Patent application title: Transgenic Plants With Enhanced Traits
Inventors:
IPC8 Class: AC12N1582FI
USPC Class:
1 1
Class name:
Publication date: 2016-08-18
Patent application number: 20160237447
Abstract:
This disclosure provides transgenic plants having enhanced traits such as
increased yield, increased nitrogen use efficiency and enhanced drought
tolerance; propagules, progeny and field crops of such transgenic plants;
and methods of making and using such transgenic plants. This disclosure
also provides methods of producing hybrid seed from such transgenic
plants, growing such seed and selecting progeny plants with enhanced
traits. Also disclosed are transgenic plants with altered phenotypes
which are useful for screening and selecting transgenic events for the
desired enhanced trait.Claims:
1. A plant comprising a recombinant DNA molecule comprising a
polynucleotide encoding a polypeptide, wherein the nucleotide sequence of
the polynucleotide is selected from the group consisting of: a) a
nucleotide sequence as set forth in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15,
17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51,
53, 55, 57 or 115; b) a nucleotide sequence encoding a protein, said
protein having an amino acid sequence as set forth in SEQ ID NO: 2, 4, 6,
8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,
44, 46, 48, 50, 52, 54, 56, 58, 59-92 or 116; c) a nucleotide sequence
with at least 90%, at least 91%, at least 92%, at least 93%, at least
94%, at least 95%, at least 96%, at least 97%, at least 98% or at least
99% identity to SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,
27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57 or 115;
and d) a nucleotide sequence encoding a protein with at least 90%, at
least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at
least 96%, at least 97%, at least 98% or at least 99% identity to SEQ ID
NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36,
38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 59-92 or 116; wherein said
plant has an enhanced trait as compared to a control plant.
2. The plant of claim 1, wherein said enhanced trait is selected from the group consisting of increased yield, increased nitrogen use efficiency, and increased water use efficiency.
3. The plant of claim 1, wherein said plant has at least one phenotype selected from the group consisting of anthocyanin, biomass, canopy area, chlorophyll score, plant height, water applied, water content and water use efficiency that is altered for said plant as compared to a control plant.
4. The plant of claim 1, wherein the recombinant DNA molecule further comprises a heterologous promoter that is operably linked to the polynucleotide encoding a polypeptide, wherein said promoter is selected from the group consisting of a constitutive, inducible, tissue specific, diurnally regulated, tissue enhanced, and cell specific promoter.
5. The plant of claim 1, wherein said plant is a progeny, a propagule, or a field crop.
6. The plant of claim 5, wherein said field crop is selected from the group consisting of corn, soybean, cotton, canola, rice, barley, oat, wheat, turf grass, alfalfa, sugar beet, sunflower, quinoa and sugar cane.
7. The plant of claim 5, wherein said propagule is selected from the group consisting of a cell, pollen, ovule, flower, embryo, leaf, root, stem, shoot, meristem, grain and seed.
8. The plant of claim 1, wherein said plant is a monocot plant or is a member of the family Poaceae, wheat plant, maize plant, sweet corn plant, rice plant, wild rice plant, barley plant, rye, millet plant, sorghum plant, sugar cane plant, turfgrass plant, bamboo plant, oat plant, brome-grass plant, Miscanthus plant, pampas grass plant, switchgrass (Panicum) plant, and/or teosinte plant, or is a member of the family Alliaceae, onion plant, leek plant, garlic plant; or wherein the plant is a dicot plant or is a member of the family Amaranthaceae, spinach plant, quinoa plant, a member of the family Anacardiaceae, mango plant, a member of the family Asteraceae, sunflower plant, endive plant, lettuce plant, artichoke plant, a member of the family Brassicaceae, Arabidopsis thaliana plant, rape plant, oilseed rape plant, broccoli plant, Brussels sprouts plant, cabbage plant, canola plant, cauliflower plant, kohlrabi plant, turnip plant, radish plant, a member of the family Bromeliaceae, pineapple plant, a member of the family Caricaceae, papaya plant, a member of the family Chenopodiaceae, beet plant, a member of the family Curcurbitaceae, melon plant, cantaloupe plant, squash plant, watermelon plant, honeydew plant, cucumber plant, pumpkin plant, a member of the family Dioscoreaceae, yam plant, a member of the family Ericaceae, blueberry plant, a member of the family Euphorbiaceae, cassava plant, a member of the family Fabaceae, alfalfa plant, clover plant, peanut plant, a member of the family Grossulariaceae, currant plant, a member of the family Juglandaceae, walnut plant, a member of the family Lamiaceae, mint plant, a member of the family Lauraceae, avocado plant, a member of the family Leguminosae, soybean plant, bean plant, pea plant, a member of the family Malvaceae, cotton plant, a member of the family Marantaceae, arrowroot plant, a member of the family Myrtaceae, guava plant, eucalyptus plant, a member of the family Rosaceae, peach plant, apple plant, cherry plant, plum plant, pear plant, prune plant, blackberry plant, raspberry plant, strawberry plant, a member of the family Rubiaceae, coffee plant, a member of the family Rutaceae, citrus plant, orange plant, lemon plant, grapefruit plant, tangerine plant, a member of the family Salicaceae, poplar plant, willow plant, a member of the family Solanaceae, potato plant, sweet potato plant, tomato plant, Capsicum plant, tobacco plant, tomatillo plant, eggplant plant, Atropa belladona plant, Datura stramonium plant, a member of the family Vitaceae, grape plant, a member of the family Umbelliferae, carrot plant, or a member of the family Musaceae, banana plant; or wherein the plant is a member of the family Pinaceae, cedar plant, fir plant, hemlock plant, larch plant, pine plant, or spruce plant.
9. A method for producing a plant comprising: introducing into a plant cell a recombinant DNA molecule comprising a polynucleotide encoding a polypeptide, wherein the polynucleotide comprises a polynucleotide sequence selected from the group consisting of: a) a nucleotide sequence as set forth as SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57 or 115; b) a nucleotide sequence encoding a protein comprising an amino acid sequence as set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 59-92 or 116; c) a nucleotide sequence with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity to SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57 or 115; and d) a nucleotide sequence encoding a protein with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 59-92 or 116; and growing a plant from said plant cell.
10. The method of claim 9, further comprising selecting a plant with an enhanced trait as compared to a control plant, wherein said enhanced trait is selected from increased yield, increased nitrogen use efficiency, and increased water use efficiency as compared to a control plant.
11. The plant of claim 9, further comprising selecting a plant with a phenotype selected from the group consisting of anthocyanin, biomass, canopy area, chlorophyll score, plant height, water applied, water content and water use efficiency, wherein said phenotype for said plant is altered as compared to a control plant.
12. A method for increasing yield, increasing nitrogen use efficiency, or increasing water use efficiency in a plant comprising: crossing the plant of claim 1 with itself, a second plant from the same plant line, a wild type plant, or a second plant from a different line of plants to produce a seed; growing said seed to produce a plurality of progeny plants; and selecting a progeny plant with increased yield, increased nitrogen use efficiency, or increased water use efficiency.
13. A recombinant DNA molecule, said molecule comprising a promoter operably linked to a polynucleotide that is transcribed into a non-coding miRNA molecule, wherein: a) said non-coding miRNA molecule is selected from the group consisting of: i) a non-coding miRNA molecule which, when present in a plant, provides an altered level of a protein as compared to a control plant, wherein said protein is selected from the group consisting of: a phosphate transporter protein, an APETALA2-like transcription factor, an ANR1 MADS-box protein, an E3 ligase SCF complex F-box protein, a HOS1 protein, a bHLH transcription factor, a diphenol oxidase proteinligase; ii) a non-coding miRNA molecule which, when present in a plant, provides an altered level of a protein as compared to a control plant, wherein said protein is selected from the group consisting of: the polypeptide sequences set forth in SEQ ID NO: 108, 110, 112 and 114; iii) a non-coding miRNA molecule which, when present in a plant, interferes with the functioning of one or more species of an endogenous miRNA selected from the group consisting of: miR399, miR172, miR166, miR166, miR444, miR393 and miR397; iv) a non-coding miRNA molecule comprising a miRNA binding site sequence as set forth in SEQ ID NOs: 100-106; v) a non-coding miRNA molecule comprising a miRNA polynucleotide sequence as set forth in SEQ ID NOs: 93-99; and b) said promoter is selected from the group consisting of a constitutive promoter, a developmental promoter, a tissue enhanced promoter, a tissue preferred promoter, a tissue specific promoter, a cell type-specific promoter, an inducible promoter and a diurnal promoter; wherein, when said recombinant DNA molecule is present in a plant, said plant exhibits an altered phenotype or an enhanced trait as compared to a control plant.
14. A plant comprising a recombinant DNA molecule, said molecule comprising a heterologous promoter functional in plant cells operably linked to a polynucleotide that is transcribed into a non-coding miRNA molecule, wherein a) said non-coding miRNA molecule is selected from the group consisting of: i) a non-coding miRNA molecule which, when present in a plant, provides an altered level of a protein as compared to a control plant, wherein said protein is selected from the group consisting of: a phosphate transporter protein, an APETALA2-like transcription factor, an ANR1 MADS-box protein, an E3 ligase SCF complex F-box protein, a HOS1 protein, a bHLH transcription factor, a diphenol oxidase proteinligase; ii) a non-coding miRNA molecule which, when present in a plant, provides an altered level of a protein as compared to a control plant, wherein said protein is selected from the group consisting of: the polypeptide sequences set forth in SEQ ID NO: 108, 110, 112 and 114; iii) a non-coding miRNA molecule which, when present in a plant, interferes with the functioning of one or more species of an endogenous miRNA selected from the group consisting of: miR399, miR172, miR166, miR166, miR444, miR393 and miR397; iv) a non-coding miRNA molecule comprising a miRNA binding site sequence as set forth in SEQ ID NOs: 100-106; v) a non-coding miRNA molecule comprising a miRNA polynucleotide sequence as set forth in SEQ ID NOs: 93-99; and b) said promoter is selected from the group consisting of a constitutive promoter, a developmental promoter, a tissue enhanced promoter, a tissue preferred promoter, a tissue specific promoter, a cell type-specific promoter, an inducible promoter and a diurnal promoter; wherein said plant has an enhanced trait as compared to a control plant.
15. A method for producing a plant comprising: introducing into a plant cell a recombinant DNA molecule comprising a heterologous promoter functional in plant cells operably linked to a polynucleotide that is transcribed into a non-coding miRNA molecule, wherein a) said plants exhibit an altered level of a protein selected from the group consisting of: a phosphate transporter protein, an APETALA2-like transcription factor, an ANR1 MADS-box protein, an E3 ligase SCF complex F-box protein, a HOS1 protein, a bHLH transcription factor, a diphenol oxidase proteinligase; or b) said plants exhibit an altered level of a protein selected from the group consisting of: the polypeptides set forth in SEQ ID NO: 108, 110, 112 and 114; or c) said non-coding miRNA molecule interferes with the functioning of one or more species of an endogenous miRNA selected from the group consisting of: miR399, miR172, miR166, miR166, miR444, miR393 and miR397; or d) said non-coding miRNA molecule comprises a miRNA binding site polynucleotide sequence as set forth in SEQ ID NOs: 100-106; or e) said non-coding miRNA molecule comprises a miRNA polynucleotide sequence as set forth in SEQ ID NOs: 93-99; and growing a plant from said plant cell.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit under 35USC .sctn.119(e) of U.S. provisional application Ser. No. 61/932,899, filed on Jaunary 29, 2014, and Ser. No. 61/887,545, filed on Oct. 7, 2013 herein incorporated by reference in their entirety.
INCORPORATION OF SEQUENCE LISTING
[0002] The sequence listing file named "60226PCT0000_ST25.txt", which is 364 kilobytes (measured in MS-WINDOWS) and was created on Oct. 6, 2014, is filed herewith and incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
[0003] Disclosed herein are plants having enhanced traits such as increased yield, increased nitrogen use efficiency and increased water use efficiency; propagules, progenies and field crops of such plants; and methods of making and using such plants. Also disclosed are methods of producing seed from such plants, growing such seed and/or selecting progeny plants with enhanced traits.
SUMMARY OF THE INVENTION
[0004] In one aspect, the disclosure provides a plant comprising a recombinant DNA molecule comprising a polynucleotide encoding a polypeptide, wherein the nucleotide sequence of the polynucleotide is selected from the group consisting of: a) a nucleotide sequence as set forth in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57 or 115; b) a nucleotide sequence encoding a protein, said protein having an amino acid sequence as set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 59-92 or 116; c) a nucleotide sequence with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity to SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57 or 115; and d) a nucleotide sequence encoding a protein with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 59-92 or 116; wherein the plant has an enhanced trait as compared to a control plant.
[0005] In another aspect, the disclosure provides a plant comprising a recombinant DNA molecule of the disclosure, wherein the enhanced trait is selected from the group consisting of increased yield, increased nitrogen use efficiency, and increased water use efficiency.
[0006] In another aspect, the disclosure provides a plant comprising a recombinant DNA molecule of the disclosure, wherein the plant has at least one phenotype selected from the group consisting of anthocyanin, biomass, canopy area, chlorophyll score, plant height, water applied, water content and water use efficiency that is altered for said plant as compared to a control plant.
[0007] In another aspect, the disclosure provides a plant comprising a recombinant DNA molecule of the disclosure, wherein the promoter is selected from the group consisting of a constitutive, inducible, tissue specific, diurnally regulated, tissue enhanced, and cell specific promoter.
[0008] In another aspect, the disclosure provides a plant comprising a recombinant DNA molecule of the disclosure, wherein the plant is a progeny, a propagule, or a field crop.
[0009] In another aspect, the disclosure provides a plant comprising a recombinant DNA molecule of the disclosure, wherein the field crop is selected from the group consisting of corn, soybean, cotton, canola, rice, barley, oat, wheat, turf grass, alfalfa, sugar beet, sunflower, quinoa and sugar cane.
[0010] In another aspect, the disclosure provides a plant comprising a recombinant DNA molecule of the disclosure, wherein the propagule is selected from the group consisting of a cell, pollen, ovule, flower, embryo, leaf, root, stem, shoot, meristem, grain and seed.
[0011] In another aspect, the disclosure provides a plant comprising a recombinant DNA molecule of the disclosure, wherein the plant is a monocot plant or is a member of the family Poaceae, wheat plant, maize plant, sweet corn plant, rice plant, wild rice plant, barley plant, rye, millet plant, sorghum plant, sugar cane plant, turfgrass plant, bamboo plant, oat plant, brome-grass plant, Miscanthus plant, pampas grass plant, switchgrass (Panicum) plant, and/or teosinte plant, or is a member of the family Alliaceae, onion plant, leek plant, garlic plant; or wherein the plant is a dicot plant or is a member of the family Amaranthaceae, spinach plant, quinoa plant, a member of the family Anacardiaceae, mango plant, a member of the family Asteraceae, sunflower plant, endive plant, lettuce plant, artichoke plant, a member of the family Brassicaceae, Arabidopsis thaliana plant, rape plant, oilseed rape plant, broccoli plant, Brussels sprouts plant, cabbage plant, canola plant, cauliflower plant, kohlrabi plant, turnip plant, radish plant, a member of the family Bromeliaceae, pineapple plant, a member of the family Caricaceae, papaya plant, a member of the family Chenopodiaceae, beet plant, a member of the family Curcurbitaceae, melon plant, cantaloupe plant, squash plant, watermelon plant, honeydew plant, cucumber plant, pumpkin plant, a member of the family Dioscoreaceae, yam plant, a member of the family Ericaceae, blueberry plant, a member of the family Euphorbiaceae, cassava plant, a member of the family Fabaceae, alfalfa plant, clover plant, peanut plant, a member of the family Grossulariaceae, currant plant, a member of the family Juglandaceae, walnut plant, a member of the family Lamiaceae, mint plant, a member of the family Lauraceae, avocado plant, a member of the family Leguminosae, soybean plant, bean plant, pea plant, a member of the family Malvaceae, cotton plant, a member of the family Marantaceae, arrowroot plant, a member of the family Myrtaceae, guava plant, eucalyptus plant, a member of the family Rosaceae, peach plant, apple plant, cherry plant, plum plant, pear plant, prune plant, blackberry plant, raspberry plant, strawberry plant, a member of the family Rubiaceae, coffee plant, a member of the family Rutaceae, citrus plant, orange plant, lemon plant, grapefruit plant, tangerine plant, a member of the family Salicaceae, poplar plant, willow plant, a member of the family Solanaceae, potato plant, sweet potato plant, tomato plant, Capsicum plant, tobacco plant, tomatillo plant, eggplant plant, Atropa belladona plant, Datura stramonium plant, a member of the family Vitaceae, grape plant, a member of the family Umbelliferae, carrot plant, or a member of the family Musaceae, banana plant; or wherein the plant is a member of the family Pinaceae, cedar plant, fir plant, hemlock plant, larch plant, pine plant, or spruce plant.
[0012] In another aspect, the disclosure provides a method for producing a plant comprising: introducing into a plant cell a recombinant DNA molecule comprising a polynucleotide encoding a polypeptide and growing a plant from the plant cell. In this aspect, the polynucleotide comprises a polynucleotide sequence selected from the group consisting of: a) a nucleotide sequence as set forth as SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57 or 115; b) a nucleotide sequence encoding a protein comprising an amino acid sequence as set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 59-92 or 116; c) a nucleotide sequence with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity to SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57 or 115; and d) a nucleotide sequence encoding a protein with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 59-92 or 116. In another aspect, the method further comprises the step of selecting a plant with an enhanced trait as compared to a control plant, wherein the enhanced trait is selected from increased yield, increased nitrogen use efficiency, and increased water use efficiency as compared to a control plant.
[0013] In another aspect, the disclosure provides a method for producing a plant comprising: introducing into a plant cell a recombinant DNA molecule of the present disclosure, growing a plant from the plant cell and selecting a plant with a phenotype selected from the group consisting of anthocyanin, biomass, canopy area, chlorophyll score, plant height, water applied, water content and water use efficiency, wherein the phenotype for the plant is altered as compared to a control plant.
[0014] In another aspect, the disclosure provides a method for increasing yield, increasing nitrogen use efficiency, or increasing water use efficiency in a plant comprising: crossing a plant comprising a recombinant DNA molecule of the present invention with itself, a second plant from the same plant line, a wild type plant, or a second plant from a different line of plants to produce a seed; growing the seed to produce a plurality of progeny plants; and selecting a progeny plant with increased yield, increased nitrogen use efficiency, or increased water use efficiency.
[0015] In another aspect, the disclosure provides a recombinant DNA molecule comprising a heterologous promoter operably linked to a polynucleotide that is transcribed into a non-coding miRNA molecule. In this aspect, the non-coding miRNA molecule is selected from the group consisting of a) a non-coding miRNA molecule which, when present in a plant, provides an altered level of a protein as compared to a control plant, wherein said protein is selected from the group consisting of: a phosphate transporter protein, an APETALA2-like transcription factor, an ANR1 MADS-box protein, an E3 ligase SCF complex F-box protein, a HOS1 protein, a bHLH transcription factor, a diphenol oxidase protein, and the polypeptides set forth in SEQ ID NO: 108, 110, 112 and 114; b) a non-coding miRNA molecule which, when present in a plant, interferes with the functioning of one or more species of an endogenous miRNA selected from the group consisting of: miR399, miR172, miR166, miR166, miR444, miR393 and miR397; c) a non-coding miRNA molecule comprising a miRNA binding site sequence as set forth in SEQ ID NOs: 100-106; and d) a non-coding miRNA molecule comprising a miRNA polynucleotide sequence as set forth in SEQ ID NOs: 93-99. Also in this aspect, the promoter is selected from the group consisting of a constitutive promoter, a developmental promoter, a tissue enhanced promoter, a tissue preferred promoter, a tissue specific promoter, a cell type-specific promoter, an inducible promoter and a diurnal promoter. In a further aspect, when the recombinant DNA molecule is present in a plant, the plant exhibits an altered phenotype or an enhanced trait as compared to a control plant.
[0016] In another aspect, the disclosure provides a plant comprising a recombinant DNA molecule comprising a heterologous promoter functional in plant cells operably linked to a polynucleotide that is transcribed into a non-coding miRNA molecule. In this aspect, the non-coding miRNA molecule is selected from the group consisting of: a) a non-coding miRNA molecule wherein, when present in a plant, the plant exhibits an altered level of a target protein, wherein the target protein is selected from the group consisting of: a phosphate transporter protein, an APETALA2-like transcription factor, an ANR1 MADS-box protein, an E3 ligase SCF complex F-box protein, a HOS1 protein, a bHLH transcription factor, a diphenol oxidase proteinligase, and the polypeptides set forth in SEQ ID NO: 108, 110, 112 and 114; b) a non-coding miRNA molecule which, when present in a plant, interferes with the functioning of one or more species of an endogenous miRNA selected from the group consisting of: miR399, miR172, miR166, miR166, miR444, miR393 and miR397; c) a non-coding miRNA molecule comprising a miRNA binding site sequence as set forth in SEQ ID NOs: 100-106; and d) a non-coding miRNA molecule comprising a miRNA polynucleotide sequence as set forth in SEQ ID NOs: 93-99. Also in this aspect, the heterologous promoter is selected from the group consisting of a constitutive promoter, a developmental promoter, a tissue enhanced promoter, a tissue preferred promoter, a tissue specific promoter, a cell type-specific promoter, an inducible promoter and a diurnal promoter. Also in this aspect, the plant has an enhanced trait as compared to a control plant.
[0017] In another aspect, the disclosure provides a method for producing a plant comprising: introducing into a plant cell a recombinant DNA molecule comprising a heterologous promoter functional in plant cells and operably linked to a polynucleotide that is transcribed into a non-coding miRNA molecule as provided by the disclosure, and growing a plant from the plant cell, wherein the plants exhibit an altered level of a target protein selected from the group consisting of: a phosphate transporter protein, an APETALA2-like transcription factor, an ANR1 MADS-box protein, an E3 ligase SCF complex F-box protein, a HOS1 protein, a bHLH transcription factor, a diphenol oxidase proteinligase, and the polypeptides set forth in SEQ ID NO: 108, 110, 112 and 114.
[0018] In another aspect, the disclosure provides a method for producing a plant comprising: introducing into a plant cell a recombinant DNA molecule comprising a heterologous promoter functional in plant cells operably linked to a polynucleotide that is transcribed into a non-coding miRNA molecule as provided in the disclosure, and growing a plant from the plant cell, wherein the non-coding miRNA molecule interferes with the functioning of one or more endogenous miRNA molecules selected from the group consisting of: miR399, miR172, miR166, miR166, miR444, miR393 and miR397.
[0019] In another aspect, the disclosure provides a method for producing a plant comprising: introducing into a plant cell a recombinant DNA molecule comprising a heterologous promoter functional in plant cells operably linked to a polynucleotide that is transcribed into a non-coding miRNA molecule, and growing a plant from the plant cell, wherein the non-coding miRNA molecule comprises a miRNA binding site polynucleotide sequence as set forth in SEQ ID NOs: 100-106.
[0020] In another aspect, the disclosure provides a method for producing a plant comprising: introducing into a plant cell a recombinant DNA molecule comprising a heterologous promoter functional in plant cells operably linked to a polynucleotide that is transcribed into a non-coding miRNA molecule, and growing a plant from the plant cell, wherein the non-coding miRNA molecule comprises a non-coding miRNA polynucleotide sequence as set forth in SEQ ID NOs: 93-99.
DETAILED DESCRIPTION OF THE INVENTION
[0021] In the attached sequence listing:
[0022] SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57 and 115 are nucleotide sequences of the coding strand of the DNA constructs used in the recombinant DNA imparting an enhanced trait in plants, each representing a coding sequence for a protein.
[0023] SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58 and 116 are amino acid sequences of the cognate proteins of the DNA molecules with nucleotide sequences 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57 and 115.
[0024] SEQ ID NOs: 59-92 are amino acid sequences of proteins homologous to the proteins with amino acid sequences 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58 and 116.
[0025] SEQ ID NOs: 93, 94, 95, 96, 97, 98 and 99 are nucleotide sequences of the coding strand of DNA molecules used in the recombinant DNA imparting an enhanced trait or altered phenotype in plants, each representing a miRNA decoy.
[0026] SEQ ID NOs: 100, 101, 102, 103, 104, 105 and 106 are nucleotide sequences corresponding to the miRNA binding sites of the miRNA decoys with nucleotide sequences 93, 94, 95, 96, 97, 98 and 99.
[0027] SEQ ID NOs: 108, 110, 112 and 114 are amino acid sequences corresponding to proteins that are down-regulated by endogenous miR172, miR166, miR444 and miR397, respectively. SEQ ID NOs: 107, 109, 111 and 113 are polynucleotides sequences encoding those proteins.
[0028] As used herein, the term "expression" refers to the production of a polynucleotide or a protein by a plant, plant cell or plant tissue which can give rise to an altered phenotype or enhanced trait. Expression can also refer to the process by which information from a gene is used in the synthesis of functional gene products, which may include but are not limited to other polynucleotides or proteins which may serve, e.g., an enzymatic, structural or regulatory function. Gene products having a regulatory function include but are not limited to elements that affect the occurrence or level of transcription or translation of a target protein. In some cases, the expression product is a non-coding functional RNA.
[0029] "Modulation" of expression refers to the process of effecting either overexpression or suppression of a polynucleotide or a protein.
[0030] The term "suppression" as used herein refers to a lower expression level of a target polynucleotide or target protein in a plant, plant cell or plant tissue, as compared to the expression in a wild-type or control plant, cell or tissue, at any developmental or temporal stage for the gene. The term "target protein" as used in the context of suppression refers to a protein which is suppressed; similarly, "target mRNA" refers to a polynucleotide which can be suppressed or, once expressed, degraded so as to result in suppression of the target protein it encodes. In alternate non-limiting embodiments, the target protein or target polynucleotide is one the suppression of which can give rise to an enhanced trait or altered phenotype directly or indirectly. In one exemplary embodiment, the target protein is one which can indirectly increase or decrease the expression of one or more other proteins, the increased or decreased expression, respectively, of which is associated with an enhanced trait or an altered phenotype. In another exemplary embodiment, the target protein can bind to one or more other proteins associated with an altered phenotype or enhanced trait to enhance or inhibit their function and thereby effect the altered phenotype or enhanced trait indirectly.
[0031] Suppression can be applied using numerous approaches. Non limiting examples include: suppressing an endogenous gene(s) or a subset of genes in a pathway, suppressing one or more mutation that has resulted in decreased activity of a protein, suppressing the production of an inhibitory agent, to elevate, reducing or eliminating the level of substrate that an enzyme requires for activity, producing a new protein, activating a normally silent gene; or accumulating a product that does not normally increase under natural conditions.
[0032] Conversely, the term "overexpression" as used herein refers to a greater expression level of a polynucleotide or a protein in a plant, plant cell or plant tissue, compared to expression in a wild-type plant, cell or tissue, at any developmental or temporal stage for the gene. Overexpression can take place in plant cells normally lacking expression of polypeptides functionally equivalent or identical to the present polypeptides. Overexpression can also occur in plant cells where endogenous expression of the present polypeptides or functionally equivalent molecules normally occurs, but such normal expression is at a lower level. Overexpression thus results in a greater than normal production, or "overproduction" of the polypeptide in the plant, cell or tissue.
[0033] The term "target protein" as used herein in the context of overexpression refers to a protein which is overexpressed; "target mRNA" refers to an mRNA which encodes and is translated to produce the target protein, which can also be overexpressed. In alternative embodiments, the target protein can effect an enhanced trait or altered phenotype directly or indirectly. In the latter case it may do so, for example, by affecting the expression, function or substrate available to one or more other proteins. In an exemplary embodiment, the target protein can bind to one or more other proteins associated with an altered phenotype or enhanced trait to enhance or inhibit their function.
[0034] Overexpression can be achieved using numerous approaches. In one embodiment, overexpression can be achieved by placing the DNA sequence encoding one or more polynucleotides or polypeptides under the control of a promoter, examples of which include but are not limited to endogenous promoters, heterologous promoters, inducible promoters and tissue specific promoters. In one exemplary embodiment, the promoter is a constitutive promoter, for example, the cauliflower mosaic virus 35S transcription initiation region. Thus, depending on the promoter used, overexpression can occur throughout a plant, in specific tissues of the plant, or in the presence or absence of different inducing or inducible agents, such as hormones or environmental signals.
[0035] Small RNAs that regulate protein expression include miRNAs and ta-siRNAs. A miRNA is a small (typically about 21 nucleotide) RNA that has the ability to modulate the expression of a target gene by binding to a messenger RNA encoding a target protein at specific "miRNA binding sites" to form a RNA duplex, leading to destabilization of the target protein messenger RNA or to translational inhibition of the target protein messenger RNA, and ultimately resulting in suppression of the target protein.
[0036] Recombinant DNA constructs can be used to modify the activity of native miRNAs by a variety of means. By increasing the expression of a miRNA, e.g. temporally or spatially, the modulation of expression of a native target gene can be enhanced. An alternative gene suppression approach for suppressing the expression of a target protein can include the use of a recombinant DNA construct that produces a synthetic miRNA that is designed to bind to a native or synthetic miRNA recognition site on messenger RNA for the target protein. By reducing the expression of a miRNA, the modulation of a native target gene can be diminished resulting in enhanced expression of the target protein. More specifically, the expression of a target protein can be enhanced by suppression of the activity of the miRNA that binds to a recognition site in the messenger RNA that is transcribed from the native gene for the target protein. Several types of recombinant DNA constructs can be designed to suppress the activity of a miRNA.
[0037] For example, a recombinant DNA construct that produces an abundance of RNA with the miRNA recognition site can be used as a decoy for the native miRNA allowing endogenous messenger RNA with the miRNA recognition site to be translated to the target protein without interference from native miRNA. A recombinant DNA construct that produces RNA with a modified miRNA recognition site, e.g. with nucleotides at positions 10 and/or 11 in a 21mer miRNA recognition site which are unpaired with respect to the native miRNA, can be used to sequester natively expressed miRNA thereby reducing the cleavage that normally occurs when miRNA binds to a recognition site. The unpaired nucleotides can be produced e.g. through additional nucleotides between positions 10 and 11 or through substitutions of the nucleotides at positions 10 and 11.
[0038] Naturally occurring or endogenous decoys exist which include one or more miRNA binding sites. A "miRNA decoy" is defined herein as a sequence that can be recognized and bound by an endogenous mature miRNA resulting in base-pairing between the miRNA decoy sequence and the endogenous mature miRNA, thereby forming a stable RNA duplex that is not cleaved because of the presence of mismatches between the miRNA decoy sequence and the mature miRNA.
[0039] Rules for predicting endogenous microRNA decoy sequences have been developed. In general, these rules define (1) mismatches that are required, and (2) mismatches that are permitted but not required. Mismatches include canonical mismatches (e.g., G-A, C-U, C-A) as well as G::U wobble pairs and indels (nucleotide insertions or deletions). These rules may be applied to design synthetic decoys.
[0040] With respect to constructing synthetic decoys, required mismatches include: (a) at least 1 mismatch between the miRNA decoy sequence and the endogenous mature miRNA at positions 9, 10, or 11 of the endogenous mature miRNA, or alternatively, (b) 1, 2, 3, 4, or 5 insertions (i.e., extra nucleotides) at a position in the miRNA decoy sequence corresponding to positions 9, 10, or 11 of the endogenous mature miRNA. In preferred embodiments, there exists either (a) at least 1 mismatch between the miRNA decoy sequence and the endogenous mature miRNA at positions 10 and/or 11 of the endogenous mature miRNA, or (b) at least 1 insertion in the miRNA decoy sequence between the nucleotides at positions corresponding to positions 10 and/or 11 of the endogenous mature miRNA. In exemplary embodiments, there can be 2, 3, 4, 5, 6, 7, 8, 9, or 10 insertions.
[0041] Mismatches that are permitted, but not required, include: (a) 0, 1, or 2 mismatches between the miRNA decoy sequence and the endogenous mature miRNA at positions 1, 2, 3, 4, 5, 6, 7, 8, and 9 of the endogenous mature miRNA, and (b) 0, 1, 2, or 3 mismatches between the miRNA decoy sequence and the endogenous mature miRNA at positions 12 through the last position of the endogenous mature miRNA (i.e., at position 21 of a 21-nucleotide mature miRNA), wherein each of the mismatches at positions 12 through the last position of the endogenous mature miRNA is adjacent to at least one complementary base-pair (i.e., so that there is not more than 2 contiguous mismatches at positions 12 through the last position of the endogenous mature miRNA). In preferred embodiments, there exist no mismatches (i.e., there are all complementary base-pairs) at positions 1, 2, 3, 4, 5, 6, 7, and 8 of the endogenous mature miRNA.
[0042] Decoy constructs may include but are not limited to DNA sequences that are transcribed into (i) naturally occurring decoys containing one or more naturally occurring miRNA binding sites specific for miRNA families, (ii) synthetic decoys constructed using a naturally occurring non-coding RNA "scaffolding" and one or more binding sites, i.e., naturally occurring decoys in which the one or more naturally occurring binding sites are substituted or supplemented with one or more synthetic miRNA binding sites, (iii) synthetic decoys wherein a miRNA binding site, which may be naturally occurring or synthetic, is introduced into the 3'-untranslated region of a coding mRNA, or (iv) decoys which are chimeras of any of the preceding decoys.
[0043] The construction and description of recombinant DNA constructs to modulate small non-coding RNA activities are disclosed in US Patent Application Publication US 2009/0070898 A1, and US Patent Application Publication US2011/0296555 A1, both of which are incorporated herein by reference. In particular, with respect to US 2009/0070898 A1, see e.g. paragraphs 182 to 186 and Example 11 at paragraphs 290 to 297.
[0044] Combinatorial regulation is a further feature of miRNA-mediated overexpression. Multiple families of miRNA molecules are known, each of which can encompass multiple species of miRNA molecules. A given miRNA family may have multiple different mRNA targets; conversely, a given target can be targeted by multiple miRNA families. Another feature of endogenous miRNA-mediated overexpression is that expression of individual miRNA families is in some cases cell-type or tissue-specific, or varies temporally, developmentally or in response to environmental stimuli. Hence expression of particular miRNA families can overlap in time, spatially, developmentally or according to growth conditions, resulting in varied patterns of target protein expression.
[0045] Hence, it is possible to produce plants with desirable altered phenotypes or enhanced traits by selectively interfering with the expression pattern or function of specific miRNA families that suppress target proteins associated with those phenotypes or traits.
[0046] Thus, in one embodiment, a target protein can be overexpressed by interfering with the endogenous activities of these small inhibitory RNA molecules, which can be accomplished by several ways. One non-limiting example is to reduce the expression of a miRNA, by which the modulation of a native target gene can be diminished and consequently enhancing expression of the target protein. Yet another embodiment of the present invention for overexpressing a target protein is, to modify the native miRNA recognition site in the mRNA encoding the protein to render it resistant to the binding of cognate miRNA which regulates the native gene. Yet another non-limiting example is to express a miRNA "decoy" constructed as described above.
[0047] Thus exemplary embodiments include plants transformed with a recombinant DNA molecule encoding at least one polynucleotide sequence transcribed into a mature miRNA decoy that recognizes and binds at least one miRNA species, wherein the polynucleotide has a sequence selected from the group consisting of SEQ ID NOs 93-99, and wherein the plants exhibit an altered phenotype or an enhanced trait or both.
[0048] Further exemplary embodiments of the disclosure include a plant transformed with a recombinant DNA molecule encoding as least one polynucleotide sequence transcribed into a mature miRNA decoy that recognizes and binds at least one miRNA species, wherein the polynucleotide comprises at least one miRNA binding site having a sequence selected from the group consisting of SEQ ID NOs: 100-106 and wherein the plants exhibit an altered phenotype or an enhanced trait or both.
[0049] Further exemplary embodiments include plants transformed with a recombinant DNA molecule encoding a heterologous promoter operably linked to at least one polynucleotide sequence transcribed into a mature miRNA decoy that recognizes and binds at least one miRNA species, wherein the promoter is a constitutive promoter, a developmental promoter, a tissue enhanced promoter, a tissue preferred promoter, a tissue specific promoter, a cell type-specific promoter, an inducible promoter or a diurnal promoter.
[0050] Further exemplary embodiments include a method of producing plants exhibiting an altered phenotype or an enhanced trait or both by transforming the plants with recombinant DNA constructs encoding a least one polynucleotide sequence transcribed into a mature miRNA decoy that recognizes and binds at least one miRNA species, wherein the polynucleotide has a sequence selected from the group consisting of SEQ ID NOs: 93-99, and wherein the plants exhibit an altered phenotype or an enhanced trait or both.
[0051] Further exemplary embodiments of the disclosure include a method of producing plants exhibiting an altered phenotype or an enhanced trait or both by transforming the plants with recombinant DNA constructs encoding a least one polynucleotide sequence transcribed into a mature miRNA decoy that recognizes and binds at least one miRNA species, wherein the polynucleotide comprises at least one miRNA binding site having sequence selected from the group consisting of SEQ ID NOs: 100-106.
[0052] Further exemplary embodiments include a method of producing plants exhibiting an altered phenotype or an enhanced trait or both by transforming the plants with a recombinant DNA molecule encoding a heterologous promoter operably linked to at least one polynucleotide sequence transcribed into a mature miRNA decoy that recognizes and binds at least one miRNA species, wherein the promoter is a constitutive promoter, a developmental promoter, a tissue enhanced promoter, a tissue preferred promoter, a tissue specific promoter, a cell type-specific promoter, an inducible promoter or a diurnal promoter.
[0053] As used herein a "plant" includes a whole plant, a transgenic plant, meristematic tissue, a shoot organ/structure (for example, leaf, stem and tuber), a root, a flower, a floral organ/structure (for example, a bract, a sepal, a petal, a stamen, a carpel, an anther and an ovule), a seed (including an embryo, endosperm, and a seed coat) and a fruit (the mature ovary), plant tissue (for example, vascular tissue, ground tissue, and the like) and a cell (for example, guard cell, egg cell, pollen, mesophyll cell, and the like), and progeny of same. The classes of plants that can be used in the disclosed methods are generally as broad as the classes of higher and lower plants amenable to transformation and breeding techniques, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, horsetails, psilophytes, lycophytes, bryophytes, and multicellular algae.
[0054] As used herein a "transgenic plant cell" means a plant cell that is transformed with stably-integrated, recombinant DNA, for example, by Agrobacterium-mediated transformation or by bombardment using microparticles coated with recombinant DNA or by other means. A plant cell of this disclosure can be an originally-transformed plant cell that exists as a microorganism or as a progeny plant cell that is regenerated into differentiated tissue, for example, into a transgenic plant with stably-integrated, recombinant DNA, or seed or pollen derived from a progeny transgenic plant.
[0055] As used herein a "control plant" means a plant that does not contain the recombinant DNA of the present disclosure that imparts an enhanced trait or altered phenotype. A control plant is used to identify and select a transgenic plant that has an enhanced trait or altered phenotype. A suitable control plant can be a non-transgenic plant of the parental line used to generate a transgenic plant, for example, a wild type plant devoid of a recombinant DNA. A suitable control plant can also be a transgenic plant that contains recombinant DNA that imparts other traits, for example, a transgenic plant having enhanced herbicide tolerance. A suitable control plant can in some cases be a progeny of a hemizygous transgenic plant line that does not contain the recombinant DNA, known as a negative segregant, or a negative isogenic line.
[0056] As used herein a "propagule" includes all products of meiosis and mitosis, including but not limited to, plant, seed and part of a plant able to propagate a new plant. Propagules include whole plants, cells, pollen, ovules, flowers, embryos, leaves, roots, stems, shoots, meristems, grains or seeds, or any plant part that is capable of growing into an entire plant. Propagule also includes graft where one portion of a plant is grafted to another portion of a different plant (even one of a different species) to create a living organism. Propagule also includes all plants and seeds produced by cloning or by bringing together meiotic products, or allowing meiotic products to come together to form an embryo or a fertilized egg (naturally or with human intervention).
[0057] As used herein a "progeny" includes any plant, seed, plant cell, and/or regenerable plant part comprising a recombinant DNA of the present disclosure derived from an ancestor plant. A progeny can be homozygous or heterozygous for the transgene. Progeny can be grown from seeds produced by a transgenic plant comprising a recombinant DNA of the present disclosure, and/or from seeds produced by a plant fertilized with pollen or ovule from a transgenic plant comprising a recombinant DNA of the present disclosure.
[0058] As used herein a "trait" is a physiological, morphological, biochemical, or physical characteristic of a plant or particular plant material or cell. In some instances, this characteristic is visible to the human eye, such as seed or plant size, or can be measured by biochemical techniques, such as detecting the protein, starch, certain metabolites, or oil content of seed or leaves, or by observation of a metabolic or physiological process, for example, by measuring tolerance to water deprivation or particular salt or sugar concentrations, or by the measurement of the expression level of a gene or genes, for example, by employing Northern analysis, RT-PCR, microarray gene expression assays, or reporter gene expression systems, or by agricultural observations such as hyperosmotic stress tolerance or yield. Any technique can be used to measure the amount of, comparative level of, or difference in any selected chemical compound or macromolecule in the transgenic plants, however.
[0059] As used herein an "enhanced trait" means a characteristic of a transgenic plant as a result of stable integration and expression of a recombinant DNA in the transgenic plant. Such traits include, but are not limited to, an enhanced agronomic trait characterized by enhanced plant morphology, physiology, growth and development, yield, nutritional enhancement, disease or pest resistance, or environmental or chemical tolerance. In some specific aspects of this disclosure an enhanced trait is selected from the group consisting of drought tolerance, increased water use efficiency, cold tolerance, increased nitrogen use efficiency and increased yield as shown in Tables 9-16, and altered phenotypes as shown in Tables 4-8. In another aspect of the disclosure the trait is increased yield under non-stress conditions or increased yield under environmental stress conditions. Stress conditions can include both biotic and abiotic stress, for example, drought, shade, fungal disease, viral disease, bacterial disease, insect infestation, nematode infestation, cold temperature exposure, heat exposure, osmotic stress, reduced nitrogen nutrient availability, reduced phosphorus nutrient availability and high plant density. "Yield" can be affected by many properties including without limitation, plant height, plant biomass, pod number, pod position on the plant, number of internodes, incidence of pod shatter, grain size, efficiency of nodulation and nitrogen fixation, efficiency of nutrient assimilation, resistance to biotic and abiotic stress, carbon assimilation, plant architecture, resistance to lodging, percent seed germination, seedling vigor, and juvenile traits. Yield can also be affected by efficiency of germination (including germination in stressed conditions), growth rate (including growth rate in stressed conditions), ear number, seed number per ear, seed size, composition of seed (starch, oil, protein) and characteristics of seed fill.
[0060] Also used herein, the term "trait modification" encompasses altering the naturally occurring trait by producing a detectable difference in a characteristic in a plant comprising a recombinant DNA of the present disclosure relative to a plant not comprising the recombinant DNA, such as a wild-type plant, or a negative segregant. In some cases, the trait modification can be evaluated quantitatively. For example, the trait modification can entail an increase or decrease, in an observed trait as compared to a control plant. It is known that there can be natural variations in a modified trait. Therefore, the trait modification observed entails a change of the normal distribution and magnitude of the trait in the plants as compared to a control plant.
[0061] The present disclosure relates to a plant with improved economically important characteristics, more specifically increased yield. More specifically the present disclosure relates to a plant comprising a polynucleotide of this disclosure, wherein the plant has increased yield as compared to a control plant. Many plants of this disclosure exhibited increased yield as compared to a control plant. In an embodiment, a plant of the present disclosure exhibited an improved trait that is related to yield, including but not limited to increased nitrogen use efficiency, increased nitrogen stress tolerance, increased water use efficiency and increased drought tolerance, as defined and discussed infra.
[0062] Yield can be defined as the measurable produce of economic value from a crop. Yield can be defined in the scope of quantity and/or quality. Yield can be directly dependent on several factors, for example, the number and size of organs, plant architecture (such as the number of branches, plant biomass, etc.), seed production and more. Root development, photosynthetic efficiency, nutrient uptake, stress tolerance, early vigor, delayed senescence and functional stay green phenotypes can be important factors in determining yield. Optimizing the above mentioned factors can therefore contribute to increasing crop yield.
[0063] Reference herein to an increase in yield-related traits can also be taken to mean an increase in biomass (weight) of one or more parts of a plant, which can include above ground and/or below ground (harvestable) plant parts. In particular, such harvestable parts are seeds, and performance of the methods of the disclosure results in plants with increased yield and in particular increased seed yield relative to the seed yield of suitable control plants. The term "yield" of a plant can relate to vegetative biomass (root and/or shoot biomass), to reproductive organs, and/or to propagules (such as seeds) of that plant.
[0064] Increased yield of a plant of the present disclosure can be measured in a number of ways, including test weight, seed number per plant, seed weight, seed number per unit area (for example, seeds, or weight of seeds, per acre), bushels per acre, tons per acre, or kilo per hectare. For example, corn yield can be measured as production of shelled corn kernels per unit of production area, for example in bushels per acre or metric tons per hectare. This is often also reported on a moisture adjusted basis, for example at 15.5 percent moisture. Increased yield can result from improved utilization of key biochemical compounds, such as nitrogen, phosphorous and carbohydrate, or from improved responses to environmental stresses, such as cold, heat, drought, salt, shade, high plant density, and attack by pests or pathogens. This disclosure can also be used to provide plants with improved growth and development, and ultimately increased yield, as the result of modified expression of plant growth regulators or modification of cell cycle or photosynthesis pathways. Also of interest is the generation of plants that demonstrate increased yield with respect to a seed component that may or may not correspond to an increase in overall plant yield.
[0065] In an embodiment, "alfalfa yield" can also be measured in forage yield, the amount of above ground biomass at harvest. Factors leading contributing to increased biomass include increased vegetative growth, branches, nodes and internodes, leaf area, and leaf area index.
[0066] In another embodiment, "canola yield" can also be measured in pod number, number of pods per plant, number of pods per node, number of internodes, incidence of pod shatter, seeds per silique, seed weight per silique, improved seed, oil, or protein composition.
[0067] Additionally, "corn or maize yield" can also be measured as production of shelled corn kernels per unit of production area, ears per acre, number of kernel rows per ear, weight per kernel, ear number, fresh or dry ear biomass (weight), kernel rows per ear and kernels per row.
[0068] In yet another embodiment, "cotton yield" can be measured as bolls per plant, size of bolls, fiber quality, seed cotton yield in g/plant, seed cotton yield in lb/acre, lint yield in lb/acre, and number of bales.
[0069] Specific embodiment for "rice yield" can also include panicles per hill, grain per hill, and filled grains per panicle.
[0070] Still further embodiment for "soybean yield" can also include pods per plant, pods per acre, seeds per plant, seeds per pod, weight per seed, weight per pod, pods per node, number of nodes, and the number of internodes per plant.
[0071] In still further embodiment, "sugarcane yield" can be measured as cane yield (tons per acre; kg/hectare), total recoverable sugar (pounds per ton), and sugar yield (tons/acre).
[0072] In yet still further embodiment, "wheat yield" can include: cereal per unit area, grain number, grain weight, grain size, grains per head, seeds per head, seeds per plant, heads per acre, number of viable tillers per plant, composition of seed (for example, carbohydrates, starch, oil, and protein) and characteristics of seed fill.
[0073] The terms "yield", "seed yield" are defined above for a number of core crops. The terms "increased", "improved", "enhanced" are interchangeable and are defined herein.
[0074] In another embodiment, the present disclosure provides a method for the production of plants having increased yield; performance of the method gives plants increased yield. "Increased yield" can manifest as one or more of the following: (i) increased plant biomass (weight) of one or more parts of a plant, particularly aboveground (harvestable) parts, of a plant, increased root biomass (increased number of roots, increased root thickness, increased root length) or increased biomass of any other harvestable part; or (ii) increased early vigor, defined herein as an improved seedling aboveground area approximately three weeks post-germination. "Early vigor" refers to active healthy plant growth especially during early stages of plant growth, and can result from increased plant fitness due to, for example, the plants being better adapted to their environment (for example, optimizing the use of energy resources, uptake of nutrients and partitioning carbon allocation between shoot and root). Early vigor in corn, for example, is a combination of the ability of corn seeds to germinate and emerge after planting and the ability of the young corn plants to grow and develop after emergence. Plants having early vigor also show increased seedling survival and better establishment of the crop, which often results in highly uniform fields with the majority of the plants reaching the various stages of development at substantially the same time, which often results in increased yield. Therefore early vigor can be determined by measuring various factors, such as kernel weight, percentage germination, percentage emergence, seedling growth, seedling height, root length, root and shoot biomass, canopy size and color and others.
[0075] Further, increased yield can also manifest as (iii) increased total seed yield, which may result from one or more of an increase in seed biomass (seed weight) due to an increase in the seed weight on a per plant and/or on an individual seed basis an increased number of panicles per plant; an increased number of pods; an increased number of nodes; an increased number of flowers ("florets") per panicle/plant; increased seed fill rate; an increased number of filled seeds; increased seed size (length, width, area, perimeter), which can also influence the composition of seeds; and/or increased seed volume, which can also influence the composition of seeds.
[0076] Increased yield can also (iv) result in modified architecture, or can occur because of modified plant architecture.
[0077] Increased yield can also manifest as (v) increased harvest index, which is expressed as a ratio of the yield of harvestable parts, such as seeds, over the total biomass
[0078] Increased yield can also manifest as (vi) increased kernel weight, which is extrapolated from the number of filled seeds counted and their total weight. An increased kernel weight can result from an increased seed size and/or seed weight, an increase in embryo size, increased endosperm size, aleurone and/or scutellum, or an increase with respect to other parts of the seed that result in increased kernel weight.
[0079] Increased yield can also manifest as (vii) increased ear biomass, which is the weight of the ear and can be represented on a per ear, per plant or per plot basis.
[0080] In one embodiment, increased yield can be increased seed yield, and is selected from one of the following: (i) increased seed weight; (ii) increased number of filled seeds; and (iii) increased harvest index.
[0081] The disclosure also extends to harvestable parts of a plant such as, but not limited to, seeds, leaves, fruits, flowers, bolls, stems, rhizomes, tubers and bulbs. The disclosure furthermore relates to products derived from a harvestable part of such a plant, such as dry pellets, powders, oil, fat and fatty acids, starch or proteins.
[0082] The present disclosure provides a method for increasing "yield" of a plant or "broad acre yield" of a plant or plant part defined as the harvestable plant parts per unit area, for example seeds, or weight of seeds, per acre, pounds per acre, bushels per acre, tones per acre, tons per acre, kilo per hectare.
[0083] This disclosure further provides a method of increasing yield in a plant by producing a plant comprising a polynucleic acid sequence of this disclosure where the plant can be crossed with itself, a second plant from the same plant line, a wild type plant, or a plant from a different line of plants to produce a seed. The seed of the resultant plant can be harvested from fertile plants and be used to grow progeny generations of plant(s) of this disclosure. In addition to direct transformation of a plant with a recombinant DNA molecule, transgenic plants can be prepared by crossing a first plant having a stably integrated recombinant DNA molecule with a second plant lacking the DNA. For example, recombinant DNA can be introduced into a first plant line that is amenable to transformation to produce a transgenic plant which can be crossed with a second plant line to introgress the recombinant DNA into the second plant line.
[0084] A transgenic plant transformed with a recombinant DNA molecule and having the polynucleotide of this disclosure provides the enhanced trait of increased yield compared to a control plant. Genetic markers associated with recombinant DNA can produce transgenic progeny that is homozygous for the desired recombinant DNA. Progeny plants carrying DNA for both parental traits can be back crossed into a parent line multiple times, for example usually 6 to 8 generations, to produce a progeny plant with substantially the same genotype as the one original transgenic parental line but having the recombinant DNA of the other transgenic parental line. The term "progeny" denotes the offspring of any generation of a parent plant prepared by the methods of this disclosure containing the recombinant polynucleotides as described herein.
[0085] As used herein "nitrogen use efficiency" refers to the processes which lead to an increase in the plant's yield, biomass, vigor, and growth rate per nitrogen unit applied. The processes can include the uptake, assimilation, accumulation, signaling, sensing, retranslocation (within the plant) and use of nitrogen by the plant.
[0086] As used herein "nitrogen limiting conditions" refers to growth conditions or environments that provide less than optimal amounts of nitrogen needed for adequate or successful plant metabolism, growth, reproductive success and/or viability.
[0087] As used herein the "increased nitrogen stress tolerance" refers to the ability of plants to grow, develop, or yield normally, or grow, develop, or yield faster or better when subjected to less than optimal amounts of available/applied nitrogen, or under nitrogen limiting conditions.
[0088] As used herein "increased nitrogen use efficiency" refers to the ability of plants to grow, develop, or yield faster or better than normal when subjected to the same amount of available/applied nitrogen as under normal or standard conditions; ability of plants to grow, develop, or yield normally, or grow, develop, or yield faster or better when subjected to less than optimal amounts of available/applied nitrogen, or under nitrogen limiting conditions.
[0089] Increased plant nitrogen use efficiency can be translated in the field into either harvesting similar quantities of yield, while supplying less nitrogen, or increased yield gained by supplying optimal/sufficient amounts of nitrogen. The increased nitrogen use efficiency can improve plant nitrogen stress tolerance, and can also improve crop quality and biochemical constituents of the seed such as protein yield and oil yield. The terms "increased nitrogen use efficiency", "enhanced nitrogen use efficiency", and "nitrogen stress tolerance" are used inter-changeably in the present disclosure to refer to plants with improved productivity under nitrogen limiting conditions.
[0090] As used herein "water use efficiency" refers to the amount of carbon dioxide assimilated by leaves per unit of water vapor transpired. It constitutes one of the most important traits controlling plant productivity in dry environments. "Drought tolerance" refers to the degree to which a plant is adapted to arid or drought conditions. The physiological responses of plants to a deficit of water include leaf wilting, a reduction in leaf area, leaf abscission, and the stimulation of root growth by directing nutrients to the underground parts of the plants. Plants are more susceptible to drought during flowering and seed development (the reproductive stages), as plant's resources are deviated to support root growth. In addition, abscisic acid (ABA), a plant stress hormone, induces the closure of leaf stomata (microscopic pores involved in gas exchange), thereby reducing water loss through transpiration, and decreasing the rate of photosynthesis. These responses improve the water-use efficiency of the plant on the short term. The terms "increased water use efficiency", "enhanced water use efficiency", and "increased drought tolerance" are used inter-changeably in the present disclosure to refer to plants with improved productivity under water-limiting conditions.
[0091] As used herein "increased water use efficiency" refers to the ability of plants to grow, develop, or yield faster or better than normal when subjected to the same amount of available/applied water as under normal or standard conditions; ability of plants to grow, develop, or yield normally, or grow, develop, or yield faster or better when subjected to reduced amounts of available/applied water (water input) or under conditions of water stress or water deficit stress.
[0092] As used herein "increased drought tolerance" refers to the ability of plants to grow, develop, or yield normally, or grow, develop, or yield faster or better than normal when subjected to reduced amounts of available/applied water and/or under conditions of acute or chronic drought; ability of plants to grow, develop, or yield normally when subjected to reduced amounts of available/applied water (water input) or under conditions of water deficit stress or under conditions of acute or chronic drought.
[0093] As used herein "drought stress" refers to a period of dryness (acute or chronic/prolonged) that results in water deficit and subjects plants to stress and/or damage to plant tissues and/or negatively affects grain/crop yield; a period of dryness (acute or chronic/prolonged) that results in water deficit and/or higher temperatures and subjects plants to stress and/or damage to plant tissues and/or negatively affects grain/crop yield.
[0094] As used herein "water deficit" refers to the conditions or environments that provide less than optimal amounts of water needed for adequate/successful growth and development of plants.
[0095] As used herein "water stress" refers to the conditions or environments that provide improper (either less/insufficient or more/excessive) amounts of water than that needed for adequate/successful growth and development of plants/crops thereby subjecting the plants to stress and/or damage to plant tissues and/or negatively affecting grain/crop yield.
[0096] As used herein "water deficit stress" refers to the conditions or environments that provide less/insufficient amounts of water than that needed for adequate/successful growth and development of plants/crops thereby subjecting the plants to stress and/or damage to plant tissues and/or negatively affecting grain yield.
[0097] As used herein a "polynucleotide" is a nucleic acid molecule comprising a plurality of polymerized nucleotides. A polynucleotide may be referred to as a nucleic acid, oligonucleotide, nucleotide, or any fragment thereof. In many instances, a polynucleotide encodes a polypeptide (or protein) or a domain or fragment thereof. Additionally, a polynucleotide can comprise a promoter, an intron, an enhancer region, a polyadenylation site, a translation initiation site, 5' or 3' untranslated regions, a reporter gene, a selectable marker, a scorable marker, or the like. A polynucleotide can be single-stranded or double-stranded DNA or RNA. A polynucleotide optionally comprises modified bases or a modified backbone. A polynucleotide can be, for example, genomic DNA or RNA, a transcript (such as an mRNA), a cDNA, a PCR product, a cloned DNA, a synthetic DNA or RNA, or the like. A polynucleotide can be combined with carbohydrate(s), lipid(s), protein(s), or other materials to perform a particular activity such as transformation or form a composition such as a peptide nucleic acid (PNA). A polynucleotide can comprise a sequence in either sense or antisense orientations. "Oligonucleotide" is substantially equivalent to the terms amplimer, primer, oligomer, element, target, and probe and is preferably single-stranded.
[0098] As used herein a "recombinant polynucleotide" or "recombinant DNA" is a polynucleotide that is not in its native state, for example, a polynucleotide comprises a series of nucleotides (represented as a nucleotide sequence) not found in nature, or a polynucleotide is in a context other than that in which it is naturally found; for example, separated from polynucleotides with which it typically is in proximity in nature, or adjacent (or contiguous with) polynucleotides with which it typically is not in proximity. The "recombinant polynucleotide" or "recombinant DNA" refers to polynucleotide or DNA which has been genetically engineered and constructed outside of a cell including DNA containing naturally occurring DNA or cDNA or synthetic DNA. For example, the polynucleotide at issue can be cloned into a vector, or otherwise recombined with one or more additional nucleic acids.
[0099] As used herein a "polypeptide" comprises a plurality of consecutive polymerized amino acid residues for example, at least about 15 consecutive polymerized amino acid residues. In many instances, a polypeptide comprises a series of polymerized amino acid residues that is a transcriptional regulator or a domain or portion or fragment thereof. Additionally, the polypeptide can comprise: (i) a localization domain; (ii) an activation domain; (iii) a repression domain; (iv) an oligomerization domain; (v) a protein-protein interaction domain; (vi) a DNA-binding domain; or the like. The polypeptide optionally comprises modified amino acid residues, naturally occurring amino acid residues not encoded by a codon, non-naturally occurring amino acid residues.
[0100] As used herein "protein" refers to a series of amino acids, oligopeptide, peptide, polypeptide or portions thereof whether naturally occurring or synthetic.
[0101] As used herein a "recombinant polypeptide" is a polypeptide produced by translation of a recombinant polynucleotide.
[0102] A "synthetic polypeptide" is a polypeptide created by consecutive polymerization of isolated amino acid residues using methods known in the art.
[0103] An "isolated polypeptide", whether a naturally occurring or a recombinant polypeptide, is more enriched in (or out of) a cell than the polypeptide in its natural state in a wild-type cell, for example, more than about 5% enriched, more than about 10% enriched, or more than about 20%, or more than about 50%, or more, enriched, for example, alternatively denoted: 105%, 110%, 120%, 150% or more, enriched relative to wild type standardized at 100%. Such enrichment is not the result of a natural response of a wild-type plant. Alternatively, or additionally, the isolated polypeptide is separated from other cellular components, with which it is typically associated, for example, by any of the various protein purification methods.
[0104] As used herein, a "functional fragment" refers to a portion of a polypeptide provided herein which retains full or partial molecular, physiological or biochemical function of the full length polypeptide. A functional fragment often contains the domain(s), such as Pfam domains (see below), identified in the polypeptide provided in the sequence listing.
[0105] A "DNA construct" as used in the present disclosure comprises at least one expression cassette having a promoter operable in plant cells and a polynucleotide of the present disclosure. DNA constructs can be used as a means of delivering recombinant DNA molecules to a plant cell in order to effect stable integration of the recombinant molecule into the plant cell genome. In one embodiment, the polynucleotide can encode a protein or variant of a protein or fragment of a protein that is functionally defined to maintain activity in transgenic host cells including plant cells, plant parts, explants and whole plants. In another embodiment, the polynucleotide can encode a non-coding RNA that interferes with the functioning of endogenous classes of small RNAs that regulate expression, including but not limited to taRNAs, siRNAs and miRNAs. Recombinant DNA constructs are assembled using methods known to persons of ordinary skill in the art and typically comprise a promoter operably linked to DNA, the expression of which provides the enhanced agronomic trait.
[0106] Other construct components can include additional regulatory elements, such as 5' leaders and introns for enhancing transcription, 3' untranslated regions (such as polyadenylation signals and sites), and DNA for transit or targeting or signal peptides.
[0107] Percent identity describes the extent to which polynucleotides or protein segments are invariant in an alignment of sequences, for example nucleotide sequences or amino acid sequences. An alignment of sequences is created by manually aligning two sequences, for example, a stated sequence, as provided herein, as a reference, and another sequence, to produce the highest number of matching elements, for example, individual nucleotides or amino acids, while allowing for the introduction of gaps into either sequence. An "identity fraction" for a sequence aligned with a reference sequence is the number of matching elements, divided by the full length of the reference sequence, not including gaps introduced by the alignment process into the reference sequence. "Percent identity" ("% identity") as used herein is the identity fraction times 100.
[0108] As used herein, a "homolog" or "homologues" means a protein in a group of proteins that perform the same biological function, for example, proteins that belong to the same Pfam protein family and that provide a common enhanced trait in transgenic plants of this disclosure. Homologs are expressed by homologous genes. With reference to homologous genes, homologs include orthologs, for example, genes expressed in different species that evolved from common ancestral genes by speciation and encode proteins retain the same function, but do not include paralogs, i.e., genes that are related by duplication but have evolved to encode proteins with different functions. Homologous genes include naturally occurring alleles and artificially-created variants.
[0109] Degeneracy of the genetic code provides the possibility to substitute at least one base of the protein encoding sequence of a gene with a different base without causing the amino acid sequence of the polypeptide produced from the gene to be changed. When optimally aligned, homolog proteins, or their corresponding nucleotide sequences, have typically at least about 60% identity, in some instances at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 92%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or even at least about 99.5% identity over the full length of a protein or its corresponding nucleotide sequence identified as being associated with imparting an enhanced trait or altered phenotype when expressed in plant cells. In one aspect of the disclosure homolog proteins have at least about 80%, at least about 85%, at least about 90%, at least about 92%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 99.5% identity to a consensus amino acid sequence of proteins and homologs that can be built from sequences disclosed herein.
[0110] Homologs are inferred from sequence similarity, by comparison of protein sequences, for example, manually or by use of a computer-based tool using known sequence comparison algorithms such as BLAST and FASTA. A sequence search and local alignment program, for example, BLAST, can be used to search query protein sequences of a base organism against a database of protein sequences of various organisms, to find similar sequences, and the summary Expectation value (E-value) can be used to measure the level of sequence similarity. Because a protein hit with the lowest E-value for a particular organism may not necessarily be an ortholog or be the only ortholog, a reciprocal query is used to filter hit sequences with significant E-values for ortholog identification. The reciprocal query entails search of the significant hits against a database of protein sequences of the base organism. A hit can be identified as an ortholog, when the reciprocal query's best hit is the query protein itself or a paralog of the query protein. With the reciprocal query process orthologs are further differentiated from paralogs among all the homologs, which allows for the inference of functional equivalence of genes. A further aspect of the homologs encoded by DNA useful in the transgenic plants of the invention are those proteins that differ from a disclosed protein as the result of deletion or insertion of one or more amino acids in a native sequence.
[0111] Other functional homolog proteins differ in one or more amino acids from those of a trait-improving protein disclosed herein as the result of one or more of known conservative amino acid substitutions, for example, valine is a conservative substitute for alanine and threonine is a conservative substitute for serine. Conservative substitutions for an amino acid within the native sequence can be selected from other members of a class to which the naturally occurring amino acid belongs. Representative amino acids within these various classes include, but are not limited to: (1) acidic (negatively charged) amino acids such as aspartic acid and glutamic acid; (2) basic (positively charged) amino acids such as arginine, histidine, and lysine; (3) neutral polar amino acids such as glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; and (4) neutral nonpolar (hydrophobic) amino acids such as alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine. Conserved substitutes for an amino acid within a native protein or polypeptide can be selected from other members of the group to which the naturally occurring amino acid belongs. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side 30 chains is cysteine and methionine. Naturally conservative amino acids substitution groups are: valine-leucine, valine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alaninevaline, aspartic acid-glutamic acid, and asparagine-glutamine. A further aspect of the disclosure includes proteins that differ in one or more amino acids from those of a described protein sequence as the result of deletion or insertion of one or more amino acids in a native sequence.
[0112] "Pfam" is a large collection of multiple sequence alignments and hidden Markov models covering many common protein families, for example, Pfam version 27.0 (March 2013) contains alignments and models for 14381 protein families and uses UniProtKB as its reference sequence databases. See The Pfam protein families database: M. Punta, P. C. Coggill, R. Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E. L. L. Sonnhammer, S. R. Eddy, A. Bateman, R. D. Finn Nucleic Acids Research (2012) Database Issue 40:D290-D30, which is incorporated herein by reference in its entirety. The Pfam database is currently maintained and updated by the Pfam Consortium. The alignments represent some evolutionary conserved structure that has implications for the protein's function. Profile hidden Markov models (profile HMMs) built from the protein family alignments are useful for automatically recognizing that a new protein belongs to an existing protein family even if the homology by alignment appears to be low.
[0113] Protein domains are identified by querying the amino acid sequence of a protein against Hidden Markov Models which characterize protein family domains ("Pfam domains") using HMMER software, which is available from the Pfam Consortium and is available through the Howard Hughes Medical Institute's Janelia Farm website (http://hmmer.janelia.org/software). A protein domain meeting the gathering cutoff for the alignment of a particular Pfam domain is considered to contain the Pfam domain.
[0114] A "Pfam domain module" is a representation of Pfam domains in a protein, in order from N terminus to C terminus. In a Pfam domain module individual Pfam domains are separated by double colons "::". The order and copy number of the Pfam domains from N to C terminus are attributes of a Pfam domain module. Although the copy number of repetitive domains is important, varying copy number often enables a similar function. Thus, a Pfam domain module with multiple copies of a domain should define an equivalent Pfam domain module with variance in the number of multiple copies. A Pfam domain module is not specific for distance between adjacent domains, but contemplates natural distances and variations in distance that provide equivalent function. The Pfam database contains both narrowly- and broadly-defined domains, leading to identification of overlapping domains on some proteins. A Pfam domain module is characterized by non-overlapping domains. Where there is overlap, the domain having a function that is more closely associated with the function of the protein (based on the E value of the Pfam match) is selected.
[0115] Once one DNA is identified as encoding a protein which imparts an enhanced trait when expressed in transgenic plants, other DNA encoding proteins with the same Pfam domain module are identified by querying the amino acid sequence of protein encoded by the candidate DNA against the Hidden Markov Models which characterizes the Pfam domains using HMMER software. Candidate proteins meeting the same Pfam domain module are in the protein family and have cognate DNA that is useful in constructing recombinant DNA for the use in the plant cells of this disclosure. Hidden Markov Model databases for the use with HMMER software in identifying DNA expressing protein with a common Pfam domain module for recombinant DNA in the plant cells of this disclosure are included in the computer program listing in this application.
[0116] In general, the term "variant" refers to molecules with some differences, generated synthetically or naturally, in their nucleotide or amino acid sequences as compared to a reference (native) polynucleotides or polypeptides, respectively. These differences include substitutions, insertions, deletions or any desired combinations of such changes in a native polynucleotide or amino acid sequence.
[0117] With regard to polynucleotide variants, differences between presently disclosed polynucleotides and polynucleotide variants are limited so that the nucleotide sequences of the former and the latter are similar overall and, in many regions, identical. Due to the degeneracy of the genetic code, differences between the former and the latter nucleotide sequences may be silent (for example, the amino acids encoded by the polynucleotide are the same, and the variant polynucleotide sequence encodes the same amino acid sequence as the presently disclosed polynucleotide). Variant nucleotide sequences can encode different amino acid sequences, in which case such nucleotide differences will result in amino acid substitutions, additions, deletions, insertions, truncations or fusions with respect to the similarly disclosed polynucleotide sequences. These variations can result in polynucleotide variants encoding polypeptides that share at least one functional characteristic. The degeneracy of the genetic code also dictates that many different variant polynucleotides can encode identical and/or substantially similar polypeptides.
[0118] As used herein "gene" or "gene sequence" refers to the partial or complete coding sequence of a gene, its complement, and its 5' and/or 3' untranslated regions. A gene is also a functional unit of inheritance, and in physical terms is a particular segment or sequence of nucleotides along a molecule of DNA (or RNA, in the case of RNA viruses) involved in producing a polypeptide chain. The latter can be subjected to subsequent processing such as chemical modification or folding to obtain a functional protein or polypeptide. By way of example, a transcriptional regulator gene encodes a transcriptional regulator polypeptide, which can be functional or require processing to function as an initiator of transcription.
[0119] As used herein, the term "promoter" refers generally to a DNA molecule that is involved in recognition and binding of RNA polymerase II and other proteins (trans-acting transcription factors) to initiate transcription. A promoter can be initially isolated from the 5' untranslated region (5' UTR) of a genomic copy of a gene. Alternately, promoters can be synthetically produced or manipulated DNA molecules. Promoters can also be chimeric, that is a promoter produced through the fusion of two or more heterologous DNA molecules. Plant promoters include promoter DNA obtained from plants, plant viruses, fungi and bacteria such as Agrobacterium and Bradyrhizobium bacteria.
[0120] Promoters which initiate transcription in all or most tissues of the plant are referred to as "constitutive" promoters. Promoters which initiate transcription during certain periods or stages of development are referred to as "developmental" promoters. Promoters whose expression is enhanced in certain tissues of the plant relative to other plant tissues are referred to as "tissue enhanced" or "tissue preferred" promoters. Promoters which express within a specific tissue of the plant, with little or no expression in other plant tissues are referred to as "tissue specific" promoters. A promoter that expresses in a certain cell type of the plant, for example a microspore mother cell, is referred to as a "cell type specific" promoter. An "inducible" promoter is a promoter in which transcription is initiated in response to an environmental stimulus such as cold, drought or light; or other stimuli such as wounding or chemical application. Many physiological and biochemical processes in plants exhibit endogenous rhythms with a period of about 24 hours. A "diurnal promoter" is a promoter which exhibits altered expression profiles under the control of a circadian oscillator. Diurnal regulation is subject to environmental inputs such as light and temperature and coordination by the circadian clock.
[0121] Sufficient expression in plant seed tissues is desired to affect improvements in seed composition. Exemplary promoters for use for seed composition modification include promoters from seed genes such as napin as disclosed in U.S. Pat. No. 5,420,034, maize L3 oleosin as disclosed in U.S. Pat. No. 6,433,252, zein Z27 as disclosed by Russell et al. (1997) Transgenic Res. 6(2):157-166, globulin 1 as disclosed by Belanger et al (1991) Genetics 129:863-872, glutelin 1 as disclosed by Russell (1997) supra, and peroxiredoxin antioxidant (Per1) as disclosed by Stacy et al. (1996) Plant Mol Biol. 31 (6):1205-1216.
[0122] As used herein, the term "leader" refers to a DNA molecule isolated from the untranslated 5' region (5' UTR) of a genomic copy of a gene and is defined generally as a nucleotide segment between the transcription start site (TSS) and the protein coding sequence start site. Alternately, leaders can be synthetically produced or manipulated DNA elements. A leader can be used as a 5' regulatory element for modulating expression of an operably linked transcribable polynucleotide molecule. As used herein, the term "intron" refers to a DNA molecule that can be isolated or identified from the genomic copy of a gene and can be defined generally as a region spliced out during mRNA processing prior to translation. Alternately, an intron can be a synthetically produced or manipulated DNA element. An intron can contain enhancer elements that effect the transcription of operably linked genes. An intron can be used as a regulatory element for modulating expression of an operably linked transcribable polynucleotide molecule. A DNA construct can comprise an intron, and the intron may or may not be with respect to the transcribable polynucleotide molecule.
[0123] As used herein, the term "enhancer" or "enhancer element" refers to a cis-acting transcriptional regulatory element, a.k.a. cis-element, which confers an aspect of the overall expression pattern, but is usually insufficient alone to drive transcription, of an operably linked polynucleotide. Unlike promoters, enhancer elements do not usually include a transcription start site (TSS) or TATA box or equivalent sequence. A promoter can naturally comprise one or more enhancer elements that affect the transcription of an operably linked polynucleotide. An isolated enhancer element can also be fused to a promoter to produce a chimeric promoter cis-element, which confers an aspect of the overall modulation of gene expression. A promoter or promoter fragment can comprise one or more enhancer elements that effect the transcription of operably linked genes. Many promoter enhancer elements are believed to bind DNA-binding proteins and/or affect DNA topology, producing local conformations that selectively allow or restrict access of RNA polymerase to the DNA template or that facilitate selective opening of the double helix at the site of transcriptional initiation. An enhancer element can function to bind transcription factors that regulate transcription. Some enhancer elements bind more than one transcription factor, and transcription factors can interact with different affinities with more than one enhancer domain.
[0124] Expression cassettes of this disclosure can include a "transit peptide" or "targeting peptide" or "signal peptide" molecule located either 5' or 3' to or within the gene(s). These terms generally refer to peptide molecules that when linked to a protein of interest directs the protein to a particular tissue, cell, subcellular location, or cell organelle. Examples include, but are not limited to, chloroplast transit peptides (CTPs), chloroplast targeting peptides, mitochondrial targeting peptides, nuclear targeting signals, nuclear exporting signals, vacuolar targeting peptides, and vacuolar sorting peptides. For description of the use of chloroplast transit peptides see U.S. Pat. No. 5,188,642 and U.S. Pat. No. 5,728,925. For description of the transit peptide region of an Arabidopsis EPSPS gene in the present disclosure, see Klee, H. J. Et al (MGG (1987) 210:437-442. Expression cassettes of this disclosure can also include an intron or introns. Expression cassettes of this disclosure can contain a DNA near the 3' end of the cassette that acts as a signal to terminate transcription from a heterologous nucleic acid and that directs polyadenylation of the resultant mRNA. These are commonly referred to as "3'-untranslated regions" or "3'-non-coding sequences" or "3'-UTRs". The "3' non-translated sequences" means DNA sequences located downstream of a structural nucleotide sequence and include sequences encoding polyadenylation and other regulatory signals capable of affecting mRNA processing or gene expression. The polyadenylation signal functions in plants to cause the addition of polyadenylate nucleotides to the 3' end of the mRNA precursor. The polyadenylation signal can be derived from a natural gene, from a variety of plant genes, or from T-DNA. An example of a polyadenylation sequence is the nopaline synthase 3' sequence (nos 3'; Fraley et al., Proc. Natl. Acad. Sci. USA 80: 4803-4807, 1983). The use of different 3' non-translated sequences is exemplified by Ingelbrecht et al., Plant Cell 1:671-680, 1989.
[0125] Expression cassettes of this disclosure can also contain one or more genes that encode selectable markers and confer resistance to a selective agent such as an antibiotic or an herbicide. A number of selectable marker genes are known in the art and can be used in the present disclosure: selectable marker genes conferring tolerance to antibiotics like kanamycin and paromomycin (nptII), hygromycin B (aph IV), spectinomycin (aadA), U.S. Patent Publication 2009/0138985A1 and gentamycin (aac3 and aacC4) or tolerance to herbicides like glyphosate (for example, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), U.S. Pat. No. 5,627,061; U.S. Pat. No. 5,633,435; U.S. Pat. No. 6,040,497; U.S. Pat. No. 5,094,945), sulfonyl herbicides (for example, acetohydroxyacid synthase or acetolactate synthase conferring tolerance to acetolactate synthase inhibitors such as sulfonylurea, imidazolinone, triazolopyrimidine, pyrimidyloxybenzoates and phthalide (U.S. Pat. Nos. 6,225,105; 5,767,366; 4,761,373; 5,633,437; 6,613,963; 5,013,659; 5,141,870; 5,378,824; 5,605,011)), bialaphos or phosphinothricin or derivatives (e. g., phosphinothricin acetyltransferase (bar) tolerance to phosphinothricin or glufosinate (U.S. Pat. Nos. 5,646,024; 5,561,236; 5,276,268; 5,637,489; 5,273,894); dicamba (dicamba monooxygenase, Patent Application Publications US2003/0115626A1), or sethoxydim (modified acetyl-coenzyme A carboxylase for conferring tolerance to cyclohexanedione (sethoxydim)), and aryloxyphenoxypropionate (haloxyfop, U.S. Pat. No. 6,414,222).
[0126] Transformation vectors of this disclosure can contain one or more "expression cassettes", each comprising a native or non-native plant promoter operably linked to a polynucleotide sequence of interest, which is operably linked to a 3' UTR termination signal, for expression in an appropriate host cell. It also typically comprises sequences required for proper translation of the polynucleotide or transgene. As used herein, the term "transgene" refers to a polynucleotide molecule artificially incorporated into a host cell's genome. Such a transgene can be heterologous to the host cell. The term "transgenic plant" refers to a plant comprising such a transgene. The coding region usually codes for a protein of interest but can also code for a functional RNA of interest, for example an antisense RNA, a nontranslated RNA, in the sense or antisense direction, a microRNA, a noncoding RNA, or a synthetic RNA used in either suppression or over expression of target gene sequences. The expression cassette comprising the nucleotide sequence of interest can be chimeric, meaning that at least one of its components is heterologous with respect to at least one of its other components. As used herein the term "chimeric" refers to a DNA molecule that is created from two or more genetically diverse sources, for example a first molecule from one gene or organism and a second molecule from another gene or organism.
[0127] Recombinant DNA constructs in this disclosure generally include a 3' element that typically contains a polyadenylation signal and site. Known 3' elements include those from Agrobacterium tumefaciens genes such as nos 3', tml 3', tmr 3', tms 3', ocs 3', tr7 3', for example disclosed in U.S. Pat. No. 6,090,627; 3' elements from plant genes such as wheat (Triticum aesevitum) heat shock protein 17 (Hsp17 3'), a wheat ubiquitin gene, a wheat fructose-1,6-biphosphatase gene, a rice glutelin gene, a rice lactate dehydrogenase gene and a rice beta-tubulin gene, all of which are disclosed in US Patent Application Publication 2002/0192813 A1; and the pea (Pisum sativum) ribulose biphosphate carboxylase gene (rbs 3'), and 3' elements from the genes within the host plant.
[0128] As used herein "operably linked" means the association of two or more DNA fragments in a recombinant DNA molecule so that the function of one, for example, protein-encoding DNA, is controlled by the other, for example, a promoter.
[0129] Transgenic plants can comprise a stack of one or more polynucleotides disclosed herein resulting in the production of multiple polypeptide sequences. Transgenic plants comprising stacks of polynucleotides can be obtained by either or both of traditional breeding methods or through genetic engineering methods. These methods include, but are not limited to, crossing individual transgenic lines each comprising a polynucleotide of interest, transforming a transgenic plant comprising a first gene disclosed herein with a second gene, and co-transformation of genes into a single plant cell. Co-transformation of genes can be carried out using single transformation vectors comprising multiple genes or genes carried separately on multiple vectors.
[0130] Transgenic plants comprising or derived from plant cells of this disclosure transformed with recombinant DNA can be further enhanced with stacked traits, for example, a crop plant having an enhanced trait resulting from expression of DNA disclosed herein in combination with herbicide and/or pest resistance traits. For example, genes of the current disclosure can be stacked with other traits of agronomic interest, such as a trait providing herbicide resistance, or insect resistance, such as using a gene from Bacillus thuringensis to provide resistance against lepidopteran, coliopteran, homopteran, hemiopteran, and other insects, or improved quality traits such as improved nutritional value. Herbicides for which transgenic plant tolerance has been demonstrated and the method of the present disclosure can be applied include, but are not limited to, glyphosate, dicamba, glufosinate, sulfonylurea, bromoxynil and norflurazon herbicides. Polynucleotide molecules encoding proteins involved in herbicide tolerance known in the art and include, but are not limited to, a polynucleotide molecule encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) disclosed in U.S. Pat. Nos. 5,094,945; 5,627,061; 5,633,435 and 6,040,497 for imparting glyphosate tolerance; polynucleotide molecules encoding a glyphosate oxidoreductase (GOX) disclosed in U.S. Pat. No. 5,463,175 and a glyphosate-N-acetyl transferase (GAT) disclosed in US Patent Application Publication 2003/0083480 A1 also for imparting glyphosate tolerance; dicamba monooxygenase disclosed in US Patent Application Publication 2003/0135879 A1 for imparting dicamba tolerance; a polynucleotide molecule encoding bromoxynil nitrilase (Bxn) disclosed in U.S. Pat. No. 4,810,648 for imparting bromoxynil tolerance; a polynucleotide molecule encoding phytoene desaturase (crtI) described in Misawa et al, (1993) Plant J. 4:833-840 and in Misawa et al, (1994) Plant J. 6:481-489 for norflurazon tolerance; a polynucleotide molecule encoding acetohydroxyacid synthase (AHAS, aka ALS) described in Sathasiivan et al. (1990) Nucl. Acids Res. 18:2188-2193 for imparting tolerance to sulfonylurea herbicides; polynucleotide molecules known as bar genes disclosed in DeBlock, et al. (1987) EMBO J. 6:2513-2519 for imparting glufosinate and bialaphos tolerance; polynucleotide molecules disclosed in US Patent Application Publication 2003/010609 A1 for imparting N-amino methyl phosphonic acid tolerance; polynucleotide molecules disclosed in U.S. Pat. No. 6,107,549 for imparting pyridine herbicide resistance; molecules and methods for imparting tolerance to multiple herbicides such as glyphosate, atrazine, ALS inhibitors, isoxoflutole and glufosinate herbicides are disclosed in U.S. Pat. No. 6,376,754 and US Patent Application Publication 2002/0112260. Molecules and methods for imparting insect/nematode/virus resistance are disclosed in U.S. Pat. Nos. 5,250,515; 5,880,275; 6,506,599; 5,986,175 and US Patent Application Publication 2003/0150017 A1.
Plant Cell Transformation Methods
[0131] Numerous methods for transforming chromosomes in a plant cell with recombinant DNA are known in the art and are used in methods of producing a transgenic plant cell and plant. Two effective methods for such transformation are Agrobacterium-mediated transformation and microprojectile bombardment-mediated transformation. Microprojectile bombardment methods are illustrated in U.S. Pat. No. 5,015,580 (soybean); U.S. Pat. No. 5,550,318 (corn); U.S. Pat. No. 5,538,880 (corn); U.S. Pat. No. 5,914,451 (soybean); U.S. Pat. No. 6,160,208 (corn); U.S. Pat. No. 6,399,861 (corn); U.S. Pat. No. 6,153,812 (wheat) and U.S. Pat. No. 6,365,807 (rice). Agrobacterium-mediated transformation methods are described in U.S. Pat. No. 5,159,135 (cotton); U.S. Pat. No. 5,824,877 (soybean); U.S. Pat. No. 5,463,174 (canola); U.S. Pat. No. 5,591,616 (corn); U.S. Pat. No. 5,846,797 (cotton); U.S. Pat. No. 6,384,301 (soybean), U.S. Pat. No. 7,026,528 (wheat) and U.S. Pat. No. 6,329,571 (rice), US Patent Application Publication 2004/0087030 A1 (cotton), and US Patent Application Publication 2001/0042257 A1 (sugar beet), all of which are incorporated herein by reference in their entirety. Transformation of plant material is practiced in tissue culture on nutrient media, for example a mixture of nutrients that allow cells to grow in vitro. Recipient cell targets include, but are not limited to, meristem cells, shoot tips, hypocotyls, calli, immature or mature embryos, and gametic cells such as microspores, pollen, sperm and egg cells. Callus can be initiated from tissue sources including, but not limited to, immature or mature embryos, hypocotyls, seedling apical meristems, microspores and the like. Cells containing a transgenic nucleus are grown into transgenic plants.
[0132] In addition to direct transformation of a plant material with a recombinant DNA molecule, a transgenic plant can be prepared by crossing a first plant comprising a recombinant DNA with a second plant lacking the recombinant DNA. For example, recombinant DNA can be introduced into a first plant line that is amenable to transformation, which can be crossed with a second plant line to introgress the recombinant DNA into the second plant line. A transgenic plant with recombinant DNA providing an enhanced trait, for example, enhanced yield, can be crossed with a transgenic plant line having other recombinant DNA that confers another trait, for example herbicide resistance or pest resistance, to produce progeny plants having recombinant DNA that confers both traits. Typically, in such breeding for combining traits the transgenic plant donating the additional trait is a male line and the transgenic plant carrying the base traits is the female line. The progeny of this cross will segregate such that some of the plants will carry the DNA for both parental traits and some will carry DNA for one parental trait; such plants can be identified by markers associated with parental recombinant DNA, for example, marker identification by analysis for recombinant DNA or, in the case where a selectable marker is linked to the recombinant, by application of the selecting agent such as a herbicide for use with a herbicide tolerance marker, or by selection for the enhanced trait. Progeny plants carrying DNA for both parental traits can be crossed back into the female parent line multiple times, for example usually 6 to 8 generations, to produce a progeny plant with substantially the same genotype as the original transgenic parental line but for the recombinant DNA of the other transgenic parental line.
[0133] For transformation, DNA is typically introduced into only a small percentage of target plant cells in any one transformation experiment. Marker genes are used to provide an efficient system for identification of those cells that are stably transformed by receiving and integrating a recombinant DNA molecule into their genomes. Preferred marker genes provide selective markers which confer resistance to a selective agent, such as an antibiotic or an herbicide. Any of the herbicides to which plants of this disclosure can be resistant is an agent for selective markers. Potentially transformed cells are exposed to the selective agent. In the population of surviving cells are those cells where, generally, the resistance-conferring gene is integrated and expressed at sufficient levels to permit cell survival. Cells can be tested further to confirm stable integration of the exogenous DNA. Commonly used selective marker genes include those conferring resistance to antibiotics such as kanamycin and paromomycin (nptII), hygromycin B (aph IV), spectinomycin (aadA) and gentamycin (aac3 and aacC4) or resistance to herbicides such as glufosinate (bar or pat), dicamba (DMO) and glyphosate (aroA or EPSPS). Examples of such selectable markers are illustrated in U.S. Pat. Nos. 5,550,318; 5,633,435; 5,780,708 and 6,118,047. Markers which provide an ability to visually screen transformants can also be employed, for example, a gene expressing a colored or fluorescent protein such as a luciferase or green fluorescent protein (GFP) or a gene expressing a beta-glucuronidase or uidA gene (GUS) for which various chromogenic substrates are known.
[0134] Plant cells that survive exposure to a selective agent, or plant cells that have been scored positive in a screening assay, may be cultured in vitro to regenerate plantlets. Developing plantlets regenerated from transformed plant cells can be transferred to plant growth mix, and hardened off, for example, in an environmentally controlled chamber at about 85% relative humidity, 600 ppm CO.sub.2, and 25-250 microeinsteins m.sup.-2 s.sup.-1 of light, prior to transfer to a greenhouse or growth chamber for maturation. Plants are regenerated from about 6 weeks to 10 months after a transformant is identified, depending on the initial tissue, and plant species. Plants can be pollinated using conventional plant breeding methods known to those of skill in the art to produce seeds, for example self-pollination is commonly used with transgenic corn. The regenerated transformed plant or its progeny seed or plants can be tested for expression of the recombinant DNA and selected for the presence of an enhanced agronomic trait.
Transgenic Plants and Seeds
[0135] Transgenic plants derived from transgenic plant cells having a transgenic nucleus of this disclosure are grown to generate transgenic plants having an enhanced trait as compared to a control plant, and produce transgenic seed and haploid pollen of this disclosure. Such plants with enhanced traits are identified by selection of transformed plants or progeny seed for the enhanced trait. For efficiency a selection method is designed to evaluate multiple transgenic plants (events) comprising the recombinant DNA, for example multiple plants from 2 to 20 or more transgenic events. Transgenic plants grown from transgenic seeds provided herein demonstrate improved agronomic traits that contribute to increased yield or other traits that provide increased plant value, including, for example, improved seed quality. Of particular interest are plants having increased water use efficiency or drought tolerance, enhanced high temperature or cold tolerance, increased yield, and increased nitrogen use efficiency.
[0136] Table 1 provides a list of protein-encoding DNA ("genes") as recombinant DNA for production of transgenic plants with enhanced traits, the elements of Table 1 are described by reference to:
[0137] PEP SEQ ID NO" which identifies an amino acid sequence.
[0138] "."NUC SEQ ID NO" which identifies a DNA sequence.
[0139] "Gene ID" which refers to an arbitrary identifier.
[0140] "Protein Name" which is a common name for the protein encoded by the recombinant DNA.
TABLE-US-00001 TABLE 1 Protein sequences NUC SEQ PEP SEQ ID NO ID NO Gene ID Protein Name 1 2 TRDX3-1 Translationally controlled tumor protein homolog 3 4 TRDX3-2 Phytochrome B1 containing Histidine kinase-like ATPases 5 6 TRDX3-3 unknown protein 7 8 TRDX3-4 monogalactosyl-diacylglycerol (MGDG) synthase type C protein 9 10 TRDX3-5 putative GluRS (glutamate-tRNA ligase) 11 12 TRDX3-6 prenylyltransferase-like protein 13 14 TRDX3-7 protein kinase family protein 15 16 TRDX3-8 PLC1 (Phosphoinositide phospholipase C 1) 17 18 TRDX3-9 Non-specific lipid-transfer protein-like protein 19 20 TRDX3-10 ATFIP1 (Factor Interacting with PolyA polymerase) 21 22 TRDX3-11 cysteine protease inhibitor 23 24 TRDX3-12 hypothetical protein containing Cenp-O kinetochore centromere component domain 25 26 TRDX3-13 TOM20-2 (Translocase Outer Membrane 20-2) 27 28 TRDX3-14 3-dehydroquinate dehydratase/shikimate dehydrogenase 29 30 TRDX3-15 unknown protein 31 32 TRDX3-16 SOUL family putative heme binding protein 1 33 34 TRDX3-17 Nob1 containing a predicted RNA-binding protein (contains KH domains) domain 35 36 TRDX3-18 PCD (Pterin-4a-carbinolamine dehydratases) 37 38 TRDX3-19 WEI8 (weak ethylene insensitive 8) gene encoding Trpytophan (Trp) aminotransferase 39 40 TRDX3-20 RTH3 (root hairless 3) containing domain of COBRA-like protein 41 42 TRDX3-21 RGT2 (Restores Glucose Transport 2) 43 44 TRDX3-22 a protein of unknown function containing U1 zinc finger domain (zf-U1) 45 46 TRDX3-23 RING-H2 finger protein ATL4E 47 48 TRDX3-24 radical SAM domain-containing protein 49 50 TRDX3-25 senescence-associated protein 51 52 TRDX3-26 ATPARP2 (POLY(ADP-RIBOSE) POLYMERASE 2 53 54 TRDX3-27 MT3a Metallothionein 3a 55 56 TRDX3-28 Cytochrome B5 reductase 57 58 TRDX3-29 CUL3 (Cullin 3) containing cullin family domain 115 116 TRDX3-37 corn phyt: 2
[0141] Table 2 provides a list of miRNA decoy elements as recombinant DNA for production of transgenic plants with enhanced traits. The elements of Table 2 are described by reference to:
[0142] "Decoy Element NUC SEQ ID NO:" which identifies a decoy element nucleotide sequence.
[0143] "Decoy Element miRNA binding site NUC SEQ ID NO:" which identifies the miRNA binding site of the decoy element.
[0144] "Decoy Element ID:" which is an arbitrary identifier.
[0145] "Target miRNA Name" which identifies a target miRNA for binding by the decoy.
[0146] "Target Protein Name" which identifies the target protein which bind the target miRNA.
[0147] "Target Protein NUC SEQ ID NO:" which identifies the nucleotide sequence encoding the target protein of the target miRNA
[0148] "Target Protein PEP SEQ ID NO:" which identifies the amino acid sequence of the target protein of the target miRNA
TABLE-US-00002 TABLE 2 Decoy Elements Decoy Element miRNA Target Target Decoy binding Protein Protein Element site NUC PEP Decoy (NUC) (NUC) Target Target SEQ SEQ Element SEQ ID SEQ ID miRNA Protein ID ID ID NO: NO: Name Names NO: NO: TRDX3-30 93 100 miR399 Phosphate transporter TRDX3-31 94 101 miR172 APETALA2- 107 108 like transcription factor TRDX3-32 95 102 miR166 Revoluta 109 110 TRDX3-33 96 103 miR444 ANR1 111 112 MADS-box protein TRDX3-34 97 104 miR172e APETALA2- like transcription factor TRDX3-35 98 105 miR393 HOS1; E3 ligase SCF complex F-box protein bHLH transcription factor TRDX3-36 99 106 miR397 diphenol 113 114 oxidase
Selection Methods for Transgenic Plants with Enhanced Traits
[0149] Within a population of transgenic plants each regenerated from a plant cell with recombinant DNA many plants that survive to fertile transgenic plants that produce seeds and progeny plants will not exhibit an enhanced agronomic trait. Selection from the population is necessary to identify one or more transgenic plants with an enhanced trait. Transgenic plants having enhanced traits are selected from populations of plants regenerated or derived from plant cells transformed as described herein by evaluating the plants in a variety of assays to detect an enhanced trait, for example, increased water use efficiency or drought tolerance, enhanced high temperature or cold tolerance, increased yield, increased nitrogen use efficiency, enhanced seed composition such as enhanced seed protein and enhanced seed oil. These assays can take many forms including, but not limited to, direct screening for the trait in a greenhouse or field trial or by screening for a surrogate trait. Such analyses can be directed to detecting changes in the chemical composition, biomass, physiological property, or morphology of the plant. Changes in chemical compositions such as nutritional composition of grain can be detected by analysis of the seed composition and content of protein, free amino acids, oil, free fatty acids, starch or tocopherols. Changes in chemical compositions can also be detected by analysis of contents in leaves, such as chlorophyll or carotenoid contents. Changes in biomass characteristics can be evaluated on greenhouse or field grown plants and can include plant height, stem diameter, root and shoot dry weights, canopy size; and, for corn plants, ear length and diameter. Changes in physiological properties can be identified by evaluating responses to stress conditions, for example assays using imposed stress conditions such as water deficit, nitrogen deficiency, cold growing conditions, pathogen or insect attack or light deficiency, or increased plant density. Changes in morphology can be measured by visual observation of tendency of a transformed plant to appear to be a normal plant as compared to changes toward bushy, taller, thicker, narrower leaves, striped leaves, knotted trait, chlorosis, albino, anthocyanin production, or altered tassels, ears or roots. Other selection properties include days to pollen shed, days to silking, leaf extension rate, chlorophyll content, leaf temperature, stand, seedling vigor, internode length, plant height, leaf number, leaf area, tillering, brace roots, stay green or delayed senescence, stalk lodging, root lodging, plant health, bareness/prolificacy, green snap, and pest resistance. In addition, phenotypic characteristics of harvested grain can be evaluated, including number of kernels per row on the ear, number of rows of kernels on the ear, kernel abortion, kernel weight, kernel size, kernel density and physical grain quality.
[0150] Assays for screening for a desired trait are readily designed by those practicing in the art. The following illustrates screening assays for corn traits using hybrid corn plants. The assays can be adapted for screening other plants such as canola, wheat, cotton and soybean either as hybrids or inbreds.
[0151] Transgenic corn plants having increased nitrogen use efficiency can be identified by screening transgenic plants in the field under the same and sufficient amount of nitrogen supply as compared to control plants, where such plants provide higher yield as compared to control plants. Transgenic corn plants having increased nitrogen use efficiency can also be identified by screening transgenic plants in the field under reduced amount of nitrogen supply as compared to control plants, where such plants provide the same or similar yield as compared to control plants.
[0152] Transgenic corn plants having increased yield are identified by screening using progenies of the transgenic plants over multiple locations for several years with plants grown under optimal production management practices and maximum weed and pest control. Selection methods can be applied in multiple and diverse geographic locations, for example up to 16 or more locations, over one or more planting seasons, for example at least two planting seasons, to statistically distinguish yield improvement from natural environmental effects.
[0153] Transgenic corn plants having increased water use efficiency or drought tolerance are identified by screening plants in an assay where water is withheld for a period to induce stress followed by watering to revive the plants. For example, a selection process imposes 3 drought/re-water cycles on plants over a total period of 15 days after an initial stress free growth period of 11 days. Each cycle consists of 5 days, with no water being applied for the first four days and a water quenching on the 5th day of the cycle. The primary phenotypes analyzed by the selection method are the changes in plant growth rate as determined by height and biomass during a vegetative drought treatment.
[0154] Although the plant cells and methods of this disclosure can be applied to any plant cell, plant, seed or pollen, for example, any fruit, vegetable, grass, tree or ornamental plant, the various aspects of the disclosure are applied to corn, soybean, cotton, canola, rice, barley, oat, wheat, turf grass, alfalfa, sugar beet, sunflower, quinoa and sugar cane plants.
Example 1
Corn Transformation
[0155] This example illustrates transformation methods in producing a transgenic corn plant cell, seed, and plant having altered phenotypes as shown in Tables 4-6, or an enhanced trait, for example, increased water use efficiency as shown in Tables 15-16, increased yield as shown in Tables 11-12, and increased nitrogen use efficiency as shown in Tables 9-10.
[0156] For Agrobacterium-mediated transformation of corn embryo cells corn plants were grown in the greenhouse and ears were harvested when the embryos were 1.5 to 2.0 mm in length. Ears were surface-sterilized by spraying or soaking the ears in 80% ethanol, followed by air drying. Immature embryos were isolated from individual kernels on surface-sterilized ears. Shortly after excision, immature maize embryos were inoculated with overnight grown Agrobacterium cells, and incubated at room temperature with Agrobacterium for 5-20 minutes. Inoculated immature embryos were then co-cultured with Agrobacterium for 1 to 3 days at 23.degree. C. in the dark. Co-cultured embryos were transferred to selection media and cultured for approximately two weeks to allow embryogenic callus to develop. Embryogenic calli were transferred to culture medium containing glyphosate and subcultured at about two week intervals. Transformed plant cells were recovered 6 to 8 weeks after initiation of selection.
[0157] For Agrobacterium-mediated transformation of maize callus immature embryos are cultured for approximately 8-21 days after excision to allow callus to develop. Callus is then incubated for about 30 minutes at room temperature with the Agrobacterium suspension, followed by removal of the liquid by aspiration. The callus and Agrobacterium are co-cultured without selection for 3-6 days followed by selection on paromomycin for approximately 6 weeks, with biweekly transfers to fresh media. Paromomycin resistant calli are identified about 6-8 weeks after initiation of selection.
[0158] To regenerate transgenic corn plants individual transgenic calli resulting from transformation and selection were placed on media to initiate shoot and root development into plantlets. Plantlets were transferred to potting soil for initial growth in a growth chamber at 26.degree. C. followed by a mist bench before transplanting to 5 inch pots where plants were grown to maturity. The regenerated plants were self-fertilized and seeds were harvested for use in one or more methods to select seeds, seedlings or progeny second generation transgenic plants (R2 plants) or hybrids, for example, by selecting transgenic plants exhibiting an enhanced trait as compared to a control plant.
[0159] The above process can be repeated to produce multiple events of transgenic corn plants from cells that were transformed with recombinant DNA from the genes identified in Table 1 or with recombinant DNA from Table 2 that is transcribed into a non-coding miRNA. Progeny transgenic plants and seeds of the transformed plants were screened for the presence and single copy of the inserted gene, and for increased water use efficiency, increased yield, increased nitrogen use efficiency, and altered phenotypes as shown in Tables 4-6. From each group of multiple events of transgenic plants with a specific recombinant DNA from Table 1 or Table 2, the event(s) that showed increased yield, increased water use efficiency, increased nitrogen use efficiency, and altered phenotypes was (were) identified.
Example 2
Soybean Transformation
[0160] This example illustrates plant transformation in producing a transgenic soybean plant cell, seed, and plant having altered phenotypes as shown in Tables 7-8, or an enhanced trait, for example, increased water use efficiency or drought tolerance and increased yield as shown in Tables 13-14.
[0161] For Agrobacterium mediated transformation, soybean seeds were imbibed overnight and the meristem explants excised. Soybean explants were mixed with induced Agrobacterium cells containing plasmid DNA with the gene of interest cassette and a plant selectable marker cassette no later than 14 hours from the time of initiation of seed imbibition, and wounded using sonication. Following wounding, explants were placed in co-culture for 2-5 days at which point they were transferred to selection media to allow selection and growth of transgenic shoots. Resistant shoots were harvested in approximately 6-8 weeks and placed into selective rooting media for 2-3 weeks. Shoots producing roots were transferred to the greenhouse and potted in soil. Shoots that remained healthy on selection, but did not produce roots were transferred to non-selective rooting media for an additional two weeks. Roots from any shoots that produced roots off selection were tested for expression of the plant selectable marker before they were transferred to the greenhouse and potted in soil.
[0162] The above process can be repeated to produce multiple events of transgenic soybean plants from cells that were transformed with recombinant DNA from the genes identified in Table 1 or recombinant DNA transcribed into a miRNA decoy identified in Table 2. Progeny transgenic plants and seed of the transformed plant cells were screened for the presence and single copy of the inserted gene, and for increased water use efficiency, increased yield, increased nitrogen use efficiency, and altered phenotypes as shown in Tables 6-7.
Example 3
Identification of Altered Phenotypes in Automated Greenhouse
[0163] This example illustrates screening and identification of transgenic plants for altered phenotypes in an automated greenhouse (AGH). The apparatus and the methods for automated phenotypic screening of plants are disclosed in US Patent publication No. US20110135161 (filed on Nov. 10, 2010), which is incorporated by reference herein in its entirety.
Screening and Identification of Transgenic Corn Plants for Altered Phenotypes
[0164] Corn plants were tested in 3 screens in AGH under different conditions including non-stress, nitrogen deficit and water deficit stress conditions. All screens began with a non-stress condition during day 0-5 germination phase, after which the plants were grown for 22 days under screen specific conditions as shown in Table 3.
TABLE-US-00003 TABLE 3 Description of the 3 AGH screens for corn plants. Screen specific Germination phase phase Screen Description (5 days) (22 days) Non-stress well watered 55% VWC 55% VWC sufficient nitrogen water 8 mM nitrogen Water deficit limited watered 55% VWC 30% VWC sufficient nitrogen water 8 mM nitrogen Nitrogen deficit well watered 55% VWC 55% VWC low nitrogen water 2 mM nitrogen
[0165] Water deficit is defined as a specific Volumetric Water Content (VWC) that is lower than the VWC of non-stress plant. For example, a non-stressed plant might be maintained at 55% VWC and the VWC for a water-deficit assay might be defined around 30% VWC as shown in Table 3. Data were collected using visible light and hyperspectral imaging as well as direct measurement of pot weight and amount of water and nutrient applied to individual plants on a daily basis.
[0166] Nitrogen deficit is defined in part as a specific mM concentration of nitrogen that is lower than the nitrogen concentration of non-stress plants. For example, a non-stress plant might be maintained at 8 mM nitrogen while the nitrogen concentration applied in a nitrogen-deficit assay might be maintained at a concentration of 2 mM.
[0167] Eight parameters were measured for each screen. The visible light color imaging based measurements are: biomass, canopy area and plant height. Biomass (B) is defined as estimated shoot fresh weight (g) of the plant obtained from images acquired from multiple angles of view. Canopy Area (Can) is defined as area of leaf as seen in top-down image (mm.sup.2). Plant Height (H) refers to the distance from the top of the pot to the highest point of the plant derived from side image (mm). Anthocyanin score, chlorophyll score and water content score are hyperspectral imaging based parameters. Anthocyanin Score (An) is an estimate of anthocyanin in the leaf canopy obtained from a top-down hyperspectral image. Chlorophyll Score (Chl) is a measurement of chlorophyll in the leaf canopy obtained from a top-down hyperspectral image. Water Content Score (WC) is a measurement of water in the leaf canopy obtained from a top-down hyperspectral image. Water Use Efficiency (WUE) is derived from the grams of plant biomass per liter of water added. Water Applied (WA) is a direct measurement of water added to a pot (pot with no hole) during the course of an experiment.
[0168] These physiological screen runs were set up so that tested transgenic lines were compared to a control line. The collected data were analyzed against the control using % delta and certain p-value cutoff. Tables 4-6 are summaries of transgenic corn plants comprising the disclosed recombinant DNA molecules with altered phenotypes under non stress, nitrogen deficit, and water deficit conditions, respectively.
[0169] "+" denotes an increase in the tested parameter at p.ltoreq.0.1; whereas "-" denotes a decrease in the tested parameter at p.ltoreq.0.1. The numbers in parenthesis show penetrance of the altered phenotypes, where the denominators represent total number of transgenic events tested for a given parameter in a specific screen, and the numerators represent the number of events showing a particular altered phenotype. For example, 5 transgenic plants were screened for water use efficiency score in the non-stress screen for TRDX3-3 and 1 of the 5 tested showed increased water use efficiency at p.ltoreq.0.1.
TABLE-US-00004 TABLE 4 Summary of transgenic corn plants with altered phenotypes in AGH non-stress screens Non-Stress Gene_ID An B Can Chl H WA WC WUE TRDX3-3 -- +1/5 -1/5 -- -- +1/5 -- +1/5 TRDX3-4 -- -3/5 -4/5 -- -3/5 -5/5 -- -1/5 TRDX3-6 -4/5 -4/5 -1/5 -1/5 -3/5 -3/5 -3/5 -2/5 TRDX3-7 -- -2/5 -1/5 +1/5 -1/5 -4/5 -- -1/5 TRDX3-12 -- -1/5 -- +1/5 -1/5 -- -- -1/5 TRDX3-13 -- +1/5 -- -- -- -1/5 +1/5 +2/5 TRDX3-16 -- -1/5 -- -- -- -- -- -1/5 TRDX3-20 -1/5 -- -2/5 -- -- -1/5 -- -- TRDX3-21 -1/4 -- +2/4 -- -- +2/4 -- -- TRDX3-25 -- +1/5 -- -- -- -- -- +1/5 TRDX3-28 -- +2/5 +1/5 +1/5 +1/5 +4/5 +1/5 +1/5 TRDX3-29 -- -1/5 -2/5 +1/5 -3/5 -1/5 +1/5 -1/5 TRDX3-35 -- -1/5 -- -- -- -1/5 -- -2/5
TABLE-US-00005 TABLE 5 Summary of transgenic corn plants with altered phenotypes in AGH nitrogen-deficit screens Nitrogen Deficit Gene_ID An B Can Chl H WA WC WUE TRDX3-3 -- +1/5 +1/5 +1/5 -1/5 +1/5 -- -- TRDX3-4 -- -2/5 -1/5 -1/5 +1/5 -3/5 -- -- TRDX3-6 -- -- -1/5 -- -- -- -- +2/5 TRDX3-7 -2/5 -1/5 -1/5 -- +1/5 -4/5 -- -- TRDX3-12 -1/5 -2/5 -- -- -1/5 -4/5 -- -1/5 TRDX3-13 -1/5 -1/5 -- +1/5 -- -- -- -1/5 TRDX3-16 +1/5 -3/5 -1/5 +3/5 -1/5 -4/5 -4/5 -- TRDX3-20 -- -2/5 -2/5 +1/5 -1/5 -1/5 -- -1/5 TRDX3-21 -1/5 +1/5 +2/5 +1/5 -1/5 -- +1/5 +1/5 TRDX3-24 -1/5 -- +3/5 -- -- +3/5 -- -- TRDX3-28 -1/5 +4/5 +1/5 -- +1/5 -1/5 +1/5 +1/5 TRDX3-29 -- -1/1 -1/1 -- -1/1 -- -- -1/1 TRDX3-35 +1/5 -2/5 -2/5 +3/5 -2/5 -2/5 -- -2/5
TABLE-US-00006 TABLE 6 Summary of transgenic corn plants with altered phenotypes in AGH water-deficit screens Water Deficit Gene ID An B Can Chl H WA WC WUE TRDX3-3 -- +1/5 -- -- -2/5 -1/5 +2/5 -1/5 TRDX3-4 -- +2/5 +1/5 +1/5 +1/5 +3/5 +1/5 -- TRDX3-6 -2/5 -- -- -- -1/5 -- -- -- TRDX3-7 +2/5 -3/5 -4/5 -2/5 -3/5 -4/5 -2/5 -2/5 TRDX3-12 -- -- -1/5 -1/5 -1/5 +4/5 -- -- TRDX3-13 -- +2/5 +1/5 -1/5 +2/5 +4/5 -- +1/5 TRDX3-16 -- +2/5 -- +3/5 -- +3/5 -- -- TRDX3-20 -- -- -1/5 -- -- -1/5 -- -1/5 TRDX3-21 -1/5 -- +1/5 +1/5 -- -- -1/5 -1/5 TRDX3-24 -- -- -- -2/5 -- +1/5 -1/5 -- TRDX3-28 +2/5 +1/5 +2/5 +1/5 +1/5 +2/5 -- +1/5 TRDX3-35 -- -2/5 -- -2/5 -- -1/5 -2/5 -2/5
Screening and Identification of Transgenic Soybean Plants for Altered Phenotypes
[0170] Soybean plants were tested in 2 screens in AGH under non-stress and water deficit stress conditions. For non-stress screen, the plants were kept under constant VWC of 55% throughout the screen length of 27 days. For water deficit screen, the VWC was kept at 55% for the first 12 days after sowing, followed by gradual dry down at a rate of 0.025 VWC per day, followed by water recovery to 55% VWC at 25 days after sowing.
[0171] Water deficit is defined as a specific Volumetric Water Content (VWC) that is lower than the VWC of non-stress plant. For example, a non-stressed plant might be maintained at 55% VWC and water-deficit assay might be defined around 30% VWC as shown in Table 3. Data were collected using visible light and hyperspectral imaging as well as direct measurement of pot weight and amount of water and nutrient applied to individual plants on a daily basis.
[0172] Eight parameters were measured for each screen. The visible light color imaging based measurements are: biomass, canopy area and plant height. Biomass (B) is defined as estimated shoot fresh weight (g) of the plant obtained from images acquired from multiple angles of view. Canopy Area (Can) is defined as area of leaf as seen in top-down image (mm.sup.2). Plant Height (H) refers to the distance from the top of the pot to the highest point of the plant derived from side image (mm).--Chlorophyll score--is a hyperspectral imaging based parameter. Chlorophyll Score (Chl) is a measurement of chlorophyll in the leaf canopy obtained from a top-down hyperspectral image. Water Use Efficiency (WUE) is derived from the grams of plant biomass per liter of water added. Water Applied (WA) is a direct measurement of water added to a pot (pot with no hole) during the course of an experiment.
[0173] These physiological screen runs were set up so that tested transgenic lines were compared to a control line. The collected data were analyzed against the control using % delta and/or certain p-value cutoff. Tables 7-8 are summaries of transgenic soybean plants comprising the disclosed recombinant DNA molecules with altered phenotypes.
[0174] "+" denotes an increase in the tested parameter at p.ltoreq.0.1; whereas "-" denotes a decrease in the tested parameter at p.ltoreq.0.1. The numbers in parenthesis show penetrance of the altered phenotypes, where the denominators represent total number of transgenic plants tested for a given parameter in a specific screen, and the numerators represent the number of transgenic plants showing a particular phenotype. For example, 5 transgenic plants were screened for biomass in the non-stress screen for TRDX3-26. Of the 5 tested, 2 showed a decrease in biomass at p.ltoreq.0.1.
TABLE-US-00007 TABLE 7 Summary of transgenic soybean plants with altered phenotypes in AGH non-stress screens Non-Stress Gene_ID An B Can Chl H WA WC WUE TRDX3-26 -- -2/5 -3/5 -2/5 -2/5 -2/5 -- -1/5 TRDX3-22 -- +3/5 +1/5 +2/5 +3/5 +2/5 -- +3/5 TRDX3-27 -- -- -- +1/5 -- -1/5 -- --
TABLE-US-00008 TABLE 8 Summary of transgenic soybean plants with altered phenotypes in AGH water deficit screens Water Deficit Gene_ID An B Can Chl H WA WC WUE TRDX3-26 -- -- -- -- -1/5 -- -- -- TRDX3-22 -- +1/5 +1/5 -- -- -1/5 -- +1/5 TRDX3-27 -- -- -- -- +1/5 -- -- --
Example 4
Phenotypic Evaluation of Transgenic Corn Plants for Increased Nitrogen Use Efficiency
[0175] Corn Nitrogen field efficacy trials were conducted to identify genes and miRNA decoy elements that can improve nitrogen use efficiency under nitrogen limiting conditions leading to increased yield performance as compared to non transgenic controls. A yield increase in corn can be manifested as one or more of the following: an increase in the number of ears per plant, an increase in the number of rows, number of kernels per row, kernel weight, thousand kernel weight, fresh or dry ear length/diameter/biomass (weight), increase in the seed filling rate (which is the number of filled seeds divided by the total number of seeds and multiplied by 100), among others. For the Nitrogen field trial results shown in Table 9, each field was planted under nitrogen limiting condition (60 lbs/acre) and the corn ear weight or yield was compared to control plants to measure the yield increases.
[0176] Table 9 provides a list of protein encoding DNA or polynucleotide sequences ("genes") for producing transgenic corn plant with increased nitrogen use efficiency as compared to a control plant. Polynucleotide sequences in constructs with at least one event showing significant yield or ear weight increase across multiple locations at p.ltoreq.0.2 are included. The elements of Table 9 are described by reference to:
[0177] "SEQ ID NO: polynucleotide" which identifies a nucleotide sequence.
[0178] "SEQ ID NO: polypeptide" which identifies an amino acid sequence.
[0179] "Gene ID" which refers to an arbitrary identifier.
[0180] "NUE results" which refers to the sequence in a construct with at least one event showing significant yield increase at p.ltoreq.0.2 across locations. The first number refers to the number of events with significant yield or ear weight increase, whereas the second number refers to the total number of events tested for each sequence in the construct. The numbers are listed for each construct separately when more than one construct was used in the trials.
TABLE-US-00009 TABLE 9 Recombinant DNA for increased nitrogen use efficiency in corn SEQ ID NO: SEQ ID NO: NUE Polynucleotide Polypeptide Gene ID Results 5 6 TRDX3-3 2/12 7 8 TRDX3-4 3/16 11 12 TRDX3-6 2/13 13 14 TRDX3-7 Construct 1: 4/14 Construct 2: 1/7 15 16 TRDX3-8 1/8 17 18 TRDX3-9 1/13 25 26 TRDX3-13 1/5 27 28 TRDX3-14 3/13 33 34 TRDX3-17 2/13 35 36 TRDX3-18 3/14 37 38 TRDX3-19 4/13 45 46 TRDX3-23 2/13 47 48 TRDX3-24 1/8 49 50 TRDX3-25 5/20
[0181] Table 10 provides a list of miRNA decoy elements provided as recombinant DNA for production of transgenic corn plants with increased nitrogen use efficiency. The elements of Table 10 are described by reference to:
[0182] "Decoy Element (NUC) SEQ ID NO:" which identifies a decoy element nucleotide sequence from.
[0183] "Decoy Element ID:" which is an arbitrary identifier.
[0184] "Target miRNA Name" which identifies a target miRNA for binding by the decoy.
[0185] "Protein Name (PEP)" which identifies the amino acid sequence of a protein which binds miR166.
[0186] "NUE results" which refers to the sequence in a construct with at least one event showing significant yield increase at p.ltoreq.0.2 across locations. The first number refers to the number of events with significant yield or ear weight increase, whereas the second number refers to the total number of events tested for each sequence in the construct.
TABLE-US-00010 TABLE 10 Recombinant DNA for miRNA decoy elements for increased nitrogen use efficiency in corn Decoy Element Protein Broad (NUC) Decoy Target (PEP) Acre SEQ Element miRNA Protein SEQ Yield ID NO ID Name Name ID NO Results 95 TRDX3-32 miR166 Revoluta 110 2/16
Example 5
Phenotypic Evaluation of Transgenic Plants for Increased Yield
[0187] This example illustrates selection and identification of transgenic plants for increased yield in both dicotyledonous and monocotyledonous plants with primary examples presented for corn and soybean in Tables 11-12 and 13-14 respectively. Polynucleotide sequences in constructs with at least one event that resulted in significant yield increase across locations at p.ltoreq.0.2 are included.
Selection of Transgenic Plants with Enhanced Agronomic Trait(s): Increased Yield
[0188] Effective selection of increased and/or enhanced yielding transgenic plants uses hybrid progenies of the transgenic plants for corn, cotton, and canola, or inbred progenies of transgenic plants for soybean plants plant such as corn, cotton, canola, or inbred plant such as soy, canola and cotton over multiple locations with plants grown under optimal production management practices. An exemplary target for improved yield is a 2% to 10% increase in yield as compared to yield produced by plants grown from seed of a control plant. Selection methods can be applied in multiple and diverse geographic locations, for example up to 16 or more locations, over one or more planting seasons, for example at least two planting seasons, to statistically distinguish yield improvement from natural environmental effects.
Increased Yield in Corn
[0189] Table 11 provides a list of protein encoding DNA or polynucleotide sequences ("genes") in the production of transgenic corn plants with increased yield as compared to a control plant. The elements of Table 11 are described by reference to:
[0190] "Gene (NUC) SEQ ID NO:" which identifies a nucleotide sequence.
[0191] "Gene (PEP) SEQ ID NO:" polypeptide" which identifies an amino acid sequence.
[0192] "Gene identifier" which refers to an arbitrary identifier.
[0193] "Broad acre yield results" refers to the sequence in a construct with at least one event showing significant yield increase at p.ltoreq.0.2 across locations. The first number refers to the number of events with significant yield increase, whereas the second number refers to the total number of events tested for each sequence in a construct.
TABLE-US-00011 TABLE 11 Recombinant DNA for increased yield in corn Broad Gene (NUC) Gene (PEP) Acre Yield SEQ ID NO: SEQ ID NO: Gene ID Results 1 2 TRDX3-1 1/5 3 4 TRDX3-2 1/8 9 10 TRDX3-5 1/13 21 22 TRDX3-11 2/16 25 26 TRDX3-13 1/6 29 30 TRDX3-15 5/16 31 32 TRDX3-16 5/30 35 36 TRDX3-18 1/6 41 42 TRDX3-21 2/20 55 56 TRDX3-28 2/22 57 58 TRDX3-29 1/8
[0194] Table 12 provides a list of miRNA decoy elements provided as recombinant DNA for production of transgenic corn plants with increased yield. The elements of Table 12 are described by reference to:
[0195] "Decoy Element (NUC) SEQ ID NO:" which identifies a nucleic acid sequence.
[0196] "Decoy Element Identifier" which is an arbitrary identifier.
[0197] "Target miRNA Name" which identifies a target miRNA for binding by the decoy.
[0198] "Protein name" which identifies a gene down-regulated by the target miRNA.
"Broad acre yield results" refers to the sequence in a construct with at least one event showing significant yield increase at p.ltoreq.0.2 across locations. The first number refers to the number of events with significant yield increase, whereas the second number refers to the total number of events tested for each sequence in a construct.
TABLE-US-00012 TABLE 12 Recombinant DNA for miRNA decoys for increased yield in corn Decoy Element Broad (NUC) Decoy Target Acre SEQ Element miRNA Protein Yield ID NO: Identifier Name Name Results 93 TRDX3-30 miR399 Phosphate 1/18 transporter 95 TRDX3-32 miR172 APETALA2- 1/18 like transcription factor 97 TRDX3-34 miR172e APETALA2- 3/18 like transcription factor 98 TRDX3-35 miR393 HOS1; 1/22 E3 ligase SCF complex F- box protein; bHLH transcription factor
Increased Yield in Soybean
[0199] A yield increase in soybean can be manifested as one or more of the following: an increase in pods per plant, pods per acre, seeds per plant, seeds per pod, weight per seed, weight per pod, pods per node, number of nodes, and the number of internodes per plant.
[0200] Table 13 provides a list of protein encoding DNA or polynucleotide sequences used ("genes") in the production of transgenic soybean plants with increased yield as compared to a control plant. The elements of Table 13 are described by reference to:
[0201] "Gene (NUC) SEQ ID NO:" which identifies a nucleotide sequence
[0202] "Gene (PEP) SEQ ID NO:" which identifies an amino acid sequence.
[0203] "Gene identifier" which refers to an arbitrary identifier.
[0204] "Broad acre yield results" which refers to the sequence in a construct with at least one event showing significant yield increase at p.ltoreq.0.2 across locations. The first number refers to the number of events with significant yield increase, whereas the second number refers to the total number of events tested for each sequence in a construct.
TABLE-US-00013 TABLE 13 Recombinant DNA for increased yield in soybean Broad Gene (NUC) Gene (PEP) Gene Acre Yield SEQ ID NO: SEQ ID NO: Identifier Results 43 44 TRDX3-22 3/16 51 52 TRDX3-26 3/16 53 54 TRDX3-27 3/15
[0205] Table 14 provides a list of miRNA decoy elements provided as recombinant DNA for production of transgenic corn plants with increased yield. The elements of Table 14 are described by reference to:
[0206] "Decoy Element (NUC) SEQ ID NO:" which identifies a decoy element nucleotide sequence.
[0207] "Decoy Element ID:" which identifies a decoy element sequence.
[0208] "Target miRNA Name" which identifies a target miRNA for binding by the decoy.
[0209] "Protein name" which identifies amino acid sequences of proteins which bind the target miRNA.
[0210] "Protein (PEP) SEQ ID NO" which identifies an amino acid sequence.
[0211] "Broad acre yield results" refers to the sequence in a construct with at least one event showing significant yield increase at p.ltoreq.0.2 across locations. The first number refers to the number of events with significant yield increase, whereas the second number refers to the total number of events tested for each sequence in a construct.
TABLE-US-00014 TABLE 14 Recombinant DNA miRNA decoys for increased yield in soybean Decoy Element Protein Broad (NUC) Decoy Target (PEP) Acre SEQ Element miRNA Protein SEQ Yield ID NO ID Name Name ID NO: Results 94 TRDX3-31 miR172 APETALA-2-like 2/12 transcription factor 99 TRDX3-36 miR397 diphenol dioxidase 114 1/10
Example 6
Phenotypic Evaluation of Corn for Increased Water Use Efficiency
[0212] Corn field trials were conducted to identify genes that can improve water use efficiency under water limiting conditions leading to increased yield performance as compared to non transgenic controls. A yield increase in corn can be manifested as one or more of the following: an increase in the number of ears per plant, an increase in the number of rows, number of kernels per row, kernel weight, thousand kernel weight, fresh or dry ear length/diameter/biomass (weight), increase in the seed filling rate (which is the number of filled seeds divided by the total number of seeds and multiplied by 100), among others. The water use efficiency trials for results shown in Table 15 were conducted under managed water limiting conditions, and the corn ear weight or yield was compared to control plants to measure the yield increases.
[0213] Table 15 provides a list of protein encoding DNA or polynucleotide sequences ("genes") for producing transgenic corn plant with increased water use efficiency as compared to a control plant. Polynucleotide sequences in constructs with at least one event showing significant yield or ear weight increase across multiple locations at p.ltoreq.0.2 are included. The elements of Table 15 are described by reference to:
[0214] "SEQ ID NO: polynucleotide" which identifies a nucleotide sequence.
[0215] "SEQ ID NO: polypeptide" which identifies an amino acid sequence.
[0216] "Gene identifier" which refers to an arbitrary identifier.
[0217] "WUE results" which refers to the sequence in a construct with at least one event showing significant yield increase at p.ltoreq.0.2 across locations. The first number refers to the number of events with significant yield or ear weight increase, whereas the second number refers to the total number of events tested for each sequence in the construct.
TABLE-US-00015 TABLE 15 Recombinant DNA for Increased Water Use Efficiency in Corn SEQ ID NO: SEQ ID NO: Gene WUE Polynucleotide Polypeptide Identifier Results 7 8 TRDX3-4 2/16 11 12 TRDX3-6 2/8 13 14 TRDX3-7 2/7 19 20 TRDX3-10 3/16 23 24 TRDX3-12 3/14 33 34 TRDX3-17 4/13 35 36 TRDX3-18 1/8 39 40 TRDX3-20 3/13 45 46 TRDX3-23 2/6 49 50 TRDX3-25 1/5
[0218] Table 16 provides a list of miRNA decoy elements provided as recombinant DNA for production of transgenic corn plants with increased water use efficiency. The elements of Table 16 are described by reference to:
[0219] "Decoy Element (NUC) SEQ ID NO:" which identifies a decoy element nucleotide sequence.
[0220] "Decoy Element ID:" which is an arbitrary identifier.
[0221] "Target miRNA Name" which identifies a target miRNA for binding by the decoy.
[0222] "Protein name" which identifies amino acid sequences of proteins which bind the target miRNA.
[0223] "Gene (PEP) SEQ ID NO" which identifies an amino acid sequence.
TABLE-US-00016 TABLE 16 Recombinant DNA miRNA Decoys for Increased Water Use Efficiency in Corn Decoy Element Protein Broad (NUC) Decoy Target (PEP) Acre SEQ Element miRNA Protein SEQ Yield ID NO: ID Name Name ID NO Results 95 TRDX3-32 miR166 Revoluta 110 1/8 96 TRDX3-33 miR444 ANR1 112 1/8 MADS-box protein 97 TRDX3-34 miR172e APETALA2- 4/8 like transcription factor
Example 7
Homolog Identification
[0224] This example illustrates the identification of homologs of proteins encoded by the DNA identified in Table 1 which were used to provide transgenic seed and plants having enhanced agronomic traits. From the sequences of the homolog proteins, corresponding homologous DNA sequences can be identified for preparing additional transgenic seeds and plants with enhanced agronomic traits.
[0225] An "All Protein Database" was constructed of known protein sequences using a proprietary sequence database and the National Center for Biotechnology Information (NCBI) non-redundant amino acid database (nr.aa). For each organism from which a polynucleotide sequence provided herein was obtained, an "Organism Protein Database" was constructed of known protein sequences of the organism; it is a subset of the All Protein Database based on the NCBI taxonomy ID for the organism.
[0226] The All Protein Database was queried using amino acid sequences provided in Table 1 using NCBI "blastp" program with E-value cutoff of 1e-8. Up to 1000 top hits were kept, and separated by organism names. For each organism other than that of the query sequence, a list was kept for hits from the query organism itself with a more significant E-value than the best hit of the organism. The list contains likely duplicated genes of the polynucleotides provided herein, and is referred to as the Core List. Another list was kept for all the hits from each organism, sorted by E-value, and referred to as the Hit List.
[0227] The Organism Protein Database was queried using polypeptide sequences provided in Table 1 using NCBI "blastp" program with E-value cutoff of 1e-4. Up to 1000 top hits were kept. A BLAST searchable database was constructed based on these hits, and is referred to as "SubDB". SubDB is queried with each sequence in the Hit List using NCBI "blastp" program with E-value cutoff of 1e-8. The hit with the best E-value was compared with the Core List from the corresponding organism. The hit is deemed a likely ortholog if it belongs to the Core List, otherwise it is deemed not a likely ortholog and there is no further search of sequences in the Hit List for the same organism. Homologs with at least 95% identity over 95% of the length of the polypeptide sequences provided in Table 1 are reported below in Table 17 with the SEQ ID NO of the original query sequence and the identified homologs.
TABLE-US-00017 TABLE 17 Protein sequences and their homologs Polypeptide Homolog SEQ ID NO SEQ ID NOs (PEP) (PEP) 2 59 4 61 8 62 10 63, 64 12 65, 66 14 67 16 68, 69 18 70, 71 20 72, 73 24 74 26 75, 76 28 77 34 78, 79, 80 36 81 38 82, 83 42 84 44 85 48 86, 87 50 88 52 89, 90 58 91, 92 116 60
Example 8
Identification of Protein Domains and Domain Modules by Pfam Analysis
[0228] This example illustrates the identification of domain and domain module by Pfam analysis.
[0229] The amino acid sequences of the expressed proteins that are shown to be associated with an enhanced trait were analyzed for Pfam protein family against the current Pfam collection of multiple sequence alignments and hidden Markov models using the HMMER software and Pfam databases (version 27.0). The Pfam protein domains and modules for the proteins of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56 and 58 are shown in Tables 18, 19 and 20. The Hidden Markov model databases for the identified patent families are also available from the Pfam consortium (ftp.sanger.ac.uk/pub/databases/Pfam/) allowing identification of other homologous proteins and their cognate encoding DNA to enable the full breadth of the invention for a person of ordinary skill in the art. Certain proteins are identified by a single Pfam domain and others by multiple Pfam domains. The function of the identified Pfam domains in proteins providing an enhanced trait in plants was verified by searching identified homologs for the conservation of the identified Pfam domains. The HMM score values for the identified Pfam domains in sequences from Table 1 are reported below in Table 18.
TABLE-US-00018 TABLE 18 Pfam Domains and Their Locations on Proteins Associated with Enhanced Traits PEP SEQ Pfam domain HMM ID NO name Begin Stop Score E-value 2 TCTP 1 165 208.1 5.30E-66 4 PAS_2 97 217 135.0 8.90E-43 4 GAF 253 432 135.0 1.00E-42 4 PHY 443 620 232.0 1.70E-72 4 PAS 654 769 93.2 5.30E-30 4 PAS 785 904 68.4 2.80E-22 4 HisKA 930 989 38.1 7.10E-13 4 HATPase_c 1039 1139 36.3 2.40E-12 6 FmdA_AmdA 9 295 363 8.40E-113 8 MGDG_synth 86 254 205.2 2.10E-64 8 Glyco_tran_28_C 312 404 35.1 3.30E-12 10 GST_C_3 75 156 38.5 4.70E-13 10 tRNA-synt_1c 213 516 324.4 1.90E-100 10 tRNA-synt_1c_C 520 697 128.7 6.90E-41 12 TPR_11 104 160 18.1 1.40E-06 12 TPR_11 167 228 24.1 1.90E-08 14 Pkinase 33 293 215.9 1.40E-67 16 EF-hand_like 25 101 59.3 7.50E-20 16 PI-PLC-X 107 249 148.5 2.20E-47 16 PI-PLC-Y 322 409 95.1 7.00E-31 16 C2 432 524 51.6 1.60E-17 18 LTP_2 28 121 54.4 2.10E-18 20 Fip1 336 379 74.4 1.90E-25 22 Cystatin 83 136 12.0 1.20E-05 24 CENP-O 123 200 59.7 1.60E-20 26 TOM20_plant 8 201 328.4 6.70E-102 28 DHquinase_I 97 315 260.5 1.60E-80 28 Shikimate_dh_N 328 408 95.2 2.40E-30 28 Shikimate_DH 449 548 61.1 1.50E-19 30 Methyltransf_11 39 134 36.2 4.60E-12 32 SOUL 10 215 196.1 2.20E-62 34 KH_1 128 173 28.9 8.40E-11 36 Pterin_4a 80 174 103.2 3.00E-34 38 Alliinase_C 25 383 565.1 1.20E-173 40 CBM_2 68 97 9.2 0.00016 40 COBRA 164 191 1.6 0.027 40 COBRA 241 422 217.4 1.30E-68 40 CBM_2 512 547 2.7 0.017 42 Sugar_tr 103 559 427.0 9.50E-132 44 zf-met 85 109 27.3 5.60E-10 48 Radical_SAM 175 338 50.3 5.90E-17 50 Senescence 177 356 168.2 9.00E-54 52 zf-PARP 11 88 83.3 4.80E-27 52 zf-PARP 117 186 68.0 3.00E-22 52 PADR1 290 343 72.8 4.90E-24 52 BRCT 399 471 21.9 6.60E-08 52 WGR 519 600 58.9 1.60E-19 52 PARP_reg 634 765 115.3 6.90E-37 52 PARP 767 979 262.0 1.40E-81 54 Metallothio 5 19 7.6 0.00044 54 Metallothio 43 62 16.1 9.60E-07 56 FAD_binding_6 62 164 79.2 3.9E-26 56 NAD_binding_1 174 279 97.0 1.80E-31 58 Cullin 29 631 640.5 5.00E-196 58 Cullin_Nedd8 659 725 92.4 2.20E-30
TABLE-US-00019 TABLE 19 Pfam Domain Modules and Their Positions PEP SEQ ID NO Pfam Domain Module Position 4 PAS_2::GAF::PHY::PAS::HisKA::HATPase_c 97-217::253-432::443-620::654-769, 785-904::930-989::1039-1139 8 MGDG_synth::Glyco_tran_28_C 86-254::312-404 10 GST_C_3::tRNA-synt_1c::tRNA- 75-156::215-516::520-697 synt_1c_C 12 TPR_11::TPR_11 104-160, 167-228 16 EF-hand_like::PI-PLC-X::PI-PLC- 25-101::107-249::322-409:: 432-524 Y::C2 HMGL-like::LeuA_dimer 84-366::459-604 28 DHquinase_I::Shikimate_dh_N::Shikimate_DH 97-315::328-408::449-548 40 CBM_2::COBRA::CBM_2 68-97::164-191, 241-422::512-547 46 Lung_7-TM_R::zf-RING_2 24-64::110-153 52 zf- 11-88, 117, 186::290-343::399- PARP::PADR1::BRCT::WGR::PARP_reg::PARP 471::519-600::634-765::767-979 54 Metallothio:: Metallothio 5-19, 43-62 56 FAD_binding_6[1]::NAD_binding_1 62-164::174-279 58 Cullin[1]::Cullin_Nedd8 29-631::659-725
TABLE-US-00020 TABLE 20 Pfam Domain Properties PEP SEQ Pfam domain Accession Gathering ID NO name number cutoff Domain description 2 TCTP PF00838 20.8 Translationally controlled tumour protein 4 GAF PF01590 20.9 GAF domain 4 HATPase_c PF02518 21.3 Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase 4 HisKA PF00512 22.4 His Kinase A (phospho-acceptor) domain 4 PAS PF00989 22.6 PAS fold 4 PAS_2 PF08446 14.0 PAS fold 4 PHY PF00360 18.0 Phytochrome region 6 FmdA_AmdA PF03069 19.5 Acetamidase/Formamidase family 8 Glyco_tran_28_C PF04101 21.0 Glycosyltransferase family 28 C- terminal domain 8 MGDG_synth PF06925 20.9 Monogalactosyldiacylglycerol (MGDG) synthase 10 GST_C_3 PF14497 27.0 Glutathione S-transferase, C- terminal domain 10 tRNA-synt_1c PF00749 19.8 tRNA synthetases class I (E and Q), catalytic domain 10 tRNA-synt_1c_C PF03950 21.0 tRNA synthetases class I (E and Q), anti-codon binding domain 12 TPR_11 PF13414 26.8 TPR repeat 14 Pkinase PF00069 20.4 Protein kinase domain 16 C2 PF00168 4.5 C2 domain 16 EF-hand_like PF09279 20.9 Phosphoinositide-specific phospholipase C, efhand-like 16 PI-PLC-X PF00388 22.1 Phosphatidylinositol-specific phospholipase C, X domain 16 PI-PLC-Y PF00387 20.2 Phosphatidylinositol-specific phospholipase C, Y domain 18 LTP_2 PF14368 22.0 Probable lipid transfer 20 Fip1 PF05182 22.7 Fip1 motif 22 Cystatin PF00031 20.9 Cystatin domain 24 CENP-O PF09496 19.6 Cenp-O kinetochore centromere component 26 TOM20_plant PF06552 20.6 Plant specific mitochondrial import receptor subunit TOM20 28 DHquinase_I PF01487 20.7 Type I 3-dehydroquinase 28 Shikimate_DH PF01488 24.3 Shikimate/quinate 5- dehydrogenase 28 Shikimate_dh_N PF08501 21.3 Shikimate dehydrogenase substrate binding domain 30 Methyltransf_11 PF08241 21.2 Methyltransferase domain 32 SOUL PF04832 21.2 SOUL heme-binding protein 34 KH_1 PF00013 20.2 KH domain 36 Pterin_4a PF01329 20.8 Pterin_4a 38 Allinase_C Allinase 40 CBM_2 PF00553 21.1 Cellulose binding domain 40 COBRA PF04833 19.0 COBRA-like protein 42 Sugar_tr PF00083 20.7 Sugar (and other) transporter 44 zf-met PF12874 13.3 Zinc-finger of C2H2 type 46 Lung_7-TM_R PF06814 25.2 Lung seven transmembrane receptor 46 zf-RING_2 PF13639 27.0 Ring finger domain 48 Radical_SAM PF04055 29.4 Radical SAM superfamily 50 Senescence PF06911 21.6 Senescence-associated protein 54 Metallothio PF00131 20.6 Metallothionein
Example 9
Construction of miRNA Decoys
[0230] This example illustrates monocot and dicot plant transformation to produce recombinant DNA molecules useful for stable integration into plant chromosomes in the nuclei of plant cells to provide transgenic plants having enhanced traits by suppressing the activity of miRNAs.
[0231] The recombinant DNA molecules of SEQ ID NOs: 94, 95, 96, 97, 98 and 99 were constructed as follows.
[0232] Synthetic miRNA binding site sequences capable of hybridizing, respectively, miR172, miR166, miR444, miR172e, miR393 and miR397 species under physiological conditions were constructed by modifying naturally occurring miRNA binding sites. Specifically, the binding site sequences were constructed by inserting three nucleotides between nucleotides 10 and 11 of the polynucleotide sequences encoding naturally occurring binding sites specific for miR172, miR166, miR444, miR172e, miR393 and miR397, and in some cases by adding additional nucleotides at either the 5' or the 3' end of the naturally occurring biding site sequences. These modifications gave synthetic binding sites having polynucleotide sequences as set forth in SEQ ID NOs: 101-106.
[0233] The synthetic decoys were then constructed using the naturally occurring Zea mays miR399_47862C decoy of SEQ ID NO: 93 as a scaffolding. The native miR399 binding site of SEQ ID NO: 100 was removed and substituted with one of the synthetic miRNA binding sites set forth in SEQ ID NOs101-106, to give a recombinant DNA of, respectively, SEQ ID NO: 94-99.
[0234] Transformation vectors, each comprising a heterologous promoter operably linked to a polynucleotide encoding either the decoy of naturally occurring miR399 from Zea mays as set forth in SEQ ID NO: 93 or a synthetic decoy as set forth in SEQ ID NOs: 94-99 were then constructed by methods known in the art and used to transform plant cells, from which transgenic plants were produced as described above. The transgenic plants were then tested for altered phenotypes and enhanced traits, again as described above.
[0235] Similarly, recombinant DNA molecules comprising polynucleotide sequences transcribed into non-coding miRNA decoys are constructed as above, by using other native decoy sequences as a scaffolding, and using binding site sequences which bind some or all of other miRNA families that are naturally occurring or are derived from naturally occurring sites.
Sequence CWU
1
1
1161507DNAArabidopsis thaliana 1atgttggtgt accaagatct tctcaccggt
gatgagcttc tgtctgactc tttcccttac 60aaggagattg agaatggaat cctctgggaa
gtagaaggaa agtgggttac tgtgggagct 120gtagatgtta acattggtgc caatccatct
gctgaagaag gtggtgagga tgaaggtgtt 180gatgactcta ctcaaaaggt tgttgacatt
gtcgacacct tcagacttca ggagcaacca 240acttatgaca agaagggatt catcgcttac
attaagaaat acattaagct tttgacaccc 300aagctcagcg aagaagatca agctgtcttc
aagaagggta ttgagggagc taccaagttt 360ttgctcccca ggctcagtga cttccaattc
tttgttgggg agggtatgca tgatgacagc 420actttggtct ttgcttacta caaggagggt
tcaactaacc caacattttt gtacttcgct 480catggtttga aggaggtcaa gtgctag
5072168PRTArabidopsis thaliana 2Met Leu
Val Tyr Gln Asp Leu Leu Thr Gly Asp Glu Leu Leu Ser Asp 1 5
10 15 Ser Phe Pro Tyr Lys Glu Ile
Glu Asn Gly Ile Leu Trp Glu Val Glu 20 25
30 Gly Lys Trp Val Thr Val Gly Ala Val Asp Val Asn
Ile Gly Ala Asn 35 40 45
Pro Ser Ala Glu Glu Gly Gly Glu Asp Glu Gly Val Asp Asp Ser Thr
50 55 60 Gln Lys Val
Val Asp Ile Val Asp Thr Phe Arg Leu Gln Glu Gln Pro 65
70 75 80 Thr Tyr Asp Lys Lys Gly Phe
Ile Ala Tyr Ile Lys Lys Tyr Ile Lys 85
90 95 Leu Leu Thr Pro Lys Leu Ser Glu Glu Asp Gln
Ala Val Phe Lys Lys 100 105
110 Gly Ile Glu Gly Ala Thr Lys Phe Leu Leu Pro Arg Leu Ser Asp
Phe 115 120 125 Gln
Phe Phe Val Gly Glu Gly Met His Asp Asp Ser Thr Leu Val Phe 130
135 140 Ala Tyr Tyr Lys Glu Gly
Ser Thr Asn Pro Thr Phe Leu Tyr Phe Ala 145 150
155 160 His Gly Leu Lys Glu Val Lys Cys
165 34497DNAZea mays 3atggcgtcgg gcagccgcgc cacgcccacg
cgctccccct cctccgcgcg gcccgaggcg 60ccgcgtcacg cgcaccacca ccaccactcc
cagtcgtcgg gcgggagcac gtcccgcgcg 120ggcgggggag ccgcggccac ggagtcggtc
tccaaggccg tcgcccagta caccctagac 180gcgcgcctac acgcggtgtt cgagcaatcg
ggcgcgtcgg gccgcagctt cgactactcc 240caatcgctgc gcgcgccgcc cacgccgtcc
tccgagcagc agatcgccgc ctacctctcc 300cgcatccagc gcggcggcca catccagccc
ttcggctgca cgctcgctgt tgccgacgac 360tcctccttcc gcctcctcgc cttctccgag
aactcccccg acctgctcga cctgtcgcct 420caccactccg ttccctcgct ggactcctct
gcgccgcccc acgtttccct gggtgccgac 480gcgcgcctcc tcttctcccc ctcgtccgcg
gtcctcctag agcgcgcctt cgccgcgcgc 540gagatctcgc tgctcaaccc gatatggatc
cactccaggg tctcctccaa gccgttctac 600gccatcctcc accgcatcga cgtcggcgtc
gtcatcgacc tcgagcccgc ccgcaccgag 660gaccccgctc tctccatcgc cggtgcagtc
cagtcccaga aactggcggt ccgcaccatc 720tcccgcctcc aggcgctacc cggcggggac
gtcaagcttc tctgcgacac agtcgtggag 780catgttcgcg agctcacggg ttatgaccgt
gtcatggtgt acaggttcca tgaagacgag 840cacggggaag ttgtcgccga gagccggcgc
gacaaccttg agccttacct cggattgcat 900tatcccgcca cagatatccc ccaggcgtcg
cgcttcctgt tccggcagaa ccgcgtgcga 960atgattgccg attgccatgc caccccggtg
agagttattc aagatcctgg gctgtcgcag 1020cctctgtgtt tggtaggctc cacgctacgc
gctccacacg ggtgtcatgc acagtacatg 1080gcgaacatgg ggtcaattgc gtcgcttgtt
atggcagtca tcattagcag tggcggtgac 1140gatgagcaaa caggtcgggg tggcatctcc
tcggcaatga agttgtgggg gttagtggtg 1200tgccaccata catcaccacg gtgtatccct
tttccattga ggtatgcttg cgagtttctc 1260atgcaggtat ttgggttgca gctcaacatg
gagttgcagc ttgcgcacca gctgtcagag 1320aagcacattc tgcgaactca gacgctattg
tgtgacatgc tactacgaga ttcaccaact 1380ggcatcgtca cgcagagccc cagcatcatg
gaccttgtga agtgcgacgg ggctgcactg 1440tattatcatg ggaaatacta tccattgggt
gtcactccca ctgagtctca gattaaggat 1500atcatcgagt ggttgacggt gtttcatggg
gactcaacag ggctcagcac agatagcctg 1560gctgatgcag gctaccttgg tgctgctgca
ctaggggagg ctgtgtgtgg aatggcggtg 1620gcttatatta caccgagtga ttacttgttt
tggtttcggt cacacacagc taaagagatc 1680aaatggggtg gcgcaaagca tcaccctgag
gataaggatg atggtcagag gatgcaccca 1740cggtcgtcat tcaaggcatt tcttgaagtg
gttaaaagca gaagcctacc atgggagaat 1800gcagaaatgg acgcaataca ttccttgcag
ctcatattgc gtgactcctt cagggatgct 1860gcagagggca ccaacaactc aaaagccatt
gtcaatggac aagttcagct tcgggagcta 1920gaattgcggg ggataaatga gcttagttcc
gtagcaagag agatggttcg gttgatagag 1980acagcaacag tacccatatt tgcagtagat
actgatgggt gtataaatgg ttggaatgca 2040aagattgctg agttgacagg gctttcagtt
gaggaggcaa tgggcaaatc tctggtaaat 2100gatcttatct tcaaggaatc tgaggcgaca
gttgaaaaac tactctcacg agctttaaga 2160ggtatttcca tttctgtttc ttatatggat
gctattgcct ttatactacg tttcatgaaa 2220actgcggagt gctgttgagg aaaatattat
gttcttggtt gtatctctta aggtatatgg 2280cataacagaa gcttatggac atgatgtaca
catgtttatt agaccaaata tggaaatgtg 2340tggtaatata ctcctggaaa atggatattt
gaaggagctg agcctatctc agtttgttga 2400cagtgtggat gtatgcctag acccagaccc
ccaagttcaa gtccttgtcg aggcgatttt 2460tttgcatatt tcttctaatt aaaaagccct
tctatgttgg tcaaggtttt ttaatagata 2520tactcagttt cttaggcgga cttctttttg
tgcacaaata tatagaaaat gggggatcaa 2580ctagagacta ccaacaaatt cattcaacca
tttctagagt atttttagaa cctggtgctt 2640ataactagca gacatgaata ctcattagtc
atatgtgaaa agtaagcata tgaaacttat 2700aaaaaaggtc atgttagttg ttgaagtgta
tgagtggatt aactatcttt tcccatcagc 2760ttaagctttt gggttcaact ggttagcgcg
tccactccaa catggtacca aagacaaagg 2820tctcgaattc gaattctggc aaaggcttta
tttatgcctc cacccattta tttccacgtt 2880tgcgcccctc tctctctctc tggctgcatt
tgcgcctttc tctctggcta cacgtaagtg 2940ggggtgttga agtgtataag tggattgact
accttctccc atcagcttaa gcttttgggt 3000tgaactgttt agtgcgttca ctctaacatt
agctactcac aggagtacaa tgtttctccc 3060caggctgttt gaactatttt aatgtacttc
ccaatgcatg tagctaagct atgttagctt 3120taatggatgt gagattggag agtgctaatt
tgtgaagttg cttcccatac aggtgaggaa 3180gacaaaaatg tggagataaa gctgaagaca
tttgggtcag agcaatctaa gggaccaata 3240tttgttgttg tcaatgcttg ttctagtaga
gattacacac aaaatattgt tggtgtctgt 3300tttgttggac aagatgtcac aggacaaaag
gtggtcatgg ataaatttgt taacatacaa 3360ggggactaca aagctattgt acacaatcct
aatcctctga taccaccaat ttttgcatca 3420gatgagaaca cttcttgttc agaatggaat
acagccatgg aaaaacttac aggatggtcg 3480agaggtgaag ttgttggtaa gtttcttatt
ggagaggtgt ttggaaattg ttgtcgactc 3540aagggcccag atgcattgac aaaattcatg
gttattattc acaacgctat aggagggcag 3600gattatgaga agttcccttt ttcatttttt
gacaagaatg gaaagtatgt gcaggcctta 3660ttgaccgcca atacaaggag caaaatggat
ggtaaatcca ttggagcctt ttgtttcctg 3720cagattgcaa gcgctgaaat acagcaagcc
attgagattc agagacaaca agaaaagaag 3780tgttacgcaa ggatgaaaga attggcctat
atttgccagg agataaagaa tcctcttagt 3840ggcatccgat ttaccaactc tctgttgcag
atgactgatt taaatgatga ccagaggcag 3900ttccttgaaa ctagctctgc ttgtgagaaa
cagatgtcca agattgttaa ggacgccagt 3960ctccaaagta tcgaggacgg ctctttggtg
cttgagcaaa gtgagttttc tcttggagac 4020gttatgaatg ctgttgtcag ccaagcaatg
ttattgttga gagagaggga tttacaactt 4080attcgggaca tccctgatga aatcaaggat
gcgtcagcgt atggtgatca atgtagaatt 4140caacaagttt tggctgactt cttgctaagc
atggtgcggt ctgctccatc cgagaatggt 4200tgggtagaaa tacaagtcag accaaatgta
aaacagaatt ctgatggaac aaatacagaa 4260cttttcatat tcaggtttgc ctgccctggt
gagggcctcc ctgctgacgt cgtccaggat 4320atgttcagca attcccaatg gtcaacacaa
gaaggcgtag gactaagcac atgcaggaag 4380atcctcaaat tgatgggtgg cgaggtccaa
tacatcagag agtcagagcg gagtttcttc 4440ctcatcgtcc tcgagcagcc ccaacctcgt
ccagcagctg gtagagaaat cgtctag 44974745PRTZea mays 4Met Ala Ser Gly
Ser Arg Ala Thr Pro Thr Arg Ser Pro Ser Ser Ala 1 5
10 15 Arg Pro Glu Ala Pro Arg His Ala His
His His His His Ser Gln Ser 20 25
30 Ser Gly Gly Ser Thr Ser Arg Ala Gly Gly Gly Ala Ala Ala
Thr Glu 35 40 45
Ser Val Ser Lys Ala Val Ala Gln Tyr Thr Leu Asp Ala Arg Leu His 50
55 60 Ala Val Phe Glu Gln
Ser Gly Ala Ser Gly Arg Ser Phe Asp Tyr Ser 65 70
75 80 Gln Ser Leu Arg Ala Pro Pro Thr Pro Ser
Ser Glu Gln Gln Ile Ala 85 90
95 Ala Tyr Leu Ser Arg Ile Gln Arg Gly Gly His Ile Gln Pro Phe
Gly 100 105 110 Cys
Thr Leu Ala Val Ala Asp Asp Ser Ser Phe Arg Leu Leu Ala Phe 115
120 125 Ser Glu Asn Ser Pro Asp
Leu Leu Asp Leu Ser Pro His His Ser Val 130 135
140 Pro Ser Leu Asp Ser Ser Ala Pro Pro His Val
Ser Leu Gly Ala Asp 145 150 155
160 Ala Arg Leu Leu Phe Ser Pro Ser Ser Ala Val Leu Leu Glu Arg Ala
165 170 175 Phe Ala
Ala Arg Glu Ile Ser Leu Leu Asn Pro Ile Trp Ile His Ser 180
185 190 Arg Val Ser Ser Lys Pro Phe
Tyr Ala Ile Leu His Arg Ile Asp Val 195 200
205 Gly Val Val Ile Asp Leu Glu Pro Ala Arg Thr Glu
Asp Pro Ala Leu 210 215 220
Ser Ile Ala Gly Ala Val Gln Ser Gln Lys Leu Ala Val Arg Thr Ile 225
230 235 240 Ser Arg Leu
Gln Ala Leu Pro Gly Gly Asp Val Lys Leu Leu Cys Asp 245
250 255 Thr Val Val Glu His Val Arg Glu
Leu Thr Gly Tyr Asp Arg Val Met 260 265
270 Val Tyr Arg Phe His Glu Asp Glu His Gly Glu Val Val
Ala Glu Ser 275 280 285
Arg Arg Asp Asn Leu Glu Pro Tyr Leu Gly Leu His Tyr Pro Ala Thr 290
295 300 Asp Ile Pro Gln
Ala Ser Arg Phe Leu Phe Arg Gln Asn Arg Val Arg 305 310
315 320 Met Ile Ala Asp Cys His Ala Thr Pro
Val Arg Val Ile Gln Asp Pro 325 330
335 Gly Leu Ser Gln Pro Leu Cys Leu Val Gly Ser Thr Leu Arg
Ala Pro 340 345 350
His Gly Cys His Ala Gln Tyr Met Ala Asn Met Gly Ser Ile Ala Ser
355 360 365 Leu Val Met Ala
Val Ile Ile Ser Ser Gly Gly Asp Asp Glu Gln Thr 370
375 380 Gly Arg Gly Gly Ile Ser Ser Ala
Met Lys Leu Trp Gly Leu Val Val 385 390
395 400 Cys His His Thr Ser Pro Arg Cys Ile Pro Phe Pro
Leu Arg Tyr Ala 405 410
415 Cys Glu Phe Leu Met Gln Val Phe Gly Leu Gln Leu Asn Met Glu Leu
420 425 430 Gln Leu Ala
His Gln Leu Ser Glu Lys His Ile Leu Arg Thr Gln Thr 435
440 445 Leu Leu Cys Asp Met Leu Leu Arg
Asp Ser Pro Thr Gly Ile Val Thr 450 455
460 Gln Ser Pro Ser Ile Met Asp Leu Val Lys Cys Asp Gly
Ala Ala Leu 465 470 475
480 Tyr Tyr His Gly Lys Tyr Tyr Pro Leu Gly Val Thr Pro Thr Glu Ser
485 490 495 Gln Ile Lys Asp
Ile Ile Glu Trp Leu Thr Val Phe His Gly Asp Ser 500
505 510 Thr Gly Leu Ser Thr Asp Ser Leu Ala
Asp Ala Gly Tyr Leu Gly Ala 515 520
525 Ala Ala Leu Gly Glu Ala Val Cys Gly Met Ala Val Ala Tyr
Ile Thr 530 535 540
Pro Ser Asp Tyr Leu Phe Trp Phe Arg Ser His Thr Ala Lys Glu Ile 545
550 555 560 Lys Trp Gly Gly Ala
Lys His His Pro Glu Asp Lys Asp Asp Gly Gln 565
570 575 Arg Met His Pro Arg Ser Ser Phe Lys Ala
Phe Leu Glu Val Val Lys 580 585
590 Ser Arg Ser Leu Pro Trp Glu Asn Ala Glu Met Asp Ala Ile His
Ser 595 600 605 Leu
Gln Leu Ile Leu Arg Asp Ser Phe Arg Asp Ala Ala Glu Gly Thr 610
615 620 Asn Asn Ser Lys Ala Ile
Val Asn Gly Gln Val Gln Leu Arg Glu Leu 625 630
635 640 Glu Leu Arg Gly Ile Asn Glu Leu Ser Ser Val
Ala Arg Glu Met Val 645 650
655 Arg Leu Ile Glu Thr Ala Thr Val Pro Ile Phe Ala Val Asp Thr Asp
660 665 670 Gly Cys
Ile Asn Gly Trp Asn Ala Lys Ile Ala Glu Leu Thr Gly Leu 675
680 685 Ser Val Glu Glu Ala Met Gly
Lys Ser Leu Val Asn Asp Leu Ile Phe 690 695
700 Lys Glu Ser Glu Ala Thr Val Glu Lys Leu Leu Ser
Arg Ala Leu Arg 705 710 715
720 Gly Ile Ser Ile Ser Val Ser Tyr Met Asp Ala Ile Ala Phe Ile Leu
725 730 735 Arg Phe Met
Lys Thr Ala Glu Cys Cys 740 745 5888DNAZea
mays 5atggctcctc tgtctcctag actggtagtg cccgtagacg tgaagaagct gccgcgggag
60caaaaggtcc ctctccacaa ccgctggcac ccggatatcc ctcctgttgc tgatgtaacc
120gaaggggaat tgttccgcgt tgagatggtc gattggagtg gagggcgggt tagggatgat
180aactctgcag atgatctgaa attcatggat ttcacaattg ctcattatct tagtgggccc
240ctaagaatag ttgattctga aggggttcca gcttcaccag gtgatcttct cgcggtagaa
300atctgcaacc ttggcccact tcctggcgac gagtggggtt acaccgcaat acttgaaagg
360gagaatggag gtggattctt aactgaccac ttccctagcg caagaaaagc catctggtat
420ttcgaaggaa tttacgcatg ctccccgcag ataccaggtg ttcgttttcc aggattgact
480catcctggtg ttgtgggaac tgcaccgtca cttgagctcc taaatatatg gaatgaaaga
540gagaaaagtt tgtctgagac aagcctagag actattaaac tgtgtgaagt tctacaccag
600aggccccttg ctcatttacc gacccctgaa aattgcttac ttgggaaggt ccaagaaggg
660actgctgaat ggcacataat tgcaaacgaa gcggccagaa ctattgctgg aagggaaaat
720ggcgggaatt gcgacataaa gaacctaagc agaggctcca gaatttatct accagtgttt
780gtcgaaggag caaacctcag cactggtgac atgcacttct cccaggggga cggcgagatt
840tcgctgtgtg gagcaattga aatgagcggg ttccttgagc tcaagtag
8886295PRTZea mays 6Met Ala Pro Leu Ser Pro Arg Leu Val Val Pro Val Asp
Val Lys Lys 1 5 10 15
Leu Pro Arg Glu Gln Lys Val Pro Leu His Asn Arg Trp His Pro Asp
20 25 30 Ile Pro Pro Val
Ala Asp Val Thr Glu Gly Glu Leu Phe Arg Val Glu 35
40 45 Met Val Asp Trp Ser Gly Gly Arg Val
Arg Asp Asp Asn Ser Ala Asp 50 55
60 Asp Leu Lys Phe Met Asp Phe Thr Ile Ala His Tyr Leu
Ser Gly Pro 65 70 75
80 Leu Arg Ile Val Asp Ser Glu Gly Val Pro Ala Ser Pro Gly Asp Leu
85 90 95 Leu Ala Val Glu
Ile Cys Asn Leu Gly Pro Leu Pro Gly Asp Glu Trp 100
105 110 Gly Tyr Thr Ala Ile Leu Glu Arg Glu
Asn Gly Gly Gly Phe Leu Thr 115 120
125 Asp His Phe Pro Ser Ala Arg Lys Ala Ile Trp Tyr Phe Glu
Gly Ile 130 135 140
Tyr Ala Cys Ser Pro Gln Ile Pro Gly Val Arg Phe Pro Gly Leu Thr 145
150 155 160 His Pro Gly Val Val
Gly Thr Ala Pro Ser Leu Glu Leu Leu Asn Ile 165
170 175 Trp Asn Glu Arg Glu Lys Ser Leu Ser Glu
Thr Ser Leu Glu Thr Ile 180 185
190 Lys Leu Cys Glu Val Leu His Gln Arg Pro Leu Ala His Leu Pro
Thr 195 200 205 Pro
Glu Asn Cys Leu Leu Gly Lys Val Gln Glu Gly Thr Ala Glu Trp 210
215 220 His Ile Ile Ala Asn Glu
Ala Ala Arg Thr Ile Ala Gly Arg Glu Asn 225 230
235 240 Gly Gly Asn Cys Asp Ile Lys Asn Leu Ser Arg
Gly Ser Arg Ile Tyr 245 250
255 Leu Pro Val Phe Val Glu Gly Ala Asn Leu Ser Thr Gly Asp Met His
260 265 270 Phe Ser
Gln Gly Asp Gly Glu Ile Ser Leu Cys Gly Ala Ile Glu Met 275
280 285 Ser Gly Phe Leu Glu Leu Lys
290 295 71398DNAArabidopsis thaliana 7atgatgaaag
tggtgtcacc tcgtacacgg tcggattcaa tcactgagaa ggtgtttcga 60cgagtctata
gcaattttaa catctcaaca gtagaagatg agtatatcca tcgtcagaga 120tcaagtgatt
atgagaagga gagtcgtcta aggaagagag ggttagaaga caaagaagaa 180gttatggaga
tggagcagat gggagcagag aggatcaaaa ctgttcttat tctcatgagt 240gataccggcg
gtggccaccg tgcttcagcc gaggccatcc gcgacgcttt caagatcgaa 300ttcggagatg
actatcggat aatcataaaa gatgtttgga aagaatacac tggatggcca 360ttgaacgaca
tggagagaca gtacaagttc atggtgaaac atgttggtct ttggtctgtt 420gcgtttcatg
gtacttctcc caaatggatc cacaaaagct atctaagtgc tcttgccgct 480tattatgcca
aagaaataga ggccggttta atggagtaca aaccggacat tattattagc 540gtgcatcctc
tgatgcaaca cataccattg tgggtaatga aatggcaagg acttcacaag 600aaagttattt
tcgttacggt catcactgat ctaaacactt gccaccgtac atggttccat 660catggagtca
gcagatgtta ttgtccgtcc aaagaggttg caaagagagc attagtagac 720ggccttgatg
actctcaaat ccgtgtcttt ggcttacctg tccgcccatc tttccctcgc 780actattctca
acaagaatga actaaggaag gaacttgaaa tagacttaaa tttacctgcg 840gttctattaa
tgggaggggg tgaaggaatg ggtccggttc aaaaaacagc tctagccctt 900ggagattctt
tatacaactc taaagaaagt aatccaatag gacaattgat tgtcatatgc 960ggccggaaca
aagtccttgc ttctacatta gcatctcatg aatggaagat tccggtcaag 1020gttcgagggt
ttgaaacaca aatggaaaaa tggatgggag cttgtgattg tatcatcact 1080aaggctggtc
cgggtacgat tgcggaagca ctgatttgcg gcctcccaat tatcctcaat 1140gactatattc
ctggacagga aaaaggcaac gtgccgtatg ttgtggacaa tggggctgga 1200gttttcaccc
gaagtcccaa agaaactgcg aaaatcgtgg cggattggtt tagcaacaat 1260aaagaggaat
taaagaaaat gtcagagaat gctctaaagt tgtcgcaacc tgaagccgtg 1320ttcgacattg
tgaaggatat ccatcatcta tcccaacaac aacaacgtat tccacttttt 1380aatgaatttt
cctattag
13988465PRTArabidopsis thaliana 8Met Met Lys Val Val Ser Pro Arg Thr Arg
Ser Asp Ser Ile Thr Glu 1 5 10
15 Lys Val Phe Arg Arg Val Tyr Ser Asn Phe Asn Ile Ser Thr Val
Glu 20 25 30 Asp
Glu Tyr Ile His Arg Gln Arg Ser Ser Asp Tyr Glu Lys Glu Ser 35
40 45 Arg Leu Arg Lys Arg Gly
Leu Glu Asp Lys Glu Glu Val Met Glu Met 50 55
60 Glu Gln Met Gly Ala Glu Arg Ile Lys Thr Val
Leu Ile Leu Met Ser 65 70 75
80 Asp Thr Gly Gly Gly His Arg Ala Ser Ala Glu Ala Ile Arg Asp Ala
85 90 95 Phe Lys
Ile Glu Phe Gly Asp Asp Tyr Arg Ile Ile Ile Lys Asp Val 100
105 110 Trp Lys Glu Tyr Thr Gly Trp
Pro Leu Asn Asp Met Glu Arg Gln Tyr 115 120
125 Lys Phe Met Val Lys His Val Gly Leu Trp Ser Val
Ala Phe His Gly 130 135 140
Thr Ser Pro Lys Trp Ile His Lys Ser Tyr Leu Ser Ala Leu Ala Ala 145
150 155 160 Tyr Tyr Ala
Lys Glu Ile Glu Ala Gly Leu Met Glu Tyr Lys Pro Asp 165
170 175 Ile Ile Ile Ser Val His Pro Leu
Met Gln His Ile Pro Leu Trp Val 180 185
190 Met Lys Trp Gln Gly Leu His Lys Lys Val Ile Phe Val
Thr Val Ile 195 200 205
Thr Asp Leu Asn Thr Cys His Arg Thr Trp Phe His His Gly Val Ser 210
215 220 Arg Cys Tyr Cys
Pro Ser Lys Glu Val Ala Lys Arg Ala Leu Val Asp 225 230
235 240 Gly Leu Asp Asp Ser Gln Ile Arg Val
Phe Gly Leu Pro Val Arg Pro 245 250
255 Ser Phe Pro Arg Thr Ile Leu Asn Lys Asn Glu Leu Arg Lys
Glu Leu 260 265 270
Glu Ile Asp Leu Asn Leu Pro Ala Val Leu Leu Met Gly Gly Gly Glu
275 280 285 Gly Met Gly Pro
Val Gln Lys Thr Ala Leu Ala Leu Gly Asp Ser Leu 290
295 300 Tyr Asn Ser Lys Glu Ser Asn Pro
Ile Gly Gln Leu Ile Val Ile Cys 305 310
315 320 Gly Arg Asn Lys Val Leu Ala Ser Thr Leu Ala Ser
His Glu Trp Lys 325 330
335 Ile Pro Val Lys Val Arg Gly Phe Glu Thr Gln Met Glu Lys Trp Met
340 345 350 Gly Ala Cys
Asp Cys Ile Ile Thr Lys Ala Gly Pro Gly Thr Ile Ala 355
360 365 Glu Ala Leu Ile Cys Gly Leu Pro
Ile Ile Leu Asn Asp Tyr Ile Pro 370 375
380 Gly Gln Glu Lys Gly Asn Val Pro Tyr Val Val Asp Asn
Gly Ala Gly 385 390 395
400 Val Phe Thr Arg Ser Pro Lys Glu Thr Ala Lys Ile Val Ala Asp Trp
405 410 415 Phe Ser Asn Asn
Lys Glu Glu Leu Lys Lys Met Ser Glu Asn Ala Leu 420
425 430 Lys Leu Ser Gln Pro Glu Ala Val Phe
Asp Ile Val Lys Asp Ile His 435 440
445 His Leu Ser Gln Gln Gln Gln Arg Ile Pro Leu Phe Asn Glu
Phe Ser 450 455 460
Tyr 465 92160DNAArabidopsis thaliana 9atggatggga tgaagctttc gttcccaccg
gaaagtccac cactttcagt catcgttgct 60ctttctctct cagcttctcc ggtgacgatt
gattcttccg ccgctgcaac aaccgtccct 120tcttttgtct tctccgacgg gaggaaattg
aatggagcca ccgttcttct tcgctatgtt 180ggtcgatcag cgaaaaagct tcctgatttc
tatggcaaca atgcttttga ttcttctcag 240attgatgagt gggtagatta cgcatctgtc
ttctcttctg gttcagagtt tgagaatgct 300tgtggtcgtg ttgataagta tctcgagagt
agcacgtttc ttgttggcca ttctctttcc 360attgctgatg tcgctatttg gtcagctctt
gctggaactg gtcaaagatg ggaaagtttg 420aggaaatcta aaaagtatca gagtcttgtt
agatggttca attcgatatt agacgagtac 480agtgaggtgc ttaacaaggt tctagcaact
tatgttaaga aaggatcagg gaagcctgtt 540gctgcaccta agtctaaaga tagccaacaa
gctgtgaaag gagatggtca ggataaaggt 600aagcctgaag tggacttgcc ggaagcggag
attggaaagg ttaaactccg gtttgctcca 660gagccaagtg gttatcttca cataggacat
gctaaggctg cgttgctgaa caagtatttc 720gctgagcgtt accaagggga agtgattgtg
cgttttgatg atactaaccc tgctaaagaa 780agcaatgagt ttgtggataa tcttgtgaag
gatattggga ccttggggat caagtatgag 840aaagtgacat acacttcgga ctattttcct
gaattgatgg atatggcgga aaaactgatg 900cgtgagggta aggcatatgt tgatgacaca
ccgagggagc agatgcagaa agagaggatg 960gatgggattg attcgaaatg taggaatcat
agcgtcgagg agaatttgaa gctatggaag 1020gaaatgattg caggaagtga gagaggatta
cagtgctgtg ttcgtgggaa attcaacatg 1080caagatccca acaaagccat gcgtgacccg
gtttattacc gatgcaatcc tatgtctcac 1140caccgtatcg gggataagta taagatatat
ccaacatatg actttgcttg cccgtttgtt 1200gattcccttg aaggtataac gcatgctctt
cggtctagtg agtatcatga ccgaaatgct 1260cagtacttta aagttctgga ggatatggga
ctgcgacagg ttcagcttta cgaattcagc 1320cggttaaacc tagtttttac acttctcagt
aagcgcaagc ttctctggtt tgtccaaact 1380ggattggttg acgggtggga tgatccacgt
ttcccgacag tccaaggaat tgttcgtaga 1440ggtttgaaaa tcgaggctct gattcaattc
attctcgagc agggggcttc gaagaatcta 1500aatttgatgg aatgggacaa actttggtct
ataaataaga gaataattga tcctgtgtgc 1560cctagacaca ctgctgtggt tgcagaacgt
cgtgtactat ttaccttaac ggatggtcct 1620gatgagccgt ttgttcgcat gataccaaag
cacaagaaat tcgaaggtgc tggagaaaag 1680gcgaccactt tcactaagag catttggctc
gaggaagctg atgcgagtgc catatccgtt 1740ggtgaggaag taactttgat ggattgggga
aatgctatcg taaaggaaat cacaaaggac 1800gaggagggtc gtgtcactgc cttatctggt
gtcttgaatc tccaaggttc tgtaaagact 1860acaaagctga agctgacatg gcttcctgat
actaatgaat tggtcaatct cacattaaca 1920gagtttgatt atctaatcac caagaagaag
ctggaagatg atgatgaagt tgctgatttt 1980gtgaatccta acacaaagaa ggaaacattg
gcacttggtg attcgaatat gaggaatctg 2040aaatgtggag atgtgattca gcttgagagg
aaaggctatt tcagatgtga tgtgcctttt 2100gtcaaatctt caaagcccat tgtcttattc
tccattccag atggaagagc cgctaagtag 216010719PRTArabidopsis thaliana 10Met
Asp Gly Met Lys Leu Ser Phe Pro Pro Glu Ser Pro Pro Leu Ser 1
5 10 15 Val Ile Val Ala Leu Ser
Leu Ser Ala Ser Pro Val Thr Ile Asp Ser 20
25 30 Ser Ala Ala Ala Thr Thr Val Pro Ser Phe
Val Phe Ser Asp Gly Arg 35 40
45 Lys Leu Asn Gly Ala Thr Val Leu Leu Arg Tyr Val Gly Arg
Ser Ala 50 55 60
Lys Lys Leu Pro Asp Phe Tyr Gly Asn Asn Ala Phe Asp Ser Ser Gln 65
70 75 80 Ile Asp Glu Trp Val
Asp Tyr Ala Ser Val Phe Ser Ser Gly Ser Glu 85
90 95 Phe Glu Asn Ala Cys Gly Arg Val Asp Lys
Tyr Leu Glu Ser Ser Thr 100 105
110 Phe Leu Val Gly His Ser Leu Ser Ile Ala Asp Val Ala Ile Trp
Ser 115 120 125 Ala
Leu Ala Gly Thr Gly Gln Arg Trp Glu Ser Leu Arg Lys Ser Lys 130
135 140 Lys Tyr Gln Ser Leu Val
Arg Trp Phe Asn Ser Ile Leu Asp Glu Tyr 145 150
155 160 Ser Glu Val Leu Asn Lys Val Leu Ala Thr Tyr
Val Lys Lys Gly Ser 165 170
175 Gly Lys Pro Val Ala Ala Pro Lys Ser Lys Asp Ser Gln Gln Ala Val
180 185 190 Lys Gly
Asp Gly Gln Asp Lys Gly Lys Pro Glu Val Asp Leu Pro Glu 195
200 205 Ala Glu Ile Gly Lys Val Lys
Leu Arg Phe Ala Pro Glu Pro Ser Gly 210 215
220 Tyr Leu His Ile Gly His Ala Lys Ala Ala Leu Leu
Asn Lys Tyr Phe 225 230 235
240 Ala Glu Arg Tyr Gln Gly Glu Val Ile Val Arg Phe Asp Asp Thr Asn
245 250 255 Pro Ala Lys
Glu Ser Asn Glu Phe Val Asp Asn Leu Val Lys Asp Ile 260
265 270 Gly Thr Leu Gly Ile Lys Tyr Glu
Lys Val Thr Tyr Thr Ser Asp Tyr 275 280
285 Phe Pro Glu Leu Met Asp Met Ala Glu Lys Leu Met Arg
Glu Gly Lys 290 295 300
Ala Tyr Val Asp Asp Thr Pro Arg Glu Gln Met Gln Lys Glu Arg Met 305
310 315 320 Asp Gly Ile Asp
Ser Lys Cys Arg Asn His Ser Val Glu Glu Asn Leu 325
330 335 Lys Leu Trp Lys Glu Met Ile Ala Gly
Ser Glu Arg Gly Leu Gln Cys 340 345
350 Cys Val Arg Gly Lys Phe Asn Met Gln Asp Pro Asn Lys Ala
Met Arg 355 360 365
Asp Pro Val Tyr Tyr Arg Cys Asn Pro Met Ser His His Arg Ile Gly 370
375 380 Asp Lys Tyr Lys Ile
Tyr Pro Thr Tyr Asp Phe Ala Cys Pro Phe Val 385 390
395 400 Asp Ser Leu Glu Gly Ile Thr His Ala Leu
Arg Ser Ser Glu Tyr His 405 410
415 Asp Arg Asn Ala Gln Tyr Phe Lys Val Leu Glu Asp Met Gly Leu
Arg 420 425 430 Gln
Val Gln Leu Tyr Glu Phe Ser Arg Leu Asn Leu Val Phe Thr Leu 435
440 445 Leu Ser Lys Arg Lys Leu
Leu Trp Phe Val Gln Thr Gly Leu Val Asp 450 455
460 Gly Trp Asp Asp Pro Arg Phe Pro Thr Val Gln
Gly Ile Val Arg Arg 465 470 475
480 Gly Leu Lys Ile Glu Ala Leu Ile Gln Phe Ile Leu Glu Gln Gly Ala
485 490 495 Ser Lys
Asn Leu Asn Leu Met Glu Trp Asp Lys Leu Trp Ser Ile Asn 500
505 510 Lys Arg Ile Ile Asp Pro Val
Cys Pro Arg His Thr Ala Val Val Ala 515 520
525 Glu Arg Arg Val Leu Phe Thr Leu Thr Asp Gly Pro
Asp Glu Pro Phe 530 535 540
Val Arg Met Ile Pro Lys His Lys Lys Phe Glu Gly Ala Gly Glu Lys 545
550 555 560 Ala Thr Thr
Phe Thr Lys Ser Ile Trp Leu Glu Glu Ala Asp Ala Ser 565
570 575 Ala Ile Ser Val Gly Glu Glu Val
Thr Leu Met Asp Trp Gly Asn Ala 580 585
590 Ile Val Lys Glu Ile Thr Lys Asp Glu Glu Gly Arg Val
Thr Ala Leu 595 600 605
Ser Gly Val Leu Asn Leu Gln Gly Ser Val Lys Thr Thr Lys Leu Lys 610
615 620 Leu Thr Trp Leu
Pro Asp Thr Asn Glu Leu Val Asn Leu Thr Leu Thr 625 630
635 640 Glu Phe Asp Tyr Leu Ile Thr Lys Lys
Lys Leu Glu Asp Asp Asp Glu 645 650
655 Val Ala Asp Phe Val Asn Pro Asn Thr Lys Lys Glu Thr Leu
Ala Leu 660 665 670
Gly Asp Ser Asn Met Arg Asn Leu Lys Cys Gly Asp Val Ile Gln Leu
675 680 685 Glu Arg Lys Gly
Tyr Phe Arg Cys Asp Val Pro Phe Val Lys Ser Ser 690
695 700 Lys Pro Ile Val Leu Phe Ser Ile
Pro Asp Gly Arg Ala Ala Lys 705 710 715
11912DNAArabidopsis thaliana 11atggtgacga aaacggagga
gatacagtta aaccaactcg agaatcaagt tgagaatgga 60ggaggaggtg tttgggagta
tctgtgcctc gttcgtaagc tcaaggttcg ccgatcagag 120attgtgctca agcatggtct
ctcgatcttg aacgattcgg gaaagcgatc cgctcttggt 180ccagatgaat ggaccctgta
tgagcaggta gcaattgcag ctatggactg tcaatctctc 240ggtgttgcac agaattgcat
caaggttcta aagaagaaat ttccggagag caaacgtgtt 300ggcaagctgg aggctctgct
gctagaagca aagggaatgt gggaagaggc tgaaaaagca 360tatacaagcc ttttggagga
taatccactt gatcaagtaa ttcacaaaag aaaggtggct 420atggccaagg cacaaggcaa
atcttcctta gccattgaac atctgaacaa gtatcttgaa 480gtattcatgg ctgatcatga
tgcctggaga gaacttgcag aaatttatgt ttccttgcaa 540atgtacaagc aagcagcttt
ctgctacgag gagctcatac taactcagcc tactcttcca 600ttgtaccact tagcatatgc
cgatgttctc tacacaatag gtggactaga aaacctcatc 660gcagcaagaa agtactatgc
agcaactata gacttgacag gtggtaaaag cacaagagca 720cttctcggaa tatgcttgtg
tggatcagca atcgcacaga tctcaaaagg caggaacaaa 780gaggacaagg acatggctgc
accagagctt cagtctttgg ctgcaactgc attggagcga 840gagtacaagc aaaaagctcc
cgctaagctc aacctcctca cttctgcctt gagaaacttg 900aaaatcgctt ag
91212303PRTArabidopsis
thaliana 12Met Val Thr Lys Thr Glu Glu Ile Gln Leu Asn Gln Leu Glu Asn
Gln 1 5 10 15 Val
Glu Asn Gly Gly Gly Gly Val Trp Glu Tyr Leu Cys Leu Val Arg
20 25 30 Lys Leu Lys Val Arg
Arg Ser Glu Ile Val Leu Lys His Gly Leu Ser 35
40 45 Ile Leu Asn Asp Ser Gly Lys Arg Ser
Ala Leu Gly Pro Asp Glu Trp 50 55
60 Thr Leu Tyr Glu Gln Val Ala Ile Ala Ala Met Asp Cys
Gln Ser Leu 65 70 75
80 Gly Val Ala Gln Asn Cys Ile Lys Val Leu Lys Lys Lys Phe Pro Glu
85 90 95 Ser Lys Arg Val
Gly Lys Leu Glu Ala Leu Leu Leu Glu Ala Lys Gly 100
105 110 Met Trp Glu Glu Ala Glu Lys Ala Tyr
Thr Ser Leu Leu Glu Asp Asn 115 120
125 Pro Leu Asp Gln Val Ile His Lys Arg Lys Val Ala Met Ala
Lys Ala 130 135 140
Gln Gly Lys Ser Ser Leu Ala Ile Glu His Leu Asn Lys Tyr Leu Glu 145
150 155 160 Val Phe Met Ala Asp
His Asp Ala Trp Arg Glu Leu Ala Glu Ile Tyr 165
170 175 Val Ser Leu Gln Met Tyr Lys Gln Ala Ala
Phe Cys Tyr Glu Glu Leu 180 185
190 Ile Leu Thr Gln Pro Thr Leu Pro Leu Tyr His Leu Ala Tyr Ala
Asp 195 200 205 Val
Leu Tyr Thr Ile Gly Gly Leu Glu Asn Leu Ile Ala Ala Arg Lys 210
215 220 Tyr Tyr Ala Ala Thr Ile
Asp Leu Thr Gly Gly Lys Ser Thr Arg Ala 225 230
235 240 Leu Leu Gly Ile Cys Leu Cys Gly Ser Ala Ile
Ala Gln Ile Ser Lys 245 250
255 Gly Arg Asn Lys Glu Asp Lys Asp Met Ala Ala Pro Glu Leu Gln Ser
260 265 270 Leu Ala
Ala Thr Ala Leu Glu Arg Glu Tyr Lys Gln Lys Ala Pro Ala 275
280 285 Lys Leu Asn Leu Leu Thr Ser
Ala Leu Arg Asn Leu Lys Ile Ala 290 295
300 132130DNAArabidopsis thaliana 13atggtgggag gaggaggagg
tagtagtggt cgtggtggtg gtagtggtag tggtagtagt 60aagcagcaga gaggtttctc
tatgaatcct aaagactata agctaatgga agaaataggc 120catggagcta gcgctgttgt
ctatcgagcg atctatctcc ctactaatga agtcgtcgcc 180atcaagtgtt tggatctcga
tcgctgcaat agcaatctgg atgatattag gagggaatct 240cagactatga gtttgataga
ccatcccaac gttataaagt cgttttgttc attctctgtc 300gaccatagtc tttgggttgt
tatgccattc atggctcaag gttcgtgttt gcatcttatg 360aagactgcgt attcagacgg
atttgaagag tctgctatat gttgtgtatt aaaagaaact 420cttaaagctc ttgattatct
tcatagacaa ggccatatcc atcgggatgt taaggctgga 480aacatacttc ttgatgacaa
tggtgagatt aagcttggcg attttggtgt ctctgcttgc 540ttgtttgata acggtgatag
gcaacgtgct agaaacacat ttgttggtac tccttgctgg 600atggcaccgg aagttttgca
gccgggaaat ggatacaatt ccaaggctga tatctggtca 660tttggtataa cagcacttga
attggcccat ggtcatgcac ctttctcaaa atatcctccc 720atgaaggtgc tcctaatgac
tattcaaaac gcacctcctg gccttgatta tgaccgtgat 780aagaaatttt ctaagtcctt
taaagaaatg gttgcaatgt gtttggtgaa agatcaaaca 840aaaaggccaa ctgctgaaaa
actgctgaag cactcctgtt tcaaacacac gaagcctcca 900gagcaaactg tgaaaatttt
attttccgat ttaccacctc tttggacacg tgtaaaatct 960cttcaggata aggatgctca
acagcttgca ttaaagagaa tggccactgc tgacgaggaa 1020gctatatcac agagcgaata
ccaaagagga gtgagcgctt ggaactttga cgtcagagac 1080ttgaaaacac aagcatcttt
gttaattgat gatgatgatc tagaagagag taaggaagat 1140gaagaaatat tatgtgcaca
gtttaataag gtgaatgaca gagagcaagt atttgatagt 1200ctgcaactat atgaaaacat
gaacggaaaa gaaaaggttt ccaatactga ggtggaagaa 1260ccaacctgca aagagaaatt
cactttcgtt acaactactt cttctttaga acgaatgtca 1320ccaaattcag agcatgacat
tcccgaggcc aaggttaagc cattaagacg ccaaagtcag 1380agtggaccac ttacaagcag
gactgtatta agccactcgg cttcagagaa aagtcatatc 1440tttgaaagat ccgagagtga
accgcagacg gcaccaacag tccgaagagc acccagcttt 1500agtggtcctt tgaatctttc
aacccgtgct tcttcaaaca gtttgtctgc tcccatcaaa 1560tactcaggag gattccgtga
ttctctggat gataagtcaa aggctaatct ggttcagaaa 1620ggacgatttt cagtaacatc
aggaaatgta gatcttgcga aggatgttcc attaagtata 1680gtccctcgtc gatctccaca
ggcgaccccc ctgagaaaat ctgcaagtgt gggtaactgg 1740atacttgagc ccaaaatgcc
aacagctcag cctcagacga tcaaggagca tagtagccat 1800cctacgtctt cctcacccat
catgcctcaa cttcaacatc tattccagca aaactcaata 1860caacaggatc ttattatgaa
tttactaaat agcttacaac ccgtggaggc aacagaaggt 1920tctcaatctg ggaagttacc
acctttgcct cgctcagaca gtaatggaaa cgttgaacct 1980gtggcttcag agagggagag
gttacttctt agcagtatct ccgacctccg tgctaggctg 2040gacgacttaa cggaggaact
cgatatagag aaatcaaaat acagccaact gcaacagaaa 2100ttgaaagcat tcacgggtcg
cgaacactag 213014709PRTArabidopsis
thaliana 14Met Val Gly Gly Gly Gly Gly Ser Ser Gly Arg Gly Gly Gly Ser
Gly 1 5 10 15 Ser
Gly Ser Ser Lys Gln Gln Arg Gly Phe Ser Met Asn Pro Lys Asp
20 25 30 Tyr Lys Leu Met Glu
Glu Ile Gly His Gly Ala Ser Ala Val Val Tyr 35
40 45 Arg Ala Ile Tyr Leu Pro Thr Asn Glu
Val Val Ala Ile Lys Cys Leu 50 55
60 Asp Leu Asp Arg Cys Asn Ser Asn Leu Asp Asp Ile Arg
Arg Glu Ser 65 70 75
80 Gln Thr Met Ser Leu Ile Asp His Pro Asn Val Ile Lys Ser Phe Cys
85 90 95 Ser Phe Ser Val
Asp His Ser Leu Trp Val Val Met Pro Phe Met Ala 100
105 110 Gln Gly Ser Cys Leu His Leu Met Lys
Thr Ala Tyr Ser Asp Gly Phe 115 120
125 Glu Glu Ser Ala Ile Cys Cys Val Leu Lys Glu Thr Leu Lys
Ala Leu 130 135 140
Asp Tyr Leu His Arg Gln Gly His Ile His Arg Asp Val Lys Ala Gly 145
150 155 160 Asn Ile Leu Leu Asp
Asp Asn Gly Glu Ile Lys Leu Gly Asp Phe Gly 165
170 175 Val Ser Ala Cys Leu Phe Asp Asn Gly Asp
Arg Gln Arg Ala Arg Asn 180 185
190 Thr Phe Val Gly Thr Pro Cys Trp Met Ala Pro Glu Val Leu Gln
Pro 195 200 205 Gly
Asn Gly Tyr Asn Ser Lys Ala Asp Ile Trp Ser Phe Gly Ile Thr 210
215 220 Ala Leu Glu Leu Ala His
Gly His Ala Pro Phe Ser Lys Tyr Pro Pro 225 230
235 240 Met Lys Val Leu Leu Met Thr Ile Gln Asn Ala
Pro Pro Gly Leu Asp 245 250
255 Tyr Asp Arg Asp Lys Lys Phe Ser Lys Ser Phe Lys Glu Met Val Ala
260 265 270 Met Cys
Leu Val Lys Asp Gln Thr Lys Arg Pro Thr Ala Glu Lys Leu 275
280 285 Leu Lys His Ser Cys Phe Lys
His Thr Lys Pro Pro Glu Gln Thr Val 290 295
300 Lys Ile Leu Phe Ser Asp Leu Pro Pro Leu Trp Thr
Arg Val Lys Ser 305 310 315
320 Leu Gln Asp Lys Asp Ala Gln Gln Leu Ala Leu Lys Arg Met Ala Thr
325 330 335 Ala Asp Glu
Glu Ala Ile Ser Gln Ser Glu Tyr Gln Arg Gly Val Ser 340
345 350 Ala Trp Asn Phe Asp Val Arg Asp
Leu Lys Thr Gln Ala Ser Leu Leu 355 360
365 Ile Asp Asp Asp Asp Leu Glu Glu Ser Lys Glu Asp Glu
Glu Ile Leu 370 375 380
Cys Ala Gln Phe Asn Lys Val Asn Asp Arg Glu Gln Val Phe Asp Ser 385
390 395 400 Leu Gln Leu Tyr
Glu Asn Met Asn Gly Lys Glu Lys Val Ser Asn Thr 405
410 415 Glu Val Glu Glu Pro Thr Cys Lys Glu
Lys Phe Thr Phe Val Thr Thr 420 425
430 Thr Ser Ser Leu Glu Arg Met Ser Pro Asn Ser Glu His Asp
Ile Pro 435 440 445
Glu Ala Lys Val Lys Pro Leu Arg Arg Gln Ser Gln Ser Gly Pro Leu 450
455 460 Thr Ser Arg Thr Val
Leu Ser His Ser Ala Ser Glu Lys Ser His Ile 465 470
475 480 Phe Glu Arg Ser Glu Ser Glu Pro Gln Thr
Ala Pro Thr Val Arg Arg 485 490
495 Ala Pro Ser Phe Ser Gly Pro Leu Asn Leu Ser Thr Arg Ala Ser
Ser 500 505 510 Asn
Ser Leu Ser Ala Pro Ile Lys Tyr Ser Gly Gly Phe Arg Asp Ser 515
520 525 Leu Asp Asp Lys Ser Lys
Ala Asn Leu Val Gln Lys Gly Arg Phe Ser 530 535
540 Val Thr Ser Gly Asn Val Asp Leu Ala Lys Asp
Val Pro Leu Ser Ile 545 550 555
560 Val Pro Arg Arg Ser Pro Gln Ala Thr Pro Leu Arg Lys Ser Ala Ser
565 570 575 Val Gly
Asn Trp Ile Leu Glu Pro Lys Met Pro Thr Ala Gln Pro Gln 580
585 590 Thr Ile Lys Glu His Ser Ser
His Pro Thr Ser Ser Ser Pro Ile Met 595 600
605 Pro Gln Leu Gln His Leu Phe Gln Gln Asn Ser Ile
Gln Gln Asp Leu 610 615 620
Ile Met Asn Leu Leu Asn Ser Leu Gln Pro Val Glu Ala Thr Glu Gly 625
630 635 640 Ser Gln Ser
Gly Lys Leu Pro Pro Leu Pro Arg Ser Asp Ser Asn Gly 645
650 655 Asn Val Glu Pro Val Ala Ser Glu
Arg Glu Arg Leu Leu Leu Ser Ser 660 665
670 Ile Ser Asp Leu Arg Ala Arg Leu Asp Asp Leu Thr Glu
Glu Leu Asp 675 680 685
Ile Glu Lys Ser Lys Tyr Ser Gln Leu Gln Gln Lys Leu Lys Ala Phe 690
695 700 Thr Gly Arg Glu
His 705 151686DNAArabidopsis thaliana 15atgaaagaat
cattcaaagt gtgtttctgt tgtgtaagaa acttcaaggt gaaatcaagt 60gagccacctg
aagaaatcaa gaaccttttc catgattact ctcaagacga caggatgtct 120gctgatgaga
tgctcagatt cgtgatccaa gttcaaggag aaacacacgc tgatatcaac 180tacgtgaagg
atatcttcca cagacttaaa catcacggcg tttttcatcc tcgtggaatt 240catcttgaag
gattctaccg ttatcttctt agtgatttca actctccatt gcctctgacc 300cgcgaggttt
ggcaagatat gaatcagcca ttatcgcatt acttcttgta cacgggacat 360aactcttact
tgactgggaa tcagttgaac agtaatagca gcatcgaacc gattgtgaaa 420gctctgagaa
atggagttcg tgtcattgag cttgatttat ggcctaactc ttcaggaaaa 480gaagctgaag
ttcgtcatgg agggacgtta acgagtcgtg aagatctgca gaaatgtctt 540aacgtggtta
aggagaacgc gtttcaggtg tctgcttatc ctgttgtgct tactttagaa 600gaccatttaa
ctccaattct tcagaagaaa gtcgctaaga tggtgagtaa gacgtttggg 660ggatcattgt
ttcaatgtac ggacgaaact acagagtgct ttccttcacc agaatcactc 720aagaataaga
tcttgatctc aacaaagcca ccaaaagagt atcttcagac ccaaatctca 780aaaggttcaa
caacggatga atccactaga gctaaaaaaa tttcggatgc agaagaacaa 840gttcaagaag
aagatgagga gagtgtagcg attgaataca gagacttaat ctcgattcac 900gctgggaacc
gcaaaggagg gttgaagaat tgcttgaatg gagatcctaa ccgagtcata 960cggttaagca
tgagtgagca gtggcttgag actctggcaa aaacccgtgg acccgattta 1020gtaaagttca
cgcagcggaa tcttttgagg atatttccca agactacacg gtttgactca 1080tctaactatg
atcctctcgt tgggtggatt catggggctc aaatggttgc cttcaatatg 1140caaagccatg
ggaggtatct gtggatgatg caaggaatgt ttaaagccaa tggtggatgt 1200ggctatgtga
aaaagcctga tgttttgctc tccaatggtc ctgaaggtga aatctttgac 1260ccttgtagtc
aaaacctccc gatcaagaca actcttaagg tgaagatcta cactggagaa 1320ggatggaata
tggactttcc tttagatcac tttgaccgat actctcctcc tgatttctac 1380gcaaaggtcg
gaatcgcagg ggttccattg gacacagcaa gttacagaac agaaatagat 1440aaagacgaat
ggtttccaat ttgggacaag gagtttgagt tcccattacg tgttcctgag 1500ttatctcttc
tgtgtatcac agtcaaagat tacgacagta acactcagaa cgatttcgct 1560ggccagacat
gttttccgtt gtcggaggta aggccaggta ttcgtgccgt tcggctccac 1620gatcgtgccg
gagaggtcta caagcacgtg agactgctca tgcggtttgt cttggagcct 1680cgttag
168616561PRTArabidopsis thaliana 16Met Lys Glu Ser Phe Lys Val Cys Phe
Cys Cys Val Arg Asn Phe Lys 1 5 10
15 Val Lys Ser Ser Glu Pro Pro Glu Glu Ile Lys Asn Leu Phe
His Asp 20 25 30
Tyr Ser Gln Asp Asp Arg Met Ser Ala Asp Glu Met Leu Arg Phe Val
35 40 45 Ile Gln Val Gln
Gly Glu Thr His Ala Asp Ile Asn Tyr Val Lys Asp 50
55 60 Ile Phe His Arg Leu Lys His His
Gly Val Phe His Pro Arg Gly Ile 65 70
75 80 His Leu Glu Gly Phe Tyr Arg Tyr Leu Leu Ser Asp
Phe Asn Ser Pro 85 90
95 Leu Pro Leu Thr Arg Glu Val Trp Gln Asp Met Asn Gln Pro Leu Ser
100 105 110 His Tyr Phe
Leu Tyr Thr Gly His Asn Ser Tyr Leu Thr Gly Asn Gln 115
120 125 Leu Asn Ser Asn Ser Ser Ile Glu
Pro Ile Val Lys Ala Leu Arg Asn 130 135
140 Gly Val Arg Val Ile Glu Leu Asp Leu Trp Pro Asn Ser
Ser Gly Lys 145 150 155
160 Glu Ala Glu Val Arg His Gly Gly Thr Leu Thr Ser Arg Glu Asp Leu
165 170 175 Gln Lys Cys Leu
Asn Val Val Lys Glu Asn Ala Phe Gln Val Ser Ala 180
185 190 Tyr Pro Val Val Leu Thr Leu Glu Asp
His Leu Thr Pro Ile Leu Gln 195 200
205 Lys Lys Val Ala Lys Met Val Ser Lys Thr Phe Gly Gly Ser
Leu Phe 210 215 220
Gln Cys Thr Asp Glu Thr Thr Glu Cys Phe Pro Ser Pro Glu Ser Leu 225
230 235 240 Lys Asn Lys Ile Leu
Ile Ser Thr Lys Pro Pro Lys Glu Tyr Leu Gln 245
250 255 Thr Gln Ile Ser Lys Gly Ser Thr Thr Asp
Glu Ser Thr Arg Ala Lys 260 265
270 Lys Ile Ser Asp Ala Glu Glu Gln Val Gln Glu Glu Asp Glu Glu
Ser 275 280 285 Val
Ala Ile Glu Tyr Arg Asp Leu Ile Ser Ile His Ala Gly Asn Arg 290
295 300 Lys Gly Gly Leu Lys Asn
Cys Leu Asn Gly Asp Pro Asn Arg Val Ile 305 310
315 320 Arg Leu Ser Met Ser Glu Gln Trp Leu Glu Thr
Leu Ala Lys Thr Arg 325 330
335 Gly Pro Asp Leu Val Lys Phe Thr Gln Arg Asn Leu Leu Arg Ile Phe
340 345 350 Pro Lys
Thr Thr Arg Phe Asp Ser Ser Asn Tyr Asp Pro Leu Val Gly 355
360 365 Trp Ile His Gly Ala Gln Met
Val Ala Phe Asn Met Gln Ser His Gly 370 375
380 Arg Tyr Leu Trp Met Met Gln Gly Met Phe Lys Ala
Asn Gly Gly Cys 385 390 395
400 Gly Tyr Val Lys Lys Pro Asp Val Leu Leu Ser Asn Gly Pro Glu Gly
405 410 415 Glu Ile Phe
Asp Pro Cys Ser Gln Asn Leu Pro Ile Lys Thr Thr Leu 420
425 430 Lys Val Lys Ile Tyr Thr Gly Glu
Gly Trp Asn Met Asp Phe Pro Leu 435 440
445 Asp His Phe Asp Arg Tyr Ser Pro Pro Asp Phe Tyr Ala
Lys Val Gly 450 455 460
Ile Ala Gly Val Pro Leu Asp Thr Ala Ser Tyr Arg Thr Glu Ile Asp 465
470 475 480 Lys Asp Glu Trp
Phe Pro Ile Trp Asp Lys Glu Phe Glu Phe Pro Leu 485
490 495 Arg Val Pro Glu Leu Ser Leu Leu Cys
Ile Thr Val Lys Asp Tyr Asp 500 505
510 Ser Asn Thr Gln Asn Asp Phe Ala Gly Gln Thr Cys Phe Pro
Leu Ser 515 520 525
Glu Val Arg Pro Gly Ile Arg Ala Val Arg Leu His Asp Arg Ala Gly 530
535 540 Glu Val Tyr Lys His
Val Arg Leu Leu Met Arg Phe Val Leu Glu Pro 545 550
555 560 Arg 17549DNAArabidopsis thaliana
17atggcaacac actcttcctt caccgcaaca acacctctct ttctcatcgt tcttctatcc
60ctatcctccg tctcagttct cggcgcatct caccaccacg caacggcgcc ggctccgtct
120gtagactgtt cgactctcat actcaacatg gctgactgtt tatccttcgt ttcgagcgga
180ggcacggtgg cgaaaccgga aggtacatgt tgctctggtc ttaagacggt gcttaaagct
240gactctcagt gtctatgtga agcgtttaag agcagtgctt ctcttggagt tactttgaat
300atcactaagg cttctactct tcccgccgca tgcaagcttc acgctccttc tatcgctact
360tgtggattgt ctgttgctcc aagtactgct ccaggtcttg ctccaggagt agctgctgct
420ggacctgaga cagccggatt tctagctcca aatccttctt cagggaacga tggatcttct
480ttgattccga cctcgttcac aactgtactc agtgccgtac tgttcgtttt gttcttctct
540agtgcgtag
54918182PRTArabidopsis thaliana 18Met Ala Thr His Ser Ser Phe Thr Ala Thr
Thr Pro Leu Phe Leu Ile 1 5 10
15 Val Leu Leu Ser Leu Ser Ser Val Ser Val Leu Gly Ala Ser His
His 20 25 30 His
Ala Thr Ala Pro Ala Pro Ser Val Asp Cys Ser Thr Leu Ile Leu 35
40 45 Asn Met Ala Asp Cys Leu
Ser Phe Val Ser Ser Gly Gly Thr Val Ala 50 55
60 Lys Pro Glu Gly Thr Cys Cys Ser Gly Leu Lys
Thr Val Leu Lys Ala 65 70 75
80 Asp Ser Gln Cys Leu Cys Glu Ala Phe Lys Ser Ser Ala Ser Leu Gly
85 90 95 Val Thr
Leu Asn Ile Thr Lys Ala Ser Thr Leu Pro Ala Ala Cys Lys 100
105 110 Leu His Ala Pro Ser Ile Ala
Thr Cys Gly Leu Ser Val Ala Pro Ser 115 120
125 Thr Ala Pro Gly Leu Ala Pro Gly Val Ala Ala Ala
Gly Pro Glu Thr 130 135 140
Ala Gly Phe Leu Ala Pro Asn Pro Ser Ser Gly Asn Asp Gly Ser Ser 145
150 155 160 Leu Ile Pro
Thr Ser Phe Thr Thr Val Leu Ser Ala Val Leu Phe Val 165
170 175 Leu Phe Phe Ser Ser Ala
180 193579DNAArabidopsis thaliana 19atggaagagg acgatgagtt
cggagatcta tattccgacg ttctccagcc gtttcaacct 60cccgttgttc tccctcctcc
gcctcctctt cctcaccgtt caatcgacct caacctccga 120tcccaagatc aagatgtctc
agaacctaat tcagctccaa tctctagggt ttcggacaac 180gatgccgtaa aattatctac
tcaggacgcg actcgtcaag caattgtcga tggtggcggc 240gacgataagg atatgagctt
tgatatcgaa gaacccgatg ccgattctac acctacgatt 300cctggtcttt tcgttactgg
agcgttacct ggtttggcta cagatcgagg cgtttcgcaa 360gttacgacaa gaattgagca
gcaggttggt ggtggtggcg atggaggcta tggaggacaa 420ggagaaggag atgattggga
tagcgacagt gaagatgatt tgcagatagt gttgaatgat 480agtagccgta acgtcatgat
cggaggagct gatagaagat caaggatggg agataatgaa 540gatgacgatg atgaagatga
tgaagaccca cttgttatag tggccgacac ggatccaaat 600caacctatgg aggagcagat
gtggggagaa gatggtcttc aagggattga aggagatggc 660aaagacggag gagaagctgg
caagggaagt ggaccaggag gtgctactgg accgcccaaa 720gcagggtata gcagtcatgg
gtatcatccg tttcattctc agtttaagta tgtaagaccg 780ggggcagctc ccattcctgg
aggtgctgca tctgttggtg gaccctcctc aggtcaagtt 840cgtccacccg ccaaccttgg
tcctatggct ggtcgtggca gaggagattg gcgtccactg 900ggaatgagga atgcttctgc
tgcacagaaa gggttccacc agccttgggg tagtaataca 960gcagggcgtg gactggactt
cactcttccc tctcacaaga ctatatttga ggtcgacata 1020gatagttttg aagaaaagcc
ctggagatat ccaggagttg agatgacaga ctacttcaac 1080tttggactaa atgaggagag
ctggaaagac tattgcaaac agctggacca acaccgtata 1140cagactacga tgcaaagcag
aatacgtgtt tatgaaagcg gtagaacgga tcagggttat 1200gatccagatc tacccccaga
gttagctgca gcaacagggg cacagggtgt tcccgttgat 1260tcttcaaatt tagtgaagcc
agactctgtt caaggtgatt cagcgaaagt gccagccaat 1320gttagaccga cactaccccc
tggaagacca atacctgtgg agactggttc tggtgaacgt 1380cttccgtcca ttgatacacg
tgctcctcgg atgcgtgatc tagatgctat cattgaggat 1440tcacatgagg atgaaccctc
gggtgaaaat ggcacagatc aagctgatag tagccttcct 1500ggagaaaatg taccagttga
gactagttat gttaacaaca aaagacctga cacggaatct 1560gctgaacata gtcctgcaca
ggatgagcca cataaaaatc ttctcaaaaa gcaagacgat 1620gagatctcta gaagcacaga
tagtggccag agttttcgtt catcgtctcc tgttggagac 1680agaggcacaa ggtcatcaag
tgttgaccgc gaagatgtgg gaggtgaagc tggcaaagat 1740gctgagatgg gggaggagct
taaaatgagt tttacatccc ctcagtcagc agtgcaagaa 1800gatgatggag gggagtcaaa
gacggagagg agtagtgaaa gcagcaaagc aagatctgga 1860agtcacagag attttcagca
agaagaggac gttattcaag ataagcattc ttctcgacca 1920gctaacaata ggaaacagta
cgataacaat gcacctcatc agagcagaaa gaatcaggac 1980agagggaagg aaatggaaag
aacacgagcg gcgagcaaag gtggtagaga gaactctaat 2040ccacatatgg agcttgattc
tacttatatc tactcaattg caagtcgcga ggattttgat 2100aaaagaaaag agcgagatgt
tgatggcgca gtctggcgca ggaaagaaga tgacccatac 2160agtagaagag gtggggatga
agggtctaga aaaagggatc gtgaagatga tccaggcttt 2220aggcagaggg gtaaaatgcg
cgagaatgaa atacgcagca aagatgatca ggttccttcc 2280agaaaacata tggatgatgc
tggtatgaga aatatttatg aaccggatga tcacattaac 2340aagaggagga aggatgaaga
atacttgaga agaagccggc ctgaaaaaaa tgaaatctca 2400tatggtcaaa gggaatcaat
gagccgcgtg aaacgagaac gtgatgatag gttggagcat 2460caaaagagag atgtccaaca
taagatcaga gatgattttg acgaccacgg ttctctcagg 2520cagagagatg atatctatat
gcagagggat ggaaacgaga ggttgaggga gcgtgatgtt 2580ttggataaat tgaagctgcc
tcacgaggat ggtatatcag cacgaggaag agagaggcag 2640gtggcagtaa ggggccacag
aggttccgaa gatcgatcat caaggatgaa ggatgagtat 2700aaagcttctg acaaagagca
tgtcacgaaa gatacattaa ggcatgctaa acagacaaag 2760agaagggact accctggtga
agaaagttct tcccatcata gaggacatga agacttctct 2820gcacggacag acaacatagt
taacaatgag aaaaaaccaa ggcaggagag gacaggtgct 2880aaaattgata agtttattga
tactttggat ggccagcgat tgcaagacag aaaacataaa 2940gattctagac gaaagattaa
agaacagcga gagggcacag aatcacttag caagcaaggg 3000gagcaaaatg gcagttccgt
agtgacagga tcaaaaggaa ccaacgacgc aaggaattgc 3060aggagtgaga tcccacatca
gcctaacacc gccaaaagac acaaggaaaa tgcatcctct 3120ggtgatgaga tacacgattc
aaagagagga cgtacaaaac tggagcgttg ggcaagccac 3180aaagagagag aagatgctgt
ctctgccaag tcatcatcca tttcctcaaa actagaagaa 3240aaggaaaaca acactaatgg
ccgtcttagt gaacctgttc atggttctat tggaaagagc 3300cgggatgtaa ctgaagagaa
aattggccat gatcttgcag acacaaaaga tggaagcgag 3360aagggaccag gagaccggca
cttggatacg gttgagaaac tcaagaaacg cagtgaaagg 3420ttcaagcttc caatgcccac
ggagaaagac accacgggag taaagaaaat ggagtctgag 3480acactgccct ccgcaaaaat
tgaaggccct gtggattcag agggagagta tgtgtgggat 3540gagcgaagtt gtgtaagaat
agggagggaa tacgcatag 3579201192PRTArabidopsis
thaliana 20Met Glu Glu Asp Asp Glu Phe Gly Asp Leu Tyr Ser Asp Val Leu
Gln 1 5 10 15 Pro
Phe Gln Pro Pro Val Val Leu Pro Pro Pro Pro Pro Leu Pro His
20 25 30 Arg Ser Ile Asp Leu
Asn Leu Arg Ser Gln Asp Gln Asp Val Ser Glu 35
40 45 Pro Asn Ser Ala Pro Ile Ser Arg Val
Ser Asp Asn Asp Ala Val Lys 50 55
60 Leu Ser Thr Gln Asp Ala Thr Arg Gln Ala Ile Val Asp
Gly Gly Gly 65 70 75
80 Asp Asp Lys Asp Met Ser Phe Asp Ile Glu Glu Pro Asp Ala Asp Ser
85 90 95 Thr Pro Thr Ile
Pro Gly Leu Phe Val Thr Gly Ala Leu Pro Gly Leu 100
105 110 Ala Thr Asp Arg Gly Val Ser Gln Val
Thr Thr Arg Ile Glu Gln Gln 115 120
125 Val Gly Gly Gly Gly Asp Gly Gly Tyr Gly Gly Gln Gly Glu
Gly Asp 130 135 140
Asp Trp Asp Ser Asp Ser Glu Asp Asp Leu Gln Ile Val Leu Asn Asp 145
150 155 160 Ser Ser Arg Asn Val
Met Ile Gly Gly Ala Asp Arg Arg Ser Arg Met 165
170 175 Gly Asp Asn Glu Asp Asp Asp Asp Glu Asp
Asp Glu Asp Pro Leu Val 180 185
190 Ile Val Ala Asp Thr Asp Pro Asn Gln Pro Met Glu Glu Gln Met
Trp 195 200 205 Gly
Glu Asp Gly Leu Gln Gly Ile Glu Gly Asp Gly Lys Asp Gly Gly 210
215 220 Glu Ala Gly Lys Gly Ser
Gly Pro Gly Gly Ala Thr Gly Pro Pro Lys 225 230
235 240 Ala Gly Tyr Ser Ser His Gly Tyr His Pro Phe
His Ser Gln Phe Lys 245 250
255 Tyr Val Arg Pro Gly Ala Ala Pro Ile Pro Gly Gly Ala Ala Ser Val
260 265 270 Gly Gly
Pro Ser Ser Gly Gln Val Arg Pro Pro Ala Asn Leu Gly Pro 275
280 285 Met Ala Gly Arg Gly Arg Gly
Asp Trp Arg Pro Leu Gly Met Arg Asn 290 295
300 Ala Ser Ala Ala Gln Lys Gly Phe His Gln Pro Trp
Gly Ser Asn Thr 305 310 315
320 Ala Gly Arg Gly Leu Asp Phe Thr Leu Pro Ser His Lys Thr Ile Phe
325 330 335 Glu Val Asp
Ile Asp Ser Phe Glu Glu Lys Pro Trp Arg Tyr Pro Gly 340
345 350 Val Glu Met Thr Asp Tyr Phe Asn
Phe Gly Leu Asn Glu Glu Ser Trp 355 360
365 Lys Asp Tyr Cys Lys Gln Leu Asp Gln His Arg Ile Gln
Thr Thr Met 370 375 380
Gln Ser Arg Ile Arg Val Tyr Glu Ser Gly Arg Thr Asp Gln Gly Tyr 385
390 395 400 Asp Pro Asp Leu
Pro Pro Glu Leu Ala Ala Ala Thr Gly Ala Gln Gly 405
410 415 Val Pro Val Asp Ser Ser Asn Leu Val
Lys Pro Asp Ser Val Gln Gly 420 425
430 Asp Ser Ala Lys Val Pro Ala Asn Val Arg Pro Thr Leu Pro
Pro Gly 435 440 445
Arg Pro Ile Pro Val Glu Thr Gly Ser Gly Glu Arg Leu Pro Ser Ile 450
455 460 Asp Thr Arg Ala Pro
Arg Met Arg Asp Leu Asp Ala Ile Ile Glu Asp 465 470
475 480 Ser His Glu Asp Glu Pro Ser Gly Glu Asn
Gly Thr Asp Gln Ala Asp 485 490
495 Ser Ser Leu Pro Gly Glu Asn Val Pro Val Glu Thr Ser Tyr Val
Asn 500 505 510 Asn
Lys Arg Pro Asp Thr Glu Ser Ala Glu His Ser Pro Ala Gln Asp 515
520 525 Glu Pro His Lys Asn Leu
Leu Lys Lys Gln Asp Asp Glu Ile Ser Arg 530 535
540 Ser Thr Asp Ser Gly Gln Ser Phe Arg Ser Ser
Ser Pro Val Gly Asp 545 550 555
560 Arg Gly Thr Arg Ser Ser Ser Val Asp Arg Glu Asp Val Gly Gly Glu
565 570 575 Ala Gly
Lys Asp Ala Glu Met Gly Glu Glu Leu Lys Met Ser Phe Thr 580
585 590 Ser Pro Gln Ser Ala Val Gln
Glu Asp Asp Gly Gly Glu Ser Lys Thr 595 600
605 Glu Arg Ser Ser Glu Ser Ser Lys Ala Arg Ser Gly
Ser His Arg Asp 610 615 620
Phe Gln Gln Glu Glu Asp Val Ile Gln Asp Lys His Ser Ser Arg Pro 625
630 635 640 Ala Asn Asn
Arg Lys Gln Tyr Asp Asn Asn Ala Pro His Gln Ser Arg 645
650 655 Lys Asn Gln Asp Arg Gly Lys Glu
Met Glu Arg Thr Arg Ala Ala Ser 660 665
670 Lys Gly Gly Arg Glu Asn Ser Asn Pro His Met Glu Leu
Asp Ser Thr 675 680 685
Tyr Ile Tyr Ser Ile Ala Ser Arg Glu Asp Phe Asp Lys Arg Lys Glu 690
695 700 Arg Asp Val Asp
Gly Ala Val Trp Arg Arg Lys Glu Asp Asp Pro Tyr 705 710
715 720 Ser Arg Arg Gly Gly Asp Glu Gly Ser
Arg Lys Arg Asp Arg Glu Asp 725 730
735 Asp Pro Gly Phe Arg Gln Arg Gly Lys Met Arg Glu Asn Glu
Ile Arg 740 745 750
Ser Lys Asp Asp Gln Val Pro Ser Arg Lys His Met Asp Asp Ala Gly
755 760 765 Met Arg Asn Ile
Tyr Glu Pro Asp Asp His Ile Asn Lys Arg Arg Lys 770
775 780 Asp Glu Glu Tyr Leu Arg Arg Ser
Arg Pro Glu Lys Asn Glu Ile Ser 785 790
795 800 Tyr Gly Gln Arg Glu Ser Met Ser Arg Val Lys Arg
Glu Arg Asp Asp 805 810
815 Arg Leu Glu His Gln Lys Arg Asp Val Gln His Lys Ile Arg Asp Asp
820 825 830 Phe Asp Asp
His Gly Ser Leu Arg Gln Arg Asp Asp Ile Tyr Met Gln 835
840 845 Arg Asp Gly Asn Glu Arg Leu Arg
Glu Arg Asp Val Leu Asp Lys Leu 850 855
860 Lys Leu Pro His Glu Asp Gly Ile Ser Ala Arg Gly Arg
Glu Arg Gln 865 870 875
880 Val Ala Val Arg Gly His Arg Gly Ser Glu Asp Arg Ser Ser Arg Met
885 890 895 Lys Asp Glu Tyr
Lys Ala Ser Asp Lys Glu His Val Thr Lys Asp Thr 900
905 910 Leu Arg His Ala Lys Gln Thr Lys Arg
Arg Asp Tyr Pro Gly Glu Glu 915 920
925 Ser Ser Ser His His Arg Gly His Glu Asp Phe Ser Ala Arg
Thr Asp 930 935 940
Asn Ile Val Asn Asn Glu Lys Lys Pro Arg Gln Glu Arg Thr Gly Ala 945
950 955 960 Lys Ile Asp Lys Phe
Ile Asp Thr Leu Asp Gly Gln Arg Leu Gln Asp 965
970 975 Arg Lys His Lys Asp Ser Arg Arg Lys Ile
Lys Glu Gln Arg Glu Gly 980 985
990 Thr Glu Ser Leu Ser Lys Gln Gly Glu Gln Asn Gly Ser Ser
Val Val 995 1000 1005
Thr Gly Ser Lys Gly Thr Asn Asp Ala Arg Asn Cys Arg Ser Glu 1010
1015 1020 Ile Pro His Gln Pro
Asn Thr Ala Lys Arg His Lys Glu Asn Ala 1025 1030
1035 Ser Ser Gly Asp Glu Ile His Asp Ser Lys
Arg Gly Arg Thr Lys 1040 1045 1050
Leu Glu Arg Trp Ala Ser His Lys Glu Arg Glu Asp Ala Val Ser
1055 1060 1065 Ala Lys
Ser Ser Ser Ile Ser Ser Lys Leu Glu Glu Lys Glu Asn 1070
1075 1080 Asn Thr Asn Gly Arg Leu Ser
Glu Pro Val His Gly Ser Ile Gly 1085 1090
1095 Lys Ser Arg Asp Val Thr Glu Glu Lys Ile Gly His
Asp Leu Ala 1100 1105 1110
Asp Thr Lys Asp Gly Ser Glu Lys Gly Pro Gly Asp Arg His Leu 1115
1120 1125 Asp Thr Val Glu Lys
Leu Lys Lys Arg Ser Glu Arg Phe Lys Leu 1130 1135
1140 Pro Met Pro Thr Glu Lys Asp Thr Thr Gly
Val Lys Lys Met Glu 1145 1150 1155
Ser Glu Thr Leu Pro Ser Ala Lys Ile Glu Gly Pro Val Asp Ser
1160 1165 1170 Glu Gly
Glu Tyr Val Trp Asp Glu Arg Ser Cys Val Arg Ile Gly 1175
1180 1185 Arg Glu Tyr Ala 1190
21675DNAArabidopsis thaliana 21atggcggact ctgttttgaa ggaggttaac
tgtggccggc ctgaaaagat cccgaagttg 60gacaaagctt gcgaaggatc gaaatcgtcc
tggaaacatc tcaagctagg aaacgtggaa 120gatgatgagt atcttcgaca gtattgtttg
tttcactacg aattccataa atccgagggt 180ttcacggttg attgggagaa atatgactac
atgttccata taaggccgtt ggaaaattca 240ccacctatca gcgatatacg aaccaatgct
gatgtgatcc gtgatgtgac actctttgcc 300attgagaaac acaatgaagc tcatggatct
aaacttgtgt ttgtcgagca tgtctcagct 360aatttcaaat ttgccaatgg tctcctctgc
tggttaacat tctgggctac cgatatggcc 420tcatccgctc ctacatcgca gatctatcaa
gtcgaacttt ggcgtcgcgg aaaacagttt 480gaaattccca tcttcagggt caagcctaag
gacgaagaga tggatgatgt tgaagtgaaa 540ccaccctctc ccatgcctta tgatgactat
gataaaccac cggttgtctt tgttcgagct 600gctcctgaag atggtgtccc tttcgtcttt
gatcgaactg gagctcttta tgatctctat 660cggtctggtt tgtag
67522224PRTArabidopsis thaliana 22Met
Ala Asp Ser Val Leu Lys Glu Val Asn Cys Gly Arg Pro Glu Lys 1
5 10 15 Ile Pro Lys Leu Asp Lys
Ala Cys Glu Gly Ser Lys Ser Ser Trp Lys 20
25 30 His Leu Lys Leu Gly Asn Val Glu Asp Asp
Glu Tyr Leu Arg Gln Tyr 35 40
45 Cys Leu Phe His Tyr Glu Phe His Lys Ser Glu Gly Phe Thr
Val Asp 50 55 60
Trp Glu Lys Tyr Asp Tyr Met Phe His Ile Arg Pro Leu Glu Asn Ser 65
70 75 80 Pro Pro Ile Ser Asp
Ile Arg Thr Asn Ala Asp Val Ile Arg Asp Val 85
90 95 Thr Leu Phe Ala Ile Glu Lys His Asn Glu
Ala His Gly Ser Lys Leu 100 105
110 Val Phe Val Glu His Val Ser Ala Asn Phe Lys Phe Ala Asn Gly
Leu 115 120 125 Leu
Cys Trp Leu Thr Phe Trp Ala Thr Asp Met Ala Ser Ser Ala Pro 130
135 140 Thr Ser Gln Ile Tyr Gln
Val Glu Leu Trp Arg Arg Gly Lys Gln Phe 145 150
155 160 Glu Ile Pro Ile Phe Arg Val Lys Pro Lys Asp
Glu Glu Met Asp Asp 165 170
175 Val Glu Val Lys Pro Pro Ser Pro Met Pro Tyr Asp Asp Tyr Asp Lys
180 185 190 Pro Pro
Val Val Phe Val Arg Ala Ala Pro Glu Asp Gly Val Pro Phe 195
200 205 Val Phe Asp Arg Thr Gly Ala
Leu Tyr Asp Leu Tyr Arg Ser Gly Leu 210 215
220 23939DNAArabidopsis thaliana 23atgggagaaa
tgattgtttc aatggaccaa gatatccgac tggatacaac acgagcaaga 60ttgtcaaacc
ttctcaagag gcatcgagaa ttgtcagacc gtcttactag ggattctgat 120aagacaatgt
tagatcgctt aaacaaagaa tttgaagctg cacggagatc ccaaagtcag 180gaagtcttct
tagatgggga agagtggaat gatggtttgt tggccacatt aagggaacgg 240gtgcatatgg
aagctgacag aaaggcagat aacggtaatg caggtttttc actagtttgt 300catcctgaag
aacgaattac ttacagagtg ggaaataagg tgatatgttg cctagatgga 360tcgagaattg
gaatacagtt tgaaacatct actgcaggag aaacttacga ggtttaccac 420tgtgtgcttg
agagcaagtc gtttttggag aagatgattg tgcttgagca cacaattcct 480ttctttttgc
cgctaagtga cttggaaaat gatcttcttt tttcgaatgc taagaaattc 540atcgataatg
ttggggatct cctgcaagca tatgtggaca gaaaggaaca ggtccggctt 600atcaaagagc
tctttggaca tcagatcagt gagatttatc acagtcttcc ttaccacatg 660attgaatttt
ctatggatga ttgtgactgc aagttcgtgg tgagccttag atatggagat 720cttctgtgtg
aacttccgac aaaagtgaga attctagtat ggccaatgca tcatctgtcg 780aagaaacagt
gtacaagccc tggaagtcca gcaatccctg tgcgtttacc atttgccgag 840gatgctttcc
ggatccaatc actacctgaa gcatacgcag agattatgcc gaacatgccg 900aatgaaattc
ggcaattatt tcagactagt ccaagctag
93924312PRTArabidopsis thaliana 24Met Gly Glu Met Ile Val Ser Met Asp Gln
Asp Ile Arg Leu Asp Thr 1 5 10
15 Thr Arg Ala Arg Leu Ser Asn Leu Leu Lys Arg His Arg Glu Leu
Ser 20 25 30 Asp
Arg Leu Thr Arg Asp Ser Asp Lys Thr Met Leu Asp Arg Leu Asn 35
40 45 Lys Glu Phe Glu Ala Ala
Arg Arg Ser Gln Ser Gln Glu Val Phe Leu 50 55
60 Asp Gly Glu Glu Trp Asn Asp Gly Leu Leu Ala
Thr Leu Arg Glu Arg 65 70 75
80 Val His Met Glu Ala Asp Arg Lys Ala Asp Asn Gly Asn Ala Gly Phe
85 90 95 Ser Leu
Val Cys His Pro Glu Glu Arg Ile Thr Tyr Arg Val Gly Asn 100
105 110 Lys Val Ile Cys Cys Leu Asp
Gly Ser Arg Ile Gly Ile Gln Phe Glu 115 120
125 Thr Ser Thr Ala Gly Glu Thr Tyr Glu Val Tyr His
Cys Val Leu Glu 130 135 140
Ser Lys Ser Phe Leu Glu Lys Met Ile Val Leu Glu His Thr Ile Pro 145
150 155 160 Phe Phe Leu
Pro Leu Ser Asp Leu Glu Asn Asp Leu Leu Phe Ser Asn 165
170 175 Ala Lys Lys Phe Ile Asp Asn Val
Gly Asp Leu Leu Gln Ala Tyr Val 180 185
190 Asp Arg Lys Glu Gln Val Arg Leu Ile Lys Glu Leu Phe
Gly His Gln 195 200 205
Ile Ser Glu Ile Tyr His Ser Leu Pro Tyr His Met Ile Glu Phe Ser 210
215 220 Met Asp Asp Cys
Asp Cys Lys Phe Val Val Ser Leu Arg Tyr Gly Asp 225 230
235 240 Leu Leu Cys Glu Leu Pro Thr Lys Val
Arg Ile Leu Val Trp Pro Met 245 250
255 His His Leu Ser Lys Lys Gln Cys Thr Ser Pro Gly Ser Pro
Ala Ile 260 265 270
Pro Val Arg Leu Pro Phe Ala Glu Asp Ala Phe Arg Ile Gln Ser Leu
275 280 285 Pro Glu Ala Tyr
Ala Glu Ile Met Pro Asn Met Pro Asn Glu Ile Arg 290
295 300 Gln Leu Phe Gln Thr Ser Pro Ser
305 310 25633DNAArabidopsis thaliana 25atggagttct
ctaccgccga ctttgaaagg cttatcatgt tcgaacatgc tcgcaaaaat 60tctgaggctc
agtacaagaa cgatcctctt gattccgaga atctgctgaa atggggtgga 120gctttacttg
aactttcaca gttccagcct attcctgaag ctaagctcat gttaaatgat 180gctatttcca
agttggaaga ggccttgaca ataaatccag ggaagcatca ggctctttgg 240tgtattgcca
acgcgtacac cgcccacgcg ttttatgttc acgatcctga agaagcaaaa 300gagcactttg
ataaagccac tgaatatttc cagagagcag aaaatgagga tccaggtaat 360gacacatatc
gcaagtcctt ggattcctca ctaaaggccc cggaactgca tatgcagttt 420atgaatcaag
gaatgggaca gcaaatacta ggtggaggag gaggaggagg tggaggagga 480atggcttcat
ctaatgttag ccagagtagt aagaagaaga agaggaacac tgaattcact 540tatgatgtat
gcggttggat aattctcgct tgtgggattg ttgcttgggt tggcatggca 600aaatcccttg
gccctccacc tcctgccaga tag
63326210PRTArabidopsis thaliana 26Met Glu Phe Ser Thr Ala Asp Phe Glu Arg
Leu Ile Met Phe Glu His 1 5 10
15 Ala Arg Lys Asn Ser Glu Ala Gln Tyr Lys Asn Asp Pro Leu Asp
Ser 20 25 30 Glu
Asn Leu Leu Lys Trp Gly Gly Ala Leu Leu Glu Leu Ser Gln Phe 35
40 45 Gln Pro Ile Pro Glu Ala
Lys Leu Met Leu Asn Asp Ala Ile Ser Lys 50 55
60 Leu Glu Glu Ala Leu Thr Ile Asn Pro Gly Lys
His Gln Ala Leu Trp 65 70 75
80 Cys Ile Ala Asn Ala Tyr Thr Ala His Ala Phe Tyr Val His Asp Pro
85 90 95 Glu Glu
Ala Lys Glu His Phe Asp Lys Ala Thr Glu Tyr Phe Gln Arg 100
105 110 Ala Glu Asn Glu Asp Pro Gly
Asn Asp Thr Tyr Arg Lys Ser Leu Asp 115 120
125 Ser Ser Leu Lys Ala Pro Glu Leu His Met Gln Phe
Met Asn Gln Gly 130 135 140
Met Gly Gln Gln Ile Leu Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly 145
150 155 160 Met Ala Ser
Ser Asn Val Ser Gln Ser Ser Lys Lys Lys Lys Arg Asn 165
170 175 Thr Glu Phe Thr Tyr Asp Val Cys
Gly Trp Ile Ile Leu Ala Cys Gly 180 185
190 Ile Val Ala Trp Val Gly Met Ala Lys Ser Leu Gly Pro
Pro Pro Pro 195 200 205
Ala Arg 210 271812DNAArabidopsis thaliana 27atggcagctt cttcaactaa
tgctcgtctc accaaccctc ctcgtctact ctccaaaccc 60cgactttcac ctacctccgt
cgccaatctc cgttttccag ccgccgattt ctccactcgc 120ttctttgccg attcttcgtc
cccgcggcta aggagtgtac cgtttccggt ggtattttcc 180gatcaaaggc gccggcgaag
catggaacct agcaatgtct atgtggcttc aaattccacg 240gaaatggaga tcggaagtca
tgatatcgtg aagaatccga gcttgatctg tgctccagtg 300atggcggatt caatagacaa
gatggtgatt gaaacgagta aagcccatga attgggtgca 360gacttggttg aaattcgatt
agattggcta aaggacttca atcctcttga ggatctaaaa 420accattatta agaaatctcc
tctacccact ttattcacct acagaccaaa atgggaaggt 480ggtcagtatg aaggtgatga
aaatgagaga cgggatgtgc ttcgtctggc catggagttg 540ggagctgatt atattgatgt
tgaacttcag gtggcaagtg agttcatcaa atctattgac 600ggaaagaagc ctggaaagtt
caaagtaatt gtttcatcgc acaactatca gaatacccct 660tctgttgagg accttgatgg
ccttgttgca agaatacaac agactggagc cgacattgtt 720aagattgcta ctactgctgt
ggacattgca gatgttgctc gcatgttcca tataacctca 780aaagctcaag ttcccacaat
tggacttgtt atgggtgaaa gaggtttgat gtctcggatt 840ctttgttcga aatttggtgg
ttatttgacc tttggcacct tagattctag taaagtttct 900gcgccaggtc aaccaacgat
caaggatctg ttggatcttt acaactttag aagaattggt 960cctgacacaa aggtatatgg
aattattggc aagcctgtca gccacagcaa atcacctatt 1020gttcacaatc aagctttcaa
atcagttgat tttaatggag tatatgtcca cctgttagtt 1080gataatcttg taagctttct
tcaagcatac tcatcctctg atttcgctgg attcagctgt 1140acaattccgc acaaagaagc
tgcattgcaa tgttgtgatg aagttgatcc attggcaaag 1200tctataggag ctgtgaacac
tatactaagg agaaaaagtg acggaaagtt gttgggttac 1260aacacagatt gtattggttc
catttctgct attgaggatg gcctacgaag ttcaggtgat 1320ccaagcagtg taccttcttc
ttcttcgcca ttggccagta aaacagtggt ggttattggt 1380gctggtggag caggcaaggc
tcttgcttat ggtgcaaaag aaaagggggc caaagttgta 1440attgctaatc gaacttacga
acgagcacta gaactcgcag aagcaatagg aggcaaagcg 1500ttatctctga cagatttaga
taactatcac ccagaagatg gcatggtttt ggcaaacaca 1560acatctatgg gtatgcaacc
aaatgttgag gagactccaa tttctaagga tgcattgaag 1620cactatgcac tggtctttga
tgcggtatac actccgagaa tcaccagact gttgagggaa 1680gcagaagaaa gtggagccat
aactgtctca gggtcagaga tgtttgtcag gcaggcttac 1740gagcagtttg agatcttcac
cggtttaccc gctccaaagg aactctactg gcaaataatg 1800tcaaagtact ag
181228603PRTArabidopsis
thaliana 28Met Ala Ala Ser Ser Thr Asn Ala Arg Leu Thr Asn Pro Pro Arg
Leu 1 5 10 15 Leu
Ser Lys Pro Arg Leu Ser Pro Thr Ser Val Ala Asn Leu Arg Phe
20 25 30 Pro Ala Ala Asp Phe
Ser Thr Arg Phe Phe Ala Asp Ser Ser Ser Pro 35
40 45 Arg Leu Arg Ser Val Pro Phe Pro Val
Val Phe Ser Asp Gln Arg Arg 50 55
60 Arg Arg Ser Met Glu Pro Ser Asn Val Tyr Val Ala Ser
Asn Ser Thr 65 70 75
80 Glu Met Glu Ile Gly Ser His Asp Ile Val Lys Asn Pro Ser Leu Ile
85 90 95 Cys Ala Pro Val
Met Ala Asp Ser Ile Asp Lys Met Val Ile Glu Thr 100
105 110 Ser Lys Ala His Glu Leu Gly Ala Asp
Leu Val Glu Ile Arg Leu Asp 115 120
125 Trp Leu Lys Asp Phe Asn Pro Leu Glu Asp Leu Lys Thr Ile
Ile Lys 130 135 140
Lys Ser Pro Leu Pro Thr Leu Phe Thr Tyr Arg Pro Lys Trp Glu Gly 145
150 155 160 Gly Gln Tyr Glu Gly
Asp Glu Asn Glu Arg Arg Asp Val Leu Arg Leu 165
170 175 Ala Met Glu Leu Gly Ala Asp Tyr Ile Asp
Val Glu Leu Gln Val Ala 180 185
190 Ser Glu Phe Ile Lys Ser Ile Asp Gly Lys Lys Pro Gly Lys Phe
Lys 195 200 205 Val
Ile Val Ser Ser His Asn Tyr Gln Asn Thr Pro Ser Val Glu Asp 210
215 220 Leu Asp Gly Leu Val Ala
Arg Ile Gln Gln Thr Gly Ala Asp Ile Val 225 230
235 240 Lys Ile Ala Thr Thr Ala Val Asp Ile Ala Asp
Val Ala Arg Met Phe 245 250
255 His Ile Thr Ser Lys Ala Gln Val Pro Thr Ile Gly Leu Val Met Gly
260 265 270 Glu Arg
Gly Leu Met Ser Arg Ile Leu Cys Ser Lys Phe Gly Gly Tyr 275
280 285 Leu Thr Phe Gly Thr Leu Asp
Ser Ser Lys Val Ser Ala Pro Gly Gln 290 295
300 Pro Thr Ile Lys Asp Leu Leu Asp Leu Tyr Asn Phe
Arg Arg Ile Gly 305 310 315
320 Pro Asp Thr Lys Val Tyr Gly Ile Ile Gly Lys Pro Val Ser His Ser
325 330 335 Lys Ser Pro
Ile Val His Asn Gln Ala Phe Lys Ser Val Asp Phe Asn 340
345 350 Gly Val Tyr Val His Leu Leu Val
Asp Asn Leu Val Ser Phe Leu Gln 355 360
365 Ala Tyr Ser Ser Ser Asp Phe Ala Gly Phe Ser Cys Thr
Ile Pro His 370 375 380
Lys Glu Ala Ala Leu Gln Cys Cys Asp Glu Val Asp Pro Leu Ala Lys 385
390 395 400 Ser Ile Gly Ala
Val Asn Thr Ile Leu Arg Arg Lys Ser Asp Gly Lys 405
410 415 Leu Leu Gly Tyr Asn Thr Asp Cys Ile
Gly Ser Ile Ser Ala Ile Glu 420 425
430 Asp Gly Leu Arg Ser Ser Gly Asp Pro Ser Ser Val Pro Ser
Ser Ser 435 440 445
Ser Pro Leu Ala Ser Lys Thr Val Val Val Ile Gly Ala Gly Gly Ala 450
455 460 Gly Lys Ala Leu Ala
Tyr Gly Ala Lys Glu Lys Gly Ala Lys Val Val 465 470
475 480 Ile Ala Asn Arg Thr Tyr Glu Arg Ala Leu
Glu Leu Ala Glu Ala Ile 485 490
495 Gly Gly Lys Ala Leu Ser Leu Thr Asp Leu Asp Asn Tyr His Pro
Glu 500 505 510 Asp
Gly Met Val Leu Ala Asn Thr Thr Ser Met Gly Met Gln Pro Asn 515
520 525 Val Glu Glu Thr Pro Ile
Ser Lys Asp Ala Leu Lys His Tyr Ala Leu 530 535
540 Val Phe Asp Ala Val Tyr Thr Pro Arg Ile Thr
Arg Leu Leu Arg Glu 545 550 555
560 Ala Glu Glu Ser Gly Ala Ile Thr Val Ser Gly Ser Glu Met Phe Val
565 570 575 Arg Gln
Ala Tyr Glu Gln Phe Glu Ile Phe Thr Gly Leu Pro Ala Pro 580
585 590 Lys Glu Leu Tyr Trp Gln Ile
Met Ser Lys Tyr 595 600 29789DNAZea
mays 29atggcggggc tctacgagaa gcagtcggag acgtacgcca agaagcgtcc gcagtacccc
60aaggagtggt tctccatgct ggccagcctc accgcggggc accagcgcgc ctgggacgcc
120gggtgtggca ccggccaggc cgccatcagc atggcggagc actacgagag cgtggtggcg
180acggacgtga gcgaggggca gctccggcac gccaccgcgc acccgaaggt gcggtacctc
240cacaccccgg agcacctctc ggaggacgag ctggtgtcgc tggtcggcgg cgagggctcc
300ctggacctgg tcgtggtggc cacctccatc cactggttcg acgtcccgct cttctacgcc
360gtcgtgagcc gcgccctgcg gaagcccggc ggcatgctcg ccgtgtgggg ctacaactac
420gagatccacc cgttcgagga cgcgctgcac ggccagctct acccggccct gcggccgtac
480ctggacccgc gggcgggact ggccatggag cggtacaggt ccctgccgtt cccgttcgag
540cccgtcgggg tgggcgccga gggcgcgccc gccgacgtgg acatcgaggt ggagatgacg
600ctggaggacc tggtcgggtt cctgaacacc ggctctgtcg tgaccacggc gagggccaag
660ggcgtggacc tggaggcggt cacgagggcc gcgctgaagc gtgtggagga gcagtggggc
720ggcgcgccca ccgtgccgag gaagctcgtg ttcaaggcgt tcatgctcgc cgggaggccc
780aagtgctag
78930262PRTZea mays 30Met Ala Gly Leu Tyr Glu Lys Gln Ser Glu Thr Tyr Ala
Lys Lys Arg 1 5 10 15
Pro Gln Tyr Pro Lys Glu Trp Phe Ser Met Leu Ala Ser Leu Thr Ala
20 25 30 Gly His Gln Arg
Ala Trp Asp Ala Gly Cys Gly Thr Gly Gln Ala Ala 35
40 45 Ile Ser Met Ala Glu His Tyr Glu Ser
Val Val Ala Thr Asp Val Ser 50 55
60 Glu Gly Gln Leu Arg His Ala Thr Ala His Pro Lys Val
Arg Tyr Leu 65 70 75
80 His Thr Pro Glu His Leu Ser Glu Asp Glu Leu Val Ser Leu Val Gly
85 90 95 Gly Glu Gly Ser
Leu Asp Leu Val Val Val Ala Thr Ser Ile His Trp 100
105 110 Phe Asp Val Pro Leu Phe Tyr Ala Val
Val Ser Arg Ala Leu Arg Lys 115 120
125 Pro Gly Gly Met Leu Ala Val Trp Gly Tyr Asn Tyr Glu Ile
His Pro 130 135 140
Phe Glu Asp Ala Leu His Gly Gln Leu Tyr Pro Ala Leu Arg Pro Tyr 145
150 155 160 Leu Asp Pro Arg Ala
Gly Leu Ala Met Glu Arg Tyr Arg Ser Leu Pro 165
170 175 Phe Pro Phe Glu Pro Val Gly Val Gly Ala
Glu Gly Ala Pro Ala Asp 180 185
190 Val Asp Ile Glu Val Glu Met Thr Leu Glu Asp Leu Val Gly Phe
Leu 195 200 205 Asn
Thr Gly Ser Val Val Thr Thr Ala Arg Ala Lys Gly Val Asp Leu 210
215 220 Glu Ala Val Thr Arg Ala
Ala Leu Lys Arg Val Glu Glu Gln Trp Gly 225 230
235 240 Gly Ala Pro Thr Val Pro Arg Lys Leu Val Phe
Lys Ala Phe Met Leu 245 250
255 Ala Gly Arg Pro Lys Cys 260
31648DNAArabidopsis thaliana 31atgggaatgg tttttggtaa aatcgctgta
gagactccta aatacacggt gactaaatcc 60ggtgacggtt atgagatccg tgaatatcca
ccagcggttg cggcggaggt tacatacgat 120gcgtcggagt tcaaaggtga taaagacgga
ggctttcagc ttttggctaa gtacataggt 180gtgtttggca aaccggagaa tgagaaaccg
gagaaaattg ctatgactgc accggtgatc 240actaaggaag gtgagaagat tgcgatgact
gctccggtga ttactaagga gagtgagaag 300attgagatga cttctccggt tgtaactaag
gaaggtggtg gagaaggaag gaagaagttg 360gtgacgatgc agtttttgtt gccgtcgatg
tataagaagg cggaggaggc accacgtcca 420acggatgaga gggttgtgat taaggaggaa
ggagggagga agtatggtgt gattaagttt 480agtggtatag cgtcggagag tgtggtgagt
gagaaggtga agaagctgag tagtcatctt 540gagaaagatg ggtttaagat caccggagat
ttcgttcttg ctaggtataa tcctccatgg 600acgttaccac cgtttaggac caatgaggtc
atgattcctg ttgaatag 64832215PRTArabidopsis thaliana 32Met
Gly Met Val Phe Gly Lys Ile Ala Val Glu Thr Pro Lys Tyr Thr 1
5 10 15 Val Thr Lys Ser Gly Asp
Gly Tyr Glu Ile Arg Glu Tyr Pro Pro Ala 20
25 30 Val Ala Ala Glu Val Thr Tyr Asp Ala Ser
Glu Phe Lys Gly Asp Lys 35 40
45 Asp Gly Gly Phe Gln Leu Leu Ala Lys Tyr Ile Gly Val Phe
Gly Lys 50 55 60
Pro Glu Asn Glu Lys Pro Glu Lys Ile Ala Met Thr Ala Pro Val Ile 65
70 75 80 Thr Lys Glu Gly Glu
Lys Ile Ala Met Thr Ala Pro Val Ile Thr Lys 85
90 95 Glu Ser Glu Lys Ile Glu Met Thr Ser Pro
Val Val Thr Lys Glu Gly 100 105
110 Gly Gly Glu Gly Arg Lys Lys Leu Val Thr Met Gln Phe Leu Leu
Pro 115 120 125 Ser
Met Tyr Lys Lys Ala Glu Glu Ala Pro Arg Pro Thr Asp Glu Arg 130
135 140 Val Val Ile Lys Glu Glu
Gly Gly Arg Lys Tyr Gly Val Ile Lys Phe 145 150
155 160 Ser Gly Ile Ala Ser Glu Ser Val Val Ser Glu
Lys Val Lys Lys Leu 165 170
175 Ser Ser His Leu Glu Lys Asp Gly Phe Lys Ile Thr Gly Asp Phe Val
180 185 190 Leu Ala
Arg Tyr Asn Pro Pro Trp Thr Leu Pro Pro Phe Arg Thr Asn 195
200 205 Glu Val Met Ile Pro Val Glu
210 21533663DNASorghum bicolor 33atggcctccg cgacgggggg
ttcctcctcg gagatggcgg tggaccaccc gacggggccg 60ggcgccgtgg agaagccgca
attcgatgct ctgatgccga gtgagatgag cggcgggagg 120ccccagttcc gaaaagtgac
cgtgccgcag caccggttcg cgccgctcaa gcgatgctgg 180atggaaatct acacgcccgt
ttacgagcac atgaagatcg acatacgcat gaacctcaag 240gcaaggaggg tggagctaaa
gacaagacaa gatacaccag atgtgagcaa ccttcagaag 300tgtgctgact ttgtgcatgc
ttttatgctt gggtttgaca ttgctgatgc cgtcgccttg 360ctgcgtcttg atgacctcta
tgtggattcc tttgagatca aggacgtgaa gaccctgcga 420ggggagcatc tgtcgcgtgc
tattggccgc ctatcaggga aaggaggcaa gaccaagtat 480gccattgaga actctaccag
gacccgcatc gttatcgctg atacaaagat ccatatactt 540ggatcctttg ttaacatcaa
ggttgcgcgg gattcgcttt gcagtctcat cttgggttct 600cctgctggca aagtgtattc
gaagctaagg gctgtatcag ctaggttggc ggaaaggtat 660tag
66334220PRTSorghum bicolor
34Met Ala Ser Ala Thr Gly Gly Ser Ser Ser Glu Met Ala Val Asp His 1
5 10 15 Pro Thr Gly Pro
Gly Ala Val Glu Lys Pro Gln Phe Asp Ala Leu Met 20
25 30 Pro Ser Glu Met Ser Gly Gly Arg Pro
Gln Phe Arg Lys Val Thr Val 35 40
45 Pro Gln His Arg Phe Ala Pro Leu Lys Arg Cys Trp Met Glu
Ile Tyr 50 55 60
Thr Pro Val Tyr Glu His Met Lys Ile Asp Ile Arg Met Asn Leu Lys 65
70 75 80 Ala Arg Arg Val Glu
Leu Lys Thr Arg Gln Asp Thr Pro Asp Val Ser 85
90 95 Asn Leu Gln Lys Cys Ala Asp Phe Val His
Ala Phe Met Leu Gly Phe 100 105
110 Asp Ile Ala Asp Ala Val Ala Leu Leu Arg Leu Asp Asp Leu Tyr
Val 115 120 125 Asp
Ser Phe Glu Ile Lys Asp Val Lys Thr Leu Arg Gly Glu His Leu 130
135 140 Ser Arg Ala Ile Gly Arg
Leu Ser Gly Lys Gly Gly Lys Thr Lys Tyr 145 150
155 160 Ala Ile Glu Asn Ser Thr Arg Thr Arg Ile Val
Ile Ala Asp Thr Lys 165 170
175 Ile His Ile Leu Gly Ser Phe Val Asn Ile Lys Val Ala Arg Asp Ser
180 185 190 Leu Cys
Ser Leu Ile Leu Gly Ser Pro Ala Gly Lys Val Tyr Ser Lys 195
200 205 Leu Arg Ala Val Ser Ala Arg
Leu Ala Glu Arg Tyr 210 215 220
35564DNAArabidopsis thaliana 35atgagtcggc tcttgctacc taaacttttc
tcaatctcta gaacacaggt tccagctgca 60tcattgttca ataatctgta cagacgtcac
aaacgttttg ttcattggac gagtaagatg 120tcaacagata gtgttagatc atccacaact
ggtggttctg cttctggagc tagaacattt 180tgctccctcg cagatttatc aaccaaaaag
tgtgtgccat gcaatgcgaa ggatctgcgc 240gccatgaccg aacaaagtgc ccaagaccta
cttcaaaagg ttgctggatg ggatttggcc 300aatgacaatg atacattaaa gctgcatcgg
tcatggaggg tgaaaagttt tacaaagggg 360ctagatttct tccaacgtgt agctgatatc
gctgaatcag aaggtcatca cccagatttg 420catctggtcg gctggaataa tgtgaaaatt
gagatatgga cacatgcgat aggtggtttg 480acagaaaacg acttcattct tgctgctaag
atcaacgagc tccaagtgga agatcttctg 540aggaagaaga aagttgctaa gtag
56436187PRTArabidopsis thaliana 36Met
Ser Arg Leu Leu Leu Pro Lys Leu Phe Ser Ile Ser Arg Thr Gln 1
5 10 15 Val Pro Ala Ala Ser Leu
Phe Asn Asn Leu Tyr Arg Arg His Lys Arg 20
25 30 Phe Val His Trp Thr Ser Lys Met Ser Thr
Asp Ser Val Arg Ser Ser 35 40
45 Thr Thr Gly Gly Ser Ala Ser Gly Ala Arg Thr Phe Cys Ser
Leu Ala 50 55 60
Asp Leu Ser Thr Lys Lys Cys Val Pro Cys Asn Ala Lys Asp Leu Arg 65
70 75 80 Ala Met Thr Glu Gln
Ser Ala Gln Asp Leu Leu Gln Lys Val Ala Gly 85
90 95 Trp Asp Leu Ala Asn Asp Asn Asp Thr Leu
Lys Leu His Arg Ser Trp 100 105
110 Arg Val Lys Ser Phe Thr Lys Gly Leu Asp Phe Phe Gln Arg Val
Ala 115 120 125 Asp
Ile Ala Glu Ser Glu Gly His His Pro Asp Leu His Leu Val Gly 130
135 140 Trp Asn Asn Val Lys Ile
Glu Ile Trp Thr His Ala Ile Gly Gly Leu 145 150
155 160 Thr Glu Asn Asp Phe Ile Leu Ala Ala Lys Ile
Asn Glu Leu Gln Val 165 170
175 Glu Asp Leu Leu Arg Lys Lys Lys Val Ala Lys 180
185 371176DNAArabidopsis thaliana 37atggtgaaac
tggagaactc gaggaaaccc gaaaaaattt cgaacaagaa catccccatg 60tccgatttcg
tggtcaatct ggatcatggt gatccaacgg cgtacgaaga atactggagg 120aagatgggtg
acaggtgtac ggtgacgata cgtggttgtg atctcatgag ttacttcagc 180gacatgacga
acttgtgttg gttccttgag ccagagcttg aagatgcgat caaggacttg 240cacggtgttg
ttggtaacgc tgcgacggag gatcggtaca tagtggttgg gaccggttcg 300acgcagcttt
gtcaagccgc cgtccacgca ctctcttcac tagccaggag tcaacctgtc 360agcgtcgtcg
ccgccgctcc tttttactcc acatatgtgg aggagacgac atatgttcgg 420tcgggtatgt
acaagtggga aggagacgca tggggtttcg acaaaaaggg tccgtacatc 480gagctagtga
cgtcacctaa taaccctgac ggaaccatca gagagacggt ggtgaaccgt 540ccagacgacg
acgaagccaa agtgatccat gactttgctt attactggcc ccactacact 600cccatcactc
gccgtcaaga ccatgacatc atgctcttca ctttctccaa gatcacaggc 660cacgctgggt
cccgtattgg gtgggcattg gtgaaggaca aggaggtagc taagaagatg 720gttgagtata
ttattgtgaa ctcgattggt gtgtctaagg agtcacaggt tcgaacagct 780aagatactca
acgttctaaa ggagacttgt aagagcgagt ccgagtctga gaatttcttc 840aagtatggtc
gtgagatgat gaagaatcgg tgggagaagc tacgtgaagt tgtgaaagag 900agcgatgctt
tcactcttcc caagtaccct gaagcatttt gcaactactt tggaaaatca 960ctcgaatctt
accctgcgtt tgcgtggcta gggacgaagg aagagacgga tctggtaagt 1020gaattgagga
gacacaaggt aatgagcaga gctggagagc gttgtggatc tgacaagaag 1080catgtccgag
tcagcatgct tagtcgtgaa gacgttttca atgtctttct cgagagactc 1140gccaacatga
agctcattaa aagcattgac ctttag
117638391PRTArabidopsis thaliana 38Met Val Lys Leu Glu Asn Ser Arg Lys
Pro Glu Lys Ile Ser Asn Lys 1 5 10
15 Asn Ile Pro Met Ser Asp Phe Val Val Asn Leu Asp His Gly
Asp Pro 20 25 30
Thr Ala Tyr Glu Glu Tyr Trp Arg Lys Met Gly Asp Arg Cys Thr Val
35 40 45 Thr Ile Arg Gly
Cys Asp Leu Met Ser Tyr Phe Ser Asp Met Thr Asn 50
55 60 Leu Cys Trp Phe Leu Glu Pro Glu
Leu Glu Asp Ala Ile Lys Asp Leu 65 70
75 80 His Gly Val Val Gly Asn Ala Ala Thr Glu Asp Arg
Tyr Ile Val Val 85 90
95 Gly Thr Gly Ser Thr Gln Leu Cys Gln Ala Ala Val His Ala Leu Ser
100 105 110 Ser Leu Ala
Arg Ser Gln Pro Val Ser Val Val Ala Ala Ala Pro Phe 115
120 125 Tyr Ser Thr Tyr Val Glu Glu Thr
Thr Tyr Val Arg Ser Gly Met Tyr 130 135
140 Lys Trp Glu Gly Asp Ala Trp Gly Phe Asp Lys Lys Gly
Pro Tyr Ile 145 150 155
160 Glu Leu Val Thr Ser Pro Asn Asn Pro Asp Gly Thr Ile Arg Glu Thr
165 170 175 Val Val Asn Arg
Pro Asp Asp Asp Glu Ala Lys Val Ile His Asp Phe 180
185 190 Ala Tyr Tyr Trp Pro His Tyr Thr Pro
Ile Thr Arg Arg Gln Asp His 195 200
205 Asp Ile Met Leu Phe Thr Phe Ser Lys Ile Thr Gly His Ala
Gly Ser 210 215 220
Arg Ile Gly Trp Ala Leu Val Lys Asp Lys Glu Val Ala Lys Lys Met 225
230 235 240 Val Glu Tyr Ile Ile
Val Asn Ser Ile Gly Val Ser Lys Glu Ser Gln 245
250 255 Val Arg Thr Ala Lys Ile Leu Asn Val Leu
Lys Glu Thr Cys Lys Ser 260 265
270 Glu Ser Glu Ser Glu Asn Phe Phe Lys Tyr Gly Arg Glu Met Met
Lys 275 280 285 Asn
Arg Trp Glu Lys Leu Arg Glu Val Val Lys Glu Ser Asp Ala Phe 290
295 300 Thr Leu Pro Lys Tyr Pro
Glu Ala Phe Cys Asn Tyr Phe Gly Lys Ser 305 310
315 320 Leu Glu Ser Tyr Pro Ala Phe Ala Trp Leu Gly
Thr Lys Glu Glu Thr 325 330
335 Asp Leu Val Ser Glu Leu Arg Arg His Lys Val Met Ser Arg Ala Gly
340 345 350 Glu Arg
Cys Gly Ser Asp Lys Lys His Val Arg Val Ser Met Leu Ser 355
360 365 Arg Glu Asp Val Phe Asn Val
Phe Leu Glu Arg Leu Ala Asn Met Lys 370 375
380 Leu Ile Lys Ser Ile Asp Leu 385
390 392004DNAZea mays 39atggctggct ccgtagctcc ccacgctgtg gtcctcggtc
ttctcctgct cgcggggctc 60gcggcggcgc agagggcgac gacgccggct gcggcggccc
ccgcgcccga ccccggctgc 120aacggcatcc agctgaccta caacttcgtg gaccgcacca
agatccggcc cttcgtcagc 180gacaagaaca agcagcccta cgccttccgc gccaacgtca
ccgtgctcaa ctccggcacc 240cgcccgctca agtcctgggc ggcactcgtc acattcggct
acggcgagat cctcgtcggc 300gtcgacggcg ccgtgctcac gggcggcggc gacctgccgt
acaacaccac ggaggacgcc 360ggcaacgcca cctcgttctc cgggtacccg catacagacc
tcctcacgcc catcgccacc 420gccggggacc tgtcgcagat ccaggcctcc gtcggcatcg
tcggcacgct cttcgccggg 480cccggcccgt tcgtgccgct ccccaccgcg ctgtcgctgg
acgacccggc ctacgcgtgc 540ccggcggcga ccaacgtcac tgctcgggtg ctgtccacgt
gctgcgtcct cacgccggag 600gccgaggcca acgccactgc catcgacgcc aacaccaccg
acccgaccaa ggatttcctg 660ccgcgcggca ccggcgacct cgtcatcacc tacgatgtgc
tccaggccta cccctccagc 720taccttgcgc tcgtcacgct cgagaacaac gccaagctcg
gccgcctcga caactggcgg 780ctgtcgtggg agtggcggcg tggggagttc atctactcaa
tgaaaggagc tcacccatca 840gaggtggaca cctcgggctg tatctgtggg gcgcctgggc
agtactacca gagccttgat 900ttttcgcagg tgctcaattg tgaccgcaag ccggtgatcc
ttgacctgcc cctgtcccgg 960tacaacgaca ctcagattgg gaagattgac aattgctgca
ggaatgggac aatcttgccc 1020aagtccatgg acgaggcaca gtcgaaatct gcgttccaga
tgcaagtttt caagatgcca 1080ccagacctga accggactaa gctgttcccc cctgctaatt
tcaagatcgt gggtgcatca 1140tcgctgaacc cggactatgc ctgtggccag ccggtgcctg
tcagcccaac cgcgttccca 1200gacccgagcg ggcttgactc gacgacgctt gctgtggcaa
catggcaggt ggtgtgcaac 1260attaccacga caaagggggc caagcccaag tgttgtgtga
ccttctcggc gtactacaac 1320gactcagtga tcccctgcag cacctgcgct tgtgggtgcc
ctgcaaacag gcgagggcca 1380acgtgcagca ccaccgcaca atccatgctg ctgccaccgg
aggcgctgct tgtgccattc 1440gacaaccggt cacagaaggc gttggcgtgg gctgagctga
agcattacaa tgtgccccgg 1500ccgatgcctt gcggtgactt ttgtggcgtg agcatcaatt
ggcatgtctc aacggactac 1560aacaagggct ggagcgctcg ggtgacattg ttcaactggg
aggatgtcga catggccaat 1620tggtttgctg ccatcgtcat ggacaaggcg tatgacggct
ttgagaaggc ttactcgttc 1680aacggcaccg cagtgggcaa gaacacgatc tttatgcagg
gtctggaggg gcttaattac 1740ctggtgaagc agaccaacat gagtgggtcc gactaccttg
ttcctggcaa gcaacagtca 1800gtcctctcat tcaccaagaa gctgaccccg gggttaaatg
ttgttgctgg agatggcttc 1860ccaacaaagg tcttcttcaa tggcgacgaa tgcgctatgc
cacagagaat tccgatcagc 1920actggattca gcacccgtct cagcagtggc cttgctctgg
ttccgttcct tgttgcttcg 1980gctttcctat tgctccagca atag
200440667PRTZea mays 40Met Ala Gly Ser Val Ala Pro
His Ala Val Val Leu Gly Leu Leu Leu 1 5
10 15 Leu Ala Gly Leu Ala Ala Ala Gln Arg Ala Thr
Thr Pro Ala Ala Ala 20 25
30 Ala Pro Ala Pro Asp Pro Gly Cys Asn Gly Ile Gln Leu Thr Tyr
Asn 35 40 45 Phe
Val Asp Arg Thr Lys Ile Arg Pro Phe Val Ser Asp Lys Asn Lys 50
55 60 Gln Pro Tyr Ala Phe Arg
Ala Asn Val Thr Val Leu Asn Ser Gly Thr 65 70
75 80 Arg Pro Leu Lys Ser Trp Ala Ala Leu Val Thr
Phe Gly Tyr Gly Glu 85 90
95 Ile Leu Val Gly Val Asp Gly Ala Val Leu Thr Gly Gly Gly Asp Leu
100 105 110 Pro Tyr
Asn Thr Thr Glu Asp Ala Gly Asn Ala Thr Ser Phe Ser Gly 115
120 125 Tyr Pro His Thr Asp Leu Leu
Thr Pro Ile Ala Thr Ala Gly Asp Leu 130 135
140 Ser Gln Ile Gln Ala Ser Val Gly Ile Val Gly Thr
Leu Phe Ala Gly 145 150 155
160 Pro Gly Pro Phe Val Pro Leu Pro Thr Ala Leu Ser Leu Asp Asp Pro
165 170 175 Ala Tyr Ala
Cys Pro Ala Ala Thr Asn Val Thr Ala Arg Val Leu Ser 180
185 190 Thr Cys Cys Val Leu Thr Pro Glu
Ala Glu Ala Asn Ala Thr Ala Ile 195 200
205 Asp Ala Asn Thr Thr Asp Pro Thr Lys Asp Phe Leu Pro
Arg Gly Thr 210 215 220
Gly Asp Leu Val Ile Thr Tyr Asp Val Leu Gln Ala Tyr Pro Ser Ser 225
230 235 240 Tyr Leu Ala Leu
Val Thr Leu Glu Asn Asn Ala Lys Leu Gly Arg Leu 245
250 255 Asp Asn Trp Arg Leu Ser Trp Glu Trp
Arg Arg Gly Glu Phe Ile Tyr 260 265
270 Ser Met Lys Gly Ala His Pro Ser Glu Val Asp Thr Ser Gly
Cys Ile 275 280 285
Cys Gly Ala Pro Gly Gln Tyr Tyr Gln Ser Leu Asp Phe Ser Gln Val 290
295 300 Leu Asn Cys Asp Arg
Lys Pro Val Ile Leu Asp Leu Pro Leu Ser Arg 305 310
315 320 Tyr Asn Asp Thr Gln Ile Gly Lys Ile Asp
Asn Cys Cys Arg Asn Gly 325 330
335 Thr Ile Leu Pro Lys Ser Met Asp Glu Ala Gln Ser Lys Ser Ala
Phe 340 345 350 Gln
Met Gln Val Phe Lys Met Pro Pro Asp Leu Asn Arg Thr Lys Leu 355
360 365 Phe Pro Pro Ala Asn Phe
Lys Ile Val Gly Ala Ser Ser Leu Asn Pro 370 375
380 Asp Tyr Ala Cys Gly Gln Pro Val Pro Val Ser
Pro Thr Ala Phe Pro 385 390 395
400 Asp Pro Ser Gly Leu Asp Ser Thr Thr Leu Ala Val Ala Thr Trp Gln
405 410 415 Val Val
Cys Asn Ile Thr Thr Thr Lys Gly Ala Lys Pro Lys Cys Cys 420
425 430 Val Thr Phe Ser Ala Tyr Tyr
Asn Asp Ser Val Ile Pro Cys Ser Thr 435 440
445 Cys Ala Cys Gly Cys Pro Ala Asn Arg Arg Gly Pro
Thr Cys Ser Thr 450 455 460
Thr Ala Gln Ser Met Leu Leu Pro Pro Glu Ala Leu Leu Val Pro Phe 465
470 475 480 Asp Asn Arg
Ser Gln Lys Ala Leu Ala Trp Ala Glu Leu Lys His Tyr 485
490 495 Asn Val Pro Arg Pro Met Pro Cys
Gly Asp Phe Cys Gly Val Ser Ile 500 505
510 Asn Trp His Val Ser Thr Asp Tyr Asn Lys Gly Trp Ser
Ala Arg Val 515 520 525
Thr Leu Phe Asn Trp Glu Asp Val Asp Met Ala Asn Trp Phe Ala Ala 530
535 540 Ile Val Met Asp
Lys Ala Tyr Asp Gly Phe Glu Lys Ala Tyr Ser Phe 545 550
555 560 Asn Gly Thr Ala Val Gly Lys Asn Thr
Ile Phe Met Gln Gly Leu Glu 565 570
575 Gly Leu Asn Tyr Leu Val Lys Gln Thr Asn Met Ser Gly Ser
Asp Tyr 580 585 590
Leu Val Pro Gly Lys Gln Gln Ser Val Leu Ser Phe Thr Lys Lys Leu
595 600 605 Thr Pro Gly Leu
Asn Val Val Ala Gly Asp Gly Phe Pro Thr Lys Val 610
615 620 Phe Phe Asn Gly Asp Glu Cys Ala
Met Pro Gln Arg Ile Pro Ile Ser 625 630
635 640 Thr Gly Phe Ser Thr Arg Leu Ser Ser Gly Leu Ala
Leu Val Pro Phe 645 650
655 Leu Val Ala Ser Ala Phe Leu Leu Leu Gln Gln 660
665 412292DNASaccharomyces cerevisiae 41atgaacgata
gccaaaactg cctacgacag agggaagaaa atagtcatct gaatcctgga 60aatgacttcg
gccaccacca gggtgcagaa tgtacgataa atcataacaa catgccacac 120cgcaatgcat
acacagaatc tacgaatgac acggaagcaa agtccatagt gatgtgcgac 180gatcctaacg
cataccaaat ttcctacaca aataatgagc cggcgggaga tggagctata 240gaaaccacgt
ccattctact atcgcaaccg ctgccgctgc gatcgaatgt gatgtctgtc 300ttggtaggca
tatttgttgc cgtggggggc ttcttgtttg ggtatgacac tggacttata 360aacagtatca
cggatatgcc gtatgttaaa acctacattg ctccgaacca ttcatatttc 420accactagcc
aaatagccat actcgtatca ttcctctccc taggaacatt tttcggtgcg 480ttaatcgctc
cctatatttc agattcatat ggtaggaagc caacaattat gtttagtacc 540gctgttatct
tttccatcgg aaactcatta caggtggcat ccggtggctt ggtgctatta 600atcgtcggaa
gagtgatctc aggtatcggg atcgggataa tctctgctgt ggttcctctt 660tatcaagctg
aagctgcgca gaagaacctt agaggtgcca tcatttccag ttatcagtgg 720gctatcacta
ttgggttact cgtgtccagt gcagtatcgc aaggaactca ttccaaaaat 780ggcccgtctt
catatagaat accaattggt ttgcagtacg tttggtcaag tattttagct 840gtgggcatga
tattccttcc agagagtcca agatattacg tcttgaagga tgaactcaat 900aaagctgcaa
aatcgttatc ctttttaaga ggcctcccga tcgaagatcc aagactctta 960gaggagcttg
ttgaaataaa agccacttac gattatgaag catcgttcgg cccgtcaaca 1020cttttagatt
gtttcaaaac aagtgaaaat agacccaaac agattttacg aatatttact 1080ggtatcgcca
tacaagcttt tcaacaggca tctggtatca attttatatt ctactatgga 1140gttaattttt
tcaacaacac aggggtggac aactcttact tggtttcttt tatcagctat 1200gccgtcaacg
tcgccttcag tataccgggt atgtatttag tggatcgaat tggtagaaga 1260ccagtccttc
ttgctggagg tgtcataatg gcaatagcaa atttagtcat tgccatcgtt 1320ggtgtttccg
agggaaaaac tgttgttgct agtaaaatta tgattgcttt tatatgcctt 1380ttcattgctg
cattttcggc gacatggggt ggtgtcgtgt gggtggtatc tgctgaactg 1440tacccacttg
gtgtcagatc gaaatgtacc gccatatgcg ctgccgcaaa ttggctagtt 1500aatttcacct
gtgccctgat tacaccttac attgttgatg tcggatcaca cacttcttca 1560atggggccca
aaatattctt catttggggc ggcttaaatg tcgtggccgt tatcgttgtt 1620tatttcgctg
tttatgaaac gaggggattg actttggaag agattgacga gttatttaga 1680aaggccccaa
atagcgtcat ttctagcaaa tggaacaaaa aaataaggaa aaggtgctta 1740gcctttccca
tttcacaaca aatagagatg aaaactaata tcaagaacgc tggaaagttg 1800gacaacaaca
acagtccaat tgtacaggat gacagccaca acataatcga tgtggatgga 1860ttcttggaga
accaaataca gtccaatgat catatgattg cggcggataa aggaagtggc 1920tcgttagtaa
acatcatcga tactgccccc ctaacatcta cagagtttaa acccgtggaa 1980catccgccag
taaattacgt cgacttgggg aatggtttgg gtctgaatac atacaataga 2040ggtcctcctt
ctatcatttc tgactctact gatgagttct atgaggaaaa tgactcctct 2100tattacaata
acaacactga acgaaatgga gctaacagcg tcaatacata tatggctcaa 2160ctaatcaata
gctcatctac tacaagcaac gacacatcgt tctctccatc acacaatagc 2220aatgcaagaa
cgtcctctaa ttggacgagt gacctcgcta gtaagcacag ccaatacact 2280tccccccaat
ag
229242763PRTSaccharomyces cerevisiae 42Met Asn Asp Ser Gln Asn Cys Leu
Arg Gln Arg Glu Glu Asn Ser His 1 5 10
15 Leu Asn Pro Gly Asn Asp Phe Gly His His Gln Gly Ala
Glu Cys Thr 20 25 30
Ile Asn His Asn Asn Met Pro His Arg Asn Ala Tyr Thr Glu Ser Thr
35 40 45 Asn Asp Thr Glu
Ala Lys Ser Ile Val Met Cys Asp Asp Pro Asn Ala 50
55 60 Tyr Gln Ile Ser Tyr Thr Asn Asn
Glu Pro Ala Gly Asp Gly Ala Ile 65 70
75 80 Glu Thr Thr Ser Ile Leu Leu Ser Gln Pro Leu Pro
Leu Arg Ser Asn 85 90
95 Val Met Ser Val Leu Val Gly Ile Phe Val Ala Val Gly Gly Phe Leu
100 105 110 Phe Gly Tyr
Asp Thr Gly Leu Ile Asn Ser Ile Thr Asp Met Pro Tyr 115
120 125 Val Lys Thr Tyr Ile Ala Pro Asn
His Ser Tyr Phe Thr Thr Ser Gln 130 135
140 Ile Ala Ile Leu Val Ser Phe Leu Ser Leu Gly Thr Phe
Phe Gly Ala 145 150 155
160 Leu Ile Ala Pro Tyr Ile Ser Asp Ser Tyr Gly Arg Lys Pro Thr Ile
165 170 175 Met Phe Ser Thr
Ala Val Ile Phe Ser Ile Gly Asn Ser Leu Gln Val 180
185 190 Ala Ser Gly Gly Leu Val Leu Leu Ile
Val Gly Arg Val Ile Ser Gly 195 200
205 Ile Gly Ile Gly Ile Ile Ser Ala Val Val Pro Leu Tyr Gln
Ala Glu 210 215 220
Ala Ala Gln Lys Asn Leu Arg Gly Ala Ile Ile Ser Ser Tyr Gln Trp 225
230 235 240 Ala Ile Thr Ile Gly
Leu Leu Val Ser Ser Ala Val Ser Gln Gly Thr 245
250 255 His Ser Lys Asn Gly Pro Ser Ser Tyr Arg
Ile Pro Ile Gly Leu Gln 260 265
270 Tyr Val Trp Ser Ser Ile Leu Ala Val Gly Met Ile Phe Leu Pro
Glu 275 280 285 Ser
Pro Arg Tyr Tyr Val Leu Lys Asp Glu Leu Asn Lys Ala Ala Lys 290
295 300 Ser Leu Ser Phe Leu Arg
Gly Leu Pro Ile Glu Asp Pro Arg Leu Leu 305 310
315 320 Glu Glu Leu Val Glu Ile Lys Ala Thr Tyr Asp
Tyr Glu Ala Ser Phe 325 330
335 Gly Pro Ser Thr Leu Leu Asp Cys Phe Lys Thr Ser Glu Asn Arg Pro
340 345 350 Lys Gln
Ile Leu Arg Ile Phe Thr Gly Ile Ala Ile Gln Ala Phe Gln 355
360 365 Gln Ala Ser Gly Ile Asn Phe
Ile Phe Tyr Tyr Gly Val Asn Phe Phe 370 375
380 Asn Asn Thr Gly Val Asp Asn Ser Tyr Leu Val Ser
Phe Ile Ser Tyr 385 390 395
400 Ala Val Asn Val Ala Phe Ser Ile Pro Gly Met Tyr Leu Val Asp Arg
405 410 415 Ile Gly Arg
Arg Pro Val Leu Leu Ala Gly Gly Val Ile Met Ala Ile 420
425 430 Ala Asn Leu Val Ile Ala Ile Val
Gly Val Ser Glu Gly Lys Thr Val 435 440
445 Val Ala Ser Lys Ile Met Ile Ala Phe Ile Cys Leu Phe
Ile Ala Ala 450 455 460
Phe Ser Ala Thr Trp Gly Gly Val Val Trp Val Val Ser Ala Glu Leu 465
470 475 480 Tyr Pro Leu Gly
Val Arg Ser Lys Cys Thr Ala Ile Cys Ala Ala Ala 485
490 495 Asn Trp Leu Val Asn Phe Thr Cys Ala
Leu Ile Thr Pro Tyr Ile Val 500 505
510 Asp Val Gly Ser His Thr Ser Ser Met Gly Pro Lys Ile Phe
Phe Ile 515 520 525
Trp Gly Gly Leu Asn Val Val Ala Val Ile Val Val Tyr Phe Ala Val 530
535 540 Tyr Glu Thr Arg Gly
Leu Thr Leu Glu Glu Ile Asp Glu Leu Phe Arg 545 550
555 560 Lys Ala Pro Asn Ser Val Ile Ser Ser Lys
Trp Asn Lys Lys Ile Arg 565 570
575 Lys Arg Cys Leu Ala Phe Pro Ile Ser Gln Gln Ile Glu Met Lys
Thr 580 585 590 Asn
Ile Lys Asn Ala Gly Lys Leu Asp Asn Asn Asn Ser Pro Ile Val 595
600 605 Gln Asp Asp Ser His Asn
Ile Ile Asp Val Asp Gly Phe Leu Glu Asn 610 615
620 Gln Ile Gln Ser Asn Asp His Met Ile Ala Ala
Asp Lys Gly Ser Gly 625 630 635
640 Ser Leu Val Asn Ile Ile Asp Thr Ala Pro Leu Thr Ser Thr Glu Phe
645 650 655 Lys Pro
Val Glu His Pro Pro Val Asn Tyr Val Asp Leu Gly Asn Gly 660
665 670 Leu Gly Leu Asn Thr Tyr Asn
Arg Gly Pro Pro Ser Ile Ile Ser Asp 675 680
685 Ser Thr Asp Glu Phe Tyr Glu Glu Asn Asp Ser Ser
Tyr Tyr Asn Asn 690 695 700
Asn Thr Glu Arg Asn Gly Ala Asn Ser Val Asn Thr Tyr Met Ala Gln 705
710 715 720 Leu Ile Asn
Ser Ser Ser Thr Thr Ser Asn Asp Thr Ser Phe Ser Pro 725
730 735 Ser His Asn Ser Asn Ala Arg Thr
Ser Ser Asn Trp Thr Ser Asp Leu 740 745
750 Ala Ser Lys His Ser Gln Tyr Thr Ser Pro Gln
755 760 43609DNAGlycine max 43atgtctaaca
ccagcaacaa tgtcgctggg gtcgacaaca cgttcagaag aaaatttgat 60cgagaagagt
atctagaacg agcacgggag cgcgagagac aggaggagga gggtcgagcg 120aaacctaaag
ccaaaggtcc tcccgtgcag aggaagccct tgaaacatag agattatgaa 180gtggaccttg
aatcccgctt gggcaagact caggttgtta cgccggttgc accactaagt 240cagcaggctg
gatactactg ctcagtttgt gagtgtgtgg tgaaggactc tgcaaactac 300ttggatcata
ttaatggaaa gaaacatcaa agagccttgg gcatgtccat gcgagtagaa 360cgtgcttctc
tccaacaggt tcaggaacga tttgaagttc ttaagaagcg taaagatgtt 420ggcagcttca
cagagcaaga tcttgacgag cggattttaa aacagcagca agaggaggaa 480gaaagaaagc
gactgcgtcg agaaaagaaa aaagaaaaga aggagaaggc agttgaagaa 540cctgaaattg
atcctgatgt tgctgccatg atggggtttg gaggtttccg gtcatccaac 600aagaaatag
60944202PRTGlycine max 44Met Ser Asn Thr Ser Asn Asn Val Ala Gly Val Asp
Asn Thr Phe Arg 1 5 10
15 Arg Lys Phe Asp Arg Glu Glu Tyr Leu Glu Arg Ala Arg Glu Arg Glu
20 25 30 Arg Gln Glu
Glu Glu Gly Arg Ala Lys Pro Lys Ala Lys Gly Pro Pro 35
40 45 Val Gln Arg Lys Pro Leu Lys His
Arg Asp Tyr Glu Val Asp Leu Glu 50 55
60 Ser Arg Leu Gly Lys Thr Gln Val Val Thr Pro Val Ala
Pro Leu Ser 65 70 75
80 Gln Gln Ala Gly Tyr Tyr Cys Ser Val Cys Glu Cys Val Val Lys Asp
85 90 95 Ser Ala Asn Tyr
Leu Asp His Ile Asn Gly Lys Lys His Gln Arg Ala 100
105 110 Leu Gly Met Ser Met Arg Val Glu Arg
Ala Ser Leu Gln Gln Val Gln 115 120
125 Glu Arg Phe Glu Val Leu Lys Lys Arg Lys Asp Val Gly Ser
Phe Thr 130 135 140
Glu Gln Asp Leu Asp Glu Arg Ile Leu Lys Gln Gln Gln Glu Glu Glu 145
150 155 160 Glu Arg Lys Arg Leu
Arg Arg Glu Lys Lys Lys Glu Lys Lys Glu Lys 165
170 175 Ala Val Glu Glu Pro Glu Ile Asp Pro Asp
Val Ala Ala Met Met Gly 180 185
190 Phe Gly Gly Phe Arg Ser Ser Asn Lys Lys 195
200 45531DNAArabidopsis thaliana 45atgatgaaca gctgtggaat
ccaacaaaac gcttttgaag agatgaggag aaacgccgcc 60gtttctgatc ggagagacgc
cgtgatttgt cctaaacctc gtcgtgttgg tgctcttaat 120caccactctt ctcgatctct
ccgttggcaa ctcaatcatc agatggaatt atgtgaatcg 180aattcaggaa gtgagatttt
ggatttcatc ctcacaaagg gtggtggtgg tggtggtgag 240caagatcaga cgaggacggt
gatgacgcca cctctgttct ttacagggtc acctccaagt 300agagtttcta acccattaac
aaaagattca ctttttcgag aagagcttct catggtggct 360tctccgagtc catcgactcc
acgagcaacc aaaccgcagc caccgtcttc tccaaggaac 420ggtagttgtg ttatggcggc
gacgagtttc gggaacaatc ctgtggttcg tgttgtgggg 480tttgattgtg acagacgcag
cagcaacagg agcatttcga ctcttgcata g 53146176PRTArabidopsis
thaliana 46Met Met Asn Ser Cys Gly Ile Gln Gln Asn Ala Phe Glu Glu Met
Arg 1 5 10 15 Arg
Asn Ala Ala Val Ser Asp Arg Arg Asp Ala Val Ile Cys Pro Lys
20 25 30 Pro Arg Arg Val Gly
Ala Leu Asn His His Ser Ser Arg Ser Leu Arg 35
40 45 Trp Gln Leu Asn His Gln Met Glu Leu
Cys Glu Ser Asn Ser Gly Ser 50 55
60 Glu Ile Leu Asp Phe Ile Leu Thr Lys Gly Gly Gly Gly
Gly Gly Glu 65 70 75
80 Gln Asp Gln Thr Arg Thr Val Met Thr Pro Pro Leu Phe Phe Thr Gly
85 90 95 Ser Pro Pro Ser
Arg Val Ser Asn Pro Leu Thr Lys Asp Ser Leu Phe 100
105 110 Arg Glu Glu Leu Leu Met Val Ala Ser
Pro Ser Pro Ser Thr Pro Arg 115 120
125 Ala Thr Lys Pro Gln Pro Pro Ser Ser Pro Arg Asn Gly Ser
Cys Val 130 135 140
Met Ala Ala Thr Ser Phe Gly Asn Asn Pro Val Val Arg Val Val Gly 145
150 155 160 Phe Asp Cys Asp Arg
Arg Ser Ser Asn Arg Ser Ile Ser Thr Leu Ala 165
170 175 471287DNAArabidopsis thaliana
47atgatgacga caacaaccaa tactatggct atgcttcaaa acctcgtctt ctctgttcca
60atctctcgta tggtagttcg gcgtcactcc ctcgctacca ccttctccgc tgccgccaca
120accgtcgtac cgtctcctaa accggtatca gccaaaccgg cgcgtactcc acacgtggac
180tcacatgttc tcatcggaat gtcagagcct gagcttcaag agcttgctat caacctcggt
240caagaaggat acagaggaaa gcagctccat catcttattt acaagagaaa ggttaataaa
300gttgaagact ttagcaattt gccactgacg tttcgtaaag gacttgtgga tggtggattt
360aaagtgggaa gatcacccat ttaccaaact gttactgcca ctgatggtac cattaagctt
420ctgctaaagc ttgaagataa cctattgatc gaaactgttg gtataccagt tcaagatgat
480gagaagggca taacgcgcct caccgcttgt gtctcttccc aggttggatg tccgcttcgt
540tgttcgtttt gtgccacggg aaaaggaggc ttttcaagaa atctgcagcg ccatgaaatt
600attgagcagg tgttggctat cgaggacgtg ttcaagcata gggtgacaaa tgtggttttc
660atgggaatgg gtgagccgat gttgaaccta aagtcagtac ttgatgctca tcgttgtttg
720aacaaggaca ttgaaatcgg acaacgaatg attacaatat cgactgtagg tgttccaaac
780acaatcaaga agcttgcatc tcataagctt cagtcgacct tagctgtcag cttacatgcg
840ccaaatcaga gcctcaggga gaaaattgta ccaagtgcca aggcttatcc gctggaagca
900attatgaagg attgtcgtga ttacttccaa gaaacaaata gacgagtctc tttcgaatat
960gcccttctag ctggagtcaa tgatcaagtt gagcatgcgg tggaacttgc agagctactc
1020cgtgaatggg gtaaaactta tcacgtaaat ttgatacctt acaacccgat agagggatca
1080gagtaccagc gaccttacaa gaaagcggtc ctagcgtttg cagctgcgtt ggagtcgcgt
1140aagataacag caagcgtaag gcaaacaaga ggacttgatg caagtgctgc ttgtggtcag
1200ctgaggaata agtttcagaa aagccctttg cttactgaga cggatagtca agagtctcag
1260ccagatgcag aagctgtcgc ttgttag
128748428PRTArabidopsis thaliana 48Met Met Thr Thr Thr Thr Asn Thr Met
Ala Met Leu Gln Asn Leu Val 1 5 10
15 Phe Ser Val Pro Ile Ser Arg Met Val Val Arg Arg His Ser
Leu Ala 20 25 30
Thr Thr Phe Ser Ala Ala Ala Thr Thr Val Val Pro Ser Pro Lys Pro
35 40 45 Val Ser Ala Lys
Pro Ala Arg Thr Pro His Val Asp Ser His Val Leu 50
55 60 Ile Gly Met Ser Glu Pro Glu Leu
Gln Glu Leu Ala Ile Asn Leu Gly 65 70
75 80 Gln Glu Gly Tyr Arg Gly Lys Gln Leu His His Leu
Ile Tyr Lys Arg 85 90
95 Lys Val Asn Lys Val Glu Asp Phe Ser Asn Leu Pro Leu Thr Phe Arg
100 105 110 Lys Gly Leu
Val Asp Gly Gly Phe Lys Val Gly Arg Ser Pro Ile Tyr 115
120 125 Gln Thr Val Thr Ala Thr Asp Gly
Thr Ile Lys Leu Leu Leu Lys Leu 130 135
140 Glu Asp Asn Leu Leu Ile Glu Thr Val Gly Ile Pro Val
Gln Asp Asp 145 150 155
160 Glu Lys Gly Ile Thr Arg Leu Thr Ala Cys Val Ser Ser Gln Val Gly
165 170 175 Cys Pro Leu Arg
Cys Ser Phe Cys Ala Thr Gly Lys Gly Gly Phe Ser 180
185 190 Arg Asn Leu Gln Arg His Glu Ile Ile
Glu Gln Val Leu Ala Ile Glu 195 200
205 Asp Val Phe Lys His Arg Val Thr Asn Val Val Phe Met Gly
Met Gly 210 215 220
Glu Pro Met Leu Asn Leu Lys Ser Val Leu Asp Ala His Arg Cys Leu 225
230 235 240 Asn Lys Asp Ile Glu
Ile Gly Gln Arg Met Ile Thr Ile Ser Thr Val 245
250 255 Gly Val Pro Asn Thr Ile Lys Lys Leu Ala
Ser His Lys Leu Gln Ser 260 265
270 Thr Leu Ala Val Ser Leu His Ala Pro Asn Gln Ser Leu Arg Glu
Lys 275 280 285 Ile
Val Pro Ser Ala Lys Ala Tyr Pro Leu Glu Ala Ile Met Lys Asp 290
295 300 Cys Arg Asp Tyr Phe Gln
Glu Thr Asn Arg Arg Val Ser Phe Glu Tyr 305 310
315 320 Ala Leu Leu Ala Gly Val Asn Asp Gln Val Glu
His Ala Val Glu Leu 325 330
335 Ala Glu Leu Leu Arg Glu Trp Gly Lys Thr Tyr His Val Asn Leu Ile
340 345 350 Pro Tyr
Asn Pro Ile Glu Gly Ser Glu Tyr Gln Arg Pro Tyr Lys Lys 355
360 365 Ala Val Leu Ala Phe Ala Ala
Ala Leu Glu Ser Arg Lys Ile Thr Ala 370 375
380 Ser Val Arg Gln Thr Arg Gly Leu Asp Ala Ser Ala
Ala Cys Gly Gln 385 390 395
400 Leu Arg Asn Lys Phe Gln Lys Ser Pro Leu Leu Thr Glu Thr Asp Ser
405 410 415 Gln Glu Ser
Gln Pro Asp Ala Glu Ala Val Ala Cys 420 425
491125DNAArabidopsis thaliana 49atgggatgtt tcggaccatc
aaaggcttca agaacaagaa acaatgaaca tgacaagata 60acacgacaaa acccctctca
tcaacctcaa accatgagag ctgaagaagt tctgttgcag 120attcctagat gtagagtcca
tctcataggc gaatccgagg cggtggagct tgcctctggt 180gatttcaagc tcgttaaggt
ctcagacaac ggtgtaactc tagctatgat cgtgagaatc 240ggacatgacc ttcagtggcc
agtgattaga gatgagccag tggtaaaact tgacgcccgt 300gattacctct tcactctccc
ggttaaagac ggtgatccac ttagctacgg ggtcactttc 360tctggcgatg acagagacgt
agccctcgtg aacagtctga agttgcttga ccaattcttg 420agtgagaatt cttgtttctc
gtctacggct tcgagtaagg ttaacaatgg aatcgactgg 480caagagtttg cgccgaggat
tgaagattac aacaacgttg ttgctaaggc tattgctgga 540ggaacaggac atatcattag
aggaatcttt agtctcagta atgcttactc taaccaggtt 600cacaagggag gcgacataat
gattacaaag gctgaggaga gccagagaaa tggaagttac 660aacaatggaa actccagtgg
taatgagaag aaaaatggga tcaacacaca ccttcaacga 720gtgaggaagc tgtcaaaggc
gactgagaat ctgagcaaga cgatgttgaa tggtgcggga 780gttgtgagcg gctctgtgat
ggtccctatg atgaagtcga aaccagggat ggccttcttt 840tcgatggttc caggggaggt
cctcttagct tcacttgatg cccttaataa aatactagat 900gcaactgaag ctgcagagag
acaaactcta tctgcaacat ccagggctgc taccagaatg 960gtcagtgaga ggtttggaga
taacgcaggg gaggccaccg gagatgttct agcaacagcg 1020ggccacgcag ctggaactgc
ctggaatgtt ctcaagatcc gtaagacttt ctatccttca 1080tcttctctta catcaggaat
cgtcaaaaat gctccaagaa agtag 112550374PRTArabidopsis
thaliana 50Met Gly Cys Phe Gly Pro Ser Lys Ala Ser Arg Thr Arg Asn Asn
Glu 1 5 10 15 His
Asp Lys Ile Thr Arg Gln Asn Pro Ser His Gln Pro Gln Thr Met
20 25 30 Arg Ala Glu Glu Val
Leu Leu Gln Ile Pro Arg Cys Arg Val His Leu 35
40 45 Ile Gly Glu Ser Glu Ala Val Glu Leu
Ala Ser Gly Asp Phe Lys Leu 50 55
60 Val Lys Val Ser Asp Asn Gly Val Thr Leu Ala Met Ile
Val Arg Ile 65 70 75
80 Gly His Asp Leu Gln Trp Pro Val Ile Arg Asp Glu Pro Val Val Lys
85 90 95 Leu Asp Ala Arg
Asp Tyr Leu Phe Thr Leu Pro Val Lys Asp Gly Asp 100
105 110 Pro Leu Ser Tyr Gly Val Thr Phe Ser
Gly Asp Asp Arg Asp Val Ala 115 120
125 Leu Val Asn Ser Leu Lys Leu Leu Asp Gln Phe Leu Ser Glu
Asn Ser 130 135 140
Cys Phe Ser Ser Thr Ala Ser Ser Lys Val Asn Asn Gly Ile Asp Trp 145
150 155 160 Gln Glu Phe Ala Pro
Arg Ile Glu Asp Tyr Asn Asn Val Val Ala Lys 165
170 175 Ala Ile Ala Gly Gly Thr Gly His Ile Ile
Arg Gly Ile Phe Ser Leu 180 185
190 Ser Asn Ala Tyr Ser Asn Gln Val His Lys Gly Gly Asp Ile Met
Ile 195 200 205 Thr
Lys Ala Glu Glu Ser Gln Arg Asn Gly Ser Tyr Asn Asn Gly Asn 210
215 220 Ser Ser Gly Asn Glu Lys
Lys Asn Gly Ile Asn Thr His Leu Gln Arg 225 230
235 240 Val Arg Lys Leu Ser Lys Ala Thr Glu Asn Leu
Ser Lys Thr Met Leu 245 250
255 Asn Gly Ala Gly Val Val Ser Gly Ser Val Met Val Pro Met Met Lys
260 265 270 Ser Lys
Pro Gly Met Ala Phe Phe Ser Met Val Pro Gly Glu Val Leu 275
280 285 Leu Ala Ser Leu Asp Ala Leu
Asn Lys Ile Leu Asp Ala Thr Glu Ala 290 295
300 Ala Glu Arg Gln Thr Leu Ser Ala Thr Ser Arg Ala
Ala Thr Arg Met 305 310 315
320 Val Ser Glu Arg Phe Gly Asp Asn Ala Gly Glu Ala Thr Gly Asp Val
325 330 335 Leu Ala Thr
Ala Gly His Ala Ala Gly Thr Ala Trp Asn Val Leu Lys 340
345 350 Ile Arg Lys Thr Phe Tyr Pro Ser
Ser Ser Leu Thr Ser Gly Ile Val 355 360
365 Lys Asn Ala Pro Arg Lys 370
512952DNAArabidopsis thaliana 51atggcaagcc cacataagcc gtggagggcg
gagtatgcaa agtcgtcgag gtcttcatgt 60aaaacttgca agtccgtcat taacaaggag
aactttcgtc ttggaaagtt ggttcaatct 120actcacttcg atggcatcat gcccatgtgg
aaccatgctt cttgtatact aaagaagacg 180aagcagataa aatcagttga tgatgttgaa
ggcatagaat cacttcgttg ggaagatcag 240caaaagatta gaaaatatgt cgaatctgga
gcagggagta acacaagcac aagcacaggc 300acaagcacga gcagtaccgc taataatgcc
aaactagaat atgggattga agtgtcacaa 360acttctcgtg ccggttgcag aaagtgtagc
gaaaagatct tgaaaggaga ggtacgtata 420ttctccaagc ctgaaggccc gggtaacaaa
ggtttgatgt ggcatcacgc taaatgtttc 480cttgaaatgt cttcctctac tgaactggaa
agtttgtctg gatggagaag tataccagac 540tcagaccaag aagctcttct tcccttagtg
aagaaagctc tgccggcagc caaaactgag 600acagcagaag cacgtcaaac aaattcaaga
gcaggcacaa aacgaaaaaa tgattctgtt 660gataacgaga agtcgaaact agcaaaaagt
agttttgaca tgtctacaag tggtgcttta 720caaccttgta gcaaagaaaa ggaaatggag
gcccaaacta aggaattgtg ggacctgaag 780gatgatctga aaaaatatgt aacatcagct
gagttgcggg aaatgcttga agtaaatgaa 840caaagtacaa gaggatctga acttgatctg
cgtgataaat gtgctgatgg catgatgttt 900ggcccactcg ctctctgccc aatgtgctct
gggcatcttt ctttctccgg aggactttac 960cgatgccatg gatacatctc agaatggagc
aaatgttctc attccacttt ggatccagac 1020cgcatcaaag ggaagtggaa aatccctgac
gaaacagaaa atcaattcct tctgaagtgg 1080aataagtctc aaaagagtgt gaagccaaaa
cgtattctgc gtcctgtatt gtctggcgag 1140acatctcagg gtcaaggttc taaagatgca
actgactcct caaggagtga aaggctagca 1200gatcttaaag tttcaattgc tggaaatact
aaggaaaggc aaccatggaa gaagagaatt 1260gaggaagctg gtgcagagtt tcatgctaat
gttaaaaaag gtacaagctg tttggttgtt 1320tgtggactga cagatatcag agacgctgaa
atgagaaagg caaggaggat gaaagtggca 1380atcgtgagag aggattattt ggttgattgt
tttaaaaaac agaggaaact tccatttgac 1440aagtacaaaa ttgaagacac tagtgagagc
cttgtcactg ttaaagtaaa aggacgaagc 1500gctgtgcatg aagcgtctgg cctccaagag
cactgtcaca ttcttgaaga tgggaacagt 1560atctataaca caactctgag catgtctgat
ctctctaccg gtatcaatag ttattacata 1620ctccagataa tccaagaaga taaaggttca
gattgttacg tatttcgtaa atggggccga 1680gttggaaatg aaaagattgg tggtaacaaa
gtggaggaaa tgtcaaagtc tgatgcggtt 1740cacgaattca aacgtctatt tcttgaaaaa
accggaaaca catgggaatc ttgggaacaa 1800aaaacgaatt tccagaaaca acctggaaaa
tttctcccgt tggacattga ttatggagtt 1860aataagcaag tagccaaaaa agagccattt
cagaccagta gcaaccttgc tccatcatta 1920atagaattga tgaagatgct ttttgatgtg
gaaacttaca gatctgcaat gatggagttc 1980gagataaata tgtcagagat gccacttggg
aagctcagca aacataatat acagaagggt 2040tttgaggcat tgacggagat acagaggcta
ttgactgaaa gcgaccccca gcctactatg 2100aaagaaagct tgcttgttga tgctagtaac
agatttttta ccatgatccc ttctattcat 2160cctcatatta tccgagatga agatgacttt
aagtcaaagg tgaaaatgct cgaggctctg 2220caggatatcg aaatagcttc aagaatagtt
ggctttgatg ttgatagcac cgaatctctt 2280gatgataagt ataagaagct gcattgcgat
atctcaccac ttcctcatga tagcgaagat 2340tatcgattaa tcgagaagta tcttaacaca
actcatgccc caacgcatac agagtggagt 2400cttgagctag aggaagtttt tgctcttgaa
agagaaggag agtttgataa atatgctccc 2460cacagagaaa aacttggcaa taagatgctc
ctatggcatg gttctcgatt aacgaatttt 2520gttggaatat tgaaccaagg actgagaatt
gcacctccag aagctcctgc tactggttac 2580atgtttggaa aagggatata ctttgctgac
cttgtcagta aaagtgctca gtactgctac 2640acttgtaaga aaaatccggt gggtctaatg
cttctgagtg aagttgcatt gggagaaata 2700catgagctaa caaaagctaa gtatatggat
aaacctccga gagggaaaca ctcgaccaaa 2760gggctcggca agaaagtgcc tcaagattcc
gagtttgcca agtggagagg tgatgtgact 2820gttccctgtg gaaaacctgt ttcatcaaag
gtcaaggctt ctgagcttat gtacaatgag 2880tatatcgtct acgatacagc ccaggtgaag
ttgcagttct tgttgaaagt aaggtttaag 2940cacaagagat ag
295252983PRTArabidopsis thaliana 52Met
Ala Ser Pro His Lys Pro Trp Arg Ala Glu Tyr Ala Lys Ser Ser 1
5 10 15 Arg Ser Ser Cys Lys Thr
Cys Lys Ser Val Ile Asn Lys Glu Asn Phe 20
25 30 Arg Leu Gly Lys Leu Val Gln Ser Thr His
Phe Asp Gly Ile Met Pro 35 40
45 Met Trp Asn His Ala Ser Cys Ile Leu Lys Lys Thr Lys Gln
Ile Lys 50 55 60
Ser Val Asp Asp Val Glu Gly Ile Glu Ser Leu Arg Trp Glu Asp Gln 65
70 75 80 Gln Lys Ile Arg Lys
Tyr Val Glu Ser Gly Ala Gly Ser Asn Thr Ser 85
90 95 Thr Ser Thr Gly Thr Ser Thr Ser Ser Thr
Ala Asn Asn Ala Lys Leu 100 105
110 Glu Tyr Gly Ile Glu Val Ser Gln Thr Ser Arg Ala Gly Cys Arg
Lys 115 120 125 Cys
Ser Glu Lys Ile Leu Lys Gly Glu Val Arg Ile Phe Ser Lys Pro 130
135 140 Glu Gly Pro Gly Asn Lys
Gly Leu Met Trp His His Ala Lys Cys Phe 145 150
155 160 Leu Glu Met Ser Ser Ser Thr Glu Leu Glu Ser
Leu Ser Gly Trp Arg 165 170
175 Ser Ile Pro Asp Ser Asp Gln Glu Ala Leu Leu Pro Leu Val Lys Lys
180 185 190 Ala Leu
Pro Ala Ala Lys Thr Glu Thr Ala Glu Ala Arg Gln Thr Asn 195
200 205 Ser Arg Ala Gly Thr Lys Arg
Lys Asn Asp Ser Val Asp Asn Glu Lys 210 215
220 Ser Lys Leu Ala Lys Ser Ser Phe Asp Met Ser Thr
Ser Gly Ala Leu 225 230 235
240 Gln Pro Cys Ser Lys Glu Lys Glu Met Glu Ala Gln Thr Lys Glu Leu
245 250 255 Trp Asp Leu
Lys Asp Asp Leu Lys Lys Tyr Val Thr Ser Ala Glu Leu 260
265 270 Arg Glu Met Leu Glu Val Asn Glu
Gln Ser Thr Arg Gly Ser Glu Leu 275 280
285 Asp Leu Arg Asp Lys Cys Ala Asp Gly Met Met Phe Gly
Pro Leu Ala 290 295 300
Leu Cys Pro Met Cys Ser Gly His Leu Ser Phe Ser Gly Gly Leu Tyr 305
310 315 320 Arg Cys His Gly
Tyr Ile Ser Glu Trp Ser Lys Cys Ser His Ser Thr 325
330 335 Leu Asp Pro Asp Arg Ile Lys Gly Lys
Trp Lys Ile Pro Asp Glu Thr 340 345
350 Glu Asn Gln Phe Leu Leu Lys Trp Asn Lys Ser Gln Lys Ser
Val Lys 355 360 365
Pro Lys Arg Ile Leu Arg Pro Val Leu Ser Gly Glu Thr Ser Gln Gly 370
375 380 Gln Gly Ser Lys Asp
Ala Thr Asp Ser Ser Arg Ser Glu Arg Leu Ala 385 390
395 400 Asp Leu Lys Val Ser Ile Ala Gly Asn Thr
Lys Glu Arg Gln Pro Trp 405 410
415 Lys Lys Arg Ile Glu Glu Ala Gly Ala Glu Phe His Ala Asn Val
Lys 420 425 430 Lys
Gly Thr Ser Cys Leu Val Val Cys Gly Leu Thr Asp Ile Arg Asp 435
440 445 Ala Glu Met Arg Lys Ala
Arg Arg Met Lys Val Ala Ile Val Arg Glu 450 455
460 Asp Tyr Leu Val Asp Cys Phe Lys Lys Gln Arg
Lys Leu Pro Phe Asp 465 470 475
480 Lys Tyr Lys Ile Glu Asp Thr Ser Glu Ser Leu Val Thr Val Lys Val
485 490 495 Lys Gly
Arg Ser Ala Val His Glu Ala Ser Gly Leu Gln Glu His Cys 500
505 510 His Ile Leu Glu Asp Gly Asn
Ser Ile Tyr Asn Thr Thr Leu Ser Met 515 520
525 Ser Asp Leu Ser Thr Gly Ile Asn Ser Tyr Tyr Ile
Leu Gln Ile Ile 530 535 540
Gln Glu Asp Lys Gly Ser Asp Cys Tyr Val Phe Arg Lys Trp Gly Arg 545
550 555 560 Val Gly Asn
Glu Lys Ile Gly Gly Asn Lys Val Glu Glu Met Ser Lys 565
570 575 Ser Asp Ala Val His Glu Phe Lys
Arg Leu Phe Leu Glu Lys Thr Gly 580 585
590 Asn Thr Trp Glu Ser Trp Glu Gln Lys Thr Asn Phe Gln
Lys Gln Pro 595 600 605
Gly Lys Phe Leu Pro Leu Asp Ile Asp Tyr Gly Val Asn Lys Gln Val 610
615 620 Ala Lys Lys Glu
Pro Phe Gln Thr Ser Ser Asn Leu Ala Pro Ser Leu 625 630
635 640 Ile Glu Leu Met Lys Met Leu Phe Asp
Val Glu Thr Tyr Arg Ser Ala 645 650
655 Met Met Glu Phe Glu Ile Asn Met Ser Glu Met Pro Leu Gly
Lys Leu 660 665 670
Ser Lys His Asn Ile Gln Lys Gly Phe Glu Ala Leu Thr Glu Ile Gln
675 680 685 Arg Leu Leu Thr
Glu Ser Asp Pro Gln Pro Thr Met Lys Glu Ser Leu 690
695 700 Leu Val Asp Ala Ser Asn Arg Phe
Phe Thr Met Ile Pro Ser Ile His 705 710
715 720 Pro His Ile Ile Arg Asp Glu Asp Asp Phe Lys Ser
Lys Val Lys Met 725 730
735 Leu Glu Ala Leu Gln Asp Ile Glu Ile Ala Ser Arg Ile Val Gly Phe
740 745 750 Asp Val Asp
Ser Thr Glu Ser Leu Asp Asp Lys Tyr Lys Lys Leu His 755
760 765 Cys Asp Ile Ser Pro Leu Pro His
Asp Ser Glu Asp Tyr Arg Leu Ile 770 775
780 Glu Lys Tyr Leu Asn Thr Thr His Ala Pro Thr His Thr
Glu Trp Ser 785 790 795
800 Leu Glu Leu Glu Glu Val Phe Ala Leu Glu Arg Glu Gly Glu Phe Asp
805 810 815 Lys Tyr Ala Pro
His Arg Glu Lys Leu Gly Asn Lys Met Leu Leu Trp 820
825 830 His Gly Ser Arg Leu Thr Asn Phe Val
Gly Ile Leu Asn Gln Gly Leu 835 840
845 Arg Ile Ala Pro Pro Glu Ala Pro Ala Thr Gly Tyr Met Phe
Gly Lys 850 855 860
Gly Ile Tyr Phe Ala Asp Leu Val Ser Lys Ser Ala Gln Tyr Cys Tyr 865
870 875 880 Thr Cys Lys Lys Asn
Pro Val Gly Leu Met Leu Leu Ser Glu Val Ala 885
890 895 Leu Gly Glu Ile His Glu Leu Thr Lys Ala
Lys Tyr Met Asp Lys Pro 900 905
910 Pro Arg Gly Lys His Ser Thr Lys Gly Leu Gly Lys Lys Val Pro
Gln 915 920 925 Asp
Ser Glu Phe Ala Lys Trp Arg Gly Asp Val Thr Val Pro Cys Gly 930
935 940 Lys Pro Val Ser Ser Lys
Val Lys Ala Ser Glu Leu Met Tyr Asn Glu 945 950
955 960 Tyr Ile Val Tyr Asp Thr Ala Gln Val Lys Leu
Gln Phe Leu Leu Lys 965 970
975 Val Arg Phe Lys His Lys Arg 980
53192DNAGossypium hirsutum 53atggctgaca agtgtggcaa ctgcgattgc gctgacaaga
gccagtgtgt gaagaaagga 60aacagcttgg tcattgagac tgaggagagc tacatcagca
ccgtagtggt cgagcctctg 120gcagagaacg atggcaagtg caagtgcgga actagctgca
gctgcacaaa ctgcacatgt 180ggcagtcact ag
1925463PRTGossypium hirsutum 54Met Ala Asp Lys Cys
Gly Asn Cys Asp Cys Ala Asp Lys Ser Gln Cys 1 5
10 15 Val Lys Lys Gly Asn Ser Leu Val Ile Glu
Thr Glu Glu Ser Tyr Ile 20 25
30 Ser Thr Val Val Val Glu Pro Leu Ala Glu Asn Asp Gly Lys Cys
Lys 35 40 45 Cys
Gly Thr Ser Cys Ser Cys Thr Asn Cys Thr Cys Gly Ser His 50
55 60 55930DNATriticum aestivum
55atggcggctc tgctgatgcg taggctcgcc ggaacctacc gcggccgcgc gccgctggcc
60gccgccgccg ttggcggggc cgcgctcttc tacgcctcgt cgaaccccac catcgcgcac
120atggaggaga agggggaaga tgccgctgcc aaagttgctc ttaaccctga gaaatggtta
180gaattcaagc tccaggagaa ggcaacagtt agtcatgatt cagagctatt cagattttcg
240tttgacccat ctactaagct gggtctggat gttgcctcat gtctcgtaac aagggccccc
300ataggtcagg aagtggaggg aaaaagaaaa tacgttattc gcccgtacac acctatctct
360gacccagatt ctaaaggata tttcgaccta ttaatcaagg tttatcccga agggaaaatg
420tctcagcatt ttgctaattt gaagccagga gatgttctcg aagtcaaagg gcccattgaa
480aagctcagat atagcccaaa tatgaaaaga caaattggca tggttgctgg tggtactggc
540ataacgccaa tgctgcaagt tgttagggcc atcctgaaaa accctgatga caacactcag
600gtttccttga tctacgccaa tgtgtcacca gatgatatct tgctgaaaaa ggagttagat
660agacttgcta gcagctatcc taatttcaag gtattttata cagtcgataa accatcaagt
720gactggaggg gtggtgttgg ctacatatca aaggacatgg ttttgaaagg tttgccaggc
780ccaggggagg attctcttat tcttgtttgt ggtcctcctg gaatgatgaa tcacatatct
840ggagataagg caaaggatta ttcacagggc gaggtcactg gccttctcaa agatttagga
900tacacggcag atatggtata caaattttag
93056309PRTTriticum aestivum 56Met Ala Ala Leu Leu Met Arg Arg Leu Ala
Gly Thr Tyr Arg Gly Arg 1 5 10
15 Ala Pro Leu Ala Ala Ala Ala Val Gly Gly Ala Ala Leu Phe Tyr
Ala 20 25 30 Ser
Ser Asn Pro Thr Ile Ala His Met Glu Glu Lys Gly Glu Asp Ala 35
40 45 Ala Ala Lys Val Ala Leu
Asn Pro Glu Lys Trp Leu Glu Phe Lys Leu 50 55
60 Gln Glu Lys Ala Thr Val Ser His Asp Ser Glu
Leu Phe Arg Phe Ser 65 70 75
80 Phe Asp Pro Ser Thr Lys Leu Gly Leu Asp Val Ala Ser Cys Leu Val
85 90 95 Thr Arg
Ala Pro Ile Gly Gln Glu Val Glu Gly Lys Arg Lys Tyr Val 100
105 110 Ile Arg Pro Tyr Thr Pro Ile
Ser Asp Pro Asp Ser Lys Gly Tyr Phe 115 120
125 Asp Leu Leu Ile Lys Val Tyr Pro Glu Gly Lys Met
Ser Gln His Phe 130 135 140
Ala Asn Leu Lys Pro Gly Asp Val Leu Glu Val Lys Gly Pro Ile Glu 145
150 155 160 Lys Leu Arg
Tyr Ser Pro Asn Met Lys Arg Gln Ile Gly Met Val Ala 165
170 175 Gly Gly Thr Gly Ile Thr Pro Met
Leu Gln Val Val Arg Ala Ile Leu 180 185
190 Lys Asn Pro Asp Asp Asn Thr Gln Val Ser Leu Ile Tyr
Ala Asn Val 195 200 205
Ser Pro Asp Asp Ile Leu Leu Lys Lys Glu Leu Asp Arg Leu Ala Ser 210
215 220 Ser Tyr Pro Asn
Phe Lys Val Phe Tyr Thr Val Asp Lys Pro Ser Ser 225 230
235 240 Asp Trp Arg Gly Gly Val Gly Tyr Ile
Ser Lys Asp Met Val Leu Lys 245 250
255 Gly Leu Pro Gly Pro Gly Glu Asp Ser Leu Ile Leu Val Cys
Gly Pro 260 265 270
Pro Gly Met Met Asn His Ile Ser Gly Asp Lys Ala Lys Asp Tyr Ser
275 280 285 Gln Gly Glu Val
Thr Gly Leu Leu Lys Asp Leu Gly Tyr Thr Ala Asp 290
295 300 Met Val Tyr Lys Phe 305
572199DNAArabidopsis thaliana 57atgagtaatc agaagaagag gaattttcag
atagaggcgt ttaagcatcg agtcgttgtg 60gatcccaaat acgctgataa aacttggcag
attcttgagc gtgcgatcca tcagatttac 120aatcaagatg ctagcggtct cagtttcgaa
gaactttaca gaaatgcgta caacatggtc 180ctgcacaagt ttggtgagaa gctatatact
gggtttattg ctactatgac ttctcatctc 240aaagaaaaat ccaagcttat cgaggcagct
cagggagggt cgtttctaga agagcttaat 300aagaaatgga atgagcacaa caaagcgtta
gagatgattc gagacattct catgtatatg 360gataggactt atattgagag caccaaaaag
actcatgttc atccgatggg gcttaacttg 420tggagggata atgttgtgca tttcactaag
atacatacaa ggcttctaaa cactcttctt 480gatctagtgc agaaggaacg gataggtgaa
gttattgata gggggttgat gaggaatgtc 540attaagatgt ttatggattt gggtgaatct
gtgtatcagg aggattttga gaagccgttt 600ttggatgcgt cttctgagtt ttataaggtt
gagtctcagg agtttattga atcttgtgat 660tgtggggact atctgaagaa atcagagaaa
cgccttactg aagagataga gagggtagcg 720cactacttag atgccaagag cgaagagaag
attactagtg tggttgagaa agagatgatt 780gccaaccaca tgcagagact ggttcacatg
gagaactcag gtctggttaa tatgcttctg 840aatgacaagt atgaggattt gggtagaatg
tacaacttgt ttcgcagggt tactaatggt 900cttgttactg tcagagacgt tatgacttcg
catcttaggg agatgggaaa acaactggtt 960actgatccgg aaaagtcaaa ggatccggtg
gaatttgtac aacgtctatt ggatgagcgg 1020gataaatatg acaaaatcat caacaccgca
tttggcaatg ataaaacctt tcagaatgcc 1080ctgaattctt cattcgagta tttcatcaac
ttgaatgctc gttctcctga gtttatctcc 1140ctgtttgttg atgacaagct acggaaagga
cttaagggta tcaccgatgt ggatgttgag 1200gttatccttg ataaagtgat gatgctgttc
cgttatttac aagagaaaga tgtctttgag 1260aagtactaca agcagcattt ggctaaaagg
cttctctcag gcaaaactgt gtcagatgac 1320gcagaaagga gtttaatagt gaaactaaag
acagaatgtg gctatcagtt cacttcaaaa 1380ttggaaggca tgttcactga catgaagact
tcagaggaca caatgcgtgg gttttatggc 1440agtcaccccg agctttcaga aggacctaca
cttattgttc aggtacttac aactggttct 1500tggccaacac agcctgcagt accttgtaat
ctcccagctg aagtttcagt tctctgtgag 1560aagttccgtt cttactacct tgggacacat
accggtagaa gattgtcctg gcaaacaaac 1620atgggcacag cagatatcaa agccatcttt
ggaaagggtc agaaacatga actgaacgtg 1680tcgactttcc agatgtgtgt tctcatgttg
ttcaacaatt ctgatcgact cagctacaaa 1740gagatcgaac aggctacaga aatcccggca
gcagatctta aacgctgttt gcagtcgcta 1800gcttgtgtaa agggcaaaaa cgtgataaag
aaagaaccca tgagcaaaga cataggagag 1860gaggatttgt tcgttgtgaa cgacaagttc
actagcaagt tttacaaagt gaagatcgga 1920actgtggttg cccaaaagga aacagaaccg
gagaagcaag agacgagaca gagagtggag 1980gaagacagaa aacctcagat tgaagcagcc
atcgtaagga tcatgaagtc caggaaaata 2040ctagaccaca acaacataat cgccgaggtg
acgaaacagt tgcagccacg gttcctagct 2100aatcccacgg agataaagaa gagaatcgag
tcgctcattg aacgagattt cttggaaagg 2160gatagtacag accggaaact ttaccgctat
ctagcctag 219958732PRTArabidopsis thaliana 58Met
Ser Asn Gln Lys Lys Arg Asn Phe Gln Ile Glu Ala Phe Lys His 1
5 10 15 Arg Val Val Val Asp Pro
Lys Tyr Ala Asp Lys Thr Trp Gln Ile Leu 20
25 30 Glu Arg Ala Ile His Gln Ile Tyr Asn Gln
Asp Ala Ser Gly Leu Ser 35 40
45 Phe Glu Glu Leu Tyr Arg Asn Ala Tyr Asn Met Val Leu His
Lys Phe 50 55 60
Gly Glu Lys Leu Tyr Thr Gly Phe Ile Ala Thr Met Thr Ser His Leu 65
70 75 80 Lys Glu Lys Ser Lys
Leu Ile Glu Ala Ala Gln Gly Gly Ser Phe Leu 85
90 95 Glu Glu Leu Asn Lys Lys Trp Asn Glu His
Asn Lys Ala Leu Glu Met 100 105
110 Ile Arg Asp Ile Leu Met Tyr Met Asp Arg Thr Tyr Ile Glu Ser
Thr 115 120 125 Lys
Lys Thr His Val His Pro Met Gly Leu Asn Leu Trp Arg Asp Asn 130
135 140 Val Val His Phe Thr Lys
Ile His Thr Arg Leu Leu Asn Thr Leu Leu 145 150
155 160 Asp Leu Val Gln Lys Glu Arg Ile Gly Glu Val
Ile Asp Arg Gly Leu 165 170
175 Met Arg Asn Val Ile Lys Met Phe Met Asp Leu Gly Glu Ser Val Tyr
180 185 190 Gln Glu
Asp Phe Glu Lys Pro Phe Leu Asp Ala Ser Ser Glu Phe Tyr 195
200 205 Lys Val Glu Ser Gln Glu Phe
Ile Glu Ser Cys Asp Cys Gly Asp Tyr 210 215
220 Leu Lys Lys Ser Glu Lys Arg Leu Thr Glu Glu Ile
Glu Arg Val Ala 225 230 235
240 His Tyr Leu Asp Ala Lys Ser Glu Glu Lys Ile Thr Ser Val Val Glu
245 250 255 Lys Glu Met
Ile Ala Asn His Met Gln Arg Leu Val His Met Glu Asn 260
265 270 Ser Gly Leu Val Asn Met Leu Leu
Asn Asp Lys Tyr Glu Asp Leu Gly 275 280
285 Arg Met Tyr Asn Leu Phe Arg Arg Val Thr Asn Gly Leu
Val Thr Val 290 295 300
Arg Asp Val Met Thr Ser His Leu Arg Glu Met Gly Lys Gln Leu Val 305
310 315 320 Thr Asp Pro Glu
Lys Ser Lys Asp Pro Val Glu Phe Val Gln Arg Leu 325
330 335 Leu Asp Glu Arg Asp Lys Tyr Asp Lys
Ile Ile Asn Thr Ala Phe Gly 340 345
350 Asn Asp Lys Thr Phe Gln Asn Ala Leu Asn Ser Ser Phe Glu
Tyr Phe 355 360 365
Ile Asn Leu Asn Ala Arg Ser Pro Glu Phe Ile Ser Leu Phe Val Asp 370
375 380 Asp Lys Leu Arg Lys
Gly Leu Lys Gly Ile Thr Asp Val Asp Val Glu 385 390
395 400 Val Ile Leu Asp Lys Val Met Met Leu Phe
Arg Tyr Leu Gln Glu Lys 405 410
415 Asp Val Phe Glu Lys Tyr Tyr Lys Gln His Leu Ala Lys Arg Leu
Leu 420 425 430 Ser
Gly Lys Thr Val Ser Asp Asp Ala Glu Arg Ser Leu Ile Val Lys 435
440 445 Leu Lys Thr Glu Cys Gly
Tyr Gln Phe Thr Ser Lys Leu Glu Gly Met 450 455
460 Phe Thr Asp Met Lys Thr Ser Glu Asp Thr Met
Arg Gly Phe Tyr Gly 465 470 475
480 Ser His Pro Glu Leu Ser Glu Gly Pro Thr Leu Ile Val Gln Val Leu
485 490 495 Thr Thr
Gly Ser Trp Pro Thr Gln Pro Ala Val Pro Cys Asn Leu Pro 500
505 510 Ala Glu Val Ser Val Leu Cys
Glu Lys Phe Arg Ser Tyr Tyr Leu Gly 515 520
525 Thr His Thr Gly Arg Arg Leu Ser Trp Gln Thr Asn
Met Gly Thr Ala 530 535 540
Asp Ile Lys Ala Ile Phe Gly Lys Gly Gln Lys His Glu Leu Asn Val 545
550 555 560 Ser Thr Phe
Gln Met Cys Val Leu Met Leu Phe Asn Asn Ser Asp Arg 565
570 575 Leu Ser Tyr Lys Glu Ile Glu Gln
Ala Thr Glu Ile Pro Ala Ala Asp 580 585
590 Leu Lys Arg Cys Leu Gln Ser Leu Ala Cys Val Lys Gly
Lys Asn Val 595 600 605
Ile Lys Lys Glu Pro Met Ser Lys Asp Ile Gly Glu Glu Asp Leu Phe 610
615 620 Val Val Asn Asp
Lys Phe Thr Ser Lys Phe Tyr Lys Val Lys Ile Gly 625 630
635 640 Thr Val Val Ala Gln Lys Glu Thr Glu
Pro Glu Lys Gln Glu Thr Arg 645 650
655 Gln Arg Val Glu Glu Asp Arg Lys Pro Gln Ile Glu Ala Ala
Ile Val 660 665 670
Arg Ile Met Lys Ser Arg Lys Ile Leu Asp His Asn Asn Ile Ile Ala
675 680 685 Glu Val Thr Lys
Gln Leu Gln Pro Arg Phe Leu Ala Asn Pro Thr Glu 690
695 700 Ile Lys Lys Arg Ile Glu Ser Leu
Ile Glu Arg Asp Phe Leu Glu Arg 705 710
715 720 Asp Ser Thr Asp Arg Lys Leu Tyr Arg Tyr Leu Ala
725 730 59168PRTArabidopsis
thaliana 59Met Leu Val Tyr Gln Asp Leu Leu Thr Gly Asp Glu Leu Leu Ser
Asp 1 5 10 15 Ser
Phe Pro Tyr Lys Glu Ile Glu Asn Gly Ile Leu Trp Glu Val Glu
20 25 30 Gly Lys Trp Val Thr
Val Gly Ala Val Asp Val Asn Ile Gly Ala Asn 35
40 45 Pro Ser Ala Glu Glu Gly Gly Glu Asp
Glu Gly Val Asp Asp Ser Ala 50 55
60 Gln Lys Val Val Asp Ile Val Asp Thr Phe Arg Leu Gln
Glu Gln Pro 65 70 75
80 Thr Tyr Asp Lys Lys Gly Phe Ile Ala Tyr Ile Lys Lys Tyr Ile Lys
85 90 95 Leu Leu Thr Pro
Lys Leu Ser Glu Glu Asp Gln Ala Val Phe Lys Lys 100
105 110 Gly Ile Glu Gly Ala Thr Lys Phe Leu
Leu Pro Arg Leu Ser Asp Phe 115 120
125 Gln Phe Phe Val Gly Glu Gly Met His Asp Asp Ser Thr Leu
Val Phe 130 135 140
Ala Tyr Tyr Lys Glu Gly Ser Thr Asn Pro Thr Phe Leu Tyr Phe Ala 145
150 155 160 His Gly Leu Lys Glu
Val Lys Cys 165 601161PRTZea mays 60Met Ala
Ser Gly Ser Arg Ala Thr Pro Thr Arg Ser Pro Ser Ser Ala 1 5
10 15 Arg Pro Glu Ala Pro Arg His
Ala His His His His His Ser Gln Ser 20 25
30 Ser Gly Gly Ser Thr Ser Arg Ala Gly Gly Gly Ala
Ala Ala Thr Glu 35 40 45
Ser Val Ser Lys Ala Val Ala Gln Tyr Thr Leu Asp Ala Arg Leu His
50 55 60 Ala Val Phe
Glu Gln Ser Gly Ala Ser Gly Arg Ser Phe Asp Tyr Ser 65
70 75 80 Gln Ser Leu Arg Ala Pro Pro
Thr Pro Ser Ser Glu Gln Gln Ile Ala 85
90 95 Ala Tyr Leu Ser Arg Ile Gln Arg Gly Gly His
Ile Gln Pro Phe Gly 100 105
110 Cys Thr Leu Ala Val Ala Asp Asp Ser Ser Phe Arg Leu Leu Ala
Phe 115 120 125 Ser
Glu Asn Ser Pro Asp Leu Leu Asp Leu Ser Pro His His Ser Val 130
135 140 Pro Ser Leu Asp Ser Ser
Ala Pro Pro His Val Ser Leu Gly Ala Asp 145 150
155 160 Ala Arg Leu Leu Phe Ser Pro Ser Ser Ala Val
Leu Leu Glu Arg Ala 165 170
175 Phe Ala Ala Arg Glu Ile Ser Leu Leu Asn Pro Ile Trp Ile His Ser
180 185 190 Arg Val
Ser Ser Lys Pro Phe Tyr Ala Ile Leu His Arg Ile Asp Val 195
200 205 Gly Val Val Ile Asp Leu Glu
Pro Ala Arg Thr Glu Asp Pro Ala Leu 210 215
220 Ser Ile Ala Gly Ala Val Gln Ser Gln Lys Leu Ala
Val Arg Ala Ile 225 230 235
240 Ser Arg Leu Gln Ala Leu Pro Gly Gly Asp Val Lys Leu Leu Cys Asp
245 250 255 Thr Val Val
Glu His Val Arg Glu Leu Thr Gly Tyr Asp Arg Val Met 260
265 270 Val Tyr Arg Phe His Glu Asp Glu
His Gly Glu Val Val Ala Glu Ser 275 280
285 Arg Arg Asp Asn Leu Glu Pro Tyr Leu Gly Leu His Tyr
Pro Ala Thr 290 295 300
Asp Ile Pro Gln Ala Ser Arg Phe Leu Phe Arg Gln Asn Arg Val Arg 305
310 315 320 Met Ile Ala Asp
Cys His Ala Thr Pro Val Arg Val Ile Gln Asp Pro 325
330 335 Gly Leu Ser Gln Pro Leu Cys Leu Val
Gly Ser Thr Leu Arg Ala Pro 340 345
350 His Gly Cys His Ala Gln Tyr Met Ala Asn Met Gly Ser Ile
Ala Ser 355 360 365
Leu Val Met Ala Val Ile Ile Ser Ser Gly Gly Asp Asp Glu Gln Thr 370
375 380 Gly Arg Gly Gly Ile
Ser Ser Ala Met Lys Leu Trp Gly Leu Val Val 385 390
395 400 Cys His His Thr Ser Pro Arg Cys Ile Pro
Phe Pro Leu Arg Tyr Ala 405 410
415 Cys Glu Phe Leu Met Gln Ala Phe Gly Leu Gln Leu Asn Met Glu
Leu 420 425 430 Gln
Leu Ala His Gln Leu Ser Glu Lys His Ile Leu Arg Thr Gln Thr 435
440 445 Leu Leu Cys Asp Met Leu
Leu Arg Asp Ser Pro Thr Gly Ile Val Thr 450 455
460 Gln Ser Pro Ser Ile Met Asp Leu Val Lys Cys
Asp Gly Ala Ala Leu 465 470 475
480 Tyr Tyr His Gly Lys Tyr Tyr Pro Leu Gly Val Thr Pro Thr Glu Ser
485 490 495 Gln Ile
Lys Asp Ile Ile Glu Trp Leu Thr Val Phe His Gly Asp Ser 500
505 510 Thr Gly Leu Ser Thr Asp Ser
Leu Ala Asp Ala Gly Tyr Leu Gly Ala 515 520
525 Ala Ala Leu Gly Glu Ala Val Cys Gly Met Ala Val
Ala Tyr Ile Thr 530 535 540
Pro Ser Asp Tyr Leu Phe Trp Phe Arg Ser His Thr Ala Lys Glu Ile 545
550 555 560 Lys Trp Gly
Gly Ala Lys His His Pro Glu Asp Lys Asp Asp Gly Gln 565
570 575 Arg Met His Pro Arg Ser Ser Phe
Lys Ala Phe Leu Glu Val Val Lys 580 585
590 Ser Arg Ser Leu Pro Trp Glu Asn Ala Glu Met Asp Ala
Ile His Ser 595 600 605
Leu Gln Leu Ile Leu Arg Asp Ser Phe Arg Asp Ala Ala Glu Gly Thr 610
615 620 Asn Asn Ser Lys
Ala Ile Val Asn Gly Gln Val Gln Leu Arg Glu Leu 625 630
635 640 Glu Leu Arg Gly Ile Asn Glu Leu Ser
Ser Val Ala Arg Glu Met Val 645 650
655 Arg Leu Ile Glu Thr Ala Thr Val Pro Ile Phe Ala Val Asp
Thr Asp 660 665 670
Gly Cys Ile Asn Gly Trp Asn Ala Lys Ile Ala Glu Leu Thr Gly Leu
675 680 685 Ser Val Glu Glu
Ala Met Gly Lys Ser Leu Val Asn Asp Leu Ile Phe 690
695 700 Lys Glu Ser Glu Ala Thr Val Glu
Lys Leu Leu Ser Arg Ala Leu Arg 705 710
715 720 Gly Glu Glu Asp Lys Asn Val Glu Ile Lys Leu Lys
Thr Phe Gly Ser 725 730
735 Glu Gln Ser Lys Gly Pro Ile Phe Val Val Val Asn Ala Cys Ser Ser
740 745 750 Arg Asp Tyr
Thr Gln Asn Ile Val Gly Val Cys Phe Val Gly Gln Asp 755
760 765 Val Thr Gly Gln Lys Val Val Met
Asp Lys Phe Val Asn Ile Gln Gly 770 775
780 Asp Tyr Lys Ala Ile Val His Asn Pro Asn Pro Leu Ile
Pro Pro Ile 785 790 795
800 Phe Ala Ser Asp Glu Asn Thr Ser Cys Ser Glu Trp Asn Thr Ala Met
805 810 815 Glu Lys Leu Thr
Gly Trp Ser Arg Gly Glu Val Val Gly Lys Phe Leu 820
825 830 Ile Gly Glu Val Phe Gly Asn Cys Cys
Arg Leu Lys Gly Pro Asp Ala 835 840
845 Leu Thr Lys Phe Met Val Ile Ile His Asn Ala Ile Gly Gly
Gln Asp 850 855 860
Tyr Glu Lys Phe Pro Phe Ser Phe Phe Asp Lys Asn Gly Lys Tyr Val 865
870 875 880 Gln Ala Leu Leu Thr
Ala Asn Thr Arg Ser Lys Met Asp Gly Lys Ser 885
890 895 Ile Gly Ala Phe Cys Phe Leu Gln Ile Ala
Ser Thr Glu Ile Gln Gln 900 905
910 Ala Phe Glu Ile Gln Arg Gln Gln Glu Lys Lys Cys Tyr Ala Arg
Met 915 920 925 Lys
Glu Leu Ala Tyr Ile Cys Gln Glu Ile Lys Asn Pro Leu Ser Gly 930
935 940 Ile Arg Phe Thr Asn Ser
Leu Leu Gln Met Thr Asp Leu Asn Asp Asp 945 950
955 960 Gln Arg Gln Phe Leu Glu Thr Ser Ser Ala Cys
Glu Lys Gln Met Ser 965 970
975 Lys Ile Val Lys Asp Ala Ser Leu Gln Ser Ile Glu Asp Gly Ser Leu
980 985 990 Val Leu
Glu Gln Ser Glu Phe Ser Leu Gly Asp Val Met Asn Ala Val 995
1000 1005 Val Ser Gln Ala Met
Leu Leu Leu Arg Glu Arg Asp Leu Gln Leu 1010 1015
1020 Ile Arg Asp Ile Pro Asp Glu Ile Lys Asp
Ala Ser Ala Tyr Gly 1025 1030 1035
Asp Gln Cys Arg Ile Gln Gln Val Leu Ala Asp Phe Leu Leu Ser
1040 1045 1050 Met Val
Arg Ser Ala Pro Ser Glu Asn Gly Trp Val Glu Ile Gln 1055
1060 1065 Val Arg Pro Asn Val Lys Gln
Asn Ser Asp Gly Thr Asn Thr Glu 1070 1075
1080 Leu Phe Ile Phe Arg Phe Ala Cys Pro Gly Glu Gly
Leu Pro Ala 1085 1090 1095
Asp Val Val Gln Asp Met Phe Ser Asn Ser Gln Trp Ser Thr Gln 1100
1105 1110 Glu Gly Val Gly Leu
Ser Thr Cys Arg Lys Ile Leu Lys Leu Met 1115 1120
1125 Gly Gly Glu Val Gln Tyr Ile Arg Glu Ser
Glu Arg Ser Phe Phe 1130 1135 1140
Leu Ile Val Leu Glu Gln Pro Gln Pro Arg Pro Ala Ala Gly Arg
1145 1150 1155 Glu Ile
Val 1160 61783PRTZea mays 61Met Ala Ser Gly Ser Arg Ala Thr Pro
Thr Arg Ser Pro Ser Ser Ala 1 5 10
15 Arg Pro Glu Ala Pro Arg His Ala His His His His His Ser
Gln Ser 20 25 30
Ser Gly Gly Ser Thr Ser Arg Ala Gly Gly Gly Ala Ala Ala Thr Glu
35 40 45 Ser Val Ser Lys
Ala Val Ala Gln Tyr Thr Leu Asp Ala Arg Leu His 50
55 60 Ala Val Phe Glu Gln Ser Gly Ala
Ser Gly Arg Ser Phe Asp Tyr Ser 65 70
75 80 Gln Ser Leu Arg Ala Pro Pro Thr Pro Ser Ser Glu
Gln Gln Ile Ala 85 90
95 Ala Tyr Leu Ser Arg Ile Gln Arg Gly Gly His Ile Gln Pro Phe Gly
100 105 110 Cys Thr Leu
Ala Val Ala Asp Asp Ser Ser Phe Arg Leu Leu Ala Phe 115
120 125 Ser Glu Asn Ser Pro Asp Leu Leu
Asp Leu Ser Pro His His Ser Val 130 135
140 Pro Ser Leu Asp Ser Ser Ala Pro Pro His Val Ser Leu
Gly Ala Asp 145 150 155
160 Ala Arg Leu Leu Phe Ser Pro Ser Ser Ala Val Leu Leu Glu Arg Ala
165 170 175 Phe Ala Ala Arg
Glu Ile Ser Leu Leu Asn Pro Ile Trp Ile His Ser 180
185 190 Arg Val Ser Ser Lys Pro Phe Tyr Ala
Ile Leu His Arg Ile Asp Val 195 200
205 Gly Val Val Ile Asp Leu Glu Pro Ala Arg Thr Glu Asp Pro
Ala Leu 210 215 220
Ser Ile Ala Gly Ala Val Gln Ser Gln Lys Leu Ala Val Arg Ala Ile 225
230 235 240 Ser Arg Leu Gln Ala
Leu Pro Gly Gly Asp Val Lys Leu Leu Cys Asp 245
250 255 Thr Val Val Glu His Val Arg Glu Leu Thr
Gly Tyr Asp Arg Val Met 260 265
270 Val Tyr Arg Phe His Glu Asp Glu His Gly Glu Val Val Ala Glu
Ser 275 280 285 Arg
Arg Asp Asn Leu Glu Pro Tyr Leu Gly Leu His Tyr Pro Ala Thr 290
295 300 Asp Ile Pro Gln Ala Ser
Arg Phe Leu Phe Arg Gln Asn Arg Val Arg 305 310
315 320 Met Ile Ala Asp Cys His Ala Thr Pro Val Arg
Val Ile Gln Asp Pro 325 330
335 Gly Leu Ser Gln Pro Leu Cys Leu Val Gly Ser Thr Leu Arg Ala Pro
340 345 350 His Gly
Cys His Ala Gln Tyr Met Ala Asn Met Gly Ser Ile Ala Ser 355
360 365 Leu Val Met Ala Val Ile Ile
Ser Ser Gly Gly Asp Asp Glu Gln Thr 370 375
380 Gly Arg Gly Gly Ile Ser Ser Ala Met Lys Leu Trp
Gly Leu Val Val 385 390 395
400 Cys His His Thr Ser Pro Arg Cys Ile Pro Phe Pro Leu Arg Tyr Ala
405 410 415 Cys Glu Phe
Leu Met Gln Ala Phe Gly Leu Gln Leu Asn Met Glu Leu 420
425 430 Gln Leu Ala His Gln Leu Ser Glu
Lys His Ile Leu Arg Thr Gln Thr 435 440
445 Leu Leu Cys Asp Met Leu Leu Arg Asp Ser Pro Thr Gly
Ile Val Thr 450 455 460
Gln Ser Pro Ser Ile Met Asp Leu Val Lys Cys Asp Gly Ala Ala Leu 465
470 475 480 Tyr Tyr His Gly
Lys Tyr Tyr Pro Leu Gly Val Thr Pro Thr Glu Ser 485
490 495 Gln Ile Lys Asp Ile Ile Glu Trp Leu
Thr Val Phe His Gly Asp Ser 500 505
510 Thr Gly Leu Ser Thr Asp Ser Leu Ala Asp Ala Gly Tyr Leu
Gly Ala 515 520 525
Ala Ala Leu Gly Glu Ala Val Cys Gly Met Ala Val Ala Tyr Ile Thr 530
535 540 Pro Ser Asp Tyr Leu
Phe Trp Phe Arg Ser His Thr Ala Lys Glu Ile 545 550
555 560 Lys Trp Gly Gly Ala Lys His His Pro Glu
Asp Lys Asp Asp Gly Gln 565 570
575 Arg Met His Pro Arg Ser Ser Phe Lys Ala Phe Leu Glu Val Val
Lys 580 585 590 Ser
Arg Ser Leu Pro Trp Glu Asn Ala Glu Met Asp Ala Ile His Ser 595
600 605 Leu Gln Leu Ile Leu Arg
Asp Ser Phe Arg Asp Ala Ala Glu Gly Thr 610 615
620 Asn Asn Ser Lys Ala Ile Val Asn Gly Gln Val
Gln Leu Arg Glu Leu 625 630 635
640 Glu Leu Arg Gly Ile Asn Glu Leu Ser Ser Val Ala Arg Glu Met Val
645 650 655 Arg Leu
Ile Glu Thr Ala Thr Val Pro Ile Phe Ala Val Asp Thr Asp 660
665 670 Gly Cys Ile Asn Gly Trp Asn
Ala Lys Ile Ala Glu Leu Thr Gly Leu 675 680
685 Ser Val Glu Glu Ala Met Gly Lys Ser Leu Val Asn
Asp Leu Ile Phe 690 695 700
Lys Glu Ser Glu Ala Thr Val Glu Lys Leu Leu Ser Arg Ala Leu Arg 705
710 715 720 Gly Glu Glu
Asp Lys Asn Val Glu Ile Lys Leu Lys Thr Phe Gly Ser 725
730 735 Glu Gln Ser Lys Gly Pro Ile Phe
Val Val Val Asn Ala Cys Ser Ser 740 745
750 Arg Asp Tyr Thr Gln Asn Ile Val Gly Val Cys Phe Val
Gly Gln Asp 755 760 765
Val Thr Gly Gln Lys Val Val Met Asp Lys Phe Val Asn Ile Gln 770
775 780 62466PRTArabidopsis
lyrata 62Met Met Lys Val Val Ser Pro Arg Thr Arg Ser Asp Ser Ile Thr Glu
1 5 10 15 Lys Val
Phe Arg Arg Val Tyr Ser Asn Phe Asn Ile Ser Thr Val Glu 20
25 30 Asp Glu Tyr Ile His Arg Gln
Arg Ser Ser Asp Tyr Glu Lys Glu Ser 35 40
45 Arg Leu Arg Lys Arg Gly Leu Glu Glu Lys Glu Glu
Val Met Glu Met 50 55 60
Glu Gln Met Gly Ala Glu Arg Ile Lys Thr Val Leu Ile Leu Met Ser 65
70 75 80 Asp Thr Gly
Gly Gly His Arg Ala Ser Ala Glu Ala Ile Arg Asp Ala 85
90 95 Phe Lys Ile Glu Phe Gly Asp Asp
Tyr Arg Ile Ile Ile Lys Asp Val 100 105
110 Trp Lys Glu Tyr Thr Gly Trp Pro Leu Asn Asp Met Glu
Arg Gln Tyr 115 120 125
Lys Phe Met Val Lys His Val Gly Leu Trp Ser Val Ala Phe His Gly 130
135 140 Thr Ser Pro Lys
Trp Ile His Lys Ser Tyr Leu Ser Ala Leu Ala Ala 145 150
155 160 Tyr Tyr Ala Lys Glu Ile Glu Ala Gly
Leu Met Glu Tyr Lys Pro Asp 165 170
175 Ile Ile Ile Ser Val His Pro Leu Met Gln His Ile Pro Leu
Trp Val 180 185 190
Met Lys Trp Gln Gly Leu His Lys Lys Val Ile Phe Val Thr Val Ile
195 200 205 Thr Asp Leu Asn
Thr Cys His Arg Thr Trp Phe His His Gly Val Ser 210
215 220 Arg Cys Tyr Cys Pro Ser Lys Glu
Val Ala Lys Arg Ala Leu Val Asp 225 230
235 240 Gly Leu Asp Asp Ser Gln Ile Arg Val Phe Gly Leu
Pro Val Arg Pro 245 250
255 Ser Phe Pro Arg Thr Ile Ile Tyr Lys Asp Glu Leu Arg Arg Glu Leu
260 265 270 Glu Ile Asp
Leu Asn Leu Pro Ala Val Leu Leu Met Gly Gly Gly Glu 275
280 285 Gly Met Gly Pro Val Gln Lys Thr
Ala Leu Ala Leu Gly Asp Ala Leu 290 295
300 Tyr Asn Ser Lys Glu Arg Asn Pro Ile Gly Gln Leu Ile
Val Ile Cys 305 310 315
320 Gly Arg Asn Lys Val Leu Ala Ser Ala Leu Ala Ser His Glu Trp Lys
325 330 335 Ile Pro Val Lys
Val Arg Gly Phe Glu Thr Gln Met Glu Lys Trp Met 340
345 350 Gly Ala Cys Asp Cys Ile Ile Thr Lys
Ala Gly Pro Gly Thr Ile Ala 355 360
365 Glu Ala Leu Ile Cys Gly Leu Pro Ile Ile Leu Asn Asp Tyr
Ile Pro 370 375 380
Gly Gln Glu Lys Gly Asn Val Pro Tyr Val Val Asp Asn Gly Ala Gly 385
390 395 400 Val Phe Thr Arg Ser
Pro Lys Glu Thr Ala Lys Ile Val Ala Asn Trp 405
410 415 Phe Ser Asn Asn Lys Glu Glu Leu Lys Lys
Met Ser Glu Asn Ala Leu 420 425
430 Lys Leu Ala Gln Pro Glu Ala Val Phe Asp Ile Val Lys Asp Ile
His 435 440 445 His
Leu Ser Gln Gln Gln Gln Gln Arg Ile Pro Leu Phe Asn Asp Phe 450
455 460 Ser Tyr 465
63719PRTArabidopsis lyrata 63Met Asp Gly Ile Lys Leu Ser Phe Pro Pro Glu
Ser Pro Pro Leu Ser 1 5 10
15 Val Ile Val Ala Leu Ser Leu Ser Ala Ser Pro Val Thr Ile Asp Ser
20 25 30 Ser Ala
Ser Val Thr Thr Val Pro Ser Phe Val Phe Ser Asp Gly Arg 35
40 45 Lys Leu Ser Gly Thr Thr Val
Leu Leu Arg Tyr Val Gly Arg Ser Ala 50 55
60 Asn Thr Leu Pro Asp Phe Tyr Gly Asn Asn Ala Phe
Asp Ser Ser Gln 65 70 75
80 Ile Asp Glu Trp Val Asp Tyr Ala Ser Val Phe Ser Ser Gly Ser Glu
85 90 95 Phe Glu Asn
Ala Cys Gly Arg Val Asp Lys Tyr Leu Glu Ser Arg Thr 100
105 110 Phe Leu Val Gly His Ser Leu Ser
Ile Ala Asp Val Ala Ile Trp Ser 115 120
125 Ala Leu Ala Gly Thr Gly Gln Arg Trp Glu Ser Leu Arg
Lys Ser Lys 130 135 140
Lys Tyr Gln Ser Leu Val Arg Trp Phe Asn Ser Ile Leu Asp Glu Tyr 145
150 155 160 Ser Glu Leu Leu
Asn Lys Val Leu Ala Thr Tyr Val Lys Lys Ser Ser 165
170 175 Gly Lys Pro Val Ala Ala Pro Lys Ser
Lys Asp Ser Gln Gln Ala Leu 180 185
190 Lys Gly Asp Ala Gln Asp Lys Ser Lys Pro Glu Val Asp Leu
Pro Glu 195 200 205
Ala Glu Ile Gly Lys Val Arg Leu Arg Phe Ala Pro Glu Pro Ser Gly 210
215 220 Tyr Leu His Ile Gly
His Ala Lys Ala Ala Leu Leu Asn Lys Tyr Phe 225 230
235 240 Ala Glu Arg Tyr Gln Gly Glu Val Ile Val
Arg Phe Asp Asp Thr Asn 245 250
255 Pro Ala Lys Glu Ser Asn Glu Phe Val Asp Asn Leu Val Lys Asp
Ile 260 265 270 Gly
Thr Leu Gly Ile Lys Tyr Glu Arg Val Thr Tyr Thr Ser Asp Tyr 275
280 285 Phe Pro Glu Leu Met Glu
Met Ala Glu Lys Leu Met Arg Glu Gly Lys 290 295
300 Ala Tyr Val Asp Asp Thr Pro Arg Glu Gln Met
Gln Lys Glu Arg Met 305 310 315
320 Asp Gly Ile Asp Ser Lys Cys Arg Asn His Ser Val Glu Glu Asn Leu
325 330 335 Lys Leu
Trp Lys Glu Met Ile Ala Gly Ser Glu Arg Gly Leu Gln Cys 340
345 350 Cys Val Arg Gly Lys Phe Asn
Met Gln Asp Pro Asn Lys Ala Met Arg 355 360
365 Asp Pro Val Tyr Tyr Arg Cys Asn Pro Met Ser His
His Arg Ile Gly 370 375 380
Asp Lys Tyr Lys Ile Tyr Pro Thr Tyr Asp Phe Ala Cys Pro Phe Val 385
390 395 400 Asp Ser Leu
Glu Gly Ile Thr His Ala Leu Arg Ser Ser Glu Tyr His 405
410 415 Asp Arg Asn Ala Gln Tyr Phe Lys
Val Leu Glu Asp Met Gly Leu Arg 420 425
430 Gln Val Gln Leu Tyr Glu Phe Ser Arg Leu Asn Leu Val
Phe Thr Leu 435 440 445
Leu Ser Lys Arg Lys Leu Leu Trp Phe Val Gln Thr Gly Leu Val Asp 450
455 460 Gly Trp Asp Asp
Pro Arg Phe Pro Thr Val Gln Gly Ile Val Arg Arg 465 470
475 480 Gly Leu Lys Ile Glu Ala Leu Ile Gln
Phe Ile Leu Glu Gln Gly Ala 485 490
495 Ser Lys Asn Leu Asn Leu Met Glu Trp Asp Lys Leu Trp Ser
Ile Asn 500 505 510
Lys Arg Ile Ile Asp Pro Val Cys Pro Arg His Thr Ala Val Ile Ala
515 520 525 Glu Arg Arg Val
Leu Phe Thr Leu Thr Asp Gly Pro Asp Glu Pro Phe 530
535 540 Val Arg Leu Ile Pro Lys His Lys
Lys Phe Glu Gly Ala Gly Glu Lys 545 550
555 560 Ala Thr Thr Phe Thr Lys Ser Ile Trp Ile Glu Glu
Ala Asp Ala Ser 565 570
575 Ala Ile Ser Val Gly Glu Glu Val Thr Leu Met Asp Trp Gly Asn Ala
580 585 590 Ile Val Lys
Glu Ile Thr Lys Asp Lys Glu Gly Arg Val Thr Ala Leu 595
600 605 Ser Gly Val Leu Asn Leu Gln Gly
Ser Val Lys Thr Thr Lys Leu Lys 610 615
620 Leu Thr Trp Leu Pro Asp Thr Asn Glu Leu Val Asn Leu
Thr Leu Thr 625 630 635
640 Glu Phe Asp Tyr Leu Ile Thr Lys Lys Lys Leu Glu Asp Asp Asp Glu
645 650 655 Val Ala Asp Phe
Val Asn Pro Asn Thr Lys Lys Glu Thr Leu Ala Leu 660
665 670 Gly Asp Ser Asn Met Arg Asn Leu Lys
Cys Gly Asp Val Ile Gln Leu 675 680
685 Glu Arg Lys Gly Tyr Phe Arg Cys Asp Val Pro Phe Val Lys
Ser Ser 690 695 700
Lys Pro Ile Val Leu Phe Ser Ile Pro Asp Gly Arg Ala Ala Lys 705
710 715 64728PRTArabidopsis
thaliana 64Met Asp Gly Met Lys Leu Ser Phe Pro Pro Glu Ser Pro Pro Leu
Ser 1 5 10 15 Val
Ile Val Ala Leu Ser Leu Ser Ala Ser Pro Val Thr Ile Asp Ser
20 25 30 Ser Ala Ala Ala Thr
Thr Val Pro Ser Phe Val Phe Ser Asp Gly Arg 35
40 45 Lys Leu Asn Gly Ala Thr Val Leu Leu
Arg Tyr Val Gly Arg Ser Ala 50 55
60 Lys Lys Leu Pro Asp Phe Tyr Gly Asn Asn Ala Phe Asp
Ser Ser Gln 65 70 75
80 Val Ser Ile Leu Cys Ile Asn Met Lys Ile Asp Glu Trp Val Asp Tyr
85 90 95 Ala Ser Val Phe
Ser Ser Gly Ser Glu Phe Glu Asn Ala Cys Gly Arg 100
105 110 Val Asp Lys Tyr Leu Glu Ser Ser Thr
Phe Leu Val Gly His Ser Leu 115 120
125 Ser Ile Ala Asp Val Ala Ile Trp Ser Ala Leu Ala Gly Thr
Gly Gln 130 135 140
Arg Trp Glu Ser Leu Arg Lys Ser Lys Lys Tyr Gln Ser Leu Val Arg 145
150 155 160 Trp Phe Asn Ser Ile
Leu Asp Glu Tyr Ser Glu Val Leu Asn Lys Val 165
170 175 Leu Ala Thr Tyr Val Lys Lys Gly Ser Gly
Lys Pro Val Ala Ala Pro 180 185
190 Lys Ser Lys Asp Ser Gln Gln Ala Val Lys Gly Asp Gly Gln Asp
Lys 195 200 205 Gly
Lys Pro Glu Val Asp Leu Pro Glu Ala Glu Ile Gly Lys Val Lys 210
215 220 Leu Arg Phe Ala Pro Glu
Pro Ser Gly Tyr Leu His Ile Gly His Ala 225 230
235 240 Lys Ala Ala Leu Leu Asn Lys Tyr Phe Ala Glu
Arg Tyr Gln Gly Glu 245 250
255 Val Ile Val Arg Phe Asp Asp Thr Asn Pro Ala Lys Glu Ser Asn Glu
260 265 270 Phe Val
Asp Asn Leu Val Lys Asp Ile Gly Thr Leu Gly Ile Lys Tyr 275
280 285 Glu Lys Val Thr Tyr Thr Ser
Asp Tyr Phe Pro Glu Leu Met Asp Met 290 295
300 Ala Glu Lys Leu Met Arg Glu Gly Lys Ala Tyr Val
Asp Asp Thr Pro 305 310 315
320 Arg Glu Gln Met Gln Lys Glu Arg Met Asp Gly Ile Asp Ser Lys Cys
325 330 335 Arg Asn His
Ser Val Glu Glu Asn Leu Lys Leu Trp Lys Glu Met Ile 340
345 350 Ala Gly Ser Glu Arg Gly Leu Gln
Cys Cys Val Arg Gly Lys Phe Asn 355 360
365 Met Gln Asp Pro Asn Lys Ala Met Arg Asp Pro Val Tyr
Tyr Arg Cys 370 375 380
Asn Pro Met Ser His His Arg Ile Gly Asp Lys Tyr Lys Ile Tyr Pro 385
390 395 400 Thr Tyr Asp Phe
Ala Cys Pro Phe Val Asp Ser Leu Glu Gly Ile Thr 405
410 415 His Ala Leu Arg Ser Ser Glu Tyr His
Asp Arg Asn Ala Gln Tyr Phe 420 425
430 Lys Val Leu Glu Asp Met Gly Leu Arg Gln Val Gln Leu Tyr
Glu Phe 435 440 445
Ser Arg Leu Asn Leu Val Phe Thr Leu Leu Ser Lys Arg Lys Leu Leu 450
455 460 Trp Phe Val Gln Thr
Gly Leu Val Asp Gly Trp Asp Asp Pro Arg Phe 465 470
475 480 Pro Thr Val Gln Gly Ile Val Arg Arg Gly
Leu Lys Ile Glu Ala Leu 485 490
495 Ile Gln Phe Ile Leu Glu Gln Gly Ala Ser Lys Asn Leu Asn Leu
Met 500 505 510 Glu
Trp Asp Lys Leu Trp Ser Ile Asn Lys Arg Ile Ile Asp Pro Val 515
520 525 Cys Pro Arg His Thr Ala
Val Val Ala Glu Arg Arg Val Leu Phe Thr 530 535
540 Leu Thr Asp Gly Pro Asp Glu Pro Phe Val Arg
Met Ile Pro Lys His 545 550 555
560 Lys Lys Phe Glu Gly Ala Gly Glu Lys Ala Thr Thr Phe Thr Lys Ser
565 570 575 Ile Trp
Leu Glu Glu Ala Asp Ala Ser Ala Ile Ser Val Gly Glu Glu 580
585 590 Val Thr Leu Met Asp Trp Gly
Asn Ala Ile Val Lys Glu Ile Thr Lys 595 600
605 Asp Glu Glu Gly Arg Val Thr Ala Leu Ser Gly Val
Leu Asn Leu Gln 610 615 620
Gly Ser Val Lys Thr Thr Lys Leu Lys Leu Thr Trp Leu Pro Asp Thr 625
630 635 640 Asn Glu Leu
Val Asn Leu Thr Leu Thr Glu Phe Asp Tyr Leu Ile Thr 645
650 655 Lys Lys Lys Leu Glu Asp Asp Asp
Glu Val Ala Asp Phe Val Asn Pro 660 665
670 Asn Thr Lys Lys Glu Thr Leu Ala Leu Gly Asp Ser Asn
Met Arg Asn 675 680 685
Leu Lys Cys Gly Asp Val Ile Gln Leu Glu Arg Lys Gly Tyr Phe Arg 690
695 700 Cys Asp Val Pro
Phe Val Lys Ser Ser Lys Pro Ile Val Leu Phe Ser 705 710
715 720 Ile Pro Asp Gly Arg Ala Ala Lys
725 65303PRTArabidopsis lyrata 65Met Val Thr Lys
Thr Glu Glu Thr Gln Leu Asn Gln Leu Glu Asn Gln 1 5
10 15 Val Glu Asn Gly Gly Gly Gly Val Trp
Glu Tyr Leu Cys Leu Val Arg 20 25
30 Lys Leu Lys Val Arg Arg Ser Glu Ile Val Leu Lys His Gly
Leu Ser 35 40 45
Ile Leu Asn Asp Ser Gly Lys Arg Ser Ala Leu Gly Pro Asp Glu Trp 50
55 60 Thr Leu Tyr Glu Gln
Val Ala Ile Ala Ala Met Asp Cys Gln Ser Leu 65 70
75 80 Gly Val Ala Gln Asn Cys Ile Lys Ala Leu
Gln Lys Lys Phe Pro Glu 85 90
95 Ser Lys Arg Val Gly Lys Leu Glu Ala Leu Leu Leu Glu Ala Lys
Gly 100 105 110 Met
Trp Glu Glu Ala Glu Lys Ala Tyr Ser Ser Leu Leu Glu Asp Asn 115
120 125 Pro Leu Asp Gln Val Ile
His Lys Arg Lys Val Ala Met Ala Lys Ala 130 135
140 Gln Gly Lys Pro Ser Leu Ala Ile Glu His Leu
Asn Lys Tyr Leu Glu 145 150 155
160 Val Phe Met Ala Asp His Asp Ala Trp Arg Glu Leu Ala Glu Ile Tyr
165 170 175 Val Ser
Leu Gln Met Tyr Lys Gln Ala Ala Phe Cys Tyr Glu Glu Leu 180
185 190 Ile Leu Thr Gln Pro Thr Leu
Pro Leu Tyr His Leu Ala Tyr Ala Asp 195 200
205 Val Leu Tyr Thr Met Gly Gly Leu Glu Asn Leu Ile
Ala Ala Arg Lys 210 215 220
Tyr Tyr Ala Ala Thr Ile Asp Leu Thr Gly Gly Lys Ser Thr Arg Ala 225
230 235 240 Leu Leu Gly
Ile Cys Leu Cys Gly Ser Ala Ile Ala Gln Leu Ser Lys 245
250 255 Gly Arg Asn Arg Glu Asp Lys Asp
Met Ala Ala Pro Glu Leu Gln Ser 260 265
270 Leu Ala Ala Thr Ala Leu Glu Arg Glu Tyr Lys Gln Lys
Ala Pro Ala 275 280 285
Lys Leu Asn Leu Leu Thr Cys Ala Leu Arg Asn Leu Lys Ile Ala 290
295 300 66299PRTArabidopsis
thaliana 66Met Val Thr Lys Thr Glu Glu Ile Gln Leu Asn Gln Leu Glu Asn
Gln 1 5 10 15 Val
Glu Asn Gly Gly Gly Gly Val Trp Glu Tyr Leu Cys Leu Val Arg
20 25 30 Lys Leu Lys Val Arg
Arg Ser Glu Ile Val Leu Lys His Gly Leu Ser 35
40 45 Ile Leu Asn Asp Ser Gly Lys Arg Ser
Ala Leu Gly Pro Asp Glu Trp 50 55
60 Thr Leu Tyr Glu Gln Val Ala Ile Ala Ala Met Asp Cys
Gln Ser Leu 65 70 75
80 Gly Val Ala Gln Val Leu Lys Lys Lys Phe Pro Glu Ser Lys Arg Val
85 90 95 Gly Lys Leu Glu
Ala Leu Leu Leu Glu Ala Lys Gly Met Trp Glu Glu 100
105 110 Ala Glu Lys Ala Tyr Thr Ser Leu Leu
Glu Asp Asn Pro Leu Asp Gln 115 120
125 Val Ile His Lys Arg Lys Val Ala Met Ala Lys Ala Gln Gly
Lys Ser 130 135 140
Ser Leu Ala Ile Glu His Leu Asn Lys Tyr Leu Glu Val Phe Met Ala 145
150 155 160 Asp His Asp Ala Trp
Arg Glu Leu Ala Glu Ile Tyr Val Ser Leu Gln 165
170 175 Met Tyr Lys Gln Ala Ala Phe Cys Tyr Glu
Glu Leu Ile Leu Thr Gln 180 185
190 Pro Thr Leu Pro Leu Tyr His Leu Ala Tyr Ala Asp Val Leu Tyr
Thr 195 200 205 Ile
Gly Gly Leu Glu Asn Leu Ile Ala Ala Arg Lys Tyr Tyr Ala Ala 210
215 220 Thr Ile Asp Leu Thr Gly
Gly Lys Ser Thr Arg Ala Leu Leu Gly Ile 225 230
235 240 Cys Leu Cys Gly Ser Ala Ile Ala Gln Ile Ser
Lys Gly Arg Asn Lys 245 250
255 Glu Asp Lys Asp Met Ala Ala Pro Glu Leu Gln Ser Leu Ala Ala Thr
260 265 270 Ala Leu
Glu Arg Glu Tyr Lys Gln Lys Ala Pro Ala Lys Leu Asn Leu 275
280 285 Leu Thr Ser Ala Leu Arg Asn
Leu Lys Ile Ala 290 295
67712PRTArabidopsis lyrata 67Met Val Gly Gly Gly Ser Ser Ser Gly Gly Gly
Gly Val Phe Arg Gly 1 5 10
15 Gly Gly Ser Gly Lys Gln Gln Arg Gly Phe Ser Leu Asn Pro Lys Asp
20 25 30 Tyr Lys
Leu Leu Glu Glu Ile Gly His Gly Ala Ser Ala Val Val Tyr 35
40 45 Arg Ala Ile Tyr Leu Pro Thr
Asn Glu Val Val Ala Ile Lys Cys Leu 50 55
60 Asp Leu Asp Arg Cys Asn Ser Asn Leu Asp Asp Ile
Arg Arg Glu Ser 65 70 75
80 Gln Thr Met Ser Leu Ile Asp His Pro Asn Val Ile Lys Ser Phe Cys
85 90 95 Ser Phe Ser
Val Asp His Ser Leu Trp Val Val Met Pro Phe Met Ala 100
105 110 Gln Gly Ser Cys Leu His Leu Met
Lys Thr Ala Tyr Ser Asp Gly Phe 115 120
125 Glu Glu Ser Ala Ile Cys Cys Val Leu Lys Glu Thr Leu
Lys Ala Leu 130 135 140
Asp Tyr Leu His Lys Gln Gly His Ile His Arg Asp Val Lys Ala Gly 145
150 155 160 Asn Ile Leu Leu
Asp Asp Ser Gly Glu Ile Lys Leu Gly Asp Phe Gly 165
170 175 Val Ser Ala Cys Leu Phe Asp Asn Gly
Asp Arg Arg Arg Ala Arg Asn 180 185
190 Thr Phe Val Gly Thr Pro Cys Trp Met Ala Pro Glu Val Leu
Gln Pro 195 200 205
Gly Glu Gly Tyr Asn Ser Lys Ala Asp Ile Trp Ser Phe Gly Ile Thr 210
215 220 Ala Leu Glu Leu Ala
His Gly His Ala Pro Phe Ser Lys Tyr Pro Pro 225 230
235 240 Met Lys Val Leu Leu Met Thr Ile Gln Asn
Ala Pro Pro Gly Leu Asp 245 250
255 Tyr Asp Arg Asp Lys Lys Phe Ser Lys Ser Phe Lys Glu Met Val
Ala 260 265 270 Met
Cys Leu Val Lys Asp Gln Thr Lys Arg Pro Thr Ala Glu Lys Leu 275
280 285 Leu Lys His Ser Cys Phe
Lys His Thr Lys Pro Pro Glu Phe Tyr Val 290 295
300 Lys Lys Leu Phe Ser Asp Leu Pro Pro Leu Trp
Thr Arg Val Lys Ser 305 310 315
320 Leu Gln Asp Lys Asp Ala Gln Gln Leu Ala Leu Lys Arg Met Ala Thr
325 330 335 Ala Asp
Glu Glu Ala Ile Ser Gln Ser Glu Tyr Gln Arg Gly Val Ser 340
345 350 Ala Trp Asn Phe Asp Val Arg
Asp Leu Lys Thr Gln Ala Ser Leu Leu 355 360
365 Ile Asp Asp Asp Asp Leu Glu Glu Ser Lys Glu Asp
Asp Glu Ile Leu 370 375 380
Cys Ala Gln Phe Asn Lys Val Asn Asp Arg Val Gln Val Phe Asp Ser 385
390 395 400 Leu Gln Leu
Tyr Glu Thr Met Asn Glu Lys Glu Lys Val Ser Asn Thr 405
410 415 Glu Val Glu Glu Pro Thr Cys Glu
Glu Lys Phe Thr Phe Ile Thr Thr 420 425
430 Ala Ser Ser Leu Glu Arg Met Ser Pro Asn Ser Glu His
Asp Ile Pro 435 440 445
Glu Ala Lys Val Lys Pro Val Arg Arg Gln Ser Gln Ser Gly Pro Leu 450
455 460 Thr Ser Lys Thr
Val Leu Cys His Ser Ala Ser Glu Lys Gly His Ile 465 470
475 480 Phe Glu Arg Ser Glu Ser Glu Gln Gln
Thr Ala Ser Thr Val Arg Arg 485 490
495 Ala Pro Ser Phe Ser Gly Pro Leu Asn Leu Pro Thr Arg Ala
Ser Ser 500 505 510
Asn Ser Leu Ser Ala Pro Ile Lys Tyr Ser Gly Gly Phe Arg Asp Ser
515 520 525 Leu Asp Asp Lys
Ser Lys Ala Asn Leu Val Gln Lys Gly Arg Phe Ser 530
535 540 Val Thr Ser Gly Asn Val Asp Leu
Ala Lys Asp Val Pro Leu Ser Ile 545 550
555 560 Val Pro Arg Arg Ser Pro Gln Ala Thr Pro Leu Arg
Lys Ser Ala Ser 565 570
575 Val Gly Asn Trp Ile Leu Glu Pro Lys Met Pro Thr Ala Gln Pro Gln
580 585 590 Thr Ile Lys
Glu His Ser Ser His Pro Thr Ser Ser Ser Ser Ser Leu 595
600 605 Ile Val Pro Gln Leu Gln His Leu
Phe Gln Gln Asn Ser Ile Gln Gln 610 615
620 Asp Leu Ile Met Asn Leu Leu Asn Ser Ile Gln Pro Gly
Glu Ala Thr 625 630 635
640 Glu Gly Ser Gln Ser Gly Lys Leu Pro Pro Leu Pro Arg Ser Asp Ser
645 650 655 Asn Gly Asn Val
Glu Pro Val Ala Ser Glu Arg Glu Arg Leu Leu Leu 660
665 670 Ser Ser Ile Ser Asp Leu Arg Ala Arg
Leu Asp Asp Leu Thr Glu Glu 675 680
685 Leu Asp Ile Glu Lys Ser Lys Tyr Ser Gln Leu Gln Gln Lys
Leu Lys 690 695 700
Ala Phe Thr Gly Arg Lys His Val 705 710
68563PRTArabidopsis lyrata 68Met Lys Glu Ser Phe Lys Val Cys Phe Cys Cys
Val Arg Ser Phe Lys 1 5 10
15 Val Lys Ser Ser Glu Pro Pro Glu Glu Ile Lys Asn Leu Phe His Asp
20 25 30 Tyr Ser
Gln Asp Asp Arg Met Ser Ala Asp Glu Met Leu Arg Phe Val 35
40 45 Ile Gln Val Gln Gly Glu Thr
His Ala Asp Ile Asn Tyr Val Lys Asp 50 55
60 Ile Phe His Arg Leu Lys His His Gly Val Phe His
Pro Arg Gly Ile 65 70 75
80 His Leu Glu Gly Phe Tyr Arg Tyr Leu Leu Ser Asp Phe Asn Ser Pro
85 90 95 Leu Pro Val
Thr Ser Glu Val Trp Gln Asp Met Asn Gln Pro Leu Ser 100
105 110 His Tyr Phe Leu Tyr Thr Gly His
Asn Ser Tyr Leu Thr Gly Asn Gln 115 120
125 Leu Asn Ser Asn Ser Ser Ile Glu Pro Ile Val Lys Ala
Leu Arg Lys 130 135 140
Gly Val Arg Val Ile Glu Leu Asp Leu Trp Pro Asn Ser Ser Gly Lys 145
150 155 160 Glu Ala Glu Val
Arg His Gly Gly Thr Leu Thr Ser Cys Glu Asp Leu 165
170 175 Gln Lys Cys Leu Asn Ala Val Lys Glu
Asn Ala Phe Gln Val Ser Ala 180 185
190 Tyr Pro Val Val Leu Thr Leu Glu Asp His Leu Thr Pro Asn
Leu Gln 195 200 205
Lys Lys Val Ala Lys Met Val Ser Lys Thr Phe Gly Gly Ser Leu Phe 210
215 220 Gln Cys Thr Asp Glu
Tyr Thr Glu Cys Phe Pro Ser Pro Glu Ser Leu 225 230
235 240 Lys Asn Lys Ile Leu Ile Ser Thr Lys Pro
Pro Lys Glu Tyr Leu Gln 245 250
255 Thr Gln Val Ser Gln Gly Ser Thr Thr Asp Glu Ser Ile Lys Ala
Lys 260 265 270 Lys
Ile Ala Asp Ala Glu Glu Gln Val Gln Glu Glu Asp Glu Glu Ser 275
280 285 Val Ala Ile Glu Tyr Arg
Asp Leu Ile Ser Ile His Ala Gly Asn Arg 290 295
300 Lys Gly Gly Leu Lys Asn Cys Leu Asn Gly Asp
Pro Asn Arg Val Ile 305 310 315
320 Arg Leu Ser Met Ser Glu Gln Trp Leu Glu Thr Leu Ala Lys Thr Arg
325 330 335 Gly Ser
Asp Leu Val Lys Phe Thr Gln Arg Asn Leu Leu Arg Ile Phe 340
345 350 Pro Lys Thr Thr Arg Phe Asp
Ser Ser Asn Tyr Asp Pro Leu Val Gly 355 360
365 Trp Ile His Gly Ala Gln Met Val Ala Phe Asn Met
Gln Ser His Gly 370 375 380
Arg Tyr Leu Trp Met Met Gln Gly Met Phe Lys Ala Asn Gly Gly Cys 385
390 395 400 Gly Tyr Val
Lys Lys Pro Asp Val Leu Leu Ser Asn Gly Pro Gly Gly 405
410 415 Glu Ile Phe Asp Pro Cys Ser Gln
Lys Leu Pro Ile Lys Thr Thr Leu 420 425
430 Lys Val Lys Ile Tyr Thr Gly Glu Gly Trp Asn Met Asp
Phe Pro Leu 435 440 445
Asp His Phe Asp Arg Tyr Ser Pro Pro Asp Phe Tyr Ala Lys Ala Arg 450
455 460 Val Gly Ile Ala
Gly Val Pro Leu Asp Thr Ala Ser Tyr Arg Thr Glu 465 470
475 480 Ile Asp Thr Asp Glu Trp Phe Pro Ile
Trp Asp Lys Glu Phe Glu Phe 485 490
495 Pro Leu Arg Val Pro Glu Leu Ala Ile Leu Cys Ile Thr Val
Lys Asp 500 505 510
Tyr Asp Ser Asn Thr Gln Asn Asp Phe Ala Gly Gln Thr Cys Leu Pro
515 520 525 Leu Ser Glu Val
Arg Pro Gly Ile Arg Ala Val Arg Leu His Asp Arg 530
535 540 Ala Gly Glu Val Tyr Lys His Val
Arg Leu Leu Met Arg Phe Val Leu 545 550
555 560 Glu Pro Arg 69561PRTArabidopsis thaliana 69Met
Lys Glu Ser Phe Lys Val Cys Phe Cys Cys Val Arg Asn Phe Lys 1
5 10 15 Val Lys Ser Ser Glu Pro
Pro Glu Glu Ile Lys Asn Leu Phe His Asp 20
25 30 Tyr Ser Gln Asp Asp Arg Met Ser Ala Asp
Glu Met Leu Arg Phe Val 35 40
45 Ile Gln Val Gln Gly Glu Thr His Ala Asp Ile Asn Tyr Val
Lys Asp 50 55 60
Ile Phe His Arg Leu Lys His His Gly Val Phe His Pro Arg Gly Ile 65
70 75 80 His Leu Glu Gly Phe
Tyr Gly Tyr Leu Leu Ser Asp Phe Asn Ser Pro 85
90 95 Leu Pro Leu Thr Arg Glu Val Trp Gln Asp
Met Asn Gln Pro Leu Ser 100 105
110 His Tyr Phe Leu Tyr Thr Gly His Asn Ser Tyr Leu Thr Gly Asn
Gln 115 120 125 Leu
Asn Ser Asn Ser Ser Ile Glu Pro Ile Val Lys Ala Leu Arg Asn 130
135 140 Gly Val Arg Val Ile Glu
Leu Asp Leu Trp Pro Asn Ser Ser Gly Lys 145 150
155 160 Glu Ala Glu Val Arg His Gly Gly Thr Leu Thr
Ser Arg Glu Asp Leu 165 170
175 Gln Lys Cys Leu Asn Val Val Lys Glu Asn Ala Phe Gln Val Ser Ala
180 185 190 Tyr Pro
Val Val Leu Thr Leu Glu Asp His Leu Thr Pro Ile Leu Gln 195
200 205 Lys Lys Val Ala Lys Met Val
Ser Lys Thr Phe Gly Gly Ser Leu Phe 210 215
220 Gln Cys Thr Asp Glu Thr Thr Glu Cys Phe Pro Ser
Pro Glu Ser Leu 225 230 235
240 Lys Asn Lys Ile Leu Ile Ser Thr Lys Pro Pro Lys Glu Tyr Leu Gln
245 250 255 Thr Gln Ile
Ser Lys Gly Ser Thr Thr Asp Glu Ser Thr Arg Ala Lys 260
265 270 Lys Ile Ser Asp Ala Glu Glu Gln
Val Gln Glu Glu Asp Glu Glu Ser 275 280
285 Val Ala Ile Glu Tyr Arg Asp Leu Ile Ser Ile His Ala
Gly Asn Arg 290 295 300
Lys Gly Gly Leu Lys Asn Cys Leu Asn Gly Asp Pro Asn Arg Val Ile 305
310 315 320 Arg Leu Ser Met
Ser Glu Gln Trp Leu Glu Thr Leu Ala Lys Thr Arg 325
330 335 Gly Pro Asp Leu Val Lys Phe Thr Gln
Arg Asn Leu Leu Arg Ile Phe 340 345
350 Pro Lys Thr Thr Arg Phe Asp Ser Ser Asn Tyr Asp Pro Leu
Val Gly 355 360 365
Trp Ile His Gly Ala Gln Met Val Ala Phe Asn Met Gln Ser His Gly 370
375 380 Arg Tyr Leu Trp Met
Met Gln Gly Met Phe Lys Ala Asn Gly Gly Cys 385 390
395 400 Gly Tyr Val Lys Lys Pro Asp Val Leu Leu
Ser Asn Gly Pro Glu Gly 405 410
415 Glu Ile Phe Asp Pro Cys Ser Gln Asn Leu Pro Ile Lys Thr Thr
Leu 420 425 430 Lys
Val Lys Ile Tyr Thr Gly Glu Gly Trp Asn Met Asp Phe Pro Leu 435
440 445 Asp His Phe Asp Arg Tyr
Ser Pro Pro Asp Phe Tyr Ala Lys Val Gly 450 455
460 Ile Ala Gly Val Pro Leu Asp Thr Ala Ser Tyr
Arg Thr Glu Ile Asp 465 470 475
480 Lys Asp Glu Trp Phe Pro Ile Trp Asp Lys Glu Phe Glu Phe Pro Leu
485 490 495 Arg Val
Pro Glu Leu Ser Leu Leu Cys Ile Thr Val Lys Asp Tyr Asp 500
505 510 Ser Asn Thr Gln Asn Asp Phe
Ala Gly Gln Thr Cys Phe Pro Leu Ser 515 520
525 Glu Val Arg Pro Gly Ile Arg Ala Val Arg Leu His
Asp Arg Ala Gly 530 535 540
Glu Val Tyr Lys His Val Arg Leu Leu Met Arg Phe Val Leu Glu Pro 545
550 555 560 Arg
70178PRTArabidopsis thaliana 70Met Ala Thr His Ser Ser Phe Thr Ala Thr
Thr Pro Leu Phe Leu Ile 1 5 10
15 Val Leu Leu Ser Leu Ser Ser Val Ser Val Leu Gly Ala Ser His
His 20 25 30 His
Ala Thr Ala Pro Ala Pro Ser Val Asp Cys Ser Thr Leu Ile Leu 35
40 45 Asn Met Ala Asp Cys Leu
Ser Phe Val Ser Ser Gly Gly Thr Val Ala 50 55
60 Lys Pro Glu Gly Thr Cys Cys Ser Gly Leu Lys
Thr Val Leu Lys Ala 65 70 75
80 Asp Ser Gln Cys Leu Cys Glu Ala Phe Lys Ser Ser Ala Ser Leu Gly
85 90 95 Val Thr
Leu Asn Ile Thr Lys Ala Ser Thr Leu Pro Ala Ala Cys Lys 100
105 110 Leu His Ala Pro Ser Ile Ala
Thr Cys Gly Leu Ser Val Ala Pro Ser 115 120
125 Thr Ala Pro Gly Val Ala Ala Ala Gly Pro Glu Thr
Ala Gly Phe Leu 130 135 140
Ala Pro Asn Pro Ser Ser Gly Asn Asp Gly Ser Ser Leu Ile Pro Thr 145
150 155 160 Ser Phe Thr
Thr Val Leu Ser Ala Val Leu Phe Val Leu Phe Phe Ser 165
170 175 Ser Ala 71182PRTArabidopsis
thaliana 71Met Ala Thr His Ser Ser Phe Thr Ala Thr Thr Pro Leu Phe Leu
Ile 1 5 10 15 Val
Leu Leu Ser Leu Ser Ser Val Ser Val Leu Gly Ala Ser His His
20 25 30 His Ala Thr Ala Pro
Ala Pro Ser Val Asp Cys Ser Ile Leu Ile Leu 35
40 45 Asn Met Ala Asp Cys Leu Ser Phe Val
Ser Ser Gly Gly Thr Val Ala 50 55
60 Lys Pro Glu Gly Thr Cys Cys Ser Gly Leu Lys Thr Val
Leu Lys Ala 65 70 75
80 Asp Ser Gln Cys Leu Cys Glu Ala Phe Lys Ser Ser Ala Ser Leu Gly
85 90 95 Val Thr Leu Asn
Ile Thr Lys Ala Ser Thr Leu Pro Ala Ala Cys Lys 100
105 110 Leu His Ala Pro Ser Ile Ala Thr Cys
Gly Leu Ser Val Ala Pro Ser 115 120
125 Thr Ala Pro Gly Leu Ala Pro Gly Val Ala Ala Ala Gly Pro
Glu Thr 130 135 140
Val Gly Phe Leu Ala Pro Asn Pro Ser Ser Gly Asn Asp Gly Ser Ser 145
150 155 160 Leu Ile Pro Thr Ser
Phe Thr Thr Val Leu Ser Ala Val Leu Phe Val 165
170 175 Leu Phe Phe Ser Ser Ala 180
721189PRTArabidopsis thaliana 72Met Glu Glu Asp Asp Glu Phe Gly
Asp Leu Tyr Ser Asp Val Leu Gln 1 5 10
15 Pro Phe Gln Pro Pro Val Val Leu Pro Pro Pro Pro Pro
Leu Pro His 20 25 30
Arg Ser Ile Asp Leu Asn Leu Arg Ser Gln Asp Gln Asp Val Ser Glu
35 40 45 Pro Asn Ser Ala
Pro Ile Ser Arg Val Ser Asp Asn Asp Ala Val Lys 50
55 60 Leu Ser Thr Gln Asp Ala Thr Arg
Gln Ala Ile Val Asp Gly Gly Gly 65 70
75 80 Asp Asp Lys Asp Met Ser Phe Asp Ile Glu Glu Pro
Asp Ala Asp Ser 85 90
95 Thr Pro Thr Ile Pro Gly Leu Phe Val Thr Gly Ala Leu Pro Gly Leu
100 105 110 Ala Thr Asp
Arg Gly Val Ser Gln Val Thr Thr Arg Ile Glu Gln Gln 115
120 125 Val Gly Gly Gly Gly Asp Gly Gly
Tyr Gly Gly Gln Gly Glu Gly Asp 130 135
140 Asp Trp Asp Ser Asp Ser Glu Asp Asp Leu Gln Ile Val
Leu Asn Asp 145 150 155
160 Ser Ser Arg Asn Val Met Ile Gly Gly Ala Asp Arg Arg Ser Arg Met
165 170 175 Gly Asp Asn Glu
Asp Asp Asp Asp Glu Asp Asp Glu Asp Pro Leu Val 180
185 190 Ile Val Ala Asp Thr Asp Pro Asn Gln
Pro Met Glu Glu Gln Met Trp 195 200
205 Gly Glu Asp Gly Leu Gln Gly Ile Glu Gly Asp Gly Lys Asp
Gly Gly 210 215 220
Glu Ala Gly Lys Gly Ser Gly Pro Gly Gly Ala Thr Gly Pro Pro Lys 225
230 235 240 Ala Gly Tyr Ser Ser
His Gly Tyr His Pro Phe His Ser Gln Phe Lys 245
250 255 Tyr Val Arg Pro Gly Ala Ala Pro Ile Pro
Gly Gly Ala Ala Ser Val 260 265
270 Gly Gly Pro Ser Ser Gly Gln Val Arg Pro Pro Ala Asn Leu Gly
Pro 275 280 285 Met
Ala Gly Arg Gly Arg Gly Asp Trp Arg Pro Leu Gly Met Arg Asn 290
295 300 Ala Ser Ala Ala Gln Lys
Gly Phe His Gln Pro Trp Gly Ser Asn Thr 305 310
315 320 Ala Gly Arg Gly Leu Asp Phe Thr Leu Pro Ser
His Lys Thr Ile Phe 325 330
335 Glu Val Asp Ile Asp Ser Phe Glu Glu Lys Pro Trp Arg Tyr Pro Gly
340 345 350 Val Glu
Met Thr Asp Tyr Phe Asn Phe Gly Leu Asn Glu Glu Ser Trp 355
360 365 Lys Asp Tyr Cys Lys Gln Leu
Asp Gln His Arg Ile Gln Thr Thr Met 370 375
380 Gln Ser Arg Ile Arg Val Tyr Glu Ser Gly Arg Thr
Asp Gln Gly Tyr 385 390 395
400 Asp Pro Asp Leu Pro Pro Glu Leu Ala Ala Ala Thr Gly Ala Gln Gly
405 410 415 Val Pro Val
Asp Ser Ser Asn Leu Val Lys Pro Asp Ser Val Gln Gly 420
425 430 Asp Ser Ala Lys Val Pro Ala Asn
Val Arg Pro Thr Leu Pro Pro Gly 435 440
445 Arg Pro Ile Pro Val Glu Thr Gly Ser Gly Glu Arg Leu
Pro Ser Ile 450 455 460
Asp Thr Arg Ala Pro Arg Met Arg Asp Leu Asp Ala Ile Ile Glu Asp 465
470 475 480 Ser His Glu Asp
Glu Pro Ser Gly Glu Asn Gly Thr Asp Gln Ala Asp 485
490 495 Ser Ser Leu Pro Gly Glu Asn Val Pro
Val Glu Thr Ser Tyr Val Asn 500 505
510 Asn Lys Arg Pro Asp Thr Glu Ser Ala Glu His Ser Pro Ala
Gln Asp 515 520 525
Glu Pro His Lys Asn Leu Leu Lys Lys Gln Asp Asp Glu Ile Ser Arg 530
535 540 Ser Thr Asp Ser Gly
Gln Ser Phe Arg Ser Ser Ser Pro Val Gly Asp 545 550
555 560 Arg Gly Thr Arg Ser Ser Ser Val Asp Arg
Glu Asp Val Gly Gly Glu 565 570
575 Ala Gly Lys Asp Ala Glu Met Gly Glu Glu Leu Lys Met Ser Phe
Thr 580 585 590 Ser
Pro Gln Ser Ala Val Gln Glu Asp Asp Gly Gly Glu Ser Lys Thr 595
600 605 Glu Arg Ser Ser Glu Ser
Ser Lys Ala Arg Ser Gly Ser His Arg Asp 610 615
620 Phe Gln Gln Glu Glu Asp Val Ile Gln Asp Lys
His Ser Ser Arg Pro 625 630 635
640 Ala Asn Asn Arg Lys Gln Tyr Asp Asn Asn Ala Pro His Gln Ser Arg
645 650 655 Lys Asn
Gln Asp Arg Gly Lys Glu Met Glu Arg Thr Arg Ala Ala Ser 660
665 670 Lys Gly Gly Arg Glu Asn Ser
Asn Pro His Met Glu Leu Asp Ser Thr 675 680
685 Tyr Ile Tyr Ser Ile Ala Ser Arg Glu Asp Phe Asp
Lys Arg Lys Glu 690 695 700
Arg Asp Val Asp Gly Ala Val Trp Arg Arg Lys Glu Asp Asp Pro Tyr 705
710 715 720 Ser Arg Arg
Gly Gly Asp Glu Gly Ser Arg Lys Arg Asp Arg Glu Asp 725
730 735 Asp Pro Gly Phe Arg Gln Arg Gly
Lys Met Arg Glu Asn Glu Ile Arg 740 745
750 Ser Lys Asp Asp Gln Val Pro Ser Arg Lys His Met Asp
Asp Ala Gly 755 760 765
Met Arg Asn Ile Tyr Glu Pro Asp Asp His Ile Asn Lys Arg Arg Lys 770
775 780 Asp Glu Glu Tyr
Leu Arg Arg Ser Arg Pro Glu Lys Asn Glu Ile Ser 785 790
795 800 Tyr Gly Gln Arg Glu Ser Met Ser Arg
Val Lys Arg Glu Arg Asp Asp 805 810
815 Arg Leu Glu His Gln Lys Arg Asp Val Gln His Lys Ile Arg
Asp Asp 820 825 830
Phe Asp Asp His Gly Ser Leu Arg Gln Arg Asp Asp Ile Tyr Met Gln
835 840 845 Arg Asp Gly Asn
Glu Arg Leu Arg Glu Arg Asp Val Leu Asp Lys Leu 850
855 860 Lys Leu Pro His Glu Asp Gly Ile
Ser Ala Arg Gly Arg Glu Arg Gln 865 870
875 880 Val Ala Val Arg Gly His Arg Gly Ser Glu Asp Arg
Ser Ser Arg Met 885 890
895 Lys Asp Glu Tyr Lys Ala Ser Asp Lys Glu His Val Thr Lys Asp Thr
900 905 910 Leu Arg His
Ala Lys Gln Thr Lys Arg Arg Asp Tyr Pro Gly Glu Glu 915
920 925 Ser Ser Ser His His Arg Gly His
Glu Asp Phe Ser Ala Arg Thr Asp 930 935
940 Asn Ile Val Asn Asn Glu Lys Lys Pro Arg Gln Glu Arg
Thr Gly Ala 945 950 955
960 Lys Ile Asp Lys Phe Ile Asp Thr Leu Asp Gly Gln Arg Leu Gln Asp
965 970 975 Arg Lys His Lys
Asp Ser Arg Arg Lys Ile Lys Glu Gln Arg Glu Gly 980
985 990 Thr Glu Ser Leu Ser Lys Gln Gly
Glu Gln Asn Gly Ser Ser Val Val 995 1000
1005 Thr Gly Ser Lys Gly Thr Asn Asp Ala Arg Asn
Cys Arg Ser Glu 1010 1015 1020
Ile Pro His Gln Pro Asn Thr Ala Lys Arg His Lys Glu Asn Ala
1025 1030 1035 Ser Ser Gly
Asp Glu Ile His Asp Ser Lys Arg Gly Arg Thr Lys 1040
1045 1050 Leu Glu Arg Trp Ala Ser His Lys
Glu Arg Glu Asp Ala Val Ser 1055 1060
1065 Ala Lys Ser Ser Ser Ile Ser Ser Lys Leu Glu Glu Lys
Glu Asn 1070 1075 1080
Asn Thr Asn Gly Arg Leu Ser Glu Pro Val His Gly Ser Ile Gly 1085
1090 1095 Lys Ser Arg Asp Val
Thr Glu Glu Lys Ile Gly His Asp Leu Ala 1100 1105
1110 Asp Thr Lys Asp Gly Ser Glu Lys Gly Pro
Gly Asp Arg His Leu 1115 1120 1125
Asp Thr Val Glu Lys Leu Lys Lys Arg Ser Glu Arg Phe Lys Leu
1130 1135 1140 Pro Met
Pro Thr Glu Lys Asp Thr Thr Gly Val Lys Lys Met Glu 1145
1150 1155 Ser Glu Thr Leu Pro Ser Ala
Lys Ile Glu Gly Pro Val Asp Ser 1160 1165
1170 Glu Val Lys Ala Glu Arg Pro Ala Arg Lys Arg Arg
Trp Thr Ser 1175 1180 1185
Ser 731196PRTArabidopsis thaliana 73Met Glu Glu Asp Asp Glu Phe Gly Asp
Leu Tyr Ser Asp Val Leu Gln 1 5 10
15 Pro Phe Gln Pro Pro Val Val Leu Pro Pro Pro Pro Pro Leu
Pro His 20 25 30
Arg Ser Ile Asp Leu Asn Leu Arg Ser Gln Asp Gln Asp Val Ser Glu
35 40 45 Pro Asn Ser Ala
Pro Ile Ser Arg Val Ser Asp Asn Asp Ala Val Lys 50
55 60 Leu Ser Thr Gln Asp Ala Thr Arg
Gln Ala Ile Val Asp Gly Gly Gly 65 70
75 80 Asp Asp Lys Asp Met Ser Phe Asp Ile Glu Glu Pro
Asp Ala Asp Ser 85 90
95 Thr Pro Thr Ile Pro Gly Leu Phe Val Thr Gly Ala Leu Pro Gly Leu
100 105 110 Ala Thr Asp
Arg Gly Val Ser Gln Val Thr Thr Arg Ile Glu Gln Gln 115
120 125 Val Gly Gly Gly Gly Asp Gly Gly
Tyr Gly Gly Gln Gly Glu Gly Asp 130 135
140 Asp Trp Asp Ser Asp Ser Glu Asp Asp Leu Gln Ile Val
Leu Asn Asp 145 150 155
160 Ser Ser Arg Asn Val Met Ile Gly Gly Ala Asp Arg Arg Ser Arg Met
165 170 175 Gly Asp Asn Glu
Asp Asp Asp Asp Glu Asp Asp Glu Asp Pro Leu Val 180
185 190 Ile Val Ala Asp Thr Asp Pro Asn Gln
Pro Met Glu Glu Gln Met Trp 195 200
205 Gly Glu Asp Gly Leu Gln Gly Ile Glu Gly Asp Gly Lys Asp
Gly Gly 210 215 220
Glu Ala Gly Lys Gly Ser Gly Pro Gly Gly Ala Thr Gly Pro Pro Lys 225
230 235 240 Ala Gly Tyr Ser Ser
His Gly Tyr His Pro Phe His Ser Gln Phe Lys 245
250 255 Tyr Val Arg Pro Gly Ala Ala Pro Ile Pro
Gly Gly Ala Ala Ser Val 260 265
270 Gly Gly Pro Ser Ser Gly Gln Val Arg Pro Pro Ala Asn Leu Gly
Pro 275 280 285 Met
Ala Gly Arg Gly Arg Gly Asp Trp Arg Pro Leu Gly Met Arg Asn 290
295 300 Ala Ser Ala Ala Gln Lys
Gly Phe His Gln Pro Trp Gly Ser Asn Thr 305 310
315 320 Ala Gly Arg Gly Leu Asp Phe Thr Leu Pro Ser
His Lys Thr Ile Phe 325 330
335 Glu Val Asp Ile Asp Ser Phe Glu Glu Lys Pro Trp Arg Tyr Pro Gly
340 345 350 Val Glu
Met Thr Asp Tyr Phe Asn Phe Gly Leu Asn Glu Glu Ser Trp 355
360 365 Lys Asp Tyr Cys Lys Gln Leu
Asp Gln His Arg Ile Gln Thr Thr Met 370 375
380 Gln Ser Arg Ile Arg Val Tyr Glu Ser Gly Arg Thr
Asp Gln Gly Tyr 385 390 395
400 Asp Pro Asp Leu Pro Pro Glu Leu Ala Ala Ala Thr Gly Ala Gln Gly
405 410 415 Val Pro Val
Asp Ser Ser Asn Leu Val Lys Pro Asp Ser Val Gln Gly 420
425 430 Asp Ser Ala Lys Val Pro Ala Asn
Val Arg Pro Thr Leu Pro Pro Gly 435 440
445 Arg Pro Ile Pro Val Glu Thr Gly Ser Gly Glu Arg Leu
Pro Ser Ile 450 455 460
Asp Thr Arg Ala Pro Arg Met Arg Asp Leu Asp Ala Ile Ile Glu Ile 465
470 475 480 Val Cys Gln Asp
Ser His Glu Asp Glu Pro Ser Gly Glu Asn Gly Thr 485
490 495 Asp Gln Ala Asp Ser Ser Leu Pro Gly
Glu Asn Val Pro Val Glu Thr 500 505
510 Ser Tyr Val Asn Asn Lys Arg Pro Asp Thr Glu Ser Ala Glu
His Ser 515 520 525
Pro Ala Gln Asp Glu Pro His Lys Asn Leu Leu Lys Lys Gln Asp Asp 530
535 540 Glu Ile Ser Arg Ser
Thr Asp Ser Gly Gln Ser Phe Arg Ser Ser Ser 545 550
555 560 Pro Val Gly Asp Arg Gly Thr Arg Ser Ser
Ser Val Asp Arg Glu Asp 565 570
575 Val Gly Gly Glu Ala Gly Lys Asp Ala Glu Met Gly Glu Glu Leu
Lys 580 585 590 Met
Ser Phe Thr Ser Pro Gln Ser Ala Val Gln Glu Asp Asp Gly Gly 595
600 605 Glu Ser Lys Thr Glu Arg
Ser Ser Glu Ser Ser Lys Ala Arg Ser Gly 610 615
620 Ser His Arg Asp Phe Gln Gln Glu Glu Asp Val
Ile Gln Asp Lys His 625 630 635
640 Ser Ser Arg Pro Ala Asn Asn Arg Lys Gln Tyr Asp Asn Asn Ala Pro
645 650 655 His Gln
Ser Arg Lys Asn Gln Asp Arg Gly Lys Glu Met Glu Arg Thr 660
665 670 Arg Ala Ala Ser Lys Gly Gly
Arg Glu Asn Ser Asn Pro His Met Glu 675 680
685 Leu Asp Ser Thr Tyr Ile Tyr Ser Ile Ala Ser Arg
Glu Asp Phe Asp 690 695 700
Lys Arg Lys Glu Arg Asp Val Asp Gly Ala Val Trp Arg Arg Lys Glu 705
710 715 720 Asp Asp Pro
Tyr Ser Arg Arg Gly Gly Asp Glu Gly Ser Arg Lys Arg 725
730 735 Asp Arg Glu Asp Asp Pro Gly Phe
Arg Gln Arg Gly Lys Met Arg Glu 740 745
750 Asn Glu Ile Arg Ser Lys Asp Asp Gln Val Pro Ser Arg
Lys His Met 755 760 765
Asp Asp Ala Gly Met Arg Asn Ile Tyr Glu Pro Asp Asp His Ile Asn 770
775 780 Lys Arg Arg Lys
Asp Glu Glu Tyr Leu Arg Arg Ser Arg Pro Glu Lys 785 790
795 800 Asn Glu Ile Ser Tyr Gly Gln Arg Glu
Ser Met Ser Arg Val Lys Arg 805 810
815 Glu Arg Asp Asp Arg Leu Glu His Gln Lys Arg Asp Val Gln
His Lys 820 825 830
Ile Arg Asp Asp Phe Asp Asp His Gly Ser Leu Arg Gln Arg Asp Asp
835 840 845 Ile Tyr Met Gln
Arg Asp Gly Asn Glu Arg Leu Arg Glu Arg Asp Val 850
855 860 Leu Asp Lys Leu Lys Leu Pro His
Glu Asp Gly Ile Ser Ala Arg Gly 865 870
875 880 Arg Glu Arg Gln Val Ala Val Arg Gly His Arg Gly
Ser Glu Asp Arg 885 890
895 Ser Ser Arg Met Lys Asp Glu Tyr Lys Ala Ser Asp Lys Glu His Val
900 905 910 Thr Lys Asp
Thr Leu Arg His Ala Lys Gln Thr Lys Arg Arg Asp Tyr 915
920 925 Pro Gly Glu Glu Ser Ser Ser His
His Arg Gly His Glu Asp Phe Ser 930 935
940 Ala Arg Thr Asp Asn Ile Val Asn Asn Glu Lys Lys Pro
Arg Gln Glu 945 950 955
960 Arg Thr Gly Ala Lys Ile Asp Lys Phe Ile Asp Thr Leu Asp Gly Gln
965 970 975 Arg Leu Gln Asp
Arg Lys His Lys Asp Ser Arg Arg Lys Ile Lys Glu 980
985 990 Gln Arg Glu Gly Thr Glu Ser Leu
Ser Lys Gln Gly Glu Gln Asn Gly 995 1000
1005 Ser Ser Val Val Thr Gly Ser Lys Gly Thr Asn
Asp Ala Arg Asn 1010 1015 1020
Cys Arg Ser Glu Ile Pro His Gln Pro Asn Thr Ala Lys Arg His
1025 1030 1035 Lys Glu Asn
Ala Ser Ser Gly Asp Glu Ile His Asp Ser Lys Arg 1040
1045 1050 Gly Arg Thr Lys Leu Glu Arg Trp
Ala Ser His Lys Glu Arg Glu 1055 1060
1065 Asp Ala Val Ser Ala Lys Ser Ser Ser Ile Ser Ser Lys
Leu Glu 1070 1075 1080
Glu Lys Glu Asn Asn Thr Asn Gly Arg Leu Ser Glu Pro Val His 1085
1090 1095 Gly Ser Ile Gly Lys
Ser Arg Asp Val Thr Glu Glu Lys Ile Gly 1100 1105
1110 His Asp Leu Ala Asp Thr Lys Asp Gly Ser
Glu Lys Gly Pro Gly 1115 1120 1125
Asp Arg His Leu Asp Thr Val Glu Lys Leu Lys Lys Arg Ser Glu
1130 1135 1140 Arg Phe
Lys Leu Pro Met Pro Thr Glu Lys Asp Thr Thr Gly Val 1145
1150 1155 Lys Lys Met Glu Ser Glu Thr
Leu Pro Ser Ala Lys Ile Glu Gly 1160 1165
1170 Pro Val Asp Ser Glu Gly Glu Tyr Val Trp Asp Glu
Arg Ser Cys 1175 1180 1185
Val Arg Ile Gly Arg Glu Tyr Ala 1190 1195
74312PRTArabidopsis thaliana 74Met Gly Lys Met Ile Val Ser Met Asp Gln
Asp Ile Arg Leu Asp Thr 1 5 10
15 Thr Arg Ala Arg Leu Ser Asn Leu Leu Lys Arg His Arg Glu Leu
Ser 20 25 30 Asp
Arg Leu Thr Arg Asp Ser Asp Lys Thr Met Leu Asp Arg Leu Asn 35
40 45 Lys Glu Phe Glu Ala Ala
Arg Arg Ser Gln Ser Gln Glu Val Phe Leu 50 55
60 Asp Gly Glu Glu Trp Asn Asp Gly Leu Leu Ala
Thr Leu Arg Glu Arg 65 70 75
80 Val His Met Glu Ala Asp Arg Lys Ala Asp Asn Gly Asn Ala Gly Phe
85 90 95 Ser Leu
Val Cys His Pro Glu Glu Arg Ile Thr Tyr Arg Val Gly Asn 100
105 110 Lys Val Ile Cys Cys Leu Asp
Gly Ser Arg Ile Gly Ile Gln Phe Glu 115 120
125 Thr Ser Thr Ala Gly Glu Thr Tyr Glu Val Tyr His
Cys Val Leu Glu 130 135 140
Ser Lys Ser Phe Leu Glu Lys Met Ile Val Leu Glu His Thr Ile Pro 145
150 155 160 Phe Phe Leu
Pro Leu Ser Asp Leu Glu Asn Asp Leu Leu Phe Ser Asn 165
170 175 Ala Lys Lys Phe Ile Asp Asn Val
Gly Asp Leu Leu Gln Ala Tyr Val 180 185
190 Asp Arg Lys Glu Gln Val Arg Leu Ile Lys Glu Leu Phe
Gly His Gln 195 200 205
Ile Ser Glu Ile Tyr His Ser Leu Pro Tyr His Met Ile Glu Phe Ser 210
215 220 Met Asp Asp Cys
Asp Cys Lys Phe Val Val Ser Leu Arg Tyr Gly Asp 225 230
235 240 Leu Leu Cys Glu Leu Pro Thr Lys Val
Arg Ile Leu Val Trp Pro Met 245 250
255 His His Leu Ser Lys Lys Gln Cys Thr Ser Pro Gly Ser Pro
Ala Ile 260 265 270
Pro Val Arg Leu Pro Phe Ala Glu Asp Ala Phe Arg Ile Gln Ser Leu
275 280 285 Pro Glu Ala Tyr
Ala Glu Ile Met Pro Asn Met Pro Asn Glu Ile Arg 290
295 300 Gln Leu Phe Gln Thr Ser Pro Ser
305 310 75209PRTArabidopsis thaliana 75Met Glu
Phe Ser Thr Ala Asp Phe Glu Arg Leu Ile Met Phe Glu His 1 5
10 15 Ala Arg Lys Asn Ser Glu Ala
Gln Tyr Lys Asn Asp Pro Leu Asp Ser 20 25
30 Glu Asn Leu Leu Lys Trp Gly Gly Ala Leu Leu Glu
Leu Ser Gln Phe 35 40 45
Gln Pro Ile Pro Glu Ala Lys Leu Met Leu Asn Asp Ala Ile Ser Lys
50 55 60 Leu Glu Glu
Ala Leu Thr Ile Asn Pro Gly Lys His Gln Ala Leu Trp 65
70 75 80 Cys Ile Ala Asn Ala Tyr Thr
Ala His Ala Phe Tyr Val His Asp Pro 85
90 95 Glu Glu Ala Lys Glu His Phe Asp Lys Ala Thr
Glu Tyr Phe Gln Arg 100 105
110 Ala Glu Asn Glu Asp Pro Gly Asn Asp Thr Tyr Arg Lys Ser Leu
Asp 115 120 125 Ser
Ser Leu Lys Ala Pro Glu Leu His Met Gln Phe Met Asn Gln Gly 130
135 140 Met Gly Gln Gln Ile Leu
Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly 145 150
155 160 Met Ala Ser Ser Asn Val Ser Ser Ser Lys Lys
Lys Lys Arg Asn Thr 165 170
175 Glu Phe Thr Tyr Asp Val Cys Gly Trp Ile Ile Leu Ala Cys Gly Ile
180 185 190 Val Ala
Trp Val Gly Met Ala Lys Ser Leu Gly Pro Pro Pro Pro Ala 195
200 205 Arg 76210PRTArabidopsis
thaliana 76Met Glu Phe Ser Thr Ala Asp Phe Glu Arg Phe Ile Met Phe Glu
His 1 5 10 15 Ala
Arg Lys Asn Ser Glu Ala Gln Tyr Lys Asn Asp Pro Leu Asp Ser
20 25 30 Glu Asn Leu Leu Lys
Trp Gly Gly Ala Leu Leu Glu Leu Ser Gln Phe 35
40 45 Gln Pro Ile Pro Glu Ala Lys Leu Met
Leu Asn Asp Ala Ile Ser Lys 50 55
60 Leu Glu Glu Ala Leu Thr Ile Asn Pro Gly Lys His Gln
Ala Leu Trp 65 70 75
80 Cys Ile Ala Asn Ala Tyr Thr Ala His Ala Phe Tyr Val His Asp Pro
85 90 95 Glu Glu Ala Lys
Glu His Phe Asp Lys Ala Thr Glu Tyr Phe Gln Arg 100
105 110 Ala Glu Asn Glu Asp Pro Gly Asn Asp
Thr Tyr Arg Lys Ser Leu Asp 115 120
125 Ser Ser Leu Lys Ala Pro Glu Leu His Met Gln Phe Met Asn
Gln Gly 130 135 140
Met Gly Gln Gln Ile Leu Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly 145
150 155 160 Met Ala Ser Ser Asn
Val Ser Gln Ser Ser Lys Lys Lys Lys Arg Asn 165
170 175 Thr Glu Phe Thr Tyr Asp Val Cys Gly Trp
Ile Ile Leu Ala Cys Gly 180 185
190 Ile Val Ala Trp Val Gly Met Ala Lys Ser Leu Gly Pro Pro Pro
Pro 195 200 205 Ala
Arg 210 77603PRTArabidopsis thaliana 77Met Ala Ala Ser Ser Thr Asn
Ala Arg Leu Thr Asn Pro Pro Arg Leu 1 5
10 15 Leu Ser Lys Pro Arg Leu Ser Pro Thr Ser Val
Ala Asn Leu Arg Phe 20 25
30 Pro Ala Ala Asp Phe Ser Thr Arg Phe Phe Ala Asp Ser Ser Ser
Pro 35 40 45 Arg
Leu Arg Ser Val Pro Phe Pro Val Val Phe Ser Asp Gln Arg Arg 50
55 60 Arg Arg Ser Met Glu Pro
Ser Asn Val Tyr Val Ala Ser Asn Ser Thr 65 70
75 80 Glu Met Glu Ile Gly Ser His Asp Ile Val Lys
Asn Pro Ser Leu Ile 85 90
95 Cys Ala Pro Val Met Ala Asp Ser Ile Asp Lys Met Val Ile Glu Thr
100 105 110 Ser Lys
Ala His Glu Leu Gly Ala Asp Leu Val Glu Ile Arg Leu Asp 115
120 125 Trp Leu Lys Asp Phe Asn Pro
Leu Glu Asp Leu Lys Thr Ile Ile Lys 130 135
140 Lys Ser Pro Leu Pro Thr Leu Phe Thr Tyr Arg Pro
Lys Trp Glu Gly 145 150 155
160 Gly Gln Tyr Glu Gly Asp Glu Asn Glu Arg Arg Asp Val Leu Arg Leu
165 170 175 Ala Met Glu
Leu Gly Ala Asp Tyr Ile Asp Val Glu Leu Gln Val Ala 180
185 190 Ser Glu Phe Ile Lys Ser Ile Asp
Gly Lys Lys Pro Gly Lys Phe Lys 195 200
205 Val Ile Val Ser Ser His Asn Tyr Gln Asn Thr Pro Ser
Val Glu Asp 210 215 220
Leu Asp Gly Leu Val Ala Arg Ile Gln Gln Thr Gly Ala Asp Ile Val 225
230 235 240 Lys Ile Ala Thr
Thr Ala Val Asp Ile Ala Asp Val Ala Arg Met Phe 245
250 255 His Ile Thr Ser Lys Ala Gln Val Pro
Thr Ile Gly Leu Val Met Gly 260 265
270 Glu Arg Gly Leu Met Ser Arg Ile Leu Cys Ser Lys Phe Gly
Gly Tyr 275 280 285
Leu Thr Phe Gly Thr Leu Asp Ser Ser Lys Val Ser Ala Pro Gly Gln 290
295 300 Pro Thr Ile Lys Asp
Leu Leu Asp Leu Tyr Asn Phe Arg Arg Ile Gly 305 310
315 320 Pro Asp Thr Lys Val Tyr Gly Ile Ile Gly
Lys Pro Val Ser His Ser 325 330
335 Lys Ser Pro Ile Val His Asn Gln Ala Phe Lys Ser Val Asp Phe
Asn 340 345 350 Gly
Val Tyr Val His Leu Leu Val Asp Asn Leu Val Ser Phe Leu Gln 355
360 365 Ala Tyr Ser Ser Ser Asp
Phe Ala Gly Phe Ser Cys Thr Ile Pro His 370 375
380 Lys Glu Ala Ala Leu Gln Cys Cys Asp Glu Val
Asp Pro Leu Ala Lys 385 390 395
400 Ser Ile Gly Ala Val Asn Thr Ile Leu Arg Arg Lys Ser Asp Gly Lys
405 410 415 Leu Leu
Gly Tyr Asn Thr Asp Cys Ile Gly Ser Ile Ser Ala Ile Glu 420
425 430 Asp Gly Leu Arg Ser Ser Gly
Asp Pro Ser Ser Val Pro Ser Ser Ser 435 440
445 Ser Pro Leu Ala Ser Lys Thr Val Val Val Ile Gly
Ala Gly Gly Ala 450 455 460
Gly Lys Ala Leu Ala Tyr Gly Ala Lys Glu Lys Gly Ala Lys Val Val 465
470 475 480 Ile Ala Asn
Arg Thr Tyr Glu Arg Ala Leu Glu Leu Ala Glu Ala Ile 485
490 495 Gly Gly Lys Ala Leu Ser Leu Thr
Asp Leu Asp Asn Tyr His Pro Glu 500 505
510 Asp Gly Met Val Leu Ala Asn Thr Thr Ser Met Gly Met
Gln Pro Asn 515 520 525
Val Glu Glu Thr Pro Ile Ser Lys Asp Ala Leu Lys His Tyr Ala Leu 530
535 540 Val Phe Asp Ala
Val Tyr Thr Pro Arg Ile Thr Arg Gln Leu Arg Glu 545 550
555 560 Ala Glu Glu Ser Gly Ala Ile Thr Val
Ser Gly Ser Glu Met Phe Val 565 570
575 Arg Gln Ala Tyr Glu Gln Phe Glu Ile Phe Thr Gly Leu Pro
Ala Pro 580 585 590
Lys Glu Leu Tyr Trp Gln Ile Met Ser Lys Tyr 595
600 78220PRTZea mays 78Met Ala Ser Ala Thr Gly Val Ser Ser
Ser Glu Met Ala Val Asp His 1 5 10
15 Ala Thr Gly Pro Gly Ala Val Asp Lys Pro Arg Phe Asp Ala
Leu Thr 20 25 30
Pro Asn Glu Met Ser Gly Gly Arg Pro Gln Phe Arg Lys Val Pro Val
35 40 45 Pro Gln His Arg
Phe Ala Pro Leu Lys Arg Cys Trp Met Glu Ile Tyr 50
55 60 Thr Pro Val Tyr Glu His Met Lys
Ile Asp Ile Arg Met Asn Leu Lys 65 70
75 80 Ala Arg Arg Val Glu Leu Lys Thr Arg Gln Asp Thr
Pro Asp Val Ser 85 90
95 Asn Leu Gln Lys Cys Ala Asp Phe Val His Ala Phe Met Leu Gly Phe
100 105 110 Asp Ile Ala
Asp Ala Val Ala Leu Leu Arg Leu Asp Asp Leu Tyr Val 115
120 125 Asp Ser Phe Glu Ile Lys Asp Val
Lys Thr Leu Arg Gly Glu His Leu 130 135
140 Ser Arg Ala Ile Gly Arg Leu Ser Gly Lys Gly Gly Lys
Thr Lys Tyr 145 150 155
160 Ala Ile Glu Asn Ser Thr Arg Thr Arg Ile Val Ile Ala Asp Thr Lys
165 170 175 Ile His Ile Leu
Gly Ser Phe Val Asn Ile Lys Val Ala Arg Asp Ser 180
185 190 Leu Cys Ser Leu Ile Leu Gly Ser Pro
Ala Gly Lys Val Tyr Ser Lys 195 200
205 Leu Arg Ala Val Ser Ala Arg Leu Ala Glu Arg Tyr 210
215 220 79220PRTZea mays 79Met Ala Ser
Ala Thr Gly Gly Ser Ser Ser Glu Met Ala Val Asp His 1 5
10 15 Ala Thr Gly Leu Gly Thr Val Glu
Lys Pro Arg Phe Asp Ala Leu Met 20 25
30 Pro Ser Glu Met Ser Gly Gly Arg Thr Gln Phe Arg Lys
Val Thr Val 35 40 45
Pro Gln His Arg Phe Ala Pro Leu Lys Arg Cys Trp Met Glu Ile Tyr 50
55 60 Thr Pro Val Tyr
Glu His Met Lys Ile Asp Ile Arg Met Asn Leu Lys 65 70
75 80 Ala Arg Arg Val Glu Leu Lys Thr Arg
Gln Asp Thr Pro Asp Val Ser 85 90
95 Asn Leu Gln Lys Cys Ala Asp Phe Val His Ala Phe Met Leu
Gly Phe 100 105 110
Asp Ile Ala Asp Ala Val Ala Leu Leu Arg Leu Asp Asp Leu Tyr Val
115 120 125 Asp Ser Phe Glu
Ile Lys Asp Val Lys Thr Leu Arg Gly Glu His Leu 130
135 140 Ser Arg Ala Ile Gly Arg Leu Ser
Gly Lys Gly Gly Lys Thr Lys Tyr 145 150
155 160 Ala Ile Glu Asn Ser Thr Arg Thr Arg Ile Val Ile
Ala Asp Thr Lys 165 170
175 Ile His Ile Leu Gly Ser Phe Val Asn Ile Lys Val Ala Arg Asp Ser
180 185 190 Leu Cys Ser
Leu Ile Leu Gly Ser Pro Ala Gly Lys Val Tyr Ser Lys 195
200 205 Leu Arg Ala Val Ser Ala Arg Leu
Ala Glu Arg Tyr 210 215 220
80220PRTZea mays 80Met Ala Ser Ala Thr Gly Gly Ser Ser Ser Glu Met Ala
Val Asp His 1 5 10 15
Ala Thr Gly Leu Gly Thr Val Glu Lys Pro Arg Phe Asp Ala Leu Met
20 25 30 Pro Ser Glu Met
Ser Gly Gly Arg Thr Gln Phe Arg Lys Val Thr Val 35
40 45 Pro Gln His Arg Phe Ala Pro Leu Lys
Arg Cys Trp Met Glu Ile Tyr 50 55
60 Thr Pro Val Tyr Glu His Met Lys Ile Asp Ile Arg Met
Asn Leu Lys 65 70 75
80 Ala Arg Arg Val Glu Leu Lys Thr Arg Gln Asp Thr Pro Asp Val Ser
85 90 95 Asn Leu Gln Lys
Cys Ala Asp Phe Val His Ala Phe Met Leu Gly Phe 100
105 110 Asp Ile Ala Asp Ala Val Ala Leu Leu
Arg Leu Asp Asp Leu Tyr Val 115 120
125 Asp Ser Phe Lys Ile Lys Asp Val Lys Thr Leu Arg Gly Glu
His Leu 130 135 140
Ser Arg Ala Ile Gly Arg Leu Ser Gly Lys Gly Gly Lys Thr Lys Tyr 145
150 155 160 Ala Ile Glu Asn Ser
Thr Arg Thr Arg Ile Val Ile Ala Asp Thr Lys 165
170 175 Ile His Ile Leu Gly Ser Phe Val Asn Ile
Lys Val Ala Arg Asp Ser 180 185
190 Leu Cys Ser Leu Ile Leu Gly Ser Pro Ala Gly Lys Val Tyr Ser
Lys 195 200 205 Leu
Arg Ala Val Ser Ala Arg Leu Ala Glu Arg Tyr 210 215
220 81187PRTArabidopsis thaliana 81Met Ser Arg Leu Leu Leu
Pro Lys Leu Phe Ser Ile Ser Arg Thr Gln 1 5
10 15 Val Pro Ala Ala Ser Leu Phe Asn Asn Leu Tyr
Arg Arg His Lys Arg 20 25
30 Phe Val His Trp Thr Ser Lys Met Ser Thr Asp Ser Val Arg Ser
Ser 35 40 45 Thr
Thr Gly Gly Ser Ala Ser Gly Ala Arg Thr Phe Cys Ser Leu Ala 50
55 60 Asp Leu Ser Thr Lys Lys
Cys Val Pro Cys Asn Ala Lys Asp Leu Arg 65 70
75 80 Ala Met Thr Glu Gln Ser Ala Gln Asp Leu Leu
Gln Lys Val Ala Gly 85 90
95 Trp Asp Leu Ala Asn Asp Asn Asp Thr Leu Lys Leu His Arg Ser Trp
100 105 110 Arg Val
Lys Ser Phe Thr Lys Gly Leu Asp Phe Phe Gln Arg Val Thr 115
120 125 Asp Ile Ala Glu Ser Glu Gly
His His Pro Asp Leu His Leu Val Gly 130 135
140 Trp Asn Asn Val Lys Ile Glu Ile Trp Thr His Ala
Ile Gly Gly Leu 145 150 155
160 Thr Glu Asn Asp Phe Ile Leu Ala Ala Lys Ile Asn Glu Leu Gln Val
165 170 175 Glu Asp Leu
Leu Arg Lys Lys Lys Val Ala Lys 180 185
82392PRTArabidopsis lyrata 82Met Val Lys Leu Glu Asn Pro Lys Lys Pro
Glu Asn Val Ser Asn Lys 1 5 10
15 Asn Ile Pro Leu Ser Asp Phe Val Val Asn Leu Asp His Gly Asp
Pro 20 25 30 Thr
Ala Tyr Glu Glu Tyr Trp Arg Lys Met Gly Asp Arg Cys Thr Val 35
40 45 Thr Ile Arg Gly Cys Asp
Leu Met Ser Tyr Phe Ser Asp Met Thr Asn 50 55
60 Leu Cys Trp Phe Leu Glu Pro Glu Leu Glu Ala
Ala Ile Lys Asp Leu 65 70 75
80 His Gly Ala Val Gly Asn Ala Ala Thr Glu Asp Arg Tyr Ile Val Val
85 90 95 Gly Thr
Gly Ser Thr Gln Leu Cys Gln Ala Ala Val His Ala Leu Ser 100
105 110 Ser Leu Ala Arg Thr Gln Pro
Val Ser Val Val Ala Ala Ala Pro Phe 115 120
125 Tyr Ser Thr Tyr Val Glu Glu Thr Thr Tyr Val Arg
Ser Gly Met Tyr 130 135 140
Lys Trp Glu Gly Asp Ala Trp Gly Phe Asp Lys Lys Gly Pro Tyr Ile 145
150 155 160 Glu Leu Val
Thr Ser Pro Asn Asn Pro Asp Gly Thr Ile Arg Glu Thr 165
170 175 Val Val Asn Arg Pro Asp Asp Asp
Glu Ala Lys Val Ile His Asp Phe 180 185
190 Ala Tyr Tyr Trp Pro His Tyr Thr Pro Ile Thr Arg Arg
Gln Asp His 195 200 205
Asp Ile Met Leu Phe Thr Phe Ser Lys Ile Thr Gly His Ala Gly Ser 210
215 220 Arg Ile Gly Trp
Ala Leu Val Lys Asp Lys Glu Val Ala Lys Lys Met 225 230
235 240 Val Glu Tyr Ile Ile Val Asn Ser Ile
Gly Val Ser Lys Glu Ser Gln 245 250
255 Val Arg Thr Ala Lys Ile Leu Lys Val Leu Lys Glu Thr Cys
Asn Ser 260 265 270
Glu Ser Asp Glu Ser Glu Asn Phe Phe Lys Tyr Gly Arg Lys Met Met
275 280 285 Lys Asn Arg Trp
Glu Lys Leu Arg Glu Val Val Lys Glu Ser Asp Ala 290
295 300 Phe Thr Leu Pro Lys Tyr Pro Glu
Ala Phe Cys Asn Tyr Phe Gly Lys 305 310
315 320 Ser Leu Glu Ser Tyr Pro Ala Phe Ala Trp Leu Gly
Thr Lys Glu Glu 325 330
335 Thr Asp Leu Val Ser Glu Leu Arg Arg His Lys Val Met Cys Arg Ala
340 345 350 Gly Glu Arg
Cys Gly Ser Asp Lys Lys His Val Arg Val Ser Met Leu 355
360 365 Ser Arg Glu Asp Val Phe Asn Val
Phe Leu Glu Arg Leu Ala Asn Met 370 375
380 Lys Leu Ile Lys Ser Ile Asp Leu 385
390 83391PRTArabidopsis thalianamisc_feature(217)..(217)Xaa can
be any naturally occurring amino acid 83Met Val Lys Leu Glu Asn Ser Arg
Lys Pro Glu Lys Ile Ser Asn Lys 1 5 10
15 Asn Ile Pro Met Ser Asp Phe Val Val Asn Leu Asp His
Gly Asp Pro 20 25 30
Thr Ala Tyr Glu Glu Tyr Trp Arg Lys Met Gly Asp Arg Cys Thr Val
35 40 45 Thr Ile Arg Gly
Cys Asp Leu Met Ser Tyr Phe Ser Asp Met Thr Asn 50
55 60 Leu Cys Trp Phe Leu Glu Pro Glu
Leu Glu Asp Ala Ile Lys Asp Leu 65 70
75 80 His Gly Val Val Gly Asn Ala Ala Thr Glu Asp Arg
Tyr Ile Val Val 85 90
95 Gly Thr Gly Ser Thr Gln Leu Cys Gln Ala Ala Val His Ala Leu Ser
100 105 110 Ser Leu Ala
Arg Ser Gln Pro Val Ser Val Val Ala Ala Ala Pro Phe 115
120 125 Tyr Ser Thr Tyr Val Glu Glu Thr
Thr Tyr Val Arg Ser Gly Met Tyr 130 135
140 Lys Trp Glu Gly Asp Ala Trp Gly Phe Asp Lys Lys Gly
Pro Tyr Ile 145 150 155
160 Glu Leu Val Thr Ser Pro Asn Asn Pro Asp Gly Thr Ile Arg Glu Thr
165 170 175 Val Val Asn Arg
Pro Asp Asp Asp Glu Ala Lys Val Ile His Asp Phe 180
185 190 Ala Tyr Tyr Trp Pro His Tyr Thr Pro
Ile Thr Arg Arg Gln Asp His 195 200
205 Asp Ile Met Leu Phe Thr Phe Ser Xaa Ile Thr Gly His Ala
Gly Ser 210 215 220
Arg Ile Gly Trp Ala Leu Val Lys Asp Lys Glu Val Ala Lys Lys Met 225
230 235 240 Val Glu Tyr Ile Ile
Val Asn Ser Ile Gly Val Ser Lys Glu Ser Gln 245
250 255 Val Arg Thr Ala Lys Ile Leu Asn Val Leu
Lys Glu Thr Cys Lys Ser 260 265
270 Glu Ser Glu Ser Glu Asn Phe Phe Lys Tyr Gly Arg Glu Met Met
Lys 275 280 285 Asn
Arg Trp Glu Lys Leu Arg Glu Val Val Lys Glu Ser Asp Ala Phe 290
295 300 Thr Leu Pro Lys Tyr Pro
Glu Ala Phe Cys Asn Tyr Phe Gly Lys Ser 305 310
315 320 Leu Glu Ser Tyr Pro Ala Phe Ala Trp Leu Gly
Thr Lys Glu Glu Thr 325 330
335 Asp Leu Val Ser Glu Leu Arg Arg His Lys Val Met Ser Arg Ala Gly
340 345 350 Glu Arg
Cys Gly Ser Asp Lys Lys His Val Arg Val Ser Met Leu Ser 355
360 365 Arg Glu Asp Val Phe Asn Val
Phe Leu Glu Arg Leu Ala Asn Met Lys 370 375
380 Leu Ile Lys Ser Ile Asp Leu 385
390 84763PRTSaccharomyces cerevisiae YJM789 84Met Asn Asp Ser Gln Asn
Cys Leu Arg Gln Arg Glu Glu Asn Ser His 1 5
10 15 Leu Asn Pro Gly Asn Asp Phe Gly His His Gln
Gly Ala Gly Cys Thr 20 25
30 Ile Asn His Asn Asn Met Pro His Arg Asn Ala Tyr Thr Glu Ser
Thr 35 40 45 Asn
Asp Thr Glu Ala Lys Ser Ile Val Met Cys Asp Asp Pro Asn Ala 50
55 60 Tyr Gln Ile Ser Tyr Thr
Asn Asn Glu Pro Ala Gly Asp Gly Ala Ile 65 70
75 80 Glu Thr Thr Ser Ile Leu Leu Ser Gln Pro Leu
Pro Leu Arg Ser Asn 85 90
95 Val Met Ser Val Leu Val Gly Ile Phe Val Ala Val Gly Gly Phe Leu
100 105 110 Phe Gly
Tyr Asp Thr Gly Leu Ile Asn Ser Ile Thr Asp Met Pro Tyr 115
120 125 Val Lys Thr Tyr Ile Ala Pro
Asn His Ser Tyr Phe Thr Thr Ser Gln 130 135
140 Ile Ala Ile Leu Val Ser Phe Leu Ser Leu Gly Thr
Phe Phe Gly Ala 145 150 155
160 Leu Ile Ala Pro Tyr Ile Ser Asp Ser Tyr Gly Arg Lys Pro Thr Ile
165 170 175 Met Phe Ser
Thr Ala Val Ile Phe Ser Ile Gly Asn Ser Leu Gln Val 180
185 190 Ala Ser Gly Gly Leu Val Leu Leu
Ile Val Gly Arg Val Ile Ser Gly 195 200
205 Ile Gly Ile Gly Ile Ile Ser Ala Val Val Pro Leu Tyr
Gln Ala Glu 210 215 220
Ala Ala Gln Lys Asn Leu Arg Gly Ala Ile Ile Ser Ser Tyr Gln Trp 225
230 235 240 Ala Ile Thr Ile
Gly Leu Leu Val Ser Ser Ala Val Ser Gln Gly Thr 245
250 255 His Ser Lys Asn Gly Pro Ser Ser Tyr
Arg Ile Pro Ile Gly Leu Gln 260 265
270 Tyr Val Trp Ser Ser Ile Leu Ala Val Gly Met Ile Phe Leu
Pro Glu 275 280 285
Ser Pro Arg Tyr Tyr Val Leu Lys Asp Glu Leu Asn Lys Ala Ala Lys 290
295 300 Ser Leu Ser Phe Leu
Arg Gly Leu Pro Ile Glu Asp Pro Arg Leu Leu 305 310
315 320 Glu Glu Leu Val Glu Ile Lys Ala Thr Tyr
Asp Tyr Glu Ala Ser Phe 325 330
335 Gly Pro Ser Thr Leu Leu Asp Cys Phe Lys Thr Ser Glu Asn Arg
Pro 340 345 350 Lys
Gln Ile Leu Arg Ile Phe Thr Gly Ile Ala Ile Gln Ala Phe Gln 355
360 365 Gln Ala Ser Gly Ile Asn
Phe Ile Phe Tyr Tyr Gly Val Asn Phe Phe 370 375
380 Asn Asn Thr Gly Val Asp Asn Ser Tyr Leu Val
Ser Phe Ile Ser Tyr 385 390 395
400 Ala Val Asn Val Ala Phe Ser Ile Pro Gly Met Tyr Leu Val Asp Arg
405 410 415 Ile Gly
Arg Arg Pro Val Leu Leu Ala Gly Gly Val Ile Met Ala Ile 420
425 430 Ala Asn Leu Val Ile Ala Ile
Val Gly Val Ser Glu Gly Lys Thr Val 435 440
445 Val Ala Ser Lys Ile Met Ile Ala Phe Ile Cys Leu
Phe Ile Ala Ala 450 455 460
Phe Ser Ala Thr Trp Gly Gly Val Val Trp Val Val Ser Ala Glu Leu 465
470 475 480 Tyr Pro Leu
Gly Val Arg Ser Lys Cys Thr Ala Ile Cys Ala Ala Ala 485
490 495 Asn Trp Leu Val Asn Phe Ile Cys
Ala Leu Ile Thr Pro Tyr Ile Val 500 505
510 Asp Val Gly Ser His Thr Ser Ser Met Gly Pro Lys Ile
Phe Phe Ile 515 520 525
Trp Gly Gly Leu Asn Val Val Ala Val Ile Ile Val Tyr Phe Ala Val 530
535 540 Tyr Glu Thr Arg
Gly Leu Thr Leu Glu Glu Ile Asp Glu Leu Phe Arg 545 550
555 560 Lys Ala Pro Asn Ser Val Ile Ser Ser
Lys Trp Asn Lys Lys Ile Arg 565 570
575 Lys Arg Cys Leu Ala Phe Pro Ile Ser Gln Gln Ile Glu Met
Lys Thr 580 585 590
Asn Ile Lys Lys Ala Gly Lys Leu Asp Asn Asn Asn Ser Pro Ile Val
595 600 605 Gln Asp Asp Ser
His Asn Ile Ile Asp Val Asp Gly Phe Leu Glu Asn 610
615 620 Gln Ile Gln Ser Asn Asp His Met
Ile Ala Ala Asp Lys Gly Asn Gly 625 630
635 640 Ser Leu Val Asn Ile Ile Asp Thr Ala Pro Leu Thr
Ser Thr Glu Phe 645 650
655 Lys Pro Val Glu His Pro Pro Val Asn Tyr Val Asp Leu Gly Asn Gly
660 665 670 Leu Gly Leu
Asn Thr Tyr Asn Arg Gly Pro Pro Ser Ile Ile Ser Asp 675
680 685 Ser Thr Asp Glu Phe Tyr Glu Glu
Asn Asp Ser Ser Tyr Tyr Asn Asn 690 695
700 Asn Thr Glu Arg Asn Gly Ala Asn Ser Val Asn Thr Tyr
Met Ala Gln 705 710 715
720 Leu Ile Asn Ser Pro Ser Thr Thr Ser Asn Asp Thr Ser Phe Ser Pro
725 730 735 Ser His Asn Ser
Asn Ala Arg Thr Ser Ser Asn Trp Thr Ser Asp Leu 740
745 750 Ala Ser Lys His Ser Gln Tyr Thr Ser
Pro Gln 755 760 85210PRTGlycine max
85Met Ser Asn Thr Ser Asn Asn Val Ala Gly Val Asp Asn Thr Phe Arg 1
5 10 15 Arg Lys Phe Asp
Arg Glu Glu Tyr Leu Glu Arg Ala Arg Glu Arg Glu 20
25 30 Arg Gln Glu Glu Glu Gly Arg Ala Lys
Pro Lys Ala Glu Gly Pro Pro 35 40
45 Val Gln Arg Lys Pro Leu Lys His Arg Asp Tyr Glu Val Asp
Leu Glu 50 55 60
Ser Arg Leu Gly Lys Thr Gln Val Val Thr Pro Val Ala Pro Leu Ser 65
70 75 80 Gln Gln Ala Gly Tyr
Tyr Cys Ser Val Cys Glu Cys Val Val Lys Asp 85
90 95 Ser Ala Asn Tyr Leu Asp His Ile Asn Gly
Lys Lys His Gln Arg Ala 100 105
110 Leu Gly Met Ser Met Arg Val Glu Arg Ala Ser Leu Gln Gln Val
Gln 115 120 125 Glu
Arg Phe Glu Val Leu Lys Lys Arg Lys Asp Val Gly Ser Phe Thr 130
135 140 Glu Gln Asp Leu Asp Glu
Arg Ile Leu Lys Gln Gln Gln Glu Glu Glu 145 150
155 160 Glu Arg Lys Arg Leu Arg Arg Glu Lys Lys Lys
Glu Lys Lys Glu Lys 165 170
175 Ala Val Glu Glu Pro Glu Ile Asp Pro Asp Val Ala Ala Met Met Gly
180 185 190 Phe Gly
Arg Phe Pro Gly His Pro Thr Arg Asn Asp Ser Ile Leu His 195
200 205 Ala Glu 210
86419PRTArabidopsis lyrata 86Met Leu Gln Asn Leu Val Phe Ser Val Pro Ile
Ser Arg Met Val Val 1 5 10
15 Arg Arg His Ser Leu Ala Ile Ala Ala Ala Ala Thr Thr Val Val Pro
20 25 30 Ser Pro
Lys Pro Ala Ser Ala Lys Pro Ala Arg Thr Pro His Val Asp 35
40 45 Ser His Val Leu Ile Gly Met
Ser Glu Pro Glu Leu Gln Gln Leu Ala 50 55
60 Ile Asn Leu Val Leu Ile Phe Gln Glu Gly Tyr Arg
Gly Lys Gln Leu 65 70 75
80 His His Leu Ile Tyr Lys Arg Lys Val Asn Lys Val Glu Asp Phe Ser
85 90 95 Asn Leu Pro
Gln Thr Phe Arg Lys Glu Leu Val Glu Gly Gly Phe Lys 100
105 110 Val Gly Arg Ser Pro Ile Tyr Gln
Thr Val Thr Ala Thr Asp Gly Thr 115 120
125 Ile Lys Leu Leu Leu Lys Leu Glu Asp Asn Leu Leu Ile
Glu Thr Val 130 135 140
Gly Ile Pro Val Gln Asp Asp Glu Lys Gly Ile Thr Arg Leu Thr Ala 145
150 155 160 Cys Val Ser Ser
Gln Val Gly Cys Pro Leu Arg Cys Ser Phe Cys Ala 165
170 175 Thr Gly Lys Gly Gly Phe Ser Arg Asn
Leu Gln Arg His Glu Ile Ile 180 185
190 Glu Gln Val Leu Ala Ile Glu Asp Val Phe Lys His Arg Val
Thr Asn 195 200 205
Val Val Phe Met Gly Met Gly Glu Pro Met Leu Asn Leu Lys Ser Val 210
215 220 Leu Asp Ala His Arg
Cys Leu Asn Lys Asp Ile Glu Ile Gly Gln Arg 225 230
235 240 Met Ile Thr Ile Ser Thr Val Gly Val Pro
Asn Thr Ile Lys Lys Leu 245 250
255 Ala Ser His Lys Leu Gln Ser Thr Leu Ala Val Ser Leu His Ala
Pro 260 265 270 Asn
Gln Ser Leu Arg Glu Lys Ile Val Pro Ser Ala Lys Ala Tyr Pro 275
280 285 Leu Glu Ala Ile Met Lys
Asp Cys Arg Asp Tyr Phe Gln Glu Thr Asn 290 295
300 Arg Arg Val Ser Phe Glu Tyr Ala Leu Leu Ala
Gly Val Asn Asp Gln 305 310 315
320 Val Glu His Ala Val Glu Leu Ala Glu Leu Leu Arg Glu Trp Gly Lys
325 330 335 Thr Tyr
His Val Asn Leu Ile Pro Tyr Asn Pro Ile Glu Gly Ser Glu 340
345 350 Tyr Lys Arg Pro Tyr Lys Lys
Ala Val Leu Ala Phe Ala Ser Ala Leu 355 360
365 Glu Ser Arg Lys Ile Thr Ala Ser Val Arg Gln Thr
Arg Gly Leu Asp 370 375 380
Ala Ser Ala Ala Cys Gly Gln Leu Arg Asn Lys Phe Gln Lys Ser Pro 385
390 395 400 Leu Val Thr
Glu Thr Asp Gly Gln Glu Ser Gln Pro Ala Ala Glu Ala 405
410 415 Val Ser Cys 87431PRTArabidopsis
thaliana 87Met Met Thr Thr Thr Thr Asn Thr Met Ala Met Leu Gln Asn Leu
Val 1 5 10 15 Phe
Ser Val Pro Ile Ser Arg Met Val Val Arg Arg His Ser Leu Ala
20 25 30 Thr Thr Phe Ser Ala
Ala Ala Thr Thr Val Val Pro Ser Pro Lys Pro 35
40 45 Val Ser Ala Lys Pro Ala Arg Thr Pro
His Val Asp Ser His Val Leu 50 55
60 Ile Gly Met Ser Glu Pro Glu Leu Gln Glu Leu Ala Ile
Asn Leu Val 65 70 75
80 Leu Ile Phe Gln Glu Gly Tyr Arg Gly Lys Gln Leu His His Leu Ile
85 90 95 Tyr Lys Arg Lys
Val Asn Lys Val Glu Asp Phe Ser Asn Leu Pro Leu 100
105 110 Thr Phe Arg Lys Gly Leu Val Asp Gly
Gly Phe Lys Val Gly Arg Ser 115 120
125 Pro Ile Tyr Gln Thr Val Thr Ala Thr Asp Gly Thr Ile Lys
Leu Leu 130 135 140
Leu Lys Leu Glu Asp Asn Leu Leu Ile Glu Thr Val Gly Ile Pro Val 145
150 155 160 Gln Asp Asp Glu Lys
Gly Ile Thr Arg Leu Thr Ala Cys Val Ser Ser 165
170 175 Gln Val Gly Cys Pro Leu Arg Cys Ser Phe
Cys Ala Thr Gly Lys Gly 180 185
190 Gly Phe Ser Arg Asn Leu Gln Arg His Glu Ile Ile Glu Gln Val
Leu 195 200 205 Ala
Ile Glu Asp Val Phe Lys His Arg Val Thr Asn Val Val Phe Met 210
215 220 Gly Met Gly Glu Pro Met
Leu Asn Leu Lys Ser Val Leu Asp Ala His 225 230
235 240 Arg Cys Leu Asn Lys Asp Ile Glu Ile Gly Gln
Arg Met Ile Thr Ile 245 250
255 Ser Thr Val Gly Val Pro Asn Thr Ile Lys Lys Leu Ala Ser His Lys
260 265 270 Leu Gln
Ser Thr Leu Ala Val Ser Leu His Ala Pro Asn Gln Ser Leu 275
280 285 Arg Glu Lys Ile Val Pro Ser
Ala Lys Ala Tyr Pro Leu Glu Ala Ile 290 295
300 Met Lys Asp Cys Arg Asp Tyr Phe Gln Glu Thr Asn
Arg Arg Val Ser 305 310 315
320 Phe Glu Tyr Ala Leu Leu Ala Gly Val Asn Asp Gln Val Glu His Ala
325 330 335 Val Glu Leu
Ala Glu Leu Leu Arg Glu Trp Gly Lys Thr Tyr His Val 340
345 350 Asn Leu Ile Pro Tyr Asn Pro Ile
Glu Gly Ser Glu Tyr Gln Arg Pro 355 360
365 Tyr Lys Lys Ala Val Leu Ala Phe Ala Ala Ala Leu Glu
Ser Arg Lys 370 375 380
Ile Thr Ala Ser Val Arg Gln Thr Arg Gly Leu Asp Ala Ser Ala Ala 385
390 395 400 Cys Gly Gln Leu
Arg Asn Lys Phe Gln Lys Ser Pro Leu Leu Thr Glu 405
410 415 Thr Asp Ser Gln Glu Ser Gln Pro Asp
Ala Glu Ala Val Ala Cys 420 425
430 88374PRTArabidopsis lyrata 88Met Gly Cys Phe Gly Pro Ser Lys
Thr Ser Arg Thr Arg Asn His Glu 1 5 10
15 Lys Glu Thr Met Thr Arg Gln Asn Pro Ser Pro Gln Pro
Gln Thr Met 20 25 30
Arg Thr Glu Glu Val Leu Leu Gln Ile Pro Arg Cys Arg Val His Leu
35 40 45 Ile Asp Glu Ser
Glu Ala Val Glu Leu Ala Ser Gly Asp Phe Lys Leu 50
55 60 Val Lys Val Ser Asp Asn Gly Val
Thr Leu Ala Met Ile Val Arg Ile 65 70
75 80 Gly His Asp Leu Gln Trp Pro Val Ile Arg Asp Glu
Pro Val Val Lys 85 90
95 Leu Asp Ala Arg Asp Tyr Leu Phe Thr Leu Pro Val Lys Asp Gly Asp
100 105 110 Pro Leu Ser
Tyr Gly Val Thr Phe Ser Gly Asp Asp Arg Asp Val Ala 115
120 125 Leu Val Asn Ser Leu Lys Leu Leu
Asp Gln Phe Leu Ser Glu Asn Ser 130 135
140 Cys Phe Ser Ser Thr Ala Ser Ser Lys Val Asn Asn Gly
Ile Asp Trp 145 150 155
160 Gln Glu Phe Ala Pro Arg Ile Glu Asp Tyr Asn Asn Val Val Ala Lys
165 170 175 Ala Ile Ala Gly
Gly Thr Gly His Ile Ile Arg Gly Ile Phe Ser Leu 180
185 190 Ser Asn Ala Tyr Ser Asn Gln Val His
Lys Gly Gly Asp Ile Met Ile 195 200
205 Thr Lys Ala Glu Glu Ser Gln Arg Asn Gly Gly Tyr Asn Asn
Gly Asn 210 215 220
Ser Ser Gly Asn Glu Lys Lys Asn Gly Ile Asn Thr Asn Leu Gln Arg 225
230 235 240 Val Arg Lys Leu Ser
Lys Ala Thr Glu Asn Leu Ser Arg Thr Met Leu 245
250 255 Asn Gly Ala Gly Val Val Ser Gly Ser Val
Met Val Pro Val Met Lys 260 265
270 Ser Lys Pro Gly Met Ala Phe Phe Ser Met Val Pro Gly Glu Val
Leu 275 280 285 Leu
Ala Ser Leu Asp Ala Leu Asn Lys Ile Leu Asp Ala Thr Glu Ala 290
295 300 Ala Glu Arg Gln Thr Leu
Ser Ala Thr Ser Arg Ala Ala Thr Arg Met 305 310
315 320 Val Ser Glu Arg Phe Gly Glu Asn Ala Gly Glu
Ala Thr Gly Asp Val 325 330
335 Leu Ala Thr Ala Gly His Ala Ala Gly Thr Ala Trp Asn Val Leu Lys
340 345 350 Ile Arg
Lys Thr Phe Tyr Pro Ser Ser Ser Leu Thr Ser Gly Val Val 355
360 365 Lys Asn Ala Pro Arg Lys
370 89979PRTArabidopsis lyrata 89Met Ala Ser Pro His Lys
Pro Trp Arg Ala Glu Tyr Ala Lys Ser Ser 1 5
10 15 Arg Ser Ser Cys Lys Thr Cys Lys Ser Val Ile
Asn Lys Glu Asn Phe 20 25
30 Arg Leu Gly Lys Leu Val Gln Ser Thr His Phe Asp Gly Ile Met
Pro 35 40 45 Met
Trp Asn His Ala Ser Cys Ile Leu Asn Lys Thr Lys Gln Ile Lys 50
55 60 Ser Val Asp Asp Val Glu
Gly Ile Glu Ser Leu Arg Trp Glu Asp Gln 65 70
75 80 Gln Lys Ile Arg Lys Tyr Val Glu Ser Gly Ala
Gly Asn Ser Thr Ser 85 90
95 Thr Ser Lys Ser Ser Thr Ala Asn Asn Ala Lys Leu Glu Tyr Gly Ile
100 105 110 Glu Val
Ser Gln Thr Ser Arg Ala Gly Cys Arg Lys Cys Ser Glu Lys 115
120 125 Ile Leu Lys Gly Glu Val Arg
Ile Phe Ser Lys Pro Glu Gly Pro Gly 130 135
140 Asn Lys Gly Leu Met Trp His His Ala Lys Cys Phe
Leu Glu Met Ser 145 150 155
160 Ser Ser Thr Glu Leu Glu Ser Leu Ser Gly Trp Arg Ser Ile Pro Asp
165 170 175 Ala Asp Gln
Glu Val Leu Leu Pro Leu Val Lys Lys Ala Leu Pro Val 180
185 190 Ala Lys Thr Glu Thr Ala Glu Ala
Arg Gln Thr Asn Ser Arg Ala Gly 195 200
205 Thr Lys Arg Lys Asn Asp Ser Gly Asp Asn Glu Lys Ser
Lys Leu Ala 210 215 220
Lys Thr Ser Phe Asp Met Ser Thr Ser Gly Ala Leu Gln Pro Cys Ser 225
230 235 240 Lys Glu Arg Glu
Met Glu Ala Gln Thr Lys Glu Leu Trp Asp Leu Lys 245
250 255 Asp Asp Leu Lys Lys Tyr Val Lys Ser
Ala Glu Leu Arg Glu Met Leu 260 265
270 Glu Val Asn Glu Gln Ser Thr Arg Gly Ser Glu Leu Asp Leu
Arg Asp 275 280 285
Lys Cys Ala Asp Gly Met Met Phe Gly Pro Leu Ala Leu Cys Pro Ile 290
295 300 Cys Ser Gly His Leu
Ser Phe Ser Gly Gly Leu Tyr Arg Cys His Gly 305 310
315 320 Tyr Ile Ser Glu Trp Ser Lys Cys Ser His
Ser Thr Leu Asp Pro Asp 325 330
335 Arg Ile Lys Glu Lys Trp Lys Ile Pro Gly Glu Thr Glu Asn Gln
Phe 340 345 350 Leu
Leu Lys Trp Asn Lys Ser Gln Asn Ser Val Lys Pro Lys Arg Ile 355
360 365 Leu His Pro Val Ser Ser
Gly Glu Thr Ser Gln Gly Gln Gly Ser Lys 370 375
380 Asp Ala Thr Asp Ser Ser Arg Ser Glu Lys Leu
Ala Asp Leu Lys Val 385 390 395
400 Ser Ile Thr Gly Val Thr Lys Glu Arg Gln Ala Trp Lys Lys Arg Ile
405 410 415 Glu Glu
Ala Gly Gly Glu Phe His Ala Asn Val Lys Lys Gly Thr Ser 420
425 430 Cys Leu Val Val Cys Gly Leu
Thr Asp Ile Arg Asp Ala Glu Leu Arg 435 440
445 Lys Ala Arg Arg Met Lys Val Ala Ile Val Arg Glu
Asp Tyr Leu Val 450 455 460
Asp Cys Phe Lys Lys Gln Arg Lys Leu Pro Phe Asp Lys Phe Lys Ile 465
470 475 480 Glu Asp Thr
Ser Glu Ser Leu Val Thr Val Lys Val Lys Gly Arg Ser 485
490 495 Ala Val His Glu Ala Ser Gly Leu
Gln Glu His Cys His Ile Leu Glu 500 505
510 Asp Gly Asn Ser Ile Tyr Asn Thr Thr Leu Ser Met Ser
Asp Leu Ser 515 520 525
Thr Gly Ile Asn Ser Tyr Tyr Ile Leu Gln Ile Ile Gln Glu Asp Lys 530
535 540 Gly Ser Asp Cys
Tyr Val Phe Arg Lys Trp Gly Arg Val Gly Asn Glu 545 550
555 560 Lys Ile Gly Gly Asn Lys Val Glu Glu
Met Ser Lys Ser Asp Ala Val 565 570
575 His Glu Phe Lys Arg Leu Phe Leu Glu Lys Thr Gly Asn Thr
Trp Glu 580 585 590
Ser Trp Glu Gln Lys Thr Asn Phe Gln Lys Gln Pro Gly Lys Phe Leu
595 600 605 Pro Leu Asp Ile
Asp Tyr Gly Val Asn Lys Gln Val Ala Lys Lys Glu 610
615 620 Pro Cys Pro Ala Ser Ser Asn Leu
Ala Pro Pro Leu Ile Glu Leu Met 625 630
635 640 Lys Met Leu Phe Asp Val Glu Thr Tyr Arg Ser Ala
Met Met Glu Phe 645 650
655 Glu Ile Asn Met Ser Glu Met Pro Leu Gly Lys Leu Ser Lys His Asn
660 665 670 Ile Gln Lys
Gly Phe Glu Ala Leu Thr Glu Ile Gln Lys Leu Leu Thr 675
680 685 Glu Ser Asp Pro Gln Pro Ser Ile
Lys Glu Ser Leu Leu Val Asp Ala 690 695
700 Ser Asn Arg Phe Phe Thr Met Ile Pro Ser Ile His Pro
His Ile Ile 705 710 715
720 Arg Asp Glu Glu Asp Phe Lys Ser Lys Val Lys Met Leu Glu Ala Leu
725 730 735 Gln Asp Ile Glu
Ile Ala Ser Arg Leu Val Gly Phe Asp Val Asp Ser 740
745 750 Thr Glu Ser Leu Asp Asp Lys Tyr Lys
Lys Leu His Cys Asp Ile Ser 755 760
765 Pro Leu Pro His Asp Ser Glu Asp Tyr Arg Leu Ile Glu Lys
Tyr Leu 770 775 780
Asn Thr Thr His Ala Pro Thr His Thr Glu Trp Ser Leu Glu Leu Glu 785
790 795 800 Glu Val Phe Ala Leu
Glu Arg Glu Gly Glu Phe Asp Lys Tyr Ala Pro 805
810 815 His Arg Asp Lys Leu Gly Asn Lys Met Leu
Leu Trp His Gly Ser Arg 820 825
830 Leu Thr Asn Phe Val Gly Ile Leu Asn Gln Gly Leu Arg Ile Ala
Pro 835 840 845 Pro
Glu Ala Pro Ala Thr Gly Tyr Met Phe Gly Lys Gly Ile Tyr Phe 850
855 860 Ala Asp Leu Val Ser Lys
Ser Ala Gln Tyr Cys Tyr Thr Cys Lys Lys 865 870
875 880 Asn Pro Val Gly Leu Met Leu Leu Ser Glu Val
Ala Leu Gly Glu Ile 885 890
895 His Glu Leu Thr Lys Ala Lys Tyr Met Asp Lys Pro Pro Lys Gly Lys
900 905 910 His Ser
Thr Lys Gly Leu Gly Lys Lys Val Pro Gln Asp Ser Glu Phe 915
920 925 Ala Lys Trp Arg Gly Asp Val
Thr Val Pro Cys Gly Lys Pro Val Ala 930 935
940 Ser Lys Val Lys Ala Ser Glu Leu Met Tyr Asn Glu
Tyr Ile Val Tyr 945 950 955
960 Asn Thr Ala Gln Val Lys Leu Gln Phe Leu Leu Lys Val Arg Phe Lys
965 970 975 His Lys Arg
901009PRTArabidopsis thaliana 90Met Ala Ser Pro His Lys Pro Trp Arg Ala
Glu Tyr Ala Lys Ser Ser 1 5 10
15 Arg Ser Ser Cys Lys Thr Cys Lys Ser Val Ile Asn Lys Glu Asn
Phe 20 25 30 Arg
Leu Gly Lys Leu Val Gln Ser Thr His Phe Asp Gly Ile Met Pro 35
40 45 Met Trp Asn His Ala Ser
Cys Ile Leu Lys Lys Thr Lys Gln Ile Lys 50 55
60 Ser Val Asp Asp Val Glu Gly Ile Glu Ser Leu
Arg Trp Glu Asp Gln 65 70 75
80 Gln Lys Ile Arg Lys Tyr Val Glu Ser Gly Ala Gly Ser Asn Thr Ser
85 90 95 Thr Ser
Thr Gly Thr Ser Thr Ser Ser Thr Ala Asn Asn Ala Lys Leu 100
105 110 Glu Tyr Gly Ile Glu Val Ser
Gln Thr Ser Arg Ala Gly Cys Arg Lys 115 120
125 Cys Ser Glu Lys Ile Leu Lys Gly Glu Val Arg Ile
Phe Ser Lys Pro 130 135 140
Glu Gly Pro Gly Asn Lys Gly Leu Met Trp His His Ala Lys Cys Phe 145
150 155 160 Leu Glu Met
Ser Ser Ser Thr Glu Leu Glu Ser Leu Ser Gly Trp Arg 165
170 175 Ser Ile Pro Asp Ser Asp Gln Glu
Ala Leu Leu Pro Leu Val Lys Lys 180 185
190 Ala Leu Pro Ala Ala Lys Thr Gly Lys Ser Leu Lys Asp
Pro Asp Leu 195 200 205
Gln Tyr Phe Ser Leu Ile Phe Pro Leu Ile Tyr Phe Gly Pro Thr Gly 210
215 220 Thr Glu Thr Ala
Glu Ala Arg Gln Thr Asn Ser Arg Ala Gly Thr Lys 225 230
235 240 Arg Lys Asn Asp Ser Val Asp Asn Glu
Lys Ser Lys Leu Ala Lys Ser 245 250
255 Ser Phe Asp Met Ser Thr Ser Gly Ala Leu Gln Pro Cys Ser
Lys Glu 260 265 270
Lys Glu Met Glu Ala Gln Thr Lys Glu Leu Trp Asp Leu Lys Asp Asp
275 280 285 Leu Lys Lys Tyr
Val Thr Ser Ala Glu Leu Arg Glu Met Leu Glu Val 290
295 300 Asn Glu Gln Ser Thr Arg Gly Ser
Glu Leu Asp Leu Arg Asp Lys Cys 305 310
315 320 Ala Asp Gly Met Met Phe Gly Pro Leu Ala Leu Cys
Pro Met Cys Ser 325 330
335 Gly His Leu Ser Phe Ser Gly Gly Leu Tyr Arg Cys His Gly Tyr Ile
340 345 350 Ser Glu Trp
Ser Lys Cys Ser His Ser Thr Leu Asp Pro Asp Arg Ile 355
360 365 Lys Gly Lys Trp Lys Ile Pro Asp
Glu Thr Glu Asn Gln Phe Leu Leu 370 375
380 Lys Trp Asn Lys Ser Gln Lys Ser Val Lys Pro Lys Arg
Ile Leu Arg 385 390 395
400 Pro Val Leu Ser Gly Glu Thr Ser Gln Gly Gln Gly Ser Lys Asp Ala
405 410 415 Thr Asp Ser Ser
Arg Ser Glu Arg Leu Ala Asp Leu Lys Val Ser Ile 420
425 430 Ala Gly Asn Thr Lys Glu Arg Gln Pro
Trp Lys Lys Arg Ile Glu Glu 435 440
445 Ala Gly Ala Glu Phe His Ala Asn Val Lys Lys Gly Thr Ser
Cys Leu 450 455 460
Val Val Cys Gly Leu Thr Asp Ile Arg Asp Ala Glu Met Arg Lys Ala 465
470 475 480 Arg Arg Met Lys Val
Ala Ile Val Arg Glu Asp Tyr Leu Val Asp Cys 485
490 495 Phe Lys Lys Gln Arg Lys Leu Pro Phe Asp
Lys Tyr Lys Ile Glu Asp 500 505
510 Thr Ser Glu Ser Leu Val Thr Val Lys Val Lys Gly Arg Ser Ala
Val 515 520 525 His
Glu Ala Ser Gly Leu Gln Glu His Cys His Ile Leu Glu Asp Gly 530
535 540 Asn Ser Ile Tyr Asn Thr
Thr Leu Ser Met Ser Asp Leu Ser Thr Gly 545 550
555 560 Ile Asn Ser Tyr Tyr Ile Leu Gln Ile Ile Gln
Glu Asp Lys Gly Ser 565 570
575 Asp Cys Tyr Val Phe Arg Lys Trp Gly Arg Val Gly Asn Glu Lys Ile
580 585 590 Gly Gly
Asn Lys Val Glu Glu Met Ser Lys Ser Asp Ala Val His Glu 595
600 605 Phe Lys Arg Leu Phe Leu Glu
Lys Thr Gly Asn Thr Trp Glu Ser Trp 610 615
620 Glu Gln Lys Thr Asn Phe Gln Lys Gln Pro Gly Lys
Phe Leu Pro Leu 625 630 635
640 Asp Ile Asp Tyr Gly Val Asn Lys Gln Val Ala Lys Lys Glu Pro Phe
645 650 655 Gln Thr Ser
Ser Asn Leu Ala Pro Ser Leu Ile Glu Leu Met Lys Met 660
665 670 Leu Phe Asp Val Glu Thr Tyr Arg
Ser Ala Met Met Glu Phe Glu Ile 675 680
685 Asn Met Ser Glu Met Pro Leu Gly Lys Leu Ser Lys His
Asn Ile Gln 690 695 700
Lys Gly Phe Glu Ala Leu Thr Glu Ile Gln Arg Leu Leu Thr Glu Ser 705
710 715 720 Asp Pro Gln Pro
Thr Met Lys Glu Ser Leu Leu Val Asp Ala Ser Asn 725
730 735 Arg Phe Phe Thr Met Ile Pro Ser Ile
His Pro His Ile Ile Arg Asp 740 745
750 Glu Asp Asp Phe Lys Ser Lys Val Lys Met Leu Glu Ala Leu
Gln Asp 755 760 765
Ile Glu Ile Ala Ser Arg Ile Val Gly Phe Asp Val Asp Ser Thr Glu 770
775 780 Ser Leu Asp Asp Lys
Tyr Lys Lys Leu His Cys Asp Ile Ser Pro Leu 785 790
795 800 Pro His Asp Ser Glu Asp Tyr Arg Leu Ile
Glu Lys Tyr Leu Asn Thr 805 810
815 Thr His Ala Pro Thr His Thr Glu Trp Ser Leu Glu Leu Glu Glu
Val 820 825 830 Phe
Ala Leu Glu Arg Glu Gly Glu Phe Asp Lys Tyr Ala Pro His Arg 835
840 845 Glu Lys Leu Gly Asn Lys
Met Leu Leu Trp His Gly Ser Arg Leu Thr 850 855
860 Asn Phe Val Gly Ile Leu Asn Gln Gly Leu Arg
Ile Ala Pro Pro Glu 865 870 875
880 Ala Pro Ala Thr Gly Tyr Met Phe Gly Lys Gly Ile Tyr Phe Ala Asp
885 890 895 Leu Val
Ser Lys Ser Ala Gln Tyr Cys Tyr Thr Cys Lys Lys Asn Pro 900
905 910 Val Gly Leu Met Leu Leu Ser
Glu Val Ala Leu Gly Glu Ile His Glu 915 920
925 Leu Thr Lys Ala Lys Tyr Met Asp Lys Pro Pro Arg
Gly Lys His Ser 930 935 940
Thr Lys Gly Leu Gly Lys Lys Val Pro Gln Asp Ser Glu Phe Ala Lys 945
950 955 960 Trp Arg Gly
Asp Val Thr Val Pro Cys Gly Lys Pro Val Ser Ser Lys 965
970 975 Val Lys Ala Ser Glu Leu Met Tyr
Asn Glu Tyr Ile Val Tyr Asp Thr 980 985
990 Ala Gln Val Lys Leu Gln Phe Leu Leu Lys Val Arg
Phe Lys His Lys 995 1000 1005
Arg 91732PRTArabidopsis thaliana 91Met Ser Asn Gln Lys Lys Arg
Asn Phe Gln Ile Glu Ala Phe Lys His 1 5
10 15 Arg Val Val Val Asp Pro Lys Tyr Ala Asp Lys
Thr Trp Gln Ile Leu 20 25
30 Glu Arg Ala Ile His Gln Ile Tyr Asn Gln Asp Ala Ser Gly Leu
Ser 35 40 45 Phe
Glu Glu Leu Tyr Arg Asn Ala Tyr Asn Met Val Leu His Lys Phe 50
55 60 Gly Glu Lys Leu Tyr Thr
Gly Phe Ile Ala Thr Met Thr Ser His Leu 65 70
75 80 Lys Glu Lys Ser Lys Leu Ile Glu Ala Ala Gln
Gly Gly Ser Phe Leu 85 90
95 Glu Glu Leu Asn Lys Lys Trp Asn Glu His Asn Lys Ala Leu Glu Met
100 105 110 Ile Arg
Asp Ile Leu Met Tyr Met Asp Arg Thr Tyr Ile Glu Ser Thr 115
120 125 Lys Lys Thr His Val His Pro
Met Gly Leu Asn Leu Trp Arg Asp Asn 130 135
140 Val Val His Phe Thr Lys Ile His Thr Arg Leu Leu
Asn Thr Leu Leu 145 150 155
160 Asp Leu Val Gln Lys Glu Arg Ile Gly Glu Val Ile Asp Arg Gly Leu
165 170 175 Met Arg Asn
Val Ile Lys Met Phe Met Asp Leu Gly Glu Ser Val Tyr 180
185 190 Gln Glu Asp Phe Glu Lys Pro Phe
Leu Asp Ala Ser Ser Glu Phe Tyr 195 200
205 Lys Val Glu Ser Gln Glu Phe Ile Glu Ser Cys Asp Cys
Gly Asp Tyr 210 215 220
Leu Lys Lys Ser Glu Lys Arg Leu Thr Glu Glu Ile Glu Arg Val Ala 225
230 235 240 His Tyr Leu Asp
Ala Lys Ser Glu Glu Lys Ile Thr Ser Val Val Glu 245
250 255 Lys Glu Met Ile Ala Asn His Met Gln
Arg Leu Val His Met Glu Asn 260 265
270 Ser Gly Leu Val Asn Met Leu Leu Asn Asp Lys Tyr Glu Asp
Leu Gly 275 280 285
Arg Met Tyr Asn Leu Phe Arg Arg Val Thr Asn Gly Leu Val Thr Val 290
295 300 Arg Asp Val Met Thr
Ser His Leu Arg Glu Met Gly Lys Gln Leu Val 305 310
315 320 Thr Asp Pro Glu Lys Ser Lys Asp Pro Val
Glu Phe Val Gln Arg Leu 325 330
335 Leu Asp Glu Arg Asp Lys Tyr Asp Lys Ile Ile Asn Thr Ala Phe
Gly 340 345 350 Asn
Asp Lys Thr Phe Gln Asn Ala Leu Asn Ser Ser Phe Glu Tyr Phe 355
360 365 Ile Asn Leu Asn Ala Arg
Ser Pro Glu Phe Ile Ser Leu Phe Val Asp 370 375
380 Asp Lys Leu Arg Lys Gly Leu Lys Gly Ile Thr
Asp Val Asp Val Glu 385 390 395
400 Val Ile Leu Asp Lys Val Met Met Leu Phe Arg Tyr Leu Gln Glu Lys
405 410 415 Asp Val
Phe Glu Lys Tyr Tyr Lys Gln His Leu Ala Lys Arg Leu Leu 420
425 430 Ser Gly Lys Thr Val Ser Asp
Asp Ala Glu Arg Ser Leu Ile Val Lys 435 440
445 Leu Lys Thr Glu Cys Gly Tyr Gln Phe Ile Ser Lys
Leu Glu Gly Met 450 455 460
Phe Thr Asp Met Lys Thr Ser Glu Asp Thr Met Arg Gly Phe Tyr Gly 465
470 475 480 Ser His Pro
Glu Leu Ser Glu Gly Pro Thr Leu Ile Val Gln Val Leu 485
490 495 Thr Thr Gly Ser Trp Pro Thr Gln
Pro Ala Val Pro Cys Asn Leu Pro 500 505
510 Ala Glu Val Ser Val Leu Cys Glu Lys Phe Arg Ser Tyr
Tyr Leu Gly 515 520 525
Thr His Thr Gly Arg Arg Leu Ser Trp Gln Thr Asn Met Gly Thr Ala 530
535 540 Asp Ile Lys Ala
Ile Phe Gly Lys Gly Gln Lys His Glu Leu Asn Val 545 550
555 560 Ser Thr Phe Gln Met Cys Val Leu Met
Leu Phe Asn Asn Ser Asp Arg 565 570
575 Leu Ser Tyr Lys Glu Ile Glu Gln Ala Thr Glu Ile Pro Ala
Ala Asp 580 585 590
Leu Lys Arg Cys Leu Gln Ser Leu Ala Cys Val Lys Gly Lys Asn Val
595 600 605 Ile Lys Lys Glu
Pro Met Ser Lys Asp Ile Gly Glu Glu Asp Leu Phe 610
615 620 Val Val Asn Asp Lys Phe Thr Ser
Lys Phe Tyr Lys Val Lys Ile Gly 625 630
635 640 Thr Val Val Ala Gln Lys Glu Thr Glu Pro Glu Lys
Gln Glu Thr Arg 645 650
655 Gln Arg Val Glu Glu Asp Arg Lys Pro Gln Ile Glu Ala Ala Ile Val
660 665 670 Arg Ile Met
Lys Ser Arg Lys Ile Leu Asp His Asn Asn Ile Ile Ala 675
680 685 Glu Val Thr Lys Gln Leu Gln Pro
Arg Phe Leu Ala Asn Pro Thr Glu 690 695
700 Ile Lys Lys Arg Ile Glu Ser Leu Ile Glu Arg Asp Phe
Leu Glu Arg 705 710 715
720 Asp Ser Thr Asp Arg Lys Leu Tyr Arg Tyr Leu Ala 725
730 92732PRTArabidopsis lyrata 92Met Ser Asn Gln
Lys Lys Arg Asn Phe Gln Ile Glu Ala Phe Lys His 1 5
10 15 Arg Val Val Val Asp Pro Lys Tyr Ala
Asp Lys Thr Trp Gln Ile Leu 20 25
30 Glu Arg Ala Ile His Gln Ile Tyr Asn Gln Asp Ala Ser Gly
Leu Ser 35 40 45
Phe Glu Glu Leu Tyr Arg Asn Ala Tyr Asn Met Val Leu His Lys Phe 50
55 60 Gly Glu Lys Leu Tyr
Thr Gly Phe Ile Ala Thr Met Thr Ser His Leu 65 70
75 80 Lys Glu Lys Ser Lys Leu Ile Glu Ala Ala
Gln Gly Gly Ser Phe Leu 85 90
95 Glu Glu Leu Asn Lys Lys Trp Asn Glu His Asn Lys Ala Leu Glu
Met 100 105 110 Ile
Arg Asp Ile Leu Met Tyr Met Asp Arg Thr Tyr Ile Glu Ser Thr 115
120 125 Lys Lys Thr His Val His
Pro Met Gly Leu Asn Leu Trp Arg Asp Asn 130 135
140 Val Val His Phe Thr Lys Ile His Thr Arg Leu
Leu Asn Thr Leu Leu 145 150 155
160 Asp Leu Val Gln Lys Glu Arg Thr Gly Glu Val Ile Asp Arg Gly Leu
165 170 175 Met Arg
Asn Val Ile Lys Met Phe Met Asp Leu Gly Glu Ser Val Tyr 180
185 190 Gln Glu Asp Phe Glu Lys Pro
Phe Leu Asp Ala Ser Ser Glu Phe Tyr 195 200
205 Lys Val Glu Ser Gln Glu Phe Ile Glu Ser Cys Asp
Cys Gly Asp Tyr 210 215 220
Leu Lys Lys Ala Glu Lys Arg Leu Thr Glu Glu Ile Glu Arg Val Ala 225
230 235 240 His Tyr Leu
Asp Ala Lys Ser Glu Glu Lys Ile Thr Ser Val Val Glu 245
250 255 Lys Glu Met Ile Ala Asn His Met
Gln Arg Leu Val His Met Glu Asn 260 265
270 Ser Gly Leu Val Asn Met Leu Leu Asn Asp Lys Tyr Asp
Asp Leu Gly 275 280 285
Arg Met Tyr Asn Leu Phe Arg Arg Val Thr Asn Gly Leu Val Thr Val 290
295 300 Arg Asp Val Met
Thr Ser His Leu Arg Glu Met Gly Lys Gln Leu Val 305 310
315 320 Thr Asp Pro Glu Lys Ser Lys Asp Pro
Val Glu Phe Val Gln Arg Leu 325 330
335 Leu Asp Glu Arg Asp Lys Tyr Asp Lys Ile Ile Ser Thr Ala
Phe Gly 340 345 350
Asn Asp Lys Thr Phe Gln Asn Ala Leu Asn Ser Ser Phe Glu Tyr Phe
355 360 365 Ile Asn Leu Asn
Ala Arg Ser Pro Glu Phe Ile Ser Leu Phe Val Asp 370
375 380 Asp Lys Leu Arg Lys Gly Leu Lys
Gly Ile Ala Asp Val Asp Val Glu 385 390
395 400 Val Ile Leu Asp Lys Val Met Met Leu Phe Arg Tyr
Leu Gln Glu Lys 405 410
415 Asp Val Phe Glu Lys Tyr Tyr Lys Gln His Leu Ala Lys Arg Leu Leu
420 425 430 Ser Gly Lys
Thr Val Ser Asp Glu Ala Glu Arg Ser Leu Ile Val Lys 435
440 445 Leu Lys Thr Glu Cys Gly Tyr Gln
Phe Thr Ser Lys Leu Glu Gly Met 450 455
460 Phe Thr Asp Met Lys Thr Ser Glu Asp Thr Met Arg Gly
Phe Tyr Gly 465 470 475
480 Ser His Pro Glu Leu Ser Glu Gly Pro Thr Leu Ile Val Gln Val Leu
485 490 495 Thr Thr Gly Ser
Trp Pro Thr Gln Pro Ala Val Pro Cys Asn Leu Pro 500
505 510 Ala Glu Val Ser Val Leu Cys Glu Lys
Phe Arg Ser Tyr Tyr Leu Gly 515 520
525 Thr His Thr Gly Arg Arg Leu Ser Trp Gln Thr Asn Met Gly
Thr Ala 530 535 540
Asp Ile Lys Ala Ile Phe Gly Lys Gly Gln Lys His Glu Leu Asn Val 545
550 555 560 Ser Thr Phe Gln Met
Cys Val Leu Met Leu Phe Asn Asn Ser Asp Arg 565
570 575 Leu Ser Tyr Lys Glu Ile Glu Gln Ala Thr
Glu Ile Pro Ala Ala Asp 580 585
590 Leu Lys Arg Cys Leu Gln Ser Leu Ala Cys Val Lys Gly Lys Asn
Val 595 600 605 Ile
Lys Lys Glu Pro Met Ser Lys Asp Ile Gly Glu Glu Asp Ser Phe 610
615 620 Val Val Asn Asp Lys Phe
Thr Ser Lys Phe Tyr Lys Val Lys Ile Gly 625 630
635 640 Thr Val Val Ala Gln Lys Glu Thr Glu Pro Glu
Lys Gln Glu Thr Arg 645 650
655 Gln Arg Val Glu Glu Asp Arg Lys Pro Gln Ile Glu Ala Ala Ile Val
660 665 670 Arg Ile
Met Lys Ser Arg Lys Ile Leu Asp His Asn Asn Ile Ile Ala 675
680 685 Glu Val Thr Lys Gln Leu Gln
Pro Arg Phe Leu Ala Asn Pro Thr Glu 690 695
700 Ile Lys Lys Arg Ile Glu Ser Leu Ile Glu Arg Asp
Phe Leu Glu Arg 705 710 715
720 Asp Ser Thr Asp Arg Lys Leu Tyr Arg Tyr Leu Ala 725
730 93640DNAZea mays 93cctcaaagag gcagccatgg
ctccacataa aagcgcccaa tgggagctcc ctcttctccc 60cccacgcccc tccccctctt
gataagccca cgtcggcggc agggggggcg gccgccaggc 120ttgctatagc tggtccatgg
caccatacat gtaagcacgc acacaggcac acacacacac 180gcacgcaatg atctacgtat
ctagcagcag cttatcatgt cgtcatcatg catgcatggc 240cgacggaggt cgtcatctta
tctgggagcg tgtgtgtctt ggcaatggga agctgcatgc 300gcctctcggg cgtcggcgcg
tcggcgccta gctgtagggc ggcgtgccat agagctgcct 360cctgccgctc acaccatgct
gttgacgagg actgatggtg gccatggcct ctcggcgtcg 420gtggcggcgg cgccggcgcc
gagttttacc tctctactaa ggtagggcaa cttgtatcct 480ttggcaattg ttctcatcta
tctgggtctg tctgttggct gcccggtgac ggtatacggt 540gatgttctaa tagtactcaa
ttggtcttgg atcggagttc atgctacggc tcctctgtta 600tatattacac ggctgacggc
tcctccttat taatgtgtac 64094640DNAArtificial
sequenceZea mays miR399 47862C decoy with a synthetic miR172 binding
site substituted for miR399 binding site 94cctcaaagag gcagccatgg
ctccacataa aagcgcccaa tgggagctcc ctcttctccc 60cccacgcccc tccccctctt
gataagccca cgtcggcggc agggggggcg gccgccaggc 120ttgctatagc tggtccatgg
caccatacat gtaagcacgc acacaggcac acacacacac 180gcacgcaatg atctacgtat
ctagcagcag cttatcatgt cgtcatcatg catgcatggc 240cgacggaggt cgtcatctta
tctgggagcg tgtgtgtctt ggcaatggga agctgcatgc 300gcctctcggg cgtcggcgcg
tcggcgccta gctgtagggc ggcgtgccat agagctgcct 360cctgccgctc acaccatgct
gttgacgagg actgatggtg gccatggcct ctcggcgtcg 420gtggcggcgg cgccggcgcc
gagttttacc tctctactaa ggctgcagca tcactatcaa 480gattctattg ttctcatcta
tctgggtctg tctgttggct gcccggtgac ggtatacggt 540gatgttctaa tagtactcaa
ttggtcttgg atcggagttc atgctacggc tcctctgtta 600tatattacac ggctgacggc
tcctccttat taatgtgtac 64095640DNAArtificial
sequenceZea mays miR399 47862C decoy with a synthetic miR166 binding
site substituted for miR399 binding site. 95cctcaaagag gcagccatgg
ctccacataa aagcgcccaa tgggagctcc ctcttctccc 60cccacgcccc tccccctctt
gataagccca cgtcggcggc agggggggcg gccgccaggc 120ttgctatagc tggtccatgg
caccatacat gtaagcacgc acacaggcac acacacacac 180gcacgcaatg atctacgtat
ctagcagcag cttatcatgt cgtcatcatg catgcatggc 240cgacggaggt cgtcatctta
tctgggagcg tgtgtgtctt ggcaatggga agctgcatgc 300gcctctcggg cgtcggcgcg
tcggcgccta gctgtagggc ggcgtgccat agagctgcct 360cctgccgctc acaccatgct
gttgacgagg actgatggtg gccatggcct ctcggcgtcg 420gtggcggcgg cgccggcgcc
gagttttacc tctctactaa ggcgggaatg aagctacctg 480gtccgaattg ttctcatcta
tctgggtctg tctgttggct gcccggtgac ggtatacggt 540gatgttctaa tagtactcaa
ttggtcttgg atcggagttc atgctacggc tcctctgtta 600tatattacac ggctgacggc
tcctccttat taatgtgtac 64096640DNAArtificial
sequenceZea mays miR399 47862C decoy with a synthetic miR444 binding
site substituted for miR399 binding site. 96cctcaaagag gcagccatgg
ctccacataa aagcgcccaa tgggagctcc ctcttctccc 60cccacgcccc tccccctctt
gataagccca cgtcggcggc agggggggcg gccgccaggc 120ttgctatagc tggtccatgg
caccatacat gtaagcacgc acacaggcac acacacacac 180gcacgcaatg atctacgtat
ctagcagcag cttatcatgt cgtcatcatg catgcatggc 240cgacggaggt cgtcatctta
tctgggagcg tgtgtgtctt ggcaatggga agctgcatgc 300gcctctcggg cgtcggcgcg
tcggcgccta gctgtagggc ggcgtgccat agagctgcct 360cctgccgctc acaccatgct
gttgacgagg actgatggtg gccatggcct ctcggcgtcg 420gtggcggcgg cgccggcgcc
gagttttacc tctctactaa ggccagcaag cttctagagg 480cagcaaattg ttctcatcta
tctgggtctg tctgttggct gcccggtgac ggtatacggt 540gatgttctaa tagtactcaa
ttggtcttgg atcggagttc atgctacggc tcctctgtta 600tatattacac ggctgacggc
tcctccttat taatgtgtac 64097640DNAArtificial
sequenceZea mays miR399 47862C decoy with a synthetic miR172e
binding site substituted for miR399 binding site. 97cctcaaagag gcagccatgg
ctccacataa aagcgcccaa tgggagctcc ctcttctccc 60cccacgcccc tccccctctt
gataagccca cgtcggcggc agggggggcg gccgccaggc 120ttgctatagc tggtccatgg
caccatacat gtaagcacgc acacaggcac acacacacac 180gcacgcaatg atctacgtat
ctagcagcag cttatcatgt cgtcatcatg catgcatggc 240cgacggaggt cgtcatctta
tctgggagcg tgtgtgtctt ggcaatggga agctgcatgc 300gcctctcggg cgtcggcgcg
tcggcgccta gctgtagggc ggcgtgccat agagctgcct 360cctgccgctc acaccatgct
gttgacgagg actgatggtg gccatggcct ctcggcgtcg 420gtggcggcgg cgccggcgcc
gagttttacc tctctactaa ggttgcagca tcactatcaa 480gattccattg ttctcatcta
tctgggtctg tctgttggct gcccggtgac ggtatacggt 540gatgttctaa tagtactcaa
ttggtcttgg atcggagttc atgctacggc tcctctgtta 600tatattacac ggctgacggc
tcctccttat taatgtgtac 64098641DNAArtificial
sequenceZea mays miR399 47862C decoy with a synthetic miR393 binding
site substituted for the miR399 binding site. 98cctcaaagag gcagccatgg
ctccacataa aagcgcccaa tgggagctcc ctcttctccc 60cccacgcccc tccccctctt
gataagccca cgtcggcggc agggggggcg gccgccaggc 120ttgctatagc tggtccatgg
caccatacat gtaagcacgc acacaggcac acacacacac 180gcacgcaatg atctacgtat
ctagcagcag cttatcatgt cgtcatcatg catgcatggc 240cgacggaggt cgtcatctta
tctgggagcg tgtgtgtctt ggcaatggga agctgcatgc 300gcctctcggg cgtcggcgcg
tcggcgccta gctgtagggc ggcgtgccat agagctgcct 360cctgccgctc acaccatgct
gttgacgagg actgatggtg gccatggcct ctcggcgtcg 420gtggcggcgg cgccggcgcc
gagttttacc tctctactaa ggtgatcaat gcgactatcc 480ctttggaatt gttctcatct
atctgggtct gtctgttggc tgcccggtga cggtatacgg 540tgatgttcta atagtactca
attggtcttg gatcggagtt catgctacgg ctcctctgtt 600atatattaca cggctgacgg
ctcctcctta ttaatgtgta c 64199640DNAArtificial
sequenceZea mays miR399 47862C decoy with a synthetic miR397 binding
site substituted for the naturally occurring miR399 binding site.
99cctcaaagag gcagccatgg ctccacataa aagcgcccaa tgggagctcc ctcttctccc
60cccacgcccc tccccctctt gataagccca cgtcggcggc agggggggcg gccgccaggc
120ttgctatagc tggtccatgg caccatacat gtaagcacgc acacaggcac acacacacac
180gcacgcaatg atctacgtat ctagcagcag cttatcatgt cgtcatcatg catgcatggc
240cgacggaggt cgtcatctta tctgggagcg tgtgtgtctt ggcaatggga agctgcatgc
300gcctctcggg cgtcggcgcg tcggcgccta gctgtagggc ggcgtgccat agagctgcct
360cctgccgctc acaccatgct gttgacgagg actgatggtg gccatggcct ctcggcgtcg
420gtggcggcgg cgccggcgcc gagttttacc tctctactaa gggatcaacg ctgcagcact
480caatgaattg ttctcatcta tctgggtctg tctgttggct gcccggtgac ggtatacggt
540gatgttctaa tagtactcaa ttggtcttgg atcggagttc atgctacggc tcctctgtta
600tatattacac ggctgacggc tcctccttat taatgtgtac
64010024DNAZea mays 100tagggcaact tgtatccttt ggca
2410124DNAArtificial sequencesynthetic miR172 binding
site. 101ctgcagcatc actatcaaga ttct
2410224DNAArtificial sequencesynthetic miR166 binding site.
102cgggaatgaa gctacctggt ccga
2410324DNAArtificial sequencesynthetic miR444 binding site. 103ccagcaagct
tctagaggca gcaa
2410424DNAArtificial sequencesynthetic miR172e binding site.
104ttgcagcatc actatcaaga ttcc
2410525DNAArtificial sequencesynthetic miR393 binding site. 105tgatcaatgc
gactatccct ttgga
2510624DNAArtificial sequencesynthetic miR397 binding site. 106gatcaacgct
gcagcactca atga
241071461DNAGlycine max 107atgttagatc ttaatctcaa tgcggagtgg accgattcgt
ttagtaacgg tgagtcgccg 60ttaccgttag agaagtttcc agacggtttg aggaaccaaa
tggccgagtc agggacttcg 120aattcctccg tggtgaatgc ggacgggtcc agtaacggcg
gcggcgacga ggactcggac 180tccacacgag ctgctgatga cgtgtacacc actttcaatt
tcgatatcct taaagtcgaa 240ggcgcgaacg gcttcgtaac gaaggagctc tttccggtga
tgagtgaagg agctaaagga 300cacgctacgt cgtcgttttc agggacgaat ggtttcgtgg
atctctcgtt cgatggcgat 360ggagggaaca ctagtgagat gaagatgctt cagcctcaga
atcagaatca gactcaaacg 420cgaactcaga cacagcaacc agcgaaaaag agtaggagag
gaccgaggtc tcgaagctcg 480caatacagag gggttacttt ttacagaagg acgggaagat
gggaatcgca tatctgggat 540tgcgggaaac aagtctattt gggtggattt gacacggctc
atgctgctgc cagagcctat 600gatcgagccg ctattaagtt caggggagtt gatgctgata
tcaatttcaa tctgagtgat 660tatgaggatg accttaaaca gatgcagaat ttgtccaagg
aggaattcgt acatatactg 720cgtcgccaaa gtactggttt ctcaagagga agctctaaat
accgaggagt aacactccac 780aagtgtggcc ggtgggaagc tcgaatggga caatttcttg
gcaaaaagta tatatatctt 840ggactattcg acagcgaagt agaagctgca agggcttatg
acaaggcagc tatcaaatgc 900aacggaaggg aagcagtgac caactttgag ccaagtactt
atgaaggaga gctgaaatct 960gcagccatta atgaaggagg cagtcagaat cttgatctca
atttgggcat agcaacccca 1020ggacctccca aagaaaattg ggggcaactt cagttcccct
ccttccctta caatacacat 1080ggtggaagaa gttcaatgat ggaaaccaat gttagttctg
gaattggtaa tccatctttg 1140aaaaggatgg ttgcaactga agatcgtcct tcattatgga
atggcatgtc tcctaatttc 1200tttcccaatg gggaaagagc agagagaatc ggcgttgatc
cttcaaacgg actccccaac 1260tgggcgtggc aaacacatgg ccaggtcaat gctaccccag
taccaacgtt ctctgctgca 1320gcatcatcag gattctcaat ttcagctacc tttccatcgg
ctgccatctt tccaacaagt 1380tctatgaact caattcccca gagtctctgt tttacttcat
ccagcatgcc tacccgcaat 1440gcatctgaat attattacta g
1461108486PRTGlycine max 108Met Leu Asp Leu Asn Leu
Asn Ala Glu Trp Thr Asp Ser Phe Ser Asn 1 5
10 15 Gly Glu Ser Pro Leu Pro Leu Glu Lys Phe Pro
Asp Gly Leu Arg Asn 20 25
30 Gln Met Ala Glu Ser Gly Thr Ser Asn Ser Ser Val Val Asn Ala
Asp 35 40 45 Gly
Ser Ser Asn Gly Gly Gly Asp Glu Asp Ser Asp Ser Thr Arg Ala 50
55 60 Ala Asp Asp Val Tyr Thr
Thr Phe Asn Phe Asp Ile Leu Lys Val Glu 65 70
75 80 Gly Ala Asn Gly Phe Val Thr Lys Glu Leu Phe
Pro Val Met Ser Glu 85 90
95 Gly Ala Lys Gly His Ala Thr Ser Ser Phe Ser Gly Thr Asn Gly Phe
100 105 110 Val Asp
Leu Ser Phe Asp Gly Asp Gly Gly Asn Thr Ser Glu Met Lys 115
120 125 Met Leu Gln Pro Gln Asn Gln
Asn Gln Thr Gln Thr Arg Thr Gln Thr 130 135
140 Gln Gln Pro Ala Lys Lys Ser Arg Arg Gly Pro Arg
Ser Arg Ser Ser 145 150 155
160 Gln Tyr Arg Gly Val Thr Phe Tyr Arg Arg Thr Gly Arg Trp Glu Ser
165 170 175 His Ile Trp
Asp Cys Gly Lys Gln Val Tyr Leu Gly Gly Phe Asp Thr 180
185 190 Ala His Ala Ala Ala Arg Ala Tyr
Asp Arg Ala Ala Ile Lys Phe Arg 195 200
205 Gly Val Asp Ala Asp Ile Asn Phe Asn Leu Ser Asp Tyr
Glu Asp Asp 210 215 220
Leu Lys Gln Met Gln Asn Leu Ser Lys Glu Glu Phe Val His Ile Leu 225
230 235 240 Arg Arg Gln Ser
Thr Gly Phe Ser Arg Gly Ser Ser Lys Tyr Arg Gly 245
250 255 Val Thr Leu His Lys Cys Gly Arg Trp
Glu Ala Arg Met Gly Gln Phe 260 265
270 Leu Gly Lys Lys Tyr Ile Tyr Leu Gly Leu Phe Asp Ser Glu
Val Glu 275 280 285
Ala Ala Arg Ala Tyr Asp Lys Ala Ala Ile Lys Cys Asn Gly Arg Glu 290
295 300 Ala Val Thr Asn Phe
Glu Pro Ser Thr Tyr Glu Gly Glu Leu Lys Ser 305 310
315 320 Ala Ala Ile Asn Glu Gly Gly Ser Gln Asn
Leu Asp Leu Asn Leu Gly 325 330
335 Ile Ala Thr Pro Gly Pro Pro Lys Glu Asn Trp Gly Gln Leu Gln
Phe 340 345 350 Pro
Ser Phe Pro Tyr Asn Thr His Gly Gly Arg Ser Ser Met Met Glu 355
360 365 Thr Asn Val Ser Ser Gly
Ile Gly Asn Pro Ser Leu Lys Arg Met Val 370 375
380 Ala Thr Glu Asp Arg Pro Ser Leu Trp Asn Gly
Met Ser Pro Asn Phe 385 390 395
400 Phe Pro Asn Gly Glu Arg Ala Glu Arg Ile Gly Val Asp Pro Ser Asn
405 410 415 Gly Leu
Pro Asn Trp Ala Trp Gln Thr His Gly Gln Val Asn Ala Thr 420
425 430 Pro Val Pro Thr Phe Ser Ala
Ala Ala Ser Ser Gly Phe Ser Ile Ser 435 440
445 Ala Thr Phe Pro Ser Ala Ala Ile Phe Pro Thr Ser
Ser Met Asn Ser 450 455 460
Ile Pro Gln Ser Leu Cys Phe Thr Ser Ser Ser Met Pro Thr Arg Asn 465
470 475 480 Ala Ser Glu
Tyr Tyr Tyr 485 1092565DNAZea mays 109atggcgagca
gcagggggag gctgaggctc tccccgcgcg cggcggcgcc gcagctggac 60gcgggcaagt
acgtgcggta cacggcggag caggtggatg cgctggagct tgcctacggc 120gagtgcccca
agcccagctc gctgcgccgg cagcagctca tccgggactg cgccgtcctc 180accaacgtcg
agcccaggca gatcaaggtc tggttccaga accgcagatg ccgggagaag 240cagcggaggg
agtcctctcg tctgcagacc gtcaaccgga agctgggtgc catgaacaag 300ctgttgatgg
aggagaacga ccggctgcag aagcaggtgt cccgtctcgt cttcgacaac 360gggtatatga
agaatcggct ccacagtcct tctgtagcca ccaccgacac aagctgcgag 420tctgtggtga
caagtggtca gcacaagcag cagcaaaacc cagcagttct gcatcctcca 480caaagggatg
cgaacaaccc agcaggtcta ctcgctattg ctgaggagac attggcggag 540ttcatgtcca
aggcgaccgg aactgctgtc aactgggtgc agatggttgg gatgaagcct 600ggtccggatt
ccgttggaat catcgctgtt tcgcacaact gcagcggcgt agcagcacga 660gcttgcggcc
ttgtgagcct cgagcccaca aaggttgccg agatccttaa ggatcgcgca 720tcgtggtatc
gcgattgtcg gcgtgttgat atcctccatg ttatccctac gggtaacggt 780ggaacgattg
agctgatcta tatgcagact tatgcactga caactctggc ggaaccgcgc 840gacttttgga
cactacgata cactagtggt cttgacgatg gcagtcttgt gatctgcgaa 900aggtcattga
cccactccac tggaggtcct tctggaccta aaactccaga ttttataaga 960gctgaggtgc
ttcctagtgg ttatctgatt cgaccttgtg atgggggagg ttccatgatt 1020tacattgtgg
atcatgttga tctgaatgct tgtagtgtcc ctgaggttct tcgaccgctc 1080tatgaatctc
ctaagatact ggcacaaaag atgactgctg cggcgttgcg tcacattagg 1140caaattgcac
acgaatcaag tggtgaaacg ccctatggtg ctgggcgaca gccagctgtt 1200ctcagaactt
tcagtcaaag gctcagcaga ggcttcaatg atgctgtgag tggctttcca 1260gacgatggct
ggtcttcttt gttgagcagt gatggtgctg aggatatttc aattacaatc 1320aactcatctc
caaacaaact tattgggtct gatgtcagcc cttccccatt cttttctgcc 1380atggggggcg
gcatcatgtg cgcaaaagcg tcaatgctac tgcagaatgt gccacctgct 1440ctacttgtgc
gatttttgag ggagcatcgc tctgaatggg ctgaccctgg tgttgatgct 1500tattccgctg
cctctctgag ggccaaccca tataatgttc cgggtttaag ggctggtggg 1560tttatgggca
accaggttat actacccctt gcacgcaccg tggagcatga agagtgcttg 1620gaggttattc
gacttcaagg acatggcttt agccatgacg aggttcttat gtccccggat 1680atgtttcttc
tgcagttgtg cagcggcatc gatgaggatg cgccgggtgc ttgtgcacag 1740cttgtcttcg
ctcctatcga tgaatctttt gctgacgatg caccgttgct accctctggc 1800ttccgtgtga
taccgcttga tgctaagacg gatgtgccat ctgccacacg tacccttgac 1860cttgcttctg
cgctcgaggt cggatcaggc ggaggtctgt gtgctttaag cgatagcggg 1920tcaggcacgc
gcagcacgag gtcggtcctg accatcgcct tccagttctc gttcgagaac 1980cacctccgcg
agagcgtggc agcgatggcc aggcagtatg tcagggcagt gatggcgatc 2040gtgcagaggg
tggccatggc gatttctccc tctcgccttg gcccgcatgt cgaactgaag 2100catccgccag
gctctcccga ggcactcgca ctagcttcgt ggattggcag gagctacagg 2160gcgcacactg
gaacggagat ccgctggtcg gacactgaag acgcggcggg ctctcccctg 2220acgctgttct
ggaagcacag cgacgccata atctgctgct ctctaaagcc ggctttcaca 2280ctcaagttcg
ccaacagcgc cggcttcgac atactggaga cgacggtcgc gaacgtccag 2340gacctgcagc
tggaggcggt ccttgatgac gggggacaga aggccctggt cgcacagctc 2400cccaagatca
tgctgcaggg cctggcgtac ctccccggcg gcgtgtgcag gtcgagcatg 2460gggcggcagg
cgtcgtacga gcaggcggtg gcgtggaagg tggtgggcga cgacggcgcg 2520ccgcagtgcc
tggcgctcat gttcgtcaac tggaccttca tctga 2565110854PRTZea
mays 110Met Ala Ser Ser Arg Gly Arg Leu Arg Leu Ser Pro Arg Ala Ala Ala 1
5 10 15 Pro Gln Leu
Asp Ala Gly Lys Tyr Val Arg Tyr Thr Ala Glu Gln Val 20
25 30 Asp Ala Leu Glu Leu Ala Tyr Gly
Glu Cys Pro Lys Pro Ser Ser Leu 35 40
45 Arg Arg Gln Gln Leu Ile Arg Asp Cys Ala Val Leu Thr
Asn Val Glu 50 55 60
Pro Arg Gln Ile Lys Val Trp Phe Gln Asn Arg Arg Cys Arg Glu Lys 65
70 75 80 Gln Arg Arg Glu
Ser Ser Arg Leu Gln Thr Val Asn Arg Lys Leu Gly 85
90 95 Ala Met Asn Lys Leu Leu Met Glu Glu
Asn Asp Arg Leu Gln Lys Gln 100 105
110 Val Ser Arg Leu Val Phe Asp Asn Gly Tyr Met Lys Asn Arg
Leu His 115 120 125
Ser Pro Ser Val Ala Thr Thr Asp Thr Ser Cys Glu Ser Val Val Thr 130
135 140 Ser Gly Gln His Lys
Gln Gln Gln Asn Pro Ala Val Leu His Pro Pro 145 150
155 160 Gln Arg Asp Ala Asn Asn Pro Ala Gly Leu
Leu Ala Ile Ala Glu Glu 165 170
175 Thr Leu Ala Glu Phe Met Ser Lys Ala Thr Gly Thr Ala Val Asn
Trp 180 185 190 Val
Gln Met Val Gly Met Lys Pro Gly Pro Asp Ser Val Gly Ile Ile 195
200 205 Ala Val Ser His Asn Cys
Ser Gly Val Ala Ala Arg Ala Cys Gly Leu 210 215
220 Val Ser Leu Glu Pro Thr Lys Val Ala Glu Ile
Leu Lys Asp Arg Ala 225 230 235
240 Ser Trp Tyr Arg Asp Cys Arg Arg Val Asp Ile Leu His Val Ile Pro
245 250 255 Thr Gly
Asn Gly Gly Thr Ile Glu Leu Ile Tyr Met Gln Thr Tyr Ala 260
265 270 Leu Thr Thr Leu Ala Glu Pro
Arg Asp Phe Trp Thr Leu Arg Tyr Thr 275 280
285 Ser Gly Leu Asp Asp Gly Ser Leu Val Ile Cys Glu
Arg Ser Leu Thr 290 295 300
His Ser Thr Gly Gly Pro Ser Gly Pro Lys Thr Pro Asp Phe Ile Arg 305
310 315 320 Ala Glu Val
Leu Pro Ser Gly Tyr Leu Ile Arg Pro Cys Asp Gly Gly 325
330 335 Gly Ser Met Ile Tyr Ile Val Asp
His Val Asp Leu Asn Ala Cys Ser 340 345
350 Val Pro Glu Val Leu Arg Pro Leu Tyr Glu Ser Pro Lys
Ile Leu Ala 355 360 365
Gln Lys Met Thr Ala Ala Ala Leu Arg His Ile Arg Gln Ile Ala His 370
375 380 Glu Ser Ser Gly
Glu Thr Pro Tyr Gly Ala Gly Arg Gln Pro Ala Val 385 390
395 400 Leu Arg Thr Phe Ser Gln Arg Leu Ser
Arg Gly Phe Asn Asp Ala Val 405 410
415 Ser Gly Phe Pro Asp Asp Gly Trp Ser Ser Leu Leu Ser Ser
Asp Gly 420 425 430
Ala Glu Asp Ile Ser Ile Thr Ile Asn Ser Ser Pro Asn Lys Leu Ile
435 440 445 Gly Ser Asp Val
Ser Pro Ser Pro Phe Phe Ser Ala Met Gly Gly Gly 450
455 460 Ile Met Cys Ala Lys Ala Ser Met
Leu Leu Gln Asn Val Pro Pro Ala 465 470
475 480 Leu Leu Val Arg Phe Leu Arg Glu His Arg Ser Glu
Trp Ala Asp Pro 485 490
495 Gly Val Asp Ala Tyr Ser Ala Ala Ser Leu Arg Ala Asn Pro Tyr Asn
500 505 510 Val Pro Gly
Leu Arg Ala Gly Gly Phe Met Gly Asn Gln Val Ile Leu 515
520 525 Pro Leu Ala Arg Thr Val Glu His
Glu Glu Cys Leu Glu Val Ile Arg 530 535
540 Leu Gln Gly His Gly Phe Ser His Asp Glu Val Leu Met
Ser Pro Asp 545 550 555
560 Met Phe Leu Leu Gln Leu Cys Ser Gly Ile Asp Glu Asp Ala Pro Gly
565 570 575 Ala Cys Ala Gln
Leu Val Phe Ala Pro Ile Asp Glu Ser Phe Ala Asp 580
585 590 Asp Ala Pro Leu Leu Pro Ser Gly Phe
Arg Val Ile Pro Leu Asp Ala 595 600
605 Lys Thr Asp Val Pro Ser Ala Thr Arg Thr Leu Asp Leu Ala
Ser Ala 610 615 620
Leu Glu Val Gly Ser Gly Gly Gly Leu Cys Ala Leu Ser Asp Ser Gly 625
630 635 640 Ser Gly Thr Arg Ser
Thr Arg Ser Val Leu Thr Ile Ala Phe Gln Phe 645
650 655 Ser Phe Glu Asn His Leu Arg Glu Ser Val
Ala Ala Met Ala Arg Gln 660 665
670 Tyr Val Arg Ala Val Met Ala Ile Val Gln Arg Val Ala Met Ala
Ile 675 680 685 Ser
Pro Ser Arg Leu Gly Pro His Val Glu Leu Lys His Pro Pro Gly 690
695 700 Ser Pro Glu Ala Leu Ala
Leu Ala Ser Trp Ile Gly Arg Ser Tyr Arg 705 710
715 720 Ala His Thr Gly Thr Glu Ile Arg Trp Ser Asp
Thr Glu Asp Ala Ala 725 730
735 Gly Ser Pro Leu Thr Leu Phe Trp Lys His Ser Asp Ala Ile Ile Cys
740 745 750 Cys Ser
Leu Lys Pro Ala Phe Thr Leu Lys Phe Ala Asn Ser Ala Gly 755
760 765 Phe Asp Ile Leu Glu Thr Thr
Val Ala Asn Val Gln Asp Leu Gln Leu 770 775
780 Glu Ala Val Leu Asp Asp Gly Gly Gln Lys Ala Leu
Val Ala Gln Leu 785 790 795
800 Pro Lys Ile Met Leu Gln Gly Leu Ala Tyr Leu Pro Gly Gly Val Cys
805 810 815 Arg Ser Ser
Met Gly Arg Gln Ala Ser Tyr Glu Gln Ala Val Ala Trp 820
825 830 Lys Val Val Gly Asp Asp Gly Ala
Pro Gln Cys Leu Ala Leu Met Phe 835 840
845 Val Asn Trp Thr Phe Ile 850
111681DNAOryza sativa 111atggggagag ggaagattgc catcaagagg atcgacaaca
cgatgaaccg gcaggtgacc 60ttctcgaagc ggcgcggcgg gctgatgaag aaggcccggg
agctggccat cctctgcgac 120gccgacgtcg gcctcattgt cttctcctgc accggccgcc
tctacgactt ctccagctca 180agcatgaaat caataataga gcggtaccag gaggcaggag
aggagcattg tcggttgctg 240aacccaatgt cagaggctaa gttttggcag cgggaggtta
caactttgag gcagcaagtg 300caaaacttac accacaacaa caggcaactt ttgggagagg
aaatctccaa cttcacagtt 360agagatctgc agcttctcca gaaccaagtt gagatgagcc
tacattccat aagaaataaa 420aaggatcaac ttttggcaga ggagattcta aaactcaatg
aaaaggggtc tcttgttcaa 480aaggagaaca gtgaacttcg caagaagttc aacattgctc
atcaacgcaa catagaatta 540cacaagaagc ttaactctgg agaaagcacg tcaagtgagc
aagttaccag aagctcaaag 600gatcccggag aatcgagtac accccgtgat tcacgtgtgt
gtattgacct tgaattgagt 660caaaaagaag ttgaagatga a
681112228PRTOryza
sativamisc_feature(228)..(228)Xaa can be any naturally occurring amino
acid 112Met Gly Arg Gly Lys Ile Ala Ile Lys Arg Ile Asp Asn Thr Met Asn 1
5 10 15 Arg Gln Val
Thr Phe Ser Lys Arg Arg Gly Gly Leu Met Lys Lys Ala 20
25 30 Arg Glu Leu Ala Ile Leu Cys Asp
Ala Asp Val Gly Leu Ile Val Phe 35 40
45 Ser Cys Thr Gly Arg Leu Tyr Asp Phe Ser Ser Ser Ser
Met Lys Ser 50 55 60
Ile Ile Glu Arg Tyr Gln Glu Ala Gly Glu Glu His Cys Arg Leu Leu 65
70 75 80 Asn Pro Met Ser
Glu Ala Lys Phe Trp Gln Arg Glu Val Thr Thr Leu 85
90 95 Arg Gln Gln Val Gln Asn Leu His His
Asn Asn Arg Gln Leu Leu Gly 100 105
110 Glu Glu Ile Ser Asn Phe Thr Val Arg Asp Leu Gln Leu Leu
Gln Asn 115 120 125
Gln Val Glu Met Ser Leu His Ser Ile Arg Asn Lys Lys Asp Gln Leu 130
135 140 Leu Ala Glu Glu Ile
Leu Lys Leu Asn Glu Lys Gly Ser Leu Val Gln 145 150
155 160 Lys Glu Asn Ser Glu Leu Arg Lys Lys Phe
Asn Ile Ala His Gln Arg 165 170
175 Asn Ile Glu Leu His Lys Lys Leu Asn Ser Gly Glu Ser Thr Ser
Ser 180 185 190 Glu
Gln Val Thr Arg Ser Ser Lys Asp Pro Gly Glu Ser Ser Thr Pro 195
200 205 Arg Asp Ser Arg Val Cys
Ile Asp Leu Glu Leu Ser Gln Lys Glu Val 210 215
220 Glu Asp Glu Xaa 225
1132013DNAGlycine max 113gtggctagcc agcaagggag aattgaagct attggaatag
agagctcaaa aggggtaacc 60atatggcagc gtttggtatt caaatcatgc tattgctggc
agctttcttg cttccactat 120ctgtggaagc tatggttcgc cactacaagt tcaatgtggt
gcaaaagaat accacaagat 180tgggttcaac caagcccatt gttaccataa atggaaagtt
cccaggtccc accatctatg 240caagggaaga tgacactgtt ctggttaagg tagtcaacca
ggtcaagtac aatgtcagca 300tccattggca tggggtgaga caattgagaa caggttgggc
tgatgggcca gcatacataa 360cccagtgtcc aattctaccg agccaggcct atgtctacaa
ctttactctt acaggccaga 420gaggcacact ttggtggcat gcacatatcc tctggcttag
ggccactgtc catggtgcct 480tggtcatctt gcccaagctt ggagttcctt acccttttcc
caaaccaaat atggaacaag 540ttatcatatt gagtgaatgg tggaaatcag atactgaggc
tgtaataaat gaagctttga 600aatctggttt ggctccaaat gcctctgatg ctcacacaat
caacggccat ccaggaccta 660tccaaggcta tgcttcacaa ggaggatata agttggatgt
tcaaccagga aagacctact 720tgctaagaat catcaatgct gcactcaatg aagagctctt
ctttaaaatt gctgggcatg 780aactcactgt tgttgaggtt gatgcagttt acacaaaacc
tttgaaaact gataccattg 840tcatagcacc tggccaaacc acaaatgtgc ttctaacaac
caaacatgca actggcaaat 900acttggttgc agcctctcct ttcatggatg ctcctattgc
agttgacaac aagactgcca 960ctgccacttt acactatcta ggcacccttg gttccaccat
caccaccctc acttccatgc 1020ctcctaaaaa tgcaacacca gttgccacca ctttcatcga
ctctctccga agcttaaact 1080ccaaagagca tcctgctaga gtccctttaa agattgatca
taacttgctc ttcacagtta 1140gccttggtgt caacccttgt gctacttgtg tgaataatag
cagggtggta gcagatatca 1200acaatgttac ctttgtgatg cctaaaattt ctcttcttca
agcacatttc ttcaagatca 1260agggagtttt caccgacgat ttccccggaa atcctcctgt
ggtgtataac ttcacaggga 1320cacaaccatc aaatttgaag accatgaaag gcacaagggt
ctatagactt gcttacaatt 1380ccacagttca attggtcttg caagatactg gaatgataac
acctgagaac catcctattc 1440atctccatgg cttcaacttt tttgtggttg gtaggggaca
agggaatttc aaccccacaa 1500aagaccccaa gaaatttaac cttgtagatc ctgtggagag
aaatacagtt ggagtcccgg 1560ctggggggtg gactgctatt agattcaggg ctgacaatcc
aggtgtctgg tttatgcatt 1620gccacttgga aattcataca acatggggac tgaagatggc
ttttgttgtg gacaacggta 1680aaggaccaaa tgaatcttta ttaccacctc caactgacct
acccaagtgt tgagaaaatt 1740actaagtata tgcacaatga ggaaggagaa acatataaag
agaagtatat atgccaaagg 1800gaggagaaat caaggctttc atagagtaaa gaaaggagaa
gatgctcaga gtggaataag 1860atcagatgac cagttgccat gtatttttct aatttccttt
ttcatcattc ttttgtatat 1920tgtttgtact ctcatcattc tccttcttga atgatatttt
tggcattaat tatgcatata 1980aatgtcaatc aaaattttaa ggatttttaa gcc
2013114556PRTGlycine max 114Met Ala Ala Phe Gly Ile
Gln Ile Met Leu Leu Leu Ala Ala Phe Leu 1 5
10 15 Leu Pro Leu Ser Val Glu Ala Met Val Arg His
Tyr Lys Phe Asn Val 20 25
30 Val Gln Lys Asn Thr Thr Arg Leu Gly Ser Thr Lys Pro Ile Val
Thr 35 40 45 Ile
Asn Gly Lys Phe Pro Gly Pro Thr Ile Tyr Ala Arg Glu Asp Asp 50
55 60 Thr Val Leu Val Lys Val
Val Asn Gln Val Lys Tyr Asn Val Ser Ile 65 70
75 80 His Trp His Gly Val Arg Gln Leu Arg Thr Gly
Trp Ala Asp Gly Pro 85 90
95 Ala Tyr Ile Thr Gln Cys Pro Ile Leu Pro Ser Gln Ala Tyr Val Tyr
100 105 110 Asn Phe
Thr Leu Thr Gly Gln Arg Gly Thr Leu Trp Trp His Ala His 115
120 125 Ile Leu Trp Leu Arg Ala Thr
Val His Gly Ala Leu Val Ile Leu Pro 130 135
140 Lys Leu Gly Val Pro Tyr Pro Phe Pro Lys Pro Asn
Met Glu Gln Val 145 150 155
160 Ile Ile Leu Ser Glu Trp Trp Lys Ser Asp Thr Glu Ala Val Ile Asn
165 170 175 Glu Ala Leu
Lys Ser Gly Leu Ala Pro Asn Ala Ser Asp Ala His Thr 180
185 190 Ile Asn Gly His Pro Gly Pro Ile
Gln Gly Tyr Ala Ser Gln Gly Gly 195 200
205 Tyr Lys Leu Asp Val Gln Pro Gly Lys Thr Tyr Leu Leu
Arg Ile Ile 210 215 220
Asn Ala Ala Leu Asn Glu Glu Leu Phe Phe Lys Ile Ala Gly His Glu 225
230 235 240 Leu Thr Val Val
Glu Val Asp Ala Val Tyr Thr Lys Pro Leu Lys Thr 245
250 255 Asp Thr Ile Val Ile Ala Pro Gly Gln
Thr Thr Asn Val Leu Leu Thr 260 265
270 Thr Lys His Ala Thr Gly Lys Tyr Leu Val Ala Ala Ser Pro
Phe Met 275 280 285
Asp Ala Pro Ile Ala Val Asp Asn Lys Thr Ala Thr Ala Thr Leu His 290
295 300 Tyr Leu Gly Thr Leu
Gly Ser Thr Ile Thr Thr Leu Thr Ser Met Pro 305 310
315 320 Pro Lys Asn Ala Thr Pro Val Ala Thr Thr
Phe Ile Asp Ser Leu Arg 325 330
335 Ser Leu Asn Ser Lys Glu His Pro Ala Arg Val Pro Leu Lys Ile
Asp 340 345 350 His
Asn Leu Leu Phe Thr Val Ser Leu Gly Val Asn Pro Cys Ala Thr 355
360 365 Cys Val Asn Asn Ser Arg
Val Val Ala Asp Ile Asn Asn Val Thr Phe 370 375
380 Val Met Pro Lys Ile Ser Leu Leu Gln Ala His
Phe Phe Lys Ile Lys 385 390 395
400 Gly Val Phe Thr Asp Asp Phe Pro Gly Asn Pro Pro Val Val Tyr Asn
405 410 415 Phe Thr
Gly Thr Gln Pro Ser Asn Leu Lys Thr Met Lys Gly Thr Arg 420
425 430 Val Tyr Arg Leu Ala Tyr Asn
Ser Thr Val Gln Leu Val Leu Gln Asp 435 440
445 Thr Gly Met Ile Thr Pro Glu Asn His Pro Ile His
Leu His Gly Phe 450 455 460
Asn Phe Phe Val Val Gly Arg Gly Gln Gly Asn Phe Asn Pro Thr Lys 465
470 475 480 Asp Pro Lys
Lys Phe Asn Leu Val Asp Pro Val Glu Arg Asn Thr Val 485
490 495 Gly Val Pro Ala Gly Gly Trp Thr
Ala Ile Arg Phe Arg Ala Asp Asn 500 505
510 Pro Gly Val Trp Phe Met His Cys His Leu Glu Ile His
Thr Thr Trp 515 520 525
Gly Leu Lys Met Ala Phe Val Val Asp Asn Gly Lys Gly Pro Asn Glu 530
535 540 Ser Leu Leu Pro
Pro Pro Thr Asp Leu Pro Lys Cys 545 550
555 1153483DNAZea mays 115atggcgtcgg gcagccgcgc cacgcccacg cgctccccct
cctccgcgcg gcccgaggcg 60ccgcgtcacg cgcaccacca ccaccactcc cagtcgtcgg
gcgggagcac gtcccgcgcg 120ggcgggggag ccgcggccac ggagtcggtc tccaaggccg
tcgcccagta caccctagac 180gcgcgcctac acgcggtgtt cgagcaatcg ggcgcgtcgg
gccgcagctt cgactactcc 240caatcgctgc gcgcgccgcc cacgccgtcc tccgagcagc
agatcgccgc ctacctctcc 300cgcatccagc gcggcggcca catccagccc ttcggctgca
cgctcgctgt tgccgacgac 360tcctccttcc gcctcctcgc cttctccgag aactcccccg
acctgctcga cctgtcgcct 420caccactccg ttccctcgct ggactcctct gcgccgcccc
acgtttccct gggtgccgac 480gcgcgcctcc tcttctcccc ctcgtccgcg gtcctcctag
agcgcgcctt cgccgcgcgc 540gagatctcgc tgctcaaccc gatatggatc cactccaggg
tctcctccaa gccgttctac 600gccatcctcc accgcatcga cgtcggcgtc gtcatcgacc
tcgagcccgc ccgcaccgag 660gaccccgctc tctccatcgc cggtgcagtc cagtcccaga
aactggcggt ccgcaccatc 720tcccgcctcc aggcgctacc cggcggggac gtcaagcttc
tctgcgacac agtcgtggag 780catgttcgcg agctcacggg ttatgaccgt gtcatggtgt
acaggttcca tgaagacgag 840cacggggaag ttgtcgccga gagccggcgc gacaaccttg
agccttacct cggattgcat 900tatcccgcca cagatatccc ccaggcgtcg cgcttcctgt
tccggcagaa ccgcgtgcga 960atgattgccg attgccatgc caccccggtg agagttattc
aagatcctgg gctgtcgcag 1020cctctgtgtt tggtaggctc cacgctacgc gctccacacg
ggtgtcatgc acagtacatg 1080gcgaacatgg ggtcaattgc gtcgcttgtt atggcagtca
tcattagcag tggcggtgac 1140gatgagcaaa caggtcgggg tggcatctcc tcggcaatga
agttgtgggg gttagtggtg 1200tgccaccata catcaccacg gtgtatccct tttccattga
ggtatgcttg cgagtttctc 1260atgcaggtat ttgggttgca gctcaacatg gagttgcagc
ttgcgcacca gctgtcagag 1320aagcacattc tgcgaactca gacgctattg tgtgacatgc
tactacgaga ttcaccaact 1380ggcatcgtca cgcagagccc cagcatcatg gaccttgtga
agtgcgacgg ggctgcactg 1440tattatcatg ggaaatacta tccattgggt gtcactccca
ctgagtctca gattaaggat 1500atcatcgagt ggttgacggt gtttcatggg gactcaacag
ggctcagcac agatagcctg 1560gctgatgcag gctaccttgg tgctgctgca ctaggggagg
ctgtgtgtgg aatggcggtg 1620gcttatatta caccgagtga ttacttgttt tggtttcggt
cacacacagc taaagagatc 1680aaatggggtg gcgcaaagca tcaccctgag gataaggatg
atggtcagag gatgcaccca 1740cggtcgtcat tcaaggcatt tcttgaagtg gttaaaagca
gaagcctacc atgggagaat 1800gcagaaatgg acgcaataca ttccttgcag ctcatattgc
gtgactcctt cagggatgct 1860gcagagggca ccaacaactc aaaagccatt gtcaatggac
aagttcagct tcgggagcta 1920gaattgcggg ggataaatga gcttagttcc gtagcaagag
agatggttcg gttgatagag 1980acagcaacag tacccatatt tgcagtagat actgatgggt
gtataaatgg ttggaatgca 2040aagattgctg agttgacagg gctttcagtt gaggaggcaa
tgggcaaatc tctggtaaat 2100gatcttatct tcaaggaatc tgaggcgaca gttgaaaaac
tactctcacg agctttaaga 2160ggtgaagaca aaaatgtgga gataaagctg aagacatttg
ggtcagagca atctaaggga 2220ccaatatttg ttgttgtcaa tgcttgttct agtagagatt
acacacaaaa tattgttggt 2280gtctgttttg ttggacaaga tgtcacagga caaaaggtgg
tcatggataa atttgttaac 2340atacaagggg actacaaagc tattgtacac aatcctaatc
ctctgatacc accaattttt 2400gcatcagatg agaacacttc ttgttcagaa tggaatacag
ccatggaaaa acttacagga 2460tggtcgagag gtgaagttgt tggtaagttt cttattggag
aggtgtttgg aaattgttgt 2520cgactcaagg gcccagatgc attgacaaaa ttcatggtta
ttattcacaa cgctatagga 2580gggcaggatt atgagaagtt ccctttttca ttttttgaca
agaatggaaa gtatgtgcag 2640gccttattga ccgccaatac aaggagcaaa atggatggta
aatccattgg agccttttgt 2700ttcctgcaga ttgcaagcgc tgaaatacag caagccattg
agattcagag acaacaagaa 2760aagaagtgtt acgcaaggat gaaagaattg gcctatattt
gccaggagat aaagaatcct 2820cttagtggca tccgatttac caactctctg ttgcagatga
ctgatttaaa tgatgaccag 2880aggcagttcc ttgaaactag ctctgcttgt gagaaacaga
tgtccaagat tgttaaggac 2940gccagtctcc aaagtatcga ggacggctct ttggtgcttg
agcaaagtga gttttctctt 3000ggagacgtta tgaatgctgt tgtcagccaa gcaatgttat
tgttgagaga gagggattta 3060caacttattc gggacatccc tgatgaaatc aaggatgcgt
cagcgtatgg tgatcaatgt 3120agaattcaac aagttttggc tgacttcttg ctaagcatgg
tgcggtctgc tccatccgag 3180aatggttggg tagaaataca agtcagacca aatgtaaaac
agaattctga tggaacaaat 3240acagaacttt tcatattcag gtttgcctgc cctggtgagg
gcctccctgc tgacgtcgtc 3300caggatatgt tcagcaattc ccaatggtca acacaagaag
gcgtaggact aagcacatgc 3360aggaagatcc tcaaattgat gggtggcgag gtccaataca
tcagagagtc agagcggagt 3420ttcttcctca tcgtcctcga gcagccccaa cctcgtccag
cagctggtag agaaatcgtc 3480tag
34831161160PRTZea mays 116Met Ala Ser Gly Ser Arg
Ala Thr Pro Thr Arg Ser Pro Ser Ser Ala 1 5
10 15 Arg Pro Glu Ala Pro Arg His Ala His His His
His His Ser Gln Ser 20 25
30 Ser Gly Gly Ser Thr Ser Arg Ala Gly Gly Gly Ala Ala Ala Thr
Glu 35 40 45 Ser
Val Ser Lys Ala Val Ala Gln Tyr Thr Leu Asp Ala Arg Leu His 50
55 60 Ala Val Phe Glu Gln Ser
Gly Ala Ser Gly Arg Ser Phe Asp Tyr Ser 65 70
75 80 Gln Ser Leu Arg Ala Pro Pro Thr Pro Ser Ser
Glu Gln Gln Ile Ala 85 90
95 Ala Tyr Leu Ser Arg Ile Gln Arg Gly Gly His Ile Gln Pro Phe Gly
100 105 110 Cys Thr
Leu Ala Val Ala Asp Asp Ser Ser Phe Arg Leu Leu Ala Phe 115
120 125 Ser Glu Asn Ser Pro Asp Leu
Leu Asp Leu Ser Pro His His Ser Val 130 135
140 Pro Ser Leu Asp Ser Ser Ala Pro Pro His Val Ser
Leu Gly Ala Asp 145 150 155
160 Ala Arg Leu Leu Phe Ser Pro Ser Ser Ala Val Leu Leu Glu Arg Ala
165 170 175 Phe Ala Ala
Arg Glu Ile Ser Leu Leu Asn Pro Ile Trp Ile His Ser 180
185 190 Arg Val Ser Ser Lys Pro Phe Tyr
Ala Ile Leu His Arg Ile Asp Val 195 200
205 Gly Val Val Ile Asp Leu Glu Pro Ala Arg Thr Glu Asp
Pro Ala Leu 210 215 220
Ser Ile Ala Gly Ala Val Gln Ser Gln Lys Leu Ala Val Arg Thr Ile 225
230 235 240 Ser Arg Leu Gln
Ala Leu Pro Gly Gly Asp Val Lys Leu Leu Cys Asp 245
250 255 Thr Val Val Glu His Val Arg Glu Leu
Thr Gly Tyr Asp Arg Val Met 260 265
270 Val Tyr Arg Phe His Glu Asp Glu His Gly Glu Val Val Ala
Glu Ser 275 280 285
Arg Arg Asp Asn Leu Glu Pro Tyr Leu Gly Leu His Tyr Pro Ala Thr 290
295 300 Asp Ile Pro Gln Ala
Ser Arg Phe Leu Phe Arg Gln Asn Arg Val Arg 305 310
315 320 Met Ile Ala Asp Cys His Ala Thr Pro Val
Arg Val Ile Gln Asp Pro 325 330
335 Gly Leu Ser Gln Pro Leu Cys Leu Val Gly Ser Thr Leu Arg Ala
Pro 340 345 350 His
Gly Cys His Ala Gln Tyr Met Ala Asn Met Gly Ser Ile Ala Ser 355
360 365 Leu Val Met Ala Val Ile
Ile Ser Ser Gly Gly Asp Asp Glu Gln Thr 370 375
380 Gly Arg Gly Gly Ile Ser Ser Ala Met Lys Leu
Trp Gly Leu Val Val 385 390 395
400 Cys His His Thr Ser Pro Arg Cys Ile Pro Phe Pro Leu Arg Tyr Ala
405 410 415 Cys Glu
Phe Leu Met Gln Val Phe Gly Leu Gln Leu Asn Met Glu Leu 420
425 430 Gln Leu Ala His Gln Leu Ser
Glu Lys His Ile Leu Arg Thr Gln Thr 435 440
445 Leu Leu Cys Asp Met Leu Leu Arg Asp Ser Pro Thr
Gly Ile Val Thr 450 455 460
Gln Ser Pro Ser Ile Met Asp Leu Val Lys Cys Asp Gly Ala Ala Leu 465
470 475 480 Tyr Tyr His
Gly Lys Tyr Tyr Pro Leu Gly Val Thr Pro Thr Glu Ser 485
490 495 Gln Ile Lys Asp Ile Ile Glu Trp
Leu Thr Val Phe His Gly Asp Ser 500 505
510 Thr Gly Leu Ser Thr Asp Ser Leu Ala Asp Ala Gly Tyr
Leu Gly Ala 515 520 525
Ala Ala Leu Gly Glu Ala Val Cys Gly Met Ala Val Ala Tyr Ile Thr 530
535 540 Pro Ser Asp Tyr
Leu Phe Trp Phe Arg Ser His Thr Ala Lys Glu Ile 545 550
555 560 Lys Trp Gly Gly Ala Lys His His Pro
Glu Asp Lys Asp Asp Gly Gln 565 570
575 Arg Met His Pro Arg Ser Ser Phe Lys Ala Phe Leu Glu Val
Val Lys 580 585 590
Ser Arg Ser Leu Pro Trp Glu Asn Ala Glu Met Asp Ala Ile His Ser
595 600 605 Leu Gln Leu Ile
Leu Arg Asp Ser Phe Arg Asp Ala Ala Glu Gly Thr 610
615 620 Asn Asn Ser Lys Ala Ile Val Asn
Gly Gln Val Gln Leu Arg Glu Leu 625 630
635 640 Glu Leu Arg Gly Ile Asn Glu Leu Ser Ser Val Ala
Arg Glu Met Val 645 650
655 Arg Leu Ile Glu Thr Ala Thr Val Pro Ile Phe Ala Val Asp Thr Asp
660 665 670 Gly Cys Ile
Asn Gly Trp Asn Ala Lys Ile Ala Glu Leu Thr Gly Leu 675
680 685 Ser Val Glu Glu Ala Met Gly Lys
Ser Leu Val Asn Asp Leu Ile Phe 690 695
700 Lys Glu Ser Glu Ala Thr Val Glu Lys Leu Leu Ser Arg
Ala Leu Arg 705 710 715
720 Gly Glu Asp Lys Asn Val Glu Ile Lys Leu Lys Thr Phe Gly Ser Glu
725 730 735 Gln Ser Lys Gly
Pro Ile Phe Val Val Val Asn Ala Cys Ser Ser Arg 740
745 750 Asp Tyr Thr Gln Asn Ile Val Gly Val
Cys Phe Val Gly Gln Asp Val 755 760
765 Thr Gly Gln Lys Val Val Met Asp Lys Phe Val Asn Ile Gln
Gly Asp 770 775 780
Tyr Lys Ala Ile Val His Asn Pro Asn Pro Leu Ile Pro Pro Ile Phe 785
790 795 800 Ala Ser Asp Glu Asn
Thr Ser Cys Ser Glu Trp Asn Thr Ala Met Glu 805
810 815 Lys Leu Thr Gly Trp Ser Arg Gly Glu Val
Val Gly Lys Phe Leu Ile 820 825
830 Gly Glu Val Phe Gly Asn Cys Cys Arg Leu Lys Gly Pro Asp Ala
Leu 835 840 845 Thr
Lys Phe Met Val Ile Ile His Asn Ala Ile Gly Gly Gln Asp Tyr 850
855 860 Glu Lys Phe Pro Phe Ser
Phe Phe Asp Lys Asn Gly Lys Tyr Val Gln 865 870
875 880 Ala Leu Leu Thr Ala Asn Thr Arg Ser Lys Met
Asp Gly Lys Ser Ile 885 890
895 Gly Ala Phe Cys Phe Leu Gln Ile Ala Ser Ala Glu Ile Gln Gln Ala
900 905 910 Ile Glu
Ile Gln Arg Gln Gln Glu Lys Lys Cys Tyr Ala Arg Met Lys 915
920 925 Glu Leu Ala Tyr Ile Cys Gln
Glu Ile Lys Asn Pro Leu Ser Gly Ile 930 935
940 Arg Phe Thr Asn Ser Leu Leu Gln Met Thr Asp Leu
Asn Asp Asp Gln 945 950 955
960 Arg Gln Phe Leu Glu Thr Ser Ser Ala Cys Glu Lys Gln Met Ser Lys
965 970 975 Ile Val Lys
Asp Ala Ser Leu Gln Ser Ile Glu Asp Gly Ser Leu Val 980
985 990 Leu Glu Gln Ser Glu Phe Ser Leu
Gly Asp Val Met Asn Ala Val Val 995 1000
1005 Ser Gln Ala Met Leu Leu Leu Arg Glu Arg Asp
Leu Gln Leu Ile 1010 1015 1020
Arg Asp Ile Pro Asp Glu Ile Lys Asp Ala Ser Ala Tyr Gly Asp
1025 1030 1035 Gln Cys Arg
Ile Gln Gln Val Leu Ala Asp Phe Leu Leu Ser Met 1040
1045 1050 Val Arg Ser Ala Pro Ser Glu Asn
Gly Trp Val Glu Ile Gln Val 1055 1060
1065 Arg Pro Asn Val Lys Gln Asn Ser Asp Gly Thr Asn Thr
Glu Leu 1070 1075 1080
Phe Ile Phe Arg Phe Ala Cys Pro Gly Glu Gly Leu Pro Ala Asp 1085
1090 1095 Val Val Gln Asp Met
Phe Ser Asn Ser Gln Trp Ser Thr Gln Glu 1100 1105
1110 Gly Val Gly Leu Ser Thr Cys Arg Lys Ile
Leu Lys Leu Met Gly 1115 1120 1125
Gly Glu Val Gln Tyr Ile Arg Glu Ser Glu Arg Ser Phe Phe Leu
1130 1135 1140 Ile Val
Leu Glu Gln Pro Gln Pro Arg Pro Ala Ala Gly Arg Glu 1145
1150 1155 Ile Val 1160
User Contributions:
Comment about this patent or add new information about this topic: