ASMO CO., LTD. Patent applications |
Patent application number | Title | Published |
20160131199 | JOINT STRUCTURE, CLUTCH, AND MOTOR - A joint structure includes a drive side insertion portion of a drive shaft, a driven side insertion portion of a driven shaft, and a coupling. The coupling includes a drive shaft insertion bore, which receives the drive side insertion portion, and a driven shaft insertion bore, which receives the driven side insertion portion. The drive shaft insertion bore includes a wall surface that engages the drive side insertion portion. The driven shaft insertion bore includes a wall surface that engages the driven side insertion portion. A drive side clearance in the drive shaft insertion bore allows the drive side insertion portion to move in the radial direction. A driven side clearance in the driven shaft insertion bore allows the driven side insertion portion to move in the radial direction. | 05-12-2016 |
20160111930 | MOTOR, METHOD FOR DRIVING MOTOR, AND DRIVE CONTROLLER FOR MOTOR - A motor includes a two-layer rotor and a two-layer stator. The two layer rotor includes an A-phase rotor and a B-phase rotor that are stacked together. When θ1 represents, in electric angle, an angle of the B-phase stator relative to the A-phase stator in a clockwise circumferential direction, and θ2 represents, in electric angle, an angle of the B-phase rotor relative to the A-phase rotor in a counterclockwise circumferential direction, θ1+|θ2|=90° is satisfied. | 04-21-2016 |
20160072345 | DC MOTOR - A DC motor includes a core, two bifurcated branching portions, an inner coil, and an outer coil. The core includes teeth. Each tooth includes a distal end and a basal end. The branching portions are located at the distal end. The inner coil is wound around the basal end. The outer coil is wound around each of the branching portions of the tooth and a branching portion of an adjacent one of the teeth. The inner coil and the outer coil each have a number of turns that is adjusted so that an inductance of the inner coil conforms to an inductance of the outer coil. | 03-10-2016 |
20160028277 | MULTI-LUNDELL MOTOR - A multi-Lundell motor includes a rotor and a stator. The rotor includes first and second rotor cores and a permanent magnet. The first and second rotor cores each include claw poles in the circumferential direction. The permanent magnet is magnetized in the axial direction between the first and second rotor cores. The stator includes first and second stator cores and a winding. The first and second stator cores each include claw poles in the circumferential direction. The winding is arranged between the first and second stator cores and extended in the circumferential direction. At least one of the first and second rotor cores and the first and second stator cores include core segments arranged in the circumferential direction. | 01-28-2016 |
20150337911 | CLUTCHED MOTOR AND DEVICE FOR OPENING AND CLOSING OPENABLE BODY - First and second clutches allow first and second tubular output shafts to pivot when a motor generates rotation at a second rotation speed or higher. A third clutch allows a pivot shaft to pivot when the motor rotates at a speed lower than a first rotation speed. A control plate is arranged at a first pivot position, second pivot position, or third pivot position. At the first pivot position, the first and second tubular output shafts are moved to positions in an axial direction allowing first and second rotated members to rotate. At the second pivot position, the first and second tubular output shafts are moved to positions in the axial direction allowing only the first rotated member to rotate. At the third pivot position, the first and second tubular output shafts are moved to positions in the axial direction allowing only the second rotated member to rotate. | 11-26-2015 |
20150329084 | WIPER DEVICE - A wiper device includes: a pivot shaft that rotates back and forth within a predetermined angular range; an arm head that is fixed to the pivot shaft; a cover that is mounted to the arm head; and a wiper arm that is pivotally supported on the arm head to come into and out of contact with a surface to be wiped. The wiper arm includes an engagement concave portion that extends in a longitudinal direction of the wiper arm at a side portion in a pivot direction of the wiper arm. The cover includes an engagement convex portion that extends in the longitudinal direction of the wiper arm. Relative movement of the wiper arm and the cover is restricted by engagement between an engagement wall portion of the engagement concave portion and the engagement convex portion. | 11-19-2015 |
20150288119 | MOTOR WITH BRUSH - A brushed motor includes a rotation shaft, a commutator including a plurality of segments separated by a plurality of undercuts arranged at unequal intervals, an armature, a plurality of permanent magnets, a voltage equalizing line, a positive electrode brush, and a negative electrode brush. When Pz is the number of the permanent magnets and N is the number of the segments, a relationship of N=Pz(K−0.5) is satisfied. Pz is an even number that is greater than or equal to four. K is a constant and is a natural number that is greater than or equal to two. The plurality of undercuts includes at least one set of undercuts arranged at an undercut interval that differs from a reference angle θz. The reference angle θz is specified by a relational expression of θz=(360 degrees/Pz)±(360 degrees/2N). | 10-08-2015 |
20150258968 | VEHICLE WIPER DEVICE - A vehicle wiper device including: a wiper blade that wipes a specific range between a lower return position and an upper return position on a wiping target face; a wiper arm that has a leading end side coupled to a length direction center portion of the wiper blade and that swings to-and-fro about a base end side of the wiper arm to cause the wiper blade to swing to-and-fro, wherein at least a portion of the wiper arm that locates further to the base end side than a portion of the wiper arm coupled to the wiper blade is disposed at the upper return position side with respect to the wiper blade; and a first washer nozzle that is provided to the wiper arm disposed further to the upper return position side than the wiper blade and that squirts a cleaning fluid on the upper return position side of the wiper blade. | 09-17-2015 |
20150252853 | MOTOR - A motor includes a motor body, a pin, a core, and an input cam. The motor body includes a housing and an output shaft. The pin is arranged in the output shaft to extend in a direction orthogonal to a rotation axis of the output shaft. The core is pivotally supported by the pin and rotates coaxially with the output shaft. The input cam is annular and surrounds an outer circumference of the core. The input cam rotates integrally with the core. An end surface of the core closer to the housing includes a first deviated surface. The core includes an insertion portion into which the pin is inserted. When a center axis of the core is coaxial to the rotation axis of the output shaft, the first deviated surface is located at a position farther from the housing than the insertion portion. | 09-10-2015 |
20150222152 | MOTOR AND ROTOR - A motor includes a stator, a rotor, and a case. The stator includes a stator core and windings. The rotor is provided inside the stator. The rotor includes first and second rotor cores and a field magnet. The first and second rotor cores each includes a core base and claw-shaped magnetic poles. The core bases are opposed to each other and the claw-shaped magnetic poles of the first and second rotor cores are alternately disposed in a circumferential direction. The field magnet is disposed between the core bases in the axial direction. The field magnet is magnetized in the axial direction so as to cause the claw-shaped magnetic poles of the first rotor core and the second rotor core to function respectively as first magnetic poles and second magnetic poles. At least part of an end part of the case in the axial direction is made of a non-magnetic body. | 08-06-2015 |
20150084478 | MOTOR - A stator core is sandwiched between a first frame and a second frame. A fastening member fastens the first frame and the second frame. The first frame includes a ring flange that is in contact with an attachment surface of the motor attachment portion. The flange includes a fixing portion fixed to the attachment surface and a fastening portion, which receives fastening force by the fastening member. The first frame includes a deform suppression portion for suppressing deformation of the fixing member when the fastening member is fastened. | 03-26-2015 |
20150084470 | MOTOR AND ROTOR - A motor includes a rotor and a stator. The rotor includes a first rotor core including a plurality of first claw-like magnetic poles, a second rotor core including a plurality of second claw-like magnetic poles, and a magnetic field magnet arranged between the first and second rotor cores. The first and second claw-like magnetic poles are alternately arranged in a circumferential direction. The magnetic field magnet causes the first and second claw-like magnetic poles to function as magnetic poles different from each other. The stator includes a first stator core including a plurality of first claw-like magnetic poles, a second stator core including a plurality of second claw-like magnetic poles, and a coil section arranged between the first and second stator cores. The stator is configured to cause the first and second claw-like magnetic poles of the stator to function as magnetic poles different from each other and switch polarities of the magnetic poles on the basis of energization to the coil section. At least ones of the claw-like magnetic poles of the rotor and the claw-like magnetic poles of the stator are formed in a shape in which circumferential centers of distal end portions are shifted in the circumferential direction with respect to circumferential centers of proximal end portions. | 03-26-2015 |
20150084466 | ROTOR AND MOTOR - A rotor includes first and second rotor cores, a disk magnet, and a rectifying magnet. The first and second rotor cores each include a core base and claw-poles. The disk magnet is magnetized in the axial direction so that the claw-poles of the first rotor core function as first poles and the claw-poles of the second rotor core function as second poles. The rectifying magnet includes at least an inter-pole magnet portion or a back-surface magnet portion. The inter-pole magnet portion is located in a gap formed in the circumferential direction between the claw-poles of the first rotor core and the claw-poles of the second rotor core. The back surface magnet portion is located in a gap formed at back surfaces of the claw-poles. The rectifying magnet and the disk magnet are formed from different materials. The rectifying magnet is integrated with the disk magnet in a post-process. | 03-26-2015 |
20150078940 | ELECTRIC PUMP AND CLEANING DEVICE FOR ON-VEHICLE OPTICAL SENSOR - An electric pump includes a cylinder, a piston, a motor, and a discharge valve. The cylinder includes a valve port and a discharge port, which is in communication with the valve port. The discharge valve opens and closes the valve port. When the piston is moved forth to narrow a void in the cylinder, air is compressed in the cylinder. The discharge valve opens when operated by the piston that moves forth. The discharge valve opens and discharges compressed air from the valve port so that fluid including air is discharged from the discharge port. | 03-19-2015 |
20150076957 | MOTOR AND METHOD FOR MANUFACTURING MOTOR - A brush holder is held between a flange of a yoke housing and a gear housing of a speed reduction unit and fastened by a fastening screw. A link of the brush holder is located between a screw fastening portion of the flange and a screw fastening portion of the gear housing. A connector is linked to a holder main body by the link. The link includes a screw insertion hole and first and second bridges. A metal terminal, which electrically connects the holder main body and the connector, is embedded in each of the first and second bridges. | 03-19-2015 |
20150042192 | YOKE HOUSING, MOTOR, AND METHOD FOR MANUFACTURING YOKE HOUSING - A yoke housing includes a tubular case and a flange. The tubular case is formed from a metal sheet in a drawing process. The flange is formed at an end of the tubular case. The flange has a width in the lateral direction that is equal to the outer diameter of the tubular case. The flange has a base including beads and a thick portion. Each of the beads is formed by compressing the base. A portion of the base in which the beads are not formed defines a thick portion. The thick portion is located at a middle portion of the flange in the lateral direction. The beads are located on opposite sides of the thick portion in the lateral direction. | 02-12-2015 |
20150040953 | CLEANING DEVICE FOR ON-VEHICLE OPTICAL SENSOR - An on-board optical sensor cleaning device includes an on-board camera and a discharge port. The on-board camera is mounted on a vehicle. The on-board camera includes a lens. The discharge port discharges fluid toward the lens. The discharged fluid removes foreign material collected on the lens. The lens and the discharge port are relatively movable. At least one of the lens and the discharge port is movable between a cleaning position, where the discharge port is located proximal to an image capturing range center of the on-board camera, and a non-cleaning position, where the discharge port is located farther from the image capturing range center than the cleaning position. | 02-12-2015 |
20150028705 | MOTOR - A motor includes a power supplying brush, a brush holder, a choke coil, and a power supplying terminal. The brush holder holds the power supplying brush. The choke coil includes a coil portion having a coil shape, an iron core, a first connecting portion, and a second connecting portion. The iron core is inserted into the coil portion. The iron core is longer than an axial length of the coil portion. The iron core has a projecting portion projecting from the coil portion in an axial direction of the coil portion. The first connecting portion extends from an axial first end of the coil portion. The second connecting portion extends from an axial second end of the coil portion. The power supplying terminal is assembled to the brush holder. The power supplying terminal connects with at least one of the first connecting portion and the second connecting portion. At least one of the power supplying terminal and the brush holder includes an iron core holding portion that holds the projecting portion. | 01-29-2015 |
20140345076 | VEHICLE WIPER DEVICE - In a vehicle wiper device, a retaining portion is formed inside an arm piece at respective areas of a base end side fixing section, a main body, and a leading end side fixing section of the arm piece. A hose is retained by the retaining portion. This thereby enables the hose to be retained to the arm piece without using a retaining member, such as a holder, to retain the hose to the arm piece. Moreover, disposing the hose inside the arm piece enables the hose to be suppressed from being exposed or projecting out from the arm piece. The hose can accordingly be retained in the arm piece without having a detrimental effect on the appearance and while suppressing an increase in cost of the vehicle wiper device. | 11-27-2014 |
20140339936 | ROTATING ELECTRICAL DEVICE - A rotating electrical device comprising a circuit section being disposed offset from a motor section to one side or another side, in a direction orthogonal to an axial direction of the motor section as viewed in the axial direction of the motor section; a stator configuring the motor section together with a rotor, the stator comprising a plurality of teeth formed in a radial shape and a plurality of windings that each includes a terminal-end portion that extends in the axial direction of the motor section, the plurality of windings being respectively wound on any of the plurality of teeth such that each of the terminal-end portions is disposed further to a side in the orthogonal direction from a central axis of the motor section where the circuit section is disposed; and a plurality of terminals that wire-in the circuit section and the terminal-end portions of the plurality of windings. | 11-20-2014 |
20140292125 | ROTARY ELECTRIC MACHINE AND METHOD OF MANUFACTURING ROTARY ELECTRIC MACHINE - In a rotary electric machine, wound wires are connected to a first terminal and a second terminal. Circuit terminals that are configured from a conductive metal other than aluminum, and the first terminal and the second terminal that are configured from a metal with a principal component of aluminum are joined together inside a circuit chamber that has high water resistant properties. Corrosion is accordingly suppressed at join sites of the circuit terminals with the first terminal and the second terminal. There is therefore no need to coat the join sites with for example a sealing material in order to suppress corrosion at the join sites. Good electrical continuity is accordingly enabled between the circuit terminals and the wound wires whilst suppressing an increase in costs, even when the wound wire is configured from a metal with a principal component of aluminum. | 10-02-2014 |
20140265706 | HALF PERMANENT MAGNET MOTOR - A motor includes a rotor and a stator. The rotor includes a plurality of magnets, which function as first magnetic poles, and salient poles, which function as second magnetic poles. A ratio X1:X2 of a quantity X1 of magnetic pole portions of the rotor, which is the sum of the quantity of the magnets and the quantity of the salient poles, and the quantity X2 of slots is 2n:3n (n being a natural number). The sum of a magnetic pole occupying angle θ1 of the magnet and a magnetic pole occupying angle θ2 of the salient pole is 360°. The magnetic pole occupying angle θ1 is set in a range of 180°<θ1≦230°. | 09-18-2014 |
20140265703 | MOTOR AND ROTOR - A motor including a stator and a rotor. The stator includes teeth and windings. Each tooth has a distal portion defined by a radially inward side of the stator. The rotor, which is arranged inward in the radial direction from the stator, includes a rotor core, magnets, and salient poles. Each salient pole is separated by a void from the magnet that is adjacent in the circumferential direction. The distal portion of each tooth is longer than a radially outward side of each magnet. | 09-18-2014 |
20140241917 | ELECTRIC OIL PUMP AND HYDRAULIC PRESSURE SUPPLY DEVICE - An electric oil pump is coupled to a pump receptacle including an oil inflow passage and an oil outflow passage. The electric oil pump includes a motor, a pump rotor, a housing, and a check valve. The housing accommodates the motor and the pump rotor. The housing closes an opening of the pump receptacle and includes at least a fitted portion fitted into the pump receptacle. An oil compartment is formed between the pump receptacle and the housing. Oil flows into the oil compartment from the oil inflow passage when the pump rotor is rotated. The fitted portion is partially immersed in the oil collected in the oil compartment. The housing includes a suction port and a discharge port. A check valve, located in the housing, limits reversed flow of the oil from the oil compartment to the oil inflow passage. | 08-28-2014 |
20140197708 | ROTATING ELECTRICAL MACHINE - A rotating electrical machine comprising an armature; a yoke; and a plurality of magnets arrayed in a ring shape along an inner peripheral face of the yoke. The magnets are respectively formed in circular arc shapes fit with the inner peripheral face of the yoke, and are fixed to the yoke. The magnets are arrayed along the circumferential direction of the yoke with gaps between each other, a central portion in a circumferential direction of each of the magnets is disposed so as to be opposed in a yoke diameter direction to the gap between other magnets arrayed adjacent to each other, a boundary portion between a pair of magnetic poles in each of the magnets is positioned at central position in the circumferential direction of each of the magnets, and each of the magnets is formed thicker at end portions than at the central portion in the circumferential direction thereof. | 07-17-2014 |
20140196252 | OPENING-CLOSING CONTROL DEVICE AND OPENING-CLOSING CONTROL METHOD - An opening-closing control device drives an opening-closing member with use of a drive device and controls the opening-closing member to open or close an opening portion. The opening-closing control device includes a load detector and a drive-force stopping device. The load detector detects an increase of load on the opening-closing member due to pressing of the opening-closing member against an elastic member that is disposed on an end of the opening portion and is opposed to the opening-closing member in a moving direction of the opening-closing member. The drive-force stopping device stops a drive force supplied to the drive device at a timing just before the opening-closing member reaches a mechanically limit position in a closing direction of the opening-closing member when the increase of load is larger than a predetermined threshold. | 07-17-2014 |
20140142814 | WIPER CONTROL DEVICE - A wiper control device controls a drive section for driving a wiper to operate at a target speed, thereby causing the wiper to perform wiping operation. The wiper control device includes a voltage monitoring section, which monitors a power source voltage supplied to the drive section, and a target speed setting section, which sets the target speed. When the power source voltage is lower than or equal to a threshold voltage, the target speed setting section sets the target speed in accordance with the power source voltage. When the power source voltage is higher than the threshold voltage, the target speed setting section sets the target speed at a constant value. | 05-22-2014 |
20140132095 | MOTOR - A motor includes a motor unit, a gear housing coupled to the motor unit, and a connector module including a connector housing coupled to the gear housing. The motor unit includes a rotation shaft and a power terminal. The gear housing accommodates a deceleration mechanism that outputs decelerated rotation of the rotation shaft. The connector terminal and the circuit substrate are fixed to the connector housing. The power terminal is connected to a socket of the connector terminal when coupling the connector housing to the gear housing. The connector terminal includes a fixed portion fixed to the connector housing, a substrate connecting portion connected to the circuit substrate, and a supported portion located closer to the socket than the substrate connecting portion. The connector housing includes a terminal supporting portion that supports the supported portion from the rear in the coupling direction. | 05-15-2014 |
20140084745 | COMMUTATOR - A commutator includes a cylindrical insulator and commutator pieces, which are formed on the outer circumferential surface of the insulator and arranged side by side in the circumferential direction of the insulator. The commutator pieces are each composed of a conductive plate material, and each includes a connection claw and an engagement claw. The connection claw extends outward in the radial direction of the insulator while being configured to electrically being connected to an armature coil. The engagement claw extends inward in the radial direction of the insulator and engages with the insulator. The commutator pieces each include a recess portion with an undercut formed in a surface facing inward in the radial direction of the insulator. | 03-27-2014 |
20140084736 | STATOR FOR ROTATING ELECTRIC MACHINE - A stator for a rotating electric machine includes an annular stator core and a plurality of winding groups mounted on teeth of the stator core. Each of the winding groups is either a short-pitch winding group which consists of windings wound at a pitch shorter than 180° in electrical angle or a full-pitch winding group which consists of windings wound at a pitch equal to 180° in electrical angle. The winding groups include at least one short-pitch winding group pair which consists of two short-pitch winding groups that respectively belong to two different phases and are circumferentially adjacent to each other. The two short-pitch winding groups are arranged so as not to overlap each other in a radial direction of the stator core. There are no other winding groups interposed between the two short-pitch winding groups in the circumferential direction of the stator core. | 03-27-2014 |
20140083011 | OPEN-CLOSE MEMBER CONTROL APPARATUS AND METHOD FOR CONTROLLING OPEN-CLOSE MEMBER - An open-close member control apparatus has a function to release a foreign matter pinched to an open-close member. The open-close member is either (i) driven only while a manipulation switch is manipulated or (ii) driven continuously once the manipulation switch is manipulated to a specified position regardless of whether the manipulation is then released. When trapping of a foreign matter is detected under an open movement of the open-close member to an open direction based on an open command signal from the manipulation switch, an electric power supply to a motor is restricted to stop a progress of the trapping. When receiving a close command signal from the manipulation switch after restricting the electric power supply, the electric power is supplied to the motor to drive the open-close member to a close direction under a restricted state of a predetermined operation. | 03-27-2014 |
20140079578 | ELECTRIC PUMP - An electric pump includes a motor rotor provided in a first end region in the axial direction of a rotary shaft, a pump rotor provided in a second end region in the axial direction of the rotary shaft, and a pump housing supporting the rotary shaft. The pump housing has a first housing portion for accommodating the pump rotor and a second housing portion having a blocking portion. The first housing portion has a suction port for drawing in fluid and a discharge port for discharging the drawn-in fluid. | 03-20-2014 |
20140062249 | BRUSHLESS MOTOR, STATOR, STATOR MANUFACTURING METHOD AND BRUSHLESS MOTOR MANUFACTURING METHOD - A brushless motor comprising: a rotor; a stator core disposed at a radial direction outside of the rotor, and a stator case. The stator core includes an outer ring shaped section, teeth sections projecting out from the outer ring shaped section toward a radial direction inside, and an inner ring shaped section extending from end portions of the teeth sections. Protruding portions are formed at the outer ring shaped section so as to project toward a radial direction outside and so as to be disposed at even intervals around a circumferential direction of the outer ring shaped section. The stator case is integrated together with the stator core by a plurality of plastic deformation portions formed at an outer peripheral portion of the stator case at locations facing towards the protruding portions, and the plastic deformation portions are disposed at even intervals along a circumferential direction of the stator case. | 03-06-2014 |
20140056734 | IMPELLER FOR CENTRIFUGAL PUMP AND CENTRIFUGAL PUMP OF VEHICLE WASHER DEVICE - An impeller for a centrifugal pump comprising a boss supported by a rotation shaft of a motor so as to be rotatable as a unit with the rotation shaft; and a plurality of blades that extend from the boss towards a radial direction outside of the boss, and that discharge liquid towards a leading end side thereof by rotating; wherein each blade comprises one side face that is a face on a first side in a rotation direction of the impeller and includes a projecting face that projects from a base end portion at a boss side of the one side face towards the first side in the rotation direction with respect to a line that connects the base end portion and a center of rotation of the blades. | 02-27-2014 |
20140053361 | WIPER, WIPER LEVER ASSEMBLY, AND WIPER BLADE - A yoke lever includes an upper wall and two side walls. The upper wall includes an elongated hole, and the side wall includes a pivot coupled portion. A secondary lever includes an insertion coupling portion to be inserted and coupled to the elongated hole from the upper side. The insertion coupling portion includes an insertion tube portion having two opposing side walls, which face the inner surfaces of the side wall of the yoke lever, and two end walls, which connect the longitudinal ends of the opposing side walls. A pivot coupling portion projects from a longitudinally central portion of the opposing side wall to engage the pivot coupled portion while permitting pivoting. | 02-27-2014 |
20140049132 | ROTOR AND MOTOR - A rotor includes a first rotor core, a second rotor core, a field magnet, and a back magnet. The first rotor core includes a disk-shaped first core base and a plurality of first claw-poles. The second rotor core includes a disk-shaped second core base and a plurality of second claw-poles. The field magnet has the first claw-poles function as first magnetic poles and the second claw-poles function as second magnetic poles. The back magnet is arranged along back surfaces of the first and second claw-poles. The back magnet is magnetized such that radially outer sections have the polarities that are the same as the first and second magnetic poles. The back magnet is formed integrally, has an annular shape, and is in contact with all of the back surfaces of the first and second claw-poles. | 02-20-2014 |
20140042864 | DC MOTOR - A DC motor has a stator including two magnets arranged in a circumferential direction. An armature includes an armature core having eight slots arranged in a circumferential direction and radially facing the magnets. A commutator rotates integrally with the armature core and includes four segments separated in the circumferential direction by four grooves arranged in the circumferential direction. Coils are wound in a distributed winding in the slots. Two brushes contact the segments. Two coils, which are arranged at an interval of electric angle 180° and connected in series to each other, are connected to two of the segments that are electrically short circuited by each of the brushes so that the two coils extend between the segments. Each groove is located at a position deviated from a position separated by electric angle 180° in the circumferential direction from another one of the grooves. | 02-13-2014 |
20140042848 | BRUSHLESS MOTOR - A brushless motor is provided including: a rotor housing including a circular-cylinder-shaped bearing housing portion and an outer cylinder portion; a rotor magnet provided at an inner peripheral face of the outer cylinder portion; a bearing housed in the bearing housing portion and assembled to a motor shaft; a stator core including a ring-shaped core main body provided in the radial direction between the bearing housing portion and the rotor magnet and a ring-shaped wall portion formed in a ring-shape along an inner peripheral portion of the core main body, extending from the core main body inner peripheral portion towards the radial direction inside, and facing one opening of the bearing housing portion; and a center piece including a main body portion facing one opening of the outer cylinder portion, and a close contact portion closely contacting in the stator core axial direction with the ring-shaped wall portion. | 02-13-2014 |
20140009011 | DYNAMO-ELECTRIC MACHINE - Engaging protrusions of a lower end housing are axially snap-fitted into through holes, respectively, of a yoke housing to couple therebetween. Each of spacers is circumferentially placed between and is press-fitted between corresponding adjacent two of permanent magnets fixed to an inner peripheral surface of the yoke housing. Each spacer axially contacts a corresponding contact part of the end housing. A lower ball bearing and an upper ball bearing are supported by the lower end housing and an upper end housing, respectively, to rotatably support a shaft. A wave washer is axially positioned between the lower ball bearing and the lower end housing to exert an urging force between the lower end housing and the upper end housing through the shaft. | 01-09-2014 |
20130319486 | WASHER SYSTEM FOR VEHICLE - An electric pump pumps washer fluid out of a tank installed in a vehicle. A rear camera washer nozzle discharges the washer fluid to a lens side of a rear camera installed to a back door of the vehicle upon receiving the washer fluid from the electric pump. A control circuit unit limits discharging of the washer fluid from the rear camera washer nozzle when the back door is in an open state. The tank may be installed in a luggage room located at a rear side of the vehicle. | 12-05-2013 |
20130300242 | ROTOR AND MOTOR - A rotor with a first rotor core, a second rotor core, a field magnet, and an interpole magnet is provided. The first rotor core has a first core base and a plurality of first nail-shaped magnetic pole parts that extend in the axis direction from the outer circumference section of the first core base. The second rotor core has a second core base and a plurality of second nail-shaped magnetic pole parts that extend in the axis direction from the outer circumference section of the second core base. The field magnet is magnetized along the axis direction and makes the first nail-shaped magnetic parts function as first magnetic poles and the second nail-shaped magnetic parts function as second magnetic poles. The interpole magnet is arranged between the first nail-shaped magnetic parts and the second nail-shaped magnetic parts. The interpole magnet has the same polarity as the first and second nail-shaped magnetic pole parts, in the sections where same face the first and second nail-shaped magnetic pole parts. | 11-14-2013 |
20130285492 | MOTOR - The axial direction of a worm wheel is defined as a motor short-transverse direction, and a plane orthogonal to the motor short-transverse direction is defined as a motor flat plane. An imaginary plane contacting a first end of a sensor magnet in a motor short-transverse direction and parallel with the flat plane is defined as a first imaginary plane. An imaginary plane contacting a second end of the sensor magnet in the motor short-transverse direction and parallel with the flat plane is defined as a second imaginary plane. A control circuit board is provided with a rotation detecting element that detects rotation of the rotary shaft of the motor. The control circuit board is arranged to be parallel with or inclined relative to the flat plane, and is provided between the first and second imaginary planes. | 10-31-2013 |
20130276255 | WIPER LEVER ASSEMBLY AND WIPER BLADE - Disclosed is a wiper lever assembly that includes upper and lower levers, a plurality of pivotal connecting parts that are pivotally coupled to a longitudinal end of the upper lever, and a plurality of mating pivotal connecting parts that are disposed on the lower lever. The assembly further includes an upper pressing arc portion disposed on the upper lever over the plurality of pivotal pressing parts. The upper pressing arc is in slidable contact with a lower engaging arc portion disposed on the lower lever. In addition, a radius of curvature of a concave arc of the upper pressing arc portion and the lower engaging arc portion is larger than that of a convex arc of the upper pressing arc portion and the lower engaging arc portion. | 10-24-2013 |
20130257192 | MOTOR DRIVE APPARATUS - A motor drive apparatus includes a motor having a shaft, an end frame, and a control unit having a heat sink. The end fame and the heat sink are arranged to overlap at least partly when the end frame and the heat sink are projected on a plane, which is parallel with a rotation axis of the shaft. This arrangement improves heat radiation performance of the motor drive apparatus. | 10-03-2013 |
20130255023 | WASHING DEVICE FOR VEHICLE - When receiving no reverse state signal, which indicates that a vehicle is in reverse, a wash control circuit allows the actuation of the wiper motor by the interlocking operation and retains a changeover valve device on the side of the window washing nozzle. When receiving a reverse state signal, the wash control circuit switches the changeover valve device from the window washing nozzle to a camera washing nozzle and inhibits the actuation of the wiper motor by the interlocking operation. | 10-03-2013 |
20130252745 | ROTATION TRANSMITTING DEVICE AND MOTOR - A rotation transmission device transmits the rotation force to an output shaft. The rotation transmission device includes a rotation body and a buffer mechanism. The rotation body includes a plurality of engagement portions. The buffer mechanism includes an elastic member and a transmission plate. The elastic member includes multiple pairs of damper portions. Each pair of damper portions is arranged to contact two side surfaces of one of the engagement portions. The transmission plate includes an output connection portion, a planar portion, and a plurality of engagement pieces. The output connection portion is connected to the output shaft. The engagement pieces are bent from the planar portion to project in an axial direction. Each of the engagement pieces cooperate with one of the engagement portions to sandwich each of the damper portions in the circumferential direction. | 09-26-2013 |
20130251352 | WIPER DEVICE - A wiper device that includes: a wiper motor that swings a wiper blade that is coupled to the wiper motor through a wiper arm to-and-fro over a window pane between an upper return position and a lower return position; and a drive component that gradually increases power supplied to the wiper motor until the rotation speed of the wiper motor reaches a specific speed when the wiper motor has been restarted from a stationary state of the wiper blade between the upper return position and the lower return position. | 09-26-2013 |
20130239356 | WIPER BLADE AND WIPER FOR VEHICLE - A wiper blade includes a wiper strip, a backing, a blade holder coupled to the wiper arm, and two opposed cases arranged at two longitudinal ends of the blade holder. The blade holder includes a blade holding portion, which surrounds a base portion of the wiper strip and the backing at a longitudinally central portion of the wiper strip and the backing. The blade holding portion restricts movement of the wiper strip and the backing in a direction orthogonal to the longitudinal direction. Each case includes a case holding portion that surrounds the base portion of the wiper strip and the backing. The case holding portion restricts movement of the wiper strip and the backing in a direction orthogonal to the longitudinal direction. | 09-19-2013 |
20130232716 | VEHICLE WIPER DEVICE - A vehicle wiper device moves a wiper back and forth between a bottom reversing position and a top reversing position. A drive source rotates an output shaft back and forth about a first axis within a rotational angle range of less than 360°. A link mechanism includes a wiper joint coupled to the wiper. The link mechanism rotates the wiper joint back and forth around a second axis within a rotational angle range that is smaller than the rotational angle range of the output shaft. The link mechanism is configured so that torque of the wiper joint is greater when the wiper is at the bottom reversing position than when the wiper is at the top reversing position. | 09-12-2013 |
20130227808 | WIPER LEVER ASSEMBLY AND WIPER BLADE - Disclosed herein is a wiper lever assembly which is configured to prevent detachment of end cover members, which includes a lever member (a center cover lever, secondary levers and yoke levers) gripping a rubber blade disposed thereunder, and an end cover member which covers an end of the lever member from above and which includes claws formed on both lateral sides thereof. The claws may be extended inwardly from the end cover and engage with both lateral sides of a lower surface of the lever member to grip the lever member. The end cover member includes a support wall which is formed at the center of a width of the end cover member and is extended downwardly therefrom, and the lever member includes a receptor (an insert tube and a proximal insert tube) in which the support wall is fitted from above. | 09-05-2013 |
20130219648 | WIPER BLADE - A wiper blade assembly which includes a blade, at least one backing which is fitted into an attachment groove of the blade, and an elongated holder member which is interconnected to the blade. | 08-29-2013 |
20130207577 | WIPER DEVICE - A wiper device is provided that suppresses plastic deformation of a blade rubber of a wiper blade without wasting power of a battery installed to a vehicle. A wiper device is equipped with wiper blades that wipe a vehicle front glass, a wiper motor that swings the wiper blades in alternating between an upper turn position and a lower turn position by accompanied rotation of the output shaft, and a control unit that controls the wiper motor. In a case of the vehicle ignition switch being ON or OFF, the control unit controls the wiper motor such that from a stopped position where the wiper blades are located, the wiper blades are swung in a specific range of between a first stopping position and a second stopping position, and then stopped. | 08-15-2013 |
20130200742 | STATOR, BRUSHLESS MOTOR, STATOR MANUFACTURING METHOD - A stator includes: plural core configuration sections each including plural yoke configuration sections that configure a ring shaped yoke and are segmented in a yoke circumferential direction and plural teeth sections that project from the respective yoke configuration sections along a yoke radial direction, with the plural yoke configuration sections and the plural teeth sections integrated together; plural coil wires that are wound onto the respective teeth sections to configure plural winding portions; and plural insulators that each include plural insulator portions that are integrated to each of the respective core configuration sections and insulate between the teeth sections and the winding portions, and a connection portion that connects together the plural insulator portions. | 08-08-2013 |
20130193795 | DIRECT-CURRENT MOTOR, COIL WINDING METHOD FOR DIRECT-CURRENT MOTOR, AND METHOD FOR MANUFACTURING DIRECT-CURRENT MOTOR - A direct-current motor includes a yoke having six magnetic poles, an iron core having nine teeth, first and second coils wound about each tooth in directions different from each other, a commutator for being rotated integrally with the iron core and having eighteen commutator pieces, and three pairs of brushes. The brush having the positive pole electrically connected to the first coil is different from the brush having the positive pole electrically connected to the second coil, the brush having the negative pole electrically connected to the first coil is different from the brush having the negative pole electrically connected to the second coil, or the brush having the positive pole and the brush having the negative pole that are electrically connected to the first coil are respectively different from the brush having the positive pole and the brush having the negative pole that are electrically connected to the second coil. | 08-01-2013 |
20130193789 | ELECTRIC MOTOR - A brush holder is placed between a yoke housing and a gear housing and includes a holder member and a base member. The holder member is installed to an opening of the yoke housing and holds a plurality of brushes. The base member is installed to the holder member and includes a connector configured to connect with an external connector to receive an electric power. An output side end part of the yoke housing has a flange portion, through which the gear housing is fixed to the yoke housing. The holder member includes a contact portion that contacts an opening end portion of the yoke housing in an axial direction of a rotatable shaft. The contact portion is axially spaced from the base member by an axial gap. | 08-01-2013 |
20130193787 | MOTOR AND BRUSHLESS MOTOR - A brushless motor is provided that is capable of suppressing water from contacting a magnetism detection sensor. A brushless motor includes a rotor section that includes a rotor magnet; a stator section that generates a rotational magnetic field with respect to the rotor magnet; a magnetism guide member that guides a portion of magnetism from the rotor magnet; a control unit that includes a circuit substrate and a circuit chamber which is sealed and houses the circuit substrate; and a magnetism detection sensor that is mounted on the circuit substrate inside the circuit chamber and that detects magnetism guided by the magnetism guide member. | 08-01-2013 |
20130189134 | ELECTRIC PUMP - A metal pump housing includes a shaft support hole for supporting a middle part of a rotary shaft. The rotary shaft includes a first end on which a pump operating portion is provided and a second end on which a motor rotor is provided. A metal motor case is fixed to a part of the pump housing that is at a side of the second end. The motor case accommodates a motor section including a motor stator and a motor rotor. A plastic circuit case member is fixed to a part of the motor case that is opposite to the part to which the pump housing is fixed. A circuit substrate for controlling the motor section is fixed to the circuit case member and is separate from the motor case. | 07-25-2013 |
20130183175 | DRIVING DEVICE - A driving device includes a rotor unit including a rotation shaft, a fluid supplying portion, and a motor rotor, a housing that rotatably supports the rotation shaft, a stator case accommodating a motor stator and a motor rotor. The motor rotor includes a consequent pole rotor including a motor rotor core and a plurality of the magnets arranged along a circumferential direction of the motor rotor core. The magnets form a plurality of magnetic pole portions that serve as primary magnetic poles. The motor rotor core includes portions located between adjacent ones of the magnetic pole portions in the circumferential direction. The portions form magnetic-pole-forming portions that serve as secondary magnetic poles. The motor unit includes a magnetization inhibiting portion formed to inhibit magnetization of the fluid supplying portion. The support portion of the housing comprises a nonmagnetic metal. | 07-18-2013 |
20130162072 | METHOD FOR MANUFACTURING STATOR, APPARATUS FOR MANUFACTURING STATOR, AND STATOR - A method for manufacturing a stator includes preparing a stator core having a plurality of teeth, a plurality of coils having a plurality of lead lines, a substrate having a plurality of connecting portions, and a plurality of positioning jigs having restraining portions. The method includes positioning the substrate and the lead lines so that distal portions of the lead lines are separated from the connecting portions in at least one of a radial direction and a circumferential direction. The method further includes inserting the lead lines in the restraining portions, aligning the distal portions of the lead lines with the corresponding connecting portions using the positioning jigs, inserting the lead lines into the corresponding connecting portions, and electrically connecting the lead lines inserted in the connecting portions to the corresponding connecting portions. | 06-27-2013 |
20130157525 | METHOD FOR MANUFACTURING CONTACT TERMINAL, CONTACT TERMINAL MANUFACTURING APPARATUS, AND CONTACT TERMINAL - A method for manufacturing a contact terminal including a contact portion that slides against a surface of a conductive contact plate. The manufacturing method includes forming a projection in a metal plate by performing a drawing process, wherein the projection projects in a thicknesswise direction of the metal plate and has a larger diameter than the contact portion. The manufacturing method further includes forming the contact portion from the projection by performing a contraction pressing process at least once on the projection so that the diameter of the projection gradually decreases, while the height of the projection remains the same or decreases in a stepwise manner. | 06-20-2013 |
20130152320 | VEHICLE WIPER APPARATUS - A vehicle wiper apparatus is applied to a vehicle provided with a wiping surface including a first wiping area at a passenger's seat side and a second wiping area at a driver's seat side. A first wiper includes a first wiper blade configured to wipe the first wiping area. A second wiper includes a second wiper blade configured to wipe the second wiping area. A washer nozzle is arranged on the first wiper to supply washing liquid to the second wiping area. The washer nozzle sprays washing liquid so that the supply of washing liquid toward a front side in an advancing direction of the second wiper blade switches to a rear side in the advancing direction when the second wiper blade moves from the first reversing position to the second reversing position during the wiping operation of the first and second wipers. | 06-20-2013 |
20130147295 | BEARING DEVICE AND ELECTRIC MOTOR HAVING THE SAME - A radial bearing is received in and is fixed to a bearing receiving portion of a yoke housing, which includes large and small diameter parts, to rotatably support a rotatable shaft. A thrust ball and a thrust plate are received in the bearing receiving portion on an axial side of the radial bearing, which is opposite from the rotatable shaft. The large diameter part receives and holds the radial bearing. The small diameter part holds the thrust ball. The thrust plate is held by an axial end area of the small diameter part. | 06-13-2013 |
20130139620 | DRIVE UNIT - A drive unit includes an output shaft, a drive source, which causes the output shaft to rotate in a reciprocating manner within a first angular range, an arcuate movement portion, which performs arcuate movement about the axis of the output shaft as the shaft is rotated, a pivot shaft, and a lever member, which is rotational about the axis of the pivot shaft. As the arcuate movement portion performs arcuate movement, the lever member is rotated, in a reciprocating manner within a second angular range, while changing the engaging position with the arcuate movement portion. | 06-06-2013 |
20130121856 | ROTOR AND MOTOR - A rotor includes a first rotor core, a second rotor core, a field magnet, and an auxiliary magnet. The first rotor core includes a first core base and a plurality of first hook-shaped poles. The second rotor core includes a second core base and a plurality of second hook-shaped poles. The first and second hook-shaped poles are alternately arranged in a circumferential direction of the rotor. The field magnet is arranged between the first and second core bases in an axial direction. The field magnet cause the first hook-shaped poles to function as first poles and the second hook-shaped poles to function as second poles. The auxiliary magnet includes at least two interpolar magnet portions, which are integrally formed. Each interpolar magnet portion is arranged in a void between the first hook-shaped pole and the second hook-shaped pole and magnetized in the circumferential direction. | 05-16-2013 |
20130113329 | ROTOR AND MOTOR - A rotor is provided with a first rotation member having a plurality of first claw poles in a circumferential direction and a second rotation member having a plurality of second claw poles in a circumferential direction. By of fitting each second claw pole in a cutout portion between first claw poles and by fitting each first claw pole in a cutout portion between second claw poles, the first rotation member and the second rotation member are assembled to each other. At least either one of the first rotation member and the second rotation member is formed of a magnet. Based on a magnetic field generated by the magnet, the first claw poles and the second claw poles have alternating north poles and south poles in the circumferential direction. | 05-09-2013 |
20130113323 | ROTOR AND MOTOR - A rotor having an axial direction includes at least a pair of rotor cores arranged in the axial direction, and a field magnet located between the rotor cores and magnetized in the axial direction. Each of the rotor cores includes a plurality of claw poles extending in the axial direction. Each of the rotor cores includes a magnetic flux controlling section, which appropriately causes a magnetic flux to flow to the claw poles. | 05-09-2013 |
20130111690 | WIPER DEVICE, METHOD FOR MANUFACTURING WIPER DEVICE, AND APPARATUS FOR MANUFACTURING WIPER DEVICE - A wiper device includes pivot shafts to which wiper arms are secured, pivot holders, which rotationally support the pivot shafts, coupling shafts, and a pipe frame having cylindrical ends. The cylindrical ends of the pipe frame are coupled to the coupling shafts. The coupling shafts each include a swaging part, which is swaged to the corresponding cylindrical end, and a flat portion, which is located at part of the coupling shaft exposed from the pipe frame. The flat portions have a predetermined angle with respect to the swaging direction of the swaging and are parallel to the axis of the coupling shafts. | 05-09-2013 |
20130106230 | ROTOR AND MOTOR | 05-02-2013 |
20130106229 | ROTOR AND MOTOR | 05-02-2013 |
20130106208 | ROTOR AND MOTOR | 05-02-2013 |
20130067676 | WIPER BLADE - A wiper blade includes a wiper strip having an elongated retained portion, a backing, and a case, which retains therein the retained portion and the backing. The cap is attached to at least one of the ends in the longitudinal direction of the backing or to at least one of the ends in the longitudinal direction of the case. The interior space of the cap communicates with the interior space of the case. The cap has a rubber insertion hole that opens to the outside of the cap. The retained portion can enter the interior of the cap via the rubber insertion hole. | 03-21-2013 |
20130057102 | ROTOR AND MOTOR - A rotor includes first and second rotor cores, a field magnet, interpole magnets and holding members. The first and second rotor cores each have claw-like magnetic poles arranged in the circumferential direction in an outer periphery of a core base at even intervals and formed to protrude radially outward. The field magnet is placed between the core bases in the axial direction of the rotor and magnetized in the axial direction to cause the magnetic poles of the first and second rotor cores to function as first and second magnetic poles, respectively. The interpole magnets are each arranged between a circumferentially adjacent pair of the magnetic poles and magnetized in the circumferential direction so as to have the same polarity as the magnetic poles, which are opposed thereto in the circumferential direction. The holding members hold the interpole magnets to restrict radially outward movement of the interpole magnets. | 03-07-2013 |
20130049523 | BRUSH DEVICE AND MOTOR - A brush holder extends substantially in a radial direction of a commutator. The brush holder includes a first inner side surface and a second inner side surface, which are separate from each other in the axial direction of the commutator. A torsion spring presses portions-to-be-pressed of a brush-rear end, thereby urging the brush toward the commutator. The portions-to-be-pressed are deviated from a brush-center line in the axial direction of the commutator. The brush is urged by the torsion spring, thereby bringing a brush-tip end into contact with the first inner side surface, and bringing the brush-rear end into contact with the second inner side surface. | 02-28-2013 |
20130037627 | WASHER APPARATUS FOR VEHICLE - A controller may drive a solenoid switch valve to switch the same between a first connecting state and a second connecting state in a state where an electric pump is stopped. In the first connecting state, the switch valve connects the pump to a rear washer nozzle. In the second connecting state, the switch valve connects the pump to a camera washer nozzle. The controller may also display a captured image of an onboard camera and a camera wash touch panel switch on a display when the controller receives a reverse mode signal. The controller may drive the pump to feed the washer fluid to the camera washer nozzle when the controller receives a command signal from the camera wash touch panel switch. | 02-14-2013 |
20130026877 | MOTOR - A motor has a plurality of permanent magnet pieces aligned is such a manner as to surround an armature core and a magnetic-flux guide ring disposed between the permanent magnet pieces and the armature core for introducing a magnetic flux from the permanent magnet pieces to the armature core. The magnetic-flux guide ring has a confronting portion confronting each of the magnet pieces, an aperture formed in the confronting portion, and a connecting portion connecting adjacent two confronting portions. The aperture is formed in such a manner as to confront a boundary of adjacent magnet pieces. | 01-31-2013 |
20130009631 | VARIABLE RELUCTANCE TYPE ANGLE SENSOR - A variable reluctance angle sensor includes a stator, a rotor, and a computation section. The stator includes a core member having teeth, which are arranged in a circumferential direction, and excitation coils, which are respectively wound about the teeth such that magnetic poles of the teeth have different polarities alternately in the circumferential direction. An input voltage is supplied to the excitation coils. The rotor radially faces the teeth of the stator. The rotor has a shape such that gap permeance with respect to the stator changes in a sinusoidal fashion in accordance with the rotational angle of the rotor. The computation section obtains output voltages of two or more phases having different phases based on the voltages of the excitation coils, and detects the rotational angle of the rotor based on the output voltages. | 01-10-2013 |
20130008276 | SPEED REDUCTION MECHANISM, MOTOR WITH SPEED REDUCTION MECHANISM, AND METHOD FOR PRODUCING SPEED REDUCTION MECHANISM - A pressure angle of the worm is set to be greater than a pressure angle of the worm wheel so that a maximum number of meshing teeth becomes smaller than or equal to n (where n is a natural number) with respect to the speed reduction mechanism in which a number of meshing teeth is always n+1 or changed between n+1 and n by rotation under a condition in which the pressure angles of the worm and the worm wheel are the same with respect to each other. | 01-10-2013 |
20130002082 | ROTOR AND METHOD FOR MANUFACTURING THE ROTOR - A rotor has a rotor core arranged to radially face a stator. The rotor core has an accommodation hole extending axially from an axial end face of the rotor core. A magnet is received in the accommodation hole. A recess, which is dented in a direction separating from the magnet, is formed in an end surface of the accommodation hole. The recess has an opening facing the magnet. A pair of open distal portions are arranged at opposite sides of the opening and pressed against the magnet. | 01-03-2013 |
20130002070 | MOTOR - A motor includes an armature, a yoke, and an end bracket. The yoke has a bottom and an open end and accommodates the armature. The end bracket substantially closes the open end of the yoke. A connector portion, which bulges outward of the yoke, and a cutout portion are formed in the circumferential wall of the end bracket. A pair of feed members is provided to extend from the interior of the end bracket to the connector portion through the cutout portion. Each feed member has a plurality of connection portions. Each of a pair of terminals of each of a plurality of noise suppression elements is connected to each connection portion. The connection portions are formed in the feed member and arranged in the radial direction. | 01-03-2013 |
20130002069 | MOTOR - A yoke of a motor has a bottom and an open end and accommodates an armature. An end bracket substantially closes the open end of the yoke. A connector portion, which bulges outward of the yoke, and a cutout portion are formed in the circumferential wall of the end bracket. A pair of feed members is provided to extend from the interior of the end bracket to the connector portion through the cutout portion. The end bracket has an accommodation recess for accommodating the noise suppression element at a position corresponding to the cutout portion. Each feed member has an accommodation recess corresponding portion, which corresponds to the accommodation recess, and a cutout portion corresponding portion, which corresponds to the cutout portion. The distance between the accommodation recess corresponding portions of the feed members is greater than the distance between the cutout portion corresponding portions. | 01-03-2013 |
20130001388 | STRUCTURE FOR FIXING FOREIGN OBJECT DETECTION SENSOR AND FOREIGN OBJECT DETECTION APPARATUS HAVING THE STRUCTURE - In a structure for fixing a foreign object detection sensor, a foreign object detection sensor, which detects a foreign object by being elastically deformed by external force applied by the foreign object detection, is fixed to a plastic bracket. A support portion projects from the outer peripheral surface of the foreign object detection sensor. The bracket has a penetration portion through which the support portion is passed. The foreign object detection sensor and the support portion inserted through the penetration portion clamp the bracket from opposite sides of the extending direction of the penetration portion. | 01-03-2013 |
20130001046 | WORKPIECE SUPPLYING APPARATUS AND WORKPIECE SUPPLYING METHOD - A workpiece supplying apparatus includes a plurality of carriers, a carrier case, a first gear pair, a guide, and a second gear pair. Each carrier includes a base and a plurality of holding portions, which project from a surface of the base. The holding portions are arranged in a one-dimensional manner and each hold workpieces. The carrier case accommodates the carriers. The first gear pair draws out each carrier from the carrier case toward a workpiece unloading position along a drawing direction. The guide guides the carrier drawn out by the first gear pair in a direction that differs from the drawing direction while bending the carrier so that its rear surface is located at an inner side. The second gear pair collects the carrier guided by the guide. | 01-03-2013 |
20120326554 | STATOR, METHOD FOR MANUFACTURING SAME, AND MOTOR - The present invention provides a method for manufacturing a stator configured to ensure insulation properties between a conductor and an armature core while preventing a manufacturing cost from increasing and preventing a space factor from lowering. In an edge-removing step, a plurality of independent edge-removing punches, which correspond to one slot S or two or more slots S press and chamfer a corner portion of an axial opening edge of the slot in an axial end core sheet of the armature core. | 12-27-2012 |
20120326552 | STATOR AND MOTOR - An armature core of a stator has an annular portion and a plurality of teeth extending radially from the annular portion. A segment coil is configured by electrically connecting a plurality of segment conductors together. The segment conductors extend axially through slots S, each of which is defined between each adjacent pair of the teeth. Each of the teeth has a width adjustment portion for decreasing a slot width in a direction perpendicular to a radial direction in the radially inward direction. | 12-27-2012 |
20120326551 | STATOR, MOTOR, METHOD FOR MANUFACTURING CONDUCTOR AND METHOD FOR MANUFACTURING THE STATOR - A stator includes a core having a plurality of slots and a plurality of U-shaped conductors, which are inserted in the corresponding slots. Each of the conductors has a pair of legs and a joint portion that connects the legs together. Each slot receives four legs and each of the legs in the slot is one leg of the corresponding one of the conductors. Two of the four conductors corresponding to the four legs inserted in each slot are overlapped with each other at the joint portions as viewed at least circumferentially. | 12-27-2012 |
20120326550 | STATOR MANUFACTURING METHOD, STATOR, AND MOTOR - A stator manufacturing method includes the steps of preparing an armature core, forming an insulating member including two opposing portions from a sheet-like insulating material, and deforming the insulating member to move the two opposing portions toward each other. The method also includes the step of inserting distal parts of the two opposing portions into the corresponding slit from the axial direction thereby covering an inner surface of each of the slot with the insulating member. Further, the method includes the steps of inserting a conductor forming a winding into each of the slots between the two opposing portions. | 12-27-2012 |
20120326547 | MOTOR HAVING ROTOR AND METHOD FOR MANUFACTURING THE ROTOR - A rotor core has installation portions in which first magnets, which are permanent magnets, are arranged. The installation portions are larger than the first magnets. The first magnets are divided into a first group and a second group. The first magnets in the first group are fixed to the installation portions to be offset in the positive rotational direction of the rotor toward the pseudo magnetic poles or the different magnetic poles. The permanent magnets in the second group are fixed to the installation portions to be offset in the inverse rotational direction of the rotor toward the pseudo magnetic poles or the different magnetic poles. | 12-27-2012 |
20120299432 | MOTOR CORE, STATOR, AND METHOD FOR MANUFACTURING STATOR - An annular motor core has a plurality of split core pieces, each of which includes a yoke portion and a tooth. The split core pieces are circumferentially located and arranged in an annular shape such that the yoke portions of the core pieces form an annular shape as a whole and that the distal ends of the teeth of the core pieces face inward or outward each in a radial direction of the core. The core further includes an annular holder, which has joint portions at a plurality of positions in a circumferential direction of the holder. A first end of each of the core pieces is pivotably joined to the corresponding one of the joint portions. Each core piece can be pivoted about the corresponding joint portion relative to the holder such that a second end of the core piece moves in a radial direction of the holder. | 11-29-2012 |
20120297566 | WIPER DEVICE - Disclosed is a wiper device provided with a metal frame member ( | 11-29-2012 |
20120272763 | GEAR HOUSING FOR MOTOR AND MOTOR - A gear housing for a motor is fixed to a motor main body driving a rotary shaft. The gear housing contains a worm wheel and a worm connected to the rotary shaft. Three mounting feet to be fixed to a mounting member are formed at intervals and protrude from a first side surface of the gear housing. A bulge portion bulges outward on the first side surface of the gear housing to expand the internal space. The bulge portion has side walls, which are installed to protrude from the outer side surface constituting the side walls of the bulge portion, and an upper wall, which connects the distal ends in the protruding direction of the side walls. The three mounting feet are connected by the side walls and the upper wall. | 11-01-2012 |
20120266926 | WASHER APPARATUS FOR VEHICLE - A branch conduit is branched from a main conduit. A switching device is provided at a location between an upstream side portion of the main conduit and the branch conduit and is adapted to connect the upstream side portion of the main conduit to one of a rear window wash nozzle and a camera wash nozzle. When the switching device receives an electric signal, which indicates placement of a vehicle in a reverse drive mode, the switching device connects the upstream side portion of the main conduit to the camera wash nozzle through the branch conduit upon disconnecting the upstream side portion of the main conduit from the at least one window wash nozzle. | 10-25-2012 |
20120262014 | BUS BAR DEVICE, STATOR, MOTOR AND MANUFACTURING METHOD FOR STATOR - A bus bar device electrically connects a plurality of coils arranged along a circumferential direction of the bus bar device to form an annular shape in entirety. A plurality of bus bars is arranged so that a plurality of layers is formed in a radial direction of the bus bar device. Each of the bus bars is formed from an arc-shaped conductive wire. A plurality of connection wires is respectively connected to the plurality of coils. The connection wires are arranged to overlap the bus bars and intersect the bus bars in the axial direction. Intersection portions at which the bus bars and the connection wires intersect include connection intersection portions at which the connection wires are electrically connected to the bus bars. | 10-18-2012 |
20120248919 | MOTOR AND ELECTRIC PUMP - A motor in which drive current supplied to a winding is controlled in accordance with a rotational position of a rotor detected from a waveform of an induced voltage between phases. The motor is provided with a stator including 3×n teeth and windings for three phases. A rotor includes a rotor core, an n number of magnets, and an n number of salient poles. The magnets function as one of the magnetic poles, the salient poles function as the other one of the magnetic poles. Each salient pole is spaced apart by a gap from the adjacent ones of the magnets in the circumferential direction. The magnets and gap are arranged inward in the radial direction from the rotor core. An electrical angle between two ends of each magnet is set to be smaller than an electrical angle between two ends of each salient pole. | 10-04-2012 |
20120235437 | VEHICLE DOOR TRIM AND METHOD FOR MANUFACTURING VEHICLE DOOR TRIM - A vehicle door trim is adapted for being attached to a vehicle that has a fixed body having an opening and a movable body for opening and closing the opening. The door trim is attached along a trim attaching part of at least one of the fixed body and the movable body. When the movable body is in a closed state, the door trim is located between the movable body and the fixed body. The door trim has integrally formed attaching portions for being attached to the trim attaching part. The attaching portions are arranged along a longitudinal dimension at predetermined intervals. | 09-20-2012 |
20120230756 | ARM HEAD - An arm head includes an end portion to which a retainer is pivotally coupled and a surface covered by a coating. The end portion includes a coupling bore. The coupling bore includes an open end. First and second surfaces of the arm head form an annular recess around the open end that extends continuously from the open end. The radial outer surface extends outward in a radial direction from the annular recess. The first surface extends outward in the radial direction from the open end. The first surface is located inward in an axial direction of the coupling bore from the radial outer surface. The second surface extends from the first surface to the radial outer surface at an angle less than 180° with respect to the first surface. | 09-13-2012 |
20120223624 | MOTOR AND MOTOR FOR ELECTRIC POWER STEERING - A motor body has feeder terminals. Connecting ends of the corresponding feeder terminals are exposed radially outward from a motor case. The motor body has an end frame having an attachment portion. In this configuration, a control unit is fixed to the attachment portion and connecting terminals of the control unit are arranged to be allowed to contact the corresponding connecting ends. By fastening the fastening screws at positions radially outward of the motor case, the connecting terminals of the control unit are connected to the connecting ends of the motor body. | 09-06-2012 |
20120223623 | MOTOR AND MOTOR FOR ELECTRIC POWER STEERING - A motor has a motor body and a control unit, which is joined to the motor body. A resolver is connected to the control unit through a flat cable. The flat cable is arranged such that the width direction of the flat cable corresponds with a circumferential direction of the motor body. The flat cable extends outwardly in a radial direction of the motor case. | 09-06-2012 |
20120222296 | MANUFACTURING METHOD OF FOREIGN OBJECT DETECTION APPARATUS - In a manufacturing method of a foreign object detection apparatus, an elastic insulator including an attaching section and an inner peripheral portion, on which a plurality of electrodes is disposed in such a manner that each of the electrodes is away from the others, is formed, a predetermined portion of the attaching section is removed, a feeding member is coupled with the electrodes, and a coupling portion of the electrodes and the feeding member and a portion of the elastic insulator are covered with a covering part. | 09-06-2012 |
20120209477 | OPENABLE AND CLOSABLE MEMBER CONTROL APPARATUS AND VEHICLE HAVING THE SAME - A computing device computes at least one index value for an execution history of opening/closing movement of an openable and closable member. A sensing device outputs signals one after another in response to a change in a rotational state of the electric motor, which is sensed by the sensing device. A setting device sets a masking range for at least one of the signals based on the at least one index value. A determination device determines whether an object is pinched by the openable and closable member based on at least another one of the signals, which is outputted in a range other than the masking range, without referring to the at least one of the signals in the masking range during execution of the opening/closing movement of the openable and closable member. | 08-16-2012 |
20120180243 | WIPER DEVICE - A wiper device including a wiper arm, a wiper blade, and a washer nozzle. The wiper blade moves in a first direction and a second direction. The wiper arm is arranged at a position in the second direction with respect to the wiper blade when the wiper blade is at the home position. The washer nozzle is fixed to a position located toward a basal side from the wiper blade on a main arm or a sub-arm that is closer to the wiper blade. The washer fluid is ejected toward the distal portion of the wiper blade at a position in the first direction with respect to the wiper blade when the wiper blade is arranged at the home position. The falling point of the washer fluid is set at a position located toward the basal side of the wiper blade from a central part of the wiper blade. | 07-19-2012 |
20120175987 | BRUSHLESS MOTOR - A brushless motor including a stator having teeth and a rotor having magnetic pole portions is disclosed. The magnetic pole portions are arranged to have the same polarities as each other. The rotor includes gaps that function as magnetic resistance at circumferential ends of each of the magnetic pole portions so that an iron core portion is formed between the circumferentially adjacent magnetic pole portions. Magnetic flux of the magnetic pole portions passes through the iron core portion along the radial direction. The gaps include a first gap located on the leading end of the magnetic pole portion in the rotation direction of the rotor and a second gap located on the trailing end of the magnetic pole portion in the rotation direction of the rotor. The circumferential width of the first gap is set to be greater than the circumferential width of the second gap. | 07-12-2012 |
20120169163 | MOTOR - A motor includes a motor case, and a rotor and a stator, which are disposed in the case. The case has a tubular portion, a front cover mounted to an axial end of the portion, and a rear cover mounted to the other axial end of the portion. The rotor has a rotary shaft and the stator includes a plurality of teeth, which extend toward a central axis of the shaft and are circumferentially disposed at equal intervals. Between each circumferentially adjacent pair of the teeth, a slot extending toward the axis is formed. In each slot, a U-shaped segment is inserted in parallel with the axis. The distal ends of the segments projecting out from the slots are electrically interconnected, thereby forming an SC coil including the segments disposed circumferentially. The SC coil includes a receiving terminal, and the terminal includes leads extending in parallel to the axis. | 07-05-2012 |
20120161680 | BRUSHLESS MOTOR CONTROL DEVICE AND BRUSHLESS MOTOR - A voltage application unit causes switching elements to apply voltage to flow an electric current into corresponding windings to generate a revolving magnetic field. A period derivation unit derives an energization period of the windings. A signal generation unit generates a PWM signal for causing the voltage application unit to activate and deactivate the switching elements, such that a duty ratio decreases gradually in a predetermined time period subsequent to the derived energization period. A period specifying unit specifies a detection period of an electric current, which is supplied from the switching elements presently switched and deactivated, by a predetermined time period between an edge, which is caused when the PWM signal changes in level to deactivate the switching elements, and a time point in advance of the edge in the energization period. | 06-28-2012 |
20120161590 | DRIVE DEVICE - A drive device includes a motor, a control unit, a first fastener, and a second fastener. The control unit is arranged on a side of the motor in an axis direction of the motor. The first fastener is arranged in a wall part of a cylindrical motor case of the motor opposing to the control unit, on an inner side of a peripheral wall of the motor case in a radial direction. The second fastener is tightened with the first fastener so as to connect the motor and the control unit with each other. | 06-28-2012 |
20120161560 | MOTOR - A motor includes a motor unit, a deceleration unit, and a connector unit. The motor unit outputs rotational drive force and includes a yoke housing, a commutator, a power supply brush, a conductive member, and a brush holder. The yoke housing has an open end in an axial direction. The conductive member is electrically connected to the power supply brush. The brush holder is arranged in the open end to hold the commutator, the power supply brush, and the conductive member. The deceleration unit includes a gear housing coupled to the open end. The connector unit is coupled to the gear housing and including a connection terminal electrically connected to the conductive member. The commutator and the power supply brush are arranged outside the yoke housing. The conductive member and the yoke housing are arranged on opposite sides of the commutator. | 06-28-2012 |
20120161559 | MOTOR - A motor includes a motor portion and a speed reducing portion. In the motor portion, a brush holder that holds a feeder brush for feeding electric power to a commutator is arranged at an opening of a yoke. The speed reducing portion has a speed reducing mechanism, which is arranged in a gear housing. The speed reducing mechanism outputs drive force produced by a rotary shaft of the motor portion with the rotating speed of the rotary shaft reduced by the speed reducing mechanism. A brush holder includes a support pillar projecting toward the gear housing and an urging member that urges the feeder brush against the commutator. A positioning portion for positioning the brush holder with respect to the gear housing in a direction perpendicular to the axial direction is formed at a distal end portion of the support pillar. | 06-28-2012 |
20120161558 | DRIVE DEVICE - A drive device includes a motor, a control unit and a holder. The motor has a motor case, a stator, a winding wire, a rotor and a shaft. The control unit includes a semiconductor module, a receiving member, and a cover. The control unit is arranged on a side of the motor in an axis direction of the motor. The holder is arranged between the motor and the control unit, and has a wall portion extending toward the control unit and fitting with the control unit. | 06-28-2012 |
20120119604 | EMBEDDED MAGNET MOTOR AND MANUFACTURING METHOD OF THE SAME - In an embedded magnet motor, radial magnets and first inclined magnets form north poles. The radial magnets and second inclined magnets form south poles. Core sheets each include preformed radial accommodating slots the number of which is expressed by P/2. Some of the preformed radial accommodating slots are short slots and the rest are long slots. The short slots are located at some parts of each radial accommodating slot along the axial direction. Radially inner ends of the short slots restrict the radial magnets from moving radially inward. | 05-17-2012 |
20120119538 | DOOR TRIM FOR VEHICLE - A door trim for a vehicle is provided. The vehicle comprises a fixed body including an opening and a movable body that opens and closes the opening. At least one of the fixed body and the movable body includes an attachment portion. The door trim comprises an elongate shape and a cover. The cover is attached along the attachment portion in a manner to cover the attachment portion. The door trim comprises a reinforcing member for reinforcing the cover. The reinforcing member is provided between the cover and the attachment portion to directly oppose the attachment portion. At least one of the cover and the reinforcing member is directly assembled to the attachment portion. | 05-17-2012 |
20120112592 | ROTOR AND MOTOR - A rotor comprises a rotor core, a plurality of magnetic poles arranged in a circumferential direction of the rotor core, a plurality of salient poles and a plurality of auxiliary magnets each of which is disposed between the magnetic pole and the salient pole is provided. Each magnet pole has a field magnet pole that serves as a first magnetic pole, wherein the field magnet is a main magnet. Each salient pole is integrally formed with the rotor core between the two adjacent magnetic poles. Each salient pole serves as a second magnetic pole. The pole of the second magnetic pole is opposite from that of the first magnetic pole. The auxiliary magnet generates magnetic flux in a circumferential direction of the rotor core so that the magnetic pole and an opposing pole of the auxiliary magnet have the same polarity and the salient pole and another opposing pole of the auxiliary magnet have the same polarity. | 05-10-2012 |
20120112579 | MOTOR - A motor including a motor case, a rotary shaft, and a connector module. The rotary shaft is accommodated and rotated in the motor case. The connector module includes a connector unit, which is electrically connected to an external device and supplies power, and a flat control circuit substrate, which controls rotation of the rotary shaft. The motor case includes an insertion opening into which the connector module is inserted along an insertion direction. The connector module includes a connector housing, which accommodates at least part of the control circuit substrate, and a flat relay, which electrically connects the control circuit substrate and the connector unit and is arranged at a right angle relative to the control circuit substrate. | 05-10-2012 |
20120098381 | STATOR, BRUSHLESS MOTOR, AND MANUFACTURING METHOD OF THE SAME - An inner rotor type brushless motor includes a stator. The stator is made of a plurality of stator sections. Each one of the stator sections has a plurality of core members, an insulator, and a winding wound on the core members via the insulator. The core member includes a yoke portion and a tooth portion. The insulator includes a ring portion to connect the core members. Since each stator section can provide sufficient distance and space between two core members on the same stator section, it is easy to wind the winding on the tooth portions. The stator sections can be assembled along an axial direction to form the stator. The yoke portions are circumferentially arranged to connect each other to form a magnetic path. | 04-26-2012 |
20120098378 | MOTOR - A motor includes a rotor of 4n magnetic poles and a stator. The rotor includes a rotor core, 2n magnets embedded in the rotor core and 2n salient pole portions formed integrally with the rotor core. A gap is formed between each magnet and the circumferentially adjacent salient pole portion. The stator has 6n tooth portions arranged to face the magnets and the salient pole portions in the radial direction, and coils. Each coil is wound about one of the tooth portions. An electric angle α that corresponds to a mechanical angle α′ defined by a reference line that passes through a central axis of the rotor and the circumferential center position of each magnet, and a line that passes through the central axis of the rotor and the trailing end of each trailing gap, is set in the range of 90°<α<126°. | 04-26-2012 |
20120098367 | CLUTCH AND MOTOR - A clutch including a drive shaft, drive side rotation body, driven shaft, driven side rotation body, clutch housing, and lock member is disclosed. During non-rotation of the drive side rotation body, when the driven side rotation body is rotated, the lock member is pushed by the driven side rotation body and moved outward in a radial direction thereby bringing the contact portion into contact with the inner circumferential surface of the clutch housing. During rotation of the drive side rotation body, the drive side rotation body pushes a drive side cam surface in the rotation direction, and the drive side cam surface acts to move the lock member inward in the radial direction and push the lock member against the driven side rotation body. Thus, the lock member is sandwiched between the drive side rotation body and the driven side rotation body thereby coupling the drive side rotation body and the driven side rotation body with the lock member to be integrally rotatable. | 04-26-2012 |
20120098364 | ACTUATOR - An actuator including a motor, case, resin mold, connector terminal, and two power supplying terminals. The motor includes two power receiving terminals. The resin mold is arranged in the case at a location close to one end. Each power supplying terminals includes a first extension, which is formed in a distal portion and includes a bent portion, and a second extension, which extends upward or downward from the bent portion. Each second extension includes a contact portion that elastically contacts the corresponding power receiving terminal in a direction in which an axis extends. The contact portions are located at positions that differ between the two power supplying terminals in a vertical direction. In the two power supplying terminals, the bent portions are located at different positions in the vertical direction. Further, the first extensions have different lengths from the resin mold. | 04-26-2012 |
20120096666 | WIPER BLADE - A wiper blade includes a main lever, a movable member, and a rubber blade. The main lever can be coupled to a wiper arm. The main lever includes a longitudinally intermediate portion, a first end defined by at least one of two longitudinal ends, and a first holding portion. The first holding portion is arranged closer to the first end than the longitudinally intermediate portion. The movable member is pivotally coupled to the first end and includes a second holding portion. A rubber blade is held by the first holding portion and the second holding portion. A coupling portion between the main lever and the movable member is located outward from the first holding portion in the longitudinal direction of the main lever. | 04-26-2012 |
20120091845 | BRUSHLESS MOTOR - A brushless motor includes a rotor and a stator. The rotor is provided with a rotor core including a plurality of magnet poles and a plurality of core poles. A void is formed at a boundary between each core pole and an adjacent magnet pole in the circumferential direction. Each magnet pole includes a peripheral core portion located closer to the stator than the magnet in the radial direction of the rotor. The void formed in at least one of two circumferential sides of each magnet pole includes an extended void region that extends into the peripheral core portion toward a middle point of the magnet pole in the circumferential direction. | 04-19-2012 |
20120090125 | CONNECTING DEVICE FOR WIPER BLADE AND WIPER BLADE HAVING THE SAME - In a connecting member, a base member includes an installation portion, to which a hook of a wiper arm configured into a U-shape form is adapted to be installed after installation of the base member to a wiper blade. A lock member is rotatably connected to the base member and is adapted to be engaged with an arcuate outer peripheral surface of the hook after installation of the hook to the installation portion. The lock member includes an engaging portion, which is adapted to be engaged with the arcuate outer peripheral surface of the hook to exert a resilient force against the arcuate outer peripheral surface of the hook. The resilient force of the engaging portion is exerted as a rotational force in a locking direction of the lock member against the arcuate outer peripheral surface of the hook. | 04-19-2012 |
20120090124 | WIPER BLADE - An arm piece of a wiper arm, which has a connecting portion connected to a connecting pin through a connecting member received in an opening of a main lever, extends from the connecting portion toward a base end side portion of the main lever such that the arm piece overlaps with an upper surface of the main lever. The main lever is formed by runnerless injection molding. A gate trace, which is left on the main lever in the runnerless injection molding, is formed in an arm accommodation portion of the main lever, which is opposed to the arm piece in a top-to-bottom direction. | 04-19-2012 |
20120080973 | ARMATURE FOR ROTARY ELECTRIC APPARATUS AND MANUFACTURING METHOD FOR THE SAME - A laminated core includes laminated core sheets each formed by press working. Each core sheet has a teeth portion corresponding to the teeth. An insulating film covers at least a portion of the laminated core corresponding to the teeth. A burr caused by the press working in each core sheet is located on a side of one end of the laminated core in a laminating direction of the laminated core. The burr of the teeth portion of one of the core sheets located at the one end is folded toward the other end of the laminated core in the laminating direction. | 04-05-2012 |
20120080961 | ONE-PIECE RESIN COMPONENT FOR DYNAMOELECTRIC MACHINE AND MANUFACTURING METHOD USING THE SAME - In a one-piece resin component, a plurality of stackable resin portions is resin-molded integrally with a resin housing of a dynamoelectric machine and radially outwardly projects from the resin housing. Each the plurality of stackable resin portions is adapted to be stacked against a corresponding one of a plurality of stackable resin portions of another one-piece resin component that is generally identical to the one-piece resin component. | 04-05-2012 |
20120066975 | CLUTCH, MOTOR AND VEHICLE DOOR OPENING/CLOSING DEVICE - A clutch includes a driving-side rotating body, a driven-side rotating body, a holding case, and a power transmitting member held by one of the driving-side rotating body and the holding case. The power transmitting member is moved between a non-engaging position and an engaging position where the driving-side rotating body engages with the driven-side rotating body. The clutch further includes a guiding member held by the other of the driving-side rotating body and the holding case. The guiding member has a cam portion engaged with the power transmitting member and guides movement of the power transmitting member between the engaging position and the non-engaging position. Relative rotation between the driving-side rotating body and the holding case occurs, resulting in that the power transmitting member is guided by the cam portion to move from the non-engaging position to the engaging position. | 03-22-2012 |
20120061200 | CLUTCH AND MOTOR - A clutch is provided that includes an annular clutch housing, a driving-side rotor, a driven-side rotor having a control surface, and a rolling element located between the inner circumferential surface of the clutch housing and the control surface. The control surface faces radially outward in the clutch housing. When the driving-side rotor rotates, the rotational driving force of the driving-side rotor is transmitted to the driven-side rotor. When the driving-side rotor is driven to rotate, the rolling element rotates together with the driven-side rotor. When the driving-side rotor is not driven to rotate, the rolling element is held between the inner circumferential surface of the clutch housing and the control surface so as to prevent the driven-side rotor from rotating. The driven-side rotor includes a driven-side coupling portion that can be coupled to and integrally rotatable with the driving-side rotor. The driven-side coupling portion and the control surface are provided at different positions in the axial direction. | 03-15-2012 |
20120019089 | MOTOR - A motor including a rotor and a stator. The rotor includes a rotor core, magnet pole portions, and core pole portions. First magnetic pole portions, which are the magnet pole portions or the core pole portions, each include a first and second opposing parts arranged in an axial direction. Each first opposing part includes an auxiliary groove, and each second opposing part does not include an auxiliary groove. Where M (°) represents an open angle of the first magnetic pole portion, G (°) represents an open angle of the void, and L represents the number of teeth, an angle D | 01-26-2012 |
20120005881 | METHOD FOR MANUFACTURING A STATOR - A stator having a stator core and coils is disclosed. The stator core includes split core pieces each having a tooth portion. The split core pieces are arranged annularly such that the distal ends of the tooth portions face radially inward. A lead wire is continuously wound about an adjacent pair of the tooth portions such that coils of different phases are formed in the circumferentially adjacent tooth portions, so that a plurality of connecting wires are provided, each connecting wire connecting coils of different phases. The connecting wires are connected to one another while being connected to one another, such that a neutral point is created. | 01-12-2012 |
20120001509 | MOTOR AND ROTOR - A motor including a stator and a rotor. The stator includes teeth and windings. Each tooth has a distal portion defined by a radially inward side of the stator. The rotor, which is arranged inward in the radial direction from the stator, includes a rotor core, magnets, and salient poles. Each salient pole is separated by a void from the magnet that is adjacent in the circumferential direction. The distal portion of each tooth is longer than a radially outward side of each magnet. | 01-05-2012 |
20110309707 | MOTOR - There is provided a motor including a rotor and a stator arranged outside the rotor in the radial direction. The rotor includes a rotor core, a plurality of magnets arranged at equal intervals in the circumferential direction of the rotor core and functioning as one magnetic pole, and salient poles integrated with the rotor core, each arranged between adjacent magnets and at a distance from the magnets. The salient poles function as the other magnetic pole. A stator has a stator core having a plurality of teeth extending in the radial direction of the stator and arranged at equal intervals in the circumferential direction, and multi-phase coils attached to the teeth. The plurality of salient poles are arranged to have center portions arranged at equal intervals in the circumferential direction, and each have an outer surface extending in the circumferential direction in a range of a predetermined opening angle having an axis of the rotor as a center. A first opening angle serving as an opening angle of an outer surface of a first salient pole is different from a second opening angle serving as an opening angle of an outer surface of a second salient pole. | 12-22-2011 |
20110292212 | WASHER NOZZLE FOR VEHICLE MOUNTED CAMERA, VEHICLE MOUNTED CAMERA, AND WASHER DEVICE FOR VEHICLE - A washer nozzle removes foreign matter on an image capturing surface of a camera mounted to the outside of a vehicle by supplying washer fluid to the image capturing surface. The washer nozzle includes an inside spray hole and a discharge portion. The inside spray hole sprays the washer fluid introduced into the washer nozzle. The discharge portion receives washer fluid sprayed from the inside spray hole. The discharge portion has a passage extending in a direction intersecting the spray direction of the washer fluid and a discharge port connected to the passage. The discharge portion discharges, from the discharge port, washer fluid sprayed from the inside spray hole along the image capturing surface, while filling the passage with the washer fluid, thereby washing the image capturing surface. | 12-01-2011 |
20110285229 | ROTOR, MANUFACTURING METHOD THEREOF AND ELECTRIC GEAR MOTOR HAVING THE ROTOR - A bearing is positioned relative to a rotatable shaft by inserting the bearing over the rotatable shaft until the bearing contacts a flange of the rotatable shaft, which is cold-forged on the rotatable shaft. The bearing is fixed to the rotatable shaft such that a swaged portion is formed in an outer peripheral portion of the rotatable shaft on an opposite axial side of the bearing, which is axially opposite from the flange, by swaging a corresponding part of the outer peripheral portion of the rotatable shaft such that the corresponding part of the outer peripheral portion of the rotatable shaft is radially outwardly bulged to form the swaged portion, and the swaged portion is axially pressed against the bearing to axially securely clamp the bearing between the swaged portion and the flange. | 11-24-2011 |
20110277266 | WIPER BLADE - A wiper blade for connection to a wiper arm for wiping a surface to be wiped while swinging to-and-fro between a wiper stop position and a reversal position. The wiper blade includes a lever member configured to be coupled to the wiper arm, and a blade rubber retained by the lever member. The lever member includes first and second retaining hooks projecting toward the surface to be wiped and arranged at an interval in the longitudinal direction of the lever member. The blade rubber includes accommodating grooves, which are open toward a wiping direction. A leaf spring member is mounted in each accommodating groove. The first and second retaining hooks retain the blade rubber while preventing the leaf spring members from falling out of the accommodating grooves. The lever member further includes fall-off preventing protrusions arranged between the first and second retaining hooks in the longitudinal direction of the lever member. The fall-off preventing protrusions project toward the surface to be wiped. The fall-off preventing protrusions are arranged on the rear side of the blade rubber with respect to a direction in which the blade rubber moves from the wiper stop position toward the reversal position. The fall-off preventing protrusions permit movement of the blade rubber in the direction perpendicular to the surface. When the blade rubber moves from the wiper stop position toward the reversal position, the fall-off preventing protrusions receive the blade rubber so as to prevent the leaf spring members from falling out of the accommodating grooves. | 11-17-2011 |
20110229650 | ELECTROSTATIC POWDER COATING METHOD AND ELECTROSTATIC POWDER COATING APPARATUS - Workpieces, which are conveyed by a conveying device along a conveying path, are heated by a heating and degreasing coil. Then, resin powder is downwardly sprayed from a nozzle of a coating device to each corresponding one of the workpieces, which are conveyed by the conveying device. The workpieces are thereafter heated by a heating and curing coil. At each of the heating coils, a dummy member, which is made of an electrically conductive material, is displaced from a retracted position to a forward position, which is located between the corresponding heating coil and a corresponding adjacent part of the conveying path of the conveying device, when an empty one of mount locations of the conveying device reaches the forward position of the dummy member. | 09-22-2011 |
20110227520 | BRUSHLESS MOTOR CONTROLLER AND METHOD FOR CONTROLLING BRUSHLESS MOTOR - A brushless motor controller is disclosed. The brushless motor controller includes a control unit and a drive timing generation unit. The control unit detects a load state of the motor. The drive timing generation unit generates a normal energizing timing determined by the rotational position of the rotor. Also, the drive timing generation unit generates an advancing angle energizing timing determined by the rotational position of the rotor and advanced by a predetermined amount from the normal energizing timing, generates a delay amount that changes in correspondence with the detected load state of the motor and the rotational speed of the rotor, and generates a final advancing angle energizing timing delayed by the delay amount from the advancing angle energizing timing. | 09-22-2011 |
20110225805 | Method for Manufacturing Armature Core - A method for manufacturing an armature core is provided, in which a plurality of split cores, which are formed by laminating core pieces produced through punching by punching dies, are coupled together to form an annular shape as a whole, so as to manufacture one armature core. The method includes: preparing a plurality of sets of the split cores, each set having three split cores, so as to form one armature core; and arranging the three split cores in each set at intervals of 120° in the circumferential direction. The three split cores in each set are formed by core pieces that have been punched by the same part of the same punching die. | 09-22-2011 |
20110221299 | DYNAMOELECTRIC MACHINE - An insert member is placed on one end surface of an armature on one axial side. A rotatable shaft member is integrally molded into one piece from a resin material and includes a shaft portion, a flange portion and a boss portion. The shaft portion axially extends through the armature and the insert member. The flange portion supports the other end surface of the armature on the other axial side. The armature and the insert member are fitted to the boss portion. The urging member is axially placed between a bottom portion of a motor housing and the insert member and axially urges the armature against the flange portion. | 09-15-2011 |
20110204833 | CONTROLLER FOR MOTOR - A controller for use with a motor including a stator, around which three-phase coils are wound, and a rotor, which includes a magnet functioning as a first magnetic pole and a salient pole of a core functioning as a second magnetic pole. The controller supplies the three-phase coils with excitation currents having a predetermined phase difference from one another to drive and rotate the rotor. The controller includes a current adjustment unit that adjusts a fundamental wave current using high-order currents for third order and ninth order components in a q-axis to reduce torque ripple. The excitation current is generated based on the fundamental wave current adjusted by the current adjustment unit. | 08-25-2011 |
20110193440 | MOTOR - A motor having a rotor and a stator is disclosed. A motor having a rotor and as stator is disclosed. The rotor is a consequent-pole rotor having a rotor core, a plurality of magnets, and a plurality of salient poles. The stator includes a plurality of teeth. The stator is arranged to be opposite to the rotor with a gap along the radial direction. The gap between the stator and the rotor is set to satisfy an expression 1 | 08-11-2011 |
20110187223 | BRUSHLESS MOTOR AND MANUFACTURING METHOD THEREOF - Each of vibration dampers is separated from each circumferentially adjacent one of the vibration dampers upon cutting of each of a plurality of connectors, which is initially integrally formed with the vibration dampers to circumferentially join between corresponding circumferentially adjacent two of the vibration dampers to form a single closed loop body. At least a part of each of first and second circumferential end portions of each vibration damper is engaged with a corresponding one of outer protrusions of a centerpiece in a circumferential direction of a stator. A primary recess is radially inwardly recessed at an outer peripheral portion of the vibration damper and is engaged with a corresponding one of primary protrusions of the stator in the circumferential direction of the stator. | 08-04-2011 |
20110187215 | DYNAMO-ELECTRIC MACHINE - Engaging protrusions of a lower end housing are axially snap-fitted into through holes, respectively, of a yoke housing to couple therebetween. Each of spacers is circumferentially placed between and is press-fitted between corresponding adjacent two of permanent magnets fixed to an inner peripheral surface of the yoke housing. Each spacer axially contacts a corresponding contact part of the end housing. A lower ball bearing and an upper ball bearing are supported by the lower end housing and an upper end housing, respectively, to rotatably support a shaft. A wave washer is axially positioned between the lower ball bearing and the lower end housing to exert an urging force between the lower end housing and the upper end housing through the shaft. | 08-04-2011 |
20110185819 | PRESSURE SENSITIVE SENSOR AND MANUFACTURING METHOD THEREOF - A molten dielectric resin material is filled in a section of an inside of a hollow dielectric body, in which electrode wires are installed. The molten dielectric resin material is solidified to form filler resin, so that the hollow dielectric body has a sensor portion, in which the filler resin is not filled in the inside of the hollow dielectric body, and a non-sensor portion, in which the filler resin is filled in the inside of the hollow dielectric body. A power supply connector is installed to one end part of the hollow dielectric body located at the non-sensor portion side and includes a plurality of electrically conductive terminals that are electrically connected to the plurality of electrode wires. | 08-04-2011 |
20110181230 | MOTOR - A motor including a stator, a rotor, and a current supply unit. The stator includes a stator core, which has a plurality of teeth, and a plurality of coils, which are wound around the teeth. The rotor includes a plurality of magnets, which function as first magnetic poles, and salient poles, which function as second magnetic poles. Each of the salient poles is arranged between adjacent magnets spaced apart by a clearance from the magnets. When P represents the number of poles in the rotor and S represents the number of coils, a ratio P/S of the pole number P and the coil number S is represented by (4n−2)/3m (where n and m are integers that are greater than or equal to 2). The plurality of coils includes a plurality of coil groups including coils for three phases. The current supply unit executes a different current control for each coil groups. | 07-28-2011 |
20110169371 | MOTOR AND BRUSH CONFIGURATION METHOD - A detailed listing of all claims that are, or were, in the present application, irrespective of whether the claim(s) remain(s) under examination in the application is presented below. The claims are presented in ascending order and each includes one status identifier. Those claims not cancelled or withdrawn but amended by the current amendment utilize the following notations for amendment: 1. deleted matter is shown by strikethrough for six or more characters and double brackets for five or fewer characters; and 2. added matter is shown by underlining. | 07-14-2011 |
20110162161 | WIPER BLADE - A wiper blade including a lever member, a rubber blade, and a movable cover member is disclosed. The lever member includes a main lever and a yoke lever. The main lever is coupled to a wiper arm. The yoke lever is coupled to the main lever. The yoke lever includes a plurality of grip portions. The rubber blade is gripped by the plurality of grip portions to wipe a wiping surface. The rubber blade includes a following end projecting outward from the one of the grip portions that is located at a longitudinally outer side of the lever member. The movable cover member covers at least part of the yoke lever. The movable cover member includes a holding portion and a basal portion. The holding portion holds the following end. The basal portion is pivotally coupled to the yoke lever so that the movable cover member pivots relative to the yoke lever when the following end bends and deforms in a direction orthogonal to the wiping surface. | 07-07-2011 |
20110148240 | MOTOR - A motor having a rotor and a stator is disclosed. The rotor is a consequent-pole rotor having a rotor core, a plurality of magnets, and a plurality of salient poles. The stator includes a stator core and multiphase coils. Each coil is wound about the teeth by distributed winding, in such a manner as to wind two or more consecutive teeth in single winding. The opening degree each of salient pole opposed to the distal ends of the teeth is set greater than or equal to twice the opening angle of the distal end of each tooth. | 06-23-2011 |
20110140562 | MOTOR - A motor having a rotor and a stator is disclosed. The rotor is a consequent-pole rotor having a rotor core, a plurality of magnets, and a plurality of salient poles. The stator includes a plurality of teeth. A first auxiliary groove is formed in a surface of each salient pole that is opposed to the teeth. Each first auxiliary groove has first and second side surfaces facing each other in the circumferential direction. The first side surface is closer to a circumferential center of the salient pole than the second side surface. When the angle from the circumferential center line to the first side surface of each salient pole about the axis of the rotor is represented by KC1, the opening angle between the circumferential ends of the distal end of each tooth about the axis is represented by KA, and the opening angle between the circumferential ends of each salient pole about the axis is represented by KB, the following expression is satisfied: KC1=KA−KB/2. | 06-16-2011 |
20110115328 | EMBEDDED MAGNET MOTOR AND MANUFACTURING METHOD OF THE SAME - In an embedded magnet motor, radial magnets and first inclined magnets form north poles. The radial magnets and second inclined magnets form south poles. Core sheets each include preformed radial accommodating slots the number of which is expressed by P/2. Some of the preformed radial accommodating slots are short slots and the rest are long slots. The short slots are located at some parts of each radial accommodating slot along the axial direction. Radially inner ends of the short slots restrict the radial magnets from moving radially inward. | 05-19-2011 |
20110057526 | Electric motor - A brush holder is placed between a yoke housing and a gear housing and includes a holder member and a base member. The holder member is installed to an opening of the yoke housing and holds a plurality of brushes. The base member is installed to the holder member and includes a connector, which is adapted to connect with an external connector to receive an electric power. An output side end part of the yoke housing has a flange portion, through which the gear housing is fixed to the yoke housing. The holder member includes a contact portion that contacts the flange portion of the yoke housing in an axial direction of a rotatable shaft. | 03-10-2011 |
20110050025 | DIRECT-CURRENT MOTOR AND MANUFACTURING METHOD FOR THE DIRECT-CURRENT MOTOR - A motor is provided that includes magnetic poles, an armature core, armature coils, a commutator, and power supply brushes. The armature core includes teeth arranged in the circumferential direction to extend in a radial pattern. The armature coils include inner layer coils and outer layer coils. Each of the inner layer coils is wound around radially proximal end portions of two circumferentially adjacent teeth or a radially proximal end portion of one of the teeth. The inner layer coils are arranged in the circumferential direction without overlapping each other in the radial direction. Each of the outer layer coils is wound around radially distal end portions of two circumferentially adjacent teeth by distributed winding. The outer layer coils are arranged radially outward of the inner layer coils and are arranged in the circumferential direction without overlapping each other in the radial direction. The circumferential center of the inner layer coils and the circumferential center of the outer layer coils are displaced in the circumferential direction. | 03-03-2011 |
20110047879 | OPENING AND CLOSING APPARATUS - An opening and closing apparatus is disclosed that includes an opening and closing body, a force transmitting portion, an elongated sensor body, a support member, and a control section. The opening and closing body is actuated to selectively open and close an opening. The force transmitting portion has a drive portion that generates drive force. The force transmitting portion transmits the drive force from the drive portion to the opening and closing body. The sensor body detects an object between a closing-side end of the opening and closing body and a facing part of the periphery of the opening that faces the closing-side end of the opening. The closing-side end is at an advancing side of the opening and closing body when the opening and closing body is in a closing operation. The support member is fixed either to the closing-side end or the facing part. The support member supports the sensor body. The control section controls the drive portion based on a detection result of the object received from the sensor body. The support member includes an attachment main body and a reinforcing member that is embedded in the attachment main body and reinforces the attachment main body. The reinforcing member has a sensor holding portion that is exposed to the outside from the attachment main body and holds the sensor body. | 03-03-2011 |
20110044063 | LAMP DEVICE - A lamp device is provided that is capable of performing a first actuation and a second actuation. At the first actuation, the lamp device pivots a lamp about a first axis relative to a support, and, at the second actuation, the lamp device pivots the lamp about a second axis, which is perpendicular to the first axis, relative to the support. The lamp includes a first supporting portion that is located on the first axis and at a side of the lamp and a second supporting portion that is located on the first axis and at the other side of the lamp. The first supporting portion is supported by the support to be pivotable about the intersection point of the first axis and the second axis. The second supporting portion is joined to a movable joint member. The movable joint member is supported by the support so as to be movable along a second actuation axis. | 02-24-2011 |
20110031851 | ELECTRIC MOTOR - A shaft is adapted to be inserted through a circuit apparatus without a need for disassembling a shaft side sensor device from an end part of the shaft to place the shaft side sensor device in an opposed relationship to a circuit board side sensor device at a location adjacent to the circuit board side sensor device. The shaft side sensor device forms a sensor apparatus in cooperation with the circuit board side sensor device to sense a rotational angle of the rotor. | 02-10-2011 |
20110006632 | EMBEDDED MAGNET MOTOR AND MANUFACTURING METHOD OF THE SAME - In an embedded magnet motor, radial magnets and first inclined magnets form north poles. The radial magnets and second inclined magnets form south poles. Core sheets each include preformed radial accommodating slots the number of which is expressed by P/2. Some of the preformed radial accommodating slots are short slots and the rest are long slots. The short slots are located at some parts of each radial accommodating slot along the axial direction. Radially inner ends of the short slots restrict the radial magnets from moving radially inward. | 01-13-2011 |
20100327680 | MOTOR - In a motor, a stator with a three-phase winding set and a rotor are located in an operation region of a motor casing having a side wall. An inverter circuit constructed with power modules is located in a control region that is located on the opposite side of the operation region across the side wall in an axial direction of the motor. Each power module has a pair of transistors and a common terminal connected to the pair of transistors. A lead of a winding corresponding to one phase and a lead of a winding corresponding to another phase extend in the axial direction to cross over from the operation region to the control region and are connected together to the common terminal of a corresponding power module. | 12-30-2010 |
20100327677 | DRIVE APPARATUS AND SEMICONDUCTOR MODULE - A special terminal may project from an encapsulation body of a semiconductor module and may be engaged with an engaging portion of a motor case to limit a positional deviation of the semiconductor module relative to the motor case. Additionally or alternatively, a module side engaging portion may be formed in the encapsulation body and may be engaged with a case side engaging portion to position the semiconductor module relative to the motor case. | 12-30-2010 |
20100320857 | Electric motor - Each of a plurality of brushes is tilted relative to an imaginary plane that is perpendicular to a rotational axis of an armature and is placed on one axial side of a brush holder, at which an interior of a yoke housing is located. A radial inner end part of each brush has a slide contact surface, which is generally parallel to the rotational axis of the armature and slidably contacts an outer peripheral surface of a commutator. At least a portion of the slide contact surface of each brush is axially disposed outside of an opening of the yoke housing. | 12-23-2010 |
20100308680 | Rotor and Motor - A motor is disclosed that includes a rotor having a consequent-pole structure. The rotor core of the rotor includes a magnetic flux dividing portion at each position that faces one of the magnets. Each magnetic flux dividing portion forcibly divides magnetic flux in the vicinity of the backside of the corresponding magnet to both sides in the circumferential direction. | 12-09-2010 |
20100301695 | Rotor and Motor - A motor includes a rotor and a stator. The rotor includes a plurality of magnets, which function as first magnetic poles, and salient poles, which function as second magnetic poles. A ratio X | 12-02-2010 |
20100299912 | BRUSHLESS MOTOR AND MANUFACTURING METHOD THEREOF - A second ball bearing is installed from a first axial side toward a second axial side into an interior of a bearing holder of a rotor through an opening of the bearing holder, so that an outer race of the second ball bearing is press fitted to an inner peripheral portion of the interior of the bearing holder. A first ball bearing is inserted from the first axial side toward the second axial side into the interior of the bearing holder of the rotor through the opening of the bearing holder after the installing of the second ball bearing, so that an outer race of the first ball bearing is press fitted to the inner peripheral portion of the interior of the bearing holder and is axially spaced from the outer race of the second ball bearing. | 12-02-2010 |
20100295394 | Electric motor - Winding Start Sections and Winding End Sections of Winding Wires are Pulled out from slots of an armature core and are guided by wire guides of an insulator. Thereafter, each corresponding one of the winding start sections and the winding end sections is guided by a corresponding winding holding portion and is directly connected to a corresponding one of power supply terminal elements of a circuit apparatus without using an intermediate terminal. | 11-25-2010 |
20100283339 | MOTOR - A motor including electrical components laid out to avoid enlargement of the motor. The motor includes a rotor, a cylindrical housing including a closed end and an open end and accommodating the rotor, and an end bracket fixed to the housing to close the open end and including a connector support. Two power supply terminals extend to the connector support. A noise prevention element includes a connection terminal connected to the power supply terminals. A rotation detector detects rotation of the rotor and includes a detector body. The noise prevention element is arranged between the two power supply terminals. The detector body and the noise prevention element are arranged at a portion of the end bracket closer to the connector support and aligned in an axial direction of the motor. | 11-11-2010 |
20100264863 | Brushless motor control apparatus, brushless motor and control method of brushless motor - A slope counter starts countdown at timing of changing an output voltage of an FET to zero. A controller executes a nonsymmetrical energization control operation to control a PWM generator such that the PWM generator generates a PWM signal based on a count value of the slope counter and outputs the generated PWM signal to the FET. The countdown of the slope counter is terminated when a predetermined time period elapses or when a time period corresponding to an electrical angle of 40 degrees elapses before the elapsing of the predetermined period. Also, at this time, the controller terminates the nonsymmetrical energization control operation. | 10-21-2010 |
20100264862 | Brushless motor control apparatus, brushless motor and control method of brushless motor - A power supply control device turns off energization of coils from a power supply device when a rotational speed of a motor reaches 500 rpm. After elapsing of one electrical cycle from the time of starting the turning off of the energization, a comparator of a correction device outputs a comparator signal, which is obtained by comparing a voltage of a neutral point of the coils and an induced voltage of the coil. An EX-OR circuit outputs an EX-OR signal, which is an exclusive OR value of the comparator signal and an output signal of a Hall sensor. A sensing unit obtains an electrical angle of a period, during which the EX-OR signal is in a H-level. A difference between the obtained electrical angle and a standard electrical angle of 30 degrees is stored as a correction data value. Thereafter, energization of the coils is restarted. | 10-21-2010 |
20100264772 | DIRECT CURRENT MOTOR - A direct current motor is provided that includes an armature core, a commutator, coils, positive brushes, and negative brushes. The armature core includes a stator. The stator has magnets the number of which is represented by P (where P is an even number greater than or equal to six). The coils are wound about the teeth by duplex wave winding. Alternatively, the coils are wound about the teeth such that each pair of coils that are spaced apart by 180° are connected common ones of the segments. Each of the positive brushes and the negative brushes has an angular width WB, at which it slides on the segments. When the angular width of the arrangement pitch of the segments is represented by WP (WP=360°/the number of the segments), and the angular width of the clearance between each pair of circumferentially adjacent segments is represented by WU, the angular width WB is set to satisfy the expression: WB≦(4/P)×WP+WU. | 10-21-2010 |
20100219844 | Foreign object detection sensor and method for manufacturing the same - A foreign objection detection sensor has a lengthy sensor part having a sensor electrode having a first sensor electrode which detects a proximity of a foreign object and a second sensor electrode which detects a contact of the foreign object, a sensor terminal part provided at one end of the sensor part, a leading wire pulled out from the sensor terminal part, the leading wire being electrically connected to the sensor electrode at the sensor terminal part to provide a proximity detecting function for detecting the proximity of the foreign object to the sensor part and a contact detecting function for detecting the contact of the foreign object to the sensor part. The sensor terminal part has a support member which supports a detection circuit unit electrically connected to the sensor electrode to carry out the proximity detecting function and the contact detecting function together with the sensor electrode. The detection circuit unit is disposed in the support member. | 09-02-2010 |
20100194320 | Motor control apparatus and motor control method - In a polyphase electric motor, a voltage is sequentially applied to a plurality of windings on a phase-by-phase basis. Then, there is sensed a rotational speed of a rotor, which is rotated by a rotating magnetic field that is generated by sequentially flowing an electric current in the windings on the phase-by-phase basis upon the sequential application of the voltage to the windings. Then, an oscillation frequency of a periodic oscillation, which is generated in the motor at the sensed rotational speed of the rotor, is obtained. Thereafter, it is determined whether the obtained oscillation frequency is a predetermined resonance frequency. Next, the voltage to be applied to the windings is corrected in a manner that reduces a resonance generated in the motor when a result of the determination indicates that the obtained oscillation frequency is the predetermined resonance frequency. | 08-05-2010 |
20100176696 | CONTROL CIRCUIT MEMBER AND MOTOR - A control circuit member provided in a motor is disclosed. The motor includes a motor main body having a rotary shaft and a gear housing integrated with the motor main body. The control circuit member includes a circuit substrate on which a rotation detecting element is mounted and a substrate support member. The circuit substrate is accommodated in a circuit accommodating portion in the gear housing. The substrate support member supports the circuit substrate inside the circuit accommodating portion. The control circuit member is configured to be insertable into the circuit accommodating portion along the axial direction of the rotary shaft. The circuit substrate is configured to be arrangeable inside the circuit accommodating portion while being inclined with respect to the axial direction of the rotary shaft, so as to cause the rotation detecting element to approach the detector magnet. | 07-15-2010 |
20100175216 | Wiper system and wiper control method - A wiper is pivotably supported and is swung by a drive force of an electric motor. When a command, which commands execution of one of high and low speed modes, is entered through a wiper switch in the middle of operation of the wiper in another one of the high and low speed modes, a control unit controls an electric motor such that a moving speed of the wiper, which is preset for the another one of the high and low speed modes, is changed to the moving speed of the wiper, which is preset for the one of the high and low speed modes, during a time period of executing a predetermined number of swings of the wiper between an upper return position and a lower return position upon entering of the command through the wiper switch means. | 07-15-2010 |
20100170054 | Vehicle wiper device and vehicle - A vehicle wiper device including a wiper arm, a wiper blade, and a wiping range enlarging mechanism is disclosed. The wiper arm is driven by driving force of a drive source. The wiper blade is coupled to a distal portion of the wiper arm at a constant position relative to the wiper arm. The wiper blade moves back and forth between first and second reversing positions while wiping a wiping surface of a vehicle body when the wiper arm is driven. The wiping range enlarging mechanism drives the wiper arm while moving a basal portion of the wiper arm so that a wiping angle of a basal portion of the wiper arm becomes greater than a wiping angle of a distal portion of the wiper arm at the second reversing position. | 07-08-2010 |
20100162512 | Wiper apparatus - A swing lever is fixed to a pivot shaft to pivot the pivot shaft about a pivot axis thereof. A wiper arm is directly connected to a distal end portion of the pivot shaft and is pivoted together with the pivot shaft about the pivot axis of the pivot shaft when the pivot shaft is driven by the swing lever. The wiper arm is pivotable about a pivot axis thereof, which is generally perpendicular to or is tilted relative to the pivot axis of the pivot shaft, toward or away from a wiping surface. A coil spring is directly or indirectly connected between the wiper arm and the swing lever to exert an urging force to urge the wiper arm toward the wiping surface in a wiping operational position of the wiper arm for wiping the wiping surface. | 07-01-2010 |
20100162511 | Wiper system and wiper control method - A wiper is continuously reciprocally swung between an upper return position and a lower return position by controlling an electric motor when an operational command for executing a continuous operational mode is entered by a user through a wiper switch. The wiper is reciprocally swung after stopping of the wiper for a predetermined time period at a predetermined position, which is located on an outer side of the lower return position that is opposite from the upper return position in a swing direction of the wiper and at which an influence of a wind pressure applied to the wiper is smaller in comparison to the lower return position, by controlling the electric motor when an operational command for executing an intermittent operational mode is entered through the entering means. | 07-01-2010 |
20100148612 | BRUSHLESS MOTOR - A brushless motor including a stator having teeth and a rotor having magnetic pole portions is disclosed. The magnetic pole portions are arranged to have the same polarities as each other. The rotor includes gaps that function as magnetic resistance at circumferential ends of each of the magnetic pole portions so that an iron core portion is formed between the circumferentially adjacent magnetic pole portions. Magnetic flux of the magnetic pole portions passes through the iron core portion along the radial direction. The gaps include a first gap located on the leading end of the magnetic pole portion in the rotation direction of the rotor and a second gap located on the trailing end of the magnetic pole portion in the rotation direction of the rotor. The circumferential width of the first gap is set to be greater than the circumferential width of the second gap. | 06-17-2010 |
20100146726 | WIPER DEVICE - A wiper device includes first and second pivot shafts, first and second pivot holders, a hollow frame, a drive source, and a link rod. The first and second pivot holders are fixed to a vehicle body, pivotally support the first and second pivot shafts, and include first and second attachment shafts, respectively. The hollow frame couples the pivot holders to each other. The link rod transmits drive force of the drive source to the first and second pivot shafts. The hollow frame includes first and second coupling-fixing portions and a drive source fixing portion. The first and second attachment shafts are respectively crimped and fixed to the coupling-fixing portions. Axes of the first and second coupling-fixing portions lie along a straight line. The hollow frame is bent so as to arrange the drive source fixing portion spaced apart from the first and second pivot holders in a direction extending from the distal ends towards basal ends of the pivot shafts. | 06-17-2010 |
20100139025 | Wiper system and wiper control method - An output shaft of a wiper motor is connected to a wiper to transmit a rotational force of the wiper motor to the wiper to reciprocally swing the wiper between an upper return position and a lower return position in response to forward and backward rotations of the output shaft upon energization of the wiper motor. When the wiper is stopped at the lower return position, the control unit executes a stop position holding control operation in such a manner that the control unit controls a rotational direction of the wiper motor to apply a rotational force to the wiper in a downward direction and controls the rotational force of the wiper motor based on a speed of the vehicle to substantially maintain the wiper at the lower return position. | 06-10-2010 |
20100133939 | MOTOR - A motor including a stator and a rotor is disclosed. The rotor includes a first unit and a second unit. The first unit includes an N-pole first magnet and an S-pole second magnet. The first and the second magnets are alternately arranged along a circumferential direction of the rotor at equal angular intervals to form magnetic pole portions. The second unit includes an N-pole or S-pole third magnet and a salient pole arranged in the rotor core. The salient pole functions as a magnetic pole that differs from the third magnet. The third magnet and the salient pole are alternately arranged along the circumferential direction of the rotor to form magnetic pole portions. The number of magnetic pole portions of the second unit is the same as the number of magnetic pole portions of the first unit. The third magnet and the magnet of the first unit having the same pole as the third magnet are aligned in the axial direction of the rotor. | 06-03-2010 |
20100072840 | Armature and motor - In an armature of a motor, each of windings is wound around at least two of a plurality of tooth portions of a core to form at least two wound parts of the winding. A crossover of each winding, which connects between corresponding two of the at least two wound parts, is placed on one axial side of a ring portion of the core. A crossover relief space is axially recessed in an end surface of the ring portion on the one axial side. At least a portion of each crossover is received in the crossover relief space. Guides project on the other axial side of the core and guide winding terminal portions of the windings. | 03-25-2010 |
20100066188 | Brushless motor - Teeth of a stator core are arranged one after another in the circumferential direction at alternating first and second pitches. Each corresponding adjacent two of the teeth, which are spaced from each other by the first pitch, are wound with corresponding two, respectively, of stator coils, which form a corresponding common phase. Each corresponding adjacent two of the teeth, which are spaced from each other by the second pitch, are wound with corresponding two, respectively, of the stator coils, which form corresponding different phases, respectively. | 03-18-2010 |
20100052462 | Armature and electric motor having the same - Winding guide portions of an insulator are received in slots, respectively, of a core. Each of windings is electrically insulated from the core by a winding guide wall of a corresponding one of the winding guide portions in each of corresponding two of slots of the core. The winding guide wall of at least one of the winding guide portions is configured differently from the winding guide wall of each of the rest of the winding guide portions and includes a radial bottom wall section, which is radially outwardly spaced from a radial bottom wall section of a corresponding one of the slots by a predetermined distance and contacts a corresponding one of the windings. | 03-04-2010 |
20100000355 | Output power transmission device and motor with speed reducing mechanism - An output power transmission device has a transmission plate and a C-ring. The transmission plate is attached to a wheel gear in an axial direction of the wheel gear such that the transmission plate directly engages with the wheel gear in a rotation direction. The transmission plate functions as a transmission member for transmitting rotation of the wheel gear to an output shaft. The C-ring is provided at a position where the C-ring sandwiches the transmission plate with the wheel gear in the axial direction. The C-ring functions as a restriction section for restricting movement of the transmission plate in the axial direction opposite from the wheel gear side. An elastic claw section as a pressing member is formed on the wheel gear. The elastic claw section presses the transmission plate against the C-ring in the axial direction. | 01-07-2010 |
20090322141 | Auxiliary Mechanism for Seat Belt Apparatus - An auxiliary mechanism for a seat belt apparatus includes a support portion and a guide portion. The support portion supports a webbing in a manner drawable to the front of a seat back. The support portion is movable between a storage position, which is near the seat back, and a projection position, which is spaced further apart from the seat back than the storage position to draw out the webbing toward the front of the seat back. The guide portion guides the movement of the support portion between the storage position and the projection position, and then continuously guides the movement of the support portion along a vertical direction of the seat back at the storage position. | 12-31-2009 |
20090309535 | Motor control apparatus and motor control method - A first duty ratio of a drive command signal is computed by comparing a level of the drive command signal with a first threshold value at a motor controller of a blower motor apparatus. A second duty ratio of the drive command signal is computed by comparing the level of the drive command signal with a second threshold value at the motor controller. A control signal is generated based on the first duty ratio and the second duty ratio in the motor controller and is used to drive a blower motor of the blower motor apparatus. | 12-17-2009 |
20090309452 | MOTOR, STATOR, AND METHOD FOR MANUFACTURING STATOR - A stator having a stator core and coils is disclosed. The stator core includes split core pieces each having a tooth portion. The split core pieces are arranged annularly such that the distal ends of the tooth portions face radially inward. A lead wire is continuously wound about an adjacent pair of the tooth portions such that coils of different phases are formed in the circumferentially adjacent tooth portions, so that a plurality of connecting wires are provided, each connecting wire connecting coils of different phases. The connecting wires are connected to one another while being connected to one another, such that a neutral point is created. | 12-17-2009 |
20090299580 | Opening/closing member control apparatus and method - A control apparatus for a power window device stores a speed control start position that is set between a fully open position and a fully closed position, and a speed control end position that is set adjacently to the fully open position. While driving a windowpane in a direction toward the fully open position, the control apparatus reduces a motor output after the windowpane reaches the speed control start position until it reaches the speed control end position. The control apparatus de-energizes a motor when the windowpane reaches the speed control end position. The speed control end position is set at a position, from which the windowpane cannot reach the fully open position with its movement speed at the time the motor is de-energized. | 12-03-2009 |
20090267786 | OPENING AND CLOSING APPARATUS - An opening and closing apparatus having an opening and closing body, a drive portion, a control portion, and a detecting device is disclosed. The detecting device has a sensor portion for detecting the capacitance between the sensor portion and an object that is in the proximity of the sensor portion or is contacting the sensor portion. The detecting device detects that the object is in the proximity of the sensor portion or is contacting the sensor portion based on the capacitance detected by the sensor portion. If the detecting device detects contact of the object with the sensor portion when the opening and closing body is not being moved, the control portion controls the drive portion to start opening the opening and closing body. If the detecting device detects that the object is in the proximity of the sensor portion when the opening and closing body is being closed, the control portion controls the drive portion to stop or reverse the movement of the opening and closing body. | 10-29-2009 |
20090267549 | BRUSHLESS MOTOR CONTROLLER AND BRUSHLESS MOTOR - A brushless motor controller that controls a brushless motor by determining an energizing timing of a three-phase stator coil based on the rotational position and speed of a rotor. The controller includes a normal timing generation unit, an advancing timing generation unit, and a control switching unit. The normal timing generation unit generates a normal energizing timing. The advancing angle timing generation unit generates an advancing angle energizing timing advanced by a predetermined amount from the normal energizing timing and a final advancing angle energizing timing delayed by a delay amount from the advancing angle energizing timing. The control switching unit switches rotation control of the motor between a first rotation control executed in accordance with the normal energizing timing and a second rotation control executed in accordance with the final advancing angle energizing timing. | 10-29-2009 |
20090256438 | STATOR, MOTOR, AND METHOD OF MANUFACTURING STATOR - A stator core of a stator has a plurality of teeth extending radially. A plurality of connector pins project from a partition plate. Wires each have a wire connection portion drawn out from the corresponding one of coils. Each wire is electrically connected to the corresponding connector pins by winding the wire connection portions around the connector pins. | 10-15-2009 |
20090230803 | EMBEDDED MAGNET MOTOR AND MANUFACTURING METHOD OF THE SAME - In an embedded magnet motor, radial magnets and first inclined magnets form north poles. The radial magnets and second inclined magnets form south poles. Core sheets each include preformed radial accommodating slots the number of which is expressed by P/2. Some of the preformed radial accommodating slots are short slots and the rest are long slots. The short slots are located at some parts of each radial accommodating slot along the axial direction. Radially inner ends of the short slots restrict the radial magnets from moving radially inward. | 09-17-2009 |
20090195099 | Rotatable shaft assembling method, rotatable shaft assembly, and electric motor having the same - At the time of assembling an electric motor, plain bearings are installed over a worm shaft to form a shaft assembly. Then, the worm shaft together with the plain bearings is inserted into a gear housing in an inserting direction, which is generally parallel to an axial direction of the worm shaft, such that each of the plain bearings is press fitted into a corresponding installation part of the housing. | 08-06-2009 |
20090188168 | DOOR NOISE SUPPRESSING STRUCTURE IN OPEN/CLOSE BODY DRIVE APPARATUS - A drive apparatus for opening and closing a window glass provided in a door having an inner panel is disclosed. The drive apparatus includes a motor provided in the door and a regulator that receives drive force from the motor and selectively open and close the window glass. The door noise includes motor operating noise and vibration transmission noise that is generated when vibration of the motor is transmitted to the inner panel via the regulator. The motor is configured such that a first-order frequency component in vibration of the motor is greater than any other nth component (n is an integer greater than or equal to two), so that the first-order frequency component in the door noise is greater than any other nth frequency component (n is an integer greater than or equal to two). | 07-30-2009 |
20090160385 | MOTOR CONTROLLER - A motor controller that outputs a drive signal to a direct-current brush motor to drive the motor is provided. The motor controller includes a drive signal generating section that generates the drive signal. The drive signal generating section generates the drive signal by superimposing on a direct-current voltage a compensation voltage for generating a compensation torque that can cancel rotation torque fluctuations in a no-load rotation state of the motor. | 06-25-2009 |
20090153090 | MOTOR CONTROLLER - A motor controller that outputs a drive signal to a direct-current motor to drive the motor is provided. The motor controller includes a drive circuit that generates the drive signal. The drive circuit superimposes on a direct-current voltage an alternating-current component having a frequency in the audible frequency range of the human ear, thereby generating the drive signal. | 06-18-2009 |
20090153000 | MOTOR, THERMISTOR, AND MANUFACTURING METHOD OF THE SAME - A thermistor device configures part of an electrical path from a motor feeder section to an armature. A recess defining wall defines an accommodating recess, which accommodates the thermistor device. The thermistor device includes a plate-like thermistor element. A first conductive plate and a second conductive plate sandwich the thermistor element. A pair of first projections | 06-18-2009 |
20090152967 | Brushless motor and manufacturing method thereof - A second ball bearing is installed from a first axial side toward a second axial side into an interior of a bearing holder of a rotor through an opening of the bearing holder, so that an outer race of the second ball bearing is press fitted to an inner peripheral portion of the interior of the bearing holder. A first ball bearing is inserted from the first axial side toward the second axial side into the interior of the bearing holder of the rotor through the opening of the bearing holder after the installing of the second ball bearing, so that an outer race of the first ball bearing is press fitted to the inner peripheral portion of the interior of the bearing holder and is axially spaced from the outer race of the second ball bearing. | 06-18-2009 |
20090152275 | VEHICLE WASHER TANK AND METHOD FOR PREPARING WASHER FLUID - A vehicle washer tank including a solid washer agent accommodated in the washer tank. The washer agent contains an undiluted washer fluid component and dissolves in water. | 06-18-2009 |
20090152057 | BRAKE DEVICE AND MOTOR WITH SPEED REDUCING MECHANISM - A brake device arranged between a drive shaft and a driven shaft arranged coaxially with the drive shaft is disclosed. The brake device includes a first rotor, a second rotor, an engagement member, a braking mechanism, and a cam mechanism. The braking mechanism includes a movable friction member rotatable integrally with the second rotor, a fixed friction portion, and an urging member that urges the movable friction member toward the fixed friction portion. When rotational force is provided from the drive shaft to the first rotor, the cam mechanism permits transmission of rotation of the drive shaft to the driven shaft. When the rotational force is provided from the driven shaft to the second rotor, the cam mechanism restricts rotation of the driven shaft. The cam mechanism is provided independently from the engagement member. | 06-18-2009 |
20090146526 | Short-circuit member assembly, commutator, and motor - A short-circuit member assembly for short-circuiting a plurality of segments arranged in a circumferential direction is disclosed. The short-circuit member assembly includes first and second short-circuit member groups that are superimposed with each other. The first short-circuit member group includes m first terminals, which are superimposed and joined with m first terminals included in the second short-circuit member group to form m first-terminal joint portions. The m first-terminal joint portions and the remaining first terminals in the short-circuit member groups are arranged in the circumferential direction and connected to the segments. All of the second terminals in the first short-circuit member group are superimposed and joined with all of the second terminals included in the second short-circuit member group. | 06-11-2009 |
20090146525 | Commutator and direct current motor - A segment center line is defined for each segment. Each segment center line extends from the center in the circumferential direction of the radially outer end of the segment to the center in the circumferential direction of the radially inner end of the segment. A portion of each segment center line where there is the center in the circumferential direction of the radially inner end is inclined in a first circumferential direction relative to the radial line. A short-circuit member has a plurality of connection pieces. Each connection piece has an outer short-circuit end, an inner short-circuit end, and a coupling portion. Each coupling portion links the outer short-circuit end to the inner short-circuit end, which is shifted in a second circumferential direction from the outer short-circuit end. | 06-11-2009 |
20090121574 | DIRECT CURRENT MOTOR - A direct current motor is disclosed. The motor includes a stator, a commutator, an armature core, and brushes. The stator has a yoke and magnetic poles. The magnetic poles are arranged at a predetermined pitch along a circumferential direction of the yoke. The number of the magnetic poles is represented by the expression: 2×P (P is an integer not less than 2). The commutator has segments that are arranged in a circumferential direction of the commutator. The number of the segments is represented by the expression: P×N (N is an odd number not less than 3). The armature core is rotatable integrally with the commutator and includes teeth provided by the number represented by the expression: 2×P×N. A coil is wound around the teeth by distributed winding. Each one of the brushes is pressed against and contacts the segments. Two of the segments that are electrically short-circuited by one of the brushes are connected to each other by at least two coils that are arranged at an interval corresponding to an integral multiple of the pitch (360°/(2×P)) of the magnetic poles. | 05-14-2009 |
20090115280 | EMBEDDED MAGNET TYPE MOTOR - A rotor of an embedded magnet type motor is disclosed. A rotor core of the motor includes first accommodation holes and V-shaped accommodation holes The first accommodation holes extend in radial directions, and the V-shaped accommodation holes protrude radially outward. The rotor core has grooves at positions corresponding to the first accommodation holes on the outer periphery of the rotor core. Each groove has a width as a dimension in the circumferential direction when viewed from the axial direction. Each first magnet has a width as a dimension in the circumferential direction when viewed from the axial direction. The width of the grooves is larger than the width of the first magnets. | 05-07-2009 |
20090115272 | Electric motor - A closer is configured into a generally cylindrical shape and is provided to a rotatable shaft of an electric motor to rotate integrally with the rotatable shaft relative to a housing. The closer is at least partially received in an opening of a bearing receiver of the housing, which receives a bearing. The closer has an opposed end surface, which is axially opposed to an outer end surface of the bearing and defines a lubricant holding space in cooperation with the outer end surface of the bearing, an inner peripheral surface of the bearing receiver and an outer peripheral surface of the rotatable shaft. A lubricant is applied to the outer end surface of the bearing. | 05-07-2009 |
20090100755 | OPENING/CLOSING DEVICE - A conductive movable body opens and closes an opening portion formed in a conductive opening forming body. The movable body has a front edge portion positioned in a front side in the closing direction of the movable body. The opening portion has an opposed edge portion opposed to the front edge portion. The sensor is arranged in a layout body corresponding to one of the opening forming body and the movable body, and is arranged in one of the front edge portion and the opposed edge portion. The sensor is capable of detecting a conductive object-to-be-detected on the basis of a change of a capacitance between a sensor electrode and the object-to-be-detected coming close to the sensor electrode. A guard electrode is provided between the layout body and the sensor electrode. An electric potential of the guard electrode is kept equal to an electric potential of the sensor electrode or kept at a fixed rate with respect to the electric potential of the sensor electrode. Accordingly, it is possible to prevent an improper operation of a capacitance type sensor in the opening and closing apparatus. | 04-23-2009 |
20090094773 | Wiper system - A wiper support shaft supports a wiper, which wipes a windshield glass. The wiper support shaft projects outward through an opening of a cowl louver that is placed on a vehicle front side of the windshield glass. A four-bar linkage drives the wiper support shaft to move the wiper support shaft in the opening of the cowl louver in such a manner that a wiping range of the wiper, which is installed to the wiper support shaft, changes on the windshield glass. A covering member is supported by the wiper support shaft at a location inside the cowl louver to limit direct viewing of the four-bar linkage through the opening of the cowl louver. | 04-16-2009 |