Patent application title: METHODS AND COMPOSITIONS FOR INCREASING THE SUPPRESSIVE FUNCTION OF REGULATORY T-CELLS (TREGS)
Inventors:
Bruce R. Blazar (Golden Valley, MN, US)
Bruce R. Blazar (Golden Valley, MN, US)
Cameron Mcdonald-Hyman (St. Paul, MN, US)
Michael Dustin (New York, NY, US)
Sudha Kumari (New York, NY, US)
Tom Neubert (New York, NY, US)
James Muller (New York, NY, US)
Keli Hippen (Minneapolis, MN, US)
IPC8 Class: AA61K317105FI
USPC Class:
1 1
Class name:
Publication date: 2021-10-21
Patent application number: 20210322455
Abstract:
Methods and compositions for increasing the suppressive function of
regulatory T-cells (Tregs) are provided.Claims:
1. A method of reducing or eliminating the vimentin protein and/or the
RLTPR protein and/or the PKC-.theta. protein in Treg cells, comprising:
contacting the Treg cells with a vimentin-specific and/or a
RLTPR-specific and/or a PKC-.theta.-specific inhibitory nucleic acid
molecule.
2. The method of claim 1, wherein the vimentin-specific inhibitory nucleic acid molecule is complementary to at least a portion of the sequence shown in SEQ ID NO: 1.
3. The method of claim 1, wherein the RLTPR-specific inhibitor nucleic acid is complementary to at least a portion of the sequence shown in SEQ ID NO: 5.
4. The method of claim 1, wherein the PKC-.theta.-specific inhibitory nucleic acid molecule is complementary to at least a portion of the sequence shown in SEQ ID NO: 9.
5. The method of claim 1, wherein the vimentin-specific and/or the RLTPR-specific and/or the PKC-.theta.-specific inhibitory nucleic acid molecule is a RNAi nucleic acid molecule.
6. The method of claim 1, wherein the vimentin-specific and/or the RLTPR-specific and/or the PKC-.theta.-specific inhibitory nucleic acid molecule is an antisense nucleic acid molecule.
7. The method of claim 1, wherein the vimentin-specific and/or the RLTPR-specific and/or the PKC-.theta.-specific inhibitor nucleic acid molecule is a siRNA nucleic acid molecule.
8. The method of claim 1, wherein the vimentin-specific inhibitory nucleic acid molecule has the sequence shown in SEQ ID NO: 13, 14, 15 or 16.
9. The method of claim 1, wherein the Treg cells are contacted in vitro.
10. The method of claim 1, wherein the Treg cells are contacted in situ.
11. The method of claim 1, wherein the Treg cells are contacted in vivo in an individual who has received or is receiving a bone marrow transplant.
12. The method of claim 1, wherein the Treg cells exhibit a phenotype of at least one of the following: reduced PKC-.theta. auto-phosphorylation at Ser676; improved ability to suppress CD4+ and CD8+ Tcon proliferation; increased surface expression of Nrp1; increased surface expression of Lag3; increased basal and maximal oxygen consumption rate (OCR); increased BoDipy.sub.C1-C12 uptake; increased expression of CD71; increased expression of CD98; increased expression of CPT1a; or reduced activity of mTORC2, relative to Tregs that lack the vimentin-specific and/or the RLTPR-specific and/or the PKC-.theta.-specific inhibitory nucleic acid molecule.
13. A method of increasing or augmenting the suppressor cell potency of Treg cells, comprising: reducing or eliminating vimentin and/or RLTPR and/or PKC-.theta. in the Treg cells.
14. The method of claim 13, wherein reducing or eliminating the vimentin and/or the RLTPR and/or the PKC-.theta. in the Treg cells comprising contacting the Treg cells with a moiety selected from the group consisting of a nucleic acid, a nuclease, an antibody, a ligand, a peptide, a drug, a chemical, or a small molecule.
15. The method of claim 14, wherein the nucleic acid is a vimentin-specific and/or a RLTPR-specific and/or a PKC-.theta.-specific inhibitory nucleic acid molecule.
16. The method of claim 15, wherein the vimentin-specific and/or the RLTPR-specific and/or the PCK-.theta.-specific inhibitory nucleic acid molecule is selected from the group consisting of a RNAi nucleic acid molecule, an antisense nucleic acid molecule, and a siRNA nucleic acid molecule.
17. The method of claim 15, wherein the vimentin-specific inhibitory nucleic acid molecule is complementary to at least a portion of the sequence shown in SEQ ID NO: 1.
18. The method of claim 15, wherein the RLTPR-specific inhibitory nucleic acid molecule is complementary to at least a portion of the sequence shown in SEQ ID NO: 5.
19. The method of claim 15, wherein the PKC-.theta.-specific inhibitory nucleic acid molecule is complementary to at least a portion of the sequence shown in SEQ ID NO: 9.
20. The method of claim 13, wherein the method is performed in vitro.
21. The method of claim 13, wherein the method is performed in situ.
22. The method of claim 21, wherein the method is performed on an individual who has received or is receiving a bone marrow transplant.
23. The method of claim 13, wherein the Treg cells in which the vimentin, and/or RLTPR and/or PCK-.theta. has been reduced or eliminated exhibit a phenotype of at least one of the following: reduced PKC-.theta. auto-phosphorylation at Ser676; improved ability to suppress CD4+ and CD8+ Tcon proliferation; increased surface expression of Nrp1; increased surface expression of Lag3; increased basal and maximal oxygen consumption rate (OCR); increased BoDipy.sub.C1-C12 uptake; increased expression of CD71; increased expression of CD98; increased expression of CPT1a; or reduced activity of mTORC2, relative to Tregs in which vimentin, RLTPR and/or PCK-.theta. is not reduced or eliminated.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is a Continuation of U.S. application Ser. No. 15/757,516, filed Mar. 5, 2018, which is a National Stage application under 35 U.S.C. .sctn. 371 of International Application No. PCT/US2016/050215, having an International Filing Date of Sep. 2, 2016, which claims the benefit of priority under 35 U.S.C. .sctn. 119(e) to U.S. Provisional Application Ser. No. 62/214,680, filed Sep. 4, 2015, the disclosures of which are incorporated herein by reference in their entirety.
TECHNICAL FIELD
[0003] This disclosure generally relates to T-cells and methods of engineering T-cells to reduce or eliminate graft-vs.-host-disease.
BACKGROUND
[0004] Regulatory T-cells (Tregs) play a critical role in preventing and treating autoimmune and alloimmune reactions, including graft-versus-host disease (GVHD) and solid organ transplant rejection, allergies and responses to foreign antigens (e.g., microbes, protein replacement therapy for deficiency disorders). Two recent clinical trials demonstrated that, in patients undergoing hematopoietic stem cell transplantation, adoptive transfer of Tregs significantly reduced the incidence of grades II-IV GVHD. While Tregs significantly reduced GVHD severity, they did not eliminate GVHD. One potential way to augment Treg-mediated inhibition of GVHD is to increase Treg suppressive potency. It was previously shown that Treg-specific inhibition of protein kinase C-theta (PKC-.theta.) enhances Treg function. However, it is unclear whether PKC-.theta. inhibition can boost Treg function in a systemic inflammatory condition like GVHD. Furthermore, the mechanism by which PKC-.theta. inhibition augments Treg function is unknown.
SUMMARY
[0005] In one aspect, a method of reducing or eliminating the vimentin protein and/or the RLTPR protein and/or the PKC-.theta. protein in Treg cells in provided. Such a method typically includes contacting the Treg cells with a vimentin-specific and/or a RLTPR-specific and/or a PKC-.theta.-specific inhibitory nucleic acid molecule.
[0006] In some embodiments, the vimentin-specific inhibitory nucleic acid molecule is complementary to at least a portion of the sequence shown in SEQ ID NO: 1. In some embodiments, the RLTPR-specific inhibitor nucleic acid is complementary to at least a portion of the sequence shown in SEQ ID NO: 5. In some embodiments, the PKC-.theta.-specific inhibitory nucleic acid molecule is complementary to at least a portion of the sequence shown in SEQ ID NO: 9. Representative vimentin-specific inhibitory nucleic acid molecules have the sequence shown in SEQ ID NO: 13, 14, 15 or 16.
[0007] In some embodiments, the vimentin-specific and/or the RLTPR-specific and/or the PKC-.theta.-specific inhibitory nucleic acid molecule is a RNAi nucleic acid molecule. In some embodiments, the vimentin-specific and/or the RLTPR-specific and/or the PKC-.theta.-specific inhibitory nucleic acid molecule is an antisense nucleic acid molecule. In some embodiments, the vimentin-specific and/or the RLTPR-specific and/or the PKC-.theta.-specific inhibitor nucleic acid molecule is a siRNA nucleic acid molecule.
[0008] In some embodiments, the Treg cells are contacted in vitro. In some embodiments, the Treg cells are contacted in situ. In some embodiments, the Treg cells are contacted in vivo in an individual who has received or is receiving a bone marrow transplant.
[0009] In some embodiments, the Treg cells exhibit a phenotype of at least one of the following: reduced PKC-.theta. auto-phosphorylation at Ser676; improved ability to suppress CD4+ and CD8+ Tcon proliferation; increased surface expression of Nrp1; increased surface expression of Lag3; increased basal and maximal oxygen consumption rate (OCR); increased BoDipy.sub.C1-C12 uptake; increased expression of CD71; increased expression of CD98; increased expression of CPT1a; or reduced activity of mTORC2, compared to Tregs that lack the vimentin-specific and/or the RLTPR-specific and/or the PKC-.theta.-specific inhibitory nucleic acid molecule, respectively.
[0010] In another aspect, a method of increasing or augmenting the suppressor cell potency of Treg cells is provided. Typically, such a method includes reducing or eliminating vimentin and/or RLTPR and/or PKC-.theta. in the Treg cells.
[0011] In some embodiments, reducing or eliminating the vimentin and/or the RLTPR and/or the PKC-.theta. in the Treg cells comprising contacting the Treg cells with a moiety selected from the group consisting of a nucleic acid, a nuclease, an antibody, a ligand, a peptide, a drug, a chemical, or a small molecule. Representative nucleic acids include, without limitation, a vimentin-specific and/or a RLTPR-specific and/or a PKC-.theta.-specific inhibitory nucleic acid molecule. In some embodiments, the vimentin-specific and/or the RLTPR-specific and/or the PCK-.theta.-specific inhibitory nucleic acid molecule is selected from the group consisting of a RNAi nucleic acid molecule, an antisense nucleic acid molecule, and a siRNA nucleic acid molecule.
[0012] In some embodiments, the vimentin-specific inhibitory nucleic acid molecule is complementary to at least a portion of the sequence shown in SEQ ID NO: 1. In some embodiments, the RLTPR-specific inhibitory nucleic acid molecule is complementary to at least a portion of the sequence shown in SEQ ID NO: 5. In some embodiments, the PKC-.theta.-specific inhibitory nucleic acid molecule is complementary to at least a portion of the sequence shown in SEQ ID NO: 9.
[0013] In some embodiments, the method is performed in vitro. In some embodiments, the method is performed in situ. In some embodiments, the method is performed on an individual who has received or is receiving a bone marrow transplant.
[0014] In some embodiments, the Treg cells in which the vimentin, and/or RLTPR and/or PCK-.theta. has been reduced or eliminated exhibit a phenotype of at least one of the following: reduced PKC-.theta. auto-phosphorylation at Ser676; improved ability to suppress CD4+ and CD8+ Tcon proliferation; increased surface expression of Nrp1; increased surface expression of Lag3; increased basal and maximal oxygen consumption rate (OCR); increased BoDipy.sub.C1-C12 uptake; increased expression of CD71; increased expression of CD98; increased expression of CPT1a; or reduced activity of mTORC2, compared to Tregs in which vimentin, RLTPR and/or PCK-.theta., respectively, is not reduced or eliminated.
[0015] In still another aspect, a method of disrupting the structural integrity or the metabolic activity of Treg cells is provided. Typically, such a method includes reducing or eliminating vimentin and/or RLTPR and/or PKC-.theta. in the Treg cells.
[0016] In yet another aspect, a method of screening for compounds that increasing or augmenting the suppressor cell potency of Treg cells is provided. Typically, such a method includes contacting Treg cells with a test compound and determining whether or not the structural integrity or metabolic activity of the cell is disrupted. Disruption of the structural integrity or metabolic activity of the cell can be determined, for example, by detecting a reduction or elimination of vimentin and/or RLTPR and/or PKC-.theta. in the Treg cells. A test compound that disrupts the structural integrity or metabolic activity of the cell is indicative of a compound that increases or augments the suppressor cell potency of Treg cells.
[0017] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the methods and compositions of matter belong. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the methods and compositions of matter, suitable methods and materials are described below. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety.
DESCRIPTION OF DRAWINGS
[0018] FIG. 1 shows that PKC-.theta. inhibition and vimentin siRNA treatment increase Treg function.
[0019] Panel A shows acute GVHD. Lethally irradiated BALB/c mice were given 10e6 C57BL/6 bone marrow only (BM), or BM with 2e6 CD4+25-/CD8+25-Tcon cells without (BM+T) or with 1e6 Tregs treated with either DMSO (DMSO) or 10 .mu.M AEB071 (AEB071) for 30 minutes. Compared to DMSO, Tregs treated with AEB071 significantly increased recipient survival (p=0.0036).
[0020] Panel B shows Treg activation. Tregs were treated with DMSO or AEB071 as above, and activated overnight with plate bound anti-CD3/28 and IL-2. AEB071 treatment significantly increased the surface expression of Neuropilin-1.
[0021] Panel C shows Treg activation. Tregs were treated with DMSO or AEB071 as above, and activated overnight with plate bound anti-CD3/28 and IL-2. AEB071 treatment significantly increased the surface expression of Lymphocyte activation gene 3 (Lag3).
[0022] Panel D shows Treg metabolic activity. Tregs were treated with DMSO or AEB071 and activated as above. Oxygen consumption rate (OCR) analysis revealed that AEB071 treatment significantly increased baseline Treg OCR (time 0-19 min) and maximal OCR (time=53-70 min).
[0023] Panel E shows Treg suppression. Tregs were transfected with vimentin siRNA (vim) or control (GFP), and activated for 36 hours. CFSE-labeled Tcon were mixed with T-cell depleted splenocytes and soluble anti-CD3 mAb. Treg:Tcon ratios of 1:1-1:27 were plated and CFSE dilution assessed after 3 days.
[0024] FIG. 2A shows that vimentin is highly enriched in Tregs compared to conventional CD4+ T-cells (CD4 Tcon).
[0025] FIG. 2B shows that, compared to the transfection control (top panel), transfection with GFP-siRNA using the transfection protocol described herein yielded 50-60% or greater transfection of Tregs.
[0026] FIG. 2C shows that, compared to the control GFP-siRNA (GFP), when utilizing vimentin siRNA (vim siRNA) and the transfection protocol described herein, vimentin levels were knocked down by 15-30%.
[0027] FIG. 3A shows that, in standard in vitro suppression assays, vimentin siRNA-transfected Tregs (Vim) were able to suppress proliferation of CD4 conventional T-cells significantly better than control GFP-siRNA transfected Tregs (GFP). Treg:Tcon ratios of 1:1-1:27 are represented with 1:1, 1:3 etc. denotations in the x-axis labels.
[0028] FIG. 3B shows that, in standard in vitro suppression assays, vimentin siRNA-transfected Tregs (Vim) were able to suppress proliferation of CD8 conventional T-cells significantly better than control GFP-siRNA transfected Tregs (GFP). Treg:Tcon ratios of 1:1-1:27 are represented with 1:1, 1:3 etc. denotations in the x-axis labels.
[0029] FIG. 4A are histograms showing a symmetrical distribution of the labeling of the samples.
[0030] FIG. 4B is a scatter plot showing the consistency between labeled samples.
[0031] FIG. 5, Panels A-D, show that RLTPR siRNA significantly decreased the amount of RLTPR protein in Treg cells.
[0032] FIG. 6A is a graph showing that RLTPR siRNA increased suppression of CD4+ T-cells in vitro.
[0033] FIG. 6B is a graph showing that RLTPR siRNA increased suppression of CD8+ T-cells in vitro.
[0034] FIG. 7A is a graph showing that RLTPR siRNA resulted in a significant increase in the expression of Foxp3 in Treg cells in vitro (p<0.05).
[0035] FIG. 7B is a graph showing that RLTPR siRNA had no significant effect on the expression of CD25 in Treg cells in vitro.
[0036] FIG. 7C is a graph showing that RLTPR siRNA significantly increased the expression of neuropilin-1 (Nrp1) in Treg cells in vitro (p<0.0001).
[0037] FIG. 8A are photographs of the results of experiments in which Tregs were pre-treated with DMSO (control), AEB071, or vimentin siRNA, then activated. PKC-.theta. and vimentin staining were analyzed by confocal microscopy. Data show one experiment representative of 4 independent experiments.
[0038] FIG. 8B is a representative histogram of PKC-.theta. phosphorylated at Ser676 after vimentin siRNA treatment, and a graph showing median fluorescent intensity (MFI) quantification. Data show one experiment representative of 2 independent experiments. n=4 replicates/group. Bars show mean.+-.SEM. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests or one-way ANOVA with Tukey's post-test).
[0039] FIG. 8C is a graph showing percent in vitro suppression of CD4+ Tcon proliferation by control and vimentin siRNA-treated Tregs in a standard in vitro Treg suppression assay. 1:1-1:9 indicates Treg:Tcon ratio. Data show one experiment representative of 3 independent experiments. n=4 replicates/group. Bars show mean.+-.SEM. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests or one-way ANOVA with Tukey's post-test).
[0040] FIG. 8D shows a representative histogram of Neuropilin-1 expression, and graphs showing MFI quantifications of Nrp1, Foxp3 and CD25. Data show one experiment representative of 3 independent experiments. n=4 replicates/group. Bars show mean.+-.SEM. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests or one-way ANOVA with Tukey's post-test).
[0041] FIG. 9A is a graph showing the percent survival of recipients. Tregs were transfected with either control (non-targeting) or vimentin siRNA. Recipient mice were given BM alone, BM+ Tcon (BM+T), or BM+ Tcon+ Tregs; Tregs pre-treated with control or vimentin siRNA. Data show one experiment representative of 3 independent experiments. n=5 mice/group/experiment. Bars show mean.+-.SEM. Survival differences analyzed by log-rank test. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests or one-way ANOVA with Tukey's post-test).
[0042] FIG. 9B is a graph showing the clinical GVHD scores (0=no disease, 10=most severe disease) for recipients. Tregs were transfected with either control (non-targeting) or vimentin siRNA. Recipient mice were given BM alone, BM+ Tcon (BM+T), or BM+ Tcon+ Tregs; Tregs pre-treated with control or vimentin siRNA. Data show one experiment representative of 3 independent experiments. n=5 mice/group/experiment. Bars show mean.+-.SEM. Survival differences analyzed by log-rank test. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests or one-way ANOVA with Tukey's post-test).
[0043] FIG. 9C is a graph showing basal and maximal oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) measured after transfection. Tregs were transfected with either control (non-targeting) or vimentin siRNA. Data show one experiment representative of 3 independent experiments. n=5 replicates/group. Bars show mean.+-.SEM. Survival differences analyzed by log-rank test. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests or one-way ANOVA with Tukey's post-test).
[0044] FIG. 9D is a representative histogram showing BoDipyC1-C12 uptake and a graph showing median fluorescent intensity (MFI) quantification of splenic Tregs from recipients on D4 after transplant. Tregs were transfected with either control (non-targeting) or vimentin siRNA, and recipients were given BM+ Tcon+ Tregs. Data show one experiment representative of 3 independent experiments. n=4 replicates/group. Bars show mean.+-.SEM. Survival differences analyzed by log-rank test. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests or one-way ANOVA with Tukey's post-test).
[0045] FIG. 9E is a graph showing quantification of Glut1 and CPT1a MFI from flow cytometry analysis of splenic Tregs from recipients on D4 after transplant. Tregs were transfected with either control (non-targeting) or vimentin siRNA, and recipients were given BM+ Tcon+ Tregs. Data show one experiment representative of 3 independent experiments. n=4 replicates/group. Bars show mean.+-.SEM. Survival differences analyzed by log-rank test. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests or one-way ANOVA with Tukey's post-test).
[0046] FIG. 9F are representative histograms showing Akt phosphorylation at Ser473 and Foxo3a phosphorylation (at Ser253) after control and vimentin siRNA transfection, and graphs showing corresponding MFI quantifications. Tregs were transfected with either control (non-targeting) or vimentin siRNA. Data show one experiment representative of 2 independent experiments. n=4 replicates/group. Bars show mean.+-.SEM. Survival differences analyzed by log-rank test. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests or one-way ANOVA with Tukey's post-test).
[0047] FIG. 10A is a graph showing the quantification of vimentin median fluorescent intensity (MFI) from flow cytometry analysis of purified Tregs and CD4+ Tcon. Data show one experiment representative of 4 independent experiments. n=4 replicates/group. Bars show mean.+-.SEM. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests).
[0048] FIG. 10B is a graph showing the percent in vitro suppression of CD8+ Tcon proliferation in a standard in vitro Treg suppression assay. Data show one experiment representative of 3 independent experiments. n=4 replicates/group. Bars show mean.+-.SEM. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests).
[0049] FIG. 10C is a graph showing MFI quantification of Lag3 expression in purified Tregs from flow cytometry analysis. Data show one experiment representative of 3 independent experiments. n=4 replicates/group. Bars show mean.+-.SEM. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests).
[0050] FIG. 10D is a graph showing recipient weights from mice given only BM, BM+ Tcon (BM+T), or BM+ Tcon+ Tregs. Data show one experiment representative of 3 independent experiments. n=5 mice/group/experiment. Bars show mean.+-.SEM. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests).
[0051] FIG. 10E are graphs showing quantifications of alpha4beta7 and CCR9 MFI, and graphs showing percent of alpha4beta7 and CCR9 positive Tregs after transfection. Data show one experiment representative of 2 independent experiments. n=4 replicates/group. Bars show mean.+-.SEM. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests).
[0052] FIG. 10F are graphs showing the quantification of CD71 and CD98 MFI from splenic Tregs from recipient mice transplanted with BM+ Tcon+ Tregs on D4 after transplant. Data show one experiment representative of 2 independent experiments. n=4 replicates/group. Bars show mean.+-.SEM. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests).
[0053] FIG. 10G are graphs showing quantifications of S6 and 4E-BP1 phosphorylation after transfection. Data show one experiment representative of 2 independent experiments. n=4 replicates/group. Bars show mean.+-.SEM. *, p<0.05; **, P<0.01; ***, P<0.0001; ****, p<0.00001 (Student's t-tests).
DETAILED DESCRIPTION
[0054] The present disclosure provides evidence that disrupting cytoskeletal structure in Tregs results in a release of structural components from physical constraints that is then able to increase suppressor cell potency. This effect can be direct (e.g., the molecule or compound released from the structural components within the Treg cells can exert this effect) or indirect (e.g., a molecule or compound that, upon binding to a binding partner such as, without limitation, adapter molecules, signaling molecules, enzymes, or molecules involved in degradation, recycling, mobility, metabolism, and/or differentiation, results in a release of one or more physical constraints in the Treg cells) or a combination thereof. Simply by way of example, and without being bound by any particular mechanism, such physical constraints within the Treg cells may occur at a cellular level (e.g., on the membrane of the cell, involving one or more cell-to-cell communication mechanisms) or at an intracellular level (e.g., on one or more organelles). This is the first evidence that there are structurally-based processes that occur within Treg cells that regulate their suppressor potency.
[0055] This phenomenon (e.g., the occurrence of structurally-based processes within Treg cells that regulate their suppressor potency) can be used in methods of increasing or augmenting the function (e.g., suppressor potency) of Treg cells. As described herein, increasing or augmenting the function of Treg cells can be accomplished by reducing or eliminating any of the vimentin protein, the RLTPR protein, or the PKC-.theta. protein, or a combination thereof.
[0056] Vimentin is a type III intermediate filament protein, and is the major cytoskeleton protein in mesenchymal cells. Vimentin plays a significant role in maintaining the position of organelles within the three-dimensional cell, but, at the same time, vimentin is a dynamic protein that allows for some of the structural flexibility exhibited by cells. The human vimentin nucleic acid sequence is shown in SEQ ID NO: 1, and the encoded protein is shown in SEQ ID NO: 2. The mouse vimentin nucleic acid sequence is shown in SEQ ID NO: 3, and the encoded protein is shown in SEQ ID NO: 4.
[0057] RLTPR is also known as CARMIL2 and is an adaptor protein that links PKC-.theta. with CD28. RLTPR knock-out mice exhibit a phenotype similar to CD28 knock-out mice, underscoring the importance of RLTPR in CD28/PKC-.theta. signaling (see, Liang, 2013, Nat. Immunol., 14(8):858-66). In addition, RLTPR also links protein kinase C-theta (PKC-.theta.) with the intermediate filament, vimentin (see, Liang, 2009, Mol. Biol. Cell., 20(24):5290-305). The human RLTPR nucleic acid sequence is shown in SEQ ID NO: 5, and the encoded protein is shown in SEQ ID NO: 6. The mouse RLTPR nucleic acid sequence is shown in SEQ ID NO: 7, and the encoded protein is shown in SEQ ID NO: 8.
[0058] Protein kinase C-theta (PKC-.theta.; also known as PRKCQ) is a member of the PKC family of serine- and threonine-specific protein kinases. PKC-.theta. is a calcium-independent and phospholipid-dependent protein kinase. The human PKC-.theta. nucleic acid sequence is shown in SEQ ID NO: 9, and the encoded protein is shown in SEQ ID NO: 10. The mouse PKC-.theta. nucleic acid sequence is shown in SEQ ID NO: 11, and the encoded protein is shown in SEQ ID NO: 12.
[0059] A nucleic acid encoding vimentin from human is shown in SEQ ID NO: 1, and a nucleic acid encoding vimentin from mouse is shown in SEQ ID NO: 3. In addition, a nucleic acid encoding RLTPR from human is shown in SEQ ID NO: 5, and a nucleic acid encoding RLTPR from mouse is shown in SEQ ID NO: 7. Further, a nucleic acid encoding PKC-.theta. from human is shown in SEQ ID NO:9, and a nucleic acid encoding PKC-.theta. from mouse is shown in SEQ ID NO:11. Unless otherwise specified, nucleic acids referred to herein can refer to DNA and RNA, and also can refer to nucleic acids that contain one or more nucleotide analogs or backbone modifications. Nucleic acids can be single stranded or double stranded, and linear or circular, both of which usually depend upon the intended use.
[0060] As used herein, an "isolated" nucleic acid molecule is a nucleic acid molecule that is free of sequences that naturally flank one or both ends of the nucleic acid in the genome of the organism from which the isolated nucleic acid molecule is derived (e.g., a cDNA or genomic DNA fragment produced by PCR or restriction endonuclease digestion). Such an isolated nucleic acid molecule is generally introduced into a vector (e.g., a cloning vector, or an expression vector) for convenience of manipulation or to generate a fusion nucleic acid molecule, discussed in more detail below. In addition, an isolated nucleic acid molecule can include an engineered nucleic acid molecule such as a recombinant or a synthetic nucleic acid molecule.
[0061] The sequence of the vimentin polypeptide from human is shown in SEQ ID NO: 2, and the sequence of the vimentin polypeptide from mouse is shown in SEQ ID NO: 4. In addition, the sequence of the RLTPR polypeptide from human is shown in SEQ ID NO: 6, and the sequence of the RLTPR polypeptide from mouse is shown in SEQ ID NO: 8. Further, the sequence of the PKC-.theta. polypeptide from human is shown in SEQ ID NO:10, and the sequence of the PKC-.theta. polypeptide from mouse is shown in SEQ ID NO:12. As used herein, a "purified" polypeptide is a polypeptide that has been separated or purified from cellular components that naturally accompany it. Typically, the polypeptide is considered "purified" when it is at least 70% (e.g., at least 75%, 80%, 85%, 90%, 95%, or 99%) by dry weight, free from the polypeptides and naturally occurring molecules with which it is naturally associated. Since a polypeptide that is chemically synthesized is, by nature, separated from the components that naturally accompany it, a synthetic polypeptide is "purified."
[0062] Nucleic acids can be isolated using techniques well known in the art. For example, nucleic acids can be isolated using any method including, without limitation, recombinant nucleic acid technology, and/or the polymerase chain reaction (PCR). General PCR techniques are described, for example in PCR Primer: A Laboratory Manual, Dieffenbach & Dveksler, Eds., Cold Spring Harbor Laboratory Press, 1995. Recombinant nucleic acid techniques include, for example, restriction enzyme digestion and ligation, which can be used to isolate a nucleic acid. Isolated nucleic acids also can be chemically synthesized, either as a single nucleic acid molecule or as a series of oligonucleotides.
[0063] Polypeptides can be purified from natural sources (e.g., a biological sample) by known methods such as DEAE ion exchange, gel filtration, and hydroxyapatite chromatography. A polypeptide also can be purified, for example, by expressing a nucleic acid in an expression vector. In addition, a purified polypeptide can be obtained by chemical synthesis. The extent of purity of a polypeptide can be measured using any appropriate method, e.g., column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.
[0064] Nucleic acids can be detected using any number of amplification techniques (see, e.g., PCR Primer: A Laboratory Manual, 1995, Dieffenbach & Dveksler, Eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; and U.S. Pat. Nos. 4,683,195; 4,683,202; 4,800,159; and 4,965,188) with an appropriate pair of oligonucleotides (e.g., primers). A number of modifications to the original PCR have been developed and can be used to detect a nucleic acid. Nucleic acids also can be detected using hybridization.
[0065] Polypeptides can be detected using antibodies. Techniques for detecting polypeptides using antibodies include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. An antibody can be polyclonal or monoclonal. An antibody having specific binding affinity for a polypeptide can be generated using methods well known in the art. The antibody can be attached to a solid support such as a microtiter plate using methods known in the art. In the presence of a polypeptide, an antibody-polypeptide complex is formed.
[0066] Detection (e.g., of an amplification product, a hybridization complex, or a polypeptide) is oftentimes accomplished using detectable labels. The term "label" is intended to encompass the use of direct labels as well as indirect labels. Detectable labels include enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.
[0067] A construct, sometimes referred to as a vector, containing a nucleic acid (e.g., a coding sequence or a RNAi nucleic acid molecule) is provided. Constructs, including expression constructs (or expression vectors), are commercially available or can be produced by recombinant DNA techniques routine in the art. A construct containing a nucleic acid can have expression elements operably linked to such a nucleic acid, and further can include sequences such as those encoding a selectable marker (e.g., an antibiotic resistance gene). A construct can encode a chimeric or fusion polypeptide (i.e., a first polypeptide operatively linked to a second polypeptide). Representative first (or second) polypeptides are those that can be used in purification of the other (i.e., second (or first), respectively) polypeptide including, without limitation, 6.times.His tag or glutathione S-transferase (GST).
[0068] Expression elements include nucleic acid sequences that direct and regulate expression of nucleic acid coding sequences. One example of an expression element is a promoter sequence. Expression elements also can include introns, enhancer sequences, response elements, or inducible elements that modulate expression of a nucleic acid. Expression elements can be of bacterial, yeast, insect, mammalian, or viral origin, and vectors can contain a combination of elements from different origins. As used herein, operably linked means that a promoter or other expression element(s) are positioned in a vector relative to a nucleic acid in such a way as to direct or regulate expression of the nucleic acid (e.g., in-frame).
[0069] Constructs as described herein can be introduced into a host cell. Many methods for introducing nucleic acids into host cells, both in vivo and in vitro, are well known to those skilled in the art and include, without limitation, electroporation, calcium phosphate precipitation, polyethylene glycol (PEG) transformation, heat shock, lipofection, microinjection, and viral-mediated nucleic acid transfer. As used herein, "host cell" refers to the particular cell into which the nucleic acid is introduced and also includes the progeny or potential progeny of such a cell. A host cell can be any prokaryotic or eukaryotic cell. For example, nucleic acids can be introduced into bacterial cells such as E. coli, or into insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.
[0070] A number of methods are known in the art that can be used to reduce or eliminate vimentin and/or RLTPR and/or PKC-.theta. polypeptides. For example, RNA interference (RNAi) nucleic acid molecules, nucleases (e.g., CRISPR, TALENs, megaTALs, meganucleases, zinc finger nucleases); antibodies (e.g., Fab, Fab2, chimeric, humanized); or ligands, peptides, drugs, chemicals, or small molecules that competitively bind vimentin or RLTPR or PKC-.theta., that down-regulate vimentin or RLTPR or PKC-.theta. expression (transcription of DNA into RNA or translation of RNA into protein), that increase vimentin or RLTPR or PKC-.theta. degradation, or that cause intracellular depletion (e.g., by secretion) of vimentin or RLTPR or PKC-.theta., can be used to reduce or eliminate vimentin and/or RLTPR and/or PKC-.theta..
[0071] RNA interference (RNAi), also referred to as post-transcriptional gene silencing (PTGS), is known in the art and, as indicated herein, can be used to reduce or eliminate vimentin and/or RLTPR and/or PKC-.theta. polypeptides. RNAi is a biological process in which RNA molecules inhibit gene expression, typically by causing the destruction of specific mRNA molecules. Without being bound by theory, it appears that, in the presence of an antisense RNA molecule that is complementary to an expressed message (i.e., a mRNA), the two strands anneal to generate long double-stranded RNA (dsRNA), which is digested into short (<30 nucleotide) RNA duplexes, known as small interfering RNAs (siRNAs), by an enzyme known as Dicer. A complex of proteins known as the RNA Induced Silencing Complex (RISC) then unwinds siRNAs, and uses one strand to identify and thereby anneal to other copies of the original mRNA. RISC cleaves the mRNA within the complementary sequence, leaving the mRNA susceptible to further degradation by exonucleases, which effectively silences expression of the encoding gene.
[0072] Several methods have been developed that take advantage of the endogenous machinery to suppress the expression of a specific target gene and a number of companies offer RNAi design and synthesis services (e.g., Life Technologies, Applied Biosystems). In some instances, the use of RNAi can involve the introduction of long dsRNA (e.g., greater than 50 bps) or siRNAs (e.g., 12 to 23 bps) that have complementarity to the target gene, both of which are processed by the endogenous machinery. Alternatively, the use of RNAi can involve the introduction of a small hairpin RNA (shRNA); shRNA is a nucleic acid that includes the sequence of the two desired siRNA strands, sense and antisense, on a single strand, connected by a "loop" or "spacer" nucleic acid. When the shRNA is transcribed, the two complementary portions anneal intra-molecularly to form a "hairpin," which is recognized and processed by the endogenous machinery. Irrespective of the particular type used (e.g., dsRNA, siRNA or shRNA), such RNAi nucleic acid molecules can be referred to as "specific inhibitory nucleic acid molecules" (e.g., a vimentin-specific inhibitory nucleic acid molecule, a RLTPR-specific inhibitory nucleic acid molecule, a PKC-.theta.-specific inhibitory nucleic acid molecule).
[0073] A RNAi nucleic acid molecule as described herein includes a nucleic acid molecule that is complementary to at least a portion of a target mRNA (i.e., a vimentin or a RLTPR or a PKC-.theta. mRNA); this nucleic acid molecule typically is referred to as an "antisense strand". Generally, the antisense strand includes at least 12 contiguous nucleotides of the DNA sequence (e.g., the vimentin nucleic acid sequence shown in SEQ ID NO: 1 or 3; the RLTPR nucleic acid sequence shown in SEQ ID NO: 5 or 7; or the PKC-.theta. nucleic acid sequence shown in SEQ ID NO: 9 or 11); it would be appreciated that the antisense strand has the "RNA equivalent" sequence of the DNA (e.g., uracils instead of thymines; ribose sugars instead of deoxyribose sugars).
[0074] A RNAi nucleic acid molecule can be, for example, 12 to 500 nucleotides in length (e.g., 12 to 50, 12 to 45, 12 to 30, 15 to 47, 15 to 38, 15 to 29, 16 to 53, 17 to 44, 17 to 38, 18 to 36, 19 to 49, 20 to 60, 20 to 40, 25 to 75, 25 to 100, 28 to 85, 30 to 90, 12 to 100, 12 to 300, 12 to 450, 15 to 70, 15 to 150, 16 to 275, 17 to 74, 17 to 162, 17 to 305, 18 to 60, 18 to 75, 18 to 250, 18 to 400, 20 to 35, 20 to 60, 20 to 80, 20 to 175, 20 to 225, 20 to 325, 20 to 400, 20 to 475, 25 to 45, 25 to 65, 25 to 100, 25 to 200, 25 to 250, 25 to 300, 25 to 350, 25 to 400, 25 to 450, 30 to 280, 35 to 250, 200 to 500, 200 to 400, 250 to 450, 250 to 350, or 300 to 400 nucleotides in length).
[0075] In some embodiments, the antisense strand (e.g., a first nucleic acid) can be accompanied by a "sense strand" (e.g., a second nucleic acid), which is complementary to the antisense strand. In the latter case, each nucleic acid (e.g., each of the sense and antisense strands) can be between 12 and 500 nucleotides in length (e.g., between 12 to 50, 12 to 45, 12 to 30, 14 to 47, 15 to 38, 16 to 29, 17 to 53, 17 to 44, 17 to 38, 18 to 36, 19 to 49, 20 to 60, 20 to 40, 25 to 75, 25 to 100, 28 to 85, 30 to 90, 12 to 100, 13 to 300, 14 to 450, 16 to 70, 16 to 150, 16 to 275, 17 to 74, 17 to 162, 17 to 305, 18 to 60, 18 to 75, 18 to 250, 18 to 400, 20 to 35, 20 to 60, 20 to 80, 20 to 175, 20 to 225, 20 to 325, 20 to 400, 20 to 475, 25 to 45, 25 to 65, 25 to 100, 25 to 200, 25 to 250, 25 to 300, 25 to 350, 25 to 400, 25 to 450, 30 to 280, 35 to 250, 200 to 500, 200 to 400, 250 to 450, 250 to 350, or 300 to 400 nucleotides in length).
[0076] In some embodiments, a spacer nucleic acid, sometimes referred to as a loop nucleic acid, can be positioned between the sense strand and the antisense strand. In some embodiments, the spacer nucleic acid can be an intron (see, for example, Wesley et al., 2001, The Plant J., 27:581-90). In some embodiments, although not required, the intron can be functional (i.e., in sense orientation; i.e., spliceable) (see, for example, Smith et al., 2000, Nature, 407:319-20). A spacer nucleic acid can be between 20 nucleotides and 1000 nucleotides in length (e.g., 25-800, 25-600, 25-400, 50-750, 50-500, 50-250, 100-700, 100-500, 100-300, 250-700, 300-600, 400-700, 500-800, 600-850, or 700-1000 nucleotides in length).
[0077] In some embodiments, a construct can be produced by operably linking a promoter to a DNA region, that, when transcribed, produces an RNA molecule capable of forming a hairpin structure; and a DNA region involved in transcription termination and polyadenylation. It would be appreciated that the hairpin structure has two annealing RNA sequences, where one of the annealing RNA sequences of the hairpin RNA structure includes a sense sequence identical to at least 15 consecutive nucleotides of a vimentin or a RLTPR or a PKC-.theta. nucleotide sequence, and where the second of the annealing RNA sequences includes an antisense sequence that is identical to at least 15 consecutive nucleotides of the complement of the vimentin or the RLTPR or the PKC-.theta. nucleotide sequence. In addition, as indicated herein, the DNA region can include an intron (e.g., a functional intron). When present, the intron generally is located between the two annealing RNA sequences in sense orientation such that it is spliced out by the cellular machinery (e.g., the splicesome). Such a construct can be introduced into one or more plant cells to reduce the phenotypic expression of a vimentin or a RLTPR or a PKC-.theta. nucleic acid (e.g., a nucleic acid sequence that is normally expressed in a Treg cell).
[0078] In some embodiments, a construct (e.g., an expression construct) can include an inverted-duplication of a segment of a target nucleic acid sequence, where the inverted-duplication includes a nucleotide sequence substantially identical to at least a portion of the target nucleic acid and the complement of a portion of the target nucleic acid. It would be appreciated that a single promoter can be used to drive expression of the inverted-duplication nucleic acid, and that the inverted-duplication typically contains at least one copy of the portion of the target nucleic acid in the sense orientation. Such a construct can be introduced into one or more Treg cells to delay, inhibit or otherwise reduce the expression of the target nucleic acid in the Treg cells.
[0079] Representative siRNA nucleic acid molecules directed toward vimentin are shown in SEQ ID NOs: 13, 14, 15, and 16. It would be appreciated by the skilled artisan that the region of complementarity, between the antisense strand of the RNAi and the mRNA or between the antisense strand of the RNAi and the sense strand of the RNAi, can be over the entire length of the RNAi nucleic acid molecule, or the region of complementarity can be less than the entire length of the RNAi nucleic acid molecule. For example, a region of complementarity can refer to, for example, at least 12 nucleotides in length up to, for example, 500 nucleotides in length (e.g., at least 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 28, 30, 35, 49, 50, 60, 75, 80, 100, 150, 180, 200, 250, 300, 320, 385, 420, 435 nucleotides in length up to, e.g., 30, 35, 36, 40, 45, 49, 50, 60, 65, 75, 80, 85, 90, 100, 175, 200, 225, 250, 280, 300, 325, 350, 400, 450, or 475 nucleotides in length). In some embodiments, a region of complementarity can refer to, for example, at least 12 contiguous nucleotides in length up to, for example, 500 contiguous nucleotides in length (e.g., at least 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 28, 30, 35, 49, 50, 60, 75, 80, 100, 150, 180, 200, 250, 300, 320, 385, 420, 435 nucleotides in length up to, e.g., 30, 35, 36, 40, 45, 49, 50, 60, 65, 75, 80, 85, 90, 100, 175, 200, 225, 250, 280, 300, 325, 350, 400, 450, or 475 contiguous nucleotides in length).
[0080] It would be appreciated by the skilled artisan that complementary can refer to, for example, 100% sequence identity between the two nucleic acids. In addition, however, it also would be appreciated by the skilled artisan that complementary can refer to, for example, slightly less than 100% sequence identity (e.g., at least 95%, 96%, 97%, 98%, or 99% sequence identity). In calculating percent sequence identity, two nucleic acids are aligned and the number of identical matches of nucleotides (or amino acid residues) between the two nucleic acids (or polypeptides) is determined. The number of identical matches is divided by the length of the aligned region (i.e., the number of aligned nucleotides (or amino acid residues)) and multiplied by 100 to arrive at a percent sequence identity value. It will be appreciated that the length of the aligned region can be a portion of one or both nucleic acids up to the full-length size of the shortest nucleic acid. It also will be appreciated that a single nucleic acid can align with more than one other nucleic acid and hence, can have different percent sequence identity values over each aligned region.
[0081] The alignment of two or more nucleic acids to determine percent sequence identity can be performed using the computer program ClustalW and default parameters, which allows alignments of nucleic acid or polypeptide sequences to be carried out across their entire length (global alignment). Chenna et al., 2003, Nucleic Acids Res., 31(13):3497-500. ClustalW calculates the best match between a query and one or more subject sequences (nucleic acid or polypeptide), and aligns them so that identities, similarities and differences can be determined. Gaps of one or more residues can be inserted into a query sequence, a subject sequence, or both, to maximize sequence alignments. For fast pairwise alignment of nucleic acid sequences, the default parameters can be used (i.e., word size: 2; window size: 4; scoring method: percentage; number of top diagonals: 4; and gap penalty: 5); for an alignment of multiple nucleic acid sequences, the following parameters can be used: gap opening penalty: 10.0; gap extension penalty: 5.0; and weight transitions: yes. For fast pairwise alignment of polypeptide sequences, the following parameters can be used: word size: 1; window size: 5; scoring method: percentage; number of top diagonals: 5; and gap penalty: 3. For multiple alignment of polypeptide sequences, the following parameters can be used: weight matrix: blosum; gap opening penalty: 10.0; gap extension penalty: 0.05; hydrophilic gaps: on; hydrophilic residues: Gly, Pro, Ser, Asn, Asp, Gln, Glu, Arg, and Lys; and residue-specific gap penalties: on. ClustalW can be run, for example, at the Baylor College of Medicine Search Launcher website or at the European Bioinformatics Institute website on the World Wide Web.
[0082] The skilled artisan also would appreciate that complementary can be dependent upon, for example, the conditions under which two nucleic acids hybridize. Hybridization between nucleic acids is discussed in detail in Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Sections 7.37-7.57, 9.47-9.57, 11.7-11.8, and 11.45-11.57). Sambrook et al. disclose suitable Southern blot conditions for oligonucleotide probes less than about 100 nucleotides (Sections 11.45-11.46). The Tm between a nucleic acid that is less than 100 nucleotides in length and a second nucleic acid can be calculated using the formula provided in Section 11.46. Sambrook et al. additionally disclose Southern blot conditions for oligonucleotide probes greater than about 100 nucleotides (see Sections 9.47-9.54). The Tm between a nucleic acid greater than 100 nucleotides in length and a second nucleic acid can be calculated using the formula provided in Sections 9.50-9.51 of Sambrook et al.
[0083] The conditions under which membranes containing nucleic acids are prehybridized and hybridized, as well as the conditions under which membranes containing nucleic acids are washed to remove excess and non-specifically bound probe, can play a significant role in the stringency of the hybridization. Such hybridizations and washes can be performed, where appropriate, under moderate or high stringency conditions. For example, washing conditions can be made more stringent by decreasing the salt concentration in the wash solutions and/or by increasing the temperature at which the washes are performed. Simply by way of example, high stringency conditions typically include a wash of the membranes in 0.2.times.SSC at 65.degree. C.
[0084] In addition, interpreting the amount of hybridization can be affected, for example, by the specific activity of the labeled oligonucleotide probe, by the number of probe-binding sites on the template nucleic acid to which the probe has hybridized, and by the amount of exposure of an autoradiograph or other detection medium. It will be readily appreciated by those of ordinary skill in the art that although any number of hybridization and washing conditions can be used to examine hybridization of a probe nucleic acid molecule to immobilized target nucleic acids, it is more important to examine hybridization of a probe to target nucleic acids under identical hybridization, washing, and exposure conditions. Preferably, the target nucleic acids are on the same membrane. A nucleic acid molecule is deemed to hybridize to a nucleic acid, but not to another nucleic acid, if hybridization to a nucleic acid is at least 5-fold (e.g., at least 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 20-fold, 50-fold, or 100-fold) greater than hybridization to another nucleic acid. The amount of hybridization can be quantified directly on a membrane or from an autoradiograph using, for example, a PhosphorImager or a Densitometer (Molecular Dynamics, Sunnyvale, Calif.).
[0085] A construct (also known as a vector) containing a RNAi nucleic acid molecule is provided. Constructs, including expression constructs, are described herein and are known to those of skill in the art. Expression elements (e.g., promoters) that can be used to drive expression of a RNAi nucleic acid molecule are known in the art and include, without limitation, constitutive promoters such as, without limitation, the cassava mosaic virus (CsMVM) promoter, the cauliflower mosaic virus (CaMV) 35S promoter, the actin promoter, or the glyceraldehyde-3-phosphate dehydrogenase promoter, or tissue-specific promoters such as, without limitation, root-specific promoters such as the putrescine N-methyl transferase (PMT) promoter or the quinolinate phosphosibosyltransferase (QPT) promoter. It would be understood by a skilled artisan that a sense strand and an antisense strand can be delivered to and expressed in a target cell on separate constructs, or the sense and antisense strands can be delivered to and expressed in a target cell on a single construct (e.g., in one transcript). As discussed herein, a RNAi nucleic acid molecule delivered and expressed on a single strand also can include a spacer nucleic acid (e.g., a loop nucleic acid) such that the RNAi forms a small hairpin (shRNA).
[0086] Treg cells can be contacted in vitro, in situ, or in vivo with any of the moieties discussed herein (e.g., nucleic acids, nucleases, antibodies, ligands, peptides, drugs, chemicals, or small molecules) using any number of methods known to those skilled in the art. For example, Treg cells can be contacted with any of the moieties discussed herein (e.g., a nucleic acid (e.g., a vimentin-specific and/or a RLTPR-specific and/or a PKC-.theta.-specific inhibitory nucleic acid molecule; e.g., one or more RNAi molecules)) in vitro, in situ, or in vivo.
[0087] For example, one or more nucleic acids can be attached to or contained within a carrier such as, without limitation, liposomes, nanoparticles, or antibodies. Such carriers can be delivered to an individual (e.g., a patient) using routine cellular therapies, and such carriers can be targeted to Treg cells using one or more Treg targeting moieties such as, for example, cytokines that preferentially activate Tregs such as IL2; or the use of one or more moieties that specifically binds to a ligand that is preferentially expressed by Tregs such as neuropillin-1, lag3, TIGIT, CD39, CD73, IL10R, ST2, PD-1, CTLA4, CD49d, GITR, GARP, FR4.
[0088] The methods described herein can be applied to an individual who has received or is receiving a bone marrow transplant or a solid organ transplant. Alternatively, the methods described herein can be applied to an individual in order to treat or mitigate the symptoms of an autoimmune disease, or to induce tolerance to one or more foreign antigens (for example, in cases of enzyme therapy, gene therapy, antibody therapy, or drug therapy). Further, the methods described herein can be applied to an individual in order to treat or mitigate the symptoms of one or more allergic reactions.
[0089] Following contact with one or more of the moieties described herein, the Treg cells (e.g., Treg cells in which the vimentin, and/or RLTPR and/or PCK-.theta. has been reduced or eliminated) typically exhibit at least one of the following phenotypes (relative to Tregs in which vimentin, RLTPR and/or PCK-.theta. is not reduced or eliminated (e.g., relative to Tregs that lack the vimentin-specific and/or the RLTPR-specific and/or the PKC-.theta.-specific inhibitory nucleic acid molecule)): reduced PKC-.theta. auto-phosphorylation at Ser676; improved ability to suppress CD4+ and CD8+ Tcon proliferation; increased surface expression of Nrp1; increased surface expression of Lag3; increased basal and maximal oxygen consumption rate (OCR); increased BoDipy.sub.C1-C12 uptake; increased expression of CD71; increased expression of CD98; increased expression of CPT1a; or reduced activity of mTORC2.
[0090] In accordance with the present invention, there may be employed conventional molecular biology, microbiology, biochemical, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. The invention will be further described in the following examples, which do not limit the scope of the methods and compositions of matter described in the claims.
EXAMPLES
Example 1-PKC-.theta. Inhibition and Treg Function
[0091] Using a mouse MHC class I/II disparate acute GVHD model, it was found that freshly isolated Tregs treated for 30 minutes with 10 .mu.M of the clinically available PKC-.theta. inhibitor, AEB071, suppressed GVHD mortality (FIG. 1A) and severity significantly better than DMSO-treated Tregs. As Tregs exert much of their protective effect against GVHD early in the course of the disease, proliferation of GVHD-causing conventional T-cells (Tcon) on D4 after transplant was analyzed. A significant reduction in Tcon proliferation in mice given AEB071 treated Tregs was observed compared to DMSO treated Tregs. Multi-photon microscopy on D4 was performed after transplant using TE.alpha.-GFP Tcon, CD11c-eYFP antigen presenting cells (APCs) and wild-type Tregs. Compared to DMSO, AEB071-treated Tregs significantly increased Tcon velocity and displacement from APCs. Increased velocity and displacement are indicative of decreased Tcon-APC interactions, suggesting reduced priming when AEB071-treated Tregs are present.
[0092] AEB071 vs DMSO treatment of Tregs resulted in augmented expression of the suppressive molecules, Neuropilin-1 (Nrp1) and Lymphocyte activation gene 3 (Lag3), after in vitro activation (FIGS. 1B and 1C) and in Tregs isolated from acute GVHD mice. Antibody blockade of Nrp1 and Lag3 in in vitro trans-well suppression assays reduced the effect of AEB071 treatment, suggesting that these molecules play a role in enhancing Treg function after PKC-.theta. inhibition. Flow cytometry analysis of phosphorylated proteins in activated Tregs revealed that PKC-.theta. inhibition resulted in reduced phosphorylation of the mTORC2 target, FoxO3a, but not mTORC1 targets, S6 and 4E-BP1. In addition, the mTORC2-specific phosphorylation site on Akt, serine 473, was reduced, whereas the mTORC1-specific phosphorylation site, threonine 308, was unaltered. Together, these data suggest reduced mTORC2 activity. Reduced phosphorylation increases FoxO3a nuclear translocation, which may result in increased Nrp1 and Lag3 expression, since FoxO3a has binding sites in both gene promoters. As both mTORC1 and mTORC2 are involved in T-cell metabolism, the effect of AEB071 treatment on Treg oxygen consumption rate (OCR) was investigated. Compared to DMSO, AEB071 treatment significantly increased Treg baseline and maximal OCRs after activation (FIG. 1D). Increased OCR has been associated with increased Treg function.
[0093] To identify additional alterations in phosphorylated proteins after PKC-.theta. inhibition, a phosphoproteomic screen was performed using in vitro-expanded human Tregs treated with AEB701 or DMSO. Significant alterations in phosphorylation sites on 72 proteins was observed, including reduced phosphorylation of an adaptor molecule that links PKC-.theta. to the intermediate filament, vimentin. It was found that vimentin is highly upregulated in Tregs compared to Tcon and that, in Tregs, vimentin interacts with PKC-.theta. after activation. AEB071 treatment reduced the interaction between vimentin and PKC-.theta.. As with AEB071 treatment, vimentin siRNA significantly increased Treg suppression in vitro compared to control-transfected Tregs (FIG. 1E), and augmented expression of Nrp1 and Lag3. AEB071-treatment of vimentin siRNA transfected Tregs did not further augment Treg function, suggesting an overlapping mechanism.
[0094] In summary, the data presented herein demonstrates that PKC-.theta. interacts with mTORC2 and vimentin to modulate multiple aspects of Treg function, and that a brief incubation of Tregs with a PKC-.theta. inhibitor or a reduction in vimentin protein levels may be viable methods to enhance the efficacy of Treg therapeutics.
Example 2--T-Cell Purification from Lymph Nodes
[0095] Lymph nodes were harvested into a gentle MACS C tube containing PBS with at least 2% FBS. The tissue was homogenized one or two times on the Miltenyi GentleMACS dissociator using the Spleen-1 protocol, inverting the tube between runs.
[0096] The tissue was spun at 1200 RPM for 10 minutes at 4.degree. C. The supernatant was removed and the pellet was resuspended in MACS buffer (PBS containing 2% FBS and 1 mM EDTA). The solution was filtered through a 70 .mu.M cell strainer into a 50 mL tube. The original C-tube was washed with additional MACS buffer and put through the strainer. The cells were counted at least three different times, and resuspended at 100.times.10e6 cells/mL in a 50 mL tube.
[0097] FCS was added to the cells at 50 .mu.L/mL and a biotin-labeled antibody (e.g., anti-CD4, CD8, CD19, B220, CD11b, CD11c, anti-CD25, anti-NK1, anti-gamma delta TCR) was added and incubated for 10 minutes at room temperature. RapidSphere Magnetic Particles were added at 35 .mu.L/mL and incubated for 10 minutes at room temperature. If the volume of cells after the RapidSpheres were added was between 1 and 10 mL, then 25 mL of MACS buffer was added and the sample was mixed gently. If the volume of cells after the RapidSpheres were added was between 11 and 40 mL, then 50 mL of MACS buffer was added and the sample was mixed gently. The samples were incubated on the magnet for 5 minutes at room temperature.
[0098] The negative fraction (e.g., the purified cells) were pipetted off and transferred to a different 50 mL tube. Cells were stained with anti-CD4, anti-CD8, and anti-CD25 antibodies to test for purity, and then counted at least three times. If the purity is not ideal, the sample can be placed in the magnet for another 5 minutes and the purity re-checked.
Example 3--T-Cell Purification from Spleen
[0099] The spleen was gently harvested into a MACS C tube containing PBS and at least 2% FBS. The tissue was homogenized 1 to 2 times on the Miltenyi GentleMACS dissociator using the Spleen-1 protocol, inverting the tube between runs. The tubes were spun at 1200 RPM for 10 minutes at 4.degree. C.
[0100] The supernatant was removed and resuspended in 0.5-1 mL ACK lysis buffer (per spleen), and incubated for 1 minute. The C-tube was filled with MACS/PBS+2% FBS, and the solution was filtered through a 100 .mu.M cell strainer into a 50 mL tube. The C-tube was washed with additional MACS buffer and put through the strainer. The sample was spun at 1200 rpm for 10 minutes at 4.degree. C., the supernatant was removed, and the cells resuspended in MACS buffer. The cells were counted as least three times, and resuspended at 100.times.10e6 cells/mL in a fresh 50 mL tube.
[0101] FCS was added at 50 .mu.L/mL, antibodies labeled with biotin were added (anti-CD19, B220, CD11b, CD11c, anti-CD4, CD8, CD25, NK1.1, DX5, gamma delta TCR), and incubated for 10 minutes at room temperature. RapidSphere Magnetic Particles were added at 55 .mu.L/mL, and the sample was incubated for 10 minutes at room temperature. If the volume of cells after adding the RapidSpheres was between 1 and 10 mL, then 25 mL of MACS buffer was added and the sample gently mixed. If the volume of cells after adding the RapidSpheres was between 11 and 40 mL, then 50 mL of MACS buffer was added and the sample gently mixed. The samples were incubated on the magnet for 5 minutes at room temperature.
[0102] The negative fraction (e.g., purified cells) was pipetted off and transferred to another 50 mL tube. The cells were stained with anti-CD4, anti-CD8, and anti-CD25 to test for purity, then counted. If the purity is not ideal, the cells were placed in contact with the magnet for another 5 minutes, and their purity checked.
Example 4--T-Cell Purification Using CD25 Positive Selection
[0103] Cells were resuspended at 100.times.10e6 cells/mL. A selection antibody (anti-CD25 labeled with phycoerythrin (PE)) was added at 0.1 .mu.l/10 e6 cells (2 .mu.g/mL), and the sample was incubated for 10 minutes at 4.degree. C. The cells were washed one time with MACS buffer, spun at 1500 RPM for 5 minutes at 4.degree. C., and the supernatant was removed.
[0104] Cells were resuspended at 0.8 mL/100.times.10e6 cells, and 10 .mu.l/10e6 of anti-PE micro beads were added and incubated for 15 minutes at 4.degree. C. Cells were washed one time with MACS buffer, spun at 1500 RPM for 5 minutes at 4 C, and the supernatant was removed. Cells were resuspended in a volume to bring the cells to 200.times.10e6 cells/mL.
[0105] A MS or LS column were placed on a magnet with a filter on top. The filter was washed with 500 .mu.L MS or 2 mL LS buffer, and the column was loaded with the cells. The column was washed five times with 500 .mu.L MS or 3 mL LS buffer. The column was removed from the magnet and the column was loaded with 1 mL MS or 5 mL LS buffer. The column was flushed with a plunger into a 15 mL tube. The cells were spun down, resuspended in 1 mL, and the steps above were repeated with a second MS/LS column. The cells were stained with anti CD4/8 to test for purity and counted at least three times.
Example 5--Amaxa Transfection (Nucleofection) Protocol for Mouse T-Cells
[0106] The number of cells was calculated to determine the number of cuvettes needed (e.g., 2-5.5 M cells per cuvette). After determining the number of cuvettes needed, 2 mL of fully supplemented Amaxa media with 300 IU/mL recombinant human IL-2 for each cuvette was warmed in a 12 well warm plate. After the cells are counted, they are pelleted by centrifugation at 1500 RPM for 5 minutes at 30.degree. C.
[0107] As much of the supernatant as possible was removed, and cells were re-suspended in 100 .mu.L of room temperature Amaxa Nucleofector solution per sample. Each sample contained about 2-5.5.times.10e6 healthy CD4+ T-cells in 100 .mu.L of RT Nucleofector Solution. It would be appreciated that transfection will kill cell that are not healthy. To ensure healthy cells, the cells were rested for 2-4 hours to overnight in RPMI-c with 300 IU/mL recombinant human IL-2 at 37.degree. C. prior to transfection.
[0108] Cell solutions were aliquoted into Amaxa cuvettes as follows: 10 .mu.L of vim siRNA was added to a final concentration of 5 or 5 .mu.L of Amaxa GFP was added to a final concentration of 2.5 .mu.g per sample, then 100 .mu.L of cells were added to each cuvette, and each cuvette was capped. A mock control cuvette using no GFP/siRNA also was included.
[0109] Cuvettes were loaded into the Amaxa Nucleofector II machine and transfected using Nucleofector Program X-001 for mouse CD4 T-cells. After transfection, the transfer pipettes provided by Amaxa were used to mix about 200-300 .mu.L of warmed media with the cell solution in the cuvette, and the cells were gently transferred into a 12 well plate. The cells were allowed to rest in the incubator for 4-5 hours.
[0110] While the cells were resting, the same volume of new Amaxa media supplemented with 300 IU/mL rhIL-2 was warmed. After 4-5 hours, the cells were removed from each well, and spun down at 1500 RPM for 5 minutes at 37.degree. C. As much of the supernatant as possible was removed, and the pellet was re-suspended in the warmed media containing rhIL-2. Cells were placed in a 12 well plate that had been coated with 10 .mu.g/mL anti-CD3/28 the day before the experiment and allowed to sit overnight at 37.degree. C., and spun for 5 min at 500 RPM at 37.degree. C. The cells were placed in an incubator.
[0111] 24 hours later, 1 ml of fresh media, with an additional 300 IU/mL of recombinant human IL-2, was added to each well. 48 hours later, the cells were ready for use. The cells were collected from the wells, spun down at 1500 RPM for 5 minutes at 30.degree. C., and counted. Samples were taken to check transfection efficiency.
Example 6--Vimentin siRNA Transfection Methods
[0112] Regulatory T-cells (Tregs) were purified from lymph nodes and spleens of C57Bl/6 mice using a two-step process: Step 1: CD4 negative selection--selection of CD4+ T-cells was accomplished using eBioscience biotinylated Ab (anti-CD19, B220, CD8, NK1.1, gamma delta TCR) and StemCell technologies streptavidin RapidSpheres; and Step 2: CD25 positive selection--after CD4+ negative selection, CD25 positive selection was completed using eBiosceince anti-CD25 PE Ab and Miltenyi anti-PE microbeads.
[0113] Once purified, Tregs were brought to a volume of about 1e6/mL in complete media with 300 IU/mL recombinant human IL-2, and the cells were rested for 2 hours at 37.degree. C. in an incubator in a 24-well plate. After resting, Tregs were counted and split into 2 groups: one for transfection of control GFP siRNA and one for transfection of vimentin siRNA. After being split, Tregs were diluted in Amaxa Nucleofection Solution at a concentration of 5.5e6/100 .mu.L and contacted with either 2.5 .mu.g of control GFP plasmid or 5 .mu.M vimentin siRNA per 100 .mu.L.
[0114] A mixture of 4 siRNA oligonucleotides were combined in equal ratios such that the final concentration of the siRNA mixture is 5 .mu.M. The siRNA oligonucleotides that were used have the following sequences: siRNA 1: CCA GAG AGA GGA AGC CGA A (SEQ ID NO: 13); siRNA 2: AGG AAG AGA UGG CUC GUC A (SEQ ID NO: 14); siRNA 3: GUC UUG ACC UUG AAC GGA A (SEQ ID NO: 15); and siRNA 4: AAG CAG GAG UCA AAC GAG U (SEQ ID NO: 16).
[0115] Cells were then placed in Lonza cuvettes (100 .mu.L per cuvette) and electroporated using program X-001 in a Lonza Nucleofector II machine. After transfection, cells were placed in 2 mL of warmed complete Amaxa media (5% FBS, Pen/Strep, 10 .mu.L/mL of Lonza media supplement) in a 12-well plate and incubated at 37.degree. C. for 4 hours. After 4 hours, cells were removed from the wells, spun down (1500 RPM for 5 minutes), then diluted in 2 mL of warmed Amaxa complete media supplemented with 300 IU/mL recombinant human IL-2 and plated on a 12-well placed coated with anti-CD3 and anti-CD28 (10 .mu.g/mL of each antibody). 24 hours after transfection (2D), 1 mL of Lonza complete media with 300 IU rhIL-2 was added to each well. 48 hours after transfection (3D), cells were removed from the wells, counted and used in functional studies.
Example 7--Vimentin siRNA Results
[0116] The experiments described herein demonstrated that vimentin siRNA significantly decreased vimentin levels in Tregs and that vimentin siRNA treatment increased the in vitro suppressive function in Tregs.
[0117] FIG. 2A shows that vimentin is highly enriched in Tregs compared to conventional CD4+ T-cells (CD4 Tcon). FIG. 2B shows that, compared to the transfection control (top panel), transfection with GFP-siRNA using the transfection protocol described herein yielded 50-60% or more transfection of Tregs. FIG. 2C shows that, compared to control GFP-siRNA (GFP), vimentin levels were knocked down by 15-30% in the presence of vimentin siRNA (vim siRNA). In total, the protocol described herein yielded 50-60% Tregs transfected with siRNA, and a 15-30% reduction in vimentin levels in transfected cells.
[0118] In standard in vitro suppression assays, vimentin siRNA-transfected Tregs (Vim) were able to suppress proliferation of both CD4 conventional T-cells (FIG. 3A) and CD8 conventional T-cells (FIG. 3B) significantly better than the control GFP-siRNA-transfected Tregs (GFP). Treg: Tcon ratios of 1:1-1:27 are represented with the 1:1, 1:3, etc., denotations in the x-axis labels.
Example 8--Suppression Assay
[0119] On day 3 after transfection, CD4/8 Tcon and T-cell depleted splenoctyes were isolated for a suppression assay. CD4/CD8 Tcon were purified from spleen of CD45.1 C57BL/6 mice using negative selection with eBioscience biotinylated Ab (anti-CD19, B220, NK1.1, gamma-delta TCR) and StemCell technologies streptavidin RapidSphere technology. Once isolated, Tcon were labeled with CFSE (2.5 .mu.M) for 5 minutes at room temperature with constant agitation.
[0120] Responder Tcon were provided with 0.75 .mu.g/mL soluble anti-CD3 mAb. This 0.75 .mu.g/mL was equivalent to a 3.times. concentration such that the final concentration of anti-CD3, once Teff were mixed with stimulator splenocytes and Tregs, was 0.25 .mu.g/mL.
[0121] Splenocytes from 1 CD45.1 C57BL/6 mouse were depleted of T-cells and NK cells using eBioscience biotinylated mAb (anti-CD4, CD8, NK1.1, gamma delta TCR) and StemCell technologies streptavidin RapidSphere technology. These TCD splenocytes were used as stimulator cells.
[0122] Ratios of 0:1, 1:1, 1:3, 1:9 and 1:27 Treg:Teff were made. Four replicates of each ratio were made and plated in a 96-well, round bottom plate. After 3 days in culture, the cells from each well were harvested, washed with PBS and then stained with antibodies for flow cytometry analysis of CFSE dilution (proliferation) of CD4 and CD8 Tcon. The antibodies used were as follows: CD4--BV510, CD8--PE-ef610, CD25--BV605, Nrp1--PerCP-ef710, Lag3--APC, Fixable viability dye--APC-ef780, Foxp3--PE-Cy7, and Vimentin--PE.
Example 9--Phosphoproteomic Screen with Human Treg Cells
[0123] Utilizing mass spectroscopy, a total of 12,452 phosphorylation sites were quantified from human Tregs. In order to determine significant differences between DMSO-treated and AEB071-treated Tregs, two experiments were performed concurrently:
[0124] Forward experiment: This experiment utilized heavy isotope-labeled Tregs treated with AEB071 and medium isotope-labeled Tregs treated with DMSO.
[0125] Reverse experiment: medium isotope-labeled Tregs treated with AEB071 and heavy isotope-labeled Tregs treated with DMSO.
[0126] After processing the raw spectra with Max Quant software, the positively identified phosphopeptides were analyzed using Persus software. Contaminating peptides and reverse database hits were filtered out and the peptide intensity values and normalized H/M ratios were log 2 transformed. The significances of the individual H/M ratios calculated using the Significance B test with a false discovery rate of 0.05 for the forward and reverse experiment separately.
[0127] Relying only on the Sig B test, the overlap between the two data sets was low with only 15% overlap. In order to improve the overlap between the two data sets, the data was filtered based on fold change (<1.5), consistency of ratios, phospho site localization probability (<75%), and the MaxQuant score (<75). By filtering the results, the overlap improved to 60%. See Table 1.
TABLE-US-00001 TABLE 1 Sig B Sig B Significant Category Test Only Test and Filters Forward Experiment 380 96 Reverse Experiment 448 92 Either For or Rev 723 117 Both 105 72 (105/772 = 15%) (72/117 = 62%)
[0128] Histograms show a nice symmetrical distribution centered at 0 (Log 2 transformed data), indicating equal amounts of samples and labeling overall. See FIG. 4A. The scatter plot provides an indication of the consistency between samples. The red crosses are consistent between samples and, for the most part, cluster in the upper left quadrant as expected, since the inhibitor should decrease the levels of phosphorylation. See FIG. 4B.
[0129] The results of the phosphoproteomic screen pointed toward the PKC-.theta. adapter and interaction partner, RLTPR. The RLTPR protein had significantly reduced phosphorylation at the PKC-theta consensus site: IGVSRGS(ph)GGAEGK (SEQ ID NO:17), with the phosphorylation site on the serine at residue 1226 indicated by the (ph) after the amino acid.
Example 10--RLTPR siRNA Transfection Methods and Results
[0130] Tregs were contacted with either 2.5 .mu.g of control GFP plasmid or 1 .mu.M, 5 .mu.M, or 10 .mu.M RLTPR siRNA per 100 .mu.L. Cells were then placed in Lonza cuvettes (100 .mu.L per cuvette) and electroporated using program X-001 in a Lonza Nucleofector II machine. After transfection, cells were placed in 2 mL of warmed complete Amaxa media (5% FBS, Pen/Strep, 10 .mu.L/mL of Lonza media supplement) in a 12-well plate and incubated at 37.degree. C. for 4 hours. After 4 hours, cells were removed from the wells, spun down (1500 RPM for 5 minutes), then diluted in 2 mL of warmed Amaxa complete media supplemented with 300 IU/mL recombinant human IL-2 and plated on a 12-well placed coated with anti-CD3 and anti-CD28 (10 .mu.g/mL of each antibody). 24 hours after transfection (2D), 1 mL of Lonza complete media with 300 IU rhIL-2 was added to each well. 48 hours after transfection (3D), cells were removed from the wells and counted. The cells contacted with the 10 .mu.M of RLTPR siRNA were used in functional studies.
[0131] FIGS. 5A-5D show that RLTPR siRNA significantly decreased RLTPR protein levels in Tregs. Results also demonstrated that RLTPR siRNA treatment (at 10 .mu.M) increased in vitro suppressive function (see FIGS. 6A and 6B) and augmented Nrp1 (see FIG. 7C).
Example 11--PKC-.theta. Inhibition Alters PKC-.theta. Localization and Vimentin Interaction
[0132] Since PKC-.theta. localization and function appear to be linked, experiments were performed to understand whether PKC-.theta. inhibition modulated PKC-.theta. localization. Consistent with previous work, PKC-.theta. accumulated at the distal pole of control Tregs after 5 minutes of anti-CD3/CD28 mAb activation (FIG. 8A, top). It was also found that PKC-.theta. was tightly associated with the intermediate filament, vimentin (FIG. 8A, top), a molecule that was found to be more highly expressed in Tregs compared to CD4+ Tcons (FIG. 10A). In contrast to controls, in AEB071-pre-treated Tregs, PKC-.theta. was dispersed throughout the cell after activation, and the overlap between PKC-.theta. and vimentin was reduced (FIG. 8A, middle). Since PKC-.theta. inhibition dispersed PKC-.theta. and reduced PKC-.theta./vimentin overlap, experiments were performed to determine whether modifying vimentin levels with siRNA might result in comparable changes. Indeed, vimentin knockdown by as little as 30% resulted in a similar pattern as AEB071: dispersed PKC-.theta., and reduced PKC-.theta./vimentin overlap (FIG. 8A, bottom). These data demonstrate that inhibition of PKC-.theta. or vimentin alters PKC-.theta. localization and increases Treg function, and that PKC-.theta./vimentin interactions may be important for PKC-.theta. trafficking.
Example 12--Vimentin siRNA Reduces PKC-.theta. Activity and Augments Treg Function
[0133] To better characterize whether PKC-.theta./vimentin interactions were facilitating PKC-.theta. function, PKC-.theta. activity and Treg suppressive function were analyzed after treatment with vimentin siRNA. Using phosphoflow, it was noted that, similar to treatment with AEB071, PKC-.theta. auto-phosphorylation at Ser676 was significantly reduced in vimentin siRNA-treated Tregs compared with controls (FIG. 8B). Furthermore, vimentin siRNA-treated Tregs were significantly better at suppressing CD4+ and CD8+ Tcon proliferation in standard in vitro suppression assays compared to control Tregs (FIG. 8C, FIG. 10B). This increased Treg function correlated with a significant increase in surface expression of Nrp1 (FIG. 8D) and Lag3 (FIG. 10C). All other Treg suppressive molecules remained unchanged (FIG. 8D, and other data not shown).
[0134] To determine whether vimentin siRNA treatment would augment the ability of Treg to suppress GVHD, control- and vimentin siRNA-treated Tregs were compared using the GVHD model. Recipients given vimentin siRNA-treated Tregs had significantly increased survival and reduced GVHD severity compared with controls (FIG. 9A-B, FIG. 10D). As with AEB071 treatment, vimentin siRNA did not increase GI homing molecule expression (FIG. 10E). In combination, these results suggest that vimentin plays a key role in coordinating PKC-.theta. activity, and that vimentin knockdown in Tregs results in a similar functional enhancement as direct PKC-.theta. inhibition.
Example 13--Vimentin siRNA Augments Treg Metabolic Activity and Reduces mTORC2 Function
[0135] Since PKC-.theta. inhibition modulated Treg metabolism and mTORC2 function, experiments were performed to determine whether vimentin siRNA might have a similar effect. As with PKC-.theta. inhibition, treatment with vimentin siRNA significantly increased basal and maximal OCR, but did not alter ECAR (FIG. 9C). In GVHD, vimentin siRNA-treated Treg also had increased BoDipy.sub.C1-C12 uptake, and augmented expression of CD71, CD98, and CPT1a, but not Glut1 (FIG. 9D-E, FIG. 10F). BoDipy.sub.C1-C12 uptake was also increased in vitro. Since mTORC2 signaling was reduced after PKC-.theta. inhibition, it was hypothesized that mTORC2 activity also could be reduced after treatment with vimentin siRNA. Consistent with this hypothesis, phosphoflow analysis demonstrated reduced phosphorylation of Akt at Ser473 and Foxo3a (FIG. 9F), but no change in the phosphorylation of S6 or 4E-BP-1 (FIG. 10G), in vimentin siRNA-treated Tregs versus controls. Together, these data demonstrate that reducing vimentin levels alters Treg metabolism (e.g., vimentin siRNA increases Treg function) and mTORC2 activity in a manner similar to PKC-.theta. inhibition.
[0136] It is to be understood that, while the methods and compositions of matter have been described herein in conjunction with a number of different aspects, the foregoing description of the various aspects is intended to illustrate and not limit the scope of the methods and compositions of matter. Other aspects, advantages, and modifications are within the scope of the following claims.
[0137] Disclosed are methods and compositions that can be used for, can be used in conjunction with, can be used in preparation for, or are products of the disclosed methods and compositions. These and other materials are disclosed herein, and it is understood that combinations, subsets, interactions, groups, etc. of these methods and compositions are disclosed. That is, while specific reference to each various individual and collective combinations and permutations of these compositions and methods may not be explicitly disclosed, each is specifically contemplated and described herein. For example, if a particular composition of matter or a particular method is disclosed and discussed and a number of compositions or methods are discussed, each and every combination and permutation of the compositions and the methods are specifically contemplated unless specifically indicated to the contrary. Likewise, any subset or combination of these is also specifically contemplated and disclosed.
Sequence CWU
1
1
1719659DNAHomo sapiens 1tttgtgttac ataattgcct ttcatttgaa ctcattaatc
aaattggggt ttttaagcaa 60cacctaatta attctttaac tggctcatat tataccttta
atgacttcca ccagggtaaa 120aaccactgat cactgagttc tattttgaaa ctacggacgt
cgagtttcct ctttcaccca 180gaattttcag atcttgttta aaaagttggg tgtggtttca
tggggggagg gggaagagcg 240agaggagacc agagggacgg gggcggggac tctgcaagaa
aaaccttccc ggtgcaatcg 300tgatctggga ggcccacgta tggcgcctct ccaaaggctg
cagaagtttc ttgctaacaa 360aaagtccgca cattcgagca aagacaggct ttagcgagtt
attaaaaact taggggcgct 420cttgtccccc acagggcccg accgcacaca gcaaggcgat
ggcccagctg taagttggta 480gcactgagaa ctagcagcgc gcgcggagcc cgctgagact
tgaatcaatc tggtctaacg 540gtttccccta aaccgctagg agccctcaat cggcgggaca
gcagggcgcg gtgagtcacc 600gccggtgact aagcgacccc acccctctcc ctcgggcttt
cctctgccac cgccgtctcg 660caactcccgc cgtccgaagc tggactgagc ccgttaggtc
cctcgacaga acctcccctc 720cccccaacat ctctccgcca aggcaagtcg atggacagag
gcgcgggccg gagcagcccc 780cctttccaag cgggcggcgc gcgaggctgc ggcgaggcct
gagccctgcg ttcctgcgct 840gtgcgcgccc ccaccccgcg ttccaatctc aggcgctctt
tgtttctttc tccgcgactt 900cagatctgag ggattcctta ctctttcctc ttcccgctcc
tttgcccgcg ggtctccccg 960cctgaccgca gccccgagac cgccgcgcac ctcctcccac
gcccctttgg cgtggtgcca 1020ccggacccct ctggttcagt cccaggcgga cccccccctc
accgcgcgac cccgcctttt 1080tcagcacccc agggtgagcc cagctcagac tatcatccgg
aaagccccca aaagtcccag 1140cccagcgctg aagtaacggg accatgccca gtcccaggcc
ccggagcagg aaggctcgag 1200ggcgccccca ccccacccgc ccaccctccc cgcttctcgc
taggtcccta ttggctggcg 1260cgctccgcgg ctgggatggc agtgggaggg gaccctcttt
cctaacgggg ttataaaaac 1320agcgccctcg gcggggtcca gtcctctgcc actctcgctc
cgaggtcccc gcgccagaga 1380cgcagccgcg ctcccaccac ccacacccac cgcgccctcg
ttcgcctctt ctccgggagc 1440cagtccgcgc caccgccgcc gcccaggcca tcgccaccct
ccgcagccat gtccaccagg 1500tccgtgtcct cgtcctccta ccgcaggatg ttcggcggcc
cgggcaccgc gagccggccg 1560agctccagcc ggagctacgt gactacgtcc acccgcacct
acagcctggg cagcgcgctg 1620cgccccagca ccagccgcag cctctacgcc tcgtccccgg
gcggcgtgta tgccacgcgc 1680tcctctgccg tgcgcctgcg gagcagcgtg cccggggtgc
ggctcctgca ggactcggtg 1740gacttctcgc tggccgacgc catcaacacc gagttcaaga
acacccgcac caacgagaag 1800gtggagctgc aggagctgaa tgaccgcttc gccaactaca
tcgacaaggt gcgcttcctg 1860gagcagcaga ataagatcct gctggccgag ctcgagcagc
tcaagggcca aggcaagtcg 1920cgcctggggg acctctacga ggaggagatg cgggagctgc
gccggcaggt ggaccagcta 1980accaacgaca aagcccgcgt cgaggtggag cgcgacaacc
tggccgagga catcatgcgc 2040ctccgggaga agtaaggctg cgcccatgca agtagctggg
cctcgggagg gggctggagg 2100gagaggggaa cgcccccccg gcccccgcga gagctgccac
gcccttgggg atgtggccgg 2160ggggaggcct gccagggaga cagcggagag cggggctgtg
gctgtggtgg cgcagccccg 2220cccagaaccc agaccttgca gttcgcattt cctcctctgt
ccccacacat tgcccaagga 2280cgctccgttt caagttacag atttcttaaa actaccactt
tgtgtgcagt tgaaggccct 2340tgggcacaat gagagccagt cctccaaact ttcagaaagt
ttcctgcccc ttctggcagg 2400ctgccaatca ccgggcggga gaaggaagga ggggaaggcg
gtggagggag cgagacaaag 2460ggatggtccc tcgggggcgg ggatggcggg gctgtcctgt
aggtctgtgc ggccaccgtg 2520attgcccctc tgcgcggtgc ccgaagtccc gctgaaacct
gccgagggca gcaggtctga 2580aagctgcagg cgctagttgc gcggaggtgg cgcagctgct
ctggaggcgc agagcgaata 2640cgtggtgttt gggtgtggcc gccccgcccc tggcggtttc
ctcgttcccc tttggttaat 2700gcgcaactgt ttcagattgc aggaggagat gcttcagaga
gaggaagccg aaaacaccct 2760gcaatctttc agacaggttt gtagactctc ttcccactcg
cagccgcctg accccaccca 2820acacaaccca cgagcaattc taaaagttgc ttaactcacg
tctaaaaagt gcaaaacttc 2880agggctgcgc gtaaagccct ctagtggcgg gaagaccaca
ggttggagct tctcatgatt 2940agaaaaatat taataaaacc ccttgagcga tttttttttt
ttttttgaga cggagtctta 3000ctctgtcgcc caggctggag tgcagtggcg agatcttggc
tcactgcatc ctccgcctcc 3060cgggttcaag cgatccttga atgatttcta agcagttcct
tgggacataa agaaaaatct 3120tttaactttt tactttgttt cccaaatgtt gcacagtttt
gcaacacatt gaccttctgg 3180tttcgaacgg ttacaatttt agattgtggt ttgccaaagt
caagttgctt aatttttaca 3240aggccacaaa aagcgcaatt atgccctgca gtttaaaatg
gaaaacgtgt tggaagataa 3300gaaaacttag tttccaactg gaatggagcc agcaagtttc
ttttcttctt tgcaaattct 3360attgtgtcat taaagttcga tggaagtatc actatgcaca
actattttgt gatctaataa 3420gggtgaaaag gagccatctg tccccttggc taaggggtat
taatggtttc tatgggcttc 3480actatggaat gtagatacag acattctggc aaatgtggtg
gctctggaca gaaataatag 3540gagtctttgt attcccaggg aagctttgca acaggctaca
ttcttactga atatgtaatg 3600atgtaagcac ggttctaatt ggacacaagt atttgctaac
atccgttatc taatatctgg 3660cccagacttg agaagtaggt aatgtaaaaa gtttttaaag
ctacaagcat acctcacatt 3720ttaaaagtcc tttcttgatt gggttcttgt gttctttagc
actcttgcca taaaaaataa 3780taacagtaat aaacccaagg ctgaaaaact gaattttaac
taaagggttt ttgtgcgtgt 3840tttttttttt tttcaccaaa attagatgga cttacagaat
ttttaactta aaattggaat 3900ccaaaagcca gaagatcccc attatagttt atagttgtat
tccctggaat atttactggg 3960attaactgca aagcactctc agatgaatag tgtagtataa
cattttgaaa ctgaaataca 4020tttaccaaat taatttaacc acagcaatgt gtgtggttca
ttttagtcct tgagcatttt 4080tgattatcat acctgtcatg ttttctgcag tgtagtgagt
taacataaaa caacatcaat 4140acaaaagatc ctctgtttcg agattaagca aaattcctca
ttctcttcaa tgtgatagaa 4200taccacattg atctttcttt ggaggttagt aaaatatctt
ttatgtattt ttcagggctt 4260aacaagtaaa aatcaatgtt ttcatcaagt ctgatctttt
tgtcacccac tcttcattca 4320tttttccact aaggtgatag aaaagtctca acagtttaag
accgtaaggc tatgaactcc 4380aaatataatt gctgacaaga taagcaatcc tcacgcatcc
ttttgagagg aaataaaatc 4440ttagttgcaa gattacatat tctgatttgg aatgctgagc
tttttaaatg gaaatataga 4500aggacggctg aatcagcaaa aatcctttat gtagtttcat
tctttgcaag cttgaccagt 4560cattctgaaa caggctaact gaactgatac agtggcaagt
gaaaaagaca tgcctttaca 4620ggatgagtca aaggagtttt agaagaaaaa tccaccagag
aaagccaagc aaatacagtt 4680cagagttaca tttcttttcc attttttcct gaactgaatc
tttggcatgc atatcctgaa 4740ttgggttatt gaatataaat ctagccttgt acaatggatg
ccagatgact acatatttgc 4800tttggagcct aaggataagt ttcaaaagat ttgagtggag
aagaaaagct aaaactcttg 4860aagcacaagt ttctgttctc catgtactca agtgtacatg
aagttgtgaa aatttgtcca 4920cctctatcat catgttattc catgaaatta caaaacaaat
cttaaaaatg ttgtggcata 4980gattttctag atttaaaaag taattaaatt aaatgaatta
ctttattttt tgagacagag 5040tgtcactctg ttgcccaggc tggagtgcag tggcactatg
ttggctcact gcaacctctg 5100cctcctgggt tgaagaaatt ctcctgcctc aacctcccaa
gtagctggga ctacaggcat 5160gtgccaccac acccagctaa tttttgtatt tttggtagag
acggggtttc gccatgttgg 5220ctaggctggt ctcgaactcc tgacctcaag tgatccaccc
gtctcagcct cccaaagtgc 5280tgggattaca ggcataagcc accatgacca gccttaaaaa
gtaattttaa aatatcactg 5340gtaaaatgtg gattcagtca tgattgagtg cagtttacca
tgtgtgtgga catttattta 5400ttttaaaatt gtctgatcac caccttgagt aaaacacaag
cagtcacaat taaaatatat 5460tagtgagcag gagaaagcac agcatattat agcactgaat
gatttataaa cctattccag 5520ggtcataaaa tgtgtcaacg gcttttctat agtaaggaga
ctaggttcag atggttaatc 5580taagacaaat aaatgagata agccatacac ttttacatcc
tccatgtcct gtcttttctc 5640tgttcaaaat aggatgttga caatgcgtct ctggcacgtc
ttgaccttga acgcaaagtg 5700gaatctttgc aagaagagat tgcctttttg aagaaactcc
acgaagaggt tagtggagtg 5760actttcgggg aatgaatgag ggtaaggcag cccccacggt
tggcagagct gaccgtctgt 5820ctgttctttt tgcaggaaat ccaggagctg caggctcaga
ttcaggaaca gcatgtccaa 5880atcgatgtgg atgtttccaa gcctgacctc acggctgccc
tgcgtgacgt acgtcagcaa 5940tatgaaagtg tggctgccaa gaacctgcag gaggcagaag
aatggtacaa atccaaggta 6000ggaaacaaat cagtgcggct tcaaccaaag aaaagcattg
tgttctcaaa accccatacc 6060tgtgtgtgat tcctaaatat cctctagctc caatgcaaag
ctggctttga cttcttgctc 6120atattgtgtt tgccaccaca gcctccccac cactcacatc
acctccttta tttatttatt 6180tattttctta tttatttatg agacagagtc ttgctctact
gcccaggctg gagtgcagtg 6240gcaacatctt ggcacactgc aacctccgcc tcccaggttc
aagtgattct cctgcctcag 6300ccccctaaga gctggaacca caggcaagca ccaccatgcc
cggctaattt ttgtattttt 6360agtagagatg gggtttcacc atgttgacca ggcttctctc
aaactcctga cctcaggtga 6420tccaccctcc tcagcctccc aaaatgttgg gattacaggc
atgcgccacc acgcctggcc 6480acatcacctc cttcagaata gcagactctc ttccccctaa
ccttgcctcc aagtaaaccc 6540caatgccata cctttgacct ccactgtgtt gaaatgagca
ctgtagagtg aactctgaaa 6600atactaatgt cagtactcca ctgctctttc cctggctttc
aaaacagaaa tttaaaccta 6660tactggaaga cattcagtga gaaatatgat tttttttttc
taagagagtc aaaagacttg 6720aatgtgagca atctacattt ctgttttctt cccaacagtt
tgctgacctc tctgaggctg 6780ccaaccggaa caatgacgcc ctgcgccagg caaagcagga
gtccactgag taccggagac 6840aggtgcagtc cctcacctgt gaagtggatg cccttaaagg
aaccgtgagt accaaccctg 6900cagtaaaaga gggaaaataa tgacccattc tgctgactag
gctcatgatg atacctgaac 6960aaaatgttga gtgagtaaaa atgtatatca taatgcaaag
aaaatgagtt atcaagacag 7020actcaaaagg gacttcatgg aactcttgaa ggttttagct
tgcctatatc attgcttcta 7080atatgaagga cttggtactc gcattctcca cctaaaatta
gagtggtcgc catttgccgc 7140taatggaaat tattgcagaa ggtctgtaaa tggttctggg
aacagctggg tttttctgag 7200aaataacacc agacatcttt ctcaccccct gcagaatgag
tccctggaac gccagatgcg 7260tgaaatggaa gagaactttg ccgttgaagc tgctaactac
caagacacta ttggccgcct 7320gcaggatgag attcagaata tgaaggagga aatggctcgt
caccttcgtg aataccaaga 7380cctgctcaat gttaagatgg cccttgacat tgagattgcc
acctacagga agctgctgga 7440aggcgaggag agcaggtagg gaactcagac ttggatgcgt
gaactaatgg tgaccatttg 7500ttaggccctg tgccactggg ctctaagcag tgtcacattt
aatctttaga aagtttcttt 7560gaggtaactg ctttccactt tttgtagagg aggaatttga
attgagagag agtaagtgac 7620ttgctgaaaa agggttaatc aacagcagag ctgggatttg
aacccataac tctgtcaaag 7680cctccactcc taactcctgt tcatgctcct gtggagaaaa
tgcttgtagt aacatatttt 7740aaatgtacta acaagaccag tcatgggaaa atgtttctga
gacaaatctc tagtttatga 7800tttaaaacag tacgttttct tacgtgacga aaacaaaaag
tgtgttaatt tgttcccagt 7860ggttgaagtt atttgccaac aattttactg tttctcttca
tctgtttata ggatttctct 7920gcctcttcca aacttttcct ccctgaacct gaggggtaag
cattttattt ccctttagga 7980aaaacgtcag ctgcttgtaa ccactgtgtt tatgtcaaag
cattcatttt ttttaggata 8040tctgaaaaaa tgccatataa gagaaaactc tataaaacat
ctataatttt cgaacccaag 8100tacactcttg cattctatgc tttaagttaa atgcaaactc
ctttttcctt cttcctgctg 8160caagtactat ctcatcctga tgctcaagag tgtcagggcc
tgggtttcca aacagagact 8220accctaaaat tatttggcga gtagtacttt acacaattgc
ctctccccca caaatcataa 8280ttgtttcagt aaaatggtta cttggttttt ccaagaaaaa
actcgttttt actcattttt 8340ggcctgtttg tttatttaga aactaatctg gattcactcc
ctctggttga tacccactca 8400aaaaggacac ttctgattaa gacggttgaa actagagatg
gacaggttgg tatcttttaa 8460ggaaaaaata gggtaatctc agacaggagt tgatatattt
taaaatcagt gaatctgaat 8520ctcagataca gctggctaat ttgagaggtt caggtttcat
tcatgcctac taaaaaaaga 8580ataggcttct tcttccagca gtacacacag ccaactaatt
atttggctcc tggatgtgaa 8640gttgagatag cagtcttcct gtgctccaga attagtgatt
tgctttggtg cttaatttga 8700agtgggagta agcttcctta aaccacttcc taaagcagct
acatgaaaca gcttcactag 8760actacctcaa tatgaggaat gttttgatcc tggacatatg
gtgtcttcct acctccatac 8820tttatagatt cctaaaccca tctatataat acaagcatgt
gccatacgat catttagttt 8880cttattacct ccctatgcca ggaaagaaat agttgcaatt
tattgtagtc atcatgaaat 8940cttcccttgc acataaattt aaaatgtacc tgctgcacat
tttaatatgt cttaattgct 9000tttaaacttg gctgtattgt gtacaactat tataccatct
tttataaaca cagtttttta 9060agaaatttct ttttgtaagt tacaacattc cactggatcc
ttatattgcc tgtagtggaa 9120gagggtcttg tgtgtctgcc ccttctagtt ttcactcatg
cagaagcaac ataaccttct 9180gatttgcaca ataaattaca tatatttagc aggattttta
tttgccgtga tatataggat 9240aatttagtct ttggcatgtg gcattatatt tattttggtt
ttttttttta aacaggttat 9300caacgaaact tctcagcatc acgatgacct tgaataaaaa
ttgcacacac tcagtgcagc 9360aatatattac cagcaagaat aaaaaagaaa tccatatctt
aaagaaacag ctttcaagtg 9420cctttctgca gtttttcagg agcgcaagat agatttggaa
taggaataag ctctagttct 9480taacaaccga cactcctaca agatttagaa aaaagtttac
aacataatct agtttacaga 9540aaaatcttgt gctagaatac tttttaaaag gtattttgaa
taccattaaa actgcttttt 9600tttttccagc aagtatccaa ccaacttggt tctgcttcaa
taaatctttg gaaaaactc 96592466PRTHomo sapiens 2Met Ser Thr Arg Ser Val
Ser Ser Ser Ser Tyr Arg Arg Met Phe Gly1 5
10 15Gly Pro Gly Thr Ala Ser Arg Pro Ser Ser Ser Arg
Ser Tyr Val Thr 20 25 30Thr
Ser Thr Arg Thr Tyr Ser Leu Gly Ser Ala Leu Arg Pro Ser Thr 35
40 45Ser Arg Ser Leu Tyr Ala Ser Ser Pro
Gly Gly Val Tyr Ala Thr Arg 50 55
60Ser Ser Ala Val Arg Leu Arg Ser Ser Val Pro Gly Val Arg Leu Leu65
70 75 80Gln Asp Ser Val Asp
Phe Ser Leu Ala Asp Ala Ile Asn Thr Glu Phe 85
90 95Lys Asn Thr Arg Thr Asn Glu Lys Val Glu Leu
Gln Glu Leu Asn Asp 100 105
110Arg Phe Ala Asn Tyr Ile Asp Lys Val Arg Phe Leu Glu Gln Gln Asn
115 120 125Lys Ile Leu Leu Ala Glu Leu
Glu Gln Leu Lys Gly Gln Gly Lys Ser 130 135
140Arg Leu Gly Asp Leu Tyr Glu Glu Glu Met Arg Glu Leu Arg Arg
Gln145 150 155 160Val Asp
Gln Leu Thr Asn Asp Lys Ala Arg Val Glu Val Glu Arg Asp
165 170 175Asn Leu Ala Glu Asp Ile Met
Arg Leu Arg Glu Lys Leu Gln Glu Glu 180 185
190Met Leu Gln Arg Glu Glu Ala Glu Asn Thr Leu Gln Ser Phe
Arg Gln 195 200 205Asp Val Asp Asn
Ala Ser Leu Ala Arg Leu Asp Leu Glu Arg Lys Val 210
215 220Glu Ser Leu Gln Glu Glu Ile Ala Phe Leu Lys Lys
Leu His Glu Glu225 230 235
240Glu Ile Gln Glu Leu Gln Ala Gln Ile Gln Glu Gln His Val Gln Ile
245 250 255Asp Val Asp Val Ser
Lys Pro Asp Leu Thr Ala Ala Leu Arg Asp Val 260
265 270Arg Gln Gln Tyr Glu Ser Val Ala Ala Lys Asn Leu
Gln Glu Ala Glu 275 280 285Glu Trp
Tyr Lys Ser Lys Phe Ala Asp Leu Ser Glu Ala Ala Asn Arg 290
295 300Asn Asn Asp Ala Leu Arg Gln Ala Lys Gln Glu
Ser Thr Glu Tyr Arg305 310 315
320Arg Gln Val Gln Ser Leu Thr Cys Glu Val Asp Ala Leu Lys Gly Thr
325 330 335Asn Glu Ser Leu
Glu Arg Gln Met Arg Glu Met Glu Glu Asn Phe Ala 340
345 350Val Glu Ala Ala Asn Tyr Gln Asp Thr Ile Gly
Arg Leu Gln Asp Glu 355 360 365Ile
Gln Asn Met Lys Glu Glu Met Ala Arg His Leu Arg Glu Tyr Gln 370
375 380Asp Leu Leu Asn Val Lys Met Ala Leu Asp
Ile Glu Ile Ala Thr Tyr385 390 395
400Arg Lys Leu Leu Glu Gly Glu Glu Ser Arg Ile Ser Leu Pro Leu
Pro 405 410 415Asn Phe Ser
Ser Leu Asn Leu Arg Glu Thr Asn Leu Asp Ser Leu Pro 420
425 430Leu Val Asp Thr His Ser Lys Arg Thr Leu
Leu Ile Lys Thr Val Glu 435 440
445Thr Arg Asp Gly Gln Val Ile Asn Glu Thr Ser Gln His His Asp Asp 450
455 460Leu Glu46538515DNAMus musculus
3ctctgccact cttgctccgg gaccccagag accccagcgc tcctacgatt cacagccacc
60gcgccctcat tcccttgttg cagtttttcc agccgcagca agccagccca ccttcgaagc
120catgtctacc aggtctgtgt cctcgtcctc ctaccgcagg atgttcggtg gctccggcac
180atcgagccgg cccagctcca accggagcta tgtgaccacg tccacacgca cctacagtct
240gggcagcgca ctgcgcccca gcactagccg cagcctctat tcctcatccc ccggtggcgc
300ctatgtgacc cggtcctcgg cagtgcgcct gcggagcagc gtgccgggcg tgcggctgct
360tcaagactcg gtggacttct cgctggccga cgccatcaac actgagttca agaacacccg
420caccaacgag aaggtagaac tgcaggagct gaatgaccgc tttgccaact acatcgacaa
480ggtgcgcttc ctcgagcagc agaacaaaat cctgctggct gagctcgagc agctcaaggg
540ccagggcaag tcgcgcctgg gcgacctgta cgaggaggag atgcgggagc tgcgccggca
600ggtggatcag ctcaccaacg acaaggcccg tgtcgaggtg gagcgggaca acctggccga
660ggacatcatg cggctgcgag agaagtaagg cctgacctac gcgagtggtg gggtgtggga
720gggaggggag tcctgggcct tgcactgggg ctgccacgcc cttggggatg tggctggggt
780ggcggttgtc tggaggatag cagaggaagc gggccccacc ctgaacctaa actttgcagt
840gaacatttct cttttcgcct cactcaagca cttccattga actttttaga aagtttctta
900ggtccttctt ctgggcttac agttaccaga caggaggaaa gaatgggtgt gaagggttcc
960agacaaagag atggcaaagg catctgggat attgggacag gggattggct gtaattgtaa
1020gggaagggca gtgattgtct tttccagtgt gccccaactc cagctaacac ctgcagagag
1080ctgccacctc gacaagttgc agtaactact gtgggtggag gtgtcacagc agctctggac
1140tcaaggcttg gcggcatttg tggttgggtg tggccgcccc gcccctggcg gttttccagt
1200tcccctttga ttaatgtgct gctgcttcag attgcaggag gagatgctcc agagagagga
1260agccgaaagc accctgcagt cattcagaca ggtttgtaga cttctttttc acatgcagcc
1320agcagcccaa tggagccaac ccgcgagcgg ttctaaaagt tacttccctt aggttttaaa
1380aggtgcagaa cttcacgtct gcttgtaaag ccccctggcg gcggaaagcg cacagattga
1440aaaactccac tatttagggc agtctttgga acatgaaggc tttattttct gcttcgtttc
1500cagatttttc tgatccccca cacccccgaa acatttctcc tttcgttttt tgaaacatat
1560cgacattcgg atattgaatg gttacaattt gattacattg tggattgtga aggtgaaatt
1620ggctaacttt cacaaggtca taaaaaccac agttgcttcc tccagttgga aatgtagaat
1680actctggagg atgagaaagt ttaactggaa ttaagccaag ttccctttct tccttcgaag
1740ttcggcactg cgtgaaagtt agcagaagag tcattgcaca accatttttg aaatctaaca
1800agggtgaaaa gaagccatct gttcccgtag ctcaagggtg ttaaaggttt ctatgggctt
1860cactatggaa tgtagatagg gacgttctgg caaatgcggt ggctctggac agaaagaata
1920ggggcctttg tgttcccaga gcagctttgc aacaggctac attcttattg aatatgtaat
1980gatgtaacca cagttccaat tggacacaag tatttgctaa catccattat cttgtgtctg
2040ggccaggctt gtgaggtatg ccgtgtacaa agttcttaaa gctaaagtcc tccctcacat
2100ttggaaaggc ccccttttag gggggtttgt agactcatta gcaccctcca caaacaaaat
2160taaaccctaa actgaagaat ggagtatttt atggagggag gatttgtttg tttgtgtttg
2220ttccagggtt aggcattacc ttagcatccc gaagtggaca gatggccagt tcagtcttgt
2280ttggaacact tgttaggatc aacagccaaa ctctccagat gaatgttcta aggtagcatt
2340ctgaaggcat ttgcatcctt aatggcagta gacgaatatg cagccccttt cagtcactgg
2400gcattttcag tcatcaccaa aggaatgttt tctacaaagc actgagttaa tacacaccat
2460ctcttatttg tggactaaaa attgtttcat tcattcattt aaatgaaatg acacatttag
2520ctgaactttt tcgagaaggt tagtccaata tcatttatat attttttgat ggcttagcag
2580aagtcagaaa tgaatgatac tactatttaa gttcttatat tcttttttaa attagtattt
2640tctttgggac tgatagagta actcaacatt atagttataa actatactgc aaatacagtt
2700gcttacaagg gaagtttcca aacatttcct tgaaaggaaa caacatttca catgcaagat
2760tgaacagtct gtcttaaaat agatcacttt ataaaaactc tgcagagaag tttaagtata
2820gtttcattgt aagtgttttg atctgtcatc ctaaaacaga caaagtcatt gaaataacac
2880tgtgacagct gggacaggca gaaataccct ataggctgag ccagggtgtt ttacacatta
2940aaaaaattag agaaggcaaa acaatatagt tcaggattat atttcttttc cttcttgccc
3000gaggagcata tctctgcaaa tgcaagacct ggattttgaa caatgaatta ctacttgata
3060cgaggctagc ctgggaacct ggatgccaga taactgagtg cttattctaa attccaaaga
3120taagcatctg aaggtttgaa tacaggaaac aaaaaagagc atgcatatat gttaaccctt
3180ctgagctcaa ttttaaatga tttttaaaaa atatgtaatg tgtttgtgtc tgtgtgagtg
3240tataggacat ttctgcaggc ttgcatgagg ccagaagagg gcacctgatg ccctggagtt
3300ggaatcataa accttcatga actgctccat gtgggtgctg ggaaccaaac taaaatcctc
3360tgaaagaaca gcattcttta ctactaagcc tcactttaga aaacatttta attttatttt
3420tgaagctctc atttttatat tacgtgtact caagcaaaca tgaagttgga caatctcatc
3480aactactatc atcacaaaat tacagactta ttaaatgtga cagaggttta aaactgaaaa
3540tgaatttttc catatagttc accataccat gtcattgtgc atatacatgt gtttattttt
3600aacttgtcta ctagttagct tcaatacaac caaatggttt cctattcatt tttaaagcta
3660agaatgaata ttggaatgtg accctaaatg atttataaat ttatcaaggg tcatgaaatt
3720ttcagcacct tttctacaat aaggagaatg ggtttacatg gttaattttt gaacaaataa
3780ataaataaat aaataaataa ataaataaat aaataagggg ctgtagagac aggtcaatgg
3840ttaaaagcac tggctactct tttagggcac ctggaattca atttgcagaa cccacagggc
3900tgcccacact cttctccagt tccagggcat cttttgctct cttattgctt ttgtggatac
3960cacatgctcg tggcatactt atatacatgc aggcaaaaca cctttataca caacataaag
4020tgaaaaaggg attaatataa ataagttaga taaaggacag actttatcac cctccacatc
4080atcttttctc ttttcgaaat aggatgttga caatgcttct ctggcacgtc ttgaccttga
4140acggaaagtg gaatccttgc aggaagaaat tgcctttttg aagaaactgc acgatgaagt
4200aagtgacacc aatttctgtg ggtgaacaaa gctgcgaccg tgtagtctac gacctctctg
4260tgtctgttct ttctccagga gatccaggag ctgcaggccc agattcagga acagcatgtc
4320cagatcgatg tggacgtttc caagcctgac ctcactgctg ccctgcgtga tgtgcgccag
4380cagtatgaaa gcgtggctgc caagaacctc caggaggccg aggaatggta caagtccaag
4440gtatgaaatg agccagagtg gcaagaacct ctagctctca gacacgtgcc tctaattcca
4500ttagtaacct ccagctctac tcagaagctg gcttaaagct tggaccgcca ttgttgtttc
4560acagcacccc ttccccctca tctccattca cagtttcctt tagtatggca gactcccttt
4620ccactcattg tcttccctga cttcaaagaa taccttactc tcatgctctt gactgccacc
4680acttggaaag cattgcagta gagcaaatac tgtttgaaaa cgcaatgctg gtgttctgct
4740tctctttccc tggttttcca aaagacgttc agacaaattc taggaaacac acaggcagga
4800tgaagatgcc tctttgttct aagtgagtga aaactcatgg aagtgaacaa tctctacttc
4860ttttcttttc ttttcttttc ttttcttttc ttttcttttc ttttcttttc ttttctttct
4920cctcctcctc ctccttctcc tcctcctcct cctcctcctc ttcttcttct tctacttctt
4980cttcttcttc ttcttcttct tcttcttctt cttcttcttc ttcttcttct tcttcttctt
5040cttcttcttc ttcttcttcg actaagctca caaccaaaaa caacctctat ttctgattcc
5100ttcttgacag tttgctgacc tctctgaggc tgccaaccgg aacaacgatg ccctgcgcca
5160ggccaagcag gagtcaaacg agtaccggag acaggtgcag tcactcacct gtgaagtgga
5220tgcccttaaa ggcactgtga gtactacagc agcaaagggg gggaaatacc gtgctcagta
5280ctattctgct gactaggtta acaatgagac ctgtacaaat aaattaaaca cacacggaca
5340cacacacaca cacttatcca aagagaatga attatcaaga tagttttaag gattatttaa
5400tgagtacctt gaaagtctta gtttacatat gttattgatt gtaataagag gggttttaga
5460ggttactcct gtaacctcat cactctggag aatgaggcag ggggattata aattcacagt
5520taagctaggc tgcatgtaaa agtgttattt catcaaagca aaacatggaa ctgggtgctt
5580gtgttctctg ttcaaagcta gtgggcacct accattaaaa gaattactgt accttattta
5640tgaatatttt gggggacagc cgggttttct gggaaatcac atgagaagcc atttttgctt
5700tctgcagaac gagtccctgg agcgccagat gcgtgagatg gaagagaatt ttgcccttga
5760agctgctaac taccaggaca ctattggccg cctgcaggat gagatccaaa acatgaagga
5820agagatggct cgtcaccttc gtgaatacca agatctgctc aatgttaaga tggccctgga
5880cattgagatc gccacctaca ggaagctgct ggaaggcgag gagagcaggt atagaaggca
5940aacgtgcatg tgtgaactaa ctcacagtcg tctttctagg aagatctcat ttaacccaga
6000caccatatat atgaggaact taacgttgca gagagtaact tgctgtggtc agagataatt
6060aatagcagag tagatttgaa ctcacagcca tgcaaaagac aatacgttct ccctctataa
6120attcttctgg ttcatgtttc tgtgtggaaa aaaatatctt ccgaaattta aatgggccaa
6180tgagaccaag catgggtaga aagttcttaa acaagtcact aacagcaata gattttcatt
6240tggtggaaac aagaactgcg aaaacttgtt cctgcttctt gaagtgcttt gttctcaagt
6300tttttgtgtg tttctttctc tttttatagg atttctctgc ctctgccaac cttttcttcc
6360ctgaacctga gaggtaagta cattgtttca tcttatggga aaaaaatgtc acaaggctgt
6420caccagtcac tctgcctgta gcatagcttc cacattttta aaaatatttt ttattacgta
6480ttttcctcaa ttacatttcc aatgctatcc caaaagtccc ccataccctc ccccccactc
6540ctctacccac ccactcccac agtaattctt gattgaactg tgcttttcca aagaaaattc
6600aatgaaacat gatttctctt ttataaatac atgtgtatag ccattttatt ttctgaatat
6660ttcttttggg cttctgaggt tctgatagag ttaagtcact ttctcgcttc cgtttcttct
6720ctcgaaacct tccatgtact gccccctgac atatatggct gtcttttcag ttcatggctt
6780ccttttgttt aaatgctgtt acacacacac acacacacac acacacacac acacacacac
6840acactgtgta ttcttacata catgagtaca atggctcatt ctgtataata ttacttacat
6900gtatgctttc aggctcgacc atctggtccc ttttttatta tagttctcat gactgctgga
6960gaccaaaccc agggcaatca gctaagctaa acccacagag ctccacccct agcctgatac
7020cctcagtttc aaactcgagt acattcttgc ctttgctacc ctgttaagta tagactcagt
7080ctacttcctg ctaatggcaa agtcagtgaa ctactacctc agcctgaatg aaggagccct
7140taggtgctgt gtactcaaat ggatagtgct atgtaggatt atgtatgagt agcactttaa
7200ataaccataa aaataaagtc atgatgcttt gggtaaaatg gtaatgtttt aaactttttc
7260ttatgttact gccttttttt tttttttttt tttttaattc agaaactaac ctggagtcac
7320ttcctctggt tgacacccac tcaaaaagaa cactcctgat taagacggtt gagaccagag
7380atggacaggt cagtattttt tagttaaaat atgggaaagt ttaaaagaag gaatgatgaa
7440taaactatac aaccacttta aatatgtgtt ggtccccttt aagtcagcaa gcagatatat
7500cagatatggc agctaactta aggagtcccc gtggatactg gatgaatagc ccccaattcc
7560accaatgcaa gaaccaacag tctatttggt cttgattagg acagtaaact tcctgcacac
7620catagtctgt gcactaaaca ggagtaaaac acccttaagg catctcttac attggctgca
7680ttaaagtgtg tcacttaatg acatccgtga tatcagggat agtttgacat tggacataca
7740gttctctctc agtgattgtc acctgcttat atagtacgag gacccatatg tggtcaatca
7800ctttcttgtt gccactccat gccagggaag acatagttac aatgagttat aattataaaa
7860gctcagcctt gcatgaggat ataaaataca tttgccatac ctctacatat gccttagttg
7920cttttaagct ttgtttggaa ttgcaaaggc caacttccta aacacagttt caaagtattt
7980tttgtcacac ctttccactg gatacttgta ttgtctgcag gaagaggcca ccctgcctat
8040gcttctcctt agggcctcgt tctgcagagt cagcataaac tcccagtctg ctcaaccaat
8100tctgtctgat tagggccata tctccttacc atgagttgat ttttgtttct tttttgagca
8160ggtgatcaat gagacttctc agcatcacga tgaccttgaa taaaaattgc acacacttgg
8220tgcaacagtg cagtaccagc aagaaggaaa aaaaaatcgt atcttaggaa aacagctttc
8280aagtgccttt actgcagttt ttcaggagcg caagatagat ttggaataga aagaagctca
8340gcacttaaca actgacaccc caaaagacgt agaaaaggtt tacaaaataa tctagtttac
8400gaagaaatct tgtgctagaa tactttttaa agtatttttg aataccatta aaactgcttt
8460tttccagtaa atatctgacc aacttgttac tgcttcaata aatcttcaaa aatac
85154466PRTMus musculus 4Met Ser Thr Arg Ser Val Ser Ser Ser Ser Tyr Arg
Arg Met Phe Gly1 5 10
15Gly Ser Gly Thr Ser Ser Arg Pro Ser Ser Asn Arg Ser Tyr Val Thr
20 25 30Thr Ser Thr Arg Thr Tyr Ser
Leu Gly Ser Ala Leu Arg Pro Ser Thr 35 40
45Ser Arg Ser Leu Tyr Ser Ser Ser Pro Gly Gly Ala Tyr Val Thr
Arg 50 55 60Ser Ser Ala Val Arg Leu
Arg Ser Ser Val Pro Gly Val Arg Leu Leu65 70
75 80Gln Asp Ser Val Asp Phe Ser Leu Ala Asp Ala
Ile Asn Thr Glu Phe 85 90
95Lys Asn Thr Arg Thr Asn Glu Lys Val Glu Leu Gln Glu Leu Asn Asp
100 105 110Arg Phe Ala Asn Tyr Ile
Asp Lys Val Arg Phe Leu Glu Gln Gln Asn 115 120
125Lys Ile Leu Leu Ala Glu Leu Glu Gln Leu Lys Gly Gln Gly
Lys Ser 130 135 140Arg Leu Gly Asp Leu
Tyr Glu Glu Glu Met Arg Glu Leu Arg Arg Gln145 150
155 160Val Asp Gln Leu Thr Asn Asp Lys Ala Arg
Val Glu Val Glu Arg Asp 165 170
175Asn Leu Ala Glu Asp Ile Met Arg Leu Arg Glu Lys Leu Gln Glu Glu
180 185 190Met Leu Gln Arg Glu
Glu Ala Glu Ser Thr Leu Gln Ser Phe Arg Gln 195
200 205Asp Val Asp Asn Ala Ser Leu Ala Arg Leu Asp Leu
Glu Arg Lys Val 210 215 220Glu Ser Leu
Gln Glu Glu Ile Ala Phe Leu Lys Lys Leu His Asp Glu225
230 235 240Glu Ile Gln Glu Leu Gln Ala
Gln Ile Gln Glu Gln His Val Gln Ile 245
250 255Asp Val Asp Val Ser Lys Pro Asp Leu Thr Ala Ala
Leu Arg Asp Val 260 265 270Arg
Gln Gln Tyr Glu Ser Val Ala Ala Lys Asn Leu Gln Glu Ala Glu 275
280 285Glu Trp Tyr Lys Ser Lys Phe Ala Asp
Leu Ser Glu Ala Ala Asn Arg 290 295
300Asn Asn Asp Ala Leu Arg Gln Ala Lys Gln Glu Ser Asn Glu Tyr Arg305
310 315 320Arg Gln Val Gln
Ser Leu Thr Cys Glu Val Asp Ala Leu Lys Gly Thr 325
330 335Asn Glu Ser Leu Glu Arg Gln Met Arg Glu
Met Glu Glu Asn Phe Ala 340 345
350Leu Glu Ala Ala Asn Tyr Gln Asp Thr Ile Gly Arg Leu Gln Asp Glu
355 360 365Ile Gln Asn Met Lys Glu Glu
Met Ala Arg His Leu Arg Glu Tyr Gln 370 375
380Asp Leu Leu Asn Val Lys Met Ala Leu Asp Ile Glu Ile Ala Thr
Tyr385 390 395 400Arg Lys
Leu Leu Glu Gly Glu Glu Ser Arg Ile Ser Leu Pro Leu Pro
405 410 415Thr Phe Ser Ser Leu Asn Leu
Arg Glu Thr Asn Leu Glu Ser Leu Pro 420 425
430Leu Val Asp Thr His Ser Lys Arg Thr Leu Leu Ile Lys Thr
Val Glu 435 440 445Thr Arg Asp Gly
Gln Val Ile Asn Glu Thr Ser Gln His His Asp Asp 450
455 460Leu Glu465512566DNAHomo sapiens 5gggcgggcag
gtgggactcg gcccccctcc cacaaccccg ctcccgggca agctctcgag 60ccgcgaggcc
ggggcgggga ggggccgggc cgggggcggc ctggcaggaa gcggcgcgca 120ccttccgccg
ccggaggagc aggtggctgc cgtgcgggtc tgggccccag gcttcctgtg 180tgcgcgctcg
tcctctgctg tttcccgccg gagctcgttg ggcctccccg gcccgcccgg 240cccatggccc
agacccccga cggcatctcc tgtgagctcc gaggtaagcg ctggcccttc 300ctgccttctt
ggccgggagg aagtagtgca gccccaaaat cagaggccca cccagcgccc 360cagagggcct
ggtcagaggt cctccctgct ccccaggagg gcaggcgccc cagatcctct 420cccctccttc
ctcgctggcc gcagataagc cccagggccc cagcctggca cagactgtgg 480gcaccagtgg
cttctgtgca aggactgaag tcacccagca ggctgccctt ccacaggcga 540gatcaccagg
ttcctgtggc ccaaagaggt ggagctgctg ctgaaaacct ggctacccgg 600ggagggtgct
gtgcaaaacc atgtcctggt atggggcagg ggacagagcc ggggaggcgg 660ctgtggcccc
acagaaagag cctcttgctc tgcccaggat atcagactgt ctttccccag 720gcactgctac
gatggagagc ctacctgctg cacaccacct gcctcccgct gagggtgagt 780cccagggcct
ggccacaccc ccgcccgcca gcagctacct tggcaggggg ctgcatctgc 840agagtggtcc
ttcttggcct tgtgggccct gactttgcac cagcactggg ctctgggcag 900ccgacaggag
gggagtccag gcagatctgg ctctgcccca ggctgcccaa aggactggac 960ttccatgagg
gcggggctgg gggcttggtc ccagctgatc taggcccttt ctaggtggac 1020tgcacgttca
gctacctgga ggtccaggcc atggcgctgc aggagacacc ccctcaggtg 1080agacacctag
taccctacct gggcctgcag cctggtcttc atgctaccac catcacctgc 1140gcccatgtgt
ggagccgagg cctagtagtg ccccttccct aggtcacctt tgagctggag 1200tccctgcgtg
agctggtcct ggagtttcct ggtgtggccg ccctggaaca gctggcccag 1260cacgtggctg
cagccatcaa gaaggtcttc cctcgctcga cccttgggtg aggcctggca 1320aattcgaggg
gctggcaggg gaggagggag tgcatgagaa gggctgcttc ccatcccaga 1380ggctggaagt
cctttgcccc cttctcctta accccctacc aggaagctat tccggaggcc 1440cacaccagcc
tccatgctgg ctcggctgga gagaagcagc ccctcggagt ccactgaccc 1500ctgcagcccc
tgtggtaagg gtgaaggcag agccacaggc cttccagcct gccccacctc 1560tgcctcccca
gacccgcaag ctgggggggc cccaaactga acagagccat tcaggtccca 1620gccaccacct
agtctgtggg tctggtcttc ctccatcgct gatgttttgt ctctctcctt 1680ttccacatcg
cacccctatc ccctccccag gtggcttctt ggagacatac gaggctctgt 1740gtgactacaa
tggcttccct ttccgagagg agattcagtg ggtgagggta gggccctttt 1800gaagggctct
ggagacatct ggtcccccat gtgtgctgag cccctccctg ccccttgtgg 1860ccccaggcga
actgtaagca tctccttctc acccaggacg tggacaccat ttaccatcgc 1920cagggctgcc
gccatttcag cctgggagac ttcagccacc tcggcagtcg gtgtgtggcc 1980tgccaggatg
ggagaggagg aagatcccgg ggcccatatc cctgggcctc agtttctcca 2040tggaggggct
gctgggcctg ggacctggct ggagggccct gagctctgcc tctgttccca 2100ccctcccacc
agggacctgg ccttgagtgt ggctgccctg tcctacaacc tgtggttccg 2160gtgcctctcc
tgtgtggaca tgaagctggt gagggggttc ggggtaaggg cagggagggg 2220ccaagggtgt
gggccagggt gcagcccgct gagggccagg gtgcagcccg tgagccgccg 2280ccctctgctt
ctcagagcct tgaggtctca gaacagattc tgcacatgat gagtcagtca 2340tcacacctgg
aggagctggt gctggagacc tgcagcctga gggggtgagg gggacagggc 2400agggcttgga
gaggagagtc tggaggcttg ggactggggg ctagtggcct gggaggggtt 2460ggcaaaccag
gggcagaatc tcatgcctgg ggtctggtcc ccagagactt tgtccgacga 2520ctggcccagg
cgctggcggg acactcaagc tctgggctgc gggagctcag cctcgcgggg 2580aacctgctgg
atgaccgagg tatgactgag cctggggacc gcaggggtgg gcagcaggag 2640gaggtgagac
ccacgtggct gttcccaccc cccaaggcat gactgcactc agcagacacc 2700tcgagcgttg
tccaggagcc ctgaggagac tcagcctggc ccagacaggg ttgacaccgc 2760gaggtaggct
ggatgaggga gggggtgagg ggaggggggt gggggtctgt ccaactgctg 2820agtgaccccg
acccaccacc aggaatgagg gctctgggcc gggcactggc caccaatgcc 2880gccttcgact
ccaccctgac ccacctggac ctttctggga atcctggggc gctgggggcc 2940tccgaggaca
gtggggtgag tggctgtctt cagggtggga gcttggggtt gctcataagc 3000cctgggtagg
cgatccccca ctccatcgca cccctgtcct ccctccaggg cctctatagc 3060ttcctgagcc
gtcctaacgt actgtcgttc ctgaatctcg caggcaccga cactgccctg 3120gacactgtga
gggggtgctc cgtgggggga tggatgaccg gcagggcgga ctggagggcg 3180ggacggggag
ggctcggtcc ccccgcgggt gtagccaaca gcctcccccc gcagctcttc 3240gcagcggtat
cccgaggctg ctgcaccagc cttacccacc tcgacgcttc gaggaacgtc 3300ttctcccgca
cgtaaggggg acctgtcggg gccgggggag gctgctggaa gccgcctcct 3360tgcggcccca
ggcccacctt cccacttccc ccaggaagtc ccgcgccgcg ccggccgcgc 3420tgcagctctt
cctcagccgc gcgcggacgc tgcggcacct gggcctggcg ggctgcaagc 3480tgccgcccga
cgcgctcagg tcagtgtcgg accccggcca cgcccccgcg ggcgctccca 3540ccctgccctg
gccttcgccc ctccccgctc ctgcttctgt cgctcccaca acctccccca 3600gatcctggcc
ctgcctcctt cgttcgcacc ctggagcccc ctgtcccagc tcccgccacc 3660ccgtgtaacg
tcctctccca gagccctttt ggatggcctc gcgctcaaca cgcacctccg 3720cgacctgcac
ctggacctca gcgcttgcga ggtgagcgcc ggcccccaga agagaccaca 3780cattgggaga
ggcgctggga ggcggaaggg cagggccgtg ggccgcctgc ccctccccac 3840tcgcggccta
agtgggtccc acttcccacc tcccacctcc cacatacagc tgcgctcggc 3900cggcgcccag
gtgatacaag acttagtgtg cgacgcaggc gctgtgagct ccctggatct 3960ggcggataac
ggtgaggctg caggagagcc catcctcgca tcatccactc gattcccaat 4020ccccacccta
cccttgcaac ttcgcctcgt gcgtgacccg agtcaccccc aggcttcggc 4080tcagacatgg
tgactctggt gctggccatc gggagaagcc ggtccctgag acatgtggcg 4140cttggaagga
acttcaacgt ccggtgcaag tgagccccca ccctactcct gggcctccca 4200gacaacaccc
caccacccct gtcccccaca actgcggccc ctgcccacag ggagaccctg 4260gacgacgtcc
tgcaccggat tgtccagctc atgcaggacg acgattgtgt gagttcacgg 4320gaccttgcag
ggcctcgggc aattagacca ctttggtcct cctttctctt gttccctcag 4380accctgtgac
ctgccctcac tgacccctga ctccagccat caatggcttt ctcttaaccc 4440cagcctcttc
agtctctgtc ggtggctgag tctcggctga agctgggtgc cagcgtccta 4500ctccgggccc
tagccaccaa tcctaacctg accgcgctgg atatcagcgg caacgccatg 4560ggggacgcgg
gcgccaagtt gctggccaag gcgctgcggg tcaactcgag gctccggtgg 4620gcggggtcag
aggggtggga ccagcgggca gggggcgcgg tggagaggag ggcaccgggc 4680taaggggagg
gactgaatga ggcggagcaa atggagcagg ctgacgaggc gaatggacta 4740ggccgagggt
tgggtggggc gttgggaagc tccgtccccg actgaagcca ggcccggccc 4800aggtctgtgg
tctgggaccg gaaccacaca tctgctttgg gtctgctgga cgtggcgcag 4860gcgctggagc
agaaccacag cctgaaggcc atgcctctgc cactgaacga cgtggcccag 4920gcgcagcgca
gccgcccgga actgacagca cgtgcagtcc atcaggtggg cgtccccctc 4980ttcccttgcc
cttctctgca cggtaactcc gtccctcggc atttctcaat accccttgcc 5040cctagatcca
agcctgtctc ttgaggaaca accgcgcaga ccctgcctct tctgaccaca 5100cgacccgcct
tcagccactt ggtctggtct cagacccctc agagcaggtc aatgtcccct 5160ccccaaccac
gagaggtagg gcatgaggag acctgtggca tccgggagcc tccatgagtc 5220agagggtctg
actttcctgg ggccagggtg cctgagccct gctgtcccac acaaagtccc 5280tctccttgat
ctggaggcgg ctaaacaccc cttaaatagc tctccaaata acacccttgg 5340ctgcctaacg
ttaagcctgt aaacaggctg tcctgttaga gaggaatttt tatgtccttc 5400ctcaattttc
ccccaattgt agccccatct ctgtcctcac atatacgtga ctcccctccc 5460ctctccattg
tgtgcccaaa cccagctgct ccttcactgt cttcatctcc ctccactacc 5520ttatctgttg
gagatgtttc tacctctcca ttcccaaata cctcttcttt cctaagcttc 5580agagcccaaa
ggtcttaatc cagacatcct gctgggcttc atgctctgca cttctccaag 5640tgatgtcatc
gtcgctcaca aaccctgttg tctaccctgg agcccaatcc cactggtgcc 5700cacagccacc
cagtgctgtg gacagaggtt ggggcaccct tccaggtctc tcctggtcac 5760actggagccc
tcataggcct ccttcgtcct gcctctagac caaccttcat acatgccact 5820ccttaccccc
acaccaatta tcccttgctc ctcctggtcc ctcctccagg gctactcact 5880cccttttcta
cccctctctc agtctatcct ctgtgtggac agactgagct tctaaaacac 5940agacatgatt
tacaactcct ttccttccta ttctgggcac ttaggaagtg tatataaagt 6000ccttaaaatg
aaccaaagca acagatagtt ccttccctcc ttgaacagat agggttccaa 6060agtggctggt
ctaagggtgt cagcttcagg acctccctct gttaaagagc ctgggaggaa 6120ggcaggcagg
atctgggaga ctgggagggg gctaggctga gactgatccc catttcgccc 6180caggaagtga
atgaattgtg tcagtcggtg caggagcatg tggagctgct gggctgtggg 6240gctgggcccc
agggtgaagc cgctgtgcgc caggccgagg atgccatcca aaatgccaac 6300ttctctctca
gcgtgagcac tccccctcct gctacaagga cccttcccct cttagtcagg 6360tgtcagctcg
caactgcttt tcctctttgg ccctcagatt ctccccattc tatatgaagc 6420tggaagctcc
ccaagccatc actggcagct tgggcagaag ctggagggcc ttctgagaca 6480ggtgggcgag
gtctgccgcc aggacatcca ggtgagaggg tactcctgcc ccaaccccac 6540ctccgtttgc
aggtttgact cccatccttt agttttaact gtgatatccc ctgactcaat 6600attctgttgg
agttggagcc tcaagccagc agcctggtgt ctggccacat cctcaccatg 6660ctctgactga
cctttgtcta ggacttcact caggccacac tggacacagc aaggagcctc 6720tgcccacaga
tgctgcaggg atccagctgg agggagcagc tagagggggt cctggcaggc 6780tcgaggggcc
tcccggagct gctcccagag cagctgctgc aagatgcctt cactaggctc 6840aggtaggctg
gatggggctg ggctgggcaa ggctgagcaa agccagccca ttaacccctg 6900tcctctcctg
cccttaggga catgcggcta tcaatcacgg ggaccttggc agagagcatt 6960gtggctcagg
ctttggcagg cctgagtgca gcccgggatc agctggtgag ggggagatgt 7020gcacacactt
tcgtgcaaac acacacatgc agtgacttgg ccatctccct tgcaggggct 7080ctgtaatgtc
ttctggggtc atgtagccca gggctatttc agggtcccct tagttagcat 7140caatgggatc
atggctgagg ccctacctgc catctttggc tgcttggtat tgcaggtgga 7200gagtctggct
cagcaggcaa cagtgacaat gccccctgcc ctaccagcac cggatggagg 7260tgagcccagc
ctccttgagc ctggggaatt ggaaggtctt ttcttccccg aggagaagga 7320agaggagaag
gagaaggtaa gtggttttag aacacggggc atggcactcc cagtcttccc 7380atcttgctgt
ggagtgtgga aggtgaaagg cagctctttt gggttggtgc tctcctaccc 7440caggctgagt
ttgtgccctc cccaccagga tgacagtcct ccacagaaat ggcctgagct 7500cagccacggt
cttcacctgg tccccttcat tcacagtaag tcagggcctt gggggaggga 7560gtttacgtgg
gtgggctgaa gctccattag acttggggac ccggggacct ggatgaactc 7620attcagcctt
gtctgggtac ccaccagccc ttgactgggc caggtcgggc cccttgtgca 7680acctgcaaag
ctggggtctg ctgtggtcag cccggggcgg gacctgggcg gatctgggac 7740aggacaccgg
ctcagctcgc ctccccgcgc ccctttccct accccaggga cgcgcatgct 7800gggcggcggc
gcggagccgc gcgcgctcgg ggccgcgctc agcaccacgg acagcggcgg 7860cggcggggga
ggggcggagg ggcagagggg cggggggacg ggcggcgtag ccgggcccct 7920ccccgcgccc
tgggcgggtc ccccgccgcc ctagcgcctc cgccgccacc tccccgggct 7980cggcgctcgg
tgctcttctg gtgctgtccc ctcaggtgct gctgaggaag cggagccgga 8040gcccgagctg
gcggctccgg gagaagatgc agagccgcag gcggggccgt ccgcgcgcgg 8100ctctccgagc
cctgccgccc ctgggccccc ggccggcccg ctgccccgca tggacctgcc 8160actggcgggg
cagcccctgc gccatccgac ccgggcccgg ccgcggccgc gccgccagca 8220ccaccaccgc
ccgccgccgg ggggccccca ggtgagcacc cttcccccac tccggagcgc 8280gtggaattgg
ggatcacggg tggcccggcc gctcctcatg ggtggtagcg gtcaaggaga 8340gggggtggtg
ggggcccaag gccacctggt cgtgcggccg cggtcacatc ctggcttctt 8400cctgaccacc
ccccacccca ggccatgcct gtgcgggacc atgggtgtgc gggttccgtt 8460cggggtgtgc
ctgggtgtgg gactccgtct cggggcggcc cgcggcctcc gtggctgcgc 8520gagagagggt
gtccgtcctc cctccctccc ccggggctgc tgagagatgc cgggcagccg 8580ggtagccgag
ccgcggggcc aagcctgcgt ctgctgcgcg tccggcggcg gcgcgtgtgg 8640ggagatgcgt
gtgtgggctg caagcccgcg ggggcagcgg gcactggcgg agggcgggga 8700ggagccggct
tgaggccccc cagagggtct gacgcagcag ccggcgccac tgagccggca 8760gcaggccggg
tggagtgggg gtggggtggg ggacactgca gggaactgtt cggagcagag 8820ctggtggcaa
gtgggaacgg gtgaccccgg gggcacgtga gggctaggtt tgctggtgac 8880cgggtggctc
gggcgtgtag gatactctgt gggacaagga cgggtgtgga ctgggtgtgc 8940gggagccagc
agcgagtgag gagtgcgtga aatctggagt ctctgtccag cagcaggaca 9000gtaggaggct
ggtatcagca gcccctaggg tcaccccagt ctggaatcct ggagttattc 9060agtccaggct
gccggccggg gggggggggg ggtagaagcc agagttgcac tcaaccctga 9120cccctgaccc
catgatgccc cccaggtacc cccagccttg ccgcaggaag ggaatgggct 9180cagtgcccgc
gtggacgagg gcgtggagga attcttctcc aaaaggctga tccagcagga 9240tcgcctgtga
gtgaggggca tctgctgggg gtgggagagg gtgggatgcc tgatgggctt 9300tctcgctcac
tgctgggtgt ccccacagct gggcccccga ggaggacccg gccactgagg 9360ggggcgccac
tcctgtcccc cgtacactgc gaaagaagct gggcaccctc tttgccttca 9420agaagcctcg
ttcaacgcgg ggtccacgga ctgatctaga gaccagccct ggggcagctc 9480cccgaacccg
aaaaactaca tttggcgacc tactgcggcc gccaacccgt cccagccgtg 9540gtgaggagct
tggtggggct gagggggaca ccagcagccc tgaccctgcc ggcaggagcc 9600gacctcgcta
cacaagagat agcaaggcct actcgatgat actgctgcct gccgaggagg 9660aggcaacgct
gggtgccaga cccgacaagg tgaggcttgc tgatgggggg tggtgaaggc 9720gcttctggga
cccagggcgc ggactgtctc caactcgagc atctctgtcc ctagcggcgg 9780cccctggagc
ggggagaaac agaactggct ccatcctttg aacagcgggt acaagtaatg 9840ctgcagagga
taggcgtcag ccgaggcagc gggggtgccg aaggcaagag gaagcaagtg 9900agttgagggg
acctgagcat gaagtgagag ggcagatggc atgctgtggg tgacataagt 9960gaccaagatg
gaggagactc atgacagata ggtctaattg tcagttctac tccattctcc 10020tcgaaatggt
tacagattcg acctttcttc cctcttggct ttgacccagg cacaggccac 10080cagcatctcc
tctttggacc tgagaaagtc ttttctctgc aggtctaata gaaatctgag 10140gcctgggcca
ggcgccatgg ctcacgcctg taatcccgac actttgggag gctgaggcag 10200gtggattacc
tgaggtcagg agttaagaga ccaacctggc caacatggtg aaaccctgtc 10260tctactaaaa
atacaaaaat tagccgggtg tggcggtggg cacttgtagt cccagctact 10320tgggagggtg
aggcacgaga attgcttgaa cctgggagac aggttgcagt gagcctagat 10380cgtgccacta
cacactagcc tggacaacaa gagtgagact catctcaaaa aaagaaaaag 10440aaaaaaatct
gaccttgtca cttgtgcttg aaatagcaag tcctccaggg gcttcctctc 10500aagacactgt
tcagactcca caacctgctt cagagccctg tggggtcttg gccctggcca 10560ccttaaaacc
tcactgcttt cctcccctgg tgcaaatcag agcctccaca cacgtccctg 10620ggtggtctgg
atgtcctccc tgcctcgctt ccagtctcta attgtgggtt acgccaggtc 10680cctcctcagc
catccctgca gtgcccatgg ttcttccctg actctcctct gtgggccacc 10740ctgctaatgt
ctctctcatt agagtcccaa agaaccccag ccctccatac catccattca 10800atatcttaaa
aaacaaaaaa caaaaacaaa caaaaaacat gaagtcggcc tgaatttaga 10860aatattcaag
tgtgcaaaga gttctaagag ggctgtactg ggtttgccat gttcttgtcc 10920agcccatggt
gggcattcag tggcaggatt ataagaacaa gaacgaacaa aaggctaggg 10980tgtggggagc
gggcagggct ggaatctgat tgccctgttt cctgcagagc aaagatggcg 11040agatcaagaa
agctggctca gatggtaagt gggaccctgg ggtgtggcag tacatttgcc 11100aggaggtgtc
cttatagaca gcccccaagg cacttgctct ccttggggag gaaggggaga 11160ggccaggttt
ttcttcccct cacctccaag gtctggtacc tgagtcccca gctccgcctt 11220gcaggtgaca
ttatggacag ttccacggag gcccctccca tctcgatcaa gtcccgcacc 11280cactctgtgt
ctgctggtga gtgagggcca ctgtgtgtgt tggtagtggg agcagggaca 11340ggcaggagtt
gggtcagact gttgttcaga cctatcgcca atgcctgacc aggtcttggc 11400tgacaccttt
ctccctacag acccttcctg cagacctggc ccagggagcc aggggcctga 11460gtctgccacc
tggaagacac tggggcagca gttgaatgcg gagctcagga gccgtggttg 11520gggccaacag
gatggtccag gccctccctc ccctggtcaa agcccaagtc cctgcagaac 11580cagcccctcc
ccagacagcc tgggcctccc agaggaccct tgcttgggcc ccagaaatga 11640aggtaggcag
gcacctgatt ccccacccca atcctggcct cggggctgga ggagttcctg 11700ctgggaactc
agctcctcta aggaccctga gggtgggagg caagggctgg agtgggggca 11760gctgttggaa
tacccctgat tccctggcct ccctcagatg gccagctgag gccgaggcct 11820ctctcggcag
ggcggcgagc agtgtctgtg catgaggacc agctccaggc ccctgctggt 11880gaggggagac
acctccacgt gtgcttgaat gcaggagatg tgggagggtg ggcttctggg 11940gctcccttca
tagctttggt ccttggaggg agccaccagt gtgtgaggtc tcaagaaatc 12000agggagccag
aagaccaggt gcaagggttt gacagcaagc ccttccaact agcactggct 12060ccacttcccg
aagagcagcc tctgccaggg gtgaggacgc agggacgggg gatgctctga 12120aggcagcagt
gtgtgtgagt gcatgcttat gtgcactgga ggtggaagag aggggcaggg 12180gatggacaga
ccccaagcct tagcaaccca ccccaagcct ttctgtgtcc cttagaacgg 12240cccctgaggc
tgcagcgctc ccccgtcctc aaacgcaggc caaaactcga ggcacctcca 12300tccccaagcc
taggtaagag ggggtccagg ccagctggga gggtggcagg actgcttagc 12360ccagccctga
cccttcctct ctctccctcc ctcccctcac aggatctggc cttggaaccg 12420agcctctgcc
cccacagccc acagagccct ccagccctga gcggagccca ccctccccag 12480ccacagacca
aagaggcggc ggccccaatc cctgatcctc tcctctcctg ccgcatgaga 12540ttattttatt
aaaaaactca aaggaa 1256661435PRTHomo
sapiens 6Met Ala Gln Thr Pro Asp Gly Ile Ser Cys Glu Leu Arg Gly Glu Ile1
5 10 15Thr Arg Phe Leu
Trp Pro Lys Glu Val Glu Leu Leu Leu Lys Thr Trp 20
25 30Leu Pro Gly Glu Gly Ala Val Gln Asn His Val
Leu Ala Leu Leu Arg 35 40 45Trp
Arg Ala Tyr Leu Leu His Thr Thr Cys Leu Pro Leu Arg Val Asp 50
55 60Cys Thr Phe Ser Tyr Leu Glu Val Gln Ala
Met Ala Leu Gln Glu Thr65 70 75
80Pro Pro Gln Val Thr Phe Glu Leu Glu Ser Leu Arg Glu Leu Val
Leu 85 90 95Glu Phe Pro
Gly Val Ala Ala Leu Glu Gln Leu Ala Gln His Val Ala 100
105 110Ala Ala Ile Lys Lys Val Phe Pro Arg Ser
Thr Leu Gly Lys Leu Phe 115 120
125Arg Arg Pro Thr Pro Ala Ser Met Leu Ala Arg Leu Glu Arg Ser Ser 130
135 140Pro Ser Glu Ser Thr Asp Pro Cys
Ser Pro Cys Gly Gly Phe Leu Glu145 150
155 160Thr Tyr Glu Ala Leu Cys Asp Tyr Asn Gly Phe Pro
Phe Arg Glu Glu 165 170
175Ile Gln Trp Asp Val Asp Thr Ile Tyr His Arg Gln Gly Cys Arg His
180 185 190Phe Ser Leu Gly Asp Phe
Ser His Leu Gly Ser Arg Asp Leu Ala Leu 195 200
205Ser Val Ala Ala Leu Ser Tyr Asn Leu Trp Phe Arg Cys Leu
Ser Cys 210 215 220Val Asp Met Lys Leu
Ser Leu Glu Val Ser Glu Gln Ile Leu His Met225 230
235 240Met Ser Gln Ser Ser His Leu Glu Glu Leu
Val Leu Glu Thr Cys Ser 245 250
255Leu Arg Gly Asp Phe Val Arg Arg Leu Ala Gln Ala Leu Ala Gly His
260 265 270Ser Ser Ser Gly Leu
Arg Glu Leu Ser Leu Ala Gly Asn Leu Leu Asp 275
280 285Asp Arg Gly Met Thr Ala Leu Ser Arg His Leu Glu
Arg Cys Pro Gly 290 295 300Ala Leu Arg
Arg Leu Ser Leu Ala Gln Thr Gly Leu Thr Pro Arg Gly305
310 315 320Met Arg Ala Leu Gly Arg Ala
Leu Ala Thr Asn Ala Ala Phe Asp Ser 325
330 335Thr Leu Thr His Leu Asp Leu Ser Gly Asn Pro Gly
Ala Leu Gly Ala 340 345 350Ser
Glu Asp Ser Gly Gly Leu Tyr Ser Phe Leu Ser Arg Pro Asn Val 355
360 365Leu Ser Phe Leu Asn Leu Ala Gly Thr
Asp Thr Ala Leu Asp Thr Val 370 375
380Arg Gly Cys Ser Val Gly Gly Trp Met Thr Gly Arg Ala Asp Trp Arg385
390 395 400Ala Gly Arg Gly
Gly Leu Gly Pro Pro Ala Gly Val Ala Asn Ser Leu 405
410 415Pro Pro Gln Leu Phe Ala Ala Val Ser Arg
Gly Cys Cys Thr Ser Leu 420 425
430Thr His Leu Asp Ala Ser Arg Asn Val Phe Ser Arg Thr Lys Ser Arg
435 440 445Ala Ala Pro Ala Ala Leu Gln
Leu Phe Leu Ser Arg Ala Arg Thr Leu 450 455
460Arg His Leu Gly Leu Ala Gly Cys Lys Leu Pro Pro Asp Ala Leu
Arg465 470 475 480Ala Leu
Leu Asp Gly Leu Ala Leu Asn Thr His Leu Arg Asp Leu His
485 490 495Leu Asp Leu Ser Ala Cys Glu
Leu Arg Ser Ala Gly Ala Gln Val Ile 500 505
510Gln Asp Leu Val Cys Asp Ala Gly Ala Val Ser Ser Leu Asp
Leu Ala 515 520 525Asp Asn Gly Phe
Gly Ser Asp Met Val Thr Leu Val Leu Ala Ile Gly 530
535 540Arg Ser Arg Ser Leu Arg His Val Ala Leu Gly Arg
Asn Phe Asn Val545 550 555
560Arg Cys Lys Glu Thr Leu Asp Asp Val Leu His Arg Ile Val Gln Leu
565 570 575Met Gln Asp Asp Asp
Cys Pro Leu Gln Ser Leu Ser Val Ala Glu Ser 580
585 590Arg Leu Lys Leu Gly Ala Ser Val Leu Leu Arg Ala
Leu Ala Thr Asn 595 600 605Pro Asn
Leu Thr Ala Leu Asp Ile Ser Gly Asn Ala Met Gly Asp Ala 610
615 620Gly Ala Lys Leu Leu Ala Lys Ala Leu Arg Val
Asn Ser Arg Leu Arg625 630 635
640Ser Val Val Trp Asp Arg Asn His Thr Ser Ala Leu Gly Leu Leu Asp
645 650 655Val Ala Gln Ala
Leu Glu Gln Asn His Ser Leu Lys Ala Met Pro Leu 660
665 670Pro Leu Asn Asp Val Ala Gln Ala Gln Arg Ser
Arg Pro Glu Leu Thr 675 680 685Ala
Arg Ala Val His Gln Ile Gln Ala Cys Leu Leu Arg Asn Asn Arg 690
695 700Ala Asp Pro Ala Ser Ser Asp His Thr Thr
Arg Leu Gln Pro Leu Gly705 710 715
720Leu Val Ser Asp Pro Ser Glu Gln Glu Val Asn Glu Leu Cys Gln
Ser 725 730 735Val Gln Glu
His Val Glu Leu Leu Gly Cys Gly Ala Gly Pro Gln Gly 740
745 750Glu Ala Ala Val Arg Gln Ala Glu Asp Ala
Ile Gln Asn Ala Asn Phe 755 760
765Ser Leu Ser Ile Leu Pro Ile Leu Tyr Glu Ala Gly Ser Ser Pro Ser 770
775 780His His Trp Gln Leu Gly Gln Lys
Leu Glu Gly Leu Leu Arg Gln Val785 790
795 800Gly Glu Val Cys Arg Gln Asp Ile Gln Asp Phe Thr
Gln Ala Thr Leu 805 810
815Asp Thr Ala Arg Ser Leu Cys Pro Gln Met Leu Gln Gly Ser Ser Trp
820 825 830Arg Glu Gln Leu Glu Gly
Val Leu Ala Gly Ser Arg Gly Leu Pro Glu 835 840
845Leu Leu Pro Glu Gln Leu Leu Gln Asp Ala Phe Thr Arg Leu
Arg Asp 850 855 860Met Arg Leu Ser Ile
Thr Gly Thr Leu Ala Glu Ser Ile Val Ala Gln865 870
875 880Ala Leu Ala Gly Leu Ser Ala Ala Arg Asp
Gln Leu Val Glu Ser Leu 885 890
895Ala Gln Gln Ala Thr Val Thr Met Pro Pro Ala Leu Pro Ala Pro Asp
900 905 910Gly Gly Glu Pro Ser
Leu Leu Glu Pro Gly Glu Leu Glu Gly Leu Phe 915
920 925Phe Pro Glu Glu Lys Glu Glu Glu Lys Glu Lys Asp
Asp Ser Pro Pro 930 935 940Gln Lys Trp
Pro Glu Leu Ser His Gly Leu His Leu Val Pro Phe Ile945
950 955 960His Ser Ala Ala Glu Glu Ala
Glu Pro Glu Pro Glu Leu Ala Ala Pro 965
970 975Gly Glu Asp Ala Glu Pro Gln Ala Gly Pro Ser Ala
Arg Gly Ser Pro 980 985 990Ser
Pro Ala Ala Pro Gly Pro Pro Ala Gly Pro Leu Pro Arg Met Asp 995
1000 1005Leu Pro Leu Ala Gly Gln Pro Leu
Arg His Pro Thr Arg Ala Arg 1010 1015
1020Pro Arg Pro Arg Arg Gln His His His Arg Pro Pro Pro Gly Gly
1025 1030 1035Pro Gln Val Pro Pro Ala
Leu Pro Gln Glu Gly Asn Gly Leu Ser 1040 1045
1050Ala Arg Val Asp Glu Gly Val Glu Glu Phe Phe Ser Lys Arg
Leu 1055 1060 1065Ile Gln Gln Asp Arg
Leu Trp Ala Pro Glu Glu Asp Pro Ala Thr 1070 1075
1080Glu Gly Gly Ala Thr Pro Val Pro Arg Thr Leu Arg Lys
Lys Leu 1085 1090 1095Gly Thr Leu Phe
Ala Phe Lys Lys Pro Arg Ser Thr Arg Gly Pro 1100
1105 1110Arg Thr Asp Leu Glu Thr Ser Pro Gly Ala Ala
Pro Arg Thr Arg 1115 1120 1125Lys Thr
Thr Phe Gly Asp Leu Leu Arg Pro Pro Thr Arg Pro Ser 1130
1135 1140Arg Gly Glu Glu Leu Gly Gly Ala Glu Gly
Asp Thr Ser Ser Pro 1145 1150 1155Asp
Pro Ala Gly Arg Ser Arg Pro Arg Tyr Thr Arg Asp Ser Lys 1160
1165 1170Ala Tyr Ser Met Ile Leu Leu Pro Ala
Glu Glu Glu Ala Thr Leu 1175 1180
1185Gly Ala Arg Pro Asp Lys Arg Arg Pro Leu Glu Arg Gly Glu Thr
1190 1195 1200Glu Leu Ala Pro Ser Phe
Glu Gln Arg Val Gln Val Met Leu Gln 1205 1210
1215Arg Ile Gly Val Ser Arg Gly Ser Gly Gly Ala Glu Gly Lys
Arg 1220 1225 1230Lys Gln Ser Lys Asp
Gly Glu Ile Lys Lys Ala Gly Ser Asp Gly 1235 1240
1245Asp Ile Met Asp Ser Ser Thr Glu Ala Pro Pro Ile Ser
Ile Lys 1250 1255 1260Ser Arg Thr His
Ser Val Ser Ala Asp Pro Ser Cys Arg Pro Gly 1265
1270 1275Pro Gly Ser Gln Gly Pro Glu Ser Ala Thr Trp
Lys Thr Leu Gly 1280 1285 1290Gln Gln
Leu Asn Ala Glu Leu Arg Ser Arg Gly Trp Gly Gln Gln 1295
1300 1305Asp Gly Pro Gly Pro Pro Ser Pro Gly Gln
Ser Pro Ser Pro Cys 1310 1315 1320Arg
Thr Ser Pro Ser Pro Asp Ser Leu Gly Leu Pro Glu Asp Pro 1325
1330 1335Cys Leu Gly Pro Arg Asn Glu Asp Gly
Gln Leu Arg Pro Arg Pro 1340 1345
1350Leu Ser Ala Gly Arg Arg Ala Val Ser Val His Glu Asp Gln Leu
1355 1360 1365Gln Ala Pro Ala Glu Arg
Pro Leu Arg Leu Gln Arg Ser Pro Val 1370 1375
1380Leu Lys Arg Arg Pro Lys Leu Glu Ala Pro Pro Ser Pro Ser
Leu 1385 1390 1395Gly Ser Gly Leu Gly
Thr Glu Pro Leu Pro Pro Gln Pro Thr Glu 1400 1405
1410Pro Ser Ser Pro Glu Arg Ser Pro Pro Ser Pro Ala Thr
Asp Gln 1415 1420 1425Arg Gly Gly Gly
Pro Asn Pro 1430 1435712186DNAMus musculus 7ccgagtacgc
ggaaggaaaa gtccctgagc gacagcaaca gtcaagattc gaccatcctc 60ccacaacctc
ccacccgggg cgaactcagc caacgaagcc ggggcgggga ggggccgggc 120cgggggcggc
ctggcaggaa gaagcgcgta ccttccgctg caggaggagc aggtggctgc 180actgctgcct
gggcccctgg cttcctgtgt acgctcctgc cggctgcttt ttcccgccag 240agctcattgg
gccgtcccgg ccctatggca cagaccccag acgacatatc ctgtgaactg 300cgaggtaagc
cctgggagcc cacctggcca tgaagagcct gactccaaac cagacctctc 360ctctcggcgc
cttagggaac ttgaccaggg gtttttgttc tggagggagg gccagtgcct 420aaaagtccgc
ttcatttctt cctagctgat ccacacatga atacctgggc actcagtcta 480gcacagacct
tgggcacaga gtggccctaa tagaggagcc aaagtcaccc agtagactgt 540ctttccacag
gcgagatcac caggttcctg tggcccaagg aggcggagct gctgttgaaa 600acctggcttc
cccaggaggg tgccgagcaa agccatatcc tggtatggta gccaggagtg 660aagctcagga
cagtggccag accctgcaca aagaaacttg atttccctag agtattagtc 720ttttgtctcc
ccccaggcac tgcttcgatg gagggcatat ttgctgcaca cctgccttcc 780cctgagggtg
agtcccaggc cgggccaaca ccccttcccc ttcagcaagg gactgccttg 840cgcagctgtc
ttctttgccc atgctggctt ttactttcca acagcagaca ggagggaagt 900ctgggcaggt
ctagctcagg atgccacaaa atcatgggct gtggagagag gacctgggtt 960caattctccc
accaccaggt gggctcacaa gtggttggaa ctctagttcg aaggcaccca 1020ccaccgtctt
ctggcatctt tgggaaccag gcacacaaga gtggtacaga gacaaacatg 1080ccagcaaaca
cccaatagta caatttttaa attttaagaa caagctagga ggtggtggtg 1140cacgccttta
gtcctggcac tagggagaca gaggcaggca ggcctggtct acagagtgag 1200ctccaggaca
gccaggtcta cacagagaaa ccctgtctca ggaaagagaa agaaagaaag 1260aaagaaagaa
agaaagaaag aaagaaagaa agaaagaaag aacgaactag gctcaagaga 1320gtagcaacag
tcagttggaa tgactctgat gctttccagg tggactgtac attcagctac 1380ctggaggtcc
aggccatggc actacaggaa acaccccctc gggtaagaaa gctggacccc 1440aacttgaaca
tacactccgc ttgatcattt attcctacac atatcactct gaatggacag 1500cgcttccacc
acacagggat ccaaaaggct cctccttccc caggtcacct ttgagctgga 1560gtccctgcct
gaactggtcc tggagtttcc ctgtgtggct gccctcgaac agctggctca 1620gcatgtagct
gctgccatca aaaaggtctt ccctcgctca acccttgggt gaggcttaga 1680aaatccaagg
ggtggggcag ggcctcagtg aaagcttttc atccttcaag gagctagaag 1740tcccttttgc
ctcttctcct tatcccctgc ctaggaagct attccggaag cccacaccct 1800cgtctctgct
ggctcgactg gagagaagcc atcccttaga gtccaccata cccagcagtc 1860cgtgcggtga
gggccaagtc agagccgcat aaaccttcca gtttgcctcc atgcaatcct 1920agtctcttgg
tattgggggg gctccccaaa gtgaacaggg ccacttttat cactgccgcc 1980atctactatg
gggctgacct tcccctgtct ctgacttagt gcctgtctgt ttccctatca 2040ctcccccgac
acctctctag gtggcttctt ggaaacatac gaagctctgt gcgattacaa 2100tggcttccca
ttccgagagg agattcagtg ggtgagggta gggccctttt gggggagttc 2160tggggatgtt
tgacgcccct tgtgtgtgct aagcccctct accctttgtg gccccaggct 2220agctgtgact
ttttttcttt acatctagga tgtggacact atctaccatc gccagggctg 2280ccgccacttc
tgccttggag atttcagcca ctttggcagc cggtatgagg ccagccagga 2340ttgggaggcg
agaactccag cacccaaatt cctagtctgt ctgtagaggg gggatgctga 2400ctgagccctg
tgtttggaag gccctgagca ctgcattttc tcttccccgc gatagagacc 2460tggctttgag
tgtagctgcc ttatcttata acctgtggtt ccggcgcctc tcctgcgagg 2520acatgaagct
ggtgagagag tacacacaaa agggagtgcc aagggtgtaa gggtcaaagt 2580tcaacctgat
gagtcacgac cctcttgctc tcagagcctg gaggtctcag aacagattct 2640gcacatgacg
agtcaatctt cctatttgga ggagctggtg ttggaggctt gtggtctgcg 2700agggtgagag
gcctgagctg ggcgtgggaa cctgtgatct gcggagagac tgggaatcag 2760tcttaactgg
ggtcttggtc ctcagagact tcgttaggcg actagcccag gccctggcag 2820gacattttaa
ttctggactt cgggagctca gcctgtctgg gaacttgctg gatgacagag 2880gtatggcaga
atctgggaga cccaaggcag ccgagccgga agaggtgagg ttcacagagc 2940tgctctgtcc
acaggtatgg ctgcactcag cagacaccta gagcattgtc caggagcctt 3000gaggagactc
agcctagcac agacaggctt gacacctcga ggtgggtggg actggggagg 3060gttgggaggg
ctcgaggtaa ggtgagcatg tcttgatact cagccgctcc tcccacccac 3120caccaggaat
gagagctcta ggcagggcac tggcaacgaa tgccaccttt gactctaccc 3180tgacccacct
ggatctttct gggaaccctg gggcactggg accctcacag gatagtgggg 3240tgagtagcag
tttttaaagt cagaaactgg gacggccgag tcagtgggat gccagatcct 3300taggcaaccc
ctgcctccct ctctccctcc gtagggcctg tatactttcc tgagccgtcc 3360taacgtcctg
gcgtatttga atcttgcagg cactgacgcc acgctaggca cggtaagagt 3420gtggtcatgg
gggatgcgtg gcagggcttg gctgcgcctg agcagggaag gaaggagagc 3480ggagcgtggc
agagaaagcc agggcttctg gaaggttatc gctaatacca ccttcctctc 3540agctcttcac
ggccttagct ggtggctgct gctccagcct cacccatctg gaagcttcaa 3600ggaatatctt
ctctcgcatg taaggggcac caggcaggct cggaaggacg aggcttgagg 3660gtatcagctc
ccctgagcgt aaatcccact tctgctctcc acccctcacc gcaggaagtc 3720ccaagcggca
ccagccgcgc tgcaacgctt ccttggcggt accaggatgc tacggcacct 3780gggcctggcg
ggctgcaagc tgccacctga agcgctcagg tcagtcctcc cgtgcagtca 3840caaccttgag
cagtgtctct tgacctctac tgcctcaccc ctctatgaca cccataatct 3900ttcgtaaccc
caacctgcct ggcgcttatt cgttcgcacc gagtcccgtg ttcccagatc 3960ttgtcacctg
tgtgttaccc ctctctcagg gcccttctag aaggtcttgc actcaacact 4020cagatccatg
atctgcacct agacctcagc gcgtgtgagg taggtacccg gtcctggttg 4080tgagctgaga
gcacgtccac attattgaga gtgaggctgg gaggccttcc ctacccaggc 4140ataatcctga
gtgcacccta cctccacctc cagctccgct ccgtgggtgc ccaggtgata 4200caagacttgg
tttgtgatgc gggtgccttg agttccttgg atctgtcgga taatggtgag 4260gccgccaggg
aacccatcca tccatgctcc tgttatttgt accagatccc cagggtgggc 4320accctgacct
ggtaggagtg atttgtgcat cactctggtt acccctaggc tttggctccg 4380acatggtgac
actggtgctt gccatcggga ggagccggtc tctgaaacac gtggcccttg 4440gaaggaactt
caacgttcgg tgcaagtgag tcccaagctt ccccctgtac ctctcaagaa 4500ggactgcatc
acccatttag ttccctaaca gcagcccctt tccacaggga gaccctggac 4560gatgtcctgc
atcggatagc ccagctaatg caggatgacg actgtgtgag ttcacagagc 4620cctgtggggg
gtcctcaagc aattaacgtc ttgtaatgct tcttatgtat attccttcaa 4680accttctttg
ctgaacctga gcccatgtat ccatcagtgc cttcctttta accccagcct 4740ttgcagtcac
tatccgtggc tgagtcgcgg ttgaagcagg gtgccagcat cctgatccgg 4800gctttgggca
ccaatcctaa actgacagcg ctggatatca gtggcaatgc cataggggat 4860gctggggcca
agatgctagc caaggctcta cgcgtcaaca ccaggctacg gtgggtatga 4920tcatgataag
ggctgggacc cgcaggagag ggcaagagtt atataataga cgggtgtatg 4980ggtttaaggt
atacatggtg atgagacagg tgattggata aggccagagg gttgggcggg 5040gttctgcccc
tgctgaagcc tggtggggcc caggtctgtg atctgggacc ggaacaacac 5100atctgctctg
ggcctgctgg atgtggcgca agccctggaa cagaaccaca gcctcaagtc 5160catgccgctg
ccactgaatg acgtaaccca ggctcatcgc agccggccag aactcacaac 5220tcgagcggtc
catcaggtgg gggtccgcgc ttctctctgc ccttttgtgt gtggtgactc 5280caccccctgg
cgtttctcac tatctctttg actgcagatc caagcctgtc tctggaggaa 5340caaccaagta
gactctactt cggacctcaa gccctgcctt cagcccttag gtctgatttc 5400agaccactca
gagcaggtta gtgccccttg ccctaatctt gaatacctga gcacctgagt 5460cagagtctga
cttttctgag ccacagtgct gagttctatg tctcaaacaa tttccttttc 5520ttggtcaccg
ttcttgaaac agcttcccgt gtaacatttg gctgctttaa gggtttaaat 5580aggctgtcct
tgctgtagcc tctttattcg acttcctatt taagggctaa cctctcttta 5640ctgactgtgt
ggctagctcc agcagtccta tctctggctt taatttcctt tcattaaccc 5700atctttttgt
attattctta cctctgcatt cccaagcctc aattcttttg tttggttttg 5760gtttcttgag
acagggtttc tctgtgtagc ctgggatatc cttgaactcc cagagatctg 5820cttgcttctg
cctcccaagt gctaggatta aaggcatgtg ccaacactgc ccagcccaag 5880ccttgattga
ttgattgatt gattgattga ttgatttgag acagggtttc tctgtgtaat 5940ccttgccgtc
ttggaattca ctctgtagac caagctggcc tcgaactcag aaatccgcct 6000gcctctgcct
cccaagtgct gggattaaag gcgtgcgcca ccatacacac acacatacac 6060acaactgttc
tctgtatgga tggttaaggt gacatctttg aaatcagagt gaccaaagct 6120tctttccttc
ctgttttagg cctggagaaa ataatcaagt gatcagatag ggtttccctc 6180acagtttgtc
ttcctgtagg aaaaccttgg aagggagaca ggcagaatcg gggagactga 6240tgagaaacaa
agggaggact aatccatgac tccctcctgc ctgcccccca ggaggtgaac 6300gagctatgcc
agtcagtaca ggagcatatg gagctgctgg gctgtggggc tgggccccag 6360ggtgaggttg
ccgtgcacca ggctgaggac gccatccaga atgccaactt ctctctcagt 6420gtaagcaccc
tctttcctgc tctgaggacc tttccgctcc caatcatgtg ccagtttgca 6480agtccttttg
ttccttggcc tccccagatc ctccccattc tctatgaggc tgggagatcc 6540ccaagccacc
actggcagct gcagcagaag ctagagagcc tcctgggtca ggtgggcgag 6600atctgccgcc
aggacatcca ggtaagatac tagtcctgcc ccagccgcac ctccccatgc 6660aggcttgacc
ctcattccac acgcttgtct gggataggcc cttagtcagc agtggtttaa 6720tgggaactca
caccttcaaa gccaaagggg ctgggttttg gcatactgct aacattttgt 6780aacctttgcc
caggacttca ctcagaccac cctggatacc acaaggagcc tctgcccaca 6840gatgttgcag
acacctggct ggaggaagca gctagaggga gttctggtgg gctccggggg 6900cctcccagag
ctgcttccgg aacatctgct gcaagatgcc ttctctaggc tgaggtgagc 6960aagcccaact
gggctgggca atgctggaca gagacagcac actaatcctc actgtctcct 7020gcctttaggg
acatgcgcct gtcaatcact gggaccctag cagagagcat tgtggctcag 7080gctcttgcag
gtcttcatgc agcccgagat cgactggtga gggggaagct ttgaacacat 7140ttcatagagt
aacttgttta accctcacgg gcaaccctga aatgacttct ggggtcataa 7200gctagctact
tagttctgcc tatctttggg tggcctggta ttacaggtgg agaggctaac 7260tcagcaggca
ccagtgacca tggcccctgc tgtaccacca ctgggtggaa atgagctcag 7320cccccttgag
actgggggat tggaagagct tttctttccc acggagaagg aagaggagag 7380agaaaaggtg
agtgtcttca gaatttcaag cctaggaccc cggctggctt tctccttctt 7440gctctggaat
gtagaaggtg aggagcaggt ctgggtcatc ctaaccctag actgaggctg 7500tacccatccc
accaggatga gagttcttca tggaaatggc ttgagcctag taactgtttt 7560cacctggtct
cctcccttca tggtaagtca ggccctggag taagagagtt taatccaagt 7620ggactgaagc
tctgttaaat ctggacactc tttcagccct gtcccgggtg taccctagcc 7680cttccccgag
ccaagccagg aagaaagcca gagtcagctg ttctcagaac cctgtgggac 7740cagaacagaa
taacactaag acacctcctt ccctacctcc tcctcccctt tccctaaccc 7800caggacgcgc
atgcttggcg gctgcacaaa gtcgcgcgca ctcggggccg cgctcagcac 7860cacggacagc
ggcgactggg ggaggggcgg gcggcgtagc cgggcccctc cccgcgccct 7920gggcgggtcc
ccgccgccct ccctagctcc tccgccacct ccccgggttc gacgctctgt 7980gctcttctgg
tgcttttgcc tcaggtgctg ctgaggaagc ggaacgggac cccgagctgg 8040cagctccggg
ggaagatgca gagccgcagg ctgggccgtc tgcacgcggc tctccaagcc 8100ccgccgcccc
ggggccaccc gccggccctc tgcctcgcat ggacctgcca cccgccgggc 8160aacccctacg
ccacccaacc cgagcccgac cgagaccacg tcgccagcac caccaccgcc 8220cgccgccggg
gggcccccag gtaagtgctt cccttccccc tcgcccctct tgagggtcat 8280gggtggacca
ttcactcttc acttgagata gaagactgga agatgggttg tggaggccca 8340aggccaccgg
atcgcgctct atcatctttc tggccaccct catactcagg ccatggcaat 8400aacgggccat
ggtgtgtggc tttcctgtga ggagctacta gatggtggac cccctccttg 8460tagtggtctg
ctctatgggt gaacatgcga gagcggatgt ccgccttgcc ctccctctcc 8520taaggttgct
gaaaaacact gggcagctgg accgcgggac actcctgcgt ctgctgtgta 8580ccagcgggtg
gatgtatgtg tgggttgggt actggcaagg gtagtgggca ctggcagaag 8640gagaggagca
gctggcctga ggccccctga gggtctgacg cagcagcggc gccactgagc 8700cgggatgaga
ggccgggtgg tgtggtgtgg aggtggaagg ttagggtact gcagggaact 8760gttgggagta
gaagggatgg catatttgca atgtgcgacc cataggtgtt tgcttagtga 8820cagccaggtg
gttcagggta tagcagcctc tggactgggt gggtgcgctg tgacagcaat 8880gaagaatgaa
agccagagtg gtacagacag tctccagctc cgggatgtac tcaggccagg 8940ccactgggaa
ggagaggatg tctaggaaga gtcacagttc ccagtcctga ctcctaacct 9000cccaatgtct
cccaggtgcc cccagccctg cttcaagaag gaaatgggct cactgctcgc 9060gtggatgagg
gtgtggagga gttcttctcc aaaaggctga tccagcagga tcacttgtga 9120gtgagggtcg
gttgactggg ggcggaggag ggtggaacat ccccgagttt cttcactcac 9180tgatggttat
tcctacagct gggccccaga ggaggatcca gccactgagg gtggtgccac 9240tcctgtcccc
cgcacacttc gaaagaagct gggtacgctc tttgccttta agaaacctcg 9300ttcaacaagg
ggtccgcgac ctgacctgga gaccagccct ggagcagcag ctcgagccag 9360aaaatccaca
cttggggatc tcctgcgacc accggcccgt ccaggccgtg gtgaggaacc 9420tggaggggcg
gaaggcggca ccagcagccc tgaccctgct cgcagaaatc ggcctcggta 9480cacgcgggaa
agcaaggcct actccatgat cctgctacct gctgaggagg aagcagccgt 9540gggtaccaga
cctgataagg taaggccagg ggccggggct gaggctcctc aggaacagag 9600agcagtgggg
ttctctcacc acttaggcat ctctgtcctc agaggcggcc tctggaacgg 9660ggagacacag
aactggctcc atcttttgag cagcgggtac aagtgatgct acagaggatc 9720ggcgtgagcc
gggccagtgg gggtgccgag agcaagagga agcaagtgag ttgggggtga 9780actgcggggg
caggtggcat gtggtaatct gtgggtgaca tatgtgacca agaagggaga 9840aacacatggt
gggaatagat ctaattatca gttacatgtt ctcatccctc aagaggcaag 9900gaggagaact
ttcttccttc ttgcttctga cctggttcag atcttctagg gtatagggaa 9960ctcctttttc
tgaagaagaa attaacagaa atttgacctt gttttacctg aaagttctcc 10020aggaacttcc
ttatccagat gccttatgtt ttttttttgt tttaatattt atgtgagtac 10080actgtccctg
ccttctgtct tcagacacac cagaaactag cattggatcc cattacagat 10140agttgccggg
agttgaactt gggtcctctg gaagagtagt cagtgctctt agctgctgag 10200ccgtctctcc
agtcccttta tccagattcc taatcccgct gtgagatctc acaggacctt 10260ggtactggcc
accttagacc tgttttcctt tgaagcctca cttggccatt gatttttatt 10320ctctgactgt
cgggtcatgt actggattat acaggctcct ttccagcctt ccctgacacc 10380cttccatggt
cacccggata acattactac aatcatggtc tttattagga actacacctc 10440tgtatgccat
ccatttaaat agctttccag gaagaacaca tgcagtgaga cctggcctga 10500atgtagtgat
gttaaagtgt ggcaagtcat agaactaatt atctgctgga tgtggcggta 10560atctcagcat
tcagaaaact ggggcaggag gattgcaagt aagactagcc tgagttgtct 10620acagcaagac
tatctcaaaa gcaaagtcta cctgtcatga ccaacatgaa catttttgca 10680tgttagctat
ctgtctatcc cagactgtaa ggtcagaggg tggaaactgg ctttaccatg 10740ctctggccag
cctatgctat gcattctgta gctgggtttt aacaacatgg acagagacaa 10800ggctagggtc
agggcggcag ggctgctgcc tgactcatgt gtttcctaca gagtaaagac 10860ggcgagatca
agaaggcagg ctctgatggt gagtaggacc ccacccggga caaggagata 10920tatgttgggg
aacaaggtgg cctcagataa cccctaaggc tccctccctc caccactaag 10980gtctgacacc
taagcctcta atccttcctt gcaggtgaca ttatggacag ttccacagag 11040acccctccca
tctcaatcaa gtcccgtacc cactctgtgt ctgctggtga gtgagggcca 11100ctggatatgt
taaaggaggt gcaagggttg ggaggggatc ggactgttgc tcagaaccat 11160tccacagaca
ggcttgggtg ttagctgaca ttgtcttctc tacccagatc cctcatgcag 11220acctgggcca
ggaggccagg ggcctgagtc tgccacctgg aagacattgg gacagcagct 11280gaatgcagag
ctcagaggcc gtggttgggg ccaacaggat ggtccagggc ccccctcccc 11340atgtcccagc
ccaagtcccc gaagaaccag ccccgcccca gacatcctga gtctcccaga 11400ggacccctgc
ttgggcccta ggaatgaagg taggtaggca ccccactcct aggctaggaa 11460cccgactcat
ctgggaaggc caaaggtggg aggcgaaggc tgggtgtggg cggagtatgg 11520gaacgtcctc
tgacatctcg gcctcctcta gatggccagc tgaggccgag gcctctttcg 11580gcaggccggc
gagcagtgtc tgtgcatgag gaccagctcc aggcccccgc gggtgaggga 11640gacccctctg
cctgtgcttg agtgcaggag aaagggggag gtgggctcga tcggtcttgg 11700tccttggaca
gcgccacctc ctgaaggccc acctcagcta gggtgggagg acacttgctg 11760gacaatctat
gggcgtagca tgtgcatggt tttgcgtgca ctcaaggtgg accagagggt 11820tggggacagc
cagtgagttt tttctgtatc ctttttagaa cggcccctcc ggctgcagcg 11880ctcccctgtc
ctcaagcgta ggccgaagct cgaggcaccc ccatccccaa gcttaggtga 11940gagtgggcac
gggccagctg ggatgctgat acgactgctc agtacaagcc tagcattgtt 12000tctctccata
acccttcaca ggctctggcc ttggatccaa gcctcttcct ccgtacccca 12060cagaaccctc
cagccctgag cggagccctc cctccccagc cacagaccaa agaggcggcg 12120gccccaaccc
ctgaatctct ctcctcctgc cgcatgaaat tattttatta aaaaacttga 12180atgaaa
1218681295PRTMus
musculus 8Met Ala Gln Thr Pro Asp Asp Ile Ser Cys Glu Leu Arg Gly Glu
Ile1 5 10 15Thr Arg Phe
Leu Trp Pro Lys Glu Ala Glu Leu Leu Leu Lys Thr Trp 20
25 30Leu Pro Gln Glu Gly Ala Glu Gln Ser His
Ile Leu Ala Leu Leu Arg 35 40
45Trp Arg Ala Tyr Leu Leu His Thr Cys Leu Pro Leu Arg Val Asp Cys 50
55 60Thr Phe Ser Tyr Leu Glu Val Gln Ala
Met Ala Leu Gln Glu Thr Pro65 70 75
80Pro Arg Val Thr Phe Glu Leu Glu Ser Leu Pro Glu Leu Val
Leu Glu 85 90 95Phe Pro
Cys Val Ala Ala Leu Glu Gln Leu Ala Gln His Val Ala Ala 100
105 110Ala Ile Lys Lys Val Phe Pro Arg Ser
Thr Leu Gly Lys Leu Phe Arg 115 120
125Lys Pro Thr Pro Ser Ser Leu Leu Ala Arg Leu Glu Arg Ser His Pro
130 135 140Leu Glu Ser Thr Ile Pro Ser
Ser Pro Cys Gly Gly Phe Leu Glu Thr145 150
155 160Tyr Glu Ala Leu Cys Asp Tyr Asn Gly Phe Pro Phe
Arg Glu Glu Ile 165 170
175Gln Trp Asp Val Asp Thr Ile Tyr His Arg Gln Gly Cys Arg His Phe
180 185 190Cys Leu Gly Asp Phe Ser
His Phe Gly Ser Arg Asp Leu Ala Leu Ser 195 200
205Val Ala Ala Leu Ser Tyr Asn Leu Trp Phe Arg Arg Leu Ser
Cys Glu 210 215 220Asp Met Lys Leu Ser
Leu Glu Val Ser Glu Gln Ile Leu His Met Thr225 230
235 240Ser Gln Ser Ser Tyr Leu Glu Glu Leu Val
Leu Glu Ala Cys Gly Leu 245 250
255Arg Gly Asp Phe Val Arg Arg Leu Ala Gln Ala Leu Ala Gly His Phe
260 265 270Asn Ser Gly Leu Arg
Glu Leu Ser Leu Ser Gly Asn Leu Leu Asp Asp 275
280 285Arg Gly Met Arg Ala Leu Gly Arg Ala Leu Ala Thr
Asn Ala Thr Phe 290 295 300Asp Ser Thr
Leu Thr His Leu Asp Leu Ser Gly Asn Pro Gly Ala Leu305
310 315 320Gly Pro Ser Gln Asp Ser Gly
Gly Leu Tyr Thr Phe Leu Ser Arg Pro 325
330 335Asn Val Leu Ala Tyr Leu Asn Leu Ala Gly Thr Asp
Ala Thr Leu Gly 340 345 350Thr
Leu Phe Thr Ala Leu Ala Gly Gly Cys Cys Ser Ser Leu Thr His 355
360 365Leu Glu Ala Ser Arg Asn Ile Phe Ser
Arg Met Lys Ser Gln Ala Ala 370 375
380Pro Ala Ala Leu Gln Arg Phe Leu Gly Gly Thr Arg Met Leu Arg His385
390 395 400Leu Gly Leu Ala
Gly Cys Lys Leu Pro Pro Glu Ala Leu Arg Ala Leu 405
410 415Leu Glu Gly Leu Ala Leu Asn Thr Gln Ile
His Asp Leu His Leu Asp 420 425
430Leu Ser Ala Cys Glu Leu Arg Ser Val Gly Ala Gln Val Ile Gln Asp
435 440 445Leu Val Cys Asp Ala Gly Ala
Leu Ser Ser Leu Asp Leu Ser Asp Asn 450 455
460Gly Phe Gly Ser Asp Met Val Thr Leu Val Leu Ala Ile Gly Arg
Ser465 470 475 480Arg Ser
Leu Lys His Val Ala Leu Gly Arg Asn Phe Asn Val Arg Cys
485 490 495Lys Glu Thr Leu Asp Asp Val
Leu His Arg Ile Ala Gln Leu Met Gln 500 505
510Asp Asp Asp Cys Pro Leu Gln Ser Leu Ser Val Ala Glu Ser
Arg Leu 515 520 525Lys Gln Gly Ala
Ser Ile Leu Ile Arg Ala Leu Gly Thr Asn Pro Lys 530
535 540Leu Thr Ala Leu Asp Ile Ser Gly Asn Ala Ile Gly
Asp Ala Gly Ala545 550 555
560Lys Met Leu Ala Lys Ala Leu Arg Val Asn Thr Arg Leu Arg Ser Val
565 570 575Ile Trp Asp Arg Asn
Asn Thr Ser Ala Leu Gly Leu Leu Asp Val Ala 580
585 590Gln Ala Leu Glu Gln Asn His Ser Leu Lys Ser Met
Pro Leu Pro Leu 595 600 605Asn Asp
Val Thr Gln Ala His Arg Ser Arg Pro Glu Leu Thr Thr Arg 610
615 620Ala Val His Gln Ile Gln Ala Cys Leu Trp Arg
Asn Asn Gln Val Asp625 630 635
640Ser Thr Ser Asp Leu Lys Pro Cys Leu Gln Pro Leu Gly Leu Ile Ser
645 650 655Asp His Ser Glu
Gln Glu Val Asn Glu Leu Cys Gln Ser Val Gln Glu 660
665 670His Met Glu Leu Leu Gly Cys Gly Ala Gly Pro
Gln Gly Glu Val Ala 675 680 685Val
His Gln Ala Glu Asp Ala Ile Gln Asn Ala Asn Phe Ser Leu Ser 690
695 700Ile Leu Pro Ile Leu Tyr Glu Ala Gly Arg
Ser Pro Ser His His Trp705 710 715
720Gln Leu Gln Gln Lys Leu Glu Ser Leu Leu Gly Gln Val Gly Glu
Ile 725 730 735Cys Arg Gln
Asp Ile Gln Asp Phe Thr Gln Thr Thr Leu Asp Thr Thr 740
745 750Arg Ser Leu Cys Pro Gln Met Leu Gln Thr
Pro Gly Trp Arg Lys Gln 755 760
765Leu Glu Gly Val Leu Val Gly Ser Gly Gly Leu Pro Glu Leu Leu Pro 770
775 780Glu His Leu Leu Gln Asp Ala Phe
Ser Arg Leu Arg Asp Met Arg Leu785 790
795 800Ser Ile Thr Gly Thr Leu Ala Glu Ser Ile Val Ala
Gln Ala Leu Ala 805 810
815Gly Leu His Ala Ala Arg Asp Arg Leu Val Glu Arg Leu Thr Gln Gln
820 825 830Ala Pro Val Thr Met Ala
Pro Ala Val Pro Pro Leu Gly Gly Asn Glu 835 840
845Leu Ser Pro Leu Glu Thr Gly Gly Leu Glu Glu Leu Phe Phe
Pro Thr 850 855 860Glu Lys Glu Glu Glu
Arg Glu Lys Val Leu Leu Arg Lys Arg Asn Gly865 870
875 880Thr Pro Ser Trp Gln Leu Arg Gly Lys Met
Gln Ser Arg Arg Leu Gly 885 890
895Arg Leu His Ala Val Ala Glu Lys His Trp Ala Ala Gly Pro Arg Asp
900 905 910Thr Pro Ala Ser Ala
Val Tyr Gln Arg Val Asp Val Cys Val Gly Trp 915
920 925Val Pro Pro Ala Leu Leu Gln Glu Gly Asn Gly Leu
Thr Ala Arg Val 930 935 940Asp Glu Gly
Val Glu Glu Phe Phe Ser Lys Arg Leu Ile Gln Gln His945
950 955 960Phe Trp Ala Pro Glu Glu Asp
Pro Ala Thr Glu Gly Gly Ala Thr Pro 965
970 975Val Pro Arg Thr Leu Arg Lys Lys Leu Gly Thr Leu
Phe Ala Phe Lys 980 985 990Lys
Pro Arg Ser Thr Arg Gly Pro Arg Pro Asp Leu Glu Thr Ser Pro 995
1000 1005Gly Ala Ala Ala Arg Ala Arg Lys
Ser Thr Leu Gly Asp Leu Leu 1010 1015
1020Arg Pro Pro Ala Arg Pro Gly Arg Gly Glu Glu Pro Gly Gly Ala
1025 1030 1035Glu Gly Gly Thr Ser Ser
Pro Asp Pro Ala Arg Arg Asn Arg Pro 1040 1045
1050Arg Tyr Thr Arg Glu Ser Lys Ala Tyr Ser Met Ile Leu Leu
Pro 1055 1060 1065Ala Glu Glu Glu Ala
Ala Val Gly Thr Arg Pro Asp Lys Arg Arg 1070 1075
1080Pro Leu Glu Arg Gly Asp Thr Glu Leu Ala Pro Ser Phe
Glu Gln 1085 1090 1095Arg Val Gln Val
Met Leu Gln Arg Ile Gly Val Ser Arg Ala Ser 1100
1105 1110Gly Gly Ala Glu Ser Lys Arg Lys Gln Ser Lys
Asp Gly Glu Ile 1115 1120 1125Lys Lys
Ala Gly Ser Asp Gly Asp Ile Met Asp Ser Ser Thr Glu 1130
1135 1140Thr Pro Pro Ile Ser Ile Lys Ser Arg Thr
His Ser Val Ser Ala 1145 1150 1155Asp
Pro Ser Cys Arg Pro Gly Pro Gly Gly Gln Gly Pro Glu Ser 1160
1165 1170Ala Thr Trp Lys Thr Leu Gly Gln Gln
Leu Asn Ala Glu Leu Arg 1175 1180
1185Gly Arg Gly Trp Gly Gln Gln Asp Gly Pro Gly Pro Pro Ser Pro
1190 1195 1200Cys Pro Ser Pro Ser Pro
Arg Arg Thr Ser Pro Ala Pro Asp Ile 1205 1210
1215Leu Ser Leu Pro Glu Asp Pro Cys Leu Gly Pro Arg Asn Glu
Glu 1220 1225 1230Arg Pro Leu Arg Leu
Gln Arg Ser Pro Val Leu Lys Arg Arg Pro 1235 1240
1245Lys Leu Glu Ala Pro Pro Ser Pro Ser Leu Gly Ser Gly
Leu Gly 1250 1255 1260Ser Lys Pro Leu
Pro Pro Tyr Pro Thr Glu Pro Ser Ser Pro Glu 1265
1270 1275Arg Ser Pro Pro Ser Pro Ala Thr Asp Gln Arg
Gly Gly Gly Pro 1280 1285 1290Asn Pro
129593295DNAHomo sapiens 9ccgccagccc cgccagtccc cgcgcagtcc ccgcgcagtc
cccgcgcagt cccagcgcca 60ccgggcagca gcggcgccgt gctcgctcca gggcgcaacc
atgtcgccat ttcttcggat 120tggcttgtcc aactttgact gcgggtcctg ccagtcttgt
cagggcgagg ctgttaaccc 180ttactgtgct gtgctcgtca aagagtatgt cgaatcagag
aacgggcaga tgtatatcca 240gaaaaagcct accatgtacc caccctggga cagcactttt
gatgcccata tcaacaaggg 300aagagtcatg cagatcattg tgaaaggcaa aaacgtggac
ctcatctctg aaaccaccgt 360ggagctctac tcgctggctg agaggtgcag gaagaacaac
gggaagacag aaatatggtt 420agagctgaaa cctcaaggcc gaatgctaat gaatgcaaga
tactttctgg aaatgagtga 480cacaaaggac atgaatgaat ttgagacgga aggcttcttt
gctttgcatc agcgccgggg 540tgccatcaag caggcaaagg tccaccacgt caagtgccac
gagttcactg ccaccttctt 600cccacagccc acattttgct ctgtctgcca cgagtttgtc
tggggcctga acaaacaggg 660ctaccagtgc cgacaatgca atgcagcaat tcacaagaag
tgtattgata aagttatagc 720aaagtgcaca ggatcagcta tcaatagccg agaaaccatg
ttccacaagg agagattcaa 780aattgacatg ccacacagat ttaaagtcta caattacaag
agcccgacct tctgtgaaca 840ctgtgggacc ctgctgtggg gactggcacg gcaaggactc
aagtgtgatg catgtggcat 900gaatgtgcat catagatgcc agacaaaggt ggccaacctt
tgtggcataa accagaagct 960aatggctgaa gcgctggcca tgattgagag cactcaacag
gctcgctgct taagagatac 1020tgaacagatc ttcagagaag gtccggttga aattggtctc
ccatgctcca tcaaaaatga 1080agcaaggccg ccatgtttac cgacaccggg aaaaagagag
cctcagggca tttcctggga 1140gtctccgttg gatgaggtgg ataaaatgtg ccatcttcca
gaacctgaac tgaacaaaga 1200aagaccatct ctgcagatta aactaaaaat tgaggatttt
atcttgcaca aaatgttggg 1260gaaaggaagt tttggcaagg tcttcctggc agaattcaag
aaaaccaatc aatttttcgc 1320aataaaggcc ttaaagaaag atgtggtctt gatggacgat
gatgttgagt gcacgatggt 1380agagaagaga gttctttcct tggcctggga gcatccgttt
ctgacgcaca tgttttgtac 1440attccagacc aaggaaaacc tcttttttgt gatggagtac
ctcaacggag gggacttaat 1500gtaccacatc caaagctgcc acaagttcga cctttccaga
gcgacgtttt atgctgctga 1560aatcattctt ggtctgcagt tccttcattc caaaggaata
gtctacaggg acctgaagct 1620agataacatc ctgttagaca aagatggaca tatcaagatc
gcggattttg gaatgtgcaa 1680ggagaacatg ttaggagatg ccaagacgaa taccttctgt
gggacacctg actacatcgc 1740cccagagatc ttgctgggtc agaaatacaa ccactctgtg
gactggtggt ccttcggggt 1800tctcctttat gaaatgctga ttggtcagtc gcctttccac
gggcaggatg aggaggagct 1860cttccactcc atccgcatgg acaatccctt ttacccacgg
tggctggaga aggaagcaaa 1920ggaccttctg gtgaagctct tcgtgcgaga acctgagaag
aggctgggcg tgaggggaga 1980catccgccag caccctttgt ttcgggagat caactgggag
gaacttgaac ggaaggagat 2040tgacccaccg ttccggccga aagtgaaatc accatttgac
tgcagcaatt tcgacaaaga 2100attcttaaac gagaagcccc ggctgtcatt tgccgacaga
gcactgatca acagcatgga 2160ccagaatatg ttcaggaact tttccttcat gaaccccggg
atggagcggc tgatatcctg 2220aatcttgccc ctccagagac aggaaagaat ttgccttctc
cctgggaact ggttcaagag 2280acactgcttg ggttcctttt tcaacttgga aaaagaaaga
aacactcaac aataaagact 2340gagacccgtt cgcccccatg tgacttttat ctgtagcaga
aaccaagtct acttcactaa 2400tgacgatgcc gtgtgtctcg tctcctgaca tgtctcacag
acgctcctga agttaggtca 2460ttactaacca tagttattta cttgaaagat gggtctccgc
acttggaaag gtttcaagac 2520ttgatactgc aataaattat ggctcttcac ctgggcgcca
actgctgatc aatgaaatgc 2580ttgttgaatc aggggcaaac ggagtacaga cgtctcaaga
ctgaaacggc cccattgcct 2640ggtctagtag cggatctcac tcagccgcag acaagtaatc
actaacccgt tttattctat 2700tcctatctgt ggatgtgtaa atggctgggg ggccagccct
ggataggttt ttatgggaat 2760tctttacaat aaacatagct tgtaacttga gatctacaaa
tccattcatc ctgattgggc 2820atgaaatcca tggtcaagag gacaagtgga aagtgagagg
gaaggtttgc tagacacctt 2880cgcttgttat cttgtcaaga tagaaaagat agtatcattt
cacccttgcc agtaaaaacc 2940tttccatcca cccattctca gcagactcca gtattggcac
agtcactcac tgccattctc 3000acactataac aagaaaagaa atgaagtgca taagtctcct
gggaaaagaa ccttaacccc 3060ttctcgtgcc atgactggtg atttcatgac tcataagccc
ctccgtaggc atcattcaag 3120atcaatggcc catgcatgct gtttgcagca gtcaattgag
ttgaattaga attccaacca 3180tacattttaa aggtatttgt gctgtgtgta tattttgata
aaatgttgtg acttcatggc 3240aaacaggtgg atgtgtaaaa atggaataaa aaaaaaaaaa
gagtcaaaaa aaaaa 329510706PRTHomo sapiens 10Met Ser Pro Phe Leu
Arg Ile Gly Leu Ser Asn Phe Asp Cys Gly Ser1 5
10 15Cys Gln Ser Cys Gln Gly Glu Ala Val Asn Pro
Tyr Cys Ala Val Leu 20 25
30Val Lys Glu Tyr Val Glu Ser Glu Asn Gly Gln Met Tyr Ile Gln Lys
35 40 45Lys Pro Thr Met Tyr Pro Pro Trp
Asp Ser Thr Phe Asp Ala His Ile 50 55
60Asn Lys Gly Arg Val Met Gln Ile Ile Val Lys Gly Lys Asn Val Asp65
70 75 80Leu Ile Ser Glu Thr
Thr Val Glu Leu Tyr Ser Leu Ala Glu Arg Cys 85
90 95Arg Lys Asn Asn Gly Lys Thr Glu Ile Trp Leu
Glu Leu Lys Pro Gln 100 105
110Gly Arg Met Leu Met Asn Ala Arg Tyr Phe Leu Glu Met Ser Asp Thr
115 120 125Lys Asp Met Asn Glu Phe Glu
Thr Glu Gly Phe Phe Ala Leu His Gln 130 135
140Arg Arg Gly Ala Ile Lys Gln Ala Lys Val His His Val Lys Cys
His145 150 155 160Glu Phe
Thr Ala Thr Phe Phe Pro Gln Pro Thr Phe Cys Ser Val Cys
165 170 175His Glu Phe Val Trp Gly Leu
Asn Lys Gln Gly Tyr Gln Cys Arg Gln 180 185
190Cys Asn Ala Ala Ile His Lys Lys Cys Ile Asp Lys Val Ile
Ala Lys 195 200 205Cys Thr Gly Ser
Ala Ile Asn Ser Arg Glu Thr Met Phe His Lys Glu 210
215 220Arg Phe Lys Ile Asp Met Pro His Arg Phe Lys Val
Tyr Asn Tyr Lys225 230 235
240Ser Pro Thr Phe Cys Glu His Cys Gly Thr Leu Leu Trp Gly Leu Ala
245 250 255Arg Gln Gly Leu Lys
Cys Asp Ala Cys Gly Met Asn Val His His Arg 260
265 270Cys Gln Thr Lys Val Ala Asn Leu Cys Gly Ile Asn
Gln Lys Leu Met 275 280 285Ala Glu
Ala Leu Ala Met Ile Glu Ser Thr Gln Gln Ala Arg Cys Leu 290
295 300Arg Asp Thr Glu Gln Ile Phe Arg Glu Gly Pro
Val Glu Ile Gly Leu305 310 315
320Pro Cys Ser Ile Lys Asn Glu Ala Arg Pro Pro Cys Leu Pro Thr Pro
325 330 335Gly Lys Arg Glu
Pro Gln Gly Ile Ser Trp Glu Ser Pro Leu Asp Glu 340
345 350Val Asp Lys Met Cys His Leu Pro Glu Pro Glu
Leu Asn Lys Glu Arg 355 360 365Pro
Ser Leu Gln Ile Lys Leu Lys Ile Glu Asp Phe Ile Leu His Lys 370
375 380Met Leu Gly Lys Gly Ser Phe Gly Lys Val
Phe Leu Ala Glu Phe Lys385 390 395
400Lys Thr Asn Gln Phe Phe Ala Ile Lys Ala Leu Lys Lys Asp Val
Val 405 410 415Leu Met Asp
Asp Asp Val Glu Cys Thr Met Val Glu Lys Arg Val Leu 420
425 430Ser Leu Ala Trp Glu His Pro Phe Leu Thr
His Met Phe Cys Thr Phe 435 440
445Gln Thr Lys Glu Asn Leu Phe Phe Val Met Glu Tyr Leu Asn Gly Gly 450
455 460Asp Leu Met Tyr His Ile Gln Ser
Cys His Lys Phe Asp Leu Ser Arg465 470
475 480Ala Thr Phe Tyr Ala Ala Glu Ile Ile Leu Gly Leu
Gln Phe Leu His 485 490
495Ser Lys Gly Ile Val Tyr Arg Asp Leu Lys Leu Asp Asn Ile Leu Leu
500 505 510Asp Lys Asp Gly His Ile
Lys Ile Ala Asp Phe Gly Met Cys Lys Glu 515 520
525Asn Met Leu Gly Asp Ala Lys Thr Asn Thr Phe Cys Gly Thr
Pro Asp 530 535 540Tyr Ile Ala Pro Glu
Ile Leu Leu Gly Gln Lys Tyr Asn His Ser Val545 550
555 560Asp Trp Trp Ser Phe Gly Val Leu Leu Tyr
Glu Met Leu Ile Gly Gln 565 570
575Ser Pro Phe His Gly Gln Asp Glu Glu Glu Leu Phe His Ser Ile Arg
580 585 590Met Asp Asn Pro Phe
Tyr Pro Arg Trp Leu Glu Lys Glu Ala Lys Asp 595
600 605Leu Leu Val Lys Leu Phe Val Arg Glu Pro Glu Lys
Arg Leu Gly Val 610 615 620Arg Gly Asp
Ile Arg Gln His Pro Leu Phe Arg Glu Ile Asn Trp Glu625
630 635 640Glu Leu Glu Arg Lys Glu Ile
Asp Pro Pro Phe Arg Pro Lys Val Lys 645
650 655Ser Pro Phe Asp Cys Ser Asn Phe Asp Lys Glu Phe
Leu Asn Glu Lys 660 665 670Pro
Arg Leu Ser Phe Ala Asp Arg Ala Leu Ile Asn Ser Met Asp Gln 675
680 685Asn Met Phe Arg Asn Phe Ser Phe Met
Asn Pro Gly Met Glu Arg Leu 690 695
700Ile Ser705113313DNAMus musculus 11cttgggtcgc caggcccgcg ccagtccccg
ccatccgagc aacagcggcg ctgctctggg 60accgcggccg cgacaccagg gaacaaccat
gtcaccgttt cttcgaatcg gtttatccaa 120ctttgactgt gggacctgcc aagcttgtca
gggagaggca gtgaacccct actgcgctgt 180gcttgtcaaa gagtatgtgg aatcagaaaa
tgggcagatg tacatccaga aaaagccaac 240catgtaccca ccttgggaca gcacctttga
cgcccacatt aacaagggaa gggtgatgca 300gatcatcgtg aagggcaaga atgtagacct
catctcagaa acaaccgtgg aactctactc 360cctggcggag agatgccgca agaacaatgg
gcggacagaa atatggttag agctgaaacc 420tcaaggccga atgctaatga atgcaagata
ctttctggaa atgagtgaca caaaggacat 480gagtgagttt gagaatgaag gattctttgc
actgcatcag cgccgaggag ccatcaaaca 540ggccaaagtc caccatgtca agtgtcacga
gttcacggcc acctttttcc ctcaacccac 600attttgctct gtctgccatg aatttgtctg
gggcctgaac aagcagggtt accagtgccg 660acagtgtaat gcagcgattc acaagaagtg
cattgataaa gtgatagcca agtgcacagg 720atccgcaatc aatagccgag aaaccatgtt
ccataaggag agattcaaga tcgacatgcc 780acacagattc aaagtctaca actacaagag
tccaaccttc tgtgagcact gtggtaccct 840gctctggggg ctggcgaggc aaggactcaa
atgtgatgca tgtggcatga acgtccacca 900ccgatgccag acaaaggttg ccaatctttg
tggtataaac cagaagctaa tggctgaagc 960actagcgatg attgaaagca cccaacaggc
tcgctcctta cgagattcag aacacatctt 1020ccgagaaggc ccagttgaaa ttggtctccc
atgctccacc aaaaacgaaa ccaggccacc 1080atgcgtacca acacctggga aaagagaacc
ccagggcatt tcctgggatt cccctttgga 1140tgggtcaaat aaatcggccg gtcctcctga
acccgaagtg agcatgcgca ggacttcact 1200gcagctgaaa ctgaagatcg atgacttcat
cctgcacaag atgttgggaa aaggaagttt 1260tggcaaggtc ttcctggcag agttcaagag
aaccaatcag tttttcgcaa taaaagcctt 1320aaagaaagat gtggtgttga tggatgatga
cgtcgagtgt acaatggtgg aaaagagggt 1380tctgtccttg gcatgggagc atccatttct
aacacacatg ttctgcacat tccagaccaa 1440ggaaaatctc tttttcgtga tggagtatct
caatggaggc gacttaatgt accacatcca 1500aagttgccac aaatttgatc tttccagagc
cacgttttat gctgctgagg tcatccttgg 1560tctgcagttc cttcattcca aaggaattgt
ctacagggac ctgaagcttg ataatatcct 1620gttagacaga gatggacata tcaaaatagc
agactttggg atgtgcaaag agaacatgct 1680aggagatgcg aagacaaata ctttctgtgg
aactcctgac tacattgctc cggagatctt 1740gctgggtcag aagtacaacc attccgtcga
ctggtggtcc ttcggggtgc tcgtttatga 1800gatgctgatt ggccagtccc ccttccacgg
gcaggacgag gaggagctgt tccactccat 1860ccgcatggac aaccccttct acccgaggtg
gctcgaaagg gaggccaagg accttctagt 1920gaagcttttt gtgagagaac ctgagaagag
gctgggagtg agaggagaca tccgccagca 1980tcctttgttt cgagagatca actgggaaga
gcttgaaagg aaagagattg acccaccctt 2040cagaccaaaa gtgaaatcac catatgactg
tagcaatttc gacaaggaat tcctaagtga 2100gaaaccccgg ctatcattcg ccgacagagc
actcatcaac agcatggacc agaacatgtt 2160cagcaacttt tccttcatta acccagggat
ggagactctc atttgctcct gaacctcatc 2220tgtctccaga ctggaaggga tttgccttct
ctctgggaac tggttcaagt aacacttctg 2280ggggtggggg tctctttttc acgttagaga
agaaaagaaa cactgcaaag gcagggagga 2340ctgctgagct ccttgtgtga cttgttacct
acagcacaaa ccacgcctac ttcactaatg 2400acatcatccc taatgacatc atcccgttat
atctcctgga atctctcaca gcagcccttg 2460aagttagatc attattaact ctagtcattt
acttgaaaga tggttcccga tgctgtgaaa 2520gattcgaaat gcagttctgc tcttgcccta
gacaacagct gctggttggt gatgaaccaa 2580ggcgcaagtg gaacagattt ctcaagactg
gagcagtgat cgcctgttat agaagtcaat 2640tccactcaac cacagagaag gaaccactaa
gccacgttga tgtgtgcatg tctgtggaaa 2700tgtcgatgac agaagggagg gaaaggggaa
gctctgagca gattgtaatg ggaagctctc 2760caataaacat agcatgaaac ttgaaattta
caaatctgtt cattctggct agccccaaaa 2820ttcccaaggc agaggaaagt aaagggcagt
gagcttagca gagccctttg tcgccaacag 2880ggaagggtaa ggatgtcgcc tacgtggaac
atcttataca cacagaagga aagtataacc 2940aacaagggca gggtggttta cagctgccaa
tcaaacctgc cctcccccct ctgttctcag 3000ttgatctctc tgtcagcgta ggtaggcact
cattaccatc ctcccatcat acaagaaata 3060aaatgcatga ctcttctaag ataaagaaaa
ccaatccctt atcacgttgt tcccagtgat 3120ttgatggcaa ataagtccct ccttaggcat
cctgcaagac aacccaaccc atgcatgcta 3180tttgcagtag tcagtcctgt tgagttagag
tcctaactat acacaatatc gtgcgatgtt 3240tatatatgtt gatgagatgt tgtgatgata
acgtggatat gtaaaaggga ataaaagaag 3300aaagaaagat gcc
331312707PRTMus musculus 12Met Ser Pro
Phe Leu Arg Ile Gly Leu Ser Asn Phe Asp Cys Gly Thr1 5
10 15Cys Gln Ala Cys Gln Gly Glu Ala Val
Asn Pro Tyr Cys Ala Val Leu 20 25
30Val Lys Glu Tyr Val Glu Ser Glu Asn Gly Gln Met Tyr Ile Gln Lys
35 40 45Lys Pro Thr Met Tyr Pro Pro
Trp Asp Ser Thr Phe Asp Ala His Ile 50 55
60Asn Lys Gly Arg Val Met Gln Ile Ile Val Lys Gly Lys Asn Val Asp65
70 75 80Leu Ile Ser Glu
Thr Thr Val Glu Leu Tyr Ser Leu Ala Glu Arg Cys 85
90 95Arg Lys Asn Asn Gly Arg Thr Glu Ile Trp
Leu Glu Leu Lys Pro Gln 100 105
110Gly Arg Met Leu Met Asn Ala Arg Tyr Phe Leu Glu Met Ser Asp Thr
115 120 125Lys Asp Met Ser Glu Phe Glu
Asn Glu Gly Phe Phe Ala Leu His Gln 130 135
140Arg Arg Gly Ala Ile Lys Gln Ala Lys Val His His Val Lys Cys
His145 150 155 160Glu Phe
Thr Ala Thr Phe Phe Pro Gln Pro Thr Phe Cys Ser Val Cys
165 170 175His Glu Phe Val Trp Gly Leu
Asn Lys Gln Gly Tyr Gln Cys Arg Gln 180 185
190Cys Asn Ala Ala Ile His Lys Lys Cys Ile Asp Lys Val Ile
Ala Lys 195 200 205Cys Thr Gly Ser
Ala Ile Asn Ser Arg Glu Thr Met Phe His Lys Glu 210
215 220Arg Phe Lys Ile Asp Met Pro His Arg Phe Lys Val
Tyr Asn Tyr Lys225 230 235
240Ser Pro Thr Phe Cys Glu His Cys Gly Thr Leu Leu Trp Gly Leu Ala
245 250 255Arg Gln Gly Leu Lys
Cys Asp Ala Cys Gly Met Asn Val His His Arg 260
265 270Cys Gln Thr Lys Val Ala Asn Leu Cys Gly Ile Asn
Gln Lys Leu Met 275 280 285Ala Glu
Ala Leu Ala Met Ile Glu Ser Thr Gln Gln Ala Arg Ser Leu 290
295 300Arg Asp Ser Glu His Ile Phe Arg Glu Gly Pro
Val Glu Ile Gly Leu305 310 315
320Pro Cys Ser Thr Lys Asn Glu Thr Arg Pro Pro Cys Val Pro Thr Pro
325 330 335Gly Lys Arg Glu
Pro Gln Gly Ile Ser Trp Asp Ser Pro Leu Asp Gly 340
345 350Ser Asn Lys Ser Ala Gly Pro Pro Glu Pro Glu
Val Ser Met Arg Arg 355 360 365Thr
Ser Leu Gln Leu Lys Leu Lys Ile Asp Asp Phe Ile Leu His Lys 370
375 380Met Leu Gly Lys Gly Ser Phe Gly Lys Val
Phe Leu Ala Glu Phe Lys385 390 395
400Arg Thr Asn Gln Phe Phe Ala Ile Lys Ala Leu Lys Lys Asp Val
Val 405 410 415Leu Met Asp
Asp Asp Val Glu Cys Thr Met Val Glu Lys Arg Val Leu 420
425 430Ser Leu Ala Trp Glu His Pro Phe Leu Thr
His Met Phe Cys Thr Phe 435 440
445Gln Thr Lys Glu Asn Leu Phe Phe Val Met Glu Tyr Leu Asn Gly Gly 450
455 460Asp Leu Met Tyr His Ile Gln Ser
Cys His Lys Phe Asp Leu Ser Arg465 470
475 480Ala Thr Phe Tyr Ala Ala Glu Val Ile Leu Gly Leu
Gln Phe Leu His 485 490
495Ser Lys Gly Ile Val Tyr Arg Asp Leu Lys Leu Asp Asn Ile Leu Leu
500 505 510Asp Arg Asp Gly His Ile
Lys Ile Ala Asp Phe Gly Met Cys Lys Glu 515 520
525Asn Met Leu Gly Asp Ala Lys Thr Asn Thr Phe Cys Gly Thr
Pro Asp 530 535 540Tyr Ile Ala Pro Glu
Ile Leu Leu Gly Gln Lys Tyr Asn His Ser Val545 550
555 560Asp Trp Trp Ser Phe Gly Val Leu Val Tyr
Glu Met Leu Ile Gly Gln 565 570
575Ser Pro Phe His Gly Gln Asp Glu Glu Glu Leu Phe His Ser Ile Arg
580 585 590Met Asp Asn Pro Phe
Tyr Pro Arg Trp Leu Glu Arg Glu Ala Lys Asp 595
600 605Leu Leu Val Lys Leu Phe Val Arg Glu Pro Glu Lys
Arg Leu Gly Val 610 615 620Arg Gly Asp
Ile Arg Gln His Pro Leu Phe Arg Glu Ile Asn Trp Glu625
630 635 640Glu Leu Glu Arg Lys Glu Ile
Asp Pro Pro Phe Arg Pro Lys Val Lys 645
650 655Ser Pro Tyr Asp Cys Ser Asn Phe Asp Lys Glu Phe
Leu Ser Glu Lys 660 665 670Pro
Arg Leu Ser Phe Ala Asp Arg Ala Leu Ile Asn Ser Met Asp Gln 675
680 685Asn Met Phe Ser Asn Phe Ser Phe Ile
Asn Pro Gly Met Glu Thr Leu 690 695
700Ile Cys Ser7051319RNAArtificial Sequencesynthetic oligonucleotide
13ccagagagag gaagccgaa
191419RNAArtificial Sequencesynthetic oligonucleotide 14aggaagagau
ggcucguca
191519RNAArtificial Sequencesynthetic oligonucleotide 15gucuugaccu
ugaacggaa
191619RNAArtificial Sequencesynthetic oligonucleotide 16aagcaggagu
caaacgagu
191713PRTArtificial Sequencesynthetic oligopeptide 17Ile Gly Val Ser Arg
Gly Ser Gly Gly Ala Glu Gly Lys1 5 10
User Contributions:
Comment about this patent or add new information about this topic: