Patent application title: POLYNUCLEOTIDES AND POLYPEPTIDE SEQUENCES INVOLVED IN THE PROCESS OF BONE REMODELING
Inventors:
Roy Rabindranauth Sooknanan (Beaconsfield, CA)
Roy Rabindranauth Sooknanan (Beaconsfield, CA)
Gilles Bernard Tremblay (La Prairie, CA)
Gilles Bernard Tremblay (La Prairie, CA)
Mario Filion (Longueuil, CA)
Mario Filion (Longueuil, CA)
Assignees:
DAIICHI SANKYO COMPANY, LIMITED
IPC8 Class:
USPC Class:
1 1
Class name:
Publication date: 2017-09-14
Patent application number: 20170260529
Abstract:
This invention relates, in part, to unique and newly identified genetic
polynucleotides involved in the process of bone remodeling; variants and
derivatives of the polynucleotides and corresponding polypeptides; uses
of the polynucleotides, polypeptides, variants and derivatives; and
methods and compositions for the amelioration of symptoms caused by bone
remodeling disorders. Disclosed in particular are, the isolation and
identification of polynucleotides, polypeptides, variants and derivatives
involved in osteoclast activity, validation of the identified
polynucleotides for their potential as therapeutic targets and use of the
polynucleotides, polypeptides, variants and derivatives for the
amelioration of disease states and research purposes.Claims:
1. A method for detecting a level of differentiation of an osteoclast
cell population, the method comprising measuring expression of one or
more of SEQ ID NO.:48 to 80 or 82.
2. The method of claim 1, wherein the expression is measured by contacting a cell or a cell sample with a compound capable of specifically binding to SEQ ID NO.:48 to 80 or 82.
3. The method of claim 2, wherein the compound is an antibody or an antigen binding fragment thereof.
4. The method of claim 1, wherein the expression is measured by contacting a cell or a cell sample with a compound capable of specifically binding to SEQ ID NO.:1 to 33, SEQ ID NO.:35, SEQ ID NO.:85 or 86.
5. The method of claim 4, wherein the compound comprises a nucleic acid sequence having a portion substantially complementary to any one of SEQ ID NO.:1 to SEQ ID NO.:33, SEQ ID NO.:35, SEQ ID NO.:85 or SEQ ID NO.:86.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a Divisional of U.S. application Ser. No. 14/690,535, filed Apr. 20, 2015, which is a Continuation of U.S. application Ser. No. 13/950,490, filed Jul. 25, 2013, and issued as U.S. Pat. No. 9,040,246, which is a Divisional of U.S. application Ser. No. 13/152,205, filed Jun. 2, 2011, and issued as U.S. Pat. No. 8,540,988, which is a Divisional of U.S. application Ser. No. 12/279,054, filed Jan. 13, 2009, and issued as U.S. Pat. No. 7,989,160, which is the U.S. National Stage application of PCT/CA2007/000210, filed Feb. 13, 2007, which claims priority from U.S. Provisional Application Nos. 60/816,858, filed Jun. 28, 2006, and 60/772,585, filed Feb. 13, 2006.
FIELD OF THE INVENTION
[0002] This invention relates, in part, to unique and newly identified genetic polynucleotides involved in the process of bone remodeling; variants and derivatives of the polynucleotides and corresponding polypeptides; uses of the polynucleotides, polypeptides, variants and derivatives; methods and compositions for the amelioration of symptoms caused by bone remodeling disorders, including but not limited to osteoporosis, osteopenia, osteomalacia, hyperparathyroidism, hypothyroidism, hyperthyroidism, hypogonadism, thyrotoxicosis, systemic mastocytosis, adult hypophosphatasia, hyperadrenocorticism, osteogenesis imperfecta, Paget's disease, Cushing's disease/syndrome, Tumer syndrome, Gaucher disease, Ehlers-Danlos syndrome, Marfan's syndrome, Menkes' syndrome, Fanconi's syndrome, multiple myeloma, hypercalcemia, hypocalcemia, arthritides, periodontal disease, rickets (including vitamin D dependent, type I and II, and x-linked hypophosphatemic rickets), fibrogenesis imperfecta ossium, osteosclerotic disorders such as pycnodysostosis and damage caused by macrophage-mediated inflammatory processes.
[0003] In particular, this invention relates to polynucleotide expression profiles of active osteoclasts, the isolation and identification of polynucleotides, polypeptides, variants and derivatives involved in osteoclast activity, validation of the identified polynucleotides for their potential as therapeutic targets and use of the polynucleotides, polypeptides, variants and derivatives for the amelioration of disease states and research purposes, as well as in diagnosis of disease states or in the predisposition to develop same.
BACKGROUND OF THE INVENTION
[0004] Bone is a dynamic connective tissue comprised of functionally distinct cell populations required to support the structural, mechanical and biochemical integrity of bone and the human body's mineral homeostasis. The principal cell types involved include, osteoblasts responsible for bone formation and maintaining bone mass, and osteoclasts responsible for bone resorption. Osteoblasts and osteoclasts function in a dynamic process termed bone remodeling. The development and proliferation of these cells from their progenitors is governed by networks of growth factors and cytokines produced in the bone microenvironment as well as by systemic hormones. Bone remodeling is ongoing throughout the lifetime of the individual and is necessary for the maintenance of healthy bone tissue and mineral homeostasis. The process remains largely in equilibrium and is governed by a complex interplay of systemic hormones, peptides and downstream signalling pathway proteins, local transcription factors, cytokines, growth factors and matrix remodeling genes.
[0005] Any interference or imbalance arising in the bone remodeling process can produce skeletal disease, with the most common skeletal disorders characterized by a net decrease in bone mass. A primary cause of this reduction in bone mass is an increase in osteoclast number and/or activity. The most common of such disease, and perhaps the best known, is osteoporosis occurring particularly in women after the onset of menopause. In fact osteoporosis is the most significant underlying cause of skeletal fractures in late middle-aged and elderly women. While estrogen deficiency has been strongly implicated as a factor in postmenopausal osteoporosis, there is longstanding evidence that remodeling is a locally controlled process being that it takes place in discrete packets throughout the skeleton as first described by Frost over forty years ago (Frost H. M. 1964).
[0006] Since bone remodeling takes place in discrete packets, locally produced hormones and enzymes may be more important than systemic hormones for the initiation of bone resorption and the normal remodeling process. Such local control is mediated by osteoblasts and osteoclasts in the microenvironment in which they operate. For example, osteoclasts attach to the bone matrix and form a separate compartment between themselves and the bone surface delimited by a sealing zone formed by a ring of actin surrounding the ruffled border. Multiple small vesicles transport enzymes toward the bone matrix and internalize partially digested bone matrix. The microenvironment within the sealing zone is rich with the presence of lysosomal enzymes and is highly acidic compared to the normal physiological pH of the body. The ruffled border membrane also expresses RANK, the receptor for RANKL, and macrophage-colony stimulating factor (M-CSF) receptor, both of which are responsible for osteoclast differentiation, as well as the calcitonin receptor capable of rapidly inactivating the osteoclast (Baron, R. 2003).
[0007] In a complex pattern of inhibition and stimulation not yet fully understood, growth hormone, insulin-like growth factor-1, the sex steroids, thyroid hormone, calciotrophic hormones such as PTH and prostaglandin E2, various cytokines, such as interleukin-1 beta, interleukin-6, and tumour necrosis factor-alpha, and 1,25-dihydroxyvitamin D (calcitriol) act co-ordinately in the bone remodeling process (Jilka et al. 1992; Poli et al. 1994; Srivastava et al. 1998; de Vemejoul 1996).
[0008] Thus, it stands to reason that the unique local environments created by these specialized cells is due to the expression of either unique genetic sequences not expressed in other tissues and/or splice variants of polynucleotides and polypeptides expressed in other tissues. The isolation and identification of polynucleotides, polypeptides and their variants and derivatives specific to osteoclast activity will permit a clearer understanding of the remodeling process and offer tissue specific therapeutic targets for the treatment of disease states related to bone remodeling.
[0009] Many diseases linked to bone remodeling are poorly understood, generally untreatable or treatable only to a limited extent. For example, osteoarthritis is difficult to treat as there is no cure and treatment focuses on relieving pain and preventing the affected joint from becoming deformed. Non-steroidal anti-inflammatory drugs (NSAIDs) are generally used to relieve pain.
[0010] Another example is osteoporosis where the only current medications approved by the FDA for use in the United States are the anti-resorptive agents that prevent bone breakdown. Estrogen replacement therapy is one example of an anti-resorptive agent. Others include alendronate (Fosamax--a biphosphonate anti-resorptive), risedronate (Actonel--a bisphosphonate anti-resorptive), raloxifene (Evista--selective estrogen receptor modulator (SERM)), calcitonin (Calcimar--a hormone), and parathyroid hormone/teriparatide (Forteo--a synthetic version of the human hormone, parathyroid hormone, which helps to regulate calcium metabolism).
[0011] Bisphosphonates such as alendronate and risedronate bind permanently to the surface of bone and interfere with osteoclast activity. This allows the osteoblasts to outpace the rate of resorption. The most common side effects are nausea, abdominal pain and loose bowel movements. However, alendronate is reported to also cause irritation and inflammation of the esophagus, and in some cases, ulcers of the esophagus. Risedronate is chemically different from alendronate and has less likelihood of causing esophagus irritation. However, certain foods, calcium, iron supplements, vitamins and minerals, or antacids containing calcium, magnesium, or aluminum can reduce the absorption of risedronate, thereby resulting in loss of effectiveness.
[0012] The most common side effect of Raloxifen and other SERMS (such as Tamoxifen) are hot flashes. However, Raloxifene and other hormone replacement therapies have been shown to increase the risk of blood clots, including deep vein thrombosis and pulmonary embolism, cardiovascular disease and cancer.
[0013] Calcitonin is not as effective in increasing bone density and strengthening bone as estrogen and the other anti-resorptive agents. Common side effects of either injected or nasal spray calcitonin are nausea and flushing. Patients can develop nasal irritations, a runny nose, or nosebleeds. Injectable calcitonin can cause local skin redness at the site of injection, skin rash, and flushing.
[0014] A situation demonstrative of the link between several disorders or disease states involving bone remodeling is that of the use of etidronate (Didronel) first approved by the FDA to treat Paget's disease. Paget's disease is a bone disease characterized by a disorderly and accelerated remodeling of the bone, leading to bone weakness and pain. Didronel has been used `off-label` and in some studies shown to increase bone density in postmenopausal women with established osteoporosis. It has also been found effective in preventing bone loss in patients requiring long-term steroid medications (such as Prednisone or Cortisone). However, high dose or continuous use of Didronel can cause another bone disease called osteomalacia. Like osteoporosis, osteomalacia can lead to weak bones with increased risk of fractures. Because of osteomalacia concerns and lack of enough studies yet regarding reduction in the rate of bone fractures, the United States FDA has not approved Didronel for the treatment of osteoporosis.
[0015] Osteoporosis therapy has been largely focused on antiresorptive drugs that reduce the rate of bone loss but emerging therapies show promise in increasing bone mineral density instead of merely maintaining it or slowing its deterioration. The osteoporosis early stage pipeline consists largely of drug candidates in new therapeutic classes, in particular cathepsin K inhibitors, osteoprotegerin and calcilytics as well as novel bisphosphonates. Some of these are examples where novel drugs exploiting genomics programs are being developed based on a deeper understanding of bone biology and have the potential to change the face of treatment of bone disorders in the long term.
[0016] There thus remains a need to better understand the bone remodeling process and to provide new compositions that are useful for the diagnosis, prognosis, treatment, prevention and evaluation of therapies for bone remodeling and associated disorders. A method for analysing polynucleotide expression patterns has been developed and applied to identify polynucleotides, polypeptides, variants and derivatives specifically involved in bone remodeling.
[0017] The present invention seeks to meet these and other needs.
[0018] The present description refers to a number of documents, the content of which is herein incorporated by reference in their entirety.
SUMMARY OF THE INVENTION
[0019] The present invention relates to polynucleotides comprising sequences involved in the process of bone remodeling, the open reading frame of such sequences, substantially identical sequences (e.g., variants (e.g., allelic variant), non human orthologs), substantially complementary sequences and fragments of any one of the above thereof.
[0020] The present invention relates to polypeptide comprising sequences involved in the process of bone remodeling including biologically active analogs and biologically active fragments thereof. The present invention also relates to compositions that are useful for the diagnosis, prognosis, treatment, prevention and/or evaluation of therapies for bone remodeling and associated disorders.
[0021] In addition, the present invention relates to a method for analyzing polynucleotide expression patterns, and applied in the identification of polynucleotides, polypeptides, variants and derivatives specifically involved in bone remodeling.
[0022] The present invention relates to polynucleotide expression profiles of osteoclasts, the isolation and identification of polynucleotides, their corresponding polypeptides, variants and derivatives involved in osteoclast activity, validation of these identified elements for their potential as therapeutic targets and use of said polynucleotides, polypeptides, variants and derivatives for the amelioration of disease states.
[0023] It is an object of the present invention to provide polynucleotides and/or related polypeptides that have been isolated and identified. More specifically, the invention provides (isolated or substantially purified) polynucleotides comprising or consisting of any one of SEQ. ID. NOs:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86 their coding sequence (open reading frame) substantially identical sequence (e.g., variants, orthologs (e.g., SEQ ID NO.:35)), substantially complementary sequences and related polypeptides comprising any one of SEQ ID NO.: 48-80 and polypeptides encoded by SEQ ID NO.:85 or SEQ ID NO.:86 which have been shown to be upregulated in a highly specific fashion in osteoclasts. The present invention also relates to polypeptide analogs, variants (e.g., SEQ ID NO.:81) and fragments thereof.
[0024] NSEQ refers generally to polynucleotide sequences of the present invention and includes for example, SEQ. ID. NOs:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86 whereas PSEQ refers generally to polypeptide sequences of the present invention and includes, for example, SEQ ID NO.:48 to 82 and polypeptides encoded by SEQ ID NO.:85 or SEQ ID NO.:86. Of course it will be understood that NSEQ also encompasses polynucleotide sequences which are designed or derived from SEQ. ID. NOs:1 to 33 SEQ ID NO.:85 or SEQ ID NO.:86 for example, their coding sequence, complementary sequences. Non-limiting examples of such sequences are disclosed herein (e.g. SEQ ID Nos 42-45).
[0025] As used herein the term "NSEQ" refers generally to polynucleotides sequences comprising or consisting of any one of SEQ. ID. NOs:1 to 33, 85 or 86 (e.g., an isolated form) or comprising or consisting of a fragment of any one of SEQ. ID. NOs:1 to 33, 85 or 86. The term "NSEQ" more particularly refers to a polynucleotide sequence comprising or consisting of a transcribed portion of any one of SEQ. ID. NOs:1 to 33, 85 or 86, which may be, for example, free of untranslated or untranslatable portion(s) (i.e., a coding portion of any one of SEQ ID Nos.: 1 to 33, 85 or 86). The term "NSEQ" additionally refers to a sequence substantially identical to any one of the above and more particularly substantially identical to polynucleotide sequence comprising or consisting of a transcribed portion of any one of SEQ. ID. Nos1 to 33, 85 or 86, which may be, for example, free of untranslated or untranslatable portion(s). The term "NSEQ" additionally refers to a polynucleotide sequence region of any one of SEQ. ID. NOs:1 to 33, 85 or 86 which encodes or is able to encode a polypeptide. The term "NSEQ" also refers to a polynucleotide sequence able of encoding any one of the polypeptides described herein or a polypeptide fragment of any one of the above. Finally, the term "NSEQ" also comprise a sequence substantially complementary to any one of the above.
[0026] The term "inhibitory NSEQ" generally refers to a sequence substantially complementary to any one of SEQ. ID. Nos: 1 to 33, 85 or 86, substantially complementary to a fragment of any one of SEQ. ID. Nos: 1 to 33, 85 or 86, substantially complementary to a sequence substantially identical to SEQ. ID. NOs:1 to 33, 85 or 86 and more particularly, substantially complementary to a transcribed portion of any one of SEQ. ID. NOs:1 to 33, 85 or 86 (e.g., which may be free of unstranslated or untranslatable portion) and which may have attenuating or even inhibitory action against the transcription of a mRNA or against expression of a polypeptide encoded by a corresponding SEQ ID NOs.:1 to 33, 85 or 86. Suitable "inhibitory NSEQ" may have for example and without limitation from about 10 to about 30 nucleotides, from about 10 to about 25 nucleotides or from about 15 to about 20 nucleotides. As used herein the term "nucleotide" means deoxyribonucleotide or ribonucleotide. In an exemplary embodiment, the use of nucleotide analogues is also encompassed in the present invention.
[0027] The present invention relates in one aspect thereof to an isolated polynucleotide sequence having at least from about 80% to about 100% (e.g., 80%, 90%, 95%, etc.) sequence identity to a polynucleotide sequence selected from the group consisting of polynucleotides comprising (a) any one of a SEQ. ID. NOs:1 to 33 or SEQ ID NO.:85 or SEQ ID NO.:86; (b) an open reading frame of (a); (c) a full complement of (a) or (b), and; (d) a fragment of any one of (a) to (c).
[0028] As used herein the term "unstranscribable region" may include for example, a promoter region (or portion thereof), silencer region, enhancer region etc. of a polynucleotide sequence.
[0029] As used herein the term "unstranslatable region" may include for example, an initiator portion of a polynucleotide sequence (upstream of an initiator codon, e.g., AUG), intronic regions, stop codon and/or region downstream of a stop codon (including polyA tail, etc.).
[0030] Complements of the isolated polynucleotide sequence encompassed by the present invention may be those, for example, which hybridize under high stringency conditions to any of the nucleotide sequences in (a), or (b). The high stringency conditions may comprise, for example, a hybridization reaction at 65.degree. C. in 5.times.SSC, 5.times.Denhardt's solution, 1% SDS, and 100 .mu.g/ml denatured salmon sperm DNA.
[0031] In accordance with the present invention, the polynucleotide sequence may be used, for example, in the treatment of diseases or disorders involving bone remodeling.
[0032] Fragments of polynucleotides may be used, for example, as probes for determining the presence of the isolated polynucleotide (or its complement or fragments thereof) in a sample, cell, tissue, etc. for experimental purposes or for the purpose of diagnostic of a diseases or disorders involving bone remodeling.
[0033] The present invention also relates to a combination comprising a plurality of polynucleotides (substantially purified and/or isolated). The polynucleotides may be co-expressed with one or more genes known to be involved in bone remodeling. Furthermore, the plurality of polynucleotides may be selected, for example, from the group consisting of a polynucleotide comprising (a) any one of SEQ. ID. NOs:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86; (b) an open reading frame (a); (c) a polynucleotide sequence comprising or consisting of a transcribed portion of any one of SEQ. ID. NOs:1 to 33, 85 or 86, which may be, for example, free of untranslated or untranslatable portion(s) (d) a complementary sequence of any one of (a) to (c); (e) a sequence that hybridizes under high stringency conditions to any one of the nucleotide sequences of (a) to (d) and; (f) fragments of any one of (a) to (e).
[0034] The present invention further relates to a polynucleotide encoding any one of the polypeptides described herein. In accordance with the present invention, the polynucleotide (RNA, DNA, etc.) may encode a polypeptide which may be selected from the group consisting of any one of SEQ ID NO.:48 to 80, polypeptides encoded by SEQ ID NO.:85 or 86, analogs or fragments thereof (e.g., biologically active fragments, immunologically active fragments, etc.).
[0035] The present invention also relates to an isolated nucleic acid molecule comprising the polynucleotides of the present invention, operatively linked to a nucleotide sequence encoding a heterologous polypeptide thereby encoding a fusion polypeptide.
[0036] The invention further relates to a polypeptide encoded by a polynucleotide of SEQ. ID. NOs:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86 or more particularly from the open reading frame of any one of SEQ. ID. NOs:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86, or a portion thereof. The invention also comprise the product of a gene that is co-expressed with one or more genes known to be involved in bone remodeling.
[0037] Isolated naturally occurring allelic variant are also encompassed by the present invention as well as synthetic variants (e.g., made by recombinant DNA technology or by chemical synthesis, etc.) such as biologically active variant which may comprise one or more amino acid substitutions (compared to a naturally occurring polypeptide), such as conservative or non conservative amino acid substitution.
[0038] The present invention, further provides a vector (mammalian, bacterial, viral, etc.) comprising the polynucleotides described herein or fragments thereof, such as an expression vector. The vector may further comprise a nucleic acid sequence which may help in the regulation of expression of the polynucleotide and/or a nucleotide sequence encoding a tag (e.g., affinity tag; HA, GST, His etc.).
[0039] In accordance with the present invention, an expression vector may comprise, for example, the following operatively linked elements:
[0040] a) a transcription promoter;
[0041] b) a polynucleotide segment (which may comprise an open reading frame of any one of SEQ ID NOs.:1-33, 85 or 86); and
[0042] c) a transcription terminator.
[0043] The invention also relates to an expression vector comprising a polynucleotide described herein, a host cell transformed with the expression vector and a method for producing a polypeptide of the present invention.
[0044] The invention further relates to a vector comprising a polynucleotide or polynucleotide fragment. Vectors which may comprise a sequence substantially complementary to the polynucleotides of the present invention (e.g., siRNA, shRNA) are thus encompassed by the present invention. The vector may comprise sequences enabling transcription of the polynucleotide or polynucleotide fragment.
[0045] More particularly, the present invention therefore provides a cell which may be genetically engineered to contain and/or to express the polynucleotide (including complements and fragments) and/or polypeptides of the present invention. The cell may be, for example, a mammalian cell, an insect cell, a bacteria cell, etc.
[0046] The present invention, therefore provides a host cell which may comprise a vector as described herein. The cell may be, for example, a mammalian cell, an insect cell, a bacteria, etc. The cell may be able to express or expresses a polypeptide encoded by the polynucleotide described herein.
[0047] Methods of producing the polypeptides of the present invention encompassed herewith includes for example, culturing the cell in conditions allowing the transcription of a gene or expression of the polypeptide. The polypeptide may be recovered, for example, from cell lysate or from the cell supernatant.
[0048] The invention relates to the use of at least one polynucleotide comprising any one of SEQ. ID. NOs:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86 their coding sequence, substantially identical sequences, substantially complementary sequences or fragments thereof on an array. The array may be used in a method for diagnosing a bone remodeling disease or disorder by hybridizing the array with a patient sample under conditions to allow complex formation, detecting complex formation, and comparing the amount of complex formation in the patient sample to that of standards for normal and diseased tissues wherein the complex formation in the patient sample indicates the presence of a bone remodeling disease or disorder. Of course, the use of a polynucleotide of the present invention in a diagnosis method is not dependent exclusively by way of a specific assay. The sequence or sequences may be used in conventionally used diagnosis methods known in the art.
[0049] The present invention also relates to a method of ameliorating bone remodeling disease or disorder symptoms, or for inhibiting or delaying bone disease or disorder, the method may comprise: contacting a compound capable of specifically inhibiting activity or expression of a polynucleotide sequence described herein or a polypeptide described herein, in osteoclasts so that symptoms of the bone remodeling disease or disorder may be ameliorated, or the disease or disorder may be prevented, delayed or lowered.
[0050] The present invention further relates to a method for ameliorating bone remodeling disease or disorder symptoms, or for inhibiting or delaying bone disease or disorder, the method may comprise: contacting a compound capable of specifically promoting activity or expression of a polynucleotide sequence described herein or a polypeptide described herein, in osteoclasts so that symptoms of the bone remodeling disease or disorder may be ameliorated, or the disease or disorder may be prevented, delayed or lowered.
[0051] The present invention also relates to a method of treating a condition in a mammal characterized by a deficiency in, or need for, bone growth or replacement and/or an undesirable level of bone resorption, which method may comprise administering to a mammalian subject in need of such treatment an effective amount of a suitable compound described herein.
[0052] The present invention further relates to a method of using a polynucleotide sequence described herein, a polypeptide described herein on an array and for the use of the array in a method for diagnosing a bone remodeling disease or disorder by hybridizing the array with a patient sample under conditions to allow complex formation, detecting complex formation, and comparing the amount of complex formation in the patient sample to that of standards for normal and diseased tissues wherein the complex formation in the patient sample may indicate the presence of a bone remodeling disease or disorder.
[0053] In accordance with the present invention, the polynucleotide sequence described herein may be used for somatic cell gene therapy or for stem cell gene therapy.
[0054] The invention also relates to a pharmaceutical composition comprising a polynucleotide described herein or a polypeptide encoded by the selected polynucleotide or portion thereof and a suitable pharmaceutical carrier.
[0055] Additionally, the invention relates to products, compositions, processes and methods that comprises a polynucleotide described herein, a polypeptide encoded by the polynucleotides, a portion thereof, their variants or derivatives, for research, biological, clinical and therapeutic purposes.
[0056] The NSEQs and PSEQs may be used in diagnosis, prognosis, treatment, prevention, and selection and evaluation of therapies for diseases and disorders involving bone remodeling including, but not limited to, osteoporosis, osteopenia, osteomalacia, hyperparathyroidism, hyperthyroidism, hyperthyroidism, hypogonadism, thyrotoxicosis, systemic mastocytosis, adult hypophosphatasia, hyperadrenocorticism, osteogenesis imperfecta, Paget's disease, Cushing's disease/syndrome, Tumer syndrome, Gaucher disease, Ehlers-Danlos syndrome, Marfan's syndrome, Menkes' syndrome, Fanconi's syndrome, multiple myeloma, hypercalcemia, hypocalcemia, arthritides, periodontal disease, rickets (including vitamin D dependent, type I and II, and x-linked hypophosphatemic rickets), fibrogenesis imperfecta ossium, osteosclerotic disorders such as pycnodysostosis and damage caused by macrophage-mediated inflammatory processes.
Use of NSEQ as a Screening Tool
[0057] The polynucleotides obtained by the present invention may be used to detect and isolate expression products, for example, mRNA, complementary DNAs (cDNAs) and proteins derived from or homologous to the NSEQs. In one embodiment, the expression of mRNAs homologous to the NSEQs of the present invention may be detected, for example, by hybridization analysis, reverse transcription and in vitro nucleic acid amplification methods. Such procedures permit detection of mRNAs in a variety of tissue types or at different stages of development. The subject nucleic acids which are expressed in a tissue-specific or a developmental-stage-specific manner are useful as tissue-specific markers or for defining the developmental stage of a sample of cells or tissues that may define a particular disease state. One of skill in the art may readily adapt the NSEQs for these purposes.
[0058] Those skilled in the art will also recognize that the NSEQs, and its expression products such as cDNA nucleic acids and genomic DNA may be used to prepare short oligonucleotides sequences. For example, oligonucleotides having ten to twelve nucleotides or more may be prepared which hybridize specifically to the present NSEQs and cDNAs and allow detection, identification and isolation of unique nucleic sequences by hybridization. Sequences of for example, at least 15-20 nucleotides may be used and selected from regions that lack homology to other known sequences. Sequences of 20 or more nucleotides that lack such homology show an increased specificity toward the target sequence. Useful hybridization conditions for probes and primers are readily determinable by those of skill in the art. Stringent hybridization conditions encompassed herewith are those that may allow hybridization of nucleic acids that are greater than 90% homologous but which may prevent hybridization of nucleic acids that are less than 70% homologous. The specificity of a probe may be determined by whether it is made from a unique region, a regulatory region, or from a conserved motif. Both probe specificity and the stringency of diagnostic hybridization or amplification (maximal, high, intermediate, or low) reactions may be determined whether the probe identifies exactly complementary sequences, allelic variants, or related sequences. Probes designed to detect related sequences may have at least 50% sequence identity to any of the selected polynucleotides.
[0059] It is to be understood herein that the NSEQs (substantially identical sequences and fragments thereof) may hybridize to a substantially complementary sequence found in a test sample. Additionally, a sequence substantially complementary to NSEQ may bind a NSEQ found in a test sample.
[0060] Furthermore, a probe may be labelled by any procedure known in the art, for example by incorporation of nucleotides linked to a "reporter molecule". A "reporter molecule", as used herein, may be a molecule that provides an analytically identifiable signal allowing detection of a hybridized probe. Detection may be either qualitative or quantitative. Commonly used reporter molecules include fluorophores, enzymes, biotin, chemiluminescent molecules, bioluminescent molecules, digoxigenin, avidin, streptavidin or radioisotopes. Commonly used enzymes include horseradish peroxidase, alkaline phosphatase, glucose oxidase and .beta.-galactosidase, among others. Enzymes may be conjugated to avidin or streptavidin for use with a biotinylated probe. Similarly, probes may be conjugated to avidin or streptavidin for use with a biotinylated enzyme. Incorporation of a reporter molecule into a DNA probe may be by any method known to the skilled artisan, for example by nick translation, primer extension, random oligo priming, by 3' or 5' end labeling or by other means. In addition, hybridization probes include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro. The labelled polynucleotide sequences may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; and in micro arrays utilizing samples from subjects to detect altered expression. Oligonucleotides useful as probes for screening of samples by hybridization assays or as primers for amplification may be packaged into kits. Such kits may contain the probes or primers in a pre-measured or predetermined amount, as well as other suitably packaged reagents and materials needed for the particular hybridization or amplification protocol. In another embodiment, the invention entails a substantially purified polypeptide encoded by the polynucleotides of NSEQs, polypeptide analogs or polypeptide fragments thereof. The polypeptides whether in a premature, mature or fused form, may be isolated from lysed cells, or from the culture medium, and purified to the extent needed for the intended use. One of skill in the art may readily purify these proteins, polypeptides and peptides by any available procedure. For example, purification may be accomplished by salt fractionation, size exclusion chromatography, ion exchange chromatography, reverse phase chromatography, affinity chromatography and the like.
Use of NSEQ for Development of an Expression System
[0061] In order to express a biologically active polypeptide, NSEQ, or derivatives thereof, may be inserted into an expression vector, i.e., a vector that contains the elements for transcriptional and translational control of the inserted coding sequence in a particular host. These elements may include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' un-translated regions. Methods that are well known to those skilled in the art may be used to construct such expression vectors. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination.
[0062] A variety of expression vector/host cell systems known to those of skill in the art may be utilized to express NSEQ. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with baculovirus vectors; plant cell systems transformed with viral or bacterial expression vectors; or animal cell systems. For long-term production of recombinant proteins in mammalian systems, stable expression in cell lines may be effected. For example, NSEQ may be transformed into cell lines using expression vectors that may contain viral origins of replication and/or endogenous expression elements and a selectable or visible marker gene on the same or on a separate vector. The invention is not to be limited by the vector or host cell employed.
[0063] In general, host cells that contain NSEQ and that express a polypeptide encoded by the NSEQ, or a portion thereof, may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques that include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or amino acid sequences. Immunological methods for detecting and measuring the expression of polypeptides using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). Those of skill in the art may readily adapt these methodologies to the present invention.
[0064] The present invention additionally relates to a bioassay for evaluating compounds as potential antagonists of the polypeptide described herein, the bioassay may comprise:
[0065] a) culturing test cells in culture medium containing increasing concentrations of at least one compound whose ability to inhibit the action of a polypeptide described herein is sought to be determined, wherein the test cells may contain a polynucleotide sequence described herein (for example, in a form having improved trans-activation transcription activity, relative to wild-type polynucleotide, and comprising a response element operatively linked to a reporter gene); and thereafter
[0066] b) monitoring in the cells the level of expression of the product of the reporter gene as a function of the concentration of the potential antagonist compound in the culture medium, thereby indicating the ability of the potential antagonist compound to inhibit activation of the polypeptide encoded by, the polynucleotide sequence described herein.
[0067] The present invention further relates to a bioassay for evaluating compounds as potential agonists for a polypeptide encoded by the polynucleotide sequence described herein, the bioassay may comprise:
[0068] a) culturing test cells in culture medium containing increasing concentrations of at least one compound whose ability to promote the action of the polypeptide encoded by the polynucleotide sequence described herein is sought to be determined, wherein the test cells may contain a polynucleotide sequence described herein (for example, in a form having improved trans-activation transcription activity, relative to wild-type polynucleotide, and comprising a response element operatively linked to a reporter gene); and thereafter
[0069] b) monitoring in the cells the level of expression of the product of the reporter gene as a function of the concentration of the potential agonist compound in the culture medium, thereby indicating the ability of the potential agonist compound to promote activation of a polypeptide encoded by the polynucleotide sequence described herein.
[0070] Host cells transformed with NSEQ may be cultured under conditions for the expression and recovery of the polypeptide from cell culture. The polypeptide produced by a transgenic cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing NSEQ may be designed to contain signal sequences that direct secretion of the polypeptide through a prokaryotic or eukaryotic cell membrane. Due to the inherent degeneracy of the genetic code, other DNA sequences that encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express the polypeptide encoded by NSEQ. The nucleotide sequences of the present invention may be engineered using methods generally known in the art in order to alter the nucleotide sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
[0071] In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed polypeptide in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing, which cleaves a "prepro" form of the polypeptide, may also be used to specify protein targeting, folding, and/or activity. Different host cells that have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and W138) are available commercially and from the American Type Culture Collection (ATCC) and may be chosen to ensure the correct modification and processing of the expressed polypeptide.
[0072] Those of skill in the art will readily appreciate that natural, modified, or recombinant nucleic acid sequences may be ligated to a heterologous sequence resulting in translation of a fusion polypeptide containing heterologous polypeptide moieties in any of the aforementioned host systems. Such heterologous polypeptide moieties may facilitate purification of fusion polypeptides using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein, thioredoxin, calmodulin binding peptide, 6-His (His), FLAG, c-myc, hemaglutinin (HA), and monoclonal antibody epitopes.
[0073] In yet a further aspect, the present invention relates to an isolated polynucleotide which may comprise a nucleotide sequence encoding a fusion protein, the fusion protein may comprise a fusion partner fused to a peptide fragment of a protein encoded by, or a naturally occurring allelic variant polypeptide encoded by, the polynucleotide sequence described herein.
[0074] Those of skill in the art will also readily recognize that the nucleic acid and polypeptide sequences may be synthesized, in whole or in part, using chemical or enzymatic methods well known in the art. For example, peptide synthesis may be performed using various solid-phase techniques and machines such as the ABI 431A Peptide synthesizer (PE Biosystems) may be used to automate synthesis. If desired, the amino acid sequence may be altered during synthesis and/or combined with sequences from other proteins to produce a variant protein.
Use of NSEQ as a Diagnostic Screening Tool
[0075] The skilled artisan will readily recognize that NSEQ may be used for diagnostic purposes to determine the absence, presence, or altered expression (i.e. increased or decreased compared to normal) of the gene. The polynucleotides may be at least 10 nucleotides long or at least 12 nucleotides long, or at least 15 nucleotides long up to any desired length and may comprise complementary RNA and DNA molecules, branched nucleic acids, and/or peptide nucleic acids (PNAs). In one alternative, the polynucleotides may be used to detect and quantify gene expression in samples in which expression of NSEQ is correlated with disease. In another alternative, NSEQ may be used to detect genetic polymorphisms associated with a disease. These polymorphisms may be detected in the transcript cDNA.
[0076] The invention provides for the use of at least one polynucleotide comprising NSEQ (e.g., an open reading frame of NSEQ, a substantially complementary sequence, a substantially identical sequence, and fragments thereof) on an array and for the use of that array in a method for diagnosing a bone remodeling disease or disorder by hybridizing the array with a patient sample under conditions to allow complex formation, detecting complex formation, and comparing the amount of complex formation in the patient sample to that of standards for normal and diseased tissues wherein the complex formation in the patient sample indicates the presence of a bone remodeling disease or disorder.
[0077] In another embodiment, the present invention provides one or more compartmentalized kits for detection of bone resorption disease states. A first kit may have a receptacle containing at least one isolated probe. Such a probe may be a nucleic acid fragment which is present/absent in the genomic DNA of normal cells but which is absent/present in the genomic DNA of affected cells. Such a probe may be specific for a DNA site that is normally active/inactive but which may be inactive/active in certain cell types. Similarly, such a probe may be specific for a DNA site that may be abnormally expressed in certain cell types. Finally, such a probe may identify a specific DNA mutation. By specific for a DNA site is meant that the probe may be capable of hybridizing to the DNA sequence which is mutated, or may be capable of hybridizing to DNA sequences adjacent to the mutated DNA sequences. The probes provided in the present kits may have a covalently attached reporter molecule. Probes and reporter molecules may be readily prepared as described above by those of skill in the art.
Use of NSEQ as a Therapeutic
[0078] One of skill in the art will readily appreciate that the expression systems and assays discussed above may also be used to evaluate the efficacy of a particular therapeutic treatment regimen, in animal studies, in clinical trials, or to monitor the treatment of an individual subject. Once the presence of disease is established and a treatment protocol is initiated, hybridization or amplification assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate the level observed in a healthy subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to many years.
[0079] In yet another aspect of the invention, an NSEQ, a portion thereof, or its complement, may be used therapeutically for the purpose of expressing mRNA and polypeptide, or conversely to block transcription or translation of the mRNA. Expression vectors may be constructed using elements from retroviruses, adenoviruses, herpes or vaccinia viruses, or bacterial plasmids, and the like. These vectors may be used for delivery of nucleotide sequences to a particular target organ, tissue, or cell population. Methods well known to those skilled in the art may be used to construct vectors to express nucleic acid sequences or their complements.
[0080] Alternatively, NSEQ, a portion thereof, or its complement, may be used for somatic cell or stem cell gene therapy. Vectors may be introduced in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors are introduced into stem cells taken from the subject, and the resulting transgenic cells are clonally propagated for autologous transplant back into that same subject. Delivery of NSEQ by transfection, liposome injections, or polycationic amino polymers may be achieved using methods that are well known in the art. Additionally, endogenous NSEQ expression may be inactivated using homologous recombination methods that insert an inactive gene sequence into the coding region or other targeted region of NSEQ.
[0081] Depending on the specific goal to be achieved, vectors containing NSEQ may be introduced into a cell or tissue to express a missing polypeptide or to replace a non-functional polypeptide. Of course, when one wishes to express PSEQ in a cell or tissue, one may use a NSEQ able to encode such PSEQ for that purpose or may directly administer PSEQ to that cell or tissue.
[0082] On the other hand, when one wishes to attenuate or inhibit the expression of PSEQ, one may use a NSEQ (e.g., an inhibitory NSEQ) which is substantially complementary to at least a portion of a NSEQ able to encode such PSEQ.
[0083] The expression of an inhibitory NSEQ may be done by cloning the inhibitory NSEQ into a vector and introducing the vector into a cell to down-regulate the expression of a polypeptide encoded by the target NSEQ.
[0084] Vectors containing NSEQ (e.g., including inhibitory NSEQ) may be transformed into a cell or tissue to express a missing polypeptide or to replace a non-functional polypeptide. Similarly a vector constructed to express the complement of NSEQ may be transformed into a cell to down-regulate the over-expression of a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof. Complementary or anti-sense sequences may consist of an oligonucleotide derived from the transcription initiation site; nucleotides between about positions -10 and +10 from the ATG are preferred. Similarly, inhibition may be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee et al. 1994)
[0085] Ribozymes, enzymatic RNA molecules, may also be used to catalyze the cleavage of mRNA and decrease the levels of particular mRNAs, such as those comprising the polynucleotide sequences of the invention. Ribozymes may cleave mRNA at specific cleavage sites. Alternatively, ribozymes may cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The construction and production of ribozymes is well known in the art.
[0086] RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiester linkages within the backbone of the molecule. Alternatively, nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases, may be included.
[0087] In addition to the active ingredients, a pharmaceutical composition may contain pharmaceutically acceptable carriers comprising excipients and auxiliaries that facilitate processing of the active compounds into preparations that may be used pharmaceutically.
[0088] For any compound, the therapeutically effective dose may be estimated initially either in cell culture assays or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the concentration range and route of administration. Such information may then be used to determine useful doses and routes for administration in humans. These techniques are well known to one skilled in the art and a therapeutically effective dose refers to that amount of active ingredient that ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating and contrasting the ED.sub.50 (the dose therapeutically effective in 50% of the population) and LD.sub.50 (the dose lethal to 50% of the population) statistics. Any of the therapeutic compositions described above may be applied to any subject in need of such therapy, including, but not limited to, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.
[0089] The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
[0090] The term "Treatment" for purposes of this disclosure refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented.
Use of NSEQ in General Research
[0091] The invention finally provides products, compositions, processes and methods that utilize an NSEQ, their open reading frame, or a polypeptide encoded by the polynucleotides of NSEQ or their open reading frame, or a portion thereof, their variants, analogs, derivatives and fragments for research, biological, clinical and therapeutic purposes. For example, to identify splice variants, mutations, and polymorphisms
[0092] NSEQ may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences such as promoters and other regulatory elements. Additionally, one may use an XL-PCR kit (PE Biosystems, Foster City Calif.), nested primers, and commercially available cDNA libraries (Life Technologies, Rockville Md.) or genomic libraries (Clontech, Palo Alto Calif.) to extend the sequence.
[0093] The polynucleotides may also be used as targets in a micro-array. The micro-array may be used to monitor the expression patterns of large numbers of genes simultaneously and to identify splice variants, mutations, and polymorphisms. Information derived from analyses of the expression patterns may be used to determine gene function, to understand the genetic basis of a disease, to diagnose a disease, and to develop and monitor the activities of therapeutic agents used to treat a disease. Microarrays may also be used to detect genetic diversity, single nucleotide polymorphisms which may characterize a particular population, at the genomic level.
[0094] In yet another embodiment, polynucleotides may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data.
[0095] The present invention more particularly relates in one aspect thereof to a method of representatively identifying an endogeneously differentially expressed sequence involved in osteoclast differentiation. The sequence may be, for example, differentially expressed in a differentiated osteoclast cell compared to an undifferentiated osteoclast precursor cell.
[0096] The method of the present invention may comprise;
[0097] a) separately providing total messenger RNA from (mature or intermediately) differentiated human osteoclast cell and undifferentiated human osteoclast precursor cell, the total messenger RNA may comprise, for example, at least one endogeneously differentially expressed sequence,
[0098] b) generating single-stranded cDNA from each messenger RNA of differentiated human osteoclast cell and (e.g., randomly) tagging the 3'-end of the single-stranded cDNA with a RNA polymerase promoter sequence and a first sequence tag;
[0099] c) generating single-stranded cDNA from each messenger RNA of undifferentiated human osteoclast precursor cell and (e.g., randomly) tagging the 3'-end of the single-stranded cDNA with a RNA polymerase promoter sequence and a second sequence tag;
[0100] d) separately generating partially or completely double-stranded 5'-tagged-DNA from each of b) and c), the double-stranded 5'-tagged-DNA may thus comprise in a 5' to 3' direction, a double-stranded RNA polymerase promoter, a first or second sequence tag and an endogenously expressed sequence,
[0101] e) separately linearly amplifying a first and second tagged sense RNA from each of d) with a RNA polymerase enzyme (which may be selected based on the promoter used for tagging),
[0102] f) generating single-stranded complementary first or second tagged DNA from one of e),
[0103] g) hybridizing the single-stranded complementary first or second tagged DNA of f) with the other linearly amplified sense RNA of e),
[0104] h) recovering unhybridized RNA with the help of the first or second sequence tag (for example by PCR or hybridization), and;
[0105] i) identifying (determining) the nucleotide sequence of unhybridized RNA.
[0106] Steps b) and/or c), may comprise generating a single copy of a single-stranded cDNA.
[0107] The method may further comprise the step of comparatively determining the presence of the identified endogeneously and differentially expressed sequence in a differentiated osteoclast cell relative to an undifferentiated osteoclast precursor cell.
[0108] A sequence which is substantially absent (e.g., totally absent or present in very low quantity) from one of differentiated osteoclast cell or an undifferentiated osteoclast precursor cell and present in the other of differentiated osteoclast cell or an undifferentiated osteoclast precursor cell may therefore be selected.
[0109] The sequence thus selected may be a positive regulator of osteoclast differentiation and therefore may represent an attractive target which may advantageously be used to promote bone resorption or alternatively such target may be inhibited to lower or prevent bone resorption.
[0110] Alternatively, the sequence selected using the above method may be a negative regulator of osteoclast differentiation and may therefore represent an attractive target which may advantageously be induced (e.g., at the level of transcription, translation, activity etc.) or provided to a cell to lower or prevent bone resorption. Also such negative regulator may, upon its inhibition, serve as a target to promote bone resorption.
[0111] In accordance with the present invention, the sequence may be further selected based on a reduced or substantially absent expression in other normal tissue, therefore representing a candidate sequence specifically involved in osteoclast differentiation and bone remodeling.
[0112] The method may also further comprise a step of determining the complete sequence of the nucleotide sequence and may also comprise determining the coding sequence of the nucleotide sequence.
[0113] The present invention also relates in a further aspect, to the isolated endogeneously and differentially expressed sequence (polynucleotide and polypeptide) identified by the method of the present invention.
[0114] More particularly, the present invention encompasses a polynucleotide which may comprise the identified polynucleotide sequence, a polynucleotide which may comprise the open reading frame of the identified polynucleotide sequence, a polynucleotide which may comprise a nucleotide sequence substantially identical to the polynucleotide identified by the method of the present invention, a polynucleotide which may comprise a nucleotide sequence substantially complementary to the polynucleotide identified by the method of the present invention, fragments and splice variant thereof, provided that the sequence does not consist in or comprise SEQ ID NO.:34.
[0115] In accordance with the present invention, the isolated endogeneously and differentially expressed sequence of the present invention may be a complete or partial RNA molecule.
[0116] Isolated DNA molecule able to be transcribed into the RNA molecule of the present invention are also encompassed herewith as well as vectors (including expression vectors) comprising the such DNA or RNA molecule.
[0117] The present invention also relates to libraries comprising at least one isolated endogeneously and differentially expressed sequence identified herein (e.g., partial or complete RNA or DNA, substantially identical sequences or substantially complementary sequences (e.g., probes) and fragments thereof (e.g., oligonucleotides)).
[0118] In accordance with the present invention, the isolated endogeneously and differentially expressed sequence may be selected, for example, from the group consisting of a polynucleotide which may consist in or comprise;
[0119] a) any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
[0120] b) the open reading frame of any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
[0121] c) a polynucleotide which may comprise a nucleotide sequence substantially identical to a) or b), and;
[0122] d) a polynucleotide which may comprise a nucleotide sequence substantially complementary to any one of a) to c),
[0123] e) fragments of any one of a) to d).
[0124] In a further aspect the present invention relates to a polypeptide which may be encoded by the isolated endogeneously and differentially expressed sequence of the present invention.
[0125] In yet a further aspect the present invention relates to a polynucleotide able to encode a polypeptide of the present invention. Due to the degeneracy of the genetic code, it is to be understood herein that a multiplicity of polynucleotide sequence may encode the same polypeptide sequence and thus are encompassed by the present invention.
[0126] Exemplary polypeptides may comprise a sequence selected from the group consisting of any one of SEQ ID NO.: 48 to 80, a polypeptide encoded by SEQ ID NO.:85 or SEQ ID NO.:86.
[0127] The present invention also relates to an isolated non-human ortholog polynucleotide sequence (involved in bone remodeling), the open reading frame of the non-human ortholog, substantially identical sequences, substantially complementary sequences, fragments and splice variants thereof.
[0128] The present invention as well relates to an isolated polypeptide encoded by the non-human ortholog polynucleotide as well as biologically active analogs and biologically active fragments thereof.
[0129] Exemplary embodiments of non-human (e.g., mouse) ortholog polynucleotides encompassed herewith include, for example, SEQ ID NO.:35.
[0130] Exemplary embodiments of isolated polypeptide encoded by some non-human orthologs identified herein include for example, a polypeptide such as SEQ ID NO.:82.
[0131] The present invention also more particularly relates, in an additional aspect thereof, to an isolated polynucleotide which may be differentially expressed in differentiated osteoclast cell compared to undifferentiated human osteoclast precursor cell.
[0132] The isolated polynucleotide may comprise a member selected from the group consisting of;
[0133] a) a polynucleotide which may comprise any one of SEQ ID NO.:1 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO.:86
[0134] b) a polynucleotide which may comprise the open reading frame of any one of SEQ ID NO.:1 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO.:86;
[0135] c) a polynucleotide which may comprise a transcribed or transcribable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO.:86, which may be, for example, free of untranslated or untranslatable portion(s);
[0136] d) a polynucleotide which may comprise a translated or translatable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO.:86 (e.g., coding portion),
[0137] e) a polynucleotide which may comprise a sequence substantially identical (e.g., from about 50 to 100%, or about 60 to 100% or about 70 to 100% or about 80 to 100% or about 85, 90, 95 to 100% identical over the entire sequence or portion of sequences) to a), b) c) or d),
[0138] f) a polynucleotide which may comprise a sequence substantially complementary (e.g., from about 50 to 100%, or about 60 to 100% or about 70 to 100% or about 80 to 100% or about 85, 90, 95 to 100% complementarity over the entire sequence or portion of sequences) to a), b), c) or d) and;
[0139] g) a fragment of any one of a) to f)
[0140] h) including polynucleotides which consist in the above.
[0141] Exemplary polynucleotides fragments of those listed above comprises polynucleotides of at least 10 nucleic acids which may be substantially complementary to the nucleic acid sequence of any one of SEQ ID NO.: 1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86, for example, fragments selected from the group consisting of any one of SEQ ID NO.: 42-45.
[0142] The present invention also relates to an isolated polynucleotide involved in osteoclast differentiation, the isolated polynucleotide may be selected, for example, from the group consisting of;
[0143] a) a polynucleotide comprising any one of SEQ ID NO.: 1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
[0144] b) a polynucleotide comprising the open reading frame of any one of SEQ ID NO.: 1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
[0145] c) a polynucleotide which may comprise a transcribed or transcribable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO.:86, which may be, for example, free of untranslated or untranslatable portion(s);
[0146] d) a polynucleotide which may comprise a translated or translatable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO.:86 (e.g., coding portion),
[0147] e) a polynucleotide substantially identical to a), b), c) or d); and;
[0148] f) a sequence of at least 10 nucleic acids which may be substantially complementary to the nucleic acid sequence of any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86 or more particularly of a), b), c) or d).
[0149] In accordance with the present invention the isolated polynucleotide may be able to promote osteoclast differentiation (e.g., in a mammal or mammalian cell thereof), i.e, a positive regulator of osteoclast differenciation.
[0150] Further in accordance with the present invention, the isolated polynucleotide may be able to inhibit, prevent or lower osteoclast differentiation (e.g., in a mammal or mammalian cell thereof), i.e, a negative regulator of osteoclast differenciation.
[0151] In yet a further aspect, the present invention relates to an isolated polynucleotide which may be able to inhibit osteoclast differentiation (e.g., in a mammal or mammalian cell thereof). The polynucleotide may be selected, for example, from the group consisting of polynucleotides which may comprise a sequence of at least 10 nucleic acids which is complementary to the nucleic acid sequence of any one of NSEQ described herein.
[0152] Suitable polynucleotides include, for example, a polynucleotide having or comprising those which are selected from the group consisting of SEQ ID NO. 42 to 45.
[0153] Suitable polynucleotides may be those which may be able to inhibit osteoclast differentiation which has been induced by an inducer of osteoclast differentiation such as those listed herein.
[0154] In accordance with the present invention, the polynucleotide may be, for example, a RNA molecule, a DNA molecule, including those which are partial or complete, single-stranded or double-stranded, hybrids, etc.
[0155] The present invention also relates to a vector (e.g., an expression vector) comprising the polynucleotide of the present invention.
[0156] The present invention additionally relates in an aspect thereof to a library of polynucleotide sequences which may be differentially expressed in a differentiated osteoclast cell compared to an undifferentiated osteoclast precursor cell. The library may comprise, for example, at least one member selected from the group consisting of
[0157] a) a polynucleotide which may comprise any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
[0158] b) a polynucleotide which may comprise the open reading frame of any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
[0159] c) a polynucleotide which may comprise a transcribed or transcribable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO.:86, which may be, for example, free of untranslated or untranslatable portion(s);
[0160] d) a polynucleotide which may comprise a translated or translatable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO.:86 (e.g., coding portion),
[0161] e) a polynucleotide which may comprise a sequence substantially identical (e.g., from about 50 to 100%, or about 60 to 100% or about 70 to 100% or about 80 to 100% or about 85, 90, 95 to 100% identical over the entire sequence or portion of sequences) to a), b), c) or d);
[0162] f) a polynucleotide which may comprise a sequence substantially complementary (e.g., from about 50 to 100%, or about 60 to 100% or about 70 to 100% or about 80 to 100% or about 85, 90, 95 to 100% complementarity over the entire sequence or portion of sequences) to a), b), c) or d) and;
[0163] g) a fragment of any one of a) to d).
[0164] The present invention also relates to an expression library which may comprise a library of polynucleotides described herein. In accordance with the present invention, each of the polynucleotide may be contained within an expression vector.
[0165] Arrays and kits comprising a library of polynucleotide sequences (comprising at least one polynucleotide such as complementary sequences) of the present invention are also encompassed herewith.
[0166] The present invention also provides in an additional aspect, a pharmaceutical composition for inhibiting osteoclast differentiation (bone resorption and bone resorption related diseases or disorders), the pharmaceutical composition may comprise, for example;
[0167] a) an isolated polynucleotide as defined herein (e.g., able to inhibit osteoclast differentiation) and;
[0168] b) a pharmaceutically acceptable carrier.
[0169] The present invention also provides in yet an additional aspect, a method for inhibiting osteoclast differentiation (e.g., for inhibiting bone resorption or for ameliorating bone resorption) in a mammal (individual) in need thereof (or in a mammalian cell), the method may comprise administering an isolated polynucleotide (e.g., able to inhibit osteoclast differentiation) or a suitable pharmaceutical composition comprising such suitable polynucleotide.
[0170] In accordance with the present invention, the mammal in need may suffer, for example and without limitation, from a condition selected from the group consisting of osteoporosis, osteopenia, osteomalacia, hyperparathyroidism, hyperthyroidism, hypogonadism, thyrotoxicosis, systemic mastocytosis, adult hypophosphatasia, hyperadrenocorticism, osteogenesis imperfecta, Paget's disease, Cushing's disease/syndrome, Tumer syndrome, Gaucher disease, Ehlers-Danlos syndrome, Marfan's syndrome, Menkes' syndrome, Fanconi's syndrome, multiple myeloma, hypercalcemia, hypocalcemia, arthritides, periodontal disease, rickets (including vitamin D dependent, type I and II, and x-linked hypophosphatemic rickets), fibrogenesis imperfecta ossium, osteosclerotic disorders such as pycnodysostosis and damage caused by macrophage-mediated inflammatory processes, etc.
[0171] In a further aspect, the present invention relates to the use of an isolated polynucleotide (e.g., able to inhibit osteoclast differentiation) for the preparation of a medicament for the treatment of a bone resorption disease.
[0172] The present invention in another aspect thereof, provides a pharmaceutical composition for promoting osteoclast differentiation in a mammal in need thereof. The pharmaceutical composition may comprise, for example;
[0173] a. an isolated polynucleotide (e.g., able to promote osteoclast differentiation) and;
[0174] b. a pharmaceutically acceptable carrier.
[0175] The present invention also further provides a method for promoting osteoclast differentiation in a mammal in need thereof (or in a mammalian cell), the method may comprise, for example, administering an isolated polynucleotide (e.g., able to promote osteoclast differentiation) or a suitable pharmaceutical composition as described above.
[0176] The present invention additionally relates to the use of an isolated polynucleotide (e.g., able to promote osteoclast differentiation) for the preparation of a medicament for the treatment of a disease associated with insufficient bone resorption (e.g., hyperostosis) or excessive bone growth.
The present invention also relates to the use of at least one polynucleotide which may be selected from the group consisting of;
[0177] a) a polynucleotide comprising any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
[0178] b) a polynucleotide comprising the open reading frame of any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86,
[0179] c) a polynucleotide which may comprise a transcribed or transcribable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO.:86, which may be, for example, free of untranslated or untranslatable portion(s);
[0180] d) a polynucleotide which may comprise a translated or translatable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO.:86 (e.g., coding portion),
[0181] e) a polynucleotide comprising a sequence substantially identical (e.g., from about 50 to 100%, or about 60 to 100% or about 70 to 100% or about 80 to 100% or about 85, 90, 95 to 100% identical over the entire sequence or portion of sequences) to a), b), c) or d);
[0182] f) a polynucleotide comprising a sequence substantially complementary (e.g., from about 50 to 100%, or about 60 to 100% or about 70 to 100% or about 80 to 100% or about 85, 90, 95 to 100% complementarity over the entire sequence or portion of sequences) to a), b), c) or d);
[0183] g) a fragment of any one of a) to f) and;
[0184] h) a library comprising any one of a) to g) in the diagnosis of a condition related to bone remodeling (a bone disease).
[0185] Also encompassed by the present invention are kits for the diagnosis of a condition related to bone remodeling. The kit may comprise a polynucleotide as described herein.
[0186] The present invention also provides in an additional aspect, an isolated polypeptide (polypeptide sequence) involved in osteoclast differentiation (in a mammal or a mammalian cell thereof). The polypeptide may comprise (or consist in) a sequence selected from the group consisting of;
[0187] a) any one of SEQ ID NO.: 48 to 80,
[0188] b) a polypeptide able to be encoded and/or encoded by any one of SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86 (their coding portion)
[0189] c) a biologically active fragment of any one of a) or b),
[0190] d) a biologically active analog of any one of a) or b).
[0191] In accordance with the present invention, the biologically active analog may comprise, for example, at least one amino acid substitution (conservative or non conservative) compared to the original sequence. In accordance with the present invention, the analog may comprise, for example, at least one amino acid substitution, deletion or insertion in its amino acid sequence.
[0192] The substitution may be conservative or non-conservative. The polypeptide analog may be a biologically active analog or an immunogenic analog which may comprise, for example, at least one amino acid substitution (conservative or non conservative), for example, 1 to 5, 1 to 10, 1 to 15, 1 to 20, 1 to 50 etc. (including any number there between) compared to the original sequence. An immunogenic analog may comprise, for example, at least one amino acid substitution compared to the original sequence and may still be bound by an antibody specific for the original sequence.
[0193] In accordance with the present invention, a polypeptide fragment may comprise, for example, at least 6 consecutive amino acids, at least 8 consecutive amino acids or more of an amino acid sequence described herein.
[0194] In yet a further aspect, the present invention provides a pharmaceutical composition which may comprise, for example a polypeptide as described herein and a pharmaceutically acceptable carrier.
[0195] Methods for modulating osteoclast differentiation in a mammal in need thereof (or in a mammalian cell) are also provided by the present invention, which methods may comprise administering an isolated polypeptide (e.g., able to promote osteoclast differentiation) or suitable pharmaceutical composition described herein.
[0196] In additional aspects, the present invention relates to the use of an isolated polypeptide (e.g., able to promote osteoclast differentiation) for the preparation of a medicament for the treatment of a disease associated with insufficient bone resorption.
[0197] Methods for ameliorating bone resorption in an individual in need thereof are also encompassed herewith, which method may comprise, for example, administering an isolated polypeptide (e.g., able to inhibit osteoclast differentiation) or suitable pharmaceutical compositions which may comprise such polypeptide.
[0198] In accordance with the present invention, the mammal may suffer, for example, from a condition selected from the group consisting of osteoporosis, osteopenia, osteomalacia, hyperparathyroidism, hyperthyroidism, hypogonadism, thyrotoxicosis, systemic mastocytosis, adult hypophosphatasia, hyperadrenocorticism, osteogenesis imperfecta, Paget's disease, Cushing's disease/syndrome, Tumer syndrome, Gaucher disease, Ehlers-Danlos syndrome, Marfan's syndrome, Menkes' syndrome, Fanconi's syndrome, multiple myeloma, hypercalcemia, hypocalcemia, arthritides, periodontal disease, rickets (including vitamin D dependent, type I and II, and x-linked hypophosphatemic rickets), fibrogenesis imperfecta ossium, osteosclerotic disorders such as pycnodysostosis and damage caused by macrophage-mediated inflammatory processes, etc.
[0199] In yet a further aspect, the present invention relates to the use of a polypeptide able to inhibit osteoclast differentiation in the preparation of a medicament for the treatment of a bone resorption disease in an individual in need thereof.
[0200] The present invention also relates to a compound and the use of a compound able to inhibit (e.g., in an osteoclast precursor cell) the activity or expression of a polypeptide which may be selected, for example, from the group consisting of SEQ ID NO.: 48 to 80 or a polypeptide encoded by SEQ ID NO.:85 or SEQ ID NO.:86, in the preparation of a medicament for the treatment of a bone disease in an individual in need thereof.
[0201] In yet an additional aspect, the present invention relates to a method of diagnosing a condition related to a bone resorption disorder or disease in an individual in need thereof. The method may comprise, for example, quantifying a polynucleotide described herein, such as, for example, polynucleotide selected from the group consisting of those comprising or consisting of (a) SEQ ID NO.:1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86, (b) a polynucleotide which may comprise the open reading frame of SEQ ID NO.: 1 to 33, SEQ ID NO.:85 or SEQ ID NO.:86, (c) a polynucleotide which may comprise a transcribed or transcribable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO.:86 (d) a polynucleotide which may comprise a translated or translatable portion of any one of SEQ. ID. NOs:1 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO.:86; (e) substantially identical sequences of any one of (a) to (d); (f) substantially complementary sequences of any one of (a) to (e), or a polypeptide sequence which may be selected, for example, from the group consisting of SEQ ID NO.: 48 to 80 or a polypeptide encoded by SEQ ID NO.:85 or SEQ ID NO.:86, and analogs thereof in a sample from the individual compared to a standard or normal value.
[0202] The present invention also relates to an assay and method for identifying a gene and/or protein involved in bone remodeling. The assay and method may comprise silencing an endogenous gene of an osteoclast cell and providing the cell with a candidate gene (or protein). A candidate gene (or protein) positively involved in bone remodeling may be identified by its ability to complement the silenced endogenous gene. For example, a candidate gene involved in osteoclast differentiation provided to a cell for which an endogenous gene has been silenced, may enable the cell to differentiate in the presence of an inducer such as, for example, RANKL.
[0203] The present invention further relates to a cell expressing an exogenous form of any one of the polypeptide (including variants, analogs etc.) or polynucleotide of the present invention (including substantially identical sequences, substantially complementary sequences, fragments, variants, orthologs, etc).
[0204] In accordance with the present invention, the cell may be for example, a bone cell. Also in accordance with the present invention, the cell may be an osteoclast (at any level of differentiation).
[0205] As used herein the term "exogenous form" is to be understood herein as a form which is not naturally expressed by the cell in question.
[0206] In a further aspect, the present invention relates to an antibody (e.g., isolated antibody), or antigen-binding fragment thereof, that may specifically bind to a protein or polypeptide described herein. The antibody may be, for example, a monoclonal antibody, a polyclonal antibody an antibody generated using recombinant DNA technologies. The antibody may originate for example, from a mouse, rat or any other mammal.
[0207] The antibody may also be a human antibody which may be obtained, for example, from a transgenic non-human mammal capable of expressing human Ig genes. The antibody may also be a humanised antibody which may comprise, for example, one or more complementarity determining regions of non-human origin. It may also comprise a surface residue of a human antibody and/or framework regions of a human antibody. The antibody may also be a chimeric antibody which may comprise, for example, variable domains of a non-human antibody and constant domains of a human antibody.
[0208] Suitable antibodies may also include, for example, an antigen-binding fragment, an Fab fragment; an F(ab').sub.2 fragment, and Fv fragment; or a single-chain antibody comprising an antigen-binding fragment (e.g., a single chain Fv).
[0209] The antibody of the present invention may be mutated and selected based on an increased affinity and/or specificity for one of a polypeptide described herein and/or based on a reduced immunogenicity in a desired host.
[0210] The antibody may further comprise a detectable label attached thereto.
[0211] The present invention further relates to a method of producing antibodies able to bind to one of a polypeptide, polypeptide fragments, or polypeptide analogs described herein, the method may comprise:
[0212] a) immunizing a mammal (e.g., mouse, a transgenic mammal capable of producing human Ig, etc.) with a suitable amount of a PSEQ described herein including, for example, a polypeptide fragment comprising at least 6 consecutive amino acids of a PSEQ;
[0213] b) collecting the serum from the mammal; and
[0214] c) isolating the polypeptide-specific antibodies from the serum of the mammal.
[0215] The method may further comprise the step of administering a second dose to the animal.
[0216] The present invention also relates to a method of producing a hybridoma which secretes an antibody that binds to a polypeptide described herein, the method may comprise:
[0217] a) immunizing a mammal (e.g., mouse, a transgenic mammal capable of producing human Ig, etc.) with a suitable amount of a PSEQ thereof;
[0218] b) obtaining lymphoid cells from the immunized animal obtained from (a);
[0219] c) fusing the lymphoid cells with an immortalizing cell to produce hybrid cells; and
[0220] d) selecting hybrid cells which produce antibody that specifically binds to a PSEQ thereof.
[0221] The present invention further relates to a method of producing an antibody that binds to one of the polypeptide described herein, the method may comprise:
[0222] a) synthesizing a library of antibodies (antigen binding fragment) on phage or ribosomes;
[0223] b) panning the library against a sample by bringing the phage or ribosomes into contact with a composition comprising a polypeptide or polypeptide fragment described herein;
[0224] c) isolating phage which binds to the polypeptide or polypeptide fragment, and;
[0225] d) obtaining an antibody from the phage or ribosomes.
[0226] The antibody of the present invention may thus be obtained, for example, from a library (e.g., bacteriophage library) which may be prepared, for example, by
[0227] a) extracting cells which are responsible for production of antibodies from a host mammal;
[0228] b) isolating RNA from the cells of (a);
[0229] c) reverse transcribing mRNA to produce cDNA;
[0230] d) amplifying the cDNA using a (antibody-specific) primer; and
[0231] e) inserting the cDNA of (d) into a phage display vector or ribosome display cassette such that antibodies are expressed on the phage or ribosomes.
[0232] The host animal may be immunized with polypeptide and/or a polypeptide fragment and/or analog described herein to induce an immune response prior to extracting the cells which are responsible for production of antibodies.
[0233] The present invention also relates to a kit for specifically assaying a polypeptide described herein, the kit may comprise, for example, an antibody or antibody fragment capable of binding specifically to the polypeptide described herein.
[0234] The present invention further contemplates antibodies that may bind to PSEQ. Suitable antibodies may bind to unique antigenic regions or epitopes in the polypeptides, or a portion thereof. Epitopes and antigenic regions useful for generating antibodies may be found within the proteins, polypeptides or peptides by procedures available to one of skill in the art. For example, short, unique peptide sequences may be identified in the proteins and polypeptides that have little or no homology to known amino acid sequences. Preferably the region of a protein selected to act as a peptide epitope or antigen is not entirely hydrophobic; hydrophilic regions are preferred because those regions likely constitute surface epitopes rather than internal regions of the proteins and polypeptides. These surface epitopes are more readily detected in samples tested for the presence of the proteins and polypeptides. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. The production of antibodies is well known to one of skill in the art.
[0235] Peptides may be made by any procedure known to one of skill in the art, for example, by using in vitro translation or chemical synthesis procedures. Short peptides which provide an antigenic epitope but which by themselves are too small to induce an immune response may be conjugated to a suitable carrier. Suitable carriers and methods of linkage are well known in the art. Suitable carriers are typically large macromolecules such as proteins, polysaccharides and polymeric amino acids. Examples include serum albumins, keyhole limpet hemocyanin, ovalbumin, polylysine and the like. One of skill in the art may use available procedures and coupling reagents to link the desired peptide epitope to such a carrier. For example, coupling reagents may be used to form disulfide linkages or thioether linkages from the carrier to the peptide of interest. If the peptide lacks a disulfide group, one may be provided by the addition of a cysteine residue. Alternatively, coupling may be accomplished by activation of carboxyl groups.
[0236] The minimum size of peptides useful for obtaining antigen specific antibodies may vary widely. The minimum size must be sufficient to provide an antigenic epitope that is specific to the protein or polypeptide. The maximum size is not critical unless it is desired to obtain antibodies to one particular epitope. For example, a large polypeptide may comprise multiple epitopes, one epitope being particularly useful and a second epitope being immunodominant. Typically, antigenic peptides selected from the present proteins and polypeptides will range from 5 to about 100 amino acids in length. More typically, however, such an antigenic peptide will be a maximum of about 50 amino acids in length, and preferably a maximum of about 30 amino acids. It is usually desirable to select a sequence of about 6, 8, 10, 12 or 15 amino acids, up to about 20 or 25 amino acids.
[0237] Amino acid sequences comprising useful epitopes may be identified in a number of ways. For example, preparing a series of short peptides that taken together span the entire protein sequence may be used to screen the entire protein sequence. One of skill in the art may routinely test a few large polypeptides for the presence of an epitope showing a desired reactivity and also test progressively smaller and overlapping fragments to identify a preferred epitope with the desired specificity and reactivity.
[0238] Antigenic polypeptides and peptides are useful for the production of monoclonal and polyclonal antibodies. Antibodies to a polypeptide encoded by the polynucleotides of NSEQ, polypeptide analogs or portions thereof, may be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies, such as those that inhibit dimer formation, are especially preferred for therapeutic use. Monoclonal antibodies may be prepared using any technique that provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma, the human B-cell hybridoma, and the EBV-hybridoma techniques. In addition, techniques developed for the production of chimeric antibodies may be used. Alternatively, techniques described for the production of single chain antibodies may be employed. Fabs that may contain specific binding sites for a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof, may also be generated. Various immunoassays may be used to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art.
[0239] To obtain polyclonal antibodies, a selected animal may be immunized with a protein or polypeptide. Serum from the animal may be collected and treated according to known procedures. Polyclonal antibodies to the protein or polypeptide of interest may then be purified by affinity chromatography. Techniques for producing polyclonal antisera are well known in the art.
[0240] Monoclonal antibodies (MAbs) may be made by one of several procedures available to one of skill in the art, for example, by fusing antibody producing cells with immortalized cells and thereby making a hybridoma. The general methodology for fusion of antibody producing B cells to an immortal cell line is well within the province of one skilled in the art. Another example is the generation of MAbs from mRNA extracted from bone marrow and spleen cells of immunized animals using combinatorial antibody library technology.
[0241] One drawback of MAbs derived from animals or from derived cell lines is that although they may be administered to a patient for diagnostic or therapeutic purposes, they are often recognized as foreign antigens by the immune system and are unsuitable for continued use. Antibodies that are not recognized as foreign antigens by the human immune system have greater potential for both diagnosis and treatment. Methods for generating human and humanized antibodies are now well known in the art.
[0242] Chimeric antibodies may be constructed in which regions of a non-human MAb are replaced by their human counterparts. A preferred chimeric antibody is one that has amino acid sequences that comprise one or more complementarity determining regions (CDRs) of a non-human Mab that binds to a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof, grafted to human framework (FW) regions. Methods for producing such antibodies are well known in the art. Amino acid residues corresponding to CDRs and FWs are known to one of average skill in the art.
[0243] A variety of methods have been developed to preserve or to enhance affinity for antigen of antibodies comprising grafted CDRs. One way is to include in the chimeric antibody the foreign framework residues that influence the conformation of the CDR regions. A second way is to graft the foreign CDRs onto human variable domains with the closest homology to the foreign variable region. Thus, grafting of one or more non-human CDRs onto a human antibody may also involve the substitution of amino acid residues which are adjacent to a particular CDR sequence or which are not contiguous with the CDR sequence but which are packed against the CDR in the overall antibody variable domain structure and which affect the conformation of the CDR. Humanized antibodies of the invention therefore include human antibodies which comprise one or more non-human CDRs as well as such antibodies in which additional substitutions or replacements have been made to preserve or enhance binding characteristics.
[0244] Chimeric antibodies of the invention also include antibodies that have been humanized by replacing surface-exposed residues to make the MAb appear human. Because the internal packing of amino acid residues in the vicinity of the antigen-binding site remains unchanged, affinity is preserved. Substitution of surface-exposed residues of a polypeptide encoded by the polynucleotides of NSEQ (or a portion thereof)-antibody according to the invention for the purpose of humanization does not mean substitution of CDR residues or adjacent residues that influence affinity for a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof.
[0245] Chimeric antibodies may also include antibodies where some or all non-human constant domains have been replaced with human counterparts. This approach has the advantage that the antigen-binding site remains unaffected. However, significant amounts of non-human sequences may be present where variable domains are derived entirely from non-human antibodies.
[0246] Antibodies of the invention include human antibodies (e.g., humanized) that are antibodies consisting essentially of human sequences. Human antibodies may be obtained from phage display libraries wherein combinations of human heavy and light chain variable domains are displayed on the surface of filamentous phage. Combinations of variable domains are typically displayed on filamentous phage in the form of Fab's or scFvs. The library may be screened for phage bearing combinations of variable domains having desired antigen-binding characteristics. Preferred variable domain combinations are characterized by high affinity for a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof. Preferred variable domain combinations may also be characterized by high specificity for a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof, and little cross-reactivity to other related antigens. By screening from very large repertoires of antibody fragments, (2-10.times.10.sup.10) a good diversity of high affinity Mabs may be isolated, with many expected to have sub-nanomolar affinities for a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof.
[0247] Alternatively, human antibodies may be obtained from transgenic animals into which un-rearranged human Ig gene segments have been introduced and in which the endogenous mouse Ig genes have been inactivated. Preferred transgenic animals contain very large contiguous Ig gene fragments that are over 1 Mb in size but human polypeptide-specific Mabs of moderate affinity may be raised from transgenic animals containing smaller gene loci. Transgenic animals capable of expressing only human Ig genes may also be used to raise polyclonal antiserum comprising antibodies solely of human origin.
[0248] Antibodies of the invention may include those for which binding characteristics have been improved by direct mutation or by methods of affinity maturation. Affinity and specificity may be modified or improved by mutating CDRs and screening for antigen binding sites having the desired characteristics. CDRs may be mutated in a variety of ways. One way is to randomize individual residues or combinations of residues so that in a population of otherwise identical antigen binding sites, all twenty amino acids may be found at particular positions. Alternatively, mutations may be induced over a range of CDR residues by error prone PCR methods. Phage display vectors containing heavy and light chain variable region gene may be propagated in mutator strains of E. coli. These methods of mutagenesis are illustrative of the many methods known to one of skill in the art.
[0249] Antibodies of the invention may include complete anti-polypeptide antibodies as well as antibody fragments and derivatives that comprise a binding site for a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof. Derivatives are macromolecules that comprise a binding site linked to a functional domain. Functional domains may include, but are not limited to signalling domains, toxins, enzymes and cytokines.
[0250] The antibodies obtained by the means described herein may be useful for detecting proteins, variant and derivative polypeptides in specific tissues or in body fluids. Moreover, detection of aberrantly expressed proteins or protein fragments is probative of a disease state. For example, expression of the present polypeptides encoded by the polynucleotides of NSEQ, or a portion thereof, may indicate that the protein is being expressed at an inappropriate rate or at an inappropriate developmental stage. Hence, the present antibodies may be useful for detecting diseases associated with protein expression from NSEQs disclosed herein.
[0251] A variety of protocols for measuring polypeptides, including ELISAs, RIAs, and FACS, are well known in the art and provide a basis for diagnosing altered or abnormal levels of expression. Standard values for polypeptide expression are established by combining samples taken from healthy subjects, preferably human, with antibody to the polypeptide under conditions for complex formation. The amount of complex formation may be quantified by various methods, such as photometric means. Quantities of polypeptide expressed in disease samples may be compared with standard values. Deviation between standard and subject values may establish the parameters for diagnosing or monitoring disease.
[0252] Design of immunoassays is subject to a great deal of variation and a variety of these are known in the art. Immunoassays may use a monoclonal or polyclonal antibody reagent that is directed against one epitope of the antigen being assayed. Alternatively, a combination of monoclonal or polyclonal antibodies may be used which are directed against more than one epitope. Protocols may be based, for example, upon competition where one may use competitive drug screening assays in which neutralizing antibodies capable of binding a polypeptide encoded by the polynucleotides of NSEQ, or a portion thereof, specifically compete with a test compound for binding the polypeptide. Alternatively one may use, direct antigen-antibody reactions or sandwich type assays and protocols may, for example, make use of solid supports or immunoprecipitation. Furthermore, antibodies may be labelled with a reporter molecule for easy detection. Assays that amplify the signal from a bound reagent are also known. Examples include immunoassays that utilize avidin and biotin, or which utilize enzyme-labelled antibody or antigen conjugates, such as ELISA assays.
[0253] Kits suitable for immunodiagnosis and containing the appropriate labelled reagents include antibodies directed against the polypeptide protein epitopes or antigenic regions, packaged appropriately with the remaining reagents and materials required for the conduct of the assay, as well as a suitable set of assay instructions.
[0254] The present invention therefore provides a kit for specifically assaying a polypeptide described herein, the kit may comprise, for example, an antibody or antibody fragment capable of binding specifically to the polypeptide described herein.
[0255] In accordance with the present invention, the kit may be a diagnostic kit, which may comprise:
[0256] a) one or more antibodies described herein; and
[0257] b) a detection reagent which may comprise a reporter group.
[0258] In accordance with the present invention, the antibodies may be immobilized on a solid support. The detection reagent may comprise, for example, an anti-immunoglobulin, protein G, protein A or lectin etc. The reporter group may be selected, without limitation, from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.
[0259] In an additional aspect, the present invention provides a method for identifying an inhibitory compound (inhibitor, antagonist) which may be able to impair the function (activity) or expression of a polypeptide described herein, such as, for example, those which may be selected from the group consisting of SEQ ID NO.: 48 to 80 or a polypeptide encoded by SEQ ID NO.:85 or SEQ ID NO.:86, and analogs thereof. The method may comprise contacting the polypeptide or a cell expressing the polypeptide with a candidate compound and measuring the function (activity) or expression of the polypeptide. A reduction in the function or activity of the polypeptide (compared to the absence of the candidate compound) may positively identify a suitable inhibitory compound.
[0260] In accordance with the present invention, the impaired function or activity may be associated with a reduced ability of the polypeptide to promote osteoclast differentiation, such as osteoclast differentiation induced by an inducer described herein or known in the art.
[0261] In accordance with the present invention the cell may not naturally (endogenously) express (polypeptide may substantially be unexpressed in a cell) the polypeptide or analog or alternatively, the expression of a naturally expressed polypeptide analog may be repressed.
[0262] For example, suitable method of screening for an inhibitor of SEQ ID NO.:1, may comprise repressing the expression of the mouse ortholog SEQ ID NO.:35 in a mouse osteoclast cell and evaluating differentiation of the osteoclast cell comprising SEQ ID NO.:1 in the presence or absence of a candidate inhibitor and for example, an inducer of osteoclast differentiation (e.g., RANKL).
[0263] The present invention also provides a method for identifying an inhibitory compound (inhibitor, antagonist) able to impair the function (activity) or expression of a polypeptide such as, for example SEQ ID NO.: 1 or SEQ ID NO.:2. The method may comprise, for example, contacting the (isolated) polypeptide or a cell expressing the polypeptide with a candidate compound and measuring the function (activity) or expression of the polypeptide. A reduction in the function or activity of the polypeptide (compared to the absence of the candidate compound) may thus positively identify a suitable inhibitory compound.
[0264] In accordance with the present invention, the impaired function or activity may be associated, for example, with a reduced ability of the polypeptide to inhibit or promote osteoclast differentiation.
[0265] The cell used to carry the screening test may not naturally (endogenously) express the polypeptide or analogs, or alternatively the expression of a naturally expressed polypeptide analog may be repressed.
[0266] The present invention also relates to a method of identifying a positive or a negative regulator of osteoclast differentiation. The method may comprise, for example, performing a knockdown effect as described herein. The method may more particularly comprise a) providing an osteoclast cell with a compound (e.g., siRNA) able to specifically inhibit a target sequence (e.g., a polynucleotide or polypeptide as described herein), b) inducing differentiation (e.g., with an inducer such as, for example, RANKL) and c) determining the level of differentiation of the osteoclast cell (e.g., measuring the number of differentiated cells, their rate of differentiation, specific marker of differentiation etc).
[0267] Upon inhibition of a positive regulator, the levels of osteoclast differentiation will appear lowered. Upon inhibition of a negative regulator, the level of osteoclast differentiation will appear increased.
[0268] Another method of identifying a positive or a negative regulator of osteoclast differentiation is to a) provide a cell with one of a target sequence described herein (polypeptide or polynucleotide able to express a polypeptide) b) to induce differentiation (e.g., with an inducer such as, for example, RANKL) and c) to determine the level of differentiation of the osteoclast cell (e.g., measuring the number of differentiated cells, their rate of differentiation, specific marker of differentiation etc).
[0269] A cell provided with a positive regulator of osteoclast differentiation may have an increased level of differentiation. A cell provided with a negative regulator of osteoclast differentiation may have a decreased level of differentiation.
[0270] The present invention also provides a method of identifying a compound capable of interfering with osteoclast differentiation, the method may comprise contacting a cell including therein a non-endogenous polynucleotide sequence comprising any one of SEQ ID NO.:1 to 33, 85 or 86 (a coding portion) and quantifying (e.g. the number of) differentiated osteoclasts. A reduction in osteoclast differentiation in the presence of the compound in comparison to the absence of the compound may be indicative of an antagonist of osteoclast differentiation, while an increase in osteoclast differentiation in the presence of the compound in comparison to the absence of the compound may be indicative of an agonist of osteoclast differentiation.
[0271] In accordance with the present invention, the cell may also comprise an endogenous form of a polynucleotide.
[0272] As used herein the term "endogenous" means a substance that naturally originates from within an organism, tissue or cell. The term "endogenous polynucleotide" refers to a chromosomal form of a polynucleotide or RNA version (hnRNA, mRNA) produced by the chromosal form of the polynucleotide. The term "endogenous polypeptide" refers to the form of the protein encoded by an "endogenous polynucleotide".
[0273] As used herein the term "non-endogenous" or "exogenous" is used in opposition to "endogenous" in that the substance is provided from an external source although it may be introduced within the cell. The term "non-endogenous polynucleotide" refers to a synthetic polynucleotide introduced within the cell and include for example and without limitation, a vector comprising a sequence of interest, a synthetic mRNA, an oligonucleotide comprising a NSEQ etc. The term "non-endogenous polypeptide" refers to the form of the protein encoded by an "non-endogenous polynucleotide".
[0274] The present invention also relate to a method of identifying a compound capable of interfering with osteoclast differentiation, the method may comprise contacting a cell including therein a non-endogenous polypeptide sequence comprising any one of SEQ ID NO.: 48 to 80 and quantifying (e.g. the number of) differentiated osteoclasts. A reduction in osteoclast differentiation in the presence of the compound in comparison to the absence of the compound may be indicative of an antagonist of osteoclast differentiation while an increase in osteoclast differentiation in the presence of the compound in comparison to the absence of the compound may be indicative of an agonist of osteoclast differentiation.
[0275] As used herein the term "sequence identity" relates to (consecutive) nucleotides of a nucleotide sequence which with reference to an original nucleotide sequence. The identity may be compared over a region or over the total sequence of a nucleic acid sequence.
[0276] Thus, "identity" may be compared, for example, over a region of 3, 4, 5, 10, 19, 20 nucleotides or more (and any number there between). It is to be understood herein that gaps of non-identical nucleotides may be found between identical nucleic acids. For example, a polynucleotide may have 100% identity with another polynucleotide over a portion thereof. However, when the entire sequence of both polynucleotides is compared, the two polynucleotides may have 50% of their overall (total) sequence identical to one another.
[0277] Polynucleotides of the present invention or portion thereof having from about 50 to about 100%, or about 60 to about 100% or about 70 to about 100% or about 80 to about 100% or about 85%, about 90%, about 95% to about 100% sequence identity with an original polynucleotide are encompassed herewith. It is known by those of skill in the art, that a polynucleotide having from about 50% to 100% identity may function (e.g., anneal to a substantially complementary sequence) in a manner similar to an original polynucleotide and therefore may be used in replacement of an original polynucleotide. For example a polynucleotide (a nucleic acid sequence) may comprise or have from about 50% to 100% identity with an original polynucleotide over a defined region and may still work as efficiently or sufficiently to achieve the present invention.
[0278] Percent identity may be determined, for example, with an algorithm GAP, BESTFIT, or FASTA in the Wisconsin Genetics Software Package Release 7.0, using default gap weights.
[0279] As used herein the terms "sequence complementarity" refers to (consecutive) nucleotides of a nucleotide sequence which are complementary to a reference (original) nucleotide sequence. The complementarity may be compared over a region or over the total sequence of a nucleic acid sequence.
[0280] Polynucleotides of the present invention or portion thereof having from about 50 to about 100%, or about 60 to about 100% or about 70 to about 100% or about 80 to about 100% or about 85%, about 90%, about 95% to about 100% sequence complementarity with an original polynucleotide are thus encompassed herewith. It is known by those of skill in the art, that an polynucleotide having from about 50% to 100% complementarity with an original sequence may anneal to that sequence in a manner sufficient to carry out the present invention (e.g., inhibit expression of the original polynucleotide).
[0281] An "analogue" is to be understood herein as a molecule having a biological activity and chemical structure similar to that of a polypeptide described herein. An "analogue" may have sequence similarity with that of an original sequence or a portion of an original sequence and may also have a modification of its structure as discussed herein. For example, an "analogue" may have at least 90% sequence similarity with an original sequence or a portion of an original sequence. An "analogue" may also have, for example; at least 70% or even 50% sequence similarity (or less, i.e., at least 40%) with an original sequence or a portion of an original sequence.
[0282] Also, an "analogue" with reference to a polypeptide may have, for example, at least 50% sequence similarity to an original sequence with a combination of one or more modification in a backbone or side-chain of an amino acid, or an addition of a group or another molecule, etc.
[0283] "Polynucleotide" generally refers to any polyribonucleotide or polydeoxyribo-nucleotide, which may be unmodified RNA or DNA, or modified RNA or DNA. "Polynucleotides" include, without limitation single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is a mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, "polynucleotide" refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term polynucleotide also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications may be made to DNA and RNA; thus "polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide" includes but is not limited to linear and end-closed molecules. "Polynucleotide" also embraces relatively short polynucleotides, often referred to as oligonucleotides.
[0284] "Polypeptides" refers to any peptide or protein comprising two or more amino acids joined to each other by peptide bonds or modified peptide bonds (i.e., peptide isosteres). "Polypeptide" refers to both short chains, commonly referred as peptides, oligopeptides or oligomers, and to longer chains generally referred to as proteins. As described above, polypeptides may contain amino acids other than the 20 gene-encoded amino acids.
[0285] As used herein the term "polypeptide analog" relates to mutants, variants, chimeras, fusions, deletions, additions and any other type of modifications made relative to a given polypeptide.
[0286] As used herein the term "biologically active" refers to a variant or fragment which retains some or all of the biological activity of the natural polypeptide, i.e., to be able to promote or inhibit osteoclast differentiation. Polypeptides or fragments of the present invention may also include "immunologically active" polypeptides or fragments. "Immunologically active polypeptides or fragments may be useful for immunization purposes (e.g. in the generation of antibodies).
[0287] Thus, biologically active polypeptides in the form of the original polypeptides, fragments (modified or not), analogues (modified or not), derivatives (modified or not), homologues, (modified or not) of the polypeptides described herein are encompassed by the present invention.
[0288] Therefore, any polypeptide having a modification compared to an original polypeptide which does not destroy significantly a desired biological activity is encompassed herein. It is well known in the art, that a number of modifications may be made to the polypeptides of the present invention without deleteriously affecting their biological activity. These modifications may, on the other hand, keep or increase the biological activity of the original polypeptide or may optimize one or more of the particularity (e.g. stability, bioavailability, etc.) of the polypeptides of the present invention which, in some instance might be desirable. Polypeptides of the present invention may comprise for example, those containing amino acid sequences modified either by natural processes, such as posttranslational processing, or by chemical modification techniques which are known in the art. Modifications may occur anywhere in a polypeptide including the polypeptide backbone, the amino acid side-chains and the amino- or carboxy-terminus. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. It is to be understood herein that more than one modification to the polypeptides described herein are encompassed by the present invention to the extent that the biological activity is similar to the original (parent) polypeptide.
[0289] As discussed above, polypeptide modification may comprise, for example, amino acid insertion (i.e., addition), deletion and substitution (i.e., replacement), either conservative or non-conservative (e.g., D-amino acids, desamino acids) in the polypeptide sequence where such changes do not substantially alter the overall biological activity of the polypeptide.
[0290] Example of substitutions may be those, which are conservative (i.e., wherein a residue is replaced by another of the same general type or group) or when wanted, non-conservative (i.e., wherein a residue is replaced by an amino acid of another type). In addition, a non-naturally occurring amino acid may substitute for a naturally occurring amino acid (i.e., non-naturally occurring conservative amino acid substitution or a non-naturally occurring non-conservative amino acid substitution).
[0291] As is understood, naturally occurring amino acids may be sub-classified as acidic, basic, neutral and polar, or neutral and non-polar. Furthermore, three of the encoded amino acids are aromatic. It may be of use that encoded polypeptides differing from the determined polypeptide of the present invention contain substituted codons for amino acids, which are from the same type or group as that of the amino acid to be replaced. Thus, in some cases, the basic amino acids Lys, Arg and His may be interchangeable; the acidic amino acids Asp and Glu may be interchangeable; the neutral polar amino acids Ser, Thr, Cys, Gln, and Asn may be interchangeable; the non-polar aliphatic amino acids Gly, Ala, Val, Ile, and Leu are interchangeable but because of size Gly and Ala are more closely related and Val, Ile and Leu are more closely related to each other, and the aromatic amino acids Phe, Trp and Tyr may be interchangeable.
[0292] It should be further noted that if the polypeptides are made synthetically, substitutions by amino acids, which are not naturally encoded by DNA (non-naturally occurring or unnatural amino acid) may also be made.
[0293] A non-naturally occurring amino acid is to be understood herein as an amino acid which is not naturally produced or found in a mammal. A non-naturally occurring amino acid comprises a D-amino acid, an amino acid having an acetylaminomethyl group attached to a sulfur atom of a cysteine, a pegylated amino acid, etc. The inclusion of a non-naturally occurring amino acid in a defined polypeptide sequence will therefore generate a derivative of the original polypeptide. Non-naturally occurring amino acids (residues) include also the omega amino acids of the formula NH.sub.2(CH.sub.2).sub.nCOOH wherein n is 2-6, neutral nonpolar amino acids, such as sarcosine, t-butyl alanine, t-butyl glycine, N-methyl isoleucine, norleucine, etc. Phenylglycine may substitute for Trp, Tyr or Phe; citrulline and methionine sulfoxide are neutral nonpolar, cysteic acid is acidic, and ornithine is basic. Proline may be substituted with hydroxyproline and retain the conformation conferring properties.
[0294] It is known in the art that analogues may be generated by substitutional mutagenesis and retain the biological activity of the polypeptides of the present invention. These analogues have at least one amino acid residue in the protein molecule removed and a different residue inserted in its place. For example, one site of interest for substitutional mutagenesis may include but are not restricted to sites identified as the active site(s), or immunological site(s). Other sites of interest may be those, for example, in which particular residues obtained from various species are identical. These positions may be important for biological activity. Examples of substitutions identified as "conservative substitutions" are shown in Table A. If such substitutions result in a change not desired, then other type of substitutions, denominated "exemplary substitutions" in Table A, or as further described herein in reference to amino acid classes, are introduced and the products screened.
[0295] In some cases it may be of interest to modify the biological activity of a polypeptide by amino acid substitution, insertion, or deletion. For example, modification of a polypeptide may result in an increase in the polypeptide's biological activity, may modulate its toxicity, may result in changes in bioavailability or in stability, or may modulate its immunological activity or immunological identity. Substantial modifications in function or immunological identity are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation. (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side chain properties:
[0296] (1) hydrophobic: norleucine, methionine (Met), Alanine (Ala), Valine (Val), Leucine (Leu), Isoleucine (Ile)
[0297] (2) neutral hydrophilic: Cysteine (Cys), Serine (Ser), Threonine (Thr)
[0298] (3) acidic: Aspartic acid (Asp), Glutamic acid (Glu)
[0299] (4) basic: Asparagine (Asn), Glutamine (Gin), Histidine (His), Lysine (Lys), Arginine (Arg)
[0300] (5) residues that influence chain orientation: Glycine (Gly), Proline (Pro); and aromatic: Tryptophan (Trp), Tyrosine (Tyr), Phenylalanine (Phe)
[0301] Non-conservative substitutions will entail exchanging a member of one of these classes for another.
TABLE-US-00001 TABLE A Examplary amino acid substitution Original Exemplary Conservative residue substitution substitution Ala (A) Val, Leu, Ile Val Arg (R) Lys, Gln, Asn Lys Asn (N) Gln, His, Lys, Arg Gln Asp (D) Glu Glu Cys (C) Ser Ser Gln (Q) Asn Asn Glu (E) Asp Asp Gly (G) Pro Pro His (H) Asn, Gln, Lys, Arg Arg Ile (I) Leu, Val, Met, Ala, Phe, Leu norleucine Leu (L) Norleucine, Ile, Val, Met, Ile Ala, Phe Lys (K) Arg, Gln, Asn Arg Met (M) Leu, Phe, Ile Leu Phe (F) Leu, Val, Ile, Ala Leu Pro (P) Gly Gly Ser (S) Thr Thr Thr (T) Ser Ser Trp (W) Tyr Tyr Tyr (Y) Trp, Phe, Thr, Ser Phe Val (V) Ile, Leu, Met, Phe, Ala, Leu norleucine
[0302] It is to be understood herein, that if a "range" or "group" of substances (e.g. amino acids), substituents" or the like is mentioned or if other types of a particular characteristic (e.g. temperature, pressure, chemical structure, time, etc.) is mentioned, the present invention relates to and explicitly incorporates herein each and every specific member and combination of sub-ranges or sub-groups therein whatsoever. Thus, any specified range or group is to be understood as a shorthand way of referring to each and every member of a range or group individually as well as each and every possible sub-ranges or sub-groups encompassed therein; and similarly with respect to any sub-ranges or sub-groups therein. Thus, for example, with respect to a percentage (%) of identity of from about 80 to 100%, it is to be understood as specifically incorporating herein each and every individual %, as well as sub-range, such as for example 80%, 81%, 84.78%, 93%, 99% etc.; and similarly with respect to other parameters such as, concentrations, elements, etc.
[0303] It is in particular to be understood herein that the methods of the present invention each include each and every individual steps described thereby as well as those defined as positively including particular steps or excluding particular steps or a combination thereof; for example an exclusionary definition for a method of the present invention, may read as follows: "provided that said polynucleotide does not comprise or consist in SEQ ID NO.:34 or the open reading frame of SEQ ID NO.:34" or "provided that said polypeptide does not comprise or consist in SEQ ID NO.:82" or "provided that said polynucleotide fragment or said polypeptide fragment is less than X unit (e.g., nucleotides or amino acids) long or more than X unit (e.g., nucleotides or amino acids) long".
[0304] Other objects, features, advantages, and aspects of the present invention will become apparent to those skilled in the art from the following description. It should be understood, however, that the following description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the other parts of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
[0305] In the appended drawings:
[0306] For each of FIGS. 1 to 34 and 38-39 macroarrays were prepared using RAMP amplified RNA from human precursor cells (A-F 1), and differentiated intermediate (A-F 2-3) and mature osteoclasts for four human donors (A-F 4), and 30 different normal human tissues (adrenal (A5), liver (B5), lung (C5), ovary (D5), skeletal muscle (E5), heart (F5), cervix (G5), thyroid (H5), breast (A6), placenta (B6), adrenal cortex (C6), kidney (D6), vena cava (E6), fallopian tube (F6), pancreas (G6), testicle (H6), jejunum (A7), aorta (B7), esophagus (C7), prostate (D7), stomach (E7), spleen (F7), ileum (G7), trachea (A8), brain (B8), colon (C8), thymus (D8), small intestine (E8), bladder (F8) and duodenum (G8)). The STAR dsDNA clone representing the respective SEQ ID NOs. was labeled with .sup.32P and hybridized to the macroarray. The probe labeling reaction was also spiked with a dsDNA sequence for Arabidopsis, which hybridizes to the same sequence spotted on the macroarray (M) in order to serve as a control for the labeling reaction. Quantitation of the hybridization signal at each spot was performed using a STORM 820 phosphorimager and the ImageQuant TL software (Amersham Biosciences, Piscataway, N.J.). A log.sub.2 value representing the average of the signals for the precursors (A-F 1) was used as the baseline and was subtracted from the log.sub.2 value obtained for each of the remaining samples in order to determine their relative abundancies compared to the precursors and plotted as a bar graph (right panel).
[0307] FIG. 1 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 1. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0308] FIG. 2 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 2. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0309] FIG. 3 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 3. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0310] FIG. 4 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 4. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0311] FIG. 5 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 5. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0312] FIG. 6 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 6. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0313] FIG. 7 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 7. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0314] FIG. 8 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 8. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0315] FIG. 9 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 9. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0316] FIG. 10 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 10. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0317] FIG. 11 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 11. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0318] FIG. 12 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 12. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8;
[0319] FIG. 13 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 13. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0320] FIG. 14 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 14. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0321] FIG. 15 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 15. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0322] FIG. 16 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 16. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0323] FIG. 17 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 17. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8;
[0324] FIG. 18 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 18. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0325] FIG. 19 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 19. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0326] FIG. 20 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 20. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0327] FIG. 21 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 21. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0328] FIG. 22 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 22. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0329] FIG. 23 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 23. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0330] FIG. 24 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 24. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0331] FIG. 25 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 25. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0332] FIG. 26 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 26. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0333] FIG. 27 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 27. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0334] FIG. 28 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 28. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0335] FIG. 29 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 29. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0336] FIG. 30 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 30. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0337] FIG. 31 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 31. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0338] FIG. 32 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 32. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0339] FIG. 33 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 33. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0340] FIG. 34 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 34. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A-F 1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8);
[0341] FIG. 35 is a picture showing the knockdown effects on osteoclastogenesis by attenuating the endogenous expression of SEQ. ID. NO. 1 (AB0326) and SEQ. ID. NO. 2 (AB0369) using shRNA. A significant decrease in the number of multinucleated osteoclasts was observed from precursor cells infected with the AB0326 shRNA (FIG. 35A; bottom panel) and AB0369 shRNA (FIG. 1B; bottom panel) compared to those with the lacZ shRNA (FIGS. 35A and B; top panels). These results clearly indicated that expression of the gene encoding SEQ. ID. NO. 1 (AB0326) and SEQ. ID. NO. 2 (AB0369) are required for osteoclast differentiation;
[0342] FIG. 36 is a picture showing the knockdown effects on osteoclastogenesis of the mouse orthologue for AB0326 (SEQ. ID. NO. 35) in the RAW 264.7 model using shRNA-0326.2 (SEQ. ID. NO. 45). The RAW-0326.2 cell line produced significantly less osteoclasts (FIG. 36; bottom panel) compared to the cell line containing the scrambled shRNA (FIG. 36; top panel). This result, coupled with that obtained in the human osteoclast precursor cells using the lentiviral shRNA delivery system demonstrate that in both human and mouse, AB0326 gene product is clearly required for osteoclastogenesis;
[0343] FIG. 37 is a picture showing the results of a functional complementation assay for SEQ. ID. NO. 1 (AB0326) in RAW-0326.2 cells to screen for inhibitors of osteoclastogenesis. The RAW-0326.2 cells transfected with the empty pd2 vector are unable to form osteoclasts in the presence of RANK ligand (center panel) indicating that the mouse AB0326 shRNA is still capable of silencing the AB0326 gene expression in these cells. Conversely, the cells transfected with the cDNA for the human AB0326 (pd2-hAB0326) are rescued and thus, differentiate more efficiently into osteoclasts in response to RANK ligand (right panel). Wild-type RAW 264.7 cells containing the empty vector (pd2) did not adversly affect the formation of osteoclasts in the presence of RANK ligand (left panel) ruling out an effect due to pd2. Thus, this complementation assay can be used to screen for inhibitors of the human AB0326 polypeptide;
[0344] FIG. 38 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential Expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 85. Macroarrays were prepared using RAMP amplified RNA from human precursor cells (A-F 1), and differentiated intermediate and mature osteoclasts for four human donors (A-F 2-4), and 30 different normal human tissues (adrenal, liver, lung, ovary, skeletal muscle, heart, cervix, thyroid, breast, placenta, adrenal cortex, kidney, vena cava, fallopian tube, pancreas, testicle, jejunum, aorta, esophagus, prostate, stomach, spleen, ileum, trachea, brain, colon, thymus, small intestine, bladder and duodenum (A-H 5-6 and A-G 7-8)). The STAR clone representing SEQ. ID. NO. 85 was labeled with .sup.32P and hybridized to the macroarray. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A1-F1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8), and;
[0345] FIG. 39 is a picture of the macroarray hybridization results and quantitation of the signal intensities showing the differential Expression data for STAR selected osteoclast-specific human SEQ. ID. NO. 86. Macroarrays were prepared using RAMP amplified RNA from human precursor cells (A-F 1), and differentiated intermediate and mature osteoclasts for four human donors (A-F 2-4), and 30 different normal human tissues (adrenal, liver, lung, ovary, skeletal muscle, heart, cervix, thyroid, breast, placenta, adrenal cortex, kidney, vena cava, fallopian tube, pancreas, testicle, jejunum, aorta, esophagus, prostate, stomach, spleen, ileum, trachea, brain, colon, thymus, small intestine, bladder and duodenum (A-H 5-6 and A-G 7-8)). The STAR clone representing SEQ. ID. NO. 86 was labeled with .sup.32P and hybridized to the macroarray. The hybridization results obtained confirms its upregulation in all of the human osteoclast samples with generally higher expression in the more mature osteoclasts (A-F 2-4) compared to the precursors (A1-F1) and little or no expression in all or most normal tissues (A-H 5-6 and A-G 7-8).
DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
[0346] The applicant employed a carefully planned strategy to identify and isolate genetic sequences involved in osteoclastogenesis and bone remodeling. The process involved the following steps: 1) preparation of highly representative cDNA libraries using mRNA isolated from precursors and differentiated intermediate and mature osteoclasts of human origin; 2) isolation of sequences upregulated during osteoclastogenesis; 3) identification and characterization of upregulated sequences; 4) selection of upregulated sequences for tissue specificity; and 5) determination of knock-down effects on osteoclastogenesis. The results discussed in this disclosure demonstrate the advantage of targeting osteoclast genes that are specific to this differentiated cell type and provide a more efficient screening method when studying the genetic basis of diseases and disorders. Genes that are known to have a role in other areas of biology have been shown to play a critical role in osteoclastogenesis and osteoclast function. Genes that are known but have not had a role assigned to them until the present disclosure have also been isolated and shown to have a critical role in osteoclastogenesis and osteoclast function. Finally, novel genes have been identified and play a role, however, applicant reserves their disclosure until further study has been completed.
[0347] The present invention is illustrated in further details below in a non-limiting fashion.
A--Material and Methods
[0348] Commercially available reagents referred to in the present disclosure were used according to supplier's instructions unless otherwise indicated. Throughout the present disclosure certain starting materials were prepared as follows:
B--Preparation of Osteoclast Differentiated Cells
[0349] The RAW 264.7 (RAW) osteoclast precursor cell line and human precursor cells (peripheral blood mononuclear cells or CD34+ progenitors) are well known in the art as murine and human models of osteoclastogenesis. These murine and human osteoclasts are therefore excellent sources of materials for isolating and characterizing genes specialized for osteoclast function.
[0350] Human primary osteoclasts were differentiated from G-CSF-mobilized peripheral blood mononuclear cells (Cambrex, East Rutherford, N.J.) as described by the supplier in the presence of 35 ng/ml M-CSF and 100 ng/ml RANK ligand. Multinucleated TRAP-staining osteoclasts were visible by 11-14 days. Osteoclasts were also derived from human osteoclasts precursor cells (CD34+ progenitors) (Cambrex, East Rutherford, N.J.) and cultured as described by the supplier. In the latter case, osteoclasts were obtained after 7 days.
[0351] RAW cells were purchased from American Type Culture Collection and maintained in high glucose DMEM containing 10% fetal bovine serum and antibiotics. The cells were sub-cultured bi-weekly to a maximum of 10-12 passages. For osteoclast differentiation experiments, RAW cells were seeded in 96-well plates at a density of 4.times.10.sup.3 cells/well and allowed to plate for 24 h. Differentiation was induced in high glucose DMEM, 10% charcoal-treated foetal bovine serum (Hyclone, Logan, Utah), 0.05% BSA, antibiotics, 10 ng/ml macrophage colony stimulating factor (M-CSF), and 100 ng/ml receptor activator of NF-kB (RANK) ligand. The plates were re-fed on day 3 and osteoclasts were clearly visible by day 4. Typically, the cells were stained for tartrate-resistant acid phosphatase (TRAP) on day 4 or 5 unless otherwise indicated. For TRAP staining, the cells were washed with PBS and fixed in 10% formaldehyde for 1 h. After two PBS washes, the cells were rendered lightly permeable in 0.2% Triton X-100 in PBS for 5 min before washing in PBS. Staining was conducted at 37.degree. C. for 20-25 min in 0.01% Naphtol AS-MX phosphate, 0.06% Fast Red Violet, 50 mM sodium tartrate, 100 mM sodium acetate, pH 5.2. Cells were visualized microscopically.
C--Method of Isolating Differentially Expressed mRNA
[0352] Key to the discovery of differentially expressed sequences unique to osteoclasts is the use of the applicant's patented STAR technology (Subtractive Transcription-based Amplification of mRNA; U.S. Pat. No. 5,712,127 Malek et al., issued on Jan. 27, 1998). In this procedure, mRNA isolated from intermediate and mature osteoclasts is used to prepare "tester RNA", which is hybridized to complementary single-stranded "driver DNA" prepared from osteoclast precursor mRNA and only the un-hybridized "tester RNA" is recovered, and used to create cloned cDNA libraries, termed "subtracted libraries". Thus, the "subtracted libraries" are enriched for differentially expressed sequences inclusive of rare and novel mRNAs often missed by micro-array hybridization analysis. These rare and novel mRNA are thought to be representative of important gene targets for the development of better diagnostic and therapeutic strategies.
[0353] The clones contained in the enriched "subtracted libraries" are identified by DNA sequence analysis and their potential function assessed by acquiring information available in public databases (NCBI and GeneCard). The non-redundant clones are then used to prepare DNA micro-arrays, which are used to quantify their relative differential expression patterns by hybridization to fluorescent cDNA probes. Two classes of cDNA probes may be used, those which are generated from either RNA transcripts prepared from the same subtracted libraries (subtracted probes) or from mRNA isolated from different osteoclast samples (standard probes). The use of subtracted probes provides increased sensitivity for detecting the low abundance mRNA sequences that are preserved and enriched by STAR. Furthermore, the specificity of the differentially expressed sequences to osteoclast is measured by hybridizing radio-labeled probes prepared from each selected sequence to macroarrays containing RNA from different osteoclast samples and different normal human tissues. Additionally, Northern blot analysis is performed so as to confirm the presence of one or more specific mRNA species in the osteoclast samples. Following this, the full-length cDNAs representative of the mRNA species and/or spliced variants are cloned in E. coli DH10B.
[0354] A major challenge in gene expression profiling is the limited quantities of RNA available for molecular analysis. The amount of RNA isolated from many osteoclast samples or human specimens (needle aspiration, laser capture micro-dissection (LCM) samples and transfected cultured cells) is often insufficient for preparing: 1) conventional tester and driver materials for STAR; 2) standard cDNA probes for DNA micro-array analysis; 3) RNA macroarrays for testing the specificity of expression; 4) Northern blots and; 5) full-length cDNA clones for further biological validation and characterization etc. Thus, the applicant has developed a proprietary technology called RAMP (RNA Amplification Procedure) (U.S. patent application Ser. No. 11/000,958 published under No. US 2005/0153333A1 on Jul. 14, 2005 and entitled "Selective Terminal Tagging of Nucleic Acids"), which linearly amplifies the mRNA contained in total RNA samples yielding microgram quantities of amplified RNA sufficient for the various analytical applications. The RAMP RNA produced is largely full-length mRNA-like sequences as a result of the proprietary method for adding a terminal sequence tag to the 3'-ends of single-stranded cDNA molecules, for use in linear transcription amplification. Greater than 99.5% of the sequences amplified in RAMP reactions show <2-fold variability and thus, RAMP provides unbiased RNA samples in quantities sufficient to enable the discovery of the unique mRNA sequences involved in osteoclastogenesis.
D--Preparation of Human Osteoclasts Subtracted Library
[0355] Two human primary precursor cells from two different donors (Cambrex, East Rutherford, N.J.), and the corresponding intermediate (day 3 and day 7) and mature (days 11-14) osteoclasts were prepared as described above. Isolation of cellular RNA followed by mRNA purification from each was performed using standard methods (Qiagen, Mississauga, ON). Following the teachings of Malek et al. (U.S. Pat. No. 5,712,127), 2 .mu.g of poly A+ mRNA from each sample were used to prepare highly representative (>2.times.10.sup.6 CFU) cDNA libraries in specialized plasmid vectors necessary for preparing tester and driver materials. In each case, first-strand cDNA was synthesized using an oligo dT.sub.11 primer with 3' locking nucleotides (e.g., A, G or C) and containing a Not I recognition site. Next, second-strand cDNA synthesis was performed according to the manufacturer's procedure for double-stranded cDNA synthesis (Invitrogen, Burlington, ON) and the resulting double-stranded cDNA ligated to linkers containing an Asc I recognition site (New England Biolabs, Pickering, ON). The double-stranded cDNAs were then digested with Asc I and Not I restriction enzymes (New England Biolabs, Pickering, ON), purified from the excess linkers using the cDNA fractionation column from Invitrogen (Burlington, ON) as specified by the manufacturer and each ligated into specialized plasmid vectors--p14 (SEQ. ID. NO:36) and p17+ (SEQ. ID. NO:37) used for preparing tester and driver materials respectively. Thereafter, the ligated cDNAs were transformed into E. coli DH10B resulting in the desired cDNA libraries (RAW 264.7-precursor-p14, RAW 264.7-precursor-p17+, RAW 264.7-osteoclasts-p14 and RAW 264.7-osteoclasts-p17+). The plasmid DNA pool for each cDNA library was purified and a 2-.mu.g aliquot of each linearized with Not I restriction enzyme. In vitro transcription of the Not I digested p14 and p17+ plasmid libraries was then performed with T7 RNA polymerase and sp6 RNA polymerase respectively (Ambion, Austin, Tex.).
[0356] Next, in order to prepare 3'-represented tester and driver libraries, a 10-.mu.g aliquot of each of the in vitro synthesized RNA was converted to double-stranded cDNA by performing first-strand cDNA synthesis as described above followed by primer-directed (primer OGS 77 for p14 (SEQ. ID. NO:40) and primer OGS 302 for p17+ (SEQ. ID. NO:41)) second-strand DNA synthesis using Advantage-2 Taq polymerase (BD Biosciences Clontech, Mississauga, ON). The sequences corresponding to OGS 77 and OGS 302 were introduced into the in vitro synthesized RNA by way of the specialized vectors used for preparing the cDNA libraries. Thereafter, 6.times.1-.mu.g aliquots of each double-stranded cDNA was digested individually with one of the following 4-base recognition restriction enzymes Rsa I, Sau3A1, Mse I, Msp I, MinPI I and Bsh 1236I (MBI Fermentas, Burlington, ON), yielding up to six possible 3'-fragments for each RNA species contained in the cDNA library. Following digestion, the restriction enzymes were inactivated with phenol and the set of six reactions pooled. The restriction enzymes sites were then blunted with T4 DNA polymerase and ligated to linkers containing an Asc I recognition site. Each linker-adapted pooled DNA sample was digested with Asc I and Not I restriction enzymes, desalted and ligated to specialized plasmid vectors, p14 and p17 (p17 plasmid vector is similar to the p17+ plasmid vector except for the sequence corresponding to SEQ. ID. NO:41), and transformed into E. coli DH10B. The plasmid DNA pool for each p14 and p17 3'-represented library was purified (Qiagen, Mississauga, ON) and a 2-.mu.g aliquot of each digested with Not I restriction enzyme, and transcribed in vitro with either T7 RNA polymerase or sp6 RNA polymerase (Ambion, Austin, Tex.). The resulting p14 3'-represented RNA was used directly as "tester RNA" whereas, the p17 3'-represented RNA was used to synthesize first-strand cDNA as described above, which then served as "driver DNA". Each "driver DNA" reaction was treated with RNase A and RNase H to remove the RNA, phenol extracted and desalted before use.
[0357] The following 3'-represented libraries were prepared:
[0358] Tester 1 (donor 1--day 3)--human intermediate osteoclast-3' in p14
[0359] Tester 2 (donor 1--day 7--human intermediate osteoclast)-3' in p14
[0360] Tester 3 (donor 1--day 11--human mature osteoclast)-3' in p14
[0361] Tester 4 (donor 2--day 3--human intermediate osteoclast)-3' in p14
[0362] Tester 5 (donor 2--day 7--human intermediate osteoclast)-3' in p14
[0363] Tester 6 (donor 2--day 13--human mature osteoclast)-3' in p14
[0364] Driver 1 (donor 1--day 3)--human precursor-3' in p17
[0365] Driver 2 (donor 2--day 3)--human precursor-3' in p17
[0366] The tester RNA samples were subtracted following the teachings of U.S. Pat. No. 5,712,127 with the corresponding driver DNA in a ratio of 1:100 for either 1- or 2-rounds following the teachings of Malek et al. (U.S. Pat. No. 5,712,127). Additionally, control reactions containing tester RNA and no driver DNA, and tester RNA plus driver DNA but no RNase H were prepared. The tester RNA remaining in each reaction after subtraction was converted to double-stranded DNA, and a volume of 5% removed and amplified in a standard PCR reaction for 30-cycles for analytical purposes. The remaining 95% of only the driver plus RNase H subtracted samples were amplified for 4-cycles in PCR, digested with Asc I and Not I restriction enzymes, and one half ligated into the pCATRMAN (SEQ. ID. NO:38) plasmid vector and the other half, into the p20 (SEQ. ID. NO:39) plasmid vector. The ligated materials were transformed into E. coli DH10B and individual clones contained in the pCATRMAN libraries were picked for further analysis (DNA sequencing and hybridization) whereas, clones contained in each p20 library were pooled for use as subtracted probes. Each 4-cycles amplified cloned subtracted library contained between 25,000 and 40,000 colonies.
[0367] The following cloned subtracted libraries were prepared:
SL90--tester 1 (day 3 osteoclast) minus driver 1 (precursor) (1-round) in pCATRMAN; SL91--tester 2 (day 7 osteoclast) minus driver 1 (precursor) (1-round) in pCATRMAN; SL92--tester 3 (day 11 osteoclast) minus driver 1 (precursor) (1-round) in pCATRMAN; SL108--tester 1 (day 3 osteoclast) minus driver 1 (precursor) (2-rounds) in pCATRMAN; SL109--tester 2 (day 7 osteoclast) minus driver 1 (precursor) (2-rounds) in pCATRMAN; SL110--tester 3 (day 11 osteoclast) minus driver 1 (precursor) (2-rounds) in pCATRMAN; SL93--tester 4 (day 3 osteoclast) minus driver 2 (precursor) (1-round) in pCATRMAN; SL94--tester 5 (day 7 osteoclast) minus driver 2 (precursor) (1-round) in pCATRMAN; SL95--tester 6 (day 13 osteoclast) minus driver 2 (precursor) (1-round) in pCATRMAN; SL87--tester 4 (day 3 osteoclast) minus driver 2 (precursor) (2-rounds) in pCATRMAN; SL88--tester 5 (day 7 osteoclast) minus driver 2 (precursor) (2-rounds) in pCATRMAN; SL89--tester 6 (day 11 osteoclast) minus driver 2 (precursor) (2-rounds) in pCATRMAN
[0368] A 5-.mu.L aliquot of the 30-cycles PCR amplified subtracted materials described above were visualized on a 1.5% agarose gel containing ethidium bromide and then transferred to Hybond N+ (Amersham Biosciences, Piscataway, N.J.) nylon membrane for Southern blot analysis. Using radiolabeled probes specific to the CTSK (cathepsin K; NM_000396.2) gene, which is known to be upregulated in osteoclasts, and GAPDH (glyceraldehyde-3-phosphate dehydrogenase; M32599.1), which is a non-differentially expressed house-keeping gene, it was evident that there was subtraction of GAPDH but not CTSK. Based on these results, it was anticipated that the subtracted libraries would be enriched for differentially expressed upregulated sequences.
E--Sequence Identification and Annotation of Clones Contained in the Subtracted Libraries:
[0369] A total of 6,912 individual colonies contained in the pCATRMAN subtracted libraries (SL87-95 and SL108-110) described above were randomly picked using a Qbot (Genetix Inc., Boston, Mass.) into 60 .mu.L of autoclaved water. Then, 42 .mu.L of each was used in a 100-.mu.L standard PCR reaction containing oligonucleotide primers, OGS 1 and OGS 142 and amplified for 40-cycles (94.degree. C. for 10 minutes, 40.times. (94.degree. C. for 40 seconds, 55.degree. C. for 30 seconds and 72.degree. C. for 2 minutes) followed by 72.degree. C. for 7 minutes) in 96-wells microtitre plates using HotStart.TM. Taq polymerase (Qiagen, Mississauga, ON). The completed PCR reactions were desalted using the 96-well filter plates (Corning) and the amplicons recovered in 100 .mu.L 10 mM Tris (pH 8.0). A 5-.mu.L aliquot of each PCR reaction was visualized on a 1.5% agarose gel containing ethidium bromide and only those reactions containing a single amplified product were selected for DNA sequence analysis using standard DNA sequencing performed on an ABI 3100 instrument (Applied Biosystems, Foster City, Calif.). Each DNA sequence obtained was given a Sequence Identification Number and entered into a database for subsequent tracking and annotation.
[0370] Each sequence was selected for BLAST analysis of public databases (e.g. NCBI). Absent from these sequences were the standard housekeeping genes (GAPDH, actin, most ribosomal proteins etc.), which was a good indication that the subtracted library was depleted of at least the relatively abundant non-differentially expressed sequences.
[0371] Once sequencing and annotation of the selected clones were completed, the next step involved identifying those sequences that were actually upregulated in osteoclasts compared to precursors.
F--Hybridization Analysis for Identifying Upregulated Sequences
[0372] The PCR amplicons representing the annotated sequences from the pCATRMAN libraries described above were used to prepare DNA microarrays. The purified PCR amplicons contained in 70 .mu.L of the PCR reactions prepared in the previous section was lyophilized and each reconstituted in 20 .mu.L of spotting solution comprising 3.times.SSC and 0.1% sarkosyl. DNA micro-arrays of each amplicon in triplicate were then prepared using CMT-GAP2 slides (Corning, Corning, N.Y.) and the GMS 417 spotter (Affymetrix, Santa Clara, Calif.).
[0373] The DNA micro-arrays were then hybridized with either standard or subtracted cy3 and cy5 labelled cDNA probes as recommended by the supplier (Amersham Biosciences, Piscataway, N.J.). The standard cDNA probes were synthesized using RAMP amplified RNA prepared from the different human osteoclast samples and the corresponding precursors. It is well known to the skilled artisan that standard cDNA probes only provide limited sensitivity of detection and consequently, low abundance sequences contained in the cDNA probes are usually missed. Thus, the hybridization analysis was also performed using cy3 and cy5 labelled subtracted cDNA probes prepared from subtracted libraries representing the different tester and driver materials. These subtracted libraries may be enriched for low abundance sequences as a result of following the teachings of Malek et al., and therefore, may provide increased detection sensitivity.
[0374] All hybridization reactions were performed using the dye-swap procedure as recommended by the supplier (Amersham Biosciences, Piscataway, N.J.) and approximately 500 putatively differentially expressed upregulated (>2-fold) sequences were selected for further analysis.
G--Determining Osteoclast Specificity of the Differentially Expressed Sequences Identified:
[0375] The differentially expressed sequences identified in Section F for the different human osteoclast subtracted libraries were tested for osteoclast specificity by hybridization to nylon membrane-based macroarrays. The macroarrays were prepared using RAMP amplified RNA from human precursors and osteoclasts (intermediate and mature) of six independent experiments from 4 different donors (3 males and 1 female), and 30 normal human tissues (adrenal, liver, lung, ovary, skeletal muscle, heart, cervix, thyroid, breast, placenta, adrenal cortex, kidney, vena cava, fallopian tube, pancreas, testicle, jejunum, aorta, esophagus, prostate, stomach, spleen, ileum, trachea, brain, colon, thymus, small intestine, bladder and duodenum) purchased commercially (Ambion, Austin, Tex.). Because of the limited quantities of mRNA available for many of these samples, it was necessary to first amplify the mRNA using the RAMP methodology. Each amplified RNA sample was reconstituted to a final concentration of 250 ng/.mu.L in 3.times.SSC and 0.1% sarkosyl in a 96-well microtitre plate and 1 .mu.L spotted onto Hybond N+ nylon membranes using the specialized MULTI-PRINT.TM.apparatus (VP Scientific, San Diego, Calif.), air dried and UV-cross linked. A total of 400 different sequences selected from SL87-95 and SL108-110 were individually radiolabeled with .alpha.-.sup.32P-dCTP using the random priming procedure recommended by the supplier (Amersham, Piscataway, N.J.) and used as probes on the macroarrays. Hybridization and washing steps were performed following standard procedures well known to those skilled in the art.
[0376] Of the 500 sequences tested, approximately 85% were found to be upregulated in all of the osteoclast RNA samples that were used to prepare the macroarrays. However, many of these sequences were also readily detected in a majority of the different normal human tissues. Based on these results, those sequences that appeared to be associated with experimental variability and those that were detected in many of the other human tissues at significantly elevated levels were eliminated. Consequently, only 35 sequences, which appeared to be upregulated and highly osteoclast-specific, were selected for biological validation studies. Included in this set of 35 genes were 4 (SEQ. ID. NOs. 30-33) where there was a significant upregulation in mature osteoclasts compared to most normal tissues but because the expression of these genes were overall lower in the precursor cells, they appeared to be elevated in the normal tissues after quantitation FIG. 30-33; bar graph). However, their expression in the normal tissues was still relatively lower than that of the mature osteoclasts. Thus, these genes may still be important regulators in osteoclastogenesis and bone resorption and were therefore selected for biological validation. This subset of 35 sequences does not included genes also identified such as, CTSK, TRAP, MMP9, CST3 and CKB amongst others since these were previously reported in the literature to be upregulated in osteoclasts. The macroarray data for CST3 (SEQ. ID. NO. 34) is included to exemplify the hybridization pattern and specificity of a gene that is already known to be a key regulator of the osteoclast resorption process. One gene (ANKH; SEQ. ID. NO. 17) was included in the subset of 35 genes although it was previously reported in the database (NCBI--Gene) to play a role in bone mineralization. However, the observed bone phenotype resulting from mutations in the ANKH gene was not specifically linked to its upregulation in osteoclasts. Thus our data suggests the important role for ANKH may be associated with osteoclast activity during bone remodeling.
[0377] FIGS. 1-33, 38 and 39 show the macroarray patterns and quantitation of the hybridization signals of the osteoclasts and normal human tissues relative to precursor cells for the 35 sequences selected for biological validation. Amongst the 35 selected sequences were 24 genes with functional annotation 9 genes with no functional annotation and 2 novel sequences (genomic hits). The identification of gene products involved in regulating osteoclast differentiation and function has thus led to the discovery of novel targets for the development of new and specific therapies of disease states characterized by abnormal bone remodeling. Representative sequences summarized in Table 1 are presented below and corresponding sequences are illustrated in Table 5.
SEQ. ID. NO:1:
[0378] SEQ. ID. NO:1 (Table 5) corresponds to a previously identified gene that encodes a hypothetical protein, LOC284266 with an unknown function (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 1), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:2:
[0379] SEQ. ID. NO:2 (Table 5) corresponds to a previously identified gene that encodes a predicted open reading frame, C6orf82 with an unknown function (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 2), which have not been previously reported. At least 5 transcript variants of this gene coding for 3 protein isoforms has been identified so far (NCBI). Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:3:
[0380] SEQ. ID. NO:3 (Table 5) corresponds to a previously identified gene that encodes a hypothetical protein, LOC133308 with an unknown function (see Table 1) but may be involved in the process of pH regulation. We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 3), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:4:
[0381] SEQ. ID. NO:4 (Table 5) corresponds to a previously identified gene that encodes a hypothetical protein, LOC116211 with an unknown function (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 4), which have not been previously reported. Thus, it is implified that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:5
[0382] SEQ. ID. NO:5 (Table 5) corresponds to a previously identified gene that encodes a predicted protein, LOC151194 (similar to hepatocellular carcinoma-associated antigen HCA557b), with unknown function (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 5), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:6:
[0383] SEQ. ID. NO:6 (Table 5) corresponds to a previously identified gene that encodes a protein, chemokine (C-X-C motif) ligand 5 (CXCL5), which is an inflammatory chemokine that belongs to the CXC chemokine family
(see Table 1). We have demonstrated that this gene is significantly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 6), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:7:
[0384] SEQ. ID. NO:7 (Table 5) corresponds to a previously identified gene that encodes a protein, ATPase, H+ transporting, lysosomal accessory protein 2 (ATP6AP2), which is associated with adenosine triphosphatases (ATPases). Proton-translocating ATPases have fundamental roles in energy conservation, secondary active transport, acidification of intracellular compartments, and cellular pH homeostasis (see Table 1). We have demonstrated that this gene is markedly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 7), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:8
[0385] SEQ. ID. NO:8 (Table 5) corresponds to a previously identified gene that encodes a protein, ubiquitin-specific protease 12-like 1 (USP12), which is associated with ubiquitin-dependent protein catabolism (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 8), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:9
[0386] SEQ. ID. NO:9 (Table 5) corresponds to a previously identified gene that encodes a protein, Ubiquitin-conjugating enzyme E2E 1 (UBC4/5 homolog, yeast) (UBE2E1), which is associated with ubiquitin-dependent protein catabolism (see Table 1). So far, there are 2 transcript variants and protein isoforms reported for this gene. We have demonstrated that this gene is significantly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 9), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:10
[0387] SEQ. ID. NO:10 (Table 5) corresponds to a previously identified gene that encodes a protein, Emopamil binding protein-like (EBPL), which may have cholestenol delta-isomerase activity (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 10), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:11
[0388] SEQ. ID. NO:11 (Table 5) corresponds to a previously identified gene that encodes a protein, development and differentiation enhancing factor 1 (DDEF1), which may be involved in cell motility and adhesion (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 11), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:12
[0389] SEQ. ID. NO:12 (Table 5) corresponds to a previously identified gene that encodes a protein, member 7 of the SLAM family (SLAM7), which may have receptor activity and involved in cell adhesion but still not fully characterized (see Table 1). We have demonstrated that this gene is markedly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 12), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:13
[0390] SEQ. ID. NO:13 (Table 5) corresponds to a previously identified gene that encodes a protein, Ubiquitin-conjugating enzyme E2E 3 (UBC4/5 homolog, yeast) (UBE2E3), which is associated with ubiquitin-dependent protein catabolism (see Table 1). There are 2 transcript variants documented so far, which code for the same protein isofrom. We have demonstrated that this gene is markedly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 1), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:14
[0391] SEQ. ID. NO:14 (Table 5) corresponds to a previously identified gene that encodes a protein, Galanin (GAL), which is associated with neuropeptide hormone activity (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues except for colon (FIG. 14), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:15
[0392] SEQ. ID. NO:15 (Table 5) corresponds to a previously identified gene that encodes a protein, Cytokine-like nuclear factor n-pac (N-PAC), which may have oxireductase activity (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 15), which have not been previously reported. However, some overexpression of this gene but still way below that of mature osteoclasts were seen in heart, fallopian tube, spleen and cervix. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:16
[0393] SEQ. ID. NO:16 (Table 5) corresponds to a previously identified gene that encodes a protein, Integrin alpha X (antigen CD11C (p150), alpha polypeptide) (ITGAX), which is involved in cell adhesion and ion binding (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 16), which have not been previously reported. Minimal expression but much lower than mature osteoclasts is observed for this gene in adrenal, lung and spleen amongst the normal tissues. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:17
[0394] SEQ. ID. NO:17 (Table 5) corresponds to a previously identified gene that encodes a protein, Ankylosis, progressive homolog (mouse) (ANKH), which is involved in regulating pyrophosphate levels, suggested as a possible mechanism regulating tissue calcification (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 17), which have not been previously reported. However, this gene has been reported to be involved in bone mineralization but without evidence of its upregulation in osteoclasts (Malkin et al., 2005). Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:18
[0395] SEQ. ID. NO:18 (Table 5) corresponds to a previously identified gene that encodes a protein, ATPase, H+ transporting, lysosomal 70 kD, V1 subunit A, which is involved in hydrogen-transporting ATPase activity, rotational mechanism (see Table 1). We have demonstrated that this gene is markedly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 18), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:19
[0396] SEQ. ID. NO:19 (Table 5) corresponds to a previously identified gene that encodes a predicted open reading frame coding for protein, FLJ10874 (chromosome 1 open reading frame 75), which has no known function (see Table 1). We have demonstrated that this gene is significantly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 19), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:20
[0397] SEQ. ID. NO:20 (Table 5) corresponds to a previously identified gene that encodes a protein, Integrin beta 1 binding protein 1 (ITGB1BP1), which has an important role during integrin-dependent cell adhesion (see Table 1). Two transcript variants and protein isoforms for this gene has been isolated. We have demonstrated that this gene is significantly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 20), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:21
[0398] SEQ. ID. NO:21 (Table 5) corresponds to a previously identified gene that encodes a protein, Thioredoxin-like 5 (TXNL5), which has no known function (see Table 1). We have demonstrated that this gene is significantly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues with the exception of esophagus (FIG. 21), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:22
[0399] SEQ. ID. NO:22 (Table 5) corresponds to a previously identified gene that encodes a protein, C-type lectin domain family 4, member E (CLECSF9), which has no known specific function (see Table 1). Members of this family share a common protein fold and have diverse functions, such as cell adhesion, cell-cell signaling, glycoprotein turnover, and roles in inflammation and immune response. We have demonstrated that this gene is significantly upregulated in mature osteoclast compared to precursor cells and other normal human tissues with the exception of lung and spleen (FIG. 22), which have not been previously reported. At this point, we cannot rule out cross hybridization to family members in lung and spleen. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:23
[0400] SEQ. ID. NO:23 (Table 5) corresponds to a previously identified gene that encodes a protein, RAB33A, member RAS oncogene family (RAB33A), which has GTPase activity (see Table 1). We have demonstrated that this gene is significantly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues with the exception of brain (FIG. 23), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:24
[0401] SEQ. ID. NO:24 (Table 5) corresponds to a previously identified gene that encodes a protein, Down syndrome critical region gene 1 (DSCR1), which interacts with calcineurin A and inhibits calcineurin-dependent signaling pathways, possibly affecting central nervous system development (see Table 1). There are 3 transcript variants and protein isofroms isolated so far. We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 24), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:25
[0402] SEQ. ID. NO:25 (Table 5) corresponds to a previously identified gene that encodes a protein, SNARE protein Ykt6 (YKT6), which is one of the SNARE recognition molecules implicated in vesicular transport between secretory compartments (see Table 1). We have demonstrated that this gene is significantly upregulated in mature osteoclast compared to precursor cells and other normal human tissues (FIG. 25), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:26
[0403] SEQ. ID. NO:26 (Table 5) corresponds to a previously identified gene that encodes a protein, Actinin, alpha 1 (ACTN1), which is cytoskeletal, and involved in actin binding and adhesion (see Table 1). We have demonstrated that this gene is significantly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 26), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:27
[0404] SEQ. ID. NO:27 (Table 5) corresponds to a previously identified gene that encodes a protein, ClpX caseinolytic peptidase X homolog (E. coli) (CLPX), which may be involved in protein turnover (see Table 1). We have demonstrated that this gene is significantly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 27), which have not been previously reported. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:28
[0405] SEQ. ID. NO:28 (Table 5) corresponds to a previously identified gene that encodes a protein, Carbonic anhydrase II (CA2), which has carbonate dehydratase activity (see Table 1). Defects in this enzyme are associated with osteopetrosis and renal tubular acidosis (McMahon et al., 2001) and have been shown to be upregulated in mature osteoclasts under induced acidic pH conditions (Biskobing and Fan, 2000). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells independent of induced acidic pH conditions and other normal human tissues (FIG. 28), which have not been previously reported. However, elevated expression of this gene was also observed in colon and stomach but still significantly below the levels of mature osteoclasts. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:29
[0406] SEQ. ID. NO:29 (Table 5) corresponds to a previously identified gene that encodes a protein, Sorting nexin 10 (SNX10), whose function has not been determined (see Table 1). We have demonstrated that this gene is markedly upregulated in mature osteoclast compared to precursor cells and most normal human tissues (FIG. 29), which have not been previously reported. However, elevated expression of this gene was also observed in liver, brain, lung, adrenal cortex, kidney and spleen but still significantly below the levels of mature osteoclasts. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:30
[0407] SEQ. ID. NO:30 (Table 5) corresponds to a previously identified gene that encodes a protein, Tudor domain containing 3 (TDRD3), whose function has not been determined but may be involved in nucleic acid binding (see Table 1). We have demonstrated that this gene is markedly upregulated in mature osteoclast compared to precursor cells and most normal human tissues (FIG. 30), which have not been previously reported. However, above baseline expression of this gene was observed in the normal human tissues because of a lower than normal precursor level but it was still significantly below the levels of mature osteoclasts. Thus, this gene was still selected. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:31
[0408] SEQ. ID. NO:31 (Table 5) corresponds to a previously identified gene that encodes a protein, Selenoprotein P, plasma, 1 (SEPP1), which has been implicated as an oxidant defense in the extracellular space and in the transport of selenium (see Table 1). This gene encodes a selenoprotein that contains multiple selenocysteines. Selenocysteine is encoded by the usual stop codon UGA. The unususal amino acids are indicated as `U` in the amino acid sequence in SEQ. ID. NO:78 (Table 5) or by Xaa in the sequence listing. We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and most normal human tissues (FIG. 31), which have not been previously reported. However, above baseline expression of this gene was observed in the normal human tissues because of a lower than normal precursor level but it was still significantly below the levels of mature osteoclasts. Thus, this gene was still selected. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:32
[0409] SEQ. ID. NO:32 (Table 5) corresponds to a previously identified gene that encodes a hypothetical protein, KIAA0040, which has no known function (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and most normal human tissues (FIG. 32), which have not been previously reported. However, above baseline expression of this gene was observed in the normal human tissues because of a lower than normal precursor level but it was still significantly below the levels of mature osteoclasts. Thus, this gene was still selected. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:33
[0410] SEQ. ID. NO:33 (Table 5) corresponds to a previously identified gene that encodes a protein, Dipeptidylpeptidase 4 (CD26, adenosine deaminase complexing protein 2) (DPP4), which is an intrinsic membrane glycoprotein and a serine exopeptidase that cleaves X-proline dipeptides from the N-terminus of polypeptides (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and most normal human tissues (FIG. 33), which have not been previously reported. However, above baseline expression of this gene was observed in the normal human tissues except for placenta, lung, ovary, kidney, prostate and small intestine because of a lower than normal precursor level but it was still significantly below the levels of mature osteoclasts. Thus, this gene was still selected. Thus, it is believed that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:34:
[0411] SEQ. ID. NO:34 (Table 5) corresponds to a previously identified gene that encodes a protein, cystatin C precursor, with members of the cystatin family known to be inhibitor of cysteine proteases (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 34), which have not been previously reported. However, it is well documented that cystatin C plays a critical role in inhibiting bone resorption due to osteoclasts (Brage et al., 2005). Thus, the hybridization profile for this gene is an excellent example of highly upregulated and specific sequences related to osteoclasts.
SEQ. ID. NO:85
[0412] SEQ. ID. NO:85 (Table 5) encodes an unknown protein found on chromosome 1 (clone RP11-344F13), which contains a novel gene (see Table 1). We have demonstrated that this gene is markedly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 38), which have not been previously reported. Thus, it is implified that this gene may be required for osteoclastogenesis and/or bone remodeling.
SEQ. ID. NO:86
[0413] SEQ. ID. NO:86 (Table 5) encodes no known protein. Unknown gene with matching Est sequence in the data base corresponding to BQ182670 isolated from an osteoarthritic cartilage sample (see Table 1). We have demonstrated that this gene is significantly upregulated in intermediate and mature osteoclast compared to precursor cells and other normal human tissues (FIG. 39), which have not been previously reported. Thus, it is implified that this gene may be required for osteoclastogenesis and/or bone remodeling.
H--Cloning of Full-Length cDNAs of Selected Sequences from Osteoclast mRNA:
[0414] It was necessary to obtain full-length cDNA sequences in order to perform functional studies of the expressed proteins. Spliced variants are increasingly being implicated in tissue specific functions and as such, it is important to work with cDNA clones from the system under study. Applicant also recognizes that spliced variants may not always be involved. Thus, the applicant's approach has been to isolate the relevant full-length cDNA sequences directly from osteoclasts in order to identify variants and their potential role with respect to specificity.
[0415] Coding cDNA clones were isolated using both a 5'-RACE strategy (Invitrogen, Burlington, ON) and a standard two-primer gene specific approach in PCR. The 5'-RACE strategy used cDNA prepared from cap-selected osteoclast RNA and/or RAMP amplified osteoclast RNA. For amplification using gene specific primers, either cDNA prepared from RAMP RNA or total RNA was used. All cDNAs were synthesized following standard reverse transcription procedures (Invitrogen, Burlington, ON). The cDNA sequences obtained were cloned in E. coli DH10B and the nucleotide sequences for multiple clones determined. Thereafter, the cDNA sequences for each set were aligned and the open reading frame(s) (ORF) identified using standard software (e.g. ORF Finder-NCBI). Table 2 shows the concensus sequence of the cDNA clones for the coding region for SEQ. ID. NO.1 (SEQ. ID. NO. 83) and SEQ. ID. NO.2 (SEQ. ID. NO. 84) obtained from a human osteoclast sample, which were identical to that of the published sequences corresponding to Accession# NM_213602 and NM_001014433 (NCBI), respectively.
I--RNA Interference Studies
[0416] RNA interference is a recently discovered gene regulation mechanism that involves the sequence-specific decrease in a gene's expression by targeting the mRNA for degradation and although originally described in plants, it has been discovered across many animal kingdoms from protozoans and invertebrates to higher eukaryotes (reviewed in Agrawal et al., 2003). In physiological settings, the mechanism of RNA interference is triggered by the presence of double-stranded RNA molecules that are cleaved by an RNAse III-like protein active in cells, called Dicer, which releases the 21-23 bp siRNAs. The siRNA, in a homology-driven manner, complexes into a RNA-protein amalgamation termed RISC (RNA-induced silencing complex) in the presence of mRNA to cause degradation resulting in attenuation of that mRNA's expression (Agrawal et al., 2003).
[0417] Current approaches to studying the function of genes, such as gene knockout mice and dominant negatives, are often inefficient, and generally expensive, and time-consuming. RNA interference is proving to be a method of choice for the analysis of a large number of genes in a quick and relatively inexpensive manner. Although transfection of synthetic siRNAs is an efficient method, the effects are often transient at best (Hannon G. J., 2002). Delivery of plasmids expressing short hairpin RNAs by stable transfection has been successful in allowing for the analysis of RNA interference in longer-term studies (Brummelkamp et al., 2002; Elbashir et al., 2001). In addition, more recent advances have permitted the expression of siRNA molecules, in the form of short hairpin RNAs, in primary human cells using viral delivery methods such as lentivirus (Lee et al., 2004; Rubinson et al., 2003).
J--Determination of Knockdown Effects on Osteoclastogenesis
[0418] In order to develop a screening method for the human candidate genes, RNA interference was adapted to deliver shRNAs into human osteoclast precursor cells so that the expression of the candidate genes could be attenuated. This approach would then allow osteoclast differentiation to be carried out in cells containing decreased expression of these genes to determine their requirement, if any, in this process.
[0419] To this end, a commercial lentiviral shRNA delivery system (Invitrogen, Burlington, ON) was utilized to introduce specific shRNAs into human osteoclast precursor cells. The techniques used were as described by the manufacturer unless otherwise stated. In this example, the results obtained for two of the candidate genes, SEQ. ID. NO. 1 (AB0326) and SEQ. ID. NO. 2 (AB0369) tested so far, are presented. The proteins encoded by both of these two genes have no known function. The shRNA sequences used to specifically target SEQ. ID. NO. 1 and SEQ. ID. NO. 2 were 5'-CAGGCCCAGGAGTCCAATT-3' (SEQ. ID. NO. 42) and 5'-TCCCGTCTTTGGGTCAAAA-3' (SEQ. ID. NO. 43) respectively. Briefly, a template for the expression of the shRNA was cloned into the lentiviral expression vector and co-transfected in 293FT cells with expression vectors for the viral structural proteins. After two days, supernatants containing the lentivirus were collected and stored at -80.degree. C. Human osteoclast precursors purchased from Cambrex (East Rutherford, N.J.) were seeded in 24-well plates and cultured in complete medium containing macrophage-colony stimulating factor and allowed to adhere for three days. After washing with PBS, the cells were infected with 20 MOIs (multiplicity of infection) of either lentiviral particles containing a shRNA specific for the bacterial lacZ gene as a control (lacZ shRNA) or SEQ. ID. NO. 1 (AB0326 shRNA) or SEQ. ID. NO. 2 (AB0369 shRNA). After 24 h, the infected cells were treated with same medium containing 100 ng/ml RANK ligand for 5-8 days to allow for differentiation of osteoclast from precursor cells. Mature osteoclasts were fixed with formaldehyde and stained for TRAP expression as follows: the cells were washed with PBS and fixed in 10% formaldehyde for 1 h. After two PBS washes, the cells were lightly permeabilized in 0.2% Triton X-100 in PBS for 5 min before washing in PBS. Staining was conducted at 37.degree. C. for 20-25 min in 0.01% Naphtol AS-MX phosphate, 0.06% Fast Red Violet, 50 mM sodium tartrate, 100 mM sodium acetate, pH 5.2. The stained cells were visualized by light microscopy and photographed (magnification: 40.times.). A significant decrease in the number of multinucleated osteoclasts was observed from precursor cells infected with the AB0326 shRNA (FIG. 35A; bottom panel) and AB0369 shRNA (FIG. 35B; bottom panel) compared to those with the lacZ shRNA (FIGS. 35A and B; top panels). Therefore, in both cases, the respective lentiviral shRNA (SEQ. ID. NOs. 42 and 43, respectively) (Table 4) perturbed osteoclastogenesis. These results clearly indicated that expression of the gene encoding SEQ. ID. NO. 1 (AB0326) and SEQ. ID. NO. 2 (AB0369) are required for osteoclast differentiation.
[0420] Similar experimentations to those described above are carried out for other sequences (SEQ ID NO.3 to SEQ ID NO.:33, SEQ ID NO.:85 or SEQ ID NO.:86).
K--Biological Validation of the Mouse Orthologue for AB0326 (SEQ. ID. NO. 35) in Osteoclastogenesis Using the RAW 264.7 Model
[0421] As a means of developing a drug screening assay for the discovery of therapeutic molecules capable of attenuating human osteoclasts differentiation and activity using the targets identified, it was necessary to turn to another osteoclast differentiation model. The RAW 264.7 (RAW) osteoclast precursor cell line is well known in the art as a murine model of osteoclastogenesis. However, due to the difficulty in transiently transfecting RAW cells, stable transfection was used as an approach where shRNA are expressed in the RAW cells constitutively. This permitted long term studies such as osteoclast differentiation to be carried out in the presence of specific shRNAs specific to the mouse orthologues of the human targets identified.
[0422] RAW cells were purchased from American Type Culture Collection (Manassass, Va.) and maintained in high glucose DMEM containing 10% fetal bovine serum and antibiotics. The cells were sub-cultured bi-weekly to a maximum of 10-12 passages. For osteoclast differentiation experiments, RAW cells were seeded in 96-well plates at a density of 4.times.10.sup.3 cells/well and allowed to plate for 24 h. Differentiation was induced in high glucose DMEM, 10% charcoal-treated foetal bovine serum (obtained from Hyclone, Logan, Utah), 0.05% BSA, antibiotics, 10 ng/ml macrophage colony stimulating factor (M-CSF), and 100 ng/ml RANK ligand. The plates were re-fed on day 3 and osteoclasts were clearly visible by day 4. Typically, the cells were stained for TRAP on day 4 or 5 unless otherwise indicated.
[0423] To incorporate the shRNA-expression cassettes into the RAW cell chromosomes, the pSilencer 2.0 plasmid (SEQ. ID. NO. 47) was purchased from Ambion (Austin, Tex.) and sequence-specific oligonucleotides were ligated as recommended by the manufacturer. Two shRNA expression plasmids were designed and the sequences used for attenuating the mouse ortholog of AB0326 (SEQ. ID. NO. 35) gene expression were 5'-GCGCCGCGGATCGTCAACA-3' (SEQ. ID. NO. 44) and 5'-ACACGTGCACGGCGGCCAA-3' (SEQ. ID. NO. 45). A plasmid supplied by Ambion containing a scrambled shRNA sequence with no known homology to any mammalian gene was also included as a negative control in these experiments. RAW cells were seeded in 6-well plates at a density of 5.times.10.sup.5 cells/well and transfected with 1 .mu.g of each plasmid using Fugene6 (Roche, Laval, QC) as described in the protocol. After selection of stable transfectants in medium containing 2 .mu.g/ml puromycin, the cell lines were expanded and tested in the presence of RANK ligand for osteoclastogenesis.
[0424] The stably transfected cell lines were designated RAW-0326.1, RAW-0326.2 and RAW-ctl. In 96-well plates in triplicate, 4 000 cells/well were seeded and treated with 100 ng/ml RANK ligand. After 4 days, osteoclasts were stained for TRAP expression and visualized by light microscopy (magnification was 40.times. and 100.times. as depicted in the left and right panels, respectively).
[0425] The representative results for the RAW-0326.2 line is shown in FIG. 36. The RAW-0326.2 cell line produced significantly less osteoclasts (FIG. 36; bottom panel) compared to the cell line containing the scrambled shRNA (FIG. 36; top panel). The RAW-0326.1 cell line also showed attenuation of the mouse ortholog of AB0326 but not as pronounced (data not shown). Therefore, as observed for SEQ ID NO.:42 and 43, siRNAs to the mouse orthologue (SEQ. ID. NOs. 44 and 45) (Table 4) appear to phenotypically perturb osteoclast differentiation in the mouse model as well. These results, coupled with that obtained in the human osteoclast precursor cells using the lentiviral shRNA delivery system (section J), demonstrate that in both human and mouse, AB0326 gene product is clearly required for osteoclastogenesis.
L--a Functional Complementation Assay for SEQ. ID. NO. 1 (AB0326) in RAW 264.6 Cells to Screen for Inhibitors of Osteoclastogenesis
[0426] To establish a screening assay based on SEQ. ID. NO. 1 (AB0326) to find small molecules capable of attenuating osteoclast differentiation, the cDNA encoding human AB0326 was introduced into the RAW-0326.2 cell line. Thus, if the human AB0326 plays an identical functional role as the mouse orthologue in RAW 264.7 cells, it should restore the osteoclastogenesis capabilities of the RAW-0326.2 cell line.
[0427] To accomplish this task, the RAW-0326.2 cell line was transfected with an eukaryotic expression vector encoding the full length cDNA for human AB0326, termed pd2-hAB0326. This expression vector (pd2; SEQ. ID. NO. 47) was modified from a commercial vector, pd2-EGFP-N1 (Clontech, Mountain View, Calif.) where the EGFP gene was replaced by the full length coding sequence of the human AB0326 cDNA. The AB0326 gene expression was driven by a strong CMV promoter. Stable transfectants were selected using the antibiotic, G418. This resulted in a RAW-0326.2 cell line that expressed the human AB0326 gene product in which, the mouse orthologue of AB0326 was silenced. As a control, RAW-0326.2 cells were transfected with the pd2 empty vector, which should not complement the AB0326 shRNA activity. Also, the pd2 empty vector was transfected into RAW 264.7 cells to serve as a further control. After selection of stable pools of cells, 4 000 cells/well were seeded in 96-well plates and treated for 4 days with 100 ng/ml RANK ligand. Following fixation with formaldehyde, the cells were stained for TRAP, an osteoclast-specific marker gene. As shown in FIG. 37, the RAW-0326.2 cells transfected with the empty pd2 vector are still unable to form osteoclasts in the presence of RANK ligand (center panel) indicating that the mouse AB0326 shRNA is still capable of silencing the AB0326 gene expression in these cells. Conversely, the cells transfected with human AB0326 (pd2-hAB0326) are rescued and thus, differentiate into more osteoclasts in response to RANK ligand (right panel). RAW 264.7 cells containing the empty vector (pd2) did not adversly affect the formation of osteoclasts in the presence of RANK ligand (left panel). These results confirm that the mouse and human orthologues of AB0326 are functionally conserved in osteoclast differentiation.
[0428] This particular type of cell-based assay can now serve as the basis for screening compounds capable of binding to and inhibiting the function of human AB0326. A compound library could be applied to this `rescued` cell line in order to identify molecules (small molecule drugs, peptides, or antibodies) capable of inhibiting AB0326. Any reduction in osteoclast differentiation measured by a reduction in the expression of TRAP would be indicative of a decrease in human AB0326 activity. This assay is applicable to any gene required for proper osteoclast differentiation in RAW cells. A complementation assay can be developed for any human gene and used as the basis for drug screening.
[0429] Similar experimentation to those described above are carried out for other sequences (SEQ ID NO.3 to SEQ ID NO.:33 or SEQ ID NO.:85 or SEQ ID NO.:86). This type of assay may be used to screen for molecules capable of increasing or decreasing (e.g., inhibiting) the activity or expression of NSEQ or PSEQ.
[0430] In the NSEQs of the present invention, their methods, compositions, uses, its, assays or else, the polynucleotide may either individually or in group (collectively) more particularly be (or may comprise or consist in) either;
[0431] a translatable portion of either SEQ ID NO.:1, of SEQ ID NO.:2, of SEQ ID NO.:3, of SEQ ID NO.:4, of SEQ ID NO.:5, of SEQ ID NO.:6, of SEQ ID NO.:7, of SEQ ID NO.:8, of SEQ ID NO.:9, of SEQ ID NO.:10, of SEQ ID NO.:11, of SEQ ID NO.:12, of SEQ ID NO.:13, of SEQ ID NO.:14, of SEQ ID NO.:15, of SEQ ID NO.:16, of SEQ ID NO.:17, of SEQ ID NO.:18, of SEQ ID NO.:19, of SEQ ID NO.:20, of SEQ ID NO.:21, of SEQ ID NO.:22, of SEQ ID NO.:23, of SEQ ID NO.:24, of SEQ ID NO.:25, of SEQ ID NO.:26, of SEQ ID NO.:27, of SEQ ID NO.:28, of SEQ ID NO.:29, of SEQ ID NO.:30, of SEQ ID NO.:31, of SEQ ID NO.:32, of SEQ ID NO.:33, of SEQ ID NO.:85 or of SEQ ID NO.:86;
[0432] sequence substantially identical to a translatable portion of SEQ ID NO.:1, of SEQ ID NO.:2, of SEQ ID NO.:3, of SEQ ID NO.:4, of SEQ ID NO.:5, of SEQ ID NO.:6, of SEQ ID NO.:7, of SEQ ID NO.:8, of SEQ ID NO.:9, of SEQ ID NO.:10, of SEQ ID NO.:11, of SEQ ID NO.:12, of SEQ ID NO.:13, of SEQ ID NO.:14, of SEQ ID NO.:15, of SEQ ID NO.:16, of SEQ ID NO.:17, of SEQ ID NO.:18, of SEQ ID NO.:19, of SEQ ID NO.:20, of SEQ ID NO.:21, of SEQ ID NO.:22, of SEQ ID NO.:23, of SEQ ID NO.:24, of SEQ ID NO.:25, of SEQ ID NO.:26, of SEQ ID NO.:27, of SEQ ID NO.:28, of SEQ ID NO.:29, of SEQ ID NO.:30, of SEQ ID NO.:31, of SEQ ID NO.:32, of SEQ ID NO.:33, of SEQ ID NO.:85 or of SEQ ID NO.:86;
[0433] a sequence substantially complementary to a translatable portion of SEQ ID NO.:1, a fragment of a transcribable portion of SEQ ID NO.:1, of SEQ ID NO.:2, of SEQ ID NO.:3, of SEQ ID NO.:4, of SEQ ID NO.:5, of SEQ ID NO.:6, of SEQ ID NO.:7, of SEQ ID NO.:8, of SEQ ID NO.:9, of SEQ ID NO.:10, of SEQ ID NO.:11, of SEQ ID NO.:12, of SEQ ID NO.:13, of SEQ ID NO.:14, of SEQ ID NO.:15, of SEQ ID NO.:16, of SEQ ID NO.:17, of SEQ ID NO.:18, of SEQ ID NO.:19, of SEQ ID NO.:20, of SEQ ID NO.:21, of SEQ ID NO.:22, of SEQ ID NO.:23, of SEQ ID NO.:24, of SEQ ID NO.:25, of SEQ ID NO.:26, of SEQ ID NO.:27, of SEQ ID NO.:28, of SEQ ID NO.:29, of SEQ ID NO.:30, of SEQ ID NO.:31, of SEQ ID NO.:32, of SEQ ID NO.:33, of SEQ ID NO.:85 or of SEQ ID NO.:86;
[0434] a fragment of a sequence substantially identical to a translatable portion of SEQ ID NO.:1, of SEQ ID NO.:2, of SEQ ID NO.:3, of SEQ ID NO.:4, of SEQ ID NO.:5, of SEQ ID NO.:6, of SEQ ID NO.:7, of SEQ ID NO.:8, of SEQ ID NO.:9, of SEQ ID NO.:10, of SEQ ID NO.:11, of SEQ ID NO.:12, of SEQ ID NO.:13, of SEQ ID NO.:14, of SEQ ID NO.:15, of SEQ ID NO.:16, of SEQ ID NO.:17, of SEQ ID NO.:18, of SEQ ID NO.:19, of SEQ ID NO.:20, of SEQ ID NO.:21, of SEQ ID NO.:22, of SEQ ID NO.:23, of SEQ ID NO.:24, of SEQ ID NO.:25, of SEQ ID NO.:26, of SEQ ID NO.:27, of SEQ ID NO.:28, of SEQ ID NO.:29, of SEQ ID NO.:30, of SEQ ID NO.:31, of SEQ ID NO.:32, of SEQ ID NO.:33, of SEQ ID NO.:85 or of SEQ ID NO.:86;
[0435] a fragment of a sequence substantially complementary to a translatable portion of SEQ ID NO.:1, of SEQ ID NO.:2, of SEQ ID NO.:3, of SEQ ID NO.:4, of SEQ ID NO.:5, of SEQ ID NO.:6, of SEQ ID NO.:7, of SEQ ID NO.:8, of SEQ ID NO.:9, of SEQ ID NO.:10, of SEQ ID NO.:11, of SEQ ID NO.:12, of SEQ ID NO.:13, of SEQ ID NO.:14, of SEQ ID NO.:15, of SEQ ID NO.:16, of SEQ ID NO.:17, of SEQ ID NO.:18, of SEQ ID NO.:19, of SEQ ID NO.:20, of SEQ ID NO.:21, of SEQ ID NO.:22, of SEQ ID NO.:23, of SEQ ID NO.:24, of SEQ ID NO.:25, of SEQ ID NO.:26, of SEQ ID NO.:27, of SEQ ID NO.:28, of SEQ ID NO.:29, of SEQ ID NO.:30, of SEQ ID NO.:31, of SEQ ID NO.:32, of SEQ ID NO.:33, of SEQ ID NO.:85 or of SEQ ID NO.:86;
[0436] or a library comprising any of the above.
[0437] In the PSEQs of the present invention, their methods, compositions, uses, kits assays, or else, the polypeptide may either individually or in group (collectively) more particularly be (or may comprise or consist in) either;
[0438] SEQ ID NO.:48, SEQ ID NO.:49, SEQ ID NO.:50, SEQ ID NO.:51, SEQ ID NO.:52, SEQ ID NO.:53, SEQ ID NO.:54, SEQ ID NO.:55, SEQ ID NO.:56, SEQ ID NO.:57, SEQ ID NO.:58, SEQ ID NO.:59, SEQ ID NO.:60, SEQ ID NO.:61, SEQ ID NO.:62, SEQ ID NO.:63, SEQ ID NO.:64, SEQ ID NO.:65, SEQ ID NO.:66, SEQ ID NO.:67, SEQ ID NO.:68, SEQ ID NO.:69, SEQ ID NO.:70, SEQ ID NO.:71, SEQ ID NO.:72, SEQ ID NO.:73, SEQ ID NO.:74, SEQ ID NO.:75 SEQ ID NO.:76, SEQ ID NO.:77, SEQ ID NO.:78, SEQ ID NO.:79 or SEQ ID NO.:80;
[0439] a fragment of SEQ ID NO.:48, SEQ ID NO.:49, SEQ ID NO.:50, SEQ ID NO.:51, SEQ ID NO.:52, SEQ ID NO.:53, SEQ ID NO.:54, SEQ ID NO.:55, SEQ ID NO.:56, SEQ ID NO.:57, SEQ ID NO.:58, SEQ ID NO.:59, SEQ ID NO.:60, SEQ ID NO.:61, SEQ ID NO.:62, SEQ ID NO.:63, SEQ ID NO.:64, SEQ ID NO.:65, SEQ ID NO.:66, SEQ ID NO.:67, SEQ ID NO.:68, SEQ ID NO.:69, SEQ ID NO.:70, SEQ ID NO.:71, SEQ ID NO.:72, SEQ ID NO.:73, SEQ ID NO.:74, SEQ ID NO.:75 SEQ ID NO.:76, SEQ ID NO.:77, SEQ ID NO.:78, SEQ ID NO.:79 or SEQ ID NO.:80;
[0440] or a biologically active analog, variant or a non-human hortologue of SEQ ID NO.:48, SEQ ID NO.:49, SEQ ID NO.:50, SEQ ID NO.:51, SEQ ID NO.:52, SEQ ID NO.:53, SEQ ID NO.:54, SEQ ID NO.:55, SEQ ID NO.:56, SEQ ID NO.:57, SEQ ID NO.:58, SEQ ID NO.:59, SEQ ID NO.:60, SEQ ID NO.:61, SEQ ID NO.:62, SEQ ID NO.:63, SEQ ID NO.:64, SEQ ID NO.:65, SEQ ID NO.:66, SEQ ID NO.:67, SEQ ID NO.:68, SEQ ID NO.:69, SEQ ID NO.:70, SEQ ID NO.:71, SEQ ID NO.:72, SEQ ID NO.:73, SEQ ID NO.:74, SEQ ID NO.:75 SEQ ID NO.:76, SEQ ID NO.:77, SEQ ID NO.:78, SEQ ID NO.:79 or SEQ ID NO.:80.
[0441] One of skill in the art will readily recognize that orthologues for all mammals maybe identified and verified using well-established techniques in the art, and that this disclosure is in no way limited to one mammal. The term "mammal(s)" for purposes of this disclosure refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human.
[0442] The sequences in the experiments discussed above are representative of the NSEQ being claimed and in no way limit the scope of the invention. The disclosure of the roles of the NSEQs in osteoclastogenesis and osteoclast function satisfies a need in the art to better understand the bone remodeling process, providing new compositions that are useful for the diagnosis, prognosis, treatment, prevention and evaluation of therapies for bone remodeling and associated disorders.
[0443] The art of genetic manipulation, molecular biology and pharmaceutical target development have advanced considerably in the last two decades. It will be readily apparent to those skilled in the art that newly identified functions for genetic sequences and corresponding protein sequences allows those sequences, variants and derivatives to be used directly or indirectly in real world applications for the development of research tools, diagnostic tools, therapies and treatments for disorders or disease states in which the genetic sequences have been implicated.
[0444] Although the present invention has been described hereinabove by way of preferred embodiments thereof, it may be modified, without departing from the spirit and nature of the subject invention as defined in the appended claims.
TABLE-US-00002 TABLE 1 Differentially expressed sequences found in osteoclasts. NCBI ORF Unigene Nucleotide Nucleotide #/Gene Positions/ Sequence Symbol/ Accession Polypeptide No. Gene ID Number sequence No. Function SEQ ID NO. Hs.287692/ NM_213602 150-1136 hypothetical protein 1 CD33L3/ encoding SEQ LOC284266; 284266 ID NO.: 48 membrane associated function unknown SEQ ID NO. Hs.520070/ NM_001014433 104-700 chromosome 6 open 2 C6orf82/ encoding SEQ reading frame 82; 51596 ID NO.: 49 membrane associated with unknown function SEQ ID NO. Hs.546482/ NM_178833 633-2246 hypothetical protein 3 LOC133308/ encoding SEQ LOC133308 possibly 133308 ID NO.: 50 involved in regulation of pH SEQ ID NO. Hs.135997/ NM_138461 112-741 transmembrane 4 L 4 LOC116211/ encoding SEQ six family member 19; 116211 ID NO.: 51 function unknown SEQ ID NO. Hs.558655/ NM_145280 172-82 hypothetical protein 5 LOC151194/ encoding SEQ LOC151194 151194 ID NO.: 52 SEQ ID NO. Hs.89714/ NM_002994 119-463 chemokine (C-X-C 6 CXCL5/ encoding SEQ motif) ligand 5 6374 ID NO.: 53 precursor; chemokine activity SEQ ID NO. Hs.495960/ NM_005765 103-1155 ATPase, H+ 7 ATP6AP2/ encoding SEQ transporting, 10159 ID NO.: 54 lysosomal accessory protein 2; receptor activity SEQ ID NO. Hs.42400/ NM_182488 259-1371 ubiquitin-specific 8 USP12/ encoding SEQ protease 12-like 1; 219333 ID NO.: 55 cysteine-type endopeptidase activity SEQ ID NO. Hs.164853/ NM_003341 175-756 ubiquitin-conjugating 9 UBE2E1/ encoding SEQ enzyme E2E 1 7324 ID NO.: 56 isoform 1; ligase activity SEQ ID NO. Hs.433278/ NM_032565 53-673 emopamil binding 10 EBPL/ encoding SEQ related protein, 84650 ID NO.: 57 delta8-delta7; integral to membrane SEQ ID NO. Hs.106015/ NM_018482 29-3418 development and 11 DDEF1/ encoding SEQ differentiation 50807 ID NO.: 58 enhancing factor 1; membrane SEQ ID NO. Hs.517265/ NM_021181 16-1023 SLAM family member 12 SLAMF7/ encoding SEQ 7; receptor activity 57823 ID NO.: 59 SEQ ID NO. Hs.470804/ NM_006357 385-1008 ubiquitin-conjugating 13 UBE2E3/ encoding SEQ enzyme E2E 3; 10477 ID NO.: 60 ligase activity SEQ ID NO. Hs.278959/ NM_015973 177-548 galanin preproprotein: 14 GAL/ encoding SEQ neuropeptide 51083 ID NO.: 61 hormone activity SEQ ID NO. NM_032569/ NM_032569 19-1680 cytokine-like nuclear 15 N-PAC/ encoding SEQ factor n-pac; 3- 84656 ID NO.: 62 hydroxyisobutyrate dehydrogenase-like SEQ ID NO. Hs.248472/ NM_000887 68-3559 integrin alpha X 16 ITGAX/ encoding SEQ precursor; cell-matrix 3687 ID NO.: 63 adhesion SEQ ID NO. Hs.156727/ NM_054027 321 = 1799 ankylosis, progressive 17 ANKH/ encoding SEQ homolog; regulation of 1827 ID NO.: 64 bone mineralization SEQ ID NO. Hs.477155/ NM_001690 67-1920 ATPase, H+ 18 ATP6V1A/ encoding SEQ transporting, 523 ID NO.: 65 lysosomal 70 kD, V1 subunit A, isoform 1; proton transport; hydrolase activity SEQ ID NO. Hs.445386/ NM_018252 139-1191 hypothetical protein 19 FLJ10874/ encoding SEQ LOC55248 55248 ID NO.: 66 SEQ ID NO. Hs.467662/ NM_004763 170-772 integrin cytoplasmic 20 ITGB1BP1/ encoding SEQ domain-associated 9270 ID NO.: 67 protein 1; cell adhesion SEQ ID NO. Hs.408236/ NM_032731 77-448 thioredoxin-like 5; 21 TXNL5/ encoding SEQ function unknown 84817 ID NO.: 68 SEQ ID NO. Hs.236516/ NM_014358 152-811 C-type lectin, 22 CLECSF9/ encoding SEQ superfamily member 9; 26253 ID NO.: 69 integral to membrane SEQ ID NO. Hs.56294/ NM_004794 265-978 Ras-related protein 23 RAB33A/ encoding SEQ Rab-33A; small 9363 ID NO.: 70 GTPase mediated signal transduction SEQ ID NO. Hs.282326/ NM_004414 73-831 calcipressin 1 isoform 24 DSCR1/ encoding SEQ a; interacts with 1827 ID NO.: 71 calcineurin A and inhibits calcineurin- dependent signaling pathways SEQ ID NO. Hs.520794/ NM_006555 158-754 SNARE protein Ykt6; 25 YKT6/ encoding SEQ vesicular transport 10652 ID NO.: 72 between secretory compartments SEQ ID NO. Hs.509765/ NM_001102 184-2862 alpha-actinin 1; 26 ACTN1/ encoding SEQ structural constituent 87 ID NO.: 73 of cytoskeleton; calcium ion binding SEQ ID NO. Hs.113823/ NM_006660 73-1974 ClpX caseinolytic 27 CLPX/ encoding SEQ protease X homolog; 10845 ID NO.: 74 energy-dependent regulator of proteolysis SEQ ID NO. Hs.155097/ NM_000067 66-848 carbonic anhydrase II; 28 CA2/ encoding SEQ carbonate 760 ID NO.: 75 dehydratase activity SEQ ID NO. Hs.520714/ NM_013322 216-821 sorting nexin 10; 29 SNX10/ encoding SEQ function unknown 29887 ID NO.: 76 SEQ ID NO. Hs.525061/ NM_030794 258-2213 tudor domain 30 TDRD3/ encoding SEQ containing 3; nucleic 81550 ID NO.: 77 acid binding SEQ ID NO. Hs.275775/ NM_005410 101-1246 selenoprotein P; 31 SEPP1/ encoding SEQ extracellular space 6414 ID NO.: 78 implicated in defense SEQ ID NO. Hs.518138/ NM_014656 921-1382 KIAA0040; novel 32 KIAA0040/ encoding SEQ protein 9674 ID NO.: 79 SEQ ID NO. Hs.368912/ NM_001935 562-2862 dipeptidylpeptidase 33 DPP4/ encoding SEQ IV; aminopeptidase 1803 ID NO.: 80 activity SEQ ID NO. Hs.304682/ NM_000099 76-516 cysteine protease 34 CST3/ encoding SEQ inhibitor activity 1471 ID NO.: 81 SEQ ID NO. None/ AL357873 Novel novel 85 none/ none SEQ ID NO. AL645465/ novel novel 86 BQ182670
TABLE-US-00003 TABLE 2 Shows the concensus sequences for SEQ. ID. NO. 1 and SEQ. ID. NO. 2 cloned from a mature human osteoclast sample. ORF Sequence Nucleotide Polypeptide Identification Positions sequence No. SEQ ID NO. 83 1-987 SEQ ID NO. 48 SEQ ID NO. 84 1-471 SEQ ID NO. 49
TABLE-US-00004 TABLE 3 List of mouse orthologue for AB0326 NCBI Polypeptide Sequence Unigene Accession ORF Nucleotide sequence Identification Cluster Number Positions No. SEQ ID None/ XM_884636 122-1102/similar to neural cell SEQ ID NO. 35 LOC620235/ adhesion molecule NO.: 82 620235 2/unknown function
TABLE-US-00005 TABLE 4 list of additional sequences identification of plasmids and shRNA oligonucleotides Sequence Identification name Description SEQ. ID. NO. 36 p14 Vector for STAR SEQ. ID. NO. 37 p17+ Vector for STAR SEQ. ID. NO. 38 pCATRMAN Vector for STAR SEQ. ID. NO. 39 p20 Vector for STAR SEQ. ID. NO. 40 OGS 77 Primer used for STAR p14 vector SEQ. ID. NO. 41 OGS 302 Primer used for STAR p17+ vector SEQ. ID. NO: 42 human 0326.1 siRNA sequence for SEQ. ID. NO. 1 SEQ. ID. NO: 43 Human 0369.1 shRNA sequence for SEQ. ID. NO. 2 SEQ. ID. NO: 44 mouse 0326.1 shRNA sequence for SEQ. ID. NO. 35 SEQ. ID. NO: 45 mouse 0326.2 shRNA sequence for SEQ ID NO. 35 SEQ. ID. NO: 46 pSilencer2.0 vector SEQ. ID. NO: 47 pd2 vector
TABLE-US-00006 TABLE 5 NucleotideSequence (5'-3') ORFs SEQIDNO.: 1 SEQIDNO.: 48 TCCGGCTCCCGCAGAGCCCACAGGGACCTGCAGATCTGAGTGCCCTGCCCACCCCCGCCCGCCTTCCTTCCCCC- ACCACGCCTGGGA MEKSIWLLACLAWVLPTGSFVRT GGGCCCTCACTGGGGAGGTGGCCGAGAACGGGTCTGGCCTGGGGTGTTCAGATGCTCACAGCATGGAAAAGTCC- ATCTGGCTGCTGG KIDTTENLLNTEVHSSPAQRWSM CCTGCTTGGCGTGGGTTCTCCCGACAGGCTCATTTGTGAGAACTAAAATAGATACTACGGAGAACTTGCTCAAC- ACAGAGGTGCACA QVPPEVSAEAGDAAVLPCTFTHP GCTCGCCAGCGCAGCGCTGGTCCATGCAGGTGCCACCCGAGGTGAGCGCGGAGGCAGGCGACGCGGCAGTGCTG- CCCTGCACCTTCA HRHYDGPLTAIWRAGEPYAGPQV CGCACCCGCACCGCCACTACGACGGGCCGCTGACGGCCATCTGGCGCGCGGGCGAGCCCTATGCGGGCCCGCAG- GTGTTCCGCTGCG FRCAAARGSELCQTALSLHGRFR CTGCGGCGCGGGGCAGCGAGCTCTGCCAGACGGCGCTGAGCCTGCACGGCCGCTTCCGGCTGCTGGGCAACCCG- CGCCGCAACGACC LLGNPRRNDLSLRVERLALADDR TCTCGCTGCGCGTCGAGCGCCTCGCCCTGGCTGACGACCGCCGCTACTTCTGCCGCGTCGAGTTCGCCGGCGAC- GTCCATGACCGCT RYFCRVEFAGDVHDRYESRHGVR ACGAGAGCCGCCACGGCGTCCGGCTGCACGTGACAGCCGCGCCGCGGATCGTCAACATCTCGGTGCTGCCCAGT- CCGGCTCACGCCT LHVTAAPRIVNISVLPSPAHAFR TCCGCGCGCTCTGCACTGCCGAAGGGGAGCCGCCGCCCGCCCTCGCCTGGTCCGGCCCGGCCCTGGGCAACAGC- TTGGCAGCCGTGC ALCTAEGEPPPALAWSGPALGNS GGAGCCCGCGTGAGGGTCACGGCCACCTAGTGACCGCCGAACTGCCCGCACTGACCCATGACGGCCGCTACACG- TGTACGGCCGCCA LAAVRSPREGHGHLVTAELPALT ACAGCCTGGGCCGCTCCGAGGCCAGCGTCTACCTGTTCCGCTTCCATGGCGCCAGCGGGGCCTCGACGGTCGCC- CTCCTGCTCGGCG HDGRYTCTAANSLGRSEASVYLF CTCTCGGCTTCAAGGCGCTGCTGCTGCTCGGGGTCCTGGCCGCCCGCGCTGCCCGCCGCCGCCCAGAGCATCTG- GACACCCCGGACA RFHGASGASTVALLLGALGFKAL CCCCACCACGGTCCCAGGCCCAGGAGTCCAATTATGAAAATTTGAGCCAGATGAACCCCCGGAGCCCACCAGCC- ACCATGTGCTCAC LLLGVLAARAARRRPEHLDTPDT CGTGAGGAGTCCCTCAGCCACCAACATCCATTTCAGCACTGTAAAGAACAAAGGCCAGTGCGAGGCTTGGCTGG- CACAGCCAGTCCT PPRSQAQESNYENLSQMNPRSPP GGTTCTCGGGCACCTTGGCAGCCCCCAGCTGGGTGGCTCCTCCCCTGCTCAAGGTCAAGACCCTGCTCAAGGAG- GCTCATCTGGCCT ATMCSP CCTATGTGGACAACCATTTCGGAGCTCCCTGATATTTTTGCCAGCATTTCGTAAATGTGCATACGTCTGTGTGT- GTGTGTGTGTGTG AGAGAGAGAGAGAGAGAGTACACGCATTAGCTTGAGCGTGAAACTTCCAGAAATGTTCCCTTGCCCTTTCTTAC- CTAGAACACCTGC TATAGTAAAGCAGACAGGAAACTGTTAAAAAAAAAAAAAAAAAA SEQIDNO.: 2 SEQIDNO.: 49 ACGGAAACGGGCGTGCCATTTCCGCGCACGTCTGCAGATGCGGTAGTCGATTGGTCAAGTCTCCCATGGCTCCT- CCTTCATCAGGAG MIGSGLAGSGGAGGPSSTVTWCA GTGGGCAAACCGCGCCATGATAGGGTCGGGATTGGCTGGCTCTGGAGGCGCAGGTGGTCCTTCTTCTACTGTCA- CATGGTGCGCGCT LFSNHVAATQASLLLSFVWMPAL GTTTTCTAATCACGTGGCTGCCACCCAGGCCTCTCTGCTCCTGTCTTTTGTTTGGATGCCGGCGCTGCTGCCTG- TGGCCTCCCGCCT LPVASRLLLLPRVLLTMASGSPP TTTGTTGCTACCCCGAGTCTTGCTGACCATGGCCTCTGGAAGCCCTCCGACCCAGCCCTCGCCGGCCTCGGATT- CCGGCTCTGGCTA TQPSPASDSGSGYVPGSVSAAFV CGTTCCGGGCTCGGTCTCTGCAGCCTTTGTTACTTGCCCCAACGAGAAGGTCGCCAAGGAGATCGCCAGGGCCG- TGGTGGAGAAGCG TCPNEKVAKEIARAVVEKRLAAC CCTAGCAGCCTGCGTCAACCTCATCCCTCAGATTACATCCATCTATGAGTGGAAAGGGAAGATCGAGGAAGACA- GTGAGGTGCTGAT VNLIPQITSIYEWKGKIEEDSEV GATGATTAAAACCCAAAGTTCCTTGGTCCCAGCTTTGACAGATTTTGTTCGTTCTGTGCACCCTTACGAAGTGG- CCGAGGTAATTGC LMMIKTQSSLVPALTDFVRSVHP ATTGCCTGTGGAACAGGGGAACTTTCCGTACCTGCAGTGGGTGCGCCAGGTCACAGAGTCAGTTTCTGACTCTA- TCACAGTCCTGCC YEVAEVIALPVEQGNFPYLQWVR ATGATGAGCCCTGTTCCTGCTCATCATGAAGATCCCCGCGATACTTCAACGCCTTCTGACTTCCAGGTGATGAC- TGGGCCCCCAATA QVTESVSDSITVLP AATCCCGTCTTTGGGTCTCTCTGCCAAAAAAAAAAAAAAA SEQIDNO.: 3 SEQIDNO.: 50 CGGTGTCTCGTCATCTCCGGGAAGACTCGGCGCCTGGGTCCGCGCTCTCTGGGTAAGCTTTCCGGGAAGCTTTC- CCGGGAGCTCGCT MGDEDKRITYEDSEPSTGMNYTP GGTCCTGGCCCCAGAAGCCTGCGGACCCGCCCAGGGAGGATAAGCAGCTGAAAGACCGCGCGGTGCCGCTCCGA- GGCCCCGGGACGT SMHQEAQEETVMKLKGIDANEPT GGGCCCATGGTCGGCCTGGCGCCACCTTTCCGGGGGAAGCCACGCGCACCAGGCATCGCACGCGGCTCTGCACC- CGCGCCGCCGGAC EGSILLKSSEKKLQETPTEANHV CTGAAACCCGGCGGAGGGCACACGGGGCTGCCGCTGCGGGCCCCGGACCAACCCATGCTTACTCCGGAGCCTGT- ACCGGCGCCGACG QRLRQMLACPPHGLLDRVITNVT GGTCGGACCTCCCTGCGCGGTGTCGCCCAGCGGGTTCGTGCGAAAGGCGGGGCCGACTACACGCGGTGCCGCGC- CCTGAGACCGTTT IIVLLWAVVWSITGSECLPGGNL ATCTGCAGTCAACGCAGCCTCCCGGCTCAGCCTGGGAAGATGCGCGAATCGGGAACCCCAGAGCGCGGTGGCTA- GACCGGGCTCCGC FGIIILFYCAIIGGKLLGLIKLP CGCCTCCCCCACAGCCCCTTTCCTAATCGTTCAGACGGAGCCTGGTCGACTTCGCCGGAGACTGCCAGATCTCG- TTCCTCTTCCCTG TLPPLPSLLGMLLAGFLIRNIPV TGTCATCTTCTTAATTATAAATAATGGGGGATGAAGATAAAAGAATTACATATGAAGATTCAGAACCATCCACA- GGAATGAATTACA INDNVQIKHKWSSSLRSIALSII CGCCCTCCATGCATCAAGAAGCACAGGAGGAGACAGTTATGAAGCTCAAAGGTATAGATGCAAATGAACCAACA- GAAGGAAGTATTC LVRAGLGLDSKALKKLKGVCVRL TTTTGAAAAGCAGTGAAAAAAAGCTACAAGAAACACCAACTGAAGCAAATCACGTACAAAGACTGAGACAAATG- CTGGCTTGCCCTC SMGPCIVEACTSALLAHYLLGLP CACATGGTTTACTGGACAGGGTCATAACAAATGTTACCATCATTGTTCTTCTGTGGGCTGTAGTTTGGTCAATT- ACTGGCAGTGAAT WQWGFILGFVLGAVSPAVVVPSM GTCTTCCTGGAGGAAACCTATTTGGAATTATAATCCTATTCTATTGTGCCATCATTGGTGGTAAACTTTTGGGG- CTTATTAAGTTAC LLLQGGGYGVEKGVPTLLMAAGS CTACATTGCCTCCACTGCCTTCTCTTCTTGGCATGCTGCTTGCAGGGTTTCTCATCAGAAATATCCCAGTCATC- AACGATAATGTGC FDDILAITGFNTCLGIAFSTGST AGATCAAGCACAAGTGGTCTTCCTCTTTGAGAAGCATAGCCCTGTCTATCATTCTGGTTCGTGCTGGCCTTGGT- CTGGATTCAAAGG VFNVLRGVLEVVIGVATGSVLGF CCCTGAAGAAGTTAAAGGGCGTTTGTGTAAGACTGTCCATGGGTCCCTGTATTGTGGAGGCGTGCACATCTGCT- CTTCTTGCCCATT FIQYFPSRDQDKLVCKRTFLVLG ACCTGCTGGGTTTACCATGGCAATGGGGATTTATACTGGGTTTTGTTTTAGGTGCTGTATCTCCAGCTGTTGTG- GTGCCTTCAATGC LSVLAVFSSVHFGFPGSGGLCTL TCCTTTTGCAGGGAGGAGGCTATGGTGTTGAGAAGGGTGTCCCAACCTTGCTCATGGCAGCTGGCAGCTTCGAT- GACATTCTGGCCA VMAFLAGMGWTSEKAEVEKIIAV TCACTGGCTTCAACACATGCTTGGGCATAGCCTTTTCCACAGGCTCTACTGTCTTTAATGTCCTCAGAGGAGTT- TTGGAGGTGGTAA AWDIFQPLLFGLIGAEVSIASLR TTGGTGTGGCAACTGGATCTGTTCTTGGATTTTTCATTCAGTACTTTCCAAGCCGTGACCAGGACAAACTTGTG- TGTAAGAGAACAT PETVGLCVATVGIAVLIRILTTF TCCTTGTGTTGGGGTTGTCTGTGCTAGCTGTGTTCAGCAGTGTGCATTTTGGTTTCCCTGGATCAGGAGGACTG- TGCACGTTGGTCA LMVCFAGFNLKEKIFISFAWLPK TGGCTTTCCTTGCAGGCATGGGATGGACCAGCGAAAAGGCAGAGGTTGAAAAGATAATTGCAGTTGCCTGGGAC- ATTTTTCAGCCCC ATVQAAIGSVALDTARSHGEKQL TTCTTTTTGGACTAATTGGAGCAGAGGTATCTATTGCATCTCTCAGACCAGAAACTGTAGGCCTTTGTGTTGCC- ACCGTAGGCATTG EDYGMDVLTVAFLSILITAPIGS CAGTATTGATACGAATTTTGACTACATTTCTGATGGTGTGTTTTGCTGGTTTTAACTTAAAAGAAAAGATATTT- ATTTCTTTTGCAT LLIGLLGPRLLQKVEHQNKDEEV GGCTTCCAAAGGCCACAGTTCAGGCTGCAATAGGATCTGTGGCTTTGGACACAGCAAGGTCACATGGAGAGAAA- CAATTAGAGGACT QGETSVQV ATGGAATGGATGTGTTGACAGTGGCATTTTTGTCCATCCTCATCACAGCCCCAATTGGAAGTCTGCTTATTGGT- TTACTGGGCCCCA GGCTTCTGCAGAAAGTTGAACATCAAAATAAAGATGAAGAAGTTCAAGGAGAGACTTCTGTGCAAGTTTAGAGG- TGAAAAGAGAGAG TGCTGAACATAATGTTTAGAAAGCTGCTACTTTTTTCAAGATGCATATTGAAATATGTAATGTTTAAGCTTAAA- ATGTAATAGAACC AAAAGTGTAGCTGTTTCTTTAAACAGCATTTTTAGCCCTTGCTCTTTCCATGTGGGTGGTAATGATTCTATATC- CCCAAAAAAAAAA AAAAAAAAAAA SEQIDNO.: 4 SEQIDNO.: 51 GACAACCTTCAGGTCCAGCCCTGGAGCTGGAGGAGTGGAGCCCCACTCTGAAGACGCAGCCTTTCTCCAGGTTC- TGTCTCTCCCATT MVSSPCTPASSRTCSRILGLSLG CTGATTCTTGACACCAGATGCAGGATGGTGTCCTCTCCCTGCACGCCGGCAAGCTCACGGACTTGCTCCCGTAT- CCTGGGACTGAGC TAALFAAGANVALLLPNWDVTYL CTTGGGACTGCAGCCCTGTTTGCTGCTGGGGCCAACGTGGCACTCCTCCTTCCTAACTGGGATGTCACCTACCT- GTTGAGGGGCCTC LRGLLGRHAMLGTGLWGGGLMVL CTTGGCAGGCATGCCATGCTGGGAACTGGGCTCTGGGGAGGAGGCCTCATGGTACTCACTGCAGCTATCCTCAT- CTCCTTGATGGGC TAAILISLMGWRYGCFSKSGLCR TGGAGATACGGCTGCTTCAGTAAGAGTGGGCTCTGTCGAAGCGTGCTTACTGCTCTGTTGTCAGGTGGCCTGGC- TTTACTTGGAGCC SVLTALLSGGLALLGALICFVTS CTGATTTGCTTTGTCACTTCTGGAGTTGCTCTGAAAGATGGTCCTTTTTGCATGTTTGATGTTTCATCCTTCAA- TCAGACACAAGCT GVALKDGPFCMFDVSSFNQTQAW TGGAAATATGGTTACCCATTCAAAGACCTGCATAGTAGGAATTATCTGTATGACCGTTCGCTCTGGAACTCCGT- CTGCCTGGAGCCC KYGYPFKDLHSRNYLYDRSLWNS TCTGCAGCTGTTGTCTGGCACGTGTCCCTCTTCTCCGCCCTTCTGTGCATCAGCCTGCTCCAGCTTCTCCTGGT- GGTCGTTCATGTC VCLEPSAAVVWHVSLFSALLCIS ATCAACAGCCTCCTGGGCCTTTTCTGCAGCCTCTGCGAGAAGTGACAGGCAGAACCTTCACTTGCAAGCATGGG- TGTTTTCATCATC LLQLLLVVVHVINSLLGLFCSLC GGCTGTCTTGAATCCTTTCTACAAGGAGTGGGTTCAGGCCCTCTGTGGTTAAAGACTGTATCCATGCTGTGCTC- AAGGAGGAACTGG EK CAAATGCTGAATATTCTCCAGAAGAAATGCCTCAGCTTACAAAACATTTATCAGAAAACATTAAAGATAAATTA- AAAGGTAATCATG GTGAAAAAAAAAAAAAAA SEQIDNO.: 5 SEQIDNO.: 52 CCACGCGTCCGCACTTCCAGGGTCGGGGAGACGGAACTGCGGCGACCATGTATTTCTGGTTTATCAAACCGCTA- ACACCCAGTCTAA MALVPYEETTEFGLQKFHKPLAT GGGCAGGTTCTGTCCCATTGTTATCACTATCGAAGCAGCCGATGGAGGAGGGGAGGTCTGAGCAGAGGGCGGGG- TGCAGGCGGAATG FSFANHTIQIRQDWRHLGVAAVV GCCCTCGTGCCCTATGAGGAGACCACGGAATTTGGGTTGCAGAAATTCCACAAGCCTCTTGCAACTTTTTCCTT- TGCAAACCACACG WDAAIVLSTYLEMGAVELRGRSA ATCCAGATCCGGCAGGACTGGAGACACCTGGGAGTCGCAGCGGTGGTTTGGGATGCGGCCATCGTTCTTTCCAC- ATACCTGGAGATG VELGAGTGLVGIVAALLGAHVTI GGAGCTGTGGAGCTCAGGGGCCGCTCTGCCGTGGAGCTGGGTGCTGGCACGGGGCTGGTGGGCATAGTGGCTGC- CCTGCTGGGTGCT TDRKVALEFLKSNVQANLPPHIQ CATGTGACTATCACGGATCGAAAAGTAGCATTAGAATTTCTTAAATCAAACGTTCAAGCCAACTTACCTCCTCA- TATCCAAACTAAA TKTVVKELTWGQNLGSFSPGEFD ACTGTTGTTAAGGAGCTGACTTGGGGACAAAATTTGGGGAGTTTTTCTCCTGGAGAATTTGACCTGATACTTGG- TGCTGATATCATA LILGADIIYLEETFTDLLQTLEH TATTTAGAAGAAACATTCACAGATCTTCTTCAAACACTGGAACATCTCTGTAGCAATCACTCTGTGATTCTTTT- AGCATGCCGAATT LCSNHSVILLACRIRYERDNNFL CGCTATGAACGGGATAACAACTTCTTAGCAATGCTGGAGAGGCAATTTATTGTGAGAAAGGTTCACTACGATCC- TGAAAAAGATGTA AMLERQFIVRKVHYDPEKDVHIY CATATTTACGAAGCACAGAAGAGAAACCAGAAGGAGGACTTATAATTGGCTATAATTTATAAGAATGTTGTCAT- TGAGTGTGTCACT EAQKRNQKEDL TAAGGTCTTAGACTGCAAATCTAACCATATTTAATGAAATGTCTTACTGTACAAAAAGTCTAAGCCAAAGGTTC- TCAGGGGAGAAAG CACATGTGCAGTTTTAAAACAAAGCAGTGCTTTGTCCCATTGCTGTGATTTTTAGTCAGACTTTACTCAGTCTG- AAATGCAATTAAC ATTAAAGGATTAAGTGTGAGATTTCGATTTATGCTATTTGTGTATCCCATACTCCTCCCTTTTAATAAACAGTT- TCCACTGATGATA TGAAGGGCCGGTATAAAGAAGTCTTTAAATGAGTAAGCTTTCTTGGTAAGATTAAATCTTACAAATTATTTTTA- AAACCTTGTGATA TATACAATGTTTAGCTGAGTTTTCTAATTTTCTGGATGTAAAACAAAAGGTTTAACCTATACATTCCTTGAGCT- GTTAGTGCTATTT AAATCTTTTGCCCTGTTTAGGTCCTAAACACTTTTAGTTGAGTAGGATATGAGCTTTTTTGGGTCTCATATCAT- GCTTTTTGCCTTA ATTTCAGGTATATATATATATAAGTAAAGGAATTAAGTAAAAATAAAATTTCAGTTACTTTTTAAAAGCACCTG- AAATCTGGCCGGA TGCGGTGGCTCATGCCTGTAATCCCACCACTTTGGGAGGCCGAGGCGGGCAGATCACCTGAGGTCGGGAGTTCA- AGACCAGCCTGGC CAACATGGTGAAACCCCATCTCTACTAAAAATACAAAAATTAGCCGGGCGTGGTGTCGGGCGCCTGTAGTCCCA- GCTGCTCGGGAGG CTGAGGCAGGGGAATCGCTTGAACCTGGGAGGCGGAGGTTGCAGTGAGCTGAGATTGCGCCATTGTACTCCAGC- CTGGGGGACAGGA GCGAGACTCCATCTCAAAAAAAAAAAAAAA <SEQIDNO.: 6 SEQIDNO.: 53 GTGCAGAAGGCACGAGGAAGCCACAGTGCTCCGGATCCTCCAATCTTCGCTCCTCCAATCTCCGCTCCTCCACC- CAGTTCAGGAACC MSLLSSRAARVPGPSSSLCALLV CGCGACCGCTCGCAGCGCTCTCTTGACCACTATGAGCCTCCTGTCCAGCCGCGCGGCCCGTGTCCCCGGTCCTT- CGAGCTCCTTGTG LLLLLTQPGPIASAGPAAAVLRE CGCGCTGTTGGTGCTGCTGCTGCTGCTGACGCAGCCAGGGCCCATCGCCAGCGCTGGTCCTGCCGCTGCTGTGT- TGAGAGAGCTGCG LRCVCLQTTQGVHPKMISNLQVF TTGCGTTTGTTTACAGACCACGCAAGGAGTTCATCCCAAAATGATCAGTAATCTGCAAGTGTTCGCCATAGGCC- CACAGTGCTCCAA AIGPQCSKVEVVASLKNGKEICL GGTGGAAGTGGTAGCCTCCCTGAAGAACGGGAAGGAAATTTGTCTTGATCCAGAAGCCCCTTTTCTAAAGAAAG- TCATCCAGAAAAT DPEAPFLKKVIQKILDGGNKEN TTTGGACGGTGGAAACAAGGAAAACTGATTAAGAGAAATGAGCACGCATGGAAAAGTTTCCCAGTCTTCAGCAG- AGAAGTTTTCTGG AGGTCTCTGAACCCAGGGAAGACAAGAAGGAAAGATTTTGTTGTTGTTTGTTTATTTGTTTTTCCAGTAGTTAG- CTTTCTTCCTGGA TTCCTCACTTTGAAGAGTGTGAGGAAAACCTATGTTTGCCGCTTAAGCTTTCAGCTCAGCTAATGAAGTGTTTA- GCATAGTACCTCT GCTATTTGCTGTTATTTTATCTGCTATGCTATTGAAGTTTTGGCAATTGACTATAGTGTGAGCCAGGAATCACT- GGCTGTTAATCTT TCAAAGTGTCTTGAATTGTAGGTGACTATTATATTTCCAAGAAATATTCCTTAAGATATTAACTGAGAAGGCTG- TGGATTTAATGTG GAAATGATGTTTCATAAGAATTCTGTTGATGGAAATACACTGTTATCTTCACTTTTATAAGAAATAGGAAATAT- TTTAATGTTTCTT GGGGAATATGTTAGAGAATTTCCTTACTCTTGATTGTGGGATACTATTTAATTATTTCACTTTAGAAAGCTGAG- TGTTTCACACCTT ATCTATGTAGAATATATTTCCTTATTCAGAATTTCTAAAAGTTTAAGTTCTATGAGGGCTAATATCTTATCTTC- CTATAATTTTAGA CATTCTTTATCTTTTTAGTATGGCAAACTGCCATCATTTACTTTTAAACTTTGATTTTATATGCTATTTATTAA- GTATTTTATTAGG AGTACCATAATTCTGGTAGCTAAATATATATTTTAGATAGATGAAGAAGCTAGAAAACAGGCAAATTCCTGACT- GCTAGTTTATATA GAAATGTATTCTTTTAGTTTTTAAAGTAAAGGCAAACTTAACAATGACTTGTACTCTGAAAGTTTTGGAAACGT- ATTCAAACAATTT GAATATAAATTTATCATTTAGTTATAAAAATATATAGCGACATCCTCGAGGCCCTAGCATTTCTCCTTGGATAG- GGGACCAGAGAGA GCTTGGAATGTTAAAAACAAAACAAAACAAAAAAAAACAAGGAGAAGTTGTCCAAGGGATGTCAATTTTTTATC- CCTCTGTATGGGT TAGATTTTCCAAAATCATAATTTGAAGAAGGCCAGCATTTATGGTAGAATATATAATTATATATAAGGTGGCCA- CGCTGGGGCAAGT TCCCTCCCCACTCACAGCTTTGGCCCCTTTCACAGAGTAGAACCTGGGTTAGAGGATTGCAGAAGACGAGCGGC- AGCGGGGAGGGCA GGGAAGATGCCTGTCGGGTTTTTAGCACAGTTCATTTCACTGGGATTTTGAAGCATTTCTGTCTGAATGTAAAG- CCTGTTCTAGTCC TGGTGGGACACACTGGGGTTGGGGGTGGGGGAAGATGCGGTAATGAAACCGGTTAGTCAGTGTTGTCTTAATAT- CCTTGATAATGCT GTAAAGTTTATTTTTACAAATATTTCTGTTTAAGCTATTTCACCTTTGTTTGGAAATCCTTCCCTTTTAAAGAG- AAAATGTGACACT TGTGAAAAGGCTTGTAGGAAAGCTCCTCCCTTTTTTTCTTTAAACCTTTAAATGACAAACCTAGGTAATTAATG- GTTGTGAATTTCT ATTTTTGCTTTGTTTTTAATGAACATTTGTCTTTCAGAATAGGATTCTGTGATAATATTTAAATGGCAAAAACA- AAACATAATTTTG TGCAATTAACAAAGCTACTGCAAGAAAAATAAAACATTTCTTGGTAAAAACGTATGTATTTATATATTATATAT- TTATATATAATAT ATATTATATATTTAGCATTGCTGAGCTTTTTAGATGCCTATTGTGTATCTTTTAAAGGTTTTGACCATTTTGTT- ATGAGTAATTACA TATATATTACATTCACTATATTAAAATTGTACTTTTTTACTATGTGTCTCATTGGTTCATAGTCTTTATTTTGT- CCTTTGAATAAAC ATTAAAAGATTTCTAAACTTCAAAAAAAAAAAAAAAAAA SEQIDNO.: 7 SEQIDNO.: 54
CTGGACGAGTCCGAGCGCGTCACCTCCTCACGCTGCGGCTGTCGCCCGTGTCCCGCCGGCCCGTTCCGTGTCGC- CCCGCAGTGCTGC MAVFVVLLALVAGVLGNEFSILK GGCCGCCGCGGCACCATGGCTGTGTTTGTCGTGCTCCTGGCGTTGGTGGCGGGTGTTTTGGGGAACGAGTTTAG- TATATTAAAATCA SPGSVVFRNGNWPIPGERIPDVA CCAGGGTCTGTTGTTTTCCGAAATGGAAATTGGCCTATACCAGGAGAGCGGATCCCAGACGTGGCTGCATTGTC- CATGGGCTTCTCT ALSMGFSVKEDLSWPGLAVGNLF GTGAAAGAAGACCTTTCTTGGCCAGGACTCGCAGTGGGTAACCTGTTTCATCGTCCTCGGGCTACCGTCATGGT- GATGGTGAAGGGA HRPRATVMVMVKGVNKLALPPGS GTGAACAAACTGGCTCTACCCCCAGGCAGTGTCATTTCGTACCCTTTGGAGAATGCAGTTCCTTTTAGTCTTGA- CAGTGTTGCAAAT VISYPLENAVPFSLDSVANSIHS TCCATTCACTCCTTATTTTCTGAGGAAACTCCTGTTGTTTTGCAGTTGGCTCCCAGTGAGGAAAGAGTGTATAT- GGTAGGGAAGGCA LFSEETPVVLQLAPSEERVYMVG AACTCAGTGTTTGAAGACCTTTCAGTCACCTTGCGCCAGCTCCGTAATCGCCTGTTTCAAGAAAACTCTGTTCT- CAGTTCACTCCCC KANSVFEDLSVTLRQLRNRLFQE CTCAATTCTCTGAGTAGGAACAATGAAGTTGACCTGCTCTTTCTTTCTGAACTGCAAGTGCTACATGATATTTC- AAGCTTGCTGTCT NSVLSSLPLNSLSRNNEVDLLFL CGTCATAAGCATCTAGCCAAGGATCATTCTCCTGATTTATATTCACTGGAGCTGGCAGGTTTGGATGAAATTGG- GAAGCGTTATGGG SELQVLHDISSLLSRHKHLAKDH GAAGACTCTGAACAATTCAGAGATGCTTCTAAGATCCTTGTTGACGCTCTGCAAAAGTTTGCAGATGACATGTA- CAGTCTTTATGGT SPDLYSLELAGLDEIGKRYGEDS GGGAATGCAGTGGTAGAGTTAGTCACTGTCAAGTCATTTGACACCTCCCTCATTAGGAAGACAAGGACTATCCT- TGAGGCAAAACAA EQFRDASKILVDALQKFADDMYS GCGAAGAACCCAGCAAGTCCCTATAACCTTGCATATAAGTATAATTTTGAATATTCCGTGGTTTTCAACATGGT- ACTTTGGATAATG LYGGNAVVELVTVKSFDTSLIRK ATCGCCTTGGCCTTGGCTGTGATTATCACCTCTTACAATATTTGGAACATGGATCCTGGATATGATAGCATCAT- TTATAGGATGACA TRTILEAKQAKNPASPYNLAYKY AACCAGAAGATTCGAATGGATTGAATGTTACCTGTGCCAGAATTAGAAAAGGGGGTTGGAAATTGGCTGTTTTG- TTAAAATATATCT NFEYSVVFNMVLWIMIALALAVI TTTAGTGTGCTTTAAAGTAGATAGTATACTTTACATTTATAAAAAAAAATCAAATTTTGTTCTTTATTTTGTGT- GTGCCTGTGATGT ITSYNIWNMDPGYDSIIYRMTNQ TTTTCTAGAGTGAATTATAGTATTGACGTGAATCCCACTGTGGTATAGATTCCATAATATGCTTGAATATTATG- ATATAGCCATTTA KIRMD ATAACATTGATTTCATTCTGTTTAATGAATTTGGAAATATGCACTGAAAGAAATGTAAAACATTTAGAATAGCT- CGTGTTATGGAAA AAAGTGCACTGAATTTATTAGACAAACTTACGAATGCTTAACTTCTTTACACAGCATAGGTGAAAATCATATTT- GGGCTATTGTATA CTATGAACAATTTGTAAATGTCTTAATTTGATGTAAATAACTCTGAAACAAGAGAAAAGGTTTTTAACTTAGAG- TAGCCCTAAAATA TGGATGTGCTTATATAATCGCTTAGTTTTGGAACTGTATCTGAGTAACAGAGGACAGCTGTTTTTTAACCCTCT- TCTGCAAGTTTGT TGACCTACATGGGCTAATATGGATACTAAAAATACTACATTGATCTAAGAAGAAACTAGCCTTGTGGAGTATAT- AGATGCTTTTCAT TATACACACAAAAATCCCTGAGGGACATTTTGAGGCATGAATATAAAACATTTTTATTTCAGTAACTTTTCCCC- CTGTGTAAGTTAC TATGGTTTGTGGTACAACTTCATTCTATAGAATATTAAGTGGAAGTGGGTGAATTCTACTTTTTATGTTGGAGT- GGACCAATGTCTA TCAAGAGTGACAAATAAAGTTAATGATGATTCCAAAAAAAAAA SEQIDNO.: 8 SEQIDNO.: 55 AGCGGGGCAGCGGCTGCGCCCTGCGCCGGGGCGGAGCCGGGGGCGGGCCGGCGGCCGGCAGGCGGGGGCTGGGG- CCCGAGGCCGGGA MEILMTVSKFASICTMGANASAL GTGCCTGAGCGCCGGCGGCGACGACGGCAGCGGCGGCCCAGCGGGCTCGGTGGTTGGGTCCGCGGCGGCTCGGG- GTCCGCCCGCGGG EKEIGPEQFPVNEHYFGLVNFGN CTGCGGTGCGAGCGGGCGGCCCGGCTCCCCTCCTCCCCCGCCCGCCGCCGCCGCTGTGATTGGGTGGAAGATGG- CGCTGGCCGGATG TCYCNSVLQALYFCRPFREKVLA GAAATCCTAATGACAGTCTCCAAATTCGCCTCCATCTGTACCATGGGCGCCAATGCTTCGGCATTAGAGAAAGA- GATTGGTCCAGAA YKSQPRKKESLLTCLADLFHSIA CAGTTTCCGGTCAATGAGCACTATTTTGGATTAGTCAATTTTGGGAATACCTGCTACTGCAATTCAGTTCTTCA- AGCACTTTATTTT TQKKKVGVIPPKKFITRLRKENE TGTCGTCCATTTCGGGAAAAAGTTCTTGCGTATAAGAGTCAACCTAGGAAAAAGGAGAGCCTTCTTACATGCTT- AGCAGATCTCTTC LFDNYMQQDAHEFLNYLLNTIAD CATAGCATAGCCACTCAGAAGAAAAAGGTTGGAGTAATACCCCCTAAGAAGTTCATCACAAGATTACGGAAAGA- AAATGAGCTTTTT ILQEERKQEKQNGRLPNGNIDNE GACAACTACATGCAACAAGATGCCCATGAATTCTTAAATTACCTACTAAATACAATTGCTGATATTTTACAAGA- AGAGAGAAAGCAG NNNSTPDPTWVDEIFQGTLTNET GAAAAACAAAATGGTCGTTTACCTAATGGTAATATTGATAATGAAAATAATAACAGCACACCAGACCCAACGTG- GGTTGATGAGATT RCLTCETISSKDEDFLDLSVDVE TTTCAGGGAACATTAACTAATGAAACCAGATGTCTTACTTGTGAAACTATAAGCAGCAAAGATGAAGATTTTTT- AGACCTTTCTGTT QNTSITHCLRGFSNTETLCSEYK GACGTGGAACAAAATACATCAATTACTCACTGCTTAAGGGGTTTCAGCAACACAGAAACTCTGTGCAGTGAATA- CAAGTATTACTGT YYCEECRSKQEAHKRMKVKKLPM GAAGAGTGTCGCAGCAAACAGGAAGCACACAAACGGATGAAAGTTAAAAAACTGCCCATGATTCTAGCTCTACA- CCTGAAGAGATTT ILALHLKRFKYMDQLHRYTKLSY AAATATATGGATCAACTTCATCGATATACAAAACTCTCTTACCGGGTAGTTTTTCCTTTAGAACTTCGTCTGTT- TAACACTTCAGGT RVVFPLELRLFNTSGDATNPDRM GATGCCACCAATCCAGACAGAATGTACGACCTTGTTGCTGTTGTGGTTCACTGTGGAAGTGGTCCCAATCGAGG- CCATTATATTGCA YDLVAVVVHCGSGPNRGHYIAIV ATAGTTAAGAGTCATGATTTTTGGTTGTTGTTTGATGACGACATTGTAGAAAAAATAGATGCACAAGCTATTGA- AGAATTCTACGGG KSHDFWLLFDDDIVEKIDAQAIE TTGACATCAGATATCTCAAAGAACTCTGAGTCTGGTTACATCCTTTTCTATCAGTCTCGGGACTGAGAGGGAAC- CGTGATGAAGAGA EFYGLTSDISKNSESGYILFYQS CACTTTCTGCCTCATTTCTTCTCTGGTTATTTTGGAAAGGATCAAGCACTGATTTTTCAAGAAAAGAGAAATGC- AGGAAGCTCAGGG RD GGCAGTAGCACACTTTGCACACGATAAAGCAAAGACGATGGATTGACAAGCCCTTCCGATCATGGTAGTTGATT- TATTTGCTCAGGT ATCATGCTGTCTGTACAGTTCCATACAACAAGGAGGTGAAATCAGAGATACCAGCTCCTCTTTTAAAACAGCCT- TCCAGTCATTGGC ACGCATTTTCTCTTTATTAATTGCACCAATAATGCTTTGAATTCCTTGGGGGTGCAGTAGAAAGAATCGGAATC- TGTGCCGTATTGA TAAGGAGATGATGTTGAACACACTGCATAAATTTGCCTGGTTCAGTATGTATAGAAGCATATTCAGTGGTCTTT- TCAAGAGTAAACC AGAAATACTTTTGGGCCCAACACTTGCAGTTGCCTTCCTGATGTAAAAACTAACATGCTAGATAATCCAGTGTC- GGGAAGACAAAGA TGTTTTGCTTCTCTGAAGAAGCTTATAATAATATACAGTATATGTATATGTAGGGAGCAATTGGTCAAAAGTGG- CTTTTTGTTTCCC CAAGGGGAAAGACTGGCTTTGTAATTATAATTTTTTCCTTATTTATTTTACTTAAAACTGGTAGAGTCTAAGTA- TTATATGAAGTGC CCATGATTCTGTCAGTAAATTTGAACATATTTTTATTAGTTAATGTCAGTTTAAGTTGTCCTTTTGTTTGTTTC- TATTTTTAAGGTG AATTTTAATTTCTATCTGAAATCAGTTAAGATACCTTGAGAAAAACTGCAGTGAGAGGAGATAAATATCCTTTT- TCAGGAGGAACTG ATATCTCTGGCTAAATATTTGTCCTTTTATTATGGTTTCTAAATCAGTTATTTTCTTCAGCTTTAATTTCATAA- AATTAAAAAACTA TTTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA SEQIDNO.: 9 SEQIDNO.: 56 GGAAGCCATTGCCTGTTTAATAGTTGCTGTTGCTGCACTTCCGCTTCTCTCCCAGCGAGAGAGAGACACGAGTG- GCCAGGCCCAGCC MSDDDSRASTSSSSSSSSNQQTE GCAGCCGCAGCAGCAGCCGCCGCGGCGGCACGGAGGAGCCAGACACAAAGAGAGGGGCTGTTTGCGGGGTGGGG- TGGGGGGTTCGCT KETNTPKKKESKVSMSKNSKLLS ATGTCGGATGACGATTCGAGGGCCAGCACCAGCTCCTCCTCATCTTCGTCTTCCAACCAGCAAACCGAGAAAGA- AACAAACACCCCC TSAKRIQKELADITLDPPPNCSA AAGAAGAAGGAGAGTAAAGTCAGCATGAGCAAAAACTCCAAACTCCTCTCCACCAGCGCCAAGAGAATTCAGAA- GGAGCTGGCGGAC GPKGDNIYEWRSTILGPPGSVYE ATCACTTTAGACCCTCCACCTAATTGCAGTGCTGGTCCCAAAGGCGATAACATCTATGAATGGAGATCAACCAT- TCTAGGGCCTCCA GGVFFLDITFTPEYPFKPPKVTF GGATCCGTGTATGAGGGTGGTGTATTCTTTCTCGATATCACTTTTACACCAGAATATCCCTTCAAGCCTCCAAA- GGTTACATTTCGG RTRIYHCNINSQGVICLDILKDN ACAAGAATCTATCATTGTAATATTAACAGTCAAGGTGTTATTTGCTTGGACATATTGAAAGATAATTGGAGTCC- AGCACTAACCATT WSPALTISKVLLSICSLLTDCNP TCTAAAGTCCTCCTTTCTATCTGCTCACTTCTTACAGACTGTAATCCTGCCGACCCCTTGGTGGGAAGTATTGC- CACTCAGTATATG ADPLVGSIATQYMTNRAEHDRMA ACCAACAGAGCAGAACATGACAGAATGGCCAGACAGTGGACCAAGAGATACGCTACATAAATTGGGGTTTCACA- ATTCTTACATTAT RQWTKRYAT TTGTCTGTCACAGAAGAGAGCTGCTTATGATTTTGAAGGGGTCAGGGAGGGTGGGAGTTGGTAAAGAGTAGGGT- ATTTCTATAACAG ATATTATTCAGTCTTATTTCCTAAGATTTTGTTGTAACTTAAGGTATCTTGCTACAGTAGACAGAATTGGTAAT- AGCAACTTTTAAA ATTGTCATTAGTTCTGCAATATTAGCTGAAATGTAGTACAGAAAAGAATGTACATTTAGACATTTGGGTTCAGT- TGCTTGTAGTCTG TAAATTTAAAACAGCTTAATTTGGTACAGGTTACACATATGGCCATTTATGTAAAGTCCCTCTAAGACTACATA- CTTTTTGTTTAAA ACAAAATTGGAATTTGTTTTCCCTTCTTGGAAGGGAACATTGATATTTAACAGAGTTTTTAGAGATTGTCATCT- CATATATATAAAA TGGACACGTGGCTATAAAACACCATATAAGAGATGAGTAGTGCGTTTTATTTTATATGCCAATCTACTTTGTTT- AAAAAAGGTCTGA ATCAGGACTTGTGAAAACCTGTAGTGAAATACCTTAAGCTGTTAACTAACTGTAAGGCGTGGAATAGGAGTTGC- TCAGTGGATTGGT TCTATGTTGTGGACTACTTAAGTCTGCATTTGTTACTGTGCTAATAAACAATATTAAAAACCACCTAATAAACA- AAAAAAAAAAAAA SEQIDNO.: 10 SEQIDNO.: 57 TTGCTTTCCTCTGCCGCATGGTCCTGGGCCGTTGGCGTCGGAAGCCTGAAGCATGGGCGCTGAGTGGGAGCTGG- GGGCCGAGGCTGG MGAEWELGAEAGGSLLLCAALLA CGGTTCGCTGCTGCTGTGCGCCGCGCTGCTGGCGGCGGGCTGCGCCCTGGGCCTGCGCCTGGGCCGCGGGCAGG- GGGCGGCGGACCG AGCALGLRLGRGQGAADRGALIW CGGGGCGCTCATCTGGCTCTGCTACGACGCGCTGGTGCACTTCGCGCTGGAAGGCCCTTTTGTCTACTTGTCTT- TAGTAGGAAACGT LCYDALVHFALEGPFVYLSLVGN TGCAAATTCCGATGGCTTGATTGCTTCTTTATGGAAAGAATATGGCAAAGCTGATGCAAGATGGGTTTATTTTG- ATCCAACCATTGT VANSDGLIASLWKEYGKADARWV GTCTGTGGAAATTCTGACCGTCGCCCTGGATGGGTCTCTGGCATTGTTCCTCATTTATGCCATAGTCAAAGAAA- AATATTACCGGCA YFDPTIVSVEILTVALDGSLALF TTTCCTGCAGATCACCCTGTGCGTGTGCGAGCTGTATGGCTGCTGGATGACCTTCCTCCCAGAGTGGCTCACCA- GAAGCCCCAACCT LIYAIVKEKYYRHFLQITLCVCE CAACACCAGCAACTGGCTGTACTGTTGGCTTTACCTGTTTTTTTTTAACGGTGTGTGGGTTCTGATCCCAGGAC- TGCTACTGTGGCA LYGCWMTFLPEWLTRSPNLNTSN GTCATGGCTAGAACTCAAGAAAATGCATCAGAAAGAAACCAGTTCAGTGAAGAAGTTTCAGTGAACTTTCAAAA- CCATAAACACCAT WLYCWLYLFFFNGVWVLIPGLLL TATCTAACTTCATGAACCAGAATGAATCAAATCTTTTTGTTTGGCCAAAATGTAATACATTCCAGTCTACACTT- TGTTTTTGTATTG WQSWLELKKMHQKETSSVKKFQ TTGCTCCTGAACAACCTGTTTCAAATTGGTTTTAAGGCGACCAGTTTTCGTTGTATTGTTGTTCAATTAAATGG- TGATATAGGGAAA AGAGAACAAATTTGAATTTGTAATAATAAAATGTTTAATTATACAAAAAAAAAAAAAAAAA SEQIDNO.: 11 SEQIDNO.: 58 GGTCGTTTTCTGATGTGACGGCTGAGACATGAGATCTTCAGCCTCCAGGCTCTCCAGTTTTTCGTCGAGAGATT- CACTATGGAATCG MRSSASRLSSFSSRDSLWNRMPD GATGCCGGACCAGATCTCTGTCTCGGAGTTCATCGCCGAGACCACCGAGGACTACAACTCGCCCACCACGTCCA- GCTTCACCACGCG QISVSEFIAETTEDYNSPTTSSF GCTGCACAACTGCAGGAACACCGTCACGCTGCTGGAGGAGGCTCTAGACCAAGATAGAACAGCCCTTCAGAAAG- TGAAGAAGTCTGT TTRLHNCRNTVTLLEEALDQDRT AAAAGCAATATATAATTCTGGTCAAGATCATGTACAAAATGAAGAAAACTATGCACAAGTTCTTGATAAGTTTG- GGAGTAATTTTTT ALQKVKKSVKAIYNSGQDHVQNE AAGTCGAGACAACCCCGACCTTGGCACCGCGTTTGTCAAGTTTTCTACTCTTACAAAGGAACTGTCCACACTGC- TGAAAAATCTGCT ENYAQVLDKFGSNFLSRDNPDLG CCAGGGTTTGAGCCACAATGTGATCTTCACCTTGGATTCTTTGTTAAAAGGAGACCTAAAGGGAGTCAAAGGAG- ATCTCAAGAAGCC TAFVKFSTLTKELSTLLKNLLQG ATTTGACAAAGCCTGGAAAGATTATGAGACAAAGTTTACAAAAATTGAGAAAGAGAAAAGAGAGCACGCAAAAC- AACATGGGATGAT LSHNVIFTLDSLLKGDLKGVKGD CCGCACAGAGATAACAGGAGCTGAGATTGCGGAAGAAATGGAGAAGGAAAGGCGCCTCTTTCAGCTCCAAATGT- GTGAATATCTCAT LKKPFDKAWKDYETKFTKIEKEK TAAAGTTAATGAAATCAAGACCAAAAAGGGTGTGGATCTGCTGCAGAATCTTATAAAGTATTACCATGCACAGT- GCAATTTCTTTCA REHAKQHGMIRTEITGAEIAEEM AGATGGCTTGAAAACAGCTGATAAGTTGAAACAGTACATTGAAAAACTGGCTGCTGATTTATATAATATAAAAC- AGACCCAGGATGA EKERRLFQLQMCEYLIKVNEIKT AGAAAAGAAACAGCTAACTGCACTCCGAGACTTAATAAAATCCTCTCTTCAACTGGATCAGAAAGAAGATTCTC- AGAGCCGGCAAGG KKGVDLLQNLIKYYHAQCNFFQD AGGATACAGCATGCATCAGCTCCAGGGCAATAAGGAATATGGCAGTGAAAAGAAGGGGTACCTGCTAAAGAAAA- GTGACGGGATCCG GLKTADKLKQYIEKLAADLYNIK GAAAGTATGGCAGAGGAGGAAGTGTTCAGTCAAGAATGGGATTCTGACCATCTCACATGCCACATCTAACAGGC- AACCAGCCAAGTT QTQDEEKKQLTALRDLIKSSLQL GAACCTTCTCACCTGCCAAGTAAAACCTAATGCCGAAGACAAAAAATCTTTTGACCTGATATCACATAATAGAA- CATATCACTTTCA DQKEDSQSRQGGYSMHQLQGNKE GGCAGAAGATGAGCAGGATTATGTAGCATGGATATCAGTATTGACAAATAGCAAAGAAGAGGCCCTAACCATGG- CCTTCCGTGGAGA YGSEKKGYLLKKSDGIRKVWQRR GCAGAGTGCGGGAGAGAACAGCCTGGAAGACCTGACAAAAGCCATTATTGAGGATGTCCAGCGGCTCCCAGGGA- ATGACATTTGCTG KCSVKNGILTISHATSNRQPAKL CGATTGTGGCTCATCAGAACCCACCTGGCTTTCAACCAACTTGGGTATTTTGACCTGTATAGAATGTTCTGGCA- TCCATAGGGAAAT NLLTCQVKPNAEDKKSFDLISHN GGGGGTTCATATTTCTCGCATTCAGTCTTTGGAACTAGACAAATTAGGAACTTCTGAACTCTTGCTGGCCAAGA- ATGTAGGAAACAA RTYHFQAEDEQDYVAWISVLTNS TAGTTTTAATGATATTATGGAAGCAAATTTACCCAGCCCCTCACCAAAACCCACCCCTTCAAGTGATATGACTG- TACGAAAAGAATA KEEALTMAFRGEQSAGENSLEDL TATCACTGCAAAGTATGTAGATCATAGGTTTTCAAGGAAGACCTGTTCAACTTCATCAGCTAAACTAAATGAAT- TGCTTGAGGCCAT TKAIIEDVQRLPGNDICCDCGSS CAAATCCAGGGATTTACTTGCACTAATTCAAGTCTATGCAGAAGGGGTAGAGCTAATGGAACCACTGCTGGAAC- CTGGGCAGGAGCT EPTWLSTNLGILTCIECSGIHRE TGGGGAGACAGCCCTTCACCTTGCCGTCCGAACTGCAGATCAGACATCTCTCCATTTGGTTGACTTCCTTGTAC- AAAACTGTGGGAA MGVHISRIQSLELDKLGTSELLL CCTGGATAAGCAGACGGCCCTGGGAAACACAGTTCTACACTACTGTAGTATGTACAGTAAACCTGAGTGTTTGA- AGCTTTTGCTCAG AKNVGNNSFNDIMEANLPSPSPK GAGCAAGCCCACTGTGGATATAGTTAACCAGGCTGGAGAAACTGCCCTAGACATAGCAAAGAGACTAAAAGCTA- CCCAGTGTGAAGA PTPSSDMTVRKEYITAKYVDHRF TCTGCTTTCCCAGGCTAAATCTGGAAAGTTCAATCCACACGTCCACGTAGAATATGAGTGGAATCTTCGACAGG- AGGAGATAGATGA SRKTCSTSSAKLNELLEAIKSRD GAGCGATGATGATCTGGATGACAAACCAAGCCCTATCAAGAAAGAGCGCTCACCCAGACCTCAGAGCTTCTGCC- ACTCCTCCAGCAT LLALIQVYAEGVELMEPLLEPGQ CTCCCCCCAGGACAAGCTGGCACTGCCAGGATTCAGCACTCCAAGGGACAAACAGCGGCTCTCCTATGGAGCCT- TCACCAACCAGAT ELGETALHLAVRTADQTSLHLVD CTTCGTTTCCACAAGCACAGACTCGCCCACATCACCAACCACGGAGGCTCCCCCTCTGCCTCCTAGGAACGCCG- GGAAAGGTCCAAC FLVQNCGNLDKQTALGNTVLHYC TGGCCCACCTTCAACACTCCCTCTAAGCACCCAGACCTCTAGTGGCAGCTCCACCCTATCCAAGAAGAGGCCTC- CTCCCCCACCACC SMYSKPECLKLLLRSKPTVDIVN CGGACACAAGAGAACCCTATCCGACCCTCCCAGCCCACTACCTCATGGGCCCCCAAACAAAGGCGCAGTTCCTT- GGGGTAACGATGG QAGETALDIAKRLKATQCEDLLS GGGTCCATCCTCTTCAAGTAAGACTACAAACAAGTTTGAGGGACTATCCCAGCAGTCGAGCACCAGTTCTGCAA- AGACTGCCCTTGG QAKSGKFNPHVHVEYEWNLRQEE CCCAAGAGTTCTTCCTAAACTACCTCAGAAAGTGGCACTAAGGAAAACAGATCATCTCTCCCTAGACAAAGCCA- CCATCCCGCCCGA IDESDDDLDDKPSPIKKERSPRP AATCTTTCAGAAATCATCACAGTTGGCAGAGTTGCCACAAAAGCCACCACCTGGAGACCTGCCCCCAAAGCCCA- CAGAACTGGCCCC QSFCHSSSISPQDKLALPGFSTP CAAGCCCCAAATTGGAGATTTGCCGCCTAAGCCAGGAGAACTGCCCCCCAAACCACAGCTGGGGGACCTGCCAC- CCAAACCCCAACT RDKQRLSYGAFTNQIFVSTSTDS CTCAGACTTACCTCCCAAACCACAGATGAAGGACCTGCCCCCCAAACCACAGCTGGGAGACCTGCTAGCAAAAT- CCCAGACTGGAGA PTSPTTEAPPLPPRNAGKGPTGP TGTCTCACCCAAGGCTCAGCAACCCTCTGAGGTCACACTGAAGTCACACCCATTGGATCTATCCCCAAATGTGC- AGTCCAGAGACGC PSTLPLSTQTSSGSSTLSKKRPP CATCCAAAAGCAAGCATCTGAAGACTCCAACGACCTCACGCCTACTCTGCCAGAGACGCCCGTACCACTGCCCA- GAAAAATCAATAC PPPPGHKRTLSDPPSPLPHGPPN GGGGAAAAATAAAGTGAGGCGAGTGAAGACCATTTATGACTGCCAGGCAGACAACGATGACGAGCTCACATTCA- TCGAGGGAGAAGT KGAVPWGNDGGPSSSSKTTNKFE GATTATCGTCACAGGGGAAGAGGACCAGGAGTGGTGGATTGGCCACATCGAAGGACAGCCTGAAAGGAAGGGGG- TCTTTCCAGTGTC GLSQQSSTSSAKTALGPRVLPKL CTTTGTTCATATCCTGTCTGACTAGCAAAACGCAGAACCTTAAGATTGTCCACATCCTTCATGCAAGACTGCTG- CCTTCATGTAACC PQKVALRKTDHLSLDKATIPPEI CTGGGCACAGTGTGTATATAGCTGCTGTTACAGAGTAAGAAACTCATGGAAGGGCCACCTCAGGAGGGGGATAT- AATGTGTGTTGTA FQKSSQLAELPQKPPPGDLPPKP AATATCCTGTGGTTTTCTGCCTTCACCAGTATGAGGGTAGCCTCGGACCCGGCGCGCCTTACTGGTTTGCCAAA- GCCATCCTTGGCA TELAPKPQIGDLPPKPGELPPKP TCTAGCACTTACATCTCTCTATGCTGTTCTACAAGCAAACAAACAAAAATAGGAGTATAGGAACTGCTGGCTTT- GCAAATAGAAGTG QLGDLPPKPQLSDLPPKPQMKDL
GTCTCCAGCAACCGTTGAAAGGCATAGAATTGACTCTGTTCCTAACAATGCAGTATTCTCAATTGTGTTACTGA- AAATGCAACATTA PPKPQLGDLLAKSQTGDVSPKAQ GCAAAGAGGTGGGTTCTGTTTTCCAGGTGAAACTTTTAGCTCCATGACAGACCAGCCTGTAGTTATCTGTGTAC- ACAGTTTACAGCT QPSEVTLKSHPLDLSPNVQSRDA ACAAAAACCTACTTTGGTATTTATTACAGAAAAGTGCTCAGTTAATGTAAGTGTTATTCCTTCAGCAAAATATT- CACTGACCCAAAA IQKQASEDSNDLTPTLPETPVPL CTCTTTATGGCATTTTACAATGCACACAGCCTCATGCAAGTTTAGACAAGTGGATTTATACTGTCTTATGAGTG- CCCGCCCCTGATA PRKINTGKNKVRRVKTIYDCQAD TATTACCTCATTATGCAAAAATAACATATCTTTCATGACTATTTTGACAAAAGTTTAAAACACATATGAAGTTC- AAATTTCAGGAAC NDDELTFIEGEVIIVTGEEDQEW CAAGGACTGCCAGAAAATATTAGCCTCTACATTACGCATGCATTTAGAAGCTTACCTGAAATCTGCCTTTTATA- AAGGAATAGTATG WIGHIEGQPERKGVFPVSFVHIL GATAAGTGGAATTGTACATTTTTTAAACTTGATTGCCATTAAAGCAGAAATTATAAGGTTGCAACAATATTTGT- TTCTAATCACTGG SD CTTTCTCAAGAGTATGGATTGACATATTGTGTTATGAATGCACATCTCTCAGATGTGTTGAAGCATCCATTGCA- TCCATTTTTTATT ATTTTCTTAGTTTTGTTCTTGGACAAATTTAAACTTTTAAAAGATTATTCAAGATGAATTTAAAAGTCAACCCT- TCACACAGTTTCC CTACTGTATGTAGAATCCAGGTGCTGAAACCAAGTGTTTCTTTTCCCATGCTCTTTGTTAAACCCCAATTATAG- ATAATTTTTCCAG TCTTAAGCTCTGTCCACCTTCAAGTCAATTCATAACCAAGTTTTTGAACGCTGCTATGAATTGCACTGTGAAAA- GCACTCTTCCCTC TCAGTTTTCTTTTCATCCCAGCCATGTTTATCAGATCCTTAAGAACATTGTATTTCAGTCTTTTACATCAGTCT- GAATTTTGGAAAA GAATGCAATAGTTGTACTCCACAGTCAGTGGAACTGTTCCCTGAGTCCGAGGCTCATGTGTCATTCTGGCACTA- CATTTGCTTAAAT TGCTATTTTGGCAACAGCACAGAAAACTAATATTTTTAAGCAGAGAATCTTGGCAATGAGTGAGAGATGTTAAT- TTCACAGAAGCAC AACTCCCAACCCAACCCTTAGGAAAAGCCCTCTTCCATCGTTACAGTGCTCAGTGAATATTAATTTAGTTCTGC- TTAAGTGGTTGCT ATACAAACTTTGAATAGCCACCTAATAAATAAACCTTGCATGACAAACCTGCAAAATATTTTATCAGCTGTTAT- TGGAAAGTGATTT TAAGCAATTGCTTCCTCAGTGTCAGGGCACATGTGAATTTCCACACCAAACAGAGCATGAGGAACCAGTTGACA- TGCTGGGTTGTGA CTGGCAGCTTTAGCAGCCTCGGTACTGAAGCCACACCAGTGTCCGGATGGAAGTCTGCATCTGAGGTTGCTCAG- TGTCCCGGTCATT CATTTACACATTTTAACTTGCATTAAAGAGCTGTTCTTTTCTGTGGCCTAGACTCTTTTCACTGATCTCAAAAT- AAACTGGTTTTTT TCAAAAAAAAAAAAAAAACAAAAACAAAAAAAAAACACAAAAGCTGCATGTCTAAAATTACATGGAGTTAGTGT- CTATTCTTTTTCC CCTTTTGCAGCAACTTACACAGCATTTTTAACACCTTTTTTTTCTAGTTTTTTTGTTCGGTTTTGTTTTCCATC- AGGAATTTGAGTT CTCTCTAACCCAGCTTACTGTGGGACATAGGAAAACTCAGTAGAAATACCTTTGGTGATCTTGTTGAGTTTAAG- TCTGATCTTGATC TTAAACTCAGTAAGCCACTATCTGCAATTTTGTACATTATATAGTATTTTGAAGATATGGAACCTTATGAAAAA- AAAATAGCAAATT AGTTCTTTTTCCCCCAGAGGGGAAAGTTATGTTCTGCAAATAGTGTGTGTCTTATTTTACTGTTGAACAGCAAT- TGCTATTTATTTT TTTATTGCCTAGAACTTCAACATGTTGTATAGGAATCCTGTAGTGCCACTAGTTAAATGCCGAATTCTCATCTG- GATGTTACCATCA AACATCAGTACACTTGTCATTTCACATGTGTTTAATGTGACAGTTTTTCAGTACTGTATGTGTTAATTTCTACT- TTTTTTAATATTT AAAATTGCTTTTAAATAAACATATTCTCAGTTGATCCC SEQIDNO.: 12 SEQIDNO.: 59 CTTCCAGAGAGCAATATGGCTGGTTCCCCAACATGCCTCACCCTCATCTATATCCTTTGGCAGCTCACAGGGTC- AGCAGCCTCTGGA MAGSPTCLTLIYILWQLTGSAAS CCCGTGAAAGAGCTGGTCGGTTCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTCCAAAGTAAAGCAAGTTGA- CTCTATTGTCTGG GPVKELVGSVGGAVTFPLKSKVK ACCTTCAACACAACCCCTCTTGTCACCATACAGCCAGAAGGGGGCACTATCATAGTGACCCAAAATCGTAATAG- GGAGAGAGTAGAC QVDSIVWTFNTTPLVTIQPEGGT TTCCCAGATGGAGGCTACTCCCTGAAGCTCAGCAAACTGAAGAAGAATGACTCAGGGATCTACTATGTGGGGAT- ATACAGCTCATCA IIVTQNRNRERVDFPDGGYSLKL CTCCAGCAGCCCTCCACCCAGGAGTACGTGCTGCATGTCTACGAGCACCTGTCAAAGCCTAAAGTCACCATGGG- TCTGCAGAGCAAT SKLKKNDSGIYYVGIYSSSLQQP AAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATGGAACATGGGGAAGAGGATGTGATTTATACCTGGAA- GGCCCTGGGGCAA STQEYVLHVYEHLSKPKVTMGLQ GCAGCCAATGAGTCCCATAATGGGTCCATCCTCCCCATCTCCTGGAGATGGGGAGAAAGTGATATGACCTTCAT- CTGCGTTGCCAGG SNKNGTCVTNLTCCMEHGEEDVI AACCCTGTCAGCAGAAACTTCTCAAGCCCCATCCTTGCCAGGAAGCTCTGTGAAGGTGCTGCTGATGACCCAGA- TTCCTCCATGGTC YTWKALGQAANESHNGSILPISW CTCCTGTGTCTCCTGTTGGTGCCCCTCCTGCTCAGTCTCTTTGTACTGGGGCTATTTCTTTGGTTTCTGAAGAG- AGAGAGACAAGAA RWGESDMTFICVARNPVSRNFSS GAGTACATTGAAGAGAAGAAGAGAGTGGACATTTGTCGGGAAACTCCTAACATATGCCCCCATTCTGGAGAGAA- CACAGAGTACGAC PILARKLCEGAADDPDSSMVLLC ACAATCCCTCACACTAATAGAACAATCCTAAAGGAAGATCCAGCAAATACGGTTTACTCCACTGTGGAAATACC- GAAAAAGATGGAA LLLVPLLLSLFVLGLFLWFLKRE AATCCCCACTCACTGCTCACGATGCCAGACACACCAAGGCTATTTGCCTATGAGAATGTTATCTAGACAGCAGT- GCACTCCCCTAAG RQEEYIEEKKRVDICRETPNICP TCTCTGCTCAAAAAAAAAACAATTCTCGGCCCAAAGAAAACAATCAGAAGAATTCACTGATTTGACTAGAAACA- TCAAGGAAGAATG HSGENTEYDTIPHTNRTILKEDP AAGAACGTTGACTTTTTTCCAGGATAAATTATCTCTGATGCTTCTTTAGATTTAAGAGTTCATAATTCCATCCA- CTGCTGAGAAATC ANTVYSTVEIPKKMENPHSLLTM TCCTCAAACCCAGAAGGTTTAATCACTTCATCCCAAAAATGGGATTGTGAATGTCAGCAAACCATAAAAAAAGT- GCTTAGAAGTATT PDTPRLFAYENVI CCTATAGAAATGTAAATGCAAGGTCACACATATTAATGACAGCCTGTTGTATTAATGATGGCTCCAGGTCAGTG- TCTGGAGTTTCAT TCCATCCCAGGGCTTGGATGTAAGGATTATACCAAGAGTCTTGCTACCAGGAGGGCAAGAAGACCAAAACAGAC- AGACAAGTCCAGC AGAAGCAGATGCACCTGACAAAAATGGATGTATTAATTGGCTCTATAAACTATGTGCCCAGCACTATGCTGAGC- TTACACTAATTGG TCAGACGTGCTGTCTGCCCTCATGAAATTGGCTCCAAATGAATGAACTACTTTCATGAGCAGTTGTAGCAGGCC- TGACCACAGATTC CCAGAGGGCCAGGTGTGGATCCACAGGACTTGAAGGTCAAAGTTCACAAAGATGAAGAATCAGGGTAGCTGACC- ATGTTTGGCAGAT ACTATAATGGAGACACAGAAGTGTGCATGGCCCAAGGACAAGGACCTCCAGCCAGGCTTCATTTATGCACTTGT- GCTGCAAAAGAAA AGTCTAGGTTTTAAGGCTGTGCCAGAACCCATCCCAATAAAGAGACCGAGTCTGAAGTCACATTGTAAATCTAG- TGTAGGAGACTTG GAGTCAGGCAGTGAGACTGGTGGGGCACGGGGGGCAGTGGGTACTTGTAAACCTTTAAAGATGGTTAATTCATT- CAATAGATATTTA TTAAGAACCTATGCGGCCCGGCATGGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCAAGGTGGGTGGG- TCATCTGAGGTCA GGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCCATCTCTACTAAAGATACAAAAATTTGCTGAGCGTGG- TGGTGTGCACCTG TAATCCCAGCTACTCGAGAGGCCAAGGCATGAGAATCGCTTGAACCTGGGAGGTGGAGGTTGCAGTGAGCTGAG- ATGGCACCACTGC ACTCCGGCCTAGGCAACGAGAGCAAAACTCCAATACAAACAAACAAACAAACACCTGTGCTAGGTCAGTCTGGC- ACGTAAGATGAAC ATCCCTACCAACACAGAGCTCACCATCTCTTATACTTAAGTGAAAAACATGGGGAAGGGGAAAGGGGAATGGCT- GCTTTTGATATGT TCCCTGACACATATCTTGAATGGAGACCTCCCTACCAAGTGATGAAAGTGTTGAAAAACTTAATAACAAATGCT- TGTTGGGCAAGAA TGGGATTGAGGATTATCTTCTCTCAGAAAGGCATTGTGAAGGAATTGAGCCAGATCTCTCTCCCTACTGCAAAA- CCCTATTGTAGTA AAAAAGTCTTCTTTACTATCTTAATAAAACAGATATTGTGAGATTCAAAAAAAAAAAAAAAA SEQIDNO.: 13 SEQIDNO.: 60 GACTGCGCGGCCGGGAGGAGCCGAGCCGGGCGGCGGCGGCGGGAGGCTACAGCGCGCGGGGGTCTCCCGCGTCC- CCTCCGCCTCGCC MSSDRQRSDDESPSTSSGSSDAD GGGAGCTCGCGCCCTCGCCCAGCCGAGCTCCCACCCCCGCTTTTTTCCGAAGGCGCTGGGCGGCGCCACCCTCC- GGCCGGAGCCCGG QRDPAAPEPEEQEERKPSATQQK CACTGCACAACCCCCTCCGACTTTCAATGTTCCACACTCCCCGGCCAGAGCCTCCTCGGCTTCTTTTTTTCCCT- CCCCCCCCTTCCC KNTKLSSKTTAKLSTSAKRIQKE CCCCCCACAGCTGCCTCCATTTCCTTAAGGAAGGGTTTTTTTCTCTCTCCCTCCCCCACACCGTAGCGGCGCGC- GAGCGGGCCGGGC LAEITLDPPPNCSAGPKGDNIYE GGGCGGCCGAGTTTTCCAAGAGATAACTTCACCAAGATGTCCAGTGATAGGCAAAGGTCCGATGATGAGAGCCC- CAGCACCAGCAGT WRSTILGPPGSVYEGGVFFLDIT GGCAGTTCAGATGCGGACCAGCGAGACCCAGCCGCTCCAGAGCCTGAAGAACAAGAGGAAAGAAAACCTTCTGC- CACCCAGCAGAAG FSSDYPFKPPKVTFRTRIYHCNI AAAAACACCAAACTCTCTAGCAAAACCACTGCTAAGTTATCCACTAGTGCTAAAAGAATTCAGAAGGAGCTAGC- TGAAATAACCCTT NSQGVICLDILKDNWSPALTISK GATCCTCCTCCTAATTGCAGTGCTGGGCCTAAAGGAGATAACATTTATGAATGGAGATCAACTATACTTGGTCC- ACCGGGTTCTGTA VLLSICSLLTDCNPADPLVGSIA TATGAAGGTGGTGTGTTTTTTCTGGATATCACATTTTCATCAGATTATCCATTTAAGCCACCAAAGGTTACTTT- CCGCACCAGAATC TQYLTNRAEHDRIARQWTKRYAT TATCACTGCAACATCAACAGTCAGGGAGTCATCTGTCTGGACATCCTTAAAGACAACTGGAGTCCCGCTTTGAC- TATTTCAAAGGTT TTGCTGTCTATTTGTTCCCTTTTGACAGACTGCAACCCTGCGGATCCTCTGGTTGGAAGCATAGCCACTCAGTA- TTTGACCAACAGA GCAGAACACGACAGGATAGCCAGACAGTGGACCAAGAGATACGCAACATAATTCACATAATTTGTATGCAGTGT- GAAGGAGCAGAAG GCATCTTCTCACTGTGCTGCAAATCTTTATAGCCTTTACAATACGGACTTCTGTGTATATGTTATACTGATTCT- ACTCTGCTTTTAT CCTTTGGAGCCTGGGAGACTCCCCAAAAAGGTAAATGCTATCAAGAGTAGAACTTTGTAGCTGTAGATTAGTTA- TGTTTAAAACGCC TACTTGCAAGTCTTGCTTCTTTGGGATATCAAAATGTATTTTGTGATGTACTAAGGATACTGGTCCTGAAGTCT- ACCAAATATTATA GTGCATTTTAGCCTAATTCATTATCTGTATGAAGTTATAAAAGTAGCTGTAGATGGCTAGGAATTATGTCATTT- GTATTAAACCCAG ATCTATTTCTGAGTATGTGGTTCATGCTGTTGTGAAAAATGTTTTACCTTTTACCTTTGTCAGTTTGTAATGAG- AGGATTTCCTTTT ACCCTTTGTAGCTCAGAGAGCACCTGATGTATCATCTCAAACACAATAAACATGCTCCTGAAGGAAAAAAAAAA- AAAAAA SEQIDNO.: 14 SEQIDNO.: 61 CCACGCGTCCGGGACCCGGCCCGCGCCTTCTGCCCCTGCTGCCGGCCGCGCCATGCGGTGAGCGCCCCAGGCCG- CCAGAGCCCACCC MARGSALLLASLLLAAALSASAG GACCCGGCCCGACGCCCGGACCTGCCGCCCAGACCCGCCACCGCACCCGGACCCCGACGCTCCGAACCCGGGCG- CAGCCGCAGCTCA LWSPAKEKRGWTLNSAGYLLGPH AGATGGCCCGAGGCAGCGCCCTCCTTCTCGCCTCCCTCCTCCTCGCCGCGGCCCTTTCTGCCTCTGCGGGGCTC- TGGTCGCCGGCCA AVGNHRSFSDKNGLTSKRELRPE AGGAAAAACGAGGCTGGACCCTGAACAGCGCGGGCTACCTGCTGGGCCCACATGCCGTTGGCAACCACAGGTCA- TTCAGCGACAAGA DDMKPGSFDRSIPENNIMRTIIE ATGGCCTCACCAGCAAGCGGGAGCTGCGGCCCGAAGATGACATGAAACCAGGAAGCTTTGACAGGTCCATACCT- GAAAACAATATCA FLSFLHLKKAGALDRLLDLPAAA TGCGCACAATCATTGAGTTTCTGTCTTTCTTGCATCTCAAAGAGGCCGGTGCCCTCGACCGCCTCCTGGATCTC- CCCGCCGCAGCCT SSEDIERS CCTCAGAAGACATCGAGCGGTCCTGAGAGCCTCCTGGGCATGTTTGTCTGTGTGCTGTAACCTGAAGTCAAACC- TTAAGATAATGGA TAATCTTCGGCCAATTTATGCAGAGTCAGCCATTCCTGTTCTCTTTGCCTTGATGTTGTGTTGTTATCATTTAA- GATTTTTTTTTTT TGGTAATTATTTTGAGTGGCAAAATAAAGAATAGCAATTAAAAAAAAAAAAACAAAAAAAAAAAAAAAA SEQIDNO.: 15 SEQIDNO.: 62 CGGTGGTTGGGTGGTAAGATGGCGGCTGTGAGTCTGCGGCTCGGCGACTTGGTGTGGGGGAAACTCGGCCGATA- TCCTCCTTGGCCA MAAVSLRLGDLVWGKLGRYPPWP GGAAAGATTGTTAATCCACCAAAGGACTTGAAGAAACCTCGCGGAAAGAAATGCTTCTTTGTGAAATTTTTTGG- AACAGAAGATCAT GKIVNPPKDLKKPRGKKCFFVKF GCCTGGATCAAAGTGGAACAGCTGAAGCCATATCATGCTCATAAAGAGGAAATGATAAAAATTAACAAGGGTAA- ACGATTCCAGCAA FGTEDHAWIKVEQLKPYHAHKEE GCGGTAGATGCTGTCGAAGAGTTCCTCAGGAGAGCCAAAGGGAAAGACCAGACGTCATCCCACAATTCTTCTGA- TGACAAGAATCGA MIKINKGKRFQQAVDAVEEFLRR CGTAATTCCAGTGAGGAGAGAAGTAGGCCAAACTCAGGTGATGAGAAGCGCAAACTTAGCCTGTCTGAAGGGAA- GGTGAAGAAGAAC AKGKDQTSSHNSSDDKNRRNSSE ATGGGAGAAGGAAAGAAGAGGGTGTCTTCAGGCTCTTCAGAGAGAGGCTCCAAATCCCCTCTGAAAAGAGCCCA- AGAGCAAAGTCCC ERSRPNSGDEKRKLSLSEGKVKK CGGAAGCGGGGTCGGCCCCCAAAGGATGAGAAGGATCTCACCATCCCGGAGTCTAGTACCGTGAAGGGGATGAT- GGCCGGACCGATG NMGEGKKRVSSGSSERGSKSPLK GCCGCGTTTAAATGGCAGCCAACCGCAAGCGAGCCTGTTAAAGATGCAGATCCTCATTTCCATCATTTCCTGCT- AAGCCAAACAGAG RAQEQSPRKRGRPPKDEKDLTIP AAGCCAGCTGTCTGTTACCAGGCAATCACGAAGAAGTTGAAAATATGTGAAGAGGAAACTGGCTCCACCTCCAT- CCAGGCAGCTGAC ESSTVKGMMAGPMAAFKWQPTAS AGCACAGCCGTGAATGGCAGCATCACACCCACAGACAAAAAGATAGGATTTTTGGGCCTTGGTCTCATGGGAAG- TGGAATCGTCTCC EPVKDADPHFHHFLLSQTEKPAV AACTTGCTAAAAATGGGTCACACAGTGACTGTCTGGAACCGCACTGCAGAGAAATGTGATTTGTTCATCCAGGA- GGGGGCCCGTCTG CYQAITKKLKICEEETGSTSIQA GGAAGAACCCCCGCTGAAGTCGTCTCAACCTGCGACATCACTTTCGCCTGCGTGTCGGATCCCAAGGCGGCCAA- GGACCTGGTGCTG ADSTAVNGSITPTDKKIGFLGLG GGCCCCAGTGGTGTGCTGCAAGGGATCCGCCCTGGGAAGTGCTACGTGGACATGTCAACAGTGGACGCTGACAC- CGTCACTGAGCTG LMGSGIVSNLLKMGHTVTVWNRT GCCCAGGTGATTGTGTCCAGGGGGGGGCGCTTTCTGGAAGCCCCCGTCTCAGGGAATCAGCAGCTGTCTAATGA- CGGGATGTTGGTG AEKCDLFIQEGARLGRTPAEVVS ATCTTAGCGGCTGGAGACAGGGGCTTATATGAGGACTGCAGCAGCTGCTTCCAGGCGATGGGGAAGACCTCCTT- CTTCCTAGGTGAA TCDITFACVSDPKAAKDLVLGPS GTGGGCAATGCAGCCAAGATGATGCTGATCGTGAACATGGTCCAAGGGAGCTTCATGGCCACTATTGCCGAGGG- GCTGACCCTGGCC GVLQGIRPGKCYVDMSTVDADTV CAGGTGACAGGCCAGTCCCAGCAGACACTCTTGGACATCCTCAATCAGGGACAGTTGGCCAGCATCTTCCTGGA- CCAGAAGTGCCAA TELAQVIVSRGGRFLEAPVSGNQ AATATCCTGCAAGGAAACTTTAAGCCTGATTTCTACCTGAAATACATTCAGAAGGATCTCCGCTTAGCCATTGC- GCTGGGTGATGCG QLSNDGMLVILAAGDRGLYEDCS GTCAACCATCCGACTCCCATGGCAGCTGCAGCAAATGAGGTGTACAAAAGAGCCAAGGCGCTGGACCAGTCCGA- CAACGATATGTCC SCFQAMGKTSFFLGEVGNAAKMM GCCGTGTACCGAGCCTACATACACTAAGCTGTCGACACCCCGCCCTCACCCCTCCAATCCCCCCTCTGACCCCC- TCTTCCTCACATG LIVNMVQGSFMATIAEGLTLAQV GGGTCGGGGGCCTGGGAGTTCATTCTGGACCAGCCCACCTATCTCCATTTCCTTTTATACAGACTTTGAGACTT- GCCATCAGCACAG TGQSQQTLLDILNQGQLASIFID CACACAGCAGCACCCTTCCCCTGAGGCCGGTGGGGAGGGGACAAGTGTCAGCAGGATTGGCGTGTGGGAAAGCT- CTTGAGCTGGGCA QKCQNILQGNFKPDFYLKYIQKD CTGGCCCCCCGGACGAGGTGGCTGTGTGTTCACACACACACACACACACACACACACACACACACACAGGCTCT- CGCCCCAGGATAG LRLAIALGDAVNHPTPMAAAANE AAGCTGCCCAGAAACTGCTGCCTGGCTTTTTTTCTTCCGAGCTTGTCTTATCTCAAACCCCTTCCAGTCAAGGA- ACTAGAATCAGCA VYKRAKALDQSDNDMSAVYRAYI ACGAGAGTTGGAAGCCTTCCCACAGCTTCCCCCAGAGCGAAGAGGCTGTAGTCATGTCCCCATCCCCCACTGGA- TTCCCTACAAGGA H GAGGCCTTGGGCCCAGATGAGCCAGTACAGACTCCAGACAGAGGGGCCCTTGGGGCCCTCCAACCTCAGGTGAT- GAGCTGAGAAAGA TGTTCACGTCTAAGCGTCCAGTGTGCACCCAGCGCTCCATAGACGCCTTTGTGAACTGAAAAGAGACTGGCAGA- GTCCCGAGAAGAT GGGGCCCTGGCTTTCCAGGGAGTGCAGCAAGCAGCCGGCCTGCAGGTGAGCATGGAGGCCCGGCCCTCACCGCC- TCGAAGCCATGCC CCAGATGCCACTGCCACAGCGGGCGCTCGCTCCTCCCTAGGCTGTTTTAGTATTTGGATTTGCATTCCATCCCT- TGGGAGGGAGTCC TCAGGGCCACTAGTGATGAGCCAAGAGGAGTGGGGGTTGGGGGCGCTCCTTTCTGTTTCCGTTAGGCCACAGAC- TCTTCACCTGGCT CTGAAGAGCCACTCTTACCTCGGTCCCCTCCCAGTGGTCCCACCTTCTCCACCCTGCCCTGCCAAGTCCCCTGC- ATGCCCACCGCTC TCCATCCTCCCTCCTCTCCCTCTTCCTCCCGTGGAGACAGTATTTCTTTCTGTCTGTCCCTTTGGCCCAGACCC- AGCCTGACCAACG ATGAGCATTTCTTAGGCTCAGCTCTTGATACGGAAACGAGTGTCTTCACTCCAGCCAGCATCATGGTCTTCGGT- GCTTCCCGGGCCC GGGGTCTGTCGGGAGGGAAGAGAACTGGGCCTGACCTACCTGAACTGACTGGCCCTCCGAGGTGGGTCTGGGAC- ATCCTAGAGGCCC TACATTTGTCCTTGGATAGGGGACCGGGGGGGGCTTGGAATGTTGCAAAAAAAAAGTTACCCAAGGGATGTCAG- TTTTTTATCCCTC TGCATGGGTTGGATTTTCCAAAATCATAATTTGCAGAAGGAAGGCCAGCATTTACGATGCAATATGTAATTATA- TATAGGGTGGCCA CACTAGGGCGGGGTCCTTCCCCCCTACACAGCTTTGGCCCCTTTCAGAGATTAGAAACTGGGTTAGAGGATTGC- AGAAGACGAGTGG GGGGAGGGCAGGGAAGATGCCTGTCGGGTTTTTAGCACAGTTCATTTCACTGGGATTTTGAAGCATTTCTGTCT- GAACACAAGCCTG
TTCTAGTCCTGGCGGAACACACTGGGGGTGGGGGCGGGGGAAGATGCGGTAATGAAACCGGTTAGTCAATTTTG- TCTTAATATTGTT GACAATTCTGTAAAGTTCCTTTTTATGAATATTTCTGTTTAAGCTATTTCACCTTTCTTTTGAAATCCTTCCCT- TTTAAGGAGAAAA TGTGACACTTGTGAAAAAGCTTGTAAGAAAGCCCCTCCCTTTTTTTCTTTAAACCTTTAAATGACAAATCTAGG- TAATTAAGGTTGT GAATTTTTATTTTTGCTTTGTTTTTAATGAACATTTGTCTTTCAGAATAGGATTGTGTGATAATGTTTAAATGG- CAAAAACAAAACA TGATTTTGTGCAATTAACAAAGCTACTGCAAGAAAAATAAAACACTTCTTGGTAACACAAAAAAAAAAAAAAAA- AAAA SEQIDNO.: 16 SEQIDNO.: 63 AGTACCTTGGTCCAGCTCTTCCTGCAACGGCCCAGGAGCTCAGAGCTCCACATCTGACCTTCTAGTCATGACCA- GGACCAGGGCAGC MTRTRAALLLFTALATSLGFNLD ACTCCTCCTGTTCACAGCCTTAGCAACTTCTCTAGGTTTCAACTTGGACACAGAGGAGCTGACAGCCTTCCGTG- TGGACAGCGCTGG TEELTAFRVDSAGFGDSVVQYAN GTTTGGAGACAGCGTGGTCCAGTATGCCAACTCCTGGGTGGTGGTTGGAGCCCCCCAAAAGATAACAGCTGCCA- ACCAAACGGGTGG SWVVVGAPQKITAANQTGGLYQC CCTCTACCAGTGTGGCTACAGCACTGGTGCCTGTGAGCCCATCGGCCTGCAGGTGCCCCCGGAGGCCGTGAACA- TGTCCCTGGGCCT GYSTGACEPIGLQVPPEAVNMSL GTCCCTGGCGTCTACCACCAGCCCTTCCCAGCTGCTGGCCTGCGGCCCCACCGTGCACCACGAGTGCGGGAGGA- ACATGTACCTCAC GLSLASTTSPSQLLACGPTVHHE CGGACTCTGCTTCCTCCTGGGCCCCACCCAGCTCACCCAGAGGCTCCCGGTGTCCAGGCAGGAGTGCCCAAGAC- AGGAGCAGGACAT CGRNMYLTGLCFLLGPTQLTQRL TGTGTTCCTGATCGATGGCTCAGGCAGCATCTCCTCCCGCAACTTTGCCACGATGATGAACTTCGTGAGAGCTG- TGATAAGCCAGTT PVSRQECPRQEQDIVFLIDGSGS CCAGAGACCCAGCACCCAGTTTTCCCTGATGCAGTTCTCCAACAAATTCCAAACACACTTCACTTTCGAGGAAT- TCAGGCGCAGCTC ISSRNFATMMNFVRAVISQFQRP AAACCCCCTCAGCCTGTTGGCTTCTGTTCACCAGCTGCAAGGGTTTACATACACGGCCACCGCCATCCAAAATG- TCGTGCACCGATT STQFSLMQFSNKFQTHFTFEEFR GTTCCATGCCTCATATGGGGCCCGTAGGGATGCCGCCAAAATTCTCATTGTCATCACTGATGGGAAGAAAGAAG- GCGACAGCCTGGA RSSNPLSLLASVHQLQGFTYTAT TTATAAGGATGTCATCCCCATGGCTGATGCAGCAGGCATCATCCGCTATGCAATTGGGGTTGGATTAGCTTTTC- AAAACAGAAATTC AIQNVVHRLFHASYGARRDAAKI TTGGAAAGAATTAAATGACATTGCATCGAAGCCCTCCCAGGAACACATATTTAAAGTGGAGGACTTTGATGCTC- TGAAAGATATTCA LIVITDGKKEGDSLDYKDVIPMA AAACCAACTGAAGGAGAAGATCTTTGCCATTGAGGGTACGGAGACCACAAGCAGTAGCTCCTTCGAATTGGAGA- TGGCACAGGAGGG DAAGIIRYAIGVGLAFQNRNSWK CTTCAGCGCTGTGTTCACACCTGATGGCCCCGTTCTGGGGGCTGTGGGGAGCTTCACCTGGTCTGGAGGTGCCT- TCCTGTACCCCCC ELNDIASKPSQEHIFKVEDFDAL AAATATGAGCCCTACCTTCATCAACATGTCTCAGGAGAATGTGGACATGAGGGACTCTTACCTGGGTTACTCCA- CCGAGCTGGCCCT KDIQNQLKEKIFAIEGTETTSSS CTGGAAAGGGGTGCAGAGCCTGGTCCTGGGGGCCCCCCGCTACCAGCACACCGGGAAGGCTGTCATCTTCACCC- AGGTGTCCAGGCA SFELEMAQEGFSAVFTPDGPVLG ATGGAGGATGAAGGCCGAAGTCACGGGGACTCAGATCGGCTCCTACTTCGGGGCCTCCCTCTGCTCCGTGGACG- TAGACAGCGACGG AVGSFTWSGGAFLYPPNMSPTFI CAGCACCGACCTGGTCCTCATCGGGGCCCCCCATTACTACGAGCAGACCCGAGGGGGCCAGGTGTCTGTGTGTC- CCTTGCCCAGGGG NMSQENVDMRDSYLGYSTELALW GTGGAGAAGGTGGTGGTGTGATGCTGTTCTCTACGGGGAGCAGGGCCACCCCTGGGGTCGCTTTGGGGCGGCTC- TGACAGTGCTGGG KGVQSLVLGAPRYQHTGKAVIFT GGATGTGAATGGGGACAAGCTGACAGACGTGGTCATCGGGGCCCCAGGAGAGGAGGAGAACCGGGGTGCTGTCT- ACCTGTTTCACGG QVSRQWRMKAEVTGTQIGSYFGA AGTCTTGGGACCCAGCATCAGCCCCTCCCACAGCCAGCGGATCGCGGGCTCCCAGCTCTCCTCCAGGCTGCAGT- ATTTTGGGCAGGC SLCSVDVDSDGSTDLVLIGAPHY ACTGAGCGGGGGTCAAGACCTCACCCAGGATGGACTGGTGGACCTGGCTGTGGGGGCCCGGGGCCAGGTGCTCC- TGCTCAGGACCAG YEQTRGGQVSVCPLPRGWRRWWC ACCTGTGCTCTGGGTGGGGGTGAGCATGCAGTTCATACCTGCCGAGATCCCCAGGTCTGCGTTTGAGTGTCGGG- AGCAGGTGGTCTC DAVLYGEQGHPWGRFGAALTVLG TGAGCAGACCCTGGTACAGTCCAACATCTGCCTTTACATTGACAAACGTTCTAAGAACCTGCTTGGGAGCCGTG- ACCTCCAAAGCTC DVNGDKLTDVVIGAPGEEENRGA TGTGACCTTGGACCTGGCCCTCGACCCTGGCCGCCTGAGTCCCCGTGCCACCTTCCAGGAAACAAAGAACCGGA- GTCTGAGCCGAGT VYLFHGVLGPSISPSHSQRIAGS CCGAGTCCTCGGGCTGAAGGCACACTGTGAAAACTTCAACCTGCTGCTCCCGAGCTGCGTGGAGGACTCTGTGA- CCCCCATTACCTT QLSSRLQYFGQALSGGQDLTQDG GCGTCTGAACTTCACGCTGGTGGGCAAGCCCCTCCTTGCCTTCAGAAACCTGCGGCCTATGCTGGCCGCCGATG- CTCAGAGATACTT LVDLAVGARGQVLLLRTRPVLWV CACGGCCTCCCTACCCTTTGAGAAGAACTGTGGAGCCGACCATATCTGCCAGGACAATCTCGGCATCTCCTTCA- GCTTCCCAGGCTT GVSMQFIPAEIPRSAFECREQVV GAAGTCCCTGCTGGTGGGGAGTAACCTGGAGCTGAACGCAGAAGTGATGGTGTGGAATGACGGGGAAGACTCCT- ACGGAACCACCAT SEQTLVQSNICLYIDKRSKNLLG CACCTTCTCCCACCCCGCAGGACTGTCCTACCGCTACGTGGCAGAGGGCCAGAAACAAGGGCAGCTGCGTTCCC- TGCACCTGACATG SRDLQSSVTLDLALDPGRLSPRA TGACAGCGCCCCAGTTGGGAGCCAGGGCACCTGGAGCACCAGCTGCAGAATCAACCACCTCATCTTCCGTGGCG- GCGCCCAGATCAC TFQETKNRSLSRVRVLGLKAHCE CTTCTTGGCTACCTTTGACGTCTCCCCCAAGGCTGTCCTGGGAGACCGGCTGCTTCTGACAGCCAATGTGAGCA- GTGAGAACAACAC NFNLLLPSCVEDSVTPITLRLNF TCCCAGGACCAGCAAGACCACCTTCCAGCTGGAGCTCCCGGTGAAGTATGCTGTCTACACTGTGGTTAGCAGCC- ACGAACAATTCAC TLVGKPLLAFRNLRPMLAADAQR CAAATACCTCAACTTCTCAGAGTCTGAGGAGAAGGAAAGCCATGTGGCCATGCACAGATACCAGGTCAATAACC- TGGGACAGAGGGA YFTASLPFEKNCGADHICQDNLG CCTGCCTGTCAGCATCAACTTCTGGGTGCCTGTGGAGCTGAACCAGGAGGCTGTGTGGATGGATGTGGAGGTCT- CCCACCCCCAGAA ISFSFPGLKSLLVGSNLELNAEV CCCATCCCTTCGGTGCTCCTCAGAGAAAATCGCACCCCCAGCATCTGACTTCCTGGCGCACATTCAGAAGAATC- CCGTGCTGGACTG MVWNDGEDSYGTTITFSHPAGLS CTCCATTGCTGGCTGCCTGCGGTTCCGCTGTGACGTCCCCTCCTTCAGCGTCCAGGAGGAGCTGGATTTCACCC- TGAAGGGCAACCT YRYVAEGQKQGQLRSLHLTCDSA CAGCTTTGGCTGGGTCCGCCAGATATTGCAGAAGAAGGTGTCGGTCGTGAGTGTGGCTGAAATTACGTTCGACA- CATCCGTGTACTC PVGSQGTWSTSCRINHLIFRGGA CCAGCTTCCAGGACAGGAGGCATTTATGAGAGCTCAGACGACAACGGTGCTGGAGAAGTACAAGGTCCACAACC- CCACCCCCCTCAT QITFLATFDVSPKAVLGDRLLLT CGTAGGCAGCTCCATTGGGGGTCTGTTGCTGCTGGCACTCATCACAGCGGTACTGTACAAAGTTGGCTTCTTCA- AGCGTCAGTACAA ANVSSENNTPRTSKTTFQLELPV GGAAATGATGGAGGAGGCAAATGGACAAATTGCCCCAGAAAACGGGACACAGACCCCCAGCCCGCCCAGTGAGA- AATGATCCCCTCT KYAVYTVVSSHEQFTKYLNFSES TTGCCTTGGACTTCTTCTCCCCCGCGAGTTTTCCCCACTTACTTACCCTCACCTGTCAGGCCTGACGGGGAGGA- ACCACTGCACCAC EEKESHVAMHRYQVNNLGQRDLP CGAGAGAGGCTGGGATGGGCCTGCTTCCTGTCTTTGGGAGAAAACGTCTTGCTTGGGAAGGGGCCTTTGTCTTG- TCAAGGTTCCAAC VSINFWVPVELNQEAVWMDVEVS TGGAAACCCTTAGGACAGGGTCCCTGCTGTGTTCCCCAAAGGACTTGACTTGCAATTTCTACCTAGAAATACAT- GGACAATACCCCC HPQNPSLRCSSEKIAPPASDFLA AGGCCTCAGTCTCCCTTCTCCCATGAGGCACGAATGATCTTTCTTTCCTTTCTTTTTTTTTTTTTTTCTTTTCT- TTTTTTTTTTTTT HIQKNPVLDCSIAGCLRFRCDVP GAGACGGAGTCTCGCTCTGTCACCCAGGCTGGAGTGCAATGGCGTGATCTCGGCTCACTGCAACCTCCGCCTCC- CGGGTTCAAGTAA SFSVQEELDFTLKGNLSFGWVRQ TTCTGCTGTCTCAGCCTCCTGAGTAGCTGGGACTACAGGCACACGCCACCTCGCCCGGCCCGATCTTTCTAAAA- TACAGTTCTGAAT ILQKKVSVVSVAEITFDTSVYSQ ATGCTGCTCATCCCCACCTGTCTTCAACAGCTCCCCATTACCCTCAGGACAATGTCTGAACTCTCCAGCTTCGC- GTGAGAAGTCCCC LPGQRAFMRAQTTTVLEKYKVHN TTCCATCCCAGAGGGTGGGCTTCAGGGCGCACAGCATGAGAGGCTCTGTGCCCCCATCACCCTCGTTTCCAGTG- AATTAGTGTCATG PTPLIVGSSIGGLLLLALITAVL TCAGCATCAGCTCAGGGCTTCATCGTGGGGCTCTCAGTTCCGATTTCCCAGGCTGAATTGGGAGTGAGATGCCT- GCATGCTGGGTTC YKVGFFKRQYKEMMEEANGQIAP TGCACAGCTGGCCTCCCGCGTTGGGCAACATTGCTGGCTGGAAGGGAGGAGCGCCCTCTAGGGAGGGACATGGC- CCCGGTGCGGCTG ENGTQTPSPPSEK CAGCTCACCCAGCCCCAGGGGCAGAAGAGACCCAACCACTTCTATTTTTTGAGGCTATGAATATAGTACCTGAA- AAAATGCCAAGAC ATGATTATTTTTTTAAAAAGCGTACTTTAAATGTTTGTGTTAATAAATTAAAACATGCACAAAAAGATGCATCT- ACCGCTCTTGGGA AATATGTCAAAGGTCTAAAAATAAAAAAGCCTTCTGTGAAAAAAAAAAAAAAAAA SEQIDNO.: 17 SEQIDNO.: 64 AATGGAGCCGCTGTCAGCAGAACCTTCTGCCGCCGCCGCCGCCGCCGCCGTCCCTCCTCTTTTTTTTCCCGGCA- GATCTTTGTTGTG MVKFPALTHYWPLIRFLVPLGIT TGGGAGGGCAGCAGGGATGGACTTGAGCTTGCGGATCCCCTGCTAGAGCAGCCGCGCTCGGAGAAGGCGCCGCA- GCCGCGAGGAGGA NIAIDFGEQALNRGIAAVKEDAV GCCGCCGCCGCCGCGCCCGAGGCCCCGCCGCCCGCGGCCTCTGTCGGCCCGCGCCCCGCTCGCCCCGTCGCCCC- GTCGCCCCTCGCC EMLASYGLAYSLMKFFTGPMSDF TCCCCGCAGAGTCCCCTCGCGGCAGCAGATGTGTGTGGGGTCAGCCCACGGCGGGGACTATGGTGAAATTCCCG- GCGCTCACGCACT KNVGLVFVNSKRDRTKAVLCMVV ACTGGCCCCTGATCCGGTTCTTGGTGCCCCTGGGCATCACCAACATAGCCATCGACTTCGGGGAGCAGGCCTTG- AACCGGGGCATTG AGAIAAVFHTLIAYSDLGYYIIN CTGCTGTCAAGGAGGATGCAGTCGAGATGCTGGCCAGCTACGGGCTGGCGTACTCCCTCATGAAGTTCTTCACG- GGTCCCATGAGTG KLHHVDESVGSKTRRAFLYLAAF ACTTCAAAAATGTGGGCCTGGTGTTTGTGAACAGCAAGAGAGACAGGACCAAAGCCGTCCTGTGTATGGTGGTG- GCAGGGGCCATCG PFMDAMAWTHAGILLKHKYSFLV CTGCCGTCTTTCACACACTGATAGCTTATAGTGATTTAGGATACTACATTATCAATAAACTGCACCATGTGGAC- GAGTCGGTGGGGA GCASISDVIAQVVFVAILLHSHL GCAAGACGAGAAGGGCCTTCCTGTACCTCGCCGCCTTTCCTTTCATGGACGCAATGGCATGGACCCATGCTGGC- ATTCTCTTAAAAC ECREPLLIPILSLYMGALVRCTT ACAAATACAGTTTCCTGGTGGGATGTGCCTCAATCTCAGATGTCATAGCTCAGGTTGTTTTTGTAGCCATTTTG- CTTCACAGTCACC LCLGYYKNIHDIIPDRSGPELGG TGGAATGCCGGGAGCCCCTGCTCATCCCGATCCTCTCCTTGTACATGGGCGCACTTGTGCGCTGCACCACCCTG- TGCCTGGGCTACT DATIRKMLSFWWPLALILATQRI ACAAGAACATTCACGACATCATCCCTGACAGAAGTGGCCCGGAGCTGGGGGGAGATGCAACAATAAGAAAGATG- CTGAGCTTCTGGT SRPIVNLFVSRDLGGSSAATEAV GGCCTTTGGCTCTAATTCTGGCCACACAGAGAATCAGTCGGCCTATTGTCAACCTCTTTGTTTCCCGGGACCTT- GGTGGCAGTTCTG AILTATYPVGHMPYGWLTEIRAV CAGCCACAGAGGCAGTGGCGATTTTGACAGCCACATACCCTGTGGGTCACATGCCATACGGCTGGTTGACGGAA- ATCCGTGCTGTGT YPAFDKNNPSNKLVSTSNTVTAA ATCCTGCTTTCGACAAGAATAACCCCAGCAACAAACTGGTGAGCACGAGCAACACAGTCACGGCAGCCCACATC- AAGAAGTTCACCT HIKKFTFVCMALSLTLCFVMFWT TCGTCTGCATGGCTCTGTCACTCACGCTCTGTTTCGTGATGTTTTGGACACCCAACGTGTCTGAGAAAATCTTG- ATAGACATCATCG PNVSEKILIDIIGVDFAFAELCV GAGTGGACTTTGCCTTTGCAGAACTCTGTGTTGTTCCTTTGCGGATCTTCTCCTTCTTCCCAGTTCCAGTCACA- GTGAGGGCGCATC VPLRIFSFFPVPVTVRAHLTGWL TCACCGGGTGGCTGATGACACTGAAGAAAACCTTCGTCCTTGCCCCCAGCTCTGTGCTGCGGATCATCGTCCTC- ATCGCCAGCCTCG MTLKKTFVLAPSSVLRIIVLIAS TGGTCCTACCCTACCTGGGGGTGCACGGTGCGACCCTGGGCGTGGGCTCCCTCCTGGCGGGCTTTGTGGGAGAA- TCCACCATGGTCG LVVLPYLGVHGATLGVGSLLAGF CCATCGCTGCGTGCTATGTCTACCGGAAGCAGAAAAAGAAGATGGAGAATGAGTCGGCCACGGAGGGGGAAGAC- TCTGCCATGACAG VGESTMVAIAACYVYRKQKKKME ACATGCCTCCGACAGAGGAGGTGACAGACATCGTGGAAATGAGAGAGGAGAATGAATAAGGCACGGGACGCCAT- GGGCACTGCAGGG NESATEGEDSAMTDMPPTEEVTD ACAGTCAGTCAGGATGACACTTCGGCATCATCTCTTCCCTCTCCCATCGTATTTTGTTCCCTTTTTTTTGTTTT- GTTTTGGTAATGA IVEMREENE AAGAGGCCTTGATTTAAAGGTTTCGTGTCAATTCTCTAGCATACTGGGTATGCTCACACTGACGGGGGGACCTA- GTGAATGGTCTTT ACTGTTGCTATGTAAAAACAAACGAAACAACTGACTTCATACCCCTGCCTCACGAAAACCCAAAAGACACAGCT- GCCTCACGGTTGA CGTTGTGTCCTCCTCCCCTGGACAATCTCCTCTTGGAACCAAAGGACTGCAGCTGTGCCATCGCGCCTCGGTCA- CCCTGCACAGCAG GCCACAGACTCTCCTGTCCCCCTTCATCGCTCTTAAGAATCAACAGGTTAAAACTCGGCTTCCTTTGATTTGCT- TCCCAGTCACATG GCCGTACAAAGAGATGGAGCCCCGGTGGCCTCTTAAATTTCCCTTCCGCCACGGAGTTCGAAACCATCTACTCC- ACACATGCAGGAG GCGGGTGGCACGCTGCAGCCCGGAGTCCCCGTTCACACTGAGGAACGGAGACCTGTGACCACAGCAGGCTGACA- GATGGACAGAATC TCCCGTAGAAAGGTTTGGTTTGAAATGCCCCGGGGGCAGCAAACTGACATGGTTGAATGATAGCATTTCACTCT- GCGTTCTCCTAGA TCTGAGCAAGCTGTCAGTTCTCACCCCCACCGTGTATATACATGAGCTAACTTTTTTAAATTGTCACAAAAGCG- CATCTCCAGATTC CAGACCCTGCCGCATGACTTTTCCTGAAGGCTTGCTTTTCCCTCGCCTTTCCTGAAGGTCGCATTAGAGCGAGT- CACATGGAGCATC CTAACTTTGCATTTTAGTTTTTACAGTGAACTGAAGCTTTAAGTCTCATCCAGCATTCTAATGCCAGGTTGCTG- TAGGGTAACTTTT GAAGTAGATATATTACCTGGTTCTGCTATCCTTAGTCATAACTCTGCGGTACAGGTAATTGAGAATGTACTACG- GTACTTCCCTCCC ACACCATACGATAAAGCAAGACATTTTATAACGATACCAGAGTCACTATGTGGTCCTCCCTGAAATAACGCATT- CGAAATCCATGCA GTGCAGTATATTTTTCTAAGTTTTGGAAAGCAGGTTTTTTCCTTTAAAAAAATTATAGACACGGTTCACTAAAT- TGATTTAGTCAGA ATTCCTAGACTGAAAGAACCTAAACAAAAAAATATTTTAAAGATATAAATATATGCTGTATATGTTATGTAATT- TATTTTAGGCTAT AATACATTTCCTATTTTCGCATTTTCAATAAAATGTCTCTAATACAATACGGTGATTGCTTGTGTGCTCAACAT- ACCTGCAGTTGAA ACGTATTGTATCAATGAACATTGTACCTTATTGGCAGCAGTTTTATAAAGTCCGTCATTTGCATTTGAATGTAA- GGCTCAGTAAATG ACAGAACTATTTTTCATTATGGGTAACTGGGGAATAAATGGGTCACTGGAGTAGGAATAGAAGTGCAAGCTGGA- AAGGCAAAAATGA GAAAGAAAAAGGCAGGCCCTTTGTGTCTACCGTTTTCAGTGCTGTGTGATCATATTGTTCCTCACAGCAAAAAA- GAATGCAAGGGCA TAATGTTAGCTGTGAACATGCCAGGGTTGCATTCACATTCCTGGGTACCCAGTGCTGATGGGGTGTGCCCACGT- GGGGACATGTCCT TGGCGTGCTTCCTCAGAGTGGCTTTTCCTCCATTAATACATATATGAGTACTGAAAAATTAAGTTGCATAGCTG- CTTTGCAGTGGTT TCAGAGGCAGATCTGAGAAGATTAAAAAAAAATCTCAATGTATCAGCTTTTTTTAAAGGACATTACTAGAAAAT- TAAACAGTATTTT TTAACATGTGTGACTTTCATGCTTCTGGGGTTGGAGCTTAAAGATCCAAACTGAGAAAGCAGGCCGGGCATGGT- GGCTCATGCCTGT AATCCCAACACTTTGGGAGGCCAAGGAGGGTGGATCACTTAAGGTCAGGAGTTTGAGACCAGCCTGGCCAACAT- GGCAAAACCCTGT CTCTACTAAAAACATAAAAATTAGCTGGGGGTGGTAGCACATACCTGTAATCCCAGCTACTCAGGAGGCTGAGG- CAGGAGAATTTGC TTGATCCTGGGAGGCAGAGGTTGTAGTGAGCCGAGATCGCGCCATCGCACTCCAGCCTGGGTGACAAGAGCAAA- ACTCCATCTC SEQIDNO.: 18 SEQIDNO.: 65 GACAGCCTCTGGGTCCTCGGTCGGTACAGTCTCTGCACCTCGCGCCCCAGCAGGTAAACTAACATTATGGATTT- TTCCAAGCTACCC MDFSKLPKILDEDKESTFGYVHG AAAATACTCGATGAAGATAAAGAAAGCACATTTGGTTATGTGCATGGGGTCTCAGGACCTGTGGTTACAGCCTG- TGACATGGCGGGT VSGPVVTACDMAGAAMYELVRVG GCAGCCATGTATGAGCTGGTGAGAGTGGGCCACAGCGAATTGGTTGGAGAGATTATTCGATTGGAGGGTGACAT- GGCTACTATTCAG HSELVGEIIRLEGDMATIQVYEE GTGTATGAAGAAACTTCTGGTGTGTCTGTTGGAGATCCTGTACTTCGCACTGGTAAACCCCTCTCTGTAGAGCT- TGGTCCTGGCATT TSGVSVGDPVLRTGKPLSVELGP ATGGGAGCCATTTTTGATGGTATTCAAAGACCTTTGTCGGATATCAGCAGTCAGACCCAAAGCATCTACATCCC- CAGAGGAGTAAAC GIMGAIFDGIQRPLSDISSQTQS GTGTCTGCTCTTAGCAGAGATATCAAATGGGACTTTACACCTTGCAAAAACCTACGGGTTGGTAGTCATATCAC- TGGCGGAGACATT IYIPRGVNVSALSRDIKWDFTPC TATGGAATTGTCAGTGAGAACTCGCTTATCAAACACAAAATCATGTTACCCCCACGAAACAGAGGAACTGTAAC- TTACATTGCTCCA KNLRVGSHITGGDIYGIVSENSL CCTGGGAATTATGATACCTCTGATGTTGTCTTGGAGCTTGAATTTGAAGGTGTAAAGGAGAAGTTCACCATGGT- GCAAGTATGGCCT IKHKIMLPPRNRGTVTYIAPPGN GTACGTCAAGTTCGACCTGTCACTGAGAAGCTGCCAGCCAATCATCCTCTGTTGACTGGCCAGAGAGTCCTTGA- TGCCCTTTTTCCG YDTSDVVLELEFEGVKEKFTMVQ TGTGTCCAGGGAGGAACTACTGCTATCCCTGGAGCCTTTGGCTGTGGAAAGACAGTGATATCACAGTCTCTATC- CAAGTATTCTAAC VWPVRQVRPVTEKLPANHPLLTG AGTGATGTAATCATCTATGTAGGATGTGGTGAAAGAGGAAATGAGATGTCTGAAGTCCTCCGGGACTTCCCAGA- GCTCACAATGGAG QRVLDALFPCVQGGTTAIPGAFG GTTGATGGTAAGGTAGAGTCAATTATGAAGAGGACAGCTTTGGTAGCCAATACCTCCAATATGCCTGTTGCTGC- TAGAGAAGCCTCT CGKTVISQSLSKYSNSDVIIYVG ATTTATACTGGAATCACACTGTCAGAGTACTTCCGTGACATGGGCTATCATGTCAGTATGATGGCTGACTCTAC- CTCTAGATGGGCT CGERGNEMSEVLRDFPELTMEVD GAGGCCCTTAGAGAAATCTCTGGTCGTTTAGCTGAAATGCCTGCAGATAGTGGATATCCAGCCTATCTTGGTGC- CCGTCTGGCCTCG GKVESIMKRTALVANTSNMPVAA TTTTATGAACGAGCAGGCAGGGTGAAATGTCTTGGAAATCCTGAAAGAGAAGGGAGTGTCAGCATTGTAGGAGC- AGTTTCTCCACCT REASIYTGITLSEYFRDMGYHVS GGTGGTGATTTTTCTGATCCAGTTACATCTGCCACTCTTGGTATCGTTCAGGTGTTCTGGGGCTTAGATAAGAA- ACTAGCTCAACGT MMADSTSRWAEALREISGRLAEM AAGCATTTCCCCTCTGTCAATTGGCTCATCAGCTACAGCAAGTATATGCGTGCCTTGGATGAATACTATGACAA- ACACTTCACAGAG PADSGYPAYLGARLASFYERAGR
TTCGTTCCTCTGAGGACGAAAGCTAAGGAAATTCTGCAGGAAGAAGAAGACCTGGCAGAAATTGTACAGCTTGT- GGGAAAGGCTTCT VKCLGNPEREGSVSIVGAVSPPG TTGGCAGAAACAGATAAAATCACTCTGGAGGTAGCAAAACTTATCAAAGATGATTTCCTACAACAAAATGGATA- TACTCCTTATGAC GDFSDPVTSATLGIVQVFWGLDK AGGTTCTGCCCATTCTACAAGACAGTAGGGATGCTGTCCAACATGATTGCATTTTATGATATGGCTCGTAGAGC- TGTTGAAACCACT KLAQRKHFPSVNWLISYSKYMRA GCCCAGAGTGACAATAAAATCACATGGTCCATTATTCGTGAGCACATGGGAGACATCCTCTATAAACTTTCCTC- CATGAAATTCAAG LDEYYDKHFTEFVPLRTKAKEIL GATCCACTGAAAGATGGTGAGGCAAAGATCAAAAGCGACTATGCACAACTTCTTGAAGACATGCAGAATGCATT- CCGTAGCCTTGAA QEEEDLAEIVQLVGKASLAETDK GATTAGAAGCCTTGAAGATTACAACTGTGATTTCCTTTTCCTCAGCAAGCTCCTATGTGTATATTTTCCTGAAT- TTCTCATCTCAAA ITLEVAKLIKDDFLQQNGYTPYD CCCTTTGCTTCTTTATTGTGCAGCTTTGAGACTAGTGCCTATGTGTGTTATTTGTTTCCCTGTTTTTTTGGTAG- GTCTTATATAAAA RFCPFYKTVGMLSNMIAFYDMAR CAAACATTCCTTTGTTCTAGTGTTGTGAAGGGCCTCCCTCTTCCTTTATCTGAAGTGGTGAATATAGTAAATAT- ACATTCTGGTTAC RAVETTAQSDNKITWSIIREHMG ACTACTGTAAACTTGTATGTAGGGTGATGACCCTCTTTGTCCTAGGTGTACCCTTTCCTCATCTCTATTAAATT- GTAAACAGGACTA DILYKLSSMKFKDPLKDGEAKIK CTGCATGTACTCTCTTTGCAGTGAATTTGGAATGGAAGGCCAGGTTTCTATAACTTTTGAACAGGTACTTTGTG- AAATGACTCAATT SDYAQLLEDMQNAFRSLED TCTATTGTGGTAAGCTCATTGGCAGCTTAGCATTTTGCAAAGGAATTGCTTTGCAGGAAATATTTAATTTTCAA- AAACATAATGATT AATGTTCCAATTATGCATCACTTCCCCCAGTATAAATCAGGAATGTTTGTGAGAAACCATTGGGAACTATACTC- TTTTTATTTTTAT TTTTTATTTTTTTTATTATTTTTTTTTTGGGGACGGAGTGTCCCTCTTGTTGCCCAGGCTGGAGTGCAATGGCG- TGATCTTGGCTCA CTGCAGCCTTCGCCTCCCGGGTTCAAGTGATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGATTACAGGCATGC- TCCACCATGCCCA GCTAATTTTGTATTTTTAGTAGAAACGGGGTTTCACCATATTGGTCAGGCTGGTCTCGAACTCCAGACCTCAGG- TGATCCGCCCACC TCGGCCTCCCAAACTGCTGGGATTACAGGCGTGAGCCACCGCGCCTGGCCAGGGACTATACTCTTTTTAAAATA- GACATTTGTGGGG CTCACACAATATATGAAATAGTACCCTCTAAAAAAGAGAAAAAAAAAATCAGGCGGTCAAACTTAGAGCAACAT- TGTCTTATTAAAG CATAGTTTATTTCACTAGAAAAAATTTAATATCAAGGACTATTACATACTTCATTACTAGGAAGTTCTTTTTAA- AATGACACTTAAA ACAATCACTGAAAACTTGATCCACATCACACCCTGTTTATTTTCCTTAAACATCTTGGAAGCCTAAGCTTCTGA- GAATCATGTGGCA AGTGTGATGGGCAGTAAAATACCAGAGAAGATGTTTAGTAGCAATTAAAGGCTGTTTGCACCTTTAAGGACCAG- CTGGGCTGTAGTG ATTCCTGGGGCCAGAGTGGCATTATGTTTTTACAAAATAATGACATATGTCACATGTTTGCATGTTTGTTTGCT- TGTTGAATTTTTG AACAGCCAGTTGACCAATCATAGAAAGTATTACTTTCTTTCATATGGTTTTTGGTTCACTGGCTTAAGAGGTTT- CTCAGAATATCTA TGGCCACAGCAGCATACCAGTTTCCATCCTAATAGGAATGAAATTAATTTTGTATCTACTGATAACAGAATCTG- GGTCACATGAAAA AAAATCATTTTATCCGTCTTTTAAGTATATGTTTAAAATAATAATTTATGTGTCTGCATATTGCAGAACAGCTC- TGAGAGCAACAGT TTCCCATTAACTCTTTCTGACCAATAGTGCTGGCACCGTTGCTTCCTCTTTGGGAAGAGGAAAGGGTGTGTGAA- CATGGCTAACAAT CTTCAAATACCCAAATTGTGATAGCATAAATAAAGTATTTATTTTATGCCTCAGTATATTATTATTTAATTTTT- TAGGTAATGCCTA TCTCTTGGTCTATTAAGGAAAGAAGCAATCAGTAGAGAATTCAGGATAGTTTTGTTTAAATTCTTGCAGATTAC- ATGTTTTTACAGT GGCCTGCTATTGAGGAAAGGTATTCTTCTATACAACTTGTTTTAACCTTTGAGAACATTGACAGAAATTATGCA- ATGGTTTGTTGAG ATACGGACTTGATGGTGCTGTTTAATCAGTTTGCTTCCAAAGTGGCCTACTCAAGAGGCCCTAAGACTGGTAGA- AATTAAAAGGATT TCAAAAACTTTCTATTCCTTTCTTAAACCTACCAGCAAACTAGGATTGTGATAGCAATGAATGGTATGATGAAG- AAAGTTTGACCAA ATTTGTTTTTTTGTTGTTGTTGTTGTTTTGAATTTGAAATCATTCTTATTCCCTTTAAGAATGTTTATGTATGA- GTGTGAAGATGCT AGCGAACCTATGCTCAGATATTCATCGTAAGTCTCCCTTCACCTGTTACAGAGTTTCAGATCGGTCACTGATAG- TATGTATTTCTTT AGTAAGAATGTGTTAAAATTACAATGATCTTTTAAAAAGATGATGCAGTTCTGTATTTATTGTGCTGTGTCTGG- TCCTAAGTGGAGC CAATTAAACAAGTTTCATATGTATTTTTCCAGTGTTGAATCTCACACACTGTACTTTGAAAATTTCCTTCCATC- CTGAATAACGAAT AGAAGAGGCCATATATATTGCCTCCTTATCCTTGAGATTTCACTACCTTTATGTTAAAAGTTGTGTATAATTGT- TAAAATCTGTGAA AGAATAAAAAGTGGATTTAAATTAAAAAAAAAAAAAAAAAAAA SEQIDNO.: 19 SEQIDNO.: 66 ACGCCTGGTCTCTGGGACGCCCCTCCGGACCCGTTTCGCCTCGCGGAGCCGGTAGGTCCAGGTGCAGCGGCCGC- AGTGCTGCGTCCG MIRQERSTSYQELSEELVQVVES TGCGCCGCGGGCTGGGGCGGTCTCAGGTGTGCCGAAGCTCTGGTCAGTGCCATGATCCGGCAGGAGCGCTCCAC- ATCCTACCAGGAG SELADEQDKETVRVQGPGILPGL CTGAGTGAGGAGTTGGTCCAGGTGGTTGAGAGCTCAGAGCTGGCAGACGAGCAGGACAAGGAGACGGTCAGAGT- CCAAGGTCCGGGT DSESASSSIRFSKACLKNVFSVL ATCTTACCAGGCCTGGACAGCGAGTCCGCCTCCAGCAGCATCCGCTTCAGCAAGGCCTGCCTGAAGAACGTCTT- CTCGGTCCTACTC LIFIYLLLMAVAVFLVYRTITDF ATCTTCATCTACCTGCTGCTCATGGCTGTGGCCGTCTTCCTGGTCTACCGGACCATCACAGACTTTCGTGAGAA- ACTCAAGCACCCT REKLKHPVMSVSYKEVDRYDAPG GTCATGTCTGTGTCTTACAAGGAAGTGGATCGCTATGATGCCCCAGGTATTGCCTTGTACCCCGGTCAGGCCCA- GTTGCTCAGCTGT IALYPGQAQLLSCKHHYEVIPPL AAGCACCATTACGAGGTCATTCCTCCTCTGACAAGCCCTGGCCAGCCGGGTGACATGAATTGCACCACCCAGAG- GATCAACTACACG TSPGQPGDMNCTTQRINYTDPFS GACCCCTTCTCCAATCAGACTGTGAAATCTGCCCTGATTGTCCAGGGGCCCCGGGAAGTGAAAAAGCGGGAGCT- GGTCTTCCTCCAG NQTVKSALIVQGPREVKKRELVF TTCCGCCTGAACAAGAGTAGTGAGGACTTCAGCGCCATTGATTACCTCCTCTTCTCTTCTTTCCAGGAGTTCCT- GCAAAGCCCAAAC LQFRLNKSSEDFSAIDYLLFSSF AGGGTAGGCTTCATGCAGGCCTGTGAGAGTGCCTGTTCCAGCTGGAAGTTCTCTGGGGGCTTCCGCACCTGGGT- CAAGATGTCACTG QEFLQSPNRVGFMQACESACSSW GTAAAGACCAAGGAGGAGGATGGGCGGGAAGCAGTGGAGTTCCGGCAGGAGACAAGTGTGGTTAACTACATTGA- CCAGAGGCCAGCT KFSGGFRTWVKMSLVKTKEEDGR GCCAAAAAAAGTGCTCAATTGTTTTTTGTGGTCTTTGAATGGAAAGATCCTTTCATCCAGAAAGTCCAAGATAT- AGTCACTGCCAAT EAVEFRQETSVVNYIDQRPAAKK CCTTGGAACACAATTGCTCTTCTCTGTGGCGCCTTCTTGGCATTATTTAAAGCAGCAGAGTTTGCCAAACTGAG- TATAAAATGGATG SAQLFFVVFEWKDPFIQKVQDIV ATCAAAATTAGAAAGAGATACCTTAAAAGAAGAGGTCAGGCAACGAGCCACATAAGCTGAAGTCACCTCGCGTT- GTTTAGAGAACTG TANPWNTIALLCGAFLALFKAAE TCCACATCAATGGGAGCTGTCATCACTTCCACTTTGTAAACGGAGCTATCAACAATCCTGTACTCACTTGAAGA- AATGGGGCCTTGC FAKLSIKWMIKIRKRYLKRRGQA TGGGAGGAACAGCATGTAAAACTGGAACTTCTAACCCCGTCCCAAAAGAGGCGGTGTAGAGCCTAATAGAAGAG- ACTAATGGATAAA TSHIS CCTACAAGTTATTTAAATATTTAAATTATTAATAAACTTTTTAAAGAGCTGGCCAATGACTTTTGAATAGGGTT- TGTAGAAGATGCC TTTCTTCCTGTTTGGTTCATTGTATTGTATTAGGTTAAGCTCTACTAGGGTAATGAAGGCTCTACTTTTCACTT- TTTAAAAGTGGAC AAAAGAGTGTGATTTTCTTTTTCCAAAAATTCCTGAGTATCAAGACGTGCAGGTCATGCTTTGGAGCCTATGCA- CTGTACACAATGG CAAAACCCTATGACTTTGGCATCATCTGCCATTGATGTCCAGCCTCTGACATGCTCTTTGATTTGTTAAATGTT- AAATGAGACTTTA AGGCTACTAGAAACTAGTAATTAAGTTTCTTAATGGACTGAGTAGCCACCTACTTGTCCGGCTAGAATGTTTGT- TGATGTATGAGTT TAGATTAACACTCAAAAGCACTAGGACAGATGTACATAGAAGGTGCCTACTCATTGTATTTTGATGATTTCATT- AACAGGTAAATAA AAGTTAATACAAAAGGAACGAGTGTGACAATATGAATATCTGCTCAATCATCGGGCACAATTACTTTCATTTGG- TGACTTCCAAGGA CAAAAAGGTAGTATGAGTCTGGACTCCCAAGATGGATCTAACTCTCAAGGTATGTTCTAACTGCTTCCAGGGAA- GGGTTTGTTAGGC ATGGCAACTGATGGCAGGTGTCCAGAAAGAGTGACCTGGTGTCCCCGAGGAAGCTGGGTTAACTCTTTACTGTG- TCCACAAAACTAC CCATCATATGAGGAAGGGGTATACGCAGTGTGACCCTCAAAAAGCTTTTAGCCTAGCCTTTGACAGAAATGAGT- ATGCATTAAAAAA AAGTCTATTTTTCACATTAAGGTTCTAAAAATTGTTTCCAGAGTTTTAAATTATTTATGTGCCTGTTGCTTCAA- AGAGGACTTGGTA GCATTTCCTAAATTTTGTAATCTGGCTTCCGATAATCCAAAGGGAATAACTCAAATGTATGAATAGGCATTTTA- AATGGGAAGAAAC TGTTTTTTGGATGAATGATTAAAAGTGAACTGTATAAAG SEQIDNO.: 20 SEQIDNO.: 67 GCGGACGTGGGCAGGAGGGCTGGAAAAGCCGGCGCTGGAGCGGGAACGGGAGTAGCTGCCTGGGCGCCAAAGGC- CGCGGCACTCCCA MFRKGKKRHSSSSSQSSEISTKS CGCGGACCCCGAAGTCCGCAACCCGGGGATGGGCCCGCGGCTGCGAGGGGATCTTCTCTGGATCAAGCAATGGT- GGTGAAAAATGTT KSVDSSLGGLSRSSTVASLDTDS TCGCAAGGGCAAAAAACGACACAGTAGTAGCAGTTCCCAAAGTAGCGAAATCAGTACTAAGAGCAAGTCTGTGG- ATTCTAGCCTTGG TKSSGQSNNNSDTCAEFRIKYVG GGGTCTTTCACGATCCAGCACTGTGGCCAGCCTCGACACAGATTCCACCAAAAGCTCAGGACAAAGCAACAATA- ATTCAGATACCTG AIEKLKLSEGKGLEGPLDLINYI TGCAGAATTTCGAATAAAATATGTTGGTGCCATTGAGAAACTGAAACTCTCCGAGGGAAAAGGCCTTGAAGGGC- CATTAGACCTGAT DVAQQDGKLPFVPPEEEFIMGVS AAATTATATAGACGTTGCCCAGCAAGATGGAAAGTTGCCTTTTGTTCCTCCGGAGGAAGAATTTATTATGGGAG- TTTCCAAGTATGG KYGIKVSTSDQYDVLHRHALYLI CATAAAAGTATCAACATCAGATCAATATGATGTTTTGCACAGGCATGCTCTCTACTTAATAATCCGGATGGTGT- GTTACGATGACGG IRMVCYDDGLGAGKSLLALKTTD TCTGGGGGCGGGAAAAAGCTTACTGGCTCTGAAGACCACAGATGCAAGCAATGAGGAATACAGCCTGTGGGTTT- ATCAGTGCAACAG ASNEEYSLWVYQCNSLEQAQAIC CCTGGAACAAGCACAAGCCATTTGCAAGGTTTTATCCACCGCTTTTGACTCTGTATTAACATCTGAGAAACCCT- GAATCCTGCAATC KVLSTAFDSVLTSEKP AAGTAGAAGTCAACTTCATCTGAAAGTTCAGCTGTTTTCAAACTGCAATGCTGAAATGTTATGCAAATAATGAA- GTTATCCCTTGCT CTAGATTTTCTGAAGAAAATGGATTGTGTAAAATGCTGATCATTTGTTTATTAAAATGTGTCCTATTACACAGT- GAGTTAACTCTCA ATGAAGTCATCTATTTTCTGGGCTAAAAAACTTCATTTGTCTTTTTCAACTTCTAATAAGCTTAACCTAAGTGT- CACGAAGACGAGA TGTCACAGAGGTCCACTCAGTGACAAACACACACTGAAGGCCTGAGGGAAGACTGAGGACATGGGCTCAGTGGT- GGCTTCCCAGTCA TGGTATCACTGGCATGGACCTCTGTCCGGCAGAGGTGTGGACTGGAGACCAGGATTCATGCTGGTCTGGAACAA- TGACATTGCCAAC TTAAGACACACAAAGCAGATTTTCAGAAGTGTCTGGTCAAGATAACATGCTGGCCAACCACAATTCCTAGAGTT- AAGAGAACCTTAA AAGATTACCGCTCATGCTAAAAGTATGTAAAGATCCCATGTACAGTATGATAGTGTACTTTTTTTAAAGGACTG- TCAATATACAAAA CTTTAAAGATTAAAAACATTAAAAATAAAAAAA SEQIDNO.: 21 SEQIDNO.: 68 CCTCGCCCCGCCTACGCGGGAACCCAACCGCGGCGACCGGACGTGCACTCCTCCAGTAGCGGCTGCACGTCGTG- CAATGGCCCGCTA MARYEEVSVSGFEEFHRAVEQHN TGAGGAGGTGAGCGTGTCCGGCTTCGAGGAGTTCCACCGGGCCGTGGAACAGCACAATGGCAAGACCATTTTCG- CCTACTTTACGGG GKTIFAYFTGSKDAGGKSWCPDC TTCTAAGGACGCCGGGGGGAAAAGCTGGTGCCCCGACTGCGTGCAGGCTGAACCAGTCGTACGAGAGGGGCTGA- AGCACATTAGTGA VQAEPVVREGLKHISEGCVFIYC AGGATGTGTGTTCATCTACTGCCAAGTAGGAGAAAAGCCTTATTGGAAAGATCCAAATAATGACTTCAGAAAAA- ACTTGAAAGTAAC QVGEKPYWKDPNNDFRKNLKVTA AGCAGTGCCTACACTACTTAAGTATGGAACACCTCAAAAACTGGTAGAATCTGAGTGTCTTCAGGCCAACCTGG- TGGAAATGTTGTT VPTLLKYGTPQKLVESECLQANL CTCTGAAGATTAAGATTTTAGGATGGCAATCATGTCTTGATGTCCTGATTTGTTCTAGTATCAATAAACTGTAT- ACTTGCTTTGAAT VEMLFSED TCATGTTAGCAATAAATGATGTTAAAAAAACTGGCATGTGTCTAAACAATAGAGTGCTATTAAAATGCCCATGA- ACCTTTAGTTTGC CTGTAATACATGGATATTTTTAAGATATAAAGAAGTCTTCAGAAATAGCAGTAAAGGCTCAAAGGAACGTGATT- CTTGAAGGTGACG GTAATACCTAAAAACTCCTAAAGGTGCAGAGC SEQIDNO.: 22 SEQIDNO.: 69 TCGGAGCTGAACTTCCTAAAAGACAAAGTGTTTATCTTTCAAGATTCATTCTCCCTGAATCTTACCAACAAAAC- ACTCCTGAGGAGA MNSSKSSETQCTERGCFSSQMFL AAGAAAGAGAGGGAGGGAGAGAAAAAGAGAGAGAGAGAAACAAAAAACCAAAGAGAGAGAAAAAATGAATTCAT- CTAAATCATCTGA WTVAGIPILFLSACFITRCVVTF AACACAATGCACAGAGAGAGGATGCTTCTCTTCCCAAATGTTCTTATGGACTGTTGCTGGGATCCCCATCCTAT- TTCTCAGTGCCTG RIFQTCDEKKFQLPENFTELSCY TTTCATCACCAGATGTGTTGTGACATTTCGCATCTTTCAAACCTGTGATGAGAAAAAGTTTCAGCTACCTGAGA- ATTTCACAGAGCT NYGSGSVKNCCPLNWEYFQSSCY CTCCTGCTACAATTATGGATCAGGTTCAGTCAAGAATTGTTGTCCATTGAACTGGGAATATTTTCAATCCAGCT- GCTACTTCTTTTC FFSTDTISWALSLKNCSAMGAHL TACTGACACCATTTCCTGGGCGTTAAGTTTAAAGAACTGCTCAGCCATGGGGGCTCACCTGGTGGTTATCAACT- CACAGGAGGAGCA VVINSQEEQEFLSYKKPKMREFF GGAATTCCTTTCCTACAAGAAACCTAAAATGAGAGAGTTTTTTATTGGACTGTCAGACCAGGTTGTCGAGGGTC- AGTGGCAATGGGT IGLSDQVVEGQWQWVDGTPLTKS GGACGGCACACCTTTGACAAAGTCTCTGAGCTTCTGGGATGTAGGGGAGCCCAACAACATAGCTACCCTGGAGG- ACTGTGCCACCAT LSFWDVGEPNNIATLEDCATMRD GAGAGACTCTTCAAACCCAAGGCAAAATTGGAATGATGTAACCTGTTTCCTCAATTATTTTCGGATTTGTGAAA- TGGTAGGAATAAA SSNPRQNWNDVTCFLNYFRICEM TCCTTTGAACAAAGGAAAATCTCTTTAAGAACAGAAGGCACAACTCAAATGTGTAAAGAAGGAAGAGCAAGAAC- ATGGCCACACCCA VGINPLNKGKSL CCGCCCCACACGAGAAATTTGTGCGCTGAACTTCAAAGGACTTCATAAGTATTTGTTACTCTGATATAAATAAA- AATAAGTAGTTTT AAATGTTATAATTCATGTTACTGGCTGAAGTGCATTTTCTCTCTACGTTAGTCTCAGGTCCTCTTCCCAGAATT- TACAAAGCAATTC ATACCTTTTGCTACATTTGCCTCATTTTTTAGTGTTCGTATGAAAGTACAGGGACACGGAGCCAAGACAGAGTC- TAGCAAAGAAGGG GATTTTGGAAGGTGCCTTCCAAAAATCTCCTGAATCCGGGCTCTGTAGCAGGTCCTCTTCTTTCTAGCTTCTGA- CAAGTCTGTCTTC TCTTCTTGGTTTCATACCGTTCTTATCTCCTGCCCAAGCATATATCGTCTCTTTACTCCCCTGTATAATGAGTA- AGAAGCTTCTTCA AGTCATGAAACTTATTCCTGCTCAGAATACCGGTGTGGCCTTTCTGGCTACAGGCCTCCACTGCACCTTCTTAG- GGAAGGGCATGCC AGCCATCAGCTCCAAACAGGCTGTAACCAAGTCCACCCATCCCTGGGGCTTCCTTTGCTCTGCCTTATTTTCAA- TTGACTGAATGGA TCTCACCAGATTTTGTATCTATTGCTCAGCTAGGACCCGAGTCCAATAGTCAATTTATTCTAAGCGAACATTCA- TCTCCACACTTTC CTGTCTCAAGCCCATCCATTATTTCTTAACTTTTATTTTAGCTTTCGGGGGTACATGTTAAAGGCTTTTTATAT- AGGTAAACTCATG TCGTGGAGGTTTGTTGTACAGATTATTTCATCACCCAGGTATTAAGCCCAGTGCCTAATATTGTTTTTTTCGGC- TCCTCTCCCTCCT CCTACCTTCCGCCCTCAAGTAGACTCCAGTGTCTGTTATTCCCTTCTTTGTGTTTATGAATTCTCATCATTTAG- CTCCCACTTATAA GTGAGGACATGCAGTATTTGGTTTTCTGTTCCCATGTTTGCTAAGGATAATGGTTTCCAGTTCTACCGATGTTC- CCACAAAAGACAT AATTTTCTTTTTTAAGGCTGCTTAGTATTCCATGGTATCTATGTATCACATTTTCTCTATCCAATCTATTGTTG- ACTCACATTTAGA TTGATTCCATGTTTTTGCTATTGTGAATAGTGCTGCAATGAACATTCGTGTGCATGTGTCTTTATGGTAGAAAG- ATTTATATTTCTC TGAGTATGTATCCAGTAATAGCCCATTCATTTATTGCATAAAATTCTACCAATAC SEQIDNO.: 23 SEQIDNO.: 70 CCTCCTCTCCCTGGCTTTTGTGTTGGTGCCTCCGAGCTGCAAGGAGGGTGCGCTGGAGGAGGAGGAGGGGGGCC- CGGAGTGAGAGGC MAQPILGHGSLQPASAAGLASLE ACCCCCTTCACGCGCGCGCGCGCACACGGTGCCGGCGCACGCACACACGGGCGGACACACACACACGCGCGCAC- ACACACACGCACA LDSSLDQYVQIRIFKIIVIGDSN GAGCTCGCTCGCCTCGAGCGCACGAACGTGGACGTTCTCTTTGTGTGGAGCCCTCAAGGGGGGTTGGGGCCCCG- GTTCGGTCCGGGG VGKTCLTFRFCGGTFPDKTEATI GAGATGGCGCAGCCCATCCTGGGCCATGGGAGCCTGCAGCCCGCCTCGGCCGCTGGCCTGGCGTCCCTGGAGCT- CGACTCGTCGCTG GVDFREKTVEIEGEKIKVQVWDT GACCAGTACGTGCAGATTCGCATCTTCAAAATAATCGTGATTGGGGACTCCAACGTGGGCAAGACCTGCCTGAC- CTTCCGCTTCTGC AGQERFRKSMVEHYYRNVHAVVF GGGGGTACCTTCCCAGACAAGACTGAAGCCACCATCGGCGTGGACTTCAGGGAGAAGACCGTGGAAATCGAGGG- CGAGAAGATCAAG VYDVTKMTSFTNLKMWIQECNGH GTTCAGGTGTGGGACACAGCAGGTCAGGAACGTTTCCGCAAAAGCATGGTCGAGCATTACTACCGCAACGTACA- TGCCGTGGTCTTC AVPPLVPKVLVGNKCDLREQIQV
GTCTATGACGTCACCAAGATGACATCTTTCACCAACCTCAAAATGTGGATCCAAGAATGCAATGGGCATGCTGT- GCCCCCACTAGTC PSNLALKFADAHNMLLFETSAKD CCCAAAGTGCTTGTGGGCAACAAGTGTGACTTGAGGGAACAGATCCAGGTGCCCTCCAACTTAGCCCTGAAATT- TGCTGATGCCCAC PKESQNVESIFMCLACRLKAQKS AACATGCTCTTGTTTGAGACATCGGCCAAGGACCCCAAAGAGAGCCAGAACGTGGAGTCGATTTTCATGTGCTT- GGCTTGCCGATTG LLYRDAERQQGKVQKLEFPQEAN AAGGCCCAGAAATCCCTGCTGTATCGTGATGCTGAGAGGCAGCAGGGGAAGGTGCAGAAACTGGAGTTCCCACA- GGAAGCTAACAGT SKTSCPC AAAACTTCCTGTCCTTGTTGAAACCAAACGATATAAATACAAGATAAATTATCACTGGAGTTTTTTCTTTCCCT- TTTTTCTGTGCCT GCATAATGCTGACACCTGCTTGTTTCCATACAAATTGATATCAAAATAAAATTTGTATAGATTAAAAAAAAAAA- AAAAAAAAAA SEQIDNO.: 24 SEQIDNO.: 71 GGAGCGCGTGAGGCTCCGGCGCGCAAGCCCGGAGCAGCCCGCTGGGGCGCACAGGGTCGCGCGGGCGCGGGGAT- GGAGGACGGCGTG MEDGVAGPQLGAAAEAAEAAEAR GCCGGTCCCCAGCTCGGGGCCGCGGCGGAGGCGGCGGAGGCGGCCGAGGCGCGAGCGCGGCCCGGGGTGACGCT- GCGGCCCTTCGCG ARPGVTLRPFAPLSGAAEADEGG CCCCTCTCGGGGGCGGCCGAGGCGGACGAGGGCGGCGGCGACTGGAGCTTCATTGACTGCGAGATGGAGGAGGT- GGACCTGCAGGAC GDWSFIDCEMEEVDLQDLPSATI CTGCCCAGCGCCACCATCGCCTGTCACCTGGACCCGCGCGTGTTCGTGGACGGCCTGTGCCGGGCCAAATTTGA- GTCCCTCTTTAGG ACHLDPRVFVDGLCRAKFESLFR ACGTATGACAAGGACATCACCTTTCAGTATTTTAAGAGCTTCAAACGAGTCAGAATAAACTTCAGCAACCCCTT- CTCCGCAGCAGAT TYDKDITFQYFKSFKRVRINFSN GCCAGGCTCCAGCTGCATAAGACTGAGTTTCTGGGAAAGGAAATGAAGTTATATTTTGCTCAGACCTTACACAT- AGGAAGCTCACAC PFSAADARLQLHKTEFLGKEMKL CTGGCTCCGCCAAATCCAGACAAGCAGTTTCTGATCTCCCCTCCCGCCTCTCCGCCAGTGGGATGGAAACAAGT- GGAAGATGCGACC YFAQTLHIGSSHLAPPNPDKQFL CCAGTCATAAACTATGATCTCTTATATGCCATCTCCAAGCTGGGGCCAGGGGAAAAGTATGAATTGCACGCAGC- GACTGACACCACT ISPPASPPVGWKQVEDATPVINY CCCAGCGTGGTGGTCCATGTATGTGAGAGTGATCAAGAGAAGGAGGAAGAAGAGGAAATGGAAAGAATGAGGAG- ACCTAAGCCAAAA DLLYAISKLGPGEKYELHAATDT ATTATCCAGACCAGGAGGCCGGAGTACACGCCGATCCACCTCAGCTGAACTGGCACGCGACGAGGACGCATTCC- AAATCATACTCAC TPSVVVHVCESDQEKEEEEEMER GGGAGGAATCTTTTACTGTGGAGGTGGCTGGTCACGACTTCTTCGGAGGTGGCAGCCGAGATCGGGGTGGCAGA- AATCCCAGTTCAT MRRPKPKIIQTRRPEYTPIHLS GTTGCTCAGAAGAGAATCAAGGCCGTGTCCCCTTGTTCTAATGCTGCACACCAGTTACTGTTCATGGCACCCGG- GAATGACTTGGGC CAATCACTGAGTTTGTGGTGATCGCACAAGGACATTTGGGACTGTCTTGAGAAAACAGATAATGATAGTGTTTT- GTACTTGTTCTTT TCTGGTAGGTTCTGTCTGTGCCAAGGGCAGGTTGATCAGTGAGCTCAGGAGAGAGCTTCCTGTTTCTAAGTGGC- CTGCAGGGGCCAC TCTCTACTGGTAGGAAGAGGTACCACAGGAAGCCGCCTAGTGCAGAGAGGTTGTGAAAACAGCAGCAATGCAAT- GTGGAAATTGTAG CGTTTCCTTTCTTCCCTCATGTTCTCATGTTTGTGCATGTATATTACTGATTTACAAGACTAACCTTTGTTCGT- ATATAAAGTTACA CCGTTGTTGTTTTACATCTTTTGGGAAGCCAGGAAAGCGTTTGGAAAACGTATCACCTTTCCCAGATTCTCGGA- TTCTCGACTCTTT GCAACAGCACTTGCTTGCGGAACTCTTCCTGGAATGCATTCACTCAGCATCCCCAACCGTGCAACGTGTAACTT- GTGCTTTTGCAAA AGAAGTTGATCTGAAATTCCTCTGTAGAATTTAGCTTATACAATTCAGAGAATAGCAGTTTCACTGCCAACTTT- TAGTGGGTGAGAA ATTTTAGTTTAGGTGTTTGGGATCGGACCTCAGTTTCTGTTGTTTCTTTTATGTGGTGGTTTCTATACATGAAT- CATAGCCAAAAAC TTTTTTGGAAACTGTTGGTTGAGATAGTTGGTTCTTTTACCCCACGAAGACATCAAGATACACTTGTAAATAAA- GCTGATAGCATAT ATTCATACCTGTTGTACACTTGGGTGAAAAGTATGGCAGTGGGAGACTAAGATGTATTAACCTACCTGTGAATC- ATATGTTGTAGGA AAAGCTGTTCCCATGTCTAACAGGACTTGAATTCAAAGCATGTCAAGTGGATAGTAGATCTGTGGCGATATGAG- AGGGATGCAGTGC CTTTCCCCATTCATTCCTGATGGAATTGTTATACTAGGTTAACATTTGTAATTTTTTTCTAGTTGTAATGTGTA- TGTCTGGTAAATA GGTATTATATTTTGGCCTTACAATACCGTAACAATGTTTGTCATTTTGAAATACTTAATGCCAAGTAACAATGC- ATGCTTTGGAAAT TTGGAAGATGGTTTTATTCTTTGAGAAGCAAATATGTTTGCATTAAATGCTTTGATTGTTCATATCAAGAAATT- GATTGAACGTTCT CAAACCCTGTTTACGGTACTTGGTAAGAGGGAGCCGGTTTGGGAGAGACCATTGCATCGCTGTCCAAGTGTTTC- TTGTTAAGTGCTT TTAAACTGGAGAGGCTAACCTCAAAATATTTTTTTTAACTGCATTCTATAATAAATGGGCACAGTATGCTCCTT- ACAGAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA SEQIDNO.: 25 SEQIDNO.: 72 GATTGCGAGCCAGGAGGAGGAAGCCGGCGGTGGCCCCGTCAGCAGCCGGCTGCTGAGAGGCCGGTAGGCGGCGG- CGGTCCCGAGGGG MKLYSLSVLYKGEAKVVLLKAAY CGGCGGCCGCGCTGCTCCCTGAGAACGGGTCCCGCAGCTGGGCAGGCGGGCGGCCTGAGGGCGCGGAGCCATGA- AGCTGTACAGCCT DVSSFSFFQRSSVQEFMTFTSQL CAGCGTCCTCTACAAAGGCGAGGCCAAGGTGGTGCTGCTCAAAGCCGCATACGATGTGTCTTCCTTCAGCTTTT- TCCAGAGATCCAG IVERSSKGTRASVKEQDYLCHVY CGTTCAGGAATTCATGACCTTCACGAGTCAACTGATTGTGGAGCGCTCATCGAAAGGCACTAGAGCTTCTGTCA- AAGAACAAGACTA VRNDSLAGVVIADNEYPSRVAFT TCTGTGCCACGTCTACGTCCGGAATGATAGTCTTGCAGGTGTGGTCATTGCTGACAATGAATACCCATCCCGGG- TGGCCTTTACCTT LLEKVLDEFSKQVDRIDWPVGSP GCTGGAGAAGGTACTAGATGAATTCTCCAAGCAAGTCGACAGGATAGACTGGCCAGTAGGATCCCCTGCTACAA- TCCATTACCCAGC ATIHYPALDGHLSRYQNPREADP CCTGGATGGTCACCTCAGTAGATACCAGAACCCACGAGAAGCTGATCCCATGACTAAAGTGCAGGCCGAACTAG- ATGAGACCAAAAT MTKVQAELDETKIILHNTMESLL CATTCTGCACAACACCATGGAGTCTCTGTTAGAGCGAGGTGAGAAGCTAGATGACTTGGTGTCCAAATCCGAGG- TGCTGGGAACACA ERGEKLDDLVSKSEVLGTQSKAF GTCTAAAGCCTTCTATAAAACTGCCCGGAAACAAAACTCATGCTGTGCCATCATGTGATGCAGCCTGCCAGAGG- CCCAATGCTGGAA YKTARKQNSCCAIM TGGCACCATCATTCACATCAGAACTGCAGCCCCTGGAAAAGAAGAGACAGCCATAGACGAGGAGCCAGAGTGGG- GGCAGACTGGCCA TTTTTATTTTGAAGTTCCTGCGAGAAATGGATGGTGGAAGGGTGGCGAATGTTCAAATTCATATGTGTGGTAGT- GATTCTTGGAAAG AATTTGAGGTCCCCAAAGGTGTATTTTTGGGCAAATGAAACCATAAACTCCGACTGGCTTCTGTAGATGCCAAA- GGGCTCTTTTTCA GCTAACCCTGGGAAGGCTCTGTGGGAGGGAGGTCGGAGCCAGCTGTTTCTCGATCTTTGGTATATCTTTGGATC- TTATTTGTACATT AATGATATTAACACTCCAGTGGGGGGTGGGGAGTCCCTGATGCTAGGGCTGGGGTGGGTGGAGTTTGAAGACTC- TTGGGAAAGCCTC TCCTGGGGCCACTGTTGGGGGTGGGAGTGAGCCCACCACAGAGGCCACAGGCAGGCCCCCACTTCAGGCCCAAG- GCCTGGGGCGGGG GGAACAGTCACTGGGTCTCAGATTCTGAGACTGTTGTTTAGCTTACCTTTCTGCTAGGATTGGCTTCCCGCAGA- GGGCAGGGCCCAT CCTAAGCAGCTTCCAAGTCCCACAAAGGTGGCTTGTGGGAGGATTTGGAAGGAGCTGCATTGTGGGCGGGGAGT- GTGTGGGTTGGGT TCGTACCAGCAAGTAGACTAGGAACTGAGCCCAGGAAAGGGGGATGTTTTCCTGGTGTTTGGATGGTCAGCTGG- GAGTGTCCATCAT CAGGGGAAGATCAAACACAGGTGCACTCAGCTGCCCAGGGCCTCTGGGACACTTGCCTTGACTTGCAACTTGCC- TTGAACATCACGA TCAAAGCAGCAGGTGCTGTGGTCTCTCAAAATTGATTTTTATTTGACTCTGTGGCTCTAAGACTGCCTTGAACC- GCCTGAGGCCTAT GCATCTGAACAAGTGGGTCTCTCCCTTGAGCACCAGGAGTGGGTGCCAGCCGGCCCCGAGGATTCCCAGCACCC- CACCTATGGTCTT GCCAGCATAGGCTTGCTAGTTCCTTCTTGGTCAGAGGTAGCTGCAGAGGGGGGAGGCCAAGGGTTTGGTCTAAG- CTGTGCCCTGCCA CCTGGCAGGAGGCCCACTCACTGCCCAAGTCATGGCAACAGGCTGGAGCAGCCCAGGAGATGGGCCTAAAATGT- TCTGGATCCCTTG GGTCCTAGTGTTATGTTCCAGTCTGCCCACCTGTGCTCAGGATGCAGCCCTGGGATCCAGCACCCATGGAAGCT- TCTGCTGGGATGG TGTCACCTATGGGTTTTGAACCAGTGTGGTATGGTCCTTGGGAGCTCTGCTCTGAGCTTGCCACACTGCTGAGA- GCACCCACTGTCC TGACCAGAGTCTCAGTGGTCCTGACCCCCAATGTGGGCAGGGGCTGGGCAGGAGGGTGGGGTCTGCTGTGGGTT- CAGAGGACTCCAC CTCCTGGCTGGTTTACCTGCTGCTGCCCATTTTCTCTGGGTACTGCTGGCCAGAGGACTTTAGCCTACCCCTGA- AGAGCCTGTCCAT GTCATTTTCCTACTGCCATAGATACCCTAAGCCCAGGGCCCCTTGAGGCCCAGACTCAGCCTGCCCACTGGTGC- CGGAGACGGAGTG GAGTGGGCCTGGATCCGAGGGATGCTACCTCTCCCTTTCCCACTTGAGGACCCTGGGGAGAGATGGGGGCGGGG- AAAATGGAGGTAT GAATTTGGGGTAAGAGGAAGTGAGATCTCCGCTTGCAGGTCAGCCCCTGCCTTGCAGGGCGGGCTGGCTTGACT- CAGGCCCTGTGAG ATAGAGGGCCCAGCCCAGCCCCACCCACAGATCCCCTGCTCCTGTTGTGTTCTGTTGTAAATCATTTGGCGAGA- CTGTATTTTAGTA ACTGCTGCCTAACTTCCCTGTGTTCTATTTGAGAGGCGCCTGTCTGGATAAAGTTGTCTTGAAATTTCAAAAAA- AAAAAAAAAAAA SEQIDNO.: 26 SEQIDNO.: 73 CGCTGTCGCCGCCAGTAGCAGCCTTCGCCAGCAGCGCCGCGGCGGAACCGGGCGCAGGGGAGCGAGCCCGGCCC- CGCCAGCCCAGCC MDHYDSQQTNDYMQPEEDWDRDL CAGCCCAGCCCTACTCCCTCCCCACGCCAGGGCAGCAGCCGTTGCTCAGAGAGAAGGTGGAGGAAGAAATCCAG- ACCCTAGCACGCG LLDPAWEKQQRKTFTAWCNSHLR CGCACCATCATGGACCATTATGATTCTCAGCAAACCAACGATTACATGCAGCCAGAAGAGGACTGGGACCGGGA- CCTGCTCCTGGAC KAGTQIENIEEDFRDGLKLMLLL CCGGCCTGGGAGAAGCAGCAGAGAAAGACATTCACGGCATGGTGTAACTCCCACCTCCGGAAGGCGGGGACACA- GATCGAGAACATC EVISGERLAKPERGKMRVHKISN GAAGAGGACTTCCGGGATGGCCTGAAGCTCATGCTGCTGCTGGAGGTCATCTCAGGTGAACGCTTGGCCAAGCC- AGAGCGAGGCAAG VNKALDFIASKGVKLVSIGAEEI ATGAGAGTGCACAAGATCTCCAACGTCAACAAGGCCCTGGATTTCATAGCCAGCAAAGGCGTCAAACTGGTGTC- CATCGGAGCCGAA VDGNVKMTLGMIWTIILRFAIQD GAAATCGTGGATGGGAATGTGAAGATGACCCTGGGCATGATCTGGACCATCATCCTGCGCTTTGCCATCCAGGA- CATCTCCGTGGAA ISVEETSAKEGLLLWCQRKTAPY GAGACTTCAGCCAAGGAAGGGCTGCTCCTGTGGTGTCAGAGAAAGACAGCCCCTTACAAAAATGTCAACATCCA- GAACTTCCACATA KNVNIQNFHISWKDGLGFCALIH AGCTGGAAGGATGGCCTCGGCTTCTGTGCTTTGATCCACCGACACCGGCCCGAGCTGATTGACTACGGGAAGCT- GCGGAAGGATGAT RHRPELIDYGKLRKDDPLTNLNT CCACTCACAAATCTGAATACGGCTTTTGACGTGGCAGAGAAGTACCTGGACATCCCCAAGATGCTGGATGCCGA- AGACATCGTTGGA AFDVAEKYLDIPKMLDAEDIVGT ACTGCCCGACCGGATGAGAAAGCCATCATGACTTACGTGTCTAGCTTCTACCACGCCTTCTCTGGAGCCCAGAA- GGCGGAGACAGCA ARPDEKAIMTYVSSFYHAFSGAQ GCCAATCGCATCTGCAAGGTGTTGGCCGTCAACCAGGAGAACGAGCAGCTTATGGAAGACTACGAGAAGCTGGC- CAGTGATCTGTTG KAETAANRICKVLAVNQENEQLM GAGTGGATCCGCCGCACAATCCCGTGGCTGGAGAACCGGGTGCCCGAGAACACCATGCATGCCATGCAACAGAA- GCTGGAGGACTTC EDYEKLASDLLEWIRRTIPWLEN CGGGACTACCGGCGCCTGCACAAGCCGCCCAAGGTGCAGGAGAAGTGCCAGCTGGAGATCAACTTCAACACGCT- GCAGACCAAGCTG RVPENTMHAMQQKLEDFRDYRRL CGGCTCAGCAACCGGCCTGCCTTCATGCCCTCTGAGGGCAGGATGGTCTCGGACATCAACAATGCCTGGGGCTG- CCTGGAGCAGGTG HKPPKVQEKCQLEINFNTLQTKL GAGAAGGGCTATGAGGAGTGGTTGCTGAATGAGATCCGGAGGCTGGAGCGACTGGACCACCTGGCAGAGAAGTT- CCGGCAGAAGGCC RLSNRPAFMPSEGRMVSDINNAW TCCATCCACGAGGCCTGGACTGACGGCAAAGAGGCCATGCTGCGACAGAAGGACTATGAGACCGCCACCCTCTC- GGAGATCAAGGCC GCLEQVEKGYEEWLLNEIRRLER CTGCTCAAGAAGCATGAGGCCTTCGAGAGTGACCTGGCTGCCCACCAGGACCGTGTGGAGCAGATTGCCGCCAT- CGCACAGGAGCTC LDHLAEKFRQKASIHEAWTDGKE AATGAGCTGGACTATTATGACTCACCCAGTGTCAACGCCCGTTGCCAAAAGATCTGTGACCAGTGGGACAATCT- GGGGGCCCTAACT AMLRQKDYETATLSEIKALLKKH CAGAAGCGAAGGGAAGCTCTGGAGCGGACCGAGAAACTGCTGGAGACCATTGACCAGCTGTACTTGGAGTATGC- CAAGCGGGCTGCA EAFESDLAAHQDRVEQIAAIAQE CCCTTCAACAACTGGATGGAGGGGGCCATGGAGGACCTGCAGGACACCTTCATTGTGCACACCATTGAGGAGAT- CCAGGGACTGACC LNELDYYDSPSVNARCQKICDQW ACAGCCCATGAGCAGTTCAAGGCCACCCTCCCTGATGCCGACAAGGAGCGCCTGGCCATCCTGGGCATCCACAA- TGAGGTGTCCAAG DNLGALTQKRREALERTEKLLET ATTGTCCAGACCTACCACGTCAATATGGCGGGCACCAACCCCTACACAACCATCACGCCTCAGGAGATCAATGG- CAAATGGGACCAC IDQLYLEYAKRAAPFNNWMEGAM GTGCGGCAGCTGGTGCCTCGGAGGGACCAAGCTCTGACGGAGGAGCATGCCCGACAGCAGCACAATGAGAGGCT- ACGCAAGCAGTTT EDLQDTFIVHTIEEIQGLTTAHE GGAGCCCAGGCCAATGTCATCGGGCCCTGGATCCAGACCAAGATGGAGGAGATCGGGAGGATCTCCATTGAGAT- GCATGGGACCCTG QFKATLPDADKERLAILGIHNEV GAGGACCAGCTCAGCCACCTGCGGCAGTATGAGAAGAGCATCGTCAACTACAAGCCAAAGATTGATCAGCTGGA- GGGCGACCACCAG SKIVQTYHVNMAGTNPYTTITPQ CTCATCCAGGAGGCGCTCATCTTCGACAACAAGCACACCAACTACACCATGGAGCACATCCGTGTGGGCTGGGA- GCAGCTGCTCACC EINGKWDHVRQLVPRRDQALTEE ACCATCGCCAGGACCATCAATGAGGTAGAGAACCAGATCCTGACCCGGGATGCCAAGGGCATCAGCCAGGAGCA- GATGAATGAGTTC HARQQHNERLRKQFGAQANVIGP CGGGCCTCCTTCAACCACTTTGACCGGGATCACTCCGGCACACTGGGTCCCGAGGAGTTCAAAGCCTGCCTCAT- CAGCTTGGGTTAT WIQTKMEEIGRISIEMHGTLEDQ GATATTGGCAACGACCCCCAGGGAGAAGCAGAATTTGCCCGCATCATGAGCATTGTGGACCCCAACCGCCTGGG- GGTAGTGACATTC LSHLRQYEKSIVNYKPKIDQLEG CAGGCCTTCATTGACTTCATGTCCCGCGAGACAGCCGACACAGATACAGCAGACCAAGTCATGGCTTCCTTCAA- GATCCTGGCTGGG DHQLIQEALIFDNKHTNYTMEHI GACAAGAACTACATTACCATGGACGAGCTGCGCCGCGAGCTGCCACCCGACCAGGCTGAGTACTGCATCGCGCG- GATGGCCCCCTAC RVGWEQLLTTIARTINEVENQIL ACCGGCCCCGACTCCGTGCCAGGTGCTCTGGACTACATGTCCTTCTCCACGGCGCTGTACGGCGAGAGTGACCT- CTAATCCACCCCG TRDAKGISQEQMNEFRASFNHFD CCCGGCCGCCCTCGTCTTGTGCGCCGTGCCCTGCCTTGCACCTCCGCCGTCGCCCATCTCCTGCCTGGGTTCGG- TTTCAGCTCCCAG RDHSGTLGPEEFKACLISLGYDI CCTCCACCCGGGTGAGCTGGGGCCCACGTGGCATCGATCCTCCCTGCCCGCGAAGTGACAGTTTACAAAATTAT- TTTCTGCAAAAAA GNDPQGRAEFARIMSIVDPNRLG GAAAAAAAAGTTACGTTAAAAACCAAAAAACTACATATTTTATTATAGAAAAAGTATTTTTTCTCCACCAGACA- AATGGAAAAAAAG VVTFQAFIDFMSRETADTDTADQ AGGAAAGATTAACTATTTGCACCGAAATGTCTTGTTTTGTTGCGACATAGGAAAATAACCAAGCACAAAGTTAT- ATTCCATCCTTTT VMASFKILAGDKNYITMDELRRE TACTGATTTTTTTTTCTTCTATCTGTTCCATCTGCTGTATTCATTTCTCCAATCTCATGTCCATTTTGGTGTGG- GAGTCGGGGTAGG LPPDQAEYCIARMAPYTGPDSVP GGGTACTCTTGTCAAAAGGCACATTGGTGCGTGTGTGTTTGCTAGCTCACTTGTCCATGAAAATATTTTATGAT- ATTAAAGAAAATC GALDYMSFSTALYGESDL TTTTG SEQIDNO.: 27 SEQIDNO.: 74 TGCGGGCAGGATTCACGCCGCTGTGACCCGGAGGTCCTCAGGGGGCGAAGCCCCGGCCTAGGCCTCGCGGAGAT- GCCCAGCTGCGGT MPSCGACTCGAAAVRLITSSLAS GCTTGTACTTGCGGCGCGGCGGCCGTCCGGCTCATCACCTCCTCACTCGCCTCCGCGCAGAGAGGTATTTCTGG- TGGTCGCATTCAT AQRGISGGRIHMSVLGRLGTFET ATGTCAGTTTTAGGAAGGCTTGGGACATTTGAAACTCAGATTCTGCAAAGAGCTCCTCTTAGATCCTTTACAGA- AACACCAGCATAC QILQRAPLRSFTETPAYFASKDG TTTGCCTCAAAAGATGGGATAAGTAAAGATGGTTCTGGAGATGGAAATAAGAAATCAGCAAGTGAGGGAAGTAG- TAAGAAATCAGGC ISKDGSGDGNKKSASEGSSKKSG TCTGGGAATTCTGGGAAAGGTGGAAACCAGCTGCGCTGTCCTAAATGTGGCGACTTGTGCACACATGTAGAGAC- CTTTGTATCATCC SGNSGKGGNQLRCPKCGDLCTHV ACCCGTTTTGTCAAGTGTGAAAAGTGTCATCATTTTTTTGTTGTGCTATCTGAAGCAGACTCAAAGAAAAGCAT- AATTAAAGAACCT ETFVSSTRFVKCEKCHHFFVVLS GAATCAGCAGCAGAAGCTGTAAAATTGGCATTCCAACAGAAACCACCACCTCCCCCTAAGAAGATTTATAACTA- CCTCGACAAGTAT EADSKKSIIKEPESAAEAVKLAF GTTGTTGGCCAGTCATTTGCTAAGAAGGTGCTTTCAGTTGCTGTGTACAATCATTATAAGAGAATATATAATAA- TATCCCAGCTAAT QQKPPPPPKKIYNYLDKYVVGQS CTGAGACAGCAAGCAGAGGTTGAGAAGCAGACATCATTAACACCAAGAGAGTTAGAAATAAGAAGACGGGAGGA- TGAGTACAGATTT FAKKVLSVAVYNHYKRIYNNIPA ACAAAATTGCTTCAGATTGCTGGAATTAGCCCACATGGTAATGCTTTAGGAGCATCAATGCAGCAACAGGTAAA- TCAACAAATACCT NLRQQAEVEKQTSLTPRELEIRR CAGGAAAAACGAGGAGGTGAAGTATTGGATTCTTCTCATGATGACATAAAACTTGAAAAAAGTAATATTTTGCT- GCTTGGACCAACT REDEYRFTKLLQIAGISPHGNAL GGGTCAGGTAAAACTCTGCTGGCACAAACCCTAGCTAAATGCCTTGATGTCCCTTTTGCTATCTGTGACTGTAC- AACTTTGACTCAG GASMQQQVNQQIPQEKRGGEVLD GCTGGATATGTAGGCGAAGATATTGAATCTGTGATTGCAAAACTACTCCAAGATGCCAATTATAATGTGGAAAA- AGCACAACAAGGA SSHDDIKLEKSNILLLGPTGSGK ATTGTCTTTCTGGATGAAGTAGATAAGATTGGCAGTGTGCCAGGCATTCATCAATTACGGGATGTAGGTGGAGA- AGGCGTTCAGCAA TLLAQTLAKCLDVPFAICDCTTL GGCTTATTAAAACTACTAGAAGGCACAATAGTCAATGTTCCAGAAAAGAATTCCCGAAAGCTCCGTGGAGAAAC- AGTTCAAGTTGAT TQAGYVGEDIESVIAKLLQDANY ACAACAAACATCCTGTTTGTGGCATCTGGTGCTTTCAATGGTTTAGACAGAATCATCAGCAGGAGGAAAAATGA-
AAAGTATCTTGGA NVEKAQQGIVFLDEVDKIGSVPG TTTGGAACACCATCTAATCTGGGAAAAGGCAGAAGGGCTGCAGCTGCTGCAGACCTTGCTAATCGAAGTGGGGA- ATCGAATACTCAC IHQLRDVGGEGVQQGLLKLLEGT CAAGACATTGAAGAAAAAGATCGGTTATTGCGTCATGTGGAAGCCAGAGATCTGATTGAGTTTGGCATGATTCC- TGAGTTTGTGGGA IVNVPEKNSRKLRGETVQVDTTN CGGTTGCCTGTGGTGGTTCCATTGCATAGCCTAGATGAGAAAACACTTGTACAAATATTAACTGAGCCACGAAA- TGCTGTTATTCCT ILFVASGAFNGLDRIISRRKNEK CAGTACCAGGCCTTATTCAGCATGGATAAGTGTGAACTGAATGTTACTGAGGATGCTTTGAAAGCTATAGCCAG- ATTGGCACTAGAA YLGFGTPSNLGKGRRAAAAADLA CGAAAAACAGGTGCACGAGGCCTTCGGTCCATAATGGAAAAGCTGTTACTAGAACCAATGTTTGAAGTCCCTAA- TTCTGATATCGTA NRSGESNTHQDIEEKDRLLRHVE TGTGTGGAGGTTGACAAAGAAGTAGTAGAAGGAAAAAAGGAACCAGGATACATCCGGGCTCCAACAAAAGAATC- CTCTGAAGAGGAG ARDLIEFGMIPEFVGRLPVVVPL TATGACTCTGGAGTTGAAGAAGAAGGATGGCCCCGCCAAGCAGATGCTGCAAACAGCTAAACTGTCATATTGCT- GTCTTGTATATAC HSLDEKTLVQILTEPRNAVIPQY AGCTTTTCCTTCTTTTGTTTAGGATCATAATTGTCTCTACAGTCTGATATTAAAGGCATTGGATCTATCTTGGA- TATCATACATGGT QALFSMDKCELNVTEDALKAIAR CAGAGAAGCCTTTAGGAGAAGAATCAGATCATGTATATAATTGTAACATCACATTGATTTTACGGAAGATGTTA- TATGGACTTTAAT LALERKTGARGLRSIMEKLLLEP GACACAATGTTTAGAGATAAAATGTACATTATTTTGGTTCAGTTTTTTAAAAAAAATATGCTTTAACAAAATTC- TTAGGAATTCTTT MFEVPNSDIVCVEVDKEVVEGKK TAAGCAATGCAGGTATTGCGATAACTGTAGATTTTACAATAATGTTACTCTACAAATGGGAAAATAAATTCTTT- AAAATTGAATATT EPGYIRAPTKESSEEEYDSGVEE GA EGWPRQADAANS SEQIDNO.: 28 SEQIDNO.: 75 GGCGCCCAAGCCGCCGCCGCCAGATCGGTGCCGATTCCTGCCCTGCCCCGACCGCCAGCGCGACCATGTCCCAT- CACTGGGGGTACG MSHHWGYGKHNGPEHWHKDFPIA GCAAACACAACGGACCTGAGCACTGGCATAAGGACTTCCCCATTGCCAAGGGAGAGCGCCAGTCCCCTGTTGAC- ATCGACACTCATA KGERQSPVDIDTHTAKYDPSLKP CAGCCAAGTATGACCCTTCCCTGAAGCCCCTGTCTGTTTCCTATGATCAAGCAACTTCCCTGAGGATCCTCAAC- AATGGTCATGCTT LSVSYDQATSLRILNNGHAFNVE TCAACGTGGAGTTTGATGACTCTCAGGACAAAGCAGTGCTCAAGGGAGGACCCCTGGATGGCACTTACAGATTG- ATTCAGTTTCACT FDDSQDKAVLKGGPLDGTYRLIQ TTCACTGGGGTTCACTTGATGGACAAGGTTCAGAGCATACTGTGGATAAAAAGAAATATGCTGCAGAACTTCAC- TTGGTTCACTGGA FHFHWGSLDGQGSEHTVDKKKYA ACACCAAATATGGGGATTTTGGGAAAGCTGTGCAGCAACCTGATGGACTGGCCGTTCTAGGTATTTTTTTGAAG- GTTGGCAGCGCTA AELHLVHWNTKYGDFGKAVQQPD AACCGGGCCTTCAGAAAGTTGTTGATGTGCTGGATTCCATTAAAACAAAGGGCAAGAGTGCTGACTTCACTAAC- TTCGATCCTCGTG GLAVLGIFLKVGSAKPGLQKVVD GCCTCCTTCCTGAATCCCTGGATTACTGGACCTACCCAGGCTCACTGACCACCCCTCCTCTTCTGGAATGTGTG- ACCTGGATTGTGC VLDSIKTKGKSADFTNFDPRGLL TCAAGGAACCCATCAGCGTCAGCAGCGAGCAGGTGTTGAAATTCCGTAAACTTAACTTCAATGGGGAGGGTGAA- CCCGAAGAACTGA PESLDYWTYPGSLTTPPLLECVT TGGTGGACAACTGGCGCCCAGCTCAGCCACTGAAGAACAGGCAAATCAAAGCTTCCTTCAAATAAGATGGTCCC- ATAGTCTGTATCC WIVLKEPISVSSEQVLKFRKLNF AAATAATGAATCTTCGGGTGTTTCCCTTTAGCTAAGCACAGATCTACCTTGGTGATTTGGACCCTGGTTGCTTT- GTGTCTAGTTTTC NGEGEPEELMVDNWRPAQPLKNR TAGACCCTTCATCTCTTACTTGATAGACTTACTAATAAAATGTGAAGACTAGACCAATTGTCATGCTTGACACA- ACTGCTGTGGCTG QIKASFK GTTGGTGCTTTGTTTATGGTAGTAGTTTTTCTGTAACACAGAATATAGGATAAGAAATAAGAATAAAGTACCTT- GACTTTGTTCACA GCATGTAGGGTGATGAGCACTCACAATTGTTGACTAAAATGCTGCTTTTAAAACATAGGAAAGTAGAATGGTTG- AGTGCAAATCCAT AGCACAAGATAAATTGAGCTAGTTAAGGCAAATCAGGTAAAATAGTCATGATTCTATGTAATGTAAACCAGAAA- AAATAAATGTTCA TGATTTCAAGATGTTATATTAAAGAAAAACTTTAAAAATTATTATATATTTATAGCAAAGTTATCTTAAATATG- AATTCTGTTGTAA TTTAATGACTTTTGAATTACAGAGATATAAATGAAGTATTATCTGTAAAAATTGTTATAATTAGAGTTGTGATA- CAGAGTATATTTC CATTCAGACAATATATCATAACTTAATAAATATTGTATTTTAGATATATTCTCTAATAAAATTCAGAATTCT SEQIDNO.: 29 SEQIDNO.: 76 GCTGAGCGCGGGCGCGGGGCCGCTACGTGCGCGGGGAGCGCGGGGAGCGCGGGGAGCGCGGGGCTGCGCTCGTG- TGCGCTCCTGGGC MFPEQQKEEFVSVWVRDPRIQKE GCTCGCCGCCGCCGCTGCCGCCGCGCGCCTTTGAGTCAGCAAACTCCGCGGCCCGCAAGCCCGGCTCGGCCCGG- CCCTGCTCTGTTC DFWHSYIDYEICIHTNSMCFTMK TGCCCGGAGGAGCCGCCCATTGATCGTGTCCTGTGCTGAAGATGTTTCCGGAACAACAGAAAGAGGAATTTGTA- AGTGTCTGGGTTC TSCVRRRYREFVWLRQRLQSNAL GAGATCCTAGGATTCAGAAGGAGGACTTCTGGCATTCTTACATTGACTATGAGATATGTATTCATACTAATAGC- ATGTGTTTTACAA LVQLPELPSKNLFFNMNNRQHVD TGAAAACATCCTGTGTACGAAGAAGATATAGAGAATTCGTGTGGCTGAGGCAGAGACTCCAAAGTAATGCGTTG- CTGGTACAACTGC QRRQGLEDFLRKVLQNALLLSDS CAGAACTTCCATCTAAAAACCTGTTTTTCAACATGAACAATCGCCAGCACGTGGATCAGCGTCGCCAGGGTCTG- GAAGATTTCCTCA SLHLFLQSHLNSEDIEACVSGQT GAAAAGTCCTACAGAATGCACTTTTGCTTTCAGATAGCAGCCTTCACCTCTTCTTACAGAGCCATCTGAATTCA- GAAGACATTGAGG KYSVEEAIHKFALMNRRFPEEDE CGTGTGTTTCTGGGCAGACTAAGTACTCTGTGGAAGAAGCAATTCACAAGTTTGCCTTAATGAATAGACGTTTC- CCTGAAGAAGATG EGKKENDIDYDSESSSSGLGHSS AAGAAGGAAAAAAAGAAAATGATATAGATTATGATTCAGAAAGTTCATCCTCTGGGCTTGGACACAGTAGTGAT- GACAGCAGTTCAC DDSSSHGCKVNTAPQES ATGGATGTAAAGTAAATACAGCTCCGCAGGAATCCTGAAAAATAATTCTAATGTTACTATCTTAGGAATAGCAA- ATTATGTCCAGTC ATAGAGAAGAAAGCTTCATAATAATACATTCTTACCTAAAGCTCACTGTCATGATGTTAGGTATTTAAATTCTT- AAAGATGTTGGGT TGTTTATTAGTGGTATTTTTATGTTGTCTTATTTTAGGTAAGCTTCTGTGTAAAGCTAAAAATCCTGTGAATAC- AATACTATCCTTT ACAGGCAGACATTATTGGTAAACAAGATCTTGCCCTCCAATGAAATGACTTACATGTTTTAAAAAACCGAGTTG- GTTTTATTGAATT TAAAAAGATAGGTAACTAAGTAGCATTTAAAATCAAGATAGAGCATTCCTTCTTGTATCAGTGGGGCAGTGTTA- CCATAAACACGGT GTATATGTTGTTAAACCCTATGAAGAGTAACAGTGTAGACCAGACTGCCTCTCTCAGATATGTGCCTGATATTT- TGTGGATACCTCC CCTGCACTGGCAAAACACTATGCTTTTGGGTGTTAGACTGAAATATTTTAAGAGTATTTAACCTTTCCAGTATT- CTGTTTCACGCTT AGATGGAAATGTATCTTATGAATAGAGACATATTAAAATAATGTTTACATCTTAGAAAAAACATAGATAGTGCT- AGTAATATTACTT ATAACTGTAATATATAGATTCAGAAATACATTTTCATTATCCAAAATCAGCTTCAACAAATGGTTTCTGGAGAC- AAATAATTTGTTT TCATTATCATTGTATAATCAGGTTAATGATTTATTTTTTGACTAAATGTGCAATTTCTTATCACTAGATAACTT- TCAGTATCAGTGG TGGTTACTTATTACTTAAATCAGAGGAAGGATTTTATAAAGATTAATAAATTTAATTTTACCAATAAATATTCC- CATAATTTAGAAA AGGATGTCGACTTGCTAATTTCAGAAATAATTATTCATTTTTAAAAAGCCCCTTTTAAAGCATCTACTTGAAGA- TTGGTATAATTTT CATAAAATGTCTTTTTTTTTAGTGTCCCAAAGATATCTTAGATAAACTATTTTGAAGTTCAGATTTCAGATGAG- GCAACATTTTCTT GAGATAATTACCCAAGTTTCATCCATGTTGAATGGTACAAAATATTTCTGTGAAACTAACAGGAAGATATTTTC- AGATAACTAGGAT AACTTGTTGCTTTGTTACCCAGCCTAATTGAAGAGTGGCAGAGGCTACTACAAAAAGCAACCTTTTCATTTTCA- CTAAGAGTTTAAA AGCTATTGTATTATTAAAAAGTCTTTACAATGCTTGTTTCAAAGAACCAACAGAAAAAAAAGCTAAGAAAACTG- AGAACTAACATTA AAAAAATTAAATTTAGAATAAGAATGATTTCTTTAATTTGTCCTTTTTTTCTTTGGTCTAAAACATTATTAAAT- TTTTGTAAATATT TTGATTTAATGTGTCTTAGATCCTCATTATTTTAATACAGGAAAAGAAAAGATTTAGTAATTTCTTACCATGCT- AATATGTAAAGTT CATGCCATCCAGGCATTTAAGAGCGATCCTCATCCCTTCAGCAATATGTATTTGAGTTCACACTATTTCTGTTT- TACAGCAGTTTTG AAAAACACATACTATGCCACCAATTGTCATATTATTTTTAGATGATGTAACATAGCCATCAAAATTAATATTAT- GTAATGCCTAATA CTTAGTATGTAAATGTCACGAGATCATTTTTACATTAAACGTGAAAAAAAATCAAAAAAAAAAAAAAA SEQIDNO.: 30 SEQIDNO.: 77 GAACCTCCTCGCGACTTTCCAAGGTATCTTTCAGATGAAGGCATTGAAGCTTGCACAAGCTCTCCAGACAAAGT- CAATGTAAATGAC MLRLQMTDGHISCTAVEFSYMSK ATCATCCTGATTGCTCTCAATATCTGAGAACAATTGGCAAGAAATTCCTCCCCAGTGACATCAATAGTGGAAAG- GTAGAAAAGCTCG ISLNTPPGTKVKLSGIVDIKNGF AAGGTCCATGTGTTTTGCAAATTCAAAAAATTCGCAATGTTGCTGCACCAAAGGATAATGAAGAATCTCAGGCT- GCACCAAGGATGC LLLNDSNTTVLGGEVEHLIEKWE TGCGATTACAGATGACTGATGGTCATATAAGTTGCACAGCAGTAGAATTTAGTTATATGTCAAAAATAAGCCTG- AACACACCACCTG LQRSLSKHNRSNIGTEGGPPPFV GAACTAAAGTTAAGCTCTCAGGCATTGTTGACATAAAAAATGGATTCCTGCTCTTGAATGACTCTAACACCACA- GTTCTTGGTGGTG PFGQKCVSHVQVDSRELDRRKTL AAGTGGAACACCTTATTGAGAAATGGGAGTTACAGAGAAGCTTATCAAAACACAATAGAAGCAATATTGGAACT- GAAGGTGGACCAC QVTMPVKPTNDNDEFEKQRTAAI CGCCTTTTGTGCCTTTTGGACAGAAGTGTGTATCTCATGTCCAAGTGGATAGCAGAGAACTTGATCGAAGAAAA- ACATTGCAAGTTA AEVAKSKETKTFGGGGGGARSNL CAATGCCTGTCAAACCTACAAATGATAATGATGAATTTGAAAAGCAAAGGACGGCTGCTATTGCTGAAGTTGCA- AAGAGCAAGGAAA NMNAAGNRNREVLQKEKSTKSEG CCAAGACATTTGGAGGAGGTGGTGGTGGTGCTAGAAGTAATCTCAATATGAATGCTGCTGGTAACCGAAATAGG- GAAGTTTTACAGA KHEGVYRELVDEKALKHITEMGF AAGAAAAGTCAACCAAATCAGAGGGAAAACATGAAGGTGTCTATAGAGAACTGGTTGATGAGAAAGCTCTGAAG- CACATAACGGAAA SKEASRQALMDNGNNLEAALNVL TGGGCTTCAGTAAGGAAGCATCGAGGCAAGCTCTTATGGATAATGGCAACAACTTAGAAGCAGCACTGAACGTA- CTTCTTACAAGCA LTSNKQKPVMGPPLRGRGKGRGR ATAAACAGAAACCTGTTATGGGTCCTCCTCTGAGAGGTAGAGGAAAAGGCAGGGGGCGAATAAGATCTGAAGAT- GAAGAGGACCTGG IRSEDEEDLGNARPSAPSTLFDF GAAATGCAAGGCCATCAGCACCAAGCACATTATTTGATTTCTTGGAATCTAAAATGGGAACTTTGAATGTGGAA- GAACCTAAATCAC LESKMGTLNVEEPKSQPQQLHQG AGCCACAGCAGCTTCATCAGGGACAATACAGATCATCAAATACTGAGCAAAATGGAGTAAAAGATAATAATCAT- CTGAGACATCCTC QYRSSNTEQNGVKDNNHLRHPPR CTCGAAATGATACCAGGCAGCCAAGAAATGAAAAACCGCCTCGTTTTCAAAGAGACTCCCAAAATTCAAAGTCA- GTTTTAGAAGGCA NDTRQPRNEKPPRFQRDSQNSKS GTGGATTACCTAGAAATAGAGGTTCTGAAAGACCAAGTACTTCTTCAGTATCTGAAGTATGGGCTGAAGACAGA- ATCAAATGTGATA VLEGSGLPRNRGSERPSTSSVSE GACCGTATTCTAGATATGACAGAACTAAAGATACTTCATATCCTTTAGGTTCTCAGCATAGTGATGGTGCTTTT- AAAAAAAGAGATA VWAEDRIKCDRPYSRYDRTKDTS ACTCTATGCAAAGCAGATCAGGAAAAGGTCCCTCCTTTGCAGAGGCAAAAGAAAATCCACTTCCTCAAGGATCT- GTAGATTATAATA YPLGSQHSDGAFKKRDNSMQSRS ATCAAAAACGTGGAAAAAGAGAAAGCCAAACATCTATTCCTGACTATTTTTATGACAGGAAATCACAAACAATA- AATAATGAAGCTT GKGPSFAEAKENPLPQGSVDYNN TCAGTGGTATAAAAATTGAAAAACATTTTAATGTAAATACTGATTATCAGAATCCAGTTCGAAGTAATAGTTTC- ATTGGTGTTCCAA QKRGKRESQTSIPDYFYDRKSQT ATGGAGAAGTAGAAATGCCACTGAAAGGAAGACGAATAGGACCTATTAAGCCAGCAGGACCTGTCACAGCTGTA- CCCTGTGATGATA INNEAFSGIKIEKHFNVNTDYQN AAATATTTTACAATAGTGGGCCCAAACGAAGATCTGGGCCAATTAAGCCAGAAAAAATACTAGAATCATCTATT- CCTATGGAGTATG PVRSNSFIGVPNGEVEMPLKGRR CAAAAATGTGGAAACCTGGAGATGAATGTTTTGCACTTTATTGGGAAGACAACAAGTTTTACCGGGCAGAAGTT- GAAGCCCTCCATT IGPIKPAGPVTAVPCDDKIFYNS CTTCGGGTATGACAGCAGTTGTTAAATTCATTGACTACGGAAACTATGAAGAGGTGCTACTGAGCAATATCAAG- CCCATTCAAACAG GPKRRSGPIKPEKILESSIPMEY AGGCATGGGAGGAAGAAGGCACCTACGATCAAACTCTGGAGTTCCGTAGGGGAGGTGATGGCCAGCCAAGACGA- TCCACTCGGCCAA AKMWKPGDECFALYWEDNKFYRA CCCAACAGTTTTACCAACCACCCCGGGCTCGGAACTAATAGGAAAAGACTCTTTGTGAAGAAACGAGCCAGTGA- CTGAAACACCCTG EVEALHSSGMTAVVKFIDYGNYE GTGGAAACCTGTTGACAGACCTTCCACTTTCTCTTCAGAATAAGTAGCTGTGGTGGATATTATTATTTGAAGAA- AGAAAAAACAGAT EVLLSNIKPIQTEAWEEEGTYDQ TTTAGGGTGGAAAAAACAGTCAACTCACACAAAGAATGGAAAAAAATACTGAGTTAAATTAAGCAAATACCTTT- TACAAGTGAAAGG TLEFRRGGDGQPRRSTRPTQQFY AAGAATTTTTCTTCTGCCGTCAATAAAACCATTGTGCTATTATTGTTTAAAAAAAAAAAAAAAAA QPPRARN SEQIDNO.: 31 SEQIDNO.: 78 ATAAATATCAGAGTGTGCTGCTGTGGCTTTGTGGAGCTGCCAGAGTAAAGCAAAGAGAAAGGAAGCAGGCCCGT- TGGAAGTGGTTGT MWRSLGLALALCLLPSGGTESQD GACAACCCCAGCAATGTGGAGAAGCCTGGGGCTTGCCCTGGCTCTCTGTCTCCTCCCATCGGGAGGAACAGAGA- GCCAGGACCAAAG QSSLCKQPPAWSIRDQDPMLNSN CTCCTTATGTAAGCAACCCCCAGCCTGGAGCATAAGAGATCAAGATCCAATGCTAAACTCCAATGGTTCAGTGA- CTGTGGTTGCTCT GSVTVVALLQASUYLCILQASKL TCTTCAAGCCAGCTGATACCTGTGCATACTGCAGGCATCTAAATTAGAAGACCTGCGAGTAAAACTGAAGAAAG- AAGGATATTCTAA EDLRVKLKKEGYSNISYIVVNHQ TATTTCTTATATTGTTGTTAATCATCAAGGAATCTCTTCTCGATTAAAATACACACATCTTAAGAATAAGGTTT- CAGAGCATATTCC GISSRLKYTHLKNKVSEHIPVYQ TGTTTATCAACAAGAAGAAAACCAAACAGATGTCTGGACTCTTTTAAATGGAAGCAAAGATGACTTCCTCATAT- ATGATAGATGTGG QEENQTDVWTLLNGSKDDFLIYD CCGTCTTGTATATCATCTTGGTTTGCCTTTTTCCTTCCTAACTTTCCCATATGTAGAAGAAGCCATTAAGATTG- CTTACTGTGAAAA RCGRLVYHLGLPFSFLTFPYVEE GAAATGTGGAAACTGCTCTCTCACGACTCTCAAAGATGAAGACTTTTGTAAACGTGTATCTTTGGCTACTGTGG- ATAAAACAGTTGA AIKIAYCEKKCGNCSLTTLKDED AACTCCATCGCCTCATTACCATCATGAGCATCATCACAATCATGGACATCAGCACCTTGGCAGCAGTGAGCTTT- CAGAGAATCAGCA FCKRVSLATVDKTVETPSPHYHH ACCAGGAGCACCAAATGCTCCTACTCATCCTGCTCCTCCAGGCCTTCATCACCACCATAAGCACAAGGGTCAGC- ATAGGCAGGGTCA EHHHNHGHQHLGSSELSENQQPG CCCAGAGAACCGAGATATGCCAGCAAGTGAAGATTTACAAGATTTACAAAAGAAGCTCTGTCGAAAGAGATGTA- TAAATCAATTACT APNAPTHPAPPGLHHHHKHKGQH CTGTAAATTGCCCACAGATTCAGAGTTGGCTCCTAGGAGCTGATGCTGCCATTGTCGACATCTGATATTTGAAA- AAACAGGGTCTGC RQGHPENRDMPASEDLQDLQKKL AATCACCTGACAGTGTAAAGAAAACCTCCCATCTTTATGTAGCTGACAGGGACTTCGGGCAGAGGAGAACATAA- CTGAATCTTGTCA CRKRCINQLLCKLPTDSELAPRS GTGACGTTTGCCTCCAGCTGCCTGACAAATAAGTCAGCAGCTTATACCCACAGAAGCCAGTGCCAGTTGACGCT- GAAAGAATCAGGC UCCHCRHLIFEKTGSAITUQCKE AAAAAAGTGAGAATGACCTTCAAACTAAATATTTAAAATAGGACATACTCCCCAATTTAGTCTAGACACAATTT- CATTTCCAGCATT NLPSLCSUQGLRAEENITESCQU TTTATAAACTACCAAATTAGTGAACCAAAAATAGAAATTAGATTTGTGCAAACATGGAGAAATCTACTGAATTG- GCTTCCAGATTTT RLPPAAUQISQQLIPTEASASUR AAATTTTATGTCATAGAAATATTGACTCAAACCATATTTTTTATGATGGAGCAACTGAAAGGTGATTGCAGCTT- TTGGTTAATATGT UKNQAKKUEUPSN CTTTTTTTTTCTTTTTCCAGTGTTCTATTTGCTTTAATGAGAATAGAAACGTAAACTATGACCTAGGGGTTTCT- GTTGGATAATTAG CAGTTTAGAATGGAGGAAGAACAACAAAGACATGCTTTCCATTTTTTTCTTTACTTATCTCTCAAAACAATATT- ACTTTGTCTTTTC AATCTTCTACTTTTAACTAATAAAATAAGTGGATTTTGTATTTTAAGATCCAGAAATACTTAACACGTGAATAT- TTTGCTAAAAAAG CATATATAACTATTTTAAATATCCATTTATCTTTTGTATATCTAAGACTCATCCTGATTTTTACTATCACACAT- GAATAAAGCCTTT GTATCTTTCTTTCTCTAATGTTGTATCATACTCTTCTAAAACTTGAGTGGCTGTCTTAAAAGATATAAGGGGAA- AGATAATATTGTC TGTCTCTATATTGCTTAGTAAGTATTTCCATAGTCAATGATGGTTTAATAGGTAAACCAAACCCTATAAACCTG- ACCTCCTTTATGG TTAATACTATTAAGCAAGAATGCAGTACAGAATTGGATACAGTACGGATTTGTCCAAATAAATTCAATAAAAAC- CTTAAAGCTGAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA- AA SEQIDNO.: 32 SEQIDNO. :79 CCGGGGCCCTACACGCCAGACCTGGCTCGGGGTGGGAGTGCAGAGGCAACCAAAAAGGAACCCACACCTCCCTC- CAGGGCCCGGGGC MHYVHVHRVTTQPRNKPQTKCPS GCTGTCAGACGGGGCAGCAACCAGGAGATTCCCTGGGCCTGCAGGAAGCCCTTCCGCGGACCGAAAGATTGTTC- CCCATTTTGGAGA GGQSQGPRGQFLDTVLAAMCPIA TGAAGAAACTGAGACTCAAAGCAGCTGAGTGACCTTCCCAAGGACACACACTGAACTGGGCGGTGATCAGGATC- TGAATGCACAGGG MLLTADPGMPPTCLWHTPHAKHK CGGGTGTTCAGCGATTGTTTACTACGTTGAACGTGACCTCCAGGAAAGCAGTTCTGGCCGAGATCCCCTGACAA- CGCAAAGCAAGAA EHLSIHLNMVPKCVHMHVTHTHT GTAACGTGGAAGGAGGCTCCCCAAGCTGGCTGGCCATTTTGCTGCTGTGTGTGGAGGTGCTGCCAGTGGCATGC- CCAAACCCAAAGC NSGSRYVGKYILLIKWSLAMYFV TGGAAGAGGAATAAATTACAAGTGGTCAAGGTTGCATCCTTTTGAGCCCAGGACCTGCTTGTAAGCCGAGAGGG- TTCTCTGGCCCTA QGSTLSTVTKMSHGKALPDSDTY ATCTAGCCAAGCACCATGGAGAGAATCAGTGCCTTCTTCAGCTCTATCTGGGACACCATCTTGACCAAACACCA- AGAAGGCATCTAC IQFPNQQGPHTPSIP AACACCATCTGCCTGGGAGTCCTCCTGGGCCTGCCACTCTTGGTGATCATCACACTCCTCTTCATCTGTTGCCA- TTGCTGCTGGAGC
CCACCAGGCAAGAGGGGCCAGCAGCCAGAGAAGAACAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGGATGAAGA- AGACCTCTGGATC TCTGCTCAACCCAAGCTTCTCCAGATGGAGAAGAGACCATCACTGCCTGTTTAGTTAGGCAGGAAGCAGAGGTG- TTTCCTTTCTGGG GCTAAGCCTCCTTCTGACCACACACAGACATTTCAGGAACCCCTGAAATAATGCACTATGTCCATGTCCACAGA- GTAACTACTCAAC CAAGGAACAAACCTCAGACTAAGTGTCCCAGTGGAGGGCAGTCCCAGGGACCACGTGGACAATTCTTGGATACT- GTCTTGGCAGCTA TGTGTCCAATAGCAATGCTCCTTACTGCAGACCCAGGCATGCCTCCCACCTGTCTCTGGCATACCCCACATGCA- AAGCACAAAGAAC ATTTATCCATACATCTCAATATGGTTCCCAAGTGTGTGCACATGCACGTAACACACACACACACAAATTCAGGT- AGCAGGTACGTGG GCAAGTATATTCTGCTCATCAAATGGTCATTGGCTATGTACTTTGTGCAGGGAAGTACATTATCTACAGTCACA- AAAATGTCTCATG GGAAAGCCTTGCCAGATTCAGACACATATATACAATTTCCTAACCAGCAAGGCCCCCATACACCATCTATTCCA- TAAACCACTCAGG TTACAGATGCATGCTTTCCTATTTCTAACTCTACACATAAACTTTTACTGGAAGTACTCATAATTGGACATTCC- AGCAACCTGCTAC AGTCCCCACCCTTGTGTGTCTTGATACAGACACACCAAGTTTCTGTGCCTCTGACCCCTCACCTGTGCCAAGAT- GTTTAAAGTGTGA TGGTTCAAAATTCATTGAAAGCTCTTTTCTTGTAACTCATGACAAAGTCCGTCCTCATTGCCACTGAGAGGTGT- TTAATGTGATCCA AGACCTCTCTGTGAAACATTACCCCCGCAAACCACTCAGCAAAGTGCCTTTCTCCAAGCAAGAACAAAGAGCTC- TTGGTGGTGACTG CTAGAAAATTATGGAAGCCCACTCATTTATGTCAGTGGACTGCAACTGTGTACCTGTGCAATGTTTACAGATGG- AAAGGGTGAGGAG ATGCTACACCTGAGCTAGGTATCTCCTATATAACCAAAGTTTCCAGCAGGGAAGGAACTAGACAATCATCAGTG- CAGTCTCACAGAA GGCAACACTGGAAGTGATGTCATAAGGTTGTGATGTGTGCACGGTATGGCACAGGTGGGATGCAGAGGTAACAG- AGTTTAAATGAAA GTAGGATGAAGCTATAAAGAGGTTTATTTATATTTATATTGAAGCTCAGGCAAGTGCCTTGCACACAGTAGGTA- CTTATAACTAACT GTGGTTACTGTTGGATATGTGATGTTGTTAAGGGTAAGCTTGTAATACCTCACCAGTTCTCCCCGAGTGATCTT- CTCTTCTAAGTGA GCCCACTAATTGCTGCAATGGATGAAATTGGGTGTTTAATGCTGGAGAGCACATGTAGGTGACACATGTGCCTT- GAGGTATGTGAGG ACATGTAAATTAGATCCACAGTGAGCTGAGGAGGGCTTTCCCCGCCAGAGTGAGGTTGGGAAGCAGAGTTAATC- CACTTATAGGATG AACTGCTTGGTATTTTTATTGTATTGTGACTGTATTACAAAGATGGACAATTCACTCCTTGGGAGCAAGTTATG- CTCTAGAAGTTTA TTTACAAATATGCTGGGCAGCTCTCTTGAAATATTTTCCCAAGGAAGCTATTCTACACAGTGGCAAAATTGCTA- TCTAATTAATAAT GTAGCTAAACTATGATATTTATAGTAGCAAAAAACTAAATTCTATAAGATTGCATTAAAGGAAAGATATATTCT- ATTTGCTCACTTG GGCTGCTTGGTACTCACCTGCCCTCCAGGTGTACTTTAGGCCTGTGGAGGGTGGGCATTTAGTGGTGACCCTTG- CACCAGGGTTTTC TAACAGATGACCCTGTGAATCATAATTTAAACCTGCATATATTTTATAGCCAGTCACATTTGCCCTCTCACCCT- ATATGGCCATAAA CTGCCTAAGCACTCAGGCCTCCCACTCATCAACCCCTTTGACCAGAGAAAGAAGCACTCTGGTTCTCTATCCCC- TTGTCACATAGAG AGTTTGTCATGGGGCCTCTGGCTGTGCCCTTCACATAACAGAATGACTTGCCATCTGCCTGCACCAAACCCAGG- GATGTGGAAGACA TCTCCCCACAACTGCCACTGCTCACCAGGACAAGCTGCCCTTCCTGTCTCCACCTCTCAGTCCCCCTAGAATGG- ATGGCTGGGGAGA GGTGGAGGCTGACAGCTGAGACGTAGTGTCAGATATGATCTAGGAGGGCGGATCACCGGGATCCGGGACCATAC- AAGTAACATGGTT TCCATGGCAACTGCTTGCTCCTTTGAATTAAGACAGCAGTCAGTTGTCATTGCCATGACAAGGCCTCTATCTCC- AGGCACAATGTCC CTGCTGTCTCCTAATCCAATGGACTTGCTCTCACCCCAGGGATGAAACACCCAGAAACTCACTTCTCAGTCACT- TCCACAGCCGATG ACTCAGAAGAGCCAAACCCAGAATGGGGCCTCTCTTTTCCCCATCACAGACTCCCCTGACAACCTTTCCTGGCG- TAACTAGAGGAGT CCCAGTGCAGGATAGGCCCTAAACGTTTTGTTAAATAAACAGGTGCATGAAAGGAGCCTAAGGCCATTGTTGAT- ATCCACTCTCTTC TTTCCACTTCCTTCTCATCTTTTTCTCCATGTTTTATGCTTCTCTGATTCCCTCTTCTGCCTGCACCAGACCAG- CCCCAGCCCTTTA TTCCTCTCCATTTTCACTCCTTCCAGCCTCTGTCCCTGAACTGCCACTGGCAACCCATGGGACCTCAGGACCAG- AGACTGCTTGACT CATCTGGGGAGGGTAAGTTCACGGGGGACAAAAAAATGATTCCTAAAGAAGAGGCTTCCTAGACCAGCACAGGC- TCGAGAAAGACAT CCCCTAGGCCTGGACTTCTGAGCAGCTTTAGCCAGGCTCCGGACGGCAGCCAGAGGAGGCCTTTCCCCATTGCT- CCTTTCCCCATTG CTCAATGGATTCCATGTTTCTTTTTCTTGGGGGGAGCAGGGAGGGAGAAAGGTAGAAAAATGGCAGCCACCTTT- CCAAGAAAAATAT AAAGGGTCCAAGCTGTATAGTATTTGTCAGTATTTTTTTCTGTAAAATTCAAACACACACAAAAGAAAAATTTA- TTTAAATAAAATA CTTTGAAAATGAAAAGTCTTGATGTAGTCAGATGGTTACTCTCTTAACATTAGGTATTACCCCCACTCAGACAT- CACTCAGAAATGA TCAATGCAGGGACTCTTTCTGTGACACAAATGTCCCAGCCCTCCCTGGTCACCGCCTTCGCCATGGTAGAGTCA- TAGGTCTGAGGAT GAGGAATGTGGCTGTCTCACCCTTGCTTGCAAAACAGATGGCCTTGGAGACCAGACTCCCTCAAAGGTGCCAGC- TACAGGAAAAATA TACTGATGTTCCTTGGCAACACTTACAGAACTTTCCATCAATGAGGTCCATCAATGGCTTCTTAAAGGAAAAGG- GGGGAAATAGCAA AAACCTAAGGAAGAATGGACCTTTGAGTTAAATCCAGTGTTTGTTGGGAAAGGAGGGATCAAAAACCTCTATAG- TAGCCACTAGGGC AAAAACTGTGTGTATGTGTGTGTGTAAGTGTGTGTACACTGTTCAATATGGTTCAATATGGTACCAATAGCCAC- ATGTGACTATTTA AATTCATTGCAATGAAATAAAATTAAAGGTATACTAGCTC SEQIDNO.: 33 SEQIDNO.: 80 CTTTCACTGGCAAGAGACGGAGTCCTGGGTTTCAGTTCCAGTTGCCTGCGGTGGGCTGTGTGAGTTTGCCAAAG- TCCCCTGCCCTCT MKTPWKVLLGLLGAAALVTIITV CTGGGTCTCGGTTCCCTCGCCTGTCCACGTGAGGTTGGAGGAGCTGAACGCCGACGTCATTTTTAGCTAAGAGG- GAGCAGGGTCCCC PVVLLNKGTDDATADSRKTYTLT GAGTCGCCGGCCCAGGGTCTGCGCATCCGAGGCCGCGCGCCCTTTCCCCTCCCCCACGGCTCCTCCGGGCCCCG- CACTCTGCGCCCC DYLKNTYRLKLYSLRWISDHEYL GGCTGCCGCCCAGCGCCCTACACCGCCCTCAGGGGGCCCTCGCGGGCTCCCCCCGGCCGGGATGCCAGTGCCCC- GCGCCACGCGCGC YKQENNILVFNAEYGNSSVFLEN CTGCTCCCGCGCCGCCTGCCCTGCAGCCTGCCCGCGGCGCCTTTATACCCAGCGGGCTCGGCGCTCACTAATGT- TTAACTCGGGGCC STFDEFGHSINDYSISPDGQFIL GAAACTTGCCAGCGGCGAGTGACTCCACCGCCCGGAGCAGCGGTGCAGGACGCGCGTCTCCGCCGCCCGCGGTG- ACTTCTGCCTGCG LEYNYVKQWRHSYTASYDIYDLN CTCCTTCTCTGAACGCTCACTTCCGAGGAGACGCCGACGATGAAGACACCGTGGAAGGTTCTTCTGGGACTGCT- GGGTGCTGCTGCG KRQLITEERIPNNTQWVTWSPVG CTTGTCACCATCATCACCGTGCCCGTGGTTCTGCTGAACAAAGGCACAGATGATGCTACAGCTGACAGTCGCAA- AACTTACACTCTA HKLAYVWNNDIYVKIEPNLPSYR ACTGATTACTTAAAAAATACTTATAGACTGAAGTTATACTCCTTAAGATGGATTTCAGATCATGAATATCTCTA- CAAACAAGAAAAT ITWTGKEDIIYNGITDWVYEEEV AATATCTTGGTATTCAATGCTGAATATGGAAACAGCTCAGTTTTCTTGGAGAACAGTACATTTGATGAGTTTGG- ACATTCTATCAAT FSAYSALWWSPNGTFLAYAQFND GATTATTCAATATCTCCTGATGGGCAGTTTATTCTCTTAGAATACAACTACGTGAAGCAATGGAGGCATTCCTA- CACAGCTTCATAT TEVPLIEYSFYSDESLQYPKTVR GACATTTATGATTTAAATAAAAGGCAGCTGATTACAGAAGAGAGGATTCCAAACAACACACAGTGGGTCACATG- GTCACCAGTGGGT VPYPKAGAVNPTVKFFVVNTDSL CATAAATTGGCATATGTTTGGAACAATGACATTTATGTTAAAATTGAACCAAATTTACCAAGTTACAGAATCAC- ATGGACGGGGAAA SSVTNATSIQITAPASMLIGDHY GAAGATATAATATATAATGGAATAACTGACTGGGTTTATGAAGAGGAAGTCTTCAGTGCCTACTCTGCTCTGTG- GTGGTCTCCAAAC LCDVTWATQERISLQWLRRIQNY GGCACTTTTTTAGCATATGCCCAATTTAACGACACAGAAGTCCCACTTATTGAATACTCCTTCTACTCTGATGA- GTCACTGCAGTAC SVMDICDYDESSGRWNCLVARQH CCAAAGACTGTACGGGTTCCATATCCAAAGGCAGGAGCTGTGAATCCAACTGTAAAGTTCTTTGTTGTAAATAC- AGACTCTCTCAGC IEMSTTGWVGRFRPSEPHFTLDG TCAGTCACCAATGCAACTTCCATACAAATCACTGCTCCTGCTTCTATGTTGATAGGGGATCACTACTTGTGTGA- TGTGACATGGGCA NSFYKIISNEEGYRHICYFQIDK ACACAAGAAAGAATTTCTTTGCAGTGGCTCAGGAGGATTCAGAACTATTCGGTCATGGATATTTGTGACTATGA- TGAATCCAGTGGA KDCTFITKGTWEVIGIEALTSDY AGATGGAACTGCTTAGTGGCACGGCAACACATTGAAATGAGTACTACTGGCTGGGTTGGAAGATTTAGGCCTTC- AGAACCTCATTTT LYYISNEYKGMPGGRNLYKIQLS ACCCTTGATGGTAATAGCTTCTACAAGATCATCAGCAATGAAGAAGGTTACAGACACATTTGCTATTTCCAAAT- AGATAAAAAAGAC DYTKVTCLSCELNPERCQYYSVS TGCACATTTATTACAAAAGGCACCTGGGAAGTCATCGGGATAGAAGCTCTAACCAGTGATTATCTATACTACAT- TAGTAATGAATAT FSKEAKYYQLRCSGPGLPLYTLH AAAGGAATGCCAGGAGGAAGGAATCTTTATAAAATCCAACTTAGTGACTATACAAAAGTGACATGCCTCAGTTG- TGAGCTGAATCCG SSVNDKGLRVLEDNSALDKMLQN GAAAGGTGTCAGTACTATTCTGTGTCATTCAGTAAAGAGGCGAAGTATTATCAGCTGAGATGTTCCGGTCCTGG- TCTGCCCCTCTAT VQMPSKKLDFIILNETKFWYQMI ACTCTACACAGCAGCGTGAATGATAAAGGGCTGAGAGTCCTGGAAGACAATTCAGCTTTGGATAAAATGCTGCA- GAATGTCCAGATG LPPHFDKSKKYPLLLDVYAGPCS CCCTCCAAAAAACTGGACTTCATTATTTTGAATGAAACAAAATTTTGGTATCAGATGATCTTGCCTCCTCATTT- TGATAAATCCAAG QKADTVFRLNWATYLASTENIIV AAATATCCTCTACTATTAGATGTGTATGCAGGCCCATGTAGTCAAAAAGCAGACACTGTCTTCAGACTGAACTG- GGCCACTTACCTT ASFDGRGSGYQGDKIMHAINRRL GCAAGCACAGAAAACATTATAGTAGCTAGCTTTGATGGCAGAGGAAGTGGTTACCAAGGAGATAAGATCATGCA- TGCAATCAACAGA GTFEVEDQIEAARQFSKMGFVDN AGACTGGGAACATTTGAAGTTGAAGATCAAATTGAAGCAGCCAGACAATTTTCAAAAATGGGATTTGTGGACAA- CAAACGAATTGCA KRIAIWGWSYGGYVTSMVLGSGS ATTTGGGGCTGGTCATATGGAGGGTACGTAACCTCAATGGTCCTGGGATCGGGAAGTGGCGTGTTCAAGTGTGG- AATAGCCGTGGCG GVFKCGIAVAPVSRWEYYDSVYT CCTGTATCCCGGTGGGAGTACTATGACTCAGTGTACACAGAACGTTACATGGGTCTCCCAACTCCAGAAGACAA- CCTTGACCATTAC ERYMGLPTPEDNLDHYRNSTVMS AGAAATTCAACAGTCATGAGCAGAGCTGAAAATTTTAAACAAGTTGAGTACCTCCTTATTCATGGAACAGCAGA- TGATAACGTTCAC RAENFKQVEYLLIHGTADDNVHF TTTCAGCAGTCAGCTCAGATCTCCAAAGCCCTGGTCGATGTTGGAGTGGATTTCCAGGCAATGTGGTATACTGA- TGAAGACCATGGA QQSAQISKALVDVGVDFQAMWYT ATAGCTAGCAGCACAGCACACCAACATATATATACCCACATGAGCCACTTCATAAAACAATGTTTCTCTTTACC- TTAGCACCTCAAA DEDHGIASSTAHQHIYTHMSHFI ATACCATGCCATTTAAAGCTTATTAAAACTCATTTTTGTTTTCATTATCTCAAAACTGCACTGTCAAGATGATG- ATGATCTTTAAAA KQCFSLP TACACACTCAAATCAAGAAACTTAAGGTTACCTTTGTTCCCAAATTTCATACCTATCATCTTAAGTAGGGACTT- CTGTCTTCACAAC AGATTATTACCTTACAGAAGTTTGAATTATCCGGTCGGGTTTTATTGTTTAAAATCATTTCTGCATCAGCTGCT- GAAACAACAAATA GGAATTGTTTTTATGGAGGCTTTGCATAGATTCCCTGAGCAGGATTTTAATCTTTTTCTAACTGGACTGGTTCA- AATGTTGTTCTCT TCTTTAAAGGGATGGCAAGATGTGGGCAGTGATGTCACTAGGGCAGGGACAGGATAAGAGGGATTAGGGAGAGA- AGATAGCAGGGCA TGGCTGGGAACCCAAGTCCAAGCATACCAACACGAGCAGGCTACTGTCAGCTCCCCTCGGAGAAGAGCTGTTCA- CAGCCAGACTGGC ACAGTTTTCTGAGAAAGACTATTCAAACAGTCTCAGGAAATCAAATATGCAAAGCACTGACTTCTAAGTAAAAC- CACAGCAGTTGAA AAGACTCCAAAGAAATGTAAGGGAAACTGCCAGCAACGCAGGCCCCCAGGTGCCAGTTATGGCTATAGGTGCTA- CAAAAACACAGCA AGGGTGATGGGAAAGCATTGTAAATGTGCTTTTAAAAAAAAATACTGATGTTCCTAGTGAAAGAGGCAGCTTGA- AACTGAGATGTGA ACACATCAGCTTGCCCTGTTAAAAGATGAAAATATTTGTATCACAAATCTTAACTTGAAGGAGTCCTTGCATCA- ATTTTTCTTATTT CATTTCTTTGAGTGTCTTAATTAAAAGAATATTTTAACTTCCTTGGACTCATTTTAAAAAATGGAACATAAAAT- ACAATGTTATGTA TTATTATTCCCATTCTACATACTATGGAATTTCTCCCAGTCATTTAATAAATGTGCCTTCATTTTTTCAGAAAA- AAAAAAAAAAA SEQIDNO.: 34 SEQIDNO.: 81 CGCAGCGGGTCCTCTCTATCTAGCTCCAGCCTCTCGCCTGCGCCCCACTCCCCGCGTCCCGCGTCCTAGCCGAC- CATGGCCGGGCCC MAGPLRAPLLLLAILAVALAVSP CTGCGCGCCCCGCTGCTCCTGCTGGCCATCCTGGCCGTGGCCCTGGCCGTGAGCCCCGCGGCCGGCTCCAGTCC- CGGCAAGCCGCCG AAGSSPGKPPRLVGGPMDASVEE CGCCTGGTGGGAGGCCCCATGGACGCCAGCGTGGAGGAGGAGGGTGTGCGGCGTGCACTGGACTTTGCCGTCGG- CGAGTACAACAAA EGVRRALDFAVGEYNKASNDMYH GCCAGCAACGACATGTACCACAGCCGCGCGCTGCAGGTGGTGCGCGCCCGCAAGCAGATCGTAGCTGGGGTGAA- CTACTTCTTGGAC SRALQVVRARKQIVAGVNYFLDV GTGGAGCTGGGCCGAACCACGTGTACCAAGACCCAGCCCAACTTGGACAACTGCCCCTTCCATGACCAGCCACA- TCTGAAAAGGAAA ELGRTTCTKTQPNLDNCPFHDQP GCATTCTGCTCTTTCCAGATCTACGCTGTGCCTTGGCAGGGCACAATGACCTTGTCGAAATCCACCTGTCAGGA- CGCCTAGGGGTCT HLKRKAFCSFQIYAVPWQGTMTL GTACCGGGCTGGCCTGTGCCTATCACCTCTTATGCACACCTCCCACCCCCTGTATTCCCACCCCTGGACTGGTG- GCCCCTGCCTTGG SKSTCQDA GGAAGGTCTCCCCATGTGCCTGCACCAGGAGACAGACAGAGAAGGCAGCAGGCGGCCTTTGTTGCTCAGCAAGG- GGCTCTGCCCTCC CTCCTTCCTTCTTGCTTCTCATAGCCCCGGTGTGCGGTGCATACACCCCCACCTCCTGCAATAAAATAGTAGCA- TCGGCAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA SEQIDNO.: 35 SEQIDNO.: 82 CCCAGCGGCCCTGCAGACTTGGCACAGAGCACACCCACCTGCCTTTGTCACAGCACACTAAGAAGGTTCTCTGT- GGTGACCAGGCTG MEGSLQLLACLACVLQMGSLVKT GGTAGAGGGCTGCTGGGTCTGCAGGCGTCAGAGCATGGAGGGGTCCCTCCAACTCCTGGCCTGCTTGGCCTGTG- TGCTCCAGATGGG RRDASGDLLNTEAHSAPAQRWSM ATCCCTTGTGAAAACTAGAAGAGACGCTTCGGGGGATCTGCTCAACACAGAGGCGCACAGTGCCCCGGCGCAGC- GCTGGTCCATGCA QVPAEVNAEAGDAAVLPCTFTHP GGTGCCCGCGGAGGTGAACGCGGAGGCTGGCGACGCGGCGGTGCTGCCCTGCACCTTCACGCACCCGCACCGCC- ACTACGACGGGCC HRHYDGPLTAIWRSGEPYAGPQV GCTGACGGCCATCTGGCGCTCGGGCGAGCCGTACGCGGGCCCGCAGGTGTTCCGCTGCACCGCGGCGCCGGGCA- GCGAGCTGTGCCA FRCTAAPGSELCQTALSLHGRFR GACGGCGCTGAGCCTGCACGGCCGCTTCCGCCTGCTGGGCAACCCGCGCCGCAACGACCTGTCCCTGCGCGTCG- AGCGCCTCGCCCT LLGNPRRNDLSLRVERLALADSG GGCGGACAGCGGCCGCTACTTCTGCCGCGTGGAGTTCACCGGCGACGCCCACGATCGCTATGAGAGTCGCCATG- GGGTCCGTCTGCG RYFCRVEFTGDAHDRYESRHGVR CGTGACTGCTGCGCCGCGGATCGTCAACATCTCGGTGCTGCCGGGCCCCGCGCACGCCTTCCGCGCGCTCTGCA- CCGCCGAGGGGGA LRVTAAPRIVNISVLPGPAHAFR GCCCCCGCCCGCCCTCGCCTGGTCGGGTCCCGCCCCAGGCAACAGCTCCGCTGCCCTGCAGGGCCAGGGTCACG- GCTACCAGGTGAC ALCTAEGEPPPALAWSGPAPGNS CGCCGAGTTGCCCGCGCTGACCCGCGACGGCCGCTACACGTGCACGGCGGCCAATAGCCTGGGCCGCGCCGAGG- CCAGCGTCTACCT SAALQGQGHGYQVTAELPALTRD GTTCCGCTTCCACGGCGCCCCCGGAACCTCGACCCTAGCGCTCCTGCTGGGCGCGCTGGGCCTCAAGGCCTTGC- TGCTGCTTGGCAT GRYTCTAANSLGRAEASVYLFRF TCTGGGAGCGCGTGCCACCCGACGCCGACTAGATCACCTGGTCCCCCAGGACACCCCTCCACGTGCGGACCAGG- ACACTTCACCTAT HGAPGTSTLALLLGALGLKALLL CTGGGGCTCAGCTGAAGAAATAGAAGATCTGAAAGACCTGCATAAACTCCAACGCTAG LGILGARATRRRLDHLVPQDTPP RADQDTSPIWGSAEEIEDLKDLH KLQR SEQIDNO.: 36 TTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTCTAATACGACTCACTATAGGGAGACGAGAGCAC- CTGGATAGGTTCG CGTGGCGCGCCGCATGCGTCGACGGATCCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTTATTGTGCTGTC- TCATCATTTTGGC AAAGAATTCACTCCTCAGGTGCAGGCTGCCTATCAGAAGGTGGTGGCTGGTGTGGCCAATGCCCTGGCTCACAA- ATACCACTGAGAT CTTTTTCCCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAATAAAGGAA- ATTTATTTTCATT GCAAAAAAAAAAAGCGGCCGCTAACTGTTGGTGCAGGCGCTCGGACCGCTAGCTTGGCGTAATCATGGTCATAG- CTGTTTCCTGTGT GAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAA- TGAGTGAGCTAAC TCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATC- GGCCAACGCGCGG GGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTG- CGGCGAGCGGTAT CAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAA-
GGCCAGCAAAAGG CCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAAT- CGACGCTCAAGTC AGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCT- GTTCCGACCCTGC CGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTAT- CTCAGTTCGGTGT AGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAAC- TATCGTCTTGAGT CCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTA- GGCGGTGCTACAG AGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCA- GTTACCTTCGGAA AAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAG- ATTACGCGCAGAA AAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAA- GGGATTTTGGTCA TGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATA- TATGAGTAAACTT GGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTT- GCCTGACTCCCCG TCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGC- TCACCGGCTCCAG ATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATC- CAGTCTATTAATT GTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATC- GTGGTGTCACGCT CGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGC- AAAAAAGCGGTTA GCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTG- CATAATTCTCTTA CTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATG- CGGCGACCGAGTT GCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAA- CGTTCTTCGGGGC GAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCA- GCATCTTTTACTT TCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAA- TGTTGAATACTCA TACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGT- ATTTAGAAAAATA AACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACA- TTAACCTATAAAA ATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTC- CCGGAGACGGTCA CAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGG- GGCTGGCTTAACT ATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGA- AAATACCGCATCA GGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAG- CTGGCGAAAGGGG GATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGG SEQIDNO.: 37 TTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTCGAGCTCACATACGATTTAGGTGACACTATAGG- CCTGCACCAACAG TTAACACGGCGCGCCGCATGCGTCGACGGATCCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTTATTGTGC- TGTCTCATCATTT TGGCAAAGAATTCACTCCTCAGGTGCAGGCTGCCTATCAGAAGGTGGTGGCTGGTGTGGCCAATGCCCTGGCTC- ACAAATACCACTG AGATCTTTTTCCCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAATAAA- GGAAATTTATTTT CATTGCAAAAAAAAAAAGCGGCCGCTAGAGTCGGCCGCAGCGGCCGAGCTTGGCGTAATCATGGTCATAGCTGT- TTCCTGTGTGAAA TTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAG- TGAGCTAACTCAC ATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCC- AACGCGCGGGGAG AGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGC- GAGCGGTATCAGC TCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCC- AGCAAAAGGCCAG GAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGAC- GCTCAAGTCAGAG GTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTC- CGACCCTGCCGCT TACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAAAGCTCACGCTGTAGGTATCTCA- GTTCGGTGTAGGT CGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATC- GTCTTGAGTCCAA CCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCG- GTGCTACAGAGTT CTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTA- CCTTCGGAAAAAG AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTA- CGCGCAGAAAAAA AGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGA- TTTTGGTCATGAG ATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATG- AGTAAACTTGGTC TGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCT- GACTCCCCGTCGT GTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCAC- CGGCTCCAGATTT ATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGT- CTATTAATTGTTG CCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGG- TGTCACGCTCGTC GTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAA- AAGCGGTTAGCTC CTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATA- ATTCTCTTACTGT CATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGC- GACCGAGTTGCTC TTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTT- CTTCGGGGCGAAA ACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCAT- CTTTTACTTTCAC CAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTT- GAATACTCATACT CTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTT- AGAAAAATAAACA AATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAA- CCTATAAAAATAG GCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGG- AGACGGTCACAGC TTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCT- GGCTTAACTATGC GGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAAT- ACCGCATCAGGCG CCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGG- CGAAAGGGGGATG TGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGG SEQIDNO.: 38 TTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTCTAATACGACTCACTATAGGGAGATGGAGAAAA- AAATCACTGGACG CGTGGCGCGCCATTAATTAATGCGGCCGCTAGCTCGAGTGATAATAAGCGGATGAATGGCTGCAGGCATGCAAG- CTTGGCGTAATCA TGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAA- GTGTAAAGCCTGG GGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTC- GTGCCAGCTGCAT TAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTC- GCTGCGCTCGGTC GTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGC- AGGAAAGAACATG TGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCC- CCCTGACGAGCAT CACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGG- AAGCTCCCTCGTG CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTC- TCAATGCTCACGC TGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGA- CCGCTGCGCCTTA TCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAG- GATTAGCAGAGCG AGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGG- TATCTGCGCTCTG CTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGG- TTTTTTTGTTTGC AAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCA- GTGGAACGAAAAC TCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAG- TTTTAAATCAATC TAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTG- TCTATTTCGTTCA TCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGC- AATGATACCGCGA GACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCC- TGCAACTTTATCC GCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGT- TGTTGCCATTGCT ACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGT- TACATGATCCCCC ATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATC- ACTCATGGTTATG GCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAA- GTCATTCTGAGAA TAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTT- AAAAGTGCTCATC ATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCAC- TCGTGCACCCAAC TGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAA- GGGAATAAGGGCG ACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCAT- GAGCGGATACATA TTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTA- AGAAACCATTATT ATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGA- AAACCTCTGACAC ATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTC- AGCGGGTGTTGGC GGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAAT- ACCGCACAGATGC GTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCG- GGCCTCTTCGCTA TTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGG SEQIDNO.: 39 TTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTCAATTAACCCTCACTAAAGGGAGACTTGTTCCA- AATGTGTTAGGcg CGCCGCATGCGTCGACGGATCCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTTATTGTGCTGTCTCATCAT- TTTGGCAAAGAAT TCACTCCTCAGGTGCAGGCTGCCTATCAGAAGGTGGTGGCTGGTGTGGCCAATGCCCTGGCTCACAAATACCAC- TGAGATCTTTTTC CCTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAATAAAGGAAATTTATT- TTCATTGCAAAAA AAAAAAGCGGCCGCTCTTCTATAGTGTCACCTAAATGGCCCAGCGGCCGAGCTTGGCGTAATCATGGTCATAGC- TGTTTCCTGTGTG AAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAAT- GAGTGAGCTAACT CACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCG- GCCAACGCGCGGG GAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGC- GGCGAGCGGTATC AGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAG- GCCAGCAAAAGGC CAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATC- GACGCTCAAGTCA GAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTG- TTCCGACCCTGCC GCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAAAGCTCACGCTGTAGGTATC- TCAGTTCGGTGTA GGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACT- ATCGTCTTGAGTC CAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAG- GCGGTGCTACAGA GTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAG- TTACCTTCGGAAA AAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGA- TTACGCGCAGAAA AAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAG- GGATTTTGGTCAT GAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATAT- ATGAGTAAACTTG GTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTG- CCTGACTCCCCGT CGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCT- CACCGGCTCCAGA TTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCC- AGTCTATTAATTG TTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCG- TGGTGTCACGCTC GTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCA- AAAAAGCGGTTAG CTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGC- ATAATTCTCTTAC TGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGC- GGCGACCGAGTTG CTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAAC- GTTCTTCGGGGCG AAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAG- CATCTTTTACTTT CACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAAT- GTTGAATACTCAT ACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTA- TTTAGAAAAATAA ACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACAT- TAACCTATAAAAA TAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCC-
CGGAGACGGTCAC AGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGG- GCTGGCTTAACTA TGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAA- AATACCGCATCAG GCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGC- TGGCGAAAGGGGG ATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGG SEQIDNO.: 40 AATTCTAATACGACTCACTATAGGGAGACGAGAGCACCTGGATAGGTT SEQIDNO.: 41 GCCTGCACCAACAGTTAACA SEQIDNO.: 42 CAGGCCCAGGAGTCCAATT SEQIDNO.: 43 TCCCGTCTTTGGGTCAAAA SEQIDNO.: 44 GCGCCGCGGATCGTCAACA SEQIDNO.: 45 ACACGTGCACGGCGGCCAA SEQIDNO.: 46 TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAA- GCGGATGCCGGGA GCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAG- CAGATTGTACTGA GAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCA- TTCAGGCTGCGCA ACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGG- CGATTAAGTTGGG TAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTTTCCAAAAAACTACCGTT- GTTATAGGTGTCT CTTGAACACCTATAACAACGGTAGTGGATCCCGCGTCCTTTCCACAAGATATATAAACCCAAGAAATCGAAATA- CTTTCAAGTTACG GTAAGCATATGATAGTCCATTTTAAAACATAATTTTAAAACTGCAAACTACCCAAGAAATTATTACTTTCTACG- TCACGTATTTTGT ACTAATATCTTTGTGTTTACAGTCAAATTAATTCTAATTATCTCTCTAACAGCCTTGTATCGTATATGCAAATA- TGAAGGAATCATG GGAAATAGGCCCTCTTCCTGCCCGACCTTGGCGCGCGCTCGGCGCGCGGTCACGCTCCGTCACGTGGTGCGTTT- TGCCTGCGCGTCT TTCCACTGGGGAATTCATGCTTCTCCTCCCTTTAGTGAGGGTAATTCTCTCTCTCTCCCTATAGTGAGTCGTAT- TAATTCCTTCTCT TCTATAGTGTCACCTAAATCGTTGCAATTCGTAATCATGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCT- CACAATTCCACAC AACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTT- GCGCTCACTGCCC GCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCG- TATTGGGCGCTCT TCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGC- GGTAATACGGTTA TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAA- GGCCGCGTTGCTG GCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCC- GACAGGACTATAA AGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCT- GTCCGCCTTTCTC CCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAA- GCTGGGCTGTGTG CACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACA- CGACTTATCGCCA CTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTG- GCCTAACTACGGC TACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTC- TTGATCCGGCAAA AAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGA- AGATCCTTTGATC TTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAG- GATCTTCACCTAG ATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCA- ATGCTTAATCAGT GAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTAC- GATACGGGAGGGC TTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAA- CCAGCCAGCCGGA AGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAG- AGTAAGTAGTTCG CCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGC- TTCATTCAGCTCC GGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCC- GATCGTTGTCAGA AGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGT- AAGATGCTTTTCT GTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTC- AATACGGGATAAT ACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGAT- CTTACCGCTGTTG AGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGG- GTGAGCAAAAACA GGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCA- ATATTATTGAAGC ATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCC- GCGCACATTTCCC CGAAAAGTGCCACCTATTGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTC- AATTAGTCAGCAA CCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACC- ATAGTCCCGCCCC TAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTT- ATTTATGCAGAGG CCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAA- AAGCTAGCTTGCA TGCCTGCAGGTCGGCCGCCACGACCGGTGCCGCCACCATCCCCTGACCCACGCCCCTGACCCCTCACAAGGAGA- CGACCTTCCATGA CCGAGTACAAGCCCACGGTGCGCCTCGCCACCCGCGACGACGTCCCCCGGGCCGTACGCACCCTCGCCGCCGCG- TTCGCCGACTACC CCGCCACGCGCCACACCGTCGACCCGGACCGCCACATCGAGCGGGTCACCGAGCTGCAAGAACTCTTCCTCACG- CGCGTCGGGCTCG ACATCGGCAAGGTGTGGGTCGCGGACGACGGCGCCGCGGTGGCGGTCTGGACCACGCCGGAGAGCGTCGAAGCG- GGGGCGGTGTTCG CCGAGATCGGCCCGCGCATGGCCGAGTTGAGCGGTTCCCGGCTGGCCGCGCAGCAACAGATGGAAGGCCTCCTG- GCGCCGCACCGGC CCAAGGAGCCCGCGTGGTTCCTGGCCACCGTCGGCGTCTCGCCCGACCACCAGGGCAAGGGTCTGGGCAGCGCC- GTCGTGCTCCCCG GAGTGGAGGCGGCCGAGCGCGCCGGGGTGCCCGCCTTCCTGGAGACCTCCGCGCCCCGCAACCTCCCCTTCTAC- GAGCGGCTCGGCT TCACCGTCACCGCCGACGTCGAGGTGCCCGAAGGACCGCGCACCTGGTGCATGACCCGCAAGCCCGGTGCCTGA- CGCCCGCCCCACG ACCCGCAGCGCCCGACCGAAAGGAGCGCACGACCCCATGGCTCCGACCGAAGCCACCCGGGGCGGCCCCGCCGA- CCCCGCACCCGCC CCCGAGGCCCACCGACTCTAGAGGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAA- CCTCCCACACCTC CCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAA- ATAAAGCAATAGC ATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCAATCTAAGAAACCATTATTATCATGACATTAACCTAT- AAAAATAGGCGTA TCACGAGGCCCTTTCGTC SEQIDNO.: 47 TAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTA- CGGTAAATGGCCC GCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAG- GGACTTTCCATTG ACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGC- CCCCTATTGACGT CAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACA- TCTACGTATTAGT CATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGAT- TTCCAAGTCTCCA CCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCG- CCCCATTGACGCA AATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGC- GCTACCGGACTCA GATCTCGAGCTCAAGCTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCCACCGGGGCCGCGACTCTA- GATCATAATCAGC CATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAAT- GAATGCAATTGTT GTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGC- ATTTTTTTCACTG CATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAAGGCGTAAATTGTAAGCGTTAATATTTTGTTAA- AATTCGCGTTAAA TTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGA- CCGAGATAGGGTT GAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCG- TCTATCAGGGCGA TGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACC- CTAAAGGGAGCCC CCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCG- CTAGGGCGCTGGC AAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCAGGTG- GCACTTTTCGGGG AAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAAC- CCTGATAAATGCT TCAATAATATTGAAAAAGGAAGAGTCCTGAGGCGGAAAGAACCAGCTGTGGAATGTGTGTCAGTTAGGGTGTGG- AAAGTCCCCAGGC TCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTC- CCCAGCAGGCAGA AGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAAC- TCCGCCCAGTTCC GCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCT- ATTCCAGAAGTAG TGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAGATCGATCAAGAGACAGGATGAGGATCGTTTCGCATGA- TTGAACAAGATGG ATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCT- GCTCTGATGCCGC CGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAAC- TGCAAGACGAGGC AGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAA- GGGACTGGCTGCT ATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTG- ATGCAATGCGGCG GCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTACTC- GGATGGAAGCCGG TCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGG- CGAGCATGCCCGA CGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTG- GATTCATCGACTG TGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCG- GCGAATGGGCTGA CCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGT- TCTTCTGAGCGGG ACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGCCTT- CTATGAAAGGTTG GGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGC- CCACCCTAGGGGG AGGCTAACTGAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGACGGCAATAAAAAGACAGAATAA- AACGCACGGTGTT GGGTCGTTTGTTCATAAACGCGGGGTTCGGTCCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTG- GGGCCAATACGCC CGCGTTTCTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGC- GGCAGGCCCTGCC ATAGCCTCAGGTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAA- GATCCTTTTTGAT AATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGG- ATCTTCTTGAGAT CCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGA- TCAAGAGCTACCA ACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTT- AGGCCACCACTTC AAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAA- GTCGTGTCTTACC GGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCC- CAGCTTGGAGCGA ACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGC- GGACAGGTATCCG GTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCC- TGTCGGGTTTCGC CACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGC- GGCCTTTTTACGG TTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTAT- TACCGCCATGCAT Identical to SEQIDNO.: 83 SEQIDNO.: 48 ATGGAAAAGTCCATCTGGCTGCTGGCCTGCTTGGCGTGGGTTCTCCCGACAGGCTCATTTGTGAGAACTAAAAT- AGATACTACGGAG MEKSIWLLACLAWVLPTGSFVRT AACTTGCTCAACACAGAGGTGCACAGCTCGCCAGCGCAGCGCTGGTCCATGCAGGTGCCACCCGAGGTGAGCGC- GGAGGCAGGCGAC KIDTTENLLNTEVHSSPAQRWSM GCGGCAGTGCTGCCCTGCACCTTCACGCACCCGCACCGCCACTACGACGGGCCGCTGACGGCCATCTGGCGCGC- GGGCGAGCCCTAT QVPPEVSAEAGDAAVLPCTFTHP GCGGGCCCGCAGGTGTTCCGCTGCGCTGCGGCGCGGGGCAGCGAGCTCTGCCAGACGGCGCTGAGCCTGCACGG- CCGCTTCCGGCTG HRHYDGPLTAIWRAGEPYAGPQV CTGGGCAACCCGCGCCGCAACGACCTCTCGCTGCGCGTCGAGCGCCTCGCCCTGGCTGACGACCGCCGCTACTT- CTGCCGCGTCGAG FRCAAARGSELCQTALSLHGRFR TTCGCCGGCGACGTCCATGACCGCTACGAGAGCCGCCACGGCGTCCGGCTGCACGTGACAGCCGCGCCGCGGAT- CGTCAACATCTCG LLGNPRRNDLSLRVERLALADDR GTGCTGCCCAGTCCGGCTCACGCCTTCCGCGCGCTCTGCACTGCCGAAGGGGAGCCGCCGCCCGCCCTCGCCTG- GTCCGGCCCGGCC RYFCRVEFAGDVHDRYESRHGVR CTGGGCAACAGCTTGGCAGCCGTGCGGAGCCCGCGTGAGGGTCACGGCCACCTAGTGACCGCCGAACTGCCCGC- ACTGACCCATGAC LHVTAAPRIVNISVLPSPAHAFR GGCCGCTACACGTGTACGGCCGCCAACAGCCTGGGCCGCTCCGAGGCCAGCGTCTACCTGTTCCGCTTCCATGG- CGCCAGCGGGGCC ALCTAEGEPPPALAWSGPALGNS TCGACGGTCGCCCTCCTGCTCGGCGCTCTCGGCTTCAAGGCGCTGCTGCTGCTCGGGGTCCTGGCCGCCCGCGC- TGCCCGCCGCCGC LAAVRSPREGHGHLVTAELPALT CCAGAGCATCTGGACACCCCGGACACCCCACCACGGTCCCAGGCCCAGGAGTCCAATTATGAAAATTTGAGCCA- GATGAACCCCCGG HDGRYTCTAANSLGRSEASVYLF AGCCCACCAGCCACCATGTGCTCACCGTGA RFHGASGASTVALLLGALGFKAL
LLLGVLAARAARRRPEHLDTPDT PPRSQAQESNYENLSQMNPRSPP ATMCSP Identical to SEQIDNO.: 84 SEQIDNO.: 49 ATGCCGGCGCTGCTGCCTGTGGCCTCCCGCCTTTTGTTGCTACCCCGAGTCTTGCTGACCATGGCCTCTGGAAG- CCCTCCGACCCAG MIGSGLAGSGGAGGPSSTVTWCA CCCTCGCCGGCCTCGGATTCCGGCTCTGGCTACGTTCCGGGCTCGGTCTCTGCAGCCTTTGTTACTTGCCCCAA- CGAGAAGGTCGCC LFSNHVAATQASLLLSFVWMPAL AAGGAGATCGCCAGGGCCGTGGTGGAGAAGCGCCTAGCAGCCTGCGTCAACCTCATCCCTCAGATTACATCCAT- CTATGAGTGGAAA LPVASRLLLLPRVLLTMASGSPP GGGAAGATCGAGGAAGACAGTGAGGTGCTGATGATGATTAAAACCCAAAGTTCCTTGGTCCCAGCTTTGACAGA- TTTTGTTCGTTCT TQPSPASDSGSGYVPGSVSAAFV GTGCACCCTTACGAAGTGGCCGAGGTAATTGCATTGCCTGTGGAACAGGGGAACTTTCCGTACCTGCAGTGGGT- GCGCCAGGTCACA TCPNEKVAKEIARAVVEKRLAAC GAGTCAGTTTCTGACTCTATCACAGTCCTGCCATGA VNLIPQITSIYEWKGKIEEDSEV LMMIKTQSSLVPALTDFVRSVHP YEVAEVIALPVEQGNFPYLQWVR QVTESVSDSITVLP SEQIDNO. 85: CATGTGCCAACATGCAGGTTTGCTCATATNTATACTTTTGCCATGTTGGTGTGCTGCACCCATTAACTCGTCAT- TTAGCATTAGGTA TATTTCTTAATGCTATCCCTCCCCCCTCCCTCCACCCCACAACAGTCCCCGCTGGTGTGTGATGTTCCCAAATT- TTTTTTTTCTCAT CANCATTATCNCTAAACAACATTGAATGAAACAACATTGAGGATCTGCTATATTTGAAAATAAAAATATAACTA- AAAATAATACAAA TTTTAAAAATACAGTGTAACAACTATTTACATAGAATTTACATTGTATTAGGTATTGNANGTAATCTAGAGTTG- ATTTAAAGGAGGG GNGTCCAAACTTTTGGCTTCCCTGGGCCACACTGGAANAANAATTGTCTTGGGCTACCCATAAAATACACTAAC- AATAGCTGATAAC GA SEQIDNO. 86 GCTGATTTACAGAGTTTCCTCCTTATAATATTCAAATGTCCATTTTCAATAACAGCAACAAACTACAAAGAAAC- AGGAAAGTATGGT CTACTCACAGA
REFERENCES
Patents:
[0445] U.S. Pat. No. 5,712,127 Malek et al., Jan. 27, 1998
[0446] U.S. Pat. No. 6,498,024, Malek et al., Dec. 24, 2002
[0447] U.S. patent application Ser. No. 11/000,958 field on Dec. 2, 2003 published under No. US 2005/0153333A1 on Jul. 14, 2005 and entitled "Selective Terminal Tagging of Nucleic Acids"
[0448] U.S. Pat. No. 6,617,434 Duffy, Sep. 9, 2003
[0449] U.S. Pat. No. 6,451,555 Duffy, Sep. 17, 2002
Other References:
[0449]
[0450] 1. Frost H. M., 1964 Dymanics of Bone Remodeling. In: Bone Biodynamics, Little and Brown, Boston, Mass., USA pp. 315;
[0451] 2. Baron, R., Anatomy and Biology of Bone Matrix and Cellular Elements, In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, Fifth Edition 2003, American Society for Bone and Mineral Research, Washington D.C., pp. 1-8;
[0452] 3. Jilka, R. L. et al., "Increased Osteoclast Development After Esgtrogen Loss: Mediation by Interleukin-6", Science 257: 88-91 (1992).
[0453] 4. Poli, V. et al., "Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion", EMBO J 13: 1189-1196 (1994).
[0454] 5. Srivastava, S. et al., "Estrogen Blocks M-CSF Gene Expression and Osteoclast Formation by Regulating Phosphorylation of Egr-1 and Its Interaction with Sp-1", J Clin Invest 102: 1850-1859 (1998).
[0455] 6. de Vernejoul, M. C., "Dynamics of Bone Remodeling: Biochemical and Pathophysiological Basis", Eur J Clin Chem Clin Biochem 34: 729-734 (1996).
[0456] 7. Netzel-Arnett, S., J. D. Hooper, et al. (2003). "Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer." Cancer Metastasis Rev 22(2-3): 237-58.
[0457] 8. Shan, J., L. Yuan, et al. (2002). "TSP50, a possible protease in human testes, is activated in breast cancer epithelial cells." Cancer Res 62(1): 290-4.
[0458] 9. Yuan, L., J. Shan, et al. (1999). "Isolation of a novel gene, TSP50, by a hypomethylated DNA fragment in human breast cancer." Cancer Res 59(13): 3215-21.
[0459] 10. Nishi, T. and M. Forgac (2002). "The vacuolar (H+)-ATPases-nature's most versatile proton pumps." Nat Rev Mol Cell Biol 3(2): 94-103.
[0460] 11. Nishi, T., S. Kawasaki-Nishi, et al. (2003). "Expression and function of the mouse V-ATPase d subunit isoforms." J Biol Chem 278(47): 46396-402.
[0461] 12. Morello, R., L. Tonachini, et al. (1999). "cDNA cloning, characterization and chromosome mapping of Crtap encoding the mouse cartilage associated protein." Matrix Biol 18(3): 319-24.
[0462] 13. Tonachini, L., R. Morello, et al. (1999). "cDNA cloning, characterization and chromosome mapping of the gene encoding human cartilage associated protein (CRTAP)." Cytogenet Cell Genet 87(3-4): 191-4.
[0463] 14. Kawai, J., A. Shinagawa, et al. (2001). "Functional annotation of a full-length mouse cDNA collection." Nature 409(6821): 685-90.
[0464] 15. Strausberg, R. L., E. A. Feingold, et al. (2002). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences." Proc Natl Acad Sci USA 99(26): 16899-903.
[0465] 16. Janssen, E., M. Zhu, et al. (2003). "LAB: a new membrane-associated adaptor molecule in B cell activation." Nat Immunol 4(2): 117-23.
[0466] 17. Kawaida, R., T. Ohtsuka, et al. (2003). "Jun dimerization protein 2 (JDP2), a member of the AP-1 family of transcription factor, mediates osteoclast differentiation induced by RANKL." J Exp Med 197(8): 1029-35.
[0467] 18. Agrawal, N., P. V. Dasaradhi, et al. (2003). "RNA interference: biology, mechanism, and applications." Microbiol Mol Biol Rev 67(4): 657-85.
[0468] 19. Hannon, G. J. (2002). "RNA interference." Nature 418(6894): 244-51.
[0469] 20. Brummelkamp, T. R., R. Bernards, et al. (2002). "A system for stable expression of short interfering RNAs in mammalian cells." Science 296(5567): 550-3.
[0470] 21. Elbashir, et al. (2001). "Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells." Nature 411(6836): 494-8.
[0471] 22. Lee, J. S., Z. Hmama, et al. (2004). "Stable gene silencing in human monocytic cell lines using lentiviral-delivered small interference RNA. Silencing of the p110alpha isoform of phosphoinositide 3-kinase reveals differential regulation of adherence induced by 1alpha,25-dihydroxycholecalciferol and bacterial lipopolysaccharide." J Biol Chem 279(10): 9379-88.
[0472] 23. Rubinson, D. A., C. P. Dillon, et al. (2003). "A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference." Nat Genet 33(3): 401-6.
[0473] 24. Boyle, W. J., W. S. Simonet, et al. (2003). "Osteoclast differentiation and activation." Nature 423(6937): 337-42.
[0474] 25. Gee et al. In: Huber and Carr (1994) Molecular and Immunologic Approaches, Futura Publishing Co., Mt. Kisco N.Y., pp. 163-177.
[0475] 26. Smith, A. N., F. Jouret, et al. (2005). "Vacuolar H+-ATPase d2 subunit: molecular characterization, developmental regulation, and localization to specialized proton pumps in kidney and bone." J Am Soc Nephrol 16(5): 1245-56
[0476] 27. Smith, A. N., J. Skaug, et al. (2000). "Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing." Nat Genet 26(1): 71-5.
[0477] 28. Stehberger, P. A., N. Schulz, et al. (2003). "Localization and regulation of the ATP6V0A4 (a4) vacuolar H+-ATPase subunit defective in an inherited form of distal renal tubular acidosis." J Am Soc Nephrol 14(12): 3027-38.
[0478] 29. Malkin I, Dahm S, Suk A, Kobyliansky E, Toliat M, Ruf N, Livshits G, Nurnberg P. Association of ANKH gene polymorphisms with radiographic hand bone size and geometry in a Chuvasha population. Bone. 2005 February; 36(2):365-73.
[0479] 30. McMahon C, Will A, Hu P, Shah G N, Sly W S, Smith O P. Bone marrow transplantation corrects osteopetrosis in the carbonic anhydrase II deficiency syndrome. Blood. 2001 Apr. 1; 97(7):1947-50.
[0480] 31. Biskobing D M, Fan D. Acid pH increases carbonic anhydrase II and calcitonin receptor mRNA expression in mature osteoclasts. Calcif Tissue Int. 2000 August; 67(2):178-83.
[0481] 32. Brage M, Abrahamson M, Lindstrom V, Grubb A, Lerner U H. Different cysteine proteinases involved in bone resorption and osteoclast formation. Calcif Tissue Int. 2005 June; 76(6):439-47. Epub 2005 May 19.
Sequence CWU
1
1
8611523DNAHomo sapiens 1tccggctccc gcagagccca cagggacctg cagatctgag
tgccctgccc acccccgccc 60gccttccttc ccccaccacg cctgggaggg ccctcactgg
ggaggtggcc gagaacgggt 120ctggcctggg gtgttcagat gctcacagca tggaaaagtc
catctggctg ctggcctgct 180tggcgtgggt tctcccgaca ggctcatttg tgagaactaa
aatagatact acggagaact 240tgctcaacac agaggtgcac agctcgccag cgcagcgctg
gtccatgcag gtgccacccg 300aggtgagcgc ggaggcaggc gacgcggcag tgctgccctg
caccttcacg cacccgcacc 360gccactacga cgggccgctg acggccatct ggcgcgcggg
cgagccctat gcgggcccgc 420aggtgttccg ctgcgctgcg gcgcggggca gcgagctctg
ccagacggcg ctgagcctgc 480acggccgctt ccggctgctg ggcaacccgc gccgcaacga
cctctcgctg cgcgtcgagc 540gcctcgccct ggctgacgac cgccgctact tctgccgcgt
cgagttcgcc ggcgacgtcc 600atgaccgcta cgagagccgc cacggcgtcc ggctgcacgt
gacagccgcg ccgcggatcg 660tcaacatctc ggtgctgccc agtccggctc acgccttccg
cgcgctctgc actgccgaag 720gggagccgcc gcccgccctc gcctggtccg gcccggccct
gggcaacagc ttggcagccg 780tgcggagccc gcgtgagggt cacggccacc tagtgaccgc
cgaactgccc gcactgaccc 840atgacggccg ctacacgtgt acggccgcca acagcctggg
ccgctccgag gccagcgtct 900acctgttccg cttccatggc gccagcgggg cctcgacggt
cgccctcctg ctcggcgctc 960tcggcttcaa ggcgctgctg ctgctcgggg tcctggccgc
ccgcgctgcc cgccgccgcc 1020cagagcatct ggacaccccg gacaccccac cacggtccca
ggcccaggag tccaattatg 1080aaaatttgag ccagatgaac ccccggagcc caccagccac
catgtgctca ccgtgaggag 1140tccctcagcc accaacatcc atttcagcac tgtaaagaac
aaaggccagt gcgaggcttg 1200gctggcacag ccagtcctgg ttctcgggca ccttggcagc
ccccagctgg gtggctcctc 1260ccctgctcaa ggtcaagacc ctgctcaagg aggctcatct
ggcctcctat gtggacaacc 1320atttcggagc tccctgatat ttttgccagc atttcgtaaa
tgtgcatacg tctgtgtgtg 1380tgtgtgtgtg tgagagagag agagagagag tacacgcatt
agcttgagcg tgaaacttcc 1440agaaatgttc ccttgccctt tcttacctag aacacctgct
atagtaaagc agacaggaaa 1500ctgttaaaaa aaaaaaaaaa aaa
15232823DNAHomo sapiens 2acggaaacgg gcgtgccatt
tccgcgcacg tctgcagatg cggtagtcga ttggtcaagt 60ctcccatggc tcctccttca
tcaggaggtg ggcaaaccgc gccatgatag ggtcgggatt 120ggctggctct ggaggcgcag
gtggtccttc ttctactgtc acatggtgcg cgctgttttc 180taatcacgtg gctgccaccc
aggcctctct gctcctgtct tttgtttgga tgccggcgct 240gctgcctgtg gcctcccgcc
ttttgttgct accccgagtc ttgctgacca tggcctctgg 300aagccctccg acccagccct
cgccggcctc ggattccggc tctggctacg ttccgggctc 360ggtctctgca gcctttgtta
cttgccccaa cgagaaggtc gccaaggaga tcgccagggc 420cgtggtggag aagcgcctag
cagcctgcgt caacctcatc cctcagatta catccatcta 480tgagtggaaa gggaagatcg
aggaagacag tgaggtgctg atgatgatta aaacccaaag 540ttccttggtc ccagctttga
cagattttgt tcgttctgtg cacccttacg aagtggccga 600ggtaattgca ttgcctgtgg
aacaggggaa ctttccgtac ctgcagtggg tgcgccaggt 660cacagagtca gtttctgact
ctatcacagt cctgccatga tgagccctgt tcctgctcat 720catgaagatc cccgcgatac
ttcaacgcct tctgacttcc aggtgatgac tgggccccca 780ataaatcccg tctttgggtc
tctctgccaa aaaaaaaaaa aaa 82332447DNAHomo sapiens
3cggtgtctcg tcatctccgg gaagactcgg cgcctgggtc cgcgctctct gggtaagctt
60tccgggaagc tttcccggga gctcgctggt cctggcccca gaagcctgcg gacccgccca
120gggaggataa gcagctgaaa gaccgcgcgg tgccgctccg aggccccggg acgtgggccc
180atggtcggcc tggcgccacc tttccggggg aagccacgcg caccaggcat cgcacgcggc
240tctgcacccg cgccgccgga cctgaaaccc ggcggagggc acacggggct gccgctgcgg
300gccccggacc aacccatgct tactccggag cctgtaccgg cgccgacggg tcggacctcc
360ctgcgcggtg tcgcccagcg ggttcgtgcg aaaggcgggg ccgactacac gcggtgccgc
420gccctgagac cgtttatctg cagtcaacgc agcctcccgg ctcagcctgg gaagatgcgc
480gaatcgggaa ccccagagcg cggtggctag accgggctcc gccgcctccc ccacagcccc
540tttcctaatc gttcagacgg agcctggtcg acttcgccgg agactgccag atctcgttcc
600tcttccctgt gtcatcttct taattataaa taatggggga tgaagataaa agaattacat
660atgaagattc agaaccatcc acaggaatga attacacgcc ctccatgcat caagaagcac
720aggaggagac agttatgaag ctcaaaggta tagatgcaaa tgaaccaaca gaaggaagta
780ttcttttgaa aagcagtgaa aaaaagctac aagaaacacc aactgaagca aatcacgtac
840aaagactgag acaaatgctg gcttgccctc cacatggttt actggacagg gtcataacaa
900atgttaccat cattgttctt ctgtgggctg tagtttggtc aattactggc agtgaatgtc
960ttcctggagg aaacctattt ggaattataa tcctattcta ttgtgccatc attggtggta
1020aacttttggg gcttattaag ttacctacat tgcctccact gccttctctt cttggcatgc
1080tgcttgcagg gtttctcatc agaaatatcc cagtcatcaa cgataatgtg cagatcaagc
1140acaagtggtc ttcctctttg agaagcatag ccctgtctat cattctggtt cgtgctggcc
1200ttggtctgga ttcaaaggcc ctgaagaagt taaagggcgt ttgtgtaaga ctgtccatgg
1260gtccctgtat tgtggaggcg tgcacatctg ctcttcttgc ccattacctg ctgggtttac
1320catggcaatg gggatttata ctgggttttg ttttaggtgc tgtatctcca gctgttgtgg
1380tgccttcaat gctccttttg cagggaggag gctatggtgt tgagaagggt gtcccaacct
1440tgctcatggc agctggcagc ttcgatgaca ttctggccat cactggcttc aacacatgct
1500tgggcatagc cttttccaca ggctctactg tctttaatgt cctcagagga gttttggagg
1560tggtaattgg tgtggcaact ggatctgttc ttggattttt cattcagtac tttccaagcc
1620gtgaccagga caaacttgtg tgtaagagaa cattccttgt gttggggttg tctgtgctag
1680ctgtgttcag cagtgtgcat tttggtttcc ctggatcagg aggactgtgc acgttggtca
1740tggctttcct tgcaggcatg ggatggacca gcgaaaaggc agaggttgaa aagataattg
1800cagttgcctg ggacattttt cagccccttc tttttggact aattggagca gaggtatcta
1860ttgcatctct cagaccagaa actgtaggcc tttgtgttgc caccgtaggc attgcagtat
1920tgatacgaat tttgactaca tttctgatgg tgtgttttgc tggttttaac ttaaaagaaa
1980agatatttat ttcttttgca tggcttccaa aggccacagt tcaggctgca ataggatctg
2040tggctttgga cacagcaagg tcacatggag agaaacaatt agaggactat ggaatggatg
2100tgttgacagt ggcatttttg tccatcctca tcacagcccc aattggaagt ctgcttattg
2160gtttactggg ccccaggctt ctgcagaaag ttgaacatca aaataaagat gaagaagttc
2220aaggagagac ttctgtgcaa gtttagaggt gaaaagagag agtgctgaac ataatgttta
2280gaaagctgct acttttttca agatgcatat tgaaatatgt aatgtttaag cttaaaatgt
2340aatagaacca aaagtgtagc tgtttcttta aacagcattt ttagcccttg ctctttccat
2400gtgggtggta atgattctat atccccaaaa aaaaaaaaaa aaaaaaa
24474975DNAHomo sapiens 4gacaaccttc aggtccagcc ctggagctgg aggagtggag
ccccactctg aagacgcagc 60ctttctccag gttctgtctc tcccattctg attcttgaca
ccagatgcag gatggtgtcc 120tctccctgca cgccggcaag ctcacggact tgctcccgta
tcctgggact gagccttggg 180actgcagccc tgtttgctgc tggggccaac gtggcactcc
tccttcctaa ctgggatgtc 240acctacctgt tgaggggcct ccttggcagg catgccatgc
tgggaactgg gctctgggga 300ggaggcctca tggtactcac tgcagctatc ctcatctcct
tgatgggctg gagatacggc 360tgcttcagta agagtgggct ctgtcgaagc gtgcttactg
ctctgttgtc aggtggcctg 420gctttacttg gagccctgat ttgctttgtc acttctggag
ttgctctgaa agatggtcct 480ttttgcatgt ttgatgtttc atccttcaat cagacacaag
cttggaaata tggttaccca 540ttcaaagacc tgcatagtag gaattatctg tatgaccgtt
cgctctggaa ctccgtctgc 600ctggagccct ctgcagctgt tgtctggcac gtgtccctct
tctccgccct tctgtgcatc 660agcctgctcc agcttctcct ggtggtcgtt catgtcatca
acagcctcct gggccttttc 720tgcagcctct gcgagaagtg acaggcagaa ccttcacttg
caagcatggg tgttttcatc 780atcggctgtc ttgaatcctt tctacaagga gtgggttcag
gccctctgtg gttaaagact 840gtatccatgc tgtgctcaag gaggaactgg caaatgctga
atattctcca gaagaaatgc 900ctcagcttac aaaacattta tcagaaaaca ttaaagataa
attaaaaggt aatcatggtg 960aaaaaaaaaa aaaaa
97551770DNAHomo sapiens 5ccacgcgtcc gcacttccag
ggtcggggag acggaactgc ggcgaccatg tatttctggt 60ttatcaaacc gctaacaccc
agtctaaggg caggttctgt cccattgtta tcactatcga 120agcagccgat ggaggagggg
aggtctgagc agagggcggg gtgcaggcgg aatggccctc 180gtgccctatg aggagaccac
ggaatttggg ttgcagaaat tccacaagcc tcttgcaact 240ttttcctttg caaaccacac
gatccagatc cggcaggact ggagacacct gggagtcgca 300gcggtggttt gggatgcggc
catcgttctt tccacatacc tggagatggg agctgtggag 360ctcaggggcc gctctgccgt
ggagctgggt gctggcacgg ggctggtggg catagtggct 420gccctgctgg gtgctcatgt
gactatcacg gatcgaaaag tagcattaga atttcttaaa 480tcaaacgttc aagccaactt
acctcctcat atccaaacta aaactgttgt taaggagctg 540acttggggac aaaatttggg
gagtttttct cctggagaat ttgacctgat acttggtgct 600gatatcatat atttagaaga
aacattcaca gatcttcttc aaacactgga acatctctgt 660agcaatcact ctgtgattct
tttagcatgc cgaattcgct atgaacggga taacaacttc 720ttagcaatgc tggagaggca
atttattgtg agaaaggttc actacgatcc tgaaaaagat 780gtacatattt acgaagcaca
gaagagaaac cagaaggagg acttataatt ggctataatt 840tataagaatg ttgtcattga
gtgtgtcact taaggtctta gactgcaaat ctaaccatat 900ttaatgaaat gtcttactgt
acaaaaagtc taagccaaag gttctcaggg gagaaagcac 960atgtgcagtt ttaaaacaaa
gcagtgcttt gtcccattgc tgtgattttt agtcagactt 1020tactcagtct gaaatgcaat
taacattaaa ggattaagtg tgagatttcg atttatgcta 1080tttgtgtatc ccatactcct
cccttttaat aaacagtttc cactgatgat atgaagggcc 1140ggtataaaga agtctttaaa
tgagtaagct ttcttggtaa gattaaatct tacaaattat 1200ttttaaaacc ttgtgatata
tacaatgttt agctgagttt tctaattttc tggatgtaaa 1260acaaaaggtt taacctatac
attccttgag ctgttagtgc tatttaaatc ttttgccctg 1320tttaggtcct aaacactttt
agttgagtag gatatgagct tttttgggtc tcatatcatg 1380ctttttgcct taatttcagg
tatatatata tataagtaaa ggaattaagt aaaaataaaa 1440tttcagttac tttttaaaag
cacctgaaat ctggccggat gcggtggctc atgcctgtaa 1500tcccaccact ttgggaggcc
gaggcgggca gatcacctga ggtcgggagt tcaagaccag 1560cctggccaac atggtgaaac
cccatctcta ctaaaaatac aaaaattagc cgggcgtggt 1620gtcgggcgcc tgtagtccca
gctgctcggg aggctgaggc aggggaatcg cttgaacctg 1680ggaggcggag gttgcagtga
gctgagattg cgccattgta ctccagcctg ggggacagga 1740gcgagactcc atctcaaaaa
aaaaaaaaaa 177062475DNAHomo sapiens
6gtgcagaagg cacgaggaag ccacagtgct ccggatcctc caatcttcgc tcctccaatc
60tccgctcctc cacccagttc aggaacccgc gaccgctcgc agcgctctct tgaccactat
120gagcctcctg tccagccgcg cggcccgtgt ccccggtcct tcgagctcct tgtgcgcgct
180gttggtgctg ctgctgctgc tgacgcagcc agggcccatc gccagcgctg gtcctgccgc
240tgctgtgttg agagagctgc gttgcgtttg tttacagacc acgcaaggag ttcatcccaa
300aatgatcagt aatctgcaag tgttcgccat aggcccacag tgctccaagg tggaagtggt
360agcctccctg aagaacggga aggaaatttg tcttgatcca gaagcccctt ttctaaagaa
420agtcatccag aaaattttgg acggtggaaa caaggaaaac tgattaagag aaatgagcac
480gcatggaaaa gtttcccagt cttcagcaga gaagttttct ggaggtctct gaacccaggg
540aagacaagaa ggaaagattt tgttgttgtt tgtttatttg tttttccagt agttagcttt
600cttcctggat tcctcacttt gaagagtgtg aggaaaacct atgtttgccg cttaagcttt
660cagctcagct aatgaagtgt ttagcatagt acctctgcta tttgctgtta ttttatctgc
720tatgctattg aagttttggc aattgactat agtgtgagcc aggaatcact ggctgttaat
780ctttcaaagt gtcttgaatt gtaggtgact attatatttc caagaaatat tccttaagat
840attaactgag aaggctgtgg atttaatgtg gaaatgatgt ttcataagaa ttctgttgat
900ggaaatacac tgttatcttc acttttataa gaaataggaa atattttaat gtttcttggg
960gaatatgtta gagaatttcc ttactcttga ttgtgggata ctatttaatt atttcacttt
1020agaaagctga gtgtttcaca ccttatctat gtagaatata tttccttatt cagaatttct
1080aaaagtttaa gttctatgag ggctaatatc ttatcttcct ataattttag acattcttta
1140tctttttagt atggcaaact gccatcattt acttttaaac tttgatttta tatgctattt
1200attaagtatt ttattaggag taccataatt ctggtagcta aatatatatt ttagatagat
1260gaagaagcta gaaaacaggc aaattcctga ctgctagttt atatagaaat gtattctttt
1320agtttttaaa gtaaaggcaa acttaacaat gacttgtact ctgaaagttt tggaaacgta
1380ttcaaacaat ttgaatataa atttatcatt tagttataaa aatatatagc gacatcctcg
1440aggccctagc atttctcctt ggatagggga ccagagagag cttggaatgt taaaaacaaa
1500acaaaacaaa aaaaaacaag gagaagttgt ccaagggatg tcaatttttt atccctctgt
1560atgggttaga ttttccaaaa tcataatttg aagaaggcca gcatttatgg tagaatatat
1620aattatatat aaggtggcca cgctggggca agttccctcc ccactcacag ctttggcccc
1680tttcacagag tagaacctgg gttagaggat tgcagaagac gagcggcagc ggggagggca
1740gggaagatgc ctgtcgggtt tttagcacag ttcatttcac tgggattttg aagcatttct
1800gtctgaatgt aaagcctgtt ctagtcctgg tgggacacac tggggttggg ggtgggggaa
1860gatgcggtaa tgaaaccggt tagtcagtgt tgtcttaata tccttgataa tgctgtaaag
1920tttattttta caaatatttc tgtttaagct atttcacctt tgtttggaaa tccttccctt
1980ttaaagagaa aatgtgacac ttgtgaaaag gcttgtagga aagctcctcc ctttttttct
2040ttaaaccttt aaatgacaaa cctaggtaat taatggttgt gaatttctat ttttgctttg
2100tttttaatga acatttgtct ttcagaatag gattctgtga taatatttaa atggcaaaaa
2160caaaacataa ttttgtgcaa ttaacaaagc tactgcaaga aaaataaaac atttcttggt
2220aaaaacgtat gtatttatat attatatatt tatatataat atatattata tatttagcat
2280tgctgagctt tttagatgcc tattgtgtat cttttaaagg ttttgaccat tttgttatga
2340gtaattacat atatattaca ttcactatat taaaattgta cttttttact atgtgtctca
2400ttggttcata gtctttattt tgtcctttga ataaacatta aaagatttct aaacttcaaa
2460aaaaaaaaaa aaaaa
247572044DNAHomo sapiens 7ctggacgagt ccgagcgcgt cacctcctca cgctgcggct
gtcgcccgtg tcccgccggc 60ccgttccgtg tcgccccgca gtgctgcggc cgccgcggca
ccatggctgt gtttgtcgtg 120ctcctggcgt tggtggcggg tgttttgggg aacgagttta
gtatattaaa atcaccaggg 180tctgttgttt tccgaaatgg aaattggcct ataccaggag
agcggatccc agacgtggct 240gcattgtcca tgggcttctc tgtgaaagaa gacctttctt
ggccaggact cgcagtgggt 300aacctgtttc atcgtcctcg ggctaccgtc atggtgatgg
tgaagggagt gaacaaactg 360gctctacccc caggcagtgt catttcgtac cctttggaga
atgcagttcc ttttagtctt 420gacagtgttg caaattccat tcactcctta ttttctgagg
aaactcctgt tgttttgcag 480ttggctccca gtgaggaaag agtgtatatg gtagggaagg
caaactcagt gtttgaagac 540ctttcagtca ccttgcgcca gctccgtaat cgcctgtttc
aagaaaactc tgttctcagt 600tcactccccc tcaattctct gagtaggaac aatgaagttg
acctgctctt tctttctgaa 660ctgcaagtgc tacatgatat ttcaagcttg ctgtctcgtc
ataagcatct agccaaggat 720cattctcctg atttatattc actggagctg gcaggtttgg
atgaaattgg gaagcgttat 780ggggaagact ctgaacaatt cagagatgct tctaagatcc
ttgttgacgc tctgcaaaag 840tttgcagatg acatgtacag tctttatggt gggaatgcag
tggtagagtt agtcactgtc 900aagtcatttg acacctccct cattaggaag acaaggacta
tccttgaggc aaaacaagcg 960aagaacccag caagtcccta taaccttgca tataagtata
attttgaata ttccgtggtt 1020ttcaacatgg tactttggat aatgatcgcc ttggccttgg
ctgtgattat cacctcttac 1080aatatttgga acatggatcc tggatatgat agcatcattt
ataggatgac aaaccagaag 1140attcgaatgg attgaatgtt acctgtgcca gaattagaaa
agggggttgg aaattggctg 1200ttttgttaaa atatatcttt tagtgtgctt taaagtagat
agtatacttt acatttataa 1260aaaaaaatca aattttgttc tttattttgt gtgtgcctgt
gatgtttttc tagagtgaat 1320tatagtattg acgtgaatcc cactgtggta tagattccat
aatatgcttg aatattatga 1380tatagccatt taataacatt gatttcattc tgtttaatga
atttggaaat atgcactgaa 1440agaaatgtaa aacatttaga atagctcgtg ttatggaaaa
aagtgcactg aatttattag 1500acaaacttac gaatgcttaa cttctttaca cagcataggt
gaaaatcata tttgggctat 1560tgtatactat gaacaatttg taaatgtctt aatttgatgt
aaataactct gaaacaagag 1620aaaaggtttt taacttagag tagccctaaa atatggatgt
gcttatataa tcgcttagtt 1680ttggaactgt atctgagtaa cagaggacag ctgtttttta
accctcttct gcaagtttgt 1740tgacctacat gggctaatat ggatactaaa aatactacat
tgatctaaga agaaactagc 1800cttgtggagt atatagatgc ttttcattat acacacaaaa
atccctgagg gacattttga 1860ggcatgaata taaaacattt ttatttcagt aacttttccc
cctgtgtaag ttactatggt 1920ttgtggtaca acttcattct atagaatatt aagtggaagt
gggtgaattc tactttttat 1980gttggagtgg accaatgtct atcaagagtg acaaataaag
ttaatgatga ttccaaaaaa 2040aaaa
204482392DNAHomo sapiens 8agcggggcag cggctgcgcc
ctgcgccggg gcggagccgg gggcgggccg gcggccggca 60ggcgggggct ggggcccgag
gccgggagtg cctgagcgcc ggcggcgacg acggcagcgg 120cggcccagcg ggctcggtgg
ttgggtccgc ggcggctcgg ggtccgcccg cgggctgcgg 180tgcgagcggg cggcccggct
cccctcctcc cccgcccgcc gccgccgctg tgattgggtg 240gaagatggcg ctggccggat
ggaaatccta atgacagtct ccaaattcgc ctccatctgt 300accatgggcg ccaatgcttc
ggcattagag aaagagattg gtccagaaca gtttccggtc 360aatgagcact attttggatt
agtcaatttt gggaatacct gctactgcaa ttcagttctt 420caagcacttt atttttgtcg
tccatttcgg gaaaaagttc ttgcgtataa gagtcaacct 480aggaaaaagg agagccttct
tacatgctta gcagatctct tccatagcat agccactcag 540aagaaaaagg ttggagtaat
accccctaag aagttcatca caagattacg gaaagaaaat 600gagctttttg acaactacat
gcaacaagat gcccatgaat tcttaaatta cctactaaat 660acaattgctg atattttaca
agaagagaga aagcaggaaa aacaaaatgg tcgtttacct 720aatggtaata ttgataatga
aaataataac agcacaccag acccaacgtg ggttgatgag 780atttttcagg gaacattaac
taatgaaacc agatgtctta cttgtgaaac tataagcagc 840aaagatgaag attttttaga
cctttctgtt gacgtggaac aaaatacatc aattactcac 900tgcttaaggg gtttcagcaa
cacagaaact ctgtgcagtg aatacaagta ttactgtgaa 960gagtgtcgca gcaaacagga
agcacacaaa cggatgaaag ttaaaaaact gcccatgatt 1020ctagctctac acctgaagag
atttaaatat atggatcaac ttcatcgata tacaaaactc 1080tcttaccggg tagtttttcc
tttagaactt cgtctgttta acacttcagg tgatgccacc 1140aatccagaca gaatgtacga
ccttgttgct gttgtggttc actgtggaag tggtcccaat 1200cgaggccatt atattgcaat
agttaagagt catgattttt ggttgttgtt tgatgacgac 1260attgtagaaa aaatagatgc
acaagctatt gaagaattct acgggttgac atcagatatc 1320tcaaagaact ctgagtctgg
ttacatcctt ttctatcagt ctcgggactg agagggaacc 1380gtgatgaaga gacactttct
gcctcatttc ttctctggtt attttggaaa ggatcaagca 1440ctgatttttc aagaaaagag
aaatgcagga agctcagggg gcagtagcac actttgcaca 1500cgataaagca aagacgatgg
attgacaagc ccttccgatc atggtagttg atttatttgc 1560tcaggtatca tgctgtctgt
acagttccat acaacaagga ggtgaaatca gagataccag 1620ctcctctttt aaaacagcct
tccagtcatt ggcacgcatt ttctctttat taattgcacc 1680aataatgctt tgaattcctt
gggggtgcag tagaaagaat cggaatctgt gccgtattga 1740taaggagatg atgttgaaca
cactgcataa atttgcctgg ttcagtatgt atagaagcat 1800attcagtggt cttttcaaga
gtaaaccaga aatacttttg ggcccaacac ttgcagttgc 1860cttcctgatg taaaaactaa
catgctagat aatccagtgt cgggaagaca aagatgtttt 1920gcttctctga agaagcttat
aataatatac agtatatgta tatgtaggga gcaattggtc 1980aaaagtggct ttttgtttcc
ccaaggggaa agactggctt tgtaattata attttttcct 2040tatttatttt acttaaaact
ggtagagtct aagtattata tgaagtgccc atgattctgt 2100cagtaaattt gaacatattt
ttattagtta atgtcagttt aagttgtcct tttgtttgtt 2160tctattttta aggtgaattt
taatttctat ctgaaatcag ttaagatacc ttgagaaaaa 2220ctgcagtgag aggagataaa
tatccttttt caggaggaac tgatatctct ggctaaatat 2280ttgtcctttt attatggttt
ctaaatcagt tattttcttc agctttaatt tcataaaatt 2340aaaaaactat tttaaaaaaa
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 239291479DNAHomo sapiens
9ggaagccatt gcctgtttaa tagttgctgt tgctgcactt ccgcttctct cccagcgaga
60gagagacacg agtggccagg cccagccgca gccgcagcag cagccgccgc ggcggcacgg
120aggagccaga cacaaagaga ggggctgttt gcggggtggg gtggggggtt cgctatgtcg
180gatgacgatt cgagggccag caccagctcc tcctcatctt cgtcttccaa ccagcaaacc
240gagaaagaaa caaacacccc caagaagaag gagagtaaag tcagcatgag caaaaactcc
300aaactcctct ccaccagcgc caagagaatt cagaaggagc tggcggacat cactttagac
360cctccaccta attgcagtgc tggtcccaaa ggcgataaca tctatgaatg gagatcaacc
420attctagggc ctccaggatc cgtgtatgag ggtggtgtat tctttctcga tatcactttt
480acaccagaat atcccttcaa gcctccaaag gttacatttc ggacaagaat ctatcattgt
540aatattaaca gtcaaggtgt tatttgcttg gacatattga aagataattg gagtccagca
600ctaaccattt ctaaagtcct cctttctatc tgctcacttc ttacagactg taatcctgcc
660gaccccttgg tgggaagtat tgccactcag tatatgacca acagagcaga acatgacaga
720atggccagac agtggaccaa gagatacgct acataaattg gggtttcaca attcttacat
780tatttgtctg tcacagaaga gagctgctta tgattttgaa ggggtcaggg agggtgggag
840ttggtaaaga gtagggtatt tctataacag atattattca gtcttatttc ctaagatttt
900gttgtaactt aaggtatctt gctacagtag acagaattgg taatagcaac ttttaaaatt
960gtcattagtt ctgcaatatt agctgaaatg tagtacagaa aagaatgtac atttagacat
1020ttgggttcag ttgcttgtag tctgtaaatt taaaacagct taatttggta caggttacac
1080atatggccat ttatgtaaag tccctctaag actacatact ttttgtttaa aacaaaattg
1140gaatttgttt tcccttcttg gaagggaaca ttgatattta acagagtttt tagagattgt
1200catctcatat atataaaatg gacacgtggc tataaaacac catataagag atgagtagtg
1260cgttttattt tatatgccaa tctactttgt ttaaaaaagg tctgaatcag gacttgtgaa
1320aacctgtagt gaaatacctt aagctgttaa ctaactgtaa ggcgtggaat aggagttgct
1380cagtggattg gttctatgtt gtggactact taagtctgca tttgttactg tgctaataaa
1440caatattaaa aaccacctaa taaacaaaaa aaaaaaaaa
147910931DNAHomo sapiens 10ttgctttcct ctgccgcatg gtcctgggcc gttggcgtcg
gaagcctgaa gcatgggcgc 60tgagtgggag ctgggggccg aggctggcgg ttcgctgctg
ctgtgcgccg cgctgctggc 120ggcgggctgc gccctgggcc tgcgcctggg ccgcgggcag
ggggcggcgg accgcggggc 180gctcatctgg ctctgctacg acgcgctggt gcacttcgcg
ctggaaggcc cttttgtcta 240cttgtcttta gtaggaaacg ttgcaaattc cgatggcttg
attgcttctt tatggaaaga 300atatggcaaa gctgatgcaa gatgggttta ttttgatcca
accattgtgt ctgtggaaat 360tctgaccgtc gccctggatg ggtctctggc attgttcctc
atttatgcca tagtcaaaga 420aaaatattac cggcatttcc tgcagatcac cctgtgcgtg
tgcgagctgt atggctgctg 480gatgaccttc ctcccagagt ggctcaccag aagccccaac
ctcaacacca gcaactggct 540gtactgttgg ctttacctgt ttttttttaa cggtgtgtgg
gttctgatcc caggactgct 600actgtggcag tcatggctag aactcaagaa aatgcatcag
aaagaaacca gttcagtgaa 660gaagtttcag tgaactttca aaaccataaa caccattatc
taacttcatg aaccagaatg 720aatcaaatct ttttgtttgg ccaaaatgta atacattcca
gtctacactt tgtttttgta 780ttgttgctcc tgaacaacct gtttcaaatt ggttttaagg
cgaccagttt tcgttgtatt 840gttgttcaat taaatggtga tatagggaaa agagaacaaa
tttgaatttg taataataaa 900atgtttaatt atacaaaaaa aaaaaaaaaa a
931116041DNAHomo sapiens 11ggtcgttttc tgatgtgacg
gctgagacat gagatcttca gcctccaggc tctccagttt 60ttcgtcgaga gattcactat
ggaatcggat gccggaccag atctctgtct cggagttcat 120cgccgagacc accgaggact
acaactcgcc caccacgtcc agcttcacca cgcggctgca 180caactgcagg aacaccgtca
cgctgctgga ggaggctcta gaccaagata gaacagccct 240tcagaaagtg aagaagtctg
taaaagcaat atataattct ggtcaagatc atgtacaaaa 300tgaagaaaac tatgcacaag
ttcttgataa gtttgggagt aattttttaa gtcgagacaa 360ccccgacctt ggcaccgcgt
ttgtcaagtt ttctactctt acaaaggaac tgtccacact 420gctgaaaaat ctgctccagg
gtttgagcca caatgtgatc ttcaccttgg attctttgtt 480aaaaggagac ctaaagggag
tcaaaggaga tctcaagaag ccatttgaca aagcctggaa 540agattatgag acaaagttta
caaaaattga gaaagagaaa agagagcacg caaaacaaca 600tgggatgatc cgcacagaga
taacaggagc tgagattgcg gaagaaatgg agaaggaaag 660gcgcctcttt cagctccaaa
tgtgtgaata tctcattaaa gttaatgaaa tcaagaccaa 720aaagggtgtg gatctgctgc
agaatcttat aaagtattac catgcacagt gcaatttctt 780tcaagatggc ttgaaaacag
ctgataagtt gaaacagtac attgaaaaac tggctgctga 840tttatataat ataaaacaga
cccaggatga agaaaagaaa cagctaactg cactccgaga 900cttaataaaa tcctctcttc
aactggatca gaaagaagat tctcagagcc ggcaaggagg 960atacagcatg catcagctcc
agggcaataa ggaatatggc agtgaaaaga aggggtacct 1020gctaaagaaa agtgacggga
tccggaaagt atggcagagg aggaagtgtt cagtcaagaa 1080tgggattctg accatctcac
atgccacatc taacaggcaa ccagccaagt tgaaccttct 1140cacctgccaa gtaaaaccta
atgccgaaga caaaaaatct tttgacctga tatcacataa 1200tagaacatat cactttcagg
cagaagatga gcaggattat gtagcatgga tatcagtatt 1260gacaaatagc aaagaagagg
ccctaaccat ggccttccgt ggagagcaga gtgcgggaga 1320gaacagcctg gaagacctga
caaaagccat tattgaggat gtccagcggc tcccagggaa 1380tgacatttgc tgcgattgtg
gctcatcaga acccacctgg ctttcaacca acttgggtat 1440tttgacctgt atagaatgtt
ctggcatcca tagggaaatg ggggttcata tttctcgcat 1500tcagtctttg gaactagaca
aattaggaac ttctgaactc ttgctggcca agaatgtagg 1560aaacaatagt tttaatgata
ttatggaagc aaatttaccc agcccctcac caaaacccac 1620cccttcaagt gatatgactg
tacgaaaaga atatatcact gcaaagtatg tagatcatag 1680gttttcaagg aagacctgtt
caacttcatc agctaaacta aatgaattgc ttgaggccat 1740caaatccagg gatttacttg
cactaattca agtctatgca gaaggggtag agctaatgga 1800accactgctg gaacctgggc
aggagcttgg ggagacagcc cttcaccttg ccgtccgaac 1860tgcagatcag acatctctcc
atttggttga cttccttgta caaaactgtg ggaacctgga 1920taagcagacg gccctgggaa
acacagttct acactactgt agtatgtaca gtaaacctga 1980gtgtttgaag cttttgctca
ggagcaagcc cactgtggat atagttaacc aggctggaga 2040aactgcccta gacatagcaa
agagactaaa agctacccag tgtgaagatc tgctttccca 2100ggctaaatct ggaaagttca
atccacacgt ccacgtagaa tatgagtgga atcttcgaca 2160ggaggagata gatgagagcg
atgatgatct ggatgacaaa ccaagcccta tcaagaaaga 2220gcgctcaccc agacctcaga
gcttctgcca ctcctccagc atctcccccc aggacaagct 2280ggcactgcca ggattcagca
ctccaaggga caaacagcgg ctctcctatg gagccttcac 2340caaccagatc ttcgtttcca
caagcacaga ctcgcccaca tcaccaacca cggaggctcc 2400ccctctgcct cctaggaacg
ccgggaaagg tccaactggc ccaccttcaa cactccctct 2460aagcacccag acctctagtg
gcagctccac cctatccaag aagaggcctc ctcccccacc 2520acccggacac aagagaaccc
tatccgaccc tcccagccca ctacctcatg ggcccccaaa 2580caaaggcgca gttccttggg
gtaacgatgg gggtccatcc tcttcaagta agactacaaa 2640caagtttgag ggactatccc
agcagtcgag caccagttct gcaaagactg cccttggccc 2700aagagttctt cctaaactac
ctcagaaagt ggcactaagg aaaacagatc atctctccct 2760agacaaagcc accatcccgc
ccgaaatctt tcagaaatca tcacagttgg cagagttgcc 2820acaaaagcca ccacctggag
acctgccccc aaagcccaca gaactggccc ccaagcccca 2880aattggagat ttgccgccta
agccaggaga actgcccccc aaaccacagc tgggggacct 2940gccacccaaa ccccaactct
cagacttacc tcccaaacca cagatgaagg acctgccccc 3000caaaccacag ctgggagacc
tgctagcaaa atcccagact ggagatgtct cacccaaggc 3060tcagcaaccc tctgaggtca
cactgaagtc acacccattg gatctatccc caaatgtgca 3120gtccagagac gccatccaaa
agcaagcatc tgaagactcc aacgacctca cgcctactct 3180gccagagacg cccgtaccac
tgcccagaaa aatcaatacg gggaaaaata aagtgaggcg 3240agtgaagacc atttatgact
gccaggcaga caacgatgac gagctcacat tcatcgaggg 3300agaagtgatt atcgtcacag
gggaagagga ccaggagtgg tggattggcc acatcgaagg 3360acagcctgaa aggaaggggg
tctttccagt gtcctttgtt catatcctgt ctgactagca 3420aaacgcagaa ccttaagatt
gtccacatcc ttcatgcaag actgctgcct tcatgtaacc 3480ctgggcacag tgtgtatata
gctgctgtta cagagtaaga aactcatgga agggccacct 3540caggaggggg atataatgtg
tgttgtaaat atcctgtggt tttctgcctt caccagtatg 3600agggtagcct cggacccggc
gcgccttact ggtttgccaa agccatcctt ggcatctagc 3660acttacatct ctctatgctg
ttctacaagc aaacaaacaa aaataggagt ataggaactg 3720ctggctttgc aaatagaagt
ggtctccagc aaccgttgaa aggcatagaa ttgactctgt 3780tcctaacaat gcagtattct
caattgtgtt actgaaaatg caacattagc aaagaggtgg 3840gttctgtttt ccaggtgaaa
cttttagctc catgacagac cagcctgtag ttatctgtgt 3900acacagttta cagctacaaa
aacctacttt ggtatttatt acagaaaagt gctcagttaa 3960tgtaagtgtt attccttcag
caaaatattc actgacccaa aactctttat ggcattttac 4020aatgcacaca gcctcatgca
agtttagaca agtggattta tactgtctta tgagtgcccg 4080cccctgatat attacctcat
tatgcaaaaa taacatatct ttcatgacta ttttgacaaa 4140agtttaaaac acatatgaag
ttcaaatttc aggaaccaag gactgccaga aaatattagc 4200ctctacatta cgcatgcatt
tagaagctta cctgaaatct gccttttata aaggaatagt 4260atggataagt ggaattgtac
attttttaaa cttgattgcc attaaagcag aaattataag 4320gttgcaacaa tatttgtttc
taatcactgg ctttctcaag agtatggatt gacatattgt 4380gttatgaatg cacatctctc
agatgtgttg aagcatccat tgcatccatt ttttattatt 4440ttcttagttt tgttcttgga
caaatttaaa cttttaaaag attattcaag atgaatttaa 4500aagtcaaccc ttcacacagt
ttccctactg tatgtagaat ccaggtgctg aaaccaagtg 4560tttcttttcc catgctcttt
gttaaacccc aattatagat aatttttcca gtcttaagct 4620ctgtccacct tcaagtcaat
tcataaccaa gtttttgaac gctgctatga attgcactgt 4680gaaaagcact cttccctctc
agttttcttt tcatcccagc catgtttatc agatccttaa 4740gaacattgta tttcagtctt
ttacatcagt ctgaattttg gaaaagaatg caatagttgt 4800actccacagt cagtggaact
gttccctgag tccgaggctc atgtgtcatt ctggcactac 4860atttgcttaa attgctattt
tggcaacagc acagaaaact aatattttta agcagagaat 4920cttggcaatg agtgagagat
gttaatttca cagaagcaca actcccaacc caacccttag 4980gaaaagccct cttccatcgt
tacagtgctc agtgaatatt aatttagttc tgcttaagtg 5040gttgctatac aaactttgaa
tagccaccta ataaataaac cttgcatgac aaacctgcaa 5100aatattttat cagctgttat
tggaaagtga ttttaagcaa ttgcttcctc agtgtcaggg 5160cacatgtgaa tttccacacc
aaacagagca tgaggaacca gttgacatgc tgggttgtga 5220ctggcagctt tagcagcctc
ggtactgaag ccacaccagt gtccggatgg aagtctgcat 5280ctgaggttgc tcagtgtccc
ggtcattcat ttacacattt taacttgcat taaagagctg 5340ttcttttctg tggcctagac
tcttttcact gatctcaaaa taaactggtt tttttcaaaa 5400aaaaaaaaaa aacaaaaaca
aaaaaaaaac acaaaagctg catgtctaaa attacatgga 5460gttagtgtct attctttttc
cccttttgca gcaacttaca cagcattttt aacacctttt 5520ttttctagtt tttttgttcg
gttttgtttt ccatcaggaa tttgagttct ctctaaccca 5580gcttactgtg ggacatagga
aaactcagta gaaatacctt tggtgatctt gttgagttta 5640agtctgatct tgatcttaaa
ctcagtaagc cactatctgc aattttgtac attatatagt 5700attttgaaga tatggaacct
tatgaaaaaa aaatagcaaa ttagttcttt ttcccccaga 5760ggggaaagtt atgttctgca
aatagtgtgt gtcttatttt actgttgaac agcaattgct 5820atttattttt ttattgccta
gaacttcaac atgttgtata ggaatcctgt agtgccacta 5880gttaaatgcc gaattctcat
ctggatgtta ccatcaaaca tcagtacact tgtcatttca 5940catgtgttta atgtgacagt
ttttcagtac tgtatgtgtt aatttctact ttttttaata 6000tttaaaattg cttttaaata
aacatattct cagttgatcc c 6041122672DNAHomo sapiens
12cttccagaga gcaatatggc tggttcccca acatgcctca ccctcatcta tatcctttgg
60cagctcacag ggtcagcagc ctctggaccc gtgaaagagc tggtcggttc cgttggtggg
120gccgtgactt tccccctgaa gtccaaagta aagcaagttg actctattgt ctggaccttc
180aacacaaccc ctcttgtcac catacagcca gaagggggca ctatcatagt gacccaaaat
240cgtaataggg agagagtaga cttcccagat ggaggctact ccctgaagct cagcaaactg
300aagaagaatg actcagggat ctactatgtg gggatataca gctcatcact ccagcagccc
360tccacccagg agtacgtgct gcatgtctac gagcacctgt caaagcctaa agtcaccatg
420ggtctgcaga gcaataagaa tggcacctgt gtgaccaatc tgacatgctg catggaacat
480ggggaagagg atgtgattta tacctggaag gccctggggc aagcagccaa tgagtcccat
540aatgggtcca tcctccccat ctcctggaga tggggagaaa gtgatatgac cttcatctgc
600gttgccagga accctgtcag cagaaacttc tcaagcccca tccttgccag gaagctctgt
660gaaggtgctg ctgatgaccc agattcctcc atggtcctcc tgtgtctcct gttggtgccc
720ctcctgctca gtctctttgt actggggcta tttctttggt ttctgaagag agagagacaa
780gaagagtaca ttgaagagaa gaagagagtg gacatttgtc gggaaactcc taacatatgc
840ccccattctg gagagaacac agagtacgac acaatccctc acactaatag aacaatccta
900aaggaagatc cagcaaatac ggtttactcc actgtggaaa taccgaaaaa gatggaaaat
960ccccactcac tgctcacgat gccagacaca ccaaggctat ttgcctatga gaatgttatc
1020tagacagcag tgcactcccc taagtctctg ctcaaaaaaa aaacaattct cggcccaaag
1080aaaacaatca gaagaattca ctgatttgac tagaaacatc aaggaagaat gaagaacgtt
1140gacttttttc caggataaat tatctctgat gcttctttag atttaagagt tcataattcc
1200atccactgct gagaaatctc ctcaaaccca gaaggtttaa tcacttcatc ccaaaaatgg
1260gattgtgaat gtcagcaaac cataaaaaaa gtgcttagaa gtattcctat agaaatgtaa
1320atgcaaggtc acacatatta atgacagcct gttgtattaa tgatggctcc aggtcagtgt
1380ctggagtttc attccatccc agggcttgga tgtaaggatt ataccaagag tcttgctacc
1440aggagggcaa gaagaccaaa acagacagac aagtccagca gaagcagatg cacctgacaa
1500aaatggatgt attaattggc tctataaact atgtgcccag cactatgctg agcttacact
1560aattggtcag acgtgctgtc tgccctcatg aaattggctc caaatgaatg aactactttc
1620atgagcagtt gtagcaggcc tgaccacaga ttcccagagg gccaggtgtg gatccacagg
1680acttgaaggt caaagttcac aaagatgaag aatcagggta gctgaccatg tttggcagat
1740actataatgg agacacagaa gtgtgcatgg cccaaggaca aggacctcca gccaggcttc
1800atttatgcac ttgtgctgca aaagaaaagt ctaggtttta aggctgtgcc agaacccatc
1860ccaataaaga gaccgagtct gaagtcacat tgtaaatcta gtgtaggaga cttggagtca
1920ggcagtgaga ctggtggggc acggggggca gtgggtactt gtaaaccttt aaagatggtt
1980aattcattca atagatattt attaagaacc tatgcggccc ggcatggtgg ctcacacctg
2040taatcccagc actttgggag gccaaggtgg gtgggtcatc tgaggtcagg agttcaagac
2100cagcctggcc aacatggtga aaccccatct ctactaaaga tacaaaaatt tgctgagcgt
2160ggtggtgtgc acctgtaatc ccagctactc gagaggccaa ggcatgagaa tcgcttgaac
2220ctgggaggtg gaggttgcag tgagctgaga tggcaccact gcactccggc ctaggcaacg
2280agagcaaaac tccaatacaa acaaacaaac aaacacctgt gctaggtcag tctggcacgt
2340aagatgaaca tccctaccaa cacagagctc accatctctt atacttaagt gaaaaacatg
2400gggaagggga aaggggaatg gctgcttttg atatgttccc tgacacatat cttgaatgga
2460gacctcccta ccaagtgatg aaagtgttga aaaacttaat aacaaatgct tgttgggcaa
2520gaatgggatt gaggattatc ttctctcaga aaggcattgt gaaggaattg agccagatct
2580ctctccctac tgcaaaaccc tattgtagta aaaaagtctt ctttactatc ttaataaaac
2640agatattgtg agattcaaaa aaaaaaaaaa aa
2672131559DNAHomo sapiens 13gactgcgcgg ccgggaggag ccgagccggg cggcggcggc
gggaggctac agcgcgcggg 60ggtctcccgc gtcccctccg cctcgccggg agctcgcgcc
ctcgcccagc cgagctccca 120cccccgcttt tttccgaagg cgctgggcgg cgccaccctc
cggccggagc ccggcactgc 180acaaccccct ccgactttca atgttccaca ctccccggcc
agagcctcct cggcttcttt 240ttttccctcc ccccccttcc cccccccaca gctgcctcca
tttccttaag gaagggtttt 300tttctctctc cctcccccac accgtagcgg cgcgcgagcg
ggccgggcgg gcggccgagt 360tttccaagag ataacttcac caagatgtcc agtgataggc
aaaggtccga tgatgagagc 420cccagcacca gcagtggcag ttcagatgcg gaccagcgag
acccagccgc tccagagcct 480gaagaacaag aggaaagaaa accttctgcc acccagcaga
agaaaaacac caaactctct 540agcaaaacca ctgctaagtt atccactagt gctaaaagaa
ttcagaagga gctagctgaa 600ataacccttg atcctcctcc taattgcagt gctgggccta
aaggagataa catttatgaa 660tggagatcaa ctatacttgg tccaccgggt tctgtatatg
aaggtggtgt gttttttctg 720gatatcacat tttcatcaga ttatccattt aagccaccaa
aggttacttt ccgcaccaga 780atctatcact gcaacatcaa cagtcaggga gtcatctgtc
tggacatcct taaagacaac 840tggagtcccg ctttgactat ttcaaaggtt ttgctgtcta
tttgttccct tttgacagac 900tgcaaccctg cggatcctct ggttggaagc atagccactc
agtatttgac caacagagca 960gaacacgaca ggatagccag acagtggacc aagagatacg
caacataatt cacataattt 1020gtatgcagtg tgaaggagca gaaggcatct tctcactgtg
ctgcaaatct ttatagcctt 1080tacaatacgg acttctgtgt atatgttata ctgattctac
tctgctttta tcctttggag 1140cctgggagac tccccaaaaa ggtaaatgct atcaagagta
gaactttgta gctgtagatt 1200agttatgttt aaaacgccta cttgcaagtc ttgcttcttt
gggatatcaa aatgtatttt 1260gtgatgtact aaggatactg gtcctgaagt ctaccaaata
ttatagtgca ttttagccta 1320attcattatc tgtatgaagt tataaaagta gctgtagatg
gctaggaatt atgtcatttg 1380tattaaaccc agatctattt ctgagtatgt ggttcatgct
gttgtgaaaa atgttttacc 1440ttttaccttt gtcagtttgt aatgagagga tttcctttta
ccctttgtag ctcagagagc 1500acctgatgta tcatctcaaa cacaataaac atgctcctga
aggaaaaaaa aaaaaaaaa 155914765DNAHomo sapiens 14ccacgcgtcc gggacccggc
ccgcgccttc tgcccctgct gccggccgcg ccatgcggtg 60agcgccccag gccgccagag
cccacccgac ccggcccgac gcccggacct gccgcccaga 120cccgccaccg cacccggacc
ccgacgctcc gaacccgggc gcagccgcag ctcaagatgg 180cccgaggcag cgccctcctt
ctcgcctccc tcctcctcgc cgcggccctt tctgcctctg 240cggggctctg gtcgccggcc
aaggaaaaac gaggctggac cctgaacagc gcgggctacc 300tgctgggccc acatgccgtt
ggcaaccaca ggtcattcag cgacaagaat ggcctcacca 360gcaagcggga gctgcggccc
gaagatgaca tgaaaccagg aagctttgac aggtccatac 420ctgaaaacaa tatcatgcgc
acaatcattg agtttctgtc tttcttgcat ctcaaagagg 480ccggtgccct cgaccgcctc
ctggatctcc ccgccgcagc ctcctcagaa gacatcgagc 540ggtcctgaga gcctcctggg
catgtttgtc tgtgtgctgt aacctgaagt caaaccttaa 600gataatggat aatcttcggc
caatttatgc agagtcagcc attcctgttc tctttgcctt 660gatgttgtgt tgttatcatt
taagattttt tttttttggt aattattttg agtggcaaaa 720taaagaatag caattaaaaa
aaaaaaaaca aaaaaaaaaa aaaaa 765153732DNAHomo sapiens
15cggtggttgg gtggtaagat ggcggctgtg agtctgcggc tcggcgactt ggtgtggggg
60aaactcggcc gatatcctcc ttggccagga aagattgtta atccaccaaa ggacttgaag
120aaacctcgcg gaaagaaatg cttctttgtg aaattttttg gaacagaaga tcatgcctgg
180atcaaagtgg aacagctgaa gccatatcat gctcataaag aggaaatgat aaaaattaac
240aagggtaaac gattccagca agcggtagat gctgtcgaag agttcctcag gagagccaaa
300gggaaagacc agacgtcatc ccacaattct tctgatgaca agaatcgacg taattccagt
360gaggagagaa gtaggccaaa ctcaggtgat gagaagcgca aacttagcct gtctgaaggg
420aaggtgaaga agaacatggg agaaggaaag aagagggtgt cttcaggctc ttcagagaga
480ggctccaaat cccctctgaa aagagcccaa gagcaaagtc cccggaagcg gggtcggccc
540ccaaaggatg agaaggatct caccatcccg gagtctagta ccgtgaaggg gatgatggcc
600ggaccgatgg ccgcgtttaa atggcagcca accgcaagcg agcctgttaa agatgcagat
660cctcatttcc atcatttcct gctaagccaa acagagaagc cagctgtctg ttaccaggca
720atcacgaaga agttgaaaat atgtgaagag gaaactggct ccacctccat ccaggcagct
780gacagcacag ccgtgaatgg cagcatcaca cccacagaca aaaagatagg atttttgggc
840cttggtctca tgggaagtgg aatcgtctcc aacttgctaa aaatgggtca cacagtgact
900gtctggaacc gcactgcaga gaaatgtgat ttgttcatcc aggagggggc ccgtctggga
960agaacccccg ctgaagtcgt ctcaacctgc gacatcactt tcgcctgcgt gtcggatccc
1020aaggcggcca aggacctggt gctgggcccc agtggtgtgc tgcaagggat ccgccctggg
1080aagtgctacg tggacatgtc aacagtggac gctgacaccg tcactgagct ggcccaggtg
1140attgtgtcca ggggggggcg ctttctggaa gcccccgtct cagggaatca gcagctgtct
1200aatgacggga tgttggtgat cttagcggct ggagacaggg gcttatatga ggactgcagc
1260agctgcttcc aggcgatggg gaagacctcc ttcttcctag gtgaagtggg caatgcagcc
1320aagatgatgc tgatcgtgaa catggtccaa gggagcttca tggccactat tgccgagggg
1380ctgaccctgg cccaggtgac aggccagtcc cagcagacac tcttggacat cctcaatcag
1440ggacagttgg ccagcatctt cctggaccag aagtgccaaa atatcctgca aggaaacttt
1500aagcctgatt tctacctgaa atacattcag aaggatctcc gcttagccat tgcgctgggt
1560gatgcggtca accatccgac tcccatggca gctgcagcaa atgaggtgta caaaagagcc
1620aaggcgctgg accagtccga caacgatatg tccgccgtgt accgagccta catacactaa
1680gctgtcgaca ccccgccctc acccctccaa tcccccctct gaccccctct tcctcacatg
1740gggtcggggg cctgggagtt cattctggac cagcccacct atctccattt ccttttatac
1800agactttgag acttgccatc agcacagcac acagcagcac ccttcccctg aggccggtgg
1860ggaggggaca agtgtcagca ggattggcgt gtgggaaagc tcttgagctg ggcactggcc
1920ccccggacga ggtggctgtg tgttcacaca cacacacaca cacacacaca cacacacaca
1980caggctctcg ccccaggata gaagctgccc agaaactgct gcctggcttt ttttcttccg
2040agcttgtctt atctcaaacc ccttccagtc aaggaactag aatcagcaac gagagttgga
2100agccttccca cagcttcccc cagagcgaag aggctgtagt catgtcccca tcccccactg
2160gattccctac aaggagaggc cttgggccca gatgagccag tacagactcc agacagaggg
2220gcccttgggg ccctccaacc tcaggtgatg agctgagaaa gatgttcacg tctaagcgtc
2280cagtgtgcac ccagcgctcc atagacgcct ttgtgaactg aaaagagact ggcagagtcc
2340cgagaagatg gggccctggc tttccaggga gtgcagcaag cagccggcct gcaggtgagc
2400atggaggccc ggccctcacc gcctcgaagc catgccccag atgccactgc cacagcgggc
2460gctcgctcct ccctaggctg ttttagtatt tggatttgca ttccatccct tgggagggag
2520tcctcagggc cactagtgat gagccaagag gagtgggggt tgggggcgct cctttctgtt
2580tccgttaggc cacagactct tcacctggct ctgaagagcc actcttacct cggtcccctc
2640ccagtggtcc caccttctcc accctgccct gccaagtccc ctgcatgccc accgctctcc
2700atcctccctc ctctccctct tcctcccgtg gagacagtat ttctttctgt ctgtcccttt
2760ggcccagacc cagcctgacc aacgatgagc atttcttagg ctcagctctt gatacggaaa
2820cgagtgtctt cactccagcc agcatcatgg tcttcggtgc ttcccgggcc cggggtctgt
2880cgggagggaa gagaactggg cctgacctac ctgaactgac tggccctccg aggtgggtct
2940gggacatcct agaggcccta catttgtcct tggatagggg accggggggg gcttggaatg
3000ttgcaaaaaa aaagttaccc aagggatgtc agttttttat ccctctgcat gggttggatt
3060ttccaaaatc ataatttgca gaaggaaggc cagcatttac gatgcaatat gtaattatat
3120atagggtggc cacactaggg cggggtcctt cccccctaca cagctttggc ccctttcaga
3180gattagaaac tgggttagag gattgcagaa gacgagtggg gggagggcag ggaagatgcc
3240tgtcgggttt ttagcacagt tcatttcact gggattttga agcatttctg tctgaacaca
3300agcctgttct agtcctggcg gaacacactg ggggtggggg cgggggaaga tgcggtaatg
3360aaaccggtta gtcaattttg tcttaatatt gttgacaatt ctgtaaagtt cctttttatg
3420aatatttctg tttaagctat ttcacctttc ttttgaaatc cttccctttt aaggagaaaa
3480tgtgacactt gtgaaaaagc ttgtaagaaa gcccctccct ttttttcttt aaacctttaa
3540atgacaaatc taggtaatta aggttgtgaa tttttatttt tgctttgttt ttaatgaaca
3600tttgtctttc agaataggat tgtgtgataa tgtttaaatg gcaaaaacaa aacatgattt
3660tgtgcaatta acaaagctac tgcaagaaaa ataaaacact tcttggtaac acaaaaaaaa
3720aaaaaaaaaa aa
3732164666DNAHomo sapiens 16agtaccttgg tccagctctt cctgcaacgg cccaggagct
cagagctcca catctgacct 60tctagtcatg accaggacca gggcagcact cctcctgttc
acagccttag caacttctct 120aggtttcaac ttggacacag aggagctgac agccttccgt
gtggacagcg ctgggtttgg 180agacagcgtg gtccagtatg ccaactcctg ggtggtggtt
ggagcccccc aaaagataac 240agctgccaac caaacgggtg gcctctacca gtgtggctac
agcactggtg cctgtgagcc 300catcggcctg caggtgcccc cggaggccgt gaacatgtcc
ctgggcctgt ccctggcgtc 360taccaccagc ccttcccagc tgctggcctg cggccccacc
gtgcaccacg agtgcgggag 420gaacatgtac ctcaccggac tctgcttcct cctgggcccc
acccagctca cccagaggct 480cccggtgtcc aggcaggagt gcccaagaca ggagcaggac
attgtgttcc tgatcgatgg 540ctcaggcagc atctcctccc gcaactttgc cacgatgatg
aacttcgtga gagctgtgat 600aagccagttc cagagaccca gcacccagtt ttccctgatg
cagttctcca acaaattcca 660aacacacttc actttcgagg aattcaggcg cagctcaaac
cccctcagcc tgttggcttc 720tgttcaccag ctgcaagggt ttacatacac ggccaccgcc
atccaaaatg tcgtgcaccg 780attgttccat gcctcatatg gggcccgtag ggatgccgcc
aaaattctca ttgtcatcac 840tgatgggaag aaagaaggcg acagcctgga ttataaggat
gtcatcccca tggctgatgc 900agcaggcatc atccgctatg caattggggt tggattagct
tttcaaaaca gaaattcttg 960gaaagaatta aatgacattg catcgaagcc ctcccaggaa
cacatattta aagtggagga 1020ctttgatgct ctgaaagata ttcaaaacca actgaaggag
aagatctttg ccattgaggg 1080tacggagacc acaagcagta gctccttcga attggagatg
gcacaggagg gcttcagcgc 1140tgtgttcaca cctgatggcc ccgttctggg ggctgtgggg
agcttcacct ggtctggagg 1200tgccttcctg taccccccaa atatgagccc taccttcatc
aacatgtctc aggagaatgt 1260ggacatgagg gactcttacc tgggttactc caccgagctg
gccctctgga aaggggtgca 1320gagcctggtc ctgggggccc cccgctacca gcacaccggg
aaggctgtca tcttcaccca 1380ggtgtccagg caatggagga tgaaggccga agtcacgggg
actcagatcg gctcctactt 1440cggggcctcc ctctgctccg tggacgtaga cagcgacggc
agcaccgacc tggtcctcat 1500cggggccccc cattactacg agcagacccg agggggccag
gtgtctgtgt gtcccttgcc 1560cagggggtgg agaaggtggt ggtgtgatgc tgttctctac
ggggagcagg gccacccctg 1620gggtcgcttt ggggcggctc tgacagtgct gggggatgtg
aatggggaca agctgacaga 1680cgtggtcatc ggggccccag gagaggagga gaaccggggt
gctgtctacc tgtttcacgg 1740agtcttggga cccagcatca gcccctccca cagccagcgg
atcgcgggct cccagctctc 1800ctccaggctg cagtattttg ggcaggcact gagcgggggt
caagacctca cccaggatgg 1860actggtggac ctggctgtgg gggcccgggg ccaggtgctc
ctgctcagga ccagacctgt 1920gctctgggtg ggggtgagca tgcagttcat acctgccgag
atccccaggt ctgcgtttga 1980gtgtcgggag caggtggtct ctgagcagac cctggtacag
tccaacatct gcctttacat 2040tgacaaacgt tctaagaacc tgcttgggag ccgtgacctc
caaagctctg tgaccttgga 2100cctggccctc gaccctggcc gcctgagtcc ccgtgccacc
ttccaggaaa caaagaaccg 2160gagtctgagc cgagtccgag tcctcgggct gaaggcacac
tgtgaaaact tcaacctgct 2220gctcccgagc tgcgtggagg actctgtgac ccccattacc
ttgcgtctga acttcacgct 2280ggtgggcaag cccctccttg ccttcagaaa cctgcggcct
atgctggccg ccgatgctca 2340gagatacttc acggcctccc taccctttga gaagaactgt
ggagccgacc atatctgcca 2400ggacaatctc ggcatctcct tcagcttccc aggcttgaag
tccctgctgg tggggagtaa 2460cctggagctg aacgcagaag tgatggtgtg gaatgacggg
gaagactcct acggaaccac 2520catcaccttc tcccaccccg caggactgtc ctaccgctac
gtggcagagg gccagaaaca 2580agggcagctg cgttccctgc acctgacatg tgacagcgcc
ccagttggga gccagggcac 2640ctggagcacc agctgcagaa tcaaccacct catcttccgt
ggcggcgccc agatcacctt 2700cttggctacc tttgacgtct cccccaaggc tgtcctggga
gaccggctgc ttctgacagc 2760caatgtgagc agtgagaaca acactcccag gaccagcaag
accaccttcc agctggagct 2820cccggtgaag tatgctgtct acactgtggt tagcagccac
gaacaattca ccaaatacct 2880caacttctca gagtctgagg agaaggaaag ccatgtggcc
atgcacagat accaggtcaa 2940taacctggga cagagggacc tgcctgtcag catcaacttc
tgggtgcctg tggagctgaa 3000ccaggaggct gtgtggatgg atgtggaggt ctcccacccc
cagaacccat cccttcggtg 3060ctcctcagag aaaatcgcac ccccagcatc tgacttcctg
gcgcacattc agaagaatcc 3120cgtgctggac tgctccattg ctggctgcct gcggttccgc
tgtgacgtcc cctccttcag 3180cgtccaggag gagctggatt tcaccctgaa gggcaacctc
agctttggct gggtccgcca 3240gatattgcag aagaaggtgt cggtcgtgag tgtggctgaa
attacgttcg acacatccgt 3300gtactcccag cttccaggac aggaggcatt tatgagagct
cagacgacaa cggtgctgga 3360gaagtacaag gtccacaacc ccacccccct catcgtaggc
agctccattg ggggtctgtt 3420gctgctggca ctcatcacag cggtactgta caaagttggc
ttcttcaagc gtcagtacaa 3480ggaaatgatg gaggaggcaa atggacaaat tgccccagaa
aacgggacac agacccccag 3540cccgcccagt gagaaatgat cccctctttg ccttggactt
cttctccccc gcgagttttc 3600cccacttact taccctcacc tgtcaggcct gacggggagg
aaccactgca ccaccgagag 3660aggctgggat gggcctgctt cctgtctttg ggagaaaacg
tcttgcttgg gaaggggcct 3720ttgtcttgtc aaggttccaa ctggaaaccc ttaggacagg
gtccctgctg tgttccccaa 3780aggacttgac ttgcaatttc tacctagaaa tacatggaca
atacccccag gcctcagtct 3840cccttctccc atgaggcacg aatgatcttt ctttcctttc
tttttttttt tttttctttt 3900cttttttttt tttttgagac ggagtctcgc tctgtcaccc
aggctggagt gcaatggcgt 3960gatctcggct cactgcaacc tccgcctccc gggttcaagt
aattctgctg tctcagcctc 4020ctgagtagct gggactacag gcacacgcca cctcgcccgg
cccgatcttt ctaaaataca 4080gttctgaata tgctgctcat ccccacctgt cttcaacagc
tccccattac cctcaggaca 4140atgtctgaac tctccagctt cgcgtgagaa gtccccttcc
atcccagagg gtgggcttca 4200gggcgcacag catgagaggc tctgtgcccc catcaccctc
gtttccagtg aattagtgtc 4260atgtcagcat cagctcaggg cttcatcgtg gggctctcag
ttccgatttc ccaggctgaa 4320ttgggagtga gatgcctgca tgctgggttc tgcacagctg
gcctcccgcg ttgggcaaca 4380ttgctggctg gaagggagga gcgccctcta gggagggaca
tggccccggt gcggctgcag 4440ctcacccagc cccaggggca gaagagaccc aaccacttct
attttttgag gctatgaata 4500tagtacctga aaaaatgcca agacatgatt atttttttaa
aaagcgtact ttaaatgttt 4560gtgttaataa attaaaacat gcacaaaaag atgcatctac
cgctcttggg aaatatgtca 4620aaggtctaaa aataaaaaag ccttctgtga aaaaaaaaaa
aaaaaa 4666174086DNAHomo sapiens 17aatggagccg ctgtcagcag
aaccttctgc cgccgccgcc gccgccgccg tccctcctct 60tttttttccc ggcagatctt
tgttgtgtgg gagggcagca gggatggact tgagcttgcg 120gatcccctgc tagagcagcc
gcgctcggag aaggcgccgc agccgcgagg aggagccgcc 180gccgccgcgc ccgaggcccc
gccgcccgcg gcctctgtcg gcccgcgccc cgctcgcccc 240gtcgccccgt cgcccctcgc
ctccccgcag agtcccctcg cggcagcaga tgtgtgtggg 300gtcagcccac ggcggggact
atggtgaaat tcccggcgct cacgcactac tggcccctga 360tccggttctt ggtgcccctg
ggcatcacca acatagccat cgacttcggg gagcaggcct 420tgaaccgggg cattgctgct
gtcaaggagg atgcagtcga gatgctggcc agctacgggc 480tggcgtactc cctcatgaag
ttcttcacgg gtcccatgag tgacttcaaa aatgtgggcc 540tggtgtttgt gaacagcaag
agagacagga ccaaagccgt cctgtgtatg gtggtggcag 600gggccatcgc tgccgtcttt
cacacactga tagcttatag tgatttagga tactacatta 660tcaataaact gcaccatgtg
gacgagtcgg tggggagcaa gacgagaagg gccttcctgt 720acctcgccgc ctttcctttc
atggacgcaa tggcatggac ccatgctggc attctcttaa 780aacacaaata cagtttcctg
gtgggatgtg cctcaatctc agatgtcata gctcaggttg 840tttttgtagc cattttgctt
cacagtcacc tggaatgccg ggagcccctg ctcatcccga 900tcctctcctt gtacatgggc
gcacttgtgc gctgcaccac cctgtgcctg ggctactaca 960agaacattca cgacatcatc
cctgacagaa gtggcccgga gctgggggga gatgcaacaa 1020taagaaagat gctgagcttc
tggtggcctt tggctctaat tctggccaca cagagaatca 1080gtcggcctat tgtcaacctc
tttgtttccc gggaccttgg tggcagttct gcagccacag 1140aggcagtggc gattttgaca
gccacatacc ctgtgggtca catgccatac ggctggttga 1200cggaaatccg tgctgtgtat
cctgctttcg acaagaataa ccccagcaac aaactggtga 1260gcacgagcaa cacagtcacg
gcagcccaca tcaagaagtt caccttcgtc tgcatggctc 1320tgtcactcac gctctgtttc
gtgatgtttt ggacacccaa cgtgtctgag aaaatcttga 1380tagacatcat cggagtggac
tttgcctttg cagaactctg tgttgttcct ttgcggatct 1440tctccttctt cccagttcca
gtcacagtga gggcgcatct caccgggtgg ctgatgacac 1500tgaagaaaac cttcgtcctt
gcccccagct ctgtgctgcg gatcatcgtc ctcatcgcca 1560gcctcgtggt cctaccctac
ctgggggtgc acggtgcgac cctgggcgtg ggctccctcc 1620tggcgggctt tgtgggagaa
tccaccatgg tcgccatcgc tgcgtgctat gtctaccgga 1680agcagaaaaa gaagatggag
aatgagtcgg ccacggaggg ggaagactct gccatgacag 1740acatgcctcc gacagaggag
gtgacagaca tcgtggaaat gagagaggag aatgaataag 1800gcacgggacg ccatgggcac
tgcagggaca gtcagtcagg atgacacttc ggcatcatct 1860cttccctctc ccatcgtatt
ttgttccctt ttttttgttt tgttttggta atgaaagagg 1920ccttgattta aaggtttcgt
gtcaattctc tagcatactg ggtatgctca cactgacggg 1980gggacctagt gaatggtctt
tactgttgct atgtaaaaac aaacgaaaca actgacttca 2040tacccctgcc tcacgaaaac
ccaaaagaca cagctgcctc acggttgacg ttgtgtcctc 2100ctcccctgga caatctcctc
ttggaaccaa aggactgcag ctgtgccatc gcgcctcggt 2160caccctgcac agcaggccac
agactctcct gtcccccttc atcgctctta agaatcaaca 2220ggttaaaact cggcttcctt
tgatttgctt cccagtcaca tggccgtaca aagagatgga 2280gccccggtgg cctcttaaat
ttcccttccg ccacggagtt cgaaaccatc tactccacac 2340atgcaggagg cgggtggcac
gctgcagccc ggagtccccg ttcacactga ggaacggaga 2400cctgtgacca cagcaggctg
acagatggac agaatctccc gtagaaaggt ttggtttgaa 2460atgccccggg ggcagcaaac
tgacatggtt gaatgatagc atttcactct gcgttctcct 2520agatctgagc aagctgtcag
ttctcacccc caccgtgtat atacatgagc taactttttt 2580aaattgtcac aaaagcgcat
ctccagattc cagaccctgc cgcatgactt ttcctgaagg 2640cttgcttttc cctcgccttt
cctgaaggtc gcattagagc gagtcacatg gagcatccta 2700actttgcatt ttagttttta
cagtgaactg aagctttaag tctcatccag cattctaatg 2760ccaggttgct gtagggtaac
ttttgaagta gatatattac ctggttctgc tatccttagt 2820cataactctg cggtacaggt
aattgagaat gtactacggt acttccctcc cacaccatac 2880gataaagcaa gacattttat
aacgatacca gagtcactat gtggtcctcc ctgaaataac 2940gcattcgaaa tccatgcagt
gcagtatatt tttctaagtt ttggaaagca ggttttttcc 3000tttaaaaaaa ttatagacac
ggttcactaa attgatttag tcagaattcc tagactgaaa 3060gaacctaaac aaaaaaatat
tttaaagata taaatatatg ctgtatatgt tatgtaattt 3120attttaggct ataatacatt
tcctattttc gcattttcaa taaaatgtct ctaatacaat 3180acggtgattg cttgtgtgct
caacatacct gcagttgaaa cgtattgtat caatgaacat 3240tgtaccttat tggcagcagt
tttataaagt ccgtcatttg catttgaatg taaggctcag 3300taaatgacag aactattttt
cattatgggt aactggggaa taaatgggtc actggagtag 3360gaatagaagt gcaagctgga
aaggcaaaaa tgagaaagaa aaaggcaggc cctttgtgtc 3420taccgttttc agtgctgtgt
gatcatattg ttcctcacag caaaaaagaa tgcaagggca 3480taatgttagc tgtgaacatg
ccagggttgc attcacattc ctgggtaccc agtgctgatg 3540gggtgtgccc acgtggggac
atgtccttgg cgtgcttcct cagagtggct tttcctccat 3600taatacatat atgagtactg
aaaaattaag ttgcatagct gctttgcagt ggtttcagag 3660gcagatctga gaagattaaa
aaaaaatctc aatgtatcag ctttttttaa aggacattac 3720tagaaaatta aacagtattt
tttaacatgt gtgactttca tgcttctggg gttggagctt 3780aaagatccaa actgagaaag
caggccgggc atggtggctc atgcctgtaa tcccaacact 3840ttgggaggcc aaggagggtg
gatcacttaa ggtcaggagt ttgagaccag cctggccaac 3900atggcaaaac cctgtctcta
ctaaaaacat aaaaattagc tgggggtggt agcacatacc 3960tgtaatccca gctactcagg
aggctgaggc aggagaattt gcttgatcct gggaggcaga 4020ggttgtagtg agccgagatc
gcgccatcgc actccagcct gggtgacaag agcaaaactc 4080catctc
4086184567DNAHomo sapiens
18gacagcctct gggtcctcgg tcggtacagt ctctgcacct cgcgccccag caggtaaact
60aacattatgg atttttccaa gctacccaaa atactcgatg aagataaaga aagcacattt
120ggttatgtgc atggggtctc aggacctgtg gttacagcct gtgacatggc gggtgcagcc
180atgtatgagc tggtgagagt gggccacagc gaattggttg gagagattat tcgattggag
240ggtgacatgg ctactattca ggtgtatgaa gaaacttctg gtgtgtctgt tggagatcct
300gtacttcgca ctggtaaacc cctctctgta gagcttggtc ctggcattat gggagccatt
360tttgatggta ttcaaagacc tttgtcggat atcagcagtc agacccaaag catctacatc
420cccagaggag taaacgtgtc tgctcttagc agagatatca aatgggactt tacaccttgc
480aaaaacctac gggttggtag tcatatcact ggcggagaca tttatggaat tgtcagtgag
540aactcgctta tcaaacacaa aatcatgtta cccccacgaa acagaggaac tgtaacttac
600attgctccac ctgggaatta tgatacctct gatgttgtct tggagcttga atttgaaggt
660gtaaaggaga agttcaccat ggtgcaagta tggcctgtac gtcaagttcg acctgtcact
720gagaagctgc cagccaatca tcctctgttg actggccaga gagtccttga tgcccttttt
780ccgtgtgtcc agggaggaac tactgctatc cctggagcct ttggctgtgg aaagacagtg
840atatcacagt ctctatccaa gtattctaac agtgatgtaa tcatctatgt aggatgtggt
900gaaagaggaa atgagatgtc tgaagtcctc cgggacttcc cagagctcac aatggaggtt
960gatggtaagg tagagtcaat tatgaagagg acagctttgg tagccaatac ctccaatatg
1020cctgttgctg ctagagaagc ctctatttat actggaatca cactgtcaga gtacttccgt
1080gacatgggct atcatgtcag tatgatggct gactctacct ctagatgggc tgaggccctt
1140agagaaatct ctggtcgttt agctgaaatg cctgcagata gtggatatcc agcctatctt
1200ggtgcccgtc tggcctcgtt ttatgaacga gcaggcaggg tgaaatgtct tggaaatcct
1260gaaagagaag ggagtgtcag cattgtagga gcagtttctc cacctggtgg tgatttttct
1320gatccagtta catctgccac tcttggtatc gttcaggtgt tctggggctt agataagaaa
1380ctagctcaac gtaagcattt cccctctgtc aattggctca tcagctacag caagtatatg
1440cgtgccttgg atgaatacta tgacaaacac ttcacagagt tcgttcctct gaggacgaaa
1500gctaaggaaa ttctgcagga agaagaagac ctggcagaaa ttgtacagct tgtgggaaag
1560gcttctttgg cagaaacaga taaaatcact ctggaggtag caaaacttat caaagatgat
1620ttcctacaac aaaatggata tactccttat gacaggttct gcccattcta caagacagta
1680gggatgctgt ccaacatgat tgcattttat gatatggctc gtagagctgt tgaaaccact
1740gcccagagtg acaataaaat cacatggtcc attattcgtg agcacatggg agacatcctc
1800tataaacttt cctccatgaa attcaaggat ccactgaaag atggtgaggc aaagatcaaa
1860agcgactatg cacaacttct tgaagacatg cagaatgcat tccgtagcct tgaagattag
1920aagccttgaa gattacaact gtgatttcct tttcctcagc aagctcctat gtgtatattt
1980tcctgaattt ctcatctcaa accctttgct tctttattgt gcagctttga gactagtgcc
2040tatgtgtgtt atttgtttcc ctgttttttt ggtaggtctt atataaaaca aacattcctt
2100tgttctagtg ttgtgaaggg cctccctctt cctttatctg aagtggtgaa tatagtaaat
2160atacattctg gttacactac tgtaaacttg tatgtagggt gatgaccctc tttgtcctag
2220gtgtaccctt tcctcatctc tattaaattg taaacaggac tactgcatgt actctctttg
2280cagtgaattt ggaatggaag gccaggtttc tataactttt gaacaggtac tttgtgaaat
2340gactcaattt ctattgtggt aagctcattg gcagcttagc attttgcaaa ggaattgctt
2400tgcaggaaat atttaatttt caaaaacata atgattaatg ttccaattat gcatcacttc
2460ccccagtata aatcaggaat gtttgtgaga aaccattggg aactatactc tttttatttt
2520tattttttat tttttttatt attttttttt tggggacgga gtgtccctct tgttgcccag
2580gctggagtgc aatggcgtga tcttggctca ctgcagcctt cgcctcccgg gttcaagtga
2640ttctcctgcc tcagcctccc gagtagctgg gattacaggc atgctccacc atgcccagct
2700aattttgtat ttttagtaga aacggggttt caccatattg gtcaggctgg tctcgaactc
2760cagacctcag gtgatccgcc cacctcggcc tcccaaactg ctgggattac aggcgtgagc
2820caccgcgcct ggccagggac tatactcttt ttaaaataga catttgtggg gctcacacaa
2880tatatgaaat agtaccctct aaaaaagaga aaaaaaaaat caggcggtca aacttagagc
2940aacattgtct tattaaagca tagtttattt cactagaaaa aatttaatat caaggactat
3000tacatacttc attactagga agttcttttt aaaatgacac ttaaaacaat cactgaaaac
3060ttgatccaca tcacaccctg tttattttcc ttaaacatct tggaagccta agcttctgag
3120aatcatgtgg caagtgtgat gggcagtaaa ataccagaga agatgtttag tagcaattaa
3180aggctgtttg cacctttaag gaccagctgg gctgtagtga ttcctggggc cagagtggca
3240ttatgttttt acaaaataat gacatatgtc acatgtttgc atgtttgttt gcttgttgaa
3300tttttgaaca gccagttgac caatcataga aagtattact ttctttcata tggtttttgg
3360ttcactggct taagaggttt ctcagaatat ctatggccac agcagcatac cagtttccat
3420cctaatagga atgaaattaa ttttgtatct actgataaca gaatctgggt cacatgaaaa
3480aaaatcattt tatccgtctt ttaagtatat gtttaaaata ataatttatg tgtctgcata
3540ttgcagaaca gctctgagag caacagtttc ccattaactc tttctgacca atagtgctgg
3600caccgttgct tcctctttgg gaagaggaaa gggtgtgtga acatggctaa caatcttcaa
3660atacccaaat tgtgatagca taaataaagt atttatttta tgcctcagta tattattatt
3720taatttttta ggtaatgcct atctcttggt ctattaagga aagaagcaat cagtagagaa
3780ttcaggatag ttttgtttaa attcttgcag attacatgtt tttacagtgg cctgctattg
3840aggaaaggta ttcttctata caacttgttt taacctttga gaacattgac agaaattatg
3900caatggtttg ttgagatacg gacttgatgg tgctgtttaa tcagtttgct tccaaagtgg
3960cctactcaag aggccctaag actggtagaa attaaaagga tttcaaaaac tttctattcc
4020tttcttaaac ctaccagcaa actaggattg tgatagcaat gaatggtatg atgaagaaag
4080tttgaccaaa tttgtttttt tgttgttgtt gttgttttga atttgaaatc attcttattc
4140cctttaagaa tgtttatgta tgagtgtgaa gatgctagcg aacctatgct cagatattca
4200tcgtaagtct cccttcacct gttacagagt ttcagatcgg tcactgatag tatgtatttc
4260tttagtaaga atgtgttaaa attacaatga tcttttaaaa agatgatgca gttctgtatt
4320tattgtgctg tgtctggtcc taagtggagc caattaaaca agtttcatat gtatttttcc
4380agtgttgaat ctcacacact gtactttgaa aatttccttc catcctgaat aacgaataga
4440agaggccata tatattgcct ccttatcctt gagatttcac tacctttatg ttaaaagttg
4500tgtataattg ttaaaatctg tgaaagaata aaaagtggat ttaaattaaa aaaaaaaaaa
4560aaaaaaa
4567192475DNAHomo sapiens 19acgcctggtc tctgggacgc ccctccggac ccgtttcgcc
tcgcggagcc ggtaggtcca 60ggtgcagcgg ccgcagtgct gcgtccgtgc gccgcgggct
ggggcggtct caggtgtgcc 120gaagctctgg tcagtgccat gatccggcag gagcgctcca
catcctacca ggagctgagt 180gaggagttgg tccaggtggt tgagagctca gagctggcag
acgagcagga caaggagacg 240gtcagagtcc aaggtccggg tatcttacca ggcctggaca
gcgagtccgc ctccagcagc 300atccgcttca gcaaggcctg cctgaagaac gtcttctcgg
tcctactcat cttcatctac 360ctgctgctca tggctgtggc cgtcttcctg gtctaccgga
ccatcacaga ctttcgtgag 420aaactcaagc accctgtcat gtctgtgtct tacaaggaag
tggatcgcta tgatgcccca 480ggtattgcct tgtaccccgg tcaggcccag ttgctcagct
gtaagcacca ttacgaggtc 540attcctcctc tgacaagccc tggccagccg ggtgacatga
attgcaccac ccagaggatc 600aactacacgg accccttctc caatcagact gtgaaatctg
ccctgattgt ccaggggccc 660cgggaagtga aaaagcggga gctggtcttc ctccagttcc
gcctgaacaa gagtagtgag 720gacttcagcg ccattgatta cctcctcttc tcttctttcc
aggagttcct gcaaagccca 780aacagggtag gcttcatgca ggcctgtgag agtgcctgtt
ccagctggaa gttctctggg 840ggcttccgca cctgggtcaa gatgtcactg gtaaagacca
aggaggagga tgggcgggaa 900gcagtggagt tccggcagga gacaagtgtg gttaactaca
ttgaccagag gccagctgcc 960aaaaaaagtg ctcaattgtt ttttgtggtc tttgaatgga
aagatccttt catccagaaa 1020gtccaagata tagtcactgc caatccttgg aacacaattg
ctcttctctg tggcgccttc 1080ttggcattat ttaaagcagc agagtttgcc aaactgagta
taaaatggat gatcaaaatt 1140agaaagagat accttaaaag aagaggtcag gcaacgagcc
acataagctg aagtcacctc 1200gcgttgttta gagaactgtc cacatcaatg ggagctgtca
tcacttccac tttgtaaacg 1260gagctatcaa caatcctgta ctcacttgaa gaaatggggc
cttgctggga ggaacagcat 1320gtaaaactgg aacttctaac cccgtcccaa aagaggcggt
gtagagccta atagaagaga 1380ctaatggata aacctacaag ttatttaaat atttaaatta
ttaataaact ttttaaagag 1440ctggccaatg acttttgaat agggtttgta gaagatgcct
ttcttcctgt ttggttcatt 1500gtattgtatt aggttaagct ctactagggt aatgaaggct
ctacttttca ctttttaaaa 1560gtggacaaaa gagtgtgatt ttctttttcc aaaaattcct
gagtatcaag acgtgcaggt 1620catgctttgg agcctatgca ctgtacacaa tggcaaaacc
ctatgacttt ggcatcatct 1680gccattgatg tccagcctct gacatgctct ttgatttgtt
aaatgttaaa tgagacttta 1740aggctactag aaactagtaa ttaagtttct taatggactg
agtagccacc tacttgtccg 1800gctagaatgt ttgttgatgt atgagtttag attaacactc
aaaagcacta ggacagatgt 1860acatagaagg tgcctactca ttgtattttg atgatttcat
taacaggtaa ataaaagtta 1920atacaaaagg aacgagtgtg acaatatgaa tatctgctca
atcatcgggc acaattactt 1980tcatttggtg acttccaagg acaaaaaggt agtatgagtc
tggactccca agatggatct 2040aactctcaag gtatgttcta actgcttcca gggaagggtt
tgttaggcat ggcaactgat 2100ggcaggtgtc cagaaagagt gacctggtgt ccccgaggaa
gctgggttaa ctctttactg 2160tgtccacaaa actacccatc atatgaggaa ggggtatacg
cagtgtgacc ctcaaaaagc 2220ttttagccta gcctttgaca gaaatgagta tgcattaaaa
aaaagtctat ttttcacatt 2280aaggttctaa aaattgtttc cagagtttta aattatttat
gtgcctgttg cttcaaagag 2340gacttggtag catttcctaa attttgtaat ctggcttccg
ataatccaaa gggaataact 2400caaatgtatg aataggcatt ttaaatggga agaaactgtt
ttttggatga atgattaaaa 2460gtgaactgta taaag
2475201425DNAHomo sapiens 20gcggacgtgg gcaggagggc
tggaaaagcc ggcgctggag cgggaacggg agtagctgcc 60tgggcgccaa aggccgcggc
actcccacgc ggaccccgaa gtccgcaacc cggggatggg 120cccgcggctg cgaggggatc
ttctctggat caagcaatgg tggtgaaaaa tgtttcgcaa 180gggcaaaaaa cgacacagta
gtagcagttc ccaaagtagc gaaatcagta ctaagagcaa 240gtctgtggat tctagccttg
ggggtctttc acgatccagc actgtggcca gcctcgacac 300agattccacc aaaagctcag
gacaaagcaa caataattca gatacctgtg cagaatttcg 360aataaaatat gttggtgcca
ttgagaaact gaaactctcc gagggaaaag gccttgaagg 420gccattagac ctgataaatt
atatagacgt tgcccagcaa gatggaaagt tgccttttgt 480tcctccggag gaagaattta
ttatgggagt ttccaagtat ggcataaaag tatcaacatc 540agatcaatat gatgttttgc
acaggcatgc tctctactta ataatccgga tggtgtgtta 600cgatgacggt ctgggggcgg
gaaaaagctt actggctctg aagaccacag atgcaagcaa 660tgaggaatac agcctgtggg
tttatcagtg caacagcctg gaacaagcac aagccatttg 720caaggtttta tccaccgctt
ttgactctgt attaacatct gagaaaccct gaatcctgca 780atcaagtaga agtcaacttc
atctgaaagt tcagctgttt tcaaactgca atgctgaaat 840gttatgcaaa taatgaagtt
atcccttgct ctagattttc tgaagaaaat ggattgtgta 900aaatgctgat catttgttta
ttaaaatgtg tcctattaca cagtgagtta actctcaatg 960aagtcatcta ttttctgggc
taaaaaactt catttgtctt tttcaacttc taataagctt 1020aacctaagtg tcacgaagac
gagatgtcac agaggtccac tcagtgacaa acacacactg 1080aaggcctgag ggaagactga
ggacatgggc tcagtggtgg cttcccagtc atggtatcac 1140tggcatggac ctctgtccgg
cagaggtgtg gactggagac caggattcat gctggtctgg 1200aacaatgaca ttgccaactt
aagacacaca aagcagattt tcagaagtgt ctggtcaaga 1260taacatgctg gccaaccaca
attcctagag ttaagagaac cttaaaagat taccgctcat 1320gctaaaagta tgtaaagatc
ccatgtacag tatgatagtg tacttttttt aaaggactgt 1380caatatacaa aactttaaag
attaaaaaca ttaaaaataa aaaaa 142521728DNAHomo sapiens
21cctcgccccg cctacgcggg aacccaaccg cggcgaccgg acgtgcactc ctccagtagc
60ggctgcacgt cgtgcaatgg cccgctatga ggaggtgagc gtgtccggct tcgaggagtt
120ccaccgggcc gtggaacagc acaatggcaa gaccattttc gcctacttta cgggttctaa
180ggacgccggg gggaaaagct ggtgccccga ctgcgtgcag gctgaaccag tcgtacgaga
240ggggctgaag cacattagtg aaggatgtgt gttcatctac tgccaagtag gagaaaagcc
300ttattggaaa gatccaaata atgacttcag aaaaaacttg aaagtaacag cagtgcctac
360actacttaag tatggaacac ctcaaaaact ggtagaatct gagtgtcttc aggccaacct
420ggtggaaatg ttgttctctg aagattaaga ttttaggatg gcaatcatgt cttgatgtcc
480tgatttgttc tagtatcaat aaactgtata cttgctttga attcatgtta gcaataaatg
540atgttaaaaa aactggcatg tgtctaaaca atagagtgct attaaaatgc ccatgaacct
600ttagtttgcc tgtaatacat ggatattttt aagatataaa gaagtcttca gaaatagcag
660taaaggctca aaggaacgtg attcttgaag gtgacggtaa tacctaaaaa ctcctaaagg
720tgcagagc
728222143DNAHomo sapiens 22tcggagctga acttcctaaa agacaaagtg tttatctttc
aagattcatt ctccctgaat 60cttaccaaca aaacactcct gaggagaaag aaagagaggg
agggagagaa aaagagagag 120agagaaacaa aaaaccaaag agagagaaaa aatgaattca
tctaaatcat ctgaaacaca 180atgcacagag agaggatgct tctcttccca aatgttctta
tggactgttg ctgggatccc 240catcctattt ctcagtgcct gtttcatcac cagatgtgtt
gtgacatttc gcatctttca 300aacctgtgat gagaaaaagt ttcagctacc tgagaatttc
acagagctct cctgctacaa 360ttatggatca ggttcagtca agaattgttg tccattgaac
tgggaatatt ttcaatccag 420ctgctacttc ttttctactg acaccatttc ctgggcgtta
agtttaaaga actgctcagc 480catgggggct cacctggtgg ttatcaactc acaggaggag
caggaattcc tttcctacaa 540gaaacctaaa atgagagagt tttttattgg actgtcagac
caggttgtcg agggtcagtg 600gcaatgggtg gacggcacac ctttgacaaa gtctctgagc
ttctgggatg taggggagcc 660caacaacata gctaccctgg aggactgtgc caccatgaga
gactcttcaa acccaaggca 720aaattggaat gatgtaacct gtttcctcaa ttattttcgg
atttgtgaaa tggtaggaat 780aaatcctttg aacaaaggaa aatctcttta agaacagaag
gcacaactca aatgtgtaaa 840gaaggaagag caagaacatg gccacaccca ccgccccaca
cgagaaattt gtgcgctgaa 900cttcaaagga cttcataagt atttgttact ctgatataaa
taaaaataag tagttttaaa 960tgttataatt catgttactg gctgaagtgc attttctctc
tacgttagtc tcaggtcctc 1020ttcccagaat ttacaaagca attcatacct tttgctacat
ttgcctcatt ttttagtgtt 1080cgtatgaaag tacagggaca cggagccaag acagagtcta
gcaaagaagg ggattttgga 1140aggtgccttc caaaaatctc ctgaatccgg gctctgtagc
aggtcctctt ctttctagct 1200tctgacaagt ctgtcttctc ttcttggttt cataccgttc
ttatctcctg cccaagcata 1260tatcgtctct ttactcccct gtataatgag taagaagctt
cttcaagtca tgaaacttat 1320tcctgctcag aataccggtg tggcctttct ggctacaggc
ctccactgca ccttcttagg 1380gaagggcatg ccagccatca gctccaaaca ggctgtaacc
aagtccaccc atccctgggg 1440cttcctttgc tctgccttat tttcaattga ctgaatggat
ctcaccagat tttgtatcta 1500ttgctcagct aggacccgag tccaatagtc aatttattct
aagcgaacat tcatctccac 1560actttcctgt ctcaagccca tccattattt cttaactttt
attttagctt tcgggggtac 1620atgttaaagg ctttttatat aggtaaactc atgtcgtgga
ggtttgttgt acagattatt 1680tcatcaccca ggtattaagc ccagtgccta atattgtttt
tttcggctcc tctccctcct 1740cctaccttcc gccctcaagt agactccagt gtctgttatt
cccttctttg tgtttatgaa 1800ttctcatcat ttagctccca cttataagtg aggacatgca
gtatttggtt ttctgttccc 1860atgtttgcta aggataatgg tttccagttc taccgatgtt
cccacaaaag acataatttt 1920cttttttaag gctgcttagt attccatggt atctatgtat
cacattttct ctatccaatc 1980tattgttgac tcacatttag attgattcca tgtttttgct
attgtgaata gtgctgcaat 2040gaacattcgt gtgcatgtgt ctttatggta gaaagattta
tatttctctg agtatgtatc 2100cagtaatagc ccattcattt attgcataaa attctaccaa
tac 2143231128DNAHomo sapiens 23cctcctctcc ctggcttttg
tgttggtgcc tccgagctgc aaggagggtg cgctggagga 60ggaggagggg ggcccggagt
gagaggcacc cccttcacgc gcgcgcgcgc acacggtgcc 120ggcgcacgca cacacgggcg
gacacacaca cacgcgcgca cacacacacg cacagagctc 180gctcgcctcg agcgcacgaa
cgtggacgtt ctctttgtgt ggagccctca aggggggttg 240gggccccggt tcggtccggg
ggagatggcg cagcccatcc tgggccatgg gagcctgcag 300cccgcctcgg ccgctggcct
ggcgtccctg gagctcgact cgtcgctgga ccagtacgtg 360cagattcgca tcttcaaaat
aatcgtgatt ggggactcca acgtgggcaa gacctgcctg 420accttccgct tctgcggggg
taccttccca gacaagactg aagccaccat cggcgtggac 480ttcagggaga agaccgtgga
aatcgagggc gagaagatca aggttcaggt gtgggacaca 540gcaggtcagg aacgtttccg
caaaagcatg gtcgagcatt actaccgcaa cgtacatgcc 600gtggtcttcg tctatgacgt
caccaagatg acatctttca ccaacctcaa aatgtggatc 660caagaatgca atgggcatgc
tgtgccccca ctagtcccca aagtgcttgt gggcaacaag 720tgtgacttga gggaacagat
ccaggtgccc tccaacttag ccctgaaatt tgctgatgcc 780cacaacatgc tcttgtttga
gacatcggcc aaggacccca aagagagcca gaacgtggag 840tcgattttca tgtgcttggc
ttgccgattg aaggcccaga aatccctgct gtatcgtgat 900gctgagaggc agcaggggaa
ggtgcagaaa ctggagttcc cacaggaagc taacagtaaa 960acttcctgtc cttgttgaaa
ccaaacgata taaatacaag ataaattatc actggagttt 1020tttctttccc ttttttctgt
gcctgcataa tgctgacacc tgcttgtttc catacaaatt 1080gatatcaaaa taaaatttgt
atagattaaa aaaaaaaaaa aaaaaaaa 1128242457DNAHomo sapiens
24ggagcgcgtg aggctccggc gcgcaagccc ggagcagccc gctggggcgc acagggtcgc
60gcgggcgcgg ggatggagga cggcgtggcc ggtccccagc tcggggccgc ggcggaggcg
120gcggaggcgg ccgaggcgcg agcgcggccc ggggtgacgc tgcggccctt cgcgcccctc
180tcgggggcgg ccgaggcgga cgagggcggc ggcgactgga gcttcattga ctgcgagatg
240gaggaggtgg acctgcagga cctgcccagc gccaccatcg cctgtcacct ggacccgcgc
300gtgttcgtgg acggcctgtg ccgggccaaa tttgagtccc tctttaggac gtatgacaag
360gacatcacct ttcagtattt taagagcttc aaacgagtca gaataaactt cagcaacccc
420ttctccgcag cagatgccag gctccagctg cataagactg agtttctggg aaaggaaatg
480aagttatatt ttgctcagac cttacacata ggaagctcac acctggctcc gccaaatcca
540gacaagcagt ttctgatctc ccctcccgcc tctccgccag tgggatggaa acaagtggaa
600gatgcgaccc cagtcataaa ctatgatctc ttatatgcca tctccaagct ggggccaggg
660gaaaagtatg aattgcacgc agcgactgac accactccca gcgtggtggt ccatgtatgt
720gagagtgatc aagagaagga ggaagaagag gaaatggaaa gaatgaggag acctaagcca
780aaaattatcc agaccaggag gccggagtac acgccgatcc acctcagctg aactggcacg
840cgacgaggac gcattccaaa tcatactcac gggaggaatc ttttactgtg gaggtggctg
900gtcacgactt cttcggaggt ggcagccgag atcggggtgg cagaaatccc agttcatgtt
960gctcagaaga gaatcaaggc cgtgtcccct tgttctaatg ctgcacacca gttactgttc
1020atggcacccg ggaatgactt gggccaatca ctgagtttgt ggtgatcgca caaggacatt
1080tgggactgtc ttgagaaaac agataatgat agtgttttgt acttgttctt ttctggtagg
1140ttctgtctgt gccaagggca ggttgatcag tgagctcagg agagagcttc ctgtttctaa
1200gtggcctgca ggggccactc tctactggta ggaagaggta ccacaggaag ccgcctagtg
1260cagagaggtt gtgaaaacag cagcaatgca atgtggaaat tgtagcgttt cctttcttcc
1320ctcatgttct catgtttgtg catgtatatt actgatttac aagactaacc tttgttcgta
1380tataaagtta caccgttgtt gttttacatc ttttgggaag ccaggaaagc gtttggaaaa
1440cgtatcacct ttcccagatt ctcggattct cgactctttg caacagcact tgcttgcgga
1500actcttcctg gaatgcattc actcagcatc cccaaccgtg caacgtgtaa cttgtgcttt
1560tgcaaaagaa gttgatctga aattcctctg tagaatttag cttatacaat tcagagaata
1620gcagtttcac tgccaacttt tagtgggtga gaaattttag tttaggtgtt tgggatcgga
1680cctcagtttc tgttgtttct tttatgtggt ggtttctata catgaatcat agccaaaaac
1740ttttttggaa actgttggtt gagatagttg gttcttttac cccacgaaga catcaagata
1800cacttgtaaa taaagctgat agcatatatt catacctgtt gtacacttgg gtgaaaagta
1860tggcagtggg agactaagat gtattaacct acctgtgaat catatgttgt aggaaaagct
1920gttcccatgt ctaacaggac ttgaattcaa agcatgtcaa gtggatagta gatctgtggc
1980gatatgagag ggatgcagtg cctttcccca ttcattcctg atggaattgt tatactaggt
2040taacatttgt aatttttttc tagttgtaat gtgtatgtct ggtaaatagg tattatattt
2100tggccttaca ataccgtaac aatgtttgtc attttgaaat acttaatgcc aagtaacaat
2160gcatgctttg gaaatttgga agatggtttt attctttgag aagcaaatat gtttgcatta
2220aatgctttga ttgttcatat caagaaattg attgaacgtt ctcaaaccct gtttacggta
2280cttggtaaga gggagccggt ttgggagaga ccattgcatc gctgtccaag tgtttcttgt
2340taagtgcttt taaactggag aggctaacct caaaatattt tttttaactg cattctataa
2400taaatgggca cagtatgctc cttacagaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa
2457252783DNAHomo sapiens 25gattgcgagc caggaggagg aagccggcgg tggccccgtc
agcagccggc tgctgagagg 60ccggtaggcg gcggcggtcc cgaggggcgg cggccgcgct
gctccctgag aacgggtccc 120gcagctgggc aggcgggcgg cctgagggcg cggagccatg
aagctgtaca gcctcagcgt 180cctctacaaa ggcgaggcca aggtggtgct gctcaaagcc
gcatacgatg tgtcttcctt 240cagctttttc cagagatcca gcgttcagga attcatgacc
ttcacgagtc aactgattgt 300ggagcgctca tcgaaaggca ctagagcttc tgtcaaagaa
caagactatc tgtgccacgt 360ctacgtccgg aatgatagtc ttgcaggtgt ggtcattgct
gacaatgaat acccatcccg 420ggtggccttt accttgctgg agaaggtact agatgaattc
tccaagcaag tcgacaggat 480agactggcca gtaggatccc ctgctacaat ccattaccca
gccctggatg gtcacctcag 540tagataccag aacccacgag aagctgatcc catgactaaa
gtgcaggccg aactagatga 600gaccaaaatc attctgcaca acaccatgga gtctctgtta
gagcgaggtg agaagctaga 660tgacttggtg tccaaatccg aggtgctggg aacacagtct
aaagccttct ataaaactgc 720ccggaaacaa aactcatgct gtgccatcat gtgatgcagc
ctgccagagg cccaatgctg 780gaatggcacc atcattcaca tcagaactgc agcccctgga
aaagaagaga cagccataga 840cgaggagcca gagtgggggc agactggcca tttttatttt
gaagttcctg cgagaaatgg 900atggtggaag ggtggcgaat gttcaaattc atatgtgtgg
tagtgattct tggaaagaat 960ttgaggtccc caaaggtgta tttttgggca aatgaaacca
taaactccga ctggcttctg 1020tagatgccaa agggctcttt ttcagctaac cctgggaagg
ctctgtggga gggaggtcgg 1080agccagctgt ttctcgatct ttggtatatc tttggatctt
atttgtacat taatgatatt 1140aacactccag tggggggtgg ggagtccctg atgctagggc
tggggtgggt ggagtttgaa 1200gactcttggg aaagcctctc ctggggccac tgttgggggt
gggagtgagc ccaccacaga 1260ggccacaggc aggcccccac ttcaggccca aggcctgggg
cggggggaac agtcactggg 1320tctcagattc tgagactgtt gtttagctta cctttctgct
aggattggct tcccgcagag 1380ggcagggccc atcctaagca gcttccaagt cccacaaagg
tggcttgtgg gaggatttgg 1440aaggagctgc attgtgggcg gggagtgtgt gggttgggtt
cgtaccagca agtagactag 1500gaactgagcc caggaaaggg ggatgttttc ctggtgtttg
gatggtcagc tgggagtgtc 1560catcatcagg ggaagatcaa acacaggtgc actcagctgc
ccagggcctc tgggacactt 1620gccttgactt gcaacttgcc ttgaacatca cgatcaaagc
agcaggtgct gtggtctctc 1680aaaattgatt tttatttgac tctgtggctc taagactgcc
ttgaaccgcc tgaggcctat 1740gcatctgaac aagtgggtct ctcccttgag caccaggagt
gggtgccagc cggccccgag 1800gattcccagc accccaccta tggtcttgcc agcataggct
tgctagttcc ttcttggtca 1860gaggtagctg cagagggggg aggccaaggg tttggtctaa
gctgtgccct gccacctggc 1920aggaggccca ctcactgccc aagtcatggc aacaggctgg
agcagcccag gagatgggcc 1980taaaatgttc tggatccctt gggtcctagt gttatgttcc
agtctgccca cctgtgctca 2040ggatgcagcc ctgggatcca gcacccatgg aagcttctgc
tgggatggtg tcacctatgg 2100gttttgaacc agtgtggtat ggtccttggg agctctgctc
tgagcttgcc acactgctga 2160gagcacccac tgtcctgacc agagtctcag tggtcctgac
ccccaatgtg ggcaggggct 2220gggcaggagg gtggggtctg ctgtgggttc agaggactcc
acctcctggc tggtttacct 2280gctgctgccc attttctctg ggtactgctg gccagaggac
tttagcctac ccctgaagag 2340cctgtccatg tcattttcct actgccatag ataccctaag
cccagggccc cttgaggccc 2400agactcagcc tgcccactgg tgccggagac ggagtggagt
gggcctggat ccgagggatg 2460ctacctctcc ctttcccact tgaggaccct ggggagagat
gggggcgggg aaaatggagg 2520tatgaatttg gggtaagagg aagtgagatc tccgcttgca
ggtcagcccc tgccttgcag 2580ggcgggctgg cttgactcag gccctgtgag atagagggcc
cagcccagcc ccacccacag 2640atcccctgct cctgttgtgt tctgttgtaa atcatttggc
gagactgtat tttagtaact 2700gctgcctaac ttccctgtgt tctatttgag aggcgcctgt
ctggataaag ttgtcttgaa 2760atttcaaaaa aaaaaaaaaa aaa
2783263398DNAHomo sapiens 26cgctgtcgcc gccagtagca
gccttcgcca gcagcgccgc ggcggaaccg ggcgcagggg 60agcgagcccg gccccgccag
cccagcccag cccagcccta ctccctcccc acgccagggc 120agcagccgtt gctcagagag
aaggtggagg aagaaatcca gaccctagca cgcgcgcacc 180atcatggacc attatgattc
tcagcaaacc aacgattaca tgcagccaga agaggactgg 240gaccgggacc tgctcctgga
cccggcctgg gagaagcagc agagaaagac attcacggca 300tggtgtaact cccacctccg
gaaggcgggg acacagatcg agaacatcga agaggacttc 360cgggatggcc tgaagctcat
gctgctgctg gaggtcatct caggtgaacg cttggccaag 420ccagagcgag gcaagatgag
agtgcacaag atctccaacg tcaacaaggc cctggatttc 480atagccagca aaggcgtcaa
actggtgtcc atcggagccg aagaaatcgt ggatgggaat 540gtgaagatga ccctgggcat
gatctggacc atcatcctgc gctttgccat ccaggacatc 600tccgtggaag agacttcagc
caaggaaggg ctgctcctgt ggtgtcagag aaagacagcc 660ccttacaaaa atgtcaacat
ccagaacttc cacataagct ggaaggatgg cctcggcttc 720tgtgctttga tccaccgaca
ccggcccgag ctgattgact acgggaagct gcggaaggat 780gatccactca caaatctgaa
tacggctttt gacgtggcag agaagtacct ggacatcccc 840aagatgctgg atgccgaaga
catcgttgga actgcccgac cggatgagaa agccatcatg 900acttacgtgt ctagcttcta
ccacgccttc tctggagccc agaaggcgga gacagcagcc 960aatcgcatct gcaaggtgtt
ggccgtcaac caggagaacg agcagcttat ggaagactac 1020gagaagctgg ccagtgatct
gttggagtgg atccgccgca caatcccgtg gctggagaac 1080cgggtgcccg agaacaccat
gcatgccatg caacagaagc tggaggactt ccgggactac 1140cggcgcctgc acaagccgcc
caaggtgcag gagaagtgcc agctggagat caacttcaac 1200acgctgcaga ccaagctgcg
gctcagcaac cggcctgcct tcatgccctc tgagggcagg 1260atggtctcgg acatcaacaa
tgcctggggc tgcctggagc aggtggagaa gggctatgag 1320gagtggttgc tgaatgagat
ccggaggctg gagcgactgg accacctggc agagaagttc 1380cggcagaagg cctccatcca
cgaggcctgg actgacggca aagaggccat gctgcgacag 1440aaggactatg agaccgccac
cctctcggag atcaaggccc tgctcaagaa gcatgaggcc 1500ttcgagagtg acctggctgc
ccaccaggac cgtgtggagc agattgccgc catcgcacag 1560gagctcaatg agctggacta
ttatgactca cccagtgtca acgcccgttg ccaaaagatc 1620tgtgaccagt gggacaatct
gggggcccta actcagaagc gaagggaagc tctggagcgg 1680accgagaaac tgctggagac
cattgaccag ctgtacttgg agtatgccaa gcgggctgca 1740cccttcaaca actggatgga
gggggccatg gaggacctgc aggacacctt cattgtgcac 1800accattgagg agatccaggg
actgaccaca gcccatgagc agttcaaggc caccctccct 1860gatgccgaca aggagcgcct
ggccatcctg ggcatccaca atgaggtgtc caagattgtc 1920cagacctacc acgtcaatat
ggcgggcacc aacccctaca caaccatcac gcctcaggag 1980atcaatggca aatgggacca
cgtgcggcag ctggtgcctc ggagggacca agctctgacg 2040gaggagcatg cccgacagca
gcacaatgag aggctacgca agcagtttgg agcccaggcc 2100aatgtcatcg ggccctggat
ccagaccaag atggaggaga tcgggaggat ctccattgag 2160atgcatggga ccctggagga
ccagctcagc cacctgcggc agtatgagaa gagcatcgtc 2220aactacaagc caaagattga
tcagctggag ggcgaccacc agctcatcca ggaggcgctc 2280atcttcgaca acaagcacac
caactacacc atggagcaca tccgtgtggg ctgggagcag 2340ctgctcacca ccatcgccag
gaccatcaat gaggtagaga accagatcct gacccgggat 2400gccaagggca tcagccagga
gcagatgaat gagttccggg cctccttcaa ccactttgac 2460cgggatcact ccggcacact
gggtcccgag gagttcaaag cctgcctcat cagcttgggt 2520tatgatattg gcaacgaccc
ccagggagaa gcagaatttg cccgcatcat gagcattgtg 2580gaccccaacc gcctgggggt
agtgacattc caggccttca ttgacttcat gtcccgcgag 2640acagccgaca cagatacagc
agaccaagtc atggcttcct tcaagatcct ggctggggac 2700aagaactaca ttaccatgga
cgagctgcgc cgcgagctgc cacccgacca ggctgagtac 2760tgcatcgcgc ggatggcccc
ctacaccggc cccgactccg tgccaggtgc tctggactac 2820atgtccttct ccacggcgct
gtacggcgag agtgacctct aatccacccc gcccggccgc 2880cctcgtcttg tgcgccgtgc
cctgccttgc acctccgccg tcgcccatct cctgcctggg 2940ttcggtttca gctcccagcc
tccacccggg tgagctgggg cccacgtggc atcgatcctc 3000cctgcccgcg aagtgacagt
ttacaaaatt attttctgca aaaaagaaaa aaaagttacg 3060ttaaaaacca aaaaactaca
tattttatta tagaaaaagt attttttctc caccagacaa 3120atggaaaaaa agaggaaaga
ttaactattt gcaccgaaat gtcttgtttt gttgcgacat 3180aggaaaataa ccaagcacaa
agttatattc catccttttt actgattttt ttttcttcta 3240tctgttccat ctgctgtatt
catttctcca atctcatgtc cattttggtg tgggagtcgg 3300ggtagggggt actcttgtca
aaaggcacat tggtgcgtgt gtgtttgcta gctcacttgt 3360ccatgaaaat attttatgat
attaaagaaa atcttttg 3398272351DNAHomo sapiens
27tgcgggcagg attcacgccg ctgtgacccg gaggtcctca gggggcgaag ccccggccta
60ggcctcgcgg agatgcccag ctgcggtgct tgtacttgcg gcgcggcggc cgtccggctc
120atcacctcct cactcgcctc cgcgcagaga ggtatttctg gtggtcgcat tcatatgtca
180gttttaggaa ggcttgggac atttgaaact cagattctgc aaagagctcc tcttagatcc
240tttacagaaa caccagcata ctttgcctca aaagatggga taagtaaaga tggttctgga
300gatggaaata agaaatcagc aagtgaggga agtagtaaga aatcaggctc tgggaattct
360gggaaaggtg gaaaccagct gcgctgtcct aaatgtggcg acttgtgcac acatgtagag
420acctttgtat catccacccg ttttgtcaag tgtgaaaagt gtcatcattt ttttgttgtg
480ctatctgaag cagactcaaa gaaaagcata attaaagaac ctgaatcagc agcagaagct
540gtaaaattgg cattccaaca gaaaccacca cctcccccta agaagattta taactacctc
600gacaagtatg ttgttggcca gtcatttgct aagaaggtgc tttcagttgc tgtgtacaat
660cattataaga gaatatataa taatatccca gctaatctga gacagcaagc agaggttgag
720aagcagacat cattaacacc aagagagtta gaaataagaa gacgggagga tgagtacaga
780tttacaaaat tgcttcagat tgctggaatt agcccacatg gtaatgcttt aggagcatca
840atgcagcaac aggtaaatca acaaatacct caggaaaaac gaggaggtga agtattggat
900tcttctcatg atgacataaa acttgaaaaa agtaatattt tgctgcttgg accaactggg
960tcaggtaaaa ctctgctggc acaaacccta gctaaatgcc ttgatgtccc ttttgctatc
1020tgtgactgta caactttgac tcaggctgga tatgtaggcg aagatattga atctgtgatt
1080gcaaaactac tccaagatgc caattataat gtggaaaaag cacaacaagg aattgtcttt
1140ctggatgaag tagataagat tggcagtgtg ccaggcattc atcaattacg ggatgtaggt
1200ggagaaggcg ttcagcaagg cttattaaaa ctactagaag gcacaatagt caatgttcca
1260gaaaagaatt cccgaaagct ccgtggagaa acagttcaag ttgatacaac aaacatcctg
1320tttgtggcat ctggtgcttt caatggttta gacagaatca tcagcaggag gaaaaatgaa
1380aagtatcttg gatttggaac accatctaat ctgggaaaag gcagaagggc tgcagctgct
1440gcagaccttg ctaatcgaag tggggaatcg aatactcacc aagacattga agaaaaagat
1500cggttattgc gtcatgtgga agccagagat ctgattgagt ttggcatgat tcctgagttt
1560gtgggacggt tgcctgtggt ggttccattg catagcctag atgagaaaac acttgtacaa
1620atattaactg agccacgaaa tgctgttatt cctcagtacc aggccttatt cagcatggat
1680aagtgtgaac tgaatgttac tgaggatgct ttgaaagcta tagccagatt ggcactagaa
1740cgaaaaacag gtgcacgagg ccttcggtcc ataatggaaa agctgttact agaaccaatg
1800tttgaagtcc ctaattctga tatcgtatgt gtggaggttg acaaagaagt agtagaagga
1860aaaaaggaac caggatacat ccgggctcca acaaaagaat cctctgaaga ggagtatgac
1920tctggagttg aagaagaagg atggccccgc caagcagatg ctgcaaacag ctaaactgtc
1980atattgctgt cttgtatata cagcttttcc ttcttttgtt taggatcata attgtctcta
2040cagtctgata ttaaaggcat tggatctatc ttggatatca tacatggtca gagaagcctt
2100taggagaaga atcagatcat gtatataatt gtaacatcac attgatttta cggaagatgt
2160tatatggact ttaatgacac aatgtttaga gataaaatgt acattatttt ggttcagttt
2220tttaaaaaaa atatgcttta acaaaattct taggaattct tttaagcaat gcaggtattg
2280cgataactgt agattttaca ataatgttac tctacaaatg ggaaaataaa ttctttaaaa
2340ttgaatattg a
2351281551DNAHomo sapiens 28ggcgcccaag ccgccgccgc cagatcggtg ccgattcctg
ccctgccccg accgccagcg 60cgaccatgtc ccatcactgg gggtacggca aacacaacgg
acctgagcac tggcataagg 120acttccccat tgccaaggga gagcgccagt cccctgttga
catcgacact catacagcca 180agtatgaccc ttccctgaag cccctgtctg tttcctatga
tcaagcaact tccctgagga 240tcctcaacaa tggtcatgct ttcaacgtgg agtttgatga
ctctcaggac aaagcagtgc 300tcaagggagg acccctggat ggcacttaca gattgattca
gtttcacttt cactggggtt 360cacttgatgg acaaggttca gagcatactg tggataaaaa
gaaatatgct gcagaacttc 420acttggttca ctggaacacc aaatatgggg attttgggaa
agctgtgcag caacctgatg 480gactggccgt tctaggtatt tttttgaagg ttggcagcgc
taaaccgggc cttcagaaag 540ttgttgatgt gctggattcc attaaaacaa agggcaagag
tgctgacttc actaacttcg 600atcctcgtgg cctccttcct gaatccctgg attactggac
ctacccaggc tcactgacca 660cccctcctct tctggaatgt gtgacctgga ttgtgctcaa
ggaacccatc agcgtcagca 720gcgagcaggt gttgaaattc cgtaaactta acttcaatgg
ggagggtgaa cccgaagaac 780tgatggtgga caactggcgc ccagctcagc cactgaagaa
caggcaaatc aaagcttcct 840tcaaataaga tggtcccata gtctgtatcc aaataatgaa
tcttcgggtg tttcccttta 900gctaagcaca gatctacctt ggtgatttgg accctggttg
ctttgtgtct agttttctag 960acccttcatc tcttacttga tagacttact aataaaatgt
gaagactaga ccaattgtca 1020tgcttgacac aactgctgtg gctggttggt gctttgttta
tggtagtagt ttttctgtaa 1080cacagaatat aggataagaa ataagaataa agtaccttga
ctttgttcac agcatgtagg 1140gtgatgagca ctcacaattg ttgactaaaa tgctgctttt
aaaacatagg aaagtagaat 1200ggttgagtgc aaatccatag cacaagataa attgagctag
ttaaggcaaa tcaggtaaaa 1260tagtcatgat tctatgtaat gtaaaccaga aaaaataaat
gttcatgatt tcaagatgtt 1320atattaaaga aaaactttaa aaattattat atatttatag
caaagttatc ttaaatatga 1380attctgttgt aatttaatga cttttgaatt acagagatat
aaatgaagta ttatctgtaa 1440aaattgttat aattagagtt gtgatacaga gtatatttcc
attcagacaa tatatcataa 1500cttaataaat attgtatttt agatatattc tctaataaaa
ttcagaattc t 1551292591DNAHomo sapiens 29gctgagcgcg ggcgcggggc
cgctacgtgc gcggggagcg cggggagcgc ggggagcgcg 60gggctgcgct cgtgtgcgct
cctgggcgct cgccgccgcc gctgccgccg cgcgcctttg 120agtcagcaaa ctccgcggcc
cgcaagcccg gctcggcccg gccctgctct gttctgcccg 180gaggagccgc ccattgatcg
tgtcctgtgc tgaagatgtt tccggaacaa cagaaagagg 240aatttgtaag tgtctgggtt
cgagatccta ggattcagaa ggaggacttc tggcattctt 300acattgacta tgagatatgt
attcatacta atagcatgtg ttttacaatg aaaacatcct 360gtgtacgaag aagatataga
gaattcgtgt ggctgaggca gagactccaa agtaatgcgt 420tgctggtaca actgccagaa
cttccatcta aaaacctgtt tttcaacatg aacaatcgcc 480agcacgtgga tcagcgtcgc
cagggtctgg aagatttcct cagaaaagtc ctacagaatg 540cacttttgct ttcagatagc
agccttcacc tcttcttaca gagccatctg aattcagaag 600acattgaggc gtgtgtttct
gggcagacta agtactctgt ggaagaagca attcacaagt 660ttgccttaat gaatagacgt
ttccctgaag aagatgaaga aggaaaaaaa gaaaatgata 720tagattatga ttcagaaagt
tcatcctctg ggcttggaca cagtagtgat gacagcagtt 780cacatggatg taaagtaaat
acagctccgc aggaatcctg aaaaataatt ctaatgttac 840tatcttagga atagcaaatt
atgtccagtc atagagaaga aagcttcata ataatacatt 900cttacctaaa gctcactgtc
atgatgttag gtatttaaat tcttaaagat gttgggttgt 960ttattagtgg tatttttatg
ttgtcttatt ttaggtaagc ttctgtgtaa agctaaaaat 1020cctgtgaata caatactatc
ctttacaggc agacattatt ggtaaacaag atcttgccct 1080ccaatgaaat gacttacatg
ttttaaaaaa ccgagttggt tttattgaat ttaaaaagat 1140aggtaactaa gtagcattta
aaatcaagat agagcattcc ttcttgtatc agtggggcag 1200tgttaccata aacacggtgt
atatgttgtt aaaccctatg aagagtaaca gtgtagacca 1260gactgcctct ctcagatatg
tgcctgatat tttgtggata cctcccctgc actggcaaaa 1320cactatgctt ttgggtgtta
gactgaaata ttttaagagt atttaacctt tccagtattc 1380tgtttcacgc ttagatggaa
atgtatctta tgaatagaga catattaaaa taatgtttac 1440atcttagaaa aaacatagat
agtgctagta atattactta taactgtaat atatagattc 1500agaaatacat tttcattatc
caaaatcagc ttcaacaaat ggtttctgga gacaaataat 1560ttgttttcat tatcattgta
taatcaggtt aatgatttat tttttgacta aatgtgcaat 1620ttcttatcac tagataactt
tcagtatcag tggtggttac ttattactta aatcagagga 1680aggattttat aaagattaat
aaatttaatt ttaccaataa atattcccat aatttagaaa 1740aggatgtcga cttgctaatt
tcagaaataa ttattcattt ttaaaaagcc ccttttaaag 1800catctacttg aagattggta
taattttcat aaaatgtctt tttttttagt gtcccaaaga 1860tatcttagat aaactatttt
gaagttcaga tttcagatga ggcaacattt tcttgagata 1920attacccaag tttcatccat
gttgaatggt acaaaatatt tctgtgaaac taacaggaag 1980atattttcag ataactagga
taacttgttg ctttgttacc cagcctaatt gaagagtggc 2040agaggctact acaaaaagca
accttttcat tttcactaag agtttaaaag ctattgtatt 2100attaaaaagt ctttacaatg
cttgtttcaa agaaccaaca gaaaaaaaag ctaagaaaac 2160tgagaactaa cattaaaaaa
attaaattta gaataagaat gatttcttta atttgtcctt 2220tttttctttg gtctaaaaca
ttattaaatt tttgtaaata ttttgattta atgtgtctta 2280gatcctcatt attttaatac
aggaaaagaa aagatttagt aatttcttac catgctaata 2340tgtaaagttc atgccatcca
ggcatttaag agcgatcctc atcccttcag caatatgtat 2400ttgagttcac actatttctg
ttttacagca gttttgaaaa acacatacta tgccaccaat 2460tgtcatatta tttttagatg
atgtaacata gccatcaaaa ttaatattat gtaatgccta 2520atacttagta tgtaaatgtc
acgagatcat ttttacatta aacgtgaaaa aaaatcaaaa 2580aaaaaaaaaa a
2591302501DNAHomo sapiens
30gaacctcctc gcgactttcc aaggtatctt tcagatgaag gcattgaagc ttgcacaagc
60tctccagaca aagtcaatgt aaatgacatc atcctgattg ctctcaatat ctgagaacaa
120ttggcaagaa attcctcccc agtgacatca atagtggaaa ggtagaaaag ctcgaaggtc
180catgtgtttt gcaaattcaa aaaattcgca atgttgctgc accaaaggat aatgaagaat
240ctcaggctgc accaaggatg ctgcgattac agatgactga tggtcatata agttgcacag
300cagtagaatt tagttatatg tcaaaaataa gcctgaacac accacctgga actaaagtta
360agctctcagg cattgttgac ataaaaaatg gattcctgct cttgaatgac tctaacacca
420cagttcttgg tggtgaagtg gaacacctta ttgagaaatg ggagttacag agaagcttat
480caaaacacaa tagaagcaat attggaactg aaggtggacc accgcctttt gtgccttttg
540gacagaagtg tgtatctcat gtccaagtgg atagcagaga acttgatcga agaaaaacat
600tgcaagttac aatgcctgtc aaacctacaa atgataatga tgaatttgaa aagcaaagga
660cggctgctat tgctgaagtt gcaaagagca aggaaaccaa gacatttgga ggaggtggtg
720gtggtgctag aagtaatctc aatatgaatg ctgctggtaa ccgaaatagg gaagttttac
780agaaagaaaa gtcaaccaaa tcagagggaa aacatgaagg tgtctataga gaactggttg
840atgagaaagc tctgaagcac ataacggaaa tgggcttcag taaggaagca tcgaggcaag
900ctcttatgga taatggcaac aacttagaag cagcactgaa cgtacttctt acaagcaata
960aacagaaacc tgttatgggt cctcctctga gaggtagagg aaaaggcagg gggcgaataa
1020gatctgaaga tgaagaggac ctgggaaatg caaggccatc agcaccaagc acattatttg
1080atttcttgga atctaaaatg ggaactttga atgtggaaga acctaaatca cagccacagc
1140agcttcatca gggacaatac agatcatcaa atactgagca aaatggagta aaagataata
1200atcatctgag acatcctcct cgaaatgata ccaggcagcc aagaaatgaa aaaccgcctc
1260gttttcaaag agactcccaa aattcaaagt cagttttaga aggcagtgga ttacctagaa
1320atagaggttc tgaaagacca agtacttctt cagtatctga agtatgggct gaagacagaa
1380tcaaatgtga tagaccgtat tctagatatg acagaactaa agatacttca tatcctttag
1440gttctcagca tagtgatggt gcttttaaaa aaagagataa ctctatgcaa agcagatcag
1500gaaaaggtcc ctcctttgca gaggcaaaag aaaatccact tcctcaagga tctgtagatt
1560ataataatca aaaacgtgga aaaagagaaa gccaaacatc tattcctgac tatttttatg
1620acaggaaatc acaaacaata aataatgaag ctttcagtgg tataaaaatt gaaaaacatt
1680ttaatgtaaa tactgattat cagaatccag ttcgaagtaa tagtttcatt ggtgttccaa
1740atggagaagt agaaatgcca ctgaaaggaa gacgaatagg acctattaag ccagcaggac
1800ctgtcacagc tgtaccctgt gatgataaaa tattttacaa tagtgggccc aaacgaagat
1860ctgggccaat taagccagaa aaaatactag aatcatctat tcctatggag tatgcaaaaa
1920tgtggaaacc tggagatgaa tgttttgcac tttattggga agacaacaag ttttaccggg
1980cagaagttga agccctccat tcttcgggta tgacagcagt tgttaaattc attgactacg
2040gaaactatga agaggtgcta ctgagcaata tcaagcccat tcaaacagag gcatgggagg
2100aagaaggcac ctacgatcaa actctggagt tccgtagggg aggtgatggc cagccaagac
2160gatccactcg gccaacccaa cagttttacc aaccaccccg ggctcggaac taataggaaa
2220agactctttg tgaagaaacg agccagtgac tgaaacaccc tggtggaaac ctgttgacag
2280accttccact ttctcttcag aataagtagc tgtggtggat attattattt gaagaaagaa
2340aaaacagatt ttagggtgga aaaaacagtc aactcacaca aagaatggaa aaaaatactg
2400agttaaatta agcaaatacc ttttacaagt gaaaggaaga atttttcttc tgccgtcaat
2460aaaaccattg tgctattatt gtttaaaaaa aaaaaaaaaa a
2501312164DNAHomo sapiens 31ataaatatca gagtgtgctg ctgtggcttt gtggagctgc
cagagtaaag caaagagaaa 60ggaagcaggc ccgttggaag tggttgtgac aaccccagca
atgtggagaa gcctggggct 120tgccctggct ctctgtctcc tcccatcggg aggaacagag
agccaggacc aaagctcctt 180atgtaagcaa cccccagcct ggagcataag agatcaagat
ccaatgctaa actccaatgg 240ttcagtgact gtggttgctc ttcttcaagc cagctgatac
ctgtgcatac tgcaggcatc 300taaattagaa gacctgcgag taaaactgaa gaaagaagga
tattctaata tttcttatat 360tgttgttaat catcaaggaa tctcttctcg attaaaatac
acacatctta agaataaggt 420ttcagagcat attcctgttt atcaacaaga agaaaaccaa
acagatgtct ggactctttt 480aaatggaagc aaagatgact tcctcatata tgatagatgt
ggccgtcttg tatatcatct 540tggtttgcct ttttccttcc taactttccc atatgtagaa
gaagccatta agattgctta 600ctgtgaaaag aaatgtggaa actgctctct cacgactctc
aaagatgaag acttttgtaa 660acgtgtatct ttggctactg tggataaaac agttgaaact
ccatcgcctc attaccatca 720tgagcatcat cacaatcatg gacatcagca ccttggcagc
agtgagcttt cagagaatca 780gcaaccagga gcaccaaatg ctcctactca tcctgctcct
ccaggccttc atcaccacca 840taagcacaag ggtcagcata ggcagggtca cccagagaac
cgagatatgc cagcaagtga 900agatttacaa gatttacaaa agaagctctg tcgaaagaga
tgtataaatc aattactctg 960taaattgccc acagattcag agttggctcc taggagctga
tgctgccatt gtcgacatct 1020gatatttgaa aaaacagggt ctgcaatcac ctgacagtgt
aaagaaaacc tcccatcttt 1080atgtagctga cagggacttc gggcagagga gaacataact
gaatcttgtc agtgacgttt 1140gcctccagct gcctgacaaa taagtcagca gcttataccc
acagaagcca gtgccagttg 1200acgctgaaag aatcaggcaa aaaagtgaga atgaccttca
aactaaatat ttaaaatagg 1260acatactccc caatttagtc tagacacaat ttcatttcca
gcatttttat aaactaccaa 1320attagtgaac caaaaataga aattagattt gtgcaaacat
ggagaaatct actgaattgg 1380cttccagatt ttaaatttta tgtcatagaa atattgactc
aaaccatatt ttttatgatg 1440gagcaactga aaggtgattg cagcttttgg ttaatatgtc
tttttttttc tttttccagt 1500gttctatttg ctttaatgag aatagaaacg taaactatga
cctaggggtt tctgttggat 1560aattagcagt ttagaatgga ggaagaacaa caaagacatg
ctttccattt ttttctttac 1620ttatctctca aaacaatatt actttgtctt ttcaatcttc
tacttttaac taataaaata 1680agtggatttt gtattttaag atccagaaat acttaacacg
tgaatatttt gctaaaaaag 1740catatataac tattttaaat atccatttat cttttgtata
tctaagactc atcctgattt 1800ttactatcac acatgaataa agcctttgta tctttctttc
tctaatgttg tatcatactc 1860ttctaaaact tgagtggctg tcttaaaaga tataagggga
aagataatat tgtctgtctc 1920tatattgctt agtaagtatt tccatagtca atgatggttt
aataggtaaa ccaaacccta 1980taaacctgac ctcctttatg gttaatacta ttaagcaaga
atgcagtaca gaattggata 2040cagtacggat ttgtccaaat aaattcaata aaaaccttaa
agctgaaaaa aaaaaaaaaa 2100aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
aaaaaaaaaa aaaaaaaaaa 2160aaaa
2164324564DNAHomo sapiens 32ccggggccct acacgccaga
cctggctcgg ggtgggagtg cagaggcaac caaaaaggaa 60cccacacctc cctccagggc
ccggggcgct gtcagacggg gcagcaacca ggagattccc 120tgggcctgca ggaagccctt
ccgcggaccg aaagattgtt ccccattttg gagatgaaga 180aactgagact caaagcagct
gagtgacctt cccaaggaca cacactgaac tgggcggtga 240tcaggatctg aatgcacagg
gcgggtgttc agcgattgtt tactacgttg aacgtgacct 300ccaggaaagc agttctggcc
gagatcccct gacaacgcaa agcaagaagt aacgtggaag 360gaggctcccc aagctggctg
gccattttgc tgctgtgtgt ggaggtgctg ccagtggcat 420gcccaaaccc aaagctggaa
gaggaataaa ttacaagtgg tcaaggttgc atccttttga 480gcccaggacc tgcttgtaag
ccgagagggt tctctggccc taatctagcc aagcaccatg 540gagagaatca gtgccttctt
cagctctatc tgggacacca tcttgaccaa acaccaagaa 600ggcatctaca acaccatctg
cctgggagtc ctcctgggcc tgccactctt ggtgatcatc 660acactcctct tcatctgttg
ccattgctgc tggagcccac caggcaagag gggccagcag 720ccagagaaga acaagaagaa
gaagaagaag aagaagaaga aggatgaaga agacctctgg 780atctctgctc aacccaagct
tctccagatg gagaagagac catcactgcc tgtttagtta 840ggcaggaagc agaggtgttt
cctttctggg gctaagcctc cttctgacca cacacagaca 900tttcaggaac ccctgaaata
atgcactatg tccatgtcca cagagtaact actcaaccaa 960ggaacaaacc tcagactaag
tgtcccagtg gagggcagtc ccagggacca cgtggacaat 1020tcttggatac tgtcttggca
gctatgtgtc caatagcaat gctccttact gcagacccag 1080gcatgcctcc cacctgtctc
tggcataccc cacatgcaaa gcacaaagaa catttatcca 1140tacatctcaa tatggttccc
aagtgtgtgc acatgcacgt aacacacaca cacacaaatt 1200caggtagcag gtacgtgggc
aagtatattc tgctcatcaa atggtcattg gctatgtact 1260ttgtgcaggg aagtacatta
tctacagtca caaaaatgtc tcatgggaaa gccttgccag 1320attcagacac atatatacaa
tttcctaacc agcaaggccc ccatacacca tctattccat 1380aaaccactca ggttacagat
gcatgctttc ctatttctaa ctctacacat aaacttttac 1440tggaagtact cataattgga
cattccagca acctgctaca gtccccaccc ttgtgtgtct 1500tgatacagac acaccaagtt
tctgtgcctc tgacccctca cctgtgccaa gatgtttaaa 1560gtgtgatggt tcaaaattca
ttgaaagctc ttttcttgta actcatgaca aagtccgtcc 1620tcattgccac tgagaggtgt
ttaatgtgat ccaagacctc tctgtgaaac attacccccg 1680caaaccactc agcaaagtgc
ctttctccaa gcaagaacaa agagctcttg gtggtgactg 1740ctagaaaatt atggaagccc
actcatttat gtcagtggac tgcaactgtg tacctgtgca 1800atgtttacag atggaaaggg
tgaggagatg ctacacctga gctaggtatc tcctatataa 1860ccaaagtttc cagcagggaa
ggaactagac aatcatcagt gcagtctcac agaaggcaac 1920actggaagtg atgtcataag
gttgtgatgt gtgcacggta tggcacaggt gggatgcaga 1980ggtaacagag tttaaatgaa
agtaggatga agctataaag aggtttattt atatttatat 2040tgaagctcag gcaagtgcct
tgcacacagt aggtacttat aactaactgt ggttactgtt 2100ggatatgtga tgttgttaag
ggtaagcttg taatacctca ccagttctcc ccgagtgatc 2160ttctcttcta agtgagccca
ctaattgctg caatggatga aattgggtgt ttaatgctgg 2220agagcacatg taggtgacac
atgtgccttg aggtatgtga ggacatgtaa attagatcca 2280cagtgagctg aggagggctt
tccccgccag agtgaggttg ggaagcagag ttaatccact 2340tataggatga actgcttggt
atttttattg tattgtgact gtattacaaa gatggacaat 2400tcactccttg ggagcaagtt
atgctctaga agtttattta caaatatgct gggcagctct 2460cttgaaatat tttcccaagg
aagctattct acacagtggc aaaattgcta tctaattaat 2520aatgtagcta aactatgata
tttatagtag caaaaaacta aattctataa gattgcatta 2580aaggaaagat atattctatt
tgctcacttg ggctgcttgg tactcacctg ccctccaggt 2640gtactttagg cctgtggagg
gtgggcattt agtggtgacc cttgcaccag ggttttctaa 2700cagatgaccc tgtgaatcat
aatttaaacc tgcatatatt ttatagccag tcacatttgc 2760cctctcaccc tatatggcca
taaactgcct aagcactcag gcctcccact catcaacccc 2820tttgaccaga gaaagaagca
ctctggttct ctatcccctt gtcacataga gagtttgtca 2880tggggcctct ggctgtgccc
ttcacataac agaatgactt gccatctgcc tgcaccaaac 2940ccagggatgt ggaagacatc
tccccacaac tgccactgct caccaggaca agctgccctt 3000cctgtctcca cctctcagtc
cccctagaat ggatggctgg ggagaggtgg aggctgacag 3060ctgagacgta gtgtcagata
tgatctagga gggcggatca ccgggatccg ggaccataca 3120agtaacatgg tttccatggc
aactgcttgc tcctttgaat taagacagca gtcagttgtc 3180attgccatga caaggcctct
atctccaggc acaatgtccc tgctgtctcc taatccaatg 3240gacttgctct caccccaggg
atgaaacacc cagaaactca cttctcagtc acttccacag 3300ccgatgactc agaagagcca
aacccagaat ggggcctctc ttttccccat cacagactcc 3360cctgacaacc tttcctggcg
taactagagg agtcccagtg caggataggc cctaaacgtt 3420ttgttaaata aacaggtgca
tgaaaggagc ctaaggccat tgttgatatc cactctcttc 3480tttccacttc cttctcatct
ttttctccat gttttatgct tctctgattc cctcttctgc 3540ctgcaccaga ccagccccag
ccctttattc ctctccattt tcactccttc cagcctctgt 3600ccctgaactg ccactggcaa
cccatgggac ctcaggacca gagactgctt gactcatctg 3660gggagggtaa gttcacgggg
gacaaaaaaa tgattcctaa agaagaggct tcctagacca 3720gcacaggctc gagaaagaca
tcccctaggc ctggacttct gagcagcttt agccaggctc 3780cggacggcag ccagaggagg
cctttcccca ttgctccttt ccccattgct caatggattc 3840catgtttctt tttcttgggg
ggagcaggga gggagaaagg tagaaaaatg gcagccacct 3900ttccaagaaa aatataaagg
gtccaagctg tatagtattt gtcagtattt ttttctgtaa 3960aattcaaaca cacacaaaag
aaaaatttat ttaaataaaa tactttgaaa atgaaaagtc 4020ttgatgtagt cagatggtta
ctctcttaac attaggtatt acccccactc agacatcact 4080cagaaatgat caatgcaggg
actctttctg tgacacaaat gtcccagccc tccctggtca 4140ccgccttcgc catggtagag
tcataggtct gaggatgagg aatgtggctg tctcaccctt 4200gcttgcaaaa cagatggcct
tggagaccag actccctcaa aggtgccagc tacaggaaaa 4260atatactgat gttccttggc
aacacttaca gaactttcca tcaatgaggt ccatcaatgg 4320cttcttaaag gaaaaggggg
gaaatagcaa aaacctaagg aagaatggac ctttgagtta 4380aatccagtgt ttgttgggaa
aggagggatc aaaaacctct atagtagcca ctagggcaaa 4440aactgtgtgt atgtgtgtgt
gtaagtgtgt gtacactgtt caatatggtt caatatggta 4500ccaatagcca catgtgacta
tttaaattca ttgcaatgaa ataaaattaa aggtatacta 4560gctc
4564333913DNAHomo sapiens
33ctttcactgg caagagacgg agtcctgggt ttcagttcca gttgcctgcg gtgggctgtg
60tgagtttgcc aaagtcccct gccctctctg ggtctcggtt ccctcgcctg tccacgtgag
120gttggaggag ctgaacgccg acgtcatttt tagctaagag ggagcagggt ccccgagtcg
180ccggcccagg gtctgcgcat ccgaggccgc gcgccctttc ccctccccca cggctcctcc
240gggccccgca ctctgcgccc cggctgccgc ccagcgccct acaccgccct cagggggccc
300tcgcgggctc cccccggccg ggatgccagt gccccgcgcc acgcgcgcct gctcccgcgc
360cgcctgccct gcagcctgcc cgcggcgcct ttatacccag cgggctcggc gctcactaat
420gtttaactcg gggccgaaac ttgccagcgg cgagtgactc caccgcccgg agcagcggtg
480caggacgcgc gtctccgccg cccgcggtga cttctgcctg cgctccttct ctgaacgctc
540acttccgagg agacgccgac gatgaagaca ccgtggaagg ttcttctggg actgctgggt
600gctgctgcgc ttgtcaccat catcaccgtg cccgtggttc tgctgaacaa aggcacagat
660gatgctacag ctgacagtcg caaaacttac actctaactg attacttaaa aaatacttat
720agactgaagt tatactcctt aagatggatt tcagatcatg aatatctcta caaacaagaa
780aataatatct tggtattcaa tgctgaatat ggaaacagct cagttttctt ggagaacagt
840acatttgatg agtttggaca ttctatcaat gattattcaa tatctcctga tgggcagttt
900attctcttag aatacaacta cgtgaagcaa tggaggcatt cctacacagc ttcatatgac
960atttatgatt taaataaaag gcagctgatt acagaagaga ggattccaaa caacacacag
1020tgggtcacat ggtcaccagt gggtcataaa ttggcatatg tttggaacaa tgacatttat
1080gttaaaattg aaccaaattt accaagttac agaatcacat ggacggggaa agaagatata
1140atatataatg gaataactga ctgggtttat gaagaggaag tcttcagtgc ctactctgct
1200ctgtggtggt ctccaaacgg cactttttta gcatatgccc aatttaacga cacagaagtc
1260ccacttattg aatactcctt ctactctgat gagtcactgc agtacccaaa gactgtacgg
1320gttccatatc caaaggcagg agctgtgaat ccaactgtaa agttctttgt tgtaaataca
1380gactctctca gctcagtcac caatgcaact tccatacaaa tcactgctcc tgcttctatg
1440ttgatagggg atcactactt gtgtgatgtg acatgggcaa cacaagaaag aatttctttg
1500cagtggctca ggaggattca gaactattcg gtcatggata tttgtgacta tgatgaatcc
1560agtggaagat ggaactgctt agtggcacgg caacacattg aaatgagtac tactggctgg
1620gttggaagat ttaggccttc agaacctcat tttacccttg atggtaatag cttctacaag
1680atcatcagca atgaagaagg ttacagacac atttgctatt tccaaataga taaaaaagac
1740tgcacattta ttacaaaagg cacctgggaa gtcatcggga tagaagctct aaccagtgat
1800tatctatact acattagtaa tgaatataaa ggaatgccag gaggaaggaa tctttataaa
1860atccaactta gtgactatac aaaagtgaca tgcctcagtt gtgagctgaa tccggaaagg
1920tgtcagtact attctgtgtc attcagtaaa gaggcgaagt attatcagct gagatgttcc
1980ggtcctggtc tgcccctcta tactctacac agcagcgtga atgataaagg gctgagagtc
2040ctggaagaca attcagcttt ggataaaatg ctgcagaatg tccagatgcc ctccaaaaaa
2100ctggacttca ttattttgaa tgaaacaaaa ttttggtatc agatgatctt gcctcctcat
2160tttgataaat ccaagaaata tcctctacta ttagatgtgt atgcaggccc atgtagtcaa
2220aaagcagaca ctgtcttcag actgaactgg gccacttacc ttgcaagcac agaaaacatt
2280atagtagcta gctttgatgg cagaggaagt ggttaccaag gagataagat catgcatgca
2340atcaacagaa gactgggaac atttgaagtt gaagatcaaa ttgaagcagc cagacaattt
2400tcaaaaatgg gatttgtgga caacaaacga attgcaattt ggggctggtc atatggaggg
2460tacgtaacct caatggtcct gggatcggga agtggcgtgt tcaagtgtgg aatagccgtg
2520gcgcctgtat cccggtggga gtactatgac tcagtgtaca cagaacgtta catgggtctc
2580ccaactccag aagacaacct tgaccattac agaaattcaa cagtcatgag cagagctgaa
2640aattttaaac aagttgagta cctccttatt catggaacag cagatgataa cgttcacttt
2700cagcagtcag ctcagatctc caaagccctg gtcgatgttg gagtggattt ccaggcaatg
2760tggtatactg atgaagacca tggaatagct agcagcacag cacaccaaca tatatatacc
2820cacatgagcc acttcataaa acaatgtttc tctttacctt agcacctcaa aataccatgc
2880catttaaagc ttattaaaac tcatttttgt tttcattatc tcaaaactgc actgtcaaga
2940tgatgatgat ctttaaaata cacactcaaa tcaagaaact taaggttacc tttgttccca
3000aatttcatac ctatcatctt aagtagggac ttctgtcttc acaacagatt attaccttac
3060agaagtttga attatccggt cgggttttat tgtttaaaat catttctgca tcagctgctg
3120aaacaacaaa taggaattgt ttttatggag gctttgcata gattccctga gcaggatttt
3180aatctttttc taactggact ggttcaaatg ttgttctctt ctttaaaggg atggcaagat
3240gtgggcagtg atgtcactag ggcagggaca ggataagagg gattagggag agaagatagc
3300agggcatggc tgggaaccca agtccaagca taccaacacg agcaggctac tgtcagctcc
3360cctcggagaa gagctgttca cagccagact ggcacagttt tctgagaaag actattcaaa
3420cagtctcagg aaatcaaata tgcaaagcac tgacttctaa gtaaaaccac agcagttgaa
3480aagactccaa agaaatgtaa gggaaactgc cagcaacgca ggcccccagg tgccagttat
3540ggctataggt gctacaaaaa cacagcaagg gtgatgggaa agcattgtaa atgtgctttt
3600aaaaaaaaat actgatgttc ctagtgaaag aggcagcttg aaactgagat gtgaacacat
3660cagcttgccc tgttaaaaga tgaaaatatt tgtatcacaa atcttaactt gaaggagtcc
3720ttgcatcaat ttttcttatt tcatttcttt gagtgtctta attaaaagaa tattttaact
3780tccttggact cattttaaaa aatggaacat aaaatacaat gttatgtatt attattccca
3840ttctacatac tatggaattt ctcccagtca tttaataaat gtgccttcat tttttcagaa
3900aaaaaaaaaa aaa
391334818DNAHomo sapiens 34cgcagcgggt cctctctatc tagctccagc ctctcgcctg
cgccccactc cccgcgtccc 60gcgtcctagc cgaccatggc cgggcccctg cgcgccccgc
tgctcctgct ggccatcctg 120gccgtggccc tggccgtgag ccccgcggcc ggctccagtc
ccggcaagcc gccgcgcctg 180gtgggaggcc ccatggacgc cagcgtggag gaggagggtg
tgcggcgtgc actggacttt 240gccgtcggcg agtacaacaa agccagcaac gacatgtacc
acagccgcgc gctgcaggtg 300gtgcgcgccc gcaagcagat cgtagctggg gtgaactact
tcttggacgt ggagctgggc 360cgaaccacgt gtaccaagac ccagcccaac ttggacaact
gccccttcca tgaccagcca 420catctgaaaa ggaaagcatt ctgctctttc cagatctacg
ctgtgccttg gcagggcaca 480atgaccttgt cgaaatccac ctgtcaggac gcctaggggt
ctgtaccggg ctggcctgtg 540cctatcacct cttatgcaca cctcccaccc cctgtattcc
cacccctgga ctggtggccc 600ctgccttggg gaaggtctcc ccatgtgcct gcaccaggag
acagacagag aaggcagcag 660gcggcctttg ttgctcagca aggggctctg ccctccctcc
ttccttcttg cttctcatag 720ccccggtgtg cggtgcatac acccccacct cctgcaataa
aatagtagca tcggcaaaaa 780aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaa
818351102DNAMus musculus 35cccagcggcc ctgcagactt
ggcacagagc acacccacct gcctttgtca cagcacacta 60agaaggttct ctgtggtgac
caggctgggt agagggctgc tgggtctgca ggcgtcagag 120catggagggg tccctccaac
tcctggcctg cttggcctgt gtgctccaga tgggatccct 180tgtgaaaact agaagagacg
cttcggggga tctgctcaac acagaggcgc acagtgcccc 240ggcgcagcgc tggtccatgc
aggtgcccgc ggaggtgaac gcggaggctg gcgacgcggc 300ggtgctgccc tgcaccttca
cgcacccgca ccgccactac gacgggccgc tgacggccat 360ctggcgctcg ggcgagccgt
acgcgggccc gcaggtgttc cgctgcaccg cggcgccggg 420cagcgagctg tgccagacgg
cgctgagcct gcacggccgc ttccgcctgc tgggcaaccc 480gcgccgcaac gacctgtccc
tgcgcgtcga gcgcctcgcc ctggcggaca gcggccgcta 540cttctgccgc gtggagttca
ccggcgacgc ccacgatcgc tatgagagtc gccatggggt 600ccgtctgcgc gtgactgctg
cgccgcggat cgtcaacatc tcggtgctgc cgggccccgc 660gcacgccttc cgcgcgctct
gcaccgccga gggggagccc ccgcccgccc tcgcctggtc 720gggtcccgcc ccaggcaaca
gctccgctgc cctgcagggc cagggtcacg gctaccaggt 780gaccgccgag ttgcccgcgc
tgacccgcga cggccgctac acgtgcacgg cggccaatag 840cctgggccgc gccgaggcca
gcgtctacct gttccgcttc cacggcgccc ccggaacctc 900gaccctagcg ctcctgctgg
gcgcgctggg cctcaaggcc ttgctgctgc ttggcattct 960gggagcgcgt gccacccgac
gccgactaga tcacctggtc ccccaggaca cccctccacg 1020tgcggaccag gacacttcac
ctatctgggg ctcagctgaa gaaatagaag atctgaaaga 1080cctgcataaa ctccaacgct
ag 1102362996DNAArtificialp14
vector 36ttttcccagt cacgacgttg taaaacgacg gccagtgaat tctaatacga
ctcactatag 60ggagacgaga gcacctggat aggttcgcgt ggcgcgccgc atgcgtcgac
ggatcctgag 120aacttcaggc tcctgggcaa cgtgctggtt attgtgctgt ctcatcattt
tggcaaagaa 180ttcactcctc aggtgcaggc tgcctatcag aaggtggtgg ctggtgtggc
caatgccctg 240gctcacaaat accactgaga tctttttccc tctgccaaaa attatgggga
catcatgaag 300ccccttgagc atctgacttc tggctaataa aggaaattta ttttcattgc
aaaaaaaaaa 360agcggccgct aactgttggt gcaggcgctc ggaccgctag cttggcgtaa
tcatggtcat 420agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc acacaacata
cgagccggaa 480gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta
attgcgttgc 540gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa
tgaatcggcc 600aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg
ctcactgact 660cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag
gcggtaatac 720ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa
ggccagcaaa 780aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc
cgcccccctg 840acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca
ggactataaa 900gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg
accctgccgc 960ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct
caatgctcac 1020gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt
gtgcacgaac 1080cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag
tccaacccgg 1140taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc
agagcgaggt 1200atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac
actagaagga 1260cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga
gttggtagct 1320cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc
aagcagcaga 1380ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg
gggtctgacg 1440ctcagtggaa cgaaaactca cgttaaggga ttttggtcat gagattatca
aaaaggatct 1500tcacctagat ccttttaaat taaaaatgaa gttttaaatc aatctaaagt
atatatgagt 1560aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca
gcgatctgtc 1620tatttcgttc atccatagtt gcctgactcc ccgtcgtgta gataactacg
atacgggagg 1680gcttaccatc tggccccagt gctgcaatga taccgcgaga cccacgctca
ccggctccag 1740atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtggt
cctgcaactt 1800tatccgcctc catccagtct attaattgtt gccgggaagc tagagtaagt
agttcgccag 1860ttaatagttt gcgcaacgtt gttgccattg ctacaggcat cgtggtgtca
cgctcgtcgt 1920ttggtatggc ttcattcagc tccggttccc aacgatcaag gcgagttaca
tgatccccca 1980tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat cgttgtcaga
agtaagttgg 2040ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact
gtcatgccat 2100ccgtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga
gaatagtgta 2160tgcggcgacc gagttgctct tgcccggcgt caatacggga taataccgcg
ccacatagca 2220gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc
tcaaggatct 2280taccgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga
tcttcagcat 2340cttttacttt caccagcgtt tctgggtgag caaaaacagg aaggcaaaat
gccgcaaaaa 2400agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt
caatattatt 2460gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt
atttagaaaa 2520ataaacaaat aggggttccg cgcacatttc cccgaaaagt gccacctgac
gtctaagaaa 2580ccattattat catgacatta acctataaaa ataggcgtat cacgaggccc
tttcgtctcg 2640cgcgtttcgg tgatgacggt gaaaacctct gacacatgca gctcccggag
acggtcacag 2700cttgtctgta agcggatgcc gggagcagac aagcccgtca gggcgcgtca
gcgggtgttg 2760gcgggtgtcg gggctggctt aactatgcgg catcagagca gattgtactg
agagtgcacc 2820atatgcggtg tgaaataccg cacagatgcg taaggagaaa ataccgcatc
aggcgccatt 2880cgccattcag gctgcgcaac tgttgggaag ggcgatcggt gcgggcctct
tcgctattac 2940gccagctggc gaaaggggga tgtgctgcaa ggcgattaag ttgggtaacg
ccaggg 2996372992DNAArtificialp17+ vector 37ttttcccagt cacgacgttg
taaaacgacg gccagtgaat tcgagctcac atacgattta 60ggtgacacta taggcctgca
ccaacagtta acacggcgcg ccgcatgcgt cgacggatcc 120tgagaacttc aggctcctgg
gcaacgtgct ggttattgtg ctgtctcatc attttggcaa 180agaattcact cctcaggtgc
aggctgccta tcagaaggtg gtggctggtg tggccaatgc 240cctggctcac aaataccact
gagatctttt tccctctgcc aaaaattatg gggacatcat 300gaagcccctt gagcatctga
cttctggcta ataaaggaaa tttattttca ttgcaaaaaa 360aaaaagcggc cgctagagtc
ggccgcagcg gccgagcttg gcgtaatcat ggtcatagct 420gtttcctgtg tgaaattgtt
atccgctcac aattccacac aacatacgag ccggaagcat 480aaagtgtaaa gcctggggtg
cctaatgagt gagctaactc acattaattg cgttgcgctc 540actgcccgct ttccagtcgg
gaaacctgtc gtgccagctg cattaatgaa tcggccaacg 600cgcggggaga ggcggtttgc
gtattgggcg ctcttccgct tcctcgctca ctgactcgct 660gcgctcggtc gttcggctgc
ggcgagcggt atcagctcac tcaaaggcgg taatacggtt 720atccacagaa tcaggggata
acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc 780caggaaccgt aaaaaggccg
cgttgctggc gtttttccat aggctccgcc cccctgacga 840gcatcacaaa aatcgacgct
caagtcagag gtggcgaaac ccgacaggac tataaagata 900ccaggcgttt ccccctggaa
gctccctcgt gcgctctcct gttccgaccc tgccgcttac 960cggatacctg tccgcctttc
tcccttcggg aagcgtggcg ctttctcaaa gctcacgctg 1020taggtatctc agttcggtgt
aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc 1080cgttcagccc gaccgctgcg
ccttatccgg taactatcgt cttgagtcca acccggtaag 1140acacgactta tcgccactgg
cagcagccac tggtaacagg attagcagag cgaggtatgt 1200aggcggtgct acagagttct
tgaagtggtg gcctaactac ggctacacta gaagaacagt 1260atttggtatc tgcgctctgc
tgaagccagt taccttcgga aaaagagttg gtagctcttg 1320atccggcaaa caaaccaccg
ctggtagcgg tggttttttt gtttgcaagc agcagattac 1380gcgcagaaaa aaaggatctc
aagaagatcc tttgatcttt tctacggggt ctgacgctca 1440gtggaacgaa aactcacgtt
aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac 1500ctagatcctt ttaaattaaa
aatgaagttt taaatcaatc taaagtatat atgagtaaac 1560ttggtctgac agttaccaat
gcttaatcag tgaggcacct atctcagcga tctgtctatt 1620tcgttcatcc atagttgcct
gactccccgt cgtgtagata actacgatac gggagggctt 1680accatctggc cccagtgctg
caatgatacc gcgagaccca cgctcaccgg ctccagattt 1740atcagcaata aaccagccag
ccggaagggc cgagcgcaga agtggtcctg caactttatc 1800cgcctccatc cagtctatta
attgttgccg ggaagctaga gtaagtagtt cgccagttaa 1860tagtttgcgc aacgttgttg
ccattgctac aggcatcgtg gtgtcacgct cgtcgtttgg 1920tatggcttca ttcagctccg
gttcccaacg atcaaggcga gttacatgat cccccatgtt 1980gtgcaaaaaa gcggttagct
ccttcggtcc tccgatcgtt gtcagaagta agttggccgc 2040agtgttatca ctcatggtta
tggcagcact gcataattct cttactgtca tgccatccgt 2100aagatgcttt tctgtgactg
gtgagtactc aaccaagtca ttctgagaat agtgtatgcg 2160gcgaccgagt tgctcttgcc
cggcgtcaat acgggataat accgcgccac atagcagaac 2220tttaaaagtg ctcatcattg
gaaaacgttc ttcggggcga aaactctcaa ggatcttacc 2280gctgttgaga tccagttcga
tgtaacccac tcgtgcaccc aactgatctt cagcatcttt 2340tactttcacc agcgtttctg
ggtgagcaaa aacaggaagg caaaatgccg caaaaaaggg 2400aataagggcg acacggaaat
gttgaatact catactcttc ctttttcaat attattgaag 2460catttatcag ggttattgtc
tcatgagcgg atacatattt gaatgtattt agaaaaataa 2520acaaataggg gttccgcgca
catttccccg aaaagtgcca cctgacgtct aagaaaccat 2580tattatcatg acattaacct
ataaaaatag gcgtatcacg aggccctttc gtctcgcgcg 2640tttcggtgat gacggtgaaa
acctctgaca catgcagctc ccggagacgg tcacagcttg 2700tctgtaagcg gatgccggga
gcagacaagc ccgtcagggc gcgtcagcgg gtgttggcgg 2760gtgtcggggc tggcttaact
atgcggcatc agagcagatt gtactgagag tgcaccatat 2820gcggtgtgaa ataccgcaca
gatgcgtaag gagaaaatac cgcatcaggc gccattcgcc 2880attcaggctg cgcaactgtt
gggaagggcg atcggtgcgg gcctcttcgc tattacgcca 2940gctggcgaaa gggggatgtg
ctgcaaggcg attaagttgg gtaacgccag gg
2992382757DNAArtificialpCATRMAN vector 38ttttcccagt cacgacgttg taaaacgacg
gccagtgaat tctaatacga ctcactatag 60ggagatggag aaaaaaatca ctggacgcgt
ggcgcgccat taattaatgc ggccgctagc 120tcgagtgata ataagcggat gaatggctgc
aggcatgcaa gcttggcgta atcatggtca 180tagctgtttc ctgtgtgaaa ttgttatccg
ctcacaattc cacacaacat acgagccgga 240agcataaagt gtaaagcctg gggtgcctaa
tgagtgagct aactcacatt aattgcgttg 300cgctcactgc ccgctttcca gtcgggaaac
ctgtcgtgcc agctgcatta atgaatcggc 360caacgcgcgg ggagaggcgg tttgcgtatt
gggcgctctt ccgcttcctc gctcactgac 420tcgctgcgct cggtcgttcg gctgcggcga
gcggtatcag ctcactcaaa ggcggtaata 480cggttatcca cagaatcagg ggataacgca
ggaaagaaca tgtgagcaaa aggccagcaa 540aaggccagga accgtaaaaa ggccgcgttg
ctggcgtttt tccataggct ccgcccccct 600gacgagcatc acaaaaatcg acgctcaagt
cagaggtggc gaaacccgac aggactataa 660agataccagg cgtttccccc tggaagctcc
ctcgtgcgct ctcctgttcc gaccctgccg 720cttaccggat acctgtccgc ctttctccct
tcgggaagcg tggcgctttc tcaatgctca 780cgctgtaggt atctcagttc ggtgtaggtc
gttcgctcca agctgggctg tgtgcacgaa 840ccccccgttc agcccgaccg ctgcgcctta
tccggtaact atcgtcttga gtccaacccg 900gtaagacacg acttatcgcc actggcagca
gccactggta acaggattag cagagcgagg 960tatgtaggcg gtgctacaga gttcttgaag
tggtggccta actacggcta cactagaagg 1020acagtatttg gtatctgcgc tctgctgaag
ccagttacct tcggaaaaag agttggtagc 1080tcttgatccg gcaaacaaac caccgctggt
agcggtggtt tttttgtttg caagcagcag 1140attacgcgca gaaaaaaagg atctcaagaa
gatcctttga tcttttctac ggggtctgac 1200gctcagtgga acgaaaactc acgttaaggg
attttggtca tgagattatc aaaaaggatc 1260ttcacctaga tccttttaaa ttaaaaatga
agttttaaat caatctaaag tatatatgag 1320taaacttggt ctgacagtta ccaatgctta
atcagtgagg cacctatctc agcgatctgt 1380ctatttcgtt catccatagt tgcctgactc
cccgtcgtgt agataactac gatacgggag 1440ggcttaccat ctggccccag tgctgcaatg
ataccgcgag acccacgctc accggctcca 1500gatttatcag caataaacca gccagccgga
agggccgagc gcagaagtgg tcctgcaact 1560ttatccgcct ccatccagtc tattaattgt
tgccgggaag ctagagtaag tagttcgcca 1620gttaatagtt tgcgcaacgt tgttgccatt
gctacaggca tcgtggtgtc acgctcgtcg 1680tttggtatgg cttcattcag ctccggttcc
caacgatcaa ggcgagttac atgatccccc 1740atgttgtgca aaaaagcggt tagctccttc
ggtcctccga tcgttgtcag aagtaagttg 1800gccgcagtgt tatcactcat ggttatggca
gcactgcata attctcttac tgtcatgcca 1860tccgtaagat gcttttctgt gactggtgag
tactcaacca agtcattctg agaatagtgt 1920atgcggcgac cgagttgctc ttgcccggcg
tcaatacggg ataataccgc gccacatagc 1980agaactttaa aagtgctcat cattggaaaa
cgttcttcgg ggcgaaaact ctcaaggatc 2040ttaccgctgt tgagatccag ttcgatgtaa
cccactcgtg cacccaactg atcttcagca 2100tcttttactt tcaccagcgt ttctgggtga
gcaaaaacag gaaggcaaaa tgccgcaaaa 2160aagggaataa gggcgacacg gaaatgttga
atactcatac tcttcctttt tcaatattat 2220tgaagcattt atcagggtta ttgtctcatg
agcggataca tatttgaatg tatttagaaa 2280aataaacaaa taggggttcc gcgcacattt
ccccgaaaag tgccacctga cgtctaagaa 2340accattatta tcatgacatt aacctataaa
aataggcgta tcacgaggcc ctttcgtctc 2400gcgcgtttcg gtgatgacgg tgaaaacctc
tgacacatgc agctcccgga gacggtcaca 2460gcttgtctgt aagcggatgc cgggagcaga
caagcccgtc agggcgcgtc agcgggtgtt 2520ggcgggtgtc ggggctggct taactatgcg
gcatcagagc agattgtact gagagtgcac 2580catatgcggt gtgaaatacc gcacagatgc
gtaaggagaa aataccgcat caggcgccat 2640tcgccattca ggctgcgcaa ctgttgggaa
gggcgatcgg tgcgggcctc ttcgctatta 2700cgccagctgg cgaaaggggg atgtgctgca
aggcgattaa gttgggtaac gccaggg 2757392995DNAArtificialp20 vector
39ttttcccagt cacgacgttg taaaacgacg gccagtgaat tcaattaacc ctcactaaag
60ggagacttgt tccaaatgtg ttaggcgcgc cgcatgcgtc gacggatcct gagaacttca
120ggctcctggg caacgtgctg gttattgtgc tgtctcatca ttttggcaaa gaattcactc
180ctcaggtgca ggctgcctat cagaaggtgg tggctggtgt ggccaatgcc ctggctcaca
240aataccactg agatcttttt ccctctgcca aaaattatgg ggacatcatg aagccccttg
300agcatctgac ttctggctaa taaaggaaat ttattttcat tgcaaaaaaa aaaagcggcc
360gctcttctat agtgtcacct aaatggccca gcggccgagc ttggcgtaat catggtcata
420gctgtttcct gtgtgaaatt gttatccgct cacaattcca cacaacatac gagccggaag
480cataaagtgt aaagcctggg gtgcctaatg agtgagctaa ctcacattaa ttgcgttgcg
540ctcactgccc gctttccagt cgggaaacct gtcgtgccag ctgcattaat gaatcggcca
600acgcgcgggg agaggcggtt tgcgtattgg gcgctcttcc gcttcctcgc tcactgactc
660gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg cggtaatacg
720gttatccaca gaatcagggg ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa
780ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc gcccccctga
840cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag gactataaag
900ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga ccctgccgct
960taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc aaagctcacg
1020ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg tgcacgaacc
1080ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt ccaacccggt
1140aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca gagcgaggta
1200tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca ctagaagaac
1260agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaagag ttggtagctc
1320ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttgca agcagcagat
1380tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc
1440tcagtggaac gaaaactcac gttaagggat tttggtcatg agattatcaa aaaggatctt
1500cacctagatc cttttaaatt aaaaatgaag ttttaaatca atctaaagta tatatgagta
1560aacttggtct gacagttacc aatgcttaat cagtgaggca cctatctcag cgatctgtct
1620atttcgttca tccatagttg cctgactccc cgtcgtgtag ataactacga tacgggaggg
1680cttaccatct ggccccagtg ctgcaatgat accgcgagac ccacgctcac cggctccaga
1740tttatcagca ataaaccagc cagccggaag ggccgagcgc agaagtggtc ctgcaacttt
1800atccgcctcc atccagtcta ttaattgttg ccgggaagct agagtaagta gttcgccagt
1860taatagtttg cgcaacgttg ttgccattgc tacaggcatc gtggtgtcac gctcgtcgtt
1920tggtatggct tcattcagct ccggttccca acgatcaagg cgagttacat gatcccccat
1980gttgtgcaaa aaagcggtta gctccttcgg tcctccgatc gttgtcagaa gtaagttggc
2040cgcagtgtta tcactcatgg ttatggcagc actgcataat tctcttactg tcatgccatc
2100cgtaagatgc ttttctgtga ctggtgagta ctcaaccaag tcattctgag aatagtgtat
2160gcggcgaccg agttgctctt gcccggcgtc aatacgggat aataccgcgc cacatagcag
2220aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg cgaaaactct caaggatctt
2280accgctgttg agatccagtt cgatgtaacc cactcgtgca cccaactgat cttcagcatc
2340ttttactttc accagcgttt ctgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaa
2400gggaataagg gcgacacgga aatgttgaat actcatactc ttcctttttc aatattattg
2460aagcatttat cagggttatt gtctcatgag cggatacata tttgaatgta tttagaaaaa
2520taaacaaata ggggttccgc gcacatttcc ccgaaaagtg ccacctgacg tctaagaaac
2580cattattatc atgacattaa cctataaaaa taggcgtatc acgaggccct ttcgtctcgc
2640gcgtttcggt gatgacggtg aaaacctctg acacatgcag ctcccggaga cggtcacagc
2700ttgtctgtaa gcggatgccg ggagcagaca agcccgtcag ggcgcgtcag cgggtgttgg
2760cgggtgtcgg ggctggctta actatgcggc atcagagcag attgtactga gagtgcacca
2820tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa taccgcatca ggcgccattc
2880gccattcagg ctgcgcaact gttgggaagg gcgatcggtg cgggcctctt cgctattacg
2940ccagctggcg aaagggggat gtgctgcaag gcgattaagt tgggtaacgc caggg
29954048DNAArtificialOGS77 primer 40aattctaata cgactcacta tagggagacg
agagcacctg gataggtt 484120DNAArtificialOGS302 primer
41gcctgcacca acagttaaca
204219DNAArtificialhuman 0326.1 siRNA for SEQ ID NO.1 42caggcccagg
agtccaatt
194319DNAArtificialhuman 0369.1 shRNA for SEQ ID NO.2 43tcccgtcttt
gggtcaaaa
194419DNAArtificialmouse 0326.1 shRNA for SEQ ID NO.35 44gcgccgcgga
tcgtcaaca
194519DNAArtificialmouse 0326.2 shRNA for SEQ ID NO.35 45acacgtgcac
ggcggccaa
19464455DNAArtificialpSilencer 2.0 vector 46tcgcgcgttt cggtgatgac
ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60cagcttgtct gtaagcggat
gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120ttggcgggtg tcggggctgg
cttaactatg cggcatcaga gcagattgta ctgagagtgc 180accatatgcg gtgtgaaata
ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240attcgccatt caggctgcgc
aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 300tacgccagct ggcgaaaggg
ggatgtgctg caaggcgatt aagttgggta acgccagggt 360tttcccagtc acgacgttgt
aaaacgacgg ccagtgccaa gcttttccaa aaaactaccg 420ttgttatagg tgtctcttga
acacctataa caacggtagt ggatcccgcg tcctttccac 480aagatatata aacccaagaa
atcgaaatac tttcaagtta cggtaagcat atgatagtcc 540attttaaaac ataattttaa
aactgcaaac tacccaagaa attattactt tctacgtcac 600gtattttgta ctaatatctt
tgtgtttaca gtcaaattaa ttctaattat ctctctaaca 660gccttgtatc gtatatgcaa
atatgaagga atcatgggaa ataggccctc ttcctgcccg 720accttggcgc gcgctcggcg
cgcggtcacg ctccgtcacg tggtgcgttt tgcctgcgcg 780tctttccact ggggaattca
tgcttctcct ccctttagtg agggtaattc tctctctctc 840cctatagtga gtcgtattaa
ttccttctct tctatagtgt cacctaaatc gttgcaattc 900gtaatcatgt catagctgtt
tcctgtgtga aattgttatc cgctcacaat tccacacaac 960atacgagccg gaagcataaa
gtgtaaagcc tggggtgcct aatgagtgag ctaactcaca 1020ttaattgcgt tgcgctcact
gcccgctttc cagtcgggaa acctgtcgtg ccagctgcat 1080taatgaatcg gccaacgcgc
ggggagaggc ggtttgcgta ttgggcgctc ttccgcttcc 1140tcgctcactg actcgctgcg
ctcggtcgtt cggctgcggc gagcggtatc agctcactca 1200aaggcggtaa tacggttatc
cacagaatca ggggataacg caggaaagaa catgtgagca 1260aaaggccagc aaaaggccag
gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg 1320ctccgccccc ctgacgagca
tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg 1380acaggactat aaagatacca
ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt 1440ccgaccctgc cgcttaccgg
atacctgtcc gcctttctcc cttcgggaag cgtggcgctt 1500tctcatagct cacgctgtag
gtatctcagt tcggtgtagg tcgttcgctc caagctgggc 1560tgtgtgcacg aaccccccgt
tcagcccgac cgctgcgcct tatccggtaa ctatcgtctt 1620gagtccaacc cggtaagaca
cgacttatcg ccactggcag cagccactgg taacaggatt 1680agcagagcga ggtatgtagg
cggtgctaca gagttcttga agtggtggcc taactacggc 1740tacactagaa gaacagtatt
tggtatctgc gctctgctga agccagttac cttcggaaaa 1800agagttggta gctcttgatc
cggcaaaaaa accaccgctg gtagcggtgg tttttttgtt 1860tgcaagcagc agattacgcg
cagaaaaaaa ggatctcaag aagatccttt gatcttttct 1920acggggtctg acgctcagtg
gaacgaaaac tcacgttaag ggattttggt catgagatta 1980tcaaaaagga tcttcaccta
gatcctttta aattaaaaat gaagttttaa atcaatctaa 2040agtatatatg agtaaacttg
gtctgacagt taccaatgct taatcagtga ggcacctatc 2100tcagcgatct gtctatttcg
ttcatccata gttgcctgac tccccgtcgt gtagataact 2160acgatacggg agggcttacc
atctggcccc agtgctgcaa tgataccgcg agacccacgc 2220tcaccggctc cagatttatc
agcaataaac cagccagccg gaagggccga gcgcagaagt 2280ggtcctgcaa ctttatccgc
ctccatccag tctattaatt gttgccggga agctagagta 2340agtagttcgc cagttaatag
tttgcgcaac gttgttgcca ttgctacagg catcgtggtg 2400tcacgctcgt cgtttggtat
ggcttcattc agctccggtt cccaacgatc aaggcgagtt 2460acatgatccc ccatgttgtg
caaaaaagcg gttagctcct tcggtcctcc gatcgttgtc 2520agaagtaagt tggccgcagt
gttatcactc atggttatgg cagcactgca taattctctt 2580actgtcatgc catccgtaag
atgcttttct gtgactggtg agtactcaac caagtcattc 2640tgagaatagt gtatgcggcg
accgagttgc tcttgcccgg cgtcaatacg ggataatacc 2700gcgccacata gcagaacttt
aaaagtgctc atcattggaa aacgttcttc ggggcgaaaa 2760ctctcaagga tcttaccgct
gttgagatcc agttcgatgt aacccactcg tgcacccaac 2820tgatcttcag catcttttac
tttcaccagc gtttctgggt gagcaaaaac aggaaggcaa 2880aatgccgcaa aaaagggaat
aagggcgaca cggaaatgtt gaatactcat actcttcctt 2940tttcaatatt attgaagcat
ttatcagggt tattgtctca tgagcggata catatttgaa 3000tgtatttaga aaaataaaca
aataggggtt ccgcgcacat ttccccgaaa agtgccacct 3060attggtgtgg aaagtcccca
ggctccccag caggcagaag tatgcaaagc atgcatctca 3120attagtcagc aaccaggtgt
ggaaagtccc caggctcccc agcaggcaga agtatgcaaa 3180gcatgcatct caattagtca
gcaaccatag tcccgcccct aactccgccc atcccgcccc 3240taactccgcc cagttccgcc
cattctccgc cccatggctg actaattttt tttatttatg 3300cagaggccga ggccgcctcg
gcctctgagc tattccagaa gtagtgagga ggcttttttg 3360gaggcctagg cttttgcaaa
aagctagctt gcatgcctgc aggtcggccg ccacgaccgg 3420tgccgccacc atcccctgac
ccacgcccct gacccctcac aaggagacga ccttccatga 3480ccgagtacaa gcccacggtg
cgcctcgcca cccgcgacga cgtcccccgg gccgtacgca 3540ccctcgccgc cgcgttcgcc
gactaccccg ccacgcgcca caccgtcgac ccggaccgcc 3600acatcgagcg ggtcaccgag
ctgcaagaac tcttcctcac gcgcgtcggg ctcgacatcg 3660gcaaggtgtg ggtcgcggac
gacggcgccg cggtggcggt ctggaccacg ccggagagcg 3720tcgaagcggg ggcggtgttc
gccgagatcg gcccgcgcat ggccgagttg agcggttccc 3780ggctggccgc gcagcaacag
atggaaggcc tcctggcgcc gcaccggccc aaggagcccg 3840cgtggttcct ggccaccgtc
ggcgtctcgc ccgaccacca gggcaagggt ctgggcagcg 3900ccgtcgtgct ccccggagtg
gaggcggccg agcgcgccgg ggtgcccgcc ttcctggaga 3960cctccgcgcc ccgcaacctc
cccttctacg agcggctcgg cttcaccgtc accgccgacg 4020tcgaggtgcc cgaaggaccg
cgcacctggt gcatgacccg caagcccggt gcctgacgcc 4080cgccccacga cccgcagcgc
ccgaccgaaa ggagcgcacg accccatggc tccgaccgaa 4140gccacccggg gcggccccgc
cgaccccgca cccgcccccg aggcccaccg actctagagg 4200atcataatca gccataccac
atttgtagag gttttacttg ctttaaaaaa cctcccacac 4260ctccccctga acctgaaaca
taaaatgaat gcaattgttg ttgttaactt gtttattgca 4320gcttataatg gttacaaata
aagcaatagc atcacaaatt tcacaaataa agcatttttt 4380tcactgcaat ctaagaaacc
attattatca tgacattaac ctataaaaat aggcgtatca 4440cgaggccctt tcgtc
4455474002DNAArtificialpd2
vector 47tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
tggagttccg 60cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc
cccgcccatt 120gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc
attgacgtca 180atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt
atcatatgcc 240aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt
atgcccagta 300catgacctta tgggactttc ctacttggca gtacatctac gtattagtca
tcgctattac 360catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg
actcacgggg 420atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc
aaaatcaacg 480ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg
gtaggcgtgt 540acggtgggag gtctatataa gcagagctgg tttagtgaac cgtcagatcc
gctagcgcta 600ccggactcag atctcgagct caagcttcga attctgcagt cgacggtacc
gcgggcccgg 660gatccaccgg ggccgcgact ctagatcata atcagccata ccacatttgt
agaggtttta 720cttgctttaa aaaacctccc acacctcccc ctgaacctga aacataaaat
gaatgcaatt 780gttgttgtta acttgtttat tgcagcttat aatggttaca aataaagcaa
tagcatcaca 840aatttcacaa ataaagcatt tttttcactg cattctagtt gtggtttgtc
caaactcatc 900aatgtatctt aaggcgtaaa ttgtaagcgt taatattttg ttaaaattcg
cgttaaattt 960ttgttaaatc agctcatttt ttaaccaata ggccgaaatc ggcaaaatcc
cttataaatc 1020aaaagaatag accgagatag ggttgagtgt tgttccagtt tggaacaaga
gtccactatt 1080aaagaacgtg gactccaacg tcaaagggcg aaaaaccgtc tatcagggcg
atggcccact 1140acgtgaacca tcaccctaat caagtttttt ggggtcgagg tgccgtaaag
cactaaatcg 1200gaaccctaaa gggagccccc gatttagagc ttgacgggga aagccggcga
acgtggcgag 1260aaaggaaggg aagaaagcga aaggagcggg cgctagggcg ctggcaagtg
tagcggtcac 1320gctgcgcgta accaccacac ccgccgcgct taatgcgccg ctacagggcg
cgtcaggtgg 1380cacttttcgg ggaaatgtgc gcggaacccc tatttgttta tttttctaaa
tacattcaaa 1440tatgtatccg ctcatgagac aataaccctg ataaatgctt caataatatt
gaaaaaggaa 1500gagtcctgag gcggaaagaa ccagctgtgg aatgtgtgtc agttagggtg
tggaaagtcc 1560ccaggctccc cagcaggcag aagtatgcaa agcatgcatc tcaattagtc
agcaaccagg 1620tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aaagcatgca
tctcaattag 1680tcagcaacca tagtcccgcc cctaactccg cccatcccgc ccctaactcc
gcccagttcc 1740gcccattctc cgccccatgg ctgactaatt ttttttattt atgcagaggc
cgaggccgcc 1800tcggcctctg agctattcca gaagtagtga ggaggctttt ttggaggcct
aggcttttgc 1860aaagatcgat caagagacag gatgaggatc gtttcgcatg attgaacaag
atggattgca 1920cgcaggttct ccggccgctt gggtggagag gctattcggc tatgactggg
cacaacagac 1980aatcggctgc tctgatgccg ccgtgttccg gctgtcagcg caggggcgcc
cggttctttt 2040tgtcaagacc gacctgtccg gtgccctgaa tgaactgcaa gacgaggcag
cgcggctatc 2100gtggctggcc acgacgggcg ttccttgcgc agctgtgctc gacgttgtca
ctgaagcggg 2160aagggactgg ctgctattgg gcgaagtgcc ggggcaggat ctcctgtcat
ctcaccttgc 2220tcctgccgag aaagtatcca tcatggctga tgcaatgcgg cggctgcata
cgcttgatcc 2280ggctacctgc ccattcgacc accaagcgaa acatcgcatc gagcgagcac
gtactcggat 2340ggaagccggt cttgtcgatc aggatgatct ggacgaagag catcaggggc
tcgcgccagc 2400cgaactgttc gccaggctca aggcgagcat gcccgacggc gaggatctcg
tcgtgaccca 2460tggcgatgcc tgcttgccga atatcatggt ggaaaatggc cgcttttctg
gattcatcga 2520ctgtggccgg ctgggtgtgg cggaccgcta tcaggacata gcgttggcta
cccgtgatat 2580tgctgaagag cttggcggcg aatgggctga ccgcttcctc gtgctttacg
gtatcgccgc 2640tcccgattcg cagcgcatcg ccttctatcg ccttcttgac gagttcttct
gagcgggact 2700ctggggttcg aaatgaccga ccaagcgacg cccaacctgc catcacgaga
tttcgattcc 2760accgccgcct tctatgaaag gttgggcttc ggaatcgttt tccgggacgc
cggctggatg 2820atcctccagc gcggggatct catgctggag ttcttcgccc accctagggg
gaggctaact 2880gaaacacgga aggagacaat accggaagga acccgcgcta tgacggcaat
aaaaagacag 2940aataaaacgc acggtgttgg gtcgtttgtt cataaacgcg gggttcggtc
ccagggctgg 3000cactctgtcg ataccccacc gagaccccat tggggccaat acgcccgcgt
ttcttccttt 3060tccccacccc accccccaag ttcgggtgaa ggcccagggc tcgcagccaa
cgtcggggcg 3120gcaggccctg ccatagcctc aggttactca tatatacttt agattgattt
aaaacttcat 3180ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac
caaaatccct 3240taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa
aggatcttct 3300tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc
accgctacca 3360gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt
aactggcttc 3420agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg
ccaccacttc 3480aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc
agtggctgct 3540gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt
accggataag 3600gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga
gcgaacgacc 3660tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct
tcccgaaggg 3720agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg
cacgagggag 3780cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca
cctctgactt 3840gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa
cgccagcaac 3900gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt
ctttcctgcg 3960ttatcccctg attctgtgga taaccgtatt accgccatgc at
400248328PRTHomo sapiens 48Met Glu Lys Ser Ile Trp Leu Leu Ala
Cys Leu Ala Trp Val Leu Pro 1 5 10
15 Thr Gly Ser Phe Val Arg Thr Lys Ile Asp Thr Thr Glu Asn
Leu Leu 20 25 30
Asn Thr Glu Val His Ser Ser Pro Ala Gln Arg Trp Ser Met Gln Val
35 40 45 Pro Pro Glu Val
Ser Ala Glu Ala Gly Asp Ala Ala Val Leu Pro Cys 50
55 60 Thr Phe Thr His Pro His Arg His
Tyr Asp Gly Pro Leu Thr Ala Ile 65 70
75 80 Trp Arg Ala Gly Glu Pro Tyr Ala Gly Pro Gln Val
Phe Arg Cys Ala 85 90
95 Ala Ala Arg Gly Ser Glu Leu Cys Gln Thr Ala Leu Ser Leu His Gly
100 105 110 Arg Phe Arg
Leu Leu Gly Asn Pro Arg Arg Asn Asp Leu Ser Leu Arg 115
120 125 Val Glu Arg Leu Ala Leu Ala Asp
Asp Arg Arg Tyr Phe Cys Arg Val 130 135
140 Glu Phe Ala Gly Asp Val His Asp Arg Tyr Glu Ser Arg
His Gly Val 145 150 155
160 Arg Leu His Val Thr Ala Ala Pro Arg Ile Val Asn Ile Ser Val Leu
165 170 175 Pro Ser Pro Ala
His Ala Phe Arg Ala Leu Cys Thr Ala Glu Gly Glu 180
185 190 Pro Pro Pro Ala Leu Ala Trp Ser Gly
Pro Ala Leu Gly Asn Ser Leu 195 200
205 Ala Ala Val Arg Ser Pro Arg Glu Gly His Gly His Leu Val
Thr Ala 210 215 220
Glu Leu Pro Ala Leu Thr His Asp Gly Arg Tyr Thr Cys Thr Ala Ala 225
230 235 240 Asn Ser Leu Gly Arg
Ser Glu Ala Ser Val Tyr Leu Phe Arg Phe His 245
250 255 Gly Ala Ser Gly Ala Ser Thr Val Ala Leu
Leu Leu Gly Ala Leu Gly 260 265
270 Phe Lys Ala Leu Leu Leu Leu Gly Val Leu Ala Ala Arg Ala Ala
Arg 275 280 285 Arg
Arg Pro Glu His Leu Asp Thr Pro Asp Thr Pro Pro Arg Ser Gln 290
295 300 Ala Gln Glu Ser Asn Tyr
Glu Asn Leu Ser Gln Met Asn Pro Arg Ser 305 310
315 320 Pro Pro Ala Thr Met Cys Ser Pro
325 49198PRTHomo sapiens 49Met Ile Gly Ser Gly Leu Ala
Gly Ser Gly Gly Ala Gly Gly Pro Ser 1 5
10 15 Ser Thr Val Thr Trp Cys Ala Leu Phe Ser Asn
His Val Ala Ala Thr 20 25
30 Gln Ala Ser Leu Leu Leu Ser Phe Val Trp Met Pro Ala Leu Leu
Pro 35 40 45 Val
Ala Ser Arg Leu Leu Leu Leu Pro Arg Val Leu Leu Thr Met Ala 50
55 60 Ser Gly Ser Pro Pro Thr
Gln Pro Ser Pro Ala Ser Asp Ser Gly Ser 65 70
75 80 Gly Tyr Val Pro Gly Ser Val Ser Ala Ala Phe
Val Thr Cys Pro Asn 85 90
95 Glu Lys Val Ala Lys Glu Ile Ala Arg Ala Val Val Glu Lys Arg Leu
100 105 110 Ala Ala
Cys Val Asn Leu Ile Pro Gln Ile Thr Ser Ile Tyr Glu Trp 115
120 125 Lys Gly Lys Ile Glu Glu Asp
Ser Glu Val Leu Met Met Ile Lys Thr 130 135
140 Gln Ser Ser Leu Val Pro Ala Leu Thr Asp Phe Val
Arg Ser Val His 145 150 155
160 Pro Tyr Glu Val Ala Glu Val Ile Ala Leu Pro Val Glu Gln Gly Asn
165 170 175 Phe Pro Tyr
Leu Gln Trp Val Arg Gln Val Thr Glu Ser Val Ser Asp 180
185 190 Ser Ile Thr Val Leu Pro
195 50537PRTHomo sapiens 50Met Gly Asp Glu Asp Lys Arg Ile
Thr Tyr Glu Asp Ser Glu Pro Ser 1 5 10
15 Thr Gly Met Asn Tyr Thr Pro Ser Met His Gln Glu Ala
Gln Glu Glu 20 25 30
Thr Val Met Lys Leu Lys Gly Ile Asp Ala Asn Glu Pro Thr Glu Gly
35 40 45 Ser Ile Leu Leu
Lys Ser Ser Glu Lys Lys Leu Gln Glu Thr Pro Thr 50
55 60 Glu Ala Asn His Val Gln Arg Leu
Arg Gln Met Leu Ala Cys Pro Pro 65 70
75 80 His Gly Leu Leu Asp Arg Val Ile Thr Asn Val Thr
Ile Ile Val Leu 85 90
95 Leu Trp Ala Val Val Trp Ser Ile Thr Gly Ser Glu Cys Leu Pro Gly
100 105 110 Gly Asn Leu
Phe Gly Ile Ile Ile Leu Phe Tyr Cys Ala Ile Ile Gly 115
120 125 Gly Lys Leu Leu Gly Leu Ile Lys
Leu Pro Thr Leu Pro Pro Leu Pro 130 135
140 Ser Leu Leu Gly Met Leu Leu Ala Gly Phe Leu Ile Arg
Asn Ile Pro 145 150 155
160 Val Ile Asn Asp Asn Val Gln Ile Lys His Lys Trp Ser Ser Ser Leu
165 170 175 Arg Ser Ile Ala
Leu Ser Ile Ile Leu Val Arg Ala Gly Leu Gly Leu 180
185 190 Asp Ser Lys Ala Leu Lys Lys Leu Lys
Gly Val Cys Val Arg Leu Ser 195 200
205 Met Gly Pro Cys Ile Val Glu Ala Cys Thr Ser Ala Leu Leu
Ala His 210 215 220
Tyr Leu Leu Gly Leu Pro Trp Gln Trp Gly Phe Ile Leu Gly Phe Val 225
230 235 240 Leu Gly Ala Val Ser
Pro Ala Val Val Val Pro Ser Met Leu Leu Leu 245
250 255 Gln Gly Gly Gly Tyr Gly Val Glu Lys Gly
Val Pro Thr Leu Leu Met 260 265
270 Ala Ala Gly Ser Phe Asp Asp Ile Leu Ala Ile Thr Gly Phe Asn
Thr 275 280 285 Cys
Leu Gly Ile Ala Phe Ser Thr Gly Ser Thr Val Phe Asn Val Leu 290
295 300 Arg Gly Val Leu Glu Val
Val Ile Gly Val Ala Thr Gly Ser Val Leu 305 310
315 320 Gly Phe Phe Ile Gln Tyr Phe Pro Ser Arg Asp
Gln Asp Lys Leu Val 325 330
335 Cys Lys Arg Thr Phe Leu Val Leu Gly Leu Ser Val Leu Ala Val Phe
340 345 350 Ser Ser
Val His Phe Gly Phe Pro Gly Ser Gly Gly Leu Cys Thr Leu 355
360 365 Val Met Ala Phe Leu Ala Gly
Met Gly Trp Thr Ser Glu Lys Ala Glu 370 375
380 Val Glu Lys Ile Ile Ala Val Ala Trp Asp Ile Phe
Gln Pro Leu Leu 385 390 395
400 Phe Gly Leu Ile Gly Ala Glu Val Ser Ile Ala Ser Leu Arg Pro Glu
405 410 415 Thr Val Gly
Leu Cys Val Ala Thr Val Gly Ile Ala Val Leu Ile Arg 420
425 430 Ile Leu Thr Thr Phe Leu Met Val
Cys Phe Ala Gly Phe Asn Leu Lys 435 440
445 Glu Lys Ile Phe Ile Ser Phe Ala Trp Leu Pro Lys Ala
Thr Val Gln 450 455 460
Ala Ala Ile Gly Ser Val Ala Leu Asp Thr Ala Arg Ser His Gly Glu 465
470 475 480 Lys Gln Leu Glu
Asp Tyr Gly Met Asp Val Leu Thr Val Ala Phe Leu 485
490 495 Ser Ile Leu Ile Thr Ala Pro Ile Gly
Ser Leu Leu Ile Gly Leu Leu 500 505
510 Gly Pro Arg Leu Leu Gln Lys Val Glu His Gln Asn Lys Asp
Glu Glu 515 520 525
Val Gln Gly Glu Thr Ser Val Gln Val 530 535
51209PRTHomo sapiens 51Met Val Ser Ser Pro Cys Thr Pro Ala Ser Ser Arg
Thr Cys Ser Arg 1 5 10
15 Ile Leu Gly Leu Ser Leu Gly Thr Ala Ala Leu Phe Ala Ala Gly Ala
20 25 30 Asn Val Ala
Leu Leu Leu Pro Asn Trp Asp Val Thr Tyr Leu Leu Arg 35
40 45 Gly Leu Leu Gly Arg His Ala Met
Leu Gly Thr Gly Leu Trp Gly Gly 50 55
60 Gly Leu Met Val Leu Thr Ala Ala Ile Leu Ile Ser Leu
Met Gly Trp 65 70 75
80 Arg Tyr Gly Cys Phe Ser Lys Ser Gly Leu Cys Arg Ser Val Leu Thr
85 90 95 Ala Leu Leu Ser
Gly Gly Leu Ala Leu Leu Gly Ala Leu Ile Cys Phe 100
105 110 Val Thr Ser Gly Val Ala Leu Lys Asp
Gly Pro Phe Cys Met Phe Asp 115 120
125 Val Ser Ser Phe Asn Gln Thr Gln Ala Trp Lys Tyr Gly Tyr
Pro Phe 130 135 140
Lys Asp Leu His Ser Arg Asn Tyr Leu Tyr Asp Arg Ser Leu Trp Asn 145
150 155 160 Ser Val Cys Leu Glu
Pro Ser Ala Ala Val Val Trp His Val Ser Leu 165
170 175 Phe Ser Ala Leu Leu Cys Ile Ser Leu Leu
Gln Leu Leu Leu Val Val 180 185
190 Val His Val Ile Asn Ser Leu Leu Gly Leu Phe Cys Ser Leu Cys
Glu 195 200 205 Lys
52218PRTHomo sapiens 52Met Ala Leu Val Pro Tyr Glu Glu Thr Thr Glu Phe
Gly Leu Gln Lys 1 5 10
15 Phe His Lys Pro Leu Ala Thr Phe Ser Phe Ala Asn His Thr Ile Gln
20 25 30 Ile Arg Gln
Asp Trp Arg His Leu Gly Val Ala Ala Val Val Trp Asp 35
40 45 Ala Ala Ile Val Leu Ser Thr Tyr
Leu Glu Met Gly Ala Val Glu Leu 50 55
60 Arg Gly Arg Ser Ala Val Glu Leu Gly Ala Gly Thr Gly
Leu Val Gly 65 70 75
80 Ile Val Ala Ala Leu Leu Gly Ala His Val Thr Ile Thr Asp Arg Lys
85 90 95 Val Ala Leu Glu
Phe Leu Lys Ser Asn Val Gln Ala Asn Leu Pro Pro 100
105 110 His Ile Gln Thr Lys Thr Val Val Lys
Glu Leu Thr Trp Gly Gln Asn 115 120
125 Leu Gly Ser Phe Ser Pro Gly Glu Phe Asp Leu Ile Leu Gly
Ala Asp 130 135 140
Ile Ile Tyr Leu Glu Glu Thr Phe Thr Asp Leu Leu Gln Thr Leu Glu 145
150 155 160 His Leu Cys Ser Asn
His Ser Val Ile Leu Leu Ala Cys Arg Ile Arg 165
170 175 Tyr Glu Arg Asp Asn Asn Phe Leu Ala Met
Leu Glu Arg Gln Phe Ile 180 185
190 Val Arg Lys Val His Tyr Asp Pro Glu Lys Asp Val His Ile Tyr
Glu 195 200 205 Ala
Gln Lys Arg Asn Gln Lys Glu Asp Leu 210 215
53114PRTHomo sapiens 53Met Ser Leu Leu Ser Ser Arg Ala Ala Arg Val Pro
Gly Pro Ser Ser 1 5 10
15 Ser Leu Cys Ala Leu Leu Val Leu Leu Leu Leu Leu Thr Gln Pro Gly
20 25 30 Pro Ile Ala
Ser Ala Gly Pro Ala Ala Ala Val Leu Arg Glu Leu Arg 35
40 45 Cys Val Cys Leu Gln Thr Thr Gln
Gly Val His Pro Lys Met Ile Ser 50 55
60 Asn Leu Gln Val Phe Ala Ile Gly Pro Gln Cys Ser Lys
Val Glu Val 65 70 75
80 Val Ala Ser Leu Lys Asn Gly Lys Glu Ile Cys Leu Asp Pro Glu Ala
85 90 95 Pro Phe Leu Lys
Lys Val Ile Gln Lys Ile Leu Asp Gly Gly Asn Lys 100
105 110 Glu Asn 54350PRTHomo sapiens 54Met
Ala Val Phe Val Val Leu Leu Ala Leu Val Ala Gly Val Leu Gly 1
5 10 15 Asn Glu Phe Ser Ile Leu
Lys Ser Pro Gly Ser Val Val Phe Arg Asn 20
25 30 Gly Asn Trp Pro Ile Pro Gly Glu Arg Ile
Pro Asp Val Ala Ala Leu 35 40
45 Ser Met Gly Phe Ser Val Lys Glu Asp Leu Ser Trp Pro Gly
Leu Ala 50 55 60
Val Gly Asn Leu Phe His Arg Pro Arg Ala Thr Val Met Val Met Val 65
70 75 80 Lys Gly Val Asn Lys
Leu Ala Leu Pro Pro Gly Ser Val Ile Ser Tyr 85
90 95 Pro Leu Glu Asn Ala Val Pro Phe Ser Leu
Asp Ser Val Ala Asn Ser 100 105
110 Ile His Ser Leu Phe Ser Glu Glu Thr Pro Val Val Leu Gln Leu
Ala 115 120 125 Pro
Ser Glu Glu Arg Val Tyr Met Val Gly Lys Ala Asn Ser Val Phe 130
135 140 Glu Asp Leu Ser Val Thr
Leu Arg Gln Leu Arg Asn Arg Leu Phe Gln 145 150
155 160 Glu Asn Ser Val Leu Ser Ser Leu Pro Leu Asn
Ser Leu Ser Arg Asn 165 170
175 Asn Glu Val Asp Leu Leu Phe Leu Ser Glu Leu Gln Val Leu His Asp
180 185 190 Ile Ser
Ser Leu Leu Ser Arg His Lys His Leu Ala Lys Asp His Ser 195
200 205 Pro Asp Leu Tyr Ser Leu Glu
Leu Ala Gly Leu Asp Glu Ile Gly Lys 210 215
220 Arg Tyr Gly Glu Asp Ser Glu Gln Phe Arg Asp Ala
Ser Lys Ile Leu 225 230 235
240 Val Asp Ala Leu Gln Lys Phe Ala Asp Asp Met Tyr Ser Leu Tyr Gly
245 250 255 Gly Asn Ala
Val Val Glu Leu Val Thr Val Lys Ser Phe Asp Thr Ser 260
265 270 Leu Ile Arg Lys Thr Arg Thr Ile
Leu Glu Ala Lys Gln Ala Lys Asn 275 280
285 Pro Ala Ser Pro Tyr Asn Leu Ala Tyr Lys Tyr Asn Phe
Glu Tyr Ser 290 295 300
Val Val Phe Asn Met Val Leu Trp Ile Met Ile Ala Leu Ala Leu Ala 305
310 315 320 Val Ile Ile Thr
Ser Tyr Asn Ile Trp Asn Met Asp Pro Gly Tyr Asp 325
330 335 Ser Ile Ile Tyr Arg Met Thr Asn Gln
Lys Ile Arg Met Asp 340 345
350 55370PRTHomo sapiens 55Met Glu Ile Leu Met Thr Val Ser Lys Phe Ala
Ser Ile Cys Thr Met 1 5 10
15 Gly Ala Asn Ala Ser Ala Leu Glu Lys Glu Ile Gly Pro Glu Gln Phe
20 25 30 Pro Val
Asn Glu His Tyr Phe Gly Leu Val Asn Phe Gly Asn Thr Cys 35
40 45 Tyr Cys Asn Ser Val Leu Gln
Ala Leu Tyr Phe Cys Arg Pro Phe Arg 50 55
60 Glu Lys Val Leu Ala Tyr Lys Ser Gln Pro Arg Lys
Lys Glu Ser Leu 65 70 75
80 Leu Thr Cys Leu Ala Asp Leu Phe His Ser Ile Ala Thr Gln Lys Lys
85 90 95 Lys Val Gly
Val Ile Pro Pro Lys Lys Phe Ile Thr Arg Leu Arg Lys 100
105 110 Glu Asn Glu Leu Phe Asp Asn Tyr
Met Gln Gln Asp Ala His Glu Phe 115 120
125 Leu Asn Tyr Leu Leu Asn Thr Ile Ala Asp Ile Leu Gln
Glu Glu Arg 130 135 140
Lys Gln Glu Lys Gln Asn Gly Arg Leu Pro Asn Gly Asn Ile Asp Asn 145
150 155 160 Glu Asn Asn Asn
Ser Thr Pro Asp Pro Thr Trp Val Asp Glu Ile Phe 165
170 175 Gln Gly Thr Leu Thr Asn Glu Thr Arg
Cys Leu Thr Cys Glu Thr Ile 180 185
190 Ser Ser Lys Asp Glu Asp Phe Leu Asp Leu Ser Val Asp Val
Glu Gln 195 200 205
Asn Thr Ser Ile Thr His Cys Leu Arg Gly Phe Ser Asn Thr Glu Thr 210
215 220 Leu Cys Ser Glu Tyr
Lys Tyr Tyr Cys Glu Glu Cys Arg Ser Lys Gln 225 230
235 240 Glu Ala His Lys Arg Met Lys Val Lys Lys
Leu Pro Met Ile Leu Ala 245 250
255 Leu His Leu Lys Arg Phe Lys Tyr Met Asp Gln Leu His Arg Tyr
Thr 260 265 270 Lys
Leu Ser Tyr Arg Val Val Phe Pro Leu Glu Leu Arg Leu Phe Asn 275
280 285 Thr Ser Gly Asp Ala Thr
Asn Pro Asp Arg Met Tyr Asp Leu Val Ala 290 295
300 Val Val Val His Cys Gly Ser Gly Pro Asn Arg
Gly His Tyr Ile Ala 305 310 315
320 Ile Val Lys Ser His Asp Phe Trp Leu Leu Phe Asp Asp Asp Ile Val
325 330 335 Glu Lys
Ile Asp Ala Gln Ala Ile Glu Glu Phe Tyr Gly Leu Thr Ser 340
345 350 Asp Ile Ser Lys Asn Ser Glu
Ser Gly Tyr Ile Leu Phe Tyr Gln Ser 355 360
365 Arg Asp 370 56193PRTHomo sapiens 56Met Ser
Asp Asp Asp Ser Arg Ala Ser Thr Ser Ser Ser Ser Ser Ser 1 5
10 15 Ser Ser Asn Gln Gln Thr Glu
Lys Glu Thr Asn Thr Pro Lys Lys Lys 20 25
30 Glu Ser Lys Val Ser Met Ser Lys Asn Ser Lys Leu
Leu Ser Thr Ser 35 40 45
Ala Lys Arg Ile Gln Lys Glu Leu Ala Asp Ile Thr Leu Asp Pro Pro
50 55 60 Pro Asn Cys
Ser Ala Gly Pro Lys Gly Asp Asn Ile Tyr Glu Trp Arg 65
70 75 80 Ser Thr Ile Leu Gly Pro Pro
Gly Ser Val Tyr Glu Gly Gly Val Phe 85
90 95 Phe Leu Asp Ile Thr Phe Thr Pro Glu Tyr Pro
Phe Lys Pro Pro Lys 100 105
110 Val Thr Phe Arg Thr Arg Ile Tyr His Cys Asn Ile Asn Ser Gln
Gly 115 120 125 Val
Ile Cys Leu Asp Ile Leu Lys Asp Asn Trp Ser Pro Ala Leu Thr 130
135 140 Ile Ser Lys Val Leu Leu
Ser Ile Cys Ser Leu Leu Thr Asp Cys Asn 145 150
155 160 Pro Ala Asp Pro Leu Val Gly Ser Ile Ala Thr
Gln Tyr Met Thr Asn 165 170
175 Arg Ala Glu His Asp Arg Met Ala Arg Gln Trp Thr Lys Arg Tyr Ala
180 185 190 Thr
57206PRTHomo sapiens 57Met Gly Ala Glu Trp Glu Leu Gly Ala Glu Ala Gly
Gly Ser Leu Leu 1 5 10
15 Leu Cys Ala Ala Leu Leu Ala Ala Gly Cys Ala Leu Gly Leu Arg Leu
20 25 30 Gly Arg Gly
Gln Gly Ala Ala Asp Arg Gly Ala Leu Ile Trp Leu Cys 35
40 45 Tyr Asp Ala Leu Val His Phe Ala
Leu Glu Gly Pro Phe Val Tyr Leu 50 55
60 Ser Leu Val Gly Asn Val Ala Asn Ser Asp Gly Leu Ile
Ala Ser Leu 65 70 75
80 Trp Lys Glu Tyr Gly Lys Ala Asp Ala Arg Trp Val Tyr Phe Asp Pro
85 90 95 Thr Ile Val Ser
Val Glu Ile Leu Thr Val Ala Leu Asp Gly Ser Leu 100
105 110 Ala Leu Phe Leu Ile Tyr Ala Ile Val
Lys Glu Lys Tyr Tyr Arg His 115 120
125 Phe Leu Gln Ile Thr Leu Cys Val Cys Glu Leu Tyr Gly Cys
Trp Met 130 135 140
Thr Phe Leu Pro Glu Trp Leu Thr Arg Ser Pro Asn Leu Asn Thr Ser 145
150 155 160 Asn Trp Leu Tyr Cys
Trp Leu Tyr Leu Phe Phe Phe Asn Gly Val Trp 165
170 175 Val Leu Ile Pro Gly Leu Leu Leu Trp Gln
Ser Trp Leu Glu Leu Lys 180 185
190 Lys Met His Gln Lys Glu Thr Ser Ser Val Lys Lys Phe Gln
195 200 205 581129PRTHomo sapiens
58Met Arg Ser Ser Ala Ser Arg Leu Ser Ser Phe Ser Ser Arg Asp Ser 1
5 10 15 Leu Trp Asn Arg
Met Pro Asp Gln Ile Ser Val Ser Glu Phe Ile Ala 20
25 30 Glu Thr Thr Glu Asp Tyr Asn Ser Pro
Thr Thr Ser Ser Phe Thr Thr 35 40
45 Arg Leu His Asn Cys Arg Asn Thr Val Thr Leu Leu Glu Glu
Ala Leu 50 55 60
Asp Gln Asp Arg Thr Ala Leu Gln Lys Val Lys Lys Ser Val Lys Ala 65
70 75 80 Ile Tyr Asn Ser Gly
Gln Asp His Val Gln Asn Glu Glu Asn Tyr Ala 85
90 95 Gln Val Leu Asp Lys Phe Gly Ser Asn Phe
Leu Ser Arg Asp Asn Pro 100 105
110 Asp Leu Gly Thr Ala Phe Val Lys Phe Ser Thr Leu Thr Lys Glu
Leu 115 120 125 Ser
Thr Leu Leu Lys Asn Leu Leu Gln Gly Leu Ser His Asn Val Ile 130
135 140 Phe Thr Leu Asp Ser Leu
Leu Lys Gly Asp Leu Lys Gly Val Lys Gly 145 150
155 160 Asp Leu Lys Lys Pro Phe Asp Lys Ala Trp Lys
Asp Tyr Glu Thr Lys 165 170
175 Phe Thr Lys Ile Glu Lys Glu Lys Arg Glu His Ala Lys Gln His Gly
180 185 190 Met Ile
Arg Thr Glu Ile Thr Gly Ala Glu Ile Ala Glu Glu Met Glu 195
200 205 Lys Glu Arg Arg Leu Phe Gln
Leu Gln Met Cys Glu Tyr Leu Ile Lys 210 215
220 Val Asn Glu Ile Lys Thr Lys Lys Gly Val Asp Leu
Leu Gln Asn Leu 225 230 235
240 Ile Lys Tyr Tyr His Ala Gln Cys Asn Phe Phe Gln Asp Gly Leu Lys
245 250 255 Thr Ala Asp
Lys Leu Lys Gln Tyr Ile Glu Lys Leu Ala Ala Asp Leu 260
265 270 Tyr Asn Ile Lys Gln Thr Gln Asp
Glu Glu Lys Lys Gln Leu Thr Ala 275 280
285 Leu Arg Asp Leu Ile Lys Ser Ser Leu Gln Leu Asp Gln
Lys Glu Asp 290 295 300
Ser Gln Ser Arg Gln Gly Gly Tyr Ser Met His Gln Leu Gln Gly Asn 305
310 315 320 Lys Glu Tyr Gly
Ser Glu Lys Lys Gly Tyr Leu Leu Lys Lys Ser Asp 325
330 335 Gly Ile Arg Lys Val Trp Gln Arg Arg
Lys Cys Ser Val Lys Asn Gly 340 345
350 Ile Leu Thr Ile Ser His Ala Thr Ser Asn Arg Gln Pro Ala
Lys Leu 355 360 365
Asn Leu Leu Thr Cys Gln Val Lys Pro Asn Ala Glu Asp Lys Lys Ser 370
375 380 Phe Asp Leu Ile Ser
His Asn Arg Thr Tyr His Phe Gln Ala Glu Asp 385 390
395 400 Glu Gln Asp Tyr Val Ala Trp Ile Ser Val
Leu Thr Asn Ser Lys Glu 405 410
415 Glu Ala Leu Thr Met Ala Phe Arg Gly Glu Gln Ser Ala Gly Glu
Asn 420 425 430 Ser
Leu Glu Asp Leu Thr Lys Ala Ile Ile Glu Asp Val Gln Arg Leu 435
440 445 Pro Gly Asn Asp Ile Cys
Cys Asp Cys Gly Ser Ser Glu Pro Thr Trp 450 455
460 Leu Ser Thr Asn Leu Gly Ile Leu Thr Cys Ile
Glu Cys Ser Gly Ile 465 470 475
480 His Arg Glu Met Gly Val His Ile Ser Arg Ile Gln Ser Leu Glu Leu
485 490 495 Asp Lys
Leu Gly Thr Ser Glu Leu Leu Leu Ala Lys Asn Val Gly Asn 500
505 510 Asn Ser Phe Asn Asp Ile Met
Glu Ala Asn Leu Pro Ser Pro Ser Pro 515 520
525 Lys Pro Thr Pro Ser Ser Asp Met Thr Val Arg Lys
Glu Tyr Ile Thr 530 535 540
Ala Lys Tyr Val Asp His Arg Phe Ser Arg Lys Thr Cys Ser Thr Ser 545
550 555 560 Ser Ala Lys
Leu Asn Glu Leu Leu Glu Ala Ile Lys Ser Arg Asp Leu 565
570 575 Leu Ala Leu Ile Gln Val Tyr Ala
Glu Gly Val Glu Leu Met Glu Pro 580 585
590 Leu Leu Glu Pro Gly Gln Glu Leu Gly Glu Thr Ala Leu
His Leu Ala 595 600 605
Val Arg Thr Ala Asp Gln Thr Ser Leu His Leu Val Asp Phe Leu Val 610
615 620 Gln Asn Cys Gly
Asn Leu Asp Lys Gln Thr Ala Leu Gly Asn Thr Val 625 630
635 640 Leu His Tyr Cys Ser Met Tyr Ser Lys
Pro Glu Cys Leu Lys Leu Leu 645 650
655 Leu Arg Ser Lys Pro Thr Val Asp Ile Val Asn Gln Ala Gly
Glu Thr 660 665 670
Ala Leu Asp Ile Ala Lys Arg Leu Lys Ala Thr Gln Cys Glu Asp Leu
675 680 685 Leu Ser Gln Ala
Lys Ser Gly Lys Phe Asn Pro His Val His Val Glu 690
695 700 Tyr Glu Trp Asn Leu Arg Gln Glu
Glu Ile Asp Glu Ser Asp Asp Asp 705 710
715 720 Leu Asp Asp Lys Pro Ser Pro Ile Lys Lys Glu Arg
Ser Pro Arg Pro 725 730
735 Gln Ser Phe Cys His Ser Ser Ser Ile Ser Pro Gln Asp Lys Leu Ala
740 745 750 Leu Pro Gly
Phe Ser Thr Pro Arg Asp Lys Gln Arg Leu Ser Tyr Gly 755
760 765 Ala Phe Thr Asn Gln Ile Phe Val
Ser Thr Ser Thr Asp Ser Pro Thr 770 775
780 Ser Pro Thr Thr Glu Ala Pro Pro Leu Pro Pro Arg Asn
Ala Gly Lys 785 790 795
800 Gly Pro Thr Gly Pro Pro Ser Thr Leu Pro Leu Ser Thr Gln Thr Ser
805 810 815 Ser Gly Ser Ser
Thr Leu Ser Lys Lys Arg Pro Pro Pro Pro Pro Pro 820
825 830 Gly His Lys Arg Thr Leu Ser Asp Pro
Pro Ser Pro Leu Pro His Gly 835 840
845 Pro Pro Asn Lys Gly Ala Val Pro Trp Gly Asn Asp Gly Gly
Pro Ser 850 855 860
Ser Ser Ser Lys Thr Thr Asn Lys Phe Glu Gly Leu Ser Gln Gln Ser 865
870 875 880 Ser Thr Ser Ser Ala
Lys Thr Ala Leu Gly Pro Arg Val Leu Pro Lys 885
890 895 Leu Pro Gln Lys Val Ala Leu Arg Lys Thr
Asp His Leu Ser Leu Asp 900 905
910 Lys Ala Thr Ile Pro Pro Glu Ile Phe Gln Lys Ser Ser Gln Leu
Ala 915 920 925 Glu
Leu Pro Gln Lys Pro Pro Pro Gly Asp Leu Pro Pro Lys Pro Thr 930
935 940 Glu Leu Ala Pro Lys Pro
Gln Ile Gly Asp Leu Pro Pro Lys Pro Gly 945 950
955 960 Glu Leu Pro Pro Lys Pro Gln Leu Gly Asp Leu
Pro Pro Lys Pro Gln 965 970
975 Leu Ser Asp Leu Pro Pro Lys Pro Gln Met Lys Asp Leu Pro Pro Lys
980 985 990 Pro Gln
Leu Gly Asp Leu Leu Ala Lys Ser Gln Thr Gly Asp Val Ser 995
1000 1005 Pro Lys Ala Gln Gln
Pro Ser Glu Val Thr Leu Lys Ser His Pro 1010 1015
1020 Leu Asp Leu Ser Pro Asn Val Gln Ser Arg
Asp Ala Ile Gln Lys 1025 1030 1035
Gln Ala Ser Glu Asp Ser Asn Asp Leu Thr Pro Thr Leu Pro Glu
1040 1045 1050 Thr Pro
Val Pro Leu Pro Arg Lys Ile Asn Thr Gly Lys Asn Lys 1055
1060 1065 Val Arg Arg Val Lys Thr Ile
Tyr Asp Cys Gln Ala Asp Asn Asp 1070 1075
1080 Asp Glu Leu Thr Phe Ile Glu Gly Glu Val Ile Ile
Val Thr Gly 1085 1090 1095
Glu Glu Asp Gln Glu Trp Trp Ile Gly His Ile Glu Gly Gln Pro 1100
1105 1110 Glu Arg Lys Gly Val
Phe Pro Val Ser Phe Val His Ile Leu Ser 1115 1120
1125 Asp 59335PRTHomo sapiens 59Met Ala Gly Ser
Pro Thr Cys Leu Thr Leu Ile Tyr Ile Leu Trp Gln 1 5
10 15 Leu Thr Gly Ser Ala Ala Ser Gly Pro
Val Lys Glu Leu Val Gly Ser 20 25
30 Val Gly Gly Ala Val Thr Phe Pro Leu Lys Ser Lys Val Lys
Gln Val 35 40 45
Asp Ser Ile Val Trp Thr Phe Asn Thr Thr Pro Leu Val Thr Ile Gln 50
55 60 Pro Glu Gly Gly Thr
Ile Ile Val Thr Gln Asn Arg Asn Arg Glu Arg 65 70
75 80 Val Asp Phe Pro Asp Gly Gly Tyr Ser Leu
Lys Leu Ser Lys Leu Lys 85 90
95 Lys Asn Asp Ser Gly Ile Tyr Tyr Val Gly Ile Tyr Ser Ser Ser
Leu 100 105 110 Gln
Gln Pro Ser Thr Gln Glu Tyr Val Leu His Val Tyr Glu His Leu 115
120 125 Ser Lys Pro Lys Val Thr
Met Gly Leu Gln Ser Asn Lys Asn Gly Thr 130 135
140 Cys Val Thr Asn Leu Thr Cys Cys Met Glu His
Gly Glu Glu Asp Val 145 150 155
160 Ile Tyr Thr Trp Lys Ala Leu Gly Gln Ala Ala Asn Glu Ser His Asn
165 170 175 Gly Ser
Ile Leu Pro Ile Ser Trp Arg Trp Gly Glu Ser Asp Met Thr 180
185 190 Phe Ile Cys Val Ala Arg Asn
Pro Val Ser Arg Asn Phe Ser Ser Pro 195 200
205 Ile Leu Ala Arg Lys Leu Cys Glu Gly Ala Ala Asp
Asp Pro Asp Ser 210 215 220
Ser Met Val Leu Leu Cys Leu Leu Leu Val Pro Leu Leu Leu Ser Leu 225
230 235 240 Phe Val Leu
Gly Leu Phe Leu Trp Phe Leu Lys Arg Glu Arg Gln Glu 245
250 255 Glu Tyr Ile Glu Glu Lys Lys Arg
Val Asp Ile Cys Arg Glu Thr Pro 260 265
270 Asn Ile Cys Pro His Ser Gly Glu Asn Thr Glu Tyr Asp
Thr Ile Pro 275 280 285
His Thr Asn Arg Thr Ile Leu Lys Glu Asp Pro Ala Asn Thr Val Tyr 290
295 300 Ser Thr Val Glu
Ile Pro Lys Lys Met Glu Asn Pro His Ser Leu Leu 305 310
315 320 Thr Met Pro Asp Thr Pro Arg Leu Phe
Ala Tyr Glu Asn Val Ile 325 330
335 60207PRTHomo sapiens 60Met Ser Ser Asp Arg Gln Arg Ser Asp Asp
Glu Ser Pro Ser Thr Ser 1 5 10
15 Ser Gly Ser Ser Asp Ala Asp Gln Arg Asp Pro Ala Ala Pro Glu
Pro 20 25 30 Glu
Glu Gln Glu Glu Arg Lys Pro Ser Ala Thr Gln Gln Lys Lys Asn 35
40 45 Thr Lys Leu Ser Ser Lys
Thr Thr Ala Lys Leu Ser Thr Ser Ala Lys 50 55
60 Arg Ile Gln Lys Glu Leu Ala Glu Ile Thr Leu
Asp Pro Pro Pro Asn 65 70 75
80 Cys Ser Ala Gly Pro Lys Gly Asp Asn Ile Tyr Glu Trp Arg Ser Thr
85 90 95 Ile Leu
Gly Pro Pro Gly Ser Val Tyr Glu Gly Gly Val Phe Phe Leu 100
105 110 Asp Ile Thr Phe Ser Ser Asp
Tyr Pro Phe Lys Pro Pro Lys Val Thr 115 120
125 Phe Arg Thr Arg Ile Tyr His Cys Asn Ile Asn Ser
Gln Gly Val Ile 130 135 140
Cys Leu Asp Ile Leu Lys Asp Asn Trp Ser Pro Ala Leu Thr Ile Ser 145
150 155 160 Lys Val Leu
Leu Ser Ile Cys Ser Leu Leu Thr Asp Cys Asn Pro Ala 165
170 175 Asp Pro Leu Val Gly Ser Ile Ala
Thr Gln Tyr Leu Thr Asn Arg Ala 180 185
190 Glu His Asp Arg Ile Ala Arg Gln Trp Thr Lys Arg Tyr
Ala Thr 195 200 205
61123PRTHomo sapiens 61Met Ala Arg Gly Ser Ala Leu Leu Leu Ala Ser Leu
Leu Leu Ala Ala 1 5 10
15 Ala Leu Ser Ala Ser Ala Gly Leu Trp Ser Pro Ala Lys Glu Lys Arg
20 25 30 Gly Trp Thr
Leu Asn Ser Ala Gly Tyr Leu Leu Gly Pro His Ala Val 35
40 45 Gly Asn His Arg Ser Phe Ser Asp
Lys Asn Gly Leu Thr Ser Lys Arg 50 55
60 Glu Leu Arg Pro Glu Asp Asp Met Lys Pro Gly Ser Phe
Asp Arg Ser 65 70 75
80 Ile Pro Glu Asn Asn Ile Met Arg Thr Ile Ile Glu Phe Leu Ser Phe
85 90 95 Leu His Leu Lys
Glu Ala Gly Ala Leu Asp Arg Leu Leu Asp Leu Pro 100
105 110 Ala Ala Ala Ser Ser Glu Asp Ile Glu
Arg Ser 115 120 62553PRTHomo sapiens
62Met Ala Ala Val Ser Leu Arg Leu Gly Asp Leu Val Trp Gly Lys Leu 1
5 10 15 Gly Arg Tyr Pro
Pro Trp Pro Gly Lys Ile Val Asn Pro Pro Lys Asp 20
25 30 Leu Lys Lys Pro Arg Gly Lys Lys Cys
Phe Phe Val Lys Phe Phe Gly 35 40
45 Thr Glu Asp His Ala Trp Ile Lys Val Glu Gln Leu Lys Pro
Tyr His 50 55 60
Ala His Lys Glu Glu Met Ile Lys Ile Asn Lys Gly Lys Arg Phe Gln 65
70 75 80 Gln Ala Val Asp Ala
Val Glu Glu Phe Leu Arg Arg Ala Lys Gly Lys 85
90 95 Asp Gln Thr Ser Ser His Asn Ser Ser Asp
Asp Lys Asn Arg Arg Asn 100 105
110 Ser Ser Glu Glu Arg Ser Arg Pro Asn Ser Gly Asp Glu Lys Arg
Lys 115 120 125 Leu
Ser Leu Ser Glu Gly Lys Val Lys Lys Asn Met Gly Glu Gly Lys 130
135 140 Lys Arg Val Ser Ser Gly
Ser Ser Glu Arg Gly Ser Lys Ser Pro Leu 145 150
155 160 Lys Arg Ala Gln Glu Gln Ser Pro Arg Lys Arg
Gly Arg Pro Pro Lys 165 170
175 Asp Glu Lys Asp Leu Thr Ile Pro Glu Ser Ser Thr Val Lys Gly Met
180 185 190 Met Ala
Gly Pro Met Ala Ala Phe Lys Trp Gln Pro Thr Ala Ser Glu 195
200 205 Pro Val Lys Asp Ala Asp Pro
His Phe His His Phe Leu Leu Ser Gln 210 215
220 Thr Glu Lys Pro Ala Val Cys Tyr Gln Ala Ile Thr
Lys Lys Leu Lys 225 230 235
240 Ile Cys Glu Glu Glu Thr Gly Ser Thr Ser Ile Gln Ala Ala Asp Ser
245 250 255 Thr Ala Val
Asn Gly Ser Ile Thr Pro Thr Asp Lys Lys Ile Gly Phe 260
265 270 Leu Gly Leu Gly Leu Met Gly Ser
Gly Ile Val Ser Asn Leu Leu Lys 275 280
285 Met Gly His Thr Val Thr Val Trp Asn Arg Thr Ala Glu
Lys Cys Asp 290 295 300
Leu Phe Ile Gln Glu Gly Ala Arg Leu Gly Arg Thr Pro Ala Glu Val 305
310 315 320 Val Ser Thr Cys
Asp Ile Thr Phe Ala Cys Val Ser Asp Pro Lys Ala 325
330 335 Ala Lys Asp Leu Val Leu Gly Pro Ser
Gly Val Leu Gln Gly Ile Arg 340 345
350 Pro Gly Lys Cys Tyr Val Asp Met Ser Thr Val Asp Ala Asp
Thr Val 355 360 365
Thr Glu Leu Ala Gln Val Ile Val Ser Arg Gly Gly Arg Phe Leu Glu 370
375 380 Ala Pro Val Ser Gly
Asn Gln Gln Leu Ser Asn Asp Gly Met Leu Val 385 390
395 400 Ile Leu Ala Ala Gly Asp Arg Gly Leu Tyr
Glu Asp Cys Ser Ser Cys 405 410
415 Phe Gln Ala Met Gly Lys Thr Ser Phe Phe Leu Gly Glu Val Gly
Asn 420 425 430 Ala
Ala Lys Met Met Leu Ile Val Asn Met Val Gln Gly Ser Phe Met 435
440 445 Ala Thr Ile Ala Glu Gly
Leu Thr Leu Ala Gln Val Thr Gly Gln Ser 450 455
460 Gln Gln Thr Leu Leu Asp Ile Leu Asn Gln Gly
Gln Leu Ala Ser Ile 465 470 475
480 Phe Leu Asp Gln Lys Cys Gln Asn Ile Leu Gln Gly Asn Phe Lys Pro
485 490 495 Asp Phe
Tyr Leu Lys Tyr Ile Gln Lys Asp Leu Arg Leu Ala Ile Ala 500
505 510 Leu Gly Asp Ala Val Asn His
Pro Thr Pro Met Ala Ala Ala Ala Asn 515 520
525 Glu Val Tyr Lys Arg Ala Lys Ala Leu Asp Gln Ser
Asp Asn Asp Met 530 535 540
Ser Ala Val Tyr Arg Ala Tyr Ile His 545 550
631163PRTHomo sapiens 63Met Thr Arg Thr Arg Ala Ala Leu Leu Leu Phe
Thr Ala Leu Ala Thr 1 5 10
15 Ser Leu Gly Phe Asn Leu Asp Thr Glu Glu Leu Thr Ala Phe Arg Val
20 25 30 Asp Ser
Ala Gly Phe Gly Asp Ser Val Val Gln Tyr Ala Asn Ser Trp 35
40 45 Val Val Val Gly Ala Pro Gln
Lys Ile Thr Ala Ala Asn Gln Thr Gly 50 55
60 Gly Leu Tyr Gln Cys Gly Tyr Ser Thr Gly Ala Cys
Glu Pro Ile Gly 65 70 75
80 Leu Gln Val Pro Pro Glu Ala Val Asn Met Ser Leu Gly Leu Ser Leu
85 90 95 Ala Ser Thr
Thr Ser Pro Ser Gln Leu Leu Ala Cys Gly Pro Thr Val 100
105 110 His His Glu Cys Gly Arg Asn Met
Tyr Leu Thr Gly Leu Cys Phe Leu 115 120
125 Leu Gly Pro Thr Gln Leu Thr Gln Arg Leu Pro Val Ser
Arg Gln Glu 130 135 140
Cys Pro Arg Gln Glu Gln Asp Ile Val Phe Leu Ile Asp Gly Ser Gly 145
150 155 160 Ser Ile Ser Ser
Arg Asn Phe Ala Thr Met Met Asn Phe Val Arg Ala 165
170 175 Val Ile Ser Gln Phe Gln Arg Pro Ser
Thr Gln Phe Ser Leu Met Gln 180 185
190 Phe Ser Asn Lys Phe Gln Thr His Phe Thr Phe Glu Glu Phe
Arg Arg 195 200 205
Ser Ser Asn Pro Leu Ser Leu Leu Ala Ser Val His Gln Leu Gln Gly 210
215 220 Phe Thr Tyr Thr Ala
Thr Ala Ile Gln Asn Val Val His Arg Leu Phe 225 230
235 240 His Ala Ser Tyr Gly Ala Arg Arg Asp Ala
Ala Lys Ile Leu Ile Val 245 250
255 Ile Thr Asp Gly Lys Lys Glu Gly Asp Ser Leu Asp Tyr Lys Asp
Val 260 265 270 Ile
Pro Met Ala Asp Ala Ala Gly Ile Ile Arg Tyr Ala Ile Gly Val 275
280 285 Gly Leu Ala Phe Gln Asn
Arg Asn Ser Trp Lys Glu Leu Asn Asp Ile 290 295
300 Ala Ser Lys Pro Ser Gln Glu His Ile Phe Lys
Val Glu Asp Phe Asp 305 310 315
320 Ala Leu Lys Asp Ile Gln Asn Gln Leu Lys Glu Lys Ile Phe Ala Ile
325 330 335 Glu Gly
Thr Glu Thr Thr Ser Ser Ser Ser Phe Glu Leu Glu Met Ala 340
345 350 Gln Glu Gly Phe Ser Ala Val
Phe Thr Pro Asp Gly Pro Val Leu Gly 355 360
365 Ala Val Gly Ser Phe Thr Trp Ser Gly Gly Ala Phe
Leu Tyr Pro Pro 370 375 380
Asn Met Ser Pro Thr Phe Ile Asn Met Ser Gln Glu Asn Val Asp Met 385
390 395 400 Arg Asp Ser
Tyr Leu Gly Tyr Ser Thr Glu Leu Ala Leu Trp Lys Gly 405
410 415 Val Gln Ser Leu Val Leu Gly Ala
Pro Arg Tyr Gln His Thr Gly Lys 420 425
430 Ala Val Ile Phe Thr Gln Val Ser Arg Gln Trp Arg Met
Lys Ala Glu 435 440 445
Val Thr Gly Thr Gln Ile Gly Ser Tyr Phe Gly Ala Ser Leu Cys Ser 450
455 460 Val Asp Val Asp
Ser Asp Gly Ser Thr Asp Leu Val Leu Ile Gly Ala 465 470
475 480 Pro His Tyr Tyr Glu Gln Thr Arg Gly
Gly Gln Val Ser Val Cys Pro 485 490
495 Leu Pro Arg Gly Trp Arg Arg Trp Trp Cys Asp Ala Val Leu
Tyr Gly 500 505 510
Glu Gln Gly His Pro Trp Gly Arg Phe Gly Ala Ala Leu Thr Val Leu
515 520 525 Gly Asp Val Asn
Gly Asp Lys Leu Thr Asp Val Val Ile Gly Ala Pro 530
535 540 Gly Glu Glu Glu Asn Arg Gly Ala
Val Tyr Leu Phe His Gly Val Leu 545 550
555 560 Gly Pro Ser Ile Ser Pro Ser His Ser Gln Arg Ile
Ala Gly Ser Gln 565 570
575 Leu Ser Ser Arg Leu Gln Tyr Phe Gly Gln Ala Leu Ser Gly Gly Gln
580 585 590 Asp Leu Thr
Gln Asp Gly Leu Val Asp Leu Ala Val Gly Ala Arg Gly 595
600 605 Gln Val Leu Leu Leu Arg Thr Arg
Pro Val Leu Trp Val Gly Val Ser 610 615
620 Met Gln Phe Ile Pro Ala Glu Ile Pro Arg Ser Ala Phe
Glu Cys Arg 625 630 635
640 Glu Gln Val Val Ser Glu Gln Thr Leu Val Gln Ser Asn Ile Cys Leu
645 650 655 Tyr Ile Asp Lys
Arg Ser Lys Asn Leu Leu Gly Ser Arg Asp Leu Gln 660
665 670 Ser Ser Val Thr Leu Asp Leu Ala Leu
Asp Pro Gly Arg Leu Ser Pro 675 680
685 Arg Ala Thr Phe Gln Glu Thr Lys Asn Arg Ser Leu Ser Arg
Val Arg 690 695 700
Val Leu Gly Leu Lys Ala His Cys Glu Asn Phe Asn Leu Leu Leu Pro 705
710 715 720 Ser Cys Val Glu Asp
Ser Val Thr Pro Ile Thr Leu Arg Leu Asn Phe 725
730 735 Thr Leu Val Gly Lys Pro Leu Leu Ala Phe
Arg Asn Leu Arg Pro Met 740 745
750 Leu Ala Ala Asp Ala Gln Arg Tyr Phe Thr Ala Ser Leu Pro Phe
Glu 755 760 765 Lys
Asn Cys Gly Ala Asp His Ile Cys Gln Asp Asn Leu Gly Ile Ser 770
775 780 Phe Ser Phe Pro Gly Leu
Lys Ser Leu Leu Val Gly Ser Asn Leu Glu 785 790
795 800 Leu Asn Ala Glu Val Met Val Trp Asn Asp Gly
Glu Asp Ser Tyr Gly 805 810
815 Thr Thr Ile Thr Phe Ser His Pro Ala Gly Leu Ser Tyr Arg Tyr Val
820 825 830 Ala Glu
Gly Gln Lys Gln Gly Gln Leu Arg Ser Leu His Leu Thr Cys 835
840 845 Asp Ser Ala Pro Val Gly Ser
Gln Gly Thr Trp Ser Thr Ser Cys Arg 850 855
860 Ile Asn His Leu Ile Phe Arg Gly Gly Ala Gln Ile
Thr Phe Leu Ala 865 870 875
880 Thr Phe Asp Val Ser Pro Lys Ala Val Leu Gly Asp Arg Leu Leu Leu
885 890 895 Thr Ala Asn
Val Ser Ser Glu Asn Asn Thr Pro Arg Thr Ser Lys Thr 900
905 910 Thr Phe Gln Leu Glu Leu Pro Val
Lys Tyr Ala Val Tyr Thr Val Val 915 920
925 Ser Ser His Glu Gln Phe Thr Lys Tyr Leu Asn Phe Ser
Glu Ser Glu 930 935 940
Glu Lys Glu Ser His Val Ala Met His Arg Tyr Gln Val Asn Asn Leu 945
950 955 960 Gly Gln Arg Asp
Leu Pro Val Ser Ile Asn Phe Trp Val Pro Val Glu 965
970 975 Leu Asn Gln Glu Ala Val Trp Met Asp
Val Glu Val Ser His Pro Gln 980 985
990 Asn Pro Ser Leu Arg Cys Ser Ser Glu Lys Ile Ala Pro
Pro Ala Ser 995 1000 1005
Asp Phe Leu Ala His Ile Gln Lys Asn Pro Val Leu Asp Cys Ser
1010 1015 1020 Ile Ala Gly
Cys Leu Arg Phe Arg Cys Asp Val Pro Ser Phe Ser 1025
1030 1035 Val Gln Glu Glu Leu Asp Phe Thr
Leu Lys Gly Asn Leu Ser Phe 1040 1045
1050 Gly Trp Val Arg Gln Ile Leu Gln Lys Lys Val Ser Val
Val Ser 1055 1060 1065
Val Ala Glu Ile Thr Phe Asp Thr Ser Val Tyr Ser Gln Leu Pro 1070
1075 1080 Gly Gln Glu Ala Phe
Met Arg Ala Gln Thr Thr Thr Val Leu Glu 1085 1090
1095 Lys Tyr Lys Val His Asn Pro Thr Pro Leu
Ile Val Gly Ser Ser 1100 1105 1110
Ile Gly Gly Leu Leu Leu Leu Ala Leu Ile Thr Ala Val Leu Tyr
1115 1120 1125 Lys Val
Gly Phe Phe Lys Arg Gln Tyr Lys Glu Met Met Glu Glu 1130
1135 1140 Ala Asn Gly Gln Ile Ala Pro
Glu Asn Gly Thr Gln Thr Pro Ser 1145 1150
1155 Pro Pro Ser Glu Lys 1160
64492PRTHomo sapiens 64Met Val Lys Phe Pro Ala Leu Thr His Tyr Trp Pro
Leu Ile Arg Phe 1 5 10
15 Leu Val Pro Leu Gly Ile Thr Asn Ile Ala Ile Asp Phe Gly Glu Gln
20 25 30 Ala Leu Asn
Arg Gly Ile Ala Ala Val Lys Glu Asp Ala Val Glu Met 35
40 45 Leu Ala Ser Tyr Gly Leu Ala Tyr
Ser Leu Met Lys Phe Phe Thr Gly 50 55
60 Pro Met Ser Asp Phe Lys Asn Val Gly Leu Val Phe Val
Asn Ser Lys 65 70 75
80 Arg Asp Arg Thr Lys Ala Val Leu Cys Met Val Val Ala Gly Ala Ile
85 90 95 Ala Ala Val Phe
His Thr Leu Ile Ala Tyr Ser Asp Leu Gly Tyr Tyr 100
105 110 Ile Ile Asn Lys Leu His His Val Asp
Glu Ser Val Gly Ser Lys Thr 115 120
125 Arg Arg Ala Phe Leu Tyr Leu Ala Ala Phe Pro Phe Met Asp
Ala Met 130 135 140
Ala Trp Thr His Ala Gly Ile Leu Leu Lys His Lys Tyr Ser Phe Leu 145
150 155 160 Val Gly Cys Ala Ser
Ile Ser Asp Val Ile Ala Gln Val Val Phe Val 165
170 175 Ala Ile Leu Leu His Ser His Leu Glu Cys
Arg Glu Pro Leu Leu Ile 180 185
190 Pro Ile Leu Ser Leu Tyr Met Gly Ala Leu Val Arg Cys Thr Thr
Leu 195 200 205 Cys
Leu Gly Tyr Tyr Lys Asn Ile His Asp Ile Ile Pro Asp Arg Ser 210
215 220 Gly Pro Glu Leu Gly Gly
Asp Ala Thr Ile Arg Lys Met Leu Ser Phe 225 230
235 240 Trp Trp Pro Leu Ala Leu Ile Leu Ala Thr Gln
Arg Ile Ser Arg Pro 245 250
255 Ile Val Asn Leu Phe Val Ser Arg Asp Leu Gly Gly Ser Ser Ala Ala
260 265 270 Thr Glu
Ala Val Ala Ile Leu Thr Ala Thr Tyr Pro Val Gly His Met 275
280 285 Pro Tyr Gly Trp Leu Thr Glu
Ile Arg Ala Val Tyr Pro Ala Phe Asp 290 295
300 Lys Asn Asn Pro Ser Asn Lys Leu Val Ser Thr Ser
Asn Thr Val Thr 305 310 315
320 Ala Ala His Ile Lys Lys Phe Thr Phe Val Cys Met Ala Leu Ser Leu
325 330 335 Thr Leu Cys
Phe Val Met Phe Trp Thr Pro Asn Val Ser Glu Lys Ile 340
345 350 Leu Ile Asp Ile Ile Gly Val Asp
Phe Ala Phe Ala Glu Leu Cys Val 355 360
365 Val Pro Leu Arg Ile Phe Ser Phe Phe Pro Val Pro Val
Thr Val Arg 370 375 380
Ala His Leu Thr Gly Trp Leu Met Thr Leu Lys Lys Thr Phe Val Leu 385
390 395 400 Ala Pro Ser Ser
Val Leu Arg Ile Ile Val Leu Ile Ala Ser Leu Val 405
410 415 Val Leu Pro Tyr Leu Gly Val His Gly
Ala Thr Leu Gly Val Gly Ser 420 425
430 Leu Leu Ala Gly Phe Val Gly Glu Ser Thr Met Val Ala Ile
Ala Ala 435 440 445
Cys Tyr Val Tyr Arg Lys Gln Lys Lys Lys Met Glu Asn Glu Ser Ala 450
455 460 Thr Glu Gly Glu Asp
Ser Ala Met Thr Asp Met Pro Pro Thr Glu Glu 465 470
475 480 Val Thr Asp Ile Val Glu Met Arg Glu Glu
Asn Glu 485 490 65617PRTHomo
sapiens 65Met Asp Phe Ser Lys Leu Pro Lys Ile Leu Asp Glu Asp Lys Glu Ser
1 5 10 15 Thr Phe
Gly Tyr Val His Gly Val Ser Gly Pro Val Val Thr Ala Cys 20
25 30 Asp Met Ala Gly Ala Ala Met
Tyr Glu Leu Val Arg Val Gly His Ser 35 40
45 Glu Leu Val Gly Glu Ile Ile Arg Leu Glu Gly Asp
Met Ala Thr Ile 50 55 60
Gln Val Tyr Glu Glu Thr Ser Gly Val Ser Val Gly Asp Pro Val Leu 65
70 75 80 Arg Thr Gly
Lys Pro Leu Ser Val Glu Leu Gly Pro Gly Ile Met Gly 85
90 95 Ala Ile Phe Asp Gly Ile Gln Arg
Pro Leu Ser Asp Ile Ser Ser Gln 100 105
110 Thr Gln Ser Ile Tyr Ile Pro Arg Gly Val Asn Val Ser
Ala Leu Ser 115 120 125
Arg Asp Ile Lys Trp Asp Phe Thr Pro Cys Lys Asn Leu Arg Val Gly 130
135 140 Ser His Ile Thr
Gly Gly Asp Ile Tyr Gly Ile Val Ser Glu Asn Ser 145 150
155 160 Leu Ile Lys His Lys Ile Met Leu Pro
Pro Arg Asn Arg Gly Thr Val 165 170
175 Thr Tyr Ile Ala Pro Pro Gly Asn Tyr Asp Thr Ser Asp Val
Val Leu 180 185 190
Glu Leu Glu Phe Glu Gly Val Lys Glu Lys Phe Thr Met Val Gln Val
195 200 205 Trp Pro Val Arg
Gln Val Arg Pro Val Thr Glu Lys Leu Pro Ala Asn 210
215 220 His Pro Leu Leu Thr Gly Gln Arg
Val Leu Asp Ala Leu Phe Pro Cys 225 230
235 240 Val Gln Gly Gly Thr Thr Ala Ile Pro Gly Ala Phe
Gly Cys Gly Lys 245 250
255 Thr Val Ile Ser Gln Ser Leu Ser Lys Tyr Ser Asn Ser Asp Val Ile
260 265 270 Ile Tyr Val
Gly Cys Gly Glu Arg Gly Asn Glu Met Ser Glu Val Leu 275
280 285 Arg Asp Phe Pro Glu Leu Thr Met
Glu Val Asp Gly Lys Val Glu Ser 290 295
300 Ile Met Lys Arg Thr Ala Leu Val Ala Asn Thr Ser Asn
Met Pro Val 305 310 315
320 Ala Ala Arg Glu Ala Ser Ile Tyr Thr Gly Ile Thr Leu Ser Glu Tyr
325 330 335 Phe Arg Asp Met
Gly Tyr His Val Ser Met Met Ala Asp Ser Thr Ser 340
345 350 Arg Trp Ala Glu Ala Leu Arg Glu Ile
Ser Gly Arg Leu Ala Glu Met 355 360
365 Pro Ala Asp Ser Gly Tyr Pro Ala Tyr Leu Gly Ala Arg Leu
Ala Ser 370 375 380
Phe Tyr Glu Arg Ala Gly Arg Val Lys Cys Leu Gly Asn Pro Glu Arg 385
390 395 400 Glu Gly Ser Val Ser
Ile Val Gly Ala Val Ser Pro Pro Gly Gly Asp 405
410 415 Phe Ser Asp Pro Val Thr Ser Ala Thr Leu
Gly Ile Val Gln Val Phe 420 425
430 Trp Gly Leu Asp Lys Lys Leu Ala Gln Arg Lys His Phe Pro Ser
Val 435 440 445 Asn
Trp Leu Ile Ser Tyr Ser Lys Tyr Met Arg Ala Leu Asp Glu Tyr 450
455 460 Tyr Asp Lys His Phe Thr
Glu Phe Val Pro Leu Arg Thr Lys Ala Lys 465 470
475 480 Glu Ile Leu Gln Glu Glu Glu Asp Leu Ala Glu
Ile Val Gln Leu Val 485 490
495 Gly Lys Ala Ser Leu Ala Glu Thr Asp Lys Ile Thr Leu Glu Val Ala
500 505 510 Lys Leu
Ile Lys Asp Asp Phe Leu Gln Gln Asn Gly Tyr Thr Pro Tyr 515
520 525 Asp Arg Phe Cys Pro Phe Tyr
Lys Thr Val Gly Met Leu Ser Asn Met 530 535
540 Ile Ala Phe Tyr Asp Met Ala Arg Arg Ala Val Glu
Thr Thr Ala Gln 545 550 555
560 Ser Asp Asn Lys Ile Thr Trp Ser Ile Ile Arg Glu His Met Gly Asp
565 570 575 Ile Leu Tyr
Lys Leu Ser Ser Met Lys Phe Lys Asp Pro Leu Lys Asp 580
585 590 Gly Glu Ala Lys Ile Lys Ser Asp
Tyr Ala Gln Leu Leu Glu Asp Met 595 600
605 Gln Asn Ala Phe Arg Ser Leu Glu Asp 610
615 66350PRTHomo sapiens 66Met Ile Arg Gln Glu Arg Ser
Thr Ser Tyr Gln Glu Leu Ser Glu Glu 1 5
10 15 Leu Val Gln Val Val Glu Ser Ser Glu Leu Ala
Asp Glu Gln Asp Lys 20 25
30 Glu Thr Val Arg Val Gln Gly Pro Gly Ile Leu Pro Gly Leu Asp
Ser 35 40 45 Glu
Ser Ala Ser Ser Ser Ile Arg Phe Ser Lys Ala Cys Leu Lys Asn 50
55 60 Val Phe Ser Val Leu Leu
Ile Phe Ile Tyr Leu Leu Leu Met Ala Val 65 70
75 80 Ala Val Phe Leu Val Tyr Arg Thr Ile Thr Asp
Phe Arg Glu Lys Leu 85 90
95 Lys His Pro Val Met Ser Val Ser Tyr Lys Glu Val Asp Arg Tyr Asp
100 105 110 Ala Pro
Gly Ile Ala Leu Tyr Pro Gly Gln Ala Gln Leu Leu Ser Cys 115
120 125 Lys His His Tyr Glu Val Ile
Pro Pro Leu Thr Ser Pro Gly Gln Pro 130 135
140 Gly Asp Met Asn Cys Thr Thr Gln Arg Ile Asn Tyr
Thr Asp Pro Phe 145 150 155
160 Ser Asn Gln Thr Val Lys Ser Ala Leu Ile Val Gln Gly Pro Arg Glu
165 170 175 Val Lys Lys
Arg Glu Leu Val Phe Leu Gln Phe Arg Leu Asn Lys Ser 180
185 190 Ser Glu Asp Phe Ser Ala Ile Asp
Tyr Leu Leu Phe Ser Ser Phe Gln 195 200
205 Glu Phe Leu Gln Ser Pro Asn Arg Val Gly Phe Met Gln
Ala Cys Glu 210 215 220
Ser Ala Cys Ser Ser Trp Lys Phe Ser Gly Gly Phe Arg Thr Trp Val 225
230 235 240 Lys Met Ser Leu
Val Lys Thr Lys Glu Glu Asp Gly Arg Glu Ala Val 245
250 255 Glu Phe Arg Gln Glu Thr Ser Val Val
Asn Tyr Ile Asp Gln Arg Pro 260 265
270 Ala Ala Lys Lys Ser Ala Gln Leu Phe Phe Val Val Phe Glu
Trp Lys 275 280 285
Asp Pro Phe Ile Gln Lys Val Gln Asp Ile Val Thr Ala Asn Pro Trp 290
295 300 Asn Thr Ile Ala Leu
Leu Cys Gly Ala Phe Leu Ala Leu Phe Lys Ala 305 310
315 320 Ala Glu Phe Ala Lys Leu Ser Ile Lys Trp
Met Ile Lys Ile Arg Lys 325 330
335 Arg Tyr Leu Lys Arg Arg Gly Gln Ala Thr Ser His Ile Ser
340 345 350 67200PRTHomo sapiens
67Met Phe Arg Lys Gly Lys Lys Arg His Ser Ser Ser Ser Ser Gln Ser 1
5 10 15 Ser Glu Ile Ser
Thr Lys Ser Lys Ser Val Asp Ser Ser Leu Gly Gly 20
25 30 Leu Ser Arg Ser Ser Thr Val Ala Ser
Leu Asp Thr Asp Ser Thr Lys 35 40
45 Ser Ser Gly Gln Ser Asn Asn Asn Ser Asp Thr Cys Ala Glu
Phe Arg 50 55 60
Ile Lys Tyr Val Gly Ala Ile Glu Lys Leu Lys Leu Ser Glu Gly Lys 65
70 75 80 Gly Leu Glu Gly Pro
Leu Asp Leu Ile Asn Tyr Ile Asp Val Ala Gln 85
90 95 Gln Asp Gly Lys Leu Pro Phe Val Pro Pro
Glu Glu Glu Phe Ile Met 100 105
110 Gly Val Ser Lys Tyr Gly Ile Lys Val Ser Thr Ser Asp Gln Tyr
Asp 115 120 125 Val
Leu His Arg His Ala Leu Tyr Leu Ile Ile Arg Met Val Cys Tyr 130
135 140 Asp Asp Gly Leu Gly Ala
Gly Lys Ser Leu Leu Ala Leu Lys Thr Thr 145 150
155 160 Asp Ala Ser Asn Glu Glu Tyr Ser Leu Trp Val
Tyr Gln Cys Asn Ser 165 170
175 Leu Glu Gln Ala Gln Ala Ile Cys Lys Val Leu Ser Thr Ala Phe Asp
180 185 190 Ser Val
Leu Thr Ser Glu Lys Pro 195 200 68123PRTHomo
sapiens 68Met Ala Arg Tyr Glu Glu Val Ser Val Ser Gly Phe Glu Glu Phe His
1 5 10 15 Arg Ala
Val Glu Gln His Asn Gly Lys Thr Ile Phe Ala Tyr Phe Thr 20
25 30 Gly Ser Lys Asp Ala Gly Gly
Lys Ser Trp Cys Pro Asp Cys Val Gln 35 40
45 Ala Glu Pro Val Val Arg Glu Gly Leu Lys His Ile
Ser Glu Gly Cys 50 55 60
Val Phe Ile Tyr Cys Gln Val Gly Glu Lys Pro Tyr Trp Lys Asp Pro 65
70 75 80 Asn Asn Asp
Phe Arg Lys Asn Leu Lys Val Thr Ala Val Pro Thr Leu 85
90 95 Leu Lys Tyr Gly Thr Pro Gln Lys
Leu Val Glu Ser Glu Cys Leu Gln 100 105
110 Ala Asn Leu Val Glu Met Leu Phe Ser Glu Asp
115 120 69219PRTHomo sapiens 69Met Asn Ser
Ser Lys Ser Ser Glu Thr Gln Cys Thr Glu Arg Gly Cys 1 5
10 15 Phe Ser Ser Gln Met Phe Leu Trp
Thr Val Ala Gly Ile Pro Ile Leu 20 25
30 Phe Leu Ser Ala Cys Phe Ile Thr Arg Cys Val Val Thr
Phe Arg Ile 35 40 45
Phe Gln Thr Cys Asp Glu Lys Lys Phe Gln Leu Pro Glu Asn Phe Thr 50
55 60 Glu Leu Ser Cys
Tyr Asn Tyr Gly Ser Gly Ser Val Lys Asn Cys Cys 65 70
75 80 Pro Leu Asn Trp Glu Tyr Phe Gln Ser
Ser Cys Tyr Phe Phe Ser Thr 85 90
95 Asp Thr Ile Ser Trp Ala Leu Ser Leu Lys Asn Cys Ser Ala
Met Gly 100 105 110
Ala His Leu Val Val Ile Asn Ser Gln Glu Glu Gln Glu Phe Leu Ser
115 120 125 Tyr Lys Lys Pro
Lys Met Arg Glu Phe Phe Ile Gly Leu Ser Asp Gln 130
135 140 Val Val Glu Gly Gln Trp Gln Trp
Val Asp Gly Thr Pro Leu Thr Lys 145 150
155 160 Ser Leu Ser Phe Trp Asp Val Gly Glu Pro Asn Asn
Ile Ala Thr Leu 165 170
175 Glu Asp Cys Ala Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp
180 185 190 Asn Asp Val
Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val 195
200 205 Gly Ile Asn Pro Leu Asn Lys Gly
Lys Ser Leu 210 215 70237PRTHomo
sapiens 70Met Ala Gln Pro Ile Leu Gly His Gly Ser Leu Gln Pro Ala Ser Ala
1 5 10 15 Ala Gly
Leu Ala Ser Leu Glu Leu Asp Ser Ser Leu Asp Gln Tyr Val 20
25 30 Gln Ile Arg Ile Phe Lys Ile
Ile Val Ile Gly Asp Ser Asn Val Gly 35 40
45 Lys Thr Cys Leu Thr Phe Arg Phe Cys Gly Gly Thr
Phe Pro Asp Lys 50 55 60
Thr Glu Ala Thr Ile Gly Val Asp Phe Arg Glu Lys Thr Val Glu Ile 65
70 75 80 Glu Gly Glu
Lys Ile Lys Val Gln Val Trp Asp Thr Ala Gly Gln Glu 85
90 95 Arg Phe Arg Lys Ser Met Val Glu
His Tyr Tyr Arg Asn Val His Ala 100 105
110 Val Val Phe Val Tyr Asp Val Thr Lys Met Thr Ser Phe
Thr Asn Leu 115 120 125
Lys Met Trp Ile Gln Glu Cys Asn Gly His Ala Val Pro Pro Leu Val 130
135 140 Pro Lys Val Leu
Val Gly Asn Lys Cys Asp Leu Arg Glu Gln Ile Gln 145 150
155 160 Val Pro Ser Asn Leu Ala Leu Lys Phe
Ala Asp Ala His Asn Met Leu 165 170
175 Leu Phe Glu Thr Ser Ala Lys Asp Pro Lys Glu Ser Gln Asn
Val Glu 180 185 190
Ser Ile Phe Met Cys Leu Ala Cys Arg Leu Lys Ala Gln Lys Ser Leu
195 200 205 Leu Tyr Arg Asp
Ala Glu Arg Gln Gln Gly Lys Val Gln Lys Leu Glu 210
215 220 Phe Pro Gln Glu Ala Asn Ser Lys
Thr Ser Cys Pro Cys 225 230 235
71252PRTHomo sapiens 71Met Glu Asp Gly Val Ala Gly Pro Gln Leu Gly Ala
Ala Ala Glu Ala 1 5 10
15 Ala Glu Ala Ala Glu Ala Arg Ala Arg Pro Gly Val Thr Leu Arg Pro
20 25 30 Phe Ala Pro
Leu Ser Gly Ala Ala Glu Ala Asp Glu Gly Gly Gly Asp 35
40 45 Trp Ser Phe Ile Asp Cys Glu Met
Glu Glu Val Asp Leu Gln Asp Leu 50 55
60 Pro Ser Ala Thr Ile Ala Cys His Leu Asp Pro Arg Val
Phe Val Asp 65 70 75
80 Gly Leu Cys Arg Ala Lys Phe Glu Ser Leu Phe Arg Thr Tyr Asp Lys
85 90 95 Asp Ile Thr Phe
Gln Tyr Phe Lys Ser Phe Lys Arg Val Arg Ile Asn 100
105 110 Phe Ser Asn Pro Phe Ser Ala Ala Asp
Ala Arg Leu Gln Leu His Lys 115 120
125 Thr Glu Phe Leu Gly Lys Glu Met Lys Leu Tyr Phe Ala Gln
Thr Leu 130 135 140
His Ile Gly Ser Ser His Leu Ala Pro Pro Asn Pro Asp Lys Gln Phe 145
150 155 160 Leu Ile Ser Pro Pro
Ala Ser Pro Pro Val Gly Trp Lys Gln Val Glu 165
170 175 Asp Ala Thr Pro Val Ile Asn Tyr Asp Leu
Leu Tyr Ala Ile Ser Lys 180 185
190 Leu Gly Pro Gly Glu Lys Tyr Glu Leu His Ala Ala Thr Asp Thr
Thr 195 200 205 Pro
Ser Val Val Val His Val Cys Glu Ser Asp Gln Glu Lys Glu Glu 210
215 220 Glu Glu Glu Met Glu Arg
Met Arg Arg Pro Lys Pro Lys Ile Ile Gln 225 230
235 240 Thr Arg Arg Pro Glu Tyr Thr Pro Ile His Leu
Ser 245 250 72198PRTHomo sapiens
72Met Lys Leu Tyr Ser Leu Ser Val Leu Tyr Lys Gly Glu Ala Lys Val 1
5 10 15 Val Leu Leu Lys
Ala Ala Tyr Asp Val Ser Ser Phe Ser Phe Phe Gln 20
25 30 Arg Ser Ser Val Gln Glu Phe Met Thr
Phe Thr Ser Gln Leu Ile Val 35 40
45 Glu Arg Ser Ser Lys Gly Thr Arg Ala Ser Val Lys Glu Gln
Asp Tyr 50 55 60
Leu Cys His Val Tyr Val Arg Asn Asp Ser Leu Ala Gly Val Val Ile 65
70 75 80 Ala Asp Asn Glu Tyr
Pro Ser Arg Val Ala Phe Thr Leu Leu Glu Lys 85
90 95 Val Leu Asp Glu Phe Ser Lys Gln Val Asp
Arg Ile Asp Trp Pro Val 100 105
110 Gly Ser Pro Ala Thr Ile His Tyr Pro Ala Leu Asp Gly His Leu
Ser 115 120 125 Arg
Tyr Gln Asn Pro Arg Glu Ala Asp Pro Met Thr Lys Val Gln Ala 130
135 140 Glu Leu Asp Glu Thr Lys
Ile Ile Leu His Asn Thr Met Glu Ser Leu 145 150
155 160 Leu Glu Arg Gly Glu Lys Leu Asp Asp Leu Val
Ser Lys Ser Glu Val 165 170
175 Leu Gly Thr Gln Ser Lys Ala Phe Tyr Lys Thr Ala Arg Lys Gln Asn
180 185 190 Ser Cys
Cys Ala Ile Met 195 73892PRTHomo sapiens 73Met Asp
His Tyr Asp Ser Gln Gln Thr Asn Asp Tyr Met Gln Pro Glu 1 5
10 15 Glu Asp Trp Asp Arg Asp Leu
Leu Leu Asp Pro Ala Trp Glu Lys Gln 20 25
30 Gln Arg Lys Thr Phe Thr Ala Trp Cys Asn Ser His
Leu Arg Lys Ala 35 40 45
Gly Thr Gln Ile Glu Asn Ile Glu Glu Asp Phe Arg Asp Gly Leu Lys
50 55 60 Leu Met Leu
Leu Leu Glu Val Ile Ser Gly Glu Arg Leu Ala Lys Pro 65
70 75 80 Glu Arg Gly Lys Met Arg Val
His Lys Ile Ser Asn Val Asn Lys Ala 85
90 95 Leu Asp Phe Ile Ala Ser Lys Gly Val Lys Leu
Val Ser Ile Gly Ala 100 105
110 Glu Glu Ile Val Asp Gly Asn Val Lys Met Thr Leu Gly Met Ile
Trp 115 120 125 Thr
Ile Ile Leu Arg Phe Ala Ile Gln Asp Ile Ser Val Glu Glu Thr 130
135 140 Ser Ala Lys Glu Gly Leu
Leu Leu Trp Cys Gln Arg Lys Thr Ala Pro 145 150
155 160 Tyr Lys Asn Val Asn Ile Gln Asn Phe His Ile
Ser Trp Lys Asp Gly 165 170
175 Leu Gly Phe Cys Ala Leu Ile His Arg His Arg Pro Glu Leu Ile Asp
180 185 190 Tyr Gly
Lys Leu Arg Lys Asp Asp Pro Leu Thr Asn Leu Asn Thr Ala 195
200 205 Phe Asp Val Ala Glu Lys Tyr
Leu Asp Ile Pro Lys Met Leu Asp Ala 210 215
220 Glu Asp Ile Val Gly Thr Ala Arg Pro Asp Glu Lys
Ala Ile Met Thr 225 230 235
240 Tyr Val Ser Ser Phe Tyr His Ala Phe Ser Gly Ala Gln Lys Ala Glu
245 250 255 Thr Ala Ala
Asn Arg Ile Cys Lys Val Leu Ala Val Asn Gln Glu Asn 260
265 270 Glu Gln Leu Met Glu Asp Tyr Glu
Lys Leu Ala Ser Asp Leu Leu Glu 275 280
285 Trp Ile Arg Arg Thr Ile Pro Trp Leu Glu Asn Arg Val
Pro Glu Asn 290 295 300
Thr Met His Ala Met Gln Gln Lys Leu Glu Asp Phe Arg Asp Tyr Arg 305
310 315 320 Arg Leu His Lys
Pro Pro Lys Val Gln Glu Lys Cys Gln Leu Glu Ile 325
330 335 Asn Phe Asn Thr Leu Gln Thr Lys Leu
Arg Leu Ser Asn Arg Pro Ala 340 345
350 Phe Met Pro Ser Glu Gly Arg Met Val Ser Asp Ile Asn Asn
Ala Trp 355 360 365
Gly Cys Leu Glu Gln Val Glu Lys Gly Tyr Glu Glu Trp Leu Leu Asn 370
375 380 Glu Ile Arg Arg Leu
Glu Arg Leu Asp His Leu Ala Glu Lys Phe Arg 385 390
395 400 Gln Lys Ala Ser Ile His Glu Ala Trp Thr
Asp Gly Lys Glu Ala Met 405 410
415 Leu Arg Gln Lys Asp Tyr Glu Thr Ala Thr Leu Ser Glu Ile Lys
Ala 420 425 430 Leu
Leu Lys Lys His Glu Ala Phe Glu Ser Asp Leu Ala Ala His Gln 435
440 445 Asp Arg Val Glu Gln Ile
Ala Ala Ile Ala Gln Glu Leu Asn Glu Leu 450 455
460 Asp Tyr Tyr Asp Ser Pro Ser Val Asn Ala Arg
Cys Gln Lys Ile Cys 465 470 475
480 Asp Gln Trp Asp Asn Leu Gly Ala Leu Thr Gln Lys Arg Arg Glu Ala
485 490 495 Leu Glu
Arg Thr Glu Lys Leu Leu Glu Thr Ile Asp Gln Leu Tyr Leu 500
505 510 Glu Tyr Ala Lys Arg Ala Ala
Pro Phe Asn Asn Trp Met Glu Gly Ala 515 520
525 Met Glu Asp Leu Gln Asp Thr Phe Ile Val His Thr
Ile Glu Glu Ile 530 535 540
Gln Gly Leu Thr Thr Ala His Glu Gln Phe Lys Ala Thr Leu Pro Asp 545
550 555 560 Ala Asp Lys
Glu Arg Leu Ala Ile Leu Gly Ile His Asn Glu Val Ser 565
570 575 Lys Ile Val Gln Thr Tyr His Val
Asn Met Ala Gly Thr Asn Pro Tyr 580 585
590 Thr Thr Ile Thr Pro Gln Glu Ile Asn Gly Lys Trp Asp
His Val Arg 595 600 605
Gln Leu Val Pro Arg Arg Asp Gln Ala Leu Thr Glu Glu His Ala Arg 610
615 620 Gln Gln His Asn
Glu Arg Leu Arg Lys Gln Phe Gly Ala Gln Ala Asn 625 630
635 640 Val Ile Gly Pro Trp Ile Gln Thr Lys
Met Glu Glu Ile Gly Arg Ile 645 650
655 Ser Ile Glu Met His Gly Thr Leu Glu Asp Gln Leu Ser His
Leu Arg 660 665 670
Gln Tyr Glu Lys Ser Ile Val Asn Tyr Lys Pro Lys Ile Asp Gln Leu
675 680 685 Glu Gly Asp His
Gln Leu Ile Gln Glu Ala Leu Ile Phe Asp Asn Lys 690
695 700 His Thr Asn Tyr Thr Met Glu His
Ile Arg Val Gly Trp Glu Gln Leu 705 710
715 720 Leu Thr Thr Ile Ala Arg Thr Ile Asn Glu Val Glu
Asn Gln Ile Leu 725 730
735 Thr Arg Asp Ala Lys Gly Ile Ser Gln Glu Gln Met Asn Glu Phe Arg
740 745 750 Ala Ser Phe
Asn His Phe Asp Arg Asp His Ser Gly Thr Leu Gly Pro 755
760 765 Glu Glu Phe Lys Ala Cys Leu Ile
Ser Leu Gly Tyr Asp Ile Gly Asn 770 775
780 Asp Pro Gln Gly Glu Ala Glu Phe Ala Arg Ile Met Ser
Ile Val Asp 785 790 795
800 Pro Asn Arg Leu Gly Val Val Thr Phe Gln Ala Phe Ile Asp Phe Met
805 810 815 Ser Arg Glu Thr
Ala Asp Thr Asp Thr Ala Asp Gln Val Met Ala Ser 820
825 830 Phe Lys Ile Leu Ala Gly Asp Lys Asn
Tyr Ile Thr Met Asp Glu Leu 835 840
845 Arg Arg Glu Leu Pro Pro Asp Gln Ala Glu Tyr Cys Ile Ala
Arg Met 850 855 860
Ala Pro Tyr Thr Gly Pro Asp Ser Val Pro Gly Ala Leu Asp Tyr Met 865
870 875 880 Ser Phe Ser Thr Ala
Leu Tyr Gly Glu Ser Asp Leu 885 890
74633PRTHomo sapiens 74Met Pro Ser Cys Gly Ala Cys Thr Cys Gly Ala Ala
Ala Val Arg Leu 1 5 10
15 Ile Thr Ser Ser Leu Ala Ser Ala Gln Arg Gly Ile Ser Gly Gly Arg
20 25 30 Ile His Met
Ser Val Leu Gly Arg Leu Gly Thr Phe Glu Thr Gln Ile 35
40 45 Leu Gln Arg Ala Pro Leu Arg Ser
Phe Thr Glu Thr Pro Ala Tyr Phe 50 55
60 Ala Ser Lys Asp Gly Ile Ser Lys Asp Gly Ser Gly Asp
Gly Asn Lys 65 70 75
80 Lys Ser Ala Ser Glu Gly Ser Ser Lys Lys Ser Gly Ser Gly Asn Ser
85 90 95 Gly Lys Gly Gly
Asn Gln Leu Arg Cys Pro Lys Cys Gly Asp Leu Cys 100
105 110 Thr His Val Glu Thr Phe Val Ser Ser
Thr Arg Phe Val Lys Cys Glu 115 120
125 Lys Cys His His Phe Phe Val Val Leu Ser Glu Ala Asp Ser
Lys Lys 130 135 140
Ser Ile Ile Lys Glu Pro Glu Ser Ala Ala Glu Ala Val Lys Leu Ala 145
150 155 160 Phe Gln Gln Lys Pro
Pro Pro Pro Pro Lys Lys Ile Tyr Asn Tyr Leu 165
170 175 Asp Lys Tyr Val Val Gly Gln Ser Phe Ala
Lys Lys Val Leu Ser Val 180 185
190 Ala Val Tyr Asn His Tyr Lys Arg Ile Tyr Asn Asn Ile Pro Ala
Asn 195 200 205 Leu
Arg Gln Gln Ala Glu Val Glu Lys Gln Thr Ser Leu Thr Pro Arg 210
215 220 Glu Leu Glu Ile Arg Arg
Arg Glu Asp Glu Tyr Arg Phe Thr Lys Leu 225 230
235 240 Leu Gln Ile Ala Gly Ile Ser Pro His Gly Asn
Ala Leu Gly Ala Ser 245 250
255 Met Gln Gln Gln Val Asn Gln Gln Ile Pro Gln Glu Lys Arg Gly Gly
260 265 270 Glu Val
Leu Asp Ser Ser His Asp Asp Ile Lys Leu Glu Lys Ser Asn 275
280 285 Ile Leu Leu Leu Gly Pro Thr
Gly Ser Gly Lys Thr Leu Leu Ala Gln 290 295
300 Thr Leu Ala Lys Cys Leu Asp Val Pro Phe Ala Ile
Cys Asp Cys Thr 305 310 315
320 Thr Leu Thr Gln Ala Gly Tyr Val Gly Glu Asp Ile Glu Ser Val Ile
325 330 335 Ala Lys Leu
Leu Gln Asp Ala Asn Tyr Asn Val Glu Lys Ala Gln Gln 340
345 350 Gly Ile Val Phe Leu Asp Glu Val
Asp Lys Ile Gly Ser Val Pro Gly 355 360
365 Ile His Gln Leu Arg Asp Val Gly Gly Glu Gly Val Gln
Gln Gly Leu 370 375 380
Leu Lys Leu Leu Glu Gly Thr Ile Val Asn Val Pro Glu Lys Asn Ser 385
390 395 400 Arg Lys Leu Arg
Gly Glu Thr Val Gln Val Asp Thr Thr Asn Ile Leu 405
410 415 Phe Val Ala Ser Gly Ala Phe Asn Gly
Leu Asp Arg Ile Ile Ser Arg 420 425
430 Arg Lys Asn Glu Lys Tyr Leu Gly Phe Gly Thr Pro Ser Asn
Leu Gly 435 440 445
Lys Gly Arg Arg Ala Ala Ala Ala Ala Asp Leu Ala Asn Arg Ser Gly 450
455 460 Glu Ser Asn Thr His
Gln Asp Ile Glu Glu Lys Asp Arg Leu Leu Arg 465 470
475 480 His Val Glu Ala Arg Asp Leu Ile Glu Phe
Gly Met Ile Pro Glu Phe 485 490
495 Val Gly Arg Leu Pro Val Val Val Pro Leu His Ser Leu Asp Glu
Lys 500 505 510 Thr
Leu Val Gln Ile Leu Thr Glu Pro Arg Asn Ala Val Ile Pro Gln 515
520 525 Tyr Gln Ala Leu Phe Ser
Met Asp Lys Cys Glu Leu Asn Val Thr Glu 530 535
540 Asp Ala Leu Lys Ala Ile Ala Arg Leu Ala Leu
Glu Arg Lys Thr Gly 545 550 555
560 Ala Arg Gly Leu Arg Ser Ile Met Glu Lys Leu Leu Leu Glu Pro Met
565 570 575 Phe Glu
Val Pro Asn Ser Asp Ile Val Cys Val Glu Val Asp Lys Glu 580
585 590 Val Val Glu Gly Lys Lys Glu
Pro Gly Tyr Ile Arg Ala Pro Thr Lys 595 600
605 Glu Ser Ser Glu Glu Glu Tyr Asp Ser Gly Val Glu
Glu Glu Gly Trp 610 615 620
Pro Arg Gln Ala Asp Ala Ala Asn Ser 625 630
75260PRTHomo sapiens 75Met Ser His His Trp Gly Tyr Gly Lys His Asn
Gly Pro Glu His Trp 1 5 10
15 His Lys Asp Phe Pro Ile Ala Lys Gly Glu Arg Gln Ser Pro Val Asp
20 25 30 Ile Asp
Thr His Thr Ala Lys Tyr Asp Pro Ser Leu Lys Pro Leu Ser 35
40 45 Val Ser Tyr Asp Gln Ala Thr
Ser Leu Arg Ile Leu Asn Asn Gly His 50 55
60 Ala Phe Asn Val Glu Phe Asp Asp Ser Gln Asp Lys
Ala Val Leu Lys 65 70 75
80 Gly Gly Pro Leu Asp Gly Thr Tyr Arg Leu Ile Gln Phe His Phe His
85 90 95 Trp Gly Ser
Leu Asp Gly Gln Gly Ser Glu His Thr Val Asp Lys Lys 100
105 110 Lys Tyr Ala Ala Glu Leu His Leu
Val His Trp Asn Thr Lys Tyr Gly 115 120
125 Asp Phe Gly Lys Ala Val Gln Gln Pro Asp Gly Leu Ala
Val Leu Gly 130 135 140
Ile Phe Leu Lys Val Gly Ser Ala Lys Pro Gly Leu Gln Lys Val Val 145
150 155 160 Asp Val Leu Asp
Ser Ile Lys Thr Lys Gly Lys Ser Ala Asp Phe Thr 165
170 175 Asn Phe Asp Pro Arg Gly Leu Leu Pro
Glu Ser Leu Asp Tyr Trp Thr 180 185
190 Tyr Pro Gly Ser Leu Thr Thr Pro Pro Leu Leu Glu Cys Val
Thr Trp 195 200 205
Ile Val Leu Lys Glu Pro Ile Ser Val Ser Ser Glu Gln Val Leu Lys 210
215 220 Phe Arg Lys Leu Asn
Phe Asn Gly Glu Gly Glu Pro Glu Glu Leu Met 225 230
235 240 Val Asp Asn Trp Arg Pro Ala Gln Pro Leu
Lys Asn Arg Gln Ile Lys 245 250
255 Ala Ser Phe Lys 260 76201PRTHomo sapiens 76Met
Phe Pro Glu Gln Gln Lys Glu Glu Phe Val Ser Val Trp Val Arg 1
5 10 15 Asp Pro Arg Ile Gln Lys
Glu Asp Phe Trp His Ser Tyr Ile Asp Tyr 20
25 30 Glu Ile Cys Ile His Thr Asn Ser Met Cys
Phe Thr Met Lys Thr Ser 35 40
45 Cys Val Arg Arg Arg Tyr Arg Glu Phe Val Trp Leu Arg Gln
Arg Leu 50 55 60
Gln Ser Asn Ala Leu Leu Val Gln Leu Pro Glu Leu Pro Ser Lys Asn 65
70 75 80 Leu Phe Phe Asn Met
Asn Asn Arg Gln His Val Asp Gln Arg Arg Gln 85
90 95 Gly Leu Glu Asp Phe Leu Arg Lys Val Leu
Gln Asn Ala Leu Leu Leu 100 105
110 Ser Asp Ser Ser Leu His Leu Phe Leu Gln Ser His Leu Asn Ser
Glu 115 120 125 Asp
Ile Glu Ala Cys Val Ser Gly Gln Thr Lys Tyr Ser Val Glu Glu 130
135 140 Ala Ile His Lys Phe Ala
Leu Met Asn Arg Arg Phe Pro Glu Glu Asp 145 150
155 160 Glu Glu Gly Lys Lys Glu Asn Asp Ile Asp Tyr
Asp Ser Glu Ser Ser 165 170
175 Ser Ser Gly Leu Gly His Ser Ser Asp Asp Ser Ser Ser His Gly Cys
180 185 190 Lys Val
Asn Thr Ala Pro Gln Glu Ser 195 200
77651PRTHomo sapiens 77Met Leu Arg Leu Gln Met Thr Asp Gly His Ile Ser
Cys Thr Ala Val 1 5 10
15 Glu Phe Ser Tyr Met Ser Lys Ile Ser Leu Asn Thr Pro Pro Gly Thr
20 25 30 Lys Val Lys
Leu Ser Gly Ile Val Asp Ile Lys Asn Gly Phe Leu Leu 35
40 45 Leu Asn Asp Ser Asn Thr Thr Val
Leu Gly Gly Glu Val Glu His Leu 50 55
60 Ile Glu Lys Trp Glu Leu Gln Arg Ser Leu Ser Lys His
Asn Arg Ser 65 70 75
80 Asn Ile Gly Thr Glu Gly Gly Pro Pro Pro Phe Val Pro Phe Gly Gln
85 90 95 Lys Cys Val Ser
His Val Gln Val Asp Ser Arg Glu Leu Asp Arg Arg 100
105 110 Lys Thr Leu Gln Val Thr Met Pro Val
Lys Pro Thr Asn Asp Asn Asp 115 120
125 Glu Phe Glu Lys Gln Arg Thr Ala Ala Ile Ala Glu Val Ala
Lys Ser 130 135 140
Lys Glu Thr Lys Thr Phe Gly Gly Gly Gly Gly Gly Ala Arg Ser Asn 145
150 155 160 Leu Asn Met Asn Ala
Ala Gly Asn Arg Asn Arg Glu Val Leu Gln Lys 165
170 175 Glu Lys Ser Thr Lys Ser Glu Gly Lys His
Glu Gly Val Tyr Arg Glu 180 185
190 Leu Val Asp Glu Lys Ala Leu Lys His Ile Thr Glu Met Gly Phe
Ser 195 200 205 Lys
Glu Ala Ser Arg Gln Ala Leu Met Asp Asn Gly Asn Asn Leu Glu 210
215 220 Ala Ala Leu Asn Val Leu
Leu Thr Ser Asn Lys Gln Lys Pro Val Met 225 230
235 240 Gly Pro Pro Leu Arg Gly Arg Gly Lys Gly Arg
Gly Arg Ile Arg Ser 245 250
255 Glu Asp Glu Glu Asp Leu Gly Asn Ala Arg Pro Ser Ala Pro Ser Thr
260 265 270 Leu Phe
Asp Phe Leu Glu Ser Lys Met Gly Thr Leu Asn Val Glu Glu 275
280 285 Pro Lys Ser Gln Pro Gln Gln
Leu His Gln Gly Gln Tyr Arg Ser Ser 290 295
300 Asn Thr Glu Gln Asn Gly Val Lys Asp Asn Asn His
Leu Arg His Pro 305 310 315
320 Pro Arg Asn Asp Thr Arg Gln Pro Arg Asn Glu Lys Pro Pro Arg Phe
325 330 335 Gln Arg Asp
Ser Gln Asn Ser Lys Ser Val Leu Glu Gly Ser Gly Leu 340
345 350 Pro Arg Asn Arg Gly Ser Glu Arg
Pro Ser Thr Ser Ser Val Ser Glu 355 360
365 Val Trp Ala Glu Asp Arg Ile Lys Cys Asp Arg Pro Tyr
Ser Arg Tyr 370 375 380
Asp Arg Thr Lys Asp Thr Ser Tyr Pro Leu Gly Ser Gln His Ser Asp 385
390 395 400 Gly Ala Phe Lys
Lys Arg Asp Asn Ser Met Gln Ser Arg Ser Gly Lys 405
410 415 Gly Pro Ser Phe Ala Glu Ala Lys Glu
Asn Pro Leu Pro Gln Gly Ser 420 425
430 Val Asp Tyr Asn Asn Gln Lys Arg Gly Lys Arg Glu Ser Gln
Thr Ser 435 440 445
Ile Pro Asp Tyr Phe Tyr Asp Arg Lys Ser Gln Thr Ile Asn Asn Glu 450
455 460 Ala Phe Ser Gly Ile
Lys Ile Glu Lys His Phe Asn Val Asn Thr Asp 465 470
475 480 Tyr Gln Asn Pro Val Arg Ser Asn Ser Phe
Ile Gly Val Pro Asn Gly 485 490
495 Glu Val Glu Met Pro Leu Lys Gly Arg Arg Ile Gly Pro Ile Lys
Pro 500 505 510 Ala
Gly Pro Val Thr Ala Val Pro Cys Asp Asp Lys Ile Phe Tyr Asn 515
520 525 Ser Gly Pro Lys Arg Arg
Ser Gly Pro Ile Lys Pro Glu Lys Ile Leu 530 535
540 Glu Ser Ser Ile Pro Met Glu Tyr Ala Lys Met
Trp Lys Pro Gly Asp 545 550 555
560 Glu Cys Phe Ala Leu Tyr Trp Glu Asp Asn Lys Phe Tyr Arg Ala Glu
565 570 575 Val Glu
Ala Leu His Ser Ser Gly Met Thr Ala Val Val Lys Phe Ile 580
585 590 Asp Tyr Gly Asn Tyr Glu Glu
Val Leu Leu Ser Asn Ile Lys Pro Ile 595 600
605 Gln Thr Glu Ala Trp Glu Glu Glu Gly Thr Tyr Asp
Gln Thr Leu Glu 610 615 620
Phe Arg Arg Gly Gly Asp Gly Gln Pro Arg Arg Ser Thr Arg Pro Thr 625
630 635 640 Gln Gln Phe
Tyr Gln Pro Pro Arg Ala Arg Asn 645 650
78381PRTHomo sapiensXaa(59)..(59)Xaa is a
selenocysteineXaa(300)..(300)Xaa is a selenocysteineXaa(318)..(318)Xaa is
a selenocysteineXaa(330)..(330)Xaa is a selenocysteineXaa(345)..(345)Xaa
is a selenocysteineXaa(352)..(352)Xaa is a
selenocysteineXaa(367)..(367)Xaa is a selenocysteineXaa(369)..(369)Xaa is
a selenocysteineXaa(376)..(376)Xaa is a selenocysteineXaa(378)..(378)Xaa
is a selenocysteine 78Met Trp Arg Ser Leu Gly Leu Ala Leu Ala Leu Cys Leu
Leu Pro Ser 1 5 10 15
Gly Gly Thr Glu Ser Gln Asp Gln Ser Ser Leu Cys Lys Gln Pro Pro
20 25 30 Ala Trp Ser Ile
Arg Asp Gln Asp Pro Met Leu Asn Ser Asn Gly Ser 35
40 45 Val Thr Val Val Ala Leu Leu Gln Ala
Ser Xaa Tyr Leu Cys Ile Leu 50 55
60 Gln Ala Ser Lys Leu Glu Asp Leu Arg Val Lys Leu Lys
Lys Glu Gly 65 70 75
80 Tyr Ser Asn Ile Ser Tyr Ile Val Val Asn His Gln Gly Ile Ser Ser
85 90 95 Arg Leu Lys Tyr
Thr His Leu Lys Asn Lys Val Ser Glu His Ile Pro 100
105 110 Val Tyr Gln Gln Glu Glu Asn Gln Thr
Asp Val Trp Thr Leu Leu Asn 115 120
125 Gly Ser Lys Asp Asp Phe Leu Ile Tyr Asp Arg Cys Gly Arg
Leu Val 130 135 140
Tyr His Leu Gly Leu Pro Phe Ser Phe Leu Thr Phe Pro Tyr Val Glu 145
150 155 160 Glu Ala Ile Lys Ile
Ala Tyr Cys Glu Lys Lys Cys Gly Asn Cys Ser 165
170 175 Leu Thr Thr Leu Lys Asp Glu Asp Phe Cys
Lys Arg Val Ser Leu Ala 180 185
190 Thr Val Asp Lys Thr Val Glu Thr Pro Ser Pro His Tyr His His
Glu 195 200 205 His
His His Asn His Gly His Gln His Leu Gly Ser Ser Glu Leu Ser 210
215 220 Glu Asn Gln Gln Pro Gly
Ala Pro Asn Ala Pro Thr His Pro Ala Pro 225 230
235 240 Pro Gly Leu His His His His Lys His Lys Gly
Gln His Arg Gln Gly 245 250
255 His Pro Glu Asn Arg Asp Met Pro Ala Ser Glu Asp Leu Gln Asp Leu
260 265 270 Gln Lys
Lys Leu Cys Arg Lys Arg Cys Ile Asn Gln Leu Leu Cys Lys 275
280 285 Leu Pro Thr Asp Ser Glu Leu
Ala Pro Arg Ser Xaa Cys Cys His Cys 290 295
300 Arg His Leu Ile Phe Glu Lys Thr Gly Ser Ala Ile
Thr Xaa Gln Cys 305 310 315
320 Lys Glu Asn Leu Pro Ser Leu Cys Ser Xaa Gln Gly Leu Arg Ala Glu
325 330 335 Glu Asn Ile
Thr Glu Ser Cys Gln Xaa Arg Leu Pro Pro Ala Ala Xaa 340
345 350 Gln Ile Ser Gln Gln Leu Ile Pro
Thr Glu Ala Ser Ala Ser Xaa Arg 355 360
365 Xaa Lys Asn Gln Ala Lys Lys Xaa Glu Xaa Pro Ser Asn
370 375 380 79153PRTHomo sapiens
79Met His Tyr Val His Val His Arg Val Thr Thr Gln Pro Arg Asn Lys 1
5 10 15 Pro Gln Thr Lys
Cys Pro Ser Gly Gly Gln Ser Gln Gly Pro Arg Gly 20
25 30 Gln Phe Leu Asp Thr Val Leu Ala Ala
Met Cys Pro Ile Ala Met Leu 35 40
45 Leu Thr Ala Asp Pro Gly Met Pro Pro Thr Cys Leu Trp His
Thr Pro 50 55 60
His Ala Lys His Lys Glu His Leu Ser Ile His Leu Asn Met Val Pro 65
70 75 80 Lys Cys Val His Met
His Val Thr His Thr His Thr Asn Ser Gly Ser 85
90 95 Arg Tyr Val Gly Lys Tyr Ile Leu Leu Ile
Lys Trp Ser Leu Ala Met 100 105
110 Tyr Phe Val Gln Gly Ser Thr Leu Ser Thr Val Thr Lys Met Ser
His 115 120 125 Gly
Lys Ala Leu Pro Asp Ser Asp Thr Tyr Ile Gln Phe Pro Asn Gln 130
135 140 Gln Gly Pro His Thr Pro
Ser Ile Pro 145 150 80766PRTHomo sapiens
80Met Lys Thr Pro Trp Lys Val Leu Leu Gly Leu Leu Gly Ala Ala Ala 1
5 10 15 Leu Val Thr Ile
Ile Thr Val Pro Val Val Leu Leu Asn Lys Gly Thr 20
25 30 Asp Asp Ala Thr Ala Asp Ser Arg Lys
Thr Tyr Thr Leu Thr Asp Tyr 35 40
45 Leu Lys Asn Thr Tyr Arg Leu Lys Leu Tyr Ser Leu Arg Trp
Ile Ser 50 55 60
Asp His Glu Tyr Leu Tyr Lys Gln Glu Asn Asn Ile Leu Val Phe Asn 65
70 75 80 Ala Glu Tyr Gly Asn
Ser Ser Val Phe Leu Glu Asn Ser Thr Phe Asp 85
90 95 Glu Phe Gly His Ser Ile Asn Asp Tyr Ser
Ile Ser Pro Asp Gly Gln 100 105
110 Phe Ile Leu Leu Glu Tyr Asn Tyr Val Lys Gln Trp Arg His Ser
Tyr 115 120 125 Thr
Ala Ser Tyr Asp Ile Tyr Asp Leu Asn Lys Arg Gln Leu Ile Thr 130
135 140 Glu Glu Arg Ile Pro Asn
Asn Thr Gln Trp Val Thr Trp Ser Pro Val 145 150
155 160 Gly His Lys Leu Ala Tyr Val Trp Asn Asn Asp
Ile Tyr Val Lys Ile 165 170
175 Glu Pro Asn Leu Pro Ser Tyr Arg Ile Thr Trp Thr Gly Lys Glu Asp
180 185 190 Ile Ile
Tyr Asn Gly Ile Thr Asp Trp Val Tyr Glu Glu Glu Val Phe 195
200 205 Ser Ala Tyr Ser Ala Leu Trp
Trp Ser Pro Asn Gly Thr Phe Leu Ala 210 215
220 Tyr Ala Gln Phe Asn Asp Thr Glu Val Pro Leu Ile
Glu Tyr Ser Phe 225 230 235
240 Tyr Ser Asp Glu Ser Leu Gln Tyr Pro Lys Thr Val Arg Val Pro Tyr
245 250 255 Pro Lys Ala
Gly Ala Val Asn Pro Thr Val Lys Phe Phe Val Val Asn 260
265 270 Thr Asp Ser Leu Ser Ser Val Thr
Asn Ala Thr Ser Ile Gln Ile Thr 275 280
285 Ala Pro Ala Ser Met Leu Ile Gly Asp His Tyr Leu Cys
Asp Val Thr 290 295 300
Trp Ala Thr Gln Glu Arg Ile Ser Leu Gln Trp Leu Arg Arg Ile Gln 305
310 315 320 Asn Tyr Ser Val
Met Asp Ile Cys Asp Tyr Asp Glu Ser Ser Gly Arg 325
330 335 Trp Asn Cys Leu Val Ala Arg Gln His
Ile Glu Met Ser Thr Thr Gly 340 345
350 Trp Val Gly Arg Phe Arg Pro Ser Glu Pro His Phe Thr Leu
Asp Gly 355 360 365
Asn Ser Phe Tyr Lys Ile Ile Ser Asn Glu Glu Gly Tyr Arg His Ile 370
375 380 Cys Tyr Phe Gln Ile
Asp Lys Lys Asp Cys Thr Phe Ile Thr Lys Gly 385 390
395 400 Thr Trp Glu Val Ile Gly Ile Glu Ala Leu
Thr Ser Asp Tyr Leu Tyr 405 410
415 Tyr Ile Ser Asn Glu Tyr Lys Gly Met Pro Gly Gly Arg Asn Leu
Tyr 420 425 430 Lys
Ile Gln Leu Ser Asp Tyr Thr Lys Val Thr Cys Leu Ser Cys Glu 435
440 445 Leu Asn Pro Glu Arg Cys
Gln Tyr Tyr Ser Val Ser Phe Ser Lys Glu 450 455
460 Ala Lys Tyr Tyr Gln Leu Arg Cys Ser Gly Pro
Gly Leu Pro Leu Tyr 465 470 475
480 Thr Leu His Ser Ser Val Asn Asp Lys Gly Leu Arg Val Leu Glu Asp
485 490 495 Asn Ser
Ala Leu Asp Lys Met Leu Gln Asn Val Gln Met Pro Ser Lys 500
505 510 Lys Leu Asp Phe Ile Ile Leu
Asn Glu Thr Lys Phe Trp Tyr Gln Met 515 520
525 Ile Leu Pro Pro His Phe Asp Lys Ser Lys Lys Tyr
Pro Leu Leu Leu 530 535 540
Asp Val Tyr Ala Gly Pro Cys Ser Gln Lys Ala Asp Thr Val Phe Arg 545
550 555 560 Leu Asn Trp
Ala Thr Tyr Leu Ala Ser Thr Glu Asn Ile Ile Val Ala 565
570 575 Ser Phe Asp Gly Arg Gly Ser Gly
Tyr Gln Gly Asp Lys Ile Met His 580 585
590 Ala Ile Asn Arg Arg Leu Gly Thr Phe Glu Val Glu Asp
Gln Ile Glu 595 600 605
Ala Ala Arg Gln Phe Ser Lys Met Gly Phe Val Asp Asn Lys Arg Ile 610
615 620 Ala Ile Trp Gly
Trp Ser Tyr Gly Gly Tyr Val Thr Ser Met Val Leu 625 630
635 640 Gly Ser Gly Ser Gly Val Phe Lys Cys
Gly Ile Ala Val Ala Pro Val 645 650
655 Ser Arg Trp Glu Tyr Tyr Asp Ser Val Tyr Thr Glu Arg Tyr
Met Gly 660 665 670
Leu Pro Thr Pro Glu Asp Asn Leu Asp His Tyr Arg Asn Ser Thr Val
675 680 685 Met Ser Arg Ala
Glu Asn Phe Lys Gln Val Glu Tyr Leu Leu Ile His 690
695 700 Gly Thr Ala Asp Asp Asn Val His
Phe Gln Gln Ser Ala Gln Ile Ser 705 710
715 720 Lys Ala Leu Val Asp Val Gly Val Asp Phe Gln Ala
Met Trp Tyr Thr 725 730
735 Asp Glu Asp His Gly Ile Ala Ser Ser Thr Ala His Gln His Ile Tyr
740 745 750 Thr His Met
Ser His Phe Ile Lys Gln Cys Phe Ser Leu Pro 755
760 765 81146PRTHomo sapiens 81Met Ala Gly Pro Leu
Arg Ala Pro Leu Leu Leu Leu Ala Ile Leu Ala 1 5
10 15 Val Ala Leu Ala Val Ser Pro Ala Ala Gly
Ser Ser Pro Gly Lys Pro 20 25
30 Pro Arg Leu Val Gly Gly Pro Met Asp Ala Ser Val Glu Glu Glu
Gly 35 40 45 Val
Arg Arg Ala Leu Asp Phe Ala Val Gly Glu Tyr Asn Lys Ala Ser 50
55 60 Asn Asp Met Tyr His Ser
Arg Ala Leu Gln Val Val Arg Ala Arg Lys 65 70
75 80 Gln Ile Val Ala Gly Val Asn Tyr Phe Leu Asp
Val Glu Leu Gly Arg 85 90
95 Thr Thr Cys Thr Lys Thr Gln Pro Asn Leu Asp Asn Cys Pro Phe His
100 105 110 Asp Gln
Pro His Leu Lys Arg Lys Ala Phe Cys Ser Phe Gln Ile Tyr 115
120 125 Ala Val Pro Trp Gln Gly Thr
Met Thr Leu Ser Lys Ser Thr Cys Gln 130 135
140 Asp Ala 145 82326PRTMus musculus 82Met Glu
Gly Ser Leu Gln Leu Leu Ala Cys Leu Ala Cys Val Leu Gln 1 5
10 15 Met Gly Ser Leu Val Lys Thr
Arg Arg Asp Ala Ser Gly Asp Leu Leu 20 25
30 Asn Thr Glu Ala His Ser Ala Pro Ala Gln Arg Trp
Ser Met Gln Val 35 40 45
Pro Ala Glu Val Asn Ala Glu Ala Gly Asp Ala Ala Val Leu Pro Cys
50 55 60 Thr Phe Thr
His Pro His Arg His Tyr Asp Gly Pro Leu Thr Ala Ile 65
70 75 80 Trp Arg Ser Gly Glu Pro Tyr
Ala Gly Pro Gln Val Phe Arg Cys Thr 85
90 95 Ala Ala Pro Gly Ser Glu Leu Cys Gln Thr Ala
Leu Ser Leu His Gly 100 105
110 Arg Phe Arg Leu Leu Gly Asn Pro Arg Arg Asn Asp Leu Ser Leu
Arg 115 120 125 Val
Glu Arg Leu Ala Leu Ala Asp Ser Gly Arg Tyr Phe Cys Arg Val 130
135 140 Glu Phe Thr Gly Asp Ala
His Asp Arg Tyr Glu Ser Arg His Gly Val 145 150
155 160 Arg Leu Arg Val Thr Ala Ala Pro Arg Ile Val
Asn Ile Ser Val Leu 165 170
175 Pro Gly Pro Ala His Ala Phe Arg Ala Leu Cys Thr Ala Glu Gly Glu
180 185 190 Pro Pro
Pro Ala Leu Ala Trp Ser Gly Pro Ala Pro Gly Asn Ser Ser 195
200 205 Ala Ala Leu Gln Gly Gln Gly
His Gly Tyr Gln Val Thr Ala Glu Leu 210 215
220 Pro Ala Leu Thr Arg Asp Gly Arg Tyr Thr Cys Thr
Ala Ala Asn Ser 225 230 235
240 Leu Gly Arg Ala Glu Ala Ser Val Tyr Leu Phe Arg Phe His Gly Ala
245 250 255 Pro Gly Thr
Ser Thr Leu Ala Leu Leu Leu Gly Ala Leu Gly Leu Lys 260
265 270 Ala Leu Leu Leu Leu Gly Ile Leu
Gly Ala Arg Ala Thr Arg Arg Arg 275 280
285 Leu Asp His Leu Val Pro Gln Asp Thr Pro Pro Arg Ala
Asp Gln Asp 290 295 300
Thr Ser Pro Ile Trp Gly Ser Ala Glu Glu Ile Glu Asp Leu Lys Asp 305
310 315 320 Leu His Lys Leu
Gln Arg 325 83987DNAHomo sapiens 83atggaaaagt
ccatctggct gctggcctgc ttggcgtggg ttctcccgac aggctcattt 60gtgagaacta
aaatagatac tacggagaac ttgctcaaca cagaggtgca cagctcgcca 120gcgcagcgct
ggtccatgca ggtgccaccc gaggtgagcg cggaggcagg cgacgcggca 180gtgctgccct
gcaccttcac gcacccgcac cgccactacg acgggccgct gacggccatc 240tggcgcgcgg
gcgagcccta tgcgggcccg caggtgttcc gctgcgctgc ggcgcggggc 300agcgagctct
gccagacggc gctgagcctg cacggccgct tccggctgct gggcaacccg 360cgccgcaacg
acctctcgct gcgcgtcgag cgcctcgccc tggctgacga ccgccgctac 420ttctgccgcg
tcgagttcgc cggcgacgtc catgaccgct acgagagccg ccacggcgtc 480cggctgcacg
tgacagccgc gccgcggatc gtcaacatct cggtgctgcc cagtccggct 540cacgccttcc
gcgcgctctg cactgccgaa ggggagccgc cgcccgccct cgcctggtcc 600ggcccggccc
tgggcaacag cttggcagcc gtgcggagcc cgcgtgaggg tcacggccac 660ctagtgaccg
ccgaactgcc cgcactgacc catgacggcc gctacacgtg tacggccgcc 720aacagcctgg
gccgctccga ggccagcgtc tacctgttcc gcttccatgg cgccagcggg 780gcctcgacgg
tcgccctcct gctcggcgct ctcggcttca aggcgctgct gctgctcggg 840gtcctggccg
cccgcgctgc ccgccgccgc ccagagcatc tggacacccc ggacacccca 900ccacggtccc
aggcccagga gtccaattat gaaaatttga gccagatgaa cccccggagc 960ccaccagcca
ccatgtgctc accgtga 98784471DNAHomo
sapiens 84atgccggcgc tgctgcctgt ggcctcccgc cttttgttgc taccccgagt
cttgctgacc 60atggcctctg gaagccctcc gacccagccc tcgccggcct cggattccgg
ctctggctac 120gttccgggct cggtctctgc agcctttgtt acttgcccca acgagaaggt
cgccaaggag 180atcgccaggg ccgtggtgga gaagcgccta gcagcctgcg tcaacctcat
ccctcagatt 240acatccatct atgagtggaa agggaagatc gaggaagaca gtgaggtgct
gatgatgatt 300aaaacccaaa gttccttggt cccagctttg acagattttg ttcgttctgt
gcacccttac 360gaagtggccg aggtaattgc attgcctgtg gaacagggga actttccgta
cctgcagtgg 420gtgcgccagg tcacagagtc agtttctgac tctatcacag tcctgccatg a
47185437DNAHomo sapiensmisc_feature(30)..(30)n is a, c, g, or
tmisc_feature(177)..(177)n is a, c, g, or tmisc_feature(185)..(185)n is
a, c, g, or tmisc_feature(319)..(319)n is a, c, g, or
tmisc_feature(321)..(321)n is a, c, g, or tmisc_feature(350)..(350)n is
a, c, g, or tmisc_feature(386)..(386)n is a, c, g, or
tmisc_feature(389)..(389)n is a, c, g, or t 85catgtgccaa catgcaggtt
tgctcatatn tatacttttg ccatgttggt gtgctgcacc 60cattaactcg tcatttagca
ttaggtatat ttcttaatgc tatccctccc ccctccctcc 120accccacaac agtccccgct
ggtgtgtgat gttcccaaat tttttttttc tcatcancat 180tatcnctaaa caacattgaa
tgaaacaaca ttgaggatct gctatatttg aaaataaaaa 240tataactaaa aataatacaa
attttaaaaa tacagtgtaa caactattta catagaattt 300acattgtatt aggtattgna
ngtaatctag agttgattta aaggaggggn gtccaaactt 360ttggcttccc tgggccacac
tggaanaana attgtcttgg gctacccata aaatacacta 420acaatagctg ataacga
4378698DNAHomo sapiens
86gctgatttac agagtttcct ccttataata ttcaaatgtc cattttcaat aacagcaaca
60aactacaaag aaacaggaaa gtatggtcta ctcacaga
98
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20180372898 | 3D BLENDING AND ILLUMINATION OF SEISMIC VOLUMES FOR AUTOMATIC DERIVATION OF DISCONTINUITIES |
20180372897 | AUTOMATIC QUALITY CONTROL OF SEISMIC TRAVEL TIME |
20180372896 | METHOD OF PREDICTING PARAMETERS OF A GEOLOGICAL FORMATION |
20180372895 | Gel and Foam Seismic Streamer |
20180372894 | Acoustic sensor for rock crack detection |