Patent application title: Method and products for the diagnosis of a seafood allergy
Inventors:
Waltraud Suer (Buchholz, DE)
Marco Klinge (Hamburg, DE)
Alf Weimann (Luebeck, DE)
Stefanie Rohwer (Kalkhorst, DE)
Henning Seismann (Nienwohld, DE)
Mariona Pascal Capdevila (Barcelona, ES)
Assignees:
EUROIMMUN Medizinische Labordiagnostika AG
IPC8 Class: AG01N33564FI
USPC Class:
1 1
Class name:
Publication date: 2021-10-28
Patent application number: 20210333274
Abstract:
A diagnostically useful carrier includes a means for specifically
capturing an antibody to a polypeptide from the group including squid
MLC1 or squid MLC2 or a variant thereof in a sample from a subject. A
method includes the step detecting in a sample from a subject the
presence or absence of an antibody to squid MLC1 or squid MLC2. The
polypeptide or the carrier or a polypeptide binding specifically to an
IgE antibody from the sample of a patient to squid MLC1 or squid MLC2 are
useful for the manufacture of a diagnostic kit, preferably for the
diagnosis of allergy.Claims:
1. A diagnostically useful carrier, comprising: a capturing agent for
specifically capturing an antibody to a polypeptide selected from the
group consisting of squid myosin light chain 1 (MLC1), squid MLC2, and a
variant thereof in a sample from a subject.
2. The diagnostically useful carrier according to claim 1, wherein the carrier is selected from the group consisting of a bead, a test strip, a microtiter plate, a microarray, a blot, a glass surface, a slide, a biochip, and a membrane.
3. The diagnostically useful carrier according to claim 1, wherein the carrier further comprises a capturing agent for an antibody to a squid tropomyosin (TM).
4. A kit, comprising: the diagnostically useful carrier according to claim 1.
5. A method, comprising: detecting in a sample from a subject the presence or absence of an antibody to squid MLC1 or squid MLC2.
6. The method according to claim 5, further comprising: detecting in the sample the presence or absence of an antibody to squid TM.
7. A pharmaceutical composition, comprising: squid MLC1, squid MLC2, or a variant thereof.
8. A polypeptide, comprising: squid MLC1, squid MLC2, or a variant thereof, wherein the polypeptide is isolated or immobilized.
9. The polypeptide according to claim 8, wherein the polypeptide is in complex with an antibody binding specifically to said polypeptide.
10. The diagnostically useful carrier according to claim 1, wherein the polypeptide is expressed in a eukaryotic cell.
11. A method for the diagnosis of an allergy, comprising: diagnosing the allergy by detecting an antibody to the polypeptide according to claim 8.
12. A method for the manufacture of a diagnostic kit, comprising: producing the diagnostic kit with a polypeptide comprising squid MLC1, squid MLC2, or a variant thereof, wherein the polypeptide is isolated or immobilized, or the carrier according to claim 1, or a polypeptide binding specifically to an IgE antibody from the sample of a patient to squid MLC1 or squid MLC2.
13. The method according to claim 11, wherein the allergy is a shellfish allergy.
14. The method according to claim 12, wherein the diagnosis is a differential diagnosis of a shellfish allergy.
15. A method, comprising: contacting a medical or diagnostic device comprising a polypeptide with a solution comprising an antibody, wherein the polypeptide is selected from the group consisting of squid MLC1, squid MLC2, and a variant thereof.
16. An antibody binding specifically to a polypeptide comprising squid MLC1, squid MLC2, or a variant thereof.
17. The diagnostically useful carrier according to claim 2, wherein the blot is selected from the group consisting of a western blot, a line blot, and a dot blot.
18. The diagnostically useful carrier according to claim 2, wherein the carrier is a microtiter plate or a line blot.
19. The kit according to claim 4, wherein the kit further comprises a calibrator, a washing buffer, and/or a detecting agent for an IgE antibody.
20. The pharmaceutical composition according to claim 7, further comprising: an adjuvant.
Description:
CROSS-REFERENCE TO RELATED APPLICATION
[0001] The present application claims the benefit to European application EP 19181250.2, filed on Jun. 19, 2019, the content of which is hereby incorporated by reference in its entirety.
REFERENCE TO A SEQUENCE LISTING
[0002] The present application is accompanied by an ASCII text file as a computer readable form containing the sequence listing, titled "06-03-2020-SL.txt," created on Jun. 3, 2020, with the file size of 111,940 bytes, the content of which is hereby incorporated by reference in its entirety.
BACKGROUND OF THE INVENTION
Field of the Invention
[0003] The present invention relates to a diagnostically useful carrier comprising a means for specifically capturing an antibody to a polypeptide from the group comprising squid MLC1 or squid MLC2 or a variant thereof in a sample from a subject, a method comprising the step detecting in a sample from a subject the presence or absence of an antibody to squid MLC1 or squid MLC2 and a use of the polypeptide or the carrier according to the present invention or a polypeptide binding specifically to an IgE antibody from the sample of a patient to squid MLC1 or squid MLC2 for the manufacture of a diagnostic kit, preferably for the diagnosis of allergy.
Discussion of the Background
[0004] Allergic reactions to seafood range from mild to systemic reactions, including severe anaphylactic reactions. Apart from allergic reactions upon consumption of recognizable seafood products, allergens can be unrecognizable components in a variety of foodstuffs where their nature and hence the danger of allergic reactions is hidden.
[0005] In spite of the high prevalence of seafood allergy, few options are available for treatment, and avoidance is often the only possible option. Of course, this requires precise information regarding the nature of the antigen(s) to which the patient reacts.
[0006] A range of tests are commercially available, in particular regarding the most prevalent seafood components, in particular crustaceans including shrimp, prawn, crab, lobster and crawfish. For example, the muscle protein tropomyosin was identified as a major cross-reactive allergen in various shrimp species.
[0007] Such diagnostic tests for seafood allergy involve the detection of IgE antibodies from patients with a specificity with regard to proteins from an allergen source. However, a positive IgE test, i.e. IgE sensitization, does not always correlate with clinical manifestations. In other words, if IgE to one allergen are detected, this observation is not sufficient to provide a conclusive diagnosis.
[0008] Rather, it is a first indication suggesting that the allergen source tested is more likely to be relevant than others. In clinical practice, a medical doctor's diagnosis of an allergy is usually based on both a positive IgE sensitization for the relevant allergen source and a convincing clinical history of allergic reactions to this allergen. In addition, the results of complementary tests such as a skin prick test (SPT), performed by topical application of the specific extract on the skin of the patient, may be considered for the final diagnosis.
[0009] However, a considerable number of patients cannot be conclusively diagnosed, because they react to hitherto unknown allergens.
[0010] Following successful identification of an allergy to a specific allergen, a treatment may follow. While anti-histamines may be used to ameliorate treatment, a long term and curative treatment can be performed with specific immunotherapy based on the controlled administration of the allergen. Although the exact mechanisms are not fully known, such a specific activation of the immune system alleviates the symptoms upon subsequent environmental exposure to the same allergen. Successful treatment has been demonstrated for various plant and animal allergens.
[0011] Yadzir et al. subjected an extract from white squid to proteomic analysis including 2D SDS PAGE followed by mass spectrometry and bioinformatic analysis (Yadzir, Z. H. M., Misnan, R. and Murad, S. (2012) Identification of tropomyosin as major allergen of white squid (Loligo edulis) by two-dimensional immunoblotting and mass spectrometry, Southeast Asian J Trop Med Public Health, 43(1), 185). While more than 50 different proteins were identified, the only consistently reactive protein spot was assigned to tropomyosin.
[0012] Tong, S. W. et al. disclose myosin light chain as an allergen from various species, but not from squid (Tong, S. W., Yuen, A. W. T., Wai, C. Y. Y., Leung, N. Y. H., Chu, K. H., Leung, P. S. C. (2018) Diagnosis of fish and shellfish allergies, J. Asthma and Allergy, 11, 247-260).
[0013] US2015/0153358 discloses various shrimp allergens, among them shrimp myosin light chain. Squid myosin light chain is not disclosed.
[0014] Miyazawa et al. disclosed the purification of squid allergens (Miyazawa, M. T., Fukamachi, F., Inakagi, Q., Reese, G., Daul, C. B., Lehrer, S. C. Inouye, S and Sakaguchi, M. (1996) J Allergy Clin. Immunol. 98, 948-953). Squid tropomyosin was identified, and allergenic proteins having a molecular weight between 70 and 90 kDa were also found, but no reactive band around 18 kDa, the molecular weight of squid myosin light chain, was found in an immunoblot, nor was squid myosin light chain disclosed, let alone as an antigen.
[0015] Therefore, there is a continuing demand to provide reagents and methods to diagnose, treat and prevent allergic reactions to seafood.
[0016] A problem underlying the present invention is to provide a new test and related reagents for the diagnosis or aiding in the diagnosis of seafood allergy, preferably mollusk allergy, more preferably squid allergy.
[0017] Another problem underlying the present invention is to provide a new test and related reagents for the differential diagnosis or aiding in the differential diagnosis of seafood allergy, whereby a squid allergy can be distinguished from other seafood allergies, in particular a shrimp allergy.
SUMMARY OF THE INVENTION
[0018] The present application includes the following embodiments:
[0019] 1. A diagnostically useful carrier comprising a means for specifically capturing an antibody to a polypeptide from the group comprising squid MLC1 or squid MLC2 or a variant thereof in a sample from a subject.
[0020] 2. The carrier according to embodiment 1, wherein the carrier is selected from the group comprising a bead, a test strip, a microtiter plate, a microarray, a blot, preferably from the group comprising western blot, line blot and dot blot, a glass surface, a slide, a biochip and a membrane, and is most preferably a microtiter plate or a line blot.
[0021] 3. The carrier according to any of embodiments 1 or 2, wherein the carrier further comprises a means for capturing an antibody to a squid TM.
[0022] 4. A kit comprising the diagnostically useful carrier according to any of embodiments 1 to 3, wherein the kit preferably comprises in addition one or more, preferably all from the group comprising a calibrator, preferably a set of calibrators, a washing buffer and a means for detecting an IgE antibody, preferably a labeled secondary antibody.
[0023] 5. A method comprising the step detecting in a sample from a subject the presence or absence of an antibody to squid MLC1 or squid MLC2.
[0024] 6. The method according to embodiment 5, further comprising detecting in the sample the presence or absence of an antibody to squid TM.
[0025] 7. A pharmaceutical composition comprising squid MLC1 or squid MLC2 or a variant thereof, preferably further comprising an adjuvant.
[0026] 8. A polypeptide comprising squid MLC1 or squid MLC2 or a variant thereof, wherein the polypeptide is isolated or immobilized.
[0027] 9. The polypeptide according to embodiment 8, wherein the polypeptide is in complex with an antibody binding specifically to said polypeptide, preferably an IgE class antibody.
[0028] 10. The carrier, kit, method, composition or polypeptide according to any of embodiments 1 to 9, wherein the polypeptide is a polypeptide expressed in a eukaryotic cell.
[0029] 11. A use of the polypeptide according to embodiment 8 to 10, the carrier according to any of embodiments 1 to 3 or the kit according to embodiment 4 for the diagnosis of an allergy.
[0030] 12. A use of the polypeptide according to embodiment 8 to 11 or the carrier according to any of embodiments 1 to 3 or a polypeptide binding specifically to an IgE antibody from the sample of a patient to squid MLC1 or squid MLC2 for the manufacture of a diagnostic kit, preferably for the diagnosis of allergy.
[0031] 13. The use according to embodiment 11, wherein the allergy is a shellfish allergy, preferably a squid allergy.
[0032] 14. The use according to any of embodiments 12 or 13, wherein the diagnosis is a differential diagnosis of a shellfish allergy, wherein it is preferably distinguished between a shrimp and a squid allergy.
[0033] 15. A method comprising the step contacting a medical or diagnostic device comprising a polypeptide with a solution comprising an antibody, preferably at a known concentration against the polypeptide, preferably an IgE antibody against the polypeptide, wherein the polypeptide is selected from the group comprising squid MLC1 and squid MLC2 or a variant thereof.
[0034] 16. An antibody, preferably IgE class antibody, binding specifically to a polypeptide comprising squid MLC1 or squid MLC2 or a variant thereof, which antibody is preferably isolated.
BRIEF DESCRIPTION OF DRAWINGS
[0035] FIG. 1 depicts the layout of the EUROLINE test with various shrimp and squid proteins based on an example strip.
[0036] FIG. 2 shows an example of an incubated peptide chip as described in this example. The chip comprises eight panels, the green regular panels represent control peptides. IgE reactions are shown in green, IgG4 reactions are shown in red.
[0037] FIG. 3 shows the detection of antibody reactivity in sera based on four allergic and two tolerant patients against peptides based on SEQ ID NO: 10 as discussed in example 2. The Y axis shows C scores and the X axis shows the separate peptides. The black line shows the cut-off, green columns represent IGE reactivity, red columns represent IgG4 reactivity.
[0038] FIG. 4 shows a heat map of IgE and IgG4 serum reactivity against overlapping peptides based on SEQ ID NO: 10.
DETAILED DESCRIPTION OF THE INVENTION
[0039] In a first aspect, the problem is solved by a diagnostically useful carrier comprising a means for specifically capturing an antibody to a polypeptide from the group comprising squid MLC1 or squid MLC2 or a variant thereof in a sample from a subject.
[0040] In a preferred embodiment, the carrier is selected from the group comprising a bead, a test strip, a microtiter plate, a microarray, a blot, preferably from the group comprising western blot, line blot and dot blot, a glass surface, a polymer such as a cellulose derivate, a slide, a biochip and a membrane, and is most preferably a microtiter plate or a line blot.
[0041] In a preferred embodiment, the carrier further comprises a means for capturing an antibody to a squid TM.
[0042] In a 2.sup.nd aspect, the problem is solved by a kit comprising the diagnostically useful carrier according to preferred embodiments, wherein the kit preferably comprises in addition one or more, preferably all from the group comprising a calibrator, preferably a set of calibrators, a washing buffer and a means for detecting an IgE or IgG, preferably IgG4 antibody, preferably a labeled secondary antibody.
[0043] In a 3.sup.rd aspect, the problem is solved by a method comprising the step detecting in a sample from a subject the presence or absence of an antibody to squid MLC1 or squid MLC2.
[0044] In a preferred embodiment, the method further comprises detecting in the sample the presence or absence of an antibody to squid TM.
[0045] In a 4.sup.th aspect, the problem is solved by a pharmaceutical composition comprising squid MLC1 or squid MLC2 or a variant thereof, preferably further comprising an adjuvant.
[0046] In a 5.sup.th aspect, the problem is solved by a polypeptide comprising squid MLC1 or squid MLC2 or a variant thereof, wherein the polypeptide is isolated or immobilized.
[0047] In a preferred embodiment, the polypeptide is in complex with an antibody binding specifically to said polypeptide, preferably an IgE or IgG, preferably IgG4 class antibody.
[0048] In a preferred embodiment, the polypeptide is expressed in a eukaryotic cell.
[0049] In a 6.sup.th aspect, the problem is solved by a use of the polypeptide, the carrier or the kit according to the present invention for the diagnosis of an allergy.
[0050] In a 7.sup.th aspect, the problem is solved by a use of the polypeptide or the carrier according to the present invention or a polypeptide binding specifically to an IgE or IgG, preferably IgG4 antibody from the sample of a patient to squid MLC1 or squid MLC2 for the manufacture of a diagnostic kit, preferably for the diagnosis of allergy.
[0051] In a preferred embodiment, the allergy is a shellfish allergy, preferably a squid allergy.
[0052] In a preferred embodiment, the diagnosis is a differential diagnosis of a shellfish allergy, wherein it is preferably distinguished between a shrimp and a squid allergy.
[0053] In another preferred embodiment, the diagnosis is a differential diagnosis of an allergy, wherein it is preferably distinguishing between an insect and a shellfish allergy, wherein the insect may more preferably be selected from the group comprising house cricket and flour worm.
[0054] In an 8.sup.th aspect, the problem is solved by a method comprising the step contacting a medical or diagnostic device comprising a polypeptide with a solution comprising an antibody, preferably at a known concentration against the polypeptide, preferably an IgE or IgG, preferably IgG4 antibody against the polypeptide, wherein the polypeptide is selected from the group comprising squid MLC1 and squid MLC2 or a variant thereof.
[0055] In a 9 aspect, the problem is solved by an antibody, preferably IgE or IgG, preferably IgG4 class antibody, binding specifically to squid MLC1 or squid MLC2, which antibody is preferably isolated. In a preferred embodiment, the antibody is a monoclonal antibody.
[0056] The present invention is based on the surprising finding by the inventors that squid myosin light chain 1 (MLC1) and myosin light chain 2 (MLC2) polypeptides are allergens and that an antibody against squid MLC1 and squid MLC2 can be detected in a sample from a patient suffering from a squid allergy. Furthermore, the combination of the detection of such an antibody and an antibody to one or more antigens from the group comprising squid tropomyosin, shrimp MLC and shrimp tropomyosin (TM) increases the diagnostic usefulness. Moreover, an allergy against squid can be distinguished from another seafood allergy, in particular a shrimp allergy.
[0057] In a preferred embodiment, the term "squid MLC1", as used herein, refers to SEQ ID NO: 8 or a variant thereof or to Uniprot accession number P05945, preferably SEQ ID NO: 8 or a variant thereof. In a preferred embodiment, the term "squid MLC2", as used herein, refers to SEQ ID NO: 10 or a variant thereof. In a preferred embodiment, the term "squid TM", as used herein, refers to SEQ ID NO: 6 or a variant thereof. In a preferred embodiment, the term "shrimp MLC", as used herein, refers to SEQ ID NO: 7 or a variant thereof. In a preferred embodiment, the term "shrimp TM", as used herein, refers to SEQ ID NO: 4 or Accession number Q3Y8M6, preferably SEQ ID NO: 4, or a variant thereof. Any data base codes referred to throughout this application refers to the polypeptide sequence available via the respective data base such as Uniprot as online at the filing date of this application or its earliest priority date.
[0058] The invention relates to a diagnostically useful carrier, which is preferably a solid carrier for contacting a means for specifically capturing an antibody, associated with said carrier, with a bodily fluid sample from a subject, preferably a mammalian subject, more preferably a human subject.
[0059] According to the present invention, the carrier comprises one or more means for specifically capturing an antibody, preferably one or more, more preferably two or more, more preferably three or more such means, each of them capable of specifically capturing a different antibody. In a most preferred embodiment, the carrier comprises a means for specifically detecting an antibody to one or more antigens from the group comprising squid MLC1, squid MLC2 and squid TM. Said means is preferably immobilized on said carrier. In a preferred embodiment, the means for specifically capturing an antibody is a polypeptide comprising or consisting of an antigen to which the antibody to be captured or detected binds or a variant thereof such as from the group comprising squid MLC1, squid MLC2 and squid TM or a variant thereof. The polypeptide may be a linear peptide or a folded polypeptide, the latter preferably a variant adopting essentially the same fold as the native protein as may be determined by CD spectroscopy. In a preferred embodiment, the peptide or polypeptide comprises an epitope to the antibody to be captured or detected of at least 7, preferably 10, more preferably 15 amino acids. Said antigen, together with the insoluble carrier to which it is attached, may be separated from a reaction mixture, wherein it is contacted with a sample, in a straightforward manner, for example by filtration, centrifugation or decanting.
[0060] Any immobilizing according to the present invention may be in a reversible or irreversible manner. For example, the immobilization is reversible if a polypeptide to be immobilized interacts with the carrier via ionic interactions which may be masked by addition of a high concentration of salt or if the polypeptide is bound via a cleavable covalent bond. By contrast, the immobilization is irreversible if such polypeptide is tethered to the carrier via a covalent bond that cannot be cleaved in aqueous solution. The polypeptide may be indirectly immobilized, for example by immobilizing an antibody or other entity having affinity to the polypeptide, followed by addition of the polypeptide and formation of a polypeptide-antibody complex. The antibody captured may be detected using a labeled secondary antibody or a labeled means for specifically capturing the antibody to be detected. Methods for immobilizing are described in Wong, S. S., Chemistry of Protein Conjugation and Cross-Linking, 1991, CRC Press, and in Rosenberg, I. M., Protein Analysis and Purification, Second Edition, Springer, 2005.
[0061] In a preferred embodiment, the diagnostically useful carrier is a blot, preferably a line blot (Raoult, D., and Dasch, G. A. (1989), The line blot: an immunoassay for monoclonal and other antibodies. Its application to the serotyping of gram-negative bacteria. J. Immunol. Methods, 125 (1-2), 57-65; WO2013041540). In a preferred embodiment, the term "line blot", as used herein refers to a test strip, more preferably membrane-based, that has been coated with one or more means for specifically capturing an antibody, preferably each of them is a polypeptide. If two or more means are used, they are preferably spatially separated on the carrier. Preferably, the width of the bands is at least 30, more preferably 40, 50, 60, 70 or 80% the width of the test strip. The line blot may comprise one or more control bands for confirming that it has been contacted with sample sufficiently long and under adequate conditions, in particular in the presence of human serum, or with a secondary antibody, respectively. Various blots are described in the art, for example in van Oss, J. C., and Regenmortel, M. H. V., Immunochemistry, 1994, Marcell Dekker, in particular Chapter 35.
[0062] In a preferred embodiment, the carrier may be a lateral flow immunoassay device. A lateral flow device may comprise a membrane comprising a sample pad, on which sample liquid is placed, a particle conjugate on a downstream location comprising the antigen to which the antibody to be detected binds and a detectable label such as colloidal gold, a test line with a means to immobilize the particle conjugate bound to the antibody to be detected, and a control line. Lateral flow immunoassays are described in Wong, R., Tse, H. Lateral Flow Immunoassay, Springer, 2009.
[0063] In a preferred embodiment, the carrier is a cellulose derivative on which a polypeptide comprising MLC1 and/or MLC2 or a variant thereof has been immobilized. Such derivates are described in the art, for example in Adeleke, O. A. Premium ethylcellulose polymer based architectures at work in drug delivery, Int. J. Pharm. X, doi 10.1016/j.ijpx. 2019.100023.
[0064] In a preferred embodiment, a secondary antibody according to the present invention may be an antibody binding to all antibodies from an Ig (immunoglobulin) class. Preferably the secondary antibody binds to one or more distinct human antibody class or classes, preferably to IgE and/or IgG and/or IgM antibodies, preferably IgG and/or IgE, preferably IgE. Secondary antibodies typically recognize the constant domain of said class. A wide range of them is commercially available. In a preferred embodiment, a secondary antibody binding to IgM, IgG and IgE class antibodies may be a mixture comprising a secondary antibody binding to IgM class antibodies, a secondary antibody binding to IgG class antibodies and a secondary antibody binding to IgE class antibodies. In a preferred embodiment, a secondary antibody binding to IgE and IgG class antibodies may be a mixture comprising a secondary antibody binding to IgE class antibodies and a secondary antibody binding to IgG class antibodies. The secondary antibody is preferably labeled. Suitable secondary antibodies are commercially available, for example from EUROIMMUN Medizinische Labordiagnostika AG ("Conjugate", in Product EI 2606-9601-2 or 2260-9601) or from Rockland Immunochemicals Inc. (Dylight 609-145-006).
[0065] In a preferred embodiment, the diagnostically useful carrier, more preferably a line blot, comprises a CCD control that allows the identification of false positive results due to binding of IgE or similar antibodies to glycoprotein epitopes such as alpha-1,3-fucose on N-glycans (Altmann, F. (2016) Coping with cross-reactive carbohydrate determinants in allergy diagnosis, Allergo J Int 25(4), 98-105). This may be an additional line in a line blot comprising glycoprotein epitopes that, if negative, shows that there is no false negative reactivity in other bands. A multitude of line blots are commercially available, for example from EUROIMMUN Medizinische Labordiagnostika AG, Lubeck, Germany. In a preferred embodiment, the method according to the present invention comprises the step detecting the presence or absence of an antibody that binds to cross-reactive carbohydrate epitopes and so leads to false positive results. Other test strips include dip sticks. Various test strips and blot based carriers are described in the art, for example in Khare, R., Guide to Clinical and Diagnostic Virology, Wiley 2019, in particular Chapter 14 and Fischbach, F. T., Barnett, M., A Manual of Laboratory and Diagnostics Tests, 8.sup.th Edition, 2009, in particular Chapter 3.
[0066] In another preferred embodiment, the diagnostically useful carrier is a bead. Various beads for numerous applications are commercially available, mainly based on carbohydrate, for example sepharose or agarose, or plastic. They contain active or activatable chemical groups such as a carboxyl or ester group, which can be utilized for the immobilization of a means for specifically capturing an antibody. Preferably, the beads are beads having an average diameter of from 0.1 .mu.m to 10 .mu.m, from 0.5 .mu.m to 8 .mu.m, from 0.75 .mu.m to 7 .mu.m or from 1 .mu.m to 6 .mu.m. The beads can be coated with the means for specifically capturing an antibody directly or via affinity ligands, for example biotin or glutathione and streptavidin and GST, respectively. For example, the bead may be coated with biotin or glutathione and the antigen may be fused with streptavidin or glutathione-S-transferase or a variant thereof, respectively. Preferably, the bead is provided in the form of an aqueous suspension having a bead content of from 10 to 90%, preferably from 20 to 80%, preferably from 30 to 70%, more preferably from 40 to 60% (w/w). In a preferred embodiment, the bead is coated with a first detectable marker, for example a fluorescent dye.
[0067] If more than one type of bead on which a distinct allergen is coated is used, each type may have a different type of detectable marker to make the types of beads distinguishable, for example for identifying the type of bead and allergen in flow cytometry. If the presence of an antibody against the allergen is detected using a fluorescent label, the first detectable label, if also a fluorescent label, is chosen such that both can be distinguished, for example using separate lasers such as a green and a red laser.
[0068] In a particularly preferred embodiment, the beads are paramagnetic beads, which can be easily concentrated on a surface with the aid of a magnet. For this purpose, commercial paramagnetic beads usually contain a paramagnetic mineral, for example iron oxide. A multiplicity of suitable paramagnetic beads is commercially available. A bead may be labeled with a detectable label. Techniques for coating antigens or antibodies on beads and using them for diagnostic assays are known in the art and described in textbooks, for example and described in the state of the art for example, Kontermann, R. E., Dubel, S., Antibody Engineering, Second Edition, Springer 2010 and Wild, D. The Immunoassay Handbook, 3.sup.rd edition, 2005, Elsevier.
[0069] In another preferred embodiment, the carrier is a microtiter plate, preferably comprising at least 8 wells, that may be used for ELISA. At least one of the wells is coated with the means for specifically capturing an antibody, either directly or indirectly. At least 3, preferably 4, more preferably 5 calibrators are provided that comprise an antibody to an antigen, preferably one or more antigens from the group comprising squid MLC1, squid MLC2 and squid TM or a variant thereof, at defined concentrations and may be used to set up a calibration curve for semiquantitative analysis. When the inventive method is carried out, the calibrators may be processed and developed in parallel to the samples. A secondary antibody comprising a detectable label such as an enzymatically active, chemiluminescent or fluorescent label may be provided, for example a label having horse radish peroxidase activity or alkaline phosphatase activity or an enzyme capable of chemiluminescence. Protocols for performing ELISA analyses and the manufacture of reagents including coated microtiter plates are well known and described in the art, for example in Crowther, J. R., The ELISA Guidebook, 2001, Humana Press, in particular Chapter 3.
[0070] In another preferred embodiment, the carrier is a microarray. In a preferred embodiment, the term "microarray", as used herein, refers to a chip spotted with a variety of spatially separate allergens, preferably at least 20, preferably 30, 40, 50, 80 or 100. They may include additional mollusk allergens, for example those disclosed in Tong, S. W., Yuen, A. W. T., Wai, C. Y. Y., Leung, N. Y. H., Chu, K. H., Leung, P. S. C. (2018) Diagnosis of fish and shellfish allergies, J. Asthma and Allergy, 11, 247-260; US2015/0153358 and Miyazawa, M. T., Fukamachi, F., Inakagi, Q., Reese, G., Daul, C. B., Lehrer, S. C. Inouye, S and Sakaguchi, M. (1996) J. Allergy Clin. Immunol. 98, 948-953. Microarrays are known in the art and described in Schena, M., Protein Microarrays, 2005, Jones and Bartlett.
[0071] The sample from a subject used to practice the present invention comprises antibodies, also referred to as immunoglobulins. Typically the sample is a bodily fluid comprising a representative set of the entirety of the subject's immunoglobulins. However, the sample, once provided, may be subjected to further processing which may include fractionation, centrifugation, enriching or isolating the entirety of immunoglobulins or any immunoglobulin class of the subject, preferably IgE or IgG, preferably IgG4, which may affect the relative distribution of immunoglobulins of the various classes. The sample may be selected from the group comprising whole-blood, serum, plasma, cerebrospinal fluid and saliva and is preferably serum. In a most preferred embodiment, the sample comprises IgE class antibodies. In a more preferred embodiment, the sample comprises a representative set of the subject's antibodies from classes IgA, IgG and IgE, preferably IgG and IgE, more preferably IgG1, IgG4 and IgE, wherein, most preferably, the ratio of antibodies to different antigens is essentially unaltered compared to the ratio in the sample as obtained from the subject, particular in IgE class antibodies. The sample may be from an animal or human capable of producing antibodies upon exposure to an antigen and is preferably a mammalian, more preferably primate, most preferably human subject. The subject may be a laboratory animal, preferably from the group comprising a mouse, rat, rabbit, hamster, chicken, goat, primate or horse and is more preferably a rodent. The methods and reagents may be used to test whether a laboratory animal has been successfully immunized, for example for the purpose of developing vaccine or drug candidates or for antiserum production.
[0072] The teachings of the present invention may not only be carried out using polypeptides having the exact sequences referred to in this application explicitly, for example by function, name, sequence or accession number, or implicitly, but also using variants of such polypeptides.
[0073] In a preferred embodiment, the term "variant", as used herein, may refer to at least one fragment of the full length sequence referred to, more specifically one or more amino acid or nucleic acid sequence which is relative to the full-length sequence, truncated at one or both termini by one or more amino acids. Such a fragment comprises or encodes for a peptide having at least 6, 7, 8, 9, 10, 15, 25, 50, 75, 100, 110, 120 or 130 successive amino acids of the original sequence or a variant thereof. The total length of the variant may beat 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200 or 250 or more amino acids.
[0074] In another preferred embodiment, the term "variant" relates not only to at least one fragment, but also a polypeptide or a fragment thereof comprising amino acid sequences, preferably a fragment comprising at least 25, more preferably 50, more preferably 100 successive amino acids, that are at least 40, 50, 60, 70, 75, 80, 85, 90, 92, 94, 95, 96, 97, 98 or 99% identical to the reference amino acid sequence referred to or the fragment thereof, wherein amino acids other than those essential for the biological activity, for example the ability to bind specifically to an antibody of interest, or the fold or structure of the polypeptide are deleted or substituted and/or one or more such essential amino acids are replaced in a conservative manner and/or amino acids are added or deleted such that the biological activity of the polypeptide is at least partially preserved. The state of the art comprises various methods that may be used to align two given nucleic acid or amino acid sequences and to calculate the degree of identity, see for example Arthur Lesk (2008), Introduction to bioinformatics, Oxford University Press, 2008, 3.sup.rd edition. In a preferred embodiment, the ClustalW software (Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., Higgins, D. G. (2007): Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948) is used applying default settings.
[0075] In a preferred embodiment, variants may, in addition, comprise chemical modifications, for example labels such as isotopic labels or detectable labels or covalent modifications such as glycosylation, phosphorylation, acetylation, decarboxylation, citrullination, hydroxylation and the like. The person skilled in the art is familiar with methods for the modification of polypeptides. Moreover, variants may also be generated by way of fusion with other known polypeptides or variants thereof, for example artificial linkers, preferably not derived from a Plasmodium polypeptide, affinity tags, other antigens and the like.
[0076] According to the present invention, a medical or diagnostic device such as the diagnostically useful carrier may be prepared by expressing a recombinant variant comprising an affinity tag, optionally with an artificial linker which may include a protease cleavage site, in a cell such as a eukaryotic or prokaryotic cell, contacting the expressed variant with a ligand binding specifically to the affinity tag, which ligand is immobilized on a solid phase, washing the solid phase such that non-specifically bound material from the cell is removed and eluting the expressed variant from the solid phase, preferably by adding an excess of non-immobilized ligand. The variant may then be immobilized on the device. Optionally, the affinity tag may be removed by contacting the variant with a protease, preferably a protease recognizing the protease cleavage site, before the immobilization. The affinity tag may be selected from the group of tags comprising 18A, ACP, Aldehyd, Avi, BCCP, Calmodulin, Chitin binding protein, E-Tag, ELK16, FLAG, flash, poly glutamate, poly aspartate, GST, GFP, HA, Isope, maltose binding protein, myc, nus, NE, ProtA, ProtC, Thold4, S-Tag, SnoopTag, SpyTag, SofTag, Streptavidin, Strep-tag II, T7 Epitope Tag, TAP, TC, Thioredoxin, Ty, V5, VSV and Xpress Tag. Useful proteases include, but are not limited to TEV, Thrombin, Faktor Xa or Enteropeptidase.
[0077] In a preferred embodiment, a eukaryotic cell is an insect or mammalian cell, more preferably a mammalian cell, most preferably a human cell. An immortalized artificial cell line may be used for the production of any protein, for example CHO or HEK293.
[0078] The variant of the polypeptide has biological activity. In a preferred embodiment such biological activity is the ability to bind to the respective antibody. In a preferred embodiment it comprises an epitope having the ability to bind to the respective antibody, preferably from a sample from a patient suffering from seafood allergy, more preferably squid allergy, wherein more preferably the epitope comprises a sequence comprising at least 5, 6, 7 or 8 amino acid residues from an antigen, preferably selected from the group comprising squid MLC1, squid MLC2 and squid TM. More specifically, a variant of squid MLC1, squid MLC2 and squid TM has the ability to bind specifically to or specifically capture an antibody binding to bind to an antibody from a sample from a patient suffering from a seafood allergy, more preferably a squid allergy.
[0079] In a preferred embodiment, the diagnostically useful carrier comprises one or more further means for specifically capturing an antibody to a polypeptide, more preferably a polypeptide from the group comprising crustacean MLC, crustacean sarcoplasmic calcium-binding protein, crustacean TM, crustacean troponin C, crustacean arginine kinase, triosephosphate isomerase, a house dust mite allergen, preferably from the group comprising Der f 1, Der f 2, Der f 3, Der f 4, Der f 6, Der f 7, Der f 8, Der f 10, Der f 11, Der f 13, Der f 14, Der f 15, Der f 16, Der f 17, Der f 18, Der f 20, Der f 21, Der f 22, Der f 23, Der f 24, Der f 25, Der f 26, Der f 27, Der f 28, Der f 29, Der f 30, Der f 31, Der f 32, Der f 33, Der f 34, Der f 35, Der f 36, Der f 37, Der f 38, Der f 39, Der m 1, Der p 1, Der p 2, Der p 3, Der p 4, Der p 6, Der p 7, Der p 8, Der p 10, Der p 11, Der p 13, Der p 14, Der p 15, Der p 18, Der p 20, Der p 21, Der p 23, Der p 24, Der p 25, Der p 36, Der p 37, Der p 38, Der p 39, Eur m 1, Eur m 2, Eur m 3, Eur m 4, Eur m 14, a cockroach allergen, preferably from the group comprising Bla g 1, Bla g 2, Bla g 3, Bla g 4, Bla g 5, Bla g 6, Bla g 7, Bla g 8, Bla g 9, Bla g 11, Per a 1, Per a 2, Per a 3, Per a 5, Per a 6, Per a 7, Per a 9, Per a 10, Per a 11, Per a 12, Per a 13, wherein the crustacean proteins are preferably shrimp proteins, most preferably selected from the group comprising Pen m 1 (tropomyosin), Pen m 2 (arginine kinase), Pen m 3 (myosin light chain), Pen m 4 (sarcoplasmic calcium binding protein), Cra c 6 (troponin c) and Cra c 8 (triosephosphate isomerase).
[0080] Comprehensive information including epitopes on shrimp allergens may be found in Pascal, M., Grishina, G., Yang, A. C., Sanchez-Garcia, S., Lin, J., Towle, D., Ibanez, M. D., Sastre, J., Sampson, H. A. and Ayuso, R. (2015) Molecular Diagnosis of Shrimp Allergy: Efficiency of Several Allergens to Predict Clinical Reactivity, J. Allergy Clin. Immunol. Pract., 521-529e10, which is incorporated by reference in here.
[0081] The epitopes of MLC allergens have been studies by Zhang et al. (Zhang, Y. X., Chen, H. L., Maleki, S. J., Cao, M. J., Zhang, L. J., Su, W. J., and Liu, G. M. (2015) Purification, Characterization and Analysis of the Allergenic Properties of Myosin Light Chain in Procambarus clarkii (2015) J. Agr. Food Chem., 63, 6271-6282). If a variant of the sequence X is required, the person skilled in the art is capable of designing variants having biological activity by starting from sequence X, introducing modifications such as point mutations, truncations and the like and subsequently confirming that the variant still has biological activity by testing whether said variant binds to an antibody from such a sample.
[0082] The person skilled in the art may consider that epitopes from squid MLC1 antigen may include GGTKKMGE (SEQ ID NO: 18), SSKDTGTA (SEQ ID NO: 19), and DREGQ (SEQ ID NO: 20) and variants thereof.
[0083] The sequence GGTKKMGEKAYKLEEILPIYEEMSSKDTGTAADEFMEAFKTFDREGQ (SEQ ID NO: 21) and variants thereof are also highly antigenic.
[0084] The person skilled in the art may consider that epitopes from squid MLC2 antigen include ALRNAFSMFD (SEQ ID NO: 30), more preferably NAFSMF (SEQ ID NO: 31), FIPEDYLKDL (SEQ ID NO: 42), more preferably IPEDYLKDL (SEQ ID NO: 43) and FSKEEIKNVWKD (SEQ ID NO: 51).
[0085] The epitopes of shrimp MLC allergens have been described in Pascal et al., 2015. The person skilled in the art may consider that epitopes from squid TM include DESERGRKVLENRSQGDEER (SEQ ID NO: 26), IDLLEKQLEEAKWIAEDADR (SEQ ID NO: 27), KFDEAARKLAITEVDLERAEARLE (SEQ ID NO: 28), KEVDRLEDELLAEKERYKTISDELDQTFAELAGY (SEQ ID NO: 29) and variants thereof.
[0086] Therefore, variants according to the present invention include polypeptides and peptides comprising such epitopes. In a preferred embodiment, a variant of MLC2 represented by SEQ ID NO: 10 comprises a peptide or polypeptide comprising one or more, preferably all from the group comprising SEQ ID NO: 30, SEQ ID NO: 42 and SEQ ID NO: 51, and preferably comprising one or both selected from the group comprising SEQ ID NO: 43 and SEQ ID NO: 31. In a more preferred embodiment, the variant comprises an amino acid sequence comprising a stretch of at least 5, 6, 7, 8, 9, 10, 12 or 15 amino acids from SEQ ID NO: 10, wherein the stretch comprises one or more, preferably all from the group comprising SEQ ID NO: 30, SEQ ID NO: 42 and SEQ ID NO: 51, and preferably comprises one or both selected from the group comprising SEQ ID NO: 43 and SEQ ID NO: 31. The results described in Example 2 will be helpful to guide the skilled person in the art when designing variants of MLC2.
[0087] In a preferred embodiment, a line blot assay comprising the variant as a means for specifically capturing an antibody, preferably as described in the examples, may be used to test whether the variant has such activity. The variant may also comprise N-terminal and/or C-terminal peptide or polypeptide fusions as long as these do not have specific binding activity to antigenic sequence parts and/or do not bind to other sequence part, thus masking the antigenic sequence such that its binding characteristics are significantly altered and/or it is no longer capable of binding to the antibody.
[0088] The polypeptide may be provided in any form and at any degree of purification, from tissues, fluids or cells comprising said polypeptide in an endogenous form, more preferably cells overexpressing the polypeptide, crude or enriched lysates of such cells, to purified and/or isolated polypeptide which may be essentially pure. In a preferred embodiment, the polypeptide is a native polypeptide, wherein the term "native polypeptide", as used herein, refers to a folded polypeptide, more preferably to a folded polypeptide purified from cells, more preferably from prokaryotic or eukaryotic, preferably mammalian cells. A glycosylated form of the polypeptide may be used.
[0089] According to the present invention, the polypeptide may be a recombinant protein, wherein the term "recombinant", as used herein, refers to a polypeptide produced using genetic engineering approaches at any stage of the production process, for example by fusing a nucleic acid encoding the polypeptide to a strong promoter for overexpression in cells or tissues or by engineering the sequence of the polypeptide itself. The person skilled in the art is familiar with methods for engineering nucleic acids and polypeptides encoded (for example, described in Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989), Molecular Cloning, CSH or in Brown T. A. (1986), Gene Cloning--an introduction, Chapman & Hall) and for producing and purifying native or recombinant polypeptides (for example Handbooks "Strategies for Protein Purification", "Antibody Purification", published by GE Healthcare Life Sciences, and in Burgess, R. R., Deutscher, M. P. (2009): Guide to Protein Purification). In another preferred embodiment, the polypeptide is an isolated polypeptide, wherein the term "isolated" means that the polypeptide has been enriched compared to its state upon production using a biotechnological or synthetic approach and is preferably pure, i.e. at least 60, 70, 80, 90, 95 or 99 percent of the polypeptide in the respective liquid consists of said polypeptide as judged by SDS polyacrylamide gel electrophoresis followed by Coomassie blue staining and visual inspection. Preferably any polypeptide on a carrier used as a means to capture an antibody is pure.
[0090] The inventive teachings provide a kit, preferably for diagnosing a seafood allergy. Such a kit is a container that comprises specific reagents required to practice the inventive method, in particular the diagnostically useful carrier according to the present invention, optionally in addition to one or more solutions or reagents required to practice the inventive method, preferably selected from or all from the group comprising sample dilution buffer, washing buffer and buffer comprising a means or reagent for detecting any specifically captured antibody, such as a secondary antibody which may comprise a detectable label and optionally a means for detecting the latter. Furthermore, it may comprise instructions detailing how to use the kit. It may comprise the diagnostically useful carrier for contacting the inventive polypeptide with a bodily fluid sample from a subject, preferably a human subject, for example a line blot. Furthermore, the kit may comprise a positive control, for example a recombinant or polyclonal antibody known to bind to one or more from the group comprising squid MLC1, squid MLC2 and squid TM and a variant thereof, and a negative control, for example a protein having no detectable affinity to squid MLC1 or MLC2 or TM such as bovine serum albumin. The positive control may be a diluted sample from a patient comprising an antibody to squid MLC1, MLC2 and/or TM, preferably IgE or IgG such as IgG4. Finally, such a kit may comprise one or more standard solutions, also referred to as calibrators, comprising one or more antibodies from the group comprising an antibody binding to squid MLC1, an antibody binding to squid MLC2 and an antibody binding to squid TM and an antibody binding to the polypeptide comprising an antigen from the group comprising squid MLC1, squid MLC2 and squid TM or a variant thereof which is contained in the kit, for example immobilized on the diagnostically useful carrier for preparing a calibration curve, wherein the absolute or relative concentration of the antibody in each standard solution is preferably known. The concentration in the standard solutions may differ such that a concentration range is covered for a calibration curve. For example, the relative concentration of the antibody in two standard solutions may be 1:2, 1:5, 1:10, 1:20, 1:50 or 1:100 or more. In a more preferred embodiment, the antibody has a constant region or variant thereof or binding affinity to secondary antibodies like the antibody to be detected and/or any secondary antibody used for the detection binds to said antibody and the antibody to be detected. The antibody may be a monoclonal antibody, preferably a hybrid comprising a human IgE or IgG, preferably IgG4, more preferably IgE constant region or a variant thereof binding to secondary antibodies binding to human IgE or IgG, preferably IgG4, more preferably IgE class antibodies. The kit may comprise the polypeptide according to the present invention or a purified polypeptide comprising an antigen from the group comprising squid MLC1, squid MLC2 and squid TM or a variant thereof, which polypeptide may optionally comprise a detectable label. The kit may also comprise a washing solution. The kit may comprise a suitable water-tight vessel for contacting the diagnostically useful carrier with the sample in the presence of other liquids such as a reaction buffer. For example, a line blot may be provided in or in combination with an incubation tray, or a microtiter plate may be provided. Suitable vessels are described in the state of the art, for example EP3025780 or EP3025779. The kit may contain reagents for implementing a method according to the present invention, for example the method according to the 8.sup.th aspect. Calibrators and their use are described in The Immunoassay Handbook, 3.sup.rd edition, by David Wild, Elsevier 2005, in particular Chapter 9. According to the present invention, a means or reagent or polypeptide for detecting a captured antibody may be provided or used to detect a captured antibody to one or more from the group comprising squid MLC1, squid MLC2 and squid TM. This means or reagent or polypeptide may be a secondary antibody or fragment or variant thereof binding to the constant region of an antibody of the class of interest. For example, if a captured human IgE or IgG such as IgG4 class antibody is to be detected, an antibody binding specifically to the constant region of human IgE or IgG such as IgG4 class antibodies, respectively, may be used. Antibodies, preferably monoclonal antibodies binding specifically to the constant region of such classes and may be used to capture all antibodies of that class in a solution, regardless of their binding specificity as determined by their variable region, are commercially available, for example from sources described in Berlina, A. N., Taranova, N. A., Zherdev, A. V., Sankov, M. N., Andreev, I. V., Martynov, A. I and Dzantiev, B. B. (2013) Quantum-Dot-Based Immunochromatographic Assay for Total IgE in Human Serum. PLoS ONE 8(10): e77485. doi:10.1371/journal.pone.0077485. The means or reagent may be directly or indirectly labeled.
[0091] In a preferred embodiment, any binding or detecting or capturing of a means or reagent or antibody, preferably binding of an antibody to be detected to an antigen such as MLC1 or MLC2, preferably MLC2, implies that it binds specifically, which preferably means that the binding reaction, for example between the means and the captured antibody, is stronger than a binding reaction characterized by a dissociation constant of 1.times.10.sup.-5 M, more preferably 1.times.10.sup.-7 M, more preferably 1.times.10.sup.-8 M, more preferably 1.times.10.sup.-9 M, more preferably 1.times.10.sup.-10 M, more preferably 1.times.10.sup.-11 M, more preferably 1.times.10.sup.-12 M, as determined by surface plasmon resonance using Biacore equipment at 25.degree. C. in PBS buffer at pH 7.
[0092] The methods or products according to the present invention may be used for diagnosing an allergy, preferably a seafood allergy, more preferably a squid allergy. In a preferred embodiment, the term "diagnosis", as used herein, refers to any kind of procedure aiming to obtain information instrumental in the assessment whether a patient suffers or is likely or more likely than the average or a comparative subject, the latter preferably having similar symptoms, to suffer from the allergy in the past, at the time of the diagnosis or in the future, to find out how the allergy is progressing or is likely to progress in the future or to evaluate the responsiveness of a patient with regard to a treatment or to measure the efficacy of a compound in the treatment of a subject suffering from an allergy. In other words, the term "diagnosis" comprises not only diagnosing, but also prognosticating and/or monitoring the course of a disease or disorder. The subject is likely or more likely to suffer from the allergy if an antibody to at least one antigen selected from the group comprising squid MLC1, squid MLC2 and squid TM shown by the detection of an antibody to the polypeptide according to the invention is detected in a sample from the subject.
[0093] Therefore, the term "diagnosis" does preferably not imply that the diagnostic methods or products according to the present invention will be definitive and sufficient to finalize the diagnosis on the basis of a single test, let alone parameter, but may refer to a contribution to what is referred to as a "differential diagnosis", i.e. a systematic diagnostic procedure considering the likelihood of a range of possible conditions on the basis of a range of diagnostic parameters. In a preferred embodiment, the term "diagnosis" means that the method or product or use may be used for aiding in the diagnosis of an allergy or identifying a subject a risk of suffering from an allergy. The term "diagnosis" may also refer to a method or agent used to choose the most promising treatment regime for a patient. The allergy may be a seafood allergy, wherein the term "sea food", as used herein, preferably refers to crustaceans and mollusks, preferably mollusks, preferably squid. According to the present invention, an allergy to a crustacean, preferably shrimp, may be distinguished from an allergy to a mollusk, preferably squid.
[0094] The present invention relates to a method comprising the step detecting in a liquid, for example a sample from a subject, the presence or absence of an antibody selected from the group comprising an antibody to squid MLC1, an antibody to squid MLC2 and an antibody to squid TM. Such a method may comprise the steps a) providing a liquid, b) contacting the liquid with an polypeptide from the group comprising squid MLC1, squid MLC2 and squid TM under conditions compatible with the formation of a complex comprising the diagnostically useful carrier and the antibody, more specifically the polypeptide and the antibody, c) optionally isolating any said complex, for example by removing the liquid, d) optionally washing said complex, and e) detecting said complex, optionally after contacting with the respective antigen/s) selected from the group comprising squid MLC1, squid MLC2 and squid TM, which may be labeled in the case of a competitive assay format. The method is preferably an in vitro method.
[0095] The detection of the antibody or complex for the prognosis, diagnosis, methods or kit according to the present invention comprises the use of a method selected from the group comprising immunodiffusion techniques, immunoelectrophoretic techniques, light scattering immunoassays, agglutination techniques, labeled immunoassays such as those from the group comprising radiolabeled immunoassays, enzyme immunoassays such as colorimetric assays, chemiluminescence immunoassays and immunofluorescence techniques. The person skilled in the art is familiar with these methods, which are also described in the state of the art, for example in Zane, H. D. (2001): Immunology--Theoretical & Practical Concepts in Laboratory Medicine, W. B. Saunders Company, in particular in Chapter 14. In a preferred embodiment, the term "presence" of an antibody, as used herein, means that the antibody is detectable using such a method, preferably a method selected from the group comprising enzyme immunoassays, more preferably colorimetric assays or chemiluminescence immunoassays, most preferably colorimetric assays based on line blot and detection using alkaline phosphatase activity as described in the examples.
[0096] In many cases detecting, preferably meaning detecting the absence or presence of an antibody, optionally meaning determining whether the concentration of the antibody is beyond a certain threshold preferably as set by measurement using ELISA, in the liquid, is sufficient for the diagnosis. If one or more antibody, preferably from the group comprising an antibody to squid MLC1, an antibody to squid MLC2 and an antibody to squid TM, can be detected, this will be information instrumental for the clinician's diagnosis and indicates an increased likelihood that the patient suffers from the allergy. In a preferred embodiment, the relative concentration of the antibody in the serum, compared to the level that may be found in the average healthy subject, may be determined. Also, if the relative concentration of one or more antibodies to a squid antigen, preferably squid MLC1, MLC2 and/or TM, is higher than the relative concentration of one or more antibodies to a shrimp allergen, preferably shrimp MLC1, MLC2 and/or TM, this may indicate that a patient is more likely to suffer from a squid allergy than from a shrimp allergy. In a preferred embodiment, the term "detecting the presence", as used herein, means that it is sufficient to check whether a signal sufficiently beyond any background level may be detected using a suitable complex detection method that indicates that the antibody of interest is present or more antibody of interest is present than would be in a healthy subject.
[0097] In a preferred embodiment, the absence or presence of two or more antibodies selected from the group comprising an antibody to squid MLC1, an antibody to squid MLC2 and an antibody to squid TM is detected simultaneously, i.e. at the same time.
[0098] In a preferred embodiment, the absence or presence of two or more antibodies selected from the group comprising an antibody to squid MLC1, an antibody to squid MLC2 and an antibody to squid TM is detected in spatially separate reactions, more preferably in different reaction mixtures in separate vessels.
[0099] In a preferred embodiment, two or more antibodies selected from the group comprising an antibody to squid MLC1, an antibody to squid MLC2 and an antibody to squid TM are detected. In a more preferred embodiment, this means that it is not only detected whether at least one of these antibodies is present, but also which one of these antibodies is present. In other words, it can be distinguished which of these antibodies is present in the samples.
[0100] In a preferred embodiment, the present invention provides a use of a reagent or means or polypeptide for the detection of one or more antibodies selected from the group comprising an antibody to squid MLC1, an antibody to squid MLC2 and an antibody to squid TM or a reagent binding to such antibody or antibodies, or of a nucleic acid encoding squid MLC1 or squid MLC2 or squid TM or a variant thereof or a nucleic acid hybridizing specifically to said nucleic acid under stringent conditions or a vector or cell comprising said nucleic acid for the manufacture of kit for the diagnosis of an allergy. In a preferred embodiment, a cell comprising said vector is provided and cultured under conditions allowing the expression of the nucleic acid, followed by isolating the expression product which may be squid MLC1 or squid MLC2 or squid TM or a variant thereof, followed by use of the expression product as a means for specifically capturing an antibody in a method or product according to the present invention.
[0101] In another preferred embodiment, the method may be for confirming the reliability of an antibody detection assay and may involve detecting an antibody to a squid allergen from the group comprising an antibody to squid MLC1, an antibody to squid MLC2 and an antibody to squid TM in a solution, which is not a sample from a patient, but is known to comprise an antibody to a squid allergen, preferably at a known concentration. Alternatively, the solution may be a negative control not comprising the antibody to check the background. Such method may be run in parallel with, after or before a diagnostic method.
[0102] In a preferred embodiment, the present invention provides an apparatus for analyzing a sample from a patient to detect one or more antibodies indicating an increased likelihood of an allergy, wherein the antibody is preferably selected from the group comprising an antibody to squid MLC1, squid MLC2 and squid TM, more preferably all antibodies from said group, comprising:
[0103] a. a carrier, which contains a means for capturing at least one antibody from the sample when the sample is contacted with the carrier,
[0104] b. a detectable means capable of binding to the antibody captured by the carrier when the detectable means is contacted with the carrier, particularly the detectable means is a labeled secondary antibody capable of binding to the antibody captured on the carrier,
[0105] c. optionally a means for removing any sample from the carrier and the detectable means, preferably by washing;
[0106] d. a detecting device for detecting the presence of the detectable means and converting the results into an electrical signal, and
[0107] e. optionally a means for receiving the electronical signal from the detecting device and determining if the level of the signal is indicative of an increased likelihood of a squid allergy, in particular a higher likelihood of a squid than a shrimp allergy, by comparing with the level of signal detected in the background or an input reference value obtained with samples from healthy subjects.
[0108] The invention provides a pharmaceutical composition, preferably a vaccine, comprising one or more antigens selected from the group comprising squid MLC1, squid MLC2 and squid TM or a variant thereof, optionally in combination with one or more further seafood antigens, which composition is preferably suitable for administration to a subject, preferably a mammalian subject, more preferably to a human. Such a pharmaceutical composition may comprise a pharmaceutically acceptable carrier. The pharmaceutical composition may, for example, be administered orally, parenterally, by inhalation spray, topically, by eyedrops, rectally, nasally, buccally, vaginally or via an implanted reservoir, wherein the term "parenterally", as used herein, comprises subcutaneous, intracutaneous, intravenous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques. The pharmaceutical composition may be provided in suitable dosage forms, for example capsules, tablets and aqueous suspensions and solutions, preferably in sterile form. It may be used in a method of treatment of a disease, preferably an allergy, which method comprises administering an effective amount of the inventive polypeptide to a subject. A hypoallergenic variant of the antigens may be used. The person skilled in the art is familiar with methods for the generation of hypoallergenic variants of known allergens. The pharmaceutical composition may be a sterilized liquid solution, for example based on PBS, which may be for injection. The generation of such pharmaceutical compositions and variants is described in the art, for example in Curin et al. (2018) Next-Generation of Allergen-Specific Immunotherapies: Molecular Approaches, Curr. Allergy and Asthma Rep. 18, 39 (2018). Se doi.org/10.1007/si1882-018-0790-x or in Vaccines against Allergies by Valenta and Coffman, Springer 2011.
[0109] According to the present invention, an antibody binding specifically to a polypeptide comprising squid MLC1 or squid MLC2 or a variant thereof, which antibody is preferably isolated, may be provided. Such an antibody may not only be used as a positive control or a calibrator, but may be used in various assay formats such as a competitive assay for antibody testing or a sandwich assay, wherein a complex comprising the antibody to be detected, the polypeptide comprising squid MLC1 or squid MLC2 or a variant thereof and the antibody binding specifically to a polypeptide comprising squid MLC1 or squid MLC2 is detected. More preferably the antibody provided is an antibody to a sequence from the group comprising ALRNAFSMFD (SEQ ID NO: 30), more preferably NAFSMF (SEQ ID NO: 31), FIPEDYLKDL (SEQ ID NO: 42), more preferably IPEDYLKDL (SEQ ID NO: 43) and FSKEEIKNVWKD (SEQ ID NO: 51). More preferably the antibody is an antibody to an epitope from MLC2 comprising a sequence selected from the group comprising ALRNAFSMFD (SEQ ID NO: 30), more preferably NAFSMF (SEQ ID NO: 31), FIPEDYLKDL (SEQ ID NO: 42), more preferably IPEDYLKDL (SEQ ID NO: 43) and FSKEEIKNVWKD (SEQ ID NO: 51). Alternatively, the antibody may be an antibody which binds to a binding site on MLC2 other than an epitope comprising a sequence from the group or a sequence from the group comprising ALRNAFSMFD (SEQ ID NO: 30), more preferably NAFSMF (SEQ ID NO: 31), FIPEDYLKDL (SEQ ID NO: 42), more preferably IPEDYLKDL (SEQ ID NO: 43) and FSKEEIKNVWKD (SEQ ID NO: 51), for example to immobilize a polypeptide comprising MLC2 or a variant thereof for a competitive assay. The antibody may be a monoclonal antibody. The antibody may be a polyclonal antibody. The antibody may be a monoclonal antibody. The antibody may be an antibody from an animal selected from the group comprising a mouse, rat, rabbit, hamster, chicken, goat, primate or horse. These and other assays are described in The Immunoassay Handbook, 3.sup.rd edition, by David Wild, Elsevier 2005, in particular Chapters 1 and 2.
[0110] According to the present invention, a polypeptide from the group comprising squid MLC1 or squid MLC2 or a variant thereof may be used to make a polyclonal antibody squid MLC1 or squid MLC2 or a variant thereof. According to the invention, the polypeptide may be injected into an animal capable of making antibodies, preferably mammals and birds, followed by recovery of antiserum by conventional protocols. The reagents and methods according to the present invention may be used to determine the effectiveness of the production of antibodies, preferably IgE or IgG, preferably IgG4 class antibodies, or of a vaccination or the efficacy of drugs or vaccines or candidate drugs or vaccines administered to a patient. For example, if the level of antibody produced is decreased following administration of a candidate drug, that indicates that the drug is effective. The production of monoclonal and polyclonal antibodies is described in These and other assays are described in The Immunoassay Handbook, 3.sup.rd edition, by David Wild, Elsevier 2005, in particular Chapter 8.
[0111] In a preferred embodiment, a product according to the present invention, for example a carrier, device, polypeptide, antibody, calibrator or the like, may be used in combination or in a composition comprising a stabilizer such as bovine serum albumin or a preservative such as azide.
[0112] FIG. 1 depicts the layout of the EUROLINE test with various shrimp and squid proteins based on an example strip.
[0113] FIG. 2 shows an example of an incubated peptide chip as described in this example. The chip comprises eight panels, the green regular panels represent control peptides. IgE reactions are shown in green, IgG4 reactions are shown in red.
[0114] FIG. 3 shows the detection of antibody reactivity in sera based on four allergic and two tolerant patients against peptides based on SEQ ID NO: 10 as discussed in example 2. The Y axis shows C scores and the X axis shows the separate peptides. The black line shows the cut-off, green columns represent IGE reactivity, red columns represent IgG4 reactivity.
[0115] FIG. 4 shows a heat map of IgE and IgG4 serum reactivity against overlapping peptides based on SEQ ID NO: 10.
[0116] Sequences:
[0117] The present invention comprises a range of novel nucleic acid and polypeptide sequences, more specifically
TABLE-US-00001 SEQ ID NO: 1: nucleotide sequence encoding Tod p MLC1 with an N-terminal His tag, as used in the Examples ATGAGCCATCATCATCATCATCATCATCATTTGGAAGTGCTGTTTCAGGGTCCATCCATGTCTCAACTGACCAA- AGACGAA ATTGAGGAAGTCCGTGAAGTGTTTGACCTCTTCGACTTTTGGGATGGTCGTGATGGTGATGTTGACGCTGCGAA- AGTTGGC GATCTGTTACGCTGTTTAGGGATGAATCCAACCGAAGCTCAGGTACACCAACATGGAGGCACGAAGAAAATGGG- CGAGAAA GCGTATAAACTGGAAGAGATTCTGCCGATTTATGAGGAAATGAGCTCCAAAGATACTGGCACAGCAGCGGACGA- ATTCATG GAAGCCTTCAAAACGTTTGATCGTGAAGGTCAGGGTTTGATCAGTTCAGCCGAAATTCGGAATGTGCTGAAAAT- GCTTGGC GAACGCATTACCGAGGATCAGTGCAACGATATCTTCACCTTTTGCGACATTCGCGAAGATATCGATGGGAACAT- CAAATAC GAGGATCTGATGAAGAAGGTGATGGCAGGACCTTTTCCGGACAAATCGGATTAA SEQ ID NO: 2: nucleotide sequence encoding Tod p MLC2 with an N-terminal His tag, as used in the Examples ATGAGCCATCATCATCATCATCATCATCATTTGGAAGTGCTGTTTCAGGGTCCATCCATGGCGGAAGAAGCTCC- TCGTCGC GTGAAACTGTCACAACGCCAGATGCAGGAGCTGAAAGAAGCGTTTACCATGATTGATCAGGACCGTGATGGGTT- CATTGGC ATGGAAGATCTGAAAGACATGTTCAGCTCTTTAGGACGGGTACCACCCGATGACGAACTGAATGCCATGCTGAA- AGAATGC CCGGGTCAACTCAATTTCACGGCTTTTCTGACCTTGTTTGGGGAGAAAGTGAGTGGTACTGACCCGGAAGATGC- ACTTCGC AATGCCTTTTCGATGTTCGACGAAGATGGTCAGGGCTTTATCCCGGAAGATTATCTGAAAGACTTGCTGGAAAA- TATGGGC GATAACTTTTCCAAAGAGGAGATTAAGAACGTCTGGAAAGATGCACCGTTAAAGAACAAACAGTTCAACTACAA- CAAGATG GTTGACATCAAAGGCAAAGCGGAGGATGAAGATTAA SEQ ID NO: 3: polypeptide sequence encoding Pen a 1.0101 (Penaeus aztecus Tropomyosin) with an N-terminal His tag, as used in the Examples MSHHHHHHHHLEVLFQGPSMDAIKKKMQAMKLEKDNAMDRADTLEQQNKEANNRAEKSEEEVHNLQKRMQQLEN- DLDQVQE SLLKANIQLVEKDKALSNAEGEVAALNRRIQLLEEDLERSEERLNTATTKLAEASQAADESERMRKVLENRSLS- DEERMDA LENQLKEARFLAEEADRKYDEVARKLAMVEADLERAEERAETGESKIVELEEELRVVGNNLKSLEVSEEKANQR- EEAYKEQ IKTLTNKLKAAEARAEFAERSVQKLQKEVDRLEDELVNEKEKYKSITDELDQTFSELSGY SEQ ID NO: 4: polypeptide sequence encoding Pen a 1.0101 (Penaeus aztecus Tropomyosin); Accession number Q3Y8M6 MDAIKKKMQAMKLEKDNAMDRADTLEQQNKEANNRAEKSEEEVHNLQKRMQQLENDLDQVQESLLKANIQLVEK- DKALSNA EGEVAALNRRIQLLEEDLERSEERLNTATTKLAEASQAADESERMRKVLENRSLSDEERMDALENQLKEARFLA- EEADRKY DEVARKLAMVEADLERAEERAETGESKIVELEEELRVVGNNLKSLEVSEEKANQREEAYKEQIKTLTNKLKAAE- ARAEFAE RSVQKLQKEVDRLEDELVNEKEKYKSITDELDQTFSELSGY SEQ ID NO: 5: polypeptide sequence encoding Sep 1 1.0101 (Sepioteuthis lessoniana Tropomyosin) with an N-terminal His tag, as used in the Examples MSHHHHHHHHLEVLFQGPSMDAIKKKMLAMKMEKEVATDKAEQTEQSLRDLEDAKNKIEEDLSTLQKKYANLEN- DFDNANE QLTAANTNLEASEKRVAECESEIQGLNRRIQLLEEDLERSEERFSSAQSKLEDASKAADESERGRKVLENRSQG- DEERIDL LEKQLEEAKWIAEDADRKFDEAARKLAITEVDLERAEARLEAAEAKIVELEEELKVVGNNMKSLEISEQEASQR- EDSYEET IRDLTHRLKEAENRAAEAERTVSKLQKEVDRLEDELLAEKERYKTISDELDQTFAELAGY SEQ ID NO: 6: polypeptide sequence encoding Sep 1 1.0101 (Sepioteuthis lessoniana Tropomyosin) MDAIKKKMLAMKMEKEVATDKAEQTEQSLRDLEDAKNKIEEDLSTLQKKYANLENDFDNANEQLTAANTNLEAS- EKRVAEC ESEIQGLNRRIQLLEEDLERSEERFSSAQSKLEDASKAADESERGRKVLENRSQGDEERIDLLEKQLEEAKWIA- EDADRKF DEAARKLAITEVDLERAEARLEAAEAKIVELEEELKVVGNNMKSLEISEQEASQREDSYEETIRDLTHRLKEAE- NRAAEAE RTVSKLQKEVDRLEDELLAEKERYKTISDELDQTFAELAGY SEQ ID NO: 7: polypeptide sequence encoding Lit v 3.0101 (Litopenaeus vannamei Myosin Light Chain 2) [His-tagged version is SEQ ID NO: 17] MSRKSGSRSSSKRSKKSGGGSNVFDMFTQRQVAEFKEGFQLMDRDKDGVIGKTDLRGTFDEIGRIATDQELDEM- LADAPAP INFTMLLNMFAERQTGESDDDDVVAKAFLAFADEEGNIDCDTFRHALMTWGDKFSSQEADDALDQMDIDDGGKI- DVQGVIQ MLTAGGGDDAAAEEA SEQ ID NO: 8: polypeptide sequence encoding Tod p MLC1 (Myosin Light Chain 1) Todarodes pacificus; derived from accession number P05945 SQLTKDEIEEVREVFDLFDFWDGRDGDVDAAKVGDLLRCLGMNPTEAQVHQHGGTKKMGEKAYKLEEILPIYEE- MSSKDTG TAADEFMEAFKTFDREGQGLISSAEIRNVLKMLGERITEDQCNDIFTFCDIREDIDGNIKYEDLMKKVMAGPFP- DKSD SEQ ID NO: 9: polypeptide sequence encoding Tod p MLC1 (Todarodes pacificus Myosin Light Chain 1) with an N-terminal His tag, as used in the examples MSHHHHHHHHLEVLFQGPSMSQLTKDEIEEVREVFDLFDFWDGRDGDVDAAKVGDLLRCLGMNPTEAQVHQHGG- TKKMGEK AYKLEEILPIYEEMSSKDTGTAADEFMEAFKTFDREGQGLISSAEIRNVLKMLGERITEDQCNDIFTFCDIRED- IDGNIKY EDLMKKVMAGPFPDKSD SEQ ID NO: 10: polypeptide sequence encoding Tod p MLC2 (Todarodes pacificus Myosin Light Chain 2) AEEAPRRVKLSQRQMQELKEAFTMIDQDRDGFIGMEDLKDMFSSLGRVPPDDELNAMLKECPGQLNFTAFLTLF- GEKVSGT DPEDALRNAFSMFDEDGQGFIPEDYLKDLLENMGDNFSKEEIKNVWKDAPLKNKQFNYNKMVDIKGKAEDED SEQ ID NO: 11: polypeptide sequence encoding Tod p MLC2 (Todarodes pacificus Myosin Light Chain 2) with an N-terminal His tag, as used in the examples MSHHHHHHHHLEVLFQGPSMAEEAPRRVKLSQRQMQELKEAFTMIDQDRDGFIGMEDLKDMFSSLGRVPPDDEL- NAMLKEC PGQLNFTAFLTLFGEKVSGTDPEDALRNAFSMFDEDGQGFIPEDYLKDLLENMGDNFSKEEIKNVWKDAPLKNK- QFNYNKM VDIKGKAEDED SEQ ID NO: 12: nucleic acid sequence of vector pET24d-Lit v3.0101-(PSc)-His comprising a sequence encoding for Lit v 3.0101 (Myosin Light Chain 2) GGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGT- CTCGCAA AAGTGGCTCACGTTCCAGCTCCAAACGCAGCAAGAAATCGGGTGGTGGCTCGAATGTCTTTGACATGTTCACGC- AACGCCA AGTTGCGGAGTTCAAAGAAGGGTTTCAGCTGATGGATCGCGACAAAGATGGGGTGATTGGCAAAACCGATCTGC- GTGGTAC CTTTGACGAGATTGGCCGCATTGCGACCGATCAGGAACTGGATGAGATGCTTGCAGATGCCCCAGCACCGATCA- ATTTCAC GATGCTCCTGAACATGTTTGCGGAACGTCAGACTGGCGAATCTGACGACGATGACGTGGTTGCCAAAGCGTTCT- TAGCCTT TGCCGATGAAGAGGGAAACATCGATTGCGATACCTTTCGGCATGCTCTGATGACTTGGGGCGACAAGTTCAGCA- GTCAAGA AGCGGATGATGCCTTGGATCAGATGGACATTGATGACGGCGGGAAAATCGACGTACAGGGTGTGATTCAGATGC- TGACAGC TGGTGGAGGTGATGATGCAGCAGCGGAAGAAGCTCTCGAGGTCCTGTTCCAAGGACCCCACCACCATCACCATC- ACTGATC GAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCAC- CGCTGAG CAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATC- CGGATTG GCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACA- CTTGCCA GCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCT- CTAAATC GGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGT- TCACGTA GTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTG- TTCCAAA CTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGG- TTAAAAA ATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTCAGGTGGCACTTTT- CGGGGAA ATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAATTAATTCTTA- GAAAAAC TCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTT- CTGTAAT GAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCC- AACATCA ATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATC- CGGTGAG AATGGCAAAAGTTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACT- CGCATCA ACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACA- AACAGGA ATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAA- TACCTGG AATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGT- CGGAAGA GGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATG- TTTCAGA AACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGC- CCATTTA TACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCT- CATAACA CCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGACCAAAATCCCTTAACGTGAGTTTTCGT- TCCACTG AGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGC- AAACAAA AAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCT- TCAGCAG AGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGC- CTACATA CCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAA- GACGATA GTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCT-
ACACCGA ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGG- TAAGCGG CAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGT- TTCGCCA CCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGG- CCTTTTT ACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACC- GTATTAC CGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGG- AAGAGCG CCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATATGGTGCACTCTCAGTACAAT- CTGCTCT GATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCG- CCAACAC CCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGC- TGCATGT GTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGC- GATTCAC AGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAG- CGGGCCA TGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATG- ATACCGA TGAAACGAGAGAGGATGCTCACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGT- AAACAAC TGGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTA- GGTGTTC CACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAGGGCGCTGACTTCCGCGTTTCC- AGACTTT ACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCAC- GTTCGCT CGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGC- ACGATCA TGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGGACCAGTG- ACGAAGG CTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGG- TCCTCGC CGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCG- ACGATAG TCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCC- TAATGAG TGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCAT- TAATGAA TCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGG- CAACAGC TGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAA- ATCCTGT TTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGC- ACCAACG CGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGG- AACGATG CCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGG- CTGAATT TGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAA- CAGCGCG ATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACT- GTTGATG GGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTG- GTCATCC AGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGAC- GCCGCTT CGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGA- CGGCGCG TGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTT- GGGAATG TAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCAC- GCGGGAA ACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAA- TTGACTC TCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTC- CCTTATG CGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCAT- GCAAGGA GATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGA- AGTGGCG AGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGG- CCACGAT GCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATA SEQ ID NO: 13: nucleic acid sequence of vector pET24d-N-(PSc)-Pen_a 1.0101 comprising a sequence encoding for Pen a 1.0101 GGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGA- GCCATCA TCATCATCATCATCATCATTTGGAAGTGCTGTTTCAGGGTCCATCCATGGATGCCATCAAGAAGAAGATGCAGG- CCATGAA ACTGGAGAAAGACAACGCCATGGATCGTGCGGATACACTGGAACAGCAGAACAAAGAAGCGAATAATCGTGCGG- AAAAGTC TGAAGAAGAAGTGCATAATCTGCAGAAACGCATGCAACAGTTGGAAAACGATCTGGATCAAGTGCAGGAAAGTC- TCCTGAA AGCGAACATTCAGCTGGTAGAGAAAGACAAAGCGCTTTCGAATGCAGAAGGCGAAGTTGCCGCCTTGAATCGTC- GCATTCA ACTGTTGGAAGAAGATCTGGAACGCTCAGAAGAGCGGTTAAATACCGCCACCACCAAATTAGCTGAAGCAAGCC- AAGCAGC CGACGAATCTGAACGTATGCGCAAAGTGCTGGAGAATCGCTCACTCTCGGATGAAGAACGCATGGACGCGTTAG- AGAACCA GCTGAAAGAGGCTCGTTTTCTCGCGGAGGAAGCTGACCGGAAATACGATGAAGTGGCGCGCAAACTGGCCATGG- TTGAGGC CGACCTTGAGCGCGCTGAAGAACGCGCAGAGACTGGTGAGAGCAAAATCGTAGAACTGGAAGAGGAGTTACGTG- TCGTTGG CAATAACCTGAAATCCCTGGAAGTTTCCGAGGAGAAAGCTAACCAGCGCGAAGAAGCGTATAAAGAACAGATCA- AGACTCT GACGAACAAACTGAAAGCGGCAGAGGCACGTGCGGAATTTGCAGAACGTAGCGTGCAAAAGCTGCAGAAAGAAG- TCGATCG CTTGGAAGATGAACTGGTCAACGAGAAAGAAAAGTACAAATCGATTACCGATGAACTCGACCAAACGTTCAGCG- AACTTAG TGGGTATTAATCGAGTAAGTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGA- AGCTGAG TTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTT- GCTGAAA GGAGGAACTATATCCGGATTGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTT- ACGCGCA GCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTC- GCCGGCT TTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAA- AAACTTG ATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACG- TTCTTTA ATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATT- TTGCCGA TTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTT- ACAATTT CAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTAT- CCGCTCA TGAATTAATTCTTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACC- ATATTTT TGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCG- GTCTGCG ATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATC- ACCATGA GTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATT- ACGCTCG TCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATC- GCTGTTA AAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACC- TGAATCA GGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGT- ACGGATA AAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATT- GGCAACG CTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGA- TTGCCCG ACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGAGCAAGA- CGTTTCC CGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGACCAAAA- TCCCTTA ACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTC- TGCGCGT AATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTC- TTTTTCC GAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACT- TCAAGAA CTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGT- GTCTTAC CGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGC- CCAGCTT GGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGA- GAAAGGC GGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGT- ATCTTTA TAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTAT- GGAAAAA CGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTAT- CCCCTGA TTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCG- AGTCAGT GAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATAT- ATGGTGC ACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTC-
ATGGCTG CGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAA- GCTGTGA CCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGC- TCATCAG CGTGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTT- AATGTCT GGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGA- TTTCTGT TCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGGGTTACTGATGATGAACATGCCCGG- TTACTGG AACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAG- CGCTTCG TTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAG- GGCGCTG ACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTT- TTGCAGC AGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGC- CGGGTCC TCAACGACAGGAGCACGATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAA- CGTTTGG TGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGATCATC- GTCGCGC TCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAG- AAGACAG TCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGC- ATCGGTC GAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGA- AACCTGT CGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTT- TCTTTTC ACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCT- GGTTTGC CCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTA- TCCCACT ACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTT- GGCAACC AGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTC- GCCTTCC CGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGAC- AGAACTT AATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTC- TTCATGG GAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGC- TTCCACA GCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCAC- CGCCGCT TTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTT- AATCGCC GCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGC- CAGTTGT TGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAAC- GTGGCTG GCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGG- TTTCACA TTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCGCCATTCGATGGT- GTCCGGG ATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCG- CCGCCGC AAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGA- AACAAGC GCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCAC- CTGTGGC GCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCAC- TATA SEQ ID NO: 14: nucleic acid sequence of vector pET24d-N-(PSc)-Sep 11.0101 comprising a sequence encoding for Sep 11.0101 GGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGA- GCCATCA TCATCATCATCATCATCATTTGGAAGTGCTGTTTCAGGGTCCATCCATGGATGCCATCAAGAAGAAAATGCTGG- CTATGAA AATGGAGAAAGAGGTTGCAACCGACAAAGCGGAGCAAACCGAACAGTCACTGCGTGATCTGGAAGATGCGAAGA- ACAAAAT CGAAGAAGATCTGAGCACATTGCAGAAGAAATATGCCAACCTCGAAAACGATTTCGACAATGCGAATGAACAGC- TGACTGC AGCGAACACGAACTTAGAAGCGTCCGAGAAACGTGTCGCAGAATGCGAATCGGAGATTCAAGGCCTTAATCGGC- GCATTCA GCTGCTTGAAGAGGACTTAGAGCGTAGTGAAGAACGCTTTTCTAGCGCTCAGAGCAAACTGGAAGATGCCTCGA- AAGCCGC TGATGAATCCGAACGTGGTCGCAAAGTGCTGGAGAATCGCAGTCAAGGGGACGAAGAACGCATTGATCTGCTCG- AGAAACA GTTGGAAGAAGCGAAATGGATTGCCGAAGATGCGGATCGCAAATTCGACGAAGCTGCGCGTAAACTGGCCATTA- CCGAAGT CGATCTCGAACGTGCGGAAGCACGTTTGGAAGCAGCTGAGGCGAAAATCGTGGAACTGGAGGAGGAACTGAAAG- TAGTTGG CAACAACATGAAATCGCTGGAAATCTCAGAGCAGGAAGCTTCTCAACGTGAGGACAGCTATGAGGAAACCATTC- GCGATCT TACTCATCGCCTGAAAGAGGCCGAAAATCGGGCAGCAGAAGCCGAACGCACAGTGTCCAAACTGCAGAAAGAGG- TTGATCG CTTAGAGGACGAACTGCTGGCCGAAAAGGAACGCTACAAGACCATCAGTGACGAATTGGATCAGACGTTTGCGG- AATTAGC GGGTTATTAATGATCGAGTAAGTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAA- GGAAGCT GAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTT- TTTGCTG AAAGGAGGAACTATATCCGGATTGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTG- GTTACGC GCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACG- TTCGCCG GCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCC- AAAAAAC TTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCC- ACGTTCT TTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGG- ATTTTGC CGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACG- TTTACAA TTTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATG- TATCCGC TCATGAATTAATTCTTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAAT- ACCATAT TTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTA- TCGGTCT GCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAA- ATCACCA TGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCC- ATTACGC TCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCG- ATCGCTG TTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTC- ACCTGAA TCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGG- AGTACGG ATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATC- ATTGGCA ACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACC- TGATTGC CCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGAGCA- AGACGTT TCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGACCA- AAATCCC TTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTT- TTCTGCG CGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAA- CTCTTTT TCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACC- ACTTCAA GAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGT- CGTGTCT TACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACAC- AGCCCAG CTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAG- GGAGAAA GGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCT- GGTATCT TTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCC- TATGGAA AAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGT- TATCCCC TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCA- GCGAGTC AGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCA- TATATGG TGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGG- GTCATGG CTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGA- CAAGCTG TGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAA- AGCTCAT CAGCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGC- GTTAATG TCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGG- GGATTTC TGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGGGTTACTGATGATGAACATGCC- CGGTTAC TGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGC- CAGCGCT TCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTG-
CAGGGCG CTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGAC- GTTTTGC AGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCT- AGCCGGG TCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCG- AAACGTT TGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGATC- ATCGTCG CGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACGAGTTGCATGATA- AAGAAGA CAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAG- GGCATCG GTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCG- GGAAACC TGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGT- TTTTCTT TTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCAC- GCTGGTT TGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTC- GTATCCC ACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATC- GTTGGCA ACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCA- GTCGCCT TCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGA- GACAGAA CTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACC- GTCTTCA TGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGC- AGCTTCC ACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTG- CACCGCC GCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGA- TTTAATC GCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCC- CGCCAGT TGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGA- AACGTGG CTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTAC- TGGTTTC ACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCGCCATTCGAT- GGTGTCC GGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCA- CCGCCGC CGCAAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGC- CGAAACA AGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCAACCG- CACCTGT GGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACT- CACTATA SEQ ID NO: 15: nucleic acid sequence of vector pET24d-N-(PSc)-Tod p MLC1 comprising a sequence encoding for Tod p MLC1 (Light Chain 1) GGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGA- GCCATCA TCATCATCATCATCATCATTTGGAAGTGCTGTTTCAGGGTCCATCCATGTCTCAACTGACCAAAGACGAAATTG- AGGAAGT CCGTGAAGTGTTTGACCTCTTCGACTTTTGGGATGGTCGTGATGGTGATGTTGACGCTGCGAAAGTTGGCGATC- TGTTACG CTGTTTAGGGATGAATCCAACCGAAGCTCAGGTACACCAACATGGAGGCACGAAGAAAATGGGCGAGAAAGCGT- ATAAACT GGAAGAGATTCTGCCGATTTATGAGGAAATGAGCTCCAAAGATACTGGCACAGCAGCGGACGAATTCATGGAAG- CCTTCAA AACGTTTGATCGTGAAGGTCAGGGTTTGATCAGTTCAGCCGAAATTCGGAATGTGCTGAAAATGCTTGGCGAAC- GCATTAC CGAGGATCAGTGCAACGATATCTTCACCTTTTGCGACATTCGCGAAGATATCGATGGGAACATCAAATACGAGG- ATCTGAT GAAGAAGGTGATGGCAGGACCTTTTCCGGACAAATCGGATTAATGATCGAGTAAGTCGAGCACCACCACCACCA- CCACTGA GATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACC- CCTTGGG GCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATTGGCGAATGGGACGCGCCC- TGTAGCG GCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCT- CCTTTCG CTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGG- TTCCGAT TTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGA- TAGACGG TTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAAC- CCTATCT CGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAA- AAATTTA ACGCGAATTTTAACAAAATATTAACGTTTACAATTTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCT- ATTTGTT TATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAATTAATTCTTAGAAAAACTCATCGAGCATCAAATG- AAACTGC AATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACC- GAGGCAG TTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTT- CCCCTCG TCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATG- CATTTCT TTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCAT- TCGTGAT TGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCG- CAGGAAC ACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGG- GATCGCA GTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAG- CCAGTTT AGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATC- GGGCTTC CCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGC- ATCCATG TTGGAATTTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTT- TATGTAA GCAGACAGTTTTATTGTTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAG- AAAAGAT CAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAG- CGGTGGT TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATA- CTGTCCT TCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCC- TGTTACC AGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGC- AGCGGTC GGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGC- GTGAGCT ATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAG- AGCGCAC GAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTC- GATTTTT GTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTT- GCTGGCC TTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTG- ATACCGC TCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTC- TCCTTAC GCATCTGTGCGGTATTTCACACCGCATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG- CCAGTAT ACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGA- CGGGCTT GTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCG- TCATCAC CGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCA- TCCGCGT CCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTT- TCCTGTT TGGTCACTGATGCCTCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATG- CTCACGA TACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGG- CGGGACC AGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAG- CATCCTG CGATGCAGATCCGGAACATAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCG- AAGACCA TTCATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGATTCA- TTCTGCT AACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGGGCC- GCCATGC CGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGC- AAGATTC CGAATACCGCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGC- GCTGCCG GCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCAC- CGGAAGG AGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTA- ATTGCGT TGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGG- AGAGGCG GTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGC- CTGGCCC TGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGG- CGGGATA TAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGT- AATGGCG CGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTG-
CATGGTT TGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATA- TTTATGC CAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAA- TGCGACC AGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGAC- ATCAAGA AATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGAT- CAGCCCA CTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACAC- CACCACG CTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGA- GGTGGCA ACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCAT- CGCCGCT TCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGAC- ACCGGCA TACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCA- TGCCATA CCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGA- AGCAGCC CAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTC- CCCCGGC CACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCAT- CGGTGAT GTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGA- TCGAGAT CTCGATCCCGCGAAATTAATACGACTCACTATA SEQ ID NO: 16: nucleic acid sequence of pEt24d-derived vector pET24d-N-(PSc)-Tod p MLC2 comprising a sequence encoding for Tod p MLC2 (Light Chain 2) GGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGA- GCCATCA TCATCATCATCATCATCATTTGGAAGTGCTGTTTCAGGGTCCATCCATGGCGGAAGAAGCTCCTCGTCGCGTGA- AACTGTC ACAACGCCAGATGCAGGAGCTGAAAGAAGCGTTTACCATGATTGATCAGGACCGTGATGGGTTCATTGGCATGG- AAGATCT GAAAGACATGTTCAGCTCTTTAGGACGGGTACCACCCGATGACGAACTGAATGCCATGCTGAAAGAATGCCCGG- GTCAACT CAATTTCACGGCTTTTCTGACCTTGTTTGGGGAGAAAGTGAGTGGTACTGACCCGGAAGATGCACTTCGCAATG- CCTTTTC GATGTTCGACGAAGATGGTCAGGGCTTTATCCCGGAAGATTATCTGAAAGACTTGCTGGAAAATATGGGCGATA- ACTTTTC CAAAGAGGAGATTAAGAACGTCTGGAAAGATGCACCGTTAAAGAACAAACAGTTCAACTACAACAAGATGGTTG- ACATCAA AGGCAAAGCGGAGGATGAAGATTAATGATCGAGTAAGTCGAGCACCACCACCACCACCACTGAGATCCGGCTGC- TAACAAA GCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACG- GGTCTTG AGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATTGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGC- GCGGCGG GTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCT- TCCTTTC TCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTA- CGGCACC TCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCT- TTGACGT TGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCT- TTTGATT TATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTT- AACAAAA TATTAACGTTTACAATTTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAA- ATACATT CAAATATGTATCCGCTCATGAATTAATTCTTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCAT- ATCAGGA TTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGAT- GGCAAGA TCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAG- GTTATCA AGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCAGACTTG- TTCAACA GGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGC- GAGACGA AATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGC- ATCAACA ATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAA- CCATGCA TCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCAT- CTCATCT GTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCG- ATAGATT GTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAA- TCGCGGC CTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTT- TATTGTT CATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTT- CTTGAGA TCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGG- ATCAAGA GCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGC- CGTAGTT AGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTG- CCAGTGG CGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGG- GGGGTTC GTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCG- CCACGCT TCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTC- CAGGGGG AAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGT- CAGGGGG GCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACA- TGTTCTT TCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCC- GAACGAC CGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCG- GTATTTC ACACCGCATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTA- TCGCTAC GTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCG- GCATCCG CTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCG- AGGCAGC TGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTG- AGTTTCT CCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGAT- GCCTCCG TGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGGGTTACT- GATGATG AACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAATC- ACTCAGG GTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATC- CGGAACA TAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATTCATGTTGTT- GCTCAGG TCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGG- CAACCCC GCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATG- GCCTGCT TCTCGCCGAAACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCA- AGCGACA GGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCT- ACGAGTT GCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGG- TTGAAGG CTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTG- CCCGCTT TCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATT- GGGCGCC AGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTG- CAGCAAG CGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCT- GTCTTCG GTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCC- CAGCGCC ATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACC- GGACATG GCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAG- ACGCAGA CGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCAC- GCCCAGT CGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGG- AACATTA GTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTG- CGCGAGA AGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAG- TTGATCG GCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAG- CAACGAC TGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTC- CCGCGTT TTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGAC- ATCGTAT AACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGT- TTTGCGC CATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGT- TGAGGCC GTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTG-
CCACCAT ACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATAT- AGGCGCC AGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGC- GAAATTA ATACGACTCACTATA SEQ ID NO: 17: polypeptide sequence encoding Lit v 3.0101 (Litopenaeus vannamei Myosin Light Chain 2), with a C-terminal His tag, as used in the Examples MSRKSGSRSSSKRSKKSGGGSNVFDMFTQRQVAEFKEGFQLMDRDKDGVIGKTDLRGTFDEIGRIATDQELDEM- LADAPAP INFTMLLNMFAERQTGESDDDDVVAKAFLAFADEEGNIDCDTFRHALMTWGDKFSSQEADDALDQMDIDDGGKI- DVQGVIQ MLTAGGGDDAAAEEALEVLFQGPHHHHHH SEQ ID NO: 18: epitope sequence of Tod MLC1 GGTKKMGE SEQ ID NO: 19: epitope sequence of Tod MLC1 SSKDTGTA SEQ ID NO: 20: epitope sequence of Tod MLC1 DREGQ SEQ ID NO: 21: epitope sequence of Tod MLC1 GGTKKMGEKAYKLEEILPIYEEMSSKDTGTAADEFMEAFKTFDREGQ SEQ ID NO: 22: epitope sequence of Tod MLC2 QGPSMA SEQ ID NO: 23: epitope sequence of Tod MLC2 KVSGTDPE SEQ ID NO: 24: epitope sequence of Tod MLC2 DREGQ SEQ ID NO: 25: epitope sequence of Tod MLC2 QELKEAFTMIDQDRDGFIGMEDLKDMFSSLGRVPPDDELNAMLKECPGQLNFT SEQ ID NO: 26: epitope sequence of Tod TM DESERGRKVLENRSQGDEER SEQ ID NO: 27: epitope sequence of Tod TM IDLLEKQLEEAKWIAEDADR SEQ ID NO: 28: epitope sequence of Tod TM KFDEAARKLAITEVDLERAEARLE SEQ ID NO: 29: epitope sequence of Tod TM KEVDRLEDELLAEKERYKTISDELDQTFAELAGY SEQ ID NO: 30: epitope sequence 1 of MLC2 ALRNAFSMFD SEQ ID NO: 31: shorter epitope sequence 1 of MLC2 NAFSMF SEQ ID NO: 32: microarray peptide 1 for identification of epitope sequence 1 of MLC2 GTDPEDALRNAFSMF SEQ ID NO: 33: microarray peptide 2 for identification of epitope sequence 1 of MLC2 TDPEDALRAFSMFD SEQ ID NO: 34: microarray peptide 3 for identification of epitope sequence 1 of MLC2 DPEDALRNAFSMFDE SEQ ID NO: 35: microarray peptide 4 for identification of epitope sequence 1 of MLC2 PEDALRNAFSMFDED SEQ ID NO: 36: microarray peptide 5 for identification of epitope sequence 1 of MLC2 EDALRNAFSMFDEDG SEQ ID NO: 37: microarray peptide 6 for identification of epitope sequence 1 of MLC2 DALRNAFSMFDEDGQ SEQ ID NO: 38: microarray peptide 7 for identification of epitope sequence 1 of MLC2 ALRNAFSMFDEDGQG SEQ ID NO: 39: microarray peptide 8 for identification of epitope sequence 1 of MLC2 LRNAFSMFDEDGQGF SEQ ID NO: 40: microarray peptide 9 for identification of epitope sequence 1 of MLC2 RNAFSMFDEDGQGFI SEQ ID NO: 41: microarray peptide 20 for identification of epitope sequence 1 of MLC2 NAFSMFDEDGQGFIP SEQ ID NO: 42: epitope sequence 2 of MLC2 FIPEDYLKDL SEQ ID NO: 43: shorter epitope sequence 2 of MLC2 IPEDYLKDL SEQ ID NO: 44: microarray peptide 1 for identification of epitope sequence 2 of MLC2 EDGQGFIPEDYLKDL SEQ ID NO: 45: microarray peptide 2 for identification of epitope sequence 2 of MLC2 DGQGFIPEDYLKDLL SEQ ID NO: 46: microarray peptide 3 for identification of epitope sequence 2 of MLC2 GQGFIPEDYLKDLLE SEQ ID NO: 47: microarray peptide 4 for identification of epitope sequence 2 of MLC2 QGFIPEDYLKDLLEN SEQ ID NO: 48: microarray peptide 5 for identification of epitope sequence 2 of MLC2 GFIPEDYLKDLLENM SEQ ID NO: 49: microarray peptide 6 for identification of epitope sequence 2 of MLC2 FIPEDYLKDLLENMG SEQ ID NO: 50: microarray peptide 7 for identification of epitope sequence 2 of MLC2 IPEDYLKDLLENMGD SEQ ID NO: 51: epitope sequence 3 of MLC2 FSKEEIKNVWKD SEQ ID NO: 52: microarray peptide 1 for identification of epitope sequence 3 of MLC2 GDNFSKEEIKNVWKD SEQ ID NO: 53: microarray peptide 1 for identification of epitope sequence 3 of MLC2 DNFSKEEIKNVWKDA SEQ ID NO: 54: microarray peptide 2 for identification of epitope sequence 3 of MLC2 NFSKEEIKNVWKDAP SEQ ID NO: 55: microarray peptide 3 for identification of epitope sequence 3 of MLC2 FSKEEIKNVWKDAPL SEQ ID NO: 56: microarray peptide NO 8: GSGSGSGAEEAPRRV SEQ ID NO: 57: microarray peptide NO 9: SGSGSGAEEAPRRVK SEQ ID NO: 58: microarray peptide NO 10: GSGSGAEEAPRRVKL SEQ ID NO: 59: microarray peptide NO 11: SGSGAEEAPRRVKLS SEQ ID NO: 60: microarray peptide NO 12: GSGAEEAPRRVKLSQ SEQ ID NO: 61: microarray peptide NO 13: SGAEEAPRRVKLSQR SEQ ID NO: 62: microarray peptide NO 14: GAEEAPRRVKLSQRQ SEQ ID NO: 63: microarray peptide NO 15: AEEAPRRVKLSQRQM SEQ ID NO: 64: microarray peptide NO 16: EEAPRRVKLSQRQMQ SEQ ID NO: 65: microarray peptide NO 17: EAPRRVKLSQRQMQE SEQ ID NO: 66: microarray peptide NO 18: APRRVKLSQRQMQEL SEQ ID NO: 67: microarray peptide NO 19: PRRVKLSQRQMQELK SEQ ID NO: 68: microarray peptide NO 20: RRVKLSQRQMQELKE SEQ ID NO: 69: microarray peptide NO 21: RVKLSQRQMQELKEA SEQ ID NO: 70: microarray peptide NO 22: VKLSQRQMQELKEAF SEQ ID NO: 71: microarray peptide NO 23: KLSQRQMQELKEAFT SEQ ID NO: 72: microarray peptide NO 24: LSQRQMQELKEAFTM SEQ ID NO: 73: microarray peptide NO 25: SQRQMQELKEAFTMI SEQ ID NO: 74: microarray peptide NO 26: QRQMQELKEAFTMID SEQ ID NO: 75: microarray peptide NO 27: RQMQELKEAFTMIDQ SEQ ID NO: 76: microarray peptide NO 28: QMQELKEAFTMIDQD SEQ ID NO: 77: microarray peptide NO 29: MQELKEAFTMIDQDR SEQ ID NO: 78: microarray peptide NO 30: QELKEAFTMIDQDRD SEQ ID NO: 79: microarray peptide NO 31: ELKEAFTMIDQDRDG SEQ ID NO: 80: microarray peptide NO 32: LKEAFTMIDQDRDGF SEQ ID NO: 81: microarray peptide NO 33: KEAFTMIDQDRDGFI SEQ ID NO: 82: microarray peptide NO 34: EAFTMIDQDRDGFIG SEQ ID NO: 83: microarray peptide NO 35: AFTMIDQDRDGFIGM
SEQ ID NO: 84: microarray peptide NO 36: FTMIDQDRDGFIGME SEQ ID NO: 85: microarray peptide NO 37: TMIDQDRDGFIGMED SEQ ID NO: 86: microarray peptide NO 38: MIDQDRDGFIGMEDL SEQ ID NO: 87: microarray peptide NO 39: IDQDRDGFIGMEDLK SEQ ID NO: 88: microarray peptide NO 40: DQDRDGFIGMEDLKD SEQ ID NO: 89: microarray peptide NO 41: QDRDGFIGMEDLKDM SEQ ID NO: 90: microarray peptide NO 42: DRDGFIGMEDLKDMF SEQ ID NO: 91: microarray peptide NO 43: RDGFIGMEDLKDMFS SEQ ID NO: 92: microarray peptide NO 44: DGFIGMEDLKDMFSS SEQ ID NO: 93: microarray peptide NO 45: GFIGMEDLKDMFSSL SEQ ID NO: 94: microarray peptide NO 46: FIGMEDLKDMFSSLG SEQ ID NO: 95: microarray peptide NO 47: IGMEDLKDMFSSLGR SEQ ID NO: 96: microarray peptide NO 48: GMEDLKDMFSSLGRV SEQ ID NO: 97: microarray peptide NO 49: MEDLKDMFSSLGRVP SEQ ID NO: 98: microarray peptide NO 50: EDLKDMFSSLGRVPP SEQ ID NO: 99: microarray peptide NO 51: DLKDMFSSLGRVPPD SEQ ID NO: 100: microarray peptide NO 52: LKDMFSSLGRVPPDD SEQ ID NO: 101: microarray peptide NO 53: KDMFSSLGRVPPDDE SEQ ID NO: 102: microarray peptide NO 54: DMFSSLGRVPPDDEL SEQ ID NO: 103: microarray peptide NO 55: MFSSLGRVPPDDELN SEQ ID NO: 104: microarray peptide NO 56: FSSLGRVPPDDELNA SEQ ID NO: 105: microarray peptide NO 57: SSLGRVPPDDELNAM SEQ ID NO: 106: microarray peptide NO 58: SLGRVPPDDELNAML SEQ ID NO: 107: microarray peptide NO 59: LGRVPPDDELNAMLK SEQ ID NO: 108: microarray peptide NO 60: GRVPPDDELNAMLKE SEQ ID NO: 109: microarray peptide NO 61: RVPPDDELNAMLKEC SEQ ID NO: 110: microarray peptide NO 62: VPPDDELNAMLKECP SEQ ID NO: 111: microarray peptide NO 63: PPDDELNAMLKECPG SEQ ID NO: 112: microarray peptide NO 64: PDDELNAMLKECPGQ SEQ ID NO: 113: microarray peptide NO 65: DDELNAMLKECPGQL SEQ ID NO: 114: microarray peptide NO 66: DELNAMLKECPGQLN SEQ ID NO: 115: microarray peptide NO 67: ELNAMLKECPGQLNF SEQ ID NO: 116: microarray peptide NO 68: LNAMLKECPGQLNFT SEQ ID NO: 117: microarray peptide NO 69: NAMLKECPGQLNFTA SEQ ID NO: 118: microarray peptide NO 70: AMLKECPGQLNFTAF SEQ ID NO: 119: microarray peptide NO 71: MLKECPGQLNFTAFL SEQ ID NO: 120: microarray peptide NO 72: LKECPGQLNFTAFLT SEQ ID NO: 121: microarray peptide NO 73: KECPGQLNFTAFLTL SEQ ID NO: 122: microarray peptide NO 74: ECPGQLNFTAFLTLF SEQ ID NO: 123: microarray peptide NO 75: CPGQLNFTAFLTLFG SEQ ID NO: 124: microarray peptide NO 76: PGQLNFTAFLTLFGE SEQ ID NO: 125: microarray peptide NO 77: GQLNFTAFLTLFGEK SEQ ID NO: 126: microarray peptide NO 78: QLNFTAFLTLFGEKV SEQ ID NO: 127: microarray peptide NO 79: LNFTAFLTLFGEKVS SEQ ID NO: 128: microarray peptide NO 80: NFTAFLTLFGEKVSG SEQ ID NO: 129: microarray peptide NO 81: FTAFLTLFGEKVSGT SEQ ID NO: 130: microarray peptide NO 82: TAFLTLFGEKVSGTD SEQ ID NO: 131: microarray peptide NO 83: AFLTLFGEKVSGTDP SEQ ID NO: 132: microarray peptide NO 84: FLTLFGEKVSGTDPE SEQ ID NO: 133: microarray peptide NO 85: LTLFGEKVSGTDPED SEQ ID NO: 134: microarray peptide NO 86: TLFGEKVSGTDPEDA SEQ ID NO: 135: microarray peptide NO 87: LFGEKVSGTDPEDAL SEQ ID NO: 136: microarray peptide NO 88: FGEKVSGTDPEDALR SEQ ID NO: 137: microarray peptide NO 89: GEKVSGTDPEDALRN SEQ ID NO: 138: microarray peptide NO 90: EKVSGTDPEDALRNA SEQ ID NO: 139: microarray peptide NO 91: KVSGTDPEDALRNAF SEQ ID NO: 140: microarray peptide NO 92: VSGTDPEDALRNAFS SEQ ID NO: 141: microarray peptide NO 93: SGTDPEDALRNAFSM SEQ ID NO: 142: microarray peptide NO 94: GTDPEDALRNAFSMF SEQ ID NO: 143: microarray peptide NO 95: TDPEDALRNAFSMFD SEQ ID NO: 144: microarray peptide NO 96: DPEDALRNAFSMFDE SEQ ID NO: 145: microarray peptide NO 97: PEDALRNAFSMFDED SEQ ID NO: 146: microarray peptide NO 98: EDALRNAFSMFDEDG SEQ ID NO: 147: microarray peptide NO 99: DALRNAFSMFDEDGQ SEQ ID NO: 148: microarray peptide NO 100: ALRNAFSMFDEDGQG SEQ ID NO: 149: microarray peptide NO 101: LRNAFSMFDEDGQGF SEQ ID NO: 150: microarray peptide NO 102: RNAFSMFDEDGQGFI SEQ ID NO: 151: microarray peptide NO 103: NAFSMFDEDGQGFIP SEQ ID NO: 152: microarray peptide NO 104: AFSMFDEDGQGFIPE SEQ ID NO: 153: microarray peptide NO 105: FSMFDEDGQGFIPED SEQ ID NO: 154: microarray peptide NO 106: SMFDEDGQGFIPEDY SEQ ID NO: 155: microarray peptide NO 107: MFDEDGQGFIPEDYL SEQ ID NO: 156: microarray peptide NO 108: FDEDGQGFIPEDYLK SEQ ID NO: 157: microarray peptide NO 109: DEDGQGFIPEDYLKD SEQ ID NO: 158: microarray peptide NO 110: EDGQGFIPEDYLKDL SEQ ID NO: 159: microarray peptide NO 111: DGQGFIPEDYLKDLL SEQ ID NO: 160: microarray peptide NO 112: GQGFIPEDYLKDLLE SEQ ID NO: 161: microarray peptide NO 113: QGFIPEDYLKDLLEN SEQ ID NO: 162: microarray peptide NO 114: GFIPEDYLKDLLENM SEQ ID NO: 163: microarray peptide NO 115: FIPEDYLKDLLENMG SEQ ID NO: 164: microarray peptide NO 116: IPEDYLKDLLENMGD SEQ ID NO: 165: microarray peptide NO 117: PEDYLKDLLENMGDN SEQ ID NO: 166: microarray peptide NO 118: EDYLKDLLENMGDNF SEQ ID NO: 167: microarray peptide NO 119: DYLKDLLENMGDNFS
SEQ ID NO: 168: microarray peptide NO 120: YLKDLLENMGDNFSK SEQ ID NO: 169: microarray peptide NO 121: LKDLLENMGDNFSKE SEQ ID NO: 170: microarray peptide NO 122: KDLLENMGDNFSKEE SEQ ID NO: 171: microarray peptide NO 123: DLLENMGDNFSKEET SEQ ID NO: 172: microarray peptide NO 124: LLENMGDNFSKEEIK SEQ ID NO: 173: microarray peptide NO 125: LENMGDNFSKEEIKN SEQ ID NO: 174: microarray peptide NO 126: ENMGDNFSKEEIKNV SEQ ID NO: 175: microarray peptide NO 127: NMGDNFSKEEIKNVW SEQ ID NO: 176: microarray peptide NO 128: MGDNFSKEEIKNVWK SEQ ID NO: 177: microarray peptide NO 129: GDNFSKEEIKNVWKD SEQ ID NO: 178: microarray peptide NO 130: DNFSKEEIKNVWKDA SEQ ID NO: 179: microarray peptide NO 131: NFSKEEIKNVWKDAP SEQ ID NO: 180: microarray peptide NO 132: FSKEEIKNVWKDAPL SEQ ID NO: 181: microarray peptide NO 133: SKEEIKNVWKDAPLK SEQ ID NO: 182: microarray peptide NO 134: KEEIKNVWKDAPLKN SEQ ID NO: 183: microarray peptide NO 135: EEIKNVWKDAPLKNK SEQ ID NO: 184: microarray peptide NO 136: EIKNVWKDAPLKNKQ SEQ ID NO: 185: microarray peptide NO 137: IKNVWKDAPLKNKQF SEQ ID NO: 186: microarray peptide NO 138: KNVWKDAPLKNKQFN SEQ ID NO: 187: microarray peptide NO 139: NVWKDAPLKNKQFNY SEQ ID NO: 188: microarray peptide NO 140: VWKDAPLKNKQFNYN SEQ ID NO: 189: microarray peptide NO 141: WKDAPLKNKQFNYNK SEQ ID NO: 190: microarray peptide NO 142: KDAPLKNKQFNYNKM SEQ ID NO: 191: microarray peptide NO 143: DAPLKNKQFNYNKMV SEQ ID NO: 192: microarray peptide NO 144: APLKNKQFNYNKMVD SEQ ID NO: 193: microarray peptide NO 145: PLKNKQFNYNKMVDI SEQ ID NO: 194: microarray peptide NO 146: LKNKQFNYNKMVDIK SEQ ID NO: 195: microarray peptide NO 147: KNKQFNYNKMVDIKG SEQ ID NO: 196: microarray peptide NO 148: NKQFNYNKMVDIKGK SEQ ID NO: 197: microarray peptide NO 149: KQFNYNKMVDIKGKA SEQ ID NO: 198: microarray peptide NO 150: QFNYNKMVDIKGKAE SEQ ID NO: 199: microarray peptide NO 151: FNYNKMVDIKGKAED SEQ ID NO: 200: microarray peptide NO 152: NYNKMVDIKGKAEDE SEQ ID NO: 201: microarray peptide NO 153: YNKMVDIKGKAEDED SEQ ID NO: 202: microarray peptide NO 154: NKMVDIKGKAEDEDG SEQ ID NO: 203: microarray peptide NO 155: KMVDIKGKAEDEDGS SEQ ID NO: 204: microarray peptide NO 156: MVDIKGKAEDEDGSG SEQ ID NO: 205: microarray peptide NO 157: VDIKGKAEDEDGSGS SEQ ID NO: 206: microarray peptide NO 158: DIKGKAEDEDGSGSG SEQ ID NO: 207: microarray peptide NO 159: IKGKAEDEDGSGSGS SEQ ID NO: 208: microarray peptide NO 160: KGKAEDEDGSGSGSG
EXAMPLES
[0118] The present invention is further illustrated by the following non-limiting examples from which further features, embodiments, aspects and advantages of the present invention may be taken.
Example 1: Evaluating the Diagnostic Reliability of Tod p MLC1 and Tod p MLC2
Cloning, Recombinant Expression and Purification of Tod p MLC1 and Tod p MLC2
[0119] The coding DNA sequences for the proteins shown above, fused to sequences for a linker and a His tag, were generated by gene synthesis (Eurofins Genomics GmbH), amplified by polymerase chain reaction and subcloned into the recombinant vector pEt24d using pBAD/TOPO.RTM. ThioFusion.TM. Expression Kits (Invitrogen). The resulting SEQ ID NO: 12 (comprising an insert encoding for shrimp MLC, Lit v 3.0101), SEQ ID NO: 13 (comprising an insert encoding for shrimp TM, Pen a 1.0101), SEQ ID NO: 14 (comprising an insert encoding for squid TM, Sep 11.0101), SEQ ID NO: 15 (comprising an insert encoding for squid MLC1) and SEQ ID NO: 16 (comprising an insert encoding for squid MLC2) were used. The fusion proteins were expressed in E. coli as described by the manufacturer and isolated by affinity chromatography on nickel matrix (IMAC).
Preparation of a Multiparameter Line Blot (EUROLINE)
[0120] The EUROLINE line blot was produced by coating isolated single fusion proteins SEQ ID NO: 3 (shrimp TM Pen a 1.0101 with His tag), SEQ ID NO: 5 (Sep I 1.0101, squid TM with His tag), SEQ ID NO: 17 (Lit v 3.0101, shrimp MLC2 with His tag), SEQ ID NO: 9 (squid MLC1 with His tag) and SEQ ID NO: 11 (squid MLC2 with His tag) using a precision dispenser (commercially available from Zeta Corporation) onto nitrocellulose membrane (commercially available from Whatman). After blocking and washing as recommended in the manufacturer's instructions the membranes containing the single proteins were aligned and cut in 3 mm strips, resulting in a multiparameter test. The final layout is shown in FIG. 1.
Evaluation of Samples Using the EUROLINE Line Assay
[0121] The EUROLINE strips were incubated as recommended in the manufacturer's (EUROIMMUN Medizinische Labordiagnostika AG, Lubeck, Germany) instructions (Product number DP 3110-1601 E). In detail the strips were incubated with 1 ml 1/11 (v/v) diluted patient sample (25 squid-allergic and 42 squid-tolerant patients) in washing buffer for 16 h at room temperature. After discarding the patient samples the strips were washed 3 times for 5 min with 1 ml washing buffer per strip and subsequently incubated for 1 h with 1 ml anti-human-IgE antibody conjugated with AP. Afterwards the strips were again washed 5 times with washing buffer and then incubated for 10 min with BCIP/NBT substrate.
[0122] The evaluation of the results was carried out using a scanner and EUROLINEScan.RTM. program (EUROIMMUN AG, Lubeck, Germany). A semiquantitative analysis can be realized by using an IgE calibration curve of WHO standard (75/502).
Statistical Analysis
[0123] Assay performance statistics were calculated based on the patients' food challenge outcome with following definitions: TP: percentage of true-positive test results; TN: percentage of true-negative test results; FP: percentage of false-positive test results; FN: percentage of false-negative test results.
Results
[0124] EUROLINE multiparameter strips containing various shrimp and squid proteins were incubated with samples from 25 squid-allergic and 42 squid-tolerant children to identify if a prediction of squid-allergy based sensitization to single allergen components is possible.
[0125] The assay performance statistics are displayed in Table 1. Both squid and shrimp TM show high sensitivity and moderate specificity, leading to a PPV of 57% and 59%, respectively. Since TM is widely accepted as an arthropod panallergen with high cross-reactivity, this result is not surprising and confirms the plausibility of the performed assay.
[0126] In contrast, squid MLC2 reveals higher sensitivity compared to shrimp MLC2 (44% vs. 16%) with similar specificity (86% vs. 95%), leading to PPV (65% vs. 67%) and NPV (72% vs. 66%) values. Overall, squid MLC2 shows the highest efficiency of all proteins used in the test.
[0127] While the sensitivity of MLC1 (8%) is limited, its specificity (100%) is outstanding.
[0128] In summary, the presented results clearly indicate that the claimed squid MLC2 provides a diagnostic benefit for the prediction of squid-allergy compared to all squid-allergy test systems available by now.
TABLE-US-00002 TABLE 1 Assay performance statistics for single proteins. Shrimp Squid TM MLC 2 TM Pen a 1.0101 Lit v 3.0101 Sep l 1.0101 MLC1 MLC2 Sensitivity 80% 16% 80% 8% 44% Specificity 67% 95% 64% 100% 86% PPV 59% 67% 57% 100% 65% NPV 85% 66% 84% 65% 72% TM: tropomyosin; MLC: myosin light chain; PPV: positive predictive value; NPV: negative predictive value.
Example 2: Comparative Epitope Mapping of Tod pMLC2_V2
[0129] A peptide micro array chip comprising overlapping peptides of fifteen amino acid sequences representing SEQ ID NO: 10 was manufactured and incubated as described by Ehlers et al. (Ehlers, A. M., Klinge, M., Suer, W., Weimann, Y., Knulst, A. C., Besa, F., Le, T. M., Otten, H. G. (2019) Ara h 7 isoforms share many linear epitopes: Are 3D epitopes crucial to elucidate divergent abilities?, Clin Exp Allergy 49(11), 1512-1519), an offset of one was chosen, and triplicate measurements were carried out. The peptides used comprise SEQ ID NO: 56 to SEQ ID NO: 208. Each peptide comprise 15 amino acids, the offset was 1. Measurements were carried out in triplicate.
[0130] The patient cohort comprised eleven sera from patients allergic to squid and eight samples from sensitized, but tolerant patients and two sera from healthy donors.
[0131] Results were evaluated as described by Ehlers et al. with following exceptions: cut-off was increased to 3 to increase the significance of the results. Epitopes were considered as verified if a stretch of four subsequent peptides was recognized, equivalent corresponding to an epitope length of at least four amino acids as described for the anti-his tag monoclonal antibody 3D5 (Lindner, P., Bauer, K., Krebber, A., Nieba, L., Kremmer, E., Krebber, C., Honegger, A., Klinger, B., Mocikat, R., Pluckthun, A. (1997) Specific detection of his-tagged proteins with recombinant anti-His tag scFv-phosphatase or scFv-phage fusions, Biotechniques 22(1), 140-9).
[0132] FIG. 2 shows an example of an incubated peptide chip as described in this example. The chip comprises eight panels, the green regular panels represent control peptides. IgE reactions are shown in green, IgG4 reactions are shown in red.
[0133] FIG. 3 shows the detection of antibody reactivity in sera based on four allergic and two tolerant patients against peptides based on SEQ ID NO: 10 as discussed in example 2. The Y axis shows C scores and the X axis shows the separate peptides. The black line shows the cut-off, green columns represent IGE reactivity, red columns represent IgG4 reactivity.
[0134] FIG. 4 shows a heat map of IgE and IgG4 serum reactivity against overlapping peptides based on SEQ ID NO: 10.
[0135] The first column depicts the designations of patients' sera. The left column represents the peptides used. Reactions having a set score of at least three were considered positive. An epitope was considered valid if at least three subsequent peptides were recognized. Green signals show IGG reactivity with corresponding peptides. Red signals show IGG4 reactivity. The more intense the color, the higher the signal.
[0136] Results
[0137] A clear distinction between the reactivity of sera from allergic patients and sera from tolerant patients could be shown.
[0138] While two out of nine sera from tolerant patients reacted with peptides representing the n-terminal region of SEQ ID NO: 10, reactivity specific for allergic patients could be demonstrated for peptides comprising the following sequences: ALRNAFSMFD (SEQ ID NO: 30), NAFSMF (SEQ ID NO: 31), FIPEDYLKDL (SEQ ID NO: 42), IPEDYLKDL (SEQ ID NO: 43) and FSKEEIKNVWKD (SEQ ID NO: 51).
[0139] Overall, it could be concluded that epitopes comprising sequences SEQ ID NO: 31, SEQ ID NO: 43 and SEQ ID NO: 51 and peptides or proteins comprising them were recognized specifically by antibodies from allergic patients. These epitopes were recognized by antibodies from none of the tolerant patients and may be used to design antigens binding to them or antibodies binding to them or not binding to them as reagents for immunoassays.
Sequence CWU
1
1
2081540DNAArtificial SequenceNucleotide sequence encoding Tod p MLC1 with
a N-terminal His tag, as used in the Examples 1atgagccatc atcatcatca
tcatcatcat ttggaagtgc tgtttcaggg tccatccatg 60tctcaactga ccaaagacga
aattgaggaa gtccgtgaag tgtttgacct cttcgacttt 120tgggatggtc gtgatggtga
tgttgacgct gcgaaagttg gcgatctgtt acgctgttta 180gggatgaatc caaccgaagc
tcaggtacac caacatggag gcacgaagaa aatgggcgag 240aaagcgtata aactggaaga
gattctgccg atttatgagg aaatgagctc caaagatact 300ggcacagcag cggacgaatt
catggaagcc ttcaaaacgt ttgatcgtga aggtcagggt 360ttgatcagtt cagccgaaat
tcggaatgtg ctgaaaatgc ttggcgaacg cattaccgag 420gatcagtgca acgatatctt
caccttttgc gacattcgcg aagatatcga tgggaacatc 480aaatacgagg atctgatgaa
gaaggtgatg gcaggacctt ttccggacaa atcggattaa 5402522DNAArtificial
SequenceNucleotide sequence encoding Tod p MLC2 with a N-terminal
His tag, as used in the Examples 2atgagccatc atcatcatca tcatcatcat
ttggaagtgc tgtttcaggg tccatccatg 60gcggaagaag ctcctcgtcg cgtgaaactg
tcacaacgcc agatgcagga gctgaaagaa 120gcgtttacca tgattgatca ggaccgtgat
gggttcattg gcatggaaga tctgaaagac 180atgttcagct ctttaggacg ggtaccaccc
gatgacgaac tgaatgccat gctgaaagaa 240tgcccgggtc aactcaattt cacggctttt
ctgaccttgt ttggggagaa agtgagtggt 300actgacccgg aagatgcact tcgcaatgcc
ttttcgatgt tcgacgaaga tggtcagggc 360tttatcccgg aagattatct gaaagacttg
ctggaaaata tgggcgataa cttttccaaa 420gaggagatta agaacgtctg gaaagatgca
ccgttaaaga acaaacagtt caactacaac 480aagatggttg acatcaaagg caaagcggag
gatgaagatt aa 5223303PRTArtificial
SequencePolypeptide sequence encoding Pen a 1.0101 (Penaeus aztecus
Tropomyosin) with a N-terminal His tag, as used in the Examples 3Met
Ser His His His His His His His His Leu Glu Val Leu Phe Gln1
5 10 15Gly Pro Ser Met Asp Ala Ile
Lys Lys Lys Met Gln Ala Met Lys Leu 20 25
30Glu Lys Asp Asn Ala Met Asp Arg Ala Asp Thr Leu Glu Gln
Gln Asn 35 40 45Lys Glu Ala Asn
Asn Arg Ala Glu Lys Ser Glu Glu Glu Val His Asn 50 55
60Leu Gln Lys Arg Met Gln Gln Leu Glu Asn Asp Leu Asp
Gln Val Gln65 70 75
80Glu Ser Leu Leu Lys Ala Asn Ile Gln Leu Val Glu Lys Asp Lys Ala
85 90 95Leu Ser Asn Ala Glu Gly
Glu Val Ala Ala Leu Asn Arg Arg Ile Gln 100
105 110Leu Leu Glu Glu Asp Leu Glu Arg Ser Glu Glu Arg
Leu Asn Thr Ala 115 120 125Thr Thr
Lys Leu Ala Glu Ala Ser Gln Ala Ala Asp Glu Ser Glu Arg 130
135 140Met Arg Lys Val Leu Glu Asn Arg Ser Leu Ser
Asp Glu Glu Arg Met145 150 155
160Asp Ala Leu Glu Asn Gln Leu Lys Glu Ala Arg Phe Leu Ala Glu Glu
165 170 175Ala Asp Arg Lys
Tyr Asp Glu Val Ala Arg Lys Leu Ala Met Val Glu 180
185 190Ala Asp Leu Glu Arg Ala Glu Glu Arg Ala Glu
Thr Gly Glu Ser Lys 195 200 205Ile
Val Glu Leu Glu Glu Glu Leu Arg Val Val Gly Asn Asn Leu Lys 210
215 220Ser Leu Glu Val Ser Glu Glu Lys Ala Asn
Gln Arg Glu Glu Ala Tyr225 230 235
240Lys Glu Gln Ile Lys Thr Leu Thr Asn Lys Leu Lys Ala Ala Glu
Ala 245 250 255Arg Ala Glu
Phe Ala Glu Arg Ser Val Gln Lys Leu Gln Lys Glu Val 260
265 270Asp Arg Leu Glu Asp Glu Leu Val Asn Glu
Lys Glu Lys Tyr Lys Ser 275 280
285Ile Thr Asp Glu Leu Asp Gln Thr Phe Ser Glu Leu Ser Gly Tyr 290
295 3004284PRTArtificial SequencePolypeptide
sequence encoding Pen a 1.0101 (Penaeus aztecus Tropomyosin);
Accession number Q3Y8M6 4Met Asp Ala Ile Lys Lys Lys Met Gln Ala Met Lys
Leu Glu Lys Asp1 5 10
15Asn Ala Met Asp Arg Ala Asp Thr Leu Glu Gln Gln Asn Lys Glu Ala
20 25 30Asn Asn Arg Ala Glu Lys Ser
Glu Glu Glu Val His Asn Leu Gln Lys 35 40
45Arg Met Gln Gln Leu Glu Asn Asp Leu Asp Gln Val Gln Glu Ser
Leu 50 55 60Leu Lys Ala Asn Ile Gln
Leu Val Glu Lys Asp Lys Ala Leu Ser Asn65 70
75 80Ala Glu Gly Glu Val Ala Ala Leu Asn Arg Arg
Ile Gln Leu Leu Glu 85 90
95Glu Asp Leu Glu Arg Ser Glu Glu Arg Leu Asn Thr Ala Thr Thr Lys
100 105 110Leu Ala Glu Ala Ser Gln
Ala Ala Asp Glu Ser Glu Arg Met Arg Lys 115 120
125Val Leu Glu Asn Arg Ser Leu Ser Asp Glu Glu Arg Met Asp
Ala Leu 130 135 140Glu Asn Gln Leu Lys
Glu Ala Arg Phe Leu Ala Glu Glu Ala Asp Arg145 150
155 160Lys Tyr Asp Glu Val Ala Arg Lys Leu Ala
Met Val Glu Ala Asp Leu 165 170
175Glu Arg Ala Glu Glu Arg Ala Glu Thr Gly Glu Ser Lys Ile Val Glu
180 185 190Leu Glu Glu Glu Leu
Arg Val Val Gly Asn Asn Leu Lys Ser Leu Glu 195
200 205Val Ser Glu Glu Lys Ala Asn Gln Arg Glu Glu Ala
Tyr Lys Glu Gln 210 215 220Ile Lys Thr
Leu Thr Asn Lys Leu Lys Ala Ala Glu Ala Arg Ala Glu225
230 235 240Phe Ala Glu Arg Ser Val Gln
Lys Leu Gln Lys Glu Val Asp Arg Leu 245
250 255Glu Asp Glu Leu Val Asn Glu Lys Glu Lys Tyr Lys
Ser Ile Thr Asp 260 265 270Glu
Leu Asp Gln Thr Phe Ser Glu Leu Ser Gly Tyr 275
2805303PRTArtificial SequencePolypeptide sequence encoding Sep l 1.0101
(Sepioteuthis lessoniana Tropomyosin) with a N-terminal His tag,
as used in the Examples 5Met Ser His His His His His His His His Leu Glu
Val Leu Phe Gln1 5 10
15Gly Pro Ser Met Asp Ala Ile Lys Lys Lys Met Leu Ala Met Lys Met
20 25 30Glu Lys Glu Val Ala Thr Asp
Lys Ala Glu Gln Thr Glu Gln Ser Leu 35 40
45Arg Asp Leu Glu Asp Ala Lys Asn Lys Ile Glu Glu Asp Leu Ser
Thr 50 55 60Leu Gln Lys Lys Tyr Ala
Asn Leu Glu Asn Asp Phe Asp Asn Ala Asn65 70
75 80Glu Gln Leu Thr Ala Ala Asn Thr Asn Leu Glu
Ala Ser Glu Lys Arg 85 90
95Val Ala Glu Cys Glu Ser Glu Ile Gln Gly Leu Asn Arg Arg Ile Gln
100 105 110Leu Leu Glu Glu Asp Leu
Glu Arg Ser Glu Glu Arg Phe Ser Ser Ala 115 120
125Gln Ser Lys Leu Glu Asp Ala Ser Lys Ala Ala Asp Glu Ser
Glu Arg 130 135 140Gly Arg Lys Val Leu
Glu Asn Arg Ser Gln Gly Asp Glu Glu Arg Ile145 150
155 160Asp Leu Leu Glu Lys Gln Leu Glu Glu Ala
Lys Trp Ile Ala Glu Asp 165 170
175Ala Asp Arg Lys Phe Asp Glu Ala Ala Arg Lys Leu Ala Ile Thr Glu
180 185 190Val Asp Leu Glu Arg
Ala Glu Ala Arg Leu Glu Ala Ala Glu Ala Lys 195
200 205Ile Val Glu Leu Glu Glu Glu Leu Lys Val Val Gly
Asn Asn Met Lys 210 215 220Ser Leu Glu
Ile Ser Glu Gln Glu Ala Ser Gln Arg Glu Asp Ser Tyr225
230 235 240Glu Glu Thr Ile Arg Asp Leu
Thr His Arg Leu Lys Glu Ala Glu Asn 245
250 255Arg Ala Ala Glu Ala Glu Arg Thr Val Ser Lys Leu
Gln Lys Glu Val 260 265 270Asp
Arg Leu Glu Asp Glu Leu Leu Ala Glu Lys Glu Arg Tyr Lys Thr 275
280 285Ile Ser Asp Glu Leu Asp Gln Thr Phe
Ala Glu Leu Ala Gly Tyr 290 295
3006284PRTArtificial SequencePolypeptide sequence encoding Sep l 1.0101
(Sepioteuthis lessoniana Tropomyosin) 6Met Asp Ala Ile Lys Lys Lys Met
Leu Ala Met Lys Met Glu Lys Glu1 5 10
15Val Ala Thr Asp Lys Ala Glu Gln Thr Glu Gln Ser Leu Arg
Asp Leu 20 25 30Glu Asp Ala
Lys Asn Lys Ile Glu Glu Asp Leu Ser Thr Leu Gln Lys 35
40 45Lys Tyr Ala Asn Leu Glu Asn Asp Phe Asp Asn
Ala Asn Glu Gln Leu 50 55 60Thr Ala
Ala Asn Thr Asn Leu Glu Ala Ser Glu Lys Arg Val Ala Glu65
70 75 80Cys Glu Ser Glu Ile Gln Gly
Leu Asn Arg Arg Ile Gln Leu Leu Glu 85 90
95Glu Asp Leu Glu Arg Ser Glu Glu Arg Phe Ser Ser Ala
Gln Ser Lys 100 105 110Leu Glu
Asp Ala Ser Lys Ala Ala Asp Glu Ser Glu Arg Gly Arg Lys 115
120 125Val Leu Glu Asn Arg Ser Gln Gly Asp Glu
Glu Arg Ile Asp Leu Leu 130 135 140Glu
Lys Gln Leu Glu Glu Ala Lys Trp Ile Ala Glu Asp Ala Asp Arg145
150 155 160Lys Phe Asp Glu Ala Ala
Arg Lys Leu Ala Ile Thr Glu Val Asp Leu 165
170 175Glu Arg Ala Glu Ala Arg Leu Glu Ala Ala Glu Ala
Lys Ile Val Glu 180 185 190Leu
Glu Glu Glu Leu Lys Val Val Gly Asn Asn Met Lys Ser Leu Glu 195
200 205Ile Ser Glu Gln Glu Ala Ser Gln Arg
Glu Asp Ser Tyr Glu Glu Thr 210 215
220Ile Arg Asp Leu Thr His Arg Leu Lys Glu Ala Glu Asn Arg Ala Ala225
230 235 240Glu Ala Glu Arg
Thr Val Ser Lys Leu Gln Lys Glu Val Asp Arg Leu 245
250 255Glu Asp Glu Leu Leu Ala Glu Lys Glu Arg
Tyr Lys Thr Ile Ser Asp 260 265
270Glu Leu Asp Gln Thr Phe Ala Glu Leu Ala Gly Tyr 275
2807177PRTArtificial SequencePolypeptide sequence encoding Lit v
3.0101 (Litopenaeus vannamei Myosin Light Chain 2) [His-tagged
version is SEQ ID NO17] 7Met Ser Arg Lys Ser Gly Ser Arg Ser Ser Ser
Lys Arg Ser Lys Lys1 5 10
15Ser Gly Gly Gly Ser Asn Val Phe Asp Met Phe Thr Gln Arg Gln Val
20 25 30Ala Glu Phe Lys Glu Gly Phe
Gln Leu Met Asp Arg Asp Lys Asp Gly 35 40
45Val Ile Gly Lys Thr Asp Leu Arg Gly Thr Phe Asp Glu Ile Gly
Arg 50 55 60Ile Ala Thr Asp Gln Glu
Leu Asp Glu Met Leu Ala Asp Ala Pro Ala65 70
75 80Pro Ile Asn Phe Thr Met Leu Leu Asn Met Phe
Ala Glu Arg Gln Thr 85 90
95Gly Glu Ser Asp Asp Asp Asp Val Val Ala Lys Ala Phe Leu Ala Phe
100 105 110Ala Asp Glu Glu Gly Asn
Ile Asp Cys Asp Thr Phe Arg His Ala Leu 115 120
125Met Thr Trp Gly Asp Lys Phe Ser Ser Gln Glu Ala Asp Asp
Ala Leu 130 135 140Asp Gln Met Asp Ile
Asp Asp Gly Gly Lys Ile Asp Val Gln Gly Val145 150
155 160Ile Gln Met Leu Thr Ala Gly Gly Gly Asp
Asp Ala Ala Ala Glu Glu 165 170
175Ala8159PRTArtificial SequencePolypeptide sequence encoding Tod p
MLC1 (Myosin Light Chain 1) Todarodes pacificus; Accession number
P05945 8Ser Gln Leu Thr Lys Asp Glu Ile Glu Glu Val Arg Glu Val Phe
Asp1 5 10 15Leu Phe Asp
Phe Trp Asp Gly Arg Asp Gly Asp Val Asp Ala Ala Lys 20
25 30Val Gly Asp Leu Leu Arg Cys Leu Gly Met
Asn Pro Thr Glu Ala Gln 35 40
45Val His Gln His Gly Gly Thr Lys Lys Met Gly Glu Lys Ala Tyr Lys 50
55 60Leu Glu Glu Ile Leu Pro Ile Tyr Glu
Glu Met Ser Ser Lys Asp Thr65 70 75
80Gly Thr Ala Ala Asp Glu Phe Met Glu Ala Phe Lys Thr Phe
Asp Arg 85 90 95Glu Gly
Gln Gly Leu Ile Ser Ser Ala Glu Ile Arg Asn Val Leu Lys 100
105 110Met Leu Gly Glu Arg Ile Thr Glu Asp
Gln Cys Asn Asp Ile Phe Thr 115 120
125Phe Cys Asp Ile Arg Glu Asp Ile Asp Gly Asn Ile Lys Tyr Glu Asp
130 135 140Leu Met Lys Lys Val Met Ala
Gly Pro Phe Pro Asp Lys Ser Asp145 150
1559179PRTArtificial SequencePolypeptide sequence encoding Tod p MLC1
(Todarodes pacificus Myosin Light Chain 1) with a N-terminal His
tag, as used in the Examples 9Met Ser His His His His His His His His Leu
Glu Val Leu Phe Gln1 5 10
15Gly Pro Ser Met Ser Gln Leu Thr Lys Asp Glu Ile Glu Glu Val Arg
20 25 30Glu Val Phe Asp Leu Phe Asp
Phe Trp Asp Gly Arg Asp Gly Asp Val 35 40
45Asp Ala Ala Lys Val Gly Asp Leu Leu Arg Cys Leu Gly Met Asn
Pro 50 55 60Thr Glu Ala Gln Val His
Gln His Gly Gly Thr Lys Lys Met Gly Glu65 70
75 80Lys Ala Tyr Lys Leu Glu Glu Ile Leu Pro Ile
Tyr Glu Glu Met Ser 85 90
95Ser Lys Asp Thr Gly Thr Ala Ala Asp Glu Phe Met Glu Ala Phe Lys
100 105 110Thr Phe Asp Arg Glu Gly
Gln Gly Leu Ile Ser Ser Ala Glu Ile Arg 115 120
125Asn Val Leu Lys Met Leu Gly Glu Arg Ile Thr Glu Asp Gln
Cys Asn 130 135 140Asp Ile Phe Thr Phe
Cys Asp Ile Arg Glu Asp Ile Asp Gly Asn Ile145 150
155 160Lys Tyr Glu Asp Leu Met Lys Lys Val Met
Ala Gly Pro Phe Pro Asp 165 170
175Lys Ser Asp10153PRTArtificial SequencePolypeptide sequence
encoding Tod p MLC2 (Todarodes pacificus Myosin Light Chain 2) 10Ala
Glu Glu Ala Pro Arg Arg Val Lys Leu Ser Gln Arg Gln Met Gln1
5 10 15Glu Leu Lys Glu Ala Phe Thr
Met Ile Asp Gln Asp Arg Asp Gly Phe 20 25
30Ile Gly Met Glu Asp Leu Lys Asp Met Phe Ser Ser Leu Gly
Arg Val 35 40 45Pro Pro Asp Asp
Glu Leu Asn Ala Met Leu Lys Glu Cys Pro Gly Gln 50 55
60Leu Asn Phe Thr Ala Phe Leu Thr Leu Phe Gly Glu Lys
Val Ser Gly65 70 75
80Thr Asp Pro Glu Asp Ala Leu Arg Asn Ala Phe Ser Met Phe Asp Glu
85 90 95Asp Gly Gln Gly Phe Ile
Pro Glu Asp Tyr Leu Lys Asp Leu Leu Glu 100
105 110Asn Met Gly Asp Asn Phe Ser Lys Glu Glu Ile Lys
Asn Val Trp Lys 115 120 125Asp Ala
Pro Leu Lys Asn Lys Gln Phe Asn Tyr Asn Lys Met Val Asp 130
135 140Ile Lys Gly Lys Ala Glu Asp Glu Asp145
15011173PRTArtificial SequencePolypeptide sequence encoding Tod
p MLC2 (Todarodes pacificus Myosin Light Chain 2) with a N-terminal
His tag, as used in the Examples 11Met Ser His His His His His His
His His Leu Glu Val Leu Phe Gln1 5 10
15Gly Pro Ser Met Ala Glu Glu Ala Pro Arg Arg Val Lys Leu
Ser Gln 20 25 30Arg Gln Met
Gln Glu Leu Lys Glu Ala Phe Thr Met Ile Asp Gln Asp 35
40 45Arg Asp Gly Phe Ile Gly Met Glu Asp Leu Lys
Asp Met Phe Ser Ser 50 55 60Leu Gly
Arg Val Pro Pro Asp Asp Glu Leu Asn Ala Met Leu Lys Glu65
70 75 80Cys Pro Gly Gln Leu Asn Phe
Thr Ala Phe Leu Thr Leu Phe Gly Glu 85 90
95Lys Val Ser Gly Thr Asp Pro Glu Asp Ala Leu Arg Asn
Ala Phe Ser 100 105 110Met Phe
Asp Glu Asp Gly Gln Gly Phe Ile Pro Glu Asp Tyr Leu Lys 115
120 125Asp Leu Leu Glu Asn Met Gly Asp Asn Phe
Ser Lys Glu Glu Ile Lys 130 135 140Asn
Val Trp Lys Asp Ala Pro Leu Lys Asn Lys Gln Phe Asn Tyr Asn145
150 155 160Lys Met Val Asp Ile Lys
Gly Lys Ala Glu Asp Glu Asp 165
170125808DNAArtificial SequenceNucleic acid sequence of vector pET24d-Lit
v3.0101-(PSc)-His comprising a sequence encoding for Lit v 3.0101
(Myosin Light Chain 2) 12ggggaattgt gagcggataa caattcccct ctagaaataa
ttttgtttaa ctttaagaag 60gagatatacc atgtctcgca aaagtggctc acgttccagc
tccaaacgca gcaagaaatc 120gggtggtggc tcgaatgtct ttgacatgtt cacgcaacgc
caagttgcgg agttcaaaga 180agggtttcag ctgatggatc gcgacaaaga tggggtgatt
ggcaaaaccg atctgcgtgg 240tacctttgac gagattggcc gcattgcgac cgatcaggaa
ctggatgaga tgcttgcaga 300tgccccagca ccgatcaatt tcacgatgct cctgaacatg
tttgcggaac gtcagactgg 360cgaatctgac gacgatgacg tggttgccaa agcgttctta
gcctttgccg atgaagaggg 420aaacatcgat tgcgatacct ttcggcatgc tctgatgact
tggggcgaca agttcagcag 480tcaagaagcg gatgatgcct tggatcagat ggacattgat
gacggcggga aaatcgacgt 540acagggtgtg attcagatgc tgacagctgg tggaggtgat
gatgcagcag cggaagaagc 600tctcgaggtc ctgttccaag gaccccacca ccatcaccat
cactgatcga gcaccaccac 660caccaccact gagatccggc tgctaacaaa gcccgaaagg
aagctgagtt ggctgctgcc 720accgctgagc aataactagc ataacccctt ggggcctcta
aacgggtctt gaggggtttt 780ttgctgaaag gaggaactat atccggattg gcgaatggga
cgcgccctgt agcggcgcat 840taagcgcggc gggtgtggtg gttacgcgca gcgtgaccgc
tacacttgcc agcgccctag 900cgcccgctcc tttcgctttc ttcccttcct ttctcgccac
gttcgccggc tttccccgtc 960aagctctaaa tcgggggctc cctttagggt tccgatttag
tgctttacgg cacctcgacc 1020ccaaaaaact tgattagggt gatggttcac gtagtgggcc
atcgccctga tagacggttt 1080ttcgcccttt gacgttggag tccacgttct ttaatagtgg
actcttgttc caaactggaa 1140caacactcaa ccctatctcg gtctattctt ttgatttata
agggattttg ccgatttcgg 1200cctattggtt aaaaaatgag ctgatttaac aaaaatttaa
cgcgaatttt aacaaaatat 1260taacgtttac aatttcaggt ggcacttttc ggggaaatgt
gcgcggaacc cctatttgtt 1320tatttttcta aatacattca aatatgtatc cgctcatgaa
ttaattctta gaaaaactca 1380tcgagcatca aatgaaactg caatttattc atatcaggat
tatcaatacc atatttttga 1440aaaagccgtt tctgtaatga aggagaaaac tcaccgaggc
agttccatag gatggcaaga 1500tcctggtatc ggtctgcgat tccgactcgt ccaacatcaa
tacaacctat taatttcccc 1560tcgtcaaaaa taaggttatc aagtgagaaa tcaccatgag
tgacgactga atccggtgag 1620aatggcaaaa gtttatgcat ttctttccag acttgttcaa
caggccagcc attacgctcg 1680tcatcaaaat cactcgcatc aaccaaaccg ttattcattc
gtgattgcgc ctgagcgaga 1740cgaaatacgc gatcgctgtt aaaaggacaa ttacaaacag
gaatcgaatg caaccggcgc 1800aggaacactg ccagcgcatc aacaatattt tcacctgaat
caggatattc ttctaatacc 1860tggaatgctg ttttcccggg gatcgcagtg gtgagtaacc
atgcatcatc aggagtacgg 1920ataaaatgct tgatggtcgg aagaggcata aattccgtca
gccagtttag tctgaccatc 1980tcatctgtaa catcattggc aacgctacct ttgccatgtt
tcagaaacaa ctctggcgca 2040tcgggcttcc catacaatcg atagattgtc gcacctgatt
gcccgacatt atcgcgagcc 2100catttatacc catataaatc agcatccatg ttggaattta
atcgcggcct agagcaagac 2160gtttcccgtt gaatatggct cataacaccc cttgtattac
tgtttatgta agcagacagt 2220tttattgttc atgaccaaaa tcccttaacg tgagttttcg
ttccactgag cgtcagaccc 2280cgtagaaaag atcaaaggat cttcttgaga tccttttttt
ctgcgcgtaa tctgctgctt 2340gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg
ccggatcaag agctaccaac 2400tctttttccg aaggtaactg gcttcagcag agcgcagata
ccaaatactg tccttctagt 2460gtagccgtag ttaggccacc acttcaagaa ctctgtagca
ccgcctacat acctcgctct 2520gctaatcctg ttaccagtgg ctgctgccag tggcgataag
tcgtgtctta ccgggttgga 2580ctcaagacga tagttaccgg ataaggcgca gcggtcgggc
tgaacggggg gttcgtgcac 2640acagcccagc ttggagcgaa cgacctacac cgaactgaga
tacctacagc gtgagctatg 2700agaaagcgcc acgcttcccg aagggagaaa ggcggacagg
tatccggtaa gcggcagggt 2760cggaacagga gagcgcacga gggagcttcc agggggaaac
gcctggtatc tttatagtcc 2820tgtcgggttt cgccacctct gacttgagcg tcgatttttg
tgatgctcgt caggggggcg 2880gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg
ttcctggcct tttgctggcc 2940ttttgctcac atgttctttc ctgcgttatc ccctgattct
gtggataacc gtattaccgc 3000ctttgagtga gctgataccg ctcgccgcag ccgaacgacc
gagcgcagcg agtcagtgag 3060cgaggaagcg gaagagcgcc tgatgcggta ttttctcctt
acgcatctgt gcggtatttc 3120acaccgcata tatggtgcac tctcagtaca atctgctctg
atgccgcata gttaagccag 3180tatacactcc gctatcgcta cgtgactggg tcatggctgc
gccccgacac ccgccaacac 3240ccgctgacgc gccctgacgg gcttgtctgc tcccggcatc
cgcttacaga caagctgtga 3300ccgtctccgg gagctgcatg tgtcagaggt tttcaccgtc
atcaccgaaa cgcgcgaggc 3360agctgcggta aagctcatca gcgtggtcgt gaagcgattc
acagatgtct gcctgttcat 3420ccgcgtccag ctcgttgagt ttctccagaa gcgttaatgt
ctggcttctg ataaagcggg 3480ccatgttaag ggcggttttt tcctgtttgg tcactgatgc
ctccgtgtaa gggggatttc 3540tgttcatggg ggtaatgata ccgatgaaac gagagaggat
gctcacgata cgggttactg 3600atgatgaaca tgcccggtta ctggaacgtt gtgagggtaa
acaactggcg gtatggatgc 3660ggcgggacca gagaaaaatc actcagggtc aatgccagcg
cttcgttaat acagatgtag 3720gtgttccaca gggtagccag cagcatcctg cgatgcagat
ccggaacata atggtgcagg 3780gcgctgactt ccgcgtttcc agactttacg aaacacggaa
accgaagacc attcatgttg 3840ttgctcaggt cgcagacgtt ttgcagcagc agtcgcttca
cgttcgctcg cgtatcggtg 3900attcattctg ctaaccagta aggcaacccc gccagcctag
ccgggtcctc aacgacagga 3960gcacgatcat gcgcacccgt ggggccgcca tgccggcgat
aatggcctgc ttctcgccga 4020aacgtttggt ggcgggacca gtgacgaagg cttgagcgag
ggcgtgcaag attccgaata 4080ccgcaagcga caggccgatc atcgtcgcgc tccagcgaaa
gcggtcctcg ccgaaaatga 4140cccagagcgc tgccggcacc tgtcctacga gttgcatgat
aaagaagaca gtcataagtg 4200cggcgacgat agtcatgccc cgcgcccacc ggaaggagct
gactgggttg aaggctctca 4260agggcatcgg tcgagatccc ggtgcctaat gagtgagcta
acttacatta attgcgttgc 4320gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca
gctgcattaa tgaatcggcc 4380aacgcgcggg gagaggcggt ttgcgtattg ggcgccaggg
tggtttttct tttcaccagt 4440gagacgggca acagctgatt gcccttcacc gcctggccct
gagagagttg cagcaagcgg 4500tccacgctgg tttgccccag caggcgaaaa tcctgtttga
tggtggttaa cggcgggata 4560taacatgagc tgtcttcggt atcgtcgtat cccactaccg
agatatccgc accaacgcgc 4620agcccggact cggtaatggc gcgcattgcg cccagcgcca
tctgatcgtt ggcaaccagc 4680atcgcagtgg gaacgatgcc ctcattcagc atttgcatgg
tttgttgaaa accggacatg 4740gcactccagt cgccttcccg ttccgctatc ggctgaattt
gattgcgagt gagatattta 4800tgccagccag ccagacgcag acgcgccgag acagaactta
atgggcccgc taacagcgcg 4860atttgctggt gacccaatgc gaccagatgc tccacgccca
gtcgcgtacc gtcttcatgg 4920gagaaaataa tactgttgat gggtgtctgg tcagagacat
caagaaataa cgccggaaca 4980ttagtgcagg cagcttccac agcaatggca tcctggtcat
ccagcggata gttaatgatc 5040agcccactga cgcgttgcgc gagaagattg tgcaccgccg
ctttacaggc ttcgacgccg 5100cttcgttcta ccatcgacac caccacgctg gcacccagtt
gatcggcgcg agatttaatc 5160gccgcgacaa tttgcgacgg cgcgtgcagg gccagactgg
aggtggcaac gccaatcagc 5220aacgactgtt tgcccgccag ttgttgtgcc acgcggttgg
gaatgtaatt cagctccgcc 5280atcgccgctt ccactttttc ccgcgttttc gcagaaacgt
ggctggcctg gttcaccacg 5340cgggaaacgg tctgataaga gacaccggca tactctgcga
catcgtataa cgttactggt 5400ttcacattca ccaccctgaa ttgactctct tccgggcgct
atcatgccat accgcgaaag 5460gttttgcgcc attcgatggt gtccgggatc tcgacgctct
cccttatgcg actcctgcat 5520taggaagcag cccagtagta ggttgaggcc gttgagcacc
gccgccgcaa ggaatggtgc 5580atgcaaggag atggcgccca acagtccccc ggccacgggg
cctgccacca tacccacgcc 5640gaaacaagcg ctcatgagcc cgaagtggcg agcccgatct
tccccatcgg tgatgtcggc 5700gatataggcg ccagcaaccg cacctgtggc gccggtgatg
ccggccacga tgcgtccggc 5760gtagaggatc gagatctcga tcccgcgaaa ttaatacgac
tcactata 5808136153DNAArtificial SequenceNucleic acid
sequence of vector pET24d-N-(PSc)- Pen_a 1.0101 comprising a
sequence encoding for Pen a 1.0101 13ggggaattgt gagcggataa caattcccct
ctagaaataa ttttgtttaa ctttaagaag 60gagatatacc atgagccatc atcatcatca
tcatcatcat ttggaagtgc tgtttcaggg 120tccatccatg gatgccatca agaagaagat
gcaggccatg aaactggaga aagacaacgc 180catggatcgt gcggatacac tggaacagca
gaacaaagaa gcgaataatc gtgcggaaaa 240gtctgaagaa gaagtgcata atctgcagaa
acgcatgcaa cagttggaaa acgatctgga 300tcaagtgcag gaaagtctcc tgaaagcgaa
cattcagctg gtagagaaag acaaagcgct 360ttcgaatgca gaaggcgaag ttgccgcctt
gaatcgtcgc attcaactgt tggaagaaga 420tctggaacgc tcagaagagc ggttaaatac
cgccaccacc aaattagctg aagcaagcca 480agcagccgac gaatctgaac gtatgcgcaa
agtgctggag aatcgctcac tctcggatga 540agaacgcatg gacgcgttag agaaccagct
gaaagaggct cgttttctcg cggaggaagc 600tgaccggaaa tacgatgaag tggcgcgcaa
actggccatg gttgaggccg accttgagcg 660cgctgaagaa cgcgcagaga ctggtgagag
caaaatcgta gaactggaag aggagttacg 720tgtcgttggc aataacctga aatccctgga
agtttccgag gagaaagcta accagcgcga 780agaagcgtat aaagaacaga tcaagactct
gacgaacaaa ctgaaagcgg cagaggcacg 840tgcggaattt gcagaacgta gcgtgcaaaa
gctgcagaaa gaagtcgatc gcttggaaga 900tgaactggtc aacgagaaag aaaagtacaa
atcgattacc gatgaactcg accaaacgtt 960cagcgaactt agtgggtatt aatcgagtaa
gtcgagcacc accaccacca ccactgagat 1020ccggctgcta acaaagcccg aaaggaagct
gagttggctg ctgccaccgc tgagcaataa 1080ctagcataac cccttggggc ctctaaacgg
gtcttgaggg gttttttgct gaaaggagga 1140actatatccg gattggcgaa tgggacgcgc
cctgtagcgg cgcattaagc gcggcgggtg 1200tggtggttac gcgcagcgtg accgctacac
ttgccagcgc cctagcgccc gctcctttcg 1260ctttcttccc ttcctttctc gccacgttcg
ccggctttcc ccgtcaagct ctaaatcggg 1320ggctcccttt agggttccga tttagtgctt
tacggcacct cgaccccaaa aaacttgatt 1380agggtgatgg ttcacgtagt gggccatcgc
cctgatagac ggtttttcgc cctttgacgt 1440tggagtccac gttctttaat agtggactct
tgttccaaac tggaacaaca ctcaacccta 1500tctcggtcta ttcttttgat ttataaggga
ttttgccgat ttcggcctat tggttaaaaa 1560atgagctgat ttaacaaaaa tttaacgcga
attttaacaa aatattaacg tttacaattt 1620caggtggcac ttttcgggga aatgtgcgcg
gaacccctat ttgtttattt ttctaaatac 1680attcaaatat gtatccgctc atgaattaat
tcttagaaaa actcatcgag catcaaatga 1740aactgcaatt tattcatatc aggattatca
ataccatatt tttgaaaaag ccgtttctgt 1800aatgaaggag aaaactcacc gaggcagttc
cataggatgg caagatcctg gtatcggtct 1860gcgattccga ctcgtccaac atcaatacaa
cctattaatt tcccctcgtc aaaaataagg 1920ttatcaagtg agaaatcacc atgagtgacg
actgaatccg gtgagaatgg caaaagttta 1980tgcatttctt tccagacttg ttcaacaggc
cagccattac gctcgtcatc aaaatcactc 2040gcatcaacca aaccgttatt cattcgtgat
tgcgcctgag cgagacgaaa tacgcgatcg 2100ctgttaaaag gacaattaca aacaggaatc
gaatgcaacc ggcgcaggaa cactgccagc 2160gcatcaacaa tattttcacc tgaatcagga
tattcttcta atacctggaa tgctgttttc 2220ccggggatcg cagtggtgag taaccatgca
tcatcaggag tacggataaa atgcttgatg 2280gtcggaagag gcataaattc cgtcagccag
tttagtctga ccatctcatc tgtaacatca 2340ttggcaacgc tacctttgcc atgtttcaga
aacaactctg gcgcatcggg cttcccatac 2400aatcgataga ttgtcgcacc tgattgcccg
acattatcgc gagcccattt atacccatat 2460aaatcagcat ccatgttgga atttaatcgc
ggcctagagc aagacgtttc ccgttgaata 2520tggctcataa caccccttgt attactgttt
atgtaagcag acagttttat tgttcatgac 2580caaaatccct taacgtgagt tttcgttcca
ctgagcgtca gaccccgtag aaaagatcaa 2640aggatcttct tgagatcctt tttttctgcg
cgtaatctgc tgcttgcaaa caaaaaaacc 2700accgctacca gcggtggttt gtttgccgga
tcaagagcta ccaactcttt ttccgaaggt 2760aactggcttc agcagagcgc agataccaaa
tactgtcctt ctagtgtagc cgtagttagg 2820ccaccacttc aagaactctg tagcaccgcc
tacatacctc gctctgctaa tcctgttacc 2880agtggctgct gccagtggcg ataagtcgtg
tcttaccggg ttggactcaa gacgatagtt 2940accggataag gcgcagcggt cgggctgaac
ggggggttcg tgcacacagc ccagcttgga 3000gcgaacgacc tacaccgaac tgagatacct
acagcgtgag ctatgagaaa gcgccacgct 3060tcccgaaggg agaaaggcgg acaggtatcc
ggtaagcggc agggtcggaa caggagagcg 3120cacgagggag cttccagggg gaaacgcctg
gtatctttat agtcctgtcg ggtttcgcca 3180cctctgactt gagcgtcgat ttttgtgatg
ctcgtcaggg gggcggagcc tatggaaaaa 3240cgccagcaac gcggcctttt tacggttcct
ggccttttgc tggccttttg ctcacatgtt 3300ctttcctgcg ttatcccctg attctgtgga
taaccgtatt accgcctttg agtgagctga 3360taccgctcgc cgcagccgaa cgaccgagcg
cagcgagtca gtgagcgagg aagcggaaga 3420gcgcctgatg cggtattttc tccttacgca
tctgtgcggt atttcacacc gcatatatgg 3480tgcactctca gtacaatctg ctctgatgcc
gcatagttaa gccagtatac actccgctat 3540cgctacgtga ctgggtcatg gctgcgcccc
gacacccgcc aacacccgct gacgcgccct 3600gacgggcttg tctgctcccg gcatccgctt
acagacaagc tgtgaccgtc tccgggagct 3660gcatgtgtca gaggttttca ccgtcatcac
cgaaacgcgc gaggcagctg cggtaaagct 3720catcagcgtg gtcgtgaagc gattcacaga
tgtctgcctg ttcatccgcg tccagctcgt 3780tgagtttctc cagaagcgtt aatgtctggc
ttctgataaa gcgggccatg ttaagggcgg 3840ttttttcctg tttggtcact gatgcctccg
tgtaaggggg atttctgttc atgggggtaa 3900tgataccgat gaaacgagag aggatgctca
cgatacgggt tactgatgat gaacatgccc 3960ggttactgga acgttgtgag ggtaaacaac
tggcggtatg gatgcggcgg gaccagagaa 4020aaatcactca gggtcaatgc cagcgcttcg
ttaatacaga tgtaggtgtt ccacagggta 4080gccagcagca tcctgcgatg cagatccgga
acataatggt gcagggcgct gacttccgcg 4140tttccagact ttacgaaaca cggaaaccga
agaccattca tgttgttgct caggtcgcag 4200acgttttgca gcagcagtcg cttcacgttc
gctcgcgtat cggtgattca ttctgctaac 4260cagtaaggca accccgccag cctagccggg
tcctcaacga caggagcacg atcatgcgca 4320cccgtggggc cgccatgccg gcgataatgg
cctgcttctc gccgaaacgt ttggtggcgg 4380gaccagtgac gaaggcttga gcgagggcgt
gcaagattcc gaataccgca agcgacaggc 4440cgatcatcgt cgcgctccag cgaaagcggt
cctcgccgaa aatgacccag agcgctgccg 4500gcacctgtcc tacgagttgc atgataaaga
agacagtcat aagtgcggcg acgatagtca 4560tgccccgcgc ccaccggaag gagctgactg
ggttgaaggc tctcaagggc atcggtcgag 4620atcccggtgc ctaatgagtg agctaactta
cattaattgc gttgcgctca ctgcccgctt 4680tccagtcggg aaacctgtcg tgccagctgc
attaatgaat cggccaacgc gcggggagag 4740gcggtttgcg tattgggcgc cagggtggtt
tttcttttca ccagtgagac gggcaacagc 4800tgattgccct tcaccgcctg gccctgagag
agttgcagca agcggtccac gctggtttgc 4860cccagcaggc gaaaatcctg tttgatggtg
gttaacggcg ggatataaca tgagctgtct 4920tcggtatcgt cgtatcccac taccgagata
tccgcaccaa cgcgcagccc ggactcggta 4980atggcgcgca ttgcgcccag cgccatctga
tcgttggcaa ccagcatcgc agtgggaacg 5040atgccctcat tcagcatttg catggtttgt
tgaaaaccgg acatggcact ccagtcgcct 5100tcccgttccg ctatcggctg aatttgattg
cgagtgagat atttatgcca gccagccaga 5160cgcagacgcg ccgagacaga acttaatggg
cccgctaaca gcgcgatttg ctggtgaccc 5220aatgcgacca gatgctccac gcccagtcgc
gtaccgtctt catgggagaa aataatactg 5280ttgatgggtg tctggtcaga gacatcaaga
aataacgccg gaacattagt gcaggcagct 5340tccacagcaa tggcatcctg gtcatccagc
ggatagttaa tgatcagccc actgacgcgt 5400tgcgcgagaa gattgtgcac cgccgcttta
caggcttcga cgccgcttcg ttctaccatc 5460gacaccacca cgctggcacc cagttgatcg
gcgcgagatt taatcgccgc gacaatttgc 5520gacggcgcgt gcagggccag actggaggtg
gcaacgccaa tcagcaacga ctgtttgccc 5580gccagttgtt gtgccacgcg gttgggaatg
taattcagct ccgccatcgc cgcttccact 5640ttttcccgcg ttttcgcaga aacgtggctg
gcctggttca ccacgcggga aacggtctga 5700taagagacac cggcatactc tgcgacatcg
tataacgtta ctggtttcac attcaccacc 5760ctgaattgac tctcttccgg gcgctatcat
gccataccgc gaaaggtttt gcgccattcg 5820atggtgtccg ggatctcgac gctctccctt
atgcgactcc tgcattagga agcagcccag 5880tagtaggttg aggccgttga gcaccgccgc
cgcaaggaat ggtgcatgca aggagatggc 5940gcccaacagt cccccggcca cggggcctgc
caccataccc acgccgaaac aagcgctcat 6000gagcccgaag tggcgagccc gatcttcccc
atcggtgatg tcggcgatat aggcgccagc 6060aaccgcacct gtggcgccgg tgatgccggc
cacgatgcgt ccggcgtaga ggatcgagat 6120ctcgatcccg cgaaattaat acgactcact
ata 6153146156DNAArtificial
SequenceNucleic acid sequence of vector pET24d-N-(PSc)- Sep l1.0101
comprising a sequence encoding for Sep l1.0101 14ggggaattgt gagcggataa
caattcccct ctagaaataa ttttgtttaa ctttaagaag 60gagatatacc atgagccatc
atcatcatca tcatcatcat ttggaagtgc tgtttcaggg 120tccatccatg gatgccatca
agaagaaaat gctggctatg aaaatggaga aagaggttgc 180aaccgacaaa gcggagcaaa
ccgaacagtc actgcgtgat ctggaagatg cgaagaacaa 240aatcgaagaa gatctgagca
cattgcagaa gaaatatgcc aacctcgaaa acgatttcga 300caatgcgaat gaacagctga
ctgcagcgaa cacgaactta gaagcgtccg agaaacgtgt 360cgcagaatgc gaatcggaga
ttcaaggcct taatcggcgc attcagctgc ttgaagagga 420cttagagcgt agtgaagaac
gcttttctag cgctcagagc aaactggaag atgcctcgaa 480agccgctgat gaatccgaac
gtggtcgcaa agtgctggag aatcgcagtc aaggggacga 540agaacgcatt gatctgctcg
agaaacagtt ggaagaagcg aaatggattg ccgaagatgc 600ggatcgcaaa ttcgacgaag
ctgcgcgtaa actggccatt accgaagtcg atctcgaacg 660tgcggaagca cgtttggaag
cagctgaggc gaaaatcgtg gaactggagg aggaactgaa 720agtagttggc aacaacatga
aatcgctgga aatctcagag caggaagctt ctcaacgtga 780ggacagctat gaggaaacca
ttcgcgatct tactcatcgc ctgaaagagg ccgaaaatcg 840ggcagcagaa gccgaacgca
cagtgtccaa actgcagaaa gaggttgatc gcttagagga 900cgaactgctg gccgaaaagg
aacgctacaa gaccatcagt gacgaattgg atcagacgtt 960tgcggaatta gcgggttatt
aatgatcgag taagtcgagc accaccacca ccaccactga 1020gatccggctg ctaacaaagc
ccgaaaggaa gctgagttgg ctgctgccac cgctgagcaa 1080taactagcat aaccccttgg
ggcctctaaa cgggtcttga ggggtttttt gctgaaagga 1140ggaactatat ccggattggc
gaatgggacg cgccctgtag cggcgcatta agcgcggcgg 1200gtgtggtggt tacgcgcagc
gtgaccgcta cacttgccag cgccctagcg cccgctcctt 1260tcgctttctt cccttccttt
ctcgccacgt tcgccggctt tccccgtcaa gctctaaatc 1320gggggctccc tttagggttc
cgatttagtg ctttacggca cctcgacccc aaaaaacttg 1380attagggtga tggttcacgt
agtgggccat cgccctgata gacggttttt cgccctttga 1440cgttggagtc cacgttcttt
aatagtggac tcttgttcca aactggaaca acactcaacc 1500ctatctcggt ctattctttt
gatttataag ggattttgcc gatttcggcc tattggttaa 1560aaaatgagct gatttaacaa
aaatttaacg cgaattttaa caaaatatta acgtttacaa 1620tttcaggtgg cacttttcgg
ggaaatgtgc gcggaacccc tatttgttta tttttctaaa 1680tacattcaaa tatgtatccg
ctcatgaatt aattcttaga aaaactcatc gagcatcaaa 1740tgaaactgca atttattcat
atcaggatta tcaataccat atttttgaaa aagccgtttc 1800tgtaatgaag gagaaaactc
accgaggcag ttccatagga tggcaagatc ctggtatcgg 1860tctgcgattc cgactcgtcc
aacatcaata caacctatta atttcccctc gtcaaaaata 1920aggttatcaa gtgagaaatc
accatgagtg acgactgaat ccggtgagaa tggcaaaagt 1980ttatgcattt ctttccagac
ttgttcaaca ggccagccat tacgctcgtc atcaaaatca 2040ctcgcatcaa ccaaaccgtt
attcattcgt gattgcgcct gagcgagacg aaatacgcga 2100tcgctgttaa aaggacaatt
acaaacagga atcgaatgca accggcgcag gaacactgcc 2160agcgcatcaa caatattttc
acctgaatca ggatattctt ctaatacctg gaatgctgtt 2220ttcccgggga tcgcagtggt
gagtaaccat gcatcatcag gagtacggat aaaatgcttg 2280atggtcggaa gaggcataaa
ttccgtcagc cagtttagtc tgaccatctc atctgtaaca 2340tcattggcaa cgctaccttt
gccatgtttc agaaacaact ctggcgcatc gggcttccca 2400tacaatcgat agattgtcgc
acctgattgc ccgacattat cgcgagccca tttataccca 2460tataaatcag catccatgtt
ggaatttaat cgcggcctag agcaagacgt ttcccgttga 2520atatggctca taacacccct
tgtattactg tttatgtaag cagacagttt tattgttcat 2580gaccaaaatc ccttaacgtg
agttttcgtt ccactgagcg tcagaccccg tagaaaagat 2640caaaggatct tcttgagatc
ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa 2700accaccgcta ccagcggtgg
tttgtttgcc ggatcaagag ctaccaactc tttttccgaa 2760ggtaactggc ttcagcagag
cgcagatacc aaatactgtc cttctagtgt agccgtagtt 2820aggccaccac ttcaagaact
ctgtagcacc gcctacatac ctcgctctgc taatcctgtt 2880accagtggct gctgccagtg
gcgataagtc gtgtcttacc gggttggact caagacgata 2940gttaccggat aaggcgcagc
ggtcgggctg aacggggggt tcgtgcacac agcccagctt 3000ggagcgaacg acctacaccg
aactgagata cctacagcgt gagctatgag aaagcgccac 3060gcttcccgaa gggagaaagg
cggacaggta tccggtaagc ggcagggtcg gaacaggaga 3120gcgcacgagg gagcttccag
ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg 3180ccacctctga cttgagcgtc
gatttttgtg atgctcgtca ggggggcgga gcctatggaa 3240aaacgccagc aacgcggcct
ttttacggtt cctggccttt tgctggcctt ttgctcacat 3300gttctttcct gcgttatccc
ctgattctgt ggataaccgt attaccgcct ttgagtgagc 3360tgataccgct cgccgcagcc
gaacgaccga gcgcagcgag tcagtgagcg aggaagcgga 3420agagcgcctg atgcggtatt
ttctccttac gcatctgtgc ggtatttcac accgcatata 3480tggtgcactc tcagtacaat
ctgctctgat gccgcatagt taagccagta tacactccgc 3540tatcgctacg tgactgggtc
atggctgcgc cccgacaccc gccaacaccc gctgacgcgc 3600cctgacgggc ttgtctgctc
ccggcatccg cttacagaca agctgtgacc gtctccggga 3660gctgcatgtg tcagaggttt
tcaccgtcat caccgaaacg cgcgaggcag ctgcggtaaa 3720gctcatcagc gtggtcgtga
agcgattcac agatgtctgc ctgttcatcc gcgtccagct 3780cgttgagttt ctccagaagc
gttaatgtct ggcttctgat aaagcgggcc atgttaaggg 3840cggttttttc ctgtttggtc
actgatgcct ccgtgtaagg gggatttctg ttcatggggg 3900taatgatacc gatgaaacga
gagaggatgc tcacgatacg ggttactgat gatgaacatg 3960cccggttact ggaacgttgt
gagggtaaac aactggcggt atggatgcgg cgggaccaga 4020gaaaaatcac tcagggtcaa
tgccagcgct tcgttaatac agatgtaggt gttccacagg 4080gtagccagca gcatcctgcg
atgcagatcc ggaacataat ggtgcagggc gctgacttcc 4140gcgtttccag actttacgaa
acacggaaac cgaagaccat tcatgttgtt gctcaggtcg 4200cagacgtttt gcagcagcag
tcgcttcacg ttcgctcgcg tatcggtgat tcattctgct 4260aaccagtaag gcaaccccgc
cagcctagcc gggtcctcaa cgacaggagc acgatcatgc 4320gcacccgtgg ggccgccatg
ccggcgataa tggcctgctt ctcgccgaaa cgtttggtgg 4380cgggaccagt gacgaaggct
tgagcgaggg cgtgcaagat tccgaatacc gcaagcgaca 4440ggccgatcat cgtcgcgctc
cagcgaaagc ggtcctcgcc gaaaatgacc cagagcgctg 4500ccggcacctg tcctacgagt
tgcatgataa agaagacagt cataagtgcg gcgacgatag 4560tcatgccccg cgcccaccgg
aaggagctga ctgggttgaa ggctctcaag ggcatcggtc 4620gagatcccgg tgcctaatga
gtgagctaac ttacattaat tgcgttgcgc tcactgcccg 4680ctttccagtc gggaaacctg
tcgtgccagc tgcattaatg aatcggccaa cgcgcgggga 4740gaggcggttt gcgtattggg
cgccagggtg gtttttcttt tcaccagtga gacgggcaac 4800agctgattgc ccttcaccgc
ctggccctga gagagttgca gcaagcggtc cacgctggtt 4860tgccccagca ggcgaaaatc
ctgtttgatg gtggttaacg gcgggatata acatgagctg 4920tcttcggtat cgtcgtatcc
cactaccgag atatccgcac caacgcgcag cccggactcg 4980gtaatggcgc gcattgcgcc
cagcgccatc tgatcgttgg caaccagcat cgcagtggga 5040acgatgccct cattcagcat
ttgcatggtt tgttgaaaac cggacatggc actccagtcg 5100ccttcccgtt ccgctatcgg
ctgaatttga ttgcgagtga gatatttatg ccagccagcc 5160agacgcagac gcgccgagac
agaacttaat gggcccgcta acagcgcgat ttgctggtga 5220cccaatgcga ccagatgctc
cacgcccagt cgcgtaccgt cttcatggga gaaaataata 5280ctgttgatgg gtgtctggtc
agagacatca agaaataacg ccggaacatt agtgcaggca 5340gcttccacag caatggcatc
ctggtcatcc agcggatagt taatgatcag cccactgacg 5400cgttgcgcga gaagattgtg
caccgccgct ttacaggctt cgacgccgct tcgttctacc 5460atcgacacca ccacgctggc
acccagttga tcggcgcgag atttaatcgc cgcgacaatt 5520tgcgacggcg cgtgcagggc
cagactggag gtggcaacgc caatcagcaa cgactgtttg 5580cccgccagtt gttgtgccac
gcggttggga atgtaattca gctccgccat cgccgcttcc 5640actttttccc gcgttttcgc
agaaacgtgg ctggcctggt tcaccacgcg ggaaacggtc 5700tgataagaga caccggcata
ctctgcgaca tcgtataacg ttactggttt cacattcacc 5760accctgaatt gactctcttc
cgggcgctat catgccatac cgcgaaaggt tttgcgccat 5820tcgatggtgt ccgggatctc
gacgctctcc cttatgcgac tcctgcatta ggaagcagcc 5880cagtagtagg ttgaggccgt
tgagcaccgc cgccgcaagg aatggtgcat gcaaggagat 5940ggcgcccaac agtcccccgg
ccacggggcc tgccaccata cccacgccga aacaagcgct 6000catgagcccg aagtggcgag
cccgatcttc cccatcggtg atgtcggcga tataggcgcc 6060agcaaccgca cctgtggcgc
cggtgatgcc ggccacgatg cgtccggcgt agaggatcga 6120gatctcgatc ccgcgaaatt
aatacgactc actata 6156155784DNAArtificial
SequenceNucleic acid sequence of vector pET24d-N-(PSc)- Tod p MLC1
comprising a sequence encoding for Tod p MLC1 (Light Chain 1)
15ggggaattgt gagcggataa caattcccct ctagaaataa ttttgtttaa ctttaagaag
60gagatatacc atgagccatc atcatcatca tcatcatcat ttggaagtgc tgtttcaggg
120tccatccatg tctcaactga ccaaagacga aattgaggaa gtccgtgaag tgtttgacct
180cttcgacttt tgggatggtc gtgatggtga tgttgacgct gcgaaagttg gcgatctgtt
240acgctgttta gggatgaatc caaccgaagc tcaggtacac caacatggag gcacgaagaa
300aatgggcgag aaagcgtata aactggaaga gattctgccg atttatgagg aaatgagctc
360caaagatact ggcacagcag cggacgaatt catggaagcc ttcaaaacgt ttgatcgtga
420aggtcagggt ttgatcagtt cagccgaaat tcggaatgtg ctgaaaatgc ttggcgaacg
480cattaccgag gatcagtgca acgatatctt caccttttgc gacattcgcg aagatatcga
540tgggaacatc aaatacgagg atctgatgaa gaaggtgatg gcaggacctt ttccggacaa
600atcggattaa tgatcgagta agtcgagcac caccaccacc accactgaga tccggctgct
660aacaaagccc gaaaggaagc tgagttggct gctgccaccg ctgagcaata actagcataa
720ccccttgggg cctctaaacg ggtcttgagg ggttttttgc tgaaaggagg aactatatcc
780ggattggcga atgggacgcg ccctgtagcg gcgcattaag cgcggcgggt gtggtggtta
840cgcgcagcgt gaccgctaca cttgccagcg ccctagcgcc cgctcctttc gctttcttcc
900cttcctttct cgccacgttc gccggctttc cccgtcaagc tctaaatcgg gggctccctt
960tagggttccg atttagtgct ttacggcacc tcgaccccaa aaaacttgat tagggtgatg
1020gttcacgtag tgggccatcg ccctgataga cggtttttcg ccctttgacg ttggagtcca
1080cgttctttaa tagtggactc ttgttccaaa ctggaacaac actcaaccct atctcggtct
1140attcttttga tttataaggg attttgccga tttcggccta ttggttaaaa aatgagctga
1200tttaacaaaa atttaacgcg aattttaaca aaatattaac gtttacaatt tcaggtggca
1260cttttcgggg aaatgtgcgc ggaaccccta tttgtttatt tttctaaata cattcaaata
1320tgtatccgct catgaattaa ttcttagaaa aactcatcga gcatcaaatg aaactgcaat
1380ttattcatat caggattatc aataccatat ttttgaaaaa gccgtttctg taatgaagga
1440gaaaactcac cgaggcagtt ccataggatg gcaagatcct ggtatcggtc tgcgattccg
1500actcgtccaa catcaataca acctattaat ttcccctcgt caaaaataag gttatcaagt
1560gagaaatcac catgagtgac gactgaatcc ggtgagaatg gcaaaagttt atgcatttct
1620ttccagactt gttcaacagg ccagccatta cgctcgtcat caaaatcact cgcatcaacc
1680aaaccgttat tcattcgtga ttgcgcctga gcgagacgaa atacgcgatc gctgttaaaa
1740ggacaattac aaacaggaat cgaatgcaac cggcgcagga acactgccag cgcatcaaca
1800atattttcac ctgaatcagg atattcttct aatacctgga atgctgtttt cccggggatc
1860gcagtggtga gtaaccatgc atcatcagga gtacggataa aatgcttgat ggtcggaaga
1920ggcataaatt ccgtcagcca gtttagtctg accatctcat ctgtaacatc attggcaacg
1980ctacctttgc catgtttcag aaacaactct ggcgcatcgg gcttcccata caatcgatag
2040attgtcgcac ctgattgccc gacattatcg cgagcccatt tatacccata taaatcagca
2100tccatgttgg aatttaatcg cggcctagag caagacgttt cccgttgaat atggctcata
2160acaccccttg tattactgtt tatgtaagca gacagtttta ttgttcatga ccaaaatccc
2220ttaacgtgag ttttcgttcc actgagcgtc agaccccgta gaaaagatca aaggatcttc
2280ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa acaaaaaaac caccgctacc
2340agcggtggtt tgtttgccgg atcaagagct accaactctt tttccgaagg taactggctt
2400cagcagagcg cagataccaa atactgtcct tctagtgtag ccgtagttag gccaccactt
2460caagaactct gtagcaccgc ctacatacct cgctctgcta atcctgttac cagtggctgc
2520tgccagtggc gataagtcgt gtcttaccgg gttggactca agacgatagt taccggataa
2580ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag cccagcttgg agcgaacgac
2640ctacaccgaa ctgagatacc tacagcgtga gctatgagaa agcgccacgc ttcccgaagg
2700gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga acaggagagc gcacgaggga
2760gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc acctctgact
2820tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa
2880cgcggccttt ttacggttcc tggccttttg ctggcctttt gctcacatgt tctttcctgc
2940gttatcccct gattctgtgg ataaccgtat taccgccttt gagtgagctg ataccgctcg
3000ccgcagccga acgaccgagc gcagcgagtc agtgagcgag gaagcggaag agcgcctgat
3060gcggtatttt ctccttacgc atctgtgcgg tatttcacac cgcatatatg gtgcactctc
3120agtacaatct gctctgatgc cgcatagtta agccagtata cactccgcta tcgctacgtg
3180actgggtcat ggctgcgccc cgacacccgc caacacccgc tgacgcgccc tgacgggctt
3240gtctgctccc ggcatccgct tacagacaag ctgtgaccgt ctccgggagc tgcatgtgtc
3300agaggttttc accgtcatca ccgaaacgcg cgaggcagct gcggtaaagc tcatcagcgt
3360ggtcgtgaag cgattcacag atgtctgcct gttcatccgc gtccagctcg ttgagtttct
3420ccagaagcgt taatgtctgg cttctgataa agcgggccat gttaagggcg gttttttcct
3480gtttggtcac tgatgcctcc gtgtaagggg gatttctgtt catgggggta atgataccga
3540tgaaacgaga gaggatgctc acgatacggg ttactgatga tgaacatgcc cggttactgg
3600aacgttgtga gggtaaacaa ctggcggtat ggatgcggcg ggaccagaga aaaatcactc
3660agggtcaatg ccagcgcttc gttaatacag atgtaggtgt tccacagggt agccagcagc
3720atcctgcgat gcagatccgg aacataatgg tgcagggcgc tgacttccgc gtttccagac
3780tttacgaaac acggaaaccg aagaccattc atgttgttgc tcaggtcgca gacgttttgc
3840agcagcagtc gcttcacgtt cgctcgcgta tcggtgattc attctgctaa ccagtaaggc
3900aaccccgcca gcctagccgg gtcctcaacg acaggagcac gatcatgcgc acccgtgggg
3960ccgccatgcc ggcgataatg gcctgcttct cgccgaaacg tttggtggcg ggaccagtga
4020cgaaggcttg agcgagggcg tgcaagattc cgaataccgc aagcgacagg ccgatcatcg
4080tcgcgctcca gcgaaagcgg tcctcgccga aaatgaccca gagcgctgcc ggcacctgtc
4140ctacgagttg catgataaag aagacagtca taagtgcggc gacgatagtc atgccccgcg
4200cccaccggaa ggagctgact gggttgaagg ctctcaaggg catcggtcga gatcccggtg
4260cctaatgagt gagctaactt acattaattg cgttgcgctc actgcccgct ttccagtcgg
4320gaaacctgtc gtgccagctg cattaatgaa tcggccaacg cgcggggaga ggcggtttgc
4380gtattgggcg ccagggtggt ttttcttttc accagtgaga cgggcaacag ctgattgccc
4440ttcaccgcct ggccctgaga gagttgcagc aagcggtcca cgctggtttg ccccagcagg
4500cgaaaatcct gtttgatggt ggttaacggc gggatataac atgagctgtc ttcggtatcg
4560tcgtatccca ctaccgagat atccgcacca acgcgcagcc cggactcggt aatggcgcgc
4620attgcgccca gcgccatctg atcgttggca accagcatcg cagtgggaac gatgccctca
4680ttcagcattt gcatggtttg ttgaaaaccg gacatggcac tccagtcgcc ttcccgttcc
4740gctatcggct gaatttgatt gcgagtgaga tatttatgcc agccagccag acgcagacgc
4800gccgagacag aacttaatgg gcccgctaac agcgcgattt gctggtgacc caatgcgacc
4860agatgctcca cgcccagtcg cgtaccgtct tcatgggaga aaataatact gttgatgggt
4920gtctggtcag agacatcaag aaataacgcc ggaacattag tgcaggcagc ttccacagca
4980atggcatcct ggtcatccag cggatagtta atgatcagcc cactgacgcg ttgcgcgaga
5040agattgtgca ccgccgcttt acaggcttcg acgccgcttc gttctaccat cgacaccacc
5100acgctggcac ccagttgatc ggcgcgagat ttaatcgccg cgacaatttg cgacggcgcg
5160tgcagggcca gactggaggt ggcaacgcca atcagcaacg actgtttgcc cgccagttgt
5220tgtgccacgc ggttgggaat gtaattcagc tccgccatcg ccgcttccac tttttcccgc
5280gttttcgcag aaacgtggct ggcctggttc accacgcggg aaacggtctg ataagagaca
5340ccggcatact ctgcgacatc gtataacgtt actggtttca cattcaccac cctgaattga
5400ctctcttccg ggcgctatca tgccataccg cgaaaggttt tgcgccattc gatggtgtcc
5460gggatctcga cgctctccct tatgcgactc ctgcattagg aagcagccca gtagtaggtt
5520gaggccgttg agcaccgccg ccgcaaggaa tggtgcatgc aaggagatgg cgcccaacag
5580tcccccggcc acggggcctg ccaccatacc cacgccgaaa caagcgctca tgagcccgaa
5640gtggcgagcc cgatcttccc catcggtgat gtcggcgata taggcgccag caaccgcacc
5700tgtggcgccg gtgatgccgg ccacgatgcg tccggcgtag aggatcgaga tctcgatccc
5760gcgaaattaa tacgactcac tata
5784165766DNAArtificial SequenceNucleic acid sequence of pEt24d-derived
vector pET24d-N-(PSc)-Tod p MLC2 comprising a sequence encoding for
Tod p MLC2 (Light Chain 2) 16ggggaattgt gagcggataa caattcccct
ctagaaataa ttttgtttaa ctttaagaag 60gagatatacc atgagccatc atcatcatca
tcatcatcat ttggaagtgc tgtttcaggg 120tccatccatg gcggaagaag ctcctcgtcg
cgtgaaactg tcacaacgcc agatgcagga 180gctgaaagaa gcgtttacca tgattgatca
ggaccgtgat gggttcattg gcatggaaga 240tctgaaagac atgttcagct ctttaggacg
ggtaccaccc gatgacgaac tgaatgccat 300gctgaaagaa tgcccgggtc aactcaattt
cacggctttt ctgaccttgt ttggggagaa 360agtgagtggt actgacccgg aagatgcact
tcgcaatgcc ttttcgatgt tcgacgaaga 420tggtcagggc tttatcccgg aagattatct
gaaagacttg ctggaaaata tgggcgataa 480cttttccaaa gaggagatta agaacgtctg
gaaagatgca ccgttaaaga acaaacagtt 540caactacaac aagatggttg acatcaaagg
caaagcggag gatgaagatt aatgatcgag 600taagtcgagc accaccacca ccaccactga
gatccggctg ctaacaaagc ccgaaaggaa 660gctgagttgg ctgctgccac cgctgagcaa
taactagcat aaccccttgg ggcctctaaa 720cgggtcttga ggggtttttt gctgaaagga
ggaactatat ccggattggc gaatgggacg 780cgccctgtag cggcgcatta agcgcggcgg
gtgtggtggt tacgcgcagc gtgaccgcta 840cacttgccag cgccctagcg cccgctcctt
tcgctttctt cccttccttt ctcgccacgt 900tcgccggctt tccccgtcaa gctctaaatc
gggggctccc tttagggttc cgatttagtg 960ctttacggca cctcgacccc aaaaaacttg
attagggtga tggttcacgt agtgggccat 1020cgccctgata gacggttttt cgccctttga
cgttggagtc cacgttcttt aatagtggac 1080tcttgttcca aactggaaca acactcaacc
ctatctcggt ctattctttt gatttataag 1140ggattttgcc gatttcggcc tattggttaa
aaaatgagct gatttaacaa aaatttaacg 1200cgaattttaa caaaatatta acgtttacaa
tttcaggtgg cacttttcgg ggaaatgtgc 1260gcggaacccc tatttgttta tttttctaaa
tacattcaaa tatgtatccg ctcatgaatt 1320aattcttaga aaaactcatc gagcatcaaa
tgaaactgca atttattcat atcaggatta 1380tcaataccat atttttgaaa aagccgtttc
tgtaatgaag gagaaaactc accgaggcag 1440ttccatagga tggcaagatc ctggtatcgg
tctgcgattc cgactcgtcc aacatcaata 1500caacctatta atttcccctc gtcaaaaata
aggttatcaa gtgagaaatc accatgagtg 1560acgactgaat ccggtgagaa tggcaaaagt
ttatgcattt ctttccagac ttgttcaaca 1620ggccagccat tacgctcgtc atcaaaatca
ctcgcatcaa ccaaaccgtt attcattcgt 1680gattgcgcct gagcgagacg aaatacgcga
tcgctgttaa aaggacaatt acaaacagga 1740atcgaatgca accggcgcag gaacactgcc
agcgcatcaa caatattttc acctgaatca 1800ggatattctt ctaatacctg gaatgctgtt
ttcccgggga tcgcagtggt gagtaaccat 1860gcatcatcag gagtacggat aaaatgcttg
atggtcggaa gaggcataaa ttccgtcagc 1920cagtttagtc tgaccatctc atctgtaaca
tcattggcaa cgctaccttt gccatgtttc 1980agaaacaact ctggcgcatc gggcttccca
tacaatcgat agattgtcgc acctgattgc 2040ccgacattat cgcgagccca tttataccca
tataaatcag catccatgtt ggaatttaat 2100cgcggcctag agcaagacgt ttcccgttga
atatggctca taacacccct tgtattactg 2160tttatgtaag cagacagttt tattgttcat
gaccaaaatc ccttaacgtg agttttcgtt 2220ccactgagcg tcagaccccg tagaaaagat
caaaggatct tcttgagatc ctttttttct 2280gcgcgtaatc tgctgcttgc aaacaaaaaa
accaccgcta ccagcggtgg tttgtttgcc 2340ggatcaagag ctaccaactc tttttccgaa
ggtaactggc ttcagcagag cgcagatacc 2400aaatactgtc cttctagtgt agccgtagtt
aggccaccac ttcaagaact ctgtagcacc 2460gcctacatac ctcgctctgc taatcctgtt
accagtggct gctgccagtg gcgataagtc 2520gtgtcttacc gggttggact caagacgata
gttaccggat aaggcgcagc ggtcgggctg 2580aacggggggt tcgtgcacac agcccagctt
ggagcgaacg acctacaccg aactgagata 2640cctacagcgt gagctatgag aaagcgccac
gcttcccgaa gggagaaagg cggacaggta 2700tccggtaagc ggcagggtcg gaacaggaga
gcgcacgagg gagcttccag ggggaaacgc 2760ctggtatctt tatagtcctg tcgggtttcg
ccacctctga cttgagcgtc gatttttgtg 2820atgctcgtca ggggggcgga gcctatggaa
aaacgccagc aacgcggcct ttttacggtt 2880cctggccttt tgctggcctt ttgctcacat
gttctttcct gcgttatccc ctgattctgt 2940ggataaccgt attaccgcct ttgagtgagc
tgataccgct cgccgcagcc gaacgaccga 3000gcgcagcgag tcagtgagcg aggaagcgga
agagcgcctg atgcggtatt ttctccttac 3060gcatctgtgc ggtatttcac accgcatata
tggtgcactc tcagtacaat ctgctctgat 3120gccgcatagt taagccagta tacactccgc
tatcgctacg tgactgggtc atggctgcgc 3180cccgacaccc gccaacaccc gctgacgcgc
cctgacgggc ttgtctgctc ccggcatccg 3240cttacagaca agctgtgacc gtctccggga
gctgcatgtg tcagaggttt tcaccgtcat 3300caccgaaacg cgcgaggcag ctgcggtaaa
gctcatcagc gtggtcgtga agcgattcac 3360agatgtctgc ctgttcatcc gcgtccagct
cgttgagttt ctccagaagc gttaatgtct 3420ggcttctgat aaagcgggcc atgttaaggg
cggttttttc ctgtttggtc actgatgcct 3480ccgtgtaagg gggatttctg ttcatggggg
taatgatacc gatgaaacga gagaggatgc 3540tcacgatacg ggttactgat gatgaacatg
cccggttact ggaacgttgt gagggtaaac 3600aactggcggt atggatgcgg cgggaccaga
gaaaaatcac tcagggtcaa tgccagcgct 3660tcgttaatac agatgtaggt gttccacagg
gtagccagca gcatcctgcg atgcagatcc 3720ggaacataat ggtgcagggc gctgacttcc
gcgtttccag actttacgaa acacggaaac 3780cgaagaccat tcatgttgtt gctcaggtcg
cagacgtttt gcagcagcag tcgcttcacg 3840ttcgctcgcg tatcggtgat tcattctgct
aaccagtaag gcaaccccgc cagcctagcc 3900gggtcctcaa cgacaggagc acgatcatgc
gcacccgtgg ggccgccatg ccggcgataa 3960tggcctgctt ctcgccgaaa cgtttggtgg
cgggaccagt gacgaaggct tgagcgaggg 4020cgtgcaagat tccgaatacc gcaagcgaca
ggccgatcat cgtcgcgctc cagcgaaagc 4080ggtcctcgcc gaaaatgacc cagagcgctg
ccggcacctg tcctacgagt tgcatgataa 4140agaagacagt cataagtgcg gcgacgatag
tcatgccccg cgcccaccgg aaggagctga 4200ctgggttgaa ggctctcaag ggcatcggtc
gagatcccgg tgcctaatga gtgagctaac 4260ttacattaat tgcgttgcgc tcactgcccg
ctttccagtc gggaaacctg tcgtgccagc 4320tgcattaatg aatcggccaa cgcgcgggga
gaggcggttt gcgtattggg cgccagggtg 4380gtttttcttt tcaccagtga gacgggcaac
agctgattgc ccttcaccgc ctggccctga 4440gagagttgca gcaagcggtc cacgctggtt
tgccccagca ggcgaaaatc ctgtttgatg 4500gtggttaacg gcgggatata acatgagctg
tcttcggtat cgtcgtatcc cactaccgag 4560atatccgcac caacgcgcag cccggactcg
gtaatggcgc gcattgcgcc cagcgccatc 4620tgatcgttgg caaccagcat cgcagtggga
acgatgccct cattcagcat ttgcatggtt 4680tgttgaaaac cggacatggc actccagtcg
ccttcccgtt ccgctatcgg ctgaatttga 4740ttgcgagtga gatatttatg ccagccagcc
agacgcagac gcgccgagac agaacttaat 4800gggcccgcta acagcgcgat ttgctggtga
cccaatgcga ccagatgctc cacgcccagt 4860cgcgtaccgt cttcatggga gaaaataata
ctgttgatgg gtgtctggtc agagacatca 4920agaaataacg ccggaacatt agtgcaggca
gcttccacag caatggcatc ctggtcatcc 4980agcggatagt taatgatcag cccactgacg
cgttgcgcga gaagattgtg caccgccgct 5040ttacaggctt cgacgccgct tcgttctacc
atcgacacca ccacgctggc acccagttga 5100tcggcgcgag atttaatcgc cgcgacaatt
tgcgacggcg cgtgcagggc cagactggag 5160gtggcaacgc caatcagcaa cgactgtttg
cccgccagtt gttgtgccac gcggttggga 5220atgtaattca gctccgccat cgccgcttcc
actttttccc gcgttttcgc agaaacgtgg 5280ctggcctggt tcaccacgcg ggaaacggtc
tgataagaga caccggcata ctctgcgaca 5340tcgtataacg ttactggttt cacattcacc
accctgaatt gactctcttc cgggcgctat 5400catgccatac cgcgaaaggt tttgcgccat
tcgatggtgt ccgggatctc gacgctctcc 5460cttatgcgac tcctgcatta ggaagcagcc
cagtagtagg ttgaggccgt tgagcaccgc 5520cgccgcaagg aatggtgcat gcaaggagat
ggcgcccaac agtcccccgg ccacggggcc 5580tgccaccata cccacgccga aacaagcgct
catgagcccg aagtggcgag cccgatcttc 5640cccatcggtg atgtcggcga tataggcgcc
agcaaccgca cctgtggcgc cggtgatgcc 5700ggccacgatg cgtccggcgt agaggatcga
gatctcgatc ccgcgaaatt aatacgactc 5760actata
576617191PRTArtificial
SequencePolypeptide sequence encoding Lit v 3.0101 (Litopenaeus
vannamei Myosin Light Chain 2), with a C-terminal His tag, as used
in the Examples 17Met Ser Arg Lys Ser Gly Ser Arg Ser Ser Ser Lys Arg Ser
Lys Lys1 5 10 15Ser Gly
Gly Gly Ser Asn Val Phe Asp Met Phe Thr Gln Arg Gln Val 20
25 30Ala Glu Phe Lys Glu Gly Phe Gln Leu
Met Asp Arg Asp Lys Asp Gly 35 40
45Val Ile Gly Lys Thr Asp Leu Arg Gly Thr Phe Asp Glu Ile Gly Arg 50
55 60Ile Ala Thr Asp Gln Glu Leu Asp Glu
Met Leu Ala Asp Ala Pro Ala65 70 75
80Pro Ile Asn Phe Thr Met Leu Leu Asn Met Phe Ala Glu Arg
Gln Thr 85 90 95Gly Glu
Ser Asp Asp Asp Asp Val Val Ala Lys Ala Phe Leu Ala Phe 100
105 110Ala Asp Glu Glu Gly Asn Ile Asp Cys
Asp Thr Phe Arg His Ala Leu 115 120
125Met Thr Trp Gly Asp Lys Phe Ser Ser Gln Glu Ala Asp Asp Ala Leu
130 135 140Asp Gln Met Asp Ile Asp Asp
Gly Gly Lys Ile Asp Val Gln Gly Val145 150
155 160Ile Gln Met Leu Thr Ala Gly Gly Gly Asp Asp Ala
Ala Ala Glu Glu 165 170
175Ala Leu Glu Val Leu Phe Gln Gly Pro His His His His His His
180 185 190188PRTArtificial
SequenceEpitope sequence of Tod MLC1 18Gly Gly Thr Lys Lys Met Gly Glu1
5198PRTArtificial SequenceEpitope sequence of Tod MLC1 19Ser
Ser Lys Asp Thr Gly Thr Ala1 5205PRTArtificial
SequenceEpitope sequence of Tod MLC1 20Asp Arg Glu Gly Gln1
52147PRTArtificial SequenceEpitope sequence of Tod MLC1 21Gly Gly Thr Lys
Lys Met Gly Glu Lys Ala Tyr Lys Leu Glu Glu Ile1 5
10 15Leu Pro Ile Tyr Glu Glu Met Ser Ser Lys
Asp Thr Gly Thr Ala Ala 20 25
30Asp Glu Phe Met Glu Ala Phe Lys Thr Phe Asp Arg Glu Gly Gln 35
40 45226PRTArtificial SequenceEpitope
sequence of Tod MLC2 22Gln Gly Pro Ser Met Ala1
5238PRTArtificial SequenceEpitope sequence of Tod MLC2 23Lys Val Ser Gly
Thr Asp Pro Glu1 5245PRTArtificial SequenceEpitope sequence
of Tod MLC2 24Asp Arg Glu Gly Gln1 52553PRTArtificial
SequenceEpitope sequence of Tod MLC2 25Gln Glu Leu Lys Glu Ala Phe Thr
Met Ile Asp Gln Asp Arg Asp Gly1 5 10
15Phe Ile Gly Met Glu Asp Leu Lys Asp Met Phe Ser Ser Leu
Gly Arg 20 25 30Val Pro Pro
Asp Asp Glu Leu Asn Ala Met Leu Lys Glu Cys Pro Gly 35
40 45Gln Leu Asn Phe Thr 502620PRTArtificial
SequenceEpitope sequence of Tod TM 26Asp Glu Ser Glu Arg Gly Arg Lys Val
Leu Glu Asn Arg Ser Gln Gly1 5 10
15Asp Glu Glu Arg 202720PRTArtificial SequenceEpitope
sequence of Tod TM 27Ile Asp Leu Leu Glu Lys Gln Leu Glu Glu Ala Lys Trp
Ile Ala Glu1 5 10 15Asp
Ala Asp Arg 202824PRTArtificial SequenceEpitope sequence of
Tod TM 28Lys Phe Asp Glu Ala Ala Arg Lys Leu Ala Ile Thr Glu Val Asp Leu1
5 10 15Glu Arg Ala Glu
Ala Arg Leu Glu 202934PRTArtificial SequenceEpitope sequence
of Tod TM 29Lys Glu Val Asp Arg Leu Glu Asp Glu Leu Leu Ala Glu Lys Glu
Arg1 5 10 15Tyr Lys Thr
Ile Ser Asp Glu Leu Asp Gln Thr Phe Ala Glu Leu Ala 20
25 30Gly Tyr3010PRTArtificial Sequenceepitope
sequence 1 of MLC2 30Ala Leu Arg Asn Ala Phe Ser Met Phe Asp1
5 10316PRTArtificial Sequenceshorter epitope sequence
1 of MLC2 31Asn Ala Phe Ser Met Phe1 53215PRTArtificial
Sequencemicroarray peptide 1 for identification of epitope sequence
1 of MLC2 32Gly Thr Asp Pro Glu Asp Ala Leu Arg Asn Ala Phe Ser Met Phe1
5 10 153315PRTArtificial
Sequencemicroarray peptide 2 for identification of epitope sequence
1 of MLC2 33Thr Asp Pro Glu Asp Ala Leu Arg Asn Ala Phe Ser Met Phe Asp1
5 10 153415PRTArtificial
Sequencemicroarray peptide 3 for identification of epitope sequence
1 of MLC2 34Asp Pro Glu Asp Ala Leu Arg Asn Ala Phe Ser Met Phe Asp Glu1
5 10 153515PRTArtificial
Sequencemicroarray peptide 4 for identification of epitope sequence
1 of MLC2 35Pro Glu Asp Ala Leu Arg Asn Ala Phe Ser Met Phe Asp Glu Asp1
5 10 153615PRTArtificial
Sequencemicroarray peptide 5 for identification of epitope sequence
1 of MLC2 36Glu Asp Ala Leu Arg Asn Ala Phe Ser Met Phe Asp Glu Asp Gly1
5 10 153715PRTArtificial
Sequencemicroarray peptide 6 for identification of epitope sequence
1 of MLC2 37Asp Ala Leu Arg Asn Ala Phe Ser Met Phe Asp Glu Asp Gly Gln1
5 10 153815PRTArtificial
Sequencemicroarray peptide 7 for identification of epitope sequence
1 of MLC2 38Ala Leu Arg Asn Ala Phe Ser Met Phe Asp Glu Asp Gly Gln Gly1
5 10 153915PRTArtificial
Sequencemicroarray peptide 8 for identification of epitope sequence
1 of MLC2 39Leu Arg Asn Ala Phe Ser Met Phe Asp Glu Asp Gly Gln Gly Phe1
5 10 154015PRTArtificial
Sequencemicroarray peptide 9 for identification of epitope sequence
1 of MLC2 40Arg Asn Ala Phe Ser Met Phe Asp Glu Asp Gly Gln Gly Phe Ile1
5 10 154115PRTArtificial
Sequencemicroarray peptide 20 for identification of epitope sequence
1 of MLC2 41Asn Ala Phe Ser Met Phe Asp Glu Asp Gly Gln Gly Phe Ile Pro1
5 10 154210PRTArtificial
Sequenceepitope sequence 2 of MLC2 42Phe Ile Pro Glu Asp Tyr Leu Lys Asp
Leu1 5 10439PRTArtificial Sequenceshorter
epitope sequence 2 of MLC2 43Ile Pro Glu Asp Tyr Leu Lys Asp Leu1
54415PRTArtificial Sequencemicroarray peptide 1 for identification
of epitope sequence 2 of MLC2 44Glu Asp Gly Gln Gly Phe Ile Pro Glu
Asp Tyr Leu Lys Asp Leu1 5 10
154515PRTArtificial Sequencemicroarray peptide 2 for identification
of epitope sequence 2 of MLC2 45Asp Gly Gln Gly Phe Ile Pro Glu Asp
Tyr Leu Lys Asp Leu Leu1 5 10
154615PRTArtificial Sequencemicroarray peptide 3 for identification
of epitope sequence 2 of MLC2 46Gly Gln Gly Phe Ile Pro Glu Asp Tyr
Leu Lys Asp Leu Leu Glu1 5 10
154715PRTArtificial Sequencemicroarray peptide 4 for identification
of epitope sequence 2 of MLC2 47Gln Gly Phe Ile Pro Glu Asp Tyr Leu
Lys Asp Leu Leu Glu Asn1 5 10
154815PRTArtificial Sequencemicroarray peptide 5 for identification
of epitope sequence 2 of MLC2 48Gly Phe Ile Pro Glu Asp Tyr Leu Lys
Asp Leu Leu Glu Asn Met1 5 10
154915PRTArtificial Sequencemicroarray peptide 6 for identification
of epitope sequence 2 of MLC2 49Phe Ile Pro Glu Asp Tyr Leu Lys Asp
Leu Leu Glu Asn Met Gly1 5 10
155015PRTArtificial Sequencemicroarray peptide 7 for identification
of epitope sequence 2 of MLC2 50Ile Pro Glu Asp Tyr Leu Lys Asp Leu
Leu Glu Asn Met Gly Asp1 5 10
155112PRTArtificial Sequenceepitope sequence 3 of MLC2 51Phe Ser Lys
Glu Glu Ile Lys Asn Val Trp Lys Asp1 5
105215PRTArtificial Sequencemicroarray peptide 1 for identification of
epitope sequence 3 of MLC2 52Gly Asp Asn Phe Ser Lys Glu Glu Ile Lys
Asn Val Trp Lys Asp1 5 10
155315PRTArtificial Sequencemicroarray peptide 1 for identification of
epitope sequence 3 of MLC2 53Asp Asn Phe Ser Lys Glu Glu Ile Lys Asn
Val Trp Lys Asp Ala1 5 10
155415PRTArtificial Sequencemicroarray peptide 2 for identification of
epitope sequence 3 of MLC2 54Asn Phe Ser Lys Glu Glu Ile Lys Asn Val
Trp Lys Asp Ala Pro1 5 10
155515PRTArtificial Sequencemicroarray peptide 3 for identification of
epitope sequence 3 of MLC2 55Phe Ser Lys Glu Glu Ile Lys Asn Val Trp
Lys Asp Ala Pro Leu1 5 10
155615PRTArtificial Sequencemicroarray peptide NO 8 56Gly Ser Gly Ser
Gly Ser Gly Ala Glu Glu Ala Pro Arg Arg Val1 5
10 155715PRTArtificial Sequencemicroarray peptide
NO 9 57Ser Gly Ser Gly Ser Gly Ala Glu Glu Ala Pro Arg Arg Val Lys1
5 10 155815PRTArtificial
Sequencemicroarray peptide NO 10 58Gly Ser Gly Ser Gly Ala Glu Glu Ala
Pro Arg Arg Val Lys Leu1 5 10
155915PRTArtificial Sequencemicroarray peptide NO 11 59Ser Gly Ser
Gly Ala Glu Glu Ala Pro Arg Arg Val Lys Leu Ser1 5
10 156015PRTArtificial Sequencemicroarray
peptide NO 12 60Gly Ser Gly Ala Glu Glu Ala Pro Arg Arg Val Lys Leu Ser
Gln1 5 10
156115PRTArtificial Sequencemicroarray peptide NO 13 61Ser Gly Ala Glu
Glu Ala Pro Arg Arg Val Lys Leu Ser Gln Arg1 5
10 156215PRTArtificial Sequencemicroarray peptide
NO 14 62Gly Ala Glu Glu Ala Pro Arg Arg Val Lys Leu Ser Gln Arg Gln1
5 10 156315PRTArtificial
Sequencemicroarray peptide NO 15 63Ala Glu Glu Ala Pro Arg Arg Val Lys
Leu Ser Gln Arg Gln Met1 5 10
156415PRTArtificial Sequencemicroarray peptide NO 16 64Glu Glu Ala
Pro Arg Arg Val Lys Leu Ser Gln Arg Gln Met Gln1 5
10 156515PRTArtificial Sequencemicroarray
peptide NO 17 65Glu Ala Pro Arg Arg Val Lys Leu Ser Gln Arg Gln Met Gln
Glu1 5 10
156615PRTArtificial Sequencemicroarray peptide NO 18 66Ala Pro Arg Arg
Val Lys Leu Ser Gln Arg Gln Met Gln Glu Leu1 5
10 156715PRTArtificial Sequencemicroarray peptide
NO 19 67Pro Arg Arg Val Lys Leu Ser Gln Arg Gln Met Gln Glu Leu Lys1
5 10 156815PRTArtificial
Sequencemicroarray peptide NO 20 68Arg Arg Val Lys Leu Ser Gln Arg Gln
Met Gln Glu Leu Lys Glu1 5 10
156915PRTArtificial Sequencemicroarray peptide NO 21 69Arg Val Lys
Leu Ser Gln Arg Gln Met Gln Glu Leu Lys Glu Ala1 5
10 157015PRTArtificial Sequencemicroarray
peptide NO 22 70Val Lys Leu Ser Gln Arg Gln Met Gln Glu Leu Lys Glu Ala
Phe1 5 10
157115PRTArtificial Sequencemicroarray peptide NO 23 71Lys Leu Ser Gln
Arg Gln Met Gln Glu Leu Lys Glu Ala Phe Thr1 5
10 157215PRTArtificial Sequencemicroarray peptide
NO 24 72Leu Ser Gln Arg Gln Met Gln Glu Leu Lys Glu Ala Phe Thr Met1
5 10 157315PRTArtificial
Sequencemicroarray peptide NO 25 73Ser Gln Arg Gln Met Gln Glu Leu Lys
Glu Ala Phe Thr Met Ile1 5 10
157415PRTArtificial Sequencemicroarray peptide NO 26 74Gln Arg Gln
Met Gln Glu Leu Lys Glu Ala Phe Thr Met Ile Asp1 5
10 157515PRTArtificial Sequencemicroarray
peptide NO 27 75Arg Gln Met Gln Glu Leu Lys Glu Ala Phe Thr Met Ile Asp
Gln1 5 10
157615PRTArtificial Sequencemicroarray peptide NO 28 76Gln Met Gln Glu
Leu Lys Glu Ala Phe Thr Met Ile Asp Gln Asp1 5
10 157715PRTArtificial Sequencemicroarray peptide
NO 29 77Met Gln Glu Leu Lys Glu Ala Phe Thr Met Ile Asp Gln Asp Arg1
5 10 157815PRTArtificial
Sequencemicroarray peptide NO 30 78Gln Glu Leu Lys Glu Ala Phe Thr Met
Ile Asp Gln Asp Arg Asp1 5 10
157915PRTArtificial Sequencemicroarray peptide NO 31 79Glu Leu Lys
Glu Ala Phe Thr Met Ile Asp Gln Asp Arg Asp Gly1 5
10 158015PRTArtificial Sequencemicroarray
peptide NO 32 80Leu Lys Glu Ala Phe Thr Met Ile Asp Gln Asp Arg Asp Gly
Phe1 5 10
158115PRTArtificial Sequencemicroarray peptide NO 33 81Lys Glu Ala Phe
Thr Met Ile Asp Gln Asp Arg Asp Gly Phe Ile1 5
10 158215PRTArtificial Sequencemicroarray peptide
NO 34 82Glu Ala Phe Thr Met Ile Asp Gln Asp Arg Asp Gly Phe Ile Gly1
5 10 158315PRTArtificial
Sequencemicroarray peptide NO 35 83Ala Phe Thr Met Ile Asp Gln Asp Arg
Asp Gly Phe Ile Gly Met1 5 10
158415PRTArtificial Sequencemicroarray peptide NO 36 84Phe Thr Met
Ile Asp Gln Asp Arg Asp Gly Phe Ile Gly Met Glu1 5
10 158515PRTArtificial Sequencemicroarray
peptide NO 37 85Thr Met Ile Asp Gln Asp Arg Asp Gly Phe Ile Gly Met Glu
Asp1 5 10
158615PRTArtificial Sequencemicroarray peptide NO 38 86Met Ile Asp Gln
Asp Arg Asp Gly Phe Ile Gly Met Glu Asp Leu1 5
10 158715PRTArtificial Sequencemicroarray peptide
NO 39 87Ile Asp Gln Asp Arg Asp Gly Phe Ile Gly Met Glu Asp Leu Lys1
5 10 158815PRTArtificial
Sequencemicroarray peptide NO 40 88Asp Gln Asp Arg Asp Gly Phe Ile Gly
Met Glu Asp Leu Lys Asp1 5 10
158915PRTArtificial Sequencemicroarray peptide NO 41 89Gln Asp Arg
Asp Gly Phe Ile Gly Met Glu Asp Leu Lys Asp Met1 5
10 159015PRTArtificial Sequencemicroarray
peptide NO 42 90Asp Arg Asp Gly Phe Ile Gly Met Glu Asp Leu Lys Asp Met
Phe1 5 10
159115PRTArtificial Sequencemicroarray peptide NO 43 91Arg Asp Gly Phe
Ile Gly Met Glu Asp Leu Lys Asp Met Phe Ser1 5
10 159215PRTArtificial Sequencemicroarray peptide
NO 44 92Asp Gly Phe Ile Gly Met Glu Asp Leu Lys Asp Met Phe Ser Ser1
5 10 159315PRTArtificial
Sequencemicroarray peptide NO 45 93Gly Phe Ile Gly Met Glu Asp Leu Lys
Asp Met Phe Ser Ser Leu1 5 10
159415PRTArtificial Sequencemicroarray peptide NO 46 94Phe Ile Gly
Met Glu Asp Leu Lys Asp Met Phe Ser Ser Leu Gly1 5
10 159515PRTArtificial Sequencemicroarray
peptide NO 47 95Ile Gly Met Glu Asp Leu Lys Asp Met Phe Ser Ser Leu Gly
Arg1 5 10
159615PRTArtificial Sequencemicroarray peptide NO 48 96Gly Met Glu Asp
Leu Lys Asp Met Phe Ser Ser Leu Gly Arg Val1 5
10 159715PRTArtificial Sequencemicroarray peptide
NO 49 97Met Glu Asp Leu Lys Asp Met Phe Ser Ser Leu Gly Arg Val Pro1
5 10 159815PRTArtificial
Sequencemicroarray peptide NO 50 98Glu Asp Leu Lys Asp Met Phe Ser Ser
Leu Gly Arg Val Pro Pro1 5 10
159915PRTArtificial Sequencemicroarray peptide NO 51 99Asp Leu Lys
Asp Met Phe Ser Ser Leu Gly Arg Val Pro Pro Asp1 5
10 1510015PRTArtificial Sequencemicroarray
peptide NO 52 100Leu Lys Asp Met Phe Ser Ser Leu Gly Arg Val Pro Pro Asp
Asp1 5 10
1510115PRTArtificial Sequencemicroarray peptide NO 53 101Lys Asp Met Phe
Ser Ser Leu Gly Arg Val Pro Pro Asp Asp Glu1 5
10 1510215PRTArtificial Sequencemicroarray peptide
NO 54 102Asp Met Phe Ser Ser Leu Gly Arg Val Pro Pro Asp Asp Glu Leu1
5 10 1510315PRTArtificial
Sequencemicroarray peptide NO 55 103Met Phe Ser Ser Leu Gly Arg Val Pro
Pro Asp Asp Glu Leu Asn1 5 10
1510415PRTArtificial Sequencemicroarray peptide NO 56 104Phe Ser Ser
Leu Gly Arg Val Pro Pro Asp Asp Glu Leu Asn Ala1 5
10 1510515PRTArtificial Sequencemicroarray
peptide NO 57 105Ser Ser Leu Gly Arg Val Pro Pro Asp Asp Glu Leu Asn Ala
Met1 5 10
1510615PRTArtificial Sequencemicroarray peptide NO 58 106Ser Leu Gly Arg
Val Pro Pro Asp Asp Glu Leu Asn Ala Met Leu1 5
10 1510715PRTArtificial Sequencemicroarray peptide
NO 59 107Leu Gly Arg Val Pro Pro Asp Asp Glu Leu Asn Ala Met Leu Lys1
5 10 1510815PRTArtificial
Sequencemicroarray peptide NO 60 108Gly Arg Val Pro Pro Asp Asp Glu Leu
Asn Ala Met Leu Lys Glu1 5 10
1510915PRTArtificial Sequencemicroarray peptide NO 61 109Arg Val Pro
Pro Asp Asp Glu Leu Asn Ala Met Leu Lys Glu Cys1 5
10 1511015PRTArtificial Sequencemicroarray
peptide NO 62 110Val Pro Pro Asp Asp Glu Leu Asn Ala Met Leu Lys Glu Cys
Pro1 5 10
1511115PRTArtificial Sequencemicroarray peptide NO 63 111Pro Pro Asp Asp
Glu Leu Asn Ala Met Leu Lys Glu Cys Pro Gly1 5
10 1511215PRTArtificial Sequencemicroarray peptide
NO 64 112Pro Asp Asp Glu Leu Asn Ala Met Leu Lys Glu Cys Pro Gly Gln1
5 10 1511315PRTArtificial
Sequencemicroarray peptide NO 65 113Asp Asp Glu Leu Asn Ala Met Leu Lys
Glu Cys Pro Gly Gln Leu1 5 10
1511415PRTArtificial Sequencemicroarray peptide NO 66 114Asp Glu Leu
Asn Ala Met Leu Lys Glu Cys Pro Gly Gln Leu Asn1 5
10 1511515PRTArtificial Sequencemicroarray
peptide NO 67 115Glu Leu Asn Ala Met Leu Lys Glu Cys Pro Gly Gln Leu Asn
Phe1 5 10
1511615PRTArtificial Sequencemicroarray peptide NO 68 116Leu Asn Ala Met
Leu Lys Glu Cys Pro Gly Gln Leu Asn Phe Thr1 5
10 1511715PRTArtificial Sequencemicroarray peptide
NO 69 117Asn Ala Met Leu Lys Glu Cys Pro Gly Gln Leu Asn Phe Thr Ala1
5 10 1511815PRTArtificial
Sequencemicroarray peptide NO 70 118Ala Met Leu Lys Glu Cys Pro Gly Gln
Leu Asn Phe Thr Ala Phe1 5 10
1511915PRTArtificial Sequencemicroarray peptide NO 71 119Met Leu Lys
Glu Cys Pro Gly Gln Leu Asn Phe Thr Ala Phe Leu1 5
10 1512015PRTArtificial Sequencemicroarray
peptide NO 72 120Leu Lys Glu Cys Pro Gly Gln Leu Asn Phe Thr Ala Phe Leu
Thr1 5 10
1512115PRTArtificial Sequencemicroarray peptide NO 73 121Lys Glu Cys Pro
Gly Gln Leu Asn Phe Thr Ala Phe Leu Thr Leu1 5
10 1512215PRTArtificial Sequencemicroarray peptide
NO 74 122Glu Cys Pro Gly Gln Leu Asn Phe Thr Ala Phe Leu Thr Leu Phe1
5 10 1512315PRTArtificial
Sequencemicroarray peptide NO 75 123Cys Pro Gly Gln Leu Asn Phe Thr Ala
Phe Leu Thr Leu Phe Gly1 5 10
1512415PRTArtificial Sequencemicroarray peptide NO 76 124Pro Gly Gln
Leu Asn Phe Thr Ala Phe Leu Thr Leu Phe Gly Glu1 5
10 1512515PRTArtificial Sequencemicroarray
peptide NO 77 125Gly Gln Leu Asn Phe Thr Ala Phe Leu Thr Leu Phe Gly Glu
Lys1 5 10
1512615PRTArtificial Sequencemicroarray peptide NO 78 126Gln Leu Asn Phe
Thr Ala Phe Leu Thr Leu Phe Gly Glu Lys Val1 5
10 1512715PRTArtificial Sequencemicroarray peptide
NO 79 127Leu Asn Phe Thr Ala Phe Leu Thr Leu Phe Gly Glu Lys Val Ser1
5 10 1512815PRTArtificial
Sequencemicroarray peptide NO 80 128Asn Phe Thr Ala Phe Leu Thr Leu Phe
Gly Glu Lys Val Ser Gly1 5 10
1512915PRTArtificial Sequencemicroarray peptide NO 81 129Phe Thr Ala
Phe Leu Thr Leu Phe Gly Glu Lys Val Ser Gly Thr1 5
10 1513015PRTArtificial Sequencemicroarray
peptide NO 82 130Thr Ala Phe Leu Thr Leu Phe Gly Glu Lys Val Ser Gly Thr
Asp1 5 10
1513115PRTArtificial Sequencemicroarray peptide NO 83 131Ala Phe Leu Thr
Leu Phe Gly Glu Lys Val Ser Gly Thr Asp Pro1 5
10 1513215PRTArtificial Sequencemicroarray peptide
NO 84 132Phe Leu Thr Leu Phe Gly Glu Lys Val Ser Gly Thr Asp Pro Glu1
5 10 1513315PRTArtificial
Sequencemicroarray peptide NO 85 133Leu Thr Leu Phe Gly Glu Lys Val Ser
Gly Thr Asp Pro Glu Asp1 5 10
1513415PRTArtificial Sequencemicroarray peptide NO 86 134Thr Leu Phe
Gly Glu Lys Val Ser Gly Thr Asp Pro Glu Asp Ala1 5
10 1513515PRTArtificial Sequencemicroarray
peptide NO 87 135Leu Phe Gly Glu Lys Val Ser Gly Thr Asp Pro Glu Asp Ala
Leu1 5 10
1513615PRTArtificial Sequencemicroarray peptide NO 88 136Phe Gly Glu Lys
Val Ser Gly Thr Asp Pro Glu Asp Ala Leu Arg1 5
10 1513715PRTArtificial Sequencemicroarray peptide
NO 89 137Gly Glu Lys Val Ser Gly Thr Asp Pro Glu Asp Ala Leu Arg Asn1
5 10 1513815PRTArtificial
Sequencemicroarray peptide NO 90 138Glu Lys Val Ser Gly Thr Asp Pro Glu
Asp Ala Leu Arg Asn Ala1 5 10
1513915PRTArtificial Sequencemicroarray peptide NO 91 139Lys Val Ser
Gly Thr Asp Pro Glu Asp Ala Leu Arg Asn Ala Phe1 5
10 1514015PRTArtificial Sequencemicroarray
peptide NO 92 140Val Ser Gly Thr Asp Pro Glu Asp Ala Leu Arg Asn Ala Phe
Ser1 5 10
1514115PRTArtificial Sequencemicroarray peptide NO 93 141Ser Gly Thr Asp
Pro Glu Asp Ala Leu Arg Asn Ala Phe Ser Met1 5
10 1514215PRTArtificial Sequencemicroarray peptide
NO 94 142Gly Thr Asp Pro Glu Asp Ala Leu Arg Asn Ala Phe Ser Met Phe1
5 10 1514315PRTArtificial
Sequencemicroarray peptide NO 95 143Thr Asp Pro Glu Asp Ala Leu Arg Asn
Ala Phe Ser Met Phe Asp1 5 10
1514415PRTArtificial Sequencemicroarray peptide NO 96 144Asp Pro Glu
Asp Ala Leu Arg Asn Ala Phe Ser Met Phe Asp Glu1 5
10 1514515PRTArtificial Sequencemicroarray
peptide NO 97 145Pro Glu Asp Ala Leu Arg Asn Ala Phe Ser Met Phe Asp Glu
Asp1 5 10
1514615PRTArtificial Sequencemicroarray peptide NO 98 146Glu Asp Ala Leu
Arg Asn Ala Phe Ser Met Phe Asp Glu Asp Gly1 5
10 1514715PRTArtificial Sequencemicroarray peptide
NO 99 147Asp Ala Leu Arg Asn Ala Phe Ser Met Phe Asp Glu Asp Gly Gln1
5 10 1514815PRTArtificial
Sequencemicroarray peptide NO 100 148Ala Leu Arg Asn Ala Phe Ser Met Phe
Asp Glu Asp Gly Gln Gly1 5 10
1514915PRTArtificial Sequencemicroarray peptide NO 101 149Leu Arg
Asn Ala Phe Ser Met Phe Asp Glu Asp Gly Gln Gly Phe1 5
10 1515015PRTArtificial Sequencemicroarray
peptide NO 102 150Arg Asn Ala Phe Ser Met Phe Asp Glu Asp Gly Gln Gly Phe
Ile1 5 10
1515115PRTArtificial Sequencemicroarray peptide NO 103 151Asn Ala Phe Ser
Met Phe Asp Glu Asp Gly Gln Gly Phe Ile Pro1 5
10 1515215PRTArtificial Sequencemicroarray peptide
NO 104 152Ala Phe Ser Met Phe Asp Glu Asp Gly Gln Gly Phe Ile Pro Glu1
5 10 1515315PRTArtificial
Sequencemicroarray peptide NO 105 153Phe Ser Met Phe Asp Glu Asp Gly Gln
Gly Phe Ile Pro Glu Asp1 5 10
1515415PRTArtificial Sequencemicroarray peptide NO 106 154Ser Met
Phe Asp Glu Asp Gly Gln Gly Phe Ile Pro Glu Asp Tyr1 5
10 1515515PRTArtificial Sequencemicroarray
peptide NO 107 155Met Phe Asp Glu Asp Gly Gln Gly Phe Ile Pro Glu Asp Tyr
Leu1 5 10
1515615PRTArtificial Sequencemicroarray peptide NO 108 156Phe Asp Glu Asp
Gly Gln Gly Phe Ile Pro Glu Asp Tyr Leu Lys1 5
10 1515715PRTArtificial Sequencemicroarray peptide
NO 109 157Asp Glu Asp Gly Gln Gly Phe Ile Pro Glu Asp Tyr Leu Lys Asp1
5 10 1515815PRTArtificial
Sequencemicroarray peptide NO 110 158Glu Asp Gly Gln Gly Phe Ile Pro Glu
Asp Tyr Leu Lys Asp Leu1 5 10
1515915PRTArtificial Sequencemicroarray peptide NO 111 159Asp Gly
Gln Gly Phe Ile Pro Glu Asp Tyr Leu Lys Asp Leu Leu1 5
10 1516015PRTArtificial Sequencemicroarray
peptide NO 112 160Gly Gln Gly Phe Ile Pro Glu Asp Tyr Leu Lys Asp Leu Leu
Glu1 5 10
1516115PRTArtificial Sequencemicroarray peptide NO 113 161Gln Gly Phe Ile
Pro Glu Asp Tyr Leu Lys Asp Leu Leu Glu Asn1 5
10 1516215PRTArtificial Sequencemicroarray peptide
NO 114 162Gly Phe Ile Pro Glu Asp Tyr Leu Lys Asp Leu Leu Glu Asn Met1
5 10 1516315PRTArtificial
Sequencemicroarray peptide NO 115 163Phe Ile Pro Glu Asp Tyr Leu Lys Asp
Leu Leu Glu Asn Met Gly1 5 10
1516415PRTArtificial Sequencemicroarray peptide NO 116 164Ile Pro
Glu Asp Tyr Leu Lys Asp Leu Leu Glu Asn Met Gly Asp1 5
10 1516515PRTArtificial Sequencemicroarray
peptide NO 117 165Pro Glu Asp Tyr Leu Lys Asp Leu Leu Glu Asn Met Gly Asp
Asn1 5 10
1516615PRTArtificial Sequencemicroarray peptide NO 118 166Glu Asp Tyr Leu
Lys Asp Leu Leu Glu Asn Met Gly Asp Asn Phe1 5
10 1516715PRTArtificial Sequencemicroarray peptide
NO 119 167Asp Tyr Leu Lys Asp Leu Leu Glu Asn Met Gly Asp Asn Phe Ser1
5 10 1516815PRTArtificial
Sequencemicroarray peptide NO 120 168Tyr Leu Lys Asp Leu Leu Glu Asn Met
Gly Asp Asn Phe Ser Lys1 5 10
1516915PRTArtificial Sequencemicroarray peptide NO 121 169Leu Lys
Asp Leu Leu Glu Asn Met Gly Asp Asn Phe Ser Lys Glu1 5
10 1517015PRTArtificial Sequencemicroarray
peptide NO 122 170Lys Asp Leu Leu Glu Asn Met Gly Asp Asn Phe Ser Lys Glu
Glu1 5 10
1517115PRTArtificial Sequencemicroarray peptide NO 123 171Asp Leu Leu Glu
Asn Met Gly Asp Asn Phe Ser Lys Glu Glu Ile1 5
10 1517215PRTArtificial Sequencemicroarray peptide
NO 124 172Leu Leu Glu Asn Met Gly Asp Asn Phe Ser Lys Glu Glu Ile Lys1
5 10 1517315PRTArtificial
Sequencemicroarray peptide NO 125 173Leu Glu Asn Met Gly Asp Asn Phe Ser
Lys Glu Glu Ile Lys Asn1 5 10
1517415PRTArtificial Sequencemicroarray peptide NO 126 174Glu Asn
Met Gly Asp Asn Phe Ser Lys Glu Glu Ile Lys Asn Val1 5
10 1517515PRTArtificial Sequencemicroarray
peptide NO 127 175Asn Met Gly Asp Asn Phe Ser Lys Glu Glu Ile Lys Asn Val
Trp1 5 10
1517615PRTArtificial Sequencemicroarray peptide NO 128 176Met Gly Asp Asn
Phe Ser Lys Glu Glu Ile Lys Asn Val Trp Lys1 5
10 1517715PRTArtificial Sequencemicroarray peptide
NO 129 177Gly Asp Asn Phe Ser Lys Glu Glu Ile Lys Asn Val Trp Lys Asp1
5 10 1517815PRTArtificial
Sequencemicroarray peptide NO 130 178Asp Asn Phe Ser Lys Glu Glu Ile Lys
Asn Val Trp Lys Asp Ala1 5 10
1517915PRTArtificial Sequencemicroarray peptide NO 131 179Asn Phe
Ser Lys Glu Glu Ile Lys Asn Val Trp Lys Asp Ala Pro1 5
10 1518015PRTArtificial Sequencemicroarray
peptide NO 132 180Phe Ser Lys Glu Glu Ile Lys Asn Val Trp Lys Asp Ala Pro
Leu1 5 10
1518115PRTArtificial Sequencemicroarray peptide NO 133 181Ser Lys Glu Glu
Ile Lys Asn Val Trp Lys Asp Ala Pro Leu Lys1 5
10 1518215PRTArtificial Sequencemicroarray peptide
NO 134 182Lys Glu Glu Ile Lys Asn Val Trp Lys Asp Ala Pro Leu Lys Asn1
5 10 1518315PRTArtificial
Sequencemicroarray peptide NO 135 183Glu Glu Ile Lys Asn Val Trp Lys Asp
Ala Pro Leu Lys Asn Lys1 5 10
1518415PRTArtificial Sequencemicroarray peptide NO 136 184Glu Ile
Lys Asn Val Trp Lys Asp Ala Pro Leu Lys Asn Lys Gln1 5
10 1518515PRTArtificial Sequencemicroarray
peptide NO 137 185Ile Lys Asn Val Trp Lys Asp Ala Pro Leu Lys Asn Lys Gln
Phe1 5 10
1518615PRTArtificial Sequencemicroarray peptide NO 138 186Lys Asn Val Trp
Lys Asp Ala Pro Leu Lys Asn Lys Gln Phe Asn1 5
10 1518715PRTArtificial Sequencemicroarray peptide
NO 139 187Asn Val Trp Lys Asp Ala Pro Leu Lys Asn Lys Gln Phe Asn Tyr1
5 10 1518815PRTArtificial
Sequencemicroarray peptide NO 140 188Val Trp Lys Asp Ala Pro Leu Lys Asn
Lys Gln Phe Asn Tyr Asn1 5 10
1518915PRTArtificial Sequencemicroarray peptide NO 141 189Trp Lys
Asp Ala Pro Leu Lys Asn Lys Gln Phe Asn Tyr Asn Lys1 5
10 1519015PRTArtificial Sequencemicroarray
peptide NO 142 190Lys Asp Ala Pro Leu Lys Asn Lys Gln Phe Asn Tyr Asn Lys
Met1 5 10
1519115PRTArtificial Sequencemicroarray peptide NO 143 191Asp Ala Pro Leu
Lys Asn Lys Gln Phe Asn Tyr Asn Lys Met Val1 5
10 1519215PRTArtificial Sequencemicroarray peptide
NO 144 192Ala Pro Leu Lys Asn Lys Gln Phe Asn Tyr Asn Lys Met Val Asp1
5 10 1519315PRTArtificial
Sequencemicroarray peptide NO 145 193Pro Leu Lys Asn Lys Gln Phe Asn Tyr
Asn Lys Met Val Asp Ile1 5 10
1519415PRTArtificial Sequencemicroarray peptide NO 146 194Leu Lys
Asn Lys Gln Phe Asn Tyr Asn Lys Met Val Asp Ile Lys1 5
10 1519515PRTArtificial Sequencemicroarray
peptide NO 147 195Lys Asn Lys Gln Phe Asn Tyr Asn Lys Met Val Asp Ile Lys
Gly1 5 10
1519615PRTArtificial Sequencemicroarray peptide NO 148 196Asn Lys Gln Phe
Asn Tyr Asn Lys Met Val Asp Ile Lys Gly Lys1 5
10 1519715PRTArtificial Sequencemicroarray peptide
NO 149 197Lys Gln Phe Asn Tyr Asn Lys Met Val Asp Ile Lys Gly Lys Ala1
5 10 1519815PRTArtificial
Sequencemicroarray peptide NO 150 198Gln Phe Asn Tyr Asn Lys Met Val Asp
Ile Lys Gly Lys Ala Glu1 5 10
1519915PRTArtificial Sequencemicroarray peptide NO 151 199Phe Asn
Tyr Asn Lys Met Val Asp Ile Lys Gly Lys Ala Glu Asp1 5
10 1520015PRTArtificial Sequencemicroarray
peptide NO 152 200Asn Tyr Asn Lys Met Val Asp Ile Lys Gly Lys Ala Glu Asp
Glu1 5 10
1520115PRTArtificial Sequencemicroarray peptide NO 153 201Tyr Asn Lys Met
Val Asp Ile Lys Gly Lys Ala Glu Asp Glu Asp1 5
10 1520215PRTArtificial Sequencemicroarray peptide
NO 154 202Asn Lys Met Val Asp Ile Lys Gly Lys Ala Glu Asp Glu Asp Gly1
5 10 1520315PRTArtificial
Sequencemicroarray peptide NO 155 203Lys Met Val Asp Ile Lys Gly Lys Ala
Glu Asp Glu Asp Gly Ser1 5 10
1520415PRTArtificial Sequencemicroarray peptide NO 156 204Met Val
Asp Ile Lys Gly Lys Ala Glu Asp Glu Asp Gly Ser Gly1 5
10 1520515PRTArtificial Sequencemicroarray
peptide NO 157 205Val Asp Ile Lys Gly Lys Ala Glu Asp Glu Asp Gly Ser Gly
Ser1 5 10
1520615PRTArtificial Sequencemicroarray peptide NO 158 206Asp Ile Lys Gly
Lys Ala Glu Asp Glu Asp Gly Ser Gly Ser Gly1 5
10 1520715PRTArtificial Sequencemicroarray peptide
NO 159 207Ile Lys Gly Lys Ala Glu Asp Glu Asp Gly Ser Gly Ser Gly Ser1
5 10 1520815PRTArtificial
Sequencemicroarray peptide NO 160 208Lys Gly Lys Ala Glu Asp Glu Asp Gly
Ser Gly Ser Gly Ser Gly1 5 10
15
User Contributions:
Comment about this patent or add new information about this topic: