Patent application title: Endpoint Zygosity Assay To Detect RF4 Gene In Maize
Inventors:
IPC8 Class: AC12Q168FI
USPC Class:
1 1
Class name:
Publication date: 2016-12-08
Patent application number: 20160355894
Abstract:
A method is provided for determining the zygosity of an Rf4 gene in a
corn plant. A method may include performing a first PCR assay, a second
PCR assay, quantifying probes used in the first and second PCR assays,
and comparing the quantified probes to determine zygosity.Claims:
1. A PCR assay method for determining zygosity of an Rf4 gene in a corn
plant, the method comprising: performing a first PCR assay using a first
probe, a first forward primer, and a first reverse primer on a
polynucleotide from a corn plant sample; performing a second PCR assay
using a second probe, a second forward primer, and a second reverse
primer on the polynucleotide sample; quantifying the first and second
probe; and, comparing the quantified first and second probe to determine
zygosity.
2. The PCR assay method of claim 1, wherein the PCR assay is a multiplex PCR-format.
3. The PCR assay method of claim 2, wherein the first and second PCR assays are performed in a single PCR assay tube.
4. The PCR assay method of claim 1, wherein the PCR is real-time PCR.
5. The PCR assay method of claim 1, further comprising: loading a PCR reaction mixture in a PCR assay tube; wherein the PCR reaction mixture comprises a polymerase with 5' to 3' nuclease activity, deoxynucleotides, a buffer, the first and second forward primer, the first and second reverse primer, the first and second probe, and the polynucleotide sample, and the first probe and the second probe comprising fluorescent dyes with distinguishable excitation/emission spectra; and performing an amplification step under amplification conditions such that the 5' to 3' nuclease activity of the polymerase cleaves the first and second probe of claim 1, thereby releasing fluorescent dyes comprising distinguishable excitation/emission spectra.
6. The PCR assay method of claim 1, further comprising: loading a PCR reaction mixture in a PCR assay tube, wherein the PCR reaction mixture comprises a polymerase with 5' to 3' nuclease activity, deoxynucleotides, a buffer, the first or second forward primer, the first or second reverse primer, the first or second probe, and the polynucleotide sample; and performing an amplification step under conditions such that the 5' to 3' nuclease activity of the polymerase cleaves the first or second probe, thereby releasing fluorescent dyes comprising distinguishable excitation/emission spectra.
7. The PCR assay method of claim 1, wherein the first and second probes are quantified by measuring excitation/emission spectra emitted from the fluorescent dyes, during the amplification.
8. The PCR assay method of claim 1, wherein zygosity is determined by comparing the quantified first and second probe using a .DELTA..DELTA.Ct formula.
9. The PCR assay method of claim 1, wherein the first forward primer comprises SEQ ID NO:1.
10. The PCR assay method of claim 1, wherein the first reverse primer comprises SEQ ID NO:2.
11. The PCR assay method of claim 1, wherein the probe comprises SEQ ID NO:3.
12. The PCR assay method of claim 1, wherein the probe comprises a first fluorescent dye and a first quencher.
13. The PCR assay method of claim 12, wherein the first fluorescent dye comprises a HEX fluorescent dye, a VIC fluorescent dye, a FAM fluorescent dye, a JOE fluorescent dye, a TET fluorescent dye, a Cy 3 fluorescent dye, a Cy 3.5 fluorescent dye, a Cy 5 fluorescent dye, a Cy 5.5 fluorescent dye, a Cy 7 fluorescent dye, or a ROX fluorescent dye.
14. The PCR assay method of claim 12, wherein the quencher comprises a Dabcyl quencher, a Tamra quencher, a Qx1 quencher, an Iowa Black FQ quencher, an Iowa Black RQ quencher, an IR Dye QC-1 quencher, a MGB quencher, or a Blackhole quencher.
15. The PCR assay method of claim 12, wherein the first probe comprises FAM as the first fluorescent dye at the 5' end of the first probe and MGB as the first quencher on the 3' end of the first probe.
16. The PCR assay method of claim 1, wherein the second forward primer comprises SEQ ID NO:1.
17. The PCR assay method of claim 1, wherein the second reverse primer comprises SEQ ID NO:2.
18. The PCR assay method of claim 1, wherein the second probe comprises SEQ ID NO:4.
19. The PCR assay method of claim 18, wherein the second probe comprises a second fluorescent dye and a second quencher.
20. The PCR assay method of claim 19, wherein the second fluorescent dye comprises a HEX fluorescent dye, a FAM fluorescent dye, a VIC fluorescent dye, a JOE fluorescent dye, a TET fluorescent dye, a Cy 3 fluorescent dye, a Cy 3.5 fluorescent dye, a Cy 5 fluorescent dye, a Cy 5.5 fluorescent dye, a Cy 7 fluorescent dye, or a ROX fluorescent dye.
21. The PCR assay method of claim 19, wherein the second quencher comprises a Dabcyl quencher, a Tamra quencher, a Qx1 quencher, an Iowa Black FQ quencher, an Iowa Black RQ quencher, an IR Dye QC-1 quencher, a MGB quencher, or a Blackhole quencher.
22. The PCR assay method of claim 19, wherein the second probe comprises VIC as the second fluorescent dye at the 5' end of the second probe, and MGB as the second quencher on the 3' end of the second probe.
23. The PCR assay method of claim 1, wherein the Rf4 gene comprises a dinucleotide substitution at nucleotide positions 1664-1665 as Rf4-bHLH genomic sequences indicated above (at amino acid positions 186-187).
24. The PCR assay method of claim 1, wherein the corn plant comprises an Rf4 dinucleotide substitution at nucleotide positions 1664-1665 as Rf4-bHLH genomic sequences indicated above (at amino acid positions 186-187).
25. The PCR assay method of claim 1, wherein the corn plant is a maize germplasm.
26. The PCR assay method of claim 1, wherein the corn plant comprises a plant part, plant organ, plant seed, or plant cell.
27. The PCR assay method of claim 26, wherein the plant part is selected from the group consisting of leaves, pollen, embryos, cotyledons, hypocotyls, meristematic cells, roots, root tips, anthers, flowers, stems, and pods.
28. The PCR assay method of claim 1, wherein the method is used to determine the presence or absence of the Rf4 allele in a polynucleotide sample.
29. The PCR assay method of claim 1, wherein the method is used for breeding introgression into a second line of Zea mays.
30. The PCR assay method of claim 29, wherein the second line of Zea mays does not contain the Rf4 allele.
31. The PCR assay method of claim 29, wherein the method is used to detect the presence or absence of the Rf4 allele within progeny plants.
32. A DNA detection kit for performing the breeding introgression method of claim 29, the kit comprising a forward primer (SEQ ID NO:1), a reverse primer (SEQ ID NO:2), a first probe (SEQ ID NO:3), and a second probe (SEQ ID NO:4).
33. The PCR assay method of claim 1, wherein the method is used to identify lines of Zea mays that possess restored male fertility.
34. A DNA detection kit for performing the method of claim 1.
35. The DNA detection kit of claim 34, comprising the forward and reverse primers, SEQ ID NO:1 and SEQ ID NO:2.
Description:
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit under 35 U.S.C. .sctn.119(e) of U.S. Provisional Application Ser. No. 61/674,556, filed on Jul. 23, 2012, the entire disclosure of which is incorporated herein by reference.
SEQUENCE LISTING
[0002] The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 22, 2013, is named 6257-225987_SL.txt and is 28,606 bytes in size.
BACKGROUND
[0003] Cytoplasmic male sterility (CMS) is a maternally inherited inability to produce functional pollen and has been successfully used in commercial production of hybrid seed, avoiding the drawbacks of hand or mechanical emasculation (Kaul, 1988). Breeders produce hybrid seed using a CMS system by developing female lines that carry CMS cytoplasm but lack restorer genes and by developing male lines that carry the appropriate restorer genes. F1 hybrid seed produced by the female lines carry the CMS cytoplasm but yield fertile plants because of the action of the paternally contributed nuclear restorer genes.
[0004] More than 40 sources of CMS have been found in maize and were classified into three major groups by differential fertility restoration reactions. These groups are designated as CMS-T (Texas), CMS-S (USDA) and CMS-C (Charrua) (Beckett 1971). In the CMS-T group, two dominant genes, Rf1 and Rf2, located on chromosomes 3 and 9, respectively, are required for the restoration of pollen fertility (Duvick 1965). The S-cytoplasm is restored by a single gene, Rf3 on chromosome 2 (Laughnan and Gabay 1978).
[0005] Rf genes have been cloned or mapped to high resolutions from several plant species, for example, Rf2 from maize (Zea mays) (Cui et al., 1996), Rf-PPR592 from Petunia (Petunia hybrida) (Bentolila et al., 2002), Rfo from radish (Raphanus sativus) (Brown et al., 2003; Desloire et al., 2003; Koizuka et al., 2003), Rf1 and Rf2 from sorghum (Sorghum bicolor) (Klein et al., 2005), Rf1a and Rf1b from rice (Oryza sativa) for BT-type CMS (Kazama and Toriyama, 2003; Akagi et al., 2004; Komori et al., 2004; Wang et al., 2006), Rf17 (RMS) from rice (Oryza sativa) for CW-type CMS (Fujii & Toriyama, 2009), Rf1& Rf2 from monkey flower (Mimulus guttatus) (Barr & Fishman, 2010). Rf4 for CMS C-type of maize was recently cloned.
SUMMARY
[0006] Disclosed herein includes methods and reagents for detecting and quantifying the zygosity of the Rf4 gene in plants. The methods can employ and the reagents can include primers and oligonucleotide probes configured for a multiplex, real-time quantitative PCR (qPCR) assay.
[0007] In an embodiment, the present method can detect and quantify the zygosity of the Rf4 gene in corn plants in a single reaction. The method can employ primers and oligonucleotide probes that are specific and can distinguish between Rf4 alleles.
[0008] In an embodiment, a method for determining zygosity of an Rf4 gene in a corn plant includes: a) performing a first PCR assay using a first probe, a first forward primer, and a first reverse primer on a polynucleotide sample from a corn plant; b) performing a second PCR assay using a second probe, a second forward primer, and a second reverse primer on the polynucleotide sample from a corn plant; c) quantifying the first and second probes; and d) comparing the quantified first and second probes to determine zygosity. In an embodiment, the probes are detectably labeled. In an embodiment, the primers and probes are specific for the Rf4 gene in a corn plant. In an embodiment, a forward primer specific for the Rf4 gene comprises SEQ ID NO:1, SEQ ID NO:11, or SEQ ID NO:15. In an embodiment, a reverse primer specific for the Rf4 gene comprises SEQ ID NO:2, SEQ ID NO:14, or SEQ ID NO:18. In an embodiment, a probe specific for the Rf4 gene comprises SEQ ID NO:4, SEQ ID NO:13, or SEQ ID NO:17.
BRIEF DESCRIPTION OF THE FIGURES
[0009] FIG. 1A. Real-time PCR amplification plots with relative fluorescence unit (RFU) are shown for Rf4 with FAM and CMS-C. Exponential amplification phase was observed from cycles 23 to 35 for both Rf4 and CMS-C or non-restorer genes.
[0010] FIG. 1B. Real-time PCR amplification plots with relative fluorescence unit (RFU) are shown for Rf4 with CMS-C and non-restorer with VIC. Exponential amplification phase was observed from cycles 23 to 35 for both Rf4 and CMS-C or non-restorer genes.
[0011] FIG. 2. Rf4 zygosity test with end-point TaqMan assay using KLIMS. The raw fluorescence intensity data directly from the plate reader was analyzed in KLIMS. A graph with RFU of FAM as x-axis and VIC as y-axis was generated. Zygosity calls were made based on the cluster separation in a cluster view.
DETAILED DESCRIPTION
Definitions
[0012] The term "sample" refers to a part from any plant species, but preferably is from maize (Zea mays). Such can be at the macro or micro level, wherein polynucleotides and/or polypeptides can be extracted.
[0013] The term "plant" includes reference to whole plants, plant parts, seeds, plant cells, and progeny of same. Plant parts can include, but are not limited to, leaves, pollen, embryos, cotyledons, hypocotyls, meristematic cells, roots, root tips, anthers, flowers, stems, and pods.
[0014] The term "corn" refers to Zea mays or maize and includes all plant varieties that can be bred with corn, including wild maize species.
[0015] As used herein, "buffer" refers to a buffered solution that resists changes in pH by the action of its acid-base conjugate components. Buffers may optionally comprise a salt such as MgCl.sub.2, MnCl.sub.2, or the like. Buffers may also optionally comprise other constituents to improve the efficiency of reverse transcription or amplification.
[0016] The term "breeding introgression" refers to the movement of a gene or genes through sexual crossing, usually by pollen, from a plant which is intended to be the donor for the formation of seed.
[0017] The term "allele" refers to an alternative form of a gene, whereby two genes can differ in DNA sequences. Such differences may result from at least one mutation (e.g., deletion, insertion, and/or substitution) in the nucleic acid sequence. Alleles may result in modified mRNAs or polypeptides whose structure or function may or may not be modified. Any given gene may have none, one, or many allelic forms. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
[0018] The term "zygosity" refers to the similarity of alleles for a gene or trait in an organism (e.g., a plant). If both alleles are the same, the organism is homozygous for the allele. If the two alleles are different, the organism is heterozygous for the gene or trait. If one allele is not present, the organism is hemizygous. If both alleles are not present, the organism is nullizygous.
[0019] The term "label" when used herein refers to a detectable compound or composition that is conjugated directly or indirectly to a probe to generate a "labeled" probe. The label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition that is detectable (e.g., avidin-biotin).
[0020] The term "oligonucleotide" refers to a single-stranded nucleic acid including at least between two and about 100 natural or modified nucleotides or a mixture thereof. The oligonucleotide can be derived from a natural nucleic acid or produced by chemical or enzymatic synthesis.
[0021] "Polynucleotide," or "nucleic acid," as used interchangeably herein, refer to polymers of nucleotides of any length, and include DNA and RNA. The nucleotides can be deoxyribonucleotides, ribonucleotides, modified nucleotides or bases, and/or their analogs, or any substrate that can be incorporated into a polymer by DNA or RNA polymerase, or by a synthetic reaction. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and their analogs. If present, modification to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after synthesis, such as by conjugation with a label.
[0022] "Polypeptide" refers to a peptide or protein containing two or more amino acids linked by peptide bonds, and includes peptides, oligimers, proteins, and the like. Polypeptides can contain natural, modified, or synthetic amino acids. Polypeptides can also be modified naturally, such as by post-translational processing, or chemically, such as amidation, acylation, cross-linking, and the like.
[0023] "Polymerase chain reaction" or "PCR" refers to a procedure or technique in which minute amounts of nucleic acid, RNA and/or DNA, are amplified as described in U.S. Pat. No. 4,683,195 issued Jul. 28, 1987. Generally, sequence information from the ends of the region of interest or beyond needs to be available, such that oligonucleotide primers can be designed; these primers will be identical or similar in sequence to opposite strands of the template to be amplified. The 5' terminal nucleotides of the two primers may coincide with the ends of the amplified material. PCR can be used to amplify specific RNA sequences, specific DNA sequences from total genomic DNA, and cDNA transcribed from total cellular RNA, bacteriophage or plasmid sequences, etc. See generally Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51:263 (1987); Erlich, ed., PCR Technology, (Stockton Press, NY, 1989).
[0024] The term "primer" refers to an oligonucleotide capable of acting as a point of initiation of synthesis along a complementary strand when conditions are suitable for synthesis of a primer extension product. The synthesizing conditions include the presence of four different deoxyribonucleotide triphosphates and at least one polymerization-inducing agent such as reverse transcriptase or DNA polymerase. These are present in a suitable buffer, which may include constituents which are co-factors or which affect conditions such as pH and the like at various suitable temperatures. A primer is preferably a single strand sequence, such that amplification efficiency is optimized, but double stranded sequences can be utilized.
[0025] The term "probe" refers to an oligonucleotide that hybridizes to a target sequence. In the TaqMan.RTM. or TaqMan.RTM.-style assay procedure, the probe hybridizes to a portion of the target situated between the annealing site of the two primers. A probe can further include a detectable label, e.g., a fluorophore (Texas-Red.RTM., Fluorescein isothiocyanate, etc.,). The detectable label can be covalently attached directly to the probe oligonucleotide, e.g., located at the probe's 5' end or at the probes 3' end. A probe including a fluorophore may also further include a quencher, e.g., Black Hole Quencher.TM., Iowa Black.TM., etc. A probe includes about eight nucleotides, about ten nucleotides, about fifteen nucleotides, about twenty nucleotides, about thirty nucleotides, about forty nucleotides, or about fifty nucleotides. In some embodiments, a probe includes from about eight nucleotides to about fifteen nucleotides.
[0026] The terms "specifically hybridizable" and "specifically complementary" are terms that indicate a sufficient degree of complementarity such that stable and specific binding occurs between the nucleic acid molecule and the DNA target. A nucleic acid molecule need not be 100% complementary to its target sequence to be specifically hybridizable. A nucleic acid molecule is specifically hybridizable when there is a sufficient degree of complementarity to avoid non-specific binding of the nucleic acid to non-target sequences under conditions where specific binding is desired, for example, under stringent hybridization conditions. Hybridization conditions resulting in particular degrees of stringency will vary depending upon the nature of the hybridization method of choice and the composition and length of the hybridizing nucleic acid sequences. Generally, the temperature of hybridization and the ionic strength (especially the Na.sup.+ and/or Mg concentration) of the hybridization buffer will determine the stringency of hybridization, though wash times also influence stringency. Calculations regarding hybridization conditions required for attaining particular degrees of stringency are known to those of ordinary skill in the art, and are discussed, for example, in Sambrook et al. (ed.) Molecular Cloning: A Laboratory Manual, 2.sup.nd ed., vol. 1-3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989, chapters 9 and 11; and Hames and Higgins (eds.) Nucleic Acid Hybridization, IRL Press, Oxford, 1985. Further detailed instruction and guidance with regard to the hybridization of nucleic acids may be found, for example, in Tijssen, "Overview of principles of hybridization and the strategy of nucleic acid probe assays," in Laboratory Techniques in Biochemistry and Molecular Biolofiy-Hybridization with Nucleic Acid Probes, Part I, Chapter 2, Elsevier, NY, 1993; and Ausubel et ah, Eds., Current Protocols in Molecular Biology, Chapter 2, Greene Publishing and Wiley-Interscience, NY, 1995.
[0027] The term "quenching" refers to a decrease in fluorescence of a fluorescent detectable label caused by energy transfer associated with a quencher moiety, regardless of the mechanism.
[0028] The term "reaction mixture" or "PCR reaction mixture" or "master mix" or "master mixture" refers to an aqueous solution of constituents in a PCR or RT-PCR reaction that can be constant across different reactions. An exemplary RT-PCR reaction mixture includes buffer, a mixture of deoxyribonucleoside triphosphates, reverse transcriptase, primers, probes, and DNA polymerase. Generally, template RNA or DNA is the variable in a PCR or RT-PCR reaction.
Rf4 Gene
[0029] The use of the fertility restorer gene (Rf) with the cytoplasmic male sterility has been shown to simplify seed production programs and reduce the overall costs by totally eliminating manual and machine detasseling. The restoration gene Rf4 for CMS-C type cytoplasm was previously mapped. The candidate gene Rf4-bHLH was identified, which encoded a basic-Helix-Loop-Helix (bHLH) transcription factor. A 3.2-kb genome DNA fragment was cloned that contained the entire coding region of the Rf4-bHLH gene plus a 1.1 kb 5' UTR/promoter and a 0.75 kb 3' UTR/terminator from a CMS-C line (non-restorer), inbred line (non-CMS) and three restorer lines. Based on nucleotide changes within Rf4 gene between restorer and non-restorer lines, an endpoint TaqMan.RTM. PCR assay was developed for Rf4 zygosity test. The assay was validated with an F2 mapping population which contained 500 individuals. This assay enables a large scale screening of maize germplasms in breeding programs for Rf4 restoration gene in a high throughput format. The development of this assay makes it much easier and cheaper to use the CMS-C/Rf4 system for hybrid corn seed production.
Quantitative PCR
[0030] Quantitative PCR (qPCR) allows automated quantification of reaction product for each sample per cycle. Commonly used instrumentation and software products perform the quantification calculations automatically. The quantification has a broad 10.sup.7-fold dynamic range that is possible, but usually, the dynamic range is closer to 2-3 logs. Current instrumentation technology, e.g., Cepheid's Smart Cycler.RTM., allows the simultaneous detection and quantification of fluorescent signals in up to four different channels in real-time. In addition, the latest generation of thermal cyclers is designed to maximize dye excitation providing a more accurate means of detecting fluorescence. Thus, multiple amplification products can be assessed in the same reaction mixture and quantified more accurately ("multiplex PCR" which refers to simultaneous amplification of many targets of interest in one reaction by using more than one pair of primers). Further, each reaction site can be programmed independently, thereby starting the reaction independent of other reactions. Thus, samples can be evaluated as needed and do not have to wait for the completion of a programmed reaction already in progress. Therefore, this new technology now allows for the detection and quantification of multiple targets in a single sample in real-time
[0031] There are different probe systems for qPCR (e.g., Molecular Beacons (Sigma-Genosys, Inc., The Woodlands, Tex.), Scorpions.RTM. (DxS Ltd., Manchester, UK), SYBR.RTM. Green (Molecular Probes, Eugene, Oreg.), and TaqMan.RTM. (Applied Biosystems, Foster City, Calif.). These systems employ fluorescent labels where the instrumentation detects the fluorescence and the software interprets levels of fluorescence.
[0032] TaqMan.RTM. utilizes Forster Resonance Energy Transfer (FRET) by coupling a fluorescent label with a quencher moiety. A fluorescent label is covalently bound to the 5' end of an oligonucleotide probe, while the 3' end has a quencher moiety attached. These oligonucleotide probes are site specific to hybridize to the amplified product. Preferably, the oligonucleotide probes are designed to hybridize to a central region of the amplified product. For TaqMan.RTM. assays, the 5'-nuclease activity of the DNA polymerase cleaves the probe during the replication cycle. Due to the cleavage of the probe, the quencher moiety is no longer coupled to the fluorescence label and cannot quench fluorescence. Fluorescence thus represents replicating DNA.
Quantification of PCR Results
[0033] Standard Curve.
[0034] Nucleic acids can be used to establish a standard curve. These methods are well known and include internal controls, double stranded DNA, a cDNA expressing a target gene, or an in vitro generated single stranded DNA. Methods may vary according to the nucleic acid chosen to serve as the standard to establish a standard curve.
[0035] Comparative Cycle Threshold.
[0036] The comparative cycle threshold (Ct) method, also known as the 2.sup.-.DELTA..DELTA.Ct method, is also used to quantify DNA levels. The Ct method compares a test reaction with a control or calibrator sample. The Ct values of both the control/calibrator sample and the test sample are normalized. In an embodiment of the invention, the Ct values were normalized to an arbitrary cutoff, 20-22. In another embodiment, the Ct values were normalized to within 1 Ct value of a negative control (a sample with no inhibition). This allows for the sensitivity of the assay and proper dynamic range.
[0037] The Ct method can also be described by the .DELTA..DELTA.Ct formula; .DELTA..DELTA.Ct=.DELTA.Ct.sub.test sample-.DELTA.Ct.sub.reference sample.The amplification efficiencies of the test sample and the reference sample must be about the same for the formula to operate. Amplification efficiencies can be determined by a comparison of the samples with template dilution. The amplification efficiency is about the same when a plot of cDNA dilution versus .DELTA.Ct approximates zero.
End-Point Zygosity Assay
[0038] An end-point PCR assay for testing Rf4 zygosity in a high throughput way has been developed. This assay enables large scale and high throughput screening of maize germplasms with the Rf4 restoration gene. This assay will also increase the scale of using a CMS-C/Rf4 system for hybrid corn seed production.
[0039] In an embodiment, a method for determining the zygosity of the Rf4 gene in a corn plant includes a PCR assay. Such a PCR assay can be quantitative and/or real-time and/or in a multiplex format. In an embodiment, a method employs TaqMan.RTM.-style probes (dual-labeled probes to fluoresce upon 5'.fwdarw.3' exonuclease activity). In an embodiment, a method employs TaqMan.RTM.-style probes and oligonucleotides that selectively hybridize to the Rf4 gene. In an embodiment, the Rf4 gene probes can be coupled to a detectable label (e.g., 6-carboxyfluorescein) at the 5' end of the oligonucleotide. In an embodiment, the oligonucleotide can also be coupled to a quencher moiety at the 3' end. An example of a quencher moiety for the Rf4 gene probes is Black Hole Quencher.TM. (Biosearch Technologies, Novato, Calif.). Suitable instrumentation will thereby detect the fluorescence produced from the cleavage of the oligonucleotide probe by the nuclease activity of the DNA polymerase during replication. Analysis software then determines the quantity of amplification product based upon the fluorescence data.
[0040] In an embodiment, a method for determining zygosity of an Rf4 gene in a corn plant includes a) performing a first PCR assay using a first probe, a first forward primer, and a first reverse primer on a polynucleotide sample from a corn plant; b) performing a second PCR assay using a second probe, a second forward primer, and a second reverse primer on the polynucleotide sample from a corn plant; c) quantifying the first and second probes; and d) comparing the quantified first and second probes to determine zygosity. In an embodiment, the probes are detectably labeled. In an embodiment, the primers and probes are specific for the Rf4 gene in a corn plant. In an embodiment, a forward primer specific for the Rf4 gene comprises SEQ ID NO:1, 11, or 15. In an embodiment, a reverse primer specific for the Rf4 gene comprises SEQ ID NO:2, 14, or 18. In an embodiment, a probe specific for the Rf4 gene comprises SEQ ID NO:4, 13, or 17.
[0041] In an embodiment, a PCR assay method can include loading a PCR reaction mixture in a PCR assay tube, wherein the PCR reaction mixture comprises a polymerase with 5' to 3' nuclease activity, deoxynucleotides, a buffer, a first and a second forward primer, a first and a second reverse primer, a first and a second probe, and a polynucleotide sample, and wherein the first probe and the second probe comprise fluorescent dyes with distinguishable excitation/emission spectra; and performing an amplification step(s) under amplification conditions such that the 5' to 3' nuclease activity of the polymerase cleaves the first and second probes, thereby releasing fluorescent dyes comprising distinguishable excitation/emission spectra.
[0042] In another embodiment, a PCR assay method to determine the zygosity of the Rf4 gene includes loading a PCR reaction mixture in a PCR assay tube, wherein the PCR reaction mixture comprises a polymerase with 5' to 3' nuclease activity, deoxynucleotides, a buffer, a first and/or a second forward primer, a first and/or a second reverse primer, a first and/or a second probe, and a polynucleotide sample; and performing an amplification step(s) under conditions such that the 5' to 3' nuclease activity of the polymerase cleaves the first or second probe, thereby releasing fluorescent dyes comprising distinguishable excitation/emission spectra.
[0043] In some embodiments, a label comprises a fluorescent dye (e.g., a rhodamine dye (e.g., R6G, R110, TAMRA, ROX, etc.), a fluorescein dye (e.g., JOE, VIC, TET, HEX, FAM, etc.), a halofluorescein dye, a cyanine dye (e.g., CY3, CY3.5, CY5, CY5.5, etc.), a Bodipy.RTM. dye (e.g., FL, 530/550, TR, TMR, etc.), an Alexa Fluor.RTM. dye (e.g., 488, 532, 546, 568, 594, 555, 653, 647, 660, 680, etc.), a dichlororhodamine dye, an energy transfer dye (e.g., Bigdye.RTM.. v 1 dyes, Bigdye.RTM. v 2 dyes, Bigdye.RTM. v 3 dyes, etc.), Lucifer dyes (e.g., Lucifer yellow, etc.), Cascade Blue.RTM., Oregon Green.RTM., and the like. Fluorescent dyes can be distinguished and measured during amplification by their emitted excitation and/or emission spectra.
[0044] Examples of quenchers include, but are not limited to, Black Hole Quencher.TM. 1 (BHQ1; Biosearch Technologies, Novato, Calif.), Iowa Black.TM. (Integrated DNA Technologies), Dabcyl, QSY-7, AbsoluteQuencher, Eclipse.RTM., and Minor Groove Binder (MGB) quencher (Nanogen Inc., San Diego, Calif.).
EXAMPLES
[0045] Due to the practical importance of cytoplasmic male sterility and pollen fertility restoration in maize hybrid seed production and the necessity of determining the restoration function of finished lines in the germplasm pool, a high throughput endpoint TaqMan.RTM. PCR based zygosity assay was developed to detect and test the zygosity status at Rf4 gene locus efficiently and specifically.
Materials and Methods
[0046] Plant Genetic Material.
[0047] Nine maize inbred lines were used to develop an endpoint TaqMan.RTM. zygosity assay, including three Rf4 fertility restoration lines, three non-restoration lines for CMS C-type, two CMS C-type lines, and one non-restorer and non-CMS-C line. Seeds and/or leaf tissues were sampled for genomic DNA extraction. After the genomic DNA was extracted, the DNA from an Rf4 fertility restoration line was mixed in equal parts with the DNA from a non-restoration CMS C-type line.
[0048] One F2 mapping population from the cross of an Rf4 fertility restoration line was mixed in equal parts with the DNA from a non-restoration CMS C-type line resulted in the production with 500 individual plant lines. Samples from this cross were used to validate the endpoint TaqMan.RTM. zygosity assay. This population was created in Mexico winter nursery in the end of 2009. Leaf tissues were sampled for DNA extraction.
[0049] DNA Extraction from Seeds.
[0050] Needle-nosed pliers were used to pull the embryo out of a corn kernel and put into a 1.2 mL sample tube (8 kernels from each line). The pliers were wiped clean in-between kernels. One tungsten alloy bead (.about.1/8 inch diameter) was added to each tube. Using a Qiagen.TM. DNA isolation kit, 350 .mu.l of 65.degree. C. AP1 working solution containing 1 .mu.L RNase and 1 .mu.L Reagent DX was added to each tube. Then each tube was capped and ground at 1,500 strokes per minute in an SPEX 2000 Geno/Grinder.RTM. (SPEX SamplePrep LLC, Metuchen, N.J.). Subsequently, each tube was spun for 10 seconds at 1500 RPM to remove liquid from the caps. The caps were removed, and 114 .mu.L of AP2 was added. The tubes were capped again and hand-shaken for 15 seconds. Samples were incubated for 10 minutes at -20.degree. C. The samples were centrifuged at 6,000 RPM for 5 minutes. Then each tube was uncapped and 360 .mu.L of supernatant was transferred to tubes containing 540 .mu.L of AP3/E (200 proof ethanol already added to AP3/E). The tubes were capped and hand-shaken for 15 seconds. Then the tubes were centrifuged for 10 seconds at 1500 RPM to remove liquid from the caps. 900 .mu.L was transferred to a DNeasy.RTM. filter plate (Qiagen, Valencia, Calif.). The filter plates were centrifuged on an S-Block for 4 minutes at 6000 RPM. Flow-through was poured out from the S-Block and 800 .mu.L of AW (wash buffer--200 proof ethanol already added to AW) was added to each well of the filter plate. The filter plates were centrifuged on an S-Block for 4 minutes at 6000 RPM. 200 .mu.L of 200 proof ethanol were added to each well and centrifuged on the S-Block for 1 minute. The filter plates were placed onto a clean, dry S-block and centrifuged for 15 minutes to dry filters. The filter plates were then placed onto a clean rack of tubes in correct orientation. 100 .mu.L of AE was added to each well twice. Each time, the AE was incubated for 1 minute at room temperature and centrifuged for 2 minutes at 6000 RPM. The filter plates were removed and tubes capped that contained DNA. The extracted DNA was stored at 4.degree. C.
[0051] DNA Extraction from Leaf.
[0052] Leaf punches (8/plant) were collected from one-month old seedlings, and DNA was extracted using a Biocel.RTM. 1800 (Agilent Inc., Santa Clara, Calif.). Specifically, one tungsten alloy bead (.about.1/8 inch diameter) was added to each tube. Then 300 .mu.L of RLT Lysis Buffer was added to each tube. The tubes were capped and ground for 6 minutes at 1500 strokes per minute in a SPEX 2000 Geno/Grinder.RTM. (SPEX SamplePrep LLC). Then the samples were centrifuged 6000 RPM for 5 minutes. The tubes were uncapped.
[0053] The following steps were then performed using a Biocel.RTM. 1800. 200 .mu.L of supernatant was transferred to a 1.1 mL square well round bottom assay plate containing 10 .mu.L MagAttract.RTM. Suspension G Bead (Qiagen) and incubated for 2 minutes. Each well was shaken at 1200 RPM for 40 seconds and then incubated for 2 minutes. The assay plates were placed onto a magnet shelf and the beads were allowed to separate for 40 seconds. Supernatant was then removed. The first time washing, 190 .mu.L RPW wash buffer (premixed RNase.RTM. and isopropanol to RPW) was addend and shaken at 1200 RPM for 40 seconds. The assay plate was again placed onto a magnet shelf and the beads were allowed to separate for 20 seconds. The supernatant was removed. The second time washing, 190 .mu.L of 100% ethanol wash buffer was added and shaken at 1200 RPM for 40 seconds. The assay plate was again placed onto a magnet shelf, and the beads were allowed to separate for 20 seconds. The third time washing, 190 .mu.L of 100% ethanol wash buffer was added and shaken at 1200 RPM for 40 seconds. The assay plates were placed onto a magnet shelf and the beads were allowed to separate for 20 seconds. The supernatant was removed, and the plate incubated for 5 minutes at room temperature. 100 .mu.L of AE elution buffer was added and shaken for 2 minutes. The assay plates were placed onto a magnet shelf and the beads were allowed to separate for 30 seconds. The supernatant was transferred to clean, sealed plates and DNA was stored at 4.degree. C. DNA was quantified by using PicoGreen.RTM. (Molecular Probes Inc., Eugene, Oreg.) and normalized to 10 ng/.mu.L for further application.
[0054] TaqMan.RTM. PCR Assay Design and Validation.
[0055] Primer Express.RTM. 3.0 (Perkin-Elmer Corp., Foster City, Calif.) was utilized to design TaqMan.RTM. assay primers and probes (Table 1). DNA sequences from Rf4 restoration lines, CMS-C lines, non-CMS-C line and corn line B73 were used. Primers CMSCF and CMSCR were designed for both Rf4 and CMS-C/non-restorer. Probes RCMSC and WCMSC were Rf4 specific at two nucleotides (TT) and CMS-C/non-restorer specific at two nucleotides (AC), respectively.
TABLE-US-00001 TABLE 1 Sequences of the primers and MGB probes for Rf4 gene specific zygosity assay: SEQ CMS-C Rf4 TagMan .RTM. primers and Primer ID probes name NO: Forward primer: CMSCF 1 5'- CAACGGCGTCGAGAAGAAG -3' Reverse primer: CMSCR 2 5'- TAACGTTGGGTATGAGGTGCAT-3' rf4(non-restorer) probe: WCMSC 3 5'- ACCGAGAAGTACACCGC- 3' Rf4 (restorer) probe: RCMSC 4 5'- CACCGAGAAGTTTACGGC- 3'
[0056] Primers and probes with FAM or VIC and Minor Grove Binding Non Flourescence Quencher I (MGBFQ) dyes were synthesized by Applied Biosystems (Foster City, Calif.), and were dissolved in 1.times. Tris-EDTA buffer to 100 .mu.M concentration. TaqMan.RTM. gene expression master mixes (Applied Biosystems; and Catalog #4370048) were used for all the PCR reactions.
[0057] Real time PCR reactions in 10 .mu.L volume were set up according to Table 2 using 384-well plate on 7900HT Fast Real-Time PCR System (Applied Biosystems) starting with 50.degree. C. for 2 minutes, then denaturing at 95.degree. C. for 10 minutes, followed by 50 cycles of 95.degree. C. for 15 seconds, 60.degree. C. for 1 minute. Fluorescence signals were recorded at the end of each cycle.
TABLE-US-00002 TABLE 2 Real-Time PCR Components Reagents Working Con. Required Con. 1x vol. (.mu.L) PVP 0.5% 0.08% 1.55 Gene Expression MM 2X 1X 6.55 Primer Mix 20 .mu.M 0.5 .mu.M 0.25 RCMSC_FAMprobe 20 .mu.M 0.2 .mu.M 0.1 WCMSC_VICprobe 20 .mu.M 0.2 .mu.M 0.1 Total Mix Vol. (.mu.L) -- -- 7 DNA (10 ng/ul) -- -- 3 Final PCR vol. (.mu.L) -- -- 10
End-point TaqMan.RTM. PCR assays in 10 .mu.L volume was also set up according to Table 2 using 384-well plates. ABI GeneAmp.RTM. PCR System 9700 (Applied Biosystems, Foster City, Calif.) was used for amplification starting with 50.degree. C. for 2 minutes, then denaturing at 95.degree. C. for 15 minutes, followed by 40 cycles of 92.degree. C. for 15 seconds and 60.degree. C. for 1 minute. PCR products were measured using Synergy GenS Microplate Reader (BioTek, Winooski, Vt.) and Kraken KLIMS system (KBioscience, England). The instrument settings of recommended wavelengths for reading the PCR results are listed in Table 3.
TABLE-US-00003 TABLE 3 Instrument settings with recommended wavelengths for reading the PCR products: Dye Excitation (nm) Emission (nm) FAM (Rf4) 485 535 VIC (CMS-C or non-restorer) 485 560
[0058] Data Analysis.
[0059] For real-time PCR, the SDS RQ Manager Software performed analyses of relative quantitation data generated by the Applied Biosystems 7900HT Fast Real-Time PCR System. This software displays the amplification plot data in a logarithmic plot of baseline-corrected normalized reporter signal vs. cycle number. The plot displays the amplification curve for each cell selected within the plate grid.
[0060] Following the completion of the endpoint TaqMan.RTM. PCR and fluorescence reading, the raw fluorescence intensity data directly from the plate reader were analyzed in the KLIMS system. A graph with RFU (relative fluorescence unit) of FAM as x-axis and VIC as y-axis were generated. Determinations of zygosity were made based on the cluster separation in a cluster view.
Results and Discussion
[0061] Maize CMS-C Rf4 sequence. High quality Rf4 gene sequences were obtained through cloning and sequencing from six lines (three Rf4 restoration lines: SEQ ID NO:8, SEQ ID NO:10 and SEQ ID NO:9; one CMS-C line: SEQ ID NO:6; one non-CMS-C line: SEQ ID NO:7; and, the B73 line: SEQ ID NO:5). Sequences were analyzed and aligned using Sequencher.RTM. 4.8 (Gene Codes Corp., Ann Arbor, Mich.). Rf4-bHLH genomic sequence alignment is depicted below.
TABLE-US-00004 SEQ ID NO. 5 (1) GGCAAGCTAATGGGGTACATATGGAAGGAGGAAACCAAGTCGATCGTCGTCGTAGCATGTCGGTGTG- GGTACTACA CTACACACACATATACATGGGCAA SEQ ID NO: 6 (1) GGCAAGCTAATGGGGTACATATGGAAGGAGGAAACCAAGTCGATCGTCGTCGTAGCATGTCGGTGTG- GGTACTACA CTACACACACATATACATGGGCAA SEQ ID NO: 7 (1) GGCAAGCTAATGGGGTACATATGGAAGGAGGAAACCAAGTCGATCGTCGTCGTAGCATGTCGGTGTG- GGTACTACA CTACACACACATATACATGGGCAA SEQ ID NO: 8 (1) GGCAAGCTAATGGGGTACATATGGAAGGAGGAAACCAAGTCGATCGTCGTCGTAGCATGTCGGTGTG- GGTACTACA CTACACACACATATACATGGGCAA SEQ ID NO: 9 (1) GGCAAGCTAATGGGGTACATATGGAAGGAGGAAACCAAGTCGATCGTCGTCGTAGCATGTCGGTGTG- GGTACTACA CTACACACACATATACATGGGCAA SEQ ID NO: 10 (1) GGCAAGCTAATGGGGTACATATGGAAGGAGGAAACCAAGTCGATCGTCGTCGTAGCATGTCGGTGTG- GGTACTACA CTACACACACATATACATGGGCAA (101) CGCAAGGCCACCTTTCTGAATCCTGCATGAGCGTGTACCACTAGAATTGTCAGTGTGTGCGGTGTAT- GGCAGGTTT TTGGTTCGGCAAGTGGGGCCCTCC (101) CGCAAGGCCACCTTTCTGAATCCTGCATGAGCGTGTACCACTAGAATTGTCAGTGTGTGCGGTGTAT- GGCAGGTTT TTGGTTCGGCAAGTGGGGCCCTCC (101) CGCAAGGCCACCTTTCTGAATCCTGCATGAGCGTGTACCACTAGAATTGTCAGTGTGTGCGGTGTAT- GGCAGGTTT TTGGTTCGGCAAGTGGGGCCCTCC (101) CGCAAGGCCACCTTTCTGAATCCTGCATGAGCGTGTACCACTAGAATTGTCAGTGTGTGCGGTGTAT- GGCAGGTTT TTGGTTCGGCAAGTGGGGCCCTCC (101) CGCAAGGCCACCTTTCTGAATCCTGCATGAGCGTGTACCACTAGAATTGTCAGTGTGTGCGGTGTAT- GGCAGGTTT TTGGTTCGGCAAGTGGGGCCCTCC (101) CGCAAGGCCACCTTTCTGAATCCTGCATGAGCGTGTACCACTAGAATTGTCAGTGTGTGCGGTGTAT- GGCAGGTTT TTGGTTCGGCAAGTGGGGCCCTCC (201) GGGGAGGAATCTCAGTAACAAACCGCTCTTCTGAAAAGGTCAGCCATCCCCGGTCCGGTCCGGTGAT- GTCGTCGCT GTCGCTCTGCTAGCTTGCTGCCGA (201) GGGGAGGAATCTCAGTAACAAACCGCTCTTCTGAAAAGGTCAGCCATCCCCGGTCCGGTCCGGTGAT- GTCGTCGCT GTCGCTCTGCTAGCTTGCTGCCGA (201) GGGGAGGAATCTCAGTAACAAACCGCTCTTCTGAAAAGGTCAGCCATCCCCGGTCCGGTCCGGTGAT- GTCGTCGCT GTCGCTCTGCTAGCTTGCTGCCGA (201) GGGGAGGAATCTCAGTAACAAACCGCTCTTCTGAAAAGGTCAGCCATCCCCGGTCCGGTCCGGTGAT- GTCGTCGCT GTCGCTCTGCTAGCTTGCTGCCGA (201) GGGGAGGAATCTCAGTAACAAACCGCTCTTCTGAAAAGGTCAGCCATCCCCGGTCCGGTCCGGTGAT- GTCGTCGCT GTCGCTCTGCTAGCTTGCTGCCGA (201) GGGGAGGAATCTCAGTAACAAACCGCTCTTCTGAAAAGGTCAGCCATCCCCGGTCCGGTCCGGTGAT- GTCGTCGCT GTCGCTCTGCTAGCTTGCTGCCGA (301) TCCCCCCCCCCCCCCCCCCCCTTCTTCTCTCTACCCCTCCCTCCACCTCATAAATACTTAGTTTAAT- AACCTTGCA CTGCCGCAGTAGCCCTTAACTGCT (301) TCCCCCCCCCCCCCCCCCCCCTTCTTCTCTCTACCCCTCCCTCCACCTCATAAATACTTAGTTTAAT- AACCTTGCA CTGCCGCAGTAGCCCTTAACTGCT (301) TCCCCCCCCC-----------TTCTTCTCTCTACCCCTCCCTCCACCTCATAAATACTTAGTTTAAT- AACCTTGCA CTGCCGCAGTAGCCCTTAACTGCT (301) TCCCCCCCCCCCCCCCCCCCCTTCTTCTCTCTACCCCTCCCTCCACCTCATAAATACTTAGTTTAAT- AACCTTGCA CTGCCGCAGTAGCCCTTAACTGCT (301) TCCCCCCCCCCCCCCCCCCCCTTCTTCTCTCTACCCCTCCCTCCACCTCATAAATACTTAGTTTAAT- AACCTTGCA CTGCCGCAGTAGCCCTTAACTGCT (301) TCCCCCCCCCCCCCCCCCCCCTTCTTCTCTCTACCCCTCCCTCCACCTCATAAATACTTAGTTTAAT- AACCTTGCA CTGCCGCAGTAGCCCTTAACTGCT (401) GCTATCTATCTCTTTTCTGAAGGAAAAAAAAGGTTTGATACTCCTCTACCTAGCTAGTCCTGCATGC- CGCTAATGT GCGTCTTGCCTGTTTATTTGTTCT (401) GCTATCTATCTCTTTTCTGAAGGAAAAAAAAGGTTTGATACTCCTCTACCTAGCTAGTCCTGCATGC- CGCTAATGT GCGTCTTGCCTGTTTATTTGTTCT (390) GCTATCTATCTCTTTTCTGAAGGAAAAAAAAGGTTTGATACTCCTCTACCTAGCTAGTCCTGCATGC- CGCTAATGT GCGTCTTGCCTGTTTATTTGTTCT (401) GCTATCTATCTCTTTTCTGAAGGAAAAAAAAGGTTTGATACTCCTCTACCTAGCTAGTCCTGCATGC- CGCTAATGT GCGTCTTGCCTGTTTATTTGTTCT (401) GCTATCTATCTCTTTTCTGAAGGAAAAAAAAGGTTTGATACTCCTCTACCTAGCTAGTCCTGCATGC- CGCTAATGT GCGTCTTGCCTGTTTATTTGTTCT (401) GCTATCTATCTCTTTTCTGAAGGAAAAAAAAGGTTTGATACTCCTCTACCTAGCTAGTCCTGCATGC- CGCTAATGT GCGTCTTGCCTGTTTATTTGTTCT DAS-CMS21 (501) TAATAAGGGCTGCCTATCTATTATATTTTGCACCTGTTTTGCTGTGTTCTTGGTAACTAGCTTAATT- CCTTCGCCT ACAATCGTCAAATCCCCCCCATCA (501) TAATAAGGGCTGCCTATCTATTATATTTTGCACCTGTTTTGCTGTGTTCTTGGTAACTAGCTTAATT- CCTTCGCCT ACAATCGTCAAATCCCCCCCATCA (490) TAATAAGGGCTGCCTATCTATTATATTTTGCACCTGTTTTGCTGTGTTCTTGGTAACTAGCTTAATT- CCTTTGCCT ACAATCGTCAAATCCCCCCCATCA (501) TAATAAGGGCTGCCTATCTATTATATTTTGCACCTGTTTTGCTGTGTTCTTGGTAACTAGCTTAATT- CCTTTGCCT ACAATCGTCAAATCCCCCCCATCA (501) TAATAAGGGCTGCCTATCTATTATATTTTGCACCTGTTTTGCTGTGTTCTTGGTAACTAGCTTAATT- CCTTTGCCT ACAATCGTCAAATCCCCCCCATCA (501) TAATAAGGGCTGCCTATCTATTATATTTTGCACCTGTTTTGCTGTGTTCTTGGTAACTAGCTTAATT- CCTTTGCCT ACAATCGTCAAATCCCCCCCATCA (601) TCAGTCAGATGAACTTTTGATCGAATTGAAGTTGTTCTTCTAATTCGGCCCCAGCAGCGCCCATGCA- TCTGGTTTT ATTTGCTTTCTGTTGGGTATAATA (601) TCAGTCAGATGAACTTTTGATCGAATTGAAGTTGTTCTTCTAATTCGGCCCCAGCAGCGCCCATGCA- TCTGGTTTT ATTTGCTTTCTGTTGGGTATAATA (590) TCAGTCAGATGAACTTTTGATCGAATTGAAGTTGTTCTTCTAATTCGGCCCCAGCAGCGCCCATGCA- TCTGGTTTT ATTTGCTTTCTGTTGGGTATAATA (601) TCAGTCAGATGAACTTTTGATCGAATTGAAGTTGTTCTTCTAATTCGGCCCCAGCAGCGCCCATGCA- TCTGGTTTT ATTTGCTTTCTGTTGGGTATAATA (601) TCAGTCAGATGAACTTTTGATCGAATTGAAGTTGTTCTTCTAATTCGGCCCCAGCAGCGCCCATGCA- TCTGGTTTT ATTTGCTTTCTGTTGGGTATAATA (601) TCAGTCAGATGAACTTTTGATCGAATTGAAGTTGTTCTTCTAATTCGGCCCCAGCAGCGCCCATGCA- TCTGGTTTT ATTTGCTTTCTGTTGGGTATAATA (701) TGCAAGACCTTTTGTTGCTAGGGCAAGGCTGCAACCACATGCGTGTACTGAACTCATGATGTAACTC- ATCCTTTTT GTTTGCTCACAGAATCACTACTCT (701) TGCAAGACCTTTTGTTGCTAGGGCAAGGCTGCAACCACATGCGTGTACTGAACTCATGATGTAACTC- ATCCTTTTT GTTTGCTCACAGAATCACTACTCT (690) TGCAAGACCTTTTGTTGCTAGGGCAAGGCTGCAACCACATGCGTGTACTGAACTCATGATGTAACTC- ATCCTTTTT GTTTGCTCACAGAATCACTACTCT (701) TGCAAGACCTTTTGTTGCTAGGGCAAGGCTGCAACCACATGCGTGTACTGAACTCATGATGTAACTC- ATCCTTTTT GTTTGCTCACAGAATCACTACTCT (701) TGCAAGACCTTTTGTTGCTAGGGCAAGGCTGCAACCACATGCGTGTACTGAACTCATGATGTAACTC- ATCCTTTTT GTTTGCTCACAGAATCACTACTCT (701) TGCAAGACCTTTTGTTGCTAGGGCAAGGCTGCAACCACATGCGTGTACTGAACTCATGATGTAACTC- ATCCTTTTT GTTTGCTCACAGAATCACTACTCT (801) ACTGCACTTCCTTTTCATCCGATCCGCAATCTTTTTTTTCTTTTACATGCTTTAGTTTTCTCTCTTT- CTTGATTAC AAACATGATTACTGGAACTTTCTT (801) ACTGCACTTCCTTTTCATCCGATCCGCAATCTTTTTTTTCTTTTACATGCTTTAGTTTTCTCTCTTT- CTTGATTAC AAACATGATTACTGGAACTTTCTT (790) ACTGCACTTCCTTTTCATCCGATCCGCAATCTTTTTTTTCTTTTACATGCTTTAGTTTTCTCTCTTT- CTTGATTAC AAACATGATTACTGGAACTTTCTT (801) ACTGCACTTCCTTTTCATCCGATCCGCAATCTTTTTTTTCTTTTACATGCTTTAGTTTTCTCTCTTT- CTTGATTAC AAACATGATTACTGGAACTTTCTT (801) ACTGCACTTCCTTTTCATCCGATCCGCAATCTTTTTTTTCTTTTACATGCTTTAGTTTTCTCTCTTT- CTTGATTAC AAACATGATTACTGGAACTTTCTT (801) ACTGCACTTCCTTTTCATCCGATCCGCAATCTTTTTTTTCTTTTACATGCTTTAGTTTTCTCTCTTT- CTTGATTAC AAACATGATTACTGGAACTTTCTT (901) AGGCTGCCTTCCCCTTCCTTGGATCTGCTTTAGTTTTCTTTTTTGGGCTACCGCGCGCGGCTTATTT- GAGTTTATC ACTTGCTGCATATACATAATATAT (901) AGGCTGCCTTCCCCTTCCTTGGATCTGCTTTAGTTTTCTTTTTTGGGCTACCGCGCGCGGCTTATTT- GAGTTTATC ACTTGCTGCATATACATAATATAT (890) AGGCTGCCTTCCCCTTCCTTGGATCTGCTTTAGTTTTCTTTTTTGGGCTACCGCGCGCGGCTTATTT- GAGTTTATC ACTTGCTGCATATACATAATATAT (901) AGGCTGCCTTCCCCTTCCTTGGATCTGCTTTAGTTTTCTTTTTTGGGCTACCGCGCGCGGCTTATTT- GAGTTTATC ACTTGCTGCATATACATAATATAT (901) AGGCTGCCTTCCCCTTCCTTGGATCTGCTTTAGTTTTCTTTTTTGGGCTACCGCGCGCGGCTTATTT- GAGTTTATC ACTTGCTGCATATACATAATATAT (901) AGGCTGCCTTCCCCTTCCTTGGATCTGCTTTAGTTTTCTTTTTTGGGCTACCGCGCGCGGCTTATTT- GAGTTTATC ACTTGCTGCATATACATAATATAT (1001) ATATACATGCATGCGATGGCGTTCATGTTACTCAACTACAGATCTGTTTCTGTTCGTGTGTTTCAGT- TCAGCGCGC
AGTTAAGCATAGCAGGACGACCAC (1001) ATATACATGCATGCGATGGCGTTCATGTTACTCAACTACAGATCTGTTTCTGTTCGTGTGTTTCAGT- TCAGCGCGC AGTTAAGCATAGCAGGACGACCAC (990) ATATACATGCATGCGATGGCGTTCATGTTACTCAACTACAGATCTGTTTCTGTTCGTGTGTTTCAGT- TCAGCGCGC AGTTAAGCATAGCAGGACGACCAC (1001) ATATACATGCATGCGATGGCGTTCATGTTACTCAACTACAGATCTGTTTCTGTTCGTGTGTTTCAGT- TCAGCGCGC AGTTAAGCATAGCAGGACGACCAC (1001) ATATACATGCATGCGATGGCGTTCATGTTACTCAACTACAGATCTGTTTCTGTTCGTGTGTTTCAGT- TCAGCGCGC AGTTAAGCATAGCAGGACGACCAC (1001) ATATACATGCATGCGATGGCGTTCATGTTACTCAACTACAGATCTGTTTCTGTTCGTGTGTTTCAGT- TCAGCGCGC AGTTAAGCATAGCAGGACGACCAC START (1101) GACGATGTATCACCCGCAGTGCGAGCTCCTGACGATGGCGCACGAAACGCCGGACCTGGACGCCGGC- CAGCCGCAC CTAACCGTCTCCGGCGTCGCCAGC (1101) GACGATGTATCACCCGCAGTGCGAGCTCCTGACGATGGCGCACGAAACGCCGGACCTGGACGCCGGC- CAGCCGCAC CTAACCGTCTCCGGCGTCGCCAGC (1090) GACGATGTATCACCCGCAGTGCGAGCTCCTGACGATGGCGCACGAAACGCCGGACCTGGACGCCGGC- CAGCCGCAC CTAACCGTCTCCGGCGTCGCCAGC (1101) GACGATGTATCACCCGCAGTGCGAGCTCCTGACGATGGCGCACGAAACGCCGGACCTGGACGCCGGC- CAGCCGCAC CTAACCGTCTCCGGCGTCGCCAGC (1101) GACGATGTATCACCCGCAGTGCGAGCTCCTGACGATGGCGCACGAAACGCCGGACCTGGACGCCGGC- CAGCCGCAC CTAACCGTCTCCGGCGTCGCCAGC (1101) GACGATGTATCACCCGCAGTGCGAGCTCCTGACGATGGCGCACGAAACGCCGGACCTGGACGCCGGC- CAGCCGCAC CTAACCGTCTCCGGCGTCGCCAGC (1201) ATCCCGGCAGAGCTGAGCTTCCACCTGCTGCACTCGCTCGACGCCGCGGCGGCGGTCAATCCCGTCA- CGGCGCCGC CGCAGTCCACCATCGACTACTTCC (1201) ATCCCGGCAGAGCTGAGCTTCCACCTGCTGCACTCGCTCGACGCCGCGGCGGCGGTCAATCCCGTCA- CGGCGCCGC CGCAGTCCACCATCGACTACTTCC (1190) ATCCCGGCAGAGCTGAGCTTCCACCTGCTGCACTCGCTCGACGCCGCGGCGGCGGTCAATCCCGTCA- CGGCGCCGC CGCAGTCCACCATCGACTACTTCC (1201) ATCCCGGCAGAGCTGAGCTTCCACCTGCTGCACTCGCTCGACGCCGCGGCGGCGGTCAATCCCGTCA- CGGCGCCGC CGCAGTCCACCATCGACTACTTCC (1201) ATCCCGGCAGAGCTGAGCTTCCACCTGCTGCACTCGCTCGACGCCGCGGCGGCGGTCAATCCCGTCA- CGGCGCCGC CGCAGTCCACCATCGACTACTTCC (1201) ATCCCGGCAGAGCTGAGCTTCCACCTGCTGCACTCGCTCGACGCCGCGGCGGCGGTCAATCCCGTCA- CGGCGCCGC CGCAGTCCACCATCGACTACTTCC (1301) TCGGCGGCGCCGATCCCCACCAGCAGGCCATGCAGTACGAGCCGCTGCCGCCCGCCGCGGGCGGCCA- CCACCAGTA CACCATGGACATGTTCCGCGACTA (1301) TCGGCGGCGCCGATCCCCACCAGCAGGCCATGCAGTACGAGCCGCTGCCGCCCGCCGCGGGCGGCCA- CCACCAGTA CACCATGGACATGTTCCGCGACTA (1290) TCGGCGGCGCCGATCCCCACCAGCAGGCCATGCAGTACGAGCCGCTGCCGCCCGCCGCGGGCGGCCA- CCACCAGTA CACCATGGACATGTTCCGCGACTA (1301) TCGGCGGCGCCGATCCCCACCAGCAGGCCATGCAGTACGAGCCGCTGCCGCCCGCCGCGGGCGGCCA- CCACCAGTA CACCATGGACATGTTCCGCGACTA (1301) TCGGCGGCGCCGATCCCCACCAGCAGGCCATGCAGTACGAGCCGCTGCCGCCCGCCGCGGGCGGCCA- CCACCAGTA CACCATGGACATGTTCCGCGACTA (1301) TCGGCGGCGCCGATCCCCACCAGCAGGCCATGCAGTACGAGCCGCTGCCGCCCGCCGCGGGCGGCCA- CCACCAGTA CACCATGGACATGTTCCGCGACTA DAS-CMS22(H/N) (1401) CTGCGACGGCCACTACCCCACCGCCGAGCCGTACATCCGCGGGACAATGACTGGAGCCCTCGTGTTC- GGGGCCACC GACGACGACGACTCGGCCGCTGCC (1401) CTGCGACGGCCACTACCCCACCGCCGAGCCGTACATCCGCGGGACAATGACTGGAGCCCTCGTGTTC- GGGGCCACC GACGACGACGACTCGGCCGCTGCC (1390) CTGCGACGGCCACTACCCCACCGCCGAGCCGTACATCCGCGGGACAATGACTGGAGCCCTCGTGTTC- GGGGCCACC GACGACGACGACTCGGCCGCTGCC (1401) CTGCGACGGCAACTACCCCACCGCCGAGCCGTACATCCGCGGGACAATGACTGGAGCCCTCGTGTTC- GGGGCCACC GACGACGACGACTCGGCCGCTGCC (1401) CTGCGACGGCAACTACCCCACCGCCGAGCCGTACATCCGCGGGACAATGACTGGAGCCCTCGTGTTC- GGGGCCACC GACGACGACGACTCGGCCGCTGCC (1401) CTGCGACGGCAACTACCCCACCGCCGAGCCGTACATCCGCGGGACAATGACTGGAGCCCTCGTGTTC- GGGGCCACC GACGACGACGACTCGGCCGCTGCC DAS-CMS23(-/A) (1500) ---TACATGCCCGGGGGGCACTTTGAGACCTCCCCGCCGCCGCCACGCGCCACCGGCCGCGGCAGGA- AGCGGGGCA GGGCGCTGGGCGGCGGCTTCCATG (1500) ---TACATGCCCGGGGGGCACTTTGAGACCTCCCCGCCGCCGCCACGCGCCACCGGCCGCGGCAGGA- AGCGGGGCA GGGCGCTGGGCGGCGGCTTCCATG (1489) ---TACATGCCCGGGGGGCACTTTGAGACCTCCCCGCCGCCGCCACGCGCCACCGGCCGCGGCAGGA- AGCGGGGCA GGGCGCTGGGCGGCGGCTTCCATG (1501) GCCTACATGCCCGGGGGGCACTTTGAGACCTCCCCGCCGCCGCCACGCGCCACCGGCCGCGGCAGGA- AGCGGGGCA GGGCGCTGGGCGGCGGCTTCCATG (1501) GCCTACATGCCCGGGGGGCACTTTGAGACCTCCCCGCCGCCGCCACGCGCCACCGGCCGCGGCAGGA- AGCGGGGCA GGGCGCTGGGCGGCGGCTTCCATG (1501) GCCTACATGCCCGGGGGGCACTTTGAGACCTCCCCGCCGCCGCCACGCGCCACCGGCCGCGGCAGGA- AGCGGGGCA GGGCGCTGGGCGGCGGCTTCCATG DAS-CMS35(Y/F) DAS-CMS24 (1598) CTGTGCTGGCCAACGGCGTCGAGAAGAAGGAGAAGCAGCGCCGGCTGCGGCTCACCGAGAAGTACAC- CGCCCTCAT DAS-CMS25 GCACCTCATACCCAACGTTACAAA (1598) CTGTGCTGGCCAACGGCGTCGAGAAGAAGGAGAAGCAGCGCCGGCTGCGGCTCACCGAGAAGTACAC- CGCCCTCAT GCACCTCATACCCAACGTTACAAA (1587) CTGTGCTGGCCAACGGCGTCGAGAAGAAGGAGAAGCAGCGCCGGCTGCGGCTCACCGAGAAGTACAC- CGCCCTCAT GCACCTCATACCCAACGTTACAAA (1601) CTGTGCTGGCCAACGGCGTCGAGAAGAAGGAGAAGCAGCGCCGGCTGCGGCTCACCGAGAAGTTTAC- GGCCCTCAT GCACCTCATACCCAACGTTACGAA (1601) CTGTGCTGGCCAACGGCGTCGAGAAGAAGGAGAAGCAGCGCCGGCTGCGGCTCACCGAGAAGTTTAC- GGCCCTCAT GCACCTCATACCCAACGTTACGAA (1601) CTGTGCTGGCCAACGGCGTCGAGAAGAAGGAGAAGCAGCGCCGGCTGCGGCTCACCGAGAAGTTTAC- GGCCCTCAT GCACCTCATACCCAACGTTACGAA DAS-CMS26 (1698) GGTCGTAC-------------------CAAATCCTCCTCTTATGTTCGTC---CATCGTTTCAAATT- AAGTTAAAA AATTAATTCACGGTTCTTGTTGTT (1698) GGTCGTAC-------------------CAAATCCTCCTCTTATGTTCGTC---CATCGTTTCAAATT- AAGTTAAAA AATTAATTCACGGTTCTTGTTGTT (1687) GGTCGTAC-------------------CAAATCCTCCTCTTATGTTCGTC---CATCGTTTGAAATT- AAGTTAAAA AATTAATTCACGGTTCTTGTTGTT (1701) GGTCGTACGGCGTACTTGCGCGCGGACCAAATCCTCCTCTTATGTTCGTCGTCCATCGTCTCAAATT- AA------- ------TTCACGGTTCTTGTTGTT (1701) GGTCGTACGGCGTACTTGCGCGCGGACCAAATCCTCCTCTTATGTTCGTCGTCCATCGTCTCAAATT- AA------- ------TTCACGGTTCTTGTTGTT (1701) GGTCGTACGGCGTACTTGCGCGCGGACCAAATCCTCCTCTTATGTTCGTCGTCCATCGTCTCAAATT- AA------- ------TTCACGGTTCTTGTTGTT DAS-CMS27 (1776) ---TATTTTTTGCGCACTGCAGACTGATAGGGCGACGGTGATCTCGGACGCGATCGAGTACATCCAG- GAGCTGGGG AGGACGGTGGAGGAGCTGACGCTG (1776) ---TATTTTTTGCGCACTGCAGACTGATAGGGCGACGGTGATCTCGGACGCGATCGAGTACATCCAG- GAGCTGGGG AGGACGGTGGAGGAGCTGACGCTG (1765) ---TATTTTTTGCGCACTGCAGACTGATAGGGCGACGGTGATCTCGGACGCGATCGAGTACATCCAG- GAGCTGGGG AGGACGGTGGAGGAGCTGACGCTG (1788) GTTTATTTTTTGCGCACTGCAGACTGATAGGGCGACGGTGATCTCGGACGCGATCGAGTACATCCAG- GAGCTGGGG AGGACGGTGGAGGAGCTGACGCTG (1788) GTTTATTTTTTGCGCACTGCAGACTGATAGGGCGACGGTGATCTCGGACGCGATCGAGTACATCCAG- GAGCTGGGG AGGACGGTGGAGGAGCTGACGCTG (1788) GTTTATTTTTTGCGCACTGCAGACTGATAGGGCGACGGTGATCTCGGACGCGATCGAGTACATCCAG- GAGCTGGGG AGGACGGTGGAGGAGCTGACGCTG (1873) CTGGTGGAGAAGAAGCGGCGCCGGAGGGAGCTGCAGGGGGACGTCGTGGACGCGGCGCCGGCTGCGG- TGGTTGCTG CCGCCGGTGAGGCGGAGAGCTCGG (1873) CTGGTGGAGAAGAAGCGGCGCCGGAGGGAGCTGCAGGGGGACGTCGTGGACGCGGCGCCGGCTGCGG- TGGTTGCTG CCGCCGGTGAGGCGGAGAGCTCGG (1862) CTGGTGGAGAAGAAGCGGCGCCGGAGGGAGCTGCAGGGGGACGTCGTGGACGCGGCGCCGGCTGCGG- TGGTTGCTG CCGCCGGTGAGGCGGAGAGCTCGG (1888) CTGGTGGAGAAGAAGCGGCGCCGGAGGGAGCTGCAGGGGGACGTCGTGGACGCGGCGCCGGCTGCGG- TGGTTGCTG CCGCCGGTGAGGCGGAGAGCTCGG (1888) CTGGTGGAGAAGAAGCGGCGCCGGAGGGAGCTGCAGGGGGACGTCGTGGACGCGGCGCCGGCTGCGG- TGGTTGCTG CCGCCGGTGAGGCGGAGAGCTCGG (1888) CTGGTGGAGAAGAAGCGGCGCCGGAGGGAGCTGCAGGGGGACGTCGTGGACGCGGCGCCGGCTGCGG- TGGTTGCTG CCGCCGGTGAGGCGGAGAGCTCGG DAS-CMS28(P/L) (1973) AGGGCGAGGTGGCTCCTCCGCCGCCGGCCGTGCCGCGGCAGCCGATCCGGAGCACGTACATCCAGCG- GCGGAGCAA GGACACGTCCGTGGACGTGCGGAT
(1973) AGGGCGAGGTGGCTCCTCCGCCGCCGGCCGTGCCGCGGCAGCCGATCCGGAGCACGTACATCCAGCG- GCGGAGCAA GGACACGTCCGTGGACGTGCGGAT (1962) AGGGCGAGGTGGCTCCTCCGCCGCCGGCCGTGCCGCGGCAGCCGATCCGGAGCACGTACATCCAGCG- GCGGAGCAA GGACACGTCCGTGGACGTGCGGAT (1988) AGGGCGAGGTGGCTCCTCCGCCGCTGGCCGTGCCGCGGCAGCCGATCCGGAGCACGTACATCCAGCG- GCGGAGCAA GGACACGTCCGTGGACGTGCGGAT (1988) AGGGCGAGGTGGCTCCTCCGCCGCTGGCCGTGCCGCGGCAGCCGATCCGGAGCACGTACATCCAGCG- GCGGAGCAA GGACACGTCCGTGGACGTGCGGAT (1988) AGGGCGAGGTGGCTCCTCCGCCGCTGGCCGTGCCGCGGCAGCCGATCCGGAGCACGTACATCCAGCG- GCGGAGCAA GGACACGTCCGTGGACGTGCGGAT (2073) CGTGGAGGAGGACGTGAACATCAAGCTCACCAAGCGCCGGCGCGACGGGTGCCTCGCAGCCGCGTCG- CGCGCGCTG DAS-CMS29 GATGACCTCCGCCTTGACCTCGTC (2073) CGTGGAGGAGGACGTGAACATCAAGCTCACCAAGCGCCGGCGCGACGGGTGCCTCGCAGCCGCGTCG- CGCGCGCTG GATGACCTCCGCCTTGACCTCGTC (2062) CGTGGAGGAGGACGTGAACATCAAGCTCACCAAGCGCCGGCGCGACGGGTGCCTCGCAGCCGCGTCG- CGCGCGCTG GATGACCTCCGCCTTGACCTCGTC (2088) CGTGGAGGAGGACGTGAACATCAAGCTCACCAAGCGCCGGCGCGACGGGTGCCTCGCAGCCGCGTCG- CGCGCGCTG GACGACCTCCGCCTTGACCTCGTC (2088) CGTGGAGGAGGACGTGAACATCAAGCTCACCAAGCGCCGGCGCGACGGGTGCCTCGCAGCCGCGTCG- CGCGCGCTG GACGACCTCCGCCTTGACCTCGTC (2088) CGTGGAGGAGGACGTGAACATCAAGCTCACCAAGCGCCGGCGCGACGGGTGCCTCGCAGCCGCGTCG- CGCGCGCTG GACGACCTCCGCCTTGACCTCGTC (2173) CACCTCTCCGGCGGCAAGATCGGTGACTGTCAAATCTACATGTTCAACACCAAGGTACATACGAATA- CGATACGTA GCCATTGATCGATCTGTAATTCTG (2173) CACCTCTCCGGCGGCAAGATCGGTGACTGTCAAATCTACATGTTCAACACCAAGGTACATACGAATA- CGATACGTA GCCATTGATCGATCTGTAATTCTG (2162) CACCTCTCCGGCGGCAAGATCGGTGACTGTCAAATCTACATGTTCAACACCAAGGTACATACGAATA- CGATACGTA GCCATTGATCGATCTGTAATTCTG (2188) CACCTCTCCGGCGGCAAGATCGGTGACTGTCAAATCTACATGTTCAACACCAAGGTACATACGAATA- CGATACGTA GCCATTGATCGATCTGTAATTCTG (2188) CACCTCTCCGGCGGCAAGATCGGTGACTGTCAAATCTACATGTTCAACACCAAGGTACATACGAATA- CGATACGTA GCCATTGATCGATCTGTAATTCTG (2188) CACCTCTCCGGCGGCAAGATCGGTGACTGTCAAATCTACATGTTCAACACCAAGGTACATACGAATA- CGATACGTA GCCATTGATCGATCTGTAATTCTG DAS-CMS30 (2273) TAGCCTGACGATT---------------CCGAGGTTTCTG--------------------GTGCTAA- AAAATGCAT CTTTTTTTCTCAGATGACAATGCT (2273) TAGCCTGACGATT---------------CCGAGGTTTCTG--------------------GTGCTAA- AAAATGCAT CTTTTTTTCTCAGATGACAATGCT (2262) TAGCCTGACGATT---------------CCGAGGTTTCTG--------------------GTGCTAA- AAAATGCAT CTTTTTTTCTCAGATGACAATGCT (2288) TAGCCTGACGATTTCATGCATTACTTTTCCGAGGTTTCTGTGCTATACTACCTAACCTAGGTGCTAA- AAAATGCAC CTTTTTTTCTCAGATGACAATGCT (2288) TAGCCTGACGATTTCATGCATTACTTTTCCGAGGTTTCTGTGCTATACTACCTAACCTAGGTGCTAA- AAAATGCAC CTTTTTTTCTCAGATGACAATGCT (2288) TAGCCTGACGATTTCATGCATTACTTTTCCGAGGTTTCTGTGCTATACTACCTAACCTAGGTGCTAA- AAAATGCAC CTTTTTTTCTCAGATGACAATGCT (2338) TTCTGTCTTTGTTCACCGCAGATTCACAAGGGGTCTTCAGTGTTTGCGAGTGCAGTGGCCGGTAGGC- TGATGGAAG STOP TGGTGGACGAGTACTAGGCTACCA (2338) TTCTGTCTTTGTTCACCGCAGATTCACAAGGGGTCTTCAGTGTTTGCGAGTGCAGTGGCCGGTAGGC- TGATGGAAG TGGTGGACGAGTACTAGGCTACCA (2327) TTCTGTCTTTGTTCACCGCAGATTCACAAGGGGTCTTCAGTGTTTGCGAGTGCAGTGGCCGGTAGGC- TGATGGAAG TGGTGGACGAGTACTAGGCTACCA (2388) TTCTGTCTTTGTTCACCGCAGATTCACAAGGGGTCTTCAGTGTTTGCGAGTGCAGTGGCCGGTAGGC- TGATGGAAG TGGTGGACGAGTACTAGGCTACCA (2388) TTCTGTCTTTGTTCACCGCAGATTCACAAGGGGTCTTCAGTGTTTGCGAGTGCAGTGGCCGGTAGGC- TGATGGAAG TGGTGGACGAGTACTAGGCTACCA (2388) TTCTGTCTTTGTTCACCGCAGATTCACAAGGGGTCTTCAGTGTTTGCGAGTGCAGTGGCCGGTAGGC- TGATGGAAG TGGTGGACGAGTACTAGGCTACCA DAS-CMS31 (2438) TGCACTTGAATTTCTAGCTAGCTCTACGTACCGCGCTGCTATGAATCTAGCTATAGCGTTTCTTGGA- TGAAAGACT AGTTAGTTGTTACCTTCTATCTTT (2438) TGCACTTGAATTTCTAGCTAGCTCTACGTACCGCGCTGCTATGAATCTAGCTATAGCGTTTCTTGGA- TGAAAGACT AGTTAGTTGTTACCTTCTATCTTT (2427) TGCACTTGAATTTCTAGCTAGCTCTACGTACCGCGCTGCTATGAATCTAGCTATAGCGTTTCTTGGA- TGAAAGACT AGTTAGTTGTTACCTTCTATCTTT (2488) TGCACTTGAATTTCTAGCTAGCTCTACGTACCGCGCTGCTATGAATCTAGCTATAGCGTTTCTTGGA- TGAAAGAAT AGTTAGTTGTTACCTTCTATCTTT (2488) TGCACTTGAATTTCTAGCTAGCTCTACGTACCGCGCTGCTATGAATCTAGCTATAGCGTTTCTTGGA- TGAAAGAAT AGTTAGTTGTTACCTTCTATCTTT (2488) TGCACTTGAATTTCTAGCTAGCTCTACGTACCGCGCTGCTATGAATCTAGCTATAGCGTTTCTTGGA- TGAAAGAAT AGTTAGTTGTTACCTTCTATCTTT (2538) GCTTCAATTAAATCCGCTTGCTCGTTACAGACTGAGTTTGTTTCTAAATGTCAAGGTTGTTTTGGTC- AAATTGAAT AAATTGGCACACTGGCCTGTGAGG (2538) GCTTCAATTAAATCCGCTTGCTCGTTACAGACTGAGTTTGTTTCTAAATGTCAAGGTTGTTTTGGTC- AAATTGAAT AAATTGGCACACTGGCCTGTGAGG (2527) GCTTCAATTAAATCCGCTTGCTCGTTACAGACTGAGTTTGTTTCTAAATGTCAAGGTTGTTTTGGTC- AAATTGAAT AAATTGGCACACTGGCCTGTGAGG (2588) GCTTCAATTAAATCCGCTTGCTCGTTACAGACTGAGTTTGTTTCTAAATGTCAAGGTTGTTTTGGTC- AAATTGAAT AAATTGGCACACTGGCCTGTGAGG (2588) GCTTCAATTAAATCCGCTTGCTCGTTACAGACTGAGTTTGTTTCTAAATGTCAAGGTTGTTTTGGTC- AAATTGAAT AAATTGGCACACTGGCCTGTGAGG (2588) GCTTCAATTAAATCCGCTTGCTCGTTACAGACTGAGTTTGTTTCTAAATGTCAAGGTTGTTTTGGTC- AAATTGAAT AAATTGGCACACTGGCCTGTGAGG (2638) TTATTATATATATTTATGTGT-TTATTACTGGTCTATTAATTTGTCTTATTATTAATGTATTGCCTG- TCAAGGAAT DAS-CMS32 AAATGGTATGATGACCATATTTAT (2638) TTATTATATATATTTATGTGT-TTATTACTGGTCTATTAATTTGTCTTATTATTAATGTATTGCCTG- TCAAGGAAT AAATGGTATGATGACCATATTTAT (2627) TTATTATATATATTTATGTGT-TTATTACTGGTCTATTAATTTGTCCTATTATTAATGTATTGCCTG- TCAAGGAAT AAATGATATGATGACCATATTTAT (2688) TTATTATAT----TTATGTGTATTATTACTGGTCTATCAATTTGTCCTATTATT---GTATTGCCTG- TCAAGGAAT AAATTGTATGATGATCATATTTAT (2688) TTATTATAT----TTATGTGTATTATTACTGGTCTATCAATTTGTCCTATTATT---GTATTGCCTG- TCAAGGAAT AAATTGTATGATGATCATATTTAT (2688) TTATTATAT----TTATGTGTATTATTACTGGTCTATCAATTTGTCCTATTATT---GTATTGCCTG- TCAAGGAAT AAATTGTATGATGATCATATTTAT (2737) GCATAGATAGGATCGGATGAGTAGGTTCACTTGCTTGAGTTCACCGGTATAATTCCGG-------AT- ACATCTGGT DAS-CMS33 TAGGTCATCCTTTGGTCAGCTGCC (2737) GCATAGATAGGATCGGATGAGTAGGTTCACTTGCTTGAGTTCACCGGTATAATTCCGG-------AT- ACATCTGGT TAGGTCATCCTTTGGTCAGCTGCC (2726) GCATAGATAGGA-----TGAGTAGGTTCACTTGCTTGAGTTCACCGGTATAATTCTGG-------AT- ACATCTGGT TAGGTCATCCTTTGGTCAGCTGCC (2781) GCATAGATAGGA-----TGAGTAGGTTCACTTGCTTGAGTTCACCGGTATAATTCTGGTTTCTGGAT- ACATCTGGT TAGGTCAGCCTTTGGTCAGCTGCC (2781) GCATAGATAGGA-----TGAGTAGGTTCACTTGCTTGAGTTCACCGGTATAATTCTGGTTTCTGGAT- ACATCTGGT TAGGTCAGCCTTTGGTCAGCTGCC (2781) GCATAGATAGGA-----TGAGTAGGTTCACTTGCTTGAGTTCACCGGTATAATTCTGGTTTCTGGAT- ACATCTGGT TAGGTCAGCCTTTGGTCAGCTGCC (2830) CGCAAGCTTAACTCCGTGCGATATACAATATACAGATTTTATTATGGTTTTCCCCTGAACCTTCGTG- ACTAACTAT GTTATCATTTTTATAGCTTTATAG (2830) CGCAAGCTTAACTCCGTGCGATATACAATATACAGATTTTATTATGGTTTTCCCCTGAACCTTCGTG- ACTAACTAT GTTATCATTTTTATAGCTTTATAG (2814) CGCAA---------CGTGCGATATACAATATACATATTTTATTATGTTTTT----------TTCGTG- ACTAACTAT GTTATCATTTTTATAGCTTTATAG (2876) CGCAAGCTTAACTCCGTGCGATATACACTATACAAATTTTATTATGTTTTT----------TTCGTG- ACTAACTAT GTTATCATTTTTATAGCTTTATAG (2876) CGCAAGCTTAACTCCGTGCGATATACACTATACAAATTTTATTATGTTTTT----------TTCGTG- ACTAACTAT GTTATCATTTTTATAGCTTTATAG (2876) CGCAAGCTTAACTCCGTGCGATATACACTATACAAATTTTATTATGTTTTT----------TTCGTG- ACTAACTAT GTTATCATTTTTATAGCTTTATAG DAS-CMS34 (2930) TCTACAAACTGTTTTATACTCAGCTTGATAAGTACATTCTGGTTTGGACGATGG-TTTTTTTTTCTT- GCAAAA-TG AATTTGTCTTCAGCCTTTACGACT (2930) TCTACAAACTGTTTTATACTCAGCTTGATAAGTACATTCTGGTTTGGACGATGG-TTTTTTTTTCTT- GCAAAA-TG AATTTGTCTTCAGCCTTTACGACT
(2895) TCTACAAACTGTTTTATACTCAGCTTGATAAGTACATTCTGGTTTGGACGAT----TTTTTTTTCTT- GCAAAAATG AATTTGTCTTCAGCCTTTACGACT (2966) TCTACAAACTGTTTTATACTCAGCTTGATAAGTACATTCTGGTTTGGACGATGGTTTTTTTTTTCTT- GCAAAAATG AATTTGTCTTCAGCCTTTACGACT (2966) TCTACAAACTGTTTTATACTCAGCTTGATAAGTACATTCTGGTTTGGACGATGGTTTTTTTTTTCTT- GCAAAAATG AATTTGTCTTCAGCCTTTACGACT (2966) TCTACAAACTGTTTTATACTCAGCTTGATAAGTACATTCTGGTTTGGACGATGGTTTTTTTTTTCTT- GCAAAAATG AATTTGTCTTCAGCCTTTACGACT (3028) ACATACAGTTTAGTT----------------TGTATTAATTGATACCGGAAGATCAGATTCGGACCA- CATATAAAC AAGGAATATATAGCACGTACTCGC (3028) ACATACAGTTTAGTT----------------TGTATTAATTGATACCGGAAGATCAGATTCGGACCA- CATATAAAC AAGGAATATATAGCACGTACTCGC (2991) ACATACAGTTTAGTTCTTAGAGTATCTCATCTGTATTAATTGATACCGGAAGA---GATTCGGGCCA- CATATAAAC AAGGAATATATAGCACGTACTCGC (3066) ACATACAGTTTAGTT----------------TGTATTAATTGATACCAGAAGATCAGATTCGGACCA- CATATAAAC AAGGAATATATAGCACGTACTCGC (3066) ACATACAGTTTAGTT----------------TGTATTAATTGATACCAGAAGATCAGATTCGGACCA- CATATAAAC AAGGAATATATAGCACGTACTCGC (3066) ACATACAGTTTAGTT----------------TGTATTAATTGATACCAGAAGATCAGATTCGGACCA- CATATAAAC AAGGAATATATAGCACGTACTCGC (SEQ ID NO: 5) (3112) TGAACCTTAAATATAGTCAGGAAAATAGAGGGTTAACTAAACCGATCCAGAAACCAATTACATTGAT- ATTGACTCT ATTCTTCGTT (SEQ ID NO: 6) (3112) TGAACCTTAAATATAGTCAGGAAAATAGAGGGTTAACTAAACCGATCCAGAAACCAATTACATTGAT- ATTGACTCT ATTCTTCGTT (SEQ ID NO: 7) (3088) TGAACCTTAAATATAGTCAGGAACATAGAGGGTTAACTAAACCGATCCAGAAACCAATTACATTGAT- ATTGACTCT ATTCTTCGTT (SEQ ID NO: 8) (3150) TGAACCTTAAATATAGTCAGGAACATAGAGGGTTAACTAAACCGATCCAGAAACCAATTACATTGAT- ATTGACTCT ATTCTTCGTT (SEQ ID NO: 9) (3150) TGAACCTTAAATATAGTCAGGAACATAGAGGGTTAACTAAACCGATCCAGAAACCAATTACATTGAT- ATTGACTCT ATTCTTCGTT (SEQ ID NO: 10) (3150) TGAACCTTAAATATAGTCAGGAACATAGAGGGTTAACTAAACCGATCCAGAAACCAATTACATTGAT- ATTGACTCT ATTCTTCGTT
The translation start and stop codons and positions for markers DAS-CMS21 through DAS-CMS35 within the gene are underlined and/or labeled.
[0062] Gene Specific Assay Design and Validation.
[0063] Alignments of predicted Rf4-bHLH protein sequences indicated that all three restorer lines had identical protein sequences and non-restorer lines were identical (data not shown). There were four amino-acid changes between restorer lines and non-restorer lines: His (H.sub.103) to Asn (N.sub.103), Ala (A.sub.130) insertion, Pro (P.sub.266) to Leu (L.sub.267) and Tyr (Y.sub.186) to Phe (F.sub.187) substitution in the restorer lines. In comparison with other monocot orthologs, the Phe (F.sub.187) substitution in the maize restorer allele was conserved, and the other three amino acid changes were less conserved and were located in variable sites (data not shown). This conserved substitution was used for gene specific TaqMan.RTM. assay design.
TABLE-US-00005 SEQ ID NO: 6 primer sequences for an CMS-C line Forward primer 5'-CAACGGCGTCGAGAAGAAG-3' (SEQ ID NO: 11) VIC Reporter 5'-CTCGGCGTCGGCCGCGACGAAGAG-3' (SEQ ID NO: 12) rf4(non-restorer)probe-MGB 5'-ACCGAGAAGTACACCGC-3' (SEQ ID NO: 13) Reverse primer 5'-ATTGCAACCCATACTCCACGTA-3' (SEQ ID NO: 14) SEQ ID NO: 8 primer sequences for an Rf4 line Forward primer 5'-CAACGGCGTCGAGAAGAAG-3' (SEQ ID NO: 15) FAM Reporter 5'-TCGGCGTCGGCCGCGACGAAGAG-3' (SEQ ID NO: 16) Rf4 (restorer) specific 5'-CACCGAGAAGTTTACGGC-3' (SEQ ID NO: 17) probe-MGB Reverse primer 5'-ATTGCAACCCATACTCCACGTA-3' (SEQ ID NO: 18)
Three known Rf4 restoration lines and six non-restoration lines were used for assay testing. One hemizygous sample was made by combining equal amount of DNA from Rf4 line with a CMS-C line. Real-time PCR was used to test the efficiency of the assay. Oligonucleotides specific to the Rf4 gene and to the corresponding CMS-C line or non-restorer were combined in the same assay. FAM was used to monitor the Rf4 amplicon from the restorer lines and VIC from non-restorer CMS-C or non-restorer lines. Exponential amplification phase was observed from cycles 23 to 35 for both Rf4 restorer lines and non-restorer CMS-C or non-restorer lines (FIGS. 1A and 1B).
[0064] Validation of End-Point TaqMan.RTM. Zygosity Analysis.
[0065] An F2 CMS-C/restoration mapping population with 500 individuals was used to validate the assay using end-point TaqMan.RTM. PCR instead of using real-time TaqMan.RTM. PCR. The advantages of end-point TaqMan.RTM. over real-time TaqMan.RTM. include its ease to use and high throughput. For end-point TaqMan.RTM. PCR, any regular PCR machine that can fit 96- or 384-well plates plus a plate reader that can read FAM and VIC are sufficient to perform the assay.
[0066] Following completion of the TaqMan.RTM. PCR and fluorescence reading, the raw fluorescence intensity data directly from the plate reader were analyzed in the KLIMS system. A graph with RFU (relative fluorescence unit) of FAM as x-axis and VIC as y-axis was generated. Zygosity calls were made based on the cluster separation in a cluster view (FIG. 2). Since FAM was used to monitor the amplification of Rf4 from restorer lines and VIC for non-restorer/CMS-C lines, samples with strong signals of FAM and little or no VIC are homozygous for Rf4 allele; samples with strong signals of VIC and little or no FAM are non-restorer/CMS-C lines (nulls); and samples with strong signals of both FAM and VIC are hemizygous for Rf4 allele.
[0067] F2 genotypic data based on the Rf4 gene specific end-point TaqMan.RTM. PCR assay matched completely with field phenotypic data, which demonstrated the effectiveness and accuracy of the end-point TaqMan.RTM. PCR assay for testing Rf4 zygosity in a high throughput way. This assay enables large scale and high throughput screening of maize germplasms with the Rf4 restoration gene. This assay will also increase the scale of using a CMS-C/Rf4 system for hybrid corn seed production.
Sequence CWU
1
1
18119DNAArtificial SequenceDescription of Artificial Sequence Synthetic
primer 1caacggcgtc gagaagaag
19222DNAArtificial SequenceDescription of Artificial Sequence
Synthetic primer 2taacgttggg tatgaggtgc at
22317DNAArtificial SequenceDescription of Artificial
Sequence Synthetic probe 3accgagaagt acaccgc
17418DNAArtificial SequenceDescription of
Artificial Sequence Synthetic probe 4caccgagaag tttacggc
1853197DNAZea mays 5ggcaagctaa
tggggtacat atggaaggag gaaaccaagt cgatcgtcgt cgtagcatgt 60cggtgtgggt
actacactac acacacatat acatgggcaa cgcaaggcca cctttctgaa 120tcctgcatga
gcgtgtacca ctagaattgt cagtgtgtgc ggtgtatggc aggtttttgg 180ttcggcaagt
ggggccctcc ggggaggaat ctcagtaaca aaccgctctt ctgaaaaggt 240cagccatccc
cggtccggtc cggtgatgtc gtcgctgtcg ctctgctagc ttgctgccga 300tccccccccc
cccccccccc cttcttctct ctacccctcc ctccacctca taaatactta 360gtttaataac
cttgcactgc cgcagtagcc cttaactgct gctatctatc tcttttctga 420aggaaaaaaa
aggtttgata ctcctctacc tagctagtcc tgcatgccgc taatgtgcgt 480cttgcctgtt
tatttgttct taataagggc tgcctatcta ttatattttg cacctgtttt 540gctgtgttct
tggtaactag cttaattcct tcgcctacaa tcgtcaaatc ccccccatca 600tcagtcagat
gaacttttga tcgaattgaa gttgttcttc taattcggcc ccagcagcgc 660ccatgcatct
ggttttattt gctttctgtt gggtataata tgcaagacct tttgttgcta 720gggcaaggct
gcaaccacat gcgtgtactg aactcatgat gtaactcatc ctttttgttt 780gctcacagaa
tcactactct actgcacttc cttttcatcc gatccgcaat cttttttttc 840ttttacatgc
tttagttttc tctctttctt gattacaaac atgattactg gaactttctt 900aggctgcctt
ccccttcctt ggatctgctt tagttttctt ttttgggcta ccgcgcgcgg 960cttatttgag
tttatcactt gctgcatata cataatatat atatacatgc atgcgatggc 1020gttcatgtta
ctcaactaca gatctgtttc tgttcgtgtg tttcagttca gcgcgcagtt 1080aagcatagca
ggacgaccac gacgatgtat cacccgcagt gcgagctcct gacgatggcg 1140cacgaaacgc
cggacctgga cgccggccag ccgcacctaa ccgtctccgg cgtcgccagc 1200atcccggcag
agctgagctt ccacctgctg cactcgctcg acgccgcggc ggcggtcaat 1260cccgtcacgg
cgccgccgca gtccaccatc gactacttcc tcggcggcgc cgatccccac 1320cagcaggcca
tgcagtacga gccgctgccg cccgccgcgg gcggccacca ccagtacacc 1380atggacatgt
tccgcgacta ctgcgacggc cactacccca ccgccgagcc gtacatccgc 1440gggacaatga
ctggagccct cgtgttcggg gccaccgacg acgacgactc ggccgctgcc 1500tacatgcccg
gggggcactt tgagacctcc ccgccgccgc cacgcgccac cggccgcggc 1560aggaagcggg
gcagggcgct gggcggcggc ttccatgctg tgctggccaa cggcgtcgag 1620aagaaggaga
agcagcgccg gctgcggctc accgagaagt acaccgccct catgcacctc 1680atacccaacg
ttacaaaggt cgtaccaaat cctcctctta tgttcgtcca tcgtttcaaa 1740ttaagttaaa
aaattaattc acggttcttg ttgtttattt tttgcgcact gcagactgat 1800agggcgacgg
tgatctcgga cgcgatcgag tacatccagg agctggggag gacggtggag 1860gagctgacgc
tgctggtgga gaagaagcgg cgccggaggg agctgcaggg ggacgtcgtg 1920gacgcggcgc
cggctgcggt ggttgctgcc gccggtgagg cggagagctc ggagggcgag 1980gtggctcctc
cgccgccggc cgtgccgcgg cagccgatcc ggagcacgta catccagcgg 2040cggagcaagg
acacgtccgt ggacgtgcgg atcgtggagg aggacgtgaa catcaagctc 2100accaagcgcc
ggcgcgacgg gtgcctcgca gccgcgtcgc gcgcgctgga tgacctccgc 2160cttgacctcg
tccacctctc cggcggcaag atcggtgact gtcaaatcta catgttcaac 2220accaaggtac
atacgaatac gatacgtagc cattgatcga tctgtaattc tgtagcctga 2280cgattccgag
gtttctggtg ctaaaaaatg catctttttt tctcagatga caatgctttc 2340tgtctttgtt
caccgcagat tcacaagggg tcttcagtgt ttgcgagtgc agtggccggt 2400aggctgatgg
aagtggtgga cgagtactag gctaccatgc acttgaattt ctagctagct 2460ctacgtaccg
cgctgctatg aatctagcta tagcgtttct tggatgaaag actagttagt 2520tgttaccttc
tatctttgct tcaattaaat ccgcttgctc gttacagact gagtttgttt 2580ctaaatgtca
aggttgtttt ggtcaaattg aataaattgg cacactggcc tgtgaggtta 2640ttatatatat
ttatgtgttt attactggtc tattaatttg tcttattatt aatgtattgc 2700ctgtcaagga
ataaatggta tgatgaccat atttatgcat agataggatc ggatgagtag 2760gttcacttgc
ttgagttcac cggtataatt ccggatacat ctggttaggt catcctttgg 2820tcagctgccc
gcaagcttaa ctccgtgcga tatacaatat acagatttta ttatggtttt 2880cccctgaacc
ttcgtgacta actatgttat catttttata gctttatagt ctacaaactg 2940ttttatactc
agcttgataa gtacattctg gtttggacga tggttttttt ttcttgcaaa 3000atgaatttgt
cttcagcctt tacgactaca tacagtttag tttgtattaa ttgataccgg 3060aagatcagat
tcggaccaca tataaacaag gaatatatag cacgtactcg ctgaacctta 3120aatatagtca
ggaaaataga gggttaacta aaccgatcca gaaaccaatt acattgatat 3180tgactctatt
cttcgtt 319763197DNAZea
mays 6ggcaagctaa tggggtacat atggaaggag gaaaccaagt cgatcgtcgt cgtagcatgt
60cggtgtgggt actacactac acacacatat acatgggcaa cgcaaggcca cctttctgaa
120tcctgcatga gcgtgtacca ctagaattgt cagtgtgtgc ggtgtatggc aggtttttgg
180ttcggcaagt ggggccctcc ggggaggaat ctcagtaaca aaccgctctt ctgaaaaggt
240cagccatccc cggtccggtc cggtgatgtc gtcgctgtcg ctctgctagc ttgctgccga
300tccccccccc cccccccccc cttcttctct ctacccctcc ctccacctca taaatactta
360gtttaataac cttgcactgc cgcagtagcc cttaactgct gctatctatc tcttttctga
420aggaaaaaaa aggtttgata ctcctctacc tagctagtcc tgcatgccgc taatgtgcgt
480cttgcctgtt tatttgttct taataagggc tgcctatcta ttatattttg cacctgtttt
540gctgtgttct tggtaactag cttaattcct tcgcctacaa tcgtcaaatc ccccccatca
600tcagtcagat gaacttttga tcgaattgaa gttgttcttc taattcggcc ccagcagcgc
660ccatgcatct ggttttattt gctttctgtt gggtataata tgcaagacct tttgttgcta
720gggcaaggct gcaaccacat gcgtgtactg aactcatgat gtaactcatc ctttttgttt
780gctcacagaa tcactactct actgcacttc cttttcatcc gatccgcaat cttttttttc
840ttttacatgc tttagttttc tctctttctt gattacaaac atgattactg gaactttctt
900aggctgcctt ccccttcctt ggatctgctt tagttttctt ttttgggcta ccgcgcgcgg
960cttatttgag tttatcactt gctgcatata cataatatat atatacatgc atgcgatggc
1020gttcatgtta ctcaactaca gatctgtttc tgttcgtgtg tttcagttca gcgcgcagtt
1080aagcatagca ggacgaccac gacgatgtat cacccgcagt gcgagctcct gacgatggcg
1140cacgaaacgc cggacctgga cgccggccag ccgcacctaa ccgtctccgg cgtcgccagc
1200atcccggcag agctgagctt ccacctgctg cactcgctcg acgccgcggc ggcggtcaat
1260cccgtcacgg cgccgccgca gtccaccatc gactacttcc tcggcggcgc cgatccccac
1320cagcaggcca tgcagtacga gccgctgccg cccgccgcgg gcggccacca ccagtacacc
1380atggacatgt tccgcgacta ctgcgacggc cactacccca ccgccgagcc gtacatccgc
1440gggacaatga ctggagccct cgtgttcggg gccaccgacg acgacgactc ggccgctgcc
1500tacatgcccg gggggcactt tgagacctcc ccgccgccgc cacgcgccac cggccgcggc
1560aggaagcggg gcagggcgct gggcggcggc ttccatgctg tgctggccaa cggcgtcgag
1620aagaaggaga agcagcgccg gctgcggctc accgagaagt acaccgccct catgcacctc
1680atacccaacg ttacaaaggt cgtaccaaat cctcctctta tgttcgtcca tcgtttcaaa
1740ttaagttaaa aaattaattc acggttcttg ttgtttattt tttgcgcact gcagactgat
1800agggcgacgg tgatctcgga cgcgatcgag tacatccagg agctggggag gacggtggag
1860gagctgacgc tgctggtgga gaagaagcgg cgccggaggg agctgcaggg ggacgtcgtg
1920gacgcggcgc cggctgcggt ggttgctgcc gccggtgagg cggagagctc ggagggcgag
1980gtggctcctc cgccgccggc cgtgccgcgg cagccgatcc ggagcacgta catccagcgg
2040cggagcaagg acacgtccgt ggacgtgcgg atcgtggagg aggacgtgaa catcaagctc
2100accaagcgcc ggcgcgacgg gtgcctcgca gccgcgtcgc gcgcgctgga tgacctccgc
2160cttgacctcg tccacctctc cggcggcaag atcggtgact gtcaaatcta catgttcaac
2220accaaggtac atacgaatac gatacgtagc cattgatcga tctgtaattc tgtagcctga
2280cgattccgag gtttctggtg ctaaaaaatg catctttttt tctcagatga caatgctttc
2340tgtctttgtt caccgcagat tcacaagggg tcttcagtgt ttgcgagtgc agtggccggt
2400aggctgatgg aagtggtgga cgagtactag gctaccatgc acttgaattt ctagctagct
2460ctacgtaccg cgctgctatg aatctagcta tagcgtttct tggatgaaag actagttagt
2520tgttaccttc tatctttgct tcaattaaat ccgcttgctc gttacagact gagtttgttt
2580ctaaatgtca aggttgtttt ggtcaaattg aataaattgg cacactggcc tgtgaggtta
2640ttatatatat ttatgtgttt attactggtc tattaatttg tcttattatt aatgtattgc
2700ctgtcaagga ataaatggta tgatgaccat atttatgcat agataggatc ggatgagtag
2760gttcacttgc ttgagttcac cggtataatt ccggatacat ctggttaggt catcctttgg
2820tcagctgccc gcaagcttaa ctccgtgcga tatacaatat acagatttta ttatggtttt
2880cccctgaacc ttcgtgacta actatgttat catttttata gctttatagt ctacaaactg
2940ttttatactc agcttgataa gtacattctg gtttggacga tggttttttt ttcttgcaaa
3000atgaatttgt cttcagcctt tacgactaca tacagtttag tttgtattaa ttgataccgg
3060aagatcagat tcggaccaca tataaacaag gaatatatag cacgtactcg ctgaacctta
3120aatatagtca ggaaaataga gggttaacta aaccgatcca gaaaccaatt acattgatat
3180tgactctatt cttcgtt
319773173DNAZea mays 7ggcaagctaa tggggtacat atggaaggag gaaaccaagt
cgatcgtcgt cgtagcatgt 60cggtgtgggt actacactac acacacatat acatgggcaa
cgcaaggcca cctttctgaa 120tcctgcatga gcgtgtacca ctagaattgt cagtgtgtgc
ggtgtatggc aggtttttgg 180ttcggcaagt ggggccctcc ggggaggaat ctcagtaaca
aaccgctctt ctgaaaaggt 240cagccatccc cggtccggtc cggtgatgtc gtcgctgtcg
ctctgctagc ttgctgccga 300tccccccccc ttcttctctc tacccctccc tccacctcat
aaatacttag tttaataacc 360ttgcactgcc gcagtagccc ttaactgctg ctatctatct
cttttctgaa ggaaaaaaaa 420ggtttgatac tcctctacct agctagtcct gcatgccgct
aatgtgcgtc ttgcctgttt 480atttgttctt aataagggct gcctatctat tatattttgc
acctgttttg ctgtgttctt 540ggtaactagc ttaattcctt tgcctacaat cgtcaaatcc
cccccatcat cagtcagatg 600aacttttgat cgaattgaag ttgttcttct aattcggccc
cagcagcgcc catgcatctg 660gttttatttg ctttctgttg ggtataatat gcaagacctt
ttgttgctag ggcaaggctg 720caaccacatg cgtgtactga actcatgatg taactcatcc
tttttgtttg ctcacagaat 780cactactcta ctgcacttcc ttttcatccg atccgcaatc
ttttttttct tttacatgct 840ttagttttct ctctttcttg attacaaaca tgattactgg
aactttctta ggctgccttc 900cccttccttg gatctgcttt agttttcttt tttgggctac
cgcgcgcggc ttatttgagt 960ttatcacttg ctgcatatac ataatatata tatacatgca
tgcgatggcg ttcatgttac 1020tcaactacag atctgtttct gttcgtgtgt ttcagttcag
cgcgcagtta agcatagcag 1080gacgaccacg acgatgtatc acccgcagtg cgagctcctg
acgatggcgc acgaaacgcc 1140ggacctggac gccggccagc cgcacctaac cgtctccggc
gtcgccagca tcccggcaga 1200gctgagcttc cacctgctgc actcgctcga cgccgcggcg
gcggtcaatc ccgtcacggc 1260gccgccgcag tccaccatcg actacttcct cggcggcgcc
gatccccacc agcaggccat 1320gcagtacgag ccgctgccgc ccgccgcggg cggccaccac
cagtacacca tggacatgtt 1380ccgcgactac tgcgacggcc actaccccac cgccgagccg
tacatccgcg ggacaatgac 1440tggagccctc gtgttcgggg ccaccgacga cgacgactcg
gccgctgcct acatgcccgg 1500ggggcacttt gagacctccc cgccgccgcc acgcgccacc
ggccgcggca ggaagcgggg 1560cagggcgctg ggcggcggct tccatgctgt gctggccaac
ggcgtcgaga agaaggagaa 1620gcagcgccgg ctgcggctca ccgagaagta caccgccctc
atgcacctca tacccaacgt 1680tacaaaggtc gtaccaaatc ctcctcttat gttcgtccat
cgtttgaaat taagttaaaa 1740aattaattca cggttcttgt tgtttatttt ttgcgcactg
cagactgata gggcgacggt 1800gatctcggac gcgatcgagt acatccagga gctggggagg
acggtggagg agctgacgct 1860gctggtggag aagaagcggc gccggaggga gctgcagggg
gacgtcgtgg acgcggcgcc 1920ggctgcggtg gttgctgccg ccggtgaggc ggagagctcg
gagggcgagg tggctcctcc 1980gccgccggcc gtgccgcggc agccgatccg gagcacgtac
atccagcggc ggagcaagga 2040cacgtccgtg gacgtgcgga tcgtggagga ggacgtgaac
atcaagctca ccaagcgccg 2100gcgcgacggg tgcctcgcag ccgcgtcgcg cgcgctggat
gacctccgcc ttgacctcgt 2160ccacctctcc ggcggcaaga tcggtgactg tcaaatctac
atgttcaaca ccaaggtaca 2220tacgaatacg atacgtagcc attgatcgat ctgtaattct
gtagcctgac gattccgagg 2280tttctggtgc taaaaaatgc atcttttttt ctcagatgac
aatgctttct gtctttgttc 2340accgcagatt cacaaggggt cttcagtgtt tgcgagtgca
gtggccggta ggctgatgga 2400agtggtggac gagtactagg ctaccatgca cttgaatttc
tagctagctc tacgtaccgc 2460gctgctatga atctagctat agcgtttctt ggatgaaaga
ctagttagtt gttaccttct 2520atctttgctt caattaaatc cgcttgctcg ttacagactg
agtttgtttc taaatgtcaa 2580ggttgttttg gtcaaattga ataaattggc acactggcct
gtgaggttat tatatatatt 2640tatgtgttta ttactggtct attaatttgt cctattatta
atgtattgcc tgtcaaggaa 2700taaatgatat gatgaccata tttatgcata gataggatga
gtaggttcac ttgcttgagt 2760tcaccggtat aattctggat acatctggtt aggtcatcct
ttggtcagct gcccgcaacg 2820tgcgatatac aatatacata ttttattatg tttttttcgt
gactaactat gttatcattt 2880ttatagcttt atagtctaca aactgtttta tactcagctt
gataagtaca ttctggtttg 2940gacgattttt ttttcttgca aaaatgaatt tgtcttcagc
ctttacgact acatacagtt 3000tagttcttag agtatctcat ctgtattaat tgataccgga
agagattcgg gccacatata 3060aacaaggaat atatagcacg tactcgctga accttaaata
tagtcaggaa catagagggt 3120taactaaacc gatccagaaa ccaattacat tgatattgac
tctattcttc gtt 317383235DNAZea mays 8ggcaagctaa tggggtacat
atggaaggag gaaaccaagt cgatcgtcgt cgtagcatgt 60cggtgtgggt actacactac
acacacatat acatgggcaa cgcaaggcca cctttctgaa 120tcctgcatga gcgtgtacca
ctagaattgt cagtgtgtgc ggtgtatggc aggtttttgg 180ttcggcaagt ggggccctcc
ggggaggaat ctcagtaaca aaccgctctt ctgaaaaggt 240cagccatccc cggtccggtc
cggtgatgtc gtcgctgtcg ctctgctagc ttgctgccga 300tccccccccc cccccccccc
cttcttctct ctacccctcc ctccacctca taaatactta 360gtttaataac cttgcactgc
cgcagtagcc cttaactgct gctatctatc tcttttctga 420aggaaaaaaa aggtttgata
ctcctctacc tagctagtcc tgcatgccgc taatgtgcgt 480cttgcctgtt tatttgttct
taataagggc tgcctatcta ttatattttg cacctgtttt 540gctgtgttct tggtaactag
cttaattcct ttgcctacaa tcgtcaaatc ccccccatca 600tcagtcagat gaacttttga
tcgaattgaa gttgttcttc taattcggcc ccagcagcgc 660ccatgcatct ggttttattt
gctttctgtt gggtataata tgcaagacct tttgttgcta 720gggcaaggct gcaaccacat
gcgtgtactg aactcatgat gtaactcatc ctttttgttt 780gctcacagaa tcactactct
actgcacttc cttttcatcc gatccgcaat cttttttttc 840ttttacatgc tttagttttc
tctctttctt gattacaaac atgattactg gaactttctt 900aggctgcctt ccccttcctt
ggatctgctt tagttttctt ttttgggcta ccgcgcgcgg 960cttatttgag tttatcactt
gctgcatata cataatatat atatacatgc atgcgatggc 1020gttcatgtta ctcaactaca
gatctgtttc tgttcgtgtg tttcagttca gcgcgcagtt 1080aagcatagca ggacgaccac
gacgatgtat cacccgcagt gcgagctcct gacgatggcg 1140cacgaaacgc cggacctgga
cgccggccag ccgcacctaa ccgtctccgg cgtcgccagc 1200atcccggcag agctgagctt
ccacctgctg cactcgctcg acgccgcggc ggcggtcaat 1260cccgtcacgg cgccgccgca
gtccaccatc gactacttcc tcggcggcgc cgatccccac 1320cagcaggcca tgcagtacga
gccgctgccg cccgccgcgg gcggccacca ccagtacacc 1380atggacatgt tccgcgacta
ctgcgacggc aactacccca ccgccgagcc gtacatccgc 1440gggacaatga ctggagccct
cgtgttcggg gccaccgacg acgacgactc ggccgctgcc 1500gcctacatgc ccggggggca
ctttgagacc tccccgccgc cgccacgcgc caccggccgc 1560ggcaggaagc ggggcagggc
gctgggcggc ggcttccatg ctgtgctggc caacggcgtc 1620gagaagaagg agaagcagcg
ccggctgcgg ctcaccgaga agtttacggc cctcatgcac 1680ctcataccca acgttacgaa
ggtcgtacgg cgtacttgcg cgcggaccaa atcctcctct 1740tatgttcgtc gtccatcgtc
tcaaattaat tcacggttct tgttgttgtt tattttttgc 1800gcactgcaga ctgatagggc
gacggtgatc tcggacgcga tcgagtacat ccaggagctg 1860gggaggacgg tggaggagct
gacgctgctg gtggagaaga agcggcgccg gagggagctg 1920cagggggacg tcgtggacgc
ggcgccggct gcggtggttg ctgccgccgg tgaggcggag 1980agctcggagg gcgaggtggc
tcctccgccg ctggccgtgc cgcggcagcc gatccggagc 2040acgtacatcc agcggcggag
caaggacacg tccgtggacg tgcggatcgt ggaggaggac 2100gtgaacatca agctcaccaa
gcgccggcgc gacgggtgcc tcgcagccgc gtcgcgcgcg 2160ctggacgacc tccgccttga
cctcgtccac ctctccggcg gcaagatcgg tgactgtcaa 2220atctacatgt tcaacaccaa
ggtacatacg aatacgatac gtagccattg atcgatctgt 2280aattctgtag cctgacgatt
tcatgcatta cttttccgag gtttctgtgc tatactacct 2340aacctaggtg ctaaaaaatg
cacctttttt tctcagatga caatgctttc tgtctttgtt 2400caccgcagat tcacaagggg
tcttcagtgt ttgcgagtgc agtggccggt aggctgatgg 2460aagtggtgga cgagtactag
gctaccatgc acttgaattt ctagctagct ctacgtaccg 2520cgctgctatg aatctagcta
tagcgtttct tggatgaaag aatagttagt tgttaccttc 2580tatctttgct tcaattaaat
ccgcttgctc gttacagact gagtttgttt ctaaatgtca 2640aggttgtttt ggtcaaattg
aataaattgg cacactggcc tgtgaggtta ttatatttat 2700gtgtattatt actggtctat
caatttgtcc tattattgta ttgcctgtca aggaataaat 2760tgtatgatga tcatatttat
gcatagatag gatgagtagg ttcacttgct tgagttcacc 2820ggtataattc tggtttctgg
atacatctgg ttaggtcagc ctttggtcag ctgcccgcaa 2880gcttaactcc gtgcgatata
cactatacaa attttattat gtttttttcg tgactaacta 2940tgttatcatt tttatagctt
tatagtctac aaactgtttt atactcagct tgataagtac 3000attctggttt ggacgatggt
tttttttttc ttgcaaaaat gaatttgtct tcagccttta 3060cgactacata cagtttagtt
tgtattaatt gataccagaa gatcagattc ggaccacata 3120taaacaagga atatatagca
cgtactcgct gaaccttaaa tatagtcagg aacatagagg 3180gttaactaaa ccgatccaga
aaccaattac attgatattg actctattct tcgtt 323593235DNAZea mays
9ggcaagctaa tggggtacat atggaaggag gaaaccaagt cgatcgtcgt cgtagcatgt
60cggtgtgggt actacactac acacacatat acatgggcaa cgcaaggcca cctttctgaa
120tcctgcatga gcgtgtacca ctagaattgt cagtgtgtgc ggtgtatggc aggtttttgg
180ttcggcaagt ggggccctcc ggggaggaat ctcagtaaca aaccgctctt ctgaaaaggt
240cagccatccc cggtccggtc cggtgatgtc gtcgctgtcg ctctgctagc ttgctgccga
300tccccccccc cccccccccc cttcttctct ctacccctcc ctccacctca taaatactta
360gtttaataac cttgcactgc cgcagtagcc cttaactgct gctatctatc tcttttctga
420aggaaaaaaa aggtttgata ctcctctacc tagctagtcc tgcatgccgc taatgtgcgt
480cttgcctgtt tatttgttct taataagggc tgcctatcta ttatattttg cacctgtttt
540gctgtgttct tggtaactag cttaattcct ttgcctacaa tcgtcaaatc ccccccatca
600tcagtcagat gaacttttga tcgaattgaa gttgttcttc taattcggcc ccagcagcgc
660ccatgcatct ggttttattt gctttctgtt gggtataata tgcaagacct tttgttgcta
720gggcaaggct gcaaccacat gcgtgtactg aactcatgat gtaactcatc ctttttgttt
780gctcacagaa tcactactct actgcacttc cttttcatcc gatccgcaat cttttttttc
840ttttacatgc tttagttttc tctctttctt gattacaaac atgattactg gaactttctt
900aggctgcctt ccccttcctt ggatctgctt tagttttctt ttttgggcta ccgcgcgcgg
960cttatttgag tttatcactt gctgcatata cataatatat atatacatgc atgcgatggc
1020gttcatgtta ctcaactaca gatctgtttc tgttcgtgtg tttcagttca gcgcgcagtt
1080aagcatagca ggacgaccac gacgatgtat cacccgcagt gcgagctcct gacgatggcg
1140cacgaaacgc cggacctgga cgccggccag ccgcacctaa ccgtctccgg cgtcgccagc
1200atcccggcag agctgagctt ccacctgctg cactcgctcg acgccgcggc ggcggtcaat
1260cccgtcacgg cgccgccgca gtccaccatc gactacttcc tcggcggcgc cgatccccac
1320cagcaggcca tgcagtacga gccgctgccg cccgccgcgg gcggccacca ccagtacacc
1380atggacatgt tccgcgacta ctgcgacggc aactacccca ccgccgagcc gtacatccgc
1440gggacaatga ctggagccct cgtgttcggg gccaccgacg acgacgactc ggccgctgcc
1500gcctacatgc ccggggggca ctttgagacc tccccgccgc cgccacgcgc caccggccgc
1560ggcaggaagc ggggcagggc gctgggcggc ggcttccatg ctgtgctggc caacggcgtc
1620gagaagaagg agaagcagcg ccggctgcgg ctcaccgaga agtttacggc cctcatgcac
1680ctcataccca acgttacgaa ggtcgtacgg cgtacttgcg cgcggaccaa atcctcctct
1740tatgttcgtc gtccatcgtc tcaaattaat tcacggttct tgttgttgtt tattttttgc
1800gcactgcaga ctgatagggc gacggtgatc tcggacgcga tcgagtacat ccaggagctg
1860gggaggacgg tggaggagct gacgctgctg gtggagaaga agcggcgccg gagggagctg
1920cagggggacg tcgtggacgc ggcgccggct gcggtggttg ctgccgccgg tgaggcggag
1980agctcggagg gcgaggtggc tcctccgccg ctggccgtgc cgcggcagcc gatccggagc
2040acgtacatcc agcggcggag caaggacacg tccgtggacg tgcggatcgt ggaggaggac
2100gtgaacatca agctcaccaa gcgccggcgc gacgggtgcc tcgcagccgc gtcgcgcgcg
2160ctggacgacc tccgccttga cctcgtccac ctctccggcg gcaagatcgg tgactgtcaa
2220atctacatgt tcaacaccaa ggtacatacg aatacgatac gtagccattg atcgatctgt
2280aattctgtag cctgacgatt tcatgcatta cttttccgag gtttctgtgc tatactacct
2340aacctaggtg ctaaaaaatg cacctttttt tctcagatga caatgctttc tgtctttgtt
2400caccgcagat tcacaagggg tcttcagtgt ttgcgagtgc agtggccggt aggctgatgg
2460aagtggtgga cgagtactag gctaccatgc acttgaattt ctagctagct ctacgtaccg
2520cgctgctatg aatctagcta tagcgtttct tggatgaaag aatagttagt tgttaccttc
2580tatctttgct tcaattaaat ccgcttgctc gttacagact gagtttgttt ctaaatgtca
2640aggttgtttt ggtcaaattg aataaattgg cacactggcc tgtgaggtta ttatatttat
2700gtgtattatt actggtctat caatttgtcc tattattgta ttgcctgtca aggaataaat
2760tgtatgatga tcatatttat gcatagatag gatgagtagg ttcacttgct tgagttcacc
2820ggtataattc tggtttctgg atacatctgg ttaggtcagc ctttggtcag ctgcccgcaa
2880gcttaactcc gtgcgatata cactatacaa attttattat gtttttttcg tgactaacta
2940tgttatcatt tttatagctt tatagtctac aaactgtttt atactcagct tgataagtac
3000attctggttt ggacgatggt tttttttttc ttgcaaaaat gaatttgtct tcagccttta
3060cgactacata cagtttagtt tgtattaatt gataccagaa gatcagattc ggaccacata
3120taaacaagga atatatagca cgtactcgct gaaccttaaa tatagtcagg aacatagagg
3180gttaactaaa ccgatccaga aaccaattac attgatattg actctattct tcgtt
3235103235DNAZea mays 10ggcaagctaa tggggtacat atggaaggag gaaaccaagt
cgatcgtcgt cgtagcatgt 60cggtgtgggt actacactac acacacatat acatgggcaa
cgcaaggcca cctttctgaa 120tcctgcatga gcgtgtacca ctagaattgt cagtgtgtgc
ggtgtatggc aggtttttgg 180ttcggcaagt ggggccctcc ggggaggaat ctcagtaaca
aaccgctctt ctgaaaaggt 240cagccatccc cggtccggtc cggtgatgtc gtcgctgtcg
ctctgctagc ttgctgccga 300tccccccccc cccccccccc cttcttctct ctacccctcc
ctccacctca taaatactta 360gtttaataac cttgcactgc cgcagtagcc cttaactgct
gctatctatc tcttttctga 420aggaaaaaaa aggtttgata ctcctctacc tagctagtcc
tgcatgccgc taatgtgcgt 480cttgcctgtt tatttgttct taataagggc tgcctatcta
ttatattttg cacctgtttt 540gctgtgttct tggtaactag cttaattcct ttgcctacaa
tcgtcaaatc ccccccatca 600tcagtcagat gaacttttga tcgaattgaa gttgttcttc
taattcggcc ccagcagcgc 660ccatgcatct ggttttattt gctttctgtt gggtataata
tgcaagacct tttgttgcta 720gggcaaggct gcaaccacat gcgtgtactg aactcatgat
gtaactcatc ctttttgttt 780gctcacagaa tcactactct actgcacttc cttttcatcc
gatccgcaat cttttttttc 840ttttacatgc tttagttttc tctctttctt gattacaaac
atgattactg gaactttctt 900aggctgcctt ccccttcctt ggatctgctt tagttttctt
ttttgggcta ccgcgcgcgg 960cttatttgag tttatcactt gctgcatata cataatatat
atatacatgc atgcgatggc 1020gttcatgtta ctcaactaca gatctgtttc tgttcgtgtg
tttcagttca gcgcgcagtt 1080aagcatagca ggacgaccac gacgatgtat cacccgcagt
gcgagctcct gacgatggcg 1140cacgaaacgc cggacctgga cgccggccag ccgcacctaa
ccgtctccgg cgtcgccagc 1200atcccggcag agctgagctt ccacctgctg cactcgctcg
acgccgcggc ggcggtcaat 1260cccgtcacgg cgccgccgca gtccaccatc gactacttcc
tcggcggcgc cgatccccac 1320cagcaggcca tgcagtacga gccgctgccg cccgccgcgg
gcggccacca ccagtacacc 1380atggacatgt tccgcgacta ctgcgacggc aactacccca
ccgccgagcc gtacatccgc 1440gggacaatga ctggagccct cgtgttcggg gccaccgacg
acgacgactc ggccgctgcc 1500gcctacatgc ccggggggca ctttgagacc tccccgccgc
cgccacgcgc caccggccgc 1560ggcaggaagc ggggcagggc gctgggcggc ggcttccatg
ctgtgctggc caacggcgtc 1620gagaagaagg agaagcagcg ccggctgcgg ctcaccgaga
agtttacggc cctcatgcac 1680ctcataccca acgttacgaa ggtcgtacgg cgtacttgcg
cgcggaccaa atcctcctct 1740tatgttcgtc gtccatcgtc tcaaattaat tcacggttct
tgttgttgtt tattttttgc 1800gcactgcaga ctgatagggc gacggtgatc tcggacgcga
tcgagtacat ccaggagctg 1860gggaggacgg tggaggagct gacgctgctg gtggagaaga
agcggcgccg gagggagctg 1920cagggggacg tcgtggacgc ggcgccggct gcggtggttg
ctgccgccgg tgaggcggag 1980agctcggagg gcgaggtggc tcctccgccg ctggccgtgc
cgcggcagcc gatccggagc 2040acgtacatcc agcggcggag caaggacacg tccgtggacg
tgcggatcgt ggaggaggac 2100gtgaacatca agctcaccaa gcgccggcgc gacgggtgcc
tcgcagccgc gtcgcgcgcg 2160ctggacgacc tccgccttga cctcgtccac ctctccggcg
gcaagatcgg tgactgtcaa 2220atctacatgt tcaacaccaa ggtacatacg aatacgatac
gtagccattg atcgatctgt 2280aattctgtag cctgacgatt tcatgcatta cttttccgag
gtttctgtgc tatactacct 2340aacctaggtg ctaaaaaatg cacctttttt tctcagatga
caatgctttc tgtctttgtt 2400caccgcagat tcacaagggg tcttcagtgt ttgcgagtgc
agtggccggt aggctgatgg 2460aagtggtgga cgagtactag gctaccatgc acttgaattt
ctagctagct ctacgtaccg 2520cgctgctatg aatctagcta tagcgtttct tggatgaaag
aatagttagt tgttaccttc 2580tatctttgct tcaattaaat ccgcttgctc gttacagact
gagtttgttt ctaaatgtca 2640aggttgtttt ggtcaaattg aataaattgg cacactggcc
tgtgaggtta ttatatttat 2700gtgtattatt actggtctat caatttgtcc tattattgta
ttgcctgtca aggaataaat 2760tgtatgatga tcatatttat gcatagatag gatgagtagg
ttcacttgct tgagttcacc 2820ggtataattc tggtttctgg atacatctgg ttaggtcagc
ctttggtcag ctgcccgcaa 2880gcttaactcc gtgcgatata cactatacaa attttattat
gtttttttcg tgactaacta 2940tgttatcatt tttatagctt tatagtctac aaactgtttt
atactcagct tgataagtac 3000attctggttt ggacgatggt tttttttttc ttgcaaaaat
gaatttgtct tcagccttta 3060cgactacata cagtttagtt tgtattaatt gataccagaa
gatcagattc ggaccacata 3120taaacaagga atatatagca cgtactcgct gaaccttaaa
tatagtcagg aacatagagg 3180gttaactaaa ccgatccaga aaccaattac attgatattg
actctattct tcgtt 32351119DNAArtificial SequenceDescription of
Artificial Sequence Synthetic primer 11caacggcgtc gagaagaag
191224DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
12ctcggcgtcg gccgcgacga agag
241317DNAArtificial SequenceDescription of Artificial Sequence Synthetic
probe 13accgagaagt acaccgc
171422DNAArtificial SequenceDescription of Artificial Sequence
Synthetic primer 14attgcaaccc atactccacg ta
221519DNAArtificial SequenceDescription of Artificial
Sequence Synthetic primer 15caacggcgtc gagaagaag
191623DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 16tcggcgtcgg
ccgcgacgaa gag
231718DNAArtificial SequenceDescription of Artificial Sequence Synthetic
probe 17caccgagaag tttacggc
181822DNAArtificial SequenceDescription of Artificial Sequence
Synthetic primer 18attgcaaccc atactccacg ta
22
User Contributions:
Comment about this patent or add new information about this topic: