Patent application title: PURIFICATION OF STAPHYLOCOCCUS AUREUS TYPE 5 AND TYPE 8 CAPSULAR SACCHARIDES
Inventors:
Paolo Costantino (Colle Val D'Elsa, IT)
Paolo Costantino (Colle Val D'Elsa, IT)
Maria Rosaria Romano (Pontedera, IT)
Maria Rosaria Romano (Pontedera, IT)
Francesco Berti (Colle Val D'Elsa, IT)
Francesco Berti (Colle Val D'Elsa, IT)
Assignees:
GlaxoSmithKline Biologicals, s.a.
IPC8 Class: AC07H108FI
USPC Class:
42419711
Class name: Antigen, epitope, or other immunospecific immunoeffector (e.g., immunospecific vaccine, immunospecific stimulator of cell-mediated immunity, immunospecific tolerogen, immunospecific immunosuppressor, etc.) conjugate or complex conjugate or complex includes bacterium or component thereof or substance produced by said bacterium
Publication date: 2016-12-29
Patent application number: 20160376301
Abstract:
The invention provides a method for releasing capsular polysaccharide
from S. aureus type 5 or type 8 cells, comprising the step of treating
the cells with acid. The invention further provides a process for
purifying capsular polysaccharide from S. aureus type 5 or type 8 cells
comprising this method. Other processing steps may be included in the
process, such as enzymatic treatment, e.g. to remove nucleic acid,
protein and/or peptidoglycan contaminants; diafiltration, e.g. to remove
low molecular weight contaminants; anion exchange chromatography, e.g. to
remove residual protein; and concentration.Claims:
1: A method for releasing capsular polysaccharide from S. aureus type 5
or 8 cells, comprising the step of treating the cells with acid.
2: The method of claim 1, wherein the cells are in the form of a wet cell paste or are suspended in an aqueous medium.
3: The method of claim 1, wherein the acid treatment is carried out using acetic acid.
4: The method of claim 1, wherein the acid treatment results in the capsular polysaccharide having a degree of O-acetylation between 60-100%.
5: The method of claim 1, wherein the method further comprises a step of neutralisation.
6: The method of claim 1, wherein the method further comprises a step of centrifugation of the cells and collection of the polysaccharide-containing supernatant.
7: A process for purifying capsular polysaccharide from S. aureus type 8 cells comprising the method of claim 1.
8: The process of claim 7, wherein the process further comprises a step of treatment of the capsular polysaccharide with DNase and/or RNase.
9: The process of claim 7, wherein the process further comprises a step of treatment of the capsular polysaccharide with mutanolysin.
10: The process of claim 7, wherein the process further comprises a step of diafiltration.
11: The process of claim 10, wherein the diafiltration is tangential flow filtration.
12: The process of claim 7, wherein the process farther comprises a step of anion exchange chromatography.
13: The process of claim 7, wherein the process further comprises a step of gel filtration.
14: The process of claim 7, wherein the process further comprises a step of concentration of the polysaccharide.
15: The process of claim 7, wherein the molecular mass of the purified polysaccharide is between 2-3500 kDa.
16: The process of claim 7, wherein the process further comprises a step of depolymerisation of the purified polysaccharide to form an oligosaccharide.
17: The process of claim 7, wherein the process further comprises a step of sterile filtration.
18: The process of claim 7, wherein the process provides a composition comprising the polysaccharide and a level of peptidoglycan contamination that is less than 5% by weight peptidoglycan relative to the total weight of the polysaccharide.
19: The process of claim 18, wherein the level of peptidoglycan contamination is about 2%.
20: The process of claim 7, wherein the process provides a composition comprising the polysaccharide and a level of protein contamination that is less than 5% by weight protein relative to the total weight of the polysaccharide.
21: The process of claim 7, wherein the process provides a composition comprising the polysaccharide and a level of nucleic acid contamination that is less than 1% by weight nucleic acid relative to the total weight of the polysaccharide.
22: The process of claim 7, wherein the process further comprises a step of conjugation to a carrier molecule.
23: A composition comprising an S. aureus type 5 or type 8 capsular polysaccharide obtainable by the process of claim 7 or a conjugate obtainable by the process of claim
24: The composition of claim 23 further comprising one or more S. aureus protein antigen(s) selected from the group consisting of a clfA antigen; a clfB antigen; a sdrE2 antigen; a sdrC antigen; a sasF antigen; a emp antigen; a sdrD antigen; a spa antigen; a esaC antigen; a esxA antigen; a esxB antigen; a sta006 antigen; a isdC antigen; a Hla antigen; a sta011 antigen; a isdA antigen; a isdB antigen; and a sta073 antigen.
25: The composition of claim 24, wherein the one or more S. aureus protein antigen(s) are selected from the group consisting of a esxA antigen; a esxB antigen; a sta006 antigen; a Hla antigen; a sta011 antigen; and a sta073 antigen.
26: The composition of claim 25, wherein the composition comprises S, aureus protein antigens according to one of combinations (1) to (10) below: (1) a esxA antigen, a esxB antigen, a sta006 antigen and a Hla antigen; (2) a esxA antigen, a esxB antigen, a sta006 antigen and a sta011 antigen; (3) a esxA antigen, a esxB antigen and a sta011 antigen; (4) a esxA antigen, a esxB antigen, a Hla antigen, a sta006 antigen and a sta011 antigen; (5) a esxA antigen, a esxB antigen and a Hla antigen; (6) a Hla antigen, a sta006 antigen and a sta011 antigen; (7) a esxA antigen and a esxB antigen; (8) a esxA antigen, a esxB antigen and a sta006 antigen; (9) a esxA antigen, a esxB antigen, a sta011 antigen and a sta073 antigen; and a sta006 antigen and a sta011 antigen.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is a Continuation of U.S. patent application Ser. No. 14/714,097, filed May 15, 2015, now U.S. Pat. No. 9,441,004; which is a Divisional of U.S. patent application Ser. No. 13/504,920, with an international filing date of Nov. 1, 2010, now U.S. Pat. No. 9,060,965; which is a National Phase of International Patent Application No. PCT/IB2010/054934, filed Nov. 1, 2010; which claims the benefit of U.S. Provisional Patent Application No. 61/256,905, filed Oct. 30, 2009, all of which are incorporated herein by reference in their entirety.
SUBMISSION OF SEQUENCE LISTING AS ASCII TEXT FILE
[0002] The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 303822010401SeqList.txt, date recorded: Sep. 2, 2016, size: 150 KB).
TECHNICAL FIELD
[0003] This invention is in the field of purifying bacterial capsular polysaccharides, particularly those of Staphylococcus aureus type 5 and type 8, and particularly for use in the preparation of vaccines.
BACKGROUND ART
[0004] The capsular saccharides of bacteria have been used for many years in vaccines against capsulated bacteria. As saccharides are T-independent antigens, however, they are poorly immunogenic. Conjugation to a carrier can convert T-independent antigens into T-dependent antigens, thereby enhancing memory responses and allowing protective immunity to develop. The most effective saccharide vaccines are therefore based on glycoconjugates, and the prototype conjugate vaccine was against Haemophilus influenzae type b (`Hib`) [e.g. see chapter 14 of ref. 96].
[0005] Another bacterium for which conjugate vaccines have been described is Staphylococcus aureus (S. aureus). Various polysaccharides have been isolated from S. aureus for use in glycoconjugates. Two polysaccharides of particular interest are the type 5 and type 8 capsular polysaccharides. Approximately 60% of human S. aureus strains are type 8 and approximately 30% are type 5. Much of the work on type 5 and type 8 conjugates has been performed by Fattom et al., and is described in documents such as references 1 to 9.
[0006] The starting point for polysaccharide-based vaccines is the polysaccharide itself, and this is generally purified from the target bacterium. Fattom et al. have developed a complex process for purification of the type 5 and type 8 capsular polysaccharides that is described in detail in reference 1, and involves the following key steps after bacterial culture: suspension of bacterial cells in buffer, treatment with lysostaphin, treatment with DNase and RNase, centrifugation, dialysis against buffer, treatment with protease, further dialysis, filtration, addition of ethanol to 25% with calcium chloride to precipitate contaminants; further addition of ethanol to 75% to precipitate the polysaccharide; collection and drying of the precipitate; anion exchange chromatography; dialysis; lyophilisation; size exclusion chromatography; dialysis and final lyophilisation.
[0007] The Fattom process involves the use of lysostaphin to lyse the bacterial cell walls and thereby release capsular polysaccharide. However, this step is time-consuming and makes the process difficult to scale-up to an industrial setting. It also increases the overall cost and complexity of the process. Other researchers have attempted to omit this step and develop a simpler, more efficient method of purifying the polysaccharide. For example, reference [10] describes an alternative process that involves autoclaving Satire us cells, ultrafiltration of the polysaccharide-containing supernatant, concentration, lyophilisation, treatment with sodium metaperiodate, further ultrafiltration, diafiltration, high performance size exclusion liquid chromatography, dialysis and freeze-drying. The authors suggest that this method provides a good yield and is suitable for large scale production of polysaccharide. In this method, the lysostaphin treatment is replaced by autoclaving to release capsular polysaccharide. The method was further developed in reference [11]. An important step in these alternative methods is the treatment with sodium metaperiodate. This step is carried out to remove teichoic acid contamination of the capsular polysaccharide. However, once again this step increases the duration, complexity and overall cost of the process. Reference [12] describes a similar process that again involves autoclaving to release capsular polysaccharide and treatment with sodium metaperiodate to remove teichoic acid. In contrast, most other groups use processes that retain lysostaphin treatment (see, for example, references 13, 14, 15, 16, 17 and 18), sometimes including treatment with sodium metaperiodate (e.g. in references 13 and 14).
[0008] The above methods are complex and may leave contamination in the resultant polysaccharide. There is thus a need for further and improved processes for purifying S. aureus type 5 and type 8 capsular polysaccharides, and particularly for less complex processes that result in less contamination.
DISCLOSURE OF THE INVENTION
[0009] The invention is based on a purification process in which the polysaccharide is initially released from the bacterial cells by treatment with an acid. This step removes the need for lysostaphin treatment and can be used as an alternative to autoclaving, as in the above processes. The inventors have found that the process results in a purified polysaccharide with low teichoic acid contamination. This means that it is not necessary to treat the polysaccharide with sodium metaperiodate. The purified polysaccharide also has low peptidoglycan contamination, making it particularly suitable for medical uses. The inventors' process can be quick and simple because laborious steps in previous processes are not necessary.
[0010] The invention provides a method for releasing capsular polysaccharide from S. aureus type 5 or type 8 cells, comprising the step of treating the cells with acid. The invention further provides a process for purifying capsular polysaccharide from S. aureus type 5 or type 8 cells comprising this method. Other processing steps may be included in the process, such as enzymatic treatment, e.g. to remove nucleic acid, protein and/or peptidoglycan contaminants; diafiltration, e.g. to remove low molecular weight contaminants; anion exchange chromatography, e.g. to remove residual protein; and concentration.
[0011] Accordingly, the invention provides a process for purifying S. aureus type 5 or type 8 capsular polysaccharide, comprising the step of releasing the polysaccharide from S. aureus type 5 or type 8 cells by treating the cells with acid. Similarly, the invention provides, in a process for purifying S. aureus type 5 or type 8 capsular polysaccharide, the improvement consisting of the use of acid treatment of S. aureus type 5 or type 8 cells to release the polysaccharide from the cells. Release by acid treatment removes the need for lysostaphin treatment or autoclaving to release the polysaccharide.
[0012] The invention also provides a process for purifying S. aureus type 5 or type 8 capsular polysaccharide, wherein the process does not involve a step of lysostaphin treatment. Similarly, the invention provides a process for purifying S. aureus type 5 or type 8 capsular polysaccharide, wherein the process does not involve a step of sodium metaperiodate treatment. Typically, the process does not involve one or both of these steps.
[0013] The invention also provides a process for purifying S. aureus type 5 or type 8 capsular polysaccharide, wherein the process provides a composition comprising the polysaccharide and a level of peptidoglycan contamination that is less than 5% (e.g. .ltoreq.4%, .ltoreq.3%, .ltoreq.2%, .ltoreq.1%, etc.) by weight peptidoglycan relative to the total weight of the polysaccharide. Typically, the composition comprises less than 4%, particularly less than 3%, by weight peptidoglycan. The inventors have found that levels of about 2% or even about 1% can be obtained using the methods of the invention. The inventors have found that compositions with this level of peptidoglycan are useful in vaccine manufacture. In contrast, reference 17 teaches that levels above 5% should be used for this purpose. The level of peptidoglycan contamination may be measured using the methods described herein.
[0014] Similarly, the invention provides a process for purifying S. aureus type 5 or type 8 capsular polysaccharide, wherein the process provides a composition comprising the polysaccharide and a level of protein contamination that is less than 5% (e.g. .ltoreq.4%, .ltoreq.3%, .ltoreq.2%, .ltoreq.1%, .ltoreq.05%, etc.) by weight protein relative to the total weight of the polysaccharide. Typically, the composition comprises less than 3%, particularly about 2.4%, by weight protein. The level of protein contamination may be measured using a MicroBCA assay (Pierce).
[0015] The invention also provides a process for purifying S. aureus type 5 or type 8 capsular polysaccharide, wherein the process provides a composition comprising the polysaccharide and a level of nucleic acid contamination that is less than 1% (e.g. .ltoreq.0.75%, .ltoreq.0.50%, .ltoreq.0.25%, .ltoreq.0.10%, .ltoreq.0.01%, etc.) by weight nucleic acid relative to the total weight of the polysaccharide. Typically, the composition comprises less than 0.25%, particularly about 0.09%, by weight nucleic acid. The level of nucleic acid contamination may be measured by absorption at 260 nm in a spectrophotomer.
[0016] The invention also provides a process for purifying S. aureus type 5 or type 8 capsular polysaccharide, wherein (a) the level of peptidoglycan acid contamination is less than 5% (as described above); (b) the level of protein contamination is less than 5% (as described above); (c) the level of nucleic acid contamination that is less than 1% (as described above).
[0017] The invention also provides a composition comprising a S. aureus type 5 or type 8 capsular polysaccharide, obtainable by any of the processes of the invention.
[0018] In particular, the invention provides a composition comprising S. aureus type 5 or type 8 capsular polysaccharide, wherein the composition comprises a level of peptidoglycan contamination that is less than 5% (e.g. .ltoreq.4%, .ltoreq.3%, .ltoreq.2%, .ltoreq.1%, etc.) by weight peptidoglycan relative to the total weight of the polysaccharide. Typically, the composition comprises less than 3%, particularly less than 2%, by weight peptidoglycan. Compositions with levels of about 2% or even about 1% are specifically provided by the invention.
[0019] Similarly, the invention provides a composition comprising S. aureus type 5 or type 8 capsular polysaccharide, wherein the composition comprises a level of protein contamination that is less than 5% (e.g. .ltoreq.4%, .ltoreq.3%, .ltoreq.2%, .ltoreq.1%, .ltoreq.05%, etc.) by weight protein relative to the total weight of the polysaccharide. Typically, the composition comprises less than 3%, particularly about 2.4%, by weight protein.
[0020] The invention also provides a composition comprising S. aureus type 5 or type 8 capsular polysaccharide, wherein the composition comprises a level of nucleic acid contamination that is less than 1% (e.g. .ltoreq.0.75%, .ltoreq.0.50%, .ltoreq.0.25%, .ltoreq.0.10%, .ltoreq.0.01%, etc.) by weight nucleic acid relative to the total weight of the polysaccharide. Typically, the composition comprises less than 0.25%, particularly about 0.09%, by weight nucleic acid.
[0021] The invention also provides a composition comprising S. aureus type 5 or type 8 capsular polysaccharide, wherein a) a level of peptidoglycan acid contamination is less than 5% (as described above); (b) the level of protein contamination is less than 5% (as described above); (c) the level of nucleic acid contamination that is less than 1% (as described above).
[0022] The Capsular Polysaccharide
[0023] The invention is based on the capsular polysaccharides of S. aureus type 5 and type 8. The structures of type 5 and type 8 capsular polysaccharides were described in references 19 and 20 as:
[0024] Type 5
[0025] .fwdarw.4)-.beta.-D-ManNAcA(3OAc)-(1.fwdarw.4)-.alpha.-L-FucNAc(1.fwdarw.- 3)-.beta.-D-FucNAc-(1.fwdarw.
[0026] Type 8
[0027] .fwdarw.3)-.beta.-D-ManNAcA(4OAc)-(1.fwdarw.3)-.alpha.-L-FucNAc(1.fwdarw.- 3)-.beta.-D-FucNAc-(1.fwdarw..
[0028] Recent NMR spectroscopy data [21] has led to a revision of these structures to:
[0029] Type 5
[0030] .fwdarw.4)-.beta.-D-ManNAcA-(1.fwdarw.4)-.alpha.-L-FucNAc(3OAc)-(1.fwdarw- .3)-.beta.-D-FucNAc-(1.fwdarw.
[0031] Type 8
[0032] .fwdarw.3)-.beta.-D-ManNAcA(4OAc)-(1.fwdarw.3)-.alpha.-L-FucNAc(1.fwdarw.- 3)-.alpha.-D-FucNAc(1.fwdarw..
[0033] After release from the S. aureus type 5 or type 8 cells, the polysaccharide may be chemically modified relative to the capsular polysaccharide as found in nature. For example, the polysaccharide may be de-O-acetylated (partially or fully), de-N-acetylated (partially or fully), N-propionated (partially or fully), etc. De-acetylation may occur before, during or after other processing steps, but typically occurs before any conjugation step. Depending on the particular polysaccharide, de-acetylation may or may not affect immunogenicity e.g. the NeisVac-C.TM. vaccine uses a de-O-acetylated polysaccharide, whereas Menjugate.TM. is acetylated, but both vaccines are effective. The effect of de-acetylation etc. can be assessed by routine assays. For example, the relevance of O-acetylation on S. aureus type 5 or type 8 capsular polysaccharides is discussed in reference 6. The native polysaccharides are said in this document to have 75% O-acetylation. These polysaccharides induced antibodies to both the polysaccharide backbone and O-acetyl groups. Polysaccharides with 0% O-acetylation still elicited antibodies to the polysaccharide backbone. Both types of antibody were opsonic against S. aureus strains that varied in their O-acetyl content. Accordingly, the type 5 or type 8 capsular polysaccharides used in the present invention may have between 0 and 100% O-acetylation. For example, the degree of O-acetylation of the type 5 capsular polysaccharide may be 10-100%, 10-100%, 20-100%, 30-100%, 40-100%, 50-100%, 60-100%, 70-100%, 80-100%, 90-100%, 50-90%, 60-90%, 70-90% or 80-90%. Alternatively, 0% O-acetylated type 5 capsular polysaccharide may be used. Similarly, the degree of O-acetylation of the type 8 capsular polysaccharide may be 10-100%, 10-100%, 20-100%, 30-100%, 40-100%, 50-100%, 60-100%, 70-100%, 80-100%, 90-100%, 50-90%, 60-90%, 70-90% or 80-90%. Alternatively, 0% O-acetylated type 8 capsular polysaccharide may be used. In one embodiment, the degree of O-acetylation of the type 5 and type 8 capsular polysaccharides may be 10-100%, 20-100%, 30-100%, 40-100%, 50-100%, 60-100%, 70-100%, 80-100%, 90-100%, 50-90%, 60-90%, 70-90% or 80-90%. In other embodiments, 0% O-acetylated type 5 and type 8 capsular polysaccharides are used. The degree of N-acetylation of the type 5 capsular polysaccharide used in the invention may be 0-100%, 50-100%, 75-100%, 80-100%, 90-100%, or 95-100%. Typically, the degree of N-acetylation of the type 5 capsular polysaccharide is 100%. Similarly, the degree of N-acetylation of the type 8 capsular polysaccharide used in the invention may be 0-100%, 50-100%, 75-100%, 80-100%, 90-100%, or 95-100%. Typically, the degree of N-acetylation of the type 8 capsular polysaccharide is 100%. In one embodiment, the degree of N-acetylation of the type 5 and type 8 capsular polysaccharides may be 0-100%, 50-100%, 75-100%, 80-100%, 90-100%, or 95-100%. Typically, the degree of N-acetylation of the type 5 and type 8 capsular polysaccharides are 100%.
[0034] The degree of O-acetylation of the polysaccharide can be determined by any method known in the art, for example, by proton NMR (e.g. as described in references 22, 23, 24 or 25). A further method is described in reference 26. Similar methods may be used to determine the degree of N-acetylation of the polysaccharide. O-acetyl groups may be removed by hydrolysis, for example by treatment with a base such as anhydrous hydrazine [27] or NaOH [6]. Similar methods may be used to remove N-acetyl groups. To maintain high levels of O-acetylation on type 5 and/or 8 capsular polysaccharides, treatments that lead to hydrolysis of the O-acetyl groups are minimised, e.g. treatments at extremes of pH.
[0035] Starting Material
[0036] The process of the invention starts with S. aureus type 5 or type 8 cells. Typically, the cells are grown by fermentation prior to release of capsular polysaccharide. Suitable methods of cultivating S. aureus type 5 or type 8 cells are well known to the skilled person and are disclosed, for example, in references 1 to 21 and the references cited therein. After cell growth, the cells are usually deactivated. A suitable method for deactivation is treatment with phenol:ethanol, e.g. as described in reference 1.
[0037] The cells may be centrifuged prior to release of capsular polysaccharide. The process may therefore start with the cells in the form of a wet cell paste. Typically, however, the cells are resuspended in an aqueous medium that is suitable for the next step in the process, e.g. in a buffer or in distilled water. The cells may be washed with this medium prior to re-suspension. In another embodiment, the cells may be treated in suspension in their original culture medium. Alternatively, the cells are treated in a dried form.
[0038] Acid Treatment
[0039] In the method of the invention, S. aureus type 5 or type 8 cells are treated with acid. This step results in release of capsular polysaccharide from the cells. In contrast, previous methods have used lysostaphin treatment or autoclaving to release the polysaccharide. The acid treatment of the invention is preferably carried out using a mild acid, e.g. acetic acid, to minimise damage to the polysaccharide. The skilled person would be capable of identifying suitable acids and conditions (e.g. of concentration, temperature and/or time) for release of the polysaccharide. For example, the inventors have found that treatment of cells suspended at about 0.5 mg/ml in distilled water with 1% acetic acid (v/V) at 100.degree. C. for 2 hours is suitable. Treatment with other acids, e.g. trifluoroacetic or other organic acids, may also be suitable.
[0040] The efficacy of different acid treatments may be tested using routine methods. For example, after acid treatment, the cells may be isolated and treated using known methods of S. aureus type 5 or type 8 capsular polysaccharide release (e.g. the lysostaphin-based method of reference 1) to see if additional capsular polysaccharide can be released. If additional capsular polysaccharide is released, then the acid treatment conditions may be altered so that a greater proportion of the capsular saccharide is released during acid treatment. In this way, it is possible to optimise the acid treatment conditions so that an optimal amount of capsular saccharide is released. For example, the inventors have found that after treatment of cells suspended at about 0.5 mg/ml in distilled water with 1% acetic acid (v/v) at 100.degree. C. for 2 hours, very little additional capsular saccharide is releasable from the cells by subsequent lysostaphin treatment.
[0041] The inventors have found that after acid treatment, the degrees of O-acetylation of the type 5 capsular polysaccharide may be between 60-100%. In particular, the degree of O-acetylation may be between the 65-95%, particularly 70-90%. Typically, the degree of O-acetylation is between 75-85%, e.g. about 80%. Similar values may be obtained for the type 8 capsular saccharide. If desired, the degree of O-acetylation of the capsular saccharide may then be altered by further processing steps as discussed above.
[0042] After acid treatment, the reaction mixture is typically neutralised. This may be achieved by the addition of a base, e.g. NaOH. The cells may be centrifuged and the polysaccharide-containing supernatant collected for storage and/or additional processing.
[0043] Enzymatic Treatment
[0044] The polysaccharide obtained after acid treatment may be impure and contaminated with bacterial nucleic acids and proteins. These contaminants may be removed by enzymatic treatment. For example, RNA may be removed by treatment with RNase, DNA with DNase and protein with protease (e.g. pronase). The skilled person would be capable of identifying suitable enzymes and conditions for removal of the contaminants. For example, the inventors have found that treatment of polysaccharide-containing supernatant with 50 .mu.g/ml each of DNase and RNase at 37.degree. C. for 6-8 hours is suitable. Other suitable conditions are disclosed in the literature, e.g. in reference 1.
[0045] The polysaccharide obtained after acid treatment may also or alternatively be contaminated with peptidoglycan. This contaminant may also be removed by enzymatic treatment. The inventors have found that treatment with mutanolysin is effective at removing peptidoglycan contamination. The skilled person would be capable of identifying suitable conditions for removal of the peptidoglycan with mutanolysin. For example, the inventors have found that treatment of polysaccharide-containing supernatant with 180 U/ml each of mutanolysin at 37.degree. C. for 16 hours is suitable. After treatment, the suspension may be clarified by centrifugation and the polysaccharide-containing supernatant collected for storage and/or additional processing.
[0046] Diafiltration
[0047] The process of the invention may involve a step of diafiltration. This step is typically performed after the acid treatment and/or enzymatic treatment discussed above. The inventors have found that a diafiltration step, particularly by tangential flow filtration, is particularly effective for removing impurities from the polysaccharide. The impurities are typically low molecular weight contaminants like teichoic and/or peptidoglycan fragments. The tangential flow filtration is suitably carried out against 1M NaCl (e.g. against about 10 volumes) and then NaPi 10 mM pH 7.2 buffer (e.g. against another 10 volumes). The filtration membrane should thus be one that allows passage of small molecular weight contaminants while retaining the capsular polysaccharide. A cut-off in the range 10 kDa-30 kDa is typical. The inventors have found that tangential flow filtration using a 30 kDa cut-off membrane is particularly suitable for large-scale processes.
[0048] At least 5 cycles of tangential flow diafiltration are usually performed e.g. 6, 7, 8, 9, 10, 11 or more.
[0049] The polysaccharide-containing retentate from the diafiltration is collected for storage and/or additional processing.
[0050] Anion Exchange Chromatography
[0051] The polysaccharide may be further purified by a step of anion exchange chromatography. The inventors have found that anion exchange chromatography is particularly effective at removing residual protein and nucleic acid contamination, while maintaining a good yield of the polysaccharide.
[0052] The anion exchange chromatography step may be performed after the acid treatment, enzymatic treatment and/or diafiltration steps discussed above.
[0053] The anion exchange chromatography may be carried out using any suitable anionic exchange matrix. Commonly used anion exchange matrices are resins such as Q-resins (based on quaternary amines) and DEAE resins (based on diethylaminoethane). The inventors have found that DEAE-resins (e.g. a DEAE-Sepharose.TM. Fast Flow resin (GE Healthcare)) are particularly suitable, although other resins may be used.
[0054] Appropriate starting buffers and mobile phase buffers for the anion exchange chromatography can also be determined by routine experiments without undue burden. Typical buffers for use in anion exchange chromatography include N-methyl piperazine, piperazine, L-histidine, bis-Tris, bis-Tris propane, triethanolamine, Tris, N-methyl-diethanol amine, diethanolamine, 1,3-diaminopropane, ethanolamine, piperidine, sodium chloride and phosphate buffers. The inventors have found that phosphate buffers, e.g. a sodium phosphate buffer, are suitable as the starting buffer for the anion exchange chromatography. The buffer may be at any suitable concentration. For example, 10 mM sodium phosphate has been found to be suitable. Material bound to the anionic exchange resin may be eluted with a suitable buffer. The inventors have found that a gradient of NaCl 1M is suitable.
[0055] Eluate fractions containing polysaccharide may be determined by measuring UV absorption at 215 nm. Fractions containing polysaccharide, usually combined together, are collected for storage and/or additional processing.
[0056] The anion exchange chromatography step may be repeated, e.g. 1, 2, 3, 4 or 5 times. Typically the anion exchange chromatography step is carried out once.
[0057] Gel Filtration
[0058] The process of the invention may involve one or more step(s) of gel filtration. This gel filtration is used to select polysaccharide molecules of a particular length and to further reduce contamination, particularly by proteins. However, the inventors have found that contrary to previous methods like those of references 1 to 9, a gel filtration step is not required to obtain polysaccharide of high purity. Accordingly, this step may be omitted from the processes of the invention. The omission of this step is advantageous because it simplifies the process and reduces the overall cost.
[0059] When present, the gel filtration step(s) may be performed after the acid treatment, enzymatic treatment, diafiltration and/or anion exchange chromatography steps discussed above. Typically, any gel filtration step(s) are carried out after the anion exchange chromatography step discussed above.
[0060] The gel filtration step(s) may be carried out using any suitable gel filtration matrix. Commonly used gel filtration matrices are based on dextran gels, agarose gels, polyacrylamide gels, polyacryloylmorpholine gels, and polystyrene gels etc. Cross-linked dextran gels and mixed polyacrylamide/agarose gels may also be used. The inventors have found that dextran gels (e.g. a Sephacryl.TM. S300 gel (GE Healthcare)) are particularly suitable, although other gels may be used.
[0061] Appropriate mobile phase buffers for the gel filtration can be determined by routine experiments without undue burden. Typical buffers for use in gel filtration include N-methyl piperazine, piperazine, L-histidine, bis-Tris, bis-Tris propane, triethanolamine, Tris, N-methyl-diethanolamine, diethanolamine, 1,3-diaminopropane, ethanolamine, piperidine, sodium chloride and phosphate buffers. For example, sodium chloride buffers may be suitable. The buffer may be at any suitable concentration. For example, 50 mM sodium chloride may be used for the mobile phase.
[0062] Eluate fractions containing polysaccharide may be determined by measuring UV absorption at 215 nm. Fractions containing polysaccharide, usually combined together, are collected for storage and/or additional processing.
[0063] Concentration
[0064] In addition to, or instead of, the one or more step(s) of gel filtration, the process of the invention may involve one or more steps of concentrating the polysaccharide. This concentration is useful for obtaining a sample of the correct concentration for any subsequent conjugation of the polysaccharide to a carrier molecule, as described below. However, the inventors have found that this concentration step is not required to obtain polysaccharide of high purity. Accordingly, this step may be omitted from the processes of the invention.
[0065] When present, the concentration step(s) may be performed after the acid treatment, enzymatic treatment, diafiltration, anion exchange chromatography and/or gel filtration steps discussed above. Typically, any concentration step(s) are carried out after the anion exchange chromatography step discussed above. If used in addition to the gel filtration step(s) discussed above, the concentration step(s) may be carried out before or after the gel filtration step(s) discussed above. However, typically, concentration step(s) are used instead of gel filtration step(s).
[0066] The concentration step(s) may be carried out by any suitable method. For example, the inventors have found that the concentration step(s) may be diafiltration step(s) as described above, for example tangential flow filtration using a 30 kDa cut-off membrane. For example, a Hydrosart.TM. (Sartorius) 30 kDa cut-off membrane (with a 200 cm.sup.2 membrane area) may be used.
[0067] The concentrated polysaccharide sample is collected for storage and/or additional processing.
[0068] Further Treatment of the Capsular Polysaccharide
[0069] After purification, the polysaccharide may be further treated to remove contaminants. This is particularly important in situations where even minor contamination is not acceptable (e.g. for human vaccine production).
[0070] The molecular mass of the purified S. aureus type 5 or type 8 capsular polysaccharide can be measured by gel filtration relative to pullulan standards, such as those available from Polymer Standard Service [28]. Typically, the purified polysaccharide is a mixture of polysaccharides with masses within a range of values. For the type 5 capsular polysaccharide, the molecular mass of the purified polysaccharide typically is between 2-3500 kDa, e.g. between 10-2000 kDa, particularly between 20-1000 kDa and more particularly between 100-600 kDa. Similarly, for the type 8 capsular polysaccharide, the molecular mass of the purified polysaccharide may be between 2-3500 kDa, e.g. between 10-2000 kDa, particularly between 20-1000 kDa and more particularly between 100-600 kDa.
[0071] The purified polysaccharide may be depolymerised to form an oligosaccharide. Oligosaccharides may be preferred for use in vaccines. Depolymerisation to oligosaccharide may occur before or after any of the steps mentioned above. Typically, depolymerisation takes place after the anion exchange chromatography described above. If the polysaccharide is concentrated after this chromatography, then depolymerisation typically takes place after this concentration. Where the composition of the invention includes a depolymerised polysaccharide, it is preferred that depolymerisation precedes any conjugation
[0072] Full-length polysaccharides may be depolymerised to give shorter fragments for use in the invention by various methods. Preferably, the method described in reference 29 is used. Alternatively, other methods for depolymerisation of the polysaccharide may be used. For example, the polysaccharide may be heated or subjected to microfluidisation [30] or sonic radiation [3]. Alternatively, depolymerisation by oxidation-reduction [31] or ozonolysis [32] may be used.
[0073] Oligosaccharides can be identified by chromatography, e.g. size exclusion chromatography. The products may be sized in order to remove short-length oligosaccharides. This can be achieved in various ways, such as gel filtration. Specific molecular masses can be measured by gel filtration relative to pullulan standards, such as those available from Polymer Standard Service [33].
[0074] If N-acetyl groups in the native capsular polysaccharide have been de-N-acetylated then the processes of the invention may include a step of re-N-acetylation. Controlled re-N-acetylation can conveniently be performed using a reagent such as acetic anhydride (CH.sub.3CO).sub.2O e.g. in 5% ammonium bicarbonate [34].
[0075] Further rounds of filtration, e.g. sterile filtration, can also be performed.
[0076] These additional steps can generally be performed at room temperature.
[0077] Storage
[0078] The S. aureus type 5 or type 8 capsular polysaccharide preparation may be lyophilised, e.g. by freeze-drying under vacuum, or frozen in solution (e.g. as the eluate from the final concentration step, if included) for storage at any stage during the purification process. Accordingly, it is not necessary for the preparation to be transferred immediately from one step of the process to another. For example, if the polysaccharide preparation is to be purified by diafiltration, then it may be lyophilised or frozen in solution prior to this purification. Similarly, the polysaccharide may be lyophilised or frozen in solution prior to the anion exchange chromatography step. If the polysaccharide preparation is to be purified by gel filtration, then it may be lyophilised or frozen in solution prior to this step. Similarly, if the polysaccharide preparation is to be concentrated, then it may be lyophilised or frozen in solution prior to this step. The lyophilised preparation is reconstituted in an appropriate solution prior to further treatment. Similarly, the frozen solution is defrosted prior to further treatment.
[0079] The purified polysaccharide obtained by the process of the invention may be processed for storage in any suitable way. For example, the polysaccharide may be lyophilised as described above. Alternatively, the polysaccharide may be stored in aqueous solution, typically at low temperature, e.g. at -20.degree. C. Conveniently, the polysaccharide may be stored as the eluate from the anion exchange chromatography, gel filtration or concentration steps.
[0080] Conjugation
[0081] The final purified capsular polysaccharide of the invention can be used as an antigen without further modification e.g. for use in in vitro diagnostic assays, for use in immunisation, etc.
[0082] For immunisation purposes, however, it is preferred to conjugate the polysaccharide to a carrier molecule, such as a protein. In general, covalent conjugation of polysaccharides to carriers enhances the immunogenicity of polysaccharides as it converts them from T-independent antigens to T-dependent antigens, thus allowing priming for immunological memory. Conjugation is particularly useful for paediatric vaccines [e.g. ref. 35] and is a well known technique [e.g. reviewed in refs. 36 to 44]. Thus the processes of the invention may include the further step of conjugating the purified polysaccharide to a carrier molecule.
[0083] Conjugation of S. aureus type 5 and type 8 capsular polysaccharides has been widely reported e.g. see references 1 to 9. The typical process used in the literature for conjugation involves thiolation of a purified polysaccharide using cystamine. The reaction relies on the presence of carboxylate groups in the capsular polysaccharide. These groups react with cystamine in the presence of a carbodiimide, e.g. EDAC. The derivatised polysaccharide is then conjugated to a carrier protein such as the Pseudomononas aeruginosa endotoxin A (ETA), typically via a linker [2]. Conjugate vaccines prepared in this manner have been shown to be safe and immunogenic in humans [5]. Other researchers have carried out conjugation of purified type 5 and type 8 capsular polysaccharides by reductive amination [45 and 12]; glutaraldehyde coupling [45]; or reaction of hydroxyl groups on the polysaccharides with cyanylating agents like CDAP [46] or cyanuric trichloride [11]. Preferably, the process described in reference 29 is used.
[0084] Preferred carrier proteins are bacterial toxins, such as diphtheria or tetanus toxins, or toxoids or mutants thereof. The inventors have found that the GRM197 diphtheria toxin mutant [47] is suitable. Pseudomonas aeruginosa exotoxin A (ETA) and its non-toxic mutant recombinant exoprotein A (rEPA) have been used as carrier proteins for S. aureus type 5 or type 8 capsular polysaccharides ([1] and [2]). S. aureus .alpha.-haemolysin (.alpha.-toxin) ([45] and [48]), ovalbumin [11] and human serum albumin [12] have also been used. These carriers may be used in the present invention.
[0085] Other suitable carrier proteins include the N. meningitidis outer membrane protein complex [49], synthetic peptides [50,51], heat shock proteins [52,53], pertussis proteins [54,55], cytokines [56], lymphokines [56], hormones [56], growth factors [56], human serum albumin (typically recombinant), artificial proteins comprising multiple human CD4.sup.+ T cell epitopes from various pathogen-derived antigens [57] such as N19 [58], protein D from H. influenzae [59-61], pneumococcal surface protein PspA [62], pneumolysin [63] or its non-toxic derivatives [64], iron-uptake proteins [65], toxin A or B from C. difficile [66], a GBS protein [67], a GAS protein [68] etc.
[0086] Other suitable carrier proteins include S. aureus protein antigens, for example the S. aureus protein antigens set out below.
[0087] Attachment to the carrier is preferably via a --NH.sub.2 group e.g. in the side chain of a lysine residue in a carrier protein, or of an arginine residue. Attachment may also be via a --SH group e.g. in the side chain of a cysteine residue.
[0088] It is possible to use more than one carrier protein e.g. to reduce the risk of carrier suppression. Thus different carrier proteins can be used for the type 5 and type 8 capsular polysaccharides, e.g. type 5 polysaccharide might be conjugated to CRM197 while type 8 polysaccharide might be conjugated to rEPA. It is also possible to use more than one carrier protein for a particular polysaccharide antigen e.g. type 5 polysaccharide might be in two groups, with one group conjugated to CRM197 and the other conjugated to rEPA. Typically, however, the same carrier protein is used for all polysaccharides.
[0089] A single carrier protein might carry more than one polysaccharide antigen [69,70]. For example, a single carrier protein might have conjugated to it type 5 and type 8 capsular polysaccharides. To achieve this goal, different polysaccharides can be mixed prior to the conjugation process. Typically, however, there are separate conjugates for each polysaccharide, with the different polysaccharides being mixed after conjugation. The separate conjugates may be based on the same carrier.
[0090] Conjugates with a polysaccharide:protein ratio (w/w) of between 1:20 (i.e. excess protein) and 20:1 (i.e. excess polysaccharide) are typically used. Ratios of 1:10 to 1:1 are preferred, particularly ratios between 1:5 and 1:2 and, most preferably, about 1:3. In contrast, type 5 and type 8 capsular polysaccharide conjugates used in the literature tend to have higher ratios, e.g. between 0.73 and 1.08 in references 1, 2 and 3. In particular embodiments of the invention, the polysaccharide:protein ratio (w/w) for type 5 capsular polysaccharide conjugate is between 1:10 and 1:2; and/or the polysaccharide:protein ratio (w/w) for type 8 capsular polysaccharide conjugate is between 1:5 and 7:10;
[0091] Conjugates may be used in conjunction with free carrier [71], When a given carrier protein is present in both free and conjugated form in a composition of the invention, the unconjugated form is preferably ho more than 5% of the total amount of the carrier protein in the composition as a whole, and more preferably present at less than 2% by weight.
[0092] After conjugation, free and conjugated polysaccharides can be separated. There are many suitable methods, including hydrophobic chromatography, tangential ultrafiltration, diafiltration etc. [see also refs. 72 & 73, etc.].
[0093] Combinations of Conjugates and Other Antigens
[0094] Polysaccharides prepared by the methods of the invention (in particular after conjugation as described above) can be mixed e.g. with each other and/or with other antigens. Thus the processes of the invention may include the further step of mixing the polysaccharide with one or more further antigens. The invention therefore provides a composition comprising a polysaccharide prepared by the method of the invention and one or more further antigens. The composition is typically an immunogenic composition.
[0095] The further antigen(s) may comprise further polysaccharides prepared by the method of the invention, and so the invention provides a composition comprising more than one polysaccharide of the invention. In particular, the present invention provides a composition comprising a type 5 capsular polysaccharide of the invention and a type 8 capsular polysaccharide of the invention. Alternatively, the further antigen(s) may be type 5 or type 8 capsular polysaccharides prepared by methods other than those of the invention, e.g. the methods of references 1 to 18 above. Accordingly, the invention provides a composition comprising a type 5 capsular polysaccharide and a type 8 capsular polysaccharide, wherein one of the polysaccharides (the type 5 polysaccharide or the type 8 polysaccharide) is a polysaccharide of the invention and the other polysaccharide is not a polysaccharide of the invention.
[0096] Where multiple different S. aureus conjugates are mixed then these may include different types of conjugate from the same S. aureus serotype and/or conjugates from different S. aureus serotypes. For example, the conjugates may be from S. aureus type 5 and type 8. The composition will be produced by preparing separate conjugates (e.g. a different conjugate for each serotype) and then combining the conjugates.
[0097] The further antigen(s) may comprise other S. aureus antigens, including the saccharide and protein antigens set out below.
[0098] The further antigen(s) may comprise antigens from non-S. aureus pathogens. Thus the compositions of the invention may further comprise one or more non-S. aureus antigens, including additional bacterial, viral or parasitic antigens. These may be selected from the following:
[0099] a protein antigen from N. meningitidis serogroup B, such as those in refs. 74 to 80, with protein `287` (see below) and derivatives (e.g. `.DELTA.G287`) being particularly preferred.
[0100] an outer-membrane vesicle (OMV) preparation from N. meningitidis serogroup B, such as those disclosed in refs. 81, 82, 83, 84 etc.
[0101] a saccharide antigen from N. meningitidis serogroup A, C, W135 and/or Y, such as the oligosaccharide disclosed in ref. 85 from serogroup C or the oligosaccharides of ref. 86.
[0102] a saccharide antigen from Streptococcus pneumoniae [e.g. refs. 87-89; chapters 22 & 23 of ref. 96].
[0103] an antigen from hepatitis A virus, such as inactivated virus [e.g. 90, 91; chapter 15 of ref. 96].
[0104] an antigen from hepatitis B virus, such as the surface and/or core antigens [e.g. 91,92; chapter 16 of ref. 96].
[0105] an antigen from hepatitis C virus [e.g. 93].
[0106] an antigen from Bordetella pertussis, such as pertussis holotoxin (PT) and filamentous haemagglutinin (FHA) from B. pertussis, optionally also in combination with pertactin and/or agglutinogens 2 and 3 [e.g. refs. 94 & 95; chapter 21 of ref. 96].
[0107] a diphtheria antigen, such as a diphtheria toxoid [e.g. chapter 13 of ref. 96].
[0108] a tetanus antigen, such as a tetanus toxoid [e.g. chapter 27 of ref. 96].
[0109] a saccharide antigen from Haemophilus influenzae B [e.g. chapter 14 of ref. 96]
[0110] an antigen from N. gonorrhoeae [e.g. 74, 75, 76].
[0111] an antigen from Chlamydia pneumoniae [e.g. 97, 98, 99, 100, 101, 102, 103].
[0112] an antigen from Chlamydia trachomatis [e.g. 104].
[0113] an antigen from Porphyromonas gingivalis [e.g. 105].
[0114] polio antigen(s) [e.g. 106, 107; chapter24 of ref. 96] such as IPV.
[0115] rabies antigen(s) [e.g. 108] such as lyophilised inactivated virus [e.g. 109, RabAvert.TM. ].
[0116] measles, mumps and/or rubella antigens [e.g. chapters 19,20 and 26 of ref. 96].
[0117] influenza antigen(s) [e.g. chapters 17 & 18 of ref. 96], such as the haemagglutinin and/or neuraminidase surface proteins.
[0118] an antigen from Moraxella catarrhalis [e.g. 110].
[0119] an antigen from Streptococcus pyogenes (group A streptococcus) [e.g. 111, 112, 113].
[0120] an antigen from Streptococcus agalactiae (group B streptococcus) [e.g. 68, 114-116].
[0121] an antigen from S. epidermidis [e.g. type I, II and/or III capsular polysaccharide obtainable from strains ATCC-31432, SE-360 and SE-10 as described in refs. 117, 118 and 119.
[0122] Where a saccharide or carbohydrate antigen is used, it is preferably conjugated to a carrier in order to enhance immunogenicity. Conjugation of H. influenzae B, meningococcal and pneumococcal saccharide antigens is well known.
[0123] Toxic protein antigens may be detoxified where necessary (e.g. detoxification of pertussis toxin by chemical and/or genetic means [95]).
[0124] Where a diphtheria antigen is included in the composition it is preferred also to include tetanus antigen and pertussis antigens. Similarly, where a tetanus antigen is included it is preferred also to include diphtheria and pertussis antigens. Similarly, where a pertussis antigen is included it is preferred also to include diphtheria and tetanus antigens.
[0125] Antigens may be adsorbed to an aluminium salt.
[0126] One type of preferred composition includes further antigens that affect the immunocompromised, and so the S. aureus polysaccharides of the invention can be combined with one or more antigens from the following non-S. aureus pathogens: Steptococcus agalactiae, Staphylococcus epidermis, influenza virus, Enterococcus faecalis, Pseudomonas aeruginosa, Legionella pneumophila, Listeria monocytogenes, Neisseria meningitidis, and parainfluenza virus.
[0127] Another type of preferred composition includes further antigens from bacteria associated with nosocomial infections, and so the S. aureus polysaccharides of the invention can be combined with one or more antigens from the following non-S. aureus pathogens: Clostridium difficile, Pseudomonas aeruginosa, Candida albicans, and extraintestinal pathogenic Escherichia coli.
[0128] Antigens in the composition will typically be present at a concentration of at least 1 .mu.g/ml each. In general, the concentration of any given antigen will be sufficient to elicit an immune response against that antigen.
[0129] As an alternative to using proteins antigens in the composition of the invention, nucleic acid encoding the antigen may be used [e.g. refs. 120 to 128]. Protein components of the compositions of the invention may thus be replaced by nucleic acid (preferably DNA e.g. in the form of a plasmid) that encodes the protein.
[0130] In practical terms, there may be an upper limit to the number of antigens included in compositions of the invention. The number of antigens (including S. aureus antigens) in a composition of the invention may be less than 20, less than 19, less than 18, less than 17, less than 16, less than 15, less than 14, less than 13, less than 12, less than 11, less than 10, less than 9, less than 8, less than 7, less than 6, less than 5, less than 4, or less than 3. The number of S. aureus antigens in a composition of the invention may be less than 6, less than 5, or less than 4.
[0131] Pharmaceutical Compositions and Methods
[0132] The invention provides processes for preparing pharmaceutical compositions, comprising the steps of mixing (a) a polysaccharide of the invention (optionally in the form of a conjugate) with (b) a pharmaceutically acceptable carrier. Typical `pharmaceutically acceptable carriers` include any carrier that does not itself Induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolised macro molecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lactose, and lipid aggregates (such as oil droplets or liposomes). Such carriers are well known to those of ordinary skill in the art. The vaccines may also contain diluents, such as water, saline, glycerol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present. Sterile pyrogen-free, phosphate-buffered physiologic saline is a typical carrier. A thorough discussion of pharmaceutically acceptable excipients is available in reference 129.
[0133] Compositions of the invention may be in aqueous form (i.e. solutions or suspensions) or in a dried form (e.g. lyophilised). If a dried vaccine is used then it will be reconstituted into a liquid medium prior to injection. Lyophilisation of conjugate vaccines is known in the art e.g. the Menjugate.TM. product is presented in lyophilised form, whereas NeisVac-C.TM. and Meningitec.TM. are presented in aqueous form. To stabilise conjugates during lyophilisation, it may be typical to include a sugar alcohol (e.g. mannitol) or a disaccharide (e.g. sucrose or trehalose) e.g. at between 1 mg/ml and 30 mg/ml (e.g. about 25 mg/ml) in the composition.
[0134] The pharmaceutical compositions may be packaged into vials or into syringes. The syringes may be supplied with or without needles. A syringe will include a single dose of the composition, whereas a vial may include a single dose or multiple doses.
[0135] Aqueous compositions of polysaccharides of the invention are suitable for reconstituting other vaccines from a lyophilised form. Where a composition of the invention is to be used for such extemporaneous reconstitution, the invention provides a process for reconstituting such a lyophilised vaccine, comprising the step of mixing the lyophilised material with an aqueous composition of the invention. The reconstituted material can be used for injection.
[0136] S. aureus Antigens
[0137] As mentioned above, one or more further S. aureus antigens can be included in compositions of the invention. The antigens may be protein or saccharide antigens. S. aureus protein antigens may be used as carrier proteins for conjugates of the invention, carrier proteins for other conjugates, or as unconjugated protein antigens. S. aureus saccharide antigens may be used as the saccharides for other conjugates or as unconjugated saccharide antigens.
[0138] Suitable S. aureus saccharide antigens include the exopolysaccharide of S. aureus, which is a poly-N-acetylglucosamine (PNAG). This polysaccharide is present in both S. aureus and S. epidermidis and can be isolated from either source [130,131]. For example, PNAG may be isolated from S. aureus strain MN8m [132]. The saccharide antigen may be a polysaccharide having the size that arises during purification of the exopolysaccharide from bacteria, or it may be an polysaccharide achieved by fragmentation of such a polysaccharide e.g. size can vary from over 400 kDa to between 75 and 400 kDa, or between 10 and 75 kDa, or up to 30 repeat units. The saccharide antigen can have various degrees of N-acetylation and, as described in reference 133, the PNAG may be less than 40% N-acetylated (e.g. less than 35, 30, 20, 15, 10 or 5% N-acetylated; deacetylated PNAG is also known as dPNAG). Dcacetylated epitopes of PNAG can elicit antibodies that are capable of mediating opsonic killing. The preparation of dPNAG is described in reference 134. The PNAG may or may not be O-succinylated e.g. it may be O-succinylated on fewer less than 25, 20, 15, 10, 5, 2, 1 or 0.1% of residues. The PNAG may be conjugated to a carrier molecule as described above or alternatively unconjugated.
[0139] Another suitable S. aureus saccharide antigen is the type 336 antigen, which is a .beta.-linked hexosamine with no O-acetylation [135,136]. The type 336 antigen is cross-reactive with antibodies raised against the 336 strain (ATCC 55804). The type 336 antigen may be conjugated to a carrier molecule as described above or alternatively unconjugated.
[0140] Suitable S. aureus protein antigens include the following S. aureus antigens (or antigens comprising immunogenic fragment(s) thereof) [e.g. see references 137-144]: AhpC, AhpF, Autolysin amidase, Autolysin glucosaminidase, Collagen binding protein CAN, EbhB, GehD lipase, Heparin binding protein HBP (17 kDa), Laminin receptor, MAP, MntC (also known as SitC), MRPII, Npase, ORF0594, ORF0657n, ORF0826, PBP4, RAP (RNA III activating protein), Sai-1, SasK, SBI, SdrG, SdrH, SSP-1, SSP-2 and Vitronectin-binding protein.
[0141] Further suitable S. aureus protein antigens include a clfA antigen; a clfB antigen; a sdrE2 antigen; a sdrC antigen; a sasF antigen, a emp antigen; a sdrD antigen; a spa antigen; a esaC antigen; a esxA antigen; a esxB antigen; a sta006 antigen; a isdC antigen; a Hla antigen; a sta011 antigen; a isdA antigen; a isdB antigen; and a sta073 antigen, as described below. One or more (i.e. 1, 2, 3, 4, 5, 6 or more) of these antigens may be present in a composition of the invention. Of these antigens, the use of one or more (i.e. 1, 2, 3, 4, 5, 6 or more) of a esxA antigen; a esxB antigen; a sta006 antigen; a Hla antigen; a sta011 antigen; and/or a sta073 antigen is specifically envisaged.
[0142] For example, a composition of the invention may comprise one of the following combinations of S. aureus protein antigens:
[0143] (1) A esxA antigen, a esxB antigen, a sta006 antigen and a Hla antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, e.g. a EsxAB hybrid with a esxB antigen downstream of a esxA antigen. The Hla antigen may be a detoxified mutant e.g. including a H35L mutation.
[0144] (2) A esxA antigen, a esxB antigen, a sta006 antigen and a sta011 antigen. The esxA and esxB antigens may be combined as a hybrid polypeptide, as discussed below, e.g. an EsxAB hybrid.
[0145] (3) A esxA antigen, a esxB antigen and a sta011 antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, e.g. a EsxAB hybrid.
[0146] (4) A esxA antigen, a esxB antigen, a Hla antigen, a sta006 antigen and a sta011 antigen. The esxA and esxB antigens may be combined as a hybrid polypeptide, as discussed below, e.g. an EsxAB hybrid. The Hla antigen may be a detoxified mutant e.g. including a H35L mutation.
[0147] (5) A esxA antigen, a esxB antigen and a Hla antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, e.g. a EsxAB hybrid. The Hla antigen may be a detoxified mutant e.g. including a H35L mutation.
[0148] (6) A Hla antigen, a sta006 antigen and a sta011 antigen. The Hla antigen may be a detoxified mutant e.g. including a H35L mutation.
[0149] (7) A esxA antigen and a esxB antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, e.g. an EsxAB hybrid.
[0150] (8) A esxA antigen, a esxB antigen and a sta006 antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, e.g. a EsxAB hybrid.
[0151] (9) A esxA antigen, a esxB antigen, a sta011 antigen and a sta073 antigen. The esxA and esxB antigens may be combined as a hybrid polypeptide, as discussed below, e.g. an EsxAB hybrid.
[0152] (10) A sta006 antigen and a sta011 antigen.
[0153] Further Staphylococcus aureus antigens are disclosed in reference 145.
[0154] clfA
[0155] The `clfA` antigen is annotated as `clumping factor A`. In the NCTC 8325 strain clfA is SAOUHSC_00812 and has amino acid sequence SEQ ID NO: 1 (GI:88194572). In the Newman strain it is nwmn_0756 (GI:151220968).
[0156] Useful clfA antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 1 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 1; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 1, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These clfA proteins include variants of SEQ ID NO: 1. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 1. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 1 while retaining at least one epitope of SEQ ID NO: 1. The final 368 C-terminal amino acids of SEQ ID NO: 1 can usefully be omitted. The first 39 N-terminal amino acids of SEQ ID NO: 1 can usefully be omitted. Other fragments omit one or more protein domains.
[0157] SEQ ID NO: 2 is a useful fragment of SEQ ID NO: 1 (`ClfA10-559`). This fragments omits the long repetitive region towards the C-terminal of SEQ ID NO: 1.
[0158] clfB
[0159] The `clfB` antigen is annotated as `clumping factor B`. In the NCTC 8325 strain clfB is SAOUHSC_02963 and has amino acid sequence SEQ ID NO: 3 (GI:88196585). In the Newman strain it is nwmn_2529 (GI:151222741).
[0160] Useful clfB antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 3 and/or may comprise ah amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 3; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 3, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These clfB proteins include variants of SEQ ID NO: 3. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 3. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 3 while retaining at least one epitope of SEQ ID NO: 3. The final 40 C-terminal amino acids of SEQ ID NO: 3 can usefully be omitted. The first 44 N-terminal amino acids of SEQ ID NO: 3 can usefully be omitted. Other fragments omit one or more protein domains. ClfB is naturally a long protein and so the use of fragments is helpful e.g. for purification, handling, fusion, expression, etc.
[0161] SEQ ID NO: 4 is a useful fragment of SEQ ID NO: 3 (`ClfB.sub.45-552`). This fragment includes the most exposed domain of ClfB and is more easily used at an industrial scale. It also reduces the antigen's similarity with human proteins. Other useful fragments, based on a 3-domain model of ClfB, include: ClfB.sub.45-360 (also known as CLfB-N12; SEQ ID NO: 5); ClfB.sub.212-542 (also known as CLfB-N23; SEQ ID NO: 6); and ClfB.sub.360-542 (also known as CLfB-N3; SEQ ID NO: 7).
[0162] sdrE2
[0163] The `sdrE2` antigen is annotated as `Ser-Asp rich fibrinogen/bone sialoprotein-binding protein SdrE`. In the Newman strain sdrE2 is NWMN_0525 and has amino acid sequence SEQ ID NO: 8 (GI: 151220737).
[0164] Useful sdrE2 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 8 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 8; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 8, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sdrE2 proteins include variants of SEQ ID NO: 8. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 8. Other preferred fragments lack one Or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 8 while retaining at least one epitope of SEQ ID NO: 8. The final 38 C-terminal amino acids of SEQ ID NO: 8 can usefully be omitted. The first 52 N-terminal amino acids of SEQ ID NO: 8 can usefully be omitted. Other fragments omit one or more protein domains. SdrE2 is naturally a long protein and so the use of fragments is very helpful e.g. for purification, handling, fusion, expression, etc.
[0165] SEQ ID NO: 9 is a useful fragment of SEQ ID NO: 8 (`SdrE.sub.53-632`). This fragment includes the most exposed domain of SdrE2 and is more easily used at an industrial scale. It also reduces the antigen's similarity with human proteins.
[0166] sdrC
[0167] The `sdrC` antigen is annotated as `sdrC protein`. In the NCTC 8325 strain sdrC is SAOUHSC_00544 and has amino acid sequence SEQ ID NO: 10 (GI:88194324).
[0168] Useful sdrC antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 10 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 10; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 10, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sdrC proteins include variants of SEQ ID NO: 10. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 10. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 10 while retaining at least one epitope of SEQ ID NO: 10. The final 38 C-terminal amino acids of SEQ ID NO: 10 can usefully be omitted. The first 50 N-terminal amino acids of SEQ ID NO: 10 can usefully be omitted. Other fragments omit one or more protein domains. SdrC is naturally a long protein and so the use of fragments is helpful e.g. for purification, handling, fusion, expression, etc.
[0169] SEQ ID NO: 11 is a useful fragment of SEQ ID NO: 10 (`SdrC5.sub.1-518`). This fragment includes the most exposed domain of SdrC and is more easily used at an industrial scale. It also reduces the antigen's similarity with human proteins.
[0170] sasF
[0171] The `sasF` antigen is annotated as `sasF protein`. In the NCTC 8325 strain sasF is SAOUHSC_02982 and has amino acid sequence SEQ ID NQ: 12 (GI:88196601).
[0172] Useful sasF antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 12 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 12; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 12, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sasF proteins include variants of SEQ ID NO: 12. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 12. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 12 while retaining at least one epitope of SEQ ID NO: 12. The final 39 C-terminal amino acids of SEQ ID NO: 12 can usefully be omitted. The first 37 N-terminal amino acids of SEQ ID NO: 12 can usefully be omitted. Other fragments omit one or more protein domains.
[0173] emp
[0174] The `emp` antigen is annotated as `extracellular matrix and plasma binding protein`. In the NCTC 8325 strain emp is SAOUHSC_00816 and has amino acid sequence SEQ ID NO: 13 (GI:88194575). In the Newman strain it is nwmn_0758 (GI:151220970).
[0175] Useful emp antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NG: 13 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 13; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 13, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These emp proteins include variants of SEQ ID NO: 13. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 13. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 13 while retaining at least one epitope of SEQ ID NO: 13. The first 26 N-terminal amino acids of SEQ ID NO: 13 can usefully be omitted. Other fragments omit one or more protein domains.
[0176] SEQ ID NOs: 14, 15, 16 and 17 are useful fragments of SEQ ID NO: 13 (`Emp.sub.35-340`, `Emp.sub.27-334`, `Emp.sub.35-334` and `Emp.sub.27-147`, respectively).
[0177] sdrD
[0178] The `sdrD` antigen is annotated as `sdrD protein`. In the NCTC 8325 strain sdrD is SAOUHSC_00545 and has amino acid sequence SEQ ID NO: 18 (GI:88194325).
[0179] Useful sdrD antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 18 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 18; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 18, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sdrD proteins include variants of SEQ ID NO: 18. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 18. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 18 while retaining at least one epitope of SEQ ID NO: 18. The final 38 C-terminal amino acids of SEQ ID NO: 18 can usefully be omitted. The first 52 N-terminal amino acids of SEQ ID NO: 18 can usefully be omitted. Other fragments omit one or more protein domains. SdrD is naturally a long protein and so the use of fragments is very helpful e.g. for purification, handling, fusion, expression, etc.
[0180] SEQ ID NO: 19 is a useful fragment of SEQ ID NO: 18 (`SdrD.sub.53-592`). This fragment includes the most exposed domain of SdrD and is more easily used at an industrial scale. It also reduces the antigen's similarity with human proteins. Another useful fragment, with the same C-terminus residue, is SdrD.sub.394-592 (also known as SdrD-N3; SEQ ID NO: 20).
[0181] spa
[0182] The `spa` antigen is annotated as `protein A` or `SpA`. In the NCTC 8325 strain spa is SAOUHSC_00069 and has amino acid sequence SEQ ID NO: 21 (GI:88193885). In the Newman strain it is nwmn_0055 (GI:151220267). All S. aureus strains express the structural gene for spa, a well characterized virulence factor whose cell wall-anchored surface protein product has five highly homologous immunoglobulin binding domains designated E, D, A, B, and C [146]. These domains display .about.80% identity at the amino acid level, are 56 to 61 residues in length, and are organized as tandem repeats [147]. SpA is synthesized as a precursor protein with an N-terminal signal peptide and a C-terminal sorting signal [148,149]. Cell wall-anchored spa is displayed in great abundance on the staphylococcal surface [150,151]. Each of its immunoglobulin binding domains is composed of anti-parallel .alpha.-helices that assemble into a three helix bundle and can bind the Fc domain of immunoglobulin G (IgG) [152,153], the VH3 heavy chain (Fab) of IgM (i.e. the B cell receptor) [154], the von Willebrand factor at its A1 domain [155] and/or the TNF-.alpha. receptor 1 (TNFRI) [156], which is displayed on surfaces of airway epithelia.
[0183] Useful spa antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 21 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 21; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 21, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These spa proteins include variants of SEQ ID NO: 21. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 21. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 21 while retaining at least one epitope of SEQ ID NO: 21. The final 35 C-terminal amino acids of SEQ ID NO: 21 can usefully be omitted. The first 36 N-terminal amino acids of SEQ ID NO: 21 can usefully be omitted. Other fragments omit one or more protein domains. Reference 157 suggests that individual IgG-binding domains might be useful immunogens, alone or in combination.
[0184] SEQ ID NO: 22 is a useful fragment of SEQ ID NO: 21 (`Spa.sub.37-325`). This fragment contains all the five SpA Ig-binding domains and includes the most exposed domain of SpA. It also reduces the antigen's similarity with human proteins. Other useful fragments may omit 1, 2, 3 or 4 of the natural A, B, C, D and/or E domains. As reported in reference 157, other useful fragments may include only 1, 2, 3 or 4 of the natural A, B, C, D and/or E domains e.g. comprise only the SpA(A) domain but not B to E, or comprise only the SpA(D) domain but not A, B, C or E, etc. Thus a spa antigen useful with the invention may include 1, 2, 3, 4 or 5 IgG-binding domains, but ideally has 4 or fewer. If an antigen includes only one type of spa domain (e.g. only the Spa(A) or SpA(D) domain), it may include more than one copy of this domain e.g. multiple SpA(D) domains in a single polypeptide chain. An individual domain within the antigen may be mutated at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more amino acids relative to SEQ ID NO: 21 (e.g. see ref. 157, disclosing mutations at residues 3 and/or 24 of domain D, at residue 46 and/or 53 of domain A, etc.). Such mutants should not remove the antigen's ability to elicit an antibody that recognises SEQ ID NO: 21, but may remove the antigen's binding to IgG. In certain aspects a spa antigen includes a substitution at (a) one or more amino acid substitution in an IgG Fc binding sub-domain of SpA domain A, B, C, D and/or E that disrupts or decreases binding to IgG Fc, and (b) one or more amino acid substitution in a Vh3 binding sub-domain of SpA domain A, B, C, D, and/or E that disrupts or decreases binding to V.sub.H3. In certain embodiments, a variant SpA comprises at least or at most 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more variant SpA domain D peptides.
[0185] esaC
[0186] The `esaC` antigen is annotated as `esaC`. In the NCTC 8325 strain esaC is SAOUHSC_00264 and has amino acid sequence SEQ ID NO: 23 (GI:88194069).
[0187] Useful esaC antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 23 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 23; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 23, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These esaC proteins include variants of SEQ ID NO: 23. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 23. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 23 while retaining at least one epitope of SEQ ID NO: 23. Other fragments omit one or more protein domains.
[0188] esxA
[0189] The `esxA` antigen is annotated as `protein`. In the NCTC 8325 strain esxA is SAOUHSC_00257 and has amino acid sequence SEQ ID NO: 24 (GI:88194063).
[0190] Useful esxA antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 24 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 24; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 24, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90 or more). These esxA proteins include variants of SEQ ID NO: 24. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 24. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 24 while retaining at least one epitope of SEQ ID NO: 24. Other fragments omit one or more protein domains.
[0191] esxB
[0192] The `esxB` antigen is annotated as `esxB`. In the NCTC 8325 strain esxB is SAOUHSC_00265 and has amino acid sequence SEQ ID NO: 25 (GI:88194070).
[0193] Useful esxB antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 25 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 25; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 25, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These esxB proteins include variants of SEQ ID NO: 25. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 25. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6; 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 25 while retaining at least one epitope of SEQ ID NO: 25. Other fragments omit one or more protein domains.
[0194] sta006
[0195] The `sta006` antigen is annotated as `ferrichrome-binding protein`, and has also been referred to as `FhuD2` in the literature [158]. In the NCTC 8325 strain sta006 is SAOUHSC_02554 and has amino acid sequence SEQ ID NO: 26 (GI:88196199). In the Newman strain it is nwmn_2185 (GI: 151222397).
[0196] Useful sta006 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 26 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 26; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 26, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta006 proteins include variants of SEQ ID NO: 26. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 26. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 26 while retaining at least one epitope of SEQ ID NO: 26. The first 17 N-terminal amino acids of SEQ ID NO: 26 can usefully be omitted. Other fragments omit one or more protein domains. Mutant forms of sta006 are reported in reference 159. A sta006 antigen may be lipidated e.g. with an acylated N-terminus cysteine,
[0197] isdC
[0198] The `isdC` antigen is annotated as `protein`. In the NCTC 8325 strain isdC is SAOUHSC_01082 and has amino acid sequence SEQ ID NO: 27 (GI:88194830).
[0199] Useful isdC antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 27 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 27; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 27, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These isdC proteins include variants of SEQ ID NO: 27. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 27. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4; 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 27 while retaining at least one epitope of SEQ ID NO: 27. The final 39 C-terminal amino acids of SEQ ID NO: 27 can usefully be omitted. The first 28 N-terminal amino acids of SEQ ID NO: 27 can usefully be omitted. Other fragments omit one or more protein domains. Useful fragments of IsdB are disclosed in reference 165.
[0200] Reference 160 discloses antigens which usefully include epitopes from both IsdB and IsdH.
[0201] Hla
[0202] The `Hla` antigen is the `alpha-hemolysin precursor` also known as `alpha toxin` or simply `hemolysin`. In the NCTC 8325 strain Hla is SAOUHSC_01121 and has amino acid sequence SEQ ID NO: 28 (GI:88194865). In the Newman strain it is nwmn_1073 (GI: 151221285). Hla is an important virulence determinant produced by most strains of S. aureus, having pore-forming and haemolytic activity. Anti-Hla antibodies can neutralise the detrimental effects of the toxin in animal models, and Hla is particularly useful for protecting against pneumonia.
[0203] Useful Hla antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 28 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO; 28; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 28, wherein V is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These Hla proteins include variants of SEQ ID NO: 28. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 28. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 28 while retaining at least one epitope of SEQ ID NO: 28. The first 26 N-terminal amino acids of SEQ ID NO: 28 can usefully be omitted. Truncation at the C-terminus can also be used e.g. leaving only 50 amino acids (residues 27-76 of SEQ ID NO: 28) [161], Other fragments omit one or more protein domains.
[0204] Hla's toxicity can be avoided in compositions of the invention by chemical inactivation (e.g. using formaldehyde, glutaraldehyde or other cross-linking reagents). Instead, however, it is preferred to use mutant forms of Hla which remove its toxic activity while retaining its immunogenicity. Such detoxified mutants are already known in the art. One useful Hla antigen has a mutation at residue 61 of SEQ ID NO: 28, which is residue 35 of the mature antigen (i.e. after omitting the first 26 N-terminal amino acids). Thus residue 61 may not be histidine, and may instead be e.g. He, Val or preferably Leu. A His-Arg mutation at this position can also be used. For example, SEQ ID NO: 29 is the mature mutant Hla-H35L sequence and a useful Hla antigen comprises SEQ ID NO: 29. Another useful mutation replaces a long loop with a short sequence e.g. to replace the 39mer at residues 136-174 of SEQ ID NO: 28 with a tetramer such as PSGS (SEQ ID NO: 30), as in SEQ ID NO: 31 (which also includes the H35L mutation) and SEQ ID NO: 32 (which does not include the H35L mutation).
[0205] Further useful Hla antigens are disclosed in references 162 and 163.
[0206] SEQ ID NOs: 33, 34 & 35 are three useful fragments of SEQ ID NO: 28 (`Hla.sub.27-76`, `Hla.sub.27-89` and `Hla.sub.27-79`, respectively). SEQ ID NOs: 36, 37 and 38 are the corresponding fragments from SEQ ID NO: 29.
[0207] sta011
[0208] The `sta011` antigen is annotated as `lipoprotein`. In the NCTC 8325 strain sta011 is SAOUHSC_0052 and has amino acid sequence SEQ ID NO: 39 (GI:88193872).
[0209] Useful sta011 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 39 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 39; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 39, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta011 proteins include variants of SEQ ID NO: 39. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 39. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 39 while retaining at least one epitope of SEQ ID NO: 39. The first 23 N-terminal amino acids of SEQ ID NO: 39 can usefully be omitted. Other fragments omit one or more protein domains. A sta006 antigen may be lipidated e.g. with an acylated N-terminus cysteine.
[0210] Variant forms of SEQ ID NO: 39 which may be used for preparing sta011 antigens include, but are not limited to, SEQ ID NOs: 40, 41 and 42 with various Ile/Val/Leu substitutions.
[0211] isdA
[0212] The `isdA` antigen is annotated as `IsdA protein`. In the NCTC 8325 strain isdA is SAOUHSC_01081 and has amino acid sequence SEQ ID NO: 43 (GI:88194829). In the Newman strain it is nwmn_1041 (GI: 151221253).
[0213] Useful isdA antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 43 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 43; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 43, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These isdA proteins include variants of SEQ ID NO: 43. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 43. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 43 while retaining at least one epitope of SEQ ID NO: 43. The final 38 C-terminal amino acids of SEQ ID NO: 43 can usefully be omitted. The first 46 N-terminal amino acids of SEQ ID NO: 43 can usefully be omitted. Truncation to exclude the C-terminal 38mer of SEQ ID NO: 43 (beginning with the LPKTG motif) is also useful. Other fragments omit one or more protein domains.
[0214] SEQ ID NO: 44 is a useful fragment of SEQ ID NO: 43 (amino acids 40-184 of SEQ ID NO: 43; `IsdA.sub.40-184`) which includes the natural protein's heme binding site and includes the antigen's most exposed domain. It also reduces the antigen's similarity with human proteins. Other useful fragments are disclosed in references 164 and 165.
[0215] IsdA does not adsorb well to aluminium hydroxide-adjuvants, so IsdA present in a composition may me unadsorbed or may be adsorbed to an alternative adjuvant e.g. to an aluminium phosphate.
[0216] IsdB
[0217] The `isdB` antigen is annotated as `neurofilament protein isdB`. In the NCTC 8325 strain isdB is SAOUHSC_01079 and has amino acid sequence SEQ ID NO: 45 (GI:88194828). IsdB has been proposed for use as a vaccine antigen on its own [166], but this may not prevent pneumonia.
[0218] Useful isdB antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 45 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 45; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 45, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These isdB proteins include variants of SEQ ID NO: 45. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 45. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 45 while retaining at least one epitope of SEQ ID NO: 45. The final 36 C-terminal amino acids of SEQ ID NO: 45 can usefully be omitted. The first 40 N-terminal amino acids of SEQ ID NO: 45 can usefully be omitted. Other fragments omit one or more protein domains. Useful fragments of IsdB are disclosed in references 165 and 167 e.g. lacking 37 internal amino acids of SEQ ID NO: 45.
[0219] In some embodiments, compositions of the invention do not include an isdB antigen.
[0220] sta073
[0221] The `Sta073` antigen is annotated as `bifunctional autolysin precursor`. In the NCTC 8325 strain sta073 is SAOUHSC_00994 and has amino acid sequence SEQ ID NO: 46 (GI:88194750). In the Newman strain it is nwmn_0922 (GI: 151221134). Proteomic analysis has revealed that this protein is secreted or surface-exposed.
[0222] Useful sta073 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 46 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 46; and/or (b) comprising a fragment of at least `n` consecutive amino acids of SEQ ID NO: 46, wherein `n` is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta073 proteins include variants of SEQ ID NO: 46. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 46. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 46 while retaining at least one epitope of SEQ ID NO: 46. The first 24 N-terminal amino acids of SEQ ID NO: 46 can usefully be omitted. Other fragments omit one or more protein domains.
[0223] Sta073 does not adsorb well to aluminium hydroxide adjuvants, so Sta073 present in a composition may me unadsorbed or may be adsorbed to an alternative adjuvant e.g. to an aluminium phosphate.
[0224] Hybrid Polypeptides
[0225] S. aureus protein antigens used in the invention may be present in the composition as individual separate polypeptides. Where more than one antigen is used, however, they do not have to be present as separate polypeptides. Instead, at least two (e.g. 2, 3, 4, 5, or more) antigens can be expressed as a single polypeptide chain (a `hybrid` polypeptide). Hybrid polypeptides offer two main advantages: first, a polypeptide that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem; second, commercial manufacture is simplified as only one expression and purification need be employed in order to produce two polypeptides which are both antigenically useful.
[0226] The hybrid polypeptide may comprise two or more polypeptide sequences from each of the antigens listed above, or two or more variants of the same antigen in the cases in which the sequence has partial variability across strains.
[0227] Hybrids consisting of amino acid sequences from two, three, four, five, six, seven, eight, nine, or ten antigens are useful. In particular, hybrids consisting of amino acid sequences from two, three, four, or five antigens are preferred, such as two or three antigens.
[0228] Different hybrid polypeptides may be mixed together in a single formulation. Hybrids may be combined with non-hybrid antigens selected from the first, second or third antigen groups. Within such combinations, an antigen may be present in more than one hybrid polypeptide and/or as a non-hybrid polypeptide. It is preferred, however, that an antigen is present either as a hybrid or as a non-hybrid, but not as both.
[0229] Hybrid polypeptides can be represented by the formula NH.sub.2-A-{--X-L-}.sub.n--B--COOH, wherein: X is an amino acid sequence of a S. aureus antigen, as described above; L is an optional linker amino acid sequence; A is an optional N-terminal amino acid sequence; B is an optional C-terminal amino acid sequence; n is an integer of 2 or more (e.g. 2, 3, 4, 5, 6, etc.). Usually n is 2 or 3.
[0230] If a --X-- moiety has a leader peptide sequence in its wild-type form, this may be included or omitted in the hybrid protein. In some embodiments, the leader peptides will be deleted except for that of the --X-moiety located at the N-terminus of the hybrid protein i.e. the leader peptide of X.sub.1 will be retained, but the leader peptides of X.sub.2 . . . Xn will be omitted. This is equivalent to deleting all leader peptides and using the leader peptide of X.sub.1 as moiety -A-.
[0231] For each n instances of {--X-L-}, linker amino acid sequence -L- may be present or absent. For instance, when n=2 the hybrid may be NH.sub.2--X.sub.1-L.sub.1-X.sub.2-L.sub.2-COOH, NH.sub.2--X.sub.1--X.sub.2--COOH, NH.sub.2--X.sub.1-L.sub.1-X.sub.2--COOH, NH.sub.2--X.sub.1--X.sub.2-L.sub.2-COOH, etc. Linker amino acid sequence(s) -L- will typically be short (e.g. 20 or fewer amino acids i.e. 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples comprise short peptide sequences which facilitate cloning, poly-glycine linkers (i.e. comprising Gly.sub.n where n=2, 3, 4, 5, 6, 7, 8, 9, 10 or more), and histidine tags (i.e. His.sub.n where n=3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable linker amino acid sequences will be apparent to those skilled in the art. A useful linker is GSGGGG (SEQ ID NO: 47) or GSGSGGGG (SEQ ID NO: 48), with the Gly-Ser dipeptide being formed from a BamHI restriction site, thus aiding cloning and manipulation, and the (Gly).sub.4 tetrapeptide being a typical poly-glycine linker. Other suitable linkers, particularly for use as the final L.sub.n are ASGGGS (SEQ ID NO: 49 e.g. encoded by SEQ ID NO: 50) or a Leu-Glu dipeptide.
[0232] -A- is an optional N-terminal amino acid sequence. This will typically be short (e g. 40 or fewer amino acids i.e. 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include leader sequences to direct protein trafficking, or short peptide sequences which facilitate cloning or purification (e.g. histidine tags i.e. His, where n=3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable N-terminal amino acid sequences will be apparent to those skilled in the art. If X lacks its own N-terminus methionine, -A- is preferably an oligopeptide (e.g. with 1, 2, 3, 4, 5, 6, 7 or 8 amino acids) which provides a N-terminus methionine e.g. Met-Ala-Ser, or a single Met residue.
[0233] --B-- is an optional C-terminal amino acid sequence. This will typically be short (e.g. 40 or fewer amino acids i.e. 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include sequences to direct protein trafficking, short peptide sequences which facilitate cloning or purification (e.g. comprising histidine tags i.e. His.sub.n where n=3, 4, 5, 6, 7, 8, 9, 10 or more, such as SEQ ID NO: 51), or sequences which enhance protein stability. Other suitable C-terminal amino acid sequences will be apparent to those skilled in the art.
[0234] One hybrid polypeptide of the invention may include both EsxA and EsxB antigens. These may be in either order, N- to C-terminus. SEQ ID NOs: 52 (`EsxAB`; encoded by SEQ ID NO: 53) and 54 (`EsxBA`) are examples of such hybrids, both having hexapeptide linkers ASGGGS (SEQ ID NO: 49).
[0235] General
[0236] The practice of the present invention will employ, unless otherwise indicated, conventional methods of chemistry, biochemistry, molecular biology, immunology and pharmacology, within the skill of the art. Such techniques are explained fully in the literature. See, e.g., references 168-175, etc.
[0237] "GI" numbering is used above. A GI number, or "GenInfo Identifier", is a series of digits assigned consecutively to each sequence record processed by NCBI when sequences are added to its databases. The GI number bears no resemblance to the accession number of the sequence record. When a sequence is updated (e.g. for correction, or to add more annotation or information) then it receives a new GI number. Thus the sequence associated with a given GI number is never changed.
[0238] References to a percentage sequence identity between two amino acid sequences means that, when aligned, that percentage of amino acids are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in section 7.7.18 of ref. 176. A preferred alignment is determined by the Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 2, BLOSUM matrix of 62. The Smith-Waterman homology search algorithm is disclosed in ref. 177.
[0239] Where the invention concerns an "epitope", this epitope may be a B-cell epitope and/or a T-cell epitope. Such epitopes can be identified empirically (e.g. using PEPSCAN [178,179] or similar methods), or they can be predicted (e.g. using the Jameson-Wolf antigenic index [180], matrix-based approaches [181], MAPITOPE [182], TEPITOPE [183,184], neural networks [185], OptiMer & EpiMer [186, 187], ADEPT [188], Tsites [189], hydrophilicity [190], antigenic index [191] or the methods disclosed in references 192-196, etc.). Epitopes are the parts of an antigen that are recognised by and bind to the antigen binding sites of antibodies or T-cell receptors, and they may also be referred to as "antigenic determinants".
[0240] Where an antigen "domain" is omitted, this may involve omission of a signal peptide, of a cytoplasmic domain, of a transmembrane domain, of an extracellular domain, etc.
[0241] The term "comprising" encompasses "including" as well as "consisting" e.g. a composition "comprising" X may consist exclusively of X or may include something additional e.g. X+Y.
[0242] The term "about" in relation to a numerical value x means, for example, x.+-.10%.
[0243] The word "substantially" does not exclude "completely" e.g. a composition which is "substantially free" from Y may be completely free from Y. Where necessary, the word "substantially" may be omitted from the definition of the invention.
[0244] Where the invention provides a process involving multiple sequential steps, the invention can also provide a process involving less than the total number of steps. The different steps can be performed at very different times by different people in different places (e.g. in different countries).
[0245] It will be appreciated that sugar rings can exist in open and closed form and that, whilst closed forms are shown in structural formulae herein, open forms are also encompassed by the invention. Similarly, it will be appreciated that sugars can exist in pyranose and furanose forms and that, whilst pyranose forms are shown in structural formulae herein, furanose forms are also encompassed. Different anomeric forms of sugars are also encompassed.
BRIEF DESCRIPTION OF DRAWINGS
[0246] FIG. 1 illustrates a process for purifying S. aureus type 5 and type 8 capsular polysaccharides based on the method of reference 13.
[0247] FIG. 2A-FIG. 2B shows a DHAE Sepharose chromatogram of capsular polysaccharide (FIG. 2A) and a .sup.1H NMR spectrum of capsular polysaccharide-containing fractions (fractions 68-80) (FIG. 2B) prepared according to the method of FIG. 1.
[0248] FIG. 3A-FIG. 3B shows a S300 Sephacryl chromatogram of capsular polysaccharide (FIG. 3A) and a .sup.1H NMR spectrum of capsular polysaccharide-containing fractions (fractions 22-44) (FIG. 3B) prepared according to the method of FIG. 1.
[0249] FIG. 4 illustrates an exemplary process of the invention for purifying S. aureus type 5 and type 8 capsular polysaccharides.
[0250] FIG. 5 shows a DHAE Sepharose chromatogram of capsular polysaccharide prepared according to a method of the invention.
[0251] FIG. 6 shows a .sup.1H NMR spectrum for purified S. aureus type 5 capsular polysaccharide.
[0252] FIG. 7 shows the chemical structure of the peptidoglycan of S. aureus based on references 197, 198, 199 and 200. The repeat unit is highlighted.
MODES FOR CARRYING OUT THE INVENTION
[0253] A. Purification of S. aureus Type 5 Capsular Polysaccharide (Comparative Example)
[0254] S. aureus type 5 capsular polysaccharide was purified according to the scheme illustrated in FIG. 1 based on the method of reference 13. The conditions and rational for the various steps of this method are described in Table 1:
TABLE-US-00001 TABLE 1 Step Conditions Rationale Bacterial growth on plates Bacterial pellet Harvest of cells cetrifugation Reaction with 100 .mu.g/ml of Cell wall lysis and Lysostaphin Lysostaphin over- release of capsular night at 37.degree. C. polysaccharide Reaction with 50 .mu.g/ml of DNase Nucleic acid DNse/RNase and RNase at 37.degree. C. hydrolysis for 6-8 hrs Reaction with NaIO.sub.4 0.05M NaIO.sub.4 for 5 hrs Teichoic acid at RT in the dark hydrolysis Diafiltration 30 kDa Washing with NaCl Low molecular weight 1M and H.sub.2O species removal Anion exchange NaCl 1M gradient Sparation according chromatography (DEAE to charge SepharaoseFF resin) (protein removal) Gel filtration NaPi 10 nM pH 7.2 Separation according (Sephacryl S300) and NaCl 10 mM to molecular weight
[0255] Bacterial Pellet Centrifugation and Enzymatic Reactions (Lysostaphin and RNase/DNase)
[0256] S. aureus was grown in solid medium to provide a bacterial suspension of 600-800 ml. The wet cell pellet, harvested by centrifugation at 8000 rpm, had a mass of around 30-50 g. The harvested pellet was washed three times with 50 mM Tris-2 mM MgSO.sub.4 pH7.5 and then suspended at 0.25-0.5 g per ml in 50 mM Tris-2 mM MgSO.sub.4 pH7.5 and treated with 0.1-0.13 mg/ml of lysostaphin (Sigma-Aldrich). The reaction mixture was incubated at 37.degree. C. for 16 hrs (ON) with mild stirring. 0.05 mg/ml of DNase/RNase (Sigma-Aldrich) was added to the suspension and incubated for 5-7 hrs at 37.degree. C. The suspension was then clarified by centrifugation.
[0257] Reaction with NaIO.sub.4
[0258] The material was incubated with 50 mM NaIO.sub.4 (Sigma-Aldrich) in the dark for 5-7 hrs. NaIO.sub.4 was then removed by the addition of excess glycerol for 30 minutes with stirring in the light.
[0259] 30 kDa Tangential Flow Filtration
[0260] Tangential flow filtration was carried out as indicated in Table 2:
TABLE-US-00002 TABLE 2 Membrane type Sartorius Hydrosart .TM. 30 kDa Surface area 0.1 m.sup.2 P.sub.in/P.sub.out 0.4/0.0 bar Permeate flow rate 80 ml/min Diafiltration volumes 10 volumes of NaCl 1M followed by 10 volumes of distilled water Product recovery Retentate volume + two washings with distilled water equal to the dead volume of the system (with completely open retentate and closed permeate)
[0261] The tangential flow filtration was performed in a Sartorius.TM. holder for 0.1 m.sup.2 cassettes using a WatsonMarlon.TM. peristaltic pump. Afterwards, the membrane was washed with NaOH 1M and stored in NaOH 0.1M at +2-8.degree. C.
[0262] DEAE Sepharose Fast Flow Chromatography
[0263] Residual protein, nucleic acid and other impurities were removed by anion exchange chromatography carried out in accordance with Table 3:
TABLE-US-00003 TABLE 3 Resin DEAE Sepharoase .TM. Fast Flow resin (G&E Healthcare) Column dimension O = 5 cm; h = 7.5 cm; V = 150 ml Equilibration 10 mM NaPi buffer pH 7.2 q.b. to reach 1.8-2.0 mS/cm eluate conductivity Load Retentate from 30K UF buffered to 10 mM NaPi buffer pH 7.2 Elution 20 column volumes of 10 mM NaPi buffer pH 7.2 Stripping 20 column volumes of NaCl 1M
[0264] The chromatography was performed using an Akta.TM. system (G&E Healthcare) and the capsular polysaccharide was detected by measuring UV absorption at 215 nm. The capsular polysaccharide solution was first added to 100 mM NaPi buffer pH7.2 to obtain a final buffer concentration of 10 mM NaPi pH7.2. The DEAE resin was pre-equilibrated with 100 mM NaPi buffer pH7.2 to pH7.2 and then equilibrated with 10 mM NaPi buffer pH7.2 to achieve the indicated conductivity (10 mM NaPi buffer pH7.2 conductivity). The resultant fractions were analyzed by NMR and those containing capsular polysaccharide pooled together (FIG. 2).
[0265] S300 Sephacryl Chromatography
[0266] The polysaccharide was further purified by gel-filtration chromatography carried out in accordance with Table 4:
TABLE-US-00004 TABLE 4 Resin S300 Sephacryl .TM. resin (G&E Healthcare) Column dimension O = 2.6 cm; h = 95 cm; V = 500 ml Equilibration 50 mMNaCl buffer q.b. to reach 6.3-6.5 mS/cm eluate conductivity Load 12-14 ml Elution 50 mMNaCl buffer
[0267] The chromatography was performed on an Akta.TM. system (G&E Healthcare) and the capsular polysaccharide was detected by measuring UV absorption at 215 nm. The resultant fractions were analyzed by NMR and those containing capsular polysaccharide pooled together (FIG. 3).
[0268] B. Purification of S. aureus Type 5 and Type 8 Capsular Polysaccharides (Example)
[0269] S. aureus type 5 and type 8 capsular polysaccharides were purified according to the scheme illustrated in FIG. 4. The conditions and rationale for the various steps of this method are described in Table 5:
TABLE-US-00005 TABLE 5 Step Conditions Rationale Bacterial growth on plates Bacterial pellet centrifugation Harvest of cells Reaction with AcOH 1% 2 hrs at 100.degree. C. Cell wall lysis and release of capsular polysaccharide Reaction with mutanolysin 180 U/ml of Further removal of mutanolysin at peptidoglycan 37.degree. C. over-night Reaction with DNse/RNase 50 .mu.g/ml of DNase Nucleic acid and RNase at hydrolysis 37.degree. C. for 6-8 hrs Diafiltration 30 kDa Washing with NaCl Low molecular 1M and H.sub.2O weight species removal Anion exchange NaCl 1M gradient Separation according chromatography (DEAE to charge SepharoseFF resin) (protein removal)
[0270] Bacterial Pellet Centrifugation and Acid and Enzymatic Reactions (Acetic Acid, RNase/DNase and Mutanolysin)
[0271] S. aureus was grown in solid medium to provide a bacterial suspension of 600-800 ml. The wet cell pellet, harvested by centrifugation at 8000 rpm, had a mass of around 30-50 g. The harvested pellet was washed three times with 50 mM Tris-2 mM MgSO.sub.4 pH7.5 and then suspended at 0.5-0.6 g per ml in distilled water and stirred vigorously while the temperature was raised to 100.degree. C. Acetic acid was then added to a final concentration of 1% and the mixture kept at 100.degree. C. for 2 hrs. The mixture was neutralised with NaOH 1M and centrifuged at 8000 rpm.
[0272] The supernatant was decanted from the pellet and combined with 0.05 mg/ml of DNase/RNase (Sigma-Aldrich). The mixture was then incubated for 5-7 hrs at 37.degree. C. and afterwards clarified by centrifugation. 180 U/ml of mutanolysin (Sigma-Aldrich) was then added to the suspension and the mixture incubated over-night (for 16 hrs) at 37.degree. C. with mild stirring. The suspension was then clarified again by centrifugation
[0273] 30 kDa Tangential Flow Filtration
[0274] Tangential flow filtration was carried out as indicated in Table 6:
TABLE-US-00006 TABLE 6 Membrane type Sartorius Hydrosart .TM. 30 kDa Surface area 0.2 m.sup.2 P.sub.in/P.sub.out 0.7/0.0 bar Permeate flow rate 11 ml/min Diafiltration volumes 10 volumes of NaCl 1M followed by 10 volumes of NaPi 10 mM pH 7.2 buffer Product recovery Retentate volume + two washings with distilled water equal to the dead volume of the system (with completely open retentate and closed permeate)
[0275] The tangential flow filtration was performed in a Sartorius.TM. holder for 0.2 m.sup.2 cassettes using a WatsonMarlon.TM. peristaltic pump. Afterwards, the membrane was washed with NaOH 1M and stored in NaOH 0.1M at +2-8.degree. C.
[0276] DEAE Sepharose Fast Flow Chromatography
[0277] Residual protein, nucleic acid and other impurities were removed by anion exchange chromatography carried out in accordance with Table 7:
TABLE-US-00007 TABLE 7 Resin DEAE Sepharoase .TM. Fast Flow resin (G&E Healthcare) Column dimension O = 5 cm; h = 7.5 cm; V = 150 ml Equilibration 10 mM NaPi buffer pH 7.2 q.b. to reach 1.8-2.0 mS/cm eluate conductivity Load Retentate from 30K UF Elution 20 column volumes of 10 mM NaPi buffer pH 7.2 Stripping 20 column volumes of NaCl 1M
[0278] The chromatography was performed using an Akta.TM. system (G&E Healthcare) and the capsular polysaccharide was detected by measuring UV absorption at 215 nm. The capsular polysaccharide solution was first added to 100 mM NaPi buffer pH7.2 to obtain a final buffer concentration of 10 mM NaPi pH7.2. The DEAE resin was pre-equilibrated with 100 mM NaPi buffer pH7.2 to pH7.2 and then equilibrated with 10 mM NaPi buffer pH7.2 to achieve the indicated conductivity (10 mM NaPi buffer pH7.2 conductivity). The resultant fractions were analyzed by NMR and those containing capsular polysaccharide pooled together (FIG. 5).
[0279] 30 kDa Tangential how Filtration
[0280] Tangential flow filtration was carried out to remove NaCl left over from the anion exchange, chromatography and to concentrate the purified polysaccharides. The filtration was carried out as indicated in Table 8:
TABLE-US-00008 TABLE 8 Membrane type Sartorius Hydrosart .TM. 30 kDa Surface area 0.2 m.sup.2 P.sub.in/P.sub.out 00.7/0.0 bar Permeate flow rate 11 ml/min Diafiltration volumes 10 volumes of distilled water Product recovery Retentate volume + two washings with distilled water equal to the dead volume of the system (with completely open retentate and closed permeate)
[0281] The tangential flow filtration was performed in a Sartorius.TM. holder for 0.2 m.sup.2 cassettes using a WatsonMarlon.TM. peristaltic pump. Afterwards, the membrane was washed with NaOH 1M and stored in NaOH 0.1M at +2-8.degree. C. The purified polysaccharide was analysed by NMR (e.g. FIG. 6 for the type 5 capsular polysaccharide).
[0282] C. Determination of Peptidoglycan Contamination in Purified Polysaccharide
[0283] The peptidoglycan (FIG. 7) content of purified type 5 polysaccharide obtained according to the methods in sections A and B above was determined by amino acid analysis using HPAEC-PAD according to the Dionex AAA-Direct.TM. system (AminoPac.TM. PA10 AAA-Direct.TM., Dionex) in accordance with the manufacturer's instructions. Briefly, 20 .mu.L of 100 .mu.M norleucine was added to 200 .mu.L of polysaccharide at 250 .mu.g/mL in water in a 400.degree. C. treated glass tube and dried using a Speedvac system. The norleucine serves as an internal standard. Samples were hydrolyzed in vacuo using the vapor of boiling hydrochloric acid/phenol in order to yield free amino acids from residual protein and peptidoglycan contamination. Separation of free amino acids was performed on an AminoPac.TM. PA10 column (2.times.250 mm) equipped with an AminoPac.TM. PA10 guard column (2.times.50 mm) using a gradient condition for amino acids and carbohydrates according to the manufacturer's recommendations. These gradient conditions are summarized in Table 9:
TABLE-US-00009 TABLE 9 Time (min) % E1 % E2 % E3 Curve Comments Initiation 84 16 0 Autosampler fills the sample loop 0.0 84 16 0 Valve from Load to Inject 2.0 84 16 0 Begin hydroxide gradient 12.1 68 32 0 8 16.0 68 32 0 Begin acetate gradient 24.0 36 24 40 8 40.0 36 24 40 40.1 20 80 0 5 Column wash with hydroxide 42.1 20 80 0 42.2 84 16 0 5 Equilibrate to starting conditions 65.0 84 16 0 Eluent E1: Deionized Water; Eluent E2: 0.250M Sodiumn Hydroxide; Eluent E3: 1.0M Sodiumn Acetate and Flow = 0.25 mL/min
[0284] Detection was performed using a AAA-Direct waveform potential (Table 10).
TABLE-US-00010 TABLE 10 Potention (V) vs. Potential (V) vs. Time (sec) Ag/AgCl pH Integration 0.000 -0.20 +0.13 0.040 -0.20 +0.13 0.050 0.00 +0.33 0.210 0.00 +0.33 Begin 0.220 +0.22 +0.55 0.460 +0.22 +0.55 0.470 0.00 +0.33 0.560 0.00 +0.33 End 0.570 -0.20 -1.67 0.580 -0.20 -1.67 0.590 +0.60 +0.93 0.600 -0.20 +0.13
[0285] The quantification was performed using a non-hydrolyzed 17 amino acid standard solution (Fluka P/N 09428) in the range 2.5-50 .mu.M. Standard samples were analyzed with and without nor leucine, at the same sample concentration. The ratio of the norleucine peak area in the sample divided by the average nor leucine peak area in the standards was used as a correction factor for possible amino acid loss in the hydrolysis step. A BSA sample was used as control sample.
[0286] Peptidoglycan Content Estimation
[0287] Peptidoglycan content was estimated using two different methods. The first method (method 1) was based on the method used in reference 17, which involves a summation of the lysine, alanine, glycine and glutamate content. In the second method (method 2), a conversion factor is calculated for each amino acid according to the following formula:
(molecular mass of amino acid).times.(number of residues in the peptidoglycan structure)/(molecular mass of the repeating unit of peptidoglycan).
[0288] The molecular mass of the repeating unit of peptidoglycan is 1233.27 Da (FIG. 7). The peptidoglycan content was then calculated as the average peptidoglycan concentration obtained by calculating the ratio of the amino acid concentration and the conversion factor.
[0289] The peptidoglycan content of the purified type 5 capsular polysaccharide after anionic exchange chromatography is given in Table 11:
TABLE-US-00011 TABLE 11 Measurement % Peptidoglycan method Details of calculation Measurement 1 Measurement 2 1 Calculated according to 2.04 0.74 reference 17 as sum of Lys-Ala-Gly-Glx concentration 1 Calculated according to 0.48 0.85 reference 17 as sum of all amino acids detectable except for Lys-Ala-Gly-Glx 2 Calculated using 0.88 0.81 Ala and Gly concentration divided by PG conversion factor (Ala = 0.2167, Gly = 0.3043)
[0290] The method of the invention provides a very low content of peptidoglycan in the purified polysaccharide.
[0291] D. Conjugation and Immunogenicity of Purified Polysaccharides
[0292] Purified type 5 polysaccharides obtained from the methods in sections A and B above were conjugated to CRM197 according to the method of reference 29. Total saccharide in the conjugate was determined by HPAEC-PAD analysis and protein content by MicroBCA assay (Table 12).
TABLE-US-00012 TABLE 12 Purification Protein Saccharide Saccharide/protein method Lot (.mu.g/ml) (.mu.g/ml) (w/w) A 1 51.52 1.72 0.03 A 2 161.80 17.10 0.11 A 3 34.42 4.22 0.12 B 4 444.0 139.0 0.31 B 5 40.56 12.70 0.31
[0293] The conjugates prepared using polysaccharides purified by the method of the invention (lots 4 and 5) had higher polysaccharide:protein ratios.
[0294] The immunogenicity of lot 5 was tested in a mouse lethal model of S. aureus infection. Briefly, GDI mice were immunised by intraperitoneal injection with a 2 .mu.g dose of antigen in an injection volume of 200 .mu.l. Immunisations were carried out in groups of twelve mice according to the following scheme, prior to challenge by intraperitoneal injection of a bacterial suspension of 5.times.10.sup.8 CFU type 5 S. aureus. Cultures of S. aureus were centrifuged, washed twice and diluted in PBS before challenge. Further dilutions were needed for the desired inoculum, which was experimentally verified by agar plating and colony formation. Animals were monitored for 14 days and lethal disease recorded.
[0295] Group 1--PBS plus alum
[0296] Group 2--Type 5 capsular polysaccharide-CRM conjugate (Lot 5) plus alum
[0297] Group 4--Type 5 capsular polysaccharide-CRM conjugate (Lot 5) plus EsxAB, Sta006 and Sta011 proteins and alum
[0298] Group 5--Type 5 capsular polysaccharide-CRM conjugate (Lot 5) plus HlaH35L, Sta006 and Sta011 proteins and alum
[0299] Survival data is presented in Table 13:
TABLE-US-00013 TABLE 13 Time (days) Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 100 25 17 17 17 17 17 17 17 17 8 0 0 0 2 100 50 50 50 50 50 50 50 50 42 42 42 42 42 4 100 67 67 67 67 67 67 67 67 67 67 67 67 67 5 100 100 100 100 100 100 83 83 75 75 75 75 75 75
[0300] The conjugates prepared using polysaccharides purified by the method of the invention gave a high level of survival. Survival was enhanced by addition of S. aureus protein antigens.
[0301] It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention.
REFERENCES
[0302] [1] Fattom et al. (1990) Infect Immun. 58(7):2367-74.
[0303] [2] Fattom et al. (1992) Infect Immun. 60(2):584-9.
[0304] [3] Fattom et al. (1993) Infect Immun. 61(3):1023-32.
[0305] [4] Fattom et al. (1996) Infect Immun. 64(5): 1659-65.
[0306] [5] Welch et al. (1996) J Am Soc Nephrol 7(2):247-53.
[0307] [6] Fattom et al. (1998) Infect Immun. 66(10):4588-92.
[0308] [7] Fattom et al. (1993) Vaccine 17(2):126-33.
[0309] [8] Fattom et al. (2002) N Engl J Med 346(7):491-6.
[0310] [9] Robbins et al. (2005) Ann N Y Acad Sci. 754:68-82.
[0311] [10] Gilbert et al. (1994) J. Microb. Meth. 20:39-46.
[0312] [11] Gilbert et al. (1994) Vaccine. 12(4):369-74.
[0313] [12] Tollersrud et al. (2001) Vaccine. 19(28-29):3896-903.
[0314] [13] Lee et al. (1993) Infect Immun 61:1853-8.
[0315] [14] WO2004/080490.
[0316] [15] WO2006/032475.
[0317] [16] WO2006/032500.
[0318] [17] WO2006/065553.
[0319] [18] WO2006/114500.
[0320] [19] Moreau et al. (1990) Carbohydrate Res. 339(5):285-91
[0321] [20] Fournier et al. (1984) Infect. Immun. 45(1):87-93.
[0322] [21] Jones (2005) Carbohydrate Res. 340(6): 1097-106.
[0323] [22] Lemercinier and Jones (1996) Carbohydrate Res. 296:83-96.
[0324] [23] Jones and Lemercinier (2002) J Pharm Biomed Anal. 30(4): 1233-47.
[0325] [24] WO05/033148
[0326] [25] WO 00/56357
[0327] [26] Hestrin (1949) J. Biol. Chem. 180:249-261.
[0328] [27] Konadu et al. (1994) Infect. Immun. 62:5048-5054.
[0329] [28] www.polymer.de
[0330] [29] U.S. patent application 61/247,518, `CONJUGATION OF STAPHYLOCOCCUS AUREUS TYPE 5 AND TYPE 8 CAPSULAR POLYSACCHARIDES` (NOVARTIS AG). Assignee reference no. 53594-US-PSP and PCT application no. PCT/IB2010/002565 (NOVARTIS AG).
[0331] [30] WO2007/113222
[0332] [31] U.S. Pat. No. 6,045,805
[0333] [32] U.S. Pat. Nos. 6,027,733 & 6,274,144.
[0334] [33] www.polymer.de
[0335] [34] Wessels et al. (1989) Infect Immun 57:1089-94.
[0336] [35] Ramsay et al. (2001) Lancet 357(9251): 195-196.
[0337] [36] Lindberg (1999) Vaccine 17 Suppl 2:S28-36.
[0338] [37] Buttery & Moxon (2000) J R Coll Physicians Lond 34:163-68.
[0339] [38] Ahmad & Chapnick (1999) Infect Dis Clin North Am 13:113-33, vii.
[0340] [39] Goldblatt (1998) J. Med. Microbiol 47:563-7.
[0341] [40] European patent 0477508.
[0342] [41] U.S. Pat. No. 5,306,492.
[0343] [42] WO98/4272L
[0344] [43] Dick et al. in Conjugate Vaccines (eds. Cruse et al.) Karger, Basel, 1989, 10:48-114.
[0345] [44] Hermanson Bioconjugate Techniques, Academic Press, San Diego (1996) ISBN: 0123423368.
[0346] [45] Reynaud-Rondier et al. (1991) FEMS Microbiology Immunology 76:193-200.
[0347] [46] WO03/061558.
[0348] [47] Research Disclosure, 453077 (January 2002)
[0349] [48] Herbelin et al. (1997) J Dairy Sci. 80(9):2025-34.
[0350] [49] EP-A-0372501.
[0351] [50] EP-A-0378881.
[0352] [51] EP-A-0427347.
[0353] [52] WO93/17712
[0354] [53] WO94/03208.
[0355] [54] WO98/58668.
[0356] [55] EP-A-0471177.
[0357] [56] WO91/01146
[0358] [57] Falugi et al. (2001) Eur J Immunol 31:3816-3824.
[0359] [58] Baraldo et al. (2004) Infect Immun 72(8):4884-7.
[0360] [59] EP-A-0594610.
[0361] [60] Ruan et al. (1990) J Immunol 145:3379-3384.
[0362] [61] WO00/56360.
[0363] [62] WO02/091998.
[0364] [63] Kuo et al. (1995) Infect Immun 63:2706-13.
[0365] [64] Michon et al. (1998) Vaccine. 16:1732-41.
[0366] [65] WO01/72337
[0367] [66] WO00/61761.
[0368] [67] WO2004/041157.
[0369] [68] WO02/34771.
[0370] [69] WO99/42130.
[0371] [70] WO2004/011027.
[0372] [71] WO96/40242.
[0373] [72] Lei et al. (2000) Dev Biol (Basel) 103:259-264.
[0374] [73] WO00/38711; U.S. Pat. No. 6,146,902.
[0375] [74] WO99/24578.
[0376] [75] WO99/36544.
[0377] [76] WO99/57280:
[0378] [77] WO00/22430.
[0379] [78] Tettelin et al. (2000) Science 287:1809-1815.
[0380] [79] WO96/29412.
[0381] [80] Pizza et al. (2000) Science 287:1816-1820.
[0382] [81] WO01/52885.
[0383] [82] Bjune et al. (1991) Lancet 338(8775): 1093-1096.
[0384] [83] Fukasawa et al. (1999) Vaccine 17:2951-2958.
[0385] [84] Rosenqvist et al. (1998) Dev. Biol. Stand. 92:323-333.
[0386] [85] Costantino et al. (1992) Vaccine 10:691-698.
[0387] [86] WO03/007985.
[0388] [87] Watson (2000) Pediatr Infect Dis J 19:331-332.
[0389] [88] Rubin (2000) Pediatr Clin North Am 47:269-285, v.
[0390] [89] Jedrzejas (2001) Microbiol Mol Biol Rev 65:187-207.
[0391] [90] Bell (2000) Pediatr Infect Dis J 19:1187-1188.
[0392] [91] Iwarson (1995) APMIS 103:321-326.
[0393] [92] Gerlich et al. (1990) Vaccine 8 Suppl:S63-68 & 79-80.
[0394] [93] Hsu et al. (1999) Clin Liver Dis 3:901-915.
[0395] [94] Gustafsson et al. (1996) N. Engl J. Med. 334:349-355.
[0396] [95] Rappuoli et al. (1991) TIBTECH 9:232-238.
[0397] [96] Vaccines (2004) eds. Plotkin & Orenstein. ISBN 0-7216-9688-0.
[0398] [97] WO02/02606.
[0399] [98] Kalman et al. (1999) Nature Genetics 21:385-389.
[0400] [99] Read et al. (2000) Nucleic Acids Res 28:1397-406.
[0401] [100] Shirai et al. (2000) J. Infect. Dis. 181(Suppl3):S524-S527.
[0402] [101] WO99/27105.
[0403] [102] WO00/27994.
[0404] [103] WO00/37494.
[0405] [104] WO99/28475.
[0406] [105] Ross et al. (2001) Vaccine 19:4135-4142.
[0407] [106] Sutter et al. (2000) Pediatr Clin North Am 47:287-308.
[0408] [107] Zimmerman & Spann (1999) Am Fam Physician 59:113-118, 125-126.
[0409] [108] Dreesen (1997) Vaccine 15 Suppl:S2-6.
[0410] [109] MMWR Morb Mortal Wkly Rep 1998 Jan. 16; 47(1):12, 19.
[0411] [110] McMichael (2000) Vaccine 19 Suppl 1:S101-107.
[0412] [111] WO02/34771.
[0413] [112] Dale (1999) Infect Dis Clin North Am 13:227-43, viii.
[0414] [113] Ferretti et al. (2001) PNAS USA 98: 4658-4663.
[0415] [114] WO03/093306.
[0416] [115] WO2004/018646.
[0417] [116] WO2004/041157.
[0418] [117] Ichiman and Yoshida (1981) J. Appl. Bacteriol 51:229.
[0419] [118] U.S. Pat. No. 4,197,290
[0420] [119] Ichiman et al. (1991) J. Appl. Bacteriol. 71:176.
[0421] [120] Robinson & Torres (1997) Seminars in Immunology 9:271-283.
[0422] [121] Donnelly et al. (1997) Annu Rev Immunol 15:617-648.
[0423] [122] Scott-Taylor & Dalgleish (2000) Expert Opin Investig Drugs 9:471-480.
[0424] [123] Apostolopoulos & Plebanski (2000) Curr Opin Mol Ther 2:441-447.
[0425] [124] Ilan (1999) Curr Opin Mol Ther 1:116-120.
[0426] [125] Dubensky et al. (2000) Mol Med 6:723-732.
[0427] [126] Robinson & Pertmer (2000) Adv Virus Res 55:1-74.
[0428] [127] Donnelly et al. (2000) Am J Respir Crit Care Med 162(4 Pt 2):S190-193.
[0429] [128] Davis (1999) Mt. Sinai J. Med. 66:84-90.
[0430] [129] Gennaro (2000) Remington: The Science and Practice of Pharmacy. 20th edition, ISBN: 0683306472.
[0431] [130] Joyce et al. (2003) Carbohydrate Research 338:903.
[0432] [131] Maira-Litran et al. (2002) Infect. Immun. 70:4433.
[0433] [132] WO2004/043407.
[0434] [133] WO2007/113224.
[0435] [134] WO2004/043405
[0436] [135] WO98/10788.
[0437] [136] WO2007/053176.
[0438] [137] WO2007/113222.
[0439] [138] WO2005/009379.
[0440] [139] WO2009/029132,
[0441] [140] WO2008/079315.
[0442] [141] WO2005/086663.
[0443] [142] WO2005/115113.
[0444] [143] WO2006/033918.
[0445] [144] WO2006/078680.
[0446] [145] Kuroda et al. (2001) Lancet 357(9264): 1225-1240; see also pages 1218-1219.
[0447] [146] Sjodahl (1977) J. Biochem. 73:343-351.
[0448] [147] Uhlen et al. (1984) J. Biol Chem. 259:1695-1702 & 13628 (Corn).
[0449] [148] Schneewind et al. (1992) Cell 70:267-281.
[0450] [149] DeDent et al. (2008) EMBO J. 27:2656-2668.
[0451] [150] Sjoquist et al. (1972) Eur. J. Biochem. 30:190-194.
[0452] [151] DeDent et al. (2007) J. Bacterial 189:4473-4484.
[0453] [152] Deisenhofer et al., (1978) Hoppe-Seyh Zeitsch. Physiol Chem. 359:975-985.
[0454] [153] Deisenhofer (1981) Biochemistry 20:2361-2370.
[0455] [154] Graille et al. (2000) Proc. Nat. Acad. Sci. USA 97:5399-5404.
[0456] [155] O'Seaghdha et al. (2006) FEBS J. 273:4831-41.
[0457] [156] Gomez et al. (2006) J. Biol Chem. 281:20190-20196.
[0458] [157] WO2007/071692.
[0459] [158] Sebulsky & Heinrichs (2001) J Bacteriol 183:4994-5000.
[0460] [159] Sebulsky et al. (2003) J Biol Chem 278:49890-900.
[0461] [160] WO2005/009378.
[0462] [161] Rable & Wardenburg (2009) Infect Immun 77:2712-8.
[0463] [162] WO2007/145689.
[0464] [163] WO2009/029831.
[0465] [164] WO2005/079315.
[0466] [165] WO2008/152447.
[0467] [166] Kuklin et al. (2006) Infect Immun. 74(4):2215-23.
[0468] [167] WO2005/009379.
[0469] [168] Gennaro (2000) Remington: The Science and Practice of Pharmacy. 20th edition, ISBN: 0683306472.
[0470] [169] Methods In Enzymology (S. Colowick and N. Kaplan, eds., Academic Press, Inc.)
[0471] [170] Handbook of Experimental Immunology, Vols. I-IV (D. M. Weir and C. C. Blackwell, eds, 1986, Blackwell Scientific Publications)
[0472] [171] Sambrook et al. (2001) Molecular Cloning: A Laboratory Manual, 3rd edition (Cold Spring Harbor Laboratory Press).
[0473] [172] Handbook of Surface and Colloidal Chemistry (Birdi, K. S. ed., CRC Press, 1997)
[0474] [173] Ausubel et al. (eds) (2002) Short protocols in molecular biology, 5th edition (Current Protocols).
[0475] [174] Molecular Biology Techniques: An Intensive Laboratory Course, (Ream et al., eds., 1998, Academic Press)
[0476] [175] PCR (Introduction to Biotechniques Series), 2nd ed. (Newton & Graham eds., 1997, Springer Verlag)
[0477] [176] Current Protocols in Molecular Biology (F. M. Ausubel et al, eds., 1987) Supplement 30
[0478] [177] Smith & Waterman (1981) Adv. Appl. Math. 2: 482-489.
[0479] [178] Geysen et al. (1984) PNAS USA 81:3998-4002.
[0480] [179] Carter (1994) Methods Mol Biol 36:207-23.
[0481] [180] Jameson, B A et al. 1988, CABIOS 4(1):181-186.
[0482] [181] Raddrizzani & Hammer (2000) Brief Bioinform 1(2): 179-89.
[0483] [182] Bublil et al. (2007) Proteins 68(1):294-304.
[0484] [183] De Lalla et al. (1999) J. Immunol 163:1725-29.
[0485] [184] Kwok et al. (2001) Trends Immunol 22:583-88.
[0486] [185] Brusic et al. (1998) Bioinformatics 14(2): 121-30
[0487] [186] Meister et al. (1995) Vaccine 13(6):581-91.
[0488] [187] Roberts et al. (1996) AIDS Res Hum Retroviruses 12(7):593-610.
[0489] [188] Maksyutov & Zagrebelnaya (1993) Comput Appl Biosci 9(3):291-7.
[0490] [189] Feller & de la Cruz (1991) Nature 349(6311):720-1.
[0491] [190] Hopp (1993) Peptide Research 6:183-190.
[0492] [191] Welling et al. (1985) FEBS Lett. 188:215-218.
[0493] [192] Davenport et al. (1995) Immunogenetics 42:392-297.
[0494] [193] Tsurui & Takahashi (2007) J Pharmacol Sci. 105(4):299-316.
[0495] [194] Tong et al. (2007) Brief Bioinform. 8(2):96-108.
[0496] [195] Schirle et al. (2001) J Immunol Methods. 257(1-2):1-16.
[0497] [196] Chen et al. (2007) Amino Acids 33(3):423-8.
[0498] [197] Kim et al. (2008) Biochemistry 47 (2)-3822-3831.
[0499] [198] Patti et al. (2008) Biochemistry 47(32):8378-8385.
[0500] [199] Kim and Schaefer (2008) Biochemistry 47(38):10155-10161.
[0501] [200] Biswas (2006) PhD Thesis: Characterization of Staphylococcus aureus peptidoglycan hydrolaes and isolation of defined peptidoglycan structures der Eberhard Karls Universitat Tubingen
Sequence CWU
1
1
541927PRTStaphylococcus aureus 1Met Asn Met Lys Lys Lys Glu Lys His Ala
Ile Arg Lys Lys Ser Ile1 5 10
15 Gly Val Ala Ser Val Leu Val Gly Thr Leu Ile Gly Phe Gly Leu
Leu 20 25 30 Ser
Ser Lys Glu Ala Asp Ala Ser Glu Asn Ser Val Thr Gln Ser Asp 35
40 45 Ser Ala Ser Asn Glu Ser
Lys Ser Asn Asp Ser Ser Ser Val Ser Ala 50 55
60 Ala Pro Lys Thr Asp Asp Thr Asn Val Ser Asp
Thr Lys Thr Ser Ser65 70 75
80 Asn Thr Asn Asn Gly Glu Thr Ser Val Ala Gln Asn Pro Ala Gln Gln
85 90 95 Glu Thr Thr
Gln Ser Ser Ser Thr Asn Ala Thr Thr Glu Glu Thr Pro 100
105 110 Val Thr Gly Glu Ala Thr Thr Thr
Thr Thr Asn Gln Ala Asn Thr Pro 115 120
125 Ala Thr Thr Gln Ser Ser Asn Thr Asn Ala Glu Glu Leu
Val Asn Gln 130 135 140
Thr Ser Asn Glu Thr Thr Ser Asn Asp Thr Asn Thr Val Ser Ser Val145
150 155 160 Asn Ser Pro Gln Asn
Ser Thr Asn Ala Glu Asn Val Ser Thr Thr Gln 165
170 175 Asp Thr Ser Thr Glu Ala Thr Pro Ser Asn
Asn Glu Ser Ala Pro Gln 180 185
190 Ser Thr Asp Ala Ser Asn Lys Asp Val Val Asn Gln Ala Val Asn
Thr 195 200 205 Ser
Ala Pro Arg Met Arg Ala Phe Ser Leu Ala Ala Val Ala Ala Asp 210
215 220 Ala Pro Val Ala Gly Thr
Asp Ile Thr Asn Gln Leu Thr Asn Val Thr225 230
235 240 Val Gly Ile Asp Ser Gly Thr Thr Val Tyr Pro
His Gln Ala Gly Tyr 245 250
255 Val Lys Leu Asn Tyr Gly Phe Ser Val Pro Asn Ser Ala Val Lys Gly
260 265 270 Asp Thr Phe
Lys Ile Thr Val Pro Lys Glu Leu Asn Leu Asn Gly Val 275
280 285 Thr Ser Thr Ala Lys Val Pro Pro
Ile Met Ala Gly Asp Gln Val Leu 290 295
300 Ala Asn Gly Val Ile Asp Ser Asp Gly Asn Val Ile Tyr
Thr Phe Thr305 310 315
320 Asp Tyr Val Asn Thr Lys Asp Asp Val Lys Ala Thr Leu Thr Met Pro
325 330 335 Ala Tyr Ile Asp
Pro Glu Asn Val Lys Lys Thr Gly Asn Val Thr Leu 340
345 350 Ala Thr Gly Ile Gly Ser Thr Thr Ala
Asn Lys Thr Val Leu Val Asp 355 360
365 Tyr Glu Lys Tyr Gly Lys Phe Tyr Asn Leu Ser Ile Lys Gly
Thr Ile 370 375 380
Asp Gln Ile Asp Lys Thr Asn Asn Thr Tyr Arg Gln Thr Ile Tyr Val385
390 395 400 Asn Pro Ser Gly Asp
Asn Val Ile Ala Pro Val Leu Thr Gly Asn Leu 405
410 415 Lys Pro Asn Thr Asp Ser Asn Ala Leu Ile
Asp Gln Gln Asn Thr Ser 420 425
430 Ile Lys Val Tyr Lys Val Asp Asn Ala Ala Asp Leu Ser Glu Ser
Tyr 435 440 445 Phe
Val Asn Pro Glu Asn Phe Glu Asp Val Thr Asn Ser Val Asn Ile 450
455 460 Thr Phe Pro Asn Pro Asn
Gln Tyr Lys Val Glu Phe Asn Thr Pro Asp465 470
475 480 Asp Gln Ile Thr Thr Pro Tyr Ile Val Val Val
Asn Gly His Ile Asp 485 490
495 Pro Asn Ser Lys Gly Asp Leu Ala Leu Arg Ser Thr Leu Tyr Gly Tyr
500 505 510 Asn Ser Asn
Ile Ile Trp Arg Ser Met Ser Trp Asp Asn Glu Val Ala 515
520 525 Phe Asn Asn Gly Ser Gly Ser Gly
Asp Gly Ile Asp Lys Pro Val Val 530 535
540 Pro Glu Gln Pro Asp Glu Pro Gly Glu Ile Glu Pro Ile
Pro Glu Asp545 550 555
560 Ser Asp Ser Asp Pro Gly Ser Asp Ser Gly Ser Asp Ser Asn Ser Asp
565 570 575 Ser Gly Ser Asp
Ser Gly Ser Asp Ser Thr Ser Asp Ser Gly Ser Asp 580
585 590 Ser Ala Ser Asp Ser Asp Ser Ala Ser
Asp Ser Asp Ser Ala Ser Asp 595 600
605 Ser Asp Ser Ala Ser Asp Ser Asp Ser Ala Ser Asp Ser Asp
Ser Asp 610 615 620
Asn Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp625
630 635 640 Ser Asp Ser Asp Ser
Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp 645
650 655 Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp
Ser Asp Ser Asp Ser Asp 660 665
670 Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser
Asp 675 680 685 Ser
Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp 690
695 700 Ser Asp Ser Asp Ser Asp
Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp705 710
715 720 Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser
Asp Ser Asp Ser Asp 725 730
735 Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp
740 745 750 Ser Asp Ser
Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Ala 755
760 765 Ser Asp Ser Asp Ser Asp Ser Asp
Ser Asp Ser Asp Ser Asp Ser Asp 770 775
780 Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser
Asp Ser Asp785 790 795
800 Ser Asp Ser Asp Ser Asp Ser Glu Ser Asp Ser Asp Ser Asp Ser Asp
805 810 815 Ser Asp Ser Asp
Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Ala 820
825 830 Ser Asp Ser Asp Ser Gly Ser Asp Ser
Asp Ser Ser Ser Asp Ser Asp 835 840
845 Ser Glu Ser Asp Ser Asn Ser Asp Ser Glu Ser Val Ser Asn
Asn Asn 850 855 860
Val Val Pro Pro Asn Ser Pro Lys Asn Gly Thr Asn Ala Ser Asn Lys865
870 875 880 Asn Glu Ala Lys Asp
Ser Lys Glu Pro Leu Pro Asp Thr Gly Ser Glu 885
890 895 Asp Glu Ala Asn Thr Ser Leu Ile Trp Gly
Leu Leu Ala Ser Ile Gly 900 905
910 Ser Leu Leu Leu Phe Arg Arg Lys Lys Glu Asn Lys Asp Lys Lys
915 920 925
2520PRTStaphylococcus aureus 2Ser Glu Asn Ser Val Thr Gln Ser Asp Ser Ala
Ser Asn Glu Ser Lys1 5 10
15 Ser Asn Asp Ser Ser Ser Val Ser Ala Ala Pro Lys Thr Asp Asp Thr
20 25 30 Asn Val
Ser Asp Thr Lys Thr Ser Ser Asn Thr Asn Asn Gly Glu Thr 35
40 45 Ser Val Ala Gln Asn Pro Ala
Gln Gln Glu Thr Thr Gln Ser Ser Ser 50 55
60 Thr Asn Ala Thr Thr Glu Glu Thr Pro Val Thr Gly
Glu Ala Thr Thr65 70 75
80 Thr Thr Thr Asn Gln Ala Asn Thr Pro Ala Thr Thr Gln Ser Ser Asn
85 90 95 Thr Asn Ala Glu
Glu Leu Val Asn Gln Thr Ser Asn Glu Thr Thr Ser 100
105 110 Asn Asp Thr Asn Thr Val Ser Ser Val
Asn Ser Pro Gln Asn Ser Thr 115 120
125 Asn Ala Glu Asn Val Ser Thr Thr Gln Asp Thr Ser Thr Glu
Ala Thr 130 135 140
Pro Ser Asn Asn Glu Ser Ala Pro Gln Ser Thr Asp Ala Ser Asn Lys145
150 155 160 Asp Val Val Asn Gln
Ala Val Asn Thr Ser Ala Pro Arg Met Arg Ala 165
170 175 Phe Ser Leu Ala Ala Val Ala Ala Asp Ala
Pro Val Ala Gly Thr Asp 180 185
190 Ile Thr Asn Gln Leu Thr Asn Val Thr Val Gly Ile Asp Ser Gly
Thr 195 200 205 Thr
Val Tyr Pro His Gln Ala Gly Tyr Val Lys Leu Asn Tyr Gly Phe 210
215 220 Ser Val Pro Asn Ser Ala
Val Lys Gly Asp Thr Phe Lys Ile Thr Val225 230
235 240 Pro Lys Glu Leu Asn Leu Asn Gly Val Thr Ser
Thr Ala Lys Val Pro 245 250
255 Pro Ile Met Ala Gly Asp Gln Val Leu Ala Asn Gly Val Ile Asp Ser
260 265 270 Asp Gly Asn
Val Ile Tyr Thr Phe Thr Asp Tyr Val Asn Thr Lys Asp 275
280 285 Asp Val Lys Ala Thr Leu Thr Met
Pro Ala Tyr Ile Asp Pro Glu Asn 290 295
300 Val Lys Lys Thr Gly Asn Val Thr Leu Ala Thr Gly Ile
Gly Ser Thr305 310 315
320 Thr Ala Asn Lys Thr Val Leu Val Asp Tyr Glu Lys Tyr Gly Lys Phe
325 330 335 Tyr Asn Leu Ser
Ile Lys Gly Thr Ile Asp Gln Ile Asp Lys Thr Asn 340
345 350 Asn Thr Tyr Arg Gln Thr Ile Tyr Val
Asn Pro Ser Gly Asp Asn Val 355 360
365 Ile Ala Pro Val Leu Thr Gly Asn Leu Lys Pro Asn Thr Asp
Ser Asn 370 375 380
Ala Leu Ile Asp Gln Gln Asn Thr Ser Ile Lys Val Tyr Lys Val Asp385
390 395 400 Asn Ala Ala Asp Leu
Ser Glu Ser Tyr Phe Val Asn Pro Glu Asn Phe 405
410 415 Glu Asp Val Thr Asn Ser Val Asn Ile Thr
Phe Pro Asn Pro Asn Gln 420 425
430 Tyr Lys Val Glu Phe Asn Thr Pro Asp Asp Gln Ile Thr Thr Pro
Tyr 435 440 445 Ile
Val Val Val Asn Gly His Ile Asp Pro Asn Ser Lys Gly Asp Leu 450
455 460 Ala Leu Arg Ser Thr Leu
Tyr Gly Tyr Asn Ser Asn Ile Ile Trp Arg465 470
475 480 Ser Met Ser Trp Asp Asn Glu Val Ala Phe Asn
Asn Gly Ser Gly Ser 485 490
495 Gly Asp Gly Ile Asp Lys Pro Val Val Pro Glu Gln Pro Asp Glu Pro
500 505 510 Gly Glu Ile
Glu Pro Ile Pro Glu 515 520 3877PRTStaphylococcus
aureus 3Met Lys Lys Arg Ile Asp Tyr Leu Ser Asn Lys Gln Asn Lys Tyr Ser1
5 10 15 Ile Arg Arg
Phe Thr Val Gly Thr Thr Ser Val Ile Val Gly Ala Thr 20
25 30 Ile Leu Phe Gly Ile Gly Asn His
Gln Ala Gln Ala Ser Glu Gln Ser 35 40
45 Asn Asp Thr Thr Gln Ser Ser Lys Asn Asn Ala Ser Ala
Asp Ser Glu 50 55 60
Lys Asn Asn Met Ile Glu Thr Pro Gln Leu Asn Thr Thr Ala Asn Asp65
70 75 80 Thr Ser Asp Ile Ser
Ala Asn Thr Asn Ser Ala Asn Val Asp Ser Thr 85
90 95 Thr Lys Pro Met Ser Thr Gln Thr Ser Asn
Thr Thr Thr Thr Glu Pro 100 105
110 Ala Ser Thr Asn Glu Thr Pro Gln Pro Thr Ala Ile Lys Asn Gln
Ala 115 120 125 Thr
Ala Ala Lys Met Gln Asp Gln Thr Val Pro Gln Glu Ala Asn Ser 130
135 140 Gln Val Asp Asn Lys Thr
Thr Asn Asp Ala Asn Ser Ile Ala Thr Asn145 150
155 160 Ser Glu Leu Lys Asn Ser Gln Thr Leu Asp Leu
Pro Gln Ser Ser Pro 165 170
175 Gln Thr Ile Ser Asn Ala Gln Gly Thr Ser Lys Pro Ser Val Arg Thr
180 185 190 Arg Ala Val
Arg Ser Leu Ala Val Ala Glu Pro Val Val Asn Ala Ala 195
200 205 Asp Ala Lys Gly Thr Asn Val Asn
Asp Lys Val Thr Ala Ser Asn Phe 210 215
220 Lys Leu Glu Lys Thr Thr Phe Asp Pro Asn Gln Ser Gly
Asn Thr Phe225 230 235
240 Met Ala Ala Asn Phe Thr Val Thr Asp Lys Val Lys Ser Gly Asp Tyr
245 250 255 Phe Thr Ala Lys
Leu Pro Asp Ser Leu Thr Gly Asn Gly Asp Val Asp 260
265 270 Tyr Ser Asn Ser Asn Asn Thr Met Pro
Ile Ala Asp Ile Lys Ser Thr 275 280
285 Asn Gly Asp Val Val Ala Lys Ala Thr Tyr Asp Ile Leu Thr
Lys Thr 290 295 300
Tyr Thr Phe Val Phe Thr Asp Tyr Val Asn Asn Lys Glu Asn Ile Asn305
310 315 320 Gly Gln Phe Ser Leu
Pro Leu Phe Thr Asp Arg Ala Lys Ala Pro Lys 325
330 335 Ser Gly Thr Tyr Asp Ala Asn Ile Asn Ile
Ala Asp Glu Met Phe Asn 340 345
350 Asn Lys Ile Thr Tyr Asn Tyr Ser Ser Pro Ile Ala Gly Ile Asp
Lys 355 360 365 Pro
Asn Gly Ala Asn Ile Ser Ser Gln Ile Ile Gly Val Asp Thr Ala 370
375 380 Ser Gly Gln Asn Thr Tyr
Lys Gln Thr Val Phe Val Asn Pro Lys Gln385 390
395 400 Arg Val Leu Gly Asn Thr Trp Val Tyr Ile Lys
Gly Tyr Gln Asp Lys 405 410
415 Ile Glu Glu Ser Ser Gly Lys Val Ser Ala Thr Asp Thr Lys Leu Arg
420 425 430 Ile Phe Glu
Val Asn Asp Thr Ser Lys Leu Ser Asp Ser Tyr Tyr Ala 435
440 445 Asp Pro Asn Asp Ser Asn Leu Lys
Glu Val Thr Asp Gln Phe Lys Asn 450 455
460 Arg Ile Tyr Tyr Glu His Pro Asn Val Ala Ser Ile Lys
Phe Gly Asp465 470 475
480 Ile Thr Lys Thr Tyr Val Val Leu Val Glu Gly His Tyr Asp Asn Thr
485 490 495 Gly Lys Asn Leu
Lys Thr Gln Val Ile Gln Glu Asn Val Asp Pro Val 500
505 510 Thr Asn Arg Asp Tyr Ser Ile Phe Gly
Trp Asn Asn Glu Asn Val Val 515 520
525 Arg Tyr Gly Gly Gly Ser Ala Asp Gly Asp Ser Ala Val Asn
Pro Lys 530 535 540
Asp Pro Thr Pro Gly Pro Pro Val Asp Pro Glu Pro Ser Pro Asp Pro545
550 555 560 Glu Pro Glu Pro Thr
Pro Asp Pro Glu Pro Ser Pro Asp Pro Glu Pro 565
570 575 Glu Pro Ser Pro Asp Pro Asp Pro Asp Ser
Asp Ser Asp Ser Asp Ser 580 585
590 Gly Ser Asp Ser Asp Ser Gly Ser Asp Ser Asp Ser Glu Ser Asp
Ser 595 600 605 Asp
Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Glu Ser 610
615 620 Asp Ser Asp Ser Glu Ser
Asp Ser Glu Ser Asp Ser Asp Ser Asp Ser625 630
635 640 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp
Ser Asp Ser Asp Ser 645 650
655 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser
660 665 670 Asp Ser Asp
Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser 675
680 685 Asp Ser Asp Ser Asp Ser Asp Ser
Asp Ser Asp Ser Asp Ser Asp Ser 690 695
700 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp
Ser Asp Ser705 710 715
720 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser
725 730 735 Asp Ser Asp Ser
Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser 740
745 750 Asp Ser Asp Ser Asp Ser Asp Ser Asp
Ser Asp Ser Asp Ser Asp Ser 755 760
765 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser
Asp Ser 770 775 780
Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser785
790 795 800 Asp Ser Asp Ser Arg
Val Thr Pro Pro Asn Asn Glu Gln Lys Ala Pro 805
810 815 Ser Asn Pro Lys Gly Glu Val Asn His Ser
Asn Lys Val Ser Lys Gln 820 825
830 His Lys Thr Asp Ala Leu Pro Glu Thr Gly Asp Lys Ser Glu Asn
Thr 835 840 845 Asn
Ala Thr Leu Phe Gly Ala Met Met Ala Leu Leu Gly Ser Leu Leu 850
855 860 Leu Phe Arg Lys Arg Lys
Gln Asp His Lys Glu Lys Ala865 870 875
4508PRTStaphylococcus aureus 4Ser Glu Gln Ser Asn Asp Thr Thr Gln
Ser Ser Lys Asn Asn Ala Ser1 5 10
15 Ala Asp Ser Glu Lys Asn Asn Met Ile Glu Thr Pro Gln Leu
Asn Thr 20 25 30
Thr Ala Asn Asp Thr Ser Asp Ile Ser Ala Asn Thr Asn Ser Ala Asn 35
40 45 Val Asp Ser Thr Thr
Lys Pro Met Ser Thr Gln Thr Ser Asn Thr Thr 50 55
60 Thr Thr Glu Pro Ala Ser Thr Asn Glu Thr
Pro Gln Pro Thr Ala Ile65 70 75
80 Lys Asn Gln Ala Thr Ala Ala Lys Met Gln Asp Gln Thr Val Pro
Gln 85 90 95 Glu
Ala Asn Ser Gln Val Asp Asn Lys Thr Thr Asn Asp Ala Asn Ser
100 105 110 Ile Ala Thr Asn Ser
Glu Leu Lys Asn Ser Gln Thr Leu Asp Leu Pro 115
120 125 Gln Ser Ser Pro Gln Thr Ile Ser Asn
Ala Gln Gly Thr Ser Lys Pro 130 135
140 Ser Val Arg Thr Arg Ala Val Arg Ser Leu Ala Val Ala
Glu Pro Val145 150 155
160 Val Asn Ala Ala Asp Ala Lys Gly Thr Asn Val Asn Asp Lys Val Thr
165 170 175 Ala Ser Asn Phe
Lys Leu Glu Lys Thr Thr Phe Asp Pro Asn Gln Ser 180
185 190 Gly Asn Thr Phe Met Ala Ala Asn Phe
Thr Val Thr Asp Lys Val Lys 195 200
205 Ser Gly Asp Tyr Phe Thr Ala Lys Leu Pro Asp Ser Leu Thr
Gly Asn 210 215 220
Gly Asp Val Asp Tyr Ser Asn Ser Asn Asn Thr Met Pro Ile Ala Asp225
230 235 240 Ile Lys Ser Thr Asn
Gly Asp Val Val Ala Lys Ala Thr Tyr Asp Ile 245
250 255 Leu Thr Lys Thr Tyr Thr Phe Val Phe Thr
Asp Tyr Val Asn Asn Lys 260 265
270 Glu Asn Ile Asn Gly Gln Phe Ser Leu Pro Leu Phe Thr Asp Arg
Ala 275 280 285 Lys
Ala Pro Lys Ser Gly Thr Tyr Asp Ala Asn Ile Asn Ile Ala Asp 290
295 300 Glu Met Phe Asn Asn Lys
Ile Thr Tyr Asn Tyr Ser Ser Pro Ile Ala305 310
315 320 Gly Ile Asp Lys Pro Asn Gly Ala Asn Ile Ser
Ser Gln Ile Ile Gly 325 330
335 Val Asp Thr Ala Ser Gly Gln Asn Thr Tyr Lys Gln Thr Val Phe Val
340 345 350 Asn Pro Lys
Gln Arg Val Leu Gly Asn Thr Trp Val Tyr Ile Lys Gly 355
360 365 Tyr Gln Asp Lys Ile Glu Glu Ser
Ser Gly Lys Val Ser Ala Thr Asp 370 375
380 Thr Lys Leu Arg Ile Phe Glu Val Asn Asp Thr Ser Lys
Leu Ser Asp385 390 395
400 Ser Tyr Tyr Ala Asp Pro Asn Asp Ser Asn Leu Lys Glu Val Thr Asp
405 410 415 Gln Phe Lys Asn
Arg Ile Tyr Tyr Glu His Pro Asn Val Ala Ser Ile 420
425 430 Lys Phe Gly Asp Ile Thr Lys Thr Tyr
Val Val Leu Val Glu Gly His 435 440
445 Tyr Asp Asn Thr Gly Lys Asn Leu Lys Thr Gln Val Ile Gln
Glu Asn 450 455 460
Val Asp Pro Val Thr Asn Arg Asp Tyr Ser Ile Phe Gly Trp Asn Asn465
470 475 480 Glu Asn Val Val Arg
Tyr Gly Gly Gly Ser Ala Asp Gly Asp Ser Ala 485
490 495 Val Asn Pro Lys Asp Pro Thr Pro Gly Pro
Pro Val 500 505
5316PRTStaphylococcus aureus 5Ser Glu Gln Ser Asn Asp Thr Thr Gln Ser Ser
Lys Asn Asn Ala Ser1 5 10
15 Ala Asp Ser Glu Lys Asn Asn Met Ile Glu Thr Pro Gln Leu Asn Thr
20 25 30 Thr Ala Asn
Asp Thr Ser Asp Ile Ser Ala Asn Thr Asn Ser Ala Asn 35
40 45 Val Asp Ser Thr Thr Lys Pro Met
Ser Thr Gln Thr Ser Asn Thr Thr 50 55
60 Thr Thr Glu Pro Ala Ser Thr Asn Glu Thr Pro Gln Pro
Thr Ala Ile65 70 75 80
Lys Asn Gln Ala Thr Ala Ala Lys Met Gln Asp Gln Thr Val Pro Gln
85 90 95 Glu Ala Asn Ser Gln
Val Asp Asn Lys Thr Thr Asn Asp Ala Asn Ser 100
105 110 Ile Ala Thr Asn Ser Glu Leu Lys Asn Ser
Gln Thr Leu Asp Leu Pro 115 120
125 Gln Ser Ser Pro Gln Thr Ile Ser Asn Ala Gln Gly Thr Ser
Lys Pro 130 135 140
Ser Val Arg Thr Arg Ala Val Arg Ser Leu Ala Val Ala Glu Pro Val145
150 155 160 Val Asn Ala Ala Asp
Ala Lys Gly Thr Asn Val Asn Asp Lys Val Thr 165
170 175 Ala Ser Asn Phe Lys Leu Glu Lys Thr Thr
Phe Asp Pro Asn Gln Ser 180 185
190 Gly Asn Thr Phe Met Ala Ala Asn Phe Thr Val Thr Asp Lys Val
Lys 195 200 205 Ser
Gly Asp Tyr Phe Thr Ala Lys Leu Pro Asp Ser Leu Thr Gly Asn 210
215 220 Gly Asp Val Asp Tyr Ser
Asn Ser Asn Asn Thr Met Pro Ile Ala Asp225 230
235 240 Ile Lys Ser Thr Asn Gly Asp Val Val Ala Lys
Ala Thr Tyr Asp Ile 245 250
255 Leu Thr Lys Thr Tyr Thr Phe Val Phe Thr Asp Tyr Val Asn Asn Lys
260 265 270 Glu Asn Ile
Asn Gly Gln Phe Ser Leu Pro Leu Phe Thr Asp Arg Ala 275
280 285 Lys Ala Pro Lys Ser Gly Thr Tyr
Asp Ala Asn Ile Asn Ile Ala Asp 290 295
300 Glu Met Phe Asn Asn Lys Ile Thr Tyr Asn Tyr Ser305
310 315 6331PRTStaphylococcus aureus
6Gly Thr Asn Val Asn Asp Lys Val Thr Ala Ser Asn Phe Lys Leu Glu1
5 10 15 Lys Thr Thr Phe Asp
Pro Asn Gln Ser Gly Asn Thr Phe Met Ala Ala 20
25 30 Asn Phe Thr Val Thr Asp Lys Val Lys Ser
Gly Asp Tyr Phe Thr Ala 35 40 45
Lys Leu Pro Asp Ser Leu Thr Gly Asn Gly Asp Val Asp Tyr Ser
Asn 50 55 60 Ser
Asn Asn Thr Met Pro Ile Ala Asp Ile Lys Ser Thr Asn Gly Asp65
70 75 80 Val Val Ala Lys Ala Thr
Tyr Asp Ile Leu Thr Lys Thr Tyr Thr Phe 85
90 95 Val Phe Thr Asp Tyr Val Asn Asn Lys Glu Asn
Ile Asn Gly Gln Phe 100 105
110 Ser Leu Pro Leu Phe Thr Asp Arg Ala Lys Ala Pro Lys Ser Gly
Thr 115 120 125 Tyr
Asp Ala Asn Ile Asn Ile Ala Asp Glu Met Phe Asn Asn Lys Ile 130
135 140 Thr Tyr Asn Tyr Ser Ser
Pro Ile Ala Gly Ile Asp Lys Pro Asn Gly145 150
155 160 Ala Asn Ile Ser Ser Gln Ile Ile Gly Val Asp
Thr Ala Ser Gly Gln 165 170
175 Asn Thr Tyr Lys Gln Thr Val Phe Val Asn Pro Lys Gln Arg Val Leu
180 185 190 Gly Asn Thr
Trp Val Tyr Ile Lys Gly Tyr Gln Asp Lys Ile Glu Glu 195
200 205 Ser Ser Gly Lys Val Ser Ala Thr
Asp Thr Lys Leu Arg Ile Phe Glu 210 215
220 Val Asn Asp Thr Ser Lys Leu Ser Asp Ser Tyr Tyr Ala
Asp Pro Asn225 230 235
240 Asp Ser Asn Leu Lys Glu Val Thr Asp Gln Phe Lys Asn Arg Ile Tyr
245 250 255 Tyr Glu His Pro
Asn Val Ala Ser Ile Lys Phe Gly Asp Ile Thr Lys 260
265 270 Thr Tyr Val Val Leu Val Glu Gly His
Tyr Asp Asn Thr Gly Lys Asn 275 280
285 Leu Lys Thr Gln Val Ile Gln Glu Asn Val Asp Pro Val Thr
Asn Arg 290 295 300
Asp Tyr Ser Ile Phe Gly Trp Asn Asn Glu Asn Val Val Arg Tyr Gly305
310 315 320 Gly Gly Ser Ala Asp
Gly Asp Ser Ala Val Asn 325 330
7183PRTStaphylococcus aureus 7Ser Ser Pro Ile Ala Gly Ile Asp Lys Pro Asn
Gly Ala Asn Ile Ser1 5 10
15 Ser Gln Ile Ile Gly Val Asp Thr Ala Ser Gly Gln Asn Thr Tyr Lys
20 25 30 Gln Thr Val
Phe Val Asn Pro Lys Gln Arg Val Leu Gly Asn Thr Trp 35
40 45 Val Tyr Ile Lys Gly Tyr Gln Asp
Lys Ile Glu Glu Ser Ser Gly Lys 50 55
60 Val Ser Ala Thr Asp Thr Lys Leu Arg Ile Phe Glu Val
Asn Asp Thr65 70 75 80
Ser Lys Leu Ser Asp Ser Tyr Tyr Ala Asp Pro Asn Asp Ser Asn Leu
85 90 95 Lys Glu Val Thr
Asp Gln Phe Lys Asn Arg Ile Tyr Tyr Glu His Pro 100
105 110 Asn Val Ala Ser Ile Lys Phe Gly Asp
Ile Thr Lys Thr Tyr Val Val 115 120
125 Leu Val Glu Gly His Tyr Asp Asn Thr Gly Lys Asn Leu Lys
Thr Gln 130 135 140
Val Ile Gln Glu Asn Val Asp Pro Val Thr Asn Arg Asp Tyr Ser Ile145
150 155 160 Phe Gly Trp Asn Asn
Glu Asn Val Val Arg Tyr Gly Gly Gly Ser Ala 165
170 175 Asp Gly Asp Ser Ala Val Asn
180 81166PRTStaphylococcus aureus 8Met Ile Asn Arg Asp Asn
Lys Lys Ala Ile Thr Lys Lys Gly Met Ile1 5
10 15 Ser Asn Arg Leu Asn Lys Phe Ser Ile Arg Lys
Tyr Thr Val Gly Thr 20 25 30
Ala Ser Ile Leu Val Gly Thr Thr Leu Ile Phe Gly Leu Gly Asn Gln
35 40 45 Glu Ala Lys
Ala Ala Glu Asn Thr Ser Thr Glu Asn Ala Lys Gln Asp 50
55 60 Asp Ala Thr Thr Ser Asp Asn Lys
Glu Val Val Ser Glu Thr Glu Asn65 70 75
80 Asn Ser Thr Thr Glu Asn Asn Ser Thr Asn Pro Ile Lys
Lys Glu Thr 85 90 95
Asn Thr Asp Ser Gln Pro Glu Ala Lys Lys Glu Ser Thr Ser Ser Ser
100 105 110 Thr Gln Lys Gln Gln
Asn Asn Val Thr Ala Thr Thr Glu Thr Lys Pro 115
120 125 Gln Asn Ile Glu Lys Glu Asn Val Lys
Pro Ser Thr Asp Lys Thr Ala 130 135
140 Thr Glu Asp Thr Ser Val Ile Leu Glu Glu Lys Lys Ala
Pro Asn Asn145 150 155
160 Thr Asn Asn Asp Val Thr Thr Lys Pro Ser Thr Ser Glu Pro Ser Thr
165 170 175 Ser Glu Ile Gln
Thr Lys Pro Thr Thr Pro Gln Glu Ser Thr Asn Ile 180
185 190 Glu Asn Ser Gln Pro Gln Pro Thr Pro
Ser Lys Val Asp Asn Gln Val 195 200
205 Thr Asp Ala Thr Asn Pro Lys Glu Pro Val Asn Val Ser Lys
Glu Glu 210 215 220
Leu Lys Asn Asn Pro Glu Lys Leu Lys Glu Leu Val Arg Asn Asp Ser225
230 235 240 Asn Thr Asp His Ser
Thr Lys Pro Val Ala Thr Ala Pro Thr Ser Val 245
250 255 Ala Pro Lys Arg Val Asn Ala Lys Met Arg
Phe Ala Val Ala Gln Pro 260 265
270 Ala Ala Val Ala Ser Asn Asn Val Asn Asp Leu Ile Lys Val Thr
Lys 275 280 285 Gln
Thr Ile Lys Val Gly Asp Gly Lys Asp Asn Val Ala Ala Ala His 290
295 300 Asp Gly Lys Asp Ile Glu
Tyr Asp Thr Glu Phe Thr Ile Asp Asn Lys305 310
315 320 Val Lys Lys Gly Asp Thr Met Thr Ile Asn Tyr
Asp Lys Asn Val Ile 325 330
335 Pro Ser Asp Leu Thr Asp Lys Asn Asp Pro Ile Asp Ile Thr Asp Pro
340 345 350 Ser Gly Glu
Val Ile Ala Lys Gly Thr Phe Asp Lys Ala Thr Lys Gln 355
360 365 Ile Thr Tyr Thr Phe Thr Asp Tyr
Val Asp Lys Tyr Glu Asp Ile Lys 370 375
380 Ser Arg Leu Thr Leu Tyr Ser Tyr Ile Asp Lys Lys Thr
Val Pro Asn385 390 395
400 Glu Thr Ser Leu Asn Leu Thr Phe Ala Thr Ala Gly Lys Glu Thr Ser
405 410 415 Gln Asn Val Thr
Val Asp Tyr Gln Asp Pro Met Val His Gly Asp Ser 420
425 430 Asn Ile Gln Ser Ile Phe Thr Lys Leu
Asp Glu Asp Lys Gln Thr Ile 435 440
445 Glu Gln Gln Ile Tyr Val Asn Pro Leu Lys Lys Ser Ala Thr
Asn Thr 450 455 460
Lys Val Asp Ile Ala Gly Ser Gln Val Asp Asp Tyr Gly Asn Ile Lys465
470 475 480 Leu Gly Asn Gly Ser
Thr Ile Ile Asp Gln Asn Thr Glu Ile Lys Val 485
490 495 Tyr Lys Val Asn Ser Asp Gln Gln Leu Pro
Gln Ser Asn Arg Ile Tyr 500 505
510 Asp Phe Ser Gln Tyr Glu Asp Val Thr Ser Gln Phe Asp Asn Lys
Lys 515 520 525 Ser
Phe Ser Asn Asn Val Ala Thr Leu Asp Phe Gly Asp Ile Asn Ser 530
535 540 Ala Tyr Ile Ile Lys Val
Val Ser Lys Tyr Thr Pro Thr Ser Asp Gly545 550
555 560 Glu Leu Asp Ile Ala Gln Gly Thr Ser Met Arg
Thr Thr Asp Lys Tyr 565 570
575 Gly Tyr Tyr Asn Tyr Ala Gly Tyr Ser Asn Phe Ile Val Thr Ser Asn
580 585 590 Asp Thr Gly
Gly Gly Asp Gly Thr Val Lys Pro Glu Glu Lys Leu Tyr 595
600 605 Lys Ile Gly Asp Tyr Val Trp Glu
Asp Val Asp Lys Asp Gly Val Gln 610 615
620 Gly Thr Asp Ser Lys Glu Lys Pro Met Ala Asn Val Leu
Val Thr Leu625 630 635
640 Thr Tyr Pro Asp Gly Thr Thr Lys Ser Val Arg Thr Asp Ala Asn Gly
645 650 655 His Tyr Glu Phe
Gly Gly Leu Lys Asp Gly Glu Thr Tyr Thr Val Lys 660
665 670 Phe Glu Thr Pro Thr Gly Tyr Leu Pro
Thr Lys Val Asn Gly Thr Thr 675 680
685 Asp Gly Glu Lys Asp Ser Asn Gly Ser Ser Val Thr Val Lys
Ile Asn 690 695 700
Gly Lys Asp Asp Met Ser Leu Asp Thr Gly Phe Tyr Lys Glu Pro Lys705
710 715 720 Tyr Asn Leu Gly Asp
Tyr Val Trp Glu Asp Thr Asn Lys Asp Gly Ile 725
730 735 Gln Asp Ala Asn Glu Pro Gly Ile Lys Asp
Val Lys Val Thr Leu Lys 740 745
750 Asp Ser Thr Gly Lys Val Ile Gly Thr Thr Thr Thr Asp Ala Ser
Gly 755 760 765 Lys
Tyr Lys Phe Thr Asp Leu Asp Asn Gly Asn Tyr Thr Val Glu Phe 770
775 780 Glu Thr Pro Ala Gly Tyr
Thr Pro Thr Val Lys Asn Thr Thr Ala Asp785 790
795 800 Asp Lys Asp Ser Asn Gly Leu Thr Thr Thr Gly
Val Ile Lys Asp Ala 805 810
815 Asp Asn Met Thr Leu Asp Arg Gly Phe Tyr Lys Thr Pro Lys Tyr Ser
820 825 830 Leu Gly Asp
Tyr Val Trp Tyr Asp Ser Asn Lys Asp Gly Lys Gln Asp 835
840 845 Ser Thr Glu Lys Gly Ile Lys Asp
Val Thr Val Thr Leu Gln Asn Glu 850 855
860 Lys Gly Glu Val Ile Gly Thr Thr Lys Thr Asp Glu Asn
Gly Lys Tyr865 870 875
880 Arg Phe Asp Asn Leu Asp Ser Gly Lys Tyr Lys Val Ile Phe Glu Lys
885 890 895 Pro Ala Gly Leu
Thr Gln Thr Val Thr Asn Thr Thr Glu Asp Asp Lys 900
905 910 Asp Ala Asp Gly Gly Glu Val Asp Val
Thr Ile Thr Asp His Asp Asp 915 920
925 Phe Thr Leu Asp Asn Gly Tyr Phe Glu Glu Asp Thr Ser Asp
Ser Asp 930 935 940
Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp945
950 955 960 Ser Asp Ser Asp Ser
Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp 965
970 975 Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp
Ser Asp Ser Asp Ser Asp 980 985
990 Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser
Asp 995 1000 1005 Ser
Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp 1010
1015 1020 Ser Asp Ser Asp Ser Asp
Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp1025 1030
1035 1040Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser
Asp Ser Asp Ser Asp 1045 1050
1055 Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp
1060 1065 1070 Ser Asp Ser
Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp 1075
1080 1085 Ser Asp Ser Asp Ser Asp Ser Asp
Ser Asp Ser Asp Ser Asp Ser Asp 1090 1095
1100 Ser Asp Ala Gly Lys His Thr Pro Val Lys Pro Met Ser
Thr Thr Lys1105 1110 1115
1120Asp His His Asn Lys Ala Lys Ala Leu Pro Glu Thr Gly Ser Glu Asn
1125 1130 1135 Asn Gly Ser Asn
Asn Ala Thr Leu Phe Gly Gly Leu Phe Ala Ala Leu 1140
1145 1150 Gly Ser Leu Leu Leu Phe Gly Arg Arg
Lys Lys Gln Asn Lys 1155 1160 1165
9580PRTStaphylococcus aureus 9Ala Glu Asn Thr Ser Thr Glu Asn Ala Lys
Gln Asp Asp Ala Thr Thr1 5 10
15 Ser Asp Asn Lys Glu Val Val Ser Glu Thr Glu Asn Asn Ser Thr
Thr 20 25 30 Glu
Asn Asn Ser Thr Asn Pro Ile Lys Lys Glu Thr Asn Thr Asp Ser 35
40 45 Gln Pro Glu Ala Lys Lys
Glu Ser Thr Ser Ser Ser Thr Gln Lys Gln 50 55
60 Gln Asn Asn Val Thr Ala Thr Thr Glu Thr Lys
Pro Gln Asn Ile Glu65 70 75
80 Lys Glu Asn Val Lys Pro Ser Thr Asp Lys Thr Ala Thr Glu Asp Thr
85 90 95 Ser Val Ile
Leu Glu Glu Lys Lys Ala Pro Asn Asn Thr Asn Asn Asp 100
105 110 Val Thr Thr Lys Pro Ser Thr Ser
Glu Pro Ser Thr Ser Glu Ile Gln 115 120
125 Thr Lys Pro Thr Thr Pro Gln Glu Ser Thr Asn Ile Glu
Asn Ser Gln 130 135 140
Pro Gln Pro Thr Pro Ser Lys Val Asp Asn Gln Val Thr Asp Ala Thr145
150 155 160 Asn Pro Lys Glu Pro
Val Asn Val Ser Lys Glu Glu Leu Lys Asn Asn 165
170 175 Pro Glu Lys Leu Lys Glu Leu Val Arg Asn
Asp Ser Asn Thr Asp His 180 185
190 Ser Thr Lys Pro Val Ala Thr Ala Pro Thr Ser Val Ala Pro Lys
Arg 195 200 205 Val
Asn Ala Lys Met Arg Phe Ala Val Ala Gln Pro Ala Ala Val Ala 210
215 220 Ser Asn Asn Val Asn Asp
Leu Ile Lys Val Thr Lys Gln Thr Ile Lys225 230
235 240 Val Gly Asp Gly Lys Asp Asn Val Ala Ala Ala
His Asp Gly Lys Asp 245 250
255 Ile Glu Tyr Asp Thr Glu Phe Thr Ile Asp Asn Lys Val Lys Lys Gly
260 265 270 Asp Thr Met
Thr Ile Asn Tyr Asp Lys Asn Val Ile Pro Ser Asp Leu 275
280 285 Thr Asp Lys Asn Asp Pro Ile Asp
Ile Thr Asp Pro Ser Gly Glu Val 290 295
300 Ile Ala Lys Gly Thr Phe Asp Lys Ala Thr Lys Gln Ile
Thr Tyr Thr305 310 315
320 Phe Thr Asp Tyr Val Asp Lys Tyr Glu Asp Ile Lys Ser Arg Leu Thr
325 330 335 Leu Tyr Ser Tyr
Ile Asp Lys Lys Thr Val Pro Asn Glu Thr Ser Leu 340
345 350 Asn Leu Thr Phe Ala Thr Ala Gly Lys
Glu Thr Ser Gln Asn Val Thr 355 360
365 Val Asp Tyr Gln Asp Pro Met Val His Gly Asp Ser Asn Ile
Gln Ser 370 375 380
Ile Phe Thr Lys Leu Asp Glu Asp Lys Gln Thr Ile Glu Gln Gln Ile385
390 395 400 Tyr Val Asn Pro Leu
Lys Lys Ser Ala Thr Asn Thr Lys Val Asp Ile 405
410 415 Ala Gly Ser Gln Val Asp Asp Tyr Gly Asn
Ile Lys Leu Gly Asn Gly 420 425
430 Ser Thr Ile Ile Asp Gln Asn Thr Glu Ile Lys Val Tyr Lys Val
Asn 435 440 445 Ser
Asp Gln Gln Leu Pro Gln Ser Asn Arg Ile Tyr Asp Phe Ser Gln 450
455 460 Tyr Glu Asp Val Thr Ser
Gln Phe Asp Asn Lys Lys Ser Phe Ser Asn465 470
475 480 Asn Val Ala Thr Leu Asp Phe Gly Asp Ile Asn
Ser Ala Tyr Ile Ile 485 490
495 Lys Val Val Ser Lys Tyr Thr Pro Thr Ser Asp Gly Glu Leu Asp Ile
500 505 510 Ala Gln Gly
Thr Ser Met Arg Thr Thr Asp Lys Tyr Gly Tyr Tyr Asn 515
520 525 Tyr Ala Gly Tyr Ser Asn Phe Ile
Val Thr Ser Asn Asp Thr Gly Gly 530 535
540 Gly Asp Gly Thr Val Lys Pro Glu Glu Lys Leu Tyr Lys
Ile Gly Asp545 550 555
560 Tyr Val Trp Glu Asp Val Asp Lys Asp Gly Val Gln Gly Thr Asp Ser
565 570 575 Lys Glu Lys Pro
580 10995PRTStaphylococcus aureus 10Met Asn Asn Lys Lys Thr Ala
Thr Asn Arg Lys Gly Met Ile Pro Asn1 5 10
15 Arg Leu Asn Lys Phe Ser Ile Arg Lys Tyr Ser Val
Gly Thr Ala Ser 20 25 30
Ile Leu Val Gly Thr Thr Leu Ile Phe Gly Leu Ser Gly His Glu Ala
35 40 45 Lys Ala Ala Glu
His Thr Asn Gly Glu Leu Asn Gln Ser Lys Asn Glu 50 55
60 Thr Thr Ala Pro Ser Glu Asn Lys Thr
Thr Lys Lys Val Asp Ser Arg65 70 75
80 Gln Leu Lys Asp Asn Thr Gln Thr Ala Thr Ala Asp Gln Pro
Lys Val 85 90 95
Thr Met Ser Asp Ser Ala Thr Val Lys Glu Thr Ser Ser Asn Met Gln
100 105 110 Ser Pro Gln Asn Ala
Thr Ala Asn Gln Ser Thr Thr Lys Thr Ser Asn 115
120 125 Val Thr Thr Asn Asp Lys Ser Ser Thr
Thr Tyr Ser Asn Glu Thr Asp 130 135
140 Lys Ser Asn Leu Thr Gln Ala Lys Asp Val Ser Thr Thr
Pro Lys Thr145 150 155
160 Thr Thr Ile Lys Pro Arg Thr Leu Asn Arg Met Ala Val Asn Thr Val
165 170 175 Ala Ala Pro Gln
Gln Gly Thr Asn Val Asn Asp Lys Val His Phe Ser 180
185 190 Asn Ile Asp Ile Ala Ile Asp Lys Gly
His Val Asn Gln Thr Thr Gly 195 200
205 Lys Thr Glu Phe Trp Ala Thr Ser Ser Asp Val Leu Lys Leu
Lys Ala 210 215 220
Asn Tyr Thr Ile Asp Asp Ser Val Lys Glu Gly Asp Thr Phe Thr Phe225
230 235 240 Lys Tyr Gly Gln Tyr
Phe Arg Pro Gly Ser Val Arg Leu Pro Ser Gln 245
250 255 Thr Gln Asn Leu Tyr Asn Ala Gln Gly Asn
Ile Ile Ala Lys Gly Ile 260 265
270 Tyr Asp Ser Thr Thr Asn Thr Thr Thr Tyr Thr Phe Thr Asn Tyr
Val 275 280 285 Asp
Gln Tyr Thr Asn Val Arg Gly Ser Phe Glu Gln Val Ala Phe Ala 290
295 300 Lys Arg Lys Asn Ala Thr
Thr Asp Lys Thr Ala Tyr Lys Met Glu Val305 310
315 320 Thr Leu Gly Asn Asp Thr Tyr Ser Glu Glu Ile
Ile Val Asp Tyr Gly 325 330
335 Asn Lys Lys Ala Gln Pro Leu Ile Ser Ser Thr Asn Tyr Ile Asn Asn
340 345 350 Glu Asp Leu
Ser Arg Asn Met Thr Ala Tyr Val Asn Gln Pro Lys Asn 355
360 365 Thr Tyr Thr Lys Gln Thr Phe Val
Thr Asn Leu Thr Gly Tyr Lys Phe 370 375
380 Asn Pro Asn Ala Lys Asn Phe Lys Ile Tyr Glu Val Thr
Asp Gln Asn385 390 395
400 Gln Phe Val Asp Ser Phe Thr Pro Asp Thr Ser Lys Leu Lys Asp Val
405 410 415 Thr Asp Gln Phe
Asp Val Ile Tyr Ser Asn Asp Asn Lys Thr Ala Thr 420
425 430 Val Asp Leu Met Lys Gly Gln Thr Ser
Ser Asn Lys Gln Tyr Ile Ile 435 440
445 Gln Gln Val Ala Tyr Pro Asp Asn Ser Ser Thr Asp Asn Gly
Lys Ile 450 455 460
Asp Tyr Thr Leu Asp Thr Asp Lys Thr Lys Tyr Ser Trp Ser Asn Ser465
470 475 480 Tyr Ser Asn Val Asn
Gly Ser Ser Thr Ala Asn Gly Asp Gln Lys Lys 485
490 495 Tyr Asn Leu Gly Asp Tyr Val Trp Glu Asp
Thr Asn Lys Asp Gly Lys 500 505
510 Gln Asp Ala Asn Glu Lys Gly Ile Lys Gly Val Tyr Val Ile Leu
Lys 515 520 525 Asp
Ser Asn Gly Lys Glu Leu Asp Arg Thr Thr Thr Asp Glu Asn Gly 530
535 540 Lys Tyr Gln Phe Thr Gly
Leu Ser Asn Gly Thr Tyr Ser Val Glu Phe545 550
555 560 Ser Thr Pro Ala Gly Tyr Thr Pro Thr Thr Ala
Asn Val Gly Thr Asp 565 570
575 Asp Ala Val Asp Ser Asp Gly Leu Thr Thr Thr Gly Val Ile Lys Asp
580 585 590 Ala Asp Asn
Met Thr Leu Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr 595
600 605 Ser Leu Gly Asp Tyr Val Trp Tyr
Asp Ser Asn Lys Asp Gly Lys Gln 610 615
620 Asp Ser Thr Glu Lys Gly Ile Lys Gly Val Lys Val Thr
Leu Gln Asn625 630 635
640 Glu Lys Gly Glu Val Ile Gly Thr Thr Glu Thr Asp Glu Asn Gly Lys
645 650 655 Tyr Arg Phe Asp
Asn Leu Asp Ser Gly Lys Tyr Lys Val Ile Phe Glu 660
665 670 Lys Pro Ala Gly Leu Thr Gln Thr Gly
Thr Asn Thr Thr Glu Asp Asp 675 680
685 Lys Asp Ala Asp Gly Gly Glu Val Asp Val Thr Ile Thr Asp
His Asp 690 695 700
Asp Phe Thr Leu Asp Asn Gly Tyr Tyr Glu Glu Glu Thr Ser Asp Ser705
710 715 720 Asp Ser Asp Ser Asp
Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser 725
730 735 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser
Asp Ser Asp Ser Asp Ser 740 745
750 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp
Ser 755 760 765 Asp
Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser 770
775 780 Asp Ser Asp Ser Asp Ser
Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser785 790
795 800 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp
Ser Asp Ser Asp Ser 805 810
815 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser
820 825 830 Asp Ser Asp
Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser 835
840 845 Asp Ser Asp Ser Asp Ser Asp Ser
Asp Asn Asp Ser Asp Ser Asp Ser 850 855
860 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp
Ser Asp Ser865 870 875
880 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser
885 890 895 Asp Ser Asp Ser
Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser 900
905 910 Asp Ser Asp Ser Asp Ser Asp Ser Asp
Ser Asp Asn Asp Ser Asp Ser 915 920
925 Asp Ser Asp Ser Asp Ser Asp Ala Gly Lys His Thr Pro Ala
Lys Pro 930 935 940
Met Ser Thr Val Lys Asp Gln His Lys Thr Ala Lys Ala Leu Pro Glu945
950 955 960 Thr Gly Ser Glu Asn
Asn Asn Ser Asn Asn Gly Thr Leu Phe Gly Gly 965
970 975 Leu Phe Ala Ala Leu Gly Ser Leu Leu Leu
Phe Gly Arg Arg Lys Lys 980 985
990 Gln Asn Lys 995 11468PRTStaphylococcus aureus 11Ala
Glu His Thr Asn Gly Glu Leu Asn Gln Ser Lys Asn Glu Thr Thr1
5 10 15 Ala Pro Ser Glu Asn Lys
Thr Thr Lys Lys Val Asp Ser Arg Gln Leu 20 25
30 Lys Asp Asn Thr Gln Thr Ala Thr Ala Asp Gln
Pro Lys Val Thr Met 35 40 45
Ser Asp Ser Ala Thr Val Lys Glu Thr Ser Ser Asn Met Gln Ser Pro
50 55 60 Gln Asn Ala
Thr Ala Asn Gln Ser Thr Thr Lys Thr Ser Asn Val Thr65 70
75 80 Thr Asn Asp Lys Ser Ser Thr Thr
Tyr Ser Asn Glu Thr Asp Lys Ser 85 90
95 Asn Leu Thr Gln Ala Lys Asp Val Ser Thr Thr Pro Lys
Thr Thr Thr 100 105 110
Ile Lys Pro Arg Thr Leu Asn Arg Met Ala Val Asn Thr Val Ala Ala
115 120 125 Pro Gln Gln Gly
Thr Asn Val Asn Asp Lys Val His Phe Ser Asn Ile 130
135 140 Asp Ile Ala Ile Asp Lys Gly His
Val Asn Gln Thr Thr Gly Lys Thr145 150
155 160 Glu Phe Trp Ala Thr Ser Ser Asp Val Leu Lys Leu
Lys Ala Asn Tyr 165 170
175 Thr Ile Asp Asp Ser Val Lys Glu Gly Asp Thr Phe Thr Phe Lys Tyr
180 185 190 Gly Gln Tyr
Phe Arg Pro Gly Ser Val Arg Leu Pro Ser Gln Thr Gln 195
200 205 Asn Leu Tyr Asn Ala Gln Gly Asn
Ile Ile Ala Lys Gly Ile Tyr Asp 210 215
220 Ser Thr Thr Asn Thr Thr Thr Tyr Thr Phe Thr Asn Tyr
Val Asp Gln225 230 235
240 Tyr Thr Asn Val Arg Gly Ser Phe Glu Gln Val Ala Phe Ala Lys Arg
245 250 255 Lys Asn Ala Thr
Thr Asp Lys Thr Ala Tyr Lys Met Glu Val Thr Leu 260
265 270 Gly Asn Asp Thr Tyr Ser Glu Glu Ile
Ile Val Asp Tyr Gly Asn Lys 275 280
285 Lys Ala Gln Pro Leu Ile Ser Ser Thr Asn Tyr Ile Asn Asn
Glu Asp 290 295 300
Leu Ser Arg Asn Met Thr Ala Tyr Val Asn Gln Pro Lys Asn Thr Tyr305
310 315 320 Thr Lys Gln Thr Phe
Val Thr Asn Leu Thr Gly Tyr Lys Phe Asn Pro 325
330 335 Asn Ala Lys Asn Phe Lys Ile Tyr Glu Val
Thr Asp Gln Asn Gln Phe 340 345
350 Val Asp Ser Phe Thr Pro Asp Thr Ser Lys Leu Lys Asp Val Thr
Asp 355 360 365 Gln
Phe Asp Val Ile Tyr Ser Asn Asp Asn Lys Thr Ala Thr Val Asp 370
375 380 Leu Met Lys Gly Gln Thr
Ser Ser Asn Lys Gln Tyr Ile Ile Gln Gln385 390
395 400 Val Ala Tyr Pro Asp Asn Ser Ser Thr Asp Asn
Gly Lys Ile Asp Tyr 405 410
415 Thr Leu Asp Thr Asp Lys Thr Lys Tyr Ser Trp Ser Asn Ser Tyr Ser
420 425 430 Asn Val Asn
Gly Ser Ser Thr Ala Asn Gly Asp Gln Lys Lys Tyr Asn 435
440 445 Leu Gly Asp Tyr Val Trp Glu Asp
Thr Asn Lys Asp Gly Lys Gln Asp 450 455
460 Ala Asn Glu Lys465
12635PRTStaphylococcus aureus 12Met Ala Lys Tyr Arg Gly Lys Pro Phe Gln
Leu Tyr Val Lys Leu Ser1 5 10
15 Cys Ser Thr Met Met Ala Thr Ser Ile Ile Leu Thr Asn Ile Leu
Pro 20 25 30 Tyr
Asp Ala Gln Ala Ala Ser Glu Lys Asp Thr Glu Ile Thr Lys Glu 35
40 45 Ile Leu Ser Lys Gln Asp
Leu Leu Asp Lys Val Asp Lys Ala Ile Arg 50 55
60 Gln Ile Glu Gln Leu Lys Gln Leu Ser Ala Ser
Ser Lys Glu His Tyr65 70 75
80 Lys Ala Gln Leu Asn Glu Ala Lys Thr Ala Ser Gln Ile Asp Glu Ile
85 90 95 Ile Lys Arg
Ala Asn Glu Leu Asp Ser Lys Asp Asn Lys Ser Ser His 100
105 110 Thr Glu Met Asn Gly Gln Ser Asp
Ile Asp Ser Lys Leu Asp Gln Leu 115 120
125 Leu Lys Asp Leu Asn Glu Val Ser Ser Asn Val Asp Arg
Gly Gln Gln 130 135 140
Ser Gly Glu Asp Asp Leu Asn Ala Met Lys Asn Asp Met Ser Gln Thr145
150 155 160 Ala Thr Thr Lys His
Gly Glu Lys Asp Asp Lys Asn Asp Glu Ala Met 165
170 175 Val Asn Lys Ala Leu Glu Asp Leu Asp His
Leu Asn Gln Gln Ile His 180 185
190 Lys Ser Lys Asp Ala Ser Lys Asp Thr Ser Glu Asp Pro Ala Val
Ser 195 200 205 Thr
Thr Asp Asn Asn His Glu Val Ala Lys Thr Pro Asn Asn Asp Gly 210
215 220 Ser Gly His Val Val Leu
Asn Lys Phe Leu Ser Asn Glu Glu Asn Gln225 230
235 240 Ser His Ser Asn Arg Leu Thr Asp Lys Leu Gln
Gly Ser Asp Lys Ile 245 250
255 Asn His Ala Met Ile Glu Lys Leu Ala Lys Ser Asn Ala Ser Thr Gln
260 265 270 His Tyr Thr
Tyr His Lys Leu Asn Thr Leu Gln Ser Leu Asp Gln Arg 275
280 285 Ile Ala Asn Thr Gln Leu Pro Lys
Asn Gln Lys Ser Asp Leu Met Ser 290 295
300 Glu Val Asn Lys Thr Lys Glu Arg Ile Lys Ser Gln Arg
Asn Ile Ile305 310 315
320 Leu Glu Glu Leu Ala Arg Thr Asp Asp Lys Lys Tyr Ala Thr Gln Ser
325 330 335 Ile Leu Glu Ser
Ile Phe Asn Lys Asp Glu Ala Val Lys Ile Leu Lys 340
345 350 Asp Ile Arg Val Asp Gly Lys Thr Asp
Gln Gln Ile Ala Asp Gln Ile 355 360
365 Thr Arg His Ile Asp Gln Leu Ser Leu Thr Thr Ser Asp Asp
Leu Leu 370 375 380
Thr Ser Leu Ile Asp Gln Ser Gln Asp Lys Ser Leu Leu Ile Ser Gln385
390 395 400 Ile Leu Gln Thr Lys
Leu Gly Lys Ala Glu Ala Asp Lys Leu Ala Lys 405
410 415 Asp Trp Thr Asn Lys Gly Leu Ser Asn Arg
Gln Ile Val Asp Gln Leu 420 425
430 Lys Lys His Phe Ala Ser Thr Gly Asp Thr Ser Ser Asp Asp Ile
Leu 435 440 445 Lys
Ala Ile Leu Asn Asn Ala Lys Asp Lys Lys Gln Ala Ile Glu Thr 450
455 460 Ile Leu Ala Thr Arg Ile
Glu Arg Gln Lys Ala Lys Leu Leu Ala Asp465 470
475 480 Leu Ile Thr Lys Ile Glu Thr Asp Gln Asn Lys
Ile Phe Asn Leu Val 485 490
495 Lys Ser Ala Leu Asn Gly Lys Ala Asp Asp Leu Leu Asn Leu Gln Lys
500 505 510 Arg Leu Asn
Gln Thr Lys Lys Asp Ile Asp Tyr Ile Leu Ser Pro Ile 515
520 525 Val Asn Arg Pro Ser Leu Leu Asp
Arg Leu Asn Lys Asn Gly Lys Thr 530 535
540 Thr Asp Leu Asn Lys Leu Ala Asn Leu Met Asn Gln Gly
Ser Asp Leu545 550 555
560 Leu Asp Ser Ile Pro Asp Ile Pro Thr Pro Lys Pro Glu Lys Thr Leu
565 570 575 Thr Leu Gly Lys
Gly Asn Gly Leu Leu Ser Gly Leu Leu Asn Ala Asp 580
585 590 Gly Asn Val Ser Leu Pro Lys Ala Gly
Glu Thr Ile Lys Glu His Trp 595 600
605 Leu Pro Ile Ser Val Ile Val Gly Ala Met Gly Val Leu Met
Ile Trp 610 615 620
Leu Ser Arg Arg Asn Lys Leu Lys Asn Lys Ala625 630
635 13340PRTStaphylococcus aureus 13Met Lys Lys Lys Leu Leu Val
Leu Thr Met Ser Thr Leu Phe Ala Thr1 5 10
15 Gln Ile Met Asn Ser Asn His Ala Lys Ala Ser Val
Thr Glu Ser Val 20 25 30
Asp Lys Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro
35 40 45 Ala Tyr Asp Glu
Phe Lys Asn Ser Pro Lys Val Asn Val Ser Asn Leu 50 55
60 Thr Asp Asn Lys Asn Phe Val Ala Ser
Glu Asp Lys Leu Asn Lys Ile65 70 75
80 Ala Asp Ser Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe
Val Val 85 90 95
Pro Glu Ser Lys Leu Gly Asn Ile Val Pro Glu Tyr Lys Glu Ile Asn
100 105 110 Asn Arg Val Asn Val
Ala Thr Asn Asn Pro Ala Ser Gln Gln Val Asp 115
120 125 Lys His Phe Val Ala Lys Gly Pro Glu
Val Asn Arg Phe Ile Thr Gln 130 135
140 Asn Lys Val Asn His His Phe Ile Thr Thr Gln Thr His
Tyr Lys Lys145 150 155
160 Val Ile Thr Ser Tyr Lys Ser Thr His Val His Lys His Val Asn His
165 170 175 Ala Lys Asp Ser
Ile Asn Lys His Phe Ile Val Lys Pro Ser Glu Ser 180
185 190 Pro Arg Tyr Thr His Pro Ser Gln Ser
Leu Ile Ile Lys His His Phe 195 200
205 Ala Val Pro Gly Tyr His Ala His Lys Phe Val Thr Pro Gly
His Ala 210 215 220
Ser Ile Lys Ile Asn His Phe Cys Val Val Pro Gln Ile Asn Ser Phe225
230 235 240 Lys Val Ile Pro Pro
Tyr Gly His Asn Ser His Arg Met His Val Pro 245
250 255 Ser Phe Gln Asn Asn Thr Thr Ala Thr His
Gln Asn Ala Lys Val Asn 260 265
270 Lys Ala Tyr Asp Tyr Lys Tyr Phe Tyr Ser Tyr Lys Val Val Lys
Gly 275 280 285 Val
Lys Lys Tyr Phe Ser Phe Ser Gln Ser Asn Gly Tyr Lys Ile Gly 290
295 300 Lys Pro Ser Leu Asn Ile
Lys Asn Val Asn Tyr Gln Tyr Ala Val Pro305 310
315 320 Ser Tyr Ser Pro Thr His Tyr Val Pro Glu Phe
Lys Gly Ser Leu Pro 325 330
335 Ala Pro Arg Val 340 14306PRTStaphylococcus aureus
14Lys Phe Val Val Pro Glu Ser Gly Ile Asn Lys Ile Ile Pro Ala Tyr1
5 10 15 Asp Glu Phe Lys
Asn Ser Pro Lys Val Asn Val Ser Asn Leu Thr Asp 20
25 30 Asn Lys Asn Phe Val Ala Ser Glu Asp
Lys Leu Asn Lys Ile Ala Asp 35 40
45 Ser Ser Ala Ala Ser Lys Ile Val Asp Lys Asn Phe Val Val
Pro Glu 50 55 60
Ser Lys Leu Gly Asn Ile Val Pro Glu Tyr Lys Glu Ile Asn Asn Arg65
70 75 80 Val Asn Val Ala Thr
Asn Asn Pro Ala Ser Gln Gln Val Asp Lys His 85
90 95 Phe Val Ala Lys Gly Pro Glu Val Asn Arg
Phe Ile Thr Gln Asn Lys 100 105
110 Val Asn His His Phe Ile Thr Thr Gln Thr His Tyr Lys Lys Val
Ile 115 120 125 Thr
Ser Tyr Lys Ser Thr His Val His Lys His Val Asn His Ala Lys 130
135 140 Asp Ser Ile Asn Lys His
Phe Ile Val Lys Pro Ser Glu Ser Pro Arg145 150
155 160 Tyr Thr His Pro Ser Gln Ser Leu Ile Ile Lys
His His Phe Ala Val 165 170
175 Pro Gly Tyr His Ala His Lys Phe Val Thr Pro Gly His Ala Ser Ile
180 185 190 Lys Ile Asn
His Phe Cys Val Val Pro Gln Ile Asn Ser Phe Lys Val 195
200 205 Ile Pro Pro Tyr Gly His Asn Ser
His Arg Met His Val Pro Ser Phe 210 215
220 Gln Asn Asn Thr Thr Ala Thr His Gln Asn Ala Lys Val
Asn Lys Ala225 230 235
240 Tyr Asp Tyr Lys Tyr Phe Tyr Ser Tyr Lys Val Val Lys Gly Val Lys
245 250 255 Lys Tyr Phe Ser
Phe Ser Gln Ser Asn Gly Tyr Lys Ile Gly Lys Pro 260
265 270 Ser Leu Asn Ile Lys Asn Val Asn Tyr
Gln Tyr Ala Val Pro Ser Tyr 275 280
285 Ser Pro Thr His Tyr Val Pro Glu Phe Lys Gly Ser Leu Pro
Ala Pro 290 295 300
Arg Val305 15308PRTStaphylococcus aureus 15Ser Val Thr Glu Ser Val
Asp Lys Lys Phe Val Val Pro Glu Ser Gly1 5
10 15 Ile Asn Lys Ile Ile Pro Ala Tyr Asp Glu Phe
Lys Asn Ser Pro Lys 20 25 30
Val Asn Val Ser Asn Leu Thr Asp Asn Lys Asn Phe Val Ala Ser Glu
35 40 45 Asp Lys Leu
Asn Lys Ile Ala Asp Ser Ser Ala Ala Ser Lys Ile Val 50
55 60 Asp Lys Asn Phe Val Val Pro Glu
Ser Lys Leu Gly Asn Ile Val Pro65 70 75
80 Glu Tyr Lys Glu Ile Asn Asn Arg Val Asn Val Ala Thr
Asn Asn Pro 85 90 95
Ala Ser Gln Gln Val Asp Lys His Phe Val Ala Lys Gly Pro Glu Val
100 105 110 Asn Arg Phe Ile Thr
Gln Asn Lys Val Asn His His Phe Ile Thr Thr 115
120 125 Gln Thr His Tyr Lys Lys Val Ile Thr
Ser Tyr Lys Ser Thr His Val 130 135
140 His Lys His Val Asn His Ala Lys Asp Ser Ile Asn Lys
His Phe Ile145 150 155
160 Val Lys Pro Ser Glu Ser Pro Arg Tyr Thr His Pro Ser Gln Ser Leu
165 170 175 Ile Ile Lys His
His Phe Ala Val Pro Gly Tyr His Ala His Lys Phe 180
185 190 Val Thr Pro Gly His Ala Ser Ile Lys
Ile Asn His Phe Cys Val Val 195 200
205 Pro Gln Ile Asn Ser Phe Lys Val Ile Pro Pro Tyr Gly His
Asn Ser 210 215 220
His Arg Met His Val Pro Ser Phe Gln Asn Asn Thr Thr Ala Thr His225
230 235 240 Gln Asn Ala Lys Val
Asn Lys Ala Tyr Asp Tyr Lys Tyr Phe Tyr Ser 245
250 255 Tyr Lys Val Val Lys Gly Val Lys Lys Tyr
Phe Ser Phe Ser Gln Ser 260 265
270 Asn Gly Tyr Lys Ile Gly Lys Pro Ser Leu Asn Ile Lys Asn Val
Asn 275 280 285 Tyr
Gln Tyr Ala Val Pro Ser Tyr Ser Pro Thr His Tyr Val Pro Glu 290
295 300 Phe Lys Gly Ser305
16300PRTStaphylococcus aureus 16Lys Phe Val Val Pro Glu Ser Gly Ile
Asn Lys Ile Ile Pro Ala Tyr1 5 10
15 Asp Glu Phe Lys Asn Ser Pro Lys Val Asn Val Ser Asn Leu
Thr Asp 20 25 30
Asn Lys Asn Phe Val Ala Ser Glu Asp Lys Leu Asn Lys Ile Ala Asp 35
40 45 Ser Ser Ala Ala Ser
Lys Ile Val Asp Lys Asn Phe Val Val Pro Glu 50 55
60 Ser Lys Leu Gly Asn Ile Val Pro Glu Tyr
Lys Glu Ile Asn Asn Arg65 70 75
80 Val Asn Val Ala Thr Asn Asn Pro Ala Ser Gln Gln Val Asp Lys
His 85 90 95 Phe
Val Ala Lys Gly Pro Glu Val Asn Arg Phe Ile Thr Gln Asn Lys
100 105 110 Val Asn His His Phe
Ile Thr Thr Gln Thr His Tyr Lys Lys Val Ile 115
120 125 Thr Ser Tyr Lys Ser Thr His Val His
Lys His Val Asn His Ala Lys 130 135
140 Asp Ser Ile Asn Lys His Phe Ile Val Lys Pro Ser Glu
Ser Pro Arg145 150 155
160 Tyr Thr His Pro Ser Gln Ser Leu Ile Ile Lys His His Phe Ala Val
165 170 175 Pro Gly Tyr His
Ala His Lys Phe Val Thr Pro Gly His Ala Ser Ile 180
185 190 Lys Ile Asn His Phe Cys Val Val Pro
Gln Ile Asn Ser Phe Lys Val 195 200
205 Ile Pro Pro Tyr Gly His Asn Ser His Arg Met His Val Pro
Ser Phe 210 215 220
Gln Asn Asn Thr Thr Ala Thr His Gln Asn Ala Lys Val Asn Lys Ala225
230 235 240 Tyr Asp Tyr Lys Tyr
Phe Tyr Ser Tyr Lys Val Val Lys Gly Val Lys 245
250 255 Lys Tyr Phe Ser Phe Ser Gln Ser Asn Gly
Tyr Lys Ile Gly Lys Pro 260 265
270 Ser Leu Asn Ile Lys Asn Val Asn Tyr Gln Tyr Ala Val Pro Ser
Tyr 275 280 285 Ser
Pro Thr His Tyr Val Pro Glu Phe Lys Gly Ser 290 295
300 17121PRTStaphylococcus aureus 17Ser Val Thr Glu Ser Val
Asp Lys Lys Phe Val Val Pro Glu Ser Gly1 5
10 15 Ile Asn Lys Ile Ile Pro Ala Tyr Asp Glu Phe
Lys Asn Ser Pro Lys 20 25 30
Val Asn Val Ser Asn Leu Thr Asp Asn Lys Asn Phe Val Ala Ser Glu
35 40 45 Asp Lys Leu
Asn Lys Ile Ala Asp Ser Ser Ala Ala Ser Lys Ile Val 50
55 60 Asp Lys Asn Phe Val Val Pro Glu
Ser Lys Leu Gly Asn Ile Val Pro65 70 75
80 Glu Tyr Lys Glu Ile Asn Asn Arg Val Asn Val Ala Thr
Asn Asn Pro 85 90 95
Ala Ser Gln Gln Val Asp Lys His Phe Val Ala Lys Gly Pro Glu Val
100 105 110 Asn Arg Phe Ile Thr
Gln Asn Lys Val 115 120
181349PRTStaphylococcus aureus 18Met Leu Asn Arg Glu Asn Lys Thr Ala Ile
Thr Arg Lys Gly Met Val1 5 10
15 Ser Asn Arg Leu Asn Lys Phe Ser Ile Arg Lys Tyr Thr Val Gly
Thr 20 25 30 Ala
Ser Ile Leu Val Gly Thr Thr Leu Ile Phe Gly Leu Gly Asn Gln 35
40 45 Glu Ala Lys Ala Ala Glu
Ser Thr Asn Lys Glu Leu Asn Glu Ala Thr 50 55
60 Thr Ser Ala Ser Asp Asn Gln Ser Ser Asp Lys
Val Asp Met Gln Gln65 70 75
80 Leu Asn Gln Glu Asp Asn Thr Lys Asn Asp Asn Gln Lys Glu Met Val
85 90 95 Ser Ser Gln
Gly Asn Glu Thr Thr Ser Asn Gly Asn Lys Leu Ile Glu 100
105 110 Lys Glu Ser Val Gln Ser Thr Thr
Gly Asn Lys Val Glu Val Ser Thr 115 120
125 Ala Lys Ser Asp Glu Gln Ala Ser Pro Lys Ser Thr Asn
Glu Asp Leu 130 135 140
Asn Thr Lys Gln Thr Ile Ser Asn Gln Glu Ala Leu Gln Pro Asp Leu145
150 155 160 Gln Glu Asn Lys Ser
Val Val Asn Val Gln Pro Thr Asn Glu Glu Asn 165
170 175 Lys Lys Val Asp Ala Lys Thr Glu Ser Thr
Thr Leu Asn Val Lys Ser 180 185
190 Asp Ala Ile Lys Ser Asn Asp Glu Thr Leu Val Asp Asn Asn Ser
Asn 195 200 205 Ser
Asn Asn Glu Asn Asn Ala Asp Ile Ile Leu Pro Lys Ser Thr Ala 210
215 220 Pro Lys Arg Leu Asn Thr
Arg Met Arg Ile Ala Ala Val Gln Pro Ser225 230
235 240 Ser Thr Glu Ala Lys Asn Val Asn Asp Leu Ile
Thr Ser Asn Thr Thr 245 250
255 Leu Thr Val Val Asp Ala Asp Lys Asn Asn Lys Ile Val Pro Ala Gln
260 265 270 Asp Tyr Leu
Ser Leu Lys Ser Gln Ile Thr Val Asp Asp Lys Val Lys 275
280 285 Ser Gly Asp Tyr Phe Thr Ile Lys
Tyr Ser Asp Thr Val Gln Val Tyr 290 295
300 Gly Leu Asn Pro Glu Asp Ile Lys Asn Ile Gly Asp Ile
Lys Asp Pro305 310 315
320 Asn Asn Gly Glu Thr Ile Ala Thr Ala Lys His Asp Thr Ala Asn Asn
325 330 335 Leu Ile Thr Tyr
Thr Phe Thr Asp Tyr Val Asp Arg Phe Asn Ser Val 340
345 350 Gln Met Gly Ile Asn Tyr Ser Ile Tyr
Met Asp Ala Asp Thr Ile Pro 355 360
365 Val Ser Lys Asn Asp Val Glu Phe Asn Val Thr Ile Gly Asn
Thr Thr 370 375 380
Thr Lys Thr Thr Ala Asn Ile Gln Tyr Pro Asp Tyr Val Val Asn Glu385
390 395 400 Lys Asn Ser Ile Gly
Ser Ala Phe Thr Glu Thr Val Ser His Val Gly 405
410 415 Asn Lys Glu Asn Pro Gly Tyr Tyr Lys Gln
Thr Ile Tyr Val Asn Pro 420 425
430 Ser Glu Asn Ser Leu Thr Asn Ala Lys Leu Lys Val Gln Ala Tyr
His 435 440 445 Ser
Ser Tyr Pro Asn Asn Ile Gly Gln Ile Asn Lys Asp Val Thr Asp 450
455 460 Ile Lys Ile Tyr Gln Val
Pro Lys Gly Tyr Thr Leu Asn Lys Gly Tyr465 470
475 480 Asp Val Asn Thr Lys Glu Leu Thr Asp Val Thr
Asn Gln Tyr Leu Gln 485 490
495 Lys Ile Thr Tyr Gly Asp Asn Asn Ser Ala Val Ile Asp Phe Gly Asn
500 505 510 Ala Asp Ser
Ala Tyr Val Val Met Val Asn Thr Lys Phe Gln Tyr Thr 515
520 525 Asn Ser Glu Ser Pro Thr Leu Val
Gln Met Ala Thr Leu Ser Ser Thr 530 535
540 Gly Asn Lys Ser Val Ser Thr Gly Asn Ala Leu Gly Phe
Thr Asn Asn545 550 555
560 Gln Ser Gly Gly Ala Gly Gln Glu Val Tyr Lys Ile Gly Asn Tyr Val
565 570 575 Trp Glu Asp Thr
Asn Lys Asn Gly Val Gln Glu Leu Gly Glu Lys Gly 580
585 590 Val Gly Asn Val Thr Val Thr Val Phe
Asp Asn Asn Thr Asn Thr Lys 595 600
605 Val Gly Glu Ala Val Thr Lys Glu Asp Gly Ser Tyr Leu Ile
Pro Asn 610 615 620
Leu Pro Asn Gly Asp Tyr Arg Val Glu Phe Ser Asn Leu Pro Lys Gly625
630 635 640 Tyr Glu Val Thr Pro
Ser Lys Gln Gly Asn Asn Glu Glu Leu Asp Ser 645
650 655 Asn Gly Leu Ser Ser Val Ile Thr Val Asn
Gly Lys Asp Asn Leu Ser 660 665
670 Ala Asp Leu Gly Ile Tyr Lys Pro Lys Tyr Asn Leu Gly Asp Tyr
Val 675 680 685 Trp
Glu Asp Thr Asn Lys Asn Gly Ile Gln Asp Gln Asp Glu Lys Gly 690
695 700 Ile Ser Gly Val Thr Val
Thr Leu Lys Asp Glu Asn Gly Asn Val Leu705 710
715 720 Lys Thr Val Thr Thr Asp Ala Asp Gly Lys Tyr
Lys Phe Thr Asp Leu 725 730
735 Asp Asn Gly Asn Tyr Lys Val Glu Phe Thr Thr Pro Glu Gly Tyr Thr
740 745 750 Pro Thr Thr
Val Thr Ser Gly Ser Asp Ile Glu Lys Asp Ser Asn Gly 755
760 765 Leu Thr Thr Thr Gly Val Ile Asn
Gly Ala Asp Asn Met Thr Leu Asp 770 775
780 Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Asn Leu Gly Asn
Tyr Val Trp785 790 795
800 Glu Asp Thr Asn Lys Asp Gly Lys Gln Asp Ser Thr Glu Lys Gly Ile
805 810 815 Ser Gly Val Thr
Val Thr Leu Lys Asn Glu Asn Gly Glu Val Leu Gln 820
825 830 Thr Thr Lys Thr Asp Lys Asp Gly Lys
Tyr Gln Phe Thr Gly Leu Glu 835 840
845 Asn Gly Thr Tyr Lys Val Glu Phe Glu Thr Pro Ser Gly Tyr
Thr Pro 850 855 860
Thr Gln Val Gly Ser Gly Thr Asp Glu Gly Ile Asp Ser Asn Gly Thr865
870 875 880 Ser Thr Thr Gly Val
Ile Lys Asp Lys Asp Asn Asp Thr Ile Asp Ser 885
890 895 Gly Phe Tyr Lys Pro Thr Tyr Asn Leu Gly
Asp Tyr Val Trp Glu Asp 900 905
910 Thr Asn Lys Asn Gly Val Gln Asp Lys Asp Glu Lys Gly Ile Ser
Gly 915 920 925 Val
Thr Val Thr Leu Lys Asp Glu Asn Asp Lys Val Leu Lys Thr Val 930
935 940 Thr Thr Asp Glu Asn Gly
Lys Tyr Gln Phe Thr Asp Leu Asn Asn Gly945 950
955 960 Thr Tyr Lys Val Glu Phe Glu Thr Pro Ser Gly
Tyr Thr Pro Thr Ser 965 970
975 Val Thr Ser Gly Asn Asp Thr Glu Lys Asp Ser Asn Gly Leu Thr Thr
980 985 990 Thr Gly Val
Ile Lys Asp Ala Asp Asn Met Thr Leu Asp Ser Gly Phe 995
1000 1005 Tyr Lys Thr Pro Lys Tyr Ser Leu
Gly Asp Tyr Val Trp Tyr Asp Ser 1010 1015
1020 Asn Lys Asp Gly Lys Gln Asp Ser Thr Glu Lys Gly Ile
Lys Asp Val1025 1030 1035
1040Lys Val Thr Leu Leu Asn Glu Lys Gly Glu Val Ile Gly Thr Thr Lys
1045 1050 1055 Thr Asp Glu Asn
Gly Lys Tyr Cys Phe Asp Asn Leu Asp Ser Gly Lys 1060
1065 1070 Tyr Lys Val Ile Phe Glu Lys Pro Ala
Gly Leu Thr Gln Thr Val Thr 1075 1080
1085 Asn Thr Thr Glu Asp Asp Lys Asp Ala Asp Gly Gly Glu Val
Asp Val 1090 1095 1100 Thr
Ile Thr Asp His Asp Asp Phe Thr Leu Asp Asn Gly Tyr Phe Glu1105
1110 1115 1120Glu Asp Thr Ser Asp Ser
Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser 1125
1130 1135 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp
Ser Asp Ser Asp Ser 1140 1145
1150 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp
Ser 1155 1160 1165 Asp Ser
Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser 1170
1175 1180 Asp Ser Asp Ser Asp Ser Asp
Ser Asp Ser Asp Ser Asp Ser Asp Ser1185 1190
1195 1200Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser
Asp Ser Asp Ser 1205 1210
1215 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser
1220 1225 1230 Asp Ser Asp
Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser 1235
1240 1245 Asp Ser Asp Ser Asp Ser Asp Ser
Asp Ser Asp Ser Asp Ser Asp Ser 1250 1255
1260 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp
Ser Asp Ser1265 1270 1275
1280Asp Ser Asp Ser Asp Ser Asp Ser Asp Ala Gly Lys His Thr Pro Val
1285 1290 1295 Lys Pro Met Ser
Thr Thr Lys Asp His His Asn Lys Ala Lys Ala Leu 1300
1305 1310 Pro Glu Thr Gly Ser Glu Asn Asn Gly
Ser Asn Asn Ala Thr Leu Phe 1315 1320
1325 Gly Gly Leu Phe Ala Ala Leu Gly Ser Leu Leu Leu Phe Gly
Arg Arg 1330 1335 1340 Lys
Lys Gln Asn Lys1345 19540PRTStaphylococcus aureus 19Ala
Glu Ser Thr Asn Lys Glu Leu Asn Glu Ala Thr Thr Ser Ala Ser1
5 10 15 Asp Asn Gln Ser Ser Asp
Lys Val Asp Met Gln Gln Leu Asn Gln Glu 20 25
30 Asp Asn Thr Lys Asn Asp Asn Gln Lys Glu Met
Val Ser Ser Gln Gly 35 40 45
Asn Glu Thr Thr Ser Asn Gly Asn Lys Leu Ile Glu Lys Glu Ser Val
50 55 60 Gln Ser Thr
Thr Gly Asn Lys Val Glu Val Ser Thr Ala Lys Ser Asp65 70
75 80 Glu Gln Ala Ser Pro Lys Ser Thr
Asn Glu Asp Leu Asn Thr Lys Gln 85 90
95 Thr Ile Ser Asn Gln Glu Ala Leu Gln Pro Asp Leu Gln
Glu Asn Lys 100 105 110
Ser Val Val Asn Val Gln Pro Thr Asn Glu Glu Asn Lys Lys Val Asp
115 120 125 Ala Lys Thr Glu
Ser Thr Thr Leu Asn Val Lys Ser Asp Ala Ile Lys 130
135 140 Ser Asn Asp Glu Thr Leu Val Asp
Asn Asn Ser Asn Ser Asn Asn Glu145 150
155 160 Asn Asn Ala Asp Ile Ile Leu Pro Lys Ser Thr Ala
Pro Lys Arg Leu 165 170
175 Asn Thr Arg Met Arg Ile Ala Ala Val Gln Pro Ser Ser Thr Glu Ala
180 185 190 Lys Asn Val
Asn Asp Leu Ile Thr Ser Asn Thr Thr Leu Thr Val Val 195
200 205 Asp Ala Asp Lys Asn Asn Lys Ile
Val Pro Ala Gln Asp Tyr Leu Ser 210 215
220 Leu Lys Ser Gln Ile Thr Val Asp Asp Lys Val Lys Ser
Gly Asp Tyr225 230 235
240 Phe Thr Ile Lys Tyr Ser Asp Thr Val Gln Val Tyr Gly Leu Asn Pro
245 250 255 Glu Asp Ile Lys
Asn Ile Gly Asp Ile Lys Asp Pro Asn Asn Gly Glu 260
265 270 Thr Ile Ala Thr Ala Lys His Asp Thr
Ala Asn Asn Leu Ile Thr Tyr 275 280
285 Thr Phe Thr Asp Tyr Val Asp Arg Phe Asn Ser Val Gln Met
Gly Ile 290 295 300
Asn Tyr Ser Ile Tyr Met Asp Ala Asp Thr Ile Pro Val Ser Lys Asn305
310 315 320 Asp Val Glu Phe Asn
Val Thr Ile Gly Asn Thr Thr Thr Lys Thr Thr 325
330 335 Ala Asn Ile Gln Tyr Pro Asp Tyr Val Val
Asn Glu Lys Asn Ser Ile 340 345
350 Gly Ser Ala Phe Thr Glu Thr Val Ser His Val Gly Asn Lys Glu
Asn 355 360 365 Pro
Gly Tyr Tyr Lys Gln Thr Ile Tyr Val Asn Pro Ser Glu Asn Ser 370
375 380 Leu Thr Asn Ala Lys Leu
Lys Val Gln Ala Tyr His Ser Ser Tyr Pro385 390
395 400 Asn Asn Ile Gly Gln Ile Asn Lys Asp Val Thr
Asp Ile Lys Ile Tyr 405 410
415 Gln Val Pro Lys Gly Tyr Thr Leu Asn Lys Gly Tyr Asp Val Asn Thr
420 425 430 Lys Glu Leu
Thr Asp Val Thr Asn Gln Tyr Leu Gln Lys Ile Thr Tyr 435
440 445 Gly Asp Asn Asn Ser Ala Val Ile
Asp Phe Gly Asn Ala Asp Ser Ala 450 455
460 Tyr Val Val Met Val Asn Thr Lys Phe Gln Tyr Thr Asn
Ser Glu Ser465 470 475
480 Pro Thr Leu Val Gln Met Ala Thr Leu Ser Ser Thr Gly Asn Lys Ser
485 490 495 Val Ser Thr Gly
Asn Ala Leu Gly Phe Thr Asn Asn Gln Ser Gly Gly 500
505 510 Ala Gly Gln Glu Val Tyr Lys Ile Gly
Asn Tyr Val Trp Glu Asp Thr 515 520
525 Asn Lys Asn Gly Val Gln Glu Leu Gly Glu Lys Gly 530
535 540 20199PRTStaphylococcus aureus 20Pro
Asp Tyr Val Val Asn Glu Lys Asn Ser Ile Gly Ser Ala Phe Thr1
5 10 15 Glu Thr Val Ser His Val
Gly Asn Lys Glu Asn Pro Gly Tyr Tyr Lys 20 25
30 Gln Thr Ile Tyr Val Asn Pro Ser Glu Asn Ser
Leu Thr Asn Ala Lys 35 40 45
Leu Lys Val Gln Ala Tyr His Ser Ser Tyr Pro Asn Asn Ile Gly Gln
50 55 60 Ile Asn
Lys Asp Val Thr Asp Ile Lys Ile Tyr Gln Val Pro Lys Gly65
70 75 80 Tyr Thr Leu Asn Lys Gly Tyr
Asp Val Asn Thr Lys Glu Leu Thr Asp 85 90
95 Val Thr Asn Gln Tyr Leu Gln Lys Ile Thr Tyr Gly
Asp Asn Asn Ser 100 105 110
Ala Val Ile Asp Phe Gly Asn Ala Asp Ser Ala Tyr Val Val Met Val
115 120 125 Asn Thr Lys Phe
Gln Tyr Thr Asn Ser Glu Ser Pro Thr Leu Val Gln 130
135 140 Met Ala Thr Leu Ser Ser Thr Gly
Asn Lys Ser Val Ser Thr Gly Asn145 150
155 160 Ala Leu Gly Phe Thr Asn Asn Gln Ser Gly Gly Ala
Gly Gln Glu Val 165 170
175 Tyr Lys Ile Gly Asn Tyr Val Trp Glu Asp Thr Asn Lys Asn Gly Val
180 185 190 Gln Glu Leu
Gly Glu Lys Gly 195 21516PRTStaphylococcus aureus
21Met Lys Lys Lys Asn Ile Tyr Ser Ile Arg Lys Leu Gly Val Gly Ile1
5 10 15 Ala Ser Val Thr
Leu Gly Thr Leu Leu Ile Ser Gly Gly Val Thr Pro 20
25 30 Ala Ala Asn Ala Ala Gln His Asp Glu
Ala Gln Gln Asn Ala Phe Tyr 35 40
45 Gln Val Leu Asn Met Pro Asn Leu Asn Ala Asp Gln Arg Asn
Gly Phe 50 55 60
Ile Gln Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Val Leu Gly65
70 75 80 Glu Ala Gln Lys Leu
Asn Asp Ser Gln Ala Pro Lys Ala Asp Ala Gln 85
90 95 Gln Asn Asn Phe Asn Lys Asp Gln Gln Ser
Ala Phe Tyr Glu Ile Leu 100 105
110 Asn Met Pro Asn Leu Asn Glu Ala Gln Arg Asn Gly Phe Ile Gln
Ser 115 120 125 Leu
Lys Asp Asp Pro Ser Gln Ser Thr Asn Val Leu Gly Glu Ala Lys 130
135 140 Lys Leu Asn Glu Ser Gln
Ala Pro Lys Ala Asp Asn Asn Phe Asn Lys145 150
155 160 Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu Asn
Met Pro Asn Leu Asn 165 170
175 Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser
180 185 190 Gln Ser Ala
Asn Leu Leu Ser Glu Ala Lys Lys Leu Asn Glu Ser Gln 195
200 205 Ala Pro Lys Ala Asp Asn Lys Phe
Asn Lys Glu Gln Gln Asn Ala Phe 210 215
220 Tyr Glu Ile Leu His Leu Pro Asn Leu Asn Glu Glu Gln
Arg Asn Gly225 230 235
240 Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu
245 250 255 Ala Glu Ala Lys
Lys Leu Asn Asp Ala Gln Ala Pro Lys Ala Asp Asn 260
265 270 Lys Phe Asn Lys Glu Gln Gln Asn Ala
Phe Tyr Glu Ile Leu His Leu 275 280
285 Pro Asn Leu Thr Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser
Leu Lys 290 295 300
Asp Asp Pro Ser Val Ser Lys Glu Ile Leu Ala Glu Ala Lys Lys Leu305
310 315 320 Asn Asp Ala Gln Ala
Pro Lys Glu Glu Asp Asn Asn Lys Pro Gly Lys 325
330 335 Glu Asp Asn Asn Lys Pro Gly Lys Glu Asp
Asn Asn Lys Pro Gly Lys 340 345
350 Glu Asp Asn Asn Lys Pro Gly Lys Glu Asp Asn Asn Lys Pro Gly
Lys 355 360 365 Glu
Asp Gly Asn Lys Pro Gly Lys Glu Asp Asn Lys Lys Pro Gly Lys 370
375 380 Glu Asp Gly Asn Lys Pro
Gly Lys Glu Asp Asn Lys Lys Pro Gly Lys385 390
395 400 Glu Asp Gly Asn Lys Pro Gly Lys Glu Asp Gly
Asn Lys Pro Gly Lys 405 410
415 Glu Asp Gly Asn Gly Val His Val Val Lys Pro Gly Asp Thr Val Asn
420 425 430 Asp Ile Ala
Lys Ala Asn Gly Thr Thr Ala Asp Lys Ile Ala Ala Asp 435
440 445 Asn Lys Leu Ala Asp Lys Asn Met
Ile Lys Pro Gly Gln Glu Leu Val 450 455
460 Val Asp Lys Lys Gln Pro Ala Asn His Ala Asp Ala Asn
Lys Ala Gln465 470 475
480 Ala Leu Pro Glu Thr Gly Glu Glu Asn Pro Phe Ile Gly Thr Thr Val
485 490 495 Phe Gly Gly Leu
Ser Leu Ala Leu Gly Ala Ala Leu Leu Ala Gly Arg 500
505 510 Arg Arg Glu Leu 515
22289PRTStaphylococcus aureus 22Ala Gln His Asp Glu Ala Gln Gln Asn Ala
Phe Tyr Gln Val Leu Asn1 5 10
15 Met Pro Asn Leu Asn Ala Asp Gln Arg Asn Gly Phe Ile Gln Ser
Leu 20 25 30 Lys
Asp Asp Pro Ser Gln Ser Ala Asn Val Leu Gly Glu Ala Gln Lys 35
40 45 Leu Asn Asp Ser Gln Ala
Pro Lys Ala Asp Ala Gln Gln Asn Asn Phe 50 55
60 Asn Lys Asp Gln Gln Ser Ala Phe Tyr Glu Ile
Leu Asn Met Pro Asn65 70 75
80 Leu Asn Glu Ala Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp
85 90 95 Pro Ser Gln
Ser Thr Asn Val Leu Gly Glu Ala Lys Lys Leu Asn Glu 100
105 110 Ser Gln Ala Pro Lys Ala Asp Asn
Asn Phe Asn Lys Glu Gln Gln Asn 115 120
125 Ala Phe Tyr Glu Ile Leu Asn Met Pro Asn Leu Asn Glu
Glu Gln Arg 130 135 140
Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser Gln Ser Ala Asn145
150 155 160 Leu Leu Ser Glu Ala
Lys Lys Leu Asn Glu Ser Gln Ala Pro Lys Ala 165
170 175 Asp Asn Lys Phe Asn Lys Glu Gln Gln Asn
Ala Phe Tyr Glu Ile Leu 180 185
190 His Leu Pro Asn Leu Asn Glu Glu Gln Arg Asn Gly Phe Ile Gln
Ser 195 200 205 Leu
Lys Asp Asp Pro Ser Gln Ser Ala Asn Leu Leu Ala Glu Ala Lys 210
215 220 Lys Leu Asn Asp Ala Gln
Ala Pro Lys Ala Asp Asn Lys Phe Asn Lys225 230
235 240 Glu Gln Gln Asn Ala Phe Tyr Glu Ile Leu His
Leu Pro Asn Leu Thr 245 250
255 Glu Glu Gln Arg Asn Gly Phe Ile Gln Ser Leu Lys Asp Asp Pro Ser
260 265 270 Val Ser Lys
Glu Ile Leu Ala Glu Ala Lys Lys Leu Asn Asp Ala Gln 275
280 285 Ala 23130PRTStaphylococcus
aureus 23Met Asn Phe Asn Asp Ile Glu Thr Met Val Lys Ser Lys Phe Lys Asp1
5 10 15 Ile Lys Lys
His Ala Glu Glu Ile Ala His Glu Ile Glu Val Arg Ser 20
25 30 Gly Tyr Leu Arg Lys Ala Glu Gln
Tyr Lys Arg Leu Glu Phe Asn Leu 35 40
45 Ser Phe Ala Leu Asp Asp Ile Glu Ser Thr Ala Lys Asp
Val Gln Thr 50 55 60
Ala Lys Ser Ser Ala Asn Lys Asp Ser Val Thr Val Lys Gly Lys Ala65
70 75 80 Pro Asn Thr Leu Tyr
Ile Glu Lys Arg Asn Leu Met Lys Gln Lys Leu 85
90 95 Glu Met Leu Gly Glu Asp Ile Asp Lys Asn
Lys Glu Ser Leu Gln Lys 100 105
110 Ala Lys Glu Ile Ala Gly Glu Lys Ala Ser Glu Tyr Phe Asn Lys
Ala 115 120 125 Met
Asn 130 2497PRTStaphylococcus aureus 24Met Ala Met Ile Lys Met Ser Pro
Glu Glu Ile Arg Ala Lys Ser Gln1 5 10
15 Ser Tyr Gly Gln Gly Ser Asp Gln Ile Arg Gln Ile Leu
Ser Asp Leu 20 25 30
Thr Arg Ala Gln Gly Glu Ile Ala Ala Asn Trp Glu Gly Gln Ala Phe
35 40 45 Ser Arg Phe Glu
Glu Gln Phe Gln Gln Leu Ser Pro Lys Val Glu Lys 50 55
60 Phe Ala Gln Leu Leu Glu Glu Ile Lys
Gln Gln Leu Asn Ser Thr Ala65 70 75
80 Asp Ala Val Gln Glu Gln Asp Gln Gln Leu Ser Asn Asn Phe
Gly Leu 85 90 95
Gln25104PRTStaphylococcus aureus 25Met Gly Gly Tyr Lys Gly Ile Lys Ala
Asp Gly Gly Lys Val Asp Gln1 5 10
15 Ala Lys Gln Leu Ala Ala Lys Thr Ala Lys Asp Ile Glu Ala
Cys Gln 20 25 30
Lys Gln Thr Gln Gln Leu Ala Glu Tyr Ile Glu Gly Ser Asp Trp Glu 35
40 45 Gly Gln Phe Ala Asn
Lys Val Lys Asp Val Leu Leu Ile Met Ala Lys 50 55
60 Phe Gln Glu Glu Leu Val Gln Pro Met Ala
Asp His Gln Lys Ala Ile65 70 75
80 Asp Asn Leu Ser Gln Asn Leu Ala Lys Tyr Asp Thr Leu Ser Ile
Lys 85 90 95 Gln
Gly Leu Asp Arg Val Asn Pro 100
26302PRTStaphylococcus aureus 26Met Lys Lys Leu Leu Leu Pro Leu Ile Ile
Met Leu Leu Val Leu Ala1 5 10
15 Ala Cys Gly Asn Gln Gly Glu Lys Asn Asn Lys Ala Glu Thr Lys
Ser 20 25 30 Tyr
Lys Met Asp Asp Gly Lys Thr Val Asp Ile Pro Lys Asp Pro Lys 35
40 45 Arg Ile Ala Val Val Ala
Pro Thr Tyr Ala Gly Gly Leu Lys Lys Leu 50 55
60 Gly Ala Asn Ile Val Ala Val Asn Gln Gln Val
Asp Gln Ser Lys Val65 70 75
80 Leu Lys Asp Lys Phe Lys Gly Val Thr Lys Ile Gly Asp Gly Asp Val
85 90 95 Glu Lys Val
Ala Lys Glu Lys Pro Asp Leu Ile Ile Val Tyr Ser Thr 100
105 110 Asp Lys Asp Ile Lys Lys Tyr Gln
Lys Val Ala Pro Thr Val Val Val 115 120
125 Asp Tyr Asn Lys His Lys Tyr Leu Glu Gln Gln Glu Met
Leu Gly Lys 130 135 140
Ile Val Gly Lys Glu Asp Lys Val Lys Ala Trp Lys Lys Asp Trp Glu145
150 155 160 Glu Thr Thr Ala Lys
Asp Gly Lys Glu Ile Lys Lys Ala Ile Gly Gln 165
170 175 Asp Ala Thr Val Ser Leu Phe Asp Glu Phe
Asp Lys Lys Leu Tyr Thr 180 185
190 Tyr Gly Asp Asn Trp Gly Arg Gly Gly Glu Val Leu Tyr Gln Ala
Phe 195 200 205 Gly
Leu Lys Met Gln Pro Glu Gln Gln Lys Leu Thr Ala Lys Ala Gly 210
215 220 Trp Ala Glu Val Lys Gln
Glu Glu Ile Glu Lys Tyr Ala Gly Asp Tyr225 230
235 240 Ile Val Ser Thr Ser Glu Gly Lys Pro Thr Pro
Gly Tyr Glu Ser Thr 245 250
255 Asn Met Trp Lys Asn Leu Lys Ala Thr Lys Glu Gly His Ile Val Lys
260 265 270 Val Asp Ala
Gly Thr Tyr Trp Tyr Asn Asp Pro Tyr Thr Leu Asp Phe 275
280 285 Met Arg Lys Asp Leu Lys Glu Lys
Leu Ile Lys Ala Ala Lys 290 295 300
27227PRTStaphylococcus aureus 27Met Lys Asn Ile Leu Lys Val Phe Asn
Thr Thr Ile Leu Ala Leu Ile1 5 10
15 Ile Ile Ile Ala Thr Phe Ser Asn Ser Ala Asn Ala Ala Asp
Ser Gly 20 25 30
Thr Leu Asn Tyr Glu Val Tyr Lys Tyr Asn Thr Asn Asp Thr Ser Ile 35
40 45 Ala Asn Asp Tyr Phe
Asn Lys Pro Ala Lys Tyr Ile Lys Lys Asn Gly 50 55
60 Lys Leu Tyr Val Gln Ile Thr Val Asn His
Ser His Trp Ile Thr Gly65 70 75
80 Met Ser Ile Glu Gly His Lys Glu Asn Ile Ile Ser Lys Asn Thr
Ala 85 90 95 Lys
Asp Glu Arg Thr Ser Glu Phe Glu Val Ser Lys Leu Asn Gly Lys
100 105 110 Ile Asp Gly Lys Ile
Asp Val Tyr Ile Asp Glu Lys Val Asn Gly Lys 115
120 125 Pro Phe Lys Tyr Asp His His Tyr Asn
Ile Thr Tyr Lys Phe Asn Gly 130 135
140 Pro Thr Asp Val Ala Gly Ala Asn Ala Pro Gly Lys Asp
Asp Lys Asn145 150 155
160 Ser Ala Ser Gly Ser Asp Lys Gly Ser Asp Gly Thr Thr Thr Gly Gln
165 170 175 Ser Glu Ser Asn
Ser Ser Asn Lys Asp Lys Val Glu Asn Pro Gln Thr 180
185 190 Asn Ala Gly Thr Pro Ala Tyr Ile Tyr
Ala Ile Pro Val Ala Ser Leu 195 200
205 Ala Leu Leu Ile Ala Ile Thr Leu Phe Val Arg Lys Lys Ser
Lys Gly 210 215 220
Asn Val Glu225 28319PRTStaphylococcus aureus 28Met Lys Thr Arg
Ile Val Ser Ser Val Thr Thr Thr Leu Leu Leu Gly1 5
10 15 Ser Ile Leu Met Asn Pro Val Ala Asn
Ala Ala Asp Ser Asp Ile Asn 20 25
30 Ile Lys Thr Gly Thr Thr Asp Ile Gly Ser Asn Thr Thr Val
Lys Thr 35 40 45
Gly Asp Leu Val Thr Tyr Asp Lys Glu Asn Gly Met His Lys Lys Val 50
55 60 Phe Tyr Ser Phe Ile
Asp Asp Lys Asn His Asn Lys Lys Leu Leu Val65 70
75 80 Ile Arg Thr Lys Gly Thr Ile Ala Gly Gln
Tyr Arg Val Tyr Ser Glu 85 90
95 Glu Gly Ala Asn Lys Ser Gly Leu Ala Trp Pro Ser Ala Phe Lys
Val 100 105 110 Gln
Leu Gln Leu Pro Asp Asn Glu Val Ala Gln Ile Ser Asp Tyr Tyr 115
120 125 Pro Arg Asn Ser Ile Asp
Thr Lys Glu Tyr Met Ser Thr Leu Thr Tyr 130 135
140 Gly Phe Asn Gly Asn Val Thr Gly Asp Asp Thr
Gly Lys Ile Gly Gly145 150 155
160 Leu Ile Gly Ala Asn Val Ser Ile Gly His Thr Leu Lys Tyr Val Gln
165 170 175 Pro Asp Phe
Lys Thr Ile Leu Glu Ser Pro Thr Asp Lys Lys Val Gly 180
185 190 Trp Lys Val Ile Phe Asn Asn Met
Val Asn Gln Asn Trp Gly Pro Tyr 195 200
205 Asp Arg Asp Ser Trp Asn Pro Val Tyr Gly Asn Gln Leu
Phe Met Lys 210 215 220
Thr Arg Asn Gly Ser Met Lys Ala Ala Asp Asn Phe Leu Asp Pro Asn225
230 235 240 Lys Ala Ser Ser Leu
Leu Ser Ser Gly Phe Ser Pro Asp Phe Ala Thr 245
250 255 Val Ile Thr Met Asp Arg Lys Ala Ser Lys
Gln Gln Thr Asn Ile Asp 260 265
270 Val Ile Tyr Glu Arg Val Arg Asp Asp Tyr Gln Leu His Trp Thr
Ser 275 280 285 Thr
Asn Trp Lys Gly Thr Asn Thr Lys Asp Lys Trp Ile Asp Arg Ser 290
295 300 Ser Glu Arg Tyr Lys Ile
Asp Trp Glu Lys Glu Glu Met Thr Asn305 310
315 29293PRTStaphylococcus aureus 29Ala Asp Ser Asp Ile
Asn Ile Lys Thr Gly Thr Thr Asp Ile Gly Ser1 5
10 15 Asn Thr Thr Val Lys Thr Gly Asp Leu Val
Thr Tyr Asp Lys Glu Asn 20 25
30 Gly Met Leu Lys Lys Val Phe Tyr Ser Phe Ile Asp Asp Lys Asn
His 35 40 45 Asn
Lys Lys Leu Leu Val Ile Arg Thr Lys Gly Thr Ile Ala Gly Gln 50
55 60 Tyr Arg Val Tyr Ser Glu
Glu Gly Ala Asn Lys Ser Gly Leu Ala Trp65 70
75 80 Pro Ser Ala Phe Lys Val Gln Leu Gln Leu Pro
Asp Asn Glu Val Ala 85 90
95 Gln Ile Ser Asp Tyr Tyr Pro Arg Asn Ser Ile Asp Thr Lys Glu Tyr
100 105 110 Met Ser Thr
Leu Thr Tyr Gly Phe Asn Gly Asn Val Thr Gly Asp Asp 115
120 125 Thr Gly Lys Ile Gly Gly Leu Ile
Gly Ala Asn Val Ser Ile Gly His 130 135
140 Thr Leu Lys Tyr Val Gln Pro Asp Phe Lys Thr Ile Leu
Glu Ser Pro145 150 155
160 Thr Asp Lys Lys Val Gly Trp Lys Val Ile Phe Asn Asn Met Val Asn
165 170 175 Gln Asn Trp Gly
Pro Tyr Asp Arg Asp Ser Trp Asn Pro Val Tyr Gly 180
185 190 Asn Gln Leu Phe Met Lys Thr Arg Asn
Gly Ser Met Lys Ala Ala Asp 195 200
205 Asn Phe Leu Asp Pro Asn Lys Ala Ser Ser Leu Leu Ser Ser
Gly Phe 210 215 220
Ser Pro Asp Phe Ala Thr Val Ile Thr Met Asp Arg Lys Ala Ser Lys225
230 235 240 Gln Gln Thr Asn Ile
Asp Val Ile Tyr Glu Arg Val Arg Asp Asp Tyr 245
250 255 Gln Leu His Trp Thr Ser Thr Asn Trp Lys
Gly Thr Asn Thr Lys Asp 260 265
270 Lys Trp Ile Asp Arg Ser Ser Glu Arg Tyr Lys Ile Asp Trp Glu
Lys 275 280 285 Glu
Glu Met Thr Asn 290 304PRTArtificial SequenceTetrapeptide
loop replacement 30Pro Ser Gly Ser1 31258PRTStaphylococcus
aureus 31Ala Asp Ser Asp Ile Asn Ile Lys Thr Gly Thr Thr Asp Ile Gly Ser1
5 10 15 Asn Thr Thr
Val Lys Thr Gly Asp Leu Val Thr Tyr Asp Lys Glu Asn 20
25 30 Gly Met Leu Lys Lys Val Phe Tyr
Ser Phe Ile Asp Asp Lys Asn His 35 40
45 Asn Lys Lys Leu Leu Val Ile Arg Thr Lys Gly Thr Ile
Ala Gly Gln 50 55 60
Tyr Arg Val Tyr Ser Glu Glu Gly Ala Asn Lys Ser Gly Leu Ala Trp65
70 75 80 Pro Ser Ala Phe Lys
Val Gln Leu Gln Leu Pro Asp Asn Glu Val Ala 85
90 95 Gln Ile Ser Asp Tyr Tyr Pro Arg Asn Ser
Ile Asp Thr Pro Ser Gly 100 105
110 Ser Val Gln Pro Asp Phe Lys Thr Ile Leu Glu Ser Pro Thr Asp
Lys 115 120 125 Lys
Val Gly Trp Lys Val Ile Phe Asn Asn Met Val Asn Gln Asn Trp 130
135 140 Gly Pro Tyr Asp Arg Asp
Ser Trp Asn Pro Val Tyr Gly Asn Gln Leu145 150
155 160 Phe Met Lys Thr Arg Asn Gly Ser Met Lys Ala
Ala Asp Asn Phe Leu 165 170
175 Asp Pro Asn Lys Ala Ser Ser Leu Leu Ser Ser Gly Phe Ser Pro Asp
180 185 190 Phe Ala Thr
Val Ile Thr Met Asp Arg Lys Ala Ser Lys Gln Gln Thr 195
200 205 Asn Ile Asp Val Ile Tyr Glu Arg
Val Arg Asp Asp Tyr Gln Leu His 210 215
220 Trp Thr Ser Thr Asn Trp Lys Gly Thr Asn Thr Lys Asp
Lys Trp Ile225 230 235
240 Asp Arg Ser Ser Glu Arg Tyr Lys Ile Asp Trp Glu Lys Glu Glu Met
245 250 255 Thr
Asn32258PRTStaphylococcus aureus 32Ala Asp Ser Asp Ile Asn Ile Lys Thr
Gly Thr Thr Asp Ile Gly Ser1 5 10
15 Asn Thr Thr Val Lys Thr Gly Asp Leu Val Thr Tyr Asp Lys
Glu Asn 20 25 30
Gly Met His Lys Lys Val Phe Tyr Ser Phe Ile Asp Asp Lys Asn His 35
40 45 Asn Lys Lys Leu Leu
Val Ile Arg Thr Lys Gly Thr Ile Ala Gly Gln 50 55
60 Tyr Arg Val Tyr Ser Glu Glu Gly Ala Asn
Lys Ser Gly Leu Ala Trp65 70 75
80 Pro Ser Ala Phe Lys Val Gln Leu Gln Leu Pro Asp Asn Glu Val
Ala 85 90 95 Gln
Ile Ser Asp Tyr Tyr Pro Arg Asn Ser Ile Asp Thr Pro Ser Gly
100 105 110 Ser Val Gln Pro Asp
Phe Lys Thr Ile Leu Glu Ser Pro Thr Asp Lys 115
120 125 Lys Val Gly Trp Lys Val Ile Phe Asn
Asn Met Val Asn Gln Asn Trp 130 135
140 Gly Pro Tyr Asp Arg Asp Ser Trp Asn Pro Val Tyr Gly
Asn Gln Leu145 150 155
160 Phe Met Lys Thr Arg Asn Gly Ser Met Lys Ala Ala Asp Asn Phe Leu
165 170 175 Asp Pro Asn Lys
Ala Ser Ser Leu Leu Ser Ser Gly Phe Ser Pro Asp 180
185 190 Phe Ala Thr Val Ile Thr Met Asp Arg
Lys Ala Ser Lys Gln Gln Thr 195 200
205 Asn Ile Asp Val Ile Tyr Glu Arg Val Arg Asp Asp Tyr Gln
Leu His 210 215 220
Trp Thr Ser Thr Asn Trp Lys Gly Thr Asn Thr Lys Asp Lys Trp Ile225
230 235 240 Asp Arg Ser Ser Glu
Arg Tyr Lys Ile Asp Trp Glu Lys Glu Glu Met 245
250 255 Thr Asn3350PRTStaphylococcus aureus
33Ala Asp Ser Asp Ile Asn Ile Lys Thr Gly Thr Thr Asp Ile Gly Ser1
5 10 15 Asn Thr Thr Val
Lys Thr Gly Asp Leu Val Thr Tyr Asp Lys Glu Asn 20
25 30 Gly Met His Lys Lys Val Phe Tyr Ser
Phe Ile Asp Asp Lys Asn His 35 40
45 Asn Lys 50 3463PRTStaphylococcus aureus 34Ala Asp
Ser Asp Ile Asn Ile Lys Thr Gly Thr Thr Asp Ile Gly Ser1 5
10 15 Asn Thr Thr Val Lys Thr Gly
Asp Leu Val Thr Tyr Asp Lys Glu Asn 20 25
30 Gly Met His Lys Lys Val Phe Tyr Ser Phe Ile Asp
Asp Lys Asn His 35 40 45
Asn Lys Lys Leu Leu Val Ile Arg Thr Lys Gly Thr Ile Ala Gly 50
55 60 3553PRTStaphylococcus
aureus 35Ala Asp Ser Asp Ile Asn Ile Lys Thr Gly Thr Thr Asp Ile Gly Ser1
5 10 15 Asn Thr Thr
Val Lys Thr Gly Asp Leu Val Thr Tyr Asp Lys Glu Asn 20
25 30 Gly Met His Lys Lys Val Phe Tyr
Ser Phe Ile Asp Asp Lys Asn His 35 40
45 Asn Lys Lys Leu Leu 50
3650PRTStaphylococcus aureus 36Ala Asp Ser Asp Ile Asn Ile Lys Thr Gly
Thr Thr Asp Ile Gly Ser1 5 10
15 Asn Thr Thr Val Lys Thr Gly Asp Leu Val Thr Tyr Asp Lys Glu
Asn 20 25 30 Gly
Met Leu Lys Lys Val Phe Tyr Ser Phe Ile Asp Asp Lys Asn His 35
40 45 Asn Lys 50
3763PRTStaphylococcus aureus 37Ala Asp Ser Asp Ile Asn Ile Lys Thr Gly
Thr Thr Asp Ile Gly Ser1 5 10
15 Asn Thr Thr Val Lys Thr Gly Asp Leu Val Thr Tyr Asp Lys Glu
Asn 20 25 30 Gly
Met Leu Lys Lys Val Phe Tyr Ser Phe Ile Asp Asp Lys Asn His 35
40 45 Asn Lys Lys Leu Leu Val
Ile Arg Thr Lys Gly Thr Ile Ala Gly 50 55
60 3853PRTStaphylococcus aureus 38Ala Asp Ser Asp Ile
Asn Ile Lys Thr Gly Thr Thr Asp Ile Gly Ser1 5
10 15 Asn Thr Thr Val Lys Thr Gly Asp Leu Val
Thr Tyr Asp Lys Glu Asn 20 25
30 Gly Met Leu Lys Lys Val Phe Tyr Ser Phe Ile Asp Asp Lys Asn
His 35 40 45 Asn
Lys Lys Leu Leu 50 39256PRTStaphylococcus aureus 39Met
Met Lys Arg Leu Asn Lys Leu Val Leu Gly Ile Ile Phe Leu Phe1
5 10 15 Leu Val Ile Ser Ile Thr
Ala Gly Cys Gly Ile Gly Lys Glu Ala Glu 20 25
30 Val Lys Lys Ser Phe Glu Lys Thr Leu Ser Met
Tyr Pro Ile Lys Asn 35 40 45
Leu Glu Asp Leu Tyr Asp Lys Glu Gly Tyr Arg Asp Asp Gln Phe Asp
50 55 60 Lys Asn Asp
Lys Gly Thr Trp Ile Ile Asn Ser Glu Met Val Ile Gln65 70
75 80 Pro Asn Asn Glu Asp Met Val Ala
Lys Gly Met Val Leu Tyr Met Asn 85 90
95 Arg Asn Thr Lys Thr Thr Asn Gly Tyr Tyr Tyr Val Asp
Val Thr Lys 100 105 110
Asp Glu Asp Glu Gly Lys Pro His Asp Asn Glu Lys Arg Tyr Pro Val
115 120 125 Lys Met Val Asp
Asn Lys Ile Ile Pro Thr Lys Glu Ile Lys Asp Glu 130
135 140 Lys Ile Lys Lys Glu Ile Glu Asn
Phe Lys Phe Phe Val Gln Tyr Gly145 150
155 160 Asp Phe Lys Asn Leu Lys Asn Tyr Lys Asp Gly Asp
Ile Ser Tyr Asn 165 170
175 Pro Glu Val Pro Ser Tyr Ser Ala Lys Tyr Gln Leu Thr Asn Asp Asp
180 185 190 Tyr Asn Val
Lys Gln Leu Arg Lys Arg Tyr Asp Ile Pro Thr Ser Lys 195
200 205 Ala Pro Lys Leu Leu Leu Lys Gly
Ser Gly Asn Leu Lys Gly Ser Ser 210 215
220 Val Gly Tyr Lys Asp Ile Glu Phe Thr Phe Val Glu Lys
Lys Glu Glu225 230 235
240 Asn Ile Tyr Phe Ser Asp Ser Leu Asp Tyr Lys Lys Ser Gly Asp Val
245 250 255
40256PRTStaphylococcus aureus 40Met Met Lys Arg Leu Asn Lys Leu Val Leu
Gly Ile Ile Phe Leu Phe1 5 10
15 Leu Val Ile Ser Ile Thr Ala Gly Cys Gly Ile Gly Lys Glu Ala
Glu 20 25 30 Val
Lys Lys Ser Phe Glu Lys Thr Leu Ser Met Tyr Pro Ile Lys Asn 35
40 45 Leu Glu Asp Leu Tyr Asp
Lys Glu Gly Tyr Arg Asp Asp Gln Phe Asp 50 55
60 Lys Asn Asp Lys Gly Thr Trp Ile Ile Asn Ser
Glu Met Val Ile Gln65 70 75
80 Pro Asn Asn Glu Asp Met Val Ala Lys Gly Met Val Leu Tyr Met Asn
85 90 95 Arg Asn Thr
Lys Thr Thr Asn Gly Tyr Tyr Tyr Val Asp Val Thr Lys 100
105 110 Asp Glu Asp Glu Gly Lys Pro His
Asp Asn Glu Lys Arg Tyr Pro Val 115 120
125 Lys Met Val Asp Asn Lys Ile Ile Pro Thr Lys Glu Ile
Lys Asp Glu 130 135 140
Lys Leu Lys Lys Glu Ile Glu Asn Phe Lys Phe Phe Val Gln Tyr Gly145
150 155 160 Asp Phe Lys Asn Ile
Lys Asn Tyr Lys Asp Gly Asp Ile Ser Tyr Asn 165
170 175 Pro Glu Val Pro Ser Tyr Ser Ala Lys Tyr
Gln Leu Thr Asn Asp Asp 180 185
190 Tyr Asn Val Lys Gln Leu Arg Lys Arg Tyr Asp Ile Pro Thr Ser
Lys 195 200 205 Ala
Pro Lys Leu Leu Leu Lys Gly Ser Gly Asn Leu Lys Gly Ser Ser 210
215 220 Val Gly Tyr Lys Asp Ile
Glu Phe Thr Phe Val Glu Lys Lys Glu Glu225 230
235 240 Asn Ile Tyr Phe Ser Asp Ser Leu Asp Tyr Lys
Lys Ser Gly Asp Val 245 250
255 41256PRTStaphylococcus aureus 41Met Met Lys Arg Leu Asn Lys Leu
Val Leu Gly Ile Ile Phe Leu Phe1 5 10
15 Leu Val Ile Ser Ile Thr Ala Gly Cys Gly Ile Gly Lys
Glu Ala Glu 20 25 30
Val Lys Lys Ser Phe Glu Lys Thr Leu Ser Met Tyr Pro Ile Lys Asn
35 40 45 Leu Glu Asp Leu
Tyr Asp Lys Glu Gly Tyr Arg Asp Asp Gln Phe Asp 50 55
60 Lys Asn Asp Lys Gly Thr Trp Ile Ile
Asn Ser Glu Met Val Ile Gln65 70 75
80 Pro Asn Asn Glu Asp Met Val Ala Lys Gly Met Val Leu Tyr
Met Asn 85 90 95
Arg Asn Thr Lys Thr Thr Asn Gly Tyr Tyr Tyr Val Asp Val Thr Lys
100 105 110 Asp Glu Asp Glu Gly
Lys Pro His Asp Asn Glu Lys Arg Tyr Pro Val 115
120 125 Lys Met Val Asp Asn Lys Ile Ile Pro
Thr Lys Glu Ile Lys Asp Glu 130 135
140 Lys Val Lys Lys Glu Ile Glu Asn Phe Lys Phe Phe Val
Gln Tyr Gly145 150 155
160 Asp Phe Lys Asn Ile Lys Asn Tyr Lys Asp Gly Asp Ile Ser Tyr Asn
165 170 175 Pro Glu Val Pro
Ser Tyr Ser Ala Lys Tyr Gln Leu Thr Asn Asp Asp 180
185 190 Tyr Asn Val Lys Gln Leu Arg Lys Arg
Tyr Asp Ile Pro Thr Ser Lys 195 200
205 Ala Pro Lys Leu Leu Leu Lys Gly Ser Gly Asn Leu Lys Gly
Ser Ser 210 215 220
Val Gly Tyr Lys Asp Ile Glu Phe Thr Phe Val Glu Lys Lys Glu Glu225
230 235 240 Asn Ile Tyr Phe Ser
Asp Ser Leu Asp Tyr Lys Lys Ser Gly Asp Val 245
250 255 42256PRTStaphylococcus aureus 42Met Met
Lys Arg Leu Asn Lys Leu Val Leu Gly Ile Ile Phe Leu Phe1 5
10 15 Leu Val Ile Ser Ile Thr Ala
Gly Cys Gly Ile Gly Lys Glu Ala Glu 20 25
30 Val Lys Lys Ser Phe Glu Lys Thr Leu Ser Met Tyr
Pro Ile Lys Asn 35 40 45
Leu Glu Asp Leu Tyr Asp Lys Glu Gly Tyr Arg Asp Asp Gln Phe Asp
50 55 60 Lys Asn Asp
Lys Gly Thr Trp Ile Ile Asn Ser Glu Met Val Ile Gln65 70
75 80 Pro Asn Asn Glu Asp Met Val Ala
Lys Gly Met Val Leu Tyr Met Asn 85 90
95 Arg Asn Thr Lys Thr Thr Asn Gly Tyr Tyr Tyr Val Asp
Val Thr Lys 100 105 110
Asp Glu Asp Glu Gly Lys Pro His Asp Asn Glu Lys Arg Tyr Pro Val
115 120 125 Lys Met Val Asp
Asn Lys Ile Ile Pro Thr Lys Glu Ile Lys Asp Glu 130
135 140 Lys Leu Lys Lys Glu Ile Glu Asn
Phe Lys Phe Phe Val Gln Tyr Gly145 150
155 160 Asp Phe Lys Asn Val Lys Asn Tyr Lys Asp Gly Asp
Ile Ser Tyr Asn 165 170
175 Pro Glu Val Pro Ser Tyr Ser Ala Lys Tyr Gln Leu Thr Asn Asp Asp
180 185 190 Tyr Asn Val
Lys Gln Leu Arg Lys Arg Tyr Asp Ile Pro Thr Ser Lys 195
200 205 Ala Pro Lys Leu Leu Leu Lys Gly
Ser Gly Asn Leu Lys Gly Ser Ser 210 215
220 Val Gly Tyr Lys Asp Ile Glu Phe Thr Phe Val Glu Lys
Lys Glu Glu225 230 235
240 Asn Ile Tyr Phe Ser Asp Ser Leu Asp Tyr Lys Lys Ser Gly Asp Val
245 250 255
43350PRTStaphylococcus aureus 43Met Thr Lys His Tyr Leu Asn Ser Lys Tyr
Gln Ser Glu Gln Arg Ser1 5 10
15 Ser Ala Met Lys Lys Ile Thr Met Gly Thr Ala Ser Ile Ile Leu
Gly 20 25 30 Ser
Leu Val Tyr Ile Gly Ala Asp Ser Gln Gln Val Asn Ala Ala Thr 35
40 45 Glu Ala Thr Asn Ala Thr
Asn Asn Gln Ser Thr Gln Val Ser Gln Ala 50 55
60 Thr Ser Gln Pro Ile Asn Phe Gln Val Gln Lys
Asp Gly Ser Ser Glu65 70 75
80 Lys Ser His Met Asp Asp Tyr Met Gln His Pro Gly Lys Val Ile Lys
85 90 95 Gln Asn Asn
Lys Tyr Tyr Phe Gln Thr Val Leu Asn Asn Ala Ser Phe 100
105 110 Trp Lys Glu Tyr Lys Phe Tyr Asn
Ala Asn Asn Gln Glu Leu Ala Thr 115 120
125 Thr Val Val Asn Asp Asn Lys Lys Ala Asp Thr Arg Thr
Ile Asn Val 130 135 140
Ala Val Glu Pro Gly Tyr Lys Ser Leu Thr Thr Lys Val His Ile Val145
150 155 160 Val Pro Gln Ile Asn
Tyr Asn His Arg Tyr Thr Thr His Leu Glu Phe 165
170 175 Glu Lys Ala Ile Pro Thr Leu Ala Asp Ala
Ala Lys Pro Asn Asn Val 180 185
190 Lys Pro Val Gln Pro Lys Pro Ala Gln Pro Lys Thr Pro Thr Glu
Gln 195 200 205 Thr
Lys Pro Val Gln Pro Lys Val Glu Lys Val Lys Pro Thr Val Thr 210
215 220 Thr Thr Ser Lys Val Glu
Asp Asn His Ser Thr Lys Val Val Ser Thr225 230
235 240 Asp Thr Thr Lys Asp Gln Thr Lys Thr Gln Thr
Ala His Thr Val Lys 245 250
255 Thr Ala Gln Thr Ala Gln Glu Gln Asn Lys Val Gln Thr Pro Val Lys
260 265 270 Asp Val Ala
Thr Ala Lys Ser Glu Ser Asn Asn Gln Ala Val Ser Asp 275
280 285 Asn Lys Ser Gln Gln Thr Asn Lys
Val Thr Lys His Asn Glu Thr Pro 290 295
300 Lys Gln Ala Ser Lys Ala Lys Glu Leu Pro Lys Thr Gly
Leu Thr Ser305 310 315
320 Val Asp Asn Phe Ile Ser Thr Val Ala Phe Ala Thr Leu Ala Leu Leu
325 330 335 Gly Ser Leu Ser
Leu Leu Leu Phe Lys Arg Lys Glu Ser Lys 340
345 350 44145PRTStaphylococcus aureus 44Asp Ser Gln Gln
Val Asn Ala Ala Thr Glu Ala Thr Asn Ala Thr Asn1 5
10 15 Asn Gln Ser Thr Gln Val Ser Gln Ala
Thr Ser Gln Pro Ile Asn Phe 20 25
30 Gln Val Gln Lys Asp Gly Ser Ser Glu Lys Ser His Met Asp
Asp Tyr 35 40 45
Met Gln His Pro Gly Lys Val Ile Lys Gln Asn Asn Lys Tyr Tyr Phe 50
55 60 Gln Thr Val Leu Asn
Asn Ala Ser Phe Trp Lys Glu Tyr Lys Phe Tyr65 70
75 80 Asn Ala Asn Asn Gln Glu Leu Ala Thr Thr
Val Val Asn Asp Asn Lys 85 90
95 Lys Ala Asp Thr Arg Thr Ile Asn Val Ala Val Glu Pro Gly Tyr
Lys 100 105 110 Ser
Leu Thr Thr Lys Val His Ile Val Val Pro Gln Ile Asn Tyr Asn 115
120 125 His Arg Tyr Thr Thr His
Leu Glu Phe Glu Lys Ala Ile Pro Thr Leu 130 135
140 Ala145 45645PRTStaphylococcus aureus 45Met
Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys1
5 10 15 Ser Ser Leu Gly Val Ala
Ser Val Ala Ile Ser Thr Leu Leu Leu Leu 20 25
30 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu
Glu Thr Gly Gly Thr 35 40 45
Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
50 55 60 Thr Ser Glu
Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser65 70
75 80 Val Ser Asn Lys Glu Val Glu Ala
Pro Thr Ser Glu Thr Lys Glu Ala 85 90
95 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys
Glu Val Lys 100 105 110
Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
115 120 125 Leu Arg Glu Ala
Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser 130
135 140 Ala Pro Asn Ser Arg Pro Ile Asp
Phe Glu Met Lys Lys Lys Asp Gly145 150
155 160 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys
Pro Ala Arg Val 165 170
175 Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
180 185 190 Gln Phe Trp
Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro 195
200 205 Ile Lys Leu Val Ser Tyr Asp Thr
Val Lys Asp Tyr Ala Tyr Ile Arg 210 215
220 Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val
Ser Ser Thr225 230 235
240 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
245 250 255 Ala Gln Pro Ile
Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp 260
265 270 Tyr Lys Ala Glu Lys Leu Leu Ala Pro
Tyr Lys Lys Ala Lys Thr Leu 275 280
285 Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu
Pro Glu 290 295 300
Lys Leu Lys Ala Glu Tyr Lys Lys Lys Leu Glu Asp Thr Lys Lys Ala305
310 315 320 Leu Asp Glu Gln Val
Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln 325
330 335 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln
Asp Thr Lys Tyr Val Val 340 345
350 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val
Lys 355 360 365 His
Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met 370
375 380 Glu Thr Thr Asn Asp Asp
Tyr Trp Lys Asp Phe Met Val Glu Gly Gln385 390
395 400 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn
Asn Thr Arg Thr Ile 405 410
415 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
420 425 430 Val His Val
Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile 435
440 445 Val Asp Lys Glu Ala Phe Thr Lys
Ala Asn Thr Asp Lys Ser Asn Lys 450 455
460 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr
Pro Ala Thr465 470 475
480 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
485 490 495 Asp Ser Gln Lys
Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu 500
505 510 Asn Asp Ala Ser Ser Glu Ser Gly Lys
Asp Lys Thr Pro Ala Thr Lys 515 520
525 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr
Lys Val 530 535 540
Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys545
550 555 560 Thr Thr Lys Asp Val
Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys 565
570 575 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile
Lys Asn Thr Asn Asp Gly 580 585
590 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala
Lys 595 600 605 Ser
Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro 610
615 620 Leu Met Ala Leu Leu Ala
Leu Ser Ser Ile Val Ala Phe Val Leu Pro625 630
635 640 Arg Lys Arg Lys Asn 645
461256PRTStaphylococcus aureus 46Met Ala Lys Lys Phe Asn Tyr Lys Leu Pro
Ser Met Val Ala Leu Thr1 5 10
15 Leu Val Gly Ser Ala Val Thr Ala His Gln Val Gln Ala Ala Glu
Thr 20 25 30 Thr
Gln Asp Gln Thr Thr Asn Lys Asn Val Leu Asp Ser Asn Lys Val 35
40 45 Lys Ala Thr Thr Glu Gln
Ala Lys Ala Glu Val Lys Asn Pro Thr Gln 50 55
60 Asn Ile Ser Gly Thr Gln Val Tyr Gln Asp Pro
Ala Ile Val Gln Pro65 70 75
80 Lys Thr Ala Asn Asn Lys Thr Gly Asn Ala Gln Val Ser Gln Lys Val
85 90 95 Asp Thr Ala
Gln Val Asn Gly Asp Thr Arg Ala Asn Gln Ser Ala Thr 100
105 110 Thr Asn Asn Thr Gln Pro Val Ala
Lys Ser Thr Ser Thr Thr Ala Pro 115 120
125 Lys Thr Asn Thr Asn Val Thr Asn Ala Gly Tyr Ser Leu
Val Asp Asp 130 135 140
Glu Asp Asp Asn Ser Glu Asn Gln Ile Asn Pro Glu Leu Ile Lys Ser145
150 155 160 Ala Ala Lys Pro Ala
Ala Leu Glu Thr Gln Tyr Lys Thr Ala Ala Pro 165
170 175 Lys Ala Ala Thr Thr Ser Ala Pro Lys Ala
Lys Thr Glu Ala Thr Pro 180 185
190 Lys Val Thr Thr Phe Ser Ala Ser Ala Gln Pro Arg Ser Val Ala
Ala 195 200 205 Thr
Pro Lys Thr Ser Leu Pro Lys Tyr Lys Pro Gln Val Asn Ser Ser 210
215 220 Ile Asn Asp Tyr Ile Cys
Lys Asn Asn Leu Lys Ala Pro Lys Ile Glu225 230
235 240 Glu Asp Tyr Thr Ser Tyr Phe Pro Lys Tyr Ala
Tyr Arg Asn Gly Val 245 250
255 Gly Arg Pro Glu Gly Ile Val Val His Asp Thr Ala Asn Asp Arg Ser
260 265 270 Thr Ile Asn
Gly Glu Ile Ser Tyr Met Lys Asn Asn Tyr Gln Asn Ala 275
280 285 Phe Val His Ala Phe Val Asp Gly
Asp Arg Ile Ile Glu Thr Ala Pro 290 295
300 Thr Asp Tyr Leu Ser Trp Gly Val Gly Ala Val Gly Asn
Pro Arg Phe305 310 315
320 Ile Asn Val Glu Ile Val His Thr His Asp Tyr Ala Ser Phe Ala Arg
325 330 335 Ser Met Asn Asn
Tyr Ala Asp Tyr Ala Ala Thr Gln Leu Gln Tyr Tyr 340
345 350 Gly Leu Lys Pro Asp Ser Ala Glu Tyr
Asp Gly Asn Gly Thr Val Trp 355 360
365 Thr His Tyr Ala Val Ser Lys Tyr Leu Gly Gly Thr Asp His
Ala Asp 370 375 380
Pro His Gly Tyr Leu Arg Ser His Asn Tyr Ser Tyr Asp Gln Leu Tyr385
390 395 400 Asp Leu Ile Asn Glu
Lys Tyr Leu Ile Lys Met Gly Lys Val Ala Pro 405
410 415 Trp Gly Thr Gln Ser Thr Thr Thr Pro Thr
Thr Pro Ser Lys Pro Thr 420 425
430 Thr Pro Ser Lys Pro Ser Thr Gly Lys Leu Thr Val Ala Ala Asn
Asn 435 440 445 Gly
Val Ala Gln Ile Lys Pro Thr Asn Ser Gly Leu Tyr Thr Thr Val 450
455 460 Tyr Asp Lys Thr Gly Lys
Ala Thr Asn Glu Val Gln Lys Thr Phe Ala465 470
475 480 Val Ser Lys Thr Ala Thr Leu Gly Asn Gln Lys
Phe Tyr Leu Val Gln 485 490
495 Asp Tyr Asn Ser Gly Asn Lys Phe Gly Trp Val Lys Glu Gly Asp Val
500 505 510 Val Tyr Asn
Thr Ala Lys Ser Pro Val Asn Val Asn Gln Ser Tyr Ser 515
520 525 Ile Lys Pro Gly Thr Lys Leu Tyr
Thr Val Pro Trp Gly Thr Ser Lys 530 535
540 Gln Val Ala Gly Ser Val Ser Gly Ser Gly Asn Gln Thr
Phe Lys Ala545 550 555
560 Ser Lys Gln Gln Gln Ile Asp Lys Ser Ile Tyr Leu Tyr Gly Ser Val
565 570 575 Asn Gly Lys Ser
Gly Trp Val Ser Lys Ala Tyr Leu Val Asp Thr Ala 580
585 590 Lys Pro Thr Pro Thr Pro Thr Pro Lys
Pro Ser Thr Pro Thr Thr Asn 595 600
605 Asn Lys Leu Thr Val Ser Ser Leu Asn Gly Val Ala Gln Ile
Asn Ala 610 615 620
Lys Asn Asn Gly Leu Phe Thr Thr Val Tyr Asp Lys Thr Gly Lys Pro625
630 635 640 Thr Lys Glu Val Gln
Lys Thr Phe Ala Val Thr Lys Glu Ala Ser Leu 645
650 655 Gly Gly Asn Lys Phe Tyr Leu Val Lys Asp
Tyr Asn Ser Pro Thr Leu 660 665
670 Ile Gly Trp Val Lys Gln Gly Asp Val Ile Tyr Asn Asn Ala Lys
Ser 675 680 685 Pro
Val Asn Val Met Gln Thr Tyr Thr Val Lys Pro Gly Thr Lys Leu 690
695 700 Tyr Ser Val Pro Trp Gly
Thr Tyr Lys Gln Glu Ala Gly Ala Val Ser705 710
715 720 Gly Thr Gly Asn Gln Thr Phe Lys Ala Thr Lys
Gln Gln Gln Ile Asp 725 730
735 Lys Ser Ile Tyr Leu Phe Gly Thr Val Asn Gly Lys Ser Gly Trp Val
740 745 750 Ser Lys Ala
Tyr Leu Ala Val Pro Ala Ala Pro Lys Lys Ala Val Ala 755
760 765 Gln Pro Lys Thr Ala Val Lys Ala
Tyr Thr Val Thr Lys Pro Gln Thr 770 775
780 Thr Gln Thr Val Ser Lys Ile Ala Gln Val Lys Pro Asn
Asn Thr Gly785 790 795
800 Ile Arg Ala Ser Val Tyr Glu Lys Thr Ala Lys Asn Gly Ala Lys Tyr
805 810 815 Ala Asp Arg Thr
Phe Tyr Val Thr Lys Glu Arg Ala His Gly Asn Glu 820
825 830 Thr Tyr Val Leu Leu Asn Asn Thr Ser
His Asn Ile Pro Leu Gly Trp 835 840
845 Phe Asn Val Lys Asp Leu Asn Val Gln Asn Leu Gly Lys Glu
Val Lys 850 855 860
Thr Thr Gln Lys Tyr Thr Val Asn Lys Ser Asn Asn Gly Leu Ser Met865
870 875 880 Val Pro Trp Gly Thr
Lys Asn Gln Val Ile Leu Thr Gly Asn Asn Ile 885
890 895 Ala Gln Gly Thr Phe Asn Ala Thr Lys Gln
Val Ser Val Gly Lys Asp 900 905
910 Val Tyr Leu Tyr Gly Thr Ile Asn Asn Arg Thr Gly Trp Val Asn
Ala 915 920 925 Lys
Asp Leu Thr Ala Pro Thr Ala Val Lys Pro Thr Thr Ser Ala Ala 930
935 940 Lys Asp Tyr Asn Tyr Thr
Tyr Val Ile Lys Asn Gly Asn Gly Tyr Tyr945 950
955 960 Tyr Val Thr Pro Asn Ser Asp Thr Ala Lys Tyr
Ser Leu Lys Ala Phe 965 970
975 Asn Glu Gln Pro Phe Ala Val Val Lys Glu Gln Val Ile Asn Gly Gln
980 985 990 Thr Trp Tyr
Tyr Gly Lys Leu Ser Asn Gly Lys Leu Ala Trp Ile Lys 995
1000 1005 Ser Thr Asp Leu Ala Lys Glu Leu
Ile Lys Tyr Asn Gln Thr Gly Met 1010 1015
1020 Thr Leu Asn Gln Val Ala Gln Ile Gln Ala Gly Leu Gln
Tyr Lys Pro1025 1030 1035
1040Gln Val Gln Arg Val Pro Gly Lys Trp Thr Asp Ala Lys Phe Asn Asp
1045 1050 1055 Val Lys His Ala
Met Asp Thr Lys Arg Leu Ala Gln Asp Pro Ala Leu 1060
1065 1070 Lys Tyr Gln Phe Leu Arg Leu Asp Gln
Pro Gln Asn Ile Ser Ile Asp 1075 1080
1085 Lys Ile Asn Gln Phe Leu Lys Gly Lys Gly Val Leu Glu Asn
Gln Gly 1090 1095 1100
Ala Ala Phe Asn Lys Ala Ala Gln Met Tyr Gly Ile Asn Glu Val Tyr1105
1110 1115 1120Leu Ile Ser His Ala
Leu Leu Glu Thr Gly Asn Gly Thr Ser Gln Leu 1125
1130 1135 Ala Lys Gly Ala Asp Val Val Asn Asn Lys
Val Val Thr Asn Ser Asn 1140 1145
1150 Thr Lys Tyr His Asn Val Phe Gly Ile Ala Ala Tyr Asp Asn Asp
Pro 1155 1160 1165 Leu Arg
Glu Gly Ile Lys Tyr Ala Lys Gln Ala Gly Trp Asp Thr Val 1170
1175 1180 Ser Lys Ala Ile Val Gly Gly
Ala Lys Phe Ile Gly Asn Ser Tyr Val1185 1190
1195 1200Lys Ala Gly Gln Asn Thr Leu Tyr Lys Met Arg Trp
Asn Pro Ala His 1205 1210
1215 Pro Gly Thr His Gln Tyr Ala Thr Asp Val Asp Trp Ala Asn Ile Asn
1220 1225 1230 Ala Lys Ile
Ile Lys Gly Tyr Tyr Asp Lys Ile Gly Glu Val Gly Lys 1235
1240 1245 Tyr Phe Asp Ile Pro Gln Tyr Lys
1250 1255 476PRTArtificial Sequencelinker 47Gly Ser Gly
Gly Gly Gly1 5 488PRTArtificial Sequencelinker 48Gly
Ser Gly Ser Gly Gly Gly Gly1 5
496PRTArtificial Sequencelinker 49Ala Ser Gly Gly Gly Ser1
5 5018DNAArtificial SequenceSynthetic Construct 50gctagcggtg
gcggatcc
18516PRTArtificial Sequencehexahistidine tag 51His His His His His His1
5 52207PRTStaphylococcus aureus 52Met Ala Met Ile Lys
Met Ser Pro Glu Glu Ile Arg Ala Lys Ser Gln1 5
10 15 Ser Tyr Gly Gln Gly Ser Asp Gln Ile Arg
Gln Ile Leu Ser Asp Leu 20 25
30 Thr Arg Ala Gln Gly Glu Ile Ala Ala Asn Trp Glu Gly Gln Ala
Phe 35 40 45 Ser
Arg Phe Glu Glu Gln Phe Gln Gln Leu Ser Pro Lys Val Glu Lys 50
55 60 Phe Ala Gln Leu Leu Glu
Glu Ile Lys Gln Gln Leu Asn Ser Thr Ala65 70
75 80 Asp Ala Val Gln Glu Gln Asp Gln Gln Leu Ser
Asn Asn Phe Gly Leu 85 90
95 Gln Ala Ser Gly Gly Gly Ser Met Gly Gly Tyr Lys Gly Ile Lys Ala
100 105 110 Asp Gly Gly
Lys Val Asp Gln Ala Lys Gln Leu Ala Ala Lys Thr Ala 115
120 125 Lys Asp Ile Glu Ala Cys Gln Lys
Gln Thr Gln Gln Leu Ala Glu Tyr 130 135
140 Ile Glu Gly Ser Asp Trp Glu Gly Gln Phe Ala Asn Lys
Val Lys Asp145 150 155
160 Val Leu Leu Ile Met Ala Lys Phe Gln Glu Glu Leu Val Gln Pro Met
165 170 175 Ala Asp His Gln
Lys Ala Ile Asp Asn Leu Ser Gln Asn Leu Ala Lys 180
185 190 Tyr Asp Thr Leu Ser Ile Lys Gln Gly
Leu Asp Arg Val Asn Pro 195 200
205 53618DNAStaphylococcus aureus 53atggcaatga ttaagatgag
tccagaggaa atcagagcaa aatcgcaatc ttacgggcaa 60ggttcagacc aaatccgtca
aattttatct gatttaacac gtgcacaagg tgaaattgca 120gcgaactggg aaggtcaagc
tttcagccgt ttcgaagagc aattccaaca acttagtcct 180aaagtagaaa aatttgcaca
attattagaa gaaattaaac aacaattgaa tagcactgct 240gatgccgttc aagaacaaga
ccaacaactt tctaataatt tcggtttgca agctagcggt 300ggcggatccg gtggatataa
aggtattaaa gcagatggtg gcaaggttga tcaagcgaaa 360caattagcgg caaaaacagc
taaagatatt gaagcatgtc aaaagcaaac gcaacagctc 420gctgagtata tcgaaggtag
tgattgggaa ggacagttcg ccaataaggt gaaagatgtg 480ttactcatta tggcaaagtt
tcaagaagaa ttagtacaac cgatggctga ccatcaaaaa 540gcaattgata acttaagtca
aaatctagcg aaatacgata cattatcaat taagcaaggg 600cttgataggg tgaaccca
61854207PRTStaphylococcus
aureus 54Met Gly Gly Tyr Lys Gly Ile Lys Ala Asp Gly Gly Lys Val Asp Gln1
5 10 15 Ala Lys Gln
Leu Ala Ala Lys Thr Ala Lys Asp Ile Glu Ala Cys Gln 20
25 30 Lys Gln Thr Gln Gln Leu Ala Glu
Tyr Ile Glu Gly Ser Asp Trp Glu 35 40
45 Gly Gln Phe Ala Asn Lys Val Lys Asp Val Leu Leu Ile
Met Ala Lys 50 55 60
Phe Gln Glu Glu Leu Val Gln Pro Met Ala Asp His Gln Lys Ala Ile65
70 75 80 Asp Asn Leu Ser Gln
Asn Leu Ala Lys Tyr Asp Thr Leu Ser Ile Lys 85
90 95 Gln Gly Leu Asp Arg Val Asn Pro Ala Ser
Gly Gly Gly Ser Met Ala 100 105
110 Met Ile Lys Met Ser Pro Glu Glu Ile Arg Ala Lys Ser Gln Ser
Tyr 115 120 125 Gly
Gln Gly Ser Asp Gln Ile Arg Gln Ile Leu Ser Asp Leu Thr Arg 130
135 140 Ala Gln Gly Glu Ile Ala
Ala Asn Trp Glu Gly Gln Ala Phe Ser Arg145 150
155 160 Phe Glu Glu Gln Phe Gln Gln Leu Ser Pro Lys
Val Glu Lys Phe Ala 165 170
175 Gln Leu Leu Glu Glu Ile Lys Gln Gln Leu Asn Ser Thr Ala Asp Ala
180 185 190 Val Gln Glu
Gln Asp Gln Gln Leu Ser Asn Asn Phe Gly Leu Gln 195
200 205
User Contributions:
Comment about this patent or add new information about this topic: