor, a drive shaft plate rotationally connected to the drive shaft, and a biasing clutch configured to rotationally engage the motor plate and the drive shaft plate, wherein torques less than the threshold torque are transmitted completely between the motor plate and the drive shaft plate, which remain rotationally coupled by static friction, and wherein torques greater than the threshold torque cause the motor plate and the drive shaft plate to rotate relative to one another and cause a residual torque to be transmitted between the motor and the drive shaft, the residual torque being less than the threshold torque and being determined by a kinetic coefficient of friction.10-23-2014
20140316450DEVICES, SYSTEMS AND METHODS FOR AN OSCILLATING CROWN DRIVE FOR ROTATIONAL ATHERECTOMY - The present invention is directed in various methods, devices and systems relating to rotational atherectomy. More specifically, an oscillating driver is connected to a drive shaft, or torque transfer tube, with abrasive element mounted thereon. The result provides a rotational working diameter for the rotating abrasive element that is larger than its resting diameter. Generally, the preferred abrasive element is concentric in profile and/or with center of mass collinear with the drive shaft's rotational axis. However, eccentric abrasive elements, both in terms of offsetting center of mass and/or geometric eccentricity may also be employed.10-23-2014
20140316449DEVICES, SYSTEMS AND METHODS FOR A QUICK LOAD GUIDE WIRE TOOL - A system and method for loading a guide wire into a medical device is provided. The medical device comprises a drive shaft having a lumen and a distal end; and a guide wire loader having a distal end having a guide wire mating feature. In a preloaded state, at least a portion of the guide wire loader is disposed within the drive shaft lumen, and the distal end of the guide wire loader is disposed near the distal end the drive shaft. A guide wire has a loader mating feature on a proximal end of the guide wire that compliments the guide wire mating feature. To load the guide wire into the device, the loader mating feature of the guide wire is connected to the guide wire mating feature of the guide wire loader, and the guide wire loader shaft is moved axially in a proximal direction.10-23-2014
20140316448DEVICES, SYSTEMS AND METHODS FOR A GUIDE WIRE LOADER - The present disclosure pertains to a handheld device for loading a guide wire into a medical device. The device has a housing having a slot; a driving wheel disposed within a first portion and rotatably connected to a motor disposed within the housing; a plurality of compression wheels disposed within the second portion of the housing; and a switch disposed on an outer surface of the second portion, the switch in mechanical communication with the compression wheels. When a portion of the guide wire is inserted into the slot and the switch is actuated in a first direction, the compression wheels move toward the driving wheel to grip the guide wire. When the motor is on, the driving wheel rotates to move the guide wire in an axial direction and/or rotational direction.10-23-2014
20140316447DEVICES, SYSTEMS AND METHODS FOR A PILOTING TIP BUSHING FOR ROTATIONAL ATHERECTOMY - A high-speed rotational atherectomy device for opening a stenosis in an artery having a given diameter, comprising: a guide wire; a flexible elongated, rotatable drive shaft advanceable over the guide wire, the drive shaft having a proximal end and a distal end; an abrading head; and a piloting member fixedly attached to the drive shaft and disposed distally of the abrading head. When the piloting member is advanced to a stenosis, the piloting member creates a piloting hole when the drive shaft at a sufficient rotational speed. The eccentric abrading head is then advanced through the piloting hole and distally across the stenotic lesion, thereby opening the stenotic lesion to a diameter larger than the nominal diameter of the eccentric enlarged diameter section.10-23-2014
20140277014ROTATIONAL ATHERECTOMY DEVICE WITH BIASING CLUTCH - A rotational atherectomy system may include a drive shaft, a motor, and a clutch with a threshold torque where the clutch may include a motor plate rotationally connected to the motor, a drive shaft plate rotationally connected to the drive shaft, and a biasing clutch configured to rotationally engage the motor plate and the drive shaft plate, wherein torques less than the threshold torque are transmitted completely between the motor plate and the drive shaft plate, which remain rotationally coupled by static friction, and wherein torques greater than the threshold torque cause the motor plate and the drive shaft plate to rotate relative to one another and cause a residual torque to be transmitted between the motor and the drive shaft, the residual torque being less than the threshold torque and being determined by a kinetic coefficient of friction.09-18-2014
20140081298ROTATIONAL ATHERECTOMY DEVICE WITH A SYSTEM OF ECCENTRIC ABRADING HEADS - The invention provides a rotational atherectomy device having, in various embodiments, a flexible, elongated, rotatable drive shaft with a system of eccentric abrading heads attached thereto. At least part of the eccentric enlarged abrading heads in the system have a tissue removing surface—the abrading heads may be at least partially hollow. Preferably the abrading heads have centers of mass spaced radially from the rotational axis of the drive shaft, facilitating the ability of the system of abrading heads to work together to open the stenotic lesion to a diameter larger than the outer resting diameter of the abrading heads when operated at high speeds. Therefore, certain embodiments comprise a system having unbalanced centers of mass to not only stimulate greater rotational diameters but also arranged in a manner whereby a debris-removing augering effect occurs. Other embodiments may comprise systems having abrading heads with balanced centers of mass.03-20-2014
20130023913ROTATIONAL ATHERECTOMY DEVICE WITH ELECTRIC MOTOR - An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel. The freely-spinning motor allows the large angular momentum of the system to dissipate rapidly and safely, without excessive torque to the drive shaft.01-24-2013
20130018399ROTATIONAL ATHERECTOMY DEVICE WITH ELECTRIC MOTOR - An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel. The freely-spinning motor allows the large angular momentum of the system to dissipate rapidly and safely, without excessive torque to the drive shaft.01-17-2013
20130018398ROTATIONAL ATHERECTOMY DEVICE WITH ELECTRIC MOTOR - An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel. The freely-spinning motor allows the large angular momentum of the system to dissipate rapidly and safely, without excessive torque to the drive shaft.01-17-2013
20120109105THERAPEUTIC AGENT DELIVERY SYSTEM AND METHOD FOR LOCALIZED APPLICATION OF THERAPEUTIC SUBSTANCES TO A BIOLOGICAL LUMEN - The invention provides a system and method for localized application of therapeutic substances within a biological lumen and to the wall of the lumen. In various embodiments, a biodegradable tubular prosthesis comprising a plurality of pores is deployed within a biological lumen. Subsequent to, or in conjunction with, the deployment of the prosthesis, a drug-eluting balloon comprising at least one therapeutic agent is expanded within the lumen of the tubular prosthesis, thereby releasing the agent(s) from the balloon and delivering them to the prosthesis pores. The at least one therapeutic agent is then allowed to diffuse through the pores to the lumen wall.05-03-2012
20120046600HIGH-SPEED ROTATIONAL ATHERECTOMY SYSTEM, DEVICE AND METHOD FOR LOCALIZED APPLICATION OF THERAPEUTIC AGENTS TO A BIOLOGICAL CONDUIT - The invention provides a system, device and method for localized application of therapeutic agents within a biological conduit. A preferred biological conduit comprises a blood vessel. A preferred device comprises a high-speed rotational atherectomy device having, in various embodiments, a flexible, elongate non-rotatable therapeutic agent delivery sheath having a lumen therethrough and a flexible, elongated, rotatable, drive shaft with at least one flexible eccentric enlarged abrading head disposed within lumen of the delivery sheath. The operator may actuate a controlled amount or dose of one or more therapeutic agents to release from the distal end of the delivery sheath lumen during high-speed rotation of the drive shaft. The therapeutic agent(s) is thus released into a turbulent fluidic environment resulting from high-speed rotation and orbital motion of the eccentric abrading head, which aids to drivingly urge the therapeutic agent(s) radially through the boundary layer of fluid flow in the conduit and into the target region of the conduit wall.02-23-2012
20120046599THERAPEUTIC AGENT DELIVERY SYSTEM, DEVICE AND METHOD FOR LOCALIZED APPLICATION OF THERAPEUTIC SUBSTANCES TO A BIOLOGICAL CONDUIT - The invention provides a system, device and method for localized application of therapeutic substances within a biological conduit after the lumen wall has been scored by an eccentric scoring head. One embodiment comprises radial scoring with the eccentric scoring head, with a therapeutic agent coated balloon inflated distal to the scoring and dragged proximally through the scoring. Another embodiment comprises inflation of two anchor balloons on either side of scoring with subsequent inflation of a therapeutic agent coated balloon therebetween which causes the distance between anchor balloons to increase, thus stretching the scoring crevices while applying the agent therein with subsequent closure of crevices on deflation of anchor and application balloons. Another embodiment comprises an inflated anchor balloon with a threaded scoring device wherein the scoring members are coated with agent and rotation of the threaded device enables travel in the proximal direction away from anchor balloon.02-23-2012
20120041359SYSTEMS AND METHODS FOR MIXING THERAPEUTIC AGENTS BEFORE AND/OR DURING ADMINISTRATION - The invention provides systems and methods for mixing of therapeutic agents before and/or during the localized application of the therapeutic agents. Most preferably, the present invention provides systems and methods for mixing of therapeutic agents before and/or during administration of the agents within a biological lumen. Various embodiments of the present invention comprise systems and methods for inducing a mixing state in the therapeutic agents, thereby inducing and/or maintaining homogeneity of the agents before and/or during localized delivery.02-16-2012
20120035588DEVICES AND METHODS FOR LOW SHEARING LOCAL DELIVERY OF THERAPEUTIC AGENTS TO THE WALL OF A BODILY LUMEN - The invention relates generally to devices and methods for local delivery of therapeutic agents to the wall of a bodily lumen with minimal shearing damage to the therapeutic agents, more specifically to the wall of a blood vessel following atherectomy. A preferred delivery mechanism comprises a balloon, or double balloon, though any distal catheter design may be used to reduce shear stress and to conserve and/or isolate the therapeutic substance.02-09-2012
20110213391ROTATIONAL ATHERECTOMY DEVICE WITH ELECTRIC MOTOR - An atherectomy device is disclosed, which is rotationally driven by an electric motor. In some designs, the device includes features unavailable on gas turbine-driven systems, such as the storing in memory of low/medium/high preset rotation speeds for particular models of handle, calculations of the amount of saline left in the IV and associated warnings when it gets sufficiently low, and automatic adjustment of the IV pump rate to a predetermined or calculated level when the rotational speed of the motor is changed. The electric motor has far more rotational inertia than a comparable gas turbine, so the system includes a control mechanism that helps prevent damage from excessive torque being applied to the distal end of the drive shaft. When an obstruction at the distal end is detected, by a drop in the motor rotational speed, the motor is released and is allowed to spin freely as a flywheel. The freely-spinning motor allows the large angular momentum of the system to dissipate rapidly and safely, without excessive torque to the drive shaft.09-01-2011
20110208221THERAPEUTIC AGENT DELIVERY SYSTEM, DEVICE AND METHOD FOR LOCALIZED APPLICATION OF THERAPEUTIC SUBSTANCES TO A BIOLOGICAL CONDUIT - The invention provides a system, device and method for localized application of therapeutic substances within a biological conduit. In various embodiments, a dissolvable bag or bolus of at least one therapeutic agent is introduced and pressed and/or sealed against the wall of conduit. In other embodiments, dissolvable barbs formed from at least one therapeutic agent are ejected from a catheter by fluid pressure, embedding in the wall of conduit.08-25-2011
20110202079THERAPEUTIC AGENT DELIVERY SYSTEM, DEVICE AND METHOD FOR LOCALIZED APPLICATION OF THERAPEUTIC SUBSTANCES TO A BIOLOGICAL CONDUIT - The invention provides a system, device and method for localized application of therapeutic substances within a biological conduit. One embodiment comprises a rotational atherectomy device having a flexible, elongated, rotatable, drive shaft having a lumen and with an eccentric enlarged abrading head having at least one application hole attached therethrough and in communication with a therapeutic agent delivery sheath and an operator-controlled actuator. The therapeutic substances may then spray radially outwardly from the application hole(s) on the eccentric abrading head during and/or after high-speed rotation of the head. Another embodiment comprises compartments in the abrading head that hold therapeutic agent(s) for release during high-speed rotation. In each case, the therapeutic substance(s) is delivered with radial forces resulting from high-speed orbital rotation of the eccentric abrading head, driving the therapeutic substance(s) into the conduit wall.08-18-2011
20110144671ATHERECTOMY DEVICE, SYSTEM AND METHOD HAVING A BI-DIRECTIONAL DISTAL EXPANDABLE ABLATION ELEMENT - The invention provides a rotational atherectomy system, device and method comprising a bi-directional drive shaft with a flexible ablation element disposed at the distal end of the drive shaft. The flexible ablation element comprises a first retracted position for insertion into vasculature and a second expanded position for ablation, i.e., cutting, sanding and/or grinding. The ablation element comprises more than one flexible finger or blade which allows changing, in certain embodiments, of curvature radius to fit inside a deployment catheter and/or enlarge to the diameter of larger lumens, up to at least 9 mm in diameter. Bi-directional rotation of the expanded ablation element allows cutting in one rotational direction and grinding and/or sanding in the opposite rotational direction.06-16-2011
20110087254ROTATIONAL ATHERECTOMY DEVICE WITH KEYED EXCHANGEABLE DRIVE SHAFT - An atherectomy device with an exchangeable drive shaft is disclosed, having a mechanical coupling that can allow for axial translation of the drive shaft while keeping the drive shaft rotationally locked to the prime mover. The coupling is geometrically keyed, with one side of the coupling having an aperture with a particular internal cross-section, and the other side of the coupling having an external cross-section that matches all or a part of the corresponding internal cross-section. Key shapes may be hexagonal, square, n-sided polygonal, star-shaped, or any other suitable shape. The keys may optionally include one or more rounded corners to simplify manufacturing. Axial motion may be locked by an optional twist-lock connection of two elements that surround the keyed coupling.04-14-2011
20110077673ROTATIONAL ATHERECTOMY DEVICE WITH FRICTIONAL CLUTCH HAVING MAGNETIC NORMAL FORCE - An atherectomy device is disclosed, with a clutch between the motor and the drive shaft. The clutch includes two plates that rely on frictional to transmit torque from one plate to the other. The clutch has an attractive magnetic normal force that holds the plates together. For relatively low torques, as is the case during normal use, a static frictional torque holds the plates together, and the plates spin together without slipping. For relatively high torques, as occurs when the distal end of the drive shaft encounters an obstacle and stops abruptly, the high torque exceeds the maximum possible static frictional torque, and the plates slip. When slipping, the plates transmit a kinetic frictional torque that is low enough to avoid damage to the patient or to the atherectomy device. In some cases, the torque levels associated with a stoppage of the drive shaft distal end are chosen to mimic those of a known atherectomy device, in which a gas-driven turbine is clutchlessly attached to the drive shaft.03-31-2011
20100292720ROTATIONAL ATHERECTOMY DEVICE AND METHOD TO IMPROVE ABRADING EFFICIENCY - The invention provides a rotational atherectomy system, device and method having, in various embodiments, a flexible, elongated, rotatable drive shaft with at least one eccentric abrading head attached thereto, wherein the abrading head comprises at least one groove thereon. The eccentric grooved abrading comprises a tissue removing surface—typically an abrasive surface and/or at least one groove. Preferably the eccentric enlarged abrading head has a center of mass spaced radially from the rotational axis of the drive shaft, facilitating the ability of the device to open the stenotic lesion to a diameter substantially larger than the outer diameter of the enlarged abrading head when operated at high speeds. The groove(s) provide improved efficacy in the abrasion of non-calcified and/or soft tissue as well as provide a means for breaking the hydraulic wedge between the abrading head and the stenotic tissue.11-18-2010
20100211088ROTATIONAL ATHERECTOMY SEGMENTED ABRADING HEAD AND METHOD TO IMPROVE ABRADING EFFICIENCY - The invention provides a rotational atherectomy system, device and method having, in various embodiments, a flexible, elongated, rotatable drive shaft comprising an eccentric abrading head comprising at least one eccentric abrading cylindrical segments attached to the drive shaft and in spaced proximity with proximal and a distal conical segments. Each individual abrading segment, comprises a first tissue removing surface, typically an abrasive coating on the outer surface, that is designed to abrade calcified, hard tissue and abrasive coating on the leading and trailing surfaces designed to abrade non-calcified, soft tissue. Each abrading segment, as well as the abrading head comprising the collective segments, has a center of mass spaced radially from the rotational axis of the drive shaft, facilitating the ability of the device to open the stenotic lesion to a diameter larger than the outer diameter of the enlarged abrading head when operated at high speeds.08-19-2010
20100198239MULTI-MATERIAL ABRADING HEAD FOR ATHERECTOMY DEVICES HAVING LATERALLY DISPLACED CENTER OF MASS - An abrading head for a high-speed rotation atherectomy device is disclosed. The head has its center of mass laterally displaced from the rotational axis of the drive shaft. As the drive shaft spins, centrifugal force forces the abrading head radially outward. At high speeds, and the abrasive portion of the head may subtend an abrading cylinder larger than at low speeds or at rest. The abrading head has two components, each having a different density. The connection portion may be an incomplete cylinder, which fastens onto the drive shaft, and may be a relatively low density metal, such as stainless steel. The eccentric portion may be a relatively high density metal, such as tungsten or tantalum, and is attached to the connection portion. The eccentric portion has all or most of its mass on one side of the rotation axis of the drive shaft, providing a larger separation between the center of mass of the abrading head and the rotational axis of the drive shaft than if the abrading head were made from only one material.08-05-2010
20100121361DIRECTIONAL ROTATIONAL ATHERECTOMY DEVICE WITH OFFSET SPINNING ABRASIVE ELEMENT - The invention provides a rotational atherectomy system, device and method comprising a flexible, elongated, rotatable drive shaft with a pre-curved abrasive section disposed within a catheter that deforms the abrasive section to a substantially straight profile and, when the abrasive section is moved distally out of the catheter, the abrasive section resumes its pre-curved profile. Directional ablation is achieved by rotation of the drive shaft along its pre-curved axis as the abrasive section is urged against a portion of the lumen wall.05-13-2010
20100100110ECCENTRIC ABRADING AND CUTTING HEAD FOR HIGH-SPEED ROTATIONAL ATHERECTOMY DEVICES - The invention provides a rotational atherectomy device having, in various embodiments, a flexible, elongated, rotatable drive shaft with at least one flexible or inflexible eccentric enlarged abrading and cutting head attached thereto which comprises an abrasive surface. When placed against stenotic tissue and rotated at high speed, the eccentric nature of the abrading and cutting head moves along an orbital path, opening the lesion to a diameter larger than the resting diameter of the enlarged abrading and cutting head. Preferably the abrading and cutting head has a center of mass spaced radially from the rotational axis of the drive shaft, facilitating the ability of the device to travel along an orbital path. The abrading and cutting head comprises proximal and/or distal radiused surfaces that facilitate cutting difficult stenosis material while minimizing trauma to the vessel. In some cases, the abrading and cutting head is made from a relatively dense metal.04-22-2010
20100036402ROTATIONAL ATHERECTOMY DEVICE WITH PRE-CURVED DRIVE SHAFT - The invention provides a rotational atherectomy system, device and method comprising a flexible, elongated, rotatable drive shaft with an abrasive section within a pre-curved section of the drive shaft. The device may further comprise a concentric or eccentric enlarged diameter section that is at least partially covered with abrasive material to comprise the abrasive section. The abrasive section may further comprise an abrasive crown or burr mounted to the drive shaft. The pre-curved drive shaft allows smaller diameter and/or massive abrasive regions to be used while sweeping larger diameters during high-speed rotation. The pre-curved region is substantially straightened for insertion into vasculature and placement adjacent stenosis by insertion of the guide wire. Removal of guide wire proximally from the pre-curved region allows the drive shaft to return to its pre-curved form for ablation. Reinsertion of the guide wire beyond the pre-curved region straightens the drive shaft for ease of removal.02-11-2010
20090306691CUTTING AND CORING ATHERECTOMY DEVICE AND METHOD - The invention provides a rotational and/or axially translatable atherectomy system, device and method comprising a flexible, elongated drive shaft or catheter comprising an expandable and collapsible conical coil with a cutting edge on the coil's large diameter proximal end. When retracted, the coil's sections are collapsed around each other, held together in the retracted position by a sheath that, when distally retracted, allows the coil to automatically expand. The coil is expanded at a point distal to the occlusion, then pulled proximally to cut the occluding material near the lumen wall. The proximal pulling force may be combined with low-speed rotation and/or translation and/or axial vibration at low to ultrasonic frequency.12-10-2009
20090306690ABRASIVE NOSE CONE WITH EXPANDABLE CUTTING AND SANDING REGION FOR ROTATIONAL ATHERECTOMY DEVICE - An rotational atherectomy apparatus for abrading tissue, comprising: a flexible, elongated, rotatable drive shaft having a proximal end and a distal end opposite the proximal end; a nose cone operatively attached proximate the distal end of the drive shaft comprising a distal tapered section and a plurality of elongate, flexible members adjacent to the distal tapered section of the drive shaft, each member in the plurality being fixed at both a proximal end and a distal end opposite the proximal end; a proximal mount rotatable with the drive shaft and fixedly connected to the proximal ends of all the flexible members in the plurality; and a distal mount axially separated from the proximal mount and fixedly connected to the distal ends of all the flexible members in the plurality. When the axial separation of the proximal and distal mounts is reduced by pulling the distal tapered section proximally, each member in the plurality bows outward from the drive shaft and expands radially in an at least partially elliptical profile.12-10-2009
20090306689BIDIRECTIONAL EXPANDABLE HEAD FOR ROTATIONAL ATHERECTOMY DEVICE - A rotational atherectomy device that includes an expandable head that can clean a blockage from vessel larger than its rest diameter, in which the drive shaft may rotate in two opposite directions and may have different abrasive characteristics for each rotation direction. In one direction, the head may be configured for cutting and/or slicing, which may be well suited to removing particularly soft blockage material. In the other direction, the head may be configured for grinding, scraping and/or sanding, which may be well suited to removing particularly hard blockage material. The head includes one or more arms that are pivotally or hingedly attached to the drive shaft. One or more abrasive elements are disposed on or are attached to the one or more arms. The abrasive elements have a cutting feature, such as a sharpened edge that cuts like a razor blade when the drive shaft is rotated in the “cutting” direction. The abrasive elements also have a grinding feature, such as an abrasive material disposed on the abrasive element adjacent to the sharpened edge, which grinds away a blockage when the drive shaft is rotated in the “grinding” direction.12-10-2009
20090306657SPLIT FLEXIBLE TUBE BIASING AND DIRECTIONAL ATHERECTOMY DEVICE AND METHOD - The invention provides a rotational atherectomy system, device and method comprising a flexible, elongated, rotatable catheter tube that is split into two elements, a biasing element and a cutting element, distally and wherein the biasing element and cutting element are capable of forming a first and retracted position for insertion into a lumen and a second and expanded position for ablation. The biasing element is biased in the expanded position, thereby placing a biasing force against the lumen wall and pressing the cutting element against the opposite side of the lumen wall for directional cutting and/or grinding, either by rotation, axial translation, vibration or a combination thereof.12-10-2009
20090299392ECCENTRIC ABRADING ELEMENT FOR HIGH-SPEED ROTATIONAL ATHERECTOMY DEVICES - The invention provides a rotational atherectomy device having, in various embodiments, a flexible, elongated, rotatable drive shaft with at least one asymmetric and at least partially spherical abrading element attached thereto, which comprises an abrasive surface. The abrading element comprises more mass above the drive shaft than below and comprises a flattened side or transverse surface which creates hard cutting edges and spaces the center of mass radially from the rotational axis of the drive shaft. Thus the center of mass is moved vertically and transversely by the structure of the abrading element, conferring geometric and mass eccentricity upon the element. When placed against stenotic tissue and rotated at high speed, the eccentric nature of the abrading element moves along an orbital path, opening the lesion to a diameter larger than the resting diameter of the abrading element.12-03-2009
20090299391ECCENTRIC ABRADING AND CUTTING HEAD FOR HIGH-SPEED ROTATIONAL ATHERECTOMY DEVICES - The invention provides a rotational atherectomy device having, in various embodiments, a flexible, elongated, rotatable drive shaft with at least one flexible or inflexible eccentric enlarged abrading and cutting head attached thereto which comprises an abrasive surface. When placed against stenotic tissue and rotated at high speed, the eccentric nature of the abrading and cutting head moves along an orbital path, opening the lesion to a diameter larger than the resting diameter of the enlarged abrading and cutting head. Preferably the abrading and cutting head has a center of mass spaced radially from the rotational axis of the drive shaft, facilitating the ability of the device to travel along an orbital path. The abrading and cutting head comprises proximal and/or distal radiused surfaces that facilitate cutting difficult stenosis material while minimizing trauma to the vessel.12-03-2009
20090264908METHOD AND APPARATUS FOR INCREASING ROTATIONAL AMPLITUDE OF ABRASIVE ELEMENT ON HIGH-SPEED ROTATIONAL ATHERECTOMY DEVICE - A high-speed atherectomy device is disclosed, for abrading a blockage (stenosis) in the interior of a lumen (artery). The device uses a rapidly rotating drive shaft that includes an eccentric abrasive element that has its center of mass laterally offset from the rotational axis of the drive shaft. As the drive shaft rotates, centrifugal force drives the eccentric abrasive element outward, so that it traces an abrading diameter at high rotational speeds that is larger than its rest diameter. The drive shaft includes counterweights on both sides of the abrasive element, which may stabilize operation at high rotational speeds. In some cases, the counterweights are also eccentric, with their centers of mass laterally offset from the rotational axis in the opposite direction as that of the abrasive element. The counterweights are longitudinally separated from the abrasive element, and in some cases, the separations are adjustable and/or controllable. In some cases, the guide wire may be retracted prior to or during the high-speed rotation of the drive shaft, with the retraction being to the distal counterweight, the abrasive element, the proximal counterweight, or beyond the proximal counterweight.10-22-2009
20090149877ROTATIONAL ATHERECTOMY DEVICE WITH PRE-CURVED DRIVE SHAFT - The invention provides a rotational atherectomy system, device and method comprising a flexible, elongated, rotatable drive shaft with an abrasive section within a pre-curved section of the drive shaft. The device may further comprise a concentric or eccentric enlarged diameter section that is at least partially covered with abrasive material to comprise the abrasive section. The abrasive section may further comprise an abrasive crown or burr mounted to the drive shaft. The pre-curved drive shaft allows smaller diameter and/or massive abrasive regions to be used while sweeping larger diameters during high-speed rotation. The pre-curved region is substantially straightened for insertion into vasculature and placement adjacent stenosis by insertion of the guide wire. Removal of guide wire proximally from the pre-curved region allows the drive shaft to return to its pre-curved form for ablation. Reinsertion of the guide wire beyond the pre-curved region straightens the drive shaft for ease of removal.06-11-2009
20090105736ROTATIONAL ATHERECTOMY DEVICE WITH COUNTERWEIGHTING - The invention provides a rotational atherectomy device having a flexible, elongated, rotatable drive shaft with an abrasive section comprising an enlarged diameter section of the drive shaft or, alternatively, a solid abrasive crown which may be attached to the drive shaft. The device further comprises a proximal and/or a distal counterweight attached to the drive shaft, spaced from the abrasive section wherein each counterweight has its center of mass offset from the longitudinal axis of the drive shaft to stimulate orbital motion by the abrasive section. When placed within an artery against stenotic tissue and rotated at sufficiently high speeds (e.g., in the range of about 20,000 rpm to about 200,000 rpm) the orbiting nature of the abrasive section causes such section to rotate as to open the stenotic lesion to a diameter substantially larger than the resting outer diameter of the abrasive section.04-23-2009
20090012548Cleaning apparatus and method for high-speed rotational atherectomy devices - Apparatus and method for maximizing efficiency of tissue removal from body passageways is provided. A rotational atherectomy device comprises, inter alia, an elongated, flexible and rotatable drive shaft with an enlarged cutting surface disposed thereon, guide wire and catheter. The distal end of catheter may have a cutting surface cleaner, either attached thereto or integrated therein. The cleaner may be outwardly radially flexible and biased against the drive shaft. The cleaner may be opened to accommodate the enlarged cutting surface for cleaning particles trapped therein as a consequence of abrading as it is either advanced distally over the drive shaft and/or the drive shaft is retracted proximally toward the cleaner to accommodate the diameter of the enlarged cutting section. The cleaner comprises an inner surface having an abrasive surface for mechanically scraping and dislodging material trapped in the enlarged cutting head tissue removing surface.01-08-2009
20080319462SYSTEM, APPARATUS AND METHOD FOR OPENING AN OCCLUDED LESION - A system, apparatus and method for maximizing efficiency of tissue removal from body passageways is provided. The system comprises a device for opening an occluded lesion, e.g., a rotational atherectomy device or angioplasty device, and a guide wire having an introducer sheath. The guide wire introducer sheath may comprise a hypo tube having columnar strength greater than that of the guide wire alone to assist the guide wire in crossing occluded lesions, wherein the sheath and guide wire are axially moveable relative to each other. The guide wire sheath may further comprise increased flexibility at its distal end to increase flexibility and/or a soft distal tip to help with steerability through the vasculature. The sheath may allow for a smaller outer diameter guide wire which, in turn, may allow for a smaller outer diameter on the occlusion-opening device, e.g., atherectomy or angioplasty device, which is slid over the pre-positioned guide wire.12-25-2008
20080306498ECCENTRIC ABRADING HEAD FOR HIGH-SPEED ROTATIONAL ATHERECTOMY DEVICES - The invention provides a rotational atherectomy device having, in various embodiments, a flexible, elongated, rotatable drive shaft with at least one flexible eccentric enlarged abrading head attached thereto. In other embodiments, the eccentric abrading head is not flexible or partially flexible. At least part of the eccentric enlarged cutting head has a tissue removing surface—typically an abrasive surface. In certain embodiments, the abrading head will be at least partially hollow. When placed within an artery against stenotic tissue and rotated at sufficiently high speeds the eccentric nature of the enlarged cutting head causes the cutting head and drive shaft to rotate in such a fashion as to open the stenotic lesion to a diameter substantially larger than the outer diameter of the enlarged cutting head. Preferably the eccentric enlarged cutting head has a center of mass spaced radially from the rotational axis of the drive shaft, facilitating the ability of the device to open the stenotic lesion to a diameter substantially larger than the outer diameter of the enlarged cutting head when operated at high speeds.12-11-2008

Patent applications by CARDIOVASCULAR SYSTEMS, INC.

Website © 2016 Advameg, Inc.