Patent application title: METHODS OF MAKING AND USING GUIDANCE AND NAVIGATION CONTROL PROTEINS
Inventors:
Yi Zhu (Chengdu, CN)
Ole Olsen (Everett, WA, US)
Ole Olsen (Everett, WA, US)
Jahan Khalili (Everett, WA, US)
Dong Xia (Redmond, WA, US)
David Jellyman (Duvall, WA, US)
Katrina Bykova (Seattle, WA, US)
Anne-Marie Rousseau (Seattle, WA, US)
Camilla Wang (Sammamish, WA, US)
Zeren Gao (Redmond, WA, US)
Hui Huang (Redmond, WA, US)
Steven K. Lundy (Woodinville, WA, US)
IPC8 Class: AA61K3517FI
USPC Class:
1 1
Class name:
Publication date: 2021-01-14
Patent application number: 20210008113
Abstract:
The application provides methods for generating a therapeutic
composition. The method includes the steps of providing a cell material
comprising a cytotoxic cell, incubating the cell material with a first
GNC protein to provide an activated cell composition, wherein the
activated cell composition comprises a first therapeutic cell, and
formulating the activated cell composition to provide a therapeutic
composition, wherein the therapeutic composition is substantially free of
exogenous viral and non-viral DNA or RNA. The first GNC protein comprises
a first cytotoxic binding moiety and a first cancer targeting moiety,
wherein the first cytotoxic binding moiety has a specificity to a first
cytotoxic cell receptor and is configured to activate the first cytotoxic
cell, and wherein the first cancer targeting moiety has a specificity to
a first cancer cell receptor. The first therapeutic cell comprises the
first GNC protein bound to the cytotoxic cell through the first cytotoxic
cell receptor.Claims:
1. A method for generating a therapeutic composition, comprising
providing a cell material comprising a cytotoxic cell, incubating the
cell material with a first GNC protein to provide an activated cell
composition, wherein the activated cell composition comprises a first
therapeutic cell, wherein the first GNC protein comprising a first
cytotoxic binding moiety and a first cancer targeting moiety, wherein the
first cytotoxic binding moiety has a specificity to a first cytotoxic
cell receptor and is configured to activate the first cytotoxic cell
through the binding with the first cytotoxic cell receptor, and wherein
the first cancer targeting moiety has a specificity to a first cancer
cell receptor, and wherein the first therapeutic cell comprises the first
GNC protein bound to the cytotoxic cell through the binding interaction
with the first cytotoxic cell receptor, and formulating the activated
cell composition to provide a therapeutic composition, wherein the
therapeutic composition is substantially free of exogenous viral and
non-viral DNA or RNA.
2. The method of claim 1, wherein the incubating step is repeated by incubating a second GNC protein with the activated cell composition, wherein the second GNC protein comprising a second cytotoxic binding moiety and a second cancer targeting moiety, wherein the second cytotoxic binding moiety has a specificity to a second cytotoxic cell receptor, and wherein the second cancer targeting moiety has a specificity to a second cancer cell receptor, wherein the activated cell composition further comprises a second therapeutic cell, and wherein the second therapeutic cell comprises the second GNC protein bound to the cytotoxic cell or the first therapeutic cell through the binding interaction with the second cytotoxic cell receptor.
3. The method of claim 2, wherein the second GNC protein is the same as the first GNC protein.
4. The method of claim 2, wherein the second GNC protein is different from the first GNC protein.
5. The method of claim 1, wherein the first or the second cancer targeting moiety has the specificity against B cell, and wherein the therapeutic composition is substantially free of B cell.
6. The method of claim 1, wherein the cytotoxic cell receptor comprises a T-cell receptor, a NK cell receptor, a macrophage receptor, a dendritic cell receptor, or a combination thereof.
7. The method of claim 1, wherein the molar to cell ratio between the first GNC protein and the cytotoxic cell is at least 30 to 1 when incubating the cell material with the first GNC protein.
8. The method of claim 1, wherein the therapeutic composition comprises at least 10.sup.6 cells per ml.
9. The method of claim 1, wherein the therapeutic composition comprises the first therapeutic cell, the first GNC protein, the cytotoxic cell, or a combination thereof.
10. The method of claim 2, wherein the therapeutic composition comprises the second therapeutic cell, the second GNC protein, comprises the first therapeutic cell, the first GNC protein, the cytotoxic cell, or a combination thereof.
11. The method of claim 1, wherein the cell material comprises PBMC.
12. The method of claim 1, wherein the first and the second cancer-targeting moiety independently has a specificity for CD19, PDL1, or a combination thereof.
13. The method of claim 1, wherein the first and the second cytotoxic binding moiety independently has a specificity for CD3, PDL1, 41BB, or a combination thereof.
14. A method of treating a subject having a cancer, comprising providing a cell material comprising a cytotoxic cell, incubating the cell material with a first GNC protein to provide an activated cell composition, wherein the activated cell composition comprises a first therapeutic cell, wherein the first GNC protein comprising a first cytotoxic binding moiety and a first cancer targeting moiety, wherein the first cytotoxic binding moiety has a specificity to a first cytotoxic cell receptor and is configured to activate the first cytotoxic cell through the binding with the first cytotoxic cell receptor, and wherein the first cancer targeting moiety has a specificity to a first cancer cell receptor, and wherein the first therapeutic cell comprises the first GNC protein bound to the cytotoxic cell through the binding interaction with the first cytotoxic cell receptor, and formulating the activated cell composition to provide a therapeutic composition, wherein the therapeutic composition is substantially free of exogenous viral and non-viral DNA or RNA, and administering the therapeutic composition to the subject.
15. The method of claim 14, wherein the incubating step is repeated by incubating a second GNC protein with the activated cell composition, wherein the second GNC protein comprising a second cytotoxic binding moiety and a second cancer targeting moiety, wherein the second cytotoxic binding moiety has a specificity to a second cytotoxic cell receptor, and wherein the second cancer targeting moiety has a specificity to a second cancer cell receptor, wherein the activated cell composition further comprises a second therapeutic cell, and wherein the second therapeutic cell comprises the second GNC protein bound to the cytotoxic cell or the first therapeutic cell through the binding interaction with the second cytotoxic cell receptor.
16. The method of claim 14, wherein the second GNC protein is the same as the first GNC protein.
17. The method of claim 14, wherein the second GNC protein is different from the first GNC protein.
18. The method of claim 14, wherein the first or the second cancer targeting moiety has the specificity against B cell, and wherein the therapeutic composition is substantially free of B cell.
19. The method of claim 14, further comprising isolating the cytotoxic cell from peripheral blood mononuclear cells (PBMC) before providing the cell material.
20. The method of claim 19, further comprising isolating the peripheral blood mononuclear cells (PBMC) from a blood.
21-22. (canceled)
23. The method of claim 14, further comprising administering an additional GNC protein to the subject after the administering the therapeutic composition to the subject.
24. The method of claim 14, wherein the cytotoxic cell comprises T cell, NK cell, or a combination thereof.
25. The method of claim 19, wherein the isolating the cytotoxic cell comprising isolating at least one subpopulation of cytotoxic cell to provide therapeutic T cells, wherein the subpopulation of cytotoxic cell comprises CD3+ cells, CD4+ cells, CD8+ cells, CD56+ cells, CD28+ cells, CD69+ cells, CD107a+ cells, CD45RA+ cells, CD45RO+ cells, .gamma..delta. TCR+ cells, .alpha..beta. TCR+ cells, CD25+ cells, CD127.sup.lo/- cells, CCR7+ cells, PD-1+ cells or a combination thereof.
26. (canceled)
27. The method of claim 14, further comprising evaluating therapeutic efficacy after the administering step, wherein the evaluating therapeutic efficacy comprises checking one or more biomarkers of the cancer, monitoring the life span of the therapeutic cells, or a combination thereof.
28-29. (canceled)
30. The method of claim 14, wherein the subject is a human.
31. The method of claim 14, wherein the cancer comprises cells expressing ROR1, CEA, HER2, EGFR, EGFR VIII, LMP1, LMP2A, Mesothelin, PSMA, EpCAM, glypican-3, gpA33, GD2, TROP2, BCMA, CD19, CD20, CD33, CD123, CD22, CD30, or a combination thereof.
32. (canceled)
33. The method of claim 14, wherein the cancer is CD19 positive.
34. The method of claim 14, further comprising administering an effective amount of a therapeutic agent after the administering the therapeutic composition to the subject.
35. The method of claim 34, wherein the therapeutic agent comprises a monoclonal antibody, a multi-specific antibody, a chemotherapy agent, an enzyme, a protein, a co-stimulator, an apoptosis sensitizer, a tumor vascular disruptor, or a combination thereof, wherein the co-stimulator is configured to increase the amount of cytotoxic T cells in the subject.
36-39. (canceled)
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of filing date of U.S. Provisional Patent Application No. 62/648,888 filed Mar. 27, 2018, and U.S. Provisional Patent Application No. 62/648,880 filed Mar. 27, 2018, the entire disclosures of which are expressly incorporated by reference herein.
TECHNICAL FIELD
[0002] The present application generally relates to the technical field of Guidance and Navigation Control (GNC) proteins with multi-specific binding activities against surface molecules on both immune cells and tumor cells, and more particularly relates to making and using GNC proteins.
BACKGROUND
[0003] Cancer cells develop various strategies to evade the immune system. One of the underlying mechanisms for the immune escape is the reduced recognition of cancer cells by the immune system. Defective presentation of cancer specific antigens or lack of thereof results in immune tolerance and cancer progression. In the presence of effective immune recognition tumors use other mechanisms to avoid elimination by the immune system. Immunocompetent tumors create suppressive microenvironments to downregulate the immune response. Multiple players are involved in shaping the suppressive tumor microenvironment, including tumor cells, regulatory T cells, Myeloid-Derived Suppressor cells, stromal cells, and other cell types. The suppression of immune response can be executed in a cell contact-dependent format as well as in a contact-independent manner, via secretion of immunosuppressive cytokines or elimination of essential survival factors from the local environment. Cell contact-dependent suppression relies on molecules expressed on the cell surface, e.g. Programmed Death Ligand 1 (PD-L1), T-lymphocyte-associated protein 4 (CTLA-4) and others (Dunn, Old et al. 2004, Adachi and Tamada 2015).
[0004] As the mechanisms by which tumors evade recognition by the immune system continue to be better understood, new treatment modalities that target these mechanisms have recently emerged. On Mar. 25, 2011, the U. S. Food and Drug Administration (FDA) approved ipilimumab injection (Yervoy, Bristol-Myers Squibb) for the treatment of unresectable or metastatic melanoma. Yervoy binds to cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expressed on activated T cells and blocks the interaction of CTLA-4 with CD80/86 on antigen-presenting cells thereby blocking the negative or inhibitory signal delivered into the T cell through CTLA-4 resulting in re-activation of the antigen-specific T cell leading to, in many patients, eradication of the tumor. A few years later in 2014 the FDA approved Keytruda (Pembrolizumab, Merck) and Opdivo (Nivolumab, Bristol-Myers Squibb) for treatment of advanced melanoma. These monoclonal antibodies bind to PD-1 which is expressed on activated and/or exhausted T cells and block the interaction of PD-1 with PD-L1 expressed on tumors thereby eliminating the inhibitory signal through PD-1 into the T cell resulting in re-activation of the antigen-specific T cell leading to again, in many patients, eradication of the tumor. Since then additional clinical trials have been performed comparing the single monoclonal antibody Yervoy to the combination of the monoclonal antibodies Yervoy and Opdivo in the treatment of advanced melanoma which showed improvement in overall survival and progression-free survival in the patients treated with the combination of antibodies. (Hodi, Chesney et al. 2016, Hellmann, Callahan et al. 2018). However, as many clinical trials have shown a great benefit of treating cancer patients with monoclonal antibodies that are specific for one or more immune checkpoint molecules data has emerged that only those patients with a high mutational burden that generates a novel T cell epitope(s) which is recognized by antigen-specific T cells show a clinical response (Snyder, Makarov et al. 2014). Those patients that have a low tumor mutational load mostly do not show an objective clinical response (Snyder, Makarov et al. 2014, Hellmann, Callahan et al. 2018).
[0005] In recent years other groups have developed an alternate approach that does not require the presence of neoepitope presentation by antigen-presenting cells to activate T cells. One example is the development of a bi-specific antibody where the binding domain of an antibody which is specific for a tumor associated antigen, e.g., CD19, is linked to an antibody binding domain specific for CD3 on T cells thus creating a bi-specific T cell engager or BiTe molecule. In 2014, the FDA approved a bi-specific antibody called Blinatumumab for the treatment of Precursor B-Cell Acute Lymphoblastic Leukemia. Blinatumumab links the single-chain variable fragment (scFv) specific for CD19 expressed on leukemic cells with the scFv specific for CD3 expressed on T cells (Benjamin and Stein 2016). However, despite an initial response rate of >50% in patients with relapsed or refractory ALL many patients are resistant to Blinatumumab therapy or relapse after successful treatment with Blinatumumab. Evidence is emerging that the resistance to Blinatumumab or relapse after Blinatumumab treatment is attributable to the expression of immune checkpoint inhibitory molecules expressed on tumor cells, such as PD-L1 that drives an inhibitory signal through PD-1 expressed on activated T cells (Feucht, Kayser et al. 2016). In a case study of a patient who was resistant to therapy with Blinatumumab, a second round of Blinatumumab therapy was performed but with the addition of a monoclonal antibody, pembrolizumab (Keytruda, Merck). Pembrolizumab specifically binds to PD-1 and blocks the interaction of T cell-expressed PD-1 with tumor cell expressed PD-L1, which resulted in a dramatic response and reduction of tumor cells in the bone marrow from 45% to less than 5% in this one patient (Feucht, Kayser et al. 2016). These results show that combining a bi-specific BiTe molecule with one or more monoclonal antibodies can significantly increase clinical activity compared to either agent alone. Despite the promising outcome, the cost leading to the combined therapy must be high due to multiple clinical trials and the difficulty in recruiting representative populations.
[0006] Adoptive cell therapy with chimeric antigen receptor T cells (CAR-T) is another promising immunotherapy for treating cancer. The clinical success of CAR-T therapy has revealed durable complete remissions and prolonged survival of patients with CD19-positive treatment-refractory B cell malignancies (Gill and June 2015). However, the cost and complexity associated with the manufacture of a personalized and genetically modified CAR-T immunotherapy has restricted their production and use to specialized centers for treating relatively small numbers of patients. Cytokine release syndrome (CRS), also known as cytokine storm, is considered as the major adverse effect after the infusion of engineered CAR-T cells (Bonifant, Jackson et al. 2016). In many cases, the onset and severity of CRS seems to be personally specific to the patient. Current options of mitigating CRS are mainly focused on rapid response and management care because the option of controlling CRS prior to T cell infusion is limited.
[0007] While the efficacy of CAR-T therapy specific for a CD19-positive B cell malignancy is now clearly established, the efficacy of CAR-T therapy against solid tumors has not been unequivocally demonstrated to date. Currently, many clinical trials are in progress to explore a variety of solid tumor-associated antigens (TAA) for CAR-T therapy. Inefficient T cell trafficking into the tumors, an immunosuppressive tumor micro-environment, suboptimal antigen recognition specificity, and lack of control over treatment-related adverse events are currently considered as the main obstacles in solid tumor CAR-T therapy (Li, Li et al. 2018). The option of managing the therapeutic effect, as well as any adverse effect before and after the CAR-T cell infusion, is limited.
SUMMARY
[0008] The application provides, among others, methods for generating therapeutic compositions containing a guidance and navigation (GNC) proteins, methods for treating cancer conditions using a guidance and navigation control (GNC) proteins, and therapeutic compositions containing GNC proteins or therapeutic cells having cytotoxic cells coated (or bound) with GNC proteins.
[0009] In one aspect, the application provides therapeutic compositions. In one embodiment, the therapeutic composition comprises a cytotoxic cell, a GNC protein, and a therapeutic cell. The therapeutic cell comprises the GNC protein bound to the cytotoxic cell through the binding interaction with the cytotoxic cell receptor, and the therapeutic cell composition is substantially free exogenous of viral and non-viral DNA and RNA.
[0010] In one embodiment, the therapeutic composition may further comprise a second GNC protein, a second therapeutic cell, or a combination thereof, wherein the second therapeutic cell comprises the cytotoxic cells with the second GNC protein bound thereupon or with both the first and the second GNC proteins bound thereupon.
[0011] GNC protein includes a cytotoxic binding moiety and a cancer targeting moiety. The cytotoxic binding moiety has a binding specificity to a cytotoxic cell receptor and is configured to activate the cytotoxic cell through the binding with the cytotoxic cell receptor. The cancer targeting moiety has a binding specificity to a cancer cell receptor.
[0012] In one embodiment, the GNC protein includes a binding domain for T-cell receptors. Examples T-cell receptor include without limitation CD3, CD28, PDL1, PD1, OX40, 4-1BB, GITR, TIGIT, TIM-3, LAG-3, CTLA4, CD40L, VISTA, ICOS, BTLA, Light, CD30, NKp30, CD28H, CD27, CD226, CD96, CD112R, A2AR, CD160, CD244, CECAM1, CD200R, TNFRSF25 (DR3), or a combination thereof. In one embodiment, the GNC protein is capable of activating a T-cell by binding the T-cell binding moiety to a T-cell receptor on the T-cell. In one embodiment, the GNC protein is capable of activating a T-cell by binding multiple T-cell binding moieties on the T-cell.
[0013] In one embodiment, the GNC protein includes a binding domain for a NK cell receptor. Examples NK cell receptor include, without limitation, receptors for activation of NK cell such as CD16, NKG2D, KIR2DS1, KIR2DS2, KIR2DS4, KIR3DS1, NKG2C, NKG2E, NKG2H; agonist receptors such as NKp30a, NKp30b, NKp46, NKp80, DNAM-1, CD96, CD160, 4-1BB, GITR, CD27, OX-40, CRTAM; and antagonist receptors such as KIR2DL1, KIR2DL2, KIR2DL3, KIR3DL1, KIR3DL2, KIR3DL3, NKG2A, NKp30c, TIGIT, SIGLEC7, SIGLEC9, LILR, LAIR-1, KLRG1, PD-1, CTLA-4, CD161.
[0014] In one embodiment, the GNC protein includes a binding domain for a macrophage receptor. Examples macrophage receptor include, without limitation, agonist receptor on macrophage such as TLR2, TLR4, CD16, CD64, CD40, CD80, CD86, TREM-1, TREM-2, ILT-1, ILT-6a, ILT-7, ILT-8, EMR2, Dectin-1, CD69; antagonist receptors such as CD32b, SIRPa, LAIR-1, VISTA, TIM-3, CD200R, CD300a, CD300f, SIGLEC1, SIGLEC3, SIGLEC5, SIGLEC7, SIGLEC9, ILT-2, ILT-3, ILT-4, ILT-5, LILRB3, LILRB4, DCIR; and other surface receptors such as CSF-1R, LOX-1, CCR2, FRP, CD163, CR3, DC-SIGN, CD206, SR-A, CD36, MARCO.
[0015] In one embodiment, the GNC protein includes a binding domain for a dendritic cell receptor. Examples dendritic cell receptor include, without limitation, agonist receptors on dendritic cell such as TLR, CD16, CD64, CD40, CD80, CD86, HVEM, CD70; antagonist receptors such as VISTA, TIM-3, LAG-3, BTLA; and other surface receptors such as CSF-1R, LOX-1, CCR7, DC-SIGN, GM-CSF-R, IL-4R, IL-10R, CD36, CD206, DCIR, RIG-1, CLEC9A, CXCR4.
[0016] In one embodiment, the GNC protein may include a T-cell binding moiety and a cancer-targeting moiety. In one embodiment, the T-cell binding moiety has a binding specificity to a T-cell receptor comprising CD3, CD28, PDL1, PDL2, PD1, OX40, 4-1BB, GITR, TIGIT, TIM-3, LAG-3, CTLA4, CD40L, VISTA, ICOS, BTLA, Light, CD30, CD27, or a combination thereof. In one embodiment, the cancer targeting moiety has a binding specificity to a cancer cell receptor. In one embodiment, the cancer cell receptor may include BCMA, CD19, CD20, CD33, CD123, CD22, CD30, ROR1, CEA, HER2, EGFR, EGFRvIII, LMP1, LMP2A, Mesothelin, PSMA, EpCAM, glypican-3, gpA33, GD2, TROP2, as yet to be discovered tumor associated antigens or a combination thereof.
[0017] In one embodiment, the GNC protein may have multi-specific antigen binding activities to the surface molecules of a T cell and a tumour cell. In one embodiment, the guidance and navigation control (GNC) protein comprises a binding domain for a T cell activating receptor, a binding domain for a tumor associated antigen, a bind domain for an immune checkpoint receptor, and a binding domain for a T cell co-stimulating receptor.
[0018] In one embodiment, the binding domain for the tumor associated antigen is not adjacent to the binding domain for the T cell co-stimulating receptor. In one embodiment, the binding domain for the T cell activating receptor is adjacent to the binding domain for the tumor associated antigen (TAA). The T cell activating receptor may include without limitation CD3. The T cell co-stimulating receptor may include without limitation 4-1BB, CD28, OX40, GITR, CD40L, ICOS, Light, CD27, CD30, or a combination thereof. The immune checkpoint receptor may include without limitation PD-L1, PD-1, TIGIT, TIM-3, LAG-3, CTLA4, BTLA, VISTA, PDL2, or a combination thereof.
[0019] The tumor associated antigen (TAA) may include without limitation ROR1, CD19, EGFRVIII, BCMA, CD20, CD33, CD123, CD22, CD30, CEA, HER2, EGFR, LMP1, LMP2A, Mesothelin, PSMA, EpCAM, glypican-3, gpA33, GD2, TROP2, or a combination thereof. In one embodiment, the tumor associated antigen may be ROR1. In one embodiment, the tumor associated antigen may be CD19. In one embodiment, the tumor associated antigen may be EGFRVIII.
[0020] In one embodiment, the guidance and navigation control (GNC) protein may be an antibody or an antibody monomer or a fragment thereof. In one embodiment, the GNC protein may be a tri-specific antibody. In one embodiment, the GNC protein may be a tetra-specific antibody. In one embodiment, the GNC protein includes Fc domain or a fragment thereof. Any Fc domain from an antibody may be used. Example Fc domains may include Fc domains from IgG, IgA, IgD, IgM, IgE, or a fragment or a combination thereof. Fc domain may be natural or engineered. In one embodiment, the Fc domain may contain an antigen binding site.
[0021] In one embodiment, the GNC protein comprises a bi-specific antibody, a tri-specific antibody, a tetra-specific antibody, or a combination thereof yielding up to eight binding motifs on the GNC protein. Examples of antibodies, antibody monomers, antigen-binding fragment thereof are disclosed herein. In one embodiment, GNC proteins may include an immunoglobulin G (IgG) moiety with two heavy chains and two light chains, and at least two scFv moieties being covalently connected to either C or N terminals of the heavy or light chains. The IgG moiety may provide stability to the scFv moiety, and a tri-specific GNC protein may have two moieties for binding the surface molecules on T cells.
[0022] In one embodiment, the guidance and navigation control (GNC) protein may be an antibody. In one embodiment, the tumor associated antigen comprises ROR1, CD19, or EGRFVIII. In on embodiment, the T cell activating receptor comprises CD3 and the binding domain for CD3 may be linked to the binding domain for the tumor associated (TAA) antigen through a linker to form a CD3-TAA pair. In one embodiment, the IgG Fc domain may intermediate the CD3-TAA pair and the binding domain for the immune checkpoint receptor. In one embodiment, the immune checkpoint receptor may be PD-L1.
[0023] The linker may be a covalent bond or a peptide linker. In one embodiment, the peptide linker may have from about 2 to about 100 amino acid residues.
[0024] In on embodiment, the guidance and navigation control (GNC) protein has a N-terminal and a C-terminal, comprising in tandem from the N-terminal to the C-terminal, the binding domain for CD3, the binding domain for EGFRVI, IgG Fc domain, the bind domain for PD-L1, and the binding domain for 41-BB. In one embodiment, the guidance and navigation control (GNC) protein has a N-terminal and a C-terminal, comprising in tandem from the N-terminal to the C-terminal, the binding domain for 4-1BB, the binding domain for PD-L1, IgG Fc domain, the bind domain for ROR1, and the binding domain for CD3. In one embodiment, the guidance and navigation control (GNC) protein has a N-terminal and a C-terminal, comprising in tandem from the N-terminal to the C-terminal, the binding domain for CD3, the binding domain for CD19, IgG Fc domain, the bind domain for PD-L1, and the binding domain for 4-1BB.
[0025] In one embodiment, the GNC protein comprises an amino acid having a percentage homology to SEQ ID NO. 50, 52, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, and 110. The percentage homology is not less than 70%. 80%, 90%, 95%, 98% or 99%.
[0026] In another aspect, the application provides nucleic acid sequences encoding the GNC protein or its fragments disclosed thereof. In one embodiment, the nucleic acid has a percentage homology to SEQ ID NO. 49, 51, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, and 109. The percentage homology is not less than 70%. 80%, 90%, 95%, 98% or 99%.
[0027] In another aspect, the application provides methods for generating a therapeutic composition. In one embodiment, the method may include the steps of providing a cell material comprising a cytotoxic cell, incubating the cell material with a first GNC protein to provide an activated cell composition, and formulating the activated cell composition to provide a therapeutic composition. The activated cell composition contains a first therapeutic cell. The first therapeutic cell comprises the first GNC protein bound to the cytotoxic cell through the binding interaction with the first cytotoxic cell receptor. The therapeutic composition is substantially free of exogenous viral and non-viral DNA or RNA.
[0028] In one embodiment, the cell material may include or be derived from PBMC.
[0029] The first GNC protein may include a first cytotoxic binding moiety and a first cancer targeting moiety. The first cytotoxic binding moiety has a specificity to a first cytotoxic cell receptor and is configured to activate the first cytotoxic cell through the binding with the first cytotoxic cell receptor. The first cancer targeting moiety has a specificity to a first cancer cell receptor.
[0030] In one embodiment, the method may repeat the incubating step by incubating a second GNC protein with the activated cell composition. The second GNC protein comprising a second cytotoxic binding moiety and a second cancer targeting moiety, the second cytotoxic binding moiety has a specificity to a second cytotoxic cell receptor, and the second cancer targeting moiety has a specificity to a second cancer cell receptor. The activated cell composition comprises a second therapeutic cell, and the second therapeutic cell comprises the second GNC protein bound to the cytotoxic cell or the first therapeutic cell through the binding interaction with the second cytotoxic cell receptor.
[0031] In one embodiment, the first and the second cancer-targeting moiety independently has a specificity for CD19, PDL1, or a combination thereof. In one embodiment, the first and the second cytotoxic binding moiety independently has a specificity for CD3, PDL1, 41BB, or a combination thereof.
[0032] The method may further include the repeated incubating steps by incubating additional GNC proteins with the activated composition. The additional GNC proteins may be a third GNC protein, a fourth GNC protein, etc. to provide addition therapeutic cells, each having the additional protein bound to the cytotoxic cell.
[0033] The first, second, and the additional GNC protein may be the same or may be different. The therapeutic cells may have one GNC protein, multiple same GNC proteins, or multiple different GNC proteins bound thereupon. In one embodiment, the therapeutic cell may have the first GNC protein bound thereupon. In one embodiment, the therapeutic cell may have both the first and the second GNC proteins bound thereupon. In one embodiment, the therapeutic cell may have the first, the second and the additional GNC proteins bound thereupon.
[0034] In one embodiment, the therapeutic cell comprises the cytotoxic cell having at least one bound GNC protein. In one embodiment, the therapeutic cell comprises the cytotoxic cell having at least 10, 20, 50, 100, 200, 300, 400 bound GNC proteins.
[0035] The therapeutic composition may include the first therapeutic cell, the first GNC protein, the cytotoxic cell, or a combination thereof. In one embodiment, the therapeutic composition may include the second therapeutic cell, the second GNC protein, comprises the first therapeutic cell, the first GNC protein, the cytotoxic cell, or a combination thereof. In one embodiment, the therapeutic composition may include additional GNC proteins and additional therapeutic cells.
[0036] In one embodiment, the incubating step may serve to expand the therapeutic cells. In one embodiment, expanding the therapeutic cell may include incubating the therapeutic cells with an additional amount of the GNC protein to provide an expanded cell population. In one embodiment, the expanded cell population comprises at least 10.sup.2, at least 103, at least 10.sup.4, at least 10.sup.5, at least 10.sup.6, at least 10.sup.7, at least 10.sup.8, at least 10.sup.9, at least 10.sup.10 cells per ml. In one embodiment, the expanded cell population comprises the GNC bound cell, the GNC protein, the cytotoxic cell, or a combination thereof. In one embodiment, in order to deplete PD-1+ T cells, a GNC protein may be added to the expansion culture that redirects killing to PD-1+ T cells therefore resulting in reduction in PD-1+ exhausted T cells. In one embodiment, in order to preferentially support PD-1+ T cells, a GNC protein may be added to the expansion culture that relieves checkpoint signaling through PD-1 on T cells therefore resulting in functional improvement of PD-1+ T cells. In one embodiment, in order to isolate 4-1BB mediated co-stimulation through 3.sup.rd gen CAR-T, a GNC protein may be added to the expansion culture that redirects killing to 4-1BB+ T cells or resulting in therapeutic composition with controlling level of 4-1BB stimulation in the therapeutic cells, such as CAR-T cells.
[0037] In one embodiment, the cancer targeting moiety has the specificity against B cell, and the therapeutic composition is substantially free of B cell. Therefore, the methods disclosed herein couple the activation and purification functions for the therapeutic cells, which allows the methods to produce B cell free therapeutic composition without the need to introduce any foreign materials (such as beads) nor any foreign genetic materials (such as viral and non-viral DNA or RNA vectors).
[0038] In one embodiment, the ratio of the GNC protein and the cytotoxic cell is at least 30 to 1 when incubating the cell material with the GNC protein.
[0039] In one embodiment, the therapeutic composition may include at least 10.sup.7 cells per ml.
[0040] In a further aspect, the application provides methods for using guidance and navigation control (GNC) proteins for cancer treatment. In one embodiment, the method of treating a subject having a cancer, comprises providing a cytotoxic cell, combining a GNC protein with the cytotoxic cell to provide a therapeutic cell, optionally expanding the therapeutic cell to provide an expanded cell population, and administering the therapeutic cell or the expanded cell population to the subject.
[0041] In one embodiment, the method include the step of providing a cell material comprising a cytotoxic cell, incubating the cell material with a first GNC protein to provide an activated cell composition, wherein the activated cell composition comprises a first therapeutic cell, formulating the activated cell composition to provide a therapeutic composition, wherein the therapeutic composition is substantially free exogenous of viral and non-viral DNA or RNA, and administering the therapeutic composition to the subject.
[0042] In one embodiment, the method may further include the steps of incubating a second GNC protein with the activated cell composition to provide the activated cell composition further comprising a second therapeutic cell. In one embodiment, the method may further include the step of incubating additional GNC proteins with the activated cell composition to provide the activated cell composition further comprising additional therapeutic cells.
[0043] In one embodiment, the method may further comprise isolating the cytotoxic cell from peripheral blood mononuclear cells (PBMC) before providing the cytotoxic cell. In one embodiment, the method may further comprise isolating the peripheral blood mononuclear cells (PBMC) from a blood. In one embodiment, the blood is from the subject. In one embodiment, the blood is not from the subject. In one embodiment, the cytotoxic cells may be from the patient that is under treatment or a different individual, such as a universal donor.
[0044] In one embodiment, the cytotoxic cell may be an autologous T cell, an alloreactive T cell, or a universal donor T cell. In one embodiment, when autologous donor T cells are used, in order to prevent infusion of contaminating cancer cells, a GNC protein may be added to the expansion culture that redirects killing to tumor antigens, example tumor antigen may include CD19 for B cell malignancies, Epcam for Breast carcinoma, MCP1 for melanoma.
[0045] In one embodiment, the method includes steps of providing a blood from the subject, isolating peripheral blood mononuclear cells (PBMC) from the blood, isolating a cytotoxic cell from the PBMC, combining a GNC protein with the cytotoxic cell to provide a therapeutic cell, optionally expanding the therapeutic cell to provide an expanded cell population, and administering the therapeutic cell or the expanded cell population to the subject.
[0046] In one embodiment, the method further comprises administering additional GNC protein to the subject after administering the therapeutic composition to the subject. In one embodiment, the cytotoxic cell may include CD3+ T cell, NK cell, or a combination thereof.
[0047] In one embodiment, the isolating of the cytotoxic cell comprises isolating at least one subpopulation of cytotoxic cells to provide the therapeutic T cells. In one embodiment, the subpopulation of cytotoxic cells comprises CD4+ cells, CD8+ cells, CD56+ cells, CD69+ cells, CD107a+ cells, CD45RA+ cells, CD45RO+ cells, CD2+ cells, CD178+ cells, Granzyme+ cells, or a combination thereof.
[0048] In one embodiment, the combining of a GNC protein with the cytotoxic cell comprises incubating the GNC protein with the cytotoxic cell for a period of time from about 2 hours to about 14 days, from about 1 day to about 7 days, from about 8 hours to about 24 hours, from about 4 days to about 7 days, or from about 10 days to about 14 days. In one embodiment, the incubating period may be more than 14 days. In one embodiment, the incubating period may be less than 2 hours.
[0049] In one embodiment, the ratio between the GNC protein and the cytotoxic cell is at least 600 to 1, 500 to 1, 400 to 1, 300 to 1, 200 to 1, 100 to 1, or 1 to 1. In one embodiment, the ratio between the GNC protein and the cytotoxic cell is from about 1 to 1, 10 to 1, 100 to 1, or to about 1000 to 1 ratio.
[0050] In one embodiment, the method may further comprise evaluating therapeutic efficacy after the administering step. In one embodiment, the evaluating therapeutic efficacy includes checking one or more biomarkers of the cancer, monitoring the life span of the therapeutic cells, or a combination thereof. In one embodiment, evaluating therapeutic efficacy comprises checking one or more biomarkers of the cancer, monitoring the life span of the therapeutic cells, or a combination thereof. In one embodiment, the biomarker comprises a tumor antigen, release of cytokines e.g., gamma interferon, IL-2, IL-8, and/or chemokines, and/or CD markers on the surface of various cell types e.g., CD69, PD-1, TIGIT, and/or mutated nucleic acid released into the bloodstream by tumors upon death, circulating tumor cells and their associated nucleic acid, or exosome associated nucleic acid, host inflammatory mediators, or tumor derived analytes, or a combination thereof. In one embodiment, the biomarker comprises a tumor antigen, tumor-associated apoptotic bodies, small molecule metabolites, release of cytokines, lymphocyte surface marker expression, phosphorylated/dephosphorylated signaling molecules, transcription factors, or a combination thereof.
[0051] The method disclosed herein is free of the step of transfecting the cytotoxic cell with a DNA vector or a viral vector. In one embodiment, the therapeutic cell or the expanded cell population is substantially free of a DNA vector or a viral vector.
[0052] The method may be used to treat a human subject suffering from cancer. In one embodiment, the cancer comprises cells expressing ROR1, CEA, HER2, EGFR, EGFRvIII, LMP1, LMP2A, Mesothelin, PSMA, EpCAM, glypican-3, gpA33, GD2, TROP2, BCMA, CD20, CD33, CD123, CD22, CD30, CD19, as yet to be identified tumor associated antigens, or a combination thereof. In one embodiment, the method may be used to treat mammals.
[0053] Varieties of cancer may be treated using the methods disclosed herein. Example cancers includes without limitation breast cancer, colorectal cancer, anal cancer, pancreatic cancer, gallbladder cancer, bile duct cancer, head and neck cancer, nasopharyngeal cancer, skin cancer, melanoma, ovarian cancer, prostate cancer, urethral cancer, lung cancer, non-small lung cell cancer, small cell lung cancer, brain tumor, glioma, neuroblastoma, esophageal cancer, gastric cancer, liver cancer, kidney cancer, bladder cancer, cervical cancer, endometrial cancer, thyroid cancer, eye cancer, sarcoma, bone cancer, leukemia, myeloma or lymphoma.
[0054] In one embodiment, the method may further include administering an effective amount of a therapeutic agent after the administering the therapeutic cell or the expanded cell population to the subject. In one embodiment, the therapeutic agent comprises a monoclonal antibody, a chemotherapy agent, an enzyme, a protein, a co-stimulator, or a combination thereof. In one embodiment, the co-stimulator is configured to increase the amount of cytotoxic T cells in the subject.
[0055] The application further provides a solution comprising an effective concentration of the GNC protein. In one embodiment, the solution is blood plasma in the subject under treatment. In one embodiment, the solution includes the GNC protein bound cells. In one embodiment, the solution includes a GNC cluster including a GNC protein, a T-cell bound to the T-cell binding moiety of the GNC protein, and a cancer cell is bound to the caner-targeting moiety of the GNC protein.
[0056] The objectives and advantages of the present application will become apparent from the following detailed description of preferred embodiments thereof in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0057] The foregoing and other features of this disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings.
[0058] Understanding that these drawings depict only several embodiments arranged in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings, in which:
[0059] FIG. 1 shows a GNC protein comprising four antigen-specific binding domains in an antibody structure with targeting specificity to CD19 positive cells;
[0060] FIG. 2 illustrates that a tetra-specific GNC antibody mediates multi-specific binding between a T cell and a tumor cell;
[0061] FIG. 3 is a flowchart comparing manufacturing processes for GNC-T cell therapy (left) and CAR-T cell therapy (right);
[0062] FIG. 4 is a diagram showing sources of cell material for preparing GNC-activated therapeutic cell composition;
[0063] FIG. 5 is a diagram showing sources of selected T cells for preparing GNC-activated therapeutic composition;
[0064] FIG. 6 is a diagram showing the preparation of GNC-activated therapeutic T cell composition;
[0065] FIG. 7 is a diagram showing the incubating and formulating steps for preparing the first GNC-activated T cells for GNC-T cell therapy;
[0066] FIG. 8 shows that GNC proteins (SI-35E class) induce IL-2 secretion from PBMC;
[0067] FIG. 9 shows that GNC proteins (SI-35E class) induce granzyme B secretion from PBMC;
[0068] FIG. 10 shows that GNC proteins (SI-35E class) induce expression of the activation marker CD69 on CD4+ T cells;
[0069] FIG. 11 shows that GNC proteins (SI-35E class) induce expression of the activation marker CD69 on CD8+ T cells;
[0070] FIG. 12 shows that GNC proteins (SI-35E class) induce expression of the activation marker CD69 on CD56+NK cells;
[0071] FIG. 13 shows that GNC proteins (SI-35E class) induce expression of the marker of cytotoxic degranulation CD107a on CD4+ T cells;
[0072] FIG. 14 shows that GNC proteins (SI-35E class) induce expression of the marker of cytotoxic degranulation CD107a on CD8+ T cells;
[0073] FIG. 15 shows that GNC proteins (SI-35E class) induce expression of the marker of cytotoxic degranulation CD107a on CD56+NK cells;
[0074] FIG. 16 shows that GNC proteins (SI-35E class) activate CD3+ T cells to proliferate;
[0075] FIG. 17 shows that GNC proteins (SI-35E class) activate CD3+ T cells to secrete gamma interferon;
[0076] FIG. 18 shows that GNC proteins (SI-35E class) activate naive CD8+/CD45RA+ T cells to proliferate;
[0077] FIG. 19 shows that GNC proteins (SI-35E class) activate naive CD8+/CD45RA+ T cells to secrete gamma interferon;
[0078] FIG. 20 shows Images of GNC activated cell growth in 6-well G-Rex plates over time;
[0079] FIG. 21 shows the example process of making the therapeutic composition as disclosed thereof (A), and cell viability of PBMC, GET, and GNC-T cells after thawing (B);
[0080] FIG. 22 shows the result of flow cytometry analyses of PBMC-derived, the first GNC (SI-38E17)-activated therapeutic cell composition (Product A) (22A), the second GNC (SI-38E17)-coated therapeutic cell composition (Product B) (22B), and input PBMC cell material (22C).
[0081] FIG. 23 shows GNC-T therapeutic cell composition of GET cells and formulated GNC-T cells from G-Rex 100M bioreactor after thawing;
[0082] FIG. 24 shows the result of RTCC of CHO-ROR1 cells by using GNC (SI-35E class)-coated PBMC cells;
[0083] FIG. 25 shows kinetics of PBMC-derived, SI-38E17 GNC-activated therapeutic cells on killing precursor B cell leukemia Kasumi over time;
[0084] FIG. 26 shows efficacy of killing Nalm-6, MEC-1, Daudi, and Jurkat cells by using PMBC-derived, SI-38E17 GNC-activated therapeutic cells; and
[0085] FIG. 27 shows the killing of Nalm-6, MEC-1, Daudi, and Jurkat leukemic cells by using PBMC-derived, SI-38E17 GNC-activated therapeutic cells in a spike-in model.
DETAILED DESCRIPTION
[0086] In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.
[0087] In one embodiment, the guidance navigation control (GNC) proteins are characterized by their composition of multiple antigen-specific binding domains (AgBDs) and by their ability of directing T cells (or other effector cells) to cancer cells (or other target cells such as bystander suppressor cells) through the binding of multiple surface molecules on a T cell and a tumor cell. In one embodiment, GNC proteins are composed of Moiety 1 for binding at least one surface molecule on a T cell and Moiety 2 for binding at least one surface antigen on a cancer cell as shown in TABLE 1. FIG. 1 shows the structure of an example tetra-specific GNC antibody comprising AgBDs for binding to both a T cell expressing CD3, PD-L1, and/or 4-1BB and a target B cell expressing CD19, as illustrated in FIG. 2.
[0088] In a T cell therapy, the cytotoxic T cells are regulated by T cell receptor complex proteins, as well as co-stimulation signaling proteins via either agonist receptors or antagonist receptors on their surface. To regulate this signaling, as well as the interaction between a T cell and a cancer cell, multiple AgBDs may compose Moiety 1 and Moiety 2, respectively. Examples of molecules that can be targeted by agonistic or antagonistic binding domains in Moiety 1 and 2 are shown in TABLE 1. In one embodiment, the GNC proteins may have at least one linker to link Moiety 1 and Moiety 2. In one example GNC protein, any linker molecule can be used to link two or more AgBDs together either in vitro or in vivo by using complementary linkers of DNA/RNA or protein-protein interactions, including but not limited to, that of biotin-avidin, leucine-zipper, and any two-hybrid positive protein. In some embodiments, the linkers may be an antibody backbone structure or antibody fragments, so that GNC protein and GNC antibody may have the same meaning, e.g. the structure of the example tetra-specific GNC antibody in FIG. 1.
[0089] GNC proteins or antibodies are capable of directing a T cell to a cancer cell, in vivo or ex vivo, through the binding function of multiple AgBDs (FIG. 2). The T cells may be derived from the same patient or different individuals, and the cancer cell may exist in vivo, in vitro, or ex vivo. The examples provided in the present application enable GNC proteins as a prime agent in a T cell therapy, i.e. GNC-T cell therapy, for activating and controlling cytotoxic T cells ex vivo, prior to adoptive transfer.
[0090] The present application relates to methods of making GNC-activated therapeutic cell composition. Multiple AgBDs can be divided into Moiety 1 and Moiety 2 due to their interface with a T cell and a cancer cell, respectively (TABLE 1). A GNC protein with two AgBDs may simultaneously bind to a surface molecule, such as CD3 on a T cell, and a tumor antigen, such as ROR1 on a tumor cell, for re-directing the T cell to the tumor cell.
[0091] The addition of a third AgBD, for example, one that specifically binds to 41BB, may help enhance anti-CD3-induced T cell activation because 41BB is a co-stimulation factor and the binding stimulates its agonist activity to activated T cells. The addition of a fourth AgBD to a GNC protein, for example, one that specifically binds to PD-L1 on a tumor cell, may block the inhibitory pathway of PD-L1 on tumor cells or that is mediated through its binding to PD-1 on the T cells.
[0092] In some embodiments, with these basic principles, GNC proteins are constructed to acquire multiple AgBDs specifically for binding unequal numbers of T cell antagonists and agonists, not only to re-direct activated T cells to tumor cells but also to control their activity in vivo (TABLE 2). Therefore, in some embodiments, GNC proteins may be bi-specific, tri-specific, tetra-specific, penta-specific, hexa-specific, hepta-specific, or octa-specific proteins.
[0093] In one embodiment, the application relates to a GNC-T cell therapy where GNC proteins are used to expand the T cells ex vivo prior to adoptive transfer (FIG. 3). The ex vivo priming of autonomous T cells provides the cytotoxic T cells guidance and navigation control. For example, peripheral blood mononuclear cells (PBMC) or specific types of cell populations within PBMC e.g., CD8+, CD45RO+ memory T cells may be isolated and primed ex vivo by GNC proteins. These expanded cytotoxic T cells can be formulated and infused back to the patient through adoptive transfer. While attacking the cancer in vivo, additional GNC proteins may be infused into the patient for managing the efficacy and lifespan of cytotoxicity. Thus, GNC-T cell therapy is different from GNC protein-based immunotherapy, where GNC proteins are directly administered into patients. However, GNC-T cell therapy does not rule out the direct administration of GNC proteins for managing the efficacy of infused cytotoxic T cells in vivo in a controlled manner. Additional GNC protein can both promote cytolytic activity and encourage T cell proliferation dependent of the configuration of AgBDs.
[0094] In one aspect, the application relates to the production of therapeutic GNC-T cells. In comparison with and to distinguish from the production of therapeutic CAR-T cells, their general processes are shown in FIG. 3, for comparison purpose. In CAR-T therapy, cell material, for example patient leukocytes, are collected by apheresis, and a subset of CD3+ T cells is selected and activated to facilitate gene transfer to the cellular material, which is then expanded in number by the introduction of foreign material scaffold for support to the T cell populations, for example, by using anti-CD3/anti-CD28 antibody coated beads. Advantageously, GNC-T cell material does not require the introduction of scaffold impurities for T cell expansion from patient leukocytes.
[0095] The CAR-T therapy cellular material must undergo the gene transfer that involves the preparation and transfection of CAR-T vector DNA, which results in genetically modifying the genome of the T cells. Furthermore, these genetically modified T cells may undergo another round of T cell expansion before being transferred back into the patient. The random integration of CAR-T vector DNA carries a risk of transformation of the T cells leading to primary leukemogenesis or introduction of the CAR-T vector to leukemia cells increasing the risk of relapse by mechanism of internal sequestration of the CAR target antigen (Zhang, Liu et al. 2017).
[0096] In contrast, GNC-T cell therapy has the advantages of not involving the transfection of any vector DNA, therefore there is no risk of genetic modification prior to adoptive transfer, which provides one of the significant advantages and technical improvements over the existing CAR-T therapy. Besides the advantage of GNC-T cell therapy being free of exogenous generic material contamination and cancer risk, the efficacy of GNC-T cell therapy may be improved when PBMC or different T cell subsets are being primed and activated ex vivo as shown in FIGS. 5 & 6. Similar approaches have been explored in the use of CAR-T therapy, where selected specific ratios of some subsets of T cells may be transferred back to the patient (Turtle, Hanafi et al. 2016, Turtle, Hanafi et al. 2016).
[0097] In some embodiments, it may be beneficial to remove leukemia or other cancer cells from the cellular material prior to cell expansion (FIG. 7). The PBMC of a patient with circulating leukemic cells, in particular from B cell malignancy, may profoundly alter the cellular composition and thus affect the suitability of the final therapeutic cellular products. For example, a high level of circulating leukemic blast cells (greater that 10% of WBC) may require a depletion of leukemic cells prior to GNC mediated cell expansion. The percentage of leukemic cells in the PBMC derived from a patient may be reduced by using cell fractionation methods. These methods may include steps involving density gradient separation, or immunofluorescent cell separation or fluorescent activated cells sorting, immunomagnetic cell separation, or microfluidic flow chambers methods. These methods may be preceded by or follow centrifugation, cell washing, incubation, or temperature modulation. These methods may utilize non-cellular substrates (magnetic beads, Plastic, polymers), modification of non-cellular substrates (protein, antibodies, charge state), antibody treatment, multiple antibody treatments, multi-specific antigen binding proteins and cell surface antigen-based cell coupling. These methods may use enzymatic digestion or, ionic chelation, or mechanical agitation or cell vessel rotation. The method for reduction of leukemic blasts may utilize antibody drug conjugates, or leukemia sensitizing agents. The method may consist of a combination of these approaches.
[0098] In one embodiment, to enable the production of therapeutic T cells primed (or coated or bound) with GNC proteins, a tetra-specific antibody is produced and used as the GNC protein. In one embodiment, the tetra-specific antibody/GNC protein comprises 4 different binding domains linked by antibody fragments as its backbone. One binding domain is specific for CD3 on T cells, a second binding domain is specific for a tumor associated antigen, including but not limited to ROR1, CEA, HER2, EGFR, EGFRvIII, LMP1, LMP2A, Mesothelin, PSMA, EpCAM, glypican-3, gpA33, GD2, TROP2, BCMA, CD19, CD20, CD33, CD123, CD22, CD30, and a third and fourth binding domains are specific for two distinct immune checkpoint modulators such as PD-L1, PD-L2, PD-1, OX40, 4-1BB, GITR, TIGIT, TIM-3, LAG-3, CTLA4, CD40L, VISTA, ICOS, BTLA, Light, etc.
[0099] Without being bound by theory, the advantages of GNC protein-mediated GNC-T cell therapy over conventional CAR-T therapies include, but are not limited to, first, that inclusion of an IgG Fc domain may confer the characteristic of a longer half-life in serum compared to a bi-specific BiTe molecule; second, that inclusion of two binding domains specific for immune checkpoint modulators may inhibit the suppressive pathways and engage the co-stimulatory pathways at the same time; third, that cross-linking CD3 on T cells with tumor associated antigens re-directs and guides T cells to kill the tumor cells without the need of removing T cells from the patient and genetically modifying them to be specific for the tumor cells before re-introducing them back into the patient, also known as chimeric antigen receptor T cells (CAR-T) therapy; and fourth, that GNC protein-mediated antibody therapy or T cell therapy does not involve genetic modification of T cells, the latter of which may carry the risk of transforming modified T cells to clonal expansion, i.e. T cell leukemia.
[0100] The present disclosure may be understood more readily by reference to the following detailed description of specific embodiments and examples included herein. Although the present disclosure has been described with reference to specific details of certain embodiments thereof, it is not intended that such details should be regarded as limitations upon the scope of the disclosure.
EXAMPLES
[0101] While the following examples are provided by way of illustration only and not by way of limitation. Those of skill in the art will readily recognize a variety of non-critical parameters that could be changed or modified to yield essentially the same or similar results.
Example 1. GNC Proteins and Tetra-Specific GNC Antibodies
[0102] In the present application, the examples of GNC proteins are classes of tetra-specific GNC antibodies, of which 4 AgBDs are covalently linked using an IgG antibody as its backbone (FIG. 1). From the N-terminal of this protein, the first scFv is linked to the Fab domain of the constant domains C.sub.H1, 2, and 3 of IgG antibody which is then linked to another scFv at the C-terminal. Because each of the scFv domains display independent binding specificity, linking of these AgBDs does not need to be done using the constant domains of an IgG antibody. Structured as a tetra-specific GNC antibody, a GNC protein can directly bind to tumor-associated antigen (TAA) and engage the host endogenous T cells to kill tumor cells independent of tumor antigen presentation by MHC to the antigen specific T cell receptors (FIG. 2). As shown in FIG. 1, CD19 is a TAA targeting CD19 positive B cells and tumor cells. In addition, PD-L1 is an example of the immune checkpoint modulating component for tetra-specific GNC antibodies that may overcome the immunosuppressive tumor microenvironment and fully activate the exhausted T cells within the tumor microenvironment.
[0103] Of tetra-specific GNC antibodies, the SI-35E class comprises targets an anti-human CD3 binding domain (SEQ IDs 1-4), an anti-human PD-L1 (SEQ IDs 5-12), an anti-human 4-1BB (SEQ IDs 13-24), and targets a human ROR1 (SEQ IDs 25-32), i.e. a TAA. In this context, the classes of SI-38E and SI-39E target CD19 (SEQ IDs 47-50) and EGFR (SEQ ID 51-54), respectively.
[0104] To construct tetra-specific GNC antibodies, AgBDs were converted to scFv and VLVH for placement at the N-terminal Domain 1 (D1) or scFv and VHVL for placement at the C-terminal Domains 3 (D3) and 4 (D4) of the GNC protein. All scFv molecules described herein contain a 20 amino acid flexible gly-gly-gly-gly-ser (G4S) X4 linker that operably links the VH and VL, regardless of the V-region orientation (LH or HL). The remaining position in the tetra-specific GNC antibody, Domain 2 (D2), consists of an IgG1 heavy chain, VH-CH1-Hinge-CH2-CH3, and its corresponding light chain, VL-CL, which can be either a kappa or lambda chain. D1 and D2 are genetically linked through a 10 amino acid (G4S).times.2 linkers, as are D2, D3 and D4 resulting in a contiguous .about.150 kDa heavy chain monomer peptide. When co-transfected with the appropriate light chain, the final symmetric tetra-specific GNC peptide can be purified through the IgG1 Fc (Protein A/Protein G) and assayed to assess functional activity. Heavy and light chain gene "cassettes" were previously constructed such that V-regions could be easily cloned using either restriction enzyme sites (HindIII/NhelI for the heavy chain and HindIII/BsiWI for the light chain) or "restriction-free cloning" such as Gibson Assembly (SGI-DNA, La Jolla, Calif.), Infusion (Takara Bio USA) or NEBuilder (NEB, Ipswich, Mass.), the latter of which was used here.
[0105] The tetra-specific GNC antibodies can be produced through a process that involves design of the intact molecule, synthesis and cloning of the nucleotide sequences for each domain, expression in mammalian cells and purification of the final product. Herein, nucleotide sequences were assembled using the Geneious 10.2.3 software package (Biomatters, Auckland, NZ) and broken up into their component domains for gene synthesis (Genewiz, South Plainsfield, N.J.). In this example, SI-35E18 (SEQ ID 65 and 67) was split into its component domains where the anti-41BB scFv, VL-VH, occupies D1, anti-human PD-L1 clone PL230C6 occupies D2 (Fab position), anti-human ROR1 Ig domain-specific clone 323H7 VHVL scFv occupies D3, and anti-human CD3 scFv, VHVL, occupies the C-terminal D4. Using NEBuilder web-based tools, 5' and 3' nucleotides were appended to each of the domains depending on their position in the larger protein so that each domain overlaps its flanking domains by 20-30 nucleotides which direct site-specific recombination, thus genetically fusing each domain in a single gene assembly step. Due to the high number of homologous regions in the tetra-specific nucleotide sequence, the N-terminal domains 1 and 2 are assembled separately from the C-terminal D3 and D4. The N- and C-terminal fragments were then assembled together in a second NEBuilder reaction. A small aliquot was transformed into E. coli DH10b (Invitrogen, Carlsbad, Calif.) and plated on TB+carbenicillin 100 ug/ml plates (Teknova, Hollister, Calif.) and incubated at 37.degree. C. overnight. Resultant colonies were selected and 2 mL overnight cultures inoculated in TB+carbenicillin. DNA was prepared (Thermo-Fisher, Carlsbad, Calif.) from overnight cultures and subsequently sequenced (Genewiz, South Plainsfield, N.J.) using sequencing primers (Sigma, St. Louis, Mo.) flanking each domain. All DNA sequences were assembled and analyzed in Geneious.
[0106] In another tetra-specific GNC protein, SI-38E17 targeting human CD19 (SEQ IDs 47-50), multiple AgBDs carry an anti-human 4-1BB (scFv 466F6, SEQ IDs 17-20) as well as an anti-human PD-L1 (scFv PL221G5 SEQ IDs 9-13), and an anti-human CD3 binding domain (SEQ IDs 1-4). The methods and procedures for producing this tetra-specific antibody were the same.
[0107] GNC proteins are composed of Moiety 1 for binding at least one surface molecule on a T cell and Moiety 2 for binding at least one surface antigen on a cancer cell (TABLE 1A). The tetra-specific GNC antibodies can be used to directly engage the body's endogenous T cells to kill tumor cells independent of tumor antigen presentation by MHC to the antigen specific T cell receptors. This is in contrast to therapies based solely on immune checkpoint blockade, which have been limited by antigen recognition. In context, the immune checkpoint modulating component may be constructed as a part of tetra-specific GNC antibodies, which may provide benefits similar to that in a standard checkpoint blockade therapy.
[0108] In addition to T cells, other cytotoxic cells may also be targeted by GNC proteins for cancer killing or preventing purposes. TABLE 1B shows the example compositions of functional moieties (Moiety 1 and Moiety 2) and antigen binding domain in GNC proteins with NK cell binding domains. TABLE 1C shows the example compositions of functional moieties (Moiety 1 and Moiety 2) and antigen binding domain in GNC proteins with macrophage binding domains. TABLE 1D shows the example compositions of functional moieties (Moiety 1 and Moiety 2) and antigen binding domain in GNC proteins with dendritic cell binding domains.
[0109] GNC proteins are constructed to acquire multiple AgBDs specifically for binding unequal numbers of T cell antagonists and agonists. In this way, GNC proteins may re-direct activated T cells to tumor cells with certain levels of control of their activity in vivo (TABLE 2). Therefore, GNC proteins may be bi-specific, tri-specific, tetra-specific, penta-specific, hexa-specific, hepta-specific, or even octa-specific proteins. In the present invention, three classes of tetra-specific GNC antibodies, i.e. SI-39E, SI-35E, and SI-38E, were created to enable GNC-T cell therapy, of which antibody domains and its specificity is listed in TABLE 3. The structures of tetra-specific GNC antibodies targeting EGFRvIII (SI-39E), ROR1 (SI-35E), and CD19 (SI-38E) are listed in TABLE 4.
Example 2: GNC-Activated, PBMS-Derived Cell Composition
[0110] The SI-35 class listed in Table 4 were tested for their ability to activate and induce proliferation of different cell types, such as CD4+ and/or CD8+ T cells and/or CD56+ natural killer cells (NK) within PBMC. The tetra-specific GNC antibodies were prepared at 2.times. final concentration and titrated in 1:10 serial dilutions across 6 wells of a 96 well plate in 200 ul of RPMI+10% FBS. Human PBMC were purified by standard Ficoll density gradient from a "leukopak" which is an enriched leukapheresis product collected from normal human peripheral blood. In the final destination 96 well plate, the PBMC and serially titrated GNC proteins were combined by adding 100 .mu.L of PBMC (100,000), and 100 .mu.L of each antibody dilution to each well of the assay. The assay plate was incubated at 37.degree. C. for approximately 72 hours and then the contents of each assay well were harvested and analyzed by FACS for the number of CD4+ T cells, CD8+ T cells, and CD56+NK cells. Cells were harvested from each well and transferred to a new 96 well V-bottom plate then centrifuged at 400.times.g for 3 minutes. Supernatant was transferred to a 96 well plate for analysis of IL-2 and Granzyme B. Cells were re-suspended in 200 .mu.L of 2% FBS/PBS of FACS antibodies and incubated on ice for 30 minutes. The plate was centrifuged at 400.times.g for 3 minutes and the supernatant was aspirated. This wash step was repeated once more and then the cells were re-suspended in 100 .mu.L 2% FBS/PBS and analyzed on a BD LSR FORTESSA.
[0111] As shown in FIG. 8, all SI-35E tetra-specific GNC antibodies, with the exception of those that had the scFv binding domain replaced with FITC at positions 2 (SI-35E37) and 4 (SI-35E39), induced production of IL-2 from PBMC. These two proteins lacked the binding domains for PD-L1 or CD3 respectively. The secretion of Granzyme B into the culture supernatant followed a similar pattern as that for IL-2 production as shown in FIG. 9. Both SI-35E37 and SI-35E3 were also much less potent at inducing cell-surface expression of the activation marker CD69 on CD4+(FIG. 10), CD8+(FIG. 11), and CD56+(FIG. 12) cells in the PBMC culture. Surface expression of the cytotoxic degranulation marker CD107a (LAMP-1) was induced by all GNC proteins tested except those lacking binding at positions 2 and 4 on CD4+(FIG. 13), CD8+(FIG. 14), but less consistently on CD56+(FIG. 15) in the culture. At lower concentrations, 3 of the GNC proteins (SI-35E42, SI-35E43, and SI-35E46) induced expression of CD69 on CD4+ T cells, CD8+ T cells, and CD56+NK cells, which correlated well with the level of IL-2 and granzyme B secretion (FIGS. 8 and 9) induced by these GNC.
[0112] Proliferation and production of gamma interferon was measured from cultures of CD3+ or naive CD8+ T cells (70,000 cells/well) stimulated for 5 days with a panel of SI-35 class antibodies. Human CD3+ or CD8+CD45RA+naive T cells were enriched from peripheral blood mononuclear cells from a normal donor using the EasySep.TM. Human CD3+ or Naive CD8+ T Cell Isolation Kits (StemCell Technologies) as per the manufacturer protocols. The final cell populations were determined to be >98% CD3+ or CD8+CD45RA+ T cells by flow cytometry. Proliferation in the culture was measured after stain with Alamar blue (ThermoFisher Cat. No. DAL1100) for 1 hour at 37.degree. C., and then read on a Spectramax plus 384 well reader (Molecular Devices). Proliferation of GNC-expanded CD3+ T cells was expressed as a fold increase in cell number over background of CD3+ T cells in cell culture without GNC (FIG. 16). Proliferation was induced by all constructs tested except the one lacking CD3 binding domain. Culture supernatants were also collected from these cultures and analyzed for the presence of gamma interferon by ELISA. Secretion of gamma interferon (FIG. 17) was high unless CD3 or ROR1 binding domains were changed to FITC in the GNC constructs. Proliferation of naive CD8+CD45RA+ T cells (FIG. 18) was more sensitive to the presence or absence of 4-1BB binding domain compared to total CD3+ T cells as shown by addition of soluble anti-4-1BB monoclonal antibody to the culture in which 4-1BB binding on the GNC was absent. A similar pattern was found for secretion of gamma interferon from the naive CD8+ T cells (FIG. 19).
Example 3. Scale Up and Formulation of a First GNC-Activated Therapeutic Cell Composition
[0113] The manufacture of GNC-activated and -coated T cells at clinically significant dosage of 10E9 was achieved after 7 days culture. Human PBMC were isolated from LRS cone leukocytes by standard Ficoll density gradient from leukopaks which are enriched leukapheresis product collected from normal human peripheral blood. After collection the cells were frozen at -80.degree. C. and then later thawed before putting in culture. Using the G-Rex plate and bioreactor culture systems, the growth of SI-38E17 GNC-stimulated PBMC cultures was monitored for up to 14 days. The culture medium consisted of RPMI 1640, 10% fetal calf serum, 1% non-essential amino acids, 1% GlutaMax, 0.6% glutamine-alanine supplement, 15 ng/mL human IL-2, and 1 nM GNC protein. The 6-well G-Rex cultures tolerated seeding densities of 25-100 million PBMC/well for six days, which greatly exceeded recommended amounts, but was tolerated by the cells in the system with a single 50% medium change on day 7. Clustering of cells was indicative of their activation in the culture (FIG. 20). At least 250 million cells from one leukapheresis donor were seeded into two G-Rex 100M bioreactors and cultured in 1 liter of culture medium for seven days. The larger volume of medium allowed the culture to continue without needing to exchange the culture medium. Cell yield in each of the 100M bioreactors was between 1.2-1.4 billion cells with greater than 88% viability.
Example 4. A Second GNC-Activated Therapeutic Cell Composition
[0114] The cells from the bioreactor were harvested as the first GNC-activated therapeutic cell composition, which were optionally concentrated using LOVO Automated Cell Processing System (Fresenius Kabi). One sample (Product B) was exposed to 1 nM SI-38E17, which is identical to the first GNC in this case for preparing a second GNC-activated therapeutic cell composition, potential for being used to target treat patients harboring CD19 positive malignancies (FIG. 21A).
[0115] After the second concentration step (100 mL volume) during the processing in the LOVO system, the second GNC-activated therapeutic cells were washed twice before eluting to a final volume of 54 mL in a sterile processing bag. The other sample (Product A) was only exposed to the first GNC protein during the culture phase and not re-exposed during processing in the LOVO system (FIG. 21A). Cells were removed from bags, mixed 1:1 with CryoStor CS10 reagent, and frozen to -80.degree. C. The processed cells were thawed and compared to the thawed unstimulated PBMC from the same donor before culture.
[0116] Cell viability from the GNC-expanded T cell (GET) culture was >75% and was not affected by exposure to additional GNC reagent (GNC-T, Product B) during processing (FIG. 21B). The mean diameter of the cells increased during culture, indicative of cell activation. Flow cytometry was performed on the input PBMC cell material and the two formulations after thawing using a multi-color panel of antibodies to stain for: live/dead (e780), CD45, TCR.alpha./.beta., CD56, CD4, CD8, CD14, TCR.gamma./.delta., and CD20. Gating for quantification of the different cell subsets is shown on the GNC-activated T cells (Product A) and the additional GNC-coated GNC-T cells (Product B) (FIGS. 22A and 22B). The percentages of each subpopulation of cells were similar between Product A and Product B, but very different from those of input PBMC (FIG. 22C). FIG. 23 summaries the total number and percentage of each subpopulation of cells. Compared to the input PBMC cell material, while the total number of leukocytes increased from 250 to 1000 millions or four-fold, the total number of each subpopulation of T cells was vastly increased by 55-fold for .alpha./.beta. T cells, 45-fold for CD4+ T cells, and 78-fold for CD8+ T cells. In this context, the increase of .gamma./.delta. T cells was modest at 5-fold, and TCR.alpha./.beta.-/lo, .gamma./.delta.+, CD8+ T cells seemed to the most abundant. Finally, the characteristic feature of both Product A and Product B cell compositions is the fact that there were no detectable B cells.
[0117] This example illustrates a number of advantages of GNC-T cells in comparison to CAR-T cell preparations. First, the cell composition of the starting material was fresh PBMC from the donor and did not need to be pre-selected for particular subsets of cells or require addition of feeder cells or synthetic beads. The GNC protein was 100% non-nucleotide biological material, and did not require the transfer of RNA or DNA into the cells, or transfection with a viral vector. The GNC-induced expansion yielded a therapeutic dose in 9 days, compared to the average of 40 days for CAR-T cell expansion. The resulting cells were devoid of B cells and highly enriched for activated CD4+ and CD8+ T cells that had potent killing potential against their specific targets. The GNC therapeutic composition was viable and bioactive upon thaw from -80.degree. C. Together these advantages are expected to significantly lower waiting times, costs and issues related to infrastructure and training related to CAR-T cell therapy. Improvements in the purity, safety and quantity of the end product will be of significant benefit to the patient.
Example 5. PBMC Pre-Activated with GNC Proteins are Redirected to Potently Kill Tumor Cells
[0118] Six of the GNC SI-35 class proteins listed in Table 4 were tested for the ability to activate PBMC for redirected T cell cytotoxicity (RTCC) activity against a human ROR1-transduced CHO cell line (FIG. 24). GNC proteins were prepared at 2.times. final concentration and titrated 1:3 across 10 wells of a 96 well plate in 200 ul of RPMI+10% FBS. In the final destination 96 well plate, the PBMC and serially titrated antibodies were combined by adding 100 .mu.L of PBMC (200,000), and 100 .mu.L of each antibody dilution to each well of the assay. The assay plate was incubated at 37.degree. C. for approximately 72 hours before the addition of CFSE-labeled CHO-ROR1 cells. CHO-ROR1 target cells, 5.times.10e6, were labeled with CFSE (Invitrogen, #C34554) at 0.5 .mu.M in 10 mL of culture media for 20 minutes at 37.degree. C. The CHO-ROR1 cells were washed 3 times with 50 mL of culture media before resuspending in 10 mL, counted again and then 5,000 CFSE-labeled CHO-ROR1 cells were added to each well of GNC-activated PBMC. Cells were incubated for another 72 hours and then the contents of each assay well were harvested and analyzed for the number of CFSE-labeled target cells remaining. As shown on FIG. 24, all of the GNC proteins tested directed RTCC activity with SI-35E42, SI-35E43, and SI-35E46 being the most potent in reducing the number of CHO-ROR1 cells in the well.
[0119] To further demonstrate the killing effects of GNC-labeled PBMC against human tumor cells, a GNC-dose and effector:target ratio escalation experiment was performed using an IncuCyte S3 Live Cell Analysis System (Sartorius/Essen Biosciences) to monitor the cells over time. PBMC from a healthy donor were labeled with GNC protein SI-38E17 at 10-fold serial doses ranging from 0.01 to 100 nM for 30 minutes at 37.degree. C. and then washed prior to culture. The GNC SI-38E17 targets the CD19 antigen expressed on B cell surfaces, and therefore, the Kasumi-2 precursor B cell leukemia line was chosen as a target cell. The Kasumi-2 cell used was transduced to express green fluorescence protein (GFP) and therefore the presence of tumor cells was tracked by measuring the average green fluorescence in 4 images/well collected 9 times over a six-day period. The effector:target (E:T) ratios were escalated by adding GNC-labeled PBMC in a serial 2-fold dilution of 5,000 (1:1) to 160,000 (32:1) cells to duplicate wells. As shown in FIG. 25, Kasumi-2 cells increased in number in the wells that had from 1:1 to 8:1 E:T ratios of unlabeled PBMC. Exposure to as little as 0.1 nM GNC led to decreased growth of Kasumi-2 in the 1:1 culture with suppression increasing at each 2-fold increase in the E:T ratio. Coating of PBMC with 1 nM or greater concentrations of GNC led to nearly complete elimination of Kasumi-2 cells after 42 hours of culture at all E:T ratios.
[0120] As a follow up experiment, three other transformed B cell lines: NALM-6, MEC-1, and Daudi and the acute T cell leukemia line, Jurkat, were used as target cells. These target cells were previously transduced by lentivirus to constitutively express the NucRed 647 molecule. In this assay, PBMC were exposed to 10-fold doses of GNC protein SI-38E17 for 30 minutes at 37.degree. C. and then washed as before. PBMC were plated at 1.2.times.10.sup.6 cells/well and 50,000 target tumor cells were added. Cells were placed in IncuCyte S3 set to collect red fluorescence images (4 images/well) collected at 10 time points over a 5.5-day period (FIG. 26). Growth curves were established for all four tumor cell lines in the absence of PBMC (null). Labeling of PBMC with 1 nM or more of GNC protein SI-38E17 led to arrested growth of all three B cell lines but not Jurkat T cell leukemia. The B cell lines varied in their susceptibility to PBMC cells pre-exposed to 0.1 nM of GNC protein.
[0121] As a different method of quantifying the outcome of cultures of GNC-T cells with tumor cells, we established a limit of quantification (LOQ) curve for detection by flow cytometry. Daudi-Red cells were serially diluted 10-fold in a range from 200,000 to 20 cells and then mixed 1:1 with 1 million PBMC to create samples of 10%, 1.0%, 0.1%, 0.01% and 0.001% tumor cells, which were then analyzed by flow cytometry (FIG. 27). Next, cells were harvested from a 15 day 6-well G-Rex culture of 1 nM GNC-expanded T cells that had been spiked with 10%, 1% or 0.1% of NALM-6, MEC-1, Daudi, or Jurkat (all NucRed-transduced) tumor cells at time 0 and analyzed using the same flow cytometry settings as above. Tumor cells were reduced to less than 0.001% in all conditions with the exception of the culture in which the MEC-1 tumor line was spiked in at 10% were 44 cells were detected. In this condition the MEC-1 cells were reduced to <0.01% in the culture.
[0122] While the present disclosure has been described with reference to particular embodiments or examples, it may be understood that the embodiments are illustrative and that the disclosure scope is not so limited. Alternative embodiments of the present disclosure may become apparent to those having ordinary skill in the art to which the present disclosure pertains. Such alternate embodiments are considered to be encompassed within the scope of the present disclosure. Accordingly, the scope of the present disclosure is defined by the appended claims and is supported by the foregoing description. All references cited or referred to in this disclosure are hereby incorporated by reference in their entireties.
Tables
TABLE-US-00001
[0123] TABLE 1A Composition of example GNC proteins with T cell binding domains. Moiety 1 Activation Agonist Moiety 2 of T cells receptor Antagonist receptor Tumor Antigen CD3 CD28, 41BB, PDL1, PD1, TIGIT, BCMA, CD19, CD20, OX40, GITR, TIM-3, LAG-3, CD33, CD123, CD22, CD40L, ICOS, CTLA4, BTLA, CD30, ROR1, CEA, Light, CD27, VISTA, PDL2 HER2, EGFR, CD30 EGFRvIII, LMP1, LMP2A, Mesothelin, PSMA, EpCAM, glypican-3, gpA33, GD2, TROP2
TABLE-US-00002 TABLE 2 Examples of possible combinations of T cell activation, T cell agonist, T cell antagonist, and tumor antigen binding domains in a single GNC protein. T cell Tumor T cell T cell T cell T cell T cell T cell GNC protein activation antigen antagonist agonist antagonist antagonist antagonist agonist Bi-specific CD3 ROR1 Tri-specific CD3 ROR1 PD1 Tetra-specific CD3 ROR1 PD1 41BB Penta-specific CD3 ROR1 PD1 41BB LAG3 Hexa-specific CD3 ROR1 PD1 41BB LAG3 TIM3 Hepta-specific CD3 ROR1 PD1 41BB LAG3 TIM3 TIGIT Octa-specific CD3 ROR1 PD1 41BB LAG3 TIM3 TIGIT CD28
TABLE-US-00003 TABLE 3 Specificity of antibody binding domains used in GNC proteins. AgBD Specificity Antibody Name CD3.epsilon. 284A10 480C8 4-1BB 460C3 420H5 466F6 FITC 4420 PD-L1 PL230C6 CD19 21D4 ROR1 323H7 IgD Domain 330F11 Kringle Domain 338H4 Frizzled Domain 324C6 EGFRvIII 806
TABLE-US-00004 TABLE 4 Classes of tetra-specific GNC antibodies targeting EGFRvIII (SI-39E), ROR1 (SI-35E), and CD19 (SI-38E). GNC AgBD 1 Humanized AgBD 2 Humanized IgG1 AgBD 3 Humanized AgBD 4 Humanized ID (LH-scFv) Variant (Fab) Variant Fc (HL-scFv) Variant (HL-ScFv) Variant SI-39E18 284A10 L1H1 806 -- n2 PL221G5 H1L1 420H5 H3L3 SI-39E29 806 -- 284A10 H1L1 n2 PL221G5 H1L1 420H5 H3L3 SI-35E20 466F6 L5H2 PL230C6 H3L2 n2 323H7 H4L1 284A10 H1L1 SI-35E58 284A10 L1H1 PL230C6 H3L2 n2 323H7 H4L1 466F6 H2L5 SI-35E88 284A10 L1H1 323H7 H4L1 n2 PL230C6 H3L2 466F6 H2L5 SI-35E99 284A10 L1H1 323H7 H4L1 n2 PL221G5 H1L1 466F6 H2L5 SI-35E18 460C3 L1H1 PL230C6 H3L2 n2 323H7 H4L1 284A10 H1L1 SI-35E19 420H5 L3H3 PL230C6 H3L2 n2 323H7 H4L1 284A10 H1L1 SI-35E36 4420 -- PL230C6 H3L2 n2 338H4 H3L4 284A10 H1L1 SI-35E37 460C3 L1H1 4420 -- n2 338H4 H3L4 284A10 H1L1 SI-35E38 460C3 L1H1 PL230C6 H3L2 n2 4420 -- 284A10 H1L1 SI-35E39 460C3 L1H1 PL230C6 H3L2 n2 338H4 H3L4 4420 -- SI-38E17 284A10 H1L1 21D4 -- n2 PL221G5 H1L1 466F6 H2L5 SI-38E33 21D4 -- 284A10 H1L1 n2 PL221G5 H1L1 466F6 H2L5
TABLE-US-00005 SEQ ID Description 1 anti-CD3 284A10 VHv1 nt 2 anti-CD3 284A10 VHv1 aa 3 anti-CD3 284A10 VLv1 nt 4 anti-CD3 284A10 VLv1 aa 5 anti-PD-L1 PL23006 VHv3 nt 6 anti-PD-L1 PL23006 VHv3 aa 7 anti-PD-L1 PL23006 VLv2 nt 8 anti-PD-L1 PL23006 VLv2 aa 9 anti-PD-L1 PL221G5 VHv1 nt 10 anti-PD-L1 PL221G5 VHv1 aa 11 anti-PD-L1 PL221G5 VLv1 nt 12 anti-PD-L1 PL221G5 VLv1 aa 13 anti-4-1BB 420H5 VHv3 nt 14 anti-4-1BB 420H5 VHv3 aa 15 anti-4-1BB 420H5 VLv3 nt 16 anti-4-1BB 420H5 VHLv3 aa 17 anti-4-1BB 466F6 VHv2 nt 18 anti-4-1BB 466F6 VHv2 aa 19 anti-4-1BB 466F6 VLv5 nt 20 anti-4-1BB 466F6 VLv5 aa 21 anti-4-1BB 460C3 VHv1 nt 22 anti-4-1BB 460C3 VHv1 aa 23 anti-4-1BB 460C3 VLv1 nt 24 anti-4-1BB 460C3 VLv1 aa 25 anti-ROR1 323H7 VHv4 nt 26 anti-ROR1 323H7 VHv4 aa 27 anti-ROR1 323H7 VLv1 nt 28 anti-ROR1 323H7 VLv1 aa 29 anti-ROR1 338H4 VHv3 nt 30 anti-ROR1 338H4 VHv3 aa 31 anti-ROR1 338H4 VLv4 nt 32 anti-ROR1 338H4 VLv4 aa 33 anti-FITC 4-4-20 VH nt 34 anti-FITC 4-4-20 VH aa 35 anti-FITC 4-4-20 VL nt 36 anti-FITC 4-4-20 VL aa 37 human IgG1 null2 (G1m-fa with ADCC/CDC null mutations) nt 38 human IgG1 null2 (G1m-fa with ADCC/CDC null mutations) aa 39 human Ig Kappa nt 40 human Ig Kappa aa 41 SI-35E18 (460C3-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) heavy chain nt 42 SI-35E18 (460C3-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) heavy chain aa 43 SI-35E18 (460C3-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) light chain nt 44 SI-35E18 (460C3-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) light chain aa 45 anti-CD3 284A10 VHv1b nt 46 anti-CD3 284A10 VHv1b aa 47 anti-huCD19 21D4 VH nt 48 anti-huCD19 21D4 VH aa 49 anti-huCD19 21D4 VL nt 50 anti-huCD19 21D4 VL aa 51 anti-huEGFRvIII 806 VH nt 52 anti-huEGFRvIII 806 VH aa 53 anti-huEGFRvIII 806 VL nt 54 anti-huEGFRvIII 806 VL aa 55 GGGGSGGGGSG linker nt 56 GGGGSGGGGSG linker aa 57 GGGSGGGGS linker 01 nt 58 GGGSGGGGS linker 01 aa 59 GGGSGGGGS linker 02 nt 60 GGGSGGGGS linker 02 aa 61 GGGSGGGGSGGGSGGGGS linker nt 62 GGGSGGGGSGGGSGGGGS linker aa 63 SI-39E18 (284A10-L1H1-scFv .times. 806-Fab .times. PL221G5-H1L1-sc Fv .times. 420H5-H3L3-scFv) heavy chain nt 64 SI-39E18 (284A10-L1H1-scFv .times. 806-Fab .times. PL221G5-H1L1-sc Fv .times. 420H5-H3L3-scFv) heavy chain aa 65 SI-39E18 (284A10-L1H1-scFv .times. 806-Fab .times. PL221G5-H1L1-sc Fv .times. 420H5-H3L3-scFv) light chain nt 66 SI-39E18 (284A10-L1H1-scFv .times. 806-Fab .times. PL221G5-H1L1-sc Fv .times. 420H5-H3L3-scFv) light chain aa 67 SI-39E29 (806-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1-scFv .times. 420H5-H3L3-scFv) heavy chain nt 68 SI-39E29 (806-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1-scFv .times. 420H5-H3L3-scFv) heavy chain aa 69 SI-39E29 (806-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1-scFv .times. 420H5-H3L3-scFv) light chain nt 70 SI-39E29 (806-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1-scFv .times. 420H5-H3L3-scFv) light chain aa 71 SI-35E20 (466F6-L5H2-scFv .times. PL230C6-Fab .times. 3 23H7-H4L1-scFv .times. 284A10-H1L1-scFv) heavy chain nt 72 SI-35E20 (466F6-L5H2-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) heavy chain aa 73 SI-35E20 (466F6-L5H2-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) light chain nt 74 SI-35E20 (466F6-L5H2-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) light chain aa 75 SI-35E58 (284A10-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-sc Fv .times. 466F6-H2L5-scFv) heavy chain nt 76 SI-35E58 (284A10-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-sc Fv .times. 466F6-H2L5-scFv) heavy chain aa 77 SI-35E58 (284A10-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-sc Fv .times. 466F6-H2L5-scFv) light chain nt 78 SI-35E58 (284A10-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-sc Fv .times. 466F6-H2L5-scFv) light chain aa 79 SI-35E88 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL230C6-H3L2-sc Fv .times. 466F6-H2L5-scFv) heavy chain nt 80 SI-35E88 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL230C6-H3L2-sc Fv .times. 466F6-H2L5-scFv) heavy chain aa 81 SI-35E88 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL230C6-H3L2-sc Fv .times. 466F6-H2L5-scFv) light chain nt 82 SI-35E88 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL230C6-H3L2-sc Fv .times. 466F6-H2L5-scFv) light chain aa 83 SI-35E99 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL221G5-H1L1-sc Fv .times. 466F6-H2L5-scFv) heavy chain nt 84 SI-35E99 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL221G5-H1L1-sc Fv .times. 466F6-H2L5-scFv) heavy chain aa 85 SI-35E99 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL221G5-H1L1-sc Fv .times. 466F6-H2L5-scFv) light chain nt 86 SI-35E99 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL221G5-H1L1-sc Fv .times. 466F6-H2L5-scFv) light chain aa 87 SI-38E17 (284A10-L1H1-scFv .times. 21D4-Fab .times. PL221G5-H1L1-scFv .times. 466F6-H2L5-scFv) heavy chain nt 88 SI-38E17 (284A10-L1H1-scFv .times. 21D4-Fab .times. PL221G5-H1L1-scFv .times. 466F6-H2L5-scFv) heavy chain aa 89 SI-38E17 (284A10-L1H1-scFv .times. 21D4-Fab .times. PL221G5-H1L1-scFv .times. 466F6-H2L5-scFv) light chain nt 90 SI-38E17 (284A10-L1H1-scFv .times. 21D4-Fab .times. PL221G5-H1L1-scFv .times. 466F6-H2L5-scFv) light chain aa 91 SI-38E33 (21D4-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1-sc Fv .times. 466F6-H2L5-scFv) heavy chain nt 92 SI-38E33 (21D4-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1-sc Fv .times. 466F6-H2L5-scFv) heavy chain aa 93 SI-38E33 (21D4-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1-sc Fv .times. 466F6-H2L5-scFv) light chain nt 94 SI-38E33 (21D4-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1-sc Fv .times. 466F6-H2L5-scFv) light chain aa
GNC-T Sequence Listing of Tetra-Specific GNC Antibodies
TABLE-US-00006
[0124]>SEQ ID 01 anti-CD3 284A10 VHv1 nt GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTC- TGG ATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGGAGTCA- TTA CTGGTCGTGATATCACATACTACGCGAGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGAAC- ACG CTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGCGCGACGGTGGATCATC- TGC TATTACTAGTAACAACATTTGGGGCCAAGGAACTCTGGTCACCGTTTCTTCA >SEQ ID 02 anti-CD3 284A10 VHv1 aa EVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYASWAKGRFTISRDNS- KNT LYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSS >SEQ ID 03 anti-CD3 284A10 VLv1 nt GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCAATTGCCAAGC- CAG TGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGAAG- CAT CCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAGTTCACTCTCACCATCAGC- AGC CTGCAGCCTGATGATTTTGCAACTTATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTC- TTT CGGCGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 04 anti-CD3 284A10 VLv1 aa DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSGSGSGTEFTLT- ISS LQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIK >SEQ ID 05 anti-PD-L1 PL230C6 VHv3 nt CAGTCGGTGGAGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACAGCCTCTGG- AAT CGACCTTAATACCTACGACATGATCTGGGTCCGCCAGGCTCCAGGCAAGGGGCTAGAGTGGGTTGGAATCATTA- CTT ATAGTGGTAGTAGATACTACGCGAACTGGGCGAAAGGCCGATTCACCATCTCCAAAGACAATACCAAGAACACG- GTG TATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCCAGAGATTATATGAGTGGTTC- CCA CTTGTGGGGCCAGGGAACCCTGGTCACCGTCTCTAGT >SEQ ID 06 anti-PD-L1 PL230C6 VHv3 aa QSVEESGGGLVQPGGSLRLSCTASGIDLNTYDMIWVRQAPGKGLEWVGIITYSGSRYYANWAKGRFTISKDNTK- NTV YLQMNSLRAEDTAVYYCARDYMSGSHLWGQGTLVTVSS >SEQ ID 07 anti-PD-L1 PL230C6 VLv2 nt GCCTATGATATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCAAGTGTCAGGC- CAG TGAGGACATTTATAGCTTCTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCCATTCTG- CAT CCTCTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC- AGC CTGCAGCCTGAAGATTTTGCAACTTACTATTGTCAACAGGGTTATGGTAAAAATAATGTTGATAATGCTTTCGG- CGG AGGGACCAAGGTGGAGATCAAA >SEQ ID 08 anti-PD-L1 PL230C6 VLv2 aa AYDMTQSPSSVSASVGDRVTIKCQASEDIYSFLAWYQQKPGKAPKLLIHSASSLASGVPSRFSGSGSGTDFTLT- ISS LQPEDFATYYCQQGYGKNNVDNAFGGGTKVEIK >SEQ ID 09 anti-PD-L1 PL221G5 VHv1 nt GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTC- TGG ATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCAT- GCA TTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAAT- TCC AAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGC- GTT TTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGC >SEQ ID 10 anti-PD-L1 PL221G5 VHv1 aa EVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACIAAGSAGITYDANWAKGRFTISR- DNS KNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTVSS >SEQ ID 11 anti-PD-L1 PL221G5 VLv1 nt GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGC- CAG TCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGG- CAT CCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGC- AGC CTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGG- CGG AGGGACCAAGGTGGAGATCAAA >SEQ ID 12 anti-PD-L1 PL221G5 VLv1 aa DIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLT- ISS LQPDDFATYYCQQGYSWGNVDNVFGGGTKVEIK >SEQ ID 13 anti-4-1BB 420H5 VHv3 nt CAGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGG- ATT CTCCTTCAGTAGCAACTACTGGATATGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCA- TTT ATGTTGGTAGTAGTGGTGACACTTACTACGCGAGCTCCGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCC- AAG AACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGAGATAGTAG- TAG TTATTATATGTTTAACTTGTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGC >SEQ ID 14 anti-4-1BB 420H5 VHv3 aa QSLVESGGGLVQPGGSLRLSCAASGFSFSSNYWICWVRQAPGKGLEWIACIYVGSSGDTYYASSAKGRFTISRD- NSK NTLYLQMNSLRAEDTAVYYCARDSSSYYMFNLWGQGTLVTVSS >SEQ ID 15 anti-4-1BB 420H5 VLv3 nt GCCCTTGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCAATTGCCAGGC- CAG TGAGGACATTGATACCTATTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTTTTATG- CAT CCGATCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGC- AGC CTGCAGCCTGATGATTTTGCAACTTATTACTGCCAAGGCGGTTACTATACTAGTAGTGCTGATACGAGGGGTGC- TTT CGGCGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 16 anti-4-1BB 420H5 VLv3 aa ALVMTQSPSTLSASVGDRVTINCQASEDIDTYLAWYQQKPGKAPKLLIFYASDLASGVPSRFSGSGSGTEFTLT- ISS LQPDDFATYYCQGGYYTSSADTRGAFGGGTKVEIK >SEQ ID 17 anti-4-1BB 466F6 VHv2 nt CGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACAGCCTCTGG- ATT CACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTACATCGGAACCATTA- GTA GTGGTGGTAATGTATACTACGCGAGCTCCGCGAGAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACG- GTG GATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGA- TCC TATGTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGC >SEQ ID 18 anti-4-1BB 466F6 VHv2 aa RSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGLEYIGTISSGGNVYYASSARGRFTISRPSSK- NTV DLQMNSLRAEDTAVYYCARDSGYSDPMWGQGTLVTVSS >SEQ ID 19 anti-4-1BB 466F6 VLv5 nt GACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGC- CAG TCAGAACATTAGGACTTACTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTG- CAG CCAATCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC- GAC CTGGAGCCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTTT- CGG CGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 20 anti-4-1BB 466F6 VLv5 aa DVVMTQSPSSVSASVGDRVTITCQASQNIRTYLSWYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLT- ISD LEPGDAATYYCQSTYLGTDYVGGAFGGGTKVEIK >SEQ ID 21 anti-4-1BB 460C3 VHv1 nt GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTC- TGG AATCGACTTCAGTAGGAGATACTACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCAT- GCA TATATACTGGTAGCCGCGATACTCCTCACTACGCGAGCTCCGCGAAAGGCCGGTTCACCATCTCCAGAGACAAT- TCC AAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGAGAAGG- TAG CCTGTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGC >SEQ ID 22 anti-4-1BB 460C3 VHv1 aa EVQLLESGGGLVQPGGSLRLSCAASGIDFSRRYYMCWVRQAPGKGLEWIACIYTGSRDTPHYASSAKGRFTISR- DNS KNTLYLQMNSLRAEDTAVYYCAREGSLWGQGTLVTVSS >SEQ ID 23 anti-4-1BB 460C3 VLv1 nt GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGTC- CAG TCAGAGTGTTTATAGTAACTGGTTCTCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATT- CTG CATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATC- AGC AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCGCAGGCGGTTACAATACTGTTATTGATACTTTTGCTTT- CGG CGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 24 anti-4-1BB 460C3 VLv1 aa DIQMTQSPSTLSASVGDRVTITCQSSQSVYSNWFSWYQQKPGKAPKLLIYSASTLASGVPSRFSGSGSGTEFTL- TIS
SLQPDDFATYYCAGGYNTVIDTFAFGGGTKVEIK >SEQ ID 25 anti-ROR1 323H7 VHv4 nt GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTC- TGG ATTCACCATCAGTCGCTACCACATGACTTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGGACATA- TTT ATGTTAATAATGATGACACAGACTACGCGAGCTCCGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAG- AAC ACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCACCTATTTCTGTGCGAGATTGGATGTTGG- TGG TGGTGGTGCTTATATTGGGGACATCTGGGGCCAGGGAACTCTGGTTACCGTCTCTTCA >SEQ ID 26 anti-ROR1 323H7 VHv4 aa EVQLLESGGGLVQPGGSLRLSCAASGETISRYHMTWVRQAPGKGLEWIGHIYVNNDDTDYASSAKGRFTISRDN- SKN TLYLQMNSLRAEDTATYFCARLDVGGGGAYIGDIWGQGTLVTVSS >SEQ ID 27 anti-ROR1 323H7 VLv1 nt GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGTC- CAG TCAGAGTGTTTATAACAACAACGACTTAGCCTGGTATCAGCAGAAACCAGGGAAAGTTCCTAAGCTCCTGATCT- ATT ATGCTTCCACTCTGGCATCTGGGGTCCCATCTCGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACC- ATC AGCAGCCTGCAGCCTGAAGATGTTGCAACTTATTACTGTGCAGGCGGTTATGATACGGATGGTCTTGATACGTT- TGC TTTCGGCGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 28 anti-ROR1 323H7 VLv1 aa DIQMTQSPSSLSASVGDRVTITCQSSQSVYNNNDLAWYQQKPGKVPKLLIYYASTLASGVPSRFSGSGSGTDFT- LTI SSLQPEDVATYYCAGGYDTDGLDTFAFGGGTKVEIK >SEQ ID 29 anti-ROR1 338H4 VHv3 nt GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACTGCCTC- TGG ATTCTCCCTCAGTAGCTATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAGGGGGCTGGAGTGGATCGGAATCA- TTT ATGCTAGTGGTAGCACATACTACGCGAGCTCGGCGAAAGGCAGATTCACCATCTCCAAAGACAATACCAAGAAC- ACG GTGGATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAATTTATGACGGCAT- GGA CCTCTGGGGCCAGGGAACTCTGGTTACCGTCTCTTCA >SEQ ID 30 anti-ROR1 338H4 VHv3 aa EVQLVESGGGLVQPGGSLRLSCTASGFSLSSYAMSWVRQAPGRGLEWIGIIYASGSTYYASSAKGRFTISKDNT- KNT VDLQMNSLRAEDTAVYYCARIYDGMDLWGQGTLVTVSS >SEQ ID 31 anti-ROR1 338H4 VLv4 nt GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCAATTGCCAGGC- CAG TCAGAACATTTACAGCTACTTATCCTGGTATCAGCAGAAACCAGGGAAAGTTCCTAAGCGCCTGATCTATCTGG- CAT CTACTCTGGCATCTGGGGTCCCATCTCGGTTCAGTGGCAGTGGATCTGGGACAGATTACACTCTCACCATCAGC- AGC CTGCAGCCTGAAGATGTTGCAACTTATTACTGTCAAAGCAATTATAACGGTAATTATGGTTTCGGCGGAGGGAC- CAA GGTGGAGATCAAA >SEQ ID 32 anti-ROR1 338H4 VLv4 aa DIQMTQSPSSLSASVGDRVTINCQASQNIYSYLSWYQQKPGKVPKRLIYLASTLASGVPSRFSGSGSGTDYTLT- ISS LQPEDVATYYCQSNYNGNYGFGGGTKVEIK >SEQ ID 33 anti-FITC 4420 VH nt GAGGTGAAGCTGGATGAGACTGGAGGAGGCTTGGTGCAACCTGGGAGGCCCATGAAACTCTCCTGTGTTGCCTC- TGG ATTCACTTTTAGTGACTACTGGATGAACTGGGTCCGCCAGTCTCCAGAGAAAGGACTGGAGTGGGTAGCACAAA- TTA GAAACAAACCTTATAATTATGAAACATATTATTCAGATTCTGTGAAAGGCAGATTCACCATCTCAAGAGATGAT- TCC AAAAGTAGTGTCTACCTGCAAATGAACAACTTAAGAGTTGAAGACATGGGTATCTATTACTGTACGGGTTCTTA- CTA TGGTATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA >SEQ ID 34 anti-FITC 4420 VH aa EVKLDETGGGLVQPGRPMKLSCVASGFTFSDYWMNWVRQSPEKGLEWVAQIRNKPYNYETYYSDSVKGRFTISR- DDS KSSVYLQMNNLRVEDMGIYYCTGSYYGMDYWGQGTSVTVSS >SEQ ID 35 anti-FITC 4420 VL nt GATGTCGTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGCAGATC- TAG TCAGAGCCTTGTACACAGTAATGGAAACACCTATTTACGTTGGTACCTGCAGAAGCCAGGCCAGTCTCCAAAGG- TCC TGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTCAGTGGCAGTGGATCAGGGACAGATTTC- ACA CTCAAGATCAGCAGAGTGGAGGCTGAGGATCTGGGAGTTTATTTCTGCTCTCAAAGTACACATGTTCCGTGGAC- GTT CGGTGGAGGCACCAAGCTGGAAATCAAA >SEQ ID 36 anti-FITC 4420 VL aa DVVMTQTPLSLPVSLGDQASISCRSSQSLVHSNGNTYLRWYLQKPGQSPKVLIYKVSNRFSGVPDRFSGSGSGT- DFT LKISRVEAEDLGVYFCSQSTHVPWTFGGGTKLEIK >SEQ ID 37 human IgG1 null (G1m-fa with ADCC/CDC null mutations) nt GCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCT- GGG CTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGC- ACA CCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTG- GGC ACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATC- TTG TGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCC- CAA AACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGAC- CCT GAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTA- CAA CAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCG- CGG TCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAG- GTG TACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTA- TCC CAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG- ACT CCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCA- TGC TCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGT >SEQ ID 38 human IgG1 null (G1m-fa with ADCC/CDC null mutations) aa ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS- SLG TQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLEPPKPKDTLMISRTPEVTCVVVDVSH- EDP EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPAPIEKTISKAKGQPRE- PQV YTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV- FSC SVMHEALHNHYTQKSLSLSPG >SEQ ID 39 human Ig Kappa nt CGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGT- TGT GTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTA- ACT CCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAA- GCA GACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTT- CAA CAGGGGAGAGTGT >SEQ ID 40 human Ig Kappa aa RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL- SKA DYEKHKVYACEVTHQGLSSPVTKSFNRGEC >SEQ ID 41 SI-35E18 (460C3-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) heavy chain nt GACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGTC- CAG TCAGAGTGTTTATAGTAACTGGTTCTCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATT- CTG CATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATC- AGC AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCGCAGGCGGTTACAATACTGTTATTGATACTTTTGCTTT- CGG CGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCG- GTG GAGGATCAGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT- GCA GCCTCTGGAATCGACTTCAGTAGGAGATACTACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTG- GAT CGCATGCATATATACTGGTAGCCGCGATACTCCTCACTACGCGAGCTCCGCGAAAGGCCGGTTCACCATCTCCA- GAG ACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCG- AGA GAAGGTAGCCTGTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGCGGCGGTGGAGGGTCCGGCGGTGGTGGATC- CCA GTCGGTGGAGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACAGCCTCTGGAA- TCG ACCTTAATACCTACGACATGATCTGGGTCCGCCAGGCTCCAGGCAAGGGGCTAGAGTGGGTTGGAATCATTACT- TAT AGTGGTAGTAGATACTACGCGAACTGGGCGAAAGGCCGATTCACCATCTCCAAAGACAATACCAAGAACACGGT- GTA TCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCCAGAGATTATATGAGTGGTTCCC- ACT TGTGGGGCCAGGGAACCCTGGTCACCGTCTCTAGTGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCC- TCC
TCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGT- GTC GTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCC- TCA GCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGC- AAC ACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGA- AGC CGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGG- TCA CATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTG- CAT AATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCA- CCA GGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCA- TCT CCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTATACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAAC- CAG GTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCC- GGA GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGG- ACA AGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG- AAG AGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGG- GGG AGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAGTCGCTACCACA- TGA CTTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGGACATATTTATGTTAATAATGATGACACAGAC- TAC GCGAGCTCCGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAG- CCT GAGAGCCGAGGACACGGCCACCTATTTCTGTGCGAGATTGGATGTTGGTGGTGGTGGTGCTTATATTGGGGACA- TCT GGGGCCAGGGAACTCTGGTTACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGG- TCC GGCGGTGGAGGATCAGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCAC- CAT CACTTGCCAGTCCAGTCAGAGTGTTTATAACAACAACGACTTAGCCTGGTATCAGCAGAAACCAGGGAAAGTTC- CTA AGCTCCTGATCTATTATGCTTCCACTCTGGCATCTGGGGTCCCATCTCGGTTCAGTGGCAGTGGATCTGGGACA- GAT TTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATGTTGCAACTTATTACTGTGCAGGCGGTTATGATACGGA- TGG TCTTGATACGTTTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGAT- CCG AGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCT- GGA TTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGGAGTCAT- TAC TGGTCGTGATATCACATACTACGCGAGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACA- CGC TGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGCGCGACGGTGGATCATCT- GCT ATTACTAGTAACAACATTTGGGGCCAAGGAACTCTGGTCACCGTTTCTTCAGGCGGTGGCGGTAGTGGGGGAGG- CGG TTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCAT- CTG TAGGAGACAGAGTCACCATCAATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAA- CCA GGGAAAGCCCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAG- TGG ATCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAAGGCT- ATT TTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 42 SI-35E18 (460C3-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) heavy chain aa DIQMTQSPSTLSASVGDRVTITCQSSQSVYSNWFSWYQQKPGKAPKLLIYSASTLASGVPSRFSGSGSGTEFTL- TIS SLQPDDFATYYCAGGYNTVIDTFAFGGGTKVEIKGGGGSGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSLRL- SCA ASGIDFSRRYYMCWVRQAPGKGLEWIACIYTGSRDTPHYASSAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY- CAR EGSLWGQGTLVTVSSGGGGSGGGGSQSVEESGGGLVQPGGSLRLSCTASGIDLNTYDMIWVRQAPGKGLEWVGI- ITY SGSRYYANWAKGRFTISKDNTKNTVYLQMNSLRAEDTAVYYCARDYMSGSHLWGQGTLVTVSSASTKGPSVFPL- APS SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHK- PSN TKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV- EVH NAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELT- KNQ VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY- TQK SLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGETISRYHMTWVRQAPGKGLEWIGHIYVNNDD- TDY ASSAKGRFTISRDNSKNTLYLQMNSLRAEDTATYFCARLDVGGGGAYIGDIWGQGTLVTVSSGGGGSGGGGSGG- GGS GGGGSDIQMTQSPSSLSASVGDRVTITCQSSQSVYNNNDLAWYQQKPGKVPKLLIYYASTLASGVPSRFSGSGS- GTD FTLTISSLQPEDVATYYCAGGYDTDGLDTFAFGGGTKVEIKGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCA- ASG FTISTNAMSWVRQAPGKGLEWIGVITGRDITYYASWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGG- SSA ITSNNIWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQ- QKP GKAPKLLIYEASKLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIK >SEQ ID 43 SI-35E18 (460C3-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) light chain nt GCCTATGATATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCAAGTGTCAGGC- CAG TGAGGACATTTATAGCTTCTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCCATTCTG- CAT CCTCTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC- AGC CTGCAGCCTGAAGATTTTGCAACTTACTATTGTCAACAGGGTTATGGTAAAAATAATGTTGATAATGCTTTCGG- CGG AGGGACCAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGT- TGA AATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTG- GAT AACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAG- CAG CACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA- GCT CGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT >SEQ ID 44 SI-35E18 (460C3-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) light chain aa AYDMTQSPSSVSASVGDRVTIKCQASEDIYSFLAWYQQKPGKAPKLLIHSASSLASGVPSRFSGSGSGTDFTLT- ISS LQPEDFATYYCQQGYGKNNVDNAFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNEYPREAKVQW- KVD NALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC >SEQ ID 45 anti-CD3 284A10 VHv1b nt GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTC- TGG ATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGGAGTCA- TTA CTGGTCGTGATATCACATACTACGCGAGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGAAC- ACG CTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACGGTGGTTCTTC- TGC TATTACTAGTAACAACATTTGGGGCCAGGGAACCCTGGTCACCGTGTCGACA >SEQ ID 46 anti-CD3 284A10 VHv1b aa EVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYASWAKGRFTISRDNS- KNT LYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVST >SEQ ID 47 anti-huCD19 21D4 VH nt GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTGAAGAAACCAGGAGAGTCTCTGAAGATCTCCTGTAAGGGTTC- TGG ATACAGCTTTAGCAGTTCATGGATCGGCTGGGTGCGCCAGGCACCTGGGAAAGGCCTGGAATGGATGGGGATCA- TCT ATCCTGATGACTCTGATACCAGATACAGTCCATCCTTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATC- AGG ACTGCCTACCTGCAGTGGAGTAGCCTGAAGGCCTCGGACACCGCTATGTATTACTGTGCGAGACATGTTACTAT- GAT TTGGGGAGTTATTATTGACTTCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA >SEQ ID 48 anti-huCD19 21D4 VH aa EVQLVQSGAEVKKPGESLKISCKGSGYSFSSSWIGWVRQAPGKGLEWMGIIYPDDSDTRYSPSFQGQVTISADK- SIR TAYLQWSSLKASDTAMYYCARHVTMIWGVIIDFWGQGTLVTVSS >SEQ ID 49 anti-huCD19 21D4 VL nt GCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGC- AAG TCAGGGCATTAGCAGTGCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCTGATCTATGATG- CCT CCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGC- AGC CTGCAGCCTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAGTTACCCATTCACTTTCGGCCCTGGGAC- CAA AGTGGATATCAAA >SEQ ID 50 anti-huCD19 21D4 VL aa AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTDFTLT- ISS LQPEDFATYYCQQFNSYPFTFGPGTKVDIK
>SEQ ID 51 anti-huEGFRvIII 806 VH nt GATGTGCAGCTTCAGGAGTCGGGACCTAGCCTGGTGAAACCTTCTCAGTCTCTGTCCCTCACCTGCACTGTCAC- TGG CTACTCAATCACCAGTGATTTTGCCTGGAACTGGATTCGGCAGTTTCCAGGAAACAAGCTGGAGTGGATGGGCT- ACA TAAGTTATAGTGGTAACACTAGGTACAACCCATCTCTCAAAAGTCGAATCTCTATCACTCGCGACACATCCAAG- AAC CAATTCTTCCTGCAGTTGAACTCTGTGACTATTGAGGACACAGCCACATATTACTGTGTAACGGCGGGACGCGG- GTT TCCTTATTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCA >SEQ ID 52 anti-huEGFRvIII 806 VH aa DVQLQESGPSLVKPSQSLSLTCTVTGYSITSDFAWNWIRQFPGNKLEWMGYISYSGNTRYNPSLKSRISITRDT- SKN QFFLQLNSVTIEDTATYYCVTAGRGFPYWGQGTLVTVSA >SEQ ID 53 anti-huEGFRvIII 806 VL nt GACATCCTGATGACCCAATCTCCATCCTCCATGTCTGTATCTCTGGGAGACACAGTCAGCATCACTTGCCATTC- AAG TCAGGACATTAACAGTAATATAGGGTGGTTGCAGCAGAGACCAGGGAAATCATTTAAGGGCCTGATCTATCATG- GAA CCAACTTGGACGATGAAGTTCCATCAAGGTTCAGTGGCAGTGGATCTGGAGCCGATTATTCTCTCACCATCAGC- AGC CTGGAATCTGAAGATTTTGCAGACTATTACTGTGTACAGTATGCTCAGTTTCCGTGGACGTTCGGTGGAGGCAC- CAA GCTGGAAATCAAA >SEQ ID 54 anti-huEGFRvIII 806 VL aa DILMTQSPSSMSVSLGDTVSITCHSSQDINSNIGWLQQRPGKSFKGLIYHGTNLDDEVPSRFSGSGSGADYSLT- ISS LESEDFADYYCVQYAQFPWTFGGGTKLEIK >SEQ ID 55 GGGGSGGGGSG linker nt GGCGGTGGAGGGTCCGGCGGTGGTGGCTCCGGA >SEQ ID 56 GGGGSGGGGSG linker aa GGGGSGGGGSG >SEQ ID 57 GGGGSGGGGS linker 01 nt GGCGGTGGAGGGTCCGGCGGTGGTGGATCA >SEQ ID 58 GGGGSGGGGS linker 01 aa GGGGSGGGGS >SEQ ID 59 GGGGSGGGGS linker 02 nt GGCGGTGGAGGGTCCGGCGGTGGTGGATCC >SEQ ID 60 GGGGSGGGGS linker 02 aa GGGGSGGGGS >SEQ ID 61 GGGGSGGGGSGGGGSGGGGS linker nt GGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCA >SEQ ID 62 GGGGSGGGGSGGGGSGGGGS linker aa GGGGSGGGGSGGGGSGGGGS >SEQ ID 63 SI-39E18 (284A10-L1H1-scFv .times. 806-Fab .times. PL221G5-H1L1-scFv .times. 420H5- H3L3-scFv) heavy chain nt GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCAATTGCCAAGC- CAG TGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGAAG- CAT CCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAGTTCACTCTCACCATCAGC- AGC CTGCAGCCTGATGATTTTGCAACTTATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTC- TTT CGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCG- GCG GTGGAGGATCAGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCC- TGT GCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTG- GAT CGGAGTCATTACTGGTCGTGATATCACATACTACGCGAGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACA- ATT CCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGCGCGAC- GGT GGATCATCTGCTATTACTAGTAACAACATTTGGGGCCAAGGAACTCTGGTCACCGTTTCTTCAGGCGGTGGAGG- GTC CGGCGGTGGTGGATCCGATGTGCAGCTTCAGGAGTCGGGACCTAGCCTGGTGAAACCTTCTCAGTCTCTGTCCC- TCA CCTGCACTGTCACTGGCTACTCAATCACCAGTGATTTTGCCTGGAACTGGATTCGGCAGTTTCCAGGAAACAAG- CTG GAGTGGATGGGCTACATAAGTTATAGTGGTAACACTAGGTACAACCCATCTCTCAAAAGTCGAATCTCTATCAC- TCG CGACACATCCAAGAACCAATTCTTCCTGCAGTTGAACTCTGTGACTATTGAGGACACAGCCACATATTACTGTG- TAA CGGCGGGACGCGGGTTTCCTTATTGGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCTAGCACCAAGGGCCCA- TCG GTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTA- CTT CCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTAC- AGT CCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGC- AAC GTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATG- CCC ACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCA- TGA TCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGG- TAC GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGT- CAG CGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCC- CAG CCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCC- CGG GATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGA- GTG GGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC- TCT ATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCT- CTG CACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGA- GGT GCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGAT- TCT CCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATT- GCT GCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAA- GAA CACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTT- CGT TCGACTACGCCATGGACCTCTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGCGGCGGTGGCGGTAGTGGGGGA- GGC GGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGC- ATC TGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAGA- AAC CAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC- AGT GGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACA- GGG TTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCG- GCG GTGGTGGATCCCAGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT- GCA GCCTCTGGATTCTCCTTCAGTAGCAACTACTGGATATGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTG- GAT CGCATGTATTTATGTTGGTAGTAGTGGTGACACTTACTACGCGAGCTCCGCGAAAGGCCGGTTCACCATCTCCA- GAG ACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCG- AGA GATAGTAGTAGTTATTATATGTTTAACTTGTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGTGGCGG- TAG TGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGCCCTTGTGATGACCCAGTCTCCTTCCA- CCC TGTCTGCATCTGTAGGAGACAGAGTCACCATCAATTGCCAGGCCAGTGAGGACATTGATACCTATTTAGCCTGG- TAT CAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTTTTACGCATCCGATCTGGCATCTGGGGTCCCATCAAG- GTT CAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATT- ACT GCCAAGGCGGTTACTATACTAGTAGTGCTGATACGAGGGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 64 SI-39E18 (284A10-L1H1-scFv .times. 806-Fab .times. PL221G5-H1L1-scFv .times. 420H5- H3L3-scFv) heavy chain aa DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSGSGSGTEFTLT- ISS LQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIKGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLR- LSC AASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYASWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA- RDG GSSAITSNNIWGQGTLVTVSSGGGGSGGGGSDVQLQESGPSLVKPSQSLSLTCTVTGYSITSDFAWNWIRQFPG- NKL EWMGYISYSGNTRYNPSLKSRISITRDTSKNQFFLQLNSVTIEDTATYYCVTAGRGFPYWGQGTLVTVSAASTK- GPS VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTY- ICN VNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF- NWY VDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLP- PSR DELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH- EAL HNHYTQKSLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIA- CIA AGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTVSSGGGGS- GGG GSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGKAPKLLIYKASTLASGVPSRF- SGS
GSGTEFTLTISSLQPDDFATYYCQQGYSWGNVDNVFGGGTKVEIKGGGGSGGGGSQSLVESGGGLVQPGGSLRL- SCA ASGFSFSSNYWICWVRQAPGKGLEWIACIYVGSSGDTYYASSAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY- CAR DSSSYYMFNLWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSALVMTQSPSTLSASVGDRVTINCQASEDIDTYL- AWY QQKPGKAPKLLIFYASDLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQGGYYTSSADTRGAFGGGTKVE- IK >SEQ ID 65 SI-39E18 (284A10-L1H1-scFv .times. 806-Fab .times. PL221G5-H1L1-scFv .times. 420H5- H3L3-scFv) light chain nt GACATCCTGATGACCCAATCTCCATCCTCCATGTCTGTATCTCTGGGAGACACAGTCAGCATCACTTGCCATTC- AAG TCAGGACATTAACAGTAATATAGGGTGGTTGCAGCAGAGACCAGGGAAATCATTTAAGGGCCTGATCTATCATG- GAA CCAACTTGGACGATGAAGTTCCATCAAGGTTCAGTGGCAGTGGATCTGGAGCCGATTATTCTCTCACCATCAGC- AGC CTGGAATCTGAAGATTTTGCAGACTATTACTGTGTACAGTATGCTCAGTTTCCGTGGACGTTCGGTGGAGGCAC- CAA GCTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTG- GAA CTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCC- CTC CAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCT- GAC GCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCG- TCA CAAAGAGCTTCAACAGGGGAGAGTGT >SEQ ID 66 SI-39E18 (284A10-L1H1-scFv .times. 806-Fab .times. PL221G5-H1L1-scFv .times. 420H5- H3L3-scFv) light chain aa DILMTQSPSSMSVSLGDTVSITCHSSQDINSNIGWLQQRPGKSFKGLIYHGTNLDDEVPSRFSGSGSGADYSLT- ISS LESEDFADYYCVQYAQFPWTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVD- NAL QSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC >SEQ ID 67 SI-39E29 (806-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1-scFv .times. 420H5- H3L3-scFv) heavy chain nt GACATCCTGATGACCCAATCTCCATCCTCCATGTCTGTATCTCTGGGAGACACAGTCAGCATCA CTTGCCATTCAAGTCAGGACATTAACAGTAATATAGGGTGGTTGCAGCAGAGACCAGGGAAATC ATTTAAGGGCCTGATCTATCATGGAACCAACTTGGACGATGAAGTTCCATCAAGGTTCAGTGGC AGTGGATCTGGAGCCGATTATTCTCTCACCATCAGCAGCCTGGAATCTGAAGATTTTGCAGACT ATTACTGTGTACAGTATGCTCAGTTTCCGTGGACGTTCGGTGGAGGCACCAAGCTGGAAATCAA AGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGAT GTGCAGCTTCAGGAGTCGGGACCTAGCCTGGTGAAACCTTCTCAGTCTCTGTCCCTCACCTGCA CTGTCACTGGCTACTCAATCACCAGTGATTTTGCCTGGAACTGGATTCGGCAGTTTCCAGGAAA CAAGCTGGAGTGGATGGGCTACATAAGTTATAGTGGTAACACTAGGTACAACCCATCTCTCAAA AGTCGAATCTCTATCACTCGCGACACATCCAAGAACCAATTCTTCCTGCAGTTGAACTCTGTGA CTATTGAGGACACAGCCACATATTACTGTGTAACGGCGGGACGCGGGTTTCCTTATTGGGGCCA AGGGACTCTGGTCACTGTCTCTGCAGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAG CTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCT CTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGA GTGGATCGGAGTCATTACTGGTCGTGATATCACATACTACGCGAGCTGGGCGAAAGGCAGATTC ACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGG ACACGGCTGTGTATTACTGTGCGCGCGACGGTGGATCATCTGCTATTACTAGTAACAACATTTG GGGCCAAGGAACTCTGGTCACCGTTTCTTCAGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTG GCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACT TCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCC GGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGC TTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGA GAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGC GGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGT ACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAG TGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGC AGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGT CAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAT GGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC TCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGT GATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGT GGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGC CTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTAGCGGGTACGACAT GTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGCATTGCTGCTGGTAGT GCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCA AGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGC GAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGAACCCTGGTCACCGTC TCGAGCGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGAT CAGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCAT CACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAGCAGAAACCAGGGAAA GCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCG GCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAAC TTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTCGGCGGAGGGACCAAG GTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGATCCCAGTCGCTGGTGGAGTCTGGGG GAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAG TAGCAACTACTGGATATGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGT ATTTATGTTGGTAGTAGTGGTGACACTTACTACGCGAGCTCCGCGAAAGGCCGGTTCACCATCT CCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGC CGTATATTACTGTGCGAGAGATAGTAGTAGTTATTATATGTTTAACTTGTGGGGCCAGGGAACC CTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCG GCGGTGGAGGATCAGCCCTTGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGA CAGAGTCACCATCAATTGCCAGGCCAGTGAGGACATTGATACCTATTTAGCCTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTTTTACGCATCCGATCTGGCATCTGGGGTCCCAT CAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGA TGATTTTGCAACTTATTACTGCCAAGGCGGTTACTATACTAGTAGTGCTGATACGAGGGGTGCT TTCGGCGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 68 SI-39E29 (806-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1-scFv .times. 420H5- H3L3-scFv) heavy chain aa DILMTQSPSSMSVSLGDTVSITCHSSQDINSNIGWLQQRPGKSFKGLIYHGTNLDDEVPSRFSG SGSGADYSLTISSLESEDFADYYCVQYAQFPWTFGGGTKLEIKGGGGSGGGGSGGGGSGGGGSD VQLQESGPSLVKPSQSLSLTCTVTGYSITSDFAWNWIRQFPGNKLEWMGYISYSGNTRYNPSLK SRISITRDTSKNQFFLQLNSVTIEDTATYYCVTAGRGFPYWGQGTLVTVSAGGGGSGGGGSEVQ LVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYASWAKGRF IISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSASTKGPSVFPL APSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSS LGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRT PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYK CAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGG GGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIACIAAGS AGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQGTLVTV SSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQQKPGK APKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVDNVFGGGTK VEIKGGGGSGGGGSQSLVESGGGLVQPGGSLRLSCAASGFSFSSNYWICWVRQAPGKGLEWIAC IYVGSSGDTYYASSAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDSSSYYMFNLWGQGT LVTVSSGGGGSGGGGSGGGGSGGGGSALVMTQSPSTLSASVGDRVTINCQASEDIDTYLAWYQQ KPGKAPKLLIFYASDLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQGGYYTSSADTRGA FGGGTKVEIK >SEQ ID 69 SI-39E29 (806-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1-scFv .times. 420H5- H3L3-scFv) light chain nt GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC AGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGAGGGAC CAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAG CAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCA AAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCA GGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAG AAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCT TCAACAGGGGAGAGTGT >SEQ ID 70 SI-39E29 (806-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1-scFv .times. 420H5- H3L3-scFv) light chain aa DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIKRTVAAPSVFIFPPSDE QLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE KHKVYACEVTHQGLSSPVTKSFNRGEC
>SEQ ID 71 SI-35E20 (466F6-L5H2-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) heavy chain nt GACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCA CCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCCTGGTATCAGCAGAAACCAGGGAAAGC CCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC AGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGACCTGGAGCCTGGCGATGCTGCAACTT ACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTTTCGGCGGAGGGACCAA GGTGGAGATCAAAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGT GGAGGATCACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGAC TCTCCTGTACAGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCC AGGGAAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCGAGCTCC GCGAGAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACA GCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTAT GTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGCGGCGGTGGAGGGTCCGGCGGTGGTGGATCC CAGTCGGTGGAGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTA CAGCCTCTGGAATCGACCTTAATACCTACGACATGATCTGGGTCCGCCAGGCTCCAGGCAAGGG GCTAGAGTGGGTTGGAATCATTACTTATAGTGGTAGTAGATACTACGCGAACTGGGCGAAAGGC CGATTCACCATCTCCAAAGACAATACCAAGAACACGGTGTATCTGCAAATGAACAGCCTGAGAG CTGAGGACACGGCTGTGTATTACTGTGCCAGAGATTATATGAGTGGTTCCCACTTGTGGGGCCA GGGAACCCTGGTCACCGTCTCTAGTGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCC TCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCG AACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGT CCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGC ACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTG AGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGC ACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAG GTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGG ACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCG TGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCG GTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC GAGAACCACAGGTGTATACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT GACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATA GCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCA TGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGG TCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGG GGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAGTCGCTACCACATGACTTGGGT CCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGGACATATTTATGTTAATAATGATGACACA GACTACGCGAGCTCCGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGT ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCACCTATTTCTGTGCGAGATTGGATGT TGGTGGTGGTGGTGCTTATATTGGGGACATCTGGGGCCAGGGAACTCTGGTTACCGTCTCTTCA GGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGACA TCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTG CCAGTCCAGTCAGAGTGTTTATAACAACAACGACTTAGCCTGGTATCAGCAGAAACCAGGGAAA GTTCCTAAGCTCCTGATCTATTATGCTTCCACTCTGGCATCTGGGGTCCCATCTCGGTTCAGTG GCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATGTTGCAAC TTATTACTGTGCAGGCGGTTATGATACGGATGGTCTTGATACGTTTGCTTTCGGCGGAGGGACC AAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGGTGGAGT CTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAC CATCAGTACCAATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGGA GTCATTACTGGTCGTGATATCACATACTACGCGAGCTGGGCGAAAGGCAGATTCACCATCTCCA GAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGT GTATTACTGTGCGCGCGACGGTGGATCATCTGCTATTACTAGTAACAACATTTGGGGCCAAGGA ACTCTGGTCACCGTTTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGT CCGGCGGTGGAGGATCAGACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGG AGACAGAGTCACCATCAATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAG CAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCC CATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGCC TGATGATTTTGCAACTTATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAAT TCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 72 SI-35E20 (466F6-L5H2-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) heavy chain aa DVVMTQSPSSVSASVGDRVTITCQASQNIRTYLSWYQQKPGKAPKLLIYAAANLASGVPSRFSG SGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYVGGAFGGGTKVEIKGGGGSGGGGSGGGGSGG GGSRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGLEYIGTISSGGNVYYASS ARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMWGQGTLVTVSSGGGGSGGGGS QSVEESGGGLVQPGGSLRLSCTASGIDLNTYDMIWVRQAPGKGLEWVGIITYSGSRYYANWAKG RFTISKDNTKNTVYLQMNSLRAEDTAVYYCARDYMSGSHLWGQGTLVTVSSASTKGPSVFPLAP SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLG TQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTPE VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCA VSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGGGGG SGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTISRYHMTWVRQAPGKGLEWIGHIYVNNDDT DYASSAKGRFTISRDNSKNTLYLQMNSLRAEDTATYFCARLDVGGGGAYIGDIWGQGTLVTVSS GGGGSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCQSSQSVYNNNDLAWYQQKPGK VPKLLIYYASTLASGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCAGGYDTDGLDTFAFGGGT KVEIKGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIG VITGRDITYYASWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQG TLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQ QKPGKAPKLLIYEASKLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVN SFGGGTKVEIK >SEQ ID 73 SI-35E20 (466F6-L5H2-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) light chain nt GCCTATGATATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCA AGTGTCAGGCCAGTGAGGACATTTATAGCTTCTTGGCCTGGTATCAGCAGAAACCAGGGAAAGC CCCTAAGCTCCTGATCCATTCTGCATCCTCTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC AGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTT ACTATTGTCAACAGGGTTATGGTAAAAATAATGTTGATAATGCTTTCGGCGGAGGGACCAAGGT GGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTG AAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTAC AGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC AAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA GGGGAGAGTGT >SEQ ID 74 SI-35E20 (466F6-L5H2-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 284A10-H1L1-scFv) light chain aa AYDMTQSPSSVSASVGDRVTIKCQASEDIYSFLAWYQQKPGKAPKLLIHSASSLASGVPSRFSG SGSGTDFTLTISSLQPEDFATYYCQQGYGKNNVDNAFGGGTKVEIKRTVAAPSVFIFPPSDEQL KSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH KVYACEVTHQGLSSPVTKSFNRGEC >SEQ ID 75 SI-35E58 (284A10-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 466F6-H2L5-scFv) heavy chain nt GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC AGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGAGGGAC CAAGGTGGAGATCAAAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGC GGTGGAGGATCAGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCC TGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCA GGCTCCAGGGAAGGGGCTGGAGTGGATCGGAGTCATTACTGGTCGTGATATCACATACTACGCG AGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAA TGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACGGTGGTTCTTCTGC TATTACTAGTAACAACATTTGGGGCCAGGGAACCCTGGTCACCGTGTCGACAGGCGGTGGAGGG TCCGGCGGTGGTGGATCCCAGTCGGTGGAGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGT CCCTGAGACTCTCCTGTACCGCCTCTGGAATCGACCTTAATACCTACGACATGATCTGGGTCCG CCAGGCTCCAGGCAAGGGGCTAGAGTGGGTTGGAATCATTACTTATAGTGGTAGTAGATACTAC GCGAACTGGGCGAAAGGCCGATTCACCATCTCCAAAGACAATACCAAGAACACGGTGTATCTGC AAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAGATTATATGAGTGG TTCCCACTTGTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCAGCTAGCACCAAGGGCCCATCG GTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGG TCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGT GCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTG CCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCA AGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGC ACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATG ATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCA
AGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCA GTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGC AAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCArCGAGAAAACCATCTCCA AAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTATACCCTGCCCCCATCCCGGGATGAGCTGAC CAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAG TGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG GCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTT CTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCT CCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGGTCCGGAGAGGTGCAGCTGTTGGAGTCTGGGG GAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAG TCGCTACCACATGACTTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGGACATATT TATGTTAATAATGATGACACAGACTACGCGAGCTCCGCGAAAGGCCGGTTCACCATCTCCAGAG ACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCACCTA TTTCTGTGCGAGATTGGATGTTGGTGGTGGTGGTGCTTATATTGGGGACATCTGGGGCCAGGGA ACTCTGGTTACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGT CCGGCGGTGGAGGATCAGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGG AGACAGAGTCACCATCACTTGCCAGTCCAGTCAGAGTGTTTATAACAACAACGACTTAGCCTGG TATCAGCAGAAACCAGGGAAAGTTCCTAAGCTCCTGATCTATTATGCTTCCACTCTGGCATCTG GGGTCCCATCTCGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACrCTCACCATCAGCAGCCT GCAGCCTGAAGATGTTGCAACTTATTACTGTGCAGGCGGTTATGATACGGATGGTCTTGATACG TTTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGGT CCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTC CTGTACTGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGG AAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTA GAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGArCTTCAAATGAACAGCCT GAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTrATAGTGATCCTATGTGG GGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCG GCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGC ATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCC TGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCAT CTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGA CCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTT GGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 76 SI-35E58 (284A10-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 466F6-H2L5-scFv) heavy chain aa DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIKGGGGSGGGGSGGGGSG GGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYA SWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSTGGGG SGGGGSQSVEESGGGLVQPGGSLRLSCTASGIDLNTYDMIWVRQAPGKGLEWVGsIITYSGSRYY+EE ANWAKGRFTISKDNTKNTVYLQMNSLRAEDTAVYYCARDYMSGSHLWGQGTLVTVSSASTKGPS VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTV PSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLM ISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNG KEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVE WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS PGGGGGSGGGGSGEVQLLESGGGLVQPGGSLRLSCAASGFTISRYHMTWVRQAPGKGLEWIGHI YVNNDDTDYASSAKGRFTISRDNSKNTLYLQMNSLRAEDTATYFCARLDVGGGGAYIGDIWGQG TLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCQSSQSVYNNNDLAW YQQKPGKVPKLLIYYASTLASGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCAGGYDTDGLDT FAFGGGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPG KGLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMW GQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLS WYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYV GGAFGGGTKVEIK >SEQ ID 77 SI-35E58 (284A10-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 466F6-H2L5-scFv) light chain nt GCCTATGATATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGACAGAGTCACCATCA AGTGTCAGGCCAGTGAGGACATTTATAGCTTCTTGGCCTGGTATCAGCAGAAACCAGGGAAAGC CCCTAAGCTCCTGATCCATTCTGCATCCTCTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC AGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTT ACTATTGTCAACAGGGTTATGGTAAAAATAATGTTGATAATGCTTTCGGCGGAGGGACCAAGGT GGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTG AAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTAC AGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACAC AAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACA GGGGAGAGTGT >SEQ ID 78 SI-35E58 (284A10-L1H1-scFv .times. PL230C6-Fab .times. 323H7-H4L1-scFv .times. 466F6-H2L5-scFv) light chain aa AYDMTQSPSSVSASVGDRVTIKCQASEDIYSFLAWYQQKPGKAPKLLIHSASSLASGVPSRFSG SGSGTDFTLTISSLQPEDFATYYCQQGYGKNNVDNAFGGGTKVEIKRTVAAPSVFIFPPSDEQL KSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH KVYACEVTHQGLSSPVTKSFNRGEC >SEQ ID 79 SI-35E88 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL230C6- H3L2-scFv .times. 466F6-H2L5-scFv) heavy chain nt GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC AGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGAGGGAC CAAGGTGGAGATCAAAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGC GGTGGAGGATCAGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCC TGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCA GGCTCCAGGGAAGGGGCTGGAGTGGATCGGAGTCATTACTGGTCGTGATATCACATACTACGCG AGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAA TGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACGGTGGTTCTTCTGC TATTACTAGTAACAACATTTGGGGCCAGGGAACCCTGGTCACCGTGTCGACAGGCGGTGGAGGG TCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGG GGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAGTCGCTACCACATGACTTGGGT CCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGGACATATTTATGTTAATAATGATGACACA GACTACGCGAGCTCCGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGT ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCACCTATTTCTGTGCGAGATTGGATGT TGGTGGTGGTGGTGCTTATATTGGGGACATCTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGC GCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCA CAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTC AGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCC CTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGA ATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCA CACATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCA AAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGA GCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAA GACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTG CACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCC CCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTATACCCTGCC CCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTAT CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC CTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAG GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG CAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCCAGTCGG TGGAGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACCGCCTC TGGAATCGACCTTAATACCTACGACATGATCTGGGTCCGCCAGGCTCCAGGCAAGGGGCTAGAG TGGGTTGGAATCATTACTTATAGTGGTAGTAGATACTACGCGAACTGGGCGAAAGGCCGATTCA CCATCTCCAAAGACAATACCAAGAACACGGTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGA CACGGCTGTGTATTACTGTGCGAGAGATTATATGAGTGGTTCCCACTTGTGGGGCCAGGGAACC CTGGTCACCGTCTCTTCCGGTGGAGGCGGTTCAGGCGGAGGTGGAAGTGGTGGTGGCGGCTCTG GAGGCGGCGGATCTGCCTATGATATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGA CAGAGTCACCATCAAGTGTCAGGCCAGTGAGGACATTTATAGCTTCTTGGCCTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCCATTCTGCATCCTCTCTGGCATCTGGGGTCCCAT CAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGA AGATTTTGCAACTTACTATTGTCAACAGGGTTATGGTAAAAATAATGTTGATAATGCTTTCGGC GGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGGTCCGGACGGTCGC TGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACTGCCTC TGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAG TACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAAGCTCCGCTAGAGGCAGATTCA CCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCTGAGAGCCGAGGA CACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGGGGCCAGGGAACC CTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCG
GCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGA CAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCCTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCCAT CAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGACCTGGAGCCTGG CGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTTTC GGCGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 80 SI-35E88 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL230C6- H3L2-scFv .times. 466F6-H2L5-scFv) heavy chain aa DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIKGGGGSGGGGSGGGGSG GGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYA SWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSTGGGG SGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTISRYHMTWVRQAPGKGLEWIGHIYVNNDDT DYASSAKGRFTISRDNSKNTLYLQMNSLRAEDTATYFCARLDVGGGGAYIGDIWGQGTLVTVSS ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPP KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT QKSLSLSPGGGGGSGGGGSQSVEESGGGLVQPGGSLRLSCTASGIDLNTYDMIWVRQAPGKGLE WVGIITYSGSRYYANWAKGRFTISKDNTKNTVYLQMNSLRAEDTAVYYCARDYMSGSHLWGQGT LVTVSSGGGGSGGGGSGGGGSGGGGSAYDMTQSPSSVSASVGDRVTIKCQASEDIYSFLAWYQQ KPGKAPKLLIHSASSLASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYGKNNVDNAFG GGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGLE YIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMWGQGT LVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLSWYQQ KPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYVGGAF GGGTKVEIK >SEQ ID 81 SI-35E88 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL230C6- H3L2-scFv .times. 466F6-H2L5-scFv) light chain nt GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA CTTGCCAGTCCAGTCAGAGTGTTTATAACAACAACGACTTAGCCTGGTATCAGCAGAAACCAGG GAAAGTTCCTAAGCTCCTGATCTATTATGCATCCACTCTGGCATCTGGGGTCCCATCTCGGTTC AGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATGTTG CAACTTATTACTGTGCAGGCGGTTATGATACGGATGGTCTTGATACGTTTGCTTTCGGCGGAGG GACCAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGAT GAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGG CCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGA GCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTAC GAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGA GCTTCAACAGGGGAGAGTGT >SEQ ID 82 SI-35E88 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL230C6- H3L2-scFv .times. 466F6-H2L5-scFv) light chain aa DIQMTQSPSSLSASVGDRVTITCQSSQSVYNNNDLAWYQQKPGKVPKLLIYYASTLASGVPSRF SGSGSGTDFTLTISSLQPEDVATYYCAGGYDTDGLDTFAFGGGTKVEIKRTVAAPSVFIFPPSD EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVIEQDSKDSTYSLSSTLTLSKADY EKHKVYACEVTHQGLSSPVTKSFNRGEC >SEQ ID 83 SI-35E99 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL221G5- H1L1-scFv .times. 466F6-H2L5-scFv) heavy chain nt GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC AGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGAGGGAC CAAGGTGGAGATCAAAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGC GGTGGAGGATCAGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCC TGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCA GGCTCCAGGGAAGGGGCTGGAGTGGATCGGAGTCATTACTGGTCGTGATATCACATACTACGCG AGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAA TGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACGGTGGTTCTTCTGC TATTACTAGTAACAACATTTGGGGCCAGGGAACCCTGGTCACCGTGTCGACAGGCGGTGGAGGG TCCGGCGGTGGTGGATCAGAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGG GGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAGTCGCTACCACATGACTTGGGT CCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGGACATATTTATGTTAATAATGATGACACA GACTACGCGAGCTCCGCGAAAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGT ATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCACCTATTTCTGTGCGAGATTGGATGT TGGTGGTGGTGGTGCTTATATTGGGGACATCTGGGGCCAGGGAACTCTGGTTACCGTCTCTTCA GCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCA CAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTC AGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCC CTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGA ATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCA CACATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCA AAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGA GCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAA GACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTG CACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCC CCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCC CCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTAT CCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGC CTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAG GTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACG CAGAAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGC AGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGC CTCTGGATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGG CTGGAGTGGATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGA AAGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCT GAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATG GACCTCTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGCGGTGGAGGCGGATCTGGCGGAGGTG GTTCCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAGATGACCCAGTCTCCTTCCAC CCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCC CACTTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCA CTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCAC CATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGT AATGTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCG GTGGTGGCTCCGGACGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCT GAGACTCTCCTGTACTGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAG GCTCCAGGGAAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCAA GCTCCGCTAGAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAAT GAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGAT CCTATGTGGGGCCAGGGAACCCTGGTCACCGTCTCTTCAGGCGGTGGCGGTAGTGGGGGAGGCG GTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTC CGTGTCTGCATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACT TACTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCA ATCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCAC CATCAGCGACCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACT GATTATGTTGGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 84 SI-35E99 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL221G5- H1L1-scFv .times. 466F6-H2L5-scFv) heavy chain aa DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIKGGGGSGGGGSGGGGSG GGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYA SWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSTGGGG SGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTISRYHMTWVRQAPGKGLEWIGHIYVNNDDT DYASSAKGRFTISRDNSKNTLYLQMNSLRAEDTATYFCARLDVGGGGAYIGDIWGQGTLVTVSS ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPP KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFY PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT QKSLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKG LEWIACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAM DLWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISS HLNWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWG NVDNVFGGGTKVEIKGGGGSGGGGSGRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQ APGKGLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSD PMWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRT YLSWYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGT
DYVGGAFGGGTKVEIK >SEQ ID 85 SI-35E99 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL221G5- H1L1-scFv .times. 466F6-H2L5-scFv) light chain nt GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA CTTGCCAGTCCAGTCAGAGTGTTTATAACAACAACGACTTAGCCTGGTATCAGCAGAAACCAGG GAAAGTTCCTAAGCTCCTGATCTATTATGCATCCACTCTGGCATCTGGGGTCCCATCTCGGTTC AGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATGTTG CAACTTATTACTGTGCAGGCGGTTATGATACGGATGGTCTTGATACGTTTGCTTTCGGCGGAGG GACCAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGAT GAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGG CCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGA GCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTAC GAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGA GCTTCAACAGGGGAGAGTGT >SEQ ID 86 SI-35E99 (284A10-L1H1-scFv .times. 323H7-Fab .times. PL221G5- H1L1-scFv .times. 466F6-H2L5-scFv) light chain aa DIQMTQSPSSLSASVGDRVTITCQSSQSVYNNNDLAWYQQKPGKVPKLLIYYASTLASGVPSRF SGSGSGTDFTLTISSLQPEDVATYYCAGGYDTDGLDTFAFGGGTKVEIKRTVAAPSVFIFPPSD EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVIEQDSKDSTYSLSSTLTLSKADY EKHKVYACEVTHQGLSSPVTKSFNRGEC >SEQ ID 87 SI-38E17 (284A10-L1H1-scFv .times. 21D4-Fab .times. PL221G5-H1L1- scFv .times. 466F6-H2L5-scFv) heavy chain nt GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC AGTGGATCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGAGGGAC CAAGGTGGAGATCAAAGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGC GGTGGAGGATCAGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCC TGAGACTCTCCTGTGCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCA GGCTCCAGGGAAGGGGCTGGAGTGGATCGGAGTCATTACTGGTCGTGATATCACATACTACGCG AGCTGGGCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAA TGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGCGCGACGGTGGATCATCTGC TATTACTAGTAACAACATTTGGGGCCAAGGAACTCTGGTCACCGTTTCTTCAGGCGGTGGAGGG TCCGGCGGTGGTGGATCCGAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTGAAGAAACCAGGAG AGTCTCTGAAGATCTCCTGTAAGGGTTCTGGATACAGCTTTAGCAGTTCATGGATCGGCTGGGT GCGCCAGGCACCTGGGAAAGGCCTGGAATGGATGGGGATCATCTATCCTGATGACTCTGATACC AGATACAGTCCATCCTTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATCAGGACTGCCT ACCTGCAGTGGAGTAGCCTGAAGGCCTCGGACACCGCTATGTATTACTGTGCGAGACATGTTAC TATGATTTGGGGAGTTATTATTGACTTCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGCT AGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAG CGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGG CGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTC AGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATC ACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACAC ATGCCCACCGTGCCCAGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAA CCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCC ACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCAC CAGGACTGGCTGAATGGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCA TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTATACCCTGCCCCC ATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCC AGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTC CCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTG GCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG AAGAGCCTCTCCCTGTCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGC TGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTC TGGATTCTCCTTCAGTAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTG GAGTGGATCGCATGCATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAG GCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAG AGCCGAGGACACGGCCGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGAC CTCTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTT CCGGCGGTGGCGGCTCCGGTGGAGGCGGCTCTGACATCCAGATGACCCAGTCTCCTTCCACCCT GTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCAC TTAAACTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTC TGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCAT CAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAAT GTTGATAATGTTTTCGGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTG GTGGATCCCGGTCGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACT CTCCTGTACAGCCTCTGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCA GGGAAGGGGCTGGAGTACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCGAGCTCCG CGAGAGGCAGATTCACCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAG CCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATG TGGGGCCAGGGAACCCTGGTCACCGTCTCGAGCGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTG GCGGCGGAGGGTCCGGCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTC TGCATCTGTAGGAGACAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTA TCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGG CATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAG CGACCTGGAGCCTGGCGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTAT GTTGGCGGTGCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 88 SI-38E17 (284A10-L1H1-scFv .times. 21D4-Fab .times. PL221G5-H1L1- scFv .times. 466F6-H2L5-scFv) heavy chain aa DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIKGGGGSGGGGSGGGGSG GGGSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYA SWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSGGGG SGGGGSEVQLVQSGAEVKKPGESLKISCKGSGYSFSSSWIGWVRQAPGKGLEWMGIIYPDDSDT RYSPSFQGQVTISADKSIRTAYLQWSSLKASDTAMYYCARHVTMIWGVIIDFWGQGTLVTVSSA STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPK PKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH QDWLNGKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ KSLSLSPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGL EWIACIAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMD LWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSH LNWYQQKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGN VDNVFGGGTKVEIKGGGGSGGGGSRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAP GKGLEYIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPM WGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYL SWYQQKPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDY VGGAFGGGTKVEIK >SEQ ID 89 SI-38E17 (284A10-L1H1-scFv .times. 21D4-Fab .times. PL221G5-H1L1- scFv .times. 466F6-H2L5-scFv) light chain nt GCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA CTTGCCGGGCAAGTCAGGGCATTAGCAGTGCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC TCCTAAGCTCCTGATCTATGATGCCTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCGGC AGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTT ATTACTGTCAACAGTTTAATAGTTACCCATTCACTTTCGGCCCTGGGACCAAAGTGGATATCAA ACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGA ACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGG TGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAG CACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTAC GCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGT GT >SEQ ID 90 SI-38E17 (284A10-L1H1-scFv .times. 21D4-Fab .times. PL221G5-H1L1- scFv .times. 466F6-H2L5-scFv) light chain aa AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYDASSLESGVPSRFSG SGSGTDFTLTISSLQPEDFATYYCQQFNSYPFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSG TASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVY ACEVTHQGLSSPVTKSFNRGEC >SEQ ID 91 SI-38E33 (21D4-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1- scFv .times. 466F6-H2L5-scFv) heavy chain nt GCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA CTTGCCGGGCAAGTCAGGGCATTAGCAGTGCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC TCCTAAGCTCCTGATCTATGATGCCTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGCGGC AGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTT ATTACTGTCAACAGTTTAATAGTTACCCATTCACTTTCGGCCCTGGGACCAAAGTGGATATCAA AGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCGGCGGTGGAGGATCAGAG
GTGCAGCTGGTGCAGTCTGGAGCAGAGGTGAAGAAACCAGGAGAGTCTCTGAAGATCTCCTGTA AGGGTTCTGGATACAGCTTTAGCAGTTCATGGATCGGCTGGGTGCGCCAGGCACCTGGGAAAGG CCTGGAATGGATGGGGATCATCTATCCTGATGACTCTGATACCAGATACAGTCCATCCTTCCAA GGCCAGGTCACCATCTCAGCCGACAAGTCCATCAGGACTGCCTACCTGCAGTGGAGTAGCCTGA AGGCCTCGGACACCGCTATGTATTACTGTGCGAGACATGTTACTATGATTTGGGGAGTTATTAT TGACTTCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGGCGGTGGAGGGTCCGGCGGTGGT GGATCCGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGAC TCTCCTGTGCAGCCTCTGGATTCACCATCAGTACCAATGCAATGAGCTGGGTCCGCCAGGCTCC AGGGAAGGGGCTGGAGTGGATCGGAGTCATTACTGGTCGTGATATCACATACTACGCGAGCTGG GCGAAAGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACA GCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGCGCGACGGTGGATCATCTGCTATTAC TAGTAACAACATTTGGGGCCAAGGAACTCTGGTCACCGTTTCTTCAGCTAGCACCAAGGGCCCA TCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCC TGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGG CGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACC GTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACA CCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCC AGCACCTGAAGCCGCGGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTC ATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGG TCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGA GCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAAT GGCAAGGAGTACAAGTGCGCGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCT CCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTATACCCTGCCCCCATCCCGGGATGAGCT GACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTG GAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG ACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTG TCTCCGGGTGGCGGTGGAGGGTCCGGCGGTGGTGGATCCGAGGTGCAGCTGTTGGAGTCTGGGG GAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAG TAGCGGGTACGACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGC ATTGCTGCTGGTAGTGCTGGTATCACTTACGACGCGAACTGGGCGAAAGGCCGGTTCACCATCT CCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGC CGTATATTACTGTGCGAGATCGGCGTTTTCGTTCGACTACGCCATGGACCTCTGGGGCCAGGGA ACCCTGGTCACCGTCTCGAGCGGTGGAGGCGGATCTGGCGGAGGTGGTTCCGGCGGTGGCGGCT CCGGTGGAGGCGGCTCTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGG AGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAGTTCCCACTTAAACTGGTATCAG CAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCATCCACTCTGGCATCTGGGGTCC CATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTTACTCTCACCATCAGCAGCCTGCAGCC TGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTTGGGGTAATGTTGATAATGTTTTC GGCGGAGGGACCAAGGTGGAGATCAAAGGCGGTGGAGGGTCCGGCGGTGGTGGATCCCGGTCGC TGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTACAGCCTC TGGATTCACCATCAGTAGCTACCACATGCAGTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAG TACATCGGAACCATTAGTAGTGGTGGTAATGTATACTACGCGAGCTCCGCGAGAGGCAGATTCA CCATCTCCAGACCCTCGTCCAAGAACACGGTGGATCTTCAAATGAACAGCCTGAGAGCCGAGGA CACGGCTGTGTATTACTGTGCGAGAGACTCTGGTTATAGTGATCCTATGTGGGGCCAGGGAACC CTGGTCACCGTCTCGAGCGGCGGTGGCGGTAGTGGGGGAGGCGGTTCTGGCGGCGGAGGGTCCG GCGGTGGAGGATCAGACGTTGTGATGACCCAGTCTCCATCTTCCGTGTCTGCATCTGTAGGAGA CAGAGTCACCATCACCTGTCAGGCCAGTCAGAACATTAGGACTTACTTATCCTGGTATCAGCAG AAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCAGCCAATCTGGCATCTGGGGTCCCAT CAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGACCTGGAGCCTGG CGATGCTGCAACTTACTATTGTCAGTCTACCTATCTTGGTACTGATTATGTTGGCGGTGCTTTC GGCGGAGGGACCAAGGTGGAGATCAAA >SEQ ID 92 SI-38E33 (21D4-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1- scFv .times. 466F6-H2L5-scFv) heavy chain aa AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIYDASSLESGVPSRFSG SGSGTDFTLTISSLQPEDFATYYCQQFNSYPFTFGPGTKVDIKGGGGSGGGGSGGGGSGGGGSE VQLVQSGAEVKKPGESLKISCKGSGYSFSSSWIGWVRQAPGKGLEWMGIIYPDDSDTRYSPSFQ GQVTISADKSIRTAYLQWSSLKASDTAMYYCARHVTMIWGVIIDFWGQGTLVTVSSGGGGSGGG GSEVQLVESGGGLVQPGGSLRLSCAASGFTISTNAMSWVRQAPGKGLEWIGVITGRDITYYASW AKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGGSSAITSNNIWGQGTLVTVSSASTKGP SVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT VPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTL MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCAVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAV EWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL SPGGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFSFSSGYDMCWVRQAPGKGLEWIAC IAAGSAGITYDANWAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSAFSFDYAMDLWGQG TLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSTLSASVGDRVTITCQASQSISSHLNWYQ QKPGKAPKLLIYKASTLASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQGYSWGNVDNVF GGGTKVEIKGGGGSGGGGSRSLVESGGGLVQPGGSLRLSCTASGFTISSYHMQWVRQAPGKGLE YIGTISSGGNVYYASSARGRFTISRPSSKNTVDLQMNSLRAEDTAVYYCARDSGYSDPMWGQGT LVTVSSGGGGSGGGGSGGGGSGGGGSDVVMTQSPSSVSASVGDRVTITCQASQNIRTYLSWYQQ KPGKAPKLLIYAAANLASGVPSRFSGSGSGTDFTLTISDLEPGDAATYYCQSTYLGTDYVGGAF GGGTKVEIK SEQ ID 93 SI-38E33 (21D4-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1- scFv .times. 466F6-H2L5-scFv) light chain nt GACGTCGTGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCA ATTGCCAAGCCAGTGAGAGCATTAGCAGTTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGC CCCTAAGCTCCTGATCTATGAAGCATCCAAACTGGCATCTGGGGTCCCATCAAGGTTCAGCGGC AGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTT ATTACTGCCAAGGCTATTTTTATTTTATTAGTCGTACTTATGTAAATTCTTTCGGCGGAGGGAC CAAGGTGGAGATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAG CAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCA AAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCA GGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAG AAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCT TCAACAGGGGAGAGTGT SEQ ID 94 SI-38E33 (21D4-LH-scFv .times. 284A10-Fab .times. PL221G5-H1L1- scFv .times. 466F6-H2L5-scFv) light chain aa DVVMTQSPSTLSASVGDRVTINCQASESISSWLAWYQQKPGKAPKLLIYEASKLASGVPSRFSG SGSGTEFTLTISSLQPDDFATYYCQGYFYFISRTYVNSFGGGTKVEIKRTVAAPSVFIFPPSDE QLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE KHKVYACEVTHQGLSSPVTKSFNRGEC
Sequence CWU
1
1
941360DNAArtificial Sequencesynthesized 1gaggtgcagc tggtggagtc tgggggaggc
ttggtccagc ctggggggtc cctgagactc 60tcctgtgcag cctctggatt caccatcagt
accaatgcaa tgagctgggt ccgccaggct 120ccagggaagg ggctggagtg gatcggagtc
attactggtc gtgatatcac atactacgcg 180agctgggcga aaggcagatt caccatctcc
agagacaatt ccaagaacac gctgtatctt 240caaatgaaca gcctgagagc cgaggacacg
gctgtgtatt actgtgcgcg cgacggtgga 300tcatctgcta ttactagtaa caacatttgg
ggccaaggaa ctctggtcac cgtttcttca 3602120PRTArtificial
Sequencesynthesized 2Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln
Pro Gly Gly1 5 10 15Ser
Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Ile Ser Thr Asn 20
25 30Ala Met Ser Trp Val Arg Gln Ala
Pro Gly Lys Gly Leu Glu Trp Ile 35 40
45Gly Val Ile Thr Gly Arg Asp Ile Thr Tyr Tyr Ala Ser Trp Ala Lys
50 55 60Gly Arg Phe Thr Ile Ser Arg Asp
Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75
80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr
Tyr Cys Ala 85 90 95Arg
Asp Gly Gly Ser Ser Ala Ile Thr Ser Asn Asn Ile Trp Gly Gln
100 105 110Gly Thr Leu Val Thr Val Ser
Ser 115 1203336DNAArtificial Sequencesynthesized
3gacgtcgtga tgacccagtc tccttccacc ctgtctgcat ctgtaggaga cagagtcacc
60atcaattgcc aagccagtga gagcattagc agttggttag cctggtatca gcagaaacca
120gggaaagccc ctaagctcct gatctatgaa gcatccaaac tggcatctgg ggtcccatca
180aggttcagcg gcagtggatc tgggacagag ttcactctca ccatcagcag cctgcagcct
240gatgattttg caacttatta ctgccaaggc tatttttatt ttattagtcg tacttatgta
300aattctttcg gcggagggac caaggtggag atcaaa
3364112PRTArtificial Sequencesynthesized 4Asp Val Val Met Thr Gln Ser Pro
Ser Thr Leu Ser Ala Ser Val Gly1 5 10
15Asp Arg Val Thr Ile Asn Cys Gln Ala Ser Glu Ser Ile Ser
Ser Trp 20 25 30Leu Ala Trp
Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35
40 45Tyr Glu Ala Ser Lys Leu Ala Ser Gly Val Pro
Ser Arg Phe Ser Gly 50 55 60Ser Gly
Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65
70 75 80Asp Asp Phe Ala Thr Tyr Tyr
Cys Gln Gly Tyr Phe Tyr Phe Ile Ser 85 90
95Arg Thr Tyr Val Asn Ser Phe Gly Gly Gly Thr Lys Val
Glu Ile Lys 100 105
1105345DNAArtificial Sequencesynthesized 5cagtcggtgg aggagtctgg
gggaggcttg gtccagcctg gggggtccct gagactctcc 60tgtacagcct ctggaatcga
ccttaatacc tacgacatga tctgggtccg ccaggctcca 120ggcaaggggc tagagtgggt
tggaatcatt acttatagtg gtagtagata ctacgcgaac 180tgggcgaaag gccgattcac
catctccaaa gacaatacca agaacacggt gtatctgcaa 240atgaacagcc tgagagctga
ggacacggct gtgtattact gtgccagaga ttatatgagt 300ggttcccact tgtggggcca
gggaaccctg gtcaccgtct ctagt 3456115PRTArtificial
Sequencesynthesized 6Gln Ser Val Glu Glu Ser Gly Gly Gly Leu Val Gln Pro
Gly Gly Ser1 5 10 15Leu
Arg Leu Ser Cys Thr Ala Ser Gly Ile Asp Leu Asn Thr Tyr Asp 20
25 30Met Ile Trp Val Arg Gln Ala Pro
Gly Lys Gly Leu Glu Trp Val Gly 35 40
45Ile Ile Thr Tyr Ser Gly Ser Arg Tyr Tyr Ala Asn Trp Ala Lys Gly
50 55 60Arg Phe Thr Ile Ser Lys Asp Asn
Thr Lys Asn Thr Val Tyr Leu Gln65 70 75
80Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr
Cys Ala Arg 85 90 95Asp
Tyr Met Ser Gly Ser His Leu Trp Gly Gln Gly Thr Leu Val Thr
100 105 110Val Ser Ser
1157330DNAArtificial Sequencesynthesized 7gcctatgata tgacccagtc
tccatcttcc gtgtctgcat ctgtaggaga cagagtcacc 60atcaagtgtc aggccagtga
ggacatttat agcttcttgg cctggtatca gcagaaacca 120gggaaagccc ctaagctcct
gatccattct gcatcctctc tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc
tgggacagat ttcactctca ccatcagcag cctgcagcct 240gaagattttg caacttacta
ttgtcaacag ggttatggta aaaataatgt tgataatgct 300ttcggcggag ggaccaaggt
ggagatcaaa 3308110PRTArtificial
Sequencesynthesized 8Ala Tyr Asp Met Thr Gln Ser Pro Ser Ser Val Ser Ala
Ser Val Gly1 5 10 15Asp
Arg Val Thr Ile Lys Cys Gln Ala Ser Glu Asp Ile Tyr Ser Phe 20
25 30Leu Ala Trp Tyr Gln Gln Lys Pro
Gly Lys Ala Pro Lys Leu Leu Ile 35 40
45His Ser Ala Ser Ser Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60Ser Gly Ser Gly Thr Asp Phe Thr
Leu Thr Ile Ser Ser Leu Gln Pro65 70 75
80Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Gly
Lys Asn Asn 85 90 95Val
Asp Asn Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100
105 1109366DNAArtificial Sequencesynthesized
9gaggtgcagc tgttggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc
60tcctgtgcag cctctggatt ctccttcagt agcgggtacg acatgtgctg ggtccgccag
120gctccaggga aggggctgga gtggatcgca tgcattgctg ctggtagtgc tggtatcact
180tacgacgcga actgggcgaa aggccggttc accatctcca gagacaattc caagaacacg
240ctgtatctgc aaatgaacag cctgagagcc gaggacacgg ccgtatatta ctgtgcgaga
300tcggcgtttt cgttcgacta cgccatggac ctctggggcc agggaaccct ggtcaccgtc
360tcgagc
36610122PRTArtificial Sequencesynthesized 10Glu Val Gln Leu Leu Glu Ser
Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10
15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe
Ser Ser Gly 20 25 30Tyr Asp
Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35
40 45Ile Ala Cys Ile Ala Ala Gly Ser Ala Gly
Ile Thr Tyr Asp Ala Asn 50 55 60Trp
Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr65
70 75 80Leu Tyr Leu Gln Met Asn
Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr 85
90 95Tyr Cys Ala Arg Ser Ala Phe Ser Phe Asp Tyr Ala
Met Asp Leu Trp 100 105 110Gly
Gln Gly Thr Leu Val Thr Val Ser Ser 115
12011330DNAArtificial Sequencesynthesized 11gacatccaga tgacccagtc
tccttccacc ctgtctgcat ctgtaggaga cagagtcacc 60atcacttgcc aggccagtca
gagcattagt tcccacttaa actggtatca gcagaaacca 120gggaaagccc ctaagctcct
gatctataag gcatccactc tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc
tgggacagaa tttactctca ccatcagcag cctgcagcct 240gatgattttg caacttatta
ctgccaacag ggttatagtt ggggtaatgt tgataatgtt 300ttcggcggag ggaccaaggt
ggagatcaaa 33012110PRTArtificial
Sequencesynthesized 12Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala
Ser Val Gly1 5 10 15Asp
Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Ser Ser His 20
25 30Leu Asn Trp Tyr Gln Gln Lys Pro
Gly Lys Ala Pro Lys Leu Leu Ile 35 40
45Tyr Lys Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60Ser Gly Ser Gly Thr Glu Phe Thr
Leu Thr Ile Ser Ser Leu Gln Pro65 70 75
80Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser
Trp Gly Asn 85 90 95Val
Asp Asn Val Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100
105 11013360DNAArtificial Sequencesynthesized
13cagtcgctgg tggagtctgg gggaggcttg gtacagcctg gggggtccct gagactctcc
60tgtgcagcct ctggattctc cttcagtagc aactactgga tatgctgggt ccgccaggct
120ccagggaagg ggctggagtg gatcgcatgc atttatgttg gtagtagtgg tgacacttac
180tacgcgagct ccgcgaaagg ccggttcacc atctccagag acaattccaa gaacacgctg
240tatctgcaaa tgaacagcct gagagccgag gacacggccg tatattactg tgcgagagat
300agtagtagtt attatatgtt taacttgtgg ggccagggaa ccctggtcac cgtctcgagc
36014120PRTArtificial Sequencesynthesized 14Gln Ser Leu Val Glu Ser Gly
Gly Gly Leu Val Gln Pro Gly Gly Ser1 5 10
15Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser
Ser Asn Tyr 20 25 30Trp Ile
Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile 35
40 45Ala Cys Ile Tyr Val Gly Ser Ser Gly Asp
Thr Tyr Tyr Ala Ser Ser 50 55 60Ala
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu65
70 75 80Tyr Leu Gln Met Asn Ser
Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85
90 95Cys Ala Arg Asp Ser Ser Ser Tyr Tyr Met Phe Asn
Leu Trp Gly Gln 100 105 110Gly
Thr Leu Val Thr Val Ser Ser 115
12015336DNAArtificial Sequencesynthesized 15gcccttgtga tgacccagtc
tccttccacc ctgtctgcat ctgtaggaga cagagtcacc 60atcaattgcc aggccagtga
ggacattgat acctatttag cctggtatca gcagaaacca 120gggaaagccc ctaagctcct
gatcttttat gcatccgatc tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc
tgggacagaa ttcactctca ccatcagcag cctgcagcct 240gatgattttg caacttatta
ctgccaaggc ggttactata ctagtagtgc tgatacgagg 300ggtgctttcg gcggagggac
caaggtggag atcaaa 33616112PRTArtificial
Sequencesynthesized 16Ala Leu Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala
Ser Val Gly1 5 10 15Asp
Arg Val Thr Ile Asn Cys Gln Ala Ser Glu Asp Ile Asp Thr Tyr 20
25 30Leu Ala Trp Tyr Gln Gln Lys Pro
Gly Lys Ala Pro Lys Leu Leu Ile 35 40
45Phe Tyr Ala Ser Asp Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60Ser Gly Ser Gly Thr Glu Phe Thr
Leu Thr Ile Ser Ser Leu Gln Pro65 70 75
80Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gly Gly Tyr Tyr
Thr Ser Ser 85 90 95Ala
Asp Thr Arg Gly Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
100 105 11017345DNAArtificial
Sequencesynthesized 17cggtcgctgg tggagtctgg gggaggcttg gtccagcctg
gggggtccct gagactctcc 60tgtacagcct ctggattcac catcagtagc taccacatgc
agtgggtccg ccaggctcca 120gggaaggggc tggagtacat cggaaccatt agtagtggtg
gtaatgtata ctacgcgagc 180tccgcgagag gcagattcac catctccaga ccctcgtcca
agaacacggt ggatcttcaa 240atgaacagcc tgagagccga ggacacggct gtgtattact
gtgcgagaga ctctggttat 300agtgatccta tgtggggcca gggaaccctg gtcaccgtct
cgagc 34518115PRTArtificial Sequencesynthesized 18Arg
Ser Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser1
5 10 15Leu Arg Leu Ser Cys Thr Ala
Ser Gly Phe Thr Ile Ser Ser Tyr His 20 25
30Met Gln Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Tyr
Ile Gly 35 40 45Thr Ile Ser Ser
Gly Gly Asn Val Tyr Tyr Ala Ser Ser Ala Arg Gly 50 55
60Arg Phe Thr Ile Ser Arg Pro Ser Ser Lys Asn Thr Val
Asp Leu Gln65 70 75
80Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg
85 90 95Asp Ser Gly Tyr Ser Asp
Pro Met Trp Gly Gln Gly Thr Leu Val Thr 100
105 110Val Ser Ser 11519333DNAArtificial
Sequencesynthesized 19gacgttgtga tgacccagtc tccatcttcc gtgtctgcat
ctgtaggaga cagagtcacc 60atcacctgtc aggccagtca gaacattagg acttacttat
cctggtatca gcagaaacca 120gggaaagccc ctaagctcct gatctatgct gcagccaatc
tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc tgggacagat ttcactctca
ccatcagcga cctggagcct 240ggcgatgctg caacttacta ttgtcagtct acctatcttg
gtactgatta tgttggcggt 300gctttcggcg gagggaccaa ggtggagatc aaa
33320111PRTArtificial Sequencesynthesized 20Asp
Val Val Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly1
5 10 15Asp Arg Val Thr Ile Thr Cys
Gln Ala Ser Gln Asn Ile Arg Thr Tyr 20 25
30Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
Leu Ile 35 40 45Tyr Ala Ala Ala
Asn Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asp
Leu Glu Pro65 70 75
80Gly Asp Ala Ala Thr Tyr Tyr Cys Gln Ser Thr Tyr Leu Gly Thr Asp
85 90 95Tyr Val Gly Gly Ala Phe
Gly Gly Gly Thr Lys Val Glu Ile Lys 100 105
11021345DNAArtificial Sequencesynthesized 21gaggtgcagc
tgttggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc 60tcctgtgcag
cctctggaat cgacttcagt aggagatact acatgtgctg ggtccgccag 120gctccaggga
aggggctgga gtggatcgca tgcatatata ctggtagccg cgatactcct 180cactacgcga
gctccgcgaa aggccggttc accatctcca gagacaattc caagaacacg 240ctgtatctgc
aaatgaacag cctgagagcc gaggacacgg ccgtatatta ctgtgcgaga 300gaaggtagcc
tgtggggcca gggaaccctg gtcaccgtct cgagc
34522115PRTArtificial Sequencesynthesized 22Glu Val Gln Leu Leu Glu Ser
Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10
15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ile Asp Phe
Ser Arg Arg 20 25 30Tyr Tyr
Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp 35
40 45Ile Ala Cys Ile Tyr Thr Gly Ser Arg Asp
Thr Pro His Tyr Ala Ser 50 55 60Ser
Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr65
70 75 80Leu Tyr Leu Gln Met Asn
Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr 85
90 95Tyr Cys Ala Arg Glu Gly Ser Leu Trp Gly Gln Gly
Thr Leu Val Thr 100 105 110Val
Ser Ser 11523333DNAArtificial Sequencesynthesized 23gacatccaga
tgacccagtc tccttccacc ctgtctgcat ctgtaggaga cagagtcacc 60atcacttgcc
agtccagtca gagtgtttat agtaactggt tctcctggta tcagcagaaa 120ccagggaaag
cccctaagct cctgatctat tctgcatcca ctctggcatc tggggtccca 180tcaaggttca
gcggcagtgg atctgggaca gaattcactc tcaccatcag cagcctgcag 240cctgatgatt
ttgcaactta ttactgcgca ggcggttaca atactgttat tgatactttt 300gctttcggcg
gagggaccaa ggtggagatc aaa
33324111PRTArtificial Sequencesynthesized 24Asp Ile Gln Met Thr Gln Ser
Pro Ser Thr Leu Ser Ala Ser Val Gly1 5 10
15Asp Arg Val Thr Ile Thr Cys Gln Ser Ser Gln Ser Val
Tyr Ser Asn 20 25 30Trp Phe
Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu 35
40 45Ile Tyr Ser Ala Ser Thr Leu Ala Ser Gly
Val Pro Ser Arg Phe Ser 50 55 60Gly
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln65
70 75 80Pro Asp Asp Phe Ala Thr
Tyr Tyr Cys Ala Gly Gly Tyr Asn Thr Val 85
90 95Ile Asp Thr Phe Ala Phe Gly Gly Gly Thr Lys Val
Glu Ile Lys 100 105
11025366DNAArtificial Sequencesynthesized 25gaggtgcagc tgttggagtc
tgggggaggc ttggtacagc ctggggggtc cctgagactc 60tcctgtgcag cctctggatt
caccatcagt cgctaccaca tgacttgggt ccgccaggct 120ccagggaagg ggctggagtg
gatcggacat atttatgtta ataatgatga cacagactac 180gcgagctccg cgaaaggccg
gttcaccatc tccagagaca attccaagaa cacgctgtat 240ctgcaaatga acagcctgag
agccgaggac acggccacct atttctgtgc gagattggat 300gttggtggtg gtggtgctta
tattggggac atctggggcc agggaactct ggttaccgtc 360tcttca
36626122PRTArtificial
Sequencesynthesized 26Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln
Pro Gly Gly1 5 10 15Ser
Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Ile Ser Arg Tyr 20
25 30His Met Thr Trp Val Arg Gln Ala
Pro Gly Lys Gly Leu Glu Trp Ile 35 40
45Gly His Ile Tyr Val Asn Asn Asp Asp Thr Asp Tyr Ala Ser Ser Ala
50 55 60Lys Gly Arg Phe Thr Ile Ser Arg
Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75
80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Thr
Tyr Phe Cys 85 90 95Ala
Arg Leu Asp Val Gly Gly Gly Gly Ala Tyr Ile Gly Asp Ile Trp
100 105 110Gly Gln Gly Thr Leu Val Thr
Val Ser Ser 115 12027339DNAArtificial
Sequencesynthesized 27gacatccaga tgacccagtc tccatcctcc ctgtctgcat
ctgtaggaga cagagtcacc 60atcacttgcc agtccagtca gagtgtttat aacaacaacg
acttagcctg gtatcagcag 120aaaccaggga aagttcctaa gctcctgatc tattatgctt
ccactctggc atctggggtc 180ccatctcggt tcagtggcag tggatctggg acagatttca
ctctcaccat cagcagcctg 240cagcctgaag atgttgcaac ttattactgt gcaggcggtt
atgatacgga tggtcttgat 300acgtttgctt tcggcggagg gaccaaggtg gagatcaaa
33928113PRTArtificial Sequencesynthesized 28Asp
Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1
5 10 15Asp Arg Val Thr Ile Thr Cys
Gln Ser Ser Gln Ser Val Tyr Asn Asn 20 25
30Asn Asp Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Val Pro
Lys Leu 35 40 45Leu Ile Tyr Tyr
Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe 50 55
60Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
Ser Ser Leu65 70 75
80Gln Pro Glu Asp Val Ala Thr Tyr Tyr Cys Ala Gly Gly Tyr Asp Thr
85 90 95Asp Gly Leu Asp Thr Phe
Ala Phe Gly Gly Gly Thr Lys Val Glu Ile 100
105 110Lys29345DNAArtificial Sequencesynthesized
29gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggggggtc cctgagactc
60tcctgtactg cctctggatt ctccctcagt agctatgcaa tgagctgggt ccgccaggct
120ccagggaggg ggctggagtg gatcggaatc atttatgcta gtggtagcac atactacgcg
180agctcggcga aaggcagatt caccatctcc aaagacaata ccaagaacac ggtggatctt
240caaatgaaca gcctgagagc cgaggacacg gctgtgtatt actgtgcgag aatttatgac
300ggcatggacc tctggggcca gggaactctg gttaccgtct cttca
34530115PRTArtificial Sequencesynthesized 30Glu Val Gln Leu Val Glu Ser
Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10
15Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ser Leu
Ser Ser Tyr 20 25 30Ala Met
Ser Trp Val Arg Gln Ala Pro Gly Arg Gly Leu Glu Trp Ile 35
40 45Gly Ile Ile Tyr Ala Ser Gly Ser Thr Tyr
Tyr Ala Ser Ser Ala Lys 50 55 60Gly
Arg Phe Thr Ile Ser Lys Asp Asn Thr Lys Asn Thr Val Asp Leu65
70 75 80Gln Met Asn Ser Leu Arg
Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85
90 95Arg Ile Tyr Asp Gly Met Asp Leu Trp Gly Gln Gly
Thr Leu Val Thr 100 105 110Val
Ser Ser 11531321DNAArtificial Sequencesynthesized 31gacatccaga
tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60atcaattgcc
aggccagtca gaacatttac agctacttat cctggtatca gcagaaacca 120gggaaagttc
ctaagcgcct gatctatctg gcatctactc tggcatctgg ggtcccatct 180cggttcagtg
gcagtggatc tgggacagat tacactctca ccatcagcag cctgcagcct 240gaagatgttg
caacttatta ctgtcaaagc aattataacg gtaattatgg tttcggcgga 300gggaccaagg
tggagatcaa a
32132107PRTArtificial Sequencesynthesized 32Asp Ile Gln Met Thr Gln Ser
Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10
15Asp Arg Val Thr Ile Asn Cys Gln Ala Ser Gln Asn Ile
Tyr Ser Tyr 20 25 30Leu Ser
Trp Tyr Gln Gln Lys Pro Gly Lys Val Pro Lys Arg Leu Ile 35
40 45Tyr Leu Ala Ser Thr Leu Ala Ser Gly Val
Pro Ser Arg Phe Ser Gly 50 55 60Ser
Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro65
70 75 80Glu Asp Val Ala Thr Tyr
Tyr Cys Gln Ser Asn Tyr Asn Gly Asn Tyr 85
90 95Gly Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
100 10533354DNAArtificial Sequencesynthesized
33gaggtgaagc tggatgagac tggaggaggc ttggtgcaac ctgggaggcc catgaaactc
60tcctgtgttg cctctggatt cacttttagt gactactgga tgaactgggt ccgccagtct
120ccagagaaag gactggagtg ggtagcacaa attagaaaca aaccttataa ttatgaaaca
180tattattcag attctgtgaa aggcagattc accatctcaa gagatgattc caaaagtagt
240gtctacctgc aaatgaacaa cttaagagtt gaagacatgg gtatctatta ctgtacgggt
300tcttactatg gtatggacta ctggggtcaa ggaacctcag tcaccgtctc ctca
35434118PRTArtificial Sequencesynthesized 34Glu Val Lys Leu Asp Glu Thr
Gly Gly Gly Leu Val Gln Pro Gly Arg1 5 10
15Pro Met Lys Leu Ser Cys Val Ala Ser Gly Phe Thr Phe
Ser Asp Tyr 20 25 30Trp Met
Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val 35
40 45Ala Gln Ile Arg Asn Lys Pro Tyr Asn Tyr
Glu Thr Tyr Tyr Ser Asp 50 55 60Ser
Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ser65
70 75 80Val Tyr Leu Gln Met Asn
Asn Leu Arg Val Glu Asp Met Gly Ile Tyr 85
90 95Tyr Cys Thr Gly Ser Tyr Tyr Gly Met Asp Tyr Trp
Gly Gln Gly Thr 100 105 110Ser
Val Thr Val Ser Ser 11535336DNAArtificial Sequencesynthesized
35gatgtcgtga tgacccaaac tccactctcc ctgcctgtca gtcttggaga tcaagcctcc
60atctcttgca gatctagtca gagccttgta cacagtaatg gaaacaccta tttacgttgg
120tacctgcaga agccaggcca gtctccaaag gtcctgatct acaaagtttc caaccgattt
180tctggggtcc cagacaggtt cagtggcagt ggatcaggga cagatttcac actcaagatc
240agcagagtgg aggctgagga tctgggagtt tatttctgct ctcaaagtac acatgttccg
300tggacgttcg gtggaggcac caagctggaa atcaaa
33636112PRTArtificial Sequencesynthesized 36Asp Val Val Met Thr Gln Thr
Pro Leu Ser Leu Pro Val Ser Leu Gly1 5 10
15Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu
Val His Ser 20 25 30Asn Gly
Asn Thr Tyr Leu Arg Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35
40 45Pro Lys Val Leu Ile Tyr Lys Val Ser Asn
Arg Phe Ser Gly Val Pro 50 55 60Asp
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile65
70 75 80Ser Arg Val Glu Ala Glu
Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser 85
90 95Thr His Val Pro Trp Thr Phe Gly Gly Gly Thr Lys
Leu Glu Ile Lys 100 105
11037987DNAArtificial Sequencesynthesized 37gctagcacca agggcccatc
ggtcttcccc ctggcaccct cctccaagag cacctctggg 60ggcacagcgg ccctgggctg
cctggtcaag gactacttcc ccgaaccggt gacggtgtcg 120tggaactcag gcgccctgac
cagcggcgtg cacaccttcc cggctgtcct acagtcctca 180ggactctact ccctcagcag
cgtggtgacc gtgccctcca gcagcttggg cacccagacc 240tacatctgca acgtgaatca
caagcccagc aacaccaagg tggacaagag agttgagccc 300aaatcttgtg acaaaactca
cacatgccca ccgtgcccag cacctgaagc cgcgggggca 360ccgtcagtct tcctcttccc
cccaaaaccc aaggacaccc tcatgatctc ccggacccct 420gaggtcacat gcgtggtggt
ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg 480tacgtggacg gcgtggaggt
gcataatgcc aagacaaagc cgcgggagga gcagtacaac 540agcacgtacc gtgtggtcag
cgtcctcacc gtcctgcacc aggactggct gaatggcaag 600gagtacaagt gcgcggtctc
caacaaagcc ctcccagccc ccatcgagaa aaccatctcc 660aaagccaaag ggcagccccg
agaaccacag gtgtacaccc tgcccccatc ccgggatgag 720ctgaccaaga accaggtcag
cctgacctgc ctggtcaaag gcttctatcc cagcgacatc 780gccgtggagt gggagagcaa
tgggcagccg gagaacaact acaagaccac gcctcccgtg 840ctggactccg acggctcctt
cttcctctat agcaagctca ccgtggacaa gagcaggtgg 900cagcagggga acgtcttctc
atgctccgtg atgcatgagg ctctgcacaa ccactacacg 960cagaagagcc tctccctgtc
tccgggt 98738329PRTArtificial
Sequencesynthesized 38Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro
Ser Ser Lys1 5 10 15Ser
Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20
25 30Phe Pro Glu Pro Val Thr Val Ser
Trp Asn Ser Gly Ala Leu Thr Ser 35 40
45Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
50 55 60Leu Ser Ser Val Val Thr Val Pro
Ser Ser Ser Leu Gly Thr Gln Thr65 70 75
80Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys
Val Asp Lys 85 90 95Arg
Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys
100 105 110Pro Ala Pro Glu Ala Ala Gly
Ala Pro Ser Val Phe Leu Phe Pro Pro 115 120
125Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr
Cys 130 135 140Val Val Val Asp Val Ser
His Glu Asp Pro Glu Val Lys Phe Asn Trp145 150
155 160Tyr Val Asp Gly Val Glu Val His Asn Ala Lys
Thr Lys Pro Arg Glu 165 170
175Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
180 185 190His Gln Asp Trp Leu Asn
Gly Lys Glu Tyr Lys Cys Ala Val Ser Asn 195 200
205Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
Lys Gly 210 215 220Gln Pro Arg Glu Pro
Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu225 230
235 240Leu Thr Lys Asn Gln Val Ser Leu Thr Cys
Leu Val Lys Gly Phe Tyr 245 250
255Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
260 265 270Asn Tyr Lys Thr Thr
Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 275
280 285Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
Gln Gln Gly Asn 290 295 300Val Phe Ser
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr305
310 315 320Gln Lys Ser Leu Ser Leu Ser
Pro Gly 32539321DNAArtificial Sequencesynthesized
39cgtacggtgg ctgcaccatc tgtcttcatc ttcccgccat ctgatgagca gttgaaatct
60ggaactgcct ctgttgtgtg cctgctgaat aacttctatc ccagagaggc caaagtacag
120tggaaggtgg ataacgccct ccaatcgggt aactcccagg agagtgtcac agagcaggac
180agcaaggaca gcacctacag cctcagcagc accctgacgc tgagcaaagc agactacgag
240aaacacaaag tctacgcctg cgaagtcacc catcagggcc tgagctcgcc cgtcacaaag
300agcttcaaca ggggagagtg t
32140107PRTArtificial Sequencesynthesized 40Arg Thr Val Ala Ala Pro Ser
Val Phe Ile Phe Pro Pro Ser Asp Glu1 5 10
15Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu
Asn Asn Phe 20 25 30Tyr Pro
Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 35
40 45Ser Gly Asn Ser Gln Glu Ser Val Thr Glu
Gln Asp Ser Lys Asp Ser 50 55 60Thr
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu65
70 75 80Lys His Lys Val Tyr Ala
Cys Glu Val Thr His Gln Gly Leu Ser Ser 85
90 95Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
100 105413681DNAArtificial Sequencesynthesized
41gacatccaga tgacccagtc tccttccacc ctgtctgcat ctgtaggaga cagagtcacc
60atcacttgcc agtccagtca gagtgtttat agtaactggt tctcctggta tcagcagaaa
120ccagggaaag cccctaagct cctgatctat tctgcatcca ctctggcatc tggggtccca
180tcaaggttca gcggcagtgg atctgggaca gaattcactc tcaccatcag cagcctgcag
240cctgatgatt ttgcaactta ttactgcgca ggcggttaca atactgttat tgatactttt
300gctttcggcg gagggaccaa ggtggagatc aaaggcggtg gcggtagtgg gggaggcggt
360tctggcggcg gagggtccgg cggtggagga tcagaggtgc agctgttgga gtctggggga
420ggcttggtac agcctggggg gtccctgaga ctctcctgtg cagcctctgg aatcgacttc
480agtaggagat actacatgtg ctgggtccgc caggctccag ggaaggggct ggagtggatc
540gcatgcatat atactggtag ccgcgatact cctcactacg cgagctccgc gaaaggccgg
600ttcaccatct ccagagacaa ttccaagaac acgctgtatc tgcaaatgaa cagcctgaga
660gccgaggaca cggccgtata ttactgtgcg agagaaggta gcctgtgggg ccagggaacc
720ctggtcaccg tctcgagcgg cggtggaggg tccggcggtg gtggatccca gtcggtggag
780gagtctgggg gaggcttggt ccagcctggg gggtccctga gactctcctg tacagcctct
840ggaatcgacc ttaataccta cgacatgatc tgggtccgcc aggctccagg caaggggcta
900gagtgggttg gaatcattac ttatagtggt agtagatact acgcgaactg ggcgaaaggc
960cgattcacca tctccaaaga caataccaag aacacggtgt atctgcaaat gaacagcctg
1020agagctgagg acacggctgt gtattactgt gccagagatt atatgagtgg ttcccacttg
1080tggggccagg gaaccctggt caccgtctct agtgctagca ccaagggccc atcggtcttc
1140cccctggcac cctcctccaa gagcacctct gggggcacag cggccctggg ctgcctggtc
1200aaggactact tccccgaacc ggtgacggtg tcgtggaact caggcgccct gaccagcggc
1260gtgcacacct tcccggctgt cctacagtcc tcaggactct actccctcag cagcgtggtg
1320accgtgccct ccagcagctt gggcacccag acctacatct gcaacgtgaa tcacaagccc
1380agcaacacca aggtggacaa gagagttgag cccaaatctt gtgacaaaac tcacacatgc
1440ccaccgtgcc cagcacctga agccgcgggg gcaccgtcag tcttcctctt ccccccaaaa
1500cccaaggaca ccctcatgat ctcccggacc cctgaggtca catgcgtggt ggtggacgtg
1560agccacgaag accctgaggt caagttcaac tggtacgtgg acggcgtgga ggtgcataat
1620gccaagacaa agccgcggga ggagcagtac aacagcacgt accgtgtggt cagcgtcctc
1680accgtcctgc accaggactg gctgaatggc aaggagtaca agtgcgcggt ctccaacaaa
1740gccctcccag cccccatcga gaaaaccatc tccaaagcca aagggcagcc ccgagaacca
1800caggtgtata ccctgccccc atcccgggat gagctgacca agaaccaggt cagcctgacc
1860tgcctggtca aaggcttcta tcccagcgac atcgccgtgg agtgggagag caatgggcag
1920ccggagaaca actacaagac cacgcctccc gtgctggact ccgacggctc cttcttcctc
1980tatagcaagc tcaccgtgga caagagcagg tggcagcagg ggaacgtctt ctcatgctcc
2040gtgatgcatg aggctctgca caaccactac acgcagaaga gcctctccct gtctccgggt
2100ggcggtggag ggtccggcgg tggtggatcc gaggtgcagc tgttggagtc tgggggaggc
2160ttggtacagc ctggggggtc cctgagactc tcctgtgcag cctctggatt caccatcagt
2220cgctaccaca tgacttgggt ccgccaggct ccagggaagg ggctggagtg gatcggacat
2280atttatgtta ataatgatga cacagactac gcgagctccg cgaaaggccg gttcaccatc
2340tccagagaca attccaagaa cacgctgtat ctgcaaatga acagcctgag agccgaggac
2400acggccacct atttctgtgc gagattggat gttggtggtg gtggtgctta tattggggac
2460atctggggcc agggaactct ggttaccgtc tcttcaggcg gtggcggtag tgggggaggc
2520ggttctggcg gcggagggtc cggcggtgga ggatcagaca tccagatgac ccagtctcca
2580tcctccctgt ctgcatctgt aggagacaga gtcaccatca cttgccagtc cagtcagagt
2640gtttataaca acaacgactt agcctggtat cagcagaaac cagggaaagt tcctaagctc
2700ctgatctatt atgcttccac tctggcatct ggggtcccat ctcggttcag tggcagtgga
2760tctgggacag atttcactct caccatcagc agcctgcagc ctgaagatgt tgcaacttat
2820tactgtgcag gcggttatga tacggatggt cttgatacgt ttgctttcgg cggagggacc
2880aaggtggaga tcaaaggcgg tggagggtcc ggcggtggtg gatccgaggt gcagctggtg
2940gagtctgggg gaggcttggt ccagcctggg gggtccctga gactctcctg tgcagcctct
3000ggattcacca tcagtaccaa tgcaatgagc tgggtccgcc aggctccagg gaaggggctg
3060gagtggatcg gagtcattac tggtcgtgat atcacatact acgcgagctg ggcgaaaggc
3120agattcacca tctccagaga caattccaag aacacgctgt atcttcaaat gaacagcctg
3180agagccgagg acacggctgt gtattactgt gcgcgcgacg gtggatcatc tgctattact
3240agtaacaaca tttggggcca aggaactctg gtcaccgttt cttcaggcgg tggcggtagt
3300gggggaggcg gttctggcgg cggagggtcc ggcggtggag gatcagacgt cgtgatgacc
3360cagtctcctt ccaccctgtc tgcatctgta ggagacagag tcaccatcaa ttgccaagcc
3420agtgagagca ttagcagttg gttagcctgg tatcagcaga aaccagggaa agcccctaag
3480ctcctgatct atgaagcatc caaactggca tctggggtcc catcaaggtt cagcggcagt
3540ggatctggga cagagttcac tctcaccatc agcagcctgc agcctgatga ttttgcaact
3600tattactgcc aaggctattt ttattttatt agtcgtactt atgtaaattc tttcggcgga
3660gggaccaagg tggagatcaa a
3681421227PRTArtificial Sequencesynthesized 42Asp Ile Gln Met Thr Gln Ser
Pro Ser Thr Leu Ser Ala Ser Val Gly1 5 10
15Asp Arg Val Thr Ile Thr Cys Gln Ser Ser Gln Ser Val
Tyr Ser Asn 20 25 30Trp Phe
Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu 35
40 45Ile Tyr Ser Ala Ser Thr Leu Ala Ser Gly
Val Pro Ser Arg Phe Ser 50 55 60Gly
Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln65
70 75 80Pro Asp Asp Phe Ala Thr
Tyr Tyr Cys Ala Gly Gly Tyr Asn Thr Val 85
90 95Ile Asp Thr Phe Ala Phe Gly Gly Gly Thr Lys Val
Glu Ile Lys Gly 100 105 110Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 115
120 125Gly Gly Ser Glu Val Gln Leu Leu Glu
Ser Gly Gly Gly Leu Val Gln 130 135
140Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ile Asp Phe145
150 155 160Ser Arg Arg Tyr
Tyr Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly 165
170 175Leu Glu Trp Ile Ala Cys Ile Tyr Thr Gly
Ser Arg Asp Thr Pro His 180 185
190Tyr Ala Ser Ser Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser
195 200 205Lys Asn Thr Leu Tyr Leu Gln
Met Asn Ser Leu Arg Ala Glu Asp Thr 210 215
220Ala Val Tyr Tyr Cys Ala Arg Glu Gly Ser Leu Trp Gly Gln Gly
Thr225 230 235 240Leu Val
Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
245 250 255Gln Ser Val Glu Glu Ser Gly
Gly Gly Leu Val Gln Pro Gly Gly Ser 260 265
270Leu Arg Leu Ser Cys Thr Ala Ser Gly Ile Asp Leu Asn Thr
Tyr Asp 275 280 285Met Ile Trp Val
Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Gly 290
295 300Ile Ile Thr Tyr Ser Gly Ser Arg Tyr Tyr Ala Asn
Trp Ala Lys Gly305 310 315
320Arg Phe Thr Ile Ser Lys Asp Asn Thr Lys Asn Thr Val Tyr Leu Gln
325 330 335Met Asn Ser Leu Arg
Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg 340
345 350Asp Tyr Met Ser Gly Ser His Leu Trp Gly Gln Gly
Thr Leu Val Thr 355 360 365Val Ser
Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro 370
375 380Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
Leu Gly Cys Leu Val385 390 395
400Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala
405 410 415Leu Thr Ser Gly
Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly 420
425 430Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
Ser Ser Ser Leu Gly 435 440 445Thr
Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys 450
455 460Val Asp Lys Arg Val Glu Pro Lys Ser Cys
Asp Lys Thr His Thr Cys465 470 475
480Pro Pro Cys Pro Ala Pro Glu Ala Ala Gly Ala Pro Ser Val Phe
Leu 485 490 495Phe Pro Pro
Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu 500
505 510Val Thr Cys Val Val Val Asp Val Ser His
Glu Asp Pro Glu Val Lys 515 520
525Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 530
535 540Pro Arg Glu Glu Gln Tyr Asn Ser
Thr Tyr Arg Val Val Ser Val Leu545 550
555 560Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
Tyr Lys Cys Ala 565 570
575Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys
580 585 590Ala Lys Gly Gln Pro Arg
Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 595 600
605Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
Val Lys 610 615 620Gly Phe Tyr Pro Ser
Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln625 630
635 640Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
Val Leu Asp Ser Asp Gly 645 650
655Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
660 665 670Gln Gly Asn Val Phe
Ser Cys Ser Val Met His Glu Ala Leu His Asn 675
680 685His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly
Gly Gly Gly Gly 690 695 700Ser Gly Gly
Gly Gly Ser Glu Val Gln Leu Leu Glu Ser Gly Gly Gly705
710 715 720Leu Val Gln Pro Gly Gly Ser
Leu Arg Leu Ser Cys Ala Ala Ser Gly 725
730 735Phe Thr Ile Ser Arg Tyr His Met Thr Trp Val Arg
Gln Ala Pro Gly 740 745 750Lys
Gly Leu Glu Trp Ile Gly His Ile Tyr Val Asn Asn Asp Asp Thr 755
760 765Asp Tyr Ala Ser Ser Ala Lys Gly Arg
Phe Thr Ile Ser Arg Asp Asn 770 775
780Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp785
790 795 800Thr Ala Thr Tyr
Phe Cys Ala Arg Leu Asp Val Gly Gly Gly Gly Ala 805
810 815Tyr Ile Gly Asp Ile Trp Gly Gln Gly Thr
Leu Val Thr Val Ser Ser 820 825
830Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly
835 840 845Gly Gly Gly Ser Asp Ile Gln
Met Thr Gln Ser Pro Ser Ser Leu Ser 850 855
860Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Gln Ser Ser Gln
Ser865 870 875 880Val Tyr
Asn Asn Asn Asp Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys
885 890 895Val Pro Lys Leu Leu Ile Tyr
Tyr Ala Ser Thr Leu Ala Ser Gly Val 900 905
910Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr
Leu Thr 915 920 925Ile Ser Ser Leu
Gln Pro Glu Asp Val Ala Thr Tyr Tyr Cys Ala Gly 930
935 940Gly Tyr Asp Thr Asp Gly Leu Asp Thr Phe Ala Phe
Gly Gly Gly Thr945 950 955
960Lys Val Glu Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu
965 970 975Val Gln Leu Val Glu
Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser 980
985 990Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Ile
Ser Thr Asn Ala 995 1000 1005Met
Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile 1010
1015 1020Gly Val Ile Thr Gly Arg Asp Ile Thr
Tyr Tyr Ala Ser Trp Ala 1025 1030
1035Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu
1040 1045 1050Tyr Leu Gln Met Asn Ser
Leu Arg Ala Glu Asp Thr Ala Val Tyr 1055 1060
1065Tyr Cys Ala Arg Asp Gly Gly Ser Ser Ala Ile Thr Ser Asn
Asn 1070 1075 1080Ile Trp Gly Gln Gly
Thr Leu Val Thr Val Ser Ser Gly Gly Gly 1085 1090
1095Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly
Gly Gly 1100 1105 1110Gly Ser Asp Val
Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala 1115
1120 1125Ser Val Gly Asp Arg Val Thr Ile Asn Cys Gln
Ala Ser Glu Ser 1130 1135 1140Ile Ser
Ser Trp Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala 1145
1150 1155Pro Lys Leu Leu Ile Tyr Glu Ala Ser Lys
Leu Ala Ser Gly Val 1160 1165 1170Pro
Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu 1175
1180 1185Thr Ile Ser Ser Leu Gln Pro Asp Asp
Phe Ala Thr Tyr Tyr Cys 1190 1195
1200Gln Gly Tyr Phe Tyr Phe Ile Ser Arg Thr Tyr Val Asn Ser Phe
1205 1210 1215Gly Gly Gly Thr Lys Val
Glu Ile Lys 1220 122543651DNAArtificial
Sequencesynthesized 43gcctatgata tgacccagtc tccatcttcc gtgtctgcat
ctgtaggaga cagagtcacc 60atcaagtgtc aggccagtga ggacatttat agcttcttgg
cctggtatca gcagaaacca 120gggaaagccc ctaagctcct gatccattct gcatcctctc
tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc tgggacagat ttcactctca
ccatcagcag cctgcagcct 240gaagattttg caacttacta ttgtcaacag ggttatggta
aaaataatgt tgataatgct 300ttcggcggag ggaccaaggt ggagatcaaa cgtacggtgg
ctgcaccatc tgtcttcatc 360ttcccgccat ctgatgagca gttgaaatct ggaactgcct
ctgttgtgtg cctgctgaat 420aacttctatc ccagagaggc caaagtacag tggaaggtgg
ataacgccct ccaatcgggt 480aactcccagg agagtgtcac agagcaggac agcaaggaca
gcacctacag cctcagcagc 540accctgacgc tgagcaaagc agactacgag aaacacaaag
tctacgcctg cgaagtcacc 600catcagggcc tgagctcgcc cgtcacaaag agcttcaaca
ggggagagtg t 65144217PRTArtificial Sequencesynthesized 44Ala
Tyr Asp Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly1
5 10 15Asp Arg Val Thr Ile Lys Cys
Gln Ala Ser Glu Asp Ile Tyr Ser Phe 20 25
30Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
Leu Ile 35 40 45His Ser Ala Ser
Ser Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser
Leu Gln Pro65 70 75
80Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Gly Lys Asn Asn
85 90 95Val Asp Asn Ala Phe Gly
Gly Gly Thr Lys Val Glu Ile Lys Arg Thr 100
105 110Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser
Asp Glu Gln Leu 115 120 125Lys Ser
Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro 130
135 140Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn
Ala Leu Gln Ser Gly145 150 155
160Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr
165 170 175Ser Leu Ser Ser
Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His 180
185 190Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly
Leu Ser Ser Pro Val 195 200 205Thr
Lys Ser Phe Asn Arg Gly Glu Cys 210
21545360DNAArtificial SequenceSynthesized 45gaggtgcagc tggtggagtc
tgggggaggc ttggtccagc ctggggggtc cctgagactc 60tcctgtgcag cctctggatt
caccatcagt accaatgcaa tgagctgggt ccgccaggct 120ccagggaagg ggctggagtg
gatcggagtc attactggtc gtgatatcac atactacgcg 180agctgggcga aaggcagatt
caccatctcc agagacaatt ccaagaacac gctgtatctt 240caaatgaaca gcctgagagc
cgaggacacg gctgtgtatt actgtgcgag agacggtggt 300tcttctgcta ttactagtaa
caacatttgg ggccagggaa ccctggtcac cgtgtcgaca 36046120PRTArtificial
SequenceSynthesized 46Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln
Pro Gly Gly1 5 10 15Ser
Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Ile Ser Thr Asn 20
25 30Ala Met Ser Trp Val Arg Gln Ala
Pro Gly Lys Gly Leu Glu Trp Ile 35 40
45Gly Val Ile Thr Gly Arg Asp Ile Thr Tyr Tyr Ala Ser Trp Ala Lys
50 55 60Gly Arg Phe Thr Ile Ser Arg Asp
Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75
80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr
Tyr Cys Ala 85 90 95Arg
Asp Gly Gly Ser Ser Ala Ile Thr Ser Asn Asn Ile Trp Gly Gln
100 105 110Gly Thr Leu Val Thr Val Ser
Thr 115 12047363DNAArtificial SequenceSynthesized
47gaggtgcagc tggtgcagtc tggagcagag gtgaagaaac caggagagtc tctgaagatc
60tcctgtaagg gttctggata cagctttagc agttcatgga tcggctgggt gcgccaggca
120cctgggaaag gcctggaatg gatggggatc atctatcctg atgactctga taccagatac
180agtccatcct tccaaggcca ggtcaccatc tcagccgaca agtccatcag gactgcctac
240ctgcagtgga gtagcctgaa ggcctcggac accgctatgt attactgtgc gagacatgtt
300actatgattt ggggagttat tattgacttc tggggccagg gaaccctggt caccgtctcc
360tca
36348121PRTArtificial SequenceSynthesized 48Glu Val Gln Leu Val Gln Ser
Gly Ala Glu Val Lys Lys Pro Gly Glu1 5 10
15Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe
Ser Ser Ser 20 25 30Trp Ile
Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35
40 45Gly Ile Ile Tyr Pro Asp Asp Ser Asp Thr
Arg Tyr Ser Pro Ser Phe 50 55 60Gln
Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Arg Thr Ala Tyr65
70 75 80Leu Gln Trp Ser Ser Leu
Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys 85
90 95Ala Arg His Val Thr Met Ile Trp Gly Val Ile Ile
Asp Phe Trp Gly 100 105 110Gln
Gly Thr Leu Val Thr Val Ser Ser 115
12049321DNAArtificial SequenceSynthesized 49gccatccagt tgacccagtc
tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60atcacttgcc gggcaagtca
gggcattagc agtgctttag cctggtatca gcagaaacca 120gggaaagctc ctaagctcct
gatctatgat gcctccagtt tggaaagtgg ggtcccatca 180aggttcagcg gcagtggatc
tgggacagat ttcactctca ccatcagcag cctgcagcct 240gaagattttg caacttatta
ctgtcaacag tttaatagtt acccattcac tttcggccct 300gggaccaaag tggatatcaa a
32150107PRTArtificial
SequenceSynthesized 50Ala Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala
Ser Val Gly1 5 10 15Asp
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Ala 20
25 30Leu Ala Trp Tyr Gln Gln Lys Pro
Gly Lys Ala Pro Lys Leu Leu Ile 35 40
45Tyr Asp Ala Ser Ser Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60Ser Gly Ser Gly Thr Asp Phe Thr
Leu Thr Ile Ser Ser Leu Gln Pro65 70 75
80Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Phe Asn Ser
Tyr Pro Phe 85 90 95Thr
Phe Gly Pro Gly Thr Lys Val Asp Ile Lys 100
10551348DNAArtificial SequenceSynthesized 51gatgtgcagc ttcaggagtc
gggacctagc ctggtgaaac cttctcagtc tctgtccctc 60acctgcactg tcactggcta
ctcaatcacc agtgattttg cctggaactg gattcggcag 120tttccaggaa acaagctgga
gtggatgggc tacataagtt atagtggtaa cactaggtac 180aacccatctc tcaaaagtcg
aatctctatc actcgcgaca catccaagaa ccaattcttc 240ctgcagttga actctgtgac
tattgaggac acagccacat attactgtgt aacggcggga 300cgcgggtttc cttattgggg
ccaagggact ctggtcactg tctctgca 34852116PRTArtificial
SequenceSynthesized 52Asp Val Gln Leu Gln Glu Ser Gly Pro Ser Leu Val Lys
Pro Ser Gln1 5 10 15Ser
Leu Ser Leu Thr Cys Thr Val Thr Gly Tyr Ser Ile Thr Ser Asp 20
25 30Phe Ala Trp Asn Trp Ile Arg Gln
Phe Pro Gly Asn Lys Leu Glu Trp 35 40
45Met Gly Tyr Ile Ser Tyr Ser Gly Asn Thr Arg Tyr Asn Pro Ser Leu
50 55 60Lys Ser Arg Ile Ser Ile Thr Arg
Asp Thr Ser Lys Asn Gln Phe Phe65 70 75
80Leu Gln Leu Asn Ser Val Thr Ile Glu Asp Thr Ala Thr
Tyr Tyr Cys 85 90 95Val
Thr Ala Gly Arg Gly Phe Pro Tyr Trp Gly Gln Gly Thr Leu Val
100 105 110Thr Val Ser Ala
11553321DNAArtificial SequenceSynthesized 53gacatcctga tgacccaatc
tccatcctcc atgtctgtat ctctgggaga cacagtcagc 60atcacttgcc attcaagtca
ggacattaac agtaatatag ggtggttgca gcagagacca 120gggaaatcat ttaagggcct
gatctatcat ggaaccaact tggacgatga agttccatca 180aggttcagtg gcagtggatc
tggagccgat tattctctca ccatcagcag cctggaatct 240gaagattttg cagactatta
ctgtgtacag tatgctcagt ttccgtggac gttcggtgga 300ggcaccaagc tggaaatcaa a
32154107PRTArtificial
SequenceSynthesized 54Asp Ile Leu Met Thr Gln Ser Pro Ser Ser Met Ser Val
Ser Leu Gly1 5 10 15Asp
Thr Val Ser Ile Thr Cys His Ser Ser Gln Asp Ile Asn Ser Asn 20
25 30Ile Gly Trp Leu Gln Gln Arg Pro
Gly Lys Ser Phe Lys Gly Leu Ile 35 40
45Tyr His Gly Thr Asn Leu Asp Asp Glu Val Pro Ser Arg Phe Ser Gly
50 55 60Ser Gly Ser Gly Ala Asp Tyr Ser
Leu Thr Ile Ser Ser Leu Glu Ser65 70 75
80Glu Asp Phe Ala Asp Tyr Tyr Cys Val Gln Tyr Ala Gln
Phe Pro Trp 85 90 95Thr
Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100
1055533DNAArtificial SequenceSynthesized 55ggcggtggag ggtccggcgg
tggtggctcc gga 335611PRTArtificial
SequenceSynthesized 56Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly1
5 105730DNAArtificial SequenceSynthesized
57ggcggtggag ggtccggcgg tggtggatca
305810PRTArtificial SequenceSynthesized 58Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser1 5 105930DNAArtificial
SequenceSynthesized 59ggcggtggag ggtccggcgg tggtggatcc
306010PRTArtificial SequenceSynthesized 60Gly Gly Gly
Gly Ser Gly Gly Gly Gly Ser1 5
106160DNAArtificial SequenceSynthesized 61ggcggtggcg gtagtggggg
aggcggttct ggcggcggag ggtccggcgg tggaggatca 606220PRTArtificial
SequenceSynthesized 62Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gly1 5 10 15Gly
Gly Gly Ser 20633693DNAArtificial SequenceSynthesized
63gacgtcgtga tgacccagtc tccttccacc ctgtctgcat ctgtaggaga cagagtcacc
60atcaattgcc aagccagtga gagcattagc agttggttag cctggtatca gcagaaacca
120gggaaagccc ctaagctcct gatctatgaa gcatccaaac tggcatctgg ggtcccatca
180aggttcagcg gcagtggatc tgggacagag ttcactctca ccatcagcag cctgcagcct
240gatgattttg caacttatta ctgccaaggc tatttttatt ttattagtcg tacttatgta
300aattctttcg gcggagggac caaggtggag atcaaaggcg gtggcggtag tgggggaggc
360ggttctggcg gcggagggtc cggcggtgga ggatcagagg tgcagctggt ggagtctggg
420ggaggcttgg tccagcctgg ggggtccctg agactctcct gtgcagcctc tggattcacc
480atcagtacca atgcaatgag ctgggtccgc caggctccag ggaaggggct ggagtggatc
540ggagtcatta ctggtcgtga tatcacatac tacgcgagct gggcgaaagg cagattcacc
600atctccagag acaattccaa gaacacgctg tatcttcaaa tgaacagcct gagagccgag
660gacacggctg tgtattactg tgcgcgcgac ggtggatcat ctgctattac tagtaacaac
720atttggggcc aaggaactct ggtcaccgtt tcttcaggcg gtggagggtc cggcggtggt
780ggatccgatg tgcagcttca ggagtcggga cctagcctgg tgaaaccttc tcagtctctg
840tccctcacct gcactgtcac tggctactca atcaccagtg attttgcctg gaactggatt
900cggcagtttc caggaaacaa gctggagtgg atgggctaca taagttatag tggtaacact
960aggtacaacc catctctcaa aagtcgaatc tctatcactc gcgacacatc caagaaccaa
1020ttcttcctgc agttgaactc tgtgactatt gaggacacag ccacatatta ctgtgtaacg
1080gcgggacgcg ggtttcctta ttggggccaa gggactctgg tcactgtctc tgcagctagc
1140accaagggcc catcggtctt ccccctggca ccctcctcca agagcacctc tgggggcaca
1200gcggccctgg gctgcctggt caaggactac ttccccgaac cggtgacggt gtcgtggaac
1260tcaggcgccc tgaccagcgg cgtgcacacc ttcccggctg tcctacagtc ctcaggactc
1320tactccctca gcagcgtggt gaccgtgccc tccagcagct tgggcaccca gacctacatc
1380tgcaacgtga atcacaagcc cagcaacacc aaggtggaca agagagttga gcccaaatct
1440tgtgacaaaa ctcacacatg cccaccgtgc ccagcacctg aagccgcggg ggcaccgtca
1500gtcttcctct tccccccaaa acccaaggac accctcatga tctcccggac ccctgaggtc
1560acatgcgtgg tggtggacgt gagccacgaa gaccctgagg tcaagttcaa ctggtacgtg
1620gacggcgtgg aggtgcataa tgccaagaca aagccgcggg aggagcagta caacagcacg
1680taccgtgtgg tcagcgtcct caccgtcctg caccaggact ggctgaatgg caaggagtac
1740aagtgcgcgg tctccaacaa agccctccca gcccccatcg agaaaaccat ctccaaagcc
1800aaagggcagc cccgagaacc acaggtgtac accctgcccc catcccggga tgagctgacc
1860aagaaccagg tcagcctgac ctgcctggtc aaaggcttct atcccagcga catcgccgtg
1920gagtgggaga gcaatgggca gccggagaac aactacaaga ccacgcctcc cgtgctggac
1980tccgacggct ccttcttcct ctatagcaag ctcaccgtgg acaagagcag gtggcagcag
2040gggaacgtct tctcatgctc cgtgatgcat gaggctctgc acaaccacta cacgcagaag
2100agcctctccc tgtctccggg tggcggtgga gggtccggcg gtggtggatc cgaggtgcag
2160ctgttggagt ctgggggagg cttggtacag cctggggggt ccctgagact ctcctgtgca
2220gcctctggat tctccttcag tagcgggtac gacatgtgct gggtccgcca ggctccaggg
2280aaggggctgg agtggatcgc atgcattgct gctggtagtg ctggtatcac ttacgacgcg
2340aactgggcga aaggccggtt caccatctcc agagacaatt ccaagaacac gctgtatctg
2400caaatgaaca gcctgagagc cgaggacacg gccgtatatt actgtgcgag atcggcgttt
2460tcgttcgact acgccatgga cctctggggc cagggaaccc tggtcaccgt ctcgagcggc
2520ggtggcggta gtgggggagg cggttctggc ggcggagggt ccggcggtgg aggatcagac
2580atccagatga cccagtctcc ttccaccctg tctgcatctg taggagacag agtcaccatc
2640acttgccagg ccagtcagag cattagttcc cacttaaact ggtatcagca gaaaccaggg
2700aaagccccta agctcctgat ctataaggca tccactctgg catctggggt cccatcaagg
2760ttcagcggca gtggatctgg gacagaattt actctcacca tcagcagcct gcagcctgat
2820gattttgcaa cttattactg ccaacagggt tatagttggg gtaatgttga taatgttttc
2880ggcggaggga ccaaggtgga gatcaaaggc ggtggagggt ccggcggtgg tggatcccag
2940tcgctggtgg agtctggggg aggcttggta cagcctgggg ggtccctgag actctcctgt
3000gcagcctctg gattctcctt cagtagcaac tactggatat gctgggtccg ccaggctcca
3060gggaaggggc tggagtggat cgcatgtatt tatgttggta gtagtggtga cacttactac
3120gcgagctccg cgaaaggccg gttcaccatc tccagagaca attccaagaa cacgctgtat
3180ctgcaaatga acagcctgag agccgaggac acggccgtat attactgtgc gagagatagt
3240agtagttatt atatgtttaa cttgtggggc cagggaaccc tggtcaccgt ctcttcaggc
3300ggtggcggta gtgggggagg cggttctggc ggcggagggt ccggcggtgg aggatcagcc
3360cttgtgatga cccagtctcc ttccaccctg tctgcatctg taggagacag agtcaccatc
3420aattgccagg ccagtgagga cattgatacc tatttagcct ggtatcagca gaaaccaggg
3480aaagccccta agctcctgat cttttacgca tccgatctgg catctggggt cccatcaagg
3540ttcagcggca gtggatctgg gacagaattt actctcacca tcagcagcct gcagcctgat
3600gattttgcaa cttattactg ccaaggcggt tactatacta gtagtgctga tacgaggggt
3660gctttcggcg gagggaccaa ggtggagatc aaa
3693641231PRTArtificial SequenceSynthesized 64Asp Val Val Met Thr Gln Ser
Pro Ser Thr Leu Ser Ala Ser Val Gly1 5 10
15Asp Arg Val Thr Ile Asn Cys Gln Ala Ser Glu Ser Ile
Ser Ser Trp 20 25 30Leu Ala
Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35
40 45Tyr Glu Ala Ser Lys Leu Ala Ser Gly Val
Pro Ser Arg Phe Ser Gly 50 55 60Ser
Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65
70 75 80Asp Asp Phe Ala Thr Tyr
Tyr Cys Gln Gly Tyr Phe Tyr Phe Ile Ser 85
90 95Arg Thr Tyr Val Asn Ser Phe Gly Gly Gly Thr Lys
Val Glu Ile Lys 100 105 110Gly
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 115
120 125Gly Gly Gly Ser Glu Val Gln Leu Val
Glu Ser Gly Gly Gly Leu Val 130 135
140Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr145
150 155 160Ile Ser Thr Asn
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly 165
170 175Leu Glu Trp Ile Gly Val Ile Thr Gly Arg
Asp Ile Thr Tyr Tyr Ala 180 185
190Ser Trp Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
195 200 205Thr Leu Tyr Leu Gln Met Asn
Ser Leu Arg Ala Glu Asp Thr Ala Val 210 215
220Tyr Tyr Cys Ala Arg Asp Gly Gly Ser Ser Ala Ile Thr Ser Asn
Asn225 230 235 240Ile Trp
Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly
245 250 255Ser Gly Gly Gly Gly Ser Asp
Val Gln Leu Gln Glu Ser Gly Pro Ser 260 265
270Leu Val Lys Pro Ser Gln Ser Leu Ser Leu Thr Cys Thr Val
Thr Gly 275 280 285Tyr Ser Ile Thr
Ser Asp Phe Ala Trp Asn Trp Ile Arg Gln Phe Pro 290
295 300Gly Asn Lys Leu Glu Trp Met Gly Tyr Ile Ser Tyr
Ser Gly Asn Thr305 310 315
320Arg Tyr Asn Pro Ser Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr
325 330 335Ser Lys Asn Gln Phe
Phe Leu Gln Leu Asn Ser Val Thr Ile Glu Asp 340
345 350Thr Ala Thr Tyr Tyr Cys Val Thr Ala Gly Arg Gly
Phe Pro Tyr Trp 355 360 365Gly Gln
Gly Thr Leu Val Thr Val Ser Ala Ala Ser Thr Lys Gly Pro 370
375 380Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser
Thr Ser Gly Gly Thr385 390 395
400Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr
405 410 415Val Ser Trp Asn
Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro 420
425 430Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu
Ser Ser Val Val Thr 435 440 445Val
Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn 450
455 460His Lys Pro Ser Asn Thr Lys Val Asp Lys
Arg Val Glu Pro Lys Ser465 470 475
480Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala
Ala 485 490 495Gly Ala Pro
Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 500
505 510Met Ile Ser Arg Thr Pro Glu Val Thr Cys
Val Val Val Asp Val Ser 515 520
525His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 530
535 540Val His Asn Ala Lys Thr Lys Pro
Arg Glu Glu Gln Tyr Asn Ser Thr545 550
555 560Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
Asp Trp Leu Asn 565 570
575Gly Lys Glu Tyr Lys Cys Ala Val Ser Asn Lys Ala Leu Pro Ala Pro
580 585 590Ile Glu Lys Thr Ile Ser
Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 595 600
605Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn
Gln Val 610 615 620Ser Leu Thr Cys Leu
Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val625 630
635 640Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
Asn Tyr Lys Thr Thr Pro 645 650
655Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr
660 665 670Val Asp Lys Ser Arg
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 675
680 685Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
Ser Leu Ser Leu 690 695 700Ser Pro Gly
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Val Gln705
710 715 720Leu Leu Glu Ser Gly Gly Gly
Leu Val Gln Pro Gly Gly Ser Leu Arg 725
730 735Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser
Gly Tyr Asp Met 740 745 750Cys
Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Ala Cys 755
760 765Ile Ala Ala Gly Ser Ala Gly Ile Thr
Tyr Asp Ala Asn Trp Ala Lys 770 775
780Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu785
790 795 800Gln Met Asn Ser
Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 805
810 815Arg Ser Ala Phe Ser Phe Asp Tyr Ala Met
Asp Leu Trp Gly Gln Gly 820 825
830Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
835 840 845Ser Gly Gly Gly Gly Ser Gly
Gly Gly Gly Ser Asp Ile Gln Met Thr 850 855
860Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr
Ile865 870 875 880Thr Cys
Gln Ala Ser Gln Ser Ile Ser Ser His Leu Asn Trp Tyr Gln
885 890 895Gln Lys Pro Gly Lys Ala Pro
Lys Leu Leu Ile Tyr Lys Ala Ser Thr 900 905
910Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser
Gly Thr 915 920 925Glu Phe Thr Leu
Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr 930
935 940Tyr Tyr Cys Gln Gln Gly Tyr Ser Trp Gly Asn Val
Asp Asn Val Phe945 950 955
960Gly Gly Gly Thr Lys Val Glu Ile Lys Gly Gly Gly Gly Ser Gly Gly
965 970 975Gly Gly Ser Gln Ser
Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro 980
985 990Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
Phe Ser Phe Ser 995 1000 1005Ser
Asn Tyr Trp Ile Cys Trp Val Arg Gln Ala Pro Gly Lys Gly 1010
1015 1020Leu Glu Trp Ile Ala Cys Ile Tyr Val
Gly Ser Ser Gly Asp Thr 1025 1030
1035Tyr Tyr Ala Ser Ser Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp
1040 1045 1050Asn Ser Lys Asn Thr Leu
Tyr Leu Gln Met Asn Ser Leu Arg Ala 1055 1060
1065Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Ser Ser Ser
Tyr 1070 1075 1080Tyr Met Phe Asn Leu
Trp Gly Gln Gly Thr Leu Val Thr Val Ser 1085 1090
1095Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
Gly Gly 1100 1105 1110Ser Gly Gly Gly
Gly Ser Ala Leu Val Met Thr Gln Ser Pro Ser 1115
1120 1125Thr Leu Ser Ala Ser Val Gly Asp Arg Val Thr
Ile Asn Cys Gln 1130 1135 1140Ala Ser
Glu Asp Ile Asp Thr Tyr Leu Ala Trp Tyr Gln Gln Lys 1145
1150 1155Pro Gly Lys Ala Pro Lys Leu Leu Ile Phe
Tyr Ala Ser Asp Leu 1160 1165 1170Ala
Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr 1175
1180 1185Glu Phe Thr Leu Thr Ile Ser Ser Leu
Gln Pro Asp Asp Phe Ala 1190 1195
1200Thr Tyr Tyr Cys Gln Gly Gly Tyr Tyr Thr Ser Ser Ala Asp Thr
1205 1210 1215Arg Gly Ala Phe Gly Gly
Gly Thr Lys Val Glu Ile Lys 1220 1225
123065642DNAArtificial SequenceSynthesized 65gacatcctga tgacccaatc
tccatcctcc atgtctgtat ctctgggaga cacagtcagc 60atcacttgcc attcaagtca
ggacattaac agtaatatag ggtggttgca gcagagacca 120gggaaatcat ttaagggcct
gatctatcat ggaaccaact tggacgatga agttccatca 180aggttcagtg gcagtggatc
tggagccgat tattctctca ccatcagcag cctggaatct 240gaagattttg cagactatta
ctgtgtacag tatgctcagt ttccgtggac gttcggtgga 300ggcaccaagc tggaaatcaa
acgtacggtg gctgcaccat ctgtcttcat cttcccgcca 360tctgatgagc agttgaaatc
tggaactgcc tctgttgtgt gcctgctgaa taacttctat 420cccagagagg ccaaagtaca
gtggaaggtg gataacgccc tccaatcggg taactcccag 480gagagtgtca cagagcagga
cagcaaggac agcacctaca gcctcagcag caccctgacg 540ctgagcaaag cagactacga
gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc 600ctgagctcgc ccgtcacaaa
gagcttcaac aggggagagt gt 64266214PRTArtificial
SequenceSynthesized 66Asp Ile Leu Met Thr Gln Ser Pro Ser Ser Met Ser Val
Ser Leu Gly1 5 10 15Asp
Thr Val Ser Ile Thr Cys His Ser Ser Gln Asp Ile Asn Ser Asn 20
25 30Ile Gly Trp Leu Gln Gln Arg Pro
Gly Lys Ser Phe Lys Gly Leu Ile 35 40
45Tyr His Gly Thr Asn Leu Asp Asp Glu Val Pro Ser Arg Phe Ser Gly
50 55 60Ser Gly Ser Gly Ala Asp Tyr Ser
Leu Thr Ile Ser Ser Leu Glu Ser65 70 75
80Glu Asp Phe Ala Asp Tyr Tyr Cys Val Gln Tyr Ala Gln
Phe Pro Trp 85 90 95Thr
Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala
100 105 110Pro Ser Val Phe Ile Phe Pro
Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120
125Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu
Ala 130 135 140Lys Val Gln Trp Lys Val
Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln145 150
155 160Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
Thr Tyr Ser Leu Ser 165 170
175Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
180 185 190Ala Cys Glu Val Thr His
Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200
205Phe Asn Arg Gly Glu Cys 210673678DNAArtificial
SequenceSynthesized 67gacatcctga tgacccaatc tccatcctcc atgtctgtat
ctctgggaga cacagtcagc 60atcacttgcc attcaagtca ggacattaac agtaatatag
ggtggttgca gcagagacca 120gggaaatcat ttaagggcct gatctatcat ggaaccaact
tggacgatga agttccatca 180aggttcagtg gcagtggatc tggagccgat tattctctca
ccatcagcag cctggaatct 240gaagattttg cagactatta ctgtgtacag tatgctcagt
ttccgtggac gttcggtgga 300ggcaccaagc tggaaatcaa aggcggtggc ggtagtgggg
gaggcggttc tggcggcgga 360gggtccggcg gtggaggatc agatgtgcag cttcaggagt
cgggacctag cctggtgaaa 420ccttctcagt ctctgtccct cacctgcact gtcactggct
actcaatcac cagtgatttt 480gcctggaact ggattcggca gtttccagga aacaagctgg
agtggatggg ctacataagt 540tatagtggta acactaggta caacccatct ctcaaaagtc
gaatctctat cactcgcgac 600acatccaaga accaattctt cctgcagttg aactctgtga
ctattgagga cacagccaca 660tattactgtg taacggcggg acgcgggttt ccttattggg
gccaagggac tctggtcact 720gtctctgcag gcggtggagg gtccggcggt ggtggatccg
aggtgcagct ggtggagtct 780gggggaggct tggtccagcc tggggggtcc ctgagactct
cctgtgcagc ctctggattc 840accatcagta ccaatgcaat gagctgggtc cgccaggctc
cagggaaggg gctggagtgg 900atcggagtca ttactggtcg tgatatcaca tactacgcga
gctgggcgaa aggcagattc 960accatctcca gagacaattc caagaacacg ctgtatcttc
aaatgaacag cctgagagcc 1020gaggacacgg ctgtgtatta ctgtgcgcgc gacggtggat
catctgctat tactagtaac 1080aacatttggg gccaaggaac tctggtcacc gtttcttcag
ctagcaccaa gggcccatcg 1140gtcttccccc tggcaccctc ctccaagagc acctctgggg
gcacagcggc cctgggctgc 1200ctggtcaagg actacttccc cgaaccggtg acggtgtcgt
ggaactcagg cgccctgacc 1260agcggcgtgc acaccttccc ggctgtccta cagtcctcag
gactctactc cctcagcagc 1320gtggtgaccg tgccctccag cagcttgggc acccagacct
acatctgcaa cgtgaatcac 1380aagcccagca acaccaaggt ggacaagaga gttgagccca
aatcttgtga caaaactcac 1440acatgcccac cgtgcccagc acctgaagcc gcgggggcac
cgtcagtctt cctcttcccc 1500ccaaaaccca aggacaccct catgatctcc cggacccctg
aggtcacatg cgtggtggtg 1560gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt
acgtggacgg cgtggaggtg 1620cataatgcca agacaaagcc gcgggaggag cagtacaaca
gcacgtaccg tgtggtcagc 1680gtcctcaccg tcctgcacca ggactggctg aatggcaagg
agtacaagtg cgcggtctcc 1740aacaaagccc tcccagcccc catcgagaaa accatctcca
aagccaaagg gcagccccga 1800gaaccacagg tgtacaccct gcccccatcc cgggatgagc
tgaccaagaa ccaggtcagc 1860ctgacctgcc tggtcaaagg cttctatccc agcgacatcg
ccgtggagtg ggagagcaat 1920gggcagccgg agaacaacta caagaccacg cctcccgtgc
tggactccga cggctccttc 1980ttcctctata gcaagctcac cgtggacaag agcaggtggc
agcaggggaa cgtcttctca 2040tgctccgtga tgcatgaggc tctgcacaac cactacacgc
agaagagcct ctccctgtct 2100ccgggtggcg gtggagggtc cggcggtggt ggatccgagg
tgcagctgtt ggagtctggg 2160ggaggcttgg tacagcctgg ggggtccctg agactctcct
gtgcagcctc tggattctcc 2220ttcagtagcg ggtacgacat gtgctgggtc cgccaggctc
cagggaaggg gctggagtgg 2280atcgcatgca ttgctgctgg tagtgctggt atcacttacg
acgcgaactg ggcgaaaggc 2340cggttcacca tctccagaga caattccaag aacacgctgt
atctgcaaat gaacagcctg 2400agagccgagg acacggccgt atattactgt gcgagatcgg
cgttttcgtt cgactacgcc 2460atggacctct ggggccaggg aaccctggtc accgtctcga
gcggcggtgg cggtagtggg 2520ggaggcggtt ctggcggcgg agggtccggc ggtggaggat
cagacatcca gatgacccag 2580tctccttcca ccctgtctgc atctgtagga gacagagtca
ccatcacttg ccaggccagt 2640cagagcatta gttcccactt aaactggtat cagcagaaac
cagggaaagc ccctaagctc 2700ctgatctata aggcatccac tctggcatct ggggtcccat
caaggttcag cggcagtgga 2760tctgggacag aatttactct caccatcagc agcctgcagc
ctgatgattt tgcaacttat 2820tactgccaac agggttatag ttggggtaat gttgataatg
ttttcggcgg agggaccaag 2880gtggagatca aaggcggtgg agggtccggc ggtggtggat
cccagtcgct ggtggagtct 2940gggggaggct tggtacagcc tggggggtcc ctgagactct
cctgtgcagc ctctggattc 3000tccttcagta gcaactactg gatatgctgg gtccgccagg
ctccagggaa ggggctggag 3060tggatcgcat gtatttatgt tggtagtagt ggtgacactt
actacgcgag ctccgcgaaa 3120ggccggttca ccatctccag agacaattcc aagaacacgc
tgtatctgca aatgaacagc 3180ctgagagccg aggacacggc cgtatattac tgtgcgagag
atagtagtag ttattatatg 3240tttaacttgt ggggccaggg aaccctggtc accgtctctt
caggcggtgg cggtagtggg 3300ggaggcggtt ctggcggcgg agggtccggc ggtggaggat
cagcccttgt gatgacccag 3360tctccttcca ccctgtctgc atctgtagga gacagagtca
ccatcaattg ccaggccagt 3420gaggacattg atacctattt agcctggtat cagcagaaac
cagggaaagc ccctaagctc 3480ctgatctttt acgcatccga tctggcatct ggggtcccat
caaggttcag cggcagtgga 3540tctgggacag aatttactct caccatcagc agcctgcagc
ctgatgattt tgcaacttat 3600tactgccaag gcggttacta tactagtagt gctgatacga
ggggtgcttt cggcggaggg 3660accaaggtgg agatcaaa
3678681226PRTArtificial SequenceSynthesized 68Asp
Ile Leu Met Thr Gln Ser Pro Ser Ser Met Ser Val Ser Leu Gly1
5 10 15Asp Thr Val Ser Ile Thr Cys
His Ser Ser Gln Asp Ile Asn Ser Asn 20 25
30Ile Gly Trp Leu Gln Gln Arg Pro Gly Lys Ser Phe Lys Gly
Leu Ile 35 40 45Tyr His Gly Thr
Asn Leu Asp Asp Glu Val Pro Ser Arg Phe Ser Gly 50 55
60Ser Gly Ser Gly Ala Asp Tyr Ser Leu Thr Ile Ser Ser
Leu Glu Ser65 70 75
80Glu Asp Phe Ala Asp Tyr Tyr Cys Val Gln Tyr Ala Gln Phe Pro Trp
85 90 95Thr Phe Gly Gly Gly Thr
Lys Leu Glu Ile Lys Gly Gly Gly Gly Ser 100
105 110Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
Gly Gly Ser Asp 115 120 125Val Gln
Leu Gln Glu Ser Gly Pro Ser Leu Val Lys Pro Ser Gln Ser 130
135 140Leu Ser Leu Thr Cys Thr Val Thr Gly Tyr Ser
Ile Thr Ser Asp Phe145 150 155
160Ala Trp Asn Trp Ile Arg Gln Phe Pro Gly Asn Lys Leu Glu Trp Met
165 170 175Gly Tyr Ile Ser
Tyr Ser Gly Asn Thr Arg Tyr Asn Pro Ser Leu Lys 180
185 190Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys
Asn Gln Phe Phe Leu 195 200 205Gln
Leu Asn Ser Val Thr Ile Glu Asp Thr Ala Thr Tyr Tyr Cys Val 210
215 220Thr Ala Gly Arg Gly Phe Pro Tyr Trp Gly
Gln Gly Thr Leu Val Thr225 230 235
240Val Ser Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Val
Gln 245 250 255Leu Val Glu
Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg 260
265 270Leu Ser Cys Ala Ala Ser Gly Phe Thr Ile
Ser Thr Asn Ala Met Ser 275 280
285Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly Val Ile 290
295 300Thr Gly Arg Asp Ile Thr Tyr Tyr
Ala Ser Trp Ala Lys Gly Arg Phe305 310
315 320Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
Leu Gln Met Asn 325 330
335Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Gly
340 345 350Gly Ser Ser Ala Ile Thr
Ser Asn Asn Ile Trp Gly Gln Gly Thr Leu 355 360
365Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
Pro Leu 370 375 380Ala Pro Ser Ser Lys
Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys385 390
395 400Leu Val Lys Asp Tyr Phe Pro Glu Pro Val
Thr Val Ser Trp Asn Ser 405 410
415Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser
420 425 430Ser Gly Leu Tyr Ser
Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser 435
440 445Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
Lys Pro Ser Asn 450 455 460Thr Lys Val
Asp Lys Arg Val Glu Pro Lys Ser Cys Asp Lys Thr His465
470 475 480Thr Cys Pro Pro Cys Pro Ala
Pro Glu Ala Ala Gly Ala Pro Ser Val 485
490 495Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
Ile Ser Arg Thr 500 505 510Pro
Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu 515
520 525Val Lys Phe Asn Trp Tyr Val Asp Gly
Val Glu Val His Asn Ala Lys 530 535
540Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser545
550 555 560Val Leu Thr Val
Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 565
570 575Cys Ala Val Ser Asn Lys Ala Leu Pro Ala
Pro Ile Glu Lys Thr Ile 580 585
590Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro
595 600 605Pro Ser Arg Asp Glu Leu Thr
Lys Asn Gln Val Ser Leu Thr Cys Leu 610 615
620Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser
Asn625 630 635 640Gly Gln
Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser
645 650 655Asp Gly Ser Phe Phe Leu Tyr
Ser Lys Leu Thr Val Asp Lys Ser Arg 660 665
670Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu
Ala Leu 675 680 685His Asn His Tyr
Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Gly Gly 690
695 700Gly Gly Ser Gly Gly Gly Gly Ser Glu Val Gln Leu
Leu Glu Ser Gly705 710 715
720Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala
725 730 735Ser Gly Phe Ser Phe
Ser Ser Gly Tyr Asp Met Cys Trp Val Arg Gln 740
745 750Ala Pro Gly Lys Gly Leu Glu Trp Ile Ala Cys Ile
Ala Ala Gly Ser 755 760 765Ala Gly
Ile Thr Tyr Asp Ala Asn Trp Ala Lys Gly Arg Phe Thr Ile 770
775 780Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu
Gln Met Asn Ser Leu785 790 795
800Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Ser Ala Phe Ser
805 810 815Phe Asp Tyr Ala
Met Asp Leu Trp Gly Gln Gly Thr Leu Val Thr Val 820
825 830Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
Ser Gly Gly Gly Gly 835 840 845Ser
Gly Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Thr 850
855 860Leu Ser Ala Ser Val Gly Asp Arg Val Thr
Ile Thr Cys Gln Ala Ser865 870 875
880Gln Ser Ile Ser Ser His Leu Asn Trp Tyr Gln Gln Lys Pro Gly
Lys 885 890 895Ala Pro Lys
Leu Leu Ile Tyr Lys Ala Ser Thr Leu Ala Ser Gly Val 900
905 910Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly
Thr Glu Phe Thr Leu Thr 915 920
925Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln 930
935 940Gly Tyr Ser Trp Gly Asn Val Asp
Asn Val Phe Gly Gly Gly Thr Lys945 950
955 960Val Glu Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gln Ser 965 970
975Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg
980 985 990Leu Ser Cys Ala Ala Ser
Gly Phe Ser Phe Ser Ser Asn Tyr Trp Ile 995 1000
1005Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu
Trp Ile Ala 1010 1015 1020Cys Ile Tyr
Val Gly Ser Ser Gly Asp Thr Tyr Tyr Ala Ser Ser 1025
1030 1035Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn
Ser Lys Asn Thr 1040 1045 1050Leu Tyr
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 1055
1060 1065Tyr Tyr Cys Ala Arg Asp Ser Ser Ser Tyr
Tyr Met Phe Asn Leu 1070 1075 1080Trp
Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly 1085
1090 1095Ser Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gly Gly Gly Gly 1100 1105
1110Ser Ala Leu Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser
1115 1120 1125Val Gly Asp Arg Val Thr
Ile Asn Cys Gln Ala Ser Glu Asp Ile 1130 1135
1140Asp Thr Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala
Pro 1145 1150 1155Lys Leu Leu Ile Phe
Tyr Ala Ser Asp Leu Ala Ser Gly Val Pro 1160 1165
1170Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr
Leu Thr 1175 1180 1185Ile Ser Ser Leu
Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Gln 1190
1195 1200Gly Gly Tyr Tyr Thr Ser Ser Ala Asp Thr Arg
Gly Ala Phe Gly 1205 1210 1215Gly Gly
Thr Lys Val Glu Ile Lys 1220 122569657DNAArtificial
SequenceSynthesized 69gacgtcgtga tgacccagtc tccttccacc ctgtctgcat
ctgtaggaga cagagtcacc 60atcaattgcc aagccagtga gagcattagc agttggttag
cctggtatca gcagaaacca 120gggaaagccc ctaagctcct gatctatgaa gcatccaaac
tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc tgggacagaa ttcactctca
ccatcagcag cctgcagcct 240gatgattttg caacttatta ctgccaaggc tatttttatt
ttattagtcg tacttatgta 300aattctttcg gcggagggac caaggtggag atcaaacgta
cggtggctgc accatctgtc 360ttcatcttcc cgccatctga tgagcagttg aaatctggaa
ctgcctctgt tgtgtgcctg 420ctgaataact tctatcccag agaggccaaa gtacagtgga
aggtggataa cgccctccaa 480tcgggtaact cccaggagag tgtcacagag caggacagca
aggacagcac ctacagcctc 540agcagcaccc tgacgctgag caaagcagac tacgagaaac
acaaagtcta cgcctgcgaa 600gtcacccatc agggcctgag ctcgcccgtc acaaagagct
tcaacagggg agagtgt 65770219PRTArtificial SequenceSynthesized 70Asp
Val Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly1
5 10 15Asp Arg Val Thr Ile Asn Cys
Gln Ala Ser Glu Ser Ile Ser Ser Trp 20 25
30Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
Leu Ile 35 40 45Tyr Glu Ala Ser
Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser
Leu Gln Pro65 70 75
80Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gly Tyr Phe Tyr Phe Ile Ser
85 90 95Arg Thr Tyr Val Asn Ser
Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100
105 110Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro
Pro Ser Asp Glu 115 120 125Gln Leu
Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 130
135 140Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val
Asp Asn Ala Leu Gln145 150 155
160Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
165 170 175Thr Tyr Ser Leu
Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 180
185 190Lys His Lys Val Tyr Ala Cys Glu Val Thr His
Gln Gly Leu Ser Ser 195 200 205Pro
Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 210
215713681DNAArtificial SequenceSynthesized 71gacgttgtga tgacccagtc
tccatcttcc gtgtctgcat ctgtaggaga cagagtcacc 60atcacctgtc aggccagtca
gaacattagg acttacttat cctggtatca gcagaaacca 120gggaaagccc ctaagctcct
gatctatgct gcagccaatc tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc
tgggacagat ttcactctca ccatcagcga cctggagcct 240ggcgatgctg caacttacta
ttgtcagtct acctatcttg gtactgatta tgttggcggt 300gctttcggcg gagggaccaa
ggtggagatc aaaggcggtg gcggtagtgg gggaggcggt 360tctggcggcg gagggtccgg
cggtggagga tcacggtcgc tggtggagtc tgggggaggc 420ttggtccagc ctggggggtc
cctgagactc tcctgtacag cctctggatt caccatcagt 480agctaccaca tgcagtgggt
ccgccaggct ccagggaagg ggctggagta catcggaacc 540attagtagtg gtggtaatgt
atactacgcg agctccgcga gaggcagatt caccatctcc 600agaccctcgt ccaagaacac
ggtggatctt caaatgaaca gcctgagagc cgaggacacg 660gctgtgtatt actgtgcgag
agactctggt tatagtgatc ctatgtgggg ccagggaacc 720ctggtcaccg tctcgagcgg
cggtggaggg tccggcggtg gtggatccca gtcggtggag 780gagtctgggg gaggcttggt
ccagcctggg gggtccctga gactctcctg tacagcctct 840ggaatcgacc ttaataccta
cgacatgatc tgggtccgcc aggctccagg caaggggcta 900gagtgggttg gaatcattac
ttatagtggt agtagatact acgcgaactg ggcgaaaggc 960cgattcacca tctccaaaga
caataccaag aacacggtgt atctgcaaat gaacagcctg 1020agagctgagg acacggctgt
gtattactgt gccagagatt atatgagtgg ttcccacttg 1080tggggccagg gaaccctggt
caccgtctct agtgctagca ccaagggccc atcggtcttc 1140cccctggcac cctcctccaa
gagcacctct gggggcacag cggccctggg ctgcctggtc 1200aaggactact tccccgaacc
ggtgacggtg tcgtggaact caggcgccct gaccagcggc 1260gtgcacacct tcccggctgt
cctacagtcc tcaggactct actccctcag cagcgtggtg 1320accgtgccct ccagcagctt
gggcacccag acctacatct gcaacgtgaa tcacaagccc 1380agcaacacca aggtggacaa
gagagttgag cccaaatctt gtgacaaaac tcacacatgc 1440ccaccgtgcc cagcacctga
agccgcgggg gcaccgtcag tcttcctctt ccccccaaaa 1500cccaaggaca ccctcatgat
ctcccggacc cctgaggtca catgcgtggt ggtggacgtg 1560agccacgaag accctgaggt
caagttcaac tggtacgtgg acggcgtgga ggtgcataat 1620gccaagacaa agccgcggga
ggagcagtac aacagcacgt accgtgtggt cagcgtcctc 1680accgtcctgc accaggactg
gctgaatggc aaggagtaca agtgcgcggt ctccaacaaa 1740gccctcccag cccccatcga
gaaaaccatc tccaaagcca aagggcagcc ccgagaacca 1800caggtgtata ccctgccccc
atcccgggat gagctgacca agaaccaggt cagcctgacc 1860tgcctggtca aaggcttcta
tcccagcgac atcgccgtgg agtgggagag caatgggcag 1920ccggagaaca actacaagac
cacgcctccc gtgctggact ccgacggctc cttcttcctc 1980tatagcaagc tcaccgtgga
caagagcagg tggcagcagg ggaacgtctt ctcatgctcc 2040gtgatgcatg aggctctgca
caaccactac acgcagaaga gcctctccct gtctccgggt 2100ggcggtggag ggtccggcgg
tggtggatcc gaggtgcagc tgttggagtc tgggggaggc 2160ttggtacagc ctggggggtc
cctgagactc tcctgtgcag cctctggatt caccatcagt 2220cgctaccaca tgacttgggt
ccgccaggct ccagggaagg ggctggagtg gatcggacat 2280atttatgtta ataatgatga
cacagactac gcgagctccg cgaaaggccg gttcaccatc 2340tccagagaca attccaagaa
cacgctgtat ctgcaaatga acagcctgag agccgaggac 2400acggccacct atttctgtgc
gagattggat gttggtggtg gtggtgctta tattggggac 2460atctggggcc agggaactct
ggttaccgtc tcttcaggcg gtggcggtag tgggggaggc 2520ggttctggcg gcggagggtc
cggcggtgga ggatcagaca tccagatgac ccagtctcca 2580tcctccctgt ctgcatctgt
aggagacaga gtcaccatca cttgccagtc cagtcagagt 2640gtttataaca acaacgactt
agcctggtat cagcagaaac cagggaaagt tcctaagctc 2700ctgatctatt atgcttccac
tctggcatct ggggtcccat ctcggttcag tggcagtgga 2760tctgggacag atttcactct
caccatcagc agcctgcagc ctgaagatgt tgcaacttat 2820tactgtgcag gcggttatga
tacggatggt cttgatacgt ttgctttcgg cggagggacc 2880aaggtggaga tcaaaggcgg
tggagggtcc ggcggtggtg gatccgaggt gcagctggtg 2940gagtctgggg gaggcttggt
ccagcctggg gggtccctga gactctcctg tgcagcctct 3000ggattcacca tcagtaccaa
tgcaatgagc tgggtccgcc aggctccagg gaaggggctg 3060gagtggatcg gagtcattac
tggtcgtgat atcacatact acgcgagctg ggcgaaaggc 3120agattcacca tctccagaga
caattccaag aacacgctgt atcttcaaat gaacagcctg 3180agagccgagg acacggctgt
gtattactgt gcgcgcgacg gtggatcatc tgctattact 3240agtaacaaca tttggggcca
aggaactctg gtcaccgttt cttcaggcgg tggcggtagt 3300gggggaggcg gttctggcgg
cggagggtcc ggcggtggag gatcagacgt cgtgatgacc 3360cagtctcctt ccaccctgtc
tgcatctgta ggagacagag tcaccatcaa ttgccaagcc 3420agtgagagca ttagcagttg
gttagcctgg tatcagcaga aaccagggaa agcccctaag 3480ctcctgatct atgaagcatc
caaactggca tctggggtcc catcaaggtt cagcggcagt 3540ggatctggga cagagttcac
tctcaccatc agcagcctgc agcctgatga ttttgcaact 3600tattactgcc aaggctattt
ttattttatt agtcgtactt atgtaaattc tttcggcgga 3660gggaccaagg tggagatcaa a
3681721227PRTArtificial
SequenceSynthesized 72Asp Val Val Met Thr Gln Ser Pro Ser Ser Val Ser Ala
Ser Val Gly1 5 10 15Asp
Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Asn Ile Arg Thr Tyr 20
25 30Leu Ser Trp Tyr Gln Gln Lys Pro
Gly Lys Ala Pro Lys Leu Leu Ile 35 40
45Tyr Ala Ala Ala Asn Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60Ser Gly Ser Gly Thr Asp Phe Thr
Leu Thr Ile Ser Asp Leu Glu Pro65 70 75
80Gly Asp Ala Ala Thr Tyr Tyr Cys Gln Ser Thr Tyr Leu
Gly Thr Asp 85 90 95Tyr
Val Gly Gly Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Gly
100 105 110Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gly Gly Gly Gly Ser Gly Gly 115 120
125Gly Gly Ser Arg Ser Leu Val Glu Ser Gly Gly Gly Leu Val Gln
Pro 130 135 140Gly Gly Ser Leu Arg Leu
Ser Cys Thr Ala Ser Gly Phe Thr Ile Ser145 150
155 160Ser Tyr His Met Gln Trp Val Arg Gln Ala Pro
Gly Lys Gly Leu Glu 165 170
175Tyr Ile Gly Thr Ile Ser Ser Gly Gly Asn Val Tyr Tyr Ala Ser Ser
180 185 190Ala Arg Gly Arg Phe Thr
Ile Ser Arg Pro Ser Ser Lys Asn Thr Val 195 200
205Asp Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
Tyr Tyr 210 215 220Cys Ala Arg Asp Ser
Gly Tyr Ser Asp Pro Met Trp Gly Gln Gly Thr225 230
235 240Leu Val Thr Val Ser Ser Gly Gly Gly Gly
Ser Gly Gly Gly Gly Ser 245 250
255Gln Ser Val Glu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser
260 265 270Leu Arg Leu Ser Cys
Thr Ala Ser Gly Ile Asp Leu Asn Thr Tyr Asp 275
280 285Met Ile Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
Glu Trp Val Gly 290 295 300Ile Ile Thr
Tyr Ser Gly Ser Arg Tyr Tyr Ala Asn Trp Ala Lys Gly305
310 315 320Arg Phe Thr Ile Ser Lys Asp
Asn Thr Lys Asn Thr Val Tyr Leu Gln 325
330 335Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr
Tyr Cys Ala Arg 340 345 350Asp
Tyr Met Ser Gly Ser His Leu Trp Gly Gln Gly Thr Leu Val Thr 355
360 365Val Ser Ser Ala Ser Thr Lys Gly Pro
Ser Val Phe Pro Leu Ala Pro 370 375
380Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val385
390 395 400Lys Asp Tyr Phe
Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala 405
410 415Leu Thr Ser Gly Val His Thr Phe Pro Ala
Val Leu Gln Ser Ser Gly 420 425
430Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly
435 440 445Thr Gln Thr Tyr Ile Cys Asn
Val Asn His Lys Pro Ser Asn Thr Lys 450 455
460Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr
Cys465 470 475 480Pro Pro
Cys Pro Ala Pro Glu Ala Ala Gly Ala Pro Ser Val Phe Leu
485 490 495Phe Pro Pro Lys Pro Lys Asp
Thr Leu Met Ile Ser Arg Thr Pro Glu 500 505
510Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu
Val Lys 515 520 525Phe Asn Trp Tyr
Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys 530
535 540Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val
Val Ser Val Leu545 550 555
560Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Ala
565 570 575Val Ser Asn Lys Ala
Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys 580
585 590Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
Leu Pro Pro Ser 595 600 605Arg Asp
Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys 610
615 620Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp
Glu Ser Asn Gly Gln625 630 635
640Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
645 650 655Ser Phe Phe Leu
Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 660
665 670Gln Gly Asn Val Phe Ser Cys Ser Val Met His
Glu Ala Leu His Asn 675 680 685His
Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Gly Gly Gly Gly 690
695 700Ser Gly Gly Gly Gly Ser Glu Val Gln Leu
Leu Glu Ser Gly Gly Gly705 710 715
720Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser
Gly 725 730 735Phe Thr Ile
Ser Arg Tyr His Met Thr Trp Val Arg Gln Ala Pro Gly 740
745 750Lys Gly Leu Glu Trp Ile Gly His Ile Tyr
Val Asn Asn Asp Asp Thr 755 760
765Asp Tyr Ala Ser Ser Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn 770
775 780Ser Lys Asn Thr Leu Tyr Leu Gln
Met Asn Ser Leu Arg Ala Glu Asp785 790
795 800Thr Ala Thr Tyr Phe Cys Ala Arg Leu Asp Val Gly
Gly Gly Gly Ala 805 810
815Tyr Ile Gly Asp Ile Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
820 825 830Gly Gly Gly Gly Ser Gly
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 835 840
845Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
Leu Ser 850 855 860Ala Ser Val Gly Asp
Arg Val Thr Ile Thr Cys Gln Ser Ser Gln Ser865 870
875 880Val Tyr Asn Asn Asn Asp Leu Ala Trp Tyr
Gln Gln Lys Pro Gly Lys 885 890
895Val Pro Lys Leu Leu Ile Tyr Tyr Ala Ser Thr Leu Ala Ser Gly Val
900 905 910Pro Ser Arg Phe Ser
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 915
920 925Ile Ser Ser Leu Gln Pro Glu Asp Val Ala Thr Tyr
Tyr Cys Ala Gly 930 935 940Gly Tyr Asp
Thr Asp Gly Leu Asp Thr Phe Ala Phe Gly Gly Gly Thr945
950 955 960Lys Val Glu Ile Lys Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Glu 965
970 975Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln
Pro Gly Gly Ser 980 985 990Leu
Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Ile Ser Thr Asn Ala 995
1000 1005Met Ser Trp Val Arg Gln Ala Pro
Gly Lys Gly Leu Glu Trp Ile 1010 1015
1020Gly Val Ile Thr Gly Arg Asp Ile Thr Tyr Tyr Ala Ser Trp Ala
1025 1030 1035Lys Gly Arg Phe Thr Ile
Ser Arg Asp Asn Ser Lys Asn Thr Leu 1040 1045
1050Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
Tyr 1055 1060 1065Tyr Cys Ala Arg Asp
Gly Gly Ser Ser Ala Ile Thr Ser Asn Asn 1070 1075
1080Ile Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly
Gly Gly 1085 1090 1095Gly Ser Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly 1100
1105 1110Gly Ser Asp Val Val Met Thr Gln Ser Pro Ser
Thr Leu Ser Ala 1115 1120 1125Ser Val
Gly Asp Arg Val Thr Ile Asn Cys Gln Ala Ser Glu Ser 1130
1135 1140Ile Ser Ser Trp Leu Ala Trp Tyr Gln Gln
Lys Pro Gly Lys Ala 1145 1150 1155Pro
Lys Leu Leu Ile Tyr Glu Ala Ser Lys Leu Ala Ser Gly Val 1160
1165 1170Pro Ser Arg Phe Ser Gly Ser Gly Ser
Gly Thr Glu Phe Thr Leu 1175 1180
1185Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys
1190 1195 1200Gln Gly Tyr Phe Tyr Phe
Ile Ser Arg Thr Tyr Val Asn Ser Phe 1205 1210
1215Gly Gly Gly Thr Lys Val Glu Ile Lys 1220
122573651DNAArtificial SequenceSynthesized 73gcctatgata tgacccagtc
tccatcttcc gtgtctgcat ctgtaggaga cagagtcacc 60atcaagtgtc aggccagtga
ggacatttat agcttcttgg cctggtatca gcagaaacca 120gggaaagccc ctaagctcct
gatccattct gcatcctctc tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc
tgggacagat ttcactctca ccatcagcag cctgcagcct 240gaagattttg caacttacta
ttgtcaacag ggttatggta aaaataatgt tgataatgct 300ttcggcggag ggaccaaggt
ggagatcaaa cgtacggtgg ctgcaccatc tgtcttcatc 360ttcccgccat ctgatgagca
gttgaaatct ggaactgcct ctgttgtgtg cctgctgaat 420aacttctatc ccagagaggc
caaagtacag tggaaggtgg ataacgccct ccaatcgggt 480aactcccagg agagtgtcac
agagcaggac agcaaggaca gcacctacag cctcagcagc 540accctgacgc tgagcaaagc
agactacgag aaacacaaag tctacgcctg cgaagtcacc 600catcagggcc tgagctcgcc
cgtcacaaag agcttcaaca ggggagagtg t 65174217PRTArtificial
SequenceSynthesized 74Ala Tyr Asp Met Thr Gln Ser Pro Ser Ser Val Ser Ala
Ser Val Gly1 5 10 15Asp
Arg Val Thr Ile Lys Cys Gln Ala Ser Glu Asp Ile Tyr Ser Phe 20
25 30Leu Ala Trp Tyr Gln Gln Lys Pro
Gly Lys Ala Pro Lys Leu Leu Ile 35 40
45His Ser Ala Ser Ser Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60Ser Gly Ser Gly Thr Asp Phe Thr
Leu Thr Ile Ser Ser Leu Gln Pro65 70 75
80Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Gly
Lys Asn Asn 85 90 95Val
Asp Asn Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr
100 105 110Val Ala Ala Pro Ser Val Phe
Ile Phe Pro Pro Ser Asp Glu Gln Leu 115 120
125Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
Pro 130 135 140Arg Glu Ala Lys Val Gln
Trp Lys Val Asp Asn Ala Leu Gln Ser Gly145 150
155 160Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser
Lys Asp Ser Thr Tyr 165 170
175Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His
180 185 190Lys Val Tyr Ala Cys Glu
Val Thr His Gln Gly Leu Ser Ser Pro Val 195 200
205Thr Lys Ser Phe Asn Arg Gly Glu Cys 210
215753687DNAArtificial SequenceSynthesized 75gacgtcgtga tgacccagtc
tccttccacc ctgtctgcat ctgtaggaga cagagtcacc 60atcaattgcc aagccagtga
gagcattagc agttggttag cctggtatca gcagaaacca 120gggaaagccc ctaagctcct
gatctatgaa gcatccaaac tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc
tgggacagaa tttactctca ccatcagcag cctgcagcct 240gatgattttg caacttatta
ctgccaaggc tatttttatt ttattagtcg tacttatgta 300aattctttcg gcggagggac
caaggtggag atcaaaggcg gtggcggtag tgggggaggc 360ggttctggcg gcggagggtc
cggcggtgga ggatcagagg tgcagctggt ggagtctggg 420ggaggcttgg tccagcctgg
ggggtccctg agactctcct gtgcagcctc tggattcacc 480atcagtacca atgcaatgag
ctgggtccgc caggctccag ggaaggggct ggagtggatc 540ggagtcatta ctggtcgtga
tatcacatac tacgcgagct gggcgaaagg cagattcacc 600atctccagag acaattccaa
gaacacgctg tatcttcaaa tgaacagcct gagagccgag 660gacacggctg tgtattactg
tgcgagagac ggtggttctt ctgctattac tagtaacaac 720atttggggcc agggaaccct
ggtcaccgtg tcgacaggcg gtggagggtc cggcggtggt 780ggatcccagt cggtggagga
gtctggggga ggcttggtcc agcctggggg gtccctgaga 840ctctcctgta ccgcctctgg
aatcgacctt aatacctacg acatgatctg ggtccgccag 900gctccaggca aggggctaga
gtgggttgga atcattactt atagtggtag tagatactac 960gcgaactggg cgaaaggccg
attcaccatc tccaaagaca ataccaagaa cacggtgtat 1020ctgcaaatga acagcctgag
agctgaggac acggctgtgt attactgtgc gagagattat 1080atgagtggtt cccacttgtg
gggccaggga accctggtca ccgtctcttc agctagcacc 1140aagggcccat cggtcttccc
cctggcaccc tcctccaaga gcacctctgg gggcacagcg 1200gccctgggct gcctggtcaa
ggactacttc cccgaaccgg tgacggtgtc gtggaactca 1260ggcgccctga ccagcggcgt
gcacaccttc ccggctgtcc tacagtcctc aggactctac 1320tccctcagca gcgtggtgac
cgtgccctcc agcagcttgg gcacccagac ctacatctgc 1380aacgtgaatc acaagcccag
caacaccaag gtggacaaga gagttgagcc caaatcttgt 1440gacaaaactc acacatgccc
accgtgccca gcacctgaag ccgcgggggc accgtcagtc 1500ttcctcttcc ccccaaaacc
caaggacacc ctcatgatct cccggacccc tgaggtcaca 1560tgcgtggtgg tggacgtgag
ccacgaagac cctgaggtca agttcaactg gtacgtggac 1620ggcgtggagg tgcataatgc
caagacaaag ccgcgggagg agcagtacaa cagcacgtac 1680cgtgtggtca gcgtcctcac
cgtcctgcac caggactggc tgaatggcaa ggagtacaag 1740tgcgcggtct ccaacaaagc
cctcccagcc cccatcgaga aaaccatctc caaagccaaa 1800gggcagcccc gagaaccaca
ggtgtatacc ctgcccccat cccgggatga gctgaccaag 1860aaccaggtca gcctgacctg
cctggtcaaa ggcttctatc ccagcgacat cgccgtggag 1920tgggagagca atgggcagcc
ggagaacaac tacaagacca cgcctcccgt gctggactcc 1980gacggctcct tcttcctcta
tagcaagctc accgtggaca agagcaggtg gcagcagggg 2040aacgtcttct catgctccgt
gatgcatgag gctctgcaca accactacac gcagaagagc 2100ctctccctgt ctccgggtgg
cggtggaggg tccggcggtg gtgggtccgg agaggtgcag 2160ctgttggagt ctgggggagg
cttggtacag cctggggggt ccctgagact ctcctgtgca 2220gcctctggat tcaccatcag
tcgctaccac atgacttggg tccgccaggc tccagggaag 2280gggctggagt ggatcggaca
tatttatgtt aataatgatg acacagacta cgcgagctcc 2340gcgaaaggcc ggttcaccat
ctccagagac aattccaaga acacgctgta tctgcaaatg 2400aacagcctga gagccgagga
cacggccacc tatttctgtg cgagattgga tgttggtggt 2460ggtggtgctt atattgggga
catctggggc cagggaactc tggttaccgt ctcttcaggc 2520ggtggcggta gtgggggagg
cggttctggc ggcggagggt ccggcggtgg aggatcagac 2580atccagatga cccagtctcc
atcctccctg tctgcatctg taggagacag agtcaccatc 2640acttgccagt ccagtcagag
tgtttataac aacaacgact tagcctggta tcagcagaaa 2700ccagggaaag ttcctaagct
cctgatctat tatgcttcca ctctggcatc tggggtccca 2760tctcggttca gtggcagtgg
atctgggaca gatttcactc tcaccatcag cagcctgcag 2820cctgaagatg ttgcaactta
ttactgtgca ggcggttatg atacggatgg tcttgatacg 2880tttgctttcg gcggagggac
caaggtggag atcaaaggcg gtggagggtc cggcggtggt 2940gggtccggac ggtcgctggt
ggagtctggg ggaggcttgg tccagcctgg ggggtccctg 3000agactctcct gtactgcctc
tggattcacc atcagtagct accacatgca gtgggtccgc 3060caggctccag ggaaggggct
ggagtacatc ggaaccatta gtagtggtgg taatgtatac 3120tacgcaagct ccgctagagg
cagattcacc atctccagac cctcgtccaa gaacacggtg 3180gatcttcaaa tgaacagcct
gagagccgag gacacggctg tgtattactg tgcgagagac 3240tctggttata gtgatcctat
gtggggccag ggaaccctgg tcaccgtctc ttcaggcggt 3300ggcggtagtg ggggaggcgg
ttctggcggc ggagggtccg gcggtggagg atcagacgtt 3360gtgatgaccc agtctccatc
ttccgtgtct gcatctgtag gagacagagt caccatcacc 3420tgtcaggcca gtcagaacat
taggacttac ttatcctggt atcagcagaa accagggaaa 3480gcccctaagc tcctgatcta
tgctgcagcc aatctggcat ctggggtccc atcaaggttc 3540agcggcagtg gatctgggac
agatttcact ctcaccatca gcgacctgga gcctggcgat 3600gctgcaactt actattgtca
gtctacctat cttggtactg attatgttgg cggtgctttc 3660ggcggaggga ccaaggtgga
gatcaaa 3687761229PRTArtificial
SequenceSynthesized 76Asp Val Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala
Ser Val Gly1 5 10 15Asp
Arg Val Thr Ile Asn Cys Gln Ala Ser Glu Ser Ile Ser Ser Trp 20
25 30Leu Ala Trp Tyr Gln Gln Lys Pro
Gly Lys Ala Pro Lys Leu Leu Ile 35 40
45Tyr Glu Ala Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60Ser Gly Ser Gly Thr Glu Phe Thr
Leu Thr Ile Ser Ser Leu Gln Pro65 70 75
80Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gly Tyr Phe Tyr
Phe Ile Ser 85 90 95Arg
Thr Tyr Val Asn Ser Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
100 105 110Gly Gly Gly Gly Ser Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly 115 120
125Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu
Val 130 135 140Gln Pro Gly Gly Ser Leu
Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr145 150
155 160Ile Ser Thr Asn Ala Met Ser Trp Val Arg Gln
Ala Pro Gly Lys Gly 165 170
175Leu Glu Trp Ile Gly Val Ile Thr Gly Arg Asp Ile Thr Tyr Tyr Ala
180 185 190Ser Trp Ala Lys Gly Arg
Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn 195 200
205Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr
Ala Val 210 215 220Tyr Tyr Cys Ala Arg
Asp Gly Gly Ser Ser Ala Ile Thr Ser Asn Asn225 230
235 240Ile Trp Gly Gln Gly Thr Leu Val Thr Val
Ser Thr Gly Gly Gly Gly 245 250
255Ser Gly Gly Gly Gly Ser Gln Ser Val Glu Glu Ser Gly Gly Gly Leu
260 265 270Val Gln Pro Gly Gly
Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Ile 275
280 285Asp Leu Asn Thr Tyr Asp Met Ile Trp Val Arg Gln
Ala Pro Gly Lys 290 295 300Gly Leu Glu
Trp Val Gly Ile Ile Thr Tyr Ser Gly Ser Arg Tyr Tyr305
310 315 320Ala Asn Trp Ala Lys Gly Arg
Phe Thr Ile Ser Lys Asp Asn Thr Lys 325
330 335Asn Thr Val Tyr Leu Gln Met Asn Ser Leu Arg Ala
Glu Asp Thr Ala 340 345 350Val
Tyr Tyr Cys Ala Arg Asp Tyr Met Ser Gly Ser His Leu Trp Gly 355
360 365Gln Gly Thr Leu Val Thr Val Ser Ser
Ala Ser Thr Lys Gly Pro Ser 370 375
380Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala385
390 395 400Ala Leu Gly Cys
Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 405
410 415Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly
Val His Thr Phe Pro Ala 420 425
430Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
435 440 445Pro Ser Ser Ser Leu Gly Thr
Gln Thr Tyr Ile Cys Asn Val Asn His 450 455
460Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser
Cys465 470 475 480Asp Lys
Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala Ala Gly
485 490 495Ala Pro Ser Val Phe Leu Phe
Pro Pro Lys Pro Lys Asp Thr Leu Met 500 505
510Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val
Ser His 515 520 525Glu Asp Pro Glu
Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 530
535 540His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr
Asn Ser Thr Tyr545 550 555
560Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
565 570 575Lys Glu Tyr Lys Cys
Ala Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 580
585 590Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg
Glu Pro Gln Val 595 600 605Tyr Thr
Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 610
615 620Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
Asp Ile Ala Val Glu625 630 635
640Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
645 650 655Val Leu Asp Ser
Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 660
665 670Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe
Ser Cys Ser Val Met 675 680 685His
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 690
695 700Pro Gly Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gly Glu Val Gln705 710 715
720Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu
Arg 725 730 735Leu Ser Cys
Ala Ala Ser Gly Phe Thr Ile Ser Arg Tyr His Met Thr 740
745 750Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
Glu Trp Ile Gly His Ile 755 760
765Tyr Val Asn Asn Asp Asp Thr Asp Tyr Ala Ser Ser Ala Lys Gly Arg 770
775 780Phe Thr Ile Ser Arg Asp Asn Ser
Lys Asn Thr Leu Tyr Leu Gln Met785 790
795 800Asn Ser Leu Arg Ala Glu Asp Thr Ala Thr Tyr Phe
Cys Ala Arg Leu 805 810
815Asp Val Gly Gly Gly Gly Ala Tyr Ile Gly Asp Ile Trp Gly Gln Gly
820 825 830Thr Leu Val Thr Val Ser
Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 835 840
845Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Gln
Met Thr 850 855 860Gln Ser Pro Ser Ser
Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile865 870
875 880Thr Cys Gln Ser Ser Gln Ser Val Tyr Asn
Asn Asn Asp Leu Ala Trp 885 890
895Tyr Gln Gln Lys Pro Gly Lys Val Pro Lys Leu Leu Ile Tyr Tyr Ala
900 905 910Ser Thr Leu Ala Ser
Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser 915
920 925Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln
Pro Glu Asp Val 930 935 940Ala Thr Tyr
Tyr Cys Ala Gly Gly Tyr Asp Thr Asp Gly Leu Asp Thr945
950 955 960Phe Ala Phe Gly Gly Gly Thr
Lys Val Glu Ile Lys Gly Gly Gly Gly 965
970 975Ser Gly Gly Gly Gly Ser Gly Arg Ser Leu Val Glu
Ser Gly Gly Gly 980 985 990Leu
Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly 995
1000 1005Phe Thr Ile Ser Ser Tyr His Met
Gln Trp Val Arg Gln Ala Pro 1010 1015
1020Gly Lys Gly Leu Glu Tyr Ile Gly Thr Ile Ser Ser Gly Gly Asn
1025 1030 1035Val Tyr Tyr Ala Ser Ser
Ala Arg Gly Arg Phe Thr Ile Ser Arg 1040 1045
1050Pro Ser Ser Lys Asn Thr Val Asp Leu Gln Met Asn Ser Leu
Arg 1055 1060 1065Ala Glu Asp Thr Ala
Val Tyr Tyr Cys Ala Arg Asp Ser Gly Tyr 1070 1075
1080Ser Asp Pro Met Trp Gly Gln Gly Thr Leu Val Thr Val
Ser Ser 1085 1090 1095Gly Gly Gly Gly
Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 1100
1105 1110Gly Gly Gly Gly Ser Asp Val Val Met Thr Gln
Ser Pro Ser Ser 1115 1120 1125Val Ser
Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Gln Ala 1130
1135 1140Ser Gln Asn Ile Arg Thr Tyr Leu Ser Trp
Tyr Gln Gln Lys Pro 1145 1150 1155Gly
Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala Ala Asn Leu Ala 1160
1165 1170Ser Gly Val Pro Ser Arg Phe Ser Gly
Ser Gly Ser Gly Thr Asp 1175 1180
1185Phe Thr Leu Thr Ile Ser Asp Leu Glu Pro Gly Asp Ala Ala Thr
1190 1195 1200Tyr Tyr Cys Gln Ser Thr
Tyr Leu Gly Thr Asp Tyr Val Gly Gly 1205 1210
1215Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 1220
122577651DNAArtificial SequenceSynthesized 77gcctatgata
tgacccagtc tccatcttcc gtgtctgcat ctgtaggaga cagagtcacc 60atcaagtgtc
aggccagtga ggacatttat agcttcttgg cctggtatca gcagaaacca 120gggaaagccc
ctaagctcct gatccattct gcatcctctc tggcatctgg ggtcccatca 180aggttcagcg
gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct 240gaagattttg
caacttacta ttgtcaacag ggttatggta aaaataatgt tgataatgct 300ttcggcggag
ggaccaaggt ggagatcaaa cgtacggtgg ctgcaccatc tgtcttcatc 360ttcccgccat
ctgatgagca gttgaaatct ggaactgcct ctgttgtgtg cctgctgaat 420aacttctatc
ccagagaggc caaagtacag tggaaggtgg ataacgccct ccaatcgggt 480aactcccagg
agagtgtcac agagcaggac agcaaggaca gcacctacag cctcagcagc 540accctgacgc
tgagcaaagc agactacgag aaacacaaag tctacgcctg cgaagtcacc 600catcagggcc
tgagctcgcc cgtcacaaag agcttcaaca ggggagagtg t
65178217PRTArtificial SequenceSynthesized 78Ala Tyr Asp Met Thr Gln Ser
Pro Ser Ser Val Ser Ala Ser Val Gly1 5 10
15Asp Arg Val Thr Ile Lys Cys Gln Ala Ser Glu Asp Ile
Tyr Ser Phe 20 25 30Leu Ala
Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35
40 45His Ser Ala Ser Ser Leu Ala Ser Gly Val
Pro Ser Arg Phe Ser Gly 50 55 60Ser
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65
70 75 80Glu Asp Phe Ala Thr Tyr
Tyr Cys Gln Gln Gly Tyr Gly Lys Asn Asn 85
90 95Val Asp Asn Ala Phe Gly Gly Gly Thr Lys Val Glu
Ile Lys Arg Thr 100 105 110Val
Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu 115
120 125Lys Ser Gly Thr Ala Ser Val Val Cys
Leu Leu Asn Asn Phe Tyr Pro 130 135
140Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly145
150 155 160Asn Ser Gln Glu
Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr 165
170 175Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
Ala Asp Tyr Glu Lys His 180 185
190Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val
195 200 205Thr Lys Ser Phe Asn Arg Gly
Glu Cys 210 215793675DNAArtificial SequenceSynthesized
79gacgtcgtga tgacccagtc tccttccacc ctgtctgcat ctgtaggaga cagagtcacc
60atcaattgcc aagccagtga gagcattagc agttggttag cctggtatca gcagaaacca
120gggaaagccc ctaagctcct gatctatgaa gcatccaaac tggcatctgg ggtcccatca
180aggttcagcg gcagtggatc tgggacagaa tttactctca ccatcagcag cctgcagcct
240gatgattttg caacttatta ctgccaaggc tatttttatt ttattagtcg tacttatgta
300aattctttcg gcggagggac caaggtggag atcaaaggcg gtggcggtag tgggggaggc
360ggttctggcg gcggagggtc cggcggtgga ggatcagagg tgcagctggt ggagtctggg
420ggaggcttgg tccagcctgg ggggtccctg agactctcct gtgcagcctc tggattcacc
480atcagtacca atgcaatgag ctgggtccgc caggctccag ggaaggggct ggagtggatc
540ggagtcatta ctggtcgtga tatcacatac tacgcgagct gggcgaaagg cagattcacc
600atctccagag acaattccaa gaacacgctg tatcttcaaa tgaacagcct gagagccgag
660gacacggctg tgtattactg tgcgagagac ggtggttctt ctgctattac tagtaacaac
720atttggggcc agggaaccct ggtcaccgtg tcgacaggcg gtggagggtc cggcggtggt
780ggatccgagg tgcagctgtt ggagtctggg ggaggcttgg tacagcctgg ggggtccctg
840agactctcct gtgcagcctc tggattcacc atcagtcgct accacatgac ttgggtccgc
900caggctccag ggaaggggct ggagtggatc ggacatattt atgttaataa tgatgacaca
960gactacgcga gctccgcgaa aggccggttc accatctcca gagacaattc caagaacacg
1020ctgtatctgc aaatgaacag cctgagagcc gaggacacgg ccacctattt ctgtgcgaga
1080ttggatgttg gtggtggtgg tgcttatatt ggggacatct ggggccaggg aaccctggtc
1140accgtctcga gcgctagcac caagggccca tcggtcttcc ccctggcacc ctcctccaag
1200agcacctctg ggggcacagc ggccctgggc tgcctggtca aggactactt ccccgaaccg
1260gtgacggtgt cgtggaactc aggcgccctg accagcggcg tgcacacctt cccggctgtc
1320ctacagtcct caggactcta ctccctcagc agcgtggtga ccgtgccctc cagcagcttg
1380ggcacccaga cctacatctg caacgtgaat cacaagccca gcaacaccaa ggtggacaag
1440agagttgagc ccaaatcttg tgacaaaact cacacatgcc caccgtgccc agcacctgaa
1500gccgcggggg caccgtcagt cttcctcttc cccccaaaac ccaaggacac cctcatgatc
1560tcccggaccc ctgaggtcac atgcgtggtg gtggacgtga gccacgaaga ccctgaggtc
1620aagttcaact ggtacgtgga cggcgtggag gtgcataatg ccaagacaaa gccgcgggag
1680gagcagtaca acagcacgta ccgtgtggtc agcgtcctca ccgtcctgca ccaggactgg
1740ctgaatggca aggagtacaa gtgcgcggtc tccaacaaag ccctcccagc ccccatcgag
1800aaaaccatct ccaaagccaa agggcagccc cgagaaccac aggtgtatac cctgccccca
1860tcccgggatg agctgaccaa gaaccaggtc agcctgacct gcctggtcaa aggcttctat
1920cccagcgaca tcgccgtgga gtgggagagc aatgggcagc cggagaacaa ctacaagacc
1980acgcctcccg tgctggactc cgacggctcc ttcttcctct atagcaagct caccgtggac
2040aagagcaggt ggcagcaggg gaacgtcttc tcatgctccg tgatgcatga ggctctgcac
2100aaccactaca cgcagaagag cctctccctg tctccgggtg gcggtggagg gtccggcggt
2160ggtggatccc agtcggtgga ggagtctggg ggaggcttgg tccagcctgg ggggtccctg
2220agactctcct gtaccgcctc tggaatcgac cttaatacct acgacatgat ctgggtccgc
2280caggctccag gcaaggggct agagtgggtt ggaatcatta cttatagtgg tagtagatac
2340tacgcgaact gggcgaaagg ccgattcacc atctccaaag acaataccaa gaacacggtg
2400tatctgcaaa tgaacagcct gagagctgag gacacggctg tgtattactg tgcgagagat
2460tatatgagtg gttcccactt gtggggccag ggaaccctgg tcaccgtctc ttccggtgga
2520ggcggttcag gcggaggtgg aagtggtggt ggcggctctg gaggcggcgg atctgcctat
2580gatatgaccc agtctccatc ttccgtgtct gcatctgtag gagacagagt caccatcaag
2640tgtcaggcca gtgaggacat ttatagcttc ttggcctggt atcagcagaa accagggaaa
2700gcccctaagc tcctgatcca ttctgcatcc tctctggcat ctggggtccc atcaaggttc
2760agcggcagtg gatctgggac agatttcact ctcaccatca gcagcctgca gcctgaagat
2820tttgcaactt actattgtca acagggttat ggtaaaaata atgttgataa tgctttcggc
2880ggagggacca aggtggagat caaaggcggt ggagggtccg gcggtggtgg gtccggacgg
2940tcgctggtgg agtctggggg aggcttggtc cagcctgggg ggtccctgag actctcctgt
3000actgcctctg gattcaccat cagtagctac cacatgcagt gggtccgcca ggctccaggg
3060aaggggctgg agtacatcgg aaccattagt agtggtggta atgtatacta cgcaagctcc
3120gctagaggca gattcaccat ctccagaccc tcgtccaaga acacggtgga tcttcaaatg
3180aacagcctga gagccgagga cacggctgtg tattactgtg cgagagactc tggttatagt
3240gatcctatgt ggggccaggg aaccctggtc accgtctctt caggcggtgg cggtagtggg
3300ggaggcggtt ctggcggcgg agggtccggc ggtggaggat cagacgttgt gatgacccag
3360tctccatctt ccgtgtctgc atctgtagga gacagagtca ccatcacctg tcaggccagt
3420cagaacatta ggacttactt atcctggtat cagcagaaac cagggaaagc ccctaagctc
3480ctgatctatg ctgcagccaa tctggcatct ggggtcccat caaggttcag cggcagtgga
3540tctgggacag atttcactct caccatcagc gacctggagc ctggcgatgc tgcaacttac
3600tattgtcagt ctacctatct tggtactgat tatgttggcg gtgctttcgg cggagggacc
3660aaggtggaga tcaaa
3675801225PRTArtificial SequenceSynthesized 80Asp Val Val Met Thr Gln Ser
Pro Ser Thr Leu Ser Ala Ser Val Gly1 5 10
15Asp Arg Val Thr Ile Asn Cys Gln Ala Ser Glu Ser Ile
Ser Ser Trp 20 25 30Leu Ala
Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35
40 45Tyr Glu Ala Ser Lys Leu Ala Ser Gly Val
Pro Ser Arg Phe Ser Gly 50 55 60Ser
Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65
70 75 80Asp Asp Phe Ala Thr Tyr
Tyr Cys Gln Gly Tyr Phe Tyr Phe Ile Ser 85
90 95Arg Thr Tyr Val Asn Ser Phe Gly Gly Gly Thr Lys
Val Glu Ile Lys 100 105 110Gly
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 115
120 125Gly Gly Gly Ser Glu Val Gln Leu Val
Glu Ser Gly Gly Gly Leu Val 130 135
140Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr145
150 155 160Ile Ser Thr Asn
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly 165
170 175Leu Glu Trp Ile Gly Val Ile Thr Gly Arg
Asp Ile Thr Tyr Tyr Ala 180 185
190Ser Trp Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
195 200 205Thr Leu Tyr Leu Gln Met Asn
Ser Leu Arg Ala Glu Asp Thr Ala Val 210 215
220Tyr Tyr Cys Ala Arg Asp Gly Gly Ser Ser Ala Ile Thr Ser Asn
Asn225 230 235 240Ile Trp
Gly Gln Gly Thr Leu Val Thr Val Ser Thr Gly Gly Gly Gly
245 250 255Ser Gly Gly Gly Gly Ser Glu
Val Gln Leu Leu Glu Ser Gly Gly Gly 260 265
270Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala
Ser Gly 275 280 285Phe Thr Ile Ser
Arg Tyr His Met Thr Trp Val Arg Gln Ala Pro Gly 290
295 300Lys Gly Leu Glu Trp Ile Gly His Ile Tyr Val Asn
Asn Asp Asp Thr305 310 315
320Asp Tyr Ala Ser Ser Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn
325 330 335Ser Lys Asn Thr Leu
Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp 340
345 350Thr Ala Thr Tyr Phe Cys Ala Arg Leu Asp Val Gly
Gly Gly Gly Ala 355 360 365Tyr Ile
Gly Asp Ile Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 370
375 380Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu
Ala Pro Ser Ser Lys385 390 395
400Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
405 410 415Phe Pro Glu Pro
Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 420
425 430Gly Val His Thr Phe Pro Ala Val Leu Gln Ser
Ser Gly Leu Tyr Ser 435 440 445Leu
Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 450
455 460Tyr Ile Cys Asn Val Asn His Lys Pro Ser
Asn Thr Lys Val Asp Lys465 470 475
480Arg Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro
Cys 485 490 495Pro Ala Pro
Glu Ala Ala Gly Ala Pro Ser Val Phe Leu Phe Pro Pro 500
505 510Lys Pro Lys Asp Thr Leu Met Ile Ser Arg
Thr Pro Glu Val Thr Cys 515 520
525Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 530
535 540Tyr Val Asp Gly Val Glu Val His
Asn Ala Lys Thr Lys Pro Arg Glu545 550
555 560Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
Leu Thr Val Leu 565 570
575His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Ala Val Ser Asn
580 585 590Lys Ala Leu Pro Ala Pro
Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 595 600
605Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg
Asp Glu 610 615 620Leu Thr Lys Asn Gln
Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr625 630
635 640Pro Ser Asp Ile Ala Val Glu Trp Glu Ser
Asn Gly Gln Pro Glu Asn 645 650
655Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
660 665 670Leu Tyr Ser Lys Leu
Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 675
680 685Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
Asn His Tyr Thr 690 695 700Gln Lys Ser
Leu Ser Leu Ser Pro Gly Gly Gly Gly Gly Ser Gly Gly705
710 715 720Gly Gly Ser Gln Ser Val Glu
Glu Ser Gly Gly Gly Leu Val Gln Pro 725
730 735Gly Gly Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly
Ile Asp Leu Asn 740 745 750Thr
Tyr Asp Met Ile Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 755
760 765Trp Val Gly Ile Ile Thr Tyr Ser Gly
Ser Arg Tyr Tyr Ala Asn Trp 770 775
780Ala Lys Gly Arg Phe Thr Ile Ser Lys Asp Asn Thr Lys Asn Thr Val785
790 795 800Tyr Leu Gln Met
Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 805
810 815Cys Ala Arg Asp Tyr Met Ser Gly Ser His
Leu Trp Gly Gln Gly Thr 820 825
830Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
835 840 845Gly Gly Gly Gly Ser Gly Gly
Gly Gly Ser Ala Tyr Asp Met Thr Gln 850 855
860Ser Pro Ser Ser Val Ser Ala Ser Val Gly Asp Arg Val Thr Ile
Lys865 870 875 880Cys Gln
Ala Ser Glu Asp Ile Tyr Ser Phe Leu Ala Trp Tyr Gln Gln
885 890 895Lys Pro Gly Lys Ala Pro Lys
Leu Leu Ile His Ser Ala Ser Ser Leu 900 905
910Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly
Thr Asp 915 920 925Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr 930
935 940Tyr Cys Gln Gln Gly Tyr Gly Lys Asn Asn Val Asp
Asn Ala Phe Gly945 950 955
960Gly Gly Thr Lys Val Glu Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly
965 970 975Gly Ser Gly Arg Ser
Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro 980
985 990Gly Gly Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly
Phe Thr Ile Ser 995 1000 1005Ser
Tyr His Met Gln Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 1010
1015 1020Glu Tyr Ile Gly Thr Ile Ser Ser Gly
Gly Asn Val Tyr Tyr Ala 1025 1030
1035Ser Ser Ala Arg Gly Arg Phe Thr Ile Ser Arg Pro Ser Ser Lys
1040 1045 1050Asn Thr Val Asp Leu Gln
Met Asn Ser Leu Arg Ala Glu Asp Thr 1055 1060
1065Ala Val Tyr Tyr Cys Ala Arg Asp Ser Gly Tyr Ser Asp Pro
Met 1070 1075 1080Trp Gly Gln Gly Thr
Leu Val Thr Val Ser Ser Gly Gly Gly Gly 1085 1090
1095Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
Gly Gly 1100 1105 1110Ser Asp Val Val
Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser 1115
1120 1125Val Gly Asp Arg Val Thr Ile Thr Cys Gln Ala
Ser Gln Asn Ile 1130 1135 1140Arg Thr
Tyr Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro 1145
1150 1155Lys Leu Leu Ile Tyr Ala Ala Ala Asn Leu
Ala Ser Gly Val Pro 1160 1165 1170Ser
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 1175
1180 1185Ile Ser Asp Leu Glu Pro Gly Asp Ala
Ala Thr Tyr Tyr Cys Gln 1190 1195
1200Ser Thr Tyr Leu Gly Thr Asp Tyr Val Gly Gly Ala Phe Gly Gly
1205 1210 1215Gly Thr Lys Val Glu Ile
Lys 1220 122581660DNAArtificial SequenceSynthesized
81gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc
60atcacttgcc agtccagtca gagtgtttat aacaacaacg acttagcctg gtatcagcag
120aaaccaggga aagttcctaa gctcctgatc tattatgcat ccactctggc atctggggtc
180ccatctcggt tcagtggcag tggatctggg acagatttca ctctcaccat cagcagcctg
240cagcctgaag atgttgcaac ttattactgt gcaggcggtt atgatacgga tggtcttgat
300acgtttgctt tcggcggagg gaccaaggtg gagatcaaac gtacggtggc tgcaccatct
360gtcttcatct tcccgccatc tgatgagcag ttgaaatctg gaactgcctc tgttgtgtgc
420ctgctgaata acttctatcc cagagaggcc aaagtacagt ggaaggtgga taacgccctc
480caatcgggta actcccagga gagtgtcaca gagcaggaca gcaaggacag cacctacagc
540ctcagcagca ccctgacgct gagcaaagca gactacgaga aacacaaagt ctacgcctgc
600gaagtcaccc atcagggcct gagctcgccc gtcacaaaga gcttcaacag gggagagtgt
66082220PRTArtificial SequenceSynthesized 82Asp Ile Gln Met Thr Gln Ser
Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10
15Asp Arg Val Thr Ile Thr Cys Gln Ser Ser Gln Ser Val
Tyr Asn Asn 20 25 30Asn Asp
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Val Pro Lys Leu 35
40 45Leu Ile Tyr Tyr Ala Ser Thr Leu Ala Ser
Gly Val Pro Ser Arg Phe 50 55 60Ser
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu65
70 75 80Gln Pro Glu Asp Val Ala
Thr Tyr Tyr Cys Ala Gly Gly Tyr Asp Thr 85
90 95Asp Gly Leu Asp Thr Phe Ala Phe Gly Gly Gly Thr
Lys Val Glu Ile 100 105 110Lys
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp 115
120 125Glu Gln Leu Lys Ser Gly Thr Ala Ser
Val Val Cys Leu Leu Asn Asn 130 135
140Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu145
150 155 160Gln Ser Gly Asn
Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp 165
170 175Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr
Leu Ser Lys Ala Asp Tyr 180 185
190Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
195 200 205Ser Pro Val Thr Lys Ser Phe
Asn Arg Gly Glu Cys 210 215
220833696DNAArtificial SequenceSynthesized 83gacgtcgtga tgacccagtc
tccttccacc ctgtctgcat ctgtaggaga cagagtcacc 60atcaattgcc aagccagtga
gagcattagc agttggttag cctggtatca gcagaaacca 120gggaaagccc ctaagctcct
gatctatgaa gcatccaaac tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc
tgggacagaa tttactctca ccatcagcag cctgcagcct 240gatgattttg caacttatta
ctgccaaggc tatttttatt ttattagtcg tacttatgta 300aattctttcg gcggagggac
caaggtggag atcaaaggcg gtggcggtag tgggggaggc 360ggttctggcg gcggagggtc
cggcggtgga ggatcagagg tgcagctggt ggagtctggg 420ggaggcttgg tccagcctgg
ggggtccctg agactctcct gtgcagcctc tggattcacc 480atcagtacca atgcaatgag
ctgggtccgc caggctccag ggaaggggct ggagtggatc 540ggagtcatta ctggtcgtga
tatcacatac tacgcgagct gggcgaaagg cagattcacc 600atctccagag acaattccaa
gaacacgctg tatcttcaaa tgaacagcct gagagccgag 660gacacggctg tgtattactg
tgcgagagac ggtggttctt ctgctattac tagtaacaac 720atttggggcc agggaaccct
ggtcaccgtg tcgacaggcg gtggagggtc cggcggtggt 780ggatcagagg tgcagctgtt
ggagtctggg ggaggcttgg tacagcctgg ggggtccctg 840agactctcct gtgcagcctc
tggattcacc atcagtcgct accacatgac ttgggtccgc 900caggctccag ggaaggggct
ggagtggatc ggacatattt atgttaataa tgatgacaca 960gactacgcga gctccgcgaa
aggccggttc accatctcca gagacaattc caagaacacg 1020ctgtatctgc aaatgaacag
cctgagagcc gaggacacgg ccacctattt ctgtgcgaga 1080ttggatgttg gtggtggtgg
tgcttatatt ggggacatct ggggccaggg aactctggtt 1140accgtctctt cagctagcac
caagggccca tcggtcttcc ccctggcacc ctcctccaag 1200agcacctctg ggggcacagc
ggccctgggc tgcctggtca aggactactt ccccgaaccg 1260gtgacggtgt cgtggaactc
aggcgccctg accagcggcg tgcacacctt cccggctgtc 1320ctacagtcct caggactcta
ctccctcagc agcgtggtga ccgtgccctc cagcagcttg 1380ggcacccaga cctacatctg
caacgtgaat cacaagccca gcaacaccaa ggtggacaag 1440agagttgagc ccaaatcttg
tgacaaaact cacacatgcc caccgtgccc agcacctgaa 1500gccgcggggg caccgtcagt
cttcctcttc cccccaaaac ccaaggacac cctcatgatc 1560tcccggaccc ctgaggtcac
atgcgtggtg gtggacgtga gccacgaaga ccctgaggtc 1620aagttcaact ggtacgtgga
cggcgtggag gtgcataatg ccaagacaaa gccgcgggag 1680gagcagtaca acagcacgta
ccgtgtggtc agcgtcctca ccgtcctgca ccaggactgg 1740ctgaatggca aggagtacaa
gtgcgcggtc tccaacaaag ccctcccagc ccccatcgag 1800aaaaccatct ccaaagccaa
agggcagccc cgagaaccac aggtgtacac cctgccccca 1860tcccgggatg agctgaccaa
gaaccaggtc agcctgacct gcctggtcaa aggcttctat 1920cccagcgaca tcgccgtgga
gtgggagagc aatgggcagc cggagaacaa ctacaagacc 1980acgcctcccg tgctggactc
cgacggctcc ttcttcctct atagcaagct caccgtggac 2040aagagcaggt ggcagcaggg
gaacgtcttc tcatgctccg tgatgcatga ggctctgcac 2100aaccactaca cgcagaagag
cctctccctg tctccgggtg gcggtggagg gtccggcggt 2160ggtggatccg aggtgcagct
gttggagtct gggggaggct tggtacagcc tggggggtcc 2220ctgagactct cctgtgcagc
ctctggattc tccttcagta gcgggtacga catgtgctgg 2280gtccgccagg ctccagggaa
ggggctggag tggatcgcat gcattgctgc tggtagtgct 2340ggtatcactt acgacgcgaa
ctgggcgaaa ggccggttca ccatctccag agacaattcc 2400aagaacacgc tgtatctgca
aatgaacagc ctgagagccg aggacacggc cgtatattac 2460tgtgcgagat cggcgttttc
gttcgactac gccatggacc tctggggcca gggaaccctg 2520gtcaccgtct cgagcggtgg
aggcggatct ggcggaggtg gttccggcgg tggcggctcc 2580ggtggaggcg gctctgacat
ccagatgacc cagtctcctt ccaccctgtc tgcatctgta 2640ggagacagag tcaccatcac
ttgccaggcc agtcagagca ttagttccca cttaaactgg 2700tatcagcaga aaccagggaa
agcccctaag ctcctgatct ataaggcatc cactctggca 2760tctggggtcc catcaaggtt
cagcggcagt ggatctggga cagaatttac tctcaccatc 2820agcagcctgc agcctgatga
ttttgcaact tattactgcc aacagggtta tagttggggt 2880aatgttgata atgttttcgg
cggagggacc aaggtggaga tcaaaggcgg tggagggtcc 2940ggcggtggtg gctccggacg
gtcgctggtg gagtctgggg gaggcttggt ccagcctggg 3000gggtccctga gactctcctg
tactgcctct ggattcacca tcagtagcta ccacatgcag 3060tgggtccgcc aggctccagg
gaaggggctg gagtacatcg gaaccattag tagtggtggt 3120aatgtatact acgcaagctc
cgctagaggc agattcacca tctccagacc ctcgtccaag 3180aacacggtgg atcttcaaat
gaacagcctg agagccgagg acacggctgt gtattactgt 3240gcgagagact ctggttatag
tgatcctatg tggggccagg gaaccctggt caccgtctct 3300tcaggcggtg gcggtagtgg
gggaggcggt tctggcggcg gagggtccgg cggtggagga 3360tcagacgttg tgatgaccca
gtctccatct tccgtgtctg catctgtagg agacagagtc 3420accatcacct gtcaggccag
tcagaacatt aggacttact tatcctggta tcagcagaaa 3480ccagggaaag cccctaagct
cctgatctat gctgcagcca atctggcatc tggggtccca 3540tcaaggttca gcggcagtgg
atctgggaca gatttcactc tcaccatcag cgacctggag 3600cctggcgatg ctgcaactta
ctattgtcag tctacctatc ttggtactga ttatgttggc 3660ggtgctttcg gcggagggac
caaggtggag atcaaa 3696841232PRTArtificial
SequenceSynthesized 84Asp Val Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala
Ser Val Gly1 5 10 15Asp
Arg Val Thr Ile Asn Cys Gln Ala Ser Glu Ser Ile Ser Ser Trp 20
25 30Leu Ala Trp Tyr Gln Gln Lys Pro
Gly Lys Ala Pro Lys Leu Leu Ile 35 40
45Tyr Glu Ala Ser Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60Ser Gly Ser Gly Thr Glu Phe Thr
Leu Thr Ile Ser Ser Leu Gln Pro65 70 75
80Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gly Tyr Phe Tyr
Phe Ile Ser 85 90 95Arg
Thr Tyr Val Asn Ser Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
100 105 110Gly Gly Gly Gly Ser Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly 115 120
125Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu
Val 130 135 140Gln Pro Gly Gly Ser Leu
Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr145 150
155 160Ile Ser Thr Asn Ala Met Ser Trp Val Arg Gln
Ala Pro Gly Lys Gly 165 170
175Leu Glu Trp Ile Gly Val Ile Thr Gly Arg Asp Ile Thr Tyr Tyr Ala
180 185 190Ser Trp Ala Lys Gly Arg
Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn 195 200
205Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr
Ala Val 210 215 220Tyr Tyr Cys Ala Arg
Asp Gly Gly Ser Ser Ala Ile Thr Ser Asn Asn225 230
235 240Ile Trp Gly Gln Gly Thr Leu Val Thr Val
Ser Thr Gly Gly Gly Gly 245 250
255Ser Gly Gly Gly Gly Ser Glu Val Gln Leu Leu Glu Ser Gly Gly Gly
260 265 270Leu Val Gln Pro Gly
Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly 275
280 285Phe Thr Ile Ser Arg Tyr His Met Thr Trp Val Arg
Gln Ala Pro Gly 290 295 300Lys Gly Leu
Glu Trp Ile Gly His Ile Tyr Val Asn Asn Asp Asp Thr305
310 315 320Asp Tyr Ala Ser Ser Ala Lys
Gly Arg Phe Thr Ile Ser Arg Asp Asn 325
330 335Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu
Arg Ala Glu Asp 340 345 350Thr
Ala Thr Tyr Phe Cys Ala Arg Leu Asp Val Gly Gly Gly Gly Ala 355
360 365Tyr Ile Gly Asp Ile Trp Gly Gln Gly
Thr Leu Val Thr Val Ser Ser 370 375
380Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys385
390 395 400Ser Thr Ser Gly
Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 405
410 415Phe Pro Glu Pro Val Thr Val Ser Trp Asn
Ser Gly Ala Leu Thr Ser 420 425
430Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
435 440 445Leu Ser Ser Val Val Thr Val
Pro Ser Ser Ser Leu Gly Thr Gln Thr 450 455
460Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp
Lys465 470 475 480Arg Val
Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys
485 490 495Pro Ala Pro Glu Ala Ala Gly
Ala Pro Ser Val Phe Leu Phe Pro Pro 500 505
510Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
Thr Cys 515 520 525Val Val Val Asp
Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 530
535 540Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
Lys Pro Arg Glu545 550 555
560Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
565 570 575His Gln Asp Trp Leu
Asn Gly Lys Glu Tyr Lys Cys Ala Val Ser Asn 580
585 590Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
Lys Ala Lys Gly 595 600 605Gln Pro
Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 610
615 620Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
Val Lys Gly Phe Tyr625 630 635
640Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
645 650 655Asn Tyr Lys Thr
Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 660
665 670Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg
Trp Gln Gln Gly Asn 675 680 685Val
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 690
695 700Gln Lys Ser Leu Ser Leu Ser Pro Gly Gly
Gly Gly Gly Ser Gly Gly705 710 715
720Gly Gly Ser Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val
Gln 725 730 735Pro Gly Gly
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe 740
745 750Ser Ser Gly Tyr Asp Met Cys Trp Val Arg
Gln Ala Pro Gly Lys Gly 755 760
765Leu Glu Trp Ile Ala Cys Ile Ala Ala Gly Ser Ala Gly Ile Thr Tyr 770
775 780Asp Ala Asn Trp Ala Lys Gly Arg
Phe Thr Ile Ser Arg Asp Asn Ser785 790
795 800Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg
Ala Glu Asp Thr 805 810
815Ala Val Tyr Tyr Cys Ala Arg Ser Ala Phe Ser Phe Asp Tyr Ala Met
820 825 830Asp Leu Trp Gly Gln Gly
Thr Leu Val Thr Val Ser Ser Gly Gly Gly 835 840
845Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
Gly Gly 850 855 860Ser Asp Ile Gln Met
Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val865 870
875 880Gly Asp Arg Val Thr Ile Thr Cys Gln Ala
Ser Gln Ser Ile Ser Ser 885 890
895His Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu
900 905 910Ile Tyr Lys Ala Ser
Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser 915
920 925Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile
Ser Ser Leu Gln 930 935 940Pro Asp Asp
Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Trp Gly945
950 955 960Asn Val Asp Asn Val Phe Gly
Gly Gly Thr Lys Val Glu Ile Lys Gly 965
970 975Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Arg Ser
Leu Val Glu Ser 980 985 990Gly
Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Thr 995
1000 1005Ala Ser Gly Phe Thr Ile Ser Ser
Tyr His Met Gln Trp Val Arg 1010 1015
1020Gln Ala Pro Gly Lys Gly Leu Glu Tyr Ile Gly Thr Ile Ser Ser
1025 1030 1035Gly Gly Asn Val Tyr Tyr
Ala Ser Ser Ala Arg Gly Arg Phe Thr 1040 1045
1050Ile Ser Arg Pro Ser Ser Lys Asn Thr Val Asp Leu Gln Met
Asn 1055 1060 1065Ser Leu Arg Ala Glu
Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp 1070 1075
1080Ser Gly Tyr Ser Asp Pro Met Trp Gly Gln Gly Thr Leu
Val Thr 1085 1090 1095Val Ser Ser Gly
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 1100
1105 1110Gly Gly Ser Gly Gly Gly Gly Ser Asp Val Val
Met Thr Gln Ser 1115 1120 1125Pro Ser
Ser Val Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr 1130
1135 1140Cys Gln Ala Ser Gln Asn Ile Arg Thr Tyr
Leu Ser Trp Tyr Gln 1145 1150 1155Gln
Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala Ala 1160
1165 1170Asn Leu Ala Ser Gly Val Pro Ser Arg
Phe Ser Gly Ser Gly Ser 1175 1180
1185Gly Thr Asp Phe Thr Leu Thr Ile Ser Asp Leu Glu Pro Gly Asp
1190 1195 1200Ala Ala Thr Tyr Tyr Cys
Gln Ser Thr Tyr Leu Gly Thr Asp Tyr 1205 1210
1215Val Gly Gly Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
1220 1225 123085660DNAArtificial
SequenceSynthesized 85gacatccaga tgacccagtc tccatcctcc ctgtctgcat
ctgtaggaga cagagtcacc 60atcacttgcc agtccagtca gagtgtttat aacaacaacg
acttagcctg gtatcagcag 120aaaccaggga aagttcctaa gctcctgatc tattatgcat
ccactctggc atctggggtc 180ccatctcggt tcagtggcag tggatctggg acagatttca
ctctcaccat cagcagcctg 240cagcctgaag atgttgcaac ttattactgt gcaggcggtt
atgatacgga tggtcttgat 300acgtttgctt tcggcggagg gaccaaggtg gagatcaaac
gtacggtggc tgcaccatct 360gtcttcatct tcccgccatc tgatgagcag ttgaaatctg
gaactgcctc tgttgtgtgc 420ctgctgaata acttctatcc cagagaggcc aaagtacagt
ggaaggtgga taacgccctc 480caatcgggta actcccagga gagtgtcaca gagcaggaca
gcaaggacag cacctacagc 540ctcagcagca ccctgacgct gagcaaagca gactacgaga
aacacaaagt ctacgcctgc 600gaagtcaccc atcagggcct gagctcgccc gtcacaaaga
gcttcaacag gggagagtgt 66086220PRTArtificial SequenceSynthesized 86Asp
Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1
5 10 15Asp Arg Val Thr Ile Thr Cys
Gln Ser Ser Gln Ser Val Tyr Asn Asn 20 25
30Asn Asp Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Val Pro
Lys Leu 35 40 45Leu Ile Tyr Tyr
Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe 50 55
60Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
Ser Ser Leu65 70 75
80Gln Pro Glu Asp Val Ala Thr Tyr Tyr Cys Ala Gly Gly Tyr Asp Thr
85 90 95Asp Gly Leu Asp Thr Phe
Ala Phe Gly Gly Gly Thr Lys Val Glu Ile 100
105 110Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe
Pro Pro Ser Asp 115 120 125Glu Gln
Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn 130
135 140Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys
Val Asp Asn Ala Leu145 150 155
160Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
165 170 175Ser Thr Tyr Ser
Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr 180
185 190Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr
His Gln Gly Leu Ser 195 200 205Ser
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 215
220873690DNAArtificial SequenceSynthesized 87gacgtcgtga
tgacccagtc tccttccacc ctgtctgcat ctgtaggaga cagagtcacc 60atcaattgcc
aagccagtga gagcattagc agttggttag cctggtatca gcagaaacca 120gggaaagccc
ctaagctcct gatctatgaa gcatccaaac tggcatctgg ggtcccatca 180aggttcagcg
gcagtggatc tgggacagag ttcactctca ccatcagcag cctgcagcct 240gatgattttg
caacttatta ctgccaaggc tatttttatt ttattagtcg tacttatgta 300aattctttcg
gcggagggac caaggtggag atcaaaggcg gtggcggtag tgggggaggc 360ggttctggcg
gcggagggtc cggcggtgga ggatcagagg tgcagctggt ggagtctggg 420ggaggcttgg
tccagcctgg ggggtccctg agactctcct gtgcagcctc tggattcacc 480atcagtacca
atgcaatgag ctgggtccgc caggctccag ggaaggggct ggagtggatc 540ggagtcatta
ctggtcgtga tatcacatac tacgcgagct gggcgaaagg cagattcacc 600atctccagag
acaattccaa gaacacgctg tatcttcaaa tgaacagcct gagagccgag 660gacacggctg
tgtattactg tgcgcgcgac ggtggatcat ctgctattac tagtaacaac 720atttggggcc
aaggaactct ggtcaccgtt tcttcaggcg gtggagggtc cggcggtggt 780ggatccgagg
tgcagctggt gcagtctgga gcagaggtga agaaaccagg agagtctctg 840aagatctcct
gtaagggttc tggatacagc tttagcagtt catggatcgg ctgggtgcgc 900caggcacctg
ggaaaggcct ggaatggatg gggatcatct atcctgatga ctctgatacc 960agatacagtc
catccttcca aggccaggtc accatctcag ccgacaagtc catcaggact 1020gcctacctgc
agtggagtag cctgaaggcc tcggacaccg ctatgtatta ctgtgcgaga 1080catgttacta
tgatttgggg agttattatt gacttctggg gccagggaac cctggtcacc 1140gtctcctcag
ctagcaccaa gggcccatcg gtcttccccc tggcaccctc ctccaagagc 1200acctctgggg
gcacagcggc cctgggctgc ctggtcaagg actacttccc cgaaccggtg 1260acggtgtcgt
ggaactcagg cgccctgacc agcggcgtgc acaccttccc ggctgtccta 1320cagtcctcag
gactctactc cctcagcagc gtggtgaccg tgccctccag cagcttgggc 1380acccagacct
acatctgcaa cgtgaatcac aagcccagca acaccaaggt ggacaagaga 1440gttgagccca
aatcttgtga caaaactcac acatgcccac cgtgcccagc acctgaagcc 1500gcgggggcac
cgtcagtctt cctcttcccc ccaaaaccca aggacaccct catgatctcc 1560cggacccctg
aggtcacatg cgtggtggtg gacgtgagcc acgaagaccc tgaggtcaag 1620ttcaactggt
acgtggacgg cgtggaggtg cataatgcca agacaaagcc gcgggaggag 1680cagtacaaca
gcacgtaccg tgtggtcagc gtcctcaccg tcctgcacca ggactggctg 1740aatggcaagg
agtacaagtg cgcggtctcc aacaaagccc tcccagcccc catcgagaaa 1800accatctcca
aagccaaagg gcagccccga gaaccacagg tgtataccct gcccccatcc 1860cgggatgagc
tgaccaagaa ccaggtcagc ctgacctgcc tggtcaaagg cttctatccc 1920agcgacatcg
ccgtggagtg ggagagcaat gggcagccgg agaacaacta caagaccacg 1980cctcccgtgc
tggactccga cggctccttc ttcctctata gcaagctcac cgtggacaag 2040agcaggtggc
agcaggggaa cgtcttctca tgctccgtga tgcatgaggc tctgcacaac 2100cactacacgc
agaagagcct ctccctgtct ccgggtggcg gtggagggtc cggcggtggt 2160ggatccgagg
tgcagctgtt ggagtctggg ggaggcttgg tacagcctgg ggggtccctg 2220agactctcct
gtgcagcctc tggattctcc ttcagtagcg ggtacgacat gtgctgggtc 2280cgccaggctc
cagggaaggg gctggagtgg atcgcatgca ttgctgctgg tagtgctggt 2340atcacttacg
acgcgaactg ggcgaaaggc cggttcacca tctccagaga caattccaag 2400aacacgctgt
atctgcaaat gaacagcctg agagccgagg acacggccgt atattactgt 2460gcgagatcgg
cgttttcgtt cgactacgcc atggacctct ggggccaggg aaccctggtc 2520accgtctcga
gcggtggagg cggatctggc ggaggtggtt ccggcggtgg cggctccggt 2580ggaggcggct
ctgacatcca gatgacccag tctccttcca ccctgtctgc atctgtagga 2640gacagagtca
ccatcacttg ccaggccagt cagagcatta gttcccactt aaactggtat 2700cagcagaaac
cagggaaagc ccctaagctc ctgatctata aggcatccac tctggcatct 2760ggggtcccat
caaggttcag cggcagtgga tctgggacag aatttactct caccatcagc 2820agcctgcagc
ctgatgattt tgcaacttat tactgccaac agggttatag ttggggtaat 2880gttgataatg
ttttcggcgg agggaccaag gtggagatca aaggcggtgg agggtccggc 2940ggtggtggat
cccggtcgct ggtggagtct gggggaggct tggtccagcc tggggggtcc 3000ctgagactct
cctgtacagc ctctggattc accatcagta gctaccacat gcagtgggtc 3060cgccaggctc
cagggaaggg gctggagtac atcggaacca ttagtagtgg tggtaatgta 3120tactacgcga
gctccgcgag aggcagattc accatctcca gaccctcgtc caagaacacg 3180gtggatcttc
aaatgaacag cctgagagcc gaggacacgg ctgtgtatta ctgtgcgaga 3240gactctggtt
atagtgatcc tatgtggggc cagggaaccc tggtcaccgt ctcgagcggc 3300ggtggcggta
gtgggggagg cggttctggc ggcggagggt ccggcggtgg aggatcagac 3360gttgtgatga
cccagtctcc atcttccgtg tctgcatctg taggagacag agtcaccatc 3420acctgtcagg
ccagtcagaa cattaggact tacttatcct ggtatcagca gaaaccaggg 3480aaagccccta
agctcctgat ctatgctgca gccaatctgg catctggggt cccatcaagg 3540ttcagcggca
gtggatctgg gacagatttc actctcacca tcagcgacct ggagcctggc 3600gatgctgcaa
cttactattg tcagtctacc tatcttggta ctgattatgt tggcggtgct 3660ttcggcggag
ggaccaaggt ggagatcaaa
3690881230PRTArtificial SequenceSynthesized 88Asp Val Val Met Thr Gln Ser
Pro Ser Thr Leu Ser Ala Ser Val Gly1 5 10
15Asp Arg Val Thr Ile Asn Cys Gln Ala Ser Glu Ser Ile
Ser Ser Trp 20 25 30Leu Ala
Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35
40 45Tyr Glu Ala Ser Lys Leu Ala Ser Gly Val
Pro Ser Arg Phe Ser Gly 50 55 60Ser
Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65
70 75 80Asp Asp Phe Ala Thr Tyr
Tyr Cys Gln Gly Tyr Phe Tyr Phe Ile Ser 85
90 95Arg Thr Tyr Val Asn Ser Phe Gly Gly Gly Thr Lys
Val Glu Ile Lys 100 105 110Gly
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 115
120 125Gly Gly Gly Ser Glu Val Gln Leu Val
Glu Ser Gly Gly Gly Leu Val 130 135
140Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr145
150 155 160Ile Ser Thr Asn
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly 165
170 175Leu Glu Trp Ile Gly Val Ile Thr Gly Arg
Asp Ile Thr Tyr Tyr Ala 180 185
190Ser Trp Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
195 200 205Thr Leu Tyr Leu Gln Met Asn
Ser Leu Arg Ala Glu Asp Thr Ala Val 210 215
220Tyr Tyr Cys Ala Arg Asp Gly Gly Ser Ser Ala Ile Thr Ser Asn
Asn225 230 235 240Ile Trp
Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly
245 250 255Ser Gly Gly Gly Gly Ser Glu
Val Gln Leu Val Gln Ser Gly Ala Glu 260 265
270Val Lys Lys Pro Gly Glu Ser Leu Lys Ile Ser Cys Lys Gly
Ser Gly 275 280 285Tyr Ser Phe Ser
Ser Ser Trp Ile Gly Trp Val Arg Gln Ala Pro Gly 290
295 300Lys Gly Leu Glu Trp Met Gly Ile Ile Tyr Pro Asp
Asp Ser Asp Thr305 310 315
320Arg Tyr Ser Pro Ser Phe Gln Gly Gln Val Thr Ile Ser Ala Asp Lys
325 330 335Ser Ile Arg Thr Ala
Tyr Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp 340
345 350Thr Ala Met Tyr Tyr Cys Ala Arg His Val Thr Met
Ile Trp Gly Val 355 360 365Ile Ile
Asp Phe Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala 370
375 380Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala
Pro Ser Ser Lys Ser385 390 395
400Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe
405 410 415Pro Glu Pro Val
Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly 420
425 430Val His Thr Phe Pro Ala Val Leu Gln Ser Ser
Gly Leu Tyr Ser Leu 435 440 445Ser
Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr 450
455 460Ile Cys Asn Val Asn His Lys Pro Ser Asn
Thr Lys Val Asp Lys Arg465 470 475
480Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys
Pro 485 490 495Ala Pro Glu
Ala Ala Gly Ala Pro Ser Val Phe Leu Phe Pro Pro Lys 500
505 510Pro Lys Asp Thr Leu Met Ile Ser Arg Thr
Pro Glu Val Thr Cys Val 515 520
525Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 530
535 540Val Asp Gly Val Glu Val His Asn
Ala Lys Thr Lys Pro Arg Glu Glu545 550
555 560Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu
Thr Val Leu His 565 570
575Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Ala Val Ser Asn Lys
580 585 590Ala Leu Pro Ala Pro Ile
Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 595 600
605Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
Glu Leu 610 615 620Thr Lys Asn Gln Val
Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro625 630
635 640Ser Asp Ile Ala Val Glu Trp Glu Ser Asn
Gly Gln Pro Glu Asn Asn 645 650
655Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
660 665 670Tyr Ser Lys Leu Thr
Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val 675
680 685Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn
His Tyr Thr Gln 690 695 700Lys Ser Leu
Ser Leu Ser Pro Gly Gly Gly Gly Gly Ser Gly Gly Gly705
710 715 720Gly Ser Glu Val Gln Leu Leu
Glu Ser Gly Gly Gly Leu Val Gln Pro 725
730 735Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
Phe Ser Phe Ser 740 745 750Ser
Gly Tyr Asp Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 755
760 765Glu Trp Ile Ala Cys Ile Ala Ala Gly
Ser Ala Gly Ile Thr Tyr Asp 770 775
780Ala Asn Trp Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys785
790 795 800Asn Thr Leu Tyr
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala 805
810 815Val Tyr Tyr Cys Ala Arg Ser Ala Phe Ser
Phe Asp Tyr Ala Met Asp 820 825
830Leu Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly
835 840 845Ser Gly Gly Gly Gly Ser Gly
Gly Gly Gly Ser Gly Gly Gly Gly Ser 850 855
860Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val
Gly865 870 875 880Asp Arg
Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Ser Ser His
885 890 895Leu Asn Trp Tyr Gln Gln Lys
Pro Gly Lys Ala Pro Lys Leu Leu Ile 900 905
910Tyr Lys Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe
Ser Gly 915 920 925Ser Gly Ser Gly
Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 930
935 940Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr
Ser Trp Gly Asn945 950 955
960Val Asp Asn Val Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Gly Gly
965 970 975Gly Gly Ser Gly Gly
Gly Gly Ser Arg Ser Leu Val Glu Ser Gly Gly 980
985 990Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser
Cys Thr Ala Ser 995 1000 1005Gly
Phe Thr Ile Ser Ser Tyr His Met Gln Trp Val Arg Gln Ala 1010
1015 1020Pro Gly Lys Gly Leu Glu Tyr Ile Gly
Thr Ile Ser Ser Gly Gly 1025 1030
1035Asn Val Tyr Tyr Ala Ser Ser Ala Arg Gly Arg Phe Thr Ile Ser
1040 1045 1050Arg Pro Ser Ser Lys Asn
Thr Val Asp Leu Gln Met Asn Ser Leu 1055 1060
1065Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Ser
Gly 1070 1075 1080Tyr Ser Asp Pro Met
Trp Gly Gln Gly Thr Leu Val Thr Val Ser 1085 1090
1095Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
Gly Gly 1100 1105 1110Ser Gly Gly Gly
Gly Ser Asp Val Val Met Thr Gln Ser Pro Ser 1115
1120 1125Ser Val Ser Ala Ser Val Gly Asp Arg Val Thr
Ile Thr Cys Gln 1130 1135 1140Ala Ser
Gln Asn Ile Arg Thr Tyr Leu Ser Trp Tyr Gln Gln Lys 1145
1150 1155Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
Ala Ala Ala Asn Leu 1160 1165 1170Ala
Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr 1175
1180 1185Asp Phe Thr Leu Thr Ile Ser Asp Leu
Glu Pro Gly Asp Ala Ala 1190 1195
1200Thr Tyr Tyr Cys Gln Ser Thr Tyr Leu Gly Thr Asp Tyr Val Gly
1205 1210 1215Gly Ala Phe Gly Gly Gly
Thr Lys Val Glu Ile Lys 1220 1225
123089642DNAArtificial SequenceSynthesized 89gccatccagt tgacccagtc
tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60atcacttgcc gggcaagtca
gggcattagc agtgctttag cctggtatca gcagaaacca 120gggaaagctc ctaagctcct
gatctatgat gcctccagtt tggaaagtgg ggtcccatca 180aggttcagcg gcagtggatc
tgggacagat ttcactctca ccatcagcag cctgcagcct 240gaagattttg caacttatta
ctgtcaacag tttaatagtt acccattcac tttcggccct 300gggaccaaag tggatatcaa
acgtacggtg gctgcaccat ctgtcttcat cttcccgcca 360tctgatgagc agttgaaatc
tggaactgcc tctgttgtgt gcctgctgaa taacttctat 420cccagagagg ccaaagtaca
gtggaaggtg gataacgccc tccaatcggg taactcccag 480gagagtgtca cagagcagga
cagcaaggac agcacctaca gcctcagcag caccctgacg 540ctgagcaaag cagactacga
gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc 600ctgagctcgc ccgtcacaaa
gagcttcaac aggggagagt gt 64290214PRTArtificial
SequenceSynthesized 90Ala Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala
Ser Val Gly1 5 10 15Asp
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Ala 20
25 30Leu Ala Trp Tyr Gln Gln Lys Pro
Gly Lys Ala Pro Lys Leu Leu Ile 35 40
45Tyr Asp Ala Ser Ser Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60Ser Gly Ser Gly Thr Asp Phe Thr
Leu Thr Ile Ser Ser Leu Gln Pro65 70 75
80Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Phe Asn Ser
Tyr Pro Phe 85 90 95Thr
Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg Thr Val Ala Ala
100 105 110Pro Ser Val Phe Ile Phe Pro
Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120
125Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu
Ala 130 135 140Lys Val Gln Trp Lys Val
Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln145 150
155 160Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
Thr Tyr Ser Leu Ser 165 170
175Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
180 185 190Ala Cys Glu Val Thr His
Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200
205Phe Asn Arg Gly Glu Cys 210913675DNAArtificial
SequenceSynthesized 91gccatccagt tgacccagtc tccatcctcc ctgtctgcat
ctgtaggaga cagagtcacc 60atcacttgcc gggcaagtca gggcattagc agtgctttag
cctggtatca gcagaaacca 120gggaaagctc ctaagctcct gatctatgat gcctccagtt
tggaaagtgg ggtcccatca 180aggttcagcg gcagtggatc tgggacagat ttcactctca
ccatcagcag cctgcagcct 240gaagattttg caacttatta ctgtcaacag tttaatagtt
acccattcac tttcggccct 300gggaccaaag tggatatcaa aggcggtggc ggtagtgggg
gaggcggttc tggcggcgga 360gggtccggcg gtggaggatc agaggtgcag ctggtgcagt
ctggagcaga ggtgaagaaa 420ccaggagagt ctctgaagat ctcctgtaag ggttctggat
acagctttag cagttcatgg 480atcggctggg tgcgccaggc acctgggaaa ggcctggaat
ggatggggat catctatcct 540gatgactctg ataccagata cagtccatcc ttccaaggcc
aggtcaccat ctcagccgac 600aagtccatca ggactgccta cctgcagtgg agtagcctga
aggcctcgga caccgctatg 660tattactgtg cgagacatgt tactatgatt tggggagtta
ttattgactt ctggggccag 720ggaaccctgg tcaccgtctc ctcaggcggt ggagggtccg
gcggtggtgg atccgaggtg 780cagctggtgg agtctggggg aggcttggtc cagcctgggg
ggtccctgag actctcctgt 840gcagcctctg gattcaccat cagtaccaat gcaatgagct
gggtccgcca ggctccaggg 900aaggggctgg agtggatcgg agtcattact ggtcgtgata
tcacatacta cgcgagctgg 960gcgaaaggca gattcaccat ctccagagac aattccaaga
acacgctgta tcttcaaatg 1020aacagcctga gagccgagga cacggctgtg tattactgtg
cgcgcgacgg tggatcatct 1080gctattacta gtaacaacat ttggggccaa ggaactctgg
tcaccgtttc ttcagctagc 1140accaagggcc catcggtctt ccccctggca ccctcctcca
agagcacctc tgggggcaca 1200gcggccctgg gctgcctggt caaggactac ttccccgaac
cggtgacggt gtcgtggaac 1260tcaggcgccc tgaccagcgg cgtgcacacc ttcccggctg
tcctacagtc ctcaggactc 1320tactccctca gcagcgtggt gaccgtgccc tccagcagct
tgggcaccca gacctacatc 1380tgcaacgtga atcacaagcc cagcaacacc aaggtggaca
agagagttga gcccaaatct 1440tgtgacaaaa ctcacacatg cccaccgtgc ccagcacctg
aagccgcggg ggcaccgtca 1500gtcttcctct tccccccaaa acccaaggac accctcatga
tctcccggac ccctgaggtc 1560acatgcgtgg tggtggacgt gagccacgaa gaccctgagg
tcaagttcaa ctggtacgtg 1620gacggcgtgg aggtgcataa tgccaagaca aagccgcggg
aggagcagta caacagcacg 1680taccgtgtgg tcagcgtcct caccgtcctg caccaggact
ggctgaatgg caaggagtac 1740aagtgcgcgg tctccaacaa agccctccca gcccccatcg
agaaaaccat ctccaaagcc 1800aaagggcagc cccgagaacc acaggtgtat accctgcccc
catcccggga tgagctgacc 1860aagaaccagg tcagcctgac ctgcctggtc aaaggcttct
atcccagcga catcgccgtg 1920gagtgggaga gcaatgggca gccggagaac aactacaaga
ccacgcctcc cgtgctggac 1980tccgacggct ccttcttcct ctatagcaag ctcaccgtgg
acaagagcag gtggcagcag 2040gggaacgtct tctcatgctc cgtgatgcat gaggctctgc
acaaccacta cacgcagaag 2100agcctctccc tgtctccggg tggcggtgga gggtccggcg
gtggtggatc cgaggtgcag 2160ctgttggagt ctgggggagg cttggtacag cctggggggt
ccctgagact ctcctgtgca 2220gcctctggat tctccttcag tagcgggtac gacatgtgct
gggtccgcca ggctccaggg 2280aaggggctgg agtggatcgc atgcattgct gctggtagtg
ctggtatcac ttacgacgcg 2340aactgggcga aaggccggtt caccatctcc agagacaatt
ccaagaacac gctgtatctg 2400caaatgaaca gcctgagagc cgaggacacg gccgtatatt
actgtgcgag atcggcgttt 2460tcgttcgact acgccatgga cctctggggc cagggaaccc
tggtcaccgt ctcgagcggt 2520ggaggcggat ctggcggagg tggttccggc ggtggcggct
ccggtggagg cggctctgac 2580atccagatga cccagtctcc ttccaccctg tctgcatctg
taggagacag agtcaccatc 2640acttgccagg ccagtcagag cattagttcc cacttaaact
ggtatcagca gaaaccaggg 2700aaagccccta agctcctgat ctataaggca tccactctgg
catctggggt cccatcaagg 2760ttcagcggca gtggatctgg gacagaattt actctcacca
tcagcagcct gcagcctgat 2820gattttgcaa cttattactg ccaacagggt tatagttggg
gtaatgttga taatgttttc 2880ggcggaggga ccaaggtgga gatcaaaggc ggtggagggt
ccggcggtgg tggatcccgg 2940tcgctggtgg agtctggggg aggcttggtc cagcctgggg
ggtccctgag actctcctgt 3000acagcctctg gattcaccat cagtagctac cacatgcagt
gggtccgcca ggctccaggg 3060aaggggctgg agtacatcgg aaccattagt agtggtggta
atgtatacta cgcgagctcc 3120gcgagaggca gattcaccat ctccagaccc tcgtccaaga
acacggtgga tcttcaaatg 3180aacagcctga gagccgagga cacggctgtg tattactgtg
cgagagactc tggttatagt 3240gatcctatgt ggggccaggg aaccctggtc accgtctcga
gcggcggtgg cggtagtggg 3300ggaggcggtt ctggcggcgg agggtccggc ggtggaggat
cagacgttgt gatgacccag 3360tctccatctt ccgtgtctgc atctgtagga gacagagtca
ccatcacctg tcaggccagt 3420cagaacatta ggacttactt atcctggtat cagcagaaac
cagggaaagc ccctaagctc 3480ctgatctatg ctgcagccaa tctggcatct ggggtcccat
caaggttcag cggcagtgga 3540tctgggacag atttcactct caccatcagc gacctggagc
ctggcgatgc tgcaacttac 3600tattgtcagt ctacctatct tggtactgat tatgttggcg
gtgctttcgg cggagggacc 3660aaggtggaga tcaaa
3675921225PRTArtificial SequenceSynthesized 92Ala
Ile Gln Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1
5 10 15Asp Arg Val Thr Ile Thr Cys
Arg Ala Ser Gln Gly Ile Ser Ser Ala 20 25
30Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
Leu Ile 35 40 45Tyr Asp Ala Ser
Ser Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser
Leu Gln Pro65 70 75
80Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Phe Asn Ser Tyr Pro Phe
85 90 95Thr Phe Gly Pro Gly Thr
Lys Val Asp Ile Lys Gly Gly Gly Gly Ser 100
105 110Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
Gly Gly Ser Glu 115 120 125Val Gln
Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu Ser 130
135 140Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser
Phe Ser Ser Ser Trp145 150 155
160Ile Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met Gly
165 170 175Ile Ile Tyr Pro
Asp Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe Gln 180
185 190Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile
Arg Thr Ala Tyr Leu 195 200 205Gln
Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys Ala 210
215 220Arg His Val Thr Met Ile Trp Gly Val Ile
Ile Asp Phe Trp Gly Gln225 230 235
240Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly
Gly 245 250 255Gly Ser Glu
Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro 260
265 270Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala
Ser Gly Phe Thr Ile Ser 275 280
285Thr Asn Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 290
295 300Trp Ile Gly Val Ile Thr Gly Arg
Asp Ile Thr Tyr Tyr Ala Ser Trp305 310
315 320Ala Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser
Lys Asn Thr Leu 325 330
335Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr
340 345 350Cys Ala Arg Asp Gly Gly
Ser Ser Ala Ile Thr Ser Asn Asn Ile Trp 355 360
365Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys
Gly Pro 370 375 380Ser Val Phe Pro Leu
Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr385 390
395 400Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
Phe Pro Glu Pro Val Thr 405 410
415Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro
420 425 430Ala Val Leu Gln Ser
Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr 435
440 445Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile
Cys Asn Val Asn 450 455 460His Lys Pro
Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser465
470 475 480Cys Asp Lys Thr His Thr Cys
Pro Pro Cys Pro Ala Pro Glu Ala Ala 485
490 495Gly Ala Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
Lys Asp Thr Leu 500 505 510Met
Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 515
520 525His Glu Asp Pro Glu Val Lys Phe Asn
Trp Tyr Val Asp Gly Val Glu 530 535
540Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr545
550 555 560Tyr Arg Val Val
Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 565
570 575Gly Lys Glu Tyr Lys Cys Ala Val Ser Asn
Lys Ala Leu Pro Ala Pro 580 585
590Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln
595 600 605Val Tyr Thr Leu Pro Pro Ser
Arg Asp Glu Leu Thr Lys Asn Gln Val 610 615
620Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala
Val625 630 635 640Glu Trp
Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
645 650 655Pro Val Leu Asp Ser Asp Gly
Ser Phe Phe Leu Tyr Ser Lys Leu Thr 660 665
670Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
Ser Val 675 680 685Met His Glu Ala
Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 690
695 700Ser Pro Gly Gly Gly Gly Gly Ser Gly Gly Gly Gly
Ser Glu Val Gln705 710 715
720Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg
725 730 735Leu Ser Cys Ala Ala
Ser Gly Phe Ser Phe Ser Ser Gly Tyr Asp Met 740
745 750Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu
Trp Ile Ala Cys 755 760 765Ile Ala
Ala Gly Ser Ala Gly Ile Thr Tyr Asp Ala Asn Trp Ala Lys 770
775 780Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys
Asn Thr Leu Tyr Leu785 790 795
800Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala
805 810 815Arg Ser Ala Phe
Ser Phe Asp Tyr Ala Met Asp Leu Trp Gly Gln Gly 820
825 830Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly
Ser Gly Gly Gly Gly 835 840 845Ser
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Gln Met Thr 850
855 860Gln Ser Pro Ser Thr Leu Ser Ala Ser Val
Gly Asp Arg Val Thr Ile865 870 875
880Thr Cys Gln Ala Ser Gln Ser Ile Ser Ser His Leu Asn Trp Tyr
Gln 885 890 895Gln Lys Pro
Gly Lys Ala Pro Lys Leu Leu Ile Tyr Lys Ala Ser Thr 900
905 910Leu Ala Ser Gly Val Pro Ser Arg Phe Ser
Gly Ser Gly Ser Gly Thr 915 920
925Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp Asp Phe Ala Thr 930
935 940Tyr Tyr Cys Gln Gln Gly Tyr Ser
Trp Gly Asn Val Asp Asn Val Phe945 950
955 960Gly Gly Gly Thr Lys Val Glu Ile Lys Gly Gly Gly
Gly Ser Gly Gly 965 970
975Gly Gly Ser Arg Ser Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro
980 985 990Gly Gly Ser Leu Arg Leu
Ser Cys Thr Ala Ser Gly Phe Thr Ile Ser 995 1000
1005Ser Tyr His Met Gln Trp Val Arg Gln Ala Pro Gly
Lys Gly Leu 1010 1015 1020Glu Tyr Ile
Gly Thr Ile Ser Ser Gly Gly Asn Val Tyr Tyr Ala 1025
1030 1035Ser Ser Ala Arg Gly Arg Phe Thr Ile Ser Arg
Pro Ser Ser Lys 1040 1045 1050Asn Thr
Val Asp Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr 1055
1060 1065Ala Val Tyr Tyr Cys Ala Arg Asp Ser Gly
Tyr Ser Asp Pro Met 1070 1075 1080Trp
Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly 1085
1090 1095Ser Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gly Gly Gly Gly 1100 1105
1110Ser Asp Val Val Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser
1115 1120 1125Val Gly Asp Arg Val Thr
Ile Thr Cys Gln Ala Ser Gln Asn Ile 1130 1135
1140Arg Thr Tyr Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala
Pro 1145 1150 1155Lys Leu Leu Ile Tyr
Ala Ala Ala Asn Leu Ala Ser Gly Val Pro 1160 1165
1170Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr
Leu Thr 1175 1180 1185Ile Ser Asp Leu
Glu Pro Gly Asp Ala Ala Thr Tyr Tyr Cys Gln 1190
1195 1200Ser Thr Tyr Leu Gly Thr Asp Tyr Val Gly Gly
Ala Phe Gly Gly 1205 1210 1215Gly Thr
Lys Val Glu Ile Lys 1220 122593657DNAArtificial
SequenceSynthesized 93gacgtcgtga tgacccagtc tccttccacc ctgtctgcat
ctgtaggaga cagagtcacc 60atcaattgcc aagccagtga gagcattagc agttggttag
cctggtatca gcagaaacca 120gggaaagccc ctaagctcct gatctatgaa gcatccaaac
tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc tgggacagaa ttcactctca
ccatcagcag cctgcagcct 240gatgattttg caacttatta ctgccaaggc tatttttatt
ttattagtcg tacttatgta 300aattctttcg gcggagggac caaggtggag atcaaacgta
cggtggctgc accatctgtc 360ttcatcttcc cgccatctga tgagcagttg aaatctggaa
ctgcctctgt tgtgtgcctg 420ctgaataact tctatcccag agaggccaaa gtacagtgga
aggtggataa cgccctccaa 480tcgggtaact cccaggagag tgtcacagag caggacagca
aggacagcac ctacagcctc 540agcagcaccc tgacgctgag caaagcagac tacgagaaac
acaaagtcta cgcctgcgaa 600gtcacccatc agggcctgag ctcgcccgtc acaaagagct
tcaacagggg agagtgt 65794219PRTArtificial SequenceSynthesized 94Asp
Val Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly1
5 10 15Asp Arg Val Thr Ile Asn Cys
Gln Ala Ser Glu Ser Ile Ser Ser Trp 20 25
30Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
Leu Ile 35 40 45Tyr Glu Ala Ser
Lys Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser
Leu Gln Pro65 70 75
80Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gly Tyr Phe Tyr Phe Ile Ser
85 90 95Arg Thr Tyr Val Asn Ser
Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100
105 110Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro
Pro Ser Asp Glu 115 120 125Gln Leu
Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 130
135 140Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val
Asp Asn Ala Leu Gln145 150 155
160Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
165 170 175Thr Tyr Ser Leu
Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 180
185 190Lys His Lys Val Tyr Ala Cys Glu Val Thr His
Gln Gly Leu Ser Ser 195 200 205Pro
Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 215
User Contributions:
Comment about this patent or add new information about this topic: