Patent application title: ANTIBODY-MEDIATED DISRUPTION OF QUORUM SENSING IN BACTERIA
Inventors:
Kim D. Janda (La Jolla, CA, US)
Kim D. Janda (La Jolla, CA, US)
Gunnar F. Kaufmann (San Diego, CA, US)
Gunnar F. Kaufmann (San Diego, CA, US)
Junguk Park (San Diego, CA, US)
IPC8 Class: AA61K4742FI
USPC Class:
1 1
Class name:
Publication date: 2017-02-16
Patent application number: 20170043020
Abstract:
The invention provides an immunogenic molecular entity and related
vaccines that can be used to inhibit Gram-positive bacterial quorum
sensing, prevent infection or development of a disease condition
associated with a Gram-positive bacterial infection. The invention also
provides methods of inhibiting Gram-positive bacterial quorum sensing,
and methods of preventing infection or development of a disease condition
associated with a Gram-positive bacterial infection.Claims:
1. An immunogenic molecular entity comprising at least one hapten linked
to a macromolecular carrier, wherein the hapten comprises a cyclic
peptide comprising a macrocyclic ring, wherein the cyclic peptide
comprises the amino acid sequence selected from the group consisting of
GVNP(X.sup.a+2)GGWF (SEQ ID NO: 96), KAKT(X.sup.a+2)TVLY (SEQ ID NO: 97),
KTKT(X.sup.a+2)TVLY (SEQ ID NO: 98), GANP(X.sup.a+2)OLYY (SEQ ID NO: 99),
GANP(X.sup.a+2)ALYY (SEQ ID NO: 100), GYST(X.sup.a+2)SYYF (SEQ ID NO:
101), GYRT(X.sup.a+2)NTYF (SEQ ID NO: 102), YNP(X.sup.a+2)VGYF (SEQ ID
NO: 103), GGKV(X.sup.a+2)SAYF (SEQ ID NO: 104), SVKP(X.sup.a+2)TGFA (SEQ
ID NO: 105), DSV(X.sup.a+2)ASYF (SEQ ID NO: 106), KYNP(X.sup.a+2)SNYL
(SEQ ID NO: 107), KYNP(X.sup.a+2)ASYL (SEQ ID NO: 108),
KYNP(X.sup.a+2)ANYL (SEQ ID NO: 109), RIPT(X.sup.a+2)TGFF (SEQ ID NO:
110), DI(X.sup.a+2)NAYF (SEQ ID NO: 111), DM(X.sup.a+2)NGYF (SEQ ID NO:
112), KYNP(X.sup.a+2)LGFL (SEQ ID NO: 113), KYYP(X.sup.a+2)FGYF (SEQ ID
NO: 114), GARP(X.sup.a+2)GGFF (SEQ ID NO: 115), GAKP(X.sup.a+2)GGFF (SEQ
ID NO: 116), YSP(X.sup.a+2)TNFF (SEQ ID NO: 117), YSP(X.sup.a+2)TNF (SEQ
ID NO: 118), or QN(X.sup.a+2)PNIFGQWM (SEQ ID NO: 119), wherein the last
amino acid residue of each sequence is X.sup.1 which is an amino acid
residue that is covalently bonded to a group R by a respective carbonyl
group; X.sup.a+2 is any amino acid, a respective carbon atom of which is
covalently bonded to R; wherein R comprises --CH.sub.2O--,
--CH.sub.2CH.sub.2O--, --CH.sub.2CH(CH.sub.3)O--, --CH.sub.2-phenyl-O--,
--CH.sub.2S--, --CH.sub.2CH.sub.2S--, or --(CH.sub.2).sub.nNH--, wherein
n is 1 to about 4; and wherein the N-terminal amino acid residue of the
cyclic peptide is attached to the macromolecular carrier.
2. The immunogenic molecular entity of claim 1, wherein the macromolecular carrier comprises a protein, a polymer or a nanoparticle.
3. The immunogenic molecular entity of claim 1, wherein the cyclic peptide or analog thereof is covalently linked to the macromolecular carrier.
4. A method for preventing or treating infection of a mammal by Staphylococcus aureus comprising administering to the mammal, the immunogenic molecular entity of claim 1, in an amount effective to prevent or treat infection of the mammal by Staphylococcus aureus.
5. A method for preventing or treating infection of a mammal by Staphylococcus intermedius comprising administering to the mammal, the immunogenic molecular entity comprising macrocyclic ring, wherein the cyclic peptide comprises the amino acid sequence RIPT(X.sup.a+2)TGFF (SEQ ID NO: 110), wherein the last amino acid residue of each sequence is X.sup.1 which is an amino acid residue that is covalently bonded to a group R by a respective carbonyl group; X.sup.a+2 is any amino acid, a respective carbon atom of which is covalently bonded to R; wherein R comprises --CH.sub.2O--, --CH.sub.2CH.sub.2O--, --CH.sub.2CH(CH.sub.3)O--, --CH.sub.2-phenyl-O--, --CH.sub.2S--, --CH.sub.2CH.sub.2S--, or --(CH.sub.2).sub.nNH--, wherein n is 1 to about 4; and wherein the N-terminal amino acid residue of the cyclic peptide is attached to the macromolecular carrier, in an amount effective to prevent or treat infection of the mammal by Staphylococcus intermedius.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] The subject patent application is a divisional of U.S. patent application Ser. No. 12/734,273, filed Apr. 22, 2010 (now pending), which is a national stage application of International Application No. PCT/US2008/012151, filed Oct. 24, 2008 (now abandoned), which claims the benefit of priority to U.S. Provisional Patent Application No. 60/982,593, filed Oct. 25, 2007 (now expired). The full disclosures of the priority applications are incorporated herein by reference in their entirety and for all purposes.
BACKGROUND OF THE INVENTION
[0003] Bacterial infections are becoming increasingly deadly as many strains that cause diseases are developing resistance to the array of antibiotics used to control them. Staphylococcus aureus, for example, is a common cause of hospital-acquired infections resulting in various diseases or conditions raging from skin infections and food poisoning to life-threatening nosocomial infections. Increasing resistance of S. aureus isolates to glycopeptide antibiotics, most prominently vancomycin, is a major concern in today's intensive care units. Therefore, an alternative strategy to combat bacterial infections is urgently needed.
SUMMARY OF THE INVENTION
[0004] The invention relates to the discovery of an immunopharmacotherapeutic approach for the attenuation of quorum sensing. In particular, the invention involves the discovery of a monoclonal antibody elicited against a rationally-designed hapten that can inhibit quorum sensing, suppress bacterial pathogenicity in an abscess formation mouse model in vivo, and provide protection against a lethal bacterial challenge.
[0005] In one embodiment, the invention provides an immunogenic molecular entity comprising at least one hapten, the hapten being covalently linked to an macromolecular carrier, optionally via a linker moiety, the hapten comprising a cyclic peptide or an analog thereof, the cyclic peptide or analog thereof comprising a macrocyclic ring, wherein the cyclic peptide or analog thereof comprises about four to about nineteen amino acid residues, the cyclic peptide or analog thereof having a structure represented by Formula I:
##STR00001##
wherein each X is independently any amino acid residue; X.sup.1 is an amino acid residue that is covalently bonded to R by a respective carbonyl group; X.sup.a+2 is an internal amino acid, a respective carbon atom of which is covalently bonded to R; R is a macrocyclizing moiety that covalently connects X.sup.1 and X.sup.a+2 thereby forming the macrocyclic ring, wherein R comprises an ester, thioester, amide, carbamide, semicarbazide, or other amide-surrogate group, or any combination thereof; a is 1 to about 9; b is 1 to about 8; and a bond transected by a wavy line indicates a point of attachment of an N-terminal amino acid residue of the cyclic peptide or analog thereof to the macromolecular carrier, optionally via the linker moiety.
[0006] In some embodiments, the immunogenic molecular entity has the structure shown above, wherein a is 2-8, and R includes an alkyloxy or alkaryloxy, alkylthio, or alkylamino group covalently bonding X.sup.a+2 to the X.sup.1 carbonyl group, thereby providing an ester, thioester, or amide bond, respectively, to form a lactone, thiolactone, or lactam macrocyclic ring, respectively. In some embodiments, the immunogenic molecular entity has the structure shown above, wherein R includes --CH.sub.2O--, --CH.sub.2CH.sub.2O--, --CH.sub.2CH(CH.sub.3)O--, --CH.sub.2-phenyl-O--, --CH.sub.2S--, --CH.sub.2CH.sub.2S--, or --(CH.sub.2).sub.nNH--, wherein n is 1 to about 4. In some embodiments, the immunogenic molecular entity has the structure shown above, wherein a is 2-8, and R includes at least one amide, urea, or semicarbazide group, or at least one amide-surrogate bond.
[0007] In some embodiments, R is represented by Formula (IIa) or Formula (IIb):
##STR00002##
wherein n is 1 to about 4, R.sup.1 is the sidechain of a naturally occurring amino acid or an analog thereof, a bond transected by a wavy line indicates a point of attachment, wherein the point of attachment designated (i) is bonded to the carbonyl group of X.sup.1 and the point of attachment designated (ii) is bonded to the alpha-carbon of X.sup.a+2.
[0008] In some embodiments, R has the formula (IIa):
##STR00003##
[0009] In some embodiments, R has the formula (IIb):
##STR00004##
[0010] In some embodiments, the immunogenic molecular entity has the structure shown above, wherein X.sup.1 and X.sup.2 are hydrophobic amino acid residues, and in some embodiments, X.sup.1 and X.sup.2 are independently selected from the group of amino acid residues consisting of alanine, valine, leucine, isoleucine, methionine, phenylalanine, tyrosine, or tryptophan, or analogs thereof. In some embodiments each of X.sup.1 and X.sup.2 is independently methionine, leucine, phenylalanine, tyrosine, alanine, isoleucine, or tryptophan.
[0011] In some embodiments, the cyclic peptide or analog of the immunogenic molecular entity has the amino acid sequence YST(X.sup.a+2)DFIM (SEQ ID NO: 92), YST(X.sup.a+2)YFIM (SEQ ID NO: 93), IN(X.sup.a+2)DELL (SEQ ID NO: 94), GVNA(X.sup.a+2)SSLF (SEQ ID NO: 95), GVNP(X.sup.a+2)GGWF (SEQ ID NO: 96), KAKT(X.sup.a+2)TVLY (SEQ ID NO: 97), KTKT(X.sup.a+2)TVLY (SEQ ID NO: 98), GANP(X.sup.a+2)OLYY (SEQ ID NO: 99), GANP(X.sup.a+2)ALYY (SEQ ID NO: 100), GYST(X.sup.a+2)SYYF (SEQ ID NO: 101), GYRT(X.sup.a+2)NTYF (SEQ ID NO: 102), YNP(X.sup.a+2)VGYF (SEQ ID NO: 103), GGKV(X.sup.a+2)SAYF (SEQ ID NO: 104), SVKP(X.sup.a+2)TGFA (SEQ ID NO: 105), DSV(X.sup.a+2)ASYF (SEQ ID NO: 106), KYNP(X.sup.a+2)SNYL (SEQ ID NO: 107), KYNP(X.sup.a+2)ASYL (SEQ ID NO: 108), KYNP(X.sup.a+2)ANYL (SEQ ID NO: 109), RIPT(X.sup.a+2)TGFF (SEQ ID NO: 110), DI(X.sup.a+2)NAYF (SEQ ID NO: 111), DM(X.sup.a+2)NGYF (SEQ ID NO: 112), KYNP(X.sup.a+2)LGFL (SEQ ID NO: 113), KYYP(X.sup.a+2)FGYF (SEQ ID NO: 114), GARP(X.sup.a+2)GGFF (SEQ ID NO: 115), GAKP(X.sup.a+2)GGFF (SEQ ID NO: 116), YSP(X.sup.a+2)TNFF (SEQ ID NO: 117), YSP(X.sup.a+2)TNF (SEQ ID NO: 118), or QN(X.sup.a+2)PNIFGQWM (SEQ ID NO: 119), wherein the last amino acid residue of each sequence is X.sup.1, and (X.sup.a+2) is the internal amino acid to which the carbonyl group of X.sup.1 is covalently bonded via R.
[0012] In some embodiments, the macromolecular carrier includes a protein, a polymer or a nanoparticle. In some embodiments, the polymer is a dendrimer. In some embodiments, the dendrimer is a MAP dendrimer. In some embodiments, the macromolecular carrier comprises a protein. In some embodiments, the protein is selected from the group consisting of keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA), rabbit serum albumin (RSA), human serum albumin (HSA), Concholepas concholepas hemocyanin (CCH), cholera toxin B subunit, E. coli labile toxin B subunit, Diphtheria toxoid, tetanus toxoid, tetanus toxin C-fragment, recombinant Pseudomonas aeruginosa exoprotein A, CRM197 (cross-reactive material), cationized bovine serum albumin (cBSA), Thyroglobulin (Tg), avidin, bovine thyroglobulin (BTG), bovine G globulin, bovine immunoglobulin G (BIgG), conalbumin (CONA), colloidal gold, edestin, Paralithodes camtschatica heamocyanin (HC), helix promatia haemocyanin (HPH), soybean kunitz trypsin inhibitor (KTI), Limulus polyphemus heamocyanin (LPH), ovalbumin (OA), Pam3Cys-Th (lipopeptide/Th cell epitope), polylysine, porcine thyroglobulin (PTG), purified protein derivative (PPD), soybean trypsin inhibitor (STI), or sunflower globulin (SFG).
[0013] In some embodiments, the cyclic peptide analog is covalently linked to the macromolecular carrier via an amino group of an N-terminal amino acid residue of the cyclic peptide analog or a thiol group of an N-terminal cysteine or homocysteine residue of the cyclic peptide analog.
[0014] In some embodiments, the molecular entity of the invention further includes a linker moiety that covalently links the cyclic peptide analog to the macromolecular carrier. In some embodiments, the cyclic peptide analog is bonded to the linker moiety via an amino group of an N-terminal amino acid residue of the cyclic peptide analog, or via a thiol group of an N-terminal cysteine or homocysteine residue of the cyclic peptide analog, the linker moiety being covalently bonded to the macromolecular carrier. In some embodiments, the linker moiety includes a moiety produced by reaction of MBS, sulfo-MBS, SMCC, or sulpho-SMCC. In some embodiments, the linker moiety includes adipic acid dihydrazide (ADH), a spacer peptide, hydroxymethyl hemisuccinate, or a polyethyleneglycol derivative.
[0015] In some embodiments, the molecular entity has the structure:
##STR00005##
wherein CPL is a macromolecular carrier with optional linker covalently bonded to a cysteine thiol group.
[0016] In another aspect, the invention provides a supramolecular assembly that includes an immunogenic molecular entity of the invention. In some embodiments, the supramolecular assembly includes a liposome, a virosome, a bacteriophage, a viral particle, or a polymeric nanoparticle delivery system.
[0017] In another aspect, the invention provides an antibody that binds specifically with a cyclic peptide having the amino acid sequence YST(X.sup.a+2)DFIM (SEQ ID NO: 92), YST(X.sup.a+2)YFIM (SEQ ID NO: 93), IN(X.sup.a+2)DFLL (SEQ ID NO: 94), GVNA(X.sup.a+2)SSLF (SEQ ID NO: 95), GVNP(X.sup.a+2)GGWF (SEQ ID NO: 96), KAKT(X.sup.a+2)TVLY (SEQ ID NO: 97), KTKT(X.sup.a+2)TVLY (SEQ ID NO: 98), GANP(X.sup.a+2)OLYY (SEQ ID NO: 99), GANP(X.sup.a+2)ALYY (SEQ ID NO: 100), GYST(X.sup.a+2)SYYF (SEQ ID NO: 101), GYRT(X.sup.a+2)NTYF (SEQ ID NO: 102), YNP(X.sup.a+2)VGYF (SEQ ID NO: 103), GGKV(X.sup.a+2)SAYF (SEQ ID NO: 104), SVKP(X.sup.a+2)TGFA (SEQ ID NO: 105), DSV(X.sup.a+2)ASYF (SEQ ID NO: 106), KYNP(X.sup.a+2)SNYL (SEQ ID NO: 107), KYNP(X.sup.a+2)ASYL (SEQ ID NO: 108), KYNP(X.sup.a+2)ANYL (SEQ ID NO: 109), RIPT(X.sup.a+2)TGFF (SEQ ID NO: 110), DI(X.sup.a+2)NAYF (SEQ ID NO: 111), DM(X.sup.a+2)NGYF (SEQ ID NO: 112), KYNP(X.sup.a+2)LGFL (SEQ ID NO: 113), KYYP(X.sup.a+2)FGYF (SEQ ID NO: 114), GARP(X.sup.a+2)GGFF (SEQ ID NO: 115), GAKP(X.sup.a+2)GGFF (SEQ ID NO: 116), YSP(X.sup.a+2)TNFF (SEQ ID NO: 117), YSP(X.sup.a+2)TNF (SEQ ID NO: 118), or QN(X.sup.a+2)PNIFGQWM (SEQ ID NO: 119); wherein the last amino acid residue of each sequence is X.sup.1, and (X.sup.a+2) is the internal amino acid to which the carbonyl group of X.sup.1 is covalently bonded via R, wherein R is the sidechain moiety of X.sup.a+2 covalently bonded to the carbonyl group of X.sup.1; and wherein R comprises --CH.sub.2O--, --CH.sub.2CH.sub.2O--, --CH.sub.2CH(CH.sub.3)O--, --CH.sub.2-phenyl-O--, --CH.sub.2S--, --CH.sub.2CH.sub.2S--, or --(CH.sub.2).sub.nNH--, wherein n is 1 to about 4.
[0018] In another aspect, the invention provides an antibody that binds specifically with a cyclic peptide signaling molecule of a Gram-positive bacterium.
[0019] In some embodiments, the antibody binds specifically with a cyclic peptide signaling molecule having the sequence YSTCDFIM (SEQ ID NO: 120); GVNACSSLF (SEQ ID NO: 121); INCDFLL (SEQ ID NO: 122); YSTCYFIM (SEQ ID NO: 123); GVNPCGGWF (SEQ ID NO: 124); KAKTCTVLY (SEQ ID NO: 125); KTKTCTVLY (SEQ ID NO: 126); GANPCOLYY (SEQ ID NO: 127); GANPCALYY (SEQ ID NO: 128); GYSTCSYYF (SEQ ID NO: 129); GYRTCNTYF (SEQ ID NO: 130); YNPCVGYF (SEQ ID NO: 131); GGKVCSAYF (SEQ ID NO: 132); SVKPCTGFA (SEQ ID NO: 133); DSVCASYF (SEQ ID NO: 134); KYNPCSNYL (SEQ ID NO: 135); KYNPCASYL (SEQ ID NO: 136); KYNPCANYL (SEQ ID NO: 137); RIPTSTGFF (SEQ ID NO: 138); DICNAYF (SEQ ID NO: 139); DMCNGYF (SEQ ID NO: 140); KYNPCLGFL (SEQ ID NO: 141); KYYPCFGYF (SEQ ID NO: 142); VGARPCGGFF (SEQ ID NO: 143); GAKPCGGFF (SEQ ID NO: 144); YSPCTNFF (SEQ ID NO: 145); or QNSPNIFGQWM (SEQ ID NO: 146); wherein the alpha-carbonyl group of the underlined residue forms a thiolactone or lactone bond with the sulfhydryl or hydroxyl group of the bolded internal cysteine or serine residue, respectively.
[0020] In some embodiments, the antibody is a neutralizing antibody, e.g. a cross-neutralizing antibody. In some embodiments, it is a single chain variable fragment (scFv), a Fab or F(ab').sub.2 fragment. In some embodiments, the antibody comprises the amino acid sequence of any one of SEQ ID NOs: 35-53. In some embodiments, the antibody is a monoclonal antibody. In some embodiment, the antibody comprises the amino acid sequence of any one of SEQ ID NOs: 19-26 and 147-154. In some embodiments, the antibody comprises an amino acid sequence of any one of SEQ ID NOs: 19-26 in covalent interaction with an amino acid sequence of any one of SEQ ID NOs: 147-154. In some embodiments, the antibody is a murine, bovine, or human antibody. In some embodiments, the antibody is a humanized or chimeric antibody. In some embodiments, the antibody is AP4-24H11.
[0021] In another aspect, the invention provides a composition that includes at least one antibody of the invention and a pharmaceutically-acceptable carrier. In some embodiments, the composition includes two to four antibodies that bind specifically with two to four cyclic peptide signaling molecules having the sequences YSTCDFIM (SEQ ID NO: 120), GVNACSSLF (SEQ ID NO: 121), INCDFLL (SEQ ID NO: 122), and YSTCYFIM (SEQ ID NO: 123); wherein the alpha-carbonyl group of the underlined residue forms a thiolactone bond with the sulfhydryl group of the bolded internal cysteine residue.
[0022] In another aspect, the invention provides a composition includes at least one immunogenic molecular entity of the invention and a pharmaceutically-acceptable carrier. In some embodiments, the immunogenic molecular entity includes a cyclic peptide having the sequence YST(X.sup.a+2)DFIM (SEQ ID NO: 92), YST(X.sup.a+2)YFIM (SEQ ID NO: 93), IN(X.sup.a+2)DFLL (SEQ ID NO: 94), GVNA(X.sup.a+2)SSLF (SEQ ID NO: 95), GVNP(X.sup.a+2)GGWF (SEQ ID NO: 96), KAKT(X.sup.a+2)TVLY (SEQ ID NO: 97), KTKT(X.sup.a+2)TVLY (SEQ ID NO: 98), GANP(X.sup.a+2)OLYY (SEQ ID NO: 99), GANP(X.sup.a+2)ALYY (SEQ ID NO: 100), GYST(X.sup.a+2)SYYF (SEQ ID NO: 101), GYRT(X.sup.a+2)NTYF (SEQ ID NO: 102), YNP(X.sup.a+2)VGYF (SEQ ID NO: 103), GGKV(X.sup.a+2)SAYF (SEQ ID NO: 104), SVKP(X.sup.a+2)TGFA (SEQ ID NO: 105), DSV(X.sup.a+2)ASYF (SEQ ID NO: 106), KYNP(X.sup.a+2)SNYL (SEQ ID NO: 107), KYNP(X.sup.a+2)ASYL (SEQ ID NO: 108), KYNP(X.sup.a+2)ANYL (SEQ ID NO: 109), RIPT(X.sup.a+2)TGFF (SEQ ID NO: 110), DI(X.sup.a+2)NAYF (SEQ ID NO: 111), DM(X.sup.a+2)NGYF (SEQ ID NO: 112), KYNP(X.sup.a+2)LGFL (SEQ ID NO: 113), KYYP(X.sup.a+2)FGYF (SEQ ID NO: 114), GARP(X.sup.a+2)GGFF (SEQ ID NO: 115), GAKP(X.sup.a+2)GGFF (SEQ ID NO: 116), YSP(X.sup.a+2)TNFF (SEQ ID NO: 117), YSP(X.sup.a+2)TNF (SEQ ID NO: 118), or QN(X.sup.a+2)PNIFGQWM (SEQ ID NO: 119); wherein the last amino acid residue of each sequence is X.sup.1, and (X.sup.a+2) is the internal amino acid to which the carbonyl group of X.sup.1 is covalently bonded via R; and wherein R comprises --CH.sub.2O--, --CH.sub.2CH.sub.2O--, --CH.sub.2CH(CH.sub.3)O--, --CH.sub.2-phenyl-O--, --CH.sub.2S--, --CH.sub.2CH.sub.2S--, or --(CH.sub.2).sub.nNH--, wherein n is 1 to about 4.
[0023] In some embodiments, the composition includes two to four immunogenic molecular entities, the cyclic peptides of which have the sequence YST(X.sup.a+2)DFIM (SEQ ID NO: 92), YST(X.sup.8+2)YFIM (SEQ ID NO: 93), IN(X.sup.a+2)DFLL (SEQ ID NO: 94), GVNA(X.sup.a+2)SSLF (SEQ ID NO: 95), GVNP(X.sup.a+2)GGWF (SEQ ID NO: 96), KAKT(X.sup.a+2)TVLY (SEQ ID NO: 97), KTKT(X.sup.a+2)TVLY (SEQ ID NO: 98), GANP(X.sup.a+2)OLYY (SEQ ID NO: 99), GANP(X.sup.a+2)ALYY (SEQ ID NO: 100), GYST(X.sup.a+2)SYYF (SEQ ID NO: 101), GYRT(X.sup.a+2)NTYF (SEQ ID NO: 102), YNP(X.sup.a+2)VGYF (SEQ ID NO: 103), GGKV(X.sup.a+2)SAYF (SEQ ID NO: 104), SVKP(X.sup.a+2)TGFA (SEQ ID NO: 105), DSV(X.sup.a+2)ASYF (SEQ ID NO: 106), KYNP(X.sup.a+2)SNYL (SEQ ID NO: 107), KYNP(X.sup.a+2)ASYL (SEQ ID NO: 108), KYNP(X.sup.a+2)ANYL (SEQ ID NO: 109), RIPT(X.sup.a+2)TGFF (SEQ ID NO: 110), DI(X.sup.a+2)NAYF (SEQ ID NO: 111), DM(X.sup.a+2)NGYF (SEQ ID NO: 112), KYNP(X.sup.a+2)LGFL (SEQ ID NO: 113), KYYP(X.sup.a+2)FGYF (SEQ ID NO: 114), GARP(X.sup.a+2)GGFF (SEQ ID NO: 115), GAKP(X.sup.a+2)GGFF (SEQ ID NO: 116), YSP(X.sup.a+2)TNFF (SEQ ID NO: 117), YSP(X.sup.a+2)TNF (SEQ ID NO: 118), or QN(X.sup.a+2)PNIFGQWM (SEQ ID NO: 119); wherein the last amino acid residue of each sequence is X.sup.1, and (X.sup.a+2) is the internal amino acid to which the carbonyl group of X.sup.1 is covalently bonded via R; and wherein R comprises --CH.sub.2O--, --CH.sub.2CH.sub.2O--, --CH.sub.2CH(CH.sub.3)O--, --CH.sub.2-- phenyl-O--, --CH.sub.2S--, --CH.sub.2CH.sub.2S--, or --(CH.sub.2).sub.nNH--, wherein n is 1 to about 4.
[0024] In some embodiments, the composition includes four immunogenic molecular entities, the cyclic peptides of which have the sequences YSTCDFIM (SEQ ID NO: 120), GVNACSSLF (SEQ ID NO: 121), INCDFLL (SEQ ID NO: 122), and YSTCYFIM (SEQ ID NO: 123); wherein the alpha-carbonyl group of the underlined residue forms a thiolactone bond with the sulfhydryl group of the bolded internal cysteine residue.
[0025] In some embodiments, the composition includes at least one additional immunogen. In some embodiments, the at least one additional immunogen elicits an immune response against hepatitis B, Haemophilus influenzae type b bacteria, diphtheria, measles, mumps, pertussis, polio, rubella, tetanus, tuberculosis, varicella, or any combination thereof.
[0026] In another aspect, the invention provides an article of manufacture comprising the immunogenic molecular entity, supramolecular assembly, antibody or composition of the invention, and instructions for its use.
[0027] In another aspect, the invention provides a method of eliciting an immune response in a mammal that involves administering to the mammal a composition that includes the immunogenic molecular entity or the supramolecular assembly of the invention in an amount effective to elicit an immune response in the mammal. In some embodiments, the mammal is a goat, rabbit, sheep, pig, mouse, rat, guinea pig, hamster, cow, horse, monkey or human. In some embodiments, the composition is administered to the mammal by intravenous, intraperitoneal, subcutaneous, intradermal, or intramuscular injection. In some embodiments, the method further involves obtaining a biological sample from the mammal, wherein the biological sample comprises an antibody that binds specifically with a cyclic peptide signaling molecule and/or with the cyclic peptide of the immunogenic molecular entity. In some embodiments, the method further involves isolating an antibody-producing cell from the mammal, and fusing the antibody-producing cell with a myeloma cell to generate a hybridoma that produces an antibody that binds specifically with a cyclic peptide signaling molecule and/or with the cyclic peptide of the immunogenic molecular entity.
[0028] In some embodiments, the mammal is susceptible to infection by a Gram positive bacterium or is susceptible to a disease condition associated with a Gram positive bacterium. In some embodiments, the Gram positive bacterium is a Staphylococcus, such as S. aureus or S. epidermidis. In some embodiments, the mammal is a human.
[0029] In some embodiments, the method further includes administering to the mammal at least one additional dose of the composition that include the immunogenic entity at selected time periods.
[0030] In another aspect, the invention provides a method of inhibiting quorum sensing in a mammal that involves administering to the mammal a composition that includes the antibody of the invention in an amount effective to inhibit the quorum sensing in the mammal.
[0031] In another aspect, the invention provides a method of inhibiting quorum sensing in a mammal that involves administering to the mammal an immunogenic molecular entity or the supramolecular assembly of the invention in an amount effective to elicit an immune response and inhibit the quorum sensing in the mammal. In some embodiments of the invention, the mammal is a human.
[0032] In another aspect, the invention provides a method for preventing or treating infection of a mammal by a Gram positive bacterium that involves administering to the mammal, an immunogenic molecular entity, supramolecular assembly, or the antibody of the invention in an amount effective to prevent or treat infection of the mammal by a Gram positive bacterium. In some embodiments, the mammal is a human. In some embodiments, the immunogenic molecular entity, supramolecular assembly or antibody is administered to the mammal by intravenous, intraperitoneal, subcutaneous, intradermal, or intramuscular injection.
[0033] In another aspect, the invention provides a method of identifying an antibody that binds specifically with a cyclic peptide signaling molecule that involves contacting an immunogenic molecular entity that includes a cyclic peptide analog of the signaling molecule covalently linked to a macromolecular carrier with a recombinant combinatorial immunoglobulin library, and identifying the recombinant immunoglobulin that binds specifically with the an immunogenic molecular entity as an antibody that binds specifically with the cyclic peptide signaling molecule.
[0034] In another aspect, the invention provides a method of preventing biofilm formation that involves coating a surface including a surface of a catheter with an antibody of the invention.
[0035] In another aspect, the invention provides an isolated nucleic acid having a sequence that encodes the antibody discussed herein. In some embodiments, the nucleic acid has the sequence of any one of SEQ ID NO: 54-91, 27-34 and 155-181. The term "nucleic acid," as used herein, refers to a polymer of deoxynucleic ribose nucleic acids (DNA), as well as ribose nucleic acids (RNA). The term includes linear molecules, as well as covalently closed circular molecules. It includes single stranded molecules, as well as double stranded molecules.
[0036] The term "isolated," as used herein with reference to a nucleic acid molecule, means that the nucleic acid molecule is free of unrelated nucleic acid sequences, or those involved in the expression of such other genes, that flank it's 5' and 3' ends in the naturally-occurring genome of the organism from which the nucleic acid of the invention is derived. Accordingly, an "isolated nucleic acid" of the invention has a structure that is different from that of any naturally occurring nucleic acid or to that of any fragment of a naturally occurring genomic nucleic acid spanning more than three separate genes. Thus, the term "isolated nucleic acid molecule" includes, for example, (1) a DNA molecule that has the sequence of part of a naturally occurring genomic DNA molecule, but is not flanked by both of the coding sequences that flank that part of the molecule in the genome of the organism in which it naturally occurs; (2) a nucleic acid incorporated into a vector or into the genomic DNA of a prokaryote or eukaryote in a manner such that the resulting molecule is not identical to any naturally-occurring vector or genomic DNA; (3) a separate molecule such as a cDNA, a genomic fragment, a fragment produced by polymerase chain reaction (PCR), or a restriction fragment; and (4) a recombinant nucleotide sequence that is part of a hybrid gene, i.e. a gene encoding a fusion protein. Specifically excluded from this definition are nucleic acids present in mixtures of (1) DNA molecules, (2) transfected cells, and (3) cell clones, e.g., as these occur in a DNA library such as a cDNA or genomic DNA library.
[0037] In another aspect, the invention provides an expression vector that has a nucleic acid encoding the antibody discussed herein.
[0038] In some embodiments, the nucleic acid encoding the antibody is operably-linked to an expression control sequence. In some embodiments, the expression control sequence is a promoter. In some embodiments, the promoter is a phage, viral, bacterial or mammalian promoter.
[0039] The term "expression vector," as used herein, means a nucleic acid molecule capable of transporting and/or allowing for the expression of another nucleic acid to which it has been linked. The product of that expression is referred to as a messenger ribose nucleic acid (mRNA) transcript. Thus, expression vectors contain appropriate expression control sequences that may direct expression of a nucleic acid that is operably linked to the expression control sequence to produce a transcript. Thus, the phrase "expression control sequence" means a nucleic acid sequence sufficient to direct transcription of another nucleic acid sequence that is operably linked to the expression control sequence to produce an RNA transcript when appropriate molecules such as transcriptional activator proteins are bound the expression control sequence. And the term "operably linked" means that a nucleic acid and an expression control sequence is positioned in such a way that the expression control sequence directs expression of the nucleic acid when the appropriate molecules such as transcriptional activator proteins are bound to the expression control sequence.
[0040] In another aspect, the invention provides a cell that has a nucleic acid encoding the antibody discussed above or an expression vector discussed above. The cell can be a bacterial or mammalian cell.
[0041] Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.
DESCRIPTION OF THE FIGURES
[0042] FIG. 1 illustrates the structures of the autoinducing peptides (AIPs) used by S. aureus. The oligopeptides are cyclized post-translationally to form a thioester linkage between the thiol moiety of the conserved .sup.(*)Cys and the carboxyl group of the C-terminal residue (SEQ ID NOs: 120-123).
[0043] FIG. 2A-K are the ESI-MS spectra and HPLC chromatograms of the AIPs synthesized: AIP-1 (pure thiolactone) (A & B); AIP-2 (pure thiolactone) (C & D); AIP-3 (pure thiolactone) (E & F); AIP-4 (pure thiolactone) (G & H); AIP-IV (pure lactone) (I & J). HPLC was performed on a C18 column monitored at 214 nm by UV absorption using a gradient of 20% B for 3 minutes and then increasing to 50% B in 30 minutes. B is acetylnitrile run against HPLC grade water. FIG. 2K: MALDI-TOF analysis of AP4-BSA conjugate.
[0044] FIG. 3A-B are data illustrating the secretion of exoprotein in RN4850. (A) Analysis of exoprotein secretion in RN4850. After growth for 20-24 hours at 37.degree. C. in the presence of the selected mAbs (200 .mu.g/mL) as indicated, cells were centrifuged at 13,000 rpm for 2 minutes. The supernatants were analyzed by 10% SDS-PAGE. The gels were stained using GelCode.RTM. Blue Stain Reagent (Pierce, Rockford Ill.). Solid arrows denote potential difference in exoprotein levels caused by AP4-24H11. (B) Hemolytic activity of the supernatants of S. aureus growing medium. Supernatants (150 .mu.L) prepared above were dropped onto the sheep blood agar plate. The plate was incubated at 37.degree. C. for 24 hours and kept at room temperature for another 24 hours.
[0045] FIG. 4A-E are results illustrating the inhibition of quorum sensing signaling in S. aureus by AP4-24H11. (A) Western blot analyses of .alpha.-hemolysin and Protein A expression in S. aureus (RN4850 and Wood 46). S. aureus culture supernatants were prepared as described in the Examples. (B) Relative OD.sub.600 (%) of RN4850, NRS168 and Wood 46 after 20-24 hour incubation in the presence/absence of AP4-24H11. (C) Analysis of static biofilm formation in RN4850. (D) Real-Time PCR analysis. The amounts of the selected mRNAs were measured in RN4850 grown in the presence or absence of AP4-24H11. Relative quantification was performed using gyrA as a calibrator. At least two independent experiments were carried out for each experiment in duplicate. Actual numbers of fold-change; rnaIII (-77.+-.48), eta (-8.1.+-.1), hla (-5.2.+-.3.1), spa (+5.7.+-.3.6), sarA (-2.1.+-.0.6) and saeR (+1.4.+-.0.4). (E) Suppression of AP4-24H11-mediated QS inhibition in S. aureus by AIP-4. AP4-24H11 (.apprxeq.1.3 .mu.M) was incubated with the native AIP-4 (2.5 .mu.M) in CYPG medium for 20 minutes at room temperature. Overnight cultured S. aureus cells were diluted into the above medium (OD.sub.600.apprxeq.0.03) and grown for 20 to 24 hours at 37.degree. C. under the static condition. The supernatants were prepared and analyzed. See the Examples for a detailed discussion of the experimental procedures.
[0046] FIG. 5A-B are data illustrating the inhibition of S. aureus-induced PARP cleavage by AP4-24H11. PARP cleavage in Jurkat cells after treating with supernatants from S. aureus RN4850 (A) and Wood 46 (B). Human Jurkat leukemic T cells were maintained in RPMI 1640 supplemented with 10% heat-inactivated fatal bovine serum, 10 mM .sub.(L)-glutamine, and 50 mg/mL of streptomycin and penicillin (GIBCO, Invitrogen Corp.). S. aureus supernatants were prepared as described in the Examples, and the supernatants of RN4850 were further concentrated to 1/3 of original volume using Amicon Ultra-4 (5,000 NMWL) centrifugal filter devices (MILLIPORE, Billerica Mass.). Confluent cells were distributed to 24-well plate in fresh medium (0.5 mL) and incubated for 6 hours before adding the S. aureus supernatants. After 4 hours incubation with the indicated amount of S. aureus supernatants, cell extracts were prepared and analyzed by Western blotting using anti-PARP antibody.
[0047] FIG. 6A-B are results showing the inhibition of S. aureus-induced abscess formation by AP4-24H11 in mice models. (A) S. aureus (1.times.10.sup.7)+PBS (upper panel); S. aureus (1.times.10.sup.7)+AP4-24H11 (0.6 mg) (lower panel). (B) S. aureus (1.times.10.sup.8)+Control mAb (0.6 mg) (upper panel); S. aureus (1.times.10.sup.8)+AP4-24H11 (0.6 mg) (lower panel).
[0048] FIG. 7A-D are results illustrating the inhibition of S. aureus-induced abscess formation by AP4-24H11 in mice models. SKH1 euthymic hairless mice (6-8 weeks old) received 200 .mu.L intradermal flank injections containing S. aureus (1.times.10.sup.8 bacteria), 4 .mu.L packed volume Cytodex beads, DPBS, mAb AP4-24H11 or control IgG (0.06 mg or 0.6 mg). Additional control animals received 200 .mu.L intradermal injections containing Cytodex beads or beads plus antibody. After injections were made the mice were monitored at least three times each day over a period of 4-7 days. At the conclusion of the monitoring period the mice were euthanized and tissues harvested for bacteriologic and histologic analysis. (A) S. aureus+PBS; (B) S. aureus+AP4-24H11 (0.06 mg); (C) S. aureus+AP4-24H11 (0.6 mg); (D) Cytodex+AP4-24H11 (0.6 mg).
[0049] FIG. 8 illustrate survival data obtained from passive immunization of mice with AP4-24H11 against S. aureus infection. Survival in mice that were pretreated with mAb AP4-24H11 or control IgG followed two hours later by S. aureus injection (3.times.10.sup.8 i.p.). The numbers in parenthesis show number of survivors/number per group. The log rank statistic, p=0.001; n=6 for each group.
[0050] FIG. 9 is result showing the suppression of .alpha.-hemolysin expression in the agr group I strains by anti-AP1 monoclonal antibodies.
[0051] FIG. 10A-B are the results of a biochemical evaluation of anti-AIP1 mAbs. A. .alpha.-hemolysin expression in agr I S. aureus RN6390B in the presence of anti-AIP1 mAbs (0.2 mg/mL). 1: AP1-2C2; 2: AP1-9A9; 3: AP1-9F9; 4: AP1-15B4; .dagger.: control mAb; .dagger-dbl.: no antibody. B. Static biofilm formation of S. aureus RN6390B in the presence of the anti-AIP1mAbs.
[0052] FIG. 11 is the result of a western analysis of the culture supernatants of S. aureus RN4850 grown in the presence of the human anti-AIP4 scFv 4-20 antibody for .alpha.-hemolysin expression.
[0053] FIG. 12 is the result of an experiment demonstrating the protection of mice from lethal MRSA USA300 challenge by mAb AP1-15B4. Mice were treated with AP1-15B4 (1 mg) or control IgG (1 mg) 2 hours after S. aureus injection (1-3.times.10.sup.8 i.p.). The numbers in parenthesis show survivors per group, p=0.02; n=6 for each group.
DETAILED DESCRIPTION OF THE INVENTION
[0054] The invention relates to the discovery that an antibody specific for the Staphylococcus aureus AP-4 signaling peptide can block quorum sensing and prevent Staphylococcal infection in mice. Thus, the invention provides an immunogenic molecular entity that can be used to elicit the production of an immune response against a native cyclic signaling peptide produced by a Gram-positive bacterium that regulates the expression of virulence factors through quorum sensing. The immunogenic molecular entity comprising at least one hapten, the hapten being covalently linked to an macromolecular carrier, optionally via a linker moiety, wherein the linker moiety is covalently bonded to the hapten and to the macromolecular carrier, the hapten comprising a cyclic peptide or an analog thereof, the cyclic peptide or analog thereof comprising a macrocyclic ring, wherein the cyclic peptide or analog thereof comprises about four to about nineteen amino acid residues as defined in the statements of the invention.
[0055] The invention also provides an antibody that binds specifically with a cyclic peptide signaling molecule. The antibody is a neutralizing antibody that can be used to inhibit quorum sensing in a mammal. In addition, the invention provides a composition that includes the immunogenic molecular entity or the neutralizing antibody, and a pharmaceutically-acceptable carrier. Additional embodiments of the invention include a method for eliciting an immune response in a mammal against a cyclic peptide signaling molecule, and a method of inhibiting bacterial quorum sensing in a mammal.
[0056] An immunogenic molecular entity of the invention is composed of a cyclic peptide or analog thereof covalently bonded to a macromolecular carrier, optionally via a linker moiety. The immunogenic molecular entity can be further included in a supramolecular assembly, such as a viral particle. Thus, an immunogenic molecular entity of the invention can elicit an immune response from an animal that has been administered the molecular entity. The animal can be, for example, any mammal, such as a goat, pig, rabbit, mouse, rat, horse, or human.
DEFINITIONS
[0057] As used herein, the term "immunogenic" refers to the suitability of a molecular entity to generate an immune response in a vertebrate animal, for example, in a mammal including a mouse, a rat, a primate, or a human. A molecular entity is immunogenic when it is of sufficient molecular size and possesses other necessary molecular properties to generate an immune response such that antibodies are produced by the animal challenged by the molecular entity. It is well known in the art that to be immunogenic, a molecular entity such as a protein must have a molecular weight of at least about 10 kDa.
[0058] By the term "molecular entity" is meant a molecule or assembly of molecules defined by a chemical structure or assembly of chemical structures respectively. For example, a molecular entity of the invention can be a carrier protein or other immunogenically competent polymer, such as a dendrimer, covalently coupled to a hapten, optionally by a linker moiety. A "supramolecular assembly" can be an assembly of different macromolecules including the immunogenic molecular entity, such as a viral infectious particle that comprises the immunogenic molecular entity. A supramolecular assembly can also be an virosome displaying the hapten portion of the immunogenic molecular entity on its external surface.
[0059] As used herein, a "hapten" is a molecular moiety or fragment that is by itself insufficient in molecular size or weight, for example, to stimulate an immune response in an animal. When coupled to a carrier, however, antibodies can be raised that bind specifically to the hapten.
[0060] As the term is used herein, a "cyclic peptide or analog thereof" refers to an organic structure formed at least in part of multiple amino acid residues or analogous units covalently linked in a linear oligomeric form, wherein the linear chain is further internally cyclized to create a macrocyclic ring. The linear oligomeric form comprises monomeric units, each monomeric unit made up of an amino acid residue, bonded in a linear manner, but with additional formation of a loop produced by covalent attachment of the carboxy-terminal amino acid residue of the linear chain to a sidechain of an internal amino acid residue. See, for example, FIG. 1.
[0061] The term "amino acid residue" is meant an amino acid or an analog thereof as it is covalently bonded in an oligomeric chain, for example, in a natural peptide as is well known in the art. An amino acid residue is also known as an "anhydro amino acid unit" due to the formation of an amide bond between the amino group or the carboxylic acid group of the amino acid residue and the carboxylic acid group or the amino group, respectively, of an adjacent amino acid residue in the oligomer. Both the amino group and the carboxylic acid group of an amino acid or an amino acid analog can be combined in amide or amide-analogous linkages with adjacent amino acid residues in an oligomer. However the cyclic peptide or analog thereof as referred to herein need not be composed only of the residues of naturally occurring amino acids.
[0062] While a cyclic peptide, as the term is used herein, can be formed of ribosomal amino acid residues, that is, the approximately 20 L-.alpha.-amino acids that can be coded in DNA without posttranslational modification, it can include enantiomeric D-amino acid forms of these natural amino acids, as well as unnatural amino acids such as amino acids bearing sidechains other than those of the approximately 20 ribosomal amino acids. A cyclic peptide can also include amino acids of types other than .alpha.-amino acids such as .beta.- or .gamma.-amino acids, or amino groups wherein the carboxylic acid and amino groups are separated by larger numbers of atoms. For example, the cyclic peptide or analog can include an amino acid wherein an alkyl amino group and a carboxylic acid group are separated by various lengths of polyethyleneglycol (PEG) chains or simple alkylene chains. All of these are considered "amino acid residues" within the meaning herein. Thus, a cyclic peptide or analog thereof of the present invention can be made from genetically encoded amino acids, naturally occurring non-genetically encoded amino acids, or synthetic amino acids. The amino acid notations used herein for the twenty genetically encoded L-amino acids and some examples of non-encoded amino acids are provided in Table 1:
TABLE-US-00001 TABLE 1 One-Letter Common Amino Acid Symbol Abbreviation Alanine A Ala Arginine R Arg Asparagine N Asn Aspartic acid D Asp Cysteine C Cys Glutamine Q Gln Glutamic acid E Glu Glycine G Gly Histidine H His Isoleucine I Ile Leucine L Leu Lysine K Lys Methionine M Met Phenylalanine F Phe Proline P Pro Serine S Ser Threonine T Thr Tryptophan W Trp Tyrosine Y Tyr Valine V Val A-Alanine Bala 2,3-Diaminopropionic Dpr acid A-Aminoisobutyric acid Aib N-Methylglycine MeGly (sarcosine) Ornithine Orn Citrulline Cit t-Butylalanine t-BuA t-Butylglycine t-BuG N-methylisoleucine MeIle Phenylglycine Phg Cyclohexylalanine Cha Norleucine Nle Naphthylalanine Nal Pyridylalanine 3-Benzothienyl alanine 4-Chlorophenylalanine Phe(4-Cl) 2-Fluorophenylalanine Phe(2-F) 3-Fluorophenylalanine Phe(3-F) 4-Fluorophenylalanine Phe(4-F) Penicillamine Pen 1,2,3,4-Tetrahydro- Tic isoquinoline-3-carboxylic acid A-2-thienylalanine Thi Methionine sulfoxide MSO Homoarginine Harg N-acetyl lysine AcLys 2,4-Diamino butyric acid Dbu N-Aminophenylalanine Phe(pNH.sub.2) N-methylvaline MeVal Homocysteine Hcys Homoserine Hser .alpha.-Amino hexanoic acid Aha .alpha.-Amino valeric acid Ava 2,3-Diaminobutyric acid Dab
[0063] Irrespective of the amino acid make up, the structure of the cyclic peptide or analog thereof includes a macrocyclic ring. As the term is used herein, a cyclic peptide or analog thereof contains a macrocyclic ring that includes the C-terminal amino acid residue covalently bonded to the sidechain of an amino acid residue that is situated within the chain, that is, an "internal" amino acid residue. Therefore the "immunogenic molecular entity" comprising a "cyclic peptide or analog thereof" can be conceptualized as a molecule having a "lasso" like loop form, wherein the loop of the lasso is free while the tail of the lasso is bonded to the macromolecular carrier. As described below, the tail of the lasso can be bonded to the macromolecular carrier by a linker moiety, as well as directly bonded.
[0064] A cyclic peptide or analog thereof, as used herein, can also include molecular segments that do not include amino acid residues. For example, spacer segments, such as polyethyleneglycol (PEG) segments, can be included in the cyclic peptide or analog. The spacer segment, typically disposed in the tail of the lasso-like loop, can serve to hold the hapten off the surface of the macromolecular carrier to increase its accessibility to antibodies.
[0065] The loop is completed by a set of covalently bonded atoms, referred to herein as a "macrocyclizing moiety" and shown as "R" in Formula (I), intervening between a carbonyl group of the C-terminal amino acid, that is, the carbonyl group of the amino acid's carboxyl group, and a carbon atom of an internal amino acid.
[0066] The "macrocyclizing moiety" as the term is used herein refers to a group of covalently bonded atoms which can include carbon, nitrogen, oxygen, sulfur and hydrogen that forms a bridge between the carboxy-terminal carbonyl group of the C-terminal amino acid residue and an atom, such as the alpha-carbon, of an internal amino acid residue. The macrocyclizing moiety can include amide bonds; for example, the moiety may be a group that includes a carboxylic acid group, that can be covalently bonded by an amide bond to an amino group of a sidechain of an internal amino acid residue, and can also include an amino group that can be covalently bonded by an amide bond to the carbonyl of the carboxylic acid group of the C-terminal amino acid residue. The macrocyclizing moiety, designated "R" in Formula (I), can also include other group types, such as ester, thioester, ether, thioether, carbonyl, olefin or hydrocarbon groups. The macrocyclizing moiety can contain any amide-surrogate group, or several such groups, for example, as are described in "Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins," volume 7, by Arno F. Spatola, (1983) Marcel Dekker, New York/Basel, which is incorporated herein by reference in its entirety. Amide surrogate groups can include ketones, amines, ethers, thioethers, sulfones, sulfoxides, sulfonamides, sulfonates, aryls, heteroaryls, alkyls, alkenyls, hydrazines, amidines, guanidines, ureas, thioureas, semicarbazides, boronates, phosphonates, and the like.
[0067] By a "macrocyclic ring" as the term is used herein is meant a ring formed entirely of covalently bonded atoms, wherein the ring size is greater than about 9 atoms. A macrocyclic ring can include up to 20 atoms, or 30 atoms, or more. The macrocyclic ring can include carbon-carbon bonds, as well as carbon-nitrogen, carbon-oxygen, carbon-sulfur, nitrogen-nitrogen, and other covalent bonds including atoms with valences greater than one. In the inventive cyclic peptide or analog thereof, the macrocyclic ring includes some atoms of at least three, and up to about 10, amino acid residues, as well as the macrocyclizing moiety described above that completes the macrocyclic ring structure.
[0068] An "macromolecular carrier" as the term is used herein refers to a macromolecular entity that is of sufficient size, in conjunction with the hapten bonded to it, to trigger the mounting of an immune response by an organism challenged by the composition. Typically, a hapten is bonded to a protein, for example, keyhole limpet hemocyanin, in order to trigger the immune response and bring about the formation of antibodies to the attached hapten by the challenged organism. Thus, the macromolecular carrier can be a protein, particularly a protein known as a good carrier for presentation of haptens, that is, where most of the antibodies raised have the hapten and not the carrier protein as their antigenic structures. However, the macromolecular carrier of the invention can be entities other than proteins. For example, the macromolecular carrier can comprise a dendrimer, such as a Multiple Antigen Peptide (MAP) dendrimer such as was developed by J. Tam et al., (see, for example Posnett, D., McGrath, H., and Tarn, J. P. "A novel method for producing anti-peptide antibodies". J. Biol. Chem. 263, 1719-1725 (1988), and Tam, J. P. "Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system" PNAS USA 85, 5409-5413 (1988), which are incorporated by reference herein in their entireties) for the presentation of haptens to immune systems. Such dendrimers, which can be formed by star polymerization of multifunctional monomers such as lysine, present multiple functional groups on the surface of a globular macromolecule to which haptens can be bonded.
[0069] Further, the macromolecular entity can be a part of a supramolecular assembly of macromolecules, such as a viral particle. For example, a phage display system can be used wherein the phage surface is adapted for covalent attachment of the cyclic peptide or an analog. Or, the macromolecular carrier can include a virosome, that is, a micellar structure formed of phospholipids, wherein membrane-spanning proteins are embedded and serve as the macromolecular carrier to which the hapten is attached.
[0070] A "linker moiety" as the term is used herein refers to a molecular segment that is incorporated between the cyclic peptide or analog thereof, and the macromolecular carrier. The hapten can include the linker moiety, which is introduced as a bifunctional reagent that can serve to couple the N-terminus of the cyclic peptide or analog to the carrier by reaction with both. It is understood that in some cases, a cyclic peptide or analog thereof can be directly coupled to a macromolecular carrier, such as a protein. For example, the N-terminal amino group of a cyclic peptide can be directly linked to a protein, for example a carboxylic acid group of a protein amino acid bearing an acidic sidechain such as aspartate or glutamate, by use of a dehydrating reagent such as EDC (ethyl dimethylaminopropyl carbodiimide) to form a direct amide bond without any intervening linker moiety. However, a linker reagent, consisting of a bifunctional reagent, as is well known in the art, can carry out the same function. The atoms of this linker reagent, when incorporated into the inventive immunogenic molecular entity, form the "linker moiety" as the term is used herein.
[0071] Many types of linker reagents are known to skilled artisans. Examples include reagents that have one functional group adapted to react with thiol groups, for example N-alkylmaleimide derivatives, that can react with an N-terminal cysteine or homocysteine residue of an inventive cyclic peptide or analog thereof. The linker also has a second functional group that is adapted to react with a group present on the surface of the macromolecular carrier, for example a carboxylate group or an amino group of an amino acid sidechain in a protein. For example, an N-hydroxysuccinimide ester of an acyl group can react to form an amide bond with a protein surface lysine residue. The two functional groups of the linker reagent are covalently bonded, usually through intervening atoms, such that reaction at the two ends serves to covalently couple the reactive molecules to each other via the linker moiety. Examples of linker chemistry can be found in the catalog of Pierce, P.O. Box 117, Rockford, Ill. 61105, which may be viewed at the website http://piercenet.com/products/browse.cfm?fldID-0203, the information of which is incorporated herein by reference. Some examples of linker reagents that can react to form linker moieties include MBS, sulfo-MBS, SMCC, or sulpho-SMCC, as are well known in the art.
[0072] The term "quorum sensing" refers to the phenomenon wherein certain bacterial species detect their own population levels and, when a certain population level is reached, initiate or amplify the expression of certain traits, such as secretion of virulence factors.
[0073] The term "immunogen" refers to the active ingredient of an active vaccine and can be a polypeptide, a hapten linked to a carrier as described herein or any macromolecular entity or assembly that is capable of eliciting an immune response in a mammal that has been exposed or come into contact with the immunogen.
[0074] An Immunogenic Molecular Entity of the Invention
[0075] The invention provides an immunogenic molecular entity comprising at least one hapten, the hapten being covalently linked to an macromolecular carrier, optionally via a linker moiety, the hapten comprising a cyclic peptide or an analog thereof, the cyclic peptide or analog thereof comprising a macrocyclic ring, wherein the cyclic peptide or analog thereof comprises about four to about nineteen amino acid residues, the cyclic peptide or analog thereof having a structure represented by Formula I:
##STR00006##
wherein each X is independently any amino acid residue; X.sup.1 is an amino acid residue that is covalently bonded to R by a respective carbonyl group; X.sup.a+2 is an internal amino acid, a respective carbon atom of which is covalently bonded to R; R is a macrocyclizing moiety that covalently connects X.sup.1 and X.sup.a+2 thereby forming the macrocyclic ring, wherein R comprises an ester, thioester, amide, carbamide, semicarbazide, or other amide-surrogate group, or any combination thereof; a is 1 to about 9; b is 1 to about 8; and a bond transected by a wavy line indicates a point of attachment of an N-terminal amino acid residue of the cyclic peptide or analog thereof to the macromolecular carrier, optionally via the linker moiety.
[0076] In one embodiment, the cyclic peptide or analog thereof includes structures of Formula (I) wherein a is 2-8, or alternatively a can be 2-4, and R comprises an alkyloxy or alkaryloxy, alkylthio, or alkylamino group covalently bonding X.sup.a+2 to the X.sup.1 carbonyl group, thereby providing an ester, thioester, or amide bond, respectively, to form a lactone, thiolactone, or lactam macrocyclic ring, respectively.
[0077] More specifically, the cyclic peptide or analog thereof includes structures of Formula (I), wherein R comprises --CH.sub.2O--, --CH.sub.2CH.sub.2O--, --CH.sub.2CH(CH.sub.3)O--, --CH.sub.2-phenyl-O--, --CH.sub.2S--, --CH.sub.2CH.sub.2S--, or --(CH.sub.2).sub.nNH-- wherein n is 1 to about 4. In these embodiments, the cyclic peptide or analog thereof can be viewed as including a macrocyclic ring wherein the carboxy-terminal carbonyl group is bonded to the sidechain of a serine, homoserine, threonine, or tyrosine residue respectively, forming a lactone ring; or to a sidechain of a cysteine or a homocysteine residue respectively, forming a thiolactone; or to a sidechain of a diaminopropropionate (n=1), diaminobutyrate (n=2), ornithine (n=3), or lysine (n=4) residue respectively, forming a lactam.
[0078] In another embodiment, the cyclic peptide or analog thereof includes structures of Formula (I), wherein a is 2-8, or alternatively a can be 2-4, and the macrocyclizing group R comprises at least one amide, urea, or semicarbazide group, or at least one amide-surrogate bond. For example, R can be represented by Formula (IIa) or Formula (IIb):
##STR00007##
wherein n is 1 to about 4, R.sup.1 is the sidechain of a naturally occurring amino acid or an analog thereof, a bond transected by a wavy line indicates a point of attachment, wherein the point of attachment designated (i) is bonded to the carbonyl group of X.sup.1 and the point of attachment designated (ii) is bonded to the alpha-carbon of X.sup.a+2. The sidechain of a naturally occurring amino acid can be the sidechain of any of the ribosomal amino acids, or analogs thereof. Thus the sidechain represented by R.sup.1 can be the sidechain of ribosomal amino acids like alanine, phenylalanine, histidine, methionine, asparagine, glutamine, tryptophan, etc. Alternatively the sidechain can be a structure analogous to these naturally occurring sidechains, for example, an ethyl group in place of an alanine methyl group, a phenethyl group in place of a phenylalanine benzyl group, and the like. An analog of an amino acid residue, or an amino acid sidechain, as the term is used herein, refers to a chemical structure that is not identical to the natural structure but differs only by addition of a short alkyl group, or addition of a substituents that does not change the fundamental physical properties of the sidechain. For example, an analog of alanine would include a fluorinated derivative of alanine such as trifluoroalanine, as the size, ionicity and hydrophobicity of the residue would not be greatly altered by the substitution.
[0079] A non-limiting example of formula (IIa) is:
##STR00008##
It is recognized that this R1 group corresponds to a methionine sidechain. Correspondingly, R can be a group of formula (IIb) bearing a methionine sidechain:
##STR00009##
[0080] In another embodiment according to the invention, the cyclic peptide or analog thereof can include hydrophobic C-terminal amino acid residues. For example, in one embodiment, X.sup.1 and X.sup.2 of Formula (I) are hydrophobic amino acid residues. More specifically, X.sup.1 and X.sup.2 can be independently selected from the group of amino acid residues consisting of alanine, valine, leucine, isoleucine, methionine, phenylalanine, tyrosine, or tryptophan, or analogs thereof. Yet more specifically, each of X.sup.1 and X.sup.2 can be independently methionine, leucine, phenylalanine, tyrosine, alanine, isoleucine, or tryptophan.
[0081] In further embodiments, the cyclic peptide or analog thereof can include sequences YST(X.sup.a+2)DFIM (SEQ ID NO: 92), YST(X.sup.a+2)YFIM (SEQ ID NO: 93), IN(X.sup.a+2)DFLL (SEQ ID NO: 94), GVNA(X.sup.a+2)SSLF (SEQ ID NO: 95), GVNP(X.sup.a+2)GGWF (SEQ ID NO: 96), KAKT(X.sup.a+2)TVLY (SEQ ID NO: 97), KTKT(X.sup.a+2)TVLY (SEQ ID NO: 98), GANP(X.sup.a+2)OLYY (SEQ ID NO: 99), GANP(X.sup.a+2)ALYY (SEQ ID NO: 100), GYST(X.sup.a+2)SYYF (SEQ ID NO: 101), GYRT(X.sup.a+2)NTYF (SEQ ID NO: 102), YNP(X.sup.a+2)VGYF (SEQ ID NO: 103), GGKV(X.sup.a+2)SAYF (SEQ ID NO: 104), SVKP(X.sup.a+2)TGFA (SEQ ID NO: 105), DSV(X.sup.a+2)ASYF (SEQ ID NO: 106), KYNP(X.sup.a+2)SNYL (SEQ ID NO: 107), KYNP(X.sup.a+2)ASYL (SEQ ID NO: 108), KYNP(X.sup.a+2)ANYL (SEQ ID NO: 109), RIPT(X.sup.a+2)TGFF (SEQ ID NO: 110), DI(X.sup.a+2)NAYF (SEQ ID NO: 111), DM(X.sup.a+2)NGYF (SEQ ID NO: 112), KYNP(X.sup.a+2)LGFL (SEQ ID NO: 113), KYYP(X.sup.a+2)FGYF (SEQ ID NO: 114), GARP(X.sup.a+2)GGFF (SEQ ID NO: 115), GAKP(X.sup.a+2)GGFF (SEQ ID NO: 116), YSP(X.sup.a+2)TNFF (SEQ ID NO: 117), YSP(X.sup.a+2)TNF (SEQ ID NO: 118), or QN(X.sup.a+2)PNIFGQWM (SEQ ID NO: 119), wherein the last amino acid residue of each sequence is X.sup.1, and (X.sup.a+2) is the internal amino acid to which the carbonyl group of X.sup.1 is covalently bonded via R.
[0082] In an embodiment, the cyclic peptide or analog thereof can mimic any of the sequences determined for naturally occurring cyclic peptide signaling molecule, as shown in the following Table:
TABLE-US-00002 Native cyclic Bacterium signaling peptides S. aureus I YSTCDFIM (SEQ ID NO: 120) S. aureus II GVNACSSLF (SEQ ID NO: 121) S. aureus III INCDFLL (SEQ ID NO: 122) S. aureus IV YSTCYFIM (SEQ ID NO: 123) S. arlettae GVNPCGGWF (SEQ ID NO: 124) S. auricularis I KAKTCTVLY (SEQ ID NO: 125) S. auricularis II KTKTCTVLY (SEQ ID NO: 126) S. capitis I GANPCOLYY (SEQ ID NO: 127) S. capitis II GANPCALYY (SEQ ID NO: 128) S. caprae I GYSTCSYYF (SEQ ID NO: 129) S. caprae II GYRTCNTYF (SEQ ID NO: 130) S. carnosus YNPCVGYF (SEQ ID NO: 131) S. cohnii ssp. GGKVCSAYF (SEQ ID NO: 132) cohnii S. cohneii ssp. SVKPCTGFA (SEQ ID NO: 133) urealyticum S. epidermis I DSVCASYF (SEQ ID NO: 134) S. epidermis II KYNPCSNYL (SEQ ID NO: 135) S. epidermis III KYNPCASYL (SEQ ID NO: 136) S. epidermis IV KYNPCANYL (SEQ ID NO: 137) S. intermedius RIPTSTGFF (SEQ ID NO: 138) S. lugdunensis I DICNAYF (SEQ ID NO: 139) S. lugdunensis II DMCNGYF (SEQ ID NO: 140) S. simulans I KYNPCLGFL (SEQ ID NO: 141) S. simulans II KYYPCFGYF (SEQ ID NO: 142) S. gallinarum VGARPCGGFF (SEQ ID NO: 143) S. xylosus GAKPCGGFF (SEQ ID NO: 144) S. warneri YSPCTNFF (SEQ ID NO: 145) (RN 833) E. faecalis QNSPNIFGQWM (SEQ ID NO: 146) NOTE: the alpha-carbonyl group of the underlined residue forms a thiolactone bond with the sulfhydryl group of the bolded internal cysteine residue
[0083] The cyclic peptides and analogs thereof of the hapten can be synthesized in linear form using standard solid phase peptide synthesis techniques, wherein the sidechain of the internal amino acid residue to which the X.sup.1 carbonyl group will be bonded either directly or through a more complex macrocyclizing moiety, such as the groups of Formulas (IIa) and (III)), is appropriately blocked, such that selective deblocking of this amino acid residue sidechain can be achieved. The selectively deblocked sidechain can then be reacted either directly with the C-terminal carboxyl group, thereby bonding the sidechain to the C-terminal carbonyl wherein the sidechain is represented by the R group of Formula (I), or can be reacted with the more complex macrocyclizing moiety to form the macrocyclic ring therethrough. Synthetic examples are provided below.
[0084] The macromolecular carrier to which the hapten is covalently bonded or coupled is of sufficient size, molecular weight, and composition to stimulate an immune response in an animal challenged with the hapten-carrier complex. The hapten, including the cyclic peptide or cyclic peptide analog, can be directly coupled to the macromolecular carrier. For example, a covalent bond can be formed between a functional group of the carrier such as a carboxylic acid and a functional group of the cyclic peptide or analog, such as between an N-terminal amino group, using an amide-forming reagent such as EDC (ethyl dimethylaminopropyl carbodiimide), optionally with N-hydroxysuccinimide. Alternatively, an N-terminal amino acid residue of the cyclic peptide can have carboxylic functionality, for example the N-terminal residue can be an aspartate or glutamate residue. In that case it can be directly coupled to an amino group on the carrier, using the same chemical synthesis approach. The amino group can be present, for example, in the sidechain of a lysine residue on the surface on a protein. Alternatively, an amino group to which the peptide carboxylate can be coupled could be on the surface of a synthetic dendrimer, such as a MAP structure. Other schemes for direct coupling of the cyclic peptide or analog thereof to a macromolecular carrier will be apparent to those of ordinary skill in the art.
[0085] The macromolecular carrier can comprise a polypeptide. For example, the macromolecular carrier can be a protein, and nonlimiting examples of such suitable carrier proteins include keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA), rabbit serum albumin (RSA), human serum albumin (HAS), Concholepas concholepas hemocyanin (CCH), cholera toxin B subunit, E. coli labile toxin B subunit, Diphtheria toxoid, tetanus toxoid, tetanus toxin C-fragment, recombinant Pseudomonas aeruginosa exoprotein A, CRM197 (cross-reactive material), cationized bovine serum albumin (cBSA), Thyroglobulin (Tg), avidin, bovine thyroglobulin (BTG), bovine G globulin, bovine immunoglobulin G (BigG), conalbumin (CONA), colloidal gold, edestin, Paralithodes camtschatica heamocyanin (HC), helix promatia haemocyanin (HPH), soybean kunitz trypsin inhibitor (KTI), Limulus polyphemus heamocyanin (LPH), ovalbumin (OA), Pam3Cys-Th (lipopeptide/Th cell epitope), polylysine, porcine thyroglobulin (PTG), purified protein derivative (PPD), soybean trypsin inhibitor (STI), or sunflower globulin (SFG). Thus, in some embodiments, the immunogenic molecular entity comprises a hapten covalently linked to a polypeptide such as, without limitation, the above exemplified polypeptides.
[0086] The macromolecular carrier can be a polymer, such as a linear polymer adapted for covalent attachment of haptens, or can be another type of synthetic carrier such as, for example, a dendrimer. A dendrimer produced by star polymerization of monomers with more than two reactive groups can be adapted to provide functional groups to which a synthetic cyclic peptide or analog thereof can be coupled using chemistry known to those of skill in the art. For example, a MAP dendrimer, which provides multiple amino groups on its surface, can be coupled to a sidechain carboxyl group of an N-terminal amino acid residue of an inventive cyclic peptide. See, for example, Sakarellos-Daitsiotis et al., Current Topics in Medicinal Chemistry 6:1715-35 (2006); Saupe et al., Expert Opin. Drug. Deliv. 3:345-354 (2006); McDermott et al., Immunology and Cell Biology 76: 256-62 (1998); and Shahiwala et al., Recent Patents on Drug Delivery & Formulation 1:1-9 (2007).
[0087] In another embodiment, the immunogenic molecular entity can include a linker moiety, disposed between the cyclic peptide or analog, and the macromolecular carrier. A linker moiety can be used to physically separate the domain(s) of the hapten for which antibodies are desired to be specific, i.e., the cyclic peptide or analog, from the surface of the macromolecular carrier. A linker moiety can be derived from a linker reagent, such as MBS (m-maleimidobenzoyl N-hydroxysuccinimide ester), sulfo-MBS (m-maleimidobenzoyl N-hydroxy-2-sulfosuccinimide ester), SMCC (succinimidyl 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate), sulfo-SMCC (2-sulfosuccinimidyl 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate), as are well known in the art. Reaction of the linker reagent with the cyclic peptide and with the carrier yield the linker moiety coupled to both. For example, the linker reagents recited above are adapted to couple a thiol-containing N-terminal amino acid residue of the cyclic peptide and an amino group of the macromolecular carrier through addition of the thiol group to the maleimide group, and by acylation of the carrier amino group with the N-hydroxy ester group. Other linker reagents are adapted to react in different ways with different groups. Other types of structures can be included within linker moieties. For example a linker moiety can include adipic acid dihydrazide (ADH), a spacer peptide, hydroxymethyl hemisuccinate, or a polyethyleneglycol derivative. It is within ordinary skill to select a linker reagent adapted to react with the particular cyclic peptide N-terminus and with the particular macromolecular carrier in the desired manner.
[0088] The macromolecular carrier and covalently bound hapten can be included within a supramolecular assembly. The supramolecular assembly can be a liposome or virosome, that is, a micellar structure including membrane-spanning proteins. See, for example, Westerfeld & Zurbriggen, J. Peptide Sci. 11:707-712 (2005) and Felnerova et al., Current Opinion in Biotechnology 15:518-29 (2004). The supramolecular assembly can be a virus particle, such as in a phage display system, wherein a bacteriophage is adapted to express surface functional groups.
[0089] In other embodiments, the macromolecular carrier and covalently bound hapten need not be included within a supramolecular assembly to be immunogenic.
[0090] Specific examples of immunogenic molecular entities of the invention are shown below for exemplary purposes:
##STR00010##
wherein CPL is a macromolecular carrier with optional linker covalently bonded to a cysteine thiol group. It can be seen in these examples that the macrocyclic ring includes a lactone group that is formed between an internal serine amino acid residue and the carboxy terminus, which is a methionine, phenylalanine, or leucine residue. The macrocyclic ring of each of these examples includes five amino acid residues, four additional natural amino acid residues, a synthetic amino acid residue comprising a PEG group, and an N-terminal cysteine residue bonded via an optional linker group to a macromolecular carrier, for example a macromolecular polypeptide. These compositions exemplify structures that can be used to induce antibody formation in an animal, wherein at least some of the antibodies formed in response are specific for the cyclic peptide analog of the hapten.
[0091] The immunogenic molecular entity of the invention can be used to screen a recombinant combinatorial immunoglobulin library (for example, an antibody phage display library) for an antibody specific for a native cyclic signaling peptide. For example, an immunogenic molecular entity of the invention that has a hapten corresponding to the lactone, lactam, carbamide or semicarbazide analog of the S. aureus AIP IV cyclic signaling peptide, can be used to screen a recombinant combinatorial immunoglobulin library for an antibody that will bind specifically with the AIP IV cyclic signaling peptide. Uses of an antibody that will bind specifically with a cyclic signaling peptide are discussed below.
[0092] A immunogenic molecular entity of the invention can also be used to elicit an immune response in a mammal directed against selected cyclic signaling peptide. For example, an immunogenic molecular entity of the invention that has a hapten corresponding to the lactone, lactam, carbamide or semicarbazide analog of the S. aureus AIP IV cyclic signaling peptide, can be used to elicit an immune response against the AIP-IV cyclic signaling peptide in a mammal.
[0093] The resulting mammal can be a source of antibody specific for the cyclic signaling peptide. For example, antibodies against AIP-IV can be isolated from the blood of the mammal. In addition, antibody-producing cells can be isolated and used to make antibody-producing hybridomas for the production of monoclonal antibodies as discussed below.
[0094] The immunogenic molecular entity of the invention can also be used as a vaccine in that the immune response generated in the mammal can protect the mammal from infection by a Gram positive bacteria that utilizes the selected cyclic signaling peptide in quorum sensing and expression of virulence genes or prevent the mammal from developing a disease or condition associated with infection. For example, an immunogenic molecular entity of the invention that has a hapten corresponding to the lactone, lactam, carbamide or semicarbazide analog of the S. aureus AIP IV cyclic signaling peptide can be used to elicit an immune response against the AIP-IV cyclic signaling peptide such that the mammal is protected from developing a disease condition or complications associated with S. aureus virulence.
[0095] Uses of an immunogenic molecular entity of the invention are further described below, for example, in the Methods and EXAMPLES sections.
[0096] An Antibody of the Invention
[0097] An antibody of the invention is one that binds specifically with a cyclic signaling peptide. As used herein, the term "cyclic signaling peptide" refers to a cyclic peptide produced by a Gram positive bacterium that utilizes quorum sensing to regulate the expression of virulence genes. The cyclic signaling peptide is a signaling molecule that binds to a membrane-bound histidine kinase sensor molecule, which then interacts with an intracellular response regulator.
[0098] Cyclic signaling peptides are produced by Gram-positive bacteria that employ quorum sensing including, without limitation, various Staphylococci species and Enterococcus faecalis. Non-limiting examples of cyclic signaling peptides and the producer bacteria are provided in the following table. The signaling peptide is composed of an N-terminal tail and a thiolactone- or lactone-containing ring that is formed by reaction of the alpha-carboxyl group of the "C-terminal" amino acid residue (underlined) with the sidechain sulfhydryl or hydroxyl group of an internal amino acid (bolded).
TABLE-US-00003 Native cyclic Bacterium signaling peptides S. aureus I YSTCDFIM (SEQ ID NO: 120) S. aureus II GVNACSSLF (SEQ ID NO: 121) S. aureus III INCDFLL (SEQ ID NO: 122) S. aureus IV YSTCYFIM (SEQ ID NO: 123) S. arlettae GVNPCGGWF (SEQ ID NO: 124) S. auricularis I KAKTCTVLY (SEQ ID NO: 125) S. auricularis II KTKTCTVLY (SEQ ID NO: 126) S. capitis I GANPCOLYY (SEQ ID NO: 127) S. capitis II GANPCALYY (SEQ ID NO: 128) S. caprae I GYSTCSYYF (SEQ ID NO: 129) S. caprae II GYRTCNTYF (SEQ ID NO: 130) S. carnosus YNPCVGYF (SEQ ID NO: 131) S. cohnii ssp. GGKVCSAYF (SEQ ID NO: 132) cohnii S. cohneii ssp. SVKPCTGFA (SEQ ID NO: 133) urealyticum S. epidermis I DSVCASYF (SEQ ID NO: 134) S. epidermis II KYNPCSNYL (SEQ ID NO: 135) S. epidermis III KYNPCASYL (SEQ ID NO: 136) S. epidermis IV KYNPCANYL (SEQ ID NO: 137) S. intermedius RIPTSTGFF (SEQ ID NO: 138) S. lugdunensis I DICNAYF (SEQ ID NO: 139) S. lugdunensis II DMCNGYF (SEQ ID NO: 140) S. simulans I KYNPCLGFL (SEQ ID NO: 141) S. simulans II KYYPCFGYF (SEQ ID NO: 142) S. gallinarum VGARPCGGFF (SEQ ID NO: 143) S. xylosus GAKPCGGFF (SEQ ID NO: 144) S. warneri YSPCTNFF (SEQ ID NO: 145) (RN 833) E. faecalis QNSPNIFGQWM (SEQ ID NO: 146)
[0099] Thus, a cyclic signaling peptide can have a ring of three to eleven-amino acids and a tail of one to about nine amino acids. The ring structure is formed between the alpha-carbonyl group of the "C-terminal amino acid residue," that is the carboxy-terminal amino acid of a corresponding linear peptide, and an alkyloxy or alkylthio group on the sidechain of an internal serine or cysteine residue, in particular, the 4.sup.th, 5.sup.th, 6.sup.th, 7.sup.th, 8.sup.th or 9.sup.th residue from the carboxy-terminal amino acid. For example, the S. aureus AIP4 signaling molecule is a cyclic thiolactone peptide analog composed of the amino acid sequence YSTCYFIM (SEQ ID NO: 123). The cyclic thiolactone ring structure results from a bond between the alpha-carboxyl group of methionine (M), the "C-terminal amino acid residue," and the sulfhydryl group of cysteine HAS, the fifth amino acid from the "C-terminal" methionine (M) residue.
[0100] Thus, a cyclic signaling peptide can have a five-amino acid ring, for example, a thiolactone or lactone ring, and a linear two- to five-amino acid tail.
[0101] An antibody can be an immunoglobulin molecule or an immunologically-active fragment thereof that binds specifically with a particular antigen. An antibody of the invention is one that binds specifically with a native cyclic signaling peptide, or a hapten that includes the lactone, lactam, carbamide or semicarbazide analog of the cyclic signaling peptide. As used herein, the term "bind specifically" or "specifically binds" in reference to an antibody of the invention means that the antibody of the invention will bind with the cyclic signaling peptide or corresponding hapten, but does not substantially bind to other unrelated molecules including the carrier protein alone or other unrelated molecules that may be present with the immunogenic molecular entity, supramolecular assembly, or a biological sample from a mammal. For example, an antibody that binds specifically with an immunogenic molecular entity of the invention in which the hapten is a lactone, lactam, carbamide or semicarbazide analog of the S. aureus AIP IV cyclic peptide signaling molecule is one that will bind with the S. aureus AIP IV cyclic peptide, but will not bind substantially with the carrier alone or an unrelated molecule.
[0102] An antibody of the invention is also a neutralizing antibody. As used herein, the term "neutralizing antibody" refers to an antibody that will bind to a cyclic signaling peptide and prevent the binding of the cyclic signaling peptide with its membrane-associated receptor. The term "neutralizing antibody" also includes a cross-neutralizing antibody, an antibody that will bind to and prevent binding of at least two cyclic signaling peptides with their receptors, for example, cyclic signaling peptides from different agr groups. Whether an antibody is a neutralizing antibody can be determined using the methods known to those of skilled in the art including those described herein, for example, in the EXAMPLES section. The term
[0103] An antibody of the invention can be a polyclonal or monoclonal antibody. Polyclonal antibodies can be obtained by immunizing a mammal with an immunogenic molecular entity of the invention, and then isolating antibodies from the blood of the mammal using standard techniques including, for example, enzyme linked immunosorbent assay (ELISA) to determine antibody titer and protein A chromatography to obtain the antibody-containing IgG fraction.
[0104] A monoclonal antibody is a population of molecules having a common antigen binding site that binds specifically with a particular antigenic epitope. A monoclonal antibody can be obtained by selecting an antibody-producing cell from a mammal that has been immunized with an immunogenic molecular entity of the invention and fusing the antibody-producing cell, e.g. a B cell, with a myeloma to generate an antibody-producing hybridoma. A monoclonal antibody of the invention can also be obtained by screening a recombinant combinatorial library such as an antibody phage display library using, for example, an immunogenic molecular entity of the invention. See, for example, Barbas, C. F., 3.sup.rd, D. R. Burton, J. K. Scott, and G. J. Silverman, Phage Display--A Laboratory Manual. 2001, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; and Kontermann, R., Dubel, S., Antibody Engineering, 2001, Berlin, Heidelberg: Springer-Verlag
[0105] An immunologically-active fragment of an antibody is the biologically active fragment of an immunoglobulin molecule, for example, the F(ab) or F(ab').sub.2 fragment generated by cleavage of the antibody with an enzyme such as pepsin. An immunologically-active fragment can also be a single chain variable fragment (scFv) that results from the joining of the variable fragments of the heavy and light chains.
[0106] An antibody of the invention can also be a murine, chimeric, humanized or fully human antibody. A murine antibody is an antibody derived entirely from a murine source, for example, an antibody derived from a murine hybridoma generated from the fusion of a mouse myeloma cell and a mouse B-lymphocyte cell. A chimeric antibody is an antibody that has variable regions derived from a non-human source, e.g. murine or primate, and constant regions derived from a human source. A humanized antibody has antigen-binding regions, e.g. complementarity-determining regions, derived from a mouse source, and the remaining variable regions and constant regions derived from a human source. A fully human antibody is antibody from human cells or derived from transgenic mice carrying human antibody genes.
[0107] Methods to generate antibodies are well known in the art. For example, a polyclonal antibody of the invention can be prepared by immunizing a suitable mammal with an immunogenic molecular entity of the invention. The mammal can be, for example, a rabbit, goat, or mouse. At the appropriate time after immunization, antibody molecules can be isolated from the mammal, e.g. from the blood or other fluid of the mammal, and further purified using standard techniques that include, without limitation, precipitation using ammonium sulfate, gel filtration chromatography, ion exchange chromatography or affinity chromatography using protein A. In addition, an antibody-producing cell of the mammal can be isolated and used to prepare a hybridoma cell that secretes a monoclonal antibody of the invention. Techniques for preparing monoclonal antibody-secreting hybridoma cells are known in the art. See, for example, Kohler and Milstein, Nature 256:495-97 (1975) and Kozbor et al., Immunol Today 4: 72 (1983). A monoclonal antibody of the invention can also be prepared using other methods known in the art, such as, for example, expression from a recombinant DNA molecule, or screening of a recombinant combinatorial immunoglobulin library using an immunogenic molecular entity of the invention as discussed above.
[0108] Methods to generate chimeric and humanized monoclonal antibodies are also well known in the art and include, for example, methods involving recombinant DNA technology. A chimeric antibody can be produced by expression from a nucleic acid that encodes a non-human variable region and a human constant region of an antibody molecule. See, for example, Morrison et al., Proc. Nat. Acad. Sci, U.S.A. 86: 6851 (1984). A humanized antibody can be produced by expression from a nucleic acid that encodes non-human antigen-binding regions (complementarity-determining regions) and a human variable region (without antigen-binding regions) and human constant regions. See, for example, Jones et al., Nature 321:522-24 (1986); and Verhoeven et al., Science 239:1534-36 (1988). Completely human antibodies can be produced by immunizing engineered transgenic mice that express only human heavy and light chain genes. In this case, therapeutically useful monoclonal antibodies can then be obtained using conventional hybridoma technology, See, for example, Lonberg & Huszar, Int. Rev. Immunol. 13:65-93 (1995). Nucleic acids and techniques involved in design and production of antibodies are well known in the art. See, for example, Batra et al., Hybridoma 13:87-97 (1994); Berdoz et al., PCR Methods Appl. 4: 256-64 (1995); Boulianne et al. Nature 312:643-46 (1984); Carson et al., Adv. Immunol. 38:274-311 (1986); Chiang et al., Biotechniques 7:360-66 (1989); Cole et al., Mol. Cell. Biochem. 62:109-20 (1984); Jones et al., Nature 321: 522-25 (1986); Larrick et al., Biochem Biophys. Res. Commun. 160:1250-56 (1989); Morrison, Annu. Rev. Immunol. 10:239-65 (1992); Morrison et al., Proc. Nat'l Acad. Sci. USA 81: 6851-55 (1984); Orlandi et al., Pro. Nat'l Acad Sci. U.S.A. 86:3833-37 (1989); Sandhu, Crit. Rev. Biotechnol. 12:437-62 (1992); Gavilondo & Larrick, Biotechniques 29: 128-32 (2000); Huston & George, Hum. Antibodies. 10:127-42 (2001); Kipriyanov & Le Gall, Mol. Biotechnol. 26: 39-60 (2004).
[0109] Examples of monoclonal antibodies and single chain variable fragments of the invention are shown below, as well as their coding nucleotide sequences.
TABLE-US-00004 Amino Acid Sequences of the Variable Heavy and Light Chains of Murine Monoclonal Antibodies Anti- body Variable Heavy Chain Variable Light Chain AP1- EVHLVESGGDLVKPGGSLKLS DIVRTQSPLSLSVSLGDQASISC 15B4 CAASGFAFSDFAMSWVRQTPE RSSQSLLHSNGNTYLHWYLQKPG KRLEWVAIIKSDDSYTYYPDS QSPKLLIYKVSNRFSGVPDRFSG VRDRFTISRDNARNTLYLQMT SGSGTDFTLKISILEAEDLGIYF SLRSEDTALYYCTKIYDAYFY CSQSTHFPTFGGGTKLEIK AMDYWGQGTSVTVSS (SEQ ID NO: 147) (SEQ ID NO: 19) AP4- EVKPQESGPGLVKPSQSLSLT DIVMTQATLSLPVSLGDQASISC 24H11 CTVTGYSITSNYAWNWIRQFP RSSQRLVPSNGNIYLHWFLQKPG GNKLEWMGFISSYGTTTYNPS QSPKLLIYKLSSRFSGVPDRFSG LKSRFSITRDTSKNQFFLQLH SGSGTDFTLKISRVESEDLGIYF SVTIEDTGTYFCTREGDYWGQ CSQTTHVPYTFGGGTKLEIK GTTLTVSS (SEQ ID NO: 148) (SEQ ID NO: 20) AP4- EVQLQQSGPELEKPGASVKIS DIVMTQATASLTVSLGQRATISC 29E10- CKASGHSFTGYNMNWVKQSND RASKSVSTSGYSYMHWYQQKPGQ 1 KSLEWIGNIAPYYGVTAYNQK PPKLLIYLASNLESGVPARFSGS FKGKATLTGDKSSSTAYMQLK GSGTDFTLNIHPVEEEDAATYYC SLASEDSAVYYCVLDTSGYAS QHSREVPYTFGGGTKLELK WGQGTLVTVSA (SEQ ID NO: 149) (SEQ ID NO: 21) AP4- QVQLQQSGPELEKPGASVKIS DIEMTQITASLTVSLGQRATISC 29E10- CKASGHSFTGYNMNWVKQSND RASKSVSTSGYSYMHWYQQKPGQ 2 KSLEWIGNIAPYYGVTAYNQK PPKLLIYLASNLESGVPARFSGS FKGKATLTGDKSSSTAYMQLK GSGTDFTLNIHPVEEEDAATYYC SLTSEDSAVYYCVLDTSGYAS QHSREVPYTEGGGTKLELK WGQGTLVTVSA (SEQ ID NO: 150) (SEQ ID NO: 22) AP1- GGDLVKPGGSLKLSCAASGFA PLSLSVSLGDQASISCRSSQSLL 15B4- FSDFAMSWVRQTPEKRLEWVA HSNGNTYLHWYLQKPGQSPKLLI .DELTA. IIKSDDSYTYYPDSVRDRFTI YKVSNRFSGVPDRFSGSGSGTDF SRDNARNTLYLQMTSLRSEDT TLKISILEAEDLGIYFCSQSTHF ALYYCTKIYDAYFYAMDYWGQ PTFGGGT GTS (SEQ ID NO: 23) (SEQ ID NO: 151) AP4- GPGLVKPSQSLSLTCTVTGYS TLSLPVSLGDQASISCRSSQRLV 24H11- ITSNYAWNWIRQFPGNKLEWM PSNGNIYLHWFLQKPGQSPKLLI .DELTA. GFISSYGTTTYNPSLKSRFSI YKLSSRFSGVPDRFSGSGSGTDF TRDTSKNQFFLQLHSVTIEDT TLKISRVESEDLGIYFCSQTTHV GTYFCTREGDYWGQGTT PYTFGGGT (SEQ ID NO: 24) (SEQ ID NO: 152) AP4- GPELEKPGASVKISCKASGHS TASLTVSLGQRATISCRASKSVS 29E10- FTGYNMNWVKQSNDKSLEWIG TSGYSYMHWYQQKPGQPPKLLIY 1-.DELTA. NIAPYYGVTAYNQKFKGKATL LASNLESGVPARFSGSGSGTDFT TGDKSSSTAYMQLKSLASEDS LNIHPVEEEDAATYYCQHSREVP AVYYCVLDTSGYASWGQGTL YTFGGGT (SEQ ID NO: 25) (SEQ ID NO: 153) AP4- GPELEKPGASVKISCKASGHS TASLTVSLGQRATISCRASKSVS 29E10- FTGYNMNWVKQSNDKSLEWIG TSGYSYMHWYQQKPGQPPKLLIY 2-.DELTA. NIAPYYGVTAYNQKFKGKATL LASNLESGVPARFSGSGSGTDFT TGDKSSSTAYMQLKSLTSEDS LNIHPVEEEDAATYYCQHSREVP AVYYCVLDTSGYASWGQGTL YTFGGGT (SEQ ID NO: 26) (SEQ ID NO: 154)
TABLE-US-00005 Nucleic Acid Sequences Encoding the Variable Heavy and Light Chains of Murine Monoclonal Antibodies Anti- body Variable Heavy Chain Variable Light Chain AP1- gaggtgcacctggtggagtctgggggagacttagtgaagcctgggggg gacattgtgaggacacagtctccactctccctgtctgtcagtcttg 15B4 tccctcaaactctcctgtgcagcctctggattcgctttcagtgacttt gagatcaagcctccatctcttgtagatctagtcagagccttttaca gccatgtcttgggttcgccagactccggagaagaggctggagtgggtc cagtaatggaaacacctatttacattggtacctgcagaagccaggc gcaatcattaaaagtgatgattcttacacctactatccagacagtgtg cagtctccaaaactcctgatctacaaagtttccaaccgattttctg agggaccgattcaccatctccagagacaatgccaggaacaccctttac gggtcccagacaggttcagtggcagtggatcagggacagatttcac ctgcaaatgaccagtctgaggtctgaagacacggccttgtattactgt actcaagatcagcatattggaggctgaggatctgggaatttatttc acaaaaatctatgatgcttacttctatgctatggactactggggtcaa tgctctcaaagtacacattttccgacgttcggtggaggcaccaagc ggaacctcagtcaccgtctcctcg tggaaataaaa (SEQ ID NO: 27) (SEQ ID NO: 155) AP4- gaggtgaagcctcaggagtcaggacctggcctggtgaaaccttctcag gacattgtgatgactcaggctacactctccctgcctgtcagtcttg 24H11 tctctgtccctcacctgcactgtcactggctactcaatcaccagtaat gagaccaagcctccatctcttgcagatccagtcagcgccttgttcc tatgcctggaactggatccggcagtttccaggaaacaaactggagtgg cagtaatggaaacatttatttacattggttcctgcagaagccaggc atgggcttcataagttcctatggaaccactacctacaacccttctctc cagtctccaaagctcctgatctacaaactttccagtcgattttctg aaaagtcgattctctatcactcgagacacatccaagaaccagttcttc gggtcccagacaggttcagtggcagtggatcagggacagatttcac ctgcaattgcattctgtgactattgaggacacaggcacatatttctgt actcaagatcagcagagtggagtctgaggatctgggaatttatttc acaagagagggtgactactggggccaaggcaccactctcacagtctcc tgctctcaaactacacatgttccatacacgttcggaggggggacca tca agctggaaatcaaa (SEQ ID NO: 28) (SEQ ID NO: 156) AP4- gaggtccagctgcaacagtccggacctgagctggagaagcctggcgct gacattgtgatgactcaggctactgcttccttaactgtatctctgg 29E10- tcagtgaagatatcctgcaaggcttctggtcattcattcactggctac ggcagagggccaccatctcatgcagggccagcaaaagtgtcagtac 1 aacatgaactgggtgaagcagagcaatgacaagagccttgagtggatt atctggctatagttatatgcactggtaccaacagaaaccaggacag ggaaatattgctccttactatggtgttactgcctacaaccagaagttc ccacccaaactcctcatctatcttgcatccaacctagaatctgggg aagggcaaggccacattgactggagacaaatcctccagcactgcctac tccctgccaggttcagtggcagtgggtctgggacagacttcaccct atgcagctcaagagcctggcatctgaggactctgcagtctattactgt caacatccatcctgtggaggaggaggatgctgcaacctattactgt gtcctagacacctcgggctacgcttcctggggccaagggactctggta cagcacagtagggaggttccgtacacgttcggaggggggaccaagc actgtctctgca tggagctgaaa (SEQ ID NO: 29) (SEQ ID NO: 157) AP4- caggtccagctgcagcagtctgggcctgagctggagaagcctggcgct gacattgagatgacccagattactgcttccttaactgtatctctgg 29E10- tcagtgaagatatcctgcaaggcttctggtcattcattcactggctac ggcagagggccaccatctcatgcagggccagcaaaagtgtcagtac 2 aacatgaactgggtgaagcagagcaatgacaagagccttgagtggatt atctggctatagttatatgcactggtaccaacagaaaccaggacag ggaaatattgctccttactatggtgttactgcctacaaccagaagttc ccacccaaactcctcatctatcttgcatccaacctagaatctgggg aagggcaaggccacattgactggagacaaatcctccagcactgcctac tccctgccaggttcagtggcagtgggtctgggacagacttcaccct atgcagctcaagagcctgacatctgaggactctgcagtctattactgt caacatccatcctgtggaggaggaggatgctgcaacctattactgt gtcctagacacctcgggctacgcttcctggggccaagggactctggtc cagcacagtagggaggttccgtacacgttaggaggggggaccaagc actgtctctgca tggagctgaaa (SEQ ID NO: 30) (SEQ ID NO: 158) AP1- gggggagacttagtgaagcctggggggtccctcaaactctcctgtgca ccactctccctgtctgtcagtcttggagatcaagcctccatctctt 15B4-.DELTA. gcctctggattcgctttcagtgactttgccatgtcttgggttcgccag gtagatctagtcagagccttttacacagtaatggaaacacctattt actccggagaagaggctggagtgggtcgcaatcattaaaagtgatgat acattggtacctgcagaagccaggccagtctccaaaactcctgatc tcttacacctactatccagacagtgtgagggaccgattcaccatctcc tacaaagtttccaaccgattttctggggtcccagacaggttcagtg agagacaatgccaggaacaccctttacctgcaaatgaccagtctgagg gcagtggatcagggacagatttcacactcaagatcagcatattgga tctgaagacacggccttgtattactgtacaaaaatctatgatgcttac ggctgaggatctgggaatttatttctgctctcaaagtacacatttt ttctatgctatggactactggggtcaaggaacctca ccgacgttcggtggaggcacc (SEQ ID NO: 31) (SEQ ID NO: 159) AP4- ggacctggcctggtgaaaccttctcagtctctgtccctcacctgcact acactctccctgcctgtcagtcttggagaccaagcctccatctctt 24H11- gtcactggctactcaatcaccagtaattatgcctggaactggatccgg gcagatccagtcagcgccttgttcccagtaatggaaacatttattt .DELTA. cagtttccaggaaacaaactggagtggatgggcttcataagttcctat acattggttcctgcagaagccaggccagtctccaaagctcctgatc ggaaccactacctacaacccttctctcaaaagtcgattctctatcact tacaaactttccagtcgattttctggggtcccagacaggttcagtg cgagacacatccaagaaccagttcttcctgcaattgcattctgtgact gcagtggatcagggacagatttcacactcaagatcagcagagtgga attgaggacacaggcacatatttctgtacaagagagggtgactactgg gtctgaggatctgggaatttatttctgctctcaaactacacatgtt ggccaaggcaccact ccatacacgttcggaggggggacc (SEQ ID NO: 32) (SEQ ID NO: 160) AP4- ggacctgagctggagaagcctggcgcttcagtgaagatatcctgcaag actgcttccttaactgtatctctggggcagagggccaccatctcat 29E10- gcttctggtcattcattcactggctacaacatgaactgggtgaagcag gcagggccagcaaaagtgtcagtacatctggctatagttatatgca 1-.DELTA. agcaatgacaagagccttgagtggattggaaatattgctccttactat ctggtaccaacagaaaccaggacagccacccaaactcctcatctat ggtgttactgcctacaaccagaagttcaagggcaaggccacattgact cttgcatccaacctagaatctggggtccctgccaggttcagtggca ggagacaaatcctccagcactgcctacatgcagctcaagagcctggca gtgggtctgggacagacttcaccctcaacatccatcctgtggagga tctgaggactctgcagtctattactgtgtcctagacacctcgggctac ggaggatgctgcaacctattactgtcagcacagtagggaggttccg gcttcctggggccaagggactctg tacacgttcggaggggggacc (SEQ ID NO: 33) (SEQ ID NO: 161) AP4- gggcctgagctggagaagcctggcgcttcagtgaagatatcctgcaag actgcttccttaactgtatctctggggcagagggccaccatctcat 29E10- gcttctggtcattcattcactggctacaacatgaactgggtgaagcag gcagggccagcaaaagtgtcagtacatctggctatagttatatgca 2-.DELTA. agcaatgacaagagccttgagtggattggaaatattgctccttactat ctggtaccaacagaaaccaggacagccacccaaactcctcatctat ggtgttactgcctacaaccagaagttcaagggcaaggccacattgact cttgcatccaacctagaatctggggtccctgccaggttcagtggca ggagacaaatcctccagcactgcctacatgcagctcaagagcctgaca gtgggtctgggacagacttcaccctcaacatccatcctgtggagga tctgaggactctgcagtctattactgtgtcctagacacctcgggctac ggaggatgctgcaacctattactgtcagcacagtagggaggttccg gcttcctggggccaagggactctg tacacgttcggaggggggacc (SEQ ID NO: 34) (SEQ ID NO: 162)
TABLE-US-00006 Amino Acid Sequences of Human scFv Antibodies AP1-2 QVQLVQSGAEVKKPGESLRISCKGSGYSFTSHWISWVRQMPGKGLEWMGRIDPSDSYSNYSPSFQGHV- IISVDKSISTAYLQWSSLKASDTAIYY CARQLIVVVPAAPYYYYYYGMDVWGQGTLVTVSSGGGGSGGGGSSGGGSEIVLTQSPGTLSLSPGERATLSCR- ASQTVNSYLAWYQKPGQAPRLL IYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSHPWTFGQGTKVEIK (SEQ ID NO: 35) AP1-6 QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRV- TITADESTSTAYMELSSLRSEDTAIYY CARVFGSESQDPSDIWSGYYGMEVWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSVSASVGDRVTITC- RASQGISSWLAWYQQKPGKAPK LLIYAASSLQSRVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPYTFGQGTKLEIK (SEQ ID NO: 36) AT1-8 QVQLVESGAEAKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRV- TITADESTSTAYMELSSLRSEDTAVYYC ARAGITGTTAPPDYWGQGTLVTVSSGGGGSGGGGSGGGGSVIWMTQSPSSLSASVGDRVTITCRASQSISSYL- NWYQRKPGKAPKLLIYAASSLQS GVTSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGQGTKLEIK (SEQ ID NO: 37) AP1-11 QVQLVQSGSELKKPGASVKLSCRASGYTFTSYSMVWVRQAPGEGLEWMGGINTNTGNPTYAQGFTER- FVFSFDSSVSTAYLQISSLKAEDTAVYY CARDWAYSGSWPLGQNPSDHWGQGTLVTVSSGGGGSGGGGSGGGGSEIVMTQSPATLSVSPGERATLSCRASQ- SVSRNLAWYQQKPGQAPRLLIY DTSTRATGIPARFSGSGSGTEFTLTISSLQSEDSAVYYCQQYNIWPPLTFGGGTKVEIK (SEQ ID NO: 38) AP1-15 QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYRTWIRQSPVKGLEWIGEVNDRGSPNYNPSFKSRL- TISIDTSKNLSLKLRFMTAADTAVYSCA RIRPRYGMDVWGQGTMVTVSSGGGGSGGGGSSGGGSDIVMTQTPLSSPVTLGQPASISCRSSQSLVHSDGNTY- LTWFHQRPGQPPRVLIHKVSNL FSGVPDRFSGSGAGTDFTLKISRVEAEDVGVYYCMQATQLYTFGQGTKVEIK (SEQ ID NO: 39) AP1-16 EVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETISAQKFQGR- VTMTEDTSTDTAYMDLSSLRSEDTAVYYC ATQRLCSGGRCYSHFDYWGQGTTVTVSSGGGGSGGGGSGGGGSETTLTQSPAIMSASPGERVTMTCSASSSIR- YIYWYQQKPGSSPRLLIYDTSNV APGVPFRFSGSGSGTSYSLTINRMEAEDAATYYCQEWSGYPYTFGGGTKVEIK (SEQ ID NO: 40) AP1-19 QMQLVQSGAEVKKPGSSVKVSCKASGGTFNTYVISWVRQAPGQGLEWMGWISAYNGNTNYAQKLQGR- VTMTTDTSTSTAYMELRSLRSDDTAVYY CARVWSPLDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNMN- YLAWYQQKPGQPPKLLIYWAST RESGVPDRFSGSGSGTDFTLTISSLQAEDAAVYYCQQYYSTPPTFGQGTKLEIK (SEQ ID NO: 41) AP3-1 QVQLVQSGAEVKKPGASVKVSCKGSGYTFTGYYMHWVPQAPGQGLEWMGWINPNNGGTNYDQKFQGRV- AMTRDTSISTAYMELSRLRSDDTAVYY CARDNGRVTTGGYWGQGTLVTVSSGGGGSGGGGSSGGGSQSVLTQPPSLSGAPGQSVTISCAGTSSSIGAGYD- VQWYQQLPGKTPKLLIYGNDNR PSGVPDRFSGSRSYTSASLVITRVQIEDEADYYCQSYDSSLIGPQFGGGTKLTVLG (SEQ ID NO: 42) AP3-2 QVQLVQSGAEVKKPGESLKISCTASGYNFASYWIGWVRQMPGQGLEWMGITYPGDSDTRYSPSFQGQV- TISADKSISTAYLQWSSLKASDTATYY CVRRVPLYTNNHYLDYWGQGTLVTVSSGGGGSGGGGSGGGGSAIQMTQSPSSLSASVGDRVTITCRASQGISN- YLAWFQQKPGKAPKSLIYAASS LQSGVPSKYSGSGSGTDFTLTISSLQPEDFATYYCQQYKSYPLTFGGGTKVEIK (SEQ ID NO: 43) AP3-3 EVQLVQSGAEVKKPGASVKVSCKASGYTFSDYFMHWVRQAPGQGLEWMGVINPTGGSTTYAQSFQGRV- TMTRDTSTSIVYMELSSLRSEDTAVYY CTRVGYYGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQSPSTLSASVGDRVTITCRASQSTSRFLNWY- QQKPGKAPKLLIYAASSLHSGV PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTSSYPLTFGGGTKVEIK (SEQ ID NO: 44) AP3-5 QVQLVQSGGGVVQVGRSLRLSCAASGFTFTNFGMHWVRQAPGKGLEWVALISSDGYRQAYADSVKGRF- TISGDNSKNTVYLQMNSLTSEDTAVYY CAIIPPVLRIFDWEFDYWGQGTLVTVSSGGGGSGGGGSGGGGSETTLTQSPGTLSLSPGERATLSCRASQSVS- SPYLAWYQQKPGQAPRLLIYGA SNRATGIPDRFSGSGSGTDFTLTISSLQAEDEAVYYCQQYYNTPLTFGGGTKVEIK (SEQ ID NO: 45) AP3-6 QVQLQQWGAGLLKPSETLSLTCAVYSGSFTRDYWGWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVT- TSVDKSKNQFSLKLTSVTAADTAVYYC ARRRLSSDLFMRGVGGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQTPGTLSSSPGERATLSCRASQG- VSSNLAWYQQKPGQAPRLLIYD ASNRATGIPLRFSGSGSGTDFTLTISRLEPEDFAVYYCHQYGSSPYTFGQGTKVEIK (SEQ ID NO: 46) AP3-8 EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQASGQGLEWMGWISAYNGNTNYAQKLQGRV- TMTTDTSTSTAYMELRSLRSDDTAVYY CARVPRYFDWLLYGSDYFDYWGQGTLVTVSSGGGGSGGGGSSGGGSDIQMTQSPSTLSVSVGDRVTITCRASQ- GISSWLAWYQQKPGKAPKLLIY AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPLTFGGGTKLEIK (SEQ ID NO: 47) AP3-10 QVQLVQSGAEVKEPGSSVKVSCKASGGTFSSYAIYWVRQAPGQGLEWMGWIIPILGIANYAQKFQGR- VTITADKSTSTAYMELSSLRSEDTAVYYC ARAAGHSTNYYYYGMDVWGQGTLVTVSSGGGGSGGGGSSGGGSQTVVTQEPSLTVSLGGTVTLTCGSSTGAVT- SGHypyWFQQKPGQAPRTLIYDT SNKHSWTPARFSGSLLGGKAALTLSGAQPEDEAEYYCLLSYSGTRVFGGGTKLTVLG (SEQ ID NO: 48) AP3-13 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSGGSTSYAQKFQGR- VTMTRDTSTSTVYMELSSLRSEDTAVYY CARDFKEYSRTGYFDYWGQGTLVTVSSGGGGSGGGGSSGGGSSYELMQPSSVSVSPGQTARITCSGDVLAKKC- ARWFQQKPGQAPVLVIYKDSER PSGIPERFSGSSSGTTVTLTISGAQVEDEADYYCYSAADNNLGVEGGGTKVTVLG (SEQ ID NO: 49) AP3-20 QITLKESGPALVKPTQTLTLTCNFSGFSLSTYGGGVGWLRQPPGKALEWLAVIYWSDGKRySpSVKN- RLTITKDTSKNHVVLTMTNMDPVDTATY YCAHLMMDTSITTHWFDPWGQGTLVTVSSGGGGSGGGGSGGGGSAIRMTQSPSSLSASVGDRVTITCRASQGI- SNYLAWYQQKPGKVPKLLIYAA STLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYNSAPGTFGQGTEVEIK (SEQ ID NO: 50) AP4-8 QVQLVQSGAEVKKPGSSVKVSCKASGYTFTNYFIHWVRQAPGQGLEWMGLLNPTDSGTLYAQNFQGRI- TMTSDTSTNTVYMELSSLRSDDTAMYY CAREGGADTTRVHSSFDYWGQGTLVTVSSGGGGSGGGGSSGGGSQAVLTQPPSVSGSPGQSITISCTGTSSDV- EAYNYVSWYQQHPGKAPKLMIY DVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSRTWVFGGGTKVIVL (SEQ ID NO: 51) AP4-14 QVQLQESGGGLVQPGRSLRLSCAASGFTFDDYALHWVRQAPGKGLEWVSGISWNSVTVKYAVSVKGR- FTISRDNAKNSLFLQMNALRSEDTALYYC AKARGALLEAADTPSDDWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQSPSSLSASVGDRVTITCRASQSIS- SYLNWYQQKPGKAPKLLIYAASS LQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYNSAPWTFGQGTKVDIK (SEQ ID NO: 52) AP4-20 QVQLQQSGAGLLRPSETLSLTCGLYGGSFSGHYWNWIRQSPEKGLVWIGEITHSGTTNYNPSLKSRV- ITSVDTSKNQYSLKLSFVTPADTAVYYCA RGDYYGYWYFDLWGRGTLVTVSSGGGGSGGGGSGGGGSQSVLTQPPSVPVAPGQKVTISCSGSSSNIGNNYVS- WYQQLPGTAPKLLIYDTNKRPSG IPDRFAGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAGVFGGGTKLTVL (SEQ ID NO: 53)
TABLE-US-00007 Nucleotide Sequences Encoding the Heavy and Light Chains of Human scFv Antibodies Anti- body Variable Heavy Chain Variable Light Chain AP1- caggtgcagctggtgcagtctggagcagaggtgaaaaagcccgggga gaaattgtgttgacgcagtctccaggcaccctgtctttgtctccagg 2 gtctctgaggatctcctgcaagggttctggatacagctttaccagcc ggaaagagccaccctctcctgcagggccagtcagactgttaacagct actggatcagctgggtgcgccagatgcccgggaaaggcctggagtgg acttagcctggtaccagtagaaacctggccaggctcccaggctcctc atggggaggattgatcctagtgactcttatagcaactacagcccctc atctatggtgcatccagcagggccactggcatcccagacaggttcag cttccaaggccacgtcatcatctcagttgacaagtccatcagcactg tggcagtgggtctgggacagacttcactctcaccatcagcagactgg cctacttgcagtggagcagcctgaaggcctcggacaccgccatatat agcctgaagattttgcagtgtattactgtcagcagtatggtagctca tactgtgcgagacagctcattgtagtagtaccagctgctccctatta catccgtggacgttcggccaagggaccaaggtggagatcaaacgtgg ctactactactacggtatggacgtctggggccaaggaaccctggtca cctcgggggcctggtcgactacaaagatgacgatgacaaa ccgtctcctca (SEQ ID NO: 73) (SEQ ID NO: 163) AP1- caggttcagctggtgcagtctggggctgaggtgaagaagcctgggtc gacatccagatgacccagtctccgtcttccgtgtctgcatctgtagg 6 ctcggtgaaggtctcctgcaaggcttctggaggcaccttcagcagct agacagagtcaccatcacttgtcgggcgagtcagggtattagcagct atgctatcagctgggtgcgacaggcccctggacaagggcttgagtgg ggttagcctggtatcagcagaaaccagggaaagcccctaagctcctg atgggagggatcatccctatctttggtacagcaaactacgcacagaa atctatgctgcatccagtttgcaaagtagggtcccatcaaggttcag gttccagggcagagtcacgattaccgcggacgaatccacgagcacag cggcagtggatctgggacagatttcactctcaccatcagcagcctgc cctacatggagctgagcagcctgagatctgaggacacggccatatat agcctgaagattttgcaacttactattgtcaacaggctaacagtttc tactgtgcgagagtctttggttccgagtcgcaagatccgtccgatat ccgtacacttttggccaggggaccaagctggagatcaaacgtggcct ttggagtggttattacggtatggaagtctggggccaaggaaccctgg cgggggcctggtcgactacaaagatgacgatgacaaa tcaccgtctcctca (SEQ ID NO: 74) (SEQ ID NO: 164) AP1- caggtgcagctggtggagtctggggctgaggcgaagaagcctgggtc gtcatctggatgacccagtctccatcctccctgtctgcatctgtagg 8 ctcggtgaaggtctcctgcaaggcttctggaggcaccttcagcagct agacagagtcaccatcacttgccgggcaagtcagagcattagcagct atgctatcagctgggtgcgacaggcccctggacaagggcttgagtgg atttaaattggtatcagcggaaaccagggaaagcccctaagctcctg atgggagggatcatccctatctttggtacagcaaactacgcacagaa atctatgctgcatccagtttgcaaagtggggtcacatcaaggttcag gttccagggcagagtcacgattaccgcggacgaatccacgagcacag tggcagtggatctgggacagatttcactctcaccatcagcagtctgc cctacatggagctgagcagcctgagatctgaggacacggccgtgtat aacctgaagattttgcaacttactactgtcaacagagttacagtacc tactgtgcgagagccggtataactggaactacggctcccccagacta cctccgacgttcggccaagggaccaagctggagatcaaa ctggggccagggcaccctggtcaccgtctcctca (SEQ ID NO: 75) (SEQ ID NO: 165) AP1- caggtgcagctggtgcagtccggatctgagttaaagaagcctggggc gaaatagtgatgacgcagtctccagccaccctgtctgtgtctccagg 11 ctcagtgaagctttcctgcagggcttctggatacacattcactagtt ggaaagagccaccctctcctgcagggccagtcagagtgttagccgca attccatggtttgggtgcgacaggcccctggagaagggcttgagtgg acttagcctggtaccagcagaaacctggccaggctcccaggctcctc atgggagggatcaacaccaacactgggaacccaacgtatgcccaggg atctatgatacatccaccagggccactggtatcccagccaggttcag cttcacagaacggtttgtcttctccttcgacagctctgtcagcacgg tggcagtgggtctgggacagagttcactctcaccatcagcagcctgc catatctgcaaatcagcagcctaaaggctgaggacactgccgtgtat agtctgaagattctgcagtttattactgtcagcagtataatatctgg tactgtgcgagagattgggcgtatagcggcagctggcccttaggcca cctccactcactttcggcggagggaccaaggtggagatcaaa gaacccttctgaccactggggccagggcaccctggtcaccgtctcct (SEQ ID NO: 76) ca (SEQ ID NO: 166) AP1- caggtgcagctacagcagtggggcgcaggattgttgaagccttcgga Gatattgtgatgacccagactccactctcctcacctgtcacccttgg 15 gaccctgtccctcacctgcgctgtctatggtgggtccttcagtggtt acagccggcctccatctcctgcaggtctagtcaaagcctcgtacaca actaccggacctggatccgccagtccccagtgaaggggctggagtgg gtgatggaaacacctacttgacttggtttcaccagaggccaggccag attggggaagtcaatgatcgtggaagccccaactacaacccgtcctt cctccaagagtcctcattcataaggtttctaacctgttctctggggt caagagtcgactcaccatatcaatcgacacgtccaagaactagttat cccagacagattcagtggcagtggggcagggacagatttcacactga ccctgaagttgagatttatgaccgccgcggacacggctgtatattcg aaatcagcagggtggaagctgaggatgtcggggtttattactgcatg tgcgcgagaattaggcctaggtacggtatggacgtctggggccaggg caagctacacaattgtacacttttggccaggggaccaaggtggaaat gacaatggtcaccgtctcctcaggcggcggcggctct caaa (SEQ ID NO: 167) (SEQ ID NO: 77) AP1- gaggtccagctggtacagtctggggctgaggtgaagaagcctggggc gaaacgacactcacgcagtctccagcaatcatgtctgcatctccagg 16 ctcagtgaaggtctcctgcaaggtttccggatacaccctcactgaat ggagagggtcaccatgacctgcagtgccagctcaagtatacgttaca tatccatgcactgggtgcgacaggctcctggaaaagggcttgagtgg tatattggtaccaacagaagcctggatcctcccccagactcctgatt atgggaggttttgatcctgaagatggtgaaacaatctccgcgcagaa tatgacacatccaacgtggctcctggagtcccttttcgcttcagtgg gttccagggcagagtcaccatgaccgaggacacatctacagacacag cagtgggtctgggacctcttattctctcacaatcaaccgaatggagg cctacatggatctgagcagcctgagatctgaggacacggccgtttat ctgaggatgctgccacttattactgccaggagtggagtggttatccg tactgtgcaacgcagcgcttgtgtagtggtggtcgctgctactccca tacacgttcggaggggggaccaaggtggagatcaaa ctttgactactggggccagggcaccacggtcaccgtctcctca (SEQ ID NO: 78) (SEQ ID NO: 168) AP1- cagatgcagctggtgcagtctggggctgaggtgaagaagcctgggtc gacatcgtgatgacccagtctccagactccctggctgtgtctctggg 19 ctcggtgaaggtctcctgcaaggcttctggaggcaccttcaacacct cgagagggccaccatcaactgcaagtccagccagagtgttttataca atgttatcagttgggtgcgacaggcccctggacaagggcttgagtgg gctccaacaatatgaactacttagcttggtaccagcagaaaccagga atgggatggatcagcgcttacaatggtaacacaaactatgcacagaa cagcctcctaagctgctcatttactgggcatctacccgggaatccgg gctccagggcagagtcaccatgaccacagacacatccacgagcacag ggtccctgaccgattcagtggcagcgggtctgggacagatttcactc cctacatggagctgaggagcctgagatctgacgacacggccgtgtat tcaccatcagcagcctgcaggctgaagatgcggcagtttattactgt tactgtgcgagagtttggagtccccttgactactggggccagggcac cagcagtattatagtactcctccgacgttcggccaagggaccaagct cctggtcaccgtctcctca ggagatcaaa (SEQ ID NO: 169) (SEQ ID NO: 79) AP3- caggtgcagctggtgcaatctggggctgaggtgaagaagcctggggc cagtctgtgttgacgcagcctccctcattgtctggggccccgggaca 1 ctcagtgaaggtctcctgcaagggttctggatacaccttcaccggct gagtgtcaccatctcctgcgctgggaccagttccagcatcggggcag actatatgcactgggtgccacaggcccctggacaagggcttgagtgg gttacgatgtacagtggtaccagcaacttccaggaaaaacccccaaa atgggatggatcaaccctaacaatggtggcacaaactatgaccagaa ctcctcatctacgggaatgataatcggccctcaggggtccctgaccg gtttcagggcagggtcgccatgaccagggacacgtccatctccacag attctctggatccaggtcttacacctcagcctccctggtcatcacta cctacatggagctgagcaggctgagatctgacgacactgccgtgtat gagtccagattgaggatgaggctgattattactgccagtcgtatgac tactgtgcgagagataatgggagggtgaccacagggggctactgggg agcagtctcattggtcctcaattcggcggg ccagggcaccctggtcaccgtctcctca (SEQ ID NO: 80) (SEQ ID NO: 170) AP3- caggtgcagctggtgcaatctggggctgaggtgaaaaagcccgggga gccatccagatgacccagrctccatcctcactgtctgcatctgtagg 2 gtctctgaagatctcctgtacggcctccggatacaactttgccagct agacagagtcaccatcacttgtcgggcgagtcagggcattagcaatt actggatcggctgggtgcgccagatgcccgggcaaggcctggagtgg atttagcctggtttcagcagaaaccagggaaagcccctaagtccctg atggggatcatctatcctggtgactctgataccagatacagtccgtc atctatgctgcatccagtttgcaaagtggggtcccatcaaagtacag cttccaaggccaggtcaccatctcagccgacaagtccatcagcaccg cggcagtggatctgggacagatttcactctcaccatcagcagcctgc cctacctgcagtggagcagcctgaaggcctcggacaccgccacgtat agcctgaagattttgcaacttattactgccaacagtataagagttac tactgtgtgagacgggtccccctctacactaacaaccactaccttga cccctcactttcggcggagggaccaaggtggagatcaaa ctattggggccagggcaccctggtcaccgtctcctca (SEQ ID NO: 81) (SEQ ID NO: 171) AP3- gaggtgcagctggtgcagtctggggctgaagtgaagaagcctggggc gacatcgtgatgacccagtctccatccaccctgtctgcatctgtagg 3 ctcagtgaaggtttcctgtaaggcatctggatacaccttcagcgact agacagagtcaccatcacttgccgggcaagtcagagcactagcaggt actttatgcactgggtgcgacaggcccctggacaagggcttgagtgg ttttaaattggtatcagcagaaacctgggaaagcccctaaactcctg atgggagtaatcaacccaactggtggttccacaacctacgcacagag atctatgctgcatccagtttgcatagtggcgtcccatcaaggttcag cttccagggcagagtcaccatgaccagagacacgtccacgagcatag tggcagtggatctgggacagatttcactctcaccatcagcagtctgc tctacatggagctgagcagcctgagatctgaagacacggccgtgtac aacctgaagattttgcaacttactactgtcaacagacttccagttac tactgtacgcgagtcggctactacggtatggacgtctggggccaagg cctctcactttcggcggagggaccaaggtggaaatcaaa caccctggtcaccgtctcctca (SEQ ID NO: 82) (SEQ ID NO: 172) AP3- caggtccagctggtacagtctgggggaggcgtggtccaggttgggag gaaacgacactcacgcagtctccaggcaccctgtctttgtctccagg 5 gtccctgagactttcctgtgcggcctctggattcaccttcacaaact ggaaagagccaccctctcctgcagggccagtcagagtgtttccagcc ttggcatgcactgggtccgccaggctccaggcaaggggctggagtgg cctacttagcctggtaccagcagaaacctggccaggctcccaggctc gtggcactcatctcatctgatggatatagacaggcctatgcagactc ctcatttatggtgcatctaacagggccactggcatcccagacaggtt cgtgaagggccggttcaccatctccggagacaactccaagaacacag cagtggcagtgggtctgggacagacttcactctcaccatcagcagcc tgtatctgcaaatgaacagcctgacaagtgaggacacggctgtttat tgcaggctgaagatgaggcagtttattactgtcagcaatactacaat tactgtgccatcataccccctgtattacggatttttgattgggaatt actccgctcactttcggcggagggaccaaggtggaaatcaaa tgactactggggccagggaaccctggtcaccgtctcctca (SEQ ID NO: 83) (SEQ ID NO: 173) AP3- caggtgcagctacagcagtggggcgcaggcctgttgaagccttcgga gatattgtgatgacccagactccaggcaccctgtcttcgtctccagg 6 gaccctgtccctcacctgcgctgtctatagtgggtcttttactcgtg ggaaagagccaccctctcctgcagggccagtcagggtgttagcagca actactggggctggatccgccagccccccgggaaggggctggagtgg acttagcctggtaccagcagaaacctggccaggctcccaggctcctc attggggaaatcaatcatagtggaagcaccaactacaacccgtccct atctatgatgcatccaacagggccactggcatcccactcaggttcag caagagtcgagtcaccacgtcggtagacaagtccaagaatcagttct tggcagtgggtctgggacagacttcactctcaccatcagcagactgg ccctgaagttgacctctgtgaccgccgcggacacggctgtctattac aacctgaagattttgcagtgtattactgtcaccagtatggtagctca tgtgcgagacgccggctttctagcgacctcttcatgcggggggttgg ccgtacacctttggccaggggaccaaggtggaaatcaaa cggtatggacgtctggggccaaggcaccctggtcaccgtctcctca (SEQ ID NO: 84) (SEQ ID NO: 174) AP3- gaggtgcagctggtgcagtctggagctgaggtgaagaagcctggggc gacatccagatgacccagtctccttccaccctgtctgtatctgtagg 8 ctcagtgaaggtctcctgcaaggcttctggttacacctttaccagct agacagagtcaccatcacttgtcgggcgagtcagggtattagcagct atggratcagctgggtgcgacaggcctctggacaagggcttgagtgg ggttagcctggtatcagcagaaaccagggaaagcccctaagctcctg atgggatggatcagcgcttacaatggtaacacaaactatgcacagaa atctatgctgcatccagtttgcaaagtggggtcccatcaaggttcag gctccagggcagagtcaccatgaccacagacacatccacgagcacag cggcagtggatctgggacagatttcactctcactatcagcagcctgc cctacatggagctgaggagcctgagatctgacgacacggccgtgtat agcctgaagattttgcaacttactattgtcaacaggctaacagtttc tactgtgcgagagtaccccgatattttgactggttattatacgggag ccgctcactttcggcggagggaccaagctggagatcaaa cgactactttgactactggggccagggaaccctggtcaccgtctcct (SEQ ID NO: 85) ca (SEQ ID NO: 175) AP3- caggtgcagctggtgcaatctggagctgaggtgaaggagcctgggtc cagactgtggtgacccaggagccctcactgactgtgtccctaggagg 10 ctcggtgaaggtctcctgcaaggcttctggaggcaccttcagcagct gacagtcactctcacctgtggctccagcactggagctgtcaccagtg atgctatctactgggtgcgacaggcccctggacaagggcttgagtgg gtcattatccctactggttccagcagaagcctggccaagcccccagg atgggatggatcatccctatccttggtatagcaaactacgcacagaa acactgatttatgatacaagcaacaaacactcctggacccctgcccg gttccagggcagagtcacgattaccgcggacaaatccacgagcacag gttctcaggctccctccttgggggcaaagctgccctgaccctttcgg cctacatggagctgagcagcctgagatctgaggacacggccgtgtat gtgcgcagcctgaggatgaggctgagtattactgcttgctctcctat tactgtgcgagagctgccggtcatagtactaactactactactacgg agtggtactcgggtgttcggcggagggaccaagctgaccgtccta tatggacgtctggggccaaggcaccctggtcaccgtctcctca (SEQ ID NO: 86) (SEQ ID NO: 176)
AP3- gaggtgcagctggtgcagtctggggctgaggtgaagaagcctggggc tcctatgagctgatgcagccatcctcagtgtcagtgtctccgggaca 13 ctcagtgaaggtttcctgcaaggcatctggatacaccttcaccaact gacagccaggatcacctgctcaggagatgtactggcaaaaaaatgtg actatatgcactgggtgcgacaggcccctggacaagggcttgagtgg ctcggtggttccagcagaagccaggccaggcccctgtgctggtgatt atgggaataatcaaccctagtggtggtagcacaagctacgcacagaa tataaagacagtgagcggccctcagggatccctgagcgattctccgg gttccagggcagagtcaccatgactagggacacgtccacgagcacag ctccagctcagggaccacagtcaccttgaccatcagcggggcccagg tctacatggagctgagcagcctgagatctgaggacacggccgtgtat ttgaggatgaggctgactattactgttactctgcggctgacaacaac tactgtgcgagagatttcaaagagtatagccgtacgggctactttga ctgggggtgttcggcggagggaccaaggtcaccgtccta ctactggggccagggcaccctggtcaccgtctcctca (SEQ ID NO: 87) (SEQ ID NO: 177) AP3- cagatcaccttgaaggagtctggtcctgcgctggtgaaacccacaca gccatccggatgacccagtctccatcctccctgtctgcatctgtagg 20 gaccctcacgctgacctgcaacttctctgggttctccctcagcactt agacagagtcaccatcacttgccgggcgagtcagggcattagcaatt atggagggggtgtgggctggctccgtcagcccccaggaaaggccctg atttagcctggtatcagcagaaaccagggaaagttcctaagctcctg gagtggcttgccgtcatttattggagtgatggtaaacgctacagccc atctatgctgcatccactttgcaatcaggggtcccatctcggttcag ctctgtaaagaaccggctcaccatcaccaaggacacctccaaaaacc cggcagtggatctgggacagatttcactctcaccatcagcagcctgc acgtggtcctgacaatgaccaacatggaccctgtggacacagccacc agcctgaagatgttgcaacttattactgtcaaaagtataacagtgcc tattattgtgcacaccttatgatggatacatctattactacccactg cctgggacgttcggccaagggaccaaggtggagatcaaa gttcgacccctggggccagggaaccctggtcaccgtctcctca (SEQ ID NO: 88) (SEQ ID NO: 178) AP4- caggtgcagctggtgcaatctggggctgaggtgaagaagcctgggtc caggctgtgctgactcagccgccttccgtgtcggggtctcctggaca 8 ctcggtgaaggtttcctgcaaggcatctggatacaccttcaccaact gtcgatcaccatctcctgcactggaaccagcagtgacgttgaagctt actttatacactgggtgcgacaggcccctggacaagggcttgagtgg acaactatgtctcctggtatcaacaacacccaggcaaagcccccaaa atgggactactcaaccctactgatagtggcacactcracgcacagaa ctcatgatttatgatgtcagtaatcggccctcaggggtttctaatcg cttccagggcagaatcaccatgaccagtgacacgtccacaaacacag cttctctggctccaagtctggcaacacggcctccctgaccatctctg tctacatggagctgagcagcctgagatctgacgacacggccatgtat ggctccaggctgaggacgaggctgattattactgcagctcatataca tactgtgcaagagaggggggggccgacactacccgggtccactcttc agcagcagcacttgggtgttcggcggagggaccaaggtcatcgtcct gtttgactactggggccagggaaccctggtcaccgtctcctca a (SEQ ID NO: 179) (SEQ ID NO: 89) AP4- caggtgcagctgcaggagtcggggggaggcttggtacagcctggcag gacatcgtgatgacccagtctccgtcctccctgtctgcatctgtagg 14 gtccctgagactctcctgtgcagcctctggattcacctttgatgatt agacagagtcaccatcacttgccgggcaagtcagagcattagcagct atgccctccactgggtccggcaagctccagggaagggcctggagtgg atttaaattggtatcagcagaaaccagggaaagcccctaagctcctg gtctcaggtattagttggaatagtgttaccgtaaagtatgcggtctc atctatgctgcatccagtttgcaaagtggggtcccatcaaggttcag tgtgaagggccggttcaccatctccagagacaacgccaagaactccc tggcagtggatctgggacagatttcactctcaccatcagcagcctgc tgtttctgcaaatgaacgctctgagatctgaggacacggccttatat agcctgaagatgttgcaacttattactgtcaaaagtataacagtgcc tactgtgcaaaagccagaggggccctcttagaagcagctgacacacc ccgtggacgttcggccaagggaccaaagtggatatcaaa atctgacgactggggccagggcaccctggtcaccgtctcctca (SEQ ID NO: 90) (SEQ ID NO: 180) AP4- caggtacagctgcagcagtcaggcgcaggtctattgaggccttcgga cagtctgtgttgacgcagccgccctcagttcctgtggccccaggaca 20 gaccctgtocctcacctgoggtotctatggtgggtocttcagtggtc gaaggtcaccatctcctgctctggaagcagctccaacattgggaata actattggaactggatccgccagtccccagaaaaggggctggtgtgg attatgtatcctggtaccagcagctoccaggaacagccoccaaactc attggggaaatcactcatagtggaaccaccaattacaacccgtccct ctcatttatgacactaataagcgaccctcagggattcctgaccgatt caagagtcgagtcatcacatcagtagacacgtccaagaatcagtact cgctggctccaagtctggcacgtcagccaccctgggcatcaccggac ccctgaagctgagctttgtgacccctgcggacacggccgtgtattac tccagactggggacgaggccgattattactgcggaacatgggatagc tgtgcgagaggtgattactatgggtactggtacttcgatctctgggg agcctgagtgctggcgtgttcggcggagggaccaagctgaccgtcct ccgtggcaccctggtcaccgtctcctca a (SEQ ID NO: 181) (SEQ ID NO: 91)
TABLE-US-00008 Nucleic Acids Encoding the Human scFvs Anti- body Variable Heavy Chain AP1-2 caggtgcagctggtgcagtctggagcagaggtgaaaaagcccggggagtctctgaggatctcctgcaa- gggttctggatacagctttaccagcc actggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagtgactc- ttatagcaactacagcccctc cttccaaggccacgtcatcatctcagttgacaagtccatcagcactgcctacttgcagtggagcagcctgaag- gcctcggacaccgccatatat tactgtgcgagacagctcattgtagtagtaccagctgctccctattactactactactacggtatggacgtct- ggggccaaggaaccctggtca ccgtctcctcaggcggcggcggctctggcggaggtggcagcagcggtggcggatccgaaattgtgttgacgca- gtctccaggcaccctgtcttt gtctccaggggaaagagccaccctctcctgcagggccagtcagactgttaacagctacttagcctggtaccag- tagaaacctggccaggctccc aggctcctcatctatggtgcatccagcagggccactggcatcccagacaggttcagtggcagtgggtctggga- cagacttcactctcaccatca gcagactggagcctgaagattttgcagtgtattactgtcagcagtatggtagctcacatccgtggacgttcgg- ccaagggaccaaggtggagat caaacgtggcctcgggggcctggtcgactacaaagatgacgatgacaaa (SEQ ID NO: 54) AP1-6 caggttcagctggtgcagtctggggctgaggtgaagaagcctgggtcctcggtgaaggtctcctgcaa- ggcttctggaggcaccttcagcagct atgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatctttgg- tacagcaaactacgcacagaa gttccagggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgaga- tctgaggacacggccatatat tactgtgcgagagtctttggttccgagtcgcaagatccgtccgatatttggagtggttattacggtatggaag- tctggggccaaggaaccctgg tcaccgtctcctcaggcggtggcggctctggcggaggtggcagcggcggtggcggatccgacatccagatgac- ccagtctccgtcttccgtgtc tgcatctgtaggagacagagtcaccatcacttgtcgggcgagtcagggtattagcagctggttagcctggtat- cagcagaaaccagggaaagcc cctaagctcctgatctatgctgcatccagtttgcaaagtagggtcccatcaaggttcagcggcagtggatctg- ggacagatttcactctcacca tcagcagcctgcagcctgaagattttgcaacttactattgtcaacaggctaacagtttcccgtacacttttgg- ccaggggaccaagctggagat caaacgtggcctcgggggcctggtcgactacaaagatgacgatgacaaa (SEQ ID NO: 55) AP1-8 caggtgcagctggtggagtctggggctgaggcgaagaagcctgggtcctcggtgaaggtctcctgcaa- ggcttctggaggcaccttcagcagct atgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatctttgg- tacagcaaactacgcacagaa gttccagggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgaga- tctgaggacacggccgtgtat tactgtgcgagagccggtataactggaactacggctcccccagactactggggccagggcaccctggtcaccg- tctcctcaggcggcggcggct ccggcggaggtggcagcggcggtggcggatccgtcatctggatgacccagtctccatcctccctgtctgcatc- tgtaggagacagagtcaccat cacttgccgggcaagtcagagcattagcagctatttaaattggtatcagcggaaaccagggaaagcccctaag- ctcctgatctatgctgcatcc agtttgcaaagtggggtcacatcaaggttcagtggcagtggatctgggacagatttcactctcaccatcagca- gtctgcaacctgaagattttg caacttactactgtcaacagagttacagtacccctccgacgttcggccaagggaccaagctggagatcaaa (SEQ ID NO: 56) AP1-11 caggtgcagctggtgcagtccggatctgagttaaagaagcctggggcctcagtgaagctttcctgca- gggcttctggatacacattcactagtt attccatggtttgggtgcgacaggcccctggagaagggcttgagtggatgggagggatcaacaccaacactgg- gaacccaacgtatgcccaggg cttcacagaacggtttgtcttctccttcgacagctctgtcagcacggcatatctgcaaatcagcagcctaaag- gctgaggacactgccgtgtat tactgtgcgagagattgggcgtatagcggcagctggcccttaggccagaacccttctgaccactggggccagg- gcaccctggtcaccgtctcct caggcggcggcggctctggcggaggtggcagcggcggtggcggatccgaaatagtgatgacgcagtctccagc- caccctgtctgtgtctccagg ggaaagagccaccctctcctgcagggccagtcagagtgttagccgcaacttagcctggtaccagcagaaacct- ggccaggctcccaggctcctc atctatgatacatccaccagggccactggtatcccagccaggttcagtggcagtgggtctgggacagagttca- ctctcaccatcagcagcctgc agtctgaagattctgcagtttattactgtcagcagtataatatctggcctccactcactttcggcggagggac- caaggtggagatcaaacgtgg cctcgggggcctggtcgactacaaagatgacgatgacaaa (SEQ ID NO: 57) AP1-15 caggtgcagctacagcagtggggcgcaggattgttgaagccttcggagaccctgtccctcacctgcg- ctgtctatggtgggtccttcagtggtt actaccggacctggatccgccagtccccagtgaaggggctggagtggattggggaagtcaatgatcgtggaag- ccccaactacaacccgtcctt caagagtcgactcaccatatcaatcgacacgtccaagaactagttatccctgaagttgagatttatgaccgcc- gcggacacggctgtatattcg tgtgcgagaattaggcctaggtacggtatggacgtctggggccaggggacaatggtcaccgtctcctcaggcg- gcggcggctctggcggaggtg gcagcagcggtggcggatccgatattgtgatgacccagactccactctcctcacctgtcacccttggacagcc- ggcctccatctcctgcaggtc tagtcaaagcctcgtacacagtgatggaaacacctacttgacttggtttcaccagaggccaggccagcctcca- agagtcctcattcataaggtt tctaacctgttctctggggtcccagacagattcagtggcagtggggcagggacagatttcacactgaaaatca- gcagggtggaagctgaggatg tcggggtttattactgcatgcaagctacacaattgtacacttttggccaggggaccaaggtggaaatcaaacg- tggcctcgggggcctggtcga ctacaaagatgacgatgacaaa (SEQ ID NO: 58) AP1-16 gaggtccagctggtacagtctggggctgaggtgaagaagcctggggcctcagtgaaggtctcctgca- aggtttccggatacaccctcactgaat tatccatgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggaggttttgatcctgaagatgg- tgaaacaatctccgcgcagaa gttccagggcagagtcaccatgaccgaggacacatctacagacacagcctacatggatctgagcagcctgaga- tctgaggacacggccgtttat tactgtgcaacgcagcgcttgtgtagtggtggtcgctgctactcccactttgactactggggccagggcacca- cggtcaccgtctcctcaggcg gcggcggctctggcggaggtggcagcggcggtggcggatccgaaacgacactcacgcagtctccagcaatcat- gtctgcatctccaggggagag ggtcaccatgacctgcagtgccagctcaagtatacgttacatatattggtaccaacagaagcctggatcctcc- cccagactcctgatttatgac acatccaacgtggctcctggagtcccttttcgcttcagtggcagtgggtctgggacctcttattctctcacaa- tcaaccgaatggaggctgagg atgctgccacttattactgccaggagtggagtggttatccgtacacgttcggaggggggaccaaggtggagat- caaa (SEQ ID NO: 59) AP1-19 cagatgcagctggtgcagtctggggctgaggtgaagaagcctgggtcctcggtgaaggtctcctgca- aggcttctggaggcaccttcaacacct atgttatcagttgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttacaatgg- taacacaaactatgcacagaa gctccagggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgaga- tctgacgacacggccgtgtat tactgtgcgagagtttggagtccccttgactactggggccagggcaccctggtcaccgtctcctcaggcggcg- gtggctctggcggaggtggca gcggcggtggcggatccgacatcgtgatgacccagtctccagactccctggctgtgtctctgggcgagagggc- caccatcaactgcaagtccag ccagagtgttttatacagctccaacaatatgaactacttagcttggtaccagcagaaaccaggacagcctcct- aagctgctcatttactgggca tctacccgggaatccggggtccctgaccgattcagtggcagcgggtctgggacagatttcactctcaccatca- gcagcctgcaggctgaagatg cggcagtttattactgtcagcagtattatagtactcctccgacgttcggccaagggaccaagctggagatcaa- acgtggcctcgggggcctggt cgactacaaagatgacgatgacaaa (SEQ ID NO: 60) AP3-1 caggtgcagctggtgcaatctggggctgaggtgaagaagcctggggcctcagtgaaggtctcctgcaa- gggttctggatacaccttcaccggct actatatgcactgggtgccacaggcccctggacaagggcttgagtggatgggatggatcaaccctaacaatgg- tggcacaaactatgaccagaa gtttcagggcagggtcgccatgaccagggacacgtccatctccacagcctacatggagctgagcaggctgaga- tctgacgacactgccgtgtat tactgtgcgagagataatgggagggtgaccacagggggctactggggccagggcaccctggtcaccgtctcct- caggcggcggcggctctggcg gaggtggcagcagcggtggcggatcccagtctgtgttgacgcagcctccctcattgtctggggccccgggaca- gagtgtcaccatctcctgcgc tgggaccagttccagcatcggggcaggttacgatgtacagtggtaccagcaacttccaggaaaaacccccaaa- ctcctcatctacgggaatgat aatcggccctcaggggtccctgaccgattctctggatccaggtcttacacctcagcctccctggtcatcacta- gagtccagattgaggatgagg ctgattattactgccagtcgtatgacagcagtctcattggtcctcaattcggcggggggaccaagctgaccgt- cctaggtggcctcgggggcct ggtcgactacaaagatgaccatgacaaatac (SEQ ID NO: 61) AP3-2 caggtgcagctggtgcaatctggggctgaggtgaaaaagcccggggagtctctgaagatctcctgtac- ggcctccggatacaactttgccagct actggatcggctgggtgcgccagatgcccgggcaaggcctggagtggatggggatcatctatcctggtgactc- tgataccagatacagtccgtc cttccaaggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaag- gcctcggacaccgccacgtat tactgtgtgagacgggtccccctctacactaacaaccactaccttgactattggggccagggcaccctggtca- ccgtctcctcaggcggcggcg gctctggcggaggtggcagcggcggtggcggatccgccatccagatgacccagtctccatcctcactgtctgc- atctgtaggagacagagtcac catcacttgtcgggcgagtcagggcattagcaattatttagcctggtttcagcagaaaccagggaaagcccct- aagtccctgatctatgctgca tccagtttgcaaagtggggtcccatcaaagtacagcggcagtggatctgggacagatttcactctcaccatca- gcagcctgcagcctgaagatt ttgcaacttattactgccaacagtataagagttaccccctcactttcggcggagggaccaaggtggagatcaa- a (SEQ ID NO: 62) AP3-3 gaggtgcagctggtgcagtctggggctgaagtgaagaagcctggggcctcagtgaaggtttcctgtaa- ggcatctggatacaccttcagcgact actttatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggagtaatcaacccaactggtgg- ttccacaacctacgcacagag cttccagggcagagtcaccatgaccagagacacgtccacgagcatagtctacatggagctgagcagcctgaga- tctgaagacacggccgtgtac tactgtacgcgagtcggctactacggtatggacgtctggggccaaggcaccctggtcaccgtctcctcaggcg- gcggcggctctggcggaggtg gcagcggcggtggcggatccgacatcgtgatgacccagtctccatccaccctgtctgcatctgtaggagacag- agtcaccatcacttgccgggc aagtcagagcactagcaggtttttaaattggtatcagcagaaacctgggaaagcccctaaactcctgatctat- gctgcatccagtttgcatagt ggcgtcccatcaaggttcagtggcagtggatctgggacagatttcactctcaccatcagcagtctgcaacctg- aagattttgcaacttactact gtcaacagacttccagttaccctctcactttcggcggagggaccaaggtggaaatcaaacgtggcctcggggg- cctggtcgactacaaagatga cgatgacaaa (SEQ ID NO: 63) AP3-5 caggtccagctggtacagtctgggggaggcgtggtccaggttgggaggtccctgagactttcctgtgc- ggcctctggattcaccttcacaaact ttggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcactcatctcatctgatggata- tagacaggcctatgcagactc cgtgaagggccggttcaccatctccggagacaactccaagaacacagtgtatctgcaaatgaacagcctgaca- agtgaggacacggctgtttat tactgtgccatcataccccctgtattacggatttttgattgggaatttgactactggggccagggaaccctgg- tcaccgtctcctcaggcggcg gcggctctggcggaggtggcagcggcggtggcggatccgaaacgacactcacgcagtctccaggcaccctgtc- tttgtctccaggggaaagagc caccctctcctgcagggccagtcagagtgtttccagcccctacttagcctggtaccagcagaaacctggccag- gctcccaggctcctcatttat ggtgcatctaacagggccactggcatcccagacaggttcagtggcagtgggtctgggacagacttcactctca- ccatcagcagcctgcaggctg aagatgaggcagtttattactgtcagcaatactacaatactccgctcactttcggcggagggaccaaggtgga- aatcaaacgtggcctcggggg cctggtcgactacaaagatgacgatgacaaa (SEQ ID NO: 64) AP3-6 caggtgcagctacagcagtggggcgcaggcctgttgaagccttcggagaccctgtccctcacctgcgc- tgtctatagtgggtcttttactcgtg actactggggctggatccgccagccccccgggaaggggctggagtggattggggaaatcaatcatagtggaag- caccaactacaacccgtccct caagagtcgagtcaccacgtcggtagacaagtccaagaatcagttctccctgaagttgacctctgtgaccgcc- gcggacacggctgtctattac tgtgcgagacgccggctttctagcgacctcttcatgcggggggttggcggtatggacgtctggggccaaggca- ccctggtcaccgtctcctcag gcggcggcggctctggcggaggtggcagcggcggtggcggatctgatattgtgatgacccagactccaggcac- cctgtcttcgtctccagggga aagagccaccctctcctgcagggccagtcagggtgttagcagcaacttagcctggtaccagcagaaacctggc- caggctcccaggctcctcatc tatgatgcatccaacagggccactggcatcccactcaggttcagtggcagtgggtctgggacagacttcactc- tcaccatcagcagactggaac ctgaagattttgcagtgtattactgtcaccagtatggtagctcaccgtacacctttggccaggggaccaaggt- ggaaatcaaacgtggcctcgg gggcctggtcgactacaaagatgacgatgacaaa (SEQ ID NO: 65) AP3-8 gaggtgcagctggtgcagtctggagctgaggtgaagaagcctggggcctcagtgaaggtctcctgcaa- ggcttctggttacacctttaccagct atggtatcagctgggtgcgacaggcctctggacaagggcttgagtggatgggatggatcagcgcttacaatgg- taacacaaactatgcacagaa gctccagggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgaga- tctgacgacacggccgtgtat tactgtgcgagagtaccccgatattttgactggttattatacgggagcgactactttgactactggggccagg- gaaccctggtcaccgtctcct caggcggcggcggctctggcggaggtggcagcagcggtggcggatccgacatccagatgacccagtctccttc- caccctgtctgtatctgtagg agacagagtcaccatcacttgtcgggcgagtcagggtattagcagctggttagcctggtatcagcagaaacca- gggaaagcccctaagctcctg atczatgctgcatccagtttgcaaagtggggtcccatcaaggttcagcggcagtggatctgggacagatttca- ctctcactatcagcagcctgc agcctgaagattttgcaacttactattgtcaacaggctaacagtttcccgctcactttcggcggagggaccaa- gctggagatcaaacgtggcct cgggggcctggtcgactacaaagatgacgatgacaaa (SEQ ID NO: 66) AP3-10 caggtgcagctggtgcaatctggagctgaggtgaaggagcctgggtcctcggtgaaggtctcctgca- aggcttctggaggcaccttcagcagct atgctatctactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcatccctatccttgg- tatagcaaactacgcacagaa gttccagggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgaga- tctgaggacacggccgtgtat tactgtgcgagagctgccggtcatagtactaactactactactacggtatggacgtctggggccaaggcaccc- tggtcaccgtctcctcaggcg gcggcggctctggcggaggtggcagcagcggtggcggatcccagactgtggtgacccaggagccctcactgac- tgtgtccctaggagggacagt cactctcacctgtggctccagcactggagctgtcaccagtggtcattatccctactggttccagcagaagcct- ggccaagcccccaggacactg atttatgatacaagcaacaaacactcctggacccctgcccggttctcaggctccctccttgggggcaaagctg-
ccctgaccctttcgggtgcgc agcctgaggatgaggctgagtattactgcttgctctcctatagtggtactcgggtgttcggcggagggaccaa- gctgaccgtcctaggt (SEQ ID NO: 67) AP3-13 gaggtgcagctggtgcagtctggggctgaggtgaagaagcctggggcctcagtgaaggtttcctgca- aggcatctggatacaccttcaccaact actatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagtggtgg- tagcacaagctacgcacagaa gttccagggcagagtcaccatgactagggacacgtccacgagcacagtctacatggagctgagcagcctgaga- tctgaggacacggccgtgtat tactgtgcgagagatttcaaagagtatagccgtacgggctactttgactactggggccagggcaccctggtca- ccgtctcctcaggcggcggcg gctctggcggaggtggcagcagcggtggcggatcctcctatgagctgatgcagccatcctcagtgtcagtgtc- tccgggacagacagccaggat cacctgctcaggagatgtactggcaaaaaaatgtgctcggtggttccagcagaagccaggccaggcccctgtg- ctggtgatttataaagacagt gagcggccctcagggatccctgagcgattctccggctccagctcagggaccacagtcaccttgaccatcagcg- gggcccaggttgaggatgagg ctgactattactgttactctgcggctgacaacaacctgggggtgttcggcggagggaccaaggtcaccgtcct- aggt (SEQ ID NO: 68) AP3-20 cagatcaccttgaaggagtctggtcctgcgctggtgaaacccacacagaccctcacgctgacctgca- acttctctgggttctccctcagcactt atggagggggtgtgggctggctccgtcagcccccaggaaaggccctggagtggcttgccgtcatttattggag- tgatggtaaacgctacagccc ctctgtaaagaaccggctcaccatcaccaaggacacctccaaaaaccacgtggtcctgacaatgaccaacatg- gaccctgtggacacagccacc tattattgtgcacaccttatgatggatacatctattactacccactggttcgacccctggggccagggaaccc- tggtcaccgtctcctcaggcg gcggcggctctggcggaggtggcagcggcggtggcggatccgccatccggatgacccagtctccatcctccct- gtctgcatctgtaggagacag agtcaccatcacttgccgggcgagtcagggcattagcaattatttagcctggtatcagcagaaaccagggaaa- gttcctaagctcctgatctat gctgcatccactttgcaatcaggggtcccatctcggttcagcggcagtggatctgggacagatttcactctca- ccatcagcagcctgcagcctg aagatgttgcaacttattactgtcaaaagtataacagtgcccctgggacgttcggccaagggaccaaggtgga- gatcaaacgtggcctcggggg cctggtcgactacaaagatgacgatgacaaa (SEQ ID NO: 69) AP4-8 caggtgcagctggtgcaatctggggctgaggtgaagaagcctgggtcctcggtgaaggtttcctgcaa- ggcatctggatacaccttcaccaact actttatacactgggtgcgacaggcccctggacaagggcttgagtggatgggactactcaaccctactgatag- tggcacactctacgcacagaa cttccagggcagaatcaccatgaccagtgacacgtccacaaacacagtctacatggagctgagcagcctgaga- tctgacgacacggccatgtat tactgtgcaagagaggggggggccgacactacccgggtccactcttcgtttgactactggggccagggaaccc- tggtcaccgtctcctcaggcg gcggcggctctggcggaggtggcagcagcggtggcggatcccaggctgtgctgactcagccgccttccgtgtc- ggggtctcctggacagtcgat caccatctcctgcactggaaccagcagtgacgttgaagcttacaactatgtctcctggtatcaacaacaccca- ggcaaagcccccaaactcatg atttatgatgtcagtaatcggccctcaggggtttctaatcgcttctctggctccaagtctggcaacacggcct- ccctgaccatctctgggctcc aggctgaggacgaggctgattattactgcagctcatatacaagcagcagcacttgggtgttcggcggagggac- caaggtcatcgtccta (SEQ ID NO: 70) AP4-14 caggtgcagctgcaggagtcggggggaggcttggtacagcctggcaggtccctgagactctcctgtg- cagcctctggattcacctttgatgatt atgccctccactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaatagtgt- taccgtaaagtatgcggtctc tgtgaagggccggttcaccatctccagagacaacgccaagaactccctgtttctgcaaatgaacgctctgaga- tctgaggacacggccttatat tactgtgcaaaagccagaggggccctcttagaagcagctgacacaccatctgacgactggggccagggcaccc- tggtcaccgtctcctcaggcg gcggcggctctggcggaggtggcagcggcggtggcggatccgacatcgtgatgacccagtctccgtcctccct- gtctgcatctgtaggagacag agtcaccatcacttgccgggcaagtcagagcattagcagctatttaaattggtatcagcagaaaccagggaaa- gcccctaagctcctgatctat gctgcatccagtttgcaaagtggggtcccatcaaggttcagtggcagtggatctgggacagatttcactctca- ccatcagcagcctgcagcctg aagatgttgcaacttattactgtcaaaagtataacagtgccccgtggacgttcggccaagggaccaaagtgga- tatcaaa (SEQ ID NO: 71) AP4-20 caggtacagctgcagcagtcaggcgcaggtctattgaggccttcggagaccctgtccctcacctgcg- gtctctatggtgggtccttcagtggtc actattggaactggatccgccagtccccagaaaaggggctggtgtggattggggaaatcactcatagtggaac- caccaattacaacccgtccct caagagtcgagtcatcacatcagtagacacgtccaagaatcagtactccctgaagctgagctttgtgacccct- gcggacacggccgtgtattac tgtgcgagaggtgattactatgggtactggtacttcgatctctggggccgtggcaccctggtcaccgtctcct- caggcggcggcggctctggcg gaggtggcagcggcggtggcggatcccagtctgtgttgacgcagccgccctcagttcctgtggccccaggaca- gaaggtcaccatctcctgctc tggaagcagctccaacattgggaataattatgtatcctggtaccagcagctcccaggaacagcccccaaactc- ctcatttatgacactaataag cgaccctcagggattcctgaccgattcgctggctccaagtctggcacgtcagccaccctgggcatcaccggac- tccagactggggacgaggccg attattactgcggaacatgggatagcagcctgagtgctggcgtgttcggcggagggaccaagctgaccgtcct- a (SEQ ID NO: 72)
An antibody of the invention can be used to detect the presence, or determine the amount, of a cyclic signaling peptide in a biological sample. An antibody of the invention can also be used for a prophylactic purpose to prevent a mammal from becoming infected with a Gram positive bacterium or developing a disease or condition that is caused by a Gram positive bacterium.
[0110] Pharmaceutical Compositions of the Invention
[0111] The immunogenic molecular entity, supramolecular assembly including the immunogenic molecular entity or antibody of the invention, herein "active agents" of the invention, can be incorporated into a pharmaceutical composition for administration to a mammal. A pharmaceutical composition of the invention can include one or more active agents of the invention (e.g. one or more antibodies, immunogenic molecular entities, supramolecular assemblies or combinations thereof). A pharmaceutical composition of the invention can also include one or more active agents of the invention in combination with another polypeptide or antibody vaccine.
[0112] For example, a pharmaceutical composition of the invention may include one or more immunogenic molecular entities, the haptens of which include the lactone, lactam, carbamide or semicarbazide analogs of a S. aureus AIP-I, AIP-II, AIP-III or any combination thereof. Thus, a pharmaceutical composition of the invention may include a combination of two or more immunogenic molecular entities of the invention, each of which has a hapten that includes to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP cyclic peptide signaling molecule.
[0113] A pharmaceutical composition of the invention can include two different immunogenic molecular entities of the invention: (1) the first having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-I cyclic signaling peptide, and a second having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-II, III or IV; (2) the first having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-II cyclic signaling peptide, and a second having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-III or IV; or (3) the first having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-III cyclic signaling peptide, and a second having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-IV.
[0114] A pharmaceutical composition of the invention can also include three different immunogenic molecular entities of the invention, for example: (1) a first having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-I cyclic signaling peptide, a second having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-II, and a third immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-III; (2) a first immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-I cyclic signaling peptide, a second immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-II, and a third immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-IV; (3) a first immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-I cyclic signaling peptide, a second immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-III, and a third immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-IV; (4) a first immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-II cyclic signaling peptide, a second immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-III, and a third immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-IV.
[0115] A pharmaceutical composition of the invention can also include four different immunogenic molecular entities of the invention, for example, a first immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-I cyclic signaling peptide, a second immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-II, a third immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-III; and a fourth immunogenic molecular entity having a hapten that corresponds to the lactone, lactam, carbamide or semicarbazide analog of a S. aureus AIP-IV.
[0116] Similarly, a pharmaceutical composition of the invention can also include one or more antibodies that bind specifically one or more cyclic peptide signaling molecules. For example, a pharmaceutical composition of the invention can include an antibody that binds specifically to any one of the S. aureus AIP-I, AIP-II, AIP-III or AIP-IV cyclic signaling peptides. A pharmaceutical composition of the invention can include two or more antibodies that bind specifically to two or more cyclic signaling peptides, for example, any two, three or all four cyclic signaling peptides of the S. aureus AIP-I, AIP-II, AIP-III or AIP-IV cyclic signaling peptides.
[0117] A pharmaceutical composition of the invention can also include one or more immunogenic molecular entities having haptens that correspond to cyclic signaling peptides from one or more Gram positive bacteria, as well as one or more antibodies that bind specifically with one or more cyclic signaling peptides from one or more Gram positive bacteria that use quorum sensing.
[0118] A pharmaceutical composition of the invention can also include the active agent of the invention in combination with one or more vaccines directed against different infectious agents including, without limitation, hepatitis B, Haemophilus influenzae type b bacteria, diphtheria, measles, mumps, pertussis, polio, rubella, tetanus, tuberculosis, and varicella.
[0119] In addition to the above, a pharmaceutical composition of the invention includes a pharmaceutically-acceptable carrier. As used herein, the term "pharmaceutically-acceptable carrier" includes, without limitation, any one or more solvents, dispersion media, coatings, antibacterial or antifungal agents, antioxidants, stabilizers, isotonic agents, adjuvants and the like that are suitable for administration to a mammal. Pharmaceutically-acceptable carriers are well known in the art, and unless a conventional carrier is incompatible with the immunogenic molecular entity or antibody of the invention, or incompatible with the route of administration, use thereof in a composition of the invention is contemplated.
[0120] A pharmaceutical composition of the invention is formulated to be compatible with a selected route of administration. Examples of route of administration include any route of parenteral administration including intravenous, intradermal, subcutaneous, inhalation, transdermal, transmucosal and rectal administration.
[0121] Solutions or suspensions used for parenteral, intradermal or subcutaneous application may include (1) a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; (2) antibacterial agents such as benzyl alcohol or methyl parabens; (3) antoxidants such as ascorbic acid or sodium bisulfite; (4) chelating agents such as ethylenediaminetetraacetic acid; (5) buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH may be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation may be enclosed in ampoules, disposable syringes or multiple dose vials.
[0122] Pharmaceutical compositions suitable for injection include sterile aqueous solutions or dispersions and sterile powders for extemporaneous preparation of sterile injectable solutions or dispersions. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, or phosphate buffered saline. Compositions must be sterile and be stable under the conditions of manufacture and storage and must be preserved against contamination by microorganisms such as bacteria and fungi. The carrier may be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g. glycerol, propylene glycol and liquid polyethylene glycol), and suitable mixtures thereof. The proper fluidity may be achieved, for example, by using a coating such as lecithin, by maintaining the required particle size in the case of dispersion and by using surfactants. Prevention of the action of microorganisms may be achieved using various antibacterial and antifungal agents such as, for example, parabens, chlorobutanol, phenol, ascorbic acid, and thimerosal. Other ingredients such as an isotonic agent or an agent that delays absorption (e.g. aluminum monostearate and gelatin) may be included.
[0123] Sterile injectable solutions may be prepared by incorporating the active agent in the required amount in an appropriate solvent with one or a combination of ingredients discussed above, as required, followed by filtered sterilization. Dispersions may be prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and other required ingredients discussed above. In the case of sterile powders for the preparation of injectable solutions, the preferred methods of preparation include vacuum drying and freeze-drying which yield a powder of the active ingredient and any additional desired ingredient from a previously sterile-filtered solution.
[0124] Oral compositions may include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound may be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions may also be prepared using a fluid carrier. Pharmaceutically compatible binding agents and/or adjuvant materials may be included as part of the composition. The tablets, pills, capsules, troches and the like may contain any of the following ingredients or compound of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose; a disintegrating agent such as alginic acid or corn starch; a lubricant such as magnesium stearate; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate or orange flavoring.
[0125] For administration by inhalation, the composition may be delivered in the form of an aerosol spray from a pressurized container or dispenser which contains a suitable propellant, for example, a gas such as carbon dioxide or a nebulizer.
[0126] For transmucosal or transdermal administration, penetrants known in the art to be appropriate to the barrier to be permeated may be used. These include detergents, bile salts and fusidic acid derivatives for transmucosal administrations, which may be accomplished using nasal sprays, for example. For transdermal administration, the active agents of the invention are formulated into ointments, salves, gels or creams as generally known in the art.
[0127] The compositions of the invention may be prepared with carriers that will protect against rapid elimination from the body. Controlled release formulations such as implants and microencapsulated delivery systems, for example, permit sustained slow release of the active agents of the invention, and in some cases, release of immunostimulators as well. Examples of such formulations include active agents of the invention entrapped in liposomes, ethylene-vinyl acetate copolymer (EVAc) (see Niemi et al., Laboratory Animal Science 35:609-612 (1985)), and degradable polymer. The biodegradable, biocompatible polymers used for encapsulation include, without limitation, poly(DL-lactide-co-glycolide) (see Eldridge et al., Molecular Immunology 28: 287-294 (1991)). Additional examples of polymers that can be used include polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. Liposomal suspensions, including those targeted to infected cells with monoclonal antibodies to viral antigens may also be used as pharmaceutically acceptable carriers. These may be prepared using methods known in the art.
[0128] Thus, compositions formulated to elicit an immune response can include adjuvants, as well as other carriers and vehicles. Non-limiting examples of adjuvants, carriers and vehicles include Freund's incomplete adjuvant; Freund's complete adjuvant; aluminum salts (e.g. potassium sulfate, aluminum phosphate, aluminum hydroxide); bacterial lipopolysaccharide; synthetic polynucleotides (poly IC/poly AU); Montanide ISA Adjuvants (Seppic, Paris, France); Ribi's Adjuvants (Ribi ImmunoChem Research, Inc., Hamilton, Mont.); Hunter's TiterMax (CytRx Corp., Norcross, Ga.); Nitrocellulose-Adsorbed Protein; Gerbu Adjuvant (Gerbu Biotechnik GmbH, Gaiberg, Germany/C--C Biotech, Poway, Calif.); saponin; muramyl di- and tripeptides; monophosphoryl lipid A; Bordetella pertussis; cytokines; bacterial toxoids; fatty acids; living vectors; mineral oil emulsions; biodegradable oil emulsions (e.g. those containing peanut oil, squalene, or squalane); nonionic block copolymer surfactants; liposomes and biodegradable polymer microspheres. See, for example, Eldridge et al., Mol Immunol. 28:287-94 (1991)). Additional examples of vaccine delivery systems are discussed in Felnerova et al., Current Opinion in Biotechnology 15:518-29 (2004); Saupe et al., Expert Opin. Drug Deliv. 3:345-54 (2006); Sakarellos-Daitsiotis et al., Current Topics in Medicinal Chemistry 6:1715-1735 (2006); Chen & Huang, Advances in Genetics 54: 315-37 (2005); Westerfeld and Zurbriggen, J. Peptide Sci 11: 707-712 (2005); Shahiwala et al., Recent Patents on Drug Delivery & Formulation 1: 1-9 (2007); and McDermott et al., Immunology and Cell Biology 76:256-62 (1998); the contents of which are incorporated by reference herein.
[0129] Compositions may be formulated in dosage unit form for ease of administration and uniformity of dosage. The phrase "dosage unit form" refers to physically discrete units suited as unitary dosages for the subject to be treated, each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms is dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved.
[0130] Kits and Articles of Manufacture
[0131] The active agents or pharmaceutical compositions of the invention may be included in a container, pack or dispenser together with instructions for their use. Such kits can include additional reagents as required for the intended use of the immunogenic molecular entities, antibodies or pharmaceutical compositions. For example, an antibody of the invention can be used for diagnostic purposes, in which case, one or more reagents that enable detection/visualization can be included in the kit, preferably in a separate container, pack or dispenser from that holding the antibody of the invention. The kit or article of manufacture can include instructions for its use in diagnostic, prophylactic and/or therapeutic purposes as described below.
[0132] Methods of the Invention
[0133] The invention provides a method for identifying a mammal susceptible to or having a disease or condition associated with a Gram-positive bacterial infection, as well as a method to prevent infection by a Gram positive bacterium or its associated disease or condition. The invention also provides a method of eliciting an immune response in the mammal and a method of preventing quorum sensing in a mammal.
[0134] In the context of the invention, a mammal is any warm-blooded vertebrate including, for example, a mouse, rat, hamster, rabbit, guinea pig, pig, cow, horse, sheep, monkey, and human. A Gram-positive bacterium is any bacterium that utilizes cyclic peptides as signaling molecules in quorum sensing and can be, for example, Enterococcus faecalis and a Staphylococcus species including, for example, S. aureus, S. epidermidis, S. auricularis, S. capitis, S. caprae, S. carnosus, S. arlettae, S. cohnii, S. epidermis, S. intermedius, S. lugdunensis, S. simulans, S. gallinarum, S. xylosus, and S. warneri. The disease or condition associated with infection by such a bacterium includes, for example, food poisoning, toxic shock syndrome, scalded skin syndrome, surgical wound infection, urinary tract infection, sepsis, and pneumonia.
[0135] Diagnostic Methods
[0136] A diagnostic method of the invention can be used to identify a mammal in need of or that may benefit from treatment using an immunogenic molecular entity or antibody of the invention. A mammal in need of or that may benefit from treatment using an immunogenic molecular entity or antibody of the invention is one that has a Gram positive bacterial infection or is susceptible to the infection or to a disease or condition associated with a Gram-positive bacterial infection. To identify such a mammal, a biological sample from the mammal can be obtained. The biological sample can be a tissue sample, a cell sample or a sample of a biological fluid such as blood, urine, or lymph. An antibody of the invention can be used to determine whether a biological sample contains a cyclic peptide signaling molecule, the presence of which indicates that the mammal has a Gram positive bacterial infection or is susceptible to or has a disease or condition associated with a Gram-positive bacterial infection. For example, an antibody of the invention that binds specifically to the S. aureus AIP-IV signaling peptide can be used to detect the presence of S. aureus AIP-IV in a biological sample from a mammal suspected of being susceptible to or of having a disease or condition associated with a S. aureus infection. The presence of S. aureus AIP-IV in the sample indicates that the mammal has an S. aureus infection or susceptible to or has a disease or condition associated with the S. aureus infection. Thus, an antibody of the invention can be used diagnostically to detect the presence of and/or determine the amount of a cyclic peptide signaling molecule in a biological sample from a mammal.
[0137] The presence or amount of the cyclic peptide signaling molecule in a biological sample from a mammal can be detected in a competitive assay using a suitably-labelled antibody of the invention. For example, an immunogenic molecular entity of the invention, e.g. hapten linked to macromolecular carrier such as a polypeptide, can be immobilized on a surface. The binding of a suitably-labelled antibody of the invention to the immobilized immunogenic molecular entity in the presence or absence of a biological sample from the mammal is determined. A decrease in binding of the labeled-antibody to the surface in the presence of the biological sample indicates the presence of a cyclic peptide signaling molecule. The biological sample can be a partially purified or processed sample in which unrelated mammalian cells have been removed. The antibody can be labeled with a detectable molecule, which can be an enzyme such as alkaline phosphatase, acetylcholinesterase, .beta.-galactosidase or horseradish peroxidase; a prosthetic group such as streptavidin, biotin, or avidin; a fluorescent group such as dansyl chloride, dichlorotriazinylamine, dichlorotriazinylamine fluorescein, fluorescein, fluorescein isothiocyanate, phycoerythrin, rhodamine, umbelliferone; a luminescent group such as luminal; a bioluminescent group such as aequorin, luciferase, and luciferin; or a radioisotope such as .sup.3H, .sup.125I, .sup.131I, .sup.35S.
[0138] Therapeutic Methods
[0139] An immunogenic molecular entity or antibody of the invention can be used to prevent or treat infection of a mammal by a Gram positive bacterium such as, for example, a Staphylococcus species, that utilizes cyclic peptide signaling molecules in quorum sensing. Mammals that can benefit from treatment with an immunogenic molecular entity or antibody of the invention include: (1) a mammal at risk for or susceptible to infection by a Gram positive bacterium, (2) a mammal who has come into contact with an infectious Gram positive bacterium, or (3) a mammal who is infected by a Gram positive bacterium. To prevent or treat a Gram-positive bacterial infection, an immunogenic molecular entity of the invention can be administered to the mammal to elicit an immune response in the mammal. In addition, an antibody of the invention can be administered to inhibit the activity of a cyclic signaling peptide thereby preventing the production of virulence genes or toxins that aid in bacterial infection or development of the disease condition associated the bacterial infection.
[0140] A mammal that can benefit from treatment with the immunogenic molecular entity or antibody of the invention can be identified using the methods discussed above in which the presence and/or amount of a cyclic peptide signaling peptide is determined. Other methods of detecting the presence of a Gram positive bacterial infection such as, for example, by culturing from a sample from the mammal, e.g. a blood culture, can be used. A mammal, such as a human, who can benefit from treatment with an immunogenic molecular entity or antibody of the invention can be an individual having a weakened immune system, an individual with a suppressed immune system, an individual who has undergone or will undergo surgery, an older individual or one who is very ill, an individual who has been hospitalized or has had a medical procedure. A mammal that can benefit from treatment with an immunogenic molecular entity or antibody of the invention can be a hospital patient at risk of developing nosocomial infection or a mammal known to be infected with or having been exposed to antibiotic resistant bacteria such as, for example, Methicillin-resistant S. aureus, Vancomycin-intermediary-sensible S. aureus, Vancomycin-resistant S. aureus and other antibiotic resistant enterococci including Pneumococcus pneumoniae.
[0141] The antibody or immunogenic molecular entity of the invention can be administered prior to infection, after infection but prior to the manifestation of symptoms associated with the infection, or after the manifestation of symptoms to prevent further bacterial multiplication and to prevent further expression of virulence genes thereby hindering development of the disease or its progression. When administered to a mammal, the immunogenic molecular entity of the invention elicits the production of antibodies that prevent the disease or condition or its progression by binding to and neutralizing the cyclic peptide signaling molecules produced by the bacteria thereby preventing the production of virulence genes or toxins that aid in development of the infection or the disease condition associated with the bacterial infection. In addition, a neutralizing antibody of the invention can also be administered to the mammal. The neutralizing antibody can bind to a cyclic peptide signaling molecule produced by the bacteria and prevent its binding to its cell-associated receptor and in doing so, prevent the production of virulence genes or toxins that aid in infection or development of the disease condition associated with the bacterial infection. Accordingly, a composition that includes an immunogenic molecular entity of the invention can be used as a live vaccine, while a composition that includes an antibody of the invention can be used as a passive vaccine, to prevent the bacterial infection or a disease or condition associated with the bacterial infection.
[0142] The active agents of the invention can be administered by any route discussed herein. The dosage of the immunogenic molecular entity or supramolecular assembly to be administered to a mammal may be any amount appropriate to elicit an immune response against a cyclic signaling peptide. The dosage of the antibody to be administered to a mammal can be any amount appropriate to neutralize the activity of a cyclic signaling peptide.
[0143] The dosage may be an effective dose or an appropriate fraction thereof. This will depend on individual patient parameters including age, physical condition, size, weight, the condition being treated, the severity of the condition, and any concurrent treatment. Factors that determine appropriate dosages are well known to those of ordinary skill in the art and may be addressed with routine experimentation. For example, determination of the physicochemical, toxicological and pharmacokinetic properties may be made using standard chemical and biological assays and through the use of mathematical modeling techniques known in the chemical, pharmacological and toxicological arts. The therapeutic utility and dosing regimen may be extrapolated from the results of such techniques and through the use of appropriate pharmacokinetic and/or pharmacodynamic models.
[0144] The precise amount to be administered to a patient will be the responsibility of the attendant physician. An immunogenic molecular entity or antibody of the invention may be administered by injection at a dose of from about 0.05 to about 2000 mg/kg weight of the mammal, preferable from about 1 to about 200 mg/kg weight of the mammal. As certain agents of the invention are long acting, it may be advantageous to administer an initial dose of 80 to 4,000 mg the first day then a lower dose of 20 to 1,000 mg on subsequent days. A patient may also insist upon a lower dose or tolerable dose for medical reasons, psychological reasons or for virtually any other reasons. One or more booster doses of the immunogenic molecular entity or antibody could be administered at a selected time period after the first administration.
[0145] Treatment using an antibody or immunogenic molecular entity of the invention can be for a duration needed to elicit an effective neutralizing immune response.
[0146] Methods of Generating Antibodies of the Invention
[0147] An immunogenic molecular entity or supramolecular assembly of the invention can be used to generate antibodies directed to a cyclic signaling peptide.
[0148] An immunogenic molecular entity or supramolecular assembly of the invention can be used to screen a recombinant immunoglobulin library to identify an antibody that binds specifically with a selected cyclic signaling peptide. Methods and reagents for generating and screening a recombinant combinatorial immunoglobulin library are described in, for example, Barbas, C. F., 3.sup.rd, D. R. Burton, J. K. Scott, and G. J. Silverman, Phage Display--A Laboratory Manual. 2001, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, and Kontermann, R., Dubel, S., Antibody Engineering, 2001, Berlin, Heidelberg: Springer-Verlag
[0149] An immunogenic molecular entity, or supramolecular assembly of the invention can also be used to elicit an immune response in a mammal, from which polyclonal or monoclonal antibodies can be obtained. An immunogenic molecular entity or supramolecular assembly of the invention can be administered to a mammal such as a goat, sheep, rat, mouse, or rabbit, for example. Polyclonal antibodies can be isolated from the blood of the mammal using methods known in the art. Monoclonal antibodies can be obtained by isolating antibody-producing cells from the mammal and generating antibody-producing hybridomas. Methods of producing and obtaining antibodies from a mammal are known in the art. See, for example, Harlow, D. and D. Lane, Antibodies A laboratory manual. Cold spring harbor laboratory, New York (1988), and Tramontano, A. and D. Schloeder, Production of antibodies that mimic enzyme catalytic activity. Methods Enzymol 178: p. 531-550 (1989).
[0150] The invention is further illustrated by the following non-limiting Examples.
EXAMPLES
Example 1
Materials
[0151] RN4850 was obtained from Dr. Richard P. Novick (Skirball Institute, New York University Medical Center). Purified monoclonal antibodies were obtained from TSRI Antibody Production Core Facility. The clinical isolate NRS168 was obtained through the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) Program supported by NIAID/NIH (N01-AI-95359).
Example 2
Synthesis of Native AIPs 1-4
[0152] The following general procedure was used to synthesize all natural products. Batch synthesis was carried out on 0.25 mmol of MBHA resin swollen in DMF following standard Boc solid-phase peptide synthesis protocols. A solution of S-trityl-3-mercaptoproprionic acid (2 eq), HBTU (3.9 eq), and DIEA (0.5 mL) in 4 mL DMF was prepared and allowed to sit for 3 minutes for pre-activation. The cocktail was added to the resin for coupling, which is generally complete in 1 hour. The resin was then washed with DMF and subjected to trityl deprotection with 5% TIS in TFA (2.times.10 minutes). Once washed with DMF, the peptide sequence was completed by sequential coupling reactions using 4 eq Boc amino acid, 3.9 eq HBTU, and 0.5 mL DIEA, with 3 minute preactivation. When the synthesis was complete, the resin was washed with DMF, then CH.sub.2Cl.sub.2, and finally with ether before it was placed in the desiccator.
[0153] Cleavage:
[0154] The resin was subjected to 5-10 mL of HF for 1 hour using anisole as a scavenger. The resulting mixture was washed with ether and extracted with 1:1 water/acetonitrile. This solution was frozen and lyophilized, and the resulting solid was purified by prep-HPLC. Pure fractions were pooled, frozen, and lyophilized.
[0155] Thiolactonization:
[0156] Intramolecular thiolactonization was achieved by taking up the purified, solid linear peptide in a mixture of 80% MOPS buffer (100 mM, pH 7.0) and 20% acetonitrile, giving a peptide concentration of less than 1 mM. The reaction was monitored by ESI-MS, and was usually complete in 24-48 hour. The product was purified by prep-HPLC. Pure fractions were pooled, frozen, and lyophilized. ESI-MS: m/z calcd for AIP-1, C.sub.43H.sub.60N.sub.8O.sub.13S.sub.2 (M+H), 961.4. found 961.8: m/z calcd for AIP-2, C.sub.38H.sub.58N.sub.10O.sub.12S (M+H), 879.4. found, 879.6: m/z calcd for AIP-3, C.sub.38H.sub.58N.sub.8O.sub.10S (M+H), 819.4. found, 819.7: m/z calcd for AIP-4, C.sub.48H.sub.64N.sub.8O.sub.12S.sub.2, 1009.4. found 1009.7. See FIG. 2A-H.
Example 3
Synthesis of AIP4 Hapten 5--AIP4 Lactone Analog
[0157] The scheme for the synthesis of AIP4 hapten 5 is depicted in Scheme 1 below. The linear peptide YSTSYFLM (SEQ ID NO: 1, not including protecting groups) was synthesized on 2-chlorotrityl resin preloaded with Fmoc-Methionine 1 using standard Fmoc chemistry employing DIC/HOBt as coupling reagents. The N-terminal pendant cysteine was incorporated for conjugation to a carrier protein and the short flexible linker was added between the hapten and the carrier protein as spacer. The protected linear peptide was released from the resin using 4% trifluoroacetic acid in chloroform, which also selectively removed the trityl protection group from the serine. Intramolecular lactonization under dilute conditions was performed using EDC/4-DMAP, and subsequent side chain de-protections afforded the AP4 hapten 5. The details of the synthetic procedure are described in the following text.
##STR00011## ##STR00012##
Synthesis of the Linear Protected Peptide (3)
[0158] All N-.alpha.-Fmoc protected amino acids, coupling reagents and the resins for peptide synthesis were purchased from EMD Biosciences, Inc. (San Diego, Calif.). All other chemicals were purchased from Sigma-Aldrich Corp. (St. Louis, Mo.). ESI-MS analyses were performed with API150EX (PE SCIEX, Foster City, Calif.), and HITACHI L-7300 and SHIMADZU SCL-10A were used for analytical and preparative HPLC experiments, respectively.
[0159] The peptide was synthesized by Fmoc SPPS on 2-chlorotrityl resin preloaded with the Fmoc-Met 1. An Fmoc-Ser(Trt)-OH was incorporated at the position of lactonization. All other residues were chosen with side chain protecting groups stable to dilute TFA and labile in 95% TFA. A short flexible linker was incorporated penultimate to the N-terminus by coupling Fmoc-8-amino-3,6-dioxaoctanoic acid. The N-terminal residue was Boc-Cys(Set)-OH for eventual use in conjugation to carrier proteins.
[0160] Specific Conditions:
[0161] Batch synthesis was carried out on 1 mmol of resin swollen in DMF for at least 1 hour. A solution of the protected amino acid, DIC, and HOBt (4 equivalents each) in 5 mL DMF was prepared and allowed to sit for 5 minutes for pre-activation, followed by the addition of 0.5 mL sym-collidine. The cocktail was added to the resin for coupling, which was generally complete in 1 hour. The resin was then washed with DMF and subjected to Fmoc deprotection with 20% (v/v) piperidine in DMF (2.times.7 min). The resin was then washed with DMF and the next coupling reaction was carried out. When synthesis was complete, the resin was washed with DMF, then CH.sub.2Cl.sub.2, and finally with ether before it was placed in the desiccator.
[0162] Cleavage (and Trityl Deprotection):
[0163] The resin was added to a cocktail of 4% TFA, 4% triisopropylsilane (TIS) and 0.5% H2O in chloroform, and shaken for 6 hours. The mixture was filtered, allowing the filtrate to drip into cold ether to precipitate the peptide. The ether mixture was centrifuged and the supernatant was decanted. The peptide was then washed (2.times.) with ether by re-suspending the solid in ether, centrifugation, and decanting the supernatant. The resulting solid was placed in a desiccator.
[0164] Purification:
[0165] The fully protected peptide 3 was dissolved in methylene chloride and purified by normal phase silica gel chromatography eluted with 5% methanol in methylene chloride.
B. Lactonization of (3)
[0166] The protected linear peptide 3 was dissolved in 1,2-dichloroethane (previously dried over anhydrous MgSO.sub.4) to give a final concentration of no greater than 1.0 mM. The solution was stirred and heated to 80.degree. C. and 3 equivalents each of EDC and 4-DMAP were added; another equivalent each of EDC and 4-DMAP were added at both 24 and 48 hours into the reaction. The reaction was monitored by HPLC. After 4 days, the reaction mixture was cooled to room temperature, washed with 2.times.200 mL of 0.2 M KHSO.sub.4(aq), dried over anhydrous Na.sub.2SO.sub.4, and evaporated to dryness. The cyclized peptide 4 was purified by prep-HPLC. Yields range from 30-60% as determined by analytical HPLC integration.
C. Global Deprotection and Disulphide Deprotection of (4)
[0167] The solid, purified peptide was dissolved in TFA containing 2% TIS and stirred for 1 hour. The mixture was then evaporated to dryness. Water was added and the mixture was frozen and lyophilized. The lyophilized solid was then dissolved in H.sub.2O with tris(2-carboxyethyl)phosphine hydrochloride (TCEP). The mixture was stirred for 1 hour and injected directly into the prep-HPLC for purification yielding AP4 hapten 5. The collected pure fractions were pooled, frozen, and lyophilized. ESI-MS: m/z calcd for C.sub.57H.sub.80N.sub.10O.sub.17S.sub.2 (M H), 1241.5. found, 1242.2. See FIGS. 2I & J.
D. Conjugation of (5) to KLH/BSA
[0168] The conjugation of hapten 5 to KLH/BSA was performed as depicted in Scheme 2 below. The details of the procedure is described in the following text.
##STR00013##
[0169] Attachment of Sulpho-SMCC.
[0170] 5 mg of the carrier protein were resuspended in 0.9 mL PBS, pH 7.4. To this solution was added 1 mg of the linker sulpho-SMCC (sulphosuccinimidyl 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate). The solution was stirred for 6-8 hours and the protein-linker conjugate was purified by dialysis in PBS at 4.degree. C.
[0171] Conjugation of the Hapten 5.
[0172] To the protein-linker conjugate in PBS were added 100 .mu.L of DMF containing 2 mg of the hapten 5. The solution was shaken overnight and the protein-hapten conjugate was purified by dialysis. MALDI-TOF analysis confirmed the attachment on average of 6 haptens per BSA molecule (molecular weight of BSA-AIP4 conjugate=75581 Daltons; BSA=67000 Daltons; and hapten=1461.15 Daltons). See FIG. 2K.
Example 4
Preparation of the AP1, AP2, AP3 and AP4 Lactone Analogs as Synthetic Haptens and Hapten-Protein Carrier Conjugates
[0173] For immunization and elicitation of an immune response, active vaccine, and generation of monoclonal antibodies, synthetic haptens in the form of AP1, AP2, AP3 and AP4 lactone analogs and hapten-protein carrier conjugates were prepared using procedures as described for the preparation of the AP4 hapten 5 described above. The preparation schemes are as follows.
##STR00014## ##STR00015##
##STR00016## ##STR00017##
##STR00018## ##STR00019##
##STR00020## ##STR00021##
##STR00022##
Example 5
Preparation of the AP4 Lactam, Carbamide and Semicarbazide Analogs as Synthetic Haptens
[0174] The proteolytically stable cyclic lactam, carbamide and semicarbazide AIP peptide haptens are prepared using the well documented methodology of peptide cyclization on base-labile Kaiser oxime resin. See DeGrado et al., J. Org. Chem. 1980, 45, 1295-1300; DeGrado et al., J. Org. Chem. 1982, 47, 3258-3261; Nakagawa et al., J. Org. Chem. 1983, 48, 678-685; Nakagawa et al., J. Am. Chem, Soc. 1985, 107, 7087-7092; Kaiser et al., Science 1989, 243, 187-192. This synthetic approach is based on Boc-based solid phase peptide synthesis, where the peptide cyclization coincides with the cleavage of the cyclized peptide off the solid support. Osapay et al., J. Am. Chem. Soc. 1992, 114, 6966-6973; Taylor et al., Biopolymers 2002, 66, 49-75; and Li et al., Curr. Org. Chem. 2002, 6, 411-440. Synthesis of the cyclic carbamide peptides requires the retro-inverso motif, as described in the literature. Chorev et al., Biopolymers 2005, 80, 67-84. The pre-requisite 1-N-Boc-4-(methylthio)butane-1,2-diamine building block is synthesized from the commercially available Boc-methioninol and then coupled onto the peptide chain via the nitrophenyl carbamate protocol according to a literature precedent. Vince et al., Bioorg. Med. Chem. Lett. 1999, 9, 853-856. The following schemes outline syntheses of proteolytically stable cyclic lactam, carbamide and semicarbazide analogs of AIP-4 peptide. These synthetic methodologies can be applied to the preparation of other cyclic peptide haptens, e.g. AIP-1, AIP-2, AIP-3 as well as other Staphylococcal quorum sensing peptides.
[0175] The synthesis of the cyclic lactam AIP4 hapten is summarized in scheme 8. Schemes 9 and 10 outline the syntheses of the intermediates 1-N-Boc-4-(methylthio)butane-1,2-diamine p-nitrophenylcarbamate and N-Fmoc-Met-hydrazide p-nitrophenylcarbamate used in the syntheses of the cyclic carbamide AIP4 hapten and the cyclic semicarbazide AIP4 hapten, respectively. Synthesis of the carbamide and semicarbazide AIP4 haptens is shown in schemes 11 and 12, respectively.
##STR00023## ##STR00024##
##STR00025##
##STR00026##
##STR00027## ##STR00028## ##STR00029##
##STR00030## ##STR00031## ##STR00032##
Example 6
Analysis of Exoprotein Secretion in S. aureus
[0176] After overnight growth on an agar plate at 37.degree. C., a single colony of S. aureus (RN4850 or Wood 46) was inoculated into 3 mL CYGP medium and grown for overnight (18 hours) (see Novick, Methods Enzymol 204:587-636 (1991)). The overnight cultured cells were diluted to OD.sub.600.apprxeq.0.03 in fresh CYGP medium, and distributed to 5 mL polystyrene cell-culturing tube, where each tube contained 0.5 mL of the diluted cells and the appropriate antibody (0.2 mg/mL). After growth for 20-24 hours at 37.degree. C. in a humid incubator without agitation, the samples were transferred to the microcentrifuge tubes (1.5 mL) and centrifuged at 13,000 rpm for 5 minutes. The supernatants were sterilized by filtration through a Millex.RTM.-GV filter unit (0.22 .mu.m; Millipore, Ireland), and analyzed by SDS-PAGE (10% Bis-Tris gel, Invitrogen, Carlsbad Calif.). To confirm .alpha.-hemolysin and protein A expression, Western blot analyses were performed using the HRP conjugated sheep polyclonal .alpha.-hemolysin antibody (abcam Inc., Cambridge Mass.) and anti-Protein A mouse monoclonal antibody (Sigma-Aldrich, St. Louis Mo.) and murine mAb SP2-6E11 (Park and Janda, unpublished data) was used as a control antibody. To test hemolytic activity, the S. aureus supernatants (75 .mu.L.times.3) were applied onto the sheep blood agar plate, and the plates were incubated at 37.degree. C. for 18 hours and at room temperature for another 24 hours.
Example 7
Static Biofilm Analysis
[0177] The biofilm assay was conducted by following a literature procedure with a few modifications (see O'Toole, Methods Enzymol 310:91-109 (1999)). After S. aureus cells (200 .mu.L) were grown in tryptic soy broth (TSB) medium containing 0.2% glucose with or without the antibody (0.2 mg/mL) in the polystyrene 96-well plate for 20-24 hours without agitation, the plate was washed by submersion in water and dried. A crystal violet solution (200 .mu.L, aq. 0.1%) was added to stain the biofilm, and then the plate was washed vigorously with water followed by adding acetic acid (250 .mu.L, aq. 30%) to solubilize the remaining crystal violet. Absorbance was measured at 570 nm with Spectramax 250 (Molecular Devices, Sunnyvale Calif.).
Example 8
Real Time-PCR Analysis
[0178] Overnight cultured S. aureus RN4850 cells were diluted to OD.sub.600.apprxeq.0.03 in fresh CYGP medium (1 mL) containing the antibody and grown for 20-24 hours (OD.sub.600.apprxeq.2) at 37.degree. C. without shaking. RNA from the cells was isolated using Rneasy.RTM. Mini Kit (QIAGEN Inc., Valencia Calif.) according to the manufacturer's instructions. Isolated RNA was further purified by treating with Rnase-Free Dnase (QIAGENE Inc.) for 30 minutes at room temperature. The first-strand DNA was synthesized using SuperScript.TM. First-Strand Synthesis System for RT-PCR (Invitrogen) using 300 ng of purified RNA. RT-PCR experiments were performed with at least two independent samples, and each experiment was set up in duplicate using LightCycler.RTM. FastStart DNA Master.sup.PLUS SYBR Green I (Roche Applied Science, Indianapolis, Ind.). Generic SYBR Green Protocol (Roche) was used for the PCR conditions, and relative quantification analyses were performed with LightCycler.RTM. 2.0 system (Roche Applied Science) using the housekeeping GyrA gene was a reference. The sequences of the primers used are as follows:
TABLE-US-00009 (SEQ ID NO: 5) gyrA F: 5'-TGGCCCAAGACTTTAGTTATCGTTATCC-3'; (SEQ ID NO: 6) gyrA R: 5'-TGGGGAGGAATATTTGTAGCCATACCTAC-3'; (SEQ ID NO: 7) rnaIII F: 5'-GCACTGAGTCCAAGGAAACTAACTC-3'; (SEQ ID NO: 8) rnaIII R: 5'-GCCATCCCAACTTAATAACCATGT-3'; (SEQ ID NO: 9) hla F: 5'-CTGAAGGCCAGGCTAAACCACTTT-3'; (SEQ ID NO: 10) hla R: 5'-GAACGAAAGGTACCATTGCTGGTCA-3'; (SEQ ID NO: 11) spa F: 5'-GCGCAACACGATGAAGCTCAACAA-3'; (SEQ ID NO: 12) spa R: 5'-ACGTTAGCACTTTGGCTTGGATCA-3'; (SEQ ID NO: 13) eta F: 5'-GTTCCGGGAAATTCTGGATCAGGT-3'; (SEQ ID NO: 14) eta R: 5'-GCGCTTGACATAATTCCCAATACC-3'; (SEQ ID NO: 15) sarA F: 5'-CTGCTTTAACAACTTGTGGTTGTTTG-3'; (SEQ ID NO: 16) sarA R: 5'-CGCTGTATTGACATACATCAGCGA-3'; (SEQ ID NO: 17) saeR F: 5'-CGCCTTAACTTTAGGTGCAGATGAC-3'; (SEQ ID NO: 18) saeR R: 5'-ACGCATAGGGACTTCGTGACCATT-3'.
Example 9
Dermal Infection Model in Mice
[0179] All experiments on mice were performed in accordance with TSRI guidelines and regulations. SKH1 euthymic hairless mice, 6-8 weeks old were obtained from Charles River Laboratories and housed in the biocontainment vivarium for one week before use in experiments. Brain heart infusion agar was from BBL (#211065) and CYGP broth contained 1% casamino acids (Fisher BP1424) 1% yeast extract (EMD 1.03753) 0.59% sodium chloride, 0.5% dextrose and 60 mM .beta.-glycerol phosphate disodium salt (Fluka 50020) as described by Novick, Methods Enzymol 204: 587-636 (1991). Cytodex 1 beads (GE Healthcare 17-0448-01) were suspended (1 gram in 50 mL) in Dulbecco's Phosphate Buffered Saline without calcium/magnesium (Gibco) overnight at 20.degree. C. The supernatant was decanted and the beads washed three times by suspension in DPBS and 1G sedimentation followed by autoclaving (121.degree. C., 15 psi, 15 minutes). Staphylococcus aureus RN4850 (AIP4) was grown from frozen stock (BHI+20% glycerol) on brain heart infusion agar plates 35.degree. C. overnight. Three representative colonies were combined to inoculate 2 mL CYGP broth, and after overnight incubation without shaking, 0.25 mL of the culture was used to inoculate 5 mL of CYGP followed by incubation at 35.degree. C., 200 rpm for 3 hours. The culture was centrifuged 1,300.times.G at 4.degree. C. for 20 minutes, the supernatant poured off, and the bacterial pellet was suspended in 1 mL DPBS without calcium/magnesium. The SKH1 received 200 .mu.L intradermal flank injections containing S. aureus (1.times.10.sup.7 or 1.times.10.sup.8 bacteria), 4 .mu.L packed volume Cytodex beads, DPBS, anti-AIP4 antibody or control IgG (0.6 or 0.06 mg). Additional control animals received 200 .mu.L intradermal injections containing Cytodex beads or beads plus antibody. After injections were made the mice were monitored at least three times each day over a period of 4-7 days. At the conclusion of the monitoring period the mice were euthanized and tissues harvested for bacteriologic and histologic analysis.
Example 10
Passive Immunization of Mice with AP4-24H11
[0180] S. aureus RN4850 were stored at -80.degree. C. in 20% glycerol/BHI medium, thawed and grown on BHI-agar plates overnight, and three separate colonies sampled to inoculate 2 mL CYGP medium. The inoculum culture was maintained 1 hour at 35.degree. C. without shaking, followed by shaking at 200 rpm for 3 hours. Aliquots of the freshly grown inoculum culture were transferred to 5 mL CYGP medium in 50 mL conical polypropylene tubes (1/20 dilution) followed by shaking at 200 rpm, 35.degree. C. for 3 hours. The bacteria were pelleted by centrifugation at 3,000 rpm (1300.times.G) for 10 minutes, 4.degree. C. The bacterial pellets were resuspended in Dulbecco's phosphate buffered saline without calcium or magnesium (DPBS.sup.-), and enumerated using a Petroff-Hausser counting chamber. Final dilutions were made in DPBS.sup.- so that 3.times.10.sup.8 bacteria were administered i.p. in 0.5 mL. To maintain viability bacteria were administered within two hours of harvest.
[0181] Mab AP4-24H11, isotype-matched control IgG (1 mg each) or DPBS was administered i.p. in DPBS to SKH1 mice (6-9 weeks old; 6 animals per treatment group) followed two hours later by 0.5 mL DPBS.sup.- i.p. containing 3.times.10.sup.8 S. aureus. The mice were monitored several times on the day of injection and twice each day on subsequent days, observing ambulation, alertness, response to handling and skin temperature measured by infrared thermometry (Raytek MiniTemp MT4) using a 1 cm diameter infrasternal skin site. Animals showing surface temperature consistently below 30.degree. C. and also diminished response to handling and weakened righting reflex were considered moribund and were euthanized.
Example 11
Competition ELISA Analysis
[0182] The optimal concentrations of the AP4-BSA conjugate as well as of each mAb were determined. 96 well ELISA plates were coated with the appropriate amount of AP4-BSA conjugate respectively. The plates were blocked with 4% skim milk, washed and mAbs were added at the predetermined optimal concentration. The plates were washed and free antigen, i.e. the native AIPs 1-4, was added to the wells in a concentration series starting at 100 .mu.M. The plate was incubated for 1 hour at 37.degree. C., thoroughly washed, and goat anti-mouse-horseradish peroxidase (HRP) conjugate (Pierce, Rockford, Ill.) was added. After an incubation period of 1 hour at RT, the plate was thoroughly washed again and the HRP substrate (TMB substrate kit; Pierce) was added, the reaction was allowed to develop for 15 minute and stopped by the addition of 2 M H.sub.2SO.sub.4. The absorbance at 450 nm was read and the values plotted using GraFit (Erithacus Software Ltd). The free antigen concentration at which the absorbance value is 50% of the maximum absorbance was considered the K.sub.d of the antibody for its antigen.
Example 12
Generation of Anti-AP4 Monoclonal Antibodies
[0183] Based on the reported structural information of AIP-4 (Mayville et al., Proc. Natl. Ncad. Sci. U.S.A. 96:1218-1223 (1999)), the hapten AP4-5 was designed and synthesized to elicit an anti-AIP-4 antibody immune response in mice (Scheme 1). The rationale for the chemical switch from the native thiolactone to a lactone-containing hapten was based on a lactone's greater aminolytic stability. This strategy ensured that the hapten conjugates remained structurally intact during the immunization process and subsequent immune response; thus, avoiding the generation of degradation products with unknown chemical and biological properties as previously uncovered for other QS molecules. This substitution was also prevented a possible intramolecular thiol exchange between the conserved thiolactone and the pendant cysteine thiol. Therefore, Fmoc-Serine(Trt)-OH was incorporated at position 4 in place of the native cysteine residue.
[0184] The hapten 5 was conjugated to the carrier proteins keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA) via a bifunctional linker (Scheme 2). Balb/c mice were immunized with the KLH conjugate using standard protocols (see Kaufmann et al., J. Am. Chem. Soc. 128:2802-03 (2006)). Overall, the immunizations resulted in moderate titers (1600-3200), and based on ELISA analysis, 20 monoclonal antibodies (mAbs) were selected.
[0185] Of these, the binding affinities of three AP4-mAbs were determined. Their binding affinities, shown in the following table, were determined against all four natural AIPs using competition ELISA methodology.
TABLE-US-00010 Binding Constants of Selected AP4 Monoclonal Antibodies as Measured by Competition ELISA AP4-mAb AIP-1 AIP-2 AIP-3 AIP-4 23E6 .apprxeq.6 .mu.M >25 .mu.M >25 .mu.M .apprxeq.390 nM 24H11 .apprxeq.5 .mu.M >25 .mu.M >25 .mu.M .apprxeq.90 nM 29E10 .apprxeq.3 .mu.M >25 .mu.M >25 .mu.M .apprxeq.24 nM
[0186] All binding constants were measured at least twice, and the average values are shown. While AP4-29E10 possessed a higher affinity for AIP-4, it was not selected for further biological evaluation due to technical difficulties encountered during the protein production phase.
[0187] AP4-24H11, possessed strong binding affinity (K.sub.d AIP-4.apprxeq.90 nM) and high specificity to AIP-4, while displaying little cross reactivity for the other AIPs (K.sub.d AIP-1.apprxeq.5 .mu.M, K.sub.d AIP-2=>25 .mu.M, K.sub.d AIP-3=>25 .mu.M). The ability of AP4-24H11 to discriminate between AIP1 and AIP4 is noteworthy as these two oligopeptides differ only at position 5 with an aspartic acid residue in AIP-1, and a tyrosine moiety in AIP-4. AP4-24H11 was selected for further biological evaluation.
Example 13
AP4-24H11 Alters Expression of Virulent Factors in S. aureus
[0188] .alpha.-Hemolysin and protein A are two major virulence factors in S. aureus, and expression of these proteins is tightly regulated by S. aureus signaling networks including the AIP-based agr QS system. The agr QS system positively regulates expression of .alpha.-hemolysin, while protein A production is down-regulated by QS signaling.
[0189] To determine whether anti-AIP antibodies are able to interfere with QS signaling in S. aureus, whether the anti-AIP-4 mAb AP4-24H11 could modulate the expression of .alpha.-hemolysin and protein A in agr group IV strains, RN4850 and NRS168, was examined. Results in FIG. 3A indicate that AP4-24H11 affects the expression and/or secretion of S. aureus exoproteins, some of which might also be regulated by the agr QS circuits. As seen in FIG. 4A, mAb AP4-24H11 can successfully reduce the .alpha.-hemolysin expression in S. aureus, and no hemolytic activity was observed on blood agar plates with the AP4-24H11 treated supernatant as shown in FIG. 3B. In contrast, protein A expression was significantly increased by mAb AP4-24H11 in RN4850, which is also consistent with agr QS inhibition.
[0190] The only structural difference between AIP-1 and AIP-4 is position 5, and the data suggest that AP4-24H11 is able to bind to AIP-1 with moderate affinity (.apprxeq.5 .mu.M). Therefore, whether AP4-24H11 could affect QS signaling in an agr group I strain, namely Wood 46 was investigated. AP4-24H11 was not able to block .alpha.-hemolysin expression in Wood 46 as effectively as in RN4850. However, a notable decrease in .alpha.-hemolysin production in Wood 46 grown in the presence of AP4-24H11 was evident (FIG. 4A). These data suggest that it is possible to generate cross-reactive mAbs that suppress S. aureus QS signaling of two or more different agr groups.
[0191] It is possible that the decrease in toxin production and overall protein secretion is caused by an antibody-mediated growth defect, results indicate that no significant growth changes of S. aureus were observed over a 24-hour growth period in the presence of AP4-24H11 (FIG. 4B). In addition, no discernable growth effects were observed with mAb SP2-6E11, an unrelated isotype control (.kappa..gamma..sub.2a) for AP4-24H11.
[0192] One of the important bacterial virulent factors regulated by QS is biofilm formation. In S. aureus, biofilm formation is negatively regulated by agr QS signaling, which is one of the problems in controlling S. aureus virulence through agr QS inhibition. Consistent with previous studies, AP4-24H11-mediated QS inhibition led to increased biofilm formation in RN4850 (FIG. 4C). Although the increase of biofilm formation poses a significant problem in chronic infection of S. aureus, it represent a lesser predicament in acute infections and thus, mAb AP4-24H11 can be an effective way to control such S. aureus infections.
Example 14
AP4-24H11 Alters Expression of Virulent Factors by Interfering with the Agr QS System
[0193] To further examine agr QS inhibition by AP4-24H11, real time-polymerase chain reaction (RT-PCR) analysis was performed to evaluate if the observed changes in virulent factor expression were indeed caused by interference with the agr QS system, i.e. whether the presence of AP4-24H11 affects the transcription of rnaIII, the immediate product of agr autoinduction and the main QS effector in S. aureus. As expected, the rnaIII transcriptional level in RN4850 during stationary growth phase was reduced significantly (>50 fold), by AP4-24H11. Thus, the alteration of .alpha.-hemolysin and protein A expression is a direct result of the interference of AIP-4-mediated QS signaling by AP4-24H11 (FIG. 4D). Yet, the subtle changes in overall exoprotein expression (see FIG. 3) might be misconstrued to mean that AP4-24H11 does not block the QS signaling efficiently. However, the RT-PCR analysis provides evidence that AP4-24H11 significantly inhibits AIP4-based QS in S. aureus RN4850.
[0194] To analyze the specificity of antibody-based QS interference in S. aureus, the transcriptional levels of two additional virulence regulators, namely sarA (staphylococcal accessory regulator) and saeR (staphylococcal accessory protein effector), which control the response to environmental stresses as well as virulence factor expression in S. aureus, were investigated. Importantly, no significant changes (.ltoreq.2-fold) were observed in either sarA or saeR transcription, indicating that AP4-24H11 only affects agr QS system (FIG. 40).
[0195] The transcription of .alpha.-hemolysin and protein A was analyzed by RT-PCR as described above. As stated, (vide supra), significant changes were seen in protein expression level. In terms of transcription, the hla and spa genes were suppressed and elevated respectively .apprxeq.3 to 5 fold, again confirming that rnaIII affects not only transcription but also translation of these proteins. Finally, exofoliatin A (eta) transcription was investigated. Exofoliatin is another agr QS regulated toxin exclusively produced by AIP-4-utilizing S. aureus strains. The data indicated that AP4-24H11 also decreased eta transcription by 10 fold (FIG. 4D).
Example 15
Inactivation of AP4-24H11 by the Synthetic AIP-4
[0196] To determine whether AP4-24H11 inhibited agr QS through binding to AIP-4 and sequestering it from the cell growing medium, or whether AP4-24H11 affected other signaling systems in S. aureus including the linear peptide RNAIII-inhibiting peptide (RAP), which in turn affect agr QS network, the following experiment was conducted to determine whether external addition of AIP-4 could restore the agr QS signaling network in S. aureus RN4850 in the presence of AP4-24H11. Briefly, AP4-24H11 was treated with an equimolar amount of synthetic AIP-4 before addition to the S. aureus growth medium to assure saturation of the antibody binding sites with the AIP-4 peptide. As seen in FIG. 4E, the addition of synthetic AIP-4 efficiently reduced the quorum quenching effect of AP4-24H11, and as a result, fully restored expression of .alpha.-hemolysin in S. aureus RN4850. This finding provides additional confirmation that AP4-24H11 sequesters AIP-4 in S. aureus growth medium and inhibits AIP-dependent QS signaling in S. aureus in a strictly AIP-4-dependent manner.
Example 16
AP4-24H11 Inhibits S. aureus-Induced Apoptosis in Mammalian Cells
[0197] Recent studies have shown that incubation of Jurkat T cells with supernatant of S. aureus culture results in induction of apoptosis. Jurkat cells were treated with the supernatants of S. aureus (RN4850 and Wood 46) cultures grown in the presence or absence of AP4-24H11. After incubation for 4 hours with the supernatant, the cleavage of poly(ADP-ribose) polymerase (PARP), a biochemical marker indicative of apoptosis induction, was evaluated in Jurkat cell protein extracts. As shown in FIG. 5, AP4-24H11 prevented RN4850 supernatant (1%)-induced PARP cleavage in Jurkat cells, and also partially inhibited the effect of Wood 46 supernatant. The results (FIG. 4A and FIG. 5) indicate a positive correlation between expression of .alpha.-hemolysin and S. aureus-induced apoptosis.
Example 17
AP4-24H11 Blocks S. aureus-Induced Dermal Injury in Mice
[0198] Next, the potential of mAb AP4-24H11 to mitigate S. aureus-induced injury in vivo was investigated by employing a murine subcutaneous infection model. Freshly grown log phase S. aureus RN4850 were suspended in PBS containing Cytodex beads, and where indicated, AP4-24H11 or control IgG. Subcutaneous injections of bacterial suspension or vehicle control were made in the flank of SKH1 hairless mice followed by close monitoring over seven days. Doses administered were 10.sup.7 or 10.sup.8 bacteria (colony forming units; cfu) and 0.6 or 0.06 mg AP4-24H11 or control IgG. Mice receiving 10.sup.7 cfu developed minimal hyperemia/edema followed by limited induration over 7 days (see FIG. 6). However, as early as six hours after injection, mice receiving 10.sup.8 cfu suspended in saline or control IgG showed early-stage hyperemia/redness at the injection site and extending 3-5 mm horizontally and 5-10 mm vertically in a diagonal pattern along the flank (FIG. 7A). Upon reexamination at 18 hours, the same areas surrounding the injection site were devitalized, and the skin was transformed to a brittle, reddish-brown scab. Over the 7-day observation period, the hardened scab began to detach from the surrounding relatively normal appearing skin, and small amounts of purulent exudate were observed at the normal/necrotic junction. In contrast, skin injury was abrogated in mice that received 10.sup.8 bacteria with 0.6 mg AP4-24H11 (FIG. 7C). As anticipated, the lower dose of AP4-24H11 (0.06 mg) was not protective (FIG. 7B), and control mice receiving 10.sup.8 cfu with 0.6 mg control IgG were not protected (see FIG. 6). Mice that received an injection of PBS/Cytodex alone or containing 0.6 mg AP4-24H11 remained normal over the observation period with the exception of occasional local induration (FIG. 7D). Animals that had received the protective dose of 0.6 mg AP4-24H11 in combination with S. aureus RN4850 did not develop any significant lesions over the 7 day observation period.
Example 18
Passive Immunization with AP4-24H11 Protected Mice from S. aureus-Induced Fatality
[0199] To evaluate the effectiveness of a passive immunization approach using AP4-24H11 against a lethal challenge with S. aureus, SKH1 hairless mice received a 1 ml i.p. injection of AP4-24H11, control IgG or vehicle (DPBS) followed 2 hours later by 0.5 mL DPBS.sup.- containing 3.times.10.sup.8 S. aureus RN4850. As shown in FIG. 8, all of the mice receiving AP4-24H11 (6/6) survived through the 8-day observation period. In contrast, only one of the DPBS-treated control mice (1/6) and none of the control IgG-treated mice (0/6) survived longer than 24 hours. These data further validated our immunopharmcaothereutic approach for combating acute S. aureus infections.
Example 19
Competition ELISA Analysis of Monoclonal Antibodies Against AP-1, AP-3 and AP-4
[0200] The AP-1, AP-3 and AP-4 haptens and monoclonal antibodies specific for these haptens were prepared as described in Examples 4 and 12 above.
[0201] For the competition ELISA analysis, the optimal concentrations of the AP1-BSA, AP3-BSA, or AP4-BSA conjugate, as well as of each mAb were determined. 96 well ELISA plates were coated with the appropriate amount of AP1-BSA, AP3-BSA, or AP4-BSA conjugate respectively. The plates were blocked with 4 v % skim milk, washed and mAbs were added at the predetermined optimal concentration. The plates were washed and free antigen, i.e. the native AIPs 1-4, was added to the wells in a concentration series starting at 100 .mu.M. The plate was incubated for 1 hour at 37.degree. C., thoroughly washed, and goat anti-mouse-horseradish peroxidase (HRP) conjugate (Pierce, Rockford, Ill.) was added. After an incubation period of 1 hour at RT, the plate was thoroughly washed again and the HRP substrate (TMB substrate kit; Pierce) was added, the reaction was allowed to develop for 15 minutes and stopped by the addition of 2 M H.sub.2SO.sub.4. The absorbance at 450 nm was read and the values plotted using GraFit (Erithacus Software Ltd). The free antigen concentration at which the absorbance value is 50% of the maximum absorbance was considered the K.sub.d of the antibody for its antigen.
[0202] The affinity and crossreactivity data are shown in the following tables. These data demonstrate that using the hapten design strategy disclosed herein, monoclonal antibodies (mAbs) were obtained against the lactone analog of the native thiolactone peptide as hapten. The affinities of the mAbs range from low nanomolar to high micromolar, and some but not all mAbs showed crossreactivity, i.e. they recognize the native AIP based on which their original hapten was designed, as well as one or two of the other naturally-occurring AIPs.
TABLE-US-00011 AIP1 wt AIP2 wt AIP3 wt AIP4 wt AP1 Sups 1H11 >25 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 2A9 >25 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 2C2 ~800 nM >100 .mu.M ~3 .mu.M >100 .mu.M 2C10 >25 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 2H9 ~6 .mu.M >100 .mu.M >25 .mu.M ~12 .mu.M 3B1 ~6 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 3B11 ~6 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 3E11 >25 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 4D3 ~6 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 6H10 >25 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 9A9 ~6 .mu.M >100 .mu.M ~12 .mu.M >100 .mu.M 9B2 ~25 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 9B9 No Data No Data No Data No Data 9C3 ~6 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 9C4 ~6 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 9F9 ~3 .mu.M >100 .mu.M ~3 .mu.M >100 .mu.M 10D6 >25 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 10F4 >25 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 11B10 ~3 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 12A10 >25 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 13A11 ~12 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 13H3 >25 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 15B4 ~800 nM >100 .mu.M ~1 .mu.M >100 .mu.M 15G12 >25 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 16E11 >25 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 16F4 ~25 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 16G9 ~12 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M 17F5 ~12 .mu.M >100 .mu.M >25 .mu.M >100 .mu.M AP3 Sups 18A7 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 21C4 156 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 21E10 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 21H11 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 22B3 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 22D1 156-312 .mu.M >625 .mu.M 78 .mu.M >625 .mu.M 22E12 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 22H10 156 .mu.M >625 .mu.M 312 .mu.M >625 .mu.M 23C9 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 23H1 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 24H9 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 25A3 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 25E2 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 25E9 156 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 25F5 625-312 .mu.M >625 .mu.M 156-312 .mu.M >625 .mu.M 26A2 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 26G3 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 26G11 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 27E1 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 28H8 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 29A2 ~9.8 .mu.M >625 .mu.M ~612 nM >625 .mu.M 29B8 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 29D5 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 30C9 156 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 30H8 >625 .mu.M >625 .mu.M >625 .mu.M >625 .mu.M 30H11 156 .mu.M 156 .mu.M 4.9-2.5 .mu.M >625 .mu.M AP4 Sups 9G2 >25 .mu.M >25 .mu.M >25 .mu.M ~700 nM 12A2 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M 13G5 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M 15B3 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M 15C3 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M 15E8 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M 16D1 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M 17G2 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M 18D3 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M 18G10 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M 22B8 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M 22D9 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M 22F2 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M 22G7 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M 23C4 >25 .mu.M >25 .mu.M >25 .mu.M >25 .mu.M
All hybridomas competing were re-tested and the average is shown. AP4-29E10 was tested 5 different times showing variability ranging from 2 nM-110 nM, but most hovered around 24 nM.
[0203] The amino acid and nucleotide sequences were determined for selected monoclonal antibodies, and their sequences are shown in the Tables below.
TABLE-US-00012 Amino Acid Sequences of the Variable Heavy and Light Chains of Murine Monoclonal Antibodies Anti- body Variable Heavy Chain Variable Light Chain AP1- EVHLVESGGDLVKPGGSLKLS DIVRTQSPLSLSVSLGDQASISC 15B4 CAASGFAFSDFAMSWVRQTPE RSSQSLLHSNGNTYLHWYLQKPG KRLEWVAIIKSDDSYTYYPDS QSPKLLIYKVSNRFSGVPDRFSG VRDRFTISRDNARNTLYLQMT SGSGTDFTLKISILEAEDLGIYF SLRSEDTALYYCTKIYDAYFY CSQSTHFPTFGGGTKLEIK AMDYWGQGTSVTVSS (SEQ ID NO: 147) (SEQ ID NO: 19) AP4- EVKPQESGPGLVKPSQSLSLT DIVMTQATLSLPVSLGDQASISC 24H11 CTVTGYSITSNYAWNWIRQFP RSSQRLVPSNGNIYLHWFLQKPG GNKLEWMGFISSYGTTTYNPS QSPKLLIYKLSSRFSGVPDRFSG LKSRFSITRDTSKNQFFLQLH SGSGTDFTLKISRVESEDLGIYF SVTIEDTGTYFCTREGDYWGQ CSQTTHVPYTFGGGTKLEIK GTTLTVSS (SEQ ID NO: 148) (SEQ ID NO: 20) AP4- EVQLQQSGPELEKPGASVKIS DIVMTQATASLTVSLGQRATISC 29E10- CKASGHSFTGYNMNWVKQSND RASKSVSTSGYSYMHWYQQKPGQ 1 KSLEWIGNIAPYYGVTAYNQK PPKLLIYLASNLESGVPARFSGS FKGKATLTGDKSSSTAYMQLK GSGTDFTLNIHPVEEEDAATYYC SLASEDSAVYYCVLDTSGYAS QHSREVPYTFGGGTKLELK WGQGTLVTVSA (SEQ ID NO: 149) (SEQ ID NO: 21) AP4- QVQLQQSGPELEKPGASVKIS DIEMTQITASLTVSLGQRATISC 29E10- CKASGHSFTGYNMNWVKQSND RASKSVSTSGYSYMHWYQQKPGQ 2 KSLEWIGNIAPYYGVTAYNQK PPKLLIYLASNLESGVPARFSGS FKGKATLTGDKSSSTAYMQLK GSGTDFTLNIHPVEEEDAATYYC SLTSEDSAVYYCVLDTSGYAS QHSREVPYTFGGGTKLELK WGQGTLVTVSA (SEQ ID NO: 150) (SEQ ID NO: 22) AP1- GGDLVKPGGSLKLSCAASGFA PLSLSVSLGDQASISCRSSQSLL 15B4- FSDFAMSWVRQTPEKRLEWVA HSNGNTYLHWYLQKPGQSPKLLI .DELTA. IIKSDDSYTYYPDSVRDRFTI YKVSNRFSGVPDRFSGSGSGTDF SRDNARNTLYLQMTSLRSEDT TLKISILEAEDLGIYFCSQSTHF ALYYCTKIYDAYFYAMDYWGQ PTFGGGT GTS (SEQ ID NO: 151) (SEQ ID NO: 23) AP4- GPGLVKPSQSLSLTCTVTGYS TLSLPVSLGDQASISCRSSQRLV 24H11- ITSNYAWNWIRQFPGNKLEWM PSNGNIYLHWFLQKPGQSPKLLI .DELTA. GFISSYGTTTYNPSLKSRFSI YKLSSRFSGVPDRFSGSGSGTDF TRDTSKNQFFLQLHSVTIEDT TLKISRVESEDLGIYFCSQTTHV GTYFCTREGDYWGQGTT PYTFGGGT (SEQ ID NO: 24) (SEQ ID NO: 152) AP4- GPELEKPGASVKISCKASGHS TASLTVSLGQRATISCRASKSVS 29E10- FTGYNMNWVKQSNDKSLEWIG TSGYSYMHWYQQKPGQPPKLLIY 1-.DELTA. NIAPYYGVTAYNQKFKGKATL LASNLESGVPARFSGSGSGTDFT TGDKSSSTAYMQLKSLASEDS LNIHPVEEEDAATYYCQHSREVP AVYYCVLDTSGYASWGQGTL YTFGGGT (SEQ ID NO: 25) (SEQ ID NO: 153) AP4- GPELEKPGASVKISCKASGHS TASLTVSLGQRATISCRASKSVS 29E10- FTGYNMNWVKQSNDKSLEWIG TSGYSYMHWYQQKPGQPPKLLIY 2-.DELTA. NIAPYYGVTAYNQKFKGKATL LASNLESGVPARFSGSGSGTDFT TGDKSSSTAYMQLKSLTSEDS LNIHPVEEEDAATYYCQHSREVP AVYYCVLDTSGYASWGQGTL YTFGGGT (SEQ ID NO: 26) (SEQ ID NO: 154)
TABLE-US-00013 Nucleotide Sequences of the Variable Heavy and Light Chains of Murine Monoclonal Antibodies Anti- body Variable Heavy Chain Variable Light Chain AP1- gaggtgcacctggtggagtctgggggagacttagtgaagcctgggggg gacattgtgaggacacagtctccactctccctgtctgtcagtcttggag 15B4 tccctcaaactctcctgtgcagcctctggattcgctttcagtgacttt atcaagcctccatctcttgtagatctagtcagagccttttacacagtaa gccatgtcttgggttcgccagactccggagaagaggctggagtgggtc tggaaacacctatttacattggtacctgcagaagccaggccagtctcca gcaatcattaaaagtgatgattcttacacctactatccagacagtgtg aaactcctgatctacaaagtttccaaccgattttctggggtcccagaca agggaccgattcaccatctccagagacaatgccaggaacaccctttac ggttcagtggcagtggatcagggacagatttcacactcaagatcagcat ctgcaaatgaccagtctgaggtctgaagacacggccttgtattactgt attggaggctgaggatctgggaatttatttctgctctcaaagtacacat acaaaaatctatgatgcttacttctatgctatggactactggggtcaa tttccgacgttcggtggaggcaccaagctggaaataaaa ggaacctcagtcaccgtctcctcg (SEQ ID NO: 155) (SEQ ID NO: 27) AP4- gaggtgaagcctcaggagtcaggacctggcctggtgaaaccttctcag gacattgtgatgactcaggctacactctccctgcctgtcagtcttggag 24H11 tctctgtccctcacctgcactgtcactggctactcaatcaccagtaat accaagcctccatctcttgcagatccagtcagcgccttgttcccagtaa tatgcctggaactggatccggcagtttccaggaaacaaactggagtgg tggaaacatttatttacattggttcctgcagaagccaggccagtctcca atgggcttcataagttcctatggaaccactacctacaacccttctctc aagctcctgatctacaaactttccagtcgattttctggggtcccagaca aaaagtcgattctctatcactcgagacacatccaagaaccagttcttc ggttcagtggcagtggatcagggacagatttcacactcaagatcagcag ctgcaattgcattctgtgactattgaggacacaggcacatatttctgt agtggagtctgaggatctgggaatttatttctgctctcaaactacacat acaagagagggtgactactggggccaaggcaccactctcacagtctcc gttccatacacgttcggaggggggaccaagctggaaatcaaa tca (SEQ ID NO: 156) (SEQ ID NO: 28) AP4- gaggtccagctgcaacagtccggacctgagctggagaagcctggcgct gacattgtgatgactcaggctactgcttccttaactgtatctctggggc 29E10- tcagtgaagatatcctgcaaggcttctggtcattcattcactggctac agagggccaccatctcatgcagggccagcaaaagtgtcagtacatctgg 1 aacatgaactgggtgaagcagagcaatgacaagagccttgagtggatt ctatagttatatgcactggtaccaacagaaaccaggacagccacccaaa ggaaatattgctccttactatggtgttactgcctacaaccagaagttc ctcctcatctatcttgcatccaacctagaatctggggtccctgccaggt aagggcaaggccacattgactggagacaaatcctccagcactgcctac tcagtggcagtgggtctgggacagacttcaccctcaacatccatcctgt atgcagctcaagagcctggcatctgaggactctgcagtctattactgt ggaggaggaggatgctgcaacctattactgtcagcacagtagggaggtt gtcctagacacctcgggctacgcttcctggggccaagggactctggta ccgtacacgttcggaggggggaccaagctggagctgaaa actgtctctgca (SEQ ID NO: 157) (SEQ ID NO: 29) AP4- caggtccagctgcagcagtctgggcctgagctggagaagcctggcgct gacattgagatgacccagattactgcttccttaactgtatctctggggc 29E10- tcagtgaagatatcctgcaaggcttctggtcattcattcactggctac agagggccaccatctcatgcagggccagcaaaagtgtcagtacatctgg 2 aacatgaactgggtgaagcagagcaatgacaagagccttgagtggatt ctatagttatatgcactggtaccaacagaaaccaggacagccacccaaa ggaaatattgctccttactatggtgttactgcctacaaccagaagttc ctcctcatctatcttgcatccaacctagaatctggggtccctgccaggt aagggcaaggccacattgactggagacaaatcctccagcactgcctac tcagtggcagtgggtctgggacagacttcaccctcaacatccatcctgt atgcagctcaagagcctgacatctgaggactctgcagtctattactgt ggaggaggaggatgctgcaacctattactgtcagcacagtagggaggtt gtcctagacacctcgggctacgcttcctggggccaagggactctggtc ccgtacacgttcggaggggggaccaagctggagctgaaa actgtctctgca (SEQ ID NO: 158) (SEQ ID NO: 30) AP1- gggggagacttagtgaagcctggggggtccctcaaactctcctgtgca ccactctccctgtctgtcagtcttggagatcaagcctccatctcttgta 15B4-.DELTA. gcctctggattcgctttcagtgactttgccatgtcttgggttcgccag gatctagtcagagccttttacacagtaatggaaacacctatttacattg actccggagaagaggctggagtgggtcgcaatcattaaaagtgatgat gtacctgcagaagccaggccagtctccaaaactcctgatctacaaagtt tcttacacctactatccagacagtgtgagggaccgattcaccatctcc tccaaccgattttctggggtcccagacaggttcagtggcagtggatcag agagacaatgccaggaacaccctttacctgcaaatgaccagtctgagg ggacagatttcacactcaagatcagcatattggaggctgaggatctggg tctgaagacacggccttgtattactgtacaaaaatctatgatgcttac aatttatttctgctctcaaagtacacattttccgacgttcggtggaggc ttctatgctatggactactggggtcaaggaacctca acc (SEQ ID NO: 31) (SEQ ID NO: 159) AP4- ggacctggcctggtgaaaccttctcagtctctgtccctcacctgcact acactctccctgcctgtcagtcttggagaccaagcctccatctcttgca 24H1- gtcactggctactcaatcaccagtaattatgcctggaactggatccgg gatccagtcagcgccttgttcccagtaatggaaacatttatttacattg .DELTA. cagtttccaggaaacaaactggagtggatgggcttcataagttcctat gttcctgcagaagccaggccagtctccaaagctcctgatctacaaactt ggaaccactacctacaacccttctctcaaaagtcgattctctatcact tccagtcgattttctggggtcccagacaggttcagtggcagtggatcag cgagacacatccaagaaccagttcttcctgcaattgcattctgtgact ggacagatttcacactcaagatcagcagagtggagtctgaggatctggg attgaggacacaggcacatatttctgtacaagagagggtgactactgg aatttatttctgctctcaaactacacatgttccatacacgttcggaggg ggccaaggcaccact gggacc (SEQ ID NO: 32) (SEQ ID NO: 160) AP4- ggacctgagctggagaagcctggcgcttcagtgaagatatcctgcaag actgcttccttaactgtatctctggggcagagggccaccatctcatgca 29E10- gcttctggtcattcattcactggctacaacatgaactgggtgaagcag gggccagcaaaagtgtcagtacatctggctatagttatatgcactggta 1-.DELTA. agcaatgacaagagccttgagtggattggaaatattgctccttactat ccaacagaaaccaggacagccacccaaactcctcatctatcttgcatcc ggtgttactgcctacaaccagaagttcaagggcaaggccacattgact aacctagaatctggggtccctgccaggttcagtggcagtgggtctggga ggagacaaatcctccagcactgcctacatgcagctcaagagcctggca cagacttcaccctcaacatccatcctgtggaggaggaggatgctgcaac tctgaggactctgcagtctattactgtgtcctagacacctcgggctac ctattactgtcagcacagtagggaggttccgtacacgttcggagggggg gcttcctggggccaagggactctg acc (SEQ ID NO: 33) (SEQ ID NO: 161) AP4- gggcctgagctggagaagcctggcgcttcagtgaagatatcctgcaag actgcttccttaactgtatctctggggcagagggccaccatctcatgca 29E10- gcttctggtcattcattcactggctacaacatgaactgggtgaagcag gggccagcaaaagtgtcagtacatctggctatagttatatgcactggta 2-.DELTA. agcaatgacaagagccttgagtggattggaaatattgctccttactat ccaacagaaaccaggacagccacccaaactcctcatctatcttgcatcc ggtgttactgcctacaaccagaagttcaagggcaaggccacattgact aacctagaatctggggtccctgccaggttcagtggcagtgggtctggga ggagacaaatcctccagcactgcctacatgcagctcaagagcctgaca cagacttcaccctcaacatccatcctgtggaggaggaggatgctgcaac tctgaggactctgcagtctattactgtgtcctagacacctcgggctac ctattactgtcagcacagtagggaggttccgtacacgttcggagggggg gcttcctggggccaagggactctg acc (SEQ ID NO: 34) (SEQ ID NO: 162)
Example 20
Evaluation of Other Anti-AIP Antibodies
[0204] The quorum quenching ability of some of the newly obtained anti-AIP antibodies, e.g. anti-AP1 and anti-AP3 antibodies were evaluated. For the group I strains (RN6390B and Wood46), two monoclonal antibodies, AP1-2C2 and AP1-15B4, which showed high affinity toward AIP-1 in competition ELISA assay, were tested. FIG. 9 shows that the anti-AP1 antibodies also efficiently inhibit quorum sensing of the group I strains resulting in changes in the virulent factors expression. In addition, the anti-AP3 antibodies against one of the group III strains, RN8465 were also tested. Due to low exoprotein expression in RN8465, the quorum quenching effects were not determined precisely.
Example 21
Therapeutic Effects of Cyclic Peptide--Based Vaccines
[0205] To evaluate the effectiveness of cyclic peptide-based vaccines, the following experiments are conducted. Active and passive vaccination schedules are as follows:
TABLE-US-00014 Active Vaccination Schedule Initial titer: day -1 Initial immunization: day 0 50-200 .mu.g protein Titer pre-boost 1: day 6 Boost 1: day 7-14 (1-2 weeks after initial 50-200 .mu.g protein immunization) Titer pre-boost 2: day 20 Boost 2: day 21-28 (1-2 weeks after boost 1) 50-200 .mu.g protein Titer pre-challenge: day X (1 day before challenge) Challenge day X (1 week after boost 2)
TABLE-US-00015 Passive Vaccination Schedule Initial titer: day -1 Immunization: day 0 100-1000 .mu.g IgG/mouse Titer pre-challenge: day 1 Challenge day 2
The vaccines are administration by intravenous, intramuscular, intraperitoneal or subcutaneous injection to male Balb/c rats of 25-30 g and between 8-12 weeks of age. Twenty animals are included in each treatment group.
[0206] To determine whether the vaccine protects the animal from a lethal system challenge, S. aureus strain of any with known agr group is used. About 10.sup.8-10.sup.9 C.F.U. of the bacteria is administered by intraperitoneal injection. Body temperatures and survival every 12 hours are determined. Death or survival after 10 days represents the end point of the study. Additional details are described above.
[0207] To determine whether the vaccine protects the animal from sepsis, S. aureus strain of any with known agr group is used. About 10.sup.7-10.sup.8 C.F.U. of the bacteria is administered by intravenous injection. Thus, S. aureus is administered directly into the blood stream and will spread hematogenously through the body. Body temperatures and survival every 12 hours are determined. Death or survival after 10 days represents the end point of the study.
[0208] To determine whether the vaccine protects the animal from septic arthritis, S. aureus strain LS-1 (a mouse-adapted strain belonging to agr group 1), or any strain with a known agr group that is capable of spontaneously causing arthritis, is used. About 10.sup.6-10.sup.7C.F.U. of the bacteria is administered by intravenous injection. Body temperature, survival every 12 hours, joint swelling (scoring), redness, changes in moving patterns and morbidity are determined. Death or survival at 28 days represents the end point of the study.
[0209] To determine whether the vaccine protects the animal from renal abscess, S. aureus strain of any known agr group is used. About 10.sup.6-10.sup.7 C.F.U. of the bacteria is administered by intravenous injection. The animals are evaluated based on activity, alertness, and coat condition (scored 0-2 for normal, slightly abnormal, very abnormal). In addition, kidneys are removed aseptically and histologically evaluated (abscess formation; 0--no visible abscesses; 1--1 small abscess; 2--several abscesses; and 3--severely abscessed kidneys), and C.F.U. counts are recovered from homogenized kidneys. Death or survival at 7 days marks the end point of the study.
[0210] The same model can be used to determine whether the vaccines can block renal abscess formation, in which case, general behavior and renal abscess based on histological evaluation of the kidneys are considered.
[0211] To determine whether the vaccine protects the animal from spreading throughout the body, as well as colonize a catheter, the foreign body model is used. A piece of catheter is implanted in a subcutaneous space on the mice. After 24 hours, a suspension of S. aureus strain of any known agr group is administered by subcutaneous injection of about 10.sup.6-10.sup.8C.F.U. in the catheter bed. The ability of the bacteria to spread through the body and to colonize the catheter are evaluated by determining body temperature, survival every 12 hours, subcutaneous abscess formation and C.F.U. count recovered from catheter at various time points. Death or survival at 7 days marks the end point of the study. Alternatively, a colonized catheter could be used in this model.
[0212] To determine whether the vaccine protects the animal from mastitis, lactating CD1 mice are administered by intramammary injection of about 10.sup.2-10.sup.4C.F.U, of a S. aureus strain from any known agr group. C.F.U. counts from mammary glands are determined at various time points and expressed in C.F.U./gland or C.F.U./gram of mammary tissue. The amount of milk present in the gland and survival are also evaluated, and death or survival at 5 days marks the end point of the study. This is an established model of bovine mastitis caused by caused microbial intramammary infection that induces inflammation of the mammary gland. S. aureus provokes clinical mastitis, but more frequently causes subclinical infections that tend to become chronic and difficult to eradicate by conventional antimicrobial therapies.
Example 22
Active Vaccination with AP4-KLH Protects Mice from a Lethal Systemic S. aureus Challenge
[0213] Mice were immunized i.p. with 100 .mu.g of the immunoconjugate together with bacterial DNA containing unmethylated cytosine-guanosine dinucleotide motif-containing oligodeoxynucleotides (CpG-ODNs) as adjuvants. Chuang et al., J Leukoc Biol 71: 538-44 (2002). The animals received booster immunizations 7 days and 21 days after the initial vaccination. Serum samples were withdrawn for anti-AIP 4 antibody titer analysis from all animals prior to the infection experiment.
[0214] Results illustrating the protective effects of the vaccination in SKH1 hairless mice that had received 0.5 mL PBS i.p. containing 3.times.10.sup.8 S. aureus RN4850 (Park et al., Chem Biol 14: 1119-1127 (2007)) are summarized in the following table.
TABLE-US-00016 Active Vaccination Against AIP4 Protects Mice From a Lethal S. aureus Challenge Vaccine Survivors AIP4-KLH 4/6 KLH 1/6 PBS 2/6
[0215] As shown above, 4 of the 6 mice that received the AP4-KLH conjugate survived through the 8-day observation period. In contrast, only one of the KLH-vaccinated control mice (1/6) and 2 of the PBS mock immunized mice (2/6) survived the observation period.
[0216] Analysis of the antibody titers revealed that the conjugates and immunization protocol elicited an immune response with titers in the range of 1:1000, i.e. the dilution at which 50% of the maximum signal strength is still observed as tested using standard ELISA methodology. This analysis also showed that the immunization induced an AIP4-specific immune response with cross-reactivities to AIP1 and AIP3 (anti-AIP4 titers: up to 1:6400; anti-AIP1 titers: up to 1:6400; anti-AIP3 titers: up to 1:3200).
Example 23
Evaluation of Anti-AIP1 Antibodies
[0217] All anti-AIP1 mAbs obtained were tested against the group I S. aureus strain RN6390B. Results in FIG. 10B show that a number of anti-AP1 antibodies efficiently inhibited quorum sensing of group I S. aureus resulting in changes in hemolysin expression. The mAb AP1-15B4 (#4) exhibited the most potent activity in the immunization experiments.
[0218] Biofilm formation by S. aureus strain RN6390B was also evaluated in the presence of mAb AP1-15B4, as an increase in biofilm formation has been described in response to agr QS-signaling inhibition in S. aureus. Results in FIG. 10B show an increase in biofilm formation by S. aureus strain RN6390B in the presence of mAb AP1-15B4.
Example 24
Selection of Human scFv Antibodies Using Phage Display Technology
[0219] A phage display library generated using the method described by Gao et al. (Proc Natl Acad Sci USA. 99:12612-6 (2002)) was screened using the AP1-BSA, AP3-BSA and AP4-BSA conjugates to identify human anti-AIP-1, AIP-3 and anti-AIP-4 scFv antibodies. The antibody-displaying phage particles were subtracted against BSA first to eliminate BSA-specific clones, as well as unspecific binders. After 4 rounds of panning, selected clones were analyzed by DNA sequencing and ELISA against BSA and AP1-BSA, AP3-BSA and AP4-BSA. The amino acid sequences of the scFv antibodies, the DNA sequences encoding the variable heavy and variable light chains, as well as the DNA sequences encoding the scFv antibodies are shown in the following tables.
TABLE-US-00017 Amino Acid Sequences of Human scFv Antibodies AP1-2 QVQLVQSGAEVKKPGESLRISCKGSGYSFTSHWISWVRQMPGKGLEWMGRIDPSDSYSNYSPSFQGHV- IISVDKSISTAYLQWSSLKASDTAIYY CARQLIVVVPAAPYYYYYYGMDVWGQGTLVTVSSGGGGSGGGGSSGGGSEIVLTQSPGTLSLSPGERATLSCR- ASQTVNSYLAWYQKPGQAPRLL IYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSHPWTFGQGTKVEIK (SEQ ID NO: 35) AP1-6 QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRV- TITADESTSTAYMELSSLRSEDTAIYY CARVEGSESQDPSDIWSGYYGMEVWGQGTLVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSVSASVGDRVTITC- RASQGISSWLAWYQQKPGKAPK LLIYAASSLQSRVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPYTFGQGTKLEIK (SEQ ID NO: 36) AP1-8 QVQLVESGAEAKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRV- TITADESTSTAYMELSSLRSEDTAVYYC ARAGITGTTAPPDYWGQGTLVTVSSGGGGSGGGGSGGGGSVIWMTQSPSSLSASVGDRVTITCRASQSISSYL- NWYQRKPGKAPKLLIYAASSLQS GVTSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTEGQGTKLEIK (SEQ ID NO: 37) AP1-11 QVQLVQSGSELKKPGASVKLSCRASGYTFTSYSMVWVRQAPGEGLEWMGGINTNTGNPTYAQGFTER- FVFSFDSSVSTAYLQISSLKAEDTAVYY CARDWAYSGSWPLGQNPSDHWGQGTLVTVSSGGGGSGGGGSGGGGSEIVMTQSPATLSVSPGERATLSCRASQ- SVSRNLAWYQQKPGQAPRLLIY DTSTRATGIPARFSGSGSGTEFTLTISSLQSEDSAVYYCQQYNIWPPLTFGGGTKVEIK (SEQ ID NO: 38) AP1-15 QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYRTWIRQSPVKGLEWIGEVNDRGSPNYNPSFKSRL- TISIDTSKNLSLKLRFMTAADTAVYSCA RIRPRYGMDVWGQGTMVTVSSGGGGSGGGGSSGGGSDIVMTQTPLSSPVTLGQPASISCRSSQSLVHSDGNTY- LTWFHQRPGQPPRVLIHKVSNL FSGVPDRFSGSGAGTDFTLKISRVEAEDVGVYYCMQATQLYTFGQGTKVEIK (SEQ ID NO: 39) XP1-16 EVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGLEWMGGFDPEDGETISAQKFQGR- VTMTEDTSTDTAYMDLSSLRSEDTAVYYC ATQRLCSGGRCYSHFDYWGQGTTVTVSSGGGGSGGGGSGGGGSETTLTQSPAIMSASPGERVTMTCSASSSIR- YIYWYQQKPGSSPRLLIYDTSNV APGVPFRFSGSGSGTSYSLTINRMEAEDAATYYCQEWSGYPYTFGGGTKVEIK (SEQ ID NO: 40) AP1-19 QMQLVQSGAEVKKPGSSVKVSCKASGGTENTYVISWVRQAPGQGLEWMGWISAYNGNTNYAQKLQGR- VTMTTDTSTSTAYMELRSLRSDDTAVYY CARVWSPLDYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNMN- YLAWYQQKPGQPPKLLIYWAST RESGVPDRFSGSGSGTDFTLTISSLQAEDAAVYYCQQYYSTETTFGQGTKLEIK (SEQ ID NO: 41) AP3-1 QVQLVQSGAEVKKPGASVKVSCKGSGYTFTGYYMHWVPQAPGQGLEWMGWINPNNGGTNYDQKFQGRV- AMTRDTSISTAYMELSRLRSDDTAVYY CARDNGRVTTGGYWGQGTLVTVSSGGGGSGGGGSSGGGSQSVLTQPPSLSGAPGQSVTISCAGTSSSIGAGYD- VQWYQQLPGKTPKLLIYGNDNR PSGVPDRFSGSRSYTSASLVITRVQIEDEADYYCQSYDSSLIGPQFGGGTKLTVLG (SEQ ID NO: 42) AP3-2 QVQLVQSGAEVKKPGESLKISCTASGYNFASYWIGWVRQMPGQGLEWMGITYPGDSDTRYSPSFQGQV- TISADKSISTAYLQWSSLKASDTATYY CVRRVPLYTNNHYLDYWGQGTLVTVSSGGGGSGGGGSGGGGSAIQMTQSPSSLSASVGDRVTITCRASQGISN- YLAWFQQKPGKAPKSLIYAASS LQSGVPSKYSGSGSGTDFTLTISSLQPEDFATYYCQQYKSYPLTFGGGTKVEIK (SEQ ID NO: 43) AP3-3 EVQLVQSGAEVKKPGASVKVSCKASGYTFSDYFMHWVRQAPGQGLEWMGVINPTGGSTTYAQSFQGRV- TMTRDTSTSIVYMELSSLRSEDTAVYY CTRVGYYGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQSPSTLSASVGDRVTITCRASQSTSRFLNWY- QQKPGKAPKLLIYAASSLHSGV PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTSSYPLTFGGGTKVEIK (SEQ ID NO: 44) AP3-5 QVQLVQSGGGVVQVGRSLRLSCAASGFTFTNFGMHWVRQAPGKGLEWVALISSDGYRQAYADSVKGRF- TISGDNSKNTVYLQMNSLTSEDTAVYY CAIIPPVLRIFDWEFDYWGQGTLVTVSSGGGGSGGGGSGGGGSETTLTQSPGTLSLSPGERATLSCRASQSVS- SPYLAWYQQKPGQAPRLLIYGA SNRATGIPDRFSGSGSGTDFTLTISSLQAEDEAVYYCQQYYNTPLTFGGGTKVEIK (SEQ ID NO: 45) AP3-6 QVQLQQWGAGLLKPSETLSLTCAVYSGSFTRDYWGWIRQPPGKGLEWIGEINHSGSTNYNPSLKSRVT- TSVDKSKNQFSLKLTSVTAADTAVYYC ARRRLSSDLFMRGVGGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQTPGTLSSSPGERATLSCRASQG- VSSNLAWYQQKPGQAPRLLIYD ASNRATGIPLRFSGSGSGTDFTLTISRLEPEDFAVYYCHQYGSSpyTFGQGTKVEIK (SEQ ID NO: 46) AP3-8 EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYGISWVRQASGQGLEWMGWISAYNGNTNYAQKLQGRV- TMTTDTSTSTAYMELRSLRSDDTAVYY CARVPRYFDWLLYGSDYFDYWGQGTLVTVSSGGGGSGGGGSSGGGSDIQMTQSPSTLSVSVGDRVTITCRASQ- GISSWLAWYQQKPGKAPKLLIY AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPLTFGGGTKLEIK (SEQ ID NO: 47) AP3-10 QVQLVQSGAEVKEPGSSVKVSCKASGGTFSSYAIYWVRQAPGQGLEWMGWIIPILGIANYAQKFQGR- VTITADKSTSTAYMELSSLRSEDTAVYYC ARAAGHSTNYYYYGMDVWGQGTLVTVSSGGGGSGGGGSSGGGSQTVVTQEPSLTVSLGGTVTLTCGSSTGAVT- SGHYPYWFQQKPGQAPRTLIYDT SNKHSWTPARFSGSLLGGKAALTLSGAQPEDEAEYYCLLSYSGTRVFGGGTKLTVLG (SEQ ID NO: 48) AP3-13 EVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSGGSTSYAQKFQGR- VTMTRDTSTSTVYMELSSLRSEDTAVYY CARDFKEYSRTGYFDYWGQGTLVTVSSGGGGSGGGGSSGGGSSYELMQPSSVSVSPGQTARITCSGDVLAKKC- ARWFQQKPGQAPVLVIYKDSER PSGIPERFSGSSSGTTVTLTISGAQVEDEADYYCYSAADNNLGVFGGGTKVTVLG (SEQ ID NO: 49) AP3-20 QITLKESGPALVKPTQTLTLTCNFSGFSLSTYGGGVGWLRQppGKALEWLAVIYWSDGKRYSPSVKN- RLTITKDTSKNHVVLTMTNMDPVDTATY YCAHLMMDTSITTHWFDPWGQGTLVTVSSGGGGSGGGGSGGGGSAIRMTQSPSSLSASVGDRVTITCRASQGI- SNYLAWYQQKPGKVPKLLIYAA STLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYNSAPGTFGQGTKVEIK (SEQ ID NO: 50) AP4-8 QVQLVQSGAEVKKPGSSVKVSCKASGYTFTNYFIHWVRQAPGQGLEWMGLLNPTDSGTLYAQNFQGRI- TMTSDTSTNTVYMELSSLRSDDTAMYY CAREGGADTTRVHSSFDYWGQGTLVTVSSGGGGSGGGGSSGGGSQAVLTQPPSVSGSPGQSITISCTGTSSDV- EAYNYVSWYQQHPGKAPKLMIY DVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSRTWVFGGGTKVIVL (SEQ ID NO: 51) AP4-14 QVQLQESGGGLVQPGRSLRLSCAASGFTFDDYALHWVRQAPGKGLEWVSGISWNSVTVKYAVSVKGR- FTISRDNAKNSLFLQMNALRSEDTALYYC AKARGALLEAADTPSDDWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQSPSSLSASVGDRVTITCRASQSIS- SYLNWYQQKPGKAPKLLIYAASS LQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYNSAPWTFGQGTKVDIK (SEQ ID NO: 52) AP4-20 QVQLQQSGAGLLRPSETLSLTCGLYGGSFSGHYWNWIRQSPEKGLVWIGEITHSGTTNYNPSLKSRV- ITSVDTSKNQYSLKLSFVTPADTAVYYCA RGDYYGYWYFDLWGRGTLVTVSSGGGGSGGGGSGGGGSQSVLTQppSVPVAPGQKVTISCSGSSSNIGNNYVS- WYQQLPGTAPKLLIYDTNKRPSG IPDRFAGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAGVFGGGTKLTVL (SEQ ID NO: 53)
TABLE-US-00018 Nucleotide Sequences Encoding the Heavy and Light Chains of Human scFy Antibodies Anti- body Variable Heavy Chain Variable Light Chain AP1-2 caggtgcagctggtgcagtctggagcagaggtgaaaaagcccgggga gaaattgtgttgacgcagtctccaggcaccctgtctttgtctccagg gtctctgaggatctcctgcaagggttctggatacagctttaccagcc ggaaagagccaccctctcctgcagggccagtcagactgttaacagct actggatcagctgggtgcgccagatgcccgggaaaggcctggagtgg acttagcctggtaccagtagaaacctggccaggctcccaggctcctc atggggaggattgatcctagtgactcttatagcaactacagcccctc atctatggtgcatccagcagggccactggcatcccagacaggttcag cttccaaggccacgtcatcatctcagttgacaagtccatcagcactg tggcagtgggtctgggacagacttcactctcaccatcagcagactgg cctacttgcagtggagcagcctgaaggcctcggacaccgccatatat agcctgaagattttgcagtgtattactgtcagcagtatggtagctca tactgtgcgagacagctcattgtagtagtaccagctgctccctatta catccgtggacgttcggccaagggaccaaggtggagatcaaacgtgg ctactactactacggtatggacgtctggggccaaggaaccctggtca cctcgggggcctggtcgactacaaagatgacgatgacaaa ccgtctcctca (SEQ ID NO: 55) (SEQ ID NO: 54) AP1-16 caggttcagctggtgcagtctggggctgaggtgaagaagcctgggtc gacatccagatgacccagtctccgtcttccgtgtctgcatctgtagg ctcggtgaaggtctcctgcaaggcttctggaggcaccttcagcagct agacagagtcaccatcacttgtcgggcgagtcagggtattagcagct atgctatcagctgggtgcgacaggcccctggacaagggcttgagtgg ggttagcctggtatcagcagaaaccagggaaagcccctaagctcctg atgggagggatcatccctatctttggtacagcaaactacgcacagaa atctatgctgcatccagtttgcaaagtagggtcccatcaaggttcag gttccagggcagagtcacgattaccgcggacgaatccacgagcacag cggcagtggatctgggacagatttcactctcaccatcagcagcctgc cctacatggagctgagcagcctgagatctgaggacacggccatatat agcctgaagattttgcaacttactattgtcaacaggctaacagtttc tactgtgcgagagtctttggttccgagtcgcaagatccgtccgatat ccgtacacttttggccaggggaccaagctggagatcaaacgtggcct ttggagtggttattacggtatggaagtctggggccaaggaaccctgg cgggggcctggtcgactacaaagatgacgatgacaaa tcaccgtctcctca (SEQ ID NO: 57) (SEQ ID NO: 56) AP1-8 caggtgcagctggtggagtctggggctgaggcgaagaagcctgggtc gtcatctggatgacccagtctccatcctccctgtctgcatctgtagg ctcggtgaaggtctcctgcaaggcttctggaggcaccttcagcagct agacagagtcaccatcacttgccgggcaagtcagagcattagcagct atgctatcagctgggtgcgacaggcccctggacaagggcttgagtgg atttaaattggtatcagcggaaaccagggaaagcccctaagctcctg atgggagggatcatccctatctttggtacagcaaactacgcacagaa atctatgctgcatccagtttgcaaagtggggtcacatcaaggttcag gttccagggcagagtcacgattaccgcggacgaatccacgagcacag tggcagtggatctgggacagatttcactctcaccatcagcagtctgc cctacatggagctgagcagcctgagatctgaggacacggccgtgtat aacctgaagattttgcaacttactactgtcaacagagttacagtacc tactgtgcgagagccggtataactggaactacggctcccccagacta cctccgacgttcggccaagggaccaagctggagatcaaa ctggggccagggcaccctggtcaccgtctcctca (SEQ ID NO: 59) (SEQ ID NO: 58) AP1-11 caggtgcagctggtgcagtccggatctgagttaaagaagcctggggc gaaatagtgatgacgcagtctccagccaccctgtctgtgtctccagg ctcagtgaagctttcctgcagggcttctggatacacattcactagtt ggaaagagccaccctctcctgcagggccagtcagagtgttagccgca attccatggtttgggtgcgacaggcccctggagaagggcttgagtgg acttagcctggtaccagcagaaacctggccaggctcccaggctcctc atgggagggatcaacaccaacactgggaacccaacgtatgcccaggg atctatgatacatccaccagggccactggtatcccagccaggttcag cttcacagaacggtttgtcttctccttcgacagctctgtcagcacgg tggcagtgggtctgggacagagttcactctcaccatcagcagcctgc catatctgcaaatcagcagcctaaaggctgaggacactgccgtgtat agtctgaagattctgcagtttattactgtcagcagtataatatctgg tactgtgcgagagattgggcgtatagcggcagctggcccttaggcca cctccactcactttcggcggagggaccaaggtggagatcaaa gaacccttctgaccactggggccagggcaccctggtcaccgtctcct (SEQ ID NO: 61) ca (SEQ ID NO: 60) AP1-15 caggtgcagctacagcagtggggcgcaggattgttgaagccttcgga Gatattgtgatgacccagactccactctcctcacctgtcacccttgg gaccctgtccctcacctgcgctgtctatggtgggtccttcagtggtt acagccggcctccatctcctgcaggtctagtcaaagcctcgtacaca actaccggacctggatccgccagtccccagtgaaggggctggagtgg gtgatggaaacacctacttgacttggtttcaccagaggccaggccag attggggaagtcaatgatcgtggaagccccaactacaacccgtcctt cctccaagagtcctcattcataaggtttctaacctgttctctggggt caagagtcgactcaccatatcaatcgacacgtccaagaactagttat cccagacagattcagtggcagtggggcagggacagatttcacactga ccctgaagttgagatttatgaccgccgcggacacggctgtatattcg aaatcagcagggtggaagctgaggatgtcggggtttattactgcatg tgtgcgagaattaggcctaggtacggtatggacgtctggggccaggg caagctacacaattgtacacttttggccaggggaccaaggtggaaat gacaatggtcaccgtctcctcaggcggcggcggctct caaa (SEQ ID NO: 62) (SEQ ID NO: 63) AP1-16 gaggtccagctggtacagtctggggctgaggtgaagaagcctggggc gaaacgacactcacgcagtctccagcaatcatgtctgcatctccagg ctcagtgaaggtctcctgcaaggtttccggatacaccctcactgaat ggagagggtcaccatgacctgcagtgccagctcaagtatacgttaca tatccatgcactgggtgcgacaggctcctggaaaagggcttgagtgg tatattggtaccaacagaagcctggatcctcccccagactcctgatt atgggaggttttgatcctgaagatggtgaaacaatctccgcgcagaa tatgacacatccaacgtggctcctggagtcccttttcgcttcagtgg gttccagggcagagtcaccatgaccgaggacacatctacagacacag cagtgggtctgggacctcttattctctcacaatcaaccgaatggagg cctacatggatctgagcagcctgagatctgaggacacggccgtttat ctgaggatgctgccacttattactgccaggagtggagtggttatccg tactgtgcaacgcagcgcttgtgtagtggtggtcgctgctactccca tacacgttcggaggggggaccaaggtggagatcaaa ctttgactactggggccagggcaccacggtcaccgtctcctca (SEQ ID NO: 65) (SEQ ID NO: 64) AP1-19 cagatgcagctggtgcagtctggggctgaggtgaagaagcctgggtc gacatcgtgatgacccagtctccagactccctggctgtgtctctggg ctcggtgaaggtctcctgcaaggcttctggaggcaccttcaacacct cgagagggccaccatcaactgcaagtccagccagagtgttttataca atgttatcagttgggtgcgacaggcccctggacaagggcttgagtgg gctccaacaatatgaactacttagcttggtaccagcagaaaccagga atgggatggatcagcgcttacaatggtaacacaaactatgcacagaa cagcctcctaagctgctcatttactgggcatctacccgggaatccgg gctccagggcagagtcaccatgaccacagacacatccacgagcacag ggtccctgaccgattcagtggcagcgggtctgggacagatttcactc cctacatggagctgaggagcctgagatctgacgacacggccgtgtat tcaccatcagcagcctgcaggctgaagatgcggcagtttattactgt tactgtgcgagagtttggagtccccttgactactggggccagggcac cagcagtattatagtactcctccgacgttcggccaagggaccaagct cctggtcaccgtctcctca ggagatcaaa (SEQ ID NO: 66) (SEQ ID NO: 67) AP3-1 caggtgcagctggtgcaatctggggctgaggtgaagaagcctggggc cagtctgtgttgacgcagcctccctcattgtctggggccccgggaca ctcagtgaaggtctcctgcaagggttctggatacaccttcaccggct gagtgtcaccatctcctgcgctgggaccagttccagcatcggggcag actatatgcactgggtgccacaggcccctggacaagggcttgagtgg gttacgatgtacagtggtaccagcaacttccaggaaaaacccccaaa atgggatggatcaaccctaacaatggtggcacaaactatgaccagaa ctcctcatctacgggaatgataatcggccctcaggggtccctgaccg gtttcagggcagggtcgccatgaccagggacacgtccatctccacag attctctggatccaggtcttacacctcagcctccctggtcatcacta cctacatggagctgagcaggctgagatctgacgacactgccgtgtat gagtccagattgaggatgaggctgattattactgccagtcgtatgac tactgtgcgagagataatgggagggtgaccacagggggctactgggg agcagtctcattggtcctcaattcggcggg ccagggcaccctggtcaccgtctcctca (SEQ ID NO: 69) (SEQ ID NO: 68) AP3-2 caggtgcagctggtgcaatctggggctgaggtgaaaaagcccgggga gccatccagatgacccagtctccatcctcactgtctgcatctgtagg gtctctgaagatctcctgtacggcctccggatacaactttgccagct agacagagtcaccatcacttgtcgggcgagtcagggcattagcaatt actggatcggctgggtgcgccagatgcccgggcaaggcctggagtgg atttagcctggtttcagcagaaaccagggaaagcccctaagtccctg atggggatcatctatcctggtgactctgataccagatacagtccgtc atctatgctgcatccagtttgcaaagtggggtcccatcaaagtacag cttccaaggccaggtcaccatctcagccgacaagtccatcagcaccg cggcagtggatctgggacagatttcactctcaccatcagcagcctgc cctacctgcagtggagcagcctgaaggcctcggacaccgccacgtat agcctgaagattttgcaacttattactgccaacagtataagagttac tactgtgtgagacgggtccccctctacactaacaaccactaccttga cccctcactttcggcggagggaccaaggtggagatcaaa ctattggggccagggcaccctggtcaccgtctcctca (SEQ ID NO: 71) (SEQ ID NO: 70) AP3-3 gaggtgcagctggtgcagtctggggctgaagtgaagaagcctggggc gacatcgtgatgacccagtctccatccaccctgtctgcatctgtagg ctcagtgaaggtttcctgtaaggcatctggatacaccttcagcgact agacagagtcaccatcacttgccgggcaagtcagagcactagcaggt actttatgcactgggtgcgacaggcccctggacaagggcttgagtgg ttttaaattggtatcagcagaaacctgggaaagcccctaaactcctg atgggagtaatcaacccaactggtggttccacaacctacgcacagag atctatgctgcatccagtttgcatagtggcgtcccatcaaggttcag cttccagggcagagtcaccatgaccagagacacgtccacgagcatag tggcagtggatctgggacagatttcactctcaccatcagcagtctgc tctacatggagctgagcagcctgagatctgaagacacggccgtgtac aacctgaagattttgcaacttactactgtcaacagacttccagttac tactgtacgcgagtcggctactacggtatggacgtctggggccaagg cctctcactttcggcggagggaccaaggtggaaatcaaa caccctggtcaccgtctcctca (SEQ ID NO: 73) (SEQ ID NO: 72) AP3-5 caggtccagctggtacagtctgggggaggcgtggtccaggttgggag gaaacgacactcacgcagtctccaggcaccctgtctttgtctccagg gtccctgagactttcctgtgcggcctctggattcaccttcacaaact ggaaagagccaccctctcctgcagggccagtcagagtgtttccagcc ttggcatgcactgggtccgccaggctccaggcaaggggctggagtgg cctacttagcctggtaccagcagaaacctggccaggctcccaggctc gtggcactcatctcatctgatggatatagacaggcctatgcagactc ctcatttatggtgcatctaacagggccactggcatcccagacaggtt cgtgaagggccggttcaccatctccggagacaactccaagaacacag cagtggcagtgggtctgggacagacttcactctcaccatcagcagcc tgtatctgcaaatgaacagcctgacaagtgaggacacggctgtttat tgcaggctgaagatgaggcagtttattactgtcagcaatactacaat tactgtgccatcataccccctgtattacggatttttgattgggaatt actccgctcactttcggcggagggaccaaggtggaaatcaaa tgactactggggccagggaaccctggtcaccgtctcctca (SEQ ID NO: 75) (SEQ ID NO: 74) AP3-6 caggtgcagctacagcagtggggcgcaggcctgttgaagccttcgga gatattgtgatgacccagactccaggcaccctgtcttcgtctccagg gaccctgtccctcacctgcgctgtctatagtgggtcttttactcgtg ggaaagagccaccctctcctgcagggccagtcagggtgttagcagca actactggggctggatccgccagccccccgggaaggggctggagtgg acttagcctggtaccagcagaaacctggccaggctcccaggctcctc attggggaaatcaatcatagtggaagcaccaactacaacccgtccct atctatgatgcatccaacagggccactggcatcccactcaggttcag caagagtcgagtcaccacgtcggtagacaagtccaagaatcagttct tggcagtgggtctgggacagacttcactctcaccatcagcagactgg ccctgaagttgacctctgtgaccgccgcggacacggctgtctattac aacctgaagattttgcagtgtattactgtcaccagtatggtagctca tgtgcgagacgccggctttctagcgacctcttcatgcggggggttgg ccgtacacctttggccaggggaccaaggtggaaatcaaa cggtatggacgtctggggccaaggcaccctggtcaccgtctcctca (SEQ ID NO: 77) (SEQ ID NO: 76) AP3-8 gaggtgcagctggtgcagtctggagctgaggtgaagaagcctggggc gacatccagatgacccagtctccttccaccctgtctgtatctgtagg ctcagtgaaggtctcctgcaaggcttctggttacacctttaccagct agacagagtcaccatcacttgtcgggcgagtcagggtattagcagct atggtatcagctgggtgcgacaggcctctggacaagggcttgagtgg ggttagcctggtatcagcagaaaccagggaaagcccctaagctcctg atgggatggatcagcgcttacaatggtaacacaaactatgcacagaa atctatgctgcatccagtttgcaaagtggggtcccatcaaggttcag gctccagggcagagtcaccatgaccacagacacatccacgagcacag cggcagtggatctgggacagatttcactctcactatcagcagcctgc cctacatggagctgaggagcctgagatctgacgacacggccgtgtat agcctgaagattttgcaacttactattgtcaacaggctaacagtttc tactgtgcgagagtaccccgatattttgactggttattatacgggag ccgctcactttcggcggagggaccaagctggagatcaaa cgactactttgactactggggccagggaaccctggtcaccgtctcct (SEQ ID NO: 79) ca (SEQ ID NO: 78) AP3-10 caggtgcagctggtgcaatctggagctgaggtgaaggagcctgggtc cagactgtggtgacccaggagccctcactgactgtgtccctaggagg ctcggtgaaggtctcctgcaaggcttctggaggcaccttcagcagct gacagtcactctcacctgtggctccagcactggagctgtcaccagtg atgctatctactgggtgcgacaggcccctggacaagggcttgagtgg gtcattatccctactggttccagcagaagcctggccaagcccccagg atgggatggatcatccctatccttggtatagcaaactacgcacagaa acactgatttatgatacaagcaacaaacactcctggacccctgcccg gttccagggcagagtcacgattaccgcggacaaatccacgagcacag gttctcaggctccctccttgggggcaaagctgccctgaccctttcgg cctacatggagctgagcagcctgagatctgaggacacggccgtgtat gtgcgcagcctgaggatgaggctgagtattactgcttgctctcctat tactgtgcgagagctgccggtcatagtactaactactactactacgg agtggtactcgggtgttcggcggagggaccaagctgaccgtccta tatggacgtctggggccaaggcaccctggtcaccgtctcctca (SEQ ID NO: 81) (SEQ ID NO: 80)
AP3-13 gaggtgcagctggtgcagtctggggctgaggtgaagaagcctggggc tcctatgagctgatgcagccatcctcagtgtcagtgtctccgggaca ctcagtgaaggtttcctgcaaggcatctggatacaccttcaccaact gacagccaggatcacctgctcaggagatgtactggcaaaaaaatgtg actatatgcactgggtgcgacaggcccctggacaagggcttgagtgg ctcggtggttccagcagaagccaggccaggcccctgtgctggtgatt atgggaataatcaaccctagtggtggtagcacaagctacgcacagaa tataaagacagtgagcggccctcagggatccctgagcgattctccgg gttccagggcagagtcaccatgactagggacacgtccacgagcacag ctccagctcagggaccacagtcaccttgaccatcagcggggcccagg tctacatggagctgagcagcctgagatctgaggacacggccgtgtat ttgaggatgaggctgactattactgttactctgcggctgacaacaac tactgtgcgagagatttcaaagagtatagccgtacgggctactttga ctgggggtgttcggcggagggaccaaggtcaccgtccta ctactggggccagggcaccctggtcaccgtctcctca (SEQ ID NO: 83) (SEQ ID NO: 82) AP3-20 cagatcaccttgaaggagtctggtcctgcgctggtgaaacccacaca gccatccggatgacccagtctccatcctccctgtctgcatctgtagg gaccctcacgctgacctgcaacttctctgggttctccctcagcactt agacagagtcaccatcacttgccgggcgagtcagggcattagcaatt atggagggggtgtgggctggctccgtcagcccccaggaaaggccctg atttagcctggtatcagcagaaaccagggaaagttcctaagctcctg gagtggcttgccgtcatttattggagtgatggtaaacgctacagccc atctatgctgcatccactttgcaatcaggggtcccatctcggttcag ctctgtaaagaaccggctcaccatcaccaaggacacctccaaaaacc cggcagtggatctgggacagatttcactctcaccatcagcagcctgc acgtggtcctgacaatgaccaacatggaccctgtggacacagccacc agcctgaagatgttgcaacttattactgtcaaaagtataacagtgcc tattattgtgcacaccttatgatggatacatctattactacccactg cctgggacgttcggccaagggaccaaggtggagatcaaa gttcgacccctggggccagggaaccctggtcaccgtctcctca (SEQ ID NO: 85) (SEQ ID NO: 84) AP4-8 caggtgcagctggtgcaatctggggctgaggtgaagaagcctgggtc caggctgtgctgactcagccgccttccgtgtcggggtctcctggaca ctcggtgaaggtttcctgcaaggcatctggatacaccttcaccaact gtcgatcaccatctcctgcactggaaccagcagtgacgttgaagctt actttatacactgggtgcgacaggcccctggacaagggcttgagtgg acaactatgtctcctggtatcaacaacacccaggcaaagcccccaaa atgggactactcaaccctactgatagtggcacactctacgcacagaa ctcatgatttatgatgtcagtaatcggccctcaggggtttctaatcg cttccagggcagaatcaccatgaccagtgacacgtccacaaacacag cttctctggctccaagtctggcaacacggcctccctgaccatctctg tctacatggagctgagcagcctgagatctgacgacacggccatgtat ggctccaggctgaggacgaggctgattattactgcagctcatataca tactgtgcaagagaggggggggccgacactacccgggtccactcttc agcagcagcacttgggtgttcggcggagggaccaaggtcatcgtcct gtttgactactggggccagggaaccctggtcaccgtctcctca a (SEQ ID NO: 86) (SEQ ID NO: 87) AP4-14 caggtgcagctgcaggagtcggggggaggcttggtacagcctggcag gacatcgtgatgacccagtctccgtcctccctgtctgcatctgtagg gtccctgagactctcctgtgcagcctctggattcacctttgatgatt agacagagtcaccatcacttgccgggcaagtcagagcattagcagct atgccctccactgggtccggcaagctccagggaagggcctggagtgg atttaaattggtatcagcagaaaccagggaaagcccctaagctcctg gtctcaggtattagttggaatagtgttaccgtaaagtatgcggtctc atctatgctgcatccagtttgcaaagtggggtcccatcaaggttcag tgtgaagggccggttcaccatctccagagacaacgccaagaactccc tggcagtggatctgggacagatttcactctcaccatcagcagcctgc tgtttctgcaaatgaacgctctgagatctgaggacacggccttatat agcctgaagatgttgcaacttattactgtcaaaagtataacagtgcc tactgtgcaaaagccagaggggccctcttagaagcagctgacacacc ccgtggacgttcggccaagggaccaaagtggatatcaaa atctgacgactggggccagggcaccctggtcaccgtctcctca (SEQ ID NO: 89) (SEQ ID NO: 88) AP4-20 caggtacagctgcagcagtcaggcgcaggtctattgaggccttcgga cagtctgtgttgacgcagccgccctcagttcctgtggccccaggaca gaccctgtccctcacctgcggtctctatggtgggtccttcagtggtc gaaggtcaccatctcctgctctggaagcagctccaacattgggaata actattggaactggatccgccagtccccagaaaaggggctggtgtgg attatgtatcctggtaccagcagctcccaggaacagcccccaaactc attggggaaatcactcatagtggaaccaccaattacaacccgtccct ctcatttatgacactaataagcgaccctcagggattcctgaccgatt caagagtcgagtcatcacatcagtagacacgtccaagaatcagtact cgctggctccaagtctggcacgtcagccaccctgggcatcaccggac ccctgaagctgagctttgtgacccctgcggacacggccgtgtattac tccagactggggacgaggccgattattactgcggaacatgggatagc tgtgcgagaggtgattactatgggtactggtacttcgatctctgggg agcctgagtgctggcgtgttcggcggagggaccaagctgaccgtcct ccgtggcaccctggtcaccgtctcctca a (SEQ ID NO: 90) (SEQ ID NO: 91)
TABLE-US-00019 Nucleic Acids Encoding the Human scFvs Anti- body Variable Heavy Chain AP1-2 caggtgcagctggtgcagtctggagcagaggtgaaaaagcccggggagtctctgaggatctcctgcaa- gggttctggatacagctttaccagcca ctggatcagctgggtgcgccagatgcccgggaaaggcctggagtggatggggaggattgatcctagtgactct- tatagcaactacagcccctcct tccaaggccacgtcatcatctcagttgacaagtccatcagcactgcctacttgcagtggagcagcctgaaggc- ctcggacaccgccatatattac tgtgcgagacagctcattgtagtagtaccagctgctccctattactactactactacggtatggacgtctggg- gccaaggaaccctggtcaccgt ctcctcaggcggcggcggctctggcggaggtggcagcagcggtggcggatccgaaattgtgttgacgcagtct- ccaggcaccctgtctttgtctc caggggaaagagccaccctctcctgcagggccagtcagactgttaacagctacttagcctggtaccagtagaa- acctggccaggctcccaggctc ctcatctatggtgcatccagcagggccactggcatcccagacaggttcagtggcagtgggtctgggacagact- tcactctcaccatcagcagact ggagcctgaagattttgcagtgtattactgtcagcagtatggtagctcacatccgtggacgttcggccaaggg- accaaggtggagatcaaacgtg gcctcgggggcctggtcgactacaaagatgacgatgacaaa (SEQ ID NO: 54) AP1-6 caggttcagctggtgcagtctggggctgaggtgaagaagcctgggtcctcggtgaaggtctcctgcaa- ggcttctggaggcaccttcagcagcta tgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatctttggt- acagcaaactacgcacagaagt tccagggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatc- tgaggacacggccatatattac tgtgcgagagtctttggttccgagtcgcaagatccgtccgatatttggagtggttattacggtatggaagtct- ggggccaaggaaccctggtcac cgtctcctcaggcggtggcggctctggcggaggtggcagcggcggtggcggatccgacatccagatgacccag- tctccgtcttccgtgtctgcat ctgtaggagacagagtcaccatcacttgtcgggcgagtcagggtattagcagctggttagcctggtatcagca- gaaaccagggaaagcccctaag ctcctgatctatgctgcatccagtttgcaaagtagggtcccatcaaggttcagcggcagtggatctgggacag- atttcactctcaccatcagcag cctgcagcctgaagattttgcaacttactattgtcaacaggctaacagtttcccgtacacttttggccagggg- accaagctggagatcaaacgtg gcctcgggggcctggtcgactacaaagatgacgatgacaaa (SEQ ID NO: 55) AP1-8 caggtgcagctggtggagtctggggctgaggcgaagaagcctgggtcctcggtgaaggtctcctgcaa- ggcttctggaggcaccttcagcagcta tgctatcagctgggtgcgacaggcccctggacaagggcttgagtggatgggagggatcatccctatctttggt- acagcaaactacgcacagaagt tccagggcagagtcacgattaccgcggacgaatccacgagcacagcctacatggagctgagcagcctgagatc- tgaggacacggccgtgtattac tgtgcgagagccggtataactggaactacggctcccccagactactggggccagggcaccctggtcaccgtct- cctcaggcggcggcggctccgg cggaggtggcagcggcggtggcggatccgtcatctggatgacccagtctccatcctccctgtctgcatctgta- ggagacagagtcaccatcactt gccgggcaagtcagagcattagcagctatttaaattggtatcagcggaaaccagggaaagcccctaagctcct- gatctatgctgcatccagtttg caaagtggggtcacatcaaggttcagtggcagtggatctgggacagatttcactctcaccatcagcagtctgc- aacctgaagattttgcaactta ctactgtcaacagagttacagtacccctccgacgttcggccaagggaccaagctggagatcaaa (SEQ ID NO: 56) AP1-11 caggtgcagctggtgcagtccggatctgagttaaagaagcctggggcctcagtgaagctttcctgca- gggcttctggatacacattcactagtta ttccatggtttgggtgcgacaggcccctggagaagggcttgagtggatgggagggatcaacaccaacactggg- aacccaacgtatgcccagggct tcacagaacggtttgtcttctccttcgacagctctgtcagcacggcatatctgcaaatcagcagcctaaaggc- tgaggacactgccgtgtattac tgtgcgagagattgggcgtatagcggcagctggcccttaggccagaacccttctgaccactggggccagggca- ccctggtcaccgtctcctcagg cggcggcggctctggcggaggtggcagcggcggtggcggatccgaaatagtgatgacgcagtctccagccacc- ctgtctgtgtctccaggggaaa gagccaccctctcctgcagggccagtcagagtgttagccgcaacttagcctggtaccagcagaaacctggcca- ggctcccaggctcctcatctat gatacatccaccagggccactggtatcccagccaggttcagtggcagtgggtctgggacagagttcactctca- ccatcagcagcctgcagtctga agattctgcagtttattactgtcagcagtataatatctggcctccactcactttcggcggagggaccaaggtg- gagatcaaacgtggcctcgggg gcctggtcgactacaaagatgacgatgacaaa (SEQ ID NO: 57) AP1-15 caggtgcagctacagcagtggggcgcaggattgttgaagccttcggagaccctgtccctcacctgcg- ctgtctatggtgggtccttcagtggtta ctaccggacctggatccgccagtccccagtgaaggggctggagtggattggggaagtcaatgatcgtggaagc- cccaactacaacccgtccttca agagtcgactcaccatatcaatcgacacgtccaagaactagttatccctgaagttgagatttatgaccgccgc- ggacacggctgtatattcgtgt gcgagaattaggcctaggtacggtatggacgtctggggccaggggacaatggtcaccgtctcctcaggcggcg- gcggctctggcggaggtggcag cagcggtggcggatccgatattgtgatgacccagactccactctcctcacctgtcacccttggacagccggcc- tccatctcctgcaggtctagtc aaagcctcgtacacagtgatggaaacacctacttgacttggtttcaccagaggccaggccagcctccaagagt- cctcattcataaggtttctaac ctgttctctggggtcccagacagattcagtggcagtggggcagggacagatttcacactgaaaatcagcaggg- tggaagctgaggatgtcggggt ttattactgcatgcaagctacacaattgtacacttttggccaggggaccaaggtggaaatcaaacgtggcctc- gggggcctggtcgactacaaag atgacgatgacaaa (SEQ ID NO: 58) AP1-16 gaggtccagctggtacagtctggggctgaggtgaagaagcctggggcctcagtgaaggtctcctgca- aggtttccggatacaccctcactgaatt atccatgcactgggtgcgacaggctcctggaaaagggcttgagtggatgggaggttttgatcctgaagatggt- gaaacaatctccgcgcagaagt tccagggcagagtcaccatgaccgaggacacatctacagacacagcctacatggatctgagcagcctgagatc- tgaggacacggccgtttattac tgtgcaacgcagcgcttgtgtagtggtggtcgctgctactcccactttgactactggggccagggcaccacgg- tcaccgtctcctcaggcggcgg cggctctggcggaggtggcagcggcggtggcggatccgaaacgacactcacgcagtctccagcaatcatgtct- gcatctccaggggagagggtca ccatgacctgcagtgccagctcaagtatacgttacatatattggtaccaacagaagcctggatcctcccccag- actcctgatttatgacacatcc aacgtggctcctggagtcccttttcgcttcagtggcagtgggtctgggacctcttattctctcacaatcaacc- gaatggaggctgaggatgctgc cacttattactgccaggagtggagtggttatccgtacacgttcggaggggggaccaaggtggagatcaaa (SEQ ID NO: 59) AP1-19 cagatgcagctggtgcagtctggggctgaggtgaagaagcctgggtcctcggtgaaggtctcctgca- aggcttctggaggcaccttcaacaccta tgttatcagttgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcagcgcttacaatggt- aacacaaactatgcacagaagc tccagggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatc- tgacgacacggccgtgtattac tgtgcgagagtttggagtccccttgactactggggccagggcaccctggtcaccgtctcctcaggcggcggtg- gctctggcggaggtggcagcgg cggtggcggatccgacatcgtgatgacccagtctccagactccctggctgtgtctctgggcgagagggccacc- atcaactgcaagtccagccaga gtgttttatacagctccaacaatatgaactacttagcttggtaccagcagaaaccaggacagcctcctaagct- gctcatttactgggcatctacc cgggaatccggggtccctgaccgattcagtggcagcgggtctgggacagatttcactctcaccatcagcagcc- tgcaggctgaagatgcggcagt ttattactgtcagcagtattatagtactcctccgacgttcggccaagggaccaagctggagatcaaacgtggc- ctcgggggcctggtcgactaca aagatgacgatgacaaa (SEQ ID NO: 60) AP3-1 caggtgcagctggtgcaatctggggctgaggtgaagaagcctggggcctcagtgaaggtctcctgcaa- gggttctggatacaccttcaccggcta ctatatgcactgggtgccacaggcccctggacaagggcttgagtggatgggatggatcaaccctaacaatggt- ggcacaaactatgaccagaagt ttcagggcagggtcgccatgaccagggacacgtccatctccacagcctacatggagctgagcaggctgagatc- tgacgacactgccgtgtattac tgtgcgagagataatgggagggtgaccacagggggctactggggccagggcaccctggtcaccgtctcctcag- gcggcggcggctctggcggagg tggcagcagcggtggcggatcccagtctgtgttgacgcagcctccctcattgtctggggccccgggacagagt- gtcaccatctcctgcgctggga ccagttccagcatcggggcaggttacgatgtacagtggtaccagcaacttccaggaaaaacccccaaactcct- catctacgggaatgataatcgg ccctcaggggtccctgaccgattctctggatccaggtcttacacctcagcctccctggtcatcactagagtcc- agattgaggatgaggctgatta ttactgccagtcgtatgacagcagtctcattggtcctcaattcggcggggggaccaagctgaccgtcctaggt- ggcctcgggggcctggtcgact acaaagatgaccatgacaaatac (SEQ ID NO: 61) AP3-2 caggtgcagctggtgcaatctggggctgaggtgaaaaagcccggggagtctctgaagatctcctgtac- ggcctccggatacaactttgccagcta ctggatcggctgggtgcgccagatgcccgggcaaggcctggagtggatggggatcatctatcctggtgactct- gataccagatacagtccgtcct tccaaggccaggtcaccatctcagccgacaagtccatcagcaccgcctacctgcagtggagcagcctgaaggc- ctcggacaccgccacgtattac tgtgtgagacgggtccccctctacactaacaaccactaccttgactattggggccagggcaccctggtcaccg- tctcctcaggcggcggcggctc tggcggaggtggcagcggcggtggcggatccgccatccagatgacccagtctccatcctcactgtctgcatct- gtaggagacagagtcaccatca cttgtcgggcgagtcagggcattagcaattatttagcctggtttcagcagaaaccagggaaagcccctaagtc- cctgatctatgctgcatccagt ttgcaaagtggggtcccatcaaagtacagcggcagtggatctgggacagatttcactctcaccatcagcagcc- tgcagcctgaagattttgcaac ttattactgccaacagtataagagttaccccctcactttcggcggagggaccaaggtggagatcaaa (SEQ ID NO: 62) AP3-3 gaggtgcagctggtgcagtctggggctgaagtgaagaagcctggggcctcagtgaaggtttcctgtaa- ggcatctggatacaccttcagcgacta ctttatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggagtaatcaacccaactggtggt- tccacaacctacgcacagagct tccagggcagagtcaccatgaccagagacacgtccacgagcatagtctacatggagctgagcagcctgagatc- tgaagacacggccgtgtactac tgtacgcgagtcggctactacggtatggacgtctggggccaaggcaccctggtcaccgtctcctcaggcggcg- gcggctctggcggaggtggcag cggcggtggcggatccgacatcgtgatgacccagtctccatccaccctgtctgcatctgtaggagacagagtc- accatcacttgccgggcaagtc agagcactagcaggtttttaaattggtatcagcagaaacctgggaaagcccctaaactcctgatctatgctgc- atccagtttgcatagtggcgtc ccatcaaggttcagtggcagtggatctgggacagatttcactctcaccatcagcagtctgcaacctgaagatt- ttgcaacttactactgtcaaca gacttccagttaccctctcactttcggcggagggaccaaggtggaaatcaaacgtggcctcgggggcctggtc- gactacaaagatgacgatgaca aa (SEQ ID NO: 63) AP3-5 caggtccagctggtacagtctgggggaggcgtggtccaggttgggaggtccctgagactttcctgtgc- ggcctctggattcaccttcacaaactt tggcatgcactgggtccgccaggctccaggcaaggggctggagtgggtggcactcatctcatctgatggatat- agacaggcctatgcagactccg tgaagggccggttcaccatctccggagacaactccaagaacacagtgtatctgcaaatgaacagcctgacaag- tgaggacacggctgtttattac tgtgccatcataccccctgtattacggatttttgattgggaatttgactactggggccagggaaccctggtca- ccgtctcctcaggcggcggcgg ctctggcggaggtggcagcggcggtggcggatccgaaacgacactcacgcagtctccaggcaccctgtctttg- tctccaggggaaagagccaccc tctcctgcagggccagtcagagtgtttccagcccctacttagcctggtaccagcagaaacctggccaggctcc- caggctcctcatttatggtgca tctaacagggccactggcatcccagacaggttcagtggcagtgggtctgggacagacttcactctcaccatca- gcagcctgcaggctgaagatga ggcagtttattactgtcagcaatactacaatactccgctcactttcggcggagggaccaaggtggaaatcaaa- cgtggcctcgggggcctggtcg actacaaagatgacgatgacaaa (SEQ ID NO: 64) AP3-6 caggtgcagctacagcagtggggcgcaggcctgttgaagccttcggagaccctgtccctcacctgcgc- tgtctatagtgggtcttttactcgtga ctactggggctggatccgccagccccccgggaaggggctggagtggattggggaaatcaatcatagtggaagc- accaactacaacccgtccctca agagtcgagtcaccacgtcggtagacaagtccaagaatcagttctccctgaagttgacctctgtgaccgccgc- ggacacggctgtctattactgt gcgagacgccggctttctagcgacctcttcatgcggggggttggcggtatggacgtctggggccaaggcaccc- tggtcaccgtctcctcaggcgg cggcggctctggcggaggtggcagcggcggtggcggatctgatattgtgatgacccagactccaggcaccctg- tcttcgtctccaggggaaagag ccaccctctcctgcagggccagtcagggtgttagcagcaacttagcctggtaccagcagaaacctggccaggc- tcccaggctcctcatctatgat gcatccaacagggccactggcatcccactcaggttcagtggcagtgggtctgggacagacttcactctcacca- tcagcagactggaacctgaaga ttttgcagtgtattactgtcaccagtatggtagctcaccgtacacctttggccaggggaccaaggtggaaatc- aaacgtggcctcgggggcctgg tcgactacaaagatgacgatgacaaa (SEQ ID NO: 65) AP3-8 gaggtgcagctggtgcagtctggagctgaggtgaagaagcctggggcctcagtgaaggtctcctgcaa- ggcttctggttacacctttaccagcta tggtatcagctgggtgcgacaggcctctggacaagggcttgagtggatgggatggatcagcgcttacaatggt- aacacaaactatgcacagaagc tccagggcagagtcaccatgaccacagacacatccacgagcacagcctacatggagctgaggagcctgagatc- tgacgacacggccgtgtattac tgtgcgagagtaccccgatattttgactggttattatacgggagcgactactttgactactggggccagggaa- ccctggtcaccgtctcctcagg cggcggcggctctggcggaggtggcagcagcggtggcggatccgacatccagatgacccagtctccttccacc- ctgtctgtatctgtaggagaca gagtcaccatcacttgtcgggcgagtcagggtattagcagctggttagcctggtatcagcagaaaccagggaa- agcccctaagctcctgatctat gctgcatccagtttgcaaagtggggtcccatcaaggttcagcggcagtggatctgggacagatttcactctca- ctatcagcagcctgcagcctga agattttgcaacttactattgtcaacaggctaacagtttcccgctcactttcggcggagggaccaagctggag- atcaaacgtggcctcgggggcc tggtcgactacaaagatgacgatgacaaa (SEQ ID NO: 66) AP3-10 caggtgcagctggtgcaatctggagctgaggtgaaggagcctgggtcctcggtgaaggtctcctgca- aggcttctggaggcaccttcagcagcta tgctatctactgggtgcgacaggcccctggacaagggcttgagtggatgggatggatcatccctatccttggt- atagcaaactacgcacagaagt tccagggcagagtcacgattaccgcggacaaatccacgagcacagcctacatggagctgagcagcctgagatc- tgaggacacggccgtgtattac tgtgcgagagctgccggtcatagtactaactactactactacggtatggacgtctggggccaaggcaccctgg- tcaccgtctcctcaggcggcgg cggctctggcggaggtggcagcagcggtggcggatcccagactgtggtgacccaggagccctcactgactgtg- tccctaggagggacagtcactc tcacctgtggctccagcactggagctgtcaccagtggtcattatccctactggttccagcagaagcctggcca- agcccccaggacactgatttat gatacaagcaacaaacactcctggacccctgcccggttctcaggctccctccttgggggcaaagctgccctga- ccctttcgggtgcgcagcctga
ggatgaggctgagtattactgcttgctctcctatagtggtactcgggtgttcggcggagggaccaagctgacc- gtcctaggt (SEQ ID NO: 67) AP3-13 gaggtgcagctggtgcagtctggggctgaggtgaagaagcctggggcctcagtgaaggtttcctgca- aggcatctggatacaccttcaccaacta ctatatgcactgggtgcgacaggcccctggacaagggcttgagtggatgggaataatcaaccctagtggtggt- agcacaagctacgcacagaagt tccagggcagagtcaccatgactagggacacgtccacgagcacagtctacatggagctgagcagcctgagatc- tgaggacacggccgtgtattac tgtgcgagagatttcaaagagtatagccgtacgggctactttgactactggggccagggcaccctggtcaccg- tctcctcaggcggcggcggctc tggcggaggtggcagcagcggtggcggatcctcctatgagctgatgcagccatcctcagtgtcagtgtctccg- ggacagacagccaggatcacct gctcaggagatgtactggcaaaaaaatgtgctcggtggttccagcagaagccaggccaggcccctgtgctggt- gatttataaagacagtgagcgg ccctcagggatccctgagcgattctccggctccagctcagggaccacagtcaccttgaccatcagcggggccc- aggttgaggatgaggctgacta ttactgttactctgcggctgacaacaacctgggggtgttcggcggagggaccaaggtcaccgtcctaggt (SEQ ID NO: 68) AP3-20 cagatcaccttgaaggagtctggtcctgcgctggtgaaacccacacagaccctcacgctgacctgca- acttctctgggttctccctcagcactta tggagggggtgtgggctggctccgtcagcccccaggaaaggccctggagtggcttgccgtcatttattggagt- gatggtaaacgctacagcccct ctgtaaagaaccggctcaccatcaccaaggacacctccaaaaaccacgtggtcctgacaatgaccaacatgga- ccctgtggacacagccacctat tattgtgcacaccttatgatggatacatctattactacccactggttcgacccctggggccagggaaccctgg- tcaccgtctcctcaggcggcgg cggctctggcggaggtggcagcggcggtggcggatccgccatccggatgacccagtctccatcctccctgtct- gcatctgtaggagacagagtca ccatcacttgccgggcgagtcagggcattagcaattatttagcctggtatcagcagaaaccagggaaagttcc- taagctcctgatctatgctgca tccactttgcaatcaggggtcccatctcggttcagcggcagtggatctgggacagatttcactctcaccatca- gcagcctgcagcctgaagatgt tgcaacttattactgtcaaaagtataacagtgcccctgggacgttcggccaagggaccaaggtggagatcaaa- cgtggcctcgggggcctggtcg actacaaagatgacgatgacaaa (SEQ ID NO: 69) AP4-8 caggtgcagctggtgcaatctggggctgaggtgaagaagcctgggtcctcggtgaaggtttcctgcaa- ggcatctggatacaccttcaccaacta ctttatacactgggtgcgacaggcccctggacaagggcttgagtggatgggactactcaaccctactgatagt- ggcacactctacgcacagaact tccagggcagaatcaccatgaccagtgacacgtccacaaacacagtctacatggagctgagcagcctgagatc- tgacgacacggccatgtattac tgtgcaagagaggggggggccgacactacccgggtccactcttcgtttgactactggggccagggaaccctgg- tcaccgtctcctcaggcggcgg cggctctggcggaggtggcagcagcggtggcggatcccaggctgtgctgactcagccgccttccgtgtcgggg- tctcctggacagtcgatcacca tctcctgcactggaaccagcagtgacgttgaagcttacaactatgtctcctggtatcaacaacacccaggcaa- agcccccaaactcatgatttat gatgtcagtaatcggccctcaggggtttctaatcgcttctctggctccaagtctggcaacacggcctccctga- ccatctctgggctccaggctga ggacgaggctgattattactgcagctcatatacaagcagcagcacttgggtgttcggcggagggaccaaggtc- atcgtccta (SEQ ID NO: 70) AP4-14 caggtgcagctgcaggagtcggggggaggcttggtacagcctggcaggtccctgagactctcctgtg- cagcctctggattcacctttgatgatta tgccctccactgggtccggcaagctccagggaagggcctggagtgggtctcaggtattagttggaatagtgtt- accgtaaagtatgcggtctctg tgaagggccggttcaccatctccagagacaacgccaagaactccctgtttctgcaaatgaacgctctgagatc- tgaggacacggccttatattac tgtgcaaaagccagaggggccctcttagaagcagctgacacaccatctgacgactggggccagggcaccctgg- tcaccgtctcctcaggcggcgg cggctctggcggaggtggcagcggcggtggcggatccgacatcgtgatgacccagtctccgtcctccctgtct- gcatctgtaggagacagagtca ccatcacttgccgggcaagtcagagcattagcagctatttaaattggtatcagcagaaaccagggaaagcccc- taagctcctgatctatgctgca tccagtttgcaaagtggggtcccatcaaggttcagtggcagtggatctgggacagatttcactctcaccatca- gcagcctgcagcctgaagatgt tgcaacttattactgtcaaaagtataacagtgccccgtggacgttcggccaagggaccaaagtggatatcaaa (SEQ ID NO: 71) AP4-20 caggtacagctgcagcagtcaggcgcaggtctattgaggccttcggagaccctgtccctcacctgcg- gtctctatggtgggtccttcagtggtca ctattggaactggatccgccagtccccagaaaaggggctggtgtggattggggaaatcactcatagtggaacc- accaattacaacccgtccctca agagtcgagtcatcacatcagtagacacgtccaagaatcagtactccctgaagctgagctttgtgacccctgc- ggacacggccgtgtattactgt gcgagaggtgattactatgggtactggtacttcgatctctggggccgtggcaccctggtcaccgtctcctcag- gcggcggcggctctggcggagg tggcagcggcggtggcggatcccagtctgtgttgacgcagccgccctcagttcctgtggccccaggacagaag- gtcaccatctcctgctctggaa gcagctccaacattgggaataattatgtatcctggtaccagcagctcccaggaacagcccccaaactcctcat- ttatgacactaataagcgaccc tcagggattcctgaccgattcgctggctccaagtctggcacgtcagccaccctgggcatcaccggactccaga- ctggggacgaggccgattatta ctgcggaacatgggatagcagcctgagtgctggcgtgttcggcggagggaccaagctgaccgtccta (SEQ ID NO: 72)
Example 25
Suppression of Hemolysin Expression in RN4850 by an Anti-AIP4 Human scFv, AP4-4-20
[0220] Of the 20 clones obtained by panning an antibody-phage display library, the most potent clone AP4-4-20 was expressed as scFv antibody in E. coli. The expressed scFv antibody was purified, and evaluated for its ability to suppress hemolysins expression in S. aureus RN 4850 as follows.
[0221] S. aureus RN4850 was incubated in the presence of scFv AP4-4-20 (2.7 .mu.M) in CYGP medium for 24 hours, and .alpha.-hemolysin expression was evaluated by western analysis using S. aureus culture supernatants. Results are shown in FIG. 11. The mAb AP4-24H-11 (1.3 .mu.M) and an unrelated scFv antibody control (10 .mu.M) were used as positive and negative controls, respectively. In the presence of the AIP-4 specific antibodies 4-20 and AP4-24H11, a clear reduction in hemolysins secretion is detectable, strongly indicative of inhibition of AIP-dependent QS in S. aureus.
Example 26
Anti-AIP1 mAb AP1-15B4 Protects Mice from Lethal Systemic MRSA USA300 Challenge in Postexposure Therapy
[0222] The effectiveness of our passive immunization approach was demonstrated in a postexposure scenario using mAb AP1-15B4 in a lethal S. aureus challenge mouse model. C57BL/6 mice received 1 mg of AP1-15B4 (i.p.), isotype control IgG or PBS 2 hours after they had been infected with at least 1.times.10.sup.8 S. aureus USA300, an agr I MRSA strain. See Diep et al., Lancet 2006, 367, (9512), 731-739. USA300 is in fact one of the most common community-acquired MRSA (CA-MRSA) strains and represents an increasing threat for civilians and military personnel. Hageman et al., Diagn Microbiol Infect Dis 2008; James et al., Arch Dis Child Fetal Neonatal Ed 2008, 93, (1), F40-4; Tenover et al., J Clin Microbiol 2006, 44, (1), 108-18; Beilman et al., Surg Infect (Larchmt) 2005, 6, (1), 87-92. As shown in FIG. 12, 4 out of 6 mice receiving AP1-15B4 survived through the 48-hour observation period. In contrast, only two of the PBS treated control mice (2/6) and 2 of the control IgG treated mice (2/6) survived longer than 24 hours. These data for the first time demonstrate the existence of a therapeutic window for a quorum quenching strategy in S. aureus. This further validates our immunopharmacotherapeutic approach for preventing S. aureus infections as it shows that our quorum quenching antibodies can be administered after the infection of the patient.
[0223] All patents and publications referenced or mentioned herein are indicative of the levels of skill of those skilled in the art to which the invention pertains, and each such referenced patent or publication is hereby incorporated by reference to the same extent as if it had been incorporated by reference in its entirety individually or set forth herein in its entirety. Applicants reserve the right to physically incorporate into this specification any and all materials and information from any such cited patents or publications.
[0224] The specific methods and compositions described herein are representative of preferred embodiments and are exemplary and not intended as limitations on the scope of the invention. Other objects, aspects, and embodiments will occur to those skilled in the art upon consideration of this specification, and are encompassed within the spirit of the invention as defined by the scope of the claims. It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. The invention illustratively described herein suitably may be practiced in the absence of any element or elements, or limitation or limitations, which is not specifically disclosed herein as essential. The methods and processes illustratively described herein suitably may be practiced in differing orders of steps, and that they are not necessarily restricted to the orders of steps indicated herein or in the claims. As used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "an antibody" includes a plurality (for example, a solution of antibodies or a series of antibody preparations) of such antibodies, and so forth. Under no circumstances may the patent be interpreted to be limited to the specific examples or embodiments or methods specifically disclosed herein. Under no circumstances may the patent be interpreted to be limited by any statement made by any Examiner or any other official or employee of the Patent and Trademark Office unless such statement is specifically and without qualification or reservation expressly adopted in a responsive writing by Applicants.
[0225] The terms and expressions that have been employed are used as terms of description and not of limitation, and there is no intent in the use of such terms and expressions to exclude any equivalent of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention as claimed. Thus, it will be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims.
[0226] The invention has been described broadly and generically herein. Each of the narrower species and subgeneric groupings falling within the generic disclosure also form part of the invention. This includes the generic description of the invention with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein.
[0227] Other embodiments are within the following claims. In addition, where features or aspects of the invention are described in terms of Markush groups, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group.
CITED DOCUMENTS
[0228] 1. Fuqua, C., Winans, S. C., and Greenberg, E. P. (1996). Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50, 727-751.
[0229] 2. Nealson, K. H., Platt, T., and Hastings, J. W. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104, 313-322.
[0230] 3. de Kievit, T. R., and Iglewski, B. H. (2000). Bacterial quorum sensing in pathogenic relationships. Infect Immun 68, 4839-4849.
[0231] 4. Kaplan, H. B., and Greenberg, E. P. (1985). Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163, 1210-1214.
[0232] 5. Lazazzera, B. A., and Grossman, A. D. (1998). The ins and outs of peptide signaling. Trends Microbiol 6, 288-294.
[0233] 6. Novick, R. P. (2003). Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48, 1429-1449.
[0234] 7. Meijler, M. M., Hom, L. G., Kaufmann, G. F., McKenzie, K M., Sun, C., Moss, J. A., Matsushita, M., and Janda, K. D. (2004). Synthesis and biological validation of a ubiquitous quorum-sensing molecule. Angew Chem Int Ed Engl 43, 2106-2108.
[0235] 8. Schauder, S., Shokat, K., Surette, M. G., and Bassler, B. L. (2001). The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41, 463-476.
[0236] 9. Gotz, F. (2002). Staphylococcus and biofilms. Mol Microbiol 43, 1367-1378.
[0237] 10. Hall-Stoodley, L., Costerton, J. W., and Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2, 95-108.
[0238] 11. Lyon, G. J., and Muir, T. W. (2003). Chemical signaling among bacteria and its inhibition. Chem Biol 10, 1007-1021.
[0239] 12. Rasmussen, T. B., and Givskov, M. (2006). Quorum sensing inhibitors: a bargain of effects. Microbiology 152, 895-904.
[0240] 13. Smith, R. S., and Iglewski, B. H. (2003). P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6, 56-60.
[0241] 14. Chan, W. C., Coyle, B. J., and Williams, P. (2004). Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. J Med Chem 47, 4633-4641.
[0242] 15. Geske, G. D., Wezeman, R. J., Siegel, A. P., and Blackwell, H. E. (2005). Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc 127, 12762-12763.
[0243] 16. Lyon, G. J., Mayville, P., Muir, T. W., and Novick, R. P. (2000). Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc Natl Acad Sci USA 97, 13330-13335.
[0244] 17. Muh, U., Hare, B. J., Duerkop, B. A., Schuster, M., Hanzelka, B. L., Heim, R., Olson, E. R., and Greenberg, E. P. (2006). A structurally unrelated mimic of a Pseudomonas aeruginosa acyl-homoserine lactone quorum-sensing signal. Proc Natl Acad Sci USA 103, 16948-16952.
[0245] 18. Smith, K. M., Bu, Y., and Suga, H. (2003). Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem Biol 10, 563-571.
[0246] 19. Kaufmann, G. F., Sartorio, R., Lee, S. H., Mee, J. M., Altobell, L. J., 3''.sup.1, Kujawa, D. P., Jeffries, E., Clapham, B., Meijler, M. M., and Janda, K. D. (2006). Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. J Am Chem Soc 128, 2802-2803.
[0247] 20. Miyairi, S., Tateda, K., Fuse, E. T., Ueda, C., Saito, H., Takabatake, T., Ishii, Y., Horikawa, M., Ishiguro, M., Standiford, T. J., and Yamaguchi, K. (2006). Immunization with 3-oxododecanoyl-L-homoserine lactone-protein conjugate protects mice from lethal Pseudomonas aeruginosa lung infection. J Med Microbiol 55, 1381-1387.
[0248] 21. Massey, R. C., Horsburgh, M. J., Lina, G., Hook, M., and Recker, M. (2006). The evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission? Nat Rev Microbiol 4, 953-958
[0249] 22. George, E. A., and Muir, T. W. (2007). Molecular mechanisms of agr quorum sensing in virulent staphylococci. Chembiochem 8, 847-855.
[0250] 23. Sakoulas, G., Eliopoulos, G. M., Moellering, R. C., Jr., Novick, R. P., Venkataraman, L., Wennersten, C., DeGirolami, P. C., Schwaber, M. J., and Gold, H. S. (2003). Staphylococcus aureus accessory gene regulator (agr) group II: is there a relationship to the development of intermediate-level glycopeptide resistance? J Infect Dis 187, 929-938.
[0251] 24. Wright, J. S., 3.sup.rd, Jin, R., and Novick, R. P. (2005). Transient interference with staphylococcal quorum sensing blocks abscess formation. Proc Natl Acad Sci USA 102, 1691-1696.
[0252] 25. Ji, G., Beavis, R., and Novick, R. P. (1997). Bacterial interference caused by autoinducing peptide variants. Science 276, 2027-2030.
[0253] 26. Mayville, P., Ji, G., Beavis, R., Yang, H., Goger, M., Novick, R. P., and Muir, T. W. (1999). Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc Natl Acad Sci USA 96, 1218-1223.
[0254] 27. Shigenaga, A., Moss, J. A., Ashley, F. T., Kaufmann, G. F., Janda, K. D. (2006). Solid-phase synthesis and cyclative cleavage of quorum sensing depsipeptide analogs by acylphenyldiazene activation. SYNLETT 4, 551-554.
[0255] 28. Kaufmann, G. F., Sartorio, R., Lee, S. H., Rogers, C T, Meijler, M. M., Moss, J. A., Clapham, B., Brogan, A. P., Dickerson, T. J., and Janda, K. D. (2005). Revisiting quorum sensing: Discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc Natl Acad Sci USA 102, 309-314.
[0256] 29. Vuong, C., Saenz, H. L., Gotz, F., and Otto, M. (2000). Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J Infect Dis 182, 1688-1693.
[0257] 30. Harraghy, N., Kerdudou, S., and Herrmann, M. (2007). Quorum-sensing systems in staphylococci as therapeutic targets. Anal Bioanal Chem 387, 437-444.
[0258] 31. Novick, R. P., Ross, H. F., Projan, S. J., Kornblum, J., Kreiswirth, B., and Moghazeh, S. (1993). Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. Embo J 12, 3967-3975.
[0259] 32. Valle, J., Toledo-Arana, A., Berasain, C., Ghigo, J. M., Amorena, B., Penades, J. R., and Lasa, I. (2003). SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 48, 1075-1087.
[0260] 33. Xiong, Y. Q., Willard, J., Yeaman, M. R., Cheung, A. L., and Bayer, A. S. (2006). Regulation of Staphylococcus aureus alpha-toxin gene (hla) expression by agr, sarA, and sae in vitro and in experimental infective endocarditis. J Infect Dis 194, 1267-1275.
[0261] 34. Jarraud, S., Lyon, G. J., Figueiredo, A. M., Gerard, L., Vandenesch, F., Etienne, J., Muir, T. W., and Novick, R. P. (2000). Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus. J Bacteriol 182, 6517-6522.
[0262] 35. Balaban, N., Goldkorn, T., Nhan, R. T., Dang, L. B., Scott, S., Ridgley, R. M., Rasooly, A., Wright, S. C., Larrick, J. W., Rasooly, R., and Carlson, J. R. (1998). Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus. Science 280, 438-440.
[0263] 36. Shaw, L. N., Jonnson, I. M., Singh, V. K., Tarkowski, A., and Stewart, G. C. (2007). Inactivation of traP has no effect on the Agr quorum sensing system or virulence of Staphylococcus aureus. Infect Immun.
[0264] 37. Tsang, L. H., Daily, S T., Weiss, E. C., and Smeltzer, M. S. (2007). Mutation of traP in Staphylococcus aureus has no impact on expression of agr or biofilm formation. Infect Immun.
[0265] 38. Bantel, H., Sinha, B., Domschke, W., Peters, G., Schulze-Osthoff, K., and Janicke, R. U. (2001). alpha-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J Cell Biol 155, 637-648.
[0266] 39. Casadevall, A., Dadachova, E., and Pirofski, L. A. (2004). Passive antibody therapy for infectious diseases. Nat Rev Microbiol 2, 695-703.
[0267] 40. Yang, G., Gao, Y., Dong, J., Liu, C., Xue, Y., Fan, M., Shen, B., and Shao, N. (2005). A novel peptide screened by phage display can mimic TRAP antigen epitope against Staphylococcus aureus infections. J Biol Chem 280, 27431-27435.
[0268] 41. Yang, G., Gao, Y., Dong, J., Xue, Y., Fan, M., Shen, B., Liu, C., and Shao, N. (2006). A novel peptide isolated from phage library to substitute a complex system for a vaccine against staphylococci infection. Vaccine 24, 1117-1123.
[0269] 42. Novick, R. P. (1991). Genetic systems in staphylococci. Methods Enzymol 204, 587-636.
[0270] 43. O'Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B., and Kolter, R. (1999). Genetic approaches to study of biofilms. Methods Enzymol 310, 91-109.
[0271] 44. Eleaume, H., and Jabbouri, S. (2004). Comparison of two standardisation methods in real-time quantitative R T-PCR to follow Staphylococcus aureus genes expression during in vitro growth. J Microbiol Methods 59, 363-370.
[0272] 45. DeGrado, W. F.; Kaiser, E. T. Polymer-bound oxime esters as supports for solid-phase peptide synthesis. The preparation of protected peptide fragments. J. Org. Chem. 1980, 45, 1295-1300.
[0273] 46. DeGrado, W. F.; Kaiser, E. T. Solid-phase synthesis of protected peptides on a polymer-bound oxime: preparation of segments comprising the sequence of a cytotoxic 26-peptide analog. J. Org. Chem. 1982, 47, 3258-3261.
[0274] 47. Nakagawa, S. H.; Kaiser, E. T. Synthesis of protected peptide segments and their assembly on a polymer-bound oxime: application to the synthesis of a peptide model for plasma apolipoprotein A-I. J. Org. Chem. 1983, 48, 678-685.
[0275] 48. Nakagawa, S. H.; Lau, H. S.; Kezdy, F. J.; Kaiser, E. T. The use of polymer-bound oximes for the synthesis of large peptides usable in segment condensation: synthesis of a 44 amino acid amphiphilic peptide model of apolipoprotein A-1. J. Am. Chem. Soc. 1985, 107, 7087-7092.
[0276] 49. Kaiser, E. T.; Mihara, H.; Laforet, G. A.; Kelly, J. W.; Walters, L.; Findeis, M. A.; Sasaki, T. Peptide and protein synthesis by segment synthesis-condensation. Science 1989, 243, 187-192.
[0277] 50. Osapay, G.; Taylor, J. W. Multicyclic Polypeptide Model Compounds. 2. Synthesis and Conformational Properties of a Highly .alpha.-Helical Uncosapeptide Constrained by Three Side-Chain to Side-Chain Lactam Bridges. J. Am. Chem. Soc. 1992, 114, 6966-6973.
[0278] 51. Taylor, J. W. The Synthesis and Study of Side-Chain Lactam-Bridged Peptides. Biopolymers 2002, 66, 49-75.
[0279] 52. Li, P.; Roller, P. P.; Xu, J. Current Synthetic Approaches to Peptide and Peptidomimetic Cyclization. Curr. Org. Chem. 2002, 6, 411-440.
[0280] 53. Chorev, M. The Partial Retro-Inverso Modification: A Road Traveled Together. Biopolymers 2005, 80, 67-84.
[0281] 54. Vince, R.; Brownell, J. Akella, L. B. Synthesis and activity of .gamma.-(L-.gamma.-azaglutamyl)-S-(p-bromobenzyl)-L-cysteinylglycine: A metabolically stable inhibitor of glyoxalase I. Bioorg. Med. Chem. Lett, 1999, 9, 853-856.
Sequence CWU
1
1
18118PRTArtificial Sequencea synthetic peptide 1Tyr Ser Thr Ser Tyr Phe
Ile Met 1 5 27PRTArtificial Sequencea
synthetic peptide 2Ile Asn Ser Asp Phe Leu Leu 1 5
38PRTArtificial Sequencea synthetic peptide 3Tyr Ser Thr Ser Asp Phe Ile
Met 1 5 49PRTArtificial Sequencea synthetic
peptide 4Gly Val Asn Ala Ser Ser Ser Leu Phe 1 5
528DNAStaphylococcus aureus 5tggcccaaga ctttagttat cgttatcc
28629DNAStaphylococcus aureus 6tggggaggaa
tatttgtagc catacctac
29725DNAStaphylococcus aureus 7gcactgagtc caaggaaact aactc
25824DNAStaphylococcus aureus 8gccatcccaa
cttaataacc atgt
24924DNAStaphylococcus aureus 9ctgaaggcca ggctaaacca cttt
241025DNAStaphylococcus aureus 10gaacgaaagg
taccattgct ggtca
251124DNAStaphylococcus aureus 11gcgcaacacg atgaagctca acaa
241224DNAStaphylococcus aureus 12acgttagcac
tttggcttgg atca
241324DNAStaphylococcus aureus 13gttccgggaa attctggatc aggt
241424DNAStaphylococcus aureus 14gcgcttgaca
taattcccaa tacc
241526DNAStaphylococcus aureus 15ctgctttaac aacttgtggt tgtttg
261624DNAStaphylococcus aureus 16cgctgtattg
acatacatca gcga
241725DNAStaphylococcus aureus 17cgccttaact ttaggtgcag atgac
251824DNAStaphylococcus aureus 18acgcataggg
acttcgtgac catt
2419120PRTMurine 19Glu Val His Leu Val Glu Ser Gly Gly Asp Leu Val Lys
Pro Gly Gly 1 5 10 15
Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Ala Phe Ser Asp Phe
20 25 30 Ala Met Ser Trp Val
Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val 35 40
45 Ala Ile Ile Lys Ser Asp Asp Ser Tyr Thr
Tyr Tyr Pro Asp Ser Val 50 55 60
Arg Asp Arg Phe Thr Ile Ser Arg Asp Asn Ala Arg Asn Thr Leu
Tyr65 70 75 80 Leu
Gln Met Thr Ser Leu Arg Ser Glu Asp Thr Ala Leu Tyr Tyr Cys
85 90 95 Thr Lys Ile Tyr Asp Ala
Tyr Phe Tyr Ala Met Asp Tyr Trp Gly Gln 100
105 110 Gly Thr Ser Val Thr Val Ser Ser
115 120 20113PRTMurine 20Glu Val Lys Pro Gln Glu Ser Gly
Pro Gly Leu Val Lys Pro Ser Gln 1 5 10
15 Ser Leu Ser Leu Thr Cys Thr Val Thr Gly Tyr Ser Ile
Thr Ser Asn 20 25 30
Tyr Ala Trp Asn Trp Ile Arg Gln Phe Pro Gly Asn Lys Leu Glu Trp
35 40 45 Met Gly Phe Ile
Ser Ser Tyr Gly Thr Thr Thr Tyr Asn Pro Ser Leu 50 55
60 Lys Ser Arg Phe Ser Ile Thr Arg Asp
Thr Ser Lys Asn Gln Phe Phe65 70 75
80 Leu Gln Leu His Ser Val Thr Ile Glu Asp Thr Gly Thr Tyr
Phe Cys 85 90 95
Thr Arg Glu Gly Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser
100 105 110 Ser21116PRTMurine
21Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Glu Lys Pro Gly Ala 1
5 10 15 Ser Val Lys Ile
Ser Cys Lys Ala Ser Gly His Ser Phe Thr Gly Tyr 20
25 30 Asn Met Asn Trp Val Lys Gln Ser Asn
Asp Lys Ser Leu Glu Trp Ile 35 40
45 Gly Asn Ile Ala Pro Tyr Tyr Gly Val Thr Ala Tyr Asn Gln
Lys Phe 50 55 60
Lys Gly Lys Ala Thr Leu Thr Gly Asp Lys Ser Ser Ser Thr Ala Tyr65
70 75 80 Met Gln Leu Lys Ser
Leu Ala Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85
90 95 Val Leu Asp Thr Ser Gly Tyr Ala Ser Trp
Gly Gln Gly Thr Leu Val 100 105
110 Thr Val Ser Ala 115 22116PRTMurine 22Gln Val Gln
Leu Gln Gln Ser Gly Pro Glu Leu Glu Lys Pro Gly Ala 1 5
10 15 Ser Val Lys Ile Ser Cys Lys Ala
Ser Gly His Ser Phe Thr Gly Tyr 20 25
30 Asn Met Asn Trp Val Lys Gln Ser Asn Asp Lys Ser Leu
Glu Trp Ile 35 40 45
Gly Asn Ile Ala Pro Tyr Tyr Gly Val Thr Ala Tyr Asn Gln Lys Phe 50
55 60 Lys Gly Lys Ala Thr
Leu Thr Gly Asp Lys Ser Ser Ser Thr Ala Tyr65 70
75 80 Met Gln Leu Lys Ser Leu Thr Ser Glu Asp
Ser Ala Val Tyr Tyr Cys 85 90
95 Val Leu Asp Thr Ser Gly Tyr Ala Ser Trp Gly Gln Gly Thr Leu
Val 100 105 110 Thr
Val Ser Ala 115 23108PRTMurine 23Gly Gly Asp Leu Val Lys Pro
Gly Gly Ser Leu Lys Leu Ser Cys Ala 1 5 10
15 Ala Ser Gly Phe Ala Phe Ser Asp Phe Ala Met Ser
Trp Val Arg Gln 20 25 30
Thr Pro Glu Lys Arg Leu Glu Trp Val Ala Ile Ile Lys Ser Asp Asp
35 40 45 Ser Tyr Thr Tyr
Tyr Pro Asp Ser Val Arg Asp Arg Phe Thr Ile Ser 50 55
60 Arg Asp Asn Ala Arg Asn Thr Leu Tyr
Leu Gln Met Thr Ser Leu Arg65 70 75
80 Ser Glu Asp Thr Ala Leu Tyr Tyr Cys Thr Lys Ile Tyr Asp
Ala Tyr 85 90 95
Phe Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser 100
105 24101PRTMurine 24Gly Pro Gly Leu Val Lys Pro Ser Gln
Ser Leu Ser Leu Thr Cys Thr 1 5 10
15 Val Thr Gly Tyr Ser Ile Thr Ser Asn Tyr Ala Trp Asn Trp
Ile Arg 20 25 30
Gln Phe Pro Gly Asn Lys Leu Glu Trp Met Gly Phe Ile Ser Ser Tyr 35
40 45 Gly Thr Thr Thr Tyr
Asn Pro Ser Leu Lys Ser Arg Phe Ser Ile Thr 50 55
60 Arg Asp Thr Ser Lys Asn Gln Phe Phe Leu
Gln Leu His Ser Val Thr65 70 75
80 Ile Glu Asp Thr Gly Thr Tyr Phe Cys Thr Arg Glu Gly Asp Tyr
Trp 85 90 95 Gly
Gln Gly Thr Thr 100 25104PRTMurine 25Gly Pro Glu Leu Glu
Lys Pro Gly Ala Ser Val Lys Ile Ser Cys Lys 1 5
10 15 Ala Ser Gly His Ser Phe Thr Gly Tyr Asn
Met Asn Trp Val Lys Gln 20 25
30 Ser Asn Asp Lys Ser Leu Glu Trp Ile Gly Asn Ile Ala Pro Tyr
Tyr 35 40 45 Gly
Val Thr Ala Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr 50
55 60 Gly Asp Lys Ser Ser Ser
Thr Ala Tyr Met Gln Leu Lys Ser Leu Ala65 70
75 80 Ser Glu Asp Ser Ala Val Tyr Tyr Cys Val Leu
Asp Thr Ser Gly Tyr 85 90
95 Ala Ser Trp Gly Gln Gly Thr Leu 100
26104PRTMurine 26Gly Pro Glu Leu Glu Lys Pro Gly Ala Ser Val Lys Ile Ser
Cys Lys 1 5 10 15
Ala Ser Gly His Ser Phe Thr Gly Tyr Asn Met Asn Trp Val Lys Gln
20 25 30 Ser Asn Asp Lys Ser
Leu Glu Trp Ile Gly Asn Ile Ala Pro Tyr Tyr 35 40
45 Gly Val Thr Ala Tyr Asn Gln Lys Phe Lys
Gly Lys Ala Thr Leu Thr 50 55 60
Gly Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Lys Ser Leu
Thr65 70 75 80 Ser
Glu Asp Ser Ala Val Tyr Tyr Cys Val Leu Asp Thr Ser Gly Tyr
85 90 95 Ala Ser Trp Gly Gln Gly
Thr Leu 100 27360DNAMurine 27gaggtgcacc
tggtggagtc tgggggagac ttagtgaagc ctggggggtc cctcaaactc 60tcctgtgcag
cctctggatt cgctttcagt gactttgcca tgtcttgggt tcgccagact 120ccggagaaga
ggctggagtg ggtcgcaatc attaaaagtg atgattctta cacctactat 180ccagacagtg
tgagggaccg attcaccatc tccagagaca atgccaggaa caccctttac 240ctgcaaatga
ccagtctgag gtctgaagac acggccttgt attactgtac aaaaatctat 300gatgcttact
tctatgctat ggactactgg ggtcaaggaa cctcagtcac cgtctcctcg
36028339DNAMurine 28gaggtgaagc ctcaggagtc aggacctggc ctggtgaaac
cttctcagtc tctgtccctc 60acctgcactg tcactggcta ctcaatcacc agtaattatg
cctggaactg gatccggcag 120tttccaggaa acaaactgga gtggatgggc ttcataagtt
cctatggaac cactacctac 180aacccttctc tcaaaagtcg attctctatc actcgagaca
catccaagaa ccagttcttc 240ctgcaattgc attctgtgac tattgaggac acaggcacat
atttctgtac aagagagggt 300gactactggg gccaaggcac cactctcaca gtctcctca
33929348DNAMurine 29gaggtccagc tgcaacagtc
cggacctgag ctggagaagc ctggcgcttc agtgaagata 60tcctgcaagg cttctggtca
ttcattcact ggctacaaca tgaactgggt gaagcagagc 120aatgacaaga gccttgagtg
gattggaaat attgctcctt actatggtgt tactgcctac 180aaccagaagt tcaagggcaa
ggccacattg actggagaca aatcctccag cactgcctac 240atgcagctca agagcctggc
atctgaggac tctgcagtct attactgtgt cctagacacc 300tcgggctacg cttcctgggg
ccaagggact ctggtaactg tctctgca 34830348DNAMurine
30caggtccagc tgcagcagtc tgggcctgag ctggagaagc ctggcgcttc agtgaagata
60tcctgcaagg cttctggtca ttcattcact ggctacaaca tgaactgggt gaagcagagc
120aatgacaaga gccttgagtg gattggaaat attgctcctt actatggtgt tactgcctac
180aaccagaagt tcaagggcaa ggccacattg actggagaca aatcctccag cactgcctac
240atgcagctca agagcctgac atctgaggac tctgcagtct attactgtgt cctagacacc
300tcgggctacg cttcctgggg ccaagggact ctggtcactg tctctgca
34831324DNAMurine 31gggggagact tagtgaagcc tggggggtcc ctcaaactct
cctgtgcagc ctctggattc 60gctttcagtg actttgccat gtcttgggtt cgccagactc
cggagaagag gctggagtgg 120gtcgcaatca ttaaaagtga tgattcttac acctactatc
cagacagtgt gagggaccga 180ttcaccatct ccagagacaa tgccaggaac accctttacc
tgcaaatgac cagtctgagg 240tctgaagaca cggccttgta ttactgtaca aaaatctatg
atgcttactt ctatgctatg 300gactactggg gtcaaggaac ctca
32432303DNAMurine 32ggacctggcc tggtgaaacc
ttctcagtct ctgtccctca cctgcactgt cactggctac 60tcaatcacca gtaattatgc
ctggaactgg atccggcagt ttccaggaaa caaactggag 120tggatgggct tcataagttc
ctatggaacc actacctaca acccttctct caaaagtcga 180ttctctatca ctcgagacac
atccaagaac cagttcttcc tgcaattgca ttctgtgact 240attgaggaca caggcacata
tttctgtaca agagagggtg actactgggg ccaaggcacc 300act
30333312DNAMurine
33ggacctgagc tggagaagcc tggcgcttca gtgaagatat cctgcaaggc ttctggtcat
60tcattcactg gctacaacat gaactgggtg aagcagagca atgacaagag ccttgagtgg
120attggaaata ttgctcctta ctatggtgtt actgcctaca accagaagtt caagggcaag
180gccacattga ctggagacaa atcctccagc actgcctaca tgcagctcaa gagcctggca
240tctgaggact ctgcagtcta ttactgtgtc ctagacacct cgggctacgc ttcctggggc
300caagggactc tg
31234312DNAMurine 34gggcctgagc tggagaagcc tggcgcttca gtgaagatat
cctgcaaggc ttctggtcat 60tcattcactg gctacaacat gaactgggtg aagcagagca
atgacaagag ccttgagtgg 120attggaaata ttgctcctta ctatggtgtt actgcctaca
accagaagtt caagggcaag 180gccacattga ctggagacaa atcctccagc actgcctaca
tgcagctcaa gagcctgaca 240tctgaggact ctgcagtcta ttactgtgtc ctagacacct
cgggctacgc ttcctggggc 300caagggactc tg
31235251PRTHomo sapiens 35Gln Val Gln Leu Val Gln
Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 1 5
10 15 Ser Leu Arg Ile Ser Cys Lys Gly Ser Gly Tyr
Ser Phe Thr Ser His 20 25 30
Trp Ile Ser Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
35 40 45 Gly Arg Ile
Asp Pro Ser Asp Ser Tyr Ser Asn Tyr Ser Pro Ser Phe 50
55 60 Gln Gly His Val Ile Ile Ser Val
Asp Lys Ser Ile Ser Thr Ala Tyr65 70 75
80 Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Ile
Tyr Tyr Cys 85 90 95
Ala Arg Gln Leu Ile Val Val Val Pro Ala Ala Pro Tyr Tyr Tyr Tyr
100 105 110 Tyr Tyr Gly Met Asp
Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser 115
120 125 Ser Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Ser Gly Gly Gly Ser 130 135
140 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu
Ser Pro Gly145 150 155
160 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Thr Val Asn Ser Tyr
165 170 175 Leu Ala Trp Tyr
Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr 180
185 190 Gly Ala Ser Ser Arg Ala Thr Gly Ile
Pro Asp Arg Phe Ser Gly Ser 195 200
205 Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu
Pro Glu 210 215 220
Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser His Pro Trp225
230 235 240 Thr Phe Gly Gln Gly
Thr Lys Val Glu Ile Lys 245 250
36252PRTHomo sapiens 36Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys
Lys Pro Gly Ser 1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
20 25 30 Ala Ile Ser Trp
Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35
40 45 Gly Gly Ile Ile Pro Ile Phe Gly Thr
Ala Asn Tyr Ala Gln Lys Phe 50 55 60
Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr
Ala Tyr65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Ile Tyr Tyr Cys
85 90 95 Ala Arg Val Phe Gly
Ser Glu Ser Gln Asp Pro Ser Asp Ile Trp Ser 100
105 110 Gly Tyr Tyr Gly Met Glu Val Trp Gly Gln
Gly Thr Leu Val Thr Val 115 120
125 Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
Gly Gly 130 135 140
Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val145
150 155 160 Gly Asp Arg Val Thr
Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser 165
170 175 Trp Leu Ala Trp Tyr Gln Gln Lys Pro Gly
Lys Ala Pro Lys Leu Leu 180 185
190 Ile Tyr Ala Ala Ser Ser Leu Gln Ser Arg Val Pro Ser Arg Phe
Ser 195 200 205 Gly
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln 210
215 220 Pro Glu Asp Phe Ala Thr
Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro225 230
235 240 Tyr Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile
Lys 245 250 37243PRTHomo sapiens
37Gln Val Gln Leu Val Glu Ser Gly Ala Glu Ala Lys Lys Pro Gly Ser 1
5 10 15 Ser Val Lys Val
Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20
25 30 Ala Ile Ser Trp Val Arg Gln Ala Pro
Gly Gln Gly Leu Glu Trp Met 35 40
45 Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln
Lys Phe 50 55 60
Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr65
70 75 80 Met Glu Leu Ser Ser
Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Ala Arg Ala Gly Ile Thr Gly Thr Thr Ala
Pro Pro Asp Tyr Trp Gly 100 105
110 Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly
Gly 115 120 125 Gly
Gly Ser Gly Gly Gly Gly Ser Val Ile Trp Met Thr Gln Ser Pro 130
135 140 Ser Ser Leu Ser Ala Ser
Val Gly Asp Arg Val Thr Ile Thr Cys Arg145 150
155 160 Ala Ser Gln Ser Ile Ser Ser Tyr Leu Asn Trp
Tyr Gln Arg Lys Pro 165 170
175 Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser
180 185 190 Gly Val Thr
Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr 195
200 205 Leu Thr Ile Ser Ser Leu Gln Pro
Glu Asp Phe Ala Thr Tyr Tyr Cys 210 215
220 Gln Gln Ser Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly
Thr Lys Leu225 230 235
240 Glu Ile Lys38249PRTHomo sapiens 38Gln Val Gln Leu Val Gln Ser Gly Ser
Glu Leu Lys Lys Pro Gly Ala 1 5 10
15 Ser Val Lys Leu Ser Cys Arg Ala Ser Gly Tyr Thr Phe Thr
Ser Tyr 20 25 30
Ser Met Val Trp Val Arg Gln Ala Pro Gly Glu Gly Leu Glu Trp Met 35
40 45 Gly Gly Ile Asn Thr
Asn Thr Gly Asn Pro Thr Tyr Ala Gln Gly Phe 50 55
60 Thr Glu Arg Phe Val Phe Ser Phe Asp Ser
Ser Val Ser Thr Ala Tyr65 70 75
80 Leu Gln Ile Ser Ser Leu Lys Ala Glu Asp Thr Ala Val Tyr Tyr
Cys 85 90 95 Ala
Arg Asp Trp Ala Tyr Ser Gly Ser Trp Pro Leu Gly Gln Asn Pro
100 105 110 Ser Asp His Trp Gly
Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly 115
120 125 Gly Gly Ser Gly Gly Gly Gly Ser Gly
Gly Gly Gly Ser Glu Ile Val 130 135
140 Met Thr Gln Ser Pro Ala Thr Leu Ser Val Ser Pro Gly
Glu Arg Ala145 150 155
160 Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Arg Asn Leu Ala Trp
165 170 175 Tyr Gln Gln Lys
Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Asp Thr 180
185 190 Ser Thr Arg Ala Thr Gly Ile Pro Ala
Arg Phe Ser Gly Ser Gly Ser 195 200
205 Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Ser Glu
Asp Ser 210 215 220
Ala Val Tyr Tyr Cys Gln Gln Tyr Asn Ile Trp Pro Pro Leu Thr Phe225
230 235 240 Gly Gly Gly Thr Lys
Val Glu Ile Lys 245 39242PRTHomo sapiens
39Gln Val Gln Leu Gln Gln Trp Gly Ala Gly Leu Leu Lys Pro Ser Glu 1
5 10 15 Thr Leu Ser Leu
Thr Cys Ala Val Tyr Gly Gly Ser Phe Ser Gly Tyr 20
25 30 Tyr Arg Thr Trp Ile Arg Gln Ser Pro
Val Lys Gly Leu Glu Trp Ile 35 40
45 Gly Glu Val Asn Asp Arg Gly Ser Pro Asn Tyr Asn Pro Ser
Phe Lys 50 55 60
Ser Arg Leu Thr Ile Ser Ile Asp Thr Ser Lys Asn Leu Ser Leu Lys65
70 75 80 Leu Arg Phe Met Thr
Ala Ala Asp Thr Ala Val Tyr Ser Cys Ala Arg 85
90 95 Ile Arg Pro Arg Tyr Gly Met Asp Val Trp
Gly Gln Gly Thr Met Val 100 105
110 Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Ser
Gly 115 120 125 Gly
Gly Ser Asp Ile Val Met Thr Gln Thr Pro Leu Ser Ser Pro Val 130
135 140 Thr Leu Gly Gln Pro Ala
Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu145 150
155 160 Val His Ser Asp Gly Asn Thr Tyr Leu Thr Trp
Phe His Gln Arg Pro 165 170
175 Gly Gln Pro Pro Arg Val Leu Ile His Lys Val Ser Asn Leu Phe Ser
180 185 190 Gly Val Pro
Asp Arg Phe Ser Gly Ser Gly Ala Gly Thr Asp Phe Thr 195
200 205 Leu Lys Ile Ser Arg Val Glu Ala
Glu Asp Val Gly Val Tyr Tyr Cys 210 215
220 Met Gln Ala Thr Gln Leu Tyr Thr Phe Gly Gln Gly Thr
Lys Val Glu225 230 235
240 Ile Lys40245PRTHomo sapiens 40Glu Val Gln Leu Val Gln Ser Gly Ala Glu
Val Lys Lys Pro Gly Ala 1 5 10
15 Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu
Leu 20 25 30 Ser
Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Met 35
40 45 Gly Gly Phe Asp Pro Glu
Asp Gly Glu Thr Ile Ser Ala Gln Lys Phe 50 55
60 Gln Gly Arg Val Thr Met Thr Glu Asp Thr Ser
Thr Asp Thr Ala Tyr65 70 75
80 Met Asp Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 Ala Thr Gln
Arg Leu Cys Ser Gly Gly Arg Cys Tyr Ser His Phe Asp 100
105 110 Tyr Trp Gly Gln Gly Thr Thr Val
Thr Val Ser Ser Gly Gly Gly Gly 115 120
125 Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Thr
Thr Leu Thr 130 135 140
Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Arg Val Thr Met145
150 155 160 Thr Cys Ser Ala Ser
Ser Ser Ile Arg Tyr Ile Tyr Trp Tyr Gln Gln 165
170 175 Lys Pro Gly Ser Ser Pro Arg Leu Leu Ile
Tyr Asp Thr Ser Asn Val 180 185
190 Ala Pro Gly Val Pro Phe Arg Phe Ser Gly Ser Gly Ser Gly Thr
Ser 195 200 205 Tyr
Ser Leu Thr Ile Asn Arg Met Glu Ala Glu Asp Ala Ala Thr Tyr 210
215 220 Tyr Cys Gln Glu Trp Ser
Gly Tyr Pro Tyr Thr Phe Gly Gly Gly Thr225 230
235 240 Lys Val Glu Ile Lys 245
41244PRTHomo sapiens 41Gln Met Gln Leu Val Gln Ser Gly Ala Glu Val Lys
Lys Pro Gly Ser 1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Asn Thr Tyr
20 25 30 Val Ile Ser Trp
Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35
40 45 Gly Trp Ile Ser Ala Tyr Asn Gly Asn
Thr Asn Tyr Ala Gln Lys Leu 50 55 60
Gln Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr
Ala Tyr65 70 75 80
Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95 Ala Arg Val Trp Ser
Pro Leu Asp Tyr Trp Gly Gln Gly Thr Leu Val 100
105 110 Thr Val Ser Ser Gly Gly Gly Gly Ser Gly
Gly Gly Gly Ser Gly Gly 115 120
125 Gly Gly Ser Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu
Ala Val 130 135 140
Ser Leu Gly Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val145
150 155 160 Leu Tyr Ser Ser Asn
Asn Met Asn Tyr Leu Ala Trp Tyr Gln Gln Lys 165
170 175 Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr
Trp Ala Ser Thr Arg Glu 180 185
190 Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp
Phe 195 200 205 Thr
Leu Thr Ile Ser Ser Leu Gln Ala Glu Asp Ala Ala Val Tyr Tyr 210
215 220 Cys Gln Gln Tyr Tyr Ser
Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys225 230
235 240 Leu Glu Ile Lys42246PRTHomo sapiens 42Gln
Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1
5 10 15 Ser Val Lys Val Ser Cys
Lys Gly Ser Gly Tyr Thr Phe Thr Gly Tyr 20 25
30 Tyr Met His Trp Val Pro Gln Ala Pro Gly Gln
Gly Leu Glu Trp Met 35 40 45
Gly Trp Ile Asn Pro Asn Asn Gly Gly Thr Asn Tyr Asp Gln Lys Phe
50 55 60 Gln Gly Arg
Val Ala Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr65 70
75 80 Met Glu Leu Ser Arg Leu Arg Ser
Asp Asp Thr Ala Val Tyr Tyr Cys 85 90
95 Ala Arg Asp Asn Gly Arg Val Thr Thr Gly Gly Tyr Trp
Gly Gln Gly 100 105 110
Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
115 120 125 Ser Ser Gly Gly
Gly Ser Gln Ser Val Leu Thr Gln Pro Pro Ser Leu 130
135 140 Ser Gly Ala Pro Gly Gln Ser Val
Thr Ile Ser Cys Ala Gly Thr Ser145 150
155 160 Ser Ser Ile Gly Ala Gly Tyr Asp Val Gln Trp Tyr
Gln Gln Leu Pro 165 170
175 Gly Lys Thr Pro Lys Leu Leu Ile Tyr Gly Asn Asp Asn Arg Pro Ser
180 185 190 Gly Val Pro
Asp Arg Phe Ser Gly Ser Arg Ser Tyr Thr Ser Ala Ser 195
200 205 Leu Val Ile Thr Arg Val Gln Ile
Glu Asp Glu Ala Asp Tyr Tyr Cys 210 215
220 Gln Ser Tyr Asp Ser Ser Leu Ile Gly Pro Gln Phe Gly
Gly Gly Thr225 230 235
240 Lys Leu Thr Val Leu Gly 245 43244PRTHomo sapiens
43Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu 1
5 10 15 Ser Leu Lys Ile
Ser Cys Thr Ala Ser Gly Tyr Asn Phe Ala Ser Tyr 20
25 30 Trp Ile Gly Trp Val Arg Gln Met Pro
Gly Gln Gly Leu Glu Trp Met 35 40
45 Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro
Ser Phe 50 55 60
Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr65
70 75 80 Leu Gln Trp Ser Ser
Leu Lys Ala Ser Asp Thr Ala Thr Tyr Tyr Cys 85
90 95 Val Arg Arg Val Pro Leu Tyr Thr Asn Asn
His Tyr Leu Asp Tyr Trp 100 105
110 Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser
Gly 115 120 125 Gly
Gly Gly Ser Gly Gly Gly Gly Ser Ala Ile Gln Met Thr Gln Ser 130
135 140 Pro Ser Ser Leu Ser Ala
Ser Val Gly Asp Arg Val Thr Ile Thr Cys145 150
155 160 Arg Ala Ser Gln Gly Ile Ser Asn Tyr Leu Ala
Trp Phe Gln Gln Lys 165 170
175 Pro Gly Lys Ala Pro Lys Ser Leu Ile Tyr Ala Ala Ser Ser Leu Gln
180 185 190 Ser Gly Val
Pro Ser Lys Tyr Ser Gly Ser Gly Ser Gly Thr Asp Phe 195
200 205 Thr Leu Thr Ile Ser Ser Leu Gln
Pro Glu Asp Phe Ala Thr Tyr Tyr 210 215
220 Cys Gln Gln Tyr Lys Ser Tyr Pro Leu Thr Phe Gly Gly
Gly Thr Lys225 230 235
240 Val Glu Ile Lys44239PRTHomo sapiens 44Glu Val Gln Leu Val Gln Ser Gly
Ala Glu Val Lys Lys Pro Gly Ala 1 5 10
15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe
Ser Asp Tyr 20 25 30
Phe Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45 Gly Val Ile Asn
Pro Thr Gly Gly Ser Thr Thr Tyr Ala Gln Ser Phe 50 55
60 Gln Gly Arg Val Thr Met Thr Arg Asp
Thr Ser Thr Ser Ile Val Tyr65 70 75
80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr
Tyr Cys 85 90 95
Thr Arg Val Gly Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Leu
100 105 110 Val Thr Val Ser Ser
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly 115
120 125 Gly Gly Gly Ser Asp Ile Val Met Thr
Gln Ser Pro Ser Thr Leu Ser 130 135
140 Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala
Ser Gln Ser145 150 155
160 Thr Ser Arg Phe Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro
165 170 175 Lys Leu Leu Ile
Tyr Ala Ala Ser Ser Leu His Ser Gly Val Pro Ser 180
185 190 Arg Phe Ser Gly Ser Gly Ser Gly Thr
Asp Phe Thr Leu Thr Ile Ser 195 200
205 Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
Thr Ser 210 215 220
Ser Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys225
230 235 45246PRTHomo sapiens 45Gln
Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Val Gly Arg 1
5 10 15 Ser Leu Arg Leu Ser Cys
Ala Ala Ser Gly Phe Thr Phe Thr Asn Phe 20 25
30 Gly Met His Trp Val Arg Gln Ala Pro Gly Lys
Gly Leu Glu Trp Val 35 40 45
Ala Leu Ile Ser Ser Asp Gly Tyr Arg Gln Ala Tyr Ala Asp Ser Val
50 55 60 Lys Gly Arg
Phe Thr Ile Ser Gly Asp Asn Ser Lys Asn Thr Val Tyr65 70
75 80 Leu Gln Met Asn Ser Leu Thr Ser
Glu Asp Thr Ala Val Tyr Tyr Cys 85 90
95 Ala Ile Ile Pro Pro Val Leu Arg Ile Phe Asp Trp Glu
Phe Asp Tyr 100 105 110
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser
115 120 125 Gly Gly Gly Gly
Ser Gly Gly Gly Gly Ser Glu Thr Thr Leu Thr Gln 130
135 140 Ser Pro Gly Thr Leu Ser Leu Ser
Pro Gly Glu Arg Ala Thr Leu Ser145 150
155 160 Cys Arg Ala Ser Gln Ser Val Ser Ser Pro Tyr Leu
Ala Trp Tyr Gln 165 170
175 Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Gly Ala Ser Asn
180 185 190 Arg Ala Thr
Gly Ile Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr 195
200 205 Asp Phe Thr Leu Thr Ile Ser Ser
Leu Gln Ala Glu Asp Glu Ala Val 210 215
220 Tyr Tyr Cys Gln Gln Tyr Tyr Asn Thr Pro Leu Thr Phe
Gly Gly Gly225 230 235
240 Thr Lys Val Glu Ile Lys 245 46247PRTHomo sapiens
46Gln Val Gln Leu Gln Gln Trp Gly Ala Gly Leu Leu Lys Pro Ser Glu 1
5 10 15 Thr Leu Ser Leu
Thr Cys Ala Val Tyr Ser Gly Ser Phe Thr Arg Asp 20
25 30 Tyr Trp Gly Trp Ile Arg Gln Pro Pro
Gly Lys Gly Leu Glu Trp Ile 35 40
45 Gly Glu Ile Asn His Ser Gly Ser Thr Asn Tyr Asn Pro Ser
Leu Lys 50 55 60
Ser Arg Val Thr Thr Ser Val Asp Lys Ser Lys Asn Gln Phe Ser Leu65
70 75 80 Lys Leu Thr Ser Val
Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85
90 95 Arg Arg Arg Leu Ser Ser Asp Leu Phe Met
Arg Gly Val Gly Gly Met 100 105
110 Asp Val Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly
Gly 115 120 125 Gly
Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Val Met 130
135 140 Thr Gln Thr Pro Gly Thr
Leu Ser Ser Ser Pro Gly Glu Arg Ala Thr145 150
155 160 Leu Ser Cys Arg Ala Ser Gln Gly Val Ser Ser
Asn Leu Ala Trp Tyr 165 170
175 Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Asp Ala Ser
180 185 190 Asn Arg Ala
Thr Gly Ile Pro Leu Arg Phe Ser Gly Ser Gly Ser Gly 195
200 205 Thr Asp Phe Thr Leu Thr Ile Ser
Arg Leu Glu Pro Glu Asp Phe Ala 210 215
220 Val Tyr Tyr Cys His Gln Tyr Gly Ser Ser Pro Tyr Thr
Phe Gly Gln225 230 235
240 Gly Thr Lys Val Glu Ile Lys 245 47248PRTHomo
sapiens 47Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15 Ser Val
Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20
25 30 Gly Ile Ser Trp Val Arg Gln
Ala Ser Gly Gln Gly Leu Glu Trp Met 35 40
45 Gly Trp Ile Ser Ala Tyr Asn Gly Asn Thr Asn Tyr
Ala Gln Lys Leu 50 55 60
Gln Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr65
70 75 80 Met Glu Leu Arg
Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Ala Arg Val Pro Arg Tyr Phe Asp Trp
Leu Leu Tyr Gly Ser Asp Tyr 100 105
110 Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
Gly Gly 115 120 125
Gly Gly Ser Gly Gly Gly Gly Ser Ser Gly Gly Gly Ser Asp Ile Gln 130
135 140 Met Thr Gln Ser Pro
Ser Thr Leu Ser Val Ser Val Gly Asp Arg Val145 150
155 160 Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile
Ser Ser Trp Leu Ala Trp 165 170
175 Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ala
Ala 180 185 190 Ser
Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser 195
200 205 Gly Thr Asp Phe Thr Leu
Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe 210 215
220 Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe
Pro Leu Thr Phe Gly225 230 235
240 Gly Gly Thr Lys Leu Glu Ile Lys 245
48249PRTHomo sapiens 48Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys
Glu Pro Gly Ser 1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
20 25 30 Ala Ile Tyr Trp
Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35
40 45 Gly Trp Ile Ile Pro Ile Leu Gly Ile
Ala Asn Tyr Ala Gln Lys Phe 50 55 60
Gln Gly Arg Val Thr Ile Thr Ala Asp Lys Ser Thr Ser Thr
Ala Tyr65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 Ala Arg Ala Ala Gly
His Ser Thr Asn Tyr Tyr Tyr Tyr Gly Met Asp 100
105 110 Val Trp Gly Gln Gly Thr Leu Val Thr Val
Ser Ser Gly Gly Gly Gly 115 120
125 Ser Gly Gly Gly Gly Ser Ser Gly Gly Gly Ser Gln Thr Val
Val Thr 130 135 140
Gln Glu Pro Ser Leu Thr Val Ser Leu Gly Gly Thr Val Thr Leu Thr145
150 155 160 Cys Gly Ser Ser Thr
Gly Ala Val Thr Ser Gly His Tyr Pro Tyr Trp 165
170 175 Phe Gln Gln Lys Pro Gly Gln Ala Pro Arg
Thr Leu Ile Tyr Asp Thr 180 185
190 Ser Asn Lys His Ser Trp Thr Pro Ala Arg Phe Ser Gly Ser Leu
Leu 195 200 205 Gly
Gly Lys Ala Ala Leu Thr Leu Ser Gly Ala Gln Pro Glu Asp Glu 210
215 220 Ala Glu Tyr Tyr Cys Leu
Leu Ser Tyr Ser Gly Thr Arg Val Phe Gly225 230
235 240 Gly Gly Thr Lys Leu Thr Val Leu Gly
245 49245PRTHomo sapiens 49Glu Val Gln Leu Val Gln
Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5
10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr
Thr Phe Thr Asn Tyr 20 25 30
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45 Gly Ile Ile
Asn Pro Ser Gly Gly Ser Thr Ser Tyr Ala Gln Lys Phe 50
55 60 Gln Gly Arg Val Thr Met Thr Arg
Asp Thr Ser Thr Ser Thr Val Tyr65 70 75
80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val
Tyr Tyr Cys 85 90 95
Ala Arg Asp Phe Lys Glu Tyr Ser Arg Thr Gly Tyr Phe Asp Tyr Trp
100 105 110 Gly Gln Gly Thr Leu
Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115
120 125 Gly Gly Gly Ser Ser Gly Gly Gly Ser
Ser Tyr Glu Leu Met Gln Pro 130 135
140 Ser Ser Val Ser Val Ser Pro Gly Gln Thr Ala Arg Ile
Thr Cys Ser145 150 155
160 Gly Asp Val Leu Ala Lys Lys Cys Ala Arg Trp Phe Gln Gln Lys Pro
165 170 175 Gly Gln Ala Pro
Val Leu Val Ile Tyr Lys Asp Ser Glu Arg Pro Ser 180
185 190 Gly Ile Pro Glu Arg Phe Ser Gly Ser
Ser Ser Gly Thr Thr Val Thr 195 200
205 Leu Thr Ile Ser Gly Ala Gln Val Glu Asp Glu Ala Asp Tyr
Tyr Cys 210 215 220
Tyr Ser Ala Ala Asp Asn Asn Leu Gly Val Phe Gly Gly Gly Thr Lys225
230 235 240 Val Thr Val Leu Gly
245 50246PRTHomo sapiens 50Gln Ile Thr Leu Lys Glu Ser Gly
Pro Ala Leu Val Lys Pro Thr Gln 1 5 10
15 Thr Leu Thr Leu Thr Cys Asn Phe Ser Gly Phe Ser Leu
Ser Thr Tyr 20 25 30
Gly Gly Gly Val Gly Trp Leu Arg Gln Pro Pro Gly Lys Ala Leu Glu
35 40 45 Trp Leu Ala Val
Ile Tyr Trp Ser Asp Gly Lys Arg Tyr Ser Pro Ser 50 55
60 Val Lys Asn Arg Leu Thr Ile Thr Lys
Asp Thr Ser Lys Asn His Val65 70 75
80 Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr
Tyr Tyr 85 90 95
Cys Ala His Leu Met Met Asp Thr Ser Ile Thr Thr His Trp Phe Asp
100 105 110 Pro Trp Gly Gln Gly
Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly 115
120 125 Ser Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Ala Ile Arg Met Thr 130 135
140 Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg
Val Thr Ile145 150 155
160 Thr Cys Arg Ala Ser Gln Gly Ile Ser Asn Tyr Leu Ala Trp Tyr Gln
165 170 175 Gln Lys Pro Gly
Lys Val Pro Lys Leu Leu Ile Tyr Ala Ala Ser Thr 180
185 190 Leu Gln Ser Gly Val Pro Ser Arg Phe
Ser Gly Ser Gly Ser Gly Thr 195 200
205 Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Val
Ala Thr 210 215 220
Tyr Tyr Cys Gln Lys Tyr Asn Ser Ala Pro Gly Thr Phe Gly Gln Gly225
230 235 240 Thr Lys Val Glu Ile
Lys 245 51249PRTHomo sapiens 51Gln Val Gln Leu Val Gln
Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5
10 15 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr
Thr Phe Thr Asn Tyr 20 25 30
Phe Ile His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45 Gly Leu Leu
Asn Pro Thr Asp Ser Gly Thr Leu Tyr Ala Gln Asn Phe 50
55 60 Gln Gly Arg Ile Thr Met Thr Ser
Asp Thr Ser Thr Asn Thr Val Tyr65 70 75
80 Met Glu Leu Ser Ser Leu Arg Ser Asp Asp Thr Ala Met
Tyr Tyr Cys 85 90 95
Ala Arg Glu Gly Gly Ala Asp Thr Thr Arg Val His Ser Ser Phe Asp
100 105 110 Tyr Trp Gly Gln Gly
Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly 115
120 125 Ser Gly Gly Gly Gly Ser Ser Gly Gly
Gly Ser Gln Ala Val Leu Thr 130 135
140 Gln Pro Pro Ser Val Ser Gly Ser Pro Gly Gln Ser Ile
Thr Ile Ser145 150 155
160 Cys Thr Gly Thr Ser Ser Asp Val Glu Ala Tyr Asn Tyr Val Ser Trp
165 170 175 Tyr Gln Gln His
Pro Gly Lys Ala Pro Lys Leu Met Ile Tyr Asp Val 180
185 190 Ser Asn Arg Pro Ser Gly Val Ser Asn
Arg Phe Ser Gly Ser Lys Ser 195 200
205 Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu Gln Ala Glu
Asp Glu 210 215 220
Ala Asp Tyr Tyr Cys Ser Ser Tyr Thr Ser Ser Arg Thr Trp Val Phe225
230 235 240 Gly Gly Gly Thr Lys
Val Ile Val Leu 245 52246PRTHomo sapiens
52Gln Val Gln Leu Gln Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Arg 1
5 10 15 Ser Leu Arg Leu
Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asp Tyr 20
25 30 Ala Leu His Trp Val Arg Gln Ala Pro
Gly Lys Gly Leu Glu Trp Val 35 40
45 Ser Gly Ile Ser Trp Asn Ser Val Thr Val Lys Tyr Ala Val
Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Phe65
70 75 80 Leu Gln Met Asn Ala
Leu Arg Ser Glu Asp Thr Ala Leu Tyr Tyr Cys 85
90 95 Ala Lys Ala Arg Gly Ala Leu Leu Glu Ala
Ala Asp Thr Pro Ser Asp 100 105
110 Asp Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly
Gly 115 120 125 Ser
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Val Met Thr 130
135 140 Gln Ser Pro Ser Ser Leu
Ser Ala Ser Val Gly Asp Arg Val Thr Ile145 150
155 160 Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr
Leu Asn Trp Tyr Gln 165 170
175 Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ala Ala Ser Ser
180 185 190 Leu Gln Ser
Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr 195
200 205 Asp Phe Thr Leu Thr Ile Ser Ser
Leu Gln Pro Glu Asp Val Ala Thr 210 215
220 Tyr Tyr Cys Gln Lys Tyr Asn Ser Ala Pro Trp Thr Phe
Gly Gln Gly225 230 235
240 Thr Lys Val Asp Ile Lys 245 53244PRTHomo sapiens
53Gln Val Gln Leu Gln Gln Ser Gly Ala Gly Leu Leu Arg Pro Ser Glu 1
5 10 15 Thr Leu Ser Leu
Thr Cys Gly Leu Tyr Gly Gly Ser Phe Ser Gly His 20
25 30 Tyr Trp Asn Trp Ile Arg Gln Ser Pro
Glu Lys Gly Leu Val Trp Ile 35 40
45 Gly Glu Ile Thr His Ser Gly Thr Thr Asn Tyr Asn Pro Ser
Leu Lys 50 55 60
Ser Arg Val Ile Thr Ser Val Asp Thr Ser Lys Asn Gln Tyr Ser Leu65
70 75 80 Lys Leu Ser Phe Val
Thr Pro Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85
90 95 Arg Gly Asp Tyr Tyr Gly Tyr Trp Tyr Phe
Asp Leu Trp Gly Arg Gly 100 105
110 Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly
Gly 115 120 125 Ser
Gly Gly Gly Gly Ser Gln Ser Val Leu Thr Gln Pro Pro Ser Val 130
135 140 Pro Val Ala Pro Gly Gln
Lys Val Thr Ile Ser Cys Ser Gly Ser Ser145 150
155 160 Ser Asn Ile Gly Asn Asn Tyr Val Ser Trp Tyr
Gln Gln Leu Pro Gly 165 170
175 Thr Ala Pro Lys Leu Leu Ile Tyr Asp Thr Asn Lys Arg Pro Ser Gly
180 185 190 Ile Pro Asp
Arg Phe Ala Gly Ser Lys Ser Gly Thr Ser Ala Thr Leu 195
200 205 Gly Ile Thr Gly Leu Gln Thr Gly
Asp Glu Ala Asp Tyr Tyr Cys Gly 210 215
220 Thr Trp Asp Ser Ser Leu Ser Ala Gly Val Phe Gly Gly
Gly Thr Lys225 230 235
240 Leu Thr Val Leu54801DNAHomo sapiens 54caggtgcagc tggtgcagtc
tggagcagag gtgaaaaagc ccggggagtc tctgaggatc 60tcctgcaagg gttctggata
cagctttacc agccactgga tcagctgggt gcgccagatg 120cccgggaaag gcctggagtg
gatggggagg attgatccta gtgactctta tagcaactac 180agcccctcct tccaaggcca
cgtcatcatc tcagttgaca agtccatcag cactgcctac 240ttgcagtgga gcagcctgaa
ggcctcggac accgccatat attactgtgc gagacagctc 300attgtagtag taccagctgc
tccctattac tactactact acggtatgga cgtctggggc 360caaggaaccc tggtcaccgt
ctcctcaggc ggcggcggct ctggcggagg tggcagcagc 420ggtggcggat ccgaaattgt
gttgacgcag tctccaggca ccctgtcttt gtctccaggg 480gaaagagcca ccctctcctg
cagggccagt cagactgtta acagctactt agcctggtac 540cagtagaaac ctggccaggc
tcccaggctc ctcatctatg gtgcatccag cagggccact 600ggcatcccag acaggttcag
tggcagtggg tctgggacag acttcactct caccatcagc 660agactggagc ctgaagattt
tgcagtgtat tactgtcagc agtatggtag ctcacatccg 720tggacgttcg gccaagggac
caaggtggag atcaaacgtg gcctcggggg cctggtcgac 780tacaaagatg acgatgacaa a
80155801DNAHomo sapiens
55caggttcagc tggtgcagtc tggggctgag gtgaagaagc ctgggtcctc ggtgaaggtc
60tcctgcaagg cttctggagg caccttcagc agctatgcta tcagctgggt gcgacaggcc
120cctggacaag ggcttgagtg gatgggaggg atcatcccta tctttggtac agcaaactac
180gcacagaagt tccagggcag agtcacgatt accgcggacg aatccacgag cacagcctac
240atggagctga gcagcctgag atctgaggac acggccatat attactgtgc gagagtcttt
300ggttccgagt cgcaagatcc gtccgatatt tggagtggtt attacggtat ggaagtctgg
360ggccaaggaa ccctggtcac cgtctcctca ggcggtggcg gctctggcgg aggtggcagc
420ggcggtggcg gatccgacat ccagatgacc cagtctccgt cttccgtgtc tgcatctgta
480ggagacagag tcaccatcac ttgtcgggcg agtcagggta ttagcagctg gttagcctgg
540tatcagcaga aaccagggaa agcccctaag ctcctgatct atgctgcatc cagtttgcaa
600agtagggtcc catcaaggtt cagcggcagt ggatctggga cagatttcac tctcaccatc
660agcagcctgc agcctgaaga ttttgcaact tactattgtc aacaggctaa cagtttcccg
720tacacttttg gccaggggac caagctggag atcaaacgtg gcctcggggg cctggtcgac
780tacaaagatg acgatgacaa a
80156729DNAHomo sapiens 56caggtgcagc tggtggagtc tggggctgag gcgaagaagc
ctgggtcctc ggtgaaggtc 60tcctgcaagg cttctggagg caccttcagc agctatgcta
tcagctgggt gcgacaggcc 120cctggacaag ggcttgagtg gatgggaggg atcatcccta
tctttggtac agcaaactac 180gcacagaagt tccagggcag agtcacgatt accgcggacg
aatccacgag cacagcctac 240atggagctga gcagcctgag atctgaggac acggccgtgt
attactgtgc gagagccggt 300ataactggaa ctacggctcc cccagactac tggggccagg
gcaccctggt caccgtctcc 360tcaggcggcg gcggctccgg cggaggtggc agcggcggtg
gcggatccgt catctggatg 420acccagtctc catcctccct gtctgcatct gtaggagaca
gagtcaccat cacttgccgg 480gcaagtcaga gcattagcag ctatttaaat tggtatcagc
ggaaaccagg gaaagcccct 540aagctcctga tctatgctgc atccagtttg caaagtgggg
tcacatcaag gttcagtggc 600agtggatctg ggacagattt cactctcacc atcagcagtc
tgcaacctga agattttgca 660acttactact gtcaacagag ttacagtacc cctccgacgt
tcggccaagg gaccaagctg 720gagatcaaa
72957792DNAHomo sapiens 57caggtgcagc tggtgcagtc
cggatctgag ttaaagaagc ctggggcctc agtgaagctt 60tcctgcaggg cttctggata
cacattcact agttattcca tggtttgggt gcgacaggcc 120cctggagaag ggcttgagtg
gatgggaggg atcaacacca acactgggaa cccaacgtat 180gcccagggct tcacagaacg
gtttgtcttc tccttcgaca gctctgtcag cacggcatat 240ctgcaaatca gcagcctaaa
ggctgaggac actgccgtgt attactgtgc gagagattgg 300gcgtatagcg gcagctggcc
cttaggccag aacccttctg accactgggg ccagggcacc 360ctggtcaccg tctcctcagg
cggcggcggc tctggcggag gtggcagcgg cggtggcgga 420tccgaaatag tgatgacgca
gtctccagcc accctgtctg tgtctccagg ggaaagagcc 480accctctcct gcagggccag
tcagagtgtt agccgcaact tagcctggta ccagcagaaa 540cctggccagg ctcccaggct
cctcatctat gatacatcca ccagggccac tggtatccca 600gccaggttca gtggcagtgg
gtctgggaca gagttcactc tcaccatcag cagcctgcag 660tctgaagatt ctgcagttta
ttactgtcag cagtataata tctggcctcc actcactttc 720ggcggaggga ccaaggtgga
gatcaaacgt ggcctcgggg gcctggtcga ctacaaagat 780gacgatgaca aa
79258774DNAHomo sapiens
58caggtgcagc tacagcagtg gggcgcagga ttgttgaagc cttcggagac cctgtccctc
60acctgcgctg tctatggtgg gtccttcagt ggttactacc ggacctggat ccgccagtcc
120ccagtgaagg ggctggagtg gattggggaa gtcaatgatc gtggaagccc caactacaac
180ccgtccttca agagtcgact caccatatca atcgacacgt ccaagaacta gttatccctg
240aagttgagat ttatgaccgc cgcggacacg gctgtatatt cgtgtgcgag aattaggcct
300aggtacggta tggacgtctg gggccagggg acaatggtca ccgtctcctc aggcggcggc
360ggctctggcg gaggtggcag cagcggtggc ggatccgata ttgtgatgac ccagactcca
420ctctcctcac ctgtcaccct tggacagccg gcctccatct cctgcaggtc tagtcaaagc
480ctcgtacaca gtgatggaaa cacctacttg acttggtttc accagaggcc aggccagcct
540ccaagagtcc tcattcataa ggtttctaac ctgttctctg gggtcccaga cagattcagt
600ggcagtgggg cagggacaga tttcacactg aaaatcagca gggtggaagc tgaggatgtc
660ggggtttatt actgcatgca agctacacaa ttgtacactt ttggccaggg gaccaaggtg
720gaaatcaaac gtggcctcgg gggcctggtc gactacaaag atgacgatga caaa
77459735DNAHomo sapiens 59gaggtccagc tggtacagtc tggggctgag gtgaagaagc
ctggggcctc agtgaaggtc 60tcctgcaagg tttccggata caccctcact gaattatcca
tgcactgggt gcgacaggct 120cctggaaaag ggcttgagtg gatgggaggt tttgatcctg
aagatggtga aacaatctcc 180gcgcagaagt tccagggcag agtcaccatg accgaggaca
catctacaga cacagcctac 240atggatctga gcagcctgag atctgaggac acggccgttt
attactgtgc aacgcagcgc 300ttgtgtagtg gtggtcgctg ctactcccac tttgactact
ggggccaggg caccacggtc 360accgtctcct caggcggcgg cggctctggc ggaggtggca
gcggcggtgg cggatccgaa 420acgacactca cgcagtctcc agcaatcatg tctgcatctc
caggggagag ggtcaccatg 480acctgcagtg ccagctcaag tatacgttac atatattggt
accaacagaa gcctggatcc 540tcccccagac tcctgattta tgacacatcc aacgtggctc
ctggagtccc ttttcgcttc 600agtggcagtg ggtctgggac ctcttattct ctcacaatca
accgaatgga ggctgaggat 660gctgccactt attactgcca ggagtggagt ggttatccgt
acacgttcgg aggggggacc 720aaggtggaga tcaaa
73560777DNAHomo sapiens 60cagatgcagc tggtgcagtc
tggggctgag gtgaagaagc ctgggtcctc ggtgaaggtc 60tcctgcaagg cttctggagg
caccttcaac acctatgtta tcagttgggt gcgacaggcc 120cctggacaag ggcttgagtg
gatgggatgg atcagcgctt acaatggtaa cacaaactat 180gcacagaagc tccagggcag
agtcaccatg accacagaca catccacgag cacagcctac 240atggagctga ggagcctgag
atctgacgac acggccgtgt attactgtgc gagagtttgg 300agtccccttg actactgggg
ccagggcacc ctggtcaccg tctcctcagg cggcggtggc 360tctggcggag gtggcagcgg
cggtggcgga tccgacatcg tgatgaccca gtctccagac 420tccctggctg tgtctctggg
cgagagggcc accatcaact gcaagtccag ccagagtgtt 480ttatacagct ccaacaatat
gaactactta gcttggtacc agcagaaacc aggacagcct 540cctaagctgc tcatttactg
ggcatctacc cgggaatccg gggtccctga ccgattcagt 600ggcagcgggt ctgggacaga
tttcactctc accatcagca gcctgcaggc tgaagatgcg 660gcagtttatt actgtcagca
gtattatagt actcctccga cgttcggcca agggaccaag 720ctggagatca aacgtggcct
cgggggcctg gtcgactaca aagatgacga tgacaaa 77761783DNAHomo sapiens
61caggtgcagc tggtgcaatc tggggctgag gtgaagaagc ctggggcctc agtgaaggtc
60tcctgcaagg gttctggata caccttcacc ggctactata tgcactgggt gccacaggcc
120cctggacaag ggcttgagtg gatgggatgg atcaacccta acaatggtgg cacaaactat
180gaccagaagt ttcagggcag ggtcgccatg accagggaca cgtccatctc cacagcctac
240atggagctga gcaggctgag atctgacgac actgccgtgt attactgtgc gagagataat
300gggagggtga ccacaggggg ctactggggc cagggcaccc tggtcaccgt ctcctcaggc
360ggcggcggct ctggcggagg tggcagcagc ggtggcggat cccagtctgt gttgacgcag
420cctccctcat tgtctggggc cccgggacag agtgtcacca tctcctgcgc tgggaccagt
480tccagcatcg gggcaggtta cgatgtacag tggtaccagc aacttccagg aaaaaccccc
540aaactcctca tctacgggaa tgataatcgg ccctcagggg tccctgaccg attctctgga
600tccaggtctt acacctcagc ctccctggtc atcactagag tccagattga ggatgaggct
660gattattact gccagtcgta tgacagcagt ctcattggtc ctcaattcgg cggggggacc
720aagctgaccg tcctaggtgg cctcgggggc ctggtcgact acaaagatga ccatgacaaa
780tac
78362732DNAHomo sapiens 62caggtgcagc tggtgcaatc tggggctgag gtgaaaaagc
ccggggagtc tctgaagatc 60tcctgtacgg cctccggata caactttgcc agctactgga
tcggctgggt gcgccagatg 120cccgggcaag gcctggagtg gatggggatc atctatcctg
gtgactctga taccagatac 180agtccgtcct tccaaggcca ggtcaccatc tcagccgaca
agtccatcag caccgcctac 240ctgcagtgga gcagcctgaa ggcctcggac accgccacgt
attactgtgt gagacgggtc 300cccctctaca ctaacaacca ctaccttgac tattggggcc
agggcaccct ggtcaccgtc 360tcctcaggcg gcggcggctc tggcggaggt ggcagcggcg
gtggcggatc cgccatccag 420atgacccagt ctccatcctc actgtctgca tctgtaggag
acagagtcac catcacttgt 480cgggcgagtc agggcattag caattattta gcctggtttc
agcagaaacc agggaaagcc 540cctaagtccc tgatctatgc tgcatccagt ttgcaaagtg
gggtcccatc aaagtacagc 600ggcagtggat ctgggacaga tttcactctc accatcagca
gcctgcagcc tgaagatttt 660gcaacttatt actgccaaca gtataagagt taccccctca
ctttcggcgg agggaccaag 720gtggagatca aa
73263762DNAHomo sapiens 63gaggtgcagc tggtgcagtc
tggggctgaa gtgaagaagc ctggggcctc agtgaaggtt 60tcctgtaagg catctggata
caccttcagc gactacttta tgcactgggt gcgacaggcc 120cctggacaag ggcttgagtg
gatgggagta atcaacccaa ctggtggttc cacaacctac 180gcacagagct tccagggcag
agtcaccatg accagagaca cgtccacgag catagtctac 240atggagctga gcagcctgag
atctgaagac acggccgtgt actactgtac gcgagtcggc 300tactacggta tggacgtctg
gggccaaggc accctggtca ccgtctcctc aggcggcggc 360ggctctggcg gaggtggcag
cggcggtggc ggatccgaca tcgtgatgac ccagtctcca 420tccaccctgt ctgcatctgt
aggagacaga gtcaccatca cttgccgggc aagtcagagc 480actagcaggt ttttaaattg
gtatcagcag aaacctggga aagcccctaa actcctgatc 540tatgctgcat ccagtttgca
tagtggcgtc ccatcaaggt tcagtggcag tggatctggg 600acagatttca ctctcaccat
cagcagtctg caacctgaag attttgcaac ttactactgt 660caacagactt ccagttaccc
tctcactttc ggcggaggga ccaaggtgga aatcaaacgt 720ggcctcgggg gcctggtcga
ctacaaagat gacgatgaca aa 76264783DNAHomo sapiens
64caggtccagc tggtacagtc tgggggaggc gtggtccagg ttgggaggtc cctgagactt
60tcctgtgcgg cctctggatt caccttcaca aactttggca tgcactgggt ccgccaggct
120ccaggcaagg ggctggagtg ggtggcactc atctcatctg atggatatag acaggcctat
180gcagactccg tgaagggccg gttcaccatc tccggagaca actccaagaa cacagtgtat
240ctgcaaatga acagcctgac aagtgaggac acggctgttt attactgtgc catcataccc
300cctgtattac ggatttttga ttgggaattt gactactggg gccagggaac cctggtcacc
360gtctcctcag gcggcggcgg ctctggcgga ggtggcagcg gcggtggcgg atccgaaacg
420acactcacgc agtctccagg caccctgtct ttgtctccag gggaaagagc caccctctcc
480tgcagggcca gtcagagtgt ttccagcccc tacttagcct ggtaccagca gaaacctggc
540caggctccca ggctcctcat ttatggtgca tctaacaggg ccactggcat cccagacagg
600ttcagtggca gtgggtctgg gacagacttc actctcacca tcagcagcct gcaggctgaa
660gatgaggcag tttattactg tcagcaatac tacaatactc cgctcacttt cggcggaggg
720accaaggtgg aaatcaaacg tggcctcggg ggcctggtcg actacaaaga tgacgatgac
780aaa
78365786DNAHomo sapiens 65caggtgcagc tacagcagtg gggcgcaggc ctgttgaagc
cttcggagac cctgtccctc 60acctgcgctg tctatagtgg gtcttttact cgtgactact
ggggctggat ccgccagccc 120cccgggaagg ggctggagtg gattggggaa atcaatcata
gtggaagcac caactacaac 180ccgtccctca agagtcgagt caccacgtcg gtagacaagt
ccaagaatca gttctccctg 240aagttgacct ctgtgaccgc cgcggacacg gctgtctatt
actgtgcgag acgccggctt 300tctagcgacc tcttcatgcg gggggttggc ggtatggacg
tctggggcca aggcaccctg 360gtcaccgtct cctcaggcgg cggcggctct ggcggaggtg
gcagcggcgg tggcggatct 420gatattgtga tgacccagac tccaggcacc ctgtcttcgt
ctccagggga aagagccacc 480ctctcctgca gggccagtca gggtgttagc agcaacttag
cctggtacca gcagaaacct 540ggccaggctc ccaggctcct catctatgat gcatccaaca
gggccactgg catcccactc 600aggttcagtg gcagtgggtc tgggacagac ttcactctca
ccatcagcag actggaacct 660gaagattttg cagtgtatta ctgtcaccag tatggtagct
caccgtacac ctttggccag 720gggaccaagg tggaaatcaa acgtggcctc gggggcctgg
tcgactacaa agatgacgat 780gacaaa
78666789DNAHomo sapiens 66gaggtgcagc tggtgcagtc
tggagctgag gtgaagaagc ctggggcctc agtgaaggtc 60tcctgcaagg cttctggtta
cacctttacc agctatggta tcagctgggt gcgacaggcc 120tctggacaag ggcttgagtg
gatgggatgg atcagcgctt acaatggtaa cacaaactat 180gcacagaagc tccagggcag
agtcaccatg accacagaca catccacgag cacagcctac 240atggagctga ggagcctgag
atctgacgac acggccgtgt attactgtgc gagagtaccc 300cgatattttg actggttatt
atacgggagc gactactttg actactgggg ccagggaacc 360ctggtcaccg tctcctcagg
cggcggcggc tctggcggag gtggcagcag cggtggcgga 420tccgacatcc agatgaccca
gtctccttcc accctgtctg tatctgtagg agacagagtc 480accatcactt gtcgggcgag
tcagggtatt agcagctggt tagcctggta tcagcagaaa 540ccagggaaag cccctaagct
cctgatctat gctgcatcca gtttgcaaag tggggtccca 600tcaaggttca gcggcagtgg
atctgggaca gatttcactc tcactatcag cagcctgcag 660cctgaagatt ttgcaactta
ctattgtcaa caggctaaca gtttcccgct cactttcggc 720ggagggacca agctggagat
caaacgtggc ctcgggggcc tggtcgacta caaagatgac 780gatgacaaa
78967747DNAHomo sapiens
67caggtgcagc tggtgcaatc tggagctgag gtgaaggagc ctgggtcctc ggtgaaggtc
60tcctgcaagg cttctggagg caccttcagc agctatgcta tctactgggt gcgacaggcc
120cctggacaag ggcttgagtg gatgggatgg atcatcccta tccttggtat agcaaactac
180gcacagaagt tccagggcag agtcacgatt accgcggaca aatccacgag cacagcctac
240atggagctga gcagcctgag atctgaggac acggccgtgt attactgtgc gagagctgcc
300ggtcatagta ctaactacta ctactacggt atggacgtct ggggccaagg caccctggtc
360accgtctcct caggcggcgg cggctctggc ggaggtggca gcagcggtgg cggatcccag
420actgtggtga cccaggagcc ctcactgact gtgtccctag gagggacagt cactctcacc
480tgtggctcca gcactggagc tgtcaccagt ggtcattatc cctactggtt ccagcagaag
540cctggccaag cccccaggac actgatttat gatacaagca acaaacactc ctggacccct
600gcccggttct caggctccct ccttgggggc aaagctgccc tgaccctttc gggtgcgcag
660cctgaggatg aggctgagta ttactgcttg ctctcctata gtggtactcg ggtgttcggc
720ggagggacca agctgaccgt cctaggt
74768735DNAHomo sapiens 68gaggtgcagc tggtgcagtc tggggctgag gtgaagaagc
ctggggcctc agtgaaggtt 60tcctgcaagg catctggata caccttcacc aactactata
tgcactgggt gcgacaggcc 120cctggacaag ggcttgagtg gatgggaata atcaacccta
gtggtggtag cacaagctac 180gcacagaagt tccagggcag agtcaccatg actagggaca
cgtccacgag cacagtctac 240atggagctga gcagcctgag atctgaggac acggccgtgt
attactgtgc gagagatttc 300aaagagtata gccgtacggg ctactttgac tactggggcc
agggcaccct ggtcaccgtc 360tcctcaggcg gcggcggctc tggcggaggt ggcagcagcg
gtggcggatc ctcctatgag 420ctgatgcagc catcctcagt gtcagtgtct ccgggacaga
cagccaggat cacctgctca 480ggagatgtac tggcaaaaaa atgtgctcgg tggttccagc
agaagccagg ccaggcccct 540gtgctggtga tttataaaga cagtgagcgg ccctcaggga
tccctgagcg attctccggc 600tccagctcag ggaccacagt caccttgacc atcagcgggg
cccaggttga ggatgaggct 660gactattact gttactctgc ggctgacaac aacctggggg
tgttcggcgg agggaccaag 720gtcaccgtcc taggt
73569783DNAHomo sapiens 69cagatcacct tgaaggagtc
tggtcctgcg ctggtgaaac ccacacagac cctcacgctg 60acctgcaact tctctgggtt
ctccctcagc acttatggag ggggtgtggg ctggctccgt 120cagcccccag gaaaggccct
ggagtggctt gccgtcattt attggagtga tggtaaacgc 180tacagcccct ctgtaaagaa
ccggctcacc atcaccaagg acacctccaa aaaccacgtg 240gtcctgacaa tgaccaacat
ggaccctgtg gacacagcca cctattattg tgcacacctt 300atgatggata catctattac
tacccactgg ttcgacccct ggggccaggg aaccctggtc 360accgtctcct caggcggcgg
cggctctggc ggaggtggca gcggcggtgg cggatccgcc 420atccggatga cccagtctcc
atcctccctg tctgcatctg taggagacag agtcaccatc 480acttgccggg cgagtcaggg
cattagcaat tatttagcct ggtatcagca gaaaccaggg 540aaagttccta agctcctgat
ctatgctgca tccactttgc aatcaggggt cccatctcgg 600ttcagcggca gtggatctgg
gacagatttc actctcacca tcagcagcct gcagcctgaa 660gatgttgcaa cttattactg
tcaaaagtat aacagtgccc ctgggacgtt cggccaaggg 720accaaggtgg agatcaaacg
tggcctcggg ggcctggtcg actacaaaga tgacgatgac 780aaa
78370747DNAHomo sapiens
70caggtgcagc tggtgcaatc tggggctgag gtgaagaagc ctgggtcctc ggtgaaggtt
60tcctgcaagg catctggata caccttcacc aactacttta tacactgggt gcgacaggcc
120cctggacaag ggcttgagtg gatgggacta ctcaacccta ctgatagtgg cacactctac
180gcacagaact tccagggcag aatcaccatg accagtgaca cgtccacaaa cacagtctac
240atggagctga gcagcctgag atctgacgac acggccatgt attactgtgc aagagagggg
300ggggccgaca ctacccgggt ccactcttcg tttgactact ggggccaggg aaccctggtc
360accgtctcct caggcggcgg cggctctggc ggaggtggca gcagcggtgg cggatcccag
420gctgtgctga ctcagccgcc ttccgtgtcg gggtctcctg gacagtcgat caccatctcc
480tgcactggaa ccagcagtga cgttgaagct tacaactatg tctcctggta tcaacaacac
540ccaggcaaag cccccaaact catgatttat gatgtcagta atcggccctc aggggtttct
600aatcgcttct ctggctccaa gtctggcaac acggcctccc tgaccatctc tgggctccag
660gctgaggacg aggctgatta ttactgcagc tcatatacaa gcagcagcac ttgggtgttc
720ggcggaggga ccaaggtcat cgtccta
74771738DNAHomo sapiens 71caggtgcagc tgcaggagtc ggggggaggc ttggtacagc
ctggcaggtc cctgagactc 60tcctgtgcag cctctggatt cacctttgat gattatgccc
tccactgggt ccggcaagct 120ccagggaagg gcctggagtg ggtctcaggt attagttgga
atagtgttac cgtaaagtat 180gcggtctctg tgaagggccg gttcaccatc tccagagaca
acgccaagaa ctccctgttt 240ctgcaaatga acgctctgag atctgaggac acggccttat
attactgtgc aaaagccaga 300ggggccctct tagaagcagc tgacacacca tctgacgact
ggggccaggg caccctggtc 360accgtctcct caggcggcgg cggctctggc ggaggtggca
gcggcggtgg cggatccgac 420atcgtgatga cccagtctcc gtcctccctg tctgcatctg
taggagacag agtcaccatc 480acttgccggg caagtcagag cattagcagc tatttaaatt
ggtatcagca gaaaccaggg 540aaagccccta agctcctgat ctatgctgca tccagtttgc
aaagtggggt cccatcaagg 600ttcagtggca gtggatctgg gacagatttc actctcacca
tcagcagcct gcagcctgaa 660gatgttgcaa cttattactg tcaaaagtat aacagtgccc
cgtggacgtt cggccaaggg 720accaaagtgg atatcaaa
73872732DNAHomo sapiens 72caggtacagc tgcagcagtc
aggcgcaggt ctattgaggc cttcggagac cctgtccctc 60acctgcggtc tctatggtgg
gtccttcagt ggtcactatt ggaactggat ccgccagtcc 120ccagaaaagg ggctggtgtg
gattggggaa atcactcata gtggaaccac caattacaac 180ccgtccctca agagtcgagt
catcacatca gtagacacgt ccaagaatca gtactccctg 240aagctgagct ttgtgacccc
tgcggacacg gccgtgtatt actgtgcgag aggtgattac 300tatgggtact ggtacttcga
tctctggggc cgtggcaccc tggtcaccgt ctcctcaggc 360ggcggcggct ctggcggagg
tggcagcggc ggtggcggat cccagtctgt gttgacgcag 420ccgccctcag ttcctgtggc
cccaggacag aaggtcacca tctcctgctc tggaagcagc 480tccaacattg ggaataatta
tgtatcctgg taccagcagc tcccaggaac agcccccaaa 540ctcctcattt atgacactaa
taagcgaccc tcagggattc ctgaccgatt cgctggctcc 600aagtctggca cgtcagccac
cctgggcatc accggactcc agactgggga cgaggccgat 660tattactgcg gaacatggga
tagcagcctg agtgctggcg tgttcggcgg agggaccaag 720ctgaccgtcc ta
73273369DNAHomo sapiens
73gaaattgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccagggga aagagccacc
60ctctcctgca gggccagtca gactgttaac agctacttag cctggtacca gtagaaacct
120ggccaggctc ccaggctcct catctatggt gcatccagca gggccactgg catcccagac
180aggttcagtg gcagtgggtc tgggacagac ttcactctca ccatcagcag actggagcct
240gaagattttg cagtgtatta ctgtcagcag tatggtagct cacatccgtg gacgttcggc
300caagggacca aggtggagat caaacgtggc ctcgggggcc tggtcgacta caaagatgac
360gatgacaaa
36974366DNAHomo sapiens 74gacatccaga tgacccagtc tccgtcttcc gtgtctgcat
ctgtaggaga cagagtcacc 60atcacttgtc gggcgagtca gggtattagc agctggttag
cctggtatca gcagaaacca 120gggaaagccc ctaagctcct gatctatgct gcatccagtt
tgcaaagtag ggtcccatca 180aggttcagcg gcagtggatc tgggacagat ttcactctca
ccatcagcag cctgcagcct 240gaagattttg caacttacta ttgtcaacag gctaacagtt
tcccgtacac ttttggccag 300gggaccaagc tggagatcaa acgtggcctc gggggcctgg
tcgactacaa agatgacgat 360gacaaa
36675366DNAHomo sapiens 75gtcatctgga tgacccagtc
tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60atcacttgcc gggcaagtca
gagcattagc agctatttaa attggtatca gcggaaacca 120gggaaagccc ctaagctcct
gatctatgct gcatccagtt tgcaaagtgg ggtcacatca 180aggttcagtg gcagtggatc
tgggacagat ttcactctca ccatcagcag tctgcaacct 240gaagattttg caacttacta
ctgtcaacag agttacagta cccctccgac gttcggccaa 300gggaccaagc tggagatcaa
acgtggcctc gggggcctgg tcgactacaa agatgacgat 360gacaaa
36676369DNAHomo sapiens
76gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc
60ctctcctgca gggccagtca gagtgttagc cgcaacttag cctggtacca gcagaaacct
120ggccaggctc ccaggctcct catctatgat acatccacca gggccactgg tatcccagcc
180aggttcagtg gcagtgggtc tgggacagag ttcactctca ccatcagcag cctgcagtct
240gaagattctg cagtttatta ctgtcagcag tataatatct ggcctccact cactttcggc
300ggagggacca aggtggagat caaacgtggc ctcgggggcc tggtcgacta caaagatgac
360gatgacaaa
36977333DNAHomo sapiens 77gatattgtga tgacccagac tccactctcc tcacctgtca
cccttggaca gccggcctcc 60atctcctgca ggtctagtca aagcctcgta cacagtgatg
gaaacaccta cttgacttgg 120tttcaccaga ggccaggcca gcctccaaga gtcctcattc
ataaggtttc taacctgttc 180tctggggtcc cagacagatt cagtggcagt ggggcaggga
cagatttcac actgaaaatc 240agcagggtgg aagctgagga tgtcggggtt tattactgca
tgcaagctac acaattgtac 300acttttggcc aggggaccaa ggtggaaatc aaa
33378363DNAHomo sapiens 78gaaacgacac tcacgcagtc
tccagcaatc atgtctgcat ctccagggga gagggtcacc 60atgacctgca gtgccagctc
aagtatacgt tacatatatt ggtaccaaca gaagcctgga 120tcctccccca gactcctgat
ttatgacaca tccaacgtgg ctcctggagt cccttttcgc 180ttcagtggca gtgggtctgg
gacctcttat tctctcacaa tcaaccgaat ggaggctgag 240gatgctgcca cttattactg
ccaggagtgg agtggttatc cgtacacgtt cggagggggg 300accaaggtgg agatcaaacg
tggcctcggg ggcctggtcg actacaaaga tgacgatgac 360aaa
36379384DNAHomo sapiens
79gacatcgtga tgacccagtc tccagactcc ctggctgtgt ctctgggcga gagggccacc
60atcaactgca agtccagcca gagtgtttta tacagctcca acaatatgaa ctacttagct
120tggtaccagc agaaaccagg acagcctcct aagctgctca tttactgggc atctacccgg
180gaatccgggg tccctgaccg attcagtggc agcgggtctg ggacagattt cactctcacc
240atcagcagcc tgcaggctga agatgcggca gtttattact gtcagcagta ttatagtact
300cctccgacgt tcggccaagg gaccaagctg gagatcaaac gtggcctcgg gggcctggtc
360gactacaaag atgacgatga caaa
38480333DNAHomo sapiens 80cagtctgtgt tgacgcagcc tccctcattg tctggggccc
cgggacagag tgtcaccatc 60tcctgcgctg ggaccagttc cagcatcggg gcaggttacg
atgtacagtg gtaccagcaa 120cttccaggaa aaacccccaa actcctcatc tacgggaatg
ataatcggcc ctcaggggtc 180cctgaccgat tctctggatc caggtcttac acctcagcct
ccctggtcat cactagagtc 240cagattgagg atgaggctga ttattactgc cagtcgtatg
acagcagtct cattggtcct 300caattcggcg gggggaccaa gctgaccgtc cta
33381321DNAHomo sapiens 81gccatccaga tgacccagtc
tccatcctca ctgtctgcat ctgtaggaga cagagtcacc 60atcacttgtc gggcgagtca
gggcattagc aattatttag cctggtttca gcagaaacca 120gggaaagccc ctaagtccct
gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180aagtacagcg gcagtggatc
tgggacagat ttcactctca ccatcagcag cctgcagcct 240gaagattttg caacttatta
ctgccaacag tataagagtt accccctcac tttcggcgga 300gggaccaagg tggagatcaa a
32182321DNAHomo sapiens
82gacatcgtga tgacccagtc tccatccacc ctgtctgcat ctgtaggaga cagagtcacc
60atcacttgcc gggcaagtca gagcactagc aggtttttaa attggtatca gcagaaacct
120gggaaagccc ctaaactcct gatctatgct gcatccagtt tgcatagtgg cgtcccatca
180aggttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct
240gaagattttg caacttacta ctgtcaacag acttccagtt accctctcac tttcggcgga
300gggaccaagg tggaaatcaa a
32183324DNAHomo sapiens 83gaaacgacac tcacgcagtc tccaggcacc ctgtctttgt
ctccagggga aagagccacc 60ctctcctgca gggccagtca gagtgtttcc agcccctact
tagcctggta ccagcagaaa 120cctggccagg ctcccaggct cctcatttat ggtgcatcta
acagggccac tggcatccca 180gacaggttca gtggcagtgg gtctgggaca gacttcactc
tcaccatcag cagcctgcag 240gctgaagatg aggcagttta ttactgtcag caatactaca
atactccgct cactttcggc 300ggagggacca aggtggaaat caaa
32484321DNAHomo sapiens 84gatattgtga tgacccagac
tccaggcacc ctgtcttcgt ctccagggga aagagccacc 60ctctcctgca gggccagtca
gggtgttagc agcaacttag cctggtacca gcagaaacct 120ggccaggctc ccaggctcct
catctatgat gcatccaaca gggccactgg catcccactc 180aggttcagtg gcagtgggtc
tgggacagac ttcactctca ccatcagcag actggaacct 240gaagattttg cagtgtatta
ctgtcaccag tatggtagct caccgtacac ctttggccag 300gggaccaagg tggaaatcaa a
32185321DNAHomo sapiens
85gacatccaga tgacccagtc tccttccacc ctgtctgtat ctgtaggaga cagagtcacc
60atcacttgtc gggcgagtca gggtattagc agctggttag cctggtatca gcagaaacca
120gggaaagccc ctaagctcct gatctatgct gcatccagtt tgcaaagtgg ggtcccatca
180aggttcagcg gcagtggatc tgggacagat ttcactctca ctatcagcag cctgcagcct
240gaagattttg caacttacta ttgtcaacag gctaacagtt tcccgctcac tttcggcgga
300gggaccaagc tggagatcaa a
32186327DNAHomo sapiens 86cagactgtgg tgacccagga gccctcactg actgtgtccc
taggagggac agtcactctc 60acctgtggct ccagcactgg agctgtcacc agtggtcatt
atccctactg gttccagcag 120aagcctggcc aagcccccag gacactgatt tatgatacaa
gcaacaaaca ctcctggacc 180cctgcccggt tctcaggctc cctccttggg ggcaaagctg
ccctgaccct ttcgggtgcg 240cagcctgagg atgaggctga gtattactgc ttgctctcct
atagtggtac tcgggtgttc 300ggcggaggga ccaagctgac cgtccta
32787321DNAHomo sapiens 87tcctatgagc tgatgcagcc
atcctcagtg tcagtgtctc cgggacagac agccaggatc 60acctgctcag gagatgtact
ggcaaaaaaa tgtgctcggt ggttccagca gaagccaggc 120caggcccctg tgctggtgat
ttataaagac agtgagcggc cctcagggat ccctgagcga 180ttctccggct ccagctcagg
gaccacagtc accttgacca tcagcggggc ccaggttgag 240gatgaggctg actattactg
ttactctgcg gctgacaaca acctgggggt gttcggcgga 300gggaccaagg tcaccgtcct a
32188321DNAHomo sapiens
88gccatccgga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc
60atcacttgcc gggcgagtca gggcattagc aattatttag cctggtatca gcagaaacca
120gggaaagttc ctaagctcct gatctatgct gcatccactt tgcaatcagg ggtcccatct
180cggttcagcg gcagtggatc tgggacagat ttcactctca ccatcagcag cctgcagcct
240gaagatgttg caacttatta ctgtcaaaag tataacagtg cccctgggac gttcggccaa
300gggaccaagg tggagatcaa a
32189330DNAHomo sapiens 89caggctgtgc tgactcagcc gccttccgtg tcggggtctc
ctggacagtc gatcaccatc 60tcctgcactg gaaccagcag tgacgttgaa gcttacaact
atgtctcctg gtatcaacaa 120cacccaggca aagcccccaa actcatgatt tatgatgtca
gtaatcggcc ctcaggggtt 180tctaatcgct tctctggctc caagtctggc aacacggcct
ccctgaccat ctctgggctc 240caggctgagg acgaggctga ttattactgc agctcatata
caagcagcag cacttgggtg 300ttcggcggag ggaccaaggt catcgtccta
33090321DNAHomo sapiens 90gacatcgtga tgacccagtc
tccgtcctcc ctgtctgcat ctgtaggaga cagagtcacc 60atcacttgcc gggcaagtca
gagcattagc agctatttaa attggtatca gcagaaacca 120gggaaagccc ctaagctcct
gatctatgct gcatccagtt tgcaaagtgg ggtcccatca 180aggttcagtg gcagtggatc
tgggacagat ttcactctca ccatcagcag cctgcagcct 240gaagatgttg caacttatta
ctgtcaaaag tataacagtg ccccgtggac gttcggccaa 300gggaccaaag tggatatcaa a
32191330DNAHomo sapiens
91cagtctgtgt tgacgcagcc gccctcagtt cctgtggccc caggacagaa ggtcaccatc
60tcctgctctg gaagcagctc caacattggg aataattatg tatcctggta ccagcagctc
120ccaggaacag cccccaaact cctcatttat gacactaata agcgaccctc agggattcct
180gaccgattcg ctggctccaa gtctggcacg tcagccaccc tgggcatcac cggactccag
240actggggacg aggccgatta ttactgcgga acatgggata gcagcctgag tgctggcgtg
300ttcggcggag ggaccaagct gaccgtccta
330928PRTArtificial Sequencea synthetic peptide 92Tyr Ser Thr Xaa Asp Phe
Ile Met 1 5 938PRTArtificial Sequencea
synthetic peptide 93Tyr Ser Thr Xaa Tyr Phe Ile Met 1 5
947PRTArtificial Sequencea synthetic peptide 94Ile Asn Xaa Asp
Phe Leu Leu 1 5 959PRTArtificial Sequencea
synthetic peptide 95Gly Val Asn Ala Xaa Ser Ser Leu Phe 1 5
969PRTArtificial Sequencea synthetic peptide 96Gly Val
Asn Pro Xaa Gly Gly Trp Phe 1 5
979PRTArtificial Sequencea synthetic peptide 97Lys Ala Lys Thr Xaa Thr
Val Leu Tyr 1 5 989PRTArtificial Sequencea
synthetic peptide 98Lys Thr Lys Thr Xaa Thr Val Leu Tyr 1 5
999PRTArtificial Sequencea synthetic peptide 99Gly Ala
Asn Pro Xaa Xaa Leu Tyr Tyr 1 5
1009PRTArtificial Sequencea synthetic peptide 100Gly Ala Asn Pro Xaa Ala
Leu Tyr Tyr 1 5 1019PRTArtificial
Sequencea synthetic peptide 101Gly Tyr Ser Thr Xaa Ser Tyr Tyr Phe 1
5 1029PRTArtificial Sequencea synthetic peptide
102Gly Tyr Arg Thr Xaa Asn Thr Tyr Phe 1 5
1038PRTArtificial Sequencea synthetic peptide 103Tyr Asn Pro Xaa Val Gly
Tyr Phe 1 5 1049PRTArtificial Sequencea
synthetic peptide 104Gly Gly Lys Val Xaa Ser Ala Tyr Phe 1
5 1059PRTArtificial Sequencea synthetic peptide 105Ser
Val Lys Pro Xaa Thr Gly Phe Ala 1 5
1068PRTArtificial Sequencea synthetic peptide 106Asp Ser Val Xaa Ala Ser
Tyr Phe 1 5 1079PRTArtificial Sequencea
synthetic peptide 107Lys Tyr Asn Pro Xaa Ser Asn Tyr Leu 1
5 1089PRTArtificial Sequencea synthetic peptide 108Lys
Tyr Asn Pro Xaa Ala Ser Tyr Leu 1 5
1099PRTArtificial Sequencea synthetic peptide 109Lys Tyr Asn Pro Xaa Ala
Asn Tyr Leu 1 5 1109PRTArtificial
Sequencea synthetic peptide 110Arg Ile Pro Thr Xaa Thr Gly Phe Phe 1
5 1117PRTArtificial Sequencea synthetic peptide
111Asp Ile Xaa Asn Ala Tyr Phe 1 5
1127PRTArtificial Sequencea synthetic peptide 112Asp Met Xaa Asn Gly Tyr
Phe 1 5 1139PRTArtificial Sequencea synthetic
peptide 113Lys Tyr Asn Pro Xaa Leu Gly Phe Leu 1 5
1149PRTArtificial Sequencea synthetic peptide 114Lys Tyr Tyr Pro
Xaa Phe Gly Tyr Phe 1 5 1159PRTArtificial
Sequencea synthetic peptide 115Gly Ala Arg Pro Xaa Gly Gly Phe Phe 1
5 1169PRTArtificial Sequencea synthetic peptide
116Gly Ala Lys Pro Xaa Gly Gly Phe Phe 1 5
1178PRTArtificial Sequencea synthetic peptide 117Tyr Ser Pro Xaa Thr Asn
Phe Phe 1 5 1187PRTArtificial Sequencea
synthetic peptide 118Tyr Ser Pro Xaa Thr Asn Phe 1 5
11911PRTArtificial Sequencea synthetic peptide 119Gln Asn Xaa Pro Asn
Ile Phe Gly Gln Trp Met 1 5 10
1208PRTStaphylococcus aureus 120Tyr Ser Thr Cys Asp Phe Ile Met 1
5 1219PRTStaphylococcus aureus 121Gly Val Asn Ala Cys
Ser Ser Leu Phe 1 5 1227PRTStaphylococcus
aureus 122Ile Asn Cys Asp Phe Leu Leu 1 5
1238PRTStaphylococcus aureus 123Tyr Ser Thr Cys Tyr Phe Ile Met 1
5 1249PRTStaphylococcus arlettae 124Gly Val Asn Pro
Cys Gly Gly Trp Phe 1 5
1259PRTStaphylococcus auricularis 125Lys Ala Lys Thr Cys Thr Val Leu Tyr
1 5 1269PRTStaphylococcus auricularis
126Lys Thr Lys Thr Cys Thr Val Leu Tyr 1 5
1279PRTStaphylococcus capitisMOD_RES6Xaa = Orn 127Gly Ala Asn Pro Cys Xaa
Leu Tyr Tyr 1 5 1289PRTStaphylococcus
capitis 128Gly Ala Asn Pro Cys Ala Leu Tyr Tyr 1 5
1299PRTStaphylococcus caprae 129Gly Tyr Ser Thr Cys Ser Tyr Tyr
Phe 1 5 1309PRTStaphylococcus caprae
130Gly Tyr Arg Thr Cys Asn Thr Tyr Phe 1 5
1318PRTStaphylococcus carnosus 131Tyr Asn Pro Cys Val Gly Tyr Phe 1
5 1329PRTStaphylococcus cohnii 132Gly Gly Lys Val
Cys Ser Ala Tyr Phe 1 5
1339PRTStaphylococcus cohnii 133Ser Val Lys Pro Cys Thr Gly Phe Ala 1
5 1348PRTStaphylococcus epidermis 134Asp Ser
Val Cys Ala Ser Tyr Phe 1 5
1359PRTStaphylococcus epidermis 135Lys Tyr Asn Pro Cys Ser Asn Tyr Leu 1
5 1369PRTStaphylococcus epidermis 136Lys
Tyr Asn Pro Cys Ala Ser Tyr Leu 1 5
1379PRTStaphylococcus epidermis 137Lys Tyr Asn Pro Cys Ala Asn Tyr Leu 1
5 1389PRTStaphylococcus intermedius 138Arg
Ile Pro Thr Ser Thr Gly Phe Phe 1 5
1397PRTStaphylococcus lugdunensis 139Asp Ile Cys Asn Ala Tyr Phe 1
5 1407PRTStaphylococcus lugdunensis 140Asp Met Cys Asn
Gly Tyr Phe 1 5 1419PRTStaphylococcus simulans
141Lys Tyr Asn Pro Cys Leu Gly Phe Leu 1 5
1429PRTStaphylococcus simulans 142Lys Tyr Tyr Pro Cys Phe Gly Tyr Phe 1
5 14310PRTStaphylococcus gallinarum 143Val
Gly Ala Arg Pro Cys Gly Gly Phe Phe 1 5 10
1449PRTStaphylococcus xylosus 144Gly Ala Lys Pro Cys Gly Gly Phe Phe 1
5 1458PRTStaphylococcus warneri 145Tyr Ser
Pro Cys Thr Asn Phe Phe 1 5
14611PRTEnterococcus faecalis 146Gln Asn Ser Pro Asn Ile Phe Gly Gln Trp
Met 1 5 10 147111PRTMurine 147Asp Ile
Val Arg Thr Gln Ser Pro Leu Ser Leu Ser Val Ser Leu Gly 1 5
10 15 Asp Gln Ala Ser Ile Ser Cys
Arg Ser Ser Gln Ser Leu Leu His Ser 20 25
30 Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys
Pro Gly Gln Ser 35 40 45
Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
50 55 60 Asp Arg Phe
Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile65 70
75 80 Ser Ile Leu Glu Ala Glu Asp Leu
Gly Ile Tyr Phe Cys Ser Gln Ser 85 90
95 Thr His Phe Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu
Ile Lys 100 105 110
148112PRTMurine 148Asp Ile Val Met Thr Gln Ala Thr Leu Ser Leu Pro Val
Ser Leu Gly 1 5 10 15
Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Arg Leu Val Pro Ser
20 25 30 Asn Gly Asn Ile Tyr
Leu His Trp Phe Leu Gln Lys Pro Gly Gln Ser 35 40
45 Pro Lys Leu Leu Ile Tyr Lys Leu Ser Ser
Arg Phe Ser Gly Val Pro 50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys
Ile65 70 75 80 Ser
Arg Val Glu Ser Glu Asp Leu Gly Ile Tyr Phe Cys Ser Gln Thr
85 90 95 Thr His Val Pro Tyr Thr
Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100
105 110 149111PRTMurine 149Asp Ile Val Met Thr
Gln Ala Thr Ala Ser Leu Thr Val Ser Leu Gly 1 5
10 15 Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser
Lys Ser Val Ser Thr Ser 20 25
30 Gly Tyr Ser Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Gln Pro
Pro 35 40 45 Lys
Leu Leu Ile Tyr Leu Ala Ser Asn Leu Glu Ser Gly Val Pro Ala 50
55 60 Arg Phe Ser Gly Ser Gly
Ser Gly Thr Asp Phe Thr Leu Asn Ile His65 70
75 80 Pro Val Glu Glu Glu Asp Ala Ala Thr Tyr Tyr
Cys Gln His Ser Arg 85 90
95 Glu Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Leu Lys
100 105 110 150111PRTMurine
150Asp Ile Glu Met Thr Gln Ile Thr Ala Ser Leu Thr Val Ser Leu Gly 1
5 10 15 Gln Arg Ala Thr
Ile Ser Cys Arg Ala Ser Lys Ser Val Ser Thr Ser 20
25 30 Gly Tyr Ser Tyr Met His Trp Tyr Gln
Gln Lys Pro Gly Gln Pro Pro 35 40
45 Lys Leu Leu Ile Tyr Leu Ala Ser Asn Leu Glu Ser Gly Val
Pro Ala 50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His65
70 75 80 Pro Val Glu Glu Glu
Asp Ala Ala Thr Tyr Tyr Cys Gln His Ser Arg 85
90 95 Glu Val Pro Tyr Thr Phe Gly Gly Gly Thr
Lys Leu Glu Leu Lys 100 105
110 15199PRTMurine 151Pro Leu Ser Leu Ser Val Ser Leu Gly Asp Gln Ala
Ser Ile Ser Cys 1 5 10 15
Arg Ser Ser Gln Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu His
20 25 30 Trp Tyr Leu Gln
Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys 35
40 45 Val Ser Asn Arg Phe Ser Gly Val Pro
Asp Arg Phe Ser Gly Ser Gly 50 55 60
Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Ile Leu Glu Ala
Glu Asp65 70 75 80
Leu Gly Ile Tyr Phe Cys Ser Gln Ser Thr His Phe Pro Thr Phe Gly
85 90 95 Gly Gly
Thr152100PRTMurine 152Thr Leu Ser Leu Pro Val Ser Leu Gly Asp Gln Ala Ser
Ile Ser Cys 1 5 10 15
Arg Ser Ser Gln Arg Leu Val Pro Ser Asn Gly Asn Ile Tyr Leu His
20 25 30 Trp Phe Leu Gln Lys
Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Lys 35 40
45 Leu Ser Ser Arg Phe Ser Gly Val Pro Asp
Arg Phe Ser Gly Ser Gly 50 55 60
Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ser Glu
Asp65 70 75 80 Leu
Gly Ile Tyr Phe Cys Ser Gln Thr Thr His Val Pro Tyr Thr Phe
85 90 95 Gly Gly Gly Thr
100 15399PRTMurine 153Thr Ala Ser Leu Thr Val Ser Leu Gly Gln Arg Ala
Thr Ile Ser Cys 1 5 10 15
Arg Ala Ser Lys Ser Val Ser Thr Ser Gly Tyr Ser Tyr Met His Trp
20 25 30 Tyr Gln Gln Lys
Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Leu Ala 35
40 45 Ser Asn Leu Glu Ser Gly Val Pro Ala
Arg Phe Ser Gly Ser Gly Ser 50 55 60
Gly Thr Asp Phe Thr Leu Asn Ile His Pro Val Glu Glu Glu
Asp Ala65 70 75 80
Ala Thr Tyr Tyr Cys Gln His Ser Arg Glu Val Pro Tyr Thr Phe Gly
85 90 95 Gly Gly
Thr15499PRTMurine 154Thr Ala Ser Leu Thr Val Ser Leu Gly Gln Arg Ala Thr
Ile Ser Cys 1 5 10 15
Arg Ala Ser Lys Ser Val Ser Thr Ser Gly Tyr Ser Tyr Met His Trp
20 25 30 Tyr Gln Gln Lys Pro
Gly Gln Pro Pro Lys Leu Leu Ile Tyr Leu Ala 35 40
45 Ser Asn Leu Glu Ser Gly Val Pro Ala Arg
Phe Ser Gly Ser Gly Ser 50 55 60
Gly Thr Asp Phe Thr Leu Asn Ile His Pro Val Glu Glu Glu Asp
Ala65 70 75 80 Ala
Thr Tyr Tyr Cys Gln His Ser Arg Glu Val Pro Tyr Thr Phe Gly
85 90 95 Gly Gly
Thr155333DNAMurine 155gacattgtga ggacacagtc tccactctcc ctgtctgtca
gtcttggaga tcaagcctcc 60atctcttgta gatctagtca gagcctttta cacagtaatg
gaaacaccta tttacattgg 120tacctgcaga agccaggcca gtctccaaaa ctcctgatct
acaaagtttc caaccgattt 180tctggggtcc cagacaggtt cagtggcagt ggatcaggga
cagatttcac actcaagatc 240agcatattgg aggctgagga tctgggaatt tatttctgct
ctcaaagtac acattttccg 300acgttcggtg gaggcaccaa gctggaaata aaa
333156336DNAMurine 156gacattgtga tgactcaggc
tacactctcc ctgcctgtca gtcttggaga ccaagcctcc 60atctcttgca gatccagtca
gcgccttgtt cccagtaatg gaaacattta tttacattgg 120ttcctgcaga agccaggcca
gtctccaaag ctcctgatct acaaactttc cagtcgattt 180tctggggtcc cagacaggtt
cagtggcagt ggatcaggga cagatttcac actcaagatc 240agcagagtgg agtctgagga
tctgggaatt tatttctgct ctcaaactac acatgttcca 300tacacgttcg gaggggggac
caagctggaa atcaaa 336157333DNAMurine
157gacattgtga tgactcaggc tactgcttcc ttaactgtat ctctggggca gagggccacc
60atctcatgca gggccagcaa aagtgtcagt acatctggct atagttatat gcactggtac
120caacagaaac caggacagcc acccaaactc ctcatctatc ttgcatccaa cctagaatct
180ggggtccctg ccaggttcag tggcagtggg tctgggacag acttcaccct caacatccat
240cctgtggagg aggaggatgc tgcaacctat tactgtcagc acagtaggga ggttccgtac
300acgttcggag gggggaccaa gctggagctg aaa
333158333DNAMurine 158gacattgaga tgacccagat tactgcttcc ttaactgtat
ctctggggca gagggccacc 60atctcatgca gggccagcaa aagtgtcagt acatctggct
atagttatat gcactggtac 120caacagaaac caggacagcc acccaaactc ctcatctatc
ttgcatccaa cctagaatct 180ggggtccctg ccaggttcag tggcagtggg tctgggacag
acttcaccct caacatccat 240cctgtggagg aggaggatgc tgcaacctat tactgtcagc
acagtaggga ggttccgtac 300acgttcggag gggggaccaa gctggagctg aaa
333159297DNAMurine 159ccactctccc tgtctgtcag
tcttggagat caagcctcca tctcttgtag atctagtcag 60agccttttac acagtaatgg
aaacacctat ttacattggt acctgcagaa gccaggccag 120tctccaaaac tcctgatcta
caaagtttcc aaccgatttt ctggggtccc agacaggttc 180agtggcagtg gatcagggac
agatttcaca ctcaagatca gcatattgga ggctgaggat 240ctgggaattt atttctgctc
tcaaagtaca cattttccga cgttcggtgg aggcacc 297160300DNAMurine
160acactctccc tgcctgtcag tcttggagac caagcctcca tctcttgcag atccagtcag
60cgccttgttc ccagtaatgg aaacatttat ttacattggt tcctgcagaa gccaggccag
120tctccaaagc tcctgatcta caaactttcc agtcgatttt ctggggtccc agacaggttc
180agtggcagtg gatcagggac agatttcaca ctcaagatca gcagagtgga gtctgaggat
240ctgggaattt atttctgctc tcaaactaca catgttccat acacgttcgg aggggggacc
300161297DNAMurine 161actgcttcct taactgtatc tctggggcag agggccacca
tctcatgcag ggccagcaaa 60agtgtcagta catctggcta tagttatatg cactggtacc
aacagaaacc aggacagcca 120cccaaactcc tcatctatct tgcatccaac ctagaatctg
gggtccctgc caggttcagt 180ggcagtgggt ctgggacaga cttcaccctc aacatccatc
ctgtggagga ggaggatgct 240gcaacctatt actgtcagca cagtagggag gttccgtaca
cgttcggagg ggggacc 297162297DNAMurine 162actgcttcct taactgtatc
tctggggcag agggccacca tctcatgcag ggccagcaaa 60agtgtcagta catctggcta
tagttatatg cactggtacc aacagaaacc aggacagcca 120cccaaactcc tcatctatct
tgcatccaac ctagaatctg gggtccctgc caggttcagt 180ggcagtgggt ctgggacaga
cttcaccctc aacatccatc ctgtggagga ggaggatgct 240gcaacctatt actgtcagca
cagtagggag gttccgtaca cgttcggagg ggggacc 297163387DNAHomo sapiens
163caggtgcagc tggtgcagtc tggagcagag gtgaaaaagc ccggggagtc tctgaggatc
60tcctgcaagg gttctggata cagctttacc agccactgga tcagctgggt gcgccagatg
120cccgggaaag gcctggagtg gatggggagg attgatccta gtgactctta tagcaactac
180agcccctcct tccaaggcca cgtcatcatc tcagttgaca agtccatcag cactgcctac
240ttgcagtgga gcagcctgaa ggcctcggac accgccatat attactgtgc gagacagctc
300attgtagtag taccagctgc tccctattac tactactact acggtatgga cgtctggggc
360caaggaaccc tggtcaccgt ctcctca
387164390DNAHomo sapiens 164caggttcagc tggtgcagtc tggggctgag gtgaagaagc
ctgggtcctc ggtgaaggtc 60tcctgcaagg cttctggagg caccttcagc agctatgcta
tcagctgggt gcgacaggcc 120cctggacaag ggcttgagtg gatgggaggg atcatcccta
tctttggtac agcaaactac 180gcacagaagt tccagggcag agtcacgatt accgcggacg
aatccacgag cacagcctac 240atggagctga gcagcctgag atctgaggac acggccatat
attactgtgc gagagtcttt 300ggttccgagt cgcaagatcc gtccgatatt tggagtggtt
attacggtat ggaagtctgg 360ggccaaggaa ccctggtcac cgtctcctca
390165363DNAHomo sapiens 165caggtgcagc tggtggagtc
tggggctgag gcgaagaagc ctgggtcctc ggtgaaggtc 60tcctgcaagg cttctggagg
caccttcagc agctatgcta tcagctgggt gcgacaggcc 120cctggacaag ggcttgagtg
gatgggaggg atcatcccta tctttggtac agcaaactac 180gcacagaagt tccagggcag
agtcacgatt accgcggacg aatccacgag cacagcctac 240atggagctga gcagcctgag
atctgaggac acggccgtgt attactgtgc gagagccggt 300ataactggaa ctacggctcc
cccagactac tggggccagg gcaccctggt caccgtctcc 360tca
363166378DNAHomo sapiens
166caggtgcagc tggtgcagtc cggatctgag ttaaagaagc ctggggcctc agtgaagctt
60tcctgcaggg cttctggata cacattcact agttattcca tggtttgggt gcgacaggcc
120cctggagaag ggcttgagtg gatgggaggg atcaacacca acactgggaa cccaacgtat
180gcccagggct tcacagaacg gtttgtcttc tccttcgaca gctctgtcag cacggcatat
240ctgcaaatca gcagcctaaa ggctgaggac actgccgtgt attactgtgc gagagattgg
300gcgtatagcg gcagctggcc cttaggccag aacccttctg accactgggg ccagggcacc
360ctggtcaccg tctcctca
378167366DNAHomo sapiens 167caggtgcagc tacagcagtg gggcgcagga ttgttgaagc
cttcggagac cctgtccctc 60acctgcgctg tctatggtgg gtccttcagt ggttactacc
ggacctggat ccgccagtcc 120ccagtgaagg ggctggagtg gattggggaa gtcaatgatc
gtggaagccc caactacaac 180ccgtccttca agagtcgact caccatatca atcgacacgt
ccaagaacta gttatccctg 240aagttgagat ttatgaccgc cgcggacacg gctgtatatt
cgtgtgcgag aattaggcct 300aggtacggta tggacgtctg gggccagggg acaatggtca
ccgtctcctc aggcggcggc 360ggctct
366168372DNAHomo sapiens 168gaggtccagc tggtacagtc
tggggctgag gtgaagaagc ctggggcctc agtgaaggtc 60tcctgcaagg tttccggata
caccctcact gaattatcca tgcactgggt gcgacaggct 120cctggaaaag ggcttgagtg
gatgggaggt tttgatcctg aagatggtga aacaatctcc 180gcgcagaagt tccagggcag
agtcaccatg accgaggaca catctacaga cacagcctac 240atggatctga gcagcctgag
atctgaggac acggccgttt attactgtgc aacgcagcgc 300ttgtgtagtg gtggtcgctg
ctactcccac tttgactact ggggccaggg caccacggtc 360accgtctcct ca
372169348DNAHomo sapiens
169cagatgcagc tggtgcagtc tggggctgag gtgaagaagc ctgggtcctc ggtgaaggtc
60tcctgcaagg cttctggagg caccttcaac acctatgtta tcagttgggt gcgacaggcc
120cctggacaag ggcttgagtg gatgggatgg atcagcgctt acaatggtaa cacaaactat
180gcacagaagc tccagggcag agtcaccatg accacagaca catccacgag cacagcctac
240atggagctga ggagcctgag atctgacgac acggccgtgt attactgtgc gagagtttgg
300agtccccttg actactgggg ccagggcacc ctggtcaccg tctcctca
348170357DNAHomo sapiens 170caggtgcagc tggtgcaatc tggggctgag gtgaagaagc
ctggggcctc agtgaaggtc 60tcctgcaagg gttctggata caccttcacc ggctactata
tgcactgggt gccacaggcc 120cctggacaag ggcttgagtg gatgggatgg atcaacccta
acaatggtgg cacaaactat 180gaccagaagt ttcagggcag ggtcgccatg accagggaca
cgtccatctc cacagcctac 240atggagctga gcaggctgag atctgacgac actgccgtgt
attactgtgc gagagataat 300gggagggtga ccacaggggg ctactggggc cagggcaccc
tggtcaccgt ctcctca 357171366DNAHomo sapiens 171caggtgcagc
tggtgcaatc tggggctgag gtgaaaaagc ccggggagtc tctgaagatc 60tcctgtacgg
cctccggata caactttgcc agctactgga tcggctgggt gcgccagatg 120cccgggcaag
gcctggagtg gatggggatc atctatcctg gtgactctga taccagatac 180agtccgtcct
tccaaggcca ggtcaccatc tcagccgaca agtccatcag caccgcctac 240ctgcagtgga
gcagcctgaa ggcctcggac accgccacgt attactgtgt gagacgggtc 300cccctctaca
ctaacaacca ctaccttgac tattggggcc agggcaccct ggtcaccgtc 360tcctca
366172351DNAHomo
sapiens 172gaggtgcagc tggtgcagtc tggggctgaa gtgaagaagc ctggggcctc
agtgaaggtt 60tcctgtaagg catctggata caccttcagc gactacttta tgcactgggt
gcgacaggcc 120cctggacaag ggcttgagtg gatgggagta atcaacccaa ctggtggttc
cacaacctac 180gcacagagct tccagggcag agtcaccatg accagagaca cgtccacgag
catagtctac 240atggagctga gcagcctgag atctgaagac acggccgtgt actactgtac
gcgagtcggc 300tactacggta tggacgtctg gggccaaggc accctggtca ccgtctcctc a
351173369DNAHomo sapiens 173caggtccagc tggtacagtc tgggggaggc
gtggtccagg ttgggaggtc cctgagactt 60tcctgtgcgg cctctggatt caccttcaca
aactttggca tgcactgggt ccgccaggct 120ccaggcaagg ggctggagtg ggtggcactc
atctcatctg atggatatag acaggcctat 180gcagactccg tgaagggccg gttcaccatc
tccggagaca actccaagaa cacagtgtat 240ctgcaaatga acagcctgac aagtgaggac
acggctgttt attactgtgc catcataccc 300cctgtattac ggatttttga ttgggaattt
gactactggg gccagggaac cctggtcacc 360gtctcctca
369174375DNAHomo sapiens 174caggtgcagc
tacagcagtg gggcgcaggc ctgttgaagc cttcggagac cctgtccctc 60acctgcgctg
tctatagtgg gtcttttact cgtgactact ggggctggat ccgccagccc 120cccgggaagg
ggctggagtg gattggggaa atcaatcata gtggaagcac caactacaac 180ccgtccctca
agagtcgagt caccacgtcg gtagacaagt ccaagaatca gttctccctg 240aagttgacct
ctgtgaccgc cgcggacacg gctgtctatt actgtgcgag acgccggctt 300tctagcgacc
tcttcatgcg gggggttggc ggtatggacg tctggggcca aggcaccctg 360gtcaccgtct
cctca
375175378DNAHomo sapiens 175gaggtgcagc tggtgcagtc tggagctgag gtgaagaagc
ctggggcctc agtgaaggtc 60tcctgcaagg cttctggtta cacctttacc agctatggta
tcagctgggt gcgacaggcc 120tctggacaag ggcttgagtg gatgggatgg atcagcgctt
acaatggtaa cacaaactat 180gcacagaagc tccagggcag agtcaccatg accacagaca
catccacgag cacagcctac 240atggagctga ggagcctgag atctgacgac acggccgtgt
attactgtgc gagagtaccc 300cgatattttg actggttatt atacgggagc gactactttg
actactgggg ccagggaacc 360ctggtcaccg tctcctca
378176372DNAHomo sapiens 176caggtgcagc tggtgcaatc
tggagctgag gtgaaggagc ctgggtcctc ggtgaaggtc 60tcctgcaagg cttctggagg
caccttcagc agctatgcta tctactgggt gcgacaggcc 120cctggacaag ggcttgagtg
gatgggatgg atcatcccta tccttggtat agcaaactac 180gcacagaagt tccagggcag
agtcacgatt accgcggaca aatccacgag cacagcctac 240atggagctga gcagcctgag
atctgaggac acggccgtgt attactgtgc gagagctgcc 300ggtcatagta ctaactacta
ctactacggt atggacgtct ggggccaagg caccctggtc 360accgtctcct ca
372177366DNAHomo sapiens
177gaggtgcagc tggtgcagtc tggggctgag gtgaagaagc ctggggcctc agtgaaggtt
60tcctgcaagg catctggata caccttcacc aactactata tgcactgggt gcgacaggcc
120cctggacaag ggcttgagtg gatgggaata atcaacccta gtggtggtag cacaagctac
180gcacagaagt tccagggcag agtcaccatg actagggaca cgtccacgag cacagtctac
240atggagctga gcagcctgag atctgaggac acggccgtgt attactgtgc gagagatttc
300aaagagtata gccgtacggg ctactttgac tactggggcc agggcaccct ggtcaccgtc
360tcctca
366178372DNAHomo sapiens 178cagatcacct tgaaggagtc tggtcctgcg ctggtgaaac
ccacacagac cctcacgctg 60acctgcaact tctctgggtt ctccctcagc acttatggag
ggggtgtggg ctggctccgt 120cagcccccag gaaaggccct ggagtggctt gccgtcattt
attggagtga tggtaaacgc 180tacagcccct ctgtaaagaa ccggctcacc atcaccaagg
acacctccaa aaaccacgtg 240gtcctgacaa tgaccaacat ggaccctgtg gacacagcca
cctattattg tgcacacctt 300atgatggata catctattac tacccactgg ttcgacccct
ggggccaggg aaccctggtc 360accgtctcct ca
372179372DNAHomo sapiens 179caggtgcagc tggtgcaatc
tggggctgag gtgaagaagc ctgggtcctc ggtgaaggtt 60tcctgcaagg catctggata
caccttcacc aactacttta tacactgggt gcgacaggcc 120cctggacaag ggcttgagtg
gatgggacta ctcaacccta ctgatagtgg cacactctac 180gcacagaact tccagggcag
aatcaccatg accagtgaca cgtccacaaa cacagtctac 240atggagctga gcagcctgag
atctgacgac acggccatgt attactgtgc aagagagggg 300ggggccgaca ctacccgggt
ccactcttcg tttgactact ggggccaggg aaccctggtc 360accgtctcct ca
372180372DNAHomo sapiens
180caggtgcagc tgcaggagtc ggggggaggc ttggtacagc ctggcaggtc cctgagactc
60tcctgtgcag cctctggatt cacctttgat gattatgccc tccactgggt ccggcaagct
120ccagggaagg gcctggagtg ggtctcaggt attagttgga atagtgttac cgtaaagtat
180gcggtctctg tgaagggccg gttcaccatc tccagagaca acgccaagaa ctccctgttt
240ctgcaaatga acgctctgag atctgaggac acggccttat attactgtgc aaaagccaga
300ggggccctct tagaagcagc tgacacacca tctgacgact ggggccaggg caccctggtc
360accgtctcct ca
372181357DNAHomo sapiens 181caggtacagc tgcagcagtc aggcgcaggt ctattgaggc
cttcggagac cctgtccctc 60acctgcggtc tctatggtgg gtccttcagt ggtcactatt
ggaactggat ccgccagtcc 120ccagaaaagg ggctggtgtg gattggggaa atcactcata
gtggaaccac caattacaac 180ccgtccctca agagtcgagt catcacatca gtagacacgt
ccaagaatca gtactccctg 240aagctgagct ttgtgacccc tgcggacacg gccgtgtatt
actgtgcgag aggtgattac 300tatgggtact ggtacttcga tctctggggc cgtggcaccc
tggtcaccgt ctcctca 357
User Contributions:
Comment about this patent or add new information about this topic: