Patent application title: PHARMACEUTICAL COMPOSITIONS AND METHODS TO VACCINATE AGAINST CANDIDIASIS
Inventors:
John E Edwards, Jr. (Palos Verdes Estates, CA, US)
John E Edwards, Jr. (Palos Verdes Estates, CA, US)
Scott G. Filler (Rancho Palos Verdes, CA, US)
Scott G. Filler (Rancho Palos Verdes, CA, US)
Donald C. Sheppard (Montreal, CA)
Ashraf S. Ibrahim (Irvine, CA, US)
Ashraf S. Ibrahim (Irvine, CA, US)
Yue Fu (Carson, CA, US)
Yue Fu (Carson, CA, US)
Brad J. Spellberg (Rancho Palos Verdes, CA, US)
Brad J. Spellberg (Rancho Palos Verdes, CA, US)
IPC8 Class: AA61K39395FI
USPC Class:
1 1
Class name:
Publication date: 2017-06-22
Patent application number: 20170173153
Abstract:
A Candida albicans bloodstream infections cause significant morbidity and
mortality in hospitalized patients. Filament formation and adherence to
host cells are critical virulence factors of C. albicans. Multiple
filamentation regulatory pathways have been discovered, however the
downstream effectors of these regulatory pathways remain unknown. The
cell surface proteins in the ALS group are downstream effectors of the
filamentation regulatory pathway. Particularly, Als1p mediates adherence
to endothelial cells in vitro and is required for virulence. The blocking
of adherence by the organism is described resulting from the use of a
composition and method disclosed herein. Specifically, a pharmaceutical
composition comprised of a gene, gene product, or specific antibody to
the ALS gene family is administered as a vaccine to generate an immune
response capable of blocking adherence of the organism.Claims:
1.-21. (canceled)
22. A monoclonal antibody against a Candida albicans agglutinin-like sequence 3 (ALS3) protein that specifically binds an epitope within amino acids 17 to 432 of SEQ ID NO: 12.
23. The monoclonal antibody of claim 22, wherein the monoclonal antibody inhibits filamentation of Candida albicans.
24. The monoclonal antibody of claim 22, wherein the monoclonal antibody is an IgG isotype.
25. A hybridoma cell line that produces the monoclonal antibody of claim 22.
26. A pharmaceutical composition comprising the monoclonal antibody of claim 22 and a pharmaceutically acceptable carrier.
27. The pharmaceutical composition of claim 26 further comprising polyclonal immunoglobulins against a Candida albicans ALS3 protein that specifically binds an epitope within amino acids 17 to 432 of SEQ ID NO: 12.
28. A method for treating candidiasis comprising administering the composition of claim 26 to a subject in need thereof.
29. The method of claim 28, wherein the composition comprises monoclonal antibodies.
30. The method of claim 29, wherein the monoclonal antibodies are an IgG isotype.
31. The method of claim 28, wherein the composition comprises polyclonal antibodies against a Candida albicans ALS3 protein that specifically binds an epitope within amino acids 17 to 432 of SEQ ID NO: 12.
32. The method of claim 28, wherein the subject is a human.
33. The method of claim 28, wherein the composition is administered to the subject by intramuscular, intraperitoneal, or sub-cutaneous injection.
Description:
RELATED INFORMATION
[0001] This application is a continuation-in-part of Ser. No. 09/715,876 filed on Nov. 18, 2000, which is a priority from Provisional Application Ser. No. 60/166,663 filed Nov. 19, 1999.
FIELD OF INVENTION
[0003] This invention relates to Candida albicans surface adhesin proteins, to antibodies resulting from an immune response to vaccination, to compositions used as prophylactic or therapeutic vaccines, and to methods for the prevention and/or treatment of candidiasis.
BACKGROUND OF INVENTION
[0004] A dramatic increase in the incidence of nosocomial infections caused by Candida species has been observed in recent years. The incidence of hematogenously disseminated candidal infections increased 1-fold from 1980 to 1989. This increasing incidence has continued through the 1990s and into the 2000s. Infections by Candida species are now the fourth most common cause of nosocomial septicemia, are equal to that of Escherichia coli, and surpass the incidence caused by Klebsiella species. Furthermore, Candida species are the most common cause of deep-seated fungal infections in patients who have extensive burns. Up to 11% of individuals undergoing bone marrow transplantation and 13% of those having an orthotopic liver transplant will develop an invasive candidal infection.
[0005] C. albicans infections are difficult to diagnose and the organism can survive in vivo without causing overtly detectable disease symptoms and can cause overt disease symptoms that vary in site and in severity. The infection can be localized and superficial or systemic and disseminated. C. albicans possesses numerous mechanisms to adapt to host sites, and differential gene expression under these mechanisms. Candida albicans can switch between two morphologies: the blastospore (budding yeast) and filamentous (hyphae and pseudohyphae) phases. Candida mutants that are defective in genes regulating filamentation are reported to have reduced virulence in animal models. This reduced virulence suggests that the ability to change from a blastospore to a filament is a key virulence factor of C. albicans. To date, no essential effectors of these filamentation pathways have been identified in C. albicans. See Caesar-TonThat, T. C. and J. E. Cutler, "A monoclonal antibody to Candida albicans enhances mouse neutrophil candidacidal activity." Infect. Immun. 65:5354-5357, 1997.
[0006] The identification of effectors in the regulatory pathways of the organism that contribute to virulence offers the opportunity for therapeutic intervention with methods or compositions that are superior to existing antifungal agents. The identification of cell surface proteins that effect a regulatory pathway involved in virulence is particularly promising because characterization of the proteins enables immunotherapeutic techniques that are superior to existing antifungal agents when fighting a candidal infection. Also, both passive and active vaccination techniques offer unique prophylactic or therapeutic utilities depending on the clinical setting.
[0007] While potent antifungal agents exist that are microbicidal for Candida, the attributable mortality of candidemia is approximately 38%, even with treatment with potent anti-fungal agents such as amphotericin B. Also, existing agents such as amphotericin B tend to exhibit undesirable toxicity. Although additional antifungals may be developed that are less toxic than amphotericin B, it is unlikely that agents will be developed that are more potent. Therefore, either passive or active immunotherapy to treat or prevent disseminated candidiasis is a promising alternative to standard antifungal therapy.
[0008] The virulence of Candida albicans is regulated by several putative virulence factors, of which adherence to host constituents and the ability to transform from yeast-to-hyphae are among the most critical in determining pathogenicity. Adherent strains of C. albicans are more virulent than less-adhesive strains. Moreover, the more frequently isolated pathogenic species exhibit greater adhesive capacity. Investigations to understand C. albicans adhesion have involved characterization of the cell surface, since this is the initial point of contact between fungus and host. Moreover, filmentation pathways and their effect on molecules and pathways are implicated in virulence.
SUMMARY OF INVENTION
[0009] The present invention utilizes the gene, the family of gene products, a specific anisera of C. albicans agglutinin like sequence as a vaccine to treat, prevent, or alleviate disseminated candidiasis. The invention includes specially formulated compositions containing the ALS1a polynucleotides, the ALS1a polypeptides, monoclonal and polyclonal antisera specifically reactive with these molecules and compositions containing forms or derivatives of any of the foregoing molecules such as fragments or truncations. All of the compositions and methods of the invention take advantage of the role of the group of the ALS1 gene products in the adherence of the C. albicans to endothelial and epithelial cells and the role of ALS expression in adherence and filamentation and in the overall virulence of C. Albicans. Specifically, the control of ALS1 expression by transcription factor Efg1p, which is known to be a regulation of filamentation, demonstrates the susceptibility of the ALS1-expressed surface protein for use in therapeutic strategies, e.g. for use of the polypeptide as a vaccine to retard the pathogenesis of the organism, for use of antisera (polyclonal or monoclonal antibodies) in a passive immunization strategy, or for immunization by polynucleotide vaccination.
[0010] Pursuant to this invention, a member of the ALS gene family encodes a surface adhesin that is selected as the target of an immunotherapeutic strategy against Candida albicans. A demonstration that an expression product of an ALS gene has structural characteristics typical of surface proteins and is, in fact, expressed on the cell surface of C. albicans is a critical first criterion for any member of the group of proteins that acts as an adhesin to host tissues. For example, ALS1p has a signal peptide at the N-terminus, a glycosylphosphatidylinosine (GPI) anchorage sequence in the C-terminus, and a central region comprising repeats rich in threonine and serin. N-, and O- as well as several glycosylation sites, which is typical of proteins that are expressed on the cell surface. Indirect immunofluorescence using a monoclonal antibody directed against the N-terminus of Als1p revealed that Als1p is expressed during the log phase of blastospores. This expression of Als1p is increased during hyphal formation and is localized to the junction where the hyphal element extends from the blastospores as indicated by the diffused surface staining. Furthermore, a monoclonal antibody blocked the enhanced adherence of C. albicans overexpression mutant to endothelial cells, thereby establishing the principle for immunotherapy applications using members of the ALS family. The N-terminal region is a prime candidate for both passive and active immunization strategies and the gene and gene product can be used in a full length, truncated or modified form.
[0011] Additional evidence that ALS1p is a surface adhesin protein is based on data showing that antibodies that bind to the surface of C. albicans also bind to the surface of S. cerevisiae transformed with ALS1, but not with empty plasmid. The ALS protein also shares significant homology with the alpha-agglutinin of S. cerevisiae, which is expressed on the cell surface and mediates the binding of mating type alpha cells to mating type a cells. Moreover, expression of the ALS1 gene in S. cerevisiae increases the adherence of this organism to endothelial cells by approximately 100-fold. Because the ALS1 gene appears to encode a functional adhesin in Saccharomyces cerevisiae, it is certain that it also encodes a functional adhesin in C. albicans. The ALS1 gene was originally isolated by Hoyer et al. without a known function. Hoyer, L. L., S. Scherer, A. R. Shatzman, and G. P. Livi. 1995. Candida albicans ALSI: domains related to a Saccharonzyces cerevisiae sexual agglutinin separated the direct role of ALS1p in the various virulence pathways described herein, e.g. adherence, filamentation, and floculation satisfy a second criteria for use as a therapeutic agent, and lead to the therapeutic embodiments of the invention as described in greater detail below. Recognition of the unique characteristics of the ALS1 gene product in the pathogenesis of the organism suggests several discrete therapeutic approaches that interrupt critical virulence factors or pathways by a repeating motif. Mol. Microbiol. 15:39-54. (See also U.S. Pat. Nos. 5,668,263 and 5,817,466.)
[0012] In addition to the administration of anti-fungal agents, immunotherapeutic therapies enabled by the invention are employed to fight a fungal infection as part of an integrated anti-fungal clinical strategy that combines traditional anti-fungal agents with immunotherapeutics. Immunotherapeutics can be broadly defined in two categories: active and passive. Active immunotherapy relies on the administration of an antigenic compound as a vaccine that causes the body's immune system to mount an immune response to the compound. Typically, the immune response includes cell-mediated immune pathways and the generation of antibodies against the antigenic compound. In active immunization, antibodies specific for the compound and generated by the body also fight the fungal infection. Passive immunotherapy involves direct administration of the antibodies without the antigen. In passive immunization, the antibodies may be generated in vitro, such as in a conventional hybridoma or other expression system, and are administered directly to a patient. Both active and passive immunization offer the advantage of using antibodies that are highly specific and typically far less toxic than ordinary anti-fungal agents.
[0013] Although certain data and results presented herein are specific to the ALS1 species and related compounds, additional members of the ALS family exhibit similar functionality in the pertinent virulence pathways of Candida. The other members of the family, generally designated as ALS1-ALS1a share significant sequence homology with ALS1 and with each other and show highly conserved regions N terminal region. See FIG. 7. Thus, according to one aspect of the invention, a member of the ALS surface adhesin family of proteins or a fragment, conjugate, or analogue thereof, is formulated in a pharmaceutical composition and administered as a vaccine. ALS surface adhesin proteins are preferably obtained from Candida albicans, however, similar adhesin molecules or analogues or derivatives thereof may be of candidal origin and may be obtainable from strains belonging to the genera Candida such as Candida parapsilosis, Candida guilliermondii, Candida krusei, Candida dublinoensis, and Candida tropicalis. A surface adhesin protein according to the invention may be obtained in purified form, and thus, according to a preferred embodiment of the invention, a substantially pure ALS Candida albicans surface adhesin protein, or functional analogue, conjugate, or derivative thereof, is formulated as a vaccine to cause an immune response in a patient to block adhesion of the organism to the endothelial cells.
[0014] An analogue or derivative of the surface adhesion protein according to the invention may be identified and further characterized by the criteria described herein for the ALS gene and gene product. For example, a null mutant of the analogue or derivative would share markedly reduced adhesion to endothelial cells compared to controls. Similarly, over-expression of the analogue or derivative in an appropriate model would show an increased adherence to endothelial cells compared to controls and would be confirmed as a cell surface adhesin in accord with the criteria described above. Also, antisera to the analogue or derivative would cross-react with anti-ALS antibodies and would also exhibit increased survival times when administered in animal models of disseminated candidiasis as disclosed herein.
[0015] The present invention also provides an immunotherapeutic strategy against Candida infection at the level of binding to the vascular endothelial cells and through a downstream effector of the filamentation regulatory pathway. An immunotherapeutic strategy is uniquely advantageous in this context because: (i) the morbidity and mortality associated with hematogenously disseminated candidiasis remains unacceptably high, even with currently available antifungal therapy; (ii) a rising incidence of antifungal resistance is associated with the increasing use of antifungal agents, (iii) the population of patients at risk for serious Candida infections is well-defined and very large, and includes post-operative patients, transplant patients, cancer patients and low birth weight infants; and (iv) a high percentage of the patients who develop serious Candida infections are not neutropenic, and thus may respond to a vaccine. For these reasons, Candida is the most attractive fungal target for either passive or active immunotherapy.
[0016] Having determined the immunotherapeutic potential of members of the ALS family according to this invention, the gene, the protein gene product, conjugates, analogues, or derivative molecules thereof, and compositions containing specific monoclonal or polyclonal antisera may be used in treatment and/or prevention of candidal infections. Standard immunological techniques may be employed with the adhesion protein molecule, and its analogues, conjugates, or derivatives, to use the molecule as an immunogen in a pharmaceutically acceptable composition administered as a vaccine. For the purposes of this invention, "pharmaceutical" or "pharmaceutically acceptable" compositions are formulated by known techniques to be non-toxic and, when desired, used with carriers or additives that are approved for administration to humans in, for example, intravenous, intramuscular, intraperitoneal or sub-cutaneous injection. Such compositions may include buffers, salts or other solvents known to these skilled in the art to preserve the activity of the vaccine in solution.
[0017] With respect to the molecule used as the immunogen pursuant to the present invention, those of skill in the art will recognize that each protein molecule within the ALS family may be truncated or fragmented without losing the essential qualities as a vaccine. For example, the Als1p may be truncated to yield an N-terminal fragment by truncation from the C-terminal end with preservation of the functional properties described above and may include all or a portion of the GPI anchor sequences on the central region. Likewise, C-terminal fragments may be created by truncation from the N-terminal end with preservation of the functional properties described above. Other modifications in accord with the foregoing rationale may be made pursuant to this invention to create other ALS protein analogs or derivatives, to achieve the benefits described herein with the native protein.
[0018] The goal of the immunotherapy provided by this invention is to interfere with regulation of filamentation, to block adherence of the organism to host constituents, and to enhance clearance of the organism by immunoeffector cells. Since endothelial cells cover the majority of the vasculature, specially selected strategies, compositions, and formulations to block the adherence of the organism to endothelial cells using antibodies are a preferred embodiment of the present invention and such adherence blocking strategics include active or passive immunotherapy directed against the candidal adhesin(s) disclosed herein. Specific anti-sera having demonstrated abilities to interrupt virulence factors and pathways implicated in virulence are identified herein based on the identification of the unique properties of the ALS family of proteins and specific derivatives thereof, including N-terminal fragments of the ALS proteins, specific monoclonal and polyclonal antisera against regions of the protein molecule, and polynucleotides selectively encoding this region.
[0019] Depending on the specific virulence of a strain in a clinical setting, a pharmaceutical composition comprising either monoclonal or polyclonal antibodies may be administered in a passive immunization therapy. Polyclonal antibodies are thought to involve fewer specific cross reactivity reactions that may lead to acute toxicity, whereas monoclonal antibodies provide more reproducible binding to a specific epitope of a target protein. Therefore, selection of the species for passive immunotherapy depends on the specific organism encoding the protein-antigen, as well as the specific antibody raised against the ALS protein. In either case, the antisera is specific to a portion of the ALS protein and functions to interrupt virulence regulatory pathways necessary for pathogenesis of the organism. Specifically, the antisera affects the Efg1p filamentation pathway and expression of the surface protein implicated in both floculation and adherence to endothelial cells. Characteristic antisera of the invention interrupt the role of ALS in filamentation and virulence mechanisms in both in vitro systems as well as animal models of disseminated candidiasis.
[0020] The method of the invention also includes ameliorating and/or preventing candidal infection by blocking the adherence of C. albicans to the endothelial cells of a host constituent. Thus, according to one aspect of the invention, a pharmaceutical composition comprising an ALS adhesin protein derivative, analogue, or conjugate is formulated as a vaccine in a pharmaceutical composition containing a biocompatible carrier for injection or infusion and is administered to a patient. Prior to injection, the adhesin protein may be formulated as a vaccine in a suitable vehicle, preferably a known immunostimulant such as a polysaccharide. Thus, according to a further aspect of the invention we provide a pharmaceutical composition comprising a candidal adhesin protein together with one or more pharmaceutically acceptable excipients in a formulation for use as a vaccine. Also, direct administration of antiserum raised against an ALS protein may be used as a therapeutic or prophylactic strategy to block the adherence of C. albicans to a mammalian host constituent. Thus, for example, any suitable host may be injected with protein and the serum collected to yield the desired anti-adhesin antibody after appropriate purification and/or concentration. Monoclonal antiserum against adhesin protein can be obtained by known techniques, Kohler and Milstein, Nature 256: 495-499 (1975), and may be humanized to reduce antigenicity, see U.S. Pat. No. 5,693,762, or produced by immunization of transgenic mice having an unrearranged human immunoglobulin gene, see U.S. Pat. No. 5,877,397, to yield high affinity (e.g. 10.sup.8, 10.sup.9, or 10.sup.10) anti-ALS IgG monoclonal antibodies.
[0021] A still further use of the invention, for example, is using an ALS adhesin protein to develop a specific clinical vaccine strategies for the prevention and/or amelioration of candidal infections. Thus, according to one aspect of the invention, for example, standard immunology techniques may be employed to construct a multi-protein or protein fragment component vaccine strategy that may enhance and/or elicit immune response from a host constituent to bock adherence of C. albicans. Also, known immunostimulatory compositions may be added to the vaccine formulation, wherein such compounds include known proteins, saccharides or oligonucleotides. (See Krieg U.S. Pat. No. 6,008,200).
[0022] A still further use of the invention, for example, is an isolated polynucleotide, RNA or DNA vaccine strategy wherein the ALS polynucleotide encoding an ALS protein or a fragment or variant thereof is administered according to a protocol designed to yield an immune response to the gene product. S ea, Feigner U.S. Pat. No. 5,703,055. Generally, the naked polynucleotide is combined in a pharmaceutically acceptable injectable carrier and injected into muscle tissue where the polynucleotide is transported into cells and expressed to produce a selectively induced immunogenic response comprised of antibodies against the polypeptide encoded by the polynucleotide. The tissue into which the polynucleotide is introduced is preferably muscle, but can be any tissue that expresses the polynucleotide. The polynucleotide may be either a DNA or an RNA sequence and when the DNA is used, the DNA sequence can be inserted into a plasmid that also contains a replicator. In this embodiment, a method of immunization is provided by obtaining an expressible polynucleotide coding for an immunogenic ALS polypeptide, and introducing the polynucleotide into a patient to elicit expression of the ALS polypeptide and the generation of an immune response against the immunogen such that an anti-ALS antibody composition produced in vivo provides protection against Candidiasis by disrupting the virulence pathway, for example, as has been associated with ALS1p and the effector pathway for adhesion and filamentation of the Candida organism. Particularly preferred polynucleotide compositions encode N-terminal regions of an ALS polypeptide and code for the specific regions that elicit the antisera production in vivo that are shown herein to exhibit the prophylactic therapeutic utility derived from interruption of Candida virulence mechanisms.
[0023] A still further use of the invention, for example, is developing combination vaccine strategies. Thus, according to one aspect of the invention, for example, anti-ALS antibodies may be used with antibodies in treating and/or preventing candidal infections. See U.S. Pat. No. 5,578,309.
DESCRIPTION OF THE FIGURES
[0024] FIG. 1A, 1B show the mediation of Als1p adherence of C. albicans to human umbilical vein endothelial cells. Values represent the mean.+-.SD of at least three independent experiments, each performed in triplicate. (A) Endothelial cell adherence of ALS/als2, als1/als1 and ALS-complemented mutants and wild-type CAI12 (30) (B) Endothelial cell adherence of P.sub.ADH1-ALS1 mutant that overexpresses ALS1, compared to wild type C. albicans. Statistical treatment was obtained by Wilcoxon rank sum test and corrected for multiple comparisons with the Bonferroni correction. *P<0.001 for all comparisons.
[0025] FIG. 2A-D shows the cell surface localization of Alsip on filaments of C. albicans by indirect immunofluorescence. Filamentation of C. albicans was induced by incubating yeast cells in RPMI 1640 medium with glutamine for 1.5 hours at 37.degree. C. Als1p was detected by incubating organisms first with anti-Als1p mouse mAb followed by FITC-labeled goat anti-mouse IgG. C. albicans cell surface was also stained with anti-C. albicans polyclonal Ab conjugated with Alexa 594 (Molecular Probes, Eugene, Oreg.). Areas with yellow staining represent Als1p localization. (A) C. albicans wild-type. (B) als1/als1 mutant strain. (C) als1/als1 complemented with wild type ALS1 (D) P.sub.ADH1-ALS1 overexpression mutant.
[0026] FIG. 3A, 3B show the mediation of Als1p on C. albicans filamentation on solid medium. C. albicans blastospores were spotted on Lee's agar plates and incubated at 37.degree. C. for 4 days (A) or 3 days (B).
[0027] FIG. 4A, 4B show the control of ALS1 expression and the mediation of C. albicans filamentation by the EFG1 filamentation regulatory pathway. (A) Northern blot analysis showing expression of ALS1 in (i) mutants deficient in different filamentation regulatory pathways. (ii) efg1/efg1 mutant complemented with either EFG1 or P.sub.ADH1-ALS1. Total RNA was extracted from cells grown in RPM 1 1640+glutamine medium at 37.degree. C. for 90 minutes to induce filamentation. Blots were probed with ALS1 and TEF1. (B) Photomicrographs of the efg1/efg1 mutant and efg1/efg1 mutant complemented with P.sub.ADH1-ALS1 grown on Lee's agar plates at 37.degree. C. for 4 days.
[0028] FIG. 5A, 5B show the reduction of virulence in the mouse model of hematogenously disseminated candidiasis by (A) Male Balb/C mice (n=30 for each yeast strain) were injected with stationary phase blastospores (10.sup.6 per mouse in 0.5 ml of PBS). Curves are the compiled results of three replicate experiments (n=30 mice for each strain). The doubling times of all strains, grown in YPD at 30.degree. C., ranged between 1.29 to 1.52 hours and were not statistically different from each other. Southern blot analysis of total chromosomal DNA was used to match the identity of the genotype of C. albicans strains retrieved from infected organs with those of C. albicans strains used to infect the mice. Statistical analysis was obtained by Wilcoxon rank sum test and corrected for multiple comparisons with the Bonferroni correction. *P<0.002 for the als1/als1 mutant versus each of the other strains. (B) Histological micrographs of kidneys infected with C. albicans wild-type, homozygous a1s1 null mutant, or heterozygous ALS1 complemented mutant. Kidney samples were retrieved 28 hours (a) or 40 (b) hours post infection, fixed in paraformaldehyde and sections were stained with silver (magnification, .times.400). Arrows denote C. albicans cells.
[0029] FIG. 6 shows the prophylactic effect of anti-ALS antibody against disseminated candidiasis as a function of surviving animals over a 30-day period for animals infused with anti-Als1p polyserum.
[0030] FIG. 7 is the protein sequence alignment of the N-terminal portion of select ALS proteins arranged by adherence phenotype. The top three lines the sequences from ALS proteins that bind endothelial cells, and the bottom three are sequences from ALS proteins that do not bind endothelial cells. Boxes represent areas of significant sequence divergence that are candidate substrate binding domains.
DETAILED DESCRIPTION OF THE INVENTION
[0031] The nature of the pathogenesis of C. albicans by adherence to endothelial cells is discussed in U.S. Pat. No. 5,578,309 which is specifically incorporated herein by reference in its entirety. For a description of the ALS1 gene and characteristics thereof, including the characterization of the gene product as an adhesin, see Fu, Y., S. G. Filler, B. J. Spellberg, W. Fonzi, A. S. Ibrahim, T. Kanbe, M. A. Ghannoum, and J. E. J. Edwards. 1998. Cloning and characterization of CAD I/AAFI, a gene from Candida albicans that induces adherence to endothelial cells after expression in Saccharonzyces cerevisiae. Infect. Immun. 66:2078-2084; Fu, Y., G. Rieg, W. A. Forizi, P. H. Belanger, J. E. J. Edwards, and S. G. Filler. 1998. Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect. Immun. 66:1783-1786; Hoyer, L. L. 1997. The ALS gene family of Candida albicans. International Society for Human and Animal Mycology Salsimorge, Italy:(Abstract); Hoyer, L. L., S. Scherer, A. R. Shatzman, and G. P. Livi. 1995. Candida albicans ALSI: domains related to a Saccharonzyces cerevisiae sexual agglutinin separated by a repeating motif. Mol. Microbiol. 15:39-54. The polynucleotide sequence of the ALS1 gene and protein are SEQ ID NO:7 and NO:8, respectively. The remaining numbers of the ALS family of gene and protein ALS-2-ALS-9, are SEQ ID NO:9-SEQ ID. NO:24. Note that the form sometimes known as ALS-N is ALS-9 and ALA-1 is ALS-5.
[0032] The following Examples illustrate the immunotherapeutic utility of the class of ALS protein molecules as the basis for prevention or treatment of disseminated candidiasis. Example 1 describes the preparation of an ALS1 null mutant and a strain of C. albicans characterized by over-expression of ALS1 to confirm the mediation of adherence to endothelial cells. Example 2 describes the localization of Als1p and the implication of the efg filamentation regulatory pathway. Example 3 describes the purification of ALS1 adhesin protein. Example 4 describes the preparation of antibodies raised against the ALS1 surface adhesin protein to be used to demonstrate the blocking of the surface adhesin protein. Example 5, describes the blocking of adherence in vivo, using both polyclonal and monoclonal antibodies raised against the ALS1 surface adhesion protein as described herein to protect against disseminated candidiasis in a mouse model. Example 6 describes a polynucleotide vaccination strategy to cause in vivo expression of an antigenic ALS1p polypeptide to create a protective immune response.
[0033] Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, preferred methods and materials are described. As used herein, the following terms have the meanings ascribed to them unless specified otherwise.
[0034] "Polynucleotide" refers to a polymer composed of nucleotide units (ribonucleotides, deoxyribonucleotides, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof) linked via phosphodiester bonds, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof. Thus, the term includes nucleotide polymers in which the nucleotides and the linkages between them include non-naturally occurring synthetic analogs, such as, for example and without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs), and the like. Such polynucleotides can be synthesized, for example, using an automated DNA synthesizer. The term "gene" typically refers to a large number of polynucleotides that form a single functional unit that is translated and transcribed to express a polypeptide of sufficient length to be immunogenic.
[0035] "Polypeptide" refers to a polymer composed of amino acid residues, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof linked via peptide bonds, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof. Synthetic polypeptides can be synthesized, for example, using an automated polypeptide synthesizer.
[0036] "Conservative substitution" refers to the substitution in a polypeptide of an amino acid with a functionally similar amino acid. The following six groups each contain amino acids that are conservative substitutions for one another:
[0037] 1) Alanine (A), Serine (S), Threonine (T);
[0038] 2) Aspartic acid (D), Glutamic acid (E);
[0039] 3) Asparagine (N), Glutamine (Q);
[0040] 4) Arginine (R), Lysine (K);
[0041] 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); and
[0042] 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).
[0043] "Antibody" or "antisera" refers to a polypeptide substantially encoded by an immunoglobulin gene or immunoglobulin genes, or fragments thereof, which specifically bind and recognize an immunogen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Antibodies exist, e.g., as intact immunoglobulins or as a number of well characterized fragments produced by digestion with various peptidases. This includes, e.g., Fab' and F(ab)'.sub.2 fragments. The term "antibody," as used herein, also includes antibody fragments either produced by the modification of whole antibodies or those synthesized de novo using recombinant DNA methodologies.
[0044] An antibody "is specific" or "specifically binds" to a protein when the antibody functions in a binding reaction which is determinative of the presence of the protein in the presence of a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bind preferentially to a particular protein and do not bind in a significant amount to other proteins present in the sample. Specific binding to a protein under such conditions requires an antibody that is selected for its specificity for a particular protein. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select monoclonal antibodies specifically immunoreactive with a protein. See Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York, for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity.
[0045] "Substantially pure" means an object species is the predominant species present (i.e., on a molar basis, more abundant than any other individual macromolecular species in the composition), and a substantially purified fraction is a composition wherein the object species comprises at least about 50% (on a molar basis) of all macromolecular species present. Generally, a substantially pure composition means that about 80% to 90% or more of the macromolecular species present in the composition is the purified species of interest. The object species is purified to essential homogeneity (contaminant species cannot be detected in the composition by conventional detection methods) if the composition consists essentially of a single macromolccular species. Solvent species, small molecules (<500 Daltons), stabilizers (e.g., BSA), and elemental ion species are not considered macromolecular species for purposes of this definition.
[0046] "Pharmaceutical composition" refers to a composition suitable for pharmaceutical use in a mammal. A pharmaceutical composition comprises a pharmacologically effective amount of an active agent and a pharmaceutically acceptable carrier. "Pharmacologically effective" or phamaceutically effective" amount refers to that amount of an agent effective to produce the intended pharmacological result. "Pharmaceutically acceptable carrier" refers to any of the standard pharmaceutical carriers, buffers, and excipients, such as a phosphate buffered saline solution, 5% aqueous solution of dextrose, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents and/or adjuvants. Suitable pharmaceutical carriers and formulations are described in Remington's Pharmaceutical Sciences, 19th Ed. (Mack Publishing Co., Easton, 1995). Preferred pharmaceutical carriers depend upon the intended mode of administration of the active agent. Typical modes of administration include enteral (e.g., oral) or parenteral (e.g., subcutaneous, intramuscular, or intravenous intraperitoneal injection; or topical, transdermal, or transmucosal administration).
[0047] A "prophylactic" treatment is a treatment administered to a subject who does not exhibit overt symptoms or signs of a disease or exhibits only early signs for the purpose of decreasing the risk of developing pathology.
[0048] A "therapeutic" treatment is a treatment administered to a subject who exhibits signs of pathology for the purpose of diminishing or eliminating those signs.
Example 1--Als1 Mediates Adherence of C. albicans to Endothelial Cells
[0049] The URA blaster technique was used to construct a null mutant of C. albicans that lacks expression of the Alsip. The als1/als1 mutant was constructed in C. albicans strain CAI4 using a modification of the Ura-blaster methodology [W. A. Fonzi and M. Y. Irwin, Genetics 134, 717 (1993)] as follows: Two separate als1-hisG-IRA3-hisG-als1 constructs were utilized to disrupt the two different alleles of the gene. A 4.9 kb ALS1 coding sequence was generated with high fidelity PCR (Boehringer Mannheim, Indianapolis, Ind.) using the primers: 5'-CCGCTCGAGATGCTTCAACAATTTACATTGTTA-3' (SEQ ID NO.1) and 5'-CCGCTCGAGTCACTAAATGAACA AGGACAATA3' (SEQ ID NO. 2). Next, the PCR fragment was cloned into pGEM-T vector (Promega, Madison, Wis.), thus obtaining pGEM-T-ALS1. The hisG-URA3-hisG construct was released from pMG-7 by digestion with Kpn1 and Hind3 and used to replace the portion of ALS1 released by Kpn1 and Hind3 digestion of pGEM-T-ALS1. The final als1-hisG-URA3-hisG-als1 construct was released from the plasmid by digestion with Xhol and used to disrupt the first allele of ALS1 by transformation of strain CAI-4.
[0050] A second als1-hisG-URA3-hisG-als1 construct was generated in two steps. First, a Bgl2-Hind3 hisG-URA3-hisG fragment of pMB7 was cloned into the BamH1-Hind3 sites of pUC19, thereby generating pYC2. PYC2 was then digested with Hind3, partially filled in with dATP and dGTP using T4 DNA polymerase, and then digested with Sma1 to produce a new hisG-URA3-hisG fragment. Second, to generate ALS1 complementary flanking regions, pGEM-T-ALS1 was digested with Xbal and then partially filled in with dCTP and dTTP. This fragment was digested with HpaI to delete the central portion of ALS1 and then ligated to the hisG-URA3-hisG fragment generating pYC3. This plasmid was then digested by Xhol to release a construct that was used to disrupt the second allele of the ALS1. Growth curves were done throughout the experiment to ensure that the generated mutations had no effect on growth rates. All integrations were confirmed by Southern blot analysis using a 0.9 kb ALS1 specific probe generated by digestion of pYF5 with Xbal and HindIII.
[0051] The null mutant was compared to C. albicans CAI-12 (a URA+revertant strain) for its ability to adhere in vitro to human umbilical vein endothelial cells. For adherence studies, yeast cells from YPD (2% glucose, 2% peptone, and 1% yeast extract) overnight culture, were grown in RPMI with glutamine at 25.degree. C. for 1 hour to induce Als1p expression. 3.times.10.sup.2 organisms in Hanks balanced salt solution (HBSS) (Irvine Scientific, Irvine, Calif.) were added to each well of endothelial cells, after which the plate was incubated at 37.degree. C. for 30 minutes. The inoculum size was confirmed by quantitative culturing in YPD agar. At the end of incubation period, the nonadherent organisms were aspirated and the endothelial cell monolayers were rinsed twice with HBSS in a standardized manner. The wells were over laid with YPD agar and the number of adherent organisms were determined by colony counting. Statistical treatment was obtained by Wilcoxon rank sum test and corrected for multiple comparisons with the Bonferroni correction. P<0.001.
[0052] Referring to FIG. 1, a comparison of the ALS1/ALS1 and als1/als1 strain showed that the ALS1 null mutant was 35% less adherent to endothelial cells than C. albicans CAI-12. To reduce background adherence, the adherence of the wild-type strain grown under non-ALS1 expressing conditions was compared with a mutant autonomously expressing Als1p. This mutant was constructed by integrating a third copy of ALS1 under the control of the constitutive ADH1 promoter into the wild-type C. albicans. To achieve constitutive expression of the ALS1 in C. albicans, a blunt-ended PCR generated URA3 gene is ligated into a blunt-edged Bgl2 site of pOCUS-2 vector (Novagen, Madison, Wis.), yielding pOU-2. A 2.4 kb Not1-Stul fragment, which contained C. albicans alcohol dehydrogenase gene (ADH1) promoter and terminator (isolated from pLH-ADHpt, and kindly provided by A. Brown, Aberdeen, UK), was cloned into pOU-2 after digestion with Not1 and Stul. The new plasmid, named pOAU-3 had only one Bgl2 site between the ADH1 promoter and terminator. ALS1 coding sequence flanked by BamH1 restriction enzyme sites was generated by high fidelity PCR using pYF-5 as a template and the following primers: 5'-CGGGATCCAGATGCTTCA-ACAATTTACATTG-3' (SEQ ID NO.3) and 5'-CGGGATCCTCACTAAATGAACAAGGACAATA-3' (SEQ ID NO.4). This PCR fragment was digested with BamH1 and then cloned into the compatible Bgl2 site of pOAU-3 to generate pAU-1. Finally, pAU-1 was linearized by Xbal prior to transforming C. albicans CAI-4. The site-directed integration was confirmed by Southern Blot analysis.
[0053] Referring to FIG. 1B, overexpressing ALS1 in this P.sub.ADH1-ALS1 strain resulted in a 76% increase in adherence to endothelial cells, compared to the wild-type C. albicans. In comparing endothelial cell adherence of the wild-type to that of the overexpressing mutant, yeast cells were grown overnight in YPD at 25.degree. C. (non-inducing condition of Alsip). Als1p expression was not induced to reduce the background adherence of the wild-type, thus magnifying the role of Als1p in adherence through P.sub.ADH1-ALS1 hybrid gene. The adherence assay was carried out as described above. Statistical treatment was obtained by Wilcoxon rank sum test and corrected for multiple comparisons with the Bonferroni correction. P<0.001.
[0054] A monoclonal anti-Als1p murine IgG antibody was raised against a purified and truncated N-terminus of Als1p (amino acid #17 to #432) expressed using Clontech YEXpress.TM. Yeast Expression System (Palo Alto, Calif.). The adherence blocking capability of these monoclonal anti-Als1p antibodies was assessed by incubating C. albicans cells with either anti-Als1 antibodies or mouse IgG (Sigma, St. Louis, Mo.) at a 1:50 dilution. After which the yeast cells were used in the adherence assay as described above. Statistical treatment was obtained by Wilcoxon rank sum test and corrected for multiple comparisons with the Bonferroni correction. P<0.001. The results revealed that the adherence of the P.sub.ADH1-ALS1 strain was reduced from 26.8%.+-.3.5% to 14.7%.+-.5.3%. Thus, the effects of ALS1 deletion and overexpression demonstrate that Als1p mediates adherence of C. albicans to endothelial cells.
Example 2--Localization of Als1p
[0055] For a number of the ALS family to function as an adhesin protein, it must be located on the cell surface. The cell surface localization of Als1p, for example, was verified using indirect immunofluorescence with the anti-Als1p monoclonal antibody. Diffuse staining was detected on the surface of blastospores during exponential growth. This staining was undetectable on blastospores in the stationary phase. Referring to FIG. 2A, when blastospores were induced to produce filaments, intense staining was observed that localized exclusively to the base of the emerging filament. No immunofluorescence was observed with the als1/als1 mutant, confirming the specificity of this antibody for Als1p. See FIG. 2B. These results establish that Als1p is a cell surface protein.
[0056] The specific localization of Alsip to the blastospore-filament junction implicates Als1p in the filamentation process. To determine the mechanism, the filamentation phenotype of the C. albicans ALS1 mutants was analyzed. Referring to FIG. 3A, the als1/als1 mutant failed to form filaments after a 4 day incubation on Lee's solid medium, while both the ALS1/ALS1 and ALS1/als1 strains as well as the ALS1-complemented mutant produced abundant filaments at this time point. The als1/als1 mutant was capable of forming filaments after longer periods of incubation. Furthermore, overexpressing ALS1 augmented filamentation: the P.sub.ADH1-ALS1 strain formed profuse filaments after a 3 day incubation, whereas the wild-type strain produced scant filaments at this time point. See FIG. 3B. To further confirm the role of Als1p in filamentation, a negative control was provided using mutant similar to the ALS1 overexpression mutant, except the coding sequence of the ALS1 was inserted in the opposite orientation. The filamentation phenotype of the resulting strain was shown to be similar to that of the wild-type strain. The filament-inducing properties of Als1p are specific to cells grown on solid media, because all of the strains described above filamented comparably in liquid media. The data demonstrates that Alsip promotes filamentation and implicates ALS1 expression in the regulation of filamentation control pathways. Northern blot analysis of ALS1 expression in mutants with defects in each of these pathways, including efg1/efg1, cph1/cph1, efg1/efg cph1/cph1, tup1/tup1, and cla4/cla4 mutants were performed. Referring to FIG. 4A, mutants in which both alleles of EFG1 had been disrupted failed to express ALS. Introduction of a copy of wild-type EFG1 into the efg1/efg1 mutant restored ALS1 expression, though at a reduced level. See FIG. 4B. Also, as seen in FIG. 4A, none of the other filamentation regulatory mutations significantly altered ALS1 expression (FIG. 4A). Thus, Efg1p is required for ALS1 expression.
[0057] If Efg1p stimulates the expression of ALS1, which in turn induces filamentation, the expression of ALS1 in the efg1/efg1 strain should restore filamentation. A functional allele of ALS1 under the control of the ADH1 promoter was integrated into the efg1/efg1 strain. To investigate the possibility that ALS1 gene product might complement the filamentation defect in efg1 null mutant, an Ura efg1 null mutant was transformed with linearized pAU-1. Ura.sup.+ clones were selected and integration of the third copy of ALS1 was confirmed with PCR using the primers: 5'-CCGTTTATACCATCCAAATC-3'(SEQ ID NO. 5) and 5'-CTACATCCTCCAATGATATAAC-3' (SEQ ID NO.6). The resulting strain expressed ALS1 autonomously and regained the ability to filament on Lee's agar. See FIGS. 4B and C. Therefore, Efg1p induces filamentation through activation of ALS1 expression.
[0058] Because filamentation is a critical virulence factor in C. albicans, delineation of a pathway that regulates filamentation has important implications for pathogenicity. Prior to ALS1, no gene encoding a downstream effector of these regulatory pathways had been identified. Disruption of two other genes encoding cell surface proteins, HWP1 AND INTI, results in mutants with filamentation defects. Although HWP1 expression is also regulated by Efg1p, the autonomous expression of HWP1 in the efg1/efg1 mutant fails to restore filamentation. Therefore Hwp1p alone does not function as an effector of filamentation downstream of EFG1. Also, the regulatory elements controlling INTI expression are not known. Thus, Als1p is the first cell-surface protein identified that functions as a downstream effector of filamentation, thereby suggesting a pivotal role for this protein in the virulence of C. albicans.
[0059] The contribution of Als1p to C. albicans virulence was tested in a model of hematogenously disseminated candidiasis, A. S. Ibrahim et al., Infect. Immun. 63, 1993 (1995). Referring to FIG. 5A, mice infected with the als1/als1 null mutant survived significantly longer than mice infected with the ALS1/ALS1 strain, the ALS1/als1 mutant or the ALS1-complemented mutant. After 28 hours of infection, the kidneys of mice infected with the als1/als1 mutant contained significantly fewer organisms (5.70.+-.0.46 log.sub.10 CFU/g) (P<0.0006 for both comparisons). No difference was detected in colony counts of organisms recovered from spleen, lungs, or liver of mice infected with either of the strains at any of the tested time points. These results indicate that immunotherapeutic strategies using ALS proteins as a vaccine have a protective prophylactic effect against disseminated candidiasis. See SEQ ID NOS. 10, 12, 14, 16, 18, 20, 22, and 24. Referring to FIG. 5B, examination of the kidneys of mice after 28 hours of infection revealed that the als1/als1 mutant produced significantly shorter filaments and elicited a weaker inflammatory response than did either the wild-type of ALS1-complemented strains. However, by 40 hours of infection, the length of the filaments and the number of leukocytes surrounding them were similar for all three strains.
[0060] The filamentation defect of the als1/als1 mutant seen on histopathology paralleled the in vitro filamentation assays on solid media. This mutant showed defective filamentation at early time points both in vivo and in vitro. This defect eventually resolved with prolonged infection/incubation. These results suggest that a filamentation regulatory pathway that is independent of ALS1 may become operative at later time points. The activation of this alternative filamentation pathway by 40 hours of infection is likely the reason why mice infected with the als1/als1 mutant subsequently succumbed in the ensuing 2-3 days.
[0061] Collectively, these data demonstrate that C. albicans ALS1 encodes a cell surface protein that mediates both adherence to endothelial cells and filamentation. Als1p is the only identified downstream effector of any known filamentation regulatory pathway in C. albicans. Additionally, Als1p contributes to virulence in hematogenous candidal infection. The cell surface location and dual functionality of Als1p make it an attractive target for both drug and immune-based therapies.
Example 3--Purification of ALS1 Adhesin Protein, Truncated N-Terminal Protein
[0062] For use as an immunogen, an ALS protein synthesized by E. coli is adequate when vaccination with a traditional protocol yield an immune response generating B cells expressing measurable anti-ALS anti-sera or levels of serum Ig from which polyclonals may be obtained. However, eukaryotic proteins synthesized by E. coli may not be functional due to improper folding or lack of glycosylation. Therefore, to determine if the ALS1 protein can block the adherence of C. albicans to endothelial cells, the protein is, preferably, purified from genetically engineered C. albicans, and formulated into a substantially pure pharmaceutical composition that is pharmacologically effective for prophylactic or therapeutic treatment of disseminated candidiasis.
[0063] PCR was used to amplify a fragment of ALS1, from nucleotides 52 to 1296. This 1246 bp fragment encompassed the N-terminus of the predicted ALS protein from the end of the signal peptide to the beginning of the tandem repeats. This region of ALS1 was amplified because it likely encodes the binding site of the adhesin, based on its homology to the binding region of the S. cerevisiae Ag.alpha.1 gene product. In addition, this portion of the predicted ALS1 protein has few glycosylation sites and its size is appropriate for efficient expression in E. coli.
[0064] The N-terminal fragment of ALS1 was ligated into pQE32 to produce pINS5. In this plasmid, the N-terminal segment of the protein is expressed under control of the lac promoter and it has a 6-hits tag fused to its N-terminus so that it can be affinity purified. We transformed E. coli with pINS5, grew it under inducing conditions (in the presence of IPTG), and then lysed the cells. The cell lysate was passed through a Ni.sup.2+-agarose column to affinity purify the ALS1-6His fusion protein. This procedure yielded substantial amounts of ALS1-6His. The fusion protein was further purified by SDS-PAGE. The band containing the protein was excised from the gel so that antiserum can be raised against it as described in detail herein. It will be appreciated by one skilled in the art that the surface adhesin protein according to the invention may be prepared and purified by a variety of known processes without departing from the spirit of the present invention based on the polynucleotide and polypeptide sequences of listed in SEQ ID. NO.1-SEQ ID NO.18. As noted above, analogues and derivatives of ALS1p may be prepared by known techniques based on conserved principles of amino acid substitution and nucleotide encoding degeneracy without departing from the invention. Thus, Such compositions may exhibit at least one conservative substitution in the polypeptide sequence and exhibit the same effect in disruption of adherence and filamentation pathways as the native ALS1p and antibodies that specifically bind thereto as described herein.
Example 4--Raising Polyclonal Antisera Against ALS1 Protein
[0065] To determine whether antibodies against the ALS protein block the adherence of Candida albicans to endothelial and epithelial cells, and the selected host constituent in vitro, rabbits were inoculated with S. cerevisiae transformed with ALS1 protein. The immunization protocol used was the dose and schedule used by Hasenclever and Mitchell for production of antisera that identified the antigenic relationship among various species of Candida. Hasenclever, H. F. and W. O. Mitchell. 1960. Antigenic relationships of Torulopsis glabrala and seven species of the genus Candida. J. Bacteriol. 79:677-681. Control antisera were also raised against S. cerevisiae transformed with the empty plasmid. All yeast cells were grown in galactose to induce expression of the ALS genes. Before being tested in the adherence experiments, the serum was heat-inactivated at 56 C to remove all complement activity.
[0066] Sera from immunized rabbits were absorbed with whole cells of S. cerevisiae transformed with empty plasmid to remove antibodies that are reactive with components of the yeast other than ALS1 protein. The titer of the antisera was determined by immunofluorescence using S. cerevisiae that express the ALS1 gene. FITC-labeled anti-rabbit antibodies were purchased from commercial sources (Southern Biotechnology, Inc). Affinity-purified secondary antibodies were essential because many commercially available sera contain antibodies reactive with yeast glucan and mannan. The secondary antibodies were pretested using Candida albicans as well as S. cerevisiae transformed with the plasmid and were absorbed as needed to remove any anti-S. cerevisiae or anti-Candida antibodies. Negative controls were 1) preimmune serum, 2) S. cerevisiae transformed with the empty plasmid, and 3) S. cerevisiae transformed with the ALS gene but grown under conditions that suppress expression of the ALS gene (glucose).
[0067] In addition to the above experiments, Western blotting was used to provide further confirmation that an antiserum binds specifically to the ALS1 protein against which it was raised. S. cerevisiae transformed with the ALS1 were grown under inducing conditions and their plasma membranes were isolated by standard methods. Panaretou, B. and P. Piper. 1996. Isolation of yeast plasma membranes. p. 117-121. In I. H. Evans. (ed.), Yeast Protocols. Methods in Cell and Molecular Biology. Humana Press, Totowa, N.J. Plasma membranes were also prepared from S. cerevisiae transformed with the empty plasmid and grown under identical conditions. The membrane proteins were separated by SDS-PAGE and then transferred to PVDF membrane by electroblotting. Harlow, E. and D. Lane. 1988. Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press. After being blocked with nonfat milk, the blot was incubated with the ALS antiserum. The preabsorbed antiserum did not react with proteins extracted from S. cerevisiae containing empty plasmid. This antiserum blocked the adherence of S. cerevisiae pYF5 (a clone that expresses Candida albicans ALS1) to endothelial cells.
Example 5--Antibodies Against Specific ALS Proteins Prophylactically Protect Mice from Mucosal and Hematogenously Disseminated Candidal Infections
[0068] Antisera that block the adherence of a clone of S. cerevisiae transformed with an ALS1 were demonstrated to protect mice from intravenous challenge with Candida albicans. The antisera against the ALS proteins were first tested in the murine model of hematogenously disseminated candidiasis. Affinity-purified anti-ALS antibodies are effective in preventing adhesion of yeast cells to various substrates (see Example 3). Affinity-purification is useful in this system because antibody doses can be accurately determined. Moreover, the unfractionated antisera will undoubtedly contain large amounts of antibody directed toward antigens on the S. cerevisiae carrier cells. Many of these anti-Saccharomyces antibodies would likely bind to C. albicans and make interpretation of the results impossible. Additionally, it is quite possible that the procedure used to elute antibodies from S. cerevisiae that express the ALS protein may also elute small amounts of yeast mannan or glucan that could have adjuvant-like activity. The immunoaffinity-purified antibodies are further purified before use. They may also be preabsorbed with mouse splenocytes.
[0069] Antibody doses may be administered to cover the range that brackets the levels of serum antibody that can be expected in most active immunization protocols and to cover the range of antibody doses that are typically used for passive immunization in murine models of candidiasis. Se Dromer, F., J. Charreirc, A. Contrepois, C. Carbon, and P. Yeni. 1987, Protection, of mice against experimental cryptococcosis by anti-Cryptococcus neoformas monoclonal antibody, Infect. Inimun. 55:749-752; Han, Y. and J. E. Cutler. 1995, Antibody response that protects against disseminated candidiasis, Infect. Immun. 63:2714-2719; Mukherjee, J., M. D. Scharff, and A. Casadevall. 1992, Protective murine monoclonal antibodies to Crvptococcus neoformas, Infect. Immun. 60:4534-4541; Sanford, J. E., D. M. Lupan, A. M. Schlageter, and T. R. Kozel. 1990, Passive immunization against Crvyptococcus neoformas with an isotye-switch family of monoclonal antibodies reactive with cryptococcal polysaccharide, Infect. Inunun. 58:1919-1923. BALB/c mice (female, 7 week old, the NCI) were given anti-ALS that had been absorbed with mouse splenic cells by an intraperitoneal (i.p.) injection. Control mice received prebled serum that had been absorbed with mouse spenic cells, intact anti-ALS serum, or DPBS, respectively. For the pre-absorption, 2 ml of anti-ALS or prebled sera were mixed with 100 .mu.l of mouse (BALB/c, 7 weeks old female, NCI) splenic cells (app. 9.times.10.sup.6 cells per ml) at room temperature for 20 minutes. The mixture was washed with warm sterile DPBS by centrifugation (@ 300.times.g) for 3 minutes. This procedure was repeated three times. The volume of i.p. injection was 0.4 ml per mouse. Four hours later, the mice were challenged with C. albicans (strain CA-1; 5.times.10.sup.5 hydrophilic yeast cells per mouse) by i.v. injection. Then, their survival times were measured. See FIG. 6.
[0070] Previous studies have shown that antibodies administered via the intraperitoneal route are rapidly (within minutes) and almost completely transferred to the serum (Kozel and Casadevall, unpublished observations). As a control for effects of administering the antibody preparations, a parallel group of mice were treated with antibodies isolated from pre-immune serum that has been absorbed with S. cerevisiae transformed with the ALS gene. The survival time and numbers of yeast per gram of kidney were measured. Again, referring to FIG. 6, mice infected intravenously with 10.sup.6 blastopores of ALS1 null mutant had a longer median survival time when compared to mice infected with Candida albicans CAI-12 or Candida albicans in which one allele of the ALS1 had been deleted (p=0.003).
[0071] The N-terminal portion of Als1p was used to generate a mouse monoclonal anti-Alsip antibody using modification of the method described by Brawner and Cutler (1984). Briefly, 6-week old female BALB/c mice (NCI) were immunized by subcutaneous injection with 125 .mu.g of the purified N-terminus of the Als1p in 0.25 ml of complete Freund's adjuvant (Gibco BRL). After 21 days, the mice received a subcutaneous booster injection of another 125 .mu.g of the purified N-terminus of the Als1p in 0.25 ml of incomplete Freund's adjuvant. On day 28, the mice sera were assessed for anti-Als1p antibodies using enzyme-linked immunosorbent assay (ELISA) plates coated with the N-terminus of the Alsip. A final booster injection of 15 .mu.g of the Als1p N-terminus without adjuvant was administered intravenously to mice that tested positive for anti-Als1p antibodies 31 days after the initial immunization, and splenocytes were prepared for hybridoma production as described previously (Brawner and Cutler, 1984). Hybridoma antibody production was determined using ELISA plates coated with the purified N-terminus of the Alsip. One of the hybrids obtained produced antibody that agglutinated C. albicans and was cloned four times by limiting dilution. A hybridoma cell line expressing antibody that binds to the same epitope was developed. This antibody reacted to S. cerevisiae that overexpressed Als1p, but not to S. cerevisiae transformed with the empty plasmid. The antibody also did not react with S. cerevisiae overexpressing Als5p, Als6p and was only weakly reactive against Als7p. ALS3p in C. albicans based upon the failure of the MAb to recognize any protein in the als1 null mutant strain upon germination. Heavy- and light chain-specific anti-mouse immunoglobulins (ICN Biomedicals) were used in ELISA to isotype this monoclonal antibody. The monoclonal antibody was isotyped to IgGI with a kappa light chain. Mice administered monoclonal antibodies against the N-terminal domain of ALS1p exhibit a prophylactic and therapeutic effect against disseminated candidiasis.
Example 6--Polynucleotide Vaccination Produces Antibodies In Vivo to Alleviate Disseminated Candidal Infections
[0072] In this embodiment, an immunogenic ALS polypeptide is introduced to a patient by delivering an effective amount of pharmaceutically acceptable polynucleotide coding for the selected immunogenic ALS polypeptide whereby the polynucleotide is expressed in vivo and the patient generates an immune response to the immunogen, thereby immunizing the patient in an equivalent manner to that demonstrated above for the protein. For example, immunogenic ALS1 polynucleotide compositions, suitable to be used as vaccines, may be prepared from the ALS genes and vectors as disclosed herein. The vaccine elicits an immune response in a subject which includes the production of anti-ALS antibodies that exhibit specificities for the selected ALS molecule, and may exhibit similar affinities and binding to similar epitopes as the polyclonal and monoclonal antibodies described herein. Immunogenic compositions, including vaccines, containing the ALS nucleic acid may be prepared as injectables, in physiologically-acceptable liquid solutions or emulsions for polynucleotide administration. The nucleic acid may be associated with liposomes, such as lecithin liposomes or other liposomes known in the art, as a nucleic acid liposome (for example, as described in WO 9324640) or the nucleic acid may be associated with an adjuvant. Liposomes comprising cationic lipids interact spontaneously and rapidly with polyanions, such as DNA and RNA, resulting in liposome/nucleic acid complexes that capture up to 100% of the polynucleotide. In addition, the polycationic complexes fuse with cell membranes, resulting in an intracellular delivery of polynucleotide that bypasses the degradative enzymes of the lysosomal compartment. Published PCT application WO 94/27435 describes compositions for genetic immunization comprising cationic lipids and polynucleotides. Agents which assist in the cellular uptake of nucleic acid, such as calcium ions, viral proteins and other transfection facilitating agents, may advantageously be used. Both liquid as well as lyophilized forms that are to be reconstituted will comprise agents, preferably buffers, in amounts necessary to suitably adjust the pH of the injected solution.
[0073] For any parenteral use, particularly if the formulation is to be administered intravenously, the total concentration of solutes should be controlled to make the preparation isotonic, hypotonic, or weakly hypertonic. Non-ionic materials, such as sugars, are preferred for adjusting tonicity, and sucrose is particularly preferred. Any of these forms may further comprise suitable formulatory agents, such as starch or sugar, glycerol or saline. The compositions per unit dosage, whether liquid or solid, may contain from 0.1% to 99% of polynucleotide material.
[0074] The DNA sequences used in these methods can be those sequences which do not integrate into the genome of the host cell. These may be non-replicating DNA sequences, or specific replicating sequences genetically engineered to lack the genome-integration ability. The naked ALS polynucleotide materials comprise the DNA of SEQ ID NO.:7, 9, 11, 13, 15, 17, 19, 21, or 23 or in RNA sequences coding for the ALS1p polypeptide of SEQ ID NO.:8, 10, 12, 14, 16, 18, 20, 22, or 24 including conservative substitutions and corresponding polynucleotides encoding such analogues or derivatives. With the availability of automated nucleic acid synthesis equipment, both the DNA sequences and the corresponding RNA sequences can be synthesized directly or derived from the native organism.
[0075] Where the polynucleotide is to be DNA, promoters suitable for use in various vertebrate systems are well known. For example, for use in murine systems, suitable strong promoters include RSV LTR, MPSV LTR, SV40 IEP, and metallothionein promoter. In humans, on the other hand, promoters such as CMV IEP may advantageously be used. When the polynucleotide is mRNA, it can be readily prepared from the corresponding DNA in vitro. For example, conventional techniques utilize phage RNA polymerases SP6, T3, or T7 to prepare mRNA from DNA templates in the presence of the individual ribonucleoside triphosphates. An appropriate phage promoter, such as a T7 origin of replication site is placed in the template DNA immediately upstream of the gene to be transcribed. Systems utilizing T7 in this manner are well known, and are described in the literature, e.g., in Current Protocols in Molecular Biology, .sctn.3.8 (vol. 1 1988).
[0076] To produce the composition for injection, any convenient plasmid vector may be used, preferably comprising a selectable expression vector and promoter. Suitable plasmids include pc DNA3 (Invitrogen), pCI (Promega), pCMV-beta galactosidase (Clontech) or pRc/CMV-HBs (S) Davis et al. Human Molecular Genetics 2:1847-1851. The ALS gene is inscrted in the vector in any convenient manner. The gene may be obtained from Candida genomic DNA and amplified using PCR and the PCR product cloned into the vector. The ALS gene plasmid may be transferred, such as by electroporation, into E. coli for replication therein. Plasmids may be extracted from the E. coli in any convenient manner.
[0077] The plasmid containing the ALS gene or specified N-terminal fragment may be administered in any convenient manner to the host, such as intramuscularly, intranasally, intramusonally, intraperitoneally, transdermally or any selected route that elicits the immune response. DNA immunization with the ALS gene or fragment may elicit both cellular and humoral immune responses and produces significant protective immunity and therapeutic effect to Candida albicans.
[0078] As noted above, the ALS gene, gene product or specific antibodies may be mixed with pharmaceutically acceptable excipients which are compatible therewith. Such excipients may include, water, saline, dextrose, glycerol, ethanol, and combinations thereof. The immunogenic compositions and vaccines may further contain auxiliary substances, such as wetting or emulsifying agents, pH buffering agents, or adjuvants to enhance the effectiveness thereof. Immunogenic compositions and passive vaccines may be administered parenterally, by injection subcutaneously, intravenously, intradermally or intramuscularly, possibly following pretreatment of the injection site with a local anesthetic. Alternatively, the immunogenic compositions formed according to the present invention, may be formulated and delivered in a manner to evoke an immune response at mucosal surfaces. Thus, the immunogenic composition may be administered to mucosal surfaces by, for example, the nasal or oral (intragastric) routes. Alternatively, other modes of administration including suppositories and oral formulations may be desirable. For suppositories, binders and carriers may include, for example, polyalkylene glycols or triglycerides. Oral formulations may include normally employed incipients, such as, for example, pharmaceutical grades of saccharine, cellulose and magnesium carbonate.
[0079] The immunogenic preparations and vaccines are administered in a manner compatible with the dosage formulation, and in such amount as will be therapeutically effective, protective and immunogenic. The quantity to be administered depends on the subject to be treated, including, for example, the capacity of the individual's immune system to synthesize the ALS polypeptide or fragment thereof, and antibodies thereto, and if needed, to produce a humoral or cell-mediated immune response. Suitable dosage ranges are readily determinable by one skilled in the art and may be of the order of about 1 microgram to about 1 mg. Suitable regimes for initial administration and booster doses are also variable, but may include an initial administration followed by subsequent administrations. The dosage may also depend on the route of administration and will vary according to the size of the host. A vaccine which protects against only one pathogen is a monovalent vaccine. Vaccines which contain antigenic material of several pathogens are combined vaccines and also belong to the present invention. Such combined vaccines contain, for example, material from various pathogens or from various strains of the same pathogen, or from combinations of various pathogens.
[0080] Immunogenicity can be significantly improved if immunogens are co-administered with adjuvants, commonly used as 0.05 to 0.1 percent solution in phosphate-buffered saline. Adjuvants enhance the immunogenicity of an antigen but are not necessarily immunogenic themselves. Adjuvants may act by retaining the immunogen locally near the site of administration to produce a depot effect facilitating a slow, sustained release of antigen to cells of the immune system. Adjuvants can also attract cells of the immune system to the immunogen and stimulate such cells to elicit immune responses.
[0081] Immunostimulatory agents or adjuvants have been used for many years to improve the host immune responses to vaccines. Thus, adjuvants have been identified that enhance the immune response to antigens. Some of these adjuvants are toxic, however, and can cause undesirable side-effects, making them unsuitable for use in humans and many animals. Indeed, only aluminum hydroxide and aluminum phosphate (collectively commonly referred to as alum) are routinely used as adjuvants in human and veterinary vaccines.
[0082] A wide range of extrinsic adjuvants and other immunomodulating material can provoke potent immune responses to antigens. These include saponins complexed to membrane protein antigens to produce immune stimulating complexes (ISCOMS), pluronic polymers with mineral oil, killed mycobacteria in mineral oil, Freund's complete adjuvant, bacterial products, such as muramyl dipeptide (MDP) and lipopolysaccharide (LPS), as well as monophoryl lipid A, QS 21 and polyphosphazene.
[0083] The particular examples set forth herein are instructional and should not be interpreted as limitations on the applications to which those of ordinary skill are able to apply this invention. Modifications and other uses are available to those skilled in the art which are encompassed within the spirit and scope of the following claims.
Sequence CWU
1
1
24133DNACandida albicans 1ccgctcgaga tgcttcaaca atttacattg tta
33232DNACandida albicans 2ccgctcgagt cactaaatga
acaaggacaa ta 32331DNACandida albicans
3cgggatccag atgcttcaac aatttacatt g
31431DNACandida albicans 4cgggatcctc actaaatgaa caaggacaat a
31520DNACandida albicans 5ccgtttatac catccaaatc
20622DNACandida albicans
6ctacatcctc caatgatata ac
2273786DNACandida albicans 7atgcttcaac aatttacatt gttattccta tatttgtcaa
ttgcaagtgc aaagacaatc 60actggtgttt ttgatagttt taattcatta acttggtcca
atgctgctaa ttatgctttc 120aaagggccag gatacccaac ttggaatgct gttttgggtt
ggtccttaga tggtaccagt 180gccaatccag gggatacatt cacattgaat atgccatgtg
tgtttaaata tactacttca 240caaacatctg ttgatttaac tgccgatggt gttaaatatg
ctacttgtca attttattct 300ggtgaagaat tcacaacttt ttctacatta acatgtactg
tgaacgacgc tttgaaatca 360tccattaagg catttggtac agttacttta ccaattgcat
tcaatgttgg tggaacaggt 420tcatcaactg atttggaaga ttctaaatgt tttactgctg
gtaccaatac agtcacattt 480aatgatggtg ataaagatat ctcaattgat gttgagtttg
aaaagtcaac cgttgatcca 540agtgcatatt tgtatgcttc cagagttatg ccaagtctca
ataaggtcac aactcttttt 600gtggcaccac aatgtgaaaa tggttacaca tctggtacaa
tggggttctc cagtagtaac 660ggtgacgttg ctattgattg ctcaaatatt catattggta
tcacaaaagg attaaatgat 720tggaattatc cggtttcatc tgaatcattt agttacacta
aaacttgtac atctaatgga 780attcagatta aatatcaaaa tgtacctgct ggttatcgtc
catttattga tgcttatatt 840tctgctacag atgttaacca atatacttta gcatatacca
atgattatac ttgtgctggc 900agtcgtctgc aaagtaaacc tttcacttta agatggactg
gatacaagaa tagtgatgcc 960ggatctaacg gtattgtcat tgttgctaca actagaacag
ttacagacag taccactgct 1020gtcactactt taccattcaa tccaagtgtt gataaaacca
aaacaatcga aattttgcaa 1080cctattccaa ccactaccat cacaacttca tatgttggtg
tgactacttc ctatctgact 1140aagactgcac caattggtga aacagctact gttattgttg
atgtgccata tcatactacc 1200acaactgtta ccagtgaatg gacaggaaca atcactacca
ccacaactcg taccaatcca 1260actgattcaa ttgacacagt ggtggtacaa gttccactgc
caaatccaac tgttagtact 1320actgaatatt ggtctcagtc ctttgctaca accactacag
ttactgctcc tccaggtggt 1380accgatactg tgattatcag agagccacca aaccatactg
tcactactac tgaatattgg 1440tcacaatcct ttgctactac tactactgtt actgctcctc
caggtggtac tgactcagta 1500attatcagag aaccaccaaa tccaactgtc actacaaccg
agtattggtc tcaatccttt 1560gctactacta ctacagttac tgctcctcca ggtggtactg
actcagtaat tatcagagaa 1620cctccaaacc caactgtcac caccactgaa tattggtccc
aatcttacgc aaccacaact 1680actgtgactg ctcctccagg aggcactgac tcagtaatta
tcagagaacc accaaaccac 1740actgtcacta ctactgaata ctggtcacaa tcatatgcca
ccactaccac tgtaactgca 1800ccaccaggtg gtactgacac tgttatcatt agagagccac
caaaccacac tgtcactact 1860actgagtatt ggtctcaatc gtttgctact accacaactg
taactggtcc accaagtggc 1920actgatactg ttatcattag ggaaccacca aacccaactg
tcaccactac tgaatactgg 1980tctcaatcat atgcaaccac tactaccatt accgctccac
ctggtgaaac tgataccgtt 2040cttatcagag agccaccaaa ccatactgtc actactactg
aatactggtc tcaatcatat 2100gctacaacca ccactgttac tgcaccacct ggtgaaaccg
ataccgttct tatcagagag 2160ccaccaaacc atactgtcac tactactgaa tactggtctc
aatcatatgc tacaaccacc 2220actgttactg caccaccagg tggtaccgat actgttatca
ttagagagcc accaaatcca 2280acagttacta ctactgaata ttggtcacaa tcatttgcca
caaccaccac agttactgct 2340cctccaggtg gtactgacac tgtgattatc tatgaaagca
tgtcaagttc aaagatttct 2400acatcctcca atgatataac cagtatcatt ccatcatttt
cccgtcctca ttatgtcaac 2460agcacaacct ccgatttgtc aacatttgaa tcttcatcca
tgaatactcc tacttctatc 2520agtagtgatg gtatgttgtt gtcttctaca actttggtta
ctgaatcaga aacaactaca 2580gaactgattt gcagtgatgg taaagagtgt tctagattgt
ccagttcttc tggtattgtc 2640acaaatccag atagcaatga atcctcaatc gtaactagta
ctgttcctac tgcaagtaca 2700atgtctgatt cactttcttc aactgatggt attagtgcta
catcttctga taatgtttca 2760aaatcaggag tatcagttac aaccgaaact tctgttacaa
ctattcaaac tactccaaac 2820ccattatcat cttcagtgac atcattgact cagttgtctt
caattccaag tgtttcagaa 2880agtgaaagta aagttacatt tacaagcaat ggagacaacc
aaagtggtac tcatgattca 2940caatctactt ccactgaaat tgaaattgta acaaccagtt
ctactaaagt tttaccacct 3000gtcgtttctt ctaatactga tttgactagt gaaccaacaa
ataccagaga acaaccaact 3060acattatcaa ctacttcaaa ctccatcact gaagatatca
ccacatctca acctacaggt 3120gataatggag acaatacttc atcaaccaat ccagttccaa
ctgtggcaac aagtacttta 3180gcatctgcaa gtgaagaaga caacaaaagc ggttctcatg
aatcagcatc cacaagtttg 3240aaaccaagta tgggtgaaaa ttctggatta actacttcta
ctgaaattga agctacaaca 3300accagtccta cagaagctcc atcacctgct gtttcttctg
gtactgatgt aactactgaa 3360ccaactgata ctagagaaca acctactaca ttatcaacta
cttcaaaaac aaacagtgaa 3420ctggttgcta ctacacaagc tactaatgaa aatggtggta
aatctccatc aactgattta 3480acatcaagct tgacaacagg cacctcagca tctacaagtg
ctaatagcga acttgttact 3540agtggatctg ttactggtgg agctgttgcc agtgcttcaa
atgatcaatc acattctact 3600tctgttacca acagcaacag cattgtatct aataccccac
aaactacatt gagtcaacaa 3660gttacctcat cctcaccttc aaccaacaca ttcattgctt
ctacatacga tggctctggt 3720tctattatcc aacattctac ttggttgtac ggtttgatca
cattattgtc cttgttcatt 3780tagtga
378681260PRTCandida albicans 8Met Leu Gln Gln Phe
Thr Leu Leu Phe Leu Tyr Leu Ser Ile Ala Ser 1 5
10 15 Ala Lys Thr Ile Thr Gly Val Phe Asp Ser
Phe Asn Ser Leu Thr Trp 20 25
30 Ser Asn Ala Ala Asn Tyr Ala Phe Lys Gly Pro Gly Tyr Pro Thr
Trp 35 40 45 Asn
Ala Val Leu Gly Trp Ser Leu Asp Gly Thr Ser Ala Asn Pro Gly 50
55 60 Asp Thr Phe Thr Leu Asn
Met Pro Cys Val Phe Lys Tyr Thr Thr Ser 65 70
75 80 Gln Thr Ser Val Asp Leu Thr Ala Asp Gly Val
Lys Tyr Ala Thr Cys 85 90
95 Gln Phe Tyr Ser Gly Glu Glu Phe Thr Thr Phe Ser Thr Leu Thr Cys
100 105 110 Thr Val
Asn Asp Ala Leu Lys Ser Ser Ile Lys Ala Phe Gly Thr Val 115
120 125 Thr Leu Pro Ile Ala Phe Asn
Val Gly Gly Thr Gly Ser Ser Thr Asp 130 135
140 Leu Glu Asp Ser Lys Cys Phe Thr Ala Gly Thr Asn
Thr Val Thr Phe 145 150 155
160 Asn Asp Gly Asp Lys Asp Ile Ser Ile Asp Val Glu Phe Glu Lys Ser
165 170 175 Thr Val Asp
Pro Ser Ala Tyr Leu Tyr Ala Ser Arg Val Met Pro Ser 180
185 190 Leu Asn Lys Val Thr Thr Leu Phe
Val Ala Pro Gln Cys Glu Asn Gly 195 200
205 Tyr Thr Ser Gly Thr Met Gly Phe Ser Ser Ser Asn Gly
Asp Val Ala 210 215 220
Ile Asp Cys Ser Asn Ile His Ile Gly Ile Thr Lys Gly Leu Asn Asp 225
230 235 240 Trp Asn Tyr Pro
Val Ser Ser Glu Ser Phe Ser Tyr Thr Lys Thr Cys 245
250 255 Thr Ser Asn Gly Ile Gln Ile Lys Tyr
Gln Asn Val Pro Ala Gly Tyr 260 265
270 Arg Pro Phe Ile Asp Ala Tyr Ile Ser Ala Thr Asp Val Asn
Gln Tyr 275 280 285
Thr Leu Ala Tyr Thr Asn Asp Tyr Thr Cys Ala Gly Ser Arg Ser Gln 290
295 300 Ser Lys Pro Phe Thr
Leu Arg Trp Thr Gly Tyr Lys Asn Ser Asp Ala 305 310
315 320 Gly Ser Asn Gly Ile Val Ile Val Ala Thr
Thr Arg Thr Val Thr Asp 325 330
335 Ser Thr Thr Ala Val Thr Thr Leu Pro Phe Asn Pro Ser Val Asp
Lys 340 345 350 Thr
Lys Thr Ile Glu Ile Leu Gln Pro Ile Pro Thr Thr Thr Ile Thr 355
360 365 Thr Ser Tyr Val Gly Val
Thr Thr Ser Tyr Ser Thr Lys Thr Ala Pro 370 375
380 Ile Gly Glu Thr Ala Thr Val Ile Val Asp Val
Pro Tyr His Thr Thr 385 390 395
400 Thr Thr Val Thr Ser Glu Trp Thr Gly Thr Ile Thr Thr Thr Thr Thr
405 410 415 Arg Thr
Asn Pro Thr Asp Ser Ile Asp Thr Val Val Val Gln Val Pro 420
425 430 Ser Pro Asn Pro Thr Val Ser
Thr Thr Glu Tyr Trp Ser Gln Ser Phe 435 440
445 Ala Thr Thr Thr Thr Val Thr Ala Pro Pro Gly Gly
Thr Asp Thr Val 450 455 460
Ile Ile Arg Glu Pro Pro Asn His Thr Val Thr Thr Thr Glu Tyr Trp 465
470 475 480 Ser Gln Ser
Phe Ala Thr Thr Thr Thr Val Thr Ala Pro Pro Gly Gly 485
490 495 Thr Asp Ser Val Ile Ile Arg Glu
Pro Pro Asn Pro Thr Val Thr Thr 500 505
510 Thr Glu Tyr Trp Ser Gln Ser Phe Ala Thr Thr Thr Thr
Val Thr Ala 515 520 525
Pro Pro Gly Gly Thr Asp Ser Val Ile Ile Arg Glu Pro Pro Asn Pro 530
535 540 Thr Val Thr Thr
Thr Glu Tyr Trp Ser Gln Ser Tyr Ala Thr Thr Thr 545 550
555 560 Thr Val Thr Ala Pro Pro Gly Gly Thr
Asp Ser Val Ile Ile Arg Glu 565 570
575 Pro Pro Asn His Thr Val Thr Thr Thr Glu Tyr Trp Ser Gln
Ser Tyr 580 585 590
Ala Thr Thr Thr Thr Val Thr Ala Pro Pro Gly Gly Thr Asp Thr Val
595 600 605 Ile Ile Arg Glu
Pro Pro Asn His Thr Val Thr Thr Thr Glu Tyr Trp 610
615 620 Ser Gln Ser Phe Ala Thr Thr Thr
Thr Val Thr Gly Pro Pro Ser Gly 625 630
635 640 Thr Asp Thr Val Ile Ile Arg Glu Pro Pro Asn Pro
Thr Val Thr Thr 645 650
655 Thr Glu Tyr Trp Ser Gln Ser Tyr Ala Thr Thr Thr Thr Ile Thr Ala
660 665 670 Pro Pro Gly
Glu Thr Asp Thr Val Leu Ile Arg Glu Pro Pro Asn His 675
680 685 Thr Val Thr Thr Thr Glu Tyr Trp
Ser Gln Ser Tyr Ala Thr Thr Thr 690 695
700 Thr Val Thr Ala Pro Pro Gly Glu Thr Asp Thr Val Leu
Ile Arg Glu 705 710 715
720 Pro Pro Asn His Thr Val Thr Thr Thr Glu Tyr Trp Ser Gln Ser Tyr
725 730 735 Ala Thr Thr Thr
Thr Val Thr Ala Pro Pro Gly Gly Thr Asp Thr Val 740
745 750 Ile Ile Arg Glu Pro Pro Asn Pro Thr
Val Thr Thr Thr Glu Tyr Trp 755 760
765 Ser Gln Ser Phe Ala Thr Thr Thr Thr Val Thr Ala Pro Pro
Gly Gly 770 775 780
Thr Asp Thr Val Ile Ile Tyr Glu Ser Met Ser Ser Ser Lys Ile Ser 785
790 795 800 Thr Ser Ser Asn Asp
Ile Thr Ser Ile Ile Pro Ser Phe Ser Arg Pro 805
810 815 His Tyr Val Asn Ser Thr Thr Ser Asp Leu
Ser Thr Phe Glu Ser Ser 820 825
830 Ser Met Asn Thr Pro Thr Ser Ile Ser Ser Asp Gly Met Leu Leu
Ser 835 840 845 Ser
Thr Thr Leu Val Thr Glu Ser Glu Thr Thr Thr Glu Ser Ile Cys 850
855 860 Ser Asp Gly Lys Glu Cys
Ser Arg Leu Ser Ser Ser Ser Gly Ile Val 865 870
875 880 Thr Asn Pro Asp Ser Asn Glu Ser Ser Ile Val
Thr Ser Thr Val Pro 885 890
895 Thr Ala Ser Thr Met Ser Asp Ser Leu Ser Ser Thr Asp Gly Ile Ser
900 905 910 Ala Thr
Ser Ser Asp Asn Val Ser Lys Ser Gly Val Ser Val Thr Thr 915
920 925 Glu Thr Ser Val Thr Thr Ile
Gln Thr Thr Pro Asn Pro Leu Ser Ser 930 935
940 Ser Val Thr Ser Leu Thr Gln Leu Ser Ser Ile Pro
Ser Val Ser Glu 945 950 955
960 Ser Glu Ser Lys Val Thr Phe Thr Ser Asn Gly Asp Asn Gln Ser Gly
965 970 975 Thr His Asp
Ser Gln Ser Thr Ser Thr Glu Ile Glu Ile Val Thr Thr 980
985 990 Ser Ser Thr Lys Val Leu Pro Pro
Val Val Ser Ser Asn Thr Asp Leu 995 1000
1005 Thr Ser Glu Pro Thr Asn Thr Arg Glu Gln Pro
Thr Thr Leu Ser 1010 1015 1020
Thr Thr Ser Asn Ser Ile Thr Glu Asp Ile Thr Thr Ser Gln Pro
1025 1030 1035 Thr Gly Asp
Asn Gly Asp Asn Thr Ser Ser Thr Asn Pro Val Pro 1040
1045 1050 Thr Val Ala Thr Ser Thr Leu Ala
Ser Ala Ser Glu Glu Asp Asn 1055 1060
1065 Lys Ser Gly Ser His Glu Ser Ala Ser Thr Ser Leu Lys
Pro Ser 1070 1075 1080
Met Gly Glu Asn Ser Gly Leu Thr Thr Ser Thr Glu Ile Glu Ala 1085
1090 1095 Thr Thr Thr Ser Pro
Thr Glu Ala Pro Ser Pro Ala Val Ser Ser 1100 1105
1110 Gly Thr Asp Val Thr Thr Glu Pro Thr Asp
Thr Arg Glu Gln Pro 1115 1120 1125
Thr Thr Leu Ser Thr Thr Ser Lys Thr Asn Ser Glu Ser Val Ala
1130 1135 1140 Thr Thr
Gln Ala Thr Asn Glu Asn Gly Gly Lys Ser Pro Ser Thr 1145
1150 1155 Asp Leu Thr Ser Ser Leu Thr
Thr Gly Thr Ser Ala Ser Thr Ser 1160 1165
1170 Ala Asn Ser Glu Leu Val Thr Ser Gly Ser Val Thr
Gly Gly Ala 1175 1180 1185
Val Ala Ser Ala Ser Asn Asp Gln Ser His Ser Thr Ser Val Thr 1190
1195 1200 Asn Ser Asn Ser Ile
Val Ser Asn Thr Pro Gln Thr Thr Leu Ser 1205 1210
1215 Gln Gln Val Thr Ser Ser Ser Pro Ser Thr
Asn Thr Phe Ile Ala 1220 1225 1230
Ser Thr Tyr Asp Gly Ser Gly Ser Ile Ile Gln His Ser Thr Trp
1235 1240 1245 Leu Tyr
Gly Leu Ile Thr Leu Leu Ser Leu Phe Ile 1250 1255
1260 91404DNACandida albicans 9atgcttttac aatttttgtt
gctaagcctc tgtgtatcag ttgctactgc aaaagttatt 60acgggtgttt tcaatagttt
tgattcgttg acatggacaa gagctggtaa ttatgcttat 120aagggcccaa atagaccaac
ttggaatgct gttttgggct ggtctttaga tggtactagt 180gcaaatccag gagacacatt
cacattgaat atgccatgtg tttttaaatt tattaccgat 240caaacatctg ttgatttgac
tgctgaaggt gttaaatatg ctacatgtca gttttattca 300ggtgaagaat ttacaacatt
ttcttcatta aaatgtactg tgagcaatac tttaacatca 360tctattaagg ctttgggtac
ggttacttta ccaatttcat ttaatgttgg tggaacaggt 420tcatcggttg atttggaaag
ttctcaatgt tttaaggctg gcaccaacac agttactttt 480aatgatggtg ataaaaaaat
ctcaattgac gttgattttg agaaaacaaa cgaagatgca 540agtggatatt tcatagcgtc
aagacttatt ccaagtatta acaaagtttc aatcacttat 600gtggcaccac aatgtgcaaa
tggctacaca tctggtgcaa tggggttcat agttctcact 660ggtgacacta ctattgactg
ttcaaatgtt catgttggta ttacaaaggg attaaatgat 720tggaattttc cggtatcgtc
tgattcatta agttacaata aaacttgttc atctacaggt 780atttctatca catatgaaaa
tgtccccgct ggttatcgtc cattttttga cgtatatact 840ctggtgtcag gccagaacag
acaattaaga tatactaatg attatgcctg tgttggtagt 900tccttacaaa gtaagccgtt
caatttaaga ttgagaggat acaataatag tgaagctaat 960tctaacggtt ttgtcattgt
tgctacaacc cgaacagtta ctgacagtac tactgctgtc 1020actactttac cttttaatcc
aagtgttgac aaaaccaaaa caatcgaaat tttgcaacct 1080attccaacaa ccaccatcac
aacttcatat gttggtgtga ctacttccta cctgactaaa 1140actgcaccaa ttggtgaaac
agctactgtt attgttgatg tgccatatca tactaccaca 1200actgttacca gtgaatggac
aggaacaatc actaccacta caactcgtac caatccaact 1260gattctatag atactgtcgt
tgtgcaagtt ccactgccaa atccaactgt cactacaacc 1320gagtattggt ctcagtcata
tgctactact actactgtta ctgctcctcc aggtggtact 1380gactcagtaa ttatcagaga
acct 140410468PRTCandida
albicans 10Met Leu Leu Gln Phe Leu Leu Leu Ser Leu Cys Val Ser Val Ala
Thr 1 5 10 15 Ala
Lys Val Ile Thr Gly Val Phe Asn Ser Phe Asp Ser Leu Thr Trp
20 25 30 Thr Arg Ala Gly Asn
Tyr Ala Tyr Lys Gly Pro Asn Arg Pro Thr Trp 35
40 45 Asn Ala Val Leu Gly Trp Ser Leu Asp
Gly Thr Ser Ala Asn Pro Gly 50 55
60 Asp Thr Phe Thr Leu Asn Met Pro Cys Val Phe Lys Phe
Ile Thr Asp 65 70 75
80 Gln Thr Ser Val Asp Leu Thr Ala Glu Gly Val Lys Tyr Ala Thr Cys
85 90 95 Gln Phe Tyr Ser
Gly Glu Glu Phe Thr Thr Phe Ser Ser Leu Lys Cys 100
105 110 Thr Val Ser Asn Thr Leu Thr Ser Ser
Ile Lys Ala Leu Gly Thr Val 115 120
125 Thr Leu Pro Ile Ser Phe Asn Val Gly Gly Thr Gly Ser Ser
Val Asp 130 135 140
Leu Glu Ser Ser Gln Cys Phe Lys Ala Gly Thr Asn Thr Val Thr Phe 145
150 155 160 Asn Asp Gly Asp Lys
Lys Ile Ser Ile Asp Val Asp Phe Glu Lys Thr 165
170 175 Asn Glu Asp Ala Ser Gly Tyr Phe Ile Ala
Ser Arg Leu Ile Pro Ser 180 185
190 Ile Asn Lys Val Ser Ile Thr Tyr Val Ala Pro Gln Cys Ala Asn
Gly 195 200 205 Tyr
Thr Ser Gly Ala Met Gly Phe Ile Val Leu Thr Gly Asp Thr Thr 210
215 220 Ile Asp Cys Ser Asn Val
His Val Gly Ile Thr Lys Gly Leu Asn Asp 225 230
235 240 Trp Asn Phe Pro Val Ser Ser Asp Ser Leu Ser
Tyr Asn Lys Thr Cys 245 250
255 Ser Ser Thr Gly Ile Ser Ile Thr Tyr Glu Asn Val Pro Ala Gly Tyr
260 265 270 Arg Pro
Phe Phe Asp Val Tyr Thr Ser Val Ser Gly Gln Asn Arg Gln 275
280 285 Leu Arg Tyr Thr Asn Asp Tyr
Ala Cys Val Gly Ser Ser Leu Gln Ser 290 295
300 Lys Pro Phe Asn Leu Arg Leu Arg Gly Tyr Asn Asn
Ser Glu Ala Asn 305 310 315
320 Ser Asn Gly Phe Val Ile Val Ala Thr Thr Arg Thr Val Thr Asp Ser
325 330 335 Thr Thr Ala
Val Thr Thr Leu Pro Phe Asn Pro Ser Val Asp Lys Thr 340
345 350 Lys Thr Ile Glu Ile Leu Gln Pro
Ile Pro Thr Thr Thr Ile Thr Thr 355 360
365 Ser Tyr Val Gly Val Thr Thr Ser Tyr Ser Thr Lys Thr
Ala Pro Ile 370 375 380
Gly Glu Thr Ala Thr Val Ile Val Asp Val Pro Tyr His Thr Thr Thr 385
390 395 400 Thr Val Thr Ser
Glu Trp Thr Gly Thr Ile Thr Thr Thr Thr Thr Arg 405
410 415 Thr Asn Pro Thr Asp Ser Ile Asp Thr
Val Val Val Gln Val Pro Ser 420 425
430 Pro Asn Pro Thr Val Thr Thr Thr Glu Tyr Trp Ser Gln Ser
Tyr Ala 435 440 445
Thr Thr Thr Thr Val Thr Ala Pro Pro Gly Gly Thr Asp Ser Val Ile 450
455 460 Ile Arg Glu Pro 465
113360DNACandida albicans 11atgctacaac aatatacatt gttactcata
tatttgtcgg ttgcgactgc aaagacaatc 60actggtgttt tcaacagttt taattcattg
acttggtcta atgctgctac ttataattat 120aagggaccag gaaccccaac ttggaatgct
gttttgggtt ggtctttaga tggtactagt 180gcaagtccgg gagatacatt cacattgaat
atgccatgtg tgtttaaatt tactacttct 240caaacatctg ttgatttgac tgctcatggt
gttaaatatg ctacatgtca atttcaggca 300ggtgaagaat ttatgacctt ttctacatta
acatgtactg tgagcaatac tttgactcca 360tctattaagg ctttgggtac tgtcacctta
ccacttgcat tcaatgtagg tggaactggt 420tcttctgttg atttggaaga ttctaaatgt
tttactgctg gtactaacac agttacattt 480aatgatggtg gcaagaaaat ctctattaat
gttgattttg aaaggtcaaa tgtcgatcca 540aaagggtact taactgattc cagagttata
ccaagtctca acaaagtgtc aactcttttt 600gttgcaccac aatgtgcaaa tggttacaca
tctggtacaa tgggattcgc taacacttat 660ggtgatgttc aaattgactg ttcaaatatt
catgttggta ttacaaaagg attgaatgat 720tggaattatc cggtttcatc tgaatcattt
agttacacca aaacttgttc atctaatggt 780atctttatca catataaaaa tgttcctgcc
ggttatcgtc catttgttga cgcttatatt 840tctgctacag atgttaattc gtacaccttg
tcgtatgcta atgaatatac ttgtgctggt 900ggttattggc aacgtgcacc tttcacatta
agatggactg gatacagaaa tagtgatgct 960ggatctaacg gtattgttat tgtggctact
accagaacag ttacagacag tactaccgct 1020gtgaccacct taccattcga tcctaaccgc
gacaaaacta agacaattga aattttgaaa 1080cctattccaa caactacaat cacaacatca
tatgttggtg tgactacttc ctacctgacc 1140aaaactgcac caattgggga aactgctact
gttattgttg atattccata tcacactacc 1200actactgtta ccagtaaatg gacaggaaca
attacttcca ccacaacaca tactaatcca 1260actgactcaa tagacactgt cattgtacaa
gttccactgc caaacccaac tgttactacc 1320actgaatatt ggtctcaatc atttgctacc
accaccacca ttactggacc accaggaaac 1380actgatactg ttttaatcag agaaccaccg
aaccatactg tcactacaac cgagtactgg 1440tcagaatctt acactactac tagtactttc
actgctcctc caggtggaac tgattcagtt 1500attatcaagg aacctccaaa tccaactgtc
acaactaccg agtactggtc agaatcttac 1560actaccacta gtaccttcac tgctcctcca
ggtggaactg attcagttat tatcaaggaa 1620ccaccaaacc atactgtaac cacaactgaa
tattggtcac aatcttacac taccactact 1680actgtcaccg ctccaccagg aggtactgat
actgtcttag tcagagaacc accaaaccat 1740actgttacaa ctaccgagta ctggtcacaa
tcttacacta caaccaccac tgttattgcc 1800ccaccaggtg gcactgattc ggttatcatt
agagaacctc caaatccaac tgtcacaacc 1860actgagtact ggtctcaatc ttacgcaact
accactacca ttaccgctcc tccaggtgag 1920accgatactg tccttattag agaaccacca
aaccatactg taaccacaac tgagtattgg 1980tctcaatctt atgcaactac tactacaatc
actgctcctc caggtgaaac cgataccgtt 2040cttattaggg aaccaccaaa tcacactgtc
actactactg aatactggtc acaatcattt 2100gctacaacca caactgtaac tgcaccacca
ggtggtactg acactgttat cattagagaa 2160ccaccaaacc acactgtcac tactactgag
tattggtctc aatcttacgc aaccactact 2220accattaccg ctccacctgg tgagaccgat
accgttctta ttagggaacc accaaatcac 2280acagttacta ctactgaata ctggtcacaa
tcatatgcaa ctactaccac tatcatcgca 2340ccaccaggtg aaactgatac tgttttaatc
agagagccac caaacccaac tgttaccacc 2400accgaatact ggtctcaatc ctataccact
gctactaccg ttactgcacc accaggtgga 2460actgatactg tgattattta tgacaccatg
tcaagttcag aaatttcttc attttctcgt 2520cctcattaca ccaaccatac aactttgtgg
tctacaactt gggttattga aacaaaaaca 2580attacagaaa ctagctgtga aggtgataaa
ggttgttctt gggtttctgt ttctactcgt 2640attgtcacaa ttcctaataa tatcgaaact
cctatggtta ctaatactgt tgattctaca 2700accacagaat ccacttcaca atccccatct
ggtatttttt cagagtcagg agtatctgtt 2760gaaacagaat cttctactgt tactactgct
caaacaaatc caagtgttcc aacaactgaa 2820agtgaggttg tatttactac taaaggaaac
aacgaaaatg gtccttatga atcaccatct 2880actaatgtga aatcaagtat ggatgaaaac
tctgaattta ctacttccac agctgcttcc 2940acttctactg atattgaaaa tgaaaccata
gcaacaaccg gttccgtgga agcttcatcg 3000cctatcattt cttctagtgc tgatgaaact
actactgtta ctactactgc tgaatcaacc 3060agtgtcattg aacaaccaac caataataat
ggtggtggta aagccccatc tgcaacttca 3120tctccatcta caactacaac tgctaataat
gactctgtta ttactggtac aacatcaacc 3180aaccaatctc aatctcaatc tcaatataat
tctgataccc aacaaactac attgagtcaa 3240caaatgactt catctttagt tagtttacat
atgcttacta catttgacgg atctggttct 3300gttattcaac attctacttg gttatgtggt
ttgatcacat tattatcctt gtttatttaa 3360121119PRTCandida albicans 12Met
Leu Gln Gln Tyr Thr Leu Leu Leu Ile Tyr Leu Ser Val Ala Thr 1
5 10 15 Ala Lys Thr Ile Thr Gly
Val Phe Asn Ser Phe Asn Ser Leu Thr Trp 20
25 30 Ser Asn Ala Ala Thr Tyr Asn Tyr Lys Gly
Pro Gly Thr Pro Thr Trp 35 40
45 Asn Ala Val Leu Gly Trp Ser Leu Asp Gly Thr Ser Ala Ser
Pro Gly 50 55 60
Asp Thr Phe Thr Leu Asn Met Pro Cys Val Phe Lys Phe Thr Thr Ser 65
70 75 80 Gln Thr Ser Val Asp
Leu Thr Ala His Gly Val Lys Tyr Ala Thr Cys 85
90 95 Gln Phe Gln Ala Gly Glu Glu Phe Met Thr
Phe Ser Thr Leu Thr Cys 100 105
110 Thr Val Ser Asn Thr Leu Thr Pro Ser Ile Lys Ala Leu Gly Thr
Val 115 120 125 Thr
Leu Pro Leu Ala Phe Asn Val Gly Gly Thr Gly Ser Ser Val Asp 130
135 140 Leu Glu Asp Ser Lys Cys
Phe Thr Ala Gly Thr Asn Thr Val Thr Phe 145 150
155 160 Asn Asp Gly Gly Lys Lys Ile Ser Ile Asn Val
Asp Phe Glu Arg Ser 165 170
175 Asn Val Asp Pro Lys Gly Tyr Leu Thr Asp Ser Arg Val Ile Pro Ser
180 185 190 Leu Asn
Lys Val Ser Thr Leu Phe Val Ala Pro Gln Cys Ala Asn Gly 195
200 205 Tyr Thr Ser Gly Thr Met Gly
Phe Ala Asn Thr Tyr Gly Asp Val Gln 210 215
220 Ile Asp Cys Ser Asn Ile His Val Gly Ile Thr Lys
Gly Leu Asn Asp 225 230 235
240 Trp Asn Tyr Pro Val Ser Ser Glu Ser Phe Ser Tyr Thr Lys Thr Cys
245 250 255 Ser Ser Asn
Gly Ile Phe Ile Thr Tyr Lys Asn Val Pro Ala Gly Tyr 260
265 270 Arg Pro Phe Val Asp Ala Tyr Ile
Ser Ala Thr Asp Val Asn Ser Tyr 275 280
285 Thr Leu Ser Tyr Ala Asn Glu Tyr Thr Cys Ala Gly Gly
Tyr Trp Gln 290 295 300
Arg Ala Pro Phe Thr Leu Arg Trp Thr Gly Tyr Arg Asn Ser Asp Ala 305
310 315 320 Gly Ser Asn Gly
Ile Val Ile Val Ala Thr Thr Arg Thr Val Thr Asp 325
330 335 Ser Thr Thr Ala Val Thr Thr Leu Pro
Phe Asp Pro Asn Arg Asp Lys 340 345
350 Thr Lys Thr Ile Glu Ile Leu Lys Pro Ile Pro Thr Thr Thr
Ile Thr 355 360 365
Thr Ser Tyr Val Gly Val Thr Thr Ser Tyr Ser Thr Lys Thr Ala Pro 370
375 380 Ile Gly Glu Thr Ala
Thr Val Ile Val Asp Ile Pro Tyr His Thr Thr 385 390
395 400 Thr Thr Val Thr Ser Lys Trp Thr Gly Thr
Ile Thr Ser Thr Thr Thr 405 410
415 His Thr Asn Pro Thr Asp Ser Ile Asp Thr Val Ile Val Gln Val
Pro 420 425 430 Ser
Pro Asn Pro Thr Val Thr Thr Thr Glu Tyr Trp Ser Gln Ser Phe 435
440 445 Ala Thr Thr Thr Thr Ile
Thr Gly Pro Pro Gly Asn Thr Asp Thr Val 450 455
460 Leu Ile Arg Glu Pro Pro Asn His Thr Val Thr
Thr Thr Glu Tyr Trp 465 470 475
480 Ser Glu Ser Tyr Thr Thr Thr Ser Thr Phe Thr Ala Pro Pro Gly Gly
485 490 495 Thr Asp
Ser Val Ile Ile Lys Glu Pro Pro Asn Pro Thr Val Thr Thr 500
505 510 Thr Glu Tyr Trp Ser Glu Ser
Tyr Thr Thr Thr Ser Thr Phe Thr Ala 515 520
525 Pro Pro Gly Gly Thr Asp Ser Val Ile Ile Lys Glu
Pro Pro Asn His 530 535 540
Thr Val Thr Thr Thr Glu Tyr Trp Ser Gln Ser Tyr Thr Thr Thr Thr 545
550 555 560 Thr Val Thr
Ala Pro Pro Gly Gly Thr Asp Thr Val Leu Val Arg Glu 565
570 575 Pro Pro Asn His Thr Val Thr Thr
Thr Glu Tyr Trp Ser Gln Ser Tyr 580 585
590 Thr Thr Thr Thr Thr Val Ile Ala Pro Pro Gly Gly Thr
Asp Ser Val 595 600 605
Ile Ile Arg Glu Pro Pro Asn Pro Thr Val Thr Thr Thr Glu Tyr Trp 610
615 620 Ser Gln Ser Tyr
Ala Thr Thr Thr Thr Ile Thr Ala Pro Pro Gly Glu 625 630
635 640 Thr Asp Thr Val Leu Ile Arg Glu Pro
Pro Asn His Thr Val Thr Thr 645 650
655 Thr Glu Tyr Trp Ser Gln Ser Tyr Ala Thr Thr Thr Thr Ile
Thr Ala 660 665 670
Pro Pro Gly Glu Thr Asp Thr Val Leu Ile Arg Glu Pro Pro Asn His
675 680 685 Thr Val Thr Thr
Thr Glu Tyr Trp Ser Gln Ser Phe Ala Thr Thr Thr 690
695 700 Thr Val Thr Ala Pro Pro Gly Gly
Thr Asp Thr Val Ile Ile Arg Glu 705 710
715 720 Pro Pro Asn His Thr Val Thr Thr Thr Glu Tyr Trp
Ser Gln Ser Tyr 725 730
735 Ala Thr Thr Thr Thr Ile Thr Ala Pro Pro Gly Glu Thr Asp Thr Val
740 745 750 Leu Ile Arg
Glu Pro Pro Asn His Thr Val Thr Thr Thr Glu Tyr Trp 755
760 765 Ser Gln Ser Tyr Ala Thr Thr Thr
Thr Ile Ile Ala Pro Pro Gly Glu 770 775
780 Thr Asp Thr Val Leu Ile Arg Glu Pro Pro Asn Pro Thr
Val Thr Thr 785 790 795
800 Thr Glu Tyr Trp Ser Gln Ser Tyr Thr Thr Ala Thr Thr Val Thr Ala
805 810 815 Pro Pro Gly Gly
Thr Asp Thr Val Ile Ile Tyr Asp Thr Met Ser Ser 820
825 830 Ser Glu Ile Ser Ser Phe Ser Arg Pro
His Tyr Thr Asn His Thr Thr 835 840
845 Leu Trp Ser Thr Thr Trp Val Ile Glu Thr Lys Thr Ile Thr
Glu Thr 850 855 860
Ser Cys Glu Gly Asp Lys Gly Cys Ser Trp Val Ser Val Ser Thr Arg 865
870 875 880 Ile Val Thr Ile Pro
Asn Asn Ile Glu Thr Pro Met Val Thr Asn Thr 885
890 895 Val Asp Ser Thr Thr Thr Glu Ser Thr Ser
Gln Ser Pro Ser Gly Ile 900 905
910 Phe Ser Glu Ser Gly Val Ser Val Glu Thr Glu Ser Ser Thr Val
Thr 915 920 925 Thr
Ala Gln Thr Asn Pro Ser Val Pro Thr Thr Glu Ser Glu Val Val 930
935 940 Phe Thr Thr Lys Gly Asn
Asn Glu Asn Gly Pro Tyr Glu Ser Pro Ser 945 950
955 960 Thr Asn Val Lys Ser Ser Met Asp Glu Asn Ser
Glu Phe Thr Thr Ser 965 970
975 Thr Ala Ala Ser Thr Ser Thr Asp Ile Glu Asn Glu Thr Ile Ala Thr
980 985 990 Thr Gly
Ser Val Glu Ala Ser Ser Pro Ile Ile Ser Ser Ser Ala Asp 995
1000 1005 Glu Thr Thr Thr Val
Thr Thr Thr Ala Glu Ser Thr Ser Val Ile 1010 1015
1020 Glu Gln Pro Thr Asn Asn Asn Gly Gly Gly
Lys Ala Pro Ser Ala 1025 1030 1035
Thr Ser Ser Pro Ser Thr Thr Thr Thr Ala Asn Asn Asp Ser Val
1040 1045 1050 Ile Thr
Gly Thr Thr Ser Thr Asn Gln Ser Gln Ser Gln Ser Gln 1055
1060 1065 Tyr Asn Ser Asp Thr Gln Gln
Thr Thr Leu Ser Gln Gln Met Thr 1070 1075
1080 Ser Ser Leu Val Ser Leu His Met Leu Thr Thr Phe
Asp Gly Ser 1085 1090 1095
Gly Ser Val Ile Gln His Ser Thr Trp Leu Cys Gly Leu Ile Thr 1100
1105 1110 Leu Leu Ser Leu Phe
Ile 1115 131407DNACandida albicans 13atgcttttac
aatttttgtt gctaagcctc tgtgtatcag ttgctacggc aaaagttatt 60acaggtgttt
tcaatagttt taattcgtta acttgggcca atgctgcttc ttatccatat 120agaggtccag
ctactcctac ttggaccgct gtaataggat ggtctttaga tggagctact 180gctagtgctg
gtgacacatt cacgttagac atgccttgtg ttttcaaatt tattactgat 240caaacgtcaa
ttgatttagt tgctgatggt cgtacttatg ctacttgtaa tttgaattct 300gccgaagagt
ttactacttt ttctagtgtg tcatgtactg tgactactac aatgactgct 360gacaccaaag
ccataggaac tgtaacatta cctttctcat tcagtgtggg gggatcaggt 420tcagatgttg
atttggcaaa ttctcaatgt tttactgcag gaatcaatac agttactttt 480aatgatggtg
acactagcat ttccacaaca gttgattttg aaaaatcaac cgtggcctcc 540agcgatcgta
tcttgttgtc aagaatttta cccagtcttt cacaagcagt aaatcttttt 600cttccccaag
aatgtgcaaa tggttatact tctggtacaa tgggattttc gactgctggt 660actggtgcta
ctatagattg ttccacagtt catgtcggga tatcaaatgg gttgaatgat 720tggaattatc
caatttcact ggaatctttt tcttacacaa agacctgtac atcaacaagt 780gttttagtaa
cttttcaaaa tgttcctgcc ggatatcgtc catttgttga tgcttatatt 840tctgcaacac
gagtcagctc atataccatg caatacacta atatatatgc ttgtgttggc 900gcggcttctg
ttgatgactc atttactcat acttggcggg gatatagtaa tagtcaagct 960ggttctaatg
gtattaccat tgtggtaaca actagaacag ttacagacag taccactgct 1020gtgactactt
taccattcaa ttccgatact gacaaaacca aaacaatcga aattttacaa 1080cctattccaa
caactaccat tacaacttca tatgttggtg tgacaacttc ctacctgact 1140aaaactgcac
caattggtga aacagctact gttattgttg atgtgccata tcatactact 1200acaactgtta
ccagtgaatg gacaggaaca attactacca ctacaactcg taccaatcca 1260actgattcta
tagatactgt cgttgttcaa gttccactgc caaatccaac tgtcactaca 1320accgagtatt
ggtctcagtc atatgctact actactactg ttactgctcc tccaggtggt 1380actgactcag
taattatcag agaacct
140714469PRTCandida albicans 14Met Leu Leu Gln Phe Leu Leu Leu Ser Leu
Cys Val Ser Val Ala Thr 1 5 10
15 Ala Lys Val Ile Thr Gly Val Phe Asn Ser Phe Asn Ser Leu Thr
Trp 20 25 30 Ala
Asn Ala Ala Ser Tyr Pro Tyr Arg Gly Pro Ala Thr Pro Thr Trp 35
40 45 Thr Ala Val Ile Gly Trp
Ser Leu Asp Gly Ala Thr Ala Ser Ala Gly 50 55
60 Asp Thr Phe Thr Leu Asp Met Pro Cys Val Phe
Lys Phe Ile Thr Asp 65 70 75
80 Gln Thr Ser Ile Asp Leu Val Ala Asp Gly Arg Thr Tyr Ala Thr Cys
85 90 95 Asn Leu
Asn Ser Ala Glu Glu Phe Thr Thr Phe Ser Ser Val Ser Cys 100
105 110 Thr Val Thr Thr Thr Met Thr
Ala Asp Thr Lys Ala Ile Gly Thr Val 115 120
125 Thr Leu Pro Phe Ser Phe Ser Val Gly Gly Ser Gly
Ser Asp Val Asp 130 135 140
Leu Ala Asn Ser Gln Cys Phe Thr Ala Gly Ile Asn Thr Val Thr Phe 145
150 155 160 Asn Asp Gly
Asp Thr Ser Ile Ser Thr Thr Val Asp Phe Glu Lys Ser 165
170 175 Thr Val Ala Ser Ser Asp Arg Ile
Leu Leu Ser Arg Ile Leu Pro Ser 180 185
190 Leu Ser Gln Ala Val Asn Leu Phe Leu Pro Gln Glu Cys
Ala Asn Gly 195 200 205
Tyr Thr Ser Gly Thr Met Gly Phe Ser Thr Ala Gly Thr Gly Ala Thr 210
215 220 Ile Asp Cys Ser
Thr Val His Val Gly Ile Ser Asn Gly Leu Asn Asp 225 230
235 240 Trp Asn Tyr Pro Ile Ser Ser Glu Ser
Phe Ser Tyr Thr Lys Thr Cys 245 250
255 Thr Ser Thr Ser Val Leu Val Thr Phe Gln Asn Val Pro Ala
Gly Tyr 260 265 270
Arg Pro Phe Val Asp Ala Tyr Ile Ser Ala Thr Arg Val Ser Ser Tyr
275 280 285 Thr Met Gln Tyr
Thr Asn Ile Tyr Ala Cys Val Gly Ala Ala Ser Val 290
295 300 Asp Asp Ser Phe Thr His Thr Trp
Arg Gly Tyr Ser Asn Ser Gln Ala 305 310
315 320 Gly Ser Asn Gly Ile Thr Ile Val Val Thr Thr Arg
Thr Val Thr Asp 325 330
335 Ser Thr Thr Ala Val Thr Thr Leu Pro Phe Asn Ser Asp Thr Asp Lys
340 345 350 Thr Lys Thr
Ile Glu Ile Leu Gln Pro Ile Pro Thr Thr Thr Ile Thr 355
360 365 Thr Ser Tyr Val Gly Val Thr Thr
Ser Tyr Ser Thr Lys Thr Ala Pro 370 375
380 Ile Gly Glu Thr Ala Thr Val Ile Val Asp Val Pro Tyr
His Thr Thr 385 390 395
400 Thr Thr Val Thr Ser Glu Trp Thr Gly Thr Ile Thr Thr Thr Thr Thr
405 410 415 Arg Thr Asn Pro
Thr Asp Ser Ile Asp Thr Val Val Val Gln Val Pro 420
425 430 Ser Pro Asn Pro Thr Val Thr Thr Thr
Glu Tyr Trp Ser Gln Ser Tyr 435 440
445 Ala Thr Thr Thr Thr Val Thr Ala Pro Pro Gly Gly Thr Asp
Ser Val 450 455 460
Ile Ile Arg Glu Pro 465 153813DNACandida albicans
15atgattcaac aatttacatt gttattccta tatttgtcgt ttgcgactgc aaaggcgatc
60actggtattt tcaatagtat tgactcatta acttggtcca atgctggcaa ttacgctttc
120aaaggaccag gatacccaac ttggaatgct gtgttgggtt ggtcattaga tggtaccagt
180gccaatccag gagatacatt catattaaac atgccatgtg tgtttaaatt cactgcttcc
240caaaaatctg ttgatttgac tgccgatggt gttaaatatg ctacttgtca attttattct
300ggtgaagagt ttacaacttt ttctacatta acatgtactg tgaacgacgc tttgaaatca
360tccattaagg catttggtac agttacttta ccaattgcat tcaatgttgg tggaacaggt
420tcatcaactg atttggaaga ttctaaatgt tttactgctg gtatcaatac ggtaacattt
480aatgatggca gtaaaaagct ctcaattgct gttaattttg aaaagtcaac agttgatcga
540agtgggtatt tgactacttc cagatttatg ccgagtctca ataaaattgc tactctttat
600gtggcaccac aatgtgaaaa cggttacaca tctggtacaa tgggattctc cactagttat
660ggggatgttg ctattgactg ttcaaatgta catattggta tttcaaaagg agtaaatgat
720tggaatcatc cagttacgtc tgaatcattt agttacacta aaagctgttc atcttttggt
780atctctatca catatcaaaa tgttcctgcc ggttatcgtc catttattga cgcttatatt
840tctccctcag ataataacca gtatcaattg tcgtataaaa atgactatac ttgtgttgat
900gattattggc aacatgcacc tttcacttta aaatggactg gatataagaa tagtgatgcc
960ggatctaacg gtattgtcat tgttgctaca actagaacag ttacagacag taccactgct
1020gtcactactt taccattcaa tccaagtgtt gataaaacca aaacaatcga aattttgcaa
1080cctattccaa ccactaccat cacaacttca tatgttggtg tgactacttc ctatctgact
1140aagactgcac caattggtga aacagctact cttattgttg atgtgccata tcatactacc
1200acaactgtta caagtaaatg gacaggaaca attacgatga ctacaactcg taccaatcca
1260actgattcaa ttgacacagt ggtggtacaa gttccacttc caaatccaac tacaactaca
1320acccagtttt ggtcagagtc atttactagt actactacaa tcaccaacaa gccagaaggc
1380acagactcag tcattgtcaa ggaaccacac aatcctactg ttaccaccac agagttttgg
1440tcagaatcat atgccactac tgaaacaatt actacagggc cacttggtac tgatagtatc
1500gttatacatg atccattgga agaactgtct tctactactg ctattgagtc gagtgattct
1560aatatttcaa gctcagctca agaatcatcc agtctggttg agcagtcatc aagtatagtt
1620ggattgtcat caagttcaga tataccatta agttcagaca tgccatcatc gagctcaact
1680gggttaacat ctagtgagtc gtctactgtc tcaagttatg atagcgattc atcaagtagt
1740agtgagttat ctacattttc tagttctgag agctactcgt caagtatctc tgataccaca
1800aacttttggg attcttcaag ttccgattta gagtccaccc tgatcacttg gagttcctcc
1860atcgatgcac aatctagtca gtcggtacag tcagtatcaa actccattag cacaagtcag
1920gagacaacat caagctcagg tgaggaatcc aatacgtcag tcaccgatat tttagtgtca
1980agtgatgcaa gttctatttt gaactctgat atttccagtt attacccatc tagcacaatt
2040ctgctaagtg acgattttcc acacactata gcaggggagc cagatagccg atcaagctca
2100tcaatagcat ctactgttga gatttctagt gatttggtct ctcttacaag tgacccaaca
2160agcagttttg attcatcttc tagtttgaat tctgactcat catctctgcc attcagtgac
2220gaaagtgata tttcggcttc atctagtttt tctacattag ttgccccatc tttttcattg
2280agttcaagca gttcattatc tttgatatat ccacattatg tcaactcaac aacatatcat
2340gcatcggaat ccgaaagctc atctgtcgct tcaccatcag tggcaagtga gtcagctaat
2400gatgacacac atactttgct ggaatctact gacactacat ccattattgg cacagattct
2460tctactgtga cattttgtcg tcgtgataac ggagatggct gtattgtaac agggataaca
2520tcgtctagta tagacagtga acagactagt gatgtgacga caacttctag ctttgttgct
2580tccagcacac caacctcggc agaacagtct attactgaca atccaaatat tgactcactg
2640caaacaagtg ctagttcttc aactaaatca tcagtttctg tgtcagatac agtagtaaat
2700tcaattttat tatctgaaac gtcaacctta tcatctgatg acggtacttc ttcggatacc
2760agcattagct caacaacaaa ctctgatact ggtaatatta atgctgggtc gctgcacaaa
2820agtactgctt ccatcaaaga actgtcaatt cagaaaacgg gagtaacgtt aagttctagt
2880tatttgtcga caaaattgag ttctacatca gatattacta ttgaacttat tactactgaa
2940cttactacta tcgaagataa cgaaccaaac acttttactt caactccgtc aagtcattct
3000gaaatatttt ctagtgataa tagtgtttta tcaaaacaag ttgatagaga aagtactatt
3060aaaacttctc ctacaacgga cgtcactaca gtatcatctt tatcagtaca ttcaacagaa
3120gcttctactg caacactcgg agaaaattca tttagcaatg ttgccagtac tccattgaat
3180actgcaacat ctttaagatc aacaagttca tcatcaaatc atgctaccga atcaagtgga
3240acggttaaaa gtgaagcaag tgtagaagca attccttctc cacctacttc aactgacaac
3300agactaagct attcaactga agaagccgaa ggtattacat atgctaattc aggttctaca
3360aataacctca taaccgaatc tcaagtggcc gctccaacag attctacttc agtgttgatt
3420gaaaacctag tggtaacttc gacctttgat gataactcgt cagcagctgt ggatcaacca
3480agtaaaacta agtcgattga agaatctatt atgaatcctg attcaaccaa tgaaactaac
3540aatggattta tcgctacttt atcacaagct caagtaccaa gttcctcgat tcattcagag
3600ttaatactga ctacgacggc taaaacaact gatgcttcga tgaatggaga cagtgctgct
3660tcaaactcac agccaaccac attaattcaa caagtagcaa cttcctccta caatcaaccc
3720cttattacca cttatgccgg atcttcatcc gccactaaac atccttcctg gttgcttaaa
3780tttattagcg ttgcattatt cttctttcta tga
3813161270PRTCandida albicans 16Met Ile Gln Gln Phe Thr Leu Leu Phe Leu
Tyr Leu Ser Phe Ala Thr 1 5 10
15 Ala Lys Ala Ile Thr Gly Ile Phe Asn Ser Ile Asp Ser Leu Thr
Tyr 20 25 30 Ser
Asn Ala Gly Asn Tyr Ala Phe Lys Gly Pro Gly Tyr Pro Thr Tyr 35
40 45 Asn Ala Val Leu Gly Tyr
Ser Leu Asp Gly Thr Ser Ala Asn Pro Gly 50 55
60 Asp Thr Phe Ile Leu Asn Met Pro Cys Val Phe
Lys Phe Thr Ala Ser 65 70 75
80 Gln Lys Ser Val Asp Leu Thr Ala Asp Gly Val Lys Tyr Ala Thr Cys
85 90 95 Gln Phe
Tyr Ser Gly Glu Glu Phe Thr Thr Phe Ser Thr Leu Thr Cys 100
105 110 Thr Val Asn Asp Ala Leu Lys
Ser Ser Ile Lys Ala Phe Gly Thr Val 115 120
125 Thr Leu Pro Ile Ala Phe Asn Val Gly Gly Thr Gly
Ser Ser Thr Asp 130 135 140
Leu Glu Asp Ser Lys Cys Phe Thr Ala Gly Ile Asn Thr Val Thr Phe 145
150 155 160 Asn Asp Gly
Ser Lys Lys Leu Ser Ile Ala Val Asn Phe Glu Lys Ser 165
170 175 Thr Val Asp Arg Ser Gly Tyr Leu
Thr Thr Ser Arg Phe Met Pro Ser 180 185
190 Leu Asn Lys Ile Ala Thr Leu Tyr Val Ala Pro Gln Cys
Glu Asn Gly 195 200 205
Tyr Thr Ser Gly Thr Met Gly Phe Ser Thr Ser Tyr Gly Asp Val Ala 210
215 220 Ile Asp Cys Ser
Asn Val His Ile Gly Ile Ser Lys Gly Val Asn Asp 225 230
235 240 Tyr Asn His Pro Val Thr Ser Glu Ser
Phe Ser Tyr Thr Lys Ser Cys 245 250
255 Ser Ser Phe Gly Ile Ser Ile Thr Tyr Gln Asn Val Pro Ala
Gly Tyr 260 265 270
Arg Pro Phe Ile Asp Ala Tyr Ile Ser Pro Ser Asp Asn Asn Gln Tyr
275 280 285 Gln Leu Ser Tyr
Lys Asn Asp Tyr Thr Cys Val Asp Asp Tyr Tyr Gln 290
295 300 His Ala Pro Phe Thr Leu Lys Tyr
Thr Gly Tyr Lys Asn Ser Asp Ala 305 310
315 320 Gly Ser Asn Gly Ile Val Ile Val Ala Thr Thr Arg
Thr Val Thr Asp 325 330
335 Ser Thr Thr Ala Val Thr Thr Leu Pro Phe Asn Pro Ser Val Asp Lys
340 345 350 Thr Lys Thr
Ile Glu Ile Leu Gln Pro Ile Pro Thr Thr Thr Ile Thr 355
360 365 Thr Ser Tyr Val Gly Val Thr Thr
Ser Tyr Ser Thr Lys Thr Ala Pro 370 375
380 Ile Gly Glu Thr Ala Thr Leu Ile Val Asp Val Pro Tyr
His Thr Thr 385 390 395
400 Thr Thr Val Thr Ser Lys Tyr Thr Gly Thr Ile Thr Met Thr Thr Thr
405 410 415 Arg Thr Asn Pro
Thr Asp Ser Ile Asp Thr Val Val Val Gln Val Pro 420
425 430 Leu Pro Asn Pro Thr Thr Thr Thr Thr
Gln Phe Tyr Ser Glu Ser Phe 435 440
445 Thr Ser Thr Thr Thr Ile Thr Asn Lys Pro Glu Gly Thr Asp
Ser Val 450 455 460
Ile Val Lys Glu Pro His Asn Pro Thr Val Thr Thr Thr Glu Phe Tyr 465
470 475 480 Ser Glu Ser Tyr Ala
Thr Thr Glu Thr Ile Thr Thr Gly Pro Leu Gly 485
490 495 Thr Asp Ser Ile Val Ile His Asp Pro Leu
Glu Glu Ser Ser Ser Thr 500 505
510 Thr Ala Ile Glu Ser Ser Asp Ser Asn Ile Ser Ser Ser Ala Gln
Glu 515 520 525 Ser
Ser Ser Ser Val Glu Gln Ser Ser Ser Ile Val Gly Leu Ser Ser 530
535 540 Ser Ser Asp Ile Pro Leu
Ser Ser Asp Met Pro Ser Ser Ser Ser Thr 545 550
555 560 Gly Leu Thr Ser Ser Glu Ser Ser Thr Val Ser
Ser Tyr Asp Ser Asp 565 570
575 Ser Ser Ser Ser Ser Glu Leu Ser Thr Phe Ser Ser Ser Glu Ser Tyr
580 585 590 Ser Ser
Ser Ile Ser Asp Thr Thr Asn Phe Tyr Asp Ser Ser Ser Ser 595
600 605 Asp Leu Glu Ser Thr Ser Ile
Thr Tyr Ser Ser Ser Ile Asp Ala Gln 610 615
620 Ser Ser Gln Ser Val Gln Ser Val Ser Asn Ser Ile
Ser Thr Ser Gln 625 630 635
640 Glu Thr Thr Ser Ser Ser Gly Glu Glu Ser Asn Thr Ser Val Thr Asp
645 650 655 Ile Leu Val
Ser Ser Asp Ala Ser Ser Ile Leu Asn Ser Asp Ile Ser 660
665 670 Ser Tyr Tyr Pro Ser Ser Thr Ile
Ser Leu Ser Asp Asp Phe Pro His 675 680
685 Thr Ile Ala Gly Glu Pro Asp Ser Arg Ser Ser Ser Ser
Ile Ala Ser 690 695 700
Thr Val Glu Ile Ser Ser Asp Leu Val Ser Leu Thr Ser Asp Pro Thr 705
710 715 720 Ser Ser Phe Asp
Ser Ser Ser Ser Leu Asn Ser Asp Ser Ser Ser Ser 725
730 735 Pro Phe Ser Asp Glu Ser Asp Ile Ser
Ala Ser Ser Ser Phe Ser Thr 740 745
750 Leu Val Ala Pro Ser Phe Ser Leu Ser Ser Ser Ser Ser Leu
Ser Leu 755 760 765
Ile Tyr Pro His Tyr Val Asn Ser Thr Thr Tyr His Ala Ser Glu Ser 770
775 780 Glu Ser Ser Ser Val
Ala Ser Pro Ser Val Ala Ser Glu Ser Ala Asn 785 790
795 800 Asp Asp Thr His Thr Leu Ser Glu Ser Thr
Asp Thr Thr Ser Ile Ile 805 810
815 Gly Thr Asp Ser Ser Thr Val Thr Phe Cys Arg Arg Asp Asn Gly
Asp 820 825 830 Gly
Cys Ile Val Thr Gly Ile Thr Ser Ser Ser Ile Asp Ser Glu Gln 835
840 845 Thr Ser Asp Val Thr Thr
Thr Ser Ser Phe Val Ala Ser Ser Thr Pro 850 855
860 Thr Ser Ala Glu Gln Ser Ile Thr Asp Asn Pro
Asn Ile Asp Ser Ser 865 870 875
880 Gln Thr Ser Ala Ser Ser Ser Thr Lys Ser Ser Val Ser Val Ser Asp
885 890 895 Thr Val
Val Asn Ser Ile Leu Leu Ser Glu Thr Ser Thr Leu Ser Ser 900
905 910 Asp Asp Gly Thr Ser Ser Asp
Thr Ser Ile Ser Ser Thr Thr Asn Ser 915 920
925 Asp Thr Gly Asn Ile Asn Ala Gly Ser Ser His Lys
Ser Thr Ala Ser 930 935 940
Ile Lys Glu Ser Ser Ile Gln Lys Thr Gly Val Thr Leu Ser Ser Ser 945
950 955 960 Tyr Leu Ser
Thr Lys Leu Ser Ser Thr Ser Asp Ile Thr Ile Glu Leu 965
970 975 Ile Thr Thr Glu Leu Thr Thr Ile
Glu Asp Asn Glu Pro Asn Thr Phe 980 985
990 Thr Ser Thr Pro Ser Ser His Ser Glu Ile Phe Ser
Ser Asp Asn Ser 995 1000 1005
Val Leu Ser Lys Gln Val Asp Arg Glu Ser Thr Ile Lys Thr Ser
1010 1015 1020 Pro Thr Thr
Asp Val Thr Thr Val Ser Ser Leu Ser Val His Ser 1025
1030 1035 Thr Glu Ala Ser Thr Ala Thr Leu
Gly Glu Asn Ser Phe Ser Asn 1040 1045
1050 Val Ala Ser Thr Pro Leu Asn Thr Ala Thr Ser Leu Arg
Ser Thr 1055 1060 1065
Ser Ser Ser Ser Asn His Ala Thr Glu Ser Ser Gly Thr Val Lys 1070
1075 1080 Ser Glu Ala Ser Val
Glu Ala Ile Pro Ser Pro Pro Thr Ser Thr 1085 1090
1095 Asp Asn Arg Leu Ser Tyr Ser Thr Glu Glu
Ala Glu Gly Ile Thr 1100 1105 1110
Tyr Ala Asn Ser Gly Ser Thr Asn Asn Leu Ile Thr Glu Ser Gln
1115 1120 1125 Val Ala
Ala Pro Thr Asp Ser Thr Ser Val Leu Ile Glu Asn Leu 1130
1135 1140 Val Val Thr Ser Thr Phe Asp
Asp Asn Ser Ser Ala Ala Val Asp 1145 1150
1155 Gln Pro Ser Lys Thr Lys Ser Ile Glu Glu Ser Ile
Met Asn Pro 1160 1165 1170
Asp Ser Thr Asn Glu Thr Asn Asn Gly Phe Ile Ala Thr Leu Ser 1175
1180 1185 Gln Ala Gln Val Pro
Ser Ser Ser Ile His Ser Glu Leu Ile Ser 1190 1195
1200 Thr Thr Thr Ala Lys Thr Thr Asp Ala Ser
Met Asn Gly Asp Ser 1205 1210 1215
Ala Ala Ser Asn Ser Gln Pro Thr Thr Leu Ile Gln Gln Val Ala
1220 1225 1230 Thr Ser
Ser Tyr Asn Gln Pro Leu Ile Thr Thr Tyr Ala Gly Ser 1235
1240 1245 Ser Ser Ala Thr Lys His Pro
Ser Tyr Leu Leu Lys Phe Ile Ser 1250 1255
1260 Val Ala Leu Phe Phe Phe Leu 1265
1270 174332DNACandida albicans 17atgaagaaag taatactatt acatcttttc
ttctattgca cgatagcaat ggcaaaaact 60atatcgggag ttttcacgag tttcaactca
ttgacctata ctaatactgg taactaccca 120tatgggggtc ctggttatcc aacatggact
gctgttttag gttggagctt ggacggaaca 180ctagctagtc caggtgatac atttacattg
gtcatgccct gcgttttcaa atttattacc 240acacaaactt cagtagactt aactgctaat
ggtgtcaagt atgcaacatg tactttccat 300gcaggggaag actttactac tttttcaagt
atgagttgtg tagtaaataa tgggctatct 360tcaaatatca gagcgtttgg taccgtcagg
ctaccaattt cattcaatgt gggtggaact 420ggttcatctg tcaacattca agattcaaag
tgtttcactg ctggaacgaa cactgtaaca 480tttacagacg gcgatcacaa aatttctact
acagtcaatt tccctaagac tccacaatca 540tctagtagct tggtttattt cgcaagggtt
attccaagtc ttgataaatt atctagtctt 600gttgttgctt ctcagtgtac tgctggatat
gcatccggtg tgctcggatt ttcagcaaca 660aaagatgatg tgacaattga ttgttctact
atacatgtgg gaataacaaa tggtttgaat 720agttggaata tgccagtatc atcagaatca
ttttcttaca ccaaaacttg tacaccaaac 780agttttatta ttacttatga aaatgttcct
gcaggttatc gtccatttat tgattcttac 840gtgaaaaaat cagcaacagc aacgaatgga
tttaatttga attacacgaa tatatacaat 900tgtatggatg gcaaaaaggg aaatgatcct
cttatatact tttggacatc atacacaaat 960agtgatgcag gatccaatgg agctgccgta
gttgttacta cgagaacagt cactgattct 1020acaacagcaa ttaccacatt accgtttgat
cccacagttg ataaaaccaa aaccattgaa 1080gtaatagaac ccatccctac taccactatt
actacttcat atgttgggat ttctacttca 1140ctttctacga agactgcaac tattggagga
acagcaactg ttgttgttga tgttccctat 1200catacaacta ccactatcac tagtatatgg
actggatcag ctaccacatc aagtacttat 1260acaaatccca ctgactcgat tgatacagtt
gttgtacaag ttccactgcc aaatccaaca 1320gttacaacta ctcagttttg gtcaggaagt
gtgcccacaa ccgaaactgt gaccactgga 1380ccacaaggaa cggatagtgt gatcatcaag
gagccacaca accctactgt gactaccact 1440gagttttggt cagaatcatt tgctactact
gagacagtca ccaacaatcc cgaaggcact 1500gatagtgtga tcatcaagga accacacaat
cctactgtta ccaccaccga gttttggtca 1560gaatcatttg ctactactga gacagtcacc
aactatccag agggaactga ctcagtcatt 1620gttagagaac cacacaatcc aactgtaaca
acaaccgagt tttggtcaga atcatttgct 1680actactgaga cagtcaccaa ctatccagag
ggaactgact cagtcattgt tagggaacca 1740cacaatccta ctgttaccac caccgagttt
tggtcagagt catttgctac tactgagacc 1800atcaccaact atccagaggg aactgactca
gtcattgtta gggaaccaca caatccaact 1860gtaacaacaa ccgagttttg gtcagaatca
tttgtcacta ctgaaacgat aactacaggg 1920ccacttggca ctgatagtat cgttatacat
gatccattgg aagaactgtc ttctagtact 1980gctattgagt caagtgattc taatatttca
agctcagctc aagaatcatc cagtctggtt 2040gaacagtcat tgacttctgc tgacgagact
tcaagtatag ttgaattgtc atcaagatca 2100gacattccat caagctcaat tgggttaaca
tctagtgagt cgtctactgt ctcaagttat 2160gatagctact cttcaagtac tagcgaatca
tctattgctt caagttatga tagctattcg 2220tcaagtagta ttgagtcgtc tacattatct
agttccgata gatgctcgtc aagtatctct 2280gataccacaa gcttttggga ttcttcaagt
tccgatttag agtccaccct gattacttgg 2340agttcctcca tcgatgcaca atctagtcat
ttggtacaat cggtatcaaa ctccatcagc 2400acaagtcaag agttatcatc aagctcaagt
gaggagtcca gtacgtttgc caccgatgct 2460ttagtttcaa gtgatgcaag ttctattttg
agctctgata cttccagtta ttacccatct 2520agcaccattc tgtcgagtga cgattttcca
cacactatag ctggggagtc agatagccta 2580tcaatctcat ttataacatc tactgttgag
atttctagtg attcggtgtc tcttacaagt 2640gacccagcaa gcagttttga ttcatcttct
agtttgaatt ctgattcatc atctctgcca 2700tccagtgacc aaagtgatat tttgacttca
tctagttttt ctacattagt tgtcccatct 2760ttttcattga gttcaagcag ttcattatct
ttgacatatc cacattatgt caactcaaca 2820acatatcatg catcggaatc cgaaagctca
tctgtcgctt caccatcaat ggcaagtgag 2880tcagctaatg atgacacata tactttgctg
gaatctactg acactacatc cagtattggc 2940acagattctt ctactgtgac attttgtcgt
cgtgataacg gagatggctg tattgtaaca 3000gggatgccat cgtctagtat agacagtgaa
cagactagtg atgtgacgac aacttctagc 3060tttgttgctt ccagcacccc aacctcagca
gaacagtcta ttactgacaa tccaaatatc 3120gactcactgc aaacaagtgc tagttcttca
actaaattat cagtttctgt gtcagataca 3180gtagtaaatt caatttcatt atctgaaacg
tcaaccttat catctgatga cagtacttct 3240tcggatacca gcattagctc aacaacaaac
tcagatactg gcaatgttaa tgctgggtcg 3300ctgcacacaa gtactgcttc catcaaagaa
ctgtcaattc agaaaacggg agtaacgtta 3360agttccagtt atttgtcgac aaaattgagt
tctacgtcag atattactac tgaacttatt 3420actactgaac ttattactac tgaacttact
actactgaac ttactactat cgaagataac 3480gaaccaaaca cttttacttc aacaccgtca
agtcattctg aaatattttc tagtgataat 3540agtgttttat caaaacaagt tgatggagaa
agtactgttg aaatccctcc tgtgactgac 3600accaccacag tatcatctgt atcagtacat
tcaacagaag cttctacggc aacacttgga 3660gaaaattcat tcagcaaagt tgccagcgct
ccagtgaata ctgaaacatc tttaagatca 3720acaagttcat catcaaatca tgctaccgaa
tcaagtggaa cagttaaaag tgaagcaagt 3780gcagaagcaa ttccttctcc acctacttca
actgacaaca gactaagcta ttcaactgaa 3840gaagccaaag gtagtacata ccctaattca
ggttctacaa ataacctcat gaccgaatct 3900caagtggctg ctccaacaga ttctacttca
gtgttgactg caaacccagt ggtaacttcg 3960acgtttgatg ataagtcgtc ggcagctgtg
aatcaaccaa gcaaaactaa gtcgattgaa 4020gaatctattg gaagtcttga ttcagtcaat
gaaaccaata atggatttat cgctacttta 4080tcacaatcgg aagctccaaa ttccttgatt
cattcagagt caatactgac tacgatggct 4140aaaacaactg atgcttcgat aaatggagac
agtgctgctt caaactcaca gccaaccaca 4200ttaattcaac aagtagcaac ttcctcctac
aatcaacccc ttattactac ttatgccgga 4260tcttcatccg ccactaaaca tccttcctgg
ttgcttaaat ttattagcgt tgcattattc 4320ttcttcttat ga
4332181443PRTCandida albicans 18Met Lys
Lys Val Ile Leu Leu His Leu Phe Phe Tyr Cys Thr Ile Ala 1 5
10 15 Met Ala Lys Thr Ile Ser Gly
Val Phe Thr Ser Phe Asn Ser Leu Thr 20 25
30 Tyr Thr Asn Thr Gly Asn Tyr Pro Tyr Gly Gly Pro
Gly Tyr Pro Thr 35 40 45
Tyr Thr Ala Val Leu Gly Tyr Ser Leu Asp Gly Thr Leu Ala Ser Pro
50 55 60 Gly Asp Thr
Phe Thr Leu Val Met Pro Cys Val Phe Lys Phe Ile Thr 65
70 75 80 Thr Gln Thr Ser Val Asp Leu
Thr Ala Asn Gly Val Lys Tyr Ala Thr 85
90 95 Cys Thr Phe His Ala Gly Glu Asp Phe Thr Thr
Phe Ser Ser Met Ser 100 105
110 Cys Val Val Asn Asn Gly Leu Ser Ser Asn Ile Arg Ala Phe Gly
Thr 115 120 125 Val
Arg Leu Pro Ile Ser Phe Asn Val Gly Gly Thr Gly Ser Ser Val 130
135 140 Asn Ile Gln Asp Ser Lys
Cys Phe Thr Ala Gly Thr Asn Thr Val Thr 145 150
155 160 Phe Thr Asp Gly Asp His Lys Ile Ser Thr Thr
Val Asn Phe Pro Lys 165 170
175 Thr Pro Gln Ser Ser Ser Ser Leu Val Tyr Phe Ala Arg Val Ile Pro
180 185 190 Ser Leu
Asp Lys Leu Ser Ser Leu Val Val Ala Ser Gln Cys Thr Ala 195
200 205 Gly Tyr Ala Ser Gly Val Leu
Gly Phe Ser Ala Thr Lys Asp Asp Val 210 215
220 Thr Ile Asp Cys Ser Thr Ile His Val Gly Ile Thr
Asn Gly Leu Asn 225 230 235
240 Ser Tyr Asn Met Pro Val Ser Ser Glu Ser Phe Ser Tyr Thr Lys Thr
245 250 255 Cys Thr Pro
Asn Ser Phe Ile Ile Thr Tyr Glu Asn Val Pro Ala Gly 260
265 270 Tyr Arg Pro Phe Ile Asp Ser Tyr
Val Lys Lys Ser Ala Thr Ala Thr 275 280
285 Asn Gly Phe Asn Leu Asn Tyr Thr Asn Ile Tyr Asn Cys
Met Asp Gly 290 295 300
Lys Lys Gly Asn Asp Pro Leu Ile Tyr Phe Tyr Thr Ser Tyr Thr Asn 305
310 315 320 Ser Asp Ala Gly
Ser Asn Gly Ala Ala Val Val Val Thr Thr Arg Thr 325
330 335 Val Thr Asp Ser Thr Thr Ala Ile Thr
Thr Leu Pro Phe Asp Pro Thr 340 345
350 Val Asp Lys Thr Lys Thr Ile Glu Val Ile Glu Pro Ile Pro
Thr Thr 355 360 365
Thr Ile Thr Thr Ser Tyr Val Gly Ile Ser Thr Ser Leu Ser Thr Lys 370
375 380 Thr Ala Thr Ile Gly
Gly Thr Ala Thr Val Val Val Asp Val Pro Tyr 385 390
395 400 His Thr Thr Thr Thr Ile Thr Ser Ile Tyr
Thr Gly Ser Ala Thr Thr 405 410
415 Ser Ser Thr Tyr Thr Asn Pro Thr Asp Ser Ile Asp Thr Val Val
Val 420 425 430 Gln
Val Pro Ser Pro Asn Pro Thr Val Thr Thr Thr Gln Phe Tyr Ser 435
440 445 Gly Ser Val Pro Thr Thr
Glu Thr Val Thr Thr Gly Pro Gln Gly Thr 450 455
460 Asp Ser Val Ile Ile Lys Glu Pro His Asn Pro
Thr Val Thr Thr Thr 465 470 475
480 Glu Phe Tyr Ser Glu Ser Phe Ala Thr Thr Glu Thr Val Thr Asn Asn
485 490 495 Pro Glu
Gly Thr Asp Ser Val Ile Ile Lys Glu Pro His Asn Pro Thr 500
505 510 Val Thr Thr Thr Glu Phe Tyr
Ser Glu Ser Phe Ala Thr Thr Glu Thr 515 520
525 Val Thr Asn Tyr Pro Glu Gly Thr Asp Ser Val Ile
Val Arg Glu Pro 530 535 540
His Asn Pro Thr Val Thr Thr Thr Glu Phe Tyr Ser Glu Ser Phe Ala 545
550 555 560 Thr Thr Glu
Thr Val Thr Asn Tyr Pro Glu Gly Thr Asp Ser Val Ile 565
570 575 Val Arg Glu Pro His Asn Pro Thr
Val Thr Thr Thr Glu Phe Tyr Ser 580 585
590 Glu Ser Phe Ala Thr Thr Glu Thr Ile Thr Asn Tyr Pro
Glu Gly Thr 595 600 605
Asp Ser Val Ile Val Arg Glu Pro His Asn Pro Thr Val Thr Thr Thr 610
615 620 Glu Phe Tyr Ser
Glu Ser Phe Val Thr Thr Glu Thr Ile Thr Thr Gly 625 630
635 640 Pro Leu Gly Thr Asp Ser Ile Val Ile
His Asp Pro Leu Glu Glu Ser 645 650
655 Ser Ser Ser Thr Ala Ile Glu Ser Ser Asp Ser Asn Ile Ser
Ser Ser 660 665 670
Ala Gln Glu Ser Ser Ser Ser Val Glu Gln Ser Leu Thr Ser Ala Asp
675 680 685 Glu Thr Ser Ser
Ile Val Glu Leu Ser Ser Arg Ser Asp Ile Pro Ser 690
695 700 Ser Ser Ile Gly Leu Thr Ser Ser
Glu Ser Ser Thr Val Ser Ser Tyr 705 710
715 720 Asp Ser Tyr Ser Ser Ser Thr Ser Glu Ser Ser Ile
Ala Ser Ser Tyr 725 730
735 Asp Ser Tyr Ser Ser Ser Ser Ile Glu Ser Ser Thr Leu Ser Ser Ser
740 745 750 Asp Arg Cys
Ser Ser Ser Ile Ser Asp Thr Thr Ser Phe Tyr Asp Ser 755
760 765 Ser Ser Ser Asp Leu Glu Ser Thr
Ser Ile Thr Tyr Ser Ser Ser Ile 770 775
780 Asp Ala Gln Ser Ser His Leu Val Gln Ser Val Ser Asn
Ser Ile Ser 785 790 795
800 Thr Ser Gln Glu Leu Ser Ser Ser Ser Ser Glu Glu Ser Ser Thr Phe
805 810 815 Ala Thr Asp Ala
Leu Val Ser Ser Asp Ala Ser Ser Ile Leu Ser Ser 820
825 830 Asp Thr Ser Ser Tyr Tyr Pro Ser Ser
Thr Ile Ser Ser Ser Asp Asp 835 840
845 Phe Pro His Thr Ile Ala Gly Glu Ser Asp Ser Leu Ser Ile
Ser Phe 850 855 860
Ile Thr Ser Thr Val Glu Ile Ser Ser Asp Ser Val Ser Leu Thr Ser 865
870 875 880 Asp Pro Ala Ser Ser
Phe Asp Ser Ser Ser Ser Leu Asn Ser Asp Ser 885
890 895 Ser Ser Ser Pro Ser Ser Asp Gln Ser Asp
Ile Leu Thr Ser Ser Ser 900 905
910 Phe Ser Thr Leu Val Val Pro Ser Phe Ser Leu Ser Ser Ser Ser
Ser 915 920 925 Leu
Ser Leu Thr Tyr Pro His Tyr Val Asn Ser Thr Thr Tyr His Ala 930
935 940 Ser Glu Ser Glu Ser Ser
Ser Val Ala Ser Pro Ser Met Ala Ser Glu 945 950
955 960 Ser Ala Asn Asp Asp Thr Tyr Thr Leu Ser Glu
Ser Thr Asp Thr Thr 965 970
975 Ser Ser Ile Gly Thr Asp Ser Ser Thr Val Thr Phe Cys Arg Arg Asp
980 985 990 Asn Gly
Asp Gly Cys Ile Val Thr Gly Met Pro Ser Ser Ser Ile Asp 995
1000 1005 Ser Glu Gln Thr Ser
Asp Val Thr Thr Thr Ser Ser Phe Val Ala 1010 1015
1020 Ser Ser Thr Pro Thr Ser Ala Glu Gln Ser
Ile Thr Asp Asn Pro 1025 1030 1035
Asn Ile Asp Ser Ser Gln Thr Ser Ala Ser Ser Ser Thr Lys Leu
1040 1045 1050 Ser Val
Ser Val Ser Asp Thr Val Val Asn Ser Ile Ser Leu Ser 1055
1060 1065 Glu Thr Ser Thr Leu Ser Ser
Asp Asp Ser Thr Ser Ser Asp Thr 1070 1075
1080 Ser Ile Ser Ser Thr Thr Asn Ser Asp Thr Gly Asn
Val Asn Ala 1085 1090 1095
Gly Ser Ser His Thr Ser Thr Ala Ser Ile Lys Glu Ser Ser Ile 1100
1105 1110 Gln Lys Thr Gly Val
Thr Leu Ser Ser Ser Tyr Leu Ser Thr Lys 1115 1120
1125 Leu Ser Ser Thr Ser Asp Ile Thr Thr Glu
Leu Ile Thr Thr Glu 1130 1135 1140
Leu Ile Thr Thr Glu Leu Thr Thr Thr Glu Leu Thr Thr Ile Glu
1145 1150 1155 Asp Asn
Glu Pro Asn Thr Phe Thr Ser Thr Pro Ser Ser His Ser 1160
1165 1170 Glu Ile Phe Ser Ser Asp Asn
Ser Val Leu Ser Lys Gln Val Asp 1175 1180
1185 Gly Glu Ser Thr Val Glu Ile Pro Pro Val Thr Asp
Thr Thr Thr 1190 1195 1200
Val Ser Ser Val Ser Val His Ser Thr Glu Ala Ser Thr Ala Thr 1205
1210 1215 Leu Gly Glu Asn Ser
Phe Ser Lys Val Ala Ser Ala Pro Val Asn 1220 1225
1230 Thr Glu Thr Ser Leu Arg Ser Thr Ser Ser
Ser Ser Asn His Ala 1235 1240 1245
Thr Glu Ser Ser Gly Thr Val Lys Ser Glu Ala Ser Ala Glu Ala
1250 1255 1260 Ile Pro
Ser Pro Pro Thr Ser Thr Asp Asn Arg Leu Ser Tyr Ser 1265
1270 1275 Thr Glu Glu Ala Lys Gly Ser
Thr Tyr Pro Asn Ser Gly Ser Thr 1280 1285
1290 Asn Asn Leu Met Thr Glu Ser Gln Val Ala Ala Pro
Thr Asp Ser 1295 1300 1305
Thr Ser Val Leu Thr Ala Asn Pro Val Val Thr Ser Thr Phe Asp 1310
1315 1320 Asp Lys Ser Ser Ala
Ala Val Asn Gln Pro Ser Lys Thr Lys Ser 1325 1330
1335 Ile Glu Glu Ser Ile Gly Ser Leu Asp Ser
Val Asn Glu Thr Asn 1340 1345 1350
Asn Gly Phe Ile Ala Thr Leu Ser Gln Ser Glu Ala Pro Asn Ser
1355 1360 1365 Leu Ile
His Ser Glu Ser Ile Ser Thr Thr Met Ala Lys Thr Thr 1370
1375 1380 Asp Ala Ser Ile Asn Gly Asp
Ser Ala Ala Ser Asn Ser Gln Pro 1385 1390
1395 Thr Thr Leu Ile Gln Gln Val Ala Thr Ser Ser Tyr
Asn Gln Pro 1400 1405 1410
Leu Ile Thr Thr Tyr Ala Gly Ser Ser Ser Ala Thr Lys His Pro 1415
1420 1425 Ser Tyr Leu Leu Lys
Phe Ile Ser Val Ala Leu Phe Phe Phe Leu 1430 1435
1440 196897DNACandida albicans 19atgaagaaac
tatatctttt atatttgttg gccctgttta caacggtcat atccaaagaa 60gttactggtg
ttttcaacca attcaattca ttgatatggt cttacacata cagagctcga 120tacgaagaaa
tatctactct taccgctaat gctcaattgg aatgggcttt ggatggtact 180attgccagtc
ccggtgatac atttacatta gtcatgccct gtgtatataa attcatgacg 240tacgaaacct
cagtgcaatt aactgccaac tctattgcat atgccacatg tgactttgat 300gctggtgaag
acactaaaag tttttcaagt ttgaagtgta cggtgactga tgagttgaca 360gaagatacca
gcgtttttgg aagtgttatt ttgcctattg ctttcaatgt tggaggttcc 420ggatctaaat
ctacgataac agactccaaa tgtttttcaa gtgggtacaa cactgtcacg 480ttttttgacg
gaaacaatca actttctaca actgcaaatt ttcttccccg aagagaacta 540gcgtttggtc
tagttgttag tcaaagactt tccatgtcgc tcgatacaat gactaatttt 600gttatgtcta
caccttgttt catgggttat cagctgggta agttaggttt tacatctaat 660gatgatgatt
ttgaaattga ttgttcttct atacatgttg gtataactaa tgaaataaat 720gattggagta
tgccagtatc ttctgttccc ttcgatcata ctataagatg tacatcacgt 780gcactttaca
ttgagtttaa aacaattcct gcaggttatc gaccttttgt ggatgcgatt 840gttcaaatac
caacgacaga accttttttt gtaaaatata caaatgagtt tgcctgtgtg 900aatggcatat
acacgtccat acctttcaca agtttctttt ctcagccaat tttatatgac 960gaggctttag
ctattggtgc agacctagtt cgtaccacat ccacagtgat aggttccatt 1020accagaacta
ccacattacc cttcatttcc cgactccaga aaaccaaaac aattctagtc 1080ttagagccca
tacccaccac tacggtaaca acttcacacc atggctttga tacttggtat 1140tatactaaga
aagccaccat tggtgacaca gctactgttt tcattgatgt tccacaacat 1200acagctacta
ctttgaccac atattggcaa gaatcaagta cagcgacaac cacttacttc 1260gatgacatag
acttggtcga tactgtcatt gtgaaaattc catatcccaa tccgactatt 1320ataacaacac
aattttggtc aggtaaatat ttaactactg agacacacaa agaaccacct 1380ctcggtactg
atagtgtgat catcaaggaa ccacacaacc ctactgtgac aacgaccgag 1440ttttggtcag
aatcatttgc cactactgag accatcacca actatccaga aggcactgac 1500tcagtcattg
ttagggaacc acacaaccct actgtgacaa cgaccgagtt ttggtcagaa 1560tcatttgcca
ctactgagac catcaccaac ggtccagaag gcactgactc agtcattgtt 1620agggaaccac
ataatccaac tgtgacaaca accgagtttt ggtcagaatc atttgccact 1680actgagacca
tcaccaacgg tccagaaggc actgactcag tcattgttag ggaaccacac 1740aatccaactg
tgacaacaac cgagttttgg tcagaatcat ttgccactac tgagaccatc 1800accaacggtc
cagaaggcac tgactcagtc attgttaggg aaccacataa tccaactgtg 1860acaacaaccg
agttttggtc agaatcattt gccactactg agaccatcac caacggtcca 1920gaaggcactg
atagtgtgat catcaaggaa ccacacaacc ctactgtgac taccaccaag 1980ttttggtcag
aatcatttgc cactactgag acaatcacca actatccaga aggcactgac 2040tcagtcattg
ttagggaacc acataatcca actgtgacaa caaccgagtt ttggtcagaa 2100tcatttgcca
ctactgagac catcaccaac ggtccagaag gcactgactc agtcattgtt 2160agggaaccac
acaatccaac tgtgacaaca accgagtttt ggtcagaatc atttgctact 2220actgagacca
tcaccaacta tccagaggga actgactcag tcattgttag agaaccacac 2280aatccaactg
taacaacaac cgagttttgg tcagagtcat ttgctactac tgagacagtc 2340accaactatc
cagaaggcac tgactcagtc attgttaggg aaccacacaa tccaactgtg 2400acaacaaccg
agttttggtc agaatcattt gtcactactg aaacgataac tacagggcca 2460cttggcactg
atagtatcgt tatacatgat ccattggaag aactgtcttc tagtactgct 2520attgagtcaa
gtgattctaa tatttcaagc tcagctcaag aatcatccag tctggttgaa 2580cagtcattta
cttctgctga cgagacttca agtatagttg aattgtcatc aagatcagac 2640attccatcaa
gctcaattgg gttaacatct agtgagtcgt ctactgtctc aagttatgat 2700agctactctt
caagtactag cgaatcatct attgcttcaa gttatgatag ctattcgtca 2760agtagtattg
agtcgtctac tttatctagt tccgatagat actcgtcaag tatctctgat 2820accacaagct
tttgggattc ttcaagttcc gatttagagt ccaccctgat tacttggagt 2880tcctccatcg
atgcacaatc tagtcatttg gtacaatcgg tatcaaactc catcagcaca 2940agtcaagaga
tatcatcaag ctcaagtgag gagtccagta cgtctgccac cgatgcttta 3000gtttcaagtg
atgcaagttc tattttgagc tctgatactt ccagttatta cccatctagc 3060accattctgc
cgagtgacga ttttccacac actatagctg gggagtcaga tagccaatca 3120atctcattta
taacatctac tgttgagatt tctagtgatt cggtgtctct tacaagtgac 3180ccagaaagca
gttttgattc atcttctcgt ttgaattctg attcatcatc tctgccatcc 3240actgaccaaa
gggatatttt gacttcatct agtttttcta cattaattaa atcaagtggg 3300tcacgtgaat
ccagtattgg tacaattttg agtgaagaaa gcagtgactc gattccaacg 3360acgttctcaa
caagatattg gtcgccatcg ggaatgagtt ccagacatta taccaattcg 3420acagagacgc
tggtctcaga tgttgttctg tcgtcggttg ctggagacga aactagtgaa 3480tcgagtgttt
cggttattag tgaatcgagt gaatcagtta ccagtgaatc agttgccagt 3540gaatcagttg
ccagtgaatc agttgccagt gaatcagttg ccagtgaatc agttactgct 3600gtgagtgata
tttcagattt gtacactacg tcagaagagg tatccactag tgacagcaac 3660tctggtatga
gctctcctat accatcgagt gaacagagat ccagtattcc gataatgtcg 3720agctccgacg
aatcaagtga gtcacgtgag tccagtagtg gtacaatttt gagtgaagaa 3780aacagtgact
cgattccaac gacgttctca acaagatatt ggtcgccatc gggaatgagt 3840tccagacatt
ataccaattc gacagagacg ctggtctcag atgttgttct gtcgtcggtt 3900gctggagacg
aaactagtga atcgagtgtt tcggttatta gtgaatcgag tgaatcagtt 3960accagtgaat
cagttgccag tgaatcagtt gccagtgaat cagttgccag tgaatcagtt 4020actgctgtga
gtgatatttc agatttgtac actacgtcag aagtggtatc cactagtgac 4080agcaactctg
gtatgagctc tcctatacca tcgagtgaac agagatccag tattccggta 4140atgtcaagct
ccgacgaatc aagtgagtca cgtgagtcca gtagtggtac aattttgagt 4200gaagaaaaca
gtgactcgat cccaacgacg ttctcaacaa gatatttgtc accatcggga 4260atgagttcca
gacattatac caattcgaca gagacgctgg tctcagatgt tgttctgtcg 4320tcggttgctg
gagacgaaac tagtgaatcg agtgtttcgg ttattagtga atcgagtgaa 4380tcagttacca
gtgaatcagt tgccagtgaa tcagttgcca gtgaatcagt tgccagtgaa 4440tcagttactg
ctgtgagtga tatttcagat ttgtacacta cgtcagaagt ggtatccact 4500agtgacagta
aaatagttgc aagtacttct gtaccatcga gtgaacagag atccagtatt 4560ccgataatgt
cgagctccga cgaatcaagt gagtcacgtg agtccagtag tggtacaatt 4620ttgagtgaag
aaaacagtga ctcgattcca acgacgttct caacaagata ttggtcgcca 4680tcgggaatga
gttccagaca ttataccaat tcgacagaga cgctggtctc agatgttgtt 4740ctgtcgtcgg
ttgctggaga cgaaactagt gaatcgagtg tttcggttat tagtgaatcg 4800agtgaatcag
ttaccagtga atcagttgcc agtgaatcag ttgccagtga atcagttact 4860gctgtgagtg
atatttcaga tttgtacact acgtcagaag tggtatccac tagtgacagt 4920aaaatagttc
caagtacttc tgtaccatcg agtgaacaga gatccagtat tccgataatg 4980tcgagctccg
acgaatcaag tgagtcacgt gagtccagta gtggtacaat tttgagtgaa 5040gaaaacagtg
actcgatccc aacgacgttc tcaacaagat attggtcgcc atcgggaatg 5100agttccagac
attataccaa ttcgacagag acgctggtct cagatgttgt tctgtcgtcg 5160gttgctggag
acgaaactag tgaatcaagt gtttcggtta ctagtgaatc gagtgaatca 5220gttaccagtg
aatcagttgc cagtgaatca gttgccagtg aatcagttgc cagtgaatca 5280gttactgctg
tgagtgatat ttcagatttg tacactacgt cagaagtggt atccactagt 5340gacagcaact
ctggtatgag ccctcctata ccatcgagtg aacagagatc cagtattccg 5400gtaatgtcaa
gctccaacga atcaagtgag tcacgtgagt ccagtagtgg tacaattttg 5460agtgaagaaa
acagtgactc gatcccaacg acgttctcaa caagatatgt gtcggtttct 5520cttaccgtgg
gggaactttc ggcattacct agtttgcctg gaaaattatc tcatttacca 5580tccagtttgt
ctgaaacgtc catcggaatg acaaaaagtg ctaatttgct gccacagttt 5640ttttcaacat
cagttgattc agctttactg tattgggctc tgggctctag cagtgctgat 5700caccagagtt
ctgctacgtg tgatgttagt gaatcatctg tggaaggtaa tttgtctgca 5760atggcaccag
ggatgtcgaa ttcagatgat ggtttgtcag aggatacaag atcatcttcg 5820gttgccggta
aagaggagat agagttaact ctgacgaatt ctgttggtga aatcaccctt 5880ataagctata
gttcttcctc gcctacgacc catgaccacg ggcgtgtgtc aaagagcatg 5940ggggcggcac
cacttagtag tttattctca gtatcagtac atactccact agttactggg 6000ctactgggtt
ctgatacttt tccaagtgaa aattcaaatc ggagtcgttc atttaaggag 6060tctacagaca
atactatttc catatcgaga gaatctttgg gaaatccata ttcatcaata 6120tcctcacctt
ccgattatga cgtgaaactg ttcacgacgt ccagagagct agtatcttca 6180gaatctatac
taccattttc agatgtaatg gatgcaaatg atatgccgac atctggaagt 6240aatttgcact
ctatggtgtt ttcaatatct gtgctaggcg aaaaatttaa tgctaatata 6300gagaagcata
aaaacactaa tgggcattat tcatcaatgg tatttactta tcaaagtgca 6360ggtttggaag
agtcagacca gaggatagct gttactaata ctaaattcga ccaaaataaa 6420attgacacaa
caattgacag caatactttt gttacgagtt tgccattcgc cactacttca 6480aacgaccaaa
ttgatcaagc tgtaccaatt aagattccgg catcttctac agcaggattt 6540gtctctgatg
tactcaagcc agattattcg aaatctgtcc aggctgaatc tgtccaaact 6600gattcaacaa
cttattcaga aatgatgtca agtaaaagaa acaagaattc aggctttggg 6660acaagctcac
tcattttgaa gcctaccatt actgtcgtca ctaagtctat tgatactaaa 6720gttaatacta
tgaaagaggg tggggtttcc aaacaagttt caacgactgt gactgaacaa 6780tatgacacct
ctacctacac tccagcaagt ttgcttgtgt ctgataatct ggggtcagtt 6840tccaaatatt
ctctttggat gatggcattt tatatgttat ttggattgtt ttaataa
6897202297PRTCandida albicans 20Met Lys Lys Leu Tyr Leu Leu Tyr Leu Leu
Ala Ser Phe Thr Thr Val 1 5 10
15 Ile Ser Lys Glu Val Thr Gly Val Phe Asn Gln Phe Asn Ser Leu
Ile 20 25 30 Tyr
Ser Tyr Thr Tyr Arg Ala Arg Tyr Glu Glu Ile Ser Thr Leu Thr 35
40 45 Ala Asn Ala Gln Leu Glu
Tyr Ala Leu Asp Gly Thr Ile Ala Ser Pro 50 55
60 Gly Asp Thr Phe Thr Leu Val Met Pro Cys Val
Tyr Lys Phe Met Thr 65 70 75
80 Tyr Glu Thr Ser Val Gln Leu Thr Ala Asn Ser Ile Ala Tyr Ala Thr
85 90 95 Cys Asp
Phe Asp Ala Gly Glu Asp Thr Lys Ser Phe Ser Ser Leu Lys 100
105 110 Cys Thr Val Thr Asp Glu Leu
Thr Glu Asp Thr Ser Val Phe Gly Ser 115 120
125 Val Ile Leu Pro Ile Ala Phe Asn Val Gly Gly Ser
Gly Ser Lys Ser 130 135 140
Thr Ile Thr Asp Ser Lys Cys Phe Ser Ser Gly Tyr Asn Thr Val Thr 145
150 155 160 Phe Phe Asp
Gly Asn Asn Gln Leu Ser Thr Thr Ala Asn Phe Leu Pro 165
170 175 Arg Arg Glu Leu Ala Phe Gly Leu
Val Val Ser Gln Arg Leu Ser Met 180 185
190 Ser Leu Asp Thr Met Thr Asn Phe Val Met Ser Thr Pro
Cys Phe Met 195 200 205
Gly Tyr Gln Ser Gly Lys Leu Gly Phe Thr Ser Asn Asp Asp Asp Phe 210
215 220 Glu Ile Asp Cys
Ser Ser Ile His Val Gly Ile Thr Asn Glu Ile Asn 225 230
235 240 Asp Tyr Ser Met Pro Val Ser Ser Val
Pro Phe Asp His Thr Ile Arg 245 250
255 Cys Thr Ser Arg Ala Leu Tyr Ile Glu Phe Lys Thr Ile Pro
Ala Gly 260 265 270
Tyr Arg Pro Phe Val Asp Ala Ile Val Gln Ile Pro Thr Thr Glu Pro
275 280 285 Phe Phe Val Lys
Tyr Thr Asn Glu Phe Ala Cys Val Asn Gly Ile Tyr 290
295 300 Thr Ser Ile Pro Phe Thr Ser Phe
Phe Ser Gln Pro Ile Leu Tyr Asp 305 310
315 320 Glu Ala Leu Ala Ile Gly Ala Asp Leu Val Arg Thr
Thr Ser Thr Val 325 330
335 Ile Gly Ser Ile Thr Arg Thr Thr Thr Leu Pro Phe Ile Ser Arg Leu
340 345 350 Gln Lys Thr
Lys Thr Ile Leu Val Leu Glu Pro Ile Pro Thr Thr Thr 355
360 365 Val Thr Thr Ser His His Gly Phe
Asp Thr Tyr Tyr Tyr Thr Lys Lys 370 375
380 Ala Thr Ile Gly Asp Thr Ala Thr Val Phe Ile Asp Val
Pro Gln His 385 390 395
400 Thr Ala Thr Thr Leu Thr Thr Tyr Tyr Gln Glu Ser Ser Thr Ala Thr
405 410 415 Thr Thr Tyr Phe
Asp Asp Ile Asp Leu Val Asp Thr Val Ile Val Lys 420
425 430 Ile Pro Tyr Pro Asn Pro Thr Ile Ile
Thr Thr Gln Phe Tyr Ser Gly 435 440
445 Lys Tyr Leu Thr Thr Glu Thr His Lys Glu Pro Pro Leu Gly
Thr Asp 450 455 460
Ser Val Ile Ile Lys Glu Pro His Asn Pro Thr Val Thr Thr Thr Glu 465
470 475 480 Phe Tyr Ser Glu Ser
Phe Ala Thr Thr Glu Thr Ile Thr Asn Tyr Pro 485
490 495 Glu Gly Thr Asp Ser Val Ile Val Arg Glu
Pro His Asn Pro Thr Val 500 505
510 Thr Thr Thr Glu Phe Tyr Ser Glu Ser Phe Ala Thr Thr Glu Thr
Ile 515 520 525 Thr
Asn Gly Pro Glu Gly Thr Asp Ser Val Ile Val Arg Glu Pro His 530
535 540 Asn Pro Thr Val Thr Thr
Thr Glu Phe Tyr Ser Glu Ser Phe Ala Thr 545 550
555 560 Thr Glu Thr Ile Thr Asn Gly Pro Glu Gly Thr
Asp Ser Val Ile Val 565 570
575 Arg Glu Pro His Asn Pro Thr Val Thr Thr Thr Glu Phe Tyr Ser Glu
580 585 590 Ser Phe
Ala Thr Thr Glu Thr Ile Thr Asn Gly Pro Glu Gly Thr Asp 595
600 605 Ser Val Ile Val Arg Glu Pro
His Asn Pro Thr Val Thr Thr Thr Glu 610 615
620 Phe Tyr Ser Glu Ser Phe Ala Thr Thr Glu Thr Ile
Thr Asn Gly Pro 625 630 635
640 Glu Gly Thr Asp Ser Val Ile Ile Lys Glu Pro His Asn Pro Thr Val
645 650 655 Thr Thr Thr
Lys Phe Tyr Ser Glu Ser Phe Ala Thr Thr Glu Thr Ile 660
665 670 Thr Asn Tyr Pro Glu Gly Thr Asp
Ser Val Ile Val Arg Glu Pro His 675 680
685 Asn Pro Thr Val Thr Thr Thr Glu Phe Tyr Ser Glu Ser
Phe Ala Thr 690 695 700
Thr Glu Thr Ile Thr Asn Gly Pro Glu Gly Thr Asp Ser Val Ile Val 705
710 715 720 Arg Glu Pro His
Asn Pro Thr Val Thr Thr Thr Glu Phe Tyr Ser Glu 725
730 735 Ser Phe Ala Thr Thr Glu Thr Ile Thr
Asn Tyr Pro Glu Gly Thr Asp 740 745
750 Ser Val Ile Val Arg Glu Pro His Asn Pro Thr Val Thr Thr
Thr Glu 755 760 765
Phe Tyr Ser Glu Ser Phe Ala Thr Thr Glu Thr Val Thr Asn Tyr Pro 770
775 780 Glu Gly Thr Asp Ser
Val Ile Val Arg Glu Pro His Asn Pro Thr Val 785 790
795 800 Thr Thr Thr Glu Phe Tyr Ser Glu Ser Phe
Val Thr Thr Glu Thr Ile 805 810
815 Thr Thr Gly Pro Leu Gly Thr Asp Ser Ile Val Ile His Asp Pro
Leu 820 825 830 Glu
Glu Ser Ser Ser Ser Thr Ala Ile Glu Ser Ser Asp Ser Asn Ile 835
840 845 Ser Ser Ser Ala Gln Glu
Ser Ser Ser Ser Val Glu Gln Ser Phe Thr 850 855
860 Ser Ala Asp Glu Thr Ser Ser Ile Val Glu Leu
Ser Ser Arg Ser Asp 865 870 875
880 Ile Pro Ser Ser Ser Ile Gly Leu Thr Ser Ser Glu Ser Ser Thr Val
885 890 895 Ser Ser
Tyr Asp Ser Tyr Ser Ser Ser Thr Ser Glu Ser Ser Ile Ala 900
905 910 Ser Ser Tyr Asp Ser Tyr Ser
Ser Ser Ser Ile Glu Ser Ser Thr Leu 915 920
925 Ser Ser Ser Asp Arg Tyr Ser Ser Ser Ile Ser Asp
Thr Thr Ser Phe 930 935 940
Tyr Asp Ser Ser Ser Ser Asp Leu Glu Ser Thr Ser Ile Thr Tyr Ser 945
950 955 960 Ser Ser Ile
Asp Ala Gln Ser Ser His Leu Val Gln Ser Val Ser Asn 965
970 975 Ser Ile Ser Thr Ser Gln Glu Ile
Ser Ser Ser Ser Ser Glu Glu Ser 980 985
990 Ser Thr Ser Ala Thr Asp Ala Leu Val Ser Ser Asp
Ala Ser Ser Ile 995 1000 1005
Leu Ser Ser Asp Thr Ser Ser Tyr Tyr Pro Ser Ser Thr Ile Ser
1010 1015 1020 Pro Ser Asp
Asp Phe Pro His Thr Ile Ala Gly Glu Ser Asp Ser 1025
1030 1035 Gln Ser Ile Ser Phe Ile Thr Ser
Thr Val Glu Ile Ser Ser Asp 1040 1045
1050 Ser Val Ser Leu Thr Ser Asp Pro Glu Ser Ser Phe Asp
Ser Ser 1055 1060 1065
Ser Arg Leu Asn Ser Asp Ser Ser Ser Ser Pro Ser Thr Asp Gln 1070
1075 1080 Arg Asp Ile Leu Thr
Ser Ser Ser Phe Ser Thr Leu Ile Lys Ser 1085 1090
1095 Ser Gly Ser Arg Glu Ser Ser Ile Gly Thr
Ile Leu Ser Glu Glu 1100 1105 1110
Ser Ser Asp Ser Ile Pro Thr Thr Phe Ser Thr Arg Tyr Tyr Ser
1115 1120 1125 Pro Ser
Gly Met Ser Ser Arg His Tyr Thr Asn Ser Thr Glu Thr 1130
1135 1140 Ser Val Ser Asp Val Val Ser
Ser Ser Val Ala Gly Asp Glu Thr 1145 1150
1155 Ser Glu Ser Ser Val Ser Val Ile Ser Glu Ser Ser
Glu Ser Val 1160 1165 1170
Thr Ser Glu Ser Val Ala Ser Glu Ser Val Ala Ser Glu Ser Val 1175
1180 1185 Ala Ser Glu Ser Val
Ala Ser Glu Ser Val Thr Ala Val Ser Asp 1190 1195
1200 Ile Ser Asp Leu Tyr Thr Thr Ser Glu Glu
Val Ser Thr Ser Asp 1205 1210 1215
Ser Asn Ser Gly Met Ser Ser Pro Ile Pro Ser Ser Glu Gln Arg
1220 1225 1230 Ser Ser
Ile Pro Ile Met Ser Ser Ser Asp Glu Ser Ser Glu Ser 1235
1240 1245 Arg Glu Ser Ser Ser Gly Thr
Ile Leu Ser Glu Glu Asn Ser Asp 1250 1255
1260 Ser Ile Pro Thr Thr Phe Ser Thr Arg Tyr Tyr Ser
Pro Ser Gly 1265 1270 1275
Met Ser Ser Arg His Tyr Thr Asn Ser Thr Glu Thr Ser Val Ser 1280
1285 1290 Asp Val Val Ser Ser
Ser Val Ala Gly Asp Glu Thr Ser Glu Ser 1295 1300
1305 Ser Val Ser Val Ile Ser Glu Ser Ser Glu
Ser Val Thr Ser Glu 1310 1315 1320
Ser Val Ala Ser Glu Ser Val Ala Ser Glu Ser Val Ala Ser Glu
1325 1330 1335 Ser Val
Thr Ala Val Ser Asp Ile Ser Asp Leu Tyr Thr Thr Ser 1340
1345 1350 Glu Val Val Ser Thr Ser Asp
Ser Asn Ser Gly Met Ser Ser Pro 1355 1360
1365 Ile Pro Ser Ser Glu Gln Arg Ser Ser Ile Pro Val
Met Ser Ser 1370 1375 1380
Ser Asp Glu Ser Ser Glu Ser Arg Glu Ser Ser Ser Gly Thr Ile 1385
1390 1395 Leu Ser Glu Glu Asn
Ser Asp Ser Ile Pro Thr Thr Phe Ser Thr 1400 1405
1410 Arg Tyr Leu Ser Pro Ser Gly Met Ser Ser
Arg His Tyr Thr Asn 1415 1420 1425
Ser Thr Glu Thr Ser Val Ser Asp Val Val Ser Ser Ser Val Ala
1430 1435 1440 Gly Asp
Glu Thr Ser Glu Ser Ser Val Ser Val Ile Ser Glu Ser 1445
1450 1455 Ser Glu Ser Val Thr Ser Glu
Ser Val Ala Ser Glu Ser Val Ala 1460 1465
1470 Ser Glu Ser Val Ala Ser Glu Ser Val Thr Ala Val
Ser Asp Ile 1475 1480 1485
Ser Asp Leu Tyr Thr Thr Ser Glu Val Val Ser Thr Ser Asp Ser 1490
1495 1500 Lys Ile Val Ala Ser
Thr Ser Val Pro Ser Ser Glu Gln Arg Ser 1505 1510
1515 Ser Ile Pro Ile Met Ser Ser Ser Asp Glu
Ser Ser Glu Ser Arg 1520 1525 1530
Glu Ser Ser Ser Gly Thr Ile Leu Ser Glu Glu Asn Ser Asp Ser
1535 1540 1545 Ile Pro
Thr Thr Phe Ser Thr Arg Tyr Tyr Ser Pro Ser Gly Met 1550
1555 1560 Ser Ser Arg His Tyr Thr Asn
Ser Thr Glu Thr Ser Val Ser Asp 1565 1570
1575 Val Val Ser Ser Ser Val Ala Gly Asp Glu Thr Ser
Glu Ser Ser 1580 1585 1590
Val Ser Val Ile Ser Glu Ser Ser Glu Ser Val Thr Ser Glu Ser 1595
1600 1605 Val Ala Ser Glu Ser
Val Ala Ser Glu Ser Val Thr Ala Val Ser 1610 1615
1620 Asp Ile Ser Asp Leu Tyr Thr Thr Ser Glu
Val Val Ser Thr Ser 1625 1630 1635
Asp Ser Lys Ile Val Pro Ser Thr Ser Val Pro Ser Ser Glu Gln
1640 1645 1650 Arg Ser
Ser Ile Pro Ile Met Ser Ser Ser Asp Glu Ser Ser Glu 1655
1660 1665 Ser Arg Glu Ser Ser Ser Gly
Thr Ile Leu Ser Glu Glu Asn Ser 1670 1675
1680 Asp Ser Ile Pro Thr Thr Phe Ser Thr Arg Tyr Tyr
Ser Pro Ser 1685 1690 1695
Gly Met Ser Ser Arg His Tyr Thr Asn Ser Thr Glu Thr Ser Val 1700
1705 1710 Ser Asp Val Val Ser
Ser Ser Val Ala Gly Asp Glu Thr Ser Glu 1715 1720
1725 Ser Ser Val Ser Val Thr Ser Glu Ser Ser
Glu Ser Val Thr Ser 1730 1735 1740
Glu Ser Val Ala Ser Glu Ser Val Ala Ser Glu Ser Val Ala Ser
1745 1750 1755 Glu Ser
Val Thr Ala Val Ser Asp Ile Ser Asp Leu Tyr Thr Thr 1760
1765 1770 Ser Glu Val Val Ser Thr Ser
Asp Ser Asn Ser Gly Met Ser Pro 1775 1780
1785 Pro Ile Pro Ser Ser Glu Gln Arg Ser Ser Ile Pro
Val Met Ser 1790 1795 1800
Ser Ser Asn Glu Ser Ser Glu Ser Arg Glu Ser Ser Ser Gly Thr 1805
1810 1815 Ile Leu Ser Glu Glu
Asn Ser Asp Ser Ile Pro Thr Thr Phe Ser 1820 1825
1830 Thr Arg Tyr Val Ser Val Ser Leu Thr Val
Gly Glu Leu Ser Ala 1835 1840 1845
Leu Pro Ser Leu Pro Gly Lys Leu Ser His Leu Pro Ser Ser Leu
1850 1855 1860 Ser Glu
Thr Ser Ile Gly Met Thr Lys Ser Ala Asn Leu Ser Pro 1865
1870 1875 Gln Phe Phe Ser Thr Ser Val
Asp Ser Ala Leu Ser Tyr Tyr Ala 1880 1885
1890 Ser Gly Ser Ser Ser Ala Asp His Gln Ser Ser Ala
Thr Cys Asp 1895 1900 1905
Val Ser Glu Ser Ser Val Glu Gly Asn Leu Ser Ala Met Ala Pro 1910
1915 1920 Gly Met Ser Asn Ser
Asp Asp Gly Leu Ser Glu Asp Thr Arg Ser 1925 1930
1935 Ser Ser Val Ala Gly Lys Glu Glu Ile Glu
Leu Thr Ser Thr Asn 1940 1945 1950
Ser Val Gly Glu Ile Thr Leu Ile Ser Tyr Ser Ser Ser Ser Pro
1955 1960 1965 Thr Thr
His Asp His Gly Arg Val Ser Lys Ser Met Gly Ala Ala 1970
1975 1980 Pro Leu Ser Ser Leu Phe Ser
Val Ser Val His Thr Pro Leu Val 1985 1990
1995 Thr Gly Leu Ser Gly Ser Asp Thr Phe Pro Ser Glu
Asn Ser Asn 2000 2005 2010
Arg Ser Arg Ser Phe Lys Glu Ser Thr Asp Asn Thr Ile Ser Ile 2015
2020 2025 Ser Arg Glu Ser Leu
Gly Asn Pro Tyr Ser Ser Ile Ser Ser Pro 2030 2035
2040 Ser Asp Tyr Asp Val Lys Ser Phe Thr Thr
Ser Arg Glu Leu Val 2045 2050 2055
Ser Ser Glu Ser Ile Leu Pro Phe Ser Asp Val Met Asp Ala Asn
2060 2065 2070 Asp Met
Pro Thr Ser Gly Ser Asn Leu His Ser Met Val Phe Ser 2075
2080 2085 Ile Ser Val Leu Gly Glu Lys
Phe Asn Ala Asn Ile Glu Lys His 2090 2095
2100 Lys Asn Thr Asn Gly His Tyr Ser Ser Met Val Phe
Thr Tyr Gln 2105 2110 2115
Ser Ala Gly Leu Glu Glu Ser Asp Gln Arg Ile Ala Val Thr Asn 2120
2125 2130 Thr Lys Phe Asp Gln
Asn Lys Ile Asp Thr Thr Ile Asp Ser Asn 2135 2140
2145 Thr Phe Val Thr Ser Leu Pro Phe Ala Thr
Thr Ser Asn Asp Gln 2150 2155 2160
Ile Asp Gln Ala Val Pro Ile Lys Ile Pro Ala Ser Ser Thr Ala
2165 2170 2175 Gly Phe
Val Ser Asp Val Leu Lys Pro Asp Tyr Ser Lys Ser Val 2180
2185 2190 Gln Ala Glu Ser Val Gln Thr
Asp Ser Thr Thr Tyr Ser Glu Met 2195 2200
2205 Met Ser Ser Lys Arg Asn Lys Asn Ser Gly Phe Gly
Thr Ser Ser 2210 2215 2220
Leu Ile Leu Lys Pro Thr Ile Thr Val Val Thr Lys Ser Ile Asp 2225
2230 2235 Thr Lys Val Asn Thr
Met Lys Glu Gly Gly Val Ser Lys Gln Val 2240 2245
2250 Ser Thr Thr Val Thr Glu Gln Tyr Asp Thr
Ser Thr Tyr Thr Pro 2255 2260 2265
Ala Ser Leu Leu Val Ser Asp Asn Ser Gly Ser Val Ser Lys Tyr
2270 2275 2280 Ser Leu
Tyr Met Met Ala Phe Tyr Met Leu Phe Gly Leu Phe 2285
2290 2295 214382DNACandida albicans 21ataataagac
aaaaataaaa agaacaacaa aattatgagc caaacaatcc aagcaacgta 60aagtacgata
tcaaagaatc ataactttgc tttctatttg ataacccgcc tcaaatcaag 120attgggagtg
ttaacacatt ggaatacttt ataagaattg actttaaatt tacgatgaat 180tgcaaatcct
tatggagcta ttggcaacaa catcttccgc ttaggtcgct ggttgcccgc 240tttttgatgt
tagtaacgtc aattatgcaa atattgggga gcatcattaa gaattagacg 300acggaagaaa
gaaagtacaa agtcattgtg acttgtgttt ttcggtttaa cttgcatttt 360acaaaccctg
agtccgccat ttttcgtatt cgaagcaagg tctaaatttt gaacatatat 420ttccttgaat
attgatattt tgaatatgga aataaatcgt gcataagaaa gttttgctat 480gcacgttcat
acttccaaaa attcaaagac ttgatattat taatttagga ttttactaat 540tcttgtcaaa
agcacgggcg acgaaagaga tgcatttgct agactttcat gaatgtatat 600aaaagaggct
tcccccctcc cttgaattga ggtctgatag tttttaattt cattttatta 660taattgtata
aacaactacc aactgctaat attagatgct acaacaatat acattgttac 720tcatatattt
gtcggttgcg actgcaaaga caatcactgg tgttttcaac agttttaatt 780cattgacttg
gtctaatgct gctacttatc attataaggg accaggaacc ccaacttgga 840atgctgtttt
gggttggtct ttagatggta ctagtgcaag tccgggagat acattcacat 900tgaatatgcc
atgtgtgttt aaatttacta cttctcaaac atctgttgat ttgactgctc 960atggtgttaa
atatgctaca tgtcaatttc aggcaggtga agaatttatg accttttcta 1020cattaacatg
tactgtgagc aatactttga ctccatctat taaggctttg ggtactgtca 1080ccttaccact
tgcattcaat gtaggtggaa ctggttcttc tgttgatttg gaagattcta 1140aatgttttac
tgctggtact aacacagtta catttaatga tggtggcaag aaaatctcta 1200ttaatgttga
ttttgaaagg tcaaatgtcg atccaaaagg gtacttaact gattccagag 1260ttataccaag
tctcaacaaa gtgtcaactc tttttgttgc accacaatgt gcaaatggtt 1320acacatctgg
tacaatggga ttcgctaaca cttatggtga tgttcaaatt gactgttcaa 1380atattcatgt
tggtattaca aaaggattga atgattggaa ttatccggtt tcatctgaat 1440catttagtta
cactaaaact tgttcatcta atggtatctt tatcacatat aaaaatgttc 1500ctgccggtta
tcgtccattt gttgacgctt atatttctgc tacagatgtt aactcgtaca 1560ccttgtcgta
tgctaatgaa tatacttgtg ctggtggtta ttggcaacgt gcacctttca 1620cattaagatg
gactggatac agaaatagtg atgctggatc taacggtatt gttattgtgg 1680ctactaccag
aacagttaca gacagtacta ccgccgtgac caccttacca ttcgatccta 1740accgcgacaa
aactaagaca attgaaattt tgaaacctat tccaacaact acaatcacaa 1800catcatatgt
tggtgtgact acttcctacc tgaccaaaac tgcaccaatt ggggaaactg 1860ctactgttat
tgttgatatt ccatatcaca ctaccactac tgttaccagt aaatggacag 1920gaacaattac
ttccaccaca acacatacta atccaactga ctcaatagac actgtcattg 1980tacaagttcc
actgccaaac ccaactgtta ctaccactga atattggtct caatcatttg 2040ctaccaccac
caccattact ggaccaccag ggaacactga tactgtttta atcagagaac 2100caccaaacca
tactgtcact acaaccgagt attggtcaga atcttacact accactagta 2160ctttcactgc
tcctccaggt ggaactgact cggtcatcat caaggaacct ccaaatccaa 2220ctgttacaac
taccgagtac tggtcagaat cttacactac cactagtacc ttcactgctc 2280ctccaggtgg
aactgactcg gtcatcatca aggaaccacc aaatccaact gtcactacaa 2340cagagtactg
gtcacaatct tacactacca ctactactgt caccgctcca ccaggaggta 2400ctgatactgt
cttagtcaga gagccaccaa accatactgt tacaactacc gagtactggt 2460cacaatctta
cactacaacc accactgtta ttgccccacc aggtggtact gacactgtta 2520tcattagaga
accaccaaac cacactgtca ctactactga gtattggtct caatcttacg 2580caaccactac
taccattacc gctccacctg gtgagaccga tactgtcctt attagagaac 2640caccaaacca
tactgtaacc acaactgagt attggtctca atcctatgca actactacta 2700caatcactgc
tcctccaggt gaaaccgata ccgttcttat tagggaacca ccaaatcaca 2760ctgtcactac
tactgaatac tggtcacaat catatgctac cactaccact gtaactgcac 2820caccaggtgg
tactgacact gttcttatca gagagccacc aaaccacact gtcactacta 2880ctgaatactg
gtctcaatca tatgctacaa ccaccactgt tactgcacca ccaggaggta 2940ccgatactgt
gattatttat gacaccatgt caagttcaga aatttcttca ttttctcgtc 3000ctcattacac
caaccataca actttgtggt ctacaacttg ggttattgaa acaaaaacaa 3060ttacagaaac
tagctgtgaa ggtgataaag gttgttcttg ggtttctgtt tctactcgta 3120ttgtcacaat
tcctaataat atcgaaactc ctatggttac taatactgtt gattctacaa 3180ccacagaatc
cacttcacaa tccccatctg gtattttttc agagtcagga gtatctgttg 3240aaacagaatc
ttctactgtt actactgctc aaacaaatcc aagtgttcca acaactgaaa 3300gtgaggttga
atttactact aaaggaaaca acggaaatgg tccttatgaa tcaccatcta 3360ctcatgtgaa
atcaagtatg gatgaaaatt ctgaatttac tacttccaca gctgcttcca 3420cttctactga
tattgaaaat gcaaccatag caacaaccgg ttccgtggaa gcttcatcgc 3480ctatcatttc
ttctagtgct gatgaaacta ctactattac tactactgct gaatcaacca 3540gtgtcattga
acaaccaacc aataataatg gtggtggtaa agccccatct gcaacttcat 3600ctccatctac
aactacaact gctaataatg actctgttat tactggtaca acatcaacca 3660accaatctca
atctcaatct caatctaatt ctgataccca acaaactaca ttgagtcaac 3720aaatgacttc
atctttggtt agtttacata tgcttactac atttgatgga tctggttctg 3780ttattcaaca
ttctacttgg ttatgtggtt tgatcacatt attatcctta tttatttaag 3840gatgatacca
tcatagtcgc ctttttagat ttttgttatt tgtttgtttt ttgttttttt 3900ggctccaaaa
aaaaattaat atattttttg gtttttcttc gtgtttattg atattttgct 3960attttcggta
taattaatca cctccaattt ggtgtgttgt taatttgatt agtttgtttc 4020tatagttttt
ataattataa gtatttttta ttatttgaat tttaaaaaaa gagcctgcga 4080ctatgaattg
ttcagtatga ttcatgtaga acagaaatct gtctactctt ttatttatag 4140aaggactgac
tctggaattt attgtaatat aatctttact tgaggttatg catcgcttgt 4200cagtttcagg
gttttaagat tggaaggttt gctagataag atacaatgct aaggaagaat 4260actataaagt
agtaggtcca agaaaaatgt tgctgattat aaacacttcc aaaaatatag 4320tgttggctac
taagttgagg tgttagaaat aattaagatg caccaaagtt agaccaaacc 4380cg
4382221047PRTCandida albicans 22Met Leu Gln Gln Tyr Thr Leu Leu Leu Ile
Tyr Leu Ser Val Ala Thr 1 5 10
15 Ala Lys Thr Ile Thr Gly Val Phe Asn Ser Phe Asn Ser Leu Thr
Tyr 20 25 30 Ser
Asn Ala Ala Thr Tyr His Tyr Lys Gly Pro Gly Thr Pro Thr Tyr 35
40 45 Asn Ala Val Leu Gly Tyr
Ser Leu Asp Gly Thr Ser Ala Ser Pro Gly 50 55
60 Asp Thr Phe Thr Leu Asn Met Pro Cys Val Phe
Lys Phe Thr Thr Ser 65 70 75
80 Gln Thr Ser Val Asp Leu Thr Ala His Gly Val Lys Tyr Ala Thr Cys
85 90 95 Gln Phe
Gln Ala Gly Glu Glu Phe Met Thr Phe Ser Thr Leu Thr Cys 100
105 110 Thr Val Ser Asn Thr Leu Thr
Pro Ser Ile Lys Ala Leu Gly Thr Val 115 120
125 Thr Leu Pro Leu Ala Phe Asn Val Gly Gly Thr Gly
Ser Ser Val Asp 130 135 140
Leu Glu Asp Ser Lys Cys Phe Thr Ala Gly Thr Asn Thr Val Thr Phe 145
150 155 160 Asn Asp Gly
Gly Lys Lys Ile Ser Ile Asn Val Asp Phe Glu Arg Ser 165
170 175 Asn Val Asp Pro Lys Gly Tyr Leu
Thr Asp Ser Arg Val Ile Pro Ser 180 185
190 Leu Asn Lys Val Ser Thr Leu Phe Val Ala Pro Gln Cys
Ala Asn Gly 195 200 205
Tyr Thr Ser Gly Thr Met Gly Phe Ala Asn Thr Tyr Gly Asp Val Gln 210
215 220 Ile Asp Cys Ser
Asn Ile His Val Gly Ile Thr Lys Gly Leu Asn Asp 225 230
235 240 Tyr Asn Tyr Pro Val Ser Ser Glu Ser
Phe Ser Tyr Thr Lys Thr Cys 245 250
255 Ser Ser Asn Gly Ile Phe Ile Thr Tyr Lys Asn Val Pro Ala
Gly Tyr 260 265 270
Arg Pro Phe Val Asp Ala Tyr Ile Ser Ala Thr Asp Val Asn Ser Tyr
275 280 285 Thr Leu Ser Tyr
Ala Asn Glu Tyr Thr Cys Ala Gly Gly Tyr Tyr Gln 290
295 300 Arg Ala Pro Phe Thr Leu Arg Tyr
Thr Gly Tyr Arg Asn Ser Asp Ala 305 310
315 320 Gly Ser Asn Gly Ile Val Ile Val Ala Thr Thr Arg
Thr Val Thr Asp 325 330
335 Ser Thr Thr Ala Val Thr Thr Leu Pro Phe Asp Pro Asn Arg Asp Lys
340 345 350 Thr Lys Thr
Ile Glu Ile Leu Lys Pro Ile Pro Thr Thr Thr Ile Thr 355
360 365 Thr Ser Tyr Val Gly Val Thr Thr
Ser Tyr Ser Thr Lys Thr Ala Pro 370 375
380 Ile Gly Glu Thr Ala Thr Val Ile Val Asp Ile Pro Tyr
His Thr Thr 385 390 395
400 Thr Thr Val Thr Ser Lys Tyr Thr Gly Thr Ile Thr Ser Thr Thr Thr
405 410 415 His Thr Asn Pro
Thr Asp Ser Ile Asp Thr Val Ile Val Gln Val Pro 420
425 430 Ser Pro Asn Pro Thr Val Thr Thr Thr
Glu Tyr Tyr Ser Gln Ser Phe 435 440
445 Ala Thr Thr Thr Thr Ile Thr Gly Pro Pro Gly Asn Thr Asp
Thr Val 450 455 460
Leu Ile Arg Glu Pro Pro Asn His Thr Val Thr Thr Thr Glu Tyr Tyr 465
470 475 480 Ser Glu Ser Tyr Thr
Thr Thr Ser Thr Phe Thr Ala Pro Pro Gly Gly 485
490 495 Thr Asp Ser Val Ile Ile Lys Glu Pro Pro
Asn Pro Thr Val Thr Thr 500 505
510 Thr Glu Tyr Tyr Ser Glu Ser Tyr Thr Thr Thr Ser Thr Phe Thr
Ala 515 520 525 Pro
Pro Gly Gly Thr Asp Ser Val Ile Ile Lys Glu Pro Pro Asn Pro 530
535 540 Thr Val Thr Thr Thr Glu
Tyr Tyr Ser Gln Ser Tyr Thr Thr Thr Thr 545 550
555 560 Thr Val Thr Ala Pro Pro Gly Gly Thr Asp Thr
Val Leu Val Arg Glu 565 570
575 Pro Pro Asn His Thr Val Thr Thr Thr Glu Tyr Tyr Ser Gln Ser Tyr
580 585 590 Thr Thr
Thr Thr Thr Val Ile Ala Pro Pro Gly Gly Thr Asp Thr Val 595
600 605 Ile Ile Arg Glu Pro Pro Asn
His Thr Val Thr Thr Thr Glu Tyr Tyr 610 615
620 Ser Gln Ser Tyr Ala Thr Thr Thr Thr Ile Thr Ala
Pro Pro Gly Glu 625 630 635
640 Thr Asp Thr Val Leu Ile Arg Glu Pro Pro Asn His Thr Val Thr Thr
645 650 655 Thr Glu Tyr
Tyr Ser Gln Ser Tyr Ala Thr Thr Thr Thr Ile Thr Ala 660
665 670 Pro Pro Gly Glu Thr Asp Thr Val
Leu Ile Arg Glu Pro Pro Asn His 675 680
685 Thr Val Thr Thr Thr Glu Tyr Tyr Ser Gln Ser Tyr Ala
Thr Thr Thr 690 695 700
Thr Val Thr Ala Pro Pro Gly Gly Thr Asp Thr Val Leu Ile Arg Glu 705
710 715 720 Pro Pro Asn His
Thr Val Thr Thr Thr Glu Tyr Tyr Ser Gln Ser Tyr 725
730 735 Ala Thr Thr Thr Thr Val Thr Ala Pro
Pro Gly Gly Thr Asp Thr Val 740 745
750 Ile Ile Tyr Asp Thr Met Ser Ser Ser Glu Ile Ser Ser Phe
Ser Arg 755 760 765
Pro His Tyr Thr Asn His Thr Thr Leu Tyr Ser Thr Thr Tyr Val Ile 770
775 780 Glu Thr Lys Thr Ile
Thr Glu Thr Ser Cys Glu Gly Asp Lys Gly Cys 785 790
795 800 Ser Tyr Val Ser Val Ser Thr Arg Ile Val
Thr Ile Pro Asn Asn Ile 805 810
815 Glu Thr Pro Met Val Thr Asn Thr Val Asp Ser Thr Thr Thr Glu
Ser 820 825 830 Thr
Ser Gln Ser Pro Ser Gly Ile Phe Ser Glu Ser Gly Val Ser Val 835
840 845 Glu Thr Glu Ser Ser Thr
Val Thr Thr Ala Gln Thr Asn Pro Ser Val 850 855
860 Pro Thr Thr Glu Ser Glu Val Glu Phe Thr Thr
Lys Gly Asn Asn Gly 865 870 875
880 Asn Gly Pro Tyr Glu Ser Pro Ser Thr His Val Lys Ser Ser Met Asp
885 890 895 Glu Asn
Ser Glu Phe Thr Thr Ser Thr Ala Ala Ser Thr Ser Thr Asp 900
905 910 Ile Glu Asn Ala Thr Ile Ala
Thr Thr Gly Ser Val Glu Ala Ser Ser 915 920
925 Pro Ile Ile Ser Ser Ser Ala Asp Glu Thr Thr Thr
Ile Thr Thr Thr 930 935 940
Ala Glu Ser Thr Ser Val Ile Glu Gln Pro Thr Asn Asn Asn Gly Gly 945
950 955 960 Gly Lys Ala
Pro Ser Ala Thr Ser Ser Pro Ser Thr Thr Thr Thr Ala 965
970 975 Asn Asn Asp Ser Val Ile Thr Gly
Thr Thr Ser Thr Asn Gln Ser Gln 980 985
990 Ser Gln Ser Gln Ser Asn Ser Asp Thr Gln Gln Thr
Thr Leu Ser Gln 995 1000 1005
Gln Met Thr Ser Ser Leu Val Ser Leu His Met Leu Thr Thr Phe
1010 1015 1020 Asp Gly Ser
Gly Ser Val Ile Gln His Ser Thr Tyr Leu Cys Gly 1025
1030 1035 Leu Ile Thr Leu Leu Ser Leu Phe
Ile 1040 1045 231404DNACandida albicans
23atgcttccac aattcatatt gttattcata tctttgacag tgtcgactgc aaaaactatt
60actggtgttt tcaatagttt tgactcattg acatggacta gatccgttga atatgcttac
120aaagggccag agactccaac ttggaatgca gttttagggt ggtccttaaa tagtaccact
180gctgacccag gagacacatt caccttgatt ttgccttgtg tatttaaatt tataactacc
240caaacatctg ttgatttgac tgctgatggt gttagctatg ccacttgtga ctttaatgct
300ggtgaagaat ttacgacatt ttcttcctta tcatgtactg tgaacagtgt ttcggtatca
360tatgctaggg tttctggtac ggtcaaattg cccattacat tcaatgtagg tggaacaggt
420tcttcagttg atttggcaga ttccaaatgt tttactgccg gaaaaaacac tgtgactttc
480atggatggcg atacaaagat ttctaccact gttgattttg acgcgtctcc agtatcaccc
540agtggttata ttacaagctc acgaattatt cctagtctca ataaactttc aagtcttttc
600gtggtgccac aatgtgagaa tggttacaca tctggtataa tgggatttgt agctagtaac
660ggtgctacta ttgattgctc aaatgtcaat ataggaatat caaaaggttt aaatgattgg
720aattttccag taagttcaga atcattttct tacacgaaaa cttgtacgtc aaccagtatt
780acagttgaat ttcaaaatgt tcctgctggg tatcgccctt ttgttgatgc atatatttct
840gcagaaaata ttgataaata taccttgacg tacgcaaatg agtatacttg tgaaaatggc
900aatactgtgg ttgatccatt tactttaaca tggtgggggt ataaaaactc tgaagcagac
960tctgacgggg atgtgatcgt agttacaacc agaactgtca cagacagtac aacagctgtg
1020actactttac ctttcaatcc aagtgtcgat aaaaccgaaa caattgaaat tttgcaaccc
1080attcccacga ccacaattac aacttcatat attggtattt ccacttccta tgaaacatta
1140accggaacaa ttggtggtac tgcgacagtc attgtcgata caccttatca tatcactgcc
1200actgttacaa atttctggac tgggtcaatt acaactacca ctacttatac taatcccact
1260ggttccatag acactgttat tgtgcaaatt ccactgcctg atccaactac aactataact
1320gaattttggt ctgaatcatt tgctagtact accaccatca ccaacccacc tgacggtact
1380aatagtgtga tcatcaaaga acca
140424468PRTCandida albicans 24Met Leu Pro Gln Phe Ile Leu Leu Phe Ile
Ser Leu Thr Val Ser Thr 1 5 10
15 Ala Lys Thr Ile Thr Gly Val Phe Asn Ser Phe Asp Ser Leu Thr
Tyr 20 25 30 Thr
Arg Ser Val Glu Tyr Ala Tyr Lys Gly Pro Glu Thr Pro Thr Tyr 35
40 45 Asn Ala Val Leu Gly Tyr
Ser Leu Asn Ser Thr Thr Ala Asp Pro Gly 50 55
60 Asp Thr Phe Thr Leu Ile Leu Pro Cys Val Phe
Lys Phe Ile Thr Thr 65 70 75
80 Gln Thr Ser Val Asp Leu Thr Ala Asp Gly Val Ser Tyr Ala Thr Cys
85 90 95 Asp Phe
Asn Ala Gly Glu Glu Phe Thr Thr Phe Ser Ser Leu Ser Cys 100
105 110 Thr Val Asn Ser Val Ser Val
Ser Tyr Ala Arg Val Ser Gly Thr Val 115 120
125 Lys Leu Pro Ile Thr Phe Asn Val Gly Gly Thr Gly
Ser Ser Val Asp 130 135 140
Leu Ala Asp Ser Lys Cys Phe Thr Ala Gly Lys Asn Thr Val Thr Phe 145
150 155 160 Met Asp Gly
Asp Thr Lys Ile Ser Thr Thr Val Asp Phe Asp Ala Ser 165
170 175 Pro Val Ser Pro Ser Gly Tyr Ile
Thr Ser Ser Arg Ile Ile Pro Ser 180 185
190 Leu Asn Lys Leu Ser Ser Leu Phe Val Val Pro Gln Cys
Glu Asn Gly 195 200 205
Tyr Thr Ser Gly Ile Met Gly Phe Val Ala Ser Asn Gly Ala Thr Ile 210
215 220 Asp Cys Ser Asn
Val Asn Ile Gly Ile Ser Lys Gly Leu Asn Asp Tyr 225 230
235 240 Asn Phe Pro Val Ser Ser Glu Ser Phe
Ser Tyr Thr Lys Thr Cys Thr 245 250
255 Ser Thr Ser Ile Thr Val Glu Phe Gln Asn Val Pro Ala Gly
Tyr Arg 260 265 270
Pro Phe Val Asp Ala Tyr Ile Ser Ala Glu Asn Ile Asp Lys Tyr Thr
275 280 285 Leu Thr Tyr Ala
Asn Glu Tyr Thr Cys Glu Asn Gly Asn Thr Val Val 290
295 300 Asp Pro Phe Thr Leu Thr Tyr Tyr
Gly Tyr Lys Asn Ser Glu Ala Asp 305 310
315 320 Ser Asp Gly Asp Val Ile Val Val Thr Thr Arg Thr
Val Thr Asp Ser 325 330
335 Thr Thr Ala Val Thr Thr Leu Pro Phe Asn Pro Ser Val Asp Lys Thr
340 345 350 Glu Thr Ile
Glu Ile Leu Gln Pro Ile Pro Thr Thr Thr Ile Thr Thr 355
360 365 Ser Tyr Ile Gly Ile Ser Thr Ser
Tyr Glu Thr Leu Thr Gly Thr Ile 370 375
380 Gly Gly Thr Ala Thr Val Ile Val Asp Thr Pro Tyr His
Ile Thr Ala 385 390 395
400 Thr Val Thr Asn Phe Tyr Thr Gly Ser Ile Thr Thr Thr Thr Thr Tyr
405 410 415 Thr Asn Pro Thr
Gly Ser Ile Asp Thr Val Ile Val Gln Ile Pro Ser 420
425 430 Pro Asp Pro Thr Thr Thr Ile Thr Glu
Phe Tyr Ser Glu Ser Phe Ala 435 440
445 Ser Thr Thr Thr Ile Thr Asn Pro Pro Asp Gly Thr Asn Ser
Val Ile 450 455 460
Ile Lys Glu Pro 465
User Contributions:
Comment about this patent or add new information about this topic: