Patent application title: LUNG CANCER METHYLATION MARKERS
Inventors:
IPC8 Class: AC12Q168FI
USPC Class:
1 1
Class name:
Publication date: 2016-09-29
Patent application number: 20160281175
Abstract:
The present invention discloses a method of diagnosing lung cancer by
using methylation specific markers from a set, having diagnostic power
for lung cancer diagnosis and distinguishing lung cancer types in diverse
samples; as well as methods to identify sets of prognostic and diagnostic
value.Claims:
1.-15. (canceled)
16. A nucleic acid primer or hybridization probe set specific for at least one potentially methylated region of at least one marker gene suitable to diagnose or predict lung cancer or a lung cancer type.
17. The set of claim 16, wherein the at least one the marker gene is further defined as WT1, SALL3, TERT, ACTB, or CPEB4.
18. The set of claim 16, wherein the lung cancer is adenocarcinoma or squamous cell carcinoma.
19. The set of claim 16, further comprising a nucleic acid primer or hybridization probe specific for at least one additional marker gene defined as ABCB1, ACTB, AIM1L, APC, AREG, BMP2K, BOLL, C5AR1, C5orf4, CADM1, CDH13, CDX1, CLIC4, COL21A1, CPEB4, CXADR, DLX2, DNAJA4, DPH1, DRD2, EFS, ERBB2, ERCC1, ESR2, F2R, FAM43A, GABRA2, GAD1, GBP2, GDNF, GNA15, GNAS, HECW2, HIC1, HIST1H2AG, HLAG, HOXA1, HOXA10, HSD17B4, HSPA2, IRAK2, ITGA4, JUB, KCNJ15, KCNQ1, KIF5B, KL, KRT14, KRT17, LAMC2, MAGEB2, MBD2, MSH4, MT1G, MT3, MTHFR, NEUROD1, NHLH2, NKX2-1, ONECUT2, PENK, PITX2, PLAGL1, PTTG1, PYCARD, RASSF1, S100A8, SALL3, SERPINB5, SERPINE1, SERPINI1, SFRP2, SLC25A31, SMAD3, SPARC, SPHK1, SRGN, TERT, THRB, TJP2, TMEFF2, TNFRSF10C, TNFRSF25, TP53, ZDHHCI1, ZNF256, ZNF711, F2R, HOXA10, KL, SALL3, SPARC, TNFRSF25, or WT1.
20. The set of claim 16, further defined as a nucleic acid primer or hybridization probe set comprising nucleic acid primers or hybridization probes being specific for potentially methylated regions of at least 50% of the marker genes in at least one of the following combinations: WT1, DLX2, SALL3, TERT, PITX2, HOXA10, F2R, CPEB4, NHLH2, SMAD3, ACTB, HOXA1, BOLL, APC, MT1G, PENK, SPARC, DNAJA4, RASSF1, HLA-G, ERCC1, ONECUT2, APC, ABCB1, ZNF573, KCNJ15, ZDHHC11, SFRP2, GDNF, PTTG1, SERPINI1, and TNFRSF10C; WT1, PITX2, SALL3, F2R, DLX2, TERT, HOXA10, MSH4, NHLH2, GNA15, PENK, RASSF1, BOLL, HOXA1, ONECUT2, ABCB1, SPARC, MT1G, HSPA2, SFRP2, PYCARD, GAD1, C5orf4, C5AR1, GNDF, ZDHHC11, SERPINE1, NKX2-1, PITX2, C5AR1, GDNF, ZDHHC11, SERPINE1, NKX2-1, PITX2, C5AR1, ZNF256, FAM43A, SFRP2, MT3, SERPINE1M, CLIC4, TNFRSF10C, GABRA2, MTHFR, ESR2, NEUROG1, PITX2, PLAGL1, TMEFF2, PTTG1, CADM1, S100A8, EFS, JUB, ITGA4, MAGEB2, ERBB2, SRGN, GNAS, TJP2, KCNJ15, SLC25A31, ZNF573, TNFRSF25, APC, KCNQ1, LAMC2, SPHK1 DNAJA4, APC, MBD2, ERCC1 HLA-G, CXADR, TP53, ACTB, KL, SMAD3, HIST1H2AG, and CPEB4; WT1 DLX2, SALL3, TERT, TNFRSF25, ACTB, SMAD3, and CPEB4; WT1, DLX2, SALL3, TERT, PITX2, TNFRSF25, KL, ACTB, SMAD3, and CPEB4; WT1, PITX2, SALL3, DLX2, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DNAJA4, HLA-G, CXADR, TP53, ACTB, and CPEB4; WT1, PITX2, SALL3, F2R, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DRD2, DNAJA4, CXADR, TP53, ACTB, and CPEB4; WT1, ACTB, DLX2, PITX2, SALL3, HOXA10, TERT, CPEB4, HLA-G, SPARC, RASSF1, DNAJA4, CXADR, TP53, IRAK2, and ZNF711; F2R, ZNF256, CDH13, SERPINB5, KRT14, DLX2, AREG, THRB, HSD17B4, SPARC, HECW2, and COL21A1; KL, HIST1H2AG, TJP2, SRGN, CDX1, TNFRSF25, APC, HIC1, APC, GNA15, ACTB, WT1, KRT17, AIM1L, DPH1, PITX2, PITX2, KIF5B, BMP2K, GBP2, NHLH2, GDNF, and BOLL; WT1, DLX2, SALL3, TERT, PITX2, HOXA10, F2R, CPEB4, NHLH2, SMAD3, ACTB, HOXA1, BOLL, APC, MT1G, PENK, SPARC, DNAJA4, RASSF1, HLA-G, ERCC1, ONECUT2, APC, ABCB1, ZNF573, KCNJ15, ZDHHC11, SFRP2, GDNF, PTTG1, SERPINI1, and TNFRSF10C; HOXA10 and NEUROD1; WT1, PITX2, SALL3, F2R, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DRD2, DNAJA4, CXADR, TP53, ACTB, CPEB4, DLX2, TNFRSF25, KL, and SMAD3; TNFRSF25, SALL3, RASSF1, TERT, SPARC, F2R, HOXA10, ZNF711, and PITX2 SALL3, PITX2, SPARC, F2R, TERT, RASSF1, HOXA10, CXADR, and KL SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, and KL; SALL3, PITX2, SPARC, F2R, HOXA10, DRD2, ACTB, DNAJA4, CXADR, KL; SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, TNFRSF25, DNAJA4, TP53, CXADR, and KL; SPARC, SALL3, F2R, PITX2, RASSF1, HOXA10, TERT, KL, and TNFRSF25; SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, KL, TNFRSF25, CXADR; and HOXA10, RASSF1, and F2R.
21. The set of claim 16, further defined as comprising not more than 100000 probes or primer pairs.
22. The set of claim 16, further defined as comprising not more than 100000 probes or primer pairs.
23. The set of claim 22, further defined as comprising immobilized probes on a solid surface.
24. The set of claim 22, wherein the primer pairs and probes are specific for a methylated upstream region of an open reading frame of the marker genes.
25. The set of claim 22, wherein the probes or primers are specific for methylation in the genetic regions defined by any of SEQ ID NOs 1081 to 1440 including the adjacent up to 500 base pairs corresponding to any of gene marker IDs 1 to 359.
26. The set of claim 25, wherein the probes or primers are of SEQ ID NOs 1 to 1080.
27. A method of identifying or predicting a lung cancer or a lung cancer type in a patient, comprising: obtaining a set of nucleic acid primers or hybridization probes of claim 16; using the set to determine the methylation status of genes for which the members of the set are specific in a sample of DNA from the patient; and comparing the methylation status of the genes with the status of a confirmed lung cancer type positive and/or negative state, thereby identifying lung cancer or lung cancer type, if any, in the patient.
28. The method of claim 27, wherein the methylation status is determined by methylation specific PCR analysis, methylation specific digestion analysis and either or both of hybridization analysis to non-digested or digested fragments or PCR amplification analysis of non-digested or digested fragments.
29. A method of determining a subset of diagnostic markers for potentially methylated genes from the genes of gene marker IDs 1-359 of Table 1, suitable for the diagnosis or prognosis of lung cancer or lung cancer type, comprising: a) obtaining data of the methylation status of at least 50 random genes selected from the 359 genes of gene marker IDs 1-359 in at least 1 sample of a confirmed lung cancer or lung cancer type state and at least one sample of a lung cancer or lung cancer type negative state; b) correlating the results of the obtained methylation status with the lung cancer or lung cancer type; c) optionally repeating the obtaining a) and correlating b) steps for a different combination of at least 50 random genes selected from the 359 genes of gene marker IDs 1-359; and d) selecting as many marker genes which in a classification analysis have a p-value of less than 0.1 in a random-variance t-test, or selecting as many marker genes which in a classification analysis together have a correct lung cancer or lung cancer type prediction of at least 70% in a cross-validation test; wherein the selected markers form the subset of diagnostic markers.
30. The method of claim 29, wherein a) is further defined as comprising obtaining data of the methylation status of at least 50 random genes selected from the 359 genes of gene marker IDs 1-359 in at least 5 samples of a confirmed lung cancer or lung cancer type state.
31. The method of claim 29, wherein the correlated results for each gene b) are rated by their correct correlation to the disease or tumor type positive state, preferably by p-value test, and selected in step d) in order of the rating.
32. The method of claim 29, wherein not more than 40 marker genes are selected in step d) for the subset.
33. The method of claim 29, wherein the step a) of obtaining data of the methylation status comprises determining data of the methylation status by methylation specific PCR analysis, methylation specific digestion analysis, or hybridization analysis to non-digested or digested fragments, or PCR amplification analysis of non-digested or digested fragments.
34. A method of identifying or predicting a lung cancer or a lung cancer type in a patient, comprising: providing a set of a diagnostic subset of markers identified by a method of claim 29; using the set to determine methylation status of genes for which the members of the set are specific in a sample comprising DNA from the patient; and comparing the methylation status of the genes with the status of a confirmed lung cancer type positive and/or negative state, thereby identifying lung cancer or lung cancer type, if any, in the patient.
35. The method of claim 34, wherein the methylation status is determined by methylation specific PCR analysis, methylation specific digestion analysis and either or both of hybridization analysis to non-digested or digested fragments or PCR amplification analysis of non-digested or digested fragments.
Description:
[0001] The present invention relates to cancer diagnostic methods and
means therefor.
[0002] Neoplasms and cancer are abnormal growths of cells. Cancer cells rapidly reproduce despite restriction of space, nutrients shared by other cells, or signals sent from the body to stop re-production. Cancer cells are often shaped differently from healthy cells, do not function properly, and can spread into many areas of the body. Abnormal growths of tissue, called tumors, are clusters of cells that are capable of growing and di-viding uncontrollably. Tumors can be benign (noncancerous) or malignant (cancerous). Benign tumors tend to grow slowly and do not spread. Malignant tumors can grow rapidly, invade and destroy nearby normal tissues, and spread throughout the body. Malignant cancers can be both locally invasive and metastatic. Locally invasive cancers can invade the tissues surrounding it by sending out "fingers" of cancerous cells into the normal tissue. Metastatic cancers can send cells into other tissues in the body, which may be distant from the original tumor. Cancers are classified according to the kind of fluid or tissue from which they originate, or according to the location in the body where they first developed. All of these parameters can effectively have an influence on the cancer characteristics, development and progression and subsequently also cancer treatment. Therefore, reliable methods to classify a cancer state or cancer type, taking diverse parameters into consideration is desired. Since cancer is predominantly a genetic disease, trying to classify cancers by genetic parameters is one extensively studied route.
[0003] Extensive efforts have been undertaken to discover genes relevant for diagnosis, prognosis and management of (cancerous)disease. Mainly RNA-expression studies have been used for screening to identify genetic biomarkers. Over recent years it has been shown that changes in the DNA-methylation pattern of genes could be used as biomarkers for cancer diagnostics. In concordance with the general strategy identifying RNA-expression based biomarkers, the most convenient and prospering approach would start to identify marker candidates by genome-wide screening of methylation changes.
[0004] The most versatile genome-wide approaches up to now are using microarray hybridization based techniques. Although studies have been undertaken at the genomic level (and also the single-gene level) for elucidating methylation changes in diseased versus normal tissue, a comprehensive test obtaining a good success rate for identifying biomarkers is yet not available.
[0005] Developing biomarkers for disease (especially cancer)-screening, -diagnosis, and -treatment was improved over the last decade by major advances of different technologies which have made it easier to discover potential biomarkers through high-throughput screens. Comparing the so called "OMICs"-approaches like Genomics, Proteomics, Metabolomics, and derivates from those, Genomics is best developed and most widely used for biomarker identification. Because of the dynamic nature of RNA expression and the ease of nucleic acid extraction and the detailed knowledge of the human genome, many studies have used RNA expression profiling for elucidation of class differences for distinguishing the "good" from the "bad" situation like diseased vs. healthy, or clinical differences between groups of diseased patients. Over the years especially microarray-based expression profiling has become a standard tool for research and some approaches are currently under clinical validation for diagnostics. The plasticity over a broad dynamic range of RNA expression levels is an advantage using RNA and also a prerequisite of successful discrimination of classes, the low stability of RNA itself is often seen as a drawback. Because stability of DNA is tremendously higher than stability of RNA, DNA based markers are more promising markers and expected to give robust assays for diagnostics. Many of clinical markers in oncology are more or less DNA based and are well established, e.g. cytogenetic analyses for diagnosis and classification of different tumor-species. However, most of these markers are not accessible using the cheap and efficient molecular-genetic PCR routine tests. This might be due to 1) the structural complexity of changes, 2) the inter-individual differences of these changes at the DNA-sequence level, and 3) the relatively low "quantitative" fold-changes of those "chromosomal" DNA changes. In comparison, RNA-expression changes range over some orders of magnitudes and these changes can be easily measured using genome-wide expression microarrays. These expression arrays are covering the entire translated transcriptome by 20000-45000 probes. Elucidation of DNA changes via microarray techniques re-quires in general more probes depending on the requested resolution. Even order(s) of magnitude more probes are required than for standard expression profiling to cover the entire 3.times.10.sup.9 by human genome. For obtaining best resolution when screening biomarkers at the structural genomic DNA level, today genomic tiling arrays and SNP-arrays are available. Although costs of these techniques analysing DNA have decreased over recent years, for biomarker screening many samples have to be tested, and thus these tests are cost intensive.
[0006] Another option for obtaining stable DNA-based biomarkers re-lies on elucidation of the changes in the DNA methylation pattern of (malignant; neoplastic) disease. In the vertebrate genome methylation affects exclusively the cytosine residues of CpG dinucleotides, which are clustered in CpG islands. CpG islands are often found associated with gene-promoter sequences, present in the 5'-untranslated gene regions and are per default unmethylated. In a very simplified view, an unmethylated CpG island in the associated gene-promoter enables active transcription, but if methylated gene transcription is blocked. The DNA methylation pattern is tissue- and clone-specific and almost as stable as the DNA itself. It is also known that DNA-methylation is an early event in tumorigenesis which would be of interest for early and initial diagnosis of disease. In principle screening for biomarkers suitable to answering clinical questions including DNA-methylation based approaches would be most successful when starting with a genome-wide approach.
[0007] Shames D et al. (PLOS Medicine 3(12) (2006): 2244-2262) identified multiple genes that are methylated with high penetrance in primary lung, breast, colon and prostate cancers.
[0008] Sato N et al. (Cancer Res 63(13) (2003): 3735-3742) identified potential targets with aberrant methylation in pancreatic cancer. These genes were tested using a treatment with a de-methylating agent (5-aza-2'-deoxycytidine and/or the histone deacetylase inhibitor trichostatin A) after which certain genes were increased transcribed.
[0009] Bibikova M et al. (Genome Res 16(3) (2006): 383-393) analysed lung cancer biopsy samples to identify methylated cpu sites to distinguish lung adenocarcinomas from normal lung tissues.
[0010] Yan P S et al. (Clin Cancer Res 6(4) (2000): 1432-1438) analysed CpG island hypermethylation in primary breast tumor.
[0011] Cheng Y et al. (Genome Res 16(2) (2006): 282-289) discussed DNA methylation in CpG islands associated with transcriptional silencing of tumor suppressor genes.
[0012] Ongenaert M et al. (Nucleic Acids Res 36 (2008) Database issue D842-D846) provided an overview over the methylation database "PubMeth".
[0013] Microarray for human genome-wide hybridization testings are known, e.g. the Affymetrix Human Genome U133A Array (NCB1 Database, Acc. No. GLP96).
[0014] A substantial number of differentially methylated genes has been discovered over years rather by chance than by rationality. Albeit some of these methylation changes have the potential being useful markers for differentiation of specifically defined diagnostic questions, these would lack the power for successful delineation of various diagnostic constellations. Thus, the rational approach would start at the genomic-screen for distinguishing the "subtypes" and diagnostically, prognostically and even therapeutically challenging constellations. These rational expectations are the base of starting genomic (and also other--omics) screenings but do not warrant to obtain the maker panel for all clinical relevant constellations which should be distinguished. This is neither unreliable when thinking about a universal approach (e.g. transcriptomics) suitable to distinguish for instance all subtypes in all different malignancies by focusing on a single class of target-molecules (e.g. RNA). Rather all omics-approaches together would be necessary and could help to improve diagnostics and finally patient management.
[0015] Lung cancer is the third most common malignant neoplasm in the EU following breast and colon cancers. Lung cancer presents the second worst 5-year survival figures following pancreas. Thus, although it accounts for 14% of all cancer diagnoses, lung cancer is responsible for 22% of cancer deaths, indicating the poor prognosis of this tumour type and the comparative lack of progress in treatment. Therapy is hampered by the tendency for lung cancer to be diagnosed at a late stage, hence the need to develop markers for early detection. Approximately 80% of lung cancer cases are of the non-small cell type (NSCLC), with squamous cell carcinoma and adenocarcinoma being the most frequent subtypes. A goal of the present invention is to provide an alternative and more cost-efficient route to identify suitable markers for lung cancer diagnostics.
[0016] Therefore, in a first aspect, the present invention provides a set of nucleic acid primers or hybridization probes being specific for a potentially methylated region of marker genes being suitable to diagnose or predict lung cancer or a lung cancer type, preferably being selected from adenocarcinoma or squamous cell carcinoma, the marker genes comprising WT1, SALL3, TERT, ACTB, CPEB4. Preferably the set further comprises any one of the markers ABCB1, ACTB, AIM1L, APC, AREG, BMP2K, BOLL, C5AR1, C5orf4, CADM1, CDH13, CDX1, CLIC4, COL21A1, CPEB4, CXADR, DLX2, DNAJA4, DPH1, DRD2, EFS, ERBB2, ERCC1, ESR2, F2R, FAM43A, GABRA2, GAD1, GBP2, GDNF, GNA15, GNAS, HECW2, HIC1, HIST1H2AG, HLA-G, HOXA1, HOXA10, HSD17B4, HSPA2, IRAK2, ITGA4, JUB, KCNJ15, KCNQ1, KIF5B, KL, KRT14, KRT17, LAMC2, MAGEB2, MBD2, MSH4, MT1G, MT3, MTHFR, NEUROD1, NHLH2, NKX2-1, ONECUT2, PENK, PITX2, PLAGL1, PTTG1, PYCARD, RASSF1, S100A8, SALL3, SERPINB5, SERPINE1, SERPINI1, SFRP2, SLC25A31, SMAD3, SPARC, SPHK1, SRGN, TERT, THRB, TJP2, TMEFF2, TNFRSF10C, TNFRSF25, TP53, ZDHHC11, ZNF256, ZNF711, F2R, HOXA10, KL, SALL3, SPARC, TNFRSF25, WT1.
[0017] In a further aspect, the present invention provides a method of determining a subset of diagnostic markers for potentially methylated genes from the genes of gene marker IDs 1-359 of table 1, suitable for the diagnosis or prognosis of lung cancer or lung cancer type, comprising
[0018] a) obtaining data of the methylation status of at least 50 random genes selected from the 359 genes of gene marker IDs 1-359 in at least 1 sample, preferably 2, 3, 4 or at least 5 samples, of a confirmed lung cancer or lung cancer type state and at least one sample of a lung cancer or lung cancer type negative state,
[0019] b) correlating the results of the obtained methylation status with the lung cancer or lung cancer type,
[0020] c) optionally repeating the obtaining a) and correlating b) steps for a different combination of at least 50 random genes selected from the 359 genes of gene marker IDs 1-359 and
[0021] d) selecting as many marker genes which in a classification analysis have a p-value of less than 0.1 in a random-variance t-test, or selecting as many marker genes which in a classification analysis together have a correct lung cancer or lung cancer type prediction of at least 70% in a cross-validation test, wherein the selected markers form the subset of diagnostic markers.
[0022] The present invention provides a master set of 359 genetic markers which has been surprisingly found to be highly relevant for aberrant methylation in the diagnosis or prognosis of lung cancer. It is possible to determine a multitude of marker subsets from this master set which can be used to diagnose and differentiate between various lung cancer or tumor types, e.g. adenocarcinoma and squamous cell carcinoma.
[0023] The inventive 359 marker genes of table 1 (given in example 1 below) are: NHLH2, MTHFR, PRDM2, MLLT11, S100A9 (control), S100A9, S100A8 (control), S100A8, S100A2, LMNA, DUSP23, LAMC2, PTGS2, MARK1, DUSP10, PARP1, PSEN2, CLIC4, RUNX3, AIM1L, SFN, RPA2, TP73, TP73 (p73), POU3F1, MUTYH, UQCRH, FAF1, TACSTD2, TN-FR5F25, DIRAS3, MSH4, GBP2, GBP2, LRRC8C, F3, NANOS1, MGMT, EBF3, DCLRE1C, KIF5B, ZNF22, PGBD3, SRGN, GATA3, PTEN, MMS19, SFRP5, PGR, ATM, DRD2, CADM1, TEAD1, OPCML, CALCA, CTSD, MYOD1, IGF2, BDNF, CDKN1C, WT1, HRAS, DDB1, GSTP1, CCND1, EPS8L2, PI-WIL4, CHST11, UNG, CCDC62, CDK2AP1, CHFR, GRIN2B, CCND2, VDR, B4GALNT3, NTF3, CYP27B1, GPR92, ERCC5, GJB2, BRCA2, KL, CCNA1, SMAD9, C13orf15, DGKH, DNAJC15, RB1, RCBTB2, PARP2, APEX1, JUB, JUB (control NM 198086), EFS, BAZ1A, NKX2-1, ESR2, HSPA2, PSEN1, PGF, MLH3, TSHR, THBS1, MYO5C, SMAD6, SMAD3, NOX5, DNAJA4, CRABP1, BCL2A1 (ID NO: 111), BCL2A1 (ID NO: 112), BNC1, ARRDC4, SOCS1, ERCC4, NTHL1, PYCARD, AXIN1, CYLD, MT3, MT1A, MT1G, CDH1, CDH13, DPH1, HIC1, NEUROD2 (control), NEUROD2, ERBB2, KRT19, KRT14, KRT17, JUP, BRCA1, COL1A1, CACNA1G, PRKAR1A, SPHK1, SOX15, TP53 (TP53_CGI23_1 kb), TP53 (TP53_both_CGIs_1 kb), TP53 (TP53_CGI36_1 kb), TP53, NPTX1, SMAD2, DCC, MBD2, ONECUT2, BCL2, SERPINB5, SERPINB2 (control), SERPINB2, TYMS, LAMA1, SALL3, LDLR, STK11, PRDX2, RAD23A, GNA15, ZNF573, SPINT2, XRCC1, ERCC2, ERCC1, C5AR1 (NM_001736), C5AR1, POLD1, ZNF350, ZNF256, C3, XAB2, ZNF559, FHL2, IL1B, IL1B (control), PAX8, DDX18, GAD1, DLX2, ITGA4, NEUROD1, STAT1, TMEFF2, HECW2, BOLL, CASP8, SERPINE2, NCL, CYP1B1, TACSTD1, MSH2, MSH6, MXD1, JAG1, FOXA2, THBD, CTCFL, CTSZ, GATA5, CXADR, APP, TTC3, KCNJ15, RIPK4, TFF1, SEZ6L, TIMP3, BIK, VHL, IRAK2, PPARG, MBD4, RBP1, XPC, ATR, LXN, RARRES1, SERPINI1, CLDN1, FAM43A, IQCG, THRB, RARB, TGFBR2, MLH1, DLEC1, CTNNB1, ZNF502, SLC6A20, GPX1, RASSF1, FHIT, OGG1, PITX2, SLC25A31, FBXW7, SFRP2, CHRNA9, GABRA2, MSX1, IGFBP7, EREG, AREG, ANXA3, BMP2K, APC, HSD17B4 (ID No 249), HSD17B4 (ID No 250), LOX, TERT, NEUROG1, NR3C1, ADRB2, CDX1, SPARC, C5orf4, PTTG1, DUSP1, CPEB4, SCGB3A1, GDNF, ERCC8, F2R, F2RL1, VCAN, ZDHHC11, RHOBTB3, PLAGL1, SASH1, ULBP2, ESR1, RNASET2, DLL1, HIST1H2AG, HLA-G, MSH5, CDKN1A, TDRD6, COL21A1, DSP, SERPINE1 (ID No 283), SERPINE1 (ID No 284), FBXL13, NRCAM, TWIST1, HOXA1, HOXA10, SFRP4, IGFBP3, RPA3, ABCB1, TFPI2, COL1A2, ARPC1B, PILRB, GATA4, MAL2, DLC1, EPPK1, LZTS1, TNFRSF10B, TNFRSF10C, TNFRSF10D, TNFRSF10A, WRN, SFRP1, SNAI2, RDHE2, PENK, RDH10, TGFBR1, ZNF462, KLF4, CDKN2A, CDKN2B, AQP3, TPM2, TJP2 (ID NO 320), TJP2 (ID No 321), PSAT1, DAPK1, SYK, XPA, ARMCX2, RHOXF1, FHL1, MAGEB2, TIMP1, AR, ZNF711, CD24, ABL1, ACTB, APC, CDH1 (Ecad 1), CDH1 (Ecad2), FMR1, GNAS, H19, HIC1, IGF2, KCNQ1, GNAS, CDKN2A (P14), CDKN2B (P15), CDKN2A (P16_VL), PITXA, PITXB, PITXC, PITXD, RB1, SFRP2, SNRPN, XIST, IRF4, UNC13B, GSTP1. Table 1 lists some marker genes in the double such as for different loci and control sequences. It should be understood that any methylation specific region which is readily known to the skilled man in the art from prior publications or available databases (e.g. PubMeth at www.pubmeth.org) can be used according to the present invention. Of course, double listed genes only need to be represented once in an inventive marker set (or set of probes or primers therefor) but preferably a second marker, such as a control region is included (IDs given in the list above relate to the gene ID (or gene loci ID) given in table 1 of the example section).
[0024] One advantage making DNA methylation an attractive target for biomarker development, is the fact that cell free methylated DNA can be detected in body-fluids like serum, sputum, and urine from patients with cancerous neoplastic conditions and disease. For the purpose of biomarker screening, clinical samples have to be available. For obtaining a sufficient number of samples with clinical and "outcome" or survival data, the first step would be using archived (tissue) samples. Preferably these materials should fulfill the requirements to obtain intact RNA and DNA, but most archives of clinical samples are storing formalin fixed paraffin embedded (FFPE) tissue blocks. This has been the clinic-pathological routine done over decades, but that fixed samples are if at all only suitable for extraction of low quality of RNA. It has now been found that according to the present invention any such samples (as any comprising tumor DNA) can be used for the method of generating an inventive subset, including fixed samples. The samples can be of lung tissue or any body fluid, e.g. sputum, bronchial lavage, or serum derived from peripheral blood or blood cells. Blood or blood derived samples preferably have reduced, e.g. <95%, or no leukocyte content but comprise DNA of the cancerous cells or tumor. Preferably the inventive markers are of human genes. Preferably the samples are human samples.
[0025] The present invention provides a multiplexed methylation testing method which 1) outperforms the "classification" success when compared to genomewide screenings via RNA-expression profiling, 2) enables identification of biomarkers for a wide variety of diseases, without the need to prescreen candidate markers on a genomewide scale, and 3) is suitable for minimal invasive testing and 4) is easily scalable.
[0026] In contrast to the rational strategy for elucidation of biomarkers for differentiation of disease, the invention presents a targeted multiplexed DNA-methylation test which outperforms genome-scaled approaches (including RNA expression profiling) for disease diagnosis, classification, and prognosis.
[0027] The inventive set of 359 markers enables selection of a subset of markers from this 359 set which is highly characteristic of lung cancer and a given lung cancer type. Further indicators differentiating between cancer types or generally neoplastic conditions are e.g. benign (non (or limited) proliferative) or malignant, metastatic or non-metastatic tumors or nodules. It is sometimes possible to differentiate the sample type from which the methylated DNA is isolated, e.g. urine, blood, tissue samples.
[0028] The present invention is suitable to differentiate diseases, in particular neoplastic conditions, or tumor types. Diseases and neoplastic conditions should be understood in general including benign and malignant conditions. According to the present invention benign nodules (being at least the potential onset of malignancy) are included in the definition of a disease. After the development of a malignancy the condition is a preferred disease to be diagnosed by the markers screened for or used according to the present invention. The present invention is suitable to distinguish benign and malignant tumors (both being considered a disease according to the present invention). In particular the invention can provide markers (and their diagnostic or prognostic use) distinguishing between a normal healthy state together with a benign state on one hand and malignant states on the other hand. A diagnosis of lung cancer may include identifying the difference to a normal healthy state, e.g. the absence of any neoplastic nodules or cancerous cells. The present invention can also be used for prognosis of lung cancer, in particular a prediction of the progression of lung cancer or lung cancer type. A particularly preferred use of the invention is to perform a diagnosis or prognosis of metastasizing lung cancer (distinguished from non-metastasizing conditions).
[0029] In the context of the present invention "prognosis", "prediction" or "predicting" should not be understood in an absolute sense, as in a certainty that an individual will develop lung cancer or lung cancer type (including cancer progression), but as an increased risk to develop cancer or the lung cancer type or of cancer progression. "Prognosis" is also used in the context of predicting disease progression, in particular to predict therapeutic results of a certain therapy of the disease, in particular neoplastic conditions, or lung cancer types. The prognosis of a therapy can e.g. be used to predict a chance of success (i.e. curing a disease) or chance of reducing the severity of the disease to a certain level. As a general inventive concept, markers screened for this purpose are preferably derived from sample data of patients treated according to the therapy to be predicted. The inventive marker sets may also be used to monitor a patient for the emergence of therapeutic results or positive disease progressions.
[0030] Some of the inventive, rationally selected markers have been found methylated in some instances. DNA methylation analyses in principle rely either on bisulfite deamination-based methylation detection or on using methylation sensitive restriction enzymes. Preferably the restriction enzyme-based strategy is used for elucidation of DNA-methylation changes. Further methods to determine methylated DNA are e.g. given in EP 1 369 493 A1 or U.S. Pat. No. 6,605,432. Combining restriction digestion and multiplex PCR amplification with a targeted microarray-hybridization is a particular advantageous strategy to perform the inventive methylation test using the inventive marker sets (or subsets). A microarray-hybridization step can be used for reading out the PCR results. For the analysis of the hybridization data statistical approaches for class comparisons and class prediction can be used. Such statistical methods are known from analysis of RNA-expression derived microarray data.
[0031] If only limiting amounts of DNA were available for analyses an amplification protocol can be used enabling selective amplification of the methylated DNA fraction prior methylation testing. Subjecting these amplicons to the methylation test, it was possible to successfully distinguish DNA from sensitive cases from normal healthy controls. In addition it was possible to distinguish lung-cancer patients from healthy normal controls using DNA from serum by the inventive methylation test upon preamplification. Both examples clearly illustrate that the inventive multiplexed methylation testing can be successfully applied when only limiting amounts of DNA are available. Thus, this principle might be the preferred method for minimal invasive diagnostic testing.
[0032] In most situations several genes are necessary for classification. Although the 359 marker set test is not a genome-wide test and might be used as it is for diagnostic testing, running a subset of markers--comprising the classifier which enables best classification--would be easier for routine applications. The test is easily scalable. Thus, to test only the subset of markers, comprising the classifier, the selected subset of primers/probes could be applied directly to set up of the lower multiplexed test (or single PCR-test). Serum DNA can be used to classify or distinguish healthy patients from individuals with lung-tumors. Only the specific primers comprising the gene-classifier obtained from the methylation test may be set up together in multiplexed PCR reactions.
[0033] In summary the inventive methylation test is a suitable tool for differentiation and classification of neoplastic disease. This assay can be used for diagnostic purposes and for defining biomarkers for clinical relevant issues to improve diagnosis of disease, and to classify patients at risk for disease progression, thereby improving disease treatment and patient management.
[0034] The first step of the inventive method of generating a subset, step a) of obtaining data of the methylation status, preferably comprises determining data of the methylation status, preferably by methylation specific PCR analysis, methylation specific digestion analysis. Methylation specific digestion analysis can include either or both of hybridization of suitable probes for detection to non-digested fragments or PCR amplification and detection of non-digested fragments.
[0035] The inventive selection can be made by any (known) classification method to obtain a set of markers with the given diagnostic (or also prognostic) value to categorize a lung cancer or lung cancer type. Such methods include class comparisons wherein a specific p-value is selected, e.g. a p-value below 0.1, preferably below 0.08, more preferred below 0.06, in particular preferred below 0.05, below 0.04, below 0.02, most preferred below 0.01.
[0036] Preferably the correlated results for each gene b) are rated by their correct correlation to lung cancer or lung cancer type positive state, preferably by p-value test or t-value test or F-test. Rated (best first, i.e. low p- or t-value) markers are the subsequently selected and added to the subset until a certain diagnostic value is reached, e.g. the herein mentioned at least 70% (or more) correct classification of lung cancer or lung cancer type.
[0037] Class comparison procedures include identification of genes that were differentially methylated among the two classes using a random-variance t-test. The random-variance t-test is an improvement over the standard separate t-test as it permits sharing information among genes about within-class variation without assuming that all genes have the same variance (Wright G. W. and Simon R, Bioinformatics 19:2448-2455, 2003). Genes were considered statistically significant if their p value was less than a certain value, e.g. 0.1 or 0.01. A stringent significance threshold can be used to limit the number of false positive findings. A global test can also be performed to determine whether the expression profiles differed between the classes by permuting the labels of which arrays corresponded to which classes. For each permutation, the p-values can be re-computed and the number of genes significant at the e.g. 0.01 level can be noted. The proportion of the permutations that give at least as many significant genes as with the actual data is then the significance level of the global test. If there are more than 2 classes, then the "F-test" instead of the "t-test" should be used.
[0038] Class Prediction includes the step of specifying a significance level to be used for determining the genes that will be included in the subset. Genes that are differentially methylated between the classes at a univariate parametric significance level less than the specified threshold are included in the set. It doesn't matter whether the specified significance level is small enough to exclude enough false discoveries. In some problems better prediction can be achieved by being more liberal about the gene sets used as features. The sets may be more bio-logically interpretable and clinically applicable, however, if fewer genes are included. Similar to cross-validation, gene selection is repeated for each training set created in the cross-validation process. That is for the purpose of providing an unbiased estimate of prediction error. The final model and gene set for use with future data is the one resulting from application of the gene selection and classifier fitting to the full dataset.
[0039] Models for utilizing gene methylation profile to predict the class of future samples can also be used. These models may be based on the Compound Covariate Predictor (Radmacher et al. Journal of Computational Biology 9:505-511, 2002), Diagonal Linear Discriminant Analysis (Dudoit et al. Journal of the American Statistical Association 97:77-87, 2002), Nearest Neighbor Classification (also Dudoit et al.), and Support Vector Machines with linear kernel (Ramaswamy et al. PNAS USA 98:15149-54, 2001). The models incorporated genes that were differentially methylated among genes at a given significance level (e.g. 0.01, 0.05 or 0.1) as assessed by the random variance t-test (Wright G. W. and Simon R. Bioinformatics 19:2448-2455, 2003). The prediction error of each model using cross validation, preferably leave-one-out cross-validation (Simon et al. Journal of the National Cancer Institute 95:14-18, 2003), is preferably estimated. For each leave-one-out cross-validation training set, the entire model building process was repeated, including the gene selection process. It may also be evaluated whether the cross-validated error rate estimate for a model was significantly less than one would expect from random prediction. The class labels can be randomly permuted and the entire leave-one-out cross-validation process is then repeated. The significance level is the proportion of the random permutations that gave a cross-validated error rate no greater than the cross-validated error rate obtained with the real methylation data. About 1000 random permutations may be usually used.
[0040] Another classification method is the greedy-pairs method described by Bo and Jonassen (Genome Biology 3(4):research0017.1-0017.11, 2002). The greedy-pairs approach starts with ranking all genes based on their individual t-scores on the training set. The procedure selects the best ranked gene g.sub.i and finds the one other gene g.sub.i that together with provides the best discrimination using as a measure the distance between centroids of the two classes with regard to the two genes when projected to the diagonal linear discriminant axis. These two selected genes are then removed from the gene set and the procedure is repeated on the remaining set until the specified number of genes have been selected. This method attempts to select pairs of genes that work well together to discriminate the classes.
[0041] Furthermore, a binary tree classifier for utilizing gene methylation profile can be used to predict the class of future samples. The first node of the tree incorporated a binary classifier that distinguished two subsets of the total set of classes. The individual binary classifiers were based on the "Support Vector Machines" incorporating genes that were differentially expressed among genes at the significance level (e.g. 0.01, 0.05 or 0.1) as assessed by the random variance t-test (Wright G. W. and Simon R. Bioinformatics 19:2448-2455, 2003). Classifiers for all possible binary partitions are evaluated and the partition selected was that for which the cross-validated prediction error was minimum. The process is then repeated successively for the two subsets of classes determined by the previous binary split. The prediction error of the binary tree classifier can be estimated by cross-validating the entire tree building process. This overall cross-validation included re-selection of the optimal partitions at each node and re-selection of the genes used for each cross-validated training set as described by Simon et al. (Simon et al. Journal of the National Cancer Institute 95:14-18, 2003). 10-fold cross validation in which one-tenth of the samples is withheld can be utilized, a binary tree developed on the remaining 9/10 of the samples, and then class membership is predicted for the 10% of the samples withheld. This is repeated 10 times, each time withholding a different 10% of the samples. The samples are randomly partitioned into 10 test sets (Simon R and Lam A. BRB-ArrayTools User Guide, version 3.2. Biometric Research Branch, National Cancer Institute).
[0042] Preferably the correlated results for each gene b) are rated by their correct correlation to lung cancer or lung cancer type positive state, preferably by p-value test. It is also possible to include a step in that the genes are selected d) in order of their rating.
[0043] Independent from the method that is finally used to produce a subset with certain diagnostic or predictive value, the subset selection preferably results in a subset with at least 60%, preferably at least 65%, at least 70%, at least 75%, at least 80% or even at least 85%, at least 90%, at least 92%, at least 95%, in particular preferred 100% correct classification of test samples of lung cancer or lung cancer type. Such levels can be reached by repeating c) steps a) and b) of the inventive method, if necessary.
[0044] To prevent increase of the number of the members of the subset, only marker genes with at least a significance value of at most 0.1, preferably at most 0.8, even more preferred at most 0.6, at most 0.5, at most 0.4, at most 0.2, or more preferred at most 0.01 are selected.
[0045] In particular preferred embodiments the at least 50 genes of step a) are at least 70, preferably at least 90, at least 100, at least 120, at least 140, at least 160, at least 180, at least 190, at least 200, at least 220, at least 240, at least 260, at least 280, at least 300, at least 320, at least 340, at least 350 or all, genes.
[0046] Since the subset should be small it is preferred that not more than 60, or not more than 40, preferably not more than 30, in particular preferred not more than 20, marker genes are selected in step d) for the subset.
[0047] In a further aspect the present invention provides a method of identifying lung cancer or lung cancer type in a sample comprising DNA from a patient, comprising providing a diagnostic subset of markers identified according to the method depicted above, determining the methylation status of the genes of the subset in the sample and comparing the methylation status with the status of a confirmed lung cancer or lung cancer type positive and/or negative state, thereby identifying lung cancer or lung cancer type in the sample.
[0048] The methylation status can be determined by any method known in the art including methylation dependent bisulfite deamination (and consequently the identification of mC--methylated C--changes by any known methods, including PCR and hybridization techniques). Preferably, the methylation status is determined by methylation specific PCR analysis, methylation specific digestion analysis and either or both of hybridisation analysis to non-digested or digested fragments or PCR amplification analysis of non-digested fragments. The methylation status can also be determined by any probes suitable for determining the methylation status including DNA, RNA, PNA, LNA probes which optionally may further include methylation specific moieties.
[0049] As further explained below the methylation status can be particularly determined by using hybridisation probes or amplification primer (preferably PCR primers) specific for methylated regions of the inventive marker genes. Discrimination between methylated and non-methylated genes, including the determination of the methylation amount or ratio, can be performed by using e.g. either one of these tools.
[0050] The determination using only specific primers aims at specifically amplifying methylated (or in the alternative non-methylated) DNA. This can be facilitated by using (methylation dependent) bisulfite deamination, methylation specific enzymes or by using methylation specific nucleases to digest methylated (or alternatively non-methylated) regions--and consequently only the non-methylated (or alternatively methylated) DNA is obtained. By using a genome chip (or simply a gene chip including hybridization probes for all genes of interest such as all 359 marker genes), all amplification or non-digested products are detected. I.e. discrimination between methylated and non-methylated states as well as gene selection (the inventive set or subset) is before the step of detection on a chip.
[0051] Alternatively it is possible to use universal primers and amplify a multitude of potentially methylated genetic regions (including the genetic markers of the invention) which are, as described either methylation specific amplified or digested, and then use a set of hybridisation probes for the characteristic markers on e.g. a chip for detection. I.e. gene selection is performed on the chip.
[0052] Either set, a set of probes or a set of primers, can be used to obtain the relevant methylation data of the genes of the present invention. Of course, both sets can be used.
[0053] The method according to the present invention may be performed by any method suitable for the detection of methylation of the marker genes. In order to provide a robust and optionally re-useable test format, the determination of the gene methylation is preferably performed with a DNA-chip, real-time PCR, or a combination thereof. The DNA chip can be a commercially available general gene chip (also comprising a number of spots for the detection of genes not related to the present method) or a chip specifically designed for the method according to the present invention (which predominantly comprises marker gene detection spots).
[0054] Preferably the methylated DNA of the sample is detected by a multiplexed hybridization reaction. In further embodiments a methylated DNA is preamplified prior to hybridization, preferably also prior to methylation specific amplification, or digestion. Preferably, also the amplification reaction is multiplexed (e.g. multiplex PCR).
[0055] The inventive methods (for the screening of subsets or for diagnosis or prognosis of lung cancer or lung cancer type) are particularly suitable to detect low amounts of methylated DNA of the inventive marker genes. Preferably the DNA amount in the sample is below 500 ng, below 400 ng, below 300 ng, below 200 ng, below 100 ng, below 50 ng or even below 25 ng. The inventive method is particularly suitable to detect low concentrations of methylated DNA of the inventive marker genes. Preferably the DNA amount in the sample is below 500 ng, below 400 ng, below 300 ng, below 200 ng, below 100 ng, below 50 ng or even below 25 ng, per ml sample.
[0056] In another aspect the present invention provides a subset comprising or consisting of nucleic acid primers or hybridization probes being specific for a potentially methylated region of at least marker genes selected from a set of nucleic acid primers or hybridization probes being specific for a potentially methylated region of marker genes being suitable to diagnose or predict lung cancer or a lung cancer type, preferably being selected from adenocarcinoma or squamous cell carcinoma, the marker genes comprising WT1, SALL3, TERT, ACTB, CPEB4 or any other subset selected from one of the following groups
[0057] a) WT1, DLX2, SALL3, TERI, PITX2, HOXA10, F2R, CPEB4, NHLH2, SMAD3, ACTB, HOXA1, BOLL, APC, MT1G, PENK, SPARC, DNAJA4, RASSF1, HLA-G, ERCC1, ONECUT2, APC, ABCB1, ZNF573, KCNJ15, ZDHHC11, SFRP2, GDNF, PTTG1, SERPINI1, TNFRSF10C
[0058] b) WT1, PITX2, SALL3, F2R, DLX2, TERI, HOXA10, MSH4, NHLH2, GNA15, PENK, RASSF1, BOLL, HOXA1, ONECUT2, ABCB1, SPARC, MT1G, HSPA2, SFRP2, PYCARD, GAD1, C5orf4, C5AR1, GDNF, ZDHHC11, SERPINE1, NKX2-1, PITX2, C5AR1, ZNF256, FAM43A, SFRP2, MT3, SERPINE1, CLIC4, TNFRSF10C, GABRA2, MTHFR, ESR2, NEUROG1, PITX2, PLAGL1, TMEFF2, PTTG1, CADM1, S100A8, EFS, JUB, ITGA4, MAGEB2, ERBB2, SRGN, GNAS, TJP2, KCNJ15, SLC25A31, ZNF573, TNFRSF25, APC, KCNQ1, LAMC2, SPHK1, DNAJA4, APC, MBD2, ERCC1, HLA-G, CXADR, TP53, ACTB, KL, SMAD3, HIST1H2AG, CPEB4
[0059] c) WT1, DLX2, SALL3, TERT, TNFRSF25, ACTB, SMAD3, CPEB4
[0060] d) WT1, DLX2, SALL3, TERT, PITX2, TNFRSF25, KL, ACTB, SMAD3, CPEB4
[0061] e) WT1, PITX2, SALL3, DLX2, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DNAJA4, HLA-G, CXADR, TP53, ACTB, CPEB4
[0062] f) WT1, PITX2, SALL3, F2R, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DRD2, DNAJA4, CXADR, TP53, ACTB, CPEB4
[0063] g) WT1, ACTB, DLX2, PITX2, SALL3, HOXA10, TERT, CPEB4, HLA-G, SPARC, RASSF1, DNAJA4, CXADR, TP53, IRAK2, ZNF711
[0064] h) F2R, ZNF256, CDH13, SERPINB5, KRT14, DLX2, AREG, THRB, HSD17B4, SPARC, HECW2, COL21A1
[0065] i) KL, HIST1H2AG, TJP2, SRGN, CDX1, TNFRSF25, APC, HIC1, APC, GNA15, ACTB, WT1, KRT17, AIM1L, DPH1, PITX2, PITX2, KIF5B, BMP2K, GBP2, NHLH2, GDNF, BOLL
[0066] j) WT1, DLX2, SALL3, TERT, PITX2, HOXA10, F2R, CPEB4, NHLH2, SMAD3, ACTB, HOXA1, BOLL, APC, MT1G, PENK, SPARC, DNAJA4, RASSF1, HLA-G, ERCC1, ONECUT2, APC, ABCB1, ZNF573, KCNJ15, ZDHHC11, SFRP2, GDNF, PTTG1, SERPINI1, TNFRSF10C
[0067] k) HOXA10, NEUROD1
[0068] l) WT1, PITX2, SALL3, F2R, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DRD2, DNAJA4, CXADR, TP53, ACTB, CPEB4, DLX2, TN-FR5F25, KL, SMAD3
[0069] m) TNFRSF25, SALL3, RASSF1, TERT, SPARC, F2R, HOXA10, ZNF711, PITX2
[0070] n) SALL3, PITX2, SPARC, F2R, TERT, RASSF1, HOXA10, CXADR, KL
[0071] o) SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, KL
[0072] p) SALL3, PITX2, SPARC, F2R, HOXA10, DRD2, ACTB, DNAJA4, CXADR, KL
[0073] q) SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, TNFRSF25, DNAJA4, TP53, CXADR, KL
[0074] r) SPARC, SALL3, F2R, PITX2, RASSF1, HOXA10, TERT, KL, TNFRSF25
[0075] s) SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, KL, TN-FR5F25, CXADR
[0076] t) HOXA10, RASSF1, F2R
[0077] or
[0078] a set of at least 50%, preferably at least 60%, at least 70%, at least 80%, at least 90%, 100% of the markers of anyone of the above a) to t). The present inventive set also includes sets with at least 50% of the above markers for each set since it is also possible to substitute parts of these subsets being specific for--in the case of binary conditions/differentiations--e.g. good or bad prognosis or distinguish between lung cancer or lung cancer types, wherein one part of the subset points into one direction for a certain lung cancer type or cancer/differentiation. It is possible to further complement the 50% part of the set by additional markers specific for diagnosing lung cancer or determining the other part of the good or bad differentiation or differentiation between two lung cancer types. Methods to determine such complementing markers follow the general methods as outlined herein.
[0079] Each of these marker subsets is particularly suitable to diagnose lung cancer or lung cancer type or distinguish between certain cancers, samples or cancer types in a methylation specific assay of these genes.
[0080] The inventive primers or probes may be of any nucleic acid, including RNA, DNA, PNA (peptide nucleic acids), LNA (locked nucleic acids). The probes might further comprise methylation specific moieties.
[0081] The present invention provides a (master) set of 360 marker genes, further also specific gene locations by the PCR products of these genes wherein significant methylation can be detected, as well as subsets therefrom with a certain diagnostic value to detect or diagnose lung cancer or distinguish lung cancer type(s). Preferably the set is optimized for a lung cancer or a lung cancer type. Lung cancer types include, without being limited thereto, adenocarcinoma and squamous cell carcinoma. Further indicators differentiating between disease(s), including the diagnosis of any type of lung cancer or lung tumor, or between tumor type(s) are e.g. benign (non (or limited) proliferative) or malignant, metastatic or non-metastatic. The set can also be optimized for a specific sample type in which the methylated DNA is tested. Such samples include blood, urine, saliva, hair, skin, tissues, in particular tissues of the cancer origin mentioned above, in particular lung tissue such as potentially affected or potentially cancerous lung tissue, or serum, sputum, bronchial lavage. The sample my be obtained from a patient to be diagnosed. In preferred embodiments the test sample to be used in the method of identifying a subset is from the same type as a sample to be used in the diagnosis.
[0082] In practice, probes specific for potentially aberrant methylated regions are provided, which can then be used for the diagnostic method.
[0083] It is also possible to provide primers suitable for a specific amplification, like PCR, of these regions in order to perform a diagnostic test on the methylation state.
[0084] Such probes or primers are provided in the context of a set corresponding to the inventive marker genes or marker gene loci as given in table 1.
[0085] Such a set of primers or probes may have all 359 inventive markers present and can then be used for a multitude of different cancer detection methods. Of course, not all markers would have to be used to diagnose a lung cancer or lung cancer type. It is also possible to use certain subsets (or combinations thereof) with a limited number of marker probes or primers for diagnosis of certain categories of lung cancer.
[0086] Therefore, the present invention provides sets of primers or probes comprising primers or probes for any single marker subset or any combination of marker subsets disclosed herein. In the following sets of marker genes should be understood to include sets of primer pairs and probes therefor, which can e.g. be provided in a kit.
[0087] Set a, WT1, DLX2, SALL3, TERT, PITX2, HOXA10, F2R, CPEB4, NHLH2, SMAD3, ACTB, HOXA1, BOLL, APC, MT1G, PENK, SPARC, DNAJA4, RASSF1, HLA-G, ERCC1, ONECUT2, APC, ABCB1, ZNF573, KCNJ15, ZDHHC11, SFRP2, GDNF, PTTG1, SERPINI1, TNFRSF10C and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers are in particular suitable to detect lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue.
[0088] Set b, WIT1, PITX2, SALL3, F2R, DLX2, TERT, HOXA10, MSH4, NHLH2, GNA15, PENK, RASSF1, BOLL, HOXA1, ONECUT2, ABCB1, SPARC, MT1G, HSPA2, SFRP2, PYCARD, GAD1, C5orf4, C5AR1, GDNF, ZDHHC11, SERPINE1, NKX2-1, PITX2, C5AR1, ZNF256, FAM43A, SFRP2, MT3, SERPINE1, CLIC4, TNFRSF10C, GABRA2, MTHFR, ESR2, NEUROG1, PITX2, PLAGL1, TMEFF2, PTTG1, CADM1, S100A8, EFS, JUB, ITGA4, MAGEB2, ERBB2, SRGN, GNAS, TJP2, KCNJ15, SLC25A31, ZNF573, TNFRSF25, APC, KCNQ1, LAMC2, SPHK1, DNAJA4, APC, MBD2, ERCC1, HLA-G, CXADR, TP53, ACTB, KL, SMAD3, HIST1H2AG, CPEB4 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers are also suitable to detect lung cancer and to distinguish between normal lung tissue and lung tumor tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0089] Set c, WT1, DLX2, SALL3, TERT, TNFRSF25, ACTB, SMAD3, CPEB4 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers are suitable to detect lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0090] Set d, WT1, DLX2, SALL3, TERT, PITX2, TNFRSF25, KL, ACTB, SMAD3, CPEB4 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers are in particular suitable to detect lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0091] Set e, WT1, PITX2, SALL3, DLX2, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DNAJA4, HLA-G, CXADR, TP53, ACTB, CPEB4 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers are also suitable to detect lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0092] Set f, WT1, PITX2, SALL3, F2R, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DRD2, DNAJA4, CXADR, TP53, ACTB, CPEB4 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to detect lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0093] Set g, WT1, ACTB, DLX2, PITX2, SALL3, HOXA10, TERT, CPEB4, HLA-G, SPARC, RASSF1, DNAJA4, CXADR, TP53, IRAK2, ZNF711 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung carcinoma, in particular using blood samples, e.g. to distinguish blood from healthy persons from tumor samples, including tumor tissue sample or blood from tumor patients. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0094] Set h, F2R, ZNF256, CDH13, SERPINB5, KRT14, DLX2, AREG, THRB, HSD17B4, SPARC, HECW2, COL21A1 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and distinguish the grade of differentiation of poor, moderate and well predictions. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0095] Set i, KL, HIST1H2AG, TJP2, SRGN, CDX1, TNFRSF25, APC, HIC1, APC, GNA15, ACTB, WT1, KRT17, AIM1L, DPH1, PITX2, PITX2, KIF5B, BMP2K, GBP2, NHLH2, GDNF, BOLL and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and distinguish between malign states (in particular adenocarcinoma and squamous cell carcinoma) together with lung tissue against healthy blood or serum samples. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0096] Set j, WT1, DLX2, SALL3, TERT, PITX2, HOXA10, F2R, CPEB4, NHLH2, SMAD3, ACTB, HOXA1, BOLL, APC, MT1G, PENK, SPARC, DNAJA4, RASSF1, HLA-G, ERCC1, ONECUT2, APC, ABCB1, ZNF573, KCNJ15, ZDHHC11, SFRP2, GDNF, PTTG1, SERPINI1, TNFRSF10C and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose, lung cancer and distinguish between malign states selected from adenocarcinoma and squamous cell carcinoma from healthy lung tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0097] Set k, HOXA10, NEUROD1 and/or either HOXA10 or NEUR001 can be used to diagnose lung cancer and further to distinguish between adenocarcinoma from squamous cell carcinoma.
[0098] Set l, WT1, PITX2, SALL3, F2R, TERT, HOXA10, RASSF1, SPARC, IRAK2, ZNF711, DRD2, DNAJA4, CXADR, TP53, ACTB, CPEB4, DLX2, TNFRSF25, KL, SMAD3 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and distinguish between cancerous lung tissue from healthy lung tissue.
[0099] Set m, TNFRSF25, SALL3, RASSF1, TERT, SPARC, F2R, HOXA10, ZNF711, PITX2 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and distinguish between cancerous lung tissue from healthy lung tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0100] Set n, SALL3, PITX2, SPARC, F2R, TERT, RASSF1, HOXA10, CXADR, KL and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and distinguish between cancerous lung tissue from healthy lung tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0101] Set o, SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, KL and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and distinguish between cancerous lung tissue from healthy lung tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0102] Set p, SALL3, PITX2, SPARC, F2R, HOXA10, DRD2, ACTB, DNAJA4, CXADR, KL and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue.
[0103] Set q, SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, TNFRSF25, DNAJA4, TP53, CXADR, KL and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer and to distinguish between normal lung tissue (non-cancerous) from lung tumor tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0104] Set r, SPARC, SALL3, F2R, PITX2, RASSF1, HOXA10, TERT, KL, TNFRSF25 and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer, distinguish between adenocarcinoma, healthy lung tissue and squamous cell carcinoma. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0105] Set s, SALL3, SPARC, PITX2, F2R, TERT, RASSF1, HOXA10, KL, TNFRSF25, CXADR and 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer, distinguish adenocarcinoma and squamous cell carcinoma from healthy (benign) lung tissue. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0106] Set t, HOXA10, RASSF1, F2R and sets with at least 50%, preferably at least 60%, at least 70%, at least 80% or at least 90% of these markers can be used to diagnose lung cancer, distinguish between adenocarcinoma and squamous cell carcinoma. The distinction or diagnosis can be made by using any sample as described above, including serum, sputum, bronchial lavage.
[0107] Also provided are combinations of the above mentioned subsets a) to t), in particular sets comprising markers of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more of these subsets, preferably for the lung cancer type or preferably complete sets a) to t). One preferred set comprises gene markers WT1, SALL3, TERT, ACTB and CPEB4. These markers are common in a set for the diagnosis of lung cancer and suitable to distinguish normal from lung cancer samples. This set preferably is supplemented by the marker genes DLX2, TNFRSF25 or SMAD3. Furthermore, the inventive set may comprise any one of the markers ABCB1, ACTB, AIM1L, APC, AREG, BMP2K, BOLL, C5AR1, C5orf4, CADM1, CDH13, CDX1, CLIC4, COL21A1, CPEB4, CXADR, DLX2, DNAJA4, DPH1, DRD2, EFS, ERBB2, ERCC1, ESR2, F2R, FAM43A, GABRA2, GAD1, GBP2, GDNF, GNA15, GNAS, HECW2, HIC1, HIST1H2AG, HLA-G, HOXA1, HOXA10, HSD17B4, HSPA2, IRAK2, ITGA4, JUB, KCNJ15, KCNQ1, KIF5B, KL, KRT14, KRT17, LAMC2, MAGEB2, MBD2, MSH4, MT1G, MT3, MTHFR, NEUROD1, NHLH2, NKX2-1, ONECUT2, PENK, PITX2, PLAGL1, PTTG1, PYCARD, RASSF1, S100A8, SALL3, SERPINB5, SERPINE1, SERPINI1, SFRP2, SLC25A31, SMAD3, SPARC, SPHK1, SRGN, TERT, THRB, TJP2, TMEFF2, TNFRSF10C, TNFRSF25, TP53, ZDHHC11, ZNF256, ZNF711, F2R, HOXA10, KL, SALL3, SPARC, TNFRSF25, WT1 or any combination thereof, in particular preferred are markers ACTB, APC, CPEB4, CXADR, DLX2, DNAJA4, F2R, HOXA10, KL, PITX2, RASSF1, SALL3, SPARC, TERT, (either TNFRSF10C or TNFRSF25 or both), WT1 or any combination thereof, even more preferred are markers HOXA10, PITX2, RASSF1, SALL3, SPARC, TERT or any combination thereof, in a marker set according to the present invention, in particular as additional markers for any one of sets a) to t), especially the marker set of markers WT1, SALL3, TERT, ACTB and CPEB4.
[0108] According to a preferred embodiment of the present invention, the methylation of at least two genes, preferably of at least three genes, especially of at least four genes, is determined. Specifically if the present invention is provided as an array test system, at least ten, especially at least fifteen genes, are preferred. In preferred test set-ups (for example in microarrays ("gene-chips")) preferably at least 20, even more preferred at least 30, especially at least 40 genes, are provided as test markers. As mentioned above, these markers or the means to test the markers can be provided in a set of probes or a set of primers, preferably both.
[0109] In a further embodiment the set comprises up to 100000, up to 90000, up to 80000, up to 70000, up to 60000 or 50000 probes or primer pairs (set of two primers for one amplification product), preferably up to 40000, up to 35000, up to 30000, up to 25000, up to 20000, up to 15000, up to 10000, up to 7500, up to 5000, up to 3000, up to 2000, up to 1000, up to 750, up to 500, up to 400, up to 300, or even more preferred up to 200 probes or primers of any kind, particular in the case of immobilized probes on a solid surface such as a chip.
[0110] In certain embodiments the primer pairs and probes are specific for a methylated upstream region of the open reading frame of the marker genes.
[0111] Preferably the probes or primers are specific for a methylation in the genetic regions defined by SEQ ID NOs 1081 to 1440, including the adjacent up to 500 base pairs, preferably up to 300, up to 200, up to 100, up to 50 or up to 10 adjacent, corresponding to gene marker IDs 1 to 359 of table 1, respectively. I.e. probes or primers of the inventive set (including the full 359 set, as well as subsets and combinations thereof) are specific for the regions and gene loci identified in table 1, last column with reference to the sequence listing, SEQ ID NOs: 1081 to 1440. As can be seen these SEQ IDs correspond to a certain gene, the latter being a member of the inventive sets, in particular of the subsets a) to t), e.g.
[0112] Examples of specific probes or primers are given in table 1 with reference to the sequence listing, SEQ ID NOs 1 to 1080, which form especially preferred embodiments of the invention.
[0113] Preferably the set of the present invention comprises probes or primers for at least one gene or gene product of the list according to table 1, wherein at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, especially preferred at least 100%, of the total probes or primers are probes or primers for genes of the list according to table 1. Preferably the set, in particular in the case of a set of hybridization probes, is provided immobilized on a solid surface, preferably a chip or in form of a microarray. Since--according to current technology--detection means for genes on a chip allow easier and more robust array design, gene chips using DNA molecules (for detection of methylated DNA in the sample) is a preferred embodiment of the present invention. Such gene chips also allow detection of a large number of nucleic acids.
[0114] Preferably the set is provided on a solid surface, in particular a chip, whereon the primers or probes can be immobilized. Solid surfaces or chips may be of any material suitable for the immobilization of biomolecules such as the moieties, including glass, modified glass (aldehyde modified) or metal chips.
[0115] The primers or probes can also be provided as such, including lyophilized forms or being in solution, preferably with suitable buffers. The probes and primers can of course be provided in a suitable container, e.g. a tube or micro tube.
[0116] The present invention also relates to a method of identifying lung cancer or lung cancer type in a sample comprising DNA from a subject or patient, comprising obtaining a set of nucleic acid primers (or primer pairs) or hybridization probes as defined above (comprising each specific subset or combinations thereof), determining the methylation status of the genes in the sample for which the members of the set are specific for and comparing the methylation status of the genes with the status of a confirmed lung cancer or lung cancer type positive and/or negative state, thereby identifying the lung cancer or lung cancer type in the sample. In general the inventive method has been described above and all preferred embodiments of such methods also apply to the method using the set provided herein.
[0117] The inventive marker set, including certain disclosed subsets and subsets, which can be identified with the methods disclosed herein, are suitable to diagnose lung cancer and distinguish between different lung cancer forms, in particular for diagnostic or prognostic uses. Preferably the markers used (e.g. by utilizing primers or probes of the inventive set) for the inventive diagnostic or prognostic method may be used in smaller amounts than e.g. in the set (or kit) or chip as such, which may be designed for more than one fine tuned diagnosis or prognosis. The markers used for the diagnostic or prognostic method may be up to 100000, up to 90000, up to 80000, up to 70000, up to 60000 or 50000, preferably up to 40000, up to 35000, up to 30000, up to 25000, up to 20,000, up to 15000, up to 10000, up to 7500, up to 5000, up to 3000, up to 2000, up to 1000, up to 750, up to 500, up to 400, up to 300, up to 200, up to 100, up to 80, or even more preferred up to 60. The inventive set of marker primers or probes can be employed in chip (immobilised) based assays, products or methods, or in PCR based kits or methods. Both, PCR and hybridisation (e.g. on a chip) can be used to detect methylated genes.
[0118] The inventive marker set, including certain disclosed subsets, which can be identified with the methods disclosed herein, are suitable to distinguish between lung cancer from normal tissue, in particular for diagnostic or prognostic uses.
[0119] The inventive marker set, including certain disclosed subsets, which can be identified with the methods disclosed herein, are suitable to distinguish between adenocarcinoma from squamous cell carcinoma, in particular for diagnostic or prognostic uses.
[0120] The present invention is further illustrated by the following examples, without being restricted thereto.
FIGURES
[0121] FIG. 1: Cross-Validation ROC curve from the Bayesian Compound Covariate Predictor.
EXAMPLES
Example 1
Gene List
TABLE-US-00001
[0122] TABLE 1 360 master set (with the 359 marker genes and one control) and sequence annotation hybrid- primer primer isation 1 2 PCR probe (lp) (rp) product alt. (SEQ (SEQ (SEQ (SEQ gene Gene Gene ID ID ID ID ID Symbol Symbol NO:) NO:) NO:) NO:) 1 NHLH2 NHLH2 1 361 721 1081 2 MTHFR MTHFR 2 362 722 1082 3 PRDM2 RIZ1 3 363 723 1083 (PRDM2) 4 MLLT11 MLLT11 4 364 724 1084 5 S100A9 control_ 5 365 725 1085 S100A9 6 S100A9 S100A9 6 366 726 1086 7 S100A8 S100A8 7 367 727 1087 8 S100A8 control_ 8 368 728 1088 S100A8 9 S100A2 S100A2 9 369 729 1089 10 LMNA LMNA 10 370 730 1090 11 DUSP23 DUSP23 11 371 731 1091 12 LAMC2 LAMC2 12 372 732 1092 13 PTGS2 PTGS2 13 373 733 1093 14 MARK1 MARK1 14 374 734 1094 15 DUSP10 DUSP10 15 375 735 1095 16 PARP1 PARP1 16 376 736 1096 17 PSEN2 PSEN2 17 377 737 1097 18 CLIC4 CLIC4 18 378 738 1098 19 RUNX3 RUNX3 19 379 739 1099 20 AIM1L NM_ 20 380 740 1100 017977 21 SFN SFN 21 381 741 1101 22 RPA2 RPA2 22 382 742 1102 23 TP73 TP73 23 383 743 1103 24 TP73 p73 24 384 744 1104 25 POU3F1 01.10.06 25 385 745 1105 26 MUTYH MUTYH 26 386 746 1106 27 UQCRH UQCRH 27 387 747 1107 28 FAF1 FAF1 28 388 748 1108 29 TACSTD2 TACSTD2 29 389 749 1109 30 TNFRSF25 TNFRSF25 30 390 750 1110 31 DIRAS3 DIRAS3 31 391 751 1111 32 MSH4 MSH4 32 392 752 1112 33 GBP2 Control 33 393 753 1113 34 GBP2 GBP2 34 394 754 1114 35 LRRC8C LRRC8C 35 395 755 1115 36 F3 F3 36 396 756 1116 37 NANOS1 NM_ 37 397 757 1117 001009553 38 MGMT MGMT 38 398 758 1118 39 EBF3 EBF3 39 399 759 1119 40 DCLRE1C DCLRE1C 40 400 760 1120 41 KIF5B KIF5B 41 401 761 1121 42 ZNF22 ZNF22 42 402 762 1122 43 PGBD3 ERCC6 43 403 763 1123 44 SRGN Control 44 404 764 1124 45 GATA3 GATA3 45 405 765 1125 46 PTEN PTEN 46 406 766 1126 47 MMS19 MMS19L 47 407 767 1127 48 SFRP5 SFRP5 48 408 768 1128 49 PGR PGR 49 409 769 1129 50 ATM ATM 50 410 770 1130 51 DRD2 DRD2 51 411 771 1131 52 CADM1 IGSF4 52 412 772 1132 53 TEAD1 Control 53 413 773 1133 54 OPCML OPCML 54 414 774 1134 55 CALCA CALCA 55 415 775 1135 56 CTSD CTSD 56 416 776 1136 57 MYOD1 MYOD1 57 417 777 1137 58 IGF2 IGF2 58 418 778 1138 59 BDNF BDNF 59 419 779 1139 60 CDKN1C CDKN1C 60 420 780 1140 61 WT1 WT1 61 421 781 1141 62 HRAS HRAS1 62 422 782 1142 63 DDB1 DDB1 63 423 783 1143 64 GSTP1 GSTP1 64 424 784 1144 65 CCND1 CCND1 65 425 785 1145 66 EPS8L2 EPS8L2 66 426 786 1146 67 PIWIL4 PIWIL4 67 427 787 1147 68 CHST11 CHST11 68 428 788 1148 69 UNG UNG 69 429 789 1149 70 CCDC62 CCDC62 70 430 790 1150 71 CDK2AP1 CDK2AP1 71 431 791 1151 72 CHFR CHFR 72 432 792 1152 73 GRIN2B GRIN2B 73 433 793 1153 74 CCND2 CCND2 74 434 794 1154 75 VDR VDR 75 435 795 1155 76 B4GALNT3 control 76 436 796 1156 (wrong chr of HRAS1) 77 NTF3 NTF3 77 437 797 1157 78 CYP27B1 CYP27B1 78 438 798 1158 79 GPR92 GPR92 79 439 799 1159 80 ERCC5 ERCC5 80 440 800 1160 81 GJB2 GJB2 81 441 801 1161 82 BRCA2 BRCA2 82 442 802 1162 83 KL KL 83 443 803 1163 84 CCNA1 CCNA1 84 444 804 1164 85 SMAD9 SMAD9 85 445 805 1165 86 C13orf15 RGC32 86 446 806 1166 87 DGKH DGKH 87 447 807 1167 88 DNAJC15 DNAJC15 88 448 808 1168 89 RB1 RB1 89 449 809 1169 90 RCBTB2 RCBTB2 90 450 810 1170 91 PARP2 PARP2 91 451 811 1171 92 APEX1 APEX1 92 452 812 1172 93 JUB JUB 93 453 813 1173 94 JUB control_ 94 454 814 1174 NM_19808 95 EFS EFS 95 455 815 1175 96 BAZ1A BAZ1A 96 456 816 1176 97 NKX2-1 TITF1 97 457 817 1177 98 ESR2 ESR2 98 458 818 1178 99 HSPA2 HSPA2 99 459 819 1179 100 PSEN1 PSEN1 100 460 820 1180 101 PGF PGF 101 461 821 1181 102 MLH3 MLH3 102 462 822 1182 103 TSHR TSHR 103 463 823 1183 104 THBS1 THBS1 104 464 824 1184 105 MYO5C MYO5C 105 465 825 1185 106 SMAD6 SMAD6 106 466 826 1186 107 SMAD3 SMAD3 107 467 827 1187 108 NOX5 SPESP1 108 468 828 1188 109 DNAJA4 DNAJA4 109 469 829 1189 110 CRABP1 CRABP1 110 470 830 1190 111 BCL2A1 BCL2A1 111 471 831 1191 112 BCL2A1 BCL2A1 112 472 832 1192 113 BNC1 BNC1 113 473 833 1193 114 ARRDC4 ARRDC4 114 474 834 1194 115 SOCS1 SOCS1 115 475 835 1195 116 ERCC4 ERCC4 116 476 836 1196 117 NTHL1 NTHL1 117 477 837 1197 118 PYCARD PYCARD 118 478 838 1198 119 AXIN1 AXIN1 119 479 839 1199 120 CYLD NM_015247 120 480 840 1200 121 MT3 MT3 121 481 841 1201 122 MT1A MT1A 122 482 842 1202 123 MT1G MT1G 123 483 843 1203 124 CDH1 CDH1 124 484 844 1204 125 CDH13 CDH13 125 485 845 1205 126 DPH1 DPH1 126 486 846 1206 127 HIC1 HIC1 127 487 847 1207 128 NEUROD2 control_ 128 488 848 1208 NEUROD2 129 NEUROD2 NEUROD2 129 489 849 1209 130 ERBB2 ERBB2 130 490 850 1210 131 KRT19 KRT19 131 491 851 1211 132 KRT14 KRT14 132 492 852 1212 133 KRT17 KRT17 133 493 853 1213 134 JUP JUP 134 494 854 1214 135 BRCA1 BRCA1 135 495 855 1215 136 COL1A1 COL1A1 136 496 856 1216 137 CACNA1G CACNA1G 137 497 857 1217 138 PRKAR1A PRKAR1A 138 498 858 1218 139 SPHK1 SPHK1 139 499 859 1219 140 SOX15 SOX15 140 500 860 1220 141 TP53 TP53_ 141 501 861 1221 CGI23_1kb 142 TP53 TP53_ 142 502 862 1222 bothCGIs_ 1kb 143 TP53 TP53_ 143 503 863 1223 CGI36_1kb 144 TP53 TP53 144 504 864 1224 145 NPTX1 NPTX1 145 505 865 1225 146 SMAD2 SMAD2 146 506 866 1226 147 DCC DCC 147 507 867 1227 148 MBD2 MBD2 148 508 868 1228 149 ONECUT2 ONECUT2 149 509 869 1229 150 BCL2 BCL2 150 510 870 1230 151 SERPINB5 SERPINB5 151 511 871 1231 152 SERPINB2 Control 152 512 872 1232 153 SERPINB2 SERPINB2 153 513 873 1233 154 TYMS TYMS 154 514 874 1234 155 LAMA1 LAMA1 155 515 875 1235 156 SALL3 SALL3 156 516 876 1236 157 LDLR LDLR 157 517 877 1237 158 STK11 STK11 158 518 878 1238 159 PRDX2 PRDX2 159 519 879 1239 160 RAD23A RAD23A 160 520 880 1240 161 GNA15 GNA15 161 521 881 1241 162 ZNF573 ZNF573 162 522 882 1242 163 SPINT2 SPINT2 163 523 883 1243 164 XRCC1 XRCC1 164 524 884 1244 165 ERCC2 ERCC2 165 525 885 1245 166 ERCC1 ERCC1 166 526 886 1246 167 C5AR1 NM_001736 167 527 887 1247 168 C5AR1 C5AR1 168 528 888 1248 169 POLD1 POLD1 169 529 889 1249 170 ZNF350 ZNF350 170 530 890 1250 171 ZNF256 ZNF256 171 531 891 1251 172 C3 C3 172 532 892 1252 173 XAB2 XAB2 173 533 893 1253 174 ZNF559 ZNF559 174 534 894 1254 175 FHL2 FHL2 175 535 895 1255 176 IL1B IL1B 176 536 896 1256 177 IL1B control_IL1B 177 537 897 1257 178 PAX8 PAX8 178 538 898 1258 179 DDX18 DDX18 179 539 899 1259 180 GAD1 GAD1 180 540 900 1260 181 DLX2 DLX2 181 541 901 1261 182 ITGA4 ITGA4 182 542 902 1262 183 NEUROD1 NEUROD1 183 543 903 1263 184 STAT1 STAT1 184 544 904 1264 185 TMEFF2 TMEFF2 185 545 905 1265 186 HECW2 HECW2 186 546 906 1266 187 BOLL BOLL 187 547 907 1267 188 CASP8 CASP8 188 548 908 1268 189 SERPINE2 SERPINE2 189 549 909 1269 190 NCL NCL 190 550 910 1270 191 CYP1B1 CYP1B1 191 551 911 1271 192 TACSTD1 TACSTD1 192 552 912 1272 193 MSH2 MSH2 193 553 913 1273 194 MSH6 MSH6 194 554 914 1274 195 MXD1 MXD1 195 555 915 1275 196 JAG1 JAG1 196 556 916 1276 197 FOXA2 FOXA2 197 557 917 1277 198 THBD THBD 198 558 918 1278 199 CTCFL BORIS 199 559 919 1279 200 CTSZ CTSZ 200 560 920 1280 201 GATA5 GATA5 201 561 921 1281 202 CXADR CXADR 202 562 922 1282 203 APP APP 203 563 923 1283 204 TTC3 TTC3 204 564 924 1284 205 KCNJ15 Control 205 565 925 1285 206 RIPK4 RIPK4 206 566 926 1286 207 TFF1 TFF1 207 567 927 1287 208 SEZ6L SEZ6L 208 568 928 1288 209 TIMP3 TIMP3 209 569 929 1289 210 BIK BIK 210 570 930 1290 211 VHL VHL 211 571 931 1291 212 IRAK2 IRAK2 212 572 932 1292 213 PPARG PPARG 213 573 933 1293 214 MBD4 MBD4 214 574 934 1294 215 RBP1 RBP1 215 575 935 1295 216 XPC XPC 216 576 936 1296 217 ATR ATR 217 577 937 1297 218 LXN LXN 218 578 938 1298 219 RARRES1 RARRES1 219 579 939 1299 220 SERPINI1 SERPINI1 220 580 940 1300 221 CLDN1 CLDN1 221 581 941 1301 222 FAM43A FAM43A 222 582 942 1302 223 IQCG IQCG 223 583 943 1303 224 THRB THRB 224 584 944 1304 225 RARB RARB 225 585 945 1305 226 TGFBR2 TGFBR2 226 586 946 1306
227 MLH1 MLH1 227 587 947 1307 228 DLEC1 DLEC1 228 588 948 1308 229 CTNNB1 CTNNB1 229 589 949 1309 230 ZNF502 ZNF502 230 590 950 1310 231 SLC6A20 SLC6A20 231 591 951 1311 232 GPX1 GPX1 232 592 952 1312 233 RASSF1 RASSF1A 233 593 953 1313 234 FHIT FHIT 234 594 954 1314 235 OGG1 OGG1 235 595 955 1315 236 PITX2 PITX2 236 596 956 1316 237 SLC25A31 SLC25A31 237 597 957 1317 238 FBXW7 FBXW7 238 598 958 1318 239 SFRP2 SFRP2 239 599 959 1319 240 CHRNA9 CHRNA9 240 600 960 1320 241 GABRA2 GABRA2 241 601 961 1321 242 MSX1 MSX1 242 602 962 1322 243 IGFBP7 IGFBP7 243 603 963 1323 244 EREG EREG 244 604 964 1324 245 AREG AREG 245 605 965 1325 246 ANXA3 ANXA3 246 606 966 1326 247 BMP2K BMP2K 247 607 967 1327 248 APC APC 248 608 968 1328 249 HSD17B4 HSD17B4 249 609 969 1329 250 HSD17B4 HSD17B4 250 610 970 1330 251 LOX LOX 251 611 971 1331 252 TERT TERT 252 612 972 1332 253 NEUROG1 NEUROG1 253 613 973 1333 254 NR3C1 NR3C1 254 614 974 1334 255 ADRB2 ADRB2 255 615 975 1335 256 CDX1 CDX1 256 616 976 1336 257 SPARC SPARC 257 617 977 1337 258 C5orf4 Control 258 618 978 1338 259 PTTG1 PTTG1 259 619 979 1339 260 DUSP1 DUSP1 260 620 980 1340 261 CPEB4 CPEB4 261 621 981 1341 262 SCGB3A1 SCGB3A1 262 622 982 1342 263 GDNF GDNF 263 623 983 1343 264 ERCC8 ERCC8 264 624 984 1344 265 F2R F2R 265 625 985 1345 266 F2RL1 F2RL1 266 626 986 1346 267 VCAN CSPG2 267 627 987 1347 268 ZDHHC11 ZDHHC11 268 628 988 1348 269 RHOBTB3 RHOBTB3 269 629 989 1349 270 PLAGL1 PLAGL1 270 630 990 1350 271 SASH1 SASH1 271 631 991 1351 272 ULBP2 ULBP2 272 632 992 1352 273 ESR1 ESR1 273 633 993 1353 274 RNASET2 RNASET2 274 634 994 1354 275 DLL1 DLL1 275 635 995 1355 276 HIST1H2AG HIST1H2AG 276 636 996 1356 277 HLA-G HLA-G 277 637 997 1357 278 MSH5 MSH5 278 638 998 1358 279 CDKN1A CDKN1A 279 639 999 1359 280 TDRD6 TDRD6 280 640 1000 1360 281 COL21A1 COL21A1 281 641 1001 1361 282 DSP DSP 282 642 1002 1362 283 SERPINE1 SERPINE1 283 643 1003 1363 284 SERPINE1 SERPINE1 284 644 1004 1364 285 FBXL13 FBXL13 285 645 1005 1365 286 NRCAM NRCAM 286 646 1006 1366 287 TWIST1 TWIST1 287 647 1007 1367 288 HOXA1 HOXA1 288 648 1008 1368 289 HOXA10 HOXA10 289 649 1009 1369 290 SFRP4 SFRP4 290 650 1010 1370 291 IGFBP3 IGFBP3 291 651 1011 1371 292 RPA3 RPA3 292 652 1012 1372 293 ABCB1 ABCB1 293 653 1013 1373 294 TFPI2 TFPI2 294 654 1014 1374 295 COL1A2 COL1A2 295 655 1015 1375 296 ARPC1B ARPC1B 296 656 1016 1376 297 PILRB PILRB 297 657 1017 1377 298 GATA4 GATA4 298 658 1018 1378 299 MAL2 NM_052886 299 659 1019 1379 300 DLC1 DLC1 300 660 1020 1380 301 EPPK1 NM_031308 301 661 1021 1381 302 LZTS1 LZTS1 302 662 1022 1382 303 TNFRSF10B TNFRSF10B 303 663 1023 1383 304 TNFRSF10C TNFRSF10C 304 664 1024 1384 305 TNFRSF10D TNFRSF10D 305 665 1025 1385 306 TNFRSF10A TNFRSF10A 306 666 1026 1386 307 WRN WRN 307 667 1027 1387 308 SFRP1 SFRP1 308 668 1028 1388 309 SNAI2 SNAI2 309 669 1029 1389 310 RDHE2 RDHE2 310 670 1030 1390 311 PENK PENK 311 671 1031 1391 312 RDH10 RDH10 312 672 1032 1392 313 TGFBR1 TGFBR1 313 673 1033 1393 314 ZNF462 ZNF462 314 674 1034 1394 315 KLF4 KLF4 315 675 1035 1395 316 CDKN2A p14_ 316 676 1036 1396 CDKN2A 317 CDKN2B CDKN2B 317 677 1037 1397 318 AQP3 AQP3 318 678 1038 1398 319 TPM2 TPM2 319 679 1039 1399 320 TJP2 TJP2 320 680 1040 1400 321 TJP2 TJP2 321 681 1041 1401 322 PSAT1 PSAT1 322 682 1042 1402 323 DAPK1 DAPK1 323 683 1043 1403 324 SYK SYK 324 684 1044 1404 325 XPA XPA 325 685 1045 1405 326 ARMCX2 ARMCX2 326 686 1046 1406 327 RHOXF1 OTEX 327 687 1047 1407 328 FHL1 FHL1 328 688 1048 1408 329 MAGEB2 MAGEB2 329 689 1049 1409 330 TIMP1 TIMP1 330 690 1050 1410 331 AR AR_humara 331 691 1051 1411 332 ZNF711 ZNF6 332 692 1052 1412 333 CD24 CD24 333 693 1053 1413 334 ABL1 ABL 334 694 1054 1414 335 ACTB Aktin_VL 335 695 1055 1415 336 APC APC 336 696 1056 1416 337 CDH1 Ecad1 337 697 1057 1417 338 CDH1 Ecad2 338 698 1058 1418 339 FMR1 FX 339 699 1059 1419 340 GNAS GNASexAB 340 700 1060 1420 341 H19 H19 341 701 1061 1421 342 HIL1 Igf2 342 702 1062 1422 343 IGF2 Igf2 343 703 1063 1423 344 KCNQ1 LIT1 344 704 1064 1424 345 GNAS NESP55 345 705 1065 1425 346 CDKN2A P14 346 706 1066 1426 347 CDKN2B P15 347 707 1067 1427 348 CDKN2A P16_VL 348 708 1068 1428 349 PITX2 PitxA 349 709 1069 1429 350 PITX2 PitxB 350 710 1070 1430 351 PITX2 PitxC 351 711 1071 1431 352 PITX2 PitxD 352 712 1072 1432 353 RB1 Rb 353 713 1073 1433 354 SFRP2 SFRP2_VL 354 714 1074 1434 355 SNRPN SNRPN 355 715 1075 1435 356 XIST XIST 356 716 1076 1436 357 IRF4 chr6_ 357 717 1077 1437 control 358 UNC13B chr9_ 358 718 1078 1438 control 359 GSTP1 GSTP1 360 720 1080 1440 360 Lamda lambda_ 359 719 1079 1439 (control) PCR
Example 2
Samples
[0123] Samples from solid tumors were derived from initial surgical resection of primary tumors. Tumor tissue sections were derived from histopathology and histopathological data as well clinical data were monitored over the time of clinical management of the patients and/or collected from patient reports in the study center. Anonymised data and DNA were provided.
Example 3
Principle of the Assay and Design
[0124] The invention assay is a multiplexed assay for DNA methylation testing of up to (or even more than) 360 methylation candidate markers, enabling convenient methylation analyses for tumor-marker definition. In its best mode the test is a combined multiplex-PCR and microarray hybridization technique for multiplexed methylation testing. The inventive marker genes, PCR primer sequences, hybridization probe sequences and expected PCR products are given in table 1, above.
[0125] Targeting hypermethylated DNA regions in the inventive marker genes in several neoplasias, methylation analysis is performed via methylation dependent restriction enzyme (MSRE) digestion of 500 ng of starting DNA. A combination of several MSREs warrants complete digestion of unmethylated DNA. All targeted DNA regions have been selected in that way that sequences containing multiple MSRE sites are flanked by methylation independent restriction enzyme sites. This strategy enables pre-amplification of the methylated DNA fraction before methylation analyses. Thus, the design and pre-amplification would enable methylation testing on serum, urine, stool etc. when DNA is limiting.
[0126] When testing DNA without pre-amplification upon digestion of 500 ng the methylated DNA fraction is amplified within 16 multiplex PCRs and detected via microarray hybridization. Within these 16 multiplex-PCR reactions 360 different human DNA products can be amplified. From these about 20 amplicons serve as digestion & amplification controls and are either derived from known differentially methylated human DNA regions, or from several regions without any sites of MSREs used in this system. The primer set (every reverse primer is biotinylated) used is targeting 347 different sites located in the 5'UTR of 323 gene regions.
[0127] After PCR amplicons are pooled and positives are detected using strepavidin-Cy3 via microarray hybridization. Although the melting temperature of CpG rich DNA is very high, primer and probe-design as well as hybridization conditions have been optimized, thus this assay enables unequivocal multiplexed methylation testing of human DNA samples. The assay has been designed such that 24 samples can be run in parallel using 384well PCR plates.
Handling of many DNA samples in several plates in parallel can be easily performed enabling completion of analyses within 1-2 days.
[0128] The entire procedure provides the user to setup a specific PCR test and subsequent gel-based or hybridization-based testing of selected markers using single primer-pairs or primer-subsets as provided herein or identified by the inventive method from the 360 marker set.
Example 4
MSRE Digestion of DNA
[0129] MSRE digestion of DNA (about 500 ng) was performed at 37.degree. C. over night in a volume of 30 .mu.l in 1.times. Tango-restriction enzyme digestion buffer (MBI Fermentas) using 8 units of each MSREs AciI (New England Biolabs), Hin 6 I and Hpa II (both from MBI Fermentas). Digestions were stopped by heat inactivation (10 min, 75.degree. C.) and subjected to PCR amplification.
Example 5
PCR Amplification
[0130] An aliquot of 20 .mu.l MSRE digested DNA (or in case of preamplification of methylated DNA--see below--about 500 ng were added in a volume of 20 .mu.l) was added to 280 .mu.l of PCR-Premix (without primers). Premix consisted of all reagents obtaining a final concentration of 1.times. HotStarTaq Buffer (Qiagen); 160 .mu.M dNT-Ps, 5% DMSO and 0.6 U Hot Firepol Taq (Solis Biodyne) per 20 .mu.l reaction. Alternatively an equal amount of HotStarTaq (Qiagen) could be used. Eighteen (18) .mu.l of the Pre-Mix including digested DNA were aliquoted in 16 0.2 ml PCR tubes and to each PCR tube 2 .mu.l of each primer-premix 1-16 (containing 0.83pmol/.mu.l of each primer) were added. PCR reactions were amplified using a thermal cycling profile of 15 min/95.degree. C. and 40 cycles of each 40 sec/95.degree. C., 40 sec/65.degree. C., 1 min20 sec/72.degree. C. and a final elongation of 7 min/72.degree. C., then reactions were cooled. After amplification the 16 different multiplex-PCR amplicons from each DNA sample were pooled. Successful amplification was controlled using 10 .mu.l of the pooled 16 different PCR reactions per sample. Positive amplification obtained a smear in the range of 100-300 bp on EtBr stained agarose gels; negative amplification controls must not show a smear in this range.
Example 6
Microarray Hybridization and Detection
[0131] Microarrays with the probes of the 360 marker set are blocked for 30 min in 3M Urea containing 0.1% SDS, at room temperature submerged in a stirred choplin char. After blocking slides are washed in 0.1.times.SSC/0.2% SDS for 5 min, dipped into water and dried by centrifugation.
[0132] The PCR-amplicon-pool of each sample is mixed with an equal amount of 2.times. hybridization buffer (7.times.SSC, 0.6% SDS, 50% formamide), desaturated for 5 min at 95.degree. C. and held at 70.degree. C. until loading an aliquot of 100 .mu.l onto an array covered by a gasket slide (Agilent). Arrays are hybridized under maximum speed of rotation in an Agilent-hybridization oven for 16 h at 52.degree. C. After removal of gasket-slides microarray-slides are washed at room temperature in wash-solution I (1.times.SSC, 0.2% SDS) for 5 min and wash solution II (0.1.times.SSC, 0.2% SDS) for 5 min, and a final wash by dipping the slides 3 times into wash solution III (0.1.times.SSC), the slides are dried by centrifugation.
[0133] For detection of hybridized biotinylated PCR amplicons, streptavidin-Cy3-conjugate (Caltag Laboratories) is diluted 1:400 in PBST-MP (1.times.PBS, 0.1% Tween 20; 1% skimmed dry milk powder [Sucofin; Germany]), pipetted onto microarrays covered with a coverslip and incubated 30 min at room temperature in the dark. Then coverslips are washed off from the slides using PBST (1.times.PBS, 0.1% Tween 20) and then slides are washed in fresh PEST for 5 min, rinsed with water and dried by centrifugation.
Example 7
DNA Preamplification for Methylation Profiling (Optional)
[0134] In many situations DNA amount is limited. Although the inventive methylation test is performing well with low amounts of DNA (see above), especially minimal invasive testing using cell free DNA from serum, stool, urine, and other body fluids is of diagnostic relevance.
[0135] Samples can be preamplified prior methylation testing as follows: DNA was digested with restriction enzyme FspI (and/or Csp6I, and/or MseI, and/or Tsp5091; or their isoschizomeres) and after (heat) inactivation of the restriction enzyme the fragments were circularized using T4 DNA ligase. Ligation-products were digested using a mixture of methylation sensitive restriction enzymes. Upon enzyme-inactivation the entire mixture was amplified using rolling circle amplification (RCA) by phi29-phage polymerase. The RCA-amplicons were then directly subjected to the multiplex-PCRs of the inventive methylation test without further need of digestion of the DNA prior amplification.
[0136] Alternatively the preamplified DNA which is enriched for methylated DNA regions can be directly subjected to fluorescent-labelling and the labeled products can be hybridized onto the microarrays using the same conditions as described above for hybridization of PCR products. Then the streptavidin-Cy3 detection step has to be omitted and slides should be scanned directly upon stringency washes and drying the slides. Based on the experimental design for microarray analyses, either single labeled or dual-labeled hybridizations might be generated. From our experiences we successfully used the single label-design for class comparisons. Although the preamplification protocol enables analyses of spurious amounts of DNA, it is also suited for performing genomic methylation screens.
[0137] To elucidate methylation biomarkers for prediction of meta-stasis risk on a genomewide level we subjected 500 ng of DNA derived from primary tumor samples to amplification of the methylated DNA using the procedure outlined above. RCA-amplicons derived from metastasized and non-metastasized samples were labelled using the CGH Labeling Kit (Enzo, Farmingdale, N.Y.) and labelled products hybridized onto human 244 k CpG island arrays (Agilent, Waldbronn, Germany). All manipulations were according the instructions of the manufacturers.
Example 8
Data Analysis
[0138] Hybridizations performed on a chip with probes for the inventive 360 marker genes were scanned using a GenePix 4000A scanner (Molecular Devices, Ismaning, Germany) with a PMT set-ting to 700V/cm (equal for both wavelengths). Raw image data were extracted using GenePix 6.0 software (Molecular Devices, Ismaning, Germany).
[0139] Microarray data analyses were performed using BRB-ArrayTools developed by Dr. Richard Simon and BRB-ArrayTools Development Team. The software package BRB Array Tools (version 3.6; in the www at linus.nci.nih.gov/BRB-ArrayTools.html) was used according recommendations of authors and settings used for analyses are delineated in the results if appropriate. For every hybridization, background intensities were subtracted from foreground intensities for each spot. Global normalization was used to median center the log-ratios on each array in order to adjust for differences in spot/label intensities.
[0140] P-values (p) used for feature selection for classification and prediction were based on the univariate significance levels (alpha). P-values (p) and mis-classification rate during cross validation (MCR) were given along the result data.
Example 9
Lung Cancer Test
[0141] DNA methylation analysis of 96 DNA samples derived from both normal and lung-tumour tissue of 48 patient samples and 8 DNA samples isolated from peripheral blood (PB) of healthy individuals were analysed for methylation deviations in the inventive set of 359 genes.
[0142] From this analysis DNA-methylation-biomarkers suitable for distinction of tumour and normal lung DNA as well as DNA-methylation-profiles from blood DNA of healthy controls were deduced. Diagnostic and prognostic markers subsets are suitable for diagnostic testing and presymptomatic screening for early detection of lung cancer were determined, in DNA derived from lung tissue, but also in DNA extracts from patients other than lung, like sputum, serum or plasma.
[0143] DNA Methylation testing results and data analyses of chip results as well as qPCR validation of a subset of markers derived from chip-based testing are provided.
[0144] DNA Samples analysed were from blood of 8 healthy individuals (PB), 19 tumours (AdenoCa, adenocarcinoma) and 19 normal lung tissue (N) of adenocarcinoma patients and 29 tumours (SqCCL, squamous cell carcinoma) and 29 normal lung tissue (N) of squamous cell carcinoma patients.
[0145] For DNA methylation testing 600 ng of DNA were digested and data derived from DNA-microarray hybridizations analysed using the BRB array tools statistical software package. Class comparison, and class prediction analysis were performed with respect to sample groups as listed above or for delineation of biomarkers for tumour samples both AdenoCa and SqCCL were treated as one tumour sample group (TU).
[0146] The design of the test enables methylation testing on DNA directly derived from the biological source. The test is also suitable for using a DNA preamplification upon MSRE digestion (as outlined above). Thus using the methylation specific preamplification of minute amounts of DNA samples, biomarker testing is feasible on small samples and limited amounts of DNA. Thus multiplexed PCR and methylation testing is easily performed on preamplified DNA obtained from these DNA samples. This strategy would improve also testing of serum, urine, stool, synovial fluid, sputum and other body fluids using the conceptual design of the methylation test.
[0147] The possibility of preamplification enables also differential methylation hybridization of the preamplified DNA itself. This option is warranted by the design of the test and the probes. Thus using the probes of the methylation test (or the array) for hybridization of labelled DNA after enrichment of either the methylated as well as the unmethylated DNA fractions of any DNA sample, can be used for methylation testing omitting the multiplex PCR.
[0148] In addition the biomarkers described herein could be applied for methylation testing using alternative approaches, e.g. methylation sensitive PCR and strategies which are sodium-bisulfite DNA deamination based and not based on MSRE digestion of DNA. These sets of methylation markers are suitable markers for disease-monitoring, -progression, -prediction, therapy-decision and -response.
Example 10
Biomarkers from Microarray-Testing of Patient Samples
Example 10a
CLASS COMPARISON: TU Vs. Normal: p<0.005, Unpaired Samples; 2 Fold Change
[0149] These list of methylation markers were found significant (p<0.005) between TU and N using "unpaired" statistical testing of DNA methylation of 48 tumour samples versus 48 healthy lung tissue samples. Significant markers with 2 fold difference of signal intensities of both classes with p<0.005 are listed.
TABLE-US-00002 TABLE 2 Sorted by p-value of the univariate test. Class 1: N; Class 2: T. The 32 genes are significant at the nominal 0.005 level of the univariate test with the fold change 2 Per- Geom Geom muta- mean of mean of Parametric tion p- intensities intensities Fold- Gene p-value FDR value in class 1 in class 2 change symbol 1 <1e-07 <1e-07 <1e-07 1411.8016 13554.578246 0.1041568 WT1 2 <1e-07 <1e-07 <1e-07 85.5069224 1125.7940428 0.0759525 DLX2 3 <1e-07 <1e-07 1e-07 852.3850013 7392.282404 0.1153074 SALL3 4 1e-07 <1e-07 1e-07 235.4745892 592.5077157 0.3974203 TERT 5 <1e-07 <1e-07 <1e-07 274.9097126 833.6648468 0.3297605 PITX2 6 <1e-07 <1e-07 <1e-07 80.5286413 265.3042755 0.3035331 HOXA10 7 <1e-07 <1e-07 <1e-07 112.6645619 855.6410585 0.1316727 F2R 8 1e-07 4.5e-06 <1e-07 2002.2452679 266.6906343 7.507745 CPED4 9 4e-07 1.46e-05 1e-07 718.311462 4609.4380991 0.1558349 NHLH2 10 4e-07 1.46e-05 <1e-07 10347.8184959 3603.9811381 2.8712188 SMAD3 11 5e-07 1.65e-05 <1e-07 2993.3054637 1117.4218527 2.6787604 ACTB 12 2.8e-06 8.49e-05 1e-07 296.6448711 3941.769913 0.0752568 HOXA1 13 3.6e-06 0.0001008 <1e-07 2792.0699393 17199.6551909 0.1623329 BOLL 14 5.9e-06 0.0001342 <1e-07 8664.2840567 2178.4607085 3.9772506 APC 15 1.21e-05 0.0002591 <1e-07 96.7848387 472.6945117 0.2047513 MT1G 16 1.36e-05 0.000275 1e-07 653.0579403 2188.6201533 0.298388 PENK 17 1.97e-05 0.0003774 <1e-07 1710.9865406 4044.9737351 0.4229908 SPARC 18 3.16e-05 0.0005751 <1e-07 1639.128227 811.4430136 2.0200164 DNAJA4 19 3.85e-05 0.0006673 <1e-07 114.7065029 292.8694482 0.3916643 RASSF1 20 4.28e-05 0.0007081 <1e-07 564.6571983 189.2105463 2.9842797 HLA-G 21 4.98e-05 0.0007881 1e-04 1339.8175413 446.1370253 3.0031525 ERCC1 22 6e-05 0.00091 1e-04 395.6248705 1158.1502714 0.3416006 ONECUT2 23 6.58e-05 0.000958 <1e-07 2517.3232246 1024.0897145 2.4581081 APC 24 8.45e-05 0.0011392 <1e-07 232.2537844 701.7843246 0.3309475 ABCB1 25 0.0002382 0.0029898 1e-04 3027.5067641 1165.5391698 2.5975161 ZNF573 26 0.0003469 0.003946 <1e-07 360.9888133 148.6109072 2.4290869 KCNJ15 27 0.0003582 0.0039511 3e-04 1818.1186026 4147.2970277 0.4383864 ZDHHC11 28 0.0012332 0.01192 0.0013 238.5488592 512.9101159 0.465089 SFRP2 29 0.0019349 0.0176076 0.0015 310.5591882 1215.8855725 0.2554181 GDNF 30 0.002818 0.0227945 0.0022 4930.1368809 2261.9370298 2.1796084 PTTG1 31 0.0038228 0.0267596 0.0045 2402.9850212 974.5347994 2.4657765 SERPIN-I1 32 0.0039256 0.0269326 0.0031 208.6539745 417.3186041 0.4999872 TN-FRSF10C
Example 10b
CLASS Prediction: TU Vs Normal: p<0.005, Unpaired Samples; 2Fold Change
[0150] Class prediction using different statistical methods for elucidating marker panels enabling best correct classification of TU and N (p<0.005).
Performance of Classifiers During Cross-Validation.
TABLE-US-00003
[0151] Diagonal Mean Compound Linear 3- Support Number of Covariate Discriminant 1- Nearest Nearest Vector genes in Predictor Analysis Nearest Neighbors Centroid Machines classifier Correct? Correct? Neighbor Correct? Correct? Correct? Mean percent 100 100 98 98 98 98 of correct classification:
TABLE-US-00004 TABLE 3 Composition of classifier: Sorted by t -value Geometric mean Parametric % CV of intensities Gene p-value t-value support (class N/class T) symbol 1 .sup. <1e-07 -10.859 100 0.1041568 WT1 2 .sup. <1e-07 -7.903 100 0.3297605 PITX2 3 .sup. <1e-07 -7.314 100 0.1153074 SALL3 4 .sup. <1e-07 -7.063 100 0.1316727 F2R 5 .sup. <1e-07 -7.028 100 0.0759525 DLX2 6 .sup. <1e-07 -6.592 100 0.3974203 TERT 7 .sup. <1e-07 -6.539 100 0.3035331 HOXA10 8 .sup. <1e-07 -6.495 100 0.7772068 MSH4 9 .sup. <1e-07 -6.357 100 0.1558349 NHLH2 10 4e-07 -5.915 100 0.5405671 GNA15 11 4e-07 -5.908 100 0.298388 PENK 12 4.2e-06 -5.206 100 0.3916643 RASSF1 13 5e-06 -5.155 100 0.1623329 BOLL 14 1.05e-05 -4.935 100 0.0752568 HOXA1 15 3.1e-05 -4.61 100 0.3416006 ONECUT2 16 4.26e-05 -4.514 100 0.3309475 ABCB1 17 4.59e-05 -4.491 100 0.4229908 SPARC 18 4.96e-05 -4.467 100 0.2047513 MT1G 19 8.53e-05 -4.301 100 0.6381881 HSPA2 20 0.0002478 -3.966 100 0.465089 SFRP2 21 0.0002786 -3.929 100 0.7532617 PYCARD 22 0.0003286 -3.876 100 0.6491186 GAD1 23 0.0004296 -3.789 100 0.8137828 C5orf4 24 0.0004695 -3.76 100 0.7676414 C5AR1 25 0.0004699 -3.76 100 0.2554181 GDNF 26 0.0006369 -3.66 100 0.4383864 ZDHHC11 27 0.0008023 -3.584 100 0.8171479 SERPINE1 28 0.0009028 -3.544 100 0.6392075 NKX2-1 29 0.0009179 -3.539 100 0.5993327 PITX2 30 0.0010255 -3.501 100 0.7691876 C5AR1 31 0.0011267 -3.47 100 0.5118859 ZNF256 32 0.0014869 -3.375 100 0.5593175 FAM43A 33 0.0015714 -3.356 100 0.6862518 SFRP2 34 0.0019233 -3.287 100 0.3698669 MT3 35 0.0019731 -3.278 100 0.7715219 SERPINE1 36 0.0019838 -3.276 100 0.8088555 CLIC4 37 0.0023911 -3.21 100 0.4999872 TNFRSF10C 38 0.0027742 -3.158 92 0.8776257 GABRA2 39 0.0028024 -3.154 92 0.7069999 MTHFR 40 0.0030868 -3.12 81 0.6837301 ESR2 41 0.0033263 -3.093 79 0.6327604 NEUROG1 42 0.0036825 -3.057 67 0.6444277 PITX2 43 0.0044243 -2.99 44 0.732542 PLAGL1 44 0.004896 -2.953 40 0.4992372 TMEFF2 45 0.0037996 3.046 65 2.1796084 PTTG1 46 0.0034628 3.079 73 1.1394289 CADM1 47 0.0024932 3.196 100 1.0870547 S100A8 48 0.0024284 3.205 100 1.3497772 EFS 49 0.0020087 3.271 100 1.2801593 JUB 50 0.0017007 3.329 100 1.1823596 ITGA4 51 0.0015061 3.371 100 1.5959594 MAGEB2 52 0.0013429 3.41 100 1.294098 ERBB2 53 0.0011103 3.475 100 1.3485708 SRGN 54 0.0007894 3.589 100 1.3193821 GNAS 55 0.0007437 3.609 100 1.9621539 TJP2 56 0.000457 3.769 100 2.4290869 KCNJ15 57 0.0004291 3.789 100 1.3004513 SLC25A31 58 0.0001587 4.107 100 2.5975161 ZNF573 59 0.0001331 4.163 100 1.4996674 TNFRSF25 60 9.26e-05 4.276 100 2.4581081 APC 61 4.88e-05 4.472 100 1.9612086 KCNQ1 62 3.62e-05 4.564 100 1.4971047 LAMC2 63 1.82e-05 4.77 100 1.5467277 SPHK1 64 1.68e-05 4.794 100 2.0200164 DNAJA4 65 1.45e-05 4.838 100 3.9772506 APC 66 9e-06 4.979 100 1.388284 MBD2 67 8.6e-06 4.994 100 3.0031525 ERCC1 68 4.5e-06 5.182 100 2.9842797 HLA-G 69 4.2e-06 5.202 100 1.7516486 CXADR 70 1.4e-06 5.521 100 1.9112579 TP53 71 1.1e-06 5.605 100 2.6787604 ACTB 72 9e-07 5.647 100 1.9365988 KL 73 6e-07 5.755 100 2.8712188 SMAD3 74 2e-07 6.05 100 1.4368727 HIST1H2AG 75 2e-07 6.115 100 7.507745 CPEB4
Example 10c
4 Greedy Pairs>>92% Correct Using SVM (Support Vector Machine)
[0152] Using "4 pairs of methylation markers" derived from greedy pairs class prediction with supportive vector machines enables 92% correct classification of TU and N.
Performance of Classifiers During Cross-Validation.
TABLE-US-00005
[0153] Diagonal Compound Linear Support Covariate Discriminant 3-Nearest Nearest Vector Predictor Analysis 1-Nearest Neighbors Centroid Machines Correct? Correct? Neighbor Correct? Correct? Correct? Mean percent 90 90 90 89 91 92 of correct classification:
Performance of the Support Vector Machine Classifier:
TABLE-US-00006
[0154] Class Sensitivity Specificity PPV NPV N 0.917 0.917 0.917 0.917 T 0.917 0.917 0.917 0.917
TABLE-US-00007 TABLE 4 Composition of classifier: Sorted by t-value (Sorted by gene pairs) Class 1: N; Class 2: T. Parametric Geom mean Geom mean p- t- % CV of intensities of intensities Fold- Gene value value support in class 1 in class 2 change symbol 1 <1e-07 -9.452 100 1411.8016 13554.578246 0.1041568 WT1 2 <1e-07 -7.222 100 85.5069224 1125.7940428 0.0759525 DLX2 3 <1e-07 -6.648 99 852.3850013 7392.282404 0.1153074 SALL3 4 <1e-07 -6.48 70 235.4745892 592.5077157 0.3974203 TERT 5 0.0017994 3.213 27 437.7037557 291.867223 1.4996674 TNFRSF25 6 5e-07 5.391 100 2993.3054637 1117.4218527 2.6787604 ACTB 7 4e-07 5.474 76 10347.818495 3603.9811381 2.8712188 SMAD3 8 <1e-07 5.832 98 2002.2452679 266.6906343 7.507745 CPEB4
Example 10d
(BRB v3.8) 5 Greedy Pairs
[0155] Using "5 pairs of methylation markers" derived from greedy pairs class prediction with supportive vector machines enables 95% correct classification of TU and N.
Performance of Classifiers During Cross-Validation:
TABLE-US-00008
[0156] Mean Diagonal Bayesian Number Compound Linear 3- Support Compound of genes Covariate Discriminant 1- Nearest Nearest Vector Covariate in Predictor Analysis Nearest Neighbors Centroid Machines Predictor classifier Correct? Correct? Neighbor Correct? Correct? Correct? Correct? Mean percent 92 94 90 94 92 95 95 of correct classification: Note: NA denotes the sample is unclassified. These samples are excluded in the compuation of the mean percent of correct classification
Performance of the Support Vector Machine Classifier:
TABLE-US-00009
[0157] Class Sensitivity Specificity PPV NPV N 0.958 0.938 0.939 0.957 T 0.938 0.958 0.957 0.939
TABLE-US-00010 TABLE 5 Composition by classifier: Sorted by t-value (Sorted by gene pairs) Class 1: N; Class 2: T. Geom mean Geom mean Parametric % CV of intensities of intensities Fold- Gene p-value t-value support in class 1 in class 2 change symbol 1 <1e-07 -9.531 100 1378.5556347 13613.2679786 0.1012656 WT1 2 <1e-07 -7.419 100 78.691453 1122.0211285 0.0701337 DLX2 3 <1e-07 -6.702 100 832.1044249 7415.7421008 0.1122078 SALL3 4 <1e-07 -6.625 100 223.339058 595.0731922 0.03753136 TERT 5 <1e-07 -6.586 100 267.2568518 837.2745062 0.3191986 PITX2 6 0.0029082 3.057 35 427.3964613 286.9546694 1.4894215 TNFRSF25 7 1.26e-05 4.612 70 7297.8279144 3875.9637585 1.8828421 KL 8 9e-07 5.255 99 2922.8174216 1122.2601272 2.6044028 ACTB 9 9e-07 5.266 98 10104.1419624 3617.8969167 2.792822 SMAD3 10 2e-07 5.603 100 1911.6531674 265.654275 7.1960188 CPEB4
Example 10e
Recursive Feature Elimination Method
[0158] Using "16 methylation markers" derived from the Recursive Feature Elimination method for class prediction with Diagonal Linear Discriminant Analysis enables 100% correct classification of TU and N.
Performance of Classifiers During Cross-Validation.
TABLE-US-00011
[0159] Mean Diagonal Number Compound Linear 3- Support of genes Covariate Discriminant 1- Nearest Nearest Vector in Predictor Analysis Nearest Neighbors Centroid Machines classifier Correct? Correct? Neighbor Correct? Correct? Correct? Mean percent 98 100 96 96 94 96 of correct classification:
TABLE-US-00012 TABLE 6 Composition of classifier: Sorted by t-value Geometric mean Parametric % CV of intensities Gene p-value t-value support (class N/class T) symbol 1 <1e-07 -10.859 100 0.1041568 WT1 2 <1e-07 -7.903 100 0.3297605 PITX2 3 <1e-07 -7.314 98 0.1153074 SALL3 4 <1e-07 -7.028 81 0.0759525 DLX2 5 <1e-07 -6.592 98 0.3974203 TERT 6 <1e-07 -6.539 98 0.3035331 HOXA10 7 4.2e-06 -5.206 98 0.3916643 RASSF1 8 4.59e-05.sup. -4.491 94 0.4229908 SPARC 9 0.0329896 -2.197 88 0.5237754 IRAK2 10 0.0496307 -2.015 98 0.6640548 ZNF711 11 1.68e-05.sup. 4.794 79 2.0200164 DNAJA4 12 4.5e-06 5.182 79 2.9842797 HLA-G 13 4.2e-06 5.202 79 1.7516486 CXADR 14 1.4e-06 5.521 75 1.9112579 TP53 15 1.1e-06 5.605 100 2.6787604 ACTB 16 2e-07 6.115 100 7.507745 CPEB4
Example 10f
(BRB v3.8) Recursive Feature Elimination Method
[0160] Due to some differences in data importing/normalisation repeated collation of data for statistics (using BRB v. 3.8) a genelist with minor differences (compared to example 12e) has been calculated form data, and is as given below:
Performance of Classifiers During Cross-Validation.
TABLE-US-00013
[0161] Mean Diagonal Number Compound Linear 3- Support of genes Covariate Discriminant 1- Nearest Nearest Vector in Predictor Analysis Nearest Neighbors Centroid Machines classifier Correct? Correct? Neighbor Correct? Correct? Correct? Mean percent 96 100 96 96 96 96 of correct classification:
TABLE-US-00014 TABLE 7 Composition of classifier: Sorted by t-value Geometric mean Parametric % CV of intensities Gene p-value t-value support (class N/class TU) symbol 1 <1e-07 -10.777 100 0.1012656 WT1 2 <1e-07 -8.046 88 0.3191986 PITX2 3 <1e-07 -7.336 98 0.1122078 SALL3 4 <1e-07 -7.232 85 0.1264427 F2R 5 <1e-07 -6.712 100 0.3753136 TERT 6 <1e-07 -6.524 98 0.2930706 HOXA10 7 1.6e-06 -5.49 98 0.3695951 RASSF1 8 3.87e-05.sup. -4.543 83 0.4112493 SPARC 9 0.0313421 -2.219 88 0.5143877 IRAK2 10 0.0366617 -2.151 98 0.6452171 ZNF711 11 0.3333009 0.978 58 1.1102014 DRD2 12 4.91e-05.sup. 4.471 77 1.9749991 DNAJA4 13 2.25e-05.sup. 4.707 75 1.7030259 CXADR 14 7.4e-06 5.036 88 1.8582045 TP53 15 2.1e-06 5.402 100 2.6044028 ACTB 16 5e-07 5.815 100 7.1960188 CPEB4
Example 10g
Recursive Geneset for "PB-N-TU" Distinction Using CLASS Prediction
[0162] To distinguish PB, N, and TU is of interest when minimal invasive testing for lung cancer has to be performed using serum- or plasma from peripheral blood. The markers distinguishing PB, N and TU will be best suited therefore. Using "16 methylation markers" derived from the Recursive Feature Elimination method for class prediction with Diagonal Linear Discriminant Analysis enables 91% correct classification.
Performance of Classifiers During Cross-Validation:
TABLE-US-00015
[0163] Diagonal Linear 3-Nearest Nearest Discriminant 1-Nearest Neighbors Centroid Analysis Correct? Neighbor Correct? Correct? Mean percent 91 89 87 88 of correct classification:
Performance of the Diagonal Linear Discriminant Analysis Classifier:
TABLE-US-00016
[0164] Class Sensitivity Specificity PPV NPV N 0.875 0.946 0.933 0.898 PB 1 0.948 0.615 1 T 0.938 0.982 0.978 0.948
Performance of the 1-Nearest Neighbor Classifier:
TABLE-US-00017
[0165] Class Sensitivity Specificity PPV NPV N 0.979 0.821 0.825 0.979 PB 0.75 0.99 0.857 0.979 T 0.833 1 1 0.875
Performance of the 3-Nearest Neighbors Classifier:
TABLE-US-00018
[0166] Class Sensitivity Specificity PPV NPV N 1 0.75 0.774 1 PB 0.125 1 1 0.932 T 0.854 1 1 0.889
Performance of the Nearest Centroid Classifier:
TABLE-US-00019
[0167] Class Sensitivity Specificity PPV NPV N 0.812 0.929 0.907 0.852 PB 1 0.917 0.5 1 T 0.917 0.982 0.978 0.932
TABLE-US-00020 TABLE 8 Composition by classifier: Sorted by p-value Class 1: N; Class 2: PB; Class 3: T. Geom mean Geom mean Geom mean Parametric % CV of intensities of intensities of intensities Gene p-value t-value support in class 1 in class 2 in class 3 symbol 1 <1e-07 65.961 100 1411.8016 335.9542052 13554.578246 WT1 2 <1e-07 34.742 100 2993.3054637 240.5599546 1117.4218527 ACTB 3 <1e-07 30.862 100 85.5069224 70.3843498 1125.7940428 DLX2 4 <1e-07 30.03 100 274.9097126 128.8159291 833.6648468 PITX2 5 <1e-07 28.153 100 852.3850013 349.2428569 7392.282404 SALL3 6 <1e-07 23.333 100 80.5286413 62.0661721 265.3042755 HOXA10 7 <1e-07 21.159 100 235.4745892 296.8149796 592.5077157 TERT 8 2e-07 17.8 100 2002.2452679 1697.5965438 266.6906343 CPEB4 9 4.3e-06 13.991 100 564.6571983 1254.1750649 189.2105463 HLA-G 10 1.54e-05 12.388 100 1710.9865406 1310.5286603 4044.9737351 SPARC 11 1.9e-05 12.132 100 114.7065029 81.1382549 292.8694482 RASSF1 12 6.55e-05 10.614 100 1639.128227 1576.0887022 811.4430136 DNAJA4 13 0.0008203 7.63 100 1484.6917542 1429.9219493 847.5968076 CXADR 14 0.0008501 7.589 100 11761.052468 9062.1655722 6153.5665863 TP53 15 0.041843 3.276 100 105.5844903 94.1143599 201.5835284 IRAK2 16 0.3946752 0.938 100 483.3048928 567.8776158 727.8087385 ZNF711
Example 10h
Class Prediction "Differentiation".fwdarw.Poor-Moderate-Well
[0168] Distinguishing the grade of differentiation of the tumours could be also achieved by DNA methylation marker testing. Although the correct classification is only about 60% in this example, the lung tumour groups "AdenoCa" and "SqCCL" can be split and used separately for determining the grade of tumour-differentiation for better performance.
Performance of Classifiers During Cross-Validation.
TABLE-US-00021
[0169] Diagonal Linearn 3-Nearest Nearest Discriminant 1-Nearest Neighbors Centroid Analysis Correct? Neighbor Correct? Correct? Mean percent 50 52 57 62 of correct classification:
TABLE-US-00022 TABLE 9 Composition by classifier: Sorted by p-value Class 1: moderate; Class 2: poor; Class 3: well. Geom mean Geom mean Geom mean Parametric % CV of intensities of intensities of intensities Gene p-value t-value support in class 1 in class 2 in class 3 symbol 1 0.0002337 10.127 100 2426.5840626 190.6171197 840.042225 F2R 2 0.002636 6.796 100 409.0809522 178.099004 3103.6338503 ZNF256 3 0.0034931 6.432 100 67.1145733 81.4305823 63.5786575 CDH13 4 0.0044626 6.118 100 30915.9294466 15055.465308 6829.1471271 SERPINB5 5 0.0082321 5.35 100 289.011498 400.2767665 163.1721958 KRT14 6 0.0092929 5.2 100 2890.2702155 418.2345934 211.3575002 DLX2 7 0.0111512 4.977 100 68.3488191 83.3593382 60.6607364 AREG 8 0.0286999 3.846 98 62.1904027 62.94364 74.3029102 THRB 9 0.0326517 3.696 92 64.7904336 80.1596633 60.6607364 HSD17B4 10 0.0414877 3.418 62 5631.0373836 2622.6315852 3310.1373187 SPARC 11 0.0449927 3.325 79 894.5655128 1191.0908574 510.2671098 HECW2 12 0.0480858 3.249 40 441.1103703 1018.9640546 852.4793505 COL21A1
Example 10i
BinTreePred "Differentiation" AdenoCa, SqCCL, N PB
[0170] Using Binary Tree prediction (applicable for elucidation of markers for more than 2 classes) provides several sets of predictors which enable classification of PB, AdenoCa, SqCCL, N. These marker sets could be used alternatively for classification.
Optimal Binary Tree:
Cross-Validation Error Rates for a Fixed Tree Structure Shown Below
TABLE-US-00023
[0171] Mis-classifi- Node Group 1 Classes Group 2 Classes cation rate (%) 1 AdenoCa, N, SqCCL PB 0.0 2 AdenoCa, SqCCL N 9.4 3 AdenoCa SqCCL 31.2 ##STR00001##
Results of Classification, Node 1:
TABLE-US-00024
[0172] TABLE 10 Composition of classifier (23 genes): Sorted by p-value Geom mean of Geom mean of Parametric % CV intensities in group intensities in group p-value t-value support 1 2 Gene symbol 1 <1e-07 11.494 100 5370.6044342 241.377309 KL 2 <1e-07 13.624 100 15595.1182874 226.4099812 HIST1H2AG 3 <1e-07 14.042 100 15562.4306923 62.0661607 TJP2 4 <1e-07 20.793 100 36238.4478078 169.7749739 SRGN 5 <1e-07 8.845 92 2847.6405879 176.5970582 CDX1 6 <1e-07 7.452 100 357.4232278 64.4047416 TNFRSF25 7 <1e-07 6.909 97 4344.5133099 90.5259025 APC 8 <1e-07 6.607 100 38027.3831138 10046.5061814 HIC1 9 <1e-07 6.428 100 1605.6039019 115.3436683 APC 10 2e-07 5.611 100 439.58106 107.9138518 GNA15 11 2e-07 5.53 100 1828.8750958 240.5597144 ACTB 12 2.47e-05 4.42 100 4374.5147937 335.954606 WT1 13 3.53e-05 -4.327 100 693.9070151 2419.282873 KRT17 14 4.73e-05 -4.251 100 3086.6035554 8432.6551975 AIM1L 15 5.58e-05 -4.207 100 11780.3636838 25260.4242674 DPH1 16 0.0001755 3.895 96 2120.616338 688.5899191 PITX2 17 0.0005056 3.593 100 478.7300449 128.8159563 PITX2 18 0.0012022 -3.332 100 167.4354555 461.2140013 KIF5B 19 0.0015431 -3.254 100 865.090709 2041.1567322 BMP2K 20 0.0020491 -3.164 100 10857.4258468 26743.6730071 GBP2 21 0.0023603 3.119 100 1819.6185255 218.3422479 NHLH2 22 0.0040506 2.941 96 614.495327 62.0661607 GDNF 23 0.0043281 2.918 98 6929.8366248 784.5416613 BOLL
Results of Classification, Node 2:
TABLE-US-00025
[0173] TABLE 11 Composition of classifier (32 genes): Sorted by p-value Geom mean of Geom mean of Parametric % CV intensities in group intensities in group p-value t-value support 1 2 Gene symbol 1 <1e-07 9.452 92 13554.5792299 1411.801824 WT1 2 <1e-07 7.222 92 1125.7939487 85.5069135 DLX2 3 <1e-07 6.648 69 7392.2771156 852.3852836 SALL3 4 <1e-07 6.48 92 592.5077475 235.4746794 TERT 5 <1e-07 6.445 92 833.6646395 274.909652 PITX2 6 <1e-07 6.123 92 265.3043233 80.5286481 HOXA10 7 <1e-07 6.019 92 855.6411657 112.6645794 F2R 8 <1e-07 -5.832 92 266.6907851 2002.2457379 CPEB4 9 4e-07 5.482 92 4609.4395265 718.3111003 NHLH2 10 4e-07 -5.474 92 3603.9808376 10347.8149677 SMAD3 11 5e-07 -5.391 92 1117.4212918 2993.3062317 ACTB 12 2.8e-06 4.984 92 3941.7717994 296.6448908 HOXA1 13 3.6e-06 4.922 92 17199.6559171 2792.0695552 BOLL 14 5.9e-06 -4.802 92 2178.4609569 8664.280092 APC 15 1.21e-05 4.622 92 472.6943985 96.784825 MT1G 16 1.36e-05 4.593 69 2188.6204084 653.0580827 PENK 17 1.97e-05 4.497 92 4044.9730493 1710.9865557 SPARC 18 3.16e-05 -4.373 92 811.4434055 1639.128128 DNAJA4 19 3.85e-05 4.321 92 292.869462 114.7064501 RASSF1 20 4.28e-05 -4.293 92 189.210499 564.6573579 HLA-G 21 4.98e-05 -4.253 92 446.1371701 1339.8173509 ERCC1 22 6e-05 4.203 92 1158.1503785 395.6249449 ONECUT2 23 6.58e-05 -4.178 92 1024.089614 2517.3225611 APC 24 8.45e-05 4.11 92 701.7840426 232.2538242 ABCB1 25 0.0002382 -3.821 92 1165.5392514 3027.5052576 ZNF573 26 0.0003469 -3.713 92 148.6108699 360.9887854 KCNJ15 27 0.0003582 3.704 92 4147.2987214 1818.1188972 ZDHHC11 28 0.0012332 3.332 46 512.9098469 238.5488699 SFRP2 29 0.0019349 3.19 92 1215.8855046 310.5592635 GDNF 30 0.002818 -3.068 92 2261.9371454 4930.1357863 PTTG1 31 0.0038228 -2.966 92 974.5345902 2402.9849125 SERPINI1 32 0.0039256 2.957 90 417.3184202 208.6541481 TNFRSF10C
Results of Classification, Node 3:
TABLE-US-00026
[0174] TABLE 12 Composition of classifier (2 genes): Sorted by p-value Geom mean Geom mean of of Parametric t- % CV intensities intensities Gene p-value value support in group 1 in group 2 symbol 1 0.000302 3.91 40 584.5327307 158.116767 HOXA10 2 0.0038089 3.048 46 180.3474561 67.115885 NEUROD1
Example 11
qPCR Validation of Biomarkers
[0175] Quantitative PCR with primers for markers elucidated by microarray analysis were run on MSRE-digested DNAs from the same sample groups as analyzed on microarrays. Marker sets for SYBRGreen qPCR were from Example 10f and Example 10d.
TABLE-US-00027 TABLE 13 Markers used for SYBRGreen-qPCR: Gene Unique id symbol Ahy_61_chr11:32411664-32412266 +_401-464 WT1 349_hy_35-PitxA_chr4:111777754-111778067 PITX2 Ahy_156_chr18:74841510-74841935 +_336-389 SALL3 Ahy_265_chr5:76046889-76047178 +_134-197 F2R Ahy_252_chr5:1348529-1348893 +_138-187 TERT Ahy_289_chr7:27180142-27180796 +_181-238 HOXA10 Ahy_233_chr3:50352877-50353278 +_108-157 RASSF1 Ahy_257_chr5:151046476-151047183 +_57-106 SPARC Ahy_212_chr3:10181572-10181986 +_249-298 IRAK2 Ahy_332_chrX:84385510-84385717 +_42-106 ZNF711 Ahy_51_chr11:112851438-112851650 +_57-107 DRD2 Ahy_109_chr15:76343347-76343876 +_373-428 DNAJA4 Ahy_202_chr21:17806218-17806561 +_104-167 CXADR Ahy_143_chr17:7532353-7532949 +_415-476 TP53 335_hy_4-Aktin_VL_chr7:5538506-5538805 ACTB Ahy_261_chr5:173247753-173248208 +_350-404 CPEB4 Ahy_181_chr2:172672873-172673656 +_177-227 DLX2 Ahy_30_chr1:6448693-6448938 +_57-107 TNFRSF25 Ahy_83_chr13:32489371-32489688 +_181-245 KL Ahy_107_chr15:65146236-65146654 +_305-366 SMAD3
[0176] Negative amplification (no Cp-value generated upon 45 cycles of PCR amplification with SYBR green) were set to Cp=45; all qPCR-Cp-values were subtracted from 45.01 to obtain transformed data directly comparable to microarray data,--thus the higher the value the more product was generated (resembles a lower Cp-value. Statistical testing of the transformed data was performed in the same manner as the microarray data using BRB-AT software.
[0177] Class comparison and different strategies/methods for class prediction using the qPCR enables correct classification of different sample groups. Although qPCR conditions were not optimized but run under our standard conditions, successful classification of groups with markers deduced from microarray-analysis confirms reliability of methylation markers.
TABLE-US-00028 TABLE 14 9 markers from Table 13 showed significant class difference fold changes mean of log mean of log Gene intensities intensities Unique id symbol for N for T FoldDiff Ahy_30_chr1:6448693-6448938 +_57-107 TNFRSF25 7.40354 8.5125 0.46 Ahy_156_chr18:74841510-74841935 +_336-389 SALL3 1.59063 7.04229 0.02 Ahy_233_chr3:50352877-50353278 +_108-157 RASSF1 5.80167 7.95708 0.22 Ahy_252_chr5:1348529-1348893 +_138-187 TERT 0.01 1.1725 0.45 Ahy_257_chr5:151046476-151047183 +_57-106 SPARC 11.76 14.10521 0.20 Ahy_265_chr5:76046889-76047178 +_134-197 F2R 0.70917 4.87917 0.06 Ahy_289_chr7:27180142-27180796 +_181-238 HOXA10 1.67708 3.88125 0.22 Ahy_332_chrX:84385510-84385717 +_42-106 ZNF711 4.635 6.48875 0.28 349_hy_35-PitxA_chr4:111777754-111778067 PITX2 5.48854 8.61813 0.11
Example 11a
CLASS Prediction: TU Vs Normal: p<0.01>>SVM 100%, Paired Samples
Performance of Classifiers During Cross-Validation
Mean Percentage of Correction Classification:
TABLE-US-00029
[0178] Diagonal Compound Linear 3- Support Covariate Discriminant 1- Nearest Nearest Vector Predictor Analysis Nearest Neighbors Centroid Machines Correct? Correct? Neighbor Correct? Correct? Correct? Mean percent of 96 98 94 94 94 100 correct classification: n = 48
TABLE-US-00030 TABLE 15 Composition of classifier: Sorted by t -value Geometric mean Parametric % CV of intensities Gene p-value t-value support (class N/class T) symbol 1 1e-07 -6.184 100 0.0228499 SALL3 2 2e-07 -6.162 100 0.1142619 PITX2 3 4e-07 -5.879 100 0.1967986 SPARC 4 3.5e-06.sup. -5.254 100 0.0555527 F2R 5 8.08e-05 -4.318 100 0.4467377 TERT 6 0.0009183 -3.538 100 0.2244683 RASSF1 7 0.0011335 -3.468 100 0.21701 HOXA10 8 0.0045818 2.978 100 1.7787126 CXADR 9 0.0012761 3.427 100 3.3134481 KL
Example 11b
CLASS Prediction: TU vs Normal: p<0.01
Performance of the Support Vector Machine Classifier:
TABLE-US-00031
[0179] Class Sensitivity Specificity PPV NPV N 0.917 0.875 0.88 0.913 T 0.875 0.917 0.913 0.88
Performance of the Bayesian Compound Covariate Classifier:
TABLE-US-00032
[0180] Class Sensitivity Specificity PPV NPV N 0.792 0.604 0.667 0.744 T 0.604 0.792 0.744 0.667
TABLE-US-00033 TABLE 16 Composition of classifier: Sorted by t-value Class 1: N; Class 2: T. Geom mean Geom mean Parametric % CV of intensities of intensities Fold- Gene p-value t-value support in class 1 in class 2 change Unique id symbol 1 <1e-07 -6.713 100 3.011798 131.8077746 0.0228499 Ahy_156_chr18:74841510- SALL3 74841935 +_336-389 2 <1e-07 -6.491 100 3468.2688243 17623.4446406 0.1967986 Ahy_257_chr5:151046476- SPARC 151047183 +_57-106 3 <1e-07 -6.208 100 44.8968301 392.9290497 0.1142619 349_hy_35-PitxA_chr4: PITX2 111777754-111778067 4 1e-06 -5.248 100 1.6348595 29.429 0.0555527 Ahy_265_chr5:76046889- F2R 76047178 +_134-197 5 3.91e-05 -4.318 100 1.0069555 2.2540195 0.4467377 Ahy_252_chr5:1348529- TERT 1348893 +_138-187 6 0.0003748 -3.691 100 55.7796365 248.4967761 0.2244683 Ahy_233_chr3:50352877- RASSF1 50353278 +_108-157 7 0.0009309 -3.419 100 3.1978081 14.7357642 0.21701 Ahy_289_chr7:27180142- HOXA10 27180796 +_181-238 8 0.0009772 3.404 100 3114.5146028 939.9618007 3.3134481 Ahy_83_chr13:32489371- KL 32489688 +_181-245
TABLE-US-00034 TABLE 16b Prediction rule from the linear predictors Table. Compound Diagonal Linear Support Gene Covariate Discriminant Vector Weights Genes Predictor Analysis Machines 1 Ahy_83_chr13:32489371-32489688 +_181-245 3.4041 0.2794 1.2796 2 Ahy_156_chr18:74841510-74841935 +_336-389 -6.7126 -0.3444 -0.2136 3 Ahy_233_chr3:50352877-50353278 +_108-157 -3.6907 -0.2633 0.0512 4 Ahy_252_chr5:1348529-1348893 +_138-187 -4.3175 -0.6681 -1.1674 5 Ahy_257_chr5:151046476-151047183 +_57-106 -6.4911 -0.7486 -0.7093 6 Ahy_265_chr5:76046889-76047178 +_134-197 -5.2477 -0.2752 -0.0135 7 Ahy_289_chr7:27180142-27180796 +_181-238 -3.419 -0.221 -0.3187 8 349_hy_35-PitxA_chr4:111777754-111778067 -6.2083 -0.5132 -0.353
[0181] The prediction rule is defined by the inner sum of the weights (wi) and expression (xi) of significant genes. The expression is the log ratios for dual-channel data and log intensities for single-channel data.
[0182] A sample is classified to the class N if the sum is greater than the threshold; that is, .SIGMA.iwi xi>threshold.
The threshold for the Compound Covariate predictor is -172.255 The threshold for the Diagonal Linear Discriminant predictor is -15.376 The threshold for the Support Vector Machine predictor is 0.838
Example 11c
Recursive Feature Extraction (n=10) Prediction: TU Vs Normal 98% Correct, Paired Samples
TABLE-US-00035
[0183] TABLE 17 Composition of classifiers: Sorted by t-value Geometric mean Parametric % CV of intensities Gene p-value t-value support (class N/class T) symbol 1 1e-07 -6.184 100 0.0228499 SALL3 2 2e-07 -6.162 100 0.1142619 PITX2 3 4e-07 -5.879 100 0.1967986 SPARC 4 3.5e-06.sup. -5.254 100 0.0555527 F2R 5 0.0011335 -3.468 100 0.21701 HOXA10 6 0.0188086 -2.434 92 0.5671786 DRD2 7 0.3539709 0.936 94 1.2886257 ACTB 8 0.1083921 1.637 100 1.8305684 DNAJA4 9 0.0045818 2.978 98 1.7787126 CXADR 10 0.0012761 3.427 100 3.3134481 KL
Example 11d
Greedy Pairs (6) Prediction: TU Vs Normal: 88% SVM, UNpaired Samples
Performance of the Support Vector Machine Classifier:
TABLE-US-00036
[0184] Class Sensitivity Specificity PPV NPV N 0.896 0.854 0.86 0.891 T 0.854 0.896 0.891 0.86
Performance of the Bayesian Compound Covariate Classifier:
TABLE-US-00037
[0185] Class Sensitivity Specificity PPV NPV N 0.812 0.604 0.672 0.763 T 0.604 0.812 0.763 0.672
TABLE-US-00038 TABLE 18 Composition of classifier: Sorted by t-value (Sorted by gene pairs) Class 1: N; Class 2: T. Geom mean Geom mean Parametric % CV of intensities of intensities Fold- Gene p-value t-value support in class 1 in class 2 change symbol 1 <1e-07 -6.713 100 3.011798 131.8077746 0.0228499 SALL3 2 <1e-07 -6.491 100 3468.2688243 17623.4446406 0.1967986 SPARC 3 <1e-07 -6.208 100 44.8968301 392.9290497 0.1142619 PITX2 4 1e-06 -5.248 100 1.6348595 29.429 0.0555527 F2R 5 3.91e-05 -4.318 100 1.0069555 2.2540195 0.4467377 TERT 6 -0.0003748 -3.691 100 55.7796365 248.4967761 0.2244683 RASSF1 7 0.0009309 -3.419 100 3.1978081 14.7357642 0.21701 HOXA10 8 0.0137274 -2.512 100 169.3121483 365.1891236 0.4636287 TNFRSF25 9 0.1465343 1.464 98 4255.1669082 2324.5057894 1.8305684 DNAJA4 10 0.1463194 1.465 50 326.8534389 203.1873409 1.6086309 TP53 11 0.0176345 2.416 100 2588.5288498 1455.2822633 1.7787126 CXADR 12 0.0009772 3.404 100 3114.5146028 939.9618007 3.3134481 KL
Cross-Validation ROC curve from the Bayesian Compound Covariate Predictor. The area under the curve is 0.944 (FIG. 1).
Example 11e
CLASS Prediction: Histology: p<0.05 Using all qPCRs for Class Prediction Analysis of Tumor-Subtype Versus Normal Lung Tissue
TABLE-US-00039
[0186] TABLE 19 Composition of classifier: Sorted by p-value Class 1: AdenoCa; Class 2: N; Class 3: SqCCL. Geom mean Geom mean Geom mean Parametric % CV of intensities of intensities of intensities Gene p-value t-value support in class 1 in class 2 in class 3 symbol 1 <1e-07 23.305 100 11832.9848147 3468.2688243 22878.8045137 SPARC 2 <1e-07 22.546 100 98.6115161 3.011798 159.4048479 SALL3 3 1e-07 19.146 100 7.6044403 1.6348595 71.4209691 F2R 4 1e-07 19.124 100 359.9316118 44.8968301 416.1715345 PITX2 5 2.81e-05 11.753 100 90.8736104 55.7796365 480.3462809 RASSF1 6 3.15e-05 11.611 100 48.8581148 3.1978081 6.7191365 HOXA10 7 0.0001543 9.66 100 1.9602703 1.0069555 2.4699516 TERT 8 0.0042218 5.802 100 1047.8074626 3114.5146028 875.3966524 KL 9 0.0233243 3.914 100 263.7738716 169.3121483 451.9439364 TNFRSF25
Performance of Classifiers During Cross-Validation
[0187] Mean Percent of Correct Classification, n=96:
TABLE-US-00040 Diagonal Linear 3-Nearest Nearest Discriminant 1-Nearest Neighbors Centroid Analysis Correct? Neighbor Correct? Correct? Mean percent 72 74 74 72 of correct classification:
Example 11f
Bintree Prediction: Histology--p<0.05 UNpaired Samples "Compound Covariate Classifier"
Optimal Binary Tree: Cross-Validation Error Rates for a Fixed Tree Structure Shown Below
TABLE-US-00041
[0188] Group 1 Group 2 Mis-classification rate Node Classes Classes (%) 1 AdenoCa, N 14.6 SqCCL 2 AdenoCa SqCCL 31.2
Results of Classification, Node 1:
TABLE-US-00042
[0189] TABLE 20 Composition of classifiers (10 genes): Sorted by p-value Geom mean of Geom mean of Parametric % CV intensities in group intensities in group p-value t-value support 1 2 Gene symbol 1 <1e-07 6.713 100 131.8077753 3.011798 SALL3 2 <1e-07 6.491 100 17623.4448347 3468.2687994 SPARC 3 <1e-07 6.208 100 392.9290438 44.8968296 PITX2 4 1e-06 5.248 100 29.4290011 1.6348595 F2R 5 3.91e-05 4.317 100 2.2540195 1.0069556 TERT 6 0.0003748 3.691 100 248.4967776 55.779638 RASSF1 7 0.0009309 3.419 100 14.7357644 3.197808 HOXA10 8 0.0009772 -3.404 100 939.9618108 3114.5147006 KL 9 0.0137274 2.511 100 365.1891266 169.3121466 TNFRSF25 10 0.0176345 -2.416 100 1455.2823102 2588.528822 CXADR
Results of Classification, Node 2:
TABLE-US-00043
[0190] TABLE 21 Composition of classifier (3 genes): Sorted by p-value Geom mean Geom mean Parametric % CV of intensities of intensities Gene p-value t-value support in group 1 in group 2 symbol 1 0.0058346 2.892 50 48.8581156 6.7191366 HOXA10 2 0.0253305 -2.312 50 90.8736092 480.3462899 RASSF1 3 0.0330755 -2.197 49 7.6044405 71.4209719 F2R
TABLE-US-00044 SEQUENCE LISTING SEQ ID NO: DNA-SEQUENCE 1 CGGCCGGTCAGGAATCCCCATCCTGGAGCGCAGGCGGAGAGCCAGTGGCT 2 CCAAAAAAGGTGACACTGCCCCCTCCCAGTGGCTCCATGCTCCTCAGCTATGGCTGTCCGGGCC 3 CGCCCCGCCCCCGCCAACAACCGCCGCTCTGATTGGCCCGGCGCTTGTCTCTT 4 AGCGGCCTCAGCCTGCGCACCCCAGGAGCGTGGATGACTACGGCCACCCC 5 GCAGCCGAGAGGGTCAGGCCCCCATAGGTCCTCAGCCTGCTTCAACCTCAAAGGGGATGGGGG 6 TCCTGGCAGCATTACCACACTGCTCACCTGTGAAGCAATCTTCCGGAGACAGGGCCAAAGGGCCA 7 CTGACAAGAGACATGCAGGGCTGAGAGGCAGCTCCTTTTTATAGCGGTTAGGCTTGGCCAGCTGC 8 TGGCATCCACTTGCTTGATCCAGCCAGATTCCCACTCCCATGCCCTCTCCACTATTGCGATTGC 9 CTGCTTCGTGCCCTCTGGTGGCTAAGGCGTGTCATTGCAGTGCCGGCCTCCTGTCATCCTCC 10 CCGGCGCACTCCGACTCCGAGCAGTCTCTGTCCTTCGACCCGAGCCCCGC 11 TAGGTGGTGAGTTACTTGGCTCGGAGCGGGCGAGGGGACGCGTGGGCGGAGCG 12 AACCACCTGATCAAGGAAAAGGAAGGCACAGCGGAGCGCAGAGTGAGAACCACCAACCGAGGCGC 13 CGGGGGTAGGCTTTGCTGTCTGAGGGCGTCTGGCTGTGGAGCTGAAGGAGGCGCTGCTGAG 14 GCCCCGCATCCCTAATGAGGGAATGAATGGAGAGGCCCCCTCGGCTGGCGCCC 15 CGGGGCCACGCGCTAAGGGCCCGAACTTGGCAGCTGACCGTCCCGGACAG 16 CCACCGAACACGCCGCACCGGCCACCGCCGTTCCCTGATAGATTGCTGATGC 17 GAACTGGGTCGTGGAAGGATCGCGGGGAGCGGCCCTCAGGCCTTCGGCCTCACT 18 CCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTCAGGAGATCGAGACCATCCT 19 GGCGGCTGGTGCTTGGGTCTACGGGAATACGCATAACAGCGGCCGTCAGGGCGCC 20 TCAGATTCCTCAGGGCCGCAGAGGTGTGGAGCTGGTTGGGCCGGTTCTTCACCCTCCTCCC 21 CTGGCCGAGGTGGCCACCGGTGACGACAAGAAGCGCATCATTGACTCAGCCCGG 22 CTAACCTTCCTCGCCGCCTTCCTGCGGGTGACCCCCAAACGCCCCAGCTCCGC 23 CCGACTTGGACGCGGCCAGCTGGAGAGGCGGAGCGCCGGGAGGAGACCTT 24 ACAGAGTCGGCACCGGCGTCCCCAGCTCTGCCGAAGATCGCGGTCGGGTC 25 GGGGATGGAGAACTCTCCTCGCTTCGTCCTCTCTCCCGGGGAATCCCTAACCCCGCACTGCG 26 GTGGCTCGGGTCCACCCGGGCTGCGAGCCGGCAGCACAGGCCAATAGGCAATTAG 27 CTCACCCCGCGACTTACCCCACACCCCGCTCTCCAGAACCCCCATATGGGCGCTCACC 28 ACACACCACTGCAGCGTTCAAACGCTGGGAAGAAGACTCCCTTGTGGCACCGGAAACCCACGAGG 29 CCGCCACGAACTTGGGGTGCAGCCGATAGCGCTCGCGGAAGAGCCGCCTC 30 CTCCATAGCCCTCCGACGGGCGCCCAGGGGCTTCCCGGCTCCGTGCTCTCT 31 TGGACACCCCAAGAGCTCACTCCTCCGCGGTTTTATATTCCGACTTGCGCACAGGAGCGGGGTGC 32 CCGCCCGTTTCAGCGGCGCAGCTTCTGTAGTTGGGCTACTGGAGGGGTCGCTCAGAAACCTCA 33 AACCCAGGCTTGTCAGCCTAAGAACACGGGATCTCTTCACTGTGGTTCATGTGTAGAGTG- GAGTTTCCA 34 CAGTCCCCTGCCGTGCGCTCGCATTCCTCAGCCCTTGGGTGGTCCATGGGA 35 CAGGTGGGCGTCTCAGGGGTGGGAGTGGCCGCGTCGTGAAGCGGAGAGAGGA 36 CTGCAAGGGATGACTCACCCCAGTGATTCAACCGCGCCACCGAGCGCGGAGCTG 37 TTGTATGGATTTCGCCCAGGGGAAAGCGCTCCAACGCGCGGTGCAAACGGAAGCCACTG 38 GAGGACCAGGGCCGGCGTGCCGGCGTCCAGCGAGGATGCGCAGACTGCCT 39 ACGCACCGCGGCTCCTCGCGTCCAGCCGCGGCCAAGGAAGTTACTACTCGCCCAAAT 40 CGCTGCCTCGCCATTGGGCGGCCGAACGCAGCCACGTCCAATCAGAGGAGT 41 GAGGTTCTGGGGACCGGGAGAGTGGCCACCTTCTTCCTCCTCGCGAAGAGCAGGCCGGG 42 AGTGGGATTGGGGCACTTGGGGCGCTCGGGGCCTGCGTCGGATACTCGGGTC 43 TCAAGCCGCCTCAGGTGAGCGCTCCTTGGCGCTACTTCCGGTCTCAGGTGAGGCCGC 44 TTGTGACGTGTGTTCTGGGCAGGGTTTGAGGTTTTGGAACATTTTCTAAAAGGGACAGAGAGCAC- CCTGC 45 CGGGGGGAGAAGTCCTGGAGCGGGTTTGGGTTGCAGTTTCCTTGTGCCGGGGATCCTGTCC 46 GAGGATTATTCGTCTTCTCCCCATTCCGCTGCCGCCGCTGCCAGGCCTCTGGCTGCTGAGG 47 CCCTCTCTCCCCTGGCCCGCAAAGTTTTGGCGGAGCCATCGCTGGGGCTGAGC 48 CCAGGGGGAACTTGTGGCAGTGCAGCATCTCAGGCCAGGGGAAGCCGTAGGCCTCCATGA 49 CGCCACCCAGAGCCCGAGGTTTGCCCTTCAGAAGCGGACCCGCAGACTCCTCGGACT 50 CGCCGAAATGAAACCCGCCTCCGTTCGCCTTCGGAACTGTCGTCACTTCCGTCCTCAGACTTGGA 51 TCCCTTGTTTTGAGGCGGGAACGCAACCCTCGACCGCCCACTGCGCTCCCA 52 GGCAGCCGGGAAATCCCGTGTCCCCACTCGTGGCAGAGGACGCTGTGGGG 53 CCCCCACAGTTTTCATGTGATCAGGAATTCAGCATAGGCTATAAGACGGAGTGCTCCATGTCAA 54 GGGGTTGTCATGGCAGCAGCTCCATCCCTGACCGCCACTTTCTCCCGGTGCCG 55 AAGTTCCGCCAGTGCACAGCAACCAATGGGCGGAGGGGTCCTTTGCCCCTGGGTTGC 56 AGTTGGGCCGGATCAGCTGACCCGCGTGTTTGCACCCGGACCGGTCACGTG 57 GGGCCGCTGCCTACTGTGGGCCTGCAAGGCGTGCAAGCGCAAGACCACCA 58 ACCTCCCTGCTGCGTGTCGCAAACCGAACAGCGGGCGTTGGCCCTCCTGC 59 GGGACCCGGAGCTCCAGGCTGCGCCTTGCGCCCGGGTCAGACATTATTTAGCTCTTCGGTTGAGC 60 GGCCGTGCGGGGCTCACCGGAGATCAGAGGCCCGGACAGCTTCTTGATCGCC 61 CCACTGCCTGCGGTAGAACCTGGTCCCGCATAGCTTGGACTCGGATAAGTCAAGTTCTCTTCCA 62 GGGCCGCAGGCCCCTGAGGAGCGATGACGGAATATAAGCTGGTGGTGGTGGGC 63 GCAGGACCCGGATGAGAGCGCACGCTTCGGGGTCTCCGGGAAGTCGCGGC 64 AAGAGGGAAAGGCTTCCCCGGCCAGCTGCGCGGCGACTCCGGGGACTCCAG 65 AGGGATGGCTTTTGGGCTCTGCCCCTCGCTGCTCCCGGCGTTTGGCGCCC 66 GCCCGCTCTCGGGTGACTCCGCAACCTGTCGCTCAGGTTCCTCCTCTCCCGGCC 67 TGCTGGACATCCACCGCCTCCAGGCAGTTTCGCCGTCACACCGTCGCCATCTGTAGC 68 GGCCGCGAAGCGACTCCGATCCTCCCTCTGAGCCTTGCTCAGCTCTGCCCCGC 69 CGCGCGTTCGCTGCCTCCTCAGCTCCAGGATGATCGGCCAGAAGACGCTCTACTCCTTTTTCTCC 70 CGGGGGCGGAGGAAACACCTATGAACCCTCCGGCAGCCTTCCTTGCCGGGCG 71 AGGGCCAGCCCTTGGGGGCTCCCAGATGGGGCGTCCACGTGACCCACTGC 72 GTGAAAGGTCGGCGAAAGAGGAGTAAAGACGGCGAGACGCGTCCACGCAGGGGGAGTCTGTGCG 73 GCGCTGAGGTGCAGCGCACGGGGCTTCACCTGCAACGTGTCGATTGGACG 74 GAGGCCTCATGCCTCCGGGGAAAGGAAGGGGTGGTGGTGTTTGCGCAGGGGGAGC 75 CGAAGTGGAAACCGGAGTTGCGTCATTGCTCCCACCCGATATCACCTTGGCAGCGACCGCG 76 ATGGGGTGCTCATCTTCCTGGAGCTGAGGAGCTGGGACGGGCATGGGGTGCTCATCCTCCTG 77 TTCCAGCCGGTGATTGCAATGGACACCGAACTGCTGCGACAACAGAGACGCTACAACTCACCGCG 78 CAGAGAAGACTCACGCAGTGAGCAGTCCGCAAGCCCGCTGGCGGCAGCGGC 79 GACACACCCACCTCAGCAGATCTCAGCCCATCCCTCCCAGCTCAGTGCACTCACCCAACCCCAC 80 CGGAGTGCTGCAAGCGCAGAAAATATACGTCATGTGCGGAGGCGGAGCTTCCGCCCTGCG 81 GGCCCAAGGACGTGTGTTGGTCCAGCCCCCCGGTTCCCCGAGACCCACGC 82 ACCTCTGGAGCGGGTTAGTGGTGGTGGTAGTGGGTTGGGACGAGCGCGTCTTCCGCAGTCCCA 83 CCCTTGGAAGGCGTGGAATTAGGAGAGAAATCCCTTAGTGGGCACACGAGTGAGTGCCCCTTGGA 84 CCGGCCGCCTCCCAGGCTGGAATCCCTCGACACTTGGTCCTTCCCGCCCC 85 TGCGTGGGTCGCCTCGCGTCTCTCTCTCCCACCCCACCTCTGAGATTTCTTGCCAGCACC 86 GACTTCGCGTCGCCCTTCCACGAGCGCCACTTCCACTACGAGGAGCACCTGGAGCGCAT 87 GAGGCTGCGAGCCTGGGCTCCCAGGGAGTTCGACTGGCAGAGGCGGGTGCAG 88 CCATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGGCGCCTGCCACCACTCCCGGC 89 CAGGGGACGTTGAAATTATTTTTGTAACGGGAGTCGGGAGAGGACGGGGCGTGCCCCGACGTGCG 90 ACCCTGGAACGACGCCAAACGCGACCCCTACCAGAGGACTCGCGCATGCGCAGC 91 GTTCCCAAAGGGTTTCTGCAGTTTCACGGAGCTTTTCACATTCCACTCGG 92 GAAAGACACCGCGGAACTCCCGCGAGCGGAGACCCGCCAAGGCCCCTCCAG 93 CCCTCTCCGCCCCAAACAGCTCCCCACTCCCCCAGCCTGCCCCCACCCTC 94 ATTGGGGCTACACTCACCACAAGAGCAGCAAACAAAGCACTGGGTGTGGTAGAGGCTGTCCAGGG 95 CCCAGCGGGGCCCTTAGCAGAGCCTCTCCAATCCTCGGCGCCTCCCCTACACAGGGTTCG 96 GCGCCCAAGGCCCTGCTTCTTCCCCCTTCCTCTTCCCCTTGCCCAGCCGCGACTTC 97 CCCAGCCGAGCAGGGGGAAGCATCCCCAGCTCCCGCACCCAAGTCCCTGG 98 GCCGCCACCTGTTGAGGAAAGCGAGCGCACCTCCTGCAGCTCAGGCTCCGGG 99 CGGGAGCGGATTGGGTCTGGGAGTTCCCAGAGGCGGCTATAAGAACCGGGAACTGGGCGCG 100 GGCGGGGAAGCGTATGTGCGTGATGGGGAGTCCGGGCAAGCCAGGAAGGCACC 101 GGAGCCCGCAGTGCGTGCGAGGGGCTCTCGGCAGGTCCAGACGCCTCGCC 102 CGCATCCGGCTCCGAAAGCTGCGCGCAGCCATCATCAGGGCCCTTCTGGTGTT 103 GCCGCTGCCAGTCGACTCAACCACCGGAGTGGCCCCTGCAGTTGGATAGCAACGAGAATCCTCC 104 GGCAGGAAAGGGCCCGAAGGCAGCGAAGGCGAACGCGGCGCACCAACCTG 105 ACAGGGTCTTCCCACCCACAGGGCACCCAGGCGCAGCGGAGCCAGGAGGG 106 ACCAGCCGCACAACTTTTGAAGGCTCGCCGGCCCATGTGGGGTCTTTCTGGCGGC 107 CAGCCGGGCAGATAACAAAACACACCCCAAAGTGGGCCTCGCATCGGCCCTCGCATTCCTGT 108 GGCCTCGACGCCGAGGGGTGTCCCTCTCCTCTCCTGGTCAGGGAACGCAGCAACTGA 109 GGGCGGCAGTCAGAGCTGGAGCTCCGGGGAATCAGACGGGCAGCCAAAGGAGCAGA 110 CGGAAGTGCCCCGGTCCTGGAGGGGGTGGAAGTTGGGGAGCCCAGGCAGGA 111 CCGAGAGGGAAGAAAAAAATACCCTCTTTGGGCCAGGCACGGTGGCTCACCCCTGTAATCCCAGC 112 TCCCAGCACTTTGGGAGGCTGAGGCGAGCGGATCACGAGATCAGAAGATCGAGACCATCCTGGC 113 CCCCGGGACCGGATAACGCCCTAAATCAGCGCAGCTGAGGCGAGGCCGTGGCC 114 CTCGCGACCCCGGCTCCGGGCCTCTGCCGACCTCAGGGGCAGGAAAGAGTC 115 CCCGAGGCTCGCCCGACTCCTGGCTGCCCTGGACTCCCCTCCCTCCTCCCT 116 CTCCAGCTGCACTGCCACCCAGCCTGCCTGGTGCTGGTGCTCAACACGCAGC 117 CCGGCCTTTCCGCCAGAGGGCGGCACAGAACTACAACTCCCAGCAAGCTCCCAAGGCG 118 GGGAAGGAGCCTCAGCTCCGCTCCAGGTCCTCCACCAGGTAGGACTGGGACTCCCTTAGGGCCTG 119 GGGAGTGTCCTCCTCCGGGACAGCCGGACTCCCGCCGACTTCTGGGCGGC 120 GGGGAGCGTGCGGGGTCGCCACCATCGGGACCCCCAGAGGAGAGAGGACTTG 121 GACAGATGCAGTGCGTGCGCCGGAGCCCAAGCGCACAAACGGAAAGAGCGGG 122 TCCTTTGCGTCCGGCCCTCTTTCCCCTGACCATAAAAGCAGCCGCTGGCTGCTGGGCC
123 TGCGGCTTCTCTCACCCTGCCAGGCCTTCCCAGCTTCCCTGAGGTTGCCTGCTACACCCG 124 GCCCCAGCCCTGCGCCCCTTCCTCTCCCGTCGTCACCGCTTCCCTTCTTCCA 125 CCCGCACCCCTATTGTCCAGCCAGCTGGAGCTCCGGCCAGATCCCGGGCTG 126 GCAGAGTTCGTGCAGGGAGTTCGCACATAGGAGAGCACCGGTCCGGGAGTGCCAGGCTCG 127 CGGCCGGTGTGTGTCCCCGCAGGAGAGTGTGCTGGGCAGACGATGCTGGAC 128 TTTTTGGGACAACCATGGAGGGGTCCTCCGTCTCGGCCTCTTCGCATATCCCCCTCCGTGATCC 129 CGGCGGGTCAGATCTCGCTCCCTTTCGGACAACTTACCTCGGAGAGGAGTCAAGGGGAGAGGGGA 130 CCCGGACGAGCTCTCCTATCCCGAAGTTGTGGACAGTCGAGACGCTCAGGGCAGCCGGGC 131 CGGCCGGTGGAGGGGGGAAGGGAGGAATGGTGTCAGGGGCGGATATCTGAGCCCTGAG 132 CACCAAAGCCACCACCCAAGCCAGCACCAAGGCCACCACCATATCCTCCCCCAAAGCCACTACCA 133 CCGCCAGGCCCGCTGGGTGGAATGTGGTCATGTTTCAGACTGCCGATGGCTTCCA 134 CCTGTCCGGATCCCTCCCCGCCTTGCTCAGATCTCTGGTTCGCGGAGCTCCGAGGC 135 GCGCAGGGGCCCAGTTATCTGAGAAACCCCACAGCCTGTCCCCCGTCCAGGAAGTCTCAGCGAG 136 TCCTGCCCCAGTAAGCGTTGGACCGGGAGACGCAGTGCTCAGCATCGGTCAGCAGGG 137 GCGCCGAGGAGTCGGGACAGCCCCGGAGCTTCATGCGGCTCAACGACCTG 138 GGCCCCAGCGGAGACTCGGCAGGGCTCAGGTTTCCTGGACCGGATGACTGACCTGAGC 139 CGCCGGCTGCGAAGTTGAGCGAAAAGTTTGAGGCCGGAGGGAGCGAGGCCGG 140 GGAGCCGCTTGGCCTCCTCCACGAAGGGCCGCTTCTCGTCCTCGTCCAGCAGC 141 AAATGTGGAGCCAAACAATAACAGGGCTGCCGGGCCTCTCAGATTGCGACGGTCCTCCTCGGCC 142 CCTCTCAGATTGCGACGGTCCTCCTCGGCCTGGCGGGCAAACCCCTGGTTTAGCACTTCTCA 143 TCTCCCCACGCTTCCCCGATGAATAAAAATGCGGACTCTGAACTGATGCCACCGCCTCCCGA 144 GCCCAATCGGAAGGTGGACCGAAATCCCGCGACAGCAAGAGGCCCGTAGCGACCCG 145 CGTGGGGGGCTGTTTCCCGTCTGTCCAGCCGCGCCCACTTCTCAGGCCCAAAG 146 GGGGCCCTCGTGTTGCTGAACGAGGGCGGGTTCGCGATGTAAATAAGCCCAGAGGTGGGGTC 147 CCTGGGTCCCCTCGGCTCTCGGAAGAAAAACCAACAGCATCTCCAGCTCTCGCGCGGAATTGTC 148 CATAAGATGCCCTCCTGCGGGCCCTCACCTTTTGACACTGCCTCCCACCGCACTGGGGTCAA 149 ATCCCGCTGCACCACGCCATGAGCATGTCCTGCGACTCGTCTCCGCCTGGC 150 GCGCGGTGAAGGGCGTCAGGTGCAGCTGGCTGGACATCTCGGCGAAGTCG 151 CATTTCTTTCAATTGTGGACAAGCTGCCAAGAGGCTTGAGTAGGAGAGGAGTGCCGCCGAGGCGG 152 AAGTTCACTGAGGGTTGTAAGAGTCAGAATGGACTCCATGGAAGTTATGGGGTGTGAATCAAACCT- CACA 153 CAGCACTTTGGGAGGCCGAGGTGGGCGGATTGCCTGAGGTCAGGAGTTTGAGACCAGCCTGG 154 GGGCAACACACACAGCAGCGACAGCCGGGAGGTAAGCCGCGTCCCAGCGG 155 CTGAGGGGAGGAGAAACTGGGCTGCGGGGGTCCGGGAGGGTGGATTCCGAGAAACTATGTGCCC 156 GTGTCCCAGCGCGTTGACGCAGCCTGTGATCCCTCGCGAGGCGAGGAGAAGGTC 157 AACCCCGACCTCAGGTGATCTGCCCAAAAGTGCTGGGATTACAGGCGTCAGCCACCGCGCC 158 AGGACGAAGTTGACCCTGACCGGGCCGTCTCCCAGTTCTGAGGCCCGGGTCCCACTGGAACT 159 GGAGACGCGTTGCCTTCGGCCGGGACCACTGCACCTGCCCGCGTGGGTAAT 160 CACAAAGGCCAAGGAGGGAGTGCGCAGGTCACGTGCGCCGGTGGTCAGCG 161 CTGACCTGGCGCTGCTGCCCCTGGTGCCTGACGGAGGATGAGAAGGCCGCC 162 AAAAGTGGCTCGGAACCCCAAATCCCGGTTAGATTGCAGGCACCGCCGGACGCTGGCTCCC 163 GTTCTGTTGGGGGCGAGGCCCGCGCAAGCCCCGCCTCTTCCCCGGCACCAG 164 GCGTCGACACTGCGCAAGCCCAGTCGCGCCTCTCCAGAGCGGGAAGAGCG 165 TGTCTGAGTATTGATCGAACCCAGGAGTTCGAGATCAGCTTGAGCAAGATAGCGAGAACCCCCGC 166 GAAAGACTGCAGAGGGATCGAGGCGGCCCACTGCCAGCACGGCCAGCGTGG 167 TTAGAGTCCCCTGGGTGTGTGCCCCGCAGAGGGAGCTCTGGCCTCAGTGCCCAGTGTGC 168 TTAGAGTCCCCTGGGTGTGTGCCCCGCAGAGGGAGCTCTGGCCTCAGTGCCCAGTGTGC 169 GGGGACGAGCAGGAAAAGGCCGGGGTGGGGGTGGAATTCCTCGGCGGGCAG 170 GGGAGCCTGAGGCAGGAGAATCGCTTGAATCCGGGAGGCGGAGGTTGCAGTAAGCCGAGATCGC 171 CTTTCGGAGGCCTCATTGGCTGAAGGTCGCCGTCGCCCAACGCAGGCCATTCTGGGT 172 CCTCCTGGGGTCAAGTGATCATCCTGGCTCAACCACCCAAGTAGCCGGGACTACGGGTGGCCGC 173 CCAATGCCCCAACGCAGGCCACCCCCGGCTCCTCTGTGGACTCACGAAGACAAGGTC 174 CTCTGAGAGCCACAGTCAGGTCTGTCCTCAGGGGTCGAGGCGGCTGCGCTGGGGCCT 175 GGACAGCCCGCTCGGGAGTCGGGCCTGGAAGCAGGCGGACAGCGTCACCT 176 GCCAGGATGGTCTCGATCTCCTGACCTTGTGATCTGCCCGCCTCGGCCTCCCAAAGTGTTGGG 177 TGCCCAGGGGAGCCCTCCATTTGTAGAATGAATGAGAGTCCAGGTTATGAACAGTGCCTGGAGTG 178 GACCGGTTTTATCCCGCTGAGGCCCTGGGAGATGGGTCTGGCGAGGCTCGTAGGCCGC 179 GCGGAACCTCAAATTGCGGCAGCGGAACCTAAAGTTTCAGGGTGAGATGCGTTGACTCGCGGTGG 180 GCTCAGTCCCTCCGGTGTGCAGGACCCCGGAAGTCCTCCCCGCACAGCTCTCGCT 181 CGGGCAGGCGGGACCGGGAGGTCAATAACTGCAGCGTCCGAGCTGAGCCCA 182 CGCGGTGGGCCGACTTCCCCTCCTCTTCCCTCTCTCCTTCCTTTAGCCCGCTGGCGCC 183 TCCCCGGCATGCGCCATATGGTCTTCCCGGTCCAGCCAAGAGCCTGGAACCACG 184 CTCCGCGCTCAGCCAATTAGACGCGGCTGTTCCGTGGGCGCCACCGCCTC 185 GCGAGAGGGTCGTCCGCTGAGAAGCTGCGCCGGAGACGCGGGAAGCTGCTG 186 GACCCGCCTGCGTCGCCACCCTCTCGCCGCTCCCTGCCGCCACCTTCCTC 187 GAGGGGTCCGGGACGAAGCCACCCGCGCGGTAGGGGGCGACTTAGCGGTTTCA 188 CCCCGAACAAAAAATTCAAATGGGAAAGAGAGGCAGATGGCAGAGAACAGGGGAGGGGCTGGGCA 189 GCGGCGAGGAGGGTCACAGCCGGAAAGAGGCAGCGGTGGCGCCTGCAGAC 190 GGCGGTCTCCGGTTCGCCAATGTGGCTGGGTCCGTAGGCTTGGGCAGCCT 191 CCTCCCCTTTGCGTGCGGAGCTGGGCTTTGCGTGCGCCGCTTCTGGAAAGTCG 192 AGCCTACTCACTCCCCCAACTCCCGGGCGGTGACTCATCAACGAGCACCAGCGGCCAGA 193 CAGGAGGTGAGGAGGTTTCGACATGGCGGTGCAGCCGAAGGAGACGCTGCAGTTGGAGAGCG 194 AGATTTCCCGCCAGCAGGAGCCGCGCGGTAGATGCGGTGCTTTTAGGAGCTCCGTCCGACA 195 CGGGCGTGGTGGTGGGCACCTGTAATCCCAGCTACTCAGAAGGTTGAGGCAGGAGAATCGCTTGA 196 TCCCAAATCCGAGTCTGCGGAGCCTGGGAGGGCTCCCAGCTTCCTATCCAAACCGCGCC 197 CCCTGGTCGAGCCCCCTTTCCTCCCGGGTCCACAGCGAGTCCCCTGAGGAAGGAGGG 198 CAGGGACCCGCGAGTCCCTGGACACGCACTGGCCAACGCCAGACCCCATC 199 CAAGCAGCCCTCGGCCAGACCAAGCACACTCCCTCGGAGGCCTGGCAGGG 200 GAGAAGGAGCGACCCCCAAAACGAAGCGGCTGGATCTGACCTTCCAAGGCCTGTTGGCGACGC 201 TTCTTCCCCGCAGGGTCAGCGCTGGGGCTCCGGCCGTAGAGCCACGTGACC 202 ATTCATTTCTGTTATGGAACTGTCGCGGCACTACAAAGTCTCTATGTAGTTATAAATAAACGTT 203 ACCGAGTGCGCTGCTGTGCGAGTGGGATCCGCCGCGTCCTTGCTCTGCCC 204 GTGTGGTGAGTGTGGGTGTGTGCGCGTCTCCTCGCGTCCCTCGCTGAGGTGCCT 205 GCCTGGGCTGCCAGACGTCGCCATCATTGTTCCATGCAGATCATGCCCATCCTGTGCAGAAG 206 GCGGGTCCGAGGCGCAAGGCGAGCTGGAGACCCCGAAAACCAGGGCCACTC 207 TCTCCATGGTGGCCATTGCCTCCTCTCTGCTCCAAAGGCGACCCCGAGTCAGGGATGAGAGGC 208 CGCGGGACTCCGCGGGATCTCGCTGTTCCTCGCTCTGCTCCTGGGGAGCC 209 CGCCCCCTTTTTGGAGGGCCGATGAGGTAATGCGGCTCTGCCATTGGTCTGAGGGGGC 210 GTTCTGTTGCCAATGCCATTCAGACCCCAGTCCGGGATTCCGCGCTCGGGGTGCG 211 TTTCCGCGAGCGCGTTCCATCCTCTACCGAGCGCGCGCGAAGACTACGGAGGTCGA 212 ACCCGGGTTCAGCGGGTCCCGATCCGAGGGCGTGCGAGCTGAGCCTCCTG 213 GAGAGTGGACGCGGGAAAGCCGGTGGCTCCCGCCGTGGGCCCTACTGTGC 214 GGCTACAGCCGCCATTTCCACGCTCCACCAATCAAATCCATTCTCGAGGAAGACGCACCGCCCC 215 AGCGCGCACAAAGCCTGCGGGAGGATCCATTGTAGCGGTCGCTCCTCCCCGCTTAGCG 216 ATCGGGCGAAGCTCGCGGGAAACCGCTCTGGGTGCGCAGGACAAAGACGCG 217 CGACGGAGCCGTGTGGAGGCCAAAACTCCTCCCGGAAGCCGCTACTGGCCCCG 218 CGCCCCACTACTGCCTGCAGCGGGCTTCCTTACTCCGCCTGCTGGTTCCTACTGGAGGAGAGGCC 219 GCACTCGTAGCGCGCTGGGCGAGCCGGACCGGAAGTTGAAGAAGTGAAGCGCCG 220 TGAAGGGAGGGCTTGGTGTGGGGACTTGCACTGGGCAGAGGGGCAGCTTCCCTGAGAGCAGCTA 221 CGGGAGCGCCCGGTTGGGGAACGCGCGGCTGGCGGCGTGGGGACCACCCG 222 CAGCACCGGAGAGGGCGCACTGCAAAGGCGGGCAGCAGACCGTGGAGAGC 223 GGCGCAGAGGCGTCACGCACTCCATGGTAACGACGCTCGGCCCGAAGATGGC 224 GCCGCGTCTGCGAACCGGTGACCTGGTTTCCCCTCCAGCCCTCACGGCTG 225 CGAGCTGTTTGAGGACTGGGATGCCGAGAACGCGAGCGATCCGAGCAGGGTTTGTCTGGGC 226 GCAGCGCTGAGTTGAAGTTGAGTGAGTCACTCGCGCGCACGGAGCGACGACACCCC 227 CGCGCGCTCGCCGTCCGCCACATACCGCTCGTAGTATTCGTGCTCAGCCTCGTAGTGGC 228 CGGAAGGGGTGAGGCCGGAAGCCGAAGTGCCGCAGGGAGTTAGCGGCGTCTCG 229 GGGGGCGTCGGGCTTGGGACAGGGGAGGATACCAGGGCCACCTTCCCCAACCC 230 CGGGCTGGAGGGTTATCTGGGAAGTCAGCCCCGGCCTCGGTCCTCTCCACGTTGCTGC 231 GGAACGAGGTGTCCTGGGAACACTCCCGGGTCTGTAACTTCGGACAAATCACGCTCGCTTTCCCG 232 AAACGAGAGAGTAGCCAGACTCTCCGCGCATGGAGCCGACGGCACCCACCAGCACACCG 233 TACTCACGCGCGCACTGCAGGCCTTTGCGCACGACGCCCCAGATGAAGTC 234 TGACCGGACAGAGCAGAGCGGGGACTGCAATTCCCAGAAGACCCCACGGTAGGGGCGG 235 AGACAATCCCGGAGGGGGAAAGGCGAGCAGCTGGCAGAGAGCCCAGTGCCGGCC 236 GGCCGAAGAGTCGGGAGCCGGAGCCGGGAGAGCGAAAGGAGAGGGGACCTGGC 237 CCAGGCTCCGCTCGTAGAAGTGCGCAGGCGTCACCGCGCATCCAGGAGCCAC 238 CTCTGATGACGCTCCAAGGGAAGAGGAAGTGGGGATCGGCGAGCGGGTGGGTGCGC 239 TGAAGGGTAATCCGAGGAGGGCTGGTCACTACTTTCTGGGTCTGGTTTTGCGTTGAGAATGCCCC 240 CGGTCCTGCATGCAATGCAAGCCTGAGCTCTCCCGCCATAAGGCTGCAGCGGTGTGG 241 CCTGGAGGAGGAGGAGTCAGGCCGGGTAGGAGGGCTAAGGAGGTTCCCGGGAAGGCAGGGCCC 242 GCTGCTGACATGACTTCTTTGCCACTCGGTGTCAAAGTGGAGGACTCCGCCTTCGGCAAGCCGGC 243 GAGCGGCGCAGGGTTGGAGAGGGAAGCGCTCGTGCCCACCTTGCTCGCAG 244 CCGATGACCGCGGGGAGGAGGATGGAGATGCTCTGTGCCGGCAGGGTCCC 245 GCCGCCCTACAGACGTTCGCACACCTGGGTGCCAGCGCCCCAGAGGTCCC 246 GGGCCGCAATCAGGTGGAGTCGAGAGGCCGGAGGAGGGGCAGGAGGAAGGGGTG 247 CGGCGGGACCATGAAGAAGTTCTCTCGGATGCCCAAGTCGGAGGGCGGCAGCGG
248 GTGGGCGCACGTGACCGACATGTGGCTGTATTGGTGCAGCCCGCCAGGGTGT 249 GAAAGAGCCGGAAACACCTGGTCTCTCAAGCAGGTACAGCCCGCTTCTCCCCAGCACCCCGGTG 250 GCAGCCGCAGCTGAGGTCACCCCGCTGAGGTGGTGGGGAGGGGAATGGTT 251 GGGCGGCCAGCGGTGACTCCAGATGAGCCGGCCGTCCGCGTTCGCGCCGC 252 GGGCACCACGAATGCCGGACGTGAAGGGGAGGACGGAGGCGCGTAGACGC 253 GAGGCCGCCATCGCCCCTCCCCCAACCCGGAGTGTGCCCGTAATTACCGCC 254 CGCGGGGAACGATGCAACCTGTTGGTGACGCTTGGCAACTGCAGGGGCGC 255 CTTGAGACCTCAAGCCGCGCAGGCGCCCAGGGCAGGCAGGTAGCGGCCAC 256 CACACCGTCCTCGCCCGGAGCGCAGAGGCCGACGCCCTACGAGTGGATGC 257 CCCTTGCACACGAGCTGACGGCGTGAACGGGGGTGTCGGGGTTGGTGCAA 258 GCAAAGTGATACCTGGCCGTCCCACCCTCTGGTCCCAGAAGGAGCTCTCGCTGGAGCCAGGCA 259 GGTTGGGGGACTGCCCGGGGCTTAGATGGCTCCGAGCCCGTTTGAGCGTGGTCTCG 260 CGTTGAAAGCGAAGAAGGAGCGGCAGTCCAGCAGCAGGCATTGCGCCGCTCGCTC 261 GAGTCCTCAACAACGACAGCGGGGACTGCGGGACCAGGGTAAAGCGGCGACGGCG 262 GCTCCTGAGAAAGCCCTGCCCGCTCCGCTCACGGCCGTGCCCTGGCCAACTT 263 GATGCTGCTGCCGGAGCTGAGGTCTTGCCTGGAGATCCGAACGAGACACCACGTCAACCGG 264 TGGTGGCAGGAGAGCGATGAGACGGGAAAGTGTGGGGCAAAGCTTACAGTCATTGGTCCAGA 265 CCACTCGCAGTCTGCGTGTGGGGGAAACGAGTGCCCGGCGTATGAAACGCCTAACTTCGCGAAA 266 CAGGCGGCTCCCGCAGTCTAAGGGACCTGGCGCGAGTCCGGGAAGCGGAGG 267 CTGCACGCGGTGCGAAGGGGCCAGCAGGGAAGGAGCAGAGGATGGGGGGT 268 CGGGGCCACAGGACCCTGGGGCTTGAGTCACACAAGAATGTCTCTGGGAGACCCGAGAGACTCA 269 CTTAGAGGAGGAGGAGCAGCGGCAGCGGCAGCAGGAGGCGACAGCTGCCAGCCG 270 CTCATACCAGATAGGCGCGAACGCCTCTGGCAGCGGCGTCCAGGGGGTCCGGC 271 GGGTGCTGGCACATCCGAGGCGTTCTCCCGACTCTGGACCGACGTGATGGGTATCCTGG 272 CATGATAAGCCAGGGACCTCGCGGCGCAGGCGGAGGGAGGGAGAGCGTCGC 273 CCCCCCACTCAACAGCGTGTCTCCGAGCCCGCTGATGCTACTGCACCCGCCG 274 TCCCACCTGCTGCCCGAGGAAGACTTCCGGGAGAAACGCTGTCTCCGAGCCCCCG 275 CCAGGTGAAGCCGAAGGGGAAGCGGATGGGGTTGCTGAACGCGGAGTCGGCG 276 CAGTGGCCCTGCGCGACGTTCGGCGCTACCAGAACTCCGAGCTGCTGATCAGCAAGC 277 AAGGATTACCTCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCAGCGGACACTGCGG 278 GCAGGCTCGTGGCGGTCGGTCAGCGGGGCGTTCTCCCACCTGTAGCGACTCAGGTTACTGAAAA 279 GAGGGAAGTGCCCTCCTGCAGCACGCGAGGTTCCGGGACCGGCTGGCCTG 280 GAAGCGCGACCTCGGGCGGTTGGAGGGGCTACCGGGTCTTACCAGTCCGTGGCG 281 CCCAACCCGAGCAAGACCTGCGCTGAAACGGATTGGCTGCCCTCCGCCCG 282 AGCCGCTCTCCCGATTGCCCGCCGACATGAGCTGCAACGGAGGCTCCCACC 283 ACCACACGGCCAAGGGCACCTGACCCTGTCAAAACCCCAAATCCAGCTGGGCGCG 284 CCGAGGCAGCCGGATCACGAAGTCAGGAGTTCGAGACCAGCCTGACCAACATGGTGAAACCCCGT 285 CCGGCGTCTCCGCGTGGGGCGCACCGTCCGACCCCCCCCTCCCGGTGTGC 286 GGCGCAGATGGCGCTCGCTGCGAGATGGATGCTCCAGGGCGGGTAATCACTCCTG 287 CCAGGCCTCCTGGAAACGGTGCCGGTGCTGCAGAGCCCGCGAGGTGTCTG 288 GGCGAGAGGTGAGAAGGGAAGAGGGCTCCCGGCTCTCTCGGGGCGGGAATCAGTGGGC 289 GCCTGCCTCGCCTCTGCCCGAGCTGATGAGCGAGTCGACCAAAAAAGAGTTCGCGGCG 290 CATTGCGGGACCCTATTTATCCCGACACCTCCCCTGACGTGGGCTCGGAACGCTCCCTTGGCAG 291 CGAAGGCCGGAGCCACAGCGCTCGGTGTAGATGCCGCACGGCTGGCCCTC 292 GGGCTGGATGAGTCCGGAAGTGGAGATTGGCTGCTTAGTGACGCGCGGCGTCCCGG 293 CGCCAGTGCGATTCTCCCTCCCGGTTCCAGTCGCCGCGGACGATGCTTCCTC 294 CGTCCGAGAAAGCGCCTGGCGGGAGGAGGTGCGCGGCTTTCTGCTCCAGG 295 TCCGGCTGCGCCACGCTATCGAGTCTTCCCTCCCTCCTTCTCTGCCCCCTCCGCTCC 296 CAGCCTCAGTTTCCCCATTGGTAAAGCATTGACGGTGGTTGCGGACGGCTTCTGCGGACAGAGCC 297 CCTGAGACAGGCCGAACCCAACTCTTCACAGGGCCGAATTCTTTGCCCGCAGCCCAGCACC 298 CAGAGGGGGGTGCCGGGGTCGCGGACTGCCACCAGGTTGAGGAAAGGAGGGG 299 CGACATCCTGCGGACCTACTCGGGCGCCTTCGTCTGCCTGGAGATTGTAAGTGGGGCCGC 300 ACCGCCTCCTCCCCGCTGTCTGGGTCGCAGGCCTTAGCGACGGGCTGTTCTCCG 301 CTCGGGACTCCAGGGCTGTCCCTCCCGCAGGCTGTCCTTCCACCTCCACCCCA 302 CGGCCGCTCCTCGTAGGCCAGGCTGGAGGCAAGCTCCTTCTCCTCAAAGCTGCGCTGC 303 CATCTCTTCCCCCGACTCCGACGACTGGTGCGTCTTGCCCGGACATGCCCGG 304 CCCAAGACCCTAAAGTTCGTCGTCGTCATCGTCGCGGTCCTGCTGCCAGTGAGTCCCGGCC 305 CCCACTCTTCCCCTGACTCCGACGGCGGGTTCGTCCTGCCCAGACATGCCCG 306 GTCCCCCTCTCTCTCTGCCCCCTCCCGGTGCCAGGCGCGCTTTTCCCCAGG 307 CAGCCTGCTGAGGGGAAGAGGGGGTCTCCGCTCTTCCTCAGTGCACTCTCTGACTGAAGCCCGGC 308 ACTGACTCCGGAGGCTGCAGGGCTGGAGTGCGCGGGGCTCCTACGGCCGAG 309 GGCCAGGCTCGGGCAGGGGCCGTGCTCAGGTGCGGCAGACGGACGGGCCG 310 CCGGGCTTCTGGGACGCTCAGCCGTGCGCTACCCGGTGCAGCTGCTTTCTCACC 311 TTTAGGTAGACGTGGAGGCGACTCAGATCGCCTCGCGGTTCCCGGGATGGCGCGGTCG 312 TGACCAGGACCGCAGGCAAGCACCGCGGCGACGGTTCCAGCCAGGAAAATGAG 313 GGGCCGGACCCGGCCTCTGGCTCGCTCCTGCTCTTTCTCAAACATGGCGCG 314 GCCGCGCTCCTCGCACCGCCTTCTCCGCAGGTCTTTATTCATCATCTCATCTCCCTCTTCCCC 315 GAGCTGCGAACTGGTCGGCGGCGCAAGGCGCGGACTCCGGTGAGTTGTGT 316 GCCCGCGTTCCTCTCCCTCCCGCCTACCGCCACTTTCCCGCCCTGTGTGC 317 ACGCGTCGCGGAGTCCTCACTGCCCCGCCTCGCTCTGGCAGAGTGGGGAG 318 GCGAGCAGCGGCCTCCAGCGCTGGTGGCTCCCTTTATAGGAGCGCTGGAGACACGGG 319 GGGGAAGGCGGAGGGCGAGGGGAAGAGTCACTGAGCTGCGGGGCATAGGGGGTCC 320 CTCTGCTCGCGTGCTGCTCTGAAGTTGTTCCCCGATGCGCCGTAGGAAGCTGGGATTCTCCCA 321 AGGGAGGTCGTTTTCTTCAGCTCCCCAGGTGGTCTGTGCTGGGTGTGCTGACGGTCCTTTTGGGA 322 GCCCCTGGCCCTGACTGCTGGTGCGAGGCAGTGCACGACTCAGCTGGCCG 323 GGCCGGGTAACGGAGAGGGAGTCGCCAGGAATGTGGCTCTGGGGACTGCCTCGCTCG 324 GGCCGGGACTTTCTGGTAAGGAGAGGAGGTTACGGGGAACGACGCGCTGCTTTCATGCCC 325 CAGTCTGGGGACCGGGGAGGCGGGGAGAGGGAAGGGGAAAGCGCGGACGC 326 GTCTATCAAAAGTCTTTTCGTTTCCCCCTCCCCCTTTCCCCACCGCCCACCAAAATGAGCCGCG 327 ATGCCGCCATCGCGGTTCATGCCGTTCTCGTGGTTCACACCGCCCTCAGGG 328 TCCCGGTCTTCGGATCCGAGCCGGTCCTCGGGAAAGAGCCTGCCACCGCGT 329 TGAGAGGCTCCGGTAAAGCCGTCCGGCAATGTTCCACCTGGAAAGTTCCAGGGCAGGGGAAGGG 330 CCCAGGGAGAGGGAGAGGAGGCGGGTGGGAGAGGAGGAGGGTGTATCTCCTTTCGTCGGCCCG 331 CCCGTCTTCTCTCCCGCAGCTGCCTCAGTCGGCTACTCTCAGCCAACCCC 332 GACCCCCCTTTGGCCCCCTACCCTGCAGCAAGGGTAGCGTGACGTAATGCAACCTCAGCATGTCA 333 CCCCGAAGCCCTTGCTTTGTTCTGTGAGCGCCTCGTGTCAGCCAGGCGCAGTGAGCTCAC 334 CGCGCGGCCTTCCCCCTGCGAGGATCGCCATTGGCCCGGGTTGGCTTTGGAAAGCGG 335 CCACCCAGTTCAACGTTCCACGAACCCCCAGAACCAGCCCTCATCAACAGGCAGCAAGAAGGGCC 336 AAGCAGCTGTGTAATCCGCTGGATGCGGACCAGGGCGCTCCCCATTCCCGTCGGGAG 337 CCACGCACCCCCTCTCAGTGGCGTCGGAACTGCAAAGCACCTGTGAGCTTGCGGAAGTCAGT 338 CCACGCACCCCCTCTCAGTGGCGTCGGAACTGCAAAGCACCTGTGAGCTTGCGGAAGTCAGT 339 CCCTCCACCGGAAGTGAAACCGAAACGGAGCTGAGCGCCTGACTGAGGCCGAACCCCC 340 TTGTCCCTTTTTCGTTTGCTCATCCTTTTTGGCGCTAACTCTTAGGCAGCCAGCCCAGCAGCCCG 341 TTCTCAGGCCTATGCCGGAGCCTCGAGGGCTGGAGAGCGGGAAGACAGGCAGTGCTCGG 342 CAGCGTTTCCTGTGGCCTCTGGGACCTCTTGGCCAGGGACAAGGACCCGTGACTTCCTTGCTTGC 343 AGGCAGGCCCGCAAGCCGTGTGAGCCGTCGCAGCCGTGGCATCGTTGAGGAGTGCTGTTT 344 GACTCTGGGTATGTTCTCGAAAGTTGTTACAACCCCAACCCAGGGTTGACCTCAAACACAGGAGG 345 CTCTGGCTCTCCTGCTCCATCGCGCTCCTCCGCGCCCTTGCCACCTCCAACGCCCGT 346 CGGGAGCGCGGCTGTTCCTGGTAGGGCCGTGTCAGGTGACGGATGTAGCTAGGGGGCG 347 CCCCAAGCCGCAGAAGGACGACGGGAGGGTAATGAAGCTGAGCCCAGGTCTCCTAGGAAGGAGA 348 GGGCTCTTCCGCCAGCACCGGAGGAAGAAAGAGGAGGGGCTGGCTGGTCACCAGAGGGTG 349 TTCTCTTCCATCCCATCCTCCCTTCTGGTCCTCCTTTCCACAGTGGGAGTCCGTGCTCCTGCTCC 350 CCGCCTCTGTGCCTCCGCCAACCCGACAACGCTTGCTCCCACCCCGATCCCCGCACC 351 CCGCGCCACGTGAGGGCGGCAAGAGGGCACTGGCCCTGCGGCGAGGCCCCAGCGAGG 352 CACTGCTGATAGGTGCAGGCAGGACAGTCCCTCCACCGCGGCTCGGGGCGTCCTGATT 353 CGGGAGCCTCGCGGACGTGACGCCGCGGGCGGAAGTGACGTTTTCCCGCGGTTGGAC 354 TGTCCTCCCGGTGTCCCGCTTCTCCGCGCCCCAGCCGCCGGCTGCCAGCTTTTCGGG 355 GGTGTCGCGACAGGTCCTATTGCGGGTGTCTGCGGTGGGAAGGGCGGTGGTGACTGG 356 ACATATGACAACGCCTGCCATATTGTCCCTGCGGCAAAACCCAACACGAAAAGCACACAGCA 357 GGAAACCCTCACCCAGGAGATACACAGGAGCACTGGCTTTGGCAGCAGCTCACAATGAGAAAGA 358 TTACCATTGGCTTAGGGAAAGGAGCTTACTGGGAACTGGGAGCTAGGTGGCCTGAGGAGACTGGG 359 AAGAACAGGCACGCGTGCTGGCAGAAACCCCCGGTATGACCGTGAAAACGGCCCGCC 360 ccggggactccagggcgcccctctgcggccgacgcccggggtgcagcggccgccggggctggggccg- gcgggagtccgcgggaccctccagaagagcggccggcgccgtgactca 361 TCACGGGGGCGGGGAGACGC 362 GCACAGGGTGGGGCAGGGAGCA 363 accgggccttccgcgcccct 364 TCCCACCTCCCCCAACATTCCAGTTCCT 365 TCACAGAGCCAGGCAAGCATGGGTGA 366 ggagcagcaggctcgctcgggga 367 gcccaaagtgcggggccaaccc 368 CGGAAAGAGGAAGGCATTTGCTGGGCAAT 369 CCAGCGGCCCCGCGGGATTT 370 ccgacagcgcccggcccaga 371 TGGGCCAATCCCCGCGGCTG 372 GGGCGGCTGCGGGGAGCGAT
373 CGCCAGGACCGCGCACAGCA 374 GCGGGCAAGAGAGCGCGggag 375 AGCGCGCAGCCAGGGGCGAC 376 CGTGCGCTCACCCAGCCGCAG 377 TGAGGGCCCGGGGTGGGGCT 378 ATATGCgcccggcgcggtgg 379 CCGCAGGGGAAGGCCGGGGA 380 TCCTGAGGCGGGGCCGTCCG 381 GGAGGCCGGGGACGCCGAGA 382 GCCGCCGGCTCCCCCGTATG 383 GCAGGAGCGACGCGCGCCAA 384 cgggggaaacgcaggcgtcgg 385 ccccccaccctggacccgcag 386 CGCCCGGCTTTCCGGCGCAC 387 ccgctgggccgccccTTGCT 388 CGCTTCTCCATAGCTCGCCACACACACAC 389 TCCGCGCACGCGCAAGTCCA 390 CGTCTCAACTCACCGCCGCCACCG 391 GACAAATGCGCTGCTCGGAGAGACTGCC 392 TGCGCCTGCGCAGTGCAGCTTAGTG 393 gaagtcaagggctttcaacctcccctgcc 394 tggatcccgcacaggggctgca 395 GCCGCCTGTGGTTTTCCGCGCAT 396 Gcgcgctctcccgcgcctct 397 TTCCGGCCCAGCCCCAACCC 398 TCCGGGTCAGGCGCACAGGGC 399 GGGGGCGGTGCCTGCGCCATA 400 GGCGCGGGCCCTCAGGTTCTCC 401 gcgtccgcggcTCCTCAGCG 402 GGGAGGCGCCCAGCGAGCCA 403 GCGCGCAGGGGGCCTTATACAAAGTCG 404 CCCCCACCCCCTTTCTTTCTGGGTTTTG 405 CGCGCGTTCCCTCCCGTCCG 406 gccggcggAGGCAGCCGTTC 407 TGCCTGGTGCCCCGAGCGAGC 408 CGGCGGCGGCGCTACCTGGA 409 GTGGTGGCCAGCGGGGAGCG 410 GGCGGCACTGAACTCGCGGCAA 411 CCTCGGCGATCCCCGGCCTGA 412 ACGCAGGGAGCGCGCGGAGG 413 TGAAATACTCCCCCACAGTTTTCATGTG 414 TCCGGGCGCACGGGGAGCTG 415 ggcggcggcgTCCAGCCAGA 416 AGGGTCGCCGAGGCCGTGCG 417 CCGCGCCTGATGCACGTGGG 418 gccgggagcgggcggaggaa 419 AGGGGCGCACCGGGCTGGCT 420 TGCCACGGGAGGAGGCGGGAA 421 cgggcatcggcgcgggatga 422 acaccgccggcgcccaccac 423 CCCCCAACAGCGCGCAGCGA 424 GCCCCGCTGGGGACCTGGGA 425 TCCCGGGGGACCCACTCGAGGC 426 GCCCGCGGAGGGGCACACCA 427 GGCCCACGTGCTCGCGCCAA 428 CGGCGGAGCGGCGAGGAGGA 429 GCCTCGCCGGTTCCCGGGTG 430 gcaggcgcgccgATGGCGTT 431 CCTCCCGGCTTCTGCATCGAGGGC 432 GCGGTCCGCGAGTGGGAGCG 433 AGCAGCGCCGCCTCCCACCC 434 CCGACCGTGCTGGCGGCGAC 435 TCCCGGGCTCCGCTCGCCAA 436 GCATGGGGTGCTCATCTTCCCGGAGC 437 CCCGAGAGCCGGAGCGGGGA 438 GCCGCTGCAGGGCGTCTGGG 439 gcgctgccccaagctggcttcc 440 TCAGGATGCCAGCGTGACGGAAGCAA 441 GGGCGGTGCCATCGCGTCCA 442 GGTGGGTCGCCGCCGGGAGA 443 AGGCGGAGGGCCACGCAGGG 444 GGTCCGGGGGCGCCGCTGAT 445 GCGGCCTGCGGCTCGGTTCC 446 CGGGAACCGTGGCGGCCCCT 447 gcggggaaggcggggaaggc 448 gcctcccggtttcaggcc 449 CAGCCCGCGCACCGACCAGC 450 CCCCCAGCCACACCAGACGTGGG 451 tgggcttcctgccccatggttccct 452 TCCGCGCTGGGCCGCAGCTTT 453 gcatggcccggtggcctgca 454 TGGGCAGGGGAGGGGAGTGCTTGA 455 TCCCCGGCGCCTTCCTCCTCC 456 TCCACCGCGCTTCCCGGCTATGC 457 CCCGCATCTGACCGCAGGACCCC 458 TGCGGACACGTGCTTTTCCCGCAT 459 GGAGCTGGAAGAGTTTGTGAGGGCGGTCC 460 CGGCCGCCAACGACGCCAGA 461 AGCGCCCGGTCAGCCCGCAG 462 TCCCGCCAGGCCCAGCCCCT 463 CCGATTCTTCCCAGCAGATGGCCCCAA 464 ACGCACACCGCCCCCAAGCG 465 TAGGCCCCGAGGCCGGAGCG 466 GGGGTTCGCGCGAGCGCTTTG 467 GCCAGTCTCCCGCCCCCTGAGCA 468 TGAGGAGGCAGCGGACCGGGGA 469 GCCGGCTCCACGGACCCACG 470 GCCGCCACCGCCACCATGCC 471 TTGAGTAAGGATGATACCGAGAGGGAAGA 472 tgggccaggcacggtggctca 473 CCCGGCGAAGTGGGCGGCTC 474 GGCGGCCTTACCCTGCCGCGAG 475 ggtggggccggcgAGGGTCA 476 TCGGCGCGGACCGGCTCCTCTA 477 GGCCCATGCGGCCCCGTCAC 478 TGGGATTGCCAGGGGCTGACCG 479 CGCCGGAGCACGCGGCTACTCA 480 CCCTCGGCGCCGGCCCGTTA 481 GCACAGCGGCGGCGAGTGGG 482 TCACCTCGGGCGGGGCGGAC 483 GAGACGGGGCCGGGCGCAGA 484 CGCATTCGGGCCGCAAGCTCC 485 GGCCCGAAAGGGCCGGAGCG 486 ACGGCGGCCGGGTGACCGAC 487 TCCACCGGCGGCCGCTCACC 488 GCGGTCAGGGACCCCCTTCCCC 489 CGGCCGAAGCTGCCGCCCCT 490 GGCGGCCTTGTGCCGCTGGG 491 TCGCGGGAGGAGCGGCGAGG 492 TGCCCACCAGAAGCccatcaccacc 493 TGGGCCATGTGCCCCACCCC 494 CCCGCCAGCCCAGGGCGAGA 495 gccccctgtccctttcccgggact 496 GGTGGGGGTCCGCACCCAGCAAT 497 ggggcccccgggTTGCGTGA
498 TGCCTGCACAGACGACAGCACCCC 499 AGGCCGCGCCGGGCTCAGGT 500 CGGGGTAGTCGCGCAGGTGTCGG 501 tgcaggcggagaatagcagcctccctc 502 ccggaaatgctgctgcaagaggca 503 gcgtcggatccctgagaacttcgaagcca 504 CCCGGCTCCGCGGGTTCCGT 505 GCGTCGCCGGGGCTGGACGTT 506 GGGGCCTGCCGCCTCGTCCA 507 CGCACACCGCTGGCGGACACC 508 CGCAAACCATCTTCCCCGACGCCTT 509 GGGCCCTCCGCCGCCTCCAA 510 CCACCACCGTGGCAAAGCGTCCC 511 TCACAGCCCCTTCCTGCCCGAACA 512 TGCTTGATGCTCACCACTGTTCTTGCTGC 513 ggccaggcccggtggctcaca 514 TGCGGGACGGGTGGCGGGAA 515 gGCTTGGCCCCGCCACCCAG 516 GGCGGGGAAGGCGACCGCAG 517 ggcgcccaaccaccacgcc 518 GAAAAGCCCCGGCCGGCCTCC 519 CCGCAGGTGCGGGGGAGCGT 520 CCCCGCCCACAGCGCGGAGTT 521 AGCAGGGGCCCGGGGGCGAT 522 CCATGACCGCGGTGGCTTGTGGG 523 GGCAGGTGCTCAGCGGGCAGACG 524 GGGTGCGCCCTGCGCTGGCT 525 GAATTTGGTCCTCCTGCGCCTGCCA 526 TGGCTTCCGCGGCGCCAATC 527 GGCCAGGAGAGGGGCCGAGCCT 528 cgagcgccggccccccttct 529 CGGTTGCGAGGGCACCCTTTGGC 530 tacccggacgcggtggcg 531 GCGCCGCCGAGCCTCAGCCA 532 tgcagcctcaacctcctgggg 533 CCTTGCCGACCCAGCCTCGATCCC 534 GGCGGCGTTCGGTGGTGTCCC 535 CCCGGACTCCCCCGCGCAGA 536 cggccccctgcaagttccgc 537 TGCCCAGGGGAGCCCTCCA 538 GCCGGCTGCAGGCCCTCACTGGT 539 TGTCACACCTGCCGATGAAACTCCTGCG 540 CCCCTGCGCACCCCTACCAGGCA 541 TCCTGGGGGAGCGCGGTGGG 542 AGTGGGGCCGGGCGAGTGCG 543 GCGTCCAGGCTGTGCGctcccc 544 GGCGCGGCGGTGCAGCCTCT 545 gaggcggcggcggtggcagt 546 CGCGCGACCCGCCGATTGTG 547 CCGCGGACGCCGCTCTGCAC 548 tgaacccgggaggcggaggttgc 549 TCTCGGCGGCGCGGGGAGTC 550 aggcggccacgggaggggga 551 GGACCCGAGCGGGGCGGAGA 552 AAGCACCTggggcggggcggag 553 GCCGCTCGGGGGACGTGGGA 554 CACCGCCAGCGTGCCAGCCC 555 TATTCTTggccgggtgcggt 556 CCGCTTCCCGCGAGCGAGCC 557 CAGCCGGCGCTCCGCACCTG 558 GCGGAGCGCGCTTGGCCTCA 559 ggcctcgagcccacccagacttggc 560 TGCCGCGCCGTAAGGGCCACC 561 ACGGCGGTGGCGGTGGGTCG 562 AACCTGCCCAGTTACTGCCCCACTCCG 563 TCCAGCGCCCGAGCCGTCCA 564 GCTGCTGCTGCCCGCGTCCG 565 CACTGCTTAGGCCACACGATCCCCCAA 566 GGCCGGACGCGCCTCCCAAG 567 TCGGCCAGGGTGCCGAGGGC 568 tccgcccgcccCACAGCCAG 569 CGCGCCCCAGCCCACCCACT 570 ccgtgctgggcgcaggggaa 571 TGCGCACGCGCACAGCCTCC 572 CGGTGAGTGCGGCCCGGGGA 573 TGGCCGAGAGGGAGCCCCACACC 574 CCCAGCGCCGCAACGCCCAG 575 GCCACAAGCGGGCGGGACGG 576 TCCTCTGGACAACGGGGAGCGGGAA 577 CGCGGGTTCCCGGCGTCTCC 578 GCGCCGCCCGTCCTGCTTGC 579 ACGCGCGGCCCTCCTGCACC 580 GGGCGGGGCAAGCCCTCACCTG 581 GGGAGCGCCCCCTGGCGGTT 582 GCGAATGGTTCGCGCCGGCCT 583 TTTCCGCCGGCTGGGCCCTC 584 TCTCCGGGTcccccgcgtgc 585 GCAGCCCGGGTAGGGTTCACCGAAA 586 GGGCGGAGAGAGGTCCTGCCCAGC 587 CCCTCACCCCAGCCGCGACCCTT 588 GCGATGACGGGATCCGAGAGAAAGGCA 589 TCCGCAGGCCGCGGGAAAGG 590 GGCCCCAGTCCACCTCTGGGAGCG 591 GCTTGGCCGCCCCCGGGATG 592 CCCTCCATGCGCAATCCCAAGGGC 593 gcggcgactgcgctgcccct 594 TGGGCTTGCCTCCCCGCCCCT 595 GGCGGCCCAAGGAGGGCGAA 596 gctgcgcggcTGGCGATCCA 597 TCACCGCCTCCGGACCCCTCCC 598 CCCTTCCAGCCACCCCGCCCTG 599 GCGGGACACCGGGAGGACAGCG 600 CCCTGGGTTCCCGGCTTCTCAGCCA 601 TGGCGGTGATGGGCggaggagg 602 CCAGCCCGCCCGGAGCCCAT 603 TGCCCGCGGGGGAATCGCAG 604 TGCCGCGAGCCCGTCTGCTCC 605 TGCGGCCCCCTCCCGGCTGA 606 GCAGCAGGGCGCGGCTTCCC 607 GCCGCAGCACGCTCGGACGG 608 TGCGGAGTGCGGGTCGGGAAGC 609 GGCGCGGGGGCAGGTGAGCA 610 ggcgcgggggcaggtgagcat 611 CAGTGACGGGCGGTGGGCCTG 612 CGGCGACCCTTTGGCCGCTGG 613 CCGCGGCAGCCCGGGTGAA 614 GGGCGAGCGAGCGGGACCGA 615 TGGGGCAGTGCCGGTGTGCTG 616 TCGCTGGCATTCGGGCCCCCT 617 GGAGCCGTGATGGAGCCGGGAGG 618 TGCCAGGGTGTCTTGGCTCTGGCCT 619 CCGGCTCCGGCGGGGAAGGA 620 GGCCAGGGTGCCGTCGCGCTT 621 TCGGCTCGGTCCTGAGGAGAAGGACTCA 622 GCGCGGGGAACCTGCGGCTG 623 GCCGCCGCTGCTTTGGGTGGG
624 CACCTGAGCCCGCGGGGGAAcc 625 GAACGCCGGCCTCACCGGCA 626 CCCGTGGTCCCAGCGCTCCTGCT 627 GTGCGACCCGGCGCCCAAGC 628 TGGCTCTGCGCTGCCTTTGGTGGC 629 cgcgcgggcggcTCCTTTGT 630 TGGCCCGTTGGCGAGGTTAGAGCG 631 gacccggcatccgggcaggc 632 GCCCGGACTGTAATCACGTCCACTGGGA 633 CCGCCGCCAACGCGCAGGTC 634 CGCTGCCAGCTGCCGCTCCG 635 AGCGCCCACCTGCGCCTCGC 636 GCGGGCCAGGGCGGCATGAA 637 GGCTGCGACCTGGGGTCCGACG 638 GGTTAGGAGGGCGGGGCGCGTG 639 CAGCGCACCAACGCAGGCGAGG 640 TCGGCTGGCCCCGCCCACTC 641 CGGGGTTGCCGTCGCAGCCA 642 TCCGCACTCCCGCCCGGTTCC 643 ggaccccctgggcagcaccctg 644 cgaggcagccggatcacg 645 GGCGCGTGCGGGCGTTGTCC 646 CCAGGATGCGGCAGCGCCCAC 647 cgATGCGGCCCGCGGAGGAG 648 CGTTCTGCGCGCGCCCGACTC 649 CCCCGCCGTGGGCGTAGTAAccg 650 AACCCGCCCGGGCAGCTCCA 651 GCAGCGGTCGCGCCTCGTCG 652 CGCAATCGCGCTGTCTCTGAAAGGGG 653 GGAGCGCCCGCCGTTGATGCC 654 CCATGGCCCGCTGCGCCCTC 655 TGGGGGCGGGGTGCAGGGGT 656 CCGACCCTGCGCCCGGCAGT 657 CGGCTTCAAGTCCACGGCCCTGTGATG 658 ACCCCACCTGCCCGCGCTGC 659 ggcgcgcggagacgcagcag 660 CGTGAGCCGGCGCTCCTGATGC 661 CTGCCGCGGGGGTGCCAAGG 662 CCTGCTGCGCGCGCTGGCTC 663 CCTGGCGGCCCAGGTCGCTCCT 664 GAGCGCCCCGGCCGCCTGAT 665 CGCCGCACGGGACAGCCAGG 666 GCCCGGACATGCCCCGCCAC 667 cgggggccgccgcctgactt 668 CCAGTGGCGGCCCTCGGCCT 669 CGCCCGGCGCGGATAACGGTC 670 TGCTCCGGGTGGGGAGGGAGGC 671 TGCCTGGGCGCAGAACGGGGTC 672 GGGTCCTAATCCCCAGGCTGCGCTGA 673 TCCGCGTCCCCGGCTGCTCC 674 GGGCAGGGCTGACGTTGGGAGCG 675 GCCGTGGGCGCAGGGGCTGT 676 cctgcgcacgcgggaagggc 677 CGCGGACGCAGCCGAGCTCAA 678 CGACCCATGGCGGGGCAGGC 679 tccgctccccgcccctggct 680 tgtgccgcgcggttgggagg 681 TCACTCACGCTCTCAGCCCGGGGA 682 CGGCAAGCGGGCTTCGGGAAGAA 683 CCCCGCGGGCCGGGTGAGAA 684 CGGCGGCGGCTGGAGAGCGA 685 CGGGCCCCGGGACTCGGCTT 686 GACGGAATGTGGGGTGCGGGCCT 687 TGCGGCTGCTGCCGAGGCTCC 688 ACCGCTGCGCGAGGGAgggg 689 GGGGGTGCGGCGTCTGGTCAGC 690 GGCCGGGGGAAATGCGGCCT 691 tgcctggtaggactgacggctgcctttg 692 AGCGCGGGCGCCTCGATCTCC 693 TCCCGGCTGGTCGGCGCTCCT 694 CCGGGGCTGGGACGGCGCTT 695 GGGCGGGGTGGGGCTGGAGC 696 GTGCGGTTGGGCGGGGCCCT 697 GGCGGTGCCTCCGGGGCTCA 698 GGCGGTGCCTCCGGGGCTCA 699 CGGGAGCCCGCCCCCGAGAG 700 TCCTGCCATCCGCGCCTTTGCA 701 AGGCACAGGGGCAGCTCCGGCAC 702 CGACCCCTCCGACCGTGCTTCCG 703 CCCGCAGGGTGGCTGCGTCC 704 GCGTCTGCCGGCCCCTCCCC 705 TAGGCCGCCGGGCAGCCACC 706 GGGGAGCGGGGACGCGAGCA 707 GCCGGCTGGCTCCCCACTCTGC 708 TCGCTCACGGCGTCCCCTTGCC 709 TCCCCGCTGCCCTGGCGCTC 710 GGCCAGAGGCAGGCCCGCAGC 711 TGCCCGGGTCATCGGACGGGAG 712 CCCAGTGCGCACGGCGAGGC 713 AGCGTCCCAGCCCGCGCACC 714 TGCTCCCCCGGGTCGGAGCC 715 CGCTCGCATTGGGGCGCGTC 716 TGCGGCAAGCCCGCCATGATG 717 TCTTGAGCCTCAGGAGTGAAAAGGCCCCTTG 718 GGACCATGAGTGTTTCCATGCTTGGCATCAGA 719 tcagccactgcttcgcaggctgacg 720 cggccagctgcgcggcgact 721 TCGGAGAAGCGCGAGGGGTCCA 722 GCCGGGTGGGGGCTGCCTTG 723 tcctcgcccggcgcgattgg 724 GGCCGTGCAGTTGGTCCCCTGGC 725 GCGAGCCTGCTGCTCCTCTGGCACC 726 gccagagctgtgcaggctcggcattt 727 tgcccagcaaatgccttcctctttccg 728 TGGCCTGACCACCAATGCAGGGGA 729 TCCACCTGGGCTTCTGGGCAGGGA 730 agctggcctgcgccccgctg 731 AGCCGCGGCAGCGCCAGTCC 732 GGGGCCGGGCCGCTCAGTCTCT 733 GCAGTGAGCGTCAGGAGCACGTCCAGG 734 cccgATCCCCCGGCGCGAAT 735 GGCGTGACCGTGGCGCGGAA 736 AGCGGCCCGCAGAGCTCCACCC 737 GGCAGGCGGGCGCAGGGAAG 738 tctgccccgggttcacgccat 739 CGGGCGGGCCCTGGCGAGTA 740 GCAAGCCCGCCACCCCAGGGAC 741 GGCCCAGGCGGATGGGGTTGG 742 TCCGAGAGGCGTGTGGTAGCGGGAGA 743 AGGCGGCCGCGGGCGTTAGC 744 aaggcagcgcgggccaccga 745 ggcatcctgcccgccgcctg 746 TGGGGCGGGGTCTCGCCGTC 747 TCGGGCTCGCGCACCTCCCC 748 CCAGGTGCGCGCTTCGCTCCC
749 ACCTGCGCCACCGCCCCACC 750 GCCGAGCAGAGGGGGCACCTGG 751 TCGCGCCGCTCTGCGTTGGG 752 CCGCCGGGGCAGAAGGCGAG 753 TCcactggacaggggtgggagcctctg 754 gcccaccggcgctgcgctct 755 GCGGTGCCAGCCCCGCTGTG 756 GACCCGCCTGCGTCCTCCAGGG 757 CCCATCACAGCCGCCCAACCAGC 758 GAGCggggcggagccgagga 759 TGCAATTGTGCAGTGGCTGCGTTTGTTTC 760 CCCGACCGGATGCTCCTTGACTTTGCC 761 GCGAGCGCGCGCACCGATTG 762 CACTCCGCCGGCCGCTCCTCA 763 TCGGGGGTCCCGGCCGAATG 764 GCTCTCCCAGCTGCACGCCAACTTCTTG 765 GGAGGAGCCTGGCGCTGGCGAGT 766 TGGCTCTGGACCGCAGCCGGGTA 767 ACGGCGGCGTCCCGGGTCAA 768 TGGCCAAGCGCTGCCACTCGGA 769 CGCAGGCCGCTGCGGTGGAG 770 GCGCCTGCGCCATGTCCACCA 771 TGGTGCCTCCCGCAACCCTTGGC 772 GCCCGGCTCCAGGCGGGGAA 773 GCAATGCTGGCTGACCTGGACC 774 CGCCCGCCCGTCGGGATGAG 775 TGCCCCCACCATCCCCCACCA 776 GGCGCGAGCGGCGGGAACTG 777 GGCGCCGCTCGCGCATGGT 778 CCCGCTCTGCCCCGTCGCAC 779 GTAGCGCGGGCGAGCgggga 780 AGCGCCGAGCAGGGCGCGAA 781 ggcggcggccacgcaggttc 782 ccctcccgcacgctgggttgc 783 TCACGGCCGCATCCGCCACA 784 CGGCGCCGGCCGCTCTTCTG 785 CCGGCAGAGAATgggagcgggagg 786 TCGGCCGGGGCGCCAGGTCT 787 TGGGGCTGCGGGCGATGCCT 788 GGCTGCGGGGACCGGGGTGT 789 CGGCCCAAGCCGCGCCTCAC 790 ccgcgcccggAACCGCTGCT 791 TCGGCCGGGAGCGTGGGAGC 792 TGCAGACATTGGCGCGTTCCTCCA 793 GGACCCACGCGCCGAGCCCAT 794 GGAGGGGGCGAGTGAGGGATTAGGTCCG 795 TCCCCTCACGCCGATGCCACG 796 CCATGCCCGCCCCAGCTCCTCA 797 CCGCCGTGATGTTCTGTTCGCCACC 798 CGTGGCTGCCCCTGCACTCGTCG 799 tctggccagtccgtgaaggcctctga 800 CCGGGGTGCAAGGGCCACGC 801 cgccgcgcTTCCTCCCGACG 802 AGCGACCCGGGGCGTGAGGC 803 TGCGGAAACCTATCACCGCTTCCTTTCCA 804 ggcagggcggggcagggttg 805 GGGTCTCCAGACTGATGGGCCGGTGA 806 CGCTGAAGCCGCTGCTGTCGCTGA 807 TCCCACGCTCCCGCCGAGCC 808 AAATATgccggacgcggtgg 809 CGCCTTTCCGCGGCGGGAGC 810 CCCAGCCCAGGCCGCAGGCA 811 ccccgcaggggacctcataacccaa 812 GAGTTGGCTCGGCGTCCCTGGCA 813 tccctccgcctggtgggtcccc 814 TGACCCCTGGCACATCAGGAAAGGGC 815 TGCCCCGCAAGAACGGCCCAG 816 GGCCTCGGAGTGCGACGCGAGC 817 GCGCCAACCCAGACCCGCGCTT 818 TGCAAGCGCGGAGGCTGCGA 819 AGCCGGGCCACGGGCAGACA 820 CCCGGGCGGCCACAAAGGGC 821 CCCCATCCCAGGTGACCGCCCTG 822 TGACTCTGGGGGAAGCACGCGACG 823 GGTGCGGCCGAAGCCGTCGC 824 TGCCCCTCGGGCCCTCGCTG 825 GGCCACGGGGACCGGGGACA 826 GGGCGCCGCAGGGCGACAAC 827 GCAGCGCGCTTTGGGAAGGAAGGC 828 GGGTTCCACCCGCGCCCACG 829 TCGCGGCCCAGACCCCCGAC 830 CGAGACCCGGTGCGCCTGGGAG 831 aggtgcccgccaccatgc 832 cgcccaggctggagtgcagtggc 833 GCCGGCGAGGTCTCCGCGGTCT 834 CGCAGGGCCACCGGCTCGGA 835 GCCCCGGAGCATGCGCGAGA 836 CCCCTGGGGACCCCTGCCATCCTT 837 TTAccccgcgccgcgccacc 838 GCGGGCCGAGCCCACCAACC 839 GCGCGGTGGCCGCTTGGAGG 840 CCCGCCAGCGGCctgtgcct 841 CGCGCATGCCAAGCCCGCTG 842 GGCGCAGGAGCAGTTGGGGTCCA 843 TGGGGTAGGCGGAACGCCAAGGG 844 CCCGCTTCACGCCCCCACCG 845 GCAGCCCGGGTGGGCAAGGC 846 TGCAGTTGCCCTTGCCCTGCGAC 847 TGGCCGGGCGCCTCCATCGT 848 GCCTGCGATGGGCTCGGTGGG 849 CCGCGGTTCGCATGGCGCTC 850 TGGGCCATCTCGAGCCGCTGCC 851 TGGGGGAGTGCGGGTCGGAGC 852 CTGCCGCGCCCCCAGCACCT 853 GGCTGCTGGCGGGGCCGTCT 854 GGGCGCGGCGACTTGGGGGT 855 aaactgcgactgcgcggcgtgag 856 TGCTGGGGCCGTGGGGGTGC 857 TCCGCGCTGCCCGGGTCCTT 858 GTGGCGGCCCCCGCGGATCT 859 GGGGAGGCGCCACCGCCGTT 860 GGAGCGGGAGGGCGCTGGGA 861 tgaaggctgtcagtcgtggaagtgagaagtgc 862 ggagaaaatccaattgaaggctgtcagtcgtgg 863 ggggacaaccggggcggatccc 864 CCCGGGAGGAGAGGCGAACAGCG 865 AGTGCGCGGGTGCCGGGTGG 866 TGGCATCCCCTACCCGGGCCCTA 867 GAGGCTGGTTCCTTGTCGTCGGTTGGG 868 GCGGGGTCAGGCCGGGGTCA 869 GGCAGCGGCTGGAGCGGTGTCA 870 GCCCGGGCACACGCCCCATC 871 gcaccgccacgcccactgcc 872 TGTCATGCTTCTTTCTCCCCACTGACTCA 873 gcccaggctggggtgcaatggc 874 CGCCTCGGGGGCCACGGCAT
875 CGTGGGTCCTGGCCCGGGGA 876 TCCCCGGGCGGCCATTAGGCA 877 GGCGGGGGTGGGAGTGATCCC 878 CGTCAGTCCCGGCTGCGAGTCCA 879 CCGGGGTCCGCGCCATGCTG 880 CATGGCGGGGCCCGAGCGAC 881 CCGCCTCCTTGCCCCGACACCC 882 TCGGACACGCCTTCGCCTCAGCC 883 CGAGCTGGGCGCAGGCGCAA 884 GCGGGGTTGTGTGTGGCGGAGG 885 accgcgcccggccTGCAAAG 886 GCGGGGCCAGAGAGGCCGGAA 887 GCCCCAAGGGAAGATGCAGGGAGGAA 888 gccccaagggaagatgcagggaggaa 889 GCCCGCACGTGCACCACCCA 890 GGGTGACGAAGTGGTGTCTTTACCGAgga 891 CCGCCGTGCGCCTGTGGGAA 892 ggctgctgcgggaggatcac 893 TGGGCATCCAGAAAAATGGTGGTGATGGC 894 gccgcgccgggccCTATGAG 895 CCGCCATGCGGGCAGGGACC 896 TGTTACAggctggacacggtggctc 897 cggaacttgcagggggccga 898 TGCAAAATCCTCCCCTTCCCGCACCC 899 GCGCTGGAGCCACGCGACGA 900 GGGGTCCGCTCCCGCGTTCG 901 CGCCCCGGGCTGAGAGCTGGGT 902 GGCCCTTCGGGGGCCGGGTT 903 TGGCCACAAAGGGGCCGGAATGG 904 ACCCCAGCGCGTGGGCGGAG 905 GGGCTGCGGGGCGCCTTGAC 906 GCACCGCGGCTGGAGCGGAC 907 AGGCGATCCCAAGGCTGTTGGAGGC 908 tccacccgccttggcctccca 909 cggcgggaaggcggggcaag 910 ggagccgcggcgtgagtgcg 911 GGCCGGCACCCCACGCCAAG 912 GCGGGGCGGAGCGCACACCT 913 GCGGCCAGCAGCGCGTCCTC 914 CCGACAGCCGGCAAGGCCCAA 915 ttgtttttgtttgtttgttttgaaagggag 916 CCCCGGTTTCCCCGCGCCTC 917 GGCTGGACGCGCCCTCCGACA 918 TCCCACGCGCCCGCCCCTAC 919 cggccacgccttccgcggtg 920 GGCTCCGCTGGGGCGCAGGT 921 GCCGCCCCGTGTCGTGCGTC 922 GGCGTCAGTTGGAGTGTGGGGTCGG 923 CCGAGCGGGGTGGGCCGGAT 924 CATCGCGCGGGACCCAACCCA 925 CAGTGGGTGGATCTCACCTGCCTTCGG 926 GAGGCCGCGGGGCTCCGACA 927 GAGCCTGCCCTATAAAATCCGGGGCTCG 928 TCCCGGCGGGTGGTGCCTGA 929 TCTGAGCGCCCGCCGCCTGC 930 GGCTGCCGGCGCGGGACCTA 931 TCCGGGGCATTCCCTCCGCGAT 932 TGGCGGCGGCCCCTGCTCGT 933 cggcgCGCGACTGGGAGGGA 934 GGCGCCAGCGCAACCAGAGCG 935 CGAAGGTGGCGCGGCCTGGA 936 CCCAGCGGGCTTCGCGGGAG 937 CCCGCTTGCCCCGCCCCCTA 938 CCCACACCTCCACCTGCTGGTGCCT 939 ATGCAGCCCCGCCGGCAACG 940 CCGGATGCCCGGTGTGCCTGG 941 GCGAGCAGGGACGCAGCTCTGGTG 942 CGCGCTCGGCCCGCTCAGTG 943 TGGTGCCGGCAGGGAGGGGA 944 GGGCGGTGGCGATGGCTGGC 945 GGCTGTTGGTCTTTTTCCCAGCCCCGAA 946 CCGGGCCGGCAGCGCAGATGT 947 CGGAGGGCGATGGGGCCCTG 948 GGGGCCGGGCTGCGAAGCTG 949 TGCCTGGGCACCCCACGGACG 950 GCCCTACGTCCGGGCAGCACGC 951 CTGTGCGCGTCCCCGCCGTG 952 TGCAGCGGCGCCTCGGACCC 953 ccgctgggcgcgctgggaag 954 GGCGCATGCTCTGCGCGTATTGGC 955 GGGTGGGCGGGCCGTTCTGAGG 956 GGGCTGCCGGGTTGGCGCAG 957 GGCGCGTGCGGAAAAGCTGCG 958 TCCAGGCCGCCCTCGGGTCA 959 GGGGAGGGGGCGCAGCCAGA 960 GGCAGCGTGGTCTTCCACTTCCCCCT 961 GGGATCGAGGGATCGAGGCAGGGGA 962 CGGCCATGAGCGCCTCCACGC 963 CCCGGTGTGCGGCAGCGACG 964 TTGGGGCGGCCGGAAGCCAG 965 CGCAGCGGCGGCGTCTCGGT 966 CCGCGACCTCCCCAAGCCACCC 967 GGCGGCCGACCGCGAACACC 968 CCCCATTTCCGAGTCCGGCAGCA 969 CCCAGCCTGGCCTCTCCTCTCAGGCA 970 cggctctttcctcctcaagagatgcggtg 971 CGCCGCCGTCCCTGGTGCAG 972 TGGGGACCCCTCGCCGCCTG 973 GCGCCCAGCCCGCCCCAAGA 974 caggggacgcgggcgtgcag 975 CCGGGCGGGGCCCAACTGCT 976 CCCGAGCAGGGCCGGAGCAGA 977 CCCCTCCACATTCCCGCGGTCCT 978 TCCTTTGTGGCCTGGGCAGGATGCAG 979 GCAGCGCGCGGTTTGGGGCT 980 GAGGCCTGCGGGCGCTGCTG 981 TCACGGTTGCTGGGCCGTCGC 982 CGGGGTGGGCCTCGCGGAGA 983 GCCTGCGCTCCTGGCGCCCT 984 CGCCTTCGGAGAGCAGAGTCAACACGGA 985 TGCCCCTAAATGAGAAAGGGCCCTTGAG 986 GCCACGCCCCGGGACCGGAA 987 TCCCGCCCAGGGGCCTCCCA 988 ccccgcgcccggccAAAGAA 989 GGACCGCCGCACAGCCCCAA 990 GGGCAGCGGTGGCCGTGCAT 991 TTCCTGCGCCGCCCCCTCCC 992 GGCGTCTCCCTGTCCCCGCCTG 993 GCCGGCCTCGCGCACCGTGT 994 CCCGGGACGTGCGCGCTTGG 995 TGTCCCCCGAGCCGCCCTGC 996 TCGCTCTCGTGCAGCGGCGTCA 997 CCCGCGCGCTGCAGCATCTCC 998 CCCCAGCTGCCGCCATCGCA 999 GCCCGGGCCCGCCTCAAGGA
1000 TGCCGGCGAGGCCTTTTCTCGG 1001 GGCGGGTGGGGAGCGCGAAC 1002 CCCGCCGCCGCTGGTCACCT 1003 ccggctgcctcggcctccca 1004 ggtgtgcaccaccacgcc 1005 GGCGCGTCCCGGCGGCTTCT 1006 AGTCCCTGCGCCCCGCCCTG 1007 TGCCCCCAAACTTTCCGCCTGCAC 1008 CTTGCGGCCACCCGGCGAGC 1009 TCGCGCGGAAACTCTGGCTCGG 1010 GCTGCGGCCCAGAGGGGGTGA 1011 CGGCGGGCTTGGGTCCCGTG 1012 TCCCCCGCCGCACCAGCACC 1013 GCGCGGTGCGGGGACCTGCT 1014 GCCGGACGCTCGCCCCGCAT 1015 GAGTGCTCTGCAGCCCCGACATGGG 1016 CCGCGCAGACGTCGGAGCCCAA 1017 TGGCCGAGGCGCGTGGCGAG 1018 GGCCGCGCTGCCCCAGGGAT 1019 CCGGGGGCGGACGCAGAGGA 1020 GGGGGCGGAGCCTGGGAATGGG 1021 GGGCGGGCCCTGTGGGTGGA 1022 CCGCTCCCCCATCTCCACGGACG 1023 GACCCAGGGAGGCGCGGGGA 1024 TGCCCGGCCGCAGGTGACCA 1025 GCGCCGGGAGTGGGCAGGGA 1026 ACCCAGGCCGGCGCGGGAAG 1027 ttcccgccgcccggtcctca 1028 CGCGCCGGTGACGGACGTGG 1029 AACCCTCCCAGCCAAAACGGGCTCA 1030 CGGGCGAGGCCGCCCTTTGG 1031 GGCCGCGGACGCCCAGGAAA 1032 CCGTTTGGAACGTGGCCCAAGAGGC 1033 CCCGCCTCCGCTCCCCGCTT 1034 ggtggcggcggcagaggagga 1035 CGCGGGGAGCAGAGGCGGTG 1036 gggcgcccgcgctgagggt 1037 GGGCCTGGCCTCCCGGCGAT 1038 CACCCGGCGTCCGCACCAGC 1039 CGGCGCTGGTTTGGCGGCCT 1040 ccaggagccccggaggccacg 1041 GCGATCTCCTGCCCAGGTGTGTGCTC 1042 ACTGCCCGGGCTCGCCGCAC 1043 TGCGGCAACGGTGGCACCCC 1044 GGAGCGAAGCTGGCGGAACCCACC 1045 GGCGGCCGACGGGGCTTTGC 1046 GGCCGCGGGTGCCTCGGTCT 1047 GCGCTCCAGCCATGGCGCGTT 1048 GCCGGACGGGCGTGGGGAGA 1049 TCCCCCGCGACTGCCCCTCC 1050 GGGTGGCAGCGGGTGCGGAA 1051 gctcgcccgctcgcagccaa 1052 CGAGGTTCCGCAGCCCGAGCCA 1053 GCGCGGGGGACCGAAACCGTG 1054 GCCGAGCCCGGCCCAAAGCC 1055 TGCCAACGTTCACCCGGCTGGC 1056 GACAGTGCGAGGGAAAACCACCTTCCCC 1057 GGGTCGGGCCGGGCTGGAGC 1058 GGGTCGGGCCGGGCTGGAGC 1059 GCGGGGCCGAGGGGCTGAGC 1060 GCCCGGCCACCTCGGGGAGC 1061 ACTGTCTGCCAAGCCAGCCCCAGGG 1062 GGATGGTGGCGCCGGGCTGC 1063 TCCAGGAGGGCCAGGTCACAGCTGC 1064 CGGCTGGCTCGCTTGGCTGGC 1065 TCCGGCGCTGTTGGGCAGCC 1066 CCTGCGCACGCGGGAAGGGC 1067 TCTTCCCTTCTTTCCCACGCTGCTCCG 1068 CAGCGCCCCCGCCTCCAGCA 1069 GCTGCGCGGCTGGCGATCCA 1070 GCCGACGACCGGAGGGCCCACT 1071 TGCCCAGGCTGGCCCCTCGG 1072 CGCGGCCCTCCCCAGCCCTC 1073 CCCCGCCCGGCAACTGAGCG 1074 AAGAGCCCGCGCGCCGAGCC 1075 TGCCCACTGCGGTTACCCCGCAT 1076 GCATGGTGGTGGACATGTGCGGTCA 1077 CATAGAAGAGGAAGGCAAAGGCTGTGACAGGCA 1078 TCATCCTAGACTTGCAGTCAAGATGCCTGCCC 1079 agccagcggtgccggtgccc 1080 gccccgctccgccccagtgc 1081 CACGGGGGCGGGGAGACGCGGGGTGCACTTCTCGCCCCGAGGGCCTCCGGCGAAGCAACCCGGCAGC- CGCGGCGCCCGAGGGCCTGGCGCTGGTCTGGGGCTGCGCCGGGGGCGCCTGGCTCTGGGGTGCGGCCGGTCAG- - GAATCCCCATCCTGGAGCGCAGGCGGAGAGCCAGTGGCTGGGGGCGGGAAGGCTTCTTGGACCCCTCGCGCTT- C TCCGA 1082 CACAGGGTGGGGCAGGGAGCATCAGGGGGCAGGCAGCCACACCCCCGACACATCAAGACACCTGAGT- GGCAGGTTCAAGCCGGAGGCGCTGTATTTCCACACAGGAAGAAGGCCAAAAAAGGTGACACTGC- CCCCTCCCAGTGGCTCCATGCTCCTCAGCTATGGCTGTCCGGGCCGCCTCACTCAAAGCCTTGCCCTCCGCTG- C TGCCAGGCTCCTTGCATGCAAGGCAGCCCCCACCCGGC 1083 accgggccttccgcgcccctcgccccacgccgcgggtgcggtcctccctccagcagagggttccgg- gcgccggcgcggcccgcacggggccgggagcccttcctgccggccgggtgcgcgcggcgccgccgacagct- gtttgccatcggcgccgctcccgcccgcgtcccggtgcgcgccccgcccccgccaacaaccgccgctctgatt- g gcccggcgcttgtctcttctctccccgcagccaatcgcgccggg 1084 CCCACCTCCCCCAACATTCCAGTTCCTTCTTTTCCTTCTACTCTTCAGCGGCCTCAGCCTGCGCAC- CCCAGGAGCGTGGATGACTACGGCCACCCCGGGCGCGCACCCCTTTCCCACCACCCCAGCATCTCTGCAGC- CCAGGACACCCGCCTCCCCCACACCCCGCATCCGGTGTGTCTCCGCCTGGCCCGGCCGGCGCGGCAGGCGGGC- C AGGGGACCAACTGCACGGCC 1085 CACAGAGCCAGGCAAGCATGGGTGAGAGCTCAGACCATCCTTGTTGGACTAAAAGGAAGGG- GCAGACTGCCCATGGGGGGCAGCCGAGAGGGTCAGGCCCCCATAGGTCCTCAGCCTGCTTCAACCTCAAAGGG- - GATGGGGGGCTGAGTGGTGCCAGAGGAGCAGCAGGCTCGC 1086 ggagcagcaggctcgctcggggagagtagggccttaggatagaagggaaatgaactaaacaac- cagcttcctcccaaaccagtttcaggccagggctgggaatttcacaaaaaagcagaaggcgctctgtgaa- catttcctgccccgccccagcccccttcctggcagcattaccacactgctcacctgtgaagcaatcttccgga- g acagggccaaagggccaagtgccccagtcaggagctgcctataaatgc 1087 gcccaaagtgcggggccaacccagacagtcccacttaccaggtcttctgaaagacagctgacaa- gagacatgcagggctgagaggcagctcctttttatagcggttaggcttggccagctgcccacagcttcaggc- catcagagacagcttctccctgccagagttgctacagtctctggtttctcaaccaggtgaatgtggcaatcac- t gtgcagaatgaaaattttgggtggggaggtaggagaagcggaaag 1088 GGAAAGAGGAAGGCATTTGCTGGGCAATAGTGCCCAGAAGGAAAAAGCAGGTAGGGGG- GCTCTTTTTCTGGGCTGCTGGCATCCACTTGCTTGATCCAGCCAGATTCCCACTCCCATGCCCTCTCCACTAT- - TGCGATTGCTAATCCCCTGCATTGGTGGTCAGGCCA 1089 CAGCGGCCCCGCGGGATTTTGCCCAGCTGCTTCGTGCCCTCTGGTGGCTAAGGCGTGTCATTGCAGT- GCCGGCCTCCTGTCATCCTCCCTTTCTTGTCCGCCAGACCCTCTGGCGCCCTGCTTACGACTCAAACAG- GAGACAGTGCTGATTCATTTCCAAGCGGCCTTCCTACACCCACACCTGCTTCACATAGATGAGGTTTCCCGGA- C AGTCCCTGCCCAGAAGCCCAGGTGGA 1090 ccgacagcgcccggcccagatccccacgcctgccaggagcaagccgagagccagccggccg- gcgcactccgactccgagcagtctctgtccttcgacccgagccccgcgccctttccgggacccctgc- cccgcgggcagcgctgccaacctgccggccatggagaccccgtcccagcggcgcgccacccgcagcggggcgc- a ggccagct 1091 GGGCCAATCCCCGCGGCTGGGCAGAGCGACCCGAGGGCGGCGCCCTGCAGACCACGTGGCCCGGGAG- GCGCCGAGGCCAGGTAGGTGGTGAGTTACTTGGCTCGGAGCGGGCGAGGGGACGCGTGGGCGGAGCGGGGCTG- - GCCAGCCTCGGCCCCCATGACCCGCTGTCCTGTGCCCTTTCCCAGCGATGGGCGTGCAGCCCCCCAACTTCTC- C TGGGTGCTTCCGGGCCGGCTGGCGGGACTGGCGCTGCCGCG 1092 GGCGGCTGCGGGGAGCGATTTTCCAGCCCGGTTTGTGCTCTGTGTGTTTGTCTGCCTCTGGAGGGCT- GGGTCCTCCTTATTCACAGGTGAGTCACACCCTGAAACACAGGCTCTCTTCCTGTCAGGACTGAGTCAG- GTAGAAGAGTCGATAAAACCACCTGATCAAGGAAAAGGAAGGCACAGCGGAGCGCAGAGTGAGAACCACCAAC- C GAGGCGCCGGGCAGCGACCCCTGCAGCGGAGACAGAGACTGAGCG 1093 GCCAGGACCGCGCACAGCAGCAGGGCGCGGGCGAGCATCGCAGCGGCGGGCAGGGCGCGGCGCGGGG- GTAGGCTTTGCTGTCTGAGGGCGTCTGGCTGTGGAGCTGAAGGAGGCGCTGCTGAGGAGTTCCTGGACGT- GCTCCTGACGCTCACTGC 1094 CGGGCAAGAGAGCGCGggaggaggaggaggagaaaaaggaggaggaggaggaggaggaggCGGC- CCCGCATCCCTAATGAGGGAATGAATGGAGAGGCCCCCTCGGCTggcgcccgcccacccggcggcggccgc- cAAGTGCCTCTGGGCGCTGCGTGCCGCGCCCGCTGCTCCGCGCGCAGCCGGCTCGGGCCGCTCCTCCTGACTG- A GGCGCGGCGGCGGCGGTGGCTGTGACCGCGCGGACCGAGCCGAGAC 1095 GCGCGCAGCCAGGGGCGACGCTTCCGCTCCGAGCCGCGGCCCGGGGCCACGCGCTAAGGGC- CCGAACTTGGCAGCTGACCGTCCCGGACAGGGAGGCCCTTCAGCCTCGACGCGGCCTGCGTCCTCCGGAGGGC- - CCTGCTCCGCCCGGGAAGCGTCCGCCTCCCGCCCGCCCGCCCGCAGATGTCGCTGCCCCTCTGGCTGTCCCGG- C CTGACCGCCGCGCGCCGCCCTGCTGCTCACCTACTTCCGCGCCACGG
1096 GTGCGCTCACCCAGCCGCAGGCGCCTGAGCGGCCAGAGCCGCCACCGAACACGCCGCACCGGCCAC- CGCCGTTCCCTGATAGATTGCTGATGCCTGGCCGCGGGAACGCCCACGGAACCCGCGTCCAcggggcggggc- cggcggcgcgcgcgccccctgccggccggggggcggAGTTTCCCGGGCGCCTGCCGGGTGGAGCTCTGCGGGC- C GCT 1097 GAGGGCCCGGGGTGGGGCTGCGCCCTGAGGGCCCTGCCCTGCCCTCCGCACGCCTCTGGCCACG- GTCCCTTCCCCGGCTGTGGGTCTGCGGCCCCTGCGTGCGCAGCGCTCCTGGCCTCTGCGGCCAGCGCGGGG- GCGGAGAGAGGAGAGTGCCCGGCAGGCGGCGGCTGGGCCGGCCCGGAACTGGGTCGTGGAAGGATCGCGGGGA- G CGGCCCTCAGGCCTTCGGCCTCACTGCGTCCCCACTTCCCTGCGCC 1098 TATGCgcccggcgcggtggctcacgcctgtaatcccagcactttgggaggccgaggcgggcggat- cacgaggtcaggagatcgagaccatcctgactaacacggtgaaaccccgtctc- tactaaaaatacaaaaattagccgggcgcggtggcgggtgcctgtagtcccagctacttgggaggctgaggca- g gagaatggcgtgaacccggggcaga 1099 CGCAGGGGAAGGCCGGGGAGGGAGGTGTGAAGCGGCGGCTGGTGCTTGGGTCTACGG- GAATACGCATAACAGCGGCCGTCAGGGCGCCGGGCAGGCGGAGACGGCGCGGCTTcccccgggggcggccg- gcgcgggcgccTCCTCGGCCGCCGCTGCCGCGAGAAGCGGGAAAGCAGAAgcggcggggcccgggcctcaggg- c gcagggggcggcgcccggccACTACTCGCCAGGGCCCGCCCG 1100 CCTGAGGCGGGGCCGTCCGGCACCCTGTGATGGGGCGTGGCCCCTGGGGAGGCTCCCACCAGCCCT- CAGATTCCTCAGGGCCGCAGAGGTGTGGAGCTGGTTGGGCCGGTTCTTCACCCTCCTCCCCTGGTGCTTGCCT- - GTGCCCCAGCAGGGTGACAGTGATGTAGTAGCGGGTCCTCCTGGAAGAGGGACGCGTGTGTAGGGTCTGGGCA- G GCTCTGGCAAGGCAGTCCCTGGGGTGGCGGGCTTGC 1101 GAGGCCGGGGACGCCGAGAGCCGGGTCTTCTACCTGAAGATGAAGGGTGACTACTACCGCTACCTG- GCCGAGGTGGCCACCGGTGACGACAAGAAGCGCATCATTGACTCAGCCCGGTCAGCCTACCAGGAGGCCATG- GACATCAGCAAGAAGGAGATGCCGCCCACCAACCCCATCCGCCTGGGCC 1102 CCGCCGGCTCCCCCGTATGAGGAGCTGCCATAGCTTTCGAATCCACCTGTTTTGAACAACAG- GATTAGTGCCTGTGCCACGTCCCACGCCTCCGAGAAACCCGCAGGCTCCCGGAGGCTTCGC- CCCTTCAAACACTGCCCGAGTCTCCCTAACCTTCCTCGCCGCCTTCCTGCGGGTGACCCCCAAACGCCCCAGC- T CCGCTCCCGCCCTTCCTCTCCCGCTACCACACGCCTCTCGGA 1103 CAGGAGCGACGCGCGCCAAAAGGCGGCGGGAAGGAGGCGGGGCAGAGCGCGCCCGGGACCCCGACT- TGGACGCGGCCAGCTGGAGAGGCGGAGCGCCGGGAGGAGACCTTGGCCCCGCCGCGACTCGGTGGCCCGCGCT- - GCCTTCCCGCGCGCCGGGCTAAAAAGGCGCTAACGCCCGCGGCCGCCT 1104 cgggggaaacgcaggcgtcgggcacagagtcggcaccggcgtccccagctctgccgaagatcgcg- gtcgggtctggcccgcgggaggggccctggcgccggacctgcttcggccctgcgtgggcggcctcgccgg- gctctgcaggagcgacgcgcgccaaaaggcggcgggaaggaggcggggcagagcgcgcccgggaccccgactt- g gacgcggccagctggagaggcggagcgccgggaggagaccttggcc 1105 ccccccaccctggacccgcaggctcaggagtccacgcggggagaggggatg- gagaactctcctcgcttcgtcctctctcccggggaatccctaaccccgcactgcgttacctgtcgctttggg- gaggccgctgccgggatccggccccgaacagcccgggggggcaggggcgggggtcgtcgaggggatgggggca- g agagcaggcggcgggcaggatgcc 1106 GCCCGGCTTTCCGGCGCACTCCAGGGGGCGTGGCTCGGGTCCACCCGGGCTGCGAGCCG- GCAGCACAGGCCAATAGGCAATTAGCGCGCGCCAGGCTGCCTTCCCCGCGCCGGACCCGGGACGTCTGAACG- GAAGTTCGACCCATCGGCGACCCGACGGCGAGACCCCGCCCCA 1107 cgctgggccgccccTTGCTCTTAGCCAGAGGTAGCCCCTCACCCCGCGACTTACCCCACAC- CCCGCTCTCCAGAACCCCCATATGGGCGCTCACCGCCCGCCCGCACAGCTCGAACAGGGCGGGGGGAGCGT- TGGGGCCCGAGGCCGAGCTCTTCGCTGGCGCCGCCTCCCGGGACGTGGCCTCCATGGTCGTTGCCGCCGCTAC- C TCACAGAACCAGCAACTCCGGGCGCGCCAGGCCTCGGGCGCCGCCATCT 1108 GCTTCTCCATAGCTCGCCACACACACACACACACGCCACGCACCGTATAAAAGCCTAAATGACACAC- CACTGCAGCGTTCAAACGCTGGGAAGAAGACTCCCTTGTGGCACCGGAAACCCACGAGGTTGGAAGTGG- GAGGGGAAGAGGGCCAGATACTTCACCTGAAAATCCGCCAGGATCATCTCCCGGTCCATGTTGGACGCCATGG- C GGCCGCCGAGTTCCGCGGCTCCGGGAGCGAAGCGCGCACCTGG 1109 CCGCGCACGCGCAAGTCCAGGCCGCCGCGGCCCTGGAATAGAGACTCGCCCTTGAT- GTCCCTCTCGAAGTAGTAGGCGGCATCGCCGATATCCACGTCACCGGCGGCCTTCTGAGACGTGTTCTGC- CGCAGCTCGATCTGGATGGTGGGCTGCTCGTAGTGCACGGCCGCCACGAACTTGGGGTGCAGCCGATAGCGCT- C GCGGAAGAGCCGCCTCAGCTCGGCGTCCAGGTCTGAGTGGTTGAAGGCGCCGGCG 1110 GTCTCAACTCACCGCCGCCACCGCCGCGCAGCCCCGCGGCCGCTGCTCCATAGCCCTCCGACGG- GCGCCCAGGGGCTTCCCGGCTCCGTGCTCTCTGCCCGTCGTGGTTCCGCCTTCAgccccgcgcccgcagggc- ccgccccgcgccgtcgagaagggcccgcctggcgggcggggggaggcggggccgcccgAGCCCAACCGAGTCC- G ACCAGGTGCCCCCTCTGCTCGGC 1111 ACAAATGCGCTGCTCGGAGAGACTGCCGCGGCAACCAACTGGACACCCCAAGAGCT- CACTCCTCCGCGGTTTTATATTCCGACTTGCGCACAGGAGCGGGGTGCGGGGGCGCAGGGAGTGTGG- GTAACAGGCATAGATTCCGCTTGCGCAATACGTGGTAAGAAACCAGCTGTGAGGGGCTGGCCCAACGCAGAGC- G GCGCGA 1112 GCGCCTGCGCAGTGCAGCTTAGTGCGTCGGCGCGCAGTTCTCCCGCCCGTTTCAGCG- GCGCAGCTTCTGTAGTTGGGCTACTGGAGGGGTCGCTCAGAAACCTCATACTTCTCGGGTCAGGGAAG- GTTTGGGAGGATGCTGAGGCCTGAGATCTCATCAACCTCGCCTTCTGCCCCGGCGG 1113 aagtcaagggctttcaacctcccctgccccattcatacagtggaaggtctaacccaggcttgt- cagcctaagaacacgggatctcttcactgtggttcatgtgtagagtggagtttccatgctgaga- gagacaagcaaagaagaccagaggctcccacccctgtccagtgGA 1114 tggatcccgcacaggggctgcaggtggagctacctgccagtcccctgccgtgcgctcgcattcct- cagcccttgggtggtccatgggactgggcgccatggagcagggggtggtgcttgtcggggaggctggggc- cgcacaggagcccatggagtgggtgggaggctcaggcatggcgggctgcaggtccggagccctgccctgcggg- a acgcagctaaggctcggtgagaaatagagcgcagcgccggtgggc 1115 CCGCCTGTGGTTTTCCGCGCATTGTGAGGGATGAGGGGTGGAGGTGGTATTAGACGCAGC- CGAATCCTCCCTCAGAGTCCGCCAGGTGGGCGTCTCAGGGGTGGGAGTGGCCGCGTCGTGAAGCGGAGAGAG- GATTTCTCTCCTGGTCCTGGAGAAGGCCCCCGGCGGCCGGCGGCATCCCTCGCTGGCGAGTCCCGGGAGCGAG- G TGGTCTCTGCAGGGGAGGAAGTTCCCGGGCGGCGCGGCCTGCGTCACAG 1116 cgcgctctcccgcgcctctgcccgcccccggcgcccgcccccgccgctcctcccgactccccgc- ccccggcccGGGTCACTTGCCGTCGCGGTGGGCGGCCCCCGGCGAGTCCACACCCCTGCCCCGCCTCCTCCCG- - GTAGGAAACTCCGGGACCCTGCAAGGGATGACTCACCCCAGTGATTCAACCGCGCCACCGAGCGCGGAGCTGC- C CTGGAGGACGCAGGCGGGTC 1117 TCCGGCCCAGCCCCAACCCCGACCTAAGTAACCGGCTATCGGCCACCCATTGGCTGAAGTCCCT- GAGCACCTGTTGGGAGGAAGGCTGCTGCGTGCAGCCGGAAAGTCCTGCGTCCCTCCGCTCTTACCGCGGCAG- GAACCACAGCCTCCCCGAACCTCAGGGTTTGTATGGATTTCGCCCAGGGGAAAGCGCTCCAACGCGCGGTGCA- A ACGGAAGCCACTGGCTGGTTGGGCGGCTGTGATGGG 1118 CCGGGTCAGGCGCACAGGGCAGCGGCGCTGCCGGAGGACCAGGGCCGGCGTGCCGGCGTCCAGCGAG- GATGCGCAGACTGCCTCAGGCCCGGCGCCGCCGCACAGGGCATGCGCCGACCCGGTCGGGCGGGAACAc- cccgcccctcccgggctccgccccagctccgcccccgcgcgccccggccccgcccccgcgcgctctcttgctt- t tctcaggtcctcggctccgccccGCTC 1119 GGGGCGGTGCCTGCGCCATATATGGGAgcggccgcccctcgccgcgcccctcgccgccgccgccgc- cgcgctcgccgactgactgcctgacggcgccgcgagccggcccgagccccgcgagccccgcgagccccgccgc- - cgccgagcgccaccgagcgccgccgccgccccccgccacgcaccgcggcTCCTCGCGTCCAGCCGCGGCCAAG- G AAGTTACTACTCGCCCAAATAAATCTTGAAAAGAAACAAACG 1120 GCGCGGGCCCTCAGGTTCTCCCTATCGAAGCGGTCTATGGAGATAGTTGGATACTCGGCCATCTGC- CCCTCGAAAGAACTCATAGCGCCGCCGATCCCAGAGTCCGGGACCCCAAAACCGCAGCTGAAGCCAAGGC- CAGCCCTGACCGCGCCGCCACTTCCGGGAAGCCGCGCGCTGCCTCGCCATTGGGCGGCCGAACGCAGCCACGT- C CAATCAGAGGAGTCCGGAGACCGGGGGCAAAGTCAAGGAGCATCC 1121 cgtccgcggcTCCTCAGCGTCCCCCTTTACGGTCTGGGCGGACTGCGGGGGCTGGGGAGGTTCTGGG- GACCGGGAGAGTGGCCACCTTCTTCCTCCTCGCGAAGAGCAGGCCGGGCCTACCCGTCCGCCCGCTCTGC- CGTCCGCTGGCCGGCCGACTGCTGCCCGATCACTCCTGAGGCCGCCGTTGGGCGACAGGGCGGTGCGGGAG- GAGGACTGCGCAGGCGCAGTGGGCCAGGCGGCCCGGCGACCAATCGG 1122 GGAGGCGCCCAGCGAGCCAGAGTGGTGGCTGGTCCCGCGCGGTGAGTGGGATTGGGGCACTTGGG- GCGCTCGGGGCCTGCGTCGGATACTCGGGTCCGCTCGGGAGCGCGCTGGCCGCAACGAGGGCGGCGCGGGC- CCGGGCGATGGCGTGGCTTGCGTCTCCCGCCTccgggcagggcctggccgccgggcgggggcgggagggccac- g cgggcccagggtggggccgcggcctgcgcggcgggcgggccgggt 1123 CGCGCAGGGGGCCTTATACAAAGTCGGAGAAGTAGCTGGGTCGCTGGCCGGCCAGGGACTCAAGC- CGCCTCAGGTGAGCGCTCCTTGGCGCTACTTCCGGTCTCAGGTGAGGCCGCCGGAAGCGGGCACTTGGC- CCTAAGACCCGCTACAGTGCGTCCTCGCTGACAGGCTCAATCACCACGGCGAGGCCAAggcgcggggccgcgg- c ccgcccgAGAAGCCTGAGCTGGGCCCCGACACCCCCTGCCCGACATT 1124 CCCCACCCCCTTTCTTTCTGGGTTTTGATGTGGATGTCTTTCTATTTGTTCAGGAAATTGTGACGT- GTGTTCTGGGCAGGGTTTGAGGTTTTGGAACATTTTCTAAAAGGGACAGAGAGCACCCTGCTA- CATTTCCTAATCAAGAAGTTGGCGTGCAGCTGGGAGAGC 1125 GCGCGTTCCCTCCCGTCCGCCCCCAAgccccgcgggcctcgcccaccctgcccgccgcccctccgc- cggcggccgcccTCTGCGGCGCCCCTTTCCGGTCAGTGGAGGGGCGGGAGGAGGGGCGGGGGTGCGCGGG- GCGGGGGGAGAAGTCCTGGAGCGGGTTTGGGTTGCAGTTTCCTTGTGCCGGGGATCCTGTCCCCTACTCGCCA- G CGCCAGGCTCCTCC 1126 ccggcggAGGCAGCCGTTCGGAGGATTATTCGTCTTCTCCCCATTCCGCTGCCGCCGCTGCCAG- GCCTCTGGCTGCTGAGGAGAAGCAGGCCCAGTCGCTGCAACCATCCAGCAGCCGCCGCAGCAGCCATTACCCG- - GCTGCGGTCCAGAGCCA 1127 GCCTGGTGCCCCGAGCGAGCCGGGAGTAGCTGCGGCGGTGCCCGCCCCCTCTCTCCGC- CCCTCCAGCGGAGCTGGTCTCCGGCCGGGCACCGTCGCGGGCCCCCCTGGCCCGGCCACCTGGGACCGTGCT- GGGGAGTCTGCCACTTCCCTCTCTCCCCTGGCCCGCAAAGTTTTGGCGGAGCCATCGCTGGGGCTGAGCGCGC- C CCCGGGGGGAGATCGGGGAGCGCCCGATGCCGGGCGGCCGGAGCCATTGAC 1128 GGCGGCGGCGCTACCTGGAGGCGCGGTGGCGGGCAGGTGCCCGAACTGCACGGCGATGCAGAG- GTCGTTGTCCAGGGGGAACTTGTGGCAGTGCAGCATCTCAGGCCAGGGGAAGCCGTAGGCCTCCATGAGCG- GCGCGCAGCCGGCGCGCACGGCCTCGCACAGCGAGCGGCACGGGTAGATGGGCCGGTCGAGACAGACGGGCGC- A AAGAGCGAGCACAGGAAGACCTGCGTATCCGAGTGGCAGCGCTTGGC 1129 TGGTGGCCAGCGGGGAGCGCCCGGGCGCCATCGGCGCGTCCTGCTCCACCAGGGCGACCCTGG- GCGCTGAGAAGCGGGAATCTTCCTTGGGGACCAGGGCGACGCCTCCTGCTGCCGCCCCCGGCGGGACAGC- CGCGGCTCCTCCTCCAGCCGCCGCGCCACCCAGAGCCCGAGGTTTGCCCTTCAGAAGCGGACCCGCAGACTCC- T CGGACTCAGAGCCATCCTCCTCCTCAACCTCCACCGCAGCGGCCTGCG 1130 GCGGCACTGAACTCGCGGCAATTTGTCCCGCCTCTTTCGCTTCACGGCAGCCAATCGCTTCCGCCA- GAGAAAGAAAGGCGCCGAAATGAAACCCGCCTCCGTTCGCCTTCGGAACTGTCGTCACTTCCGTCCTCAGACT- - TGGAGGGGCGGGGATGAGGAGGGCGGGGAGGACGACGAGGGCGAAGAGGGTGGGTGAGAGCCCCGGAGCCCGA- G CCGAAGGGCGAGCCGCAAACGCTAAGTCGCTGGCCATTGGTG 1131 CTCGGCGATCCCCGGCCTGAACGGGTAGGAGGGGTTGGGGGATTCCGCCATCCCTTGTTTTGAG- GCGGGAACGCAACCCTCGACCGCCCACTGCGCTCCCACCCACACCCAGAGTAATAAGCTGTGATTGCAGGCT- GGGTCCTCACCGTCTGCTCGCCAGTCTTCTCCTTTGAGGACTCAGAAGCCAAGGGTTGCGGGAGGCACCA 1132 CGCAGGGAGCGCGCGGAGGCCCGCAGGGTGCCCGCCTGGCCGCAGAGGCCGCGACGCCCCCTCCGC- CACCCTCGGGCCGCCGAAAGAACGGGCAGCCGGGAAATCCCGTGTCCCCACTCGTGGCAGAGGACGCTGTGGG- - GCGGGCGGGCTGCGGGCTCCCGGCGCCTTCCCGCAGAGGCGGCGACAgcggccgccccccccgcggggccggg- c cggggAACTTTCCCCGCCTGGAGCCGGGC 1133 GAAATACTCCCCCACAGTTTTCATGTGATCAGGAATTCAGCATAGGCTATAAGACGGAGTGCTCCAT- GTCAATAGAGAATATTTCCACAGGTGTGCTAGGCACTTGTGGTAGATGTTGCAGGGAAGTCAGGACTGGG- GACAGCTTGGTCCCTACTTCAAGGTTACAGTCTAGGAGCTGAGAGTGGCAAAGTGACCTGATTCTACAGGGTA- A AAGCCCCAGAGATAAATGACATAGGTCCAGGTCAGCCAGCATTG 1134 CCGGGCGCACGGGGAGCTGGGCGGACGGCGGCCCCCGCCTCCTCCGGGGACGCGGCAC- GAGACGCGGGGACGCGCGGACGCCACGCTCAGCGGCCGCCCCCGGCCTCCGCGCCGCCTTCCTCCCGG- GAGCAGCCCCGACGCGCGCGGGCCCGGACCGCCGGGGTTGTCATGGCAGCAGCTCCATCCCTGACCGCCACTT- T CTCCCGGTGCCGCCTCGGAGCGAGCGGGCTGGCGGGCGGCGCGGACTGCGCGCTC 1135 gcggcggcgTCCAGCCAGAGCCCTGTGGAAGCGGCGGCGACACTTGGGCTGGGCAGTGTCTCTGAT- GCCTCCCAGCGCCAGCGACTGCTCTTATTCCCGCCGCTGTGGGTCGGGAAAGTTCCGCCAGTGCACAGCAAC- CAATGGGCGGAGGGGTCCTTTGCCCCTGGGTTGCGTCACCCTCATGCTTCCAGAACCTGGAGGATCCAGCAGG- A CCGTCCCACTTGTATTTGCATTGAGGTCATTGATGGAAATGGT 1136 GGGTCGCCGAGGCCGTGCGCTTATAGCCGGGATGACGCCGCAGTTGGGCCGGATCAGCTGAC- CCGCGTGTTTGCACCCGGACCGGTCACGTgggcgcggccggcgtgcgcggggcggggcggagcggggcctg- gcctgggcggggcAACCTCGGCGCACGCGCACAgcgcccgggcggggggcggggTGGTGGTGCGCCTGCCGCG- C CTACAGTTCCCGCCGCTCGCGCC 1137 CGCGCCTGATGCACGTGGGCGCGCTCCTGAAACCCGAAGAGCACTCGCACTTCCCCGCGGCGGT- GCACCCGGCCCCGGGCGCACGTGAGGACGAGCATGTGCGCGCGCCCAGCGGGCACCACCAGGCGGGCCGCT- GCCTACTGTGGGCCTGCAAGGCGTGCAAGCGCAAGACCACCAACGCCGACCGCCGCAAGGCCGCCACCATGCG- C
GAGCGGCGCC 1138 ccgggagcgggcggaggaagggccgggcgtccggcgcaagcccgcgccgccccagcccoggccccg- gcccggcccgcACACGCCGCTTACCTGGAAGCCGGCGACGCTGCCGCCCACCTCCCTGCTGCGTGTCGCAAAC- - CGAACAGCGGGCGTTGGCCCTCCTGCCGGACACTCCTCTGCCAGCGCCGCTCTGGCCGAGTCGCGGGGGCCGA- A TGTGCGACGGGGCAGAGCGGG 1139 GGGGCGCACCGGGCTGGCTCCTCTGTCCGGCCCGGGAGCCCGAGGCGCTACGGGGTGCGCGG- GACAGCGAgcgggcgggtgcgcccgggcgcggcggcggcAGCGTCGGGGACCCGGAGCTCCAGGCTGCGCCT- TGCGCCCGGGTCAGACATTATTTAGCTCTTCGGTTGAGCTTCGATTGGTCAAACGGCGCCGcccccccccccc- c gccccccgccccccgctccccGCTCGCCCGCGCTAC 1140 GCCACGGGAGGAGGCGGGAACCCAGCGAGGCCCCCGAgggctggggggaccggccggccg- gacaaagcggggccgggccgggccggggcggggccgtgcggggcTCACCGGAGATCAGAGGCCCG- GACAGCTTCTTGATCGCCGCGCCGTTGGCGCTGGCGGCCGCGGTGCCGGCCGCGGGACGTCCCGAAATCCCCG- A GTGCAGCTGGTCAGCGAGAGGCTCCTGGCCGCGCTGCCCCTGGTTCGCGCCCTGCT 1141 cgggcatcggcgcgggatgagaaaccaacctgatacttatcgtgtgccgagttccctcct- tgtatcctgactaagcacagcgaataaccctgtccttgttctaaccccaggtcttgaagaaatact- gtcccagctgagccccgcgtttacaagatgaagaggcgccccagatgcgctgaaagaaaggccaaagctcgtg- c ctccttccactgcctgcggtagaacctggtcccgcatagcttggactcggataag 1142 acaccgccggcgcccaccaccaccagcttatattccgtcatcgctcctcaggggcctgcggcccggg- gtcctcctacagggtctcctgccccacctgccaaggagggccctgctcagccaggcccaggcccagccccag- gccccacagggcagctgctggcagggccatctgaagggcaaacccacagcggtccctgggccccaacgccagg- c agcaaggactgcagcgtgcctacctgtgcagctgcaacccag 1143 CCCCAACAGCGCGCAGCGAACTCCACTGCCGCTGCCTCCGCCCCAGAGACACGTTGCAGGCCA- GAGCGGCCGGGGCGCGGGGCATCACGGGACGGCCTCACCTGGCCTCTTGGAGGACTCCCGAAGCCCGAGGC- CGCCAACCGAAGGAGGCCCCGCCCCCGGAGGCACCGCCTCGCCTCTTTCCGCCAGCGCCCGCAGGACCCGGAT- G AGAGCGCACGCTTCGGGGTCTCCGGGAAGTCGCGGCGCCTTCGGATG 1144 CCCCGCTGGGGACCTGGGAAAGAGGGAAAGGCTTCCCCGGCCAGCTGCGCGGCGACTCCGGG- GACTCCAGGGCGCCCCTCTGCGGCCGACGCCCGGGGTGCAGCGGCCGCCGGGGCTGGGGCCGGCGG- GAGTCCGCGGGACCCTCCAGAAGAGCGGCCGGCGCCG 1145 CCCGGGGGACCCACTCGAGGCGGACGGGGCCCCCTGCACCCCTCTTCCCTGGCGGGGAGAAAGGCT- GCAGCGGGGCGATTTGCATTTCTATGAAAACCGGACTACAGGGGCAACTCCGCCGCAGGGCAGGCGCG- GCGCCTCAGGGATGGCTTTTGGGCTCTGCCCCTCGCTGCTCCCGGCGTTTGGcgcccgcgccccctccccctg- c gcccgcccccgcccccctcccgctcccATTCTCTGCCGG 1146 CCCGCGGAGGGGCACACCAggcgggtgttggggaggacgcagagggctggggctggagcccag- gcggggcagggggcggggcggagctgggtccgaggccggCGGGGGCGCCTCCATCCCACGC- CCTCCTCCCCCGCGCGCCCGCCCGCTCTCGGGTGACTCCGCAACCTGTCGCTCAGGTTCCTCCTCTcccggcc- c cgccccggcccggccccgccgAGCGTCCCACCCGCCCGCGGGAGACCTGGCGCCCCG 1147 GCCCACGTGCTCGCGCCAACCCCTACGCCCCAGCGCGCCTTCTCCACCCACGCACGGGCCTCG- GACGCATTTCCAGCCCCGGCGTTGGTTGTGGATGCTGGACATCCACCGCCTCCAGGCAGTTTCGCCGTCACAC- - CGTCGCCATCTGTAGCCAAAGCAAAACATATCCTAACTGAGACTTTGCAGCTCTTGTGGCCACTCTGGGCTCA- C CGGGAACATGAGTGGAAGAGCCCGAGTGAAGGCCAGAGGCATCGC 1148 GGCGGAGCGGCGAGGAGGAGGAGCAGGAGCGCGCAGCCAGCGGGTCCACGCATCT- CAGCACTTCCAGACCAACTCCGGCACCTTCCACACCCCTGCCCGGGCTGGGGGCTCCGAGAGCGGC- CGCGAAGCGACTCCGATCCTCCCTCTGAGCCTTGCTCAGCTCTGCCCCGCGCCTCCCGGGCTCCGGTCCGCGC- G GCGGGGTCCCTGCTCCTGCGCCCCGGGCGCGCTTCCCGGACACCCCGGTCCCCGCAGCC 1149 CCTCGCCGGTTCCCGGGTGGCGCGCGTTCGCTGCCTCCTCAGCTCCAGGATGATCGGC- CAGAAGACGCTCTACTCCTTTTTCTCCCCCAGCCCCGCCAGGAAGCGACACGCCCCCAGCCCCGAGCCGGC- CGTCCAGGGGACCGGCGTGGCTGGGGTGCCTGAGGAAAGCGGAGATGCGGCGGTGAGGCGCGGCTTGGGCCG 1150 caggcgcgccgATGGCGTTTCTGAGGTGACGCCGCCCACACCGGGCTTCTCCGGGGGCGGAG- GAAACACCTATGAACCCTCCGGCAGCCTTCCTTGCCGGGCGCCAGGTAAGCAGCGGTTccgggcgcgg 1151 CTCCCGGCTTCTGCATCGAGGGCCTTCCAGGGCCAGCCCTTGGGGGCTCCCAGATGGG- GCGTCCACGTGACCCACTGCCCCCACGCCCGCGCGCGGGCCCCAGCAGCCCCAGAGCTGCGC- CAACTTCGTTCACTCCGCGCTCACCTTACGGGGGTCCCCGCGTGACCGCATGGGGTAGCCCCTGCTCCCACGC- T CCCGGCCGA 1152 CGGTCCGCGAGTGGGAGCGGCTGCTTGTGGGCAGGGTGGACGCGGGGCCACGTCTTGGCCG- GCGTTTTGCGGGGTCTTCCTGTTCTGAACGCGCGTAACTTTTGCCTCAGTATCTCACTTCTTGGAATCCGGCG- - GCGTTCACGTGTGTGCTCCAGAGAAGGGCGCCAGAGGGTATTCCCTGAAAGTGAAAGGTCGGCGAAAGAGGAG- T AAAGACGGCGAGACGCGTCCACGCAGGGGGAGTCTGTGCGGTTTGGA 1153 GCAGCGCCGCCTCCCACCCCGGGCTTGTGCTGAATGGGTTCTGATTGTGCACGGGGTGCACACTGG- GCATTTCTTGGAAGGGGCACACTGacgcgcgcacacacgcccccgacgcgcacgcgccccgcgcgcact- cacactcacccccgcgcacactcacccccgcgcacactcacgcTGCCGCCGCGCTGAGGTGCAGCGCACGGGG- C TTCACCTGCAACGTGTCGATTGGACGGATGGGCTCGGCGCGTGGGT 1154 CGACCGTGCTGGCGGCGACTTCACCGCAGTCGGCTCCCAGGGAGAAAGCCTGGCGAGTGAG- GCGCGAAACCGGAGGGGTCGGCGAGGATGCGGGCGAAGGACCGAGCGTGGAGGCCTCATGCCTCCGGGGAAAG- - GAAGGGGTGGTGGTGTTTGCGCAGGGGGAGCGAGGGGGAGCCGGACCTAATCCCTCACTCGCCCCCTCC 1155 CCCGGGCTCCGCTCGCCAACCTGTTACTGCTGCAGAACGCCAGGAAGCTCAGCCTG- ATCCCACAGATTAGGGTAAAATATCCCGGGGGGCCGAAGTGGAAACCGGAGTTGCGTCATTGCTCCCAC- CCGATATCACCTTGGCAGCGACCGCGGCTGACCACGTTCCCGGCCTGTCGCGAATCTCACCCAAGGGAGCTGA- G TCTCAGCTTCCCTGGTCCCTGGTCCCGAGTTCCGCCTTCCCCCCCCGCCCCGTGGC 1156 CATGGGGTGCTCATCTTCCCGGAGCTGAGGAGCTGGGGCGGGCATGGGGTGCTCATCTTCCTG- GAGCTGAGGAGCTGGGACGGGCATGGGGTGCTCATCCTCCTGGAGCTGAGGATCTGGGGCGGGTGTGGGAT- GCTCATCCTCCTGGAGCTGAGGAGCTGGGGCGGGCATGGGGTGCTCATCTTCCCGGAGCTGAGGAGCTGGGGC- G GGCATGGGGTGCTCATCTTCCCAGAGCTGAGGAGCTGGGGCGGGCAT 1157 CCGAGAGCCGGAGCGGGGAGGGCCCGCCAAGTCAGCATTCCAGCCGGTGATTGCAATGGACAC- CGAACTGCTGCGACAACAGAGACGCTACAACTCACCGCGGGTCCTGCTGAGCGACAGCACCCCCTTGGAGC- CCCCGCCCTTGTATCTCATGGAGGATTACGTGGGCAGCCCCGTGGTGGCGAACAGAACATCACGGCGG 1158 CCGCTGCAGGGCGTCTGGGCTTCTGGGGGCAGAGAAGACTCACGCAGTGAGCAGTCCGCAAGC- CCGCTGGCGGCAGCGGCGGTGCTCCGTCCAGGGCGAGAAGCTGCAGCGCTCGGGCCGGGGTCCCTCCT- GTCGCAGCAGCTCCTCGACGAGTGCAGGGGCAGCCACG 1159 gcgctgccccaagctggcttccgctgcctgctctgggctgggctgggctgggctgggctggtag- gacctgctcccagggcgggaggggacacacccacctcagcagatctcagcccatccctcccagctcagt- gcactcacccaaccccacacgggccaaggagagagtgaagaggaagcattgccctcagaggccttcacggact- g gccaga 1160 CAGGATGCCAGCGTGACGGAAGCAAGTAACCACCAAGGCATCACCACTGGCGCTAAACTTCT- CACTTCCGGAGTGCTGCAAGCGCAGAAAATATACGTCATGTGCGGAGGCGGAGCTTCCGCCCT- GCGCGTCGTATTAGACGGAAACCGAGCGGGCCCATTTTTCATGGGTTTGCGGACCCACCAGCGAAGGCGGGAG- G TGTCGCAGGGACATCTTCTGGCTGTTTCCGTCGCCTGCGTGGCCCTTGCACCCCGG 1161 GGCGGTGCCATCGCGTCCACTTCCCCGGCCGCCCCATTCCAGCTCCGGAGCTCGGCCGCAGAAACGC- CCGCTCCAGAAggcggcccccgccccccggcccAAGGACGTGTGTTGGTCCAGCCCCCCGGTTCCCCGAGAC- CCACGCGGCCGGGCAACCGCTCTGGGTCTCGCGGTCCCTCCCCGCGCCAGGTTCCTGGCCGGGCAGTCCGGGG- C CGGCGGGCTCACCTGCGTCGGGAGGAAgcgcggcg 1162 GTGGGTCGCCGCCGGGAGAAGCGTGAGGGGACAGATTTGTGACCGGCGCGGTTTTTGTCAGCT- TACTCCGGCCAAAAAAGAACTGCACCTCTGGAGCGGGTTAGTGGTGGTGGTAGTGGGTTGGGAC- GAGCGCGTCTTCCGCAGTCCCAGTCCAGCGTGGCGGGGGAGCGCCTCACGCCCCGGGTCGCT 1163 GGCGGAGGGCCACGCAGGGGAGACAGAGGGCCTCCACAGGGGCCAGGGGGAAGTGTGGGAACT- GAGTCTCCCCCAGACGAGGCTTCACTTGGACACGTGTATGTGGTCACCGGGGGAAACTGAGCAGTTCT- GACTTCCCTTGGAAGGCGTGGAATTAGGAGAGAAATCCCTTAGTGGGCACACGAGTGAGTGCCCCTTGGAGTC- C ATCTGTGGAAAGGAAGCGGTGATAGGTTTCCGCA 1164 GTCCGGGGGCGCCGCTGATTGGCCGATTCAACAGACGCGGGTGGGCAGCTCAGCCGCATCGCTAAGC- CCGGCCGCCTCCCAGGCTGGAATCCCTCGACACTTGGTCCTTcccgccccgcccttccgtgccctgc- ccttccctgcccttccccgccctgccccgcccggcccggcccggccctgcccaaccctgccccgccctgcc 1165 CGGCCTGCGGCTCGGTTCCCGCCTCTTCCCCACCCCCAGCCCCGCGCTGCCCTCTCGGTCCCCCT- GCGCGACCCCAGGCTCGGCCCCTGCCCGGCCTGCCGGGGTGGCCCGGGGGTGGGGTGGGAGCCCTTTGTCT- GCGTGGGTCGCCTCGCGTCTCTCTCTCCCACCCCACCTCTGAGATTTCTTGCCAGCACCTGGAGCCCGAAACC- A GAAGAGTTGTCAGCCCAACAAGAATATAGGATCACCGGCCCATCA 1166 GGGAACCGTGGCGGCCCCTCCTGGCCCTGGGAGGTGGTCCCGCTGCCCCCCTGACTTCCGTGCACT- GAGCCCCTGGCCCTGCCCGCAGCCCCGGCCCTGGACTCGGCGGCCGCGGAGGACCTGTCGGACGCGCTGTGC- GAGTTTGACGCGGTGCTGGCCGACTTCGCGTCGCCCTTCCACGAGCGCCACTTCCACTACGAGGAGCACCTGG- A GCGCATGAAGCGGCGCAGCAGCGCCAGTGTCAGCGACAGCAGC 1167 cggggaaggcggggaaggcggggaaggcggggaaggcggggaaggcggggaaggcggggatggT- GAGACggtgaggcggggcggggcctggggcgcgggcggggcggggaggggtggggcggggcCCGGGGGCGCTG- - GACCGCGGTGCTGCGGGACGGATTCCCGGCGGCTGCGCGGGAGGCTGCGAGCCTGGGCTCCCAGGGAGTTCGA- C TGGCAGAGGCGGGTGCAGGGAACCCGCGGCTCGGCGGGAGCGTG 1168 cctcccggtttcaggccattctcctgcctcagcctcccaagtagctgggactacaggcgcctgccac- cactcccggctaattttttgtatttttagtagagacgggggtttcaccgtgttagccaggatggtctcgatct- - gcttacctcgtgatccgcccgcctcggcctcccaaagtgctgggattacaggcgtgagccaccgcgtccggcA- T ATTT 1169 AGCCCGCGCACCGACCAGCGCCCCAGTTCCCCACAGACGCCGGCGGGCCCGGGAGCCTCGCGGACGT- GACGCCGCGGGCGGAAGTGACGTTTTCCCGCGGTTGGACGCGGCGCTCAGTTGCCGGGCGGGGGAGG- GCGCGTCCGGTTTTTCTCAGGGGACGTTGAAATTATTTTTGTAACGGGAGTCGGGAGAGGACGGGGCGTGCCC- C GACGTGCGCGCGCGTCGTCCTCCCCGGCGCTCCTCCACAGCTCGCTG 1170 CCCCAGCCACACCAGACGTGGGAGCTTAGGATGAGAGCGGCCTCCGAGCAGATGATCACCCTG- GAACGACGCCAAACGCGACCCCTACCAGAGGACTCGCGCATGCGCAGCGCAGCCTGGGCCGGCGGCCTGG- GCAGGATGTAGTCGCGAGCAGCGCACCGGGCCCACGCCAGCGGAATTGCGCATGCGCAGGGCCGCCTCTGCCT- G CGGCCTGGGCTGGG 1171 tgggcttcctgccccatggttccctctgttcccaaagggtttctgcagtttcacggagcttttca- cattccactcggtttttttttttttgagactcgctctgtcgcccaggctggaatgcagtggcgcgatctcg- gctcactgcaagctccgcctcccgggttcacgccattctgcttcagcctcccaagtagctgggattataggcg- c ccgccaccacgcccggctaatggctaattttttgtattttttttt 1172 CCGCGCTGGGCCGCAGCTTTCCGGAGCGCAGAGGAAGCTGGCCAGCCTGCAGATAGCACTGG- GAAAGACACCGCGGAACTCCCGCGAGCGGAGACCCGCCAAGGCCCCTCCAGGGACCTGTCTTCCTAACTGC- CAGGGACGCCGAGCCAACTC 1173 gcatggcccggtggcctgcactccagtgaggtggctgaactctgaccagccaagagaaaac- ccccctctccgccccaaacagctccccactcccccagcctgcccccaccctccccacattccagtctttcact- - gtcgccccaggcaacttggctgcccaagaccaagccccaccaagaagctggagggccaggcaagtccaggatg- g gcaagcagggaagcacgagagggagaaacagaggtgaggaaggaagg 1174 GGGCAGGGGAGGGGAGTGCTTGAGTATTGGGGCTACACTCACCACAAGAGCAGCAAACAAAGCACT- GGGTGTGGTAGAGGCTGTCCAGGGCCTGGCAGGCATTGCTCTGCCCATAGATGCCTTTGTTGCACT- TGATACAGGTGCCTGAGAAGAGAAAAGTGTCACACTCTACTCCCCCAGGTCAAAACCAGG- GATTCCCAAGCTTTCCTGACTGCCCTTTCCTGATGTGCCAGGGGTCA 1175 CCCCGGCGCCTTCCTCCTCCGGACTCCGCTGCATGCCTCGCTTGCGGTGGTCCGATCG- GCTTTCTCCGGGAGCTTTCCTCTCCCCGCCACGCCCCCGTCTCCCCGGCCGTCCCCGCGCCTCTCG- GCCTCCCTTTCATTAGCCCCACATCTGTCTTTCCCATGGGAGGGAGCGCGCGCCTTCCGCCCAGCGGGGCCCT- T AGCAGAGCCTCTCCAATCCTCGGCGCCTCCCCTACACAGGGTTCGCTGGGCCGTTCT 1176 CCACCGCGCTTCCCGGCTATGCGAAAGTGAAAACGAGGGGCGCCCAAGGCCCT- GCTTCTTCCCCCTTCCTCTTCCCCTTGCCCAGCCGCGACTTCTTCCTCACTGATCTCCCGGGGGCG- GAGACGCTGAGTTCCCCGGAGACGAGTTAGTCACCAAGAAGAGGCGGTGACAGAGAGCGCGGCTCGCGTCGCA- C TCCGAGGCC 1177 CCGCATCTGACCGCAGGACCCCAGCGCTACCAAGTGCCTGTTCTTGGACCCCCAGCCGAGCAGGGG- GAAGCATCCCCAGCTCCCGCACCCAAGTCCCTGGCGCCGCTGCCGGGCCGCCCTCCCTGATGC- CCAGCGCGCAGCCTGCCGGCGCCGCGCCTTCTGGACGGCTCTCGCCGCACCTCCTGAGCTCAGCCCGCGGCCC- C GCAGTGGGGCGGCCTCACTTACTGGCGGGGAAGCGCGGGTCTGGGTTGGCGC 1178 GCGGACACGTGCTTTTCCCGCATTAGGGGGGGTCTcccggcgcgcgccccgccgccACCTGTTGAG- GAAAGCGAGCGCACCTCCTGCAGCTCAGGCTCCGGGCGCCAGCCCTGCCCCGCAGCCCCAGAGC- CCGTCGCAGCTCGGGTGGTCCCTCCCCGGCCCAGCGCTCGCCGCCTGCTCTTCGCCCTGCAAGTTTCAAGAGG- C AGTTATTTCTCGCAGCCTCCGCGCTTGCA 1179 GAGCTGGAAGAGTTTGTGAGGGCGGTCCCGGGAGCGGATTGGGTCTGGGAGTTCCCAGAGGCG- GCTATAAGAACCGGGAACTGGGCGCGGGGAGCTGAGTTGCTGGTAGTGCCCGTGGTGCTTGGTTCGAGGTGGC- - CGTTAGTTGACTCCGCGGAGTTCATCTCCCTGGTTTTCCCGTCCTAACGTCGCTCGCCTTTCAGTCAGGATGT- C TGCCCGTGGCCCGGCT 1180 GGCCGCCAACGACGCCAGAGCCGGAAATGACGACAACGGTGAGGGTTCTCGGGCGGGGCCTGG- GACAGGCAGCTCCGGGGTCCGCGGTTTCACATCGGAAACAAAACAGCGGCTGGTCTGGAAGGAACCTGAGC- TACGAGCCGCGGCGGCAGCGGGGCGGCGGGGAAGCGTATGTGCGTGATGGGGAGTCCGGGCAAGCCAGGAAGG- C ACCGCGGACATGGGCGGCCGCGGGCAGGGCCCGGCCCTTTGTGGCCG
1181 GCGCCCGGTCAGCCCGCAGCGCCCGGCCAGCCCGCAGCGCCGGAGCCCGCAGTGCGTGCGAGGG- GCTCTCGGCAGGTCCAGACGCCTCGCCGAGCCCAGCCCGCAGCTccccgggccgcgccgcgcccgcccACAGG- - GCCCACAGCCCTGCTTCGGCTCTCAGGGCGGTCACCTGGGATGGGG 1182 CCCGCCAGGCCCAGCCCCTCCCTGGCCAGCCCCGTCCTTGTCCCCAAACTgggcccgcccggccgc- caggccgccgggcctccggggcccTCGCGCATCCGGCTCCGAAAGCTGCGCGCAGCCATCATCAGGGC- CCTTCTGGTGTTAGAAGAGACCCCGGCATCATCTTTTCGTCGCGTGCTTCCCCCAGAGTCA 1183 CGATTCTTCCCAGCAGATGGCCCCAAAGTTCAGTTCCTGAATTGCCTCGCGGAGCCGCGGGCT- GCAACGTGAGGCGGCCGCTGCCAGTCGACTCAACCACCGGAGTGGCCCCTGCAGTTGGATAGCAAC- GAGAATCCTCCAGGGGTGCAGGGCGACGGCTTCGGCCGCACC 1184 CGCACACCGCCCCCAAGCGGCCGGCCGAGGGAGCGCCGCGGCAGCGGGAGAGGCGTCTCTGTGGGC- CCCCTGGCAGCCGCGGCAGGAAAGGGCCCGAAGGCAGCGAAGGCGAACGCGGCGCACCAACCTGCCGGC- CCCGCCGACGCCGCGCTCACCTCCCTCCGGGGCGGGCGTGGGGCCAGCTCAGGACAGGCGCTCGGGGGACGCG- T GTCCTCACCCCACGGGGACGGTGGAGGAGAGTCAGCGAGGGCCCGA 1185 AGGCCCCGAGGCCGGAGCGGCGGAGGGGGCGGCCCCTCCCACAGGGTCTTCCCACCCACAGGGCAC- CCAGGCGCAGCGGAGCCAGGAGGGGGCTTACCCGCGGGCAGGGACGGAGCACGCCGGGGCCCTGGAGGG- GCGACGCTCGCTCGTGTCCCCGGTCCCCGTGGCC 1186 GGGTTCGCGCGAGCGCTTTGTGCTCATGGACCAGCCGCACAACTTTTGAAGGCTCGCCGGCCCATGT- GGGGTCTTTCTGGCGGCGCGCCGCCTGCAGCCCCCCTAAAGCGCGGGGGCTGGAGTTGTTGAGCAGCCCCGC- CGCTGTGGTCCATGTAGCCGCTGGCCGCGCGCGGACTGCGGCTCGGCGTGCGCGTGTTCCCGGCCGTCCCGCC- T CGGCGAGCTCCCTCATGTTGTCGCCCTGCGGCGCCC 1187 CCAGTCTCCCGCCCCCTGAGCATGCACGCACTTTGGTTGCAGTGCAATGCTCTGACTTCCAAATGG- GAGAGACAAGTGGCGGAAAATAGGGTCTTCTCCCACCTCCCACCCCCCCATCCCGACTCTTTTGC- CCTTCTTTTGGTCCAAGAGATTTTGAAACCGTGCAGAACGAGGGAGAGGGGCAGGCTGCAGCCGGGCAGATAA- C AAAACACACCCCAAAGTGGGCCTCGCATCGGCCCTCGCATTCCTGTAGAG 1188 GAGGAGGCAGCGGACCGGGGACACCCTGGGGGAACTTCCCGAGCTCCGCGACCTCGAAGCCTGGC- CCTTCCTTCTCCCTGGTCCTACATGCCTCCCTCCCCCACTGTCCGGGGTCCTGGCCTCGACGCCGAGGGGT- GTCCCTCTCCTCTCCTGGTCAGGGAACGCAGCAACTGAGGCGGCGCGGCCCAGATGAGACGGGAAGCGCCTGC- G GGCCGTGGGCGCGGGTGGAACCC 1189 CCGGCTCCACGGACCCACGGAAGGGCAAGGGGGCGGCCTCGGGGCGGCGGGACAGTTGTCGGAGG- GCGCCCTCCAGGCCCAAGCCGCCTTCTCCGGCCCCCGCCATGGCCCGGGGCGGCAGTCAGAGCTG- GAGCTCCGGGGAATCAGACGGGCAGCCAAAGGAGCAGACGCCCGAGAAGCCCAGGTGAGCGGCTGGGCCGCGC- C GGACGGGCGTCGGGGGTCTGGGCCGCGA 1190 CCGCCACCGCCACCATGCCCAACTTCGCCGGCACCTGGAAGATGCGCAGCAGCGAGAATTTCGAC- GAGCTGCTCAAGGCACTGGGTAAGCTGGTGCAGAGGGCGCGCCCCGACGGGGAGATGCGGCCCGGAGGTGC- CCTGGTCCCGGAAGTGCCCCGGTCCTGGAGGGGGTGGAAGTTGGGGAGCCCAGGCAGGAGGGAGTCCCCGGGG- C AATAGATCGCCTTGTCTCCCAGGCGCACCGGGTCTCG 1191 TGAGTAAGGATGATACCGAGAGGGAAGAAAAAAATACCCTCTTTGggccaggcacggtggctcac- ccctgtaatcccagcactttgggaggctgaggcgagcggatcacgagatcagaagatcgagaccatcctg- gctaacacagtgaaaccccatctctaccaaaaatacaaaaaattagccaggcatggtggcgggcacct 1192 tgggccaggcacggtggctcacccctgtaatcccagcactttgggaggctgaggcgagcggatcac- gagatcagaagatcgagaccatcctggctaacacagtgaaaccccatctctaccaaaaatacaaaaaattagc- - caggcatggtggcgggcacctgtagtcccagctacttgggaggctgaggcaggagaatcctttgaacccagga- g gcggagcttgcagtgagctgagattgtgccactgcactccag 1193 CCGGCGAAGTGGGCGGCTCCCCAAGCGCCCAGGCTGCGCAGCACGATggccgcccccgccgcgcac- cgcgtgtgcccgcacgcccgccccctgcgccccggggacgcctctccgcccctccccctgcccctccgcccac- - cgcgcggtcgccccacgccgcgggcgctgcttcgccgcccgggaggccgcctcccgccccgggACCGGATAAC- G CCCTAAATCAGCGCAGCTGAGGCGAGGCCGTGGCCCCCGCAG 1194 GCGGCCTTACCCTGCCGCGAGCGCCTGTGACAGCGGCGCCGCTGTGCTCGCGACCCCGGCTCCGG- GCCTCTGCCGACCTCAGGGGCAGGAAAGAGTCGCCCGGCGGGATGGGCGGGGAGGCTGGGTGCGCGGCGGC- CGTGGGTGCCGAGGGCCGCGTGAAGAGCCTGGGTCTGGTGTTCGAGGACGAGCGCAAGGGCTGCTATTCCAGC- G GCGAGACAGTGGCCGGGCACGTGCTGCTGGAGGCGTCCGAGCCGG 1195 gtggggccggcgAGGGTCAGGGGCATCGCGGCCGCGACCCCATTCTGCAGCCCCCGAGGCTCGC- CCGACTCCTGGCTGCCCTGGACTCCCCTCCCTCCTCCCTCCCGCCTCCTCGCCCAGGGCCCGGCTCACCTg- gcggcggggcgcgggacgccgcgggcgggacggcggggggctccggggcgctccggggcggcTCTCGCGCATG- C TCCGGGGC 1196 CGGCGCGGACCGGCTCCTCTACCACTTTCTCCAGCTGCACTGCCACCCAGCCTGCCTGGTGCTGGT- GCTCAACACGCAGCCGGCCGAGGAGGTGCGGCCGCGCTGGCGCGGGAGTGAGGGGACTCCGAGAGTGTTGAGG- - GCCTCCTGAGCGGATGCGAGGCCTCTGACAGGGATGGAGGGGCTCTGAGGGGGATTCAGGCCCCTGACACTAC- G CGATGACACAGAGAAGGATGGCAGGGGTCCCCAGGGG 1197 GCCCATGCGGCCCCGTCACGTGATGCAAGGATCGCCGGCCTTTCCGCCAGAGGGCGGCACAGAAC- TACAACTCCCAGCAAGCTCCCAAGGCGGCCCTCCGCGCAATGCCGCTACCGGAAGTGCGGGTCGCGCTTCCG- GCGGCGTCCCGGGGCCAGGGGGGTGCGCCTTTCTCCGCGTcggggcggcccggagcgcggtggcgcggcgcgg- g gTAA 1198 GGGATTGCCAGGGGCTGACCGGAGTGTTGCTGGGAAGGAGCCTCAGCTCCGCTCCAGGTCCTCCAC- CAGGTAGGACTGGGACTCCCTTAGGGCCTGGAGGAGCAAGTCCTTGCAGGTCCAGTTCCAGGCTGGTGT- GAAACTGAAGAGCTTCCGCATCTTGCTTGGGTTGGTGGGCTCGGCCCGC 1199 GCCGGAGCACGCGGCTACTCAGGCCGAACCCCGACCCGGACCCGGCACGCGGCCTCGGCGAGGGCGG- GCGGGAGTGTCCTCCTCCGGGACAGCCGGACTCCCGCCGACTTCTGGGCGGCGGGGAGGGCTCCAGGCCCG- GCTCTCCCGGGCCCCCGCACGCGATGCGCGGCCCCTGCAGCTGCTCCGTGCCCCGAGACGCGCCCGAGGCCTC- G GACCTCCAAGCGGCCACCGCGC 1200 CCTCGGCGCCGGCCCGTTAGTTgcccgggcccgagccggccgggcccgcgggTTGCCGAGCCCGCT- GACGTCAGCCCGGGTTTCCCCCCCCCACCGGGGCTTCCCCATCCCCCGAGGCTTCCCGGGAGGGCTGC- GAGTCCGGGGAGCGTGCGGGGTCGCCACCATCGGGACCCCCAGAGGAGAGAGGACTTGGGGCGGGAGCCGCGC- G GGACGCTGTCCCCCTCCCGCCCCCCAccccatttacagattgggaga 1201 CACAGCGGCGGCGAGTGGGTCGTGCACGCGGATGCGGGGTGGGAGTGGGGGCGCACGCGCGGGCGT- GGGCGAGCGGGCCCCGGCAGTGCACACACACGGCAGGGGCGGGCGACAGATGCAGTGCGTGCGCCGGAGC- CCAAGCGCACAAACGGAAAGAGCGGGCGCGGTGCGCAGGGGCGGGCGCCCAGCGGGCTTGGCATGCGCG 1202 CACCTCGGGCGGGGCGGACTCGGCTGGGCGGACTCAGCGGGGCGGGCGCAGGCGCAGGGCGG- GTCCTTTGCGTCCGGCCCTCTTTCCCCTGACCATAAAAGCAGCCGCTGGCTGCTGGGCCCTAC- CAAGCCTTCCACGTGCGCCTTATAGCCTCTCAACTTCTTGCTTGGGATCTCCAACCTCACCGCGGCTCGAAAT- G GACCCCAACTGCTCCTGCGCC 1203 AGACGGGGCCGGGCGCAGACGCCCCGCCCCGCCCTTGCACCCAGCCCGCTGAGTCCGCACCGC- CCGCGGTCCCGGCCTGGGCTGTGCGCAGGAGATGGGCCAAGTGCAAGGTCCCTTGAGCGCAGCTGG- GCGCACACCGCAGGACGGCCCCTTTCGCACCGGCTCGCGAGGGAGGCGCTGTGCCCCCCGTGTGCGGCTTCTC- T CACCCTGCCAGGCCTTCCCAGCTTCCCTGAGGTTGCCTGCTACACCCGCCCC 1204 GCATTCGGGCCGCAAGCTCCGCGCCCCAGCCCTGCGCCCCTTCCTCTCCCGTCGTCAC- CGCTTCCCTTCTTCCAAGAAAGTTCGGGTCCTGAGGAGCGGAGCGGCCTGGAAGCCTCGCGCGCTCCGGAC- CCCCCAGTGATGGGAGTGGGGGGTGGGTGGTGAGGGGCGAGCGCGGCTTTCCTGCCCCCTCCAGCGCAGACCG- A GGCGGGGGCGTCTGGCCGCGGAGTCCGCGGGGTGGGCTCGCGCGGGCGGTGG 1205 GCCCGAAAGGGCCGGAGCGTGTCCCCCGCCAGGGCGCAGGCCCCAGCCCCCCGCACCCCTAT- TGTCCAGCCAGCTGGAGCTCCGGCCAGATCCCGGGCTGCCGCCTCTGCTGCCTTCCCTGAGCGGGAGCG- GAGCGCAGAGAAAAGTTCAAGCCTTGCCCACCCGGGCTGC 1206 CGGCGGCCGGGTGACCGACCACTGCTTACCAGGAGGGGAGACTGGCAGGGGGGGCTCAAGGAA- CATCTGGTGGGTGTCCCCTTCACAAGACTCGGCCTGCAGAGTTCGTGCAGGGAGTTCGCACATAGGAGAGCAC- - CGGTCCGGGAGTGCCAGGCTCGTGCCCGGCCGGGGAGAGGAGTGGGAGACTAAGTCGCAGGGCAAGGGCAACT- - GCA 1207 CCACCGGCGGCCGCTCACCTCCTGCTCCTTCTCCTGGTCCGGGCGGGCCGGCCTGG- GCTCCCACTCCAGAGGGCAGCCGGTCCTTCGCCGGTGCCCAGGCCGCAGGGCTGATGCCCCCGCTCAGCT- GAGGGAAGGGGAAGTGGAGGGGAGAAGTGCCGGGCTGGGGCCAGGCGGCCAGGGCGCCGCACGGCTCTCACCC- G GCCGGTGTGTGTCCCCGCAGGAGAGTGTGCTGGGCAGACGATGCTGGACACGATG 1208 CGGTCAGGGACCCCCTTCCCCCTTCAAGCTGACTCCCTCCCACAAGGCTCTTCAGATCTCGT- TGTATTTTGGGATTGATGGGGGAAAAATCCAAATTTGTTTGTTTGCTTCCCTTTTTTCGGTGGTGGGGAAAG- GTGGCAGGCTTTTTGGGACAACCATGGAGGGGTCCTCCGTCTCGGCCTCTTCGCATATCCCCCTCCGTGATCC- T GCCTTCCCCCCCCACCGAGCCCATCGCAGGC 1209 GGCCGAAGCTGCCGCCCCTCCTCCCAACCGGCGGGTCAGATCTCGCTCCCTTTCGGACAACT- TACCTCggagaggagtcaaggggagaggggaggggagggggggagggggcaagagagagaggggggagaa- gaggGATCTTCTCGCTTATTTCATTGTTCCCCCATCTTCAGGGAGCGGGGGCAGCGGCTCCTCAAGGCGGCGG- G CGCCGGCGTCTTCAGAGCGCCATGCGAACCGCGG 1210 GCGGCCTTGTGCCGCTGGGGGCTCCTCCTCGCCCTCTTGCCCCCCGGAGCCGCGAGCACCCAAGGT- GGGTCTGGTGTGGGGAGGGGACGGAGCAGCGGCGGGACCCTGCCCTGTGGATGCCCCGCCGAGGTCCCGCGGC- - CGGCGGGGCCAGAGGGGCCCGGACGAGCTCTCCTATCCCGAAGTTGTGGACAGTCGAGACGCTCAGGGCAGCC- G GGCCCTGGGGCCCTCGGGCGGGAGGGGGCAGTTACACGGCAG 1211 CGCGGGAGGAGCGGCGAGGCCCTCACCTGGCGCCTTTTATGCCCGCGGCCGGTGGAGGGGGGAAGG- GAGGAATGGTGTCAGGGGCGGATATCTGAGCCCTGAGGAATTTGCAGGCTCCTGAGAGCAAATATGG- GCTCTCTCCCCATTGGTCAATTCCCTCCCCTCCCAGAGACCAGAGGCCCCTGCCCTCCAGAGGTGCCCCGCCC- C GGTCCGCGCAGAAGCTCCGACCCGCACTCCCCCA 1212 GCCCACCAGAAGCccatcaccaccagcaaagccaccaccaaagccaccacccaagccagcaccaag- gccaccaccatatcctcccccaaagccactaccaAAGCTGCTGCTGCTGCTGCTGAAGCCACCGCCATAGC- CGCCCCCCAGCCCGCAGGCTCCCCCAGAGGAGAAGCGGGAGGATGAGACAGACAGGCCGCCCCCGTAGGTGCT- G GGGGCGCGGCAG 1213 GGGCCATGTGCCCCACCCCACAGCCCCACCCTGCCCTGCCCACCACCCCAAGCCCGGCCCTGG- GTCCCAGGGTCCCGCCAGGCCCGCTGGGTGGAATGTGGTCATGTTTCAGACTGCCGATG- GCTTCCACTTCCCAGACAGGCCCAGACGGCCCCGCCAGCAGCC 1214 CCGCCAGCCCAGGGCGAGAGTCAGGGACGCGGCGTCGGGCGAGCTGCGCGGGCCCCGGGGGAG- GCGCGACCCCGGAGGCACCTGTCCGGATCCCTCCCCGCCTTGCTCAGATCTCTGGTTCGCGGAGCTCCGAG- GCGCGCTCGGCCCGAACCGCGCGACCCCCAAGTCGCCGCGCCC 1215 gccccctgtccctttcccgggactctactacctttacccagagcagagggtgaaggcctcct- gagcgcaggggcccagttatctgagaaaccccacagcctgtcccccgtccaggaagtctcagcgagctcacgc- - cgcgcagtcgcagttt 1216 GTGGGGGTCCGCACCCAGCAATAACCCGGGTCTTCCCGCTCCGGCTCCTGCCCCAGTAAGCGTTG- GACCGGGAGACGCAGTGCTCAGCATCGGTCAGCAGGGGGCGCAAGGACCCCGCCCCGCCGAGTCCGCGC- CAAAGTTTCTCATCCTCCACCCGCCCACGCTCCGCACCCCCTCCGCGGCTGCCCAGCACCCCCACGGCCCCAG- C A 1217 gggcccccgggTTGCGTGAGGACACCTCCTCTGAGGGGCGCCGCTTGCCCCTCTCCGGATCGC- CCGGGGCCCCGGCTGGCCAGAGGATGGACGAGGAGGAGGATGGAGCGGGCGCCGAGGAGTCGGGACAGCCCCG- - GAGCTTCATGCGGCTCAACGACCTGTcgggggccgggggccggccggggccggggTCAGCAGAAAAGGAC- CCGGGCAGCGCGGA 1218 GCCTGCACAGACGACAGCACCCCCGGCGGGGGAGAGCGGCCCCAGCGGAGACTCGGCAGGGCTCAG- GTTTCCTGGACCGGATGACTGACCTGAgcccggggcccgggcggcgctggccgggcACAGGATGCGCGGCCCG- - GAGAGCGCATCCCGGCCATCCGCCCGCGCTCGGCCCCGCAGCGCAGCTGCTGCAGATCCGCGGGGGCCGCCAC 1219 GGCCGCGCCGGGCTCAGGTTCCACCCCCGGGAGCGCGGGGCGGAGCCAGGCCGGCGCCGAGGCT- CAGTGCCCTCCCCGCTCCGCGGCGCCGGCTGCGAAGTTGAGCGAAAAGTTTGAGGCCGGAGGGAGCGAGGC- CGGGGAGTCCGCTCCAGCGGGGCGCTCCAGTCCCTCAGACGTGGGCTGAGCTTGGGACGAGCTGCGTTCCGCC- C CAGGCCACTGTAGGGAACGGCGGTGGCGCCTCCCC 1220 GGGGTAGTCGCGCAGGTGTCGGGCGCGGAGCCGCTTGGCCTCCTCCACGAAGGGC- CGCTTCTCGTCCTCGTCCAGCAGCTTCCACTGCGCGCCCAGGCGCTTGGAGATCTCGGAGTTGTGCATCT- TGGGGTTCTGCTGCGCCATCTGGCGGCGCTGAGCGGAGCTCCACACCATGAACGCGTTCATCGGCCGCTTCAC- C TTCTCCAGGGGCAGCGTCCCGGGGGCCGCGGGGCTCCCAGCGCCCTCCCGCTCC 1221 tgcaggcggagaatagcagcctccctctgccaagtaagaggaaccggcctaaagga- cattttctctctctctcctcccctctcatcgggtgaatagtgagctgctccggcaaaaagaaaccggaaat- gctgctgcaagaggcagaaatgtaaatgtggagccaaacaataacagggctgccgggcctctcagattgcgac- g gtcctcctcggcctggcgggcaaacccctggtttagcacttctcacttccacga 1222 ccggaaatgctgctgcaagaggcagaaatgtaaatgtggagccaaacaataacagggctgccgg- gcctctcagattgcgacggtcctcctcggcctggcgggcaaacccctggtttagcacttct- cacttccacgactgacagccttcaattggattttctcc 1223 gcgtcggatccctgagaacttcgaagccatcctggctgaggctaatctccgctgtgcttcctct- gcagtatgaagactttggagactcaaccgttagctccggactgctgtccttcagaccaggacccagctccagc- - ccatccttctccccacgcttccccgatgaataaaaatgcggactctgaactgatgccaccgcctcccgaaagg- g gggatccgccccggttgtcccc 1224 CCGGCTCCGCGGGTTCCGTGGGTCGCCCGCGAAATCTGATCCGGGATGCGGCGGCCCAATCGGAAG- GTGGACCGAAATCCCGCGACAGCAAGAGGCCCGTAGCGACCCGCGGTGCTAAGGAACACAGT- GCTTTCAAAAGAATTGGCGTCCGCTGTTCGCCTCTCCTCCCGGG 1225 CGTCGCCGGGGCTGGACGTTCGCAGCGGCGCTTCGGAAGGGGGCCCCGCGGGAGCAGCCGC-
CCGCGTCTCCAGCAGCTTCCCCTTGCCAGGCGCCGCGCGCGCCCGGTATCCCCGGGTGTCCACCTGTGCGT- GGGGGGCTGTTTCCCGTCTGTCCAGCCGCGCCCACTTCTCAGGCCCAAAGGCCAGCAGGAAGGGTCCCGGAGG- T GGCTGGGGGCGTCCACCTGAGAAGCTCCGCTCTCGCTCAGACACCCCAC 1226 GGGCCTGCCGCCTCGTCCACCGTCCGTCGTGAGGCCGGCAGCGGACACGTGCTCATCCCACGGGGAG- GCCCCGCGCAGCGCGGAGGACGCGCCTGAGAGAGAAAAGGGGTTCGGGAGAAGCCCGAGGACCCGGCCCGT- GACTGGGCGCGCCCTATGCAAATGAGCGGGCGGGGCCCTCGTGTTGCTGAACGAGGGCGGGTTCGCGATGTAA- A TAAGCCCAGAGGTGGGGTCTTTGGAGAGCACTTAGGGCCCGGG 1227 GCACACCGCTGGCGGACACCCCAGTAACAAGTGAGAGCGCTCCAC- CCCGCAGTCCCCCCCGCCTCTCCTCCCTGGGTCCCCTCGGCTCTCGGAAGAAAAAC- CAACAGCATCTCCAGCTCTCGCGCGGAATTGTCTCTTCAACTTTACCCAACCGACGACAAGGAACCAGCCTC 1228 GCAAACCATCTTCCCCGACGCCTTCCACATAAGATGCCCTCCTGCGGGCCCTCACCTTTTGACACT- GCCTCCCACCGCACTGGGGTCAACTCTCACCCAAGGGTTCCGCCACCTTCCACCACCAAACCAGCCTGTCCCT- - GCCACATGCCCCCCGGGCCCCAGCGCTCATCCTCTGCCCAGGCCCGCTCTTGACCCCTGACCCCGGCCTGAC- CCCGC 1229 GGCCCTCCGCCGCCTCCAACCGCGCACCAGGAGCTGGGCAcggcggcagcggcggcagcggcg- gcgTCGCGCTCGGCCATGGTCACCAGCATGGCCTCGATCCTGGACGGCGGCGACTACCGGC- CCGAGCTCTCCATCCCGCTGCACCACGCCATGAGCATGTCCTGCGACTCGTCTCCGCCTGGCATGGGCATGAG- C AACACCTACACCACGCTGACACCGCTCCAGCCGCTGCC 1230 CACCACCGTGGCAAAGCGTCCCCGCGCGGTGAAGGGCGTCAGGTGCAGCTGGCTGGACATCTCG- GCGAAGTCGCGGCGGTAGCGGCGGGAGAAGTCGTCGCCGGCCTGGCGGAGGGTCAGGTGGACCACAGGTG- GCACCGGGCTGAGCGCAggccccgcggcggcgccgggggcagccggggTCTGCAGCGGCGAGGTCCTGGCGAC- C GGGTCCCGGGATGCGGCTGGATGGGGCGTGTGCCCGGGC 1231 CACAGCCCCTTCCTGCCCGAACATGTTGGAGGCCTTTTGGAAGCTGT- GCAGACAACAGTAACTTCAGCCTGAATCATTTCTTTCAATTGTGGACAAGCTGCCAAGAGGCTTGAGTAGGA- GAGGAGTGCCGCcgaggcggggcggggcggggcgtggagctgggctggcagtgggcgtggcggtgc 1232 GCTTGATGCTCACCACTGTTCTTGCTGCTCAAGGGAAACCAAGTATATATTTGTGGATAG- ATCCTAACTCAGATGATACTGTCAGAATATATAAGATTCCTATACCACATCCTGAACTCTGAAAGT- TGCAGTTCTACGTAGAAGTTCACTGAGGGTTGTAAGAGTCAGAATGGACTCCATGGAAGTTATGGGGTGTGAA- T CAAACCTCACAGGTGAGTCAGTGGGGAGAAAGAAGCATGACA 1233 ggccaggcccggtggctcacacctgtaatcccagcactttgggaggccgaggtgggcggattgcct- gaggtcaggagtttgagaccagcctggccaacatggtgaaaccccgtctctactaaaaataccaaaaattagc- - cagtcgtagtggtgggcacctgtaatcccagctattcaggaggctgaggcaggaggatcacttgaacccaaga- g gcgggagttgcagtgagcagagatcacgccattgcaccccag 1234 GCGGGACGGGTGGCGGGAAGGAGGGAGGCGCGGCTGGGGAGAGCGCTCGGGAGCTGCCGGGCGCT- GCGGaccccgtttagtcctaacctcaatcctgcgagggaggggacgcatcgtcctcctcgccttacagacgc- cgaaacggagggtcccattagggacgtgactggcgcgggcaacacacacagcagcgacagccgggaGGTAAGC- C GCGTCCCAGCGGCTCCGCGGCCGGGCTCGCAGTCGCCCCAGTGA 1235 GCTTGGCCCCGCCACCCAGACCCCTCCCCCGGGGGCGCCCAGCTTGGCCTCTGGGTCCCG- GCGCACGCGGACCCCAAGTCGGGGAGGCCGGGCTGACCGCGGCCGCCTCCCCGGCTCCGGGTAGGAGGTGG- GCAGAGAAGGTGGGCTGAGGGGAGGAGAAACTGGGCTGCGGGGGTCCGGGAGGGTGGATTCCGAGAAACTATG- T GCCCAGCTGACCCTGCCCGCCCCGCCGCGGCCCTGCAGTCCCCGGGCCAG 1236 GCGGGGAAGGCGACCGCAGCCCACCTACCGCTGGACGCGGGTTGGGGACCCCGCCGCCCGGC- CAGCTTTGTTcgggggcccgcggcccctcccgggcccccgcACCGCCTCGGGTGACCCGCGGT- GTCCCAGCGCGTTGACGCAGCCTGTGATCCCTCGCGAGGCGAGGAGAAGGTCGGGGGCTTGGCTCTGCCTAAT- G GCCGCCCGGGGA 1237 gcgcccaaccaccacgcccgcctaatttttgtatttttagtagagacgggttttcaccattttggc- caggctggtctcgaaccccgacctcaggtgatctgcccaaaagtgctgggattacaggcgtcagccaccgcgc- - ccggccGGGACCCTCTCTTCTAACTCGGAGCTGGGTGTGGGGACCTCCAGTCCTAAAACAAGGGATCACTCCC- A CCCCCGCC 1238 AAAAGCCCCGGCCGGCCTCCCCAGGGTCCCCGAGGACGAAGTTGACCCTGACCGGGC- CGTCTCCCAGTTCTGAGGCCCGGGTCCCACTGGAACTCGCGTCTGAGCCGCCGTCCCGGACCCCCGGTGC- CCGCCGGTCCGCAGACCCTGCACCGGGCTTGGACTCGCAGCCGGGACTGACG 1239 CGCAGGTGCGGGGGAGCGTGCGGCCGGGTCCATGCGCCTGCGGGCGGCGGGGGGAGACGCGT- TGCCTTCGGCCGGGACCACTGCACCTGCCCGCGTGGGTAATGCGCCCGC- CGCAGACTCCGCGCACGACTCCGCCTGGGAGCGCGTTGGGGGCCGTTGGAGTCCAGCATGGCGCGGACCCCGG 1240 CCCGCCCACAGCGCGGAGTTTAGTCTGCGCGTGCCTCGCTCGAGAACGCGCTCGTGCGCATGC- CCACAAAGGCCAAGGAGGGAGTGCGCAGGTCACGTGCGCCGGTGGTCAGCGCGCGCATTGCCTGCCCCG- GAAGTGGTcggcgcgcggcgcggcgcgccTGGGCGCTAAGATGGCGGCGGCGTGAGTTGCATGTTGTGTGAGG- A TCCCGGGGCCGCCGCGTCGCTCGGGCCCCGCCATG 1241 GCAGGGGCCCGGGGGCGATGCCACCCGGTGCCGACTGAGGCCACCGCACCATGGCCCGCTCGCT- GACCTGGCGCTGCTGCCCCTGGTGCCTGACGGAGGATGAGAAGGCCGCCGCCCGGGTGGACCAGGAGAT- CAACAGGATCCTCTTGGAGCAGAAGAAGCAGGACCGCGGGGAGCTGAAGCTGCTGCTTTTGGGTGAGTCCAGG- G TCGGTGGGCGGTGGGTGGTGGGCAGTGGGCGGTGGCCAGCCGGCAGGG 1242 CATGACCGCGGTGGCTTGTGGGAAAAGTGGCTCGGAACCCCAAATCCCGGTTAGATTGCAGGCAC- CGCCGGACGCTGGCTCCCGGAGGTTTTAGTTTTCCCTCTACCAGGAGTGTGAAGACACAGAGACTTAT- TGCGCTGGCGAAGATGGCTGAGGCGAAGGCGTGTCCGA 1243 GCAGGTGCTCAGCGGGCAGACGCCCCGCCCCGCCCCGCCAGGTTCTGTTGGGGGCGAGGC- CCGCGCAAGCCCCGCCTCTTCCCCGGCACCAGGGGCGGGCCCAGGTGCGCCCAGGGCCGGGGAGCGGC- CGCGCAGGTGCCTGCCCTTTGCGCCTGCGCCCAGCTCG 1244 GGTGCGCCCTGCGCTGGCTAAAGTGCGCAAGCGCGCGAGGCTCGGGCCTTTCAAAccccggcgcgc- cggcgccggcgTCGACACTGCGCAAGCCCAGTCGCGCCTCTCCAGAGCGGGAAGAGCGCTGCGTTCCT- TAGCAACGAGCGTTTCCTCCAGCCCCGCCTCCCTCCGCCACACACAACCCCGC 1245 AATTTGGTCCTCCTGCGCCTGCCAAGATTGTCTgagtattgatcgaacccaggagttcgagat- cagcttgagcaagatagcgagaacccccgcccctccacctcgtctcaaaaaaaaaaaaaaaTCGTCT- CAGTAGCGAATAGTCTAACGGAGAATGACAGGGAAATTGGTGATCCTTTCTGGGCCCAAGAGTTAGAAATGGC- T TTGCAggccgggcgcggt 1246 GGCTTCCGCGGCGCCAATCTCCACCCGCAGTCTCCGCCTCCCGCACCTGTGGTCCGGGCCTCACG- GTTTCAGCGCCGCGAGGCCTCACCTGCTGGTCTTGGAGCCTCAAGGGAAAGACTGCAGAGGGATCGAGGCGGC- - CCACTGCCAGCACGGCCAGCGTGGCCCAGGGCTCGCAGCACTTCCGGCCTCTCTGGCCCCGC 1247 GCCAGGAGAGGGGCCGAGCCTGCACAGGAGCTTCCTCGGTTTTCCGAGCGCCGGCCCCCCTTCTCT- GCCTGGGAGGAGGTGGTTAGAGTCCCCTGGGTGTGTGCCCCGCAGAGGGAGCTCTGGCCTCAGTGCCCAGTGT- - GCAGACCAATGAGAGCCCCAGAGAGAAAGACGGTCATTTCCTCCCTGCATCTTCCCTTGGGGC 1248 cgagcgccggccccccttctctgcctgggaggaggtggttagagtcccctgggtgtgtgccccgca- gagggagctctggcctcagtgcccagtgtgcagaccaatgagagccccagagagaaagacggt- catttcctccctgcatcttcccttggggc 1249 GGTTGCGAGGGCACCCTTTGGCCCGGGGGCGCGCAGGAGAGGGCAGGGGCCAGGGGTTTCCTGGGC- GAGGGCGCGGGGACGAGCAGGAAAAGGCCGGGGTGGGGGTGGAATTCCTCGGCGGGCAGGGGGCGCATGCGC- CGGGCACCGTGGGGCGGGACGTGGCCCGGGAGGAGCTGGGGGGACTGGGTGGTGCACGTGCGGGC 1250 acccggacgcggtggcgcgcgcctgtaatcccagctactcgggagcctgaggcaggagaatcgct- tgaatccgggaggcggaggttgcagtaagccgagatcgcgccactgcaccccagcctgggcgaca- gagcaagactccTCGGTAAAGACACCACTTCGTCACCC 1251 CGCCGCCGAGCCTCAGCCACGCCTCTGTGCAGCGGGGAAGACTCCTCTCGCGCCTTCTCAGTCAGT- CACGGATGATGCTGACCCAGCGCTCCGGGGCTTTCTACCAAGTAATCAGTCCAGACAAATGCCAAAACGAC- CGCCACAAGGAGGACAACGGAAGTCCCGCCGCGACCGCGCGTGCGCTTACGGAAACACCACCTTTCGGAGGCC- T CATTGGCTGAAGGTCGCCGTCGCCCAACGCAGGCCATTCTGGGT 1252 gcagcctcaacctcctggggtcaagtgatcatcctggctcaaccacccaagtagccgggactacgg- gtggccgccaccatgcccggataatttttttatttttgtggagatgggggtcccacgatgttgc- ccagtccagtcttgaactcctgggctcaagtgatcctcccgcagcagcc 1253 CTTGCCGACCCAGCCTCGATCCCCTGCGGCGTCCAGGTCCCAATGCCCCAACGCAGGCCACCCCCG- GCTCCTCTGTGGACTCACGAAGACAAGGTCCGGCCGCTCGGGCCGCGAGAGTCGCGCCATCACCAC- CATTTTTCTGGATGCCCA 1254 GCGGCGTTCGGTGGTGTCCCGGTGCAGCCACGCGAGAGTAGAAGGGTGGAAAGGGGAGGTGCCCAGT- GAAATGGAGCCTGTCCCGTGCACTTTCGGGCATTTCGAGCATCTTGTGGGCTCTCCCAAGTCGCGGC- CCCTCCTCTGAGAGCCACAGTCAGGTCTGTCCTCAGGGGTCGAGGCGGCTGCGCTGGGGCCTCGGCCCGGGAG- G AGGCGGGGGGCACGGCCTTTCCATTTTCCCTGCTCCCCTCTGCAGAA 1255 CCGGACTCCCCCGCGCAGACCACCGTGCCAGGACAGCCCGCTCGGGAGTCGGGCCTGGAAGCAGGCG- GACAGCGTCACCTCCCCGCAGCCGCCGGCTGGGACCCGCGGCCAGCCTTTACCCAGGCTCGCCCGGTCCCTGC- - CCGCATGGCGG 1256 ggccccctgcaagttccgcctcccgggttcacaccattctcctgcctcagcctccccagcagctgg- gactacaggcacctgccgccacgcccggctaattttttgtatttttagtagagacagggtttcaccatgt- tagccaggatggtctcgatctcctgaccttgtgatctgcccgcctcggcctcccaaagtgttgggattacagg- c gtgagccaccgtgtccagccTGTAACA 1257 GCCCAGGGGAGCCCTCCATTTGTAGAATGAATGAGAGTCCAGGTTATGAACAGTGCCTGGAGTGTAG- GAACACCCTCCTTTGCCTCTTTGACAGGTCTGCATCATAACACtttttttttttttttgagacagagtct- cactctgtcgcccaggctggagtgcagtggcacgatctcggccccctgcaagttccg 1258 CCGGCTGCAGGCCCTCACTGGTTGGGTCCGCCCGCGAGGGTGCCCTGGGCCCGGT- GTCTCTCCTCCTTCTGAAGTTTGTTCCCATCCACCCGGCATCACCGACCGGTTTTATCCCGCTGAGGCCCTGG- - GAGATGGGTCTGGCGAGGCTCGTAGGCCGCGGATTGGCTGGCTGGGTGCAGGGGGGTGCGGGAAGGGGAGGAT- T TTGCA 1259 GTCACACCTGCCGATGAAACTCCTGCGTAAGAAGATCGAGAAGCGGAACCTCAAATTGCGGCAGCG- GAACCTAAAGTTTCAGGGTGAGATGCGTTGACTCGCGGTGGCTCAGAAGACCCACGCGCGAGCCCTG- GCGCGTTCGGGCGGCCGGGGGCCCAGCTGCTCTGTGTGACGGAGGCAGCTTCCCCTGCAGCGTGTGTGATTGG- G GAGAGTGAAAAGGCAGCTTCCACTCGGGACCCGCGCTGCTGCCCACTC 1260 CCCTGCGCACCCCTACCAGGCAGGCTCGCTGCCTTTCCTCCCTCTTGTCTCTCCAGAGCCG- GATCTTCAAGGGGAGCCTCCGTGCCCCCGGCTGCTCAGTCCCTCCGGTGTGCAGGACCCCG- GAAGTCCTCCCCGCACAGCTCTCGCTTCTCTTTGCAGCCTGTTTCTGCGCCGGACCAGTCGAGGACTCTGGAC- A GTAGAGGCCCCGGGACGACCGAGCTGATGGCGTCTTCGACCCCATCTTCGTCCGCAACC 1261 CCTGGGGGAGCGCGGTGGGGGTAAGATAAGGGATGGGGGCTCCGAGGGCTGGGAACTGCAGGAAG- GAAAGAAGCGGCGGGGCCGCCCGGGTCAAGGGGCCACGTGGGGGAGGGCGGGCAGGCGGGACCGGGAGGT- CAATAACTGCAGCGTCCGAGCTGAGCCCAGGGGAGCGGGCGAGGAGAAAGAAGCCTCAGAGCGCCCGGGAAGC- C TCGCGCGCCTGGGAGGCTTCCATCTCCCGGGACCCAGCTCTCAGCC 1262 GTGGGGCCGGGCGAGTGCGCGGCATCCCAGGCCGGCCCGAACGCTCCGCCCGCGGTGGGC- CGACTTCCCCTCCTCTTCCCTCTCTCCTTCCTTTAGCCCGCTGGCGCCGGACACGCTGCGCCTCATCTCT- TGGGGCGTTCTTCCCCGTTGGCCAACCGTCGCATCCCGTGCAACTTTGGGGTAGTGGCCGTTTAGTGTTGAAT- G TTCCCCACCGAGAGCGCATGGCTTGGGAAGCGAGGCGCGAACCCGGCCCCC 1263 CGTCCAGGCTGTGCGctccccgttctcccctcctccccacttctccccacgcct- tgctcgtctcccgccctcctccgacaaccgctcccctcaccctccacccctacccccgc- ccctcctccttcctccccGGCATGCGCCATATGGTCTTCCCGGTCCAGCCAAGAGCCTGGAACCACGTGACCT- G CCCATTTGTATGCCGCGGAGCGCTCCATTCCGGCCCCTTTGTGGCCA 1264 GCGCGGCGGTGCAGCCTCTCCCGAGCGCGCTGGGTCGCCTCTGCTCGGTCTGGGGTCTGCCAG- GCGCGATCCCCCCGGTGCAGCCGAGCCCCTCCGCAGACTCTGCGCAGGAAAGCGAAACTACCCGGCAG- GAGAAAAGGCAGCGCTGGCGCCCGGCCCCCTTCCGCCCCCACCAATCACCGGGCGGCTCCGCGCTCAGCCAAT- T AGACGCGGCTGTTCCGTGGGCGCCACCGCCTCCCTCTGCGGGCCGCTGCT 1265 aggcggcggcggtggcagtggcacccggcggggaagcagcagcCAAACCCGCGCATGATCTCGA- GAGTTTCAGCAACATCCAGGGACTGGGCTCAGCCCCGGAGCGAGAGGGTCGTCCGCTGAGAAGCTGCGCCG- GAGACGCGGGAAGCTGCTGCCATAAGGAGG GAGCTCTGGGAAGCCGGAGGACAGGAGGAGACGGGAGTCCAGGG GCAGACGAGTGGAGCCCGAGGAGGCAGGGTGGAGGGAGAGTCAAGG 1266 GCGCGACCCGCCGATTGTGTCGAGTCAGCAGCGGCAGCGGGGACGCGCGAAGCCATGGCTCCCGC- CCGCGCTCGGGAGGGCGCCGGGGGTCCTGCGCCTCCGGGAGGTTTGTGGCCGAgcgcggcgcggccccgagcg- - gccccgcagcgcccggctccccgccgcTCGCTCTCCAGGCGCCGACCCGCCTGCGTCGCCACCCTCTCGCCGC- T CCCTGCCGCCACCTTCCTCCCGCCCGGGTGCCGGGCGTCCGCT 1267 CGCGGACGCCGCTCTGCACCTGTTGCCGCCGTCACTCATCCCGCCAGGCGGGCGGGGCCGCGCGGGT- GGCTTGGTCAGGACCTGCCATTCAGCCCAGTCGGGCTCCGGTGCTCGCCCCGGACGGCGCCCCAAGCGG- GTCCCGGCCCCGCTGAGCACCTCCAGCAGTGGCACAGCCTCTGGAGGGGTCCGGGACGAAGCCACCCGCGCGG- T AGGGGGCGACTTAGCGGTTTCAGCCTCCAACAGCCTTGGGATCGC 1268 tgaacccgggaggcggaggttgctgtgagccgagatggcaccattgcactccagcctgggcaacaa- gagcgaaactccgtcccccgaacaaaaaattcaaatgggaaagagaggcagatggcagagaacaggggaggg- gctgggcaccgtggctcatgcctgtaatcccagcactttgggaggccaaggcgggtgga 1269 CTCGGCGGCGCGGGGAGTCGGAGGACGCAGCCAAGCGGCGGCGGCGAGGAGGGTCACAGCCGGAAA- GAGGCAGCGGTGGCGCCTGCAGACGCCGCGCAGCCCGGGCAGCCCCACAGCGCAAGCTGGCTGCCGCGGCG- GCGGGGGCTTTATCGGCGGCGCCGCGCGGGCccccgccccttcctgccgcccccgcccccggcccgccttgcc- c cgccttcccgccg 1270 aggcggccacgggagggggaggggctggcaacggcgccgtgggggcggggctcgctttgtgcaag- gtccgcgctgattgggccgtgggcgcgcgggtcccggcctgcgtcgtgggactggcgtttttggcgccggct-
gtgaggggagcgcgggggtggtggaatcgggcggtctccggttcgccaatgtggctgggtccgtaggcttggg- c agccttggagttcctcagagaccccgcgctcggtcccggcacgc 1271 GACCCGAGCGGGGCGGAGAGTGGCAGGAGGAGGCGAATCTCCGCGCTCCGGCGAACTTTATCGGGT- TGAAGTTTCTGCTGTCGCCTCCCCTTTGCGTGCGGAGCTGGGCTTTGCGTGCGCCGCTTCTGGAAAGTCG- GCTCCAGTCATATCCCTGGGCGCTGCCTGCGGCCGCTCCTCCCGCGCTTCTCACGGCACCTGACACGCGGAGG- C GGCGGCCGAGGGTGGGGTGCCGGCCACCACCACCCTTGGCGTGGG 1272 AGCACCTggggcggggcggagcggggcgcgcgggcccACACCTGTGGAGAGGGCCGCGCCCCAACT- GCAGCGCCGGGGCTGGGGGAGGGGAGCCTACTCACTCCCCCAACTCCCGGGCGGTGACTCATCAACGAGCAC- CAGCGGCCAGAGGTGAGCAGTCCCGGGAAGGGGCCGAGAGGCGGGGCCGCCAGGTCGGGCAGGTGT- GCGCTCCGCCCCGC 1273 CCGCTCGGGGGACGTGGGAGGGGAGGCGGGAAACAGCTTAGTGGGTGTGGGGTCGCGC- ATTTTCTTCAACCAGGAGGTGAGGAGGTTTCGACATGGCGGTGCAGCCGAAGGAGACGCTGCAGTTGGA- GAGCGCGGCCGAGGTCGGCTTCGTGCGCTTCTTTCAGGGCATGCCGGAGAAGCCGACCACCACAGTGCGCCTT- T TCGACCGGGGCGACTTCTATACGGCGCACGGCGAGGACGCGCTGCTGGCCGC 1274 ACCGCCAGCGTGCCAGCCCCGCCCCTACCCACCAGTGTGCCAGCCCCGCCCTTCCCCACGTcgc- cgcgcgcccgggggcggggcctggcgcgcaccgcccgcgcACGGCGAGGCGCCTGTTGATTGGCCACTGGGGC- - CCGGGTTCCTCCGGCGGAGCGCGCCTCCCCCCAGATTTCCCGCCAGCAGGAGCCGCGCGGTAGATGCGGTGCT- T TTAGGAGCTCCGTCCGACAGAACGGTTGGGCCTTGCCGGCTGTC 1275 ATTCTTggccgggtgcggtggctcacgcctgtaatcccagcactttgggaggctgaggtgggtggat- cacctgaggtcaagagttcgagaccagcctggccaacatggtgaaaccccgtctc- tactaaaaatacaaaaattagccgggcgtggtggtgggcacctgtaatcccagctactcagaaggttgaggca- g gagaatcgcttgaacccgggagaaggaggttgcagtgagccgagatcgcgccattgcac 1276 CGCTTCCCGCGAGCGAGCCGCCCAGAGCGCTCTGCTGGCGGCAGAGGCGGCGGCGAGGCTG- GCGCGCTTGCCGCCGTCTGCTCGCCCCGCGGAGGCGACCTGGGCAGACGCTGCTGG- GAACTTTGAAAAACTTTCCTGGAGCCAGGCTTGCCGCAGATTCGAGGGGAAGCCTCGGCCGCGTCCCACCCCC- T CCCAAATCCGAGTCTGCGGAGCCTGGGAGGGCTCCCAGCTTCCTATCCAAACCGCGCCGGGGCA 1277 AGCCGGCGCTCCGCACCTGCCCCTCAGCGCCTGCCGTCCGCCCCACCGCCGCGGCGC- CCCGCACTCCTGGGCGGGCCAGGGGAGCGGGCTGGGCGGGCGATCGGGCACGCGGGATCCCTGGTCGAGC- CCCCTTTCCTCCCGGGTCCACAGCGAGTCCCCTGAGGAAGGAGGGACCTGGGAGGAAACCACCCTCTGGGGCG- G CTCCGGCCTCCAGCCCCCGCCCCGTCTCATCGCGCCGGGCGCCCGGTGCGCCTG 1278 CGGAGCGCGCTTGGCCTCACAGGACAGTGGGTGTGGCTGGGGTGACGGGGCAGGGTGGGGAAGACTG- GCCTAACACCAGCGCCCTCTGCCCCATGGCTGGCCAGGGACCCGCGAGTCCCTGGACACGCACTGGCCAACGC- - CAGACCCCATCTCATCGGGTGGGGAAGTCGCGGGGACACTGTCAGGGCGCCGAAGTCCGGACCCGGCTCAGAG- G CGGTGGCAGGTGAATTGCTGCGGCGCCGGG TAGG GGCGGGC 1279 ggcctcgagcccacccagacttggccaagcagccctcggccagaccaagcacactccctcggag- gcctggcagggcccctgctttaccctgccccccacgccccgccccgacccgaccctcccaggcagcccct- cagcgtctgccgcccgcccttgggcctttccggccagcccctccctccgcccacgcccagaacagcccatgct- c ttggaggagagcaggtgggcttgaccgggactggcccctcaccgcgg 1280 GCCGCGCCGTAAGGGCCACCCCCAGAGGCCGAGGAGGTGGGGCTGGCCTGGCTTTCTGGCCAGGT- GGGGCTTGTCCAACCCCACAAACATCAGGGCTCACCCTGGATGTGGAAGAGAAGGAGCGAC- CCCCAAAACGAAGCGGCTGGATCTGACCTTCCAAGGCCTGTTGGCGACGCAGGGCCCCCAGGAGGCAGAGCGC- G CGCCTGGCCCGGGCGATGGGCCTCCCGTCCCCCCAGGGCTGCCTCCCCGCCGGTG 1281 CGGCGGTGGCGGTGGGTCGGCGACCGGCGGGCCGAAGACTGGAAGCCCGGGCCGCTGAG- GCTCCGCAgccccctccgcgccgccccggcccgcccccgccgcgccgccccttccctccccgcgcccgc- cccTTCTTCCCCGCAGGGTCAGCGCTGGGGCTCCGGCCGTAGAGCCACGTGACCCTGGCAGGCCCTGCTCGCG- G GGCTTGGCGACAAGGACGCACGACACGGGGCGGC 1282 ACCTGCCCAGTTACTGCCCCACTCCGCGGAATAAGCTCTTACCCAC- CGCTCCTCTTCTTCAATTCATTTCTGTTATGGAACTGTCGCGGCACTACAAAGTCTCTATGTAGT- TATAAATAAACGTTATCTGGAAGAGCAGCCGACAACAACTTTCAAGATCTCCAATTCCCCGAC- CCCACACTCCAACTGACGCC 1283 CCAGCGCCCGAGCCGTCCAGGCGGCCAGCAGGAGCAGTGCCAAACCGGGCAGCATCGCGACCCT- GCGCGGGGCACCGAGTGCGCTGCTGTGCGAGTGGGATCCGCCGCGTCCTTGCTCTGCCCGCGCCGCCACCGC- CGCCGTCTCCCGGGGCCCCCGCGCACGCTCCTCCGCGTGCTCTCGCCTACCGCTGCCGAGGAAACTGACGGAG- C CCGAGCGCGGCGGCGGGGCTCAGAGCCAGGCGAGTCAGCTGATCC 1284 CTGCTGCTGCCCGCGTCCGAGGCTCGCGGGCGGCGGGCCCGGGTGAGTGCACACCCGGCGCGCTGC- CGGGCTCCCGGATGTGTCACCTTGTCCCGCTGCAGCCGAGATGCCGGGGGAGCGGGGCCTTCCACAC- CCCCTCCGTGGGTGTGTGGTGAGTGTGGGTGTGTGCGCGTCTCCTCGCGTCCCTCGCTGAGGTGCCTACTGTG- T CTGCATGGGTTGGGTCCCGCGCGATG 1285 ACTGCTTAGGCCACACGATCCCCCAAGCCTGGGCTGCCAGACGTCGCCATCATTGTTCCATGCAGAT- CATGCCCATCCTGTGCAGAAGGTCACTATAGGAACACATGGCACAGGGAAGAAAACGCCCATAGAAATTCA- CATGGTGCTTGTCTAAACCGAAGGCAGGTGAGATCCACCCACTG 1286 GCCGGACGCGCCTCCCAAGGGCGCGGGTCCGAGGCGCAAGGCGAGCTGGAGACCCCGAAAACCAGG- GCCACTCGGGGAGTGTCAGGAAGCACGACTGGGCGCCTTAGGACGTCCGGGCAGACGCGGCCCCCGAGGAGC- CCCAGAGGAGCCCCAGAGGAGCCGCCTGACCCGGCCCCGACGTGCGCGATCGAGCCCGGGCTCGCCAAAGCCC- C CGCGCCCCTCCGGCCCGGACAGGCCGAGTGGACATTGTCGGAG 1287 CGGCCAGGGTGCCGAGGGCCAGCATGGACACCAGGACCAGGGCGCAGATCACCTTGTTCTCCATGGT- GGCCATTGCCTCCTCTCTGCTCCAAAGGCGACCCCGAGTCAGGGATGAGAGGCCGCCCGAGCCCCG- GATTTTATAGGGCAGGCTC 1288 ccgcccgcccCACAGCCAGCGGCTCCGCGCCCCCTGCAGCCACGATGCCCGCGGCCCGGCCGCCCGC- CGCGGGACTCCGCGGGATCTCGCTGTTCCTCGCTCTGCTCCTGGGGAGCCCGGCGGCAGCGCTGGAGCGAG- GTAAGCGCCCCGAGGGGCGGGGCGGGCAGGGGGCAAAGTTGCCGGGAGAGCGGGGCAGCCAGGGGTCGGGGCT- G ACCAGGGCGACTCAGGCACCACCCGCCGGGA 1289 GCGCCCCAGCCCACCCACTCGCGTGCCCACGGCGGCATTATTCCCTATAAGGATCTGAACG- ATCCGGGGGCGGCCCCGCCCCGTTACCCCTTGCCCCCGGCCCCGCCCCCTTTTTGGAGGGCCGATGAGGTAAT- - GCGGCTCTGCCATTGGTCTGAGGGGGCGGGCCCCAACAGCCCGAGGCGGGGTCCCCGGGGGCCCAGCGCTATA- T CACTCGGCCGCCCAGGCAGCGGCGCAGAGCGGGCAGCAGGCAGGCGG 1290 cgtgctgggcgcaggggaaacagcgacgcacgggacaaaACAAGCTTGCAGAACAGCAGGGGGCAGA- GAGGCTGTAAACAAGCCAACGGGCTGCACTTGTAGCGGTTCTGTTGCCAATGCCATTCAGACCCCAGTCCGG- GATTCCGCGCTCGGGGTGCGAGAGGCCGCTCCcggggaggggcgggacccgggcggggcgggaggggcggggc- g CCCGGGCCTATTAGGTCCCGCGCCGGCAGCC 1291 GCGCACGCGCACAGCCTCCGGCCGGCTATTTCCGCGAGCGCGTTCCATCCTCTAC- CGAGCGCGCGCGAAGACTACGGAGGTCGACTCGGGAGCGCGCACGCAGCTCCGCCCCGCGTCCGACCCGCG- GATCCCGCGGCGTCCGGCCCGGGTGGTCTGGATCGCGGAGGGAATGCCCCGGA 1292 GGTGAGTGCGGCCCGGGGAGGGGAGGGGACCAGGGCGACCGGAGCCCCCAGCGATCCCGCCTG- GAGCGGCCGCCAAGCTCCCTCGGGCACCCGGGTTCAGCGGGTCCCGATCCGAGGGCGTGCGAGCT- GAGCCTCCTGGACCGGGTCCGCCGCGGACCTCGGCCTGTCACCTGAAGGTGCCGCGTGGTCTCTGAGGACGTC- T GTCGACGAGCAGGGGCCGCCGCCA 1293 GGCCGAGAGGGAGCCCCACACCTCGGTCTCCCCAGACCGGCCCTGGCCGGGG- GCATCCCCCTAAACTTCGGATCCCTCCTCGGAAATGGGACCCTCTCTGGGCCGCCTCCCAGCGGTGGTGGC- GAGGAGCAAACGACACCAGGTAGCCTGCCGCGGGGCAGAGAGTGGACGCGGGAAAGCCGGTGGCTCCCGCCGT- G GGCCCTACTGTgcgcgggcggcggccgagcccgggccgcTCCCTCCCAGTCGCGcgcc 1294 CCAGCGCCGCAACGCCCAGGGTGTGGGGCGGAGTAAGATGTGAAACCTCTTCAGCTCACGGCACCGG- GCTGCAACCGAGGTCTGAATGTTGCGAAAGCGCCCCAGACGCCGCCGCTGCTTTCCGGCCGCCCCCTCGGC- TACAGCCGCCATTTCCACGCTCCACCAATCAAATCCATTCTCGAGGAAGACGCACCGCCCCCACACGCCCCGA- C CAATCGCTCGCGCTCTGGTTGCGCTGGCGCC 1295 CCACAAGCGGGCGGGACGGCTGGAGACTGCCGGGACAGCGGCTGCCGGTGCTACGCGGGTGGTGG- GCGGCCCGGAAATGAGCGCCCTCCGGGGACAGGGGGCTCTGCGGGGCGGCGACAGCTG- GATTCCCAGCGCGCACAAAGCCTGCGGGAGGATCCATTGTAGCGGTCGCTCCTCCCCGCTTAGCGAGGGCGGG- C GCAGGGGCGGGGGATGTCGAAGGGTCAGGTTTGTCCAGGCCGCGCCACCTTCG 1296 CCTCTGGACAACGGGGAGCGGGAAAAAAGCTACGCAGGAGCTTGGATCGGGCGAAGCTCGCGG- GAAACCGCTCTGGGTGCGCAGGACAAAGACGCGGGGACAGCGGGGAGGGCCGGCCGCAGCCTGCCGGGCTGC- CCCCACGGCGCGGAACGCGCGCAGCAACCTCCACCAGGCCTCCGCGTCTGGACTCCCGCCCTGCCTCTGGGCC- T CCTCCGCCCACCGGCGGCGTCTCCCGCGAAGCCCGCTGGG 1297 GCGGGTTCCCGGCGTCTCCAAAGCTACCGCTGCCGGAAGAGCGCGGCGCCCGACGGAGCCGTGTG- GAGGCCAAAACTCCTCCCGGAAGCCGCTACTGGCCCCGCTTGCCAGGCCCAGCGTCTTTTCTGCATAGGAC- CCGGGGGAAGCCGGGAAGCCGTTAGGGGGCGGGGCAAGCGGG 1298 CGCCGCCCGTCCTGCTTGCTGCTGGGTCCGGTTGCCGAGGCGGAAAAGTCGCAAGCTCCTTCAGT- CAGTCTTCTTCCTCAGCTCCTTCCGACTCCGGAAGCTGCTGTTTGGGCCCAGGCTCCCTGCATCCGAGAGC- CCTGGGCTGACTGCTTCTGAGGCCCCGCCCCACTACTGCCTGCAGCGGGCTTCCTTACTCCGCCTGCTGGTTC- C TACTGGAGGAGAGGCCAGCATGCTTGTCAGGCACCAGCAGGTGGA 1299 CGCGCGGCCCTCCTGCACCTCGGCCAGCACTCGTAGCGCGCTGGGCGAGCCGGACCGGAAGT- TGAAGAAGTGAAGCGCCGCGCGCGCCGCCTGCTGCAGGAGCCTGCGCGGGACCCCAGCATCCTGAGGCTGC- CCAGGGTCGTCGGGGTCCCCGGACCCCGCGGGCGCCGCCACCGGGGCGAGCAACAGCAGCAGCGCGAGCAGCG- G GGCGGTGGGGCGCGGGCCCCTGGGCCCGGACCAGGGAGCAGGCAGCCG 1300 GGCGGGGCAAGCCCTCACCTGCGCCAATCAGGGTGCGGAGTAGGCCCCGCAGGCGCCTCACCCAT- TGAGGGGGCGGGCTGACAGAGCAGAGGAAGGAAGGGGGTGAGGGGCCTGTGGTGGGGATCCTGGGGCTGTCGG- - GCTGAGTATGCCGTGTGGGTGGAGAGGAAGCCTCGGGGAAATCGCCCAGGTGAAGGGAGGGCTTGGTGTGGGG- A CTTGCACTGGGCAGAGGGGCAGCTTCCCTGAGAGCAGCTAAGC 1301 GGAGCGCCCCCTGGCGGTTTCAGGGCGGCTCACCGAGAGGGCGCCGGGAGCGCCCGGTTGGG- GAACGCGCGGCTGGCGGCGTGGGGACCACCCGGCAGGACCAGGCACCAGAGCTGCGTCCCTGCTCGC 1302 CGAATGGTTCGCGCCGGCCTATATTTACCCGAGATCTTCCTCCCGGACGGCAAGGATGTGAGGCAG- GCGAGCCGGACGCCGCTCGCAGCACCGGAGAGGGCGCACTGCAAAGGCGGGCAGCAGACCGTGGAGAGCCCGG- - GAGCGGAGCTGGACACCGCCTCGGAGGGAAGAAATGAGGTAGCGGCGGTTCCCGGACCCGGCCATGCCCGTCC- C CTGTTCTCGGAGCCCAGCGCCGTCTCGGCCAGGCCAGCCCGG 1303 TTCCGCCGGCTGGGCCCTCCGTCTACCCCCAGCGGCGAggggcggggccggcgcgggcgcAGAG- GCGTCACGCACTCCATGGTAACGACGCTCGGCCCGAAGATGGCGGCCGAATGGGGCGGAGGAGTGGGT- TACTCGGGCTCAGGCCCGGGCCGGAGCCGGTGGCGCTGGAGCGGGTCTGTGTGGGTCCGAAGCGTTTTACTCC- T GTTGGGCGGGCTCCGGGCCAGCGCCACATCTACTCCCGTCTCCTTGGGC 1304 CTCCGGGTcccccgcgtgcccggcccgccccggcccgcTTCCCGGGCGCTGTCTTACTCCGGGC- CCGGGGCGCCTGCTCCGCGCCGCGTCTGCGAACCGGTGACCTGGTTTCCCCTCCAGCCCTCACGGCT- GTCCGACTTGCGCGGCGGTGGCGGCGGCGGCCAAGAGCAGGCAAACCCGGCTCCGCCAGGGGCGCAGCGAGGA- A ATGGCCTCCTGGCGCACACCCCGCCGCCGCCGCCAGCCATCGCCACCGCC 1305 CAGCCCGGGTAGGGTTCACCGAAAGTTCACTCGCATATATTAGGCAATTCAATCTTTCATTCTGTGT- GACAGAAGTAGTAGGAAGTGAGCTGTTCAGAGGCAGGAGGGTCTATTCTTTGCCAAAGGGGGGAC- CAGAATTCCCCCATGCGAGCTGTTTGAGGACTGGGATGCCGAGAACGCGAGCGATCCGAGCAGGGTTTGTCTG- G GCACCGTCGGGGTAGGATCCGGAACGCATTCGGAAGGCTTTTTGCAAGC 1306 GGCGGAGAGAGGTCCTGCCCAGCTGTTGGCGAGGAGTTTCCTGTTTCCCCCGCAGCGCTGAGT- TGAAGTTGAGTGAGTCACTCGCGCGCACGGAGCGACGACACCCCCGCGCGTGCACCCGCTCGGGACAGGAGC- CGGACTCCTGTGCAGCTTCCCTCGGCCGCCGGGGGCCTCCCCGCGCCTCGCCGGCCTCCAGGCCCCCTCCTGG- C TGGCGAGCGGGCGCCACATCTGGCCCGCACATCTGCGCTGCCGGCC 1307 CCTCACCCCAGCCGCGACCCTTCAAGGCCAAGAGGCGGCAGAGCCCGAGGCCTGCAC- GAGCAGCTCTCTCTTCAGGAGTGAAGGAGGCCACGGGCAAGTCGCCCTGACGCAGACGCTCCACCAGGGC- CGCGCGCTCGCCGTCCGCCACATACCGCTCGTAGTATTCGTGCTCAGCCTCGTAGTGGCGCCTGACGTCGCGT- T CGCGGGTAGCTACGATGAGGCGGCGACAGACCAGGCACAGGGCCCCATCGCCCT 1308 CGATGACGGGATCCGAGAGAAAGGCAAGGCGGAAGGGGTGAGGCCGGAAGCCGAAGTGCCGCAGG- GAGTTAGCGGCGTCTCGGTTGCCATGGAGACCAGGAGCTCCAAAACGCGGAGGTCTTTAGCGTCCCGGAC- CAACGAGTGCCAGGGGACAATGTGGGCGCCAACTTCGCCACCAGCCGGGTCCAGCAGCCCCAGCCAGCCCACC- T GGAAGTCCTCCTTGTATTCCTCCCTCGCCTACTCTGAGGCCTTCCA 1309 CCGCAGGCCGCGGGAAAGGCGCGCCGAGTCCTGCAGCTGCTCTCCCGGTTCGGGAAACGCGCGGG- GCGGGGGCGTCGGGCTTGGGACAGGGGAGGATACCAGGGCCACCTTCCCCAACCCAGGCCGCGGGGGCCCG- GCCTCCCCGATGCAGACCACAGCGCCCTCACGGGCTGCCCTCAGGCCGCGCAGCGGGCAGCCGCCAGCCGTCA- C CCCGGGGAGCGTCCGTGGGGTGCCCAGGCA 1310 GCCCCAGTCCACCTCTGGGAGCGCCTGCGCCGCTCCGCGGAGAGTCCGTGGATCTCACAGTGAGC- GAGTTGGGACCCAGGGAGGGGAAAAGAGAGGACCCCGGCGAGCCATTGCTGGGGCGGCGGGCTGGAGGGT- TATCTGGGAAGTCAGCCCCGGCCTCGGTCCTCTCCACGTTGCTGCCTACGCGTGCTGCCCGGACGTAGGGC 1311 CTTGGCCGCCCCCGGGATGGGGCGAGGGGTTCCCGAGGGCTtgggagggcggcttgggaga- gagctccggctccggaacgaggtgtcctgggaacactcccgggtctgtaacttcggacaaat- cacgctcgctttcccggcctcagtgtgccgttctgtaacttgggtctaaCCCCGGCTCGCACACACGGCGGGG- A CGCGCACAG 1312 CCTCCATGCGCAATCCCAAGGGCGGAGAGGAATTTCAGCAGCTACGAGCAACAGAAAGGAAACGAGA- GAGTAGCCAGACTCTCCGCGCATGGAGCCGACGGCACCCACCAGCACACCGCCGGCGCCCCCAGCCACTACT- GCACGTCCGCccccgccccgccccgctccgcccGGCGCACCTGATGCCCAAACTGGTTGCACGGGAAGCCGAG- C
ACCACCAGGCCCCGGGGTCCGAGGCGCCGCTGCA 1313 gcggcgactgcgctgccccttggctgccccttccgctctcgtaggcgcgcggggccactact- cacgcgcgcactgcaggcctttgcgcacgacgccccagatgaagtcgccacagaggtcgcaccacgtgtgcgt- - ggcgggccccgcgggctggaagcggtggccacggccagggaccagctgccgtgtggggttgcacgcggtgccc- c gcgcgatgcgcagcgcgttggcacgctccagccgggtgcggccctt 1314 GGGCTTGCCTCCCCGCCCCTACCTTCCAGGATGTTGACAGCTGGGAATGAAAGGCAGAGGGAGG- GAGCGCGGGGCCGGAGCGCCGCCTGGGAGTGTGCCCACTGGGTGGCCGCCTGAGGGACCCGGGAACAGAGG- GCAAAAAGTCCTGTGACCGGACAGAGCAGAGCGGGGACTGCAATTCCCAGAAGACCCCACGGTAGGGGCGGGA- C CCAAGATGGCCGCTTGTCTGGGGACAGGAGCGGAGGCCAATACGCG 1315 GCGGCCCAAGGAGGGCGAACGCCTAAGACTGCAAAGGCTCGGGGGAGAACGGCTCTCGGAGAACGG- GCTGGGGAAGGACGTGGCTCTGAAGACGGACAGCCCTGAGGAACCGCGGGGCGCCCAGATGGAACTCGT- TAGCGCCCCGAGTGCAGACAATCCCGGAGGGGGAAAGGCGAGCAGCTGGCAGAGAGCCCAGTGCCGGCCAACC- G CGCGAGCGCCTCAGAACGGCCCGCCCACCC 1316 ctgcgcggcTGGCGATCCAGGAGCGAGCACAGCGCCCGGGCGAGCGCCGGGGGGAGCGAGCAGGG- GCGACGAGAAACGAGGCAGGGGAGGGAAGCAGATGCCAGCGGGCCGAAGAGTCGGGAGCCGGAGCCGGGA- GAGCGAAAGGAGAGGGGACCTGGCGGGGCACTTAGGAGCCAACCGAGGAGCAGGAGCACGGACTCCCACTGTG- G AAAGGAGGACCAGAAGGGAGGATGGGATGGAAGAGAAGAAAAAGCA 1317 CACCGCCTCCGGACCCCTCCCTCATCAGAAAGCCCAGGCTCCGCTCGTAGAAGTGCGCAGGCGTCAC- CGCGCATCCAGGAGCCACGTGTCAGGAGTCACGTGTCAGGTGTCACGTGTCAGGCGTCACGTGGCTGGAGGC- CGTTGGAGCGCCTGCGCAGCTTTTCCGCACGCGCC 1318 CCTTCCAGCCACCCCGCCCTGGGCGCCTCTGGCGCGCTCTGATGACGCTCCAAGGGAAGAGGAAGT- GGGGATCGGCGAGCGGGTGGGTGCGCCTCGGGCCGCGGGACTCGCAGCCGCCACCGCCGCTGCCGCCTCTACG- - GCCGCGTCAGAACTGAAGAGAGGAAGGGGAGGAGCCGAGTCGAGCCTAAGCTGCCGCCCGATCTTACCCCTGA- C CCGAGGGCGGCCTGGA 1319 CGGGACACCGGGAGGACAGCGCGGGCGAGGCGCTGCAAGCCCGCGCGCAGCTCCGGGGGGCTCCGAC- CCGGGGGAGCAGAATGAGCCGTTGCTGGGGCACAGCCAGAGTTTTCTTGGCCTTTTTTATGCAAATCTGGAGG- - GTGGGGGGAGCAAGGGAGGAGCCAATGAAGGGTAATCCGAGGAGGGCTGGTCACTACTTTCTGGGTCTGGTTT- T GCGTTGAGAATGCCCCTCACGCGCTTGCTGGAAGGGAATTC 1320 CCTGGGTTCCCGGCTTCTCAGCCACTGGAGCTGCCAGTCTCAAATTACCGGAGGGGAGGGAGGGCAG- GCCTGGATCTCAGGATCTCGGTCCTGCATGCAATGCAAGCCTGAGCTCTCCCGCCATAAGGCTGCAGCGGTGT- - GGGCTCCTTGTGCCCAGATCCTTTGTATTCATAGGGGGAAGTGGAAGACCACGCTGCC 1321 GGCGGTGATGGGCggaggaggaggaagaggaggaggaggaagaggaggagggggaAAACGATGACAG- GAGCTGGGGCCGGGGGGGGAAATTGGGGGGACGCGGGCGGAGGCGCGGTGCGCGCCGGCGGTGGCGGGCAC- GAGCCCCGCGCCTGGAGGAGGAGGAGTCAGGCCGGGTAGGAGGGCTAAGGAGGTTCCCGGGAAGGCAGGGccc- c ccctcccccccctcccccccccccACACACACACACTCCCCTG 1322 CAGCCCGCCCGGAGCCCATGCCCGGCGGCTGGCCAGTGCTGCGGCAGAAGGGGGGGCCCGGCTCTGC- ATGGCCCCGGCTGCTGACATGACTTCTTTGCCACTCGGTGTCAAAGTGGAGGACTCCGCCTTCGGCAAgccg- gcggggggaggcgcgggccaggcccccagcgccgccgcggccACGGCAGCCGCCATGGGCGCGGACGAGGAGG- G GGCCAAGCCCAAAGTGTCCCCTTCGCTCCTGCCCTTCAGCGT 1323 GCCCGCGGGGGAATCGCAGTGAGCAGCGCGGGGCGAGGCCGCCGCGGACGCCCCGTCGGATGTGC- CCTTCGCTGGGCCGAGCGGCGCAGGGTTGGAGAGGGAAGCGCTCGTGCCCACCTTGCTCGCAGGTGCCCT- TGCTGACCTGGGTGATGGCCTTCTCCCCGCGGCTCTCGGCCCTCTGGCTGGCGGCGCGCAGCTGGCAGCCGCT- C GGGTAGGTGGTGCCGTCGCTGCCGCACACCGGG 1324 GCCGCGAGCCCGTCTGCTCCCGCCCTGCCCGTGCACTCTCCGCAGCCGCCCTCCGCCAAGC- CCCAGCGCCCGCTCCCATCGCCGATGACCGCGGGGAGGAGGATGGAGATGCTCTGTGCCGGCAGGGTCCCT- GCGCTGCTGCTCTGCCTGGGTAAGTTCTCCCCCTCTGGCTTCCGGCCGCCCCAA 1325 GCGGCCCCCTCCCGGCTGAGCCTATAAAGCGGCAGGTGCGCGCCGCCCTACAGACGTTCGCACACCT- GGGTGCCAGCGCCCCAGAGGTCCCGGGACAGCCCGAggcgccgcgcccgccgccccgAGCTCCCCAAGCCTTC- - GAGAGCGGCGCACACTCCCGGTCTCCACTCGCTCTTCCAACACCCGCTCGTTTTGGCGGCAGCTCGTGTCCCA- G AGACCGAGTTGCCCCAGAGACCGAGACGCCGCCGCTGCG 1326 CAGCAGGGCGCGGCTTCCCTTTCCCGGGGCCTGGGGCCGCAATCAGGTGGAGTCGAGAGGCCGGAG- GAGGGGCAGGAGGAAGGGGTGCGGTCGCGATCCGGACCCGGAGCCAGCGCGGAGCACCTGCGCCCGCGGCT- GACACCTTCGCTCGCAGTTTGTTCGCAGTTTACTCGCACACCAGTTTCCCCCACCGCGCTTTGGGTAAGTTCA- G CCTCCCGGCGCGTCCCCGCGAGCCTCGCCCACAGCCGCCTGCTG 1327 CCGCAGCACGCTCGGACGGGCCAGGGGCGGCGACCCCTCGCGGACGCCCGGCTGCGCGCCGGGC- CGGGGACTTGCCCTTGCACGCTCCCTGCGCCCTCCAGCTCGCCGGCGGGACCATGAAGAAGTTCTCTCGGAT- GCCCAAGTCGGAGggcggcagcggcggcggagcggcgggtggcggggctggcggggccggggccggggccggc- t gcggctccggcggcTCGTCCGTGGGGGTCCGGGTGTTCGCGGTCG 1328 GCGGAGTGCGGGTCGGGAAGCGGAGAGAGAAGCAGCTGTGTAATCCGCTGGATGCGGACCAGG- GCGCTCCCCATTCCCGTCGGGAGCCCGCCGATTGGCTGGGTGTGGGCGCACGTGACCGACATGTGGCTGTAT- TGGTGCAGCCCGCCAGGGTGTCACTGGAGACAGAATGGAGGTGCTGCCGGACTCGGAAATGGGG 1329 GCGCGGGGGCAGGTGAGCATGCGAAGGTTGGAGGCCGCGCCCCTTGCTGAGGCGCAGCTGGCT- GCTCTTTTCGGGCCGGCATACGCGCGCAGCCGCAGCTGAGGTCACCCCGCTGAGGTGGTGGGGAGGGGAATG- GTTATTCTTGAGGCACCGCATCTCTTGAGGAGGAAAGAGCCGGAAACACCTGGTCTCTCAAGCAGGTACAGCC- C GCTTCTCCCCAGCACCCCGGTGTGGGCTTCCCAAGGTCCTGCCTGA 1330 ggcgcgggggcaggtgagcatgcgaaggttggaggccgcgccccttgctgaggcgcagctggct- gctcttttcgggccggcatacgcgcgcagccgcagctgaggtcaccccgctgaggtggtggggaggggaatg- gttattcttgaggcaccgcatctcttgaggaggaaagagccg 1331 AGTGACGGGCGGTGGGCCTGGGGCGGCCAGCGGTGACTCCAGATGAGCCGGCCGTCCGCGTTCGCGC- CGCGGCGGTGCGGTTGTCGCGGATCAGCAGGATCGGAGTGCGGGGCTGCTGGGCGGAGGCGTTGGCTGCAC- CAGGGACGGCGGCG 1332 GGCGACCCTTTGGCCGCTGGCCTGATCCGGAGACCCAGGGCTGCCTCCAGGTCCGGACGCGGG- GCGTCGGGCTCCGGGCACCACGAATGCCGGACGTGAAGGGGAGGACGGAGGCGCGTAGACGCGGCTGGG- GACGAACCCGAGGACGCATTGCTCCCTGGACGGGCACGCGGGACCTCCCGGAGTGCCTCCCTGCAACACTTCC- C CGCGACTTGGGCTCCTTGACACAGGCCCGTCATTTCTCTTTGCAGGTTC 1333 CGCGGCAGCCCGGGTGAATGGAGCGAGGCGGCAGGTCATCCCCGTGCAGCGCCCGG- GTATTTGCATAATTTATGCTCGCGGGAGGCCGCCATCGCCCCTCCCCCAACCCGGAGTGTGCCCGTAATTAC- CGCCGGCCAATCGGCGGCGTCGCGCGGCCCCGGGAGTCGGCTCGGGCTAAGCTGGCCAGGGCGTCTCCAGGCA- G TGAAACAGAGGCGGGGTCGGCGGGCGATTAGCGGCCGAGGCACGCTCCTCTTG 1334 GGCGAGCGAGCGGGACCGAGCGGGGAGCGGGTGGAGGCGGCGCCACG- GCGCGCACACACTCGCACACACGCGCTCCCACTCCAcccccggccgctccccgcccgaggggccgcgcggcg- gccgcggggAACGATGCAACCTGTTGGTGACGCTTGGCAACTGCAggggcgcccgcggtccctgcccccacgc- c ctccgcgcgggccccgccaccccggccccgacggcgcctgcacgcccgcgtcccctg 1335 GGGGCAGTGCCGGTGTGCTGCCCTCTGCCTTGAGACCTCAAGCCGCGCAGGCGCCCAGGGCAGGCAG- GTAGCGGCCACAGAAGAGCCAAAAGCTCCCGGGTTGGCTGGTAAGGACACCACCTCCAGCTTTAGCCCTCT- GGGGCCAGCCAGGGTAGCCGGGAAGCAGTGGTGGCCCGCCCTCCAGGGAGCAGTTGGGCCCCGCCCGG 1336 CGCTGGCATTCGGGCCCCCTCCAGACTTTAGCCCGGTgccggcgccccctgggcccggcccgg- gcctcctggcgcagcccctcgggggcccgggcACACCGTCCTCGCCCGGAGCGCAGAGGCCGACGCCCTAC- GAGTGGATGCGGCGCAGCGTGGCGGCCGGAGGCGGCGGTGGCAGCGGTAAGGACCCTTCCCTCGCCCTGCGCC- T CTGGACCTGCAGGTGCTCGGGCGCGGCCCAGGCCGCCCCCTGTCTGA 1337 GAGCCGTGATGGAGCCGGGAGGAGAGGCGCATCCTCAGCAGAGCTTCCCTCCCTTGCACACGAGCT- GACGGCGTGAACGGGGGTGTCGGGGTTGGTGCAACTATAGAAGGGAAAGGCTGGGCGGGGGTCACACATACCT- - CAGTGGCAGGCAGGCAGGCGGCAGGCAGAGCGCGCTCTCCGGGCAGTCTGAAGGACCGCGGGAATGTGGAGGG- G 1338 GCCAGGGTGTCTTGGCTCTGGCCTGAGTCGGGTATGTGAAAGCCTTTTGGGGCAGGAAGGG- GCAAAGTGATACCTGGCCGTCCCACCCTCTGGTCCCAGAAGGAGCTCTCGCTGGAGCCAG- GCAGCCTCCAGTCCCCCTCCTTTCAGCCTTGTCATTCTCTGCATCCTGCCCAGGCCACAAAGGA 1339 CGGCTCCGGCGGGGAAGGAGGCgggctgcggctgcggctggggctgaagctggggctggggttgggg- GACTGCCCGGGGCTTAGATGGCTCCGAGCCCGTTTGAGCGTGGTCTCGGACTGCTAACTGGACCAACG- GCAACTGTCTGATGAGTGCCAGCCCCAAACCGCGCGCTGC 1340 GCCAGGGTGCCGTCGCGCTTGGCGCCGTCCAGGGCGGCGCTGCGCTCGTCCAGCAACACCACGGCGT- GGTAGGCGCCGGCCAGCAGGCGGCCGCGGAGCTCGGCGTTGGGCACGATGTGCTCCAGGCCCATGGCGCCCT- TGGCCCGGCGCCGCACGATGGTGCTGAAGCGCACGTTGACAGAGCCGGCGATGTGGCCGGCGTTGAAAGCGAA- G AAGGAGCGGCAGTCCAGCAGCAGGCATTGCGCCGCTCGCTCC 1341 CGGCTCGGTCCTGAGGAGAAGGACTCAGCCGCGGCTGCGGGACCCGGGCACCGGGAggcggtggcg- gcggcggcggcggcagcagcggcgacagcagaggaggaagaggaggaagaaggaaagaaaaagaagaaCCAG- GAGGAGTCCTCAACAACGACAGCGGGGACTGCGGGACCAGGGTAAAGCGGCGACGGCGGCGACGGCCCAGCAA- C CGTGA 1342 CGCGGGGAACCTGCGGCTGCCCGGGCAAGGCCACGAGGCTTCTTATACCCGGTCCTCGC- CCCTCCAGCGCCGGCCTCGCCCGCGCTCCTGAGAAAGCCCTGCCCGCTCCGCTCACGGCCGTGCCCTGGC- CAACTTCCTGCTGCGGCCGGCGGGCCCTGGGAAGCCCGTGCCCCCTTCCCTGCCCGGGCCTCGAGGACTTCCT- C TTGGCAGGCGCTGGGGCCCTCTGAGAGCAGGCAGGCCCGGCCTTTGTCTCCG 1343 CCGCCGCTGCTTTGGGTGGGGGGCTGACAGGGCTGCGCGCGTCGCGCTCTTGGCTGGGGCTGCGCGG- GCCCGGGGCGCTGCGGGCGGCTCAGCGGCAGCTGCCGCGCTCTGCGCCTCCTCTGGGCGCACTGCCTGG- GAGCACGAGACTGGTTTGTCTGATGCTGCTGCCGGAGCTGAGGTCTTGCCTGGAGATCCGAACGAGACACCAC- G TCAACCGGCGCGGGGAGTCCCGTGAAGACATGAG GGCGCCAGGAG 1344 ACCTGAGCCCGCGGGGGAAccccccccccaccccoggggaaccccccccacccccgccgc- cccccgccTGCAAGTTGTTACCAGTAAATAAAAGGGATCCTATTTTAGCAAGCCACACAGCATTAGAGG- GCAAATAATAGTTTGGTGGCAGGAGAGCGATGAGACGGGAAAGTGTGGGGCAAAGCTTACAGTCATTGGTCCA- G ATTCTAACTGGCCTGTTAGCCAAAAAGTAAGGTTTTCTTTACCTCCGTGTTG 1345 AACGCCGGCCTCACCGGCAGACGCGCGCCCTCCTCCCAGATGCGCAGGTGACCCCGGCGGGCG- GCGCGGGAAAGGGAAGAGCTCCGCGAGGCCGCGCGGGGGGGAAGCGGGAGAAGC- CGCTCTTCCTATTCCACTCGCAGTCTGCGTGTGGGGGAAACGAGTGCCCGGCGTATGAAACGCCTAACTTCGC- G AAATAAAGAGAGACGTATAAAAGTTCAAGAATTCTGTCCAGACTCAAGGGCCCTTTCTCATTTA 1346 CCGTGGTCCCAGCGCTCCTGCTATTTGCATTCCAAAGCAGACACCTCATGCGCTCAACCCCGC- CCGCAGGCGGCTCCCGCAGTCTAAGGGACCTGGCGCGAGTCCGGGAAGCGGAGGGCGCAGCTGCGCAGG- GAAGGGGGCCGGGGGCGGGACCAGGGCGCGCGTTCCGGTCCCGGGGCGTGGC 1347 TGCGACCCGGCGCCCAAGCAGCCTGGGACCTTGCGCGGACCTGACCCCTTCAGACCGCAGGCAGTCT- GGGAGGAGGTCCGGCCGGGGGAGGTGCAGGATCCCCGCCGTGTCTCTTTGACGACTTGGGGACTGTCACG- GTTCTCTCCCGGCGCCCCTGGGTTCTTTTGTCCTGCACGCGGTGCGAAGGGGCCAGCAGGGAAGGAGCAGAGG- A TGGGGGGTGGGGTTGTTGGAGCCCCGCGGAGGTCTGGGAGGCCC 1348 GGCTCTGCGCTGCCTTTGGTGGCTCCTCCCTGGTCCTCTAAATGTGACACCAGGCGGATGCGGGGC- CACAGGACCCTGGGGCTTGAGTCACACAAGAATGTCTCTGGGAGACCCGAGAGACTCACAGTTATGAAACAG- GACCATGGTTCTTTggccgggcgcgggg 1349 gcgcgggcggcTCCTTTGTGTCCAGCCGCCGCCACCGGAGCTCCCGGGGCCTCCGCGGG- GAGCGCGTCCCCCGCATCCGCCCGACCCCCGGGGCTGGCACGTGCTGCGCCCGGTCCGCTGAGGGGGCGGAG- GCCCCGATCTCCCCGACCCCCCTTCTCTGCTTAGAGGAGGAGGAGCAGCGGCAGCGGCAGCAGGAGGCGACAG- C TGCCAGCCGAGGAGGCGCGGCGGAGAGGGGACTGCGGTCAGCTGCGTCCA 1350 GGCCCGTTGGCGAGGTTAGAGCGCCAGGTTGTAAGAATCGGGTCTGTGGACCTCATACCAGATAG- GCGCGAACGCCTCTGGCAGCGGCGTCCAGGGGGTCCGGCGGCACTCGCGGTGGGGCTGCCTGGGTTGCGGGT- GACGATCTGCGGGGTCCCGCACCCGGCCCCGCGGAGCCCGGACCCGCACGTAGGCGGCGCGGCAAAGGCACAC- C CTCCTCGCGGCCGCGAACCCAGCGCCGTCCTCGCAGCGCGGCAA 1351 acccggcatccgggcaggctgcgcgcgggtgcggggcgagggcgccgcggggACTGGGACGCACGGC- CCGCGCGCGGGACACGGCCATGGAGGACGCGGGAGCAGCTGGCCCGGGGCCGGAGCCTGAGCCCGAGC- CCGAGCCGGAGCCCGAGCCCGCGCCGGAGCCGGAACCGGAGCCCAAGCCGGGTGCTGGCACATCCGAGGCGTT- C TCCCGACTCTGGACCGACGTGATGGGTATCCTGGTAAGTTACCTGG 1352 CCCGGACTGTAATCACGTCCACTGGGAACTGGCGCAGTAGTGGAGGGGACGCGATCAGGCCCGTG- GCTGCGCCCAGAGCATGATAAGCCAGGGACCTCGCGGCGCAGGCGGAGGGAGGGAGAGCGTCGCGGACCCAG- GCGGGGACAGGGAGACGCC 1353 CGCCGCCAACGCGCAGGTCTACGGTCAGACCGGCCTCCCCTACGGCCCCGGGTCTGAGGCTGCG- GCGTTCGGCTCCAACGGCCTGGGGGGTTTCCCCCCACTCAACAGCGTGTCTCCGAGCCCGCTGATGCTACT- GCACCCGCCGCCGCAGCTGTCGCCTTTCCTGCAGCCCCACGGCCAGCAGGTGCCCTACTACCTGGAGAACGAG- C CCAGCGGCTACACGGTGCGCGAGGCCGGC 1354 GCTGCCAGCTGCCGCTCCGGCTCCCACTTCCCACCTGCTGCCCGAGGAAGACTTCCGG- GAGAAACGCTGTCTCCGAGCCCCCGCGCCGCCGCGCTCCCTCCGCTGCAGCAGCGGCCACCGGGTGCGCCCG- GAGCCCTGGGACGGCCTAAACCAGTATCTCGCGGGCCCCGCGCCGGGCTCCGGGAATGGCCGCAGCAGCCCTG- G CGACCCGGGCCCCTCGGAGCTCCCCTTCAGGATCGTGCACCAAGCGCGCAC 1355 GCGCCCACCTGCGCCTCGCGGGGTCCCCGAGGTCCCGCCACCGAGCGCCCAAGGCGG-
GATCCCAGCGCGTCCTGCAGCCCGCCCAGCTTCAGGGCCGGCCCGGCGCGCGCAGGTGCGGCACTCACCGGC- CAGGTGAAGCCGAAGGGGAAGCGGATGGGGTTGCTGAACGCGGAGTCGGCGCCCCCGCCGTCGGGCAGACTGA- A GGAGTCGACGCCCAGCACGGGGGTGACGGCGCTGCCGTAGGTGCAGGGCGGC 1356 CGGGCCAGGGCGGCATGAAGAAGTCCCGCCGCTACGTGCCCGGCACAGTGGCCCTGCGCGACGTTCG- GCGCTACCAGAACTCCGAGCTGCTGATCAGCAAGCTGCCGCTCCTGCGAGAGCTCGGCGGTGACGCCGCT- GCACGAGAGCGA 1357 GCTGCGACCTGGGGTCCGACGGACGCCTCCTCCGCGGGTATGAACAGTATGCCTACGATGGCAAG- GATTACCTCGCCCTGAACGAGGACCTGCGCTCCTGGACCGCAGCGGACACTGCGGCTCAG- ATCTCCAAGCGCAAGTGTGAGGCGGCCAATGTGGCTGAACAAAGGAGAGCCTACCTGGAGGGCACGTGCGTG- GAGTGGCTCCACAGATACCTGGAGAACGGGAAGGAGATGCTGCAGCGCGCGGG 1358 GTTAGGAGGGCGGGGCGCGTGCGCGCGCACCTCGCTCACGCGCCGGCGCGCTCCTTTTGCAG- GCTCGTGGCGGTCGGTCAGCGGGGCGTTCTCCCACCTGTAGCGACTCAGGTTACTGAAAAGGCGG- GAAAACGCTGCGATGGCGGCAGCTGGGG 1359 AGCGCACCAACGCAGGCGAGGGACTGGGGGAGGAGGGAAGTGCCCTCCTGCAGCACGCGAG- GTTCCGGGACCGGCTGGCCTGCTGGAACTCGGCCAGGCTCAGCTGGCTCGGCGCTGGGCAGCCAGGAGCCTGG- - GCCCCGGGGAGGGCGGTCCCGGGCGGCGCGGTGGGCCGAGCGCGGGTCCCGCCTCCTTGAGGCGGGCCCGGGC 1360 CGGCTGGCCCCGCCCACTCTCCGCGGCCGGAAGTGGCGGCGCCGAGTGAGGTAAATGCGTGCCCG- GAAGCGCGACCTCGGGCGGTTGGAGGGGCTACCGGGTCTTACCAGTCCGTGGCGGGAGTCCCGGAGGAC- CCTCGACGGGGGAGTTGCCGAGAAAAGGCCTCGCCGGCA 1361 GGGGTTGCCGTCGCAGCCAGCTGAGTGTTGCGCCAGGGGGACAGGTATGTTCCAGGCAGTGGCAAGC- CCAACCCGAGCAAGACCTGCGCTGAAACGGATTGGCTGCCCTCCGCCCGGAGTCCGTTCTCCCTGCAGCGGC- CAGTGCAGAGCTCAGAGGCTCAGAAACTCGCTCTCAGCCCCCTGGAGGCGGAGCCCGGGAGATAAGGTTCGCG- C TCCCCACCCGCC 1362 CCGCACTCCCGCCCGGTTCCCCGGCCGTCCGCCTATCCTTGGCCCCCTCCGCTTTCTCCGCGCCGGC- CCGCCTCGCTTATGCCTCGGCGCTGAGCCGCTCTCCCGATTGCCCGCCGACATGAGCTGCAACGGAG- GCTCCCACCCGCGGATCAACACTCTGGGCCGCATGATCCGCGCCGAGTCTGGCCCGGACCTGCGCTACGAGGT- G ACCAGCGGCGGCGGG 1363 ggaccccctgggcagcaccctggccacccttccatccacaacatccagaccacacggccaagg- gcacctgaccctgtcaaaaccccaaatccagctgggcgcggtggctcatgcctgtaatcccagcatttgggag- - gccgaggcagccgg 1364 gaggcagccggatcacgaagtcaggagttcgagaccagcctgaccaacatggtgaaaccccgtctc- tactaaaatacaaaaattagccgggcgtggtggtgcacacc 1365 GCGCGTGCGGGCGTTGTCCCGGCAACCAGGGGGCGGGGCTGGGCGTGGCACCGCCCCGCGCTCCGCT- GCCAGGGGCGGGAGGGAGGAATGGTTGCTTCACGCCCCGGGGGAAGAGACGGGAAGCTCGGCTCTGGGT- TGCGGGCCCCGGCGTCTCCGCGTGGGGCGCACCGTCCGACCCCCCCCTCCCGGTGTGCAGCGCCCCGCACCGC- C CCGCCTCGCCTGGGAGAAGCCGCCGGGACGCGCC 1366 CAGGATGCGGCAGCGCCCACCCGCGCGGCGTGGAGGGGGCCGGGGGCGGCGCTCGGCGCAGATG- GCGCTCGCTGCGAGATGGATGCTCCAGGGCGGGTAATCACTCCTGGCTCAACACAGCATCCCGGGCGGAGCG- GATGCCAGATCCCACCGCTAAGAGCCTGGGCTGGGAAAGCAATCTTTCCAGGCAGCCCCCAGCCCGGTGCGCC- G GCCCCGACAAGTCCCAGCCCTCGGAGGCAGGGCGGGGCGCAGGGA 1367 gATGCGGCCCGCGGAGGAGAGAGCAGGAGGACGGACGGGAGGGACCTCCGCGGGGAGG- GCGCGCgggggaggcggggagggaggcgggagggggaggggACGGTGTGGATGGCCCCGAG- GTCCAAAAAGAAAGCGCCCAACGGCTGGACGCACACCCCGCCAGGCCTCCTGGAAACGGTGCCGGTGCTGCAG- A GCCCGCGAGGTGTCTGGGAGTTGGGCGAGAGCTGCAGACTTGGAGGCTCTTATACCTCCGTG 1368 GTTCTGCGCGCGCCCGACTCCGCTGCCCGCCCCGCCAGGCCTCCGGGAGGTGGGGGCTGGGAG- GCGTCCCCCGCTCCCGCCCCCTCCCCACCGTTCAATGAAAGATGAACTGGCGAGAGGTGAGAAGGGAAGAGG- GCTCCCGGCTCTCTCGGGGCGGGAATCAGTGGGCCAGAGCTCGCCGGGTGGCCGCAAG 1369 CCCGCCGTGGGCGTAGTAAccgccaccgccgccgccccccgcgccaccaccaccgccgccT- GCCTCGCCTCTGCCCGAGCTGATGAGCGAGTCGACCAAAAAAGAGTTCGCGGCGGGGCTCTCCGAGCATGA- CATTGTTGTGGGATAATTTGGCGAAGGGAGCAGATAGCCCTTTCTGGCTGACATTTCTTGTGCAAAACATGCT- - GAATACGATTAGCAATCCCCCCGCACCGCGGCGGGCGCCCGCAGCCAATC 1370 ACCCGCCCGGGCAGCTCCAGTCCCGGACTCCGCAGCTCGGAGCGCAGCCAGCCACGGCCATTGCGG- GACCCTATTTATCCCGACACCTCCCCTGACGTGGGCTCGGAACGCTCCCTTGGCAGCTGCAGCCGCGGCGCGG- - GCTCCCCCTCGGCCGCCCCACCCCCAGGCCCGTCGGTGCAGAAGCGGTGACATCACCCCCTCTGGGCCGCAGC 1371 CAGCGGTCGCGCCTCGTCGGGCGACGGCTGGCAGCGAAGGCCGGAGCCACAGCGCTCGGTGTAGAT- GCCGCACGGCTGGCCCTCGCTCAGTGCGCACGTCAGGCAGCAGCCGCAGCCCGGCTCGCGCAC- CAGCTCCGCGCACACGGCGGGCGGAGGCGCGCACTGGGCCAGTGCACGCGCGTCGCACGGCTCGCAGCGCACC- A CGGGACCCAAGCCCGCCG 1372 GCAATCGCGCTGTCTCTGAAAGGGGTGGAGAAGGGGCTGGATGAGTCCGGAAGTGGAGATTGGCT- GCTTAGTGACGCGCGGCGTCCCGGAAGTTGACAGATACAGGGCGAGAGGCAGTGGAGGCGGGACTTG- GATAGGGGCGGAACCTGAGACTACCTTTCTGCGATCACAGGATTCCCGGCGGTGACTTGACCCCGGAAGTGGG- G TGTGAAGCTCCGGTGCTGGTGCGGCGGGGGA 1373 GAGCGCCCGCCGTTGATGCCCCAGCTGCTCTGGCCGCGATGGGCACTGCAGGGGCTTTCCTGT- GCGCGGGGTCTCCAGCATCTCCACGAAGGCAGAGTTGGGGGTCTGGCAGCGCGTTCTGGACTTTGCCCGCCGC- - CAGTGCGATTCTCCCTCCCGGTTCCAGTCGCCGCGGACGATGCTTCCTCCCACCCACCGCCCGCGGGCTCAGA- G AGCAGGTCCCCGCACCGCGC 1374 CATGGCCCGCTGCGCCCTCTCCGCCGGTTGGGGAGAGAAGCTCCTGGAGCGGCCAGATACCTGTTG- GCTCCTGAGCAGCATCGCCCAGTGCAGCCTCCGTCAGGAAAAGCAGCAGAATCGACAGCCCCAGGGGGC- GAGCGGGGTCCATGGTGCAGGGGGTCGGGCGGCCCGCTGGGCAAGGCGTCCGAGAAAGCGCCTGGCGGGAGGA- G GTGCGCGGCTTTCTGCTCCAGGCGGCCCGGGTGCCCGCTTTATGCG 1375 GGGGGCGGGGTGCAGGGGTGGAGGGGCGGGGAGGCGGGCTCCGGCTGCGCCACGCTATC- GAGTCTTCCCTCCCTCCTTCTCTGCCCCCTCCGCTCCCGCTGGAGCCCTCCACCCTACAAGTGGCCTACAGG- GCACAGGTGAGGCGGGACTGGACAGCTCCTGCTTTGATCGCCGGAGATCTGCAAATTCTGCCCATGTCGGGGC- T GCAGAGCACTC 1376 CGACCCTGCGCCCGGCAGTCCCCGGGGGCCGTGCGCCCGGCCCAGGCTCGGAGGTCCAGCCCAGCG- GCGGCTCAGGCTGCGCGCCTGGCTCCCAGCCTCAGTTTCCCCATTGGTAAAGCATTGACGGTGGTTGCGGACG- - GCTTCTGCGGACAGAGCCTTGGGCTCCGACGTCTGCGCGG 1377 GGCTTCAAGTCCACGGCCCTGTGATGGGATGTGGGCAGGGCCTGAGACAGGCCGAAC- CCAACTCTTCACAGGGCCGAATTCTTTGCCCGCAGCCCAGCACCCCGAAGGAGCTTGCCTCGGCTTCAAG- GCGCACCTAATGGGCACCGGATCGCTGGGGCGCTGAGGATGCCGCTCCGGGGCCTCCACGAGGCGGCCTCGCC- A CGCGCCTCGGCCA 1378 CCCCACCTGCCCGCGCTGCTTCTACCTGAAACTGGCCAAGGGCCCGAGCCCGGACCGGAGCCGT- GACTTCCCTCCGCCGGCCACGGGGCTGCCCGGATCCGCCGGGTTATGTCGCTTGGCTTTGGGCTCAGGGGT- CACCGTGGGCAGAGGGGGGTGCCGGGGTCGCGGACTGCCACCAGGTTGAGGAAAGGAGGGGCCTTTTGGCTGG- G GAAAGAGCGTGGTGGGGGACCCGCGGCCGATGGAATCCCTGGGGCA 1379 gcgcgcggagacgcagcagcggcagcggcagcATGTCGGCCGGCGGAGCGTCAGTCCCGCCGC- CCCCGAACCCCGCCGTGTCCTTCCCGCCGCCCCGGGGTCACCCTGCCCGCCGGCCCCGACATCCTGCG- GACCTACTCGGGCGCCTTCGTCTGCCTGGAGATTGTAAGTGGGGCCGCCGGAGCGAGGGTCGCGCGGGGAGCG- A GGACAGGCGGCGGCATCCTTGTCCCCCGGGCTGTCTTCCTCTGCGTCCGC 1380 GTGAGCCGGCGCTCCTGATGCGGAGAGGTGCGGCCATGTCCTGGCTGGGAGCGAAGCGC- CCTCGCTCGGGCAGTCGGAGCGAACTGTCTCCCGCGCGCTCCGCCAGCCGGGCCCTCCCGCTGGGCCCAC- CCCCCGAGGGGCGGGGCCAGAGCGGGCGGCACCGCCTCCTCCCCGCTGTCTGGGTCGCAGGCCTTAGCGACGG- G CTGTTCTCCGGCCCCGCCCCATTCCCAGGCTCCGCCCCC 1381 TGCCGCGGGGGTGCCAAGGGAAGTGCCAGCTCAGAGGGACCATGTGGGCGCAGGCACCCAGGCG- GCGCCGGGAGGCCTCTCGGGACTCCAGGGCTGTCCCTCCCGCAGGCTGTCCTTCCACCTCCACCCCAGGC- CAACGCCCTCCCGCCAGCCCAGGGTCCTGTGTCCTCGAGTCCTTCCTGGGCACCCTGGTCCCATCCTTAGCCC- T GCCCGAGGGGCCCAGCCCTGCTCCAAAAGGGCTGTGGCTCCACCCAC 1382 CTGCTGCGCGCGCTGGCTCTTCTGCGAGGCCTGCTTGAGCTTGTTGCCGCCTTTGGGCTCCGGGC- CCTCCAGCTCGTCCCTGCAGCGCCGCGGCCGCTCCTCGTAGGCCAGGCTGGAGGCAAGCTCCTTCTCCT- CAAAGCTGCGCTGCAGCTTCTGGAGGGCGCCCTCCCTCTCCAACAGCTTCTGCTCCAGCTCCTGGATGCTGCA- C TCGTCCGTGGAGATGGGGGAGCGG 1383 CTGGCGGCCCAGGTCGCTCCTGCCCAACCCGGGGACCCATCTCTTCCCCCGACTCCGACGACTGGT- GCGTCTTGCCCGGACATGCCCGGCCGCAGGCGACCCGGGCCACGCACCCCCGCCGTGTCCCCCTCTCTCCCT- GCCCTCTCCAGGCGCCAGGCACGCTCTTCCCCAGCCAGGGACCGCGGCGGGGACTCACCAACAGCAGGACCGC- G GCGACAACGAGCACAAGGGTCTTGGGGACCCGGGGCCCAGGCC 1384 AGCGCCCCGGCCGCCTGATGGCCGAGGCAGGGTGCGACCCAGGACCCAGGACGGCGTCGGGAAC- CATACCATGGCCCGGATCCCCAAGACCCTAAAGTTCGTCGTCGTCATCGTCGCGGTCCTGCTGCCAGT- GAGTCCCGGCCGCGGTCCCTGGCTGGGGAAGAGCGCACCTGGCGCCGGGAGGGGGCAGGGAGACGGGGACACG- G CAGGGATGCCTGGCCCTGGTCACCTGCGGCCGGGCA 1385 GCCGCACGGGACAGCCAGGGGGAGCGCGCGCTCTGCTCCCTCGCGGCCCGGTCGCTCCTGCCCAGC- CCGGGCACCCCACTCTTCCCCTGACTCCGACGGCGGGTTCGTCCTGCCCAGACATGCCCGGCCGCAGGCGAC- CCGGGCCAAGCATCCCCACCGTGTCCCCCTCTCTCCCTGCCCACTCCCGGCGC 1386 CCCGGACATGCCCCGCCACAAGTGACCCGGGCCAGGCACCCCCGCCGCGTCCCCCTCTCTCTCTGC- CCCCTCCCGGTGCCAGGCGCGCTTTTCCCCAGGCAGGACCGCGGTGGGGACTCACCTGCAGCAGGAC- CCCGACGACGACAAACTTGAAGGTCTTGTGGACCCGGAGCCGAGGGCTGGCTTCCCGCGCCGGCCTGGGT 1387 cgggggccgccgcctgacttcggacaccggccccgcacccgccaggaggggagggaaggggag- gcggggagagcgacggcggggggcgggcggtggaccccgcctcccccggcacagcctgctgaggggaa- gagggggtctccgctcttcctcagtgcactctctgactgaagcccggcgcgtggggtgcagcgggagtgcgag- g ggactggacaggtgggaagatgggaatgaggaccgggcggcgggaa 1388 CAGTGGCGGCCCTCGGCCTGCGGTCGGAGGCGGCGCGGGCGGGGAGGCGGCGCTGCGGGCTGGGT- GCGCCCCGGCTCCCGGAGGTGCGGCGAGCAGGAAggcgcggggcggcgggcgcgcggcACTGACTCCGGAG- GCTGCAGGGCTGGAGTGCGCGGGGCTCCTACGGCCGAGCCCTCGGAGCCGCCCCGCGCAGCCAATCAGCTCCC- G GCGGGGCGAGCCGCACTCGTTACCACGTCCGTCACCGGCGCG 1389 GCCCGGCGCGGATAACGGTCCGGCGGGAGGACACGGCGGTCCCTACAGCATCGCGGCGGGCCAG- GCTCGGGCAGGGGCCGTGCTCAGGTGCGGCAGACGGACGGGCCGGCGCCTCTGAAGTCACCCG- GCTCCTTTACGAACTGAGCCCGTTTTGGCTGGGAGGGTT 1390 GCTCCGGGTGGGGAGGGAGGCTGGCAGCTCACCCCCGGGGGCGAGGGGTCTGCGTTAGCCGTAGC- CACGGGAGCCCGGGCTTCTGGGACGCTCAGCCGTGCGCTACCCGGTGCAGCTGCTTTCTCACCAGCTCGCGG- GTGGGTCCTGCCGCGGCTCGGCGACCCGCGCCCCCTTGCGAGCGACCCAGCGTGAAACCAGCCCAAAGGGCG- GCCTCGCCCG 1391 GCCTGGGCGCAGAACGGGGTCCCTCGGCAGGACCCTCGCCGCGACAGCCTCAGCAGGGGATCGTC- GAGCAAAAGCCCGCAGGAATGCTCCTTTCTGGGGCCCCGCCCTCCCGGCCGACAGCTTTTAGGTAGACGTG- GAGGCGACTCAGATCGCCTCGCGGTTCCCGGGATGGCGCGGTCGCCCCCAACGCGAGGCTGCCTGGGGCACCC- G GCTCTTTTCCTGGGCGTCCGCGGCC 1392 GGTCCTAATCCCCAGGCTGCGCTGACAGGATTAGGCTCCGTTCCTCCCCATAATGTTCCCAGGAC- GAGCCTCATGGGGACGAACTACAAATCCCAGCATGCACCAGTCTTCGCCCGCCCGGCGGGAGGGCAACGGCT- GACCAGGACCGCAGGCAAGCACCGCGGCGACGGTTCCAGCCAGGAAAATGAGAGCCTCTTGGGCCACGTTCCA- A ACGG 1393 CCGCGTCCCCGGCTGCTCCTCCTCGTGCTggcggcggcggcggcggcggcggcggcgCT- GCTCCCGGGGGCGACGGGTGAgcggcggcgcggcgggcgggcgactgcggggcgcgcgggccggacccg- gccTCTGGCTCGCTCCTGCTCTTTCTCAAACATggcgcggggccgggggcgcaggtggcggcgccggggcccg- g gccgggctctcgtggcgccgcgcggctcggcggctgccgggcgAACCGCAAGC 1394 GGCAGGGCTGACGTTGGGAGCGCTATGAGCTGCCGGGCAGGGTCCTCACCGGGGGCTTCCTCTGCGG- GCCAGGGCTGCCGGGCGCCACCGGGACGCGAGCGCGCACGCCTCGGCCCGGCGGCCGCGCTCCTCGCAC- CGCCTTCTCCGCAGGTCTTTATTCATCATCTCATctccctcttccccttctccttctcctttgcctccttctc- c tttgcctccttctcctcctcttcctccccctcctccaccaccacc 1395 CCGTGGGCGCAGGGGCTGTGGCCGGGGCGGTGGGCGGGCGGTGCCGCCAGGTGAGACTGGCTGCCGT- GGCGCGGAGCTGCGAACTGGTCGGCGGCGCAAGGCGCGGACTCCGGTGAGTTGTGTGGAGCGCGCGCGGCCAT- - GGGCGCGGGCCACGGGCGGGTGGGAGGGTGGGGGGCCAGAGGGGCGGGGGAGGGTCACTCGGCGGCTCCCGGT- G CCGCCGCCGCCCGCCACCGCCTCTGCTCCCCGCG 1396 cctgcgcacgcgggaagggctgccggaggcgcccgtagggaggcgcgcgcgcgggcggctcagggc- ccgcgttcctctccctcccgcctaccgccactttcccgccctgtgtgcgcccccacccccaccac- catcttcccaccctcagcgcgggcgccc 1397 GCGGACGCAGCCGAGCTCAAAGCCGCTCTGGCCGCAGGGTGCGGACGCGTCGCGGAGTCCTCACTGC- CCCGCCTCGCTCTGGCAGAGTGGGGAGCCAGCCGGCAAAGAATTCCGTTTTCAGCTGGGCCAAGGGGCCG- GCGTCTCCCCACCCCCTTAGGCTCCGCCCCCTGTCCGCTGTGATCGCCGGGAGGCCAGGCCC 1398 GACCCATGGCGGGGCAGGCGGCGGCGCTGTCGGGCGGGCAGGGGTGGCGGGAGGCGGTGGCGCAGC- GAGCAGCGGCCTCCAGCGCTGGTGGCTCCCTTTATAGGAGCGCTGGAGACACGGGCCCCGCCCGCCCTGCAGC- - CCCGCCCTGCAGTCCCGGAGCGCCGAGGAGTGCGCGCCCCCTCGCCCCCGCCCCACCTCGGCTGGGAGGCTGG- T GCGGACGCCGGGTG
1399 ccgctccccgcccctggctccgcctggc- cccactcccctccgcgcgccttccctcttctcccccgctccccGCGGACGCTCCTCTCTTTCCCAGTGGGC- CAACTTTATGCTGAAATTTCTTTTCTGCCCTTTTTTGGGATGTTTCCCCATTGGGAGGCGGAGCCGGGCTGCG- G CGGGGAAGGCGGAGGGCGAGGGGAAGAGTCACTGAGCTGCGGGGCATAGGGGGTCCGGGGCGAGGT- GCCTTCTCCCACCCAG 1400 tgtgccgcgcggttgggaggagggtcgtgagcgtgagcgtgggagcgctgggggctctgctcgcgt- gctgctctgaagttgttccccgatgcgccgtaggaagctgggattctcccatccggacgtgggacgcaggg- gaggggtaggtttcaccgtccgggctgatgactcgtggcctccggggctcctgg 1401 CACTCACGCTCTCAGCCCGGGGAATCCCAGCGGGGAGGAGGGAGGGAG- GTCGTTTTCTTCAGCTCCCCAGGTGGTCTGTGCTGGGTGTGCTGACGGTCCTTTTGGGAAAACAG- GTCCACCTTTGCCAGCGTAATTCAGAAAGAGATGTAATTTTCTGAGAGCACACACCTGGGCAGGAGATCGC 1402 GGCAAGCGGGCTTCGGGAAGAATGCAGTTGGTGAGGAAGCTCGGCGAGGCGTGCCCGTGCAGCTGC- CCCTGGCCCTGACTGCTGGTGCGAGGCAGTGCACGACTCAGCTGGCCGGGGCCTGCTGTCCCGCCGGTGC- CACGCACCTGCAGACGCCCGGGCTGTGCCATCTCCTGGGCCGGTCCGGGGGCTGGGGCGGGGCGAAAAAGAAA- A AGCTCTGATCTCTGCCTTCGCCTCGCGCAGCTGTGCGGCGAGCCC 1403 CCCGCGGGCCGGGTGAGAACAGGTGGCGCCGGCCCGACCAGGCGCTTTGTGTCGGGGCGCGAG- GATCTGGAGCGAACTGCTGCGCCTCGGTGGGCCGCTCCCTTCCCTCCCTTGCTCCCCCGGGCGGCCGCACGC- CGGGTCGGCCGGGTAACGGAGAGGGAGTCGCCAGGAATGTGGCTCTGGGGACTGCCTCGCTCGGGGAAGGGGA- G AGGGTGGCCACGGTGTTAGGAGAGGCGCGGGAGCCGAGAGGTGGCG 1404 GGCGGCGGCTGGAGAGCGAGGAGGAGCGGGTGGCCCCGCGCTGCGCCCGCCCTCGCCTCACCTG- GCGCAGGTAGGTGTGGCCGCGTCCCCTACCCGGCCGGGACTTTCTGGTAAGGAGAGGAGGTTACGGG- GAACGACGCGCTGCTTTCATGCCCTTTCTTGTTCTACCTTCATCGGCCGAGGTAAAAGTGCTGAAACCATGTG- A ATAAAATACAGGTGGGTTCCGCCAGCTTCGCTCC 1405 GGGCCCCGGGACTCGGCTTGCACGAGCCAGTCTGGGGACCGGGGAGGCGGGGAGAGGGAAGGG- GAAAGCGCGGACGCGGCCCAAACCTCCAGTAGCCGCAGCCGCCGTCGCCGAGTAGGGCCGGGCAGCCAGCCGG- - GCCTGGCGCAGCATCAGTGCCCGCTGCCGCTTCCGCTCGATACTCGCCCGCACCGAGGCAGGCAGCTCCGCGG- G TTGCTCTAAAGCCGCCGCCTCCGGCAAAGCCCCGTCGGCCGCC 1406 ACGGAATGTGGGGTGCGGGCCTGAATATTATAAACAAAACCAAAAAACACTGGCTGGAAAG- GAAGTAAGCGGATTCTTCGTAAAGTCTATCAAAAGTCTTTTCGTTTCCCCCTCCCCCTTTCCCCACCGCCCAC- - CAAAATGAGCCGCGTTTGAGCACCTCAGGTCTGGAAAGCCGGCCAGGAGTGGGGGAGACCGAGGCACCCGCGG- C C 1407 GCGGCTGCTGCCGAGGCTCCTGGTTTCCACCGCCGCCCTCGGGGATCATGCCGCCATCGCGGTTCAT- GCCGTTCTCGTGGTTCACACCGCCCTCAGGGTTCATATTACCCATGAGGCCTGGAGCTCCTTGGCCAACATG- GCCTTCTGCGCTTGATGCTGCCCCCAGCTGAGGTGTGGGGCTTATTTTTACCTGGTATACACTCAGGCAGTAG- A ACACGGTGTCGTGGACGAGCGAACGCGCCATGGCTGGAGCGC 1408 CCGCTGCGCGAGGGAgggggcccgaggcgcccccggcccgcccTCCTCCCGGTCTTCGGATCCGAGC- CGGTCCTCGGGAAAGAGCCTGCCACCGCGTCCCCGCAGCCACCCTCTCCGCGTGCCCGGCCCTCTCCAGTG- GCGGGGGCACGTGGGCGCGCGGGGTGCGTGGCAAGCCGCCCCTCTCCCCACGCCCGTCCGGC 1409 GGGGTGCGGCGTCTGGTCAGCCAGGGGTGAATTCTCAGGACTGGTCGGCAGTCAAGGTGAGGACCCT- GAGTGTAAACTGAAGAGACCACCCCCACCTGTAACAAAGAGGGCCCCACTAAGTCCCGCTTCTGCATTTG- GTCCTGAGAGGCTCCGGTAAAGCCGTCCGGCAATGTTCCACCTGGAAAGTTCCAGGGCAGGGGAAGGGTGGGG- G GAGGGGCAGTCGCGGGGGA 1410 GCCGGGGGAAATGCGGCCTCTAAGCTCTCCGCTGAGGCGGCTTGGAAGGAATAGTGACTGACGTg- gaggtgggggaggtggctggcccgggcgaggcccagggagagggagaggaggcgggtgggagaggaggagggT- - GTATCTCCTTTCGTCGGCCCGCCCCTTGGCTTCTGCACTGATGGTGGGTGGATGAGTAATGCATCCAGGAAGC- C TGGAGGCCTGTGGTTTCCGCACCCGCTGCCACCC 1411 tgcctggtaggactgacggctgcctttgtcctcctcctctccaccccgcctccccccaccct- gccttccccccctcccccgtcttctctcccgcagctgcctcagtcggctactctcagccaacccccctcac- cacccttctccccacccgcccccccgcccccgtcggcccagcgctgccagcccgagtttgcagagag- gtaactccctttggctgcgagcgggcgagc 1412 GCGCGGGCGCCTCGATCTCCCGCGCGCGCGCGTGCGCGAGACCCCCCTTTGGCCCCCTACCCT- GCAGCAAGGGTAGCGTGACGTAATGCAACCTCAGCATGTCAGCAGCAATATAAAGGAGAATGAGGCG- GCGCGCCTCCCAGACGCAGAGTAGATTGTGATTGGCTCGGGCTGCGGAACCTCG 1413 CCCGGCTGGTCGGCGCTCCTCGCAGGCGGTGTCCCGGTCCGGAGCGATCTGCGCGCTCGGCCCCGCG- GCCGCGCCCTCCCCGAAGCCCTTGCTTTGTTCTGTGAGCGCCTCGTGTCAGCCAGGCGCAGTGAGCT- CACGGGGGCGTCCCGGGTCCGCATCCTCCCAGGAGCTGGGGAGCCGCTCGCTGGGCGCGGACCCGCTGCCTGA- C GCTGCAAACTACACGGTTTCGGTCCCCCGCGC 1414 CCGGGGCTGGGACGGCGCTTccaggcggagaaagacctccgcgggccgcgcgcggccttccccctgc- gaggatcgccattggcccgggttggctttggaaagcggcggtGGCTTTGGGCCGGGCTCGGC 1415 GGGCGGGGTGGGGCTGGAGCtcctgtctcttggccagctgaatggaggcccagtggcaacacag- gtcctgcctggggatcaggtctgctctgcaccccaccttgctgcctggagccgcccacctgacaacctct- catccctgctctgcagatccggtcccatccccactgcccaccccacccccccagcactccacccagttcaacg- t tccacgaacccccagaaccagccctcatcaacaggcagcaagaaggg 1416 GTGCGGTTGGGCGGGGCCCTgtgccccactgcggagtgcgggtcgggaagcggagagagaagcagct- gtgtaatccgctggatgcggaccagggcgctccccattcccgtcgggagcccgccgattggctgggtgtgg- gcgcacgtgaccgacatgtggctgtattggtgcagcccgccagggtgtcactggagacagaatggaggtgctg- c cggactcggaaatggggtaggtgctggagccaccatggccagg 1417 GGCGGTGCCTCCGGGGCTCAcctggctgcagccacgcaccccctctcagtggcgtcggaact- gcaaagcacctgtgagcttgcggaagtcagttcagactccagcccGCTCCAGCCCGGCCCGACCC 1418 GGCGGTGCCTCCGGGGCTCAcctggctgcagccacgcaccccctctcagtggcgtcggaact- gcaaagcacctgtgagcttgcggaagtcagttcagactccagcccGCTCCAGCCCGGCCCGACCC 1419 CGGGAGCCCGCCCCCGAGAGgtgggctgcgggcgctcgaggcccagccgccgccgccgccgccgc- cgccgccgcctccgccgccgccgccgccgccgccgccgccgcgctgccgcacgccccctggcagcg- gcgcctccgtcaccgccgccgcccgcgctcgccgtcggcccgccgcccgctcagaggcggccctccaccggaa- g tgaaaccgaaacggagctgagcgcctgactgaggccgaacccccggcccg 1420 TCCTGCCATCCGCGCCTTTGCActtttctttttgagttgacatttcttggtgctttttg- gtttctcgctgttgttgggtgctttttggtttgttcttgtccctttttcgtttgctcatcctttttg- gcgctaactcttaggcagccagcccagcagcccgaagcccgggcagccgcgctccgcggccccggggcagcgc- g gcgggaaccgcagccaagccccccgacacggggcgcacgggggccgggcagcccg 1421 AGGCACAGGGGCAGCTCCGGCACggctttctcaggcctatgccggagcctcgagggctggagagcgg- gaagacaggcagtgctcggggagttgcagcaggacgtcaccaggagggcgaagcggccacgggaggggggc- cccgggacattgcgcagcaaggaggctgcaggggctcggcctgcgggcgccggtcccacgaggcactgcggcc- c agggtctggtgcggagagggcccacagtggacttggtgacgct 1422 CGACCCCTCCGACCGTGCTTCCGgtgagggtcctgggcccctttcccactctctagagaca- gagaaatagggcttcgggcgcccagcgtttcctgtggcctctgggacctcttggccagggacaaggacccgt- gacttccttgcttgctgtgtggcccgggagcagctcagacgctggctccttctgtccctctgcccgtggacat- t agctcaagtcactgatcagtcacaggggtggcctgtcaggtcaggcgg 1423 CCCGCAGGGTGGCTGCGTCCttccagggcctggcctgagggcaggggtg- gtttgctcccccttcagcctccgggggctggggtcagtgcggtgctaacacggctctctctgtgctgtgg- gacttccaggcaggcccgcaagccgtgtgagccgtcgcagccgtggcatcgttgaggagtgct- gtttccGCAGCTGTGACCTGGCCCTCCTGGA 1424 GCGTCTGCCGGCCCCTCCCCttgtccgtcccctccgcgccgctggcgcgcgccttctgaatgc- caagcattgccataaactccggggacaaaagcctgggtcacaaaagccccctctagaagttcacaccctgag- gcttccctggcaaggctgggggccgtttggcccttccatgtggactgcaaaaacagtgttggaatgcaggact- c tgggtatgttctcgaaagttgttacaaccccaacccagggttgacc 1425 TAGGCCGCCGGGCAGCCACCgcgctcctctggctctcctgctccatcgcgctcctccgcgcccttgc- cacctccaacgcccgtgcccagcagcgcgcGGCTGCCCAACAGCGCCGGA 1426 GGGGAGCGGGGACGCGAGCAgcaccagaatccgcgggagcgcggctgttcctggtagggccgtgt- caggtgacggatgtagctagggggcgagctgcctggagttgcgttccaggcgtccggcccctgggccgtcac- cgcggggcgcccgcgctgagggtgggaagatggtggtgggggtgggggcgcacacagggcgggaaagtggcgg- t aggcgggagggagaggaacgcgggccctgagccgcccgcgcgcg 1427 GCCGGCTGGCTCCCCACTCTGCcagagcgaggcggggcagtgaggactccgcgacgcgtccgcac- cctgcggccagagcggctttgagctcggctgcgtccgcgctaggcgctttttcccagaagcaatccag- gcgcgcccgctggttcttgagcgccaggaaaagcccggagctaacgaccggccgctcggccactgcacggggc- c ccaagccgcagaaggacgacgggagggtaatgaagctgagcccaggtc 1428 TCGCTCACGGCGTCCCCTTGCCtggaaagataccgcggtccctccagaggatttgagggacagg- gtcggagggggctcttccgccagcaccggaggaagaaagaggaggggctggctggtcaccagagggtggggcg- - gaccgcgtgcgctcggcggctgcggagagggggagagcaggcagcgggcggcggggagcagcatggagccggc- g gcggggagcagcatggagccttcggctgactggctggccacggc 1429 TCCCCGCTGCCCTGGCGCTCcccctttgatttattagggctgccgggttggcgcagat- tgctttttcttctcttccatcccatcctcccttctggtcctcctttccacagtgggagtccgtgctcct- gctcctcggttggctcctaagtgccccgccaggtcccctctcctttcgctctcccggctccggctcccgactc- t tcggcccgctggcatctgcttccctcccctgcctcgtttctcgtcgcccctgct 1430 GGCCAGAGGCAGGCCCGCAGCtccctgccccgcctctgtgcctccgccaacccgacaacgct- tgctcccaccccgatccccgcacccgcgcgaAGTGGGCCCTCCGGTCGTCGGC 1431 TGCCCGGGTCATCGGACGGGAGgccgcgccacgtgagggcggcaagagggcactggccctgcggc- gaggccccagcgaggggcgcttccCCGAGGGGCCAGCCTGGGCA 1432 CCCAGTGCGCACGGCGAGGCagtagcccggccccgcactgctgataggtgcaggcag- gacagtccctccaccgcggctcggggcgtcctgattggtgcggagccacgtcagtcgcacccggagaagg- gtctgggaggaggcggaggcggaGAGGGCTGGGGAGGGCCGCG 1433 AGCGTCCCAGCCCGCGCACCgaccagcgccccagttccccacagacgccggcgggcccgg- gagcctcgcggacgtgacgccgcgggcggaagtgacgttttcccgcggttggacgcggCGCTCAGTTGCCGG- GCGGGG 1434 TGCTCCCCCGGGTCGGAGCCccccggagctgcgcgcgggcttgcagcgcctcgcccgcgct- gtcctcccggtgtcccgcttctccgcgccccagccgccggctgccagcttttcggggccccgagtcgcac- ccagcgaagagagcgggcccgggacaagctcgaactccggccgcctcgcccttccccggctccgctccctctg- c cccctcggggtcgcgcgcccacgatgctgcagggccctggctcgctgctg 1435 CGCTCGCATTGGGGCGCGTCccccatccgcccccaactgtggtgtcgcgacaggtcctattgcgggt- gtctgcggtgggaagggcggtggtgactgggagcATGCGGGGTAACCGCAGTGGGCA 1436 TGCGGCAAGCCCGCCATGATGtccacgtgacaaaagccatgatatacatatgacaacgcctgccata- ttgtccctgcggcaaaacccaacacgaaaagcacacagcaaagacaaagaggcccgccatgttttacactgcg- - gcaagaccttcagccgccatcttttcctgtgTGACCGCACATGTCCACCACCATGC 1437 TCTTGAGCCTCAGGAGTGAAAAGGCCCCTTGggaaaccctcacccaggagatacacaggagcactg- gctttggcagcagctcacaatgagaaagaTGCCTGTCACAGCCTTTGCCTTCCTCTTCTATG 1438 GGACCATGAGTGTTTCCATGCTTGGCATCAGAcatgtcttctacccctattcagtctgtcatccact- ggtcaagaatcccaaacattctaaaactgtgtccacatctcttctgggtaactcttatgattggagg- gcttcctgaggtgtgaagtctatcacagatccagtgactaacttctagcttcatcttattctcacttagggga- g aagagttgaggcccaagcaaacctcttcttaccattggcttagggaa 1439 tcagccactgcttcgcaggctgacgttactgacgtggtgccagcgacggagggcgagaacgc- cagcgcggcgcagccggacgtgaacgcgcagatcaccgcagcggttgcggcagaaaacagccgcattatggg- gatcctcaactgtgaggaggctcacggacgcgaagaacaggcacgcgtgctggcagaaacccccggtatgacc- g tgaaaacggcccgccgcattctggccgcagcaccacagagtgcacag 1440 cggccagctgcgcggcgactccggggactccagggcgcccctctgcggccgacgcccggggt- gcagcggccgccggggctggggccggcgggagtccgcgggaccctccagaagagcggccggcgccgtgact- cagcactggggcggagcggggc
Sequence CWU
1
1
1440150DNAArtificial Sequenceprobe/primer/pcr 1cggccggtca ggaatcccca
tcctggagcg caggcggaga gccagtggct 50264DNAArtificial
Sequenceprobe/primer/pcr 2ccaaaaaagg tgacactgcc ccctcccagt ggctccatgc
tcctcagcta tggctgtccg 60ggcc
64353DNAArtificial Sequenceprobe/primer/pcr
3cgccccgccc ccgccaacaa ccgccgctct gattggcccg gcgcttgtct ctt
53450DNAArtificial Sequenceprobe/primer/pcr 4agcggcctca gcctgcgcac
cccaggagcg tggatgacta cggccacccc 50563DNAArtificial
Sequenceprobe/primer/pcr 5gcagccgaga gggtcaggcc cccataggtc ctcagcctgc
ttcaacctca aaggggatgg 60ggg
63665DNAArtificial Sequenceprobe/primer/pcr
6tcctggcagc attaccacac tgctcacctg tgaagcaatc ttccggagac agggccaaag
60ggcca
65765DNAArtificial Sequenceprobe/primer/pcr 7ctgacaagag acatgcaggg
ctgagaggca gctccttttt atagcggtta ggcttggcca 60gctgc
65864DNAArtificial
Sequenceprobe/primer/pcr 8tggcatccac ttgcttgatc cagccagatt cccactccca
tgccctctcc actattgcga 60ttgc
64962DNAArtificial Sequenceprobe/primer/pcr
9ctgcttcgtg ccctctggtg gctaaggcgt gtcattgcag tgccggcctc ctgtcatcct
60cc
621050DNAArtificial Sequenceprobe/primer/pcr 10ccggcgcact ccgactccga
gcagtctctg tccttcgacc cgagccccgc 501153DNAArtificial
Sequenceprobe/primer/pcr 11taggtggtga gttacttggc tcggagcggg cgaggggacg
cgtgggcgga gcg 531265DNAArtificial Sequenceprobe/primer/pcr
12aaccacctga tcaaggaaaa ggaaggcaca gcggagcgca gagtgagaac caccaaccga
60ggcgc
651361DNAArtificial Sequenceprobe/primer/pcr 13cgggggtagg ctttgctgtc
tgagggcgtc tggctgtgga gctgaaggag gcgctgctga 60g
611453DNAArtificial
Sequenceprobe/primer/pcr 14gccccgcatc cctaatgagg gaatgaatgg agaggccccc
tcggctggcg ccc 531550DNAArtificial Sequenceprobe/primer/pcr
15cggggccacg cgctaagggc ccgaacttgg cagctgaccg tcccggacag
501652DNAArtificial Sequenceprobe/primer/pcr 16ccaccgaaca cgccgcaccg
gccaccgccg ttccctgata gattgctgat gc 521754DNAArtificial
Sequenceprobe/primer/pcr 17gaactgggtc gtggaaggat cgcggggagc ggccctcagg
ccttcggcct cact 541859DNAArtificial Sequenceprobe/primer/pcr
18ccagcacttt gggaggccga ggcgggcgga tcacgaggtc aggagatcga gaccatcct
591955DNAArtificial Sequenceprobe/primer/pcr 19ggcggctggt gcttgggtct
acgggaatac gcataacagc ggccgtcagg gcgcc 552061DNAArtificial
Sequenceprobe/primer/pcr 20tcagattcct cagggccgca gaggtgtgga gctggttggg
ccggttcttc accctcctcc 60c
612154DNAArtificial Sequenceprobe/primer/pcr
21ctggccgagg tggccaccgg tgacgacaag aagcgcatca ttgactcagc ccgg
542253DNAArtificial Sequenceprobe/primer/pcr 22ctaaccttcc tcgccgcctt
cctgcgggtg acccccaaac gccccagctc cgc 532350DNAArtificial
Sequenceprobe/primer/pcr 23ccgacttgga cgcggccagc tggagaggcg gagcgccggg
aggagacctt 502450DNAArtificial Sequenceprobe/primer/pcr
24acagagtcgg caccggcgtc cccagctctg ccgaagatcg cggtcgggtc
502562DNAArtificial Sequenceprobe/primer/pcr 25ggggatggag aactctcctc
gcttcgtcct ctctcccggg gaatccctaa ccccgcactg 60cg
622655DNAArtificial
Sequenceprobe/primer/pcr 26gtggctcggg tccacccggg ctgcgagccg gcagcacagg
ccaataggca attag 552758DNAArtificial Sequenceprobe/primer/pcr
27ctcaccccgc gacttacccc acaccccgct ctccagaacc cccatatggg cgctcacc
582865DNAArtificial Sequenceprobe/primer/pcr 28acacaccact gcagcgttca
aacgctggga agaagactcc cttgtggcac cggaaaccca 60cgagg
652950DNAArtificial
Sequenceprobe/primer/pcr 29ccgccacgaa cttggggtgc agccgatagc gctcgcggaa
gagccgcctc 503051DNAArtificial Sequenceprobe/primer/pcr
30ctccatagcc ctccgacggg cgcccagggg cttcccggct ccgtgctctc t
513165DNAArtificial Sequenceprobe/primer/pcr 31tggacacccc aagagctcac
tcctccgcgg ttttatattc cgacttgcgc acaggagcgg 60ggtgc
653263DNAArtificial
Sequenceprobe/primer/pcr 32ccgcccgttt cagcggcgca gcttctgtag ttgggctact
ggaggggtcg ctcagaaacc 60tca
633369DNAArtificial Sequenceprobe/primer/pcr
33aacccaggct tgtcagccta agaacacggg atctcttcac tgtggttcat gtgtagagtg
60gagtttcca
693451DNAArtificial Sequenceprobe/primer/pcr 34cagtcccctg ccgtgcgctc
gcattcctca gcccttgggt ggtccatggg a 513552DNAArtificial
Sequenceprobe/primer/pcr 35caggtgggcg tctcaggggt gggagtggcc gcgtcgtgaa
gcggagagag ga 523654DNAArtificial Sequenceprobe/primer/pcr
36ctgcaaggga tgactcaccc cagtgattca accgcgccac cgagcgcgga gctg
543759DNAArtificial Sequenceprobe/primer/pcr 37ttgtatggat ttcgcccagg
ggaaagcgct ccaacgcgcg gtgcaaacgg aagccactg 593850DNAArtificial
Sequenceprobe/primer/pcr 38gaggaccagg gccggcgtgc cggcgtccag cgaggatgcg
cagactgcct 503957DNAArtificial Sequenceprobe/primer/pcr
39acgcaccgcg gctcctcgcg tccagccgcg gccaaggaag ttactactcg cccaaat
574051DNAArtificial Sequenceprobe/primer/pcr 40cgctgcctcg ccattgggcg
gccgaacgca gccacgtcca atcagaggag t 514159DNAArtificial
Sequenceprobe/primer/pcr 41gaggttctgg ggaccgggag agtggccacc ttcttcctcc
tcgcgaagag caggccggg 594252DNAArtificial Sequenceprobe/primer/pcr
42agtgggattg gggcacttgg ggcgctcggg gcctgcgtcg gatactcggg tc
524357DNAArtificial Sequenceprobe/primer/pcr 43tcaagccgcc tcaggtgagc
gctccttggc gctacttccg gtctcaggtg aggccgc 574470DNAArtificial
Sequenceprobe/primer/pcr 44ttgtgacgtg tgttctgggc agggtttgag gttttggaac
attttctaaa agggacagag 60agcaccctgc
704561DNAArtificial Sequenceprobe/primer/pcr
45cggggggaga agtcctggag cgggtttggg ttgcagtttc cttgtgccgg ggatcctgtc
60c
614661DNAArtificial Sequenceprobe/primer/pcr 46gaggattatt cgtcttctcc
ccattccgct gccgccgctg ccaggcctct ggctgctgag 60g
614753DNAArtificial
Sequenceprobe/primer/pcr 47ccctctctcc cctggcccgc aaagttttgg cggagccatc
gctggggctg agc 534860DNAArtificial Sequenceprobe/primer/pcr
48ccagggggaa cttgtggcag tgcagcatct caggccaggg gaagccgtag gcctccatga
604957DNAArtificial Sequenceprobe/primer/pcr 49cgccacccag agcccgaggt
ttgcccttca gaagcggacc cgcagactcc tcggact 575065DNAArtificial
Sequenceprobe/primer/pcr 50cgccgaaatg aaacccgcct ccgttcgcct tcggaactgt
cgtcacttcc gtcctcagac 60ttgga
655151DNAArtificial Sequenceprobe/primer/pcr
51tcccttgttt tgaggcggga acgcaaccct cgaccgccca ctgcgctccc a
515250DNAArtificial Sequenceprobe/primer/pcr 52ggcagccggg aaatcccgtg
tccccactcg tggcagagga cgctgtgggg 505364DNAArtificial
Sequenceprobe/primer/pcr 53cccccacagt tttcatgtga tcaggaattc agcataggct
ataagacgga gtgctccatg 60tcaa
645453DNAArtificial Sequenceprobe/primer/pcr
54ggggttgtca tggcagcagc tccatccctg accgccactt tctcccggtg ccg
535557DNAArtificial Sequenceprobe/primer/pcr 55aagttccgcc agtgcacagc
aaccaatggg cggaggggtc ctttgcccct gggttgc 575651DNAArtificial
Sequenceprobe/primer/pcr 56agttgggccg gatcagctga cccgcgtgtt tgcacccgga
ccggtcacgt g 515750DNAArtificial Sequenceprobe/primer/pcr
57gggccgctgc ctactgtggg cctgcaaggc gtgcaagcgc aagaccacca
505850DNAArtificial Sequenceprobe/primer/pcr 58acctccctgc tgcgtgtcgc
aaaccgaaca gcgggcgttg gccctcctgc 505965DNAArtificial
Sequenceprobe/primer/pcr 59gggacccgga gctccaggct gcgccttgcg cccgggtcag
acattattta gctcttcggt 60tgagc
656052DNAArtificial Sequenceprobe/primer/pcr
60ggccgtgcgg ggctcaccgg agatcagagg cccggacagc ttcttgatcg cc
526164DNAArtificial Sequenceprobe/primer/pcr 61ccactgcctg cggtagaacc
tggtcccgca tagcttggac tcggataagt caagttctct 60tcca
646253DNAArtificial
Sequenceprobe/primer/pcr 62gggccgcagg cccctgagga gcgatgacgg aatataagct
ggtggtggtg ggc 536350DNAArtificial Sequenceprobe/primer/pcr
63gcaggacccg gatgagagcg cacgcttcgg ggtctccggg aagtcgcggc
506451DNAArtificial Sequenceprobe/primer/pcr 64aagagggaaa ggcttccccg
gccagctgcg cggcgactcc ggggactcca g 516550DNAArtificial
Sequenceprobe/primer/pcr 65agggatggct tttgggctct gcccctcgct gctcccggcg
tttggcgccc 506654DNAArtificial Sequenceprobe/primer/pcr
66gcccgctctc gggtgactcc gcaacctgtc gctcaggttc ctcctctccc ggcc
546757DNAArtificial Sequenceprobe/primer/pcr 67tgctggacat ccaccgcctc
caggcagttt cgccgtcaca ccgtcgccat ctgtagc 576853DNAArtificial
Sequenceprobe/primer/pcr 68ggccgcgaag cgactccgat cctccctctg agccttgctc
agctctgccc cgc 536965DNAArtificial Sequenceprobe/primer/pcr
69cgcgcgttcg ctgcctcctc agctccagga tgatcggcca gaagacgctc tactcctttt
60tctcc
657052DNAArtificial Sequenceprobe/primer/pcr 70cgggggcgga ggaaacacct
atgaaccctc cggcagcctt ccttgccggg cg 527150DNAArtificial
Sequenceprobe/primer/pcr 71agggccagcc cttgggggct cccagatggg gcgtccacgt
gacccactgc 507264DNAArtificial Sequenceprobe/primer/pcr
72gtgaaaggtc ggcgaaagag gagtaaagac ggcgagacgc gtccacgcag ggggagtctg
60tgcg
647350DNAArtificial Sequenceprobe/primer/pcr 73gcgctgaggt gcagcgcacg
gggcttcacc tgcaacgtgt cgattggacg 507455DNAArtificial
Sequenceprobe/primer/pcr 74gaggcctcat gcctccgggg aaaggaaggg gtggtggtgt
ttgcgcaggg ggagc 557561DNAArtificial Sequenceprobe/primer/pcr
75cgaagtggaa accggagttg cgtcattgct cccacccgat atcaccttgg cagcgaccgc
60g
617662DNAArtificial Sequenceprobe/primer/pcr 76atggggtgct catcttcctg
gagctgagga gctgggacgg gcatggggtg ctcatcctcc 60tg
627765DNAArtificial
Sequenceprobe/primer/pcr 77ttccagccgg tgattgcaat ggacaccgaa ctgctgcgac
aacagagacg ctacaactca 60ccgcg
657851DNAArtificial Sequenceprobe/primer/pcr
78cagagaagac tcacgcagtg agcagtccgc aagcccgctg gcggcagcgg c
517964DNAArtificial Sequenceprobe/primer/pcr 79gacacaccca cctcagcaga
tctcagccca tccctcccag ctcagtgcac tcacccaacc 60ccac
648060DNAArtificial
Sequenceprobe/primer/pcr 80cggagtgctg caagcgcaga aaatatacgt catgtgcgga
ggcggagctt ccgccctgcg 608150DNAArtificial Sequenceprobe/primer/pcr
81ggcccaagga cgtgtgttgg tccagccccc cggttccccg agacccacgc
508263DNAArtificial Sequenceprobe/primer/pcr 82acctctggag cgggttagtg
gtggtggtag tgggttggga cgagcgcgtc ttccgcagtc 60cca
638365DNAArtificial
Sequenceprobe/primer/pcr 83cccttggaag gcgtggaatt aggagagaaa tcccttagtg
ggcacacgag tgagtgcccc 60ttgga
658450DNAArtificial Sequenceprobe/primer/pcr
84ccggccgcct cccaggctgg aatccctcga cacttggtcc ttcccgcccc
508560DNAArtificial Sequenceprobe/primer/pcr 85tgcgtgggtc gcctcgcgtc
tctctctccc accccacctc tgagatttct tgccagcacc 608659DNAArtificial
Sequenceprobe/primer/pcr 86gacttcgcgt cgcccttcca cgagcgccac ttccactacg
aggagcacct ggagcgcat 598752DNAArtificial Sequenceprobe/primer/pcr
87gaggctgcga gcctgggctc ccagggagtt cgactggcag aggcgggtgc ag
528862DNAArtificial Sequenceprobe/primer/pcr 88ccattctcct gcctcagcct
cccaagtagc tgggactaca ggcgcctgcc accactcccg 60gc
628965DNAArtificial
Sequenceprobe/primer/pcr 89caggggacgt tgaaattatt tttgtaacgg gagtcgggag
aggacggggc gtgccccgac 60gtgcg
659054DNAArtificial Sequenceprobe/primer/pcr
90accctggaac gacgccaaac gcgaccccta ccagaggact cgcgcatgcg cagc
549150DNAArtificial Sequenceprobe/primer/pcr 91gttcccaaag ggtttctgca
gtttcacgga gcttttcaca ttccactcgg 509251DNAArtificial
Sequenceprobe/primer/pcr 92gaaagacacc gcggaactcc cgcgagcgga gacccgccaa
ggcccctcca g 519350DNAArtificial Sequenceprobe/primer/pcr
93ccctctccgc cccaaacagc tccccactcc cccagcctgc ccccaccctc
509465DNAArtificial Sequenceprobe/primer/pcr 94attggggcta cactcaccac
aagagcagca aacaaagcac tgggtgtggt agaggctgtc 60caggg
659560DNAArtificial
Sequenceprobe/primer/pcr 95cccagcgggg cccttagcag agcctctcca atcctcggcg
cctcccctac acagggttcg 609656DNAArtificial Sequenceprobe/primer/pcr
96gcgcccaagg ccctgcttct tcccccttcc tcttcccctt gcccagccgc gacttc
569750DNAArtificial Sequenceprobe/primer/pcr 97cccagccgag cagggggaag
catccccagc tcccgcaccc aagtccctgg 509852DNAArtificial
Sequenceprobe/primer/pcr 98gccgccacct gttgaggaaa gcgagcgcac ctcctgcagc
tcaggctccg gg 529961DNAArtificial Sequenceprobe/primer/pcr
99cgggagcgga ttgggtctgg gagttcccag aggcggctat aagaaccggg aactgggcgc
60g
6110053DNAArtificial Sequenceprobe/primer/pcr 100ggcggggaag cgtatgtgcg
tgatggggag tccgggcaag ccaggaaggc acc 5310150DNAArtificial
Sequenceprobe/primer/pcr 101ggagcccgca gtgcgtgcga ggggctctcg gcaggtccag
acgcctcgcc 5010253DNAArtificial Sequenceprobe/primer/pcr
102cgcatccggc tccgaaagct gcgcgcagcc atcatcaggg cccttctggt gtt
5310364DNAArtificial Sequenceprobe/primer/pcr 103gccgctgcca gtcgactcaa
ccaccggagt ggcccctgca gttggatagc aacgagaatc 60ctcc
6410450DNAArtificial
Sequenceprobe/primer/pcr 104ggcaggaaag ggcccgaagg cagcgaaggc gaacgcggcg
caccaacctg 5010550DNAArtificial Sequenceprobe/primer/pcr
105acagggtctt cccacccaca gggcacccag gcgcagcgga gccaggaggg
5010655DNAArtificial Sequenceprobe/primer/pcr 106accagccgca caacttttga
aggctcgccg gcccatgtgg ggtctttctg gcggc 5510762DNAArtificial
Sequenceprobe/primer/pcr 107cagccgggca gataacaaaa cacaccccaa agtgggcctc
gcatcggccc tcgcattcct 60gt
6210857DNAArtificial Sequenceprobe/primer/pcr
108ggcctcgacg ccgaggggtg tccctctcct ctcctggtca gggaacgcag caactga
5710956DNAArtificial Sequenceprobe/primer/pcr 109gggcggcagt cagagctgga
gctccgggga atcagacggg cagccaaagg agcaga 5611051DNAArtificial
Sequenceprobe/primer/pcr 110cggaagtgcc ccggtcctgg agggggtgga agttggggag
cccaggcagg a 5111165DNAArtificial Sequenceprobe/primer/pcr
111ccgagaggga agaaaaaaat accctctttg ggccaggcac ggtggctcac ccctgtaatc
60ccagc
6511264DNAArtificial Sequenceprobe/primer/pcr 112tcccagcact ttgggaggct
gaggcgagcg gatcacgaga tcagaagatc gagaccatcc 60tggc
6411353DNAArtificial
Sequenceprobe/primer/pcr 113ccccgggacc ggataacgcc ctaaatcagc gcagctgagg
cgaggccgtg gcc 5311451DNAArtificial Sequenceprobe/primer/pcr
114ctcgcgaccc cggctccggg cctctgccga cctcaggggc aggaaagagt c
5111551DNAArtificial Sequenceprobe/primer/pcr 115cccgaggctc gcccgactcc
tggctgccct ggactcccct ccctcctccc t 5111652DNAArtificial
Sequenceprobe/primer/pcr 116ctccagctgc actgccaccc agcctgcctg gtgctggtgc
tcaacacgca gc 5211758DNAArtificial Sequenceprobe/primer/pcr
117ccggcctttc cgccagaggg cggcacagaa ctacaactcc cagcaagctc ccaaggcg
5811865DNAArtificial Sequenceprobe/primer/pcr 118gggaaggagc ctcagctccg
ctccaggtcc tccaccaggt aggactggga ctcccttagg 60gcctg
6511950DNAArtificial
Sequenceprobe/primer/pcr 119gggagtgtcc tcctccggga cagccggact cccgccgact
tctgggcggc 5012052DNAArtificial Sequenceprobe/primer/pcr
120ggggagcgtg cggggtcgcc accatcggga cccccagagg agagaggact tg
5212152DNAArtificial Sequenceprobe/primer/pcr 121gacagatgca gtgcgtgcgc
cggagcccaa gcgcacaaac ggaaagagcg gg 5212258DNAArtificial
Sequenceprobe/primer/pcr 122tcctttgcgt ccggccctct ttcccctgac cataaaagca
gccgctggct gctgggcc 5812360DNAArtificial Sequenceprobe/primer/pcr
123tgcggcttct ctcaccctgc caggccttcc cagcttccct gaggttgcct gctacacccg
6012452DNAArtificial Sequenceprobe/primer/pcr 124gccccagccc tgcgcccctt
cctctcccgt cgtcaccgct tcccttcttc ca 5212551DNAArtificial
Sequenceprobe/primer/pcr 125cccgcacccc tattgtccag ccagctggag ctccggccag
atcccgggct g 5112660DNAArtificial Sequenceprobe/primer/pcr
126gcagagttcg tgcagggagt tcgcacatag gagagcaccg gtccgggagt gccaggctcg
6012751DNAArtificial Sequenceprobe/primer/pcr 127cggccggtgt gtgtccccgc
aggagagtgt gctgggcaga cgatgctgga c 5112864DNAArtificial
Sequenceprobe/primer/pcr 128tttttgggac aaccatggag gggtcctccg tctcggcctc
ttcgcatatc cccctccgtg 60atcc
6412965DNAArtificial Sequenceprobe/primer/pcr
129cggcgggtca gatctcgctc cctttcggac aacttacctc ggagaggagt caaggggaga
60gggga
6513060DNAArtificial Sequenceprobe/primer/pcr 130cccggacgag ctctcctatc
ccgaagttgt ggacagtcga gacgctcagg gcagccgggc 6013158DNAArtificial
Sequenceprobe/primer/pcr 131cggccggtgg aggggggaag ggaggaatgg tgtcaggggc
ggatatctga gccctgag 5813265DNAArtificial Sequenceprobe/primer/pcr
132caccaaagcc accacccaag ccagcaccaa ggccaccacc atatcctccc ccaaagccac
60tacca
6513355DNAArtificial Sequenceprobe/primer/pcr 133ccgccaggcc cgctgggtgg
aatgtggtca tgtttcagac tgccgatggc ttcca 5513456DNAArtificial
Sequenceprobe/primer/pcr 134cctgtccgga tccctccccg ccttgctcag atctctggtt
cgcggagctc cgaggc 5613564DNAArtificial Sequenceprobe/primer/pcr
135gcgcaggggc ccagttatct gagaaacccc acagcctgtc ccccgtccag gaagtctcag
60cgag
6413657DNAArtificial Sequenceprobe/primer/pcr 136tcctgcccca gtaagcgttg
gaccgggaga cgcagtgctc agcatcggtc agcaggg 5713750DNAArtificial
Sequenceprobe/primer/pcr 137gcgccgagga gtcgggacag ccccggagct tcatgcggct
caacgacctg 5013858DNAArtificial Sequenceprobe/primer/pcr
138ggccccagcg gagactcggc agggctcagg tttcctggac cggatgactg acctgagc
5813952DNAArtificial Sequenceprobe/primer/pcr 139cgccggctgc gaagttgagc
gaaaagtttg aggccggagg gagcgaggcc gg 5214053DNAArtificial
Sequenceprobe/primer/pcr 140ggagccgctt ggcctcctcc acgaagggcc gcttctcgtc
ctcgtccagc agc 5314164DNAArtificial Sequenceprobe/primer/pcr
141aaatgtggag ccaaacaata acagggctgc cgggcctctc agattgcgac ggtcctcctc
60ggcc
6414262DNAArtificial Sequenceprobe/primer/pcr 142cctctcagat tgcgacggtc
ctcctcggcc tggcgggcaa acccctggtt tagcacttct 60ca
6214362DNAArtificial
Sequenceprobe/primer/pcr 143tctccccacg cttccccgat gaataaaaat gcggactctg
aactgatgcc accgcctccc 60ga
6214456DNAArtificial Sequenceprobe/primer/pcr
144gcccaatcgg aaggtggacc gaaatcccgc gacagcaaga ggcccgtagc gacccg
5614553DNAArtificial Sequenceprobe/primer/pcr 145cgtggggggc tgtttcccgt
ctgtccagcc gcgcccactt ctcaggccca aag 5314662DNAArtificial
Sequenceprobe/primer/pcr 146ggggccctcg tgttgctgaa cgagggcggg ttcgcgatgt
aaataagccc agaggtgggg 60tc
6214764DNAArtificial Sequenceprobe/primer/pcr
147cctgggtccc ctcggctctc ggaagaaaaa ccaacagcat ctccagctct cgcgcggaat
60tgtc
6414862DNAArtificial Sequenceprobe/primer/pcr 148cataagatgc cctcctgcgg
gccctcacct tttgacactg cctcccaccg cactggggtc 60aa
6214951DNAArtificial
Sequenceprobe/primer/pcr 149atcccgctgc accacgccat gagcatgtcc tgcgactcgt
ctccgcctgg c 5115050DNAArtificial Sequenceprobe/primer/pcr
150gcgcggtgaa gggcgtcagg tgcagctggc tggacatctc ggcgaagtcg
5015165DNAArtificial Sequenceprobe/primer/pcr 151catttctttc aattgtggac
aagctgccaa gaggcttgag taggagagga gtgccgccga 60ggcgg
6515270DNAArtificial
Sequenceprobe/primer/pcr 152aagttcactg agggttgtaa gagtcagaat ggactccatg
gaagttatgg ggtgtgaatc 60aaacctcaca
7015362DNAArtificial Sequenceprobe/primer/pcr
153cagcactttg ggaggccgag gtgggcggat tgcctgaggt caggagtttg agaccagcct
60gg
6215450DNAArtificial Sequenceprobe/primer/pcr 154gggcaacaca cacagcagcg
acagccggga ggtaagccgc gtcccagcgg 5015564DNAArtificial
Sequenceprobe/primer/pcr 155ctgaggggag gagaaactgg gctgcggggg tccgggaggg
tggattccga gaaactatgt 60gccc
6415654DNAArtificial Sequenceprobe/primer/pcr
156gtgtcccagc gcgttgacgc agcctgtgat ccctcgcgag gcgaggagaa ggtc
5415761DNAArtificial Sequenceprobe/primer/pcr 157aaccccgacc tcaggtgatc
tgcccaaaag tgctgggatt acaggcgtca gccaccgcgc 60c
6115862DNAArtificial
Sequenceprobe/primer/pcr 158aggacgaagt tgaccctgac cgggccgtct cccagttctg
aggcccgggt cccactggaa 60ct
6215951DNAArtificial Sequenceprobe/primer/pcr
159ggagacgcgt tgccttcggc cgggaccact gcacctgccc gcgtgggtaa t
5116050DNAArtificial Sequenceprobe/primer/pcr 160cacaaaggcc aaggagggag
tgcgcaggtc acgtgcgccg gtggtcagcg 5016151DNAArtificial
Sequenceprobe/primer/pcr 161ctgacctggc gctgctgccc ctggtgcctg acggaggatg
agaaggccgc c 5116261DNAArtificial Sequenceprobe/primer/pcr
162aaaagtggct cggaacccca aatcccggtt agattgcagg caccgccgga cgctggctcc
60c
6116351DNAArtificial Sequenceprobe/primer/pcr 163gttctgttgg gggcgaggcc
cgcgcaagcc ccgcctcttc cccggcacca g 5116450DNAArtificial
Sequenceprobe/primer/pcr 164gcgtcgacac tgcgcaagcc cagtcgcgcc tctccagagc
gggaagagcg 5016565DNAArtificial Sequenceprobe/primer/pcr
165tgtctgagta ttgatcgaac ccaggagttc gagatcagct tgagcaagat agcgagaacc
60cccgc
6516651DNAArtificial Sequenceprobe/primer/pcr 166gaaagactgc agagggatcg
aggcggccca ctgccagcac ggccagcgtg g 5116759DNAArtificial
Sequenceprobe/primer/pcr 167ttagagtccc ctgggtgtgt gccccgcaga gggagctctg
gcctcagtgc ccagtgtgc 5916859DNAArtificial Sequenceprobe/primer/pcr
168ttagagtccc ctgggtgtgt gccccgcaga gggagctctg gcctcagtgc ccagtgtgc
5916951DNAArtificial Sequenceprobe/primer/pcr 169ggggacgagc aggaaaaggc
cggggtgggg gtggaattcc tcggcgggca g 5117064DNAArtificial
Sequenceprobe/primer/pcr 170gggagcctga ggcaggagaa tcgcttgaat ccgggaggcg
gaggttgcag taagccgaga 60tcgc
6417157DNAArtificial Sequenceprobe/primer/pcr
171ctttcggagg cctcattggc tgaaggtcgc cgtcgcccaa cgcaggccat tctgggt
5717264DNAArtificial Sequenceprobe/primer/pcr 172cctcctgggg tcaagtgatc
atcctggctc aaccacccaa gtagccggga ctacgggtgg 60ccgc
6417357DNAArtificial
Sequenceprobe/primer/pcr 173ccaatgcccc aacgcaggcc acccccggct cctctgtgga
ctcacgaaga caaggtc 5717457DNAArtificial Sequenceprobe/primer/pcr
174ctctgagagc cacagtcagg tctgtcctca ggggtcgagg cggctgcgct ggggcct
5717550DNAArtificial Sequenceprobe/primer/pcr 175ggacagcccg ctcgggagtc
gggcctggaa gcaggcggac agcgtcacct 5017663DNAArtificial
Sequenceprobe/primer/pcr 176gccaggatgg tctcgatctc ctgaccttgt gatctgcccg
cctcggcctc ccaaagtgtt 60ggg
6317765DNAArtificial Sequenceprobe/primer/pcr
177tgcccagggg agccctccat ttgtagaatg aatgagagtc caggttatga acagtgcctg
60gagtg
6517858DNAArtificial Sequenceprobe/primer/pcr 178gaccggtttt atcccgctga
ggccctggga gatgggtctg gcgaggctcg taggccgc 5817965DNAArtificial
Sequenceprobe/primer/pcr 179gcggaacctc aaattgcggc agcggaacct aaagtttcag
ggtgagatgc gttgactcgc 60ggtgg
6518055DNAArtificial Sequenceprobe/primer/pcr
180gctcagtccc tccggtgtgc aggaccccgg aagtcctccc cgcacagctc tcgct
5518151DNAArtificial Sequenceprobe/primer/pcr 181cgggcaggcg ggaccgggag
gtcaataact gcagcgtccg agctgagccc a 5118258DNAArtificial
Sequenceprobe/primer/pcr 182cgcggtgggc cgacttcccc tcctcttccc tctctccttc
ctttagcccg ctggcgcc 5818354DNAArtificial Sequenceprobe/primer/pcr
183tccccggcat gcgccatatg gtcttcccgg tccagccaag agcctggaac cacg
5418450DNAArtificial Sequenceprobe/primer/pcr 184ctccgcgctc agccaattag
acgcggctgt tccgtgggcg ccaccgcctc 5018551DNAArtificial
Sequenceprobe/primer/pcr 185gcgagagggt cgtccgctga gaagctgcgc cggagacgcg
ggaagctgct g 5118650DNAArtificial Sequenceprobe/primer/pcr
186gacccgcctg cgtcgccacc ctctcgccgc tccctgccgc caccttcctc
5018753DNAArtificial Sequenceprobe/primer/pcr 187gaggggtccg ggacgaagcc
acccgcgcgg tagggggcga cttagcggtt tca 5318865DNAArtificial
Sequenceprobe/primer/pcr 188ccccgaacaa aaaattcaaa tgggaaagag aggcagatgg
cagagaacag gggaggggct 60gggca
6518950DNAArtificial Sequenceprobe/primer/pcr
189gcggcgagga gggtcacagc cggaaagagg cagcggtggc gcctgcagac
5019050DNAArtificial Sequenceprobe/primer/pcr 190ggcggtctcc ggttcgccaa
tgtggctggg tccgtaggct tgggcagcct 5019153DNAArtificial
Sequenceprobe/primer/pcr 191cctccccttt gcgtgcggag ctgggctttg cgtgcgccgc
ttctggaaag tcg 5319259DNAArtificial Sequenceprobe/primer/pcr
192agcctactca ctcccccaac tcccgggcgg tgactcatca acgagcacca gcggccaga
5919362DNAArtificial Sequenceprobe/primer/pcr 193caggaggtga ggaggtttcg
acatggcggt gcagccgaag gagacgctgc agttggagag 60cg
6219461DNAArtificial
Sequenceprobe/primer/pcr 194agatttcccg ccagcaggag ccgcgcggta gatgcggtgc
ttttaggagc tccgtccgac 60a
6119565DNAArtificial Sequenceprobe/primer/pcr
195cgggcgtggt ggtgggcacc tgtaatccca gctactcaga aggttgaggc aggagaatcg
60cttga
6519659DNAArtificial Sequenceprobe/primer/pcr 196tcccaaatcc gagtctgcgg
agcctgggag ggctcccagc ttcctatcca aaccgcgcc 5919757DNAArtificial
Sequenceprobe/primer/pcr 197ccctggtcga gccccctttc ctcccgggtc cacagcgagt
cccctgagga aggaggg 5719850DNAArtificial Sequenceprobe/primer/pcr
198cagggacccg cgagtccctg gacacgcact ggccaacgcc agaccccatc
5019950DNAArtificial Sequenceprobe/primer/pcr 199caagcagccc tcggccagac
caagcacact ccctcggagg cctggcaggg 5020063DNAArtificial
Sequenceprobe/primer/pcr 200gagaaggagc gacccccaaa acgaagcggc tggatctgac
cttccaaggc ctgttggcga 60cgc
6320151DNAArtificial Sequenceprobe/primer/pcr
201ttcttccccg cagggtcagc gctggggctc cggccgtaga gccacgtgac c
5120264DNAArtificial Sequenceprobe/primer/pcr 202attcatttct gttatggaac
tgtcgcggca ctacaaagtc tctatgtagt tataaataaa 60cgtt
6420350DNAArtificial
Sequenceprobe/primer/pcr 203accgagtgcg ctgctgtgcg agtgggatcc gccgcgtcct
tgctctgccc 5020454DNAArtificial Sequenceprobe/primer/pcr
204gtgtggtgag tgtgggtgtg tgcgcgtctc ctcgcgtccc tcgctgaggt gcct
5420562DNAArtificial Sequenceprobe/primer/pcr 205gcctgggctg ccagacgtcg
ccatcattgt tccatgcaga tcatgcccat cctgtgcaga 60ag
6220651DNAArtificial
Sequenceprobe/primer/pcr 206gcgggtccga ggcgcaaggc gagctggaga ccccgaaaac
cagggccact c 5120763DNAArtificial Sequenceprobe/primer/pcr
207tctccatggt ggccattgcc tcctctctgc tccaaaggcg accccgagtc agggatgaga
60ggc
6320850DNAArtificial Sequenceprobe/primer/pcr 208cgcgggactc cgcgggatct
cgctgttcct cgctctgctc ctggggagcc 5020958DNAArtificial
Sequenceprobe/primer/pcr 209cgcccccttt ttggagggcc gatgaggtaa tgcggctctg
ccattggtct gagggggc 5821055DNAArtificial Sequenceprobe/primer/pcr
210gttctgttgc caatgccatt cagaccccag tccgggattc cgcgctcggg gtgcg
5521156DNAArtificial Sequenceprobe/primer/pcr 211tttccgcgag cgcgttccat
cctctaccga gcgcgcgcga agactacgga ggtcga 5621250DNAArtificial
Sequenceprobe/primer/pcr 212acccgggttc agcgggtccc gatccgaggg cgtgcgagct
gagcctcctg 5021350DNAArtificial Sequenceprobe/primer/pcr
213gagagtggac gcgggaaagc cggtggctcc cgccgtgggc cctactgtgc
5021464DNAArtificial Sequenceprobe/primer/pcr 214ggctacagcc gccatttcca
cgctccacca atcaaatcca ttctcgagga agacgcaccg 60cccc
6421558DNAArtificial
Sequenceprobe/primer/pcr 215agcgcgcaca aagcctgcgg gaggatccat tgtagcggtc
gctcctcccc gcttagcg 5821651DNAArtificial Sequenceprobe/primer/pcr
216atcgggcgaa gctcgcggga aaccgctctg ggtgcgcagg acaaagacgc g
5121753DNAArtificial Sequenceprobe/primer/pcr 217cgacggagcc gtgtggaggc
caaaactcct cccggaagcc gctactggcc ccg 5321865DNAArtificial
Sequenceprobe/primer/pcr 218cgccccacta ctgcctgcag cgggcttcct tactccgcct
gctggttcct actggaggag 60aggcc
6521954DNAArtificial Sequenceprobe/primer/pcr
219gcactcgtag cgcgctgggc gagccggacc ggaagttgaa gaagtgaagc gccg
5422064DNAArtificial Sequenceprobe/primer/pcr 220tgaagggagg gcttggtgtg
gggacttgca ctgggcagag gggcagcttc cctgagagca 60gcta
6422150DNAArtificial
Sequenceprobe/primer/pcr 221cgggagcgcc cggttgggga acgcgcggct ggcggcgtgg
ggaccacccg 5022250DNAArtificial Sequenceprobe/primer/pcr
222cagcaccgga gagggcgcac tgcaaaggcg ggcagcagac cgtggagagc
5022352DNAArtificial Sequenceprobe/primer/pcr 223ggcgcagagg cgtcacgcac
tccatggtaa cgacgctcgg cccgaagatg gc 5222450DNAArtificial
Sequenceprobe/primer/pcr 224gccgcgtctg cgaaccggtg acctggtttc ccctccagcc
ctcacggctg 5022561DNAArtificial Sequenceprobe/primer/pcr
225cgagctgttt gaggactggg atgccgagaa cgcgagcgat ccgagcaggg tttgtctggg
60c
6122656DNAArtificial Sequenceprobe/primer/pcr 226gcagcgctga gttgaagttg
agtgagtcac tcgcgcgcac ggagcgacga cacccc 5622759DNAArtificial
Sequenceprobe/primer/pcr 227cgcgcgctcg ccgtccgcca cataccgctc gtagtattcg
tgctcagcct cgtagtggc 5922853DNAArtificial Sequenceprobe/primer/pcr
228cggaaggggt gaggccggaa gccgaagtgc cgcagggagt tagcggcgtc tcg
5322953DNAArtificial Sequenceprobe/primer/pcr 229gggggcgtcg ggcttgggac
aggggaggat accagggcca ccttccccaa ccc 5323058DNAArtificial
Sequenceprobe/primer/pcr 230cgggctggag ggttatctgg gaagtcagcc ccggcctcgg
tcctctccac gttgctgc 5823165DNAArtificial Sequenceprobe/primer/pcr
231ggaacgaggt gtcctgggaa cactcccggg tctgtaactt cggacaaatc acgctcgctt
60tcccg
6523259DNAArtificial Sequenceprobe/primer/pcr 232aaacgagaga gtagccagac
tctccgcgca tggagccgac ggcacccacc agcacaccg 5923350DNAArtificial
Sequenceprobe/primer/pcr 233tactcacgcg cgcactgcag gcctttgcgc acgacgcccc
agatgaagtc 5023458DNAArtificial Sequenceprobe/primer/pcr
234tgaccggaca gagcagagcg gggactgcaa ttcccagaag accccacggt aggggcgg
5823554DNAArtificial Sequenceprobe/primer/pcr 235agacaatccc ggagggggaa
aggcgagcag ctggcagaga gcccagtgcc ggcc 5423653DNAArtificial
Sequenceprobe/primer/pcr 236ggccgaagag tcgggagccg gagccgggag agcgaaagga
gaggggacct ggc 5323752DNAArtificial Sequenceprobe/primer/pcr
237ccaggctccg ctcgtagaag tgcgcaggcg tcaccgcgca tccaggagcc ac
5223856DNAArtificial Sequenceprobe/primer/pcr 238ctctgatgac gctccaaggg
aagaggaagt ggggatcggc gagcgggtgg gtgcgc 5623965DNAArtificial
Sequenceprobe/primer/pcr 239tgaagggtaa tccgaggagg gctggtcact actttctggg
tctggttttg cgttgagaat 60gcccc
6524057DNAArtificial Sequenceprobe/primer/pcr
240cggtcctgca tgcaatgcaa gcctgagctc tcccgccata aggctgcagc ggtgtgg
5724163DNAArtificial Sequenceprobe/primer/pcr 241cctggaggag gaggagtcag
gccgggtagg agggctaagg aggttcccgg gaaggcaggg 60ccc
6324265DNAArtificial
Sequenceprobe/primer/pcr 242gctgctgaca tgacttcttt gccactcggt gtcaaagtgg
aggactccgc cttcggcaag 60ccggc
6524350DNAArtificial Sequenceprobe/primer/pcr
243gagcggcgca gggttggaga gggaagcgct cgtgcccacc ttgctcgcag
5024450DNAArtificial Sequenceprobe/primer/pcr 244ccgatgaccg cggggaggag
gatggagatg ctctgtgccg gcagggtccc 5024550DNAArtificial
Sequenceprobe/primer/pcr 245gccgccctac agacgttcgc acacctgggt gccagcgccc
cagaggtccc 5024654DNAArtificial Sequenceprobe/primer/pcr
246gggccgcaat caggtggagt cgagaggccg gaggaggggc aggaggaagg ggtg
5424754DNAArtificial Sequenceprobe/primer/pcr 247cggcgggacc atgaagaagt
tctctcggat gcccaagtcg gagggcggca gcgg 5424852DNAArtificial
Sequenceprobe/primer/pcr 248gtgggcgcac gtgaccgaca tgtggctgta ttggtgcagc
ccgccagggt gt 5224964DNAArtificial Sequenceprobe/primer/pcr
249gaaagagccg gaaacacctg gtctctcaag caggtacagc ccgcttctcc ccagcacccc
60ggtg
6425050DNAArtificial Sequenceprobe/primer/pcr 250gcagccgcag ctgaggtcac
cccgctgagg tggtggggag gggaatggtt 5025150DNAArtificial
Sequenceprobe/primer/pcr 251gggcggccag cggtgactcc agatgagccg gccgtccgcg
ttcgcgccgc 5025250DNAArtificial Sequenceprobe/primer/pcr
252gggcaccacg aatgccggac gtgaagggga ggacggaggc gcgtagacgc
5025351DNAArtificial Sequenceprobe/primer/pcr 253gaggccgcca tcgcccctcc
cccaacccgg agtgtgcccg taattaccgc c 5125450DNAArtificial
Sequenceprobe/primer/pcr 254cgcggggaac gatgcaacct gttggtgacg cttggcaact
gcaggggcgc 5025550DNAArtificial Sequenceprobe/primer/pcr
255cttgagacct caagccgcgc aggcgcccag ggcaggcagg tagcggccac
5025650DNAArtificial Sequenceprobe/primer/pcr 256cacaccgtcc tcgcccggag
cgcagaggcc gacgccctac gagtggatgc 5025750DNAArtificial
Sequenceprobe/primer/pcr 257cccttgcaca cgagctgacg gcgtgaacgg gggtgtcggg
gttggtgcaa 5025863DNAArtificial Sequenceprobe/primer/pcr
258gcaaagtgat acctggccgt cccaccctct ggtcccagaa ggagctctcg ctggagccag
60gca
6325956DNAArtificial Sequenceprobe/primer/pcr 259ggttggggga ctgcccgggg
cttagatggc tccgagcccg tttgagcgtg gtctcg 5626055DNAArtificial
Sequenceprobe/primer/pcr 260cgttgaaagc gaagaaggag cggcagtcca gcagcaggca
ttgcgccgct cgctc 5526155DNAArtificial Sequenceprobe/primer/pcr
261gagtcctcaa caacgacagc ggggactgcg ggaccagggt aaagcggcga cggcg
5526252DNAArtificial Sequenceprobe/primer/pcr 262gctcctgaga aagccctgcc
cgctccgctc acggccgtgc cctggccaac tt 5226361DNAArtificial
Sequenceprobe/primer/pcr 263gatgctgctg ccggagctga ggtcttgcct ggagatccga
acgagacacc acgtcaaccg 60g
6126462DNAArtificial Sequenceprobe/primer/pcr
264tggtggcagg agagcgatga gacgggaaag tgtggggcaa agcttacagt cattggtcca
60ga
6226564DNAArtificial Sequenceprobe/primer/pcr 265ccactcgcag tctgcgtgtg
ggggaaacga gtgcccggcg tatgaaacgc ctaacttcgc 60gaaa
6426651DNAArtificial
Sequenceprobe/primer/pcr 266caggcggctc ccgcagtcta agggacctgg cgcgagtccg
ggaagcggag g 5126750DNAArtificial Sequenceprobe/primer/pcr
267ctgcacgcgg tgcgaagggg ccagcaggga aggagcagag gatggggggt
5026864DNAArtificial Sequenceprobe/primer/pcr 268cggggccaca ggaccctggg
gcttgagtca cacaagaatg tctctgggag acccgagaga 60ctca
6426954DNAArtificial
Sequenceprobe/primer/pcr 269cttagaggag gaggagcagc ggcagcggca gcaggaggcg
acagctgcca gccg 5427053DNAArtificial Sequenceprobe/primer/pcr
270ctcataccag ataggcgcga acgcctctgg cagcggcgtc cagggggtcc ggc
5327159DNAArtificial Sequenceprobe/primer/pcr 271gggtgctggc acatccgagg
cgttctcccg actctggacc gacgtgatgg gtatcctgg 5927251DNAArtificial
Sequenceprobe/primer/pcr 272catgataagc cagggacctc gcggcgcagg cggagggagg
gagagcgtcg c 5127352DNAArtificial Sequenceprobe/primer/pcr
273ccccccactc aacagcgtgt ctccgagccc gctgatgcta ctgcacccgc cg
5227455DNAArtificial Sequenceprobe/primer/pcr 274tcccacctgc tgcccgagga
agacttccgg gagaaacgct gtctccgagc ccccg 5527552DNAArtificial
Sequenceprobe/primer/pcr 275ccaggtgaag ccgaagggga agcggatggg gttgctgaac
gcggagtcgg cg 5227657DNAArtificial Sequenceprobe/primer/pcr
276cagtggccct gcgcgacgtt cggcgctacc agaactccga gctgctgatc agcaagc
5727758DNAArtificial Sequenceprobe/primer/pcr 277aaggattacc tcgccctgaa
cgaggacctg cgctcctgga ccgcagcgga cactgcgg 5827864DNAArtificial
Sequenceprobe/primer/pcr 278gcaggctcgt ggcggtcggt cagcggggcg ttctcccacc
tgtagcgact caggttactg 60aaaa
6427950DNAArtificial Sequenceprobe/primer/pcr
279gagggaagtg ccctcctgca gcacgcgagg ttccgggacc ggctggcctg
5028054DNAArtificial Sequenceprobe/primer/pcr 280gaagcgcgac ctcgggcggt
tggaggggct accgggtctt accagtccgt ggcg 5428150DNAArtificial
Sequenceprobe/primer/pcr 281cccaacccga gcaagacctg cgctgaaacg gattggctgc
cctccgcccg 5028251DNAArtificial Sequenceprobe/primer/pcr
282agccgctctc ccgattgccc gccgacatga gctgcaacgg aggctcccac c
5128355DNAArtificial Sequenceprobe/primer/pcr 283accacacggc caagggcacc
tgaccctgtc aaaaccccaa atccagctgg gcgcg 5528465DNAArtificial
Sequenceprobe/primer/pcr 284ccgaggcagc cggatcacga agtcaggagt tcgagaccag
cctgaccaac atggtgaaac 60cccgt
6528550DNAArtificial Sequenceprobe/primer/pcr
285ccggcgtctc cgcgtggggc gcaccgtccg acccccccct cccggtgtgc
5028655DNAArtificial Sequenceprobe/primer/pcr 286ggcgcagatg gcgctcgctg
cgagatggat gctccagggc gggtaatcac tcctg 5528750DNAArtificial
Sequenceprobe/primer/pcr 287ccaggcctcc tggaaacggt gccggtgctg cagagcccgc
gaggtgtctg 5028858DNAArtificial Sequenceprobe/primer/pcr
288ggcgagaggt gagaagggaa gagggctccc ggctctctcg gggcgggaat cagtgggc
5828958DNAArtificial Sequenceprobe/primer/pcr 289gcctgcctcg cctctgcccg
agctgatgag cgagtcgacc aaaaaagagt tcgcggcg 5829064DNAArtificial
Sequenceprobe/primer/pcr 290cattgcggga ccctatttat cccgacacct cccctgacgt
gggctcggaa cgctcccttg 60gcag
6429150DNAArtificial Sequenceprobe/primer/pcr
291cgaaggccgg agccacagcg ctcggtgtag atgccgcacg gctggccctc
5029256DNAArtificial Sequenceprobe/primer/pcr 292gggctggatg agtccggaag
tggagattgg ctgcttagtg acgcgcggcg tcccgg 5629352DNAArtificial
Sequenceprobe/primer/pcr 293cgccagtgcg attctccctc ccggttccag tcgccgcgga
cgatgcttcc tc 5229450DNAArtificial Sequenceprobe/primer/pcr
294cgtccgagaa agcgcctggc gggaggaggt gcgcggcttt ctgctccagg
5029557DNAArtificial Sequenceprobe/primer/pcr 295tccggctgcg ccacgctatc
gagtcttccc tccctccttc tctgccccct ccgctcc 5729665DNAArtificial
Sequenceprobe/primer/pcr 296cagcctcagt ttccccattg gtaaagcatt gacggtggtt
gcggacggct tctgcggaca 60gagcc
6529761DNAArtificial Sequenceprobe/primer/pcr
297cctgagacag gccgaaccca actcttcaca gggccgaatt ctttgcccgc agcccagcac
60c
6129852DNAArtificial Sequenceprobe/primer/pcr 298cagagggggg tgccggggtc
gcggactgcc accaggttga ggaaaggagg gg 5229960DNAArtificial
Sequenceprobe/primer/pcr 299cgacatcctg cggacctact cgggcgcctt cgtctgcctg
gagattgtaa gtggggccgc 6030054DNAArtificial Sequenceprobe/primer/pcr
300accgcctcct ccccgctgtc tgggtcgcag gccttagcga cgggctgttc tccg
5430153DNAArtificial Sequenceprobe/primer/pcr 301ctcgggactc cagggctgtc
cctcccgcag gctgtccttc cacctccacc cca 5330258DNAArtificial
Sequenceprobe/primer/pcr 302cggccgctcc tcgtaggcca ggctggaggc aagctccttc
tcctcaaagc tgcgctgc 5830352DNAArtificial Sequenceprobe/primer/pcr
303catctcttcc cccgactccg acgactggtg cgtcttgccc ggacatgccc gg
5230461DNAArtificial Sequenceprobe/primer/pcr 304cccaagaccc taaagttcgt
cgtcgtcatc gtcgcggtcc tgctgccagt gagtcccggc 60c
6130552DNAArtificial
Sequenceprobe/primer/pcr 305cccactcttc ccctgactcc gacggcgggt tcgtcctgcc
cagacatgcc cg 5230651DNAArtificial Sequenceprobe/primer/pcr
306gtccccctct ctctctgccc cctcccggtg ccaggcgcgc ttttccccag g
5130765DNAArtificial Sequenceprobe/primer/pcr 307cagcctgctg aggggaagag
ggggtctccg ctcttcctca gtgcactctc tgactgaagc 60ccggc
6530851DNAArtificial
Sequenceprobe/primer/pcr 308actgactccg gaggctgcag ggctggagtg cgcggggctc
ctacggccga g 5130950DNAArtificial Sequenceprobe/primer/pcr
309ggccaggctc gggcaggggc cgtgctcagg tgcggcagac ggacgggccg
5031054DNAArtificial Sequenceprobe/primer/pcr 310ccgggcttct gggacgctca
gccgtgcgct acccggtgca gctgctttct cacc 5431158DNAArtificial
Sequenceprobe/primer/pcr 311tttaggtaga cgtggaggcg actcagatcg cctcgcggtt
cccgggatgg cgcggtcg 5831253DNAArtificial Sequenceprobe/primer/pcr
312tgaccaggac cgcaggcaag caccgcggcg acggttccag ccaggaaaat gag
5331351DNAArtificial Sequenceprobe/primer/pcr 313gggccggacc cggcctctgg
ctcgctcctg ctctttctca aacatggcgc g 5131463DNAArtificial
Sequenceprobe/primer/pcr 314gccgcgctcc tcgcaccgcc ttctccgcag gtctttattc
atcatctcat ctccctcttc 60ccc
6331550DNAArtificial Sequenceprobe/primer/pcr
315gagctgcgaa ctggtcggcg gcgcaaggcg cggactccgg tgagttgtgt
5031650DNAArtificial Sequenceprobe/primer/pcr 316gcccgcgttc ctctccctcc
cgcctaccgc cactttcccg ccctgtgtgc 5031750DNAArtificial
Sequenceprobe/primer/pcr 317acgcgtcgcg gagtcctcac tgccccgcct cgctctggca
gagtggggag 5031857DNAArtificial Sequenceprobe/primer/pcr
318gcgagcagcg gcctccagcg ctggtggctc cctttatagg agcgctggag acacggg
5731955DNAArtificial Sequenceprobe/primer/pcr 319ggggaaggcg gagggcgagg
ggaagagtca ctgagctgcg gggcataggg ggtcc 5532063DNAArtificial
Sequenceprobe/primer/pcr 320ctctgctcgc gtgctgctct gaagttgttc cccgatgcgc
cgtaggaagc tgggattctc 60cca
6332165DNAArtificial Sequenceprobe/primer/pcr
321agggaggtcg ttttcttcag ctccccaggt ggtctgtgct gggtgtgctg acggtccttt
60tggga
6532250DNAArtificial Sequenceprobe/primer/pcr 322gcccctggcc ctgactgctg
gtgcgaggca gtgcacgact cagctggccg 5032357DNAArtificial
Sequenceprobe/primer/pcr 323ggccgggtaa cggagaggga gtcgccagga atgtggctct
ggggactgcc tcgctcg 5732460DNAArtificial Sequenceprobe/primer/pcr
324ggccgggact ttctggtaag gagaggaggt tacggggaac gacgcgctgc tttcatgccc
6032550DNAArtificial Sequenceprobe/primer/pcr 325cagtctgggg accggggagg
cggggagagg gaaggggaaa gcgcggacgc 5032664DNAArtificial
Sequenceprobe/primer/pcr 326gtctatcaaa agtcttttcg tttccccctc cccctttccc
caccgcccac caaaatgagc 60cgcg
6432751DNAArtificial Sequenceprobe/primer/pcr
327atgccgccat cgcggttcat gccgttctcg tggttcacac cgccctcagg g
5132851DNAArtificial Sequenceprobe/primer/pcr 328tcccggtctt cggatccgag
ccggtcctcg ggaaagagcc tgccaccgcg t 5132964DNAArtificial
Sequenceprobe/primer/pcr 329tgagaggctc cggtaaagcc gtccggcaat gttccacctg
gaaagttcca gggcagggga 60aggg
6433063DNAArtificial Sequenceprobe/primer/pcr
330cccagggaga gggagaggag gcgggtggga gaggaggagg gtgtatctcc tttcgtcggc
60ccg
6333150DNAArtificial Sequenceprobe/primer/pcr 331cccgtcttct ctcccgcagc
tgcctcagtc ggctactctc agccaacccc 5033265DNAArtificial
Sequenceprobe/primer/pcr 332gacccccctt tggcccccta ccctgcagca agggtagcgt
gacgtaatgc aacctcagca 60tgtca
6533360DNAArtificial Sequenceprobe/primer/pcr
333ccccgaagcc cttgctttgt tctgtgagcg cctcgtgtca gccaggcgca gtgagctcac
6033457DNAArtificial Sequenceprobe/primer/pcr 334cgcgcggcct tccccctgcg
aggatcgcca ttggcccggg ttggctttgg aaagcgg 5733565DNAArtificial
Sequenceprobe/primer/pcr 335ccacccagtt caacgttcca cgaaccccca gaaccagccc
tcatcaacag gcagcaagaa 60gggcc
6533657DNAArtificial Sequenceprobe/primer/pcr
336aagcagctgt gtaatccgct ggatgcggac cagggcgctc cccattcccg tcgggag
5733762DNAArtificial Sequenceprobe/primer/pcr 337ccacgcaccc cctctcagtg
gcgtcggaac tgcaaagcac ctgtgagctt gcggaagtca 60gt
6233862DNAArtificial
Sequenceprobe/primer/pcr 338ccacgcaccc cctctcagtg gcgtcggaac tgcaaagcac
ctgtgagctt gcggaagtca 60gt
6233958DNAArtificial Sequenceprobe/primer/pcr
339ccctccaccg gaagtgaaac cgaaacggag ctgagcgcct gactgaggcc gaaccccc
5834065DNAArtificial Sequenceprobe/primer/pcr 340ttgtcccttt ttcgtttgct
catccttttt ggcgctaact cttaggcagc cagcccagca 60gcccg
6534159DNAArtificial
Sequenceprobe/primer/pcr 341ttctcaggcc tatgccggag cctcgagggc tggagagcgg
gaagacaggc agtgctcgg 5934265DNAArtificial Sequenceprobe/primer/pcr
342cagcgtttcc tgtggcctct gggacctctt ggccagggac aaggacccgt gacttccttg
60cttgc
6534360DNAArtificial Sequenceprobe/primer/pcr 343aggcaggccc gcaagccgtg
tgagccgtcg cagccgtggc atcgttgagg agtgctgttt 6034465DNAArtificial
Sequenceprobe/primer/pcr 344gactctgggt atgttctcga aagttgttac aaccccaacc
cagggttgac ctcaaacaca 60ggagg
6534557DNAArtificial Sequenceprobe/primer/pcr
345ctctggctct cctgctccat cgcgctcctc cgcgcccttg ccacctccaa cgcccgt
5734658DNAArtificial Sequenceprobe/primer/pcr 346cgggagcgcg gctgttcctg
gtagggccgt gtcaggtgac ggatgtagct agggggcg 5834764DNAArtificial
Sequenceprobe/primer/pcr 347ccccaagccg cagaaggacg acgggagggt aatgaagctg
agcccaggtc tcctaggaag 60gaga
6434860DNAArtificial Sequenceprobe/primer/pcr
348gggctcttcc gccagcaccg gaggaagaaa gaggaggggc tggctggtca ccagagggtg
6034965DNAArtificial Sequenceprobe/primer/pcr 349ttctcttcca tcccatcctc
ccttctggtc ctcctttcca cagtgggagt ccgtgctcct 60gctcc
6535057DNAArtificial
Sequenceprobe/primer/pcr 350ccgcctctgt gcctccgcca acccgacaac gcttgctccc
accccgatcc ccgcacc 5735157DNAArtificial Sequenceprobe/primer/pcr
351ccgcgccacg tgagggcggc aagagggcac tggccctgcg gcgaggcccc agcgagg
5735258DNAArtificial Sequenceprobe/primer/pcr 352cactgctgat aggtgcaggc
aggacagtcc ctccaccgcg gctcggggcg tcctgatt 5835357DNAArtificial
Sequenceprobe/primer/pcr 353cgggagcctc gcggacgtga cgccgcgggc ggaagtgacg
ttttcccgcg gttggac 5735457DNAArtificial Sequenceprobe/primer/pcr
354tgtcctcccg gtgtcccgct tctccgcgcc ccagccgccg gctgccagct tttcggg
5735557DNAArtificial Sequenceprobe/primer/pcr 355ggtgtcgcga caggtcctat
tgcgggtgtc tgcggtggga agggcggtgg tgactgg 5735662DNAArtificial
Sequenceprobe/primer/pcr 356acatatgaca acgcctgcca tattgtccct gcggcaaaac
ccaacacgaa aagcacacag 60ca
6235764DNAArtificial Sequenceprobe/primer/pcr
357ggaaaccctc acccaggaga tacacaggag cactggcttt ggcagcagct cacaatgaga
60aaga
6435865DNAArtificial Sequenceprobe/primer/pcr 358ttaccattgg cttagggaaa
ggagcttact gggaactggg agctaggtgg cctgaggaga 60ctggg
6535957DNAArtificial
Sequenceprobe/primer/pcr 359aagaacaggc acgcgtgctg gcagaaaccc ccggtatgac
cgtgaaaacg gcccgcc 57360115DNAArtificial Sequenceprobe/primer/pcr
360ccggggactc cagggcgccc ctctgcggcc gacgcccggg gtgcagcggc cgccggggct
60ggggccggcg ggagtccgcg ggaccctcca gaagagcggc cggcgccgtg actca
11536120DNAArtificial Sequenceprobe/primer/pcr 361tcacgggggc ggggagacgc
2036222DNAArtificial
Sequenceprobe/primer/pcr 362gcacagggtg gggcagggag ca
2236320DNAArtificial Sequenceprobe/primer/pcr
363accgggcctt ccgcgcccct
2036428DNAArtificial Sequenceprobe/primer/pcr 364tcccacctcc cccaacattc
cagttcct 2836526DNAArtificial
Sequenceprobe/primer/pcr 365tcacagagcc aggcaagcat gggtga
2636623DNAArtificial Sequenceprobe/primer/pcr
366ggagcagcag gctcgctcgg gga
2336722DNAArtificial Sequenceprobe/primer/pcr 367gcccaaagtg cggggccaac cc
2236829DNAArtificial
Sequenceprobe/primer/pcr 368cggaaagagg aaggcatttg ctgggcaat
2936920DNAArtificial Sequenceprobe/primer/pcr
369ccagcggccc cgcgggattt
2037020DNAArtificial Sequenceprobe/primer/pcr 370ccgacagcgc ccggcccaga
2037120DNAArtificial
Sequenceprobe/primer/pcr 371tgggccaatc cccgcggctg
2037220DNAArtificial Sequenceprobe/primer/pcr
372gggcggctgc ggggagcgat
2037320DNAArtificial Sequenceprobe/primer/pcr 373cgccaggacc gcgcacagca
2037421DNAArtificial
Sequenceprobe/primer/pcr 374gcgggcaaga gagcgcggga g
2137520DNAArtificial Sequenceprobe/primer/pcr
375agcgcgcagc caggggcgac
2037621DNAArtificial Sequenceprobe/primer/pcr 376cgtgcgctca cccagccgca g
2137720DNAArtificial
Sequenceprobe/primer/pcr 377tgagggcccg gggtggggct
2037820DNAArtificial Sequenceprobe/primer/pcr
378atatgcgccc ggcgcggtgg
2037920DNAArtificial Sequenceprobe/primer/pcr 379ccgcagggga aggccgggga
2038020DNAArtificial
Sequenceprobe/primer/pcr 380tcctgaggcg gggccgtccg
2038120DNAArtificial Sequenceprobe/primer/pcr
381ggaggccggg gacgccgaga
2038220DNAArtificial Sequenceprobe/primer/pcr 382gccgccggct cccccgtatg
2038320DNAArtificial
Sequenceprobe/primer/pcr 383gcaggagcga cgcgcgccaa
2038421DNAArtificial Sequenceprobe/primer/pcr
384cgggggaaac gcaggcgtcg g
2138521DNAArtificial Sequenceprobe/primer/pcr 385ccccccaccc tggacccgca g
2138620DNAArtificial
Sequenceprobe/primer/pcr 386cgcccggctt tccggcgcac
2038720DNAArtificial Sequenceprobe/primer/pcr
387ccgctgggcc gccccttgct
2038829DNAArtificial Sequenceprobe/primer/pcr 388cgcttctcca tagctcgcca
cacacacac 2938920DNAArtificial
Sequenceprobe/primer/pcr 389tccgcgcacg cgcaagtcca
2039024DNAArtificial Sequenceprobe/primer/pcr
390cgtctcaact caccgccgcc accg
2439128DNAArtificial Sequenceprobe/primer/pcr 391gacaaatgcg ctgctcggag
agactgcc 2839225DNAArtificial
Sequenceprobe/primer/pcr 392tgcgcctgcg cagtgcagct tagtg
2539329DNAArtificial Sequenceprobe/primer/pcr
393gaagtcaagg gctttcaacc tcccctgcc
2939422DNAArtificial Sequenceprobe/primer/pcr 394tggatcccgc acaggggctg ca
2239523DNAArtificial
Sequenceprobe/primer/pcr 395gccgcctgtg gttttccgcg cat
2339620DNAArtificial Sequenceprobe/primer/pcr
396gcgcgctctc ccgcgcctct
2039720DNAArtificial Sequenceprobe/primer/pcr 397ttccggccca gccccaaccc
2039821DNAArtificial
Sequenceprobe/primer/pcr 398tccgggtcag gcgcacaggg c
2139921DNAArtificial Sequenceprobe/primer/pcr
399gggggcggtg cctgcgccat a
2140022DNAArtificial Sequenceprobe/primer/pcr 400ggcgcgggcc ctcaggttct cc
2240120DNAArtificial
Sequenceprobe/primer/pcr 401gcgtccgcgg ctcctcagcg
2040220DNAArtificial Sequenceprobe/primer/pcr
402gggaggcgcc cagcgagcca
2040327DNAArtificial Sequenceprobe/primer/pcr 403gcgcgcaggg ggccttatac
aaagtcg 2740428DNAArtificial
Sequenceprobe/primer/pcr 404cccccacccc ctttctttct gggttttg
2840520DNAArtificial Sequenceprobe/primer/pcr
405cgcgcgttcc ctcccgtccg
2040620DNAArtificial Sequenceprobe/primer/pcr 406gccggcggag gcagccgttc
2040721DNAArtificial
Sequenceprobe/primer/pcr 407tgcctggtgc cccgagcgag c
2140820DNAArtificial Sequenceprobe/primer/pcr
408cggcggcggc gctacctgga
2040920DNAArtificial Sequenceprobe/primer/pcr 409gtggtggcca gcggggagcg
2041022DNAArtificial
Sequenceprobe/primer/pcr 410ggcggcactg aactcgcggc aa
2241121DNAArtificial Sequenceprobe/primer/pcr
411cctcggcgat ccccggcctg a
2141220DNAArtificial Sequenceprobe/primer/pcr 412acgcagggag cgcgcggagg
2041328DNAArtificial
Sequenceprobe/primer/pcr 413tgaaatactc ccccacagtt ttcatgtg
2841420DNAArtificial Sequenceprobe/primer/pcr
414tccgggcgca cggggagctg
2041520DNAArtificial Sequenceprobe/primer/pcr 415ggcggcggcg tccagccaga
2041620DNAArtificial
Sequenceprobe/primer/pcr 416agggtcgccg aggccgtgcg
2041720DNAArtificial Sequenceprobe/primer/pcr
417ccgcgcctga tgcacgtggg
2041820DNAArtificial Sequenceprobe/primer/pcr 418gccgggagcg ggcggaggaa
2041920DNAArtificial
Sequenceprobe/primer/pcr 419aggggcgcac cgggctggct
2042021DNAArtificial Sequenceprobe/primer/pcr
420tgccacggga ggaggcggga a
2142120DNAArtificial Sequenceprobe/primer/pcr 421cgggcatcgg cgcgggatga
2042220DNAArtificial
Sequenceprobe/primer/pcr 422acaccgccgg cgcccaccac
2042320DNAArtificial Sequenceprobe/primer/pcr
423cccccaacag cgcgcagcga
2042420DNAArtificial Sequenceprobe/primer/pcr 424gccccgctgg ggacctggga
2042522DNAArtificial
Sequenceprobe/primer/pcr 425tcccggggga cccactcgag gc
2242620DNAArtificial Sequenceprobe/primer/pcr
426gcccgcggag gggcacacca
2042720DNAArtificial Sequenceprobe/primer/pcr 427ggcccacgtg ctcgcgccaa
2042820DNAArtificial
Sequenceprobe/primer/pcr 428cggcggagcg gcgaggagga
2042920DNAArtificial Sequenceprobe/primer/pcr
429gcctcgccgg ttcccgggtg
2043020DNAArtificial Sequenceprobe/primer/pcr 430gcaggcgcgc cgatggcgtt
2043124DNAArtificial
Sequenceprobe/primer/pcr 431cctcccggct tctgcatcga gggc
2443220DNAArtificial Sequenceprobe/primer/pcr
432gcggtccgcg agtgggagcg
2043320DNAArtificial Sequenceprobe/primer/pcr 433agcagcgccg cctcccaccc
2043420DNAArtificial
Sequenceprobe/primer/pcr 434ccgaccgtgc tggcggcgac
2043520DNAArtificial Sequenceprobe/primer/pcr
435tcccgggctc cgctcgccaa
2043626DNAArtificial Sequenceprobe/primer/pcr 436gcatggggtg ctcatcttcc
cggagc 2643720DNAArtificial
Sequenceprobe/primer/pcr 437cccgagagcc ggagcgggga
2043820DNAArtificial Sequenceprobe/primer/pcr
438gccgctgcag ggcgtctggg
2043922DNAArtificial Sequenceprobe/primer/pcr 439gcgctgcccc aagctggctt cc
2244026DNAArtificial
Sequenceprobe/primer/pcr 440tcaggatgcc agcgtgacgg aagcaa
2644120DNAArtificial Sequenceprobe/primer/pcr
441gggcggtgcc atcgcgtcca
2044220DNAArtificial Sequenceprobe/primer/pcr 442ggtgggtcgc cgccgggaga
2044320DNAArtificial
Sequenceprobe/primer/pcr 443aggcggaggg ccacgcaggg
2044420DNAArtificial Sequenceprobe/primer/pcr
444ggtccggggg cgccgctgat
2044520DNAArtificial Sequenceprobe/primer/pcr 445gcggcctgcg gctcggttcc
2044620DNAArtificial
Sequenceprobe/primer/pcr 446cgggaaccgt ggcggcccct
2044720DNAArtificial Sequenceprobe/primer/pcr
447gcggggaagg cggggaaggc
2044818DNAArtificial Sequenceprobe/primer/pcr 448gcctcccggt ttcaggcc
1844920DNAArtificial
Sequenceprobe/primer/pcr 449cagcccgcgc accgaccagc
2045023DNAArtificial Sequenceprobe/primer/pcr
450cccccagcca caccagacgt ggg
2345125DNAArtificial Sequenceprobe/primer/pcr 451tgggcttcct gccccatggt
tccct 2545221DNAArtificial
Sequenceprobe/primer/pcr 452tccgcgctgg gccgcagctt t
2145320DNAArtificial Sequenceprobe/primer/pcr
453gcatggcccg gtggcctgca
2045424DNAArtificial Sequenceprobe/primer/pcr 454tgggcagggg aggggagtgc
ttga 2445521DNAArtificial
Sequenceprobe/primer/pcr 455tccccggcgc cttcctcctc c
2145623DNAArtificial Sequenceprobe/primer/pcr
456tccaccgcgc ttcccggcta tgc
2345723DNAArtificial Sequenceprobe/primer/pcr 457cccgcatctg accgcaggac
ccc 2345824DNAArtificial
Sequenceprobe/primer/pcr 458tgcggacacg tgcttttccc gcat
2445929DNAArtificial Sequenceprobe/primer/pcr
459ggagctggaa gagtttgtga gggcggtcc
2946020DNAArtificial Sequenceprobe/primer/pcr 460cggccgccaa cgacgccaga
2046120DNAArtificial
Sequenceprobe/primer/pcr 461agcgcccggt cagcccgcag
2046220DNAArtificial Sequenceprobe/primer/pcr
462tcccgccagg cccagcccct
2046327DNAArtificial Sequenceprobe/primer/pcr 463ccgattcttc ccagcagatg
gccccaa 2746420DNAArtificial
Sequenceprobe/primer/pcr 464acgcacaccg cccccaagcg
2046520DNAArtificial Sequenceprobe/primer/pcr
465taggccccga ggccggagcg
2046621DNAArtificial Sequenceprobe/primer/pcr 466ggggttcgcg cgagcgcttt g
2146723DNAArtificial
Sequenceprobe/primer/pcr 467gccagtctcc cgccccctga gca
2346822DNAArtificial Sequenceprobe/primer/pcr
468tgaggaggca gcggaccggg ga
2246920DNAArtificial Sequenceprobe/primer/pcr 469gccggctcca cggacccacg
2047020DNAArtificial
Sequenceprobe/primer/pcr 470gccgccaccg ccaccatgcc
2047129DNAArtificial Sequenceprobe/primer/pcr
471ttgagtaagg atgataccga gagggaaga
2947221DNAArtificial Sequenceprobe/primer/pcr 472tgggccaggc acggtggctc a
2147320DNAArtificial
Sequenceprobe/primer/pcr 473cccggcgaag tgggcggctc
2047422DNAArtificial Sequenceprobe/primer/pcr
474ggcggcctta ccctgccgcg ag
2247520DNAArtificial Sequenceprobe/primer/pcr 475ggtggggccg gcgagggtca
2047622DNAArtificial
Sequenceprobe/primer/pcr 476tcggcgcgga ccggctcctc ta
2247720DNAArtificial Sequenceprobe/primer/pcr
477ggcccatgcg gccccgtcac
2047822DNAArtificial Sequenceprobe/primer/pcr 478tgggattgcc aggggctgac cg
2247922DNAArtificial
Sequenceprobe/primer/pcr 479cgccggagca cgcggctact ca
2248020DNAArtificial Sequenceprobe/primer/pcr
480ccctcggcgc cggcccgtta
2048120DNAArtificial Sequenceprobe/primer/pcr 481gcacagcggc ggcgagtggg
2048220DNAArtificial
Sequenceprobe/primer/pcr 482tcacctcggg cggggcggac
2048320DNAArtificial Sequenceprobe/primer/pcr
483gagacggggc cgggcgcaga
2048421DNAArtificial Sequenceprobe/primer/pcr 484cgcattcggg ccgcaagctc c
2148520DNAArtificial
Sequenceprobe/primer/pcr 485ggcccgaaag ggccggagcg
2048620DNAArtificial Sequenceprobe/primer/pcr
486acggcggccg ggtgaccgac
2048720DNAArtificial Sequenceprobe/primer/pcr 487tccaccggcg gccgctcacc
2048822DNAArtificial
Sequenceprobe/primer/pcr 488gcggtcaggg acccccttcc cc
2248920DNAArtificial Sequenceprobe/primer/pcr
489cggccgaagc tgccgcccct
2049020DNAArtificial Sequenceprobe/primer/pcr 490ggcggccttg tgccgctggg
2049120DNAArtificial
Sequenceprobe/primer/pcr 491tcgcgggagg agcggcgagg
2049225DNAArtificial Sequenceprobe/primer/pcr
492tgcccaccag aagcccatca ccacc
2549320DNAArtificial Sequenceprobe/primer/pcr 493tgggccatgt gccccacccc
2049420DNAArtificial
Sequenceprobe/primer/pcr 494cccgccagcc cagggcgaga
2049524DNAArtificial Sequenceprobe/primer/pcr
495gccccctgtc cctttcccgg gact
2449623DNAArtificial Sequenceprobe/primer/pcr 496ggtgggggtc cgcacccagc
aat 2349720DNAArtificial
Sequenceprobe/primer/pcr 497ggggcccccg ggttgcgtga
2049824DNAArtificial Sequenceprobe/primer/pcr
498tgcctgcaca gacgacagca cccc
2449920DNAArtificial Sequenceprobe/primer/pcr 499aggccgcgcc gggctcaggt
2050023DNAArtificial
Sequenceprobe/primer/pcr 500cggggtagtc gcgcaggtgt cgg
2350127DNAArtificial Sequenceprobe/primer/pcr
501tgcaggcgga gaatagcagc ctccctc
2750224DNAArtificial Sequenceprobe/primer/pcr 502ccggaaatgc tgctgcaaga
ggca 2450329DNAArtificial
Sequenceprobe/primer/pcr 503gcgtcggatc cctgagaact tcgaagcca
2950420DNAArtificial Sequenceprobe/primer/pcr
504cccggctccg cgggttccgt
2050521DNAArtificial Sequenceprobe/primer/pcr 505gcgtcgccgg ggctggacgt t
2150620DNAArtificial
Sequenceprobe/primer/pcr 506ggggcctgcc gcctcgtcca
2050721DNAArtificial Sequenceprobe/primer/pcr
507cgcacaccgc tggcggacac c
2150825DNAArtificial Sequenceprobe/primer/pcr 508cgcaaaccat cttccccgac
gcctt 2550920DNAArtificial
Sequenceprobe/primer/pcr 509gggccctccg ccgcctccaa
2051023DNAArtificial Sequenceprobe/primer/pcr
510ccaccaccgt ggcaaagcgt ccc
2351124DNAArtificial Sequenceprobe/primer/pcr 511tcacagcccc ttcctgcccg
aaca 2451229DNAArtificial
Sequenceprobe/primer/pcr 512tgcttgatgc tcaccactgt tcttgctgc
2951321DNAArtificial Sequenceprobe/primer/pcr
513ggccaggccc ggtggctcac a
2151420DNAArtificial Sequenceprobe/primer/pcr 514tgcgggacgg gtggcgggaa
2051520DNAArtificial
Sequenceprobe/primer/pcr 515ggcttggccc cgccacccag
2051620DNAArtificial Sequenceprobe/primer/pcr
516ggcggggaag gcgaccgcag
2051719DNAArtificial Sequenceprobe/primer/pcr 517ggcgcccaac caccacgcc
1951821DNAArtificial
Sequenceprobe/primer/pcr 518gaaaagcccc ggccggcctc c
2151920DNAArtificial Sequenceprobe/primer/pcr
519ccgcaggtgc gggggagcgt
2052021DNAArtificial Sequenceprobe/primer/pcr 520ccccgcccac agcgcggagt t
2152120DNAArtificial
Sequenceprobe/primer/pcr 521agcaggggcc cgggggcgat
2052223DNAArtificial Sequenceprobe/primer/pcr
522ccatgaccgc ggtggcttgt ggg
2352323DNAArtificial Sequenceprobe/primer/pcr 523ggcaggtgct cagcgggcag
acg 2352420DNAArtificial
Sequenceprobe/primer/pcr 524gggtgcgccc tgcgctggct
2052525DNAArtificial Sequenceprobe/primer/pcr
525gaatttggtc ctcctgcgcc tgcca
2552620DNAArtificial Sequenceprobe/primer/pcr 526tggcttccgc ggcgccaatc
2052722DNAArtificial
Sequenceprobe/primer/pcr 527ggccaggaga ggggccgagc ct
2252820DNAArtificial Sequenceprobe/primer/pcr
528cgagcgccgg ccccccttct
2052923DNAArtificial Sequenceprobe/primer/pcr 529cggttgcgag ggcacccttt
ggc 2353018DNAArtificial
Sequenceprobe/primer/pcr 530tacccggacg cggtggcg
1853120DNAArtificial Sequenceprobe/primer/pcr
531gcgccgccga gcctcagcca
2053221DNAArtificial Sequenceprobe/primer/pcr 532tgcagcctca acctcctggg g
2153324DNAArtificial
Sequenceprobe/primer/pcr 533ccttgccgac ccagcctcga tccc
2453421DNAArtificial Sequenceprobe/primer/pcr
534ggcggcgttc ggtggtgtcc c
2153520DNAArtificial Sequenceprobe/primer/pcr 535cccggactcc cccgcgcaga
2053620DNAArtificial
Sequenceprobe/primer/pcr 536cggccccctg caagttccgc
2053719DNAArtificial Sequenceprobe/primer/pcr
537tgcccagggg agccctcca
1953823DNAArtificial Sequenceprobe/primer/pcr 538gccggctgca ggccctcact
ggt 2353928DNAArtificial
Sequenceprobe/primer/pcr 539tgtcacacct gccgatgaaa ctcctgcg
2854023DNAArtificial Sequenceprobe/primer/pcr
540cccctgcgca cccctaccag gca
2354120DNAArtificial Sequenceprobe/primer/pcr 541tcctggggga gcgcggtggg
2054220DNAArtificial
Sequenceprobe/primer/pcr 542agtggggccg ggcgagtgcg
2054322DNAArtificial Sequenceprobe/primer/pcr
543gcgtccaggc tgtgcgctcc cc
2254420DNAArtificial Sequenceprobe/primer/pcr 544ggcgcggcgg tgcagcctct
2054520DNAArtificial
Sequenceprobe/primer/pcr 545gaggcggcgg cggtggcagt
2054620DNAArtificial Sequenceprobe/primer/pcr
546cgcgcgaccc gccgattgtg
2054720DNAArtificial Sequenceprobe/primer/pcr 547ccgcggacgc cgctctgcac
2054823DNAArtificial
Sequenceprobe/primer/pcr 548tgaacccggg aggcggaggt tgc
2354920DNAArtificial Sequenceprobe/primer/pcr
549tctcggcggc gcggggagtc
2055020DNAArtificial Sequenceprobe/primer/pcr 550aggcggccac gggaggggga
2055120DNAArtificial
Sequenceprobe/primer/pcr 551ggacccgagc ggggcggaga
2055222DNAArtificial Sequenceprobe/primer/pcr
552aagcacctgg ggcggggcgg ag
2255320DNAArtificial Sequenceprobe/primer/pcr 553gccgctcggg ggacgtggga
2055420DNAArtificial
Sequenceprobe/primer/pcr 554caccgccagc gtgccagccc
2055520DNAArtificial Sequenceprobe/primer/pcr
555tattcttggc cgggtgcggt
2055620DNAArtificial Sequenceprobe/primer/pcr 556ccgcttcccg cgagcgagcc
2055720DNAArtificial
Sequenceprobe/primer/pcr 557cagccggcgc tccgcacctg
2055820DNAArtificial Sequenceprobe/primer/pcr
558gcggagcgcg cttggcctca
2055925DNAArtificial Sequenceprobe/primer/pcr 559ggcctcgagc ccacccagac
ttggc 2556021DNAArtificial
Sequenceprobe/primer/pcr 560tgccgcgccg taagggccac c
2156120DNAArtificial Sequenceprobe/primer/pcr
561acggcggtgg cggtgggtcg
2056227DNAArtificial Sequenceprobe/primer/pcr 562aacctgccca gttactgccc
cactccg 2756320DNAArtificial
Sequenceprobe/primer/pcr 563tccagcgccc gagccgtcca
2056420DNAArtificial Sequenceprobe/primer/pcr
564gctgctgctg cccgcgtccg
2056527DNAArtificial Sequenceprobe/primer/pcr 565cactgcttag gccacacgat
cccccaa 2756620DNAArtificial
Sequenceprobe/primer/pcr 566ggccggacgc gcctcccaag
2056720DNAArtificial Sequenceprobe/primer/pcr
567tcggccaggg tgccgagggc
2056820DNAArtificial Sequenceprobe/primer/pcr 568tccgcccgcc ccacagccag
2056920DNAArtificial
Sequenceprobe/primer/pcr 569cgcgccccag cccacccact
2057020DNAArtificial Sequenceprobe/primer/pcr
570ccgtgctggg cgcaggggaa
2057120DNAArtificial Sequenceprobe/primer/pcr 571tgcgcacgcg cacagcctcc
2057220DNAArtificial
Sequenceprobe/primer/pcr 572cggtgagtgc ggcccgggga
2057323DNAArtificial Sequenceprobe/primer/pcr
573tggccgagag ggagccccac acc
2357420DNAArtificial Sequenceprobe/primer/pcr 574cccagcgccg caacgcccag
2057520DNAArtificial
Sequenceprobe/primer/pcr 575gccacaagcg ggcgggacgg
2057625DNAArtificial Sequenceprobe/primer/pcr
576tcctctggac aacggggagc gggaa
2557720DNAArtificial Sequenceprobe/primer/pcr 577cgcgggttcc cggcgtctcc
2057820DNAArtificial
Sequenceprobe/primer/pcr 578gcgccgcccg tcctgcttgc
2057920DNAArtificial Sequenceprobe/primer/pcr
579acgcgcggcc ctcctgcacc
2058022DNAArtificial Sequenceprobe/primer/pcr 580gggcggggca agccctcacc tg
2258120DNAArtificial
Sequenceprobe/primer/pcr 581gggagcgccc cctggcggtt
2058221DNAArtificial Sequenceprobe/primer/pcr
582gcgaatggtt cgcgccggcc t
2158320DNAArtificial Sequenceprobe/primer/pcr 583tttccgccgg ctgggccctc
2058420DNAArtificial
Sequenceprobe/primer/pcr 584tctccgggtc ccccgcgtgc
2058525DNAArtificial Sequenceprobe/primer/pcr
585gcagcccggg tagggttcac cgaaa
2558624DNAArtificial Sequenceprobe/primer/pcr 586gggcggagag aggtcctgcc
cagc 2458723DNAArtificial
Sequenceprobe/primer/pcr 587ccctcacccc agccgcgacc ctt
2358827DNAArtificial Sequenceprobe/primer/pcr
588gcgatgacgg gatccgagag aaaggca
2758920DNAArtificial Sequenceprobe/primer/pcr 589tccgcaggcc gcgggaaagg
2059024DNAArtificial
Sequenceprobe/primer/pcr 590ggccccagtc cacctctggg agcg
2459120DNAArtificial Sequenceprobe/primer/pcr
591gcttggccgc ccccgggatg
2059224DNAArtificial Sequenceprobe/primer/pcr 592ccctccatgc gcaatcccaa
gggc 2459320DNAArtificial
Sequenceprobe/primer/pcr 593gcggcgactg cgctgcccct
2059421DNAArtificial Sequenceprobe/primer/pcr
594tgggcttgcc tccccgcccc t
2159520DNAArtificial Sequenceprobe/primer/pcr 595ggcggcccaa ggagggcgaa
2059620DNAArtificial
Sequenceprobe/primer/pcr 596gctgcgcggc tggcgatcca
2059722DNAArtificial Sequenceprobe/primer/pcr
597tcaccgcctc cggacccctc cc
2259822DNAArtificial Sequenceprobe/primer/pcr 598cccttccagc caccccgccc tg
2259922DNAArtificial
Sequenceprobe/primer/pcr 599gcgggacacc gggaggacag cg
2260025DNAArtificial Sequenceprobe/primer/pcr
600ccctgggttc ccggcttctc agcca
2560122DNAArtificial Sequenceprobe/primer/pcr 601tggcggtgat gggcggagga gg
2260220DNAArtificial
Sequenceprobe/primer/pcr 602ccagcccgcc cggagcccat
2060320DNAArtificial Sequenceprobe/primer/pcr
603tgcccgcggg ggaatcgcag
2060421DNAArtificial Sequenceprobe/primer/pcr 604tgccgcgagc ccgtctgctc c
2160520DNAArtificial
Sequenceprobe/primer/pcr 605tgcggccccc tcccggctga
2060620DNAArtificial Sequenceprobe/primer/pcr
606gcagcagggc gcggcttccc
2060720DNAArtificial Sequenceprobe/primer/pcr 607gccgcagcac gctcggacgg
2060822DNAArtificial
Sequenceprobe/primer/pcr 608tgcggagtgc gggtcgggaa gc
2260920DNAArtificial Sequenceprobe/primer/pcr
609ggcgcggggg caggtgagca
2061021DNAArtificial Sequenceprobe/primer/pcr 610ggcgcggggg caggtgagca t
2161121DNAArtificial
Sequenceprobe/primer/pcr 611cagtgacggg cggtgggcct g
2161221DNAArtificial Sequenceprobe/primer/pcr
612cggcgaccct ttggccgctg g
2161319DNAArtificial Sequenceprobe/primer/pcr 613ccgcggcagc ccgggtgaa
1961420DNAArtificial
Sequenceprobe/primer/pcr 614gggcgagcga gcgggaccga
2061521DNAArtificial Sequenceprobe/primer/pcr
615tggggcagtg ccggtgtgct g
2161621DNAArtificial Sequenceprobe/primer/pcr 616tcgctggcat tcgggccccc t
2161723DNAArtificial
Sequenceprobe/primer/pcr 617ggagccgtga tggagccggg agg
2361825DNAArtificial Sequenceprobe/primer/pcr
618tgccagggtg tcttggctct ggcct
2561920DNAArtificial Sequenceprobe/primer/pcr 619ccggctccgg cggggaagga
2062021DNAArtificial
Sequenceprobe/primer/pcr 620ggccagggtg ccgtcgcgct t
2162128DNAArtificial Sequenceprobe/primer/pcr
621tcggctcggt cctgaggaga aggactca
2862220DNAArtificial Sequenceprobe/primer/pcr 622gcgcggggaa cctgcggctg
2062321DNAArtificial
Sequenceprobe/primer/pcr 623gccgccgctg ctttgggtgg g
2162422DNAArtificial Sequenceprobe/primer/pcr
624cacctgagcc cgcgggggaa cc
2262520DNAArtificial Sequenceprobe/primer/pcr 625gaacgccggc ctcaccggca
2062623DNAArtificial
Sequenceprobe/primer/pcr 626cccgtggtcc cagcgctcct gct
2362720DNAArtificial Sequenceprobe/primer/pcr
627gtgcgacccg gcgcccaagc
2062824DNAArtificial Sequenceprobe/primer/pcr 628tggctctgcg ctgcctttgg
tggc 2462920DNAArtificial
Sequenceprobe/primer/pcr 629cgcgcgggcg gctcctttgt
2063024DNAArtificial Sequenceprobe/primer/pcr
630tggcccgttg gcgaggttag agcg
2463120DNAArtificial Sequenceprobe/primer/pcr 631gacccggcat ccgggcaggc
2063228DNAArtificial
Sequenceprobe/primer/pcr 632gcccggactg taatcacgtc cactggga
2863320DNAArtificial Sequenceprobe/primer/pcr
633ccgccgccaa cgcgcaggtc
2063420DNAArtificial Sequenceprobe/primer/pcr 634cgctgccagc tgccgctccg
2063520DNAArtificial
Sequenceprobe/primer/pcr 635agcgcccacc tgcgcctcgc
2063620DNAArtificial Sequenceprobe/primer/pcr
636gcgggccagg gcggcatgaa
2063722DNAArtificial Sequenceprobe/primer/pcr 637ggctgcgacc tggggtccga cg
2263822DNAArtificial
Sequenceprobe/primer/pcr 638ggttaggagg gcggggcgcg tg
2263922DNAArtificial Sequenceprobe/primer/pcr
639cagcgcacca acgcaggcga gg
2264020DNAArtificial Sequenceprobe/primer/pcr 640tcggctggcc ccgcccactc
2064120DNAArtificial
Sequenceprobe/primer/pcr 641cggggttgcc gtcgcagcca
2064221DNAArtificial Sequenceprobe/primer/pcr
642tccgcactcc cgcccggttc c
2164322DNAArtificial Sequenceprobe/primer/pcr 643ggaccccctg ggcagcaccc tg
2264418DNAArtificial
Sequenceprobe/primer/pcr 644cgaggcagcc ggatcacg
1864520DNAArtificial Sequenceprobe/primer/pcr
645ggcgcgtgcg ggcgttgtcc
2064621DNAArtificial Sequenceprobe/primer/pcr 646ccaggatgcg gcagcgccca c
2164720DNAArtificial
Sequenceprobe/primer/pcr 647cgatgcggcc cgcggaggag
2064821DNAArtificial Sequenceprobe/primer/pcr
648cgttctgcgc gcgcccgact c
2164923DNAArtificial Sequenceprobe/primer/pcr 649ccccgccgtg ggcgtagtaa
ccg 2365020DNAArtificial
Sequenceprobe/primer/pcr 650aacccgcccg ggcagctcca
2065120DNAArtificial Sequenceprobe/primer/pcr
651gcagcggtcg cgcctcgtcg
2065226DNAArtificial Sequenceprobe/primer/pcr 652cgcaatcgcg ctgtctctga
aagggg 2665321DNAArtificial
Sequenceprobe/primer/pcr 653ggagcgcccg ccgttgatgc c
2165420DNAArtificial Sequenceprobe/primer/pcr
654ccatggcccg ctgcgccctc
2065520DNAArtificial Sequenceprobe/primer/pcr 655tgggggcggg gtgcaggggt
2065620DNAArtificial
Sequenceprobe/primer/pcr 656ccgaccctgc gcccggcagt
2065727DNAArtificial Sequenceprobe/primer/pcr
657cggcttcaag tccacggccc tgtgatg
2765820DNAArtificial Sequenceprobe/primer/pcr 658accccacctg cccgcgctgc
2065920DNAArtificial
Sequenceprobe/primer/pcr 659ggcgcgcgga gacgcagcag
2066022DNAArtificial Sequenceprobe/primer/pcr
660cgtgagccgg cgctcctgat gc
2266120DNAArtificial Sequenceprobe/primer/pcr 661ctgccgcggg ggtgccaagg
2066220DNAArtificial
Sequenceprobe/primer/pcr 662cctgctgcgc gcgctggctc
2066322DNAArtificial Sequenceprobe/primer/pcr
663cctggcggcc caggtcgctc ct
2266420DNAArtificial Sequenceprobe/primer/pcr 664gagcgccccg gccgcctgat
2066520DNAArtificial
Sequenceprobe/primer/pcr 665cgccgcacgg gacagccagg
2066620DNAArtificial Sequenceprobe/primer/pcr
666gcccggacat gccccgccac
2066720DNAArtificial Sequenceprobe/primer/pcr 667cgggggccgc cgcctgactt
2066820DNAArtificial
Sequenceprobe/primer/pcr 668ccagtggcgg ccctcggcct
2066921DNAArtificial Sequenceprobe/primer/pcr
669cgcccggcgc ggataacggt c
2167022DNAArtificial Sequenceprobe/primer/pcr 670tgctccgggt ggggagggag gc
2267122DNAArtificial
Sequenceprobe/primer/pcr 671tgcctgggcg cagaacgggg tc
2267226DNAArtificial Sequenceprobe/primer/pcr
672gggtcctaat ccccaggctg cgctga
2667320DNAArtificial Sequenceprobe/primer/pcr 673tccgcgtccc cggctgctcc
2067423DNAArtificial
Sequenceprobe/primer/pcr 674gggcagggct gacgttggga gcg
2367520DNAArtificial Sequenceprobe/primer/pcr
675gccgtgggcg caggggctgt
2067620DNAArtificial Sequenceprobe/primer/pcr 676cctgcgcacg cgggaagggc
2067721DNAArtificial
Sequenceprobe/primer/pcr 677cgcggacgca gccgagctca a
2167820DNAArtificial Sequenceprobe/primer/pcr
678cgacccatgg cggggcaggc
2067920DNAArtificial Sequenceprobe/primer/pcr 679tccgctcccc gcccctggct
2068020DNAArtificial
Sequenceprobe/primer/pcr 680tgtgccgcgc ggttgggagg
2068124DNAArtificial Sequenceprobe/primer/pcr
681tcactcacgc tctcagcccg ggga
2468223DNAArtificial Sequenceprobe/primer/pcr 682cggcaagcgg gcttcgggaa
gaa 2368320DNAArtificial
Sequenceprobe/primer/pcr 683ccccgcgggc cgggtgagaa
2068420DNAArtificial Sequenceprobe/primer/pcr
684cggcggcggc tggagagcga
2068520DNAArtificial Sequenceprobe/primer/pcr 685cgggccccgg gactcggctt
2068623DNAArtificial
Sequenceprobe/primer/pcr 686gacggaatgt ggggtgcggg cct
2368721DNAArtificial Sequenceprobe/primer/pcr
687tgcggctgct gccgaggctc c
2168820DNAArtificial Sequenceprobe/primer/pcr 688accgctgcgc gagggagggg
2068922DNAArtificial
Sequenceprobe/primer/pcr 689gggggtgcgg cgtctggtca gc
2269020DNAArtificial Sequenceprobe/primer/pcr
690ggccggggga aatgcggcct
2069128DNAArtificial Sequenceprobe/primer/pcr 691tgcctggtag gactgacggc
tgcctttg 2869221DNAArtificial
Sequenceprobe/primer/pcr 692agcgcgggcg cctcgatctc c
2169321DNAArtificial Sequenceprobe/primer/pcr
693tcccggctgg tcggcgctcc t
2169420DNAArtificial Sequenceprobe/primer/pcr 694ccggggctgg gacggcgctt
2069520DNAArtificial
Sequenceprobe/primer/pcr 695gggcggggtg gggctggagc
2069620DNAArtificial Sequenceprobe/primer/pcr
696gtgcggttgg gcggggccct
2069720DNAArtificial Sequenceprobe/primer/pcr 697ggcggtgcct ccggggctca
2069820DNAArtificial
Sequenceprobe/primer/pcr 698ggcggtgcct ccggggctca
2069920DNAArtificial Sequenceprobe/primer/pcr
699cgggagcccg cccccgagag
2070022DNAArtificial Sequenceprobe/primer/pcr 700tcctgccatc cgcgcctttg ca
2270123DNAArtificial
Sequenceprobe/primer/pcr 701aggcacaggg gcagctccgg cac
2370223DNAArtificial Sequenceprobe/primer/pcr
702cgacccctcc gaccgtgctt ccg
2370320DNAArtificial Sequenceprobe/primer/pcr 703cccgcagggt ggctgcgtcc
2070420DNAArtificial
Sequenceprobe/primer/pcr 704gcgtctgccg gcccctcccc
2070520DNAArtificial Sequenceprobe/primer/pcr
705taggccgccg ggcagccacc
2070620DNAArtificial Sequenceprobe/primer/pcr 706ggggagcggg gacgcgagca
2070722DNAArtificial
Sequenceprobe/primer/pcr 707gccggctggc tccccactct gc
2270822DNAArtificial Sequenceprobe/primer/pcr
708tcgctcacgg cgtccccttg cc
2270920DNAArtificial Sequenceprobe/primer/pcr 709tccccgctgc cctggcgctc
2071021DNAArtificial
Sequenceprobe/primer/pcr 710ggccagaggc aggcccgcag c
2171122DNAArtificial Sequenceprobe/primer/pcr
711tgcccgggtc atcggacggg ag
2271220DNAArtificial Sequenceprobe/primer/pcr 712cccagtgcgc acggcgaggc
2071320DNAArtificial
Sequenceprobe/primer/pcr 713agcgtcccag cccgcgcacc
2071420DNAArtificial Sequenceprobe/primer/pcr
714tgctcccccg ggtcggagcc
2071520DNAArtificial Sequenceprobe/primer/pcr 715cgctcgcatt ggggcgcgtc
2071621DNAArtificial
Sequenceprobe/primer/pcr 716tgcggcaagc ccgccatgat g
2171731DNAArtificial Sequenceprobe/primer/pcr
717tcttgagcct caggagtgaa aaggcccctt g
3171832DNAArtificial Sequenceprobe/primer/pcr 718ggaccatgag tgtttccatg
cttggcatca ga 3271925DNAArtificial
Sequenceprobe/primer/pcr 719tcagccactg cttcgcaggc tgacg
2572020DNAArtificial Sequenceprobe/primer/pcr
720cggccagctg cgcggcgact
2072122DNAArtificial Sequenceprobe/primer/pcr 721tcggagaagc gcgaggggtc ca
2272220DNAArtificial
Sequenceprobe/primer/pcr 722gccgggtggg ggctgccttg
2072320DNAArtificial Sequenceprobe/primer/pcr
723tcctcgcccg gcgcgattgg
2072423DNAArtificial Sequenceprobe/primer/pcr 724ggccgtgcag ttggtcccct
ggc 2372525DNAArtificial
Sequenceprobe/primer/pcr 725gcgagcctgc tgctcctctg gcacc
2572626DNAArtificial Sequenceprobe/primer/pcr
726gccagagctg tgcaggctcg gcattt
2672727DNAArtificial Sequenceprobe/primer/pcr 727tgcccagcaa atgccttcct
ctttccg 2772824DNAArtificial
Sequenceprobe/primer/pcr 728tggcctgacc accaatgcag ggga
2472924DNAArtificial Sequenceprobe/primer/pcr
729tccacctggg cttctgggca ggga
2473020DNAArtificial Sequenceprobe/primer/pcr 730agctggcctg cgccccgctg
2073120DNAArtificial
Sequenceprobe/primer/pcr 731agccgcggca gcgccagtcc
2073222DNAArtificial Sequenceprobe/primer/pcr
732ggggccgggc cgctcagtct ct
2273327DNAArtificial Sequenceprobe/primer/pcr 733gcagtgagcg tcaggagcac
gtccagg 2773420DNAArtificial
Sequenceprobe/primer/pcr 734cccgatcccc cggcgcgaat
2073520DNAArtificial Sequenceprobe/primer/pcr
735ggcgtgaccg tggcgcggaa
2073622DNAArtificial Sequenceprobe/primer/pcr 736agcggcccgc agagctccac cc
2273720DNAArtificial
Sequenceprobe/primer/pcr 737ggcaggcggg cgcagggaag
2073821DNAArtificial Sequenceprobe/primer/pcr
738tctgccccgg gttcacgcca t
2173920DNAArtificial Sequenceprobe/primer/pcr 739cgggcgggcc ctggcgagta
2074022DNAArtificial
Sequenceprobe/primer/pcr 740gcaagcccgc caccccaggg ac
2274121DNAArtificial Sequenceprobe/primer/pcr
741ggcccaggcg gatggggttg g
2174226DNAArtificial Sequenceprobe/primer/pcr 742tccgagaggc gtgtggtagc
gggaga 2674320DNAArtificial
Sequenceprobe/primer/pcr 743aggcggccgc gggcgttagc
2074420DNAArtificial Sequenceprobe/primer/pcr
744aaggcagcgc gggccaccga
2074520DNAArtificial Sequenceprobe/primer/pcr 745ggcatcctgc ccgccgcctg
2074620DNAArtificial
Sequenceprobe/primer/pcr 746tggggcgggg tctcgccgtc
2074720DNAArtificial Sequenceprobe/primer/pcr
747tcgggctcgc gcacctcccc
2074821DNAArtificial Sequenceprobe/primer/pcr 748ccaggtgcgc gcttcgctcc c
2174920DNAArtificial
Sequenceprobe/primer/pcr 749acctgcgcca ccgccccacc
2075022DNAArtificial Sequenceprobe/primer/pcr
750gccgagcaga gggggcacct gg
2275120DNAArtificial Sequenceprobe/primer/pcr 751tcgcgccgct ctgcgttggg
2075220DNAArtificial
Sequenceprobe/primer/pcr 752ccgccggggc agaaggcgag
2075327DNAArtificial Sequenceprobe/primer/pcr
753tccactggac aggggtggga gcctctg
2775420DNAArtificial Sequenceprobe/primer/pcr 754gcccaccggc gctgcgctct
2075520DNAArtificial
Sequenceprobe/primer/pcr 755gcggtgccag ccccgctgtg
2075622DNAArtificial Sequenceprobe/primer/pcr
756gacccgcctg cgtcctccag gg
2275723DNAArtificial Sequenceprobe/primer/pcr 757cccatcacag ccgcccaacc
agc 2375820DNAArtificial
Sequenceprobe/primer/pcr 758gagcggggcg gagccgagga
2075929DNAArtificial Sequenceprobe/primer/pcr
759tgcaattgtg cagtggctgc gtttgtttc
2976027DNAArtificial Sequenceprobe/primer/pcr 760cccgaccgga tgctccttga
ctttgcc 2776120DNAArtificial
Sequenceprobe/primer/pcr 761gcgagcgcgc gcaccgattg
2076221DNAArtificial Sequenceprobe/primer/pcr
762cactccgccg gccgctcctc a
2176320DNAArtificial Sequenceprobe/primer/pcr 763tcgggggtcc cggccgaatg
2076428DNAArtificial
Sequenceprobe/primer/pcr 764gctctcccag ctgcacgcca acttcttg
2876523DNAArtificial Sequenceprobe/primer/pcr
765ggaggagcct ggcgctggcg agt
2376623DNAArtificial Sequenceprobe/primer/pcr 766tggctctgga ccgcagccgg
gta 2376720DNAArtificial
Sequenceprobe/primer/pcr 767acggcggcgt cccgggtcaa
2076822DNAArtificial Sequenceprobe/primer/pcr
768tggccaagcg ctgccactcg ga
2276920DNAArtificial Sequenceprobe/primer/pcr 769cgcaggccgc tgcggtggag
2077021DNAArtificial
Sequenceprobe/primer/pcr 770gcgcctgcgc catgtccacc a
2177123DNAArtificial Sequenceprobe/primer/pcr
771tggtgcctcc cgcaaccctt ggc
2377220DNAArtificial Sequenceprobe/primer/pcr 772gcccggctcc aggcggggaa
2077322DNAArtificial
Sequenceprobe/primer/pcr 773gcaatgctgg ctgacctgga cc
2277420DNAArtificial Sequenceprobe/primer/pcr
774cgcccgcccg tcgggatgag
2077521DNAArtificial Sequenceprobe/primer/pcr 775tgcccccacc atcccccacc a
2177620DNAArtificial
Sequenceprobe/primer/pcr 776ggcgcgagcg gcgggaactg
2077719DNAArtificial Sequenceprobe/primer/pcr
777ggcgccgctc gcgcatggt
1977820DNAArtificial Sequenceprobe/primer/pcr 778cccgctctgc cccgtcgcac
2077920DNAArtificial
Sequenceprobe/primer/pcr 779gtagcgcggg cgagcgggga
2078020DNAArtificial Sequenceprobe/primer/pcr
780agcgccgagc agggcgcgaa
2078120DNAArtificial Sequenceprobe/primer/pcr 781ggcggcggcc acgcaggttc
2078221DNAArtificial
Sequenceprobe/primer/pcr 782ccctcccgca cgctgggttg c
2178320DNAArtificial Sequenceprobe/primer/pcr
783tcacggccgc atccgccaca
2078420DNAArtificial Sequenceprobe/primer/pcr 784cggcgccggc cgctcttctg
2078524DNAArtificial
Sequenceprobe/primer/pcr 785ccggcagaga atgggagcgg gagg
2478620DNAArtificial Sequenceprobe/primer/pcr
786tcggccgggg cgccaggtct
2078720DNAArtificial Sequenceprobe/primer/pcr 787tggggctgcg ggcgatgcct
2078820DNAArtificial
Sequenceprobe/primer/pcr 788ggctgcgggg accggggtgt
2078920DNAArtificial Sequenceprobe/primer/pcr
789cggcccaagc cgcgcctcac
2079020DNAArtificial Sequenceprobe/primer/pcr 790ccgcgcccgg aaccgctgct
2079120DNAArtificial
Sequenceprobe/primer/pcr 791tcggccggga gcgtgggagc
2079224DNAArtificial Sequenceprobe/primer/pcr
792tgcagacatt ggcgcgttcc tcca
2479321DNAArtificial Sequenceprobe/primer/pcr 793ggacccacgc gccgagccca t
2179428DNAArtificial
Sequenceprobe/primer/pcr 794ggagggggcg agtgagggat taggtccg
2879521DNAArtificial Sequenceprobe/primer/pcr
795tcccctcacg ccgatgccac g
2179622DNAArtificial Sequenceprobe/primer/pcr 796ccatgcccgc cccagctcct ca
2279725DNAArtificial
Sequenceprobe/primer/pcr 797ccgccgtgat gttctgttcg ccacc
2579823DNAArtificial Sequenceprobe/primer/pcr
798cgtggctgcc cctgcactcg tcg
2379926DNAArtificial Sequenceprobe/primer/pcr 799tctggccagt ccgtgaaggc
ctctga 2680020DNAArtificial
Sequenceprobe/primer/pcr 800ccggggtgca agggccacgc
2080120DNAArtificial Sequenceprobe/primer/pcr
801cgccgcgctt cctcccgacg
2080220DNAArtificial Sequenceprobe/primer/pcr 802agcgacccgg ggcgtgaggc
2080329DNAArtificial
Sequenceprobe/primer/pcr 803tgcggaaacc tatcaccgct tcctttcca
2980420DNAArtificial Sequenceprobe/primer/pcr
804ggcagggcgg ggcagggttg
2080526DNAArtificial Sequenceprobe/primer/pcr 805gggtctccag actgatgggc
cggtga 2680624DNAArtificial
Sequenceprobe/primer/pcr 806cgctgaagcc gctgctgtcg ctga
2480720DNAArtificial Sequenceprobe/primer/pcr
807tcccacgctc ccgccgagcc
2080820DNAArtificial Sequenceprobe/primer/pcr 808aaatatgccg gacgcggtgg
2080920DNAArtificial
Sequenceprobe/primer/pcr 809cgcctttccg cggcgggagc
2081020DNAArtificial Sequenceprobe/primer/pcr
810cccagcccag gccgcaggca
2081125DNAArtificial Sequenceprobe/primer/pcr 811ccccgcaggg gacctcataa
cccaa 2581223DNAArtificial
Sequenceprobe/primer/pcr 812gagttggctc ggcgtccctg gca
2381322DNAArtificial Sequenceprobe/primer/pcr
813tccctccgcc tggtgggtcc cc
2281426DNAArtificial Sequenceprobe/primer/pcr 814tgacccctgg cacatcagga
aagggc 2681521DNAArtificial
Sequenceprobe/primer/pcr 815tgccccgcaa gaacggccca g
2181622DNAArtificial Sequenceprobe/primer/pcr
816ggcctcggag tgcgacgcga gc
2281722DNAArtificial Sequenceprobe/primer/pcr 817gcgccaaccc agacccgcgc tt
2281820DNAArtificial
Sequenceprobe/primer/pcr 818tgcaagcgcg gaggctgcga
2081920DNAArtificial Sequenceprobe/primer/pcr
819agccgggcca cgggcagaca
2082020DNAArtificial Sequenceprobe/primer/pcr 820cccgggcggc cacaaagggc
2082123DNAArtificial
Sequenceprobe/primer/pcr 821ccccatccca ggtgaccgcc ctg
2382224DNAArtificial Sequenceprobe/primer/pcr
822tgactctggg ggaagcacgc gacg
2482320DNAArtificial Sequenceprobe/primer/pcr 823ggtgcggccg aagccgtcgc
2082420DNAArtificial
Sequenceprobe/primer/pcr 824tgcccctcgg gccctcgctg
2082520DNAArtificial Sequenceprobe/primer/pcr
825ggccacgggg accggggaca
2082620DNAArtificial Sequenceprobe/primer/pcr 826gggcgccgca gggcgacaac
2082724DNAArtificial
Sequenceprobe/primer/pcr 827gcagcgcgct ttgggaagga aggc
2482820DNAArtificial Sequenceprobe/primer/pcr
828gggttccacc cgcgcccacg
2082920DNAArtificial Sequenceprobe/primer/pcr 829tcgcggccca gacccccgac
2083022DNAArtificial
Sequenceprobe/primer/pcr 830cgagacccgg tgcgcctggg ag
2283118DNAArtificial Sequenceprobe/primer/pcr
831aggtgcccgc caccatgc
1883223DNAArtificial Sequenceprobe/primer/pcr 832cgcccaggct ggagtgcagt
ggc 2383322DNAArtificial
Sequenceprobe/primer/pcr 833gccggcgagg tctccgcggt ct
2283420DNAArtificial Sequenceprobe/primer/pcr
834cgcagggcca ccggctcgga
2083520DNAArtificial Sequenceprobe/primer/pcr 835gccccggagc atgcgcgaga
2083624DNAArtificial
Sequenceprobe/primer/pcr 836cccctgggga cccctgccat cctt
2483720DNAArtificial Sequenceprobe/primer/pcr
837ttaccccgcg ccgcgccacc
2083820DNAArtificial Sequenceprobe/primer/pcr 838gcgggccgag cccaccaacc
2083920DNAArtificial
Sequenceprobe/primer/pcr 839gcgcggtggc cgcttggagg
2084020DNAArtificial Sequenceprobe/primer/pcr
840cccgccagcg gcctgtgcct
2084120DNAArtificial Sequenceprobe/primer/pcr 841cgcgcatgcc aagcccgctg
2084223DNAArtificial
Sequenceprobe/primer/pcr 842ggcgcaggag cagttggggt cca
2384323DNAArtificial Sequenceprobe/primer/pcr
843tggggtaggc ggaacgccaa ggg
2384420DNAArtificial Sequenceprobe/primer/pcr 844cccgcttcac gcccccaccg
2084520DNAArtificial
Sequenceprobe/primer/pcr 845gcagcccggg tgggcaaggc
2084623DNAArtificial Sequenceprobe/primer/pcr
846tgcagttgcc cttgccctgc gac
2384720DNAArtificial Sequenceprobe/primer/pcr 847tggccgggcg cctccatcgt
2084821DNAArtificial
Sequenceprobe/primer/pcr 848gcctgcgatg ggctcggtgg g
2184920DNAArtificial Sequenceprobe/primer/pcr
849ccgcggttcg catggcgctc
2085022DNAArtificial Sequenceprobe/primer/pcr 850tgggccatct cgagccgctg cc
2285121DNAArtificial
Sequenceprobe/primer/pcr 851tgggggagtg cgggtcggag c
2185220DNAArtificial Sequenceprobe/primer/pcr
852ctgccgcgcc cccagcacct
2085320DNAArtificial Sequenceprobe/primer/pcr 853ggctgctggc ggggccgtct
2085420DNAArtificial
Sequenceprobe/primer/pcr 854gggcgcggcg acttgggggt
2085523DNAArtificial Sequenceprobe/primer/pcr
855aaactgcgac tgcgcggcgt gag
2385620DNAArtificial Sequenceprobe/primer/pcr 856tgctggggcc gtgggggtgc
2085720DNAArtificial
Sequenceprobe/primer/pcr 857tccgcgctgc ccgggtcctt
2085820DNAArtificial Sequenceprobe/primer/pcr
858gtggcggccc ccgcggatct
2085920DNAArtificial Sequenceprobe/primer/pcr 859ggggaggcgc caccgccgtt
2086020DNAArtificial
Sequenceprobe/primer/pcr 860ggagcgggag ggcgctggga
2086132DNAArtificial Sequenceprobe/primer/pcr
861tgaaggctgt cagtcgtgga agtgagaagt gc
3286233DNAArtificial Sequenceprobe/primer/pcr 862ggagaaaatc caattgaagg
ctgtcagtcg tgg 3386322DNAArtificial
Sequenceprobe/primer/pcr 863ggggacaacc ggggcggatc cc
2286423DNAArtificial Sequenceprobe/primer/pcr
864cccgggagga gaggcgaaca gcg
2386520DNAArtificial Sequenceprobe/primer/pcr 865agtgcgcggg tgccgggtgg
2086623DNAArtificial
Sequenceprobe/primer/pcr 866tggcatcccc tacccgggcc cta
2386727DNAArtificial Sequenceprobe/primer/pcr
867gaggctggtt ccttgtcgtc ggttggg
2786820DNAArtificial Sequenceprobe/primer/pcr 868gcggggtcag gccggggtca
2086922DNAArtificial
Sequenceprobe/primer/pcr 869ggcagcggct ggagcggtgt ca
2287020DNAArtificial Sequenceprobe/primer/pcr
870gcccgggcac acgccccatc
2087120DNAArtificial Sequenceprobe/primer/pcr 871gcaccgccac gcccactgcc
2087229DNAArtificial
Sequenceprobe/primer/pcr 872tgtcatgctt ctttctcccc actgactca
2987322DNAArtificial Sequenceprobe/primer/pcr
873gcccaggctg gggtgcaatg gc
2287420DNAArtificial Sequenceprobe/primer/pcr 874cgcctcgggg gccacggcat
2087520DNAArtificial
Sequenceprobe/primer/pcr 875cgtgggtcct ggcccgggga
2087621DNAArtificial Sequenceprobe/primer/pcr
876tccccgggcg gccattaggc a
2187721DNAArtificial Sequenceprobe/primer/pcr 877ggcgggggtg ggagtgatcc c
2187823DNAArtificial
Sequenceprobe/primer/pcr 878cgtcagtccc ggctgcgagt cca
2387920DNAArtificial Sequenceprobe/primer/pcr
879ccggggtccg cgccatgctg
2088020DNAArtificial Sequenceprobe/primer/pcr 880catggcgggg cccgagcgac
2088122DNAArtificial
Sequenceprobe/primer/pcr 881ccgcctcctt gccccgacac cc
2288223DNAArtificial Sequenceprobe/primer/pcr
882tcggacacgc cttcgcctca gcc
2388320DNAArtificial Sequenceprobe/primer/pcr 883cgagctgggc gcaggcgcaa
2088422DNAArtificial
Sequenceprobe/primer/pcr 884gcggggttgt gtgtggcgga gg
2288520DNAArtificial Sequenceprobe/primer/pcr
885accgcgcccg gcctgcaaag
2088621DNAArtificial Sequenceprobe/primer/pcr 886gcggggccag agaggccgga a
2188726DNAArtificial
Sequenceprobe/primer/pcr 887gccccaaggg aagatgcagg gaggaa
2688826DNAArtificial Sequenceprobe/primer/pcr
888gccccaaggg aagatgcagg gaggaa
2688920DNAArtificial Sequenceprobe/primer/pcr 889gcccgcacgt gcaccaccca
2089029DNAArtificial
Sequenceprobe/primer/pcr 890gggtgacgaa gtggtgtctt taccgagga
2989120DNAArtificial Sequenceprobe/primer/pcr
891ccgccgtgcg cctgtgggaa
2089220DNAArtificial Sequenceprobe/primer/pcr 892ggctgctgcg ggaggatcac
2089329DNAArtificial
Sequenceprobe/primer/pcr 893tgggcatcca gaaaaatggt ggtgatggc
2989420DNAArtificial Sequenceprobe/primer/pcr
894gccgcgccgg gccctatgag
2089520DNAArtificial Sequenceprobe/primer/pcr 895ccgccatgcg ggcagggacc
2089625DNAArtificial
Sequenceprobe/primer/pcr 896tgttacaggc tggacacggt ggctc
2589720DNAArtificial Sequenceprobe/primer/pcr
897cggaacttgc agggggccga
2089826DNAArtificial Sequenceprobe/primer/pcr 898tgcaaaatcc tccccttccc
gcaccc 2689920DNAArtificial
Sequenceprobe/primer/pcr 899gcgctggagc cacgcgacga
2090020DNAArtificial Sequenceprobe/primer/pcr
900ggggtccgct cccgcgttcg
2090122DNAArtificial Sequenceprobe/primer/pcr 901cgccccgggc tgagagctgg gt
2290220DNAArtificial
Sequenceprobe/primer/pcr 902ggcccttcgg gggccgggtt
2090323DNAArtificial Sequenceprobe/primer/pcr
903tggccacaaa ggggccggaa tgg
2390420DNAArtificial Sequenceprobe/primer/pcr 904accccagcgc gtgggcggag
2090520DNAArtificial
Sequenceprobe/primer/pcr 905gggctgcggg gcgccttgac
2090620DNAArtificial Sequenceprobe/primer/pcr
906gcaccgcggc tggagcggac
2090725DNAArtificial Sequenceprobe/primer/pcr 907aggcgatccc aaggctgttg
gaggc 2590821DNAArtificial
Sequenceprobe/primer/pcr 908tccacccgcc ttggcctccc a
2190920DNAArtificial Sequenceprobe/primer/pcr
909cggcgggaag gcggggcaag
2091020DNAArtificial Sequenceprobe/primer/pcr 910ggagccgcgg cgtgagtgcg
2091120DNAArtificial
Sequenceprobe/primer/pcr 911ggccggcacc ccacgccaag
2091220DNAArtificial Sequenceprobe/primer/pcr
912gcggggcgga gcgcacacct
2091320DNAArtificial Sequenceprobe/primer/pcr 913gcggccagca gcgcgtcctc
2091421DNAArtificial
Sequenceprobe/primer/pcr 914ccgacagccg gcaaggccca a
2191530DNAArtificial Sequenceprobe/primer/pcr
915ttgtttttgt ttgtttgttt tgaaagggag
3091620DNAArtificial Sequenceprobe/primer/pcr 916ccccggtttc cccgcgcctc
2091721DNAArtificial
Sequenceprobe/primer/pcr 917ggctggacgc gccctccgac a
2191820DNAArtificial Sequenceprobe/primer/pcr
918tcccacgcgc ccgcccctac
2091920DNAArtificial Sequenceprobe/primer/pcr 919cggccacgcc ttccgcggtg
2092020DNAArtificial
Sequenceprobe/primer/pcr 920ggctccgctg gggcgcaggt
2092120DNAArtificial Sequenceprobe/primer/pcr
921gccgccccgt gtcgtgcgtc
2092225DNAArtificial Sequenceprobe/primer/pcr 922ggcgtcagtt ggagtgtggg
gtcgg 2592320DNAArtificial
Sequenceprobe/primer/pcr 923ccgagcgggg tgggccggat
2092421DNAArtificial Sequenceprobe/primer/pcr
924catcgcgcgg gacccaaccc a
2192527DNAArtificial Sequenceprobe/primer/pcr 925cagtgggtgg atctcacctg
ccttcgg 2792620DNAArtificial
Sequenceprobe/primer/pcr 926gaggccgcgg ggctccgaca
2092728DNAArtificial Sequenceprobe/primer/pcr
927gagcctgccc tataaaatcc ggggctcg
2892820DNAArtificial Sequenceprobe/primer/pcr 928tcccggcggg tggtgcctga
2092920DNAArtificial
Sequenceprobe/primer/pcr 929tctgagcgcc cgccgcctgc
2093020DNAArtificial Sequenceprobe/primer/pcr
930ggctgccggc gcgggaccta
2093122DNAArtificial Sequenceprobe/primer/pcr 931tccggggcat tccctccgcg at
2293220DNAArtificial
Sequenceprobe/primer/pcr 932tggcggcggc ccctgctcgt
2093320DNAArtificial Sequenceprobe/primer/pcr
933cggcgcgcga ctgggaggga
2093421DNAArtificial Sequenceprobe/primer/pcr 934ggcgccagcg caaccagagc g
2193520DNAArtificial
Sequenceprobe/primer/pcr 935cgaaggtggc gcggcctgga
2093620DNAArtificial Sequenceprobe/primer/pcr
936cccagcgggc ttcgcgggag
2093720DNAArtificial Sequenceprobe/primer/pcr 937cccgcttgcc ccgcccccta
2093825DNAArtificial
Sequenceprobe/primer/pcr 938cccacacctc cacctgctgg tgcct
2593920DNAArtificial Sequenceprobe/primer/pcr
939atgcagcccc gccggcaacg
2094021DNAArtificial Sequenceprobe/primer/pcr 940ccggatgccc ggtgtgcctg g
2194124DNAArtificial
Sequenceprobe/primer/pcr 941gcgagcaggg acgcagctct ggtg
2494220DNAArtificial Sequenceprobe/primer/pcr
942cgcgctcggc ccgctcagtg
2094320DNAArtificial Sequenceprobe/primer/pcr 943tggtgccggc agggagggga
2094420DNAArtificial
Sequenceprobe/primer/pcr 944gggcggtggc gatggctggc
2094528DNAArtificial Sequenceprobe/primer/pcr
945ggctgttggt ctttttccca gccccgaa
2894621DNAArtificial Sequenceprobe/primer/pcr 946ccgggccggc agcgcagatg t
2194720DNAArtificial
Sequenceprobe/primer/pcr 947cggagggcga tggggccctg
2094820DNAArtificial Sequenceprobe/primer/pcr
948ggggccgggc tgcgaagctg
2094921DNAArtificial Sequenceprobe/primer/pcr 949tgcctgggca ccccacggac g
2195022DNAArtificial
Sequenceprobe/primer/pcr 950gccctacgtc cgggcagcac gc
2295120DNAArtificial Sequenceprobe/primer/pcr
951ctgtgcgcgt ccccgccgtg
2095220DNAArtificial Sequenceprobe/primer/pcr 952tgcagcggcg cctcggaccc
2095320DNAArtificial
Sequenceprobe/primer/pcr 953ccgctgggcg cgctgggaag
2095424DNAArtificial Sequenceprobe/primer/pcr
954ggcgcatgct ctgcgcgtat tggc
2495522DNAArtificial Sequenceprobe/primer/pcr 955gggtgggcgg gccgttctga gg
2295620DNAArtificial
Sequenceprobe/primer/pcr 956gggctgccgg gttggcgcag
2095721DNAArtificial Sequenceprobe/primer/pcr
957ggcgcgtgcg gaaaagctgc g
2195820DNAArtificial Sequenceprobe/primer/pcr 958tccaggccgc cctcgggtca
2095920DNAArtificial
Sequenceprobe/primer/pcr 959ggggaggggg cgcagccaga
2096026DNAArtificial Sequenceprobe/primer/pcr
960ggcagcgtgg tcttccactt ccccct
2696125DNAArtificial Sequenceprobe/primer/pcr 961gggatcgagg gatcgaggca
gggga 2596221DNAArtificial
Sequenceprobe/primer/pcr 962cggccatgag cgcctccacg c
2196320DNAArtificial Sequenceprobe/primer/pcr
963cccggtgtgc ggcagcgacg
2096420DNAArtificial Sequenceprobe/primer/pcr 964ttggggcggc cggaagccag
2096520DNAArtificial
Sequenceprobe/primer/pcr 965cgcagcggcg gcgtctcggt
2096622DNAArtificial Sequenceprobe/primer/pcr
966ccgcgacctc cccaagccac cc
2296720DNAArtificial Sequenceprobe/primer/pcr 967ggcggccgac cgcgaacacc
2096823DNAArtificial
Sequenceprobe/primer/pcr 968ccccatttcc gagtccggca gca
2396926DNAArtificial Sequenceprobe/primer/pcr
969cccagcctgg cctctcctct caggca
2697029DNAArtificial Sequenceprobe/primer/pcr 970cggctctttc ctcctcaaga
gatgcggtg 2997120DNAArtificial
Sequenceprobe/primer/pcr 971cgccgccgtc cctggtgcag
2097220DNAArtificial Sequenceprobe/primer/pcr
972tggggacccc tcgccgcctg
2097320DNAArtificial Sequenceprobe/primer/pcr 973gcgcccagcc cgccccaaga
2097420DNAArtificial
Sequenceprobe/primer/pcr 974caggggacgc gggcgtgcag
2097520DNAArtificial Sequenceprobe/primer/pcr
975ccgggcgggg cccaactgct
2097621DNAArtificial Sequenceprobe/primer/pcr 976cccgagcagg gccggagcag a
2197723DNAArtificial
Sequenceprobe/primer/pcr 977cccctccaca ttcccgcggt cct
2397826DNAArtificial Sequenceprobe/primer/pcr
978tcctttgtgg cctgggcagg atgcag
2697920DNAArtificial Sequenceprobe/primer/pcr 979gcagcgcgcg gtttggggct
2098020DNAArtificial
Sequenceprobe/primer/pcr 980gaggcctgcg ggcgctgctg
2098121DNAArtificial Sequenceprobe/primer/pcr
981tcacggttgc tgggccgtcg c
2198220DNAArtificial Sequenceprobe/primer/pcr 982cggggtgggc ctcgcggaga
2098320DNAArtificial
Sequenceprobe/primer/pcr 983gcctgcgctc ctggcgccct
2098428DNAArtificial Sequenceprobe/primer/pcr
984cgccttcgga gagcagagtc aacacgga
2898528DNAArtificial Sequenceprobe/primer/pcr 985tgcccctaaa tgagaaaggg
cccttgag 2898620DNAArtificial
Sequenceprobe/primer/pcr 986gccacgcccc gggaccggaa
2098720DNAArtificial Sequenceprobe/primer/pcr
987tcccgcccag gggcctccca
2098820DNAArtificial Sequenceprobe/primer/pcr 988ccccgcgccc ggccaaagaa
2098920DNAArtificial
Sequenceprobe/primer/pcr 989ggaccgccgc acagccccaa
2099020DNAArtificial Sequenceprobe/primer/pcr
990gggcagcggt ggccgtgcat
2099120DNAArtificial Sequenceprobe/primer/pcr 991ttcctgcgcc gccccctccc
2099222DNAArtificial
Sequenceprobe/primer/pcr 992ggcgtctccc tgtccccgcc tg
2299320DNAArtificial Sequenceprobe/primer/pcr
993gccggcctcg cgcaccgtgt
2099420DNAArtificial Sequenceprobe/primer/pcr 994cccgggacgt gcgcgcttgg
2099520DNAArtificial
Sequenceprobe/primer/pcr 995tgtcccccga gccgccctgc
2099622DNAArtificial Sequenceprobe/primer/pcr
996tcgctctcgt gcagcggcgt ca
2299721DNAArtificial Sequenceprobe/primer/pcr 997cccgcgcgct gcagcatctc c
2199820DNAArtificial
Sequenceprobe/primer/pcr 998ccccagctgc cgccatcgca
2099920DNAArtificial Sequenceprobe/primer/pcr
999gcccgggccc gcctcaagga
20100022DNAArtificial Sequenceprobe/primer/pcr 1000tgccggcgag gccttttctc
gg 22100120DNAArtificial
Sequenceprobe/primer/pcr 1001ggcgggtggg gagcgcgaac
20100220DNAArtificial Sequenceprobe/primer/pcr
1002cccgccgccg ctggtcacct
20100320DNAArtificial Sequenceprobe/primer/pcr 1003ccggctgcct cggcctccca
20100418DNAArtificial
Sequenceprobe/primer/pcr 1004ggtgtgcacc accacgcc
18100520DNAArtificial Sequenceprobe/primer/pcr
1005ggcgcgtccc ggcggcttct
20100620DNAArtificial Sequenceprobe/primer/pcr 1006agtccctgcg ccccgccctg
20100724DNAArtificial
Sequenceprobe/primer/pcr 1007tgcccccaaa ctttccgcct gcac
24100820DNAArtificial Sequenceprobe/primer/pcr
1008cttgcggcca cccggcgagc
20100922DNAArtificial Sequenceprobe/primer/pcr 1009tcgcgcggaa actctggctc
gg 22101021DNAArtificial
Sequenceprobe/primer/pcr 1010gctgcggccc agagggggtg a
21101120DNAArtificial Sequenceprobe/primer/pcr
1011cggcgggctt gggtcccgtg
20101220DNAArtificial Sequenceprobe/primer/pcr 1012tcccccgccg caccagcacc
20101320DNAArtificial
Sequenceprobe/primer/pcr 1013gcgcggtgcg gggacctgct
20101420DNAArtificial Sequenceprobe/primer/pcr
1014gccggacgct cgccccgcat
20101525DNAArtificial Sequenceprobe/primer/pcr 1015gagtgctctg cagccccgac
atggg 25101622DNAArtificial
Sequenceprobe/primer/pcr 1016ccgcgcagac gtcggagccc aa
22101720DNAArtificial Sequenceprobe/primer/pcr
1017tggccgaggc gcgtggcgag
20101820DNAArtificial Sequenceprobe/primer/pcr 1018ggccgcgctg ccccagggat
20101920DNAArtificial
Sequenceprobe/primer/pcr 1019ccgggggcgg acgcagagga
20102022DNAArtificial Sequenceprobe/primer/pcr
1020gggggcggag cctgggaatg gg
22102120DNAArtificial Sequenceprobe/primer/pcr 1021gggcgggccc tgtgggtgga
20102223DNAArtificial
Sequenceprobe/primer/pcr 1022ccgctccccc atctccacgg acg
23102320DNAArtificial Sequenceprobe/primer/pcr
1023gacccaggga ggcgcgggga
20102420DNAArtificial Sequenceprobe/primer/pcr 1024tgcccggccg caggtgacca
20102520DNAArtificial
Sequenceprobe/primer/pcr 1025gcgccgggag tgggcaggga
20102620DNAArtificial Sequenceprobe/primer/pcr
1026acccaggccg gcgcgggaag
20102720DNAArtificial Sequenceprobe/primer/pcr 1027ttcccgccgc ccggtcctca
20102820DNAArtificial
Sequenceprobe/primer/pcr 1028cgcgccggtg acggacgtgg
20102925DNAArtificial Sequenceprobe/primer/pcr
1029aaccctccca gccaaaacgg gctca
25103020DNAArtificial Sequenceprobe/primer/pcr 1030cgggcgaggc cgccctttgg
20103120DNAArtificial
Sequenceprobe/primer/pcr 1031ggccgcggac gcccaggaaa
20103225DNAArtificial Sequenceprobe/primer/pcr
1032ccgtttggaa cgtggcccaa gaggc
25103320DNAArtificial Sequenceprobe/primer/pcr 1033cccgcctccg ctccccgctt
20103421DNAArtificial
Sequenceprobe/primer/pcr 1034ggtggcggcg gcagaggagg a
21103520DNAArtificial Sequenceprobe/primer/pcr
1035cgcggggagc agaggcggtg
20103619DNAArtificial Sequenceprobe/primer/pcr 1036gggcgcccgc gctgagggt
19103720DNAArtificial
Sequenceprobe/primer/pcr 1037gggcctggcc tcccggcgat
20103820DNAArtificial Sequenceprobe/primer/pcr
1038cacccggcgt ccgcaccagc
20103920DNAArtificial Sequenceprobe/primer/pcr 1039cggcgctggt ttggcggcct
20104021DNAArtificial
Sequenceprobe/primer/pcr 1040ccaggagccc cggaggccac g
21104126DNAArtificial Sequenceprobe/primer/pcr
1041gcgatctcct gcccaggtgt gtgctc
26104220DNAArtificial Sequenceprobe/primer/pcr 1042actgcccggg ctcgccgcac
20104320DNAArtificial
Sequenceprobe/primer/pcr 1043tgcggcaacg gtggcacccc
20104424DNAArtificial Sequenceprobe/primer/pcr
1044ggagcgaagc tggcggaacc cacc
24104520DNAArtificial Sequenceprobe/primer/pcr 1045ggcggccgac ggggctttgc
20104620DNAArtificial
Sequenceprobe/primer/pcr 1046ggccgcgggt gcctcggtct
20104721DNAArtificial Sequenceprobe/primer/pcr
1047gcgctccagc catggcgcgt t
21104820DNAArtificial Sequenceprobe/primer/pcr 1048gccggacggg cgtggggaga
20104920DNAArtificial
Sequenceprobe/primer/pcr 1049tcccccgcga ctgcccctcc
20105020DNAArtificial Sequenceprobe/primer/pcr
1050gggtggcagc gggtgcggaa
20105120DNAArtificial Sequenceprobe/primer/pcr 1051gctcgcccgc tcgcagccaa
20105222DNAArtificial
Sequenceprobe/primer/pcr 1052cgaggttccg cagcccgagc ca
22105321DNAArtificial Sequenceprobe/primer/pcr
1053gcgcggggga ccgaaaccgt g
21105420DNAArtificial Sequenceprobe/primer/pcr 1054gccgagcccg gcccaaagcc
20105522DNAArtificial
Sequenceprobe/primer/pcr 1055tgccaacgtt cacccggctg gc
22105628DNAArtificial Sequenceprobe/primer/pcr
1056gacagtgcga gggaaaacca ccttcccc
28105720DNAArtificial Sequenceprobe/primer/pcr 1057gggtcgggcc gggctggagc
20105820DNAArtificial
Sequenceprobe/primer/pcr 1058gggtcgggcc gggctggagc
20105920DNAArtificial Sequenceprobe/primer/pcr
1059gcggggccga ggggctgagc
20106020DNAArtificial Sequenceprobe/primer/pcr 1060gcccggccac ctcggggagc
20106125DNAArtificial
Sequenceprobe/primer/pcr 1061actgtctgcc aagccagccc caggg
25106220DNAArtificial Sequenceprobe/primer/pcr
1062ggatggtggc gccgggctgc
20106325DNAArtificial Sequenceprobe/primer/pcr 1063tccaggaggg ccaggtcaca
gctgc 25106421DNAArtificial
Sequenceprobe/primer/pcr 1064cggctggctc gcttggctgg c
21106520DNAArtificial Sequenceprobe/primer/pcr
1065tccggcgctg ttgggcagcc
20106620DNAArtificial Sequenceprobe/primer/pcr 1066cctgcgcacg cgggaagggc
20106727DNAArtificial
Sequenceprobe/primer/pcr 1067tcttcccttc tttcccacgc tgctccg
27106820DNAArtificial Sequenceprobe/primer/pcr
1068cagcgccccc gcctccagca
20106920DNAArtificial Sequenceprobe/primer/pcr 1069gctgcgcggc tggcgatcca
20107022DNAArtificial
Sequenceprobe/primer/pcr 1070gccgacgacc ggagggccca ct
22107120DNAArtificial Sequenceprobe/primer/pcr
1071tgcccaggct ggcccctcgg
20107220DNAArtificial Sequenceprobe/primer/pcr 1072cgcggccctc cccagccctc
20107320DNAArtificial
Sequenceprobe/primer/pcr 1073ccccgcccgg caactgagcg
20107420DNAArtificial Sequenceprobe/primer/pcr
1074aagagcccgc gcgccgagcc
20107523DNAArtificial Sequenceprobe/primer/pcr 1075tgcccactgc ggttaccccg
cat 23107625DNAArtificial
Sequenceprobe/primer/pcr 1076gcatggtggt ggacatgtgc ggtca
25107733DNAArtificial Sequenceprobe/primer/pcr
1077catagaagag gaaggcaaag gctgtgacag gca
33107832DNAArtificial Sequenceprobe/primer/pcr 1078tcatcctaga cttgcagtca
agatgcctgc cc 32107920DNAArtificial
Sequenceprobe/primer/pcr 1079agccagcggt gccggtgccc
20108020DNAArtificial Sequenceprobe/primer/pcr
1080gccccgctcc gccccagtgc
201081219DNAArtificial Sequenceprobe/primer/pcr 1081cacgggggcg gggagacgcg
gggtgcactt ctcgccccga gggcctccgg cgaagcaacc 60cggcagccgc ggcgcccgag
ggcctggcgc tggtctgggg ctgcgccggg ggcgcctggc 120tctggggtgc ggccggtcag
gaatccccat cctggagcgc aggcggagag ccagtggctg 180ggggcgggaa ggcttcttgg
acccctcgcg cttctccga 2191082243DNAArtificial
Sequenceprobe/primer/pcr 1082cacagggtgg ggcagggagc atcagggggc aggcagccac
acccccgaca catcaagaca 60cctgagtggc aggttcaagc cggaggcgct gtatttccac
acaggaagaa ggccaaaaaa 120ggtgacactg ccccctccca gtggctccat gctcctcagc
tatggctgtc cgggccgcct 180cactcaaagc cttgccctcc gctgctgcca ggctccttgc
atgcaaggca gcccccaccc 240ggc
2431083255DNAArtificial Sequenceprobe/primer/pcr
1083accgggcctt ccgcgcccct cgccccacgc cgcgggtgcg gtcctccctc cagcagaggg
60ttccgggcgc cggcgcggcc cgcacggggc cgggagccct tcctgccggc cgggtgcgcg
120cggcgccgcc gacagctgtt tgccatcggc gccgctcccg cccgcgtccc ggtgcgcgcc
180ccgcccccgc caacaaccgc cgctctgatt ggcccggcgc ttgtctcttc tctccccgca
240gccaatcgcg ccggg
2551084231DNAArtificial Sequenceprobe/primer/pcr 1084cccacctccc
ccaacattcc agttccttct tttccttcta ctcttcagcg gcctcagcct 60gcgcacccca
ggagcgtgga tgactacggc caccccgggc gcgcacccct ttcccaccac 120cccagcatct
ctgcagccca ggacacccgc ctcccccaca ccccgcatcc ggtgtgtctc 180cgcctggccc
ggccggcgcg gcaggcgggc caggggacca actgcacggc c
2311085174DNAArtificial Sequenceprobe/primer/pcr 1085cacagagcca
ggcaagcatg ggtgagagct cagaccatcc ttgttggact aaaaggaagg 60ggcagactgc
ccatgggggg cagccgagag ggtcaggccc ccataggtcc tcagcctgct 120tcaacctcaa
aggggatggg gggctgagtg gtgccagagg agcagcaggc tcgc
1741086255DNAArtificial Sequenceprobe/primer/pcr 1086ggagcagcag
gctcgctcgg ggagagtagg gccttaggat agaagggaaa tgaactaaac 60aaccagcttc
ctcccaaacc agtttcaggc cagggctggg aatttcacaa aaaagcagaa 120ggcgctctgt
gaacatttcc tgccccgccc cagccccctt cctggcagca ttaccacact 180gctcacctgt
gaagcaatct tccggagaca gggccaaagg gccaagtgcc ccagtcagga 240gctgcctata
aatgc
2551087255DNAArtificial Sequenceprobe/primer/pcr 1087gcccaaagtg
cggggccaac ccagacagtc ccacttacca ggtcttctga aagacagctg 60acaagagaca
tgcagggctg agaggcagct cctttttata gcggttaggc ttggccagct 120gcccacagct
tcaggccatc agagacagct tctccctgcc agagttgcta cagtctctgg 180tttctcaacc
aggtgaatgt ggcaatcact gtgcagaatg aaaattttgg gtggggaggt 240aggagaagcg
gaaag
2551088167DNAArtificial Sequenceprobe/primer/pcr 1088ggaaagagga
aggcatttgc tgggcaatag tgcccagaag gaaaaagcag gtaggggggc 60tctttttctg
ggctgctggc atccacttgc ttgatccagc cagattccca ctcccatgcc 120ctctccacta
ttgcgattgc taatcccctg cattggtggt caggcca
1671089236DNAArtificial Sequenceprobe/primer/pcr 1089cagcggcccc
gcgggatttt gcccagctgc ttcgtgccct ctggtggcta aggcgtgtca 60ttgcagtgcc
ggcctcctgt catcctccct ttcttgtccg ccagaccctc tggcgccctg 120cttacgactc
aaacaggaga cagtgctgat tcatttccaa gcggccttcc tacacccaca 180cctgcttcac
atagatgagg tttcccggac agtccctgcc cagaagccca ggtgga
2361090210DNAArtificial Sequenceprobe/primer/pcr 1090ccgacagcgc
ccggcccaga tccccacgcc tgccaggagc aagccgagag ccagccggcc 60ggcgcactcc
gactccgagc agtctctgtc cttcgacccg agccccgcgc cctttccggg 120acccctgccc
cgcgggcagc gctgccaacc tgccggccat ggagaccccg tcccagcggc 180gcgccacccg
cagcggggcg caggccagct
2101091255DNAArtificial Sequenceprobe/primer/pcr 1091gggccaatcc
ccgcggctgg gcagagcgac ccgagggcgg cgccctgcag accacgtggc 60ccgggaggcg
ccgaggccag gtaggtggtg agttacttgg ctcggagcgg gcgaggggac 120gcgtgggcgg
agcggggctg gccagcctcg gcccccatga cccgctgtcc tgtgcccttt 180cccagcgatg
ggcgtgcagc cccccaactt ctcctgggtg cttccgggcc ggctggcggg 240actggcgctg
ccgcg
2551092255DNAArtificial Sequenceprobe/primer/pcr 1092ggcggctgcg
gggagcgatt ttccagcccg gtttgtgctc tgtgtgtttg tctgcctctg 60gagggctggg
tcctccttat tcacaggtga gtcacaccct gaaacacagg ctctcttcct 120gtcaggactg
agtcaggtag aagagtcgat aaaaccacct gatcaaggaa aaggaaggca 180cagcggagcg
cagagtgaga accaccaacc gaggcgccgg gcagcgaccc ctgcagcgga 240gacagagact
gagcg
2551093155DNAArtificial Sequenceprobe/primer/pcr 1093gccaggaccg
cgcacagcag cagggcgcgg gcgagcatcg cagcggcggg cagggcgcgg 60cgcgggggta
ggctttgctg tctgagggcg tctggctgtg gagctgaagg aggcgctgct 120gaggagttcc
tggacgtgct cctgacgctc actgc
1551094255DNAArtificial Sequenceprobe/primer/pcr 1094cgggcaagag
agcgcgggag gaggaggagg agaaaaagga ggaggaggag gaggaggagg 60cggccccgca
tccctaatga gggaatgaat ggagaggccc cctcggctgg cgcccgccca 120cccggcggcg
gccgccaagt gcctctgggc gctgcgtgcc gcgcccgctg ctccgcgcgc 180agccggctcg
ggccgctcct cctgactgag gcgcggcggc ggcggtggct gtgaccgcgc 240ggaccgagcc
gagac
2551095255DNAArtificial Sequenceprobe/primer/pcr 1095gcgcgcagcc
aggggcgacg cttccgctcc gagccgcggc ccggggccac gcgctaaggg 60cccgaacttg
gcagctgacc gtcccggaca gggaggccct tcagcctcga cgcggcctgc 120gtcctccgga
gggccctgct ccgcccggga agcgtccgcc tcccgcccgc ccgcccgcag 180atgtcgctgc
ccctctggct gtcccggcct gaccgccgcg cgccgccctg ctgctcacct 240acttccgcgc
cacgg
2551096215DNAArtificial Sequenceprobe/primer/pcr 1096gtgcgctcac
ccagccgcag gcgcctgagc ggccagagcc gccaccgaac acgccgcacc 60ggccaccgcc
gttccctgat agattgctga tgcctggccg cgggaacgcc cacggaaccc 120gcgtccacgg
ggcggggccg gcggcgcgcg cgccccctgc cggccggggg gcggagtttc 180ccgggcgcct
gccgggtgga gctctgcggg ccgct
2151097255DNAArtificial Sequenceprobe/primer/pcr 1097gagggcccgg
ggtggggctg cgccctgagg gccctgccct gccctccgca cgcctctggc 60cacggtccct
tccccggctg tgggtctgcg gcccctgcgt gcgcagcgct cctggcctct 120gcggccagcg
cgggggcgga gagaggagag tgcccggcag gcggcggctg ggccggcccg 180gaactgggtc
gtggaaggat cgcggggagc ggccctcagg ccttcggcct cactgcgtcc 240ccacttccct
gcgcc
2551098217DNAArtificial Sequenceprobe/primer/pcr 1098tatgcgcccg
gcgcggtggc tcacgcctgt aatcccagca ctttgggagg ccgaggcggg 60cggatcacga
ggtcaggaga tcgagaccat cctgactaac acggtgaaac cccgtctcta 120ctaaaaatac
aaaaattagc cgggcgcggt ggcgggtgcc tgtagtccca gctacttggg 180aggctgaggc
aggagaatgg cgtgaacccg gggcaga
2171099244DNAArtificial Sequenceprobe/primer/pcr 1099cgcaggggaa
ggccggggag ggaggtgtga agcggcggct ggtgcttggg tctacgggaa 60tacgcataac
agcggccgtc agggcgccgg gcaggcggag acggcgcggc ttcccccggg 120ggcggccggc
gcgggcgcct cctcggccgc cgctgccgcg agaagcggga aagcagaagc 180ggcggggccc
gggcctcagg gcgcaggggg cggcgcccgg ccactactcg ccagggcccg 240cccg
2441100249DNAArtificial Sequenceprobe/primer/pcr 1100cctgaggcgg
ggccgtccgg caccctgtga tggggcgtgg cccctgggga ggctcccacc 60agccctcaga
ttcctcaggg ccgcagaggt gtggagctgg ttgggccggt tcttcaccct 120cctcccctgg
tgcttgcctg tgccccagca gggtgacagt gatgtagtag cgggtcctcc 180tggaagaggg
acgcgtgtgt agggtctggg caggctctgg caaggcagtc cctggggtgg 240cgggcttgc
2491101187DNAArtificial Sequenceprobe/primer/pcr 1101gaggccgggg
acgccgagag ccgggtcttc tacctgaaga tgaagggtga ctactaccgc 60tacctggccg
aggtggccac cggtgacgac aagaagcgca tcattgactc agcccggtca 120gcctaccagg
aggccatgga catcagcaag aaggagatgc cgcccaccaa ccccatccgc 180ctgggcc
1871102239DNAArtificial Sequenceprobe/primer/pcr 1102ccgccggctc
ccccgtatga ggagctgcca tagctttcga atccacctgt tttgaacaac 60aggattagtg
cctgtgccac gtcccacgcc tccgagaaac ccgcaggctc ccggaggctt 120cgccccttca
aacactgccc gagtctccct aaccttcctc gccgccttcc tgcgggtgac 180ccccaaacgc
cccagctccg ctcccgccct tcctctcccg ctaccacacg cctctcgga
2391103187DNAArtificial Sequenceprobe/primer/pcr 1103caggagcgac
gcgcgccaaa aggcggcggg aaggaggcgg ggcagagcgc gcccgggacc 60ccgacttgga
cgcggccagc tggagaggcg gagcgccggg aggagacctt ggccccgccg 120cgactcggtg
gcccgcgctg ccttcccgcg cgccgggcta aaaaggcgct aacgcccgcg 180gccgcct
1871104255DNAArtificial Sequenceprobe/primer/pcr 1104cgggggaaac
gcaggcgtcg ggcacagagt cggcaccggc gtccccagct ctgccgaaga 60tcgcggtcgg
gtctggcccg cgggaggggc cctggcgccg gacctgcttc ggccctgcgt 120gggcggcctc
gccgggctct gcaggagcga cgcgcgccaa aaggcggcgg gaaggaggcg 180gggcagagcg
cgcccgggac cccgacttgg acgcggccag ctggagaggc ggagcgccgg 240gaggagacct
tggcc
2551105221DNAArtificial Sequenceprobe/primer/pcr 1105ccccccaccc
tggacccgca ggctcaggag tccacgcggg gagaggggat ggagaactct 60cctcgcttcg
tcctctctcc cggggaatcc ctaaccccgc actgcgttac ctgtcgcttt 120ggggaggccg
ctgccgggat ccggccccga acagcccggg ggggcagggg cgggggtcgt 180cgaggggatg
ggggcagaga gcaggcggcg ggcaggatgc c
2211106174DNAArtificial Sequenceprobe/primer/pcr 1106gcccggcttt
ccggcgcact ccagggggcg tggctcgggt ccacccgggc tgcgagccgg 60cagcacaggc
caataggcaa ttagcgcgcg ccaggctgcc ttccccgcgc cggacccggg 120acgtctgaac
ggaagttcga cccatcggcg acccgacggc gagaccccgc ccca
1741107255DNAArtificial Sequenceprobe/primer/pcr 1107cgctgggccg
ccccttgctc ttagccagag gtagcccctc accccgcgac ttaccccaca 60ccccgctctc
cagaaccccc atatgggcgc tcaccgcccg cccgcacagc tcgaacaggg 120cggggggagc
gttggggccc gaggccgagc tcttcgctgg cgccgcctcc cgggacgtgg 180cctccatggt
cgttgccgcc gctacctcac agaaccagca actccgggcg cgccaggcct 240cgggcgccgc
catct
2551108253DNAArtificial Sequenceprobe/primer/pcr 1108gcttctccat
agctcgccac acacacacac acacgccacg caccgtataa aagcctaaat 60gacacaccac
tgcagcgttc aaacgctggg aagaagactc ccttgtggca ccggaaaccc 120acgaggttgg
aagtgggagg ggaagagggc cagatacttc acctgaaaat ccgccaggat 180catctcccgg
tccatgttgg acgccatggc ggccgccgag ttccgcggct ccgggagcga 240agcgcgcacc
tgg
2531109255DNAArtificial Sequenceprobe/primer/pcr 1109ccgcgcacgc
gcaagtccag gccgccgcgg ccctggaata gagactcgcc cttgatgtcc 60ctctcgaagt
agtaggcggc atcgccgata tccacgtcac cggcggcctt ctgagacgtg 120ttctgccgca
gctcgatctg gatggtgggc tgctcgtagt gcacggccgc cacgaacttg 180gggtgcagcc
gatagcgctc gcggaagagc cgcctcagct cggcgtccag gtctgagtgg 240ttgaaggcgc
cggcg
2551110233DNAArtificial Sequenceprobe/primer/pcr 1110gtctcaactc
accgccgcca ccgccgcgca gccccgcggc cgctgctcca tagccctccg 60acgggcgccc
aggggcttcc cggctccgtg ctctctgccc gtcgtggttc cgccttcagc 120cccgcgcccg
cagggcccgc cccgcgccgt cgagaagggc ccgcctggcg ggcgggggga 180ggcggggccg
cccgagccca accgagtccg accaggtgcc ccctctgctc ggc
2331111203DNAArtificial Sequenceprobe/primer/pcr 1111acaaatgcgc
tgctcggaga gactgccgcg gcaaccaact ggacacccca agagctcact 60cctccgcggt
tttatattcc gacttgcgca caggagcggg gtgcgggggc gcagggagtg 120tgggtaacag
gcatagattc cgcttgcgca atacgtggta agaaaccagc tgtgaggggc 180tggcccaacg
cagagcggcg cga
2031112181DNAArtificial Sequenceprobe/primer/pcr 1112gcgcctgcgc
agtgcagctt agtgcgtcgg cgcgcagttc tcccgcccgt ttcagcggcg 60cagcttctgt
agttgggcta ctggaggggt cgctcagaaa cctcatactt ctcgggtcag 120ggaaggtttg
ggaggatgct gaggcctgag atctcatcaa cctcgccttc tgccccggcg 180g
1811113172DNAArtificial Sequenceprobe/primer/pcr 1113aagtcaaggg
ctttcaacct cccctgcccc attcatacag tggaaggtct aacccaggct 60tgtcagccta
agaacacggg atctcttcac tgtggttcat gtgtagagtg gagtttccat 120gctgagagag
acaagcaaag aagaccagag gctcccaccc ctgtccagtg ga
1721114254DNAArtificial Sequenceprobe/primer/pcr 1114tggatcccgc
acaggggctg caggtggagc tacctgccag tcccctgccg tgcgctcgca 60ttcctcagcc
cttgggtggt ccatgggact gggcgccatg gagcaggggg tggtgcttgt 120cggggaggct
ggggccgcac aggagcccat ggagtgggtg ggaggctcag gcatggcggg 180ctgcaggtcc
ggagccctgc cctgcgggaa cgcagctaag gctcggtgag aaatagagcg 240cagcgccggt
gggc
2541115255DNAArtificial Sequenceprobe/primer/pcr 1115ccgcctgtgg
ttttccgcgc attgtgaggg atgaggggtg gaggtggtat tagacgcagc 60cgaatcctcc
ctcagagtcc gccaggtggg cgtctcaggg gtgggagtgg ccgcgtcgtg 120aagcggagag
aggatttctc tcctggtcct ggagaaggcc cccggcggcc ggcggcatcc 180ctcgctggcg
agtcccggga gcgaggtggt ctctgcaggg gaggaagttc ccgggcggcg 240cggcctgcgt
cacag
2551116231DNAArtificial Sequenceprobe/primer/pcr 1116cgcgctctcc
cgcgcctctg cccgcccccg gcgcccgccc ccgccgctcc tcccgactcc 60ccgcccccgg
cccgggtcac ttgccgtcgc ggtgggcggc ccccggcgag tccacacccc 120tgccccgcct
cctcccggta ggaaactccg ggaccctgca agggatgact caccccagtg 180attcaaccgc
gccaccgagc gcggagctgc cctggaggac gcaggcgggt c
2311117246DNAArtificial Sequenceprobe/primer/pcr 1117tccggcccag
ccccaacccc gacctaagta accggctatc ggccacccat tggctgaagt 60ccctgagcac
ctgttgggag gaaggctgct gcgtgcagcc ggaaagtcct gcgtccctcc 120gctcttaccg
cggcaggaac cacagcctcc ccgaacctca gggtttgtat ggatttcgcc 180caggggaaag
cgctccaacg cgcggtgcaa acggaagcca ctggctggtt gggcggctgt 240gatggg
2461118237DNAArtificial Sequenceprobe/primer/pcr 1118ccgggtcagg
cgcacagggc agcggcgctg ccggaggacc agggccggcg tgccggcgtc 60cagcgaggat
gcgcagactg cctcaggccc ggcgccgccg cacagggcat gcgccgaccc 120ggtcgggcgg
gaacaccccg cccctcccgg gctccgcccc agctccgccc ccgcgcgccc 180cggccccgcc
cccgcgcgct ctcttgcttt tctcaggtcc tcggctccgc cccgctc
2371119255DNAArtificial Sequenceprobe/primer/pcr 1119ggggcggtgc
ctgcgccata tatgggagcg gccgcccctc gccgcgcccc tcgccgccgc 60cgccgccgcg
ctcgccgact gactgcctga cggcgccgcg agccggcccg agccccgcga 120gccccgcgag
ccccgccgcc gccgagcgcc accgagcgcc gccgccgccc cccgccacgc 180accgcggctc
ctcgcgtcca gccgcggcca aggaagttac tactcgccca aataaatctt 240gaaaagaaac
aaacg
2551120255DNAArtificial Sequenceprobe/primer/pcr 1120gcgcgggccc
tcaggttctc cctatcgaag cggtctatgg agatagttgg atactcggcc 60atctgcccct
cgaaagaact catagcgccg ccgatcccag agtccgggac cccaaaaccg 120cagctgaagc
caaggccagc cctgaccgcg ccgccacttc cgggaagccg cgcgctgcct 180cgccattggg
cggccgaacg cagccacgtc caatcagagg agtccggaga ccgggggcaa 240agtcaaggag
catcc
2551121255DNAArtificial Sequenceprobe/primer/pcr 1121cgtccgcggc
tcctcagcgt ccccctttac ggtctgggcg gactgcgggg gctggggagg 60ttctggggac
cgggagagtg gccaccttct tcctcctcgc gaagagcagg ccgggcctac 120ccgtccgccc
gctctgccgt ccgctggccg gccgactgct gcccgatcac tcctgaggcc 180gccgttgggc
gacagggcgg tgcgggagga ggactgcgca ggcgcagtgg gccaggcggc 240ccggcgacca
atcgg
2551122255DNAArtificial Sequenceprobe/primer/pcr 1122ggaggcgccc
agcgagccag agtggtggct ggtcccgcgc ggtgagtggg attggggcac 60ttggggcgct
cggggcctgc gtcggatact cgggtccgct cgggagcgcg ctggccgcaa 120cgagggcggc
gcgggcccgg gcgatggcgt ggcttgcgtc tcccgcctcc gggcagggcc 180tggccgccgg
gcgggggcgg gagggccacg cgggcccagg gtggggccgc ggcctgcgcg 240gcgggcgggc
cgggt
2551123255DNAArtificial Sequenceprobe/primer/pcr 1123cgcgcagggg
gccttataca aagtcggaga agtagctggg tcgctggccg gccagggact 60caagccgcct
caggtgagcg ctccttggcg ctacttccgg tctcaggtga ggccgccgga 120agcgggcact
tggccctaag acccgctaca gtgcgtcctc gctgacaggc tcaatcacca 180cggcgaggcc
aaggcgcggg gccgcggccc gcccgagaag cctgagctgg gccccgacac 240cccctgcccg
acatt
2551124168DNAArtificial Sequenceprobe/primer/pcr 1124ccccaccccc
tttctttctg ggttttgatg tggatgtctt tctatttgtt caggaaattg 60tgacgtgtgt
tctgggcagg gtttgaggtt ttggaacatt ttctaaaagg gacagagagc 120accctgctac
atttcctaat caagaagttg gcgtgcagct gggagagc
1681125224DNAArtificial Sequenceprobe/primer/pcr 1125gcgcgttccc
tcccgtccgc ccccaagccc cgcgggcctc gcccaccctg cccgccgccc 60ctccgccggc
ggccgccctc tgcggcgccc ctttccggtc agtggagggg cgggaggagg 120ggcgggggtg
cgcggggcgg ggggagaagt cctggagcgg gtttgggttg cagtttcctt 180gtgccgggga
tcctgtcccc tactcgccag cgccaggctc ctcc
2241126154DNAArtificial Sequenceprobe/primer/pcr 1126ccggcggagg
cagccgttcg gaggattatt cgtcttctcc ccattccgct gccgccgctg 60ccaggcctct
ggctgctgag gagaagcagg cccagtcgct gcaaccatcc agcagccgcc 120gcagcagcca
ttacccggct gcggtccaga gcca
1541127255DNAArtificial Sequenceprobe/primer/pcr 1127gcctggtgcc
ccgagcgagc cgggagtagc tgcggcggtg cccgccccct ctctccgccc 60ctccagcgga
gctggtctcc ggccgggcac cgtcgcgggc ccccctggcc cggccacctg 120ggaccgtgct
ggggagtctg ccacttccct ctctcccctg gcccgcaaag ttttggcgga 180gccatcgctg
gggctgagcg cgcccccggg gggagatcgg ggagcgcccg atgccgggcg 240gccggagcca
ttgac
2551128255DNAArtificial Sequenceprobe/primer/pcr 1128ggcggcggcg
ctacctggag gcgcggtggc gggcaggtgc ccgaactgca cggcgatgca 60gaggtcgttg
tccaggggga acttgtggca gtgcagcatc tcaggccagg ggaagccgta 120ggcctccatg
agcggcgcgc agccggcgcg cacggcctcg cacagcgagc ggcacgggta 180gatgggccgg
tcgagacaga cgggcgcaaa gagcgagcac aggaagacct gcgtatccga 240gtggcagcgc
ttggc
2551129255DNAArtificial Sequenceprobe/primer/pcr 1129tggtggccag
cggggagcgc ccgggcgcca tcggcgcgtc ctgctccacc agggcgaccc 60tgggcgctga
gaagcgggaa tcttccttgg ggaccagggc gacgcctcct gctgccgccc 120ccggcgggac
agccgcggct cctcctccag ccgccgcgcc acccagagcc cgaggtttgc 180ccttcagaag
cggacccgca gactcctcgg actcagagcc atcctcctcc tcaacctcca 240ccgcagcggc
ctgcg
2551130255DNAArtificial Sequenceprobe/primer/pcr 1130gcggcactga
actcgcggca atttgtcccg cctctttcgc ttcacggcag ccaatcgctt 60ccgccagaga
aagaaaggcg ccgaaatgaa acccgcctcc gttcgccttc ggaactgtcg 120tcacttccgt
cctcagactt ggaggggcgg ggatgaggag ggcggggagg acgacgaggg 180cgaagagggt
gggtgagagc cccggagccc gagccgaagg gcgagccgca aacgctaagt 240cgctggccat
tggtg
2551131206DNAArtificial Sequenceprobe/primer/pcr 1131ctcggcgatc
cccggcctga acgggtagga ggggttgggg gattccgcca tcccttgttt 60tgaggcggga
acgcaaccct cgaccgccca ctgcgctccc acccacaccc agagtaataa 120gctgtgattg
caggctgggt cctcaccgtc tgctcgccag tcttctcctt tgaggactca 180gaagccaagg
gttgcgggag gcacca
2061132242DNAArtificial Sequenceprobe/primer/pcr 1132cgcagggagc
gcgcggaggc ccgcagggtg cccgcctggc cgcagaggcc gcgacgcccc 60ctccgccacc
ctcgggccgc cgaaagaacg ggcagccggg aaatcccgtg tccccactcg 120tggcagagga
cgctgtgggg cgggcgggct gcgggctccc ggcgccttcc cgcagaggcg 180gcgacagcgg
ccgccccccc cgcggggccg ggccggggaa ctttccccgc ctggagccgg 240gc
2421133255DNAArtificial Sequenceprobe/primer/pcr 1133gaaatactcc
cccacagttt tcatgtgatc aggaattcag cataggctat aagacggagt 60gctccatgtc
aatagagaat atttccacag gtgtgctagg cacttgtggt agatgttgca 120gggaagtcag
gactggggac agcttggtcc ctacttcaag gttacagtct aggagctgag 180agtggcaaag
tgacctgatt ctacagggta aaagccccag agataaatga cataggtcca 240ggtcagccag
cattg
2551134255DNAArtificial Sequenceprobe/primer/pcr 1134ccgggcgcac
ggggagctgg gcggacggcg gcccccgcct cctccgggga cgcggcacga 60gacgcgggga
cgcgcggacg ccacgctcag cggccgcccc cggcctccgc gccgccttcc 120tcccgggagc
agccccgacg cgcgcgggcc cggaccgccg gggttgtcat ggcagcagct 180ccatccctga
ccgccacttt ctcccggtgc cgcctcggag cgagcgggct ggcgggcggc 240gcggactgcg
cgctc
2551135255DNAArtificial Sequenceprobe/primer/pcr 1135gcggcggcgt
ccagccagag ccctgtggaa gcggcggcga cacttgggct gggcagtgtc 60tctgatgcct
cccagcgcca gcgactgctc ttattcccgc cgctgtgggt cgggaaagtt 120ccgccagtgc
acagcaacca atgggcggag gggtcctttg cccctgggtt gcgtcaccct 180catgcttcca
gaacctggag gatccagcag gaccgtccca cttgtatttg cattgaggtc 240attgatggaa
atggt
2551136230DNAArtificial Sequenceprobe/primer/pcr 1136gggtcgccga
ggccgtgcgc ttatagccgg gatgacgccg cagttgggcc ggatcagctg 60acccgcgtgt
ttgcacccgg accggtcacg tgggcgcggc cggcgtgcgc ggggcggggc 120ggagcggggc
ctggcctggg cggggcaacc tcggcgcacg cgcacagcgc ccgggcgggg 180ggcggggtgg
tggtgcgcct gccgcgccta cagttcccgc cgctcgcgcc
2301137219DNAArtificial Sequenceprobe/primer/pcr 1137cgcgcctgat
gcacgtgggc gcgctcctga aacccgaaga gcactcgcac ttccccgcgg 60cggtgcaccc
ggccccgggc gcacgtgagg acgagcatgt gcgcgcgccc agcgggcacc 120accaggcggg
ccgctgccta ctgtgggcct gcaaggcgtg caagcgcaag accaccaacg 180ccgaccgccg
caaggccgcc accatgcgcg agcggcgcc
2191138234DNAArtificial Sequenceprobe/primer/pcr 1138ccgggagcgg
gcggaggaag ggccgggcgt ccggcgcaag cccgcgccgc cccagccccg 60gccccggccc
ggcccgcaca cgccgcttac ctggaagccg gcgacgctgc cgcccacctc 120cctgctgcgt
gtcgcaaacc gaacagcggg cgttggccct cctgccggac actcctctgc 180cagcgccgct
ctggccgagt cgcgggggcc gaatgtgcga cggggcagag cggg
2341139244DNAArtificial Sequenceprobe/primer/pcr 1139ggggcgcacc
gggctggctc ctctgtccgg cccgggagcc cgaggcgcta cggggtgcgc 60gggacagcga
gcgggcgggt gcgcccgggc gcggcggcgg cagcgtcggg gacccggagc 120tccaggctgc
gccttgcgcc cgggtcagac attatttagc tcttcggttg agcttcgatt 180ggtcaaacgg
cgccgccccc ccccccccgc cccccgcccc ccgctccccg ctcgcccgcg 240ctac
2441140255DNAArtificial Sequenceprobe/primer/pcr 1140gccacgggag
gaggcgggaa cccagcgagg cccccgaggg ctggggggac cggccggccg 60gacaaagcgg
ggccgggccg ggccggggcg gggccgtgcg gggctcaccg gagatcagag 120gcccggacag
cttcttgatc gccgcgccgt tggcgctggc ggccgcggtg ccggccgcgg 180gacgtcccga
aatccccgag tgcagctggt cagcgagagg ctcctggccg cgctgcccct 240ggttcgcgcc
ctgct
2551141255DNAArtificial Sequenceprobe/primer/pcr 1141cgggcatcgg
cgcgggatga gaaaccaacc tgatacttat cgtgtgccga gttccctcct 60tgtatcctga
ctaagcacag cgaataaccc tgtccttgtt ctaaccccag gtcttgaaga 120aatactgtcc
cagctgagcc ccgcgtttac aagatgaaga ggcgccccag atgcgctgaa 180agaaaggcca
aagctcgtgc ctccttccac tgcctgcggt agaacctggt cccgcatagc 240ttggactcgg
ataag
2551142255DNAArtificial Sequenceprobe/primer/pcr 1142acaccgccgg
cgcccaccac caccagctta tattccgtca tcgctcctca ggggcctgcg 60gcccggggtc
ctcctacagg gtctcctgcc ccacctgcca aggagggccc tgctcagcca 120ggcccaggcc
cagccccagg ccccacaggg cagctgctgg cagggccatc tgaagggcaa 180acccacagcg
gtccctgggc cccaacgcca ggcagcaagg actgcagcgt gcctacctgt 240gcagctgcaa
cccag
2551143255DNAArtificial Sequenceprobe/primer/pcr 1143ccccaacagc
gcgcagcgaa ctccactgcc gctgcctccg ccccagagac acgttgcagg 60ccagagcggc
cggggcgcgg ggcatcacgg gacggcctca cctggcctct tggaggactc 120ccgaagcccg
aggccgccaa ccgaaggagg ccccgccccc ggaggcaccg cctcgcctct 180ttccgccagc
gcccgcagga cccggatgag agcgcacgct tcggggtctc cgggaagtcg 240cggcgccttc
ggatg
2551144165DNAArtificial Sequenceprobe/primer/pcr 1144ccccgctggg
gacctgggaa agagggaaag gcttccccgg ccagctgcgc ggcgactccg 60gggactccag
ggcgcccctc tgcggccgac gcccggggtg cagcggccgc cggggctggg 120gccggcggga
gtccgcggga ccctccagaa gagcggccgg cgccg
1651145247DNAArtificial Sequenceprobe/primer/pcr 1145cccgggggac
ccactcgagg cggacggggc cccctgcacc cctcttccct ggcggggaga 60aaggctgcag
cggggcgatt tgcatttcta tgaaaaccgg actacagggg caactccgcc 120gcagggcagg
cgcggcgcct cagggatggc ttttgggctc tgcccctcgc tgctcccggc 180gtttggcgcc
cgcgccccct ccccctgcgc ccgcccccgc ccccctcccg ctcccattct 240ctgccgg
2471146255DNAArtificial Sequenceprobe/primer/pcr 1146cccgcggagg
ggcacaccag gcgggtgttg gggaggacgc agagggctgg ggctggagcc 60caggcggggc
agggggcggg gcggagctgg gtccgaggcc ggcgggggcg cctccatccc 120acgccctcct
cccccgcgcg cccgcccgct ctcgggtgac tccgcaacct gtcgctcagg 180ttcctcctct
cccggccccg ccccggcccg gccccgccga gcgtcccacc cgcccgcggg 240agacctggcg
ccccg
2551147255DNAArtificial Sequenceprobe/primer/pcr 1147gcccacgtgc
tcgcgccaac ccctacgccc cagcgcgcct tctccaccca cgcacgggcc 60tcggacgcat
ttccagcccc ggcgttggtt gtggatgctg gacatccacc gcctccaggc 120agtttcgccg
tcacaccgtc gccatctgta gccaaagcaa aacatatcct aactgagact 180ttgcagctct
tgtggccact ctgggctcac cgggaacatg agtggaagag cccgagtgaa 240ggccagaggc
atcgc
2551148254DNAArtificial Sequenceprobe/primer/pcr 1148ggcggagcgg
cgaggaggag gagcaggagc gcgcagccag cgggtccacg catctcagca 60cttccagacc
aactccggca ccttccacac ccctgcccgg gctgggggct ccgagagcgg 120ccgcgaagcg
actccgatcc tccctctgag ccttgctcag ctctgccccg cgcctcccgg 180gctccggtcc
gcgcggcggg gtccctgctc ctgcgccccg ggcgcgcttc ccggacaccc 240cggtccccgc
agcc
2541149201DNAArtificial Sequenceprobe/primer/pcr 1149cctcgccggt
tcccgggtgg cgcgcgttcg ctgcctcctc agctccagga tgatcggcca 60gaagacgctc
tactcctttt tctcccccag ccccgccagg aagcgacacg cccccagccc 120cgagccggcc
gtccagggga ccggcgtggc tggggtgcct gaggaaagcg gagatgcggc 180ggtgaggcgc
ggcttgggcc g
2011150130DNAArtificial Sequenceprobe/primer/pcr 1150caggcgcgcc
gatggcgttt ctgaggtgac gccgcccaca ccgggcttct ccgggggcgg 60aggaaacacc
tatgaaccct ccggcagcct tccttgccgg gcgccaggta agcagcggtt 120ccgggcgcgg
1301151203DNAArtificial Sequenceprobe/primer/pcr 1151ctcccggctt
ctgcatcgag ggccttccag ggccagccct tgggggctcc cagatggggc 60gtccacgtga
cccactgccc ccacgcccgc gcgcgggccc cagcagcccc agagctgcgc 120caacttcgtt
cactccgcgc tcaccttacg ggggtccccg cgtgaccgca tggggtagcc 180cctgctccca
cgctcccggc cga
2031152255DNAArtificial Sequenceprobe/primer/pcr 1152cggtccgcga
gtgggagcgg ctgcttgtgg gcagggtgga cgcggggcca cgtcttggcc 60ggcgttttgc
ggggtcttcc tgttctgaac gcgcgtaact tttgcctcag tatctcactt 120cttggaatcc
ggcggcgttc acgtgtgtgc tccagagaag ggcgccagag ggtattccct 180gaaagtgaaa
ggtcggcgaa agaggagtaa agacggcgag acgcgtccac gcagggggag 240tctgtgcggt
ttgga
2551153255DNAArtificial Sequenceprobe/primer/pcr 1153gcagcgccgc
ctcccacccc gggcttgtgc tgaatgggtt ctgattgtgc acggggtgca 60cactgggcat
ttcttggaag gggcacactg acgcgcgcac acacgccccc gacgcgcacg 120cgccccgcgc
gcactcacac tcacccccgc gcacactcac ccccgcgcac actcacgctg 180ccgccgcgct
gaggtgcagc gcacggggct tcacctgcaa cgtgtcgatt ggacggatgg 240gctcggcgcg
tgggt
2551154203DNAArtificial Sequenceprobe/primer/pcr 1154cgaccgtgct
ggcggcgact tcaccgcagt cggctcccag ggagaaagcc tggcgagtga 60ggcgcgaaac
cggaggggtc ggcgaggatg cgggcgaagg accgagcgtg gaggcctcat 120gcctccgggg
aaaggaaggg gtggtggtgt ttgcgcaggg ggagcgaggg ggagccggac 180ctaatccctc
actcgccccc tcc
2031155255DNAArtificial Sequenceprobe/primer/pcr 1155cccgggctcc
gctcgccaac ctgttactgc tgcagaacgc caggaagctc agcctgatcc 60cacagattag
ggtaaaatat cccggggggc cgaagtggaa accggagttg cgtcattgct 120cccacccgat
atcaccttgg cagcgaccgc ggctgaccac gttcccggcc tgtcgcgaat 180ctcacccaag
ggagctgagt ctcagcttcc ctggtccctg gtcccgagtt ccgccttccc 240cccccgcccc
gtggc
2551156255DNAArtificial Sequenceprobe/primer/pcr 1156catggggtgc
tcatcttccc ggagctgagg agctggggcg ggcatggggt gctcatcttc 60ctggagctga
ggagctggga cgggcatggg gtgctcatcc tcctggagct gaggatctgg 120ggcgggtgtg
ggatgctcat cctcctggag ctgaggagct ggggcgggca tggggtgctc 180atcttcccgg
agctgaggag ctggggcggg catggggtgc tcatcttccc agagctgagg 240agctggggcg
ggcat
2551157202DNAArtificial Sequenceprobe/primer/pcr 1157ccgagagccg
gagcggggag ggcccgccaa gtcagcattc cagccggtga ttgcaatgga 60caccgaactg
ctgcgacaac agagacgcta caactcaccg cgggtcctgc tgagcgacag 120cacccccttg
gagcccccgc ccttgtatct catggaggat tacgtgggca gccccgtggt 180ggcgaacaga
acatcacggc gg
2021158169DNAArtificial Sequenceprobe/primer/pcr 1158ccgctgcagg
gcgtctgggc ttctgggggc agagaagact cacgcagtga gcagtccgca 60agcccgctgg
cggcagcggc ggtgctccgt ccagggcgag aagctgcagc gctcgggccg 120gggtccctcc
tgtcgcagca gctcctcgac gagtgcaggg gcagccacg
1691159213DNAArtificial Sequenceprobe/primer/pcr 1159gcgctgcccc
aagctggctt ccgctgcctg ctctgggctg ggctgggctg ggctgggctg 60gtaggacctg
ctcccagggc gggaggggac acacccacct cagcagatct cagcccatcc 120ctcccagctc
agtgcactca cccaacccca cacgggccaa ggagagagtg aagaggaagc 180attgccctca
gaggccttca cggactggcc aga
2131160255DNAArtificial Sequenceprobe/primer/pcr 1160caggatgcca
gcgtgacgga agcaagtaac caccaaggca tcaccactgg cgctaaactt 60ctcacttccg
gagtgctgca agcgcagaaa atatacgtca tgtgcggagg cggagcttcc 120gccctgcgcg
tcgtattaga cggaaaccga gcgggcccat ttttcatggg tttgcggacc 180caccagcgaa
ggcgggaggt gtcgcaggga catcttctgg ctgtttccgt cgcctgcgtg 240gcccttgcac
cccgg
2551161248DNAArtificial Sequenceprobe/primer/pcr 1161ggcggtgcca
tcgcgtccac ttccccggcc gccccattcc agctccggag ctcggccgca 60gaaacgcccg
ctccagaagg cggcccccgc cccccggccc aaggacgtgt gttggtccag 120ccccccggtt
ccccgagacc cacgcggccg ggcaaccgct ctgggtctcg cggtccctcc 180ccgcgccagg
ttcctggccg ggcagtccgg ggccggcggg ctcacctgcg tcgggaggaa 240gcgcggcg
2481162189DNAArtificial Sequenceprobe/primer/pcr 1162gtgggtcgcc
gccgggagaa gcgtgagggg acagatttgt gaccggcgcg gtttttgtca 60gcttactccg
gccaaaaaag aactgcacct ctggagcggg ttagtggtgg tggtagtggg 120ttgggacgag
cgcgtcttcc gcagtcccag tccagcgtgg cgggggagcg cctcacgccc 180cgggtcgct
1891163239DNAArtificial Sequenceprobe/primer/pcr 1163ggcggagggc
cacgcagggg agacagaggg cctccacagg ggccaggggg aagtgtggga 60actgagtctc
ccccagacga ggcttcactt ggacacgtgt atgtggtcac cgggggaaac 120tgagcagttc
tgacttccct tggaaggcgt ggaattagga gagaaatccc ttagtgggca 180cacgagtgag
tgccccttgg agtccatctg tggaaaggaa gcggtgatag gtttccgca
2391164205DNAArtificial Sequenceprobe/primer/pcr 1164gtccgggggc
gccgctgatt ggccgattca acagacgcgg gtgggcagct cagccgcatc 60gctaagcccg
gccgcctccc aggctggaat ccctcgacac ttggtccttc ccgccccgcc 120cttccgtgcc
ctgcccttcc ctgcccttcc ccgccctgcc ccgcccggcc cggcccggcc 180ctgcccaacc
ctgccccgcc ctgcc
2051165255DNAArtificial Sequenceprobe/primer/pcr 1165cggcctgcgg
ctcggttccc gcctcttccc cacccccagc cccgcgctgc cctctcggtc 60cccctgcgcg
accccaggct cggcccctgc ccggcctgcc ggggtggccc gggggtgggg 120tgggagccct
ttgtctgcgt gggtcgcctc gcgtctctct ctcccacccc acctctgaga 180tttcttgcca
gcacctggag cccgaaacca gaagagttgt cagcccaaca agaatatagg 240atcaccggcc
catca
2551166255DNAArtificial Sequenceprobe/primer/pcr 1166gggaaccgtg
gcggcccctc ctggccctgg gaggtggtcc cgctgccccc ctgacttccg 60tgcactgagc
ccctggccct gcccgcagcc ccggccctgg actcggcggc cgcggaggac 120ctgtcggacg
cgctgtgcga gtttgacgcg gtgctggccg acttcgcgtc gcccttccac 180gagcgccact
tccactacga ggagcacctg gagcgcatga agcggcgcag cagcgccagt 240gtcagcgaca
gcagc
2551167255DNAArtificial Sequenceprobe/primer/pcr 1167cggggaaggc
ggggaaggcg gggaaggcgg ggaaggcggg gaaggcgggg aaggcgggga 60tggtgagacg
gtgaggcggg gcggggcctg gggcgcgggc ggggcgggga ggggtggggc 120ggggcccggg
ggcgctggac cgcggtgctg cgggacggat tcccggcggc tgcgcgggag 180gctgcgagcc
tgggctccca gggagttcga ctggcagagg cgggtgcagg gaacccgcgg 240ctcggcggga
gcgtg
2551168218DNAArtificial Sequenceprobe/primer/pcr 1168cctcccggtt
tcaggccatt ctcctgcctc agcctcccaa gtagctggga ctacaggcgc 60ctgccaccac
tcccggctaa ttttttgtat ttttagtaga gacgggggtt tcaccgtgtt 120agccaggatg
gtctcgatct gcttacctcg tgatccgccc gcctcggcct cccaaagtgc 180tgggattaca
ggcgtgagcc accgcgtccg gcatattt
2181169255DNAArtificial Sequenceprobe/primer/pcr 1169agcccgcgca
ccgaccagcg ccccagttcc ccacagacgc cggcgggccc gggagcctcg 60cggacgtgac
gccgcgggcg gaagtgacgt tttcccgcgg ttggacgcgg cgctcagttg 120ccgggcgggg
gagggcgcgt ccggtttttc tcaggggacg ttgaaattat ttttgtaacg 180ggagtcggga
gaggacgggg cgtgccccga cgtgcgcgcg cgtcgtcctc cccggcgctc 240ctccacagct
cgctg
2551170221DNAArtificial Sequenceprobe/primer/pcr 1170ccccagccac
accagacgtg ggagcttagg atgagagcgg cctccgagca gatgatcacc 60ctggaacgac
gccaaacgcg acccctacca gaggactcgc gcatgcgcag cgcagcctgg 120gccggcggcc
tgggcaggat gtagtcgcga gcagcgcacc gggcccacgc cagcggaatt 180gcgcatgcgc
agggccgcct ctgcctgcgg cctgggctgg g
2211171255DNAArtificial Sequenceprobe/primer/pcr 1171tgggcttcct
gccccatggt tccctctgtt cccaaagggt ttctgcagtt tcacggagct 60tttcacattc
cactcggttt tttttttttt gagactcgct ctgtcgccca ggctggaatg 120cagtggcgcg
atctcggctc actgcaagct ccgcctcccg ggttcacgcc attctgcttc 180agcctcccaa
gtagctggga ttataggcgc ccgccaccac gcccggctaa tggctaattt 240tttgtatttt
ttttt
2551172153DNAArtificial Sequenceprobe/primer/pcr 1172ccgcgctggg
ccgcagcttt ccggagcgca gaggaagctg gccagcctgc agatagcact 60gggaaagaca
ccgcggaact cccgcgagcg gagacccgcc aaggcccctc cagggacctg 120tcttcctaac
tgccagggac gccgagccaa ctc
1531173255DNAArtificial Sequenceprobe/primer/pcr 1173gcatggcccg
gtggcctgca ctccagtgag gtggctgaac tctgaccagc caagagaaaa 60cccccctctc
cgccccaaac agctccccac tcccccagcc tgcccccacc ctccccacat 120tccagtcttt
cactgtcgcc ccaggcaact tggctgccca agaccaagcc ccaccaagaa 180gctggagggc
caggcaagtc caggatgggc aagcagggaa gcacgagagg gagaaacaga 240ggtgaggaag
gaagg
2551174239DNAArtificial Sequenceprobe/primer/pcr 1174gggcagggga
ggggagtgct tgagtattgg ggctacactc accacaagag cagcaaacaa 60agcactgggt
gtggtagagg ctgtccaggg cctggcaggc attgctctgc ccatagatgc 120ctttgttgca
cttgatacag gtgcctgaga agagaaaagt gtcacactct actcccccag 180gtcaaaacca
gggattccca agctttcctg actgcccttt cctgatgtgc caggggtca
2391175255DNAArtificial Sequenceprobe/primer/pcr 1175ccccggcgcc
ttcctcctcc ggactccgct gcatgcctcg cttgcggtgg tccgatcggc 60tttctccggg
agctttcctc tccccgccac gcccccgtct ccccggccgt ccccgcgcct 120ctcggcctcc
ctttcattag ccccacatct gtctttccca tgggagggag cgcgcgcctt 180ccgcccagcg
gggcccttag cagagcctct ccaatcctcg gcgcctcccc tacacagggt 240tcgctgggcc
gttct
2551176202DNAArtificial Sequenceprobe/primer/pcr 1176ccaccgcgct
tcccggctat gcgaaagtga aaacgagggg cgcccaaggc cctgcttctt 60cccccttcct
cttccccttg cccagccgcg acttcttcct cactgatctc ccgggggcgg 120agacgctgag
ttccccggag acgagttagt caccaagaag aggcggtgac agagagcgcg 180gctcgcgtcg
cactccgagg cc
2021177255DNAArtificial Sequenceprobe/primer/pcr 1177ccgcatctga
ccgcaggacc ccagcgctac caagtgcctg ttcttggacc cccagccgag 60cagggggaag
catccccagc tcccgcaccc aagtccctgg cgccgctgcc gggccgccct 120ccctgatgcc
cagcgcgcag cctgccggcg ccgcgccttc tggacggctc tcgccgcacc 180tcctgagctc
agcccgcggc cccgcagtgg ggcggcctca cttactggcg gggaagcgcg 240ggtctgggtt
ggcgc
2551178233DNAArtificial Sequenceprobe/primer/pcr 1178gcggacacgt
gcttttcccg cattaggggg ggtctcccgg cgcgcgcccc gccgccacct 60gttgaggaaa
gcgagcgcac ctcctgcagc tcaggctccg ggcgccagcc ctgccccgca 120gccccagagc
ccgtcgcagc tcgggtggtc cctccccggc ccagcgctcg ccgcctgctc 180ttcgccctgc
aagtttcaag aggcagttat ttctcgcagc ctccgcgctt gca
2331179226DNAArtificial Sequenceprobe/primer/pcr 1179gagctggaag
agtttgtgag ggcggtcccg ggagcggatt gggtctggga gttcccagag 60gcggctataa
gaaccgggaa ctgggcgcgg ggagctgagt tgctggtagt gcccgtggtg 120cttggttcga
ggtggccgtt agttgactcc gcggagttca tctccctggt tttcccgtcc 180taacgtcgct
cgcctttcag tcaggatgtc tgcccgtggc ccggct
2261180255DNAArtificial Sequenceprobe/primer/pcr 1180ggccgccaac
gacgccagag ccggaaatga cgacaacggt gagggttctc gggcggggcc 60tgggacaggc
agctccgggg tccgcggttt cacatcggaa acaaaacagc ggctggtctg 120gaaggaacct
gagctacgag ccgcggcggc agcggggcgg cggggaagcg tatgtgcgtg 180atggggagtc
cgggcaagcc aggaaggcac cgcggacatg ggcggccgcg ggcagggccc 240ggccctttgt
ggccg
2551181183DNAArtificial Sequenceprobe/primer/pcr 1181gcgcccggtc
agcccgcagc gcccggccag cccgcagcgc cggagcccgc agtgcgtgcg 60aggggctctc
ggcaggtcca gacgcctcgc cgagcccagc ccgcagctcc ccgggccgcg 120ccgcgcccgc
ccacagggcc cacagccctg cttcggctct cagggcggtc acctgggatg 180ggg
1831182195DNAArtificial Sequenceprobe/primer/pcr 1182cccgccaggc
ccagcccctc cctggccagc cccgtccttg tccccaaact gggcccgccc 60ggccgccagg
ccgccgggcc tccggggccc tcgcgcatcc ggctccgaaa gctgcgcgca 120gccatcatca
gggcccttct ggtgttagaa gagaccccgg catcatcttt tcgtcgcgtg 180cttcccccag
agtca
1951183171DNAArtificial Sequenceprobe/primer/pcr 1183cgattcttcc
cagcagatgg ccccaaagtt cagttcctga attgcctcgc ggagccgcgg 60gctgcaacgt
gaggcggccg ctgccagtcg actcaaccac cggagtggcc cctgcagttg 120gatagcaacg
agaatcctcc aggggtgcag ggcgacggct tcggccgcac c
1711184255DNAArtificial Sequenceprobe/primer/pcr 1184cgcacaccgc
ccccaagcgg ccggccgagg gagcgccgcg gcagcgggag aggcgtctct 60gtgggccccc
tggcagccgc ggcaggaaag ggcccgaagg cagcgaaggc gaacgcggcg 120caccaacctg
ccggccccgc cgacgccgcg ctcacctccc tccggggcgg gcgtggggcc 180agctcaggac
aggcgctcgg gggacgcgtg tcctcacccc acggggacgg tggaggagag 240tcagcgaggg
cccga
2551185169DNAArtificial Sequenceprobe/primer/pcr 1185aggccccgag
gccggagcgg cggagggggc ggcccctccc acagggtctt cccacccaca 60gggcacccag
gcgcagcgga gccaggaggg ggcttacccg cgggcaggga cggagcacgc 120cggggccctg
gaggggcgac gctcgctcgt gtccccggtc cccgtggcc
1691186249DNAArtificial Sequenceprobe/primer/pcr 1186gggttcgcgc
gagcgctttg tgctcatgga ccagccgcac aacttttgaa ggctcgccgg 60cccatgtggg
gtctttctgg cggcgcgccg cctgcagccc ccctaaagcg cgggggctgg 120agttgttgag
cagccccgcc gctgtggtcc atgtagccgc tggccgcgcg cggactgcgg 180ctcggcgtgc
gcgtgttccc ggccgtcccg cctcggcgag ctccctcatg ttgtcgccct 240gcggcgccc
2491187255DNAArtificial Sequenceprobe/primer/pcr 1187ccagtctccc
gccccctgag catgcacgca ctttggttgc agtgcaatgc tctgacttcc 60aaatgggaga
gacaagtggc ggaaaatagg gtcttctccc acctcccacc cccccatccc 120gactcttttg
cccttctttt ggtccaagag attttgaaac cgtgcagaac gagggagagg 180ggcaggctgc
agccgggcag ataacaaaac acaccccaaa gtgggcctcg catcggccct 240cgcattcctg
tagag
2551188233DNAArtificial Sequenceprobe/primer/pcr 1188gaggaggcag
cggaccgggg acaccctggg ggaacttccc gagctccgcg acctcgaagc 60ctggcccttc
cttctccctg gtcctacatg cctccctccc ccactgtccg gggtcctggc 120ctcgacgccg
aggggtgtcc ctctcctctc ctggtcaggg aacgcagcaa ctgaggcggc 180gcggcccaga
tgagacggga agcgcctgcg ggccgtgggc gcgggtggaa ccc
2331189232DNAArtificial Sequenceprobe/primer/pcr 1189ccggctccac
ggacccacgg aagggcaagg gggcggcctc ggggcggcgg gacagttgtc 60ggagggcgcc
ctccaggccc aagccgcctt ctccggcccc cgccatggcc cggggcggca 120gtcagagctg
gagctccggg gaatcagacg ggcagccaaa ggagcagacg cccgagaagc 180ccaggtgagc
ggctgggccg cgccggacgg gcgtcggggg tctgggccgc ga
2321190247DNAArtificial Sequenceprobe/primer/pcr 1190ccgccaccgc
caccatgccc aacttcgccg gcacctggaa gatgcgcagc agcgagaatt 60tcgacgagct
gctcaaggca ctgggtaagc tggtgcagag ggcgcgcccc gacggggaga 120tgcggcccgg
aggtgccctg gtcccggaag tgccccggtc ctggaggggg tggaagttgg 180ggagcccagg
caggagggag tccccggggc aatagatcgc cttgtctccc aggcgcaccg 240ggtctcg
2471191203DNAArtificial Sequenceprobe/primer/pcr 1191tgagtaagga
tgataccgag agggaagaaa aaaataccct ctttgggcca ggcacggtgg 60ctcacccctg
taatcccagc actttgggag gctgaggcga gcggatcacg agatcagaag 120atcgagacca
tcctggctaa cacagtgaaa ccccatctct accaaaaata caaaaaatta 180gccaggcatg
gtggcgggca cct
2031192255DNAArtificial Sequenceprobe/primer/pcr 1192tgggccaggc
acggtggctc acccctgtaa tcccagcact ttgggaggct gaggcgagcg 60gatcacgaga
tcagaagatc gagaccatcc tggctaacac agtgaaaccc catctctacc 120aaaaatacaa
aaaattagcc aggcatggtg gcgggcacct gtagtcccag ctacttggga 180ggctgaggca
ggagaatcct ttgaacccag gaggcggagc ttgcagtgag ctgagattgt 240gccactgcac
tccag
2551193255DNAArtificial Sequenceprobe/primer/pcr 1193ccggcgaagt
gggcggctcc ccaagcgccc aggctgcgca gcacgatggc cgcccccgcc 60gcgcaccgcg
tgtgcccgca cgcccgcccc ctgcgccccg gggacgcctc tccgcccctc 120cccctgcccc
tccgcccacc gcgcggtcgc cccacgccgc gggcgctgct tcgccgcccg 180ggaggccgcc
tcccgccccg ggaccggata acgccctaaa tcagcgcagc tgaggcgagg 240ccgtggcccc
cgcag
2551194255DNAArtificial Sequenceprobe/primer/pcr 1194gcggccttac
cctgccgcga gcgcctgtga cagcggcgcc gctgtgctcg cgaccccggc 60tccgggcctc
tgccgacctc aggggcagga aagagtcgcc cggcgggatg ggcggggagg 120ctgggtgcgc
ggcggccgtg ggtgccgagg gccgcgtgaa gagcctgggt ctggtgttcg 180aggacgagcg
caagggctgc tattccagcg gcgagacagt ggccgggcac gtgctgctgg 240aggcgtccga
gccgg
2551195217DNAArtificial Sequenceprobe/primer/pcr 1195gtggggccgg
cgagggtcag gggcatcgcg gccgcgaccc cattctgcag cccccgaggc 60tcgcccgact
cctggctgcc ctggactccc ctccctcctc cctcccgcct cctcgcccag 120ggcccggctc
acctggcggc ggggcgcggg acgccgcggg cgggacggcg gggggctccg 180gggcgctccg
gggcggctct cgcgcatgct ccggggc
2171196250DNAArtificial Sequenceprobe/primer/pcr 1196cggcgcggac
cggctcctct accactttct ccagctgcac tgccacccag cctgcctggt 60gctggtgctc
aacacgcagc cggccgagga ggtgcggccg cgctggcgcg ggagtgaggg 120gactccgaga
gtgttgaggg cctcctgagc ggatgcgagg cctctgacag ggatggaggg 180gctctgaggg
ggattcaggc ccctgacact acgcgatgac acagagaagg atggcagggg 240tccccagggg
2501197215DNAArtificial Sequenceprobe/primer/pcr 1197gcccatgcgg
ccccgtcacg tgatgcaagg atcgccggcc tttccgccag agggcggcac 60agaactacaa
ctcccagcaa gctcccaagg cggccctccg cgcaatgccg ctaccggaag 120tgcgggtcgc
gcttccggcg gcgtcccggg gccagggggg tgcgcctttc tccgcgtcgg 180ggcggcccgg
agcgcggtgg cgcggcgcgg ggtaa
2151198184DNAArtificial Sequenceprobe/primer/pcr 1198gggattgcca
ggggctgacc ggagtgttgc tgggaaggag cctcagctcc gctccaggtc 60ctccaccagg
taggactggg actcccttag ggcctggagg agcaagtcct tgcaggtcca 120gttccaggct
ggtgtgaaac tgaagagctt ccgcatcttg cttgggttgg tgggctcggc 180ccgc
1841199234DNAArtificial Sequenceprobe/primer/pcr 1199gccggagcac
gcggctactc aggccgaacc ccgacccgga cccggcacgc ggcctcggcg 60agggcgggcg
ggagtgtcct cctccgggac agccggactc ccgccgactt ctgggcggcg 120gggagggctc
caggcccggc tctcccgggc ccccgcacgc gatgcgcggc ccctgcagct 180gctccgtgcc
ccgagacgcg cccgaggcct cggacctcca agcggccacc gcgc
2341200255DNAArtificial Sequenceprobe/primer/pcr 1200cctcggcgcc
ggcccgttag ttgcccgggc ccgagccggc cgggcccgcg ggttgccgag 60cccgctgacg
tcagcccggg tttccccccc ccaccggggc ttccccatcc cccgaggctt 120cccgggaggg
ctgcgagtcc ggggagcgtg cggggtcgcc accatcggga cccccagagg 180agagaggact
tggggcggga gccgcgcggg acgctgtccc cctcccgccc cccaccccat 240ttacagattg
ggaga
2551201205DNAArtificial Sequenceprobe/primer/pcr 1201cacagcggcg
gcgagtgggt cgtgcacgcg gatgcggggt gggagtgggg gcgcacgcgc 60gggcgtgggc
gagcgggccc cggcagtgca cacacacggc aggggcgggc gacagatgca 120gtgcgtgcgc
cggagcccaa gcgcacaaac ggaaagagcg ggcgcggtgc gcaggggcgg 180gcgcccagcg
ggcttggcat gcgcg
2051202220DNAArtificial Sequenceprobe/primer/pcr 1202cacctcgggc
ggggcggact cggctgggcg gactcagcgg ggcgggcgca ggcgcagggc 60gggtcctttg
cgtccggccc tctttcccct gaccataaaa gcagccgctg gctgctgggc 120cctaccaagc
cttccacgtg cgccttatag cctctcaact tcttgcttgg gatctccaac 180ctcaccgcgg
ctcgaaatgg accccaactg ctcctgcgcc
2201203255DNAArtificial Sequenceprobe/primer/pcr 1203agacggggcc
gggcgcagac gccccgcccc gcccttgcac ccagcccgct gagtccgcac 60cgcccgcggt
cccggcctgg gctgtgcgca ggagatgggc caagtgcaag gtcccttgag 120cgcagctggg
cgcacaccgc aggacggccc ctttcgcacc ggctcgcgag ggaggcgctg 180tgccccccgt
gtgcggcttc tctcaccctg ccaggccttc ccagcttccc tgaggttgcc 240tgctacaccc
gcccc
2551204255DNAArtificial Sequenceprobe/primer/pcr 1204gcattcgggc
cgcaagctcc gcgccccagc cctgcgcccc ttcctctccc gtcgtcaccg 60cttcccttct
tccaagaaag ttcgggtcct gaggagcgga gcggcctgga agcctcgcgc 120gctccggacc
ccccagtgat gggagtgggg ggtgggtggt gaggggcgag cgcggctttc 180ctgccccctc
cagcgcagac cgaggcgggg gcgtctggcc gcggagtccg cggggtgggc 240tcgcgcgggc
ggtgg
2551205171DNAArtificial Sequenceprobe/primer/pcr 1205gcccgaaagg
gccggagcgt gtcccccgcc agggcgcagg ccccagcccc ccgcacccct 60attgtccagc
cagctggagc tccggccaga tcccgggctg ccgcctctgc tgccttccct 120gagcgggagc
ggagcgcaga gaaaagttca agccttgccc acccgggctg c
1711206212DNAArtificial Sequenceprobe/primer/pcr 1206cggcggccgg
gtgaccgacc actgcttacc aggaggggag actggcaggg ggggctcaag 60gaacatctgg
tgggtgtccc cttcacaaga ctcggcctgc agagttcgtg cagggagttc 120gcacatagga
gagcaccggt ccgggagtgc caggctcgtg cccggccggg gagaggagtg 180ggagactaag
tcgcagggca agggcaactg ca
2121207255DNAArtificial Sequenceprobe/primer/pcr 1207ccaccggcgg
ccgctcacct cctgctcctt ctcctggtcc gggcgggccg gcctgggctc 60ccactccaga
gggcagccgg tccttcgccg gtgcccaggc cgcagggctg atgcccccgc 120tcagctgagg
gaaggggaag tggaggggag aagtgccggg ctggggccag gcggccaggg 180cgccgcacgg
ctctcacccg gccggtgtgt gtccccgcag gagagtgtgc tgggcagacg 240atgctggaca
cgatg
2551208239DNAArtificial Sequenceprobe/primer/pcr 1208cggtcaggga
cccccttccc ccttcaagct gactccctcc cacaaggctc ttcagatctc 60gttgtatttt
gggattgatg ggggaaaaat ccaaatttgt ttgtttgctt cccttttttc 120ggtggtgggg
aaaggtggca ggctttttgg gacaaccatg gaggggtcct ccgtctcggc 180ctcttcgcat
atccccctcc gtgatcctgc cttccccccc caccgagccc atcgcaggc
2391209240DNAArtificial Sequenceprobe/primer/pcr 1209ggccgaagct
gccgcccctc ctcccaaccg gcgggtcaga tctcgctccc tttcggacaa 60cttacctcgg
agaggagtca aggggagagg ggaggggagg gggggagggg gcaagagaga 120gaggggggag
aagagggatc ttctcgctta tttcattgtt cccccatctt cagggagcgg 180gggcagcggc
tcctcaaggc ggcgggcgcc ggcgtcttca gagcgccatg cgaaccgcgg
2401210255DNAArtificial Sequenceprobe/primer/pcr 1210gcggccttgt
gccgctgggg gctcctcctc gccctcttgc cccccggagc cgcgagcacc 60caaggtgggt
ctggtgtggg gaggggacgg agcagcggcg ggaccctgcc ctgtggatgc 120cccgccgagg
tcccgcggcc ggcggggcca gaggggcccg gacgagctct cctatcccga 180agttgtggac
agtcgagacg ctcagggcag ccgggccctg gggccctcgg gcgggagggg 240gcagttacac
ggcag
2551211241DNAArtificial Sequenceprobe/primer/pcr 1211cgcgggagga
gcggcgaggc cctcacctgg cgccttttat gcccgcggcc ggtggagggg 60ggaagggagg
aatggtgtca ggggcggata tctgagccct gaggaatttg caggctcctg 120agagcaaata
tgggctctct ccccattggt caattccctc ccctcccaga gaccagaggc 180ccctgccctc
cagaggtgcc ccgccccggt ccgcgcagaa gctccgaccc gcactccccc 240a
2411212223DNAArtificial Sequenceprobe/primer/pcr 1212gcccaccaga
agcccatcac caccagcaaa gccaccacca aagccaccac ccaagccagc 60accaaggcca
ccaccatatc ctcccccaaa gccactacca aagctgctgc tgctgctgct 120gaagccaccg
ccatagccgc cccccagccc gcaggctccc ccagaggaga agcgggagga 180tgagacagac
aggccgcccc cgtaggtgct gggggcgcgg cag
2231213165DNAArtificial Sequenceprobe/primer/pcr 1213gggccatgtg
ccccacccca cagccccacc ctgccctgcc caccacccca agcccggccc 60tgggtcccag
ggtcccgcca ggcccgctgg gtggaatgtg gtcatgtttc agactgccga 120tggcttccac
ttcccagaca ggcccagacg gccccgccag cagcc
1651214177DNAArtificial Sequenceprobe/primer/pcr 1214ccgccagccc
agggcgagag tcagggacgc ggcgtcgggc gagctgcgcg ggccccgggg 60gaggcgcgac
cccggaggca cctgtccgga tccctccccg ccttgctcag atctctggtt 120cgcggagctc
cgaggcgcgc tcggcccgaa ccgcgcgacc cccaagtcgc cgcgccc
1771215151DNAArtificial Sequenceprobe/primer/pcr 1215gccccctgtc
cctttcccgg gactctacta cctttaccca gagcagaggg tgaaggcctc 60ctgagcgcag
gggcccagtt atctgagaaa ccccacagcc tgtcccccgt ccaggaagtc 120tcagcgagct
cacgccgcgc agtcgcagtt t
1511216209DNAArtificial Sequenceprobe/primer/pcr 1216gtgggggtcc
gcacccagca ataacccggg tcttcccgct ccggctcctg ccccagtaag 60cgttggaccg
ggagacgcag tgctcagcat cggtcagcag ggggcgcaag gaccccgccc 120cgccgagtcc
gcgccaaagt ttctcatcct ccacccgccc acgctccgca ccccctccgc 180ggctgcccag
cacccccacg gccccagca
2091217220DNAArtificial Sequenceprobe/primer/pcr 1217gggcccccgg
gttgcgtgag gacacctcct ctgaggggcg ccgcttgccc ctctccggat 60cgcccggggc
cccggctggc cagaggatgg acgaggagga ggatggagcg ggcgccgagg 120agtcgggaca
gccccggagc ttcatgcggc tcaacgacct gtcgggggcc gggggccggc 180cggggccggg
gtcagcagaa aaggacccgg gcagcgcgga
2201218212DNAArtificial Sequenceprobe/primer/pcr 1218gcctgcacag
acgacagcac ccccggcggg ggagagcggc cccagcggag actcggcagg 60gctcaggttt
cctggaccgg atgactgacc tgagcccggg gcccgggcgg cgctggccgg 120gcacaggatg
cgcggcccgg agagcgcatc ccggccatcc gcccgcgctc ggccccgcag 180cgcagctgct
gcagatccgc gggggccgcc ac
2121219244DNAArtificial Sequenceprobe/primer/pcr 1219ggccgcgccg
ggctcaggtt ccacccccgg gagcgcgggg cggagccagg ccggcgccga 60ggctcagtgc
cctccccgct ccgcggcgcc ggctgcgaag ttgagcgaaa agtttgaggc 120cggagggagc
gaggccgggg agtccgctcc agcggggcgc tccagtccct cagacgtggg 180ctgagcttgg
gacgagctgc gttccgcccc aggccactgt agggaacggc ggtggcgcct 240cccc
2441220253DNAArtificial Sequenceprobe/primer/pcr 1220ggggtagtcg
cgcaggtgtc gggcgcggag ccgcttggcc tcctccacga agggccgctt 60ctcgtcctcg
tccagcagct tccactgcgc gcccaggcgc ttggagatct cggagttgtg 120catcttgggg
ttctgctgcg ccatctggcg gcgctgagcg gagctccaca ccatgaacgc 180gttcatcggc
cgcttcacct tctccagggg cagcgtcccg ggggccgcgg ggctcccagc 240gccctcccgc
tcc
2531221255DNAArtificial Sequenceprobe/primer/pcr 1221tgcaggcgga
gaatagcagc ctccctctgc caagtaagag gaaccggcct aaaggacatt 60ttctctctct
ctcctcccct ctcatcgggt gaatagtgag ctgctccggc aaaaagaaac 120cggaaatgct
gctgcaagag gcagaaatgt aaatgtggag ccaaacaata acagggctgc 180cgggcctctc
agattgcgac ggtcctcctc ggcctggcgg gcaaacccct ggtttagcac 240ttctcacttc
cacga
2551222163DNAArtificial Sequenceprobe/primer/pcr 1222ccggaaatgc
tgctgcaaga ggcagaaatg taaatgtgga gccaaacaat aacagggctg 60ccgggcctct
cagattgcga cggtcctcct cggcctggcg ggcaaacccc tggtttagca 120cttctcactt
ccacgactga cagccttcaa ttggattttc tcc
1631223233DNAArtificial Sequenceprobe/primer/pcr 1223gcgtcggatc
cctgagaact tcgaagccat cctggctgag gctaatctcc gctgtgcttc 60ctctgcagta
tgaagacttt ggagactcaa ccgttagctc cggactgctg tccttcagac 120caggacccag
ctccagccca tccttctccc cacgcttccc cgatgaataa aaatgcggac 180tctgaactga
tgccaccgcc tcccgaaagg ggggatccgc cccggttgtc ccc
2331224172DNAArtificial Sequenceprobe/primer/pcr 1224ccggctccgc
gggttccgtg ggtcgcccgc gaaatctgat ccgggatgcg gcggcccaat 60cggaaggtgg
accgaaatcc cgcgacagca agaggcccgt agcgacccgc ggtgctaagg 120aacacagtgc
tttcaaaaga attggcgtcc gctgttcgcc tctcctcccg gg
1721225255DNAArtificial Sequenceprobe/primer/pcr 1225cgtcgccggg
gctggacgtt cgcagcggcg cttcggaagg gggccccgcg ggagcagccg 60cccgcgtctc
cagcagcttc cccttgccag gcgccgcgcg cgcccggtat ccccgggtgt 120ccacctgtgc
gtggggggct gtttcccgtc tgtccagccg cgcccacttc tcaggcccaa 180aggccagcag
gaagggtccc ggaggtggct gggggcgtcc acctgagaag ctccgctctc 240gctcagacac
cccac
2551226255DNAArtificial Sequenceprobe/primer/pcr 1226gggcctgccg
cctcgtccac cgtccgtcgt gaggccggca gcggacacgt gctcatccca 60cggggaggcc
ccgcgcagcg cggaggacgc gcctgagaga gaaaaggggt tcgggagaag 120cccgaggacc
cggcccgtga ctgggcgcgc cctatgcaaa tgagcgggcg gggccctcgt 180gttgctgaac
gagggcgggt tcgcgatgta aataagccca gaggtggggt ctttggagag 240cacttagggc
ccggg
2551227173DNAArtificial Sequenceprobe/primer/pcr 1227gcacaccgct
ggcggacacc ccagtaacaa gtgagagcgc tccaccccgc agtccccccc 60gcctctcctc
cctgggtccc ctcggctctc ggaagaaaaa ccaacagcat ctccagctct 120cgcgcggaat
tgtctcttca actttaccca accgacgaca aggaaccagc ctc
1731228216DNAArtificial Sequenceprobe/primer/pcr 1228gcaaaccatc
ttccccgacg ccttccacat aagatgccct cctgcgggcc ctcacctttt 60gacactgcct
cccaccgcac tggggtcaac tctcacccaa gggttccgcc accttccacc 120accaaaccag
cctgtccctg ccacatgccc cccgggcccc agcgctcatc ctctgcccag 180gcccgctctt
gacccctgac cccggcctga ccccgc
2161229236DNAArtificial Sequenceprobe/primer/pcr 1229ggccctccgc
cgcctccaac cgcgcaccag gagctgggca cggcggcagc ggcggcagcg 60gcggcgtcgc
gctcggccat ggtcaccagc atggcctcga tcctggacgg cggcgactac 120cggcccgagc
tctccatccc gctgcaccac gccatgagca tgtcctgcga ctcgtctccg 180cctggcatgg
gcatgagcaa cacctacacc acgctgacac cgctccagcc gctgcc
2361230247DNAArtificial Sequenceprobe/primer/pcr 1230caccaccgtg
gcaaagcgtc cccgcgcggt gaagggcgtc aggtgcagct ggctggacat 60ctcggcgaag
tcgcggcggt agcggcggga gaagtcgtcg ccggcctggc ggagggtcag 120gtggaccaca
ggtggcaccg ggctgagcgc aggccccgcg gcggcgccgg gggcagccgg 180ggtctgcagc
ggcgaggtcc tggcgaccgg gtcccgggat gcggctggat ggggcgtgtg 240cccgggc
2471231185DNAArtificial Sequenceprobe/primer/pcr 1231cacagcccct
tcctgcccga acatgttgga ggccttttgg aagctgtgca gacaacagta 60acttcagcct
gaatcatttc tttcaattgt ggacaagctg ccaagaggct tgagtaggag 120aggagtgccg
ccgaggcggg gcggggcggg gcgtggagct gggctggcag tgggcgtggc 180ggtgc
1851232242DNAArtificial Sequenceprobe/primer/pcr 1232gcttgatgct
caccactgtt cttgctgctc aagggaaacc aagtatatat ttgtggatag 60atcctaactc
agatgatact gtcagaatat ataagattcc tataccacat cctgaactct 120gaaagttgca
gttctacgta gaagttcact gagggttgta agagtcagaa tggactccat 180ggaagttatg
gggtgtgaat caaacctcac aggtgagtca gtggggagaa agaagcatga 240ca
2421233255DNAArtificial Sequenceprobe/primer/pcr 1233ggccaggccc
ggtggctcac acctgtaatc ccagcacttt gggaggccga ggtgggcgga 60ttgcctgagg
tcaggagttt gagaccagcc tggccaacat ggtgaaaccc cgtctctact 120aaaaatacca
aaaattagcc agtcgtagtg gtgggcacct gtaatcccag ctattcagga 180ggctgaggca
ggaggatcac ttgaacccaa gaggcgggag ttgcagtgag cagagatcac 240gccattgcac
cccag
2551234255DNAArtificial Sequenceprobe/primer/pcr 1234gcgggacggg
tggcgggaag gagggaggcg cggctgggga gagcgctcgg gagctgccgg 60gcgctgcgga
ccccgtttag tcctaacctc aatcctgcga gggaggggac gcatcgtcct 120cctcgcctta
cagacgccga aacggagggt cccattaggg acgtgactgg cgcgggcaac 180acacacagca
gcgacagccg ggaggtaagc cgcgtcccag cggctccgcg gccgggctcg 240cagtcgcccc
agtga
2551235255DNAArtificial Sequenceprobe/primer/pcr 1235gcttggcccc
gccacccaga cccctccccc gggggcgccc agcttggcct ctgggtcccg 60gcgcacgcgg
accccaagtc ggggaggccg ggctgaccgc ggccgcctcc ccggctccgg 120gtaggaggtg
ggcagagaag gtgggctgag gggaggagaa actgggctgc gggggtccgg 180gagggtggat
tccgagaaac tatgtgccca gctgaccctg cccgccccgc cgcggccctg 240cagtccccgg
gccag
2551236211DNAArtificial Sequenceprobe/primer/pcr 1236gcggggaagg
cgaccgcagc ccacctaccg ctggacgcgg gttggggacc ccgccgcccg 60gccagctttg
ttcgggggcc cgcggcccct cccgggcccc cgcaccgcct cgggtgaccc 120gcggtgtccc
agcgcgttga cgcagcctgt gatccctcgc gaggcgagga gaaggtcggg 180ggcttggctc
tgcctaatgg ccgcccgggg a
2111237221DNAArtificial Sequenceprobe/primer/pcr 1237gcgcccaacc
accacgcccg cctaattttt gtatttttag tagagacggg ttttcaccat 60tttggccagg
ctggtctcga accccgacct caggtgatct gcccaaaagt gctgggatta 120caggcgtcag
ccaccgcgcc cggccgggac cctctcttct aactcggagc tgggtgtggg 180gacctccagt
cctaaaacaa gggatcactc ccacccccgc c
2211238179DNAArtificial Sequenceprobe/primer/pcr 1238aaaagccccg
gccggcctcc ccagggtccc cgaggacgaa gttgaccctg accgggccgt 60ctcccagttc
tgaggcccgg gtcccactgg aactcgcgtc tgagccgccg tcccggaccc 120ccggtgcccg
ccggtccgca gaccctgcac cgggcttgga ctcgcagccg ggactgacg
1791239184DNAArtificial Sequenceprobe/primer/pcr 1239cgcaggtgcg
ggggagcgtg cggccgggtc catgcgcctg cgggcggcgg ggggagacgc 60gttgccttcg
gccgggacca ctgcacctgc ccgcgtgggt aatgcgcccg ccgcagactc 120cgcgcacgac
tccgcctggg agcgcgttgg gggccgttgg agtccagcat ggcgcggacc 180ccgg
1841240241DNAArtificial Sequenceprobe/primer/pcr 1240cccgcccaca
gcgcggagtt tagtctgcgc gtgcctcgct cgagaacgcg ctcgtgcgca 60tgcccacaaa
ggccaaggag ggagtgcgca ggtcacgtgc gccggtggtc agcgcgcgca 120ttgcctgccc
cggaagtggt cggcgcgcgg cgcggcgcgc ctgggcgcta agatggcggc 180ggcgtgagtt
gcatgttgtg tgaggatccc ggggccgccg cgtcgctcgg gccccgccat 240g
2411241255DNAArtificial Sequenceprobe/primer/pcr 1241gcaggggccc
gggggcgatg ccacccggtg ccgactgagg ccaccgcacc atggcccgct 60cgctgacctg
gcgctgctgc ccctggtgcc tgacggagga tgagaaggcc gccgcccggg 120tggaccagga
gatcaacagg atcctcttgg agcagaagaa gcaggaccgc ggggagctga 180agctgctgct
tttgggtgag tccagggtcg gtgggcggtg ggtggtgggc agtgggcggt 240ggccagccgg
caggg
2551242171DNAArtificial Sequenceprobe/primer/pcr 1242catgaccgcg
gtggcttgtg ggaaaagtgg ctcggaaccc caaatcccgg ttagattgca 60ggcaccgccg
gacgctggct cccggaggtt ttagttttcc ctctaccagg agtgtgaaga 120cacagagact
tattgcgctg gcgaagatgg ctgaggcgaa ggcgtgtccg a
1711243166DNAArtificial Sequenceprobe/primer/pcr 1243gcaggtgctc
agcgggcaga cgccccgccc cgccccgcca ggttctgttg ggggcgaggc 60ccgcgcaagc
cccgcctctt ccccggcacc aggggcgggc ccaggtgcgc ccagggccgg 120ggagcggccg
cgcaggtgcc tgccctttgc gcctgcgccc agctcg
1661244187DNAArtificial Sequenceprobe/primer/pcr 1244ggtgcgccct
gcgctggcta aagtgcgcaa gcgcgcgagg ctcgggcctt tcaaaccccg 60gcgcgccggc
gccggcgtcg acactgcgca agcccagtcg cgcctctcca gagcgggaag 120agcgctgcgt
tccttagcaa cgagcgtttc ctccagcccc gcctccctcc gccacacaca 180accccgc
1871245222DNAArtificial Sequenceprobe/primer/pcr 1245aatttggtcc
tcctgcgcct gccaagattg tctgagtatt gatcgaaccc aggagttcga 60gatcagcttg
agcaagatag cgagaacccc cgcccctcca cctcgtctca aaaaaaaaaa 120aaaatcgtct
cagtagcgaa tagtctaacg gagaatgaca gggaaattgg tgatcctttc 180tgggcccaag
agttagaaat ggctttgcag gccgggcgcg gt
2221246200DNAArtificial Sequenceprobe/primer/pcr 1246ggcttccgcg
gcgccaatct ccacccgcag tctccgcctc ccgcacctgt ggtccgggcc 60tcacggtttc
agcgccgcga ggcctcacct gctggtcttg gagcctcaag ggaaagactg 120cagagggatc
gaggcggccc actgccagca cggccagcgt ggcccagggc tcgcagcact 180tccggcctct
ctggccccgc
2001247202DNAArtificial Sequenceprobe/primer/pcr 1247gccaggagag
gggccgagcc tgcacaggag cttcctcggt tttccgagcg ccggcccccc 60ttctctgcct
gggaggaggt ggttagagtc ccctgggtgt gtgccccgca gagggagctc 120tggcctcagt
gcccagtgtg cagaccaatg agagccccag agagaaagac ggtcatttcc 180tccctgcatc
ttcccttggg gc
2021248158DNAArtificial Sequenceprobe/primer/pcr 1248cgagcgccgg
ccccccttct ctgcctggga ggaggtggtt agagtcccct gggtgtgtgc 60cccgcagagg
gagctctggc ctcagtgccc agtgtgcaga ccaatgagag ccccagagag 120aaagacggtc
atttcctccc tgcatcttcc cttggggc
1581249203DNAArtificial Sequenceprobe/primer/pcr 1249ggttgcgagg
gcaccctttg gcccgggggc gcgcaggaga gggcaggggc caggggtttc 60ctgggcgagg
gcgcggggac gagcaggaaa aggccggggt gggggtggaa ttcctcggcg 120ggcagggggc
gcatgcgccg ggcaccgtgg ggcgggacgt ggcccgggag gagctggggg 180gactgggtgg
tgcacgtgcg ggc
2031250168DNAArtificial Sequenceprobe/primer/pcr 1250acccggacgc
ggtggcgcgc gcctgtaatc ccagctactc gggagcctga ggcaggagaa 60tcgcttgaat
ccgggaggcg gaggttgcag taagccgaga tcgcgccact gcaccccagc 120ctgggcgaca
gagcaagact cctcggtaaa gacaccactt cgtcaccc
1681251255DNAArtificial Sequenceprobe/primer/pcr 1251cgccgccgag
cctcagccac gcctctgtgc agcggggaag actcctctcg cgccttctca 60gtcagtcacg
gatgatgctg acccagcgct ccggggcttt ctaccaagta atcagtccag 120acaaatgcca
aaacgaccgc cacaaggagg acaacggaag tcccgccgcg accgcgcgtg 180cgcttacgga
aacaccacct ttcggaggcc tcattggctg aaggtcgccg tcgcccaacg 240caggccattc
tgggt
2551252179DNAArtificial Sequenceprobe/primer/pcr 1252gcagcctcaa
cctcctgggg tcaagtgatc atcctggctc aaccacccaa gtagccggga 60ctacgggtgg
ccgccaccat gcccggataa tttttttatt tttgtggaga tgggggtccc 120acgatgttgc
ccagtccagt cttgaactcc tgggctcaag tgatcctccc gcagcagcc
1791253150DNAArtificial Sequenceprobe/primer/pcr 1253cttgccgacc
cagcctcgat cccctgcggc gtccaggtcc caatgcccca acgcaggcca 60cccccggctc
ctctgtggac tcacgaagac aaggtccggc cgctcgggcc gcgagagtcg 120cgccatcacc
accatttttc tggatgccca
1501254255DNAArtificial Sequenceprobe/primer/pcr 1254gcggcgttcg
gtggtgtccc ggtgcagcca cgcgagagta gaagggtgga aaggggaggt 60gcccagtgaa
atggagcctg tcccgtgcac tttcgggcat ttcgagcatc ttgtgggctc 120tcccaagtcg
cggcccctcc tctgagagcc acagtcaggt ctgtcctcag gggtcgaggc 180ggctgcgctg
gggcctcggc ccgggaggag gcggggggca cggcctttcc attttccctg 240ctcccctctg
cagaa
2551255151DNAArtificial Sequenceprobe/primer/pcr 1255ccggactccc
ccgcgcagac caccgtgcca ggacagcccg ctcgggagtc gggcctggaa 60gcaggcggac
agcgtcacct ccccgcagcc gccggctggg acccgcggcc agcctttacc 120caggctcgcc
cggtccctgc ccgcatggcg g
1511256237DNAArtificial Sequenceprobe/primer/pcr 1256ggccccctgc
aagttccgcc tcccgggttc acaccattct cctgcctcag cctccccagc 60agctgggact
acaggcacct gccgccacgc ccggctaatt ttttgtattt ttagtagaga 120cagggtttca
ccatgttagc caggatggtc tcgatctcct gaccttgtga tctgcccgcc 180tcggcctccc
aaagtgttgg gattacaggc gtgagccacc gtgtccagcc tgtaaca
2371257194DNAArtificial Sequenceprobe/primer/pcr 1257gcccagggga
gccctccatt tgtagaatga atgagagtcc aggttatgaa cagtgcctgg 60agtgtaggaa
caccctcctt tgcctctttg acaggtctgc atcataacac tttttttttt 120tttttgagac
agagtctcac tctgtcgccc aggctggagt gcagtggcac gatctcggcc 180ccctgcaagt
tccg
1941258207DNAArtificial Sequenceprobe/primer/pcr 1258ccggctgcag
gccctcactg gttgggtccg cccgcgaggg tgccctgggc ccggtgtctc 60tcctccttct
gaagtttgtt cccatccacc cggcatcacc gaccggtttt atcccgctga 120ggccctggga
gatgggtctg gcgaggctcg taggccgcgg attggctggc tgggtgcagg 180ggggtgcggg
aaggggagga ttttgca
2071259255DNAArtificial Sequenceprobe/primer/pcr 1259gtcacacctg
ccgatgaaac tcctgcgtaa gaagatcgag aagcggaacc tcaaattgcg 60gcagcggaac
ctaaagtttc agggtgagat gcgttgactc gcggtggctc agaagaccca 120cgcgcgagcc
ctggcgcgtt cgggcggccg ggggcccagc tgctctgtgt gacggaggca 180gcttcccctg
cagcgtgtgt gattggggag agtgaaaagg cagcttccac tcgggacccg 240cgctgctgcc
cactc
2551260255DNAArtificial Sequenceprobe/primer/pcr 1260ccctgcgcac
ccctaccagg caggctcgct gcctttcctc cctcttgtct ctccagagcc 60ggatcttcaa
ggggagcctc cgtgcccccg gctgctcagt ccctccggtg tgcaggaccc 120cggaagtcct
ccccgcacag ctctcgcttc tctttgcagc ctgtttctgc gccggaccag 180tcgaggactc
tggacagtag aggccccggg acgaccgagc tgatggcgtc ttcgacccca 240tcttcgtccg
caacc
2551261255DNAArtificial Sequenceprobe/primer/pcr 1261cctgggggag
cgcggtgggg gtaagataag ggatgggggc tccgagggct gggaactgca 60ggaaggaaag
aagcggcggg gccgcccggg tcaaggggcc acgtggggga gggcgggcag 120gcgggaccgg
gaggtcaata actgcagcgt ccgagctgag cccaggggag cgggcgagga 180gaaagaagcc
tcagagcgcc cgggaagcct cgcgcgcctg ggaggcttcc atctcccggg 240acccagctct
cagcc
2551262255DNAArtificial Sequenceprobe/primer/pcr 1262gtggggccgg
gcgagtgcgc ggcatcccag gccggcccga acgctccgcc cgcggtgggc 60cgacttcccc
tcctcttccc tctctccttc ctttagcccg ctggcgccgg acacgctgcg 120cctcatctct
tggggcgttc ttccccgttg gccaaccgtc gcatcccgtg caactttggg 180gtagtggccg
tttagtgttg aatgttcccc accgagagcg catggcttgg gaagcgaggc 240gcgaacccgg
ccccc
2551263234DNAArtificial Sequenceprobe/primer/pcr 1263cgtccaggct
gtgcgctccc cgttctcccc tcctccccac ttctccccac gccttgctcg 60tctcccgccc
tcctccgaca accgctcccc tcaccctcca cccctacccc cgcccctcct 120ccttcctccc
cggcatgcgc catatggtct tcccggtcca gccaagagcc tggaaccacg 180tgacctgccc
atttgtatgc cgcggagcgc tccattccgg cccctttgtg gcca
2341264255DNAArtificial Sequenceprobe/primer/pcr 1264gcgcggcggt
gcagcctctc ccgagcgcgc tgggtcgcct ctgctcggtc tggggtctgc 60caggcgcgat
ccccccggtg cagccgagcc cctccgcaga ctctgcgcag gaaagcgaaa 120ctacccggca
ggagaaaagg cagcgctggc gcccggcccc cttccgcccc caccaatcac 180cgggcggctc
cgcgctcagc caattagacg cggctgttcc gtgggcgcca ccgcctccct 240ctgcgggccg
ctgct
2551265255DNAArtificial Sequenceprobe/primer/pcr 1265aggcggcggc
ggtggcagtg gcacccggcg gggaagcagc agccaaaccc gcgcatgatc 60tcgagagttt
cagcaacatc cagggactgg gctcagcccc ggagcgagag ggtcgtccgc 120tgagaagctg
cgccggagac gcgggaagct gctgccataa ggagggagct ctgggaagcc 180ggaggacagg
aggagacggg agtccagggg cagacgagtg gagcccgagg aggcagggtg 240gagggagagt
caagg
2551266255DNAArtificial Sequenceprobe/primer/pcr 1266gcgcgacccg
ccgattgtgt cgagtcagca gcggcagcgg ggacgcgcga agccatggct 60cccgcccgcg
ctcgggaggg cgccgggggt cctgcgcctc cgggaggttt gtggccgagc 120gcggcgcggc
cccgagcggc cccgcagcgc ccggctcccc gccgctcgct ctccaggcgc 180cgacccgcct
gcgtcgccac cctctcgccg ctccctgccg ccaccttcct cccgcccggg 240tgccgggcgt
ccgct
2551267255DNAArtificial Sequenceprobe/primer/pcr 1267cgcggacgcc
gctctgcacc tgttgccgcc gtcactcatc ccgccaggcg ggcggggccg 60cgcgggtggc
ttggtcagga cctgccattc agcccagtcg ggctccggtg ctcgccccgg 120acggcgcccc
aagcgggtcc cggccccgct gagcacctcc agcagtggca cagcctctgg 180aggggtccgg
gacgaagcca cccgcgcggt agggggcgac ttagcggttt cagcctccaa 240cagccttggg
atcgc
2551268197DNAArtificial Sequenceprobe/primer/pcr 1268tgaacccggg
aggcggaggt tgctgtgagc cgagatggca ccattgcact ccagcctggg 60caacaagagc
gaaactccgt cccccgaaca aaaaattcaa atgggaaaga gaggcagatg 120gcagagaaca
ggggaggggc tgggcaccgt ggctcatgcc tgtaatccca gcactttggg 180aggccaaggc
gggtgga
1971269224DNAArtificial Sequenceprobe/primer/pcr 1269ctcggcggcg
cggggagtcg gaggacgcag ccaagcggcg gcggcgagga gggtcacagc 60cggaaagagg
cagcggtggc gcctgcagac gccgcgcagc ccgggcagcc ccacagcgca 120agctggctgc
cgcggcggcg ggggctttat cggcggcgcc gcgcgggccc ccgccccttc 180ctgccgcccc
cgcccccggc ccgccttgcc ccgccttccc gccg
2241270255DNAArtificial Sequenceprobe/primer/pcr 1270aggcggccac
gggaggggga ggggctggca acggcgccgt gggggcgggg ctcgctttgt 60gcaaggtccg
cgctgattgg gccgtgggcg cgcgggtccc ggcctgcgtc gtgggactgg 120cgtttttggc
gccggctgtg aggggagcgc gggggtggtg gaatcgggcg gtctccggtt 180cgccaatgtg
gctgggtccg taggcttggg cagccttgga gttcctcaga gaccccgcgc 240tcggtcccgg
cacgc
2551271255DNAArtificial Sequenceprobe/primer/pcr 1271gacccgagcg
gggcggagag tggcaggagg aggcgaatct ccgcgctccg gcgaacttta 60tcgggttgaa
gtttctgctg tcgcctcccc tttgcgtgcg gagctgggct ttgcgtgcgc 120cgcttctgga
aagtcggctc cagtcatatc cctgggcgct gcctgcggcc gctcctcccg 180cgcttctcac
ggcacctgac acgcggaggc ggcggccgag ggtggggtgc cggccaccac 240cacccttggc
gtggg
2551272218DNAArtificial Sequenceprobe/primer/pcr 1272agcacctggg
gcggggcgga gcggggcgcg cgggcccaca cctgtggaga gggccgcgcc 60ccaactgcag
cgccggggct gggggagggg agcctactca ctcccccaac tcccgggcgg 120tgactcatca
acgagcacca gcggccagag gtgagcagtc ccgggaaggg gccgagaggc 180ggggccgcca
ggtcgggcag gtgtgcgctc cgccccgc
2181273253DNAArtificial Sequenceprobe/primer/pcr 1273ccgctcgggg
gacgtgggag gggaggcggg aaacagctta gtgggtgtgg ggtcgcgcat 60tttcttcaac
caggaggtga ggaggtttcg acatggcggt gcagccgaag gagacgctgc 120agttggagag
cgcggccgag gtcggcttcg tgcgcttctt tcagggcatg ccggagaagc 180cgaccaccac
agtgcgcctt ttcgaccggg gcgacttcta tacggcgcac ggcgaggacg 240cgctgctggc
cgc
2531274255DNAArtificial Sequenceprobe/primer/pcr 1274accgccagcg
tgccagcccc gcccctaccc accagtgtgc cagccccgcc cttccccacg 60tcgccgcgcg
cccgggggcg gggcctggcg cgcaccgccc gcgcacggcg aggcgcctgt 120tgattggcca
ctggggcccg ggttcctccg gcggagcgcg cctcccccca gatttcccgc 180cagcaggagc
cgcgcggtag atgcggtgct tttaggagct ccgtccgaca gaacggttgg 240gccttgccgg
ctgtc
2551275255DNAArtificial Sequenceprobe/primer/pcr 1275attcttggcc
gggtgcggtg gctcacgcct gtaatcccag cactttggga ggctgaggtg 60ggtggatcac
ctgaggtcaa gagttcgaga ccagcctggc caacatggtg aaaccccgtc 120tctactaaaa
atacaaaaat tagccgggcg tggtggtggg cacctgtaat cccagctact 180cagaaggttg
aggcaggaga atcgcttgaa cccgggagaa ggaggttgca gtgagccgag 240atcgcgccat
tgcac
2551276255DNAArtificial Sequenceprobe/primer/pcr 1276cgcttcccgc
gagcgagccg cccagagcgc tctgctggcg gcagaggcgg cggcgaggct 60ggcgcgcttg
ccgccgtctg ctcgccccgc ggaggcgacc tgggcagacg ctgctgggaa 120ctttgaaaaa
ctttcctgga gccaggcttg ccgcagattc gaggggaagc ctcggccgcg 180tcccaccccc
tcccaaatcc gagtctgcgg agcctgggag ggctcccagc ttcctatcca 240aaccgcgccg
gggca
2551277255DNAArtificial Sequenceprobe/primer/pcr 1277agccggcgct
ccgcacctgc ccctcagcgc ctgccgtccg ccccaccgcc gcggcgcccc 60gcactcctgg
gcgggccagg ggagcgggct gggcgggcga tcgggcacgc gggatccctg 120gtcgagcccc
ctttcctccc gggtccacag cgagtcccct gaggaaggag ggacctggga 180ggaaaccacc
ctctggggcg gctccggcct ccagcccccg ccccgtctca tcgcgccggg 240cgcccggtgc
gcctg
2551278255DNAArtificial Sequenceprobe/primer/pcr 1278cggagcgcgc
ttggcctcac aggacagtgg gtgtggctgg ggtgacgggg cagggtgggg 60aagactggcc
taacaccagc gccctctgcc ccatggctgg ccagggaccc gcgagtccct 120ggacacgcac
tggccaacgc cagaccccat ctcatcgggt ggggaagtcg cggggacact 180gtcagggcgc
cgaagtccgg acccggctca gaggcggtgg caggtgaatt gctgcggcgc 240cgggtagggg
cgggc
2551279255DNAArtificial Sequenceprobe/primer/pcr 1279ggcctcgagc
ccacccagac ttggccaagc agccctcggc cagaccaagc acactccctc 60ggaggcctgg
cagggcccct gctttaccct gccccccacg ccccgccccg acccgaccct 120cccaggcagc
ccctcagcgt ctgccgcccg cccttgggcc tttccggcca gcccctccct 180ccgcccacgc
ccagaacagc ccatgctctt ggaggagagc aggtgggctt gaccgggact 240ggcccctcac
cgcgg
2551280255DNAArtificial Sequenceprobe/primer/pcr 1280gccgcgccgt
aagggccacc cccagaggcc gaggaggtgg ggctggcctg gctttctggc 60caggtggggc
ttgtccaacc ccacaaacat cagggctcac cctggatgtg gaagagaagg 120agcgaccccc
aaaacgaagc ggctggatct gaccttccaa ggcctgttgg cgacgcaggg 180cccccaggag
gcagagcgcg cgcctggccc gggcgatggg cctcccgtcc ccccagggct 240gcctccccgc
cggtg
2551281236DNAArtificial Sequenceprobe/primer/pcr 1281cggcggtggc
ggtgggtcgg cgaccggcgg gccgaagact ggaagcccgg gccgctgagg 60ctccgcagcc
ccctccgcgc cgccccggcc cgcccccgcc gcgccgcccc ttccctcccc 120gcgcccgccc
cttcttcccc gcagggtcag cgctggggct ccggccgtag agccacgtga 180ccctggcagg
ccctgctcgc ggggcttggc gacaaggacg cacgacacgg ggcggc
2361282194DNAArtificial Sequenceprobe/primer/pcr 1282acctgcccag
ttactgcccc actccgcgga ataagctctt acccaccgct cctcttcttc 60aattcatttc
tgttatggaa ctgtcgcggc actacaaagt ctctatgtag ttataaataa 120acgttatctg
gaagagcagc cgacaacaac tttcaagatc tccaattccc cgaccccaca 180ctccaactga
cgcc
1941283255DNAArtificial Sequenceprobe/primer/pcr 1283ccagcgcccg
agccgtccag gcggccagca ggagcagtgc caaaccgggc agcatcgcga 60ccctgcgcgg
ggcaccgagt gcgctgctgt gcgagtggga tccgccgcgt ccttgctctg 120cccgcgccgc
caccgccgcc gtctcccggg gcccccgcgc acgctcctcc gcgtgctctc 180gcctaccgct
gccgaggaaa ctgacggagc ccgagcgcgg cggcggggct cagagccagg 240cgagtcagct
gatcc
2551284233DNAArtificial Sequenceprobe/primer/pcr 1284ctgctgctgc
ccgcgtccga ggctcgcggg cggcgggccc gggtgagtgc acacccggcg 60cgctgccggg
ctcccggatg tgtcaccttg tcccgctgca gccgagatgc cgggggagcg 120gggccttcca
caccccctcc gtgggtgtgt ggtgagtgtg ggtgtgtgcg cgtctcctcg 180cgtccctcgc
tgaggtgcct actgtgtctg catgggttgg gtcccgcgcg atg
2331285182DNAArtificial Sequenceprobe/primer/pcr 1285actgcttagg
ccacacgatc ccccaagcct gggctgccag acgtcgccat cattgttcca 60tgcagatcat
gcccatcctg tgcagaaggt cactatagga acacatggca cagggaagaa 120aacgcccata
gaaattcaca tggtgcttgt ctaaaccgaa ggcaggtgag atccacccac 180tg
1821286255DNAArtificial Sequenceprobe/primer/pcr 1286gccggacgcg
cctcccaagg gcgcgggtcc gaggcgcaag gcgagctgga gaccccgaaa 60accagggcca
ctcggggagt gtcaggaagc acgactgggc gccttaggac gtccgggcag 120acgcggcccc
cgaggagccc cagaggagcc ccagaggagc cgcctgaccc ggccccgacg 180tgcgcgatcg
agcccgggct cgccaaagcc cccgcgcccc tccggcccgg acaggccgag 240tggacattgt
cggag
2551287152DNAArtificial Sequenceprobe/primer/pcr 1287cggccagggt
gccgagggcc agcatggaca ccaggaccag ggcgcagatc accttgttct 60ccatggtggc
cattgcctcc tctctgctcc aaaggcgacc ccgagtcagg gatgagaggc 120cgcccgagcc
ccggatttta tagggcaggc tc
1521288243DNAArtificial Sequenceprobe/primer/pcr 1288ccgcccgccc
cacagccagc ggctccgcgc cccctgcagc cacgatgccc gcggcccggc 60cgcccgccgc
gggactccgc gggatctcgc tgttcctcgc tctgctcctg gggagcccgg 120cggcagcgct
ggagcgaggt aagcgccccg aggggcgggg cgggcagggg gcaaagttgc 180cgggagagcg
gggcagccag gggtcggggc tgaccagggc gactcaggca ccacccgccg 240gga
2431289255DNAArtificial Sequenceprobe/primer/pcr 1289gcgccccagc
ccacccactc gcgtgcccac ggcggcatta ttccctataa ggatctgaac 60gatccggggg
cggccccgcc ccgttacccc ttgcccccgg ccccgccccc tttttggagg 120gccgatgagg
taatgcggct ctgccattgg tctgaggggg cgggccccaa cagcccgagg 180cggggtcccc
gggggcccag cgctatatca ctcggccgcc caggcagcgg cgcagagcgg 240gcagcaggca
ggcgg
2551290244DNAArtificial Sequenceprobe/primer/pcr 1290cgtgctgggc
gcaggggaaa cagcgacgca cgggacaaaa caagcttgca gaacagcagg 60gggcagagag
gctgtaaaca agccaacggg ctgcacttgt agcggttctg ttgccaatgc 120cattcagacc
ccagtccggg attccgcgct cggggtgcga gaggccgctc ccggggaggg 180gcgggacccg
ggcggggcgg gaggggcggg gcgcccgggc ctattaggtc ccgcgccggc 240agcc
2441291179DNAArtificial Sequenceprobe/primer/pcr 1291gcgcacgcgc
acagcctccg gccggctatt tccgcgagcg cgttccatcc tctaccgagc 60gcgcgcgaag
actacggagg tcgactcggg agcgcgcacg cagctccgcc ccgcgtccga 120cccgcggatc
ccgcggcgtc cggcccgggt ggtctggatc gcggagggaa tgccccgga
1791292226DNAArtificial Sequenceprobe/primer/pcr 1292ggtgagtgcg
gcccggggag gggaggggac cagggcgacc ggagccccca gcgatcccgc 60ctggagcggc
cgccaagctc cctcgggcac ccgggttcag cgggtcccga tccgagggcg 120tgcgagctga
gcctcctgga ccgggtccgc cgcggacctc ggcctgtcac ctgaaggtgc 180cgcgtggtct
ctgaggacgt ctgtcgacga gcaggggccg ccgcca
2261293255DNAArtificial Sequenceprobe/primer/pcr 1293ggccgagagg
gagccccaca cctcggtctc cccagaccgg ccctggccgg gggcatcccc 60ctaaacttcg
gatccctcct cggaaatggg accctctctg ggccgcctcc cagcggtggt 120ggcgaggagc
aaacgacacc aggtagcctg ccgcggggca gagagtggac gcgggaaagc 180cggtggctcc
cgccgtgggc cctactgtgc gcgggcggcg gccgagcccg ggccgctccc 240tcccagtcgc
gcgcc
2551294243DNAArtificial Sequenceprobe/primer/pcr 1294ccagcgccgc
aacgcccagg gtgtggggcg gagtaagatg tgaaacctct tcagctcacg 60gcaccgggct
gcaaccgagg tctgaatgtt gcgaaagcgc cccagacgcc gccgctgctt 120tccggccgcc
ccctcggcta cagccgccat ttccacgctc caccaatcaa atccattctc 180gaggaagacg
caccgccccc acacgccccg accaatcgct cgcgctctgg ttgcgctggc 240gcc
2431295250DNAArtificial Sequenceprobe/primer/pcr 1295ccacaagcgg
gcgggacggc tggagactgc cgggacagcg gctgccggtg ctacgcgggt 60ggtgggcggc
ccggaaatga gcgccctccg gggacagggg gctctgcggg gcggcgacag 120ctggattccc
agcgcgcaca aagcctgcgg gaggatccat tgtagcggtc gctcctcccc 180gcttagcgag
ggcgggcgca ggggcggggg atgtcgaagg gtcaggtttg tccaggccgc 240gccaccttcg
2501296249DNAArtificial Sequenceprobe/primer/pcr 1296cctctggaca
acggggagcg ggaaaaaagc tacgcaggag cttggatcgg gcgaagctcg 60cgggaaaccg
ctctgggtgc gcaggacaaa gacgcgggga cagcggggag ggccggccgc 120agcctgccgg
gctgccccca cggcgcggaa cgcgcgcagc aacctccacc aggcctccgc 180gtctggactc
ccgccctgcc tctgggcctc ctccgcccac cggcggcgtc tcccgcgaag 240cccgctggg
2491297178DNAArtificial Sequenceprobe/primer/pcr 1297gcgggttccc
ggcgtctcca aagctaccgc tgccggaaga gcgcggcgcc cgacggagcc 60gtgtggaggc
caaaactcct cccggaagcc gctactggcc ccgcttgcca ggcccagcgt 120cttttctgca
taggacccgg gggaagccgg gaagccgtta gggggcgggg caagcggg
1781298255DNAArtificial Sequenceprobe/primer/pcr 1298cgccgcccgt
cctgcttgct gctgggtccg gttgccgagg cggaaaagtc gcaagctcct 60tcagtcagtc
ttcttcctca gctccttccg actccggaag ctgctgtttg ggcccaggct 120ccctgcatcc
gagagccctg ggctgactgc ttctgaggcc ccgccccact actgcctgca 180gcgggcttcc
ttactccgcc tgctggttcc tactggagga gaggccagca tgcttgtcag 240gcaccagcag
gtgga
2551299255DNAArtificial Sequenceprobe/primer/pcr 1299cgcgcggccc
tcctgcacct cggccagcac tcgtagcgcg ctgggcgagc cggaccggaa 60gttgaagaag
tgaagcgccg cgcgcgccgc ctgctgcagg agcctgcgcg ggaccccagc 120atcctgaggc
tgcccagggt cgtcggggtc cccggacccc gcgggcgccg ccaccggggc 180gagcaacagc
agcagcgcga gcagcggggc ggtggggcgc gggcccctgg gcccggacca 240gggagcaggc
agccg
2551300255DNAArtificial Sequenceprobe/primer/pcr 1300ggcggggcaa
gccctcacct gcgccaatca gggtgcggag taggccccgc aggcgcctca 60cccattgagg
gggcgggctg acagagcaga ggaaggaagg gggtgagggg cctgtggtgg 120ggatcctggg
gctgtcgggc tgagtatgcc gtgtgggtgg agaggaagcc tcggggaaat 180cgcccaggtg
aagggagggc ttggtgtggg gacttgcact gggcagaggg gcagcttccc 240tgagagcagc
taagc
2551301129DNAArtificial Sequenceprobe/primer/pcr 1301ggagcgcccc
ctggcggttt cagggcggct caccgagagg gcgccgggag cgcccggttg 60gggaacgcgc
ggctggcggc gtggggacca cccggcagga ccaggcacca gagctgcgtc 120cctgctcgc
1291302255DNAArtificial Sequenceprobe/primer/pcr 1302cgaatggttc
gcgccggcct atatttaccc gagatcttcc tcccggacgg caaggatgtg 60aggcaggcga
gccggacgcc gctcgcagca ccggagaggg cgcactgcaa aggcgggcag 120cagaccgtgg
agagcccggg agcggagctg gacaccgcct cggagggaag aaatgaggta 180gcggcggttc
ccggacccgg ccatgcccgt cccctgttct cggagcccag cgccgtctcg 240gccaggccag
cccgg
2551303255DNAArtificial Sequenceprobe/primer/pcr 1303ttccgccggc
tgggccctcc gtctaccccc agcggcgagg ggcggggccg gcgcgggcgc 60agaggcgtca
cgcactccat ggtaacgacg ctcggcccga agatggcggc cgaatggggc 120ggaggagtgg
gttactcggg ctcaggcccg ggccggagcc ggtggcgctg gagcgggtct 180gtgtgggtcc
gaagcgtttt actcctgttg ggcgggctcc gggccagcgc cacatctact 240cccgtctcct
tgggc
2551304255DNAArtificial Sequenceprobe/primer/pcr 1304ctccgggtcc
cccgcgtgcc cggcccgccc cggcccgctt cccgggcgct gtcttactcc 60gggcccgggg
cgcctgctcc gcgccgcgtc tgcgaaccgg tgacctggtt tcccctccag 120ccctcacggc
tgtccgactt gcgcggcggt ggcggcggcg gccaagagca ggcaaacccg 180gctccgccag
gggcgcagcg aggaaatggc ctcctggcgc acaccccgcc gccgccgcca 240gccatcgcca
ccgcc
2551305255DNAArtificial Sequenceprobe/primer/pcr 1305cagcccgggt
agggttcacc gaaagttcac tcgcatatat taggcaattc aatctttcat 60tctgtgtgac
agaagtagta ggaagtgagc tgttcagagg caggagggtc tattctttgc 120caaagggggg
accagaattc ccccatgcga gctgtttgag gactgggatg ccgagaacgc 180gagcgatccg
agcagggttt gtctgggcac cgtcggggta ggatccggaa cgcattcgga 240aggctttttg
caagc
2551306255DNAArtificial Sequenceprobe/primer/pcr 1306ggcggagaga
ggtcctgccc agctgttggc gaggagtttc ctgtttcccc cgcagcgctg 60agttgaagtt
gagtgagtca ctcgcgcgca cggagcgacg acacccccgc gcgtgcaccc 120gctcgggaca
ggagccggac tcctgtgcag cttccctcgg ccgccggggg cctccccgcg 180cctcgccggc
ctccaggccc cctcctggct ggcgagcggg cgccacatct ggcccgcaca 240tctgcgctgc
cggcc
2551307255DNAArtificial Sequenceprobe/primer/pcr 1307cctcacccca
gccgcgaccc ttcaaggcca agaggcggca gagcccgagg cctgcacgag 60cagctctctc
ttcaggagtg aaggaggcca cgggcaagtc gccctgacgc agacgctcca 120ccagggccgc
gcgctcgccg tccgccacat accgctcgta gtattcgtgc tcagcctcgt 180agtggcgcct
gacgtcgcgt tcgcgggtag ctacgatgag gcggcgacag accaggcaca 240gggccccatc
gccct
2551308255DNAArtificial Sequenceprobe/primer/pcr 1308cgatgacggg
atccgagaga aaggcaaggc ggaaggggtg aggccggaag ccgaagtgcc 60gcagggagtt
agcggcgtct cggttgccat ggagaccagg agctccaaaa cgcggaggtc 120tttagcgtcc
cggaccaacg agtgccaggg gacaatgtgg gcgccaactt cgccaccagc 180cgggtccagc
agccccagcc agcccacctg gaagtcctcc ttgtattcct ccctcgccta 240ctctgaggcc
ttcca
2551309240DNAArtificial Sequenceprobe/primer/pcr 1309ccgcaggccg
cgggaaaggc gcgccgagtc ctgcagctgc tctcccggtt cgggaaacgc 60gcggggcggg
ggcgtcgggc ttgggacagg ggaggatacc agggccacct tccccaaccc 120aggccgcggg
ggcccggcct ccccgatgca gaccacagcg ccctcacggg ctgccctcag 180gccgcgcagc
gggcagccgc cagccgtcac cccggggagc gtccgtgggg tgcccaggca
2401310206DNAArtificial Sequenceprobe/primer/pcr 1310gccccagtcc
acctctggga gcgcctgcgc cgctccgcgg agagtccgtg gatctcacag 60tgagcgagtt
gggacccagg gaggggaaaa gagaggaccc cggcgagcca ttgctggggc 120ggcgggctgg
agggttatct gggaagtcag ccccggcctc ggtcctctcc acgttgctgc 180ctacgcgtgc
tgcccggacg tagggc
2061311206DNAArtificial Sequenceprobe/primer/pcr 1311cttggccgcc
cccgggatgg ggcgaggggt tcccgagggc ttgggagggc ggcttgggag 60agagctccgg
ctccggaacg aggtgtcctg ggaacactcc cgggtctgta acttcggaca 120aatcacgctc
gctttcccgg cctcagtgtg ccgttctgta acttgggtct aaccccggct 180cgcacacacg
gcggggacgc gcacag
2061312247DNAArtificial Sequenceprobe/primer/pcr 1312cctccatgcg
caatcccaag ggcggagagg aatttcagca gctacgagca acagaaagga 60aacgagagag
tagccagact ctccgcgcat ggagccgacg gcacccacca gcacaccgcc 120ggcgccccca
gccactactg cacgtccgcc cccgccccgc cccgctccgc ccggcgcacc 180tgatgcccaa
actggttgca cgggaagccg agcaccacca ggccccgggg tccgaggcgc 240cgctgca
2471313255DNAArtificial Sequenceprobe/primer/pcr 1313gcggcgactg
cgctgcccct tggctgcccc ttccgctctc gtaggcgcgc ggggccacta 60ctcacgcgcg
cactgcaggc ctttgcgcac gacgccccag atgaagtcgc cacagaggtc 120gcaccacgtg
tgcgtggcgg gccccgcggg ctggaagcgg tggccacggc cagggaccag 180ctgccgtgtg
gggttgcacg cggtgccccg cgcgatgcgc agcgcgttgg cacgctccag 240ccgggtgcgg
ccctt
2551314255DNAArtificial Sequenceprobe/primer/pcr 1314gggcttgcct
ccccgcccct accttccagg atgttgacag ctgggaatga aaggcagagg 60gagggagcgc
ggggccggag cgccgcctgg gagtgtgccc actgggtggc cgcctgaggg 120acccgggaac
agagggcaaa aagtcctgtg accggacaga gcagagcggg gactgcaatt 180cccagaagac
cccacggtag gggcgggacc caagatggcc gcttgtctgg ggacaggagc 240ggaggccaat
acgcg
2551315239DNAArtificial Sequenceprobe/primer/pcr 1315gcggcccaag
gagggcgaac gcctaagact gcaaaggctc gggggagaac ggctctcgga 60gaacgggctg
gggaaggacg tggctctgaa gacggacagc cctgaggaac cgcggggcgc 120ccagatggaa
ctcgttagcg ccccgagtgc agacaatccc ggagggggaa aggcgagcag 180ctggcagaga
gcccagtgcc ggccaaccgc gcgagcgcct cagaacggcc cgcccaccc
2391316255DNAArtificial Sequenceprobe/primer/pcr 1316ctgcgcggct
ggcgatccag gagcgagcac agcgcccggg cgagcgccgg ggggagcgag 60caggggcgac
gagaaacgag gcaggggagg gaagcagatg ccagcgggcc gaagagtcgg 120gagccggagc
cgggagagcg aaaggagagg ggacctggcg gggcacttag gagccaaccg 180aggagcagga
gcacggactc ccactgtgga aaggaggacc agaagggagg atgggatgga 240agagaagaaa
aagca
2551317174DNAArtificial Sequenceprobe/primer/pcr 1317caccgcctcc
ggacccctcc ctcatcagaa agcccaggct ccgctcgtag aagtgcgcag 60gcgtcaccgc
gcatccagga gccacgtgtc aggagtcacg tgtcaggtgt cacgtgtcag 120gcgtcacgtg
gctggaggcc gttggagcgc ctgcgcagct tttccgcacg cgcc
1741318229DNAArtificial Sequenceprobe/primer/pcr 1318ccttccagcc
accccgccct gggcgcctct ggcgcgctct gatgacgctc caagggaaga 60ggaagtgggg
atcggcgagc gggtgggtgc gcctcgggcc gcgggactcg cagccgccac 120cgccgctgcc
gcctctacgg ccgcgtcaga actgaagaga ggaaggggag gagccgagtc 180gagcctaagc
tgccgcccga tcttacccct gacccgaggg cggcctgga
2291319255DNAArtificial Sequenceprobe/primer/pcr 1319cgggacaccg
ggaggacagc gcgggcgagg cgctgcaagc ccgcgcgcag ctccgggggg 60ctccgacccg
ggggagcaga atgagccgtt gctggggcac agccagagtt ttcttggcct 120tttttatgca
aatctggagg gtggggggag caagggagga gccaatgaag ggtaatccga 180ggagggctgg
tcactacttt ctgggtctgg ttttgcgttg agaatgcccc tcacgcgctt 240gctggaaggg
aattc
2551320198DNAArtificial Sequenceprobe/primer/pcr 1320cctgggttcc
cggcttctca gccactggag ctgccagtct caaattaccg gaggggaggg 60agggcaggcc
tggatctcag gatctcggtc ctgcatgcaa tgcaagcctg agctctcccg 120ccataaggct
gcagcggtgt gggctccttg tgcccagatc ctttgtattc atagggggaa 180gtggaagacc
acgctgcc
1981321255DNAArtificial Sequenceprobe/primer/pcr 1321ggcggtgatg
ggcggaggag gaggaagagg aggaggagga agaggaggag ggggaaaacg 60atgacaggag
ctggggccgg ggggggaaat tggggggacg cgggcggagg cgcggtgcgc 120gccggcggtg
gcgggcacga gccccgcgcc tggaggagga ggagtcaggc cgggtaggag 180ggctaaggag
gttcccggga aggcagggcc ccccctcccc cccctccccc ccccccacac 240acacacactc
ccctg
2551322255DNAArtificial Sequenceprobe/primer/pcr 1322cagcccgccc
ggagcccatg cccggcggct ggccagtgct gcggcagaag ggggggcccg 60gctctgcatg
gccccggctg ctgacatgac ttctttgcca ctcggtgtca aagtggagga 120ctccgccttc
ggcaagccgg cggggggagg cgcgggccag gcccccagcg ccgccgcggc 180cacggcagcc
gccatgggcg cggacgagga gggggccaag cccaaagtgt ccccttcgct 240cctgcccttc
agcgt
2551323242DNAArtificial Sequenceprobe/primer/pcr 1323gcccgcgggg
gaatcgcagt gagcagcgcg gggcgaggcc gccgcggacg ccccgtcgga 60tgtgcccttc
gctgggccga gcggcgcagg gttggagagg gaagcgctcg tgcccacctt 120gctcgcaggt
gcccttgctg acctgggtga tggccttctc cccgcggctc tcggccctct 180ggctggcggc
gcgcagctgg cagccgctcg ggtaggtggt gccgtcgctg ccgcacaccg 240gg
2421324186DNAArtificial Sequenceprobe/primer/pcr 1324gccgcgagcc
cgtctgctcc cgccctgccc gtgcactctc cgcagccgcc ctccgccaag 60ccccagcgcc
cgctcccatc gccgatgacc gcggggagga ggatggagat gctctgtgcc 120ggcagggtcc
ctgcgctgct gctctgcctg ggtaagttct ccccctctgg cttccggccg 180ccccaa
1861325253DNAArtificial Sequenceprobe/primer/pcr 1325gcggccccct
cccggctgag cctataaagc ggcaggtgcg cgccgcccta cagacgttcg 60cacacctggg
tgccagcgcc ccagaggtcc cgggacagcc cgaggcgccg cgcccgccgc 120cccgagctcc
ccaagccttc gagagcggcg cacactcccg gtctccactc gctcttccaa 180cacccgctcg
ttttggcggc agctcgtgtc ccagagaccg agttgcccca gagaccgaga 240cgccgccgct
gcg
2531326255DNAArtificial Sequenceprobe/primer/pcr 1326cagcagggcg
cggcttccct ttcccggggc ctggggccgc aatcaggtgg agtcgagagg 60ccggaggagg
ggcaggagga aggggtgcgg tcgcgatccg gacccggagc cagcgcggag 120cacctgcgcc
cgcggctgac accttcgctc gcagtttgtt cgcagtttac tcgcacacca 180gtttccccca
ccgcgctttg ggtaagttca gcctcccggc gcgtccccgc gagcctcgcc 240cacagccgcc
tgctg
2551327255DNAArtificial Sequenceprobe/primer/pcr 1327ccgcagcacg
ctcggacggg ccaggggcgg cgacccctcg cggacgcccg gctgcgcgcc 60gggccgggga
cttgcccttg cacgctccct gcgccctcca gctcgccggc gggaccatga 120agaagttctc
tcggatgccc aagtcggagg gcggcagcgg cggcggagcg gcgggtggcg 180gggctggcgg
ggccggggcc ggggccggct gcggctccgg cggctcgtcc gtgggggtcc 240gggtgttcgc
ggtcg
2551328199DNAArtificial Sequenceprobe/primer/pcr 1328gcggagtgcg
ggtcgggaag cggagagaga agcagctgtg taatccgctg gatgcggacc 60agggcgctcc
ccattcccgt cgggagcccg ccgattggct gggtgtgggc gcacgtgacc 120gacatgtggc
tgtattggtg cagcccgcca gggtgtcact ggagacagaa tggaggtgct 180gccggactcg
gaaatgggg
1991329255DNAArtificial Sequenceprobe/primer/pcr 1329gcgcgggggc
aggtgagcat gcgaaggttg gaggccgcgc cccttgctga ggcgcagctg 60gctgctcttt
tcgggccggc atacgcgcgc agccgcagct gaggtcaccc cgctgaggtg 120gtggggaggg
gaatggttat tcttgaggca ccgcatctct tgaggaggaa agagccggaa 180acacctggtc
tctcaagcag gtacagcccg cttctcccca gcaccccggt gtgggcttcc 240caaggtcctg
cctga
2551330178DNAArtificial Sequenceprobe/primer/pcr 1330ggcgcggggg
caggtgagca tgcgaaggtt ggaggccgcg ccccttgctg aggcgcagct 60ggctgctctt
ttcgggccgg catacgcgcg cagccgcagc tgaggtcacc ccgctgaggt 120ggtggggagg
ggaatggtta ttcttgaggc accgcatctc ttgaggagga aagagccg
1781331152DNAArtificial Sequenceprobe/primer/pcr 1331agtgacgggc
ggtgggcctg gggcggccag cggtgactcc agatgagccg gccgtccgcg 60ttcgcgccgc
ggcggtgcgg ttgtcgcgga tcagcaggat cggagtgcgg ggctgctggg 120cggaggcgtt
ggctgcacca gggacggcgg cg
1521332255DNAArtificial Sequenceprobe/primer/pcr 1332ggcgaccctt
tggccgctgg cctgatccgg agacccaggg ctgcctccag gtccggacgc 60ggggcgtcgg
gctccgggca ccacgaatgc cggacgtgaa ggggaggacg gaggcgcgta 120gacgcggctg
gggacgaacc cgaggacgca ttgctccctg gacgggcacg cgggacctcc 180cggagtgcct
ccctgcaaca cttccccgcg acttgggctc cttgacacag gcccgtcatt 240tctctttgca
ggttc
2551333255DNAArtificial Sequenceprobe/primer/pcr 1333cgcggcagcc
cgggtgaatg gagcgaggcg gcaggtcatc cccgtgcagc gcccgggtat 60ttgcataatt
tatgctcgcg ggaggccgcc atcgcccctc ccccaacccg gagtgtgccc 120gtaattaccg
ccggccaatc ggcggcgtcg cgcggccccg ggagtcggct cgggctaagc 180tggccagggc
gtctccaggc agtgaaacag aggcggggtc ggcgggcgat tagcggccga 240ggcacgctcc
tcttg
2551334250DNAArtificial Sequenceprobe/primer/pcr 1334ggcgagcgag
cgggaccgag cggggagcgg gtggaggcgg cgccacggcg cgcacacact 60cgcacacacg
cgctcccact ccacccccgg ccgctccccg cccgaggggc cgcgcggcgg 120ccgcggggaa
cgatgcaacc tgttggtgac gcttggcaac tgcaggggcg cccgcggtcc 180ctgcccccac
gccctccgcg cgggccccgc caccccggcc ccgacggcgc ctgcacgccc 240gcgtcccctg
2501335206DNAArtificial Sequenceprobe/primer/pcr 1335ggggcagtgc
cggtgtgctg ccctctgcct tgagacctca agccgcgcag gcgcccaggg 60caggcaggta
gcggccacag aagagccaaa agctcccggg ttggctggta aggacaccac 120ctccagcttt
agccctctgg ggccagccag ggtagccggg aagcagtggt ggcccgccct 180ccagggagca
gttgggcccc gcccgg
2061336255DNAArtificial Sequenceprobe/primer/pcr 1336cgctggcatt
cgggccccct ccagacttta gcccggtgcc ggcgccccct gggcccggcc 60cgggcctcct
ggcgcagccc ctcgggggcc cgggcacacc gtcctcgccc ggagcgcaga 120ggccgacgcc
ctacgagtgg atgcggcgca gcgtggcggc cggaggcggc ggtggcagcg 180gtaaggaccc
ttccctcgcc ctgcgcctct ggacctgcag gtgctcgggc gcggcccagg 240ccgccccctg
tctga
2551337213DNAArtificial Sequenceprobe/primer/pcr 1337gagccgtgat
ggagccggga ggagaggcgc atcctcagca gagcttccct cccttgcaca 60cgagctgacg
gcgtgaacgg gggtgtcggg gttggtgcaa ctatagaagg gaaaggctgg 120gcgggggtca
cacatacctc agtggcaggc aggcaggcgg caggcagagc gcgctctccg 180ggcagtctga
aggaccgcgg gaatgtggag ggg
2131338185DNAArtificial Sequenceprobe/primer/pcr 1338gccagggtgt
cttggctctg gcctgagtcg ggtatgtgaa agccttttgg ggcaggaagg 60ggcaaagtga
tacctggccg tcccaccctc tggtcccaga aggagctctc gctggagcca 120ggcagcctcc
agtccccctc ctttcagcct tgtcattctc tgcatcctgc ccaggccaca 180aagga
1851339175DNAArtificial Sequenceprobe/primer/pcr 1339cggctccggc
ggggaaggag gcgggctgcg gctgcggctg gggctgaagc tggggctggg 60gttgggggac
tgcccggggc ttagatggct ccgagcccgt ttgagcgtgg tctcggactg 120ctaactggac
caacggcaac tgtctgatga gtgccagccc caaaccgcgc gctgc
1751340255DNAArtificial Sequenceprobe/primer/pcr 1340gccagggtgc
cgtcgcgctt ggcgccgtcc agggcggcgc tgcgctcgtc cagcaacacc 60acggcgtggt
aggcgccggc cagcaggcgg ccgcggagct cggcgttggg cacgatgtgc 120tccaggccca
tggcgccctt ggcccggcgc cgcacgatgg tgctgaagcg cacgttgaca 180gagccggcga
tgtggccggc gttgaaagcg aagaaggagc ggcagtccag cagcaggcat 240tgcgccgctc
gctcc
2551341217DNAArtificial Sequenceprobe/primer/pcr 1341cggctcggtc
ctgaggagaa ggactcagcc gcggctgcgg gacccgggca ccgggaggcg 60gtggcggcgg
cggcggcggc agcagcggcg acagcagagg aggaagagga ggaagaagga 120aagaaaaaga
agaaccagga ggagtcctca acaacgacag cggggactgc gggaccaggg 180taaagcggcg
acggcggcga cggcccagca accgtga
2171342255DNAArtificial Sequenceprobe/primer/pcr 1342cgcggggaac
ctgcggctgc ccgggcaagg ccacgaggct tcttataccc ggtcctcgcc 60cctccagcgc
cggcctcgcc cgcgctcctg agaaagccct gcccgctccg ctcacggccg 120tgccctggcc
aacttcctgc tgcggccggc gggccctggg aagcccgtgc ccccttccct 180gcccgggcct
cgaggacttc ctcttggcag gcgctggggc cctctgagag caggcaggcc 240cggcctttgt
ctccg
2551343255DNAArtificial Sequenceprobe/primer/pcr 1343ccgccgctgc
tttgggtggg gggctgacag ggctgcgcgc gtcgcgctct tggctggggc 60tgcgcgggcc
cggggcgctg cgggcggctc agcggcagct gccgcgctct gcgcctcctc 120tgggcgcact
gcctgggagc acgagactgg tttgtctgat gctgctgccg gagctgaggt 180cttgcctgga
gatccgaacg agacaccacg tcaaccggcg cggggagtcc cgtgaagaca 240tgagggcgcc
aggag
2551344255DNAArtificial Sequenceprobe/primer/pcr 1344acctgagccc
gcgggggaac ccccccccca cccccgggga acccccccca cccccgccgc 60cccccgcctg
caagttgtta ccagtaaata aaagggatcc tattttagca agccacacag 120cattagaggg
caaataatag tttggtggca ggagagcgat gagacgggaa agtgtggggc 180aaagcttaca
gtcattggtc cagattctaa ctggcctgtt agccaaaaag taaggttttc 240tttacctccg
tgttg
2551345255DNAArtificial Sequenceprobe/primer/pcr 1345aacgccggcc
tcaccggcag acgcgcgccc tcctcccaga tgcgcaggtg accccggcgg 60gcggcgcggg
aaagggaaga gctccgcgag gccgcgcggg ggggaagcgg gagaagccgc 120tcttcctatt
ccactcgcag tctgcgtgtg ggggaaacga gtgcccggcg tatgaaacgc 180ctaacttcgc
gaaataaaga gagacgtata aaagttcaag aattctgtcc agactcaagg 240gccctttctc
attta
2551346184DNAArtificial Sequenceprobe/primer/pcr 1346ccgtggtccc
agcgctcctg ctatttgcat tccaaagcag acacctcatg cgctcaaccc 60cgcccgcagg
cggctcccgc agtctaaggg acctggcgcg agtccgggaa gcggagggcg 120cagctgcgca
gggaaggggg ccgggggcgg gaccagggcg cgcgttccgg tcccggggcg 180tggc
1841347255DNAArtificial Sequenceprobe/primer/pcr 1347tgcgacccgg
cgcccaagca gcctgggacc ttgcgcggac ctgacccctt cagaccgcag 60gcagtctggg
aggaggtccg gccgggggag gtgcaggatc cccgccgtgt ctctttgacg 120acttggggac
tgtcacggtt ctctcccggc gcccctgggt tcttttgtcc tgcacgcggt 180gcgaaggggc
cagcagggaa ggagcagagg atggggggtg gggttgttgg agccccgcgg 240aggtctggga
ggccc
2551348166DNAArtificial Sequenceprobe/primer/pcr 1348ggctctgcgc
tgcctttggt ggctcctccc tggtcctcta aatgtgacac caggcggatg 60cggggccaca
ggaccctggg gcttgagtca cacaagaatg tctctgggag acccgagaga 120ctcacagtta
tgaaacagga ccatggttct ttggccgggc gcgggg
1661349255DNAArtificial Sequenceprobe/primer/pcr 1349gcgcgggcgg
ctcctttgtg tccagccgcc gccaccggag ctcccggggc ctccgcgggg 60agcgcgtccc
ccgcatccgc ccgacccccg gggctggcac gtgctgcgcc cggtccgctg 120agggggcgga
ggccccgatc tccccgaccc cccttctctg cttagaggag gaggagcagc 180ggcagcggca
gcaggaggcg acagctgcca gccgaggagg cgcggcggag aggggactgc 240ggtcagctgc
gtcca
2551350255DNAArtificial Sequenceprobe/primer/pcr 1350ggcccgttgg
cgaggttaga gcgccaggtt gtaagaatcg ggtctgtgga cctcatacca 60gataggcgcg
aacgcctctg gcagcggcgt ccagggggtc cggcggcact cgcggtgggg 120ctgcctgggt
tgcgggtgac gatctgcggg gtcccgcacc cggccccgcg gagcccggac 180ccgcacgtag
gcggcgcggc aaaggcacac cctcctcgcg gccgcgaacc cagcgccgtc 240ctcgcagcgc
ggcaa
2551351255DNAArtificial Sequenceprobe/primer/pcr 1351acccggcatc
cgggcaggct gcgcgcgggt gcggggcgag ggcgccgcgg ggactgggac 60gcacggcccg
cgcgcgggac acggccatgg aggacgcggg agcagctggc ccggggccgg 120agcctgagcc
cgagcccgag ccggagcccg agcccgcgcc ggagccggaa ccggagccca 180agccgggtgc
tggcacatcc gaggcgttct cccgactctg gaccgacgtg atgggtatcc 240tggtaagtta
cctgg
2551352156DNAArtificial Sequenceprobe/primer/pcr 1352cccggactgt
aatcacgtcc actgggaact ggcgcagtag tggaggggac gcgatcaggc 60ccgtggctgc
gcccagagca tgataagcca gggacctcgc ggcgcaggcg gagggaggga 120gagcgtcgcg
gacccaggcg gggacaggga gacgcc
1561353238DNAArtificial Sequenceprobe/primer/pcr 1353cgccgccaac
gcgcaggtct acggtcagac cggcctcccc tacggccccg ggtctgaggc 60tgcggcgttc
ggctccaacg gcctgggggg tttcccccca ctcaacagcg tgtctccgag 120cccgctgatg
ctactgcacc cgccgccgca gctgtcgcct ttcctgcagc cccacggcca 180gcaggtgccc
tactacctgg agaacgagcc cagcggctac acggtgcgcg aggccggc
2381354255DNAArtificial Sequenceprobe/primer/pcr 1354gctgccagct
gccgctccgg ctcccacttc ccacctgctg cccgaggaag acttccggga 60gaaacgctgt
ctccgagccc ccgcgccgcc gcgctccctc cgctgcagca gcggccaccg 120ggtgcgcccg
gagccctggg acggcctaaa ccagtatctc gcgggccccg cgccgggctc 180cgggaatggc
cgcagcagcc ctggcgaccc gggcccctcg gagctcccct tcaggatcgt 240gcaccaagcg
cgcac
2551355255DNAArtificial Sequenceprobe/primer/pcr 1355gcgcccacct
gcgcctcgcg gggtccccga ggtcccgcca ccgagcgccc aaggcgggat 60cccagcgcgt
cctgcagccc gcccagcttc agggccggcc cggcgcgcgc aggtgcggca 120ctcaccggcc
aggtgaagcc gaaggggaag cggatggggt tgctgaacgc ggagtcggcg 180cccccgccgt
cgggcagact gaaggagtcg acgcccagca cgggggtgac ggcgctgccg 240taggtgcagg
gcggc
2551356149DNAArtificial Sequenceprobe/primer/pcr 1356cgggccaggg
cggcatgaag aagtcccgcc gctacgtgcc cggcacagtg gccctgcgcg 60acgttcggcg
ctaccagaac tccgagctgc tgatcagcaa gctgccgctc ctgcgagagc 120tcggcggtga
cgccgctgca cgagagcga
1491357250DNAArtificial Sequenceprobe/primer/pcr 1357gctgcgacct
ggggtccgac ggacgcctcc tccgcgggta tgaacagtat gcctacgatg 60gcaaggatta
cctcgccctg aacgaggacc tgcgctcctg gaccgcagcg gacactgcgg 120ctcagatctc
caagcgcaag tgtgaggcgg ccaatgtggc tgaacaaagg agagcctacc 180tggagggcac
gtgcgtggag tggctccaca gatacctgga gaacgggaag gagatgctgc 240agcgcgcggg
2501358155DNAArtificial Sequenceprobe/primer/pcr 1358gttaggaggg
cggggcgcgt gcgcgcgcac ctcgctcacg cgccggcgcg ctccttttgc 60aggctcgtgg
cggtcggtca gcggggcgtt ctcccacctg tagcgactca ggttactgaa 120aaggcgggaa
aacgctgcga tggcggcagc tgggg
1551359207DNAArtificial Sequenceprobe/primer/pcr 1359agcgcaccaa
cgcaggcgag ggactggggg aggagggaag tgccctcctg cagcacgcga 60ggttccggga
ccggctggcc tgctggaact cggccaggct cagctggctc ggcgctgggc 120agccaggagc
ctgggccccg gggagggcgg tcccgggcgg cgcggtgggc cgagcgcggg 180tcccgcctcc
ttgaggcggg cccgggc
2071360173DNAArtificial Sequenceprobe/primer/pcr 1360cggctggccc
cgcccactct ccgcggccgg aagtggcggc gccgagtgag gtaaatgcgt 60gcccggaagc
gcgacctcgg gcggttggag gggctaccgg gtcttaccag tccgtggcgg 120gagtcccgga
ggaccctcga cgggggagtt gccgagaaaa ggcctcgccg gca
1731361225DNAArtificial Sequenceprobe/primer/pcr 1361ggggttgccg
tcgcagccag ctgagtgttg cgccaggggg acaggtatgt tccaggcagt 60ggcaagccca
acccgagcaa gacctgcgct gaaacggatt ggctgccctc cgcccggagt 120ccgttctccc
tgcagcggcc agtgcagagc tcagaggctc agaaactcgc tctcagcccc 180ctggaggcgg
agcccgggag ataaggttcg cgctccccac ccgcc
2251362223DNAArtificial Sequenceprobe/primer/pcr 1362ccgcactccc
gcccggttcc ccggccgtcc gcctatcctt ggccccctcc gctttctccg 60cgccggcccg
cctcgcttat gcctcggcgc tgagccgctc tcccgattgc ccgccgacat 120gagctgcaac
ggaggctccc acccgcggat caacactctg ggccgcatga tccgcgccga 180gtctggcccg
gacctgcgct acgaggtgac cagcggcggc ggg
2231363150DNAArtificial Sequenceprobe/primer/pcr 1363ggaccccctg
ggcagcaccc tggccaccct tccatccaca acatccagac cacacggcca 60agggcacctg
accctgtcaa aaccccaaat ccagctgggc gcggtggctc atgcctgtaa 120tcccagcatt
tgggaggccg aggcagccgg
1501364107DNAArtificial Sequenceprobe/primer/pcr 1364gaggcagccg
gatcacgaag tcaggagttc gagaccagcc tgaccaacat ggtgaaaccc 60cgtctctact
aaaatacaaa aattagccgg gcgtggtggt gcacacc
1071365244DNAArtificial Sequenceprobe/primer/pcr 1365gcgcgtgcgg
gcgttgtccc ggcaaccagg gggcggggct gggcgtggca ccgccccgcg 60ctccgctgcc
aggggcggga gggaggaatg gttgcttcac gccccggggg aagagacggg 120aagctcggct
ctgggttgcg ggccccggcg tctccgcgtg gggcgcaccg tccgaccccc 180ccctcccggt
gtgcagcgcc ccgcaccgcc ccgcctcgcc tgggagaagc cgccgggacg 240cgcc
2441366255DNAArtificial Sequenceprobe/primer/pcr 1366caggatgcgg
cagcgcccac ccgcgcggcg tggagggggc cgggggcggc gctcggcgca 60gatggcgctc
gctgcgagat ggatgctcca gggcgggtaa tcactcctgg ctcaacacag 120catcccgggc
ggagcggatg ccagatccca ccgctaagag cctgggctgg gaaagcaatc 180tttccaggca
gcccccagcc cggtgcgccg gccccgacaa gtcccagccc tcggaggcag 240ggcggggcgc
aggga
2551367255DNAArtificial Sequenceprobe/primer/pcr 1367gatgcggccc
gcggaggaga gagcaggagg acggacggga gggacctccg cggggagggc 60gcgcggggga
ggcggggagg gaggcgggag ggggagggga cggtgtggat ggccccgagg 120tccaaaaaga
aagcgcccaa cggctggacg cacaccccgc caggcctcct ggaaacggtg 180ccggtgctgc
agagcccgcg aggtgtctgg gagttgggcg agagctgcag acttggaggc 240tcttatacct
ccgtg
2551368193DNAArtificial Sequenceprobe/primer/pcr 1368gttctgcgcg
cgcccgactc cgctgcccgc cccgccaggc ctccgggagg tgggggctgg 60gaggcgtccc
ccgctcccgc cccctcccca ccgttcaatg aaagatgaac tggcgagagg 120tgagaaggga
agagggctcc cggctctctc ggggcgggaa tcagtgggcc agagctcgcc 180gggtggccgc
aag
1931369255DNAArtificial Sequenceprobe/primer/pcr 1369cccgccgtgg
gcgtagtaac cgccaccgcc gccgcccccc gcgccaccac caccgccgcc 60tgcctcgcct
ctgcccgagc tgatgagcga gtcgaccaaa aaagagttcg cggcggggct 120ctccgagcat
gacattgttg tgggataatt tggcgaaggg agcagatagc cctttctggc 180tgacatttct
tgtgcaaaac atgctgaata cgattagcaa tccccccgca ccgcggcggg 240cgcccgcagc
caatc
2551370212DNAArtificial Sequenceprobe/primer/pcr 1370acccgcccgg
gcagctccag tcccggactc cgcagctcgg agcgcagcca gccacggcca 60ttgcgggacc
ctatttatcc cgacacctcc cctgacgtgg gctcggaacg ctcccttggc 120agctgcagcc
gcggcgcggg ctccccctcg gccgccccac ccccaggccc gtcggtgcag 180aagcggtgac
atcaccccct ctgggccgca gc
2121371221DNAArtificial Sequenceprobe/primer/pcr 1371cagcggtcgc
gcctcgtcgg gcgacggctg gcagcgaagg ccggagccac agcgctcggt 60gtagatgccg
cacggctggc cctcgctcag tgcgcacgtc aggcagcagc cgcagcccgg 120ctcgcgcacc
agctccgcgc acacggcggg cggaggcgcg cactgggcca gtgcacgcgc 180gtcgcacggc
tcgcagcgca ccacgggacc caagcccgcc g
2211372237DNAArtificial Sequenceprobe/primer/pcr 1372gcaatcgcgc
tgtctctgaa aggggtggag aaggggctgg atgagtccgg aagtggagat 60tggctgctta
gtgacgcgcg gcgtcccgga agttgacaga tacagggcga gaggcagtgg 120aggcgggact
tggatagggg cggaacctga gactaccttt ctgcgatcac aggattcccg 180gcggtgactt
gaccccggaa gtggggtgtg aagctccggt gctggtgcgg cggggga
2371373230DNAArtificial Sequenceprobe/primer/pcr 1373gagcgcccgc
cgttgatgcc ccagctgctc tggccgcgat gggcactgca ggggctttcc 60tgtgcgcggg
gtctccagca tctccacgaa ggcagagttg ggggtctggc agcgcgttct 120ggactttgcc
cgccgccagt gcgattctcc ctcccggttc cagtcgccgc ggacgatgct 180tcctcccacc
caccgcccgc gggctcagag agcaggtccc cgcaccgcgc
2301374255DNAArtificial Sequenceprobe/primer/pcr 1374catggcccgc
tgcgccctct ccgccggttg gggagagaag ctcctggagc ggccagatac 60ctgttggctc
ctgagcagca tcgcccagtg cagcctccgt caggaaaagc agcagaatcg 120acagccccag
ggggcgagcg gggtccatgg tgcagggggt cgggcggccc gctgggcaag 180gcgtccgaga
aagcgcctgg cgggaggagg tgcgcggctt tctgctccag gcggcccggg 240tgcccgcttt
atgcg
2551375216DNAArtificial Sequenceprobe/primer/pcr 1375gggggcgggg
tgcaggggtg gaggggcggg gaggcgggct ccggctgcgc cacgctatcg 60agtcttccct
ccctccttct ctgccccctc cgctcccgct ggagccctcc accctacaag 120tggcctacag
ggcacaggtg aggcgggact ggacagctcc tgctttgatc gccggagatc 180tgcaaattct
gcccatgtcg gggctgcaga gcactc
2161376179DNAArtificial Sequenceprobe/primer/pcr 1376cgaccctgcg
cccggcagtc cccgggggcc gtgcgcccgg cccaggctcg gaggtccagc 60ccagcggcgg
ctcaggctgc gcgcctggct cccagcctca gtttccccat tggtaaagca 120ttgacggtgg
ttgcggacgg cttctgcgga cagagccttg ggctccgacg tctgcgcgg
1791377214DNAArtificial Sequenceprobe/primer/pcr 1377ggcttcaagt
ccacggccct gtgatgggat gtgggcaggg cctgagacag gccgaaccca 60actcttcaca
gggccgaatt ctttgcccgc agcccagcac cccgaaggag cttgcctcgg 120cttcaaggcg
cacctaatgg gcaccggatc gctggggcgc tgaggatgcc gctccggggc 180ctccacgagg
cggcctcgcc acgcgcctcg gcca
2141378255DNAArtificial Sequenceprobe/primer/pcr 1378ccccacctgc
ccgcgctgct tctacctgaa actggccaag ggcccgagcc cggaccggag 60ccgtgacttc
cctccgccgg ccacggggct gcccggatcc gccgggttat gtcgcttggc 120tttgggctca
ggggtcaccg tgggcagagg ggggtgccgg ggtcgcggac tgccaccagg 180ttgaggaaag
gaggggcctt ttggctgggg aaagagcgtg gtgggggacc cgcggccgat 240ggaatccctg
gggca
2551379255DNAArtificial Sequenceprobe/primer/pcr 1379gcgcgcggag
acgcagcagc ggcagcggca gcatgtcggc cggcggagcg tcagtcccgc 60cgcccccgaa
ccccgccgtg tccttcccgc cgccccgggg tcaccctgcc cgccggcccc 120gacatcctgc
ggacctactc gggcgccttc gtctgcctgg agattgtaag tggggccgcc 180ggagcgaggg
tcgcgcgggg agcgaggaca ggcggcggca tccttgtccc ccgggctgtc 240ttcctctgcg
tccgc
2551380242DNAArtificial Sequenceprobe/primer/pcr 1380gtgagccggc
gctcctgatg cggagaggtg cggccatgtc ctggctggga gcgaagcgcc 60ctcgctcggg
cagtcggagc gaactgtctc ccgcgcgctc cgccagccgg gccctcccgc 120tgggcccacc
ccccgagggg cggggccaga gcgggcggca ccgcctcctc cccgctgtct 180gggtcgcagg
ccttagcgac gggctgttct ccggccccgc cccattccca ggctccgccc 240cc
2421381255DNAArtificial Sequenceprobe/primer/pcr 1381tgccgcgggg
gtgccaaggg aagtgccagc tcagagggac catgtgggcg caggcaccca 60ggcggcgccg
ggaggcctct cgggactcca gggctgtccc tcccgcaggc tgtccttcca 120cctccacccc
aggccaacgc cctcccgcca gcccagggtc ctgtgtcctc gagtccttcc 180tgggcaccct
ggtcccatcc ttagccctgc ccgaggggcc cagccctgct ccaaaagggc 240tgtggctcca
cccac
2551382232DNAArtificial Sequenceprobe/primer/pcr 1382ctgctgcgcg
cgctggctct tctgcgaggc ctgcttgagc ttgttgccgc ctttgggctc 60cgggccctcc
agctcgtccc tgcagcgccg cggccgctcc tcgtaggcca ggctggaggc 120aagctccttc
tcctcaaagc tgcgctgcag cttctggagg gcgccctccc tctccaacag 180cttctgctcc
agctcctgga tgctgcactc gtccgtggag atgggggagc gg
2321383255DNAArtificial Sequenceprobe/primer/pcr 1383ctggcggccc
aggtcgctcc tgcccaaccc ggggacccat ctcttccccc gactccgacg 60actggtgcgt
cttgcccgga catgcccggc cgcaggcgac ccgggccacg cacccccgcc 120gtgtccccct
ctctccctgc cctctccagg cgccaggcac gctcttcccc agccagggac 180cgcggcgggg
actcaccaac agcaggaccg cggcgacaac gagcacaagg gtcttgggga 240cccggggccc
aggcc
2551384242DNAArtificial Sequenceprobe/primer/pcr 1384agcgccccgg
ccgcctgatg gccgaggcag ggtgcgaccc aggacccagg acggcgtcgg 60gaaccatacc
atggcccgga tccccaagac cctaaagttc gtcgtcgtca tcgtcgcggt 120cctgctgcca
gtgagtcccg gccgcggtcc ctggctgggg aagagcgcac ctggcgccgg 180gagggggcag
ggagacgggg acacggcagg gatgcctggc cctggtcacc tgcggccggg 240ca
2421385191DNAArtificial Sequenceprobe/primer/pcr 1385gccgcacggg
acagccaggg ggagcgcgcg ctctgctccc tcgcggcccg gtcgctcctg 60cccagcccgg
gcaccccact cttcccctga ctccgacggc gggttcgtcc tgcccagaca 120tgcccggccg
caggcgaccc gggccaagca tccccaccgt gtccccctct ctccctgccc 180actcccggcg c
1911386203DNAArtificial Sequenceprobe/primer/pcr 1386cccggacatg
ccccgccaca agtgacccgg gccaggcacc cccgccgcgt ccccctctct 60ctctgccccc
tcccggtgcc aggcgcgctt ttccccaggc aggaccgcgg tggggactca 120cctgcagcag
gaccccgacg acgacaaact tgaaggtctt gtggacccgg agccgagggc 180tggcttcccg
cgccggcctg ggt
2031387251DNAArtificial Sequenceprobe/primer/pcr 1387cgggggccgc
cgcctgactt cggacaccgg ccccgcaccc gccaggaggg gagggaaggg 60gaggcgggga
gagcgacggc ggggggcggg cggtggaccc cgcctccccc ggcacagcct 120gctgagggga
agagggggtc tccgctcttc ctcagtgcac tctctgactg aagcccggcg 180cgtggggtgc
agcgggagtg cgaggggact ggacaggtgg gaagatggga atgaggaccg 240ggcggcggga a
2511388252DNAArtificial Sequenceprobe/primer/pcr 1388cagtggcggc
cctcggcctg cggtcggagg cggcgcgggc ggggaggcgg cgctgcgggc 60tgggtgcgcc
ccggctcccg gaggtgcggc gagcaggaag gcgcggggcg gcgggcgcgc 120ggcactgact
ccggaggctg cagggctgga gtgcgcgggg ctcctacggc cgagccctcg 180gagccgcccc
gcgcagccaa tcagctcccg gcggggcgag ccgcactcgt taccacgtcc 240gtcaccggcg
cg
2521389166DNAArtificial Sequenceprobe/primer/pcr 1389gcccggcgcg
gataacggtc cggcgggagg acacggcggt ccctacagca tcgcggcggg 60ccaggctcgg
gcaggggccg tgctcaggtg cggcagacgg acgggccggc gcctctgaag 120tcacccggct
cctttacgaa ctgagcccgt tttggctggg agggtt
1661390219DNAArtificial Sequenceprobe/primer/pcr 1390gctccgggtg
gggagggagg ctggcagctc acccccgggg gcgaggggtc tgcgttagcc 60gtagccacgg
gagcccgggc ttctgggacg ctcagccgtg cgctacccgg tgcagctgct 120ttctcaccag
ctcgcgggtg ggtcctgccg cggctcggcg acccgcgccc ccttgcgagc 180gacccagcgt
gaaaccagcc caaagggcgg cctcgcccg
2191391235DNAArtificial Sequenceprobe/primer/pcr 1391gcctgggcgc
agaacggggt ccctcggcag gaccctcgcc gcgacagcct cagcagggga 60tcgtcgagca
aaagcccgca ggaatgctcc tttctggggc cccgccctcc cggccgacag 120cttttaggta
gacgtggagg cgactcagat cgcctcgcgg ttcccgggat ggcgcggtcg 180cccccaacgc
gaggctgcct ggggcacccg gctcttttcc tgggcgtccg cggcc
2351392215DNAArtificial Sequenceprobe/primer/pcr 1392ggtcctaatc
cccaggctgc gctgacagga ttaggctccg ttcctcccca taatgttccc 60aggacgagcc
tcatggggac gaactacaaa tcccagcatg caccagtctt cgcccgcccg 120gcgggagggc
aacggctgac caggaccgca ggcaagcacc gcggcgacgg ttccagccag 180gaaaatgaga
gcctcttggg ccacgttcca aacgg
2151393255DNAArtificial Sequenceprobe/primer/pcr 1393ccgcgtcccc
ggctgctcct cctcgtgctg gcggcggcgg cggcggcggc ggcggcgctg 60ctcccggggg
cgacgggtga gcggcggcgc ggcgggcggg cgactgcggg gcgcgcgggc 120cggacccggc
ctctggctcg ctcctgctct ttctcaaaca tggcgcgggg ccgggggcgc 180aggtggcggc
gccggggccc gggccgggct ctcgtggcgc cgcgcggctc ggcggctgcc 240gggcgaaccg
caagc
2551394255DNAArtificial Sequenceprobe/primer/pcr 1394ggcagggctg
acgttgggag cgctatgagc tgccgggcag ggtcctcacc gggggcttcc 60tctgcgggcc
agggctgccg ggcgccaccg ggacgcgagc gcgcacgcct cggcccggcg 120gccgcgctcc
tcgcaccgcc ttctccgcag gtctttattc atcatctcat ctccctcttc 180cccttctcct
tctcctttgc ctccttctcc tttgcctcct tctcctcctc ttcctccccc 240tcctccacca
ccacc
2551395248DNAArtificial Sequenceprobe/primer/pcr 1395ccgtgggcgc
aggggctgtg gccggggcgg tgggcgggcg gtgccgccag gtgagactgg 60ctgccgtggc
gcggagctgc gaactggtcg gcggcgcaag gcgcggactc cggtgagttg 120tgtggagcgc
gcgcggccat gggcgcgggc cacgggcggg tgggagggtg gggggccaga 180ggggcggggg
agggtcactc ggcggctccc ggtgccgccg ccgcccgcca ccgcctctgc 240tccccgcg
2481396159DNAArtificial Sequenceprobe/primer/pcr 1396cctgcgcacg
cgggaagggc tgccggaggc gcccgtaggg aggcgcgcgc gcgggcggct 60cagggcccgc
gttcctctcc ctcccgccta ccgccacttt cccgccctgt gtgcgccccc 120acccccacca
ccatcttccc accctcagcg cgggcgccc
1591397199DNAArtificial Sequenceprobe/primer/pcr 1397gcggacgcag
ccgagctcaa agccgctctg gccgcagggt gcggacgcgt cgcggagtcc 60tcactgcccc
gcctcgctct ggcagagtgg ggagccagcc ggcaaagaat tccgttttca 120gctgggccaa
ggggccggcg tctccccacc cccttaggct ccgccccctg tccgctgtga 180tcgccgggag
gccaggccc
1991398227DNAArtificial Sequenceprobe/primer/pcr 1398gacccatggc
ggggcaggcg gcggcgctgt cgggcgggca ggggtggcgg gaggcggtgg 60cgcagcgagc
agcggcctcc agcgctggtg gctcccttta taggagcgct ggagacacgg 120gccccgcccg
ccctgcagcc ccgccctgca gtcccggagc gccgaggagt gcgcgccccc 180tcgcccccgc
cccacctcgg ctgggaggct ggtgcggacg ccgggtg
2271399255DNAArtificial Sequenceprobe/primer/pcr 1399ccgctccccg
cccctggctc cgcctggccc cactcccctc cgcgcgcctt ccctcttctc 60ccccgctccc
cgcggacgct cctctctttc ccagtgggcc aactttatgc tgaaatttct 120tttctgccct
tttttgggat gtttccccat tgggaggcgg agccgggctg cggcggggaa 180ggcggagggc
gaggggaaga gtcactgagc tgcggggcat agggggtccg gggcgaggtg 240ccttctccca
cccag
2551400191DNAArtificial Sequenceprobe/primer/pcr 1400tgtgccgcgc
ggttgggagg agggtcgtga gcgtgagcgt gggagcgctg ggggctctgc 60tcgcgtgctg
ctctgaagtt gttccccgat gcgccgtagg aagctgggat tctcccatcc 120ggacgtggga
cgcaggggag gggtaggttt caccgtccgg gctgatgact cgtggcctcc 180ggggctcctg g
1911401184DNAArtificial Sequenceprobe/primer/pcr 1401cactcacgct
ctcagcccgg ggaatcccag cggggaggag ggagggaggt cgttttcttc 60agctccccag
gtggtctgtg ctgggtgtgc tgacggtcct tttgggaaaa caggtccacc 120tttgccagcg
taattcagaa agagatgtaa ttttctgaga gcacacacct gggcaggaga 180tcgc
1841402255DNAArtificial Sequenceprobe/primer/pcr 1402ggcaagcggg
cttcgggaag aatgcagttg gtgaggaagc tcggcgaggc gtgcccgtgc 60agctgcccct
ggccctgact gctggtgcga ggcagtgcac gactcagctg gccggggcct 120gctgtcccgc
cggtgccacg cacctgcaga cgcccgggct gtgccatctc ctgggccggt 180ccgggggctg
gggcggggcg aaaaagaaaa agctctgatc tctgccttcg cctcgcgcag 240ctgtgcggcg
agccc
2551403255DNAArtificial Sequenceprobe/primer/pcr 1403cccgcgggcc
gggtgagaac aggtggcgcc ggcccgacca ggcgctttgt gtcggggcgc 60gaggatctgg
agcgaactgc tgcgcctcgg tgggccgctc ccttccctcc cttgctcccc 120cgggcggccg
cacgccgggt cggccgggta acggagaggg agtcgccagg aatgtggctc 180tggggactgc
ctcgctcggg gaaggggaga gggtggccac ggtgttagga gaggcgcggg 240agccgagagg
tggcg
2551404239DNAArtificial Sequenceprobe/primer/pcr 1404ggcggcggct
ggagagcgag gaggagcggg tggccccgcg ctgcgcccgc cctcgcctca 60cctggcgcag
gtaggtgtgg ccgcgtcccc tacccggccg ggactttctg gtaaggagag 120gaggttacgg
ggaacgacgc gctgctttca tgccctttct tgttctacct tcatcggccg 180aggtaaaagt
gctgaaacca tgtgaataaa atacaggtgg gttccgccag cttcgctcc
2391405253DNAArtificial Sequenceprobe/primer/pcr 1405gggccccggg
actcggcttg cacgagccag tctggggacc ggggaggcgg ggagagggaa 60ggggaaagcg
cggacgcggc ccaaacctcc agtagccgca gccgccgtcg ccgagtaggg 120ccgggcagcc
agccgggcct ggcgcagcat cagtgcccgc tgccgcttcc gctcgatact 180cgcccgcacc
gaggcaggca gctccgcggg ttgctctaaa gccgccgcct ccggcaaagc 240cccgtcggcc
gcc
2531406209DNAArtificial Sequenceprobe/primer/pcr 1406acggaatgtg
gggtgcgggc ctgaatatta taaacaaaac caaaaaacac tggctggaaa 60ggaagtaagc
ggattcttcg taaagtctat caaaagtctt ttcgtttccc cctccccctt 120tccccaccgc
ccaccaaaat gagccgcgtt tgagcacctc aggtctggaa agccggccag 180gagtggggga
gaccgaggca cccgcggcc
2091407255DNAArtificial Sequenceprobe/primer/pcr 1407gcggctgctg
ccgaggctcc tggtttccac cgccgccctc ggggatcatg ccgccatcgc 60ggttcatgcc
gttctcgtgg ttcacaccgc cctcagggtt catattaccc atgaggcctg 120gagctccttg
gccaacatgg ccttctgcgc ttgatgctgc ccccagctga ggtgtggggc 180ttatttttac
ctggtataca ctcaggcagt agaacacggt gtcgtggacg agcgaacgcg 240ccatggctgg
agcgc
2551408200DNAArtificial Sequenceprobe/primer/pcr 1408ccgctgcgcg
agggaggggg cccgaggcgc ccccggcccg ccctcctccc ggtcttcgga 60tccgagccgg
tcctcgggaa agagcctgcc accgcgtccc cgcagccacc ctctccgcgt 120gcccggccct
ctccagtggc gggggcacgt gggcgcgcgg ggtgcgtggc aagccgcccc 180tctccccacg
cccgtccggc
2001409230DNAArtificial Sequenceprobe/primer/pcr 1409ggggtgcggc
gtctggtcag ccaggggtga attctcagga ctggtcggca gtcaaggtga 60ggaccctgag
tgtaaactga agagaccacc cccacctgta acaaagaggg ccccactaag 120tcccgcttct
gcatttggtc ctgagaggct ccggtaaagc cgtccggcaa tgttccacct 180ggaaagttcc
agggcagggg aagggtgggg ggaggggcag tcgcggggga
2301410246DNAArtificial Sequenceprobe/primer/pcr 1410gccgggggaa
atgcggcctc taagctctcc gctgaggcgg cttggaagga atagtgactg 60acgtggaggt
gggggaggtg gctggcccgg gcgaggccca gggagaggga gaggaggcgg 120gtgggagagg
aggagggtgt atctcctttc gtcggcccgc cccttggctt ctgcactgat 180ggtgggtgga
tgagtaatgc atccaggaag cctggaggcc tgtggtttcc gcacccgctg 240ccaccc
2461411230DNAArtificial Sequenceprobe/primer/pcr 1411tgcctggtag
gactgacggc tgcctttgtc ctcctcctct ccaccccgcc tccccccacc 60ctgccttccc
cccctccccc gtcttctctc ccgcagctgc ctcagtcggc tactctcagc 120caacccccct
caccaccctt ctccccaccc gcccccccgc ccccgtcggc ccagcgctgc 180cagcccgagt
ttgcagagag gtaactccct ttggctgcga gcgggcgagc
2301412184DNAArtificial Sequenceprobe/primer/pcr 1412gcgcgggcgc
ctcgatctcc cgcgcgcgcg cgtgcgcgag accccccttt ggccccctac 60cctgcagcaa
gggtagcgtg acgtaatgca acctcagcat gtcagcagca atataaagga 120gaatgaggcg
gcgcgcctcc cagacgcaga gtagattgtg attggctcgg gctgcggaac 180ctcg
1841413240DNAArtificial Sequenceprobe/primer/pcr 1413cccggctggt
cggcgctcct cgcaggcggt gtcccggtcc ggagcgatct gcgcgctcgg 60ccccgcggcc
gcgccctccc cgaagccctt gctttgttct gtgagcgcct cgtgtcagcc 120aggcgcagtg
agctcacggg ggcgtcccgg gtccgcatcc tcccaggagc tggggagccg 180ctcgctgggc
gcggacccgc tgcctgacgc tgcaaactac acggtttcgg tcccccgcgc
2401414129DNAArtificial Sequenceprobe/primer/pcr 1414ccggggctgg
gacggcgctt ccaggcggag aaagacctcc gcgggccgcg cgcggccttc 60cccctgcgag
gatcgccatt ggcccgggtt ggctttggaa agcggcggtg gctttgggcc 120gggctcggc
1291415255DNAArtificial Sequenceprobe/primer/pcr 1415gggcggggtg
gggctggagc tcctgtctct tggccagctg aatggaggcc cagtggcaac 60acaggtcctg
cctggggatc aggtctgctc tgcaccccac cttgctgcct ggagccgccc 120acctgacaac
ctctcatccc tgctctgcag atccggtccc atccccactg cccaccccac 180ccccccagca
ctccacccag ttcaacgttc cacgaacccc cagaaccagc cctcatcaac 240aggcagcaag
aaggg
2551416255DNAArtificial Sequenceprobe/primer/pcr 1416gtgcggttgg
gcggggccct gtgccccact gcggagtgcg ggtcgggaag cggagagaga 60agcagctgtg
taatccgctg gatgcggacc agggcgctcc ccattcccgt cgggagcccg 120ccgattggct
gggtgtgggc gcacgtgacc gacatgtggc tgtattggtg cagcccgcca 180gggtgtcact
ggagacagaa tggaggtgct gccggactcg gaaatggggt aggtgctgga 240gccaccatgg
ccagg
2551417127DNAArtificial Sequenceprobe/primer/pcr 1417ggcggtgcct
ccggggctca cctggctgca gccacgcacc ccctctcagt ggcgtcggaa 60ctgcaaagca
cctgtgagct tgcggaagtc agttcagact ccagcccgct ccagcccggc 120ccgaccc
1271418127DNAArtificial Sequenceprobe/primer/pcr 1418ggcggtgcct
ccggggctca cctggctgca gccacgcacc ccctctcagt ggcgtcggaa 60ctgcaaagca
cctgtgagct tgcggaagtc agttcagact ccagcccgct ccagcccggc 120ccgaccc
1271419255DNAArtificial Sequenceprobe/primer/pcr 1419cgggagcccg
cccccgagag gtgggctgcg ggcgctcgag gcccagccgc cgccgccgcc 60gccgccgccg
ccgcctccgc cgccgccgcc gccgccgccg ccgccgcgct gccgcacgcc 120ccctggcagc
ggcgcctccg tcaccgccgc cgcccgcgct cgccgtcggc ccgccgcccg 180ctcagaggcg
gccctccacc ggaagtgaaa ccgaaacgga gctgagcgcc tgactgaggc 240cgaacccccg
gcccg
2551420255DNAArtificial Sequenceprobe/primer/pcr 1420tcctgccatc
cgcgcctttg cacttttctt tttgagttga catttcttgg tgctttttgg 60tttctcgctg
ttgttgggtg ctttttggtt tgttcttgtc cctttttcgt ttgctcatcc 120tttttggcgc
taactcttag gcagccagcc cagcagcccg aagcccgggc agccgcgctc 180cgcggccccg
gggcagcgcg gcgggaaccg cagccaagcc ccccgacacg gggcgcacgg 240gggccgggca
gcccg
2551421255DNAArtificial Sequenceprobe/primer/pcr 1421aggcacaggg
gcagctccgg cacggctttc tcaggcctat gccggagcct cgagggctgg 60agagcgggaa
gacaggcagt gctcggggag ttgcagcagg acgtcaccag gagggcgaag 120cggccacggg
aggggggccc cgggacattg cgcagcaagg aggctgcagg ggctcggcct 180gcgggcgccg
gtcccacgag gcactgcggc ccagggtctg gtgcggagag ggcccacagt 240ggacttggtg
acgct
2551422255DNAArtificial Sequenceprobe/primer/pcr 1422cgacccctcc
gaccgtgctt ccggtgaggg tcctgggccc ctttcccact ctctagagac 60agagaaatag
ggcttcgggc gcccagcgtt tcctgtggcc tctgggacct cttggccagg 120gacaaggacc
cgtgacttcc ttgcttgctg tgtggcccgg gagcagctca gacgctggct 180ccttctgtcc
ctctgcccgt ggacattagc tcaagtcact gatcagtcac aggggtggcc 240tgtcaggtca
ggcgg
2551423213DNAArtificial Sequenceprobe/primer/pcr 1423cccgcagggt
ggctgcgtcc ttccagggcc tggcctgagg gcaggggtgg tttgctcccc 60cttcagcctc
cgggggctgg ggtcagtgcg gtgctaacac ggctctctct gtgctgtggg 120acttccaggc
aggcccgcaa gccgtgtgag ccgtcgcagc cgtggcatcg ttgaggagtg 180ctgtttccgc
agctgtgacc tggccctcct gga
2131424255DNAArtificial Sequenceprobe/primer/pcr 1424gcgtctgccg
gcccctcccc ttgtccgtcc cctccgcgcc gctggcgcgc gccttctgaa 60tgccaagcat
tgccataaac tccggggaca aaagcctggg tcacaaaagc cccctctaga 120agttcacacc
ctgaggcttc cctggcaagg ctgggggccg tttggccctt ccatgtggac 180tgcaaaaaca
gtgttggaat gcaggactct gggtatgttc tcgaaagttg ttacaacccc 240aacccagggt
tgacc
2551425117DNAArtificial Sequenceprobe/primer/pcr 1425taggccgccg
ggcagccacc gcgctcctct ggctctcctg ctccatcgcg ctcctccgcg 60cccttgccac
ctccaacgcc cgtgcccagc agcgcgcggc tgcccaacag cgccgga
1171426255DNAArtificial Sequenceprobe/primer/pcr 1426ggggagcggg
gacgcgagca gcaccagaat ccgcgggagc gcggctgttc ctggtagggc 60cgtgtcaggt
gacggatgta gctagggggc gagctgcctg gagttgcgtt ccaggcgtcc 120ggcccctggg
ccgtcaccgc ggggcgcccg cgctgagggt gggaagatgg tggtgggggt 180gggggcgcac
acagggcggg aaagtggcgg taggcgggag ggagaggaac gcgggccctg 240agccgcccgc
gcgcg
2551427255DNAArtificial Sequenceprobe/primer/pcr 1427gccggctggc
tccccactct gccagagcga ggcggggcag tgaggactcc gcgacgcgtc 60cgcaccctgc
ggccagagcg gctttgagct cggctgcgtc cgcgctaggc gctttttccc 120agaagcaatc
caggcgcgcc cgctggttct tgagcgccag gaaaagcccg gagctaacga 180ccggccgctc
ggccactgca cggggcccca agccgcagaa ggacgacggg agggtaatga 240agctgagccc
aggtc
2551428255DNAArtificial Sequenceprobe/primer/pcr 1428tcgctcacgg
cgtccccttg cctggaaaga taccgcggtc cctccagagg atttgaggga 60cagggtcgga
gggggctctt ccgccagcac cggaggaaga aagaggaggg gctggctggt 120caccagaggg
tggggcggac cgcgtgcgct cggcggctgc ggagaggggg agagcaggca 180gcgggcggcg
gggagcagca tggagccggc ggcggggagc agcatggagc cttcggctga 240ctggctggcc
acggc
2551429255DNAArtificial Sequenceprobe/primer/pcr 1429tccccgctgc
cctggcgctc cccctttgat ttattagggc tgccgggttg gcgcagattg 60ctttttcttc
tcttccatcc catcctccct tctggtcctc ctttccacag tgggagtccg 120tgctcctgct
cctcggttgg ctcctaagtg ccccgccagg tcccctctcc tttcgctctc 180ccggctccgg
ctcccgactc ttcggcccgc tggcatctgc ttccctcccc tgcctcgttt 240ctcgtcgccc
ctgct
2551430115DNAArtificial Sequenceprobe/primer/pcr 1430ggccagaggc
aggcccgcag ctccctgccc cgcctctgtg cctccgccaa cccgacaacg 60cttgctccca
ccccgatccc cgcacccgcg cgaagtgggc cctccggtcg tcggc
1151431109DNAArtificial Sequenceprobe/primer/pcr 1431tgcccgggtc
atcggacggg aggccgcgcc acgtgagggc ggcaagaggg cactggccct 60gcggcgaggc
cccagcgagg ggcgcttccc cgaggggcca gcctgggca
1091432170DNAArtificial Sequenceprobe/primer/pcr 1432cccagtgcgc
acggcgaggc agtagcccgg ccccgcactg ctgataggtg caggcaggac 60agtccctcca
ccgcggctcg gggcgtcctg attggtgcgg agccacgtca gtcgcacccg 120gagaagggtc
tgggaggagg cggaggcgga gagggctggg gagggccgcg
1701433138DNAArtificial Sequenceprobe/primer/pcr 1433agcgtcccag
cccgcgcacc gaccagcgcc ccagttcccc acagacgccg gcgggcccgg 60gagcctcgcg
gacgtgacgc cgcgggcgga agtgacgttt tcccgcggtt ggacgcggcg 120ctcagttgcc
gggcgggg
1381434255DNAArtificial Sequenceprobe/primer/pcr 1434tgctcccccg
ggtcggagcc ccccggagct gcgcgcgggc ttgcagcgcc tcgcccgcgc 60tgtcctcccg
gtgtcccgct tctccgcgcc ccagccgccg gctgccagct tttcggggcc 120ccgagtcgca
cccagcgaag agagcgggcc cgggacaagc tcgaactccg gccgcctcgc 180ccttccccgg
ctccgctccc tctgccccct cggggtcgcg cgcccacgat gctgcagggc 240cctggctcgc
tgctg
2551435124DNAArtificial Sequenceprobe/primer/pcr 1435cgctcgcatt
ggggcgcgtc ccccatccgc ccccaactgt ggtgtcgcga caggtcctat 60tgcgggtgtc
tgcggtggga agggcggtgg tgactgggag catgcggggt aaccgcagtg 120ggca
1241436196DNAArtificial Sequenceprobe/primer/pcr 1436tgcggcaagc
ccgccatgat gtccacgtga caaaagccat gatatacata tgacaacgcc 60tgccatattg
tccctgcggc aaaacccaac acgaaaagca cacagcaaag acaaagaggc 120ccgccatgtt
ttacactgcg gcaagacctt cagccgccat cttttcctgt gtgaccgcac 180atgtccacca
ccatgc
1961437128DNAArtificial Sequenceprobe/primer/pcr 1437tcttgagcct
caggagtgaa aaggcccctt gggaaaccct cacccaggag atacacagga 60gcactggctt
tggcagcagc tcacaatgag aaagatgcct gtcacagcct ttgccttcct 120cttctatg
1281438255DNAArtificial Sequenceprobe/primer/pcr 1438ggaccatgag
tgtttccatg cttggcatca gacatgtctt ctacccctat tcagtctgtc 60atccactggt
caagaatccc aaacattcta aaactgtgtc cacatctctt ctgggtaact 120cttatgattg
gagggcttcc tgaggtgtga agtctatcac agatccagtg actaacttct 180agcttcatct
tattctcact taggggagaa gagttgaggc ccaagcaaac ctcttcttac 240cattggctta
gggaa
2551439255DNAArtificial Sequenceprobe/primer/pcr 1439tcagccactg
cttcgcaggc tgacgttact gacgtggtgc cagcgacgga gggcgagaac 60gccagcgcgg
cgcagccgga cgtgaacgcg cagatcaccg cagcggttgc ggcagaaaac 120agccgcatta
tggggatcct caactgtgag gaggctcacg gacgcgaaga acaggcacgc 180gtgctggcag
aaacccccgg tatgaccgtg aaaacggccc gccgcattct ggccgcagca 240ccacagagtg
cacag
2551440155DNAArtificial Sequenceprobe/primer/pcr 1440cggccagctg
cgcggcgact ccggggactc cagggcgccc ctctgcggcc gacgcccggg 60gtgcagcggc
cgccggggct ggggccggcg ggagtccgcg ggaccctcca gaagagcggc 120cggcgccgtg
actcagcact ggggcggagc ggggc 155
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20200355334 | SPOT DOWNLIGHT APPARATUS |
20200355333 | WALL-WASH LIGHTING FIXTURE |
20200355332 | PANEL LAMP |
20200355331 | LED LAMPS WITH IMPROVED QUALITY OF LIGHT |
20200355330 | Horizontal Hydroponic Farm Compatible Lighting System |