Patent application title: HETEROLOGOUS EXPRESSION OF NEISSERIAL PROTEINS
Inventors:
IPC8 Class: AA61K39095FI
USPC Class:
1 1
Class name:
Publication date: 2017-03-23
Patent application number: 20170080077
Abstract:
Alternative and improved approaches to the heterologous expression of the
proteins of Neisseria meningitidis and Neisseria gonorrhoeae are
disclosed. These approaches typically affect the level of expression, the
ease of purification, the cellular localization, and/or the immunological
properties of the expressed protein.Claims:
1. A method of inducing a bactericidal immune response in an animal,
comprising administering to the animal a composition comprising a
non-lipidated polypeptide, which comprises an amino acid sequence having
greater than 99% sequence identity to the amino acid sequence of
.DELTA.G741 from Neisseria meningitidis strain MC58, wherein the
non-lipidated polypeptide is present in an immunologically effective
amount that is effective to elicit bactericidal antibodies against a
Neisseria meningitidis serogroup B strain in the animal.
2. The method according to claim 1, wherein the immunologically effective amount is at least 20 .mu.g.
3. The method according to claim 2, wherein the immunologically effective amount is 50-200 .mu.g.
4. The method according to claim 2, wherein said composition additionally comprises an effective amount of an adjuvant.
5. The method according to claim 4, wherein the adjuvant is aluminum hydroxide or aluminum phosphate.
6. The method according to claim 2, wherein said non-lipidated polypeptide does not comprise an N-terminal amino acid residue site for lipidation.
7. The method according claim 2, further comprising a pharmaceutically acceptable carrier, adjuvant, diluent or buffer.
8. The method according to claim 2, wherein the non-lipidated polypeptide elicits a bactericidal immune response against a heterologous Neisseria meningitidis strain in the animal.
9. The method according to claim 2, consisting essentially of the non-lipidated polypeptide.
10. The method according to claim 2, wherein the composition does not comprise a protein having an amino acid sequence of greater than 80% sequence identity to SEQ ID NO: 2534 in WO99/57280.
11. The method according to claim 2, wherein the non-lipidated polypeptide is a recombinant polypeptide.
12. The method according to claim 2, wherein the non-lipidated polypeptide is a fusion polypeptide.
13. The method according to claim 2, wherein the non-lipidated polypeptide is a purified polypeptide.
14. The method according to claim 2, wherein the non-lipidated polypeptide is conjugated to a carrier.
15. The method according to claim 2, wherein the non-lipidated polypeptide was expressed in E. coli.
16. The method according to claim 1, wherein the composition comprises (a) the non-lipidated polypeptide; and (b) an immunostimulatory effective amount of an aluminum hydroxide adjuvant.
17. The method according to claim 16, wherein the immunologically effective amount of the non-lipidated polypeptide is at least 20 .mu.g.
18. The method according to claim 16, wherein the immunologically effective amount of the non-lipidated polypeptide is 50-200 .mu.g.
19. The method according to claim 16, wherein said non-lipidated polypeptide does not comprise an N-terminal amino acid residue site for lipidation.
20. The method according to claim 16, further comprising a pharmaceutically acceptable carrier, diluent or buffer.
21. The method according to claim 16, wherein the non-lipidated polypeptide elicits a bactericidal immune response against a heterologous Neisseria meningitidis strain in the animal.
22. The method according to claim 16, consisting essentially of (a) and (b).
23. The method according to claim 16, wherein the composition does not comprise a protein having an amino acid sequence of greater than 80% sequence identity to SEQ ID NO: 2534 of WO99/57280.
24. The method according to claim 16, wherein the non-lipidated polypeptide is a recombinant polypeptide.
25. The method according to claim 16, wherein the non-lipidated polypeptide is a fusion polypeptide.
26. The method according to claim 16, wherein the non-lipidated polypeptide is a purified polypeptide.
27. The method according to claim 16, wherein the non-lipidated polypeptide is conjugated to a carrier.
28. The method according to claim 16, wherein the non-lipidated polypeptide comprises the amino acid sequence of .DELTA.G741 from Neisseria meningitidis strain MC58.
29. The method according to claim 16, wherein the non-lipidated polypeptide was expressed in E. coli.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a Continuation of U.S. application Ser. No. 14/244,806, filed Apr. 3, 2014; which is a Continuation of U.S. application Ser. No. 13/340,549, filed Dec. 29, 2011, now U.S. Pat. No. 8,703,914; which is a Divisional of U.S. application Ser. No. 12/825,210, filed Jun. 28, 2010, now U.S. Pat. No. 8,114,960; which is a Divisional of U.S. application Ser. No. 10/220,481, which claims an international filing date of Feb. 28, 2001, now U.S. Pat. No. 7,803,387; which is the National Phase of PCT Application No. PCT/IB2001/000452, filed Feb. 28, 2001; which claims the benefit of GB Application No. 0027675.8, filed Nov. 13, 2000, and GB Application No. 0004695.3, filed Feb. 28, 2000; all of which are incorporated herein by reference in their entirety.
TECHNICAL FIELD
[0002] This invention is in the field of protein expression. In particular, it relates to the heterologous expression of proteins from Neisseria (e.g. N. gonorrhoeae or, preferably, N. meningitidis).
SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILE
[0003] The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 303822001_004 SegList.txt, date recorded: Nov. 29, 2016, size: 405 KB).
BACKGROUND
[0004] International patent applications WO99/24578, WO99/36544, WO99/57280 and WO00/22430 disclose proteins from Neisseria meningitidis and Neisseria gonorrhoeae. These proteins are typically described as being expressed in E. coli (i.e. heterologous expression) as either N-terminal GST-fusions or C-terminal His-tag fusions, although other expression systems, including expression in native Neisseria, are also disclosed.
[0005] It is an object of the present invention to provide alternative and improved approaches for the heterologous expression of these proteins. These approaches will typically affect the level of expression, the ease of purification, the cellular localisation of expression, and/or the immunological properties of the expressed protein.
DISCLOSURE
Nomenclature Herein
[0006] The 2166 protein sequences disclosed in WO99/24578, WO99/36544 and WO99/57280 are referred to herein by the following SEQ# numbers:
TABLE-US-00001 Application Protein sequences SEQ# herein WO99/24578 Even SEQ IDs 2-892 SEQ#s 1-446 WO99/36544 Even SEQ IDs 2-90 SEQ#s 447-491 WO99/57280 Even SEQ IDs 2-3020 SEQ#s 492-2001 Even SEQ IDs 3040-3114 SEQ#s 2002-2039 SEQ IDs 3115-3241 SEQ#s 2040-2166
[0007] In addition to this SEQ# numbering, the naming conventions used in WO99/24578, WO99/36544 and WO99/57280 are also used (e.g. `ORF4`, `ORIF40`, `ORF40-1` etc. as used in WO99/24578 and WO99/36544; `m919`, `g919` and `a919` etc. as used in WO99/57280).
[0008] The 2160 proteins NMB0001 to NMB2160 from Tettelin et al. [Science (2000) 287:1809-1815] are referred to herein as SEQ4#s 21674326 [see also WO00/66791].
[0009] The term `protein of the invention` as used herein refers to a protein comprising:
[0010] (a) one of sequences SEQ#s 1-4326; or
[0011] (b) a sequence having sequence identity to one of SEQ#s 1-4326; or
[0012] (c) a fragment of one of SEQ#s 1-4326.
[0013] The degree of `sequence identity` referred to in (b) is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). This includes mutants and allelic variants [e.g. see WO00/66741]. Identity is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence.
[0014] The `fragment` referred to in (c) should comprise at least n consecutive amino acids from one of SEQ#s 1-4326 and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). Preferably the fragment comprises an epitope from one of SEQ#s 14326. Preferred fragments are those disclosed in WO00/71574 and WO01/04316.
[0015] Preferred proteins of the invention are found in N. meningitidis serogroup B.
[0016] Preferred proteins for use according to the invention are those of serogroup B N. meningitidis strain 2996 or strain 394198 (a New Zealand strain). Unless otherwise stated, proteins mentioned herein are from N. meningitidis strain 2996. It will be appreciated, however, that the invention is not in general limited by strain. References to a particular protein (e.g. `287`, `919` etc.) may be taken to include that protein from any strain.
Non-Fusion Expression
[0017] In a first approach to heterologous expression, no fusion partner is used, and the native leader peptide (if present) is used. This will typically prevent any `interference` from fusion partners and may alter cellular localisation and/or post-translational modification and/or folding in the heterologous host.
[0018] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) no fusion partner is used, and (b) the protein's native leader peptide (if present) is used.
[0019] The method will typically involve the step of preparing an vector for expressing a protein of the invention, such that the first expressed amino acid is the first amino acid (methionine) of said protein, and last expressed amino acid is the last amino acid of said protein (i.e. the codon preceding the native STOP codon).
[0020] This approach is preferably used for the expression, of the following proteins using the native leader peptide: 111, 149, 206, 2254, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, Orf91, Orf97-1, Orf119, Orf143.1, NMB0109 and NMB2050. The suffix `L` used herein in the name of a protein indicates expression in this manner using the native leader peptide.
[0021] Proteins which are preferably expressed using this approach using no fusion partner and which have no native leader peptide include: 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 926, 982, Orf83-1 and Orf143-1.
[0022] Advantageously, it is used for the expression of ORF25 or ORF40, resulting in a protein which induces better anti-bactericidal antibodies than GST- or His-fusions.
[0023] This approach is particularly suited for expressing lipoproteins.
Leader-Peptide Substitution
[0024] In a second approach to heterologous expression, the native leader peptide of a protein of the invention is replaced by that of a different protein. In addition, it is preferred that no fusion partner is used. Whilst using a protein's own leader peptide in heterologous hosts can often localise the protein to its `natural` cellular location, in some cases the leader sequence is not efficiently recognised by the heterologous host. In such cases, a leader peptide known to drive protein targeting efficiently can be used instead.
[0025] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is replaced by the leader peptide from a different protein and, optionally, (b) no fusion partner is used.
[0026] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide and to introduce nucleotides that encode a different protein's leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The expressed protein will consist of the replacement leader peptide at the N-tertninus, followed by the protein of the invention minus its leader peptide.
[0027] The leader peptide is preferably from another protein of the invention (e.g. one of SEQ#s 1-4326), but may also be from an E. coli protein (e.g. the OmpA leader peptide) or an Erwinia carotovora protein (e.g. the PelB leader peptide), for instance.
[0028] A particularly useful replacement leader peptide is that of ORF4. This leader is able to direct lipidation in E. coli, improving cellular localisation, and is particularly useful for the expression of proteins 287, 919 and .DELTA.G287. The leader peptide and N-terminal domains of 961 are also particularly useful.
[0029] Another useful replacement leader peptide is that of E. coli OmpA. This leader is able to direct membrane localisation of E. coli. It is particularly advantageous for the expression of ORF1, resulting in a protein which induces better anti-bactericidal antibodies than both fusions and protein expressed from its own leader peptide.
[0030] Another useful replacement leader peptide is MICKYLFSAA. This can direct secretion into culture medium, and is extremely short and active. The use of this leader peptide is not restricted to the expression of Neisserial proteins--it may be used to direct the expression of any protein (particularly bacterial proteins).
Leader-Peptide Deletion
[0031] In a third approach to heterologous expression, the native leader peptide of a protein of the invention is deleted. In addition, it is preferred that no fusion partner is used.
[0032] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's leader peptide is deleted and, optionally, (b) no fusion partner is used.
[0033] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove nucleotides that encode the protein's leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The first amino acid of the expressed protein will be that of the mature native protein.
[0034] This method can increase the levels of expression. For protein 919, for example, expression levels in E. coli are much higher when the leader peptide is deleted. Increased expression may be due to altered localisation in the absence of the leader peptide.
[0035] The method is preferably used for the expression of 919, ORF46, 961, 050-1, 760 and 287.
Domain-Based Expression
[0036] In a fourth approach to heterologous expression, the protein is expressed as domains. This may be used in association with fusion systems (e.g. GST or His-tag fusions).
[0037] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) at least one domain in the protein is deleted and, optionally, (b) no fusion partner is used.
[0038] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to remove at least one domain from within the protein. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. Where no fusion partners are used, the first amino acid of the expressed protein will be that of a domain of the protein.
[0039] A protein is typically divided into notional domains by aligning it with known sequences in databases and then determining regions of the protein which show different alignment patterns from each other.
[0040] The method is preferably used for the expression of protein 287. This protein can be notionally split into three domains, referred to as A B & C (see FIG. 5). Domain B aligns strongly with IgA proteases, domain C aligns strongly with transferrin-binding proteins, and domain A shows no strong alignment with database sequences. An alignment of polymorphic forms of 287 is disclosed in WO00/66741.
[0041] Once a protein has been divided into domains, these can be (a) expressed singly (b) deleted from with the protein e.g. protein ABCD.fwdarw.ABD, ACD, BCD etc, or (c) rearranged e.g. protein ABC.fwdarw.ACB, CAB etc. These three strategies can be combined with fusion partners is desired.
[0042] ORF46 has also been notionally split into two domains a first domain (amino acids 1-433) which is well-conserved between species and serogroups, and a second domain (amino acids 433-608) which is not well-conserved. The second domain is preferably deleted. An alignment of polymorphic forms of ORF46 is disclosed in WO00/66741.
[0043] Protein 564 has also been split into domains (FIG. 8), as have protein 961 (FIG. 12) and protein 502 (amino acids 28-167 of the MC58 protein).
Hybrid Proteins
[0044] In a fifth approach to heterologous expression, two or more (e.g. 3, 4, 5, 5 or more) proteins of the invention are expressed as a single hybrid protein. It is preferred that no non-Neisserial fusion partner (e.g. GST or poly-His) is used.
[0045] This offers two advantages. Firstly, a protein that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem. Secondly, commercial manufacture is simplified only one expression and purification need be employed in order to produce two separately-useful proteins.
[0046] Thus the invention provides a method for the simultaneous heterologous expression of two or more proteins of the invention, in which said two or more proteins of the invention are fused (i.e. they are translated as a single polypeptide chain).
[0047] The method will typically involve the steps of obtaining a first nucleic acid encoding a first protein of the invention; obtaining a second nucleic acid encoding a second protein of the invention; ligating the first and second nucleic acids. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
[0048] Preferably, the constituent proteins in a hybrid protein according to the invention will be from the same strain.
[0049] The fused proteins in the hybrid may be joined directly, or may be joined via a linker peptide e.g. via a poly-glycine linker (i.e. G where n=3, 4, 5, 6, 7, 8, 9, 10 or more) or via a short peptide sequence which facilitates cloning. It is evidently preferred not to join a .DELTA.G protein to the C-terminus of a poly-glycine linker.
[0050] The fused proteins may lack native leader peptides or may include the leader peptide sequence of the N-terminal fusion partner.
[0051] The method is well suited to the expression of proteins orf1, orf4, orf25, orf40, Orf46/46.1, orf83, 233, 287, 292L, 564, 687, 741, 907, 919, 953, 961 and 983.
[0052] The 42 hybrids indicated by `X` in the following table of form NH.sub.2-A-B-COOH are preferred:
TABLE-US-00002 B A ORF46.1 287 741 919 953 961 983 ORF46.1 X X X X X X 287 X X X X X X 741 X X X X X X 919 X X X X X X 953 X X X X X X 961 X X X X X X 983 X X X X X X
[0053] Preferred proteins to be expressed as hybrids are thus ORF46.1, 287, 741, 919, 953, 961 and 983. These may be used in their essentially full-length form, or poly-glycine deletions (.DELTA.G) forms may be used (e.g. .DELTA.G-287, .DELTA.GTbp2, .DELTA.G741, .DELTA.G983 etc.), or truncated forms may be used (e.g. .DELTA.1-287, .DELTA.2-287 etc.), or domain-deleted versions may be used (e.g. 287B, 287C, 287BC, ORP46.sub.1-433, ORF46.sub.433-608, ORF46, 961c etc.).
[0054] Particularly preferred are: (a) a hybrid protein comprising 919 and 287; (b) a hybrid protein comprising 953 and 287; (c) a hybrid protein comprising 287 and ORF46.1; (d) a hybrid protein comprising ORF1 and ORF46.1; (e) a hybrid protein comprising 919 and ORF46.1; (1) a hybrid protein comprising ORF46.1 and 919; (g) a hybrid protein comprising ORF46.1, 287 and 919; (h) a hybrid protein comprising 919 and 519; and (1) a hybrid protein comprising ORF97 and 225. Further embodiments are shown in FIG. 14.
[0055] Where 287 is used, it is preferably at the C-terminal end of a hybrid; if it is to be used at the N-terminus, if is preferred to use a .DELTA.G form of 287 is used (e.g. as the N-terminus of a hybrid with ORF46.1, 919, 953 or 961).
[0056] Where 287 is used, this is preferably from strain 2996 or from strain 394/98.
[0057] Where 961 is used, this is preferably at the N-terminus. Domain forms of 961 may be used.
[0058] Alignments of polymorphic forms of ORF46, 287, 919 and 953 are disclosed in WO00/66741, Any of these polymorphs can be used according to the present invention.
Temperature
[0059] In a sixth approach to heterologous expression, proteins of the invention are expressed at a low temperature.
[0060] Expressed Neisserial proteins (e.g. 919) may be toxic to E. coli, which can be avoided by expressing the toxic protein at a temperature at which its toxic activity is not manifested.
[0061] Thus the present invention provides a method for the heterologous expression of a protein of the invention, in which expression of a protein of the invention is carried out at a temperature at which a toxic activity of the protein is not manifested.
[0062] A preferred temperature is around 30.degree. C. This is particularly suited to the expression of 919.
Mutations
[0063] As discussed above, expressed Neisserial proteins may be toxic to E. coli. This toxicity can be avoided by mutating the protein to reduce or eliminate the toxic activity. In particular, mutations to reduce or eliminate toxic enzymatic activity can be used preferably using site-directed mutagenesis.
[0064] In a seventh approach to heterologous expression, therefore, an expressed protein is mutated to reduce or eliminate toxic activity.
[0065] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which protein is mutated to reduce or eliminate toxic activity.
[0066] The method is preferably used for the expression of protein 907, 919 or 922. A preferred mutation in 907 is at Glu-117 (e.g. Glu.fwdarw.Gly); preferred mutations in 919 are at Glu-255 (e.g. Glu.fwdarw.Gly) and/or Glu-323 (e.g. Glu.fwdarw.Gly); preferred mutations in 922 are at Glu-164 (e.g. Glu.fwdarw.Gly), Ser-213 (e.g. Ser.fwdarw.Gly) and/or Asn-348 (e.g. Asn.fwdarw.Gly).
Alternative Vectors
[0067] In a eighth approach to heterologous expression, an alternative vector used to express the protein. This may be to improve expression yields, for instance, or to utilise plasmids that are already approved for GMP use.
[0068] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which an alternative vector is used. The alternative vector is preferably pSM214, with no fusion partners. Leader peptides may or may not be included.
[0069] This approach is particularly useful for protein 953. Expression and localisation of 953 with its native leader peptide expressed from pSM214 is much better than from the pET vector.
[0070] pSM214 may also be used with: .DELTA.G287, .DELTA.2-287, .DELTA.3-287, .DELTA.4-287, Orf46.1, 961L, 961, 961(MC58), 961c, 961c-L, 919, 953 and .DELTA.G287-Orf46.1.
[0071] Another suitable vector is pET-24b (Novagen; uses kanamycin resistance), again using no fusion partners. pET-24b is preferred for use with: .DELTA.G287K, .DELTA.2-287K, .DELTA.3-287K, .DELTA.4-287K, Orf46.1-K, Orf46A-K, 961-K (MC58), 961a-K, 961b-K, 961c-K, 961c-L-K, 961d-K, .DELTA.G287-919-K, .DELTA.G287-Orf46.1-K and .DELTA.G287-961-K.
Multimeric Form
[0072] In a ninth approach to heterologous expression, a protein is expressed or purified such that it adopts a particular multimeric form.
[0073] This approach is particularly suited to protein 953. Purification of one particular multimeric form of 953 (the monomeric form) gives a protein with greater bactericidal activity than other forms (the dimeric form).
[0074] Proteins 287 and 919 may be purified in dimeric forms.
[0075] Protein 961 may be purified in a 180 kDa oligomeric form (e.g. a tetramer).
Lipidation
[0076] In a tenth approach to heterologous expression, a protein is expressed as a lipidated protein.
[0077] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which the protein is expressed as a lipidated protein.
[0078] This is particularly useful for the expression of 919, 287, ORF4, 406, 576-1, and ORF25. Polymorphic forms of 919, 287 and ORF4 are disclosed in WO00/66741.
[0079] The method will typically involve the use of an appropriate leader peptide without using an N-terminal fusion partner.
C-Terminal Deletions
[0080] In an eleventh approach to heterologous expression, the C-terminus of a protein of the invention is mutated. In addition, it is preferred that no fusion partner is used.
[0081] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) the protein's C-terminus region is mutated and, optionally, (b) no fusion partner is used.
[0082] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; manipulating said nucleic acid to mutate nucleotides that encode the protein's C-terminus portion. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. The first amino acid of the expressed protein will be that of the mature native protein.
[0083] The mutation may be a substitution, insertion or, preferably, a deletion.
[0084] This method can increase the levels of expression, particularly for proteins 730, ORF29 and ORF46. For protein 730, a C-terminus region of around 65 to around 214 amino acids may be deleted; for ORF46, the C-terminus region of around 175 amino acids may be deleted; for ORF29, the C-terminus may be deleted to leave around 230-370 N-terminal amino acids.
Leader Peptide Mutation
[0085] In a twelfth approach to heterologous expression, the leader peptide of the protein is mutated. This is particularly useful for the expression of protein 919.
[0086] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which the protein's leader peptide is mutated.
[0087] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides within the leader peptide. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
Poly-Glycine Deletion
[0088] In a thirteenth approach to heterologous expression, poly-glycine stretches in wild-type sequences are mutated. This enhances protein expression.
[0089] The poly-glycine stretch has the sequence (Gly).sub.n, where n.gtoreq.4 (e.g. 5, 6, 7, 8, 9 or more). This stretch is mutated to disrupt or remove the (Gly).sub.n. This may be by deletion (e.g. CGGGGS.fwdarw.CGGGS, COGS, CGS or CS), by substitution (e.g. CGCGGS.fwdarw.CGXGGS, CGCXGS, CGXGXS etc.), and/or by insertion (e.g. CGGGGS.fwdarw.CGGXGGS, CGXGOGS, etc.
[0090] This approach is not restricted to Neisserial proteins--it may be used for any protein (particularly bacterial proteins) to enhance heterologous expression. For Neisserial proteins, however, it is particularly suitable for expressing 287, 741, 983 and Thp2. An alignment of polymorphic forms of 287 is disclosed in WO00/66741.
[0091] Thus the invention provides a method for the heterologous expression of a protein of the invention, in which (a) a poly-glycine stretch within the protein is mutated.
[0092] The method will typically involve the steps of: obtaining nucleic acid encoding a protein of the invention; and manipulating said nucleic acid to mutate nucleotides that encode a poly-glycine stretch within the protein sequence. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector.
[0093] Conversely, the opposite approach (i.e. introduction of poly-glycine stretches) can be used to suppress or diminish expression of a given heterologous protein.
Heterologous Host
[0094] Whilst expression of the proteins of the invention may take place in the native host (i.e. the organism in which the protein is expressed in nature), the present invention utilises a heterologous host. The heterologous host may be prokaryotic or eukaryotic. It is preferably E. coli, but other suitable hosts include Bacillus subtilis, Vibrio cholerae, Salmonella typhi, Salmonenna typhimurium, Neisseria meningitidis, Neisseria gonorrhoeae, Neisseria lactarnica, Neisseria cinerea, Mycobateria (e.g. M. tuberculosis), yeast etc.
Vectors etc.
[0095] As well as the methods described above, the invention provides (a) nucleic acid and vectors useful in these methods (b) host cells containing said vectors (c) proteins expressed or expressable by the methods (d) compositions comprising these proteins, which may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions (e) these compositions for use as medicaments (e.g. as vaccines) or as diagnostic reagents (f) the use of these compositions in the manufacture of (1) a medicament for treating or preventing infection due to Neisserial bacteria (2) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria, and/or (3) a reagent which can raise antibodies against Neisserial bacteria and (g) a method of treating a patient, comprising administering to the patient a therapeutically effective amount of these compositions.
Sequences
[0096] The invention also provides a protein or a nucleic acid having any of the sequences set out in the following examples. It also provides proteins and nucleic acid having sequence identity to these. As described above, the degree of `sequence identity` is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more).
[0097] Furthermore, the invention provides nucleic acid which can hybridise to the nucleic acid disclosed in the examples, preferably under "high stringency" conditions (eg. 65.degree. C. in a 0.1.times.SSC, 0.5% SDS solution).
[0098] The invention also provides nucleic acid encoding proteins according to the invention.
[0099] It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg, for antisense or probing purposes).
[0100] Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).
[0101] In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.
BRIEF DESCRIPTION OF DRAWINGS
[0102] FIG. 1 shows a construct used to express orf1 protein using a heterologous leader peptide.
[0103] FIG. 2 shows a construct used to express 287 protein using a heterologous leader peptide.
[0104] FIG. 3A-FIG. 3E show expression data for ORF1. FIG. 3A shows purification of ORF1.
[0105] FIG. 3B shows Western blot analysis. FIG. 3C shows the results of a bactericidal assay with ORF1. FIG. 3D shows FACS analysis. FIG. 3E shows the results of an ELISA assay.
[0106] FIG. 4A-FIG. 4E show expression data for protein 961. FIG. 4A shows purification of protein 961. FIG. 4B shows Western blot analysis. FIG. 4C shows the results of a bactericidal assay with protein 961. FIG. 4D shows FACS analysis. FIG. 4E shows the results of an ELISA assay.
[0107] FIG. 5 shows domains of protein 287.
[0108] FIG. 6 shows deletions within domain A of protein 287.
[0109] FIG. 7 shows specific deletions within domain A of protein 287.
[0110] FIG. 8 shows domains of protein 564.
[0111] FIG. 9 shows the PhoC reporter gene driven by the 919 leader peptide.
[0112] FIG. 10A-FIG. 10B show the results obtained using mutants of the 919 leader peptide driving the PhoC reporter. FIG. 10A shows results for control, phoC.sub.wt, 9phoC, 9L1a, 9l1d, 9L1f, and 9S1e. FIG. 10B shows results for control, phoC.sub.wt, 9phoC, 9S1b, 9S1c, and 9Sli.
[0113] FIG. 11A-FIG. 11B show insertion mutants of protein 730. FIG. 11A shows 730-C1.
[0114] FIG. 11B shows 730-C2.
[0115] FIG. 12 shows domains of protein 961.
[0116] FIG. 13 shows SDS-PAGE of .DELTA.G proteins. Dots show the main recombinant product.
[0117] FIG. 14A-FIG. 14Z show 26 hybrid proteins according to the invention. FIG. 14A shows .DELTA.G287-919. FIG. 14B shows .DELTA.G287-953. FIG. 14C shows .DELTA.G287-961. FIG. 14D shows .DELTA.G287NZ-919, FIG. 14E shows .DELTA.G287NZ-953. FIG. 14F shows .DELTA.G287NZ-961. FIG. 14G shows .DELTA.G983-ORF46.1. FIG. 14H shows .DELTA.G983-741. FIG. 14I shows .DELTA.G983-961. FIG. 14J shows .DELTA.G983-961c. FIG. 14K shows .DELTA.G741-961. FIG. 14I, shows .DELTA.G741-961c. FIG. 14M shows .DELTA.G741-983. FIG. 14N shows .DELTA.G741-ORF46.1. FIG. 14O shows ORF46.1-741, FIG. 14P shows ORF46.1-961. FIG. 14Q shows ORF46.1-961c. FIG. 14R shows 961-ORF46.1. FIG. 14S shows 961-741. FIG. 14T shows 961-983. FIG. 14U shows 961c-ORF46.1. FIG. 14V shows 961c-741. FIG. 14W shows 961c-983. FIG. 14X shows 961cL-ORF46.1. FIG. 14Y shows 961cL-741. FIG. 14Z shows 961cL-983.
MODES FOR CARRYING OUT THE INVENTION
Example 1--919 and its Leader Peptide
[0118] Protein 919 from N. meningitidis (serogroup B, strain 2996) has the following sequence:
TABLE-US-00003 1 MKKYLFRAAL YGLAAAILAA CQSKSIQTFP QPDTSVINGP DRPVGIPDPA 51 GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV 101 CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR 151 RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT 201 HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA 251 EDPVELFEMH IGQSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL 301 KLGQTSMQGI KAYMRQNPQR LAEVLGQNPS YIFFRELAGS SNDGPVGALG 351 TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG 401 AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
[0119] The leader peptide is underlined.
[0120] The sequences of 919 from other strains can be found in FIGS. 7 and 18 of WO00/667411.
[0121] Example 2 of WO99/57280 discloses the expression of protein 919 as a His-fusion in E. coli. The protein is a good surface-exposed immunogen.
[0122] Three alternative expression strategies were used for 919:
[0123] 1) 919 without its leader peptide (and without the mature N-terminal cysteine) and without any fusion partner (`919.sup.untagged`):
TABLE-US-00004
[0123] 1 QSKSIQTFP QPDTSVINGP DRPVGIPDPA GTTVGGGGAV YTVVPHLSLP 50 HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV CAQATQFPVH SFQAKQFFER 100 YETPWQVAGN GSLAGTVTGY YEPVLKGDDR RTAQARFPIY GIPDDFISVP 150 LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT HTADLSRFPI TARTTAIKGR 200 FEGSRELPYH TRNQINGGAL DGKAPILGYA EDPVELFFMH IQGSGRLKTP 250 SGKYIRIGYA DKNEHPYVSI GRYMADKGYL KLGQTSMQGI KAYMRQNPQR 300 LAEVLGQNPS YIFFRELAGS SNDGPVGALG TPLMGEYAGA VDRHYITLGA 350 PLFVATAHPV TRKALNRLIM AQDTGSAIKG AVRVDYFWGY GDEAGELAGK 400 QKTTGYVWQL LPNGMKPEYR P*
[0124] The leader peptide and cysteine were omitted by designing the 5'-end amplification primer downstream from the predicted leader sequence.
[0125] 2) 919 with its own leader peptide but without any fusion partner (`919L`); and
[0126] 3) 919 with the leader peptide (MKTFFKTLSAAALALILAA from ORF4 (`919LOrf4`).
TABLE-US-00005
[0126] 1 MKTFFKTLS AAALALILAA CQSKSIQTFP QPDTSVINGP DRPVGIPDPA 50 GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV 100 CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR 150 RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT 200 HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA 250 EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL 300 KLGQTSMQGI KSYMRQNPQR LAEVLGQNTS YIFFRELAGS SNDGPVGALG 350 TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG 400 AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P
[0127] To make this construct, the entire sequence encoding the ORF4 leader peptide was included in the 5'-primer as a tail (primer 919Lorf4 For). A NheI restriction site was generated by a double nucleotide change in the sequence coding for the ORF4 leader (no amino acid changes), to allow different genes to be fused to the ORF4 leader peptide sequence. A stop codon was included in all the T-end primer sequences.
[0128] All three forms of the protein were expressed and could be purified.
[0129] The `919` and `919LOrf4` expression products were both lipidated, as shown by the incorporation of [.sup.3H]-palmitate label. 919.sup.untagged did not incorporate the .sup.3H label and was located intracellularly.
[0130] 919LOrf4 could be purified more easily than 919L. It was purified and used to immunise mice. The resulting sera gave excellent results in FACS and ELISA tests, and also in the bactericidal assay. The lipoprotein was shown to be localised in the outer membrane.
[0131] 919.sup.untagged gave excellent ELISA titres and high serum bactericidal activity. FACS confirmed its cell surface location.
Example 2--919 and Expression Temperature
[0132] Growth of E. coli expressing the 919LOrf4 protein at 37.degree. C. resulted in lysis of the bacteria. In order to overcome this problem, the recombinant bacteria were grown at 30.degree. C. Lysis was prevented without preventing expression.
Example 3--Mutation of 907, 919 and 922
[0133] It was hypothesised that proteins 907, 919 and 922 are murein hydrolases, and more particularly lytic transglycosylases. Murein hydrolases are located on the outer membrane and participate in the degradation of peptidoglycan.
[0134] The purified proteins 919.sup.untagged, 919Lorf4, 919-His (i.e. with a C-terminus His-tag) and 922-His were thus tested for murein hydrolase activity [Ursinus & Holtje (1994) J. Bact. 176:338-343]. Two different assays were used, one determining the degradation of insoluble murein sacculus into soluble muropeptides and the other measuring breakdown of poly(MurNAc-GlcNAc).sub.n>30 glycan strands.
[0135] The first assay uses murein sacculi radiolabelled with meso-2,6-diamino-3,4,5-[.sup.3H]pimelic acid as substrate. Enzyme (3-10 .mu.g total) was incubated for 45 minutes at 37.degree. C. in a total volume of 100 .mu.l comprising 10 mM Tris-maleate (pH 5.5), 10 mM MgCl.sub.2, 0.2% v/v Triton X-100 and [.sup.3H]A.sub.2 pm labelled murein sacculi (about 10000 cpm). The assay mixture was placed on ice for 15 minutes with 100 .mu.l of 1% w/v N-acetyl-N,N,N-trimethylammonium for 15 minutes and precipitated material pelleted by centrifugation at 10000 g for 15 minutes. The radioactivity in the supernatant was measured by liquid scintillation counting. E. coli soluble lytic transglycosylase Slt70 was used as a positive control for the assay; the negative control comprised the above assay solution without enzyme.
[0136] All proteins except 919-His gave positive results in the first assay.
[0137] The second assay monitors the hydrolysis of poly(MurNAc-GlcNAc)glycan strands. Purified strands, poly(MurNAc-GlcNAc).sub.n>30 labelled with N-acetyl-D-1-[.sup.3H]glucosamine were incubated with 3 .mu.g of 919L in 10 mM Tris-maleate (pH 5.5), 10 mM MgCl.sub.2 and 0.2% v/v Triton X-100 for 30 min at 37.degree. C. The reaction was stopped by boiling for 5 minutes and the pH of the sample adjusted to about 3.5 by addition of 10 .mu.l of 20% v/v phosphoric acid. Substrate and product were separated by reversed phase HPLC on a Nucleosil 300 C.sub.18 column as described by Harz et. al. [Anal. Biochem. (1990) 190:120-128]. The E. coli lytic transglycosylase Mlt A was used as a positive control in the assay. The negative control was performed in the absence of enzyme.
[0138] By this assay, the ability of 919LOrf4 to hydrolyse isolated glycan strands was demonstrated when anhydrodisaccharide subunits were separated from the oligosaccharide by HPLC.
[0139] Protein 919Lorf4 was chosen for kinetic analyses. The activity of 919Lorf4 was enhanced 3.7-fold by the addition of 0.2% v/v Triton X-100 in the assay buffer. The presence of Triton X-100 had no effect on the activity of 919. The effect of pH on enzyme activity was determined in Tris-Maleate buffer over a range of 5.0 to 8.0. The optimal pH for the reaction was determined to be 5.5, Over the temperature range 18.degree. C. to 42.degree. C., maximum activity was observed at 37.degree. C. The effect of various ions on murein hydrolase activity was determined by performing the reaction in the presence of a variety of ions at a final concentration of 10 mM, Maximum activity was found with Mg.sup.2+, which stimulated activity 2.1-fold. Mn.sup.2+ and Ca.sup.2+ also stimulated enzyme activity to a similar extent while the addition Ni.sup.2+ and EDTA had no significant effect. In contrast, both Fe.sup.2+ and Zn.sup.2+ significantly inhibited enzyme activity. The structures of the reaction products resulting from the digestion of unlabelled E. coli murein sacculus were analysed by reversed-phase HPLC as described by Glauner [Anal. Biochem. (1988) 172:451-464]. Murein sacculi digested with the muramidase Cellosyl were used to calibrate and standardise the Hypersil ODS column. The major reaction products were 1,6 anhydrodisaccharide tetra and tri peptides, demonstrating the formation of 1,6 anhydronmraminic acid intramolecular bond.
[0140] These results demonstrate experimentally that 919 is a murein hydrolase and in particular a member of the lytic transglycosylase family of enzymes. Furthermore the ability of 922-His to hydrolyse murein sacculi suggests this protein is also a lytic transglycosylase.
[0141] This activity may help to explain the toxic effects of 919 when expressed in E. coli.
[0142] In order to eliminate the enzymatic activity, rational mutagenesis was used, 907, 919 and 922 show fairly low homology to three membrane-bound lipidated murein lytic transglycosylases from Exalt:
[0143] 919 (441aa) is 27.3% identical over 440aa overlap to E. coli MLTA (P46885);
[0144] 922 (369aa) is 38.7% identical over 310aa overlap to E. coli MLTB (P41052); and
[0145] 901-2 (207aa) is 26.8% identical over 149aa overlap to E. coli MLTC (P52066).
[0146] 907-2 also shares homology with E. coli MLTD (P23931) and Slt70 (P03810), a soluble lytic transglycosylase that is located in the periplasmic space. No significant sequence homology can be detected among 919, 922 and 907-2, and the same is true among the corresponding MLTA, MLTB and MLTC proteins.
[0147] Crystal structures are available for Slt70 [1QTEA; 1QTEB; Thunnissen et al. (1995) Biochemistry 34:12729-12737] and for Slt35 [1LTM; 1QUS; 1QUT; van, Asselt et at (1999) Structure Fold Des 7:1167-80] which is a soluble form of the 40 kDa MLTB.
[0148] The catalytic residue (a glutamic acid) has been identified for both Slt70 and MLTB.
[0149] In the case of Slt70, mutagenesis studies have demonstrated that even a conservative substitution of the catalytic Glu505 with a glutamine (Gln) causes the complete loss of enzymatic activity. Although Slt35 has no obvious sequence similarity to Slt70, their catalytic domains shows a surprising similarity. The corresponding catalytic residue in MLTB is Glu162.
[0150] Another residue which is believed to play an important role in the correct folding of the enzymatic cleft, is a well-conserved glycine (Gly) downstream of the glutamic acid. Recently, Terrak et al. [Mol. Microbiol. (1999) 34:350-64] have suggested the presence of another important residue which is an aromatic amino acid located around 70-75 residues downstream of the catalytic glutamic acid.
[0151] Sequence alignment of Slt70 with 907-2 and of MLTB with 922 were performed in order to identify the corresponding catalytic residues in the MenB antigens.
[0152] The two alignments in the region of the catalytic domain are reported below:
TABLE-US-00006 907-2/Slt70: 90 100 110 120 130 140 907-2.pep ERRRLLVNIQYESSRAG--LDTQIVLGLIEVESAFRQYAISGVGARGLMQVMPFWKNYIG || | | :: :| : : :::: : |||: : | ||| ||||:|| :: slty_ecoli ERFPLAYNDLFKRYTSGKEIPQSYAMAIARQESAWNPKVKSPVGASGLMQIMPGTATHTV 480 490 500 .tangle-solidup. 510 520 530 GLU505 922/MLTB 150 160 170 180 190 200 922. pep VAQKYGVPAELIVAVIGIETNYGKNTGSFRVADALATLGFDYPRRAGFFQKELVELLKLA : | |||| |:||::||:|| :|: |: |: ||||||:|:||||| :|: || :| :| mltb_ecoli AWQVYGVPPEIIVGIIGVETRWGRVMGKTRILDALATLSFNYPRRAEYFSGELETFLLMA 150 160 .tangle-solidup. 170 180 190 200 GLU162 210 220 230 240 250 260 922.pep KEEGGDVFAFKGSYAGAMGMPQFMPSSYRKWAVDYDGDGHRDIWGNVGDVAASVANYMKQ ::| | : :|||:|||||: |||||||:::|||::|||| ::| | |: :|||||:| mltb_ecoli RDEQDDPLNLKGSFAGAMGYGQFMPSSYKQYAVDFSGDGHINLWDPV-DAIGSVANYFKA 210 220 230 240 250 260
[0153] From these alignments, it results that the corresponding catalytic glutamate in 907-2 is Glu117, whereas in 922 is Glu164. Both antigens also share downstream glycines that could have a structural role in the folding of the enzymatic cleft (in bold), and 922 has a conserved aromatic residue around 70aa downstream (in bold).
[0154] In the case of protein 919, no 3D structure is available for its E. coli homologue MLTA, and nothing is known about a possible catalytic residue. Nevertheless, three amino acids in 919 are predicted as catalytic residues by alignment with MLTA:
TABLE-US-00007 919/MLTA 240 250 260 270 280 290 919.pep ALDGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRI-GYADKNEHPYVSIGRYMADK ||: | ||:|::: :: |:| :|||| : :|: : : :|| || | | |||: : |: mlta_ecoli.p ALSDKY-ILAYSNSLMDNFIMDVQGSGYIDFGDGSPLNFFSYAGKNGHAYRSIGKVLIDR 170 180 190 200 210 300 310 320 330 340 .diamond.350 .diamond. 919.pep GYLKLGQTSMQGIKSYMRQNPQ-RLAEVLGQNPSYIFFRELAGSSNDGPV-GALGTPLMG | :| : |||:|: : : : : :: |:| ||||::||: : : || || ::||:| mlta_ecoli.p GEVKKEDMSMQAIRHWGETHSEAEVRELLEQNPSFVFFKPQSFA----PVKGASAVPLVG 220 230 240 250 260 270 360 .smallcircle. 380 390 400 .diamond..diamond.410 919. pep EYAGAVDRHYITLGAPLFVATAHPVTRKALN-----RLIMAQDTGSAIKGAVRVDYFWGY : : | || | |: |:: : : :| ||::| |:|:|||| : | : | mlta_ecoli.p RASVASDRSIIPPGTTLLAEVPLLDNNGKFNGQYELRLMVALDVGGAIKGQ-HFDIYQGI 280 290 300 310 320 330 420 .smallcircle. 919.pep GDEAGELAGKQKTTGYVWQLLP | |||: || : | || | mlta_ecoli.p GPEAGHRAGWYNHYGRVWVLKT 340 350
[0155] The three possible catalytic residues are shown by the symbol :
[0156] 1) Glu255 (Asp in MLTA), followed by three conserved glycines (Gly263, Gly265 and Gly272) and three conserved aromatic residues located approximately 7577 residues downstream. These downstream residues are shown by .quadrature..
[0157] 2) Glu323 (conserved in MLTA), followed by 2 conserved glycines Gly347 and Gly355) and two conserved aromatic residues located 84-85 residues downstream (Tyr406 or Phe407). These downstream residues are shown by 0.
[0158] 3) Asp362 (instead of the expected Glu), followed by one glycine (Gly 369) and a conserved aromatic residue (Trp428). These downstream residues are shown by .smallcircle..
[0159] Alignments of polymorphic forms of 919 are disclosed in WO00/66741.
[0160] Based on the prediction of catalytic residues, three mutants of the 919 and one mutant of 907, containing each a single Amino acid substitution, have been generated. The glutamic acids in position 255 and 323 and the aspartic acids in position 362 of the 919 protein and the glutamic acid in position 117 of the 907 protein, were replaced with glycine residues using PCR-based SDM. To do this, internal primers containing a codon change from Glu or Asp to Gly were designed:
TABLE-US-00008 Codon Primers Sequences change 919-E255 for CGAAGACCCCGTCGgtCTTTTTTTTATG GAA .fwdarw. Ggt 919-E255 rev GTGCATAAAAAAAAGacCGACGGGGTCT 919-E323 for AACGCCTCGCCGgtGTTTTGGGTCA GAA .fwdarw. Ggt 919-E323 rev TTTGACCCAAAACacCGGCGAGGCG 919-D362 for TGCCGGCGCAGTCGgtCGGCACTACA GAC .fwdarw. Ggt 919-D362 rev TAATGTAGTGCCGacCGACTGCGCCG 907-E117 for TGATTGAGGTGGgtAGCGCGTTCCG GAA .fwdarw. Ggt 907-E117 rev GGCGGAACGCGCTacCCACCTCAAT Underlined nucleotides code for glycine; the mutated nucleotides are in lower case.
[0161] To generate the 919-E255, 919-E323 and 919-E362 mutants, PCR was performed using 20 ng of the pET 919-LOrf4 DNA as template, and the following primer pairs:
[0162] 1) Orf4L for/919-E255 rev
[0163] 2) 919-E255 for/919L rev
[0164] 3) Orf4L far 919-E323 rev
[0165] 4) 919-E323 for/919L rev
[0166] 5) Orf4L for/919-D362 rev
[0167] 6) 919-D362 for/919L rev
[0168] The second round of PCR was performed using the product of PCR 1-2, 3-4 or 5-6 as template, and as forward and reverse primers the "Orf4L for" and "919L rev" respectively.
[0169] For the mutant 907-E117, PCR have been performed using 200 ng of chromosomal DNA of the 2996 strain as template and the following primer pairs:
[0170] 7) 907L for/907-E117 rev
[0171] 8) 907-E117 for/907L rev
[0172] The second round of PCR was performed using the products of PCR 7 and 8 as templates and the oligos "907L for" and "907L rev" as primers.
[0173] The PCR fragments containing each mutation were processed following the standard procedure, digested with NdeI and XhoI restriction enzymes and cloned into pET-21b+ vector. The presence of each mutation was confirmed by sequence analysis.
[0174] Mutation of Glu117 to Gly in 907 is carried out similarly, as is mutation of residues Glu164, Ser213 and Asn348 in 922.
[0175] The E255G mutant of 919 shows a 50% reduction in activity; the E3230 mutant shows a 70% reduction in activity; the E362G mutant shows no reduction in activity.
Example 4--Multimeric Form
[0176] 287-GST, 919.sup.untagged and 953-His were subjected to gel filtration for analysis of quaternary structure or preparative purposes. The molecular weight of the native proteins was estimated using either FPLC Superose 12 (H/R 10/30) or Superdex 75 gel filtration columns (Pharmacia). The buffers used for chromatography for 287, 919 and 953 were 50 mM Tris-HO (pH 8.0), 20 mM Bicine (pH 8.5) and 50 mM Bicine (pH 8.0), respectively.
[0177] Additionally each buffer contained 150-200 mM NaCl and 10% v/v glycerol. Proteins were dialysed against the appropriate buffer and applied in a volume of 204.1. Gel filtration was performed with a flow rate of 0.5-2.0 ml/min and the eluate monitored at 280 nm. Fractions were collected and analysed by SDS-PAGE. Blue dextran 2000 and the molecular weight standards ribonuclease A, chymotrypsin A ovalbumin, albumin (Pharmacia) were used to calibrate the column. The molecular weight of the sample was estimated from a calibration curve of K.sub.av log M.sub.r of the standards. Before gel filtration, 287-GST was digested with thrombin to cleave the GST moiety.
[0178] The estimated molecular weights for 287, 919 and 953-His were 73 kDa, 47 kDa and 43 kDa respectively. These results suggest 919 is monomeric while both 287 and 953 are principally dimeric in their nature. In the case of 953-His, two peaks were observed during gel filtration. The major peak (80%) represented a dimeric conformation of 953 while the minor peak (20%) had the expected size of a monomer. The monomeric form of 953 was found to have greater bactericidal activity than the dimer.
Example 5--pSM214 and pET-24b Vectors
[0179] 953 protein with its native leader peptide and no fusion partners was expressed from the pET vector and also from pSM214 [Velati Bellini et al. (1991) J. Biotechnol. 18, 177-192].
[0180] The 953 sequence was cloned as a full-length gene into pSM214 using the E. coli MM1294-1 strain as a host. To do this, the entire DNA sequence of the 953 gene (from ATG to the STOP codon) was amplified by PCR using the following primers:
TABLE-US-00009 953L for/2 CCGGAATTCTTATGAAAAAAATCATCTTCGCCGC Eco RI 953L rev/2 GCCCAAGCTTTTATTGTTTGGCTGCCTCGATT Hind III
which contain EcoRI and HindIII restriction sites, respectively. The amplified fragment was digested with EcoRI and HindIII and ligated with the pSM214 vector digested with the same two enzymes. The ligated plasmid was transformed into E. coli MM294-1 cells (by incubation in ice for 65 minutes at 37.degree. C.) and bacterial cells plated on LB agar containing 20 .mu.g/ml of chloramphenicol.
[0181] Recombinant colonies were grown over-night at 37.degree. C. in 4 ml of LB broth containing 20 .mu.g/ml of chloramphenicol; bacterial cells were centrifuged and plasmid DNA extracted as and analysed by restriction with EcoRI and HindIII. To analyse the ability of the recombinant colonies to express the protein, they were inoculated in LB broth containing 20 .mu.g/ml of chloramphenicol and let to grown for 16 hours at 37.degree. C. Bacterial cells were centrifuged and resuspended in PBS. Expression of the protein was analysed by SDS-PAGE and Coomassie Blue staining.
[0182] Expression levels were unexpectedly high from the pSM214 plasmid.
[0183] Oligos used to clone sequences into pSM-214 vectors were as follows:
TABLE-US-00010 .DELTA.G287 Fwd CCGGAATTCTTATG-TCGCCCGATGTTAAATCGGCGGA EcoRI (pSM-214) Rev GCCCAAGCTT-TCAATCCTGCTTTTTTGCCG HindIII .DELTA.2 287 Fwd CCGGAATTCTTATG-AGCCAAGATATGGCGGCAGT EcoRI (pSM-214) Rev GCCCAAGCTT-TCAATCCTGCTCTTTTTTGCCG HindIII .DELTA.3 287 Fwd CCGGAATTCTTATG-TCCGCCGAATCCGCAAATCA EcoRI (pSM-214 Rev GCCCAAGCTT-TCAATCCTGCTCTTTTTTGCCG HindIII .DELTA.4 287 Fwd CCGGAATTCTTATG-GGAGGGTTGATTTGGCTAATG EcoRI (pSM-214) Rev GCCCAAGCTT-TCAATCCTGCTCTTTTTTGCCG HindIII Orf46.1 Fwd CCGGAATTCTTATG-TCAGATTTGGCAAACGATTCTT EcoRI (pSM-214) Rev GCCCAAGCTT-TTACGTATCATATTTCACGTGCTTC HindIII .DELTA.G287-Orf46.1 Fwd CCGGAATTCTTATG-TCGCCCGATGTTAAATCGGCGGA EcoRI (pSM-214) Rev GCCCAAGCTT-TTACGTATCATATTTCACGTGCTTC HindIII 919 Fwd CCGGAATTCTTATG-CAAAGCAAGAGCATCCAAACCT EcoRI (pSM-214) Rev GCCCAAGCTT-TTACGGGCGGTATTCGGGCT HindIII 961L Fwd CCGGAATTCATATG-AAACACTTTCCATCC EcoRI (pSM-214) Rev GCCCAAGCTT-TTACCACTCGTAATTGAC HindIII 961 Fwd CCGGAATTCATATG-GCCACAAGCGACGAC EcoRI (pSM-214) Rev GCCCAAGCTT-TTACCACTCGTAATTGAC HindIII 961c L Fwd CCGGAATTCTTATG-AAACACATTTCCATCC EcoRI pSM-214 Rev GCCCAAGCTT-TCAACCCACGTTGTAAGGTTG HindIII 961c Fwd CCGGAATTCTTATG-GCCACAAACGACGACG EcoRI pSM-214 Rev GCCCAAGCTT-TCAACCCACGTTGTAAGGTTG HindIII 953 Fwd CCGGAATTCTTATG-GCCACCTACAAAGTGGACGA EcoRI (pSM-214) Rev GCCCAAGCTT-TTATTGTTTGGCTGCCTCGATT HindIII
[0184] These sequences were manipulated, cloned and expressed as described for 953L.
[0185] For the pET-24 vector, sequences were cloned and the proteins expressed in pET-24 as described below for pET21. pET2 has the same sequence as pET-21, but with the kanamycin resistance cassette instead of ampicillin cassette.
[0186] Oligonucleotides used to clone sequences into pET-24b vector were:
TABLE-US-00011 .DELTA.G 287 K Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC .sctn. NheI Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC * XhoI .DELTA.2 287 K Fwd CGCGGATCCGCTAGC-CAAGATATGGCGGCAGT.sctn. NheI .DELTA.3 287 K Fwd CGCGGATCCGCTAGC-GCCGAATCCGCAAATCA .sctn. NheI .DELTA.4 287 K Fwd CGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG.sctn. NheI Orf46.1 K Fwd GGGAATTCCATATG-GGCATTTCCCGCAAAATATC NdeI Rev CCCGCTCGAG-TTACGTATCATATTTCACGTGC XhoI Orf46A K Fwd GGGAATTCCATATG-GGCATTTCCCGCAAAATATC NdeI Rev CCCGCTCGAG-TTATTCTATGCCTTGTGCGGCAT XhoI 961 K Fwd CGCGGATCCCATATG-GCCACAAGCGACGACGA NdeI (MC58) Rev CCCGCTCGAG-TTACCACTCGTAATTGAC XhoI 961a K Fwd CGCGGATCCCATATG-GCCACAAACGACG NdeI Rev CCCGCTCGAG-TCATTTAGCAATATTATCTTTGTTC XhoI 961b K Fwd CGCGGATCCCATATG-AAAGCAAACAGTGCCGAC NdeI Rev CCCGCTCGAG-TTACCACTCGTAATTGAC XhoI 961c K Fwd CGCGGATCCCATATG-GCCACAAACGACG NdeI Rev CCCGCTCGAG-TTAACCCACGTTGTAAGGT XhoI 961cL K Fwd CGCGGATCCCATATG-ATGAAACACTTTCCATCC NdeI Rev CCCGCTCGAG-TTAACCCACGTTGTAAGGT XhoI 961d K Fwd CGCGGATCCCATATG-GCCACAAACGACG NdeI Rev CCCGCTCGAG-TCAGTCTGACACTGTTTTATCC XhoI .DELTA.G 287- Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI 919 K Rev CCCGCTCGAG-TTACGGGCGGTATTCGG XhoI .DELTA.G 287- Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI Orf46.1 K Rev CCCGCTCGAG-TTACGTATCATATTTCACGTGC XhoI .DELTA.G 287- Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI 961 K Rev CCCGCTCGAG-TTACCACTCGTAATTGAC XhoI *This primer was used as a Reverse primer for all the 287 forms. .sctn.Forward primers used in combination with the .DELTA.G278 K reverse primer.
Example 6--ORF1 and its Leader Peptide
[0187] ORF1 from N. meningitidis (serogroup B, strain MC58) is predicted to be an outer membrane or secreted protein. It has the following sequence:
TABLE-US-00012 1 MKTTDKRTTE THRKAPKTGR IRFSPAYLAI CLSFGILPQA WAGHTYFGIN 51 YQYYRDFAEN KGRFAVGAKD IEVYNKKGEL VGKSMTKAPM IDFSVVSRNG 101 VAALVGDQYI VSVAHNGGYN NVDFGAEGRN PDQHRFTYKI VKRNNYKAGT 151 KGHPYGGDYH MPRLHKFVTD AEPVEMTSYM DGRKYIDQNN YPDRVRIGAG 201 RQYWRSDEDE PNNRESSYHI ASAYSWLVGG NTFAQNGSGG GTVNLGSEKI 251 KHSPYGFLPT GGSFGDSGSP MFIYDAQKQK WLINGVLQTG NPYIGKSNGF 301 QLVRKDWFYD EIFAGDTHSV FYEPRQNGKY SFNDDNNGTG KINAKHEHNS 351 LPNRLKTRTV QLFNVSLSET AREPVYHAAG GVNSYRPRLN NGENISFIDE 401 GKGELILTSN INQGAGGLYF QGDFTVSPEN NETWQGAGVH ISEDSTVTWK 451 VNGVANDRLS KIGKGTLHVQ AKGENQGSIS VGDGTVILDQ QADDKGKKQA 501 FSEIGLVSGR GTVQLNADNQ FNPDKLYFGF RGGRLDLNGH SLSPHRIQNT 551 DEGAMIVNHN QDKESTVTIT GNKDIATTGN NNSLDSKKEI AYNGWFGEKD 601 TTKTNGRLNL VYQPAAEDRT LLLSGGTNLN GNITQTNGKL FFSGRPTPHA 651 YNELNDHWSQ KEGIPRGEIV WDNDWINRTF KAENFQIKGG QAVVSRNVAK 701 VKGDWHLSNH AQAVFGVAPH QSHTICTRSD WTGLTNCVEK TITDDKVIAS 751 LTKTDISGNV DLADHAHLNL TGLATLNGNL SANGDTRYTV SHNANQNGNL 801 SLVGNAQATF NQATLNGNTS ASGNASFNLS DHAVQNGSLT LSGNAKANVS 851 HSALNGNVSL ADKAVFHFES SRFTGQISGG KDTALHLKDS EWTLPSGTEL 901 GNLNLDNATI TLNSAYRHDA AGAQTGSATD APRRRSRRSR RSLLSVTPPT 951 SVESRFNTLT VNGKLNGQGT FRFMSELFGY RSDKLKLAES SEGTYTLAVN 1001 NTGNEPASLE QLTVVEGKDN KPLSENLNFT LQNEHVDAGA WRYQLIRKDG 1051 EFRLHNPVKE QELSDKLGKA EAKKQAEKDN AQSLDALIAA GRDAVEKTES 1101 VAEPARQAGG ENVGIMQAEE EKKRVQADKD TALAKQREAE TRPATTAFPR 1151 ARRARRDLPQ LQPQPQPQPQ RDLISRYANS GLSEFSATLN SVFAVQDELD 1201 RVPAEDRRNA VWTSGIRDTK HYRSQDFRAY RQQTDLRQIG MQKNLGSGRV 1251 GILFSHNRTE NTFDDGIGNS ARLAHGAVFG QYGIDRFYIG ISAGAGFSSG 1301 SLSDGIGGKI RRRVLHYGIQ ARYRAGFGGF GIEPHIGATR YFVQKADYRY 1351 ENVNIATPGL AFNRYRAGIK ADYSFKPAQH ISITPYLSLS YTDAASGKVR 1401 TRVNTAVLAQ DFGKTRSAEW GVNAEIKGFT LSLHAAAAKG PQLEAQHSAG 1451 IKLGYRW*
[0188] The leader peptide is underlined.
[0189] A polymorphic form of ORF1 is disclosed in WO99/55873.
[0190] Three expression strategies have been used for ORF1:
[0191] 1) ORF1 using a His tag, following WO99/24578 (ORF1-His);
[0192] 2) ORF1 with its own leader peptide but without any fusion partner (`ORF1L`); and
[0193] 3) ORF1 with the leader peptide (MKKTAIAIAVALAGFATVAQA) from E. coli OmpA (`Orf1LOmpA`):
TABLE-US-00013
[0193] MKKTAIAIAVALAGFATVAQAASAGHTYFGINYQYYRDFAENKGKFAVGA KDIEVYNKKGELVGKSMTKAPMIDFSVVSRNGVAALVGDQYIVSVAHNGG YNNVDFGAEGRNPDQHRFTYKIVKRNNYKAGTKGHPYGGDYHMPRLHKFV TDAEPVEMTSYMDGRKYIDQNNYPDRVRIGAGRQYWRSDEDEPNNRESSY HIASAYSWLVGGNTFAQNGSGGGTVNLGSEKIKHSPYGFLPTGGSFGDSG SPMFIYDAQKQKWLINGVLQTGNPYIGKSNGFQLVRKDWFYDEIFAGDTH SVFYEPRQNGKYSFNDDNNGTGKINAKHEHNSLPNRLKTRTVQLFNVSLS ETAREPVYHAAGGVNSYRPRLNNGENISFIDEGKGELILTSNINQGAGGL YFQGDFTVSPENNETWQGAGVHISEDSTVTWKVNGVANDRLSKIGKGTLH VQAKGENQGSISVGDGTVILDQQADDKGKKQAFSEIGLVSGRGTVQLNAD NQFNPDKLYFGFRGGRLDLNGHSLSFHRIQNTDEGAMIVNHNQDKESTVT ITGNKDIATTGNNNSLDSKKEIAYNGWFGEKDTTKTNGRLNLVYQPAAED RTLLLSGGTNLNGNITQTNGKLFFSGRPTPHAYNHLNDHWSQKEGIPRGE IVWDNDWINRTPKAENFQIKGGQAVVSRNVAKVKGDWHLSNHAQAVFGVA PHQSHTICTRSDWTGLTNCVEKTITDDKVIASLTKTDISGNVDLADHAHL NLTGLATLNGNLSANGDTRYTVSHNATQNGNLSLVGNAQATFNQATLNGN TSQSGNASFNLSDHAVQNGSLTLSGNAKANVSHSALNGNVSLADKAVFHF ESSRFTGQISGGKDTALHLKDSEWTLPSGTELGNLNLDNATITLNSAYRH DAAGAQTGSATDAPRRRSRRSRRSLLSVTPPTSVESRFNTLTVNGKLNGQ GTFRFMSELFGYRSDKLKLAESSEGTYTLAVNNTGNEPASLEQLTVVEGK DNKPLSENLNFTLQNEHVDAGAWRYQLIRKDGEFRLHNPVKEQELSDKLG KAEAKKQAEKDNAQSLDALIAAGRDAVEKTESVAEPARQAGGENVGIMQA EEEKKRVQADKDTALAKQREAETRPATTAFPRARRARRDLPQLQPQPQPQ PQRDLISRYANSGLSEFSATLNSVFAVQDELDRVFAEDRRNAVWTSGIRD TKHYRSQDFRAYRQQTDLRQIGMQKNLGSGRVGILFSHNRTENTFDDGIG NSARLAHGAVFGQYGIDRFYIGISAGAGFSSGSLSDGIGGKIRRRVLHYG IQARYRAGFGGFGIEPHIGATRYFVQKADYRYENVNIATPGLAFNRYRAG IKADYSFKPAQHISITPYLSLSYTDAASGKVRTRVNTAVLAQDFGKTRSA EWGVNAEIKGFTLSLHAAAAKGPQLEAQHSAGIKLGYRW*
[0194] To make this construct, the clone pET911LOmpA (see below) was digested with the NheI and XhoI restriction enzymes and the fragment corresponding to the vector carrying the OmpA leader sequence was purified (pETLOmpA). The ORF1 gene coding for the mature protein was amplified using the oligonucleotides ORF1-For and ORF1-Rev (including the NheI and XhoI restriction sites, respectively), digested with NheI and XhoI and ligated to the purified pETOmpA fragment (see FIG. 1). An additional AS dipeptide was introduced the NheI site.
[0195] All three forms of the protein were expressed. The His-tagged protein could be purified and was confirmed as surface exposed, and possibly secreted (see FIG. 3). The protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay.
[0196] ORF1LOmpA was purified as total membranes, and was localised in both the inner and outer membranes. Unexpectedly, sera raised against. ORF1LOmpA show even better ELISA and anti-bactericidal properties than those raised against the His-tagged protein.
[0197] ORF1L was purified as outer membranes, where it is localised.
Example 7--Protein 911 and its Leader Peptide
[0198] Protein 911 from N. meningitidis (serogroup B, strain MC58) has the following sequence:
TABLE-US-00014 1 MKKNILEFWV GLFVLIGAAA VAFLAFRVAG GAAFGGSDKT YAVYADFGDI 51 GGLKVNAPVK SAGVLVGRVG AIGLDPKSYQ ARVRLDLDGK YQFSSDVSAQ 101 ILTSGLLGEQ YIGLQQGGDT ENLAAGDTIS VTSSAMVLEN LIGKFMTSFA 151 EKAMDGGNAE KAAE*
[0199] The leader peptide is underlined.
[0200] Three expression strategies have been used for 911:
[0201] 1) 911 with its own leader peptide but without any fusion partner (`911L`);
[0202] 2) 911 with the leader peptide from Emil OmpA (`911LOmpA`).
[0203] To make this construct, the entire sequence encoding the OmpA leader peptide was included in the 5'-primer as a tail (primer 911LOmpA Forward). A NheI restriction site was inserted between the sequence coding for the OmpA leader peptide and the 911 gene encoding the predicted mature protein (insertion of one amino acid, a serine), to allow the use of this construct to clone different genes downstream the OmpA leader peptide sequence.
[0204] 3) 911 with the leader peptide (MKYLLPTAAAGLLLAAQPAMA) from Erwinia carotovora PelB (`911LpelB`).
[0205] To make this construct, the 5'-end PCR primer was designed downstream from the leader sequence and included the NcoI restriction site in order to have the 911 fused directly to the PelB leader sequence; the 3'-end primer included the STOP codon. The expression vector used was pET22b+(Novagen), which carries the coding sequence for the PelB leader peptide. The NcoI site introduces an additional methionine after the PelB sequence.
[0206] All three forms of the protein were expressed. ELISA titres were highest using 911L, with 919LOmpA also giving good results.
Example 8--ORF46
[0207] The complete ORF46 protein from N. meningitidis (serogroup B, strain 2996) has the following sequence:
TABLE-US-00015 1 LGISRKISLI LSILAVCLPM HAHASDLAND SFIRQVLDRQ HFEPDKYHL 51 FGSRGELAER SGHIGLGKIQ SHQLGNLMIQ QAAIKGNIGY IVRFSDHGHE 101 VHSPFDNHAS HSDSDEAGSP VDGFSLYRIH WDGYEHHPAD GYDGPQGGGY 151 PAPKGARDIY SYDIKGVAQN IRLNLTDNRS TGQRLADRFH NAGSMLTQGV 201 GDGFKRATRY SPELDRSGNA AEAFNGTADI VKNIIGAAGE IVGAGDAVQG 251 ISEGSNIAVM HGLGLLSTEN KMARINDLAD MAQLKDYAAA AIRDWAVQNP 301 NAAQGIEAVS NIFMAAIPIK GIGAVRGKYG LGGITAHPIK RSQGAIALP 351 KGKSAVSDNF ADAAYAKYPS PYHSRNIRSN LEQRYGKENI TSSTVPPSNG 401 KNVKLADQRH PRTGVPFDGK GFPNFEKHVK YDTKLDIQEL SGGGIPKAKP 451 VSDAKPRWEV DRKLNKLTTR EQVEKNVQEI RNGNKNSNFS QHAQLEREIN 501 KLKSADEINF ADGMGKFTDS MNDKAFSRLV KSVKENGFTN PVVEYVEING 551 KAYIVRGNNR VFAAEYLGRI HELKFKKVDF PVPNTSWKNP TDVLNESGNV 601 KRPRYRSK*
[0208] The leader peptide is underlined.
[0209] The sequences of ORF46 from other strains can be found in WO00/66741.
[0210] Three expression strategies have been used for ORF46:
[0211] 1) ORF46 with its own leader peptide but without any fusion partner (`ORF46-2L`);
[0212] 2) ORF46 without its leader peptide and without any fusion partner (`ORF46-2`), with the leader peptide omitted by designing the 5'-end amplification primer downstream from the predicted leader sequence:
TABLE-US-00016
[0212] 1 SDLANDSFIR QVLDRQHFEP DGKYHLFGSR GELAERSGHI GLGKIQSHQL 51 GNLMIQQAAI KGNIGYIVRF SDHGHEVHSP FDNHASHSDS DEAGSPVDGF 101 SLYRIHWDGY EHHPADGYDG PQGGGYPAPK GARDIYSYDI KGVAQNIRLN 151 LTDNRSTGQR LADRFHNAGS MLTQGVGDGF KRATRYSPEL DRSGNAAEAF 201 NGTADIVKNI IGAAGEIVGA GDAVQGISEG SNIAVMHGLG LLSTENKMAR 251 INDLADMAQL KDYAAAAIRD WAVQNPNAAQ GIEAVSNIFM AAIPIKGIGA 301 VRGKYGLGGI TAHPIKRSQM GAIALPKGKS AVSDNFADAA YAKYPSPYHS 351 RNIRSNLEQR YGKENITSST VPPSNGKNVK LADQRHPKTG VPFDGKGFPN 401 FEKHVKYDTK LDIQELSGGG IPKAKPVSDA KPRWEVDRKL NKLTTREQVE 451 KNVQEIRNGN KNSNFSQHAQ LEREINKLKS ADEINFADGM GKFTDSMNDK 501 AFSRLVKSVK ENGFTNPVVE YVEINGKAYI VRGNNRVFAA EYLGRIHELK 551 FKKVDFPVPN TSWKNPTDVL NESGNVKRPR YRSK*
[0213] 3) ORF46 as a truncated protein, consisting of the first 433 amino acids (`ORF46.1L`), constructed by designing PCR primers to amplify a partial sequence corresponding to as 1-433.
[0214] A STOP codon was included in the 3'-end primer sequences.
[0215] ORF46-2L is expressed at a very low level to E. coli. Removal of its leader peptide (ORF46-2) does not solve this problem. The truncated ORF46.1L form (first 423 amino acids, which are well conserved between serogroups and species), however, is well-expressed and gives excellent results in ELISA test and in the bactericidal assay.
[0216] ORF46.1 has also been used as the basis of hybrid proteins. It has been fused with 287, 919, and ORF1. The hybrid proteins were generally insoluble, but gave some good ELISA and bactericidal results (against the homologous 2996 strain):
TABLE-US-00017 Protein ELISA Bactericidal Ab Orf1-Orf46.1-His 850 256 919-Or146.1-His 12900 512 919-287-Orf46-His n.d. n.d. Orf46.1-287His 150 8192 Orf46.1-919His 2800 2048 Orf46.1-287-919His 3200 16384
[0217] For comparison, `triple` hybrids of ORF46.1, 287 (either as a GST fusion, or in .DELTA.G287 form) and 919 were constructed and tested against various strains (including the homologous 2996 strain) versus a simple mixture of the three antigens. FCA was used as adjuvant
TABLE-US-00018 2996 BZ232 MC58 NGH38 F6124 BZ133 Mixture 8192 256 512 1024 >2048 >2048 ORF46.1-287- 16384 256 4096 8192 8192 8192 919his .DELTA.G287-919- 8192 64 4096 8192 8192 16384 ORF46.1his .DELTA.G287- 4096 128 256 8192 512 1024 ORF46.1- 919his
[0218] Again, the hybrids show equivalent or superior immunological activity.
[0219] Hybrids of two proteins (strain 2996) were compared to the individual proteins against various heterologous strains:
TABLE-US-00019 1000 MC58 F6124 (MenA) ORF46.1-His <4 4096 <4 ORF1-His 8 256 128 ORF1-ORF46.1-His 1024 512 1024
[0220] Again, the hybrid shows equivalent or superior immunological activity.
Example 9--Protein 961
[0221] The complete 961 protein from N. meningitidis (serogroup B, strain MC58) has the following sequence:
TABLE-US-00020 1 MSMKHFPAKV LTTAILATFC SGALAATSDD DVKKAATVAI VAAYNNGQEI 51 NGFKAGETIY DIGEDGTITQ KDATAADVEA DDFKGLGLKK VVTNLTKTVN 103 ENKQNVDAKV KAAESEIEKL TTKLADTDAA LADTDAALDE TTNALNKLGE 151 NITTFAEETK TNIVKIDEKL SAVADTVDKH AEAFNDIADS LDETNTKADE 201 AVKTANEAKQ TAEETKQNVD AKVKAAETAA GKAEAAAGTA NTAADKAEAV 251 AAKVTDIKAD LATNKADIAK NSARIDSLDK NVANLRKETR QGLAEQAALS 301 GLFQPYNVGR FNVTAAVGGY KSESAVAIGT GFRFTENFAA KAGVAVGTSS 351 GSSAAYHVGV NYEW*
[0222] The leader peptide is underlined.
[0223] Three approaches to 961 expression were used:
[0224] 1) 961 using a GST fusion, following WO99/57280 (`GST961`);
[0225] 2) 961 with its own leader peptide but without any fusion partner (`961L`); and
[0226] 3) 961 without its leader peptide and without any fusion partner (`961.sup.untagged`), leader peptide omitted by designing the 5'-end PCR primer downstream from the predicted leader sequence.
[0227] All three forms of the protein were expressed. The GST-fusion protein could be purified and antibodies against it confirmed that 961 is surface exposed (FIG. 4). The protein was used to immunise mice, and the resulting sera gave excellent results in the bactericidal assay. 961L could also be purified and gave very high ELISA titres.
[0228] Protein 961 appears to be phase variable. Furthermore, it is not found in all strains of N. meningitidis.
Example 10--Protein 287
[0229] Protein 287 from N. meningitidis (serogroup B, strain 2996) has the following sequence;
TABLE-US-00021 1 MFERSVIAMA CIFALSACGG GGGGSPDVKS ADTLSKPAAP VVAEKETEVK 51 EDAPQAGSQG QGAPSTQGSQ DMAAVSAENT GNGGAATTDK PKNEDEGPQN 101 DMPQNSAESA NQTGNNQPAD SSDSAPASNP APANGGSNFG RVDLANGVLI 151 DGPSQNITLT HCKGDSCNGD NLLDEEAPSK SEFENLNESE RIEKYKKDGK 201 SDKFTNLVAT AVQANGTNKY VIIYKDKSAS SSSARFRRSA RSRRSLPAEM 251 PLIPVNQADT LIVDGEAVSL TGHSGNIFAP EGNYRYLTYG AEKLPGGSYA 301 LRVQGEPAKG EMLAGTAVYN GEVLHFHTEN GRPYPTRGRF AAKVDFGSKS 351 VDGIIDSGDD LHMGTQKFKA AIDGNGFKGT WTENGGGDVS GRFYGPAGEE 401 VAGKYSYRPT DAEKGGFGVF AGKKEQD*
[0230] The leader peptide is shown underlined.
[0231] The sequences of 287 from other strains can be found in FIGS. 5 and 15 of WO00/66741.
[0232] Example 9 of WO99/57280 discloses the expression of 287 as a GST-fusion in E. coli.
[0233] A number of further approaches to expressing 287 in E. coli have been used, including:
[0234] 1) 287 as a His-tagged fusion (287-His');
[0235] 2) 287 with its own leader peptide but without any fusion partner (`287L`);
[0236] 3) 287 with the ORF4 leader peptide and without any fusion partner (`287LOrf4`); and
[0237] 4) 287 without its leader peptide and without any fusion partner (`287.sup.untagged`):
TABLE-US-00022
[0237] 1 CGGGGGGSPD VKSADTLSKP AAPVVAEKET EVKEDAPQAG SQGQGAPSTQ 51 GSQDMAAVSA ENTGNGGAAT TDKPKNEDEG PQNDMPQNSA ESANQTGNNQ 101 PADSSDSAPA SNPAPANGGS NFGRVDLANG VLIDGPSQNI TLTHCKGDSC 151 NGDNLLDEEA PSKSEFENLN ESERIEKYKK DGKSDKFTNL VATAVQANGT 20 NKYVIIYKDK SASSSSARFR RSARSRRSLP AEMPLIPVNQ ADTLIVDGEA 251 VSLTGHSGNI PAPEGNYRYL TYGAEKLPGG SYALRVQGEP AKGEMLAGTA 301 VYNGEVLHFH TENGRPYPTR GRFAAKVDFG SKSVDGIIDS GDDLHMGTQK 351 FKAAIDGNGF KGTWTENGGG DVSGRFYGPA GEEVAGKYSY RPTDAEKGGF 401 GVFAGKKEQD *
[0238] All these proteins could be expressed and purified.
[0239] `287L` and `287 LOrf4` were confirmed as lipoproteins.
[0240] As shown in FIG. 2, `287LOrf4` was constructed by digesting 919LOrf4 with NheI and XhoI. The entire ORF4 leader peptide was restored by the addition of a DNA sequence coding for the missing amino acids, as a tail, in the 5'-end primer (287LOrf4 for), fused to 287 coding sequence. The 287 gene coding for the mature protein was amplified using the oligonucleotides 287LOrf4 For and Rev (including the NheI and XhoI sites, respectively), digested with NheI and XhoI and ligated to the purified pETOrf4 fragment.
Example 11--Further Non-Fusion Proteins with/without Native Leader Peptides
[0241] A similar approach was adopted for E. coli expression of further proteins from WO99/24578, WO99/36544 and WO99/57280.
[0242] The following were expressed without a fusion partner: 008, 105, 117-1, 121-1, 122-1, 128-1, 148, 216, 243, 308, 593, 652, 726, 982, and Orf143-1. Protein 117-1 was confirmed as surface-exposed by FACS and gave high ELISA titres.
[0243] The following were expressed with the native leader peptide but without a fusion partner: 111, 149, 206, 225-1, 235, 247-1, 274, 283, 286, 292, 401, 406, 502-1, 503, 519-1, 525-1, 552, 556, 557, 570, 576-1, 580, 583, 664, 759, 907, 913, 920-1, 926, 936-1, 953, 961, 983, 989, Orf4, Orf7-1, Orf9-1, Orf23, Orf25, Orf37, Orf38, Orf40, Orf40.1, Orf40.2, Orf72-1, Orf76-1, Orf85-2, OrF91, Orf97-1, Orf119, Orf143.1. These proteins are given the suffix `L`.
[0244] His-tagged protein 760 was expressed with and without its leader peptide. The deletion of the signal peptide greatly increased expression levels. The protein could be purified most easily using 2M urea for solubilisation.
[0245] His-tagged protein 264 was well-expressed using its own signal peptide, and the 30 kDa protein gave positive Western blot results.
[0246] All proteins were successfully expressed.
[0247] The localisation of 593, 121-1, 128-1, 593, 726, and 982 in the cytoplasm was confirmed.
[0248] The localisation of 920-1L, 953L, ORF9-1L, ORF85-2L, ORF97-1L, 570L, 580L and 664L in the periplasm was confirmed.
[0249] The localisation of ORF40L in the outer membrane, and 008 and 519-1L in the inner membrane was confirmed. ORF25L, ORF4L, 406L, 576-1L were all confirmed as being localised in the membrane.
[0250] Protein 206 was found not to be a lipoprotein.
[0251] ORF25 and ORF40 expressed with their native leader peptides but without fusion partners, and protein 593 expressed without its native leader peptide and without a fusion partner, raised good anti-bactericidal sera. Surprisingly, the forms of ORF25 and ORF40 expressed without fusion partners and using their own leader peptides (i.e. `ORF25L` and `ORF40L`) give better results in the bactericidal assay than the fusion proteins.
[0252] Proteins 920L and 953L were subjected to N-terminal sequencing, giving HRVWVETAH and ATYKVDEYHANARFAF, respectively. This sequencing confirms that the predicted leader peptides were cleaved and, when combined with the periplasmic location, confirms that the proteins are correctly processed and localised by E. coli when expressed from their native leader peptides.
[0253] The N-terminal sequence of protein 519.1L localised in the inner membrane was MEFFIILLA, indicating that the leader sequence is not cleaved. It may therefore function as both an uncleaved leader sequence and a transmembrane anchor in a manner similar to the leader peptide of PBP1 from N. gonorrhoeae [Ropp & Nicholas (1997) J. Bact. 179:2783-2787.]. Indeed the N-terminal region exhibits strong hydrophobic character and is predicted by the Tmpred. program to be transmembrane.
Example 12--Lipoproteins
[0254] The incorporation of palmitate in recombinant lipoproteins was demonstrated by the method of Kraft et. al. [J. Bact. (1998) 180:3441-3447.]. Single colonies harbouring the plasmid of interest were grown overnight at 37.degree. C. in 20 ml of LB/Amp (100 .mu.g/ml) liquid culture. The culture was diluted to an OD.sub.550 of 0.1 in 5.0 ml of fresh medium LB/Amp medium containing 5 .mu.C/ml [.sup.3H] palmitate (Amersham). When the OD.sub.550 of the culture reached 0.4-0.8, recombinant lipoprotein was induced for 1 hour with IPTG (final concentration 1.0 mM). Bacteria were harvested by centrifugation in a bench top centrifuge at 2700 g for 15 min and washed twice with 1.0 ml cold PBS. Cells were resuspended in 120 .mu.l of 20 mM Tris-HCl (pH 8.0), 1 mM EDTA, 1.0% w/v SDS and lysed by boiling for 10 min. After centrifugation at 13000 g for 10 min the supernatant was collected and proteins precipitated by the addition of 1.2 ml cold acetone and left for 1 hour at -20.degree. C. Protein was pelleted by centrifugation at 13000 g for 10 min and resuspended in 20-50 .mu.l (calculated to standardise loading with respect to the final 0.1) of the culture) of 1.0% w/v SDS. An aliquot of 15 .mu.l was boiled with 5 .mu.l of SDS-PAGE sample buffer and analysed by SDS-PAGE. After electrophoresis gels were fixed for 1 hour in 10% v/v acetic acid and soaked for 30 minutes in Amplify solution (Amersham). The gel was vacuum-dried under heat and exposed to Hyperfilm (Kodak) overnight -80.degree. C.
[0255] Incorporation of the [.sup.3H] palmitate label, confirming lipidation, was found for the following proteins: Orf4L, Orf25L, 287L, 287LOrf4, 406.L, 576L, 926L, 919L and 9191, Orf4.
Example 13--Domains in 287
[0256] Based on homology of different regions of 287 to proteins that belong to different functional classes, it was split into three `domains`, as shown in FIG. 5. The second domain shows homology to IgA proteases, and the third domain shows homology to transferrin-binding proteins.
[0257] Each of the three `domains` shows a different degree of sequence conservation between N. meningitidis strains domain C is 98% identical, domain A is 83% identical, whilst domain B is only 71% identical. Note that protein 287 in strain MC58 is 61 amino acids longer than that of strain 2996. An alignment of the two sequences is shown in FIG. 7, and alignments for various strains are disclosed in WO00/66741 (see FIGS. 5 and 15 therein).
[0258] The three domains were expressed individually as C-terminal His-tagged proteins. This was done for the MC58 and 2996 strains, using the following constructs:
[0259] 287a-MC58 (aa 1-202), 287b-MC58 (aa 203-288), 287c-MC58 (an 311-488).
[0260] 287a-2996 (aa 1-139), 287b-2996 (aa 140-225), 287c-2996 (aa 250-427).
[0261] To make these constructs, the stop codon sequence was omitted in the 3'-end primer sequence. The 5' primers included the NheI restriction site, and the 3' primers included a Kiwi as a tail, in order to direct the cloning of each amplified fragment into the expression vector pRT21b4 rising NdeI-XhoI, NheI-XhoI or NdeI-HindIII restriction sites.
[0262] All six constructs could be expressed, but 287b-MC8 required denaturation and refolding for solubilisation.
[0263] Deletion of domain A is described below (`.DELTA.4 287-His`).
[0264] Immunological data (serum bactericidal assay) were also obtained using the various domains from strain 2996, against the homologous and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):
TABLE-US-00023 2996 BZ232 MC58 NGH38 394/98 MenA MenC 287-His 32000 16 4096 4096 512 8000 16000 287(B)-His 256 -- -- -- -- 16 -- 287(C)-His 256 -- 32 512 32 2048 >2048 287(B-C)-His 64000 128 4096 64000 1024 64000 32000
[0265] Using the domains of strain MC58, the following results were obtained:
TABLE-US-00024 MC58 2996 BZ232 NGH38 394/98 MenA MenC 287-His 4096 32000 16 4096 512 8000 16000 287(B)-His 128 128 -- -- -- -- 128 287(C)-His -- 16 -- 1024 -- 512 -- 287(B-C)-His 16000 64000 128 64000 512 64000 >8000
Example 14--Deletions in 287
[0266] As well as expressing individual domains, 287 was also expressed (as a C-terminal His-tagged protein) by making progressive deletions within the first domain. These Four deletion mutants of protein 287 from strain 2996 were used (FIG. 6):
[0267] 1) `287-His`, consisting of amino acids 18-427 (i.e. leader peptide deleted);
[0268] 2) `.DELTA.1 287-His`, consisting of amino acids 26-427;
[0269] 3) `.DELTA.2 287-His`, consisting of amino acids 70-427;
[0270] 4) `.DELTA.3 287-His`, consisting of amino acids 107-427; and
[0271] 5) `.DELTA.4 287-His`, consisting of amino acids 140427 (=287-bc).
[0272] The `.DELTA.4` protein was also made for strain MC58 (`.DELTA.4 287MC58-His`; an 203-488).
[0273] The constructs were made in the same way as 287a/b/c, as described above.
[0274] All six constructs could be expressed and protein could be purified. Expression of 287-His was, however, quite poor.
[0275] Expression was also high when the C-terminal His-tags were omitted.
[0276] Immunological data (serum bactericidal assay) were also obtained using the deletion mutants, against the homologous (2996) and heterologous MenB strains, as well as MenA (F6124 strain) and MenC (BZ133 strain):
TABLE-US-00025 2996 BZ232 MC58 NGH38 394/98 MenA MenC 287-his 32000 16 4096 4096 512 8000 16000 .DELTA.1 287-His 16000 128 4096 4096 1024 8000 16000 .DELTA.2 287-His 16000 128 4096 >2048 512 16000 >8000 .DELTA.3 287-His 16000 128 4096 >2048 512 16000 >8000 .DELTA.4 287-His 64000 128 4096 64000 1024 64000 32000
[0277] The same high activity for the .DELTA.4 deletion was seen using the sequence from strain MC58.
[0278] As well as showing superior expression characteristics, therefore, the mutants are immunologically equivalent or superior.
Example 15--Poly-Glycine Deletions
[0279] The `.DELTA.1 287-His` construct of the previous example differs from 287-His and from `287.sup.untagged` only by a short N-terminal deletion (GGGGGGS). Using an expression vector which replaces the deleted serine with a codon present in the Nhe cloning site, however, this amounts to a deletion only of (Gly).sub.6. Thus, the deletion of this (Gly).sub.6 sequence has been shown to have a dramatic effect on protein expression.
[0280] The protein lacking the N-terminal amino acids up to GGGGGG is called `.DELTA.G287`. In strain MC58, its sequence (leader peptide underlined) is:
TABLE-US-00026 .DELTA.G287 1 MFKRSVIAMA CIFALSACGG GGGGSPDVKS ADTLSKPAAP VVSEKETEAK 51 EDAPQAGSQG QGAPSAQGSQ DMAAVSEENT GNGGAVTADN PKNEDEVAQN 101 DMPQNAAGTD SSTPNHTPDP NMLAGNMENQ ATDAGESSQP ANQPDMANAA 151 DGMQGDDPSA GGQNAGNTAA QGANQAGNNQ AAGSSDPIPA SNPAPANGGS 201 NFGRVDLANG VLIDGPSQNI TLTHCKGDSC SGNNFLDEEV QLKSEFEKLS 251 DADKISNYKK DGKNDKFVGL VADSVQMKGI NQYIIFYKPK PTSFARFRRS 301 ARSRRSLPAE MPLIPVNQAD TLIVDGEAVS LTGHSGNIFA PEGNYRYLTY 351 GAEKLPGGSY ALRVQGEPAK GEMLAGAAVY NGEVLHFHTE NGRPYPTRGR 401 FAAKVDFGSK SVDGIIDSGD DLHMGTQKFK AAIDGNGFKG TWTENGSGDV 451 SGKFYGPAGE EVAGKYSYRP TDAEKGGFGV FAGKKEQD*
[0281] .DELTA.G287, with or without His-tag (`.DELTA.G287-His` and `.DELTA.G287K`, respectively), are expressed at very good levels in comparison with the `287-His` or `287.sup.untagged`.
[0282] On the basis of gene variability data, variants of .DELTA.G287-His were expressed in E. coli from a number of MenB strains, in particular from strains 2996, MC58, 1000, and BZ232. The results were also good.
[0283] It was hypothesised that poly-Gly deletion might be a general strategy to improve expression. Other MenB lipoproteins containing similar (Gly).sub.n motifs (near the N-terminus, downstream of a cysteine) were therefore identified, namely Tbp2 (N/v1130460), 741 (NMB 1870) and 983 (NMB1969):
TABLE-US-00027 TBP2 .DELTA.GTbp2 1 MNNPLVNQAA MVLPVFLLSA CLGGGGSFDL DSVDTEAPRP APKYQDVFSE 51 KPQAQKDQGG YGFAMRLKRR NWYPQAKEDE VKLDESDWEA TGLPDEPKEL 101 PKRQKSVIEK VETDSDNNIY SSPYLKPSNH QNGNTGNGIN QPKNQAKDYE 151 NFKYVYSGWF YKHAKREFNL KVEPKSAKNG DDGYIFYHGK EPSRQLPASG 201 KITYKGVWHF ATDTKKGQKF REIIQPSKSQ GDRYSGFSGD DGEEYSNKNK 251 STLTDGQEGY GFTSNLEVDF HNKKLTGKLI RNNANTDNNQ ATTTQYYSLE 301 AQVTGNRFNG KATATDKPQQ NSETKEHPFV SDSSSLSGGF FGPQGEELGF 351 RFLSDDQKVA VVGSAKTKDK PANGNTAAAS GGTDAAASNG AAGTSSENGK 401 LTTVLDAVEL KLGDKEVQKL DNFSNAAQLV VDGIMIPLLP EASESGNNQA 451 NQGTNGGTAF TRKFDHTPES DKKDAQAGTQ TNGAQTASNT AGDTNGKTKT 501 YEVEVCCSNL NYLKYGMLTR KNSKSAMQAG ESSSQADAKT EQVEQSMFLQ 551 GERTDEKEIP SEQNIVYRGS WYGYIANDKS TSWSGNASNA TSGNRAEFTV 601 NFADKKITGT LTADNRQEAT FTIDGNIKDN GFEGTAKTAE SGFDLDQSNT 651 TRTPKAYITD AKVQGGFYGP KAEELGGWFA YPGDKQTKNA TNASGNSSAT 701 VVFGAKRQQP VR* 741 .DELTA.G741 1 VNRTAFCCLS LTTALILTAC SSGGGGVAAD IGAGLADALT APLDHKDKGL 51 QSLTLDQSVR KNEKLKLAAQ GAEKTYGNGD SLNTGKLKND KVSRFDFIRQ 101 IEVDGQLITL ESGEFQVYKQ SHSALTAFQT EQIQDSEHSG KMVAKRQFRI 151 GDIAGEHTSF DKLPEGGRAT YRGTAFGSDD AGGKLTYTID FAAKQGNGKI 201 EHLKSPELNV DLAAADIKPD GKRHAVISGS VLYNQAEKGS YSLGIFGGKA 251 QEVAGSAEVK TVNGIRHIGL AAKQ* 983 .DELTA.G983 1 MRTTPTFPTK TFKPTAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS 51 NSRATTAKSA AVSYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKINAPPPN 101 LHTGDFPNPN DAYKNLINLK PAIEAGYTGR GVEVGIVDTG ESVGSISFPE 151 LYGRKEHGYN ENYKNYTAYM RKEAPEDGGG KDIEASFDDE AVIETEAKPT 201 DIRHVKEIGH IDLVSHIIGG RSVDGRPAGG IAPDATLHIM NTNDETKNEM 251 MVAAIRNAWV KLGERGVRIV NNSFGTTSRA GTADLFQIAN SEEQYRQALL 301 DYSGGDKTDE GIRLMQQSDY GNLSYHIRNK NMLFIFSTGN DAQAQPNTYA 351 LLPFYEKDAQ KGIITVAGVD RSGEKFKREM YGEPGTEPLE YGSNHCGITA 401 MWCLSAPYEA SVRFTRTNPI QIAGTSFSAP IVTGTAALLL QKYPWMSNDN 451 LRTTLLTTAQ DIGAVGVDSK FGWGLLDAGK AMNGPASFPF GDFTADTKGT 501 SDIAYSFRND ISGTGGLIKK GGSQLQLHGN NTYTGRTIIE GGSLVLYGNN 551 KSDMRVETKG ALIYNGAASG GSLNSDGIVY LADTDQSGAN ETVHIKGSLQ 601 LDGKGTLYTR LGKLLKVDGT AIIGGKLYMS ARGKGAGYLN STGRRVPFLS 651 AAKIGQDYSF FTNIETDGGL LASLDSVEKT AGSEGDTLSY YVRRGNAART 701 ASAAAHSAPA GLKHAVEQGG SNLENLMVEL DASESSATPE TVETAAADRT 751 DMPGIRPYGA TFRAAAAVQH ANAADGVRIF NSLAATVYAD STAAHADMQG 801 RRLKAVSDGL DHNGTGLRVI AQTQQDGGTW EQGGVEGKMR GSTQTVGIAA 851 KTGENTTAAA TLGMGRSTWS ENSANAKTDS ISLFAGIRHD AGDIGYLKGL 901 FSYGRYKNSI SRSTGADEHA EGSVNGTLMQ LGALGGVNVP FAATGDLTVE 951 GGLRYDLLKQ DAFAEKGSAL GWSGNSLTEG TLVGLAGLKL SQPLSDKAVL 1001 FATAGVERDL NGRDYTVTGG FTGATAATGK TGARNMPHTR LVAGLGADVE 1051 FGNGWNGLAR YSYAGSKQYG NHSGRVGVGY RF*
[0284] Thp2 and 741 genes were from strain MC58; 983 and 287 genes were from strain 2996. These were cloned in pET vector and expressed in E. coli without the sequence coding for their leader peptides or as ".DELTA.G forms", both fused to a C-terminal His-tag. In each case, the same effect was seen expression was good in the clones carrying the deletion of the poly-glycine stretch, and poor or absent if the glycines were present in the expressed protein:
TABLE-US-00028 ORF Express. Purification Bact. Activity 287-His(2996) +/- + + `287.sup.untagged`(2996) +/- nd nd .DELTA.G287-His(2996) + + + .DELTA.G287K(2996) + + + .DELTA.G287-His(MC58) + + + .DELTA.G287-His(1000) + + + .DELTA.G287-His(BZ232) + + + Tbp2-His(MC58) +/- nd nd .DELTA.GTbp2-His(MC58) + + 741-His(MC58) +/- nd nd .DELTA.G741-His(MC58) + + 983-His(2996) .DELTA.G983-His(2996) + +
[0285] SDS-PAGE of the proteins is shown in FIG. 13.
[0286] .DELTA.G287 and Hybrids
[0287] .DELTA.G287 proteins were made and purified for strains MC58, 1000 and BZ232. Each of these gave high ELISA titres and also serum bactericidal titres of >8192. .DELTA.G287K, expressed from pET-24b, gave excellent titres in ELISA and the serum bactericidal assay. .DELTA.G287-ORF46.1K may also be expressed in pET-24b.
[0288] .DELTA.G287 was also fused directly in-frame upstream of 919, 953, 961 (sequences shown below) and ORF46.1:
TABLE-US-00029 .DELTA.G287-919 1 ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA AACCGGCCGC 51 TCCTGTTGTT GCTGAAAAAG AGACAGAGGT AAAAGAAGAT GCGCCACAGG 101 CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCNG CCAAGATATG 151 GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG CAACAACGGA 201 CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG CCGCAAAATT 251 CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC CGATTCTTCA 301 GATTCCGCCC CCGCGTCAAA CCCTCCACCT GCGANAGGCG GTAGCAATTT 351 TGGAAGGGTT GATTTGGCTA ATGGCGTTTT GATTGATGGG CCGTCGCAAA 401 ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG TGATAATTAA 451 TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT TAAATGAGTC 501 TGAACGAATT GAGAAATATA AGAAAGATGG GAAAAGCGAT AAATTTACTA 551 ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAACTAACAA ATATGTCATC 601 ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT TCAGGCGTTC 651 TGCACGGTCG AGGAGGTCGC TTCCTGCCGA GATGCCGCTA ATCCCCGTCA 701 ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG CCTGACGGGG 751 CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT ATCTGACTTA 801 CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT GTGCAAGGCG 851 AACCGGCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA CAACGGCGAA 901 GTGCTGCATT TTCATACGGA AAACGGCCGT CCGTACCCGA CTAGAGGCAG 951 GTTTGCCGCA AAAGTCGATT TCGGCAGCAA ATCTGTGGAC GGCATTATCG 1001 ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA AGCCGCCATC 1051 GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG GCGGGGATGT 1101 TTCCGGAAGG TTTTACGGCC CGGCCGGCGA GGAAGTGGCG GGAAAATACA 1151 GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT GTTTGCCGGC 1201 AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGATGCCAAA GCAAGAGCAT 1251 CCAAACCTTT CCGCAACCCG ACACATCCGT CATCAACGCC CCGGACCGGC 1301 CGGTCGGCAT CCCCGACCCC GCCGGAACGA CGGTCGGCGG CGGCGGGGCC 1351 GTCTATACCG TTGTACCGCA CCTGTCCCTG CCCCACTGGG CGGCGCAGGA 1401 TTTCGCCAAA AGCCTGCAAT CCTTCCGCCT CGGCTGCGCC AATTTGAAAA 1451 ACCGCCAAGG CTGGCAGGAT GTGTGCGCCC AAGCCTTTCA AACCCCCGTC 1501 CATTCCTTTC AGGCAAAACA GTTTTITGAA CGCTATTTCA CGCCGTGGCA 1551 GGTTGCAGGC AACGGAAGCC TTGCCGGTAC GGTTACCGGC TATTACGAGC 1601 CGGTGCTGAA GGGCGACGAC AGGCGGACGG CACAAGCCCG CTTCCCGATT 1651 TACGGTATTC CCGACGATTT TATCTCCGTC CCCCTGCCTG CCGGTTTGCG 1701 GAGCGGAAAA GCCCTTGTCC GCATCAGGCA GACGGGAAAA AACAGCGGCA 1751 CAATCGACAA TACCGGCGGC ACACATACCG CCGACCTCTC CCGATTCCCC 1801 ATCACCGCGC GCACAACGGC AATCAAAGGC AGGTTTGAAG GAAGCCGCTT 1851 CCTCCCCTAC CACACGCGCA ACCAAATCAA CGGCGGCGCG CTTGACGGCA 1901 AAGCCCCGAT ACTCGGTTAC GCCGAAGACC CCGTCGAACT TTTTTTTATG 1951 CACATCCAAG GCTCGGGCCG TCTGAAAACC CCGTCCGGCA AATACATCCG 2001 CATCGGCTAT GCCGACAAAA ACGAACATCC CTACGTTTCC ATCGGACGCT 2051 ATATGGCGGA CAAAGGCTAC CTCAAGCTCG GGCAGACCTC GATGCAGGGC 2101 ATCAAAGCCT ATATGCGGCA AAATCCGCAA CGCCTCGCCG AAGTTTTGGG 2151 TCAAAACCCC AGCTATATCT TTTTCCGCGA GCTTGCCGGA AGCAGCAATG 2201 ACGGTCCCGT CGGCGCACTG GGCACGCCGT TGATGGGGGA ATATGCCGGC 2251 GCAGTCGACC GGCACTACAT TACCTTGGGC GCGCCCTTAT TTGTCGCCAC 2301 CGCCCATCCG GTTACCCGCA AAGCCCTCAA CCGCCTGATT ATGGCGCAGG 2351 ATACCCGCAG CGCGATTAAA GGCGCGGTGC GCGTGGATTA CCACGGGTTA 2401 TACGGCGACG AAGCCGGCGA ACTTGCCGGC AAACAGAAAA CCACGGGTTA 2451 CGTCTGGCAG CTCCTACCCA ACGGTATGAA GCCCGAATAC CGCCCGTAAC 2501 TCGAG 1 MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG APSTQGSQDM 51 AAVSAENTGN GGAATTDKPK NEDEGPQNDM PQNSAESANQ TGNNQPADSS 101 DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQNITLTHC KGDSCNGDNL 151 LDEEAPSKSE FENLNESERI EKYKKDGKSD KFTNLVATAV QANGTNKYVI 201 IYKDKSASSS SARFRRSARS RRSLPAEMPL IPVNQADTLI VDGEAVSLTG 251 HSGNIFAPEG NYRYLTYGAE KLPGGSYALR VQGEPAKGEM LAGTAVYNGE 301 VLHFHTENGR PYPTRGRFAA KVDFGSKSVD GIIDSGDDLH MGTQKFKAAI 351 DGNGFKGTWT ENGGGDVSGR FYGPAGEEVA GKYSYRPTDA EKGGFGVFAG 401 KKEQDGSGGG GCQSKSIQTF PQPDTSVING PDRPVGIPDP AGTTVGGGGA 451 VYTVVPHLSL PHWAAQDFAK SLQSPRLGCA NLKNRQGWQD VCAQAFQTPV 501 HSFQAKQFFE RYFTPMQVAG NGSLAGTVTG YYEPVLKGDD RRTAQARFPI 551 YGIPDDFISV PLPAGLRSGK ALVRIRQTGK NSGTIDNTGG THTADLSRFP 601 ITARTTAIKG RFEGSRPLPY HTRNQINGGA LDGKAPILGY AEDPVELFFM 651 HIQGSGRLKT PSGKYIRIGY ADKNEHPYVS IGRYMADKGY LKLGQTSMQG 701 IKAYMRQNPQ RLAEVLGQNP SYIFFRELAG SSNDGPVGAL GTPLMGEYAG 751 AVDRHYITLG APLFVATAHP VTRKALNRLI MAQDTGSAIK GAVRVDYFWG 901 YGDEAGELAG KQKTTGYVWQ LLPNGMKPEY RP* .DELTA.G287-953 1 ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA AACCGGCCGC 51 TCCTGTTGTT GCTGAAAAAG AGACAGAGGT AAAAGAAGAT GCGCCACAGG 101 CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCAG CCAAGATATG 151 GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG CAACAACGGA 201 CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG CCGCAAAATT 251 CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC CGATTCTTCA 301 GATTCCGCCC CCGCGTCAAA CCCTGCACCT GCGAATGGCG GTAGCAATTT 351 TGGAAGGGTT GATTTGGCTA ATGGCGTTTT GATTGATGGG CCGTCGCAAA 401 ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG TGATAATTTA 451 TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT TAAATGAGTC 501 TGAACGAATT GAGAAATATA AGAAAGATGG GAAAAGCGAT AAATTTACTA 551 ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAACTAACAA ATATGTCATC 601 ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT TCAGGCGTTC 651 TGCACGGTCG AGGAGGTCGC TTCCTGCCGA GATGCCGCTA ATCCCCGTCA 701 ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG CCTGACGGGG 751 CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT ATCTGACTTA 801 CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT GTGCAAGGCG 851 AACCGGCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA CAAGGGCGAA 901 GTGCTGCATT TTCATACGGA AAACGGCCGT CCGTACCCGA CTAGAGGCAG 951 GTTTGCCGCA AAAGTCGATT TCGGCAGGAA ATCTGTGGAC GGCATTATCG 1001 ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA AGCCGCCATC 1051 GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG GCGGGGATGT 1101 TTCCGGAAGG TTTTACGGCC CGGCCGGCGA GGAAGTGGCG GGAAAATACA 1151 GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT GTTTGCCGGC 1201 AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGAGCCACCT ACAAAGTGGA 1251 CGAATATCAC GCCAACGCCC GTTTCGCCAT CGACCATTTC AACACCAGCA 1301 CCAACGTCGG CGGTTTTTAC GGTCTGACCG GTTCCGTCGA GTTCGACCAA 1351 GCAAAACGCG ACGGTAAAAT CGACATCACC ATCCCCGTTG CCAACCTGCA 1401 AAGCGGTTCG CAACACTTTA CCGACCACCT GAAATCAGCC GACATCTTCG 1451 ATGCCGCCCA ATATCCGGAC ATCCGCTTTG TTTCCACCAA ATTCAACTTC 1501 AACGGCAAAA AACTGGTTTC CGTTGACGGC AACCTGACCA TGCACGGCAA 1551 AACCGCCCCC GTCAAACTCA AAGCCGAAAA ATTCAACTGC TACCAAAGCC 1601 CGATGGCGAA AACCGAAGTT TGCGGGGGCG ACTTCAGCAC CACCATCGAC 1651 CGCACCAAAT GGGGCGTGGA CTACCTCGTT AACGTTGGTA TGACCAAAAG 1701 CGTCCGCATC GACATCCAAA TCGAGGCAGC CAAACAATAA CTCGAG 1 MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG APSTQGSQDM 51 AAVSAENTGN GGAATTDKPK NEDEGPQNDM PQNSAESANQ TGNNQPADSS 101 DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQNITLTHC KGDSCNGDNL 151 LDEEAPSKSE FENLNESERI EKYKKDGKSD KFTNLVATAV QANGTNKYVI 201 IYKDKSASSS SARFRRSARS RRSLPAEMPL IPVNQADTLI VDGEAVSLTG 251 HSGNIFAPEG NYRYLTYGAE KLPGGSYALR VQGEPAKGEM LAGTAVYNGE 301 VLHFHTENGR PYPTKGRFAA KVDFGSKSVD GIIDSGDDLH MGTQKFKAAI 351 DGNGFKGTWT ENGGGDVSGR FYGPAGEEVA GKYSYRPTDA EKGGFGVFAG 401 KKEQDGSGGG GATYKVDEYH ANARFAIDHF NTSTNVGGFY GLTGSVEFDQ 451 AKRDGKIDIT IPVANLQSGS QHFTDHLKSA DIFDAAQYPD IRFVSTKFNF 501 NGKKLVSVDG NLTMHGKTAP VKLKAEKFNC YQSPMAKTEV CGGDFSTTID 551 RTKWGVDYLV NVGMTKSVRI DIQIEAAKQ* .DELTA.G287-961 1 ATGGCTAGCC CCGATGTTAA ATCGGCGGAC ACGCTGTCAA AACCGGCCGC 51 TCCTGTTGTT GCTGAAAAAG AGACAGAGGT AAAAGAAGAT GCGCCACAGG 101 CAGGTTCTCA AGGACAGGGC GCGCCATCCA CACAAGGCAG CCAAGATATG 151 GCGGCAGTTT CGGCAGAAAA TACAGGCAAT GGCGGTGCGG CAACAACGGA 201 CAAACCCAAA AATGAAGACG AGGGACCGCA AAATGATATG CCGCAAAATT 251 CCGCCGAATC CGCAAATCAA ACAGGGAACA ACCAACCCGC CGATTCTTCA 301 GATTCCGCCC CCGCGTCAAA CGCTGCACCT GCGAATGGCG GTAGCAATTT 351 TGGAAGGGTT GATTTGGCTA ATGGCGTTTT GATTGATGGG CCGTCGCAAA 401 ATATAACGTT GACCCACTGT AAAGGCGATT CTTGTAATGG TGATAATTTA
451 TTGGATGAAG AAGCACCGTC AAAATCAGAA TTTGAAAATT TAAATGAGTC 501 TGAACGAATT GAGAAATATA AGAAAGATGG GAAAAGCGAT AAATTTACTA 551 ATTTGGTTGC GACAGCAGTT CAAGCTAATG GAACTAACAA ATATGTCATC 601 ATTTATAAAG ACAAGTCCGC TTCATCTTCA TCTGCGCGAT TCAGGCGTTC 651 TGCACGGTCG AGGAGGTCGC TTCCTGCCGA GATGCCGCTA ATCCCCGTCA 701 ATCAGGCGGA TACGCTGATT GTCGATGGGG AAGCGGTCAG CCTGACGGGG 751 CATTCCGGCA ATATCTTCGC GCCCGAAGGG AATTACCGGT ATCTGACTTA 801 CGGGGCGGAA AAATTGCCCG GCGGATCGTA TGCCCTCCGT GTGCAAGGCG 851 AACCGGCAAA AGGCGAAATG CTTGCTGGCA CGGCCGTGTA CAACGGCGAA 901 GTGCTGCATT TTCATACGGA AAACGGCCGT CCGTACCCGA CTAGAGGCAG 951 GTTTGCCGCA AAAGTCGATT TCGGCAGCAA ATCTGTGGAC GGCATTATCG 1001 ACAGCGGCGA TGATTTGCAT ATGGGTACGC AAAAATTCAA AGCCGCCATC 1051 GATGGAAACG GCTTTAAGGG GACTTGGACG GAAAATGGCG GCGGGGATGT 1101 TTCCGGAAGG TTTTACGGCC CGGCCGGCGA GGAAGTGGCG GGAAAATACA 1151 GCTATCGCCC GACAGATGCG GAAAAGGGCG GATTCGGCGT GTTTGCCGGC 1201 AAAAAAGAGC AGGATGGATC CGGAGGAGGA GGAGCCACAA ACGACGACGA 1251 TGTTAAAAAA GCTGCCACTG TGGCCATTGC TGCTGCCTAC AACAATGGCC 1301 AAGAAATCAA CGGTTTCAAA GCTGGAGAGA CCATCTACGA CATTGATGAA 1351 GACGGCACAA TTACCAAAAA AGACGCAACT GCAGCCGATG TTGAAGCCGA 1401 CGACTTTAAA GGTCTGGGTC TGAAAAAAGT CGTGACTAAC CTGACCAAAA 1451 CCGTCAATGA AAACAAACAA AACGTCGATG CCAAAGTAAA AGCTGCAGAA 1501 TCTGAAATAG AAAAGTTAAC AACCAAGTTA GCAGACACTG ATGCCGCTTT 1551 AGCAGATACT GATGCCGCTC TGGATGCAAC CACCAACGCC TTGAATAAAT 1601 TGGGAGAAAA TATAACGACA TTTGCTGAAG AGACTAAGAC AAATATCGTA 1651 AAAATTGATG AAAAATTAGA AGCCGTGGCT GATACCGTCG ACAAGCATGC 1701 CGAAGCATTC AACGATATCG CCGATTCATT GGATGAAACC AACACTAAGG 1751 CAGACGAAGC CGTCAAAACC GCCAATGAAG CCAAACAGAC GGCCGAAGAA 1801 ACCAAACAAA ACGTCGATGC CAAAGTAAAA GCTGCAGAAA CTGCAGCAGG 1851 CAAAGCCGAA GCTGCCGCTG GCACAGCTAA TACTGCAGCC GACAAGGCCG 1901 AAGCTGTCGC TGCAAAAGTT ACCGACATCA AAGCTGATAT CGCTACGAAC 1951 AAAGATAATA TTGCTAAAAA AGCAAACAGT GCCGACGTGT ACACCAGAGA 2001 AGAGTCTGAC AGCAAATTTG TCAGAATTGA TGGTCTGAAC GCTACTACCG 2051 AAAAATTGGA CACACGCTTG GCTTCTGCTG AAAAATCCAT TGCCGATCAC 2101 GATACTCGCC TGAACGGTTT GGATAAAACA GTGTCAGACC TGCGCAAAGA 2151 AACCCGCCAA GGCCTTGCAG AACAAGCCGC GCTCTCCGGT CTGTTCCAAC 2201 CTTACAACGT GGGTCGGTTC AATGTAACGG CTGCAGTCGG CGGCTACAAA 2251 TCCGAATCGG CAGTCGCCAT CGGTACCGGC TTCCGCTTTA CCGAAAACTT 2301 TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC TTCGTCCGGT TCTTCCGCAG 2351 CCTACCATGT CGGCGTCAAT TACGAGTGGT AACTCGAG 1 MASPDVKSAD TLSKPAAPVV AEKETEVKED APQAGSQGQG APSTQGSQDM 51 AAVSAENTGN GGAATTDKPK NEDEGPQNDM PQNSAESANQ TGNNQPADSS 101 DSAPASNPAP ANGGSNFGRV DLANGVLIDG PSQINTLTHC KGDSCNGDNL 151 LDEEAPSKSE FENLNESERI EKYKKDGKSD KFTNLVATAV QANGTNKYVI 201 IYKDKSASSS SARFRRSARS RRSLPAEMPL IPVNQADTLI VDGEAVSLTG 251 HSGNIFAPEG NYRYLTYGAE KLPGGSYALR VQGEPAKGEM LAGTAVYNGE 301 VLSFHTENGR PYPTRGRFAA KVDFGSKSVD GIIDSGDDLH MGTQKFKAAI 351 DGNGFKGTWT ENGGGDVSGR FYGPAGEEVA GKYSYRPTDA EKGGEGVFAG 401 KKEQDGSGGG GATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE 451 DGTITKKDAT AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE 501 SEIEKLTTKL ADTDAALADT DAALDAFTNA LNKLGENITT FAEETKTNIV 551 KIDEKLEAVA DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAEE 601 TKQNVDAKVK AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN 651 KDNIAKKANS ADVYTREESD SKFVRIDGLN ATTERLDTRL ASAEKSIADH 701 DTRLNGLDKT VSDLRKETRQ GLAEQAALSG LFQPYNVGRF NVTAAVGGYK 751 SESAVAIGTG FRFTENFAAK AGVAVGTSSG SSAAYHVGVN YEW*
TABLE-US-00030 ELISA Bactericidal .DELTA.G287-953-His 3834 65536 .DELTA.G287-961-His 108627 65536
[0289] The bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens (using 287-GST) for 919 and ORF46.1:
TABLE-US-00031 Mixture with 287 Hybrid with .DELTA.G287 919 32000 128000 ORF46.1 128 16000
[0290] Data for bactericidal activity against heterologous MenB strains and against serotypes A and C were also obtained:
TABLE-US-00032 919 ORF46.1 Strain Mixture Hybrid Mixture Hybrid NGH38 1024 32000 -- 16384 MC58 512 8192 -- 512 BZ232 512 512 -- -- MenA (F6124) 512 32000 -- 8192 MenC (C11) >2048 >2048 -- -- MenC (BZ133) >4096 164000 -- 8192
[0291] The hybrid proteins with .DELTA.G287 at the N-terminus are therefore immunologically superior to simple mixtures, with .DELTA.G287-ORF46.1 being particularly effective, even against heterologous strains: .DELTA.G287-ORF46.1K may be expressed in pET-24b.
[0292] The same hybrid proteins were made using New Zealand strain 394198 rather than 2996:
TABLE-US-00033 .DELTA.G287NZ-919 1 ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA AACCTGCCGC 51 CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT GCGCCACAGG 101 CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG TCAAGATATG 151 GCGGCGGTTT CGGAAGAAAA TACAGGCAAT GGCGGTGCGG CAGCAACGGA 201 CAAACCCAAA AATGAAGACG AGGGGGCCCA AAATGATATG CCGCAAAATG 251 CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC TTCGAATATG 301 CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGCCGGGG AATCGGAGCA 351 GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA ATGCAGGGTG 401 ACGATCCGTC GGGAGGCGGG GAAAATGCCG GCAATACGGC TGCCCAAGGT 451 ACAAATCAAG CCGAAAACAA TGAAACCGCC GGTTCTCAAA ATCCTGCCTC 501 TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT GGAAGGACGA 551 ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA TATAACGTTG 601 ACCCACTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT TGGATGAAGA 651 AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA GACAAAATAA 701 GTAATTACAA GAAAGATGGG AAGAATGACG GGAAGAATGA TAAATTTGTC 751 GGTTTGGTTG CCGATAGTGT GCAGATGAAG GGAATCAATC AATATATTAT 801 CTTTTATAAA CCTAAACCCA CTTCATTTGC GCGATTTAGG CGTTCTGCAC 851 OGTCGAGGCG GTCGCTTCCG GCCGAGATCC CGCTGATTCC CGTCAATCAG 901 GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA CGGGGCATTC 951 CGOCAATATC TTCGCGCCCG AAGGGAATTA CCGGTATCTG ACTTACGGGG 1001 CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA AGGCGAACCT 1051 TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG GCGAAGTGCT 1101 GGATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA GGCAGGTTTG 1151 CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT TATCGACAGC 1201 GGCGATGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG CCATCGATGG 1251 AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG GATGTTTCCG 1301 GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA ATACAGCTAT 1351 CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG CCGGCAAAAA 1401 AGAGCAGGAT GGATCCGGAG GAGGAGGATG CCAAAGCAAG AGCATCCAAA 1451 CCTTTCCGCA ACCCGACACA TCCGTCATCA ACGGCCCGGA CCGGCCGGTC 1501 GGCATCCCCG ACCCCGCCGG AACGACGGTC GGCGGCGGCG GGGCCGTCTA 1551 TACCGTTGTA CCGCACCTGT CCCTGCCCCA CTGGGCGGCG CAGGATTTCG 1601 CCAAAAGCCT GCAATCCTTC CGCCTCGGCT GCGCCAATTT GAAAAACCGC 1651 CAAGGCTGGC AGGATGTGTG CGCCCAAGCC TTTCAAACCC CCGTCCATTC 1701 CTTTCAGGCA AAACAGTTTT TTGAACGCTA TTTCACGCCG TGGCAGGTTG 1751 CAGGCAACGG AAGCCTTGCC GGTACGGTTA CCGGCTATTA CGAGCCGGTG 1801 CTGAAGGGCG ACGACAGGCG GACGGCACAA GCCCGCTTCC CGATTTACGG 1851 TATTCCCGAC GATTTTATCT CCGTCCCCCT GCCTGCCGGT TTGCGGAGCG 1901 GAAAAGCCCT TGTCCGCATC AGGCAGACGG GAAAAAACAG CGGCACAATC 1951 GACAATACCG GCGGCACACA TACCGCCGAC CTCTCCCGAT TCCCCATCAC 2001 CGCGCGCACA ACGOCAATCA AAGGCAGGTT TGAAGGAAGC CGCTTCCTCC 2051 CCTACCACAC GGGCAACCAA ATCAAGGGCG GCGCGCTTGA CGGCAAAGCC 2101 CCGATACTCG GTTACGCCGA AGACCCCGTC GAACTTTTTT TTATGCACAT 2151 CCAAGGCTCG GGCCGTCTGA AAACCCCGTC CGGCAAATAC ATCCGCATCG 2201 GCTATGCCGA CAAAAAGGAA CATCCCTACG TTTCCATCGG ACGCTATATG 2251 GCGGACAAAG GCTACCTCAA GCTCGGGCAG ACCTCGATGC AGGGCATCAA 2301 AGCCTATATG CGOCAAAATC COCAACGCCT CGCCGAAGTT TTOGGTCAAA 2351 ACCCCAGCTA TATCTTTTTC CGCGAGCTTG CCGGAAGCAG CAATGACGGT 2401 CCCGTCGGCG CACTGGGCAC GCCGTTGATG GGGGAATATG CCGGCGCAGT 2451 CGACCGGCAC TACATTACCT TGGGCGCGCC CTTATTTGTC GCCACCGCCC 2501 ATCCGGTTAC CCGCAAAGCC CTCAACCGCC TGATTATGGC GCAGGATACC 2551 GGCAGCGCGA TTAAAGGCGC GGTGCGCGTG GATTATTTTT GGGGATACGG 2601 CGACGAAGCC GGCGAACTTG CCGGCAAACA GAAAACCACG GGTTACGTCT 2651 GGCAGCTCCT ACCCAACGGT ATCAAGCCCG AATACCGCCC GTAAAAGCTT 1 MASPDVKSAD TLSKPAAPVV SEKETAAKED APQAGSQGQG APSAQGGQDM 51 AAVSERNTGN GGAAATDKPK NEDRGAQNDM PQNAADTDSL TPNHTPASNM 101 PAGNMENQAP DAGESEQPAN QPDMANTADG MQGDDPSAGG ENAGNTAAQG 151 TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV IDGPSQNITL 201 THCKGDSCSG NNFLDEEVQL KSEFEKLSDA DKISNYKKDG KNDGKNDKFV 251 GLVADSVQMK GINQYIIFYK PKPTSFARFR RSARSRRSLP AEMPLIPVNQ 301 ADTLIVDGEA VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEP 351 SKGEMLAGTA VYNGEVLHPH TENGRPSPSR GRFAAKVDFG SKSVDGIIDS 401 GDGLHMGTQK FKAAIDGNGF KGTWTENGGG DVSGKFYGPA GEEVAGKYSY 451 RPTDAEKGGF GVFAGKKEQD GSGGGGCQSK SIQTFPQPDT SVINGPDRPV 501 GIPDPAGTTV GGGGAVYTVV PHLSLPHWAA QDFAKSLQSF RLGCANLKNR 551 QGWQDVCAQA FQTPVHSFQA KQFFERYFTP WQVAGNGSLA GTVTGYYEPV 601 LKGDDRRTAQ ARFPIYGIPD DFISVPLPAG LRSGKALVRI RQTGKNSGTI 651 DNTGGTHTAD LSRFPITART TAIKGRFRGS RFLPYHTRNQ INGGALDGKA 701 PILGYAEDPV ELFFMHIQGS GRLKTPSGKY IRIGYADKNE HPYVSIGRYM 751 ADKGYLKLGQ TSMQGIKAYM RQNPQRLAEV LGQNPSYIFF RELAGSSNDG 801 PVGALGTPLM GEYAGAVDRH YITLGAPLFV ATAHPVTRKA LNRLIMAQDT 851 GSAIKGAVRV DYFWGYGDEA GKLAGKQKTT GYVWQLLPNG MKPEYRP* .DELTA.G287NZ-953 1 ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA AACCTGCCGC 51 CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT GCGCCACAGG 101 CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG TCAAGATATG 151 GCGGCGGTTT CGGAAGAAAA TACAGGCAAT GGCGGTGCGG CAGCAACGGA 201 CAAACCCAAA AATGAAGACG AGGGGGCGCA AAATGATATG CCGCAAAATG 251 CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC TTCGAATATG 301 CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGCCGGGG AATCGGAGCA 351 GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA ATGCAGGGTG 401 ACGATCCGTC GGCAGGCGGG GAAAATGCCG GCAATACGGC TGCCCAAGGT 451 ACAAATCAAG CCGAAAACAA TCAAACCGCC GGTTCTCAAA ATCCTGCCTC 501 TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT GGAAGGACGA 551 ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA TATAACGTTG 601 ACCCACTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT TGGATGAAGA 651 AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA GACAAAATAA 701 GTAATTACAA GAAAGATGGG AAGAATGACG GGAAGAATGA TAAATTTGTC 751 GGTTTGGTTG CCGATAGTGT GCAGATGAAG GGAATCAATC AATATATTAT 801 CTTTTATAAA CCTAAACCCA CTTCAATTGC GCGATTTAGG CGTTCTGCAC 851 GGTCGAGGCG GTCGCTTCCG GCCGAGATGC CGCTGATTCC CGTCAATCAG 901 GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA CGGGGCATTC 951 CGGCAATATC TTCGCGCCCG AAGGGAATTA CCGGTATCTG ACTTACGGGG 1001 CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA AGGCGAACCT 1051 TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG GCGAAGTGCT 1101 GCATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA GGCAGGTTTG 1151 CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT TATCGACAGC 1201 GGCGATGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG CCATCGATGG 1251 AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG GATGTTTCCG 1301 GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA ATACAGCTAT 1351 CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG CCGGCAAAAA 1401 AGAGCAGGAT GGATCCGGAG GAGGAGGAGC CACCTACAAA GTGGACGAAT 1451 ATCACGCCAA CGCCCGTTTC GCCATCGACC ATTTCAACAC CAGCACCAAC 1501 GTCGGCGGTT TTTACGGTCT GACCGGTTCC GTCGAGTTCG ACCAAGCAAA 1551 ACGCGACGGT AAAATCGACA TCACCATCCC CGTTGCCAAC CTGCAAAGCG 1601 GTTC CAACA CTTTACCGAC CACCTGAAAT CAGCCGACAT CTTCGATGCC 1651 GCCCAATATC CGGACATCCG CTTTGTTTCC ACCAANTTCA ACTTCAACGG 1701 CAAAAAACTG GTTTCCGTTG ACGGCAACCT GACCATGCAC GGCAAAACCG 1751 CCCCCGTCAA ACTCAAAGCC GAAAAATTCA ACTGCTACCA AAGCCCGATG 1801 GCGAAAACCG AAGTTTGCGG CGGCGACTTC AGCACCACCA TCGACCGCAC 1651 CAAATGGGGC GTGGACTACC TCGTTAACGT TGGTATGACC AAAAGCGTCC 1901 GCATCGACAT CCAAATCGAG GCAGCCAAAC AATAAAAGCT T 1 MASPDVKSAD TLSKPAAPVV SEKETEAKED APQAGSQGQG APSAQGGQDM 51 AAVSEENTGN GGAAATDKPK NEDEGAQNDM PQNAADTDSL TPNHTPASNM 101 PAGNMENQAP DAGESEQPAN QPDMANTADG MQGDDPSAGG ENAGNTAAQG 151 TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV IDGPSQNITL 201 THCKGDSCSG NNFLDEEVQL KSEPEKLSDA DKISNYKKDG KNDGKNDKFV 251 GLVADSVQMK GINQYIIFYK PKPTSFARFR RSARSRRSLP AEMPLIPVNQ 301 ADTLIVDGEA VSLTGHSGNI FAPEGNYKYL TYGAEKLPGG SYALRVQGEP 351 SKGEMLAGTA VYNGEVLEFH TDNGRPSPSR GRFAAKVDFG SKSVDGIIES 401 GDGLENGTQK FKAAIDGNGF KGTWTENGGG CUSGKEYGPA GEEVAGKYSY 451 APTDAEKGGF GVFACKKEQD GSGGGGATYK VDEYHANARF AIDHFNTSTN 501 VGGFYGLTGS VEFDQAKRDG KIDITIPVAN LQSGSQEFTD HLKSADIFDA 551 AQYPDIRFVS TKENFNGALL VSVDGNLTMH GKTAPVKLKA ERFNCYOSPM 601 AKTEVCGGDF STTIDRTKWG VDYLVNVGMT KSVRIDIQIE AAKQ*
.DELTA.G287N2-961 1 ATGGCTAGCC CCGATGTCAA GTCGGCGGAC ACGCTGTCAA AACCTGCCGC 51 CCCTGTTGTT TCTGAAAAAG AGACAGAGGC AAAGGAAGAT GCGCCACAGG 101 CAGGTTCTCA AGGACAGGGC GCGCCATCCG CACAAGGCGG TCAAGATATG 151 GCGGCGGTTT CGGAAGAAAA TACAGGCAAT GGCGGTGCGG CAGCAACGGA 201 CAAACCCAAA AATGAAGACG AGGGGGCGCA AAATGATATG CCGCAAAATG 251 CCGCCGATAC AGATAGTTTG ACACCGAATC ACACCCCGGC TTCGAATATG 301 CCGGCCGGAA ATATGGAAAA CCAAGCACCG GATGcCOGGG AATCGGAGCA 351 GCCGGCAAAC CAACCGGATA TGGCAAATAC GGCGGACGGA ATGCAGGGTG 401 ACGATCCGTC GGCAGGCGGG GAAAATGCCG GCAATACGGC TGCCCAAGGT 451 ACAAATCAAG CCGAAAACAA TCAAACCGCC GGTTCTCAAA ATCCTGCCTC 501 TTCAACCAAT CCTAGCGCCA CGAATAGCGG TGGTGATTTT GGAAGGACGA 551 ACGTGGGCAA TTCTGTTGTG ATTGACGGGC CGTCGCAAAA TATAACGTTG 601 ACCCACTGTA AAGGCGATTC TTGTAGTGGC AATAATTTCT TGGATGAAGA 651 AGTACAGCTA AAATCAGAAT TTGAAAAATT AAGTGATGCA GACAAAATAA 701 GTAATTACAA GAAAGATGGG AAGAATGACG GGAAGAATGA TAAATTTGTC 751 GGTTTGGTTG CCGATAGTGT GCAGATGAAG GGAATCAATC AATATATTAT 801 CTTTTATAAA CCTAAACCCA CTTCATTTGC GCGATTTAGG CGTTCTGCAC 851 GGTCGAGGCG GTCGCTTCCG GCCGAGATGC CGCTGATTCC CGTCAATCAG 901 GCGGATACGC TGATTGTCGA TGGGGAAGCG GTCAGCCTGA CGGGGCATTC 951 CGGCAATATC TTCGCGCCCG AAGGGAATTA CCGGTATCTG ACTTACGGGG 1001 CGGAAAAATT GCCCGGCGGA TCGTATGCCC TCCGTGTTCA AGGCGAACCT 1051 TCAAAAGGCG AAATGCTCGC GGGCACGGCA GTGTACAACG GCGAAGTGCT 1101 GCATTTTCAT ACGGAAAACG GCCGTCCGTC CCCGTCCAGA GGCAGGTTTG 1151 CCGCAAAAGT CGATTTCGGC AGCAAATCTG TGGACGGCAT TATCGACAGC 1201 GGCGAIGGTT TGCATATGGG TACGCAAAAA TTCAAAGCCG CCATCGATGG 1251 AAACGGCTTT AAGGGGACTT GGACGGAAAA TGGCGGCGGG GATGTTTCCG 1301 GAAAGTTTTA CGGCCCGGCC GGCGAGGAAG TGGCGGGAAA ATACAGCTAT 1351 CGCCCAACAG ATGCGGAAAA GGGCGGATTC GGCGTGTTTG CCGGCAAAAA 1401 AGAGCAGGAT GGATCCGGAC GAGGAGGAGC CACAAACGAC GACGATGTTA 1451 AAAAAGCTGC GACTGTGGCC ATTGCTGCTG CCTACAACAA TGGCCAAGAA 1501 ATCAACGGTT TCAAAGCTGG AGAGACCATC TACGACATTG ATGAAGACGG 1551 CACAATTACC AAAAAAGACG CAACTGCAGC CGATGTTGAA GCCGACGACT 1601 TTAAAGGTCT GGGTCTGAAA AAAGTCGTGA CTAACCTGAC CAAAACCGTC 1651 AATGAAAACA AACAAAACGT CGATGCCAAA GTAAAAGCTG CAGAATCTGA 1701 AATAGAAAAG TTAACAACCA AGTTAGCAGA CACTGATGCC GCTTTAGCAG 1752 ATACTGATGC CGCTCTGGAT GCAACCACCA ACGCCTTGAA TAAATTGGGA 1801 GAAAATATAA CGACATTTGC TGAAGAGACT AAGACAAATA TCGTAAAAAT 1851 TGATGAAAAA TTAGAAGCCG TGGCTGATAC CGTCGACAAG CATGCCGAAG 1901 CATTCAACGA TATCGCCGAT TCATTGGATG AAACCAACAC TAAGGCAGAC 1951 GAAGCCGTCA AAACCGCCAA TGAAGCCAAA CAGACGGCCG AAGAAACCAA 2001 ACAAAACGTC GATGCCAAAG TAAAAGCTGC AGAAACTGCA GCAGGCAAAG 2051 CCGAAGCTGC CGCTGGCACA GCTAATACTG CAGCCGACAA GGCCGAAGCT 2101 GTCGCTGCAA AAGTTACCGA CATCAAAGCT GATATCGCTA CGAACAAAGA 2151 TAATATTGCT AAAAAAGCAA ACAGTGCCGA CGTGTACACC AGAGAAGAGT 2201 CTGACAGCAA ATTTGTCAGA ATTGATGGTC TGAACGCTAC TACCGAAAAA 2251 TTGGACACAC GCTTGGCTTC TGCTGAAAAA TCCATTGCCG ATCACGATAC 2301 TCGCCTGAAC GGTTTGGATA AAACAGTGTC AGACCTGCGC AAAGAAACCC 2351 GCCAAGGCCT TGCAGAACAA GCCGCGCTCT CCGGTCTGTT CCAATCTTAC 2401 AACGTGGOTC GGTTCAATGT AACGGCTGCA GTCGGCGGCT ACAAATCCGA 2451 ATCGGCAGTC GCCATCGGTC CCGGCTTCCG CTTTACCGAA AACTTTGCCG 2501 CCAAAGCAGG CGTGGCAGTC GGCACTTCGT CCGGTTCTTC CGCAGCCTAC 2551 CATGTCGGCG TCAATTACGA GTGGTAAAAG CTT 1 MAWPDVKSAD TLSKPAAPVV SEKETEAKED APQAGSQGQG APSAQGGQDM 51 AAVSEENTGN GGAAATDKPK NEDEGAQNDM PQNAADTDSL TPNHTPASNM 101 PAGNMENQAP DAGESEQPAN QPDMANTADG MQGDDPSAGG ENAGNTAAQG 151 TNQAENNQTA GSQNPASSTN PSATNSGGDF GRTNVGNSVV IDGPSQNITL 201 THCKGDSCSG NNFLDEEVQL KSEFEKLSDA DKISNYKKDG KNDGKNDKFV 251 GLVADSVQMK GINQYIIFYK PKPTSFARFR RSARSRRSLP AEMPLIPVNQ 301 ADTLIVDGEA VSLTGHSGNI FAPEGNYRYL TYGAEKLPGG SYALRVQGEP 351 SKGEMLAGTA SYNGEVLHFH TENGRPSPSR GRFAAKVDFG SKSVDGIIDS 401 GDGLHMGTQK FKAAIDGNGF KGTWTENGGG DVSGKFYGPA GKKVAGKYSY 451 RPTDAEKGGF GVFAGKKEQD GSGGGGATND DDVKKAATVA IAAAYNNGQE 501 INGFKAGETI YDIDEDGTIT KKDATAADVE ADDFKGLGLK KVVTNLTKTV 551 NENKONVDAK VKAAESEIEK LTTKLADTDA ALADTDAALD ATTNALNKLG 601 ENITTFAEET KTNIVKIDER LEAVADTVDK HAEAFNDIAD SLDETNTKAD 651 EAVKTANEAK QTAEETKQNV DAKVKAAETA AGKADAAAGT ANTAADKAEA 701 VAAKVTDZKA DIATNKDNIA KKANSADVYT REESDSKEVR IDGLNATTEK 751 LDTRLASAEK SIADHDTELN GLDKTVSDLR KETRQGLAEQ AALSGLFQPY 801 NVGRFNVTAA VGGYKSESAV AIGTGFRFTE NFAAKAGVAV GTSSGSSAAY 851 HVGVNYEW*
.DELTA.G983 and Hybrids
[0293] Bactericidal titres generated in response to .DELTA.G983 (His-fusion) were measured against various strains, including the homologous 2996 strain:
TABLE-US-00034 2996 NGH38 BZ133 .DELTA.G983 512 128 128
[0294] .DELTA.G983 was also expressed as a hybrid, with ORF46.1, 741, 961 or 961c at its C-terminus:
TABLE-US-00035 .DELTA.G983-ORF46.1 1 ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA 51 CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA 101 AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG TCGGGATGAC 151 GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT 201 GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA 251 ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA 301 GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT 351 GTATGGCAGA AAAOAACACG GCTATAACGA AAATTACAAA AACTATACGG 401 CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGACATTGAA 451 GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA AGCCGACGGA 501 TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC TCCCATATTA 551 TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT 601 GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT 651 GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC 701 GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC 751 CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA 801 CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAACAGA 851 GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC 901 ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT 951 ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAGTCGCAG 1001 GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG 1051 GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT 1101 GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA 1151 ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC 1201 ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA ACGACAACCT 1251 GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG 1301 ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA 1351 CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC 1401 CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA 1451 TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG 1501 GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA 1551 ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG 1601 CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC 1651 GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT 1701 GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG CTGAAAGTGG 1751 ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGCAAG 1801 GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC 1851 CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGACG 1901 GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA 1951 GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC 2001 TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC GCCGTAGAAC 2051 AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAAGTGGA TGCCTCCGAA 2101 TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA 2151 TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG 2201 TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC 2251 GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG 2301 CCGCCTGAAA GoCGTATCGO ACGGGTTGGA CCACAACGGC ACGGGTCTGC 2351 GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA ACAGGGCGGT 2401 GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA 2451 AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA 2501 CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT 2551 GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT 2601 CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG 2651 AACATGCGGA AGGCAGCGTC AAGGGCACGC TGATGCAGCT GGGCGCACTG 2701 GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG 2751 CGGTCTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC GAAAAAGGCA 2801 GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA 2851 CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT 2901 TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACACGGTAA 2951 CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC 3001 AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT 3651 CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC GGTTCCAAAC 3101 AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAC 3151 GGTGGCGGAG GCACTGGATC CTCAGATTTG GCAAACGATT CTTTTATCCG 3201 GCAGGTTCTC GACCGTCAGC ATTTCGAACC CGACGGGAAA TACCACCTAT 3251 TCGGCAGCAG GGGGGAACTT GCCGAGCGCA GCGGCCATAT CGGATTGGGA 3301 AAAATACAAA GCCATCAGTT GGGCAACCTG ATGATTCAAC AGGCGGCCAT 3351 TAAAGGAAAT ATCGGCTACA TTGTCCGCTT TTCCGATCAC GGGCACGAAG 3401 TCCATTCCCC CTTCGACAAC CATGCCTCAC ATTCCGATTC TGATGAAGCC 3451 GGTAGTCCCG TTGACGGATT TAGCCTTTAC CGCATCCATT GGGACGGATA 3501 CGAACACCAT CCCGCCGACG GCTATGACGG GCCACAGGGC GGCGGCTATC 3551 CCGCTCCCAA AGGCGCGAGG GATATATACA GCTACGACAT AAAAGGCGTT 3601 GCCCAAAATA TCCGCCTCAA CCTGACCGAC AACCGCAGCA CCGGACAACG 3651 GCTTGCCGAC CGTTTCCACA ATGCCGGTAG TATGCTGACG CAAGGAGTAG 3701 GCGACGGATT CAAACGCGCC ACCCGATACA GCCCCGAGCT GGACAGATCG 3751 GGCAATGCCG CCGAAGCCTT CAACGGCACT GCAGATATCG TTAAAAACAT 3801 CATCGGCGCG GCAGGAGAAA TTGTCGGCGC AGGCGATGCC GTGCAGGGCA 3851 TAAGCGAAGG CTCAAACATT GCTGTCATGC ACGGCTTGGG TCTGCTTTCC 3901 ACCGAAAACA AGATGGCGCG CATCAACGAT TTGGCAGATA TGGCGCAACT 3951 CAAAGACTAT GCCGCAGCAG CCATCCGCGA TTGGGCAGTC CAAAACCCCA 4001 ATGCCGCACA AGGCATAGAA GCCGTCAGCA ATATCTTTAT GGCAGCCATC 4051 CCCATCAAAG GGATTGGAGC TGTTCGGGGA AAATACGGCT TGGGCGGCAT 4101 CACGGCACAT CCTATCAAGC GGTCGCAGAT GGGCGCGATC GCATTGCCGA 4151 AAGGGAAATC CGCCGTCAGC GACAATTTTG CCGATGCGGC ATACGCCAAA 4201 TACCCGTCCC CTTACCATTC CCGAAATATC CGTTCAAACT TGGAGCAGCG 4251 TTACGGCAAA GAAAACATCA CCTCCTCAAC CGTGCCGCCG TCAAACGGCA 4301 AAAATGTCAA ACTGGCAGAC CAACGCCACC CGAAGACAGG CGTACCGTTT 4351 GACGGTAAAG GGTTTCCGAA TTTTGAGAAG CACGTGAAAT ATGATACGCT 4401 CGAGCACCAC CACCACCACC ACTGA 1 MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNEMCKD RSMLCAGRDD 51 VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLIULKPAIE AGYTGRGVEV 101 GIVDTGESVG SISPPELYGR KEHGYNENYK NYTAYMRKEA PEDGGGKDIE 151 ASFDDEAVIE TEAKPTDIRH VKEIGHIDLV SHIIGGRSVD GRPAGGIAPD 201 ATLHINNTND ETKNDMMVAA IRNAWVKLGE RGVRIVNNSF GTTSRAGTAD 251 LFQIANSEEQ YRQALIPYSG GDKTDEGIRL MINSDYGNLS YHIRNKNMLF 301 IFSTGNDAQA QPNTYALLPF YEKDAQKGII TVAGVDRSGE KFKREMYGEP 351 GTEPLEYGSN HCGITAMWCL SAPYEASVRF TRTNPIQIAG TSFSAPIVTG 401 TAALLLQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG LLDAGKAMNG 451 PASFPFGDFT ADTKGTSDIA YSFRNDISGT GGLIKKGGSQ LQLHGNNTYT 501 GKTIIEGGSL VLYGNNKSDM RVETKGALIY NGAASGGSLN SDGIVYLADT 551 DQSGANETVE IKGSLQLDGK GTLYTRLGKL LKVDGTAIIG GKLYMSARGK 601 GAGYLNSTGR RVPFLSAAKI GQDYSFETNI ETDGGLLASL DSVEKTAGSE 651 GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVEQGGSNLE NLMVELDASE 701 SSATPETVET AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIENSLA 751 ATVYADSTAA HADMQGRRLK AVSGGLOHNG TGLRVIAQTQ QDGGTWEQGG 801 VEGKMRGSTQ TVGIAAKTGE NTTAAATIGM GRSTWSENSA NAKTDSISLF 851 AGIRHDAGDI GYLKGLFSYG RYKNSISRST GADEHAEGSV NGTLMQLGAL 901 GGVNVPFAAT GDLTVEGGLR YDLLKQDAFA EKGSALGWSG NSLTEGTLVG 951 LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA TAATGRTGAR 1001 NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG RVGVGYRFLD 1051 GGGGTGSSDL ANDSFIRQVL DRQHFEPDGK YHLFGSRGEL AERSGHIGLG 1101 KIQSHQLGNL MIQQAAIKGN IGYIVRFSDH GHEVHSPFDN HASHSDSDEA 1151 GSPVDGESLY RIHWDGYEHH PADGYDGPQG GGYPAPKGAR DTYSYDIKGV 1201 AQMIRLNLTD NRSTGQRLAD REHMAGSMLT QGVGDGFKRA TRYSPELDRS 1251 GNAAFAENGT ADIVKNIIGA AORTVGAGDA VQGISEGSNI AVMHGLGLLS 1301 TENKMARDID LADMAQLKDY AAAAIRDWAV QNPNAAQGIE AVSNIFMAAI 1351 PIKGIGAVRG KYGLGGITAH PIKRSQHGAI ALPKGKSAVS DATADAAYAK 1401 YPSPYHSRNI RSNLEQRYGK ENITSSTVPP SNGKNVKLAD QRSPKTGVPF 1451 DGKGFPNFEK HVKYDTLEHH HHHH* .DELTA.G983-741 1 ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA 51 CASCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA 101 AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG TCGGGATGAC 151 GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT 201 GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA
251 ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA 301 GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT 351 GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA AACTATACGG 401 CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGAGATTGAA 451 GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAACCAA AGCCGACGGA 501 TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC TCCCATATTA 551 TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT 601 GGGACGCTAC AGATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT 651 GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC 701 GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC 751 CTTTTCCAAh TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA 801 CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAACAGA 851 GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC 901 ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT 951 ATTGCCATTT TATGAAAAAG ACGCTUAAAA AGGCATTATC ACAGTCGCAG 1001 GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG 1051 GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT 1101 GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA 1151 ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC 1201 ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA ACGACAACCT 1251 GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG 1301 ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA 1351 CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC 1401 CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA 1451 TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG 1501 GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA 1551 ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG 1601 CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC 1651 GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT 1701 GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG CTGAAAGTGG 1751 ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGCAAG 1801 GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGAGC 1851 CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGACG 1901 GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA 1951 GGCGACACGC TGTCCTATTA TGTCCCTCGC GGCAATGCGG CACGGACTGC 2001 TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC GCCGTAGANC 2051 AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGGA TGCCTCCGAA 2101 TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA 2151 TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG 2201 TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC 2251 GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG 2301 CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC 2351 GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA ACAGGGCGGT 2401 GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA 2451 AACCGGCGAA AATACGACAG CAGCCGCCAC ACTCGGCATG GGACGCAGCA 2501 CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT 2551 GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT 2601 CTCCTACGGA CGcTACAAAA AGAGCATCAG CCGCAGCACC GGTGCGGACG 2651 AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG 2701 GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG 2751 CGGTCTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC GAAAAAGGCA 2801 GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA 2851 CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT 2901 TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACACGGTAA 2951 CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC 3001 AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT 3051 cGGCAACGGC TGGAACGGCT TGGCACCTTA CAGCTACGCC GGTTCCAAAC 3101 AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAG 3151 GGATCCGGAG GGGGTGGTGT CGCCGCCGAC ATCGGTGCGG GGCTTGccGA 3201 TGCACTAACC GCACCGCTCG ACCATAAAGA CAAAGGTTTG CAGTCTTTGA 3251 CGCTGGATCA GTCCGTCAGG AAAAACGAGA AACTGAAGCT GGCGGCACAA 3301 GGTGCGGAAA AAACTTATGG AAACGGTGAC AGCCTCAATA CGGGCAAATT 3351 GAAGAACGAC AAGGTCAGCC GTTTCGACTT TATCCGCCAA ATCGAAGTGG 3401 ACGGGCAGCT CATTACCTTG GAGAGTGGAG AGTTCCAAGT ATACAAACAA 3451 AGCCATTCCG CCTTAACCGC CTTTCAGACC GAGCAAATAC AAGATTCGGA 3501 GCATTCCGGG AAGATGGTTG CGAAACGCCA GTTCAGAATC GGCGACATAG 3551 CGGGCGAACA TACATCTTTT GACAAGCTTC CCGAAGGCGG CAGGGCGACA 3601 TATCGCGGGA COGCGTTCGG TTCAGACGAT GcCGGCGGAA AACTGAcCTA 3651 CACCATAGAT TTCGCCGCCA AGCAGGGAAA CGGCAAAATC GAACATTTGA 3701 AATCGcCAGA ACTCAATGTC GACCTGGCCO CCGCCGATAT CAAGCCGGAT 3751 GGAAAACGCC ATGCCGTCAT CAGCGGTTCC GTCCTTTACA ACCAAGCCGA 3801 GAAAGGCAGT TACTCCCTCG GTATCTTTGG CGGAAAACC CAGGAAGTTG 3851 CCGGCAGCGC GGAAGTGAAA ACCGTAAACG GCATACGCCA TATCGGCCTT 3901 GCCGCCAAGC AACTCGAGCA CCACCACCAC CACCACTGA 1 MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNEMCKD RSMLCAGRDD 51 VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLINLKPATE AGYTGRGVEV 101 GIVDTGESVG SISFPELYGR KEHGYNENYK NTTAYMRKEA PEDGGGKDIE 151 ASFDDEAVIE TRARPTDIRM VREIGHIDLV SHIIGGRSVD GRPAGGIAPD 201 ATLHINETED ETKNEMMVAA IRNAWVKLGE RGVRIVENSF GTTSRAGTAD 251 LFQIANSBEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS YHIRNKNMLF 301 IFSTGEDAQA QPNTYALLPF YEKDAQKGII TVAGVDRSGE KYKEDIYGEP 351 GTEPLEYGSN MCGITAMWCL SAFYEASVRF TRTNPIQIAG TSFSAPIVTG 401 TAALLLQKYP WESNDNARTT LLTTAQDIGA VGVDSKFGWG LLDAGRAMNG 451 pASFPFGDFT ADTKGTSDIA YSFRNDISGT GGLARRGGSQ LQLHGENTYT 501 GKTIIEGGSL VLYGNNKSDM RVETKGALIY NGAASGGSLN SDGIVYLADT 551 DQSGANETVH IKGSLQLDGK GTLYTRDGKL LKVDGTAIIG GKLYMSARGK 601 GAGYLNSTGR RVFASSAAKI GODYSFFTET ETDGGLLASL DSVEKTAGSE 651 GDTLSYYVRR GNAARTASAA ANSAPAGLKH AVEQGGSNLE NLMVELDASE 701 SRATPETVET AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIFESLA 751 ATVYADSTAA HADMQGRRLK AVSDGLDHNG TGLRVIAQTQ QDGGTWEQGG 801 VEGEMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA NAKTDSISLF 851 AGIRHDAGDI GYLKGLPSTO RYKNSISRST GADEHAEGSV NGTLMQLGAL 901 GGVEVPFAAT GDLTVEGGLR YDLLKQDAFA EKGSALGWSG NSLTEGTLVG 951 LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA TAATGKTGAR 1001 NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNMSG RVGVGYRFLE 1051 GSGGGGVAAD IGAGLADALT APLDHKDKGL QSLTLDQSVR KNEKLKLAAQ 1101 GAEKTYGNGD SLNTGKLKND KVSRFDFIRQ IEVDGQLITL ESGEFQVYKQ 1151 SHSALTAFQT EQIQDSEHSG KMVAKRQFRI GDIAGEHTSF DKLPEGGRAT 1201 YRGTAFGSDD AGGKLTYTID FAAKQGNGKI EHLKSPELNV DLAAADIKPD 1251 GKRHAVISGS VLYNQARKGS YSLGIFGGKA QEVAGSAEVK TVNGIRHIGL 1301 AAKQLEHBEH HH* .DELTA.G983-961 1 ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA 51 CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA 101 AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG TCGGGATGAC 151 GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT 201 GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA 251 ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA 301 GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT 351 GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA AACTATACGG 401 CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGACATTGAA 451 GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA AGCCGACGGA 501 TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC TCCCATATTA 551 TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT 601 GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT 651 GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC 701 GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG GACTGCCGAC 751 CTTTTCCAAA TAGCCAATTC GGAGGAGCAG TACCGCCAAG CGTTGCTCGA 801 CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAACAGA 851 GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC 901 ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT 951 ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAGTCGCAG 1001 GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG 1051 GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT 1101 GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA 1151 ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC
1201 ACGGCGGCTC TGCTGCTOCA GAAATACCCG TGGATGAGCA ACGACAACCT 1251 GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGCGTGG 1301 ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA 1351 CCCGCGTCGT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC 1401 CGATATTGCC TACTCCTTCC GTAACGACAT TTCAGGCACG GGCGGCCTGA 1451 TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG 1501 GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA 1551 ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG 1601 CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC 1651 GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT 1701 GGACGGCAAA GGTACGCTGT ACACACGTTT GGGCAAACTG CTGAAAGTGG 1751 ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGG ACGCGGCAAG 1801 GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC 1851 CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGACG 1901 GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA 1951 GGCGACACGC TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC 2001 TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC GCCGTAGAAC 2051 AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTOGA TGCCTCCGAA 2101 TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA 2151 TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG 2201 TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC 2251 GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG 2301 CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC 2351 GCGTCATCGC GCAAACCCAA CAGGACGGTG GAACGTGGGA ACAGGGCOGT 2401 GTTGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA 2451 AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA 2501 CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT 2551 GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT 2601 CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG 2651 AACATGCGGA AGGCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG 2701 GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG 2751 CGGTCTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC GAAAAAGGCA 2801 GTGCTTTGGG CTGGAGCGGC AACAGCCTCA GTGAAGGCAC GCTGGTCGGA 2851 CTCGCGGGTC TGAAGCTGTG GCAACCCTTG AGCGATAAAG CCGTCCTGTT 2901 TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACACGGTAA 2951 CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC 3001 AATATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT 3051 CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC GGTTCCAAAC 3101 AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAG 3151 OGTGGCGGAG GCACTGGATC CGCCACAAAC GACGACGATG TTAAAAAAGC 3201 TGCCACTGTG GCCATTGCTG CTGCCTACAA CAATGGCCAA GAAATCAACG 3251 GTTTCAAAGC TGGAGAGACC ATCTACGACA TTGATGAAGA CGGCACAATT 3301 ACCAAAAAAG ACGCAACTGC AGCCGATGTT GAAGCCGACG ACTTTAAAGG 3351 TCTGGGTCTG AAAAAAGTCG TGACTAACCT GACCAAAACC GTCAATGAAA 3401 ACAAACAAAA CGTCGATGCC AAAGTAAAAG CTGCAGAATC TGAAATAGAA 3451 AAGTTAACAA CCAAGTTAGC AGACACTGAT GCCGCTTTAG CAGATACTGA 3501 TGCCGCTCTG GATGCAACCA CCAACGCCTT GAATAAATTG GGAGAAAATA 3551 TAACGACATT TGCTGAAGAG ACTAAGACAA ATATCGTAAA AATTGATGAA 3601 AAATTAGAAG CCGTGGCTGA TACCGTCGAC AAGCATGCCG AAGCATTCAA 3651 CGATATCGCC GATTCATTGG ATGAAACCAA CACTAAGGCA GACGAAGCCG 3701 TCAAAACCGC CAATGAAGCC AAACAGACGG COGAAGAAAC CAAACAAAAC 3751 GTCGATGCCA AAGTAAAAGC TGCAGAAACT GCAGCAGGCA AAGCCGAAGC 3801 TGCCGCTGGC ACAGCTAATA CTGCAGCCGA CAAGGCCGAA GCTGTCGCTG 3851 CAAAAGTTAC CGACATCAAA GCTGATATCG CTACGAACAA AGATAATATT 3901 GCTAAAAAAG CAAACAGTGC CGACGTGTAC ACCAGAGAAG AGTCTGACAG 3951 CAAATTTGTC AGAATTGATG GTCTGAACGC TACTACCGAA AAATTGGACA 4001 CACGCTTGGC TTCTGCTGAA AAATCCATTG CCGATCACGA TACTCGCCTG 4051 AACGGTTTGG ATAAAACAGT GTCAGACCTG CGCAAAGAAA CCCGCCAAGG 4101 CCTTGCAGAA CAAGCCGCGC TCTCCGGTCT GTTCCAACCT TACAACGTGG 4151 GTCGGTTCAA TGTAACGGCT GCAGTCGGCG GCTACAAATC CGAATCGGCA 4201 GTCGCCATCG GTACCGGCTT CCGCTTTACC GAAAACTTTG CCGCCAAAGC 4251 AGGCGTGGCA GTCGGCACTT CGTCCGGTTC TTCCGCAGCC TACCATGTCG 4301 GCGTCAATTA CGAGTGGCTC GAGCACCACC ACCACCACCA CTGA 1 MTSAPDFNAG GTGIGSNSRA TTAKSAAVSY AGIKNEMCKD RSMLCAGRDD 51 VAVTDRDAKI NAPPPNLHTG DFPNPNDAYK NLINLEPAIE AGYTGRGVEV 101 GIVDTGESVG SISPPELYGR KEHGYNENYK NYTAYMPEZA PEDGCCKDIE 151 ASFDDEAVIE TEAKPTDIRH VREIGHIDLV SHIIGGRSVD GRPAGGIAPD 201 ATLHIMNTND ETKNEMMVAA IRNAWVKLGE RGVRIVNNSF GTTSRAGTAD 251 LFQIANSEEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS YHIRNENMLF 301 IFSTGNDAQA QPNTYALLPF YEKDAQKGII TVAGVDRSGE KFKREMYGEP 351 GTEPLEYGSN MCGITAMWCL SAPYEASVRF TRTNPIQIAG TSFSAPIVTG 401 TAALLLQKYP WNSNDNIATT LLTTAQDIGA VGVDSKFGWG LLDAGKAMNG 451 PASFPFGDFT ADTKGTSDIA YSFRNDISGT GGLIKKGGSQ LQLBGENTYT 501 GKTIIEGGSL VLYGNNKSDM RVETKGALIY NGAASGGSLN SDGIVYLADT 551 DQSGANETVH IKGSLQLDGK GTLYTRLGKL LKVDGTAIIG GKLYEEARGK 601 GAGYLNSTGR RVPFLSAAKX GQDYSFFTNI ETDGGLLASL DSVERTAGSE 651 GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVEQGGSNLE NLEVELDASE 701 SSATPETVET AAADRTDMPG IRPYGATFRA AAAVQHANAA DGVRIPNSLA 751 ATVYADSTAA EADMQGRELK AVSDGLDHNG TGLEVIAQTQ QDGGTWEQGG 801 VEGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA NAKTDSISLF 851 AGIRHDAGDI GYLKGLFSYG RYKNSISRST GADEHAEGSV NGTLMQLGAL 901 GGVNVPFAAT GDLTVEGGLR YDLLKOGAFA EKGSALGWSG NSLTEGTING 951 LAGLKLSQPL SDKAVLFATA GVERDLNGRD YTVIGGFTGA TAATGKTGAR 1001 NNEHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG RVGVGYRFLE 1051 GGGGTGSATN DMINKKAATV AIAAAYNNGQ EINGFRAGET IYDIDEDGTI 1101 TKKDATAADV EADDFKGLGL KKVVTNLTKT VNENKQNVDA KQTAEETKQN 1151 KLTTKLADTD AALADTDAAL DATTNALNKL GENITTFAEE TKTNIVKIDE 1201 KLEAVADTVD KHAEAFNDIA DSLDETNTKA DENVETANBA KQTAEETKQN 1251 VrAFVEAAET AAGKASAAAG TANTAADKAE AVAAKVTDIK ADIATNKDNI 1301 AKKANSADVY TREESDSKFV RIDGLNATTE KLDTPIASAE KSIADHDTRL 1351 NGLDKTVSDL RKETRQGLAE QAALSGLFQP YNtTG1NVTA AVGGYKSESA 1401 VAIGTGFRFT ENFAAKAGVA VGTSSGSSAA YHVGVNYEWL EHHHHHH* .DELTA.G983-961c 1 ATGACTTCTG CGCCCGACTT CAATGCAGGC GGTACCGGTA TCGGCAGCAA 51 CAGCAGAGCA ACAACAGCGA AATCAGCAGC AGTATCTTAC GCCGGTATCA 101 AGAACGAAAT GTGCAAAGAC AGAAGCATGC TCTGTGCCGG TCGGGATGAC 151 GTTGCGGTTA CAGACAGGGA TGCCAAAATC AATGCCCCCC CCCCGAATCT 201 GCATACCGGA GACTTTCCAA ACCCAAATGA CGCATACAAG AATTTGATCA 251 ACCTCAAACC TGCAATTGAA GCAGGCTATA CAGGACGCGG GGTAGAGGTA 301 GGTATCGTCG ACACAGGCGA ATCCGTCGGC AGCATATCCT TTCCCGAACT 351 GTATGGCAGA AAAGAACACG GCTATAACGA AAATTACAAA AACTATACGG 401 CGTATATGCG GAAGGAAGCG CCTGAAGACG GAGGCGGTAA AGACATTGAA 451 GCTTCTTTCG ACGATGAGGC CGTTATAGAG ACTGAAGCAA AGCCGACGGA 501 TATCCGCCAC GTAAAAGAAA TCGGACACAT CGATTTGGTC TCCCATATTA 551 TTGGCGGGCG TTCCGTGGAC GGCAGACCTG CAGGCGGTAT TGCGCCCGAT 601 GCGACGCTAC ACATAATGAA TACGAATGAT GAAACCAAGA ACGAAATGAT 651 GGTTGCAGCC ATCCGCAATG CATGGGTCAA GCTGGGCGAA CGTGGCGTGC 701 GCATCGTCAA TAACAGTTTT GGAACAACAT CGAGGGCAGG CACTGCCGAC 751 CTTTTCCAAA TAGCCAATTC GGAGGAGCAC TACCGCCAAG CGTTGCTCGA 801 CTATTCCGGC GGTGATAAAA CAGACGAGGG TATCCGCCTG ATGCAACAGA 851 GCGATTACGG CAACCTGTCC TACCACATCC GTAATAAAAA CATGCTTTTC 901 ATCTTTTCGA CAGGCAATGA CGCACAAGCT CAGCCCAACA CATATGCCCT 951 ATTGCCATTT TATGAAAAAG ACGCTCAAAA AGGCATTATC ACAGTCGCAG 1001 GCGTAGACCG CAGTGGAGAA AAGTTCAAAC GGGAAATGTA TGGAGAACCG 1051 GGTACAGAAC CGCTTGAGTA TGGCTCCAAC CATTGCGGAA TTACTGCCAT 1101 GTGGTGCCTG TCGGCACCCT ATGAAGCAAG CGTCCGTTTC ACCCGTACAA 1151 ACCCGATTCA AATTGCCGGA ACATCCTTTT CCGCACCCAT CGTAACCGGC 1201 ACGGCGGCTC TGCTGCTGCA GAAATACCCG TGGATGAGCA ACGACAACCT 1251 GCGTACCACG TTGCTGACGA CGGCTCAGGA CATCGGTGCA GTCGGGGTGG 1301 ACAGCAAGTT CGGCTGGGGA CTGCTGGATG CGGGTAAGGC CATGAACGGA 1351 CCCGCGTCCT TTCCGTTCGG CGACTTTACC GCCGATACGA AAGGTACATC 1401 CGATATTGCC TACTCcTTCc GTAACGACAT TTCAGGCACG GGCGGCCTGA 1451 TCAAAAAAGG CGGCAGCCAA CTGCAACTGC ACGGCAACAA CACCTATACG 1501 GGCAAAACCA TTATCGAAGG CGGTTCGCTG GTGTTGTACG GCAACAACAA 1551 ATCGGATATG CGCGTCGAAA CCAAAGGTGC GCTGATTTAT AACGGGGCGG 1601 CATCCGGCGG CAGCCTGAAC AGCGACGGCA TTGTCTATCT GGCAGATACC
1651 GACCAATCCG GCGCAAACGA AACCGTACAC ATCAAAGGCA GTCTGCAGCT 1701 GGACGGCAAA GGTACGCTGT ACACACGTTT CTGAAAGTGG CTGAAAGTGG 1751 ACGGTACGGC GATTATCGGC GGCAAGCTGT ACATGTCGGC ACGCGGcAAG 1801 GGGGCAGGCT ATCTCAACAG TACCGGACGA CGTGTTCCCT TCCTGAGTGC 1851 CGCCAAAATC GGGCAGGATT ATTCTTTCTT CACAAACATC GAAACCGAcG 1901 GCGGCCTGCT GGCTTCCCTC GACAGCGTCG AAAAAACAGC GGGCAGTGAA 1951 GGCGACACGc TGTCCTATTA TGTCCGTCGC GGCAATGCGG CACGGACTGC 2001 TTCGGCAGCG GCACATTCCG CGCCCGCCGG TCTGAAACAC GCCGTAGAAC 2051 AGGGCGGCAG CAATCTGGAA AACCTGATGG TCGAACTGGA TGCCTCCGAA 2101 TCATCCGCAA CACCCGAGAC GGTTGAAACT GCGGCAGCCG ACCGCACAGA 2151 TATGCCGGGC ATCCGCCCCT ACGGCGCAAC TTTCCGCGCA GCGGCAGCCG 2201 TACAGCATGC GAATGCCGCC GACGGTGTAC GCATCTTCAA CAGTCTCGCC 2251 GCTACCGTCT ATGCCGACAG TACCGCCGCC CATGCCGATA TGCAGGGACG 2301 CCGCCTGAAA GCCGTATCGG ACGGGTTGGA CCACAACGGC ACGGGTCTGC 2351 GCGTCATCGC GCAAACCCAA CAGGACGOTG GAACGTGGGA ACAGGGCGGT 2401 GITGAAGGCA AAATGCGCGG CAGTACCCAA ACCGTCGGCA TTGCCGCGAA 2451 AACCGGCGAA AATACGACAG CAGCCGCCAC ACTGGGCATG GGACGCAGCA 2501 CATGGAGCGA AAACAGTGCA AATGCAAAAA CCGACAGCAT TAGTCTGTTT 2551 GCAGGCATAC GGCACGATGC GGGCGATATC GGCTATCTCA AAGGCCTGTT 2601 CTCCTACGGA CGCTACAAAA ACAGCATCAG CCGCAGCACC GGTGCGGACG 2651 AACATGCGGA ACGCAGCGTC AACGGCACGC TGATGCAGCT GGGCGCACTG 2701 GGCGGTGTCA ACGTTCCGTT TGCCGCAACG GGAGATTTGA CGGTCGAAGG 2751 CGGTCTGCGC TACGACCTGC TCAAACAGGA TGCATTCGCC GAAAAAGGCA 2801 GTGCTTTGGG CTGGAGCGGC AACAGCCTCA CTGAAGGCAC GCTGGTCGGA 2851 CTCGCGGGTC TGAAGCTGTC GCAACCCTTG AGCGATAAAG CCGTCCTGTT 2901 TGCAACGGCG GGCGTGGAAC GCGACCTGAA CGGACGCGAC TACACGGTAA 2951 CGGGCGGCTT TACCGGCGCG ACTGCAGCAA CCGGCAAGAC GGGGGCACGC 3001 ATTATGCCGC ACACCCGTCT GGTTGCCGGC CTGGGCGCGG ATGTCGAATT 3051 CGGCAACGGC TGGAACGGCT TGGCACGTTA CAGCTACGCC GGTTCCAAAC 3101 AGTACGGCAA CCACAGCGGA CGAGTCGGCG TAGGCTACCG GTTCCTCGAG 3151 GGTGGCGGAG GCACTGGATC CGCCACAAAC GACGACGATG TTAAAAAAGC 3201 TGCCACTGTG GCCATTGCTG CTGCCTACAA CAATGGCCAA GAAATCAACG 3251 GTTTCAAAGC TGGAGAGACC ATCTACGACA TTGATGAAGA CGGCACAATT 3301 ACCAAAAAAG ACGCAACTGC AGCCGATGTT GAAGCCGACG ACTTTAAAGG 3351 TCTGGGTCTG AAAAAAGTCG TGACTAACCT GACCAAAACC GTCAATGAAA 3401 ACAAACAAAA CGTCGATGCC AAAGTAAAAG CTGCAGAATC TGAAATAGAA 3451 AAGTTAACAA CCAAGTTAGC AGACACTGAT GCCGCTTTAG CAGATACTGA 3501 TGCCGCTCTG GATGCAACCA CCAACGCCTT GAATAAATTG GOAGAAAATA 3551 TAACGACATT TGCTGAAGAG ACTAAGACAA ATATCGTAAA AATTGATGAA 3601 AAATTAGAAG CCGTGGCTGA TACCGTCGAC AAGCATGCCG AAGCATTCAA 3651 CGATATCGCC GATTCATTGG ATGAAACCAA CACTAAGGCA GACGAAGCCG 3701 TCAAAACCGC CAATGAAGCC AAACAGACGG CCGAAGAAAC CAAACAAAAC 3751 GTCGATGCCA AAGTAAAAGC TGCAGAAACT GCAGCAGGCA AAGCCGAAGC 3801 TGCCGCTGGC ACAGCTAATA CTGCAGCCGA CAAGGCCGAA GCTGTCGCTG 3851 CAAAAGTTAC CGACATCAAA GCTGATATCG CTACGAACAA AGATAATATT 3901 GCTAAAAAAG CAAACAGTGC CGACGTGTAC ACCAGAGAAG AGTCTGACAG 3951 CAAATTTGTC AGAATTGATG GTCTGAACGC TACTACCGAA AAATTGGACA 4001 CACGCTTGGC TTCTGCTGAA AAATCCATTG CCGATCACGA TACTCGCCTG 4051 AACGGTTTGG ATAAAACAGT GTCAGACCTG CGCAAAGAAA CCCGCCAAGG 4101 CCTTGCAGAA CAAGCCGCGC TCTCCGGTCT GTTCCAACCT TACAACGTGG 4151 GTCTCGAGCA CCACCACCAC CACCACTGA 1 MTSAPDFNAG GTGIGSNSRA TTARSAAVSY AGIKNEMCKD RSMLCAGRDD 51 VAVTDRDAKI NAPPPNLMTG DFPNPNDAYK NLINLEPAIR AGYTGRGVEV 101 GIVDTGESVG SISFPELYGR KERGYNENYK NYTAYMRKEA PEDGGGKDIE 151 ASFDDEAVIE TEARPTDIRM VRE/GHIDLV SHIIGGRSVD GRPAGGIAPD 201 ATLHIMNTND ETRNEMMVAA IENAWVKLGR RGVRIVNNSF GTTSRAGTAD 251 LFQIANSKEQ YRQALLDYSG GDKTDEGIRL MQQSDYGNLS YHIRNRNMLF 301 IFSTGNDAQA QPNTYALLPF YERDAQRGII TVAGVDRSGE KFKREMYGEP 351 GTEPLEYGSN HCGITAMWCL SAPYEASVRF TRTNPIQIAG TSFSAPIVTG 401 TAALLDQKYP WMSNDNLRTT LLTTAQDIGA VGVDSKFGWG LLDAGRAMNG 451 PASFPFGDFT ADTRGTSDLA YSERNDISGT GGLIKKGGSQ LQLHGNNTYT 501 GKTIIEGGSL VLYGNNKSDM RVETRGALIY NGAASGGSLN SDGIVYLADT 551 DQSGANETVH IKGSLQLDGK GTLYTRLGRL LKVDGTAIIG GRLYMSARGR 601 GAGYLNSTGR RVPFLSAAKI GODYSFETNI ETDGGLLASL DSVERTAGSE 651 GDTLSYYVRR GNAARTASAA AHSAPAGLKH AVEQGGSNLE NLMVELDASE 701 SSATFETVET AAADRTDMPG IRPYGATFRA AAAVQMANAA DGVRIENSLA 751 ATVYADSTAA HADMQGRRLK AVSDGMOHNG TGLRVIAQTQ QDGGTWEQGG 801 VEGKMRGSTQ TVGIAAKTGE NTTAAATLGM GRSTWSENSA NAKTDSISLF 851 AGIRHDAGDI GYLKGLFSYG RYKNSISRST GADEHAEGSV NOTLMQLGAL 901 GGVNVPFAAT GDLTVEGGLR YDLLKQDAFA EKGSALGWSG NSLTEGTLVG 951 LAGLKLSOPL SDKAVLFATA GVERDLNGRD YTVTGGFTGA TAATGRTGAR 1001 NMPHTRLVAG LGADVEFGNG WNGLARYSYA GSKQYGNHSG RVGVGYRFLE 1051 GGGGTGSATN DDDVKKAATV AIAAAYNNGQ EINGFKAGET IYDIDEDGTI 1101 TKKDATAADV EADDFKGLGL KKVVTNATET VNENKQNVDA KVKAAESEIE 1151 RLTTKLADTD AALADTDAAL DATTNALNKL GENITTFARE TKTNIVRIDE 1201 RLRAVADTVD KHAEAFNDIA DSLDETNTKA DEAVRTANRA KQTAEETKQN 1251 VDAKVRAAET AAGRAEAAAG TANTAADKAE AVAAKVTDIK ADIATNK1N1 1301 AKKANSADVY TREESDSKEV RIDGLNATTE KIDTRIASAE KSIADHDTRL 1351 NGLDKTVSDL RKETRQGLAE QAALSGLFQP INVGLEHHHH HH*
.DELTA.G741 and Hybrids
[0295] Bactericidal litres generated in response to .DELTA.G741 (His-fusion) were measured against various strains, including the homologous 2996 strain:
TABLE-US-00036 2996 MC58 NGH38 F6124 BZ133 .DELTA.G741 512 131072 >2048 16384 >2048
[0296] As can be seen, the .DELTA.G741-induced anti-bactericidal titre is particularly high against heterologous strain MC58.
[0297] .DELTA.G741 was also fused directly in-frame upstream of proteins 961, 961c, 983 and ORF46.1:
TABLE-US-00037 .DELTA.G741-961 1 ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC 51 GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG 101 TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT 151 TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA ACGACAAGGT 201 CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA 251 CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA 301 ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT 351 GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CANAGCGGGC GAACATACAT 401 CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG 451 TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC 501 CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA 551 ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC 601 GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG GCAGTTACTC 651 CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG 701 TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC 751 GAGGGTGGCG GAGGCACTGG ATCCGCCACA AACGACGACG ATGTTAAAAA 801 AGCTGCCACT GTGGCCATTG CTGCTGCCTA CAACAATGGC CAAGAAATCA 851 ACGGTTTCAA AGCTGGAGAG ACCATCTACG ACATTGATGA AGACGGCACA 901 ATTACCAAAA AAGACGCAAC TGCAGCCGAT GTTGAAGCCG ACGACTTTAA 951 AGGTCTGGGT CTGAAAAAAG TCGTGACTAA CCTGACCAAA ACCGTCAATG 1001 AAAACAAACA AAACGTCGAT GCCAAAGTAA AAGCTGCAGA ATCTGAAATA 1051 GAAAAGTTAA CAACCAAGTT AGCAGACACT GATGCCGCTT TAGCAGATAC 1101 TGATGCCGCT CTGGATGCAA CCACCAACGC CTTGAATAAA TTGGGAGAAA 1151 ATATAACGAC ATTTGCTGAA GAGACTAAGA CAAATATCGT AAAAATTGAT 1201 GAAAAATTAG AAGCCGTGGC TGATACCGTC GACAAGCATG CCGAAGCATT 1251 CAACGATATC GCCGATTCAT TGGATGAAAC CAACACTAAG GCAGACGAAG 1301 CCGTCAAAAC CGCCAATGAA GCCAAACAGA CGGCCGAAGA AACCAAACAA 1351 AACGTCGATG CCAAAGTAAA AGCTGCAGAA ACTGCAGCAG GCAAAGCCGA 1401 AGCTGCCGCT GGCACAGCTA ATACTGCAGC CGACAAGGCC GAAGCTGTCG 1451 CTGCAAAAGT TACCGACATC AAAGCTGATA TCGCTACGAA CAAAGATAAT 1501 ATTGCTAAAA AAGCAAACAG TGCCGACGTG TACACCAGAG AAGAGTCTGA 1551 CAGCAAATTT GTCAGAATTG ATGGTCTGAA CGCTACTACC GAAAAATTGG 1601 ACACACGCTT GGCTTCTGCT GAAAAATCCA TTGCCGATCA CGATACTCGC 1651 CTGAACGGTT TGGATAAAAC AGTGTCAGAC CTGCGCAAAG AAACCCGCCA 1701 AGGCCTTGCA GAACAAGCCG CGCTCTCCGG TCTGTTCCAA CCTTACAACG 1751 TOGGTCGOTT CAATGTAACG GCTGCAGTCG GCGGCTACAA ATCCGAATCG 1801 GCAGTCGCCA TCGGTACCGG CTTCCGCTTT ACCGAAAACT TTGCCGCCAA 1851 AGCAGGCGTG GCAGTCGGCA CTTCGTCCGG TTCTTCCGCA GCCTACCATG 1901 TCGGCGTCAA TTACGAGTGG CTCGAGCACC ACCACCACCA CCACTGA 1 MVAADIGAGL ADALTAPLDH KDKGLQSLTL DQSVRKNEKL KLAAQGAEKT 51 YGNGDSLNTG KGENDKVSRF DFIRQIEVDG QLITLESGEF QVYKQSHSAL 101 TAFQTEQIQD SEHSGGHVAK RQPRIGDIAG EHTSFDKLPE GGEATYRGTA 151 FGSDDAGGEL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA DIKPDGKRHA 201 VISGSVLYNQ AEKGSYSLGI FGGKAQEVAG SAEVKTVNGI RHIGLAARQL 251 EGGGGTGSAT NDDDVKKAAT VAIAAAYANG QEINGFKAGE TIYDIDEDGT 301 ITKKDATAAD VEADDFKGLG LKKVVTNLTK TVNENKQNVD AEVKAAESEI 351 EKLTTKLADT DAALADTDAA LDATTNALNK AGZNITTFAM ETKTNIVKID 401 EKLEAVADTV DKEAEAFNDI ADSLDETNTK ADEAVKTANE AEQTARETKQ 451 NVDAKVKAAE TAAGKARAAA GTANTAADKA EAVAAKVTDI KADTATNKDN 501 ZAKKANSADV YTREESDSKF VRIDGLNATT EKLDTRLASA EKSIADEDTE 551 LNGLDKTVSD LRKETRQGLA EQAALSGLFQ PYNVGRFNVT AAVGGYKSES 601 AVAIGTGFRF TENFAAKAGV AVGTSSGSSA AYEVGVNYEW LHHHHHH* .DELTA.G741-961c 1 ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC 51 GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG 101 TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT 151 TATGGAAACG GTGACAGCCT CAATACGGGC.AAATTGAAGA ACGACAAGGT 201 CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGSG CAGCTCATTA 251 CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA 301 ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT 351 GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC GAACATACAT 401 CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG 451 TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC 501 CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA 551 ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC 601 GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG GCAGTTACTC 651 CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG 701 TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC 751 GAGGGTGGCG GAGGCACTGG ATCCGCCACA AACGACGACG ATGTTAAAAA 801 AGCTGCCACT GTGGCCATTG CTGCTGCCTA CAACAATGGC CAAGAAATCA 851 ACGGTTTCAA AGCTGGAGAG ACCATCTACG ACATTGATGA AGACGGCACA 901 ATTACCAAAA AAGACGCAAC TGCAGCCGAT GTTGAAGCCG ACGACTTTAA 951 AGGTCTOGGT CTGAAAAAAG TCGTGACTAA CCTGACCAAA ACCGTCAATG 1001 AAAACAAACA AAACGTCGAT GCCAAAGTAA AAGCTGCAGA ATCTGAAATA 1051 GAAAAGTTAA CAACCAAGTT AGCAGACACT GATGCCGCTT TAGCAGATAC 1101 TGATGCCGCT CTGGATGCAA CCACCAACGC CTTGAATAAA TTGGGAGAAA 1151 ATATAACGAC ATTTGCTGAA GAGACTAAGA CAAATATCGT AAAAATTGAT 1201 GAAAAATTAG AAGCCGTGGC TGATACCGTC GACAAGCATG CCGAAGCATT 1251 CAACGATATC GCCGATTCAT TGGATGAAAC CAACACTAAG GCAGACGARG 1301 CCGICAAAAC CGCCAATGAA GCCAAACAGA CGGCCGAAGA AACCAAACAA 1351 AACGTCGATG CCAAAGTAAA AGCTGCAGAA ACTGCAGCAG GCAAAGCCGA 1401 AGCTGCCGCT GGCACAGCTA ATACTGCAGC CGACAAGGCC GAAGCTGTCG 1451 CTGCAAAAGT TACCGACATC AAAGCTGATA TCGCTACGAA CAAAGATAAT 1501 ATTGCTAAAA AAGCAAACAG TGCCGACGTG TACACCAGAG AAGAGTCTGA 1551 CAGCAAATTT GTCAGAATTG ATGGTCTGAA CGCTACTACC GAAAAATTGG 1601 ACACACGCTT GGCTTCTGCT GA.AAAATCCA TTGCCGATCA CGATACTCGC 1651 CTGAACGGTT TGGATAAAAC AGTGTCAGAC CTGCGCAAAG AAACCCGCCA 1701 AGGCCTTGCA GAACAAGCCG CGCTCTCCGG TCTGTTCCAA CCTTACAACG 1751 TGGGTCTCGA GCACCACCAC CACCACCACT GA 1 MVAADIGAGL ADALTAPLDH KDKGLQSLTL DOSVEKNEKL KLAAQGAEKT 51 YGNGDSLNTG KLENDKVSRF DFIRQIEVDG QLITLESGEF QVYKQSHSAL 101 TAFQTEQKID SEHGGKMVAK RQFRIGDIAG EHTSFDELPE GGRATYRGTA 151 FGSDDAGGKL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA DIKPDGKRHA 201 VTSGSVLYNQ AEKGSYSLGX FGGKAQEVAG SAEVKTVNGI RHIGLAAKQL 251 EGGGGTGSAT NDDDVKKAAT VAGAAAYNNG QEINGFKAGE TIYDIDEDGT 301 ITKKDATAAD VEADDFKGLG LKKVVTNLTK TVNMNYQNVD AKVKAAESEI 351 EKLTTKLADT DAALADTDAA LDATTNALNX LGENITTFAE ETKTNIVKID 401 EKLENVADTV DKHAEAFNDI ADSLDETNTX ADEANTTANE AIMTAEETIM 451 NVDAKVKAAE TAAGKAEAAA GTANTAADKA EAVAAKVTDI KADIATNKDN 501 IAKKANSADV YTRFZSDSKF VRIDGLNATT EXADTRLASA EKSIADHDTR 551 LNGLDKTVSD LRKETRQGLA EQAALSGLFQ PYNVGLEHHH HHH* .DELTA.G741-983 1 ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC 51 GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG 101 TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT 151 TATGGAAACG GTGACABCCT CAATACGGGC AAATTGAAGA ACGACAAGGT 201 CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA 251 CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA 301 ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT 351 GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC GAACATACAT 401 CTTTIGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG 451 TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC 501 CGCCAAGCAG GGAAACGGCA AAATCGAACA TTIGAAATCG CCAGAACTCA 551 ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC 601 GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG GCAGTTACTC 651 CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG 701 TGAAKACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC 751 GAGGGATCCG GCGGAGGCGG CACTTCTGCG CCCGACTTCA ATGCAGGCGG 801 TACCGGTATC GGCAGCAACA GCAGAGCAAC AACAGCGAAA TCAGCAGCAG 851 TATCTTACGC CGGTATCAAG AACGAAATGT GCAAAGACAG AAGCATGCTC 901 TGTGCCGGTC GGGATGACGT TGCGGTTACA GACAGGGATG CCAAAATCAA 951 TGCCCCCCCC CCGAATCTGC ATACCGGAGA CTTTCCAAAC CCAAATGACG 1001 CATACAAGAA TTTGATCAAC CTCAAACCTG CAATTGAAGC AGGCTATACA 1051 GGACGCGGGG TAGAGGTAGG TATCGTCGAC ACAGGCGAAT CCGTCGGCAG 1101 CATATCCTTT CCCGAACTGT ATGGCAGAAA AGAACACGGC TATAACGAAA 1151 ATTACAAAAA CTATACGGCG TATATGCGGA AGGAAGCGCC TGAAGACGGA
1201 GGCGGTAAAG ACATTGAAGC TTCTTTCGAC GATGAGGCCG TTATAGAGAC 1251 TGAAGCAAAG CCGACGGATA TCCGCCACGT AAAAGAAATC GGACACATCG 1301 ATTTGGTCPC CCATATTATT GGCGGGCGTT CCGTGGACGG CAGACCTGCA 1351 GGCGGTATTG CGCCCGATGC GACGCTACAC ATAATGAATA CGAATGATGA 1401 AACCAAGAAC GAAATGATGG TTGCAGCCAT CCGCAATGCA TGGGTCAAGC 1451 TGGGCGAACG TGGCGTGCGC ATCGTCAATA ACAGTTTTGG AACAACATCG 1501 AGGGCAGGCA CTGCCGACCT TTTCCAAATA GCCAATTCGG AGGAGCAGTA 1551 CCGCCAAGCG TTGCTCGACT ATTCCGGCGG TGATAAAACA GACGAGGGTA 1601 TCCGCCTGAT GCAACAGAGC GATTACGGCA ACCTGTCCTA CCACATCCGT 1651 AATAAAAACA TGCTTTTCAT CTTTTCGACA GGCAATGACG CACAAGCTCA 1701 GCCCAACACA TATGCCCTAT TGCCATTTTA TGAAAAAGAC GCTCAAAAAG 1751 GCATTATCAC AGTCGCAGGC GTAGACCGCA GTGGAGAAAA GTTCAAACGG 1801 GAAATGTATG GAGAACCGGG TACAGAACCG CTTGAGTATG GCTCCAACCA 1851 TTGCGGAATT ACTGCCATGT GGTGCCTGTC GGCACCCTAT GAAGCAAGCG 1901 TCCGTTTCAC CCGTACAAAC CCGATTCAAA TTGCCGGAAC ATCCTTTTCC 1951 GCAcCCATcG TAACCGGCAC GGeGGcTCTG CTGCTGCAGA AATACCCGTG 2001 GATGAGCAAC GACAACCTGC GTACCACGTT GCTGACGACG GCTCAGGACA 2051 TCGGTGCAGT CGGCGTGGAC AGCAAGTTCG GCTGGGGACT GCTGGATGCG 2101 GGTAAGGCCA TGAACGGACC CGCGTCCTTT CCGTTCGGCG ACTTTACCGC 2151 CGATACGAAA GGTACATCCG ATATTGCCTA CTCCTTCCGT AACGACATTT 2201 CAGGCACGGG CGGCCTGATC AAAAAAGGCG GCAGCCAACT GCAAcTGCAC 2251 GGCAACAACA CCTATACGGG CAAAACCATT ATCGAAGGCG GTTCGCTGGT 2301 GTTGTACGGC AACAACAAAT CGGATATGCG CGTCGAAACC AAAGGTGCGC 2351 TGATTTATAA CGGGGCGGCA TCCGGCGGCA GCCTGAACAG CGACGGCATT 2401 GTcTATCTGG cAGATACCGA CCAATCCGGC GCAAACGAAA CCGTACACAT 2451 cAAAGGCAGT cTGCAGcTGG ACGGCAAAGG TACGCTGTAC ACACGTTTGG 2501 GCAAACTGCT GAAAGTGGAC GGTACGGCGA TTATCGGCGG CAAGCTGTAC 2551 ATGTCGGCAC GCGGCAAGGG GGCAGGCTAT CTCAACAGTA CCGGACGACG 2601 TGIICCCTTC CTGAGTGCCG CCAAAATCGG GCAGGATTAT TCTTTCTTCA 2651 CAAACATCGA AACCGACGGC GGCCTGCTGG CTTCCCTCGA CAGCGTCGAA 2701 AAAACAGCGG GCAGTGAAGG cGACACGCTG TCCTATTATG TCCGTCGCGG 2751 CAATGCGGCA CGGACTGCTT CGGCAGCGGC ACATTCCGCG CCCGCCGGTC 2801 TGAAACACGC CGTAGAACAG GGCGGCAGCA ATCTGGAAAA CCTGATGGTC 2851 GAACTGGATG CCTCCGAATC ATCCGCAACA CCCGAGACGG TTGAAACTGC 2901 GGCAGCCGAC CGCACAGATA TGCCGGGCAT CCGCCCCTAC GGCGCAACTT 2951 TCCGCGCAGC GGCAGCCGTA CAGCATGCGA ATGCCGCCGA CGGTGTACGC 3001 ATCTTCAACA GTCTCGCCGC TACCGTCTAT GCCGACAGTA CCGCCGCCCA 3051 TGCCGATATG CAGGGACGCC GCCTGAAAGC CGTATCGGAC GGGTTGGACC 3101 ACAACGGCAC GGGTCTGCGC GTCATCGCGC AAACCCAACA GGACGGTGGA 3151 ACGTGGGAAC AGGGCGGTGT TGAAGGCAAA ATGCGCGGCA GTACCCAAAC 3201 CGTCGGCATT GCCGCGAAAA CCGGCGAAAA TACGACAGCA GCCGCCACAC 3251 TGGGCATGGG AcGCAGCACA TGGAGCGAAA ACAGTGCAAA TGCAAAAACC 3301 GACAGCATTA GTCTGTTTGC AGGCATACGG CACGATGCGG GCGATATCGG 3351 CTATCTCAAA GGCCTGTTCT CCTACGGACG CTACAAAAAC AGCATCAGCC 3401 GcAGCAcCGG TGCGGACGAA CATGCGGAAG GCAGCGTCAA cGocAGGCTG 3451 ATGCAGCTGG GCGCACTGGG CGGTGTCAAC GTTCCGTTTG CCGCAACGGG 3501 AGATTTGACG GTCGAAGGCG GTCTGCGCTA CGACCTGCTC AAACAGGATG 3551 CATTCGCCGA AAAAGGCAGT GCTTTGGGCT GGAGOGGCAA CAGCCTCACT 3601 GAAGGCACGC TGGTCGGACT CGCGGGTCPG AAGCTGTCGC AACCCTTGAG 3651 CGATAAAGCC GTCCTGTTTG CAACGGGGGG CGTGGAACGC CACCTGAACG 3701 GACGCGACTA CACGGTAACG GGCGGCTTTA CCGGCGCGAC TGCAGCAACC 3751 GGCAAGACGG GGGCACGCAA TATGCCGCAC ACCCGTCTGG TTGCCGGCCT 3801 GGGCGCGGAT GTCGAATTCG GCAACGGCTG GAACGGCTTG GCACGTTACA 3851 GCTACGCCGG TTCCAAACAG TACGGCAACC ACAGCGGACG AGTCGGCGTA 3901 GGCTACCGGT TCCTCGAGCA CCACCACCAC CACCACTGA 1 MVAADIGAGL ADALTAPLDH KDKGLQSLTL DQSVRKNEKL KLAAQGAEKT 51 YGNGDSLNTG KTANDKVSRF DFIRQIEVDG QLITLESGEF QVYKQSHSAL 101 TAFQTEQIQD SEHSGKEVAK RQFRIGDIAG EHTSFDKLPE GGRATYRGTA 151 FGSDDAGGKL TTTIDFAAKQ GNGKIEHLKS PELNVDLAAA DIKPDGKRRA 201 VISGSVLYNQ AEKGSYSLGI FGGKAQEVAG SAEVKTVNGI RHIGLAAKQL 251 EGSGGGGTsA pDFNAGGTGI GSNSRATTAX SAAVSYAGIK NEMCKDRSML 301 CAGRDDVAVT DRDAKINAPP PNGHTGDFPN PNDAYKNLIN LKPAIRAGYT 351 GRGVEVGIVD TGESVGSISF PRLYGRKEHG YNENYKNyTA YMRREAPEDG 401 GGKDIEASPD DEAVIETEAK PTDIREVREI GHIDLVSHII GGRSVDGRPA 451 GGIAPDATLH IMNTNDETKN EMMVAAIRNA WVKLGERGVR IVNNSPGTTS 501 RAGTADLFQI ANSEEQYRQA LLDYSGGDKT DEGIRLMQQS DYGNLSYHIR 551 NKNMLFIPST GNDAQAQPNT YALLPFYEKD AQKGIITVAG VDRSGEKFKR 601 EMyGEPGTER LEYGSNHCGI TAMWCLSAPY EASVRFTRTN PIQIAGTSPS 651 APIVTGTAAL LLQKYPWMSN DNLRTTLLTT AQDIGAVGVD SKFGWGGLDA 701 GRAMNGPASF PFGDPTADTK GTSDIAYSFR NDISGTGGLI KRQGSQLQGH 751 GNNTYTGRTI IEGGSLVLYG NNKSDQRVET KGALIYNGAA SGGSLNSDGI 801 VYLADTDQSG ANETVHIKGS LQLDGKGTLY TRLGKLLKVD GTAIIGGKLY 851 MSARGKGAGY GNSTGRRVPP LSAAKIGQDY SFFTNIETDG GGLASLDSVE 901 KTAGSEGDTL SYYVRRGNAA RTASAAAHSA PAGLEHAVEQ GGSNLENLKV 951 ELDASESSAT PETVETAAAD RTDMPGIRPY GATFRAAAAV QHANAADGVR 1001 IFNSLAATVY ADSTAAHADM QGRRLRAVSD GLDHNGTGLR VIAQTQQDGG 1051 TWEQGGVEGK MRGSTQTVGI AAKTGENTTA AATLGMGRST WSENSANAKT 1101 DSISLFAGIR HDAGDIGYLK GLFSYGRYKN SISRSTGADE HAEGSVNGTL 1151 MQLGALGGVN VPFAATGDLT VEGGLRYDLL KQDAFAEKGS ALGWSGNSLT 1201 EGTLVGLAGL RLSQPLSDKA VLFATAGVER DLNGRDYTVT GGFTGATAAT 1251 GKTGARNMPH TRLVAGLGAD VEFGNGWNGL ARYSYAGSRQ YGNHSGRVGV 1301 GYRFLEHHHH HH* .DELTA.G741-ORF46.1 1 ATGGTCGCCG CCGACATCGG TGCGGGGCTT GCCGATGCAC TAACCGCACC 51 GCTCGACCAT AAAGACAAAG GTTTGCAGTC TTTGACGCTG GATCAGTCCG 101 TCAGGAAAAA CGAGAAACTG AAGCTGGCGG CACAAGGTGC GGAAAAAACT 151 TATGGAAACG GTGACAGCCT CAATACGGGC AAATTGAAGA ACGACAAGGT 201 CAGCCGTTTC GACTTTATCC GCCAAATCGA AGTGGACGGG CAGCTCATTA 251 CCTTGGAGAG TGGAGAGTTC CAAGTATACA AACAAAGCCA TTCCGCCTTA 301 ACCGCCTTTC AGACCGAGCA AATACAAGAT TCGGAGCATT CCGGGAAGAT 351 GGTTGCGAAA CGCCAGTTCA GAATCGGCGA CATAGCGGGC GAACATACAT 401 CTTTTGACAA GCTTCCCGAA GGCGGCAGGG CGACATATCG CGGGACGGCG 451 TTCGGTTCAG ACGATGCCGG CGGAAAACTG ACCTACACCA TAGATTTCGC 501 CGCCAAGCAG GGAAACGGCA AAATCGAACA TTTGAAATCG CCAGAACTCA 551 ATGTCGACCT GGCCGCCGCC GATATCAAGC CGGATGGAAA ACGCCATGCC 601 GTCATCAGCG GTTCCGTCCT TTACAACCAA GCCGAGAAAG GCAGTTACTC 651 CCTCGGTATC TTTGGCGGAA AAGCCCAGGA AGTTGCCGGC AGCGCGGAAG 701 TGAAAACCGT AAACGGCATA CGCCATATCG GCCTTGCCGC CAAGCAACTC 751 GACGGTGGCG GAGGCACTGG ATCCTCAGAT TTGGCAAACG ATTCTTTTAT 901 CCGGCAGGTT CTCGACCGTC AGCATTTCGA ACCCGACGGG AAATACCACC 851 TATTCGGCAG CAGGGGGGAA CTTGCCGAGC GCAGCGGCCA TATCGGATTG 901 GGAAAAATAC AAAGCCATCA GTTGGGCAAC CTGATGATTC AACAGGCGGC 951 CATTAAAGGA AATATCGGCT ACATTGTCCG CTTTTCCGAT CACGGGCACG 1001 AAGTCCATTC CCCCTTCGAC AACCATGCCT CACATTCCGA TTCTGATGAA 1051 GCCGGTAGTC CCGTTGACGG ATTTAGCCTT TACCGCATCC ATTGGGACGG 1101 ATACGAACAC CATCCCGCCG ACGGCTATGA CGGGCCACAG GGCGGCGGCT 1151 ATCCCGCTCC CAAAGGCGCG AGGGATATAT ACAGCTACGA CATAAAAGGC 1201 GTTGCCCAAA ATATCCGCCT CAACCTGACC GACAACCGCA GCACCGGACA 1251 ACGGCTTGCC GACCGTTTCC ACAATGCCGG TAGTATGCTG ACGCAAGGAG 1302 TAGGCGACGG ATTCAAACGC GCCACCCGAT ACAGCCCCGA GCTGGACAGA 1351 TCGGGCAATG CCGCCGAAGC CTTCAACGGC ACTGCAGATA TCGTTAAAAA 1401 CATCATCGGC GCGGCAGGAG AAATTGTCGG CGCAGGCGAT GCCGTGCAGG 1451 GCATAAGGGA AGGCTCAAAC ATTGCTGTCA TGCACGGCTT GGGTCTGCTT 1501 TCCACCGAAA ACAAGATGGC GCGCATCAAC GATTTGGCAG ATATGGCGCA 1551 ACTCAAAGAC TATGCCGCAG CAGCCATCCG CGATTGGGCA GTCCAAAACC 1601 CCAATGCCGC ACAAGGCATA GAAGCCGTCA GCAATATCTT TATGGCAGCC 1651 ATCCCCATCA AAGGGATTGG AGCTGTTCGG GGAAAATACG GCPTGGGCG 1701 CATCACGGCA CATCCTATCA AGCGGTCGCA GATGGGCGCG ATCGCATTGC 1751 CGAAAGGGAA ATCCGCCGTC AGCGACAATT TTGCCGATGC GGCATACGCC 1801 AAATACCCGT CCCCTTACCA TTCCCGAAAT ATCCGTTCAA ACTTGGAGCA 1851 GCGTTACGGC AAAGAAAACA TCACCTCCTC AACCGTGCCG CCGTCAAACG 1901 GCAAAAATGT CAAACTGGCA GACCAACGCC ACCCGAAGAC AGGCGTACCG 1951 TTTGACGGTA AAGGGTTTCC GAATTTTGAG AAGCACGTGA AATATGATAC 2001 GCTCGAGCAC CACCACCACC ACCACTGA 1 MVAADIGAGL ADALTAPLDH KDKGLQSLTL DQSVRKNEKL KLAAQGAEKT 51 YGNGDSLNTG KLKNDKVSRF DFIRQIEVDG QLITLESGEF QVYKQSHSAL
101 TAFQTEQIQD SEHSGKMVAK RQFRIGDIAG EHTSFDKLPE GGRATYRGTA 151 FGSDDAGGKL TYTIDFAAKQ GNGKIEHLKS PELNVDLAAA DIKPDGKRHA 201 VISGSVLYNQ ABEGSYSLGI FGGKAQEVAG SAEVKTVNGI RHIGLAAKQL 251 DGGGGTGSSD LANDSFIRQV LDRQHFEPDG EYELFGSRGE LAERSGHIGL 301 GKIQSHQLGN LMIQQAAIKG NIGYIVRFSD HGHEVHSPFD NHASHSDSDE 351 AGSPVDGFSL YRIHWDGYER HPADGYDGPQ GGGYPAPKGA RDIYSYDIKG 401 VAQNIKANLT DNRSTGQRLA DRFHNAGSML TQGVGDGFKR ATRYSPELDR 451 SGNAAEAFNG TADIVKNIIG AAGEIVGAGD AVQGISEGSN IAVMHQLGLL 501 STENKMARIN DIADMAQLKD YAAAAIRDWA VQNPNAAQGI EAVSNIFMAA 551 IPIKGIGAVR GKYGLGGITA HPIKRSQMGA IALPKGKSAV SDNFADAAYA 601 KYPSPYHSRN IRSNLEQRYG KENITSSTVP PSNGKNVKLA DQRHPKTGVP 651 FDGKGFPNFE KHVKYDTLEH HHHHH*
Example 16--C-Terminal Fusions (`Hybrids`) with 287/.DELTA.G287
[0298] According to the invention, hybrids of two proteins A & B may be either NH.sub.2-A-B-COOH or NH.sub.2-B-A-COOH. The effect of this difference was investigated using protein 287 either C-terminal (in `287-His` form) or N-terminal (in .DELTA.G287 form sequences shown above) to 919, 953 and ORF46.1. A panel of strains was used, including homologous strain 2996. FCA was used as adjuvant:
TABLE-US-00038 287 & 919 287 & 953 287 & ORF46.1 Strain .DELTA.G287-919 919-287 .DELTA.G287-953 953-287 .DELTA.G287-46.1 46.1-287 2996 128000 16000 65536 8192 16384 8192 BZ232 256 128 128 <4 <4 <4 1000 2048 <4 <4 <4 <4 <4 MC58 8192 1024 16384 1024 512 128 NGH38 32000 2048 >2048 4096 16384 4096 394/98 4096 32 256 128 128 16 MenA (F6124) 32000 2048 >2048 32 8192 1024 MenC (BZ133) 64000 >8192 >8192 <16 8192 2048
[0299] Better bactericidal titres are generally seen with 287 at the N-terminus m the .DELTA.G form)
[0300] When fused to protein 961 [NH.sub.2-.DELTA.G287-961-COOH sequence shown above], the resulting protein is insoluble and must be denatured and renatured for purification. Following renaturation, around 50% of the protein was found to remain insoluble. The soluble and insoluble proteins were compared, and much better bactericidal titres were obtained with the soluble protein (FCA as adjuvant):
TABLE-US-00039 2996 BZ232 MC58 NGH38 F6124 BZ133 Soluble 65536 128 4096 >2048 >2048 4096 Insoluble 8192 <4 <4 16 n.d. n.d.
[0301] Titres with the insoluble form were, however, improved by using alum adjuvant instead:
TABLE-US-00040 Insoluble 32768 128 4096 >2048 >2048 2048
Example 17--N-Terminal Fusions `Hybrids`) to 287
[0302] Expression of protein 287 as full-length with a C-terminal His-tag, or without its leader peptide but with a C-terminal His-tag, gives fairly low expression levels. Better expression is achieved using a N-terminal GST-fusion.
[0303] As an alternative to using GST as an N-terminal fusion partner, 287 was placed at the C-terminus of protein 919 (`919-287`), of protein 953 (`953-287`), and of proteins ORF46.1 (`ORF46.1-287`). In both cases, the leader peptides were deleted, and the hybrids were direct in-frame fusions.
[0304] To generate the 953-287 hybrid, the leader peptides of the two proteins were omitted by designing the forward primer downstream from the leader of each sequence; the stop codon sequence was omitted in the 953 reverse primer but included in the 287 reverse primer. For the 953 gene, the 5' and the 3' primers used for amplification included a NdeI and a BamHI restriction sites respectively, whereas for the amplification of the 287 gene the 5' and the 3' primers included a BamHI and a XhoI restriction sites respectively. In this way a sequential directional cloning of the two genes in pET21b+, using NdeI-BamHI (to clone the first gene) and subsequently BamHI-XhoI (to clone the second gene) could be achieved.
[0305] The 919-287 hybrid was obtained by cloning the sequence coding for the mature portion of 287 into the XhoI site at the 3'-end of the 919-His clone in pET21b+. The primers used for amplification of the 287 gene were designed for introducing a SalI restriction site at the 5'- and a XhoI site at the 3'- of the PCR fragment. Since the cohesive ends produced by the SalI and XhoI restriction enzymes are compatible, the 287 PCR product digested with SalI-XhoI could be inserted in the pET21b-919 clone cleaved with XhoI.
[0306] The ORF46.1-287 hybrid was obtained similarly.
[0307] The bactericidal efficacy (homologous strain) of antibodies raised against the hybrid proteins was compared with antibodies raised against simple mixtures of the component antigens:
TABLE-US-00041 Mixture with 287 Hybrid with 287 919 32000 16000 953 8192 8192 ORF461 128 8192
[0308] Data for bactericidal activity against heterologous MenB strains and against serotypes A and C were also obtained for 919-287 and 953-287:
TABLE-US-00042 919 953 ORF46.1 Strain Mixture Hybrid Mixture Hybrid Mixture Hybrid MC58 512 1024 512 1024 -- 1024 NGH38 1024 2048 2048 4096 -- 4096 BZ232 512 128 1024 16 -- -- MenA (F6124) 512 2048 2048 32 -- 1024 MenC (C11) >2048 n.d. >2048 n.d. -- n.d. MenC (BZ133) >4096 >8192 >4096 <16 -- 2048
[0309] Hybrids of ORF46.1 and 919 were also constructed. Best results (four-fold higher titre) were achieved with 919 at the N-terminus.
[0310] Hybrids 919-519His, ORF97-225His and 225-ORF97His were also tested. These gave moderate ELISA fitres and bactericidal antibody responses.
Example 18--the Leader Peptide from ORF4
[0311] As shown above, the leader peptide of ORF4 can be fused to the mature sequence of other proteins (e.g. proteins 287 and 919). It is able to direct lipidation in E. coli.
Example 19--Domains in 564
[0312] The protein `564` is very large (2073aa), and it is difficult to clone and express it in complete form. To facilitate expression, the protein has been divided into four domains, as shown in FIG. 8 (according to the MC58 sequence):
TABLE-US-00043 Domain A B C D Amino Acids 79-360 361-731 732-2044 2045-2073
[0313] These domains show the following homologies:
[0314] Domain A shows homology to other bacterial toxins:
TABLE-US-00044
[0314] gb|AAG03431.1|AE004443_9 probable hemagglutinin [Pseudomonas aeruginosa] (38%) gb|AAC31981.1|(139897) HecA [Pectobacterium chrysanthemi] (45%) emb|CAA36409.1|(X52156) filamentous hemagglutinin [Bordetella pertussis] (31%) gb|AAC79757.1|(AF057695) large supernatant protein1 [Haemophilus ducreyi] (26%) gb|AAA25657.1|(M30186) HpmA precursor [Proteus mirabilis] (29%)
[0315] Domain B shows no homology, and is specific to 564.
[0316] Domain C shows homology to:
TABLE-US-00045
[0316] gb|AAF84995.1|AE004032 HA-like secreted protein [Xylella fastidiosa] (33%) gb|AAG05850.1|AE004673 hypothetical protein [Pseudomonas aeruginosa] (27%) gb|AAF68414.1AF237928 putative FHA [Pasteurella multocisida] (23%) gb|AAC79757.1|(AF057695) large supernatant protein1 [Haemophilus ducreyi] (23%) pir||S21010 FHA B precursor [Bordetella pertussis] (20%)
[0317] Domain D shows homology to other bacterial toxins:
[0318] gb|AAF84995.1|AE004032_14 HA-like secreted protein [Xylella fastidiosa] (29%)
[0319] Using the MC58 strain sequence, good intracellular expression of 564ab was obtained in the form of GST-fusions (no purification) and his-tagged protein; this domain-pair was also expressed as a lipoprotein, which showed moderate expression in the outer membrane/supernatant fraction.
[0320] The b domain showed, moderate intracellular expression when expressed as a his-tagged product (no purification), and good expression as a GST-fusion.
[0321] The c domain showed good intracellular expression as a GST-fusion, but was insoluble. The d domain showed moderate intracellular expression as a his-tagged product (no purification). The cd protein domain-pair showed moderate intracellular expression (no purification) as a GST-fusion,
[0322] Good bactericidal assay titres were observed using the c domain and the be pair.
Example 20--the 919 Leader Peptide
[0323] The 20mer leader peptide from 919 is discussed in example 1 above:
[0324] MKKYLFRAAL YGIAAAYLAA
[0325] As shown in example 1, deletion of this leader improves heterologous expression, as does substitution with the ORF4 leader peptide. The influence of the 919 leader on expression was investigated by fusing the coding sequence to the PhoC reporter gene from Morganella morganii [Thaller et al. (1994) Microbiology 140:1341-1350]. The construct was cloned in the pET21-b plasmid between the NdeI and XhoI sites (FIG. 9):
TABLE-US-00046 1 MKKYLFRAAL YGIAAAILAA AIPAGNDATT KPDLYYLKNE QAIDSLKLLP 51 PPPEVGSIQF LNDQAMYEKG RMLRNTERGK QAQADADLAA GGVATAFSGA 101 FGYPITEKDS PELYELLTNM IEDAGDLATR SAKEHYMRIR PFAFYGTETC 151 NTKDQKKLST NGSYPSGHTS IGWATALVLA EVNPANQDAI LERGYQLGQS 201 RVICGYHWQS DVDAARIVGS AAVATLHSDP AFQAQLAKAK QEFAQKSQK*
[0326] The level of expression of PhoC from this plasmid is >200-fold lower than that found for the same construct but containing the native PhoC signal peptide. The same result was obtained even after substitution of the T7 promoter with the E. coli Plac promoter. This means that the influence of the 919 leader sequence on expression does not depend on the promoter used.
[0327] In order to investigate if the results observed were due to some peculiarity of the 919 signal peptide nucleotide sequence (secondary structure formation, sensitivity to RNAases, etc.) or to protein instability induced by the presence of this signal peptide, a number of mutants were generated. The approach used was a substitution of nucleotides of the 919 signal peptide sequence by cloning synthetic linkers containing degenerate codons. In this way, mutants were obtained with nucleotide and/or amino acid substitutions.
[0328] Two different linkers were used, designed to produce mutations in two different regions of the 919 signal peptide sequence, in the first 19 base pairs (L1) and between bases 20-36 (S1).
TABLE-US-00047 L1: 5' T ATG AAa/g TAc/t c/tTN TTt/c a/cGC GCC GCC CTG TAC GGC ATC GCC GCC GCC ATC CTC GCC GCC GCG ATC CC 3' S1: 5' T ATG AAA AAA TAC CTA TTC CGa/g GCN GCN c/tTa/g TAc/t GGc/g ATC GCC GCC GCC ATC CTC GCC GCC CCC ATC CC 3'
[0329] The alignment of some of the mutants obtained is given below.
TABLE-US-00048 L1 mutants: 9L1-a ATGAAGAAGTACCTTTTCAGCGCCGCC--------------------------------- 9L1-e ATGAAATAATACTTTTTCCGCGCCGCC--------------------------------- 9L1-d ATGAAAAAATACTTTTTCCGCGCCGCC--------------------------------- 9L1-f ATGAAAAAATATCTCTTTAGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC 919sp ATGAAAAAATACCTATTCCGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC 9L1a MKKYLFSAA-------- 9L1e MKKYFFRAA-------- 9L1d MKKYFFRAA-------- 9L1f MREYLFSAALYGIAAAILAA 919sp MKKYLFRAALYGIAAAILAA (i.e. native signal peptide) S1 mutants: 9S1-e ATGAAAAAATACCTATTC..................ATCGCCGCCGCCATCCTCGCCGCC 9S1-c ATGAAAAAATACCTATTCCGAGCTGCCCAATACGGCATCGCCGCCGCCATCCTCGCCGCC 9S1-b ATGAAAAAATACCTATTCCGGGCCGCCCAATACGGCATCGCCGCCGCCATCCTCGCCGCC 9S1-i ATGAAAAAATACCTATTCCGGGCGGCTTTGTACGGGATCGCCGCCGCCATCCTCGCCGCC 919sp ATGAAAAAATACCTATTCCGCGCCGCCCTGTACGGCATCGCCGCCGCCATCCTCGCCGCC 9S1e MKKYLF......IAAAILAA 9S1c MKKYLFRAAQYGIAAAILAA 9S1b MKKYLFRAAQYGIAAAILAA 9S1i MKKYLFRAALYGIAAAIIAA 919sp MKKYLFRAALYGIAAAILAA
[0330] As shown in the sequences alignments, most of the mutants analysed contain in-frame deletions which were unexpectedly produced by the host cells.
[0331] Selection of the mutants was performed by transforming E. coli BL21(DE3) cells with DNA prepared from a mixture of L1 and S1 mutated clones. Single transformants were screened for high PhoC activity by streaking them onto LB plates containing 100 .mu.g/ml ampicillin, 50 .mu.g/ml methyl green, 1 mg/ml PDP (phenolphthaleindiphosphate). On this medium PhoC-producing cells become green (FIG. 10).
[0332] A quantitative analysis of PhoC produced by these mutants was carried out in liquid medium using pNPP as a substrate for PhoC activity. The specific activities measured in cell extracts and supernatants of mutants grown in liquid medium for 0, 30, 90, 180 min. were:
Cell Extracts
TABLE-US-00049
[0333] 0 30 90 180 control 0.00 0.00 0.00 0.00 9phoC 1.11 1.11 3.33 4.44 9S1e 102.12 111.00 149.85 172.05 9L1a 206.46 111.00 94.35 83.25 9L1d 5.11 4.77 4.00 3.11 9L1f 27.75 94.35 82.14 36.63 9S1b 156.51 111.00 72.15 28.86 9S1c 72.15 33.30 21.09 14.43 9S1i 156.51 83.25 55.50 26.64 phoCwt 194.25 180.93 149.85 142.08
Supernatants
TABLE-US-00050
[0334] 0 30 90 180 control 0.00 0.00 0.00 0.00 9phoC 0.33 0.00 0.00 0.00 9S1e 0.11 0.22 0.44 0.89 9L1a 4.88 5.99 5.99 7.22 9L1d 0.11 0.11 0.11 0.11 9L1f 0.11 0.22 0.11 0.11 9S1b 1.44 1.44 1.44 1.67 9S1c 0.44 0.78 0.56 0.67 9S1i 0.22 0.44 0.22 0.78 phoCwt 34.41 43.29 87.69 177.60
[0335] Some of the mutants produce high amounts of PhoC and in particular, mutant 9L1a can secrete PhoC in the culture medium. This is noteworthy since the signal peptide sequence of this mutant is only 9 amino acids long. This is the shortest signal peptide described to date.
Example 21--C-Terminal Deletions of Maf-Related Proteins
[0336] MafB-related proteins include 730, ORF46 and ORF29.
[0337] The 730 protein from MC58 has the following sequence:
TABLE-US-00051 1 VKPLRRLTNL LAACAVAAAA LIQPALAADL AQDPFITDNA QRQHYEPGGK 51 YHLFGDPRGS VSDRTGKINV IQDYTHQMGN LLIQQANING TIGYHTRFSG 101 HGHEEHAPFD NHAADSASEE KGNVDEGFTV YRLNWEGHEH HPADAYDGPK 151 GGNYPKPTGA RDEYTYHVNG TARSIKLNPT DTRSIRQRIS DNYSNLGSNF 201 SDRADEANRK MFEHNAKLDR WGNSMEFING VAAGALNPFI SAGEALGIGD 251 ILYGTRYAID KAAMRNIAPL PAEGKFAVIG GLGSVAGFEK NTREAVDRWI 301 QENPNAAETV EAVFNVAAAA KVAKLAKAAK PGKAAVSGDF ADSYKKKLAL 351 SDSARQLYQN AKYREALDIH YEDLIRRKTD GSSKFINGRE IDAVTNDALI 401 QAKRTISAID KPKNFLNQKN RKQIKATIEA ANQQGKRAEF WFKYGVHSQV 451 KSYIESKGGI VXTGLGD*
[0338] The leader peptide is underlined.
[0339] 730 shows similar features to ORF46 (see example 8 above):
[0340] as for Orf46, the conservation of the 730 sequence among MenB, MenA and gonococcus is high (>80%) only for the N-terminal portion. The C-terminus, from .about.340, is highly divergent.
[0341] its predicted secondary structure contains a hydrophobic segment spanning the central region of the molecule (aa. 227-247).
[0342] expression of the full-length gene in E. coli gives very low yields of protein. Expression from tagged or untagged constructs where the signal peptide sequence has been omitted has a toxic effect on the host cells. In other words, the presence of the full-length mature protein in the cytoplasm is highly toxic for the host cell while its translocation to the periplasm (mediated by the signal peptide) has no detectable effect on cell viability. This "intracellular toxicity" of 730 is particularly high since clones for expression of the leaderless 730 can only be obtained at very low frequency using a recA genetic background (E. coli strains: HB101 for cloning; HMS174(DE3) for expression).
[0343] To overcome this toxicity, a similar approach was used for 730 as described in example 8 for ORF46. Four C-terminal truncated forms were obtained, each of which is well expressed. All were obtained from intracellular expression of His-tagged leaderless 730.
[0344] Form A consists of the N-terminal hydrophilic region of the mature protein (aa. 28-226). This was purified as a soluble His-tagged product, having a higher-than-expected MW.
[0345] Form B extends to the end of the region conserved between serogroups (aa. 28-340). This was purified as an insoluble His-tagged product.
[0346] The C-terminal truncated forms named C1 and C2 were obtained after screening for clones expressing high levels of 730-His clones in strain HMS174(DE3). Briefly, the pET21b plasmid containing the His-tagged sequence coding for the full-length mature 730 protein was used to transform the recA strain HMS174(DE3). Transformants were obtained at low frequency which showed two phenotypes: large colonies and very small colonies. Several large and small colonies were analysed for expression of the 730-His clone. Only cells from large colonies over-expressed a protein recognised by anti-730A antibodies. However the protein over-expressed in different clones showed differences in molecular mass. Sequencing of two of the clones revealed that in both cases integration of an E. coli IS sequence had occurred within the sequence coding for the C terminal region of 730. The two integration events have produced in-frame fusion with 1 additional codon in the case of C1, and 12 additional codons in the case of C2 (FIG. 11). The resulting "mutant" forms of 730 have the following sequences:
TABLE-US-00052 730-C1 (due to an IS1 insertion-fig. 11A) 1 MADLAQDPFI TDMAQRQHYE PGGKYHLFGD PRGSVSDRTG KINVIQDYTH 51 QMGNLLIQQA NINGTIGYET RFSGEGHEEM APFDNHAADS ASEEKGNVDE 101 GFTVYRLNWE GHEHMPADAY DGPKGGNYPK PTGARDEYTY HVNGTARSIK 151 LNPTDTRSIR QRISDNYSNL GSNFSDRADE ANRKMFEENA KLDRWGNSME 201 FINGVAAGAL NPFISAGEAL GIGDEDYGTR YAIDKAAMRN IAPLPAEGKF 251 AVIGGLGSVA GFEKNTREAV DRWIQENPNA AETVEAVFNV AAAAKVAKLA 301 KAAKPGKAAV SGDFADSYKK KLALSDSARQ LYQNAKYREA DDIEYEDLIK 351 RKTDGSSKFI NGREIDAVTN DALIQAR*
[0347] The additional amino acid produced by the insertion is underlined.
TABLE-US-00053 730-C2 (due to an IS5 insertion-Fig. 11B) 1 MADLAQDPFI TDNAQRQHYE PGGKYHLFGD PRGSVSDRTG KINVIQDYTH 51 QMGNLLIQQA NINGTIGYHT RFSGHGHEEH APFDNEAADS ASEEKGNVDE 101 GFTVYRLNWE GBEHHPADAY DGPKGGNYPK PTGARDEYTY HVNGTARSIK 151 LNPTDTRSIR QRISDNYSNL GSNFSDRADE ANRKMFEHNA KLDRWGNSME 201 FINGVAAGAL NPFISAGEAL GIGDILYGTR YAIDKAAMEN IAPLPAEGKE 251 AVIGGLGSVA GFEKNTREAV DRWIQENPNA AETVEAVFNV AAAAKVAKLA 301 KAAKPGKAAV SGDFADSYKK KLALSDSARQ LYQNAKYREA LGKVRISGEI 351 LLG*
[0348] The additional amino acids produced by the insertion are underlined.
[0349] In conclusion, intracellular expression of the 730-C1 form gives very high level of protein and has no toxic effect on the host cells, whereas the presence of the native C-terminus is toxic. These data suggest that the "intracellular toxicity" of 730 is associated with the C-terminal 65 amino acids of the protein.
[0350] Equivalent truncation of ORF29 to the first 231 or 368 amino acids has been performed, using expression with or without the leader peptide (amino acids 1-26; deletion gives cytoplasmic expression) and with or without a His-tag.
Example 22--Domains in 961
[0351] As described in example 9 above, the OST-fusion of 961 was the best-expressed in Exoli. To improve expression, the protein was divided into domains (FIG. 12).
[0352] The domains of 961 were designed on the basis of YadA (an adhesin produced by Yersinia which has been demonstrated to be an adhesin localized on the bacterial surface that forms oligomers that generate surface projection [Hoiczyk et al. (2000) EMBO J 19:5989-99]) and are: leader peptide, head domain, coiled-coil region (stalk), and membrane anchor domain.
[0353] These domains were expressed with or without the leader peptide, and optionally fused either to C-terminal His-tag or to N-terminal GST. Exalt: clones expressing different domains of 961 were analyzed by SDS-PAGE and western blot for the production and localization of the expressed protein, from over-night (o/n) culture or after 3 hours induction with IPTG. The results were:
TABLE-US-00054 Total lysate Periplasm Supernatant OMV (Western (Western (Western SDS- Blot) Blot) Blot) PAGE 961 (o/n) - - - 961 (IPTG) +/- - - 961-L (o/n) + - - + 961-L (IPTG) + - - + 961c-L (o/n) - - - 961c-L (IPTG) + + + 961.DELTA..sub.1-L (o/n) - - - 961.DELTA..sub.1-L (IPTG) + - - +
[0354] The results show that in E. coli:
[0355] 961-L is highly expressed and localized on the outer membrane. By western blot analysis two specific bands have been detected: one at .about.45 kDa (the predicted molecular weight) and one at .about.180 kDa, indicating that 961-L can form oligomers. Additionally, these aggregates are more expressed in the over-night culture (without IPTG induction). OMV preparations of this clone were used to immunize mice and serum was obtained. Using overnight culture (predominantly by oligomeric form) the serum was bactericidal; the IPTG-induced culture (predominantly monomeric) was not bactericidal.
[0356] 961.DELTA..sub.1-L (with a partial deletion in the anchor region) is highly expressed and localized on the outer membrane, but does not form oligomers;
[0357] the 961c-L (without the anchor region) is produced in soluble form and exported in the supernatant.
[0358] Titres in ELISA and in the serum bactericidal assay using His-fusions were as follows:
TABLE-US-00055 ELISA Bactericidal 961a (aa 24-268) 24397 4096 961b (aa 269-405) 7763 64 961c-L 29770 8192 961c (2996) 30774 >65536 961c (MC58) 33437 16384 961d 26069 >65536
[0359] E. coli clones expressing different forms of 961 (961, 961-L, 961.DELTA..sub.1-L and 961c-L) were used to investigate if the 961 is an adhesin (c.f. YadA). An adhesion assay was performed using (a) the human epithelial cells and (b) E. coli clones after either over-night culture or three hours IPTG induction. 961-L grown over-night (961.DELTA..sub.1-L) and IPTG-induced 961c-L (the clones expressing protein on surface) adhere to human epithelial cells.
[0360] 961c was also used in hybrid proteins (see above). As 961 and its domain variants direct efficient expression, they are ideally suited as the N-terminal portion of a hybrid protein.
Example 23--Further Hybrids
[0361] Further hybrid proteins of the invention are shown below (see also FIG. 14). These are advantageous when compared to the individual proteins:
TABLE-US-00056 ORF46.1-741 1 ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC TCGACCGTCA 51 GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC AGGGGGGAAC 101 TTGCCGAGCG CAGCGGCCAT ATCGGATTGG GAAAAATACA AAGCCATCAG 151 TTGGGCAACC TGATGANTCA ACAGGCGGCC ATTAAAGGAA ATATCGGCTA 201 CATTGTCCGC TTTTCCGATC ACGGGCACGA AGTCCATTCC CCCTTCGACA 251 ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC CGTTGACGGA 301 TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC ATCCCGCCGA 351 CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC AAAGGCGCGA 401 GGGATATATA CAGCTACGAC ATAAAAGGCG TTGCCCAAAA TATCCGCCTC 451 AACCTGACCG ACAACCGCAG CACCGGACAA CGGCTTGCCG ACCGTTTCCA 501 CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA TTCAAACGCG 551 CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC CGCCGAAGCC 601 TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG CGGCAGGAGA 651 AATTGTCGGC GCAGGCGATG CCGTGCAGOG CATAAGCGAA GGCTCAAACA 701 TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA CAAGATGGCG 751 CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT ATGCCGCAGC 801 AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA CAAGGCATAG 851 AAGCCGTCAG CAATATCTTT ATGGCASCCA TCCCCATCAA AGGGATTGGA 901 GCTGTTCGGG GAAAATACGG CTTGGGCGGC ATCACGGCAC ATCCTATCAA 951 GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA TCCGCCGTCA 2001 GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC CCCTTACCAT 1051 TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA AAGAAAACAT 1101 CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC AAACTGGCAG 1151 ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA AGGGTTTCCG 1201 AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG GGGGTGGTGT 1251 CGCCGCCGAC ATCGGTGCGG GGCTTGCCGA TGCACTAACC GCACCGCTCG 1301 ACCATAAAGA CAAAGGTTTG CAGTCTTTGA CGCTGGATCA GTCCGTCAGG 1351 AAAAACGAGA AACTGAAGCT GGCGGCACAA GGTGCGGAAA AAACTTATGG 1401 AAACGGTGAC AGCCTCAATA CGGGCAAATT GAAGAACGAC AAGGTCAGCC 1451 GTTTCGACTT TATCCGCCAA ATCGAAGTGG ACGGGCAGCT CATTACCTTG 1501 GAGAGTGGAG AGTTCCAAGT ATACAAACAA AGCCATTCCG CCTTAACCGC 1551 CTTTCAGACC GAGCAAATAC AAGATTCGGA GCATTCCGGG AAGATGGTTG 1601 CGAAACGCCA GTTCAGAATC GGCGACATAG CGGGCGAACA TACATCTTTT 1651 GACAAGCTTC CCGAAGGCGG CAGGGCGACA TATCGCGGGA CGGCGTTCGG 1701 TTCAGACGAT GCCGGCGGAA AACTGACCTA CACCATAGAT TTCGCCGCCA 1751 AGCAGGGAAA CGGCAAAATC GAACATTTGA AATCGCCAGA ACTCAANGTC 1801 GACCTGGCCG CCGCCGATAT CAAGCCGGAT GGAAAACGCC ATGCCGTCAT 1851 CAGCGGTTCC GTCCTTTACA ACCAAGCCGA GAAAGGCAGT TACTCCCTCG 1901 GTATCTTTGG CGGAAAAGCC CAGGAAGTTG CCGGCAGCGC GGAAGTGAAA 1951 ACCGTAAACG GCATACGCCA TATCGGCCTT GCCGCCAAGC AACTCGAGCA 2001 CCACCACCAC CACCACTGA 1 MSDLANDSFI RQVLDRQHFE PDGKYHLFGS RGELAERSGH IGLGKIQSHQ 51 AGNIMIQQAA IKGNIGY1VR FSDHGERVHS PFDNHASHSD SDEAGSPVDG 101 FSLYRIHWDG YEHHPAEGYD GPQGGGYPAP KGARDIYSYD IKGVAQNIRL 151 NATDNRSTGQ RLADRFHNAG SMLTQGVGDG FKRATRYSPE LDRSGNAAEA 201 FNGTADIVKN IIGAAGEIVG AGDAVQGISE GSNIAVMHGL GLLSTFMKKA 251 RINDLADMAQ LKDYAAAAIR DWAVQNPNAA QGIEAVSNIF MAAIPEKGIG 301 AVRGKYGIGG ITAEPIKRSQ MGAIALPKGK SAVSDNFADA AYAKYPSPYH 351 SRNIRSNLEQ RYGKENITSS TVPPSNGKNV KLADQRHPKT GVPFDGKGFP 401 NFEKHVKYDT GSGGGGVAAD IGAGLADALT APLDHKDKGL QSLTLDQSVR 451 KNERLKLAAQ GAEKTYGNGD SLNTGKLKND KVSREDFIRQ IEVEGQLITL 501 ESGEFQVYKQ SHSALTAFQT EQIQDSEHSG KMVAKRQFRI GDIAGEHTSF 551 DKLPEGGRAT YRGTAFGSDD AGGKLTYTID FAAKQGNGEI EHLKSPELNV 601 DLAAADIKPD GKRHAVISGS VLYNQAEKGS YSLGIFGGKA QEVAGSAEVK 651 TVNGIRHIGL AAKQLEHHHH HH* ORF46.1-961 1 ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC TCGACCGTCA 51 GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC AGGGGGGAAC 101 TTGCCGAGCG CAGCGGCCAT ATCGGATTGG GAAAAATACA AAGCCATCAG 151 TTGGGCAACC TGATGATTCA ACAGGCGGCC ATTAAAGGAA ATATCGGCTA 201 CATTGTCCGC TTTTCCGATC ACGGGCACGA AGTCCATTCC CCCTTCGACA 251 ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC CGTTGACGGA 301 TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC ATCCCGCCGA 351 CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC AAAGGCGCGA 401 GGGATATATA CAGCTACGAC ATAAAAGGCG TTGCCCAAAA TATCCGCCTC 451 AACCTGACCG ACAACCGCAG CACCGGACAA CGGCTTGCCG ACCGTTTCCA 501 CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA TTCAAACGCG 551 CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC CGCCGAAGCC 601 TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG CGGCAGGAaA 651 AATTGTCGGC GCAGGCGATG CCGTGCAGGG CATAAGCGAA GGCTCAAACA 701 TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA CAAGATGGCG 751 CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT ATGCCGCAGC 801 AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA CAAGGCTTAG 851 AAGCCGTCAG CAATATCTTT ATGGCAGCCA TCCCCATCAA AGGGATTGGA 901 GCTGTTCGGG GAAAATACGG CTTGGGCGGC ATCACGGCAC ATCCTATCAA 951 GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA TCCGCCGTCA 1001 GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC CCCTTACCAT 1051 TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA AAGAAAACAT 1101 CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC AAACTGGCAG 1151 ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA AGGGTTTCCG 1201 AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG GAGGAGGAGC 1251 CACAAACGAC GACGATGTTA AAAAAGCTGC CACTGTGGCC ATTGCTGCTG 1301 CCTACAACAA IGGCCAAGAA ATCAACGGTT TCAAAGCTGG AGAGACCATC 1351 TACGACATTG ATGAAGACGG CACAATTACC AAAAAAGACG CAACTGCAGC 1401 CGATGTTGAA GCCGACGACT TTAAAGGTCT GGGTCTGAAA AAAGTCGTGA 1451 CTAACCTGAC CAAAACCGTC AATGAAAACA AACAAAACGT CGATGCCAAA 1501 GTAAAAGCTG CAGAATCTGA AATAGAAAAG TTAACAACCA AGTTAGCAGA 1551 CACTGATGCC GCTTTAGCAG ATACTGATGC CGCTCTGGAT GCAACCACCA 1601 ACGCCTTGAA TAAATTGGGA GAAAATATAA CGACATTTGC TGAAGAGACT 1651 AAGACAAATA TCGTAAAAAT TGATGAAAAA TTAGAAGCCG TGGCTGATAC 1701 CGTCGACAAG CATGCCGAAG CATTCAACGA TATCGCCGAT TCATTGGATG 1751 AAACCAACAC TAAGGCAGAC GAAGCCGTCA AAACCGCCAA TGAAGCCAAA 1801 CAGACGGCCG AAGAAACCAA ACAAAACGTC GATGCCAAAG TAAAAGCTGC 1851 AGAAACTGCA GCAGGCAAAG CCGAAGCTGC CGCTGGCACA GCTAATACTG 1901 CAGCCGACAA GGCCGAAGCT GTCGCTGCAA AAGTTACCGA CATCAAAGCT 1951 GATANCGCTA CGAACAANGA TAATATTGCT AAAAAAGCAA ACAGTGCCGA 2001 CGTGTACACC AGAGAAGAGT CTGACAGCAA ATTTGTCAGA ATTGATGGTC 2051 TGAACGCTAC TACCGAAAAA TTGGACACAC GCTTGGCTTC TGCTGAAAAA 2101 TCCATTGCCG ATCACGATAC TCGCCTGAAC GGTTTGGATA AAACAGTGTC 2151 AGACCTGCGC AAAGAAACCC GCCAAGGCCT TGCAGAACAA GCCGCGCTCT 2201 CCGGTCTGTT CCAACCTTAC AACGTGGGTC GGTTCAATGT AACGGCTGCA 2251 GTCGGCGGCT ACAAATCCGA ATCGGCAGTC GCCATCGGTA CCGGCTTCCG 2301 CTTTACCGAA AACTTTGCCG CCAAAGCAGG CGTGGCAGTC GGCACTTCGT 2351 CCGGTTCTTC CGCAGCCTAC CATGTCGGCG TCAATTACGA GTGGCTCGAG 2401 CACCACCACC ACCACCACTG A 1 MSDLANDSFI RQVLDRQHFE PDGKYHAFGS RGELAERSGH IGLGK1QSHQ 51 LGNLMIQQAA IKGNIGYIVR FSDHGREVHS PFDNEASRSD SDEAGSPVDG 101 FSLYRIHWDG YEHHPADGYD GPQGGGYPAP KGARDIYSYD IKGVAQMIRL 151 NLTDNRSTGQ RLADRFRNAG SMLTQGVGDG PKRATRYSPE LDRSGMAAFA 201 FNGTADIVKM IIGAAGEIVG AGDAVQGISE GSNIAVMHGL GLLSTENKMA 251 EINDLADMAQ LKDYAAAA1R DWAVQNPNAA QGIFAVSNIF MAAIPIKGIG 301 AVRGKYGLGG ITAHPIKRSQ NGAIALPKGK SAVSDNFADA AYAKYPSPYR 351 SRNIRSNLEQ RYGKENITSS TVPPSNGKNV KLADQRHPKT GVPFDGKGFP 401 NFEKHVKYDT GSGGGGATND DDVKKAATVA IAAAYNNGQE INGFKAGETI 451 YDIDEDGTIT KKDATAADVE ADDFKGLGLK KVVTNLTKTV NENKQNVDAK 501 VKAAESEIEK LTTKLADTDA ALADTDAALD ATTMALNKLG ENITTFARET 551 KTNIVKIDEK LEAVADTVDK HAEAFNDIAD SLDETNTKAD EAVKTANEAK 601 QTARKTKQNV DAKVKAASTA AGKAEAAAGT ANTAADKAEA VAAKVTDTKA 651 DIATNKDNIA KKANSADVYT REESDSKFVR IDGLNATTEK LDTRLASAEK 701 SIADHDTRLN GLDKTVHDLR KETRQGLAEQ AALSGLFQVY NVGRFNVTAA 751 VGGYKSESAV AIGTGFRFTE NFAAKAGVAV GTSSGSSAAY 801 HEHHHH* ORF46.1-961c 1 ATGTCAGATT TGGCAAACGA TTCTTTTATC CGGCAGGTTC TCGACCGTCA 51 GCATTTCGAA CCCGACGGGA AATACCACCT ATTCGGCAGC AGGGGGGAAC 101 TTGCCGAGCG CAGCGGCCAT ATCGGATTGG GAAAAATACA AAGCCATCAG
151 TTGGGCAACC TGATGATTCA ACAGGCGGCC ATTAPAGGAA ATATCGGCTA 201 CATTGTCCGC TTTTCCGATC ACGGGCACGA AGTCCATTCC CCCTTCGACA 251 ACCATGCCTC ACATTCCGAT TCTGATGAAG CCGGTAGTCC CGTTGAOGGA 301 TTTAGCCTTT ACCGCATCCA TTGGGACGGA TACGAACACC ATCCCGCCGA 351 CGGCTATGAC GGGCCACAGG GCGGCGGCTA TCCCGCTCCC AAAGGCGCGA 401 GGGATATATA CAGCTACGAC ATAAAAGGCG TTGCCCAAAA TATCCGCCTC 451 AACCTGACCG ACAACCGCAG CACCGGACAA CGGCPTGCCG ACCGTTTCCA 501 CAATGCCGGT AGTATGCTGA CGCAAGGAGT AGGCGACGGA TTCAAACGCG 551 CCACCCGATA CAGCCCCGAG CTGGACAGAT CGGGCAATGC CGCCGAAGCC 601 TTCAACGGCA CTGCAGATAT CGTTAAAAAC ATCATCGGCG CGGCAGGAGA 651 AATTGTCGGC GCAGGCGATG CCGTGCAGGG CATAAGCGAA GGCTCAAACA 701 TTGCTGTCAT GCACGGCTTG GGTCTGCTTT CCACCGAAAA CAAGATGGCG 751 CGCATCAACG ATTTGGCAGA TATGGCGCAA CTCAAAGACT ATGCCGCAGC 801 AGCCATCCGC GATTGGGCAG TCCAAAACCC CAATGCCGCA CAAGGCATAG 851 AAGCCGTCAG CAATATCTTT ATGGCAGCCA TCCCCATCAA AGGGATAGGA 901 GCTGTTCGGG GAAAATACGG CTTGGGCGGC ATCACGGCAC ATCCTATCAA 951 GCGGTCGCAG ATGGGCGCGA TCGCATTGCC GAAAGGGAAA TCCGCCGTCA 1001 GCGACAATTT TGCCGATGCG GCATACGCCA AATACCCGTC CCCTTACCAT 1051 TCCCGAAATA TCCGTTCAAA CTTGGAGCAG CGTTACGGCA AAGAAAACAT 1101 CACCTCCTCA ACCGTGCCGC CGTCAAACGG CAAAAATGTC AAACTGGCAG 1151 ACCAACGCCA CCCGAAGACA GGCGTACCGT TTGACGGTAA AGGGTTTCCG 1201 AATTTTGAGA AGCACGTGAA ATATGATACG GGATCCGGAG GAGGAGGAGC 1251 CACAAACGAC GACGATGTTA AAAAAGCTGC CACTGTGGCC ATTGCTGCTG 1301 CCTACAACAA TGGCCAAGAA ATCAACGGTT TCAAAGCTGG AGAGACCATC 1351 TACGACATTG ATGAAGACGG CACAATTACC AAAAAAGACG CAACTGCAGC 1401 CGATGTTGAA GCCGACGACT TTAAAGGTCT GGGTCTGAAA AAAGTCGTGA 1451 CTAACCTGAC CAAAACCGTC AATGAAAACA AACAAAACGT CGATGCCAAA 1501 GTAAAAGCTG CAGAATCTGA AATAGAAAAG TTAACAACCA AGTTAGCAGA 1551 CACTGATGCC GCTTTAGCAG ATACTGATGC CGCTCTGGAT GCAACCACCA 1601 ACGCCTTGAA TAAATTGGGA GAAAATATAA CGACATTTGC TGAAGAGACT 1651 AAGACAAATA TCGTAAAAAT TGATGAAAAA TTAGAAGCCG TGGCTGATAC 1701 CGTCGACAAG CATGCCGAAG CATTCAACGA TATCGCCGAT TCATTGGATG 1751 AAACCAACAC TAAGGCAGAC GAAGCCGTCA AAACCGCCAA TGAAGCCAAA 1801 CAGACGGCCG AAGAAACCAA ACAAAACGTC GATGCCAAAG TAAAAGCTGC 1851 AGAAACTGCA GCAGGCAAAG CCGAAGCTGC CGCTGGCACA GCTAATACTG 1901 CAGCCGACAA GGCCGAAGCT GTCGCTGCAA AAGTTACCGA CATCAAAGCT 1951 GATATCGCTA CGAACAAAGA TAATATTGCT AAAAAAGCAA ACAGTGCCGA 2001 CGTGTACACC AGAGAAGAGT CTGACAGCAA ATTTGTCAGA ATTGATGGTC 2051 TGAACGCTAC TACCGAAAAA TTGGACACAC GCTTGGCTTC TGCTGAAAAA 2101 TCCATTGCCG ATCACGATAC TCGCCTGAAC GGTTTGGATA AAACAGTGTC 2151 AGACCTGCGC AAAGAAACCC GCCAAGGCCT TGCAGAACAA GCCGCGCTCT 2201 CCGGTCTGTT CCAACCTTAC AACGTGGGTC TCGAGCACCA CCACCACCAC 2251 CACTGA 1 MSDLANDSFI RQVLDRQHFE PDGKYHLFGS RGELAERSGH IGLGKIQSEQ 51 LGNLMIQQAA IKGNIGYIVR FSDHGREVHS PFDNHASHSD SDEAGSPVDG 101 FSLYRIHWDG YEHHPADGYD GPQGGGYPAP KGARDIYSYD IKGVAQNIRL 151 NLTDNRSTGQ RLADRFHNAG SNLTQGVGDG FKRATRYSPE LDRSGMAAEA 201 FNGTADIVKN IIGAAGEIVG AGDAVQGISE GSNIAVNEGL GLLSTENKMA 251 RINDLADNAQ LKDYAAAAIR DWAVQNPNAA QGIEAVSNIF MAAIPIKGIG 301 AVRGKYGAGG ITAHPIKRSQ MGAIALPKGK SAVSDNFADA AYAKYPSPYH 351 SRNIRSNLBQ RYGKENITSS TVPPSNGKNV KLADQRHPKT GVPFDGKGFP 401 NFEKHVKYDT GSGGGGATND DDVKKAATVA IAAAYNNGQE INGFKAGETI 451 YDIDEDGTIT KKDATAADVE ADDFKGLGLK KVVTNLTKTV NENKQNVDAK 501 VKAAESEIMK LTTKLADTDA ALADTDAALD ATTNALNKLG HNITTFAEET 551 KTNrVKIDEK LEAVADTVDK HAEAFNDIAD SLDETNTKAD HAVKTANEAK 601 QTAFETKQNV DAKVKAAETA AGKAFAAAGT ANTAADKAHA VAAKVTDIKA 651 DIATNEDNIA KKANSADVYT REESDSKFVR IDGLNATTEK LDTRLASAEK 701 SIADHDTRLN GLDKTVSDLR KETRQGLAEQ AALSGLFQPY NVGLEHHHHH 751 H* 961-ORF46.1 1 ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC 51 TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA 101 CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT 151 GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT 201 CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG 251 CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA 301 GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC 351 CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG 401 AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT 451 GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT 501 GGATCAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG 551 CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA 601 GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA 651 TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA 701 AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT 751 GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA 801 TCGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG 851 AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA 901 GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC 951 GCTCTCCGGT CTGITCCAAC CTTACAACGT GGGTCGGTTC AATGTAACGG 1001 CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT CGGTACCCGC 1051 TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC 1101 TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT TACGAGTGGG 1151 GATCCGGAGG AGGAGGATCA GATTTGGCAA ACGATTCTTT TATCCGGCAG 1201 GTTCTCGACC GTCACCATTT CGAACCCGAC GGGAAATACC ACCTATTCGG 1251 CAGCAGGGGG GAACTTGCCG AGCGCAGCGG CCATATCGGA TTGGGAAAAA 1301 TACAAAGCCA TCAGTTGGGC AACCTGATGA TTCAACAGGC GGCCATTAAA 1351 GGAAATATCG GCTACATTGT CCGCTTTTCC GATCACGGGC ACGAAGTCCA 1401 TTCCCCCTTC GACAACCATG CCTCACATTC CGATTCTGAT GAAGCCGGTA 1451 GTCCCGTTGA CGGATTTAGC CTTTACCGCA TCCATTGGGA CGGATACGAA 1501 CACCATCCCG CCGACGGCTA TGACGGGCCA CAGGGCGGCG GCTATCCCGC 1551 TCCCAAAGGC GCGAGGGATA TATACAGCTA CGACATAAAA GGCGTTGCCC 1601 AAAATATCCG CCTCAACCTG ACCGACAACC GCAGCACCGG ACAACGGCTT 1651 GCCGACCGTT TCCACAATGC CGGTAGTATG CTGACGCAAG GAGTAGGCGA 1701 CGGATTCAAA CGCGCCACCC GATACAGCCC CGAGCTGGAC AGATCGGGCA 1751 ATGCCGCCGA AGCCTTCAAC GGCACTGCAG ATATCGTTAA AAACATCATC 1801 GGCGCGOCAG GAGAAATTGT CGGCGCAGGC GATGCCGTGC AGGGCATAAG 1851 CGAAGGCTCA AACATTGCTG TCATGCACGG CTTGGGTCTG CTTTCCACCG 1901 AAAACAAGAT GGCGCGCATC AACGATTTGG CAGATATGGC GCAACTCAAA 1951 GACTATGCCG CAGCAGCCAT CCGCGATIGG GCAGTCCAAA ACCCCAATGC 2001 CGCACAAGGC ATAGAAGCCG TCAGCAATAT CTTTATGGCA GCCATCCCCA 2051 TCAAAGGGAT TGGAGCTGTT CGGGGAAAAT ACGGCTTGGG CGGCATCACG 2101 GCACATCCTA TCAAGCGGTC GCAGATGGGC GCGATCGCAT TGCCGAAAGG 2151 GAAATCCGCC GTCAGCGACA ATTTTGCCGA TGCGGCATAC GCCAAATACC 2201 CGTCCCCTTA CCATTCCCGA AATATCCGTT CAAACTTGGA GCAGCGTTAC 2251 GGCAAAGAAA ACATCACCTC CTCAACCGTG CCGCCGTCAA ACGGCAAAAA 2301 TGTCAAACTG GCAGACCAAC GCCACCCGAA GACAGGCGTA CCGTTTGACG 2351 GTAAAGGGTT TCCGAATTTT GAGAAGCACG TGAAATATGA TACGCTCGAG 2401 CACCACCACC ACCACCACTG A 1 MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT 51 AADVEADDEK GLGLKKVVTN LTKTVNEMKQ NVDAKVKAAE SEIEKLTTEL 101 ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA 151 DTVDEHAEAF NDIADSLDET DTKADEAVKT ANMAKQTAEE TRODVDAKVE 201 AAETAAGEAE AAAGTANTAA DKAEAVAAKV TDIKADIATN KDNIARKANS 251 ADVYTREESD SKPVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT 301 VMDLRKETRQ GLAEQAALSG LFQPYNVGRF NVTAAVGGYK SESAVAIGTG 351 FRFTENFAAK AGVAVGTSSG SSANYHVGVN YEWGSGGGGS DLANDSFIRQ 401 VADRQWEEPD GKYELFGSRG ELAERSGHIG LGKIQSHQLG NLMIQQAAIK 451 GNIGYIVRFS DHGEEVHSPF DNHASHSDSD EAGSPVDGFS LYRIHWDGYE 501 EMPADGYDGP QGGGYPAPKG ARDIYSYDIK GVAQNIRLNL TDNRSTGQRL 551 ADRFMNAGSM LTQGVGDGEK RATRYSPELD RSGNAAEAFN GTADIVENII 601 GAAGEIVGAG DAVQGISEGS NIAVMHGLGL LSTENKMARI NDLADMAQLK 651 DYAAAAIRDW AVQNPNAAQG IEAVSNIFMA AIPIKGIGAV RGKYGLGGIT 701 AHPIKRSQMG AIALPKGKSA VSDNFADAAY AKYPSPYHSR NIRSNLEQRY 751 GRMNITSSTV PPSNGKNVKL ADQRHPKTGV PEDGKGFPNE EKHVKYDTLE 801 HHHHHH*
961-741 1 ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC 51 TGCTGCCTAC AACAATGGCC AAGAAATCAA CGCTPTCAAA GCTGGAGAGA 101 CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT 151 GCAGCCGATG TTGAAGCCGA CGACTITAAA GGTCTGGGTC TGAAAAAAGT 201 CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG 251 CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA 301 GCAGACACTG ATGCCGCITT AGCAGATACT GATGCCGCTC TGGATGCAAC 351 CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG 401 AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT 451 GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT 501 GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG 551 CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA 601 GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA 651 TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA 701 AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT 751 GCCGACGTGT ACACCAGAGA AGASTCTGAC AGCAAATTTG TCAGAATTGA 801 TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG 851 AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA 901 GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC 951 GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTCGGTTC AATGTAACGG 1001 CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT CGGTACCGGC 1051 TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC 1101 TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT TACGAGTGGG 1151 GATCCGGAGG GGGTGGTGTC GCCGCCGACA TCGGTGCGGG GCTTGCCGAT 1201 GCACTAACCG CACCGCTCGA CCATAAAGAC AAAGGTTTGC AGTCTTTGAC 1251 GCTGGATCAG TCCGTCAGGA AAAACGAGAA ACTGAAGCTG GCGGCACAAG 1301 GTGCGOAAAA AACTTATGGA AACGGTGACA GCCTCAATAC GGGCAAATTG 1351 AAGAACGACA AGGTCAGCCG TTTCGACTTT ATCCGCCAAA TCGAAGTGGA 1401 CGGGCAGCTC ATTACCTTGG AGAGTGGAGA GTTCCAAGTA TACAAACAAA 1451 GCCATTCCGC CTTAACCGCC TTTCAGACCG AGCAAATACA AGATTCGGAG 1501 CATTCCGGGA AGATGGTTGC GAAACGCCAG TTCAGAATCG GCGACATAGC 1551 GGGCGAACAT ACATCTTTTG ACAAGCTTCC CGAADGCGGC AGGGCGACAT 1601 ATCGCGGGAC GGCGTTCGGT TCAGACGATG CCGGCGGAAA ACTGACCTAC 1651 ACCATAGATT TCGCCGCCAA GCAGGGAAAC GGCAAAATCG AACATTTGAA 1701 ATCGCCAGAA CTCAATGTCG ACCTGGCCGC CGCCGATATC AAGCCGGATG 1751 GAAAACGCCA TGCCGTCATC AGCGGTTCCG TCCTTTACAA CCAAGCCGAG 1801 AAAGGCAGTT ACTCCCTCGG TATCTTTGGC GGAAAAGCCC AGGAAGTTGC 1851 CGGCAGCGCG GAAGTGAAAA CCGTAAACGG CATACGCCAT ATCGGCCTTG 1901 CCGCCAAGCA ACTCGAGCAC CACCACCACC ACCACTGA 1 MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT 51 AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKL 101 ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA 151 DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAEE TKQNVDAKVK 201 AAETAAGKAE AAAGTANTAA DRAEAVAAKV TDIKADIATN KDNIAKKANS 251 ADVYTREESD SKETRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT 301 VSDLEXETRQ GLAEQAALSG LFQPYNVGRF NVTAAVGGYK SESAVAIGTG 351 FRFTENFAAK AGVAVGTSSG SSAAYHVGVN YEWGSGGGGV AADIGAGLAD 401 ALTAPLDHKD KGLQSINLOQ SVRKNEKLKL AAQGAEKTYG NGDSLNTGKL 451 KNDKVSRFDF IRQIEVDGQL ITLESGEFQV YKQSHSALTA FQTEQIQDSE 501 HSGKMVAKRQ FRIGDIAGEH TSFDKLPEGG RATYRGTAFG SDDAGGKLTY 551 TIDFAAKQGN GKIEHLKSPE LNVDLAAADI KPDGKEHAVI SGSVINNQAE 601 KGSYSLGIFG GRAZEVAGSA EVKTVNGIRH IGLAAKQLEH HHHHH* 961-983 1 ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC 51 TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA 101 CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT 151 GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT 201 CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG 251 CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA 301 GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC 351 CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG 401 AGACTAAGAC AAATATCGTA AAAANTGATG AAAAATTAGA AGCCGTGGCT 451 GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT 501 GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG 551 CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA 601 GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA 651 TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA 701 AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT 751 GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA 801 TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG 851 AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGANAAAACA 901 GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC 951 GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTCGGTTC AATGTAACGG 1001 CTGCAGTCGG CGGCTACAAA TCCGAATCGG CAGTCGCCAT CGGTACCGGC 1051 TTCCGCTTTA CCGAAAACTT TGCCGCCAAA GCAGGCGTGG CAGTCGGCAC 1101 TTCGTCCGGT TCTTCCGCAG CCTACCATGT CGGCGTCAAT TACGAGTGGG 1151 GATCCGGCGG AGGCGGCACT TCTGCGCCCG ACTTCAATGC AGGCGGTACC 1201 GGTATCGGCA GCAACAGCAG AGCAACAACA GCGAAATCAG CAGCAGTATC 1251 TTACGCCGGT ATCAAGAACG AAATGTGCAA AGACAGAAGC ATGCTCTGTG 1301 CCGGTCGGGA TGACGTTGCG GTTACAGACA GGGATGCCAA AATCAATGCC 1351 CCCCCCCCGA ATCTGCATAC CGGAGACTTT CCAAACCCAA ATGACGCATA 1401 CAAGAATTTG ATCAACCTCA AACCTGCAAT TGAAGCAGGC TATACAGGAC 1451 GCGGGGTAGA GGTAGGTATC GTCGACACAG GCGAATCCGT CGGCAGCATA 1501 TCCTTTCCCG AACTGTATGG CAGAAAAGAA CACGGCTATA ACGAAAATTA 1551 CAAAAACTAT ACGGCGTATA TGCGGAAGGA AGCGCCTGAA GACGGAGGCG 1601 GTAAAGACAT TGAAGCTTCT TTCGACGATG AGGCCGTTAT AGAGACTGAA 1651 GCAAAGCCGA CGGATATCCG CCACGTAAAA GAAATCGGAC ACATCGATTT 1701 GGTCTCCCAT ATTATTGGCG GGCGTTCCGT GGACGGCAGA CCTGCAGGCG 1751 GTATTGCGCC CGATGCGACG CTACACATAA TGAATACGAA TGATGAAACC 1801 AAGAACGAAA TGATGGTTGC AGCCANCCGC AATGCATGGG TCAAGCTGGG 1851 CGAACGTGGC GTGCGCATCG TCAATAACAG TTTTGGAACA AGATCGAGGG 1901 CAGGCACTGC CGACCTTTTC CAAATAGCCA ATTCGGAGGA GCAGTACCGC 1951 CAAGCGTTGC TCGACTATTC CGGCGGTGAT AAAACAGACG AGGGTATCCG 2001 CCTGATGCAA CAGAGCGATT ACGGCAACCT GTCCTACCAC ATCCGTAATA 2051 AAAACATGCT TTTCATCTTT TCGACAGGCA ATGACGCACA AGCTCAGCCC 2101 AACACATATG CCCTATTGCC ATTTTATGAA AAAGACGCTC AAAAAGGCAT 2151 TATCACAGTC GCAGGCGTAG ACCGCAGTGG AGAAAAGTTC AAACGGGAAA 2201 TOTATGGAGA ACCGGGTACA GAACCGCTTG AGTATGGCTC CAACCATTGC 2251 GGAATTACTG CCATGTGGTG CCTGTCGGCA CCCTATGAAG CAAGCGTCCG 2301 TTTCACCCGT ACAAACCCGA TTCAAATTGC CGGAACATCC TTTTCCGCAC 2351 CCATCGTAAC CGGCACGGCG GCTCTGCTGC TGCAGAAATA CCCGTGGATG 2401 AGCAACGACA ACCTGCGTAC CACGTTGCTG ACGACGGCTC AGGACATCGG 2451 TGCAGTCGGC GTGGACAGCA AGTTCGGCTG GGGACTGCTG GATGCGGGTA 2501 AGGCCATGAA CGGACCCGCG TCCTTTCCGT TCGGCGACTT TACCGCCGAT 2551 ACGAAAGGTA CATCCGATAT TGCCTACTCC TTCCGTAACG ACATTTCAGG 2601 CACGGGCGGC CTGATCAAAA AAGGCGGCAG CCAACTGCAA CTGCACGGCA 2651 ACAACACCTA TACGGGCAAA ACCATTATCG AAGGCGGTTC GCTGGTGTTG 2701 TACGGCAACA ACAAATCGGA TATGCGCGTC GAAACCAAAG GTGCGCTGAT 2751 TTATAACGGG GCGGCATCCG GCGGCAGCCT GAACAGCGAC GGCATTGTCT 2801 ATCTGGCAGA TACCGACCAA TCCGGCGCAA ACGAAACCGT ACACATCAAA 2851 GGCAGTCTGC AGCTGGACGG CAAAGGTACG CTGTACACAC GTTTGGGCAA 2901 ACTGCTGAAA GTGGACGGTA CGGCGATTAT CGGCGGCAAG CTGTACATGT 2951 CGGCACGCGG CAAGGGGGCA GGCTATCTCA ACAGTACCGG ACGACGTGTT 3001 CCCTTCCTGA GTGCCGCCAA AATCGGGCAG GATTATTCTT TCTTCACAAA 3051 CATCGAAACC GACGGCGGCC TGCTGGCTTC CCTCGACAGC GTCGAAAAAA 3101 CAGCGGGCAG TGAAGGCGAC ACGCTGTCCT ATTATGTCCG TCGCGGCAAT 3151 GCGGCACGGA CTGCTTCGGC AGCGGCACAT TCCGCGCCCG CCGGTCTGAA 3201 ACACGCCGTA GAACAGGGCG GCAGCAATCT GGAAAACCTG ATGGTCGAAC 3251 TGGATGCCTC CGAATCATCC GCAACACCCG AGACGGTTGA AACTGCGGCA 3301 GCCGACCGCA CAGATATGCC GGGCATCCGC CCCTACGGCG CAACTTTCCG 3351 CGCAGCGGCA GCCGTACAGC ATGCGAATGC CGCCGACGGT GTACGCATCT 3401 TCAACAGTCT CGCCGCTACC GTCTATGCCG ACAGTACCGC CGCCCATGCC 3451 GATATGCAGG GACGCCGCCT GAAAGCCGTA TCGGACGGGT TGGACCACAA 3501 CGGCACGGGT CTGCGCGTCA TCGCGCAAAC CCAACAGGAC GGTGGAACGT 3551 GGGAACAGGG CGGTGTTGAA GGCAAAATGC GCGGCAGTAC CCAAACCGTC
3601 GGCATTGCCG CGAAAACCGG CGAAAATACG ACAGCAGCCG CCACACTGGG 3651 CATGGGACGC AGCACATGGA GCGAAAACAG TGCAAATGCA AAAACCGACA 3701 GCATTAGTCT GTTTGCAGGC ATACGGCACG ATGCGGGCGA TATCGGCTAT 3751 CTCAAAGGCC TGTTCTCCTA CGGACGCTAC AAAAACAGCA TCAGCCGCAG 3801 CACCGGTGCG GACGAACATG CGGAAGGCAG CGTCAACGGC ACGCTGATGC 3851 AGCTGGGCGC ACTGGGCGGT GTCAACGTTC CGTTTGCCGC AACGGGAGAT 3901 TTGACGGTCG AAGGCGGTCT GCGCTACGAC CTGCTCAAAC AGGATGCATT 3951 CGCCGAAAAA GGCAGTGCTT TGGGCTGGAG CGGCAACAGC CTCACTGAAG 4001 GCACGCTGGT CGGACTCGCG GGTCTGAAGC TGTCGCAACC CTTGAGCGAT 4051 AAAGCCGTCC TGTTTGCAAC GGCGGGCGTG GAACGCGACC TGAACGGACG 4101 CGACTACACG GTAACGGGCG GCTTTACCGG CGCGACTGCA GCAACCGGCA 4151 AGACGGGGGC ACGCAATATG CCGCACACCC GTCTGGTTGC CGGCCTGGGC 4201 GCGGATGTCG AATTCGGCAA CGGCTGGAAC GGCTTGGCAC GTTACAGCTA 4251 CGCCGOTTCC AAACAGTACG GCAACCACAG CGGACGAGTC GGCGTAGGCT 4301 ACCGGTTCCT CGAGCACCAC CACCACCACC ACTGA 1 MATNDDDVKK AAIVATAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT 51 AADVEADDFK GLGLKKVVTN IRKTVNENKQ NVDAKVKAAB SEEEKIRTKL 101 ADTDAALADT DAALDATTNA INKLGENITT FASETETNIV KIDEKLEAVA 151 DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTASE TXQNVDAKVK 201 AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN KDNIAKKANS 251 ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT 301 VSDLREETRQ GLAEQAALSG LFQPYNVGRF NVTAAVGGYK SESAVAIGTG 351 FRPTENFAAK AGVAVGTSSG SSAAYINGVN YEWGSGGGGT SAPDFNAGGT 401 GIGSNSRATT AKSAAVSYAG IKNEMCKDRS MDCAGRDDVA VTDRDAKINA 451 PPPNLHTGDF PNPNDAYKNL INLKPAIEAG YTGRGVEVGI VDTGESVGSI 501 SFPELYGRKE HGYNENYKNY TAYMRKEAPE DGGGKDIEAS FDDEAVIETE 551 AKPTDIRSVK EIGRIDLVSH IIGGRSVDGR PAGGIAPDAT LHIENTNDET 601 KNEMMVAAIR NAWVKLGERG VRIVANSFGT TSRAGTADLF QIANSEEQYR 651 QALLDYSGGD KTDEGIRLMQ QSDYGELSYM IRNKNELFIF STGEDAQAQF 701 NTYALLPFYE KDAQKGIITV AGVDRSGEKF KREMYGEPGT EPLEYGSNMC 751 GITAMWCLSA PYEASVRFTR TNPIQIAGTS FSAPIVTGTA ALLLQKYPWM 801 SEDNLRTTLL TTAQDIGAVG VDSKFGWGLL DAGKAYXGPA SFPFGDFTAD 851 TKGTSDLAYS FRNDISGTGG LIKKGGSQLQ LHGNNTITGR TIIEGGSLVL 901 YGNNKSDMRV ETKGALIYNG AASGGSLNSD GIVTLADTDQ SGANETVHIK 951 GSWILDGKGT LYTRLGKLLK VDGTAIIGGK LYMSARGEGA GYLNSTGRKV 1001 PFLSAAKIGQ DYSFFTNIET DGGLLASLDS VEKTAGSEGD TLSTYVRRGN 1051 AARTASAAAM SAPAGLKHAV EQGGSNLENL NVELDASESS ATPETVETAA 1101 ADRTDMPGIR PYGATFRAAA AVQHANAADG VRIFNSLAAT VYADSTAAHA 1151 DMQGRRLKAV SDGLDHNGTG LRVIAQTQQD GGTWEQGGVE GKERGSTQTV 1201 GIAAKTGENT TAAATLGMGR STWSENSANA KTDSISLFAG IRHDAGDIGY 1251 LKGLFSYGRY KNSISRSTGA DKHAEGSVNG TLMQLGALGG VIMPFAATGD 1301 LTVEGGLRYD LLKQDAFAEK GSALGWSGNS LTEGTLVGLA GLKLSULSD 1351 KAVLFATAGV ERDLNGRDYT VTGGFTGATA ATGKTGARNM PHTRLVAGLG 1401 ADVEFGNGWN GLARYSYAGS KQYGNMSGRV GVGYRFLEEH HHHH* 961c-ORF46.1 1 ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC 51 TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA 101 CCATCTACGA CATTGATGAA GACGGCACAA TTAcCAAAAA AGACGCAACT 151 GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT 201 CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG 251 CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA 301 GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC 351 CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG 401 AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT 451 GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT 501 GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG 551 CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA 601 GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA 651 TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACcGACATCA 701 AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT 751 GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA 801 TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG 851 AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA 901 GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC 951 GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC GGAGGAGGAG 1001 GATCAGATTT GGCAAACGAT TCTTTTATCC GGCAGGTTCT CGACCGTCAG 1051 CATTTCGAAC CCGACGGGAA ATACCACCTA TTCGGCAGCA GGGGGGAACT 1101 TGCCGAGCGC AGCGGCCATA TCGGATTGGG AAAAATACAA AGCCATCAGT 1151 TGGGCAACCT GATGATTCAA CAGGCGGCCA TTAAAGGAAA TATCGGCTAC 1201 ATTGTCCGCT TTTCCGATCA CGGGCACGAA GTCCATTCCC CCTTCGACAA 1251 CCATGCCTCA CATTCCGATT CTGATGAAGC CGGTAGTCCC GTTGACGGAT 1301 TTAGCCTTTA CCGCATCCAT TGGGACGGAT ACGAACACCA TCCCGCCGAC 1351 GGCTATGACG GGCCACAGGG CGGCGGCTAT CCCGCTCCCA AAGGCGCGAG 1401 GGATATATAC AGCTACGACA TAAAAGGCGT TGCCCAAAAT ATCCGCCTCA 1451 ACCTGACCGA CAACCGCAGc ACCGGACAAC GGCTTGCCGA CCGTTTCCAC 1501 AATGCCGGTA GTATGCTGAC GCAAGGAGTA GGCGACGGAT TCAAACGCGC 1551 CACCCGATAC AGCCCCGAGC TGGACAGATC GGGCAATGCC GCCGAAGCCT 1601 TCAACGGCAC TGCAGATATC GTTAAAAACA TCATCGGCGC GGCAGGAGAA 1651 ATTGTCGGCG CAGGCGATGC CGTGCAGGGC ATAAGCGAAG GCTCAAACAT 1701 TGCTGTCATG CACGGCTTGG GTCTGCTTTC CACCGAAAAC AAGATGGCGC 1751 GCATAAACGA TTTGGCAGAT ATGGCGCAAC TCAAAGACTA TGcCGCAGCA 1801 GCCATCCGCG ATTGGGCAGT CCAAAACCCC AATGCCGCAC AAGGCATAGA 1851 AGCCGTCAGC AATATCTTTA TGGCAGCCAT CCCCATCAAA GGGATTGGAG 1901 CTGTTCGGGG AAAATACGGC TTGGGCGGCA TCACGGCACA TCCTATCAAG 1951 CGGTCGCAGA TGGGCGCGAT CGCATTGCCG AAAGGGAAAT CCGCCGTCAG 2001 CGACAATTTT GCCGATGCGG CATACGCCAA ATACCCGTCC CCTTACCATT 2051 CCOGAAATAT CCGTTCAAAC TTGGAGCAGC GTTACGGCAA AGAAAACATC 2101 ACCTCCTCAA CCGTGCCGCC GTCAAACGGC AAAAATGTCA AACTGGCAGA 2151 CCAACGCCAC CCGAAGACAG GCGTACCGTT TGACGGTAAA GGGTTTCCGA 2201 ATTTTGAGAA GCACGTGAAA TATGATACGC TCGAGCACCA CCACCACCAC 2251 CACTGA 1 MATNDDEVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT 51 AADVEADDFK GIGLENVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKL 101 ADTDAALADT DAALDATTNA LNKLGENITT FAEETKTNIV KIDEKLEAVA 151 NDIADSLDET NDIADSLDET NTKADEAVKT ANEAKQTAEE TKQNVDAKVK 201 AAETAAGKAE AAAGTANTAA DKAEAVAAKV TDIKADIATN KDNIAKKANS 251 ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT 301 VSDAREETRQ GLAEQAALSG LFQPYNVGGS GGGGSDLAND SFIRQVLDRQ 351 HFEPDGKYDL FGSRGELAER SGHIGLGKIQ SHQLGNLNIQ QAAIKGNIGY 401 IVRFSDHGHE VHSPFDNHAS HSDSDEAGSP VDGESLYRIE WEGYESHPAD 451 GYDGPQGGGY PAPKGARDZY SYDIKGVAQN IRLNLTDNRS TGORLADRFH 501 NAGEKLTQGV GDGFKRATRY SPELDRSGNA AEAFNGTADI VKNIIGAAGE 551 IVGAGDAVQG ISEGSNIAVM HGLGLASTEN KMARINDLAD MAQLKDYAAA 601 AIRDWAVQNP NAAQGIEAVS NIEMAAIPIK GIGAVRGEYG LGGITAHPIK 651 RSQMGAIALP KGKSAVSDNF ADANYAKYPS PYRSRNIRSN LEQRYGKENI 701 TSSTVPPSNG KNVKLADQRH PKTGVPFDGK GFPNFEEHVK YDTLEREEHM 751 H* 961c-741 1 ATGGCCACAA ACGACGACGA TGTTAAAAAR GCTGCCACTG TGGCCATTGC 51 TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA 101 CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT 151 GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT 201 CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG 251 CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA 301 GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC 351 CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG 401 AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT 451 GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT 501 GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG 551 CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA 601 GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA 651 TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA 701 AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT 751 GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA 901 TGGTCTGAAC GCTACTACCG APAAATTGGA CACACGCTTG GCTTCTGCTG 851 AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA
901 GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC 951 GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC GGAGGGGGTG 1001 GTGTCGCCGC CGACATCGGT GCGGGGCTTG CCGATGCACT AACCGCACCG 1051 CTCGACCATA AAGACAAAGG TTTGCAGTCT TTGACGCTGG ATCAGTCCGT 1101 CAGGAAAAAC GAGAAACTGA AGCTGGCGGC ACAAGGTGCG GAAAAAACTT 1151 ATGGAAACGG TGACAGCCTC AATACGGGCA AATTGAAGAA CGACAAGGTC 1201 AGCCGTTTCG ACTTTATCCG CCAAATCGAA GTGGAGGGGC AGCTCATTAC 1251 CTTGGAGAGT GGAGAGTTCC AAGTATACAA ACAAAGCCAT TCCGCCTTAA 1301 CCGCCTTTCA GACCGAGCAA ATACAAGATT CGGAGCATTC CGGGAAGATG 1351 GTTGCGAAAC GCCAGTTCAG AATCGGCGAC ATADCGGGCG AACATACATC 1401 TTTTGACAAG CTTCCCGAAG GCGGCAGGGC GACATATCGC GGGACGGCGT 1451 TCGGTTCAGA CGATGCCGGC GGAAAACTGA CCTACACCAT AGATTTCGCC 1501 GCCAAGCAGG GAAACGGCAA AATCGAACAT TTGAAATCGC CAGAACTCAA 1551 TGTCGACCTG GCCGCCGCCG ATATCAAGCC GGATGGAAAA CGCCATGCCG 1601 TCATCAGCGG TTCCGTCCTT TACAACCAAG CCGAGAAAGG CAGTTACTCC 1651 CTCGGTATCT TTGGCGGAAA AGCCCAGGAA GTTGCCGGCA GCGCGGAAGT 1701 GAAAACCGTA AACGGCATAC GCCATATCGG CCTTGCCGCC AAGCAACTCG 1751 AGCACCACCA CCACCACCAC TGA 1 MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITKKDAT 51 AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKATTKL 101 ADTDAALADT DAALDATTNA LNXLGENITT FASETKTNIV KIDEKLEAVA 151 DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAKE TKQNVQAKVX 201 AAHTAAGXAE AAAGTANTAA DKAENVAAKV TDIKADIATN KDNIAKKMRS 251 ADVYTREESD SXFVRIDGLN ATTEKLDTRL ASAEKSIADH DTRLNGLDKT 301 VSDLRKETRQ GLAEQAALSG LFQPYNVGGS GGGGVAADIG AGLADALTAP 351 LDERDXGLQS LTLDQSVRXN FKLKLAAQGA EKTYGNGDSL NTGKLKNDKV 401 SRFDFIRQIE VDGQLITLES GEFQVYXQSE SALTAFQTEQ TQGSERSGEM 451 VAKROFRIGD IAGEHTSFDK LPEGGRATYR GTAFGSDDAG GKLTYTIDFA 501 AKQGNGKIEH LKSPELNVDL AAADIXPDGK RHAVISGSVL YNQAEKGSYS 551 LGIEGGKAQE VAGSAHVXTV NGIRHIGLAA KQLEIMEEHH * 961c-983 1 ATGGCCACAA ACGACGACGA TGTTAAAAAA GCTGCCACTG TGGCCATTGC 51 TGCTGCCTAC AACAATGGCC AAGAAATCAA CGGTTTCAAA GCTGGAGAGA 101 CCATCTACGA CATTGATGAA GACGGCACAA TTACCAAAAA AGACGCAACT 151 GCAGCCGATG TTGAAGCCGA CGACTTTAAA GGTCTGGGTC TGAAAAAAGT 201 CGTGACTAAC CTGACCAAAA CCGTCAATGA AAACAAACAA AACGTCGATG 251 CCAAAGTAAA AGCTGCAGAA TCTGAAATAG AAAAGTTAAC AACCAAGTTA 301 GCAGACACTG ATGCCGCTTT AGCAGATACT GATGCCGCTC TGGATGCAAC 351 CACCAACGCC TTGAATAAAT TGGGAGAAAA TATAACGACA TTTGCTGAAG 401 AGACTAAGAC AAATATCGTA AAAATTGATG AAAAATTAGA AGCCGTGGCT 451 GATACCGTCG ACAAGCATGC CGAAGCATTC AACGATATCG CCGATTCATT 501 GGATGAAACC AACACTAAGG CAGACGAAGC CGTCAAAACC GCCAATGAAG 551 CCAAACAGAC GGCCGAAGAA ACCAAACAAA ACGTCGATGC CAAAGTAAAA 601 GCTGCAGAAA CTGCAGCAGG CAAAGCCGAA GCTGCCGCTG GCACAGCTAA 651 TACTGCAGCC GACAAGGCCG AAGCTGTCGC TGCAAAAGTT ACCGACATCA 701 AAGCTGATAT CGCTACGAAC AAAGATAATA TTGCTAAAAA AGCAAACAGT 751 GCCGACGTGT ACACCAGAGA AGAGTCTGAC AGCAAATTTG TCAGAATTGA 801 TGGTCTGAAC GCTACTACCG AAAAATTGGA CACACGCTTG GCTTCTGCTG 851 AAAAATCCAT TGCCGATCAC GATACTCGCC TGAACGGTTT GGATAAAACA 901 GTGTCAGACC TGCGCAAAGA AACCCGCCAA GGCCTTGCAG AACAAGCCGC 951 GCTCTCCGGT CTGTTCCAAC CTTACAACGT GGGTGGATCC GGCGGAGGCG 1001 GCACTTCTGC GCCCGACTTC AATGCAGGCG GTACCGGTAT CGGCAGCAAC 1051 AGCAGAGCAA CAACAGCGAA ATCAGCAGCA GTATCTTACG CCGGTATCAA 1101 GAACGAAATG TGCAAAGACA GAAGCATGCT CTGTGCCGGT CGGGATGACG 1151 TTGCGGTTAC AGACAGGGAT GCCAAAATCA ATGCCCCCCC CCCGAATCTG 1201 CATACCGGAG ACTTTCCAAA CCCAAATGAC GCATACAAGA ATTTGATCAA 1251 CCTCAAACCT GCAATTGAAG CAGGCTATAC AGGACGCGGG GTAGAGGTAG 1301 GTATCGTCGA CACAGGCGAA TCCGTCGGCA GCATATCCTT TCCCGAACTG 1351 TATGGCAGAA AAGAACACGG CTATAACGAA AATTACAAAA ACTATACGGC 1401 GTATATGCGG AAGGAAGCGC CTGAAGACGG AGGCGGTAAA GACATTGAAG 1451 CTTCTTTCGA CGATGAGGCC GTTATAGAGA CTGAAGCAAA GCCGACGGAT 1501 ATCCGCCACG TAAAAGAAAT CGGACACATC GATTTGGTCT CCCATATTAT 1551 TGGCGGGCGT TCCGTGGACG GCAGACCTGC AGGCGGTATT GCGCCCGATG 1601 CGACGCTACA CATAATGAAT ACGAATGATG AAACCAAGAA CGAAATGATG 1651 GTTGCAGCCA TCCGCAATGC ATGGGTCAAG CTGGGCGAAC GTGGCGTGCG 1701 CATCGTCAAT AACAGTTTTG GAACAACATC GAGGGCAGGC ACTGCCGACC 1751 TTTTCCAAAT AGCCAATTCG GAGGAGCAGT ACCGCCAAGC GTTGCTCGAC 1801 TATTCCGGCG GTGATAAAAC AGACGAGGGT ATCCGCCTGA TGCAACAGAG 1851 CGATTACGGC AACCTGTCCT ACCACATCCG TAATAAAAAC ATGCTTTTCA 1901 TCTTTTCGAC AGGCAATGAC GCACAAGCTC AGCCCAACAC ATATGCCCTA 1951 TTGCCATTTT ATGAAAAAGA CGCTCAAAAA GGCATTATCA CAGTCGCAGG 2001 CGTAGACCGC AGTGGAGAAA AGTTCAAACG GGAAATGTAT GGAGAACCGG 2051 GTACAGAACC GCTTGAGTAT GGCTCCAACC ATTGCGGAAT TACTGCCATG 2101 TGGTGCCTGT CGGCACCCTA TGAAGCAAGC GTCCGTTTCA CCCGTACAAA 2151 CCCGATTCAA ATTGCCGGAA CATCCTTTTC CGCACCCATC GTAACCGGCA 2201 CGGCGGCTCT GCTGCTGCAG AAATACCCGT GGATGAGCAA CGACAACCTG 2251 CGTACCACGT TGCTGACGAC GGCTCAGGAC ATCGGTGCAG TCGGCGTGGA 2301 CAGCAAGTTC GGCTGGGGAC TGCTGGATGC GGGTAAGGCC ATGAACGGAC 2351 CCGCGTCCTT TCCGTTCGGC GACTTTACCG CCGATACGAA AGGTACATCC 2401 GATATTGCCT ACTCCTTCCG TAACGACATT TCAGGCACGG GCGGCCTGAT 2451 CAAAAAAGGC GGCAGCCAAC TGCAACTGCA CGGCAACAAC ACCTATACGG 2501 GCAAAACCAT TATCGAAGGC GGTTCGCTGG TGTTGTACGG CAACAACAAA 2551 TCGGATATGC GCGTCGAAAC CAAAGGTGCG CTGATTTATA ACGGGGCGGC 2601 ATCCGGCGGC AGCCTGAACA GCGACGGCAT TGTCTATCTG GCAGATACCG 2651 ACCAATCCGG CGCAAACGAA ACCGTACACA TCAAAGGCAG TCTGCAGCTG 2701 GACGGCAAAG GTACGCTGTA CACACGTTTG GGCAAACTGC TGAAAGTGGA 2751 CGGTACGGCG ATTATCGGCG GCAAGCTGTA CATGTCGGCA CGCGGCAAGG 2801 G3GCAGGCPA TCTCAACAGT ACCGGACGAC GTGTTCCCTT CCTGAGTGCC 2851 GCCAAAATCG GGCAGGATTA TTCTTTCTTC ACAAACATCG AAACCGACGG 2901 CGGCCTGCTG GCTTCCCTCG ACAGCGTCGA AAAAACAGCG GGCAGTGAAG 2951 GCGACACGCT GTCCTATTAT GTCCGTCGCG GCAATGCGGC ACGGACTGCT 3001 TCGGCAGCGG CACATTCCGC GCCCGCCGGT CTGAAACACG CCGTAGAACA 3051 GGGCGGCAGC AATCTGGAAA ACCTGATGGT CGAACTGGAT GCCTCCGAAT 3101 CATCCGCAAC ACCCGAGACG GTTGAAACTG CGGCAGCCGA CCGCACAGAT 3151 ATGCCGGGCA TCCGCCCCTA CGGCGCAACT TTCCGCGCAG CGGCAGCCGT 3201 ACAGCATGCG AATGCCGCCG ACGGTGTACG CATCTTCAAC AGTCTCGCCG 3251 CTACCGTCTA TGCCGACAGT ACCGCCGCCC ATGCCGATAT GCAGGGACGC 3301 CGCCTGAAAG CCGTATCGGA CGGGTTGGAC CACAACGGCA CGGGTCTGCG 3351 CGTCATCGCG CAAACCCAAC AGGACGGTGG AACGTGGGAA CAGGGCGGTG 3401 TTGAAGOCAA AATGCGCCGC AGTACCCAAA CCGTCGGCAT TGCCGCGAAA 3451 ACCGGCGAAA ATACGACAGC AGCCGCCACA CTGGGCATGG GACGCAGCAC 3501 ATGGAGCGAA AACAGTGCAA ATGCAAAAAC CGACAGCATT AGTCTGTTTG 3551 CAGGCATACG GCACGATGCG GGCGATATCG GCTATCTCAA AGGCCTGTTC 3601 TCCTACGGAC GCTACAAAAA CAGCATCAGC CGCAGCACCG GTGCGGACGA 3651 ACATGCGGAA GGCAGCGTCA ACGGCACGCT GATGCAGCTG GGCGCACTGG 3701 GCGGTGTCAA CGTTCCGTTT GCCGCAACGG GAGATTTGAC GGTCGAAGGC 3751 GGTCTGCGCT ACGACCTGCT CAAACAGGAT GCATTCGCCG AAAAAGGCAG 3801 TGCTTTGGGC TGGAGCGGCA ACAGCCTCAC TGAAGGCACG CTGGTCGGAC 3851 TCGCGGGTCT GAAGCTGTCG CAACCCTTGA GCGATAAAGC CGTCCTGTTT 3901 GCAACGGCGG GCGPGOAACG CGACCTGAAC GGACGCGACT ACACGGTAAC 3951 GGGCGGCTTT ACCGGCGCGA CTGCAGCAAC CGGCAAGACG GGGGCACGCA 4001 ATATGCCGCA CACCCGTCTG GTTGCCGGCC TGGGCGCGGA TGTCGAATTC 4051 GGCAACGGCT GGAACGGCTT GGCACGTTAC AGCTACGCCG GTTCCAAACA 4101 GTACGGCAAC CACAGCGGAC GAGTCGGCGT AGGCTACCGG TTCCTCGAGC 4151 ACCACCACCA CCACCACTGA 1 MATNDDDVKK AATVAIAAAY NNGQEINGFK AGETIYDIDE DGTITEKDAT 51 AADVEADDFK GLGLKKVVTN LTKTVNENKQ NVDAKVKAAE SEIEKLTTKI 101 ADTDAALADT DAALDATTNA LNKLGENITT PAEETKTNIV KIDEKLEAVA 151 DTVDKHAEAF NDIADSLDET NTKADEAVKT ANEAKQTAKE TKQNVDAKVK 201 AARTAAGNAE AAAGTANTAA DKAEAVAAKV TDIKADIATN KDNIAKKANS 251 ADVYTREESD SKFVRIDGLN ATTEKLDTRL ASAEKSLADH DTRLNGLDKT 301 VSDLRKETRQ GLAEQAALSG LFQPYVVGGS GGGGTSAPDF NAGGTGIGSN 351 SRATTAKSAA VSYAGIKNEM CEDRSELCAG RDDVAVTDRD AKINAPPPNL 401 HIGDFPNFND AYKNLINLKP AIKAGYTGEG VEVGIVDTGE SVGSISFPEL 451 YGRKEHGYNE NYKNYTAYER KEAPEDGGGK DIEASFDDEA VIETEAKPTD 501 IRHVKEIGHI DLVSHIIGGR SVDGRPAGGI APDATLHIMN TNDETKNEMM
551 VAAIRNAAWK LGERGVRIVN NSFGTTSRAG TADLFQIANS EEQYRQALLD 601 YSGGDKTDEG IRLMQQSDYG NLSYMIRNKN MLFIFSTGAM AQAQPNTYAL 651 LPFYEKDAQK GIITVAGVDR SGEKFKREMY GEPGTEPLEY GSNECGITAK 701 WCLSAFYEAS VRFTWFATIQ IAGTSFSAPI VTGTAALLLQ KYPWMSNDNL 751 RTTLLTTAQD IGAVGVDSKF GWGLIZAGKA MNGPASFPFG DFTADTKGTS 901 DIAYSFRNDI SGTGGLIKKG GSQLQAHGNN TYTGKTIIEG GSLVLYGNNK 951 SDERVETKGA LIYNGAASGG SLNSDGIVYL ADTDQSGANE TVHIKGSLQL 901 DGKGTLYTRL GRIZKVDGTA IIGGKLYMSA RGKGAGYLNS TGRRVPFLSA 951 AKIGQDYSFF TNIETDGGLL ASLDSVEKTA GSEGDTLSYY VRRGNAARTA 1001 SAAAHSAPAG LKHAVEQGGS NLENLMVELD ASESSATPET VETAAADRTD 1051 MPGIRPYGAT FRAAAAVQHA NAADGVRIFN SLAATVYADS TAARADMQGR 1101 RLKAVSDGLD HNGTGLRVIA QTQQDGGTWE QGGVEGEHRG STQTVGIAAK 1151 TGENTTAAAT LGMGRSTWSE NSANAKTDSI SLFAGIREDA GDIGYLKGLF 1201 SYGRYKNSIS RSTGADEHAE GSVNGTLMQL GALGGVNVPF AATGDLTVEG 1251 GLRYDLLKQD ARARKGSALG WSGNSLTEGT LVGLAGLKLS QPDSDKAVLF 1301 ATAGVERDLN GRDYTVTGGF TGATAATGKT GARNMPHTRL VAGLGADVEF 1351 GNGWNGLARY SYAGSKQYGN RSGRVGVGYR FLEHHHHHH* 961cL-ORF46.1 1 ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC TTGCCACTTT 51 CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT AAAAAAGCTG 101 CCACTGTGGC CATTGCTGCT GCCTACAACA ATGGCCAAGA AATCAACGGT 151 TTCAAAGCTG GAGAGACCAT CTACGACATT GATGAAGACG GCACAATTAC 201 CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACGAC TTTAAAGGTC 251 TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT CAATGAAAAC 301 AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG AAATAGAAAA 351 GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA GATACTGATG 401 CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG AGAAAATATA 451 ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA TTGATGAAAA 501 ATTAGAAGCC GTGGCTGATA CCGTCGACAA GCATGCCGAA GCATTCAACG 551 ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA CGAAGCCGTC 601 AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA AACAAAACGT 651 CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAA GCCGAAGCTG 701 CCGCTGGCAC AGCTAATACT GCAGCCGACA AGGCCGAAGC TGTCGCTGCA 751 AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG ATAATATTGC 801 TAAAAAAGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG TCTGACAGCA 851 AATTTGTCAG AATTGATGGT CTGAACGCTA CTACCGAAAA ATTGGACACA 901 CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA CTCGCCTGAA 951 CGGTTTGGAT AAAACAGTGT CAGACCTGCG CAAAGAAACC CGCCAAGGCC 1001 TTGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA CAACGTGGGT 1051 GGATCCGGAG GAGGAGGATC AGATTTGGCA AACGATTCTT TTATCCGGCA 1101 GGTTCTCGAC CGTCAGCATT TCGAACCCGA CGGGAAATAC CACCTATTCG 1151 GCAGCAGGGG GGAACTTGCC GAGCGCAGCG GCCATATCGG ATTGGGAAAA 1201 ATACAAAGCC ATCAGTTGGG CAACCTGATG ATTCAACAGG CGGCCATTAA 1251 AGGAAATATC GGCTACATTG TCCGCTTTTC CGATCACGGG CACGAAGTCC 1301 ATTCCCCCTT CGACAACCAT GCCTCACATT CCGATTCTGA TGAAGCCGGT 1351 AGTCCCGTTG ACGGATTTAG CCTTTACCGC ATCCATTGGG ACGGATACGA 1401 ACACCATCCC GCCGACGGCT ATGACGGGCC ACAGGGCGGC GGCTATCCCG 1451 CTCCCAAAGG CGCGACGGAT ATATACACCT ACGACATAAA AGGCGTTGCC 1501 CAAAATATCC GCCTCAACCT GACCGACAAC CGCAGCACCG GACAACGGCT 1551 TGCCGACCGT TTCCACAATG CCGGTAGTAT GCTGACGCAA GGAGTAGGCG 1601 ACGGATTCAA ACGCGCCACC CGATACAGCC CCGAGCTGGA CAGATCGGGC 1651 AATGCCGCCG AACCCTTCAA CGGCACTGCA GATATCGTTA AAAACATCAT 1701 CGGCGCGGCA GGAGAAATTG TCGGCGCAGG CGATGCCGTG CAGGGCATAA 1751 GCGAAGGCTC AAACATTGCT GTCATGCACG GCTTGGGTCT GCATTCCACC 1801 GAAAACAAGA TGGCGCGCAT CAACGATTTG GCAGATATGG CGCAACTCAA 1851 AGACTATGCC GCAGCAGCCA TCCGCGATTG GGCAGTCCAA AACCCCAATG 1901 CCGCACAAGG CATAGAAGCC GTCAGCAATA TCTTTATGGC AGCCATCCCC 1951 ATCAAAGGGA TTGGAGCTGT TCGGGGAAAA TACGGCTTGG GCGGCATCAC 2001 GGCACATCCT ATCAAGCGGT CGCACATGGG CGCGATCGCA TTGCCGAAAG 2051 GGAAATCCGC CGTCAGCGAC AATTTTGCCG ATGCGGCATA CGCCAAATAC 2101 CCGTCCCCTT ACCATTCCCG AAATATCCGT TCAAACTTGG AGCAGCGTTA 2151 CGGCAAAGAA AACATCACCT CCTCAACCGT GCCGCCGTCA AACGGCAAAA 2201 ATGTCAAACT GGCAGACCAA CGCCACCCGA AGACAGGCGT ACCGTTTGAC 2251 GGTAAAGGGT TTCCGAATTT TGAGAAGCAC GTGAAATATG ATACGTAACT 2301 CGAG 1 MKHEPSKVAT TAILATFCSG ALAATNDDDV KKAATVAIAK AYNNGQEING 51 FKAGETIYDI DEDGTITKKD ATAADVEADD FKGLGLKKVV TNATKTVNEN 101 KQNVDAKVKA AESEIEMATT KLADTDAALA DTDAALDATT NALNKLGENI 151 TTFAEETKTN IVEIDEKLEA VADTVDKHAE AFNDIADSLD ETNTKADEAV 201 KTANEAKQTA EETYQNVDAK VKAAETAAGK AEAAAGTANT AADKAEAVAA 251 KVTDIKADIA TNKDNIAKKA NSADVYTREE SDSKEVRIDG ANATTEKLDT 301 RLASAEKSIA DRDTRANGLD KTVGDARKET RQGLAEQAAL SGLFQPYNVG 351 GSGGGGSDLA NDSFIRQVAD RQHFEPDGKY ELFGSRGELA ERSGHIGLGK 401 IQSHQAGNLM IQQAAIKGNI GYIVRESDHG REVHSPFDNH ASHSDSDEAG 451 SPVDGFSLYR IHWDGYEHHP ADGYDGFQGG GYPAPKGARD IYSYDIKGVA 501 QNIRDNLTDN RSTGQRLADR FENAGSKLTQ GVGDGFKRAT RYSPELDRSG 551 NAAEAFNGTA DIVKNIIGAA GEIVGAGDAV QGISEGSNIA VHHGLGLAST 601 ENKNARINDA ADHAQLYDYA AAAIRDWAVQ NPNAAQGIEA VSNIFMAAIP 651 IKGIGAVRGK YGLGGITAHP IKRSQMGAIA APKGKEAVSD NFADAAYAKY 701 PSPYHSRNIR SNLEQRYGKE NITSSTVPPS NGENVKLADQ RHPKTGVPFD 751 GEGFPNFEKR VKYDT* 961cL-741 1 ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC TTGCCACTTT 51 CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT AAAAAAGCTG 101 CCACTGTGGC CATTGCTGCT GCCTACAACK ATGGCCAAGA AATCAACGGT 151 TTCAAAGCTG GAGAGACCAT CTACGACATT GATGAAGACG GCACAATTAC 201 CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACGAC TTTAAAGGTC 251 TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT CAATGAAAAC 301 AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG AAATAGAAAA 351 GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA GATACTGATG 401 CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG AGAAAATATA 451 ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA TTGATGAAAA 501 ATTAGAAGCC GTCGCTGATA CCGTCGACAA GCATGCCGAA GCATTCAACG 551 ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA CGAAGCCGTC 601 AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA AACAAAACGT 651 CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAA GCCGAAGCTG 701 CCGCTGCCAC ACCTAATACT GCAGCCGACA AGGCCGAAGC TGTCGCTGCA 751 AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG ATAATATTGC 801 TAAAAATGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG TCTGACAGCA 851 AATTTGTCAG AATTGATGGT CTGAACGCTA CTACCGAAAA ATTGGACACA 901 CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA CTCGCCTGAA 951 CCGTTTGGAT AAAACAGTGT CAGACCTGCG CAAAGAAACC CGCCAAGGCC 1001 TTGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA CAACGTGCGT 1051 GGATCCGGTG GGGGTGGTGT CGCCGCCGAC ATCGGTGCGG GGCTTGCCGA 1101 TGCACTAACC GCACCGCTCG ACCATAAAGA CAAAGGTTTG CAGTCTTTGA 1151 CGCTGGATCA GTCCGTCAGG AAAAACGAGA AACTGAAGCT GGCGGCACAA 1201 GGTGCGGAAA AAACTTATGG AAACGGTGAC AGCCTCAATA CGGGCAAATT 1251 GAAGAACGAC AAGGTCAGCC GTTTCGACTT TATCCGCCAA ATCGAAGTGG 1301 ACGGGCAGCT CATTACCTTG GAGAGTGGAG AGTTCCAAGT ATACAAACAA 1351 AGCCATTCCG CCTTAACCGC CTTTCAGACC GAGCAAATAC AAGATTCGGA 1401 GCATTCCGGG AAGATGGTTG CGAAACGCCA GTTCAGAATC GGCGACATAG 1451 CGGGCGAACA TACATCTTTT GACAAGCTTC CCGAAGGCGG CAGGGCGACA 1501 TATCGCGGGA CGGCGTTCGG TTCAGACGAT GCCGGCGGAA AACTGACCTA 1551 CACCATAGAT TTCGCCGCCA AGCAGGGAAA CGGCAAAATC GAACATTTGA 1601 AATCGCCAGA ACTCAATGTC GACCTGGCCG CCGCCGATAT CAAGCCGGAT 1651 GGAAAACGCC ATGCCGTCAT CAGCGGTTCC GTCCTTTACA ACCAAGCCGA 1701 GAAAGGCAGT TACTCCCTCG GTATCTTTGG CGGAAAAGCC CACGAAGTTG 1751 CCGGCAGCGC GGAAGTGAAA ACCGTAAACG GCATACGCCA TATCGGCCTT 1801 GCCGCCAAGC AACTCGAGCA CCACCACCAC CACCACTGA 1 MKHFPSKVLT TAILATFCSG ALAATNDDDV KKAATVAIAA ANNNGQEING 51 FKAGETIYDI DEDGTITKKD ATAADVEADD FKGLGLKKVV TNLTKTVNEN 101 KQNVDAKVKA AESEIEKLTT KLADTDAALA DTDAALDATT NAINKLGENI 151 TTFAEETKTN IVKIDEKLEA VADTVDKRAE AFNDIADSLD ETNTKADEAV 201 KTANEKKQTA EETKQNVDAK VFAAETAAGY AFAAAGTANT AADKAEAVAA 251 KVTDIKADIA TNYDNIAKKA NSADVYTREE SDSKFVRIDG LNATTEKLDT 301 RLASAEKSIA DEDTRINGLD KTVSDLRKET RQGLAEQAAL SGLFQPYVVG
351 QSGCCGVAAD IGAGLADALT APLDEKDKGL QSLTLDQSVR KNEKLKLAAQ 401 GAEKTYGNGD SLNTGKLKND KVSREDFIRQ IEVDGQLITL ESGMFQVYKQ 451 SMSALTAFQT EQIQDSEHSG KMVAKRQFRI GDIAGEHTSF DKLPEGGRAT 501 YRGTAFGSDD AGGKLTYTID FAAKQGNGKI EHLKSPELNV DLAAADIKPD 551 GKRHAVISGS VLYNQAEKGS YSLGIFGGKA QEVAGSAEVK TVNGIRHIGL 601 AAKQLEHHHH HH* 961cL-883 1 ATGAAACACT TTCCATCCAA AGTACTGACC ACAGCCATCC TTGCCACTTT 51 CTGTAGCGGC GCACTGGCAG CCACAAACGA CGACGATGTT AAAAAAGCTG 101 CCACTGTGGC CATTGCTGCT GCCTACAACA ATGGCCAAGA AATCAACGGT 151 TTCAAAGCTG GAGAGACCAT CTACGACATT GATGAAGACG GCACAATTAC 201 CAAAAAAGAC GCAACTGCAG CCGATGTTGA AGCCGACGAC TTTAAAGOTC 251 TGGGTCTGAA AAAAGTCGTG ACTAACCTGA CCAAAACCGT CAATGAAAAC 301 AAACAAAACG TCGATGCCAA AGTAAAAGCT GCAGAATCTG AAATAGAAAA 351 GTTAACAACC AAGTTAGCAG ACACTGATGC CGCTTTAGCA GATACTGATG 401 CCGCTCTGGA TGCAACCACC AACGCCTTGA ATAAATTGGG AGAAAATATA 451 ACGACATTTG CTGAAGAGAC TAAGACAAAT ATCGTAAAAA TTGATGAAAA 501 ATTAGAAGCC GTGGCTGATA CCGTCGACAA GCATGCCGAA GCATTCAACG 551 ATATCGCCGA TTCATTGGAT GAAACCAACA CTAAGGCAGA CGAAGCCGTC 601 AAAACCGCCA ATGAAGCCAA ACAGACGGCC GAAGAAACCA AACAAAACGT 651 CGATGCCAAA GTAAAAGCTG CAGAAACTGC AGCAGGCAAA GCCGAAGCTG 701 CCGCTGGCAC AGCTAATACT GCAGCCGACA AGGCCGAAGC TGTCGCTGCA 751 AAAGTTACCG ACATCAAAGC TGATATCGCT ACGAACAAAG ATAATATTGC 801 TAAAAAAGCA AACAGTGCCG ACGTGTACAC CAGAGAAGAG TCTGACAGCA 851 AATTTGTCAG AATTGATGGT CTGAACGCTA CTACCGAAAA ATTGGACACA 901 CGCTTGGCTT CTGCTGAAAA ATCCATTGCC GATCACGATA CTCGCCTGAA 951 CGGTTTGGAT AAAACAGTGT CAGACCTGCG CAAAGAAACC CGCCAAGGCC 1001 TTGCAGAACA AGCCGCGCTC TCCGGTCTGT TCCAACCTTA CAACGTGGGT 1051 GGATCCGGCG GAGGCGGCAC TTCTGCGCCC GACTTCAATG CAGGCGGTAC 1101 CGGTATCGGC AGCAACAGCA GAGCAACAAC AGCGAAATCA GCAGCAGTAT 1151 CTTACGCCGG TATCAAGAAC GAAATGTGCA AAGACAGAAG CATGCTCTGT 1201 GCCGGTCGGG ATGACGTTGC GGTTACAGAC AGGGATGCCA AAATCAATGC 1251 CCCCCCCCCG AATCTGCATA CCGGAGACTT TCCAAACCCA AATGACGCAT 1301 ACAAGAATTT GATCAACCTC AAACCTGCAA TTGAAGCAGG CTATACAGGA 1351 CGCGGGGTAG AGGTAGGTAT CGTCGACACA GGCGAATCCG TCGGCAGCAT 1401 ATCCTTTCCC GAACTGTATG GCAGAAAAGA ACACGGCTAT AACGAAAATT 1451 ACAAAAACTA TACGGCGTAT ATGCGGAAGG AAGCGCCTGA AGACGGAGGC 1501 GGTAAAGACA TTGAAGCTTC TTTCGACGAT GAGGCCGTTA TAGAGACTGA 1551 AGCAAAGCCG ACGGATATCC GCCACGTAAA AGAAATCGGA CACATCGATT 1601 TGGTCTCCCA TATTATTGGC GGGCGTTCCG TGGACGGCAG ACCTGCAGGC 1651 GaTATTGCGC CCGATGCGAC GCTACACATA ATGAATACGA ATGATGAAAC 1701 CAAGAACGAA ATGATGGTTG CAGCCATCCG CAATGCATGG GTCAAGCTGG 1751 GCGAACGTGG CGTGCGCATC GTCAATAACA GTTTTGGAAC AACATCGAGG 1801 GCAGGCACTG CCGACCTTTT CCAAATAGCC AATTCGGAGG AGCAGTACCG 1851 CCAAGCGTTG CTCGACTATT CCGGCGGTGA TAAAACAGAC GAGGGTATCC 1901 GCCTGATGCA ACAGAGCGAT TACGGCAACC TGTCCTACCA CATCCGTAAT 1951 AAAAACATGC TTTTCATCTT TTCGACAGGC AATGACGCAC AAGCTCAGCC 2001 CAACACATAT GCCCTATTGC CATTTTATGA AAAAGACGCT CAAAAAGGCA 2051 TTATCACAGT CGCAGGCGTA GACCGCAGTG GAGAAAAGTT CAAACGGGAA 2101 ATGTATGGAG AACCGGGTAC AGAACCGCTT GAGTATGGCT CCAACCATTG 2151 CGGAATTACT GCCATGTGGT GCCTGTCGGC ACCCTATGAA GCAAGCGTCC 2201 GTTTCACCCG TACAAACCCG ATTCAAATTG CCGGAACATC CTTTTCCGCA 2251 CCCATCGTAA CCGGCACGGC GGCTCTGCTG CTGCAGAAAT ACCCGTGGAT 2301 GAGCAACGAC AACCTGCGTA CCACGTTGCT GACGACGGCT CAGGACATCG 2351 GTGCAGTCGG CGTGGACAGC AAGTTCGGCT GGGGACTGCT GGATGCGGGT 2401 AAGGCCATGA ACGGACCCGC GTCCTTTCCG TTCGGCGACT TTACCGCCGA 2451 TACGAAAGGT ACATCCGATA TTGCCTACTC CTTCCGTAAC GACATTTCAG 2501 GCACGGGCGG CCTGATCAAA AAAGGCGGCA GCCAACTGCA ACTGCACGGC 2551 AACAACACCT ATACGGGCAA AACCATTATC GAAGGCGGTT CGCTGGTGTT 2601 GTACGGCAAC AACAAATCGG ATATGCGCGT CGAAACCAAA GGTGCGCTGA 2651 TTTATAACGG GGCGGCATCC GGCGGCAGCC TGAACAGCGA CGGCATTGTC 2701 TATCTGGCAG ATACCGACCA ATCCGGCGCA AACGAAACCG TACACATCAA 2751 AGGCAGTCTG CAGCTGGACG GCAAAGGTAC GCTGTACACA CGTTTGGGCA 2801 AACTGCTGAA AGTGGACGGT ACGGCGATTA TCGGCGGCAT GCTGTACATG 2851 TCGGCACGCG GCAAGGGGGC AGGCTATCTC AACAGTACCG GACGACGTGT 2901 TCCCTTCCTG AGTGCCGCCA AAATCGGGCA GGATTATTCT TTCTTCACAA 2951 ACATCGAAAC CGACGGCGGC CTGCTGGCTT CCCTCGACAG CGTCGAAAAA 3001 ACAGCGGGCA GTGAAGGCGA CACGCTGTCC TATTATGTCC GTCGCGGCAA 3051 TGCGGCACGG ACTGCTTCGG CAGCGGCACA TTCCGCGCCC GCCGGTCTGA 3101 AACACGCCGT AGAACAGGGC GGCAGCAATC TGGAAAACCT GATGGTCGAA 3151 CrGGATGCCT CCGAATCATC CGCAACACCC GAGACGGTTG AAACTGCGGC 3201 AGCCGACCGC ACAGATATGC CGGGCATCCG CCCCTACGGC GCAACTTTCC 3251 GCGCAGCOGC AGCCGTACAG CATGCGAATG CCGCCGACGG TGTACGCATC 3301 TTCAACAGTC TCGCCGCTAC CGTCTATGCC GACAGTACCG CCGCCCATGC 3351 CGATATGCAG GGACGCCGCC TGAAAGCCGT ATCGGACGGG TTGGACCACA 3401 ACGGCACGGG TCTGCGCGTC ATCGCGCAAA CCCAACAGGA CGGTGGAACG 3451 TGGGAACAGG GCGGTGTTGA AGGCAAAATG CGCGGCAGTA CCCAAACCGT 3501 CGGCATTGCC GCGAAAACCG GCGAAAATAC GACAGCAGCC GCCACACTGG 3551 GCATGGGACG CAGCACATGG AGCGAAAACA GTQCAAATGC AAAAACCGAC 3601 AGCATTAGTC TGTTTGCAGG CATACGGCAC GATGCGGGCG ATATCGGCTA 3651 TCTCAAAGGC CTGTTCTCCT ACGGACGCTA CAAAAACAGC ATCAGCCGCA 3701 GCACCGGTGC GGACGAACAT GCGGAAGGCA GCGTCAACGG CACGCTGATG 3751 CAGCTGGGCG CACTGGGCGG TGTCAACGTT CCGTTTGCCG CAACGGGAGA 3801 TTTGACGGTC GAAGGCGGTC TGCGCTACGA CCTGCTCAAA CAGGATGCAT 3851 TCGCCGAAAA AGGCAGTGCT TTGGGCTGGA GCGGCAACAG CCTCACTGAA 3901 GGCACGCTGG TCGGACTCGC GGGTCTGAAG CTGTCGCAAC CCTTGAGCGA 3951 TAAAGCCGTC CTGTTTGCAA CGGCGGGCGT GGAACGCGAC CTGAACGGAC 4001 GCGACTACAC GGTAACGGGC GGCTTTACCG GCGCGACTGC AGCAACCGGC 4051 AAGACGGGGG CACGCAATAT GCCGCACACC CGTCTGGTTG CCGGCCTGGG 4101 CGCGGATGTC GAATTCGGCA ACGGCTGGAA CGGCTTGGCA CGTTACAGCT 4151 ACGCCGGTTC CAAACAGTAC GGCAACCACA GCGGACGAGT CGGCGTAGGC 4201 TACCGGTTCT GACTCGAG 1 MKHFPSKVLT TAILATFCSG ALAATNDDDV KKAATVAIAA AYNNGQEING 51 FKAGETIYDI DEDGTITKKD ATAADVEADD FKGLGLKKVV TNLTKTVNEN 101 KQNVDAKVKA AESEIEKLTT KLADTDAALA DTDAALDATT NALNKLGENI 151 TTFABETKTN IVKIDEKLEA VADTVDKHAE AFNDIADSLD ETNTKADRAV 201 KTANEAKQTA EETKQNVDAK VKAABTAAGK AFAAAGTANT AADKARAVAA 251 KVTDIKADIA TNKDNIAKKA NSADVYTRBE SDSKFVRIEG LNATTEKLDT 301 RDASAEKSIA DHDTRLNGLD KTVSDLRKET RQGLAEQAAL SGLFQPYNVG 351 GSGGGGTSAP DFNAGGTGIG SNSRATTAKS ANVSYAGIKN EFKKDRSELC 401 AGRDDVAVTD RDAKTNAPPP NLHTGDFPNP NDAYENDINL KPAIRAGYTG 451 RGVEVGIVDT GESVGSISFP ELYGRKBHGY NENYKNYTAY MRKEAPEDGG 501 GKDIEASFDD EAVIETRAKP TDIRHVKEIG RIDLVSHIIG GRSVDGRPAG 551 GIAPDATLHI MNTNDRTXNE EEVAAIRNAW VKLGERGVRI VNNSFGTTSR 601 AGTADLFQIA NSEEQYRQAL LDYSGGDKTD EGIRLMQQSD YGNL5YH1RN 651 KNMDFIFSTG NDAQAQPNTY ALLPFYEKDA QKGIITVAGV DRSGEKFKRB 701 MYGSPGTRPL RYGSNHCGIT AMWCLSAPYE ASVRPTRTNP IQIAGTSFSA 751 PIVTGTAALL LQXYPWRSND NLRTTLLTTA QDIGAVGVDS KPGWGLLDAG 801 KAMNGPASFP FGDFTADTKG TSDIAYSFRN DISGTGGLIK KGGSQLQLHQ 851 NNTYTGKTII EGGSLVLYGN NKSDMRVETK GALIYNGAAS GGSLNSDGIV 901 YLADTDQSGA NETVHIKGSL QLDGKGTLYT RLGKLLKVDG TAIIGGKLMY 951 SARGKGAGYL NSTGRRVPFL SAAKIGQDYS FFTNIETDOG LLASLDSVEK 1001 TAGSEGDTLS YYVRRGNAAR TASAAAHSAP AGLKHAVEQG GSNLENLMVE 1051 LDASESSATP ETVETAAADR TDMPGIRPYG ATFRAAAAVQ HANAADGVRI 1101 FNSLAATVYA DSTAAHADMQ GRRLKAVSDG LDHNGTGLRV IAQTQQDGGT 1151 WEQGGVEGKM RGSTQTVGIA AKTGERPTAA ATLGMGRSTW SENSANAKTD 1201 SISLFAGIRH DAGDIGYLKG LFSYGRYKNS ISRSTGADEH AEGSVNGTLM 1251 QLGALGGVNV PFAATGDLTV EGGLRYDLLK QDAFAEKGSA LGWSGNSLTE 1301 GTLVGLAGLR LSQPLSDKAV LFATAGVERD LNGRDYTVTG GRTGATAATG 1351 KTGARNMPHT RLVAGLGADV EFGNGWNGLA RYSYAGSKQY GNHSGRVGVG 1401 YRF*
[0362] It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention. For instance, the use of proteins from other strains is envisaged [e.g. see WO00/66741 for polymorphic sequences for ORF4, ORF40, ORF46, 225, 235, 287, 519, 726, 919 and 953].
EXPERIMENTAL DETAILS
FPLC Protein Purification
[0363] The following table summarises the FPLC protein purification that was used:
TABLE-US-00057 Protein PI Column Buffer pH Protocol 121.1.sup.untagged 6.23 Mono Q Tris 8.0 A 128. 1.sup.untagged 5.04 Mono Q Bis-Tris propane 6.5 A 406.1L 7.75 Mono Q Diethanolamine 9.0 B 576.1L 5.63 Mono Q Tris 7.5 B 593.sup.untagged 8.79 Mono S Hepes 7.4 A 726.sup.untagged 4.95 Hi-trap S Bis-Tris 6.0 A 919.sup.untagged 10.5(-leader) Mono S Bicine 8.5 C 919Lorf4 10.4(-leader) Mono S Tris 8.0 B 920L 6.92(-leader) Mono Q Diethanolamine 8.5 A 953L 7.56(-leader) Mono S MES 6.6 D 982.sup.untagged 4.73 Mono Q Bis-Tris propane 6.5 A 919-287 6.58 Hi-trap Q Tris 8.0 A 953-287 4.92 Mono Q Bis-Tris propane 6.2 A
[0364] Buffer solutions included 20-120 mM NaCl, 5.0 mg/ml CHAPS and 10% v/v glycerol. The dialysate was centrifuged at 13000 g for 20 min and applied to either a mono Q or mono S FPLC ion-exchange resin. Buffer and ion exchange resins were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual [Pharmacia: FPLC Ion Exchange and Chromatofocussing; Principles and Methods. Pharmacia Publication]. Proteins were eluted using a step-wise NaCl gradient. Purification was analysed by SDS-PAGE and protein concentration determined by the Bradford method.
[0365] The letter in the `protocol` column refers to the following:
[0366] FPLC-A:
[0367] Clones 121.1, 128.1, 593, 726, 982, periplasmic protein 920L and hybrid proteins 919-287, 953-287 were purified from the soluble fraction of E. coli obtained after disruption of the cells. Single colonies harbouring the plasmid of interest were grown overnight at 37.degree. C. in 20 ml of LB/Amp (100 .mu.g/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at either 30.degree. C. or 37.degree. C. until the OD.sub.550 reached 0.6-08. Expression of recombinant protein was induced with/PTO at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4.degree. C. When necessary cells were stored at -20.degree. C. All subsequent procedures were performed on ice or at 4.degree. C. For cytosolic proteins (121.1, 128.1, 593, 726 and 982) and periplasmic protein 920L, bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim). Cells were lysed by by sonication using a Branson Sonifier 450. Disrupted cells were centrifuged at 8000 g for 30 min to sediment unbroken cells and inclusion bodies and the supernatant taken to 35% v/v saturation by the addition of 3.9 M (NH.sub.4).sub.2SO.sub.4. The precipitate was sedimented at 8000 g for 30 minutes. The supernatant was taken to 70% v/v saturation by the addition of 3.9 M (NH.sub.4).sub.2SO.sub.4 and the precipitate collected as above. Pellets containing the protein of interest were identified by SDS-PAGE and dialysed against the appropriate ion-exchange buffer (see below) for 6 hours or overnight. The periplasmic fraction from E. coli expressing 953L was prepared according to the protocol of Evans et. al. [Infect. Immun. (1974) 10:1010-1017] and dialysed against the appropriate ion-exchange buffer. Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia). Buffer solutions included 20 mM NaCl, and 10% (v/v) glycerol. The dialysate was centrifuged at 13000 g for 20 min and applied to either a mono Q or mono S FPLC ion-exchange resin. Buffer and ion exchange resin were chosen according to the pI of the protein of interest and the recommendations of the FPLC protocol manual (Pharmacia). Proteins were eluted from the ion-exchange resin using either step-wise or continuous NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method. Cleavage of the leader peptide of periplasmic proteins was demonstrated by sequencing the NH.sub.2-terminus (see below).
[0368] FPLC-B:
[0369] These proteins were purified from the membrane fraction of E. coli, Single colonies harbouring the plasmid of interest were grown overnight at 37.degree. C. in 20 ml of LB/Amp (100 .mu.g/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium. Clones 406.1L and 919LOrf4 were grown at 30.degree. C. and Orf25L and 576.1L at 37.degree. C. until the OD.sub.550 reached 0.6-0.8. In the case of 919LOrf4, growth at 30.degree. C. was essential since expression of recombinant protein at 37.degree. C. resulted in lysis of the cells. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4.degree. C. When necessary cells were stored at -20.degree. C. AU subsequent procedures were performed at 4.degree. C. Bacteria were resuspended in 25 ml of PBS containing complete protease inhibitor (Boehringer-Mannheim) and lysed by osmotic shock with 2-3 passages through a French Press. Unbroken cells were removed by centrifugation at 5000 g for 15 min and membranes precipitated by centrifugation at 100000 g (Beckman Ti50, 38000 rpm) for 45 minutes. A Dounce homogenizer was used to re-suspend the membrane pellet in 7.5 ml of 20 mM Tris-HCl (pH 8.0), 1.0 M NaCl and complete protease inhibitor. The suspension was mixed for 2-4 hours, centrifuged at 100000 g for 45 min and the pellet resuspended in 7.5 ml of 20 mM Tris-HCl (pH 8.0), 1.0M NaCl, 5.0 mg/ml CHAPS, 10% (v/v) glycerol and complete protease inhibitor. The solution was mixed overnight, centrifuged at 100000 g for 45 minutes and the supernatant dialysed for 6 hours against an appropriately selected buffer. In the case of Orf25L, the pellet obtained after CHAPS extraction was found to contain the recombinant protein. This fraction, without further purification, was used to immunise mice.
[0370] FPLC-C:
[0371] Identical to FPLC-A, but purification was from the soluble fraction obtained after permeabilising E. coli with polymyxin B, rather than after cell disruption.
[0372] FPLC-D:
[0373] A single colony harbouring the plasmid of interest was grown overnight at 37.degree. C. in 20 ml of LB/Amp (100 .mu.g/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at 30.degree. C. until the OD.sub.550 reached 0.6-0.8. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4.degree. C. When necessary cells were stored at -20.degree. C. All subsequent procedures were performed on ice or at 4.degree. C. Cells were resuspended in 20 mM Bicine (pH 8.5), 20 mM NaCl, 10% (v/v) glycerol, complete protease inhibitor (Boehringer-Mannheim) and disrupted using a Branson Sonifier 450. The sonicate was centrifuged at 8000 g for 30 rain to sediment unbroken cells and inclusion bodies. The recombinant protein was precipitated from solution between 35% v/v and 70% v/v saturation by the addition of 3.9M (NH.sub.4).sub.2SO.sub.4. The precipitate was sedimented at 8000 g for 30 minutes, resuspended in 20 mM Bicine (pH 8.5), 20 mM NaCl, 10% (v/v) glycerol and dialysed against this buffer for 6 hours or overnight. The dialysate was centrifuged at 13000 g for 20 min and applied to the FPLC resin. The protein was eluted from the column using a step-wise NaCl gradients. Purification was analysed by SDS-PAGE and protein concentration determined by Bradford method.
Cloning Strategy and Oligonucleotide Design
[0374] Genes coding for antigens of interest were amplified by PCR, using oligonucleotides designed on the basis of the genomic sequence of N. meningitidis B MC58. Genomic DNA from strain 2996 was always used as a template in PCR reactions, unless otherwise specified, and the amplified fragments were cloned in the expression vector pET21b+(Novagen) to express the protein as C-terminal His-tagged product, or in pET-24b+(Novagen) to express the protein in `untagged` form (e.g. AG 287K).
[0375] Where a protein was expressed without a fusion partner and with its own leader peptide (if present), amplification of the open reading frame (ATG to STOP codons) was performed.
[0376] Where a protein was expressed in `untagged` form, the leader peptide was omitted by designing the 5'-end amplification primer downstream from the predicted leader sequence.
[0377] The melting temperature of the primers used in PCR depended on the number and type of hybridising nucleotides in the whole primer, and was determined using the formulae:
T.sub.m1=4(G+C)+2(A+T) (tail excluded)
T.sub.m2=64.9+0.41(% GC)-600/N (whole primer)
[0378] The melting temperatures of the selected oligonucleotides were usually 65-70.degree. C. for the whole oligo and 50-60.degree. C. for the hybridising region alone.
[0379] Oligonucleotides were synthesised using a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2.0 ml NH.sub.4OH, and deprotected by 5 hours incubation at 56.degree. C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were centrifuged and the pellets resuspended in water.
TABLE-US-00058 Restriction Sequences site Orf1L Fwd CGCGATCCGCTAGC-AAAACAACCGACAAACGG NheI Rev CCCGCTCGAG-TTACCAGCGGTAGCCTA XhoI Orf1 Fwd CTAGCTAGC-GGACACACTTATTTCGGCATC NheI Rev CCCGCTCGAG-TTACCAGCGGTAGCCTAATTTG XhoI Orf1LOmpA Fwd NdeI-(NheI) Rev CCCGCTCGAG- XhoI Orf4L Fwd CGCGGATCCCATATG-AAAACCTTCTTCAAAACC NdeI Rev CCCGCTCGAG-TTATTTGGCTGCGCCTTC XhoI Orf7-1L Fwd GCGGCATTAAT-ATGTTGAGAAAATTGTTGAAATGG AseI Rev GCGGCCTCGAG-TTATTTTTTCAAAATATATTTGC XhoI Orf9-L Fwd GCGGCCATATG-TTACCTAACCGTTTCAAAATGT Ndel Rev GCGGCCTCGAG-TTATTTCCGAGGTTTTCGGG XhoI Orf23L Fwd CGCGGATCCCATATG-ACACGCTTCAAATATTC NdeI Rev CCCGCTCGAG-TTATTTAAACCGATAGGTAAA XhoI Orf25-1 His Fwd CGCGGATCCCATATG-GGCAGGGAAGAACCGC NdeI Rev GCCCAAGCTT-ATCGATGGAATAGCCGCG HindIII Orf29-1 b-His- Fwd CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG NheI (MC58) Rev CCCGCTCGAG-TTTGTCTAAGTTCCTGATAT XhoI CCCGCTCGAG-ATTCCCACCTGCCATC Orf29-1 b-L Fwd CGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAAT NheI (MC58) Rev CCCGCTCGAG-TTAATTCCCACCTGCCATC XhoI Orf29-1 c-His Fwd CGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAAT NheI (MC58) Rev CCCGCTCGAG-TTGGACGATGCCCGCGA XhoI Orf29-1 c-L Fwd CGCGGATCCGCTAGC-ATGAATTTGCCTATTCAAAAAT NheI (MC58) Rev CCCGCTCGAG-TTATTGGACGATGCCCGC XhoI Orf25L Fwd CGCGGATCCCATATG-TATCGCAAACTGATTGC NdeI Rev CCCGCTCGAG-CTAATCGATGGAATAGCC XhoI Orf37L Fwd CGCGGATCCCATATG-AAACAGACAGTCAAATG NdeI Rev CCCGCTCGAG-TCAATAACCCGCCTTCAG XhoI Orf38L Fwd CGCGGATCCCATATG- NdeI TTACGTTTGACTGCTTTAGCCGTATGCACC Rev CCCGCTCGAG- XhoI TTATTTTGCCGCGTTAAAAGCGTCGGCAAC Orf40L Fwd CGCGGATCCCATATG-AACAAAATATACCGCAT NdeI Rev CCCGCTCGAG-TTACCACTGATAACCGAC XhoI Orf40.2-His Fwd CGCGGATCCCATATG-ACCGATGACGACGATTTAT NdeI Rev GCCCAAGCTT-CCACTGATAACCGACAGA HindIII Orf40.2L Fwd CGCGGATCCCATATG-AACAAAATATACCGCAT NdeI Rev GCCCAAGCTT-TTACCACTGATAACCGAC HindIII Orf46-2L Fwd GGGAATTCCATATG-GGCATTTCCCGCAAAATATC NdeI Rev CCCGCTCGAG-TTATTTACTCCTATAACGAGGTCTCTTAAC XhoI Orf46-2 Fwd GGGAATTCCATATG-TCAGATTTGGCAAACGATTCTT NdeI Rev CCCGCTCGAG-TTATTTACTCCTATAACGAGGTCTCTTAAC XhoI Orf46.1L Fwd GGGAATTCCATATG-GGCATTTCCCGCAAAATATC NdeI Rev CCCGCTCGAG-TTACGTATCATATTTCACGTGC XhoI orf46. Fwd GGGAATTCCATATGCACGGAAATATGATACGAAG BamHI-NdeI (His-GST) Rev CCCGCTCGAGTTTACTCCTATAACGAGGTCTCTTAAC XhoI rf46.1-His Fwd GGGAATTCCATATGTCAGATTTGGCAAACGATTCTT NdeI Rev CCCGCTCGAGCGTATCATATTTCACGTGC XhoI orf46.2-His Fwd GGGAATTCCATATGTCAGATTTGGCAAACGATTCTT NdeI Rev CCCGCTCGAGTTTACTCCTATAACGAGGTCTCTTAAC XhoI Orf65-1-(His/ Fwd CGCGGATCCCATATG-CAAAATGCGTTCAAAATCCC BamHI-NdeI GST) (MC58) Rev CGCGGATCCCATATG-AACAAAATATACCGCAT XhoI CCCGCTCGAG-TTTGCTTTCGATAGAACGG Orf2-1L Fwd GCGGCCATATG-GTCATAAAATATACAAATTTGAA NdeI Rev GCGGCCTCGAG-TTAGCCTGAGACCTTTGCAAATT XhoI Orf76-1L Fwd GCGGCCATATG-AAACAGAAAAAAACCGCTG NdeI Rev GCGGCCTCGAG-TTACGGTTTGACACCGTTTTC XhoI Orf83.1L Fwd CGCGGATCCCATATG-AAAACCCTGCTCCTC NdeI Rev CCCGCTCGAG-TTATCCTCCTTTGCGGC XhoI Orf85-2L Fwd GCGGCCATATG-GCAAAAATGATGAAATGGG NdeI Rev GCGGCCTCGAG-TTATCGGCGCGGCGGGCC XhoI Orf91L Fwd GCGGCCATATGAAAAAATCCTCCCTCATCA NdeI (MC58) Rev GCGGCCTCGAGTTATTTGCCGCCGTTTTTGGC XhoI Orf91-His Fwd GCGGCCATATGGCCCCTGCCGACGCGGTAAG NdeI (MC580 Rev GCGGCCTCGAGTTTGCCGCCGTTTTTGGCTTTC XhoI Orf97-1L Fwd GCGGCCATATG-AAACACATACTCCCCCTGA NdeI Rev GCGGCCTCGAG-TTATTCGCCTACGGTTTTTTG XhoI Orf119L Fwd GCGGCCATATGATTTACATCGTACTGTTTC NdeI (MC58) Rev GCGGCCTCGAGTTAGGAGAACAGGCGCAATGC XhoI Orf119-His Fwd GCGGCCATATGTACAACATGTATCAGGAAAAC NdeI (MC58) Rev GCGGCCTCGAGGGAGAACAGGCGCAATGCGG XhoI Orf137.1 (His- Fwd CGCGGATCCGCTAGCTGCGGCACGGCGGG BamHI-NdeI GST) (MC58) Rev CCCGCTCGAGATAACGGTATGCCGCCAG XhoI Orf143-1L Fwd CGCGGATCCCATATG-GAATCAACACTTTCAC NdeI Rev CCCGCTCGAG-TTACACGCGGTTGCTGT XhoI 008 Fwd CGCGGATCCCATATG-AACAACAGACATTTTG NdeI Rev CCCGCTCGAG-TTACCTGTCCGGTAAAAG XhoI 050-1(48) Fwd CGCGGATCCGCTAGC-ACCGTCATCAAACAGGAA NheI Rev CCCGCTCGAG-TCAAGATTCGACGGGGA XhoI 105 Fwd CGCGGATCCCATATG-TCCGCAAACGAATACG NdeI Rev CCCGCTCGAG-TCAGTGTTCTGCCAGTTT XhoI 111L Fwd CGCGGATCCCATATG-CCGTCTGAAACACG NdeI Rev CCCGCTCGAG-TTAGCGGAGCAGTTTTTC XhoI 117-1 Fwd CGCGGATCCCATATG-ACCGCCATCAGCC NdeI Rev CCCGCTCGAG-TTAAAGCCGGGTAACGC XhoI 121-1 Fwd GCGGCCATATG-GAAACACAGCTTTACATCGG NdeI Rev GCGGCCTCGAG-TCAATAATAATATCCCGCG XhoI 122-1 Fwd GCGGCCATATG-ATTAAAATCCGCAATATCC NdeI Rev GCGGCCTCGAG-TTAAATCTTGGTAGATTGGATTTGG XhoI 128-1 Fwd GCGGCCATATG-ACTGACAACGCACTGCTCC NdeI Rev GCGGCCTCGAG-TCAGACCGCGTTGTCGAAAC XhoI 148 Fwd CGCGGATCCCATATG-GCGTTAAAAACATCAAA NdeI Rev CCCGCTCGAG-TCAGCCCTTCATACAGC XhoI 149.1L Fwd CCCGCTCGAG-TCAGCCCTTCATACAGC XhoI (MC58) Rev GCGGCATTAATGGCACAAACTACACTCAAACC AseI 149.1His Fwd GCGGCATTAATGCATGAAACTGAGCAATCGGTGG AseI (MC58) Rev GCGGCCTCGAGAAACTTCACGTTCACGCCGCCGGTAAA XhoI 205 (His-GST) Fwd CGCGGATCCCATATGGGCAAATCCGAAAATACG BamHI-NdeI (MC58) Rev CCCGCTCGAGATAATGGCGGCGGCGG XhoI 206L Fwd CGCGGATCCCATATG-TTTCCCCCCGACAA NdeI Rev CCCGCTCGAG-TCATTCTGTAAAAAAAGTATG XhoI 214 (His-GST) Fwd CGCGGATCCCATATGCTTCAAAGCGACAGCAG BamHI-NdeI (MC58) Rev CCCGCTCGAGTTCGGATTTTTGCGTACTC XhoI 216 Fwd CGCGGATCCCATATG-GCAATGGCAGAAAACG NdeI Rev CCCGCTCGAG-CTATACAATCCGTGCCG XhoI 225-1L Fwd CGCGGATCCCATATG-GATTCTTTTTTCAAACC NdeI Rev CCCGCTCGAG-TCAGTTCAGAAAGCGGG XhoI 235L Fwd CGCGGATCCCATATG-AAACCTTTGATTTTAGG NdeI Rev CCCGCTCGAG-TTATTTGGGCTGCTCTTC XhoI 243 Fwd CGCGGATCCCATATG-GTAATCGTCTGGTTG NdeI Rev CCCGCTCGAG-CTACGACTTGGTTACCG XhoI 247-1L Fwd GCGGCCATATG-AGACGTAAAATGCTAAAGCTAC NdeI Rev GCGGCCTCGAG-TCAAAGTGTTCTGTTTGCGC XhoI 264-His Fwd GCCGCCATATG-TTGACTTTAACCCGAAAAA NdeI Rev GCCGCCTCGAG-GCCGGCGGTCAATACCGCCCGAA XhoI 270 (His-GST) Fwd CGCGGATCCCATATGGCGCAATGCGATTTGAC BamHI-NdeI (MC58) Rev CCCGCTCGAGTTCGGCGGTAAATGCCG XhoI 274L Fwd GCGGCCATATG-GCGGGGCCGATTTTTGT NdeI Rev GCGGCCTCGAG-TTATTTGCTTTCAGTATTATTG XhoI 283L Fwd GCGGCCATATG-AACTTTGCTTTATCCGTCA NdeI Rev GCGGCCTCGAG-TTAACGGCAGTATTTGTTTAC XhoI 285-His Fwd CGCGGATCCCATATGGGTTTGCGCTTCGGGC BamHI Rev GCCCAAGCTTTTTTCCTTTGCCGTTTCCG HindIII 286-His Fwd CGCGGATCCCATATG-GCCGACCTTTCCGAAAA NdeI (MC58) Rev CCCGCTCGAG-GAAGCGCGTTCCCAAGC XhoI 286L Fwd CGCGGATCCCATATG-CACGACACCCGTAC NdeI Rev CCCGCTCGAG-TTAGAAGCGCGTTCCCAA XhoI 287L Fwd CTAGCTAGC-TTTAAACGCAGCGTAATCGCAATGG NheI Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI 287 Fwd CTAGCTAGC-GGGGGCGGCGGTGGCG NheI Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI 287LOrf4 Fwd CTAGCTAGCGCTCATCCTCGCCGCC- NheI TGCGGGGGCGGCGGT Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI 287-fu Fwd CGGGGATCC-GGGGGCGGCGGTGGCG BamHI Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI 287-His Fwd CTAGCTAGC-GGGGGCGGCGGTGGCG NheI Rev CCCGCTCGAG-ATCCTGCTCTTTTTTGCC* XhoI 287-His Fwd CTAGCTAGC-TGCGGGGGCGGCGGTGGCG NheI (2996) Rev CCCGCTCGAG-ATCCTGCTCTTTTTTGCC XhoI .DELTA.1 287-His Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC.sup..sctn. NheI .DELTA.2 287-His Fwd CGCGGATCCGCTAGC-CAAGATATGGCGGCAGT.sup..sctn. NheI .DELTA.3 287-His Fwd CGCGGATCCGCTAGC-GCCGAATCCGCAAATCA.sup..sctn. NheI .DELTA.4 287-His Fwd CGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG.sup..sctn. NheI .DELTA.4 287MC58-His Fwd CGCGCTAGC-GGAAGGGTTGATTTGGCTAATGG.sup..sctn. NheI 287a-His Fwd CGCCATATG-TTTAAACGCAGCGTAATCGC NdeI Rev CCCGCTCGAG-AAAATTGCTACCGCCATTCGCAGG XhoI 287b-His Fwd CGCCATATG-GGAAGGGTTGATTTGGCTAATGG NdeI 287b-2996-His Rev CCCGCTCGAG-CTTGTCTTTATAAATGATGACATATTTG XhoI 287b-MC58-His Rev CCCGCTCGAG-TTTATAAAAGATAATATATTGATTGATTCC XhoI 287c-2996-His Fwd CGCGCTAGC-ATGCCGCTGATTCCCGTCAATC.sup..sctn. NheI '287.sup.untagged, Fwd CTAGCTAGC-GGGGGCGGCGGTGGCG NheI (2996) Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI .DELTA.G287-His* Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI Rev CCCGCTCGAG-ATCCTGCTCTTTTTTGCC XhoI .DELTA.G287K (2996) Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI .DELTA.G 287-L Fwd CGCGGATCCGCTAGC- NheI TTTGAACGCAGTGTGATTGCAATGGCTTGTATTTTTGCC CTTTCAGCCTGT TCGCCCGATGTTAAATCGGCG Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI .DELTA.G 287-Orf4L Fwd CGCGGATCCGCTAGC- NheI
AAAACCTTCTTCAAAACCCTTTCCGCCGCCGCACTCGCG CTCATCCTCGCCGCCTGC TCGCCCGATGTTAAATCG Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI 292L Fwd CGCGGATCCCATATG-AAAACCAAGTTAATCAAA NdeI Rev CCCGCTCGAG-TTATTGATTTTTGCGGATGA XhoI 308-1 Fwd CGCGGATCCCATATG-TTAAATCGGGTATTTTATC NdeI Rev CCCGCTCGAG-TTAATCCGCCATTCCCTG XhoI 401L Fwd GCGGCCATATG-AAATTACAACAATTGGCTG NdeI Rev GCGGCCTCGAG-TTACCTTACGTTTTTCAAG XhoI 406L Fwd CGCGGATCCCATATG-CAAGCACGGCTGCT NdeI Rev CCCGCTCGAG-TCAAGGTTGTCCTTGTCTA XhoI 502-1L Fwd CGCGGATCCCATATG-ATGAAACCGCACAAC NdeI Rev CCCGCTCGAG-TCAGTTGCTCAACACGTC XhoI 502-A Fwd CGCGGATCCCATATGGTAGACGCGCTTAAGCA BamHI-NdeI (His-GST) Rev CCCGCTCGAGAGCTGCATGGCGGCG XhoI 503-1L Fwd CGCGGATCCCATATG-GCACGGTCGTTATAC NdeI Rev CCCGCTCGAG-CTACCGCGCATTCCTG XhoI 519-1L Fwd GCGGCCATATG-GAATTTTTCATTATCTTGTT NdeI Rev GCGGCCTCGAG-TTATTTGGCGGTTTTGCTGC XhoI 525-1L Fwd GCGGCCATATG-AAGTATGTCCGGTTATTTTTC NdeI Rev GCGGCCTCGAG-TTATCGGCTTGTGCAACGG XhoI 529-(His/GST) Fwd CGCGGATCCGCTAGC-TCCGGCAGCAAAACCGA BamHI-NdeI (MC58) Rev GCCCAAGCTT-ACGCAGTTCGGAATGGAG HindIII 552L Fwd GCCGCCATATGTTGAATATTAAACTGAAAACCTTG NdeI Rev GCCGCCTCGAGTTATTTCTGATGCCTTTTCCC XhoI 556L Fwd GCCGCCATATGGACAATAAGACCAAACTG NdeI Rev GCCGCCTCGAGTTAACGGTGCGGACGTTC XhoI 557L Fwd CGCGGATCCCATATG-AACAAACTGTTTCTTAC NdeI Rev CCCGCTCGAG-TCATTCCGCCTTCAGAAA XhoI 564ab-(His/GST) Fwd CGCGGATCCCATATG- BamHI-NdeI (MC58) CAAGGTATCGTTGCCGACAAATCCGCACCT Rev CCCGCTCGAG- XhoI AGCTAATTGTGCTTGGTTTGCAGATAGGAGTT 564abL Fwd CGCGGATCCCATATG- NdeI (MC58) AACCGCACCCTGTACAAAGTTGTATTTAACAAACATC Rev CCCGCTCGAG- XhoI TTAAGCTAATTGTGCTTGGTTTGCAGATAGGAGTT 564b-(His/GST) Fwd CGCGGATCCCATATG- BamHI-NdeI (MC58) ACGGGAGAAAATCATGCGGTTTCACTTCATG Rev CCCGCTCGAG- XhoI AGCTAATTGTGCTTGGTTTGCAGATAGGAGTT 564c-(His/GST) Fwd CGCGGATCCCATATG- BamHI-NdeI (MC58) GTTTCAGACGGCCTATACAACCAACATGGTGAAATT Rev CCCGCTCGAG- XhoI GCGGTAACTGCCGCTTGCACTGAATCCGTAA 564bc-(His/GST) Fwd CGCGGATCCCATATG- BamHI-NdeI (MC58) ACGGGAGAAAATCATGCGGTTTCACTTCATG Rev CCCGCTCGAG- XhoI GCGGTAACTGCCGCTTGCACTGAATCCGTAA 564d-(His/GST) Fwd CGCGGATCCCATATG- BamHI-NdeI (MC58) CAAAGCAAAGTCAAAGCAGACCATGCCTCCGTAA Rev CCCGCTCGAG- XhoI TCTTTTCCTTTCAATTATAACTTTAGTAGGTTCAATTTTG GTCCCC 564cd-(His/GST) Fwd CGCGGATCCCATATG- BamHI-NdeI (MC58) GTTTCAGACGGCCTATACAACCAACATGGTGAAATT Rev CCCGCTCGAG- XhoI TCTTTTCCTTTCAATTATAACTTTAGTAGGTTCAATTTTG GTCCCC 570L Fwd GCGGCCATATG-ACCCGTTTGACCCGCG NdeI Rev GCGGCCTCGAG-TCAGCGGGCGTTCATTTCTT XhoI 576-1L Fwd CGCGGATCCCATATG-AACACCATTTTCAAAATC NdeI Rev CCCGCTCGAG-TTAATTTACTTTTTTGATGTCG XhoI 580L Fwd GCGGCCATATG-GATTCGCCCAAGGTCGG NdeI Rev GCGGCCTCGAG-CTACACTTCCCCCGAAGTGG XhoI 583L Fwd CGCGGATCCCATATG-ATAGTTGACCAAAGCC NdeI Rev CCCGCTCGAG-TTATTTTTCCGATTTTTCGG XhoI 593 Fwd GCGGCCATATG-CTTGAACTGAACGGACT NdeI Rev GCGGCCTCGAG-TCAGCGGAAGCGGACGATT XhoI 650 (His-GST) Fwd CGCGGATCCCATATGTCCAAACTCAAAACCATCG BamHI-NdeI (MC58) Rev CCCGCTCGAGGCTTCCAATCAGTTTGACC XhoI 652 Fwd GCGGCCATATG-AGCGCAATCGTTGATATTTTC NdeI Rev GCGGCCTCGAG-TTATTTGCCCAGTTGGTAGAATG XhoI 664L Fwd GCGGCCATATG-GTGATACATCCGCACTACTTC NdeI Rev GCGGCCTCGAG-TCAAAATCGAGTTTTACACCA XhoI 726 Fwd GCGGCCATATG-ACCATCTATTTCAAAAACGG NdeI Rev GCGGCCTCGAG-TCAGCCGATGTTTAGCGTCCATT XhoI 741-His Fwd CGCGGATCCCATATG-AGCAGCGGAGGGGGTG NdeI (MC58) Rev CCCGCTCGAG-TTGCTTGGCGGCAAGGC XhoI .DELTA.G741-His Fwd CGCGGATCCCATATG-GTCGCCGCCGACATCG NdeI (MC58) Rev CCCGCTCGAG-TTGCTTGGCGGCAAGGC XhoI 686-2-(His/GST) Fwd CGCGGATCCCATATG-GGCGGTTCGGAAGGCG BamHI-NdeI (MC58) Rev CCCGCTCGAG-TTGAACACTGATGTCTTTTCCGA XhoI 719-(His/GST) Fwd CGCGGATCCGCTAGC-AAACTGTCGTTGGTGTTAAC BamHI-NdeI (MC58) Rev CCCGCTCGAG-TTGACCCGCTCCACGG XhoI 730-His Fwd GCCGCCATATGGCGGACTTGGCGCAAGACCC NdeI (MC58) Rev GCCGCCTCGAGATCTCCTAAACCTGTTTTAACAATGCCG XhoI 730A-His Fwd GCCGCCATATGGCGGACTTGGCGCAAGACCC NdeI (MC58) Rev GCGGCCTCGAGCTCCATGCTGTTGCCCCAGC XhoI 730B-His Fwd GCCGCCATATGGCGGACTTGGCGCAAGACCC NdeI (MC58) Rev GCGGCCTCGAGAAAATCCCCGCTAACCGCAG XhoI 741-His Fwd CGCGGATCCCATATG-AGCAGCGGAGGGGGTG NdeI (MC58) Rev CCCGCTCGAG-TTGCTTGGCGGCAAGGC XhoI .DELTA.G741-His Fwd CGCGGATCCCATATG-GTCGCCGCCGACATCG NdeI (MC58) Rev CCCGCTCGAG-TTGCTTGGCGGCAAGGC XhoI 743 (His-GST) Fwd CGCGGATCCCATATGGACGGTGTTGTGCCTGTT BamHI-NdeI Rev CCCGCTCGAGCTTACGGATCAAATTGACG XhoI 757 (His-GST) Fwd CGCGGATCCCATATGGGCAGCCAATCTGAAGAA BamHI-NdeI (MC58) Rev CCCGCTCGAGCTCAGCTTTTGCCGTCAA XhoI 759-His/GST Fwd GGCGGATCCGCTAGC-TACTCATCCATTGTCCGC BamHI-NdeI (MC58) Rev CCCGCTCGAG-CCAGTTGTAGCCTATTTG XhoI 759L Fwd CGCGGATCCGCTAGC-ATGCGCTTCACACACAC NdeI (MC58) Rev CCCGCTCGAG-TTACCAGTTGTAGCCTATTT XhoI 760-His Fwd GCCGCCATATGGCACAAACGGAAGGTTTGGAA NdeI Rev GCCGCCTCGAGAAAACTGTAACGCAGGTTTGCCGTC XhoI 769-His Fwd GCGGCCATATGGAAGAAACACCGCGCGAACCG NdeI (MC58) Rev GCGGCCTCGAGAACGTTTTATTAAACTCGAC XhoI 907L Fwd GCGGCCATATG-AGAAAACCGACCGATACCCTA NdeI Rev GCGGCCTCGAG-TCAACGCCACTGCCAGCGGTTG XhoI 911L Fwd CGCGGATCCCATATG-AAGAAGAACATATTGGAATTTTGGGTCGGACTG NdeI Rev CCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCG XhoI 911LOmpA Fwd GGGAATTCCATATGAAAAAGACAGCTATCGCGATTGCA NdeI-(NheI) GTGGCACTGGCTGGTTTCGCTACCGTAGCGCAGGCCGC TAGC-GCTTTCCGCGTGGCCGGCGGTGC Rev CCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCG XhoI 911LPelB Fwd CATGCCATGG-CTTTCCGCGTGGCCGGCGGTGC NcoI Rev CCCGCTCGAG-TTATTCGGCGGCTTTTTCCGCATTGCCG XhoI 913-His/GST Fwd CGCGGATCCCATATG-TTTGCCGAAACCCGCC BamHI-NdeI (MC58) Rev CCCGCTCGAG-AGGTTGTGTTCCAGGTTG XhoI 913L Fwd CGCGGATCCCATATG-AAAAAAACCGCCTATG NdeI (MC58) Rev CCCGCTCGAG-TTAAGGTTGTGTTCCAGG XhoI 916L Fwd CGCGGATCCCATATG-AAAAAATACCTATTCCGC NdeI Rev CCCGCTCGAG-TTACGGGCGGTATTCGG XhoI 919 Fwd CGCGGATCCCATATG-CAAAGCAAGAGCATCCAAA NdeI Rev CCCGCTCGAG-TTACGGGCGGTATTCGG XhoI 919L Orf4 Fwd GGGAATTCCATATGAAAACCTTCTTCAAAACCCTTTCCG NdeI-(NheI) CCGCCGCGCTAGCGCTCATCCTCGCCGCC- TGCCAAAGCAAGAGCATC Rev CCCGCTCGAG-TTACGGGCGGTATTCGGGCTTCATACCG XhoI (919)-287 Fwd CGCGGATCCGTCGAC-TGTGGGGGCGGCGGTGGC SalI fusion Rev CCCGCTCGAG-TCAATCCTGCTCTTTTTTGCC XhoI 920-1L Fwd GCGGCCATATG-AAGAAAACATTGACACTGC NdeI Rev GCGGCCTCGAG-TTAATGGTGCGAATGACCGAT XhoI 925-His/GST Fwd ggggacaagtttgtacaaaaaagcaggctTGCGGCAAGGATGCCGG attB1 (MC58).sup.GATE Rev ggggaccactttgtacaagaaagctgggtCTAAAGCAACAATGCCGG attB2 926L Fwd CGCGGATCCCATATG-AAACACACCGTATCC NdeI Rev CCCGCTCGAG-TTATCTCGTGCGCGCC XhoI 927-2-(His/GST) Fwd CGCGGATCCCATATG-AGCCCCGCGCCGATT BamHI-NdeI (MC58) Rev CCCGCTCGAG-TTTTTGTGCGGTCAGGCG XhoI 932-His/GST Fwd ggggacaagtttgtacaaaaaagcaggctTGTTCGTTTGGGGGATTTAA attB1 (MC58).sup.GATE ACCAAACCAAATC 935 (His-GST) Fwd CGCGGATCCCATATGGCGGATGCGCCCGCG BamHI-NdeI (MC58) Rev CCCGCTCGAGAAACCGCCAATCCGCC XhoI 936-1L Rev ggggaccactttgtacaagaaagctgggtTCATTTTGTTTTTCCTTCTTCT attB2 CGAGGCCATT Fwd CGCGGATCCCATATG-AAACCCAAACCGCAC NdeI Rev CCCGCTCGAG-TCAGCGTTGGACGTAGT XhoI 953L Fwd GGGAATTCCATATG-AAAAAAATCATCTTCGCCG NdeI Rev CCCGCTCGAG-TTATTGTTTGGCTGCCTCGAT XhoI 953-fu Fwd GGGAATTCCATATG-GCCACCTACAAAGTGGACG NdeI Rev CGGGGATCC-TTGTTTGGCTGCCTCGATTTG BamHI 954 (His-GST) Fwd CGCGGATCCCATATGCAAGAACAATCGCAGAAAG BamHI-NdeI (MC58) Rev CCCGCTCGAGTTTTTTCGGCAAATTGGCTT XhoI 958-His/GST Fwd ggggacaagtttgtacaaaaaagcaggctGCCGATGCCGTTGCGG attB1 (MC58).sup.GATE Rev ggggaccactttgtacaagaaagctgggtTCAGGGTCGTTTGTTGCG attB2 961L Fwd CGCGGATCCCATATG-AAACACTTTCCATCC NdeI Rev CCCGCTCGAG-TTACCACTCGTAATTGAC XhoI 961 Fwd CGCGGATCCCATATG-GCCACAAGCGACGAC NdeI Rev CCCGCTCGAG-TTACCACTCGTAATTGAC XhoI 961 c (His/GST) Fwd CGCGGATCCCATATG-GCCACAAACGACG BamHI-NdeI Rev CCCGCTCGAG-ACCCACGTTGTAAGGTTG XhoI 961 c-(His/GST) Fwd CGCGGATCCCATATG-GCCACAAGCGACGACGA BamHI-NdeI (MC58) Rev CCCGCTCGAG-ACCCACGTTGTAAGGTTG XhoI 961 c-L Fwd CGCGGATCCCATATG-ATGAAACACTTTCCATCC NdeI Rev CCCGCTCGAG-TTAACCCACGTTGTAAGGT XhoI 961 c-L Fwd CGCGGATCCCATATG-ATGAAACACTTTCCATCC NdeI (MC58) Rev CCCGCTCGAG-TTAACCCACGTTGTAAGGT XhoI 961d (His/GST) Fwd CGCGGATCCCATATG-GCCACAAACGACG BamHI-NdeI Rev CCCGCTCGAG-GTCTGACACTGTTTTATCC XhoI 961 .DELTA.1-L Fwd CGCGGATCCCATATG-ATGAAACACTTTCCATCC NdeI Rev CCCGCTCGAG-TTATGCTTTGGCGGCAAAG XhoI fu 961-... Fwd CGCGGATCCCATATG-GCCACAAACGACGAC NdeI Rev CGCGGATCC-CCACTCGTAATTGACGCC BamHI fu 961-... Fwd CGCGGATCCCATATG-GCCACAAGCGACGAC NdeI (Mc58) Rev CGCGGATCC-CCACTCGTAATTGACGCC BamHI
fu 961 c-... Fwd CGCGGATCCCATATG-GCCACAAACGACGAC NdeI Rev CGCGGATCC-ACCCACGTTGTAAGGTTG BamHI fu 961 c-L-... Fwd CGCGGATCCCATATG-ATGAAACACTTTCCATCC NdeI Rev CGCGGATCC-ACCCACGTTGTAAGGTTG BamHI fu (961)- Fwd CGCGGATCC-GGAGGGGGTGGTGTCG BamHI 741 (MC58)-His Rev CCCGCTCGAG-TTGCTTGGCGGCAAGGC XhoI fu (961)-983- Fwd CGCGGATCC-GGCGGAGGCGGCACTT BamHI His Rev CCCGCTCGAG-GAACCGGTAGCCTACG XhoI fu (961)- Fwd CGCGGATCCGGTGGTGGTGGT- BamHI Orf46.1-His TCAGATTTGGCAAACGATTC Rev CCCGCTCGAG-CGTATCATATTTCACGTGC XhoI fu (961 c-L)- Fwd CGCGGATCC-GGAGGGGGTGGTGTCG BamHI 741 (MC58) Rev CCCGCTCGAG-TTATTGCTTGGCGGCAAG XhoI fu (961 c-L)- Fwd CGCGGATCC-GGCGGAGGCGGCACTT BamHI 983 Rev CCCGCTCGAG-TCAGAACCGGTAGCCTAC XhoI fu (961c-L)- Fwd CGCGGATCCGGTGGTGGTGGT- BamHI Orf46.1 TCAGATTTGGCAAACGATTC Rev CCCGCTCGAG-TTACGTATCATATTTCACGTGC XhoI 961-(His/GST) Fwd CGCGGATCCCATATG-GCCACAAGCGACGACG BamHI-NdeI (MC58) Rev CCCGCTCGAG-CCACTCGTAATTGACGCC XhoI 961 .DELTA.A-His Fwd CGCGGATCCCATATG-GCCACAAACGACGAC NdeI Rev CCCGCTCGAG-TGCTTTGGCGGCAAAGTT XhoI 961a-(His/GST) Fwd CGCGGATCCCATATG-GCCACAAACGACGAC BamHI-NdeI Rev CCCGCTCGAG-TTTAGCAATATTATCTTTGTTCGTAGC XhoI 961b-(His/GST) Fwd CGCGGATCCCATATG-AAAGCAAACCGTGCCGA BamHI-NdeI Rev CCCGCTCGAG-CCACTCGTAATTGACGCC XhoI 961-His/GST.sup.GATE Fwd ggggacaagtttgtacaaaaaagcaggctGCAGCCACAAACGACGACG attB1 ATGTTAAAAAAGC Rev ggggaccactttgtacaagaaagctggggTTACCACTCGTAATTGACGC attB2 CGACATGGTAGG 982 Fwd GCGGCCATAG-GCAGCAAAAGACGTACAGTT NdeI Rev GCGGCCTCGAG-TTACATCATGCCGCCCATACCA XhoI 983-His Fwd CGCGGATCCGCTAGC-TTAGGCGGCGGCGGAG NheI (2996) Rev CCCGCTCGAG-GAACCGGTAGCCTACG XhoI .DELTA.G983-His Fwd CCCCTAGCTAGC-ACTTCTGCGCCCGACTT NheI (2996) Rev CCCGCTCGAG-GAACCGGTAGCCTACG XhoI 983-His Fwd CGCGGATCCGCTAGC-TTAGGCGGCGGCGGAG NheI Rev CCCGCTCGAG-GAACCGGTAGCCTACG XhoI .DELTA.G983-His Fwd CGCGGATCCGCTAGC-ACTTCTGCGCCCGACTT NheI Rev CCCGCTCGAG-GAACCGTAGCCTACG XhoI 983L Fwd CGCGGATCCGCTAGC- NheI CGAACGACCCCAACCTTCCCTACAAAAACTTTCAA Rev CCCGCTCGAG-TCAGAACCGACGTGCCAAGCCGTTC XhoI 987-His Fwd GCCGCCATATGCCCCCACTGGAAGAACGGACG NdeI (MC48) Rev GCCGCCTCGAGTAATAAACCTTCTATGGGCAGCAG XhoI 989-(His/GST) Fwd CGCGGATCCCATATG-TCCGTCCACGCATCCG BamHI-NdeI (MC58) Rev CCCGCTCGAG-TTTGAATTTGTAGGTGTATTG XhoI 989L Fwd CGCGGATCCCATATG-ACCCCTTCCGCACT NdeI (MC58) Rev CCCGCTCGAG-TTATTTGAATTTGTAGGTGTAT XhoI CrgA-His Fwd CGCGGATCCCATATG-AAAACCAATTCAGAAGAA NdeI (MC58) Rev CCCGCTCGAG-TCCACAGAGATTGTTTCC XhoI PilC1-ES Fwd GATGCCCGAAGGGCGGG XhoI (MC58) Rev GCCCAAGCTT-TCAGAAGAAGACTTCACGC PilC1-His Fwd CGCGGATCCCATATG-CAAACCCATAAATACGCTATT NdeI (MC58) Rev GCCCAAGCTT-GAAGAAGACTTCACGCCAG HindIII .DELTA.1PilC1-His Fwd CGCGGATCCCATATG-GTCTTTTTCGACAATACCGA NdeI (MC58) Rev GCCCAAGCTT- HindIII PilC1L Fwd CGCGGATCCCATATG-AATAAAACTTTAAAAAGGCGG NdeI (MC58) Rev GCCCAAGCTT-TCAGAAGAAGACTTCACGC HindIII .DELTA.GTbp2-His Fwd CGCGAATCCCATATG-TTCGATCTTGATTCTGTCGA NdeI (MC58) Rev CCCGCTCGAG-TCGCACAGGCTGTTGGCG XhoI Tbp2-His Fwd CGCGAATCCCATATG-TTGGGCGGAGGCGGCAG NdeI (MC58) Rev CCCGCTCGAG-TCGCACAGGCTGTTGGCG XhoI Tbp2-His Fwd CGCGAATCCCATATG-TTGGGCGGAGGCGGCAG NdeI (MC58) Rev CCCGCTCGAG-TCGCACGGCTGTTGGCG XhoI NMB0109- Fwd CGCGGATCCCATATG-GCAAATTTGGAGGTGCGC BamHI-NdeI (His/GST) Rev CCCGCTCGAG-TTCGGAGCGGTTGAAGC XhoI (MC58) NMB0109L Fwd CGCGGATCCCATATG-CAACGTCGTATTATAACCC NdeI (MC58) Rev CCCGCTCGAG-TTATTCGGAGCGGTTGAAG XhoI NMB0207- Fwd CGCGGATCCCATATG- BamHI-NdeI (His/GST) GGCATCAAAGTCGCCATCAACGGCTAC (MC58) Rev CCCGCTCGAG-TTTGAGCGGGCGCACTTCAAGTCCG XhoI NMB0462- Fwd CGCGGATCCCATATG-GGCGGCAGCGAAAAAAAC BamHI-NdeI (His/GST) Rev CCCGCTCGAG-GTTGGTGCCGACTTTGAT XhoI (MC58) NMB0623- Fwd CGCGGATCCCATATG-GGCGGCGGAAGCGATA BamHI-NdeI (His/GST) Rev CCCGCTCGAG-TTTGCCCGCTTTGAGCC XhoI (MC58) NMB0625 (His- Fwd CGCGGATCCCATATGGGCAAATCCGAAAATACG BamHI-NdeI GST)(MC58) Rev CCCCGCTCGAGCATCCCGTACTGTTTCG XhoI NMB0634 Fwd ggggacaagtttgtacaaaaaagcaggctCCGACATTACCGTGTACAAC attB1 (His/GST) GGCCAACAAAGAA (MC58) Rev ggggaccactttgtacaagaaagctgggtCTTATTTCATACCGGCTTGCT attB2 CAAGCAGCCGG NMB0776- Fwd ggggacaagtttgtacaaaaaagcaggctGATACGGTGTTTTCCTGTAA attB1 His/GST AACGGACAA (MC58).sup.GATE Rev ggggaccactttgtacaagaaagctgggtCTAGGAAAAATCGTCATCGT attB2 TGAAATTCCC NMB1115- Fwd ggggacaagtttgtacaaaaaagcaggctATGCACCCCATCGAAACC attB1 His/GST Rev ggggaccactttgtacaagaaagctggggtCTAGTCTTGCAGTGCCTC attB2 (MC58).sup.GATE NMB1343- Fwd CGCGGATCCCATATG- BamHI-NdeI (His/GST) GGAAATTTCTTATATAGAGGCATTAG XhoI (MC58) Rev CCCGCTCGAG- GTTAATTTCTATCAACTCTTTAGCAATAAT NMB1369 Fwd CGCGGATCCCATATGGCCTGCCAAGACGACA BamHI-NdeI (His-GST) Rev CCCGCTCGAGCCGCCTCCTGCCGAAA XhoI (MC58) NMB1551 Fwd CGCGGATCCCATATGGCAGAGATCTGTTTGATAA BamHI-NdeI (His-GST) Rev CCCGCTCGAGCGGTTTTCCGCCCAATG XhoI (MC58) NMB1899 Fwd CGCGGATCCCATATGCAGCCGGATACGGTC BamHI-NdeI (His-GST) Rev CCCGCTCGAGAATCACTTCCAACACAAAAT XhoI (MC58) NMB2050- Fwd CGCGGATCCCATATG-TGGTTGCTGATGAAGGGC BamHI-NdeI (His/GST) Rev CCCGCTCGAG-GACTGCTTCATCTTCTGC XhoI (MC58) NMB2050L Fwd CGCGGATCCCATATG-GAACTGATGACTGTTTTGC NdeI (MC58) Rev CCCGCTCGAG-TCAGACTGCTTCATCTTCT XhoI NMB2159- Fwd CGCGGATCCCATATG- BamHI-NdeI (His/GST) AGCATTAAAGTAGCGATTAACGGTTTCGGC (MC58) Rev CCCGCTCGAG- XhoI GATTTTGCCTGCGAAGTATTCCAAAGTGCG fu-.DELTA.G287...- Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI His Rev CGGGGATCC-ATCCTGCTCTTTTTTGCCGG BamHI fu-(.DELTA.G287)- Fwd CGCGGATCCGGTGGTGGTGGT- NheI 919-His CAAAGCAAGAGCATCCAAACC BamHI Rev CCCAAGCTT-TTCGGGCGGTATTCGGGCTTC fu-(.DELTA.G287)- Fwd CGCGGATCCGGTGGTGGTGGT- BamHI 953-His Rev GCCACCTACAAAGTGGAC GCCCAAGCTT-TTGTTTGGCTGCCTCGAT HindIII fu-(.DELTA.G287)- Fwd CGCGGATCCGGTGGTGGTGGT-ACAAGCGACGACG BamHI 961-His Rev GCCCAAGCTT-CCACTCGTAATTGACGCC HindIII fu-(.DELTA.G287)- Fwd CGCGGATCCGGTGGTGGTGGT- BamHI Orf46.1-His TCAGATTTGGCAAACGATTC Rev CCCAAGCTT-CGTATCATATTTCACGTGC HindIII fu-(.DELTA.G287- Fwd CCCAAGCTTGGTGGTGGTGGTGGT- HindIII 919)-Orf46.1- Rev TCAGATTTGGCAAACGATTC His CCCGCTCGAG-CGTATCATATTTCACGTGC XhoI fu-(.DELTA.G287- Fwd CCCAAGCTTGGTGGTGGTGGTGGT- HindIII Orf46.1)- Rev CAAAGCAAGAGCATCCAAACC His CCCGCTCGAG-CGGGCGGTATTCGGGCTT XhoI fu .DELTA.G287 Fwd CGCGGATCCGCTAGC-CCCGATGTTAAATCGGC NheI (394.98)-... Rev CGGGGATCC-ATCCTGCTCTTTTTTGCCGG BamHI fu Orf1- Fwd CGCGGATCCGCTAGC-GGACACACTTATTTCGGCATC NheI (Orf46.1)- Rev CGCGGATCC-CCAGCGGTAGCCTAATTTGAT His fu (Orf1)- Fwd CGCGGATCCGGTGGTGGTGGT- BamHI Orf46.1-His Rev TCAGATTTGGCAAACGATTC CCCAAGCTT-CGTATCATATTTCACGTGC HindIII fu (919)- Fwd1 GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAG SalI Orf46.1-His Fwd2 GGAGGCACTGGATCCTCAGATTTGGCAAACGATTC Rev CCCGCTCGAG-CGTATCATATTTCACGTGC XhoI fu orf46-... Fwd GGAATTCCATATGTCAGATTTGGCAAACGATTC NdeI Rev CGCGGATCCCGTATCATATTTCACGTGC BamHI Fu (orf46)- Fwd CGGGGATCCGGGGGCGGCGGTGGCG BamHI 287-His Rev CCCAAGCTTATCCTGCTCTTTTTTGCCGGC HindIII Fu (orf46)- Fwd CGCGGATCCGGTGGTGGTGGTCAAAGCAAGAGCATCCA BamHI 919-His AACC Rev CCCAAGCTTCGGGCGGTATTCGGGCTTC HindIII Fu (orf46-919)- Fwd CCCCAAGCTTGGGGGCGGCGGTGGCG HindIII 287-His Rev CCCGCTCGAGATCCTGCTCTTTTTTGCCGGC XhoI Fu (orf46- Fwd CCCAAGCTTGGTGGTGGTGGTGGTCAAAGCAAGAGCAT HindIII 287)-919-His CCAAACC Rev CCCGCTCGAGCGGGCGGTATTCGGGCTT XhoI (.DELTA.G741)-961c- Fwd1 GGAGGCACTGGATCCGCAGCCACAAACGACGACGA XhoI His Fwd2 GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG Rev CCCGCTCGAG-ACCCAGCTTGTAAGGTTG XhoI (.DELTA.G741)-961- Fwd1 GGAGGCACTGGATCCGCAGCCACAAACGACGACGA XhoI His Fwd2 GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG Rev CCCGCTCGAG-CCACTCGTAATTGACGCC XhoI (.DELTA.G741)-983- Fwd GCGGCCTCGAG- XhoI His Rev GGATCCGGCGGAGGCGGCACTTCTGCG CCCGCTCGAG-GAACCGGTAGCCTACG XhoI (.DELTA.G741)- Fwd1 GGAGGCACTGGATCCTCAGATTTGGCAAACGATTC SalI orf46.1-His Fwd2 GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAGA Rev CCCGCTCGAG-CGTATCATATTTCACGTGC XhoI (.DELTA.G983)- Fwd GCGGCCTCGAG-GGATCCGGAGGGGGTGGTGTCGCC XhoI 741(MC58)- Rev CCCGCTCGAG-TTGCTTGGCGGCAAG XhoI His (.DELTA.G983)- Fwd1 GGAGGCACTGGATCCGCAGCCACAAACGACGACGA XhoI 961c-His Fwd2 GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG XhoI Rev CCCGCTCGAG-ACCCAGCTTGTAAGGTTG XhoI (.DELTA.G983)- Fwd1 GGAGGCACTGGATCCGCAGCCACAAACGACGACGA XhoI 961-His Fwd2 GCGGCCTCGAG-GGTGGCGGAGGCACTGGATCCGCAG XhoI Rev CCCGCTCGAG-CCACTCGTAATTGACGCC XhoI (.DELTA.G983)- Fwd1 GGAGGCACTGGATCCTCAGATTTGGCAAACGATTC XhoI Orf46.1-His Fwd2 GCGGCGTCGACGGTGGCGGAGGCACTGGATCCTCAGA SalI Rev CCCGCTCGAG-CGTATCATATTTCACGTGC XhoI
*This primer was used as a Reverse primer for all the C terminal fusions of 287 to the His-tag. .sup..sctn.Forward primers used in combination with the 287-His Reverse primer. NB-All PCR reactions use strain 2996 unless otherwise specified (e.g. strain MC58)
[0380] In all constructs starting with an ATG not followed by a unique NheI site, the ATG codon is part of the NdeI site used for cloning. The constructs made using NheI as a cloning site at the 5.degree. end (e.g. all those containing 287 at the N-terminus) have two additional codons (GCT AGC) fused to the coding sequence of the antigen.
Preparation of Chromosomal DNA Templates N. meningitidis strains 2996, MC58, 394.98, 1000 and BZ232 (and others) were grown to exponential phase in 100 ml of GC medium, harvested by centrifugation, and resuspended in 5 ml buffer (20% w/v sucrose, 50 mM Tris-HCl, 50 mM EDTA, pH8) After 10 minutes incubation on ice, the bacteria were lysed by adding 10 ml of lysis solution (50 mM NaCl, 1% Na-Sarkosyl, 50 .mu.g/ml Proteinase K), and the suspension incubated at 37.degree. C. for 2 hours. Two phenol extractions (equilibrated to pH 8) and one CHCl.sub.3/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes of ethanol, and collected by centrifugation. The pellet was washed once with 70% (v/v) ethanol and redissolved in 4.0 ml TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). The DNA concentration was measured by reading OD.sub.260.
PCR Amplification
[0381] The standard PCR protocol was as follows: 200 ng of genomic DNA from 2996, MC581000, or BZ232 strains or 10 ng of plasmid DNA preparation of recombinant clones were used as template in the presence of 40 .mu.M of each oligonucletide primer, 400-800 .mu.M dNTPs solution, lx PCR buffer (including 1.5 mM NgCl.sub.2), 2.5 units TaqI DNA polymerase (using Perkin-Elmer AmpliTaQ, Boerhingher Mannheim Expand Long Template).
[0382] After a preliminary 3 minute incubation of the whole mix at 95.degree. C., each sample underwent a two-step amplification: the first 5 cycles were performed using the hybridisation temperature that excluded the restriction enzyme tail of the primer (T.sub.m1). This was followed by 30 cycles according to the hybridisation temperature calculated for the whole length oligos (T.sub.m2). Elongation times, performed at 68.degree. C. or 72.degree. C., varied according to the length of the Orf to be amplified. In the case of Orf1 the elongation time, starting from 3 minutes, was increased by 15 seconds each cycle. The cycles were completed with a 10 minute extension step at 72.degree. C.
[0383] The amplified DNA was either loaded directly on a 1% agarose gel. The DNA fragment corresponding to the band of correct size was purified from the gel using the Qiagen Gel Extraction Kit, following the manufacturer's protocol.
Digestion of PCR Fragments and of the Cloning Vectors
[0384] The purified DNA corresponding to the amplified fragment was digested with the appropriate restriction enzymes for cloning into pET-21b+, pET22b+ or pET-24b+. Digested fragments were purified using the QIAquick PCR purification kit (following the manufacturer's instructions) and eluted with either H.sub.2O or 10 mM Tris, pH 8.5. Plasmid vectors were digested with the appropriate restriction enzymes, loaded onto a 1.0% agarose gel and the band corresponding to the digested vector purified using the Qiagen QiAquick Gel Extraction Kit.
Cloning
[0385] The fragments corresponding to each gene, previously digested and purified, were ligated into pET21b+, pET22b+ or pET-24b+. A molar ratio of 3:1 fragment/vector was used with T4 DNA ligase in the ligation buffer supplied by the manufacturer.
[0386] Recombinant plasmid was transformed into competent E. coli DH5 or HB101 by incubating the ligase reaction solution and bacteria for 40 minutes on ice, then at 37.degree. C. for 3 minutes. This was followed by the addition of 800 .mu.l LB broth and incubation at 37.degree. C. for 20 minutes. The cells were centrifuged at maximum speed in an Eppendorf microfuge, resuspended in approximately 2000 of the supernatant and plated onto LB ampicillin (100 mg/ml) agar.
[0387] Screening for recombinant clones was performed by growing randomly selected colonies overnight at 37.degree. C. in 4.0 ml of LB broth+100 .mu.g/ml ampicillin. Cells were pelleted and plasmid DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions. Approximately 1 .mu.g of each individual miniprep was digested with the appropriate restriction enzymes and the digest loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1 kb DNA Ladder, GIBCO). Positive clones were selected on the basis of the size of insert.
Expression
[0388] After cloning each gene into the expression vector, recombinant plasmids were transformed into E. coli strains suitable for expression of the recombinant protein. 1 .mu.l of each construct was used to transform E. coli BL21-DE3 as described above. Single recombinant colonies were inoculated into 2 ml LB+Amp (100 .mu.g/ml), incubated at 37.degree. C. overnight, then diluted 1:30 in 20 ml of LB+Amp (100 .mu.g/ml) in 100 ml flasks, to give an OD.sub.600 between 0.1 and 0.2. The flasks were incubated at 30.degree. C. or at 37.degree. C. in a gyratory water bath shaker until OD.sub.600 indicated exponential growth suitable for induction of expression (0.4-0.8 OD). Protein expression was induced by addition of 1.0 mM IPTG. After 3 hours incubation at 30.degree. C. or 37.degree. C. the OD.sub.600 was measured and expression examined. 1.0 ml of each sample was centrifuged in a microfuge, the pellet resuspended in PBS and analysed by SDS-PAGE and Coomassie Blue staining.
Gateway Cloning and Expression
[0389] Sequences labelled GATE were cloned and expressed using the GATEWAY Cloning Technology (GIBCO-BRL). Recombinational cloning (RC) is based on the recombination reactions that mediate the integration and excision of phage into and from the E. coli genome, respectively. The integration involves recombination of the attP site of the phage DNA within the attB site located in the bacterial genome (BP reaction) and generates an integrated phage genome flanked by attL and attR sites. The excision recombines attL and attR sites back to attP and attB sites (LR reaction). The integration reaction requires two enzymes [the phage protein Integrase (Int) and the bacterial protein integration host factor (IHF)] (BP clonase). The excision reaction requires Int, IHF, and an additional phage enzyme, Excisionase (His) (LR clonase), Artificial derivatives of the 25-bp bacterial attB recombination site, referred to as B1 and B2, were added to the 5 end of the primers used in PCR reactions to amplify Neisserial ORFs. The resulting products were BP cloned into a "Donor vector" containing complementary derivatives of the phage attP recombination site (P1 and P2) using BP clonase. The resulting "Entry clones" contain ORFs flanked by derivatives of the attL site (L1 and L2) and were subcloned into expression "destination vectors" which contain derivatives of the attL-compatible attR sites (R1 and R2) using LR clonase. This resulted in "expression clones" in which ORFs are flanked by B1 and B2 and fused in frame to the GST or His N terminal tags.
[0390] The E. coli strain used for GATEWAY expression is BL21-SI. Cells of this strain are induced for expression of the T7 RNA polymerase by growth in medium containing salt (0.3 M NaCl).
[0391] Note that this system gives N-terminus His tags.
Preparation of Membrane Proteins.
[0392] Fractions composed principally of either inner, outer or total membrane were isolated in order to obtain recombinant proteins expressed with membrane-localisation leader sequences. The method for preparation of membrane fractions, enriched for recombinant proteins, was adapted from Filip et. al. [J. Bact. (1973) 115:717-722] and Davies et. al. [J. Immunol. Meth. (1990) 143:215-225]. Single colonies harbouring the plasmid of interest were grown overnight at 37.degree. C. in 20 ml of LB/Amp (100 .mu.g/ml) liquid culture. Bacteria were diluted 1:30 in 1.0 L of fresh medium and grown at either 30.degree. C. or 37.degree. C. until the OD.sub.550 reached 0.6-0.8. Expression of recombinant protein was induced with IPTG at a final concentration of 1.0 mM. After incubation for 3 hours, bacteria were harvested by centrifugation at 8000 g for 15 minutes at 4.degree. C. and resuspended in 20 ml of 20 mM Tris-HCl (pH 7.5) and complete protease inhibitors (Boehringer-Mannheim). All subsequent procedures were performed at 4.degree. C. or on ice.
[0393] Cells were disrupted by sonication using a Branson Sonifier 450 and centrifuged at 5000 g for 20 min to sediment unbroken cells and inclusion bodies. The supernatant, containing membranes and cellular debris, was centrifuged at 50000 g (Beckman Ti50, 29000 rpm) for 75 min, washed with 20 mM Bis-tris propane (pH 6.5), 1.0 M NaCl, 10% (v/v) glycerol and sedimented again at 50000 g for 75 minutes. The pellet was resuspended in 20 mM Tris-HCl (pH 7.5), 2.0% (v/v) Sarkosyl, complete protease inhibitor (1.0 mM EDTA, final concentration) and incubated for 20 minutes to dissolve inner membrane. Cellular debris was pelleted by centrifugation at 5000 g for 10 min and the supernatant centrifuged at 75000 g for 75 minutes (Beckman Ti50, 33000 rpm). Proteins 0081, and 519L were found in the supernatant suggesting inner membrane localisation. For these proteins both inner and total membrane fractions (washed with NaCl as above) were used to immunise mice. Outer membrane vesicles obtained from the 75000 g pellet were washed with 20 mM Tris-HCl (pH 7.5) and centrifuged at 75000 g for 75 minutes or overnight. The OMV was finally resuspended in 500 .mu.l of 20 mM Tris-HCl (pH 7.5), 10% v/v glycerol. Orf1L and Orf40L were both localised and enriched in the outer membrane fraction which was used to immunise mice. Protein concentration was estimated by standard Bradford Assay (Bio-Rad), while protein concentration of inner membrane fraction was determined with the DC protein assay (Bio-R ad). Various fractions from the isolation procedure were assayed by SDS-PAGE.
Purification of his-Tagged Proteins
[0394] Various forms of 287 were cloned from strains 2996 and MC58. They were constructed with a C-terminus His-tagged fusion and included a mature form (aa 18-427), constructs with deletions (.DELTA.1, .DELTA.2, .DELTA.3 and .DELTA.4) and clones composed of either B or C domains. For each clone purified as a His-fusion, a single colony was streaked and grown overnight at 37.degree. C. on a LB/Amp (100 .mu.g/ml) agar plate. An isolated colony from this plate was inoculated into 20 ml of LB/Amp (100 .mu.g/ml) liquid medium and grown overnight at 37.degree. C. with shaking. The overnight culture was diluted 1:30 into 1.0 L LB/Amp (100 .mu.g/ml) liquid medium and allowed to grow at the optimal temperature (30 or 37.degree. C.) until the OD.sub.550 reached 0.6-0.8. Expression of recombinant protein was induced by addition of IPTG (final concentration 1.0 mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000 g for 15 min at 4.degree. C. The bacterial pellet was resuspended in 7.5 ml of either (i) cold buffer A (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8.0) for soluble proteins or (ii) buffer B (10 mM Tris-HCl, 100 mM phosphate buffer, pH 8.8 and, optionally, 8M urea) for insoluble proteins. Proteins purified in a soluble form included 287-His, .DELTA.1, .DELTA.2, .DELTA.3 and .DELTA.4287-His, .DELTA.4287MC58-His, 287c-His and 287cMC58-His. Protein 287bMC58-His was insoluble and purified accordingly. Cells were disrupted by sonication on ice four times for 30 sec at 40 W using a Branson sonifier 450 and centrifuged at 13000.times.g for 30 ruin at 4.degree. C. For insoluble proteins, pellets were resuspended in 2.0 ml buffer C (6 M guanidine hydrochloride, 100 mM phosphate buffer, 10 mM Tris-HCl, pH 7.5 and treated with 10 passes of a Dounce homogenizer. The homogenate was centrifuged at 13000 g for 30 min and the supernatant retained. Supernatants for both soluble and insoluble preparations were mixed with 150 .mu.l Ni.sup.2+-resin (previously equilibrated with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 min. The resin was Chelating Sepharose Fast Flow (Pharmacia), prepared according to the manufacturer's protocol. The batch-wise preparation was centrifuged at 700 g for 5 min at 4.degree. C. and the supernatant discarded. The resin was washed twice (batch-wise) with 10 ml buffer A or B for 10 min, resuspended in 1.0 nil buffer A or B and loaded onto a disposable column. The resin continued to be washed with either (i) buffer A at 4.degree. C. or (ii) buffer B at room temperature, until the OD.sub.280 of the flow-through reached 0.02-0.01. The resin was further washed with either (i) cold buffer C (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8.0) or (ii) buffer D (10 mM Tris-Ha, 100 mM phosphate buffer, pH 6.3 and, optionally, 8M urea) until OD.sub.280 of the flow-through reached 0.02-0.01. The His-fusion protein was eluted by addition of 700 .mu.l of either (i) cold elution buffer A (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8.0) or (ii) elution buffer B (10 mM Tris-HCl, 100 mM phosphate buffer, pH 4.5 and, optionally, 8M urea) and fractions collected until the OD.sub.280 indicated all the recombinant protein was obtained. 20 .mu.l aliquots of each elution fraction were analysed by SDS-PAGE. Protein concentrations were estimated using the Bradford assay.
Renaturation of Denatured his-Fusion Proteins.
[0395] Denaturation was required to solubilize 287bMC8, so a renaturation step was employed prior to immunisation. Glycerol was added to the denatured fractions obtained above to give a final concentration of 10% v/v. The proteins were diluted to 200 .mu.g/ml using dialysis buffer I (10% v/v glycerol, 0.5M arginine, 50 mM phosphate buffer, 5.0 mM reduced glutathione, 0.5 mM oxidised glutathione, 2.0M urea, pH 8.8) and dialysed against the same buffer for 12-14 hours at 4.degree. C. Further dialysis was performed with buffer II (10% v/v glycerol, 0.5M arginine, 50 mM phosphate buffer, 5.0 mM reduced glutathione, 0.5 mM oxidised glutathione, pH 8.8) for 12-14 hours at 4.degree. C. Protein concentration was estimated using the formula:
Protein (mg/ml)=(1.55.times.OD.sub.280)-(0.76.times.OD.sub.260)
Amino Acid Sequence Analysis.
[0396] Automated sequence analysis of the NH.sub.2-terminus of proteins was performed on a Beckman sequencer (LF 3000) equipped with an on-line phenylthiohydantoin-amino acid analyser (System Gold) according to the manufacturer's recommendations.
Immunization
[0397] Balb/C mice were immunized with antigens on days 0, 21 and 35 and sera analyzed at day 49.
Sera Analysis--ELISA
[0398] The acapsulated MenB M7 and the capsulated strains were plated on chocolate agar plates and incubated overnight at 37.degree. C. with 5% CO.sub.2. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD.sub.620. The bacteria were let to grow until the OD reached the value of 0.4-0.5. The culture was centrifuged for 10 minutes at 4000 rpm. The supernatant was discarded and bacteria were washed twice with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 1 hour at 37.degree. C. and then overnight at 4.degree. C. with stirring. 100 .mu.l bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4.degree. C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200 .mu.l of saturation buffer (2.7% polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37.degree. C. Wells were washed three times with PBT. 200 .mu.l of diluted sera (Dilution buffer; 1% BSA, 0.1% Tween-20, 0.1% NaN.sub.3 in PBS) were added to each well and the plates incubated for 2 hours at 37.degree. C. Wells were washed three times with PBT. 100 .mu.l of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37.degree. C. Wells were washed three times with PBT buffer. 100 .mu.l of substrate buffer for HRP (25 ml of citrate buffer pH5, 10 mg of O-phenildiamine and 10 .mu.l of H.sub.2O.sub.2) were added to each well and the plates were left at room temperature for 20 minutes. 100 .mu.l 12.5% H.sub.2SO.sub.4 was added to each well and OD.sub.490 was followed. The ELISA titers were calculated abitrarely as the dilution of sera which gave an OD.sub.490 value of 0.4 above the level of preimmune sera. The ELISA was considered positive when the dilution of sera with OD.sub.49 of 0.4 was higher than 1:400.
Sera Analysis--FACS Scan Bacteria Binding Assay
[0399] The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37.degree. C. with 5% CO.sub.2. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8 ml each Mueller-Hinton Broth (Difco) containing 025% glucose. Bacterial growth was monitored every 30 minutes by following OD.sub.620. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000 rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA in PBS, 0.4% NaN.sub.3) and centrifuged for 5 minutes at 4000 rpm. Cells were resuspended in blocking buffer to reach OD.sub.620 of 0.05. 100 .mu.l bacterial cells were added to each well of a Costar 96 well plate. 100 .mu.l of diluted (1:100, 1:200, 1:400) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4.degree. C. Cells were centrifuged for 5 minutes at 4000 rpm, the supernatant aspirated and cells washed by addition of 200 .mu.l/well of blocking buffer in each well, 100 .mu.l of R-Phicoerytrin conjugated F(ab).sub.2 goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4.degree. C. Cells were spun down by centrifugation at 4000 rpm for 5 minutes and washed by addition of 200 .mu.l/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200 .mu.l/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan (Laser Power 15 mW) setting were: FL2 on; FSC-H threshold: 92; FSC PMT Voltage: E 01; SSC PMT: 474; Amp. Gains 6.1; FL-2 PMT: 586; compensation values: 0.
Sera Analysis--Bactericidal Assay
[0400] N. meningitidis strain 2996 was grown overnight at 37.degree. C. on chocolate agar plates (starting from a frozen stock) with 5% CO.sub.2. Colonies were collected and used to inoculate 7 ml Mueller-Hinton broth, containing 0.25% glucose to reach an OD.sub.620 of 0.05-0.08. The culture was incubated for approximately 1.5 hours at 37 degrees with shacking until the OD.sub.620 reached the value of 0.23-0.24. Bacteria were diluted in 50 mM Phosphate buffer pH 7.2 containing 10 mM MgCl.sub.2, 10 mM CaCl.sub.2 and 0.5% (w/v) BSA (assay buffer) at the working dilution of 10.sup.5 CFU/ml. The total volume of the final reaction mixture was 50 .mu.l with 25 .mu.l of serial two fold dilution of test serum, 12.5 .mu.l of bacteria at the working dilution, 12.5 .mu.l of baby rabbit complement (final concentration 25%).
[0401] Controls included bacteria incubated with complement serum, immune sera incubated with bacteria and with complement inactivated by heating at 56.degree. C. for 30'. Immediately after the addition of the baby rabbit complement, 10 .mu.l of the controls were plated on Mueller-Hinton agar plates using the tilt method (time 0). The 96-wells plate was incubated for 1 hour at 37.degree. C. with rotation. 7 .mu.l of each sample were plated on Mueller-Hinton agar plates as spots, whereas 10 .mu.l of the controls were plated on Mueller-Hinton agar plates using the tilt method (time 1). Agar plates were incubated for 18 hours at 37 degrees and the colonies corresponding to time 0 and time 1 were counted.
Sera Analysis--Western Blots
[0402] Purified proteins (500 ng/lane), outer membrane vesicles (5 .mu.g) and total cell extracts (25 .mu.g) derived from MenB strain 2996 were loaded onto a 12% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150 mA at 4.degree. C., using transfer buffer (0.3% Tris base, 1.44% glycine, 20% (v/v) methanol). The membrane was saturated by overnight incubation at 4.degree. C. in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37.degree. C. with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.
[0403] The OMVs were prepared as follows: N. meningitidis strain 2996 was grown overnight at 37 degrees with 5% CO.sub.2 on 5 GC plates, harvested with a loop and resuspended in 10 ml of 20 mM Tris-HCl pH 7.5, 2 mM EDTA. Heat inactivation was performed at 56.degree. C. for 45 minutes and the bacteria disrupted by sonication for 5 minutes on ice (50% duty cycle, 50% output, Branson sonifier 3 mm microtip). Unbroken cells were removed by centrifugation at 5000 g for 10 minutes, the supernatant containing the total cell envelope fraction recovered and further centrifuged overnight at 50000 g at the temperature of 4.degree. C. The pellet containing the membranes was resuspended in 2% sarkosyl, 20 mM Tris-HCl pH 7.5, 2 mM EDTA and incubated at room temperature for 20 minutes to solubilise the inner membranes. The suspension was centrifuged at 10000 g for 10 minutes to remove aggregates, the supernatant was further centrifuged at 50000 g for 3 hours. The pellet, containing the outer membranes was washed in PBS and resuspended in the same buffer. Protein concentration was measured by the D.C. Bio-Rad Protein assay (Modified Lowry method), using BSA as a standard'.
[0404] Total cell extracts were prepared as follows: N. meningitidis strain 2996 was grown overnight on a GC plate, harvested with a loop and resuspended in 1 ml of 20 mM Tris-HCl. Heat inactivation was performed at 56.degree. C. for 30 minutes.
961 Domain Studies
[0405] Cellular Fractions Preparation
[0406] Total lysate, periplasm, supernatant and OMV of E. coli clones expressing different domains of 961 were prepared using bacteria from over-night cultures or after 3 hours induction with IPTG. Briefly, the periplasm were obtained suspending bacteria in saccarose 25% and Tris 50 mM (pH 8) with polimixine 100 .mu.g/ml. After 1 hr at room temperature bacteria were centrifuged at 13000 rpm for 15 min and the supernatant were collected. The culture supernatant were filtered with 0.2 .mu.m and precipitated with TCA 50% in ice for two hours. After centrifugation (30 min at 13000 rp) pellets were rinsed twice with ethanol 70% and suspended in PBS. The OMV preparation was performed as previously described. Each cellular fraction were analyzed in SUS-PAGE or in Western Blot using the polyclonal anti-serum raised against GST-961.
[0407] Adhesion Assay
[0408] Chang epithelial cells (Wong-Kilbourne derivative, clone 1-5c-4, human conjunctiva) were maintained, in DMEM (Gibco) supplemented with 10% heat-inactivated FCS, 15 mM L-glutamin' e and antibiotics.
[0409] For the adherence assay, sub-confluent culture of Chang epithelial cells were rinsed with PBS and treated with trypsin-EDTA (Gibco), to release them from the plastic support. The cells were then suspended in PBS, counted and dilute in PBS to 5.times.10.sup.5 cells/ml.
[0410] Bacteria from over-night cultures or after induction with IPTG, were pelleted and washed twice with PBS by centrifuging at 13000 for 5 min. Approximately 2-3.times.10.sup.8 (cfu) were incubated with 0.5 mg/ml FITC (Sigma) in 1 ml buffer containing 50 mM NaHCO.sub.3 and 100 mM NaCl pH 8, for 30 min at room temperature in the dark. FITC-labeled bacteria were wash 2-3 times and suspended in PBS at 1-1.5.times.10.sup.9/ml. 200 .mu.l of this suspension (2-3.times.10.sup.8) were incubated with 2000 (1.times.10.sup.5) epithelial cells for 30 min a 37.degree. C. Cells were than centrifuged at 2000 rpm for 5 min to remove non-adherent bacteria, suspended in 200 .mu.l of PBS, transferred to FACScan tubes and read
Sequence CWU
1
1
6331441PRTNeisseria meningitidis 1Met Lys Lys Tyr Leu Phe Arg Ala Ala Leu
Tyr Gly Ile Ala Ala Ala 1 5 10
15 Ile Leu Ala Ala Cys Gln Ser Lys Ser Ile Gln Thr Phe Pro Gln
Pro 20 25 30 Asp
Thr Ser Val Ile Asn Gly Pro Asp Arg Pro Val Gly Ile Pro Asp 35
40 45 Pro Ala Gly Thr Thr Val
Gly Gly Gly Gly Ala Val Tyr Thr Val Val 50 55
60 Pro His Leu Ser Leu Pro His Trp Ala Ala Gln
Asp Phe Ala Lys Ser 65 70 75
80 Leu Gln Ser Phe Arg Leu Gly Cys Ala Asn Leu Lys Asn Arg Gln Gly
85 90 95 Trp Gln
Asp Val Cys Ala Gln Ala Phe Gln Thr Pro Val His Ser Phe 100
105 110 Gln Ala Lys Gln Phe Phe Glu
Arg Tyr Phe Thr Pro Trp Gln Val Ala 115 120
125 Gly Asn Gly Ser Leu Ala Gly Thr Val Thr Gly Tyr
Tyr Glu Pro Val 130 135 140
Leu Lys Gly Asp Asp Arg Arg Thr Ala Gln Ala Arg Phe Pro Ile Tyr 145
150 155 160 Gly Ile Pro
Asp Asp Phe Ile Ser Val Pro Leu Pro Ala Gly Leu Arg 165
170 175 Ser Gly Lys Ala Leu Val Arg Ile
Arg Gln Thr Gly Lys Asn Ser Gly 180 185
190 Thr Ile Asp Asn Thr Gly Gly Thr His Thr Ala Asp Leu
Ser Arg Phe 195 200 205
Pro Ile Thr Ala Arg Thr Thr Ala Ile Lys Gly Arg Phe Glu Gly Ser 210
215 220 Arg Phe Leu Pro
Tyr His Thr Arg Asn Gln Ile Asn Gly Gly Ala Leu 225 230
235 240 Asp Gly Lys Ala Pro Ile Leu Gly Tyr
Ala Glu Asp Pro Val Glu Leu 245 250
255 Phe Phe Met His Ile Gln Gly Ser Gly Arg Leu Lys Thr Pro
Ser Gly 260 265 270
Lys Tyr Ile Arg Ile Gly Tyr Ala Asp Lys Asn Glu His Pro Tyr Val
275 280 285 Ser Ile Gly Arg
Tyr Met Ala Asp Lys Gly Tyr Leu Lys Leu Gly Gln 290
295 300 Thr Ser Met Gln Gly Ile Lys Ala
Tyr Met Arg Gln Asn Pro Gln Arg 305 310
315 320 Leu Ala Glu Val Leu Gly Gln Asn Pro Ser Tyr Ile
Phe Phe Arg Glu 325 330
335 Leu Ala Gly Ser Ser Asn Asp Gly Pro Val Gly Ala Leu Gly Thr Pro
340 345 350 Leu Met Gly
Glu Tyr Ala Gly Ala Val Asp Arg His Tyr Ile Thr Leu 355
360 365 Gly Ala Pro Leu Phe Val Ala Thr
Ala His Pro Val Thr Arg Lys Ala 370 375
380 Leu Asn Arg Leu Ile Met Ala Gln Asp Thr Gly Ser Ala
Ile Lys Gly 385 390 395
400 Ala Val Arg Val Asp Tyr Phe Trp Gly Tyr Gly Asp Glu Ala Gly Glu
405 410 415 Leu Ala Gly Lys
Gln Lys Thr Thr Gly Tyr Val Trp Gln Leu Leu Pro 420
425 430 Asn Gly Met Lys Pro Glu Tyr Arg Pro
435 440 2420PRTNeisseria meningitidis 2Gln
Ser Lys Ser Ile Gln Thr Phe Pro Gln Pro Asp Thr Ser Val Ile 1
5 10 15 Asn Gly Pro Asp Arg Pro
Val Gly Ile Pro Asp Pro Ala Gly Thr Thr 20
25 30 Val Gly Gly Gly Gly Ala Val Tyr Thr Val
Val Pro His Leu Ser Leu 35 40
45 Pro His Trp Ala Ala Gln Asp Phe Ala Lys Ser Leu Gln Ser
Phe Arg 50 55 60
Leu Gly Cys Ala Asn Leu Lys Asn Arg Gln Gly Trp Gln Asp Val Cys 65
70 75 80 Ala Gln Ala Phe Gln
Thr Pro Val His Ser Phe Gln Ala Lys Gln Phe 85
90 95 Phe Glu Arg Tyr Phe Thr Pro Trp Gln Val
Ala Gly Asn Gly Ser Leu 100 105
110 Ala Gly Thr Val Thr Gly Tyr Tyr Glu Pro Val Leu Lys Gly Asp
Asp 115 120 125 Arg
Arg Thr Ala Gln Ala Arg Phe Pro Ile Tyr Gly Ile Pro Asp Asp 130
135 140 Phe Ile Ser Val Pro Leu
Pro Ala Gly Leu Arg Ser Gly Lys Ala Leu 145 150
155 160 Val Arg Ile Arg Gln Thr Gly Lys Asn Ser Gly
Thr Ile Asp Asn Thr 165 170
175 Gly Gly Thr His Thr Ala Asp Leu Ser Arg Phe Pro Ile Thr Ala Arg
180 185 190 Thr Thr
Ala Ile Lys Gly Arg Phe Glu Gly Ser Arg Phe Leu Pro Tyr 195
200 205 His Thr Arg Asn Gln Ile Asn
Gly Gly Ala Leu Asp Gly Lys Ala Pro 210 215
220 Ile Leu Gly Tyr Ala Glu Asp Pro Val Glu Leu Phe
Phe Met His Ile 225 230 235
240 Gln Gly Ser Gly Arg Leu Lys Thr Pro Ser Gly Lys Tyr Ile Arg Ile
245 250 255 Gly Tyr Ala
Asp Lys Asn Glu His Pro Tyr Val Ser Ile Gly Arg Tyr 260
265 270 Met Ala Asp Lys Gly Tyr Leu Lys
Leu Gly Gln Thr Ser Met Gln Gly 275 280
285 Ile Lys Ala Tyr Met Arg Gln Asn Pro Gln Arg Leu Ala
Glu Val Leu 290 295 300
Gly Gln Asn Pro Ser Tyr Ile Phe Phe Arg Glu Leu Ala Gly Ser Ser 305
310 315 320 Asn Asp Gly Pro
Val Gly Ala Leu Gly Thr Pro Leu Met Gly Glu Tyr 325
330 335 Ala Gly Ala Val Asp Arg His Tyr Ile
Thr Leu Gly Ala Pro Leu Phe 340 345
350 Val Ala Thr Ala His Pro Val Thr Arg Lys Ala Leu Asn Arg
Leu Ile 355 360 365
Met Ala Gln Asp Thr Gly Ser Ala Ile Lys Gly Ala Val Arg Val Asp 370
375 380 Tyr Phe Trp Gly Tyr
Gly Asp Glu Ala Gly Glu Leu Ala Gly Lys Gln 385 390
395 400 Lys Thr Thr Gly Tyr Val Trp Gln Leu Leu
Pro Asn Gly Met Lys Pro 405 410
415 Glu Tyr Arg Pro 420 3440PRTArtificial
SequenceSynthetic construct 3Met Lys Thr Phe Phe Lys Thr Leu Ser Ala Ala
Ala Leu Ala Leu Ile 1 5 10
15 Leu Ala Ala Cys Gln Ser Lys Ser Ile Gln Thr Phe Pro Gln Pro Asp
20 25 30 Thr Ser
Val Ile Asn Gly Pro Asp Arg Pro Val Gly Ile Pro Asp Pro 35
40 45 Ala Gly Thr Thr Val Gly Gly
Gly Gly Ala Val Tyr Thr Val Val Pro 50 55
60 His Leu Ser Leu Pro His Trp Ala Ala Gln Asp Phe
Ala Lys Ser Leu 65 70 75
80 Gln Ser Phe Arg Leu Gly Cys Ala Asn Leu Lys Asn Arg Gln Gly Trp
85 90 95 Gln Asp Val
Cys Ala Gln Ala Phe Gln Thr Pro Val His Ser Phe Gln 100
105 110 Ala Lys Gln Phe Phe Glu Arg Tyr
Phe Thr Pro Trp Gln Val Ala Gly 115 120
125 Asn Gly Ser Leu Ala Gly Thr Val Thr Gly Tyr Tyr Glu
Pro Val Leu 130 135 140
Lys Gly Asp Asp Arg Arg Thr Ala Gln Ala Arg Phe Pro Ile Tyr Gly 145
150 155 160 Ile Pro Asp Asp
Phe Ile Ser Val Pro Leu Pro Ala Gly Leu Arg Ser 165
170 175 Gly Lys Ala Leu Val Arg Ile Arg Gln
Thr Gly Lys Asn Ser Gly Thr 180 185
190 Ile Asp Asn Thr Gly Gly Thr His Thr Ala Asp Leu Ser Arg
Phe Pro 195 200 205
Ile Thr Ala Arg Thr Thr Ala Ile Lys Gly Arg Phe Glu Gly Ser Arg 210
215 220 Phe Leu Pro Tyr His
Thr Arg Asn Gln Ile Asn Gly Gly Ala Leu Asp 225 230
235 240 Gly Lys Ala Pro Ile Leu Gly Tyr Ala Glu
Asp Pro Val Glu Leu Phe 245 250
255 Phe Met His Ile Gln Gly Ser Gly Arg Leu Lys Thr Pro Ser Gly
Lys 260 265 270 Tyr
Ile Arg Ile Gly Tyr Ala Asp Lys Asn Glu His Pro Tyr Val Ser 275
280 285 Ile Gly Arg Tyr Met Ala
Asp Lys Gly Tyr Leu Lys Leu Gly Gln Thr 290 295
300 Ser Met Gln Gly Ile Lys Ser Tyr Met Arg Gln
Asn Pro Gln Arg Leu 305 310 315
320 Ala Glu Val Leu Gly Gln Asn Pro Ser Tyr Ile Phe Phe Arg Glu Leu
325 330 335 Ala Gly
Ser Ser Asn Asp Gly Pro Val Gly Ala Leu Gly Thr Pro Leu 340
345 350 Met Gly Glu Tyr Ala Gly Ala
Val Asp Arg His Tyr Ile Thr Leu Gly 355 360
365 Ala Pro Leu Phe Val Ala Thr Ala His Pro Val Thr
Arg Lys Ala Leu 370 375 380
Asn Arg Leu Ile Met Ala Gln Asp Thr Gly Ser Ala Ile Lys Gly Ala 385
390 395 400 Val Arg Val
Asp Tyr Phe Trp Gly Tyr Gly Asp Glu Ala Gly Glu Leu 405
410 415 Ala Gly Lys Gln Lys Thr Thr Gly
Tyr Val Trp Gln Leu Leu Pro Asn 420 425
430 Gly Met Lys Pro Glu Tyr Arg Pro 435
440 458PRTArtificial SequenceNeisseria meningitidis 4Glu Arg Arg
Arg Leu Leu Val Asn Ile Gln Tyr Glu Ser Ser Arg Ala 1 5
10 15 Gly Leu Asp Thr Gln Ile Val Leu
Gly Leu Ile Glu Val Glu Ser Ala 20 25
30 Phe Arg Gln Tyr Ala Ile Ser Gly Val Gly Ala Arg Gly
Leu Met Gln 35 40 45
Val Met Pro Phe Trp Lys Asn Tyr Ile Gly 50 55
560PRTArtificial SequenceEscherichia coli 5Glu Arg Phe Pro Leu
Ala Tyr Asn Asp Leu Phe Lys Arg Tyr Thr Ser 1 5
10 15 Gly Lys Glu Ile Pro Gln Ser Tyr Ala Met
Ala Ile Ala Arg Gln Glu 20 25
30 Ser Ala Trp Asn Pro Lys Val Lys Ser Pro Val Gly Ala Ser Gly
Leu 35 40 45 Met
Gln Ile Met Pro Gly Thr Ala Thr His Thr Val 50 55
60 6120PRTArtificial SequenceNeisseria meningitidis 6Val
Ala Gln Lys Tyr Gly Val Pro Ala Glu Leu Ile Val Ala Val Ile 1
5 10 15 Gly Ile Glu Thr Asn Tyr
Gly Lys Asn Thr Gly Ser Phe Arg Val Ala 20
25 30 Asp Ala Leu Ala Thr Leu Gly Phe Asp Tyr
Pro Arg Arg Ala Gly Phe 35 40
45 Phe Gln Lys Glu Leu Val Glu Leu Leu Lys Leu Ala Lys Glu
Glu Gly 50 55 60
Gly Asp Val Phe Ala Phe Lys Gly Ser Tyr Ala Gly Ala Met Gly Met 65
70 75 80 Pro Gln Phe Met Pro
Ser Ser Tyr Arg Lys Trp Ala Val Asp Tyr Asp 85
90 95 Gly Asp Gly His Arg Asp Ile Trp Gly Asn
Val Gly Asp Val Ala Ala 100 105
110 Ser Val Ala Asn Tyr Met Lys Gln 115
120 7119PRTArtificial SequenceEscherichia coli 7Ala Trp Gln Val Tyr Gly
Val Pro Pro Glu Ile Ile Val Gly Ile Ile 1 5
10 15 Gly Val Glu Thr Arg Trp Gly Arg Val Met Gly
Lys Thr Arg Ile Leu 20 25
30 Asp Ala Leu Ala Thr Leu Ser Phe Asn Tyr Pro Arg Arg Ala Glu
Tyr 35 40 45 Phe Ser Gly
Glu Leu Glu Thr Phe Leu Leu Met Ala Arg Asp Glu Gln 50
55 60 Asp Asp Pro Leu Asn Leu Lys Gly
Ser Phe Ala Gly Ala Met Gly Tyr 65 70
75 80 Gly Gln Phe Met Pro Ser Ser Tyr Lys Gln Tyr Ala
Val Asp Phe Ser 85 90
95 Gly Asp Gly His Ile Asn Leu Trp Asp Pro Val Asp Ala Ile Gly Ser
100 105 110 Val Ala Asn
Tyr Phe Lys Ala 115 8194PRTArtificial
SequenceNeisseria meningitidis 8Ala Leu Asp Gly Lys Ala Pro Ile Leu Gly
Tyr Ala Glu Asp Pro Val 1 5 10
15 Glu Leu Phe Phe Met His Ile Gln Gly Ser Gly Arg Leu Lys Thr
Pro 20 25 30 Ser
Gly Lys Tyr Ile Arg Ile Gly Tyr Ala Asp Lys Asn Glu His Pro 35
40 45 Tyr Val Ser Ile Gly Arg
Tyr Met Ala Asp Lys Gly Tyr Leu Lys Leu 50 55
60 Gly Gln Thr Ser Met Gln Gly Ile Lys Ser Tyr
Met Arg Gln Asn Pro 65 70 75
80 Gln Arg Leu Ala Glu Val Leu Gly Gln Asn Pro Ser Tyr Ile Phe Phe
85 90 95 Arg Glu
Leu Ala Gly Ser Ser Asn Asp Gly Pro Val Gly Ala Leu Gly 100
105 110 Thr Pro Leu Met Gly Glu Tyr
Ala Gly Ala Val Asp Arg His Tyr Ile 115 120
125 Thr Leu Gly Ala Pro Leu Phe Val Ala Thr Ala His
Pro Val Thr Arg 130 135 140
Lys Ala Leu Asn Arg Leu Ile Met Ala Gln Asp Thr Gly Ser Ala Ile 145
150 155 160 Lys Gly Ala
Val Arg Val Asp Tyr Phe Trp Gly Tyr Gly Asp Glu Ala 165
170 175 Gly Glu Leu Ala Gly Lys Gln Lys
Thr Thr Gly Tyr Val Trp Gln Leu 180 185
190 Leu Pro 9196PRTEscherichia coli 9Ala Leu Ser Asp
Lys Tyr Ile Leu Ala Tyr Ser Asn Ser Leu Met Asp 1 5
10 15 Asn Phe Ile Met Asp Val Gln Gly Ser
Gly Tyr Ile Asp Phe Gly Asp 20 25
30 Gly Ser Pro Leu Asn Phe Phe Ser Tyr Ala Gly Lys Asn Gly
His Ala 35 40 45
Tyr Arg Ser Ile Gly Lys Val Leu Ile Asp Arg Gly Glu Val Lys Lys 50
55 60 Glu Asp Met Ser Met
Gln Ala Ile Arg His Trp Gly Glu Thr His Ser 65 70
75 80 Glu Ala Glu Val Arg Glu Leu Leu Glu Gln
Asn Pro Ser Phe Val Phe 85 90
95 Phe Lys Pro Gln Ser Phe Ala Pro Val Lys Gly Ala Ser Ala Val
Pro 100 105 110 Leu
Val Gly Arg Ala Ser Val Ala Ser Asp Arg Ser Ile Ile Pro Pro 115
120 125 Gly Thr Thr Leu Leu Ala
Glu Val Pro Leu Leu Asp Asn Asn Gly Lys 130 135
140 Phe Asn Gly Gln Tyr Glu Leu Arg Leu Met Val
Ala Leu Asp Val Gly 145 150 155
160 Gly Ala Ile Lys Gly Gln His Phe Asp Ile Tyr Gln Gly Ile Gly Pro
165 170 175 Glu Ala
Gly His Arg Ala Gly Trp Tyr Asn His Tyr Gly Arg Val Trp 180
185 190 Val Leu Lys Thr 195
1028DNAArtificial SequenceSynthetic construct 10cgaagacccc gtcggtcttt
tttttatg 281128DNAArtificial
SequenceSynthetic construct 11gtgcataaaa aaaagaccga cggggtct
281225DNAArtificial SequenceSynthetic construct
12aacgcctcgc cggtgttttg ggtca
251325DNAArtificial SequenceSynthetic construct 13tttgacccaa aacaccggcg
aggcg 251426DNAArtificial
SequenceSynthetic construct 14tgccggcgca gtcggtcggc actaca
261526DNAArtificial SequenceSynthetic construct
15taatgtagtg ccgaccgact gcgccg
261625DNAArtificial SequenceSynthetic construct 16tgattgaggt gggtagcgcg
ttccg 251725DNAArtificial
SequenceSynthetic construct 17ggcggaacgc gctacccacc tcaat
251834DNAArtificial SequenceSynthetic construct
18ccggaattct tatgaaaaaa atcatcttcg ccgc
341932DNAArtificial SequenceSynthetic construct 19gcccaagctt ttattgtttg
gctgcctcga tt 322037DNAArtificial
SequenceSynthetic construct 20ccggaattct tatgtcgccc gatgttaaat cggcgga
372132DNAArtificial SequenceSynthetic construct
21gcccaagctt tcaatcctgc tcttttttgc cg
322234DNAArtificial SequenceSynthetic construct 22ccggaattct tatgagccaa
gatatggcgg cagt 342332DNAArtificial
SequenceSynthetic construct 23gcccaagctt tcaatcctgc tcttttttgc cg
322434DNAArtificial SequenceSynthetic construct
24ccggaattct tatgtccgcc gaatccgcaa atca
342532DNAArtificial SequenceSynthetic construct 25gcccaagctt tcaatcctgc
tcttttttgc cg 322636DNAArtificial
SequenceSynthetic construct 26ccggaattct tatgggaagg gttgatttgg ctaatg
362732DNAArtificial SequenceSynthetic construct
27gcccaagctt tcaatcctgc tcttttttgc cg
322836DNAArtificial SequenceSynthetic construct 28ccggaattct tatgtcagat
ttggcaaacg attctt 362935DNAArtificial
SequenceSynthetic construct 29gcccaagctt ttacgtatca tatttcacgt gcttc
353037DNAArtificial SequenceSynthetic construct
30ccggaattct tatgtcgccc gatgttaaat cggcgga
373135DNAArtificial SequenceSynthetic construct 31gcccaagctt ttacgtatca
tatttcacgt gcttc 353236DNAArtificial
SequenceSynthetic construct 32ccggaattct tatgcaaagc aagagcatcc aaacct
363330DNAArtificial SequenceSynthetic construct
33gcccaagctt ttacgggcgg tattcgggct
303429DNAArtificial SequenceSynthetic construct 34ccggaattca tatgaaacac
tttccatcc 293528DNAArtificial
SequenceSynthetic construct 35gcccaagctt ttaccactcg taattgac
283629DNAArtificial SequenceSynthetic construct
36ccggaattca tatggccaca agcgacgac
293728DNAArtificial SequenceSynthetic construct 37gcccaagctt ttaccactcg
taattgac 283829DNAArtificial
SequenceSynthetic construct 38ccggaattct tatgaaacac tttccatcc
293931DNAArtificial SequenceSynthetic construct
39gcccaagctt tcaacccacg ttgtaaggtt g
314030DNAArtificial SequenceSynthetic construct 40ccggaattct tatggccaca
aacgacgacg 304131DNAArtificial
SequenceSynthetic construct 41gcccaagctt tcaacccacg ttgtaaggtt g
314234DNAArtificial SequenceSynthetic construct
42ccggaattct tatggccacc tacaaagtgg acga
344332DNAArtificial SequenceSynthetic construct 43gcccaagctt ttattgtttg
gctgcctcga tt 324432DNAArtificial
SequenceSynthetic construct 44cgcggatccg ctagccccga tgttaaatcg gc
324531DNAArtificial SequenceSynthetic construct
45cccgctcgag tcaatcctgc tcttttttgc c
314632DNAArtificial SequenceSynthetic construct 46cgcggatccg ctagccaaga
tatggcggca gt 324732DNAArtificial
SequenceSynthetic construct 47cgcggatccg ctagcgccga atccgcaaat ca
324832DNAArtificial SequenceSynthetic construct
48cgcgctagcg gaagggttga tttggctaat gg
324934DNAArtificial SequenceSynthetic construct 49gggaattcca tatgggcatt
tcccgcaaaa tatc 345032DNAArtificial
SequenceSynthetic construct 50cccgctcgag ttacgtatca tatttcacgt gc
325134DNAArtificial SequenceSynthetic construct
51gggaattcca tatgggcatt tcccgcaaaa tatc
345233DNAArtificial SequenceSynthetic construct 52cccgctcgag ttattctatg
ccttgtgcgg cat 335332DNAArtificial
SequenceSynthetic construct 53cgcggatccc atatggccac aagcgacgac ga
325428DNAArtificial SequenceSynthetic construct
54cccgctcgag ttaccactcg taattgac
285528DNAArtificial SequenceSynthetic construct 55cgcggatccc atatggccac
aaacgacg 285635DNAArtificial
SequenceSynthetic construct 56cccgctcgag tcatttagca atattatctt tgttc
355733DNAArtificial SequenceSynthetic construct
57cgcggatccc atatgaaagc aaacagtgcc gac
335828DNAArtificial SequenceSynthetic construct 58cccgctcgag ttaccactcg
taattgac 285928DNAArtificial
SequenceSynthetic construct 59cgcggatccc atatggccac aaacgacg
286029DNAArtificial SequenceSynthetic construct
60cccgctcgag ttaacccacg ttgtaaggt
296133DNAArtificial SequenceSynthetic construct 61cgcggatccc atatgatgaa
acactttcca tcc 336229DNAArtificial
SequenceSynthetic construct 62cccgctcgag ttaacccacg ttgtaaggt
296328DNAArtificial SequenceSynthetic construct
63cgcggatccc atatggccac aaacgacg
286432DNAArtificial SequenceSynthetic construct 64cccgctcgag tcagtctgac
actgttttat cc 326532DNAArtificial
SequenceSynthetic construct 65cgcggatccg ctagccccga tgttaaatcg gc
326627DNAArtificial SequenceSynthetic construct
66cccgctcgag ttacgggcgg tattcgg
276732DNAArtificial SequenceSynthetic construct 67cgcggatccg ctagccccga
tgttaaatcg gc 326832DNAArtificial
SequenceSynthetic construct 68cccgctcgag ttacgtatca tatttcacgt gc
326932DNAArtificial SequenceSynthetic construct
69cgcggatccg ctagccccga tgttaaatcg gc
327028DNAArtificial SequenceSynthetic construct 70cccgctcgag ttaccactcg
taattgac 28711457PRTNeisseria
meningitidis 71Met Lys Thr Thr Asp Lys Arg Thr Thr Glu Thr His Arg Lys
Ala Pro 1 5 10 15
Lys Thr Gly Arg Ile Arg Phe Ser Pro Ala Tyr Leu Ala Ile Cys Leu
20 25 30 Ser Phe Gly Ile Leu
Pro Gln Ala Trp Ala Gly His Thr Tyr Phe Gly 35
40 45 Ile Asn Tyr Gln Tyr Tyr Arg Asp Phe
Ala Glu Asn Lys Gly Lys Phe 50 55
60 Ala Val Gly Ala Lys Asp Ile Glu Val Tyr Asn Lys Lys
Gly Glu Leu 65 70 75
80 Val Gly Lys Ser Met Thr Lys Ala Pro Met Ile Asp Phe Ser Val Val
85 90 95 Ser Arg Asn Gly
Val Ala Ala Leu Val Gly Asp Gln Tyr Ile Val Ser 100
105 110 Val Ala His Asn Gly Gly Tyr Asn Asn
Val Asp Phe Gly Ala Glu Gly 115 120
125 Arg Asn Pro Asp Gln His Arg Phe Thr Tyr Lys Ile Val Lys
Arg Asn 130 135 140
Asn Tyr Lys Ala Gly Thr Lys Gly His Pro Tyr Gly Gly Asp Tyr His 145
150 155 160 Met Pro Arg Leu His
Lys Phe Val Thr Asp Ala Glu Pro Val Glu Met 165
170 175 Thr Ser Tyr Met Asp Gly Arg Lys Tyr Ile
Asp Gln Asn Asn Tyr Pro 180 185
190 Asp Arg Val Arg Ile Gly Ala Gly Arg Gln Tyr Trp Arg Ser Asp
Glu 195 200 205 Asp
Glu Pro Asn Asn Arg Glu Ser Ser Tyr His Ile Ala Ser Ala Tyr 210
215 220 Ser Trp Leu Val Gly Gly
Asn Thr Phe Ala Gln Asn Gly Ser Gly Gly 225 230
235 240 Gly Thr Val Asn Leu Gly Ser Glu Lys Ile Lys
His Ser Pro Tyr Gly 245 250
255 Phe Leu Pro Thr Gly Gly Ser Phe Gly Asp Ser Gly Ser Pro Met Phe
260 265 270 Ile Tyr
Asp Ala Gln Lys Gln Lys Trp Leu Ile Asn Gly Val Leu Gln 275
280 285 Thr Gly Asn Pro Tyr Ile Gly
Lys Ser Asn Gly Phe Gln Leu Val Arg 290 295
300 Lys Asp Trp Phe Tyr Asp Glu Ile Phe Ala Gly Asp
Thr His Ser Val 305 310 315
320 Phe Tyr Glu Pro Arg Gln Asn Gly Lys Tyr Ser Phe Asn Asp Asp Asn
325 330 335 Asn Gly Thr
Gly Lys Ile Asn Ala Lys His Glu His Asn Ser Leu Pro 340
345 350 Asn Arg Leu Lys Thr Arg Thr Val
Gln Leu Phe Asn Val Ser Leu Ser 355 360
365 Glu Thr Ala Arg Glu Pro Val Tyr His Ala Ala Gly Gly
Val Asn Ser 370 375 380
Tyr Arg Pro Arg Leu Asn Asn Gly Glu Asn Ile Ser Phe Ile Asp Glu 385
390 395 400 Gly Lys Gly Glu
Leu Ile Leu Thr Ser Asn Ile Asn Gln Gly Ala Gly 405
410 415 Gly Leu Tyr Phe Gln Gly Asp Phe Thr
Val Ser Pro Glu Asn Asn Glu 420 425
430 Thr Trp Gln Gly Ala Gly Val His Ile Ser Glu Asp Ser Thr
Val Thr 435 440 445
Trp Lys Val Asn Gly Val Ala Asn Asp Arg Leu Ser Lys Ile Gly Lys 450
455 460 Gly Thr Leu His Val
Gln Ala Lys Gly Glu Asn Gln Gly Ser Ile Ser 465 470
475 480 Val Gly Asp Gly Thr Val Ile Leu Asp Gln
Gln Ala Asp Asp Lys Gly 485 490
495 Lys Lys Gln Ala Phe Ser Glu Ile Gly Leu Val Ser Gly Arg Gly
Thr 500 505 510 Val
Gln Leu Asn Ala Asp Asn Gln Phe Asn Pro Asp Lys Leu Tyr Phe 515
520 525 Gly Phe Arg Gly Gly Arg
Leu Asp Leu Asn Gly His Ser Leu Ser Phe 530 535
540 His Arg Ile Gln Asn Thr Asp Glu Gly Ala Met
Ile Val Asn His Asn 545 550 555
560 Gln Asp Lys Glu Ser Thr Val Thr Ile Thr Gly Asn Lys Asp Ile Ala
565 570 575 Thr Thr
Gly Asn Asn Asn Ser Leu Asp Ser Lys Lys Glu Ile Ala Tyr 580
585 590 Asn Gly Trp Phe Gly Glu Lys
Asp Thr Thr Lys Thr Asn Gly Arg Leu 595 600
605 Asn Leu Val Tyr Gln Pro Ala Ala Glu Asp Arg Thr
Leu Leu Leu Ser 610 615 620
Gly Gly Thr Asn Leu Asn Gly Asn Ile Thr Gln Thr Asn Gly Lys Leu 625
630 635 640 Phe Phe Ser
Gly Arg Pro Thr Pro His Ala Tyr Asn His Leu Asn Asp 645
650 655 His Trp Ser Gln Lys Glu Gly Ile
Pro Arg Gly Glu Ile Val Trp Asp 660 665
670 Asn Asp Trp Ile Asn Arg Thr Phe Lys Ala Glu Asn Phe
Gln Ile Lys 675 680 685
Gly Gly Gln Ala Val Val Ser Arg Asn Val Ala Lys Val Lys Gly Asp 690
695 700 Trp His Leu Ser
Asn His Ala Gln Ala Val Phe Gly Val Ala Pro His 705 710
715 720 Gln Ser His Thr Ile Cys Thr Arg Ser
Asp Trp Thr Gly Leu Thr Asn 725 730
735 Cys Val Glu Lys Thr Ile Thr Asp Asp Lys Val Ile Ala Ser
Leu Thr 740 745 750
Lys Thr Asp Ile Ser Gly Asn Val Asp Leu Ala Asp His Ala His Leu
755 760 765 Asn Leu Thr Gly
Leu Ala Thr Leu Asn Gly Asn Leu Ser Ala Asn Gly 770
775 780 Asp Thr Arg Tyr Thr Val Ser His
Asn Ala Thr Gln Asn Gly Asn Leu 785 790
795 800 Ser Leu Val Gly Asn Ala Gln Ala Thr Phe Asn Gln
Ala Thr Leu Asn 805 810
815 Gly Asn Thr Ser Ala Ser Gly Asn Ala Ser Phe Asn Leu Ser Asp His
820 825 830 Ala Val Gln
Asn Gly Ser Leu Thr Leu Ser Gly Asn Ala Lys Ala Asn 835
840 845 Val Ser His Ser Ala Leu Asn Gly
Asn Val Ser Leu Ala Asp Lys Ala 850 855
860 Val Phe His Phe Glu Ser Ser Arg Phe Thr Gly Gln Ile
Ser Gly Gly 865 870 875
880 Lys Asp Thr Ala Leu His Leu Lys Asp Ser Glu Trp Thr Leu Pro Ser
885 890 895 Gly Thr Glu Leu
Gly Asn Leu Asn Leu Asp Asn Ala Thr Ile Thr Leu 900
905 910 Asn Ser Ala Tyr Arg His Asp Ala Ala
Gly Ala Gln Thr Gly Ser Ala 915 920
925 Thr Asp Ala Pro Arg Arg Arg Ser Arg Arg Ser Arg Arg Ser
Leu Leu 930 935 940
Ser Val Thr Pro Pro Thr Ser Val Glu Ser Arg Phe Asn Thr Leu Thr 945
950 955 960 Val Asn Gly Lys Leu
Asn Gly Gln Gly Thr Phe Arg Phe Met Ser Glu 965
970 975 Leu Phe Gly Tyr Arg Ser Asp Lys Leu Lys
Leu Ala Glu Ser Ser Glu 980 985
990 Gly Thr Tyr Thr Leu Ala Val Asn Asn Thr Gly Asn Glu Pro Ala
Ser 995 1000 1005 Leu
Glu Gln Leu Thr Val Val Glu Gly Lys Asp Asn Lys Pro Leu Ser 1010
1015 1020 Glu Asn Leu Asn Phe Thr
Leu Gln Asn Glu His Val Asp Ala Gly Ala 1025 1030
1035 1040Trp Arg Tyr Gln Leu Ile Arg Lys Asp Gly Glu
Phe Arg Leu His Asn 1045 1050
1055 Pro Val Lys Glu Gln Glu Leu Ser Asp Lys Leu Gly Lys Ala Glu Ala
1060 1065 1070 Lys Lys
Gln Ala Glu Lys Asp Asn Ala Gln Ser Leu Asp Ala Leu Ile 1075
1080 1085 Ala Ala Gly Arg Asp Ala Val
Glu Lys Thr Glu Ser Val Ala Glu Pro 1090 1095
1100 Ala Arg Gln Ala Gly Gly Glu Asn Val Gly Ile Met
Gln Ala Glu Glu 1105 1110 1115
1120Glu Lys Lys Arg Val Gln Ala Asp Lys Asp Thr Ala Leu Ala Lys Gln
1125 1130 1135 Arg Glu Ala
Glu Thr Arg Pro Ala Thr Thr Ala Phe Pro Arg Ala Arg 1140
1145 1150 Arg Ala Arg Arg Asp Leu Pro Gln
Leu Gln Pro Gln Pro Gln Pro Gln 1155 1160
1165 Pro Gln Arg Asp Leu Ile Ser Arg Tyr Ala Asn Ser Gly
Leu Ser Glu 1170 1175 1180
Phe Ser Ala Thr Leu Asn Ser Val Phe Ala Val Gln Asp Glu Leu Asp 1185
1190 1195 1200Arg Val Phe Ala
Glu Asp Arg Arg Asn Ala Val Trp Thr Ser Gly Ile 1205
1210 1215 Arg Asp Thr Lys His Tyr Arg Ser Gln
Asp Phe Arg Ala Tyr Arg Gln 1220 1225
1230 Gln Thr Asp Leu Arg Gln Ile Gly Met Gln Lys Asn Leu Gly
Ser Gly 1235 1240 1245
Arg Val Gly Ile Leu Phe Ser His Asn Arg Thr Glu Asn Thr Phe Asp 1250
1255 1260 Asp Gly Ile Gly Asn
Ser Ala Arg Leu Ala His Gly Ala Val Phe Gly 1265 1270
1275 1280Gln Tyr Gly Ile Asp Arg Phe Tyr Ile Gly
Ile Ser Ala Gly Ala Gly 1285 1290
1295 Phe Ser Ser Gly Ser Leu Ser Asp Gly Ile Gly Gly Lys Ile Arg
Arg 1300 1305 1310 Arg
Val Leu His Tyr Gly Ile Gln Ala Arg Tyr Arg Ala Gly Phe Gly 1315
1320 1325 Gly Phe Gly Ile Glu Pro
His Ile Gly Ala Thr Arg Tyr Phe Val Gln 1330 1335
1340 Lys Ala Asp Tyr Arg Tyr Glu Asn Val Asn Ile
Ala Thr Pro Gly Leu 1345 1350 1355
1360Ala Phe Asn Arg Tyr Arg Ala Gly Ile Lys Ala Asp Tyr Ser Phe Lys
1365 1370 1375 Pro Ala
Gln His Ile Ser Ile Thr Pro Tyr Leu Ser Leu Ser Tyr Thr 1380
1385 1390 Asp Ala Ala Ser Gly Lys Val
Arg Thr Arg Val Asn Thr Ala Val Leu 1395 1400
1405 Ala Gln Asp Phe Gly Lys Thr Arg Ser Ala Glu Trp
Gly Val Asn Ala 1410 1415 1420
Glu Ile Lys Gly Phe Thr Leu Ser Leu His Ala Ala Ala Ala Lys Gly
1425 1430 1435 1440Pro Gln
Leu Glu Ala Gln His Ser Ala Gly Ile Lys Leu Gly Tyr Arg
1445 1450 1455 Trp 7221PRTEscherichia
coli 72Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala 1
5 10 15 Thr Val Ala
Gln Ala 20 731439PRTArtificial SequenceSynthetic
construct 73Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe
Ala 1 5 10 15 Thr
Val Ala Gln Ala Ala Ser Ala Gly His Thr Tyr Phe Gly Ile Asn
20 25 30 Tyr Gln Tyr Tyr Arg
Asp Phe Ala Glu Asn Lys Gly Lys Phe Ala Val 35
40 45 Gly Ala Lys Asp Ile Glu Val Tyr Asn
Lys Lys Gly Glu Leu Val Gly 50 55
60 Lys Ser Met Thr Lys Ala Pro Met Ile Asp Phe Ser Val
Val Ser Arg 65 70 75
80 Asn Gly Val Ala Ala Leu Val Gly Asp Gln Tyr Ile Val Ser Val Ala
85 90 95 His Asn Gly Gly
Tyr Asn Asn Val Asp Phe Gly Ala Glu Gly Arg Asn 100
105 110 Pro Asp Gln His Arg Phe Thr Tyr Lys
Ile Val Lys Arg Asn Asn Tyr 115 120
125 Lys Ala Gly Thr Lys Gly His Pro Tyr Gly Gly Asp Tyr His
Met Pro 130 135 140
Arg Leu His Lys Phe Val Thr Asp Ala Glu Pro Val Glu Met Thr Ser 145
150 155 160 Tyr Met Asp Gly Arg
Lys Tyr Ile Asp Gln Asn Asn Tyr Pro Asp Arg 165
170 175 Val Arg Ile Gly Ala Gly Arg Gln Tyr Trp
Arg Ser Asp Glu Asp Glu 180 185
190 Pro Asn Asn Arg Glu Ser Ser Tyr His Ile Ala Ser Ala Tyr Ser
Trp 195 200 205 Leu
Val Gly Gly Asn Thr Phe Ala Gln Asn Gly Ser Gly Gly Gly Thr 210
215 220 Val Asn Leu Gly Ser Glu
Lys Ile Lys His Ser Pro Tyr Gly Phe Leu 225 230
235 240 Pro Thr Gly Gly Ser Phe Gly Asp Ser Gly Ser
Pro Met Phe Ile Tyr 245 250
255 Asp Ala Gln Lys Gln Lys Trp Leu Ile Asn Gly Val Leu Gln Thr Gly
260 265 270 Asn Pro
Tyr Ile Gly Lys Ser Asn Gly Phe Gln Leu Val Arg Lys Asp 275
280 285 Trp Phe Tyr Asp Glu Ile Phe
Ala Gly Asp Thr His Ser Val Phe Tyr 290 295
300 Glu Pro Arg Gln Asn Gly Lys Tyr Ser Phe Asn Asp
Asp Asn Asn Gly 305 310 315
320 Thr Gly Lys Ile Asn Ala Lys His Glu His Asn Ser Leu Pro Asn Arg
325 330 335 Leu Lys Thr
Arg Thr Val Gln Leu Phe Asn Val Ser Leu Ser Glu Thr 340
345 350 Ala Arg Glu Pro Val Tyr His Ala
Ala Gly Gly Val Asn Ser Tyr Arg 355 360
365 Pro Arg Leu Asn Asn Gly Glu Asn Ile Ser Phe Ile Asp
Glu Gly Lys 370 375 380
Gly Glu Leu Ile Leu Thr Ser Asn Ile Asn Gln Gly Ala Gly Gly Leu 385
390 395 400 Tyr Phe Gln Gly
Asp Phe Thr Val Ser Pro Glu Asn Asn Glu Thr Trp 405
410 415 Gln Gly Ala Gly Val His Ile Ser Glu
Asp Ser Thr Val Thr Trp Lys 420 425
430 Val Asn Gly Val Ala Asn Asp Arg Leu Ser Lys Ile Gly Lys
Gly Thr 435 440 445
Leu His Val Gln Ala Lys Gly Glu Asn Gln Gly Ser Ile Ser Val Gly 450
455 460 Asp Gly Thr Val Ile
Leu Asp Gln Gln Ala Asp Asp Lys Gly Lys Lys 465 470
475 480 Gln Ala Phe Ser Glu Ile Gly Leu Val Ser
Gly Arg Gly Thr Val Gln 485 490
495 Leu Asn Ala Asp Asn Gln Phe Asn Pro Asp Lys Leu Tyr Phe Gly
Phe 500 505 510 Arg
Gly Gly Arg Leu Asp Leu Asn Gly His Ser Leu Ser Phe His Arg 515
520 525 Ile Gln Asn Thr Asp Glu
Gly Ala Met Ile Val Asn His Asn Gln Asp 530 535
540 Lys Glu Ser Thr Val Thr Ile Thr Gly Asn Lys
Asp Ile Ala Thr Thr 545 550 555
560 Gly Asn Asn Asn Ser Leu Asp Ser Lys Lys Glu Ile Ala Tyr Asn Gly
565 570 575 Trp Phe
Gly Glu Lys Asp Thr Thr Lys Thr Asn Gly Arg Leu Asn Leu 580
585 590 Val Tyr Gln Pro Ala Ala Glu
Asp Arg Thr Leu Leu Leu Ser Gly Gly 595 600
605 Thr Asn Leu Asn Gly Asn Ile Thr Gln Thr Asn Gly
Lys Leu Phe Phe 610 615 620
Ser Gly Arg Pro Thr Pro His Ala Tyr Asn His Leu Asn Asp His Trp 625
630 635 640 Ser Gln Lys
Glu Gly Ile Pro Arg Gly Glu Ile Val Trp Asp Asn Asp 645
650 655 Trp Ile Asn Arg Thr Phe Lys Ala
Glu Asn Phe Gln Ile Lys Gly Gly 660 665
670 Gln Ala Val Val Ser Arg Asn Val Ala Lys Val Lys Gly
Asp Trp His 675 680 685
Leu Ser Asn His Ala Gln Ala Val Phe Gly Val Ala Pro His Gln Ser 690
695 700 His Thr Ile Cys
Thr Arg Ser Asp Trp Thr Gly Leu Thr Asn Cys Val 705 710
715 720 Glu Lys Thr Ile Thr Asp Asp Lys Val
Ile Ala Ser Leu Thr Lys Thr 725 730
735 Asp Ile Ser Gly Asn Val Asp Leu Ala Asp His Ala His Leu
Asn Leu 740 745 750
Thr Gly Leu Ala Thr Leu Asn Gly Asn Leu Ser Ala Asn Gly Asp Thr
755 760 765 Arg Tyr Thr Val
Ser His Asn Ala Thr Gln Asn Gly Asn Leu Ser Leu 770
775 780 Val Gly Asn Ala Gln Ala Thr Phe
Asn Gln Ala Thr Leu Asn Gly Asn 785 790
795 800 Thr Ser Ala Ser Gly Asn Ala Ser Phe Asn Leu Ser
Asp His Ala Val 805 810
815 Gln Asn Gly Ser Leu Thr Leu Ser Gly Asn Ala Lys Ala Asn Val Ser
820 825 830 His Ser Ala
Leu Asn Gly Asn Val Ser Leu Ala Asp Lys Ala Val Phe 835
840 845 His Phe Glu Ser Ser Arg Phe Thr
Gly Gln Ile Ser Gly Gly Lys Asp 850 855
860 Thr Ala Leu His Leu Lys Asp Ser Glu Trp Thr Leu Pro
Ser Gly Thr 865 870 875
880 Glu Leu Gly Asn Leu Asn Leu Asp Asn Ala Thr Ile Thr Leu Asn Ser
885 890 895 Ala Tyr Arg His
Asp Ala Ala Gly Ala Gln Thr Gly Ser Ala Thr Asp 900
905 910 Ala Pro Arg Arg Arg Ser Arg Arg Ser
Arg Arg Ser Leu Leu Ser Val 915 920
925 Thr Pro Pro Thr Ser Val Glu Ser Arg Phe Asn Thr Leu Thr
Val Asn 930 935 940
Gly Lys Leu Asn Gly Gln Gly Thr Phe Arg Phe Met Ser Glu Leu Phe 945
950 955 960 Gly Tyr Arg Ser Asp
Lys Leu Lys Leu Ala Glu Ser Ser Glu Gly Thr 965
970 975 Tyr Thr Leu Ala Val Asn Asn Thr Gly Asn
Glu Pro Ala Ser Leu Glu 980 985
990 Gln Leu Thr Val Val Glu Gly Lys Asp Asn Lys Pro Leu Ser Glu
Asn 995 1000 1005 Leu
Asn Phe Thr Leu Gln Asn Glu His Val Asp Ala Gly Ala Trp Arg 1010
1015 1020 Tyr Gln Leu Ile Arg Lys
Asp Gly Glu Phe Arg Leu His Asn Pro Val 1025 1030
1035 1040Lys Glu Gln Glu Leu Ser Asp Lys Leu Gly Lys
Ala Glu Ala Lys Lys 1045 1050
1055 Gln Ala Glu Lys Asp Asn Ala Gln Ser Leu Asp Ala Leu Ile Ala Ala
1060 1065 1070 Gly Arg
Asp Ala Val Glu Lys Thr Glu Ser Val Ala Glu Pro Ala Arg 1075
1080 1085 Gln Ala Gly Gly Glu Asn Val
Gly Ile Met Gln Ala Glu Glu Glu Lys 1090 1095
1100 Lys Arg Val Gln Ala Asp Lys Asp Thr Ala Leu Ala
Lys Gln Arg Glu 1105 1110 1115
1120Ala Glu Thr Arg Pro Ala Thr Thr Ala Phe Pro Arg Ala Arg Arg Ala
1125 1130 1135 Arg Arg Asp
Leu Pro Gln Leu Gln Pro Gln Pro Gln Pro Gln Pro Gln 1140
1145 1150 Arg Asp Leu Ile Ser Arg Tyr Ala
Asn Ser Gly Leu Ser Glu Phe Ser 1155 1160
1165 Ala Thr Leu Asn Ser Val Phe Ala Val Gln Asp Glu Leu
Asp Arg Val 1170 1175 1180
Phe Ala Glu Asp Arg Arg Asn Ala Val Trp Thr Ser Gly Ile Arg Asp 1185
1190 1195 1200Thr Lys His Tyr
Arg Ser Gln Asp Phe Arg Ala Tyr Arg Gln Gln Thr 1205
1210 1215 Asp Leu Arg Gln Ile Gly Met Gln Lys
Asn Leu Gly Ser Gly Arg Val 1220 1225
1230 Gly Ile Leu Phe Ser His Asn Arg Thr Glu Asn Thr Phe Asp
Asp Gly 1235 1240 1245
Ile Gly Asn Ser Ala Arg Leu Ala His Gly Ala Val Phe Gly Gln Tyr 1250
1255 1260 Gly Ile Asp Arg Phe
Tyr Ile Gly Ile Ser Ala Gly Ala Gly Phe Ser 1265 1270
1275 1280Ser Gly Ser Leu Ser Asp Gly Ile Gly Gly
Lys Ile Arg Arg Arg Val 1285 1290
1295 Leu His Tyr Gly Ile Gln Ala Arg Tyr Arg Ala Gly Phe Gly Gly
Phe 1300 1305 1310 Gly
Ile Glu Pro His Ile Gly Ala Thr Arg Tyr Phe Val Gln Lys Ala 1315
1320 1325 Asp Tyr Arg Tyr Glu Asn
Val Asn Ile Ala Thr Pro Gly Leu Ala Phe 1330 1335
1340 Asn Arg Tyr Arg Ala Gly Ile Lys Ala Asp Tyr
Ser Phe Lys Pro Ala 1345 1350 1355
1360Gln His Ile Ser Ile Thr Pro Tyr Leu Ser Leu Ser Tyr Thr Asp Ala
1365 1370 1375 Ala Ser
Gly Lys Val Arg Thr Arg Val Asn Thr Ala Val Leu Ala Gln 1380
1385 1390 Asp Phe Gly Lys Thr Arg Ser
Ala Glu Trp Gly Val Asn Ala Glu Ile 1395 1400
1405 Lys Gly Phe Thr Leu Ser Leu His Ala Ala Ala Ala
Lys Gly Pro Gln 1410 1415 1420
Leu Glu Ala Gln His Ser Ala Gly Ile Lys Leu Gly Tyr Arg Trp 1425
1430 1435 74164PRTNeisseria
meningitidis 74Met Lys Lys Asn Ile Leu Glu Phe Trp Val Gly Leu Phe Val
Leu Ile 1 5 10 15
Gly Ala Ala Ala Val Ala Phe Leu Ala Phe Arg Val Ala Gly Gly Ala
20 25 30 Ala Phe Gly Gly Ser
Asp Lys Thr Tyr Ala Val Tyr Ala Asp Phe Gly 35
40 45 Asp Ile Gly Gly Leu Lys Val Asn Ala
Pro Val Lys Ser Ala Gly Val 50 55
60 Leu Val Gly Arg Val Gly Ala Ile Gly Leu Asp Pro Lys
Ser Tyr Gln 65 70 75
80 Ala Arg Val Arg Leu Asp Leu Asp Gly Lys Tyr Gln Phe Ser Ser Asp
85 90 95 Val Ser Ala Gln
Ile Leu Thr Ser Gly Leu Leu Gly Glu Gln Tyr Ile 100
105 110 Gly Leu Gln Gln Gly Gly Asp Thr Glu
Asn Leu Ala Ala Gly Asp Thr 115 120
125 Ile Ser Val Thr Ser Ser Ala Met Val Leu Glu Asn Leu Ile
Gly Lys 130 135 140
Phe Met Thr Ser Phe Ala Glu Lys Asn Ala Asp Gly Gly Asn Ala Glu 145
150 155 160 Lys Ala Ala Glu
7521PRTErwinia carotovora 75Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly
Leu Leu Leu Ala Ala 1 5 10
15 Gln Pro Ala Met Ala 20 76608PRTNeisseria
meningitidis 76Leu Gly Ile Ser Arg Lys Ile Ser Leu Ile Leu Ser Ile Leu
Ala Val 1 5 10 15
Cys Leu Pro Met His Ala His Ala Ser Asp Leu Ala Asn Asp Ser Phe
20 25 30 Ile Arg Gln Val Leu
Asp Arg Gln His Phe Glu Pro Asp Gly Lys Tyr 35
40 45 His Leu Phe Gly Ser Arg Gly Glu Leu
Ala Glu Arg Ser Gly His Ile 50 55
60 Gly Leu Gly Lys Ile Gln Ser His Gln Leu Gly Asn Leu
Met Ile Gln 65 70 75
80 Gln Ala Ala Ile Lys Gly Asn Ile Gly Tyr Ile Val Arg Phe Ser Asp
85 90 95 His Gly His Glu
Val His Ser Pro Phe Asp Asn His Ala Ser His Ser 100
105 110 Asp Ser Asp Glu Ala Gly Ser Pro Val
Asp Gly Phe Ser Leu Tyr Arg 115 120
125 Ile His Trp Asp Gly Tyr Glu His His Pro Ala Asp Gly Tyr
Asp Gly 130 135 140
Pro Gln Gly Gly Gly Tyr Pro Ala Pro Lys Gly Ala Arg Asp Ile Tyr 145
150 155 160 Ser Tyr Asp Ile Lys
Gly Val Ala Gln Asn Ile Arg Leu Asn Leu Thr 165
170 175 Asp Asn Arg Ser Thr Gly Gln Arg Leu Ala
Asp Arg Phe His Asn Ala 180 185
190 Gly Ser Met Leu Thr Gln Gly Val Gly Asp Gly Phe Lys Arg Ala
Thr 195 200 205 Arg
Tyr Ser Pro Glu Leu Asp Arg Ser Gly Asn Ala Ala Glu Ala Phe 210
215 220 Asn Gly Thr Ala Asp Ile
Val Lys Asn Ile Ile Gly Ala Ala Gly Glu 225 230
235 240 Ile Val Gly Ala Gly Asp Ala Val Gln Gly Ile
Ser Glu Gly Ser Asn 245 250
255 Ile Ala Val Met His Gly Leu Gly Leu Leu Ser Thr Glu Asn Lys Met
260 265 270 Ala Arg
Ile Asn Asp Leu Ala Asp Met Ala Gln Leu Lys Asp Tyr Ala 275
280 285 Ala Ala Ala Ile Arg Asp Trp
Ala Val Gln Asn Pro Asn Ala Ala Gln 290 295
300 Gly Ile Glu Ala Val Ser Asn Ile Phe Met Ala Ala
Ile Pro Ile Lys 305 310 315
320 Gly Ile Gly Ala Val Arg Gly Lys Tyr Gly Leu Gly Gly Ile Thr Ala
325 330 335 His Pro Ile
Lys Arg Ser Gln Met Gly Ala Ile Ala Leu Pro Lys Gly 340
345 350 Lys Ser Ala Val Ser Asp Asn Phe
Ala Asp Ala Ala Tyr Ala Lys Tyr 355 360
365 Pro Ser Pro Tyr His Ser Arg Asn Ile Arg Ser Asn Leu
Glu Gln Arg 370 375 380
Tyr Gly Lys Glu Asn Ile Thr Ser Ser Thr Val Pro Pro Ser Asn Gly 385
390 395 400 Lys Asn Val Lys
Leu Ala Asp Gln Arg His Pro Lys Thr Gly Val Pro 405
410 415 Phe Asp Gly Lys Gly Phe Pro Asn Phe
Glu Lys His Val Lys Tyr Asp 420 425
430 Thr Lys Leu Asp Ile Gln Glu Leu Ser Gly Gly Gly Ile Pro
Lys Ala 435 440 445
Lys Pro Val Ser Asp Ala Lys Pro Arg Trp Glu Val Asp Arg Lys Leu 450
455 460 Asn Lys Leu Thr Thr
Arg Glu Gln Val Glu Lys Asn Val Gln Glu Ile 465 470
475 480 Arg Asn Gly Asn Lys Asn Ser Asn Phe Ser
Gln His Ala Gln Leu Glu 485 490
495 Arg Glu Ile Asn Lys Leu Lys Ser Ala Asp Glu Ile Asn Phe Ala
Asp 500 505 510 Gly
Met Gly Lys Phe Thr Asp Ser Met Asn Asp Lys Ala Phe Ser Arg 515
520 525 Leu Val Lys Ser Val Lys
Glu Asn Gly Phe Thr Asn Pro Val Val Glu 530 535
540 Tyr Val Glu Ile Asn Gly Lys Ala Tyr Ile Val
Arg Gly Asn Asn Arg 545 550 555
560 Val Phe Ala Ala Glu Tyr Leu Gly Arg Ile His Glu Leu Lys Phe Lys
565 570 575 Lys Val
Asp Phe Pro Val Pro Asn Thr Ser Trp Lys Asn Pro Thr Asp 580
585 590 Val Leu Asn Glu Ser Gly Asn
Val Lys Arg Pro Arg Tyr Arg Ser Lys 595 600
605 77584PRTArtificial SequenceNeisseria
meningitidis 77Ser Asp Leu Ala Asn Asp Ser Phe Ile Arg Gln Val Leu Asp
Arg Gln 1 5 10 15
His Phe Glu Pro Asp Gly Lys Tyr His Leu Phe Gly Ser Arg Gly Glu
20 25 30 Leu Ala Glu Arg Ser
Gly His Ile Gly Leu Gly Lys Ile Gln Ser His 35
40 45 Gln Leu Gly Asn Leu Met Ile Gln Gln
Ala Ala Ile Lys Gly Asn Ile 50 55
60 Gly Tyr Ile Val Arg Phe Ser Asp His Gly His Glu Val
His Ser Pro 65 70 75
80 Phe Asp Asn His Ala Ser His Ser Asp Ser Asp Glu Ala Gly Ser Pro
85 90 95 Val Asp Gly Phe
Ser Leu Tyr Arg Ile His Trp Asp Gly Tyr Glu His 100
105 110 His Pro Ala Asp Gly Tyr Asp Gly Pro
Gln Gly Gly Gly Tyr Pro Ala 115 120
125 Pro Lys Gly Ala Arg Asp Ile Tyr Ser Tyr Asp Ile Lys Gly
Val Ala 130 135 140
Gln Asn Ile Arg Leu Asn Leu Thr Asp Asn Arg Ser Thr Gly Gln Arg 145
150 155 160 Leu Ala Asp Arg Phe
His Asn Ala Gly Ser Met Leu Thr Gln Gly Val 165
170 175 Gly Asp Gly Phe Lys Arg Ala Thr Arg Tyr
Ser Pro Glu Leu Asp Arg 180 185
190 Ser Gly Asn Ala Ala Glu Ala Phe Asn Gly Thr Ala Asp Ile Val
Lys 195 200 205 Asn
Ile Ile Gly Ala Ala Gly Glu Ile Val Gly Ala Gly Asp Ala Val 210
215 220 Gln Gly Ile Ser Glu Gly
Ser Asn Ile Ala Val Met His Gly Leu Gly 225 230
235 240 Leu Leu Ser Thr Glu Asn Lys Met Ala Arg Ile
Asn Asp Leu Ala Asp 245 250
255 Met Ala Gln Leu Lys Asp Tyr Ala Ala Ala Ala Ile Arg Asp Trp Ala
260 265 270 Val Gln
Asn Pro Asn Ala Ala Gln Gly Ile Glu Ala Val Ser Asn Ile 275
280 285 Phe Met Ala Ala Ile Pro Ile
Lys Gly Ile Gly Ala Val Arg Gly Lys 290 295
300 Tyr Gly Leu Gly Gly Ile Thr Ala His Pro Ile Lys
Arg Ser Gln Met 305 310 315
320 Gly Ala Ile Ala Leu Pro Lys Gly Lys Ser Ala Val Ser Asp Asn Phe
325 330 335 Ala Asp Ala
Ala Tyr Ala Lys Tyr Pro Ser Pro Tyr His Ser Arg Asn 340
345 350 Ile Arg Ser Asn Leu Glu Gln Arg
Tyr Gly Lys Glu Asn Ile Thr Ser 355 360
365 Ser Thr Val Pro Pro Ser Asn Gly Lys Asn Val Lys Leu
Ala Asp Gln 370 375 380
Arg His Pro Lys Thr Gly Val Pro Phe Asp Gly Lys Gly Phe Pro Asn 385
390 395 400 Phe Glu Lys His
Val Lys Tyr Asp Thr Lys Leu Asp Ile Gln Glu Leu 405
410 415 Ser Gly Gly Gly Ile Pro Lys Ala Lys
Pro Val Ser Asp Ala Lys Pro 420 425
430 Arg Trp Glu Val Asp Arg Lys Leu Asn Lys Leu Thr Thr Arg
Glu Gln 435 440 445
Val Glu Lys Asn Val Gln Glu Ile Arg Asn Gly Asn Lys Asn Ser Asn 450
455 460 Phe Ser Gln His Ala
Gln Leu Glu Arg Glu Ile Asn Lys Leu Lys Ser 465 470
475 480 Ala Asp Glu Ile Asn Phe Ala Asp Gly Met
Gly Lys Phe Thr Asp Ser 485 490
495 Met Asn Asp Lys Ala Phe Ser Arg Leu Val Lys Ser Val Lys Glu
Asn 500 505 510 Gly
Phe Thr Asn Pro Val Val Glu Tyr Val Glu Ile Asn Gly Lys Ala 515
520 525 Tyr Ile Val Arg Gly Asn
Asn Arg Val Phe Ala Ala Glu Tyr Leu Gly 530 535
540 Arg Ile His Glu Leu Lys Phe Lys Lys Val Asp
Phe Pro Val Pro Asn 545 550 555
560 Thr Ser Trp Lys Asn Pro Thr Asp Val Leu Asn Glu Ser Gly Asn Val
565 570 575 Lys Arg
Pro Arg Tyr Arg Ser Lys 580 78364PRTNeisseria
meningitidis 78Met Ser Met Lys His Phe Pro Ala Lys Val Leu Thr Thr Ala
Ile Leu 1 5 10 15
Ala Thr Phe Cys Ser Gly Ala Leu Ala Ala Thr Ser Asp Asp Asp Val
20 25 30 Lys Lys Ala Ala Thr
Val Ala Ile Val Ala Ala Tyr Asn Asn Gly Gln 35
40 45 Glu Ile Asn Gly Phe Lys Ala Gly Glu
Thr Ile Tyr Asp Ile Gly Glu 50 55
60 Asp Gly Thr Ile Thr Gln Lys Asp Ala Thr Ala Ala Asp
Val Glu Ala 65 70 75
80 Asp Asp Phe Lys Gly Leu Gly Leu Lys Lys Val Val Thr Asn Leu Thr
85 90 95 Lys Thr Val Asn
Glu Asn Lys Gln Asn Val Asp Ala Lys Val Lys Ala 100
105 110 Ala Glu Ser Glu Ile Glu Lys Leu Thr
Thr Lys Leu Ala Asp Thr Asp 115 120
125 Ala Ala Leu Ala Asp Thr Asp Ala Ala Leu Asp Glu Thr Thr
Asn Ala 130 135 140
Leu Asn Lys Leu Gly Glu Asn Ile Thr Thr Phe Ala Glu Glu Thr Lys 145
150 155 160 Thr Asn Ile Val Lys
Ile Asp Glu Lys Leu Glu Ala Val Ala Asp Thr 165
170 175 Val Asp Lys His Ala Glu Ala Phe Asn Asp
Ile Ala Asp Ser Leu Asp 180 185
190 Glu Thr Asn Thr Lys Ala Asp Glu Ala Val Lys Thr Ala Asn Glu
Ala 195 200 205 Lys
Gln Thr Ala Glu Glu Thr Lys Gln Asn Val Asp Ala Lys Val Lys 210
215 220 Ala Ala Glu Thr Ala Ala
Gly Lys Ala Glu Ala Ala Ala Gly Thr Ala 225 230
235 240 Asn Thr Ala Ala Asp Lys Ala Glu Ala Val Ala
Ala Lys Val Thr Asp 245 250
255 Ile Lys Ala Asp Ile Ala Thr Asn Lys Ala Asp Ile Ala Lys Asn Ser
260 265 270 Ala Arg
Ile Asp Ser Leu Asp Lys Asn Val Ala Asn Leu Arg Lys Glu 275
280 285 Thr Arg Gln Gly Leu Ala Glu
Gln Ala Ala Leu Ser Gly Leu Phe Gln 290 295
300 Pro Tyr Asn Val Gly Arg Phe Asn Val Thr Ala Ala
Val Gly Gly Tyr 305 310 315
320 Lys Ser Glu Ser Ala Val Ala Ile Gly Thr Gly Phe Arg Phe Thr Glu
325 330 335 Asn Phe Ala
Ala Lys Ala Gly Val Ala Val Gly Thr Ser Ser Gly Ser 340
345 350 Ser Ala Ala Tyr His Val Gly Val
Asn Tyr Glu Trp 355 360
79427PRTNeisseria meningitidis 79Met Phe Glu Arg Ser Val Ile Ala Met Ala
Cys Ile Phe Ala Leu Ser 1 5 10
15 Ala Cys Gly Gly Gly Gly Gly Gly Ser Pro Asp Val Lys Ser Ala
Asp 20 25 30 Thr
Leu Ser Lys Pro Ala Ala Pro Val Val Ala Glu Lys Glu Thr Glu 35
40 45 Val Lys Glu Asp Ala Pro
Gln Ala Gly Ser Gln Gly Gln Gly Ala Pro 50 55
60 Ser Thr Gln Gly Ser Gln Asp Met Ala Ala Val
Ser Ala Glu Asn Thr 65 70 75
80 Gly Asn Gly Gly Ala Ala Thr Thr Asp Lys Pro Lys Asn Glu Asp Glu
85 90 95 Gly Pro
Gln Asn Asp Met Pro Gln Asn Ser Ala Glu Ser Ala Asn Gln 100
105 110 Thr Gly Asn Asn Gln Pro Ala
Asp Ser Ser Asp Ser Ala Pro Ala Ser 115 120
125 Asn Pro Ala Pro Ala Asn Gly Gly Ser Asn Phe Gly
Arg Val Asp Leu 130 135 140
Ala Asn Gly Val Leu Ile Asp Gly Pro Ser Gln Asn Ile Thr Leu Thr 145
150 155 160 His Cys Lys
Gly Asp Ser Cys Asn Gly Asp Asn Leu Leu Asp Glu Glu 165
170 175 Ala Pro Ser Lys Ser Glu Phe Glu
Asn Leu Asn Glu Ser Glu Arg Ile 180 185
190 Glu Lys Tyr Lys Lys Asp Gly Lys Ser Asp Lys Phe Thr
Asn Leu Val 195 200 205
Ala Thr Ala Val Gln Ala Asn Gly Thr Asn Lys Tyr Val Ile Ile Tyr 210
215 220 Lys Asp Lys Ser
Ala Ser Ser Ser Ser Ala Arg Phe Arg Arg Ser Ala 225 230
235 240 Arg Ser Arg Arg Ser Leu Pro Ala Glu
Met Pro Leu Ile Pro Val Asn 245 250
255 Gln Ala Asp Thr Leu Ile Val Asp Gly Glu Ala Val Ser Leu
Thr Gly 260 265 270
His Ser Gly Asn Ile Phe Ala Pro Glu Gly Asn Tyr Arg Tyr Leu Thr
275 280 285 Tyr Gly Ala Glu
Lys Leu Pro Gly Gly Ser Tyr Ala Leu Arg Val Gln 290
295 300 Gly Glu Pro Ala Lys Gly Glu Met
Leu Ala Gly Thr Ala Val Tyr Asn 305 310
315 320 Gly Glu Val Leu His Phe His Thr Glu Asn Gly Arg
Pro Tyr Pro Thr 325 330
335 Arg Gly Arg Phe Ala Ala Lys Val Asp Phe Gly Ser Lys Ser Val Asp
340 345 350 Gly Ile Ile
Asp Ser Gly Asp Asp Leu His Met Gly Thr Gln Lys Phe 355
360 365 Lys Ala Ala Ile Asp Gly Asn Gly
Phe Lys Gly Thr Trp Thr Glu Asn 370 375
380 Gly Gly Gly Asp Val Ser Gly Arg Phe Tyr Gly Pro Ala
Gly Glu Glu 385 390 395
400 Val Ala Gly Lys Tyr Ser Tyr Arg Pro Thr Asp Ala Glu Lys Gly Gly
405 410 415 Phe Gly Val Phe
Ala Gly Lys Lys Glu Gln Asp 420 425
80410PRTArtificial SequenceNeisseria meningitidis 80Cys Gly Gly Gly Gly
Gly Gly Ser Pro Asp Val Lys Ser Ala Asp Thr 1 5
10 15 Leu Ser Lys Pro Ala Ala Pro Val Val Ala
Glu Lys Glu Thr Glu Val 20 25
30 Lys Glu Asp Ala Pro Gln Ala Gly Ser Gln Gly Gln Gly Ala Pro
Ser 35 40 45 Thr
Gln Gly Ser Gln Asp Met Ala Ala Val Ser Ala Glu Asn Thr Gly 50
55 60 Asn Gly Gly Ala Ala Thr
Thr Asp Lys Pro Lys Asn Glu Asp Glu Gly 65 70
75 80 Pro Gln Asn Asp Met Pro Gln Asn Ser Ala Glu
Ser Ala Asn Gln Thr 85 90
95 Gly Asn Asn Gln Pro Ala Asp Ser Ser Asp Ser Ala Pro Ala Ser Asn
100 105 110 Pro Ala
Pro Ala Asn Gly Gly Ser Asn Phe Gly Arg Val Asp Leu Ala 115
120 125 Asn Gly Val Leu Ile Asp Gly
Pro Ser Gln Asn Ile Thr Leu Thr His 130 135
140 Cys Lys Gly Asp Ser Cys Asn Gly Asp Asn Leu Leu
Asp Glu Glu Ala 145 150 155
160 Pro Ser Lys Ser Glu Phe Glu Asn Leu Asn Glu Ser Glu Arg Ile Glu
165 170 175 Lys Tyr Lys
Lys Asp Gly Lys Ser Asp Lys Phe Thr Asn Leu Val Ala 180
185 190 Thr Ala Val Gln Ala Asn Gly Thr
Asn Lys Tyr Val Ile Ile Tyr Lys 195 200
205 Asp Lys Ser Ala Ser Ser Ser Ser Ala Arg Phe Arg Arg
Ser Ala Arg 210 215 220
Ser Arg Arg Ser Leu Pro Ala Glu Met Pro Leu Ile Pro Val Asn Gln 225
230 235 240 Ala Asp Thr Leu
Ile Val Asp Gly Glu Ala Val Ser Leu Thr Gly His 245
250 255 Ser Gly Asn Ile Phe Ala Pro Glu Gly
Asn Tyr Arg Tyr Leu Thr Tyr 260 265
270 Gly Ala Glu Lys Leu Pro Gly Gly Ser Tyr Ala Leu Arg Val
Gln Gly 275 280 285
Glu Pro Ala Lys Gly Glu Met Leu Ala Gly Thr Ala Val Tyr Asn Gly 290
295 300 Glu Val Leu His Phe
His Thr Glu Asn Gly Arg Pro Tyr Pro Thr Arg 305 310
315 320 Gly Arg Phe Ala Ala Lys Val Asp Phe Gly
Ser Lys Ser Val Asp Gly 325 330
335 Ile Ile Asp Ser Gly Asp Asp Leu His Met Gly Thr Gln Lys Phe
Lys 340 345 350 Ala
Ala Ile Asp Gly Asn Gly Phe Lys Gly Thr Trp Thr Glu Asn Gly 355
360 365 Gly Gly Asp Val Ser Gly
Arg Phe Tyr Gly Pro Ala Gly Glu Glu Val 370 375
380 Ala Gly Lys Tyr Ser Tyr Arg Pro Thr Asp Ala
Glu Lys Gly Gly Phe 385 390 395
400 Gly Val Phe Ala Gly Lys Lys Glu Gln Asp 405
410 819PRTArtificial SequenceNeisseria meningitidis 81His Arg
Val Trp Val Glu Thr Ala His 1 5
8216PRTArtificial SequenceNeisseria meningitidis 82Ala Thr Tyr Lys Val
Asp Glu Tyr His Ala Asn Ala Arg Phe Ala Phe 1 5
10 15 839PRTArtificial SequenceNeisseria
meningitidis 83Met Glu Phe Phe Ile Ile Leu Leu Ala 1 5
84488PRTArtificial SequenceNeisseria meningitidis 84Met Phe
Lys Arg Ser Val Ile Ala Met Ala Cys Ile Phe Ala Leu Ser 1 5
10 15 Ala Cys Gly Gly Gly Gly Gly
Gly Ser Pro Asp Val Lys Ser Ala Asp 20 25
30 Thr Leu Ser Lys Pro Ala Ala Pro Val Val Ser Glu
Lys Glu Thr Glu 35 40 45
Ala Lys Glu Asp Ala Pro Gln Ala Gly Ser Gln Gly Gln Gly Ala Pro
50 55 60 Ser Ala Gln
Gly Ser Gln Asp Met Ala Ala Val Ser Glu Glu Asn Thr 65
70 75 80 Gly Asn Gly Gly Ala Val Thr
Ala Asp Asn Pro Lys Asn Glu Asp Glu 85
90 95 Val Ala Gln Asn Asp Met Pro Gln Asn Ala Ala
Gly Thr Asp Ser Ser 100 105
110 Thr Pro Asn His Thr Pro Asp Pro Asn Met Leu Ala Gly Asn Met
Glu 115 120 125 Asn
Gln Ala Thr Asp Ala Gly Glu Ser Ser Gln Pro Ala Asn Gln Pro 130
135 140 Asp Met Ala Asn Ala Ala
Asp Gly Met Gln Gly Asp Asp Pro Ser Ala 145 150
155 160 Gly Gly Gln Asn Ala Gly Asn Thr Ala Ala Gln
Gly Ala Asn Gln Ala 165 170
175 Gly Asn Asn Gln Ala Ala Gly Ser Ser Asp Pro Ile Pro Ala Ser Asn
180 185 190 Pro Ala
Pro Ala Asn Gly Gly Ser Asn Phe Gly Arg Val Asp Leu Ala 195
200 205 Asn Gly Val Leu Ile Asp Gly
Pro Ser Gln Asn Ile Thr Leu Thr His 210 215
220 Cys Lys Gly Asp Ser Cys Ser Gly Asn Asn Phe Leu
Asp Glu Glu Val 225 230 235
240 Gln Leu Lys Ser Glu Phe Glu Lys Leu Ser Asp Ala Asp Lys Ile Ser
245 250 255 Asn Tyr Lys
Lys Asp Gly Lys Asn Asp Lys Phe Val Gly Leu Val Ala 260
265 270 Asp Ser Val Gln Met Lys Gly Ile
Asn Gln Tyr Ile Ile Phe Tyr Lys 275 280
285 Pro Lys Pro Thr Ser Phe Ala Arg Phe Arg Arg Ser Ala
Arg Ser Arg 290 295 300
Arg Ser Leu Pro Ala Glu Met Pro Leu Ile Pro Val Asn Gln Ala Asp 305
310 315 320 Thr Leu Ile Val
Asp Gly Glu Ala Val Ser Leu Thr Gly His Ser Gly 325
330 335 Asn Ile Phe Ala Pro Glu Gly Asn Tyr
Arg Tyr Leu Thr Tyr Gly Ala 340 345
350 Glu Lys Leu Pro Gly Gly Ser Tyr Ala Leu Arg Val Gln Gly
Glu Pro 355 360 365
Ala Lys Gly Glu Met Leu Ala Gly Ala Ala Val Tyr Asn Gly Glu Val 370
375 380 Leu His Phe His Thr
Glu Asn Gly Arg Pro Tyr Pro Thr Arg Gly Arg 385 390
395 400 Phe Ala Ala Lys Val Asp Phe Gly Ser Lys
Ser Val Asp Gly Ile Ile 405 410
415 Asp Ser Gly Asp Asp Leu His Met Gly Thr Gln Lys Phe Lys Ala
Ala 420 425 430 Ile
Asp Gly Asn Gly Phe Lys Gly Thr Trp Thr Glu Asn Gly Ser Gly 435
440 445 Asp Val Ser Gly Lys Phe
Tyr Gly Pro Ala Gly Glu Glu Val Ala Gly 450 455
460 Lys Tyr Ser Tyr Arg Pro Thr Asp Ala Glu Lys
Gly Gly Phe Gly Val 465 470 475
480 Phe Ala Gly Lys Lys Glu Gln Asp 485
85712PRTArtificial SequenceNeisseria meningitidis 85Met Asn Asn Pro Leu
Val Asn Gln Ala Ala Met Val Leu Pro Val Phe 1 5
10 15 Leu Leu Ser Ala Cys Leu Gly Gly Gly Gly
Ser Phe Asp Leu Asp Ser 20 25
30 Val Asp Thr Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val
Phe 35 40 45 Ser
Glu Lys Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala 50
55 60 Met Arg Leu Lys Arg Arg
Asn Trp Tyr Pro Gln Ala Lys Glu Asp Glu 65 70
75 80 Val Lys Leu Asp Glu Ser Asp Trp Glu Ala Thr
Gly Leu Pro Asp Glu 85 90
95 Pro Lys Glu Leu Pro Lys Arg Gln Lys Ser Val Ile Glu Lys Val Glu
100 105 110 Thr Asp
Ser Asp Asn Asn Ile Tyr Ser Ser Pro Tyr Leu Lys Pro Ser 115
120 125 Asn His Gln Asn Gly Asn Thr
Gly Asn Gly Ile Asn Gln Pro Lys Asn 130 135
140 Gln Ala Lys Asp Tyr Glu Asn Phe Lys Tyr Val Tyr
Ser Gly Trp Phe 145 150 155
160 Tyr Lys His Ala Lys Arg Glu Phe Asn Leu Lys Val Glu Pro Lys Ser
165 170 175 Ala Lys Asn
Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Lys Glu Pro 180
185 190 Ser Arg Gln Leu Pro Ala Ser Gly
Lys Ile Thr Tyr Lys Gly Val Trp 195 200
205 His Phe Ala Thr Asp Thr Lys Lys Gly Gln Lys Phe Arg
Glu Ile Ile 210 215 220
Gln Pro Ser Lys Ser Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp 225
230 235 240 Asp Gly Glu Glu
Tyr Ser Asn Lys Asn Lys Ser Thr Leu Thr Asp Gly 245
250 255 Gln Glu Gly Tyr Gly Phe Thr Ser Asn
Leu Glu Val Asp Phe His Asn 260 265
270 Lys Lys Leu Thr Gly Lys Leu Ile Arg Asn Asn Ala Asn Thr
Asp Asn 275 280 285
Asn Gln Ala Thr Thr Thr Gln Tyr Tyr Ser Leu Glu Ala Gln Val Thr 290
295 300 Gly Asn Arg Phe Asn
Gly Lys Ala Thr Ala Thr Asp Lys Pro Gln Gln 305 310
315 320 Asn Ser Glu Thr Lys Glu His Pro Phe Val
Ser Asp Ser Ser Ser Leu 325 330
335 Ser Gly Gly Phe Phe Gly Pro Gln Gly Glu Glu Leu Gly Phe Arg
Phe 340 345 350 Leu
Ser Asp Asp Gln Lys Val Ala Val Val Gly Ser Ala Lys Thr Lys 355
360 365 Asp Lys Pro Ala Asn Gly
Asn Thr Ala Ala Ala Ser Gly Gly Thr Asp 370 375
380 Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser
Ser Glu Asn Gly Lys 385 390 395
400 Leu Thr Thr Val Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys Glu
405 410 415 Val Gln
Lys Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp 420
425 430 Gly Ile Met Ile Pro Leu Leu
Pro Glu Ala Ser Glu Ser Gly Asn Asn 435 440
445 Gln Ala Asn Gln Gly Thr Asn Gly Gly Thr Ala Phe
Thr Arg Lys Phe 450 455 460
Asp His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln 465
470 475 480 Thr Asn Gly
Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly 485
490 495 Lys Thr Lys Thr Tyr Glu Val Glu
Val Cys Cys Ser Asn Leu Asn Tyr 500 505
510 Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser
Ala Met Gln 515 520 525
Ala Gly Glu Ser Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu 530
535 540 Gln Ser Met Phe
Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro 545 550
555 560 Ser Glu Gln Asn Ile Val Tyr Arg Gly
Ser Trp Tyr Gly Tyr Ile Ala 565 570
575 Asn Asp Lys Ser Thr Ser Trp Ser Gly Asn Ala Ser Asn Ala
Thr Ser 580 585 590
Gly Asn Arg Ala Glu Phe Thr Val Asn Phe Ala Asp Lys Lys Ile Thr
595 600 605 Gly Thr Leu Thr
Ala Asp Asn Arg Gln Glu Ala Thr Phe Thr Ile Asp 610
615 620 Gly Asn Ile Lys Asp Asn Gly Phe
Glu Gly Thr Ala Lys Thr Ala Glu 625 630
635 640 Ser Gly Phe Asp Leu Asp Gln Ser Asn Thr Thr Arg
Thr Pro Lys Ala 645 650
655 Tyr Ile Thr Asp Ala Lys Val Gln Gly Gly Phe Tyr Gly Pro Lys Ala
660 665 670 Glu Glu Leu
Gly Gly Trp Phe Ala Tyr Pro Gly Asp Lys Gln Thr Lys 675
680 685 Asn Ala Thr Asn Ala Ser Gly Asn
Ser Ser Ala Thr Val Val Phe Gly 690 695
700 Ala Lys Arg Gln Gln Pro Val Arg 705
710 86274PRTArtificial SequenceNeisseria meningitidis 86Val Asn
Arg Thr Ala Phe Cys Cys Leu Ser Leu Thr Thr Ala Leu Ile 1 5
10 15 Leu Thr Ala Cys Ser Ser Gly
Gly Gly Gly Val Ala Ala Asp Ile Gly 20 25
30 Ala Gly Leu Ala Asp Ala Leu Thr Ala Pro Leu Asp
His Lys Asp Lys 35 40 45
Gly Leu Gln Ser Leu Thr Leu Asp Gln Ser Val Arg Lys Asn Glu Lys
50 55 60 Leu Lys Leu
Ala Ala Gln Gly Ala Glu Lys Thr Tyr Gly Asn Gly Asp 65
70 75 80 Ser Leu Asn Thr Gly Lys Leu
Lys Asn Asp Lys Val Ser Arg Phe Asp 85
90 95 Phe Ile Arg Gln Ile Glu Val Asp Gly Gln Leu
Ile Thr Leu Glu Ser 100 105
110 Gly Glu Phe Gln Val Tyr Lys Gln Ser His Ser Ala Leu Thr Ala
Phe 115 120 125 Gln
Thr Glu Gln Ile Gln Asp Ser Glu His Ser Gly Lys Met Val Ala 130
135 140 Lys Arg Gln Phe Arg Ile
Gly Asp Ile Ala Gly Glu His Thr Ser Phe 145 150
155 160 Asp Lys Leu Pro Glu Gly Gly Arg Ala Thr Tyr
Arg Gly Thr Ala Phe 165 170
175 Gly Ser Asp Asp Ala Gly Gly Lys Leu Thr Tyr Thr Ile Asp Phe Ala
180 185 190 Ala Lys
Gln Gly Asn Gly Lys Ile Glu His Leu Lys Ser Pro Glu Leu 195
200 205 Asn Val Asp Leu Ala Ala Ala
Asp Ile Lys Pro Asp Gly Lys Arg His 210 215
220 Ala Val Ile Ser Gly Ser Val Leu Tyr Asn Gln Ala
Glu Lys Gly Ser 225 230 235
240 Tyr Ser Leu Gly Ile Phe Gly Gly Lys Ala Gln Glu Val Ala Gly Ser
245 250 255 Ala Glu Val
Lys Thr Val Asn Gly Ile Arg His Ile Gly Leu Ala Ala 260
265 270 Lys Gln 871082PRTArtificial
SequenceNeisseria meningitidis 87Met Arg Thr Thr Pro Thr Phe Pro Thr Lys
Thr Phe Lys Pro Thr Ala 1 5 10
15 Met Ala Leu Ala Val Ala Thr Thr Leu Ser Ala Cys Leu Gly Gly
Gly 20 25 30 Gly
Gly Gly Thr Ser Ala Pro Asp Phe Asn Ala Gly Gly Thr Gly Ile 35
40 45 Gly Ser Asn Ser Arg Ala
Thr Thr Ala Lys Ser Ala Ala Val Ser Tyr 50 55
60 Ala Gly Ile Lys Asn Glu Met Cys Lys Asp Arg
Ser Met Leu Cys Ala 65 70 75
80 Gly Arg Asp Asp Val Ala Val Thr Asp Arg Asp Ala Lys Ile Asn Ala
85 90 95 Pro Pro
Pro Asn Leu His Thr Gly Asp Phe Pro Asn Pro Asn Asp Ala 100
105 110 Tyr Lys Asn Leu Ile Asn Leu
Lys Pro Ala Ile Glu Ala Gly Tyr Thr 115 120
125 Gly Arg Gly Val Glu Val Gly Ile Val Asp Thr Gly
Glu Ser Val Gly 130 135 140
Ser Ile Ser Phe Pro Glu Leu Tyr Gly Arg Lys Glu His Gly Tyr Asn 145
150 155 160 Glu Asn Tyr
Lys Asn Tyr Thr Ala Tyr Met Arg Lys Glu Ala Pro Glu 165
170 175 Asp Gly Gly Gly Lys Asp Ile Glu
Ala Ser Phe Asp Asp Glu Ala Val 180 185
190 Ile Glu Thr Glu Ala Lys Pro Thr Asp Ile Arg His Val
Lys Glu Ile 195 200 205
Gly His Ile Asp Leu Val Ser His Ile Ile Gly Gly Arg Ser Val Asp 210
215 220 Gly Arg Pro Ala
Gly Gly Ile Ala Pro Asp Ala Thr Leu His Ile Met 225 230
235 240 Asn Thr Asn Asp Glu Thr Lys Asn Glu
Met Met Val Ala Ala Ile Arg 245 250
255 Asn Ala Trp Val Lys Leu Gly Glu Arg Gly Val Arg Ile Val
Asn Asn 260 265 270
Ser Phe Gly Thr Thr Ser Arg Ala Gly Thr Ala Asp Leu Phe Gln Ile
275 280 285 Ala Asn Ser Glu
Glu Gln Tyr Arg Gln Ala Leu Leu Asp Tyr Ser Gly 290
295 300 Gly Asp Lys Thr Asp Glu Gly Ile
Arg Leu Met Gln Gln Ser Asp Tyr 305 310
315 320 Gly Asn Leu Ser Tyr His Ile Arg Asn Lys Asn Met
Leu Phe Ile Phe 325 330
335 Ser Thr Gly Asn Asp Ala Gln Ala Gln Pro Asn Thr Tyr Ala Leu Leu
340 345 350 Pro Phe Tyr
Glu Lys Asp Ala Gln Lys Gly Ile Ile Thr Val Ala Gly 355
360 365 Val Asp Arg Ser Gly Glu Lys Phe
Lys Arg Glu Met Tyr Gly Glu Pro 370 375
380 Gly Thr Glu Pro Leu Glu Tyr Gly Ser Asn His Cys Gly
Ile Thr Ala 385 390 395
400 Met Trp Cys Leu Ser Ala Pro Tyr Glu Ala Ser Val Arg Phe Thr Arg
405 410 415 Thr Asn Pro Ile
Gln Ile Ala Gly Thr Ser Phe Ser Ala Pro Ile Val 420
425 430 Thr Gly Thr Ala Ala Leu Leu Leu Gln
Lys Tyr Pro Trp Met Ser Asn 435 440
445 Asp Asn Leu Arg Thr Thr Leu Leu Thr Thr Ala Gln Asp Ile
Gly Ala 450 455 460
Val Gly Val Asp Ser Lys Phe Gly Trp Gly Leu Leu Asp Ala Gly Lys 465
470 475 480 Ala Met Asn Gly Pro
Ala Ser Phe Pro Phe Gly Asp Phe Thr Ala Asp 485
490 495 Thr Lys Gly Thr Ser Asp Ile Ala Tyr Ser
Phe Arg Asn Asp Ile Ser 500 505
510 Gly Thr Gly Gly Leu Ile Lys Lys Gly Gly Ser Gln Leu Gln Leu
His 515 520 525 Gly
Asn Asn Thr Tyr Thr Gly Lys Thr Ile Ile Glu Gly Gly Ser Leu 530
535 540 Val Leu Tyr Gly Asn Asn
Lys Ser Asp Met Arg Val Glu Thr Lys Gly 545 550
555 560 Ala Leu Ile Tyr Asn Gly Ala Ala Ser Gly Gly
Ser Leu Asn Ser Asp 565 570
575 Gly Ile Val Tyr Leu Ala Asp Thr Asp Gln Ser Gly Ala Asn Glu Thr
580 585 590 Val His
Ile Lys Gly Ser Leu Gln Leu Asp Gly Lys Gly Thr Leu Tyr 595
600 605 Thr Arg Leu Gly Lys Leu Leu
Lys Val Asp Gly Thr Ala Ile Ile Gly 610 615
620 Gly Lys Leu Tyr Met Ser Ala Arg Gly Lys Gly Ala
Gly Tyr Leu Asn 625 630 635
640 Ser Thr Gly Arg Arg Val Pro Phe Leu Ser Ala Ala Lys Ile Gly Gln
645 650 655 Asp Tyr Ser
Phe Phe Thr Asn Ile Glu Thr Asp Gly Gly Leu Leu Ala 660
665 670 Ser Leu Asp Ser Val Glu Lys Thr
Ala Gly Ser Glu Gly Asp Thr Leu 675 680
685 Ser Tyr Tyr Val Arg Arg Gly Asn Ala Ala Arg Thr Ala
Ser Ala Ala 690 695 700
Ala His Ser Ala Pro Ala Gly Leu Lys His Ala Val Glu Gln Gly Gly 705
710 715 720 Ser Asn Leu Glu
Asn Leu Met Val Glu Leu Asp Ala Ser Glu Ser Ser 725
730 735 Ala Thr Pro Glu Thr Val Glu Thr Ala
Ala Ala Asp Arg Thr Asp Met 740 745
750 Pro Gly Ile Arg Pro Tyr Gly Ala Thr Phe Arg Ala Ala Ala
Ala Val 755 760 765
Gln His Ala Asn Ala Ala Asp Gly Val Arg Ile Phe Asn Ser Leu Ala 770
775 780 Ala Thr Val Tyr Ala
Asp Ser Thr Ala Ala His Ala Asp Met Gln Gly 785 790
795 800 Arg Arg Leu Lys Ala Val Ser Asp Gly Leu
Asp His Asn Gly Thr Gly 805 810
815 Leu Arg Val Ile Ala Gln Thr Gln Gln Asp Gly Gly Thr Trp Glu
Gln 820 825 830 Gly
Gly Val Glu Gly Lys Met Arg Gly Ser Thr Gln Thr Val Gly Ile 835
840 845 Ala Ala Lys Thr Gly Glu
Asn Thr Thr Ala Ala Ala Thr Leu Gly Met 850 855
860 Gly Arg Ser Thr Trp Ser Glu Asn Ser Ala Asn
Ala Lys Thr Asp Ser 865 870 875
880 Ile Ser Leu Phe Ala Gly Ile Arg His Asp Ala Gly Asp Ile Gly Tyr
885 890 895 Leu Lys
Gly Leu Phe Ser Tyr Gly Arg Tyr Lys Asn Ser Ile Ser Arg 900
905 910 Ser Thr Gly Ala Asp Glu His
Ala Glu Gly Ser Val Asn Gly Thr Leu 915 920
925 Met Gln Leu Gly Ala Leu Gly Gly Val Asn Val Pro
Phe Ala Ala Thr 930 935 940
Gly Asp Leu Thr Val Glu Gly Gly Leu Arg Tyr Asp Leu Leu Lys Gln 945
950 955 960 Asp Ala Phe
Ala Glu Lys Gly Ser Ala Leu Gly Trp Ser Gly Asn Ser 965
970 975 Leu Thr Glu Gly Thr Leu Val Gly
Leu Ala Gly Leu Lys Leu Ser Gln 980 985
990 Pro Leu Ser Asp Lys Ala Val Leu Phe Ala Thr Ala Gly
Val Glu Arg 995 1000 1005
Asp Leu Asn Gly Arg Asp Tyr Thr Val Thr Gly Gly Phe Thr Gly Ala
1010 1015 1020 Thr Ala Ala
Thr Gly Lys Thr Gly Ala Arg Asn Met Pro His Thr Arg 1025
1030 1035 1040Leu Val Ala Gly Leu Gly Ala
Asp Val Glu Phe Gly Asn Gly Trp Asn 1045
1050 1055 Gly Leu Ala Arg Tyr Ser Tyr Ala Gly Ser Lys
Gln Tyr Gly Asn His 1060 1065
1070 Ser Gly Arg Val Gly Val Gly Tyr Arg Phe 1075
1080 882505DNAArtificial SequenceSynthetic construct
88atggctagcc ccgatgttaa atcggcggac acgctgtcaa aaccggccgc tcctgttgtt
60gctgaaaaag agacagaggt aaaagaagat gcgccacagg caggttctca aggacagggc
120gcgccatcca cacaaggcag ccaagatatg gcggcagttt cggcagaaaa tacaggcaat
180ggcggtgcgg caacaacgga caaacccaaa aatgaagacg agggaccgca aaatgatatg
240ccgcaaaatt ccgccgaatc cgcaaatcaa acagggaaca accaacccgc cgattcttca
300gattccgccc ccgcgtcaaa ccctgcacct gcgaatggcg gtagcaattt tggaagggtt
360gatttggcta atggcgtttt gattgatggg ccgtcgcaaa atataacgtt gacccactgt
420aaaggcgatt cttgtaatgg tgataattta ttggatgaag aagcaccgtc aaaatcagaa
480tttgaaaatt taaatgagtc tgaacgaatt gagaaatata agaaagatgg gaaaagcgat
540aaatttacta atttggttgc gacagcagtt caagctaatg gaactaacaa atatgtcatc
600atttataaag acaagtccgc ttcatcttca tctgcgcgat tcaggcgttc tgcacggtcg
660aggaggtcgc ttcctgccga gatgccgcta atccccgtca atcaggcgga tacgctgatt
720gtcgatgggg aagcggtcag cctgacgggg cattccggca atatcttcgc gcccgaaggg
780aattaccggt atctgactta cggggcggaa aaattgcccg gcggatcgta tgccctccgt
840gtgcaaggcg aaccggcaaa aggcgaaatg cttgctggca cggccgtgta caacggcgaa
900gtgctgcatt ttcatacgga aaacggccgt ccgtacccga ctagaggcag gtttgccgca
960aaagtcgatt tcggcagcaa atctgtggac ggcattatcg acagcggcga tgatttgcat
1020atgggtacgc aaaaattcaa agccgccatc gatggaaacg gctttaaggg gacttggacg
1080gaaaatggcg gcggggatgt ttccggaagg ttttacggcc cggccggcga ggaagtggcg
1140ggaaaataca gctatcgccc gacagatgcg gaaaagggcg gattcggcgt gtttgccggc
1200aaaaaagagc aggatggatc cggaggagga ggatgccaaa gcaagagcat ccaaaccttt
1260ccgcaacccg acacatccgt catcaacggc ccggaccggc cggtcggcat ccccgacccc
1320gccggaacga cggtcggcgg cggcggggcc gtctataccg ttgtaccgca cctgtccctg
1380ccccactggg cggcgcagga tttcgccaaa agcctgcaat ccttccgcct cggctgcgcc
1440aatttgaaaa accgccaagg ctggcaggat gtgtgcgccc aagcctttca aacccccgtc
1500cattcctttc aggcaaaaca gttttttgaa cgctatttca cgccgtggca ggttgcaggc
1560aacggaagcc ttgccggtac ggttaccggc tattacgagc cggtgctgaa gggcgacgac
1620aggcggacgg cacaagcccg cttcccgatt tacggtattc ccgacgattt tatctccgtc
1680cccctgcctg ccggtttgcg gagcggaaaa gcccttgtcc gcatcaggca gacgggaaaa
1740aacagcggca caatcgacaa taccggcggc acacataccg ccgacctctc ccgattcccc
1800atcaccgcgc gcacaacggc aatcaaaggc aggtttgaag gaagccgctt cctcccctac
1860cacacgcgca accaaatcaa cggcggcgcg cttgacggca aagccccgat actcggttac
1920gccgaagacc ccgtcgaact tttttttatg cacatccaag gctcgggccg tctgaaaacc
1980ccgtccggca aatacatccg catcggctat gccgacaaaa acgaacatcc ctacgtttcc
2040atcggacgct atatggcgga caaaggctac ctcaagctcg ggcagacctc gatgcagggc
2100atcaaagcct atatgcggca aaatccgcaa cgcctcgccg aagttttggg tcaaaacccc
2160agctatatct ttttccgcga gcttgccgga agcagcaatg acggtcccgt cggcgcactg
2220ggcacgccgt tgatggggga atatgccggc gcagtcgacc ggcactacat taccttgggc
2280gcgcccttat ttgtcgccac cgcccatccg gttacccgca aagccctcaa ccgcctgatt
2340atggcgcagg ataccggcag cgcgattaaa ggcgcggtgc gcgtggatta tttttgggga
2400tacggcgacg aagccggcga acttgccggc aaacagaaaa ccacgggtta cgtctggcag
2460ctcctaccca acggtatgaa gcccgaatac cgcccgtaac tcgag
250589832PRTArtificial SequenceSynthetic construct 89Met Ala Ser Pro Asp
Val Lys Ser Ala Asp Thr Leu Ser Lys Pro Ala 1 5
10 15 Ala Pro Val Val Ala Glu Lys Glu Thr Glu
Val Lys Glu Asp Ala Pro 20 25
30 Gln Ala Gly Ser Gln Gly Gln Gly Ala Pro Ser Thr Gln Gly Ser
Gln 35 40 45 Asp
Met Ala Ala Val Ser Ala Glu Asn Thr Gly Asn Gly Gly Ala Ala 50
55 60 Thr Thr Asp Lys Pro Lys
Asn Glu Asp Glu Gly Pro Gln Asn Asp Met 65 70
75 80 Pro Gln Asn Ser Ala Glu Ser Ala Asn Gln Thr
Gly Asn Asn Gln Pro 85 90
95 Ala Asp Ser Ser Asp Ser Ala Pro Ala Ser Asn Pro Ala Pro Ala Asn
100 105 110 Gly Gly
Ser Asn Phe Gly Arg Val Asp Leu Ala Asn Gly Val Leu Ile 115
120 125 Asp Gly Pro Ser Gln Asn Ile
Thr Leu Thr His Cys Lys Gly Asp Ser 130 135
140 Cys Asn Gly Asp Asn Leu Leu Asp Glu Glu Ala Pro
Ser Lys Ser Glu 145 150 155
160 Phe Glu Asn Leu Asn Glu Ser Glu Arg Ile Glu Lys Tyr Lys Lys Asp
165 170 175 Gly Lys Ser
Asp Lys Phe Thr Asn Leu Val Ala Thr Ala Val Gln Ala 180
185 190 Asn Gly Thr Asn Lys Tyr Val Ile
Ile Tyr Lys Asp Lys Ser Ala Ser 195 200
205 Ser Ser Ser Ala Arg Phe Arg Arg Ser Ala Arg Ser Arg
Arg Ser Leu 210 215 220
Pro Ala Glu Met Pro Leu Ile Pro Val Asn Gln Ala Asp Thr Leu Ile 225
230 235 240 Val Asp Gly Glu
Ala Val Ser Leu Thr Gly His Ser Gly Asn Ile Phe 245
250 255 Ala Pro Glu Gly Asn Tyr Arg Tyr Leu
Thr Tyr Gly Ala Glu Lys Leu 260 265
270 Pro Gly Gly Ser Tyr Ala Leu Arg Val Gln Gly Glu Pro Ala
Lys Gly 275 280 285
Glu Met Leu Ala Gly Thr Ala Val Tyr Asn Gly Glu Val Leu His Phe 290
295 300 His Thr Glu Asn Gly
Arg Pro Tyr Pro Thr Arg Gly Arg Phe Ala Ala 305 310
315 320 Lys Val Asp Phe Gly Ser Lys Ser Val Asp
Gly Ile Ile Asp Ser Gly 325 330
335 Asp Asp Leu His Met Gly Thr Gln Lys Phe Lys Ala Ala Ile Asp
Gly 340 345 350 Asn
Gly Phe Lys Gly Thr Trp Thr Glu Asn Gly Gly Gly Asp Val Ser 355
360 365 Gly Arg Phe Tyr Gly Pro
Ala Gly Glu Glu Val Ala Gly Lys Tyr Ser 370 375
380 Tyr Arg Pro Thr Asp Ala Glu Lys Gly Gly Phe
Gly Val Phe Ala Gly 385 390 395
400 Lys Lys Glu Gln Asp Gly Ser Gly Gly Gly Gly Cys Gln Ser Lys Ser
405 410 415 Ile Gln
Thr Phe Pro Gln Pro Asp Thr Ser Val Ile Asn Gly Pro Asp 420
425 430 Arg Pro Val Gly Ile Pro Asp
Pro Ala Gly Thr Thr Val Gly Gly Gly 435 440
445 Gly Ala Val Tyr Thr Val Val Pro His Leu Ser Leu
Pro His Trp Ala 450 455 460
Ala Gln Asp Phe Ala Lys Ser Leu Gln Ser Phe Arg Leu Gly Cys Ala 465
470 475 480 Asn Leu Lys
Asn Arg Gln Gly Trp Gln Asp Val Cys Ala Gln Ala Phe 485
490 495 Gln Thr Pro Val His Ser Phe Gln
Ala Lys Gln Phe Phe Glu Arg Tyr 500 505
510 Phe Thr Pro Trp Gln Val Ala Gly Asn Gly Ser Leu Ala
Gly Thr Val 515 520 525
Thr Gly Tyr Tyr Glu Pro Val Leu Lys Gly Asp Asp Arg Arg Thr Ala 530
535 540 Gln Ala Arg Phe
Pro Ile Tyr Gly Ile Pro Asp Asp Phe Ile Ser Val 545 550
555 560 Pro Leu Pro Ala Gly Leu Arg Ser Gly
Lys Ala Leu Val Arg Ile Arg 565 570
575 Gln Thr Gly Lys Asn Ser Gly Thr Ile Asp Asn Thr Gly Gly
Thr His 580 585 590
Thr Ala Asp Leu Ser Arg Phe Pro Ile Thr Ala Arg Thr Thr Ala Ile
595 600 605 Lys Gly Arg Phe
Glu Gly Ser Arg Phe Leu Pro Tyr His Thr Arg Asn 610
615 620 Gln Ile Asn Gly Gly Ala Leu Asp
Gly Lys Ala Pro Ile Leu Gly Tyr 625 630
635 640 Ala Glu Asp Pro Val Glu Leu Phe Phe Met His Ile
Gln Gly Ser Gly 645 650
655 Arg Leu Lys Thr Pro Ser Gly Lys Tyr Ile Arg Ile Gly Tyr Ala Asp
660 665 670 Lys Asn Glu
His Pro Tyr Val Ser Ile Gly Arg Tyr Met Ala Asp Lys 675
680 685 Gly Tyr Leu Lys Leu Gly Gln Thr
Ser Met Gln Gly Ile Lys Ala Tyr 690 695
700 Met Arg Gln Asn Pro Gln Arg Leu Ala Glu Val Leu Gly
Gln Asn Pro 705 710 715
720 Ser Tyr Ile Phe Phe Arg Glu Leu Ala Gly Ser Ser Asn Asp Gly Pro
725 730 735 Val Gly Ala Leu
Gly Thr Pro Leu Met Gly Glu Tyr Ala Gly Ala Val 740
745 750 Asp Arg His Tyr Ile Thr Leu Gly Ala
Pro Leu Phe Val Ala Thr Ala 755 760
765 His Pro Val Thr Arg Lys Ala Leu Asn Arg Leu Ile Met Ala
Gln Asp 770 775 780
Thr Gly Ser Ala Ile Lys Gly Ala Val Arg Val Asp Tyr Phe Trp Gly 785
790 795 800 Tyr Gly Asp Glu Ala
Gly Glu Leu Ala Gly Lys Gln Lys Thr Thr Gly 805
810 815 Tyr Val Trp Gln Leu Leu Pro Asn Gly Met
Lys Pro Glu Tyr Arg Pro 820 825
830 901746DNAArtificial SequenceSynthetic construct
90atggctagcc ccgatgttaa atcggcggac acgctgtcaa aaccggccgc tcctgttgtt
60gctgaaaaag agacagaggt aaaagaagat gcgccacagg caggttctca aggacagggc
120gcgccatcca cacaaggcag ccaagatatg gcggcagttt cggcagaaaa tacaggcaat
180ggcggtgcgg caacaacgga caaacccaaa aatgaagacg agggaccgca aaatgatatg
240ccgcaaaatt ccgccgaatc cgcaaatcaa acagggaaca accaacccgc cgattcttca
300gattccgccc ccgcgtcaaa ccctgcacct gcgaatggcg gtagcaattt tggaagggtt
360gatttggcta atggcgtttt gattgatggg ccgtcgcaaa atataacgtt gacccactgt
420aaaggcgatt cttgtaatgg tgataattta ttggatgaag aagcaccgtc aaaatcagaa
480tttgaaaatt taaatgagtc tgaacgaatt gagaaatata agaaagatgg gaaaagcgat
540aaatttacta atttggttgc gacagcagtt caagctaatg gaactaacaa atatgtcatc
600atttataaag acaagtccgc ttcatcttca tctgcgcgat tcaggcgttc tgcacggtcg
660aggaggtcgc ttcctgccga gatgccgcta atccccgtca atcaggcgga tacgctgatt
720gtcgatgggg aagcggtcag cctgacgggg cattccggca atatcttcgc gcccgaaggg
780aattaccggt atctgactta cggggcggaa aaattgcccg gcggatcgta tgccctccgt
840gtgcaaggcg aaccggcaaa aggcgaaatg cttgctggca cggccgtgta caacggcgaa
900gtgctgcatt ttcatacgga aaacggccgt ccgtacccga ctagaggcag gtttgccgca
960aaagtcgatt tcggcagcaa atctgtggac ggcattatcg acagcggcga tgatttgcat
1020atgggtacgc aaaaattcaa agccgccatc gatggaaacg gctttaaggg gacttggacg
1080gaaaatggcg gcggggatgt ttccggaagg ttttacggcc cggccggcga ggaagtggcg
1140ggaaaataca gctatcgccc gacagatgcg gaaaagggcg gattcggcgt gtttgccggc
1200aaaaaagagc aggatggatc cggaggagga ggagccacct acaaagtgga cgaatatcac
1260gccaacgccc gtttcgccat cgaccatttc aacaccagca ccaacgtcgg cggtttttac
1320ggtctgaccg gttccgtcga gttcgaccaa gcaaaacgcg acggtaaaat cgacatcacc
1380atccccgttg ccaacctgca aagcggttcg caacacttta ccgaccacct gaaatcagcc
1440gacatcttcg atgccgccca atatccggac atccgctttg tttccaccaa attcaacttc
1500aacggcaaaa aactggtttc cgttgacggc aacctgacca tgcacggcaa aaccgccccc
1560gtcaaactca aagccgaaaa attcaactgc taccaaagcc cgatggcgaa aaccgaagtt
1620tgcggcggcg acttcagcac caccatcgac cgcaccaaat ggggcgtgga ctacctcgtt
1680aacgttggta tgaccaaaag cgtccgcatc gacatccaaa tcgaggcagc caaacaataa
1740ctcgag
174691579PRTArtificial SequenceSynthetic construct 91Met Ala Ser Pro Asp
Val Lys Ser Ala Asp Thr Leu Ser Lys Pro Ala 1 5
10 15 Ala Pro Val Val Ala Glu Lys Glu Thr Glu
Val Lys Glu Asp Ala Pro 20 25
30 Gln Ala Gly Ser Gln Gly Gln Gly Ala Pro Ser Thr Gln Gly Ser
Gln 35 40 45 Asp
Met Ala Ala Val Ser Ala Glu Asn Thr Gly Asn Gly Gly Ala Ala 50
55 60 Thr Thr Asp Lys Pro Lys
Asn Glu Asp Glu Gly Pro Gln Asn Asp Met 65 70
75 80 Pro Gln Asn Ser Ala Glu Ser Ala Asn Gln Thr
Gly Asn Asn Gln Pro 85 90
95 Ala Asp Ser Ser Asp Ser Ala Pro Ala Ser Asn Pro Ala Pro Ala Asn
100 105 110 Gly Gly
Ser Asn Phe Gly Arg Val Asp Leu Ala Asn Gly Val Leu Ile 115
120 125 Asp Gly Pro Ser Gln Asn Ile
Thr Leu Thr His Cys Lys Gly Asp Ser 130 135
140 Cys Asn Gly Asp Asn Leu Leu Asp Glu Glu Ala Pro
Ser Lys Ser Glu 145 150 155
160 Phe Glu Asn Leu Asn Glu Ser Glu Arg Ile Glu Lys Tyr Lys Lys Asp
165 170 175 Gly Lys Ser
Asp Lys Phe Thr Asn Leu Val Ala Thr Ala Val Gln Ala 180
185 190 Asn Gly Thr Asn Lys Tyr Val Ile
Ile Tyr Lys Asp Lys Ser Ala Ser 195 200
205 Ser Ser Ser Ala Arg Phe Arg Arg Ser Ala Arg Ser Arg
Arg Ser Leu 210 215 220
Pro Ala Glu Met Pro Leu Ile Pro Val Asn Gln Ala Asp Thr Leu Ile 225
230 235 240 Val Asp Gly Glu
Ala Val Ser Leu Thr Gly His Ser Gly Asn Ile Phe 245
250 255 Ala Pro Glu Gly Asn Tyr Arg Tyr Leu
Thr Tyr Gly Ala Glu Lys Leu 260 265
270 Pro Gly Gly Ser Tyr Ala Leu Arg Val Gln Gly Glu Pro Ala
Lys Gly 275 280 285
Glu Met Leu Ala Gly Thr Ala Val Tyr Asn Gly Glu Val Leu His Phe 290
295 300 His Thr Glu Asn Gly
Arg Pro Tyr Pro Thr Arg Gly Arg Phe Ala Ala 305 310
315 320 Lys Val Asp Phe Gly Ser Lys Ser Val Asp
Gly Ile Ile Asp Ser Gly 325 330
335 Asp Asp Leu His Met Gly Thr Gln Lys Phe Lys Ala Ala Ile Asp
Gly 340 345 350 Asn
Gly Phe Lys Gly Thr Trp Thr Glu Asn Gly Gly Gly Asp Val Ser 355
360 365 Gly Arg Phe Tyr Gly Pro
Ala Gly Glu Glu Val Ala Gly Lys Tyr Ser 370 375
380 Tyr Arg Pro Thr Asp Ala Glu Lys Gly Gly Phe
Gly Val Phe Ala Gly 385 390 395
400 Lys Lys Glu Gln Asp Gly Ser Gly Gly Gly Gly Ala Thr Tyr Lys Val
405 410 415 Asp Glu
Tyr His Ala Asn Ala Arg Phe Ala Ile Asp His Phe Asn Thr 420
425 430 Ser Thr Asn Val Gly Gly Phe
Tyr Gly Leu Thr Gly Ser Val Glu Phe 435 440
445 Asp Gln Ala Lys Arg Asp Gly Lys Ile Asp Ile Thr
Ile Pro Val Ala 450 455 460
Asn Leu Gln Ser Gly Ser Gln His Phe Thr Asp His Leu Lys Ser Ala 465
470 475 480 Asp Ile Phe
Asp Ala Ala Gln Tyr Pro Asp Ile Arg Phe Val Ser Thr 485
490 495 Lys Phe Asn Phe Asn Gly Lys Lys
Leu Val Ser Val Asp Gly Asn Leu 500 505
510 Thr Met His Gly Lys Thr Ala Pro Val Lys Leu Lys Ala
Glu Lys Phe 515 520 525
Asn Cys Tyr Gln Ser Pro Met Ala Lys Thr Glu Val Cys Gly Gly Asp 530
535 540 Phe Ser Thr Thr
Ile Asp Arg Thr Lys Trp Gly Val Asp Tyr Leu Val 545 550
555 560 Asn Val Gly Met Thr Lys Ser Val Arg
Ile Asp Ile Gln Ile Glu Ala 565 570
575 Ala Lys Gln 922388DNAArtificial SequenceSynthetic
construct 92atggctagcc ccgatgttaa atcggcggac acgctgtcaa aaccggccgc
tcctgttgtt 60gctgaaaaag agacagaggt aaaagaagat gcgccacagg caggttctca
aggacagggc 120gcgccatcca cacaaggcag ccaagatatg gcggcagttt cggcagaaaa
tacaggcaat 180ggcggtgcgg caacaacgga caaacccaaa aatgaagacg agggaccgca
aaatgatatg 240ccgcaaaatt ccgccgaatc cgcaaatcaa acagggaaca accaacccgc
cgattcttca 300gattccgccc ccgcgtcaaa ccctgcacct gcgaatggcg gtagcaattt
tggaagggtt 360gatttggcta atggcgtttt gattgatggg ccgtcgcaaa atataacgtt
gacccactgt 420aaaggcgatt cttgtaatgg tgataattta ttggatgaag aagcaccgtc
aaaatcagaa 480tttgaaaatt taaatgagtc tgaacgaatt gagaaatata agaaagatgg
gaaaagcgat 540aaatttacta atttggttgc gacagcagtt caagctaatg gaactaacaa
atatgtcatc 600atttataaag acaagtccgc ttcatcttca tctgcgcgat tcaggcgttc
tgcacggtcg 660aggaggtcgc ttcctgccga gatgccgcta atccccgtca atcaggcgga
tacgctgatt 720gtcgatgggg aagcggtcag cctgacgggg cattccggca atatcttcgc
gcccgaaggg 780aattaccggt atctgactta cggggcggaa aaattgcccg gcggatcgta
tgccctccgt 840gtgcaaggcg aaccggcaaa aggcgaaatg cttgctggca cggccgtgta
caacggcgaa 900gtgctgcatt ttcatacgga aaacggccgt ccgtacccga ctagaggcag
gtttgccgca 960aaagtcgatt tcggcagcaa atctgtggac ggcattatcg acagcggcga
tgatttgcat 1020atgggtacgc aaaaattcaa agccgccatc gatggaaacg gctttaaggg
gacttggacg 1080gaaaatggcg gcggggatgt ttccggaagg ttttacggcc cggccggcga
ggaagtggcg 1140ggaaaataca gctatcgccc gacagatgcg gaaaagggcg gattcggcgt
gtttgccggc 1200aaaaaagagc aggatggatc cggaggagga ggagccacaa acgacgacga
tgttaaaaaa 1260gctgccactg tggccattgc tgctgcctac aacaatggcc aagaaatcaa
cggtttcaaa 1320gctggagaga ccatctacga cattgatgaa gacggcacaa ttaccaaaaa
agacgcaact 1380gcagccgatg ttgaagccga cgactttaaa ggtctgggtc tgaaaaaagt
cgtgactaac 1440ctgaccaaaa ccgtcaatga aaacaaacaa aacgtcgatg ccaaagtaaa
agctgcagaa 1500tctgaaatag aaaagttaac aaccaagtta gcagacactg atgccgcttt
agcagatact 1560gatgccgctc tggatgcaac caccaacgcc ttgaataaat tgggagaaaa
tataacgaca 1620tttgctgaag agactaagac aaatatcgta aaaattgatg aaaaattaga
agccgtggct 1680gataccgtcg acaagcatgc cgaagcattc aacgatatcg ccgattcatt
ggatgaaacc 1740aacactaagg cagacgaagc cgtcaaaacc gccaatgaag ccaaacagac
ggccgaagaa 1800accaaacaaa acgtcgatgc caaagtaaaa gctgcagaaa ctgcagcagg
caaagccgaa 1860gctgccgctg gcacagctaa tactgcagcc gacaaggccg aagctgtcgc
tgcaaaagtt 1920accgacatca aagctgatat cgctacgaac aaagataata ttgctaaaaa
agcaaacagt 1980gccgacgtgt acaccagaga agagtctgac agcaaatttg tcagaattga
tggtctgaac 2040gctactaccg aaaaattgga cacacgcttg gcttctgctg aaaaatccat
tgccgatcac 2100gatactcgcc tgaacggttt ggataaaaca gtgtcagacc tgcgcaaaga
aacccgccaa 2160ggccttgcag aacaagccgc gctctccggt ctgttccaac cttacaacgt
gggtcggttc 2220aatgtaacgg ctgcagtcgg cggctacaaa tccgaatcgg cagtcgccat
cggtaccggc 2280ttccgcttta ccgaaaactt tgccgccaaa gcaggcgtgg cagtcggcac
ttcgtccggt 2340tcttccgcag cctaccatgt cggcgtcaat tacgagtggt aactcgag
238893793PRTArtificial SequenceSynthetic construct 93Met Ala
Ser Pro Asp Val Lys Ser Ala Asp Thr Leu Ser Lys Pro Ala 1 5
10 15 Ala Pro Val Val Ala Glu Lys
Glu Thr Glu Val Lys Glu Asp Ala Pro 20 25
30 Gln Ala Gly Ser Gln Gly Gln Gly Ala Pro Ser Thr
Gln Gly Ser Gln 35 40 45
Asp Met Ala Ala Val Ser Ala Glu Asn Thr Gly Asn Gly Gly Ala Ala
50 55 60 Thr Thr Asp
Lys Pro Lys Asn Glu Asp Glu Gly Pro Gln Asn Asp Met 65
70 75 80 Pro Gln Asn Ser Ala Glu Ser
Ala Asn Gln Thr Gly Asn Asn Gln Pro 85
90 95 Ala Asp Ser Ser Asp Ser Ala Pro Ala Ser Asn
Pro Ala Pro Ala Asn 100 105
110 Gly Gly Ser Asn Phe Gly Arg Val Asp Leu Ala Asn Gly Val Leu
Ile 115 120 125 Asp
Gly Pro Ser Gln Asn Ile Thr Leu Thr His Cys Lys Gly Asp Ser 130
135 140 Cys Asn Gly Asp Asn Leu
Leu Asp Glu Glu Ala Pro Ser Lys Ser Glu 145 150
155 160 Phe Glu Asn Leu Asn Glu Ser Glu Arg Ile Glu
Lys Tyr Lys Lys Asp 165 170
175 Gly Lys Ser Asp Lys Phe Thr Asn Leu Val Ala Thr Ala Val Gln Ala
180 185 190 Asn Gly
Thr Asn Lys Tyr Val Ile Ile Tyr Lys Asp Lys Ser Ala Ser 195
200 205 Ser Ser Ser Ala Arg Phe Arg
Arg Ser Ala Arg Ser Arg Arg Ser Leu 210 215
220 Pro Ala Glu Met Pro Leu Ile Pro Val Asn Gln Ala
Asp Thr Leu Ile 225 230 235
240 Val Asp Gly Glu Ala Val Ser Leu Thr Gly His Ser Gly Asn Ile Phe
245 250 255 Ala Pro Glu
Gly Asn Tyr Arg Tyr Leu Thr Tyr Gly Ala Glu Lys Leu 260
265 270 Pro Gly Gly Ser Tyr Ala Leu Arg
Val Gln Gly Glu Pro Ala Lys Gly 275 280
285 Glu Met Leu Ala Gly Thr Ala Val Tyr Asn Gly Glu Val
Leu His Phe 290 295 300
His Thr Glu Asn Gly Arg Pro Tyr Pro Thr Arg Gly Arg Phe Ala Ala 305
310 315 320 Lys Val Asp Phe
Gly Ser Lys Ser Val Asp Gly Ile Ile Asp Ser Gly 325
330 335 Asp Asp Leu His Met Gly Thr Gln Lys
Phe Lys Ala Ala Ile Asp Gly 340 345
350 Asn Gly Phe Lys Gly Thr Trp Thr Glu Asn Gly Gly Gly Asp
Val Ser 355 360 365
Gly Arg Phe Tyr Gly Pro Ala Gly Glu Glu Val Ala Gly Lys Tyr Ser 370
375 380 Tyr Arg Pro Thr Asp
Ala Glu Lys Gly Gly Phe Gly Val Phe Ala Gly 385 390
395 400 Lys Lys Glu Gln Asp Gly Ser Gly Gly Gly
Gly Ala Thr Asn Asp Asp 405 410
415 Asp Val Lys Lys Ala Ala Thr Val Ala Ile Ala Ala Ala Tyr Asn
Asn 420 425 430 Gly
Gln Glu Ile Asn Gly Phe Lys Ala Gly Glu Thr Ile Tyr Asp Ile 435
440 445 Asp Glu Asp Gly Thr Ile
Thr Lys Lys Asp Ala Thr Ala Ala Asp Val 450 455
460 Glu Ala Asp Asp Phe Lys Gly Leu Gly Leu Lys
Lys Val Val Thr Asn 465 470 475
480 Leu Thr Lys Thr Val Asn Glu Asn Lys Gln Asn Val Asp Ala Lys Val
485 490 495 Lys Ala
Ala Glu Ser Glu Ile Glu Lys Leu Thr Thr Lys Leu Ala Asp 500
505 510 Thr Asp Ala Ala Leu Ala Asp
Thr Asp Ala Ala Leu Asp Ala Thr Thr 515 520
525 Asn Ala Leu Asn Lys Leu Gly Glu Asn Ile Thr Thr
Phe Ala Glu Glu 530 535 540
Thr Lys Thr Asn Ile Val Lys Ile Asp Glu Lys Leu Glu Ala Val Ala 545
550 555 560 Asp Thr Val
Asp Lys His Ala Glu Ala Phe Asn Asp Ile Ala Asp Ser 565
570 575 Leu Asp Glu Thr Asn Thr Lys Ala
Asp Glu Ala Val Lys Thr Ala Asn 580 585
590 Glu Ala Lys Gln Thr Ala Glu Glu Thr Lys Gln Asn Val
Asp Ala Lys 595 600 605
Val Lys Ala Ala Glu Thr Ala Ala Gly Lys Ala Glu Ala Ala Ala Gly 610
615 620 Thr Ala Asn Thr
Ala Ala Asp Lys Ala Glu Ala Val Ala Ala Lys Val 625 630
635 640 Thr Asp Ile Lys Ala Asp Ile Ala Thr
Asn Lys Asp Asn Ile Ala Lys 645 650
655 Lys Ala Asn Ser Ala Asp Val Tyr Thr Arg Glu Glu Ser Asp
Ser Lys 660 665 670
Phe Val Arg Ile Asp Gly Leu Asn Ala Thr Thr Glu Lys Leu Asp Thr
675 680 685 Arg Leu Ala Ser
Ala Glu Lys Ser Ile Ala Asp His Asp Thr Arg Leu 690
695 700 Asn Gly Leu Asp Lys Thr Val Ser
Asp Leu Arg Lys Glu Thr Arg Gln 705 710
715 720 Gly Leu Ala Glu Gln Ala Ala Leu Ser Gly Leu Phe
Gln Pro Tyr Asn 725 730
735 Val Gly Arg Phe Asn Val Thr Ala Ala Val Gly Gly Tyr Lys Ser Glu
740 745 750 Ser Ala Val
Ala Ile Gly Thr Gly Phe Arg Phe Thr Glu Asn Phe Ala 755
760 765 Ala Lys Ala Gly Val Ala Val Gly
Thr Ser Ser Gly Ser Ser Ala Ala 770 775
780 Tyr His Val Gly Val Asn Tyr Glu Trp 785
790 942700DNAArtificial SequenceSynthetic construct
94atggctagcc ccgatgtcaa gtcggcggac acgctgtcaa aacctgccgc ccctgttgtt
60tctgaaaaag agacagaggc aaaggaagat gcgccacagg caggttctca aggacagggc
120gcgccatccg cacaaggcgg tcaagatatg gcggcggttt cggaagaaaa tacaggcaat
180ggcggtgcgg cagcaacgga caaacccaaa aatgaagacg agggggcgca aaatgatatg
240ccgcaaaatg ccgccgatac agatagtttg acaccgaatc acaccccggc ttcgaatatg
300ccggccggaa atatggaaaa ccaagcaccg gatgccgggg aatcggagca gccggcaaac
360caaccggata tggcaaatac ggcggacgga atgcagggtg acgatccgtc ggcaggcggg
420gaaaatgccg gcaatacggc tgcccaaggt acaaatcaag ccgaaaacaa tcaaaccgcc
480ggttctcaaa atcctgcctc ttcaaccaat cctagcgcca cgaatagcgg tggtgatttt
540ggaaggacga acgtgggcaa ttctgttgtg attgacgggc cgtcgcaaaa tataacgttg
600acccactgta aaggcgattc ttgtagtggc aataatttct tggatgaaga agtacagcta
660aaatcagaat ttgaaaaatt aagtgatgca gacaaaataa gtaattacaa gaaagatggg
720aagaatgacg ggaagaatga taaatttgtc ggtttggttg ccgatagtgt gcagatgaag
780ggaatcaatc aatatattat cttttataaa cctaaaccca cttcatttgc gcgatttagg
840cgttctgcac ggtcgaggcg gtcgcttccg gccgagatgc cgctgattcc cgtcaatcag
900gcggatacgc tgattgtcga tggggaagcg gtcagcctga cggggcattc cggcaatatc
960ttcgcgcccg aagggaatta ccggtatctg acttacgggg cggaaaaatt gcccggcgga
1020tcgtatgccc tccgtgttca aggcgaacct tcaaaaggcg aaatgctcgc gggcacggca
1080gtgtacaacg gcgaagtgct gcattttcat acggaaaacg gccgtccgtc cccgtccaga
1140ggcaggtttg ccgcaaaagt cgatttcggc agcaaatctg tggacggcat tatcgacagc
1200ggcgatggtt tgcatatggg tacgcaaaaa ttcaaagccg ccatcgatgg aaacggcttt
1260aaggggactt ggacggaaaa tggcggcggg gatgtttccg gaaagtttta cggcccggcc
1320ggcgaggaag tggcgggaaa atacagctat cgcccaacag atgcggaaaa gggcggattc
1380ggcgtgtttg ccggcaaaaa agagcaggat ggatccggag gaggaggatg ccaaagcaag
1440agcatccaaa cctttccgca acccgacaca tccgtcatca acggcccgga ccggccggtc
1500ggcatccccg accccgccgg aacgacggtc ggcggcggcg gggccgtcta taccgttgta
1560ccgcacctgt ccctgcccca ctgggcggcg caggatttcg ccaaaagcct gcaatccttc
1620cgcctcggct gcgccaattt gaaaaaccgc caaggctggc aggatgtgtg cgcccaagcc
1680tttcaaaccc ccgtccattc ctttcaggca aaacagtttt ttgaacgcta tttcacgccg
1740tggcaggttg caggcaacgg aagccttgcc ggtacggtta ccggctatta cgagccggtg
1800ctgaagggcg acgacaggcg gacggcacaa gcccgcttcc cgatttacgg tattcccgac
1860gattttatct ccgtccccct gcctgccggt ttgcggagcg gaaaagccct tgtccgcatc
1920aggcagacgg gaaaaaacag cggcacaatc gacaataccg gcggcacaca taccgccgac
1980ctctcccgat tccccatcac cgcgcgcaca acggcaatca aaggcaggtt tgaaggaagc
2040cgcttcctcc cctaccacac gcgcaaccaa atcaacggcg gcgcgcttga cggcaaagcc
2100ccgatactcg gttacgccga agaccccgtc gaactttttt ttatgcacat ccaaggctcg
2160ggccgtctga aaaccccgtc cggcaaatac atccgcatcg gctatgccga caaaaacgaa
2220catccctacg tttccatcgg acgctatatg gcggacaaag gctacctcaa gctcgggcag
2280acctcgatgc agggcatcaa agcctatatg cggcaaaatc cgcaacgcct cgccgaagtt
2340ttgggtcaaa accccagcta tatctttttc cgcgagcttg ccggaagcag caatgacggt
2400cccgtcggcg cactgggcac gccgttgatg ggggaatatg ccggcgcagt cgaccggcac
2460tacattacct tgggcgcgcc cttatttgtc gccaccgccc atccggttac ccgcaaagcc
2520ctcaaccgcc tgattatggc gcaggatacc ggcagcgcga ttaaaggcgc ggtgcgcgtg
2580gattattttt ggggatacgg cgacgaagcc ggcgaacttg ccggcaaaca gaaaaccacg
2640ggttacgtct ggcagctcct acccaacggt atgaagcccg aataccgccc gtaaaagctt
270095897PRTArtificial SequenceSynthetic construct 95Met Ala Ser Pro Asp
Val Lys Ser Ala Asp Thr Leu Ser Lys Pro Ala 1 5
10 15 Ala Pro Val Val Ser Glu Lys Glu Thr Glu
Ala Lys Glu Asp Ala Pro 20 25
30 Gln Ala Gly Ser Gln Gly Gln Gly Ala Pro Ser Ala Gln Gly Gly
Gln 35 40 45 Asp
Met Ala Ala Val Ser Glu Glu Asn Thr Gly Asn Gly Gly Ala Ala 50
55 60 Ala Thr Asp Lys Pro Lys
Asn Glu Asp Glu Gly Ala Gln Asn Asp Met 65 70
75 80 Pro Gln Asn Ala Ala Asp Thr Asp Ser Leu Thr
Pro Asn His Thr Pro 85 90
95 Ala Ser Asn Met Pro Ala Gly Asn Met Glu Asn Gln Ala Pro Asp Ala
100 105 110 Gly Glu
Ser Glu Gln Pro Ala Asn Gln Pro Asp Met Ala Asn Thr Ala 115
120 125 Asp Gly Met Gln Gly Asp Asp
Pro Ser Ala Gly Gly Glu Asn Ala Gly 130 135
140 Asn Thr Ala Ala Gln Gly Thr Asn Gln Ala Glu Asn
Asn Gln Thr Ala 145 150 155
160 Gly Ser Gln Asn Pro Ala Ser Ser Thr Asn Pro Ser Ala Thr Asn Ser
165 170 175 Gly Gly Asp
Phe Gly Arg Thr Asn Val Gly Asn Ser Val Val Ile Asp 180
185 190 Gly Pro Ser Gln Asn Ile Thr Leu
Thr His Cys Lys Gly Asp Ser Cys 195 200
205 Ser Gly Asn Asn Phe Leu Asp Glu Glu Val Gln Leu Lys
Ser Glu Phe 210 215 220
Glu Lys Leu Ser Asp Ala Asp Lys Ile Ser Asn Tyr Lys Lys Asp Gly 225
230 235 240 Lys Asn Asp Gly
Lys Asn Asp Lys Phe Val Gly Leu Val Ala Asp Ser 245
250 255 Val Gln Met Lys Gly Ile Asn Gln Tyr
Ile Ile Phe Tyr Lys Pro Lys 260 265
270 Pro Thr Ser Phe Ala Arg Phe Arg Arg Ser Ala Arg Ser Arg
Arg Ser 275 280 285
Leu Pro Ala Glu Met Pro Leu Ile Pro Val Asn Gln Ala Asp Thr Leu 290
295 300 Ile Val Asp Gly Glu
Ala Val Ser Leu Thr Gly His Ser Gly Asn Ile 305 310
315 320 Phe Ala Pro Glu Gly Asn Tyr Arg Tyr Leu
Thr Tyr Gly Ala Glu Lys 325 330
335 Leu Pro Gly Gly Ser Tyr Ala Leu Arg Val Gln Gly Glu Pro Ser
Lys 340 345 350 Gly
Glu Met Leu Ala Gly Thr Ala Val Tyr Asn Gly Glu Val Leu His 355
360 365 Phe His Thr Glu Asn Gly
Arg Pro Ser Pro Ser Arg Gly Arg Phe Ala 370 375
380 Ala Lys Val Asp Phe Gly Ser Lys Ser Val Asp
Gly Ile Ile Asp Ser 385 390 395
400 Gly Asp Gly Leu His Met Gly Thr Gln Lys Phe Lys Ala Ala Ile Asp
405 410 415 Gly Asn
Gly Phe Lys Gly Thr Trp Thr Glu Asn Gly Gly Gly Asp Val 420
425 430 Ser Gly Lys Phe Tyr Gly Pro
Ala Gly Glu Glu Val Ala Gly Lys Tyr 435 440
445 Ser Tyr Arg Pro Thr Asp Ala Glu Lys Gly Gly Phe
Gly Val Phe Ala 450 455 460
Gly Lys Lys Glu Gln Asp Gly Ser Gly Gly Gly Gly Cys Gln Ser Lys 465
470 475 480 Ser Ile Gln
Thr Phe Pro Gln Pro Asp Thr Ser Val Ile Asn Gly Pro 485
490 495 Asp Arg Pro Val Gly Ile Pro Asp
Pro Ala Gly Thr Thr Val Gly Gly 500 505
510 Gly Gly Ala Val Tyr Thr Val Val Pro His Leu Ser Leu
Pro His Trp 515 520 525
Ala Ala Gln Asp Phe Ala Lys Ser Leu Gln Ser Phe Arg Leu Gly Cys 530
535 540 Ala Asn Leu Lys
Asn Arg Gln Gly Trp Gln Asp Val Cys Ala Gln Ala 545 550
555 560 Phe Gln Thr Pro Val His Ser Phe Gln
Ala Lys Gln Phe Phe Glu Arg 565 570
575 Tyr Phe Thr Pro Trp Gln Val Ala Gly Asn Gly Ser Leu Ala
Gly Thr 580 585 590
Val Thr Gly Tyr Tyr Glu Pro Val Leu Lys Gly Asp Asp Arg Arg Thr
595 600 605 Ala Gln Ala Arg
Phe Pro Ile Tyr Gly Ile Pro Asp Asp Phe Ile Ser 610
615 620 Val Pro Leu Pro Ala Gly Leu Arg
Ser Gly Lys Ala Leu Val Arg Ile 625 630
635 640 Arg Gln Thr Gly Lys Asn Ser Gly Thr Ile Asp Asn
Thr Gly Gly Thr 645 650
655 His Thr Ala Asp Leu Ser Arg Phe Pro Ile Thr Ala Arg Thr Thr Ala
660 665 670 Ile Lys Gly
Arg Phe Glu Gly Ser Arg Phe Leu Pro Tyr His Thr Arg 675
680 685 Asn Gln Ile Asn Gly Gly Ala Leu
Asp Gly Lys Ala Pro Ile Leu Gly 690 695
700 Tyr Ala Glu Asp Pro Val Glu Leu Phe Phe Met His Ile
Gln Gly Ser 705 710 715
720 Gly Arg Leu Lys Thr Pro Ser Gly Lys Tyr Ile Arg Ile Gly Tyr Ala
725 730 735 Asp Lys Asn Glu
His Pro Tyr Val Ser Ile Gly Arg Tyr Met Ala Asp 740
745 750 Lys Gly Tyr Leu Lys Leu Gly Gln Thr
Ser Met Gln Gly Ile Lys Ala 755 760
765 Tyr Met Arg Gln Asn Pro Gln Arg Leu Ala Glu Val Leu Gly
Gln Asn 770 775 780
Pro Ser Tyr Ile Phe Phe Arg Glu Leu Ala Gly Ser Ser Asn Asp Gly 785
790 795 800 Pro Val Gly Ala Leu
Gly Thr Pro Leu Met Gly Glu Tyr Ala Gly Ala 805
810 815 Val Asp Arg His Tyr Ile Thr Leu Gly Ala
Pro Leu Phe Val Ala Thr 820 825
830 Ala His Pro Val Thr Arg Lys Ala Leu Asn Arg Leu Ile Met Ala
Gln 835 840 845 Asp
Thr Gly Ser Ala Ile Lys Gly Ala Val Arg Val Asp Tyr Phe Trp 850
855 860 Gly Tyr Gly Asp Glu Ala
Gly Glu Leu Ala Gly Lys Gln Lys Thr Thr 865 870
875 880 Gly Tyr Val Trp Gln Leu Leu Pro Asn Gly Met
Lys Pro Glu Tyr Arg 885 890
895 Pro 961941DNAArtificial SequenceSynthetic construct
96atggctagcc ccgatgtcaa gtcggcggac acgctgtcaa aacctgccgc ccctgttgtt
60tctgaaaaag agacagaggc aaaggaagat gcgccacagg caggttctca aggacagggc
120gcgccatccg cacaaggcgg tcaagatatg gcggcggttt cggaagaaaa tacaggcaat
180ggcggtgcgg cagcaacgga caaacccaaa aatgaagacg agggggcgca aaatgatatg
240ccgcaaaatg ccgccgatac agatagtttg acaccgaatc acaccccggc ttcgaatatg
300ccggccggaa atatggaaaa ccaagcaccg gatgccgggg aatcggagca gccggcaaac
360caaccggata tggcaaatac ggcggacgga atgcagggtg acgatccgtc ggcaggcggg
420gaaaatgccg gcaatacggc tgcccaaggt acaaatcaag ccgaaaacaa tcaaaccgcc
480ggttctcaaa atcctgcctc ttcaaccaat cctagcgcca cgaatagcgg tggtgatttt
540ggaaggacga acgtgggcaa ttctgttgtg attgacgggc cgtcgcaaaa tataacgttg
600acccactgta aaggcgattc ttgtagtggc aataatttct tggatgaaga agtacagcta
660aaatcagaat ttgaaaaatt aagtgatgca gacaaaataa gtaattacaa gaaagatggg
720aagaatgacg ggaagaatga taaatttgtc ggtttggttg ccgatagtgt gcagatgaag
780ggaatcaatc aatatattat cttttataaa cctaaaccca cttcatttgc gcgatttagg
840cgttctgcac ggtcgaggcg gtcgcttccg gccgagatgc cgctgattcc cgtcaatcag
900gcggatacgc tgattgtcga tggggaagcg gtcagcctga cggggcattc cggcaatatc
960ttcgcgcccg aagggaatta ccggtatctg acttacgggg cggaaaaatt gcccggcgga
1020tcgtatgccc tccgtgttca aggcgaacct tcaaaaggcg aaatgctcgc gggcacggca
1080gtgtacaacg gcgaagtgct gcattttcat acggaaaacg gccgtccgtc cccgtccaga
1140ggcaggtttg ccgcaaaagt cgatttcggc agcaaatctg tggacggcat tatcgacagc
1200ggcgatggtt tgcatatggg tacgcaaaaa ttcaaagccg ccatcgatgg aaacggcttt
1260aaggggactt ggacggaaaa tggcggcggg gatgtttccg gaaagtttta cggcccggcc
1320ggcgaggaag tggcgggaaa atacagctat cgcccaacag atgcggaaaa gggcggattc
1380ggcgtgtttg ccggcaaaaa agagcaggat ggatccggag gaggaggagc cacctacaaa
1440gtggacgaat atcacgccaa cgcccgtttc gccatcgacc atttcaacac cagcaccaac
1500gtcggcggtt tttacggtct gaccggttcc gtcgagttcg accaagcaaa acgcgacggt
1560aaaatcgaca tcaccatccc cgttgccaac ctgcaaagcg gttcgcaaca ctttaccgac
1620cacctgaaat cagccgacat cttcgatgcc gcccaatatc cggacatccg ctttgtttcc
1680accaaattca acttcaacgg caaaaaactg gtttccgttg acggcaacct gaccatgcac
1740ggcaaaaccg cccccgtcaa actcaaagcc gaaaaattca actgctacca aagcccgatg
1800gcgaaaaccg aagtttgcgg cggcgacttc agcaccacca tcgaccgcac caaatggggc
1860gtggactacc tcgttaacgt tggtatgacc aaaagcgtcc gcatcgacat ccaaatcgag
1920gcagccaaac aataaaagct t
194197644PRTArtificial SequenceSynthetic construct 97Met Ala Ser Pro Asp
Val Lys Ser Ala Asp Thr Leu Ser Lys Pro Ala 1 5
10 15 Ala Pro Val Val Ser Glu Lys Glu Thr Glu
Ala Lys Glu Asp Ala Pro 20 25
30 Gln Ala Gly Ser Gln Gly Gln Gly Ala Pro Ser Ala Gln Gly Gly
Gln 35 40 45 Asp
Met Ala Ala Val Ser Glu Glu Asn Thr Gly Asn Gly Gly Ala Ala 50
55 60 Ala Thr Asp Lys Pro Lys
Asn Glu Asp Glu Gly Ala Gln Asn Asp Met 65 70
75 80 Pro Gln Asn Ala Ala Asp Thr Asp Ser Leu Thr
Pro Asn His Thr Pro 85 90
95 Ala Ser Asn Met Pro Ala Gly Asn Met Glu Asn Gln Ala Pro Asp Ala
100 105 110 Gly Glu
Ser Glu Gln Pro Ala Asn Gln Pro Asp Met Ala Asn Thr Ala 115
120 125 Asp Gly Met Gln Gly Asp Asp
Pro Ser Ala Gly Gly Glu Asn Ala Gly 130 135
140 Asn Thr Ala Ala Gln Gly Thr Asn Gln Ala Glu Asn
Asn Gln Thr Ala 145 150 155
160 Gly Ser Gln Asn Pro Ala Ser Ser Thr Asn Pro Ser Ala Thr Asn Ser
165 170 175 Gly Gly Asp
Phe Gly Arg Thr Asn Val Gly Asn Ser Val Val Ile Asp 180
185 190 Gly Pro Ser Gln Asn Ile Thr Leu
Thr His Cys Lys Gly Asp Ser Cys 195 200
205 Ser Gly Asn Asn Phe Leu Asp Glu Glu Val Gln Leu Lys
Ser Glu Phe 210 215 220
Glu Lys Leu Ser Asp Ala Asp Lys Ile Ser Asn Tyr Lys Lys Asp Gly 225
230 235 240 Lys Asn Asp Gly
Lys Asn Asp Lys Phe Val Gly Leu Val Ala Asp Ser 245
250 255 Val Gln Met Lys Gly Ile Asn Gln Tyr
Ile Ile Phe Tyr Lys Pro Lys 260 265
270 Pro Thr Ser Phe Ala Arg Phe Arg Arg Ser Ala Arg Ser Arg
Arg Ser 275 280 285
Leu Pro Ala Glu Met Pro Leu Ile Pro Val Asn Gln Ala Asp Thr Leu 290
295 300 Ile Val Asp Gly Glu
Ala Val Ser Leu Thr Gly His Ser Gly Asn Ile 305 310
315 320 Phe Ala Pro Glu Gly Asn Tyr Arg Tyr Leu
Thr Tyr Gly Ala Glu Lys 325 330
335 Leu Pro Gly Gly Ser Tyr Ala Leu Arg Val Gln Gly Glu Pro Ser
Lys 340 345 350 Gly
Glu Met Leu Ala Gly Thr Ala Val Tyr Asn Gly Glu Val Leu His 355
360 365 Phe His Thr Glu Asn Gly
Arg Pro Ser Pro Ser Arg Gly Arg Phe Ala 370 375
380 Ala Lys Val Asp Phe Gly Ser Lys Ser Val Asp
Gly Ile Ile Asp Ser 385 390 395
400 Gly Asp Gly Leu His Met Gly Thr Gln Lys Phe Lys Ala Ala Ile Asp
405 410 415 Gly Asn
Gly Phe Lys Gly Thr Trp Thr Glu Asn Gly Gly Gly Asp Val 420
425 430 Ser Gly Lys Phe Tyr Gly Pro
Ala Gly Glu Glu Val Ala Gly Lys Tyr 435 440
445 Ser Tyr Arg Pro Thr Asp Ala Glu Lys Gly Gly Phe
Gly Val Phe Ala 450 455 460
Gly Lys Lys Glu Gln Asp Gly Ser Gly Gly Gly Gly Ala Thr Tyr Lys 465
470 475 480 Val Asp Glu
Tyr His Ala Asn Ala Arg Phe Ala Ile Asp His Phe Asn 485
490 495 Thr Ser Thr Asn Val Gly Gly Phe
Tyr Gly Leu Thr Gly Ser Val Glu 500 505
510 Phe Asp Gln Ala Lys Arg Asp Gly Lys Ile Asp Ile Thr
Ile Pro Val 515 520 525
Ala Asn Leu Gln Ser Gly Ser Gln His Phe Thr Asp His Leu Lys Ser 530
535 540 Ala Asp Ile Phe
Asp Ala Ala Gln Tyr Pro Asp Ile Arg Phe Val Ser 545 550
555 560 Thr Lys Phe Asn Phe Asn Gly Lys Lys
Leu Val Ser Val Asp Gly Asn 565 570
575 Leu Thr Met His Gly Lys Thr Ala Pro Val Lys Leu Lys Ala
Glu Lys 580 585 590
Phe Asn Cys Tyr Gln Ser Pro Met Ala Lys Thr Glu Val Cys Gly Gly
595 600 605 Asp Phe Ser Thr
Thr Ile Asp Arg Thr Lys Trp Gly Val Asp Tyr Leu 610
615 620 Val Asn Val Gly Met Thr Lys Ser
Val Arg Ile Asp Ile Gln Ile Glu 625 630
635 640 Ala Ala Lys Gln 982583DNAArtificial
SequenceSynthetic construct 98atggctagcc ccgatgtcaa gtcggcggac acgctgtcaa
aacctgccgc ccctgttgtt 60tctgaaaaag agacagaggc aaaggaagat gcgccacagg
caggttctca aggacagggc 120gcgccatccg cacaaggcgg tcaagatatg gcggcggttt
cggaagaaaa tacaggcaat 180ggcggtgcgg cagcaacgga caaacccaaa aatgaagacg
agggggcgca aaatgatatg 240ccgcaaaatg ccgccgatac agatagtttg acaccgaatc
acaccccggc ttcgaatatg 300ccggccggaa atatggaaaa ccaagcaccg gatgccgggg
aatcggagca gccggcaaac 360caaccggata tggcaaatac ggcggacgga atgcagggtg
acgatccgtc ggcaggcggg 420gaaaatgccg gcaatacggc tgcccaaggt acaaatcaag
ccgaaaacaa tcaaaccgcc 480ggttctcaaa atcctgcctc ttcaaccaat cctagcgcca
cgaatagcgg tggtgatttt 540ggaaggacga acgtgggcaa ttctgttgtg attgacgggc
cgtcgcaaaa tataacgttg 600acccactgta aaggcgattc ttgtagtggc aataatttct
tggatgaaga agtacagcta 660aaatcagaat ttgaaaaatt aagtgatgca gacaaaataa
gtaattacaa gaaagatggg 720aagaatgacg ggaagaatga taaatttgtc ggtttggttg
ccgatagtgt gcagatgaag 780ggaatcaatc aatatattat cttttataaa cctaaaccca
cttcatttgc gcgatttagg 840cgttctgcac ggtcgaggcg gtcgcttccg gccgagatgc
cgctgattcc cgtcaatcag 900gcggatacgc tgattgtcga tggggaagcg gtcagcctga
cggggcattc cggcaatatc 960ttcgcgcccg aagggaatta ccggtatctg acttacgggg
cggaaaaatt gcccggcgga 1020tcgtatgccc tccgtgttca aggcgaacct tcaaaaggcg
aaatgctcgc gggcacggca 1080gtgtacaacg gcgaagtgct gcattttcat acggaaaacg
gccgtccgtc cccgtccaga 1140ggcaggtttg ccgcaaaagt cgatttcggc agcaaatctg
tggacggcat tatcgacagc 1200ggcgatggtt tgcatatggg tacgcaaaaa ttcaaagccg
ccatcgatgg aaacggcttt 1260aaggggactt ggacggaaaa tggcggcggg gatgtttccg
gaaagtttta cggcccggcc 1320ggcgaggaag tggcgggaaa atacagctat cgcccaacag
atgcggaaaa gggcggattc 1380ggcgtgtttg ccggcaaaaa agagcaggat ggatccggag
gaggaggagc cacaaacgac 1440gacgatgtta aaaaagctgc cactgtggcc attgctgctg
cctacaacaa tggccaagaa 1500atcaacggtt tcaaagctgg agagaccatc tacgacattg
atgaagacgg cacaattacc 1560aaaaaagacg caactgcagc cgatgttgaa gccgacgact
ttaaaggtct gggtctgaaa 1620aaagtcgtga ctaacctgac caaaaccgtc aatgaaaaca
aacaaaacgt cgatgccaaa 1680gtaaaagctg cagaatctga aatagaaaag ttaacaacca
agttagcaga cactgatgcc 1740gctttagcag atactgatgc cgctctggat gcaaccacca
acgccttgaa taaattggga 1800gaaaatataa cgacatttgc tgaagagact aagacaaata
tcgtaaaaat tgatgaaaaa 1860ttagaagccg tggctgatac cgtcgacaag catgccgaag
cattcaacga tatcgccgat 1920tcattggatg aaaccaacac taaggcagac gaagccgtca
aaaccgccaa tgaagccaaa 1980cagacggccg aagaaaccaa acaaaacgtc gatgccaaag
taaaagctgc agaaactgca 2040gcaggcaaag ccgaagctgc cgctggcaca gctaatactg
cagccgacaa ggccgaagct 2100gtcgctgcaa aagttaccga catcaaagct gatatcgcta
cgaacaaaga taatattgct 2160aaaaaagcaa acagtgccga cgtgtacacc agagaagagt
ctgacagcaa atttgtcaga 2220attgatggtc tgaacgctac taccgaaaaa ttggacacac
gcttggcttc tgctgaaaaa 2280tccattgccg atcacgatac tcgcctgaac ggtttggata
aaacagtgtc agacctgcgc 2340aaagaaaccc gccaaggcct tgcagaacaa gccgcgctct
ccggtctgtt ccaaccttac 2400aacgtgggtc ggttcaatgt aacggctgca gtcggcggct
acaaatccga atcggcagtc 2460gccatcggta ccggcttccg ctttaccgaa aactttgccg
ccaaagcagg cgtggcagtc 2520ggcacttcgt ccggttcttc cgcagcctac catgtcggcg
tcaattacga gtggtaaaag 2580ctt
258399858PRTArtificial SequenceSynthetic construct
99Met Ala Ser Pro Asp Val Lys Ser Ala Asp Thr Leu Ser Lys Pro Ala 1
5 10 15 Ala Pro Val Val
Ser Glu Lys Glu Thr Glu Ala Lys Glu Asp Ala Pro 20
25 30 Gln Ala Gly Ser Gln Gly Gln Gly Ala
Pro Ser Ala Gln Gly Gly Gln 35 40
45 Asp Met Ala Ala Val Ser Glu Glu Asn Thr Gly Asn Gly Gly
Ala Ala 50 55 60
Ala Thr Asp Lys Pro Lys Asn Glu Asp Glu Gly Ala Gln Asn Asp Met 65
70 75 80 Pro Gln Asn Ala Ala
Asp Thr Asp Ser Leu Thr Pro Asn His Thr Pro 85
90 95 Ala Ser Asn Met Pro Ala Gly Asn Met Glu
Asn Gln Ala Pro Asp Ala 100 105
110 Gly Glu Ser Glu Gln Pro Ala Asn Gln Pro Asp Met Ala Asn Thr
Ala 115 120 125 Asp
Gly Met Gln Gly Asp Asp Pro Ser Ala Gly Gly Glu Asn Ala Gly 130
135 140 Asn Thr Ala Ala Gln Gly
Thr Asn Gln Ala Glu Asn Asn Gln Thr Ala 145 150
155 160 Gly Ser Gln Asn Pro Ala Ser Ser Thr Asn Pro
Ser Ala Thr Asn Ser 165 170
175 Gly Gly Asp Phe Gly Arg Thr Asn Val Gly Asn Ser Val Val Ile Asp
180 185 190 Gly Pro
Ser Gln Asn Ile Thr Leu Thr His Cys Lys Gly Asp Ser Cys 195
200 205 Ser Gly Asn Asn Phe Leu Asp
Glu Glu Val Gln Leu Lys Ser Glu Phe 210 215
220 Glu Lys Leu Ser Asp Ala Asp Lys Ile Ser Asn Tyr
Lys Lys Asp Gly 225 230 235
240 Lys Asn Asp Gly Lys Asn Asp Lys Phe Val Gly Leu Val Ala Asp Ser
245 250 255 Val Gln Met
Lys Gly Ile Asn Gln Tyr Ile Ile Phe Tyr Lys Pro Lys 260
265 270 Pro Thr Ser Phe Ala Arg Phe Arg
Arg Ser Ala Arg Ser Arg Arg Ser 275 280
285 Leu Pro Ala Glu Met Pro Leu Ile Pro Val Asn Gln Ala
Asp Thr Leu 290 295 300
Ile Val Asp Gly Glu Ala Val Ser Leu Thr Gly His Ser Gly Asn Ile 305
310 315 320 Phe Ala Pro Glu
Gly Asn Tyr Arg Tyr Leu Thr Tyr Gly Ala Glu Lys 325
330 335 Leu Pro Gly Gly Ser Tyr Ala Leu Arg
Val Gln Gly Glu Pro Ser Lys 340 345
350 Gly Glu Met Leu Ala Gly Thr Ala Val Tyr Asn Gly Glu Val
Leu His 355 360 365
Phe His Thr Glu Asn Gly Arg Pro Ser Pro Ser Arg Gly Arg Phe Ala 370
375 380 Ala Lys Val Asp Phe
Gly Ser Lys Ser Val Asp Gly Ile Ile Asp Ser 385 390
395 400 Gly Asp Gly Leu His Met Gly Thr Gln Lys
Phe Lys Ala Ala Ile Asp 405 410
415 Gly Asn Gly Phe Lys Gly Thr Trp Thr Glu Asn Gly Gly Gly Asp
Val 420 425 430 Ser
Gly Lys Phe Tyr Gly Pro Ala Gly Glu Glu Val Ala Gly Lys Tyr 435
440 445 Ser Tyr Arg Pro Thr Asp
Ala Glu Lys Gly Gly Phe Gly Val Phe Ala 450 455
460 Gly Lys Lys Glu Gln Asp Gly Ser Gly Gly Gly
Gly Ala Thr Asn Asp 465 470 475
480 Asp Asp Val Lys Lys Ala Ala Thr Val Ala Ile Ala Ala Ala Tyr Asn
485 490 495 Asn Gly
Gln Glu Ile Asn Gly Phe Lys Ala Gly Glu Thr Ile Tyr Asp 500
505 510 Ile Asp Glu Asp Gly Thr Ile
Thr Lys Lys Asp Ala Thr Ala Ala Asp 515 520
525 Val Glu Ala Asp Asp Phe Lys Gly Leu Gly Leu Lys
Lys Val Val Thr 530 535 540
Asn Leu Thr Lys Thr Val Asn Glu Asn Lys Gln Asn Val Asp Ala Lys 545
550 555 560 Val Lys Ala
Ala Glu Ser Glu Ile Glu Lys Leu Thr Thr Lys Leu Ala 565
570 575 Asp Thr Asp Ala Ala Leu Ala Asp
Thr Asp Ala Ala Leu Asp Ala Thr 580 585
590 Thr Asn Ala Leu Asn Lys Leu Gly Glu Asn Ile Thr Thr
Phe Ala Glu 595 600 605
Glu Thr Lys Thr Asn Ile Val Lys Ile Asp Glu Lys Leu Glu Ala Val 610
615 620 Ala Asp Thr Val
Asp Lys His Ala Glu Ala Phe Asn Asp Ile Ala Asp 625 630
635 640 Ser Leu Asp Glu Thr Asn Thr Lys Ala
Asp Glu Ala Val Lys Thr Ala 645 650
655 Asn Glu Ala Lys Gln Thr Ala Glu Glu Thr Lys Gln Asn Val
Asp Ala 660 665 670
Lys Val Lys Ala Ala Glu Thr Ala Ala Gly Lys Ala Glu Ala Ala Ala
675 680 685 Gly Thr Ala Asn
Thr Ala Ala Asp Lys Ala Glu Ala Val Ala Ala Lys 690
695 700 Val Thr Asp Ile Lys Ala Asp Ile
Ala Thr Asn Lys Asp Asn Ile Ala 705 710
715 720 Lys Lys Ala Asn Ser Ala Asp Val Tyr Thr Arg Glu
Glu Ser Asp Ser 725 730
735 Lys Phe Val Arg Ile Asp Gly Leu Asn Ala Thr Thr Glu Lys Leu Asp
740 745 750 Thr Arg Leu
Ala Ser Ala Glu Lys Ser Ile Ala Asp His Asp Thr Arg 755
760 765 Leu Asn Gly Leu Asp Lys Thr Val
Ser Asp Leu Arg Lys Glu Thr Arg 770 775
780 Gln Gly Leu Ala Glu Gln Ala Ala Leu Ser Gly Leu Phe
Gln Pro Tyr 785 790 795
800 Asn Val Gly Arg Phe Asn Val Thr Ala Ala Val Gly Gly Tyr Lys Ser
805 810 815 Glu Ser Ala Val
Ala Ile Gly Thr Gly Phe Arg Phe Thr Glu Asn Phe 820
825 830 Ala Ala Lys Ala Gly Val Ala Val Gly
Thr Ser Ser Gly Ser Ser Ala 835 840
845 Ala Tyr His Val Gly Val Asn Tyr Glu Trp 850
855 1004425DNAArtificial SequenceSynthetic construct
100atgacttctg cgcccgactt caatgcaggc ggtaccggta tcggcagcaa cagcagagca
60acaacagcga aatcagcagc agtatcttac gccggtatca agaacgaaat gtgcaaagac
120agaagcatgc tctgtgccgg tcgggatgac gttgcggtta cagacaggga tgccaaaatc
180aatgcccccc ccccgaatct gcataccgga gactttccaa acccaaatga cgcatacaag
240aatttgatca acctcaaacc tgcaattgaa gcaggctata caggacgcgg ggtagaggta
300ggtatcgtcg acacaggcga atccgtcggc agcatatcct ttcccgaact gtatggcaga
360aaagaacacg gctataacga aaattacaaa aactatacgg cgtatatgcg gaaggaagcg
420cctgaagacg gaggcggtaa agacattgaa gcttctttcg acgatgaggc cgttatagag
480actgaagcaa agccgacgga tatccgccac gtaaaagaaa tcggacacat cgatttggtc
540tcccatatta ttggcgggcg ttccgtggac ggcagacctg caggcggtat tgcgcccgat
600gcgacgctac acataatgaa tacgaatgat gaaaccaaga acgaaatgat ggttgcagcc
660atccgcaatg catgggtcaa gctgggcgaa cgtggcgtgc gcatcgtcaa taacagtttt
720ggaacaacat cgagggcagg cactgccgac cttttccaaa tagccaattc ggaggagcag
780taccgccaag cgttgctcga ctattccggc ggtgataaaa cagacgaggg tatccgcctg
840atgcaacaga gcgattacgg caacctgtcc taccacatcc gtaataaaaa catgcttttc
900atcttttcga caggcaatga cgcacaagct cagcccaaca catatgccct attgccattt
960tatgaaaaag acgctcaaaa aggcattatc acagtcgcag gcgtagaccg cagtggagaa
1020aagttcaaac gggaaatgta tggagaaccg ggtacagaac cgcttgagta tggctccaac
1080cattgcggaa ttactgccat gtggtgcctg tcggcaccct atgaagcaag cgtccgtttc
1140acccgtacaa acccgattca aattgccgga acatcctttt ccgcacccat cgtaaccggc
1200acggcggctc tgctgctgca gaaatacccg tggatgagca acgacaacct gcgtaccacg
1260ttgctgacga cggctcagga catcggtgca gtcggcgtgg acagcaagtt cggctgggga
1320ctgctggatg cgggtaaggc catgaacgga cccgcgtcct ttccgttcgg cgactttacc
1380gccgatacga aaggtacatc cgatattgcc tactccttcc gtaacgacat ttcaggcacg
1440ggcggcctga tcaaaaaagg cggcagccaa ctgcaactgc acggcaacaa cacctatacg
1500ggcaaaacca ttatcgaagg cggttcgctg gtgttgtacg gcaacaacaa atcggatatg
1560cgcgtcgaaa ccaaaggtgc gctgatttat aacggggcgg catccggcgg cagcctgaac
1620agcgacggca ttgtctatct ggcagatacc gaccaatccg gcgcaaacga aaccgtacac
1680atcaaaggca gtctgcagct ggacggcaaa ggtacgctgt acacacgttt gggcaaactg
1740ctgaaagtgg acggtacggc gattatcggc ggcaagctgt acatgtcggc acgcggcaag
1800ggggcaggct atctcaacag taccggacga cgtgttccct tcctgagtgc cgccaaaatc
1860gggcaggatt attctttctt cacaaacatc gaaaccgacg gcggcctgct ggcttccctc
1920gacagcgtcg aaaaaacagc gggcagtgaa ggcgacacgc tgtcctatta tgtccgtcgc
1980ggcaatgcgg cacggactgc ttcggcagcg gcacattccg cgcccgccgg tctgaaacac
2040gccgtagaac agggcggcag caatctggaa aacctgatgg tcgaactgga tgcctccgaa
2100tcatccgcaa cacccgagac ggttgaaact gcggcagccg accgcacaga tatgccgggc
2160atccgcccct acggcgcaac tttccgcgca gcggcagccg tacagcatgc gaatgccgcc
2220gacggtgtac gcatcttcaa cagtctcgcc gctaccgtct atgccgacag taccgccgcc
2280catgccgata tgcagggacg ccgcctgaaa gccgtatcgg acgggttgga ccacaacggc
2340acgggtctgc gcgtcatcgc gcaaacccaa caggacggtg gaacgtggga acagggcggt
2400gttgaaggca aaatgcgcgg cagtacccaa accgtcggca ttgccgcgaa aaccggcgaa
2460aatacgacag cagccgccac actgggcatg ggacgcagca catggagcga aaacagtgca
2520aatgcaaaaa ccgacagcat tagtctgttt gcaggcatac ggcacgatgc gggcgatatc
2580ggctatctca aaggcctgtt ctcctacgga cgctacaaaa acagcatcag ccgcagcacc
2640ggtgcggacg aacatgcgga aggcagcgtc aacggcacgc tgatgcagct gggcgcactg
2700ggcggtgtca acgttccgtt tgccgcaacg ggagatttga cggtcgaagg cggtctgcgc
2760tacgacctgc tcaaacagga tgcattcgcc gaaaaaggca gtgctttggg ctggagcggc
2820aacagcctca ctgaaggcac gctggtcgga ctcgcgggtc tgaagctgtc gcaacccttg
2880agcgataaag ccgtcctgtt tgcaacggcg ggcgtggaac gcgacctgaa cggacgcgac
2940tacacggtaa cgggcggctt taccggcgcg actgcagcaa ccggcaagac gggggcacgc
3000aatatgccgc acacccgtct ggttgccggc ctgggcgcgg atgtcgaatt cggcaacggc
3060tggaacggct tggcacgtta cagctacgcc ggttccaaac agtacggcaa ccacagcgga
3120cgagtcggcg taggctaccg gttcctcgac ggtggcggag gcactggatc ctcagatttg
3180gcaaacgatt cttttatccg gcaggttctc gaccgtcagc atttcgaacc cgacgggaaa
3240taccacctat tcggcagcag gggggaactt gccgagcgca gcggccatat cggattggga
3300aaaatacaaa gccatcagtt gggcaacctg atgattcaac aggcggccat taaaggaaat
3360atcggctaca ttgtccgctt ttccgatcac gggcacgaag tccattcccc cttcgacaac
3420catgcctcac attccgattc tgatgaagcc ggtagtcccg ttgacggatt tagcctttac
3480cgcatccatt gggacggata cgaacaccat cccgccgacg gctatgacgg gccacagggc
3540ggcggctatc ccgctcccaa aggcgcgagg gatatataca gctacgacat aaaaggcgtt
3600gcccaaaata tccgcctcaa cctgaccgac aaccgcagca ccggacaacg gcttgccgac
3660cgtttccaca atgccggtag tatgctgacg caaggagtag gcgacggatt caaacgcgcc
3720acccgataca gccccgagct ggacagatcg ggcaatgccg ccgaagcctt caacggcact
3780gcagatatcg ttaaaaacat catcggcgcg gcaggagaaa ttgtcggcgc aggcgatgcc
3840gtgcagggca taagcgaagg ctcaaacatt gctgtcatgc acggcttggg tctgctttcc
3900accgaaaaca agatggcgcg catcaacgat ttggcagata tggcgcaact caaagactat
3960gccgcagcag ccatccgcga ttgggcagtc caaaacccca atgccgcaca aggcatagaa
4020gccgtcagca atatctttat ggcagccatc cccatcaaag ggattggagc tgttcgggga
4080aaatacggct tgggcggcat cacggcacat cctatcaagc ggtcgcagat gggcgcgatc
4140gcattgccga aagggaaatc cgccgtcagc gacaattttg ccgatgcggc atacgccaaa
4200tacccgtccc cttaccattc ccgaaatatc cgttcaaact tggagcagcg ttacggcaaa
4260gaaaacatca cctcctcaac cgtgccgccg tcaaacggca aaaatgtcaa actggcagac
4320caacgccacc cgaagacagg cgtaccgttt gacggtaaag ggtttccgaa ttttgagaag
4380cacgtgaaat atgatacgct cgagcaccac caccaccacc actga
44251011474PRTArtificial SequenceSynthetic construct 101Met Thr Ser Ala
Pro Asp Phe Asn Ala Gly Gly Thr Gly Ile Gly Ser 1 5
10 15 Asn Ser Arg Ala Thr Thr Ala Lys Ser
Ala Ala Val Ser Tyr Ala Gly 20 25
30 Ile Lys Asn Glu Met Cys Lys Asp Arg Ser Met Leu Cys Ala
Gly Arg 35 40 45
Asp Asp Val Ala Val Thr Asp Arg Asp Ala Lys Ile Asn Ala Pro Pro 50
55 60 Pro Asn Leu His Thr
Gly Asp Phe Pro Asn Pro Asn Asp Ala Tyr Lys 65 70
75 80 Asn Leu Ile Asn Leu Lys Pro Ala Ile Glu
Ala Gly Tyr Thr Gly Arg 85 90
95 Gly Val Glu Val Gly Ile Val Asp Thr Gly Glu Ser Val Gly Ser
Ile 100 105 110 Ser
Phe Pro Glu Leu Tyr Gly Arg Lys Glu His Gly Tyr Asn Glu Asn 115
120 125 Tyr Lys Asn Tyr Thr Ala
Tyr Met Arg Lys Glu Ala Pro Glu Asp Gly 130 135
140 Gly Gly Lys Asp Ile Glu Ala Ser Phe Asp Asp
Glu Ala Val Ile Glu 145 150 155
160 Thr Glu Ala Lys Pro Thr Asp Ile Arg His Val Lys Glu Ile Gly His
165 170 175 Ile Asp
Leu Val Ser His Ile Ile Gly Gly Arg Ser Val Asp Gly Arg 180
185 190 Pro Ala Gly Gly Ile Ala Pro
Asp Ala Thr Leu His Ile Met Asn Thr 195 200
205 Asn Asp Glu Thr Lys Asn Glu Met Met Val Ala Ala
Ile Arg Asn Ala 210 215 220
Trp Val Lys Leu Gly Glu Arg Gly Val Arg Ile Val Asn Asn Ser Phe 225
230 235 240 Gly Thr Thr
Ser Arg Ala Gly Thr Ala Asp Leu Phe Gln Ile Ala Asn 245
250 255 Ser Glu Glu Gln Tyr Arg Gln Ala
Leu Leu Asp Tyr Ser Gly Gly Asp 260 265
270 Lys Thr Asp Glu Gly Ile Arg Leu Met Gln Gln Ser Asp
Tyr Gly Asn 275 280 285
Leu Ser Tyr His Ile Arg Asn Lys Asn Met Leu Phe Ile Phe Ser Thr 290
295 300 Gly Asn Asp Ala
Gln Ala Gln Pro Asn Thr Tyr Ala Leu Leu Pro Phe 305 310
315 320 Tyr Glu Lys Asp Ala Gln Lys Gly Ile
Ile Thr Val Ala Gly Val Asp 325 330
335 Arg Ser Gly Glu Lys Phe Lys Arg Glu Met Tyr Gly Glu Pro
Gly Thr 340 345 350
Glu Pro Leu Glu Tyr Gly Ser Asn His Cys Gly Ile Thr Ala Met Trp
355 360 365 Cys Leu Ser Ala
Pro Tyr Glu Ala Ser Val Arg Phe Thr Arg Thr Asn 370
375 380 Pro Ile Gln Ile Ala Gly Thr Ser
Phe Ser Ala Pro Ile Val Thr Gly 385 390
395 400 Thr Ala Ala Leu Leu Leu Gln Lys Tyr Pro Trp Met
Ser Asn Asp Asn 405 410
415 Leu Arg Thr Thr Leu Leu Thr Thr Ala Gln Asp Ile Gly Ala Val Gly
420 425 430 Val Asp Ser
Lys Phe Gly Trp Gly Leu Leu Asp Ala Gly Lys Ala Met 435
440 445 Asn Gly Pro Ala Ser Phe Pro Phe
Gly Asp Phe Thr Ala Asp Thr Lys 450 455
460 Gly Thr Ser Asp Ile Ala Tyr Ser Phe Arg Asn Asp Ile
Ser Gly Thr 465 470 475
480 Gly Gly Leu Ile Lys Lys Gly Gly Ser Gln Leu Gln Leu His Gly Asn
485 490 495 Asn Thr Tyr Thr
Gly Lys Thr Ile Ile Glu Gly Gly Ser Leu Val Leu 500
505 510 Tyr Gly Asn Asn Lys Ser Asp Met Arg
Val Glu Thr Lys Gly Ala Leu 515 520
525 Ile Tyr Asn Gly Ala Ala Ser Gly Gly Ser Leu Asn Ser Asp
Gly Ile 530 535 540
Val Tyr Leu Ala Asp Thr Asp Gln Ser Gly Ala Asn Glu Thr Val His 545
550 555 560 Ile Lys Gly Ser Leu
Gln Leu Asp Gly Lys Gly Thr Leu Tyr Thr Arg 565
570 575 Leu Gly Lys Leu Leu Lys Val Asp Gly Thr
Ala Ile Ile Gly Gly Lys 580 585
590 Leu Tyr Met Ser Ala Arg Gly Lys Gly Ala Gly Tyr Leu Asn Ser
Thr 595 600 605 Gly
Arg Arg Val Pro Phe Leu Ser Ala Ala Lys Ile Gly Gln Asp Tyr 610
615 620 Ser Phe Phe Thr Asn Ile
Glu Thr Asp Gly Gly Leu Leu Ala Ser Leu 625 630
635 640 Asp Ser Val Glu Lys Thr Ala Gly Ser Glu Gly
Asp Thr Leu Ser Tyr 645 650
655 Tyr Val Arg Arg Gly Asn Ala Ala Arg Thr Ala Ser Ala Ala Ala His
660 665 670 Ser Ala
Pro Ala Gly Leu Lys His Ala Val Glu Gln Gly Gly Ser Asn 675
680 685 Leu Glu Asn Leu Met Val Glu
Leu Asp Ala Ser Glu Ser Ser Ala Thr 690 695
700 Pro Glu Thr Val Glu Thr Ala Ala Ala Asp Arg Thr
Asp Met Pro Gly 705 710 715
720 Ile Arg Pro Tyr Gly Ala Thr Phe Arg Ala Ala Ala Ala Val Gln His
725 730 735 Ala Asn Ala
Ala Asp Gly Val Arg Ile Phe Asn Ser Leu Ala Ala Thr 740
745 750 Val Tyr Ala Asp Ser Thr Ala Ala
His Ala Asp Met Gln Gly Arg Arg 755 760
765 Leu Lys Ala Val Ser Asp Gly Leu Asp His Asn Gly Thr
Gly Leu Arg 770 775 780
Val Ile Ala Gln Thr Gln Gln Asp Gly Gly Thr Trp Glu Gln Gly Gly 785
790 795 800 Val Glu Gly Lys
Met Arg Gly Ser Thr Gln Thr Val Gly Ile Ala Ala 805
810 815 Lys Thr Gly Glu Asn Thr Thr Ala Ala
Ala Thr Leu Gly Met Gly Arg 820 825
830 Ser Thr Trp Ser Glu Asn Ser Ala Asn Ala Lys Thr Asp Ser
Ile Ser 835 840 845
Leu Phe Ala Gly Ile Arg His Asp Ala Gly Asp Ile Gly Tyr Leu Lys 850
855 860 Gly Leu Phe Ser Tyr
Gly Arg Tyr Lys Asn Ser Ile Ser Arg Ser Thr 865 870
875 880 Gly Ala Asp Glu His Ala Glu Gly Ser Val
Asn Gly Thr Leu Met Gln 885 890
895 Leu Gly Ala Leu Gly Gly Val Asn Val Pro Phe Ala Ala Thr Gly
Asp 900 905 910 Leu
Thr Val Glu Gly Gly Leu Arg Tyr Asp Leu Leu Lys Gln Asp Ala 915
920 925 Phe Ala Glu Lys Gly Ser
Ala Leu Gly Trp Ser Gly Asn Ser Leu Thr 930 935
940 Glu Gly Thr Leu Val Gly Leu Ala Gly Leu Lys
Leu Ser Gln Pro Leu 945 950 955
960 Ser Asp Lys Ala Val Leu Phe Ala Thr Ala Gly Val Glu Arg Asp Leu
965 970 975 Asn Gly
Arg Asp Tyr Thr Val Thr Gly Gly Phe Thr Gly Ala Thr Ala 980
985 990 Ala Thr Gly Lys Thr Gly Ala
Arg Asn Met Pro His Thr Arg Leu Val 995 1000
1005 Ala Gly Leu Gly Ala Asp Val Glu Phe Gly Asn Gly
Trp Asn Gly Leu 1010 1015 1020
Ala Arg Tyr Ser Tyr Ala Gly Ser Lys Gln Tyr Gly Asn His Ser Gly
1025 1030 1035 1040Arg Val
Gly Val Gly Tyr Arg Phe Leu Asp Gly Gly Gly Gly Thr Gly
1045 1050 1055 Ser Ser Asp Leu Ala Asn
Asp Ser Phe Ile Arg Gln Val Leu Asp Arg 1060
1065 1070 Gln His Phe Glu Pro Asp Gly Lys Tyr His
Leu Phe Gly Ser Arg Gly 1075 1080
1085 Glu Leu Ala Glu Arg Ser Gly His Ile Gly Leu Gly Lys Ile
Gln Ser 1090 1095 1100
His Gln Leu Gly Asn Leu Met Ile Gln Gln Ala Ala Ile Lys Gly Asn 1105
1110 1115 1120Ile Gly Tyr Ile Val
Arg Phe Ser Asp His Gly His Glu Val His Ser 1125
1130 1135 Pro Phe Asp Asn His Ala Ser His Ser Asp
Ser Asp Glu Ala Gly Ser 1140 1145
1150 Pro Val Asp Gly Phe Ser Leu Tyr Arg Ile His Trp Asp Gly Tyr
Glu 1155 1160 1165 His
His Pro Ala Asp Gly Tyr Asp Gly Pro Gln Gly Gly Gly Tyr Pro 1170
1175 1180 Ala Pro Lys Gly Ala Arg
Asp Ile Tyr Ser Tyr Asp Ile Lys Gly Val 1185 1190
1195 1200Ala Gln Asn Ile Arg Leu Asn Leu Thr Asp Asn
Arg Ser Thr Gly Gln 1205 1210
1215 Arg Leu Ala Asp Arg Phe His Asn Ala Gly Ser Met Leu Thr Gln Gly
1220 1225 1230 Val Gly
Asp Gly Phe Lys Arg Ala Thr Arg Tyr Ser Pro Glu Leu Asp 1235
1240 1245 Arg Ser Gly Asn Ala Ala Glu
Ala Phe Asn Gly Thr Ala Asp Ile Val 1250 1255
1260 Lys Asn Ile Ile Gly Ala Ala Gly Glu Ile Val Gly
Ala Gly Asp Ala 1265 1270 1275
1280Val Gln Gly Ile Ser Glu Gly Ser Asn Ile Ala Val Met His Gly Leu
1285 1290 1295 Gly Leu Leu
Ser Thr Glu Asn Lys Met Ala Arg Ile Asn Asp Leu Ala 1300
1305 1310 Asp Met Ala Gln Leu Lys Asp Tyr
Ala Ala Ala Ala Ile Arg Asp Trp 1315 1320
1325 Ala Val Gln Asn Pro Asn Ala Ala Gln Gly Ile Glu Ala
Val Ser Asn 1330 1335 1340
Ile Phe Met Ala Ala Ile Pro Ile Lys Gly Ile Gly Ala Val Arg Gly 1345
1350 1355 1360Lys Tyr Gly Leu
Gly Gly Ile Thr Ala His Pro Ile Lys Arg Ser Gln 1365
1370 1375 Met Gly Ala Ile Ala Leu Pro Lys Gly
Lys Ser Ala Val Ser Asp Asn 1380 1385
1390 Phe Ala Asp Ala Ala Tyr Ala Lys Tyr Pro Ser Pro Tyr His
Ser Arg 1395 1400 1405
Asn Ile Arg Ser Asn Leu Glu Gln Arg Tyr Gly Lys Glu Asn Ile Thr 1410
1415 1420 Ser Ser Thr Val Pro
Pro Ser Asn Gly Lys Asn Val Lys Leu Ala Asp 1425 1430
1435 1440Gln Arg His Pro Lys Thr Gly Val Pro Phe
Asp Gly Lys Gly Phe Pro 1445 1450
1455 Asn Phe Glu Lys His Val Lys Tyr Asp Thr Leu Glu His His His
His 1460 1465 1470 His
His 1023939DNAArtificial SequenceSynthetic construct 102atgacttctg
cgcccgactt caatgcaggc ggtaccggta tcggcagcaa cagcagagca 60acaacagcga
aatcagcagc agtatcttac gccggtatca agaacgaaat gtgcaaagac 120agaagcatgc
tctgtgccgg tcgggatgac gttgcggtta cagacaggga tgccaaaatc 180aatgcccccc
ccccgaatct gcataccgga gactttccaa acccaaatga cgcatacaag 240aatttgatca
acctcaaacc tgcaattgaa gcaggctata caggacgcgg ggtagaggta 300ggtatcgtcg
acacaggcga atccgtcggc agcatatcct ttcccgaact gtatggcaga 360aaagaacacg
gctataacga aaattacaaa aactatacgg cgtatatgcg gaaggaagcg 420cctgaagacg
gaggcggtaa agacattgaa gcttctttcg acgatgaggc cgttatagag 480actgaagcaa
agccgacgga tatccgccac gtaaaagaaa tcggacacat cgatttggtc 540tcccatatta
ttggcgggcg ttccgtggac ggcagacctg caggcggtat tgcgcccgat 600gcgacgctac
acataatgaa tacgaatgat gaaaccaaga acgaaatgat ggttgcagcc 660atccgcaatg
catgggtcaa gctgggcgaa cgtggcgtgc gcatcgtcaa taacagtttt 720ggaacaacat
cgagggcagg cactgccgac cttttccaaa tagccaattc ggaggagcag 780taccgccaag
cgttgctcga ctattccggc ggtgataaaa cagacgaggg tatccgcctg 840atgcaacaga
gcgattacgg caacctgtcc taccacatcc gtaataaaaa catgcttttc 900atcttttcga
caggcaatga cgcacaagct cagcccaaca catatgccct attgccattt 960tatgaaaaag
acgctcaaaa aggcattatc acagtcgcag gcgtagaccg cagtggagaa 1020aagttcaaac
gggaaatgta tggagaaccg ggtacagaac cgcttgagta tggctccaac 1080cattgcggaa
ttactgccat gtggtgcctg tcggcaccct atgaagcaag cgtccgtttc 1140acccgtacaa
acccgattca aattgccgga acatcctttt ccgcacccat cgtaaccggc 1200acggcggctc
tgctgctgca gaaatacccg tggatgagca acgacaacct gcgtaccacg 1260ttgctgacga
cggctcagga catcggtgca gtcggcgtgg acagcaagtt cggctgggga 1320ctgctggatg
cgggtaaggc catgaacgga cccgcgtcct ttccgttcgg cgactttacc 1380gccgatacga
aaggtacatc cgatattgcc tactccttcc gtaacgacat ttcaggcacg 1440ggcggcctga
tcaaaaaagg cggcagccaa ctgcaactgc acggcaacaa cacctatacg 1500ggcaaaacca
ttatcgaagg cggttcgctg gtgttgtacg gcaacaacaa atcggatatg 1560cgcgtcgaaa
ccaaaggtgc gctgatttat aacggggcgg catccggcgg cagcctgaac 1620agcgacggca
ttgtctatct ggcagatacc gaccaatccg gcgcaaacga aaccgtacac 1680atcaaaggca
gtctgcagct ggacggcaaa ggtacgctgt acacacgttt gggcaaactg 1740ctgaaagtgg
acggtacggc gattatcggc ggcaagctgt acatgtcggc acgcggcaag 1800ggggcaggct
atctcaacag taccggacga cgtgttccct tcctgagtgc cgccaaaatc 1860gggcaggatt
attctttctt cacaaacatc gaaaccgacg gcggcctgct ggcttccctc 1920gacagcgtcg
aaaaaacagc gggcagtgaa ggcgacacgc tgtcctatta tgtccgtcgc 1980ggcaatgcgg
cacggactgc ttcggcagcg gcacattccg cgcccgccgg tctgaaacac 2040gccgtagaac
agggcggcag caatctggaa aacctgatgg tcgaactgga tgcctccgaa 2100tcatccgcaa
cacccgagac ggttgaaact gcggcagccg accgcacaga tatgccgggc 2160atccgcccct
acggcgcaac tttccgcgca gcggcagccg tacagcatgc gaatgccgcc 2220gacggtgtac
gcatcttcaa cagtctcgcc gctaccgtct atgccgacag taccgccgcc 2280catgccgata
tgcagggacg ccgcctgaaa gccgtatcgg acgggttgga ccacaacggc 2340acgggtctgc
gcgtcatcgc gcaaacccaa caggacggtg gaacgtggga acagggcggt 2400gttgaaggca
aaatgcgcgg cagtacccaa accgtcggca ttgccgcgaa aaccggcgaa 2460aatacgacag
cagccgccac actgggcatg ggacgcagca catggagcga aaacagtgca 2520aatgcaaaaa
ccgacagcat tagtctgttt gcaggcatac ggcacgatgc gggcgatatc 2580ggctatctca
aaggcctgtt ctcctacgga cgctacaaaa acagcatcag ccgcagcacc 2640ggtgcggacg
aacatgcgga aggcagcgtc aacggcacgc tgatgcagct gggcgcactg 2700ggcggtgtca
acgttccgtt tgccgcaacg ggagatttga cggtcgaagg cggtctgcgc 2760tacgacctgc
tcaaacagga tgcattcgcc gaaaaaggca gtgctttggg ctggagcggc 2820aacagcctca
ctgaaggcac gctggtcgga ctcgcgggtc tgaagctgtc gcaacccttg 2880agcgataaag
ccgtcctgtt tgcaacggcg ggcgtggaac gcgacctgaa cggacgcgac 2940tacacggtaa
cgggcggctt taccggcgcg actgcagcaa ccggcaagac gggggcacgc 3000aatatgccgc
acacccgtct ggttgccggc ctgggcgcgg atgtcgaatt cggcaacggc 3060tggaacggct
tggcacgtta cagctacgcc ggttccaaac agtacggcaa ccacagcgga 3120cgagtcggcg
taggctaccg gttcctcgag ggatccggag ggggtggtgt cgccgccgac 3180atcggtgcgg
ggcttgccga tgcactaacc gcaccgctcg accataaaga caaaggtttg 3240cagtctttga
cgctggatca gtccgtcagg aaaaacgaga aactgaagct ggcggcacaa 3300ggtgcggaaa
aaacttatgg aaacggtgac agcctcaata cgggcaaatt gaagaacgac 3360aaggtcagcc
gtttcgactt tatccgccaa atcgaagtgg acgggcagct cattaccttg 3420gagagtggag
agttccaagt atacaaacaa agccattccg ccttaaccgc ctttcagacc 3480gagcaaatac
aagattcgga gcattccggg aagatggttg cgaaacgcca gttcagaatc 3540ggcgacatag
cgggcgaaca tacatctttt gacaagcttc ccgaaggcgg cagggcgaca 3600tatcgcggga
cggcgttcgg ttcagacgat gccggcggaa aactgaccta caccatagat 3660ttcgccgcca
agcagggaaa cggcaaaatc gaacatttga aatcgccaga actcaatgtc 3720gacctggccg
ccgccgatat caagccggat ggaaaacgcc atgccgtcat cagcggttcc 3780gtcctttaca
accaagccga gaaaggcagt tactccctcg gtatctttgg cggaaaagcc 3840caggaagttg
ccggcagcgc ggaagtgaaa accgtaaacg gcatacgcca tatcggcctt 3900gccgccaagc
aactcgagca ccaccaccac caccactga
39391031312PRTArtificial SequenceSynthetic construct 103Met Thr Ser Ala
Pro Asp Phe Asn Ala Gly Gly Thr Gly Ile Gly Ser 1 5
10 15 Asn Ser Arg Ala Thr Thr Ala Lys Ser
Ala Ala Val Ser Tyr Ala Gly 20 25
30 Ile Lys Asn Glu Met Cys Lys Asp Arg Ser Met Leu Cys Ala
Gly Arg 35 40 45
Asp Asp Val Ala Val Thr Asp Arg Asp Ala Lys Ile Asn Ala Pro Pro 50
55 60 Pro Asn Leu His Thr
Gly Asp Phe Pro Asn Pro Asn Asp Ala Tyr Lys 65 70
75 80 Asn Leu Ile Asn Leu Lys Pro Ala Ile Glu
Ala Gly Tyr Thr Gly Arg 85 90
95 Gly Val Glu Val Gly Ile Val Asp Thr Gly Glu Ser Val Gly Ser
Ile 100 105 110 Ser
Phe Pro Glu Leu Tyr Gly Arg Lys Glu His Gly Tyr Asn Glu Asn 115
120 125 Tyr Lys Asn Tyr Thr Ala
Tyr Met Arg Lys Glu Ala Pro Glu Asp Gly 130 135
140 Gly Gly Lys Asp Ile Glu Ala Ser Phe Asp Asp
Glu Ala Val Ile Glu 145 150 155
160 Thr Glu Ala Lys Pro Thr Asp Ile Arg His Val Lys Glu Ile Gly His
165 170 175 Ile Asp
Leu Val Ser His Ile Ile Gly Gly Arg Ser Val Asp Gly Arg 180
185 190 Pro Ala Gly Gly Ile Ala Pro
Asp Ala Thr Leu His Ile Met Asn Thr 195 200
205 Asn Asp Glu Thr Lys Asn Glu Met Met Val Ala Ala
Ile Arg Asn Ala 210 215 220
Trp Val Lys Leu Gly Glu Arg Gly Val Arg Ile Val Asn Asn Ser Phe 225
230 235 240 Gly Thr Thr
Ser Arg Ala Gly Thr Ala Asp Leu Phe Gln Ile Ala Asn 245
250 255 Ser Glu Glu Gln Tyr Arg Gln Ala
Leu Leu Asp Tyr Ser Gly Gly Asp 260 265
270 Lys Thr Asp Glu Gly Ile Arg Leu Met Gln Gln Ser Asp
Tyr Gly Asn 275 280 285
Leu Ser Tyr His Ile Arg Asn Lys Asn Met Leu Phe Ile Phe Ser Thr 290
295 300 Gly Asn Asp Ala
Gln Ala Gln Pro Asn Thr Tyr Ala Leu Leu Pro Phe 305 310
315 320 Tyr Glu Lys Asp Ala Gln Lys Gly Ile
Ile Thr Val Ala Gly Val Asp 325 330
335 Arg Ser Gly Glu Lys Phe Lys Arg Glu Met Tyr Gly Glu Pro
Gly Thr 340 345 350
Glu Pro Leu Glu Tyr Gly Ser Asn His Cys Gly Ile Thr Ala Met Trp
355 360 365 Cys Leu Ser Ala
Pro Tyr Glu Ala Ser Val Arg Phe Thr Arg Thr Asn 370
375 380 Pro Ile Gln Ile Ala Gly Thr Ser
Phe Ser Ala Pro Ile Val Thr Gly 385 390
395 400 Thr Ala Ala Leu Leu Leu Gln Lys Tyr Pro Trp Met
Ser Asn Asp Asn 405 410
415 Leu Arg Thr Thr Leu Leu Thr Thr Ala Gln Asp Ile Gly Ala Val Gly
420 425 430 Val Asp Ser
Lys Phe Gly Trp Gly Leu Leu Asp Ala Gly Lys Ala Met 435
440 445 Asn Gly Pro Ala Ser Phe Pro Phe
Gly Asp Phe Thr Ala Asp Thr Lys 450 455
460 Gly Thr Ser Asp Ile Ala Tyr Ser Phe Arg Asn Asp Ile
Ser Gly Thr 465 470 475
480 Gly Gly Leu Ile Lys Lys Gly Gly Ser Gln Leu Gln Leu His Gly Asn
485 490 495 Asn Thr Tyr Thr
Gly Lys Thr Ile Ile Glu Gly Gly Ser Leu Val Leu 500
505 510 Tyr Gly Asn Asn Lys Ser Asp Met Arg
Val Glu Thr Lys Gly Ala Leu 515 520
525 Ile Tyr Asn Gly Ala Ala Ser Gly Gly Ser Leu Asn Ser Asp
Gly Ile 530 535 540
Val Tyr Leu Ala Asp Thr Asp Gln Ser Gly Ala Asn Glu Thr Val His 545
550 555 560 Ile Lys Gly Ser Leu
Gln Leu Asp Gly Lys Gly Thr Leu Tyr Thr Arg 565
570 575 Leu Gly Lys Leu Leu Lys Val Asp Gly Thr
Ala Ile Ile Gly Gly Lys 580 585
590 Leu Tyr Met Ser Ala Arg Gly Lys Gly Ala Gly Tyr Leu Asn Ser
Thr 595 600 605 Gly
Arg Arg Val Pro Phe Leu Ser Ala Ala Lys Ile Gly Gln Asp Tyr 610
615 620 Ser Phe Phe Thr Asn Ile
Glu Thr Asp Gly Gly Leu Leu Ala Ser Leu 625 630
635 640 Asp Ser Val Glu Lys Thr Ala Gly Ser Glu Gly
Asp Thr Leu Ser Tyr 645 650
655 Tyr Val Arg Arg Gly Asn Ala Ala Arg Thr Ala Ser Ala Ala Ala His
660 665 670 Ser Ala
Pro Ala Gly Leu Lys His Ala Val Glu Gln Gly Gly Ser Asn 675
680 685 Leu Glu Asn Leu Met Val Glu
Leu Asp Ala Ser Glu Ser Ser Ala Thr 690 695
700 Pro Glu Thr Val Glu Thr Ala Ala Ala Asp Arg Thr
Asp Met Pro Gly 705 710 715
720 Ile Arg Pro Tyr Gly Ala Thr Phe Arg Ala Ala Ala Ala Val Gln His
725 730 735 Ala Asn Ala
Ala Asp Gly Val Arg Ile Phe Asn Ser Leu Ala Ala Thr 740
745 750 Val Tyr Ala Asp Ser Thr Ala Ala
His Ala Asp Met Gln Gly Arg Arg 755 760
765 Leu Lys Ala Val Ser Asp Gly Leu Asp His Asn Gly Thr
Gly Leu Arg 770 775 780
Val Ile Ala Gln Thr Gln Gln Asp Gly Gly Thr Trp Glu Gln Gly Gly 785
790 795 800 Val Glu Gly Lys
Met Arg Gly Ser Thr Gln Thr Val Gly Ile Ala Ala 805
810 815 Lys Thr Gly Glu Asn Thr Thr Ala Ala
Ala Thr Leu Gly Met Gly Arg 820 825
830 Ser Thr Trp Ser Glu Asn Ser Ala Asn Ala Lys Thr Asp Ser
Ile Ser 835 840 845
Leu Phe Ala Gly Ile Arg His Asp Ala Gly Asp Ile Gly Tyr Leu Lys 850
855 860 Gly Leu Phe Ser Tyr
Gly Arg Tyr Lys Asn Ser Ile Ser Arg Ser Thr 865 870
875 880 Gly Ala Asp Glu His Ala Glu Gly Ser Val
Asn Gly Thr Leu Met Gln 885 890
895 Leu Gly Ala Leu Gly Gly Val Asn Val Pro Phe Ala Ala Thr Gly
Asp 900 905 910 Leu
Thr Val Glu Gly Gly Leu Arg Tyr Asp Leu Leu Lys Gln Asp Ala 915
920 925 Phe Ala Glu Lys Gly Ser
Ala Leu Gly Trp Ser Gly Asn Ser Leu Thr 930 935
940 Glu Gly Thr Leu Val Gly Leu Ala Gly Leu Lys
Leu Ser Gln Pro Leu 945 950 955
960 Ser Asp Lys Ala Val Leu Phe Ala Thr Ala Gly Val Glu Arg Asp Leu
965 970 975 Asn Gly
Arg Asp Tyr Thr Val Thr Gly Gly Phe Thr Gly Ala Thr Ala 980
985 990 Ala Thr Gly Lys Thr Gly Ala
Arg Asn Met Pro His Thr Arg Leu Val 995 1000
1005 Ala Gly Leu Gly Ala Asp Val Glu Phe Gly Asn Gly
Trp Asn Gly Leu 1010 1015 1020
Ala Arg Tyr Ser Tyr Ala Gly Ser Lys Gln Tyr Gly Asn His Ser Gly
1025 1030 1035 1040Arg Val
Gly Val Gly Tyr Arg Phe Leu Glu Gly Ser Gly Gly Gly Gly
1045 1050 1055 Val Ala Ala Asp Ile Gly
Ala Gly Leu Ala Asp Ala Leu Thr Ala Pro 1060
1065 1070 Leu Asp His Lys Asp Lys Gly Leu Gln Ser
Leu Thr Leu Asp Gln Ser 1075 1080
1085 Val Arg Lys Asn Glu Lys Leu Lys Leu Ala Ala Gln Gly Ala
Glu Lys 1090 1095 1100
Thr Tyr Gly Asn Gly Asp Ser Leu Asn Thr Gly Lys Leu Lys Asn Asp 1105
1110 1115 1120Lys Val Ser Arg Phe
Asp Phe Ile Arg Gln Ile Glu Val Asp Gly Gln 1125
1130 1135 Leu Ile Thr Leu Glu Ser Gly Glu Phe Gln
Val Tyr Lys Gln Ser His 1140 1145
1150 Ser Ala Leu Thr Ala Phe Gln Thr Glu Gln Ile Gln Asp Ser Glu
His 1155 1160 1165 Ser
Gly Lys Met Val Ala Lys Arg Gln Phe Arg Ile Gly Asp Ile Ala 1170
1175 1180 Gly Glu His Thr Ser Phe
Asp Lys Leu Pro Glu Gly Gly Arg Ala Thr 1185 1190
1195 1200Tyr Arg Gly Thr Ala Phe Gly Ser Asp Asp Ala
Gly Gly Lys Leu Thr 1205 1210
1215 Tyr Thr Ile Asp Phe Ala Ala Lys Gln Gly Asn Gly Lys Ile Glu His
1220 1225 1230 Leu Lys
Ser Pro Glu Leu Asn Val Asp Leu Ala Ala Ala Asp Ile Lys 1235
1240 1245 Pro Asp Gly Lys Arg His Ala
Val Ile Ser Gly Ser Val Leu Tyr Asn 1250 1255
1260 Gln Ala Glu Lys Gly Ser Tyr Ser Leu Gly Ile Phe
Gly Gly Lys Ala 1265 1270 1275
1280Gln Glu Val Ala Gly Ser Ala Glu Val Lys Thr Val Asn Gly Ile Arg
1285 1290 1295 His Ile Gly
Leu Ala Ala Lys Gln Leu Glu His His His His His His 1300
1305 1310 1044344DNAArtificial
SequenceSynthetic construct 104atgacttctg cgcccgactt caatgcaggc
ggtaccggta tcggcagcaa cagcagagca 60acaacagcga aatcagcagc agtatcttac
gccggtatca agaacgaaat gtgcaaagac 120agaagcatgc tctgtgccgg tcgggatgac
gttgcggtta cagacaggga tgccaaaatc 180aatgcccccc ccccgaatct gcataccgga
gactttccaa acccaaatga cgcatacaag 240aatttgatca acctcaaacc tgcaattgaa
gcaggctata caggacgcgg ggtagaggta 300ggtatcgtcg acacaggcga atccgtcggc
agcatatcct ttcccgaact gtatggcaga 360aaagaacacg gctataacga aaattacaaa
aactatacgg cgtatatgcg gaaggaagcg 420cctgaagacg gaggcggtaa agacattgaa
gcttctttcg acgatgaggc cgttatagag 480actgaagcaa agccgacgga tatccgccac
gtaaaagaaa tcggacacat cgatttggtc 540tcccatatta ttggcgggcg ttccgtggac
ggcagacctg caggcggtat tgcgcccgat 600gcgacgctac acataatgaa tacgaatgat
gaaaccaaga acgaaatgat ggttgcagcc 660atccgcaatg catgggtcaa gctgggcgaa
cgtggcgtgc gcatcgtcaa taacagtttt 720ggaacaacat cgagggcagg cactgccgac
cttttccaaa tagccaattc ggaggagcag 780taccgccaag cgttgctcga ctattccggc
ggtgataaaa cagacgaggg tatccgcctg 840atgcaacaga gcgattacgg caacctgtcc
taccacatcc gtaataaaaa catgcttttc 900atcttttcga caggcaatga cgcacaagct
cagcccaaca catatgccct attgccattt 960tatgaaaaag acgctcaaaa aggcattatc
acagtcgcag gcgtagaccg cagtggagaa 1020aagttcaaac gggaaatgta tggagaaccg
ggtacagaac cgcttgagta tggctccaac 1080cattgcggaa ttactgccat gtggtgcctg
tcggcaccct atgaagcaag cgtccgtttc 1140acccgtacaa acccgattca aattgccgga
acatcctttt ccgcacccat cgtaaccggc 1200acggcggctc tgctgctgca gaaatacccg
tggatgagca acgacaacct gcgtaccacg 1260ttgctgacga cggctcagga catcggtgca
gtcggcgtgg acagcaagtt cggctgggga 1320ctgctggatg cgggtaaggc catgaacgga
cccgcgtcct ttccgttcgg cgactttacc 1380gccgatacga aaggtacatc cgatattgcc
tactccttcc gtaacgacat ttcaggcacg 1440ggcggcctga tcaaaaaagg cggcagccaa
ctgcaactgc acggcaacaa cacctatacg 1500ggcaaaacca ttatcgaagg cggttcgctg
gtgttgtacg gcaacaacaa atcggatatg 1560cgcgtcgaaa ccaaaggtgc gctgatttat
aacggggcgg catccggcgg cagcctgaac 1620agcgacggca ttgtctatct ggcagatacc
gaccaatccg gcgcaaacga aaccgtacac 1680atcaaaggca gtctgcagct ggacggcaaa
ggtacgctgt acacacgttt gggcaaactg 1740ctgaaagtgg acggtacggc gattatcggc
ggcaagctgt acatgtcggc acgcggcaag 1800ggggcaggct atctcaacag taccggacga
cgtgttccct tcctgagtgc cgccaaaatc 1860gggcaggatt attctttctt cacaaacatc
gaaaccgacg gcggcctgct ggcttccctc 1920gacagcgtcg aaaaaacagc gggcagtgaa
ggcgacacgc tgtcctatta tgtccgtcgc 1980ggcaatgcgg cacggactgc ttcggcagcg
gcacattccg cgcccgccgg tctgaaacac 2040gccgtagaac agggcggcag caatctggaa
aacctgatgg tcgaactgga tgcctccgaa 2100tcatccgcaa cacccgagac ggttgaaact
gcggcagccg accgcacaga tatgccgggc 2160atccgcccct acggcgcaac tttccgcgca
gcggcagccg tacagcatgc gaatgccgcc 2220gacggtgtac gcatcttcaa cagtctcgcc
gctaccgtct atgccgacag taccgccgcc 2280catgccgata tgcagggacg ccgcctgaaa
gccgtatcgg acgggttgga ccacaacggc 2340acgggtctgc gcgtcatcgc gcaaacccaa
caggacggtg gaacgtggga acagggcggt 2400gttgaaggca aaatgcgcgg cagtacccaa
accgtcggca ttgccgcgaa aaccggcgaa 2460aatacgacag cagccgccac actgggcatg
ggacgcagca catggagcga aaacagtgca 2520aatgcaaaaa ccgacagcat tagtctgttt
gcaggcatac ggcacgatgc gggcgatatc 2580ggctatctca aaggcctgtt ctcctacgga
cgctacaaaa acagcatcag ccgcagcacc 2640ggtgcggacg aacatgcgga aggcagcgtc
aacggcacgc tgatgcagct gggcgcactg 2700ggcggtgtca acgttccgtt tgccgcaacg
ggagatttga cggtcgaagg cggtctgcgc 2760tacgacctgc tcaaacagga tgcattcgcc
gaaaaaggca gtgctttggg ctggagcggc 2820aacagcctca ctgaaggcac gctggtcgga
ctcgcgggtc tgaagctgtc gcaacccttg 2880agcgataaag ccgtcctgtt tgcaacggcg
ggcgtggaac gcgacctgaa cggacgcgac 2940tacacggtaa cgggcggctt taccggcgcg
actgcagcaa ccggcaagac gggggcacgc 3000aatatgccgc acacccgtct ggttgccggc
ctgggcgcgg atgtcgaatt cggcaacggc 3060tggaacggct tggcacgtta cagctacgcc
ggttccaaac agtacggcaa ccacagcgga 3120cgagtcggcg taggctaccg gttcctcgag
ggtggcggag gcactggatc cgccacaaac 3180gacgacgatg ttaaaaaagc tgccactgtg
gccattgctg ctgcctacaa caatggccaa 3240gaaatcaacg gtttcaaagc tggagagacc
atctacgaca ttgatgaaga cggcacaatt 3300accaaaaaag acgcaactgc agccgatgtt
gaagccgacg actttaaagg tctgggtctg 3360aaaaaagtcg tgactaacct gaccaaaacc
gtcaatgaaa acaaacaaaa cgtcgatgcc 3420aaagtaaaag ctgcagaatc tgaaatagaa
aagttaacaa ccaagttagc agacactgat 3480gccgctttag cagatactga tgccgctctg
gatgcaacca ccaacgcctt gaataaattg 3540ggagaaaata taacgacatt tgctgaagag
actaagacaa atatcgtaaa aattgatgaa 3600aaattagaag ccgtggctga taccgtcgac
aagcatgccg aagcattcaa cgatatcgcc 3660gattcattgg atgaaaccaa cactaaggca
gacgaagccg tcaaaaccgc caatgaagcc 3720aaacagacgg ccgaagaaac caaacaaaac
gtcgatgcca aagtaaaagc tgcagaaact 3780gcagcaggca aagccgaagc tgccgctggc
acagctaata ctgcagccga caaggccgaa 3840gctgtcgctg caaaagttac cgacatcaaa
gctgatatcg ctacgaacaa agataatatt 3900gctaaaaaag caaacagtgc cgacgtgtac
accagagaag agtctgacag caaatttgtc 3960agaattgatg gtctgaacgc tactaccgaa
aaattggaca cacgcttggc ttctgctgaa 4020aaatccattg ccgatcacga tactcgcctg
aacggtttgg ataaaacagt gtcagacctg 4080cgcaaagaaa cccgccaagg ccttgcagaa
caagccgcgc tctccggtct gttccaacct 4140tacaacgtgg gtcggttcaa tgtaacggct
gcagtcggcg gctacaaatc cgaatcggca 4200gtcgccatcg gtaccggctt ccgctttacc
gaaaactttg ccgccaaagc aggcgtggca 4260gtcggcactt cgtccggttc ttccgcagcc
taccatgtcg gcgtcaatta cgagtggctc 4320gagcaccacc accaccacca ctga
43441051447PRTArtificial
SequenceSynthetic construct 105Met Thr Ser Ala Pro Asp Phe Asn Ala Gly
Gly Thr Gly Ile Gly Ser 1 5 10
15 Asn Ser Arg Ala Thr Thr Ala Lys Ser Ala Ala Val Ser Tyr Ala
Gly 20 25 30 Ile
Lys Asn Glu Met Cys Lys Asp Arg Ser Met Leu Cys Ala Gly Arg 35
40 45 Asp Asp Val Ala Val Thr
Asp Arg Asp Ala Lys Ile Asn Ala Pro Pro 50 55
60 Pro Asn Leu His Thr Gly Asp Phe Pro Asn Pro
Asn Asp Ala Tyr Lys 65 70 75
80 Asn Leu Ile Asn Leu Lys Pro Ala Ile Glu Ala Gly Tyr Thr Gly Arg
85 90 95 Gly Val
Glu Val Gly Ile Val Asp Thr Gly Glu Ser Val Gly Ser Ile 100
105 110 Ser Phe Pro Glu Leu Tyr Gly
Arg Lys Glu His Gly Tyr Asn Glu Asn 115 120
125 Tyr Lys Asn Tyr Thr Ala Tyr Met Arg Lys Glu Ala
Pro Glu Asp Gly 130 135 140
Gly Gly Lys Asp Ile Glu Ala Ser Phe Asp Asp Glu Ala Val Ile Glu 145
150 155 160 Thr Glu Ala
Lys Pro Thr Asp Ile Arg His Val Lys Glu Ile Gly His 165
170 175 Ile Asp Leu Val Ser His Ile Ile
Gly Gly Arg Ser Val Asp Gly Arg 180 185
190 Pro Ala Gly Gly Ile Ala Pro Asp Ala Thr Leu His Ile
Met Asn Thr 195 200 205
Asn Asp Glu Thr Lys Asn Glu Met Met Val Ala Ala Ile Arg Asn Ala 210
215 220 Trp Val Lys Leu
Gly Glu Arg Gly Val Arg Ile Val Asn Asn Ser Phe 225 230
235 240 Gly Thr Thr Ser Arg Ala Gly Thr Ala
Asp Leu Phe Gln Ile Ala Asn 245 250
255 Ser Glu Glu Gln Tyr Arg Gln Ala Leu Leu Asp Tyr Ser Gly
Gly Asp 260 265 270
Lys Thr Asp Glu Gly Ile Arg Leu Met Gln Gln Ser Asp Tyr Gly Asn
275 280 285 Leu Ser Tyr His
Ile Arg Asn Lys Asn Met Leu Phe Ile Phe Ser Thr 290
295 300 Gly Asn Asp Ala Gln Ala Gln Pro
Asn Thr Tyr Ala Leu Leu Pro Phe 305 310
315 320 Tyr Glu Lys Asp Ala Gln Lys Gly Ile Ile Thr Val
Ala Gly Val Asp 325 330
335 Arg Ser Gly Glu Lys Phe Lys Arg Glu Met Tyr Gly Glu Pro Gly Thr
340 345 350 Glu Pro Leu
Glu Tyr Gly Ser Asn His Cys Gly Ile Thr Ala Met Trp 355
360 365 Cys Leu Ser Ala Pro Tyr Glu Ala
Ser Val Arg Phe Thr Arg Thr Asn 370 375
380 Pro Ile Gln Ile Ala Gly Thr Ser Phe Ser Ala Pro Ile
Val Thr Gly 385 390 395
400 Thr Ala Ala Leu Leu Leu Gln Lys Tyr Pro Trp Met Ser Asn Asp Asn
405 410 415 Leu Arg Thr Thr
Leu Leu Thr Thr Ala Gln Asp Ile Gly Ala Val Gly 420
425 430 Val Asp Ser Lys Phe Gly Trp Gly Leu
Leu Asp Ala Gly Lys Ala Met 435 440
445 Asn Gly Pro Ala Ser Phe Pro Phe Gly Asp Phe Thr Ala Asp
Thr Lys 450 455 460
Gly Thr Ser Asp Ile Ala Tyr Ser Phe Arg Asn Asp Ile Ser Gly Thr 465
470 475 480 Gly Gly Leu Ile Lys
Lys Gly Gly Ser Gln Leu Gln Leu His Gly Asn 485
490 495 Asn Thr Tyr Thr Gly Lys Thr Ile Ile Glu
Gly Gly Ser Leu Val Leu 500 505
510 Tyr Gly Asn Asn Lys Ser Asp Met Arg Val Glu Thr Lys Gly Ala
Leu 515 520 525 Ile
Tyr Asn Gly Ala Ala Ser Gly Gly Ser Leu Asn Ser Asp Gly Ile 530
535 540 Val Tyr Leu Ala Asp Thr
Asp Gln Ser Gly Ala Asn Glu Thr Val His 545 550
555 560 Ile Lys Gly Ser Leu Gln Leu Asp Gly Lys Gly
Thr Leu Tyr Thr Arg 565 570
575 Leu Gly Lys Leu Leu Lys Val Asp Gly Thr Ala Ile Ile Gly Gly Lys
580 585 590 Leu Tyr
Met Ser Ala Arg Gly Lys Gly Ala Gly Tyr Leu Asn Ser Thr 595
600 605 Gly Arg Arg Val Pro Phe Leu
Ser Ala Ala Lys Ile Gly Gln Asp Tyr 610 615
620 Ser Phe Phe Thr Asn Ile Glu Thr Asp Gly Gly Leu
Leu Ala Ser Leu 625 630 635
640 Asp Ser Val Glu Lys Thr Ala Gly Ser Glu Gly Asp Thr Leu Ser Tyr
645 650 655 Tyr Val Arg
Arg Gly Asn Ala Ala Arg Thr Ala Ser Ala Ala Ala His 660
665 670 Ser Ala Pro Ala Gly Leu Lys His
Ala Val Glu Gln Gly Gly Ser Asn 675 680
685 Leu Glu Asn Leu Met Val Glu Leu Asp Ala Ser Glu Ser
Ser Ala Thr 690 695 700
Pro Glu Thr Val Glu Thr Ala Ala Ala Asp Arg Thr Asp Met Pro Gly 705
710 715 720 Ile Arg Pro Tyr
Gly Ala Thr Phe Arg Ala Ala Ala Ala Val Gln His 725
730 735 Ala Asn Ala Ala Asp Gly Val Arg Ile
Phe Asn Ser Leu Ala Ala Thr 740 745
750 Val Tyr Ala Asp Ser Thr Ala Ala His Ala Asp Met Gln Gly
Arg Arg 755 760 765
Leu Lys Ala Val Ser Asp Gly Leu Asp His Asn Gly Thr Gly Leu Arg 770
775 780 Val Ile Ala Gln Thr
Gln Gln Asp Gly Gly Thr Trp Glu Gln Gly Gly 785 790
795 800 Val Glu Gly Lys Met Arg Gly Ser Thr Gln
Thr Val Gly Ile Ala Ala 805 810
815 Lys Thr Gly Glu Asn Thr Thr Ala Ala Ala Thr Leu Gly Met Gly
Arg 820 825 830 Ser
Thr Trp Ser Glu Asn Ser Ala Asn Ala Lys Thr Asp Ser Ile Ser 835
840 845 Leu Phe Ala Gly Ile Arg
His Asp Ala Gly Asp Ile Gly Tyr Leu Lys 850 855
860 Gly Leu Phe Ser Tyr Gly Arg Tyr Lys Asn Ser
Ile Ser Arg Ser Thr 865 870 875
880 Gly Ala Asp Glu His Ala Glu Gly Ser Val Asn Gly Thr Leu Met Gln
885 890 895 Leu Gly
Ala Leu Gly Gly Val Asn Val Pro Phe Ala Ala Thr Gly Asp 900
905 910 Leu Thr Val Glu Gly Gly Leu
Arg Tyr Asp Leu Leu Lys Gln Asp Ala 915 920
925 Phe Ala Glu Lys Gly Ser Ala Leu Gly Trp Ser Gly
Asn Ser Leu Thr 930 935 940
Glu Gly Thr Leu Val Gly Leu Ala Gly Leu Lys Leu Ser Gln Pro Leu 945
950 955 960 Ser Asp Lys
Ala Val Leu Phe Ala Thr Ala Gly Val Glu Arg Asp Leu 965
970 975 Asn Gly Arg Asp Tyr Thr Val Thr
Gly Gly Phe Thr Gly Ala Thr Ala 980 985
990 Ala Thr Gly Lys Thr Gly Ala Arg Asn Met Pro His Thr
Arg Leu Val 995 1000 1005
Ala Gly Leu Gly Ala Asp Val Glu Phe Gly Asn Gly Trp Asn Gly Leu
1010 1015 1020 Ala Arg Tyr
Ser Tyr Ala Gly Ser Lys Gln Tyr Gly Asn His Ser Gly 1025
1030 1035 1040Arg Val Gly Val Gly Tyr Arg
Phe Leu Glu Gly Gly Gly Gly Thr Gly 1045
1050 1055 Ser Ala Thr Asn Asp Asp Asp Val Lys Lys Ala
Ala Thr Val Ala Ile 1060 1065
1070 Ala Ala Ala Tyr Asn Asn Gly Gln Glu Ile Asn Gly Phe Lys Ala
Gly 1075 1080 1085 Glu
Thr Ile Tyr Asp Ile Asp Glu Asp Gly Thr Ile Thr Lys Lys Asp 1090
1095 1100 Ala Thr Ala Ala Asp Val
Glu Ala Asp Asp Phe Lys Gly Leu Gly Leu 1105 1110
1115 1120Lys Lys Val Val Thr Asn Leu Thr Lys Thr Val
Asn Glu Asn Lys Gln 1125 1130
1135 Asn Val Asp Ala Lys Val Lys Ala Ala Glu Ser Glu Ile Glu Lys Leu
1140 1145 1150 Thr Thr
Lys Leu Ala Asp Thr Asp Ala Ala Leu Ala Asp Thr Asp Ala 1155
1160 1165 Ala Leu Asp Ala Thr Thr Asn
Ala Leu Asn Lys Leu Gly Glu Asn Ile 1170 1175
1180 Thr Thr Phe Ala Glu Glu Thr Lys Thr Asn Ile Val
Lys Ile Asp Glu 1185 1190 1195
1200Lys Leu Glu Ala Val Ala Asp Thr Val Asp Lys His Ala Glu Ala Phe
1205 1210 1215 Asn Asp Ile
Ala Asp Ser Leu Asp Glu Thr Asn Thr Lys Ala Asp Glu 1220
1225 1230 Ala Val Lys Thr Ala Asn Glu Ala
Lys Gln Thr Ala Glu Glu Thr Lys 1235 1240
1245 Gln Asn Val Asp Ala Lys Val Lys Ala Ala Glu Thr Ala
Ala Gly Lys 1250 1255 1260
Ala Glu Ala Ala Ala Gly Thr Ala Asn Thr Ala Ala Asp Lys Ala Glu 1265
1270 1275 1280Ala Val Ala Ala
Lys Val Thr Asp Ile Lys Ala Asp Ile Ala Thr Asn 1285
1290 1295 Lys Asp Asn Ile Ala Lys Lys Ala Asn
Ser Ala Asp Val Tyr Thr Arg 1300 1305
1310 Glu Glu Ser Asp Ser Lys Phe Val Arg Ile Asp Gly Leu Asn
Ala Thr 1315 1320 1325
Thr Glu Lys Leu Asp Thr Arg Leu Ala Ser Ala Glu Lys Ser Ile Ala 1330
1335 1340 Asp His Asp Thr Arg
Leu Asn Gly Leu Asp Lys Thr Val Ser Asp Leu 1345 1350
1355 1360Arg Lys Glu Thr Arg Gln Gly Leu Ala Glu
Gln Ala Ala Leu Ser Gly 1365 1370
1375 Leu Phe Gln Pro Tyr Asn Val Gly Arg Phe Asn Val Thr Ala Ala
Val 1380 1385 1390 Gly
Gly Tyr Lys Ser Glu Ser Ala Val Ala Ile Gly Thr Gly Phe Arg 1395
1400 1405 Phe Thr Glu Asn Phe Ala
Ala Lys Ala Gly Val Ala Val Gly Thr Ser 1410 1415
1420 Ser Gly Ser Ser Ala Ala Tyr His Val Gly Val
Asn Tyr Glu Trp Leu 1425 1430 1435
1440Glu His His His His His His 1445
1064179DNAArtificial SequenceSynthetic construct 106atgacttctg cgcccgactt
caatgcaggc ggtaccggta tcggcagcaa cagcagagca 60acaacagcga aatcagcagc
agtatcttac gccggtatca agaacgaaat gtgcaaagac 120agaagcatgc tctgtgccgg
tcgggatgac gttgcggtta cagacaggga tgccaaaatc 180aatgcccccc ccccgaatct
gcataccgga gactttccaa acccaaatga cgcatacaag 240aatttgatca acctcaaacc
tgcaattgaa gcaggctata caggacgcgg ggtagaggta 300ggtatcgtcg acacaggcga
atccgtcggc agcatatcct ttcccgaact gtatggcaga 360aaagaacacg gctataacga
aaattacaaa aactatacgg cgtatatgcg gaaggaagcg 420cctgaagacg gaggcggtaa
agacattgaa gcttctttcg acgatgaggc cgttatagag 480actgaagcaa agccgacgga
tatccgccac gtaaaagaaa tcggacacat cgatttggtc 540tcccatatta ttggcgggcg
ttccgtggac ggcagacctg caggcggtat tgcgcccgat 600gcgacgctac acataatgaa
tacgaatgat gaaaccaaga acgaaatgat ggttgcagcc 660atccgcaatg catgggtcaa
gctgggcgaa cgtggcgtgc gcatcgtcaa taacagtttt 720ggaacaacat cgagggcagg
cactgccgac cttttccaaa tagccaattc ggaggagcag 780taccgccaag cgttgctcga
ctattccggc ggtgataaaa cagacgaggg tatccgcctg 840atgcaacaga gcgattacgg
caacctgtcc taccacatcc gtaataaaaa catgcttttc 900atcttttcga caggcaatga
cgcacaagct cagcccaaca catatgccct attgccattt 960tatgaaaaag acgctcaaaa
aggcattatc acagtcgcag gcgtagaccg cagtggagaa 1020aagttcaaac gggaaatgta
tggagaaccg ggtacagaac cgcttgagta tggctccaac 1080cattgcggaa ttactgccat
gtggtgcctg tcggcaccct atgaagcaag cgtccgtttc 1140acccgtacaa acccgattca
aattgccgga acatcctttt ccgcacccat cgtaaccggc 1200acggcggctc tgctgctgca
gaaatacccg tggatgagca acgacaacct gcgtaccacg 1260ttgctgacga cggctcagga
catcggtgca gtcggcgtgg acagcaagtt cggctgggga 1320ctgctggatg cgggtaaggc
catgaacgga cccgcgtcct ttccgttcgg cgactttacc 1380gccgatacga aaggtacatc
cgatattgcc tactccttcc gtaacgacat ttcaggcacg 1440ggcggcctga tcaaaaaagg
cggcagccaa ctgcaactgc acggcaacaa cacctatacg 1500ggcaaaacca ttatcgaagg
cggttcgctg gtgttgtacg gcaacaacaa atcggatatg 1560cgcgtcgaaa ccaaaggtgc
gctgatttat aacggggcgg catccggcgg cagcctgaac 1620agcgacggca ttgtctatct
ggcagatacc gaccaatccg gcgcaaacga aaccgtacac 1680atcaaaggca gtctgcagct
ggacggcaaa ggtacgctgt acacacgttt gggcaaactg 1740ctgaaagtgg acggtacggc
gattatcggc ggcaagctgt acatgtcggc acgcggcaag 1800ggggcaggct atctcaacag
taccggacga cgtgttccct tcctgagtgc cgccaaaatc 1860gggcaggatt attctttctt
cacaaacatc gaaaccgacg gcggcctgct ggcttccctc 1920gacagcgtcg aaaaaacagc
gggcagtgaa ggcgacacgc tgtcctatta tgtccgtcgc 1980ggcaatgcgg cacggactgc
ttcggcagcg gcacattccg cgcccgccgg tctgaaacac 2040gccgtagaac agggcggcag
caatctggaa aacctgatgg tcgaactgga tgcctccgaa 2100tcatccgcaa cacccgagac
ggttgaaact gcggcagccg accgcacaga tatgccgggc 2160atccgcccct acggcgcaac
tttccgcgca gcggcagccg tacagcatgc gaatgccgcc 2220gacggtgtac gcatcttcaa
cagtctcgcc gctaccgtct atgccgacag taccgccgcc 2280catgccgata tgcagggacg
ccgcctgaaa gccgtatcgg acgggttgga ccacaacggc 2340acgggtctgc gcgtcatcgc
gcaaacccaa caggacggtg gaacgtggga acagggcggt 2400gttgaaggca aaatgcgcgg
cagtacccaa accgtcggca ttgccgcgaa aaccggcgaa 2460aatacgacag cagccgccac
actgggcatg ggacgcagca catggagcga aaacagtgca 2520aatgcaaaaa ccgacagcat
tagtctgttt gcaggcatac ggcacgatgc gggcgatatc 2580ggctatctca aaggcctgtt
ctcctacgga cgctacaaaa acagcatcag ccgcagcacc 2640ggtgcggacg aacatgcgga
aggcagcgtc aacggcacgc tgatgcagct gggcgcactg 2700ggcggtgtca acgttccgtt
tgccgcaacg ggagatttga cggtcgaagg cggtctgcgc 2760tacgacctgc tcaaacagga
tgcattcgcc gaaaaaggca gtgctttggg ctggagcggc 2820aacagcctca ctgaaggcac
gctggtcgga ctcgcgggtc tgaagctgtc gcaacccttg 2880agcgataaag ccgtcctgtt
tgcaacggcg ggcgtggaac gcgacctgaa cggacgcgac 2940tacacggtaa cgggcggctt
taccggcgcg actgcagcaa ccggcaagac gggggcacgc 3000aatatgccgc acacccgtct
ggttgccggc ctgggcgcgg atgtcgaatt cggcaacggc 3060tggaacggct tggcacgtta
cagctacgcc ggttccaaac agtacggcaa ccacagcgga 3120cgagtcggcg taggctaccg
gttcctcgag ggtggcggag gcactggatc cgccacaaac 3180gacgacgatg ttaaaaaagc
tgccactgtg gccattgctg ctgcctacaa caatggccaa 3240gaaatcaacg gtttcaaagc
tggagagacc atctacgaca ttgatgaaga cggcacaatt 3300accaaaaaag acgcaactgc
agccgatgtt gaagccgacg actttaaagg tctgggtctg 3360aaaaaagtcg tgactaacct
gaccaaaacc gtcaatgaaa acaaacaaaa cgtcgatgcc 3420aaagtaaaag ctgcagaatc
tgaaatagaa aagttaacaa ccaagttagc agacactgat 3480gccgctttag cagatactga
tgccgctctg gatgcaacca ccaacgcctt gaataaattg 3540ggagaaaata taacgacatt
tgctgaagag actaagacaa atatcgtaaa aattgatgaa 3600aaattagaag ccgtggctga
taccgtcgac aagcatgccg aagcattcaa cgatatcgcc 3660gattcattgg atgaaaccaa
cactaaggca gacgaagccg tcaaaaccgc caatgaagcc 3720aaacagacgg ccgaagaaac
caaacaaaac gtcgatgcca aagtaaaagc tgcagaaact 3780gcagcaggca aagccgaagc
tgccgctggc acagctaata ctgcagccga caaggccgaa 3840gctgtcgctg caaaagttac
cgacatcaaa gctgatatcg ctacgaacaa agataatatt 3900gctaaaaaag caaacagtgc
cgacgtgtac accagagaag agtctgacag caaatttgtc 3960agaattgatg gtctgaacgc
tactaccgaa aaattggaca cacgcttggc ttctgctgaa 4020aaatccattg ccgatcacga
tactcgcctg aacggtttgg ataaaacagt gtcagacctg 4080cgcaaagaaa cccgccaagg
ccttgcagaa caagccgcgc tctccggtct gttccaacct 4140tacaacgtgg gtctcgagca
ccaccaccac caccactga 41791071392PRTArtificial
SequenceSynthetic construct 107Met Thr Ser Ala Pro Asp Phe Asn Ala Gly
Gly Thr Gly Ile Gly Ser 1 5 10
15 Asn Ser Arg Ala Thr Thr Ala Lys Ser Ala Ala Val Ser Tyr Ala
Gly 20 25 30 Ile
Lys Asn Glu Met Cys Lys Asp Arg Ser Met Leu Cys Ala Gly Arg 35
40 45 Asp Asp Val Ala Val Thr
Asp Arg Asp Ala Lys Ile Asn Ala Pro Pro 50 55
60 Pro Asn Leu His Thr Gly Asp Phe Pro Asn Pro
Asn Asp Ala Tyr Lys 65 70 75
80 Asn Leu Ile Asn Leu Lys Pro Ala Ile Glu Ala Gly Tyr Thr Gly Arg
85 90 95 Gly Val
Glu Val Gly Ile Val Asp Thr Gly Glu Ser Val Gly Ser Ile 100
105 110 Ser Phe Pro Glu Leu Tyr Gly
Arg Lys Glu His Gly Tyr Asn Glu Asn 115 120
125 Tyr Lys Asn Tyr Thr Ala Tyr Met Arg Lys Glu Ala
Pro Glu Asp Gly 130 135 140
Gly Gly Lys Asp Ile Glu Ala Ser Phe Asp Asp Glu Ala Val Ile Glu 145
150 155 160 Thr Glu Ala
Lys Pro Thr Asp Ile Arg His Val Lys Glu Ile Gly His 165
170 175 Ile Asp Leu Val Ser His Ile Ile
Gly Gly Arg Ser Val Asp Gly Arg 180 185
190 Pro Ala Gly Gly Ile Ala Pro Asp Ala Thr Leu His Ile
Met Asn Thr 195 200 205
Asn Asp Glu Thr Lys Asn Glu Met Met Val Ala Ala Ile Arg Asn Ala 210
215 220 Trp Val Lys Leu
Gly Glu Arg Gly Val Arg Ile Val Asn Asn Ser Phe 225 230
235 240 Gly Thr Thr Ser Arg Ala Gly Thr Ala
Asp Leu Phe Gln Ile Ala Asn 245 250
255 Ser Glu Glu Gln Tyr Arg Gln Ala Leu Leu Asp Tyr Ser Gly
Gly Asp 260 265 270
Lys Thr Asp Glu Gly Ile Arg Leu Met Gln Gln Ser Asp Tyr Gly Asn
275 280 285 Leu Ser Tyr His
Ile Arg Asn Lys Asn Met Leu Phe Ile Phe Ser Thr 290
295 300 Gly Asn Asp Ala Gln Ala Gln Pro
Asn Thr Tyr Ala Leu Leu Pro Phe 305 310
315 320 Tyr Glu Lys Asp Ala Gln Lys Gly Ile Ile Thr Val
Ala Gly Val Asp 325 330
335 Arg Ser Gly Glu Lys Phe Lys Arg Glu Met Tyr Gly Glu Pro Gly Thr
340 345 350 Glu Pro Leu
Glu Tyr Gly Ser Asn His Cys Gly Ile Thr Ala Met Trp 355
360 365 Cys Leu Ser Ala Pro Tyr Glu Ala
Ser Val Arg Phe Thr Arg Thr Asn 370 375
380 Pro Ile Gln Ile Ala Gly Thr Ser Phe Ser Ala Pro Ile
Val Thr Gly 385 390 395
400 Thr Ala Ala Leu Leu Leu Gln Lys Tyr Pro Trp Met Ser Asn Asp Asn
405 410 415 Leu Arg Thr Thr
Leu Leu Thr Thr Ala Gln Asp Ile Gly Ala Val Gly 420
425 430 Val Asp Ser Lys Phe Gly Trp Gly Leu
Leu Asp Ala Gly Lys Ala Met 435 440
445 Asn Gly Pro Ala Ser Phe Pro Phe Gly Asp Phe Thr Ala Asp
Thr Lys 450 455 460
Gly Thr Ser Asp Ile Ala Tyr Ser Phe Arg Asn Asp Ile Ser Gly Thr 465
470 475 480 Gly Gly Leu Ile Lys
Lys Gly Gly Ser Gln Leu Gln Leu His Gly Asn 485
490 495 Asn Thr Tyr Thr Gly Lys Thr Ile Ile Glu
Gly Gly Ser Leu Val Leu 500 505
510 Tyr Gly Asn Asn Lys Ser Asp Met Arg Val Glu Thr Lys Gly Ala
Leu 515 520 525 Ile
Tyr Asn Gly Ala Ala Ser Gly Gly Ser Leu Asn Ser Asp Gly Ile 530
535 540 Val Tyr Leu Ala Asp Thr
Asp Gln Ser Gly Ala Asn Glu Thr Val His 545 550
555 560 Ile Lys Gly Ser Leu Gln Leu Asp Gly Lys Gly
Thr Leu Tyr Thr Arg 565 570
575 Leu Gly Lys Leu Leu Lys Val Asp Gly Thr Ala Ile Ile Gly Gly Lys
580 585 590 Leu Tyr
Met Ser Ala Arg Gly Lys Gly Ala Gly Tyr Leu Asn Ser Thr 595
600 605 Gly Arg Arg Val Pro Phe Leu
Ser Ala Ala Lys Ile Gly Gln Asp Tyr 610 615
620 Ser Phe Phe Thr Asn Ile Glu Thr Asp Gly Gly Leu
Leu Ala Ser Leu 625 630 635
640 Asp Ser Val Glu Lys Thr Ala Gly Ser Glu Gly Asp Thr Leu Ser Tyr
645 650 655 Tyr Val Arg
Arg Gly Asn Ala Ala Arg Thr Ala Ser Ala Ala Ala His 660
665 670 Ser Ala Pro Ala Gly Leu Lys His
Ala Val Glu Gln Gly Gly Ser Asn 675 680
685 Leu Glu Asn Leu Met Val Glu Leu Asp Ala Ser Glu Ser
Ser Ala Thr 690 695 700
Pro Glu Thr Val Glu Thr Ala Ala Ala Asp Arg Thr Asp Met Pro Gly 705
710 715 720 Ile Arg Pro Tyr
Gly Ala Thr Phe Arg Ala Ala Ala Ala Val Gln His 725
730 735 Ala Asn Ala Ala Asp Gly Val Arg Ile
Phe Asn Ser Leu Ala Ala Thr 740 745
750 Val Tyr Ala Asp Ser Thr Ala Ala His Ala Asp Met Gln Gly
Arg Arg 755 760 765
Leu Lys Ala Val Ser Asp Gly Leu Asp His Asn Gly Thr Gly Leu Arg 770
775 780 Val Ile Ala Gln Thr
Gln Gln Asp Gly Gly Thr Trp Glu Gln Gly Gly 785 790
795 800 Val Glu Gly Lys Met Arg Gly Ser Thr Gln
Thr Val Gly Ile Ala Ala 805 810
815 Lys Thr Gly Glu Asn Thr Thr Ala Ala Ala Thr Leu Gly Met Gly
Arg 820 825 830 Ser
Thr Trp Ser Glu Asn Ser Ala Asn Ala Lys Thr Asp Ser Ile Ser 835
840 845 Leu Phe Ala Gly Ile Arg
His Asp Ala Gly Asp Ile Gly Tyr Leu Lys 850 855
860 Gly Leu Phe Ser Tyr Gly Arg Tyr Lys Asn Ser
Ile Ser Arg Ser Thr 865 870 875
880 Gly Ala Asp Glu His Ala Glu Gly Ser Val Asn Gly Thr Leu Met Gln
885 890 895 Leu Gly
Ala Leu Gly Gly Val Asn Val Pro Phe Ala Ala Thr Gly Asp 900
905 910 Leu Thr Val Glu Gly Gly Leu
Arg Tyr Asp Leu Leu Lys Gln Asp Ala 915 920
925 Phe Ala Glu Lys Gly Ser Ala Leu Gly Trp Ser Gly
Asn Ser Leu Thr 930 935 940
Glu Gly Thr Leu Val Gly Leu Ala Gly Leu Lys Leu Ser Gln Pro Leu 945
950 955 960 Ser Asp Lys
Ala Val Leu Phe Ala Thr Ala Gly Val Glu Arg Asp Leu 965
970 975 Asn Gly Arg Asp Tyr Thr Val Thr
Gly Gly Phe Thr Gly Ala Thr Ala 980 985
990 Ala Thr Gly Lys Thr Gly Ala Arg Asn Met Pro His Thr
Arg Leu Val 995 1000 1005
Ala Gly Leu Gly Ala Asp Val Glu Phe Gly Asn Gly Trp Asn Gly Leu
1010 1015 1020 Ala Arg Tyr
Ser Tyr Ala Gly Ser Lys Gln Tyr Gly Asn His Ser Gly 1025
1030 1035 1040Arg Val Gly Val Gly Tyr Arg
Phe Leu Glu Gly Gly Gly Gly Thr Gly 1045
1050 1055 Ser Ala Thr Asn Asp Asp Asp Val Lys Lys Ala
Ala Thr Val Ala Ile 1060 1065
1070 Ala Ala Ala Tyr Asn Asn Gly Gln Glu Ile Asn Gly Phe Lys Ala
Gly 1075 1080 1085 Glu
Thr Ile Tyr Asp Ile Asp Glu Asp Gly Thr Ile Thr Lys Lys Asp 1090
1095 1100 Ala Thr Ala Ala Asp Val
Glu Ala Asp Asp Phe Lys Gly Leu Gly Leu 1105 1110
1115 1120Lys Lys Val Val Thr Asn Leu Thr Lys Thr Val
Asn Glu Asn Lys Gln 1125 1130
1135 Asn Val Asp Ala Lys Val Lys Ala Ala Glu Ser Glu Ile Glu Lys Leu
1140 1145 1150 Thr Thr
Lys Leu Ala Asp Thr Asp Ala Ala Leu Ala Asp Thr Asp Ala 1155
1160 1165 Ala Leu Asp Ala Thr Thr Asn
Ala Leu Asn Lys Leu Gly Glu Asn Ile 1170 1175
1180 Thr Thr Phe Ala Glu Glu Thr Lys Thr Asn Ile Val
Lys Ile Asp Glu 1185 1190 1195
1200Lys Leu Glu Ala Val Ala Asp Thr Val Asp Lys His Ala Glu Ala Phe
1205 1210 1215 Asn Asp Ile
Ala Asp Ser Leu Asp Glu Thr Asn Thr Lys Ala Asp Glu 1220
1225 1230 Ala Val Lys Thr Ala Asn Glu Ala
Lys Gln Thr Ala Glu Glu Thr Lys 1235 1240
1245 Gln Asn Val Asp Ala Lys Val Lys Ala Ala Glu Thr Ala
Ala Gly Lys 1250 1255 1260
Ala Glu Ala Ala Ala Gly Thr Ala Asn Thr Ala Ala Asp Lys Ala Glu 1265
1270 1275 1280Ala Val Ala Ala
Lys Val Thr Asp Ile Lys Ala Asp Ile Ala Thr Asn 1285
1290 1295 Lys Asp Asn Ile Ala Lys Lys Ala Asn
Ser Ala Asp Val Tyr Thr Arg 1300 1305
1310 Glu Glu Ser Asp Ser Lys Phe Val Arg Ile Asp Gly Leu Asn
Ala Thr 1315 1320 1325
Thr Glu Lys Leu Asp Thr Arg Leu Ala Ser Ala Glu Lys Ser Ile Ala 1330
1335 1340 Asp His Asp Thr Arg
Leu Asn Gly Leu Asp Lys Thr Val Ser Asp Leu 1345 1350
1355 1360Arg Lys Glu Thr Arg Gln Gly Leu Ala Glu
Gln Ala Ala Leu Ser Gly 1365 1370
1375 Leu Phe Gln Pro Tyr Asn Val Gly Leu Glu His His His His His
His 1380 1385 1390
1081947DNAArtificial SequenceSynthetic construct 108atggtcgccg ccgacatcgg
tgcggggctt gccgatgcac taaccgcacc gctcgaccat 60aaagacaaag gtttgcagtc
tttgacgctg gatcagtccg tcaggaaaaa cgagaaactg 120aagctggcgg cacaaggtgc
ggaaaaaact tatggaaacg gtgacagcct caatacgggc 180aaattgaaga acgacaaggt
cagccgtttc gactttatcc gccaaatcga agtggacggg 240cagctcatta ccttggagag
tggagagttc caagtataca aacaaagcca ttccgcctta 300accgcctttc agaccgagca
aatacaagat tcggagcatt ccgggaagat ggttgcgaaa 360cgccagttca gaatcggcga
catagcgggc gaacatacat cttttgacaa gcttcccgaa 420ggcggcaggg cgacatatcg
cgggacggcg ttcggttcag acgatgccgg cggaaaactg 480acctacacca tagatttcgc
cgccaagcag ggaaacggca aaatcgaaca tttgaaatcg 540ccagaactca atgtcgacct
ggccgccgcc gatatcaagc cggatggaaa acgccatgcc 600gtcatcagcg gttccgtcct
ttacaaccaa gccgagaaag gcagttactc cctcggtatc 660tttggcggaa aagcccagga
agttgccggc agcgcggaag tgaaaaccgt aaacggcata 720cgccatatcg gccttgccgc
caagcaactc gagggtggcg gaggcactgg atccgccaca 780aacgacgacg atgttaaaaa
agctgccact gtggccattg ctgctgccta caacaatggc 840caagaaatca acggtttcaa
agctggagag accatctacg acattgatga agacggcaca 900attaccaaaa aagacgcaac
tgcagccgat gttgaagccg acgactttaa aggtctgggt 960ctgaaaaaag tcgtgactaa
cctgaccaaa accgtcaatg aaaacaaaca aaacgtcgat 1020gccaaagtaa aagctgcaga
atctgaaata gaaaagttaa caaccaagtt agcagacact 1080gatgccgctt tagcagatac
tgatgccgct ctggatgcaa ccaccaacgc cttgaataaa 1140ttgggagaaa atataacgac
atttgctgaa gagactaaga caaatatcgt aaaaattgat 1200gaaaaattag aagccgtggc
tgataccgtc gacaagcatg ccgaagcatt caacgatatc 1260gccgattcat tggatgaaac
caacactaag gcagacgaag ccgtcaaaac cgccaatgaa 1320gccaaacaga cggccgaaga
aaccaaacaa aacgtcgatg ccaaagtaaa agctgcagaa 1380actgcagcag gcaaagccga
agctgccgct ggcacagcta atactgcagc cgacaaggcc 1440gaagctgtcg ctgcaaaagt
taccgacatc aaagctgata tcgctacgaa caaagataat 1500attgctaaaa aagcaaacag
tgccgacgtg tacaccagag aagagtctga cagcaaattt 1560gtcagaattg atggtctgaa
cgctactacc gaaaaattgg acacacgctt ggcttctgct 1620gaaaaatcca ttgccgatca
cgatactcgc ctgaacggtt tggataaaac agtgtcagac 1680ctgcgcaaag aaacccgcca
aggccttgca gaacaagccg cgctctccgg tctgttccaa 1740ccttacaacg tgggtcggtt
caatgtaacg gctgcagtcg gcggctacaa atccgaatcg 1800gcagtcgcca tcggtaccgg
cttccgcttt accgaaaact ttgccgccaa agcaggcgtg 1860gcagtcggca cttcgtccgg
ttcttccgca gcctaccatg tcggcgtcaa ttacgagtgg 1920ctcgagcacc accaccacca
ccactga 1947109648PRTArtificial
SequenceSynthetic construct 109Met Val Ala Ala Asp Ile Gly Ala Gly Leu
Ala Asp Ala Leu Thr Ala 1 5 10
15 Pro Leu Asp His Lys Asp Lys Gly Leu Gln Ser Leu Thr Leu Asp
Gln 20 25 30 Ser
Val Arg Lys Asn Glu Lys Leu Lys Leu Ala Ala Gln Gly Ala Glu 35
40 45 Lys Thr Tyr Gly Asn Gly
Asp Ser Leu Asn Thr Gly Lys Leu Lys Asn 50 55
60 Asp Lys Val Ser Arg Phe Asp Phe Ile Arg Gln
Ile Glu Val Asp Gly 65 70 75
80 Gln Leu Ile Thr Leu Glu Ser Gly Glu Phe Gln Val Tyr Lys Gln Ser
85 90 95 His Ser
Ala Leu Thr Ala Phe Gln Thr Glu Gln Ile Gln Asp Ser Glu 100
105 110 His Ser Gly Lys Met Val Ala
Lys Arg Gln Phe Arg Ile Gly Asp Ile 115 120
125 Ala Gly Glu His Thr Ser Phe Asp Lys Leu Pro Glu
Gly Gly Arg Ala 130 135 140
Thr Tyr Arg Gly Thr Ala Phe Gly Ser Asp Asp Ala Gly Gly Lys Leu 145
150 155 160 Thr Tyr Thr
Ile Asp Phe Ala Ala Lys Gln Gly Asn Gly Lys Ile Glu 165
170 175 His Leu Lys Ser Pro Glu Leu Asn
Val Asp Leu Ala Ala Ala Asp Ile 180 185
190 Lys Pro Asp Gly Lys Arg His Ala Val Ile Ser Gly Ser
Val Leu Tyr 195 200 205
Asn Gln Ala Glu Lys Gly Ser Tyr Ser Leu Gly Ile Phe Gly Gly Lys 210
215 220 Ala Gln Glu Val
Ala Gly Ser Ala Glu Val Lys Thr Val Asn Gly Ile 225 230
235 240 Arg His Ile Gly Leu Ala Ala Lys Gln
Leu Glu Gly Gly Gly Gly Thr 245 250
255 Gly Ser Ala Thr Asn Asp Asp Asp Val Lys Lys Ala Ala Thr
Val Ala 260 265 270
Ile Ala Ala Ala Tyr Asn Asn Gly Gln Glu Ile Asn Gly Phe Lys Ala
275 280 285 Gly Glu Thr Ile
Tyr Asp Ile Asp Glu Asp Gly Thr Ile Thr Lys Lys 290
295 300 Asp Ala Thr Ala Ala Asp Val Glu
Ala Asp Asp Phe Lys Gly Leu Gly 305 310
315 320 Leu Lys Lys Val Val Thr Asn Leu Thr Lys Thr Val
Asn Glu Asn Lys 325 330
335 Gln Asn Val Asp Ala Lys Val Lys Ala Ala Glu Ser Glu Ile Glu Lys
340 345 350 Leu Thr Thr
Lys Leu Ala Asp Thr Asp Ala Ala Leu Ala Asp Thr Asp 355
360 365 Ala Ala Leu Asp Ala Thr Thr Asn
Ala Leu Asn Lys Leu Gly Glu Asn 370 375
380 Ile Thr Thr Phe Ala Glu Glu Thr Lys Thr Asn Ile Val
Lys Ile Asp 385 390 395
400 Glu Lys Leu Glu Ala Val Ala Asp Thr Val Asp Lys His Ala Glu Ala
405 410 415 Phe Asn Asp Ile
Ala Asp Ser Leu Asp Glu Thr Asn Thr Lys Ala Asp 420
425 430 Glu Ala Val Lys Thr Ala Asn Glu Ala
Lys Gln Thr Ala Glu Glu Thr 435 440
445 Lys Gln Asn Val Asp Ala Lys Val Lys Ala Ala Glu Thr Ala
Ala Gly 450 455 460
Lys Ala Glu Ala Ala Ala Gly Thr Ala Asn Thr Ala Ala Asp Lys Ala 465
470 475 480 Glu Ala Val Ala Ala
Lys Val Thr Asp Ile Lys Ala Asp Ile Ala Thr 485
490 495 Asn Lys Asp Asn Ile Ala Lys Lys Ala Asn
Ser Ala Asp Val Tyr Thr 500 505
510 Arg Glu Glu Ser Asp Ser Lys Phe Val Arg Ile Asp Gly Leu Asn
Ala 515 520 525 Thr
Thr Glu Lys Leu Asp Thr Arg Leu Ala Ser Ala Glu Lys Ser Ile 530
535 540 Ala Asp His Asp Thr Arg
Leu Asn Gly Leu Asp Lys Thr Val Ser Asp 545 550
555 560 Leu Arg Lys Glu Thr Arg Gln Gly Leu Ala Glu
Gln Ala Ala Leu Ser 565 570
575 Gly Leu Phe Gln Pro Tyr Asn Val Gly Arg Phe Asn Val Thr Ala Ala
580 585 590 Val Gly
Gly Tyr Lys Ser Glu Ser Ala Val Ala Ile Gly Thr Gly Phe 595
600 605 Arg Phe Thr Glu Asn Phe Ala
Ala Lys Ala Gly Val Ala Val Gly Thr 610 615
620 Ser Ser Gly Ser Ser Ala Ala Tyr His Val Gly Val
Asn Tyr Glu Trp 625 630 635
640 Leu Glu His His His His His His 645
1101782DNAArtificial SequenceSynthetic construct 110atggtcgccg ccgacatcgg
tgcggggctt gccgatgcac taaccgcacc gctcgaccat 60aaagacaaag gtttgcagtc
tttgacgctg gatcagtccg tcaggaaaaa cgagaaactg 120aagctggcgg cacaaggtgc
ggaaaaaact tatggaaacg gtgacagcct caatacgggc 180aaattgaaga acgacaaggt
cagccgtttc gactttatcc gccaaatcga agtggacggg 240cagctcatta ccttggagag
tggagagttc caagtataca aacaaagcca ttccgcctta 300accgcctttc agaccgagca
aatacaagat tcggagcatt ccgggaagat ggttgcgaaa 360cgccagttca gaatcggcga
catagcgggc gaacatacat cttttgacaa gcttcccgaa 420ggcggcaggg cgacatatcg
cgggacggcg ttcggttcag acgatgccgg cggaaaactg 480acctacacca tagatttcgc
cgccaagcag ggaaacggca aaatcgaaca tttgaaatcg 540ccagaactca atgtcgacct
ggccgccgcc gatatcaagc cggatggaaa acgccatgcc 600gtcatcagcg gttccgtcct
ttacaaccaa gccgagaaag gcagttactc cctcggtatc 660tttggcggaa aagcccagga
agttgccggc agcgcggaag tgaaaaccgt aaacggcata 720cgccatatcg gccttgccgc
caagcaactc gagggtggcg gaggcactgg atccgccaca 780aacgacgacg atgttaaaaa
agctgccact gtggccattg ctgctgccta caacaatggc 840caagaaatca acggtttcaa
agctggagag accatctacg acattgatga agacggcaca 900attaccaaaa aagacgcaac
tgcagccgat gttgaagccg acgactttaa aggtctgggt 960ctgaaaaaag tcgtgactaa
cctgaccaaa accgtcaatg aaaacaaaca aaacgtcgat 1020gccaaagtaa aagctgcaga
atctgaaata gaaaagttaa caaccaagtt agcagacact 1080gatgccgctt tagcagatac
tgatgccgct ctggatgcaa ccaccaacgc cttgaataaa 1140ttgggagaaa atataacgac
atttgctgaa gagactaaga caaatatcgt aaaaattgat 1200gaaaaattag aagccgtggc
tgataccgtc gacaagcatg ccgaagcatt caacgatatc 1260gccgattcat tggatgaaac
caacactaag gcagacgaag ccgtcaaaac cgccaatgaa 1320gccaaacaga cggccgaaga
aaccaaacaa aacgtcgatg ccaaagtaaa agctgcagaa 1380actgcagcag gcaaagccga
agctgccgct ggcacagcta atactgcagc cgacaaggcc 1440gaagctgtcg ctgcaaaagt
taccgacatc aaagctgata tcgctacgaa caaagataat 1500attgctaaaa aagcaaacag
tgccgacgtg tacaccagag aagagtctga cagcaaattt 1560gtcagaattg atggtctgaa
cgctactacc gaaaaattgg acacacgctt ggcttctgct 1620gaaaaatcca ttgccgatca
cgatactcgc ctgaacggtt tggataaaac agtgtcagac 1680ctgcgcaaag aaacccgcca
aggccttgca gaacaagccg cgctctccgg tctgttccaa 1740ccttacaacg tgggtctcga
gcaccaccac caccaccact ga 1782111593PRTArtificial
SequenceSynthetic construct 111Met Val Ala Ala Asp Ile Gly Ala Gly Leu
Ala Asp Ala Leu Thr Ala 1 5 10
15 Pro Leu Asp His Lys Asp Lys Gly Leu Gln Ser Leu Thr Leu Asp
Gln 20 25 30 Ser
Val Arg Lys Asn Glu Lys Leu Lys Leu Ala Ala Gln Gly Ala Glu 35
40 45 Lys Thr Tyr Gly Asn Gly
Asp Ser Leu Asn Thr Gly Lys Leu Lys Asn 50 55
60 Asp Lys Val Ser Arg Phe Asp Phe Ile Arg Gln
Ile Glu Val Asp Gly 65 70 75
80 Gln Leu Ile Thr Leu Glu Ser Gly Glu Phe Gln Val Tyr Lys Gln Ser
85 90 95 His Ser
Ala Leu Thr Ala Phe Gln Thr Glu Gln Ile Gln Asp Ser Glu 100
105 110 His Ser Gly Lys Met Val Ala
Lys Arg Gln Phe Arg Ile Gly Asp Ile 115 120
125 Ala Gly Glu His Thr Ser Phe Asp Lys Leu Pro Glu
Gly Gly Arg Ala 130 135 140
Thr Tyr Arg Gly Thr Ala Phe Gly Ser Asp Asp Ala Gly Gly Lys Leu 145
150 155 160 Thr Tyr Thr
Ile Asp Phe Ala Ala Lys Gln Gly Asn Gly Lys Ile Glu 165
170 175 His Leu Lys Ser Pro Glu Leu Asn
Val Asp Leu Ala Ala Ala Asp Ile 180 185
190 Lys Pro Asp Gly Lys Arg His Ala Val Ile Ser Gly Ser
Val Leu Tyr 195 200 205
Asn Gln Ala Glu Lys Gly Ser Tyr Ser Leu Gly Ile Phe Gly Gly Lys 210
215 220 Ala Gln Glu Val
Ala Gly Ser Ala Glu Val Lys Thr Val Asn Gly Ile 225 230
235 240 Arg His Ile Gly Leu Ala Ala Lys Gln
Leu Glu Gly Gly Gly Gly Thr 245 250
255 Gly Ser Ala Thr Asn Asp Asp Asp Val Lys Lys Ala Ala Thr
Val Ala 260 265 270
Ile Ala Ala Ala Tyr Asn Asn Gly Gln Glu Ile Asn Gly Phe Lys Ala
275 280 285 Gly Glu Thr Ile
Tyr Asp Ile Asp Glu Asp Gly Thr Ile Thr Lys Lys 290
295 300 Asp Ala Thr Ala Ala Asp Val Glu
Ala Asp Asp Phe Lys Gly Leu Gly 305 310
315 320 Leu Lys Lys Val Val Thr Asn Leu Thr Lys Thr Val
Asn Glu Asn Lys 325 330
335 Gln Asn Val Asp Ala Lys Val Lys Ala Ala Glu Ser Glu Ile Glu Lys
340 345 350 Leu Thr Thr
Lys Leu Ala Asp Thr Asp Ala Ala Leu Ala Asp Thr Asp 355
360 365 Ala Ala Leu Asp Ala Thr Thr Asn
Ala Leu Asn Lys Leu Gly Glu Asn 370 375
380 Ile Thr Thr Phe Ala Glu Glu Thr Lys Thr Asn Ile Val
Lys Ile Asp 385 390 395
400 Glu Lys Leu Glu Ala Val Ala Asp Thr Val Asp Lys His Ala Glu Ala
405 410 415 Phe Asn Asp Ile
Ala Asp Ser Leu Asp Glu Thr Asn Thr Lys Ala Asp 420
425 430 Glu Ala Val Lys Thr Ala Asn Glu Ala
Lys Gln Thr Ala Glu Glu Thr 435 440
445 Lys Gln Asn Val Asp Ala Lys Val Lys Ala Ala Glu Thr Ala
Ala Gly 450 455 460
Lys Ala Glu Ala Ala Ala Gly Thr Ala Asn Thr Ala Ala Asp Lys Ala 465
470 475 480 Glu Ala Val Ala Ala
Lys Val Thr Asp Ile Lys Ala Asp Ile Ala Thr 485
490 495 Asn Lys Asp Asn Ile Ala Lys Lys Ala Asn
Ser Ala Asp Val Tyr Thr 500 505
510 Arg Glu Glu Ser Asp Ser Lys Phe Val Arg Ile Asp Gly Leu Asn
Ala 515 520 525 Thr
Thr Glu Lys Leu Asp Thr Arg Leu Ala Ser Ala Glu Lys Ser Ile 530
535 540 Ala Asp His Asp Thr Arg
Leu Asn Gly Leu Asp Lys Thr Val Ser Asp 545 550
555 560 Leu Arg Lys Glu Thr Arg Gln Gly Leu Ala Glu
Gln Ala Ala Leu Ser 565 570
575 Gly Leu Phe Gln Pro Tyr Asn Val Gly Leu Glu His His His His His
580 585 590 His
1123939DNAArtificial SequenceSynthetic construct 112atggtcgccg ccgacatcgg
tgcggggctt gccgatgcac taaccgcacc gctcgaccat 60aaagacaaag gtttgcagtc
tttgacgctg gatcagtccg tcaggaaaaa cgagaaactg 120aagctggcgg cacaaggtgc
ggaaaaaact tatggaaacg gtgacagcct caatacgggc 180aaattgaaga acgacaaggt
cagccgtttc gactttatcc gccaaatcga agtggacggg 240cagctcatta ccttggagag
tggagagttc caagtataca aacaaagcca ttccgcctta 300accgcctttc agaccgagca
aatacaagat tcggagcatt ccgggaagat ggttgcgaaa 360cgccagttca gaatcggcga
catagcgggc gaacatacat cttttgacaa gcttcccgaa 420ggcggcaggg cgacatatcg
cgggacggcg ttcggttcag acgatgccgg cggaaaactg 480acctacacca tagatttcgc
cgccaagcag ggaaacggca aaatcgaaca tttgaaatcg 540ccagaactca atgtcgacct
ggccgccgcc gatatcaagc cggatggaaa acgccatgcc 600gtcatcagcg gttccgtcct
ttacaaccaa gccgagaaag gcagttactc cctcggtatc 660tttggcggaa aagcccagga
agttgccggc agcgcggaag tgaaaaccgt aaacggcata 720cgccatatcg gccttgccgc
caagcaactc gagggatccg gcggaggcgg cacttctgcg 780cccgacttca atgcaggcgg
taccggtatc ggcagcaaca gcagagcaac aacagcgaaa 840tcagcagcag tatcttacgc
cggtatcaag aacgaaatgt gcaaagacag aagcatgctc 900tgtgccggtc gggatgacgt
tgcggttaca gacagggatg ccaaaatcaa tgcccccccc 960ccgaatctgc ataccggaga
ctttccaaac ccaaatgacg catacaagaa tttgatcaac 1020ctcaaacctg caattgaagc
aggctataca ggacgcgggg tagaggtagg tatcgtcgac 1080acaggcgaat ccgtcggcag
catatccttt cccgaactgt atggcagaaa agaacacggc 1140tataacgaaa attacaaaaa
ctatacggcg tatatgcgga aggaagcgcc tgaagacgga 1200ggcggtaaag acattgaagc
ttctttcgac gatgaggccg ttatagagac tgaagcaaag 1260ccgacggata tccgccacgt
aaaagaaatc ggacacatcg atttggtctc ccatattatt 1320ggcgggcgtt ccgtggacgg
cagacctgca ggcggtattg cgcccgatgc gacgctacac 1380ataatgaata cgaatgatga
aaccaagaac gaaatgatgg ttgcagccat ccgcaatgca 1440tgggtcaagc tgggcgaacg
tggcgtgcgc atcgtcaata acagttttgg aacaacatcg 1500agggcaggca ctgccgacct
tttccaaata gccaattcgg aggagcagta ccgccaagcg 1560ttgctcgact attccggcgg
tgataaaaca gacgagggta tccgcctgat gcaacagagc 1620gattacggca acctgtccta
ccacatccgt aataaaaaca tgcttttcat cttttcgaca 1680ggcaatgacg cacaagctca
gcccaacaca tatgccctat tgccatttta tgaaaaagac 1740gctcaaaaag gcattatcac
agtcgcaggc gtagaccgca gtggagaaaa gttcaaacgg 1800gaaatgtatg gagaaccggg
tacagaaccg cttgagtatg gctccaacca ttgcggaatt 1860actgccatgt ggtgcctgtc
ggcaccctat gaagcaagcg tccgtttcac ccgtacaaac 1920ccgattcaaa ttgccggaac
atccttttcc gcacccatcg taaccggcac ggcggctctg 1980ctgctgcaga aatacccgtg
gatgagcaac gacaacctgc gtaccacgtt gctgacgacg 2040gctcaggaca tcggtgcagt
cggcgtggac agcaagttcg gctggggact gctggatgcg 2100ggtaaggcca tgaacggacc
cgcgtccttt ccgttcggcg actttaccgc cgatacgaaa 2160ggtacatccg atattgccta
ctccttccgt aacgacattt caggcacggg cggcctgatc 2220aaaaaaggcg gcagccaact
gcaactgcac ggcaacaaca cctatacggg caaaaccatt 2280atcgaaggcg gttcgctggt
gttgtacggc aacaacaaat cggatatgcg cgtcgaaacc 2340aaaggtgcgc tgatttataa
cggggcggca tccggcggca gcctgaacag cgacggcatt 2400gtctatctgg cagataccga
ccaatccggc gcaaacgaaa ccgtacacat caaaggcagt 2460ctgcagctgg acggcaaagg
tacgctgtac acacgtttgg gcaaactgct gaaagtggac 2520ggtacggcga ttatcggcgg
caagctgtac atgtcggcac gcggcaaggg ggcaggctat 2580ctcaacagta ccggacgacg
tgttcccttc ctgagtgccg ccaaaatcgg gcaggattat 2640tctttcttca caaacatcga
aaccgacggc ggcctgctgg cttccctcga cagcgtcgaa 2700aaaacagcgg gcagtgaagg
cgacacgctg tcctattatg tccgtcgcgg caatgcggca 2760cggactgctt cggcagcggc
acattccgcg cccgccggtc tgaaacacgc cgtagaacag 2820ggcggcagca atctggaaaa
cctgatggtc gaactggatg cctccgaatc atccgcaaca 2880cccgagacgg ttgaaactgc
ggcagccgac cgcacagata tgccgggcat ccgcccctac 2940ggcgcaactt tccgcgcagc
ggcagccgta cagcatgcga atgccgccga cggtgtacgc 3000atcttcaaca gtctcgccgc
taccgtctat gccgacagta ccgccgccca tgccgatatg 3060cagggacgcc gcctgaaagc
cgtatcggac gggttggacc acaacggcac gggtctgcgc 3120gtcatcgcgc aaacccaaca
ggacggtgga acgtgggaac agggcggtgt tgaaggcaaa 3180atgcgcggca gtacccaaac
cgtcggcatt gccgcgaaaa ccggcgaaaa tacgacagca 3240gccgccacac tgggcatggg
acgcagcaca tggagcgaaa acagtgcaaa tgcaaaaacc 3300gacagcatta gtctgtttgc
aggcatacgg cacgatgcgg gcgatatcgg ctatctcaaa 3360ggcctgttct cctacggacg
ctacaaaaac agcatcagcc gcagcaccgg tgcggacgaa 3420catgcggaag gcagcgtcaa
cggcacgctg atgcagctgg gcgcactggg cggtgtcaac 3480gttccgtttg ccgcaacggg
agatttgacg gtcgaaggcg gtctgcgcta cgacctgctc 3540aaacaggatg cattcgccga
aaaaggcagt gctttgggct ggagcggcaa cagcctcact 3600gaaggcacgc tggtcggact
cgcgggtctg aagctgtcgc aacccttgag cgataaagcc 3660gtcctgtttg caacggcggg
cgtggaacgc gacctgaacg gacgcgacta cacggtaacg 3720ggcggcttta ccggcgcgac
tgcagcaacc ggcaagacgg gggcacgcaa tatgccgcac 3780acccgtctgg ttgccggcct
gggcgcggat gtcgaattcg gcaacggctg gaacggcttg 3840gcacgttaca gctacgccgg
ttccaaacag tacggcaacc acagcggacg agtcggcgta 3900ggctaccggt tcctcgagca
ccaccaccac caccactga 39391131312PRTArtificial
SequenceSynthetic construct 113Met Val Ala Ala Asp Ile Gly Ala Gly Leu
Ala Asp Ala Leu Thr Ala 1 5 10
15 Pro Leu Asp His Lys Asp Lys Gly Leu Gln Ser Leu Thr Leu Asp
Gln 20 25 30 Ser
Val Arg Lys Asn Glu Lys Leu Lys Leu Ala Ala Gln Gly Ala Glu 35
40 45 Lys Thr Tyr Gly Asn Gly
Asp Ser Leu Asn Thr Gly Lys Leu Lys Asn 50 55
60 Asp Lys Val Ser Arg Phe Asp Phe Ile Arg Gln
Ile Glu Val Asp Gly 65 70 75
80 Gln Leu Ile Thr Leu Glu Ser Gly Glu Phe Gln Val Tyr Lys Gln Ser
85 90 95 His Ser
Ala Leu Thr Ala Phe Gln Thr Glu Gln Ile Gln Asp Ser Glu 100
105 110 His Ser Gly Lys Met Val Ala
Lys Arg Gln Phe Arg Ile Gly Asp Ile 115 120
125 Ala Gly Glu His Thr Ser Phe Asp Lys Leu Pro Glu
Gly Gly Arg Ala 130 135 140
Thr Tyr Arg Gly Thr Ala Phe Gly Ser Asp Asp Ala Gly Gly Lys Leu 145
150 155 160 Thr Tyr Thr
Ile Asp Phe Ala Ala Lys Gln Gly Asn Gly Lys Ile Glu 165
170 175 His Leu Lys Ser Pro Glu Leu Asn
Val Asp Leu Ala Ala Ala Asp Ile 180 185
190 Lys Pro Asp Gly Lys Arg His Ala Val Ile Ser Gly Ser
Val Leu Tyr 195 200 205
Asn Gln Ala Glu Lys Gly Ser Tyr Ser Leu Gly Ile Phe Gly Gly Lys 210
215 220 Ala Gln Glu Val
Ala Gly Ser Ala Glu Val Lys Thr Val Asn Gly Ile 225 230
235 240 Arg His Ile Gly Leu Ala Ala Lys Gln
Leu Glu Gly Ser Gly Gly Gly 245 250
255 Gly Thr Ser Ala Pro Asp Phe Asn Ala Gly Gly Thr Gly Ile
Gly Ser 260 265 270
Asn Ser Arg Ala Thr Thr Ala Lys Ser Ala Ala Val Ser Tyr Ala Gly
275 280 285 Ile Lys Asn Glu
Met Cys Lys Asp Arg Ser Met Leu Cys Ala Gly Arg 290
295 300 Asp Asp Val Ala Val Thr Asp Arg
Asp Ala Lys Ile Asn Ala Pro Pro 305 310
315 320 Pro Asn Leu His Thr Gly Asp Phe Pro Asn Pro Asn
Asp Ala Tyr Lys 325 330
335 Asn Leu Ile Asn Leu Lys Pro Ala Ile Glu Ala Gly Tyr Thr Gly Arg
340 345 350 Gly Val Glu
Val Gly Ile Val Asp Thr Gly Glu Ser Val Gly Ser Ile 355
360 365 Ser Phe Pro Glu Leu Tyr Gly Arg
Lys Glu His Gly Tyr Asn Glu Asn 370 375
380 Tyr Lys Asn Tyr Thr Ala Tyr Met Arg Lys Glu Ala Pro
Glu Asp Gly 385 390 395
400 Gly Gly Lys Asp Ile Glu Ala Ser Phe Asp Asp Glu Ala Val Ile Glu
405 410 415 Thr Glu Ala Lys
Pro Thr Asp Ile Arg His Val Lys Glu Ile Gly His 420
425 430 Ile Asp Leu Val Ser His Ile Ile Gly
Gly Arg Ser Val Asp Gly Arg 435 440
445 Pro Ala Gly Gly Ile Ala Pro Asp Ala Thr Leu His Ile Met
Asn Thr 450 455 460
Asn Asp Glu Thr Lys Asn Glu Met Met Val Ala Ala Ile Arg Asn Ala 465
470 475 480 Trp Val Lys Leu Gly
Glu Arg Gly Val Arg Ile Val Asn Asn Ser Phe 485
490 495 Gly Thr Thr Ser Arg Ala Gly Thr Ala Asp
Leu Phe Gln Ile Ala Asn 500 505
510 Ser Glu Glu Gln Tyr Arg Gln Ala Leu Leu Asp Tyr Ser Gly Gly
Asp 515 520 525 Lys
Thr Asp Glu Gly Ile Arg Leu Met Gln Gln Ser Asp Tyr Gly Asn 530
535 540 Leu Ser Tyr His Ile Arg
Asn Lys Asn Met Leu Phe Ile Phe Ser Thr 545 550
555 560 Gly Asn Asp Ala Gln Ala Gln Pro Asn Thr Tyr
Ala Leu Leu Pro Phe 565 570
575 Tyr Glu Lys Asp Ala Gln Lys Gly Ile Ile Thr Val Ala Gly Val Asp
580 585 590 Arg Ser
Gly Glu Lys Phe Lys Arg Glu Met Tyr Gly Glu Pro Gly Thr 595
600 605 Glu Pro Leu Glu Tyr Gly Ser
Asn His Cys Gly Ile Thr Ala Met Trp 610 615
620 Cys Leu Ser Ala Pro Tyr Glu Ala Ser Val Arg Phe
Thr Arg Thr Asn 625 630 635
640 Pro Ile Gln Ile Ala Gly Thr Ser Phe Ser Ala Pro Ile Val Thr Gly
645 650 655 Thr Ala Ala
Leu Leu Leu Gln Lys Tyr Pro Trp Met Ser Asn Asp Asn 660
665 670 Leu Arg Thr Thr Leu Leu Thr Thr
Ala Gln Asp Ile Gly Ala Val Gly 675 680
685 Val Asp Ser Lys Phe Gly Trp Gly Leu Leu Asp Ala Gly
Lys Ala Met 690 695 700
Asn Gly Pro Ala Ser Phe Pro Phe Gly Asp Phe Thr Ala Asp Thr Lys 705
710 715 720 Gly Thr Ser Asp
Ile Ala Tyr Ser Phe Arg Asn Asp Ile Ser Gly Thr 725
730 735 Gly Gly Leu Ile Lys Lys Gly Gly Ser
Gln Leu Gln Leu His Gly Asn 740 745
750 Asn Thr Tyr Thr Gly Lys Thr Ile Ile Glu Gly Gly Ser Leu
Val Leu 755 760 765
Tyr Gly Asn Asn Lys Ser Asp Met Arg Val Glu Thr Lys Gly Ala Leu 770
775 780 Ile Tyr Asn Gly Ala
Ala Ser Gly Gly Ser Leu Asn Ser Asp Gly Ile 785 790
795 800 Val Tyr Leu Ala Asp Thr Asp Gln Ser Gly
Ala Asn Glu Thr Val His 805 810
815 Ile Lys Gly Ser Leu Gln Leu Asp Gly Lys Gly Thr Leu Tyr Thr
Arg 820 825 830 Leu
Gly Lys Leu Leu Lys Val Asp Gly Thr Ala Ile Ile Gly Gly Lys 835
840 845 Leu Tyr Met Ser Ala Arg
Gly Lys Gly Ala Gly Tyr Leu Asn Ser Thr 850 855
860 Gly Arg Arg Val Pro Phe Leu Ser Ala Ala Lys
Ile Gly Gln Asp Tyr 865 870 875
880 Ser Phe Phe Thr Asn Ile Glu Thr Asp Gly Gly Leu Leu Ala Ser Leu
885 890 895 Asp Ser
Val Glu Lys Thr Ala Gly Ser Glu Gly Asp Thr Leu Ser Tyr 900
905 910 Tyr Val Arg Arg Gly Asn Ala
Ala Arg Thr Ala Ser Ala Ala Ala His 915 920
925 Ser Ala Pro Ala Gly Leu Lys His Ala Val Glu Gln
Gly Gly Ser Asn 930 935 940
Leu Glu Asn Leu Met Val Glu Leu Asp Ala Ser Glu Ser Ser Ala Thr 945
950 955 960 Pro Glu Thr
Val Glu Thr Ala Ala Ala Asp Arg Thr Asp Met Pro Gly 965
970 975 Ile Arg Pro Tyr Gly Ala Thr Phe
Arg Ala Ala Ala Ala Val Gln His 980 985
990 Ala Asn Ala Ala Asp Gly Val Arg Ile Phe Asn Ser Leu
Ala Ala Thr 995 1000 1005
Val Tyr Ala Asp Ser Thr Ala Ala His Ala Asp Met Gln Gly Arg Arg
1010 1015 1020 Leu Lys Ala
Val Ser Asp Gly Leu Asp His Asn Gly Thr Gly Leu Arg 1025
1030 1035 1040Val Ile Ala Gln Thr Gln Gln
Asp Gly Gly Thr Trp Glu Gln Gly Gly 1045
1050 1055 Val Glu Gly Lys Met Arg Gly Ser Thr Gln Thr
Val Gly Ile Ala Ala 1060 1065
1070 Lys Thr Gly Glu Asn Thr Thr Ala Ala Ala Thr Leu Gly Met Gly
Arg 1075 1080 1085 Ser
Thr Trp Ser Glu Asn Ser Ala Asn Ala Lys Thr Asp Ser Ile Ser 1090
1095 1100 Leu Phe Ala Gly Ile Arg
His Asp Ala Gly Asp Ile Gly Tyr Leu Lys 1105 1110
1115 1120Gly Leu Phe Ser Tyr Gly Arg Tyr Lys Asn Ser
Ile Ser Arg Ser Thr 1125 1130
1135 Gly Ala Asp Glu His Ala Glu Gly Ser Val Asn Gly Thr Leu Met Gln
1140 1145 1150 Leu Gly
Ala Leu Gly Gly Val Asn Val Pro Phe Ala Ala Thr Gly Asp 1155
1160 1165 Leu Thr Val Glu Gly Gly Leu
Arg Tyr Asp Leu Leu Lys Gln Asp Ala 1170 1175
1180 Phe Ala Glu Lys Gly Ser Ala Leu Gly Trp Ser Gly
Asn Ser Leu Thr 1185 1190 1195
1200Glu Gly Thr Leu Val Gly Leu Ala Gly Leu Lys Leu Ser Gln Pro Leu
1205 1210 1215 Ser Asp Lys
Ala Val Leu Phe Ala Thr Ala Gly Val Glu Arg Asp Leu 1220
1225 1230 Asn Gly Arg Asp Tyr Thr Val Thr
Gly Gly Phe Thr Gly Ala Thr Ala 1235 1240
1245 Ala Thr Gly Lys Thr Gly Ala Arg Asn Met Pro His Thr
Arg Leu Val 1250 1255 1260
Ala Gly Leu Gly Ala Asp Val Glu Phe Gly Asn Gly Trp Asn Gly Leu 1265
1270 1275 1280Ala Arg Tyr Ser
Tyr Ala Gly Ser Lys Gln Tyr Gly Asn His Ser Gly 1285
1290 1295 Arg Val Gly Val Gly Tyr Arg Phe Leu
Glu His His His His His His 1300 1305
1310 1142028DNAArtificial SequenceSynthetic construct
114atggtcgccg ccgacatcgg tgcggggctt gccgatgcac taaccgcacc gctcgaccat
60aaagacaaag gtttgcagtc tttgacgctg gatcagtccg tcaggaaaaa cgagaaactg
120aagctggcgg cacaaggtgc ggaaaaaact tatggaaacg gtgacagcct caatacgggc
180aaattgaaga acgacaaggt cagccgtttc gactttatcc gccaaatcga agtggacggg
240cagctcatta ccttggagag tggagagttc caagtataca aacaaagcca ttccgcctta
300accgcctttc agaccgagca aatacaagat tcggagcatt ccgggaagat ggttgcgaaa
360cgccagttca gaatcggcga catagcgggc gaacatacat cttttgacaa gcttcccgaa
420ggcggcaggg cgacatatcg cgggacggcg ttcggttcag acgatgccgg cggaaaactg
480acctacacca tagatttcgc cgccaagcag ggaaacggca aaatcgaaca tttgaaatcg
540ccagaactca atgtcgacct ggccgccgcc gatatcaagc cggatggaaa acgccatgcc
600gtcatcagcg gttccgtcct ttacaaccaa gccgagaaag gcagttactc cctcggtatc
660tttggcggaa aagcccagga agttgccggc agcgcggaag tgaaaaccgt aaacggcata
720cgccatatcg gccttgccgc caagcaactc gacggtggcg gaggcactgg atcctcagat
780ttggcaaacg attcttttat ccggcaggtt ctcgaccgtc agcatttcga acccgacggg
840aaataccacc tattcggcag caggggggaa cttgccgagc gcagcggcca tatcggattg
900ggaaaaatac aaagccatca gttgggcaac ctgatgattc aacaggcggc cattaaagga
960aatatcggct acattgtccg cttttccgat cacgggcacg aagtccattc ccccttcgac
1020aaccatgcct cacattccga ttctgatgaa gccggtagtc ccgttgacgg atttagcctt
1080taccgcatcc attgggacgg atacgaacac catcccgccg acggctatga cgggccacag
1140ggcggcggct atcccgctcc caaaggcgcg agggatatat acagctacga cataaaaggc
1200gttgcccaaa atatccgcct caacctgacc gacaaccgca gcaccggaca acggcttgcc
1260gaccgtttcc acaatgccgg tagtatgctg acgcaaggag taggcgacgg attcaaacgc
1320gccacccgat acagccccga gctggacaga tcgggcaatg ccgccgaagc cttcaacggc
1380actgcagata tcgttaaaaa catcatcggc gcggcaggag aaattgtcgg cgcaggcgat
1440gccgtgcagg gcataagcga aggctcaaac attgctgtca tgcacggctt gggtctgctt
1500tccaccgaaa acaagatggc gcgcatcaac gatttggcag atatggcgca actcaaagac
1560tatgccgcag cagccatccg cgattgggca gtccaaaacc ccaatgccgc acaaggcata
1620gaagccgtca gcaatatctt tatggcagcc atccccatca aagggattgg agctgttcgg
1680ggaaaatacg gcttgggcgg catcacggca catcctatca agcggtcgca gatgggcgcg
1740atcgcattgc cgaaagggaa atccgccgtc agcgacaatt ttgccgatgc ggcatacgcc
1800aaatacccgt ccccttacca ttcccgaaat atccgttcaa acttggagca gcgttacggc
1860aaagaaaaca tcacctcctc aaccgtgccg ccgtcaaacg gcaaaaatgt caaactggca
1920gaccaacgcc acccgaagac aggcgtaccg tttgacggta aagggtttcc gaattttgag
1980aagcacgtga aatatgatac gctcgagcac caccaccacc accactga
2028115675PRTArtificial SequenceSynthetic construct 115Met Val Ala Ala
Asp Ile Gly Ala Gly Leu Ala Asp Ala Leu Thr Ala 1 5
10 15 Pro Leu Asp His Lys Asp Lys Gly Leu
Gln Ser Leu Thr Leu Asp Gln 20 25
30 Ser Val Arg Lys Asn Glu Lys Leu Lys Leu Ala Ala Gln Gly
Ala Glu 35 40 45
Lys Thr Tyr Gly Asn Gly Asp Ser Leu Asn Thr Gly Lys Leu Lys Asn 50
55 60 Asp Lys Val Ser Arg
Phe Asp Phe Ile Arg Gln Ile Glu Val Asp Gly 65 70
75 80 Gln Leu Ile Thr Leu Glu Ser Gly Glu Phe
Gln Val Tyr Lys Gln Ser 85 90
95 His Ser Ala Leu Thr Ala Phe Gln Thr Glu Gln Ile Gln Asp Ser
Glu 100 105 110 His
Ser Gly Lys Met Val Ala Lys Arg Gln Phe Arg Ile Gly Asp Ile 115
120 125 Ala Gly Glu His Thr Ser
Phe Asp Lys Leu Pro Glu Gly Gly Arg Ala 130 135
140 Thr Tyr Arg Gly Thr Ala Phe Gly Ser Asp Asp
Ala Gly Gly Lys Leu 145 150 155
160 Thr Tyr Thr Ile Asp Phe Ala Ala Lys Gln Gly Asn Gly Lys Ile Glu
165 170 175 His Leu
Lys Ser Pro Glu Leu Asn Val Asp Leu Ala Ala Ala Asp Ile 180
185 190 Lys Pro Asp Gly Lys Arg His
Ala Val Ile Ser Gly Ser Val Leu Tyr 195 200
205 Asn Gln Ala Glu Lys Gly Ser Tyr Ser Leu Gly Ile
Phe Gly Gly Lys 210 215 220
Ala Gln Glu Val Ala Gly Ser Ala Glu Val Lys Thr Val Asn Gly Ile 225
230 235 240 Arg His Ile
Gly Leu Ala Ala Lys Gln Leu Asp Gly Gly Gly Gly Thr 245
250 255 Gly Ser Ser Asp Leu Ala Asn Asp
Ser Phe Ile Arg Gln Val Leu Asp 260 265
270 Arg Gln His Phe Glu Pro Asp Gly Lys Tyr His Leu Phe
Gly Ser Arg 275 280 285
Gly Glu Leu Ala Glu Arg Ser Gly His Ile Gly Leu Gly Lys Ile Gln 290
295 300 Ser His Gln Leu
Gly Asn Leu Met Ile Gln Gln Ala Ala Ile Lys Gly 305 310
315 320 Asn Ile Gly Tyr Ile Val Arg Phe Ser
Asp His Gly His Glu Val His 325 330
335 Ser Pro Phe Asp Asn His Ala Ser His Ser Asp Ser Asp Glu
Ala Gly 340 345 350
Ser Pro Val Asp Gly Phe Ser Leu Tyr Arg Ile His Trp Asp Gly Tyr
355 360 365 Glu His His Pro
Ala Asp Gly Tyr Asp Gly Pro Gln Gly Gly Gly Tyr 370
375 380 Pro Ala Pro Lys Gly Ala Arg Asp
Ile Tyr Ser Tyr Asp Ile Lys Gly 385 390
395 400 Val Ala Gln Asn Ile Arg Leu Asn Leu Thr Asp Asn
Arg Ser Thr Gly 405 410
415 Gln Arg Leu Ala Asp Arg Phe His Asn Ala Gly Ser Met Leu Thr Gln
420 425 430 Gly Val Gly
Asp Gly Phe Lys Arg Ala Thr Arg Tyr Ser Pro Glu Leu 435
440 445 Asp Arg Ser Gly Asn Ala Ala Glu
Ala Phe Asn Gly Thr Ala Asp Ile 450 455
460 Val Lys Asn Ile Ile Gly Ala Ala Gly Glu Ile Val Gly
Ala Gly Asp 465 470 475
480 Ala Val Gln Gly Ile Ser Glu Gly Ser Asn Ile Ala Val Met His Gly
485 490 495 Leu Gly Leu Leu
Ser Thr Glu Asn Lys Met Ala Arg Ile Asn Asp Leu 500
505 510 Ala Asp Met Ala Gln Leu Lys Asp Tyr
Ala Ala Ala Ala Ile Arg Asp 515 520
525 Trp Ala Val Gln Asn Pro Asn Ala Ala Gln Gly Ile Glu Ala
Val Ser 530 535 540
Asn Ile Phe Met Ala Ala Ile Pro Ile Lys Gly Ile Gly Ala Val Arg 545
550 555 560 Gly Lys Tyr Gly Leu
Gly Gly Ile Thr Ala His Pro Ile Lys Arg Ser 565
570 575 Gln Met Gly Ala Ile Ala Leu Pro Lys Gly
Lys Ser Ala Val Ser Asp 580 585
590 Asn Phe Ala Asp Ala Ala Tyr Ala Lys Tyr Pro Ser Pro Tyr His
Ser 595 600 605 Arg
Asn Ile Arg Ser Asn Leu Glu Gln Arg Tyr Gly Lys Glu Asn Ile 610
615 620 Thr Ser Ser Thr Val Pro
Pro Ser Asn Gly Lys Asn Val Lys Leu Ala 625 630
635 640 Asp Gln Arg His Pro Lys Thr Gly Val Pro Phe
Asp Gly Lys Gly Phe 645 650
655 Pro Asn Phe Glu Lys His Val Lys Tyr Asp Thr Leu Glu His His His
660 665 670 His His
His 675 116249PRTArtificial SequenceSynthetic construct 116Met
Lys Lys Tyr Leu Phe Arg Ala Ala Leu Tyr Gly Ile Ala Ala Ala 1
5 10 15 Ile Leu Ala Ala Ala Ile
Pro Ala Gly Asn Asp Ala Thr Thr Lys Pro 20
25 30 Asp Leu Tyr Tyr Leu Lys Asn Glu Gln Ala
Ile Asp Ser Leu Lys Leu 35 40
45 Leu Pro Pro Pro Pro Glu Val Gly Ser Ile Gln Phe Leu Asn
Asp Gln 50 55 60
Ala Met Tyr Glu Lys Gly Arg Met Leu Arg Asn Thr Glu Arg Gly Lys 65
70 75 80 Gln Ala Gln Ala Asp
Ala Asp Leu Ala Ala Gly Gly Val Ala Thr Ala 85
90 95 Phe Ser Gly Ala Phe Gly Tyr Pro Ile Thr
Glu Lys Asp Ser Pro Glu 100 105
110 Leu Tyr Lys Leu Leu Thr Asn Met Ile Glu Asp Ala Gly Asp Leu
Ala 115 120 125 Thr
Arg Ser Ala Lys Glu His Tyr Met Arg Ile Arg Pro Phe Ala Phe 130
135 140 Tyr Gly Thr Glu Thr Cys
Asn Thr Lys Asp Gln Lys Lys Leu Ser Thr 145 150
155 160 Asn Gly Ser Tyr Pro Ser Gly His Thr Ser Ile
Gly Trp Ala Thr Ala 165 170
175 Leu Val Leu Ala Glu Val Asn Pro Ala Asn Gln Asp Ala Ile Leu Glu
180 185 190 Arg Gly
Tyr Gln Leu Gly Gln Ser Arg Val Ile Cys Gly Tyr His Trp 195
200 205 Gln Ser Asp Val Asp Ala Ala
Arg Ile Val Gly Ser Ala Ala Val Ala 210 215
220 Thr Leu His Ser Asp Pro Ala Phe Gln Ala Gln Leu
Ala Lys Ala Lys 225 230 235
240 Gln Glu Phe Ala Gln Lys Ser Gln Lys 245
11766DNAArtificial SequenceSynthetic construct 117tatgaartay
ytnttymgcg ccgccctgta cggcatcgcc gccgccatcc tcgccgccgc 60gatccc
6611869DNAArtificial SequenceSynthetic construct 118tatgaaaaaa tacctattcc
grgcngcnyt rtayggsatc gccgccgcca tcctcgccgc 60cgcgatccc
6911927DNAArtificial
SequenceSynthetic construct 119atgaagaagt accttttcag cgccgcc
2712027DNAArtificial SequenceSynthetic
construct 120atgaaaaaat actttttccg cgccgcc
2712127DNAArtificial SequenceSynthetic construct 121atgaaaaaat
actttttccg cgccgcc
2712260DNAArtificial SequenceSynthetic construct 122atgaaaaaat atctctttag
cgccgccctg tacggcatcg ccgccgccat cctcgccgcc 6012360DNAArtificial
SequenceSynthetic construct 123atgaaaaaat acctattccg cgccgccctg
tacggcatcg ccgccgccat cctcgccgcc 601249PRTArtificial
SequenceSynthetic construct 124Met Lys Lys Tyr Leu Phe Ser Ala Ala 1
5 1259PRTArtificial SequenceSynthetic
construct 125Met Lys Lys Tyr Phe Phe Arg Ala Ala 1 5
1269PRTArtificial SequenceSynthetic construct 126Met Lys Lys
Tyr Phe Phe Arg Ala Ala 1 5
12720PRTArtificial SequenceSynthetic construct 127Met Lys Lys Tyr Leu Phe
Ser Ala Ala Leu Tyr Gly Ile Ala Ala Ala 1 5
10 15 Ile Leu Ala Ala 20
12820PRTArtificial SequenceSynthetic construct 128Met Lys Lys Tyr Leu Phe
Arg Ala Ala Leu Tyr Gly Ile Ala Ala Ala 1 5
10 15 Ile Leu Ala Ala 20
12942DNAArtificial SequenceSynthetic construct 129atgaaaaaat acctattcat
cgccgccgcc atcctcgccg cc 4213060DNAArtificial
SequenceSynthetic construct 130atgaaaaaat acctattccg agctgcccaa
tacggcatcg ccgccgccat cctcgccgcc 6013160DNAArtificial
SequenceSynthetic construct 131atgaaaaaat acctattccg ggccgcccaa
tacggcatcg ccgccgccat cctcgccgcc 6013260DNAArtificial
SequenceSynthetic construct 132atgaaaaaat acctattccg ggcggctttg
tacgggatcg ccgccgccat cctcgccgcc 6013314PRTArtificial
SequenceSynthetic construct 133Met Lys Lys Tyr Leu Phe Ile Ala Ala Ala
Ile Leu Ala Ala 1 5 10
13420PRTArtificial SequenceSynthetic construct 134Met Lys Lys Tyr Leu Phe
Arg Ala Ala Gln Tyr Gly Ile Ala Ala Ala 1 5
10 15 Ile Leu Ala Ala 20
13520PRTArtificial SequenceSynthetic construct 135Met Lys Lys Tyr Leu Phe
Arg Ala Ala Gln Tyr Gly Ile Ala Ala Ala 1 5
10 15 Ile Leu Ala Ala 20
13620PRTArtificial SequenceSynthetic construct 136Met Lys Lys Tyr Leu Phe
Arg Ala Ala Leu Tyr Gly Ile Ala Ala Ala 1 5
10 15 Ile Leu Ala Ala 20
137467PRTArtificial SequenceNeisseria meningitidis 137Val Lys Pro Leu Arg
Arg Leu Thr Asn Leu Leu Ala Ala Cys Ala Val 1 5
10 15 Ala Ala Ala Ala Leu Ile Gln Pro Ala Leu
Ala Ala Asp Leu Ala Gln 20 25
30 Asp Pro Phe Ile Thr Asp Asn Ala Gln Arg Gln His Tyr Glu Pro
Gly 35 40 45 Gly
Lys Tyr His Leu Phe Gly Asp Pro Arg Gly Ser Val Ser Asp Arg 50
55 60 Thr Gly Lys Ile Asn Val
Ile Gln Asp Tyr Thr His Gln Met Gly Asn 65 70
75 80 Leu Leu Ile Gln Gln Ala Asn Ile Asn Gly Thr
Ile Gly Tyr His Thr 85 90
95 Arg Phe Ser Gly His Gly His Glu Glu His Ala Pro Phe Asp Asn His
100 105 110 Ala Ala
Asp Ser Ala Ser Glu Glu Lys Gly Asn Val Asp Glu Gly Phe 115
120 125 Thr Val Tyr Arg Leu Asn Trp
Glu Gly His Glu His His Pro Ala Asp 130 135
140 Ala Tyr Asp Gly Pro Lys Gly Gly Asn Tyr Pro Lys
Pro Thr Gly Ala 145 150 155
160 Arg Asp Glu Tyr Thr Tyr His Val Asn Gly Thr Ala Arg Ser Ile Lys
165 170 175 Leu Asn Pro
Thr Asp Thr Arg Ser Ile Arg Gln Arg Ile Ser Asp Asn 180
185 190 Tyr Ser Asn Leu Gly Ser Asn Phe
Ser Asp Arg Ala Asp Glu Ala Asn 195 200
205 Arg Lys Met Phe Glu His Asn Ala Lys Leu Asp Arg Trp
Gly Asn Ser 210 215 220
Met Glu Phe Ile Asn Gly Val Ala Ala Gly Ala Leu Asn Pro Phe Ile 225
230 235 240 Ser Ala Gly Glu
Ala Leu Gly Ile Gly Asp Ile Leu Tyr Gly Thr Arg 245
250 255 Tyr Ala Ile Asp Lys Ala Ala Met Arg
Asn Ile Ala Pro Leu Pro Ala 260 265
270 Glu Gly Lys Phe Ala Val Ile Gly Gly Leu Gly Ser Val Ala
Gly Phe 275 280 285
Glu Lys Asn Thr Arg Glu Ala Val Asp Arg Trp Ile Gln Glu Asn Pro 290
295 300 Asn Ala Ala Glu Thr
Val Glu Ala Val Phe Asn Val Ala Ala Ala Ala 305 310
315 320 Lys Val Ala Lys Leu Ala Lys Ala Ala Lys
Pro Gly Lys Ala Ala Val 325 330
335 Ser Gly Asp Phe Ala Asp Ser Tyr Lys Lys Lys Leu Ala Leu Ser
Asp 340 345 350 Ser
Ala Arg Gln Leu Tyr Gln Asn Ala Lys Tyr Arg Glu Ala Leu Asp 355
360 365 Ile His Tyr Glu Asp Leu
Ile Arg Arg Lys Thr Asp Gly Ser Ser Lys 370 375
380 Phe Ile Asn Gly Arg Glu Ile Asp Ala Val Thr
Asn Asp Ala Leu Ile 385 390 395
400 Gln Ala Lys Arg Thr Ile Ser Ala Ile Asp Lys Pro Lys Asn Phe Leu
405 410 415 Asn Gln
Lys Asn Arg Lys Gln Ile Lys Ala Thr Ile Glu Ala Ala Asn 420
425 430 Gln Gln Gly Lys Arg Ala Glu
Phe Trp Phe Lys Tyr Gly Val His Ser 435 440
445 Gln Val Lys Ser Tyr Ile Glu Ser Lys Gly Gly Ile
Val Lys Thr Gly 450 455 460
Leu Gly Asp 465 138377PRTArtificial SequenceSynthetic
construct 138Met Ala Asp Leu Ala Gln Asp Pro Phe Ile Thr Asp Asn Ala Gln
Arg 1 5 10 15 Gln
His Tyr Glu Pro Gly Gly Lys Tyr His Leu Phe Gly Asp Pro Arg
20 25 30 Gly Ser Val Ser Asp
Arg Thr Gly Lys Ile Asn Val Ile Gln Asp Tyr 35
40 45 Thr His Gln Met Gly Asn Leu Leu Ile
Gln Gln Ala Asn Ile Asn Gly 50 55
60 Thr Ile Gly Tyr His Thr Arg Phe Ser Gly His Gly His
Glu Glu His 65 70 75
80 Ala Pro Phe Asp Asn His Ala Ala Asp Ser Ala Ser Glu Glu Lys Gly
85 90 95 Asn Val Asp Glu
Gly Phe Thr Val Tyr Arg Leu Asn Trp Glu Gly His 100
105 110 Glu His His Pro Ala Asp Ala Tyr Asp
Gly Pro Lys Gly Gly Asn Tyr 115 120
125 Pro Lys Pro Thr Gly Ala Arg Asp Glu Tyr Thr Tyr His Val
Asn Gly 130 135 140
Thr Ala Arg Ser Ile Lys Leu Asn Pro Thr Asp Thr Arg Ser Ile Arg 145
150 155 160 Gln Arg Ile Ser Asp
Asn Tyr Ser Asn Leu Gly Ser Asn Phe Ser Asp 165
170 175 Arg Ala Asp Glu Ala Asn Arg Lys Met Phe
Glu His Asn Ala Lys Leu 180 185
190 Asp Arg Trp Gly Asn Ser Met Glu Phe Ile Asn Gly Val Ala Ala
Gly 195 200 205 Ala
Leu Asn Pro Phe Ile Ser Ala Gly Glu Ala Leu Gly Ile Gly Asp 210
215 220 Ile Leu Tyr Gly Thr Arg
Tyr Ala Ile Asp Lys Ala Ala Met Arg Asn 225 230
235 240 Ile Ala Pro Leu Pro Ala Glu Gly Lys Phe Ala
Val Ile Gly Gly Leu 245 250
255 Gly Ser Val Ala Gly Phe Glu Lys Asn Thr Arg Glu Ala Val Asp Arg
260 265 270 Trp Ile
Gln Glu Asn Pro Asn Ala Ala Glu Thr Val Glu Ala Val Phe 275
280 285 Asn Val Ala Ala Ala Ala Lys
Val Ala Lys Leu Ala Lys Ala Ala Lys 290 295
300 Pro Gly Lys Ala Ala Val Ser Gly Asp Phe Ala Asp
Ser Tyr Lys Lys 305 310 315
320 Lys Leu Ala Leu Ser Asp Ser Ala Arg Gln Leu Tyr Gln Asn Ala Lys
325 330 335 Tyr Arg Glu
Ala Leu Asp Ile His Tyr Glu Asp Leu Ile Arg Arg Lys 340
345 350 Thr Asp Gly Ser Ser Lys Phe Ile
Asn Gly Arg Glu Ile Asp Ala Val 355 360
365 Thr Asn Asp Ala Leu Ile Gln Ala Arg 370
375 139353PRTArtificial SequenceSynthetic construct
139Met Ala Asp Leu Ala Gln Asp Pro Phe Ile Thr Asp Asn Ala Gln Arg 1
5 10 15 Gln His Tyr Glu
Pro Gly Gly Lys Tyr His Leu Phe Gly Asp Pro Arg 20
25 30 Gly Ser Val Ser Asp Arg Thr Gly Lys
Ile Asn Val Ile Gln Asp Tyr 35 40
45 Thr His Gln Met Gly Asn Leu Leu Ile Gln Gln Ala Asn Ile
Asn Gly 50 55 60
Thr Ile Gly Tyr His Thr Arg Phe Ser Gly His Gly His Glu Glu His 65
70 75 80 Ala Pro Phe Asp Asn
His Ala Ala Asp Ser Ala Ser Glu Glu Lys Gly 85
90 95 Asn Val Asp Glu Gly Phe Thr Val Tyr Arg
Leu Asn Trp Glu Gly His 100 105
110 Glu His His Pro Ala Asp Ala Tyr Asp Gly Pro Lys Gly Gly Asn
Tyr 115 120 125 Pro
Lys Pro Thr Gly Ala Arg Asp Glu Tyr Thr Tyr His Val Asn Gly 130
135 140 Thr Ala Arg Ser Ile Lys
Leu Asn Pro Thr Asp Thr Arg Ser Ile Arg 145 150
155 160 Gln Arg Ile Ser Asp Asn Tyr Ser Asn Leu Gly
Ser Asn Phe Ser Asp 165 170
175 Arg Ala Asp Glu Ala Asn Arg Lys Met Phe Glu His Asn Ala Lys Leu
180 185 190 Asp Arg
Trp Gly Asn Ser Met Glu Phe Ile Asn Gly Val Ala Ala Gly 195
200 205 Ala Leu Asn Pro Phe Ile Ser
Ala Gly Glu Ala Leu Gly Ile Gly Asp 210 215
220 Ile Leu Tyr Gly Thr Arg Tyr Ala Ile Asp Lys Ala
Ala Met Arg Asn 225 230 235
240 Ile Ala Pro Leu Pro Ala Glu Gly Lys Phe Ala Val Ile Gly Gly Leu
245 250 255 Gly Ser Val
Ala Gly Phe Glu Lys Asn Thr Arg Glu Ala Val Asp Arg 260
265 270 Trp Ile Gln Glu Asn Pro Asn Ala
Ala Glu Thr Val Glu Ala Val Phe 275 280
285 Asn Val Ala Ala Ala Ala Lys Val Ala Lys Leu Ala Lys
Ala Ala Lys 290 295 300
Pro Gly Lys Ala Ala Val Ser Gly Asp Phe Ala Asp Ser Tyr Lys Lys 305
310 315 320 Lys Leu Ala Leu
Ser Asp Ser Ala Arg Gln Leu Tyr Gln Asn Ala Lys 325
330 335 Tyr Arg Glu Ala Leu Gly Lys Val Arg
Ile Ser Gly Glu Ile Leu Leu 340 345
350 Gly 1402019DNAArtificial SequenceSynthetic construct
140atgtcagatt tggcaaacga ttcttttatc cggcaggttc tcgaccgtca gcatttcgaa
60cccgacggga aataccacct attcggcagc aggggggaac ttgccgagcg cagcggccat
120atcggattgg gaaaaataca aagccatcag ttgggcaacc tgatgattca acaggcggcc
180attaaaggaa atatcggcta cattgtccgc ttttccgatc acgggcacga agtccattcc
240cccttcgaca accatgcctc acattccgat tctgatgaag ccggtagtcc cgttgacgga
300tttagccttt accgcatcca ttgggacgga tacgaacacc atcccgccga cggctatgac
360gggccacagg gcggcggcta tcccgctccc aaaggcgcga gggatatata cagctacgac
420ataaaaggcg ttgcccaaaa tatccgcctc aacctgaccg acaaccgcag caccggacaa
480cggcttgccg accgtttcca caatgccggt agtatgctga cgcaaggagt aggcgacgga
540ttcaaacgcg ccacccgata cagccccgag ctggacagat cgggcaatgc cgccgaagcc
600ttcaacggca ctgcagatat cgttaaaaac atcatcggcg cggcaggaga aattgtcggc
660gcaggcgatg ccgtgcaggg cataagcgaa ggctcaaaca ttgctgtcat gcacggcttg
720ggtctgcttt ccaccgaaaa caagatggcg cgcatcaacg atttggcaga tatggcgcaa
780ctcaaagact atgccgcagc agccatccgc gattgggcag tccaaaaccc caatgccgca
840caaggcatag aagccgtcag caatatcttt atggcagcca tccccatcaa agggattgga
900gctgttcggg gaaaatacgg cttgggcggc atcacggcac atcctatcaa gcggtcgcag
960atgggcgcga tcgcattgcc gaaagggaaa tccgccgtca gcgacaattt tgccgatgcg
1020gcatacgcca aatacccgtc cccttaccat tcccgaaata tccgttcaaa cttggagcag
1080cgttacggca aagaaaacat cacctcctca accgtgccgc cgtcaaacgg caaaaatgtc
1140aaactggcag accaacgcca cccgaagaca ggcgtaccgt ttgacggtaa agggtttccg
1200aattttgaga agcacgtgaa atatgatacg ggatccggag ggggtggtgt cgccgccgac
1260atcggtgcgg ggcttgccga tgcactaacc gcaccgctcg accataaaga caaaggtttg
1320cagtctttga cgctggatca gtccgtcagg aaaaacgaga aactgaagct ggcggcacaa
1380ggtgcggaaa aaacttatgg aaacggtgac agcctcaata cgggcaaatt gaagaacgac
1440aaggtcagcc gtttcgactt tatccgccaa atcgaagtgg acgggcagct cattaccttg
1500gagagtggag agttccaagt atacaaacaa agccattccg ccttaaccgc ctttcagacc
1560gagcaaatac aagattcgga gcattccggg aagatggttg cgaaacgcca gttcagaatc
1620ggcgacatag cgggcgaaca tacatctttt gacaagcttc ccgaaggcgg cagggcgaca
1680tatcgcggga cggcgttcgg ttcagacgat gccggcggaa aactgaccta caccatagat
1740ttcgccgcca agcagggaaa cggcaaaatc gaacatttga aatcgccaga actcaatgtc
1800gacctggccg ccgccgatat caagccggat ggaaaacgcc atgccgtcat cagcggttcc
1860gtcctttaca accaagccga gaaaggcagt tactccctcg gtatctttgg cggaaaagcc
1920caggaagttg ccggcagcgc ggaagtgaaa accgtaaacg gcatacgcca tatcggcctt
1980gccgccaagc aactcgagca ccaccaccac caccactga
2019141672PRTArtificial SequenceSynthetic construct 141Met Ser Asp Leu
Ala Asn Asp Ser Phe Ile Arg Gln Val Leu Asp Arg 1 5
10 15 Gln His Phe Glu Pro Asp Gly Lys Tyr
His Leu Phe Gly Ser Arg Gly 20 25
30 Glu Leu Ala Glu Arg Ser Gly His Ile Gly Leu Gly Lys Ile
Gln Ser 35 40 45
His Gln Leu Gly Asn Leu Met Ile Gln Gln Ala Ala Ile Lys Gly Asn 50
55 60 Ile Gly Tyr Ile Val
Arg Phe Ser Asp His Gly His Glu Val His Ser 65 70
75 80 Pro Phe Asp Asn His Ala Ser His Ser Asp
Ser Asp Glu Ala Gly Ser 85 90
95 Pro Val Asp Gly Phe Ser Leu Tyr Arg Ile His Trp Asp Gly Tyr
Glu 100 105 110 His
His Pro Ala Asp Gly Tyr Asp Gly Pro Gln Gly Gly Gly Tyr Pro 115
120 125 Ala Pro Lys Gly Ala Arg
Asp Ile Tyr Ser Tyr Asp Ile Lys Gly Val 130 135
140 Ala Gln Asn Ile Arg Leu Asn Leu Thr Asp Asn
Arg Ser Thr Gly Gln 145 150 155
160 Arg Leu Ala Asp Arg Phe His Asn Ala Gly Ser Met Leu Thr Gln Gly
165 170 175 Val Gly
Asp Gly Phe Lys Arg Ala Thr Arg Tyr Ser Pro Glu Leu Asp 180
185 190 Arg Ser Gly Asn Ala Ala Glu
Ala Phe Asn Gly Thr Ala Asp Ile Val 195 200
205 Lys Asn Ile Ile Gly Ala Ala Gly Glu Ile Val Gly
Ala Gly Asp Ala 210 215 220
Val Gln Gly Ile Ser Glu Gly Ser Asn Ile Ala Val Met His Gly Leu 225
230 235 240 Gly Leu Leu
Ser Thr Glu Asn Lys Met Ala Arg Ile Asn Asp Leu Ala 245
250 255 Asp Met Ala Gln Leu Lys Asp Tyr
Ala Ala Ala Ala Ile Arg Asp Trp 260 265
270 Ala Val Gln Asn Pro Asn Ala Ala Gln Gly Ile Glu Ala
Val Ser Asn 275 280 285
Ile Phe Met Ala Ala Ile Pro Ile Lys Gly Ile Gly Ala Val Arg Gly 290
295 300 Lys Tyr Gly Leu
Gly Gly Ile Thr Ala His Pro Ile Lys Arg Ser Gln 305 310
315 320 Met Gly Ala Ile Ala Leu Pro Lys Gly
Lys Ser Ala Val Ser Asp Asn 325 330
335 Phe Ala Asp Ala Ala Tyr Ala Lys Tyr Pro Ser Pro Tyr His
Ser Arg 340 345 350
Asn Ile Arg Ser Asn Leu Glu Gln Arg Tyr Gly Lys Glu Asn Ile Thr
355 360 365 Ser Ser Thr Val
Pro Pro Ser Asn Gly Lys Asn Val Lys Leu Ala Asp 370
375 380 Gln Arg His Pro Lys Thr Gly Val
Pro Phe Asp Gly Lys Gly Phe Pro 385 390
395 400 Asn Phe Glu Lys His Val Lys Tyr Asp Thr Gly Ser
Gly Gly Gly Gly 405 410
415 Val Ala Ala Asp Ile Gly Ala Gly Leu Ala Asp Ala Leu Thr Ala Pro
420 425 430 Leu Asp His
Lys Asp Lys Gly Leu Gln Ser Leu Thr Leu Asp Gln Ser 435
440 445 Val Arg Lys Asn Glu Lys Leu Lys
Leu Ala Ala Gln Gly Ala Glu Lys 450 455
460 Thr Tyr Gly Asn Gly Asp Ser Leu Asn Thr Gly Lys Leu
Lys Asn Asp 465 470 475
480 Lys Val Ser Arg Phe Asp Phe Ile Arg Gln Ile Glu Val Asp Gly Gln
485 490 495 Leu Ile Thr Leu
Glu Ser Gly Glu Phe Gln Val Tyr Lys Gln Ser His 500
505 510 Ser Ala Leu Thr Ala Phe Gln Thr Glu
Gln Ile Gln Asp Ser Glu His 515 520
525 Ser Gly Lys Met Val Ala Lys Arg Gln Phe Arg Ile Gly Asp
Ile Ala 530 535 540
Gly Glu His Thr Ser Phe Asp Lys Leu Pro Glu Gly Gly Arg Ala Thr 545
550 555 560 Tyr Arg Gly Thr Ala
Phe Gly Ser Asp Asp Ala Gly Gly Lys Leu Thr 565
570 575 Tyr Thr Ile Asp Phe Ala Ala Lys Gln Gly
Asn Gly Lys Ile Glu His 580 585
590 Leu Lys Ser Pro Glu Leu Asn Val Asp Leu Ala Ala Ala Asp Ile
Lys 595 600 605 Pro
Asp Gly Lys Arg His Ala Val Ile Ser Gly Ser Val Leu Tyr Asn 610
615 620 Gln Ala Glu Lys Gly Ser
Tyr Ser Leu Gly Ile Phe Gly Gly Lys Ala 625 630
635 640 Gln Glu Val Ala Gly Ser Ala Glu Val Lys Thr
Val Asn Gly Ile Arg 645 650
655 His Ile Gly Leu Ala Ala Lys Gln Leu Glu His His His His His His
660 665 670
1422421DNAArtificial SequenceSynthetic construct 142atgtcagatt tggcaaacga
ttcttttatc cggcaggttc tcgaccgtca gcatttcgaa 60cccgacggga aataccacct
attcggcagc aggggggaac ttgccgagcg cagcggccat 120atcggattgg gaaaaataca
aagccatcag ttgggcaacc tgatgattca acaggcggcc 180attaaaggaa atatcggcta
cattgtccgc ttttccgatc acgggcacga agtccattcc 240cccttcgaca accatgcctc
acattccgat tctgatgaag ccggtagtcc cgttgacgga 300tttagccttt accgcatcca
ttgggacgga tacgaacacc atcccgccga cggctatgac 360gggccacagg gcggcggcta
tcccgctccc aaaggcgcga gggatatata cagctacgac 420ataaaaggcg ttgcccaaaa
tatccgcctc aacctgaccg acaaccgcag caccggacaa 480cggcttgccg accgtttcca
caatgccggt agtatgctga cgcaaggagt aggcgacgga 540ttcaaacgcg ccacccgata
cagccccgag ctggacagat cgggcaatgc cgccgaagcc 600ttcaacggca ctgcagatat
cgttaaaaac atcatcggcg cggcaggaga aattgtcggc 660gcaggcgatg ccgtgcaggg
cataagcgaa ggctcaaaca ttgctgtcat gcacggcttg 720ggtctgcttt ccaccgaaaa
caagatggcg cgcatcaacg atttggcaga tatggcgcaa 780ctcaaagact atgccgcagc
agccatccgc gattgggcag tccaaaaccc caatgccgca 840caaggcatag aagccgtcag
caatatcttt atggcagcca tccccatcaa agggattgga 900gctgttcggg gaaaatacgg
cttgggcggc atcacggcac atcctatcaa gcggtcgcag 960atgggcgcga tcgcattgcc
gaaagggaaa tccgccgtca gcgacaattt tgccgatgcg 1020gcatacgcca aatacccgtc
cccttaccat tcccgaaata tccgttcaaa cttggagcag 1080cgttacggca aagaaaacat
cacctcctca accgtgccgc cgtcaaacgg caaaaatgtc 1140aaactggcag accaacgcca
cccgaagaca ggcgtaccgt ttgacggtaa agggtttccg 1200aattttgaga agcacgtgaa
atatgatacg ggatccggag gaggaggagc cacaaacgac 1260gacgatgtta aaaaagctgc
cactgtggcc attgctgctg cctacaacaa tggccaagaa 1320atcaacggtt tcaaagctgg
agagaccatc tacgacattg atgaagacgg cacaattacc 1380aaaaaagacg caactgcagc
cgatgttgaa gccgacgact ttaaaggtct gggtctgaaa 1440aaagtcgtga ctaacctgac
caaaaccgtc aatgaaaaca aacaaaacgt cgatgccaaa 1500gtaaaagctg cagaatctga
aatagaaaag ttaacaacca agttagcaga cactgatgcc 1560gctttagcag atactgatgc
cgctctggat gcaaccacca acgccttgaa taaattggga 1620gaaaatataa cgacatttgc
tgaagagact aagacaaata tcgtaaaaat tgatgaaaaa 1680ttagaagccg tggctgatac
cgtcgacaag catgccgaag cattcaacga tatcgccgat 1740tcattggatg aaaccaacac
taaggcagac gaagccgtca aaaccgccaa tgaagccaaa 1800cagacggccg aagaaaccaa
acaaaacgtc gatgccaaag taaaagctgc agaaactgca 1860gcaggcaaag ccgaagctgc
cgctggcaca gctaatactg cagccgacaa ggccgaagct 1920gtcgctgcaa aagttaccga
catcaaagct gatatcgcta cgaacaaaga taatattgct 1980aaaaaagcaa acagtgccga
cgtgtacacc agagaagagt ctgacagcaa atttgtcaga 2040attgatggtc tgaacgctac
taccgaaaaa ttggacacac gcttggcttc tgctgaaaaa 2100tccattgccg atcacgatac
tcgcctgaac ggtttggata aaacagtgtc agacctgcgc 2160aaagaaaccc gccaaggcct
tgcagaacaa gccgcgctct ccggtctgtt ccaaccttac 2220aacgtgggtc ggttcaatgt
aacggctgca gtcggcggct acaaatccga atcggcagtc 2280gccatcggta ccggcttccg
ctttaccgaa aactttgccg ccaaagcagg cgtggcagtc 2340ggcacttcgt ccggttcttc
cgcagcctac catgtcggcg tcaattacga gtggctcgag 2400caccaccacc accaccactg a
2421143806PRTArtificial
SequenceSynthetic construct 143Met Ser Asp Leu Ala Asn Asp Ser Phe Ile
Arg Gln Val Leu Asp Arg 1 5 10
15 Gln His Phe Glu Pro Asp Gly Lys Tyr His Leu Phe Gly Ser Arg
Gly 20 25 30 Glu
Leu Ala Glu Arg Ser Gly His Ile Gly Leu Gly Lys Ile Gln Ser 35
40 45 His Gln Leu Gly Asn Leu
Met Ile Gln Gln Ala Ala Ile Lys Gly Asn 50 55
60 Ile Gly Tyr Ile Val Arg Phe Ser Asp His Gly
His Glu Val His Ser 65 70 75
80 Pro Phe Asp Asn His Ala Ser His Ser Asp Ser Asp Glu Ala Gly Ser
85 90 95 Pro Val
Asp Gly Phe Ser Leu Tyr Arg Ile His Trp Asp Gly Tyr Glu 100
105 110 His His Pro Ala Asp Gly Tyr
Asp Gly Pro Gln Gly Gly Gly Tyr Pro 115 120
125 Ala Pro Lys Gly Ala Arg Asp Ile Tyr Ser Tyr Asp
Ile Lys Gly Val 130 135 140
Ala Gln Asn Ile Arg Leu Asn Leu Thr Asp Asn Arg Ser Thr Gly Gln 145
150 155 160 Arg Leu Ala
Asp Arg Phe His Asn Ala Gly Ser Met Leu Thr Gln Gly 165
170 175 Val Gly Asp Gly Phe Lys Arg Ala
Thr Arg Tyr Ser Pro Glu Leu Asp 180 185
190 Arg Ser Gly Asn Ala Ala Glu Ala Phe Asn Gly Thr Ala
Asp Ile Val 195 200 205
Lys Asn Ile Ile Gly Ala Ala Gly Glu Ile Val Gly Ala Gly Asp Ala 210
215 220 Val Gln Gly Ile
Ser Glu Gly Ser Asn Ile Ala Val Met His Gly Leu 225 230
235 240 Gly Leu Leu Ser Thr Glu Asn Lys Met
Ala Arg Ile Asn Asp Leu Ala 245 250
255 Asp Met Ala Gln Leu Lys Asp Tyr Ala Ala Ala Ala Ile Arg
Asp Trp 260 265 270
Ala Val Gln Asn Pro Asn Ala Ala Gln Gly Ile Glu Ala Val Ser Asn
275 280 285 Ile Phe Met Ala
Ala Ile Pro Ile Lys Gly Ile Gly Ala Val Arg Gly 290
295 300 Lys Tyr Gly Leu Gly Gly Ile Thr
Ala His Pro Ile Lys Arg Ser Gln 305 310
315 320 Met Gly Ala Ile Ala Leu Pro Lys Gly Lys Ser Ala
Val Ser Asp Asn 325 330
335 Phe Ala Asp Ala Ala Tyr Ala Lys Tyr Pro Ser Pro Tyr His Ser Arg
340 345 350 Asn Ile Arg
Ser Asn Leu Glu Gln Arg Tyr Gly Lys Glu Asn Ile Thr 355
360 365 Ser Ser Thr Val Pro Pro Ser Asn
Gly Lys Asn Val Lys Leu Ala Asp 370 375
380 Gln Arg His Pro Lys Thr Gly Val Pro Phe Asp Gly Lys
Gly Phe Pro 385 390 395
400 Asn Phe Glu Lys His Val Lys Tyr Asp Thr Gly Ser Gly Gly Gly Gly
405 410 415 Ala Thr Asn Asp
Asp Asp Val Lys Lys Ala Ala Thr Val Ala Ile Ala 420
425 430 Ala Ala Tyr Asn Asn Gly Gln Glu Ile
Asn Gly Phe Lys Ala Gly Glu 435 440
445 Thr Ile Tyr Asp Ile Asp Glu Asp Gly Thr Ile Thr Lys Lys
Asp Ala 450 455 460
Thr Ala Ala Asp Val Glu Ala Asp Asp Phe Lys Gly Leu Gly Leu Lys 465
470 475 480 Lys Val Val Thr Asn
Leu Thr Lys Thr Val Asn Glu Asn Lys Gln Asn 485
490 495 Val Asp Ala Lys Val Lys Ala Ala Glu Ser
Glu Ile Glu Lys Leu Thr 500 505
510 Thr Lys Leu Ala Asp Thr Asp Ala Ala Leu Ala Asp Thr Asp Ala
Ala 515 520 525 Leu
Asp Ala Thr Thr Asn Ala Leu Asn Lys Leu Gly Glu Asn Ile Thr 530
535 540 Thr Phe Ala Glu Glu Thr
Lys Thr Asn Ile Val Lys Ile Asp Glu Lys 545 550
555 560 Leu Glu Ala Val Ala Asp Thr Val Asp Lys His
Ala Glu Ala Phe Asn 565 570
575 Asp Ile Ala Asp Ser Leu Asp Glu Thr Asn Thr Lys Ala Asp Glu Ala
580 585 590 Val Lys
Thr Ala Asn Glu Ala Lys Gln Thr Ala Glu Glu Thr Lys Gln 595
600 605 Asn Val Asp Ala Lys Val Lys
Ala Ala Glu Thr Ala Ala Gly Lys Ala 610 615
620 Glu Ala Ala Ala Gly Thr Ala Asn Thr Ala Ala Asp
Lys Ala Glu Ala 625 630 635
640 Val Ala Ala Lys Val Thr Asp Ile Lys Ala Asp Ile Ala Thr Asn Lys
645 650 655 Asp Asn Ile
Ala Lys Lys Ala Asn Ser Ala Asp Val Tyr Thr Arg Glu 660
665 670 Glu Ser Asp Ser Lys Phe Val Arg
Ile Asp Gly Leu Asn Ala Thr Thr 675 680
685 Glu Lys Leu Asp Thr Arg Leu Ala Ser Ala Glu Lys Ser
Ile Ala Asp 690 695 700
His Asp Thr Arg Leu Asn Gly Leu Asp Lys Thr Val Ser Asp Leu Arg 705
710 715 720 Lys Glu Thr Arg
Gln Gly Leu Ala Glu Gln Ala Ala Leu Ser Gly Leu 725
730 735 Phe Gln Pro Tyr Asn Val Gly Arg Phe
Asn Val Thr Ala Ala Val Gly 740 745
750 Gly Tyr Lys Ser Glu Ser Ala Val Ala Ile Gly Thr Gly Phe
Arg Phe 755 760 765
Thr Glu Asn Phe Ala Ala Lys Ala Gly Val Ala Val Gly Thr Ser Ser 770
775 780 Gly Ser Ser Ala Ala
Tyr His Val Gly Val Asn Tyr Glu Trp Leu Glu 785 790
795 800 His His His His His His
805 1442256DNAArtificial SequenceSynthetic construct 144atgtcagatt
tggcaaacga ttcttttatc cggcaggttc tcgaccgtca gcatttcgaa 60cccgacggga
aataccacct attcggcagc aggggggaac ttgccgagcg cagcggccat 120atcggattgg
gaaaaataca aagccatcag ttgggcaacc tgatgattca acaggcggcc 180attaaaggaa
atatcggcta cattgtccgc ttttccgatc acgggcacga agtccattcc 240cccttcgaca
accatgcctc acattccgat tctgatgaag ccggtagtcc cgttgacgga 300tttagccttt
accgcatcca ttgggacgga tacgaacacc atcccgccga cggctatgac 360gggccacagg
gcggcggcta tcccgctccc aaaggcgcga gggatatata cagctacgac 420ataaaaggcg
ttgcccaaaa tatccgcctc aacctgaccg acaaccgcag caccggacaa 480cggcttgccg
accgtttcca caatgccggt agtatgctga cgcaaggagt aggcgacgga 540ttcaaacgcg
ccacccgata cagccccgag ctggacagat cgggcaatgc cgccgaagcc 600ttcaacggca
ctgcagatat cgttaaaaac atcatcggcg cggcaggaga aattgtcggc 660gcaggcgatg
ccgtgcaggg cataagcgaa ggctcaaaca ttgctgtcat gcacggcttg 720ggtctgcttt
ccaccgaaaa caagatggcg cgcatcaacg atttggcaga tatggcgcaa 780ctcaaagact
atgccgcagc agccatccgc gattgggcag tccaaaaccc caatgccgca 840caaggcatag
aagccgtcag caatatcttt atggcagcca tccccatcaa agggattgga 900gctgttcggg
gaaaatacgg cttgggcggc atcacggcac atcctatcaa gcggtcgcag 960atgggcgcga
tcgcattgcc gaaagggaaa tccgccgtca gcgacaattt tgccgatgcg 1020gcatacgcca
aatacccgtc cccttaccat tcccgaaata tccgttcaaa cttggagcag 1080cgttacggca
aagaaaacat cacctcctca accgtgccgc cgtcaaacgg caaaaatgtc 1140aaactggcag
accaacgcca cccgaagaca ggcgtaccgt ttgacggtaa agggtttccg 1200aattttgaga
agcacgtgaa atatgatacg ggatccggag gaggaggagc cacaaacgac 1260gacgatgtta
aaaaagctgc cactgtggcc attgctgctg cctacaacaa tggccaagaa 1320atcaacggtt
tcaaagctgg agagaccatc tacgacattg atgaagacgg cacaattacc 1380aaaaaagacg
caactgcagc cgatgttgaa gccgacgact ttaaaggtct gggtctgaaa 1440aaagtcgtga
ctaacctgac caaaaccgtc aatgaaaaca aacaaaacgt cgatgccaaa 1500gtaaaagctg
cagaatctga aatagaaaag ttaacaacca agttagcaga cactgatgcc 1560gctttagcag
atactgatgc cgctctggat gcaaccacca acgccttgaa taaattggga 1620gaaaatataa
cgacatttgc tgaagagact aagacaaata tcgtaaaaat tgatgaaaaa 1680ttagaagccg
tggctgatac cgtcgacaag catgccgaag cattcaacga tatcgccgat 1740tcattggatg
aaaccaacac taaggcagac gaagccgtca aaaccgccaa tgaagccaaa 1800cagacggccg
aagaaaccaa acaaaacgtc gatgccaaag taaaagctgc agaaactgca 1860gcaggcaaag
ccgaagctgc cgctggcaca gctaatactg cagccgacaa ggccgaagct 1920gtcgctgcaa
aagttaccga catcaaagct gatatcgcta cgaacaaaga taatattgct 1980aaaaaagcaa
acagtgccga cgtgtacacc agagaagagt ctgacagcaa atttgtcaga 2040attgatggtc
tgaacgctac taccgaaaaa ttggacacac gcttggcttc tgctgaaaaa 2100tccattgccg
atcacgatac tcgcctgaac ggtttggata aaacagtgtc agacctgcgc 2160aaagaaaccc
gccaaggcct tgcagaacaa gccgcgctct ccggtctgtt ccaaccttac 2220aacgtgggtc
tcgagcacca ccaccaccac cactga
2256145751PRTArtificial SequenceSynthetic construct 145Met Ser Asp Leu
Ala Asn Asp Ser Phe Ile Arg Gln Val Leu Asp Arg 1 5
10 15 Gln His Phe Glu Pro Asp Gly Lys Tyr
His Leu Phe Gly Ser Arg Gly 20 25
30 Glu Leu Ala Glu Arg Ser Gly His Ile Gly Leu Gly Lys Ile
Gln Ser 35 40 45
His Gln Leu Gly Asn Leu Met Ile Gln Gln Ala Ala Ile Lys Gly Asn 50
55 60 Ile Gly Tyr Ile Val
Arg Phe Ser Asp His Gly His Glu Val His Ser 65 70
75 80 Pro Phe Asp Asn His Ala Ser His Ser Asp
Ser Asp Glu Ala Gly Ser 85 90
95 Pro Val Asp Gly Phe Ser Leu Tyr Arg Ile His Trp Asp Gly Tyr
Glu 100 105 110 His
His Pro Ala Asp Gly Tyr Asp Gly Pro Gln Gly Gly Gly Tyr Pro 115
120 125 Ala Pro Lys Gly Ala Arg
Asp Ile Tyr Ser Tyr Asp Ile Lys Gly Val 130 135
140 Ala Gln Asn Ile Arg Leu Asn Leu Thr Asp Asn
Arg Ser Thr Gly Gln 145 150 155
160 Arg Leu Ala Asp Arg Phe His Asn Ala Gly Ser Met Leu Thr Gln Gly
165 170 175 Val Gly
Asp Gly Phe Lys Arg Ala Thr Arg Tyr Ser Pro Glu Leu Asp 180
185 190 Arg Ser Gly Asn Ala Ala Glu
Ala Phe Asn Gly Thr Ala Asp Ile Val 195 200
205 Lys Asn Ile Ile Gly Ala Ala Gly Glu Ile Val Gly
Ala Gly Asp Ala 210 215 220
Val Gln Gly Ile Ser Glu Gly Ser Asn Ile Ala Val Met His Gly Leu 225
230 235 240 Gly Leu Leu
Ser Thr Glu Asn Lys Met Ala Arg Ile Asn Asp Leu Ala 245
250 255 Asp Met Ala Gln Leu Lys Asp Tyr
Ala Ala Ala Ala Ile Arg Asp Trp 260 265
270 Ala Val Gln Asn Pro Asn Ala Ala Gln Gly Ile Glu Ala
Val Ser Asn 275 280 285
Ile Phe Met Ala Ala Ile Pro Ile Lys Gly Ile Gly Ala Val Arg Gly 290
295 300 Lys Tyr Gly Leu
Gly Gly Ile Thr Ala His Pro Ile Lys Arg Ser Gln 305 310
315 320 Met Gly Ala Ile Ala Leu Pro Lys Gly
Lys Ser Ala Val Ser Asp Asn 325 330
335 Phe Ala Asp Ala Ala Tyr Ala Lys Tyr Pro Ser Pro Tyr His
Ser Arg 340 345 350
Asn Ile Arg Ser Asn Leu Glu Gln Arg Tyr Gly Lys Glu Asn Ile Thr
355 360 365 Ser Ser Thr Val
Pro Pro Ser Asn Gly Lys Asn Val Lys Leu Ala Asp 370
375 380 Gln Arg His Pro Lys Thr Gly Val
Pro Phe Asp Gly Lys Gly Phe Pro 385 390
395 400 Asn Phe Glu Lys His Val Lys Tyr Asp Thr Gly Ser
Gly Gly Gly Gly 405 410
415 Ala Thr Asn Asp Asp Asp Val Lys Lys Ala Ala Thr Val Ala Ile Ala
420 425 430 Ala Ala Tyr
Asn Asn Gly Gln Glu Ile Asn Gly Phe Lys Ala Gly Glu 435
440 445 Thr Ile Tyr Asp Ile Asp Glu Asp
Gly Thr Ile Thr Lys Lys Asp Ala 450 455
460 Thr Ala Ala Asp Val Glu Ala Asp Asp Phe Lys Gly Leu
Gly Leu Lys 465 470 475
480 Lys Val Val Thr Asn Leu Thr Lys Thr Val Asn Glu Asn Lys Gln Asn
485 490 495 Val Asp Ala Lys
Val Lys Ala Ala Glu Ser Glu Ile Glu Lys Leu Thr 500
505 510 Thr Lys Leu Ala Asp Thr Asp Ala Ala
Leu Ala Asp Thr Asp Ala Ala 515 520
525 Leu Asp Ala Thr Thr Asn Ala Leu Asn Lys Leu Gly Glu Asn
Ile Thr 530 535 540
Thr Phe Ala Glu Glu Thr Lys Thr Asn Ile Val Lys Ile Asp Glu Lys 545
550 555 560 Leu Glu Ala Val Ala
Asp Thr Val Asp Lys His Ala Glu Ala Phe Asn 565
570 575 Asp Ile Ala Asp Ser Leu Asp Glu Thr Asn
Thr Lys Ala Asp Glu Ala 580 585
590 Val Lys Thr Ala Asn Glu Ala Lys Gln Thr Ala Glu Glu Thr Lys
Gln 595 600 605 Asn
Val Asp Ala Lys Val Lys Ala Ala Glu Thr Ala Ala Gly Lys Ala 610
615 620 Glu Ala Ala Ala Gly Thr
Ala Asn Thr Ala Ala Asp Lys Ala Glu Ala 625 630
635 640 Val Ala Ala Lys Val Thr Asp Ile Lys Ala Asp
Ile Ala Thr Asn Lys 645 650
655 Asp Asn Ile Ala Lys Lys Ala Asn Ser Ala Asp Val Tyr Thr Arg Glu
660 665 670 Glu Ser
Asp Ser Lys Phe Val Arg Ile Asp Gly Leu Asn Ala Thr Thr 675
680 685 Glu Lys Leu Asp Thr Arg Leu
Ala Ser Ala Glu Lys Ser Ile Ala Asp 690 695
700 His Asp Thr Arg Leu Asn Gly Leu Asp Lys Thr Val
Ser Asp Leu Arg 705 710 715
720 Lys Glu Thr Arg Gln Gly Leu Ala Glu Gln Ala Ala Leu Ser Gly Leu
725 730 735 Phe Gln Pro
Tyr Asn Val Gly Leu Glu His His His His His His 740
745 750 1462421DNAArtificial SequenceSynthetic
construct 146atggccacaa acgacgacga tgttaaaaaa gctgccactg tggccattgc
tgctgcctac 60aacaatggcc aagaaatcaa cggtttcaaa gctggagaga ccatctacga
cattgatgaa 120gacggcacaa ttaccaaaaa agacgcaact gcagccgatg ttgaagccga
cgactttaaa 180ggtctgggtc tgaaaaaagt cgtgactaac ctgaccaaaa ccgtcaatga
aaacaaacaa 240aacgtcgatg ccaaagtaaa agctgcagaa tctgaaatag aaaagttaac
aaccaagtta 300gcagacactg atgccgcttt agcagatact gatgccgctc tggatgcaac
caccaacgcc 360ttgaataaat tgggagaaaa tataacgaca tttgctgaag agactaagac
aaatatcgta 420aaaattgatg aaaaattaga agccgtggct gataccgtcg acaagcatgc
cgaagcattc 480aacgatatcg ccgattcatt ggatgaaacc aacactaagg cagacgaagc
cgtcaaaacc 540gccaatgaag ccaaacagac ggccgaagaa accaaacaaa acgtcgatgc
caaagtaaaa 600gctgcagaaa ctgcagcagg caaagccgaa gctgccgctg gcacagctaa
tactgcagcc 660gacaaggccg aagctgtcgc tgcaaaagtt accgacatca aagctgatat
cgctacgaac 720aaagataata ttgctaaaaa agcaaacagt gccgacgtgt acaccagaga
agagtctgac 780agcaaatttg tcagaattga tggtctgaac gctactaccg aaaaattgga
cacacgcttg 840gcttctgctg aaaaatccat tgccgatcac gatactcgcc tgaacggttt
ggataaaaca 900gtgtcagacc tgcgcaaaga aacccgccaa ggccttgcag aacaagccgc
gctctccggt 960ctgttccaac cttacaacgt gggtcggttc aatgtaacgg ctgcagtcgg
cggctacaaa 1020tccgaatcgg cagtcgccat cggtaccggc ttccgcttta ccgaaaactt
tgccgccaaa 1080gcaggcgtgg cagtcggcac ttcgtccggt tcttccgcag cctaccatgt
cggcgtcaat 1140tacgagtggg gatccggagg aggaggatca gatttggcaa acgattcttt
tatccggcag 1200gttctcgacc gtcagcattt cgaacccgac gggaaatacc acctattcgg
cagcaggggg 1260gaacttgccg agcgcagcgg ccatatcgga ttgggaaaaa tacaaagcca
tcagttgggc 1320aacctgatga ttcaacaggc ggccattaaa ggaaatatcg gctacattgt
ccgcttttcc 1380gatcacgggc acgaagtcca ttcccccttc gacaaccatg cctcacattc
cgattctgat 1440gaagccggta gtcccgttga cggatttagc ctttaccgca tccattggga
cggatacgaa 1500caccatcccg ccgacggcta tgacgggcca cagggcggcg gctatcccgc
tcccaaaggc 1560gcgagggata tatacagcta cgacataaaa ggcgttgccc aaaatatccg
cctcaacctg 1620accgacaacc gcagcaccgg acaacggctt gccgaccgtt tccacaatgc
cggtagtatg 1680ctgacgcaag gagtaggcga cggattcaaa cgcgccaccc gatacagccc
cgagctggac 1740agatcgggca atgccgccga agccttcaac ggcactgcag atatcgttaa
aaacatcatc 1800ggcgcggcag gagaaattgt cggcgcaggc gatgccgtgc agggcataag
cgaaggctca 1860aacattgctg tcatgcacgg cttgggtctg ctttccaccg aaaacaagat
ggcgcgcatc 1920aacgatttgg cagatatggc gcaactcaaa gactatgccg cagcagccat
ccgcgattgg 1980gcagtccaaa accccaatgc cgcacaaggc atagaagccg tcagcaatat
ctttatggca 2040gccatcccca tcaaagggat tggagctgtt cggggaaaat acggcttggg
cggcatcacg 2100gcacatccta tcaagcggtc gcagatgggc gcgatcgcat tgccgaaagg
gaaatccgcc 2160gtcagcgaca attttgccga tgcggcatac gccaaatacc cgtcccctta
ccattcccga 2220aatatccgtt caaacttgga gcagcgttac ggcaaagaaa acatcacctc
ctcaaccgtg 2280ccgccgtcaa acggcaaaaa tgtcaaactg gcagaccaac gccacccgaa
gacaggcgta 2340ccgtttgacg gtaaagggtt tccgaatttt gagaagcacg tgaaatatga
tacgctcgag 2400caccaccacc accaccactg a
2421147806PRTArtificial SequenceSynthetic construct 147Met Ala
Thr Asn Asp Asp Asp Val Lys Lys Ala Ala Thr Val Ala Ile 1 5
10 15 Ala Ala Ala Tyr Asn Asn Gly
Gln Glu Ile Asn Gly Phe Lys Ala Gly 20 25
30 Glu Thr Ile Tyr Asp Ile Asp Glu Asp Gly Thr Ile
Thr Lys Lys Asp 35 40 45
Ala Thr Ala Ala Asp Val Glu Ala Asp Asp Phe Lys Gly Leu Gly Leu
50 55 60 Lys Lys Val
Val Thr Asn Leu Thr Lys Thr Val Asn Glu Asn Lys Gln 65
70 75 80 Asn Val Asp Ala Lys Val Lys
Ala Ala Glu Ser Glu Ile Glu Lys Leu 85
90 95 Thr Thr Lys Leu Ala Asp Thr Asp Ala Ala Leu
Ala Asp Thr Asp Ala 100 105
110 Ala Leu Asp Ala Thr Thr Asn Ala Leu Asn Lys Leu Gly Glu Asn
Ile 115 120 125 Thr
Thr Phe Ala Glu Glu Thr Lys Thr Asn Ile Val Lys Ile Asp Glu 130
135 140 Lys Leu Glu Ala Val Ala
Asp Thr Val Asp Lys His Ala Glu Ala Phe 145 150
155 160 Asn Asp Ile Ala Asp Ser Leu Asp Glu Thr Asn
Thr Lys Ala Asp Glu 165 170
175 Ala Val Lys Thr Ala Asn Glu Ala Lys Gln Thr Ala Glu Glu Thr Lys
180 185 190 Gln Asn
Val Asp Ala Lys Val Lys Ala Ala Glu Thr Ala Ala Gly Lys 195
200 205 Ala Glu Ala Ala Ala Gly Thr
Ala Asn Thr Ala Ala Asp Lys Ala Glu 210 215
220 Ala Val Ala Ala Lys Val Thr Asp Ile Lys Ala Asp
Ile Ala Thr Asn 225 230 235
240 Lys Asp Asn Ile Ala Lys Lys Ala Asn Ser Ala Asp Val Tyr Thr Arg
245 250 255 Glu Glu Ser
Asp Ser Lys Phe Val Arg Ile Asp Gly Leu Asn Ala Thr 260
265 270 Thr Glu Lys Leu Asp Thr Arg Leu
Ala Ser Ala Glu Lys Ser Ile Ala 275 280
285 Asp His Asp Thr Arg Leu Asn Gly Leu Asp Lys Thr Val
Ser Asp Leu 290 295 300
Arg Lys Glu Thr Arg Gln Gly Leu Ala Glu Gln Ala Ala Leu Ser Gly 305
310 315 320 Leu Phe Gln Pro
Tyr Asn Val Gly Arg Phe Asn Val Thr Ala Ala Val 325
330 335 Gly Gly Tyr Lys Ser Glu Ser Ala Val
Ala Ile Gly Thr Gly Phe Arg 340 345
350 Phe Thr Glu Asn Phe Ala Ala Lys Ala Gly Val Ala Val Gly
Thr Ser 355 360 365
Ser Gly Ser Ser Ala Ala Tyr His Val Gly Val Asn Tyr Glu Trp Gly 370
375 380 Ser Gly Gly Gly Gly
Ser Asp Leu Ala Asn Asp Ser Phe Ile Arg Gln 385 390
395 400 Val Leu Asp Arg Gln His Phe Glu Pro Asp
Gly Lys Tyr His Leu Phe 405 410
415 Gly Ser Arg Gly Glu Leu Ala Glu Arg Ser Gly His Ile Gly Leu
Gly 420 425 430 Lys
Ile Gln Ser His Gln Leu Gly Asn Leu Met Ile Gln Gln Ala Ala 435
440 445 Ile Lys Gly Asn Ile Gly
Tyr Ile Val Arg Phe Ser Asp His Gly His 450 455
460 Glu Val His Ser Pro Phe Asp Asn His Ala Ser
His Ser Asp Ser Asp 465 470 475
480 Glu Ala Gly Ser Pro Val Asp Gly Phe Ser Leu Tyr Arg Ile His Trp
485 490 495 Asp Gly
Tyr Glu His His Pro Ala Asp Gly Tyr Asp Gly Pro Gln Gly 500
505 510 Gly Gly Tyr Pro Ala Pro Lys
Gly Ala Arg Asp Ile Tyr Ser Tyr Asp 515 520
525 Ile Lys Gly Val Ala Gln Asn Ile Arg Leu Asn Leu
Thr Asp Asn Arg 530 535 540
Ser Thr Gly Gln Arg Leu Ala Asp Arg Phe His Asn Ala Gly Ser Met 545
550 555 560 Leu Thr Gln
Gly Val Gly Asp Gly Phe Lys Arg Ala Thr Arg Tyr Ser 565
570 575 Pro Glu Leu Asp Arg Ser Gly Asn
Ala Ala Glu Ala Phe Asn Gly Thr 580 585
590 Ala Asp Ile Val Lys Asn Ile Ile Gly Ala Ala Gly Glu
Ile Val Gly 595 600 605
Ala Gly Asp Ala Val Gln Gly Ile Ser Glu Gly Ser Asn Ile Ala Val 610
615 620 Met His Gly Leu
Gly Leu Leu Ser Thr Glu Asn Lys Met Ala Arg Ile 625 630
635 640 Asn Asp Leu Ala Asp Met Ala Gln Leu
Lys Asp Tyr Ala Ala Ala Ala 645 650
655 Ile Arg Asp Trp Ala Val Gln Asn Pro Asn Ala Ala Gln Gly
Ile Glu 660 665 670
Ala Val Ser Asn Ile Phe Met Ala Ala Ile Pro Ile Lys Gly Ile Gly
675 680 685 Ala Val Arg Gly
Lys Tyr Gly Leu Gly Gly Ile Thr Ala His Pro Ile 690
695 700 Lys Arg Ser Gln Met Gly Ala Ile
Ala Leu Pro Lys Gly Lys Ser Ala 705 710
715 720 Val Ser Asp Asn Phe Ala Asp Ala Ala Tyr Ala Lys
Tyr Pro Ser Pro 725 730
735 Tyr His Ser Arg Asn Ile Arg Ser Asn Leu Glu Gln Arg Tyr Gly Lys
740 745 750 Glu Asn Ile
Thr Ser Ser Thr Val Pro Pro Ser Asn Gly Lys Asn Val 755
760 765 Lys Leu Ala Asp Gln Arg His Pro
Lys Thr Gly Val Pro Phe Asp Gly 770 775
780 Lys Gly Phe Pro Asn Phe Glu Lys His Val Lys Tyr Asp
Thr Leu Glu 785 790 795
800 His His His His His His 805 1481938DNAArtificial
SequenceSynthetic construct 148atggccacaa acgacgacga tgttaaaaaa
gctgccactg tggccattgc tgctgcctac 60aacaatggcc aagaaatcaa cggtttcaaa
gctggagaga ccatctacga cattgatgaa 120gacggcacaa ttaccaaaaa agacgcaact
gcagccgatg ttgaagccga cgactttaaa 180ggtctgggtc tgaaaaaagt cgtgactaac
ctgaccaaaa ccgtcaatga aaacaaacaa 240aacgtcgatg ccaaagtaaa agctgcagaa
tctgaaatag aaaagttaac aaccaagtta 300gcagacactg atgccgcttt agcagatact
gatgccgctc tggatgcaac caccaacgcc 360ttgaataaat tgggagaaaa tataacgaca
tttgctgaag agactaagac aaatatcgta 420aaaattgatg aaaaattaga agccgtggct
gataccgtcg acaagcatgc cgaagcattc 480aacgatatcg ccgattcatt ggatgaaacc
aacactaagg cagacgaagc cgtcaaaacc 540gccaatgaag ccaaacagac ggccgaagaa
accaaacaaa acgtcgatgc caaagtaaaa 600gctgcagaaa ctgcagcagg caaagccgaa
gctgccgctg gcacagctaa tactgcagcc 660gacaaggccg aagctgtcgc tgcaaaagtt
accgacatca aagctgatat cgctacgaac 720aaagataata ttgctaaaaa agcaaacagt
gccgacgtgt acaccagaga agagtctgac 780agcaaatttg tcagaattga tggtctgaac
gctactaccg aaaaattgga cacacgcttg 840gcttctgctg aaaaatccat tgccgatcac
gatactcgcc tgaacggttt ggataaaaca 900gtgtcagacc tgcgcaaaga aacccgccaa
ggccttgcag aacaagccgc gctctccggt 960ctgttccaac cttacaacgt gggtcggttc
aatgtaacgg ctgcagtcgg cggctacaaa 1020tccgaatcgg cagtcgccat cggtaccggc
ttccgcttta ccgaaaactt tgccgccaaa 1080gcaggcgtgg cagtcggcac ttcgtccggt
tcttccgcag cctaccatgt cggcgtcaat 1140tacgagtggg gatccggagg gggtggtgtc
gccgccgaca tcggtgcggg gcttgccgat 1200gcactaaccg caccgctcga ccataaagac
aaaggtttgc agtctttgac gctggatcag 1260tccgtcagga aaaacgagaa actgaagctg
gcggcacaag gtgcggaaaa aacttatgga 1320aacggtgaca gcctcaatac gggcaaattg
aagaacgaca aggtcagccg tttcgacttt 1380atccgccaaa tcgaagtgga cgggcagctc
attaccttgg agagtggaga gttccaagta 1440tacaaacaaa gccattccgc cttaaccgcc
tttcagaccg agcaaataca agattcggag 1500cattccggga agatggttgc gaaacgccag
ttcagaatcg gcgacatagc gggcgaacat 1560acatcttttg acaagcttcc cgaaggcggc
agggcgacat atcgcgggac ggcgttcggt 1620tcagacgatg ccggcggaaa actgacctac
accatagatt tcgccgccaa gcagggaaac 1680ggcaaaatcg aacatttgaa atcgccagaa
ctcaatgtcg acctggccgc cgccgatatc 1740aagccggatg gaaaacgcca tgccgtcatc
agcggttccg tcctttacaa ccaagccgag 1800aaaggcagtt actccctcgg tatctttggc
ggaaaagccc aggaagttgc cggcagcgcg 1860gaagtgaaaa ccgtaaacgg catacgccat
atcggccttg ccgccaagca actcgagcac 1920caccaccacc accactga
1938149645PRTArtificial
SequenceSynthetic construct 149Met Ala Thr Asn Asp Asp Asp Val Lys Lys
Ala Ala Thr Val Ala Ile 1 5 10
15 Ala Ala Ala Tyr Asn Asn Gly Gln Glu Ile Asn Gly Phe Lys Ala
Gly 20 25 30 Glu
Thr Ile Tyr Asp Ile Asp Glu Asp Gly Thr Ile Thr Lys Lys Asp 35
40 45 Ala Thr Ala Ala Asp Val
Glu Ala Asp Asp Phe Lys Gly Leu Gly Leu 50 55
60 Lys Lys Val Val Thr Asn Leu Thr Lys Thr Val
Asn Glu Asn Lys Gln 65 70 75
80 Asn Val Asp Ala Lys Val Lys Ala Ala Glu Ser Glu Ile Glu Lys Leu
85 90 95 Thr Thr
Lys Leu Ala Asp Thr Asp Ala Ala Leu Ala Asp Thr Asp Ala 100
105 110 Ala Leu Asp Ala Thr Thr Asn
Ala Leu Asn Lys Leu Gly Glu Asn Ile 115 120
125 Thr Thr Phe Ala Glu Glu Thr Lys Thr Asn Ile Val
Lys Ile Asp Glu 130 135 140
Lys Leu Glu Ala Val Ala Asp Thr Val Asp Lys His Ala Glu Ala Phe 145
150 155 160 Asn Asp Ile
Ala Asp Ser Leu Asp Glu Thr Asn Thr Lys Ala Asp Glu 165
170 175 Ala Val Lys Thr Ala Asn Glu Ala
Lys Gln Thr Ala Glu Glu Thr Lys 180 185
190 Gln Asn Val Asp Ala Lys Val Lys Ala Ala Glu Thr Ala
Ala Gly Lys 195 200 205
Ala Glu Ala Ala Ala Gly Thr Ala Asn Thr Ala Ala Asp Lys Ala Glu 210
215 220 Ala Val Ala Ala
Lys Val Thr Asp Ile Lys Ala Asp Ile Ala Thr Asn 225 230
235 240 Lys Asp Asn Ile Ala Lys Lys Ala Asn
Ser Ala Asp Val Tyr Thr Arg 245 250
255 Glu Glu Ser Asp Ser Lys Phe Val Arg Ile Asp Gly Leu Asn
Ala Thr 260 265 270
Thr Glu Lys Leu Asp Thr Arg Leu Ala Ser Ala Glu Lys Ser Ile Ala
275 280 285 Asp His Asp Thr
Arg Leu Asn Gly Leu Asp Lys Thr Val Ser Asp Leu 290
295 300 Arg Lys Glu Thr Arg Gln Gly Leu
Ala Glu Gln Ala Ala Leu Ser Gly 305 310
315 320 Leu Phe Gln Pro Tyr Asn Val Gly Arg Phe Asn Val
Thr Ala Ala Val 325 330
335 Gly Gly Tyr Lys Ser Glu Ser Ala Val Ala Ile Gly Thr Gly Phe Arg
340 345 350 Phe Thr Glu
Asn Phe Ala Ala Lys Ala Gly Val Ala Val Gly Thr Ser 355
360 365 Ser Gly Ser Ser Ala Ala Tyr His
Val Gly Val Asn Tyr Glu Trp Gly 370 375
380 Ser Gly Gly Gly Gly Val Ala Ala Asp Ile Gly Ala Gly
Leu Ala Asp 385 390 395
400 Ala Leu Thr Ala Pro Leu Asp His Lys Asp Lys Gly Leu Gln Ser Leu
405 410 415 Thr Leu Asp Gln
Ser Val Arg Lys Asn Glu Lys Leu Lys Leu Ala Ala 420
425 430 Gln Gly Ala Glu Lys Thr Tyr Gly Asn
Gly Asp Ser Leu Asn Thr Gly 435 440
445 Lys Leu Lys Asn Asp Lys Val Ser Arg Phe Asp Phe Ile Arg
Gln Ile 450 455 460
Glu Val Asp Gly Gln Leu Ile Thr Leu Glu Ser Gly Glu Phe Gln Val 465
470 475 480 Tyr Lys Gln Ser His
Ser Ala Leu Thr Ala Phe Gln Thr Glu Gln Ile 485
490 495 Gln Asp Ser Glu His Ser Gly Lys Met Val
Ala Lys Arg Gln Phe Arg 500 505
510 Ile Gly Asp Ile Ala Gly Glu His Thr Ser Phe Asp Lys Leu Pro
Glu 515 520 525 Gly
Gly Arg Ala Thr Tyr Arg Gly Thr Ala Phe Gly Ser Asp Asp Ala 530
535 540 Gly Gly Lys Leu Thr Tyr
Thr Ile Asp Phe Ala Ala Lys Gln Gly Asn 545 550
555 560 Gly Lys Ile Glu His Leu Lys Ser Pro Glu Leu
Asn Val Asp Leu Ala 565 570
575 Ala Ala Asp Ile Lys Pro Asp Gly Lys Arg His Ala Val Ile Ser Gly
580 585 590 Ser Val
Leu Tyr Asn Gln Ala Glu Lys Gly Ser Tyr Ser Leu Gly Ile 595
600 605 Phe Gly Gly Lys Ala Gln Glu
Val Ala Gly Ser Ala Glu Val Lys Thr 610 615
620 Val Asn Gly Ile Arg His Ile Gly Leu Ala Ala Lys
Gln Leu Glu His 625 630 635
640 His His His His His 645 1504335DNAArtificial
SequenceSynthetic construct 150atggccacaa acgacgacga tgttaaaaaa
gctgccactg tggccattgc tgctgcctac 60aacaatggcc aagaaatcaa cggtttcaaa
gctggagaga ccatctacga cattgatgaa 120gacggcacaa ttaccaaaaa agacgcaact
gcagccgatg ttgaagccga cgactttaaa 180ggtctgggtc tgaaaaaagt cgtgactaac
ctgaccaaaa ccgtcaatga aaacaaacaa 240aacgtcgatg ccaaagtaaa agctgcagaa
tctgaaatag aaaagttaac aaccaagtta 300gcagacactg atgccgcttt agcagatact
gatgccgctc tggatgcaac caccaacgcc 360ttgaataaat tgggagaaaa tataacgaca
tttgctgaag agactaagac aaatatcgta 420aaaattgatg aaaaattaga agccgtggct
gataccgtcg acaagcatgc cgaagcattc 480aacgatatcg ccgattcatt ggatgaaacc
aacactaagg cagacgaagc cgtcaaaacc 540gccaatgaag ccaaacagac ggccgaagaa
accaaacaaa acgtcgatgc caaagtaaaa 600gctgcagaaa ctgcagcagg caaagccgaa
gctgccgctg gcacagctaa tactgcagcc 660gacaaggccg aagctgtcgc tgcaaaagtt
accgacatca aagctgatat cgctacgaac 720aaagataata ttgctaaaaa agcaaacagt
gccgacgtgt acaccagaga agagtctgac 780agcaaatttg tcagaattga tggtctgaac
gctactaccg aaaaattgga cacacgcttg 840gcttctgctg aaaaatccat tgccgatcac
gatactcgcc tgaacggttt ggataaaaca 900gtgtcagacc tgcgcaaaga aacccgccaa
ggccttgcag aacaagccgc gctctccggt 960ctgttccaac cttacaacgt gggtcggttc
aatgtaacgg ctgcagtcgg cggctacaaa 1020tccgaatcgg cagtcgccat cggtaccggc
ttccgcttta ccgaaaactt tgccgccaaa 1080gcaggcgtgg cagtcggcac ttcgtccggt
tcttccgcag cctaccatgt cggcgtcaat 1140tacgagtggg gatccggcgg aggcggcact
tctgcgcccg acttcaatgc aggcggtacc 1200ggtatcggca gcaacagcag agcaacaaca
gcgaaatcag cagcagtatc ttacgccggt 1260atcaagaacg aaatgtgcaa agacagaagc
atgctctgtg ccggtcggga tgacgttgcg 1320gttacagaca gggatgccaa aatcaatgcc
ccccccccga atctgcatac cggagacttt 1380ccaaacccaa atgacgcata caagaatttg
atcaacctca aacctgcaat tgaagcaggc 1440tatacaggac gcggggtaga ggtaggtatc
gtcgacacag gcgaatccgt cggcagcata 1500tcctttcccg aactgtatgg cagaaaagaa
cacggctata acgaaaatta caaaaactat 1560acggcgtata tgcggaagga agcgcctgaa
gacggaggcg gtaaagacat tgaagcttct 1620ttcgacgatg aggccgttat agagactgaa
gcaaagccga cggatatccg ccacgtaaaa 1680gaaatcggac acatcgattt ggtctcccat
attattggcg ggcgttccgt ggacggcaga 1740cctgcaggcg gtattgcgcc cgatgcgacg
ctacacataa tgaatacgaa tgatgaaacc 1800aagaacgaaa tgatggttgc agccatccgc
aatgcatggg tcaagctggg cgaacgtggc 1860gtgcgcatcg tcaataacag ttttggaaca
acatcgaggg caggcactgc cgaccttttc 1920caaatagcca attcggagga gcagtaccgc
caagcgttgc tcgactattc cggcggtgat 1980aaaacagacg agggtatccg cctgatgcaa
cagagcgatt acggcaacct gtcctaccac 2040atccgtaata aaaacatgct tttcatcttt
tcgacaggca atgacgcaca agctcagccc 2100aacacatatg ccctattgcc attttatgaa
aaagacgctc aaaaaggcat tatcacagtc 2160gcaggcgtag accgcagtgg agaaaagttc
aaacgggaaa tgtatggaga accgggtaca 2220gaaccgcttg agtatggctc caaccattgc
ggaattactg ccatgtggtg cctgtcggca 2280ccctatgaag caagcgtccg tttcacccgt
acaaacccga ttcaaattgc cggaacatcc 2340ttttccgcac ccatcgtaac cggcacggcg
gctctgctgc tgcagaaata cccgtggatg 2400agcaacgaca acctgcgtac cacgttgctg
acgacggctc aggacatcgg tgcagtcggc 2460gtggacagca agttcggctg gggactgctg
gatgcgggta aggccatgaa cggacccgcg 2520tcctttccgt tcggcgactt taccgccgat
acgaaaggta catccgatat tgcctactcc 2580ttccgtaacg acatttcagg cacgggcggc
ctgatcaaaa aaggcggcag ccaactgcaa 2640ctgcacggca acaacaccta tacgggcaaa
accattatcg aaggcggttc gctggtgttg 2700tacggcaaca acaaatcgga tatgcgcgtc
gaaaccaaag gtgcgctgat ttataacggg 2760gcggcatccg gcggcagcct gaacagcgac
ggcattgtct atctggcaga taccgaccaa 2820tccggcgcaa acgaaaccgt acacatcaaa
ggcagtctgc agctggacgg caaaggtacg 2880ctgtacacac gtttgggcaa actgctgaaa
gtggacggta cggcgattat cggcggcaag 2940ctgtacatgt cggcacgcgg caagggggca
ggctatctca acagtaccgg acgacgtgtt 3000cccttcctga gtgccgccaa aatcgggcag
gattattctt tcttcacaaa catcgaaacc 3060gacggcggcc tgctggcttc cctcgacagc
gtcgaaaaaa cagcgggcag tgaaggcgac 3120acgctgtcct attatgtccg tcgcggcaat
gcggcacgga ctgcttcggc agcggcacat 3180tccgcgcccg ccggtctgaa acacgccgta
gaacagggcg gcagcaatct ggaaaacctg 3240atggtcgaac tggatgcctc cgaatcatcc
gcaacacccg agacggttga aactgcggca 3300gccgaccgca cagatatgcc gggcatccgc
ccctacggcg caactttccg cgcagcggca 3360gccgtacagc atgcgaatgc cgccgacggt
gtacgcatct tcaacagtct cgccgctacc 3420gtctatgccg acagtaccgc cgcccatgcc
gatatgcagg gacgccgcct gaaagccgta 3480tcggacgggt tggaccacaa cggcacgggt
ctgcgcgtca tcgcgcaaac ccaacaggac 3540ggtggaacgt gggaacaggg cggtgttgaa
ggcaaaatgc gcggcagtac ccaaaccgtc 3600ggcattgccg cgaaaaccgg cgaaaatacg
acagcagccg ccacactggg catgggacgc 3660agcacatgga gcgaaaacag tgcaaatgca
aaaaccgaca gcattagtct gtttgcaggc 3720atacggcacg atgcgggcga tatcggctat
ctcaaaggcc tgttctccta cggacgctac 3780aaaaacagca tcagccgcag caccggtgcg
gacgaacatg cggaaggcag cgtcaacggc 3840acgctgatgc agctgggcgc actgggcggt
gtcaacgttc cgtttgccgc aacgggagat 3900ttgacggtcg aaggcggtct gcgctacgac
ctgctcaaac aggatgcatt cgccgaaaaa 3960ggcagtgctt tgggctggag cggcaacagc
ctcactgaag gcacgctggt cggactcgcg 4020ggtctgaagc tgtcgcaacc cttgagcgat
aaagccgtcc tgtttgcaac ggcgggcgtg 4080gaacgcgacc tgaacggacg cgactacacg
gtaacgggcg gctttaccgg cgcgactgca 4140gcaaccggca agacgggggc acgcaatatg
ccgcacaccc gtctggttgc cggcctgggc 4200gcggatgtcg aattcggcaa cggctggaac
ggcttggcac gttacagcta cgccggttcc 4260aaacagtacg gcaaccacag cggacgagtc
ggcgtaggct accggttcct cgagcaccac 4320caccaccacc actga
43351511444PRTArtificial
SequenceSynthetic construct 151Met Ala Thr Asn Asp Asp Asp Val Lys Lys
Ala Ala Thr Val Ala Ile 1 5 10
15 Ala Ala Ala Tyr Asn Asn Gly Gln Glu Ile Asn Gly Phe Lys Ala
Gly 20 25 30 Glu
Thr Ile Tyr Asp Ile Asp Glu Asp Gly Thr Ile Thr Lys Lys Asp 35
40 45 Ala Thr Ala Ala Asp Val
Glu Ala Asp Asp Phe Lys Gly Leu Gly Leu 50 55
60 Lys Lys Val Val Thr Asn Leu Thr Lys Thr Val
Asn Glu Asn Lys Gln 65 70 75
80 Asn Val Asp Ala Lys Val Lys Ala Ala Glu Ser Glu Ile Glu Lys Leu
85 90 95 Thr Thr
Lys Leu Ala Asp Thr Asp Ala Ala Leu Ala Asp Thr Asp Ala 100
105 110 Ala Leu Asp Ala Thr Thr Asn
Ala Leu Asn Lys Leu Gly Glu Asn Ile 115 120
125 Thr Thr Phe Ala Glu Glu Thr Lys Thr Asn Ile Val
Lys Ile Asp Glu 130 135 140
Lys Leu Glu Ala Val Ala Asp Thr Val Asp Lys His Ala Glu Ala Phe 145
150 155 160 Asn Asp Ile
Ala Asp Ser Leu Asp Glu Thr Asn Thr Lys Ala Asp Glu 165
170 175 Ala Val Lys Thr Ala Asn Glu Ala
Lys Gln Thr Ala Glu Glu Thr Lys 180 185
190 Gln Asn Val Asp Ala Lys Val Lys Ala Ala Glu Thr Ala
Ala Gly Lys 195 200 205
Ala Glu Ala Ala Ala Gly Thr Ala Asn Thr Ala Ala Asp Lys Ala Glu 210
215 220 Ala Val Ala Ala
Lys Val Thr Asp Ile Lys Ala Asp Ile Ala Thr Asn 225 230
235 240 Lys Asp Asn Ile Ala Lys Lys Ala Asn
Ser Ala Asp Val Tyr Thr Arg 245 250
255 Glu Glu Ser Asp Ser Lys Phe Val Arg Ile Asp Gly Leu Asn
Ala Thr 260 265 270
Thr Glu Lys Leu Asp Thr Arg Leu Ala Ser Ala Glu Lys Ser Ile Ala
275 280 285 Asp His Asp Thr
Arg Leu Asn Gly Leu Asp Lys Thr Val Ser Asp Leu 290
295 300 Arg Lys Glu Thr Arg Gln Gly Leu
Ala Glu Gln Ala Ala Leu Ser Gly 305 310
315 320 Leu Phe Gln Pro Tyr Asn Val Gly Arg Phe Asn Val
Thr Ala Ala Val 325 330
335 Gly Gly Tyr Lys Ser Glu Ser Ala Val Ala Ile Gly Thr Gly Phe Arg
340 345 350 Phe Thr Glu
Asn Phe Ala Ala Lys Ala Gly Val Ala Val Gly Thr Ser 355
360 365 Ser Gly Ser Ser Ala Ala Tyr His
Val Gly Val Asn Tyr Glu Trp Gly 370 375
380 Ser Gly Gly Gly Gly Thr Ser Ala Pro Asp Phe Asn Ala
Gly Gly Thr 385 390 395
400 Gly Ile Gly Ser Asn Ser Arg Ala Thr Thr Ala Lys Ser Ala Ala Val
405 410 415 Ser Tyr Ala Gly
Ile Lys Asn Glu Met Cys Lys Asp Arg Ser Met Leu 420
425 430 Cys Ala Gly Arg Asp Asp Val Ala Val
Thr Asp Arg Asp Ala Lys Ile 435 440
445 Asn Ala Pro Pro Pro Asn Leu His Thr Gly Asp Phe Pro Asn
Pro Asn 450 455 460
Asp Ala Tyr Lys Asn Leu Ile Asn Leu Lys Pro Ala Ile Glu Ala Gly 465
470 475 480 Tyr Thr Gly Arg Gly
Val Glu Val Gly Ile Val Asp Thr Gly Glu Ser 485
490 495 Val Gly Ser Ile Ser Phe Pro Glu Leu Tyr
Gly Arg Lys Glu His Gly 500 505
510 Tyr Asn Glu Asn Tyr Lys Asn Tyr Thr Ala Tyr Met Arg Lys Glu
Ala 515 520 525 Pro
Glu Asp Gly Gly Gly Lys Asp Ile Glu Ala Ser Phe Asp Asp Glu 530
535 540 Ala Val Ile Glu Thr Glu
Ala Lys Pro Thr Asp Ile Arg His Val Lys 545 550
555 560 Glu Ile Gly His Ile Asp Leu Val Ser His Ile
Ile Gly Gly Arg Ser 565 570
575 Val Asp Gly Arg Pro Ala Gly Gly Ile Ala Pro Asp Ala Thr Leu His
580 585 590 Ile Met
Asn Thr Asn Asp Glu Thr Lys Asn Glu Met Met Val Ala Ala 595
600 605 Ile Arg Asn Ala Trp Val Lys
Leu Gly Glu Arg Gly Val Arg Ile Val 610 615
620 Asn Asn Ser Phe Gly Thr Thr Ser Arg Ala Gly Thr
Ala Asp Leu Phe 625 630 635
640 Gln Ile Ala Asn Ser Glu Glu Gln Tyr Arg Gln Ala Leu Leu Asp Tyr
645 650 655 Ser Gly Gly
Asp Lys Thr Asp Glu Gly Ile Arg Leu Met Gln Gln Ser 660
665 670 Asp Tyr Gly Asn Leu Ser Tyr His
Ile Arg Asn Lys Asn Met Leu Phe 675 680
685 Ile Phe Ser Thr Gly Asn Asp Ala Gln Ala Gln Pro Asn
Thr Tyr Ala 690 695 700
Leu Leu Pro Phe Tyr Glu Lys Asp Ala Gln Lys Gly Ile Ile Thr Val 705
710 715 720 Ala Gly Val Asp
Arg Ser Gly Glu Lys Phe Lys Arg Glu Met Tyr Gly 725
730 735 Glu Pro Gly Thr Glu Pro Leu Glu Tyr
Gly Ser Asn His Cys Gly Ile 740 745
750 Thr Ala Met Trp Cys Leu Ser Ala Pro Tyr Glu Ala Ser Val
Arg Phe 755 760 765
Thr Arg Thr Asn Pro Ile Gln Ile Ala Gly Thr Ser Phe Ser Ala Pro 770
775 780 Ile Val Thr Gly Thr
Ala Ala Leu Leu Leu Gln Lys Tyr Pro Trp Met 785 790
795 800 Ser Asn Asp Asn Leu Arg Thr Thr Leu Leu
Thr Thr Ala Gln Asp Ile 805 810
815 Gly Ala Val Gly Val Asp Ser Lys Phe Gly Trp Gly Leu Leu Asp
Ala 820 825 830 Gly
Lys Ala Met Asn Gly Pro Ala Ser Phe Pro Phe Gly Asp Phe Thr 835
840 845 Ala Asp Thr Lys Gly Thr
Ser Asp Ile Ala Tyr Ser Phe Arg Asn Asp 850 855
860 Ile Ser Gly Thr Gly Gly Leu Ile Lys Lys Gly
Gly Ser Gln Leu Gln 865 870 875
880 Leu His Gly Asn Asn Thr Tyr Thr Gly Lys Thr Ile Ile Glu Gly Gly
885 890 895 Ser Leu
Val Leu Tyr Gly Asn Asn Lys Ser Asp Met Arg Val Glu Thr 900
905 910 Lys Gly Ala Leu Ile Tyr Asn
Gly Ala Ala Ser Gly Gly Ser Leu Asn 915 920
925 Ser Asp Gly Ile Val Tyr Leu Ala Asp Thr Asp Gln
Ser Gly Ala Asn 930 935 940
Glu Thr Val His Ile Lys Gly Ser Leu Gln Leu Asp Gly Lys Gly Thr 945
950 955 960 Leu Tyr Thr
Arg Leu Gly Lys Leu Leu Lys Val Asp Gly Thr Ala Ile 965
970 975 Ile Gly Gly Lys Leu Tyr Met Ser
Ala Arg Gly Lys Gly Ala Gly Tyr 980 985
990 Leu Asn Ser Thr Gly Arg Arg Val Pro Phe Leu Ser Ala
Ala Lys Ile 995 1000 1005
Gly Gln Asp Tyr Ser Phe Phe Thr Asn Ile Glu Thr Asp Gly Gly Leu
1010 1015 1020 Leu Ala Ser
Leu Asp Ser Val Glu Lys Thr Ala Gly Ser Glu Gly Asp 1025
1030 1035 1040Thr Leu Ser Tyr Tyr Val Arg
Arg Gly Asn Ala Ala Arg Thr Ala Ser 1045
1050 1055 Ala Ala Ala His Ser Ala Pro Ala Gly Leu Lys
His Ala Val Glu Gln 1060 1065
1070 Gly Gly Ser Asn Leu Glu Asn Leu Met Val Glu Leu Asp Ala Ser
Glu 1075 1080 1085 Ser
Ser Ala Thr Pro Glu Thr Val Glu Thr Ala Ala Ala Asp Arg Thr 1090
1095 1100 Asp Met Pro Gly Ile Arg
Pro Tyr Gly Ala Thr Phe Arg Ala Ala Ala 1105 1110
1115 1120Ala Val Gln His Ala Asn Ala Ala Asp Gly Val
Arg Ile Phe Asn Ser 1125 1130
1135 Leu Ala Ala Thr Val Tyr Ala Asp Ser Thr Ala Ala His Ala Asp Met
1140 1145 1150 Gln Gly
Arg Arg Leu Lys Ala Val Ser Asp Gly Leu Asp His Asn Gly 1155
1160 1165 Thr Gly Leu Arg Val Ile Ala
Gln Thr Gln Gln Asp Gly Gly Thr Trp 1170 1175
1180 Glu Gln Gly Gly Val Glu Gly Lys Met Arg Gly Ser
Thr Gln Thr Val 1185 1190 1195
1200Gly Ile Ala Ala Lys Thr Gly Glu Asn Thr Thr Ala Ala Ala Thr Leu
1205 1210 1215 Gly Met Gly
Arg Ser Thr Trp Ser Glu Asn Ser Ala Asn Ala Lys Thr 1220
1225 1230 Asp Ser Ile Ser Leu Phe Ala Gly
Ile Arg His Asp Ala Gly Asp Ile 1235 1240
1245 Gly Tyr Leu Lys Gly Leu Phe Ser Tyr Gly Arg Tyr Lys
Asn Ser Ile 1250 1255 1260
Ser Arg Ser Thr Gly Ala Asp Glu His Ala Glu Gly Ser Val Asn Gly 1265
1270 1275 1280Thr Leu Met Gln
Leu Gly Ala Leu Gly Gly Val Asn Val Pro Phe Ala 1285
1290 1295 Ala Thr Gly Asp Leu Thr Val Glu Gly
Gly Leu Arg Tyr Asp Leu Leu 1300 1305
1310 Lys Gln Asp Ala Phe Ala Glu Lys Gly Ser Ala Leu Gly Trp
Ser Gly 1315 1320 1325
Asn Ser Leu Thr Glu Gly Thr Leu Val Gly Leu Ala Gly Leu Lys Leu 1330
1335 1340 Ser Gln Pro Leu Ser
Asp Lys Ala Val Leu Phe Ala Thr Ala Gly Val 1345 1350
1355 1360Glu Arg Asp Leu Asn Gly Arg Asp Tyr Thr
Val Thr Gly Gly Phe Thr 1365 1370
1375 Gly Ala Thr Ala Ala Thr Gly Lys Thr Gly Ala Arg Asn Met Pro
His 1380 1385 1390 Thr
Arg Leu Val Ala Gly Leu Gly Ala Asp Val Glu Phe Gly Asn Gly 1395
1400 1405 Trp Asn Gly Leu Ala Arg
Tyr Ser Tyr Ala Gly Ser Lys Gln Tyr Gly 1410 1415
1420 Asn His Ser Gly Arg Val Gly Val Gly Tyr Arg
Phe Leu Glu His His 1425 1430 1435
1440His His His His 1522256DNAArtificial SequenceSynthetic
construct 152atggccacaa acgacgacga tgttaaaaaa gctgccactg tggccattgc
tgctgcctac 60aacaatggcc aagaaatcaa cggtttcaaa gctggagaga ccatctacga
cattgatgaa 120gacggcacaa ttaccaaaaa agacgcaact gcagccgatg ttgaagccga
cgactttaaa 180ggtctgggtc tgaaaaaagt cgtgactaac ctgaccaaaa ccgtcaatga
aaacaaacaa 240aacgtcgatg ccaaagtaaa agctgcagaa tctgaaatag aaaagttaac
aaccaagtta 300gcagacactg atgccgcttt agcagatact gatgccgctc tggatgcaac
caccaacgcc 360ttgaataaat tgggagaaaa tataacgaca tttgctgaag agactaagac
aaatatcgta 420aaaattgatg aaaaattaga agccgtggct gataccgtcg acaagcatgc
cgaagcattc 480aacgatatcg ccgattcatt ggatgaaacc aacactaagg cagacgaagc
cgtcaaaacc 540gccaatgaag ccaaacagac ggccgaagaa accaaacaaa acgtcgatgc
caaagtaaaa 600gctgcagaaa ctgcagcagg caaagccgaa gctgccgctg gcacagctaa
tactgcagcc 660gacaaggccg aagctgtcgc tgcaaaagtt accgacatca aagctgatat
cgctacgaac 720aaagataata ttgctaaaaa agcaaacagt gccgacgtgt acaccagaga
agagtctgac 780agcaaatttg tcagaattga tggtctgaac gctactaccg aaaaattgga
cacacgcttg 840gcttctgctg aaaaatccat tgccgatcac gatactcgcc tgaacggttt
ggataaaaca 900gtgtcagacc tgcgcaaaga aacccgccaa ggccttgcag aacaagccgc
gctctccggt 960ctgttccaac cttacaacgt gggtggatcc ggaggaggag gatcagattt
ggcaaacgat 1020tcttttatcc ggcaggttct cgaccgtcag catttcgaac ccgacgggaa
ataccaccta 1080ttcggcagca ggggggaact tgccgagcgc agcggccata tcggattggg
aaaaatacaa 1140agccatcagt tgggcaacct gatgattcaa caggcggcca ttaaaggaaa
tatcggctac 1200attgtccgct tttccgatca cgggcacgaa gtccattccc ccttcgacaa
ccatgcctca 1260cattccgatt ctgatgaagc cggtagtccc gttgacggat ttagccttta
ccgcatccat 1320tgggacggat acgaacacca tcccgccgac ggctatgacg ggccacaggg
cggcggctat 1380cccgctccca aaggcgcgag ggatatatac agctacgaca taaaaggcgt
tgcccaaaat 1440atccgcctca acctgaccga caaccgcagc accggacaac ggcttgccga
ccgtttccac 1500aatgccggta gtatgctgac gcaaggagta ggcgacggat tcaaacgcgc
cacccgatac 1560agccccgagc tggacagatc gggcaatgcc gccgaagcct tcaacggcac
tgcagatatc 1620gttaaaaaca tcatcggcgc ggcaggagaa attgtcggcg caggcgatgc
cgtgcagggc 1680ataagcgaag gctcaaacat tgctgtcatg cacggcttgg gtctgctttc
caccgaaaac 1740aagatggcgc gcatcaacga tttggcagat atggcgcaac tcaaagacta
tgccgcagca 1800gccatccgcg attgggcagt ccaaaacccc aatgccgcac aaggcataga
agccgtcagc 1860aatatcttta tggcagccat ccccatcaaa gggattggag ctgttcgggg
aaaatacggc 1920ttgggcggca tcacggcaca tcctatcaag cggtcgcaga tgggcgcgat
cgcattgccg 1980aaagggaaat ccgccgtcag cgacaatttt gccgatgcgg catacgccaa
atacccgtcc 2040ccttaccatt cccgaaatat ccgttcaaac ttggagcagc gttacggcaa
agaaaacatc 2100acctcctcaa ccgtgccgcc gtcaaacggc aaaaatgtca aactggcaga
ccaacgccac 2160ccgaagacag gcgtaccgtt tgacggtaaa gggtttccga attttgagaa
gcacgtgaaa 2220tatgatacgc tcgagcacca ccaccaccac cactga
2256153751PRTArtificial SequenceSynthetic construct 153Met Ala
Thr Asn Asp Asp Asp Val Lys Lys Ala Ala Thr Val Ala Ile 1 5
10 15 Ala Ala Ala Tyr Asn Asn Gly
Gln Glu Ile Asn Gly Phe Lys Ala Gly 20 25
30 Glu Thr Ile Tyr Asp Ile Asp Glu Asp Gly Thr Ile
Thr Lys Lys Asp 35 40 45
Ala Thr Ala Ala Asp Val Glu Ala Asp Asp Phe Lys Gly Leu Gly Leu
50 55 60 Lys Lys Val
Val Thr Asn Leu Thr Lys Thr Val Asn Glu Asn Lys Gln 65
70 75 80 Asn Val Asp Ala Lys Val Lys
Ala Ala Glu Ser Glu Ile Glu Lys Leu 85
90 95 Thr Thr Lys Leu Ala Asp Thr Asp Ala Ala Leu
Ala Asp Thr Asp Ala 100 105
110 Ala Leu Asp Ala Thr Thr Asn Ala Leu Asn Lys Leu Gly Glu Asn
Ile 115 120 125 Thr
Thr Phe Ala Glu Glu Thr Lys Thr Asn Ile Val Lys Ile Asp Glu 130
135 140 Lys Leu Glu Ala Val Ala
Asp Thr Val Asp Lys His Ala Glu Ala Phe 145 150
155 160 Asn Asp Ile Ala Asp Ser Leu Asp Glu Thr Asn
Thr Lys Ala Asp Glu 165 170
175 Ala Val Lys Thr Ala Asn Glu Ala Lys Gln Thr Ala Glu Glu Thr Lys
180 185 190 Gln Asn
Val Asp Ala Lys Val Lys Ala Ala Glu Thr Ala Ala Gly Lys 195
200 205 Ala Glu Ala Ala Ala Gly Thr
Ala Asn Thr Ala Ala Asp Lys Ala Glu 210 215
220 Ala Val Ala Ala Lys Val Thr Asp Ile Lys Ala Asp
Ile Ala Thr Asn 225 230 235
240 Lys Asp Asn Ile Ala Lys Lys Ala Asn Ser Ala Asp Val Tyr Thr Arg
245 250 255 Glu Glu Ser
Asp Ser Lys Phe Val Arg Ile Asp Gly Leu Asn Ala Thr 260
265 270 Thr Glu Lys Leu Asp Thr Arg Leu
Ala Ser Ala Glu Lys Ser Ile Ala 275 280
285 Asp His Asp Thr Arg Leu Asn Gly Leu Asp Lys Thr Val
Ser Asp Leu 290 295 300
Arg Lys Glu Thr Arg Gln Gly Leu Ala Glu Gln Ala Ala Leu Ser Gly 305
310 315 320 Leu Phe Gln Pro
Tyr Asn Val Gly Gly Ser Gly Gly Gly Gly Ser Asp 325
330 335 Leu Ala Asn Asp Ser Phe Ile Arg Gln
Val Leu Asp Arg Gln His Phe 340 345
350 Glu Pro Asp Gly Lys Tyr His Leu Phe Gly Ser Arg Gly Glu
Leu Ala 355 360 365
Glu Arg Ser Gly His Ile Gly Leu Gly Lys Ile Gln Ser His Gln Leu 370
375 380 Gly Asn Leu Met Ile
Gln Gln Ala Ala Ile Lys Gly Asn Ile Gly Tyr 385 390
395 400 Ile Val Arg Phe Ser Asp His Gly His Glu
Val His Ser Pro Phe Asp 405 410
415 Asn His Ala Ser His Ser Asp Ser Asp Glu Ala Gly Ser Pro Val
Asp 420 425 430 Gly
Phe Ser Leu Tyr Arg Ile His Trp Asp Gly Tyr Glu His His Pro 435
440 445 Ala Asp Gly Tyr Asp Gly
Pro Gln Gly Gly Gly Tyr Pro Ala Pro Lys 450 455
460 Gly Ala Arg Asp Ile Tyr Ser Tyr Asp Ile Lys
Gly Val Ala Gln Asn 465 470 475
480 Ile Arg Leu Asn Leu Thr Asp Asn Arg Ser Thr Gly Gln Arg Leu Ala
485 490 495 Asp Arg
Phe His Asn Ala Gly Ser Met Leu Thr Gln Gly Val Gly Asp 500
505 510 Gly Phe Lys Arg Ala Thr Arg
Tyr Ser Pro Glu Leu Asp Arg Ser Gly 515 520
525 Asn Ala Ala Glu Ala Phe Asn Gly Thr Ala Asp Ile
Val Lys Asn Ile 530 535 540
Ile Gly Ala Ala Gly Glu Ile Val Gly Ala Gly Asp Ala Val Gln Gly 545
550 555 560 Ile Ser Glu
Gly Ser Asn Ile Ala Val Met His Gly Leu Gly Leu Leu 565
570 575 Ser Thr Glu Asn Lys Met Ala Arg
Ile Asn Asp Leu Ala Asp Met Ala 580 585
590 Gln Leu Lys Asp Tyr Ala Ala Ala Ala Ile Arg Asp Trp
Ala Val Gln 595 600 605
Asn Pro Asn Ala Ala Gln Gly Ile Glu Ala Val Ser Asn Ile Phe Met 610
615 620 Ala Ala Ile Pro
Ile Lys Gly Ile Gly Ala Val Arg Gly Lys Tyr Gly 625 630
635 640 Leu Gly Gly Ile Thr Ala His Pro Ile
Lys Arg Ser Gln Met Gly Ala 645 650
655 Ile Ala Leu Pro Lys Gly Lys Ser Ala Val Ser Asp Asn Phe
Ala Asp 660 665 670
Ala Ala Tyr Ala Lys Tyr Pro Ser Pro Tyr His Ser Arg Asn Ile Arg
675 680 685 Ser Asn Leu Glu
Gln Arg Tyr Gly Lys Glu Asn Ile Thr Ser Ser Thr 690
695 700 Val Pro Pro Ser Asn Gly Lys Asn
Val Lys Leu Ala Asp Gln Arg His 705 710
715 720 Pro Lys Thr Gly Val Pro Phe Asp Gly Lys Gly Phe
Pro Asn Phe Glu 725 730
735 Lys His Val Lys Tyr Asp Thr Leu Glu His His His His His His
740 745 750
1541773DNAArtificial SequenceSynthetic construct 154atggccacaa acgacgacga
tgttaaaaaa gctgccactg tggccattgc tgctgcctac 60aacaatggcc aagaaatcaa
cggtttcaaa gctggagaga ccatctacga cattgatgaa 120gacggcacaa ttaccaaaaa
agacgcaact gcagccgatg ttgaagccga cgactttaaa 180ggtctgggtc tgaaaaaagt
cgtgactaac ctgaccaaaa ccgtcaatga aaacaaacaa 240aacgtcgatg ccaaagtaaa
agctgcagaa tctgaaatag aaaagttaac aaccaagtta 300gcagacactg atgccgcttt
agcagatact gatgccgctc tggatgcaac caccaacgcc 360ttgaataaat tgggagaaaa
tataacgaca tttgctgaag agactaagac aaatatcgta 420aaaattgatg aaaaattaga
agccgtggct gataccgtcg acaagcatgc cgaagcattc 480aacgatatcg ccgattcatt
ggatgaaacc aacactaagg cagacgaagc cgtcaaaacc 540gccaatgaag ccaaacagac
ggccgaagaa accaaacaaa acgtcgatgc caaagtaaaa 600gctgcagaaa ctgcagcagg
caaagccgaa gctgccgctg gcacagctaa tactgcagcc 660gacaaggccg aagctgtcgc
tgcaaaagtt accgacatca aagctgatat cgctacgaac 720aaagataata ttgctaaaaa
agcaaacagt gccgacgtgt acaccagaga agagtctgac 780agcaaatttg tcagaattga
tggtctgaac gctactaccg aaaaattgga cacacgcttg 840gcttctgctg aaaaatccat
tgccgatcac gatactcgcc tgaacggttt ggataaaaca 900gtgtcagacc tgcgcaaaga
aacccgccaa ggccttgcag aacaagccgc gctctccggt 960ctgttccaac cttacaacgt
gggtggatcc ggagggggtg gtgtcgccgc cgacatcggt 1020gcggggcttg ccgatgcact
aaccgcaccg ctcgaccata aagacaaagg tttgcagtct 1080ttgacgctgg atcagtccgt
caggaaaaac gagaaactga agctggcggc acaaggtgcg 1140gaaaaaactt atggaaacgg
tgacagcctc aatacgggca aattgaagaa cgacaaggtc 1200agccgtttcg actttatccg
ccaaatcgaa gtggacgggc agctcattac cttggagagt 1260ggagagttcc aagtatacaa
acaaagccat tccgccttaa ccgcctttca gaccgagcaa 1320atacaagatt cggagcattc
cgggaagatg gttgcgaaac gccagttcag aatcggcgac 1380atagcgggcg aacatacatc
ttttgacaag cttcccgaag gcggcagggc gacatatcgc 1440gggacggcgt tcggttcaga
cgatgccggc ggaaaactga cctacaccat agatttcgcc 1500gccaagcagg gaaacggcaa
aatcgaacat ttgaaatcgc cagaactcaa tgtcgacctg 1560gccgccgccg atatcaagcc
ggatggaaaa cgccatgccg tcatcagcgg ttccgtcctt 1620tacaaccaag ccgagaaagg
cagttactcc ctcggtatct ttggcggaaa agcccaggaa 1680gttgccggca gcgcggaagt
gaaaaccgta aacggcatac gccatatcgg ccttgccgcc 1740aagcaactcg agcaccacca
ccaccaccac tga 1773155590PRTArtificial
SequenceSynthetic construct 155Met Ala Thr Asn Asp Asp Asp Val Lys Lys
Ala Ala Thr Val Ala Ile 1 5 10
15 Ala Ala Ala Tyr Asn Asn Gly Gln Glu Ile Asn Gly Phe Lys Ala
Gly 20 25 30 Glu
Thr Ile Tyr Asp Ile Asp Glu Asp Gly Thr Ile Thr Lys Lys Asp 35
40 45 Ala Thr Ala Ala Asp Val
Glu Ala Asp Asp Phe Lys Gly Leu Gly Leu 50 55
60 Lys Lys Val Val Thr Asn Leu Thr Lys Thr Val
Asn Glu Asn Lys Gln 65 70 75
80 Asn Val Asp Ala Lys Val Lys Ala Ala Glu Ser Glu Ile Glu Lys Leu
85 90 95 Thr Thr
Lys Leu Ala Asp Thr Asp Ala Ala Leu Ala Asp Thr Asp Ala 100
105 110 Ala Leu Asp Ala Thr Thr Asn
Ala Leu Asn Lys Leu Gly Glu Asn Ile 115 120
125 Thr Thr Phe Ala Glu Glu Thr Lys Thr Asn Ile Val
Lys Ile Asp Glu 130 135 140
Lys Leu Glu Ala Val Ala Asp Thr Val Asp Lys His Ala Glu Ala Phe 145
150 155 160 Asn Asp Ile
Ala Asp Ser Leu Asp Glu Thr Asn Thr Lys Ala Asp Glu 165
170 175 Ala Val Lys Thr Ala Asn Glu Ala
Lys Gln Thr Ala Glu Glu Thr Lys 180 185
190 Gln Asn Val Asp Ala Lys Val Lys Ala Ala Glu Thr Ala
Ala Gly Lys 195 200 205
Ala Glu Ala Ala Ala Gly Thr Ala Asn Thr Ala Ala Asp Lys Ala Glu 210
215 220 Ala Val Ala Ala
Lys Val Thr Asp Ile Lys Ala Asp Ile Ala Thr Asn 225 230
235 240 Lys Asp Asn Ile Ala Lys Lys Ala Asn
Ser Ala Asp Val Tyr Thr Arg 245 250
255 Glu Glu Ser Asp Ser Lys Phe Val Arg Ile Asp Gly Leu Asn
Ala Thr 260 265 270
Thr Glu Lys Leu Asp Thr Arg Leu Ala Ser Ala Glu Lys Ser Ile Ala
275 280 285 Asp His Asp Thr
Arg Leu Asn Gly Leu Asp Lys Thr Val Ser Asp Leu 290
295 300 Arg Lys Glu Thr Arg Gln Gly Leu
Ala Glu Gln Ala Ala Leu Ser Gly 305 310
315 320 Leu Phe Gln Pro Tyr Asn Val Gly Gly Ser Gly Gly
Gly Gly Val Ala 325 330
335 Ala Asp Ile Gly Ala Gly Leu Ala Asp Ala Leu Thr Ala Pro Leu Asp
340 345 350 His Lys Asp
Lys Gly Leu Gln Ser Leu Thr Leu Asp Gln Ser Val Arg 355
360 365 Lys Asn Glu Lys Leu Lys Leu Ala
Ala Gln Gly Ala Glu Lys Thr Tyr 370 375
380 Gly Asn Gly Asp Ser Leu Asn Thr Gly Lys Leu Lys Asn
Asp Lys Val 385 390 395
400 Ser Arg Phe Asp Phe Ile Arg Gln Ile Glu Val Asp Gly Gln Leu Ile
405 410 415 Thr Leu Glu Ser
Gly Glu Phe Gln Val Tyr Lys Gln Ser His Ser Ala 420
425 430 Leu Thr Ala Phe Gln Thr Glu Gln Ile
Gln Asp Ser Glu His Ser Gly 435 440
445 Lys Met Val Ala Lys Arg Gln Phe Arg Ile Gly Asp Ile Ala
Gly Glu 450 455 460
His Thr Ser Phe Asp Lys Leu Pro Glu Gly Gly Arg Ala Thr Tyr Arg 465
470 475 480 Gly Thr Ala Phe Gly
Ser Asp Asp Ala Gly Gly Lys Leu Thr Tyr Thr 485
490 495 Ile Asp Phe Ala Ala Lys Gln Gly Asn Gly
Lys Ile Glu His Leu Lys 500 505
510 Ser Pro Glu Leu Asn Val Asp Leu Ala Ala Ala Asp Ile Lys Pro
Asp 515 520 525 Gly
Lys Arg His Ala Val Ile Ser Gly Ser Val Leu Tyr Asn Gln Ala 530
535 540 Glu Lys Gly Ser Tyr Ser
Leu Gly Ile Phe Gly Gly Lys Ala Gln Glu 545 550
555 560 Val Ala Gly Ser Ala Glu Val Lys Thr Val Asn
Gly Ile Arg His Ile 565 570
575 Gly Leu Ala Ala Lys Gln Leu Glu His His His His His His
580 585 590 1564170DNAArtificial
SequenceSynthetic construct 156atggccacaa acgacgacga tgttaaaaaa
gctgccactg tggccattgc tgctgcctac 60aacaatggcc aagaaatcaa cggtttcaaa
gctggagaga ccatctacga cattgatgaa 120gacggcacaa ttaccaaaaa agacgcaact
gcagccgatg ttgaagccga cgactttaaa 180ggtctgggtc tgaaaaaagt cgtgactaac
ctgaccaaaa ccgtcaatga aaacaaacaa 240aacgtcgatg ccaaagtaaa agctgcagaa
tctgaaatag aaaagttaac aaccaagtta 300gcagacactg atgccgcttt agcagatact
gatgccgctc tggatgcaac caccaacgcc 360ttgaataaat tgggagaaaa tataacgaca
tttgctgaag agactaagac aaatatcgta 420aaaattgatg aaaaattaga agccgtggct
gataccgtcg acaagcatgc cgaagcattc 480aacgatatcg ccgattcatt ggatgaaacc
aacactaagg cagacgaagc cgtcaaaacc 540gccaatgaag ccaaacagac ggccgaagaa
accaaacaaa acgtcgatgc caaagtaaaa 600gctgcagaaa ctgcagcagg caaagccgaa
gctgccgctg gcacagctaa tactgcagcc 660gacaaggccg aagctgtcgc tgcaaaagtt
accgacatca aagctgatat cgctacgaac 720aaagataata ttgctaaaaa agcaaacagt
gccgacgtgt acaccagaga agagtctgac 780agcaaatttg tcagaattga tggtctgaac
gctactaccg aaaaattgga cacacgcttg 840gcttctgctg aaaaatccat tgccgatcac
gatactcgcc tgaacggttt ggataaaaca 900gtgtcagacc tgcgcaaaga aacccgccaa
ggccttgcag aacaagccgc gctctccggt 960ctgttccaac cttacaacgt gggtggatcc
ggcggaggcg gcacttctgc gcccgacttc 1020aatgcaggcg gtaccggtat cggcagcaac
agcagagcaa caacagcgaa atcagcagca 1080gtatcttacg ccggtatcaa gaacgaaatg
tgcaaagaca gaagcatgct ctgtgccggt 1140cgggatgacg ttgcggttac agacagggat
gccaaaatca atgccccccc cccgaatctg 1200cataccggag actttccaaa cccaaatgac
gcatacaaga atttgatcaa cctcaaacct 1260gcaattgaag caggctatac aggacgcggg
gtagaggtag gtatcgtcga cacaggcgaa 1320tccgtcggca gcatatcctt tcccgaactg
tatggcagaa aagaacacgg ctataacgaa 1380aattacaaaa actatacggc gtatatgcgg
aaggaagcgc ctgaagacgg aggcggtaaa 1440gacattgaag cttctttcga cgatgaggcc
gttatagaga ctgaagcaaa gccgacggat 1500atccgccacg taaaagaaat cggacacatc
gatttggtct cccatattat tggcgggcgt 1560tccgtggacg gcagacctgc aggcggtatt
gcgcccgatg cgacgctaca cataatgaat 1620acgaatgatg aaaccaagaa cgaaatgatg
gttgcagcca tccgcaatgc atgggtcaag 1680ctgggcgaac gtggcgtgcg catcgtcaat
aacagttttg gaacaacatc gagggcaggc 1740actgccgacc ttttccaaat agccaattcg
gaggagcagt accgccaagc gttgctcgac 1800tattccggcg gtgataaaac agacgagggt
atccgcctga tgcaacagag cgattacggc 1860aacctgtcct accacatccg taataaaaac
atgcttttca tcttttcgac aggcaatgac 1920gcacaagctc agcccaacac atatgcccta
ttgccatttt atgaaaaaga cgctcaaaaa 1980ggcattatca cagtcgcagg cgtagaccgc
agtggagaaa agttcaaacg ggaaatgtat 2040ggagaaccgg gtacagaacc gcttgagtat
ggctccaacc attgcggaat tactgccatg 2100tggtgcctgt cggcacccta tgaagcaagc
gtccgtttca cccgtacaaa cccgattcaa 2160attgccggaa catccttttc cgcacccatc
gtaaccggca cggcggctct gctgctgcag 2220aaatacccgt ggatgagcaa cgacaacctg
cgtaccacgt tgctgacgac ggctcaggac 2280atcggtgcag tcggcgtgga cagcaagttc
ggctggggac tgctggatgc gggtaaggcc 2340atgaacggac ccgcgtcctt tccgttcggc
gactttaccg ccgatacgaa aggtacatcc 2400gatattgcct actccttccg taacgacatt
tcaggcacgg gcggcctgat caaaaaaggc 2460ggcagccaac tgcaactgca cggcaacaac
acctatacgg gcaaaaccat tatcgaaggc 2520ggttcgctgg tgttgtacgg caacaacaaa
tcggatatgc gcgtcgaaac caaaggtgcg 2580ctgatttata acggggcggc atccggcggc
agcctgaaca gcgacggcat tgtctatctg 2640gcagataccg accaatccgg cgcaaacgaa
accgtacaca tcaaaggcag tctgcagctg 2700gacggcaaag gtacgctgta cacacgtttg
ggcaaactgc tgaaagtgga cggtacggcg 2760attatcggcg gcaagctgta catgtcggca
cgcggcaagg gggcaggcta tctcaacagt 2820accggacgac gtgttccctt cctgagtgcc
gccaaaatcg ggcaggatta ttctttcttc 2880acaaacatcg aaaccgacgg cggcctgctg
gcttccctcg acagcgtcga aaaaacagcg 2940ggcagtgaag gcgacacgct gtcctattat
gtccgtcgcg gcaatgcggc acggactgct 3000tcggcagcgg cacattccgc gcccgccggt
ctgaaacacg ccgtagaaca gggcggcagc 3060aatctggaaa acctgatggt cgaactggat
gcctccgaat catccgcaac acccgagacg 3120gttgaaactg cggcagccga ccgcacagat
atgccgggca tccgccccta cggcgcaact 3180ttccgcgcag cggcagccgt acagcatgcg
aatgccgccg acggtgtacg catcttcaac 3240agtctcgccg ctaccgtcta tgccgacagt
accgccgccc atgccgatat gcagggacgc 3300cgcctgaaag ccgtatcgga cgggttggac
cacaacggca cgggtctgcg cgtcatcgcg 3360caaacccaac aggacggtgg aacgtgggaa
cagggcggtg ttgaaggcaa aatgcgcggc 3420agtacccaaa ccgtcggcat tgccgcgaaa
accggcgaaa atacgacagc agccgccaca 3480ctgggcatgg gacgcagcac atggagcgaa
aacagtgcaa atgcaaaaac cgacagcatt 3540agtctgtttg caggcatacg gcacgatgcg
ggcgatatcg gctatctcaa aggcctgttc 3600tcctacggac gctacaaaaa cagcatcagc
cgcagcaccg gtgcggacga acatgcggaa 3660ggcagcgtca acggcacgct gatgcagctg
ggcgcactgg gcggtgtcaa cgttccgttt 3720gccgcaacgg gagatttgac ggtcgaaggc
ggtctgcgct acgacctgct caaacaggat 3780gcattcgccg aaaaaggcag tgctttgggc
tggagcggca acagcctcac tgaaggcacg 3840ctggtcggac tcgcgggtct gaagctgtcg
caacccttga gcgataaagc cgtcctgttt 3900gcaacggcgg gcgtggaacg cgacctgaac
ggacgcgact acacggtaac gggcggcttt 3960accggcgcga ctgcagcaac cggcaagacg
ggggcacgca atatgccgca cacccgtctg 4020gttgccggcc tgggcgcgga tgtcgaattc
ggcaacggct ggaacggctt ggcacgttac 4080agctacgccg gttccaaaca gtacggcaac
cacagcggac gagtcggcgt aggctaccgg 4140ttcctcgagc accaccacca ccaccactga
41701571389PRTArtificial
SequenceSynthetic construct 157Met Ala Thr Asn Asp Asp Asp Val Lys Lys
Ala Ala Thr Val Ala Ile 1 5 10
15 Ala Ala Ala Tyr Asn Asn Gly Gln Glu Ile Asn Gly Phe Lys Ala
Gly 20 25 30 Glu
Thr Ile Tyr Asp Ile Asp Glu Asp Gly Thr Ile Thr Lys Lys Asp 35
40 45 Ala Thr Ala Ala Asp Val
Glu Ala Asp Asp Phe Lys Gly Leu Gly Leu 50 55
60 Lys Lys Val Val Thr Asn Leu Thr Lys Thr Val
Asn Glu Asn Lys Gln 65 70 75
80 Asn Val Asp Ala Lys Val Lys Ala Ala Glu Ser Glu Ile Glu Lys Leu
85 90 95 Thr Thr
Lys Leu Ala Asp Thr Asp Ala Ala Leu Ala Asp Thr Asp Ala 100
105 110 Ala Leu Asp Ala Thr Thr Asn
Ala Leu Asn Lys Leu Gly Glu Asn Ile 115 120
125 Thr Thr Phe Ala Glu Glu Thr Lys Thr Asn Ile Val
Lys Ile Asp Glu 130 135 140
Lys Leu Glu Ala Val Ala Asp Thr Val Asp Lys His Ala Glu Ala Phe 145
150 155 160 Asn Asp Ile
Ala Asp Ser Leu Asp Glu Thr Asn Thr Lys Ala Asp Glu 165
170 175 Ala Val Lys Thr Ala Asn Glu Ala
Lys Gln Thr Ala Glu Glu Thr Lys 180 185
190 Gln Asn Val Asp Ala Lys Val Lys Ala Ala Glu Thr Ala
Ala Gly Lys 195 200 205
Ala Glu Ala Ala Ala Gly Thr Ala Asn Thr Ala Ala Asp Lys Ala Glu 210
215 220 Ala Val Ala Ala
Lys Val Thr Asp Ile Lys Ala Asp Ile Ala Thr Asn 225 230
235 240 Lys Asp Asn Ile Ala Lys Lys Ala Asn
Ser Ala Asp Val Tyr Thr Arg 245 250
255 Glu Glu Ser Asp Ser Lys Phe Val Arg Ile Asp Gly Leu Asn
Ala Thr 260 265 270
Thr Glu Lys Leu Asp Thr Arg Leu Ala Ser Ala Glu Lys Ser Ile Ala
275 280 285 Asp His Asp Thr
Arg Leu Asn Gly Leu Asp Lys Thr Val Ser Asp Leu 290
295 300 Arg Lys Glu Thr Arg Gln Gly Leu
Ala Glu Gln Ala Ala Leu Ser Gly 305 310
315 320 Leu Phe Gln Pro Tyr Asn Val Gly Gly Ser Gly Gly
Gly Gly Thr Ser 325 330
335 Ala Pro Asp Phe Asn Ala Gly Gly Thr Gly Ile Gly Ser Asn Ser Arg
340 345 350 Ala Thr Thr
Ala Lys Ser Ala Ala Val Ser Tyr Ala Gly Ile Lys Asn 355
360 365 Glu Met Cys Lys Asp Arg Ser Met
Leu Cys Ala Gly Arg Asp Asp Val 370 375
380 Ala Val Thr Asp Arg Asp Ala Lys Ile Asn Ala Pro Pro
Pro Asn Leu 385 390 395
400 His Thr Gly Asp Phe Pro Asn Pro Asn Asp Ala Tyr Lys Asn Leu Ile
405 410 415 Asn Leu Lys Pro
Ala Ile Glu Ala Gly Tyr Thr Gly Arg Gly Val Glu 420
425 430 Val Gly Ile Val Asp Thr Gly Glu Ser
Val Gly Ser Ile Ser Phe Pro 435 440
445 Glu Leu Tyr Gly Arg Lys Glu His Gly Tyr Asn Glu Asn Tyr
Lys Asn 450 455 460
Tyr Thr Ala Tyr Met Arg Lys Glu Ala Pro Glu Asp Gly Gly Gly Lys 465
470 475 480 Asp Ile Glu Ala Ser
Phe Asp Asp Glu Ala Val Ile Glu Thr Glu Ala 485
490 495 Lys Pro Thr Asp Ile Arg His Val Lys Glu
Ile Gly His Ile Asp Leu 500 505
510 Val Ser His Ile Ile Gly Gly Arg Ser Val Asp Gly Arg Pro Ala
Gly 515 520 525 Gly
Ile Ala Pro Asp Ala Thr Leu His Ile Met Asn Thr Asn Asp Glu 530
535 540 Thr Lys Asn Glu Met Met
Val Ala Ala Ile Arg Asn Ala Trp Val Lys 545 550
555 560 Leu Gly Glu Arg Gly Val Arg Ile Val Asn Asn
Ser Phe Gly Thr Thr 565 570
575 Ser Arg Ala Gly Thr Ala Asp Leu Phe Gln Ile Ala Asn Ser Glu Glu
580 585 590 Gln Tyr
Arg Gln Ala Leu Leu Asp Tyr Ser Gly Gly Asp Lys Thr Asp 595
600 605 Glu Gly Ile Arg Leu Met Gln
Gln Ser Asp Tyr Gly Asn Leu Ser Tyr 610 615
620 His Ile Arg Asn Lys Asn Met Leu Phe Ile Phe Ser
Thr Gly Asn Asp 625 630 635
640 Ala Gln Ala Gln Pro Asn Thr Tyr Ala Leu Leu Pro Phe Tyr Glu Lys
645 650 655 Asp Ala Gln
Lys Gly Ile Ile Thr Val Ala Gly Val Asp Arg Ser Gly 660
665 670 Glu Lys Phe Lys Arg Glu Met Tyr
Gly Glu Pro Gly Thr Glu Pro Leu 675 680
685 Glu Tyr Gly Ser Asn His Cys Gly Ile Thr Ala Met Trp
Cys Leu Ser 690 695 700
Ala Pro Tyr Glu Ala Ser Val Arg Phe Thr Arg Thr Asn Pro Ile Gln 705
710 715 720 Ile Ala Gly Thr
Ser Phe Ser Ala Pro Ile Val Thr Gly Thr Ala Ala 725
730 735 Leu Leu Leu Gln Lys Tyr Pro Trp Met
Ser Asn Asp Asn Leu Arg Thr 740 745
750 Thr Leu Leu Thr Thr Ala Gln Asp Ile Gly Ala Val Gly Val
Asp Ser 755 760 765
Lys Phe Gly Trp Gly Leu Leu Asp Ala Gly Lys Ala Met Asn Gly Pro 770
775 780 Ala Ser Phe Pro Phe
Gly Asp Phe Thr Ala Asp Thr Lys Gly Thr Ser 785 790
795 800 Asp Ile Ala Tyr Ser Phe Arg Asn Asp Ile
Ser Gly Thr Gly Gly Leu 805 810
815 Ile Lys Lys Gly Gly Ser Gln Leu Gln Leu His Gly Asn Asn Thr
Tyr 820 825 830 Thr
Gly Lys Thr Ile Ile Glu Gly Gly Ser Leu Val Leu Tyr Gly Asn 835
840 845 Asn Lys Ser Asp Met Arg
Val Glu Thr Lys Gly Ala Leu Ile Tyr Asn 850 855
860 Gly Ala Ala Ser Gly Gly Ser Leu Asn Ser Asp
Gly Ile Val Tyr Leu 865 870 875
880 Ala Asp Thr Asp Gln Ser Gly Ala Asn Glu Thr Val His Ile Lys Gly
885 890 895 Ser Leu
Gln Leu Asp Gly Lys Gly Thr Leu Tyr Thr Arg Leu Gly Lys 900
905 910 Leu Leu Lys Val Asp Gly Thr
Ala Ile Ile Gly Gly Lys Leu Tyr Met 915 920
925 Ser Ala Arg Gly Lys Gly Ala Gly Tyr Leu Asn Ser
Thr Gly Arg Arg 930 935 940
Val Pro Phe Leu Ser Ala Ala Lys Ile Gly Gln Asp Tyr Ser Phe Phe 945
950 955 960 Thr Asn Ile
Glu Thr Asp Gly Gly Leu Leu Ala Ser Leu Asp Ser Val 965
970 975 Glu Lys Thr Ala Gly Ser Glu Gly
Asp Thr Leu Ser Tyr Tyr Val Arg 980 985
990 Arg Gly Asn Ala Ala Arg Thr Ala Ser Ala Ala Ala His
Ser Ala Pro 995 1000 1005
Ala Gly Leu Lys His Ala Val Glu Gln Gly Gly Ser Asn Leu Glu Asn
1010 1015 1020 Leu Met Val
Glu Leu Asp Ala Ser Glu Ser Ser Ala Thr Pro Glu Thr 1025
1030 1035 1040Val Glu Thr Ala Ala Ala Asp
Arg Thr Asp Met Pro Gly Ile Arg Pro 1045
1050 1055 Tyr Gly Ala Thr Phe Arg Ala Ala Ala Ala Val
Gln His Ala Asn Ala 1060 1065
1070 Ala Asp Gly Val Arg Ile Phe Asn Ser Leu Ala Ala Thr Val Tyr
Ala 1075 1080 1085 Asp
Ser Thr Ala Ala His Ala Asp Met Gln Gly Arg Arg Leu Lys Ala 1090
1095 1100 Val Ser Asp Gly Leu Asp
His Asn Gly Thr Gly Leu Arg Val Ile Ala 1105 1110
1115 1120Gln Thr Gln Gln Asp Gly Gly Thr Trp Glu Gln
Gly Gly Val Glu Gly 1125 1130
1135 Lys Met Arg Gly Ser Thr Gln Thr Val Gly Ile Ala Ala Lys Thr Gly
1140 1145 1150 Glu Asn
Thr Thr Ala Ala Ala Thr Leu Gly Met Gly Arg Ser Thr Trp 1155
1160 1165 Ser Glu Asn Ser Ala Asn Ala
Lys Thr Asp Ser Ile Ser Leu Phe Ala 1170 1175
1180 Gly Ile Arg His Asp Ala Gly Asp Ile Gly Tyr Leu
Lys Gly Leu Phe 1185 1190 1195
1200Ser Tyr Gly Arg Tyr Lys Asn Ser Ile Ser Arg Ser Thr Gly Ala Asp
1205 1210 1215 Glu His Ala
Glu Gly Ser Val Asn Gly Thr Leu Met Gln Leu Gly Ala 1220
1225 1230 Leu Gly Gly Val Asn Val Pro Phe
Ala Ala Thr Gly Asp Leu Thr Val 1235 1240
1245 Glu Gly Gly Leu Arg Tyr Asp Leu Leu Lys Gln Asp Ala
Phe Ala Glu 1250 1255 1260
Lys Gly Ser Ala Leu Gly Trp Ser Gly Asn Ser Leu Thr Glu Gly Thr 1265
1270 1275 1280Leu Val Gly Leu
Ala Gly Leu Lys Leu Ser Gln Pro Leu Ser Asp Lys 1285
1290 1295 Ala Val Leu Phe Ala Thr Ala Gly Val
Glu Arg Asp Leu Asn Gly Arg 1300 1305
1310 Asp Tyr Thr Val Thr Gly Gly Phe Thr Gly Ala Thr Ala Ala
Thr Gly 1315 1320 1325
Lys Thr Gly Ala Arg Asn Met Pro His Thr Arg Leu Val Ala Gly Leu 1330
1335 1340 Gly Ala Asp Val Glu
Phe Gly Asn Gly Trp Asn Gly Leu Ala Arg Tyr 1345 1350
1355 1360Ser Tyr Ala Gly Ser Lys Gln Tyr Gly Asn
His Ser Gly Arg Val Gly 1365 1370
1375 Val Gly Tyr Arg Phe Leu Glu His His His His His His
1380 1385 1582304DNAArtificial
SequenceSynthetic construct 158atgaaacact ttccatccaa agtactgacc
acagccatcc ttgccacttt ctgtagcggc 60gcactggcag ccacaaacga cgacgatgtt
aaaaaagctg ccactgtggc cattgctgct 120gcctacaaca atggccaaga aatcaacggt
ttcaaagctg gagagaccat ctacgacatt 180gatgaagacg gcacaattac caaaaaagac
gcaactgcag ccgatgttga agccgacgac 240tttaaaggtc tgggtctgaa aaaagtcgtg
actaacctga ccaaaaccgt caatgaaaac 300aaacaaaacg tcgatgccaa agtaaaagct
gcagaatctg aaatagaaaa gttaacaacc 360aagttagcag acactgatgc cgctttagca
gatactgatg ccgctctgga tgcaaccacc 420aacgccttga ataaattggg agaaaatata
acgacatttg ctgaagagac taagacaaat 480atcgtaaaaa ttgatgaaaa attagaagcc
gtggctgata ccgtcgacaa gcatgccgaa 540gcattcaacg atatcgccga ttcattggat
gaaaccaaca ctaaggcaga cgaagccgtc 600aaaaccgcca atgaagccaa acagacggcc
gaagaaacca aacaaaacgt cgatgccaaa 660gtaaaagctg cagaaactgc agcaggcaaa
gccgaagctg ccgctggcac agctaatact 720gcagccgaca aggccgaagc tgtcgctgca
aaagttaccg acatcaaagc tgatatcgct 780acgaacaaag ataatattgc taaaaaagca
aacagtgccg acgtgtacac cagagaagag 840tctgacagca aatttgtcag aattgatggt
ctgaacgcta ctaccgaaaa attggacaca 900cgcttggctt ctgctgaaaa atccattgcc
gatcacgata ctcgcctgaa cggtttggat 960aaaacagtgt cagacctgcg caaagaaacc
cgccaaggcc ttgcagaaca agccgcgctc 1020tccggtctgt tccaacctta caacgtgggt
ggatccggag gaggaggatc agatttggca 1080aacgattctt ttatccggca ggttctcgac
cgtcagcatt tcgaacccga cgggaaatac 1140cacctattcg gcagcagggg ggaacttgcc
gagcgcagcg gccatatcgg attgggaaaa 1200atacaaagcc atcagttggg caacctgatg
attcaacagg cggccattaa aggaaatatc 1260ggctacattg tccgcttttc cgatcacggg
cacgaagtcc attccccctt cgacaaccat 1320gcctcacatt ccgattctga tgaagccggt
agtcccgttg acggatttag cctttaccgc 1380atccattggg acggatacga acaccatccc
gccgacggct atgacgggcc acagggcggc 1440ggctatcccg ctcccaaagg cgcgagggat
atatacagct acgacataaa aggcgttgcc 1500caaaatatcc gcctcaacct gaccgacaac
cgcagcaccg gacaacggct tgccgaccgt 1560ttccacaatg ccggtagtat gctgacgcaa
ggagtaggcg acggattcaa acgcgccacc 1620cgatacagcc ccgagctgga cagatcgggc
aatgccgccg aagccttcaa cggcactgca 1680gatatcgtta aaaacatcat cggcgcggca
ggagaaattg tcggcgcagg cgatgccgtg 1740cagggcataa gcgaaggctc aaacattgct
gtcatgcacg gcttgggtct gctttccacc 1800gaaaacaaga tggcgcgcat caacgatttg
gcagatatgg cgcaactcaa agactatgcc 1860gcagcagcca tccgcgattg ggcagtccaa
aaccccaatg ccgcacaagg catagaagcc 1920gtcagcaata tctttatggc agccatcccc
atcaaaggga ttggagctgt tcggggaaaa 1980tacggcttgg gcggcatcac ggcacatcct
atcaagcggt cgcagatggg cgcgatcgca 2040ttgccgaaag ggaaatccgc cgtcagcgac
aattttgccg atgcggcata cgccaaatac 2100ccgtcccctt accattcccg aaatatccgt
tcaaacttgg agcagcgtta cggcaaagaa 2160aacatcacct cctcaaccgt gccgccgtca
aacggcaaaa atgtcaaact ggcagaccaa 2220cgccacccga agacaggcgt accgtttgac
ggtaaagggt ttccgaattt tgagaagcac 2280gtgaaatatg atacgtaact cgag
2304159765PRTArtificial
SequenceSynthetic construct 159Met Lys His Phe Pro Ser Lys Val Leu Thr
Thr Ala Ile Leu Ala Thr 1 5 10
15 Phe Cys Ser Gly Ala Leu Ala Ala Thr Asn Asp Asp Asp Val Lys
Lys 20 25 30 Ala
Ala Thr Val Ala Ile Ala Ala Ala Tyr Asn Asn Gly Gln Glu Ile 35
40 45 Asn Gly Phe Lys Ala Gly
Glu Thr Ile Tyr Asp Ile Asp Glu Asp Gly 50 55
60 Thr Ile Thr Lys Lys Asp Ala Thr Ala Ala Asp
Val Glu Ala Asp Asp 65 70 75
80 Phe Lys Gly Leu Gly Leu Lys Lys Val Val Thr Asn Leu Thr Lys Thr
85 90 95 Val Asn
Glu Asn Lys Gln Asn Val Asp Ala Lys Val Lys Ala Ala Glu 100
105 110 Ser Glu Ile Glu Lys Leu Thr
Thr Lys Leu Ala Asp Thr Asp Ala Ala 115 120
125 Leu Ala Asp Thr Asp Ala Ala Leu Asp Ala Thr Thr
Asn Ala Leu Asn 130 135 140
Lys Leu Gly Glu Asn Ile Thr Thr Phe Ala Glu Glu Thr Lys Thr Asn 145
150 155 160 Ile Val Lys
Ile Asp Glu Lys Leu Glu Ala Val Ala Asp Thr Val Asp 165
170 175 Lys His Ala Glu Ala Phe Asn Asp
Ile Ala Asp Ser Leu Asp Glu Thr 180 185
190 Asn Thr Lys Ala Asp Glu Ala Val Lys Thr Ala Asn Glu
Ala Lys Gln 195 200 205
Thr Ala Glu Glu Thr Lys Gln Asn Val Asp Ala Lys Val Lys Ala Ala 210
215 220 Glu Thr Ala Ala
Gly Lys Ala Glu Ala Ala Ala Gly Thr Ala Asn Thr 225 230
235 240 Ala Ala Asp Lys Ala Glu Ala Val Ala
Ala Lys Val Thr Asp Ile Lys 245 250
255 Ala Asp Ile Ala Thr Asn Lys Asp Asn Ile Ala Lys Lys Ala
Asn Ser 260 265 270
Ala Asp Val Tyr Thr Arg Glu Glu Ser Asp Ser Lys Phe Val Arg Ile
275 280 285 Asp Gly Leu Asn
Ala Thr Thr Glu Lys Leu Asp Thr Arg Leu Ala Ser 290
295 300 Ala Glu Lys Ser Ile Ala Asp His
Asp Thr Arg Leu Asn Gly Leu Asp 305 310
315 320 Lys Thr Val Ser Asp Leu Arg Lys Glu Thr Arg Gln
Gly Leu Ala Glu 325 330
335 Gln Ala Ala Leu Ser Gly Leu Phe Gln Pro Tyr Asn Val Gly Gly Ser
340 345 350 Gly Gly Gly
Gly Ser Asp Leu Ala Asn Asp Ser Phe Ile Arg Gln Val 355
360 365 Leu Asp Arg Gln His Phe Glu Pro
Asp Gly Lys Tyr His Leu Phe Gly 370 375
380 Ser Arg Gly Glu Leu Ala Glu Arg Ser Gly His Ile Gly
Leu Gly Lys 385 390 395
400 Ile Gln Ser His Gln Leu Gly Asn Leu Met Ile Gln Gln Ala Ala Ile
405 410 415 Lys Gly Asn Ile
Gly Tyr Ile Val Arg Phe Ser Asp His Gly His Glu 420
425 430 Val His Ser Pro Phe Asp Asn His Ala
Ser His Ser Asp Ser Asp Glu 435 440
445 Ala Gly Ser Pro Val Asp Gly Phe Ser Leu Tyr Arg Ile His
Trp Asp 450 455 460
Gly Tyr Glu His His Pro Ala Asp Gly Tyr Asp Gly Pro Gln Gly Gly 465
470 475 480 Gly Tyr Pro Ala Pro
Lys Gly Ala Arg Asp Ile Tyr Ser Tyr Asp Ile 485
490 495 Lys Gly Val Ala Gln Asn Ile Arg Leu Asn
Leu Thr Asp Asn Arg Ser 500 505
510 Thr Gly Gln Arg Leu Ala Asp Arg Phe His Asn Ala Gly Ser Met
Leu 515 520 525 Thr
Gln Gly Val Gly Asp Gly Phe Lys Arg Ala Thr Arg Tyr Ser Pro 530
535 540 Glu Leu Asp Arg Ser Gly
Asn Ala Ala Glu Ala Phe Asn Gly Thr Ala 545 550
555 560 Asp Ile Val Lys Asn Ile Ile Gly Ala Ala Gly
Glu Ile Val Gly Ala 565 570
575 Gly Asp Ala Val Gln Gly Ile Ser Glu Gly Ser Asn Ile Ala Val Met
580 585 590 His Gly
Leu Gly Leu Leu Ser Thr Glu Asn Lys Met Ala Arg Ile Asn 595
600 605 Asp Leu Ala Asp Met Ala Gln
Leu Lys Asp Tyr Ala Ala Ala Ala Ile 610 615
620 Arg Asp Trp Ala Val Gln Asn Pro Asn Ala Ala Gln
Gly Ile Glu Ala 625 630 635
640 Val Ser Asn Ile Phe Met Ala Ala Ile Pro Ile Lys Gly Ile Gly Ala
645 650 655 Val Arg Gly
Lys Tyr Gly Leu Gly Gly Ile Thr Ala His Pro Ile Lys 660
665 670 Arg Ser Gln Met Gly Ala Ile Ala
Leu Pro Lys Gly Lys Ser Ala Val 675 680
685 Ser Asp Asn Phe Ala Asp Ala Ala Tyr Ala Lys Tyr Pro
Ser Pro Tyr 690 695 700
His Ser Arg Asn Ile Arg Ser Asn Leu Glu Gln Arg Tyr Gly Lys Glu 705
710 715 720 Asn Ile Thr Ser
Ser Thr Val Pro Pro Ser Asn Gly Lys Asn Val Lys 725
730 735 Leu Ala Asp Gln Arg His Pro Lys Thr
Gly Val Pro Phe Asp Gly Lys 740 745
750 Gly Phe Pro Asn Phe Glu Lys His Val Lys Tyr Asp Thr
755 760 765 1601839DNAArtificial
SequenceSynthetic construct 160atgaaacact ttccatccaa agtactgacc
acagccatcc ttgccacttt ctgtagcggc 60gcactggcag ccacaaacga cgacgatgtt
aaaaaagctg ccactgtggc cattgctgct 120gcctacaaca atggccaaga aatcaacggt
ttcaaagctg gagagaccat ctacgacatt 180gatgaagacg gcacaattac caaaaaagac
gcaactgcag ccgatgttga agccgacgac 240tttaaaggtc tgggtctgaa aaaagtcgtg
actaacctga ccaaaaccgt caatgaaaac 300aaacaaaacg tcgatgccaa agtaaaagct
gcagaatctg aaatagaaaa gttaacaacc 360aagttagcag acactgatgc cgctttagca
gatactgatg ccgctctgga tgcaaccacc 420aacgccttga ataaattggg agaaaatata
acgacatttg ctgaagagac taagacaaat 480atcgtaaaaa ttgatgaaaa attagaagcc
gtggctgata ccgtcgacaa gcatgccgaa 540gcattcaacg atatcgccga ttcattggat
gaaaccaaca ctaaggcaga cgaagccgtc 600aaaaccgcca atgaagccaa acagacggcc
gaagaaacca aacaaaacgt cgatgccaaa 660gtaaaagctg cagaaactgc agcaggcaaa
gccgaagctg ccgctggcac agctaatact 720gcagccgaca aggccgaagc tgtcgctgca
aaagttaccg acatcaaagc tgatatcgct 780acgaacaaag ataatattgc taaaaaagca
aacagtgccg acgtgtacac cagagaagag 840tctgacagca aatttgtcag aattgatggt
ctgaacgcta ctaccgaaaa attggacaca 900cgcttggctt ctgctgaaaa atccattgcc
gatcacgata ctcgcctgaa cggtttggat 960aaaacagtgt cagacctgcg caaagaaacc
cgccaaggcc ttgcagaaca agccgcgctc 1020tccggtctgt tccaacctta caacgtgggt
ggatccggag ggggtggtgt cgccgccgac 1080atcggtgcgg ggcttgccga tgcactaacc
gcaccgctcg accataaaga caaaggtttg 1140cagtctttga cgctggatca gtccgtcagg
aaaaacgaga aactgaagct ggcggcacaa 1200ggtgcggaaa aaacttatgg aaacggtgac
agcctcaata cgggcaaatt gaagaacgac 1260aaggtcagcc gtttcgactt tatccgccaa
atcgaagtgg acgggcagct cattaccttg 1320gagagtggag agttccaagt atacaaacaa
agccattccg ccttaaccgc ctttcagacc 1380gagcaaatac aagattcgga gcattccggg
aagatggttg cgaaacgcca gttcagaatc 1440ggcgacatag cgggcgaaca tacatctttt
gacaagcttc ccgaaggcgg cagggcgaca 1500tatcgcggga cggcgttcgg ttcagacgat
gccggcggaa aactgaccta caccatagat 1560ttcgccgcca agcagggaaa cggcaaaatc
gaacatttga aatcgccaga actcaatgtc 1620gacctggccg ccgccgatat caagccggat
ggaaaacgcc atgccgtcat cagcggttcc 1680gtcctttaca accaagccga gaaaggcagt
tactccctcg gtatctttgg cggaaaagcc 1740caggaagttg ccggcagcgc ggaagtgaaa
accgtaaacg gcatacgcca tatcggcctt 1800gccgccaagc aactcgagca ccaccaccac
caccactga 1839161612PRTArtificial
SequenceSynthetic construct 161Met Lys His Phe Pro Ser Lys Val Leu Thr
Thr Ala Ile Leu Ala Thr 1 5 10
15 Phe Cys Ser Gly Ala Leu Ala Ala Thr Asn Asp Asp Asp Val Lys
Lys 20 25 30 Ala
Ala Thr Val Ala Ile Ala Ala Ala Tyr Asn Asn Gly Gln Glu Ile 35
40 45 Asn Gly Phe Lys Ala Gly
Glu Thr Ile Tyr Asp Ile Asp Glu Asp Gly 50 55
60 Thr Ile Thr Lys Lys Asp Ala Thr Ala Ala Asp
Val Glu Ala Asp Asp 65 70 75
80 Phe Lys Gly Leu Gly Leu Lys Lys Val Val Thr Asn Leu Thr Lys Thr
85 90 95 Val Asn
Glu Asn Lys Gln Asn Val Asp Ala Lys Val Lys Ala Ala Glu 100
105 110 Ser Glu Ile Glu Lys Leu Thr
Thr Lys Leu Ala Asp Thr Asp Ala Ala 115 120
125 Leu Ala Asp Thr Asp Ala Ala Leu Asp Ala Thr Thr
Asn Ala Leu Asn 130 135 140
Lys Leu Gly Glu Asn Ile Thr Thr Phe Ala Glu Glu Thr Lys Thr Asn 145
150 155 160 Ile Val Lys
Ile Asp Glu Lys Leu Glu Ala Val Ala Asp Thr Val Asp 165
170 175 Lys His Ala Glu Ala Phe Asn Asp
Ile Ala Asp Ser Leu Asp Glu Thr 180 185
190 Asn Thr Lys Ala Asp Glu Ala Val Lys Thr Ala Asn Glu
Ala Lys Gln 195 200 205
Thr Ala Glu Glu Thr Lys Gln Asn Val Asp Ala Lys Val Lys Ala Ala 210
215 220 Glu Thr Ala Ala
Gly Lys Ala Glu Ala Ala Ala Gly Thr Ala Asn Thr 225 230
235 240 Ala Ala Asp Lys Ala Glu Ala Val Ala
Ala Lys Val Thr Asp Ile Lys 245 250
255 Ala Asp Ile Ala Thr Asn Lys Asp Asn Ile Ala Lys Lys Ala
Asn Ser 260 265 270
Ala Asp Val Tyr Thr Arg Glu Glu Ser Asp Ser Lys Phe Val Arg Ile
275 280 285 Asp Gly Leu Asn
Ala Thr Thr Glu Lys Leu Asp Thr Arg Leu Ala Ser 290
295 300 Ala Glu Lys Ser Ile Ala Asp His
Asp Thr Arg Leu Asn Gly Leu Asp 305 310
315 320 Lys Thr Val Ser Asp Leu Arg Lys Glu Thr Arg Gln
Gly Leu Ala Glu 325 330
335 Gln Ala Ala Leu Ser Gly Leu Phe Gln Pro Tyr Asn Val Gly Gly Ser
340 345 350 Gly Gly Gly
Gly Val Ala Ala Asp Ile Gly Ala Gly Leu Ala Asp Ala 355
360 365 Leu Thr Ala Pro Leu Asp His Lys
Asp Lys Gly Leu Gln Ser Leu Thr 370 375
380 Leu Asp Gln Ser Val Arg Lys Asn Glu Lys Leu Lys Leu
Ala Ala Gln 385 390 395
400 Gly Ala Glu Lys Thr Tyr Gly Asn Gly Asp Ser Leu Asn Thr Gly Lys
405 410 415 Leu Lys Asn Asp
Lys Val Ser Arg Phe Asp Phe Ile Arg Gln Ile Glu 420
425 430 Val Asp Gly Gln Leu Ile Thr Leu Glu
Ser Gly Glu Phe Gln Val Tyr 435 440
445 Lys Gln Ser His Ser Ala Leu Thr Ala Phe Gln Thr Glu Gln
Ile Gln 450 455 460
Asp Ser Glu His Ser Gly Lys Met Val Ala Lys Arg Gln Phe Arg Ile 465
470 475 480 Gly Asp Ile Ala Gly
Glu His Thr Ser Phe Asp Lys Leu Pro Glu Gly 485
490 495 Gly Arg Ala Thr Tyr Arg Gly Thr Ala Phe
Gly Ser Asp Asp Ala Gly 500 505
510 Gly Lys Leu Thr Tyr Thr Ile Asp Phe Ala Ala Lys Gln Gly Asn
Gly 515 520 525 Lys
Ile Glu His Leu Lys Ser Pro Glu Leu Asn Val Asp Leu Ala Ala 530
535 540 Ala Asp Ile Lys Pro Asp
Gly Lys Arg His Ala Val Ile Ser Gly Ser 545 550
555 560 Val Leu Tyr Asn Gln Ala Glu Lys Gly Ser Tyr
Ser Leu Gly Ile Phe 565 570
575 Gly Gly Lys Ala Gln Glu Val Ala Gly Ser Ala Glu Val Lys Thr Val
580 585 590 Asn Gly
Ile Arg His Ile Gly Leu Ala Ala Lys Gln Leu Glu His His 595
600 605 His His His His 610
1624218DNAArtificial SequenceSynthetic construct 162atgaaacact
ttccatccaa agtactgacc acagccatcc ttgccacttt ctgtagcggc 60gcactggcag
ccacaaacga cgacgatgtt aaaaaagctg ccactgtggc cattgctgct 120gcctacaaca
atggccaaga aatcaacggt ttcaaagctg gagagaccat ctacgacatt 180gatgaagacg
gcacaattac caaaaaagac gcaactgcag ccgatgttga agccgacgac 240tttaaaggtc
tgggtctgaa aaaagtcgtg actaacctga ccaaaaccgt caatgaaaac 300aaacaaaacg
tcgatgccaa agtaaaagct gcagaatctg aaatagaaaa gttaacaacc 360aagttagcag
acactgatgc cgctttagca gatactgatg ccgctctgga tgcaaccacc 420aacgccttga
ataaattggg agaaaatata acgacatttg ctgaagagac taagacaaat 480atcgtaaaaa
ttgatgaaaa attagaagcc gtggctgata ccgtcgacaa gcatgccgaa 540gcattcaacg
atatcgccga ttcattggat gaaaccaaca ctaaggcaga cgaagccgtc 600aaaaccgcca
atgaagccaa acagacggcc gaagaaacca aacaaaacgt cgatgccaaa 660gtaaaagctg
cagaaactgc agcaggcaaa gccgaagctg ccgctggcac agctaatact 720gcagccgaca
aggccgaagc tgtcgctgca aaagttaccg acatcaaagc tgatatcgct 780acgaacaaag
ataatattgc taaaaaagca aacagtgccg acgtgtacac cagagaagag 840tctgacagca
aatttgtcag aattgatggt ctgaacgcta ctaccgaaaa attggacaca 900cgcttggctt
ctgctgaaaa atccattgcc gatcacgata ctcgcctgaa cggtttggat 960aaaacagtgt
cagacctgcg caaagaaacc cgccaaggcc ttgcagaaca agccgcgctc 1020tccggtctgt
tccaacctta caacgtgggt ggatccggcg gaggcggcac ttctgcgccc 1080gacttcaatg
caggcggtac cggtatcggc agcaacagca gagcaacaac agcgaaatca 1140gcagcagtat
cttacgccgg tatcaagaac gaaatgtgca aagacagaag catgctctgt 1200gccggtcggg
atgacgttgc ggttacagac agggatgcca aaatcaatgc cccccccccg 1260aatctgcata
ccggagactt tccaaaccca aatgacgcat acaagaattt gatcaacctc 1320aaacctgcaa
ttgaagcagg ctatacagga cgcggggtag aggtaggtat cgtcgacaca 1380ggcgaatccg
tcggcagcat atcctttccc gaactgtatg gcagaaaaga acacggctat 1440aacgaaaatt
acaaaaacta tacggcgtat atgcggaagg aagcgcctga agacggaggc 1500ggtaaagaca
ttgaagcttc tttcgacgat gaggccgtta tagagactga agcaaagccg 1560acggatatcc
gccacgtaaa agaaatcgga cacatcgatt tggtctccca tattattggc 1620gggcgttccg
tggacggcag acctgcaggc ggtattgcgc ccgatgcgac gctacacata 1680atgaatacga
atgatgaaac caagaacgaa atgatggttg cagccatccg caatgcatgg 1740gtcaagctgg
gcgaacgtgg cgtgcgcatc gtcaataaca gttttggaac aacatcgagg 1800gcaggcactg
ccgacctttt ccaaatagcc aattcggagg agcagtaccg ccaagcgttg 1860ctcgactatt
ccggcggtga taaaacagac gagggtatcc gcctgatgca acagagcgat 1920tacggcaacc
tgtcctacca catccgtaat aaaaacatgc ttttcatctt ttcgacaggc 1980aatgacgcac
aagctcagcc caacacatat gccctattgc cattttatga aaaagacgct 2040caaaaaggca
ttatcacagt cgcaggcgta gaccgcagtg gagaaaagtt caaacgggaa 2100atgtatggag
aaccgggtac agaaccgctt gagtatggct ccaaccattg cggaattact 2160gccatgtggt
gcctgtcggc accctatgaa gcaagcgtcc gtttcacccg tacaaacccg 2220attcaaattg
ccggaacatc cttttccgca cccatcgtaa ccggcacggc ggctctgctg 2280ctgcagaaat
acccgtggat gagcaacgac aacctgcgta ccacgttgct gacgacggct 2340caggacatcg
gtgcagtcgg cgtggacagc aagttcggct ggggactgct ggatgcgggt 2400aaggccatga
acggacccgc gtcctttccg ttcggcgact ttaccgccga tacgaaaggt 2460acatccgata
ttgcctactc cttccgtaac gacatttcag gcacgggcgg cctgatcaaa 2520aaaggcggca
gccaactgca actgcacggc aacaacacct atacgggcaa aaccattatc 2580gaaggcggtt
cgctggtgtt gtacggcaac aacaaatcgg atatgcgcgt cgaaaccaaa 2640ggtgcgctga
tttataacgg ggcggcatcc ggcggcagcc tgaacagcga cggcattgtc 2700tatctggcag
ataccgacca atccggcgca aacgaaaccg tacacatcaa aggcagtctg 2760cagctggacg
gcaaaggtac gctgtacaca cgtttgggca aactgctgaa agtggacggt 2820acggcgatta
tcggcggcaa gctgtacatg tcggcacgcg gcaagggggc aggctatctc 2880aacagtaccg
gacgacgtgt tcccttcctg agtgccgcca aaatcgggca ggattattct 2940ttcttcacaa
acatcgaaac cgacggcggc ctgctggctt ccctcgacag cgtcgaaaaa 3000acagcgggca
gtgaaggcga cacgctgtcc tattatgtcc gtcgcggcaa tgcggcacgg 3060actgcttcgg
cagcggcaca ttccgcgccc gccggtctga aacacgccgt agaacagggc 3120ggcagcaatc
tggaaaacct gatggtcgaa ctggatgcct ccgaatcatc cgcaacaccc 3180gagacggttg
aaactgcggc agccgaccgc acagatatgc cgggcatccg cccctacggc 3240gcaactttcc
gcgcagcggc agccgtacag catgcgaatg ccgccgacgg tgtacgcatc 3300ttcaacagtc
tcgccgctac cgtctatgcc gacagtaccg ccgcccatgc cgatatgcag 3360ggacgccgcc
tgaaagccgt atcggacggg ttggaccaca acggcacggg tctgcgcgtc 3420atcgcgcaaa
cccaacagga cggtggaacg tgggaacagg gcggtgttga aggcaaaatg 3480cgcggcagta
cccaaaccgt cggcattgcc gcgaaaaccg gcgaaaatac gacagcagcc 3540gccacactgg
gcatgggacg cagcacatgg agcgaaaaca gtgcaaatgc aaaaaccgac 3600agcattagtc
tgtttgcagg catacggcac gatgcgggcg atatcggcta tctcaaaggc 3660ctgttctcct
acggacgcta caaaaacagc atcagccgca gcaccggtgc ggacgaacat 3720gcggaaggca
gcgtcaacgg cacgctgatg cagctgggcg cactgggcgg tgtcaacgtt 3780ccgtttgccg
caacgggaga tttgacggtc gaaggcggtc tgcgctacga cctgctcaaa 3840caggatgcat
tcgccgaaaa aggcagtgct ttgggctgga gcggcaacag cctcactgaa 3900ggcacgctgg
tcggactcgc gggtctgaag ctgtcgcaac ccttgagcga taaagccgtc 3960ctgtttgcaa
cggcgggcgt ggaacgcgac ctgaacggac gcgactacac ggtaacgggc 4020ggctttaccg
gcgcgactgc agcaaccggc aagacggggg cacgcaatat gccgcacacc 4080cgtctggttg
ccggcctggg cgcggatgtc gaattcggca acggctggaa cggcttggca 4140cgttacagct
acgccggttc caaacagtac ggcaaccaca gcggacgagt cggcgtaggc 4200taccggttct
gactcgag
42181631403PRTArtificial SequenceSynthetic construct 163Met Lys His Phe
Pro Ser Lys Val Leu Thr Thr Ala Ile Leu Ala Thr 1 5
10 15 Phe Cys Ser Gly Ala Leu Ala Ala Thr
Asn Asp Asp Asp Val Lys Lys 20 25
30 Ala Ala Thr Val Ala Ile Ala Ala Ala Tyr Asn Asn Gly Gln
Glu Ile 35 40 45
Asn Gly Phe Lys Ala Gly Glu Thr Ile Tyr Asp Ile Asp Glu Asp Gly 50
55 60 Thr Ile Thr Lys Lys
Asp Ala Thr Ala Ala Asp Val Glu Ala Asp Asp 65 70
75 80 Phe Lys Gly Leu Gly Leu Lys Lys Val Val
Thr Asn Leu Thr Lys Thr 85 90
95 Val Asn Glu Asn Lys Gln Asn Val Asp Ala Lys Val Lys Ala Ala
Glu 100 105 110 Ser
Glu Ile Glu Lys Leu Thr Thr Lys Leu Ala Asp Thr Asp Ala Ala 115
120 125 Leu Ala Asp Thr Asp Ala
Ala Leu Asp Ala Thr Thr Asn Ala Leu Asn 130 135
140 Lys Leu Gly Glu Asn Ile Thr Thr Phe Ala Glu
Glu Thr Lys Thr Asn 145 150 155
160 Ile Val Lys Ile Asp Glu Lys Leu Glu Ala Val Ala Asp Thr Val Asp
165 170 175 Lys His
Ala Glu Ala Phe Asn Asp Ile Ala Asp Ser Leu Asp Glu Thr 180
185 190 Asn Thr Lys Ala Asp Glu Ala
Val Lys Thr Ala Asn Glu Ala Lys Gln 195 200
205 Thr Ala Glu Glu Thr Lys Gln Asn Val Asp Ala Lys
Val Lys Ala Ala 210 215 220
Glu Thr Ala Ala Gly Lys Ala Glu Ala Ala Ala Gly Thr Ala Asn Thr 225
230 235 240 Ala Ala Asp
Lys Ala Glu Ala Val Ala Ala Lys Val Thr Asp Ile Lys 245
250 255 Ala Asp Ile Ala Thr Asn Lys Asp
Asn Ile Ala Lys Lys Ala Asn Ser 260 265
270 Ala Asp Val Tyr Thr Arg Glu Glu Ser Asp Ser Lys Phe
Val Arg Ile 275 280 285
Asp Gly Leu Asn Ala Thr Thr Glu Lys Leu Asp Thr Arg Leu Ala Ser 290
295 300 Ala Glu Lys Ser
Ile Ala Asp His Asp Thr Arg Leu Asn Gly Leu Asp 305 310
315 320 Lys Thr Val Ser Asp Leu Arg Lys Glu
Thr Arg Gln Gly Leu Ala Glu 325 330
335 Gln Ala Ala Leu Ser Gly Leu Phe Gln Pro Tyr Asn Val Gly
Gly Ser 340 345 350
Gly Gly Gly Gly Thr Ser Ala Pro Asp Phe Asn Ala Gly Gly Thr Gly
355 360 365 Ile Gly Ser Asn
Ser Arg Ala Thr Thr Ala Lys Ser Ala Ala Val Ser 370
375 380 Tyr Ala Gly Ile Lys Asn Glu Met
Cys Lys Asp Arg Ser Met Leu Cys 385 390
395 400 Ala Gly Arg Asp Asp Val Ala Val Thr Asp Arg Asp
Ala Lys Ile Asn 405 410
415 Ala Pro Pro Pro Asn Leu His Thr Gly Asp Phe Pro Asn Pro Asn Asp
420 425 430 Ala Tyr Lys
Asn Leu Ile Asn Leu Lys Pro Ala Ile Glu Ala Gly Tyr 435
440 445 Thr Gly Arg Gly Val Glu Val Gly
Ile Val Asp Thr Gly Glu Ser Val 450 455
460 Gly Ser Ile Ser Phe Pro Glu Leu Tyr Gly Arg Lys Glu
His Gly Tyr 465 470 475
480 Asn Glu Asn Tyr Lys Asn Tyr Thr Ala Tyr Met Arg Lys Glu Ala Pro
485 490 495 Glu Asp Gly Gly
Gly Lys Asp Ile Glu Ala Ser Phe Asp Asp Glu Ala 500
505 510 Val Ile Glu Thr Glu Ala Lys Pro Thr
Asp Ile Arg His Val Lys Glu 515 520
525 Ile Gly His Ile Asp Leu Val Ser His Ile Ile Gly Gly Arg
Ser Val 530 535 540
Asp Gly Arg Pro Ala Gly Gly Ile Ala Pro Asp Ala Thr Leu His Ile 545
550 555 560 Met Asn Thr Asn Asp
Glu Thr Lys Asn Glu Met Met Val Ala Ala Ile 565
570 575 Arg Asn Ala Trp Val Lys Leu Gly Glu Arg
Gly Val Arg Ile Val Asn 580 585
590 Asn Ser Phe Gly Thr Thr Ser Arg Ala Gly Thr Ala Asp Leu Phe
Gln 595 600 605 Ile
Ala Asn Ser Glu Glu Gln Tyr Arg Gln Ala Leu Leu Asp Tyr Ser 610
615 620 Gly Gly Asp Lys Thr Asp
Glu Gly Ile Arg Leu Met Gln Gln Ser Asp 625 630
635 640 Tyr Gly Asn Leu Ser Tyr His Ile Arg Asn Lys
Asn Met Leu Phe Ile 645 650
655 Phe Ser Thr Gly Asn Asp Ala Gln Ala Gln Pro Asn Thr Tyr Ala Leu
660 665 670 Leu Pro
Phe Tyr Glu Lys Asp Ala Gln Lys Gly Ile Ile Thr Val Ala 675
680 685 Gly Val Asp Arg Ser Gly Glu
Lys Phe Lys Arg Glu Met Tyr Gly Glu 690 695
700 Pro Gly Thr Glu Pro Leu Glu Tyr Gly Ser Asn His
Cys Gly Ile Thr 705 710 715
720 Ala Met Trp Cys Leu Ser Ala Pro Tyr Glu Ala Ser Val Arg Phe Thr
725 730 735 Arg Thr Asn
Pro Ile Gln Ile Ala Gly Thr Ser Phe Ser Ala Pro Ile 740
745 750 Val Thr Gly Thr Ala Ala Leu Leu
Leu Gln Lys Tyr Pro Trp Met Ser 755 760
765 Asn Asp Asn Leu Arg Thr Thr Leu Leu Thr Thr Ala Gln
Asp Ile Gly 770 775 780
Ala Val Gly Val Asp Ser Lys Phe Gly Trp Gly Leu Leu Asp Ala Gly 785
790 795 800 Lys Ala Met Asn
Gly Pro Ala Ser Phe Pro Phe Gly Asp Phe Thr Ala 805
810 815 Asp Thr Lys Gly Thr Ser Asp Ile Ala
Tyr Ser Phe Arg Asn Asp Ile 820 825
830 Ser Gly Thr Gly Gly Leu Ile Lys Lys Gly Gly Ser Gln Leu
Gln Leu 835 840 845
His Gly Asn Asn Thr Tyr Thr Gly Lys Thr Ile Ile Glu Gly Gly Ser 850
855 860 Leu Val Leu Tyr Gly
Asn Asn Lys Ser Asp Met Arg Val Glu Thr Lys 865 870
875 880 Gly Ala Leu Ile Tyr Asn Gly Ala Ala Ser
Gly Gly Ser Leu Asn Ser 885 890
895 Asp Gly Ile Val Tyr Leu Ala Asp Thr Asp Gln Ser Gly Ala Asn
Glu 900 905 910 Thr
Val His Ile Lys Gly Ser Leu Gln Leu Asp Gly Lys Gly Thr Leu 915
920 925 Tyr Thr Arg Leu Gly Lys
Leu Leu Lys Val Asp Gly Thr Ala Ile Ile 930 935
940 Gly Gly Lys Leu Tyr Met Ser Ala Arg Gly Lys
Gly Ala Gly Tyr Leu 945 950 955
960 Asn Ser Thr Gly Arg Arg Val Pro Phe Leu Ser Ala Ala Lys Ile Gly
965 970 975 Gln Asp
Tyr Ser Phe Phe Thr Asn Ile Glu Thr Asp Gly Gly Leu Leu 980
985 990 Ala Ser Leu Asp Ser Val Glu
Lys Thr Ala Gly Ser Glu Gly Asp Thr 995 1000
1005 Leu Ser Tyr Tyr Val Arg Arg Gly Asn Ala Ala Arg
Thr Ala Ser Ala 1010 1015 1020
Ala Ala His Ser Ala Pro Ala Gly Leu Lys His Ala Val Glu Gln Gly
1025 1030 1035 1040Gly Ser
Asn Leu Glu Asn Leu Met Val Glu Leu Asp Ala Ser Glu Ser
1045 1050 1055 Ser Ala Thr Pro Glu Thr
Val Glu Thr Ala Ala Ala Asp Arg Thr Asp 1060
1065 1070 Met Pro Gly Ile Arg Pro Tyr Gly Ala Thr
Phe Arg Ala Ala Ala Ala 1075 1080
1085 Val Gln His Ala Asn Ala Ala Asp Gly Val Arg Ile Phe Asn
Ser Leu 1090 1095 1100
Ala Ala Thr Val Tyr Ala Asp Ser Thr Ala Ala His Ala Asp Met Gln 1105
1110 1115 1120Gly Arg Arg Leu Lys
Ala Val Ser Asp Gly Leu Asp His Asn Gly Thr 1125
1130 1135 Gly Leu Arg Val Ile Ala Gln Thr Gln Gln
Asp Gly Gly Thr Trp Glu 1140 1145
1150 Gln Gly Gly Val Glu Gly Lys Met Arg Gly Ser Thr Gln Thr Val
Gly 1155 1160 1165 Ile
Ala Ala Lys Thr Gly Glu Asn Thr Thr Ala Ala Ala Thr Leu Gly 1170
1175 1180 Met Gly Arg Ser Thr Trp
Ser Glu Asn Ser Ala Asn Ala Lys Thr Asp 1185 1190
1195 1200Ser Ile Ser Leu Phe Ala Gly Ile Arg His Asp
Ala Gly Asp Ile Gly 1205 1210
1215 Tyr Leu Lys Gly Leu Phe Ser Tyr Gly Arg Tyr Lys Asn Ser Ile Ser
1220 1225 1230 Arg Ser
Thr Gly Ala Asp Glu His Ala Glu Gly Ser Val Asn Gly Thr 1235
1240 1245 Leu Met Gln Leu Gly Ala Leu
Gly Gly Val Asn Val Pro Phe Ala Ala 1250 1255
1260 Thr Gly Asp Leu Thr Val Glu Gly Gly Leu Arg Tyr
Asp Leu Leu Lys 1265 1270 1275
1280Gln Asp Ala Phe Ala Glu Lys Gly Ser Ala Leu Gly Trp Ser Gly Asn
1285 1290 1295 Ser Leu Thr
Glu Gly Thr Leu Val Gly Leu Ala Gly Leu Lys Leu Ser 1300
1305 1310 Gln Pro Leu Ser Asp Lys Ala Val
Leu Phe Ala Thr Ala Gly Val Glu 1315 1320
1325 Arg Asp Leu Asn Gly Arg Asp Tyr Thr Val Thr Gly Gly
Phe Thr Gly 1330 1335 1340
Ala Thr Ala Ala Thr Gly Lys Thr Gly Ala Arg Asn Met Pro His Thr 1345
1350 1355 1360Arg Leu Val Ala
Gly Leu Gly Ala Asp Val Glu Phe Gly Asn Gly Trp 1365
1370 1375 Asn Gly Leu Ala Arg Tyr Ser Tyr Ala
Gly Ser Lys Gln Tyr Gly Asn 1380 1385
1390 His Ser Gly Arg Val Gly Val Gly Tyr Arg Phe
1395 1400 16433DNAArtificial SequenceSynthetic
construct 164cgcggatccg ctagcaaaac aaccgacaaa cgg
3316527DNAArtificial SequenceSynthetic construct 165cccgctcgag
ttaccagcgg tagccta
2716630DNAArtificial SequenceSynthetic construct 166ctagctagcg gacacactta
tttcggcatc 3016732DNAArtificial
SequenceSynthetic construct 167cccgctcgag ttaccagcgg tagcctaatt tg
3216810DNAArtificial SequenceSynthetic
construct 168cccgctcgag
1016933DNAArtificial SequenceSynthetic construct 169cgcggatccc
atatgaaaac cttcttcaaa acc
3317028DNAArtificial SequenceSynthetic construct 170cccgctcgag ttatttggct
gcgccttc 2817135DNAArtificial
SequenceSynthetic construct 171gcggcattaa tatgttgaga aaattgttga aatgg
3517234DNAArtificial SequenceSynthetic
construct 172gcggcctcga gttatttttt caaaatatat ttgc
3417333DNAArtificial SequenceSynthetic construct 173gcggccatat
gttacctaac cgtttcaaaa tgt
3317431DNAArtificial SequenceSynthetic construct 174gcggcctcga gttatttccg
aggttttcgg g 3117532DNAArtificial
SequenceSynthetic construct 175cgcggatccc atatgacacg cttcaaatat tc
3217631DNAArtificial SequenceSynthetic
construct 176cccgctcgag ttatttaaac cgataggtaa a
3117731DNAArtificial SequenceSynthetic construct 177cgcggatccc
atatgggcag ggaagaaccg c
3117828DNAArtificial SequenceSynthetic construct 178gcccaagctt atcgatggaa
tagccgcg 2817932DNAArtificial
SequenceSynthetic construct 179cgcggatccg ctagcaacgg tttggatgcc cg
3218030DNAArtificial SequenceSynthetic
construct 180cccgctcgag tttgtctaag ttcctgatat
3018126DNAArtificial SequenceSynthetic construct 181cccgctcgag
attcccacct gccatc
2618237DNAArtificial SequenceSynthetic construct 182cgcggatccg ctagcatgaa
tttgcctatt caaaaat 3718329DNAArtificial
SequenceSynthetic construct 183cccgctcgag ttaattccca cctgccatc
2918437DNAArtificial SequenceSynthetic
construct 184cgcggatccg ctagcatgaa tttgcctatt caaaaat
3718527DNAArtificial SequenceSynthetic construct 185cccgctcgag
ttggacgatg cccgcga
2718637DNAArtificial SequenceSynthetic construct 186cgcggatccg ctagcatgaa
tttgcctatt caaaaat 3718728DNAArtificial
SequenceSynthetic construct 187cccgctcgag ttattggacg atgcccgc
2818832DNAArtificial SequenceSynthetic
construct 188cgcggatccc atatgtatcg caaactgatt gc
3218928DNAArtificial SequenceSynthetic construct 189cccgctcgag
ctaatcgatg gaatagcc
2819032DNAArtificial SequenceSynthetic construct 190cgcggatccc atatgaaaca
gacagtcaaa tg 3219128DNAArtificial
SequenceSynthetic construct 191cccgctcgag tcaataaccc gccttcag
2819245DNAArtificial SequenceSynthetic
construct 192cgcggatccc atatgttacg tttgactgct ttagccgtat gcacc
4519340DNAArtificial SequenceSynthetic construct 193cccgctcgag
ttattttgcc gcgttaaaag cgtcggcaac
4019432DNAArtificial SequenceSynthetic construct 194cgcggatccc atatgaacaa
aatataccgc at 3219528DNAArtificial
SequenceSynthetic construct 195cccgctcgag ttaccactga taaccgac
2819634DNAArtificial SequenceSynthetic
construct 196cgcggatccc atatgaccga tgacgacgat ttat
3419728DNAArtificial SequenceSynthetic construct 197gcccaagctt
ccactgataa ccgacaga
2819832DNAArtificial SequenceSynthetic construct 198cgcggatccc atatgaacaa
aatataccgc at 3219928DNAArtificial
SequenceSynthetic construct 199gcccaagctt ttaccactga taaccgac
2820034DNAArtificial SequenceSynthetic
construct 200gggaattcca tatgggcatt tcccgcaaaa tatc
3420140DNAArtificial SequenceSynthetic construct 201cccgctcgag
ttatttactc ctataacgag gtctcttaac
4020236DNAArtificial SequenceSynthetic construct 202gggaattcca tatgtcagat
ttggcaaacg attctt 3620340DNAArtificial
SequenceSynthetic construct 203cccgctcgag ttatttactc ctataacgag
gtctcttaac 4020434DNAArtificial
SequenceSynthetic construct 204gggaattcca tatgggcatt tcccgcaaaa tatc
3420532DNAArtificial SequenceSynthetic
construct 205cccgctcgag ttacgtatca tatttcacgt gc
3220635DNAArtificial SequenceSynthetic construct 206gggaattcca
tatgcacgtg aaatatgata cgaag
3520737DNAArtificial SequenceSynthetic construct 207cccgctcgag tttactccta
taacgaggtc tcttaac 3720836DNAArtificial
SequenceSynthetic construct 208gggaattcca tatgtcagat ttggcaaacg attctt
3620929DNAArtificial SequenceSynthetic
construct 209cccgctcgag cgtatcatat ttcacgtgc
2921036DNAArtificial SequenceSynthetic construct 210gggaattcca
tatgtcagat ttggcaaacg attctt
3621137DNAArtificial SequenceSynthetic construct 211cccgctcgag tttactccta
taacgaggtc tcttaac 3721235DNAArtificial
SequenceSynthetic construct 212cgcggatccc atatgcaaaa tgcgttcaaa atccc
3521332DNAArtificial SequenceSynthetic
construct 213cgcggatccc atatgaacaa aatataccgc at
3221429DNAArtificial SequenceSynthetic construct 214cccgctcgag
tttgctttcg atagaacgg
2921534DNAArtificial SequenceSynthetic construct 215gcggccatat ggtcataaaa
tatacaaatt tgaa 3421634DNAArtificial
SequenceSynthetic construct 216gcggcctcga gttagcctga gacctttgca aatt
3421730DNAArtificial SequenceSynthetic
construct 217gcggccatat gaaacagaaa aaaaccgctg
3021832DNAArtificial SequenceSynthetic construct 218gcggcctcga
gttacggttt gacaccgttt tc
3221930DNAArtificial SequenceSynthetic construct 219cgcggatccc atatgaaaac
cctgctcctc 3022027DNAArtificial
SequenceSynthetic construct 220cccgctcgag ttatcctcct ttgcggc
2722130DNAArtificial SequenceSynthetic
construct 221gcggccatat ggcaaaaatg atgaaatggg
3022229DNAArtificial SequenceSynthetic construct 222gcggcctcga
gttatcggcg cggcgggcc
2922330DNAArtificial SequenceSynthetic construct 223gcggccatat gaaaaaatcc
tccctcatca 3022432DNAArtificial
SequenceSynthetic construct 224gcggcctcga gttatttgcc gccgtttttg gc
3222531DNAArtificial SequenceSynthetic
construct 225gcggccatat ggcccctgcc gacgcggtaa g
3122633DNAArtificial SequenceSynthetic construct 226gcggcctcga
gtttgccgcc gtttttggct ttc
3322730DNAArtificial SequenceSynthetic construct 227gcggccatat gaaacacata
ctccccctga 3022832DNAArtificial
SequenceSynthetic construct 228gcggcctcga gttattcgcc tacggttttt tg
3222930DNAArtificial SequenceSynthetic
construct 229gcggccatat gatttacatc gtactgtttc
3023032DNAArtificial SequenceSynthetic construct 230gcggcctcga
gttaggagaa caggcgcaat gc
3223132DNAArtificial SequenceSynthetic construct 231gcggccatat gtacaacatg
tatcaggaaa ac 3223231DNAArtificial
SequenceSynthetic construct 232gcggcctcga gggagaacag gcgcaatgcg g
3123329DNAArtificial SequenceSynthetic
construct 233cgcggatccg ctagctgcgg cacggcggg
2923428DNAArtificial SequenceSynthetic construct 234cccgctcgag
ataacggtat gccgccag
2823531DNAArtificial SequenceSynthetic construct 235cgcggatccc atatggaatc
aacactttca c 3123627DNAArtificial
SequenceSynthetic construct 236cccgctcgag ttacacgcgg ttgctgt
2723731DNAArtificial SequenceSynthetic
construct 237cgcggatccc atatgaacaa cagacatttt g
3123828DNAArtificial SequenceSynthetic construct 238cccgctcgag
ttacctgtcc ggtaaaag
2823933DNAArtificial SequenceSynthetic construct 239cgcggatccg ctagcaccgt
catcaaacag gaa 3324027DNAArtificial
SequenceSynthetic construct 240cccgctcgag tcaagattcg acgggga
2724131DNAArtificial SequenceSynthetic
construct 241cgcggatccc atatgtccgc aaacgaatac g
3124228DNAArtificial SequenceSynthetic construct 242cccgctcgag
tcagtgttct gccagttt
2824329DNAArtificial SequenceSynthetic construct 243cgcggatccc atatgccgtc
tgaaacacg 2924428DNAArtificial
SequenceSynthetic construct 244cccgctcgag ttagcggagc agtttttc
2824528DNAArtificial SequenceSynthetic
construct 245cgcggatccc atatgaccgc catcagcc
2824627DNAArtificial SequenceSynthetic construct 246cccgctcgag
ttaaagccgg gtaacgc
2724731DNAArtificial SequenceSynthetic construct 247gcggccatat ggaaacacag
ctttacatcg g 3124830DNAArtificial
SequenceSynthetic construct 248gcggcctcga gtcaataata atatcccgcg
3024930DNAArtificial SequenceSynthetic
construct 249gcggccatat gattaaaatc cgcaatatcc
3025036DNAArtificial SequenceSynthetic construct 250gcggcctcga
gttaaatctt ggtagattgg atttgg
3625130DNAArtificial SequenceSynthetic construct 251gcggccatat gactgacaac
gcactgctcc 3025231DNAArtificial
SequenceSynthetic construct 252gcggcctcga gtcagaccgc gttgtcgaaa c
3125332DNAArtificial SequenceSynthetic
construct 253cgcggatccc atatggcgtt aaaaacatca aa
3225427DNAArtificial SequenceSynthetic construct 254cccgctcgag
tcagcccttc atacagc
2725532DNAArtificial SequenceSynthetic construct 255gcggcattaa tggcacaaac
tacactcaaa cc 3225633DNAArtificial
SequenceSynthetic construct 256gcggcctcga gttaaaactt cacgttcacg ccg
3325734DNAArtificial SequenceSynthetic
construct 257gcggcattaa tgcatgaaac tgagcaatcg gtgg
3425838DNAArtificial SequenceSynthetic construct 258gcggcctcga
gaaacttcac gttcacgccg ccggtaaa
3825933DNAArtificial SequenceSynthetic construct 259cgcggatccc atatgggcaa
atccgaaaat acg 3326026DNAArtificial
SequenceSynthetic construct 260cccgctcgag ataatggcgg cggcgg
2626129DNAArtificial SequenceSynthetic
construct 261cgcggatccc atatgtttcc ccccgacaa
2926231DNAArtificial SequenceSynthetic construct 262cccgctcgag
tcattctgta aaaaaagtat g
3126332DNAArtificial SequenceSynthetic construct 263cgcggatccc atatgcttca
aagcgacagc ag 3226429DNAArtificial
SequenceSynthetic construct 264cccgctcgag ttcggatttt tgcgtactc
2926531DNAArtificial SequenceSynthetic
construct 265cgcggatccc atatggcaat ggcagaaaac g
3126627DNAArtificial SequenceSynthetic construct 266cccgctcgag
ctatacaatc cgtgccg
2726732DNAArtificial SequenceSynthetic construct 267cgcggatccc atatggattc
ttttttcaaa cc 3226827DNAArtificial
SequenceSynthetic construct 268cccgctcgag tcagttcaga aagcggg
2726932DNAArtificial SequenceSynthetic
construct 269cgcggatccc atatgaaacc tttgatttta gg
3227028DNAArtificial SequenceSynthetic construct 270cccgctcgag
ttatttgggc tgctcttc
2827130DNAArtificial SequenceSynthetic construct 271cgcggatccc atatggtaat
cgtctggttg 3027227DNAArtificial
SequenceSynthetic construct 272cccgctcgag ctacgacttg gttaccg
2727333DNAArtificial SequenceSynthetic
construct 273gcggccatat gagacgtaaa atgctaaagc tac
3327431DNAArtificial SequenceSynthetic construct 274gcggcctcga
gtcaaagtgt tctgtttgcg c
3127530DNAArtificial SequenceSynthetic construct 275gccgccatat gttgacttta
acccgaaaaa 3027634DNAArtificial
SequenceSynthetic construct 276gccgcctcga ggccggcggt caataccgcc cgaa
3427732DNAArtificial SequenceSynthetic
construct 277cgcggatccc atatggcgca atgcgatttg ac
3227827DNAArtificial SequenceSynthetic construct 278cccgctcgag
ttcggcggta aatgccg
2727928DNAArtificial SequenceSynthetic construct 279gcggccatat ggcggggccg
atttttgt 2828033DNAArtificial
SequenceSynthetic construct 280gcggcctcga gttatttgct ttcagtatta ttg
3328130DNAArtificial SequenceSynthetic
construct 281gcggccatat gaactttgct ttatccgtca
3028232DNAArtificial SequenceSynthetic construct 282gcggcctcga
gttaacggca gtatttgttt ac
3228331DNAArtificial SequenceSynthetic construct 283cgcggatccc atatgggttt
gcgcttcggg c 3128429DNAArtificial
SequenceSynthetic construct 284gcccaagctt ttttcctttg ccgtttccg
2928532DNAArtificial SequenceSynthetic
construct 285cgcggatccc atatggccga cctttccgaa aa
3228627DNAArtificial SequenceSynthetic construct 286cccgctcgag
gaagcgcgtt cccaagc
2728729DNAArtificial SequenceSynthetic construct 287cgcggatccc atatgcacga
cacccgtac 2928828DNAArtificial
SequenceSynthetic construct 288cccgctcgag ttagaagcgc gttcccaa
2828934DNAArtificial SequenceSynthetic
construct 289ctagctagct ttaaacgcag cgtaatcgca atgg
3429031DNAArtificial SequenceSynthetic construct 290cccgctcgag
tcaatcctgc tcttttttgc c
3129125DNAArtificial SequenceSynthetic construct 291ctagctagcg ggggcggcgg
tggcg 2529231DNAArtificial
SequenceSynthetic construct 292cccgctcgag tcaatcctgc tcttttttgc c
3129340DNAArtificial SequenceSynthetic
construct 293ctagctagcg ctcatcctcg ccgcctgcgg gggcggcggt
4029431DNAArtificial SequenceSynthetic construct 294cccgctcgag
tcaatcctgc tcttttttgc c
3129525DNAArtificial SequenceSynthetic construct 295cggggatccg ggggcggcgg
tggcg 2529631DNAArtificial
SequenceSynthetic construct 296cccgctcgag tcaatcctgc tcttttttgc c
3129725DNAArtificial SequenceSynthetic
construct 297ctagctagcg ggggcggcgg tggcg
2529828DNAArtificial SequenceSynthetic construct 298cccgctcgag
atcctgctct tttttgcc
2829928DNAArtificial SequenceSynthetic construct 299ctagctagct gcgggggcgg
cggtggcg 2830028DNAArtificial
SequenceSynthetic construct 300cccgctcgag atcctgctct tttttgcc
2830132DNAArtificial SequenceSynthetic
construct 301cgcggatccg ctagccccga tgttaaatcg gc
3230232DNAArtificial SequenceSynthetic construct 302cgcggatccg
ctagccaaga tatggcggca gt
3230332DNAArtificial SequenceSynthetic construct 303cgcggatccg ctagcgccga
atccgcaaat ca 3230432DNAArtificial
SequenceSynthetic construct 304cgcgctagcg gaagggttga tttggctaat gg
3230532DNAArtificial SequenceSynthetic
construct 305cgcgctagcg gaagggttga tttggctaat gg
3230629DNAArtificial SequenceSynthetic construct 306cgccatatgt
ttaaacgcag cgtaatcgc
2930734DNAArtificial SequenceSynthetic construct 307cccgctcgag aaaattgcta
ccgccattcg cagg 3430832DNAArtificial
SequenceSynthetic construct 308cgccatatgg gaagggttga tttggctaat gg
3230938DNAArtificial SequenceSynthetic
construct 309cccgctcgag cttgtcttta taaatgatga catatttg
3831040DNAArtificial SequenceSynthetic construct 310cccgctcgag
tttataaaag ataatatatt gattgattcc
4031131DNAArtificial SequenceSynthetic construct 311cgcgctagca tgccgctgat
tcccgtcaat c 3131225DNAArtificial
SequenceSynthetic construct 312ctagctagcg ggggcggcgg tggcg
2531331DNAArtificial SequenceSynthetic
construct 313cccgctcgag tcaatcctgc tcttttttgc c
3131432DNAArtificial SequenceSynthetic construct 314cgcggatccg
ctagccccga tgttaaatcg gc
3231528DNAArtificial SequenceSynthetic construct 315cccgctcgag atcctgctct
tttttgcc 2831632DNAArtificial
SequenceSynthetic construct 316cgcggatccg ctagccccga tgttaaatcg gc
3231731DNAArtificial SequenceSynthetic
construct 317cccgctcgag tcaatcctgc tcttttttgc c
3131887DNAArtificial SequenceSynthetic construct 318cgcggatccg
ctagctttga acgcagtgtg attgcaatgg cttgtatttt tgccctttca 60gcctgttcgc
ccgatgttaa atcggcg
8731931DNAArtificial SequenceSynthetic construct 319cccgctcgag tcaatcctgc
tcttttttgc c 3132090DNAArtificial
SequenceSynthetic construct 320cgcggatccg ctagcaaaac cttcttcaaa
accctttccg ccgccgcact cgcgctcatc 60ctcgccgcct gctcgcccga tgttaaatcg
9032131DNAArtificial SequenceSynthetic
construct 321cccgctcgag tcaatcctgc tcttttttgc c
3132233DNAArtificial SequenceSynthetic construct 322cgcggatccc
atatgaaaac caagttaatc aaa
3332330DNAArtificial SequenceSynthetic construct 323cccgctcgag ttattgattt
ttgcggatga 3032434DNAArtificial
SequenceSynthetic construct 324cgcggatccc atatgttaaa tcgggtattt tatc
3432528DNAArtificial SequenceSynthetic
construct 325cccgctcgag ttaatccgcc attccctg
2832630DNAArtificial SequenceSynthetic construct 326gcggccatat
gaaattacaa caattggctg
3032731DNAArtificial SequenceSynthetic construct 327gcggcctcga gttaccttac
gtttttcaaa g 3132829DNAArtificial
SequenceSynthetic construct 328cgcggatccc atatgcaagc acggctgct
2932929DNAArtificial SequenceSynthetic
construct 329cccgctcgag tcaaggttgt ccttgtcta
2933030DNAArtificial SequenceSynthetic construct 330cgcggatccc
atatgatgaa accgcacaac
3033128DNAArtificial SequenceSynthetic construct 331cccgctcgag tcagttgctc
aacacgtc 2833232DNAArtificial
SequenceSynthetic construct 332cgcggatccc atatggtaga cgcgcttaag ca
3233325DNAArtificial SequenceSynthetic
construct 333cccgctcgag agctgcatgg cggcg
2533430DNAArtificial SequenceSynthetic construct 334cgcggatccc
atatggcacg gtcgttatac
3033526DNAArtificial SequenceSynthetic construct 335cccgctcgag ctaccgcgca
ttcctg 2633631DNAArtificial
SequenceSynthetic construct 336gcggccatat ggaatttttc attatcttgt t
3133731DNAArtificial SequenceSynthetic
construct 337gcggcctcga gttatttggc ggttttgctg c
3133832DNAArtificial SequenceSynthetic construct 338gcggccatat
gaagtatgtc cggttatttt tc
3233930DNAArtificial SequenceSynthetic construct 339gcggcctcga gttatcggct
tgtgcaacgg 3034032DNAArtificial
SequenceSynthetic construct 340cgcggatccg ctagctccgg cagcaaaacc ga
3234128DNAArtificial SequenceSynthetic
construct 341gcccaagctt acgcagttcg gaatggag
2834235DNAArtificial SequenceSynthetic construct 342gccgccatat
gttgaatatt aaactgaaaa ccttg
3534332DNAArtificial SequenceSynthetic construct 343gccgcctcga gttatttctg
atgccttttc cc 3234429DNAArtificial
SequenceSynthetic construct 344gccgccatat ggacaataag accaaactg
2934530DNAArtificial SequenceSynthetic
construct 345gccgcctcga gttaacggtg cggacgtttc
3034632DNAArtificial SequenceSynthetic construct 346cgcggatccc
atatgaacaa actgtttctt ac
3234728DNAArtificial SequenceSynthetic construct 347cccgctcgag tcattccgcc
ttcagaaa 2834845DNAArtificial
SequenceSynthetic construct 348cgcggatccc atatgcaagg tatcgttgcc
gacaaatccg cacct 4534942DNAArtificial
SequenceSynthetic construct 349cccgctcgag agctaattgt gcttggtttg
cagataggag tt 4235052DNAArtificial
SequenceSynthetic construct 350cgcggatccc atatgaaccg caccctgtac
aaagttgtat ttaacaaaca tc 5235145DNAArtificial
SequenceSynthetic construct 351cccgctcgag ttaagctaat tgtgcttggt
ttgcagatag gagtt 4535246DNAArtificial
SequenceSynthetic construct 352cgcggatccc atatgacggg agaaaatcat
gcggtttcac ttcatg 4635342DNAArtificial
SequenceSynthetic construct 353cccgctcgag agctaattgt gcttggtttg
cagataggag tt 4235451DNAArtificial
SequenceSynthetic construct 354cgcggatccc atatggtttc agacggccta
tacaaccaac atggtgaaat t 5135541DNAArtificial
SequenceSynthetic construct 355cccgctcgag gcggtaactg ccgcttgcac
tgaatccgta a 4135646DNAArtificial
SequenceSynthetic construct 356cgcggatccc atatgacggg agaaaatcat
gcggtttcac ttcatg 4635741DNAArtificial
SequenceSynthetic construct 357cccgctcgag gcggtaactg ccgcttgcac
tgaatccgta a 4135849DNAArtificial
SequenceSynthetic construct 358cgcggatccc atatgcaaag caaagtcaaa
gcagaccatg cctccgtaa 4935956DNAArtificial
SequenceSynthetic construct 359cccgctcgag tcttttcctt tcaattataa
ctttagtagg ttcaattttg gtcccc 5636051DNAArtificial
SequenceSynthetic construct 360cgcggatccc atatggtttc agacggccta
tacaaccaac atggtgaaat t 5136156DNAArtificial
SequenceSynthetic construct 361cccgctcgag tcttttcctt tcaattataa
ctttagtagg ttcaattttg gtcccc 5636227DNAArtificial
SequenceSynthetic construct 362gcggccatat gacccgtttg acccgcg
2736331DNAArtificial SequenceSynthetic
construct 363gcggcctcga gtcagcgggc gttcatttct t
3136433DNAArtificial SequenceSynthetic construct 364cgcggatccc
atatgaacac cattttcaaa atc
3336532DNAArtificial SequenceSynthetic construct 365cccgctcgag ttaatttact
tttttgatgt cg 3236628DNAArtificial
SequenceSynthetic construct 366gcggccatat ggattcgccc aaggtcgg
2836731DNAArtificial SequenceSynthetic
construct 367gcggcctcga gctacacttc ccccgaagtg g
3136831DNAArtificial SequenceSynthetic construct 368cgcggatccc
atatgatagt tgaccaaagc c
3136930DNAArtificial SequenceSynthetic construct 369cccgctcgag ttatttttcc
gatttttcgg 3037028DNAArtificial
SequenceSynthetic construct 370gcggccatat gcttgaactg aacggact
2837130DNAArtificial SequenceSynthetic
construct 371gcggcctcga gtcagcggaa gcggacgatt
3037234DNAArtificial SequenceSynthetic construct 372cgcggatccc
atatgtccaa actcaaaacc atcg
3437329DNAArtificial SequenceSynthetic construct 373cccgctcgag gcttccaatc
agtttgacc 2937432DNAArtificial
SequenceSynthetic construct 374gcggccatat gagcgcaatc gttgatattt tc
3237534DNAArtificial SequenceSynthetic
construct 375gcggcctcga gttatttgcc cagttggtag aatg
3437632DNAArtificial SequenceSynthetic construct 376gcggccatat
ggtgatacat ccgcactact tc
3237732DNAArtificial SequenceSynthetic construct 377gcggcctcga gtcaaaatcg
agttttacac ca 3237831DNAArtificial
SequenceSynthetic construct 378gcggccatat gaccatctat ttcaaaaacg g
3137934DNAArtificial SequenceSynthetic
construct 379gcggcctcga gtcagccgat gtttagcgtc catt
3438031DNAArtificial SequenceSynthetic construct 380cgcggatccc
atatgagcag cggagggggt g
3138127DNAArtificial SequenceSynthetic construct 381cccgctcgag ttgcttggcg
gcaaggc 2738231DNAArtificial
SequenceSynthetic construct 382cgcggatccc atatggtcgc cgccgacatc g
3138327DNAArtificial SequenceSynthetic
construct 383cccgctcgag ttgcttggcg gcaaggc
2738431DNAArtificial SequenceSynthetic construct 384cgcggatccc
atatgggcgg ttcggaaggc g
3138533DNAArtificial SequenceSynthetic construct 385cccgctcgag ttgaacactg
atgtcttttc cga 3338635DNAArtificial
SequenceSynthetic construct 386cgcggatccg ctagcaaact gtcgttggtg ttaac
3538726DNAArtificial SequenceSynthetic
construct 387cccgctcgag ttgacccgct ccacgg
2638831DNAArtificial SequenceSynthetic construct 388gccgccatat
ggcggacttg gcgcaagacc c
3138939DNAArtificial SequenceSynthetic construct 389gccgcctcga gatctcctaa
acctgtttta acaatgccg 3939031DNAArtificial
SequenceSynthetic construct 390gccgccatat ggcggacttg gcgcaagacc c
3139131DNAArtificial SequenceSynthetic
construct 391gcggcctcga gctccatgct gttgccccag c
3139231DNAArtificial SequenceSynthetic construct 392gccgccatat
ggcggacttg gcgcaagacc c
3139331DNAArtificial SequenceSynthetic construct 393gcggcctcga gaaaatcccc
gctaaccgca g 3139431DNAArtificial
SequenceSynthetic construct 394cgcggatccc atatgagcag cggagggggt g
3139527DNAArtificial SequenceSynthetic
construct 395cccgctcgag ttgcttggcg gcaaggc
2739631DNAArtificial SequenceSynthetic construct 396cgcggatccc
atatggtcgc cgccgacatc g
3139727DNAArtificial SequenceSynthetic construct 397cccgctcgag ttgcttggcg
gcaaggc 2739833DNAArtificial
SequenceSynthetic construct 398cgcggatccc atatggacgg tgttgtgcct gtt
3339929DNAArtificial SequenceSynthetic
construct 399cccgctcgag cttacggatc aaattgacg
2940033DNAArtificial SequenceSynthetic construct 400cgcggatccc
atatgggcag ccaatctgaa gaa
3340128DNAArtificial SequenceSynthetic construct 401cccgctcgag ctcagctttt
gccgtcaa 2840233DNAArtificial
SequenceSynthetic construct 402cgcggatccg ctagctactc atccattgtc cgc
3340329DNAArtificial SequenceSynthetic
construct 403cccgctcgag ccagttgtag cctattttg
2940432DNAArtificial SequenceSynthetic construct 404cgcggatccg
ctagcatgcg cttcacacac ac
3240530DNAArtificial SequenceSynthetic construct 405cccgctcgag ttaccagttg
tagcctattt 3040632DNAArtificial
SequenceSynthetic construct 406gccgccatat ggcacaaacg gaaggtttgg aa
3240736DNAArtificial SequenceSynthetic
construct 407gccgcctcga gaaaactgta acgcaggttt gccgtc
3640832DNAArtificial SequenceSynthetic construct 408gcggccatat
ggaagaaaca ccgcgcgaac cg
3240932DNAArtificial SequenceSynthetic construct 409gcggcctcga ggaacgtttt
attaaactcg ac 3241032DNAArtificial
SequenceSynthetic construct 410gcggccatat gagaaaaccg accgataccc ta
3241133DNAArtificial SequenceSynthetic
construct 411gcggcctcga gtcaacgcca ctgccagcgg ttg
3341248DNAArtificial SequenceSynthetic construct 412cgcggatccc
atatgaagaa gaacatattg gaattttggg tcggactg
4841338DNAArtificial SequenceSynthetic construct 413cccgctcgag ttattcggcg
gctttttccg cattgccg 38414103DNAArtificial
SequenceSynthetic construct 414gggaattcca tatgaaaaag acagctatcg
cgattgcagt ggcactggct ggtttcgcta 60ccgtagcgca ggccgctagc gctttccgcg
tggccggcgg tgc 10341538DNAArtificial
SequenceSynthetic construct 415cccgctcgag ttattcggcg gctttttccg cattgccg
3841632DNAArtificial SequenceSynthetic
construct 416catgccatgg ctttccgcgt ggccggcggt gc
3241738DNAArtificial SequenceSynthetic construct 417cccgctcgag
ttattcggcg gctttttccg cattgccg
3841831DNAArtificial SequenceSynthetic construct 418cgcggatccc atatgtttgc
cgaaacccgc c 3141928DNAArtificial
SequenceSynthetic construct 419cccgctcgag aggttgtgtt ccaggttg
2842031DNAArtificial SequenceSynthetic
construct 420cgcggatccc atatgaaaaa aaccgcctat g
3142128DNAArtificial SequenceSynthetic construct 421cccgctcgag
ttaaggttgt gttccagg
2842233DNAArtificial SequenceSynthetic construct 422cgcggatccc atatgaaaaa
atacctattc cgc 3342327DNAArtificial
SequenceSynthetic construct 423cccgctcgag ttacgggcgg tattcgg
2742434DNAArtificial SequenceSynthetic
construct 424cgcggatccc atatgcaaag caagagcatc caaa
3442527DNAArtificial SequenceSynthetic construct 425cccgctcgag
ttacgggcgg tattcgg
2742686DNAArtificial SequenceSynthetic construct 426gggaattcca tatgaaaacc
ttcttcaaaa ccctttccgc cgccgcgcta gcgctcatcc 60tcgccgcctg ccaaagcaag
agcatc 8642738DNAArtificial
SequenceSynthetic construct 427cccgctcgag ttacgggcgg tattcgggct tcataccg
3842833DNAArtificial SequenceSynthetic
construct 428cgcggatccg tcgactgtgg gggcggcggt ggc
3342931DNAArtificial SequenceSynthetic construct 429cccgctcgag
tcaatcctgc tcttttttgc c
3143030DNAArtificial SequenceSynthetic construct 430gcggccatat gaagaaaaca
ttgacactgc 3043132DNAArtificial
SequenceSynthetic construct 431gcggcctcga gttaatggtg cgaatgaccg at
3243246DNAArtificial SequenceSynthetic
construct 432ggggacaagt ttgtacaaaa aagcaggctt gcggcaagga tgccgg
4643347DNAArtificial SequenceSynthetic construct 433ggggaccact
ttgtacaaga aagctgggtc taaagcaaca atgccgg
4743430DNAArtificial SequenceSynthetic construct 434cgcggatccc atatgaaaca
caccgtatcc 3043526DNAArtificial
SequenceSynthetic construct 435cccgctcgag ttatctcgtg cgcgcc
2643630DNAArtificial SequenceSynthetic
construct 436cgcggatccc atatgagccc cgcgccgatt
3043728DNAArtificial SequenceSynthetic construct 437cccgctcgag
tttttgtgcg gtcaggcg
2843862DNAArtificial SequenceSynthetic construct 438ggggacaagt ttgtacaaaa
aagcaggctt gttcgtttgg gggatttaaa ccaaaccaaa 60tc
6243930DNAArtificial
SequenceSynthetic construct 439cgcggatccc atatggcgga tgcgcccgcg
3044026DNAArtificial SequenceSynthetic
construct 440cccgctcgag aaaccgccaa tccgcc
2644161DNAArtificial SequenceSynthetic construct 441ggggaccact
ttgtacaaga aagctgggtt cattttgttt ttccttcttc tcgaggccat 60t
6144230DNAArtificial SequenceSynthetic construct 442cgcggatccc atatgaaacc
caaaccgcac 3044327DNAArtificial
SequenceSynthetic construct 443cccgctcgag tcagcgttgg acgtagt
2744433DNAArtificial SequenceSynthetic
construct 444gggaattcca tatgaaaaaa atcatcttcg ccg
3344531DNAArtificial SequenceSynthetic construct 445cccgctcgag
ttattgtttg gctgcctcga t
3144633DNAArtificial SequenceSynthetic construct 446gggaattcca tatggccacc
tacaaagtgg acg 3344730DNAArtificial
SequenceSynthetic construct 447cggggatcct tgtttggctg cctcgatttg
3044834DNAArtificial SequenceSynthetic
construct 448cgcggatccc atatgcaaga acaatcgcag aaag
3444930DNAArtificial SequenceSynthetic construct 449cccgctcgag
ttttttcggc aaattggctt
3045045DNAArtificial SequenceSynthetic construct 450ggggacaagt ttgtacaaaa
aagcaggctg ccgatgccgt tgcgg 4545147DNAArtificial
SequenceSynthetic construct 451ggggaccact ttgtacaaga aagctgggtt
cagggtcgtt tgttgcg 4745230DNAArtificial
SequenceSynthetic construct 452cgcggatccc atatgaaaca ctttccatcc
3045328DNAArtificial SequenceSynthetic
construct 453cccgctcgag ttaccactcg taattgac
2845430DNAArtificial SequenceSynthetic construct 454cgcggatccc
atatggccac aagcgacgac
3045528DNAArtificial SequenceSynthetic construct 455cccgctcgag ttaccactcg
taattgac 2845628DNAArtificial
SequenceSynthetic construct 456cgcggatccc atatggccac aaacgacg
2845728DNAArtificial SequenceSynthetic
construct 457cccgctcgag acccacgttg taaggttg
2845832DNAArtificial SequenceSynthetic construct 458cgcggatccc
atatggccac aagcgacgac ga
3245928DNAArtificial SequenceSynthetic construct 459cccgctcgag acccacgttg
taaggttg 2846033DNAArtificial
SequenceSynthetic construct 460cgcggatccc atatgatgaa acactttcca tcc
3346129DNAArtificial SequenceSynthetic
construct 461cccgctcgag ttaacccacg ttgtaaggt
2946233DNAArtificial SequenceSynthetic construct 462cgcggatccc
atatgatgaa acactttcca tcc
3346329DNAArtificial SequenceSynthetic construct 463cccgctcgag ttaacccacg
ttgtaaggt 2946428DNAArtificial
SequenceSynthetic construct 464cgcggatccc atatggccac aaacgacg
2846529DNAArtificial SequenceSynthetic
construct 465cccgctcgag gtctgacact gttttatcc
2946633DNAArtificial SequenceSynthetic construct 466cgcggatccc
atatgatgaa acactttcca tcc
3346729DNAArtificial SequenceSynthetic construct 467cccgctcgag ttatgctttg
gcggcaaag 2946830DNAArtificial
SequenceSynthetic construct 468cgcggatccc atatggccac aaacgacgac
3046927DNAArtificial SequenceSynthetic
construct 469cgcggatccc cactcgtaat tgacgcc
2747030DNAArtificial SequenceSynthetic construct 470cgcggatccc
atatggccac aagcgacgac
3047127DNAArtificial SequenceSynthetic construct 471cgcggatccc cactcgtaat
tgacgcc 2747230DNAArtificial
SequenceSynthetic construct 472cgcggatccc atatggccac aaacgacgac
3047327DNAArtificial SequenceSynthetic
construct 473cgcggatcca cccacgttgt aaggttg
2747433DNAArtificial SequenceSynthetic construct 474cgcggatccc
atatgatgaa acactttcca tcc
3347527DNAArtificial SequenceSynthetic construct 475cgcggatcca cccacgttgt
aaggttg 2747625DNAArtificial
SequenceSynthetic construct 476cgcggatccg gagggggtgg tgtcg
2547727DNAArtificial SequenceSynthetic
construct 477cccgctcgag ttgcttggcg gcaaggc
2747825DNAArtificial SequenceSynthetic construct 478cgcggatccg
gcggaggcgg cactt
2547926DNAArtificial SequenceSynthetic construct 479cccgctcgag gaaccggtag
cctacg 2648041DNAArtificial
SequenceSynthetic construct 480cgcggatccg gtggtggtgg ttcagatttg
gcaaacgatt c 4148129DNAArtificial
SequenceSynthetic construct 481cccgctcgag cgtatcatat ttcacgtgc
2948225DNAArtificial SequenceSynthetic
construct 482cgcggatccg gagggggtgg tgtcg
2548328DNAArtificial SequenceSynthetic construct 483cccgctcgag
ttattgcttg gcggcaag
2848425DNAArtificial SequenceSynthetic construct 484cgcggatccg gcggaggcgg
cactt 2548528DNAArtificial
SequenceSynthetic construct 485cccgctcgag tcagaaccgg tagcctac
2848641DNAArtificial SequenceSynthetic
construct 486cgcggatccg gtggtggtgg ttcagatttg gcaaacgatt c
4148732DNAArtificial SequenceSynthetic construct 487cccgctcgag
ttacgtatca tatttcacgt gc
3248831DNAArtificial SequenceSynthetic construct 488cgcggatccc atatggccac
aagcgacgac g 3148928DNAArtificial
SequenceSynthetic construct 489cccgctcgag ccactcgtaa ttgacgcc
2849030DNAArtificial SequenceSynthetic
construct 490cgcggatccc atatggccac aaacgacgac
3049128DNAArtificial SequenceSynthetic construct 491cccgctcgag
tgctttggcg gcaaagtt
2849230DNAArtificial SequenceSynthetic construct 492cgcggatccc atatggccac
aaacgacgac 3049337DNAArtificial
SequenceSynthetic construct 493cccgctcgag tttagcaata ttatctttgt tcgtagc
3749432DNAArtificial SequenceSynthetic
construct 494cgcggatccc atatgaaagc aaaccgtgcc ga
3249528DNAArtificial SequenceSynthetic construct 495cccgctcgag
ccactcgtaa ttgacgcc
2849661DNAArtificial SequenceSynthetic construct 496ggggacaagt ttgtacaaaa
aagcaggctg cagccacaaa cgacgacgat gttaaaaaag 60c
6149761DNAArtificial
SequenceSynthetic construct 497ggggaccact ttgtacaaga aagctgggtt
taccactcgt aattgacgcc gacatggtag 60g
6149831DNAArtificial SequenceSynthetic
construct 498gcggccatat ggcagcaaaa gacgtacagt t
3149933DNAArtificial SequenceSynthetic construct 499gcggcctcga
gttacatcat gccgcccata cca
3350031DNAArtificial SequenceSynthetic construct 500cgcggatccg ctagcttagg
cggcggcgga g 3150126DNAArtificial
SequenceSynthetic construct 501cccgctcgag gaaccggtag cctacg
2650229DNAArtificial SequenceSynthetic
construct 502cccctagcta gcacttctgc gcccgactt
2950326DNAArtificial SequenceSynthetic construct 503cccgctcgag
gaaccggtag cctacg
2650431DNAArtificial SequenceSynthetic construct 504cgcggatccg ctagcttagg
cggcggcgga g 3150526DNAArtificial
SequenceSynthetic construct 505cccgctcgag gaaccggtag cctacg
2650632DNAArtificial SequenceSynthetic
construct 506cgcggatccg ctagcacttc tgcgcccgac tt
3250726DNAArtificial SequenceSynthetic construct 507cccgctcgag
gaaccggtag cctacg
2650850DNAArtificial SequenceSynthetic construct 508cgcggatccg ctagccgaac
gaccccaacc ttccctacaa aaactttcaa 5050935DNAArtificial
SequenceSynthetic construct 509cccgctcgag tcagaaccga cgtgccaagc cgttc
3551032DNAArtificial SequenceSynthetic
construct 510gccgccatat gcccccactg gaagaacgga cg
3251135DNAArtificial SequenceSynthetic construct 511gccgcctcga
gtaataaacc ttctatgggc agcag
3551231DNAArtificial SequenceSynthetic construct 512cgcggatccc atatgtccgt
ccacgcatcc g 3151331DNAArtificial
SequenceSynthetic construct 513cccgctcgag tttgaatttg taggtgtatt g
3151429DNAArtificial SequenceSynthetic
construct 514cgcggatccc atatgacccc ttccgcact
2951532DNAArtificial SequenceSynthetic construct 515cccgctcgag
ttatttgaat ttgtaggtgt at
3251633DNAArtificial SequenceSynthetic construct 516cgcggatccc atatgaaaac
caattcagaa gaa 3351728DNAArtificial
SequenceSynthetic construct 517cccgctcgag tccacagaga ttgtttcc
2851817DNAArtificial SequenceSynthetic
construct 518gatgcccgaa gggcggg
1751929DNAArtificial SequenceSynthetic construct 519gcccaagctt
tcagaagaag acttcacgc
2952036DNAArtificial SequenceSynthetic construct 520cgcggatccc atatgcaaac
ccataaatac gctatt 3652129DNAArtificial
SequenceSynthetic construct 521gcccaagctt gaagaagact tcacgccag
2952235DNAArtificial SequenceSynthetic
construct 522cgcggatccc atatggtctt tttcgacaat accga
3552310DNAArtificial SequenceSynthetic construct 523gcccaagctt
1052436DNAArtificial SequenceSynthetic construct 524cgcggatccc atatgaataa
aactttaaaa aggcgg 3652529DNAArtificial
SequenceSynthetic construct 525gcccaagctt tcagaagaag acttcacgc
2952635DNAArtificial SequenceSynthetic
construct 526cgcgaatccc atatgttcga tcttgattct gtcga
3552728DNAArtificial SequenceSynthetic construct 527cccgctcgag
tcgcacaggc tgttggcg
2852832DNAArtificial SequenceSynthetic construct 528cgcgaatccc atatgttggg
cggaggcggc ag 3252928DNAArtificial
SequenceSynthetic construct 529cccgctcgag tcgcacaggc tgttggcg
2853032DNAArtificial SequenceSynthetic
construct 530cgcgaatccc atatgttggg cggaggcggc ag
3253128DNAArtificial SequenceSynthetic construct 531cccgctcgag
tcgcacaggc tgttggcg
2853233DNAArtificial SequenceSynthetic construct 532cgcggatccc atatggcaaa
tttggaggtg cgc 3353327DNAArtificial
SequenceSynthetic construct 533cccgctcgag ttcggagcgg ttgaagc
2753434DNAArtificial SequenceSynthetic
construct 534cgcggatccc atatgcaacg tcgtattata accc
3453529DNAArtificial SequenceSynthetic construct 535cccgctcgag
ttattcggag cggttgaag
2953642DNAArtificial SequenceSynthetic construct 536cgcggatccc atatgggcat
caaagtcgcc atcaacggct ac 4253735DNAArtificial
SequenceSynthetic construct 537cccgctcgag tttgagcggg cgcacttcaa gtccg
3553833DNAArtificial SequenceSynthetic
construct 538cgcggatccc atatgggcgg cagcgaaaaa aac
3353928DNAArtificial SequenceSynthetic construct 539cccgctcgag
gttggtgccg actttgat
2854031DNAArtificial SequenceSynthetic construct 540cgcggatccc atatgggcgg
cggaagcgat a 3154127DNAArtificial
SequenceSynthetic construct 541cccgctcgag tttgcccgct ttgagcc
2754233DNAArtificial SequenceSynthetic
construct 542cgcggatccc atatgggcaa atccgaaaat acg
3354327DNAArtificial SequenceSynthetic construct 543cccgctcgag
catcccgtac tgtttcg
2754462DNAArtificial SequenceSynthetic construct 544ggggacaagt ttgtacaaaa
aagcaggctc cgacattacc gtgtacaacg gccaacaaag 60aa
6254561DNAArtificial
SequenceSynthetic construct 545ggggaccact ttgtacaaga aagctgggtc
ttatttcata ccggcttgct caagcagccg 60g
6154661DNAArtificial SequenceSynthetic
construct 546ggggacaagt ttgtacaaaa aagcaggctg atacggtgtt ttcctgtaaa
acggacaaca 60a
6154760DNAArtificial SequenceSynthetic construct
547ggggaccact ttgtacaaga aagctgggtc taggaaaaat cgtcatcgtt gaaattcgcc
6054847DNAArtificial SequenceSynthetic construct 548ggggacaagt ttgtacaaaa
aagcaggcta tgcaccccat cgaaacc 4754947DNAArtificial
SequenceSynthetic construct 549ggggaccact ttgtacaaga aagctgggtc
tagtcttgca gtgcctc 4755041DNAArtificial
SequenceSynthetic construct 550cgcggatccc atatgggaaa tttcttatat
agaggcatta g 4155140DNAArtificial
SequenceSynthetic construct 551cccgctcgag gttaatttct atcaactctt
tagcaataat 4055231DNAArtificial
SequenceSynthetic construct 552cgcggatccc atatggcctg ccaagacgac a
3155326DNAArtificial SequenceSynthetic
construct 553cccgctcgag ccgcctcctg ccgaaa
2655434DNAArtificial SequenceSynthetic construct 554cgcggatccc
atatggcaga gatctgtttg ataa
3455527DNAArtificial SequenceSynthetic construct 555cccgctcgag cggttttccg
cccaatg 2755630DNAArtificial
SequenceSynthetic construct 556cgcggatccc atatgcagcc ggatacggtc
3055730DNAArtificial SequenceSynthetic
construct 557cccgctcgag aatcacttcc aacacaaaat
3055833DNAArtificial SequenceSynthetic construct 558cgcggatccc
atatgtggtt gctgatgaag ggc
3355928DNAArtificial SequenceSynthetic construct 559cccgctcgag gactgcttca
tcttctgc 2856034DNAArtificial
SequenceSynthetic construct 560cgcggatccc atatggaact gatgactgtt ttgc
3456129DNAArtificial SequenceSynthetic
construct 561cccgctcgag tcagactgct tcatcttct
2956245DNAArtificial SequenceSynthetic construct 562cgcggatccc
atatgagcat taaagtagcg attaacggtt tcggc
4556340DNAArtificial SequenceSynthetic construct 563cccgctcgag gattttgcct
gcgaagtatt ccaaagtgcg 4056432DNAArtificial
SequenceSynthetic construct 564cgcggatccg ctagccccga tgttaaatcg gc
3256529DNAArtificial SequenceSynthetic
construct 565cggggatcca tcctgctctt ttttgccgg
2956642DNAArtificial SequenceSynthetic construct 566cgcggatccg
gtggtggtgg tcaaagcaag agcatccaaa cc
4256730DNAArtificial SequenceSynthetic construct 567cccaagcttt tcgggcggta
ttcgggcttc 3056839DNAArtificial
SequenceSynthetic construct 568cgcggatccg gtggtggtgg tgccacctac aaagtggac
3956928DNAArtificial SequenceSynthetic
construct 569gcccaagctt ttgtttggct gcctcgat
2857034DNAArtificial SequenceSynthetic construct 570cgcggatccg
gtggtggtgg tacaagcgac gacg
3457128DNAArtificial SequenceSynthetic construct 571gcccaagctt ccactcgtaa
ttgacgcc 2857241DNAArtificial
SequenceSynthetic construct 572cgcggatccg gtggtggtgg ttcagatttg
gcaaacgatt c 4157328DNAArtificial
SequenceSynthetic construct 573cccaagcttc gtatcatatt tcacgtgc
2857444DNAArtificial SequenceSynthetic
construct 574cccaagcttg gtggtggtgg tggttcagat ttggcaaacg attc
4457529DNAArtificial SequenceSynthetic construct 575cccgctcgag
cgtatcatat ttcacgtgc
2957645DNAArtificial SequenceSynthetic construct 576cccaagcttg gtggtggtgg
tggtcaaagc aagagcatcc aaacc 4557728DNAArtificial
SequenceSynthetic construct 577cccgctcgag cgggcggtat tcgggctt
2857832DNAArtificial SequenceSynthetic
construct 578cgcggatccg ctagccccga tgttaaatcg gc
3257929DNAArtificial SequenceSynthetic construct 579cggggatcca
tcctgctctt ttttgccgg
2958036DNAArtificial SequenceSynthetic construct 580cgcggatccg ctagcggaca
cacttatttc ggcatc 3658130DNAArtificial
SequenceSynthetic construct 581cgcggatccc cagcggtagc ctaatttgat
3058241DNAArtificial SequenceSynthetic
construct 582cgcggatccg gtggtggtgg ttcagatttg gcaaacgatt c
4158328DNAArtificial SequenceSynthetic construct 583cccaagcttc
gtatcatatt tcacgtgc
2858436DNAArtificial SequenceSynthetic construct 584gcggcgtcga cggtggcgga
ggcactggat cctcag 3658535DNAArtificial
SequenceSynthetic construct 585ggaggcactg gatcctcaga tttggcaaac gattc
3558629DNAArtificial SequenceSynthetic
construct 586cccgctcgag cgtatcatat ttcacgtgc
2958733DNAArtificial SequenceSynthetic construct 587ggaattccat
atgtcagatt tggcaaacga ttc
3358828DNAArtificial SequenceSynthetic construct 588cgcggatccc gtatcatatt
tcacgtgc 2858925DNAArtificial
SequenceSynthetic construct 589cggggatccg ggggcggcgg tggcg
2559030DNAArtificial SequenceSynthetic
construct 590cccaagctta tcctgctctt ttttgccggc
3059142DNAArtificial SequenceSynthetic construct 591cgcggatccg
gtggtggtgg tcaaagcaag agcatccaaa cc
4259228DNAArtificial SequenceSynthetic construct 592cccaagcttc gggcggtatt
cgggcttc 2859326DNAArtificial
SequenceSynthetic construct 593ccccaagctt gggggcggcg gtggcg
2659431DNAArtificial SequenceSynthetic
construct 594cccgctcgag atcctgctct tttttgccgg c
3159545DNAArtificial SequenceSynthetic construct 595cccaagcttg
gtggtggtgg tggtcaaagc aagagcatcc aaacc
4559628DNAArtificial SequenceSynthetic construct 596cccgctcgag cgggcggtat
tcgggctt 2859735DNAArtificial
SequenceSynthetic construct 597ggaggcactg gatccgcagc cacaaacgac gacga
3559836DNAArtificial SequenceSynthetic
construct 598gcggcctcga gggtggcgga ggcactggat ccgcag
3659928DNAArtificial SequenceSynthetic construct 599cccgctcgag
acccagcttg taaggttg
2860035DNAArtificial SequenceSynthetic construct 600ggaggcactg gatccgcagc
cacaaacgac gacga 3560136DNAArtificial
SequenceSynthetic construct 601gcggcctcga gggtggcgga ggcactggat ccgcag
3660228DNAArtificial SequenceSynthetic
construct 602cccgctcgag ccactcgtaa ttgacgcc
2860338DNAArtificial SequenceSynthetic construct 603gcggcctcga
gggatccggc ggaggcggca cttctgcg
3860426DNAArtificial SequenceSynthetic construct 604cccgctcgag gaaccggtag
cctacg 2660535DNAArtificial
SequenceSynthetic construct 605ggaggcactg gatcctcaga tttggcaaac gattc
3560637DNAArtificial SequenceSynthetic
construct 606gcggcgtcga cggtggcgga ggcactggat cctcaga
3760729DNAArtificial SequenceSynthetic construct 607cccgctcgag
cgtatcatat ttcacgtgc
2960835DNAArtificial SequenceSynthetic construct 608gcggcctcga gggatccgga
gggggtggtg tcgcc 3560925DNAArtificial
SequenceSynthetic construct 609cccgctcgag ttgcttggcg gcaag
2561035DNAArtificial SequenceSynthetic
construct 610ggaggcactg gatccgcagc cacaaacgac gacga
3561136DNAArtificial SequenceSynthetic construct 611gcggcctcga
gggtggcgga ggcactggat ccgcag
3661228DNAArtificial SequenceSynthetic construct 612cccgctcgag acccagcttg
taaggttg 2861335DNAArtificial
SequenceSynthetic construct 613ggaggcactg gatccgcagc cacaaacgac gacga
3561436DNAArtificial SequenceSynthetic
construct 614gcggcctcga gggtggcgga ggcactggat ccgcag
3661528DNAArtificial SequenceSynthetic construct 615cccgctcgag
ccactcgtaa ttgacgcc
2861635DNAArtificial SequenceSynthetic construct 616ggaggcactg gatcctcaga
tttggcaaac gattc 3561737DNAArtificial
SequenceSynthetic construct 617gcggcgtcga cggtggcgga ggcactggat cctcaga
3761829DNAArtificial SequenceSynthetic
construct 618cccgctcgag cgtatcatat ttcacgtgc
29619488PRTArtificial SequenceNeisseria meningitidis 619Met Phe
Lys Arg Ser Val Ile Ala Met Ala Cys Ile Phe Ala Leu Ser 1 5
10 15 Ala Cys Gly Gly Gly Gly Gly
Gly Ser Pro Asp Val Lys Ser Ala Asp 20 25
30 Thr Leu Ser Lys Pro Ala Ala Pro Val Val Ser Glu
Lys Glu Thr Glu 35 40 45
Ala Lys Glu Asp Ala Pro Gln Ala Gly Ser Gln Gly Gln Gly Ala Pro
50 55 60 Ser Ala Gln
Gly Ser Gln Asp Met Ala Ala Val Ser Glu Glu Asn Thr 65
70 75 80 Gly Asn Gly Gly Ala Val Thr
Ala Asp Asn Pro Lys Asn Glu Asp Glu 85
90 95 Val Ala Gln Asn Asp Met Pro Gln Asn Ala Ala
Gly Thr Asp Ser Ser 100 105
110 Thr Pro Asn His Thr Pro Asp Pro Asn Met Leu Ala Gly Asn Met
Glu 115 120 125 Asn
Gln Ala Thr Asp Ala Gly Glu Ser Ser Gln Pro Ala Asn Gln Pro 130
135 140 Asp Met Ala Asn Ala Ala
Asp Gly Met Gln Gly Asp Asp Pro Ser Ala 145 150
155 160 Gly Gly Gln Asn Ala Gly Asn Thr Ala Ala Gln
Gly Ala Asn Gln Ala 165 170
175 Gly Asn Asn Gln Ala Ala Gly Ser Ser Asp Pro Ile Pro Ala Ser Asn
180 185 190 Pro Ala
Pro Ala Asn Gly Gly Ser Asn Phe Gly Arg Val Asp Leu Ala 195
200 205 Asn Gly Val Leu Ile Asp Gly
Pro Ser Gln Asn Ile Thr Leu Thr His 210 215
220 Cys Lys Gly Asp Ser Cys Ser Gly Asn Asn Phe Leu
Asp Glu Glu Val 225 230 235
240 Gln Leu Lys Ser Glu Phe Glu Lys Leu Ser Asp Ala Asp Lys Ile Ser
245 250 255 Asn Tyr Lys
Lys Asp Gly Lys Asn Asp Lys Phe Val Gly Leu Val Ala 260
265 270 Asp Ser Val Gln Met Lys Gly Ile
Asn Gln Tyr Ile Ile Phe Tyr Lys 275 280
285 Pro Lys Pro Thr Ser Phe Ala Arg Phe Arg Arg Ser Ala
Arg Ser Arg 290 295 300
Arg Ser Leu Pro Ala Glu Met Pro Leu Ile Pro Val Asn Gln Ala Asp 305
310 315 320 Thr Leu Ile Val
Asp Gly Glu Ala Val Ser Leu Thr Gly His Ser Gly 325
330 335 Asn Ile Phe Ala Pro Glu Gly Asn Tyr
Arg Tyr Leu Thr Tyr Gly Ala 340 345
350 Glu Lys Leu Pro Gly Gly Ser Tyr Ala Leu Arg Val Gln Gly
Glu Pro 355 360 365
Ala Lys Gly Glu Met Leu Ala Gly Ala Ala Val Tyr Asn Gly Glu Val 370
375 380 Leu His Phe His Thr
Glu Asn Gly Arg Pro Tyr Pro Thr Arg Gly Arg 385 390
395 400 Phe Ala Ala Lys Val Asp Phe Gly Ser Lys
Ser Val Asp Gly Ile Ile 405 410
415 Asp Ser Gly Asp Asp Leu His Met Gly Thr Gln Lys Phe Lys Ala
Ala 420 425 430 Ile
Asp Gly Asn Gly Phe Lys Gly Thr Trp Thr Glu Asn Gly Ser Gly 435
440 445 Asp Val Ser Gly Lys Phe
Tyr Gly Pro Ala Gly Glu Glu Val Ala Gly 450 455
460 Lys Tyr Ser Tyr Arg Pro Thr Asp Ala Glu Lys
Gly Gly Phe Gly Val 465 470 475
480 Phe Ala Gly Lys Lys Glu Gln Asp 485
620427PRTArtificial SequenceNeisseria meningitidis 620Met Phe Glu Arg Ser
Val Ile Ala Met Ala Cys Ile Phe Ala Leu Ser 1 5
10 15 Ala Cys Gly Gly Gly Gly Gly Gly Ser Pro
Asp Val Lys Ser Ala Asp 20 25
30 Thr Leu Ser Lys Pro Ala Ala Pro Val Val Ala Glu Lys Glu Thr
Glu 35 40 45 Val
Lys Glu Asp Ala Pro Gln Ala Gly Ser Gln Gly Gln Gly Ala Pro 50
55 60 Ser Thr Gln Gly Ser Gln
Asp Met Ala Ala Val Ser Ala Glu Asn Thr 65 70
75 80 Gly Asn Gly Gly Ala Ala Thr Thr Asp Lys Pro
Lys Asn Glu Asp Glu 85 90
95 Gly Pro Gln Asn Asp Met Pro Gln Asn Ser Ala Glu Ser Ala Asn Gln
100 105 110 Thr Gly
Asn Asn Gln Pro Ala Asp Ser Ser Asp Ser Ala Pro Ala Ser 115
120 125 Asn Pro Ala Pro Ala Asn Gly
Gly Ser Asn Phe Gly Arg Val Asp Leu 130 135
140 Ala Asn Gly Val Leu Ile Asp Gly Pro Ser Gln Asn
Ile Thr Leu Thr 145 150 155
160 His Cys Lys Gly Asp Ser Cys Asn Gly Asp Asn Leu Leu Asp Glu Glu
165 170 175 Ala Pro Ser
Lys Ser Glu Phe Glu Asn Leu Asn Glu Ser Glu Arg Ile 180
185 190 Glu Lys Tyr Lys Lys Asp Gly Lys
Ser Asp Lys Phe Thr Asn Leu Val 195 200
205 Ala Thr Ala Val Gln Ala Asn Gly Thr Asn Lys Tyr Val
Ile Ile Tyr 210 215 220
Lys Asp Lys Ser Ala Ser Ser Ser Ser Ala Arg Phe Arg Arg Ser Ala 225
230 235 240 Arg Ser Arg Arg
Ser Leu Pro Ala Glu Met Pro Leu Ile Pro Val Asn 245
250 255 Gln Ala Asp Thr Leu Ile Val Asp Gly
Glu Ala Val Ser Leu Thr Gly 260 265
270 His Ser Gly Asn Ile Phe Ala Pro Glu Gly Asn Tyr Arg Tyr
Leu Thr 275 280 285
Tyr Gly Ala Glu Lys Leu Pro Gly Gly Ser Tyr Ala Leu Arg Val Gln 290
295 300 Gly Glu Pro Ala Lys
Gly Glu Met Leu Ala Gly Thr Ala Val Tyr Asn 305 310
315 320 Gly Glu Val Leu His Phe His Thr Glu Asn
Gly Arg Pro Tyr Pro Thr 325 330
335 Arg Gly Arg Phe Ala Ala Lys Val Asp Phe Gly Ser Lys Ser Val
Asp 340 345 350 Gly
Ile Ile Asp Ser Gly Asp Asp Leu His Met Gly Thr Gln Lys Phe 355
360 365 Lys Ala Ala Ile Asp Gly
Asn Gly Phe Lys Gly Thr Trp Thr Glu Asn 370 375
380 Gly Gly Gly Asp Val Ser Gly Arg Phe Tyr Gly
Pro Ala Gly Glu Glu 385 390 395
400 Val Ala Gly Lys Tyr Ser Tyr Arg Pro Thr Asp Ala Glu Lys Gly Gly
405 410 415 Phe Gly
Val Phe Ala Gly Lys Lys Glu Gln Asp 420 425
6219PRTartificial sequenceSynthetic construct 621Met Lys Lys Tyr
Leu Phe Ser Ala Ala1 56226PRTartificial sequenceSynthetic
construct 622Cys Gly Gly Gly Gly Ser1 56235PRTartificial
sequenceSynthetic construct 623Cys Gly Gly Gly Ser1
56244PRTartificial sequenceSynthetic construct 624Cys Gly Gly
Ser16256PRTartificial sequenceSynthetic construct 625Cys Gly Xaa Gly Gly
Ser1 56266PRTartificial sequenceSynthetic construct 626Cys
Gly Xaa Xaa Gly Ser1 56276PRTartificial sequenceSynthetic
construct 627Cys Gly Xaa Gly Xaa Ser1 56287PRTartificial
sequenceSynthetic construct 628Cys Gly Gly Xaa Gly Gly Ser1
56297PRTartificial sequenceSynthetic construct 629Cys Gly Xaa Gly Gly Gly
Ser1 563019PRTartificial sequenceNeisseria meningitidis
630Met Lys Thr Phe Phe Lys Thr Leu Ser Ala Ala Ala Leu Ala Leu Ile1
5 10 15Leu Ala
Ala6317PRTartificial sequenceNeisseria meningitidis 631Gly Gly Gly Gly
Gly Gly Ser1 56326PRTartificial sequenceNeisseria
meningitidis 632Gly Gly Gly Gly Gly Gly1
563320PRTartificial sequenceNeisseria meningitidis 633Met Lys Lys Tyr Leu
Phe Arg Ala Ala Leu Tyr Gly Ile Ala Ala Ala1 5
10 15Ile Leu Ala Ala 20
User Contributions:
Comment about this patent or add new information about this topic: