Patent application title: GENERATION OF PLANTS WITH ALTERED PROTEIN, FIBER, OR OIL CONTENT
Inventors:
IPC8 Class: AC12N1582FI
USPC Class:
800264
Class name: Multicellular living organisms and unmodified parts thereof and related processes method of using a plant or plant part in a breeding process which includes a step of sexual hybridization breeding for altered fat, fatty oil, ester-type wax, or fatty acid composition
Publication date: 2016-06-16
Patent application number: 20160168585
Abstract:
The present disclosure is directed to plants that display an improved oil
quantity phenotype or an improved meal quality phenotype due to altered
expression of an IMQ nucleic acid. The disclosure is further directed to
methods of generating plants with an improved oil quantity phenotype or
improved meal quality phenotype.Claims:
1. A transgenic plant, comprising a plant transformation vector
comprising a nucleotide sequence that encodes or is the complement of a
sequence that encodes an IMQ polypeptide comprising an amino acid
sequence at least 90% identical to the amino acid sequence as set forth
in SEQ ID NO: 94, whereby the transgenic plant has an improved meal
quality phenotype, relative to control plants.
2. The transgenic plant of claim 1, wherein the IMQ polypeptide comprises an amino acid sequence at least 95% identical to the amino acid sequence as set forth in SEQ ID NO: 94.
3. The transgenic plant of claim 1, which is selected from the group consisting of plants of the Brassica species, including canola and rapeseed, soy, corn, sunflower, cotton, cocoa, safflower, oil palm, coconut palm, flax, castor, peanut, wheat, oat, and rice.
4. The transgenic plant of claim 1, wherein an improved meal quality phenotype comprises an increase in available metabolizable energy in meal produced from seeds of the transgenic plant, relative to control plants.
5. The transgenic plant of claim 4, wherein an increase in available metabolizable energy comprises an altered protein and/or fiber content in the seeds of the transgenic plant.
6. The transgenic plant of claim 5, wherein the protein content is increased and/or the fiber content is decreased.
7. The transgenic plant of claim 4, wherein an increase in available metabolizable energy comprises a decreased fiber content in the seeds of the transgenic plant.
8. A plant part obtained from the plant according to claim 1.
9. The plant part of claim 8, which is a transgenic seed, wherein the transgenic seed comprises the plant transformation vector.
10. Meal, feed, or food produced from the transgenic seed of claim 9.
11. A method of producing meal, comprising growing the transgenic plant of claim 1, and recovering meal from the plant, thereby producing meal.
12. The method of claim 11, wherein the meal is produced from seeds of the plant.
13. A method of producing an improved meal quality phenotype in a plant, said method comprising: a) introducing into progenitor cells of the plant a plant transformation vector comprising a nucleotide sequence that encodes or is the compliment of a sequence that encodes an IMQ polypeptide comprising an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 94, and b) growing the transformed progenitor cells to produce a transgenic plant, wherein the nucleotide sequence is expressed, and the transgenic plant exhibits an improved meal quality phenotype relative to control plants, thereby producing the improved meal quality phenotype in the plant.
14. The method of claim 13, wherein the IMQ polypeptide comprises an amino acid sequence at least 95% identical to the amino acid sequence as set forth in SEQ ID NO: 94.
15. A plant obtained by a method of claim 13.
16. The plant of claim 15, which is selected from the group consisting of plants of the Brassica species, including canola and rapeseed, soy, corn, sunflower, cotton, cocoa, safflower, oil palm, coconut palm, flax, castor, peanut, wheat, oat, and rice.
17. The plant of claim 15, wherein the plant is selected from the group consisting of a plant grown from said progenitor cells, a plant that is the direct progeny of a plant grown from said progenitor cells, and a plant that is the indirect progeny of a plant grown from said progenitor cells.
18. A method of generating a plant having an improved meal quality phenotype comprising identifying a plant that has an allele in its ortholog of the A. thaliana IMQ gene where the wildtype A. thaliana gene has the nucleic acid sequence set forth as SEQ ID NO: 93, which allele results in improved meal quality phenotype, compared to plants lacking the allele, wherein identifying a plant comprises analyzing the sequence of the allele of the ortholog of the IMQ gene in the plant; and generating progeny of said identified plant, wherein the generated progeny inherit the allele and have the improved meal quality phenotype, thereby generating a plant having an improved meal quality phenotype.
19. The method of claim 18 that employs candidate gene/QTL methodology.
20. The method of claim 18 that employs TILLING methodology.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This is a divisional of co-pending U.S. patent application Ser. No. 13/941,367, filed Jul. 12, 2013; which is a divisional of U.S. patent application Ser. No. 13/476,801, filed May 21, 2012, now U.S. Pat. No. 8,519,224, issued Aug. 27, 2013; which is a divisional of U.S. patent application Ser. No. 13/217,169, filed Aug. 24, 2011, now U.S. Pat. No. 8,217,224, issued Jul. 10, 2012; which is a divisional of U.S. patent application Ser. No. 11/940,269, filed Nov. 14, 2007, now U.S. Pat. No. 8,030,541, issued Oct. 4, 2011; which claims the benefit of U.S. Provisional Application No. 60/866,055, filed Nov. 15, 2006; each of which is incorporated herein by reference in its entirety.
FIELD OF THE DISCLOSURE
[0002] The present disclosure is related to transgenic plants with altered oil, protein, and/or fiber content, as well as methods of making plants having altered oil, protein, and/or fiber content and producing oil from such plants.
SEQUENCE LISTING
[0003] The Sequence Listing is submitted as an ASCII text file in the form of the file named Sequence_Listing.txt, which was created on Feb. 12, 2016, and is 269,350 bytes, which is incorporated by reference herein.
BACKGROUND
[0004] The ability to manipulate the composition of crop seeds, particularly the content and composition of seed oil and protein, as well as the available metabolizable energy ("AME") in the seed meal in livestock, has important applications in the agricultural industries, relating both to processed food oils and to animal feeds. Seeds of agricultural crops contain a variety of valuable constituents, including oil, protein and starch. Industrial processing can separate some or all of these constituents for individual sale in specific applications. For instance, nearly 60% of the U.S. soybean crop is crushed by the soy processing industry. Soy processing yields purified oil, which is sold at high value, while the remaining seed meal is sold for livestock feed (U.S. Soybean Board, 2001 Soy Stats). Canola seed is also crushed to produce oil and the co-product canola meal (Canola Council of Canada). Canola meal contains a high percentage of protein and a good balance of amino acids but because it has a high fiber and phytate content, it is not readily digested by livestock (Slominski, B. A., et al., 1999 Proceedings of the 10.sup.th International Rapeseed Congress, Canberra, Australia) and has a lower value than soybean meal.
[0005] Over 55% of the corn produced in the U.S. is used as animal feed (Iowa Corn Growers Association). The value of the corn is directly related to its ability to be digested by livestock. Thus, it is desirable to maximize both oil content of seeds and the AME of meal. For processed oilseeds such as soy and canola, increasing the absolute oil content of the seed will increase the value of such grains, while increasing the AME of meal will increase its value. For processed corn, either an increase or a decrease in oil content may be desired, depending on how the other major constituents are to be used. Decreasing oil may improve the quality of isolated starch by reducing undesired flavors associated with oil oxidation. Alternatively, when the starch is used for ethanol production, where flavor is unimportant, increasing oil content may increase overall value.
[0006] In many feed grains, such as corn and wheat, it is desirable to increase seed oil content, because oil has higher energy content than other seed constituents such as carbohydrate. Oilseed processing, like most grain processing businesses, is a capital-intensive business; thus small shifts in the distribution of products from the low valued components to the high value oil component can have substantial economic impacts for grain processors. In addition, increasing the AME of meal by adjusting seed protein and fiber content and composition, without decreasing seed oil content, can increase the value of animal feed.
[0007] Biotechnological manipulation of oils has been shown to provide compositional alteration and improvement of oil yield. Compositional alterations include high oleic acid soybean and corn oil (U.S. Pat. Nos. 6,229,033 and 6,248,939), and laurate-containing seeds (U.S. Pat. No. 5,639,790), among others. Work in compositional alteration has predominantly focused on processed oilseeds, but has been readily extendable to non-oilseed crops, including corn. While there is considerable interest in increasing oil content, the only currently practiced biotechnology in this area is High-Oil Corn (HOC) technology (DuPont, U.S. Pat. No. 5,704,160). HOC employs high oil pollinators developed by classical selection breeding along with elite (male-sterile) hybrid females in a production system referred to as TopCross. The TopCross High Oil system raises harvested grain oil content in maize from about 3.5% to about 7%, improving the energy content of the grain.
[0008] While it has been fruitful, the HOC production system has inherent limitations. First, the system of having a low percentage of pollinators responsible for an entire field's seed set contains inherent risks, particularly in drought years. Second, oil content in current HOC fields has plateaued at about 9% oil. Finally, high-oil corn is not primarily a biochemical change, but rather an anatomical mutant (increased embryo size) that has the indirect result of increasing oil content. For these reasons, an alternative high oil strategy, particularly one that derives from an altered biochemical output, would be especially valuable.
[0009] Manipulation of seed composition has identified several components that improve the nutritive quality, digestibility, and AME in seed meal. Increasing the lysine content in canola and soybean (Falco et al., 1995 Bio/Technology 13:577-582) increases the availability of this essential amino acid and decreases the need for nutritional supplements. Soybean varieties with increased seed protein were shown to contain considerably more metabolizable energy than conventional varieties (Edwards et al., 1999, Poultry Sci. 79:525-527). Decreasing the phytate content of corn seed has been shown to increase the bioavailability of amino acids in animal feeds (Douglas et al., 2000, Poultry Sci. 79:1586-1591) and decreasing oligosaccharide content in soybean meal increases the metabolizable energy in the meal (Parsons et al., 2000, Poultry Sci. 79:1127-1131).
[0010] Soybean and canola are the most obvious target crops for the processed oil and seed meal markets since both crops are crushed for oil and the remaining meal sold for animal feed. A large body of commercial work (e.g., U.S. Pat. No. 5,952,544; PCT Application No. WO9411516) demonstrates that Arabidopsis is an excellent model for oil metabolism in these crops. Biochemical screens of seed oil composition have identified Arabidopsis genes for many critical biosynthetic enzymes and have led to identification of agronomically important gene orthologs. For instance, screens using chemically mutagenized populations have identified lipid mutants whose seeds display altered fatty acid composition (Lemieux et al., 1990, Theor. Appl. Genet. 80, 234-240; James and Dooner, 1990, Theor. Appl. Genet. 80, 241-245). T-DNA mutagenesis screens (Feldmann et al., 1989, Science 243: 1351-1354) that detected altered fatty acid composition identified the omega 3 desaturase (FADS) and delta-12 desaturase (FAD2) genes (U.S. Pat. No. 5,952,544; Yadav et al., 1993, Plant Physiol. 103, 467-476; Okuley et al., 1994, Plant Cell 6(1):147-158). A screen which focused on oil content rather than oil quality, analyzed chemically-induced mutants for wrinkled seeds or altered seed density, from which altered seed oil content was inferred (Focks and Benning, 1998, Plant Physiol. 118:91-101).
[0011] Another screen, designed to identify enzymes involved in production of very long chain fatty acids, identified a mutation in the gene encoding a diacylglycerol acyltransferase (DGAT) as being responsible for reduced triacyl glycerol accumulation in seeds (Katavic V et al., 1995, Plant Physiol. 108(1):399-409). It was further shown that seed-specific over-expression of the DGAT cDNA was associated with increased seed oil content (Jako et al., 2001, Plant Physiol. 126(2):861-74). Arabidopsis is also a model for understanding the accumulation of seed components that affect meal quality. For example, Arabidopsis contains albumin and globulin seed storage proteins found in many dicotyledonous plants including canola and soybean (Shewry 1995, Plant Cell 7:945-956). The biochemical pathways for synthesizing components of fiber, such as cellulose and lignin, are conserved within the vascular plants, and mutants of Arabidopsis affecting these components have been isolated (reviewed in Chapel and Carpita 1998, Current Opinion in Plant Biology 1:179-185).
[0012] Activation tagging in plants refers to a method of generating random mutations by insertion of a heterologous nucleic acid construct comprising regulatory sequences (e.g., an enhancer) into a plant genome. The regulatory sequences can act to enhance transcription of one or more native plant genes; accordingly, activation tagging is a fruitful method for generating gain-of-function, generally dominant mutants (see, e.g., Hayashi et al., 1992, Science 258: 1350-1353; Weigel D et al., 2000, Plant Physiology, 122:1003-1013). The inserted construct provides a molecular tag for rapid identification of the native plant whose mis-expression causes the mutant phenotype. Activation tagging may also cause loss-of-function phenotypes. The insertion may result in disruption of a native plant gene, in which case the phenotype is generally recessive.
[0013] Activation tagging has been used in various species, including tobacco and Arabidopsis, to identify many different kinds of mutant phenotypes and the genes associated with these phenotypes (Wilson et al., 1996, Plant Cell 8: 659-671; Schaffer et al., 1998, Cell 93: 1219-1229; Fridborg et al., 1999, Plant Cell 11: 1019-1032; Kardailsky et al., 1999, Science 286: 1962-1965; and Christensen S et al., 1998, 9.sup.th International Conference on Arabidopsis Research, Univ. of Wisconsin-Madison, June 24-28, Abstract 165).
SUMMARY
[0014] Provided herein are transgenic plants having an Improved Seed Quality phenotype. Transgenic plants with an Improved Seed Quality phenotype may include an improved oil quantity and/or an improved meal quality. Transgenic plants with improved meal quality have an Improved Meal Quality (IMQ) phenotype and transgenic plants with improved oil quantity have an Improved Oil Quantity (IOQ) phenotype. The IMQ phenotype in a transgenic plant may include altered protein and/or fiber content in any part of the transgenic plant, for example in the seeds. The IOQ phenotype in a transgenic plant may include altered oil content in any part of the transgenic plant, for example in the seeds. In particular embodiments, a transgenic plant may include an IOQ phenotype and/or an IMQ phenotype. In some embodiments of a transgenic plant, the IMQ phenotype may be an increase in protein content in the seed and/or a decrease in the fiber content of the seed. In other embodiments of a transgenic plant, the IOQ phenotype is an increase in the oil content of the seed (a high oil phenotype). Also provided is seed meal derived from the seeds of transgenic plants, wherein the seeds have altered protein content and/or altered fiber content. Further provided is oil derived from the seeds of transgenic plants, wherein the seeds have altered oil content. Any of these changes can lead to an increase in the AME from the seed or seed meal from transgenic plants, relative to control, non-transgenic, or wild-type plants. Also provided herein is meal, feed, or food produced from any part of the transgenic plant with an IMQ phenotype and/or IOQ phenotype.
[0015] In certain embodiments, the disclosed transgenic plants comprise a transformation vector comprising an IMQ nucleotide sequence that encodes or is complementary to a sequence that encodes an "IMQ" polypeptide. In particular embodiments, expression of an IMQ polypeptide in a transgenic plant causes an altered oil content, an altered protein content, and/or an altered fiber content in the transgenic plant. In preferred embodiments, the transgenic plant is selected from the group consisting of plants of the Brassica species, including canola and rapeseed, soy, corn, sunflower, cotton, cocoa, safflower, oil palm, coconut palm, flax, castor, peanut, wheat, oat and rice. Also provided is a method of producing oil or seed meal, comprising growing the transgenic plant and recovering oil and/or seed meal from said plant. The disclosure further provides feed, meal, grain, or seed comprising a nucleic acid sequence that encodes an IMQ polypeptide. The disclosure also provides feed, meal, grain, or seed comprising the IMQ polypeptide, or an ortholog thereof.
[0016] Examples of the disclosed transgenic plant are produced by a method that comprises introducing into progenitor cells of the plant a plant transformation vector comprising an IMQ nucleotide sequence that encodes, or is complementary to a sequence that encodes, an IMQ polypeptide, and growing the transformed progenitor cells to produce a transgenic plant, wherein the IMQ polynucleotide sequence is expressed, causing an IOQ phenotype and/or and IMQ phenotype in the transgenic plant. In some specific, non-limiting examples, the method produces transgenic plants wherein expression of the IMQ polypeptide causes a high (increased) oil, high (increased) protein, and/or low (decreased) fiber phenotype in the transgenic plant, relative to control, non-transgenic, or wild-type plants.
[0017] Additional methods are disclosed herein of generating a plant having an IMQ and/or an IOQ phenotype, wherein a plant is identified that has an allele in its IMQ nucleic acid sequence that results in an IMQ phenotype and/or an IOQ phenotype, compared to plants lacking the allele. The plant can generate progeny, wherein the progeny inherit the allele and have an IMQ phenotype and/or an IOQ phenotype. In some embodiments of the method, the method employs candidate gene/QTL methodology or TILLING methodology.
[0018] Also provided herein is a transgenic plant cell having an IMQ phenotype and/or an IOQ phenotype. The transgenic plant cell comprises a transformation vector comprising an IMQ nucleotide sequence that encodes or is complementary to a sequence that encodes an IMQ polypeptide. In preferred embodiments, the transgenic plant cell is selected from the group consisting of plants of the Brassica species, including canola and rapeseed, soy, corn, sunflower, cotton, cocoa, safflower, oil palm, coconut palm, flax, castor, peanut, wheat, oat and rice. In other embodiments, the plant cell is a seed, pollen, propagule, or embryo cell. The disclosure also provides plant cells from a plant that is the direct progeny or the indirect progeny of a plant grown from said progenitor cells.
DETAILED DESCRIPTION
Terms
[0019] Unless otherwise indicated, all technical and scientific terms used herein have the same meaning as they would to one skilled in the art of the present disclosure. Practitioners are particularly directed to Sambrook et al. (Molecular Cloning: A Laboratory Manual (Second Edition), Cold Spring Harbor Press, Plainview, N. Y., 1989) and Ausubel F M et al. (Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1993) for definitions and terms of the art. It is to be understood that this disclosure is not limited to the particular methodology, protocols, and reagents described, as these may vary.
[0020] As used herein, the term "IMQ phenotype" refers to plants, or any part of a plant (for example, seeds, or meal produced from seeds), with an altered protein and/or fiber content (phenotype). As provided herein, altered protein and/or fiber content includes either an increased or decreased level of protein and/or fiber content in plants, seeds or seed meal. Any combination of these changes can lead to an IMQ phenotype. For example, in one specific non-limiting example, an IMQ phenotype can refer to increased protein and decreased fiber content. In another specific non-limiting example, an IMQ phenotype can refer to unchanged protein and decreased fiber content. In yet another specific non-limiting example, an IMQ phenotype can refer to increased protein and unchanged fiber content. It is also provided that any combination of these changes can lead to an increase in the AME (available metabolizable energy) from the seed or meal generated from the seed. An IMQ phenotype also includes an improved seed quality (ISQ) phenotype or an improved seed meal quality phenotype.
[0021] As used herein, the term "IOQ phenotype" refers to plants, or any part of a plant (for example, seeds), with an altered oil content (phenotype). As provided herein, altered oil content includes an increased, for example a high, oil content in plants or seeds. In some embodiments, a transgenic plant can express both an IOQ phenotype and an IMQ phenotype. In specific, non-limiting examples, a transgenic plant having a combination of an IOQ phenotype and an IMQ phenotype can lead to an increase in the AME (available metabolizable energy) from the seed or meal generated from the seed. An IOQ phenotype also includes an improved seed quality (ISQ) phenotype.
[0022] As used herein, the term "available metabolizable energy" (AME) refers to the amount of energy in the feed that is able to be extracted by digestion in an animal and is correlated with the amount of digestible protein and oil available in animal meal. AME is determined by estimating the amount of energy in the feed prior to feeding and measuring the amount of energy in the excreta of the animal following consumption of the feed. In one specific, non-limiting example, a transgenic plant with an increase in AME includes transgenic plants with altered seed protein and/or fiber content and without a decrease in seed oil content (seed oil content remains unchanged or is increased), resulting in an increase in the value of animal feed derived from the seed.
[0023] As used herein, the term "content" refers to the type and relative amount of, for instance, a seed or seed meal component.
[0024] As used herein, the term "fiber" refers to non-digestible components of the plant seed including cellular components such as cellulose, hemicellulose, pectin, lignin, and phenolics.
[0025] As used herein, the term "meal" refers to seed components remaining following the extraction of oil from the seed. Examples of components of meal include protein and fiber.
[0026] As used herein, the term "vector" refers to a nucleic acid construct designed for transfer between different host cells. An "expression vector" refers to a vector that has the ability to incorporate and express heterologous DNA fragments in a foreign cell. Many prokaryotic and eukaryotic expression vectors are commercially available. Selection of appropriate expression vectors is within the knowledge of those having skill in the art.
[0027] A "heterologous" nucleic acid construct or sequence has a portion of the sequence that is not native to the plant cell in which it is expressed. Heterologous, with respect to a control sequence refers to a control sequence (i.e. promoter or enhancer) that does not function in nature to regulate the same gene the expression of which it is currently regulating. Generally, heterologous nucleic acid sequences are not endogenous to the cell or part of the genome in which they are present, and have been added to the cell by infection, transfection, microinjection, electroporation, or the like. A "heterologous" nucleic acid construct may contain a control sequence/DNA coding sequence combination that is the same as, or different from, a control sequence/DNA coding sequence combination found in the native plant. Specific, non-limiting examples of a heterologous nucleic acid sequence include an IMQ nucleic acid sequence, or a fragment, derivative (variant), or ortholog thereof.
[0028] As used herein, the term "gene" means the segment of DNA involved in producing a polypeptide chain, which may or may not include regions preceding and following the coding region, e.g. 5' untranslated (5' UTR) or "leader" sequences and 3' UTR or "trailer" sequences, as well as intervening sequences (introns) between individual coding segments (exons) and non-transcribed regulatory sequences.
[0029] As used herein, "recombinant" includes reference to a cell or vector, that has been modified by the introduction of a heterologous nucleic acid sequence or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found in identical form within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed, or not expressed at all as a result of deliberate human intervention.
[0030] As used herein, the term "gene expression" refers to the process by which a polypeptide is produced based on the nucleic acid sequence of a gene. The process includes both transcription and translation; accordingly, "expression" may refer to either a polynucleotide or polypeptide sequence, or both. Sometimes, expression of a polynucleotide sequence will not lead to protein translation. "Over-expression" refers to increased expression of a polynucleotide and/or polypeptide sequence relative to its expression in a wild-type (or other reference [e.g., non-transgenic]) plant and may relate to a naturally-occurring or non-naturally occurring sequence. "Ectopic expression" refers to expression at a time, place, and/or increased level that does not naturally occur in the non-altered or wild-type plant. "Under-expression" refers to decreased expression of a polynucleotide and/or polypeptide sequence, generally of an endogenous gene, relative to its expression in a wild-type plant. The terms "mis-expression" and "altered expression" encompass over-expression, under-expression, and ectopic expression.
[0031] The term "introduced" in the context of inserting a nucleic acid sequence into a cell, includes "transfection," "transformation," and "transduction" and includes reference to the incorporation of a nucleic acid sequence into a eukaryotic or prokaryotic cell where the nucleic acid sequence may be incorporated into the genome of the cell (for example, chromosome, plasmid, plastid, or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (for example, transfected mRNA).
[0032] As used herein, a "plant cell" refers to any cell derived from a plant, including cells from undifferentiated tissue (e.g., callus), as well as from plant seeds, pollen, propagules, and embryos.
[0033] As used herein, the terms "native" and "wild-type" relative to a given plant trait or phenotype refers to the form in which that trait or phenotype is found in the same variety of plant in nature. In one embodiment, a wild-type plant is also a control plant. In another embodiment, a wild-type plant is a non-transgenic plant.
[0034] As used herein, the term "modified" regarding a plant trait, refers to a change in the phenotype of a transgenic plant (for example, a transgenic plant with any combination of an altered oil content, an altered protein content, and/or an altered fiber content) in any part of the transgenic plant, for example the seeds, relative to a similar non-transgenic plant. As used herein, the term "altered" refers to either an increase or a decrease of a plant trait or phenotype (for example, oil content, protein content, and/or fiber content) in a transgenic plant, relative to a similar non-transgenic plant. In one specific, non-limiting example, a transgenic plant with a modified trait includes a plant with an increased oil content, increased protein content, and/or decreased fiber content relative to a similar non-transgenic plant. In another specific, non-limiting example, a transgenic plant with a modified trait includes unchanged oil content, increased protein content, and/or decreased fiber content relative to a similar non-transgenic plant. In yet another specific, non-limiting example, a transgenic plant with a modified trait includes an increased oil content, increased protein content, and/or unchanged fiber content relative to a similar non-transgenic plant. Specific, non-limiting examples of a change in phenotype include an IMQ phenotype or an IOQ phenotype.
[0035] An "interesting phenotype (trait)" with reference to a transgenic plant refers to an observable or measurable phenotype demonstrated by a T1 and/or subsequent generation plant, which is not displayed by the corresponding non-transgenic plant (i.e., a genotypically similar plant that has been raised or assayed under similar conditions). An interesting phenotype may represent an improvement in the plant (for example, increased oil content, increased protein content, and/or decreased fiber content in seeds of the plant) or may provide a means to produce improvements in other plants. An "improvement" is a feature that may enhance the utility of a plant species or variety by providing the plant with a unique and/or novel phenotype or quality. Such transgenic plants may have an improved phenotype, such as an IMQ phenotype or an IOQ phenotype.
[0036] The phrase "altered oil content phenotype" refers to a measurable phenotype of a genetically modified (transgenic) plant, where the plant displays a statistically significant increase or decrease in overall oil content (i.e., the percentage of seed mass that is oil), as compared to the similar, but non-modified (non-transgenic) plant. A high oil phenotype refers to an increase in overall oil content. The phrase "altered protein content phenotype" refers to measurable phenotype of a genetically modified plant, where the plant displays a statistically significant increase or decrease in overall protein content (i.e., the percentage of seed mass that is protein), as compared to the similar, but non-modified plant. A high protein phenotype refers to an increase in overall protein content. The phrase "altered fiber content phenotype" refers to measurable phenotype of a genetically modified plant, where the plant displays a statistically significant increase or decrease in overall fiber content (i.e., the percentage of seed mass that is fiber), as compared to the similar, but non-modified plant. A low fiber phenotype refers to decrease in overall fiber content.
[0037] As used herein, a "mutant" polynucleotide sequence or gene differs from the corresponding wild-type polynucleotide sequence or gene either in terms of sequence or expression, where the difference contributes to a modified or altered plant phenotype or trait. Relative to a plant or plant line, the term "mutant" refers to a plant or plant line which has a modified or altered plant phenotype or trait, where the modified or altered phenotype or trait is associated with the modified or altered expression of a wild-type polynucleotide sequence or gene.
[0038] As used herein, the term "T1" refers to the generation of plants from the seed of T0 plants. The T1 generation is the first set of transformed plants that can be selected by application of a selection agent, e.g., an antibiotic or herbicide, for which the transgenic plant contains the corresponding resistance gene. The term "T2" refers to the generation of plants by self-fertilization of the flowers of T1 plants, previously selected as being transgenic. T3 plants are generated from T2 plants, etc. As used herein, the "direct progeny" of a given plant derives from the seed (or, sometimes, other tissue) of that plant and is in the immediately subsequent generation; for instance, for a given lineage, a T2 plant is the direct progeny of a T1 plant. The "indirect progeny" of a given plant derives from the seed (or other tissue) of the direct progeny of that plant, or from the seed (or other tissue) of subsequent generations in that lineage; for instance, a T3 plant is the indirect progeny of a T1 plant.
[0039] As used herein, the term "plant part" includes any plant organ or tissue, including, without limitation, seeds, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, and microspores. Plant cells can be obtained from any plant organ or tissue and cultures prepared therefrom. Provided herein is a transgenic plant cell having an IMQ phenotype and/or an IOQ phenotype. The transgenic plant cell comprises a transformation vector comprising an IMQ nucleotide sequence that encodes or is complementary to a sequence that encodes an IMQ polypeptide. In preferred embodiments, the transgenic plant cell is selected from the group consisting of plants of the Brassica species, including canola and rapeseed, soy, corn, sunflower, cotton, cocoa, safflower, oil palm, coconut palm, flax, castor, peanut, wheat, oat and rice. In other embodiments, the plant cell is a seed, pollen, propagule, or embryo cell. The disclosure also provides plant cells from a plant that is the direct progeny or the indirect progeny of a plant grown from said progenitor cells. The class of plants which can be used in the methods of the present disclosure is generally as broad as the class of higher plants amenable to transformation techniques, including both monocotyledonous and dicotyledonous plants.
[0040] As used herein, "transgenic plant" includes a plant that comprises within its genome a heterologous polynucleotide. The heterologous polynucleotide can be either stably integrated into the genome, or can be extra-chromosomal. Preferably, the polynucleotide of the present disclosure is stably integrated into the genome such that the polynucleotide is passed on to successive generations. A plant cell, tissue, organ, or plant into which the heterologous polynucleotides have been introduced is considered "transformed," "transfected," or "transgenic." Direct and indirect progeny of transformed plants or plant cells that also contain the heterologous polynucleotide are also considered transgenic.
[0041] Disclosed herein are transgenic plants having an Improved Seed Quality phenotype. Transgenic plants with an Improved Seed Quality phenotype may include an improved oil quantity and/or an improved meal quality. Transgenic plants with improved meal quality have an IMQ phenotype and transgenic plants with improved oil quantity have an IOQ phenotype. The IMQ phenotype in a transgenic plant may include altered protein and/or fiber content in any part of the transgenic plant, for example in the seeds. The IOQ phenotype in a transgenic plant may include altered oil content in any part of the transgenic plant, for example in the seeds. In particular embodiments, a transgenic plant may include an IOQ phenotype and/or an IMQ phenotype. In some embodiments of a transgenic plant, the IMQ phenotype may be an increase in protein content in the seed and/or a decrease in the fiber content of the seed. In other embodiments of a transgenic plant, the IOQ phenotype is an increase in the oil content of the seed (a high oil phenotype). Also provided is seed meal derived from the seeds of transgenic plants, wherein the seeds have altered protein content and/or altered fiber content. Further provided is oil derived from the seeds of transgenic plants, wherein the seeds have altered oil content. Any of these changes can lead to an increase in the AME from the seed or seed meal from transgenic plants, relative to control, non-transgenic, or wild-type plants. Also provided herein is meal, feed, or food produced from any part of the transgenic plant with an IMQ phenotype and/or IOQ phenotype.
[0042] In certain embodiments, the disclosed transgenic plants comprise a transformation vector comprising an IMQ nucleotide sequence that encodes or is complementary to a sequence that encodes an "IMQ" polypeptide. In particular embodiments, expression of an IMQ polypeptide in a transgenic plant causes an altered oil content, an altered protein content, and/or an altered fiber content in the transgenic plant. In preferred embodiments, the transgenic plant is selected from the group consisting of plants of the Brassica species, including canola and rapeseed, soy, corn, sunflower, cotton, cocoa, safflower, oil palm, coconut palm, flax, castor, peanut, wheat, oat and rice. Also provided is a method of producing oil or seed meal, comprising growing the transgenic plant and recovering oil and/or seed meal from said plant. The disclosure further provides feed, meal, grain, or seed comprising a nucleic acid sequence that encodes an IMQ polypeptide. The disclosure also provides feed, meal, grain, or seed comprising the IMQ polypeptide, or an ortholog thereof.
[0043] Various methods for the introduction of a desired polynucleotide sequence encoding the desired protein into plant cells are available and known to those of skill in the art and include, but are not limited to: (1) physical methods such as microinjection, electroporation, and microprojectile mediated delivery (biolistics or gene gun technology); (2) virus mediated delivery methods; and (3) Agrobacterium-mediated transformation methods (see, for example, WO 2007/053482 and WO 2005/107437, which are incorporated herein by reference in their entirety).
[0044] The most commonly used methods for transformation of plant cells are the Agrobacterium-mediated DNA transfer process and the biolistics or microprojectile bombardment mediated process (i.e., the gene gun). Typically, nuclear transformation is desired but where it is desirable to specifically transform plastids, such as chloroplasts or amyloplasts, plant plastids may be transformed utilizing a microprojectile-mediated delivery of the desired polynucleotide.
[0045] Agrobacterium-mediated transformation is achieved through the use of a genetically engineered soil bacterium belonging to the genus Agrobacterium. A number of wild-type and disarmed strains of Agrobacterium tumefaciens and Agrobacterium rhizogenes harboring Ti or Ri plasmids can be used for gene transfer into plants. Gene transfer is done via the transfer of a specific DNA known as "T-DNA" that can be genetically engineered to carry any desired piece of DNA into many plant species.
[0046] Agrobacterium-mediated genetic transformation of plants involves several steps. The first step, in which the virulent Agrobacterium and plant cells are first brought into contact with each other, is generally called "inoculation." Following the inoculation, the Agrobacterium and plant cells/tissues are permitted to be grown together for a period of several hours to several days or more under conditions suitable for growth and T-DNA transfer. This step is termed "co-culture." Following co-culture and T-DNA delivery, the plant cells are treated with bactericidal or bacteriostatic agents to kill the Agrobacterium remaining in contact with the explant and/or in the vessel containing the explant. If this is done in the absence of any selective agents to promote preferential growth of transgenic versus non-transgenic plant cells, then this is typically referred to as the "delay" step. If done in the presence of selective pressure favoring transgenic plant cells, then it is referred to as a "selection" step. When a "delay" is used, it is typically followed by one or more "selection" steps.
[0047] With respect to microprojectile bombardment (U.S. Pat. No. 5,550,318; U.S. Pat. No. 5,538,880, U.S. Pat. No. 5,610,042; and PCT Publication WO 95/06128; each of which is specifically incorporated herein by reference in its entirety), particles are coated with nucleic acids and delivered into cells by a propelling force. Exemplary particles include those comprised of tungsten, platinum, and preferably, gold.
[0048] An illustrative embodiment of a method for delivering DNA into plant cells by acceleration is the Biolistics Particle Delivery System (BioRad, Hercules, Calif.), which can be used to propel particles coated with DNA or cells through a screen, such as a stainless steel or Nytex screen, onto a filter surface covered with monocot plant cells cultured in suspension.
[0049] Microprojectile bombardment techniques are widely applicable, and may be used to transform virtually any plant species. Examples of species that have been transformed by microprojectile bombardment include monocot species such as maize (PCT Publication No. WO 95/06128), barley, wheat (U.S. Pat. No. 5,563,055, incorporated herein by reference in its entirety), rice, oat, rye, sugarcane, and sorghum, as well as a number of dicots including tobacco, soybean (U.S. Pat. No. 5,322,783, incorporated herein by reference in its entirety), sunflower, peanut, cotton, tomato, and legumes in general (U.S. Pat. No. 5,563,055, incorporated herein by reference in its entirety).
[0050] To select or score for transformed plant cells regardless of transformation methodology, the DNA introduced into the cell contains a gene that functions in a regenerable plant tissue to produce a compound that confers upon the plant tissue resistance to an otherwise toxic compound. Genes of interest for use as a selectable, screenable, or scorable marker would include but are not limited to GUS, green fluorescent protein (GFP), luciferase (LUX), antibiotic or herbicide tolerance genes. Examples of antibiotic resistance genes include the penicillins, kanamycin (and neomycin, G418, bleomycin), methotrexate (and trimethoprim), chloramphenicol, and tetracycline. Polynucleotide molecules encoding proteins involved in herbicide tolerance are known in the art, and include, but are not limited to a polynucleotide molecule encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) described in U.S. Pat. No. 5,627,061, U.S. Pat. No. 5,633,435, and U.S. Pat. No. 6,040,497 and aroA described in U.S. Pat. No. 5,094,945 for glyphosate tolerance; a polynucleotide molecule encoding bromoxynil nitrilase (Bxn) described in U.S. Pat. No. 4,810,648 for Bromoxynil tolerance; a polynucleotide molecule encoding phytoene desaturase (crtI) described in Misawa et al. (Plant J. 4:833-840, 1993) and Misawa et al. (Plant J. 6:481-489, 1994) for norflurazon tolerance; a polynucleotide molecule encoding acetohydroxyacid synthase (AHAS, also known as ALS) described in Sathasiivan et al. (Nucl. Acids Res. 18:2188-2193, 1990) for tolerance to sulfonylurea herbicides; and the bar gene described in DeBlock et al. (EMBO J. 6:2513-2519, 1987) for glufosinate and bialaphos tolerance.
[0051] The regeneration, development, and cultivation of plants from various transformed explants are well documented in the art. This regeneration and growth process typically includes the steps of selecting transformed cells and culturing those individualized cells through the usual stages of embryonic development through the rooted plantlet stage. Transgenic embryos and seeds are similarly regenerated. The resulting transgenic rooted shoots are thereafter planted in an appropriate plant growth medium such as soil. Cells that survive the exposure to the selective agent, or cells that have been scored positive in a screening assay, may be cultured in media that supports regeneration of plants. Developing plantlets are transferred to soil less plant growth mix, and hardened off, prior to transfer to a greenhouse or growth chamber for maturation.
[0052] The present disclosure can be used with any transformable cell or tissue. By transformable as used herein is meant a cell or tissue that is capable of further propagation to give rise to a plant. Those of skill in the art recognize that a number of plant cells or tissues are transformable in which after insertion of exogenous DNA and appropriate culture conditions the plant cells or tissues can form into a differentiated plant. Tissue suitable for these purposes can include but is not limited to immature embryos, scutellar tissue, suspension cell cultures, immature inflorescence, shoot meristem, nodal explants, callus tissue, hypocotyl tissue, cotyledons, roots, and leaves.
[0053] Any suitable plant culture medium can be used. Examples of suitable media would include but are not limited to MS-based media (Murashige and Skoog, Physiol. Plant, 15:473-497, 1962) or N6-based media (Chu et al., Scientia Sinica 18:659, 1975) supplemented with additional plant growth regulators including but not limited to auxins, cytokinins, ABA, and gibberellins. Those of skill in the art are familiar with the variety of tissue culture media, which when supplemented appropriately, support plant tissue growth and development and are suitable for plant transformation and regeneration. These tissue culture media can either be purchased as a commercial preparation, or custom prepared and modified. Those of skill in the art are aware that media and media supplements such as nutrients and growth regulators for use in transformation and regeneration and other culture conditions such as light intensity during incubation, pH, and incubation temperatures that can be optimized for the particular variety of interest.
[0054] One of ordinary skill will appreciate that, after an expression cassette is stably incorporated in transgenic plants and confirmed to be operable, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.
Identification of Plants with an Improved Oil Quantity Phenotype and/or Improved Meal Quality Phenotype
[0055] An Arabidopsis activation tagging screen (ACTTAG) was used to identify the association between 1) ACTTAG plant lines with an altered protein, fiber and/or oil content (phenotype, for example, see columns 4, 5 and 6, respectively, of Table 1, below) and 2) the nucleic acid sequences identified in column 3 of Tables 2 and 3, wherein each nucleic acid sequence is provided with a gene alias or an IMQ designation (IMQ#; see column 1 in Tables 1, 2, and 3). Briefly, and as further described in the Examples, a large number of Arabidopsis plants were mutated with the pSKI015 vector, which comprises a T-DNA from the Ti plasmid of Agrobacterium tumefaciens, a viral enhancer element, and a selectable marker gene (Weigel et al., 2000, Plant Physiology, 122:1003-1013). When the T-DNA inserts into the genome of transformed plants, the enhancer element can cause up-regulation of genes in the vicinity, generally within about nine kilobases (kb) of the enhancers. T1 plants were exposed to the selective agent in order to specifically recover transformed plants that expressed the selectable marker and therefore harbored T-DNA insertions. T1 plants were allowed to grow to maturity, self-fertilize and produce seed. T2 seed was harvested, labeled and stored. To amplify the seed stocks, about eighteen T2 were sown in soil and, after germination, exposed to the selective agent to recover transformed T2 plants. T3 seed from these plants was harvested and pooled. Oil, protein and fiber content of the seed were estimated using Near Infrared Spectroscopy (NIR) as described in the Examples.
[0056] Quantitative determination of fatty acid (FA) content (column 7, Table 1) in T2 seeds was performed using the following methods. A sample of 15 to 20 T2 seeds from each line tested. This sample generally contained plants with homozygous insertions, no insertions, and hemizygous insertions in a standard 1:1:2 ratios. The seed sample was massed on UMT-2 ultra-microbalance (Mettler-Toledo Co., Ohio, USA) and then transferred to a glass extraction vial. Lipids were extracted from the seeds and trans-esterified in 500 .mu.l 2.5% H.sub.2SO.sub.4 in MeOH for 3 hours at 80.degree. C., following the method of Browse et al. (Biochem J 235:25-31, 1986) with modifications. A known amount of heptadecanoic acid was included in the reaction as an internal standard. 750 .mu.l of water and 400 .mu.l of hexane were added to each vial, which was then shaken vigorously and allowed to phase separate. Reaction vials were loaded directly onto gas chromatography (GC) for analysis and the upper hexane phase was sampled by the autosampler. Gas chromatography with Flame Ionization detection was used to separate and quantify the fatty acid methyl esters. Agilent 6890 Plus GC's were used for separation with Agilent Innowax columns (30 m.times.0.25 mm ID, 250 um film thickness). The carrier gas was Hydrogen at a constant flow of 2.5 ml/minute. 1 .mu.l of sample was injected in splitless mode (inlet temperature 220.degree. C., Purge flow 15 ml/min at 1 minute). The oven was programmed for an initial temperature of 105.degree. C., initial time 0.5 minutes, followed by a ramp of 60.degree. C. per minute to 175.degree. C., a 40.degree. C./minute ramp to 260.degree. C. with a final hold time of 2 minutes. Detection was by Flame Ionization (Temperature 275.degree. C., Fuel flow 30.0 ml/min, Oxidizer 400.0 ml/min). Instrument control and data collection and analysis were monitored using the Millennium Chromatography Management System (Version 3.2, Waters Corporation, Milford, Mass.). Peaks were initially identified by comparison with standards. Integration and quantification were performed automatically, but all analyses were subsequently examined manually to verify correct peak identification and acceptable signal to noise ratio before inclusion of the derived results in the study.
[0057] The association of an IMQ nucleic acid sequence with an IMQ phenotype or an IOQ phenotype was discovered by analysis of the genomic DNA sequence flanking the T-DNA insertion in the ACTTAG line identified in column 3 of Table 1. An ACTTAG line is a family of plants derived from a single plant that was transformed with a T-DNA element containing four tandem copies of the CaMV 35S enhancers. Accordingly, the disclosed IMQ nucleic acid sequences and/or polypeptides may be employed in the development of transgenic plants having an improved seed quality phenotype, including an IMQ phenotype and/or an IOQ phenotype. IMQ nucleic acid sequences may be used in the generation of transgenic plants, such as oilseed crops, that provide improved oil yield from oilseed processing and result in an increase in the quantity of oil recovered from seeds of the transgenic plant. IMQ nucleic acid sequences may also be used in the generation of transgenic plants, such as feed grain crops, that provide an IMQ phenotype resulting in increased energy for animal feeding, for example, seeds or seed meal with an altered protein and/or fiber content, resulting in an increase in AME. IMQ nucleic acid sequences may further be used to increase the oil content of specialty oil crops, in order to augment yield and/or recovery of desired unusual fatty acids. Transgenic plants that have been genetically modified to express IMQ polypeptides can be used in the production of seeds, wherein the transgenic plants are grown, and oil and seed meal are obtained from plant parts (e.g. seed) using standard methods.
IMQ Nucleic Acids and Polypeptides
[0058] The IMQ designation for each of the IMQ nucleic acid sequences discovered in the activation tagging screen described herein are listed in column 1 of Tables 1-3, below. The disclosed IMQ polypeptides are listed in column 5 of Table 2 and column 4 of Table 3. As used herein, the term "IMQ polypeptide" refers to any polypeptide that when expressed in a plant causes an IMQ phenotype and/or an IOQ phenotype in any part of the plant, for example the seeds. In one embodiment, an IMQ polypeptide refers to a full-length IMQ protein, or a fragment, derivative (variant), or ortholog thereof that is "functionally active," such that the protein fragment, derivative, or ortholog exhibits one or more or the functional activities associated with one or more of the disclosed full-length IMQ polypeptides, for example, the amino acid sequences provided in the GenBank entry referenced in column 5 of Table 2, which correspond to the amino acid sequences set forth as SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, or SEQ ID NO: 100, or an ortholog thereof. In one preferred embodiment, a functionally active IMQ polypeptide causes an IMQ phenotype and/or an IOQ phenotype in a transgenic plant. In another embodiment, a functionally active IMQ polypeptide causes an altered oil, protein, and/or fiber content phenotype (for example, an altered seed meal content phenotype) when mis-expressed in a plant. In other preferred embodiments, mis-expression of the IMQ polypeptide causes a high oil (such as, increased oil), high protein (such as, increased protein), and/or low fiber (such as, decreased fiber) phenotype in a plant. In another embodiment, mis-expression of the IMQ polypeptide causes an improved AME of meal. In yet another embodiment, a functionally active IMQ polypeptide can rescue defective (including deficient) endogenous IMQ activity when expressed in a plant or in plant cells; the rescuing polypeptide may be from the same or from a different species as the species with the defective polypeptide activity. The disclosure also provides feed, meal, grain, food, or seed comprising the IMQ polypeptide, or a fragment, derivative (variant), or ortholog thereof.
[0059] In another embodiment, a functionally active fragment of a full length IMQ polypeptide (for example, a functionally active fragment of a native polypeptide having the amino acid sequence set forth as SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, or SEQ ID NO: 100, or a naturally occurring ortholog thereof) retains one or more of the biological properties associated with the full-length IMQ polypeptide, such as signaling activity, binding activity, catalytic activity, or cellular or extra-cellular localizing activity. An IMQ fragment preferably comprises an IMQ domain, such as a C- or N-terminal or catalytic domain, among others, and preferably comprises at least 10, preferably at least 20, more preferably at least 25, and most preferably at least 50 contiguous amino acids of an IMQ protein. Functional domains of IMQ genes are listed in column 8 of Table 2 and can be identified using the PFAM program (Bateman A et al., 1999, Nucleic Acids Res. 27:260-262) or INTERPRO (Mulder et al., 2003, Nucleic Acids Res. 31, 315-318) program. Functionally active variants of full-length IMQ polypeptides, or fragments thereof, include polypeptides with amino acid insertions, deletions, or substitutions that retain one of more of the biological properties associated with the full-length IMQ polypeptide. In some cases, variants are generated that change the post-translational processing of an IMQ polypeptide. For instance, variants may have altered protein transport or protein localization characteristics, or altered protein half-life, compared to the native polypeptide.
[0060] As used herein, the term "IMQ nucleic acid" refers to any polynucleotide that when expressed in a plant causes an IMQ phenotype and/or an IOQ phenotype in any part of the plant, for example the seeds. In one embodiment, an IMQ polynucleotide encompasses nucleic acids with the sequence provided in or complementary to the GenBank entry referenced in column 3 of Table 2, which correspond to nucleic acid sequences set forth as SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, or SEQ ID NO: 99, as well as functionally active fragments, derivatives, or orthologs thereof. An IMQ nucleic acid of this disclosure may be DNA, derived from genomic DNA or cDNA, or RNA. Genomic sequences of the genes listed in Table 2 are known and available in public databases such as GenBank.
[0061] In one embodiment, a functionally active IMQ nucleic acid encodes or is complementary to a nucleic acid that encodes a functionally active IMQ polypeptide. A functionally active IMQ nucleic acid also includes genomic DNA that serves as a template for a primary RNA transcript (i.e., an mRNA precursor) that requires processing, such as splicing, before encoding the functionally active IMQ polypeptide. An IMQ nucleic acid can include other non-coding sequences, which may or may not be transcribed; such sequences include 5' and 3' UTRs, polyadenylation signals and regulatory sequences that control gene expression, among others, as are known in the art. Some polypeptides require processing events, such as proteolytic cleavage, covalent modification, etc., in order to become fully active. Accordingly, functionally active nucleic acids may encode the mature or the pre-processed IMQ polypeptide, or an intermediate form. An IMQ polynucleotide can also include heterologous coding sequences, for example, sequences that encode a marker included to facilitate the purification of the fused polypeptide, or a transformation marker. In another embodiment, a functionally active IMQ nucleic acid is capable of being used in the generation of loss-of-function IMQ phenotypes, for instance, via antisense suppression, co-suppression, etc. The disclosure also provides feed, meal, grain, food, or seed comprising a nucleic acid sequence that encodes an IMQ polypeptide.
[0062] In one preferred embodiment, an IMQ nucleic acid used in the disclosed methods comprises a nucleic acid sequence that encodes, or is complementary to a sequence that encodes, an IMQ polypeptide having at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity to a disclosed IMQ polypeptide sequence, for example the amino acid sequence set forth as SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, or SEQ ID NO: 100.
[0063] In another embodiment, an IMQ polypeptide comprises a polypeptide sequence with at least 50% or 60% identity to a disclosed IMQ polypeptide sequence (for example, the amino acid sequence set forth as SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, or SEQ ID NO: 100) and may have at least 70%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity to a disclosed IMQ polypeptide sequence. In a further embodiment, an IMQ polypeptide comprises 50%, 60%, 70%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity to a disclosed IMQ polypeptide sequence, and may include a conserved protein domain of the IMQ polypeptide (such as the protein domain(s) listed in column 8 of Table 2). In another embodiment, an IMQ polypeptide comprises a polypeptide sequence with at least 50%, 60%, 70%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity to a functionally active fragment of the polypeptide referenced in column 5 of Table 2. In yet another embodiment, an IMQ polypeptide comprises a polypeptide sequence with at least 50%, 60%, 70%, 80%, 90%, 95%, 97%, 98%, or 99% identity to the polypeptide sequence of the GenBank entry referenced in column 5 of Table 2 over its entire length and comprises a conserved protein domain(s) listed in column 8 of Table 2.
[0064] In another aspect, an IMQ polynucleotide sequence is at least 50% to 60% identical over its entire length to a disclosed IMQ nucleic acid sequence, such as the nucleic acid sequence set forth as SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, or SEQ ID NO: 99, or nucleic acid sequences that are complementary to such an IMQ sequence, and may comprise at least 70%, 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity to the disclosed IMQ sequence, or a functionally active fragment thereof, or complementary sequences. In another embodiment, a disclosed IMQ nucleic acid comprises a nucleic acid sequence as shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, or SEQ ID NO: 99, or nucleic acid sequences that are complementary to such an IMQ sequence, and nucleic acid sequences that have substantial sequence homology to a such IMQ sequences. As used herein, the phrase "substantial sequence homology" refers to those nucleic acid sequences that have slight or inconsequential sequence variations from such IMQ sequences, i.e., the sequences function in substantially the same manner and encode an IMQ polypeptide.
[0065] As used herein, "percent (%) sequence identity" with respect to a specified subject sequence, or a specified portion thereof, is defined as the percentage of nucleotides or amino acids in an identified sequence identical with the nucleotides or amino acids in the subject sequence (or specified portion thereof), after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent sequence identity, as generated by the program WU-BLAST-2.0a19 (Altschul et al., J. Mol. Biol., 1990, 215:403-410) with search parameters set to default values. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched. A "percent (%) identity value" is determined by the number of matching identical nucleotides or amino acids divided by the sequence length for which the percent identity is being reported. "Percent (%) amino acid sequence similarity" is determined by performing the same calculation as for determining % amino acid sequence identity, but including conservative amino acid substitutions in addition to identical amino acids in the computation. A conservative amino acid substitution is one in which an amino acid is substituted for another amino acid having similar properties such that the folding or activity of the protein is not significantly affected. Aromatic amino acids that can be substituted for each other are phenylalanine, tryptophan, and tyrosine; interchangeable hydrophobic amino acids are leucine, isoleucine, methionine, and valine; interchangeable polar amino acids are glutamine and asparagine; interchangeable basic amino acids are arginine, lysine and histidine; interchangeable acidic amino acids are aspartic acid and glutamic acid; and interchangeable small amino acids are alanine, serine, threonine, cysteine and glycine.
[0066] Derivative nucleic acid molecules of the subject nucleic acid molecules include sequences that selectively hybridize to the disclosed IMQ nucleic acid sequences (for example, the nucleic acid sequence set forth as SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, or SEQ ID NO: 99). The stringency of hybridization can be controlled by temperature, ionic strength, pH, and the presence of denaturing agents such as formamide during hybridization and washing. Conditions routinely used are well known (see, e.g., Current Protocol in Molecular Biology, Vol. 1, Chap. 2.10, John Wiley & Sons, Publishers (1994); Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual (Second Edition), Cold Spring Harbor Press, Plainview, N.Y.,).
[0067] In some embodiments, a nucleic acid molecule of the disclosure is capable of hybridizing to a nucleic acid molecule containing the disclosed nucleotide sequence under stringent hybridization conditions that are: prehybridization of filters containing nucleic acid for 8 hours to overnight at 65.degree. C. in a solution comprising 6.times. single strength citrate (SSC) (1.times.SSC is 0.15 M NaCl, 0.015 M Na citrate; pH 7.0), 5.times.Denhardt's solution, 0.05% sodium pyrophosphate and 100 .mu.g/ml herring sperm DNA; hybridization for 18-20 hours at 65.degree. C. in a solution containing 6.times.SSC, 1.times.Denhardt's solution, 100 .mu.g/ml yeast tRNA and 0.05% sodium pyrophosphate; and washing of filters at 65.degree. C. for 1 h in a solution containing 0.1.times.SSC and 0.1% SDS (sodium dodecyl sulfate). In other embodiments, moderately stringent hybridization conditions are used that are: pretreatment of filters containing nucleic acid for 6 h at 40.degree. C. in a solution containing 35% formamide, 5.times.SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 .mu.g/ml denatured salmon sperm DNA; hybridization for 18-20 h at 40.degree. C. in a solution containing 35% formamide, 5.times.SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 .mu.g/ml salmon sperm DNA, and 10% (wt/vol) dextran sulfate; followed by washing twice for 1 hour at 55.degree. C. in a solution containing 2.times.SSC and 0.1% SDS. Alternatively, low stringency conditions can be used that comprise: incubation for 8 hours to overnight at 37.degree. C. in a solution comprising 20% formamide, 5.times.SSC, 50 mM sodium phosphate (pH 7.6), 5.times.Denhardt's solution, 10% dextran sulfate, and 20 .mu.g/ml denatured sheared salmon sperm DNA; hybridization in the same buffer for 18 to 20 hours; and washing of filters in 1.times.SSC at about 37.degree. C. for 1 hour.
[0068] As a result of the degeneracy of the genetic code, a number of polynucleotide sequences encoding an IMQ polypeptide can be produced. For example, codons may be selected to increase the rate at which expression of the polypeptide occurs in a particular host species, in accordance with the optimum codon usage dictated by the particular host organism (see, e.g., Nakamura et al., 1999, Nucleic Acids Res. 27:292). Such sequence variants may be used in the methods disclosed herein.
[0069] The disclosed methods may use orthologs of a disclosed Arabidopsis IMQ nucleic acid sequence. Representative putative orthologs of each of the disclosed Arabidopsis IMQ genes are identified in column 3 of Table 3, below. Methods of identifying the orthologs in other plant species are known in the art. In general, orthologs in different species retain the same function, due to presence of one or more protein motifs and/or 3-dimensional structures. In evolution, when a gene duplication event follows speciation, a single gene in one species, such as Arabidopsis, may correspond to multiple genes (paralogs) in another. As used herein, the term "orthologs" encompasses paralogs. When sequence data is available for a particular plant species, orthologs are generally identified by sequence homology analysis, such as BLAST analysis, usually using protein bait sequences. Sequences are assigned as a potential ortholog if the best hit sequence from the forward BLAST result retrieves the original query sequence in the reverse BLAST (Huynen M A and Bork P, 1998, Proc. Natl. Acad. Sci., 95:5849-5856; Huynen M A et al., 2000, Genome Research, 10:1204-1210).
[0070] Programs for multiple sequence alignment, such as CLUSTAL (Thompson J D et al., 1994, Nucleic Acids Res. 22:4673-4680) may be used to highlight conserved regions and/or residues of orthologous proteins and to generate phylogenetic trees. In a phylogenetic tree representing multiple homologous sequences from diverse species (e.g., retrieved through BLAST analysis), orthologous sequences from two species generally appear closest on the tree with respect to all other sequences from these two species. Structural threading or other analysis of protein folding (e.g., using software by ProCeryon, Biosciences, Salzburg, Austria) may also identify potential orthologs. Nucleic acid hybridization methods may also be used to find orthologous genes and are preferred when sequence data are not available. Degenerate PCR and screening of cDNA or genomic DNA libraries are common methods for finding related gene sequences and are well known in the art (see, e.g., Sambrook, 1989, Molecular Cloning: A Laboratory Manual (Second Edition), Cold Spring Harbor Press, Plainview, N.Y.; Dieffenbach and Dveksler, 1995, PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY). For instance, methods for generating a cDNA library from the plant species of interest and probing the library with partially homologous gene probes are described in Sambrook et al. A highly conserved portion of the Arabidopsis IMQ coding sequence may be used as a probe. IMQ ortholog nucleic acids may hybridize to the nucleic acid of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, or SEQ ID NO: 99 under high, moderate, or low stringency conditions. After amplification or isolation of a segment of a putative ortholog, that segment may be cloned and sequenced by standard techniques and utilized as a probe to isolate a complete cDNA or genomic DNA clone.
[0071] Alternatively, it is possible to initiate an EST project to generate a database of sequence information for the plant species of interest. In another approach, antibodies that specifically bind known IMQ polypeptides are used for ortholog isolation (see, e.g., Harlow and Lane, 1988, 1999, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York). Western blot analysis can determine that an IMQ ortholog (i.e., a protein orthologous to a disclosed IMQ polypeptide) is present in a crude extract of a particular plant species. When reactivity is observed, the sequence encoding the candidate ortholog may be isolated by screening expression libraries representing the particular plant species. Expression libraries can be constructed in a variety of commercially available vectors, including lambda gt11, as described in Sambrook, et al., 1989. Once the candidate ortholog(s) are identified by any of these means, candidate orthologous sequence are used as bait (the "query") for the reverse BLAST against sequences from Arabidopsis or other species in which IMQ nucleic acid and/or polypeptide sequences have been identified.
[0072] IMQ nucleic acids and polypeptides may be obtained using any available method. For instance, techniques for isolating cDNA or genomic DNA sequences of interest by screening DNA libraries or by using polymerase chain reaction (PCR), as previously described, are well known in the art. Alternatively, nucleic acid sequence may be synthesized. Any known method, such as site directed mutagenesis (Kunkel T A et al., 1991, Methods Enzymol. 204:125-39), may be used to introduce desired changes into a cloned nucleic acid.
[0073] In general, the methods disclosed herein involve incorporating the desired form of the IMQ nucleic acid into a plant expression vector for transformation of plant cells, and the IMQ polypeptide is expressed in the host plant. Transformed plants and plant cells expressing an IMQ polypeptide express an IMQ phenotype and/or an IOQ phenotype and, in one specific, non-limiting example, may have high (increased) oil, high (increased) protein, and/or low (decreased) fiber content.
[0074] An "isolated" IMQ nucleic acid molecule is other than in the form or setting in which it is found in nature, and is identified and separated from least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the IMQ nucleic acid. However, an isolated IMQ nucleic acid molecule includes IMQ nucleic acid molecules contained in cells that ordinarily express IMQ where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.
Generation of Genetically Modified Plants with an Improved Oil Quantity Phenotype and/or an Improved Meal Quality Phenotype
[0075] The disclosed IMQ nucleic acids and polypeptides may be used in the generation of transgenic plants having a modified or altered oil, protein, and/or fiber content phenotype. As used herein, an "altered oil content (phenotype)" may refer to altered oil content in any part of the plant. In a preferred embodiment, altered expression of the IMQ gene in a plant is used to generate plants with a high oil content (phenotype). As used herein, an "altered protein content (phenotype)" may refer to altered protein content in any part of the plant. In a preferred embodiment, altered expression of the IMQ gene in a plant is used to generate plants with a high (or increased) protein content (phenotype). As used herein, an "altered fiber content (phenotype)" may refer to altered fiber content in any part of the plant. In a preferred embodiment, altered expression of the IMQ gene in a plant is used to generate plants with a low (or decreased) fiber content (phenotype). The altered oil, protein, and/or fiber content is often observed in seeds. Examples of a transgenic plant include plants comprising a plant transformation vector with a nucleotide sequence that encodes or is complementary to a sequence that encodes an IMQ polypeptide having the amino acid sequence as set forth in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, or SEQ ID NO: 100, or an ortholog thereof.
[0076] Transgenic plants, such as corn, soybean and canola containing the disclosed nucleic acid sequences, can be used in the production of vegetable oil and meal. Vegetable oil is used in a variety of food products, while meal from seed is used as an animal feed. After harvesting seed from transgenic plants, the seed is cleaned to remove plant stalks and other material and then flaked in roller mills to break the hulls. The crushed seed is heated to 75-100.degree. C. to denature hydrolytic enzymes, lyse the unbroken oil containing cells, and allow small oil droplets to coalesce. Most of the oil is then removed (and can be recovered) by pressing the seed material in a screw press. The remaining oil is removed from the presscake by extraction with and organic solvents, such as hexane. The solvent is removed from the meal by heating it to approximately 100.degree. C. After drying, the meal is then granulated to a consistent form. The meal, containing the protein, digestible carbohydrate, and fiber of the seed, may be mixed with other materials prior to being used as an animal feed.
[0077] The methods described herein for generating transgenic plants are generally applicable to all plants. Although activation tagging and gene identification is carried out in Arabidopsis, the IMQ nucleic acid sequence (or an ortholog, variant or fragment thereof) may be expressed in any type of plant. In a preferred embodiment, oil-producing plants produce and store triacylglycerol in specific organs, primarily in seeds. Such species include soybean (Glycine max), rapeseed and canola (including Brassica napus, B. campestris), sunflower (Helianthus annus), cotton (Gossypium hirsutum), corn (Zea mays), cocoa (Theobroma cacao), safflower (Carthamus tinctorius), oil palm (Elaeis guineensis), coconut palm (Cocos nucifera), flax (Linum usitatissimum), castor (Ricinus communis), and peanut (Arachis hypogaea), as well as wheat, rice and oat. Fruit- and vegetable-bearing plants, grain-producing plants, nut-producing plants, rapid cycling Brassica species, alfalfa (Medicago sativa), tobacco (Nicotiana), turfgrass (Poaceae family), other forage crops, and wild species may also be a source of unique fatty acids. In other embodiments, any plant expressing the IMQ nucleic acid sequence can also express increased protein and/or decreased fiber content in a specific plant part or organ, such as in seeds.
[0078] The skilled artisan will recognize that a wide variety of transformation techniques exist in the art, and new techniques are continually becoming available. Any technique that is suitable for the target host plant can be employed within the scope of the present disclosure. For example, the constructs can be introduced in a variety of forms including, but not limited to, as a strand of DNA, in a plasmid, or in an artificial chromosome. The introduction of the constructs into the target plant cells can be accomplished by a variety of techniques, including, but not limited to, Agrobacterium-mediated transformation, electroporation, microinjection, microprojectile bombardment, calcium-phosphate-DNA co-precipitation, or liposome-mediated transformation of a heterologous nucleic acid. The transformation of the plant is preferably permanent, i.e. by integration of the introduced expression constructs into the host plant genome, so that the introduced constructs are passed onto successive plant generations. Depending upon the intended use, a heterologous nucleic acid construct comprising an IMQ polynucleotide may encode the entire protein or a biologically active portion thereof.
[0079] In one embodiment, binary Ti-based vector systems may be used to transfer polynucleotides. Standard Agrobacterium binary vectors are known to those of skill in the art, and many are commercially available (e.g., pBI121 Clontech Laboratories, Palo Alto, Calif.). A construct or vector may include a plant promoter to express the nucleic acid molecule of choice. In a preferred embodiment, the promoter is a plant promoter.
[0080] The optimal procedure for transformation of plants with Agrobacterium vectors will vary with the type of plant being transformed. Exemplary methods for Agrobacterium-mediated transformation include transformation of explants of hypocotyl, shoot tip, stem or leaf tissue, derived from sterile seedlings and/or plantlets. Such transformed plants may be reproduced sexually, or by cell or tissue culture. Agrobacterium transformation has been previously described for a large number of different types of plants and methods for such transformation may be found in the scientific literature. Of particular relevance are methods to transform commercially important crops, such as plants of the Brassica species, including canola and rapeseed, (De Block et al., 1989, Plant Physiol., 91:694-701), sunflower (Everett et al., 1987, Bio/Technology, 5:1201), soybean (Christou et al., 1989, Proc. Natl. Acad. Sci USA, 86:7500-7504; Kline et al., 1987, Nature, 327:70), wheat, rice and oat.
[0081] Expression (including transcription and translation) of an IMQ nucleic acid sequence may be regulated with respect to the level of expression, the tissue type(s) where expression takes place and/or developmental stage of expression. A number of heterologous regulatory sequences (e.g., promoters and enhancers) are available for controlling the expression of an IMQ nucleic acid. These include constitutive, inducible and regulatable promoters, as well as promoters and enhancers that control expression in a tissue- or temporal-specific manner. Exemplary constitutive promoters include the raspberry E4 promoter (U.S. Pat. Nos. 5,783,393 and 5,783,394), the nopaline synthase (NOS) promoter (Ebert et al., Proc. Natl. Acad. Sci. (U.S.A.) 84:5745-5749, 1987), the octopine synthase (OCS) promoter (which is carried on tumor-inducing plasmids of Agrobacterium tumefaciens), the caulimovirus promoters such as the cauliflower mosaic virus (CaMV) 19S promoter (Lawton et al., Plant Mol. Biol. 9:315-324, 1987) and the CaMV 35S promoter (Odell et al., Nature 313:810-812, 1985 and Jones J D et al, 1992, Transgenic Res., 1:285-297), the figwort mosaic virus 35S-promoter (U.S. Pat. No. 5,378,619), the light-inducible promoter from the small subunit of ribulose-1,5-bis-phosphate carboxylase (ssRUBISCO), the Adh promoter (Walker et al., Proc. Natl. Acad. Sci. (U.S.A.) 84:6624-6628, 1987), the sucrose synthase promoter (Yang et al., Proc. Natl. Acad. Sci. (U.S.A) 87:4144-4148, 1990), the R gene complex promoter (Chandler et al., The Plant Cell 1:1175-1183, 1989), the chlorophyll a/b binding protein gene promoter, the CsVMV promoter (Verdaguer B et al., 1998, Plant Mol Biol., 37:1055-1067), and the melon actin promoter (published PCT application WO0056863). Exemplary tissue-specific promoters include the tomato E4 and E8 promoters (U.S. Pat. No. 5,859,330) and the tomato 2AII gene promoter (Van Haaren M J J et al., 1993, Plant Mol Bio., 21:625-640).
[0082] In one preferred embodiment, expression of the IMQ nucleic acid sequence is under control of regulatory sequences from genes whose expression is associated with early seed and/or embryo development. Indeed, in a preferred embodiment, the promoter used is a seed-enhanced promoter. Examples of such promoters include the 5' regulatory regions from such genes as napin (Kridl et al., Seed Sci. Res. 1:209:219, 1991), globulin (Belanger and Kriz, Genet., 129: 863-872, 1991, GenBank Accession No. L22295), gamma zein Z 27 (Lopes et al., Mol Gen Genet., 247:603-613, 1995), L3 oleosin promoter (U.S. Pat. No. 6,433,252), phaseolin (Bustos et al., Plant Cell, 1(9):839-853, 1989), arcelin5 (U.S. Application No. 2003/0046727), a soybean 7S promoter, a 7S.alpha. promoter (U.S. Application No. 2003/0093828), the soybean 7S.alpha.' beta conglycinin promoter, a 7S .alpha.' promoter (Beachy et al., EMBO J., 4:3047, 1985; Schuler et al., Nucleic Acid Res., 10(24):8225-8244, 1982), soybean trypsin inhibitor (Riggs et al., Plant Cell 1(6):609-621, 1989), ACP (Baerson et al., Plant Mol. Biol., 22(2):255-267, 1993), stearoyl-ACP desaturase (Slocombe et al., Plant Physiol. 104(4):167-176, 1994), soybean a' subunit of .beta.-conglycinin (Chen et al., Proc. Natl. Acad. Sci. 83:8560-8564, 1986), Vicia faba USP (P-Vf.Usp, SEQ ID NO: 1, 2, and 3 in (U.S. Application No. 2003/229918) and Zea mays L3 oleosin promoter (Hong et al., Plant Mol. Biol., 34(3):549-555, 1997). Also included are the zeins, which are a group of storage proteins found in corn endosperm. Genomic clones for zein genes have been isolated (Pedersen et al., Cell, 29:1015-1026, 1982; and Russell et al., Transgenic Res. 6(2):157-168) and the promoters from these clones, including the 15 kD, 16 kD, 19 kD, 22 kD, 27 kD and genes, could also be used. Other promoters known to function, for example, in corn include the promoters for the following genes: waxy, Brittle, Shrunken 2, Branching enzymes I and II, starch synthases, debranching enzymes, oleosins, glutelins and sucrose synthases. Legume genes whose promoters are associated with early seed and embryo development include V. faba legumin (Baumlein et al., 1991, Mol. Gen. Genet. 225:121-8; Baumlein et al., 1992, Plant J. 2:233-9), V. faba usp (Fiedler et al., 1993, Plant Mol. Biol. 22:669-79), pea convicilin (Bown et al., 1988, Biochem. J. 251:717-26), pea lectin (dePater et al., 1993, Plant Cell 5:877-86), P. vulgaris beta phaseolin (Bustos et al., 1991, EMBO J. 10:1469-79), P. vulgaris DLEC2 and PHS [beta] (Bobb et al., 1997, Nucleic Acids Res. 25:641-7), and soybean beta-Conglycinin, 7S storage protein (Chamberland et al., 1992, Plant Mol. Biol. 19:937-49).
[0083] Cereal genes whose promoters are associated with early seed and embryo development include rice glutelin ("GluA-3," Yoshihara and Takaiwa, 1996, Plant Cell Physiol. 37:107-11; "GluB-1," Takaiwa et al., 1996, Plant Mol. Biol. 30:1207-21; Washida et al., 1999, Plant Mol. Biol. 40:1-12; "Gt3," Leisy et al., 1990, Plant Mol. Biol. 14:41-50), rice prolamin (Zhou & Fan, 1993, Transgenic Res. 2:141-6), wheat prolamin (Hammond-Kosack et al., 1993, EMBO 12:545-54), maize zein (Z4, Matzke et al., 1990, Plant Mol. Biol. 14:323-32), and barley B-hordeins (Entwistle et al., 1991, Plant Mol. Biol. 17:1217-31).
[0084] Other genes whose promoters are associated with early seed and embryo development include oil palm GLO7A (7S globulin, Morcillo et al., 2001, Physiol. Plant 112:233-243), Brassica napus napin, 2S storage protein, and napA gene (Josefsson et al., 1987, 1 Biol. Chem. 262:12196-201; Stalberg et al., 1993, Plant Mol. Biol. 1993 23:671-83; Ellerstrom et al., 1996, Plant Mol. Biol. 32:1019-27), Brassica napus oleosin (Keddie et al., 1994, Plant Mol. Biol. 24:327-40), Arabidopsis oleosin (Plant et al., 1994, Plant Mol. Biol. 25:193-205), Arabidopsis FAE1 (Rossak et al., 2001, Plant Mol. Biol. 46:717-25), Canavalia gladiata conA (Yamamoto et al., 1995, Plant Mol. Biol. 27:729-41), and Catharanthus roseus strictosidine synthase (Str, Ouwerkerk and Memelink, 1999, Mol. Gen. Genet. 261:635-43). In another preferred embodiment, regulatory sequences from genes expressed during oil biosynthesis are used (see, e.g., U.S. Pat. No. 5,952,544). Alternative promoters are from plant storage protein genes (Bevan et al., 1993, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 342:209-15). Additional promoters that may be utilized are described, for example, in U.S. Pat. Nos. 5,378,619; 5,391,725; 5,428,147; 5,447,858; 5,608,144; 5,608,144; 5,614,399; 5,633,441; 5,633,435; and 4,633,436.
[0085] In yet another aspect, in some cases it may be desirable to inhibit the expression of the endogenous IMQ nucleic acid sequence in a host cell. Exemplary methods for practicing this aspect of the disclosure include, but are not limited to antisense suppression (Smith, et al., 1988, Nature, 334:724-726; van der Krol et al., 1988, BioTechniques, 6:958-976); co-suppression (Napoli, et al., 1990, Plant Cell, 2:279-289); ribozymes (PCT Publication WO 97/10328); and combinations of sense and antisense (Waterhouse, et al., 1998, Proc. Natl. Acad. Sci. USA, 95:13959-13964). Methods for the suppression of endogenous sequences in a host cell typically employ the transcription or transcription and translation of at least a portion of the sequence to be suppressed. Such sequences may be homologous to coding as well as non-coding regions of the endogenous sequence. Antisense inhibition may use the entire cDNA sequence (Sheehy et al., 1988, Proc. Natl. Acad. Sci. USA, 85:8805-8809), a partial cDNA sequence including fragments of 5' coding sequence, (Cannon et al., 1990, Plant Mol. Biol., 15:39-47), or 3' non-coding sequences (Ch'ng et al., 1989, Proc. Natl. Acad. Sci. USA, 86:10006-10010). Cosuppression techniques may use the entire cDNA sequence (Napoli et al., 1990, Plant Cell, 2:279-289; van der Krol et al., 1990, Plant Cell, 2:291-299), or a partial cDNA sequence (Smith et al., 1990, Mol. Gen. Genetics, 224:477-481).
[0086] Standard molecular and genetic tests may be performed to further analyze the association between a nucleic acid sequence and an observed phenotype. Exemplary techniques are described below.
[0087] 1. DNA/RNA Analysis
[0088] The stage- and tissue-specific gene expression patterns in mutant versus wild-type lines may be determined, for instance, by in situ hybridization. Analysis of the methylation status of the gene, especially flanking regulatory regions, may be performed. Other suitable techniques include over-expression, ectopic expression, expression in other plant species and gene knock-out (reverse genetics, targeted knock-out, viral induced gene silencing (VIGS; see, Baulcombe D, 1999, Arch. Virol. Suppl. 15:189-201).
[0089] In a preferred application expression profiling, generally by microarray analysis, is used to simultaneously measure differences or induced changes in the expression of many different genes. Techniques for microarray analysis are well known in the art (Schena M et al., Science 1995 270:467-470; Baldwin D et al., 1999, Cur. Opin. Plant Biol. 2(2):96-103; Dangond F, Physiol Genomics (2000) 2:53-58; van Hal N L et al., J Biotechnol. (2000) 78:271-280; Richmond T and Somerville S, Curr. Opin. Plant Biol. 2000 3:108-116). Expression profiling of individual tagged lines may be performed. Such analysis can identify other genes that are coordinately regulated as a consequence of the over-expression of the gene of interest, which may help to place an unknown gene in a particular pathway.
[0090] 2. Gene Product Analysis
[0091] Analysis of gene products may include recombinant protein expression, antisera production, immunolocalization, biochemical assays for catalytic or other activity, analysis of phosphorylation status, and analysis of interaction with other proteins via yeast two-hybrid assays.
[0092] 3. Pathway Analysis
[0093] Pathway analysis may include placing a gene or gene product within a particular biochemical, metabolic or signaling pathway based on its mis-expression phenotype or by sequence homology with related genes. Alternatively, analysis may comprise genetic crosses with wild-type lines and other mutant lines (creating double mutants) to order the gene in a pathway, or determining the effect of a mutation on expression of downstream "reporter" genes in a pathway.
Generation of Mutated Plants with an Improved Oil Quantity Phenotype and/or Improved Meal Quality Phenotype
[0094] Additional methods are disclosed herein of generating a plant having an IMQ and/or an IOQ phenotype, wherein a plant is identified that has an allele in its IMQ nucleic acid sequence that results in an IMQ phenotype and/or an IOQ phenotype, compared to plants lacking the allele. The plant can generate progeny, wherein the progeny inherit the allele and have an IMQ phenotype and/or an IOQ phenotype. For example, provided herein is a method of identifying plants that have mutations in the endogenous IMQ nucleic acid sequence that confer an IMQ phenotype and/or an IOQ phenotype and generating progeny of these plants with an IMQ and/or IOQ phenotype that are not genetically modified. In some embodiments, the plants have an IMQ phenotype with an altered protein and/or fiber content or seed meal content, or an IOQ phenotype, with an altered oil content.
[0095] In one method, called "TILLING" (for targeting induced local lesions in genomes), mutations are induced in the seed of a plant of interest, for example, using EMS (ethylmethane sulfonate) treatment. The resulting plants are grown and self-fertilized, and the progeny are used to prepare DNA samples. PCR amplification and sequencing of the IMQ nucleic acid sequence is used to identify whether a mutated plant has a mutation in the IMQ nucleic acid sequence. Plants having IMQ mutations may then be tested for altered oil, protein, and/or fiber content, or alternatively, plants may be tested for altered oil, protein, and/or fiber content, and then PCR amplification and sequencing of the IMQ nucleic acid sequence is used to determine whether a plant having altered oil, protein, and/or fiber content has a mutated IMQ nucleic acid sequence. TILLING can identify mutations that may alter the expression of specific genes or the activity of proteins encoded by these genes (see Colbert et al., 2001, Plant Physiol. 126:480-484; McCallum et al., 2000, Nature Biotechnology 18:455-457).
[0096] In another method, a candidate gene/Quantitative Trait Locus (QTLs) approach can be used in a marker-assisted breeding program to identify alleles of or mutations in the IMQ nucleic acid sequence or orthologs of the IMQ nucleic acid sequence that may confer altered oil, protein, and/or fiber content (see Bert et al., Theor Appl Genet., 2003 June; 107(1):181-9; and Lionneton et al., Genome, 2002 December; 45(6):1203-15). Thus, in a further aspect of the disclosure, an IMQ nucleic acid is used to identify whether a plant having altered oil, protein, and/or fiber content has a mutation an endogenous IMQ nucleic acid sequence or has a particular allele that causes altered oil, protein, and/or fiber content.
[0097] While the disclosure has been described with reference to specific methods and embodiments, it will be appreciated that various modifications and changes may be made without departing from the disclosure. All publications cited herein are expressly incorporated herein by reference for the purpose of describing and disclosing compositions and methodologies that might be used in connection with the disclosure. All cited patents, patent applications, and sequence information in referenced public databases are also incorporated by reference.
EXAMPLES
Example 1
Generation of Plants with an IMQ Phenotype and/or an IOQ Phenotype by Transformation with an Activation Tagging Construct
[0098] This Example describes the generation of transgenic plants with altered oil, protein, and/or fiber content.
[0099] Mutants were generated using the activation tagging "ACTTAG" vector, pSKI015 (GI#6537289; Weigel D et al., 2000, Plant Physiology, 122:1003-1013). Standard methods were used for the generation of Arabidopsis transgenic plants, and were essentially as described in published application PCT WO0183697. Briefly, T0 Arabidopsis (Col-0) plants were transformed with Agrobacterium carrying the pSKI015 vector, which comprises T-DNA derived from the Agrobacterium Ti plasmid, an herbicide resistance selectable marker gene, and the 4.times.CaMV 35S enhancer element. Transgenic plants were selected at the T1 generation based on herbicide resistance. T2 seed (from T1 plants) was harvested and sown in soil. T2 plants were exposed to the herbicide to kill plants lacking the ACTTAG vector. T2 plants were grown to maturity, allowed to self-fertilize and set seed. T3 seed (from the T2 plants) was harvested in bulk for each line.
[0100] T3 seed was analyzed by Near Infrared Spectroscopy (NIR) at the time of harvest. NIR spectra were captured using a Bruker 22 near infrared spectrometer. Bruker Software was used to estimate total seed oil, total seed protein and total seed fiber content using data from NIR analysis and reference methods according to the manufacturer's instructions. Oil content predicting calibrations were developed following the general method of AOCS Procedure Aml-92, Official Methods and Recommended Practices of the American Oil Chemists Society, 5th Ed., AOCS, Champaign, Ill. A NIR protein content predicting calibration was developed using total nitrogen content data of seed samples following the general method of Dumas Procedure AOAC 968.06 (Official Methods of Analysis of AOAC International 17.sup.th Edition AOAC, Gaithersburg, Md.). A fiber content predicting calibration was developed by measuring crude fiber content in a set of seed samples. Fiber content of in a known mass of seed was determined using the method of Honig and Rackis, (1979, J Agri. Food Chem., 27: 1262-1266). Digestible protein content of in a known mass of seed was determined by quantifying the individual amino acids liberated by an acid hydrolysis Steine and Moore (1958, Anal. Chem., 30:1185-1190). The quantification was performed by the Amino Quant (Agilent). The undigested protein remaining associated with the non-digestible fraction is measured by the same method described for the whole seed homogenate. Digestible protein content is determined by subtracting the amount of undigested protein associated with the non-digestible fraction from the total amount of protein in the seed sample.
[0101] Seed oil, protein, digestible protein and fiber values in 82,274 lines were determined by NIR spectroscopy and normalized to allow comparison of seed component values in plants grown at different times. Oil, protein and fiber values were normalized by calculating the average oil, protein and fiber values in seed from all plants planted on the same day (including a large number of other ACTTAG plants, including control, wild-type, or non-transgenic plants). The seed components for each line was expressed as a "percent relative value" which was calculated by dividing the component value for each line with the average component value for all lines planted on the same day (which should approximate the value in control, wild-type, or non-transgenic plants). The "percent relative protein" and "percent relative fiber" were calculated similarly.
[0102] Inverse PCR was used to recover genomic DNA flanking the T-DNA insertion. The PCR product was subjected to sequence analysis and placed on the genome using a basic BLASTN search and/or a search of the Arabidopsis Information Resource (TAIR) database (available at the publicly available website). Promoters within 9 kb of the enhancers in the ACTTAG element are considered to be within "activation space." Genes with T-DNA inserts within coding sequences were not considered to be within "activation space." The ACTTAG lines with the above average oil and protein values, and below average fiber values were identified and are listed in column 3 of Table 1.
TABLE-US-00001 TABLE 1 4. Relative 5. Relative 6. Relative 1. Gene 3. ACTTAG Seed Protein Seed Fiber Seed Oil 7. alias 2. Tair Line Content Content Content GC FA IMQ34.3 At2g31480 W000137133 135.45% 89.55% 82.65% IMQ34.4 At2g31490 W000137133 135.45% 89.55% 82.65% IMQ35.1 At2g34030 W000041983 122.86% 92.93% 80.44% IMQ35.2 At2g34040 W000041983 122.86% 92.93% 80.44% IMQ35.2 At2g34040 W000041983 122.86% 92.93% 80.44% IMQ35.3 At2g34050 W000041983 122.86% 92.93% 80.44% IMQ35.4 At2g34060 W000041983 122.86% 92.93% 80.44% IMQ36.1 At2g34400 W000146178 109.53% 93.15% 94.98% IMQ36.2 At2g34410 W000146178 109.53% 93.15% 94.98% IMQ36.2 At2g34410 W000146178 109.53% 93.15% 94.98% IMQ36.2 At2g34410 W000146178 109.53% 93.15% 94.98% IMQ36.3 At2g34420 W000146178 109.53% 93.15% 94.98% IMQ36.3 At2g34420 W000146178 109.53% 93.15% 94.98% IMQ36.4 At2g34430 W000146178 109.53% 93.15% 94.98% IMQ36.5 At2g34440 W000146178 109.53% 93.15% 94.98% IMQ36.6 At2g34450 W000146178 109.53% 93.15% 94.98% IMQ36.6 At2g34450 W000146178 109.53% 93.15% 94.98% IMQ37.1 At3g03800 W000168536 105.07% 88.55% 98.42% IMQ37.2 At3g03810 W000168536 105.07% 88.55% 98.42% IMQ37.3 At3g03820 W000168536 105.07% 88.55% 98.42% IMQ37.4 At3g03830 W000168536 105.07% 88.55% 98.42% IMQ37.5 At3g03840 W000168536 105.07% 88.55% 98.42% IMQ37.6 At3g03847 W000168536 105.07% 88.55% 98.42% 97.87% IMQ37.7 At3g03850 W000168536 105.07% 88.55% 98.42% IMQ38.1 At3g07100 W000182714 101.56% 90.13% 99.68% IMQ38.2 At3g07110 W000182714 101.56% 90.13% 99.68% IMQ38.2 At3g07110 W000182714 101.56% 90.13% 99.68% IMQ38.3 At3g07120 W000182714 101.56% 90.13% 99.68% IMQ38.4 At3g07130 W000182714 101.56% 90.13% 99.68% IMQ38.5 At3g07140 W000182714 101.56% 90.13% 99.68% IMQ38.5 At3g07140 W000182714 101.56% 90.13% 99.68% IMQ38.6 At3g07150 W000182714 101.56% 90.13% 99.68% IMQ39.1 At3g15480 W000190425 151.85% 106.23% 57.69% IMQ39.2 At3g15490 W000190425 151.85% 106.23% 57.69% 69.66% IMQ39.3 At3g15500 W000190425 151.85% 106.23% 57.69% IMQ40.1 At3g16580 W000085366 119.68% 89.13% 84.56% 99.63% IMQ40.2 At3g16590 W000085366 119.68% 89.13% 84.56% IMQ40.3 At3g16600 W000085366 119.68% 89.13% 84.56% IMQ40.4 At3g16610 W000085366 119.68% 89.13% 84.56% IMQ40.5 At3g16620 W000085366 119.68% 89.13% 84.56% IMQ41.1 At3g17640 W000192636 101.54% 86.92% 102.79% 107.27% IMQ41.2 At3g17650 W000192636 101.54% 86.92% 102.79% IMQ41.3 At3g17660 W000192636 101.54% 86.92% 102.79% IMQ41.4 At3g17670 W000192636 101.54% 86.92% 102.79% IMQ41.5 At3g17680 W000192636 101.54% 86.92% 102.79% 107.27% IMQ41.5 At3g17680 W000192636 101.54% 86.92% 102.79% IMQ41.6 At3g17690 W000192636 101.54% 86.92% 102.79% 107.27% IMQ42.1 At3g19850 W000093675 112.46% 94.21% 95.25% IMQ42.2 At3g19860 W000093675 112.46% 94.21% 95.25% IMQ42.2 At3g19860 W000093675 112.46% 94.21% 95.25%
TABLE-US-00002 TABLE 2 7. Putative 3. Nucleic biochemical 1. Gene Acid seq. 4. SEQ 5. Polypeptide 6. SEQ function/protein 8. Conserved alias 2. Tair GI# ID NO seq. GI# ID NO name protein domain IMQ34.3 At2g31480 gi|42569515 SEQ ID gi|42569516 SEQ ID unknown protein NO: 1 NO: 2 IMQ34.4 At2g31490 gi|18402681 SEQ ID gi|18402682 SEQ ID unknown protein NO: 3 NO: 4 IMQ35.1 At2g34030 gi|42569600 SEQ ID gi|42569601 SEQ ID calcium ion binding IPR002048 Calcium- NO: 5 NO: 6 binding EF-hand IMQ35.2 At2g34040 gi|30685905 SEQ ID gi|30685906 SEQ ID unknown protein IPR008383 Apoptosis NO: 7 NO: 8 inhibitory 5 IMQ35.2 At2g34040 gi|30685899 SEQ ID gi|18403429 SEQ ID unknown protein IPR008383 Apoptosis NO: 9 NO: 10 inhibitory 5 IMQ35.3 At2g34050 gi|30685908 SEQ ID gi|18403431 SEQ ID unknown protein IPR010591 ATP11 NO: 11 NO: 12 IMQ35.4 At2g34060 gi|30685912 SEQ ID gi|15226205 SEQ ID peroxidase IPR002016 Haem NO: 13 NO: 14 peroxidase, plant/fungal/bacterial; IPR000823 Plant peroxidase IMQ36.1 At2g34400 gi|18403542 SEQ ID gi|15226301 SEQ ID unknown protein IPR002885 NO: 15 NO: 16 Pentatricopeptide repeat; IPR008940 Protein prenyltransferase IMQ36.2 At2g34410 gi|79324292 SEQ ID gi|79324293 SEQ ID O-acetyltransferase IPR012419 Cas1p-like NO: 17 NO: 18 IMQ36.2 At2g34410 gi|79324284 SEQ ID gi|79324285 SEQ ID O-acetyltransferase IPR012419 Cas1p-like NO: 19 NO: 20 IMQ36.2 At2g34410 gi|42569608 SEQ ID gi|42569609 SEQ ID O-acetyltransferase IPR012419 Cas1p-like NO: 21 NO: 22 IMQ36.3 At2g34420 gi|30686050 SEQ ID gi|30686051 SEQ ID LHB1B2 IPR001344 Chlorophyll NO: 23 NO: 24 A-B binding protein IMQ36.3 At2g34420 gi|30686047 SEQ ID gi|18403546 SEQ ID LHB1B2 IPR001344 Chlorophyll NO: 25 NO: 26 A-B binding protein IMQ36.4 At2g34430 gi|30686053 SEQ ID gi|18403549 SEQ ID LHB1B1; chlorophyll IPR001344 Chlorophyll NO: 27 NO: 28 binding A-B binding protein IMQ36.5 At2g34440 gi|18403551 SEQ ID gi|15226309 SEQ ID transcription factor IPR002100 Transcription NO: 29 NO: 30 factor, MADS-box IMQ36.6 At2g34450 gi|79324302 SEQ ID gi|79324303 SEQ ID unknown protein IPR000910 HMG1/2 NO: 31 NO: 32 (high mobility group) box IMQ36.6 At2g34450 gi|30686062 SEQ ID gi|18403553 SEQ ID transcription factor IPR000910 HMG1/2 NO: 33 NO: 34 (high mobility group) box IMQ37.1 At3g03800 gi|18396673 SEQ ID gi|15228637 SEQ ID SYP131; t-SNARE IPR000727 Target NO: 35 NO: 36 SNARE coiled-coil region; IPR006011 Syntaxin, N-terminal; IPR006012 Syntaxin/epimorphin family IMQ37.2 At3g03810 gi|30678945 SEQ ID gi|30678946 SEQ ID unknown protein IPR004348 Hypothetical NO: 37 NO: 38 plant protein IMQ37.3 At3g03820 gi|18396679 SEQ ID gi|15228639 SEQ ID unknown protein IPR003676 Auxin NO: 39 NO: 40 responsive SAUR protein IMQ37.4 At3g03830 gi|30678954 SEQ ID gi|15228640 SEQ ID unknown protein IPR003676 Auxin NO: 41 NO: 42 responsive SAUR protein IMQ37.5 At3g03840 gi|42563470 SEQ ID gi|15228641 SEQ ID unknown protein IPR003676 Auxin NO: 43 NO: 44 responsive SAUR protein IMQ37.6 At3g03847 gi|22330828 SEQ ID gi|22330829 SEQ ID unknown protein IPR003676 Auxin NO: 45 NO: 46 responsive SAUR protein IMQ37.7 At3g03850 gi|30678958 SEQ ID gi|30678959 SEQ ID unknown protein NO: 47 NO: 48 IMQ38.1 At3g07100 gi|30680128 SEQ ID gi|30680129 SEQ ID protein binding/ IPR006896 NO: 49 NO: 50 transporter Sec23/Sec24 trunk region; IPR006900 Sec23/Sec24 helical region; IPR006895 Zinc finger, Sec23/Sec24-type; IPR006706 Extensin-like region; IPR007123 Gelsolin region IMQ38.2 At3g07110 gi|79313148 SEQ ID gi|79313149 SEQ ID structural IPR005822 Ribosomal NO: 51 NO: 52 constituent protein L13; of ribosome IPR005755 Ribosomal protein L13, archea and eukaryotic form; IPR005823 Ribosomal protein L13, bacterial and organelle form IMQ38.2 At3g07110 gi|30680131 SEQ ID gi|15231394 SEQ ID structural IPR005822 Ribosomal NO: 53 NO: 54 constituent protein L13; of ribosome IPR005755 Ribosomal protein L13, archea and eukaryotic form; IPR005823 Ribosomal protein L13, bacterial and organelle form IMQ38.3 At3g07120 gi|30680134 SEQ ID gi|15231396 SEQ ID protein binding/ IPR001841 Zinc finger, NO: 55 NO: 56 ubiquitin-protein RING-type ligase/zinc ion binding IMQ38.4 At3g07130 gi|42563571 SEQ ID gi|15231398 SEQ ID hydrolase/protein IPR004843 NO: 57 NO: 58 serine/threonine Metallophosphoesterase phosphatase IMQ38.5 At3g07140 gi|42570456 SEQ ID gi|30680143 SEQ ID GPI-anchor IPR007245 Gpi16 NO: 59 NO: 60 transamidase subunit, GPI transamidase component IMQ38.5 At3g07140 gi|30680141 SEQ ID gi|18397852 SEQ ID GPI-anchor IPR007245 Gpi16 NO: 61 NO: 62 transamidase subunit, GPI transamidase component IMQ38.6 At3g07150 gi|18397855 SEQ ID gi|15231401 SEQ ID unknown protein NO: 63 NO: 64 IMQ39.1 At3g15480 gi|30683621 SEQ ID gi|18400781 SEQ ID unknown protein IPR009606 Protein of NO: 65 NO: 66 unknown function DUF1218 IMQ39.2 At3g15490 gi|42564187 SEQ ID gi|42564188 SEQ ID unknown protein IPR005061 Protein of NO: 67 NO: 68 unknown function DUF292, eukaryotic IMQ39.3 At3g15500 gi|30683631 SEQ ID gi|15232604 SEQ ID ATNAC3; IPR003441 No apical NO: 69 NO: 70 transcription meristem (NAM) protein factor IMQ40.1 At3g16580 gi|30684147 SEQ ID gi|18401179 SEQ ID unknown protein IPR001810 Cyclin-like NO: 71 NO: 72 F-box; IPR006527 F-box protein interaction domain IMQ40.2 At3g16590 gi|18401181 SEQ ID gi|15228255 SEQ ID unknown protein IPR006527 F-box protein NO: 73 NO: 74 interaction domain; IPR001810 Cyclin-like F-box IMQ40.3 At3g16600 gi|18401188 SEQ ID gi|15228256 SEQ ID ATP binding/ATP- IPR000330 SNF2- NO: 75 NO: 76 dependent helicase/ related; DNA binding/ IPR001410 DEAD/DEAH helicase/nucleic box helicase; acid binding/protein IPR001650 Helicase, binding/ubiquitin- C-terminal protein ligase/zinc ion binding IMQ40.4 At3g16610 gi|18401191 SEQ ID gi|15228257 SEQ ID unknown protein IPR001841 Zinc finger, NO: 77 NO: 78 RING-type; IPR002885 Pentatricopeptide repeat IMQ40.5 At3g16620 gi|30684161 SEQ ID gi|15228272 SEQ ID ATTOC120; IPR006703 AIG1; NO: 79 NO: 80 protein IPR002917 GTP-binding translocase protein, HSR1-related; IPR005688 Chloroplast protein import component Toc34; IPR005690 Chloroplast protein import component Toc86/159 IMQ41.1 At3g17640 gi|18401587 SEQ ID gi|15229088 SEQ ID protein binding IPR001611 Leucine-rich NO: 81 NO: 82 repeat; IPR007090 Leucine-rich repeat, plant specific IMQ41.2 At3g17650 gi|18401589 SEQ ID gi|18401590 SEQ ID PDE321; IPR004813 Oligopeptide NO: 83 NO: 84 oligopeptide transporter OPT transporter superfamily; IPR004814 Oligopeptide transporter OPT; IPR004648 Tetrapeptide transporter, OPT1/isp4 IMQ41.3 At3g17660 gi|18401594 SEQ ID gi|15229090 SEQ ID DNA binding IPR001164 Arf GTPase NO: 85 NO: 86 activating protein IMQ41.4 At3g17670 gi|18401598 SEQ ID gi|15229091 SEQ ID unknown protein IPR001440 TPR repeat NO: 87 NO: 88 IMQ41.5 At3g17680 gi|79313276 SEQ ID gi|79313277 SEQ ID unknown protein IPR011684 KIP1-like NO: 89 NO: 90 IMQ41.5 At3g17680 gi|30684630 SEQ ID gi|30684631 SEQ ID unknown protein IPR011684 KIP1-like NO: 91 NO: 92 IMQ41.6 At3g17690 gi|30684635 SEQ ID gi|15229093 SEQ ID ATCNGC19; IPR005821 Ion transport NO: 93 NO: 94 calmodulin binding/ protein; cyclic nucleotide IPR000595 Cyclic binding/ion channel nucleotide-binding IMQ42.1 At3g19850 gi|42565033 SEQ ID gi|42565034 SEQ ID protein binding/ IPR004249 NPH3; NO: 95 NO: 96 signal transducer IPR000210 BTB/POZ IMQ42.2 At3g19860 gi|79313298 SEQ ID gi|79313299 SEQ ID DNA binding IPR001092 Basic helix- NO: 97 NO: 98 loop-helix dimerisation region bHLH; IPR003106 Leucine zipper, homeobox- associated IMQ42.2 At3g19860 gi|30685522 SEQ ID gi|15230975 SEQ ID DNA binding/ IPR001092 Basic helix- NO: 99 NO: 100 transcription factor loop-helix dimerisation region bHLH; IPR003106 Leucine zipper, homeobox- associated
TABLE-US-00003 TABLE 3 5. Orthologous Genes: Nucleic 3. Nucleic Acid/Polypeptide seq. GI# 1. Gene Acid seq. 4. Polypeptide Nucleic Acid Polypeptide alias 2. Tair GI# seq. GI# GI# GI# Species IMQ34.3 At2g31480 gi|42569515 gi|42569516 IMQ34.4 At2g31490 gi|18402681 gi|18402682 gi|15146360 gi|57899156 Oryza sativa (japonica cultivar-group) gi|34910867 gi|34910868 Oryza sativa (japonica cultivar-group) gi|34909561 gi|34909562 Oryza sativa (japonica cultivar-group) IMQ35.1 At2g34030 gi|42569600 gi|42569601 gi|30690570 gi|15218787 Arabidopsis thaliana gi|18403422 gi|15226191 Arabidopsis thaliana gi|30695447 gi|30695448 Arabidopsis thaliana IMQ35.2 At2g34040 gi|30685905 gi|30685906 gi|30685899 gi|18403429 Arabidopsis thaliana gi|42562386 gi|42562387 Arabidopsis thaliana gi|50907460 gi|50907461 Oryza sativa (japonica cultivar-group) gi|66526466 gi|66526467 Apis mellifera IMQ35.2 At2g34040 gi|30685899 gi|18403429 gi|30685905 gi|30685906 Arabidopsis thaliana gi|42562386 gi|42562387 Arabidopsis thaliana gi|50907460 gi|50907461 Oryza sativa (japonica cultivar-group) gi|66526466 gi|66526467 Apis mellifera IMQ35.3 At2g34050 gi|30685908 gi|18403431 gi|50907446 gi|50907447 Oryza sativa (japonica cultivar-group) gi|66814293 gi|66814294 Dictyostelium discoideum gi|50751555 gi|50751556 Gallus gallus IMQ35.4 At2g34060 gi|30685912 gi|15226205 gi|50918940 gi|50918941 Oryza sativa (japonica cultivar-group) gi|55701112 gi|55701113 Oryza sativa (japonica cultivar-group) gi|537318 gi|537319 Medicago sativa IMQ36.1 At2g34400 gi|18403542 gi|15226301 gi|18398256 gi|15231970 Arabidopsis thaliana gi|18399739 gi|15230593 Arabidopsis thaliana gi|18420159 gi|15233645 Arabidopsis thaliana IMQ36.2 At2g34410 gi|79324292 gi|79324293 gi|79324284 gi|79324285 Arabidopsis thaliana gi|42569608 gi|42569609 Arabidopsis thaliana gi|30694937 gi|18422663 Arabidopsis thaliana gi|42562401 gi|42562402 Arabidopsis thaliana gi|20161482 gi|55297065 Oryza sativa (japonica cultivar-group) IMQ36.2 At2g34410 gi|79324284 gi|79324285 gi|79324292 gi|79324293 Arabidopsis thaliana gi|42569608 gi|42569609 Arabidopsis thaliana gi|30694937 gi|18422663 Arabidopsis thaliana gi|42562401 gi|42562402 Arabidopsis thaliana gi|20161482 gi|55297065 Oryza sativa (japonica cultivar-group) IMQ36.2 At2g34410 gi|42569608 gi|42569609 gi|79324292 gi|79324293 Arabidopsis thaliana gi|79324284 gi|79324285 Arabidopsis thaliana gi|30694937 gi|18422663 Arabidopsis thaliana gi|42562401 gi|42562402 Arabidopsis thaliana gi|20161482 gi|55297065 Oryza sativa (japonica cultivar-group) IMQ36.3 At2g34420 gi|30686050 gi|30686051 gi|30686047 gi|18403546 Arabidopsis thaliana gi|30690951 gi|15220615 Arabidopsis thaliana gi|30690948 gi|18397288 Arabidopsis thaliana gi|30690947 gi|18397286 Arabidopsis thaliana IMQ36.3 At2g34420 gi|30686047 gi|18403546 gi|30690951 gi|15220615 Arabidopsis thaliana gi|30690948 gi|18397288 Arabidopsis thaliana gi|30690947 gi|18397286 Arabidopsis thaliana gi|31323255 gi|31323256 Brassica oleracea IMQ36.4 At2g34430 gi|30686053 gi|18403549 gi|21137 gi|21138 Sinapis alba gi|18266038 gi|18266039 Brassica oleracea gi|30690951 gi|15220615 Arabidopsis thaliana IMQ36.5 At2g34440 gi|18403551 gi|15226309 gi|18397662 gi|15230767 Arabidopsis thaliana gi|30682570 gi|30682571 Arabidopsis thaliana gi|18424355 gi|15239333 Arabidopsis thaliana IMQ36.6 At2g34450 gi|79324302 gi|79324303 gi|30686062 gi|18403553 Arabidopsis thaliana gi|20161570 gi|56202161 Oryza sativa (japonica cultivar-group) gi|63020535 gi|63020536 Cucumis sativus gi|34910913 gi|34910914 Oryza sativa (japonica cultivar-group) IMQ36.6 At2g34450 gi|30686062 gi|18403553 gi|20161570 gi|56202161 Oryza sativa (japonica cultivar-group) gi|63020535 gi|63020536 Cucumis salivus gi|42562198 gi|18394900 Arabidopsis thaliana IMQ37.1 At3g03800 gi|18396673 gi|15228637 gi|18415700 gi|18415701 Arabidopsis thaliana gi|51963279 gi|51963280 Oryza sativa (japonica cultivar-group) gi|50934370 gi|50934371 Oryza sativa (japonica cultivar-group) gi|55741415 gi|55741416 Oryza sativa (japonica cultivar-group) IMQ37.2 At3g03810 gi|30678945 gi|30678946 gi|46063406 gi|50878393 Oryza sativa (japonica cultivar-group) gi|30689847 gi|30689848 Arabidopsis thaliana gi|30679041 gi|22329335 Arabidopsis thaliana IMQ37.3 At3g03820 gi|18396679 gi|15228639 gi|42563470 gi|15228641 Arabidopsis thaliana gi|30678958 gi|30678959 Arabidopsis thaliana gi|30678954 gi|15228640 Arabidopsis thaliana IMQ37.4 At3g03830 gi|30678954 gi|15228640 gi|30678958 gi|30678959 Arabidopsis thaliana gi|18396679 gi|15228639 Arabidopsis thaliana gi|42563470 gi|15228641 Arabidopsis thaliana IMQ37.5 At3g03840 gi|42563470 gi|15228641 gi|18396679 gi|15228639 Arabidopsis thaliana gi|30678958 gi|30678959 Arabidopsis thaliana gi|30678954 gi|15228640 Arabidopsis thaliana IMQ37.6 At3g03847 gi|22330828 gi|22330829 gi|42567926 gi|15238721 Arabidopsis thaliana gi|42567924 gi|15238716 Arabidopsis thaliana gi|30686621 gi|15238715 Arabidopsis thaliana IMQ37.7 At3g03850 gi|30678958 gi|30678959 gi|30678954 gi|15228640 Arabidopsis thaliana gi|42563470 gi|15228641 Arabidopsis thaliana gi|18396679 gi|15228639 Arabidopsis thaliana IMQ38.1 At3g07100 gi|30680128 gi|30680129 gi|50921574 gi|50921575 Oryza sativa (japonica cultivar-group) gi|74199102 gi|74199103 Mus musculus gi|31340743 gi|30424898 Mus musculus IMQ38.2 At3g07110 gi|79313148 gi|79313149 gi|30680131 gi|15231394 Arabidopsis thaliana gi|30695535 gi|15239698 Arabidopsis thaliana gi|30687674 gi|15230197 Arabidopsis thaliana gi|42566745 gi|15235617 Arabidopsis thaliana IMQ38.2 At3g07110 gi|30680131 gi|15231394 gi|30695535 gi|15239698 Arabidopsis thaliana gi|30687674 gi|15230197 Arabidopsis thaliana gi|42566745 gi|15235617 Arabidopsis thaliana IMQ38.3 At3g07120 gi|30680134 gi|15231396 gi|42565172 gi|15230243 Arabidopsis thaliana gi|42570141 gi|42570142 Arabidopsis thaliana gi|18413925 gi|15235589 Arabidopsis thaliana IMQ38.4 At3g07130 gi|42563571 gi|15231398 gi|13925770 gi|13925771 Glycine max gi|62177682 gi|62177683 Medicago truncatula gi|50920094 gi|50920095 Oryza sativa (japonica cultivar-group) IMQ38.5 At3g07140 gi|42570456 gi|30680143 gi|30680141 gi|18397852 Arabidopsis thaliana gi|77548247 gi|77550830 Oryza sativa (japonica cultivar-group) gi|73992512 gi|73992513 Canis familiaris IMQ38.5 At3g07140 gi|30680141 gi|18397852 gi|42570456 gi|30680143 Arabidopsis thaliana gi|77548247 gi|77550830 Oryza sativa (japonica cultivar-group) gi|73992512 gi|73992513 Canis familiaris IMQ38.6 At3g07150 gi|18397855 gi|15231401 gi|19386744 gi|57900451 Oryza sativa (japonica cultivar-group) gi|34907011 gi|34907012 Oryza sativa (japonica cultivar-group) IMQ39.1 At3g15480 gi|30683621 gi|18400781 gi|42562716 gi|18404242 Arabidopsis thaliana gi|38016520 gi|38016521 Gossypium barbadense gi|50936920 gi|50936921 Oryza sativa (japonica cultivar-group) IMQ39.2 At3g15490 gi|42564187 gi|42564188 gi|18397647 gi|15226014 Arabidopsis thaliana gi|50918206 gi|50918207 Oryza sativa (japonica cultivar-group) gi|30683233 gi|15222251 Arabidopsis thaliana IMQ39.3 At3g15500 gi|30683631 gi|15232604 gi|42562715 gi|15219112 Arabidopsis thaliana gi|66394515 gi|66394516 Glycine max gi|6175245 gi|6175246 Lycopersicon esculentum IMQ40.1 At3g16580 gi|30684147 gi|18401179 gi|42569040 gi|15225992 Arabidopsis thaliana gi|18398432 gi|15223198 Arabidopsis thaliana gi|18401705 gi|18401706 Arabidopsis thaliana IMQ40.2 At3g16590 gi|18401181 gi|15228255 gi|18391359 gi|15221240 Arabidopsis thaliana gi|30684644 gi|18401609 Arabidopsis thaliana gi|18391361 gi|15221246 Arabidopsis thaliana IMQ40.3 At3g16600 gi|18401188 gi|15228256 gi|18403060 gi|18403061 Arabidopsis thaliana gi|18402451 gi|15231009 Arabidopsis thaliana gi|51964729 gi|51964730 Oryza sativa (japonica cultivar-group) IMQ40.4 At3g16610 gi|18401191 gi|15228257 gi|50941690 gi|50941691 Oryza sativa (japonica cultivar-group) gi|18483227 gi|18483237 Sorghum bicolor gi|34906109 gi|34906110 Oryza sativa (japonica cultivar-group) gi|28564706 gi|57899529 Oryza sativa (japonica cultivar-group) IMQ40.5 At3g16620 gi|30684161 gi|15228272 gi|30679717 gi|15227268 Arabidopsis thaliana gi|37536637 gi|37536638 Oryza sativa (japonica cultivar-group) gi|44662984 gi|44662985 Physcomitrella patens IMQ41.1 At3g17640 gi|18401587 gi|15229088 gi|50931366 gi|50931367 Oryza sativa (japonica cultivar-group) gi|51339056 gi|55733924 Oryza sativa (japonica cultivar-group) gi|30678565 gi|30678566 Arabidopsis thaliana IMQ41.2 At3g17650 gi|18401589 gi|18401590 gi|30694308 gi|18402162 Arabidopsis thaliana gi|42562981 gi|15218799 Arabidopsis thaliana gi|74267415 gi|74267416 Oryza sativa (japonica cultivar-group) IMQ41.3 At3g17660 gi|18401594 gi|15229090 gi|30696440 gi|18423615 Arabidopsis thaliana gi|50510177 gi|50510178 Oryza sativa (japonica cultivar-group) gi|60596222 gi|76152990 Schistosoma japonicum IMQ41.4 At3g17670 gi|18401598 gi|15229091 gi|53749471 gi|53749491 Solanum demissum gi|50929586 gi|50929587 Oryza sativa (japonica cultivar-group) gi|50928358 gi|50928359 Oryza sativa (japonica cultivar-group) IMQ41.5 At3g17680 gi|79313276 gi|79313277 gi|30684630 gi|30684631 Arabidopsis thaliana gi|22330106 gi|22330107 Arabidopsis thaliana gi|53749471 gi|53749473 Solanum demissum gi|50916296 gi|50916297 Oryza sativa (japonica cultivar-group) IMQ41.5 At3g17680 gi|30684630 gi|30684631 gi|22330106 gi|22330107 Arabidopsis thaliana gi|53749471 gi|53749473 Solanum demissum gi|50916296 gi|50916297 Oryza sativa (japonica cultivar-group) IMQ41.6 At3g17690 gi|30684635 gi|15229093 gi|42564623 gi|18401606 Arabidopsis thaliana gi|50913256 gi|50913257 Oryza sativa (japonica cultivar-group) gi|51091189 gi|51091194 Oryza sativa (japonica cultivar-group) IMQ42.1 At3g19850 gi|42565033 gi|42565034 gi|22330149 gi|22330150 Arabidopsis thaliana gi|50929590 gi|50929591 Oryza sativa (japonica cultivar-group) gi|50938220 gi|50938221 Oryza sativa (japonica cultivar-group) IMQ42.2 At3g19860 gi|79313298 gi|79313299 gi|30685522 gi|15230975 Arabidopsis thaliana gi|51536177 gi|51536178 Oryza sativa (japonica cultivar-group) gi|30690567 gi|30690568 Arabidopsis thaliana gi|22329203 gi|22329204 Arabidopsis thaliana IMQ42.2 At3g19860 gi|30685522 gi|15230975 gi|51536177 gi|51536178 Oryza sativa (japonica cultivar-group) gi|22329203 gi|22329204 Arabidopsis thaliana gi|30690567 gi|30690568 Arabidopsis thaliana
Example 2
Analysis of the Arabidopsis IMQ Sequence
[0103] Sequence analyses were performed with BLAST (Altschul et al., 1990, J. Mol. Biol. 215:403-410), PFAM (Bateman et al., 1999, Nucleic Acids Res. 27:260-262), INTERPRO (Mulder et al. 2003 Nucleic Acids Res. 31, 315-318.), PSORT (Nakai K, and Horton P, 1999, Trends Biochem. Sci. 24:34-6), and/or CLUSTAL (Thompson J D et al., 1994, Nucleic Acids Res. 22:4673-4680). Conserved domains for each protein are listed in column 8 of Table 2.
Example 3
[0104] To test whether over-expression of the genes in Tables 1 and 2 alter the seed composition phenotype, protein, digestible protein, oil and fiber content in seeds from transgenic plants expressing these genes was compared with protein, digestible protein, oil and fiber content in seeds from non-transgenic control plants. To do this, the genes were cloned into plant transformation vectors behind the strong constitutive CsVMV promoter and the seed specific PRU promoter. These constructs were transformed into Arabidopsis plants using the floral dip method. The plant transformation vector contains a gene, which provides resistance to a toxic compound, and serves as a selectable marker. Seed from the transformed plants were plated on agar medium containing the toxic compound. After 7 days, transgenic plants were identified as healthy green plants and transplanted to soil. Non-transgenic control plants were germinated on agar medium, allowed to grow for 7 days and then transplanted to soil. Transgenic seedlings and non-transgenic control plants were transplanted to two inch pots that were placed in random positions in a 10 inch by 20 inch tray. The plants were grown to maturity, allowed to self-fertilize and set seed. Seed was harvested from each plant and its oil content estimated by Near Infrared (NIR) Spectroscopy using methods previously described. The effect of each construct on seed composition was examined in at least two experiments.
[0105] Table 4 lists constructs tested for causing a significant increase in oil, protein, digestible protein or a significant decrease in fiber were identified by a two-way Analysis of Variance (ANOVA) test at a p-value .ltoreq.0.05. The ANOVA p-values for Protein, Oil, Digestible Protein and Fiber are listed in columns 4-7, respectively. Those with a significant p-value are listed in bold. The Average values for Protein, Oil, Digestible Protein and Fiber are listed in columns 8-11, respectively and were calculated by averaging the average values determined for the transgenic plants in each experiment.
TABLE-US-00004 TABLE 4 4. 5. 6. ANOVA 7. 10. ANOVA ANOVA Digestible ANOVA Digestible 11. 1. Gene 2. TAIR 3. Construct Protein Oil Protein Fiber 8. Protein 9. Oil Protein Fiber IMQ37.5 At3g03840 CsVMV::At3g03840 0.433 0.415 0.033 0.197 101.7% 98.7% 102.4% 98.7% IMQ37.6 At3g03847 CsVMV::At3g03847 0.998 0.503 0.634 0.864 100.2% 99.4% 100.5% 99.8% IMQ37.6 At3g03847 Pru::At3g03847 0.007 0.002 0.115 0.547 104.6% 94.4% 101.2% 100.6% IMQ39.1 At3g15480 Pru::At3g15480 0.521 0.450 0.026 0.011 100.9% 100.4% 101.4% 97.6% IMQ39.2 At3g15490 CsVMV::At3g15490 0.192 0.463 0.176 0.035 103.1% 99.1% 101.7% 97.8% IMQ39.2 At3g15490 Pru::At3g15490 0.125 0.551 <0.0001 <0.0001 100.9% 99.4% 101.4% 97.8% IMQ40.1 At3g16580 CsVMV::At3g16580 0.436 0.321 0.050 0.173 101.3% 99.0% 101.6% 98.9% IMQ40.1 At3g16580 Pru::At3g16580 0.269 0.972 0.005 0.003 101.3% 99.7% 101.7% 97.4% IMQ40.3 At3g16600 Pru::At3g16600 0.019 0.019 0.220 0.136 102.8% 97.0% 99.5% 101.5% IMQ41.1 At3g17640 CsVMV::At3g17640 0.991 0.671 0.864 0.725 99.9% 99.5% 99.8% 99.8% IMQ41.1 At3g17640 Pru::At3g17640 0.024 0.006 0.041 0.003 97.1% 105.0% 101.3% 96.8% IMQ41.5 At3g17680 CsVMV::At3g17680 0.567 0.873 0.803 0.290 101.3% 100.2% 100.3% 98.9% IMQ41.5 At3g17680 Pru::At3g17680 0.569 0.252 0.009 0.004 99.3% 101.8% 102.1% 96.7% IMQ41.6 At3g17690 CsVMV::At3g17690 0.388 0.856 0.060 0.039 102.7% 99.8% 102.4% 97.3% IMQ41.6 At3g17690 Pru::At3g17690 0.263 0.726 0.003 0.009 102.0% 99.2% 103.0% 96.5%
Example 4
[0106] To test whether over-expression of the genes identified in Tables 1-4 alter the seed composition phenotype, protein, digestible protein, oil, and fiber content in seeds from transgenic plants expressing these genes is compared with protein, digestible protein, oil and fiber content in seeds from non-transgenic control plants. Any one of the genes identified in Tables 1-4 is used to transform Brassica napus (canola). To do this, the genes are cloned into plant transformation vectors behind the strong constitutive CsVMV promoter and the seed specific phaseolin promoter. These constructs (which include a gene encoding a selection agent) are transformed into canola plants.
[0107] Transformation of canola is accomplished via Agrobacterium-mediated transformation. Seeds are surface-sterilized with 10% commercial bleach for 10 minutes and rinsed 3 times with sterile distilled water. The seeds are then placed on one half concentration of MS basal medium (Murashige and Skoog, Physiol. Plant. 15:473-497, 1962) and maintained under growth regime set at 25.degree. C., and a photoperiod of 16 hrs light/8 hrs dark.
[0108] Hypocotyl segments (3-5 mm) are excised from 5-7 day old seedlings and placed on callus induction medium K1D1 (MS medium with 1 mg/l kinetin and 1 mg/l 2,4-D) for 3 days as pre-treatment. The segments are then transferred into a petri plate, treated with Agrobacterium Z7075 or LBA4404 strain containing pDAB721. The Agrobacterium is grown overnight at 28.degree. C. in the dark on a shaker at 150 rpm and subsequently re-suspended in the culture medium.
[0109] After 30 minute treatment of the hypocotyl segments with Agrobacterium, these are placed back on the callus induction medium for 3 days. Following co-cultivation, the segments are placed on K1D1TC (callus induction medium containing 250 mg/l Carbenicillin and 300 mg/l Timentin) for one week of recovery. Alternately, the segments are placed directly on selection medium K1D1H1 (above medium with 1 mg/l selection agent, for example an herbicide). Carbenicillin and Timentin are antibiotics used to kill the Agrobacterium. The selection agent is used to allow the growth of the transformed cells.
[0110] Callus samples from independent events are tested by PCR. All the samples tested are positive for the presence of the transformed gene, whereas the non-transformed controls are negative. Callus samples are confirmed to express the appropriate protein as determined by ELISA.
[0111] Callused hypocotyl segments are then placed on B3Z1H1 (MS medium, 3 mg/l benzylamino purine, 1 mg/l Zeatin, 0.5 gm/l MES [2-(N-morpholino) ethane sulfonic acid], 5 mg/l silver nitrate, 1 mg/l selection agent, Carbenicillin and Timentin) shoot regeneration medium. After shoots start to regenerate (approximately 3 weeks), hypocotyl segments along with the shoots are transferred to B3Z1H3 medium (MS medium, 3 mg/l benzylamino purine, 1 mg/l Zeatin, 0.5 gm/1 MES [2-(N-morpholino) ethane sulfonic acid], 5 mg/l silver nitrate, 3 mg/l selection agent, Carbenicillin and Timentin) for 3 weeks.
[0112] Shoots are excised from the hypocotyl segments and transferred to shoot elongation medium MESH10 (MS, 0.5 gm/l MES, 10 mg/l selection agent, Carbenicillin, Timentin) for 2-4 weeks. The elongated shoots are cultured for root induction on MSI.1 (MS with 0.1 mg/l Indolebutyric acid). Once the plants have a well-established root system, these are transplanted into soil. The plants are acclimated under controlled environmental conditions in the Conviron for 1-2 weeks before transfer to the greenhouse. The transformed T0 plants self-pollinate in the greenhouse to obtain T1 seed. Transgenic plants are selected at the T1 generation based on resistance to a selection agent. T2 seed (from T1 plants) is harvested and sown in soil. T2 plants are grown to maturity, allowed to self-fertilize and set seed. T3 seed (from the T2 plants) is harvested in bulk for each line. Seed oil, protein, digestible protein, and fiber values are measured as discussed in Example 1.
Sequence CWU
1
1
10012022DNAArabidopsis thaliana 1aatcaaacca aacattgtat tttggctctg
aagattgaag gagctaaact gaaactgcaa 60tatatatggc ttctacaggt ggtgggaaag
atggatctaa aggttttgtg aagagggtta 120catcaacttt ctccattagg aaaaagaaga
acacaacaag tgatccaaaa ctacttcttc 180ctcgatcgaa atcaaccggt gctaactatg
aatctatgag gctacctcag gggaaaaagg 240ctcttccaga tgttgttaca acaaaagaca
caaagagaac caaatctgca ggtgtttcgc 300cacaaccaag acgtgaaaag attgatgaat
ccggtaaaca gtttatgaag gtgagatgtt 360ttgatgacag tgactccatt tggttatctt
cagattgtgc ctctcctacg tctcttttag 420aggaacgtag attatctgtc tcgtttcatt
tctcagtaga cgaaaagatc gtctcgtggt 480tgtccagtgt ggctaactct tctctgtctt
taaatcaaga atccaccagc tcaaacaaag 540agaatcatca tcaaaaaagt tcaaagaaca
caaaaacttc tttagaaaac gttcgaaaag 600atggaaaagt ttgcaactca tcagctggga
aagctcgtgg tactggttct gcaaagccgt 660ctttaccaga aagcaacaac aagacttgtc
ctcagaaaca atgtgaagag tcatctattt 720ccaacagatt tgtgactctt gaagaaaaga
aagttagctt ctcagtagca aaaacagaga 780agtctccttc accagataac tcaactgcca
ctgcgacatc atcattaaag aagagtgcag 840agattggggt cacaaagagt aagattgttg
tggagccact tttttggcca tttgagcaga 900agtttgattg gacaccagag gatattttaa
agcatttttc aatgtctccg aggagaaaga 960agtcgctagg atccaagatt gcaggtacct
ctccaagatc aatgagggca caactccaaa 1020caagaaagct agatctaaaa gaagggtgta
agagaaagct catgttcaac ggtcctggat 1080caaattcaaa accaacaaga atcccagaac
taaacagaac aatcagcaat agcagcaaca 1140atagtagcat gaagaaaacc gagatcagca
agaaccaaca acctataagg aacagtgtga 1200agagaaacaa aagtttaccg tcgaggttga
gaaaatcgag caaaatatct tcaaaggtgg 1260tacctattga agctgcggaa gagagtggag
aaatagttaa agagcaaaaa acacctaaga 1320agctcatcat gacccgcaag tccaggacat
tcttagaaga tgactttgct ttaatgaatg 1380atttctctat agaaaaggcg gtcgggcttt
gcgagtttaa gggaagagaa ggcatagatt 1440cagatttcaa cactgatggt ttcttgttcg
acgattctct atgaaaagaa aaggctttac 1500aggttcgata cggacgtcat agattcacca
ccttctcgcg tcgtcacaac agagatacca 1560cctgctcgcg atccgacgac accaccagca
ccaccgccgg agtggttaat gagagagatg 1620gcgaaggaaa acggctataa ccctaggctg
atcatgtcta ggactctgac gaagaacgat 1680gtaagcaaaa ggcaggcatg tctcttgatt
cttgggaaac ttgaaggatc agaatttctt 1740ggaagacaag gaagctttat tgttggaaac
acaatccttg atgactgatg ctcgagcggt 1800tcgtgagtgt cttttttgga tccgctgtaa
gtgaagtcta tttgaaaaaa acggaaaacc 1860acattgatct gtggtgtata tggggttatg
ttctatttga aaggagtctt tttctctttg 1920ttgttttcat atttcataag atcaagctat
gcttcaaagc agagggatgg attgttcttg 1980tttcaattct gatcattttt ttttgctaca
cctaggaaag at 20222472PRTArabidopsis thaliana 2Met
Ala Ser Thr Gly Gly Gly Lys Asp Gly Ser Lys Gly Phe Val Lys 1
5 10 15 Arg Val Thr Ser Thr Phe
Ser Ile Arg Lys Lys Lys Asn Thr Thr Ser 20
25 30 Asp Pro Lys Leu Leu Leu Pro Arg Ser Lys
Ser Thr Gly Ala Asn Tyr 35 40
45 Glu Ser Met Arg Leu Pro Gln Gly Lys Lys Ala Leu Pro Asp
Val Val 50 55 60
Thr Thr Lys Asp Thr Lys Arg Thr Lys Ser Ala Gly Val Ser Pro Gln 65
70 75 80 Pro Arg Arg Glu Lys
Ile Asp Glu Ser Gly Lys Gln Phe Met Lys Val 85
90 95 Arg Cys Phe Asp Asp Ser Asp Ser Ile Trp
Leu Ser Ser Asp Cys Ala 100 105
110 Ser Pro Thr Ser Leu Leu Glu Glu Arg Arg Leu Ser Val Ser Phe
His 115 120 125 Phe
Ser Val Asp Glu Lys Ile Val Ser Trp Leu Ser Ser Val Ala Asn 130
135 140 Ser Ser Leu Ser Leu Asn
Gln Glu Ser Thr Ser Ser Asn Lys Glu Asn 145 150
155 160 His His Gln Lys Ser Ser Lys Asn Thr Lys Thr
Ser Leu Glu Asn Val 165 170
175 Arg Lys Asp Gly Lys Val Cys Asn Ser Ser Ala Gly Lys Ala Arg Gly
180 185 190 Thr Gly
Ser Ala Lys Pro Ser Leu Pro Glu Ser Asn Asn Lys Thr Cys 195
200 205 Pro Gln Lys Gln Cys Glu Glu
Ser Ser Ile Ser Asn Arg Phe Val Thr 210 215
220 Leu Glu Glu Lys Lys Val Ser Phe Ser Val Ala Lys
Thr Glu Lys Ser 225 230 235
240 Pro Ser Pro Asp Asn Ser Thr Ala Thr Ala Thr Ser Ser Leu Lys Lys
245 250 255 Ser Ala Glu
Ile Gly Val Thr Lys Ser Lys Ile Val Val Glu Pro Leu 260
265 270 Phe Trp Pro Phe Glu Gln Lys Phe
Asp Trp Thr Pro Glu Asp Ile Leu 275 280
285 Lys His Phe Ser Met Ser Pro Arg Arg Lys Lys Ser Leu
Gly Ser Lys 290 295 300
Ile Ala Gly Thr Ser Pro Arg Ser Met Arg Ala Gln Leu Gln Thr Arg 305
310 315 320 Lys Leu Asp Leu
Lys Glu Gly Cys Lys Arg Lys Leu Met Phe Asn Gly 325
330 335 Pro Gly Ser Asn Ser Lys Pro Thr Arg
Ile Pro Glu Leu Asn Arg Thr 340 345
350 Ile Ser Asn Ser Ser Asn Asn Ser Ser Met Lys Lys Thr Glu
Ile Ser 355 360 365
Lys Asn Gln Gln Pro Ile Arg Asn Ser Val Lys Arg Asn Lys Ser Leu 370
375 380 Pro Ser Arg Leu Arg
Lys Ser Ser Lys Ile Ser Ser Lys Val Val Pro 385 390
395 400 Ile Glu Ala Ala Glu Glu Ser Gly Glu Ile
Val Lys Glu Gln Lys Thr 405 410
415 Pro Lys Lys Leu Ile Met Thr Arg Lys Ser Arg Thr Phe Leu Glu
Asp 420 425 430 Asp
Phe Ala Leu Met Asn Asp Phe Ser Ile Glu Lys Ala Val Gly Leu 435
440 445 Cys Glu Phe Lys Gly Arg
Glu Gly Ile Asp Ser Asp Phe Asn Thr Asp 450 455
460 Gly Phe Leu Phe Asp Asp Ser Leu 465
470 3537DNAArabidopsis thaliana 3aaccacagtc gcggacagag
ctaaaaccac catttgaaga aggagaagaa gaagaagacg 60attcggtgaa agcgaagatg
ggtggaggaa tggaaacgaa caagaacaag ttcatcgagg 120actggggatc tgctagagag
aatctcgagc acaatttccg ctggactcgt cgtaacttcg 180ctctcatcgg aatcttcggc
atcgctctcc cgatcattgt ctacaaggga atcgtcaaag 240atttccatat gcaagatgaa
gatgcaggca gaccacacag aaagttcctc tgaggttgtt 300tgcaagaaca ctctctgcaa
taaagtctca gcaatgtgaa atttcaagac gaggatgtta 360aaacccgctt ttgttttttc
atttcaatca acatctggaa cccaaggata taatttattt 420tttggaaaag tttgttgtaa
tgactacact ttgttatgca aataaacaaa actcagtttt 480cccttgagtt tgacatactt
attgtgtgtg ttgattcagc atatgcagga tttaaac 537471PRTArabidopsis
thaliana 4Met Gly Gly Gly Met Glu Thr Asn Lys Asn Lys Phe Ile Glu Asp Trp
1 5 10 15 Gly Ser
Ala Arg Glu Asn Leu Glu His Asn Phe Arg Trp Thr Arg Arg 20
25 30 Asn Phe Ala Leu Ile Gly Ile
Phe Gly Ile Ala Leu Pro Ile Ile Val 35 40
45 Tyr Lys Gly Ile Val Lys Asp Phe His Met Gln Asp
Glu Asp Ala Gly 50 55 60
Arg Pro His Arg Lys Phe Leu 65 70
51701DNAArabidopsis thaliana 5atggcaggtg ttactctctt cttctccctt ctctctatag
ctctgattat ctctggtgtg 60agctctcgtg tcctgatcag tcatgtccct ctgaataact
cgatcttgat atctgatggg 120atccatgacg ccttgaatca cgagtttctc accctcgatc
ctccaaagag cttgtcaagg 180accgcgtgtg ttcatgtcta cgggtttctt ccatgtgcag
acaatgttga aggttatatc 240ttccaagttt tttcctttgg gagtctcttg attatcggtg
actatttctt gtccgaagga 300agatctaaac tctttgtaat attcgaggtc gggttctatg
gtggtatcat cttccctctt 360cttacaatgt tcccaagaat cgctcttatg ctctcgaccg
gactatcatt gagtagggat 420gttgctagct cctttataga tgataacgtt ggacttactg
tgggacacac tgtgttttct 480ctcacaattc aatggggagc ttgtgttgtg tttagcatca
ctggtccacg ttctgaccaa 540gcagatggat tgatcgaaaa actaaagata ttgaaaggct
ttgttgaagc aagagtagaa 600gcggatccta agaataagaa agctgcaggg attatgctgt
tgagtctatc tccctttctc 660atggtgacat tttcggctat atttgattca cattcttgga
gtcacatcat tgtgttgatc 720acactcataa tttcttcttc ttcaaccgtt gtctactttg
tttactcgta tcttgatacg 780gctaaccaag agaagagctt agatcacgcg aggtttgagc
tcatgtcaga agttcataag 840cacttaaaga ggttttcacc gaaacacctt ataaaagatg
gagaactaag caaagagagc 900ttgaaaagtt tgttcaagaa aactgataag aacaaagatg
ggaagataca aatatctgaa 960ctaaaagact taaccataga gctttccaac tttgggagaa
tgagatatga catcaatgag 1020cttgctaaag cttttcttga ggattttgat ggagacaacg
acggcgaatt agaagagaat 1080gaattcgagg aagggattgc gagacttctc aaacaataca
aattcaacgt tgaggatcaa 1140agagagaatc agactgagga aaatggagtt cttaagctgg
aaattaaacc gaagaaaaca 1200cttgttacta agttgctatc tatggaaaca ttaatagcta
cgactgaagt catcgtaggg 1260atcctaattg tactctttct tgcaaaacca tttatgctga
acatccagct cttatccatc 1320tcagctggaa ttccttcttt ctacatcgtg ttcgcgatga
tccctttcgc tagaaactta 1380aagaacactc tatctacacg cttctgtcgt ggcaaagaca
agaaaagagt ctcgtccaat 1440actttctccg agatctacaa agatattaca atgaacaatc
tcttgggaat gtcggtaata 1500ttggcaattg tgtatacaag gggcttgact tggaaatact
cggtagaaac tcttattatg 1560gtgatcgttg gcctcataat cggcttacca atctatataa
gatcgactta cccgttctgg 1620atgtgtgtct tggcctttgc tatgtacttc ttttctcttc
tccttatcta tatccgttta 1680aattttctag acaagaacta a
17016566PRTArabidopsis thaliana 6Met Ala Gly Val
Thr Leu Phe Phe Ser Leu Leu Ser Ile Ala Leu Ile 1 5
10 15 Ile Ser Gly Val Ser Ser Arg Val Leu
Ile Ser His Val Pro Leu Asn 20 25
30 Asn Ser Ile Leu Ile Ser Asp Gly Ile His Asp Ala Leu Asn
His Glu 35 40 45
Phe Leu Thr Leu Asp Pro Pro Lys Ser Leu Ser Arg Thr Ala Cys Val 50
55 60 His Val Tyr Gly Phe
Leu Pro Cys Ala Asp Asn Val Glu Gly Tyr Ile 65 70
75 80 Phe Gln Val Phe Ser Phe Gly Ser Leu Leu
Ile Ile Gly Asp Tyr Phe 85 90
95 Leu Ser Glu Gly Arg Ser Lys Leu Phe Val Ile Phe Glu Val Gly
Phe 100 105 110 Tyr
Gly Gly Ile Ile Phe Pro Leu Leu Thr Met Phe Pro Arg Ile Ala 115
120 125 Leu Met Leu Ser Thr Gly
Leu Ser Leu Ser Arg Asp Val Ala Ser Ser 130 135
140 Phe Ile Asp Asp Asn Val Gly Leu Thr Val Gly
His Thr Val Phe Ser 145 150 155
160 Leu Thr Ile Gln Trp Gly Ala Cys Val Val Phe Ser Ile Thr Gly Pro
165 170 175 Arg Ser
Asp Gln Ala Asp Gly Leu Ile Glu Lys Leu Lys Ile Leu Lys 180
185 190 Gly Phe Val Glu Ala Arg Val
Glu Ala Asp Pro Lys Asn Lys Lys Ala 195 200
205 Ala Gly Ile Met Leu Leu Ser Leu Ser Pro Phe Leu
Met Val Thr Phe 210 215 220
Ser Ala Ile Phe Asp Ser His Ser Trp Ser His Ile Ile Val Leu Ile 225
230 235 240 Thr Leu Ile
Ile Ser Ser Ser Ser Thr Val Val Tyr Phe Val Tyr Ser 245
250 255 Tyr Leu Asp Thr Ala Asn Gln Glu
Lys Ser Leu Asp His Ala Arg Phe 260 265
270 Glu Leu Met Ser Glu Val His Lys His Leu Lys Arg Phe
Ser Pro Lys 275 280 285
His Leu Ile Lys Asp Gly Glu Leu Ser Lys Glu Ser Leu Lys Ser Leu 290
295 300 Phe Lys Lys Thr
Asp Lys Asn Lys Asp Gly Lys Ile Gln Ile Ser Glu 305 310
315 320 Leu Lys Asp Leu Thr Ile Glu Leu Ser
Asn Phe Gly Arg Met Arg Tyr 325 330
335 Asp Ile Asn Glu Leu Ala Lys Ala Phe Leu Glu Asp Phe Asp
Gly Asp 340 345 350
Asn Asp Gly Glu Leu Glu Glu Asn Glu Phe Glu Glu Gly Ile Ala Arg
355 360 365 Leu Leu Lys Gln
Tyr Lys Phe Asn Val Glu Asp Gln Arg Glu Asn Gln 370
375 380 Thr Glu Glu Asn Gly Val Leu Lys
Leu Glu Ile Lys Pro Lys Lys Thr 385 390
395 400 Leu Val Thr Lys Leu Leu Ser Met Glu Thr Leu Ile
Ala Thr Thr Glu 405 410
415 Val Ile Val Gly Ile Leu Ile Val Leu Phe Leu Ala Lys Pro Phe Met
420 425 430 Leu Asn Ile
Gln Leu Leu Ser Ile Ser Ala Gly Ile Pro Ser Phe Tyr 435
440 445 Ile Val Phe Ala Met Ile Pro Phe
Ala Arg Asn Leu Lys Asn Thr Leu 450 455
460 Ser Thr Arg Phe Cys Arg Gly Lys Asp Lys Lys Arg Val
Ser Ser Asn 465 470 475
480 Thr Phe Ser Glu Ile Tyr Lys Asp Ile Thr Met Asn Asn Leu Leu Gly
485 490 495 Met Ser Val Ile
Leu Ala Ile Val Tyr Thr Arg Gly Leu Thr Trp Lys 500
505 510 Tyr Ser Val Glu Thr Leu Ile Met Val
Ile Val Gly Leu Ile Ile Gly 515 520
525 Leu Pro Ile Tyr Ile Arg Ser Thr Tyr Pro Phe Trp Met Cys
Val Leu 530 535 540
Ala Phe Ala Met Tyr Phe Phe Ser Leu Leu Leu Ile Tyr Ile Arg Leu 545
550 555 560 Asn Phe Leu Asp Lys
Asn 565 71436DNAArabidopsis thaliana 7aaggaaggtc
gtgagaaaag aaaaacactt ctcaatcttt ctacagtctt cttcttccaa 60aagaacacca
tcttccttcg taatgtcaga gaaccagtcc gaagaagtcc agcaaatcga 120gaagctctat
gagttcagtg agcgtctcaa tgcctccaag gacaagtctc agaatgttga 180ggattatgag
gggatcatta agatgtccaa gactagtatg aaggcaaagc agcttgcgtc 240gcagctaatt
cctcgctact tcaagttctt ccctagtctc tctactgagg ctttcgatgc 300gcatatggac
tgtatcgatg atggagatct tggggtacgt gttcaagcca tccgtgggct 360cccgctgttt
tgtaaggata cgccagatat tttatctaag attgttgatg ttcttgttca 420actcttgaat
acagaggaac ctgtggagcg tgatgctgtg cataaggctc tgatgtcatt 480gttacgacaa
gatccaaaag catcatcgac tgccttattt acccatgctg gggttactcc 540aactactgat
gatcaaattc gtgaaaaggt cttgaatttc atcagagata aggtgattcc 600tcttaaaggg
gaactcttaa agcctcaaga ggagatggaa agacatataa cagatttgat 660caaacagagc
ctagaagatg taactggagg agagtttaaa atgtttatgg atttcctgac 720aagtttgagt
atatttggag gcaaagctcc tccagaaaga atgcaagaac ttgtggaaat 780tattgaagga
caggcggatt taaatgcaca atttgaattt tcagatacgg accatattga 840caggttgata
tcatgcctgc aactggctct tccctttttt gcgagaggtg ctccaagcag 900caggtttctt
atctatttga acaaacatat catacctgtt tttgacaagc tcccagaaga 960gaggaaactt
gatttgctca aagcacttgc tgatatttct ccatacacaa ctgctcagga 1020agcaaggcag
ctgcttcctt caatcgttga gcttttaaag atatacatgc ctgctagaaa 1080gactggagag
gaaatgaact tcacatacgt cgagtgtttg ttgtatgcgt ttcatcacct 1140tgcccacaag
gttccaaatg ctacaaacag cttgtgtggg tacaagattg tgaccggcca 1200gccatcagac
agattggggg aggacttctc agagttgaac aaagacttta ctgagagatt 1260aaccattgtt
gaggatctaa ctaaggcaac gatgaagaaa ttaactcagg gaatgactga 1320gcacaacaaa
gccatgtcgg ctgctaagac agatgaagag aaagcgagta ttgtaagtac 1380attaacctgt
gctattttct atttttccta gtgctatttg ctttcagtac taatgc
14368442PRTArabidopsis thaliana 8Met Ser Glu Asn Gln Ser Glu Glu Val Gln
Gln Ile Glu Lys Leu Tyr 1 5 10
15 Glu Phe Ser Glu Arg Leu Asn Ala Ser Lys Asp Lys Ser Gln Asn
Val 20 25 30 Glu
Asp Tyr Glu Gly Ile Ile Lys Met Ser Lys Thr Ser Met Lys Ala 35
40 45 Lys Gln Leu Ala Ser Gln
Leu Ile Pro Arg Tyr Phe Lys Phe Phe Pro 50 55
60 Ser Leu Ser Thr Glu Ala Phe Asp Ala His Met
Asp Cys Ile Asp Asp 65 70 75
80 Gly Asp Leu Gly Val Arg Val Gln Ala Ile Arg Gly Leu Pro Leu Phe
85 90 95 Cys Lys
Asp Thr Pro Asp Ile Leu Ser Lys Ile Val Asp Val Leu Val 100
105 110 Gln Leu Leu Asn Thr Glu Glu
Pro Val Glu Arg Asp Ala Val His Lys 115 120
125 Ala Leu Met Ser Leu Leu Arg Gln Asp Pro Lys Ala
Ser Ser Thr Ala 130 135 140
Leu Phe Thr His Ala Gly Val Thr Pro Thr Thr Asp Asp Gln Ile Arg 145
150 155 160 Glu Lys Val
Leu Asn Phe Ile Arg Asp Lys Val Ile Pro Leu Lys Gly 165
170 175 Glu Leu Leu Lys Pro Gln Glu Glu
Met Glu Arg His Ile Thr Asp Leu 180 185
190 Ile Lys Gln Ser Leu Glu Asp Val Thr Gly Gly Glu Phe
Lys Met Phe 195 200 205
Met Asp Phe Leu Thr Ser Leu Ser Ile Phe Gly Gly Lys Ala Pro Pro 210
215 220 Glu Arg Met Gln
Glu Leu Val Glu Ile Ile Glu Gly Gln Ala Asp Leu 225 230
235 240 Asn Ala Gln Phe Glu Phe Ser Asp Thr
Asp His Ile Asp Arg Leu Ile 245 250
255 Ser Cys Leu Gln Leu Ala Leu Pro Phe Phe Ala Arg Gly Ala
Pro Ser 260 265 270
Ser Arg Phe Leu Ile Tyr Leu Asn Lys His Ile Ile Pro Val Phe Asp
275 280 285 Lys Leu Pro Glu
Glu Arg Lys Leu Asp Leu Leu Lys Ala Leu Ala Asp 290
295 300 Ile Ser Pro Tyr Thr Thr Ala Gln
Glu Ala Arg Gln Leu Leu Pro Ser 305 310
315 320 Ile Val Glu Leu Leu Lys Ile Tyr Met Pro Ala Arg
Lys Thr Gly Glu 325 330
335 Glu Met Asn Phe Thr Tyr Val Glu Cys Leu Leu Tyr Ala Phe His His
340 345 350 Leu Ala His
Lys Val Pro Asn Ala Thr Asn Ser Leu Cys Gly Tyr Lys 355
360 365 Ile Val Thr Gly Gln Pro Ser Asp
Arg Leu Gly Glu Asp Phe Ser Glu 370 375
380 Leu Asn Lys Asp Phe Thr Glu Arg Leu Thr Ile Val Glu
Asp Leu Thr 385 390 395
400 Lys Ala Thr Met Lys Lys Leu Thr Gln Gly Met Thr Glu His Asn Lys
405 410 415 Ala Met Ser Ala
Ala Lys Thr Asp Glu Glu Lys Ala Ser Ile Val Ser 420
425 430 Thr Leu Thr Cys Ala Ile Phe Tyr Phe
Ser 435 440 91963DNAArabidopsis thaliana
9aaggaaggtc gtgagaaaag aaaaacactt ctcaatcttt ctacagtctt cttcttccaa
60aagaacacca tcttccttcg taatgtcaga gaaccagtcc gaagaagtcc agcaaatcga
120gaagctctat gagttcagtg agcgtctcaa tgcctccaag gacaagtctc agaatgttga
180ggattatgag gggatcatta agatgtccaa gactagtatg aaggcaaagc agcttgcgtc
240gcagctaatt cctcgctact tcaagttctt ccctagtctc tctactgagg ctttcgatgc
300gcatatggac tgtatcgatg atggagatct tggggtacgt gttcaagcca tccgtgggct
360cccgctgttt tgtaaggata cgccagatat tttatctaag attgttgatg ttcttgttca
420actcttgaat acagaggaac ctgtggagcg tgatgctgtg cataaggctc tgatgtcatt
480gttacgacaa gatccaaaag catcatcgac tgccttattt acccatgctg gggttactcc
540aactactgat gatcaaattc gtgaaaaggt cttgaatttc atcagagata aggtgattcc
600tcttaaaggg gaactcttaa agcctcaaga ggagatggaa agacatataa cagatttgat
660caaacagagc ctagaagatg taactggagg agagtttaaa atgtttatgg atttcctgac
720aagtttgagt atatttggag gcaaagctcc tccagaaaga atgcaagaac ttgtggaaat
780tattgaagga caggcggatt taaatgcaca atttgaattt tcagatacgg accatattga
840caggttgata tcatgcctgc aactggctct tccctttttt gcgagaggtg ctccaagcag
900caggtttctt atctatttga acaaacatat catacctgtt tttgacaagc tcccagaaga
960gaggaaactt gatttgctca aagcacttgc tgatatttct ccatacacaa ctgctcagga
1020agcaaggcag ctgcttcctt caatcgttga gcttttaaag atatacatgc ctgctagaaa
1080gactggagag gaaatgaact tcacatacgt cgagtgtttg ttgtatgcgt ttcatcacct
1140tgcccacaag gttccaaatg ctacaaacag cttgtgtggg tacaagattg tgaccggcca
1200gccatcagac agattggggg aggacttctc agagttgaac aaagacttta ctgagagatt
1260aaccattgtt gaggatctaa ctaaggcaac gatgaagaaa ttaactcagg gaatgactga
1320gcacaacaaa gccatgtcgg ctgctaagac agatgaagag aaagcgagta ttaaaacaaa
1380gaggcagaat actacaactg gacttaggac ctgtaataac atattggcga tgacaaagcc
1440attgcatgca aaagtgccac cttttatcgg agacactaat ctcaacctgt cttggaaaga
1500agccacaaag ccgttagcct caacaacaac aacaattgga ggaaagcggc ctgctaatag
1560caacaatgga agtggtaaca atgttgcagc aaagaaggga cgtgggtcgg gtactatgca
1620aaaccagctt gtgaacaagg cctttgaggg gatatcatcc tatggagctg gtagaggcgg
1680aaaccgaggt tggggaagac gtggaggtgg tcgaggaaga ggacaaggaa gaggtcactg
1740gtaataacaa gtttccagta gaggattcca tgactgtgtt tctgtttctg tgtctgtctg
1800tcagtacaag ttttgatttt ggtacttagt agagtttgga gacttctctt ctcatatcag
1860aatagatcat ctgtgttttt ctctgttcac taaagatatt tcgagcatta gaaaaaaaga
1920tatttcgagc atttatgacc ttagttatac aatctttcta gtc
196310553PRTArabidopsis thaliana 10Met Ser Glu Asn Gln Ser Glu Glu Val
Gln Gln Ile Glu Lys Leu Tyr 1 5 10
15 Glu Phe Ser Glu Arg Leu Asn Ala Ser Lys Asp Lys Ser Gln
Asn Val 20 25 30
Glu Asp Tyr Glu Gly Ile Ile Lys Met Ser Lys Thr Ser Met Lys Ala
35 40 45 Lys Gln Leu Ala
Ser Gln Leu Ile Pro Arg Tyr Phe Lys Phe Phe Pro 50
55 60 Ser Leu Ser Thr Glu Ala Phe Asp
Ala His Met Asp Cys Ile Asp Asp 65 70
75 80 Gly Asp Leu Gly Val Arg Val Gln Ala Ile Arg Gly
Leu Pro Leu Phe 85 90
95 Cys Lys Asp Thr Pro Asp Ile Leu Ser Lys Ile Val Asp Val Leu Val
100 105 110 Gln Leu Leu
Asn Thr Glu Glu Pro Val Glu Arg Asp Ala Val His Lys 115
120 125 Ala Leu Met Ser Leu Leu Arg Gln
Asp Pro Lys Ala Ser Ser Thr Ala 130 135
140 Leu Phe Thr His Ala Gly Val Thr Pro Thr Thr Asp Asp
Gln Ile Arg 145 150 155
160 Glu Lys Val Leu Asn Phe Ile Arg Asp Lys Val Ile Pro Leu Lys Gly
165 170 175 Glu Leu Leu Lys
Pro Gln Glu Glu Met Glu Arg His Ile Thr Asp Leu 180
185 190 Ile Lys Gln Ser Leu Glu Asp Val Thr
Gly Gly Glu Phe Lys Met Phe 195 200
205 Met Asp Phe Leu Thr Ser Leu Ser Ile Phe Gly Gly Lys Ala
Pro Pro 210 215 220
Glu Arg Met Gln Glu Leu Val Glu Ile Ile Glu Gly Gln Ala Asp Leu 225
230 235 240 Asn Ala Gln Phe Glu
Phe Ser Asp Thr Asp His Ile Asp Arg Leu Ile 245
250 255 Ser Cys Leu Gln Leu Ala Leu Pro Phe Phe
Ala Arg Gly Ala Pro Ser 260 265
270 Ser Arg Phe Leu Ile Tyr Leu Asn Lys His Ile Ile Pro Val Phe
Asp 275 280 285 Lys
Leu Pro Glu Glu Arg Lys Leu Asp Leu Leu Lys Ala Leu Ala Asp 290
295 300 Ile Ser Pro Tyr Thr Thr
Ala Gln Glu Ala Arg Gln Leu Leu Pro Ser 305 310
315 320 Ile Val Glu Leu Leu Lys Ile Tyr Met Pro Ala
Arg Lys Thr Gly Glu 325 330
335 Glu Met Asn Phe Thr Tyr Val Glu Cys Leu Leu Tyr Ala Phe His His
340 345 350 Leu Ala
His Lys Val Pro Asn Ala Thr Asn Ser Leu Cys Gly Tyr Lys 355
360 365 Ile Val Thr Gly Gln Pro Ser
Asp Arg Leu Gly Glu Asp Phe Ser Glu 370 375
380 Leu Asn Lys Asp Phe Thr Glu Arg Leu Thr Ile Val
Glu Asp Leu Thr 385 390 395
400 Lys Ala Thr Met Lys Lys Leu Thr Gln Gly Met Thr Glu His Asn Lys
405 410 415 Ala Met Ser
Ala Ala Lys Thr Asp Glu Glu Lys Ala Ser Ile Lys Thr 420
425 430 Lys Arg Gln Asn Thr Thr Thr Gly
Leu Arg Thr Cys Asn Asn Ile Leu 435 440
445 Ala Met Thr Lys Pro Leu His Ala Lys Val Pro Pro Phe
Ile Gly Asp 450 455 460
Thr Asn Leu Asn Leu Ser Trp Lys Glu Ala Thr Lys Pro Leu Ala Ser 465
470 475 480 Thr Thr Thr Thr
Ile Gly Gly Lys Arg Pro Ala Asn Ser Asn Asn Gly 485
490 495 Ser Gly Asn Asn Val Ala Ala Lys Lys
Gly Arg Gly Ser Gly Thr Met 500 505
510 Gln Asn Gln Leu Val Asn Lys Ala Phe Glu Gly Ile Ser Ser
Tyr Gly 515 520 525
Ala Gly Arg Gly Gly Asn Arg Gly Trp Gly Arg Arg Gly Gly Gly Arg 530
535 540 Gly Arg Gly Gln Gly
Arg Gly His Trp 545 550 11987DNAArabidopsis
thaliana 11agggttctaa atctgagatt tccagagaac tgtgcatatc ttcatagttt
ctttgaattt 60caccgtattc ataccataaa aatgagaaga atcgtcggtt caatttcgag
tcttgctaaa 120gataagctct cttcatcttc ttattcttcg tctagacaaa ttttcactgc
gcgttcatct 180tcttggcaac gagatgcatc aagtaagctc tcagaagctt ctttacctgg
aaaccacata 240aaatgggctt cgcttggttc agtcagaaat tcgagattcg catctggttt
tacaccattg 300cagcaaaaac ctttggattc aatcatggat ttggccagag ccaagactaa
atcccctgaa 360gaactcactt cgatctggga cgattatcat ttgggacgag gtcatattgg
gttaacgatg 420aaagctcagc tttatcgatt gttggagcaa cgagcctccg agtgccgata
ctttgtcatt 480ccattgtgga gaggaaatgg ttacataaca atgtttgctc aagttgaagc
gcctcacatg 540atttttactg gtctcgaaga ctacaaagca agaggaactc aagcggctcc
ttacctgact 600acaaccttct acactgagct ttcagagaca aaagacttgg tctttatccg
aggcgatgtt 660gtgttcacaa gcaaactcac tgacgaggag gctaaatgga tcatggagac
agctcaatcg 720ttttatttga acgactctcg ctacaagctg cttgagcggt tcaataaaca
tactcatgac 780tttgagttca aggatgtgtt acaagctctg gatatgcctc ttctgtgatt
atcaggagaa 840aaaacttttc tggcttttga gttcttgaga caacaacacc ttgtattaga
attttttttg 900tatggtaata agactatttc atgaccaaac taggtttggt tggatactta
ctgtgttttg 960cttttataaa taaacaattt tgagtaa
98712248PRTArabidopsis thaliana 12Met Arg Arg Ile Val Gly Ser
Ile Ser Ser Leu Ala Lys Asp Lys Leu 1 5
10 15 Ser Ser Ser Ser Tyr Ser Ser Ser Arg Gln Ile
Phe Thr Ala Arg Ser 20 25
30 Ser Ser Trp Gln Arg Asp Ala Ser Ser Lys Leu Ser Glu Ala Ser
Leu 35 40 45 Pro
Gly Asn His Ile Lys Trp Ala Ser Leu Gly Ser Val Arg Asn Ser 50
55 60 Arg Phe Ala Ser Gly Phe
Thr Pro Leu Gln Gln Lys Pro Leu Asp Ser 65 70
75 80 Ile Met Asp Leu Ala Arg Ala Lys Thr Lys Ser
Pro Glu Glu Leu Thr 85 90
95 Ser Ile Trp Asp Asp Tyr His Leu Gly Arg Gly His Ile Gly Leu Thr
100 105 110 Met Lys
Ala Gln Leu Tyr Arg Leu Leu Glu Gln Arg Ala Ser Glu Cys 115
120 125 Arg Tyr Phe Val Ile Pro Leu
Trp Arg Gly Asn Gly Tyr Ile Thr Met 130 135
140 Phe Ala Gln Val Glu Ala Pro His Met Ile Phe Thr
Gly Leu Glu Asp 145 150 155
160 Tyr Lys Ala Arg Gly Thr Gln Ala Ala Pro Tyr Leu Thr Thr Thr Phe
165 170 175 Tyr Thr Glu
Leu Ser Glu Thr Lys Asp Leu Val Phe Ile Arg Gly Asp 180
185 190 Val Val Phe Thr Ser Lys Leu Thr
Asp Glu Glu Ala Lys Trp Ile Met 195 200
205 Glu Thr Ala Gln Ser Phe Tyr Leu Asn Asp Ser Arg Tyr
Lys Leu Leu 210 215 220
Glu Arg Phe Asn Lys His Thr His Asp Phe Glu Phe Lys Asp Val Leu 225
230 235 240 Gln Ala Leu Asp
Met Pro Leu Leu 245 131180DNAArabidopsis
thaliana 13atgcatgtca tatctctttc gttatcctca atattctttt tcctcttcct
cacatcaacc 60attttgattt ctccggtaca acccacaacc tctaagcctc cggcaccacg
gccccacaga 120gagctctccg ccgattacta ctccaagaaa tgtcctcagc ttgaaactct
cgtcggttcc 180gtcacttctc agcggttcaa agaagtcccc atctcagctc cagccaccat
tcgcctcttc 240tttcacgact gcttcgttga gggttgtgat gggtcgatat tgatagaaac
aaagaaagga 300agcaagaaat tagcagagag agaagcatat gagaataagg aattgagaga
ggaaggattt 360gatagtatca tcaaggcgaa ggccttggtt gagtctcatt gcccttctct
cgtctcttgc 420tctgatattc tcgctattgc cgctcgagat ttcattcatc tggcaggtgg
gccttactat 480caagtgaaaa aaggaaggtg ggacggaaaa agatcaacgg caaagaacgt
ccctccaaac 540atacctcgat caaactccac cgttgatcaa ctcatcaagc tcttcgcgtc
caaaggacta 600accgtagagg aactcgtcgt cctttctggt tcccacacca tcggcttcgc
ccattgtaaa 660aatttccttg gtcgtctcta cgactacaaa ggcacaaaac gacccgaccc
gagtcttgac 720caaagattac taaaagagct ccggatgtct tgtccttttt ccggcggaag
ctctggagtc 780gtccttccgc tcgacgctac aactccgttt gtgtttgata atggatattt
cacaggtcta 840ggaaccaaca tgggccttct cgggtcggac caagctttgt tccttgaccc
gaggacgaag 900cccattgcac ttgagatggc aagagataag cagaagtttc tcaaggcgtt
tggagacgct 960atggataaaa tgggttccat tggtgtaaag agagggaaga gacatgggga
aatacgtacg 1020gattgtcgag tctttttata gattttcttt attgtcttgt ctgatggttt
ttgtcttgat 1080cttgatgtgt tctgtgtcat gtgtccttta atttattagc attttcgtga
ttgttttgtt 1140gatagtataa ggtatttttt taaagcaaca ctaacttatc
118014248PRTArabidopsis thaliana 14Met Arg Arg Ile Val Gly Ser
Ile Ser Ser Leu Ala Lys Asp Lys Leu 1 5
10 15 Ser Ser Ser Ser Tyr Ser Ser Ser Arg Gln Ile
Phe Thr Ala Arg Ser 20 25
30 Ser Ser Trp Gln Arg Asp Ala Ser Ser Lys Leu Ser Glu Ala Ser
Leu 35 40 45 Pro
Gly Asn His Ile Lys Trp Ala Ser Leu Gly Ser Val Arg Asn Ser 50
55 60 Arg Phe Ala Ser Gly Phe
Thr Pro Leu Gln Gln Lys Pro Leu Asp Ser 65 70
75 80 Ile Met Asp Leu Ala Arg Ala Lys Thr Lys Ser
Pro Glu Glu Leu Thr 85 90
95 Ser Ile Trp Asp Asp Tyr His Leu Gly Arg Gly His Ile Gly Leu Thr
100 105 110 Met Lys
Ala Gln Leu Tyr Arg Leu Leu Glu Gln Arg Ala Ser Glu Cys 115
120 125 Arg Tyr Phe Val Ile Pro Leu
Trp Arg Gly Asn Gly Tyr Ile Thr Met 130 135
140 Phe Ala Gln Val Glu Ala Pro His Met Ile Phe Thr
Gly Leu Glu Asp 145 150 155
160 Tyr Lys Ala Arg Gly Thr Gln Ala Ala Pro Tyr Leu Thr Thr Thr Phe
165 170 175 Tyr Thr Glu
Leu Ser Glu Thr Lys Asp Leu Val Phe Ile Arg Gly Asp 180
185 190 Val Val Phe Thr Ser Lys Leu Thr
Asp Glu Glu Ala Lys Trp Ile Met 195 200
205 Glu Thr Ala Gln Ser Phe Tyr Leu Asn Asp Ser Arg Tyr
Lys Leu Leu 210 215 220
Glu Arg Phe Asn Lys His Thr His Asp Phe Glu Phe Lys Asp Val Leu 225
230 235 240 Gln Ala Leu Asp
Met Pro Leu Leu 245 151854DNAArabidopsis
thaliana 15atgctcatca aaccagagaa actagcgttc tcgatttacc gccaatttcc
taaattcaaa 60cctagacaat ttgaagaagc acgacgcggc gatctcgaga gggactttct
tttcctgttg 120aaaaaatgta tctccgtgaa ccaattgcga cagattcaag cccagatgtt
gttacactcc 180gtcgaaaaac cgaattttct gattcccaag gccgtcgaac ttggagactt
caattactcc 240tcttttctct tctccgtcac ggaagaacca aaccattact ctttcaatta
catgatccga 300gggttgacca acacatggaa tgatcacgaa gctgctctgt ctctgtatcg
acggatgaag 360ttttctgggt taaagcctga taagttcact tataattttg ttttcatcgc
ttgtgcgaag 420cttgaggaga taggagttgg tagatctgtc cactcgtcgt tgttcaaagt
tggattggaa 480agagacgttc atataaatca ttctctgatt atgatgtatg cgaaatgtgg
tcaggtgggt 540tatgcccgga agttgttcga tgaaattact gagagagata cggtgtcttg
gaactcgatg 600atctctgggt attctgaggc gggttacgct aaagatgcta tggatttgtt
taggaagatg 660gaggaggaag gatttgaacc agatgagagg acgttggtga gtatgttggg
tgcttgctca 720catttgggtg atttgagaac tggtagattg ctggaggaga tggccatcac
caagaagatc 780gggttaagca cgtttctggg gtctaagttg atcagtatgt atggaaaatg
tggtgatttg 840gattctgcca gaagggtttt caatcaaatg attaagaagg atcgtgttgc
ttggactgct 900atgatcactg tatactcaca aaatgggaag tcaagtgagg cttttaaact
gttttttgag 960atggaaaaaa ccggagtttc accagacgcg ggcacattgt ctacagttct
gtctgcttgt 1020ggttcagttg gagctcttga attaggcaaa caaattgaga cccatgcatc
agaactttcc 1080ttgcaacata atatctatgt ggccacagga ctagtcgaca tgtatggaaa
gtgcggacgg 1140gtagaggaag ctctgagagt atttgaagct atgccagtga aaaacgaagc
cacttggaac 1200gctatgataa ccgcttatgc gcatcaagga cacgctaaag aagctctttt
gctgtttgat 1260cgaatgtcag ttcctccaag tgatataaca ttcataggag tgctctctgc
ttgtgtgcac 1320gcgggtttgg tccatcaggg ctgtcgatat ttccatgaga tgagttctat
gttcgggttg 1380gtcccaaaaa tcgagcatta cacaaacata atcgatctcc tgtctcgtgc
ggggatgtta 1440gacgaggctt gggagttcat ggagaggttt cctgggaagc ctgatgagat
catgttagca 1500gcgatccttg gagcatgtca taagagaaaa gatgttgcga tcagagagaa
ggcgatgagg 1560atgttgatgg agatgaaaga ggcgaagaac gcaggaaact atgtaatctc
ttctaatgtt 1620ttagctgata tgaagatgtg ggatgagtct gcgaagatga gggcgttgat
gagagacaga 1680ggcgtcgtta agacaccagg atgcagctgg attgagatcg agggtgagct
aatggaattt 1740cttgccggaa gcgattattt acagtgtggc agggaagatt ccggttcgtt
atttgatttg 1800ttggtggagg agatgaagag ggaaaggtat gaatttggtt acattcacct
gtga 185416617PRTArabidopsis thaliana 16Met Leu Ile Lys Pro Glu
Lys Leu Ala Phe Ser Ile Tyr Arg Gln Phe 1 5
10 15 Pro Lys Phe Lys Pro Arg Gln Phe Glu Glu Ala
Arg Arg Gly Asp Leu 20 25
30 Glu Arg Asp Phe Leu Phe Leu Leu Lys Lys Cys Ile Ser Val Asn
Gln 35 40 45 Leu
Arg Gln Ile Gln Ala Gln Met Leu Leu His Ser Val Glu Lys Pro 50
55 60 Asn Phe Leu Ile Pro Lys
Ala Val Glu Leu Gly Asp Phe Asn Tyr Ser 65 70
75 80 Ser Phe Leu Phe Ser Val Thr Glu Glu Pro Asn
His Tyr Ser Phe Asn 85 90
95 Tyr Met Ile Arg Gly Leu Thr Asn Thr Trp Asn Asp His Glu Ala Ala
100 105 110 Leu Ser
Leu Tyr Arg Arg Met Lys Phe Ser Gly Leu Lys Pro Asp Lys 115
120 125 Phe Thr Tyr Asn Phe Val Phe
Ile Ala Cys Ala Lys Leu Glu Glu Ile 130 135
140 Gly Val Gly Arg Ser Val His Ser Ser Leu Phe Lys
Val Gly Leu Glu 145 150 155
160 Arg Asp Val His Ile Asn His Ser Leu Ile Met Met Tyr Ala Lys Cys
165 170 175 Gly Gln Val
Gly Tyr Ala Arg Lys Leu Phe Asp Glu Ile Thr Glu Arg 180
185 190 Asp Thr Val Ser Trp Asn Ser Met
Ile Ser Gly Tyr Ser Glu Ala Gly 195 200
205 Tyr Ala Lys Asp Ala Met Asp Leu Phe Arg Lys Met Glu
Glu Glu Gly 210 215 220
Phe Glu Pro Asp Glu Arg Thr Leu Val Ser Met Leu Gly Ala Cys Ser 225
230 235 240 His Leu Gly Asp
Leu Arg Thr Gly Arg Leu Leu Glu Glu Met Ala Ile 245
250 255 Thr Lys Lys Ile Gly Leu Ser Thr Phe
Leu Gly Ser Lys Leu Ile Ser 260 265
270 Met Tyr Gly Lys Cys Gly Asp Leu Asp Ser Ala Arg Arg Val
Phe Asn 275 280 285
Gln Met Ile Lys Lys Asp Arg Val Ala Trp Thr Ala Met Ile Thr Val 290
295 300 Tyr Ser Gln Asn Gly
Lys Ser Ser Glu Ala Phe Lys Leu Phe Phe Glu 305 310
315 320 Met Glu Lys Thr Gly Val Ser Pro Asp Ala
Gly Thr Leu Ser Thr Val 325 330
335 Leu Ser Ala Cys Gly Ser Val Gly Ala Leu Glu Leu Gly Lys Gln
Ile 340 345 350 Glu
Thr His Ala Ser Glu Leu Ser Leu Gln His Asn Ile Tyr Val Ala 355
360 365 Thr Gly Leu Val Asp Met
Tyr Gly Lys Cys Gly Arg Val Glu Glu Ala 370 375
380 Leu Arg Val Phe Glu Ala Met Pro Val Lys Asn
Glu Ala Thr Trp Asn 385 390 395
400 Ala Met Ile Thr Ala Tyr Ala His Gln Gly His Ala Lys Glu Ala Leu
405 410 415 Leu Leu
Phe Asp Arg Met Ser Val Pro Pro Ser Asp Ile Thr Phe Ile 420
425 430 Gly Val Leu Ser Ala Cys Val
His Ala Gly Leu Val His Gln Gly Cys 435 440
445 Arg Tyr Phe His Glu Met Ser Ser Met Phe Gly Leu
Val Pro Lys Ile 450 455 460
Glu His Tyr Thr Asn Ile Ile Asp Leu Leu Ser Arg Ala Gly Met Leu 465
470 475 480 Asp Glu Ala
Trp Glu Phe Met Glu Arg Phe Pro Gly Lys Pro Asp Glu 485
490 495 Ile Met Leu Ala Ala Ile Leu Gly
Ala Cys His Lys Arg Lys Asp Val 500 505
510 Ala Ile Arg Glu Lys Ala Met Arg Met Leu Met Glu Met
Lys Glu Ala 515 520 525
Lys Asn Ala Gly Asn Tyr Val Ile Ser Ser Asn Val Leu Ala Asp Met 530
535 540 Lys Met Trp Asp
Glu Ser Ala Lys Met Arg Ala Leu Met Arg Asp Arg 545 550
555 560 Gly Val Val Lys Thr Pro Gly Cys Ser
Trp Ile Glu Ile Glu Gly Glu 565 570
575 Leu Met Glu Phe Leu Ala Gly Ser Asp Tyr Leu Gln Cys Gly
Arg Glu 580 585 590
Asp Ser Gly Ser Leu Phe Asp Leu Leu Val Glu Glu Met Lys Arg Glu
595 600 605 Arg Tyr Glu Phe
Gly Tyr Ile His Leu 610 615
173299DNAArabidopsis thaliana 17gaacggacca gaaaagagaa cattcgccaa
accaaccaac aaccgtttgg gtgagcttga 60cgagaacgac gtcgcacccg ccattttctc
catccttgaa gcaacacctt cttcacttca 120gatctcttct tcttcttctt cttcttcttc
ttcttcttct ttgctcgcac cttccgtgct 180attgtatttc tagggtttcg gatcctgtgc
cttaccttag atccgacggt ggagtagaaa 240tcactctccc tgtctcttcc cttctttttt
gtttccagtt tttgattgaa gatcccttcg 300tggatccact ataatggcgg attctcagcc
aatcacgcct ggtcaggttt cgtttctact 360cggagtcatt cctgtcttca tagcatggat
ttactcagag tttctagagt ataagaggtc 420ttcattgcac tctaaagttc attcagataa
taatttggtt gaacttggtg aggtaaaaaa 480caaggaagat gaaggagtag ttttacttga
aggaggtctt ccaagatcag tctctacaaa 540gttttataac tcacctatca aaacaaactt
gattagattt ctgacgctgg aagactcttt 600cttgattgaa aatcgagcaa ccttgagagc
gatggctgag tttggggcta ttctttttta 660cttttatatt agtgatcgaa caagcttgct
tggagagtct aaaaagaatt acaacagaga 720tcttttcctc tttctctact gtcttctcat
catagtttca gccatgacat ccttgaagaa 780acacaatgac aaatcaccta taacaggaaa
atccattctc tatcttaatc gtcaccagac 840tgaagagtgg aagggatgga tgcaggttct
atttcttatg tatcattact ttgctgcggc 900tgagatatat aatgcaatca gggttttcat
tgctgcctac gtctggatga ctgggtttgg 960gaacttctct tattactata tcagaaagga
tttctcccta gcacgattta ctcagatgat 1020gtggcgtctt aacttatttg tggcgtttag
ctgcattatt ctcaataatg attatatgct 1080gtactacatc tgtccaatgc acactctgtt
cactcttatg gtgtatggag cccttggtat 1140cttcagtcga tataacgaaa taccatcagt
aatggctttg aagattgctt catgctttct 1200cgtggttatc gtgatgtggg agattcctgg
cgtttttgag attttctgga gtcctttaac 1260attcttactg ggatacactg atccagctaa
accagaacta ccacttttac atgaatggca 1320cttcagatca ggacttgacc gctacatatg
gatcattgga atgatatatg cctatttcca 1380tcccactgta gagagatgga tggagaaatt
ggaggagtgt gatgccaaga gaaagatgtc 1440aataaagaca agcataattg caatttcctc
atttgttggt tacctatggt atgaatacat 1500atacaagctt gacaaggtta catacaacaa
atatcatccc tacacatcgt ggattccaat 1560aaccgtctac atctgtctgc gaaattctac
acaacagctg cgtaatttct ccatgacact 1620atttgcgtgg ctcggcaaga ttactctgga
aacctatatt tctcagtttc acatctggtt 1680aagatcgaat gtgccaaatg gacagcctaa
gtggctatta tgcattattc cagaataccc 1740aatgctcaac ttcatgctcg tcacggccat
ctatgtcttg gtgtcccacc gacttttcga 1800gcttacaaac acgttaaagt ctgttttcat
accaacaaaa gacgacaaga ggctgctcca 1860caatgttctc gctggagctg ccatctcgtt
ctgtttatat ttaacatctc tcattcttct 1920ccagatccca cactaaccat gagggactag
aaacatgttg aaaaacatga atctaaagct 1980gcacagaggt ttctatgtga aacttgctaa
aatagataca acacacatct catatcgaca 2040ataaaaattt gttttcaaag atcagtattt
tttgaagctt gccaagtgaa gcatcttttg 2100ggtaattaga accagagaag cttcaaaaaa
tggcttagag tgaagcatct tgtggcattt 2160cgacggcatc atcttaggac gacttatctt
gttcgttttc tttctcgtct ctgttgtaat 2220tttgctataa gtttctcata tatagtttca
ttttgtcttt tgttcgtccg tatttggtag 2280tttgtccaaa tacagaacat atgaatttta
caagagtgga tatttcaatt caattgagtc 2340ttcagataaa acgccaacac agttagagaa
aaagaggttc gatttctata caaagatacc 2400acaaaggaaa gttcacaaat ttacatagaa
tagaccacaa acaaactctc tttctctgct 2460ctcattcaca taataagcag ccgctcactt
tccggggacg aagttggtgg cgaaggccca 2520agcgttgttg ttgactgggt cggccaaatg
gtcggcgagg ttctccaaag gtccctttcc 2580ggtgacgatg gcttgaacga agaatccaaa
catagagaac atagccaacc ttccgttctt 2640gagctccttc accttcaact ctgcgaaagc
ctcggggtca gtagcgaggc ccaatgggtc 2700gaagctgcca cctgggtaaa gcaagtcctc
tgcttctccc aatggaccat ctccggcgac 2760tctgtagcct tcaacaatgc tctgagcgtg
gaccaagctc gggttgccca agtagtccaa 2820tcctccgtcg ctgaagatct gtgaaccggc
cttgaaccaa accgcttctc cgaacttcac 2880tccgttccta gccaatagct cagggaaaac
gcagcctagg gctccgagca tggcccatct 2940gctgtggata acttctagct cacggttcct
ggcgaaggtc tctgggtcgg cggatagacc 3000agcggtgtcc catccgtagt caccggggaa
ctcaccggta aggtagctcg ggggctcgcc 3060ggagaatgga cccaagtact tgactcggtc
agatccgtac catgggctgc ctgatggacc 3120ctttggcttg gcgacagtct tcctcatggt
cacacggccg cttccgagga catctgatgc 3180ggcaggcttc acagcctttc cggcgaaggc
aggggaggac aaagccatgg ttgaggaagc 3240cattataatc tttgtttttg tgttttcttt
tttttggttg tgactggtga gagtgattg 329918540PRTArabidopsis thaliana 18Met
Ala Asp Ser Gln Pro Ile Thr Pro Gly Gln Val Ser Phe Leu Leu 1
5 10 15 Gly Val Ile Pro Val Phe
Ile Ala Trp Ile Tyr Ser Glu Phe Leu Glu 20
25 30 Tyr Lys Arg Ser Ser Leu His Ser Lys Val
His Ser Asp Asn Asn Leu 35 40
45 Val Glu Leu Gly Glu Val Lys Asn Lys Glu Asp Glu Gly Val
Val Leu 50 55 60
Leu Glu Gly Gly Leu Pro Arg Ser Val Ser Thr Lys Phe Tyr Asn Ser 65
70 75 80 Pro Ile Lys Thr Asn
Leu Ile Arg Phe Leu Thr Leu Glu Asp Ser Phe 85
90 95 Leu Ile Glu Asn Arg Ala Thr Leu Arg Ala
Met Ala Glu Phe Gly Ala 100 105
110 Ile Leu Phe Tyr Phe Tyr Ile Ser Asp Arg Thr Ser Leu Leu Gly
Glu 115 120 125 Ser
Lys Lys Asn Tyr Asn Arg Asp Leu Phe Leu Phe Leu Tyr Cys Leu 130
135 140 Leu Ile Ile Val Ser Ala
Met Thr Ser Leu Lys Lys His Asn Asp Lys 145 150
155 160 Ser Pro Ile Thr Gly Lys Ser Ile Leu Tyr Leu
Asn Arg His Gln Thr 165 170
175 Glu Glu Trp Lys Gly Trp Met Gln Val Leu Phe Leu Met Tyr His Tyr
180 185 190 Phe Ala
Ala Ala Glu Ile Tyr Asn Ala Ile Arg Val Phe Ile Ala Ala 195
200 205 Tyr Val Trp Met Thr Gly Phe
Gly Asn Phe Ser Tyr Tyr Tyr Ile Arg 210 215
220 Lys Asp Phe Ser Leu Ala Arg Phe Thr Gln Met Met
Trp Arg Leu Asn 225 230 235
240 Leu Phe Val Ala Phe Ser Cys Ile Ile Leu Asn Asn Asp Tyr Met Leu
245 250 255 Tyr Tyr Ile
Cys Pro Met His Thr Leu Phe Thr Leu Met Val Tyr Gly 260
265 270 Ala Leu Gly Ile Phe Ser Arg Tyr
Asn Glu Ile Pro Ser Val Met Ala 275 280
285 Leu Lys Ile Ala Ser Cys Phe Leu Val Val Ile Val Met
Trp Glu Ile 290 295 300
Pro Gly Val Phe Glu Ile Phe Trp Ser Pro Leu Thr Phe Leu Leu Gly 305
310 315 320 Tyr Thr Asp Pro
Ala Lys Pro Glu Leu Pro Leu Leu His Glu Trp His 325
330 335 Phe Arg Ser Gly Leu Asp Arg Tyr Ile
Trp Ile Ile Gly Met Ile Tyr 340 345
350 Ala Tyr Phe His Pro Thr Val Glu Arg Trp Met Glu Lys Leu
Glu Glu 355 360 365
Cys Asp Ala Lys Arg Lys Met Ser Ile Lys Thr Ser Ile Ile Ala Ile 370
375 380 Ser Ser Phe Val Gly
Tyr Leu Trp Tyr Glu Tyr Ile Tyr Lys Leu Asp 385 390
395 400 Lys Val Thr Tyr Asn Lys Tyr His Pro Tyr
Thr Ser Trp Ile Pro Ile 405 410
415 Thr Val Tyr Ile Cys Leu Arg Asn Ser Thr Gln Gln Leu Arg Asn
Phe 420 425 430 Ser
Met Thr Leu Phe Ala Trp Leu Gly Lys Ile Thr Leu Glu Thr Tyr 435
440 445 Ile Ser Gln Phe His Ile
Trp Leu Arg Ser Asn Val Pro Asn Gly Gln 450 455
460 Pro Lys Trp Leu Leu Cys Ile Ile Pro Glu Tyr
Pro Met Leu Asn Phe 465 470 475
480 Met Leu Val Thr Ala Ile Tyr Val Leu Val Ser His Arg Leu Phe Glu
485 490 495 Leu Thr
Asn Thr Leu Lys Ser Val Phe Ile Pro Thr Lys Asp Asp Lys 500
505 510 Arg Leu Leu His Asn Val Leu
Ala Gly Ala Ala Ile Ser Phe Cys Leu 515 520
525 Tyr Leu Thr Ser Leu Ile Leu Leu Gln Ile Pro His
530 535 540 193338DNAArabidopsis
thaliana 19gaacggacca gaaaagagaa cattcgccaa accaaccaac aaccgtttgg
gtgagcttga 60cgagaacgac gtcgcacccg ccattttctc catccttgaa gcaacacctt
cttcacttca 120gatctcttct tcttcttctt cttcttcttc ttcttcttct ttgctcgcac
cttccgtgct 180attgtatttc tagggtttcg gatcctgtgc cttaccttag atccgacggt
ggagtagaaa 240tcactctccc tgtctcttcc cttctttttt gtttccagtt tttgattgaa
gatcccttcg 300tggatccact ataatggcgg attctcagcc aatcacgcct ggtcaggttt
cgtttctact 360cggagtcatt cctgtcttca tagcatggat ttactcagag tttctagagt
ataagaggtc 420ttcattgcac tctaaagttc attcagataa taatttggtt gaacttggtg
aggtaaaaaa 480caaggaagat gaaggagtag ttttacttga aggaggtctt ccaagatcag
tctctacaaa 540gttttataac tcacctatca aaacaaactt gattagattt ctgacgctgg
aagactcttt 600cttgattgaa aatcgagcaa ccttgagagc gatggctgag tttggggcta
ttctttttta 660cttttatatt agtgatcgaa caagcttgct tggagagtct aaaaagaatt
acaacagaga 720tcttttcctc tttctctact gtcttctcat catagtttca gccatgacat
ccttgaagaa 780acacaatgac aaatcaccta taacaggaaa atccattctc tatcttaatc
gtcaccagac 840tgaagagtgg aagggatgga tgcaggttct atttcttatg tatcattact
ttgctgcggc 900tgagatatat aatgcaatca gggttttcat tgctgcctac gtctggatga
ctgggtttgg 960gaacttctct tattactata tcagaaagga tttctcccta gcacgattta
ctcagatgat 1020gtggcgtctt aacttatttg tggcgtttag ctgcattatt ctcaataatg
attatatgct 1080gtactacatc tgtccaatgc acactctgtt cactcttatg gtgtatggag
cccttggtat 1140cttcagtcga tataacgaaa taccatcagt aatggctttg aagattgctt
catgctttct 1200cgtggttatc gtgatgtggg agattcctgg cgtttttgag attttctgga
gtcctttaac 1260attcttactg ggatacactg atccagctaa accagaacta ccacttttac
atgaatggca 1320cttcagatca ggacttgacc gctacatatg gatcattgga atgatatatg
cctatttcca 1380tcccactgta gagagatgga tggagaaatt ggaggagtgt gatgccaaga
gaaagatgtc 1440aataaagaca agcataattg caatttcctc atttgttggt tacctatggt
atgaatacat 1500atacaagctt gacaaggtta catacaacaa atatcatccc tacacatcgt
ggattccaat 1560aaccgtctac atctgtctgc gaaattctac acaacagctg cgtaatttct
ccatgacact 1620atttgcgtgg ctcggcaaga ttactctgga aacctatatt tctcagtttc
acatctggtt 1680aagatcgaat gtgccaaatg gacagcctaa gtggctatta tgcattattc
cagaataccc 1740aatgctcaac ttcatgctcg tcacggccat ctatgtcttg gtgtcccacc
gacttttcga 1800gcttacaaac acgttaaagt ctgttttcat accaacaaaa gacgacaaga
ggctgctcca 1860caatgttctc gctggagctg ccatctcgtt ctgtttatat ttaacatctc
tcattcttct 1920ccagatccca cactaaccat gagggactag aaacatgttg aaaaacatga
atctaaagct 1980gcacagaggt ttctatgtga aacttgctaa aatagataca acacacatct
catatcgaca 2040ataaaaattt gttttcaaag atcagtattt tttgaagctt gccaagtgaa
gcatcttttg 2100ggtaattaga accagagaag cttcaaaaaa tggcttagag tgaagcatct
tgtggcattt 2160cgacggcatc atcttaggac gacttatctt gttcgttttc tttctcgtct
ctgttgtaat 2220tttgctataa gtttctcata tatagtttca ttttgtcttt tgttcgtccg
tatttggtag 2280tttgtccaaa tacagaacat atgaatttta caagagtgga tatttcaatt
caattgagtc 2340ttcagataaa acgccaacac agttagagaa aaagaggttc gatttctata
caaagatacc 2400acaaaggaaa gttcacaaat ttacatagaa tagaccacaa acaaactctc
tttctctgct 2460ctcattcaca taataagcag ccgctcactt tccggggacg aagttggtgg
cgaaggccca 2520agcgttgttg ttgactgggt cggccaaatg gtcggcgagg ttctccaaag
gtccctttcc 2580ggtgacgatg gcttgaacga agaatccaaa catagagaac atagccaacc
ttccgttctt 2640gagctccttc accttcaact ctgcgaaagc ctcggggtca gtagcgaggc
ccaatgggtc 2700gaagctgcca cctgggtaaa gcaagtcctc tgcttctccc aatggaccat
ctccggcgac 2760tctgtagcct tcaacagctc ccatgaggat aacttgagta gcccaaatgg
ctaagatgct 2820ctgagcgtgg accaagctcg ggttgcccaa gtagtccaat cctccgtcgc
tgaagatctg 2880tgaaccggcc ttgaaccaaa ccgcttctcc gaacttcact ccgttcctag
ccaatagctc 2940agggaaaacg cagcctaggg ctccgagcat ggcccatctg ctgtggataa
cttctagctc 3000acggttcctg gcgaaggtct ctgggtcggc ggatagacca gcggtgtccc
atccgtagtc 3060accggggaac tcaccggtaa ggtagctcgg gggctcgccg gagaatggac
ccaagtactt 3120gactcggtca gatccgtacc atgggctgcc tgatggaccc tttggcttgg
cgacagtctt 3180cctcatggtc acacggccgc ttccgaggac atctgatgcg gcaggcttca
cagcctttcc 3240ggcgaaggca ggggaggaca aagccatggt tgaggaagcc attataatct
ttgtttttgt 3300gttttctttt ttttggttgt gactggtgag agtgattg
333820540PRTArabidopsis thaliana 20Met Ala Asp Ser Gln Pro Ile
Thr Pro Gly Gln Val Ser Phe Leu Leu 1 5
10 15 Gly Val Ile Pro Val Phe Ile Ala Trp Ile Tyr
Ser Glu Phe Leu Glu 20 25
30 Tyr Lys Arg Ser Ser Leu His Ser Lys Val His Ser Asp Asn Asn
Leu 35 40 45 Val
Glu Leu Gly Glu Val Lys Asn Lys Glu Asp Glu Gly Val Val Leu 50
55 60 Leu Glu Gly Gly Leu Pro
Arg Ser Val Ser Thr Lys Phe Tyr Asn Ser 65 70
75 80 Pro Ile Lys Thr Asn Leu Ile Arg Phe Leu Thr
Leu Glu Asp Ser Phe 85 90
95 Leu Ile Glu Asn Arg Ala Thr Leu Arg Ala Met Ala Glu Phe Gly Ala
100 105 110 Ile Leu
Phe Tyr Phe Tyr Ile Ser Asp Arg Thr Ser Leu Leu Gly Glu 115
120 125 Ser Lys Lys Asn Tyr Asn Arg
Asp Leu Phe Leu Phe Leu Tyr Cys Leu 130 135
140 Leu Ile Ile Val Ser Ala Met Thr Ser Leu Lys Lys
His Asn Asp Lys 145 150 155
160 Ser Pro Ile Thr Gly Lys Ser Ile Leu Tyr Leu Asn Arg His Gln Thr
165 170 175 Glu Glu Trp
Lys Gly Trp Met Gln Val Leu Phe Leu Met Tyr His Tyr 180
185 190 Phe Ala Ala Ala Glu Ile Tyr Asn
Ala Ile Arg Val Phe Ile Ala Ala 195 200
205 Tyr Val Trp Met Thr Gly Phe Gly Asn Phe Ser Tyr Tyr
Tyr Ile Arg 210 215 220
Lys Asp Phe Ser Leu Ala Arg Phe Thr Gln Met Met Trp Arg Leu Asn 225
230 235 240 Leu Phe Val Ala
Phe Ser Cys Ile Ile Leu Asn Asn Asp Tyr Met Leu 245
250 255 Tyr Tyr Ile Cys Pro Met His Thr Leu
Phe Thr Leu Met Val Tyr Gly 260 265
270 Ala Leu Gly Ile Phe Ser Arg Tyr Asn Glu Ile Pro Ser Val
Met Ala 275 280 285
Leu Lys Ile Ala Ser Cys Phe Leu Val Val Ile Val Met Trp Glu Ile 290
295 300 Pro Gly Val Phe Glu
Ile Phe Trp Ser Pro Leu Thr Phe Leu Leu Gly 305 310
315 320 Tyr Thr Asp Pro Ala Lys Pro Glu Leu Pro
Leu Leu His Glu Trp His 325 330
335 Phe Arg Ser Gly Leu Asp Arg Tyr Ile Trp Ile Ile Gly Met Ile
Tyr 340 345 350 Ala
Tyr Phe His Pro Thr Val Glu Arg Trp Met Glu Lys Leu Glu Glu 355
360 365 Cys Asp Ala Lys Arg Lys
Met Ser Ile Lys Thr Ser Ile Ile Ala Ile 370 375
380 Ser Ser Phe Val Gly Tyr Leu Trp Tyr Glu Tyr
Ile Tyr Lys Leu Asp 385 390 395
400 Lys Val Thr Tyr Asn Lys Tyr His Pro Tyr Thr Ser Trp Ile Pro Ile
405 410 415 Thr Val
Tyr Ile Cys Leu Arg Asn Ser Thr Gln Gln Leu Arg Asn Phe 420
425 430 Ser Met Thr Leu Phe Ala Trp
Leu Gly Lys Ile Thr Leu Glu Thr Tyr 435 440
445 Ile Ser Gln Phe His Ile Trp Leu Arg Ser Asn Val
Pro Asn Gly Gln 450 455 460
Pro Lys Trp Leu Leu Cys Ile Ile Pro Glu Tyr Pro Met Leu Asn Phe 465
470 475 480 Met Leu Val
Thr Ala Ile Tyr Val Leu Val Ser His Arg Leu Phe Glu 485
490 495 Leu Thr Asn Thr Leu Lys Ser Val
Phe Ile Pro Thr Lys Asp Asp Lys 500 505
510 Arg Leu Leu His Asn Val Leu Ala Gly Ala Ala Ile Ser
Phe Cys Leu 515 520 525
Tyr Leu Thr Ser Leu Ile Leu Leu Gln Ile Pro His 530
535 540 211936DNAArabidopsis thaliana 21gaacggacca
gaaaagagaa cattcgccaa accaaccaac aaccgtttgg gtgagcttga 60cgagaacgac
gtcgcacccg ccattttctc catccttgaa gcaacacctt cttcacttca 120gatctcttct
tcttcttctt cttcttcttc ttcttcttct ttgctcgcac cttccgtgct 180attgtatttc
tagggtttcg gatcctgtgc cttaccttag atccgacggt ggagtagaaa 240tcactctccc
tgtctcttcc cttctttttt gtttccagtt tttgattgaa gatcccttcg 300tggatccact
ataatggcgg attctcagcc aatcacgcct ggtcaggttt cgtttctact 360cggagtcatt
cctgtcttca tagcatggat ttactcagag tttctagagt ataagaggtc 420ttcattgcac
tctaaagttc attcagataa taatttggtt gaacttggtg aggtaaaaaa 480caaggaagat
gaaggagtag ttttacttga aggaggtctt ccaagatcag tctctacaaa 540gttttataac
tcacctatca aaacaaactt gattagattt ctgacgctgg aagactcttt 600cttgattgaa
aatcgagcaa ccttgagagc gatggctgag tttggggcta ttctttttta 660cttttatatt
agtgatcgaa caagcttgct tggagagtct aaaaagaatt acaacagaga 720tcttttcctc
tttctctact gtcttctcat catagtttca gccatgacat ccttgaagaa 780acacaatgac
aaatcaccta taacaggaaa atccattctc tatcttaatc gtcaccagac 840tgaagagtgg
aagggatgga tgcaggttct atttcttatg tatcattact ttgctgcggc 900tgagatatat
aatgcaatca gggttttcat tgctgcctac gtctggatga ctgggtttgg 960gaacttctct
tattactata tcagaaagga tttctcccta gcacgattta ctcagatgat 1020gtggcgtctt
aacttatttg tggcgtttag ctgcattatt ctcaataatg attatatgct 1080gtactacatc
tgtccaatgc acactctgtt cactcttatg gtgtatggag cccttggtat 1140cttcagtcga
tataacgaaa taccatcagt aatggctttg aagattgctt catgctttct 1200cgtggttatc
gtgatgtggg agattcctgg cgtttttgag attttctgga gtcctttaac 1260attcttactg
ggatacactg atccagctaa accagaacta ccacttttac atgaatggca 1320cttcagatca
ggacttgacc gctacatatg gatcattgga atgatatatg cctatttcca 1380tcccactgta
gagagatgga tggagaaatt ggaggagtgt gatgccaaga gaaagatgtc 1440aataaagaca
agcataattg caatttcctc atttgttggt tacctatggt atgaatacat 1500atacaagctt
gacaaggtta catacaacaa atatcatccc tacacatcgt ggattccaat 1560aaccgtctac
atctgtctgc gaaattctac acaacagctg cgtaatttct ccatgacact 1620atttgcgtgg
ctcggcaaga ttactctgga aacctatatt tctcagtttc acatctggtt 1680aagatcgaat
gtgccaaatg gacagcctaa gtggctatta tgcattattc cagaataccc 1740aatgctcaac
ttcatgctcg tcacggccat ctatgtcttg gtgtcccacc gacttttcga 1800gcttacaaac
acgttaaagt ctgttttcat accaacaaaa gacgacaaga ggctgctcca 1860caatgttctc
gctggagctg ccatctcgtt ctgtttatat ttaacatctc tcattcttct 1920ccagatccca
cactaa
193622540PRTArabidopsis thaliana 22Met Ala Asp Ser Gln Pro Ile Thr Pro
Gly Gln Val Ser Phe Leu Leu 1 5 10
15 Gly Val Ile Pro Val Phe Ile Ala Trp Ile Tyr Ser Glu Phe
Leu Glu 20 25 30
Tyr Lys Arg Ser Ser Leu His Ser Lys Val His Ser Asp Asn Asn Leu
35 40 45 Val Glu Leu Gly
Glu Val Lys Asn Lys Glu Asp Glu Gly Val Val Leu 50
55 60 Leu Glu Gly Gly Leu Pro Arg Ser
Val Ser Thr Lys Phe Tyr Asn Ser 65 70
75 80 Pro Ile Lys Thr Asn Leu Ile Arg Phe Leu Thr Leu
Glu Asp Ser Phe 85 90
95 Leu Ile Glu Asn Arg Ala Thr Leu Arg Ala Met Ala Glu Phe Gly Ala
100 105 110 Ile Leu Phe
Tyr Phe Tyr Ile Ser Asp Arg Thr Ser Leu Leu Gly Glu 115
120 125 Ser Lys Lys Asn Tyr Asn Arg Asp
Leu Phe Leu Phe Leu Tyr Cys Leu 130 135
140 Leu Ile Ile Val Ser Ala Met Thr Ser Leu Lys Lys His
Asn Asp Lys 145 150 155
160 Ser Pro Ile Thr Gly Lys Ser Ile Leu Tyr Leu Asn Arg His Gln Thr
165 170 175 Glu Glu Trp Lys
Gly Trp Met Gln Val Leu Phe Leu Met Tyr His Tyr 180
185 190 Phe Ala Ala Ala Glu Ile Tyr Asn Ala
Ile Arg Val Phe Ile Ala Ala 195 200
205 Tyr Val Trp Met Thr Gly Phe Gly Asn Phe Ser Tyr Tyr Tyr
Ile Arg 210 215 220
Lys Asp Phe Ser Leu Ala Arg Phe Thr Gln Met Met Trp Arg Leu Asn 225
230 235 240 Leu Phe Val Ala Phe
Ser Cys Ile Ile Leu Asn Asn Asp Tyr Met Leu 245
250 255 Tyr Tyr Ile Cys Pro Met His Thr Leu Phe
Thr Leu Met Val Tyr Gly 260 265
270 Ala Leu Gly Ile Phe Ser Arg Tyr Asn Glu Ile Pro Ser Val Met
Ala 275 280 285 Leu
Lys Ile Ala Ser Cys Phe Leu Val Val Ile Val Met Trp Glu Ile 290
295 300 Pro Gly Val Phe Glu Ile
Phe Trp Ser Pro Leu Thr Phe Leu Leu Gly 305 310
315 320 Tyr Thr Asp Pro Ala Lys Pro Glu Leu Pro Leu
Leu His Glu Trp His 325 330
335 Phe Arg Ser Gly Leu Asp Arg Tyr Ile Trp Ile Ile Gly Met Ile Tyr
340 345 350 Ala Tyr
Phe His Pro Thr Val Glu Arg Trp Met Glu Lys Leu Glu Glu 355
360 365 Cys Asp Ala Lys Arg Lys Met
Ser Ile Lys Thr Ser Ile Ile Ala Ile 370 375
380 Ser Ser Phe Val Gly Tyr Leu Trp Tyr Glu Tyr Ile
Tyr Lys Leu Asp 385 390 395
400 Lys Val Thr Tyr Asn Lys Tyr His Pro Tyr Thr Ser Trp Ile Pro Ile
405 410 415 Thr Val Tyr
Ile Cys Leu Arg Asn Ser Thr Gln Gln Leu Arg Asn Phe 420
425 430 Ser Met Thr Leu Phe Ala Trp Leu
Gly Lys Ile Thr Leu Glu Thr Tyr 435 440
445 Ile Ser Gln Phe His Ile Trp Leu Arg Ser Asn Val Pro
Asn Gly Gln 450 455 460
Pro Lys Trp Leu Leu Cys Ile Ile Pro Glu Tyr Pro Met Leu Asn Phe 465
470 475 480 Met Leu Val Thr
Ala Ile Tyr Val Leu Val Ser His Arg Leu Phe Glu 485
490 495 Leu Thr Asn Thr Leu Lys Ser Val Phe
Ile Pro Thr Lys Asp Asp Lys 500 505
510 Arg Leu Leu His Asn Val Leu Ala Gly Ala Ala Ile Ser Phe
Cys Leu 515 520 525
Tyr Leu Thr Ser Leu Ile Leu Leu Gln Ile Pro His 530
535 540 231312DNAArabidopsis thaliana 23aatcactctc
accagtcaca accaaaaaaa agaaaacaca aaaacaaaga ttataatggc 60ttcctcaacc
atggctttgt cctcccctgc cttcgccgga aaggctgtga agcctgccgc 120atcagatgtc
ctcggaagcg gccgtgtgac catgaggaag actgtcgcca agccaaaggg 180tccatcaggc
agcccatggt acggatctga ccgagtcaag tacttgggtc cattctccgg 240cgagcccccg
agctacctta ccggtgagtt ccccggtgac tacggatggg acaccgctgg 300tctatccgcc
gacccagaga ccttcgccag gaaccgtgag ctagaagtta tccacagcag 360atgggccatg
ctcggagccc taggctgcgt tttccctgag ctattggcta ggaacggagt 420gaagttcgga
gaagcggttt ggttcaaggc cggttcacag atcttcagcg acggaggatt 480ggactacttg
ggcaacccga gcttggtcca cgctcagact gttgaaggct acagagtcgc 540cggagatggt
ccattgggag aagcagagga cttgctttac ccaggtggca gcttcgaccc 600attgggcctc
gctactgacc ccgaggcttt cgcagagttg aaggtgaagg agctcaagaa 660cggaaggttg
gctatgttct ctatgtttgg attcttcgtt caagccatcg tcaccggaaa 720gggacctttg
gagaacctcg ccgaccattt ggccgaccca gtcaacaaca acgcttgggc 780cttcgccacc
aacttcgtcc ccggaaagtg agcggctgct tattatgtga atgagagcag 840agaaagagag
tttgtttgtg gtctattcta tgtaaatttg tgaactttcc tttgtggtat 900ctttgtatag
aaatcgaacc tctttttctc taactgtgtt ggcgttttat ctgaagactc 960aattgaattg
aaatatccac tcttgtaaaa ttcatatgtt ctgtatttgg acaaactacc 1020aaatacggac
gaacaaaaga caaaatgaaa ctatatatga gaaacttata gcaaaattac 1080aacagagacg
agaaagaaaa cgaacaagat aagtcgtcct aagatgatgc cgtcgaaatg 1140ccacaagatg
cttcactcta agccattttt tgaagcttct ctggttctaa ttacccaaaa 1200gatgcttcac
ttggcaagct tcaaaaaata ctgatctttg aaaacaaatt tttattgtcg 1260atatgagatg
tgtgttgtat ctattttagc aagtttcaca tagaaacctc tg
131224251PRTArabidopsis thaliana 24Met Ala Ser Ser Thr Met Ala Leu Ser
Ser Pro Ala Phe Ala Gly Lys 1 5 10
15 Ala Val Lys Pro Ala Ala Ser Asp Val Leu Gly Ser Gly Arg
Val Thr 20 25 30
Met Arg Lys Thr Val Ala Lys Pro Lys Gly Pro Ser Gly Ser Pro Trp
35 40 45 Tyr Gly Ser Asp
Arg Val Lys Tyr Leu Gly Pro Phe Ser Gly Glu Pro 50
55 60 Pro Ser Tyr Leu Thr Gly Glu Phe
Pro Gly Asp Tyr Gly Trp Asp Thr 65 70
75 80 Ala Gly Leu Ser Ala Asp Pro Glu Thr Phe Ala Arg
Asn Arg Glu Leu 85 90
95 Glu Val Ile His Ser Arg Trp Ala Met Leu Gly Ala Leu Gly Cys Val
100 105 110 Phe Pro Glu
Leu Leu Ala Arg Asn Gly Val Lys Phe Gly Glu Ala Val 115
120 125 Trp Phe Lys Ala Gly Ser Gln Ile
Phe Ser Asp Gly Gly Leu Asp Tyr 130 135
140 Leu Gly Asn Pro Ser Leu Val His Ala Gln Thr Val Glu
Gly Tyr Arg 145 150 155
160 Val Ala Gly Asp Gly Pro Leu Gly Glu Ala Glu Asp Leu Leu Tyr Pro
165 170 175 Gly Gly Ser Phe
Asp Pro Leu Gly Leu Ala Thr Asp Pro Glu Ala Phe 180
185 190 Ala Glu Leu Lys Val Lys Glu Leu Lys
Asn Gly Arg Leu Ala Met Phe 195 200
205 Ser Met Phe Gly Phe Phe Val Gln Ala Ile Val Thr Gly Lys
Gly Pro 210 215 220
Leu Glu Asn Leu Ala Asp His Leu Ala Asp Pro Val Asn Asn Asn Ala 225
230 235 240 Trp Ala Phe Ala Thr
Asn Phe Val Pro Gly Lys 245 250
251354DNAArabidopsis thaliana 25aatcactctc accagtcaca accaaaaaaa
agaaaacaca aaaacaaaga ttataatggc 60ttcctcaacc atggctttgt cctcccctgc
cttcgccgga aaggctgtga agcctgccgc 120atcagatgtc ctcggaagcg gccgtgtgac
catgaggaag actgtcgcca agccaaaggg 180tccatcaggc agcccatggt acggatctga
ccgagtcaag tacttgggtc cattctccgg 240cgagcccccg agctacctta ccggtgagtt
ccccggtgac tacggatggg acaccgctgg 300tctatccgcc gacccagaga ccttcgccag
gaaccgtgag ctagaagtta tccacagcag 360atgggccatg ctcggagccc taggctgcgt
tttccctgag ctattggcta ggaacggagt 420gaagttcgga gaagcggttt ggttcaaggc
cggttcacag atcttcagcg acggaggatt 480ggactacttg ggcaacccga gcttggtcca
cgctcagagc atcttagcca tttgggctac 540tcaagttatc ctcatgggag ctgttgaagg
ctacagagtc gccggagatg gtccattggg 600agaagcagag gacttgcttt acccaggtgg
cagcttcgac ccattgggcc tcgctactga 660ccccgaggct ttcgcagagt tgaaggtgaa
ggagctcaag aacggaaggt tggctatgtt 720ctctatgttt ggattcttcg ttcaagccat
cgtcaccgga aagggacctt tggagaacct 780cgccgaccat ttggccgacc cagtcaacaa
caacgcttgg gccttcgcca ccaacttcgt 840ccccggaaag tgagcggctg cttattatgt
gaatgagagc agagaaagag agtttgtttg 900tggtctattc tatgtaaatt tgtgaacttt
cctttgtggt atctttgtat agaaatcgaa 960cctctttttc tctaactgtg ttggcgtttt
atctgaagac tcaattgaat tgaaatatcc 1020actcttgtaa aattcatatg ttctgtattt
ggacaaacta ccaaatacgg acgaacaaaa 1080gacaaaatga aactatatat gagaaactta
tagcaaaatt acaacagaga cgagaaagaa 1140aacgaacaag ataagtcgtc ctaagatgat
gccgtcgaaa tgccacaaga tgcttcactc 1200taagccattt tttgaagctt ctctggttct
aattacccaa aagatgcttc acttggcaag 1260cttcaaaaaa tactgatctt tgaaaacaaa
tttttattgt cgatatgaga tgtgtgttgt 1320atctatttta gcaagtttca catagaaacc
tctg 135426265PRTArabidopsis thaliana 26Met
Ala Ser Ser Thr Met Ala Leu Ser Ser Pro Ala Phe Ala Gly Lys 1
5 10 15 Ala Val Lys Pro Ala Ala
Ser Asp Val Leu Gly Ser Gly Arg Val Thr 20
25 30 Met Arg Lys Thr Val Ala Lys Pro Lys Gly
Pro Ser Gly Ser Pro Trp 35 40
45 Tyr Gly Ser Asp Arg Val Lys Tyr Leu Gly Pro Phe Ser Gly
Glu Pro 50 55 60
Pro Ser Tyr Leu Thr Gly Glu Phe Pro Gly Asp Tyr Gly Trp Asp Thr 65
70 75 80 Ala Gly Leu Ser Ala
Asp Pro Glu Thr Phe Ala Arg Asn Arg Glu Leu 85
90 95 Glu Val Ile His Ser Arg Trp Ala Met Leu
Gly Ala Leu Gly Cys Val 100 105
110 Phe Pro Glu Leu Leu Ala Arg Asn Gly Val Lys Phe Gly Glu Ala
Val 115 120 125 Trp
Phe Lys Ala Gly Ser Gln Ile Phe Ser Asp Gly Gly Leu Asp Tyr 130
135 140 Leu Gly Asn Pro Ser Leu
Val His Ala Gln Ser Ile Leu Ala Ile Trp 145 150
155 160 Ala Thr Gln Val Ile Leu Met Gly Ala Val Glu
Gly Tyr Arg Val Ala 165 170
175 Gly Asp Gly Pro Leu Gly Glu Ala Glu Asp Leu Leu Tyr Pro Gly Gly
180 185 190 Ser Phe
Asp Pro Leu Gly Leu Ala Thr Asp Pro Glu Ala Phe Ala Glu 195
200 205 Leu Lys Val Lys Glu Leu Lys
Asn Gly Arg Leu Ala Met Phe Ser Met 210 215
220 Phe Gly Phe Phe Val Gln Ala Ile Val Thr Gly Lys
Gly Pro Leu Glu 225 230 235
240 Asn Leu Ala Asp His Leu Ala Asp Pro Val Asn Asn Asn Ala Trp Ala
245 250 255 Phe Ala Thr
Asn Phe Val Pro Gly Lys 260 265
271008DNAArabidopsis thaliana 27atccaatttc atcacatctt attaactaaa
gagcctttta cttgcgccac actctcaccg 60caatggccgc ctcgacaatg gctctctcct
ctcctgcttt gaccggaaag gccgttaagc 120tatccccggc ggcctccgaa gtatttggaa
ccggccgaat caccatgcgc aaagcctcca 180agcccaccgg tccatccggc agcccatggt
acggatccga ccgagtcaag tacttgggtc 240cattctccgg tgagcctccg agctacctca
ctggagagtt ccccggtgat tacgggtggg 300acactgccgg tctatccgcc gatcccgaga
ccttcgctag gaaccgtgag ctagaagtta 360tccacagcag atgggccatg ctcggagccc
taggctgcgt tttccctgag ctattggcta 420ggaacggagt gaagttcgga gaagcggttt
ggttcaaggc tggttcacag atcttcagcg 480acggaggatt ggactacttg ggcaacccga
gcttggtcca cgctcagagc atcttagcca 540tttgggctac tcaagttatc ctcatgggag
ctgttgaggg ctacagagtc gccggagatg 600gtccattggg agaagcagag gacttgcttt
acccaggtgg gagcttcgac ccattgggcc 660tcgctactga ccccgaggct ttcgcggagt
tgaaggtgaa ggagctcaag aacggaaggt 720tggctatgtt ctctatgttt ggattcttcg
ttcaggccat tgtcaccgga aagggaccgt 780tggagaacct cgcggaccac ttggctgatc
cagtcaacaa caatgcatgg gccttcgcta 840ccaacttcgt ccccggaaag tgagtttaat
ttgtgatcga gttgtgtgta tccggtttgt 900tgcatcttgg aaatgtgatg cagatttcat
atcttgtaaa ttactttgta tgtgtgtgaa 960atatttaaga agctttatga tattgatgga
tcagtcactt actattta 100828266PRTArabidopsis thaliana 28Met
Ala Ala Ser Thr Met Ala Leu Ser Ser Pro Ala Leu Thr Gly Lys 1
5 10 15 Ala Val Lys Leu Ser Pro
Ala Ala Ser Glu Val Phe Gly Thr Gly Arg 20
25 30 Ile Thr Met Arg Lys Ala Ser Lys Pro Thr
Gly Pro Ser Gly Ser Pro 35 40
45 Trp Tyr Gly Ser Asp Arg Val Lys Tyr Leu Gly Pro Phe Ser
Gly Glu 50 55 60
Pro Pro Ser Tyr Leu Thr Gly Glu Phe Pro Gly Asp Tyr Gly Trp Asp 65
70 75 80 Thr Ala Gly Leu Ser
Ala Asp Pro Glu Thr Phe Ala Arg Asn Arg Glu 85
90 95 Leu Glu Val Ile His Ser Arg Trp Ala Met
Leu Gly Ala Leu Gly Cys 100 105
110 Val Phe Pro Glu Leu Leu Ala Arg Asn Gly Val Lys Phe Gly Glu
Ala 115 120 125 Val
Trp Phe Lys Ala Gly Ser Gln Ile Phe Ser Asp Gly Gly Leu Asp 130
135 140 Tyr Leu Gly Asn Pro Ser
Leu Val His Ala Gln Ser Ile Leu Ala Ile 145 150
155 160 Trp Ala Thr Gln Val Ile Leu Met Gly Ala Val
Glu Gly Tyr Arg Val 165 170
175 Ala Gly Asp Gly Pro Leu Gly Glu Ala Glu Asp Leu Leu Tyr Pro Gly
180 185 190 Gly Ser
Phe Asp Pro Leu Gly Leu Ala Thr Asp Pro Glu Ala Phe Ala 195
200 205 Glu Leu Lys Val Lys Glu Leu
Lys Asn Gly Arg Leu Ala Met Phe Ser 210 215
220 Met Phe Gly Phe Phe Val Gln Ala Ile Val Thr Gly
Lys Gly Pro Leu 225 230 235
240 Glu Asn Leu Ala Asp His Leu Ala Asp Pro Val Asn Asn Asn Ala Trp
245 250 255 Ala Phe Ala
Thr Asn Phe Val Pro Gly Lys 260 265
29519DNAArabidopsis thaliana 29atgggtcgga gaaagatcaa gatggagatg
gttcaggaca tgaacacacg acaggttacc 60ttttcaaaac ggaggactgg tttgttcaag
aaggcgagcg agttagccac gctctgcaac 120gctgagttgg gcatcgttgt cttttcacca
ggaggcaagc ctttctccta cgggaaaccg 180aatcttgatt ctgttgcaga gcgattcatg
agagaatatg atgattcaga cagtggcgat 240gaagaaaaaa gtggtaatta caggcctaaa
ctgaagaggc tgagtgaacg tctcgatttg 300ctcaaccaag aggttgaagc tgagaaggaa
cgaggcgaga agagtcagga gaagcttgaa 360tctgctgggg atgagagatt caaggagtcc
attgagacgc ttaccctcga tgaactcaat 420gaatacaaag ataggcttca gacagtccat
ggtaggattg aaggtcaagt caatcacttg 480caggcttcgt cttgcctcat gcttctctcc
agaaaatag 51930172PRTArabidopsis thaliana 30Met
Gly Arg Arg Lys Ile Lys Met Glu Met Val Gln Asp Met Asn Thr 1
5 10 15 Arg Gln Val Thr Phe Ser
Lys Arg Arg Thr Gly Leu Phe Lys Lys Ala 20
25 30 Ser Glu Leu Ala Thr Leu Cys Asn Ala Glu
Leu Gly Ile Val Val Phe 35 40
45 Ser Pro Gly Gly Lys Pro Phe Ser Tyr Gly Lys Pro Asn Leu
Asp Ser 50 55 60
Val Ala Glu Arg Phe Met Arg Glu Tyr Asp Asp Ser Asp Ser Gly Asp 65
70 75 80 Glu Glu Lys Ser Gly
Asn Tyr Arg Pro Lys Leu Lys Arg Leu Ser Glu 85
90 95 Arg Leu Asp Leu Leu Asn Gln Glu Val Glu
Ala Glu Lys Glu Arg Gly 100 105
110 Glu Lys Ser Gln Glu Lys Leu Glu Ser Ala Gly Asp Glu Arg Phe
Lys 115 120 125 Glu
Ser Ile Glu Thr Leu Thr Leu Asp Glu Leu Asn Glu Tyr Lys Asp 130
135 140 Arg Leu Gln Thr Val His
Gly Arg Ile Glu Gly Gln Val Asn His Leu 145 150
155 160 Gln Ala Ser Ser Cys Leu Met Leu Leu Ser Arg
Lys 165 170 31685DNAArabidopsis
thaliana 31aagaggcagc gaacgaaagt tcgattccga gaaagtgaga gaaaatgacg
aagagagctc 60ccaagtcagg gcctttgtct ccgtcgtgca gcggaggctc tagtcggaac
ttagagttgg 120ctgtgaagtc aagtgaaggt gcaaggaggt ctacaagact gagacttcag
cctttgagaa 180agccaaagac aagccccaag aagaaacccg ttaaactcca aacgaagatg
cccaagaaac 240ctgccactgc tttcttcttt ttcctggatg atttccggaa gcaatatcaa
gaggagaatc 300cagatgtcaa gtccatgcgc gaggttattg ggaagacatg tggagagaaa
tggaaaacaa 360tgacttacga ggaaaaggta aagtattatg atatagctac tgagaagagg
gaagaatttc 420accgagcaat gacagaatat accaagagaa tggaatcagg tgcccacgat
gaatcagaga 480ccgactcaga ctattctgaa tagattactt tttagtttct accacattag
aaacattgtt 540ctaagccttc taggatgggt ttgtatatcg gtgatattta agagtttctg
tttcgttttt 600gagatcattc tttcactgat actcatgttt ctgtggattg catttggaga
tcaatgaata 660ctaaccagtt tcttgagtgg ttgcc
68532152PRTArabidopsis thaliana 32Met Thr Lys Arg Ala Pro Lys
Ser Gly Pro Leu Ser Pro Ser Cys Ser 1 5
10 15 Gly Gly Ser Ser Arg Asn Leu Glu Leu Ala Val
Lys Ser Ser Glu Gly 20 25
30 Ala Arg Arg Ser Thr Arg Leu Arg Leu Gln Pro Leu Arg Lys Pro
Lys 35 40 45 Thr
Ser Pro Lys Lys Lys Pro Val Lys Leu Gln Thr Lys Met Pro Lys 50
55 60 Lys Pro Ala Thr Ala Phe
Phe Phe Phe Leu Asp Asp Phe Arg Lys Gln 65 70
75 80 Tyr Gln Glu Glu Asn Pro Asp Val Lys Ser Met
Arg Glu Val Ile Gly 85 90
95 Lys Thr Cys Gly Glu Lys Trp Lys Thr Met Thr Tyr Glu Glu Lys Val
100 105 110 Lys Tyr
Tyr Asp Ile Ala Thr Glu Lys Arg Glu Glu Phe His Arg Ala 115
120 125 Met Thr Glu Tyr Thr Lys Arg
Met Glu Ser Gly Ala His Asp Glu Ser 130 135
140 Glu Thr Asp Ser Asp Tyr Ser Glu 145
150 33682DNAArabidopsis thaliana 33aagaggcagc gaacgaaagt
tcgattccga gaaagtgaga gaaaatgacg aagagagctc 60ccaagtcagg gcctttgtct
ccgtcgtgca gcggaggctc tagtcggaac ttagagttgg 120ctgtgaagtc aagtgaaggt
gcaaggaggt ctacaagact gagacttcag cctttgagaa 180agccaaagac aagccccaag
aagaaacccg ttaaactcca aacgaagatg cccaagaaac 240ctgccactgc tttcttcttt
ttcctggatg atttccggaa gcaatatcaa gaggagaatc 300cagatgtcaa gtccatgcgc
gagattggga agacatgtgg agagaaatgg aaaacaatga 360cttacgagga aaaggtaaag
tattatgata tagctactga gaagagggaa gaatttcacc 420gagcaatgac agaatatacc
aagagaatgg aatcaggtgc ccacgatgaa tcagagaccg 480actcagacta ttctgaatag
attacttttt agtttctacc acattagaaa cattgttcta 540agccttctag gatgggtttg
tatatcggtg atatttaaga gtttctgttt cgtttttgag 600atcattcttt cactgatact
catgtttctg tggattgcat ttggagatca atgaatacta 660accagtttct tgagtggttg
cc 68234151PRTArabidopsis
thaliana 34Met Thr Lys Arg Ala Pro Lys Ser Gly Pro Leu Ser Pro Ser Cys
Ser 1 5 10 15 Gly
Gly Ser Ser Arg Asn Leu Glu Leu Ala Val Lys Ser Ser Glu Gly
20 25 30 Ala Arg Arg Ser Thr
Arg Leu Arg Leu Gln Pro Leu Arg Lys Pro Lys 35
40 45 Thr Ser Pro Lys Lys Lys Pro Val Lys
Leu Gln Thr Lys Met Pro Lys 50 55
60 Lys Pro Ala Thr Ala Phe Phe Phe Phe Leu Asp Asp Phe
Arg Lys Gln 65 70 75
80 Tyr Gln Glu Glu Asn Pro Asp Val Lys Ser Met Arg Glu Ile Gly Lys
85 90 95 Thr Cys Gly Glu
Lys Trp Lys Thr Met Thr Tyr Glu Glu Lys Val Lys 100
105 110 Tyr Tyr Asp Ile Ala Thr Glu Lys Arg
Glu Glu Phe His Arg Ala Met 115 120
125 Thr Glu Tyr Thr Lys Arg Met Glu Ser Gly Ala His Asp Glu
Ser Glu 130 135 140
Thr Asp Ser Asp Tyr Ser Glu 145 150
35921DNAArabidopsis thaliana 35atgaacgacc tcttaaaggg ttcgttagag
ttctccaggg atcgctctaa tagaagcgat 60attgagtcag gacatggccc tggtaactct
ggagatctcg ggctctctgg tttcttcaaa 120aaggtccagg aaatcgaaaa gcaatatgag
aagcttgaca agcatctcaa caagcttcag 180ggggcacatg aggagactaa agccgtcacc
aaggctcctg caatgaaatc aatcaagcaa 240aggatggaga gagatgttga tgaagtggga
agaatttctc gtttcatcaa aggaaagatc 300gaggaactgg accgagagaa tctggagaac
cggactaaac cgggttgtgg gaaaggaaca 360ggtgtagaca gaacaagaac agccacaact
attgcggtga agaagaaatt taaggacaag 420atatctgaat tccaaactct aagacaaaac
attcaacaag aatacagaga agttgtagag 480aggcgtgtgt ttacagtgac tggccaacga
gctgatgaag aggcaattga tagattgatt 540gaaactggag acagtgagca aattttccag
aaagcaatca gggagcaagg acgaggacag 600ataatggaca cactggctga gattcaggaa
cgccatgacg ctgtcagaga tttagagaag 660aaactccttg acctgcaaca ggtgtttctc
gatatggccg tgctggtgga tgcacaggga 720gagatgttag acaacataga gaatatggtc
tcaagtgctg tggatcatgt tcaatccgga 780aacaatcaac taacaaaggc agtaaaaagc
cagaaaagtt caaggaaatg gatgtgcatt 840gccatcctta tccttcttat cattattatc
attactgtca tctctgttct caaaccatgg 900acacagaaaa atggtgccta a
92136306PRTArabidopsis thaliana 36Met
Asn Asp Leu Leu Lys Gly Ser Leu Glu Phe Ser Arg Asp Arg Ser 1
5 10 15 Asn Arg Ser Asp Ile Glu
Ser Gly His Gly Pro Gly Asn Ser Gly Asp 20
25 30 Leu Gly Leu Ser Gly Phe Phe Lys Lys Val
Gln Glu Ile Glu Lys Gln 35 40
45 Tyr Glu Lys Leu Asp Lys His Leu Asn Lys Leu Gln Gly Ala
His Glu 50 55 60
Glu Thr Lys Ala Val Thr Lys Ala Pro Ala Met Lys Ser Ile Lys Gln 65
70 75 80 Arg Met Glu Arg Asp
Val Asp Glu Val Gly Arg Ile Ser Arg Phe Ile 85
90 95 Lys Gly Lys Ile Glu Glu Leu Asp Arg Glu
Asn Leu Glu Asn Arg Thr 100 105
110 Lys Pro Gly Cys Gly Lys Gly Thr Gly Val Asp Arg Thr Arg Thr
Ala 115 120 125 Thr
Thr Ile Ala Val Lys Lys Lys Phe Lys Asp Lys Ile Ser Glu Phe 130
135 140 Gln Thr Leu Arg Gln Asn
Ile Gln Gln Glu Tyr Arg Glu Val Val Glu 145 150
155 160 Arg Arg Val Phe Thr Val Thr Gly Gln Arg Ala
Asp Glu Glu Ala Ile 165 170
175 Asp Arg Leu Ile Glu Thr Gly Asp Ser Glu Gln Ile Phe Gln Lys Ala
180 185 190 Ile Arg
Glu Gln Gly Arg Gly Gln Ile Met Asp Thr Leu Ala Glu Ile 195
200 205 Gln Glu Arg His Asp Ala Val
Arg Asp Leu Glu Lys Lys Leu Leu Asp 210 215
220 Leu Gln Gln Val Phe Leu Asp Met Ala Val Leu Val
Asp Ala Gln Gly 225 230 235
240 Glu Met Leu Asp Asn Ile Glu Asn Met Val Ser Ser Ala Val Asp His
245 250 255 Val Gln Ser
Gly Asn Asn Gln Leu Thr Lys Ala Val Lys Ser Gln Lys 260
265 270 Ser Ser Arg Lys Trp Met Cys Ile
Ala Ile Leu Ile Leu Leu Ile Ile 275 280
285 Ile Ile Ile Thr Val Ile Ser Val Leu Lys Pro Trp Thr
Gln Lys Asn 290 295 300
Gly Ala 305 372323DNAArabidopsis thaliana 37gtctgttaac aaagcaaccc
tcgtcgcagg aaaaatcata aataaatttg cgttcttcga 60tttctggaaa atctgtcagt
gagtcttgtc tcctataagt ctccttctct cttcctcttg 120atctgactct gaattaaatt
caactacttc ctcctctgcc tggcacgggt tttttgtttg 180ttttctcctg gaaagttcga
agatgcgaga aatctccagt tttttaatca gatcctaagc 240gtgcttcgtt tcgaggctct
ttcagtgatc atttacctcg tttgaccctg gatctcgcct 300tgatttgggg ttctttagct
ggggaaagag ctcgatttcg ggctggtgga agatggtgtt 360taaatctaga ataaaatgga
ttgcgctatt tgtgttgatc ttatcaatgg gatctctggt 420tgttcatctt tccatgacga
agtcttcagg tgtacagttg gcgtattctg caagagataa 480cctttggcag gattttgatt
ctttgttagg tgcacaggat tttagaaata agcacttatg 540gcggcctgtc aaatcgttag
agaccttgca gccttatgcc aatccaagaa atagttatcc 600tgcgcccagt tcgaaaaaca
atggtttcat ttatgcaaag atatttggtg gatttgacaa 660gattagatct tctatatgtg
atcttgtcac catatccagg cttctaaatg ctactcttgt 720cattccagag cttcaagaaa
gtcttcgctc aaaaggcatt agcaacaagt tcaagagttt 780ctcctatctt tatgatgaag
agcagtttat agcctttctt aaaaatgatg ttatagttat 840gaagaccctc cctgagagct
tgaaagccgc aagaaaaagg aatgagttcc ctctttttaa 900gcccaaaaac tctgcgtcac
caaaatttta cctcgaggat gtgttgccaa agttaaagaa 960agctaatgtt attggattga
tcgtctctga tgggggatgc ttgcagtcag ctttgcccgc 1020ttcaatgcct gaacttcaaa
gattaaggtg tagagttgcc ttccatgccc tccagcttcg 1080tccagaaatt caggtgctgg
ccaaggagat ggttgacagg ttacgtaaat caggtcaacc 1140tttcctagct tatcatcctg
gcttagtaag ggagaaattg gcatatcatg gttgtgctga 1200gcttttccag gatattcaca
gtgaactcat ccaatatcgg cgtgctcaga tgatcaagca 1260gaggtttatt ttagaagaac
ttattgtaga ctcgcgcttg cgcagggata atggcttatg 1320tcctctcatg ccagaagagg
ttggaattct tttgaaagca ttgggttatt ctcaaaaagc 1380gatcatatac ttggctggtt
ctgaaatatt tggcggccaa cgggttttga tccctctacg 1440tgccatgttc cctaatttag
tggatcggac ttctttatgc agcacggagg aattatcaga 1500attggttggt cctgagacac
ctcttccaga gaatacatat aaaatgcctc ctcgaaaaag 1560cgataagcag ctcaaggaag
agtggaacaa ggcaggtcct cgacctcgac ctctacctcc 1620tcctccagac agacctatct
accagcacga aaaagaagga tggtatggtt ggcttacaga 1680gaatgacaca gaaccaagcc
cttcgcctat ggatcttagg aatcaagcac acaggttact 1740gtgggatgcc cttgattttg
ctgtttctgt agaagctgat gtgttcttcc ctgggttcaa 1800caacgatggt agtggatggc
cagatttttc aagtttggtg atgggtcaaa ggctctatga 1860aagaccctct tcacgaacat
atagactgga caggaaagtt attcaagaac ttttcaacat 1920tactcgtgag gacatgtacc
atcccaaccg taactggaca cttcgtgtga ggaaacatct 1980taactcaagt ttgggtgaaa
gtgggcttat caggcagtct atgttgtcga aacctaggtc 2040gttcctttcg catccacttc
ctgaatgctc atgcagaacc tcagcccttg aggattccag 2100gcaaatacag agtgatgatg
gtagatttct ctatggaggt gaggatgaat gccctaaatg 2160gataaaatca gcgggagtgg
aaaagagtaa aactgatgat ggtgatcagc ctgattatga 2220ccatgacctt ctcgctgaac
agtcagaaac tgaagaagaa tttgcaaaaa gtaaggtagc 2280ttcagctttt gaccaagatg
aagagtggga tcctaatgac tag 232338656PRTArabidopsis
thaliana 38Met Val Phe Lys Ser Arg Ile Lys Trp Ile Ala Leu Phe Val Leu
Ile 1 5 10 15 Leu
Ser Met Gly Ser Leu Val Val His Leu Ser Met Thr Lys Ser Ser
20 25 30 Gly Val Gln Leu Ala
Tyr Ser Ala Arg Asp Asn Leu Trp Gln Asp Phe 35
40 45 Asp Ser Leu Leu Gly Ala Gln Asp Phe
Arg Asn Lys His Leu Trp Arg 50 55
60 Pro Val Lys Ser Leu Glu Thr Leu Gln Pro Tyr Ala Asn
Pro Arg Asn 65 70 75
80 Ser Tyr Pro Ala Pro Ser Ser Lys Asn Asn Gly Phe Ile Tyr Ala Lys
85 90 95 Ile Phe Gly Gly
Phe Asp Lys Ile Arg Ser Ser Ile Cys Asp Leu Val 100
105 110 Thr Ile Ser Arg Leu Leu Asn Ala Thr
Leu Val Ile Pro Glu Leu Gln 115 120
125 Glu Ser Leu Arg Ser Lys Gly Ile Ser Asn Lys Phe Lys Ser
Phe Ser 130 135 140
Tyr Leu Tyr Asp Glu Glu Gln Phe Ile Ala Phe Leu Lys Asn Asp Val 145
150 155 160 Ile Val Met Lys Thr
Leu Pro Glu Ser Leu Lys Ala Ala Arg Lys Arg 165
170 175 Asn Glu Phe Pro Leu Phe Lys Pro Lys Asn
Ser Ala Ser Pro Lys Phe 180 185
190 Tyr Leu Glu Asp Val Leu Pro Lys Leu Lys Lys Ala Asn Val Ile
Gly 195 200 205 Leu
Ile Val Ser Asp Gly Gly Cys Leu Gln Ser Ala Leu Pro Ala Ser 210
215 220 Met Pro Glu Leu Gln Arg
Leu Arg Cys Arg Val Ala Phe His Ala Leu 225 230
235 240 Gln Leu Arg Pro Glu Ile Gln Val Leu Ala Lys
Glu Met Val Asp Arg 245 250
255 Leu Arg Lys Ser Gly Gln Pro Phe Leu Ala Tyr His Pro Gly Leu Val
260 265 270 Arg Glu
Lys Leu Ala Tyr His Gly Cys Ala Glu Leu Phe Gln Asp Ile 275
280 285 His Ser Glu Leu Ile Gln Tyr
Arg Arg Ala Gln Met Ile Lys Gln Arg 290 295
300 Phe Ile Leu Glu Glu Leu Ile Val Asp Ser Arg Leu
Arg Arg Asp Asn 305 310 315
320 Gly Leu Cys Pro Leu Met Pro Glu Glu Val Gly Ile Leu Leu Lys Ala
325 330 335 Leu Gly Tyr
Ser Gln Lys Ala Ile Ile Tyr Leu Ala Gly Ser Glu Ile 340
345 350 Phe Gly Gly Gln Arg Val Leu Ile
Pro Leu Arg Ala Met Phe Pro Asn 355 360
365 Leu Val Asp Arg Thr Ser Leu Cys Ser Thr Glu Glu Leu
Ser Glu Leu 370 375 380
Val Gly Pro Glu Thr Pro Leu Pro Glu Asn Thr Tyr Lys Met Pro Pro 385
390 395 400 Arg Lys Ser Asp
Lys Gln Leu Lys Glu Glu Trp Asn Lys Ala Gly Pro 405
410 415 Arg Pro Arg Pro Leu Pro Pro Pro Pro
Asp Arg Pro Ile Tyr Gln His 420 425
430 Glu Lys Glu Gly Trp Tyr Gly Trp Leu Thr Glu Asn Asp Thr
Glu Pro 435 440 445
Ser Pro Ser Pro Met Asp Leu Arg Asn Gln Ala His Arg Leu Leu Trp 450
455 460 Asp Ala Leu Asp Phe
Ala Val Ser Val Glu Ala Asp Val Phe Phe Pro 465 470
475 480 Gly Phe Asn Asn Asp Gly Ser Gly Trp Pro
Asp Phe Ser Ser Leu Val 485 490
495 Met Gly Gln Arg Leu Tyr Glu Arg Pro Ser Ser Arg Thr Tyr Arg
Leu 500 505 510 Asp
Arg Lys Val Ile Gln Glu Leu Phe Asn Ile Thr Arg Glu Asp Met 515
520 525 Tyr His Pro Asn Arg Asn
Trp Thr Leu Arg Val Arg Lys His Leu Asn 530 535
540 Ser Ser Leu Gly Glu Ser Gly Leu Ile Arg Gln
Ser Met Leu Ser Lys 545 550 555
560 Pro Arg Ser Phe Leu Ser His Pro Leu Pro Glu Cys Ser Cys Arg Thr
565 570 575 Ser Ala
Leu Glu Asp Ser Arg Gln Ile Gln Ser Asp Asp Gly Arg Phe 580
585 590 Leu Tyr Gly Gly Glu Asp Glu
Cys Pro Lys Trp Ile Lys Ser Ala Gly 595 600
605 Val Glu Lys Ser Lys Thr Asp Asp Gly Asp Gln Pro
Asp Tyr Asp His 610 615 620
Asp Leu Leu Ala Glu Gln Ser Glu Thr Glu Glu Glu Phe Ala Lys Ser 625
630 635 640 Lys Val Ala
Ser Ala Phe Asp Gln Asp Glu Glu Trp Asp Pro Asn Asp 645
650 655 39291DNAArabidopsis thaliana
39atggctttgg taagaggttt catggctgca aagaagattc ttggtggctc agtagcagga
60acgaggaaag aaacttcagc accaaaaggg tttcttgcag tgtacgtcgg tgagagccag
120aggaagaagc agagacacct tgtgccggtc tcatacttga accagccttt gtttcaagct
180ctactcatca aagctgaaga agagttcgga ttcaatcatc cgatgggcgg cttgacgatc
240ccttgtcctg aagatacttt cctcactgta acgtctcaga tccaaggatg a
2914096PRTArabidopsis thaliana 40Met Ala Leu Val Arg Gly Phe Met Ala Ala
Lys Lys Ile Leu Gly Gly 1 5 10
15 Ser Val Ala Gly Thr Arg Lys Glu Thr Ser Ala Pro Lys Gly Phe
Leu 20 25 30 Ala
Val Tyr Val Gly Glu Ser Gln Arg Lys Lys Gln Arg His Leu Val 35
40 45 Pro Val Ser Tyr Leu Asn
Gln Pro Leu Phe Gln Ala Leu Leu Ile Lys 50 55
60 Ala Glu Glu Glu Phe Gly Phe Asn His Pro Met
Gly Gly Leu Thr Ile 65 70 75
80 Pro Cys Pro Glu Asp Thr Phe Leu Thr Val Thr Ser Gln Ile Gln Gly
85 90 95
41505DNAArabidopsis thaliana 41atcatcaacc acaagcaatc cagaacttta
gtccttcctt tgatcccata catattcaga 60agcttcgaga atcaaacttc tagacaagaa
aatggctttg gtgagaagta tcttcagtgc 120aaagaagatt cttggcggct ccttagcaag
aacgagcaaa gcaccaaaag gttttcttgc 180ggtgtacgtc ggtgagaacc aagagaagaa
gcagagatac tttgtaccag tctcatactt 240gaagcagcct tcatttcagg cccttctcag
taaatgcgaa gaagagtttg gttttgatca 300tccaatgggc ggcttgacaa tttgttgtcc
tgaatacaca tttatcagca taacttctag 360gatccaatga tgatcatcag taggaaaaac
aataattttc ttgtaaatag attgacaaat 420tttcatctta ttaaccaaaa gatttgttcc
aaacatatga aagccagttt tgtgtaagaa 480acaatgctat taacatataa tcagt
5054292PRTArabidopsis thaliana 42Met
Ala Leu Val Arg Ser Ile Phe Ser Ala Lys Lys Ile Leu Gly Gly 1
5 10 15 Ser Leu Ala Arg Thr Ser
Lys Ala Pro Lys Gly Phe Leu Ala Val Tyr 20
25 30 Val Gly Glu Asn Gln Glu Lys Lys Gln Arg
Tyr Phe Val Pro Val Ser 35 40
45 Tyr Leu Lys Gln Pro Ser Phe Gln Ala Leu Leu Ser Lys Cys
Glu Glu 50 55 60
Glu Phe Gly Phe Asp His Pro Met Gly Gly Leu Thr Ile Cys Cys Pro 65
70 75 80 Glu Tyr Thr Phe Ile
Ser Ile Thr Ser Arg Ile Gln 85 90
43727DNAArabidopsis thaliana 43ggcagacaga agcatgtgaa actctcaatt
catatacgtc cccacagttt tcaaatatcc 60cttaaaatgt tcaactctct tattgatcta
tttaaaagac ccaaaacaga acaacatctt 120catacctatt aacaataagc aatctaagaa
ctctaagctt caaaagatca agacttataa 180acaaaaatgg ctttggtgag aagtctcttt
gtttcaaaca agatacttgg aggctcatta 240gcaggaatga gaaaatcaac ttcagcacca
aaagggtttc ttgcagtgta cgtaggggag 300agccagaaga agcagagata cttagtgcta
gtctcatact tgagccagcc attgtttcaa 360gatcttctca gtaaatccga ggaagagttc
ggatttgatc atccgatggg gggcttgacg 420atcccttgtc ctgaagatac cttcctcact
gtaacttctc ggatccaagg atgatcatca 480tctgaagaaa aacttaacac ttttctttct
ttcttttttt gacagcaaca ctttaattac 540tgtagataga tgagaatttt tttcattttt
cttgaattat ttgatcaaga agatagaaat 600tccaatgtaa atgccagttt tgtcatttgt
cattttattt atggaatcaa acaaaagatc 660cagacagatt tctaagttct gtttatatga
tgtgtttatc aacagttata tactataaag 720tataaaa
7274495PRTArabidopsis thaliana 44Met
Ala Leu Val Arg Ser Leu Phe Val Ser Asn Lys Ile Leu Gly Gly 1
5 10 15 Ser Leu Ala Gly Met Arg
Lys Ser Thr Ser Ala Pro Lys Gly Phe Leu 20
25 30 Ala Val Tyr Val Gly Glu Ser Gln Lys Lys
Gln Arg Tyr Leu Val Leu 35 40
45 Val Ser Tyr Leu Ser Gln Pro Leu Phe Gln Asp Leu Leu Ser
Lys Ser 50 55 60
Glu Glu Glu Phe Gly Phe Asp His Pro Met Gly Gly Leu Thr Ile Pro 65
70 75 80 Cys Pro Glu Asp Thr
Phe Leu Thr Val Thr Ser Arg Ile Gln Gly 85
90 95 45396DNAArabidopsis thaliana 45atgacagagc
agaacgatac agctggacaa aaccatgtca aactctctgc ccctacgctt 60ttagaccaca
aaacaaaaca ccattgtcat atcatcaata accagcaatc aaataactca 120tatatgcttc
aaaccaagac tttcaagatt caaatggctt tggttagagg tatttatgct 180tcaaagaaga
cacttgaccg ctctatagca gctgcagcag caacattgag caaaagacat 240gtgggttctg
cgctagcctt tgtcctagct tcttacttga accagccttt gtttcaagct 300cttctcagta
aatccgaaga ggagttaggg tttgattatc cgatggttgg cctgacgatt 360cgttgcccag
gagataactt tctcactata ctgtaa
39646131PRTArabidopsis thaliana 46Met Thr Glu Gln Asn Asp Thr Ala Gly Gln
Asn His Val Lys Leu Ser 1 5 10
15 Ala Pro Thr Leu Leu Asp His Lys Thr Lys His His Cys His Ile
Ile 20 25 30 Asn
Asn Gln Gln Ser Asn Asn Ser Tyr Met Leu Gln Thr Lys Thr Phe 35
40 45 Lys Ile Gln Met Ala Leu
Val Arg Gly Ile Tyr Ala Ser Lys Lys Thr 50 55
60 Leu Asp Arg Ser Ile Ala Ala Ala Ala Ala Thr
Leu Ser Lys Arg His 65 70 75
80 Val Gly Ser Ala Leu Ala Phe Val Leu Ala Ser Tyr Leu Asn Gln Pro
85 90 95 Leu Phe
Gln Ala Leu Leu Ser Lys Ser Glu Glu Glu Leu Gly Phe Asp 100
105 110 Tyr Pro Met Val Gly Leu Thr
Ile Arg Cys Pro Gly Asp Asn Phe Leu 115 120
125 Thr Ile Leu 130 47472DNAArabidopsis
thaliana 47atggctttgg tgagaagtct ctttagcgca aagaagattc ttggcggttc
tttagtaaaa 60acaagcaagg caccgccaaa agggtttctt gcagtgtacg tcggcgagag
ccagaagaag 120cagagacatt ttgtaccagt ctcatacttg aaccagcctt tgtttcaaga
tcttctaagc 180aaatgtgaag aagagtttgg ttttgatcat ccgatgggcg gcttgacaat
cccttgtcct 240gtagatactt ttatcagtat aacatctcag ctccaaggat gaagatgatg
atgatccaac 300aaaaatacat taacaatttt ttttttttac tcaaactaga gatggaggag
tattccatgt 360gaatagataa catttttttc tcctctttcc tatttgatag agtttgttct
agacgattag 420aaaatttcga atgtgattgc cgtttttgta taacaaagat caaatcattt
ac 4724893PRTArabidopsis thaliana 48Met Ala Leu Val Arg Ser
Leu Phe Ser Ala Lys Lys Ile Leu Gly Gly 1 5
10 15 Ser Leu Val Lys Thr Ser Lys Ala Pro Pro Lys
Gly Phe Leu Ala Val 20 25
30 Tyr Val Gly Glu Ser Gln Lys Lys Gln Arg His Phe Val Pro Val
Ser 35 40 45 Tyr
Leu Asn Gln Pro Leu Phe Gln Asp Leu Leu Ser Lys Cys Glu Glu 50
55 60 Glu Phe Gly Phe Asp His
Pro Met Gly Gly Leu Thr Ile Pro Cys Pro 65 70
75 80 Val Asp Thr Phe Ile Ser Ile Thr Ser Gln Leu
Gln Gly 85 90
494091DNAArabidopsis thaliana 49cgtatcgaaa atcttcttcg ggtcagacga
tctgaagccg atcgctgtag aatcagtttc 60gtgctccgca gtttctcgag tttcctctca
cttcagatct tcataagaga attcacttac 120ggagagggac tttttcgtag acgattctca
ctggatatct atcacccggt aagatcgtct 180tgctcgaaaa gaattgaaaa gtttttaagt
aattgaataa ggaactgtga atcggagagg 240cttacttttt tgaaaagatc taaaccatcg
tagaagatcg tcctcaaata tctcacagaa 300gttaccaatt ttgaaagatc actagagata
gctacggatt ttgagaggcg gatctgtcca 360ggtcggcact gtgaaagaga actacactgg
ttttttccag atgatatgaa gcttccgtga 420acgaatctga ttctaaggta ctcatcgaag
agaatctggg attgtattga tctggtccct 480tagcttccag tttggctata actctgacaa
ctgttgtaag tgataagttg tgatcaataa 540tgggtacgga gaatcagggc tatccaaatt
ttccagctag gcctgcttcc tctccatttg 600catctgctcc gccaccaggg attcctcctc
aatcaggtgg accacccact ggatcagagg 660cggttggctt tagacctttt acaccatctg
catcccaacc tacaagacct ttcactgcct 720ctggtcctcc tccggctcca ccagtgggta
cgatgaggcc tggccagccg tctccttttg 780tttctcagat tcctgggagt agacctccac
cgccatcatc aaattcgttt ccttcaccag 840catatggtcc tcctggtggt gccccttttc
agcgttttcc atccccgcca ttcccgacta 900cacaaaaccc tcctcagggc ccaccaccac
ctcaaactct tgcaggtcac ttatctcctc 960ctatgtctct tcgcccacag caaccgatgg
cacctgtagc aatggggcct ccgccacaaa 1020gtacgacttc tgggctacct ggagcaaatg
cttatccccc tgctacagat tatcatatgc 1080ctgccaggcc tggttttcaa cagtcaatgc
ctccagttac tccgtcttat cctggcgtgg 1140gcggttcgca gccatctttt cctggttatc
ctagcaagca ggtcttacag gctccgacgc 1200cattccagac atctcaaggt cccccaggac
cccctccagt ctcatcatat cctcctcaca 1260caggaggttt tgctcagcga ccaaatatgg
cagcacagca gaatctgcat ccaaactatg 1320cacctcctcc cagtaacgtt caaggcttga
ctgaagattt taactcgcta tctctttcat 1380ctattcctgg atcgctggaa ccaggacttg
atcataaatc attcccaagg ccattggatg 1440gtgacgtgga gccaaattca tttgctgaaa
tgtacccaat gaattgccat tctagatatc 1500tacgactgac gactagtgct ataccaaatt
cccagtctct ggcttcaagg tggcatttac 1560ctctaggagc tgtggtttgt ccacttgctg
agactcctga aggggaggag gtaccactta 1620ttgattttgg ctcaactggc atcatccgct
gcagaagatg ccgtacctat gtgaatcctt 1680ttgtgacttt tacagattct ggaagaaagt
ggcggtgtaa tatatgttcg atgcttaatg 1740atgtgcctgg tgaatacttc tcacatttgg
atgctactgg ccgaagaatg gatatggatc 1800aacgacctga gctgactaaa ggcagtgttg
aaatcatagc tccaactgaa tacatggttc 1860ggcctccgat gccacctatc tacttcttcc
tcattgatgt ttcgatttcg gctactaaaa 1920gtggaatgct tgaggttgtt gctcaaacga
ttaagtcttg tttggataac ctgcctggtt 1980atccaagaac tcaaattgga tttattactt
atgacagcac gttacatttt tacaacatga 2040agtcatcttt gagccagccg cagatgatgg
ttgtatcaga tctagatgat atctttgtcc 2100cattgccaga cgatctgctt gtaaatctat
ctgaatctag aactgtggtg gacgcctttt 2160tggacagtct acctttgatg tttcaagata
atttcaatgt ggaatcagct tttggcccag 2220ccctcagagc ggcgtttatg gttatgaacc
aacttggggg caagttacta attttccaga 2280actcattacc ttctcttggt gctgggaggt
taaagttgcg gggagatgat cctcgtgtct 2340atggaactga caaagaatat gcattaaggg
tagctgaaga tcccttctat aaacaaatgg 2400ctgctgattg taccaagttc cagataggaa
ttaatgttta tgcattcagt gataagtaca 2460ctgatattgc ctcattaggg actctggcaa
aatacactgg aggacaggtg tactattatc 2520caggtttcca atcatctgtt catggagata
agttaagaca cgagcttgct agagacctta 2580caagggaaac tgcgtgggag gcggttatgc
gaataagatg tggaaaagga attcgtttct 2640cgtcctacca tgggaacttc atgctaaggt
ctactgacct gcttgctctt cctgctgttg 2700actgtgacaa agcgtatgca atgcagctat
ctcttgagga gactttgcta acatcccaga 2760ctgtgtattt ccaagtggct ttgctatata
ccgcctcttg tggagagaga cgtataaggg 2820tacacacatc tgttgcacca gtggttacag
atcttgggga gatgtataga caagcagaca 2880ctggttccat tgtgtcttta tatgctagat
tagcaattga gaaatctttg tccgcaaaat 2940tggatgatgc acggaatgca atacagcaaa
agattgttaa agccctcaaa gaatatcgta 3000atcttcacgc ggtgcagcat cgcttggggt
ccagattagt atacccagag tctctgaagt 3060tcttgccatt gtacggattg gcaattacta
agtccactcc tcttctaggt ggacctgctg 3120atacttctct tgatgagcgc tgtgctgcag
gcttcaccat gatggctctg cctgtcaaaa 3180agctattgaa gcttttgtat cccaatttat
tccgtgttga cgaatggctc ttaaagccat 3240cagcagccca cgatgacttt aaagacgtat
taaggagatt gccgctggct gcagagagtt 3300tggattctag aggcctttac atatatgatg
atggttttcg attagttttg tggtttggcc 3360ggatgctttc acctgacatt gctaaaaatc
ttcttggggt tgactttgca gcagacctct 3420caagggttac ctttcaagag caagagaatg
ggatgtcaaa gaagctaatg aggttggtaa 3480agaaactgag ggagagtgat ccttcatatc
accccatgtg ttttctagtg agacaaggag 3540aacaaccccg agaaggcttc cttctcctca
gaaatctcat tgaggaccag atgggcggtt 3600cgagtggtta tgtcgattgg attctacaac
ttcaccgcca agttcaacaa aactaagata 3660gctcacaatg acaactcggg tgctaggatg
ccacctcttt gtaaccattg aagaactctt 3720gagctcaaaa atcttctact taagcaggat
catggcggcc ttcttccttg ggccataatg 3780tgttgttttg gataaagaag tgctactttt
tgatttttct tcatttgttt ttctatatag 3840accttttttc tcaagattag gcttttattt
gcctaaccag aatggttatc tccgtaagat 3900tagtcgtttt ttaaatcttt tgttgccttt
tttttttgtc ctcattcgat tttttgttga 3960tgtgcgtctg ttctagattt attttgggag
ttgcagttca tgaatctgtc ctaattaggg 4020ttattaacaa gaagatgcta ctgttaaaat
tttaaaatat ttttatgaat aaataatgtt 4080gtgaaaacct t
4091501038PRTArabidopsis thaliana 50Met
Gly Thr Glu Asn Gln Gly Tyr Pro Asn Phe Pro Ala Arg Pro Ala 1
5 10 15 Ser Ser Pro Phe Ala Ser
Ala Pro Pro Pro Gly Ile Pro Pro Gln Ser 20
25 30 Gly Gly Pro Pro Thr Gly Ser Glu Ala Val
Gly Phe Arg Pro Phe Thr 35 40
45 Pro Ser Ala Ser Gln Pro Thr Arg Pro Phe Thr Ala Ser Gly
Pro Pro 50 55 60
Pro Ala Pro Pro Val Gly Thr Met Arg Pro Gly Gln Pro Ser Pro Phe 65
70 75 80 Val Ser Gln Ile Pro
Gly Ser Arg Pro Pro Pro Pro Ser Ser Asn Ser 85
90 95 Phe Pro Ser Pro Ala Tyr Gly Pro Pro Gly
Gly Ala Pro Phe Gln Arg 100 105
110 Phe Pro Ser Pro Pro Phe Pro Thr Thr Gln Asn Pro Pro Gln Gly
Pro 115 120 125 Pro
Pro Pro Gln Thr Leu Ala Gly His Leu Ser Pro Pro Met Ser Leu 130
135 140 Arg Pro Gln Gln Pro Met
Ala Pro Val Ala Met Gly Pro Pro Pro Gln 145 150
155 160 Ser Thr Thr Ser Gly Leu Pro Gly Ala Asn Ala
Tyr Pro Pro Ala Thr 165 170
175 Asp Tyr His Met Pro Ala Arg Pro Gly Phe Gln Gln Ser Met Pro Pro
180 185 190 Val Thr
Pro Ser Tyr Pro Gly Val Gly Gly Ser Gln Pro Ser Phe Pro 195
200 205 Gly Tyr Pro Ser Lys Gln Val
Leu Gln Ala Pro Thr Pro Phe Gln Thr 210 215
220 Ser Gln Gly Pro Pro Gly Pro Pro Pro Val Ser Ser
Tyr Pro Pro His 225 230 235
240 Thr Gly Gly Phe Ala Gln Arg Pro Asn Met Ala Ala Gln Gln Asn Leu
245 250 255 His Pro Asn
Tyr Ala Pro Pro Pro Ser Asn Val Gln Gly Leu Thr Glu 260
265 270 Asp Phe Asn Ser Leu Ser Leu Ser
Ser Ile Pro Gly Ser Leu Glu Pro 275 280
285 Gly Leu Asp His Lys Ser Phe Pro Arg Pro Leu Asp Gly
Asp Val Glu 290 295 300
Pro Asn Ser Phe Ala Glu Met Tyr Pro Met Asn Cys His Ser Arg Tyr 305
310 315 320 Leu Arg Leu Thr
Thr Ser Ala Ile Pro Asn Ser Gln Ser Leu Ala Ser 325
330 335 Arg Trp His Leu Pro Leu Gly Ala Val
Val Cys Pro Leu Ala Glu Thr 340 345
350 Pro Glu Gly Glu Glu Val Pro Leu Ile Asp Phe Gly Ser Thr
Gly Ile 355 360 365
Ile Arg Cys Arg Arg Cys Arg Thr Tyr Val Asn Pro Phe Val Thr Phe 370
375 380 Thr Asp Ser Gly Arg
Lys Trp Arg Cys Asn Ile Cys Ser Met Leu Asn 385 390
395 400 Asp Val Pro Gly Glu Tyr Phe Ser His Leu
Asp Ala Thr Gly Arg Arg 405 410
415 Met Asp Met Asp Gln Arg Pro Glu Leu Thr Lys Gly Ser Val Glu
Ile 420 425 430 Ile
Ala Pro Thr Glu Tyr Met Val Arg Pro Pro Met Pro Pro Ile Tyr 435
440 445 Phe Phe Leu Ile Asp Val
Ser Ile Ser Ala Thr Lys Ser Gly Met Leu 450 455
460 Glu Val Val Ala Gln Thr Ile Lys Ser Cys Leu
Asp Asn Leu Pro Gly 465 470 475
480 Tyr Pro Arg Thr Gln Ile Gly Phe Ile Thr Tyr Asp Ser Thr Leu His
485 490 495 Phe Tyr
Asn Met Lys Ser Ser Leu Ser Gln Pro Gln Met Met Val Val 500
505 510 Ser Asp Leu Asp Asp Ile Phe
Val Pro Leu Pro Asp Asp Leu Leu Val 515 520
525 Asn Leu Ser Glu Ser Arg Thr Val Val Asp Ala Phe
Leu Asp Ser Leu 530 535 540
Pro Leu Met Phe Gln Asp Asn Phe Asn Val Glu Ser Ala Phe Gly Pro 545
550 555 560 Ala Leu Arg
Ala Ala Phe Met Val Met Asn Gln Leu Gly Gly Lys Leu 565
570 575 Leu Ile Phe Gln Asn Ser Leu Pro
Ser Leu Gly Ala Gly Arg Leu Lys 580 585
590 Leu Arg Gly Asp Asp Pro Arg Val Tyr Gly Thr Asp Lys
Glu Tyr Ala 595 600 605
Leu Arg Val Ala Glu Asp Pro Phe Tyr Lys Gln Met Ala Ala Asp Cys 610
615 620 Thr Lys Phe Gln
Ile Gly Ile Asn Val Tyr Ala Phe Ser Asp Lys Tyr 625 630
635 640 Thr Asp Ile Ala Ser Leu Gly Thr Leu
Ala Lys Tyr Thr Gly Gly Gln 645 650
655 Val Tyr Tyr Tyr Pro Gly Phe Gln Ser Ser Val His Gly Asp
Lys Leu 660 665 670
Arg His Glu Leu Ala Arg Asp Leu Thr Arg Glu Thr Ala Trp Glu Ala
675 680 685 Val Met Arg Ile
Arg Cys Gly Lys Gly Ile Arg Phe Ser Ser Tyr His 690
695 700 Gly Asn Phe Met Leu Arg Ser Thr
Asp Leu Leu Ala Leu Pro Ala Val 705 710
715 720 Asp Cys Asp Lys Ala Tyr Ala Met Gln Leu Ser Leu
Glu Glu Thr Leu 725 730
735 Leu Thr Ser Gln Thr Val Tyr Phe Gln Val Ala Leu Leu Tyr Thr Ala
740 745 750 Ser Cys Gly
Glu Arg Arg Ile Arg Val His Thr Ser Val Ala Pro Val 755
760 765 Val Thr Asp Leu Gly Glu Met Tyr
Arg Gln Ala Asp Thr Gly Ser Ile 770 775
780 Val Ser Leu Tyr Ala Arg Leu Ala Ile Glu Lys Ser Leu
Ser Ala Lys 785 790 795
800 Leu Asp Asp Ala Arg Asn Ala Ile Gln Gln Lys Ile Val Lys Ala Leu
805 810 815 Lys Glu Tyr Arg
Asn Leu His Ala Val Gln His Arg Leu Gly Ser Arg 820
825 830 Leu Val Tyr Pro Glu Ser Leu Lys Phe
Leu Pro Leu Tyr Gly Leu Ala 835 840
845 Ile Thr Lys Ser Thr Pro Leu Leu Gly Gly Pro Ala Asp Thr
Ser Leu 850 855 860
Asp Glu Arg Cys Ala Ala Gly Phe Thr Met Met Ala Leu Pro Val Lys 865
870 875 880 Lys Leu Leu Lys Leu
Leu Tyr Pro Asn Leu Phe Arg Val Asp Glu Trp 885
890 895 Leu Leu Lys Pro Ser Ala Ala His Asp Asp
Phe Lys Asp Val Leu Arg 900 905
910 Arg Leu Pro Leu Ala Ala Glu Ser Leu Asp Ser Arg Gly Leu Tyr
Ile 915 920 925 Tyr
Asp Asp Gly Phe Arg Leu Val Leu Trp Phe Gly Arg Met Leu Ser 930
935 940 Pro Asp Ile Ala Lys Asn
Leu Leu Gly Val Asp Phe Ala Ala Asp Leu 945 950
955 960 Ser Arg Val Thr Phe Gln Glu Gln Glu Asn Gly
Met Ser Lys Lys Leu 965 970
975 Met Arg Leu Val Lys Lys Leu Arg Glu Ser Asp Pro Ser Tyr His Pro
980 985 990 Met Cys
Phe Leu Val Arg Gln Gly Glu Gln Pro Arg Glu Gly Phe Leu 995
1000 1005 Leu Leu Arg Asn Leu
Ile Glu Asp Gln Met Gly Gly Ser Ser Gly 1010 1015
1020 Tyr Val Asp Trp Ile Leu Gln Leu His Arg
Gln Val Gln Gln Asn 1025 1030 1035
51893DNAArabidopsis thaliana 51taatttgaat aagctgctca cttttaatca
ccccggagta gtaagcttgc ggctgatcag 60agctgagtga aaaatggtgt ctggatcagg
aatttgcgcg aagcgcgtgg tggttgatgc 120tcgtcaccac atgctaggtc gcttggcttc
ggttgtagca aaggatctgc tcaatggcca 180gaatattgtg gttgtccggt gcgaggagat
ttgtctctcc ggcggacttg ttcgtcagaa 240gatgaagtac atgaggtttc tccgtaagcg
tatgaacact aaaccttctc acggacctat 300tcacttccgt gctccctcca agatcttctg
gcgtaccgtt cgcggtatga ttccacacaa 360gactaagcgt ggagctaatg cacttgcccg
cttgaaggtc tttgaaggag ttcctactcc 420atatgacaag atcaagagga tggtcgttcc
tgatgctctc aaggtcttga ggctgcaggc 480tggacacaaa tactgtctgt tgggtcgcct
ttcttctgaa gtcgggtgga accactacga 540caccatcaag caggagctgg agaacaagag
aaaggaaaga gctcaagctg tttatgagag 600aaagaagcaa cttagcaaac tcagagctaa
ggccgagaag gttgctgaag agaagcttgg 660atctcaattg gatgttcttg cacccgtcaa
gtactgaatt caatcagttt atcgtatttg 720aatgtttttg caagttttgc tcagacatta
tactattata ttacgaggtt ttgttgtatg 780cgattttgac ttagtttatt tcttgaattc
gactttactt agtttatttc ttgaattcgt 840cttttgtcat gcgcctcctc caaaacgttt
cgtgatttat ttttcctctg cat 89352207PRTArabidopsis thaliana 52Met
Val Ser Gly Ser Gly Ile Cys Ala Lys Arg Val Val Val Asp Ala 1
5 10 15 Arg His His Met Leu Gly
Arg Leu Ala Ser Val Val Ala Lys Asp Leu 20
25 30 Leu Asn Gly Gln Asn Ile Val Val Val Arg
Cys Glu Glu Ile Cys Leu 35 40
45 Ser Gly Gly Leu Val Arg Gln Lys Met Lys Tyr Met Arg Phe
Leu Arg 50 55 60
Lys Arg Met Asn Thr Lys Pro Ser His Gly Pro Ile His Phe Arg Ala 65
70 75 80 Pro Ser Lys Ile Phe
Trp Arg Thr Val Arg Gly Met Ile Pro His Lys 85
90 95 Thr Lys Arg Gly Ala Asn Ala Leu Ala Arg
Leu Lys Val Phe Glu Gly 100 105
110 Val Pro Thr Pro Tyr Asp Lys Ile Lys Arg Met Val Val Pro Asp
Ala 115 120 125 Leu
Lys Val Leu Arg Leu Gln Ala Gly His Lys Tyr Cys Leu Leu Gly 130
135 140 Arg Leu Ser Ser Glu Val
Gly Trp Asn His Tyr Asp Thr Ile Lys Gln 145 150
155 160 Glu Leu Glu Asn Lys Arg Lys Glu Arg Ala Gln
Ala Val Tyr Glu Arg 165 170
175 Lys Lys Gln Leu Ser Lys Leu Arg Ala Lys Ala Glu Lys Val Ala Glu
180 185 190 Glu Lys
Leu Gly Ser Gln Leu Asp Val Leu Ala Pro Val Lys Tyr 195
200 205 53881DNAArabidopsis thaliana
53taagctgctc acttttaatc accccggagt agtaagcttg cggctgatca gagctgagtg
60aaaaatggtg tctggatcag gaatttgcgc gaagcgcgtg gtggttgatg ctcgtcacca
120catgctaggt cgcttggctt cggttgtagc aaaggatctg ctcaatggcc agaatattgt
180ggttgtccgg tgcgaggaga tttgtctctc cggcggactt gttcgtcaga agatgaagta
240catgaggttt ctccgtaagc gtatgaacac taaaccttct cacggaccta ttcacttccg
300tgctccctcc aagatcttct ggcgtaccgt tcgcggtatg attccacaca agactaagcg
360tggagctaat gcacttgccc gcttgaaggt ctttgaagga gttcctactc catatgacaa
420gatcaagagg atggtcgttc ctgatgctct caaggtcttg aggctgcagg ctggacacaa
480atactgtctg ttgggtcgcc tttcttctga agtcgggtgg aaccactacg acaccatcaa
540ggagctggag aacaagagaa aggaaagagc tcaagctgtt tatgagagaa agaagcaact
600tagcaaactc agagctaagg ccgagaaggt tgctgaagag aagcttggat ctcaattgga
660tgttcttgca cccgtcaagt actgaattca atcagtttat cgtatttgaa tgtttttgca
720agttttgctc agacattata ctattatatt acgaggtttt gttgtatgcg attttgactt
780agtttatttc ttgaattcga ctttacttag tttatttctt gaattcgtct tttgtcatgc
840gcctcctcca aaacgtttcg tgatttattt ttcctctgca t
88154206PRTArabidopsis thaliana 54Met Val Ser Gly Ser Gly Ile Cys Ala Lys
Arg Val Val Val Asp Ala 1 5 10
15 Arg His His Met Leu Gly Arg Leu Ala Ser Val Val Ala Lys Asp
Leu 20 25 30 Leu
Asn Gly Gln Asn Ile Val Val Val Arg Cys Glu Glu Ile Cys Leu 35
40 45 Ser Gly Gly Leu Val Arg
Gln Lys Met Lys Tyr Met Arg Phe Leu Arg 50 55
60 Lys Arg Met Asn Thr Lys Pro Ser His Gly Pro
Ile His Phe Arg Ala 65 70 75
80 Pro Ser Lys Ile Phe Trp Arg Thr Val Arg Gly Met Ile Pro His Lys
85 90 95 Thr Lys
Arg Gly Ala Asn Ala Leu Ala Arg Leu Lys Val Phe Glu Gly 100
105 110 Val Pro Thr Pro Tyr Asp Lys
Ile Lys Arg Met Val Val Pro Asp Ala 115 120
125 Leu Lys Val Leu Arg Leu Gln Ala Gly His Lys Tyr
Cys Leu Leu Gly 130 135 140
Arg Leu Ser Ser Glu Val Gly Trp Asn His Tyr Asp Thr Ile Lys Glu 145
150 155 160 Leu Glu Asn
Lys Arg Lys Glu Arg Ala Gln Ala Val Tyr Glu Arg Lys 165
170 175 Lys Gln Leu Ser Lys Leu Arg Ala
Lys Ala Glu Lys Val Ala Glu Glu 180 185
190 Lys Leu Gly Ser Gln Leu Asp Val Leu Ala Pro Val Lys
Tyr 195 200 205
551164DNAArabidopsis thaliana 55gaattctttc attaagcaaa tccaatgttt
tcgactctct aaattcaatg cacgaggtaa 60catttcgatg catggagtta aatgtcagcg
ttaaagagcc gtagtaactc gttagccgga 120ctaagtctag acgctgtgct tggcggcgag
atccttatag aaccgccatc tctaccgtcg 180ccaccacctt taccatcaaa atctcttgta
ccgcaccgtc caacaagcca aacccttttt 240gatatcatac gtgaggaata cgccaaagaa
gggcacaaag atcggaccac gtggcagatt 300ttccgtgaga aactccgtct taaacgaacc
ggttctgctt ggacctcgtc tcttcatatc 360cctgcttcgg atatccttat ccctaatccc
aaacacattg gaacagcgtt ccggtctcac 420tccgccggtt taaacatccg agatctggtt
cacgctatac cgatgtcaga tccacctggt 480tcttcaggac gcgctatgtt cacgcgcgga
tcttcaatgc gggtcgggtc gagtaaaaac 540ccggacgatt cgcctgacat cagcgttctt
gaagatgggc caccgtctag gagttttaag 600ccgcagttat cacggcacga ttccgttaga
gatcacagcg aaggcgaaga aaacaacaga 660cgacgtcatc cgatcgtcac gttcgtggaa
gagagacaaa tgtcggcgag agaagcggtt 720gctgctcaag aagcggcgga agctgaagcg
gcggcggctg gaggaagcga agatgaagac 780gacgatgacg aagaggatga ttcaggagaa
acagaggaga tgaaatcatc ttcagcttct 840gagccgaaac agacgatgtc tctgatggat
ctgttggaag aaacagatcg acaaatggga 900ttaacaggat cgagatacgc catggatgaa
gatgaagagt acgaagaaga cgaagaagat 960gagaacaacg aggaagaagg agatagtcat
ggaggaggag aaggagagct tagttgctgc 1020gtttgcatgg tgaaaataaa aggcgcttct
tttacacctt gtggtcacac gttttgtaag 1080ctctgttcta aagagcttat ggctcagaaa
ggtcactgtc ctgtttgcag cagcttcgtt 1140ctcgagttcc ttgagatctt ttag
116456360PRTArabidopsis thaliana 56Met
Ser Ala Leu Lys Ser Arg Ser Asn Ser Leu Ala Gly Leu Ser Leu 1
5 10 15 Asp Ala Val Leu Gly Gly
Glu Ile Leu Ile Glu Pro Pro Ser Leu Pro 20
25 30 Ser Pro Pro Pro Leu Pro Ser Lys Ser Leu
Val Pro His Arg Pro Thr 35 40
45 Ser Gln Thr Leu Phe Asp Ile Ile Arg Glu Glu Tyr Ala Lys
Glu Gly 50 55 60
His Lys Asp Arg Thr Thr Trp Gln Ile Phe Arg Glu Lys Leu Arg Leu 65
70 75 80 Lys Arg Thr Gly Ser
Ala Trp Thr Ser Ser Leu His Ile Pro Ala Ser 85
90 95 Asp Ile Leu Ile Pro Asn Pro Lys His Ile
Gly Thr Ala Phe Arg Ser 100 105
110 His Ser Ala Gly Leu Asn Ile Arg Asp Leu Val His Ala Ile Pro
Met 115 120 125 Ser
Asp Pro Pro Gly Ser Ser Gly Arg Ala Met Phe Thr Arg Gly Ser 130
135 140 Ser Met Arg Val Gly Ser
Ser Lys Asn Pro Asp Asp Ser Pro Asp Ile 145 150
155 160 Ser Val Leu Glu Asp Gly Pro Pro Ser Arg Ser
Phe Lys Pro Gln Leu 165 170
175 Ser Arg His Asp Ser Val Arg Asp His Ser Glu Gly Glu Glu Asn Asn
180 185 190 Arg Arg
Arg His Pro Ile Val Thr Phe Val Glu Glu Arg Gln Met Ser 195
200 205 Ala Arg Glu Ala Val Ala Ala
Gln Glu Ala Ala Glu Ala Glu Ala Ala 210 215
220 Ala Ala Gly Gly Ser Glu Asp Glu Asp Asp Asp Asp
Glu Glu Asp Asp 225 230 235
240 Ser Gly Glu Thr Glu Glu Met Lys Ser Ser Ser Ala Ser Glu Pro Lys
245 250 255 Gln Thr Met
Ser Leu Met Asp Leu Leu Glu Glu Thr Asp Arg Gln Met 260
265 270 Gly Leu Thr Gly Ser Arg Tyr Ala
Met Asp Glu Asp Glu Glu Tyr Glu 275 280
285 Glu Asp Glu Glu Asp Glu Asn Asn Glu Glu Glu Gly Asp
Ser His Gly 290 295 300
Gly Gly Glu Gly Glu Leu Ser Cys Cys Val Cys Met Val Lys Ile Lys 305
310 315 320 Gly Ala Ser Phe
Thr Pro Cys Gly His Thr Phe Cys Lys Leu Cys Ser 325
330 335 Lys Glu Leu Met Ala Gln Lys Gly His
Cys Pro Val Cys Ser Ser Phe 340 345
350 Val Leu Glu Phe Leu Glu Ile Phe 355
360 571676DNAArabidopsis thaliana 57ccaccaccac caccctctgg aacgatgacg
tttctactac ttctactctt ctgctttctc 60tcgccggcaa tctcctccgc ccactctatt
ccgtcaactt tagatggacc gttcgttccg 120gtgacggtgc cattggacac ctctctccgg
gggcaagcca tcgatttgcc cgacaccgat 180ccccgcgtcc gccggcgtgt cattggtttt
gagccggagc aaatctctct ctccctctcc 240tccgatcatg attccatctg ggtctcttgg
atcacaggtg agttccaaat cggaaagaag 300gtgaagccat tagatccgac aagtatcaac
agtgttgttc aattcggaac cttgaggcac 360tcactgagtc atgaagctaa aggacattca
cttgtttata gtcaacttta tcctttcgac 420ggtctcctta actacacttc tggaatcata
caccatgttc gcattacagg gctgaaacca 480agtactatct attactatcg atgtggagat
ccttcaagac gggctatgag taagatacac 540catttcagga caatgcctgt ttctagtccc
tcgagttatc ctggtcgaat agcggttgtt 600ggtgatcttg gtctcactta taacactact
gatacaatta gtcacttgat tcataactct 660ccggatctca ttttattgat cggcgacgtg
agttatgcaa acttgtatct aacaaacggg 720actagctctg attgttattc ttgctctttc
cctgagacac ctatacatga gacgtatcag 780ccacgttggg actactgggg taggtttatg
gagaatctga cttccaaagt tcctttgatg 840gtgattgaag ggaaccatga gatcgaattg
caagcagaga acaagacatt tgaagcttat 900agttcaagat tcgctttccc ttttaatgaa
agcggctcgt cttctacgct atattattcc 960tttaacgctg gtgggattca ctttgttatg
cttggtgcct acattgcgta tgacaaatca 1020gcggaacaat atgaatggtt aaagaaggat
ttggctaaag tcgatagatc ggtaactcca 1080tggttagtag cttcttggca tccaccttgg
tatagttctt atacagcgca ttacagagaa 1140gcagaatgta tgaaagaagc tatggaggaa
ttactttatt cttatggtac cgacattgtc 1200tttaacggac atgtgcatgc ttatgaacgg
tcgaacagag tatacaatta cgaactggac 1260ccatgtggtc cagtttacat tgtgattggt
gatggaggta accgtgaaaa gatggcgatc 1320gagcatgcag atgaccccgg taaatgtcca
gagccgttaa ccacgcccga tccagtcatg 1380ggtgggtttt gcgcgtggaa cttcacgccg
tctgataagt tctgttggga tcggcaacct 1440gattatagtg ccctgagaga aagcagcttt
ggccatggaa tcctagagat gaagaacgag 1500acatgggcac tatggacatg gtataggaat
caagactcga gcagtgaagt cggagatcag 1560atttatattg tgagacaacc tgatcgatgt
ccgcttcacc accgccttgt taaccattgc 1620taagatcaaa cagagatggt ctaataaaat
ttttgggact ttgatcatgt aacagt 167658532PRTArabidopsis thaliana 58Met
Thr Phe Leu Leu Leu Leu Leu Phe Cys Phe Leu Ser Pro Ala Ile 1
5 10 15 Ser Ser Ala His Ser Ile
Pro Ser Thr Leu Asp Gly Pro Phe Val Pro 20
25 30 Val Thr Val Pro Leu Asp Thr Ser Leu Arg
Gly Gln Ala Ile Asp Leu 35 40
45 Pro Asp Thr Asp Pro Arg Val Arg Arg Arg Val Ile Gly Phe
Glu Pro 50 55 60
Glu Gln Ile Ser Leu Ser Leu Ser Ser Asp His Asp Ser Ile Trp Val 65
70 75 80 Ser Trp Ile Thr Gly
Glu Phe Gln Ile Gly Lys Lys Val Lys Pro Leu 85
90 95 Asp Pro Thr Ser Ile Asn Ser Val Val Gln
Phe Gly Thr Leu Arg His 100 105
110 Ser Leu Ser His Glu Ala Lys Gly His Ser Leu Val Tyr Ser Gln
Leu 115 120 125 Tyr
Pro Phe Asp Gly Leu Leu Asn Tyr Thr Ser Gly Ile Ile His His 130
135 140 Val Arg Ile Thr Gly Leu
Lys Pro Ser Thr Ile Tyr Tyr Tyr Arg Cys 145 150
155 160 Gly Asp Pro Ser Arg Arg Ala Met Ser Lys Ile
His His Phe Arg Thr 165 170
175 Met Pro Val Ser Ser Pro Ser Ser Tyr Pro Gly Arg Ile Ala Val Val
180 185 190 Gly Asp
Leu Gly Leu Thr Tyr Asn Thr Thr Asp Thr Ile Ser His Leu 195
200 205 Ile His Asn Ser Pro Asp Leu
Ile Leu Leu Ile Gly Asp Val Ser Tyr 210 215
220 Ala Asn Leu Tyr Leu Thr Asn Gly Thr Ser Ser Asp
Cys Tyr Ser Cys 225 230 235
240 Ser Phe Pro Glu Thr Pro Ile His Glu Thr Tyr Gln Pro Arg Trp Asp
245 250 255 Tyr Trp Gly
Arg Phe Met Glu Asn Leu Thr Ser Lys Val Pro Leu Met 260
265 270 Val Ile Glu Gly Asn His Glu Ile
Glu Leu Gln Ala Glu Asn Lys Thr 275 280
285 Phe Glu Ala Tyr Ser Ser Arg Phe Ala Phe Pro Phe Asn
Glu Ser Gly 290 295 300
Ser Ser Ser Thr Leu Tyr Tyr Ser Phe Asn Ala Gly Gly Ile His Phe 305
310 315 320 Val Met Leu Gly
Ala Tyr Ile Ala Tyr Asp Lys Ser Ala Glu Gln Tyr 325
330 335 Glu Trp Leu Lys Lys Asp Leu Ala Lys
Val Asp Arg Ser Val Thr Pro 340 345
350 Trp Leu Val Ala Ser Trp His Pro Pro Trp Tyr Ser Ser Tyr
Thr Ala 355 360 365
His Tyr Arg Glu Ala Glu Cys Met Lys Glu Ala Met Glu Glu Leu Leu 370
375 380 Tyr Ser Tyr Gly Thr
Asp Ile Val Phe Asn Gly His Val His Ala Tyr 385 390
395 400 Glu Arg Ser Asn Arg Val Tyr Asn Tyr Glu
Leu Asp Pro Cys Gly Pro 405 410
415 Val Tyr Ile Val Ile Gly Asp Gly Gly Asn Arg Glu Lys Met Ala
Ile 420 425 430 Glu
His Ala Asp Asp Pro Gly Lys Cys Pro Glu Pro Leu Thr Thr Pro 435
440 445 Asp Pro Val Met Gly Gly
Phe Cys Ala Trp Asn Phe Thr Pro Ser Asp 450 455
460 Lys Phe Cys Trp Asp Arg Gln Pro Asp Tyr Ser
Ala Leu Arg Glu Ser 465 470 475
480 Ser Phe Gly His Gly Ile Leu Glu Met Lys Asn Glu Thr Trp Ala Leu
485 490 495 Trp Thr
Trp Tyr Arg Asn Gln Asp Ser Ser Ser Glu Val Gly Asp Gln 500
505 510 Ile Tyr Ile Val Arg Gln Pro
Asp Arg Cys Pro Leu His His Arg Leu 515 520
525 Val Asn His Cys 530
592115DNAArabidopsis thaliana 59tcagcgttta tactctgtaa tgccagatcc
gcggtaacgc aagtcagtga cctactccgg 60cgtttatcac tgaatccgat tatggctagt
cttcttcgat ccttaatcct tttgctaatc 120gtgcaatcat ttttggttgc gatcgctttc
gggtcgaaag aagttgaaga attcagcgag 180gcattgctct tgaagccttt acctgatcga
aaagttttag ctcacttcca cttcgagaac 240cgagctcctc cgtcaaactc ccatggccgc
catcaccatc tcttcccgaa agctatttct 300cagttggttc agaagtttcg ggtcaaggag
atggagttat cttttactca gggtcgatgg 360aaccatgaac attggggagg atttgaccct
ctatcaagta tgaatgcgaa gcctgttggt 420gtggagctgt gggctgtgtt tgatgttcct
cagtctcagg ttgatacttc ttggaagaac 480ttaactcatg cactgtcagg gcttttctgt
gcttccatca attttctaga atcttccact 540tcatatgctg ctcctacatg gggatttgga
cccaattctg acaagctgag gtatggttca 600ctgccacgtg aagctgtttg tactgagaac
ttgaccccat ggctaaagtt acttccttgt 660agagataagg atggtatttc tgcgttaatg
aataggccat ctgtttacag agggttttat 720cattctcaga gattgcattt atccacggtt
gaatctggtc aagagggatt gggttctggt 780atagtgctgg agcagacgct tactgttgtt
cttcagcctg agactacttc tgttgaatca 840aatatgcagc caagttggtc cctcagctcc
ctctttggga gacaagttgt tgggagatgt 900gttcttgcaa agtcaagtaa tgtgtatctt
caattggaag gtcttcttgg ttacgaatca 960aaaaacgtgg atacagaaat agaagcacac
caactatgga agaatgcaga gtttgaattg 1020tctcttaagc cagagagggt tattcgagaa
agctgcagct ttctttttat ttttgatatt 1080gacaaatcaa gtgacagcga gccatttgat
cttggcctta cttggaagcg tccctcaaag 1140tggtcatgtc aacaagctcc attacactcg
agtcggtttt tgatgggaag cgggaacgaa 1200agaggtgcaa tagccatctt gttaaaagcg
acagaatctc aggagaagtt atcaggcaga 1260gatctcacta atggccaatg tacaataaaa
gcaaatatct tccagatttt cccatggtat 1320attaaggttt attatcatac tctacaaatc
tttgtggatc aacaacagaa gacagacagt 1380gaggtcttaa agaagatcaa tgtctcacca
tctacggata aggtgtcatc tggcatgatg 1440gagatgatgt tggaactacc atgtgaagtg
aaatctgtag ccatatcaat tgaatatgat 1500aagggttttc tgcatataga tgaatatcct
cctgatgcta atcaaggatt cgacattcca 1560tcggctttga taagcttccc cgatcatcat
gctagtttag atttccaaga agagctcagc 1620aactcgccct tattatcaag tttaaaggaa
aaatccttag tacgctctta cacagaagta 1680ttgctcgtac ctttgacaac ccctgatttt
agcatgcctt acaacgtaat cacgatcaca 1740tgcaccatct tcgcattgta ttttggatca
ttgctaaatg ttctacgtag acgaattggt 1800gaagaagaaa ggtttctcaa aagccaagga
aagaaaacag gtgggcttaa gcagttatta 1860tcgagaatca cagccaagat tagagggaga
ccaattgaag caccatcatc atcagaagct 1920gaatcttcgg tcttgtctag taaacttatc
ttaaaaatca tattagttgc aggagctgct 1980gcagcgtggc aatatttttc cacggacgag
taggcttaaa acttttgaag aaataccagt 2040tgtaccatat gtatcaacaa ggtaattttt
ttgggaccgt gtaagatttg ctcttatata 2100gtttcaaaat tttgc
211560643PRTArabidopsis thaliana 60Met
Ala Ser Leu Leu Arg Ser Leu Ile Leu Leu Leu Ile Val Gln Ser 1
5 10 15 Phe Leu Val Ala Ile Ala
Phe Gly Ser Lys Glu Val Glu Glu Phe Ser 20
25 30 Glu Ala Leu Leu Leu Lys Pro Leu Pro Asp
Arg Lys Val Leu Ala His 35 40
45 Phe His Phe Glu Asn Arg Ala Pro Pro Ser Asn Ser His Gly
Arg His 50 55 60
His His Leu Phe Pro Lys Ala Ile Ser Gln Leu Val Gln Lys Phe Arg 65
70 75 80 Val Lys Glu Met Glu
Leu Ser Phe Thr Gln Gly Arg Trp Asn His Glu 85
90 95 His Trp Gly Gly Phe Asp Pro Leu Ser Ser
Met Asn Ala Lys Pro Val 100 105
110 Gly Val Glu Leu Trp Ala Val Phe Asp Val Pro Gln Ser Gln Val
Asp 115 120 125 Thr
Ser Trp Lys Asn Leu Thr His Ala Leu Ser Gly Leu Phe Cys Ala 130
135 140 Ser Ile Asn Phe Leu Glu
Ser Ser Thr Ser Tyr Ala Ala Pro Thr Trp 145 150
155 160 Gly Phe Gly Pro Asn Ser Asp Lys Leu Arg Tyr
Gly Ser Leu Pro Arg 165 170
175 Glu Ala Val Cys Thr Glu Asn Leu Thr Pro Trp Leu Lys Leu Leu Pro
180 185 190 Cys Arg
Asp Lys Asp Gly Ile Ser Ala Leu Met Asn Arg Pro Ser Val 195
200 205 Tyr Arg Gly Phe Tyr His Ser
Gln Arg Leu His Leu Ser Thr Val Glu 210 215
220 Ser Gly Gln Glu Gly Leu Gly Ser Gly Ile Val Leu
Glu Gln Thr Leu 225 230 235
240 Thr Val Val Leu Gln Pro Glu Thr Thr Ser Val Glu Ser Asn Met Gln
245 250 255 Pro Ser Trp
Ser Leu Ser Ser Leu Phe Gly Arg Gln Val Val Gly Arg 260
265 270 Cys Val Leu Ala Lys Ser Ser Asn
Val Tyr Leu Gln Leu Glu Gly Leu 275 280
285 Leu Gly Tyr Glu Ser Lys Asn Val Asp Thr Glu Ile Glu
Ala His Gln 290 295 300
Leu Trp Lys Asn Ala Glu Phe Glu Leu Ser Leu Lys Pro Glu Arg Val 305
310 315 320 Ile Arg Glu Ser
Cys Ser Phe Leu Phe Ile Phe Asp Ile Asp Lys Ser 325
330 335 Ser Asp Ser Glu Pro Phe Asp Leu Gly
Leu Thr Trp Lys Arg Pro Ser 340 345
350 Lys Trp Ser Cys Gln Gln Ala Pro Leu His Ser Ser Arg Phe
Leu Met 355 360 365
Gly Ser Gly Asn Glu Arg Gly Ala Ile Ala Ile Leu Leu Lys Ala Thr 370
375 380 Glu Ser Gln Glu Lys
Leu Ser Gly Arg Asp Leu Thr Asn Gly Gln Cys 385 390
395 400 Thr Ile Lys Ala Asn Ile Phe Gln Ile Phe
Pro Trp Tyr Ile Lys Val 405 410
415 Tyr Tyr His Thr Leu Gln Ile Phe Val Asp Gln Gln Gln Lys Thr
Asp 420 425 430 Ser
Glu Val Leu Lys Lys Ile Asn Val Ser Pro Ser Thr Asp Lys Val 435
440 445 Ser Ser Gly Met Met Glu
Met Met Leu Glu Leu Pro Cys Glu Val Lys 450 455
460 Ser Val Ala Ile Ser Ile Glu Tyr Asp Lys Gly
Phe Leu His Ile Asp 465 470 475
480 Glu Tyr Pro Pro Asp Ala Asn Gln Gly Phe Asp Ile Pro Ser Ala Leu
485 490 495 Ile Ser
Phe Pro Asp His His Ala Ser Leu Asp Phe Gln Glu Glu Leu 500
505 510 Ser Asn Ser Pro Leu Leu Ser
Ser Leu Lys Glu Lys Ser Leu Val Arg 515 520
525 Ser Tyr Thr Glu Val Leu Leu Val Pro Leu Thr Thr
Pro Asp Phe Ser 530 535 540
Met Pro Tyr Asn Val Ile Thr Ile Thr Cys Thr Ile Phe Ala Leu Tyr 545
550 555 560 Phe Gly Ser
Leu Leu Asn Val Leu Arg Arg Arg Ile Gly Glu Glu Glu 565
570 575 Arg Phe Leu Lys Ser Gln Gly Lys
Lys Thr Gly Gly Leu Lys Gln Leu 580 585
590 Leu Ser Arg Ile Thr Ala Lys Ile Arg Gly Arg Pro Ile
Glu Ala Pro 595 600 605
Ser Ser Ser Glu Ala Glu Ser Ser Val Leu Ser Ser Lys Leu Ile Leu 610
615 620 Lys Ile Ile Leu
Val Ala Gly Ala Ala Ala Ala Trp Gln Tyr Phe Ser 625 630
635 640 Thr Asp Glu 612121DNAArabidopsis
thaliana 61tcagcgttta tactctgtaa tgccagatcc gcggtaacgc aagtcagtga
cctactccgg 60cgtttatcac tgaatccgat tatggctagt cttcttcgat ccttaatcct
tttgctaatc 120gtgcaatcat ttttggttgc gatcgctttc gggtcgaaag aagttgaaga
attcagcgag 180gcattgctct tgaagccttt acctgatcga aaagttttag ctcacttcca
cttcgagaac 240cgagctcctc cgtcaaactc ccatggccgc catcaccatc tcttcccgaa
agctatttct 300cagttggttc agaagtttcg ggtcaaggag atggagttat cttttactca
gggtcgatgg 360aaccatgaac attggggagg atttgaccct ctatcaagta tgaatgcgaa
gcctgttggt 420gtggagctgt gggctgtgtt tgatgttcct cagtctcagg ttgatacttc
ttggaagaac 480ttaactcatg cactgtcagg gcttttctgt gcttccatca attttctaga
atcttccact 540tcatatgctg ctcctacatg gggatttgga cccaattctg acaagctgag
gtatggttca 600ctgccacgtg aagctgtttg tactgagaac ttgaccccat ggctaaagtt
acttccttgt 660agagataagg atggtatttc tgcgttaatg aataggccat ctgtttacag
agggttttat 720cattctcaga gattgcattt atccacggtt gaatctggtc aagagggatt
gggttctggt 780atagtgctgg agcagacgct tactgttgtt cttcagcctg agactacttc
tgttgaatca 840aatatgcagc caagttggtc cctcagctcc ctctttggga gacaagttgt
tgggagatgt 900gttcttgcaa agtcaagtaa tgtgtatctt caattggaag gtcttcttgg
ttacgaatca 960aaaaacgtgg atacagaaat agaagcacac caactatgga agaatgcaga
gtttgaattg 1020tctcttaagc cagagagggt tattcgagaa agctgcagct ttctttttat
ttttgatatt 1080gacaaatcaa gtgacagcga gccatttgat cttggcctta cttggaagcg
tccctcaaag 1140tggtcatgtc aacaagctcc attacactcg agtcggtttt tgatgggaag
cgggaacgaa 1200agaggtgcaa tagccatctt gttaaaagcg acagaatctc aggagaagtt
atcaggcaga 1260gatctcacta atggccaatg tacaataaaa gcaaatatct tccagatttt
cccatggtat 1320attaaggttt attatcatac tctacaaatc tttgtggatc aacaacagaa
gacagacagt 1380gaggtcttaa agaagatcaa tgtctcacca tctacggata aggtgtcatc
tggcatgatg 1440gagatgatgt tggaactacc atgtgaagtg aaatctgtag ccatatcaat
tgaatatgat 1500aagggttttc tgcatataga tgaatatcct cctgatgcta atcaaggatt
cgacattcca 1560tcggctttga taagcttccc cgatcatcat gctagtttag atttccaaga
agagctcagc 1620aactcgccct tattatcaag tttaaaggaa aaatccttag tacgctctta
cacagaagta 1680ttgctcgtac ctttgacaac ccctgatttt agcatgcctt acaacgtaat
cacgatcaca 1740tgcaccatct tcgcattgta ttttggatca ttgctaaatg ttctacgtag
acgaattggt 1800gaagaagaaa ggtttctcaa aagccaagca ggaaagaaaa caggtgggct
taagcagtta 1860ttatcgagaa tcacagccaa gattagaggg agaccaattg aagcaccatc
atcatcagaa 1920gctgaatctt cggtcttgtc tagtaaactt atcttaaaaa tcatattagt
tgcaggagct 1980gctgcagcgt ggcaatattt ttccacggac gagtaggctt aaaacttttg
aagaaatacc 2040agttgtacca tatgtatcaa caaggtaatt tttttgggac cgtgtaagat
ttgctcttat 2100atagtttcaa aattttgcat t
212162644PRTArabidopsis thaliana 62Met Ala Ser Leu Leu Arg Ser
Leu Ile Leu Leu Leu Ile Val Gln Ser 1 5
10 15 Phe Leu Val Ala Ile Ala Phe Gly Ser Lys Glu
Val Glu Glu Phe Ser 20 25
30 Glu Ala Leu Leu Leu Lys Pro Leu Pro Asp Arg Lys Val Leu Ala
His 35 40 45 Phe
His Phe Glu Asn Arg Ala Pro Pro Ser Asn Ser His Gly Arg His 50
55 60 His His Leu Phe Pro Lys
Ala Ile Ser Gln Leu Val Gln Lys Phe Arg 65 70
75 80 Val Lys Glu Met Glu Leu Ser Phe Thr Gln Gly
Arg Trp Asn His Glu 85 90
95 His Trp Gly Gly Phe Asp Pro Leu Ser Ser Met Asn Ala Lys Pro Val
100 105 110 Gly Val
Glu Leu Trp Ala Val Phe Asp Val Pro Gln Ser Gln Val Asp 115
120 125 Thr Ser Trp Lys Asn Leu Thr
His Ala Leu Ser Gly Leu Phe Cys Ala 130 135
140 Ser Ile Asn Phe Leu Glu Ser Ser Thr Ser Tyr Ala
Ala Pro Thr Trp 145 150 155
160 Gly Phe Gly Pro Asn Ser Asp Lys Leu Arg Tyr Gly Ser Leu Pro Arg
165 170 175 Glu Ala Val
Cys Thr Glu Asn Leu Thr Pro Trp Leu Lys Leu Leu Pro 180
185 190 Cys Arg Asp Lys Asp Gly Ile Ser
Ala Leu Met Asn Arg Pro Ser Val 195 200
205 Tyr Arg Gly Phe Tyr His Ser Gln Arg Leu His Leu Ser
Thr Val Glu 210 215 220
Ser Gly Gln Glu Gly Leu Gly Ser Gly Ile Val Leu Glu Gln Thr Leu 225
230 235 240 Thr Val Val Leu
Gln Pro Glu Thr Thr Ser Val Glu Ser Asn Met Gln 245
250 255 Pro Ser Trp Ser Leu Ser Ser Leu Phe
Gly Arg Gln Val Val Gly Arg 260 265
270 Cys Val Leu Ala Lys Ser Ser Asn Val Tyr Leu Gln Leu Glu
Gly Leu 275 280 285
Leu Gly Tyr Glu Ser Lys Asn Val Asp Thr Glu Ile Glu Ala His Gln 290
295 300 Leu Trp Lys Asn Ala
Glu Phe Glu Leu Ser Leu Lys Pro Glu Arg Val 305 310
315 320 Ile Arg Glu Ser Cys Ser Phe Leu Phe Ile
Phe Asp Ile Asp Lys Ser 325 330
335 Ser Asp Ser Glu Pro Phe Asp Leu Gly Leu Thr Trp Lys Arg Pro
Ser 340 345 350 Lys
Trp Ser Cys Gln Gln Ala Pro Leu His Ser Ser Arg Phe Leu Met 355
360 365 Gly Ser Gly Asn Glu Arg
Gly Ala Ile Ala Ile Leu Leu Lys Ala Thr 370 375
380 Glu Ser Gln Glu Lys Leu Ser Gly Arg Asp Leu
Thr Asn Gly Gln Cys 385 390 395
400 Thr Ile Lys Ala Asn Ile Phe Gln Ile Phe Pro Trp Tyr Ile Lys Val
405 410 415 Tyr Tyr
His Thr Leu Gln Ile Phe Val Asp Gln Gln Gln Lys Thr Asp 420
425 430 Ser Glu Val Leu Lys Lys Ile
Asn Val Ser Pro Ser Thr Asp Lys Val 435 440
445 Ser Ser Gly Met Met Glu Met Met Leu Glu Leu Pro
Cys Glu Val Lys 450 455 460
Ser Val Ala Ile Ser Ile Glu Tyr Asp Lys Gly Phe Leu His Ile Asp 465
470 475 480 Glu Tyr Pro
Pro Asp Ala Asn Gln Gly Phe Asp Ile Pro Ser Ala Leu 485
490 495 Ile Ser Phe Pro Asp His His Ala
Ser Leu Asp Phe Gln Glu Glu Leu 500 505
510 Ser Asn Ser Pro Leu Leu Ser Ser Leu Lys Glu Lys Ser
Leu Val Arg 515 520 525
Ser Tyr Thr Glu Val Leu Leu Val Pro Leu Thr Thr Pro Asp Phe Ser 530
535 540 Met Pro Tyr Asn
Val Ile Thr Ile Thr Cys Thr Ile Phe Ala Leu Tyr 545 550
555 560 Phe Gly Ser Leu Leu Asn Val Leu Arg
Arg Arg Ile Gly Glu Glu Glu 565 570
575 Arg Phe Leu Lys Ser Gln Ala Gly Lys Lys Thr Gly Gly Leu
Lys Gln 580 585 590
Leu Leu Ser Arg Ile Thr Ala Lys Ile Arg Gly Arg Pro Ile Glu Ala
595 600 605 Pro Ser Ser Ser
Glu Ala Glu Ser Ser Val Leu Ser Ser Lys Leu Ile 610
615 620 Leu Lys Ile Ile Leu Val Ala Gly
Ala Ala Ala Ala Trp Gln Tyr Phe 625 630
635 640 Ser Thr Asp Glu 63600DNAArabidopsis thaliana
63atggcgggag actcaggtcg gaggaagatc aaacttttct gtccctcggt atcgaagatt
60gtggagtggg ttgcttggaa cgacgagaaa ctagacttta gagccatagc cgcagcgttt
120gggctcgaac catcaacggt gaagctcaat ggtcacttca taagcagagg ttttgatcta
180gttgccactt gtgtgacgtg gcagtctttg ctcactttct tctctgctag aggcttgtct
240actggaaaac acgaagccga tgctctgcta gttcacggca agctctctaa actcggtact
300aaaagagcac gctcggatcc tctggaggac ttcgcctgca atgatcttgg tctaatcaaa
360acgaagaagt tgaaagataa gtgctcagtt ggagaatcac tgatctctgg atgcaacaag
420agaaagctgt tgtctgaaga ttcacaccca ctcaagaaac taaaactcaa catggatgat
480agtttcggag ggagcggatc taaaacgcca ttgaaatgca gtttcatgag tgataatggt
540ctgaagagga caagagaaga tgatatgatt gcttctgcat cttgtaagaa gataagatga
60064199PRTArabidopsis thaliana 64Met Ala Gly Asp Ser Gly Arg Arg Lys Ile
Lys Leu Phe Cys Pro Ser 1 5 10
15 Val Ser Lys Ile Val Glu Trp Val Ala Trp Asn Asp Glu Lys Leu
Asp 20 25 30 Phe
Arg Ala Ile Ala Ala Ala Phe Gly Leu Glu Pro Ser Thr Val Lys 35
40 45 Leu Asn Gly His Phe Ile
Ser Arg Gly Phe Asp Leu Val Ala Thr Cys 50 55
60 Val Thr Trp Gln Ser Leu Leu Thr Phe Phe Ser
Ala Arg Gly Leu Ser 65 70 75
80 Thr Gly Lys His Glu Ala Asp Ala Leu Leu Val His Gly Lys Leu Ser
85 90 95 Lys Leu
Gly Thr Lys Arg Ala Arg Ser Asp Pro Leu Glu Asp Phe Ala 100
105 110 Cys Asn Asp Leu Gly Leu Ile
Lys Thr Lys Lys Leu Lys Asp Lys Cys 115 120
125 Ser Val Gly Glu Ser Leu Ile Ser Gly Cys Asn Lys
Arg Lys Leu Leu 130 135 140
Ser Glu Asp Ser His Pro Leu Lys Lys Leu Lys Leu Asn Met Asp Asp 145
150 155 160 Ser Phe Gly
Gly Ser Gly Ser Lys Thr Pro Leu Lys Cys Ser Phe Met 165
170 175 Ser Asp Asn Gly Leu Lys Arg Thr
Arg Glu Asp Asp Met Ile Ala Ser 180 185
190 Ala Ser Cys Lys Lys Ile Arg 195
65890DNAArabidopsis thaliana 65gtctctttga cttcatcgtc gattaaggga
gaaagagaga gagagtgaga gctgagaaaa 60tcaccagaaa gctacttgag agagagagat
agagataagt gagctctgag aaaatccagc 120aatggcttcg aagcttgtag tgataattgt
gtttatcctc gatctcatcg ccgttgggtt 180agccattgcc gccgagcaga gaagaagtgt
cggcaaggtt gaaacagaca gagacaagca 240atatgattac tgtgtgtatg gtactgacat
tgctacaagt tatggagctg gtgcatttgt 300tcttctcttt gtaagccaag tccttattat
ggctgctagt cgttgcttct gttgtggaaa 360gtctcttaac cctggcggtt caagagcttg
tgccattatt ctcttcctca tttgctgggt 420gtttttcttg atcgctgaga tgtgtttgct
tgcggcatca atcagaaatg cgtaccacac 480acagtataga aagatgtgga aagttgaaga
tccaccaagc tgtgaagtta taaggaaagg 540agtttttgca gctggtgctg cattcacact
cttcaccgcc attgtctctc agttctacta 600cgtttgctac tctcgtgcta gagatgcgta
ccagaatccc tcctactaaa aatgtcaact 660tccacagcaa gcaaacgttt aagcatcaag
agttggaatt tgtctttttg tgtttgttta 720gtattgtcca gtgtttagtt atcctatcag
gatgtttagg ttttatgttg tctcttaagc 780aaacactgat atgttatatt ctaagattcg
tatattgtta tgttctctgt tgtaatgtgt 840gaatgaatac taaagaatag aaaaccatga
tttgttgtga tcactgtttt 89066175PRTArabidopsis thaliana 66Met
Ala Ser Lys Leu Val Val Ile Ile Val Phe Ile Leu Asp Leu Ile 1
5 10 15 Ala Val Gly Leu Ala Ile
Ala Ala Glu Gln Arg Arg Ser Val Gly Lys 20
25 30 Val Glu Thr Asp Arg Asp Lys Gln Tyr Asp
Tyr Cys Val Tyr Gly Thr 35 40
45 Asp Ile Ala Thr Ser Tyr Gly Ala Gly Ala Phe Val Leu Leu
Phe Val 50 55 60
Ser Gln Val Leu Ile Met Ala Ala Ser Arg Cys Phe Cys Cys Gly Lys 65
70 75 80 Ser Leu Asn Pro Gly
Gly Ser Arg Ala Cys Ala Ile Ile Leu Phe Leu 85
90 95 Ile Cys Trp Val Phe Phe Leu Ile Ala Glu
Met Cys Leu Leu Ala Ala 100 105
110 Ser Ile Arg Asn Ala Tyr His Thr Gln Tyr Arg Lys Met Trp Lys
Val 115 120 125 Glu
Asp Pro Pro Ser Cys Glu Val Ile Arg Lys Gly Val Phe Ala Ala 130
135 140 Gly Ala Ala Phe Thr Leu
Phe Thr Ala Ile Val Ser Gln Phe Tyr Tyr 145 150
155 160 Val Cys Tyr Ser Arg Ala Arg Asp Ala Tyr Gln
Asn Pro Ser Tyr 165 170
175 671297DNAArabidopsis thaliana 67gtatattgca attttgatac tataacacaa
cgatgatttc attgattgtc cttactaaaa 60ctgaaatctt gattaaaaaa tatcaggcga
cgattaaatt gccgcctcta ataaatggaa 120tattgcaaac tcatgattca tgaaatgctt
tttgtattcc ctttagttaa gttactgatg 180aatctgttaa tacaaggaac gttaatgcat
ttagattttc acatttcata ttggaaagga 240aaatgcgggg ttttccagat ttaatacaca
aagtaaatcc tcctagtaat tatctttaat 300gtaccacttt ttaaggataa tatatgtaga
tttcttgcta tatatattca catctcatta 360ttaggcctta cttataagaa tctgttcaca
ttcttcacag aggaaagtaa atcatgtttg 420ccaagaaacc agaatcaaag tttgggtgct
tttttaacat atttggtgtt cttcggtctc 480gttcttcaag atggcgaaaa gcttcgaagt
ggtaagaatc ttggtttact tgctttacac 540ggttaagatt tcgtttttgt ttcgagtttt
ttttaattaa ttaatctgtc ttgtttgcag 600caaactctat atccaaaatc tgttatgttc
tgttaactta catcggaata gaagagagtg 660tatggtcaga caatcacggt ccgatatcgc
tcagctcctt tcttatggtc gctattcaga 720agctcttcct aaggcgaagc aattctatga
agatgagaga aggttatcgg catatgatca 780ggttgagctc ttctgcacaa ccatcttgca
gaatatatct tctttgaaat atgaaaacaa 840tgttgatctg ttaccggaag aaactaaaaa
agcaatggcc ggaattatat ttgctgcatc 900aagaattggc gagcttgagg atcttcaaca
cataaggagc ttcttcgttc aaagatttgg 960gcttaagttt gataaagagt gtgtagattt
gcgccaagga aacgtcgtgg gttttgagat 1020agtcaagatt ctaaacacga atatgcgggg
agatgaaatt acacatattg taagggaact 1080ttctcataag tacaaaacca acatcactac
ttctacggat tcaataagtg aagatttggc 1140ttcaagtgac gatctcggca ttgccgattc
tgatgcgatg aaggttgaga aaatgaaaag 1200ggctcttcgg agaaagaaag ttatgaagga
gaattctaag tttttgcatc caaatcttag 1260agagtctcag ggaagagatc gatcattcag
aagataa 129768211PRTArabidopsis thaliana 68Met
Val Arg Gln Ser Arg Ser Asp Ile Ala Gln Leu Leu Ser Tyr Gly 1
5 10 15 Arg Tyr Ser Glu Ala Leu
Pro Lys Ala Lys Gln Phe Tyr Glu Asp Glu 20
25 30 Arg Arg Leu Ser Ala Tyr Asp Gln Val Glu
Leu Phe Cys Thr Thr Ile 35 40
45 Leu Gln Asn Ile Ser Ser Leu Lys Tyr Glu Asn Asn Val Asp
Leu Leu 50 55 60
Pro Glu Glu Thr Lys Lys Ala Met Ala Gly Ile Ile Phe Ala Ala Ser 65
70 75 80 Arg Ile Gly Glu Leu
Glu Asp Leu Gln His Ile Arg Ser Phe Phe Val 85
90 95 Gln Arg Phe Gly Leu Lys Phe Asp Lys Glu
Cys Val Asp Leu Arg Gln 100 105
110 Gly Asn Val Val Gly Phe Glu Ile Val Lys Ile Leu Asn Thr Asn
Met 115 120 125 Arg
Gly Asp Glu Ile Thr His Ile Val Arg Glu Leu Ser His Lys Tyr 130
135 140 Lys Thr Asn Ile Thr Thr
Ser Thr Asp Ser Ile Ser Glu Asp Leu Ala 145 150
155 160 Ser Ser Asp Asp Leu Gly Ile Ala Asp Ser Asp
Ala Met Lys Val Glu 165 170
175 Lys Met Lys Arg Ala Leu Arg Arg Lys Lys Val Met Lys Glu Asn Ser
180 185 190 Lys Phe
Leu His Pro Asn Leu Arg Glu Ser Gln Gly Arg Asp Arg Ser 195
200 205 Phe Arg Arg 210
691271DNAArabidopsis thaliana 69atctttaatc tcagaataca aaaaagaaaa
tcaaagaaga tagttttgtg attgttttct 60ataaaaagtg cagatatttt ctttgtccta
gagaaagagg tgataggaaa aatgggtctc 120caagagcttg acccgttagc ccaattgagc
ttaccgccgg gttttcggtt ttatccgact 180gacgaagagc tgatggttga atatctctgt
agaaaagccg ccggtcacga cttctctctc 240cagctcatag ctgaaatcga tctctacaag
tttgatccat gggttttacc aagtaaggcg 300ttattcggtg aaaaagaatg gtattttttc
agcccgaggg ataggaagta tccaaacggg 360tcaagaccta atcgggttgc cgggtcgggt
tattggaaag ccaccggtac ggataaagtt 420atctcgacgg agggaagaag agttggtatc
aagaaagctt tggtgtttta cattggaaaa 480gctccaaaag gaaccaaaac caattggatt
atgcatgagt accgtctcat cgaaccctct 540cgtcgaaatg gaagcaccaa gcttgatgat
tgggttttat gtcgaatata caaaaagcaa 600acaagcgcac aaaaacaagc ttacaataat
ctaatgacga gtggtcgtga atacagcaac 660aatggttcgt cgacatcttc ttcgtctcat
caatacgacg acgttctcga gtcgttgcat 720gagattgaca acagaagttt ggggtttgcc
gccggttcat caaacgcgct gcctcatagt 780catagaccgg ttttaaccaa tcataaaacc
gggtttcagg gtttagccag ggagccaagt 840tttgattggg cgaatttgat tggacagaac
tcggtcccgg aactcggact gagtcataac 900gttccgagta ttcgttacgg tgacggtgga
acgcagcaac aaactgaggg gattcctcgg 960tttaataata actcggacgt ctcggctaat
cagggtttta gtgttgaccc ggttaacgga 1020tttgggtact cgggtcaaca atctagtggg
ttcgggttta tttgattgtg taatggtaac 1080gtaataagaa aaacatattt ttattttttg
tccgtgtcag attagttaat taatatagcg 1140tagaattcga actctagggt tagatttagg
ttctacgact tgtattgtat attcgtcgtc 1200atttgtcctg acatttacat ttttgtaaac
ttttatagct ggaacttttg tattgatcaa 1260ttatttatta g
127170317PRTArabidopsis thaliana 70Met
Gly Leu Gln Glu Leu Asp Pro Leu Ala Gln Leu Ser Leu Pro Pro 1
5 10 15 Gly Phe Arg Phe Tyr Pro
Thr Asp Glu Glu Leu Met Val Glu Tyr Leu 20
25 30 Cys Arg Lys Ala Ala Gly His Asp Phe Ser
Leu Gln Leu Ile Ala Glu 35 40
45 Ile Asp Leu Tyr Lys Phe Asp Pro Trp Val Leu Pro Ser Lys
Ala Leu 50 55 60
Phe Gly Glu Lys Glu Trp Tyr Phe Phe Ser Pro Arg Asp Arg Lys Tyr 65
70 75 80 Pro Asn Gly Ser Arg
Pro Asn Arg Val Ala Gly Ser Gly Tyr Trp Lys 85
90 95 Ala Thr Gly Thr Asp Lys Val Ile Ser Thr
Glu Gly Arg Arg Val Gly 100 105
110 Ile Lys Lys Ala Leu Val Phe Tyr Ile Gly Lys Ala Pro Lys Gly
Thr 115 120 125 Lys
Thr Asn Trp Ile Met His Glu Tyr Arg Leu Ile Glu Pro Ser Arg 130
135 140 Arg Asn Gly Ser Thr Lys
Leu Asp Asp Trp Val Leu Cys Arg Ile Tyr 145 150
155 160 Lys Lys Gln Thr Ser Ala Gln Lys Gln Ala Tyr
Asn Asn Leu Met Thr 165 170
175 Ser Gly Arg Glu Tyr Ser Asn Asn Gly Ser Ser Thr Ser Ser Ser Ser
180 185 190 His Gln
Tyr Asp Asp Val Leu Glu Ser Leu His Glu Ile Asp Asn Arg 195
200 205 Ser Leu Gly Phe Ala Ala Gly
Ser Ser Asn Ala Leu Pro His Ser His 210 215
220 Arg Pro Val Leu Thr Asn His Lys Thr Gly Phe Gln
Gly Leu Ala Arg 225 230 235
240 Glu Pro Ser Phe Asp Trp Ala Asn Leu Ile Gly Gln Asn Ser Val Pro
245 250 255 Glu Leu Gly
Leu Ser His Asn Val Pro Ser Ile Arg Tyr Gly Asp Gly 260
265 270 Gly Thr Gln Gln Gln Thr Glu Gly
Ile Pro Arg Phe Asn Asn Asn Ser 275 280
285 Asp Val Ser Ala Asn Gln Gly Phe Ser Val Asp Pro Val
Asn Gly Phe 290 295 300
Gly Tyr Ser Gly Gln Gln Ser Ser Gly Phe Gly Phe Ile 305
310 315 711371DNAArabidopsis thaliana
71gactgaaaac aaacgaccct aatggctcat gaggagaagc gcccatggga gttttcttta
60tctcttccat gggagttgat tgaagagata ctctctcgtg tcccaccaga atctcttctt
120cgcttcaaaa ccgtatcgaa acaatggaac gctctcttcc gcgataagac gttcatcaat
180aaccacaaga tgacgtttcg attcatctta gcaaccaaat ccaagattta ttcggtaagc
240atcgatccca agatagttgt gcgtgagtta accttagata ttcccggttt agaatctcat
300gagataccta aaaaattggt tgattgcgat aagttattac tatgtgacat ggagaaagga
360gttgtgcttt ggaacccgtg gctgagacat agtacatgga tcgaccaggg ttcaaaccac
420actcgaatgg agtcttatgg cataggatac aacaataagg ggagttacaa gatctttgct
480ttttgtgatc ggaaggaaaa ccacacccag agattgttga caatccatga ctctgcctct
540gatgcgtgga aagaccgcga gcctattgat aatagtcagg gaaaacaaat tgttcataac
600atatacacta aaattagtgg tgtatcattg aatggaaatt tgtatttggt tacttatttt
660gaaacgactg atctcgtgta ccacctaatt gaaatcaatt cttcgagcga aagcgtcgtg
720aagttttgtg atctaccatg tgggacgtcg aactttctta aggatgcttt cgtccttagg
780gttttcgagg gagatcgatt ttcattgtta aagcaatgcc atgcaacaaa gaagattgag
840atttgggtga gcaagtacaa gattaataat aatcttgata gagatgtgga atggataaag
900ttcatggaag tttcaagtcc taacttgccg gatttagtag atggattcga ctctcagcca
960agttacttta ttgaagataa aaggctcgtc gtgtgctcgt gcaacgaaac tggtcgggct
1020tggatctatg ttttcggaga aaataagttg atcagtaaaa ctcaaattga ttctgtggtg
1080gatctttggc cttcacactg gacctttatt cccagtttgg taccggttcc tcgagctcaa
1140agagaagaac cagcagaatt acaagtttga ttttagttac attttagctt cttgtttggt
1200tgttgaggaa gctaaatttt atttggattt cagtattttt attcacaaac catcttcttt
1260gttgctgata attgattaat ctccctttct ttgttttgta gcttcttttg gcaaaataaa
1320ttcttaataa tgtatccttt agataaatct agagagaatg tttaaggact c
137172382PRTArabidopsis thaliana 72Met Ala His Glu Glu Lys Arg Pro Trp
Glu Phe Ser Leu Ser Leu Pro 1 5 10
15 Trp Glu Leu Ile Glu Glu Ile Leu Ser Arg Val Pro Pro Glu
Ser Leu 20 25 30
Leu Arg Phe Lys Thr Val Ser Lys Gln Trp Asn Ala Leu Phe Arg Asp
35 40 45 Lys Thr Phe Ile
Asn Asn His Lys Met Thr Phe Arg Phe Ile Leu Ala 50
55 60 Thr Lys Ser Lys Ile Tyr Ser Val
Ser Ile Asp Pro Lys Ile Val Val 65 70
75 80 Arg Glu Leu Thr Leu Asp Ile Pro Gly Leu Glu Ser
His Glu Ile Pro 85 90
95 Lys Lys Leu Val Asp Cys Asp Lys Leu Leu Leu Cys Asp Met Glu Lys
100 105 110 Gly Val Val
Leu Trp Asn Pro Trp Leu Arg His Ser Thr Trp Ile Asp 115
120 125 Gln Gly Ser Asn His Thr Arg Met
Glu Ser Tyr Gly Ile Gly Tyr Asn 130 135
140 Asn Lys Gly Ser Tyr Lys Ile Phe Ala Phe Cys Asp Arg
Lys Glu Asn 145 150 155
160 His Thr Gln Arg Leu Leu Thr Ile His Asp Ser Ala Ser Asp Ala Trp
165 170 175 Lys Asp Arg Glu
Pro Ile Asp Asn Ser Gln Gly Lys Gln Ile Val His 180
185 190 Asn Ile Tyr Thr Lys Ile Ser Gly Val
Ser Leu Asn Gly Asn Leu Tyr 195 200
205 Leu Val Thr Tyr Phe Glu Thr Thr Asp Leu Val Tyr His Leu
Ile Glu 210 215 220
Ile Asn Ser Ser Ser Glu Ser Val Val Lys Phe Cys Asp Leu Pro Cys 225
230 235 240 Gly Thr Ser Asn Phe
Leu Lys Asp Ala Phe Val Leu Arg Val Phe Glu 245
250 255 Gly Asp Arg Phe Ser Leu Leu Lys Gln Cys
His Ala Thr Lys Lys Ile 260 265
270 Glu Ile Trp Val Ser Lys Tyr Lys Ile Asn Asn Asn Leu Asp Arg
Asp 275 280 285 Val
Glu Trp Ile Lys Phe Met Glu Val Ser Ser Pro Asn Leu Pro Asp 290
295 300 Leu Val Asp Gly Phe Asp
Ser Gln Pro Ser Tyr Phe Ile Glu Asp Lys 305 310
315 320 Arg Leu Val Val Cys Ser Cys Asn Glu Thr Gly
Arg Ala Trp Ile Tyr 325 330
335 Val Phe Gly Glu Asn Lys Leu Ile Ser Lys Thr Gln Ile Asp Ser Val
340 345 350 Val Asp
Leu Trp Pro Ser His Trp Thr Phe Ile Pro Ser Leu Val Pro 355
360 365 Val Pro Arg Ala Gln Arg Glu
Glu Pro Ala Glu Leu Gln Val 370 375
380 731125DNAArabidopsis thaliana 73atgccgacga agcttccact
ggagttggag gatgagatac ttttgcgtgt tccacctcta 60tctctcacac gctttagaac
agtttgcaaa cgatggaaca cacttttcaa cgatcagaga 120ttcatcaaca atcacttggc
ttgcgtccgt cctcagttca tattacggac cgagaaagat 180tccaagatct attcaatagg
catcaatatc gatgactcct tagaggtgcg tgagctaaac 240ctagaaactc aaggtcctaa
taagaagctt aaggtatatc gaaacctctt ttattgcgat 300ggttttttgt tatgtcctgc
tttgcttgac gaggttgctg tctggaatcc atggttgaga 360aaacaaacta aatggatcga
gcctaagagg agtagattca atttatatgg actagggtat 420gataatcgta gaccggagaa
gtgttacaag atcttagggt ttggttatgg ttacagtagt 480gaaataaacg gtagttacaa
cagaattaac ccgagagttt cggtatttga gtttgaaact 540aatgcgtgga aggatcttaa
gtttggttta tttgattggc acctaagatc tccccggact 600gttttatctt tgaatggaac
tttgtattgg attgctgtga ggtgtgaaag tggtggtgat 660ggttttatcc aaagctttga
cttttcgagg gagatgttcg agcccttttg tctcttgcca 720tgtaagaacg attttggcga
tactcaaatc cttgaggttt ttaggggaga tcggctatct 780gtgttggaac aatgcccgac
aacaaataag atcaagattt gggtgactaa gaacaagatt 840agtggagata ggaaggagct
tgtgtcgtgg agactgttaa tgacagtgtc gataccaaac 900ttcccgagat tacaagatct
ttactctaat tctcagccga gttacttcat ggataacaat 960gatgacaaga ggctcatcgt
gtgtacttgt gatgaaagtg gtaagccttg catatacatt 1020gtgaaggggg ataggttcaa
gaagattcaa atgggttttg aggttgagcc ttggcctttt 1080caccttgttt atgttcctag
tttggttcct attcctttag cctaa 112574374PRTArabidopsis
thaliana 74Met Pro Thr Lys Leu Pro Leu Glu Leu Glu Asp Glu Ile Leu Leu
Arg 1 5 10 15 Val
Pro Pro Leu Ser Leu Thr Arg Phe Arg Thr Val Cys Lys Arg Trp
20 25 30 Asn Thr Leu Phe Asn
Asp Gln Arg Phe Ile Asn Asn His Leu Ala Cys 35
40 45 Val Arg Pro Gln Phe Ile Leu Arg Thr
Glu Lys Asp Ser Lys Ile Tyr 50 55
60 Ser Ile Gly Ile Asn Ile Asp Asp Ser Leu Glu Val Arg
Glu Leu Asn 65 70 75
80 Leu Glu Thr Gln Gly Pro Asn Lys Lys Leu Lys Val Tyr Arg Asn Leu
85 90 95 Phe Tyr Cys Asp
Gly Phe Leu Leu Cys Pro Ala Leu Leu Asp Glu Val 100
105 110 Ala Val Trp Asn Pro Trp Leu Arg Lys
Gln Thr Lys Trp Ile Glu Pro 115 120
125 Lys Arg Ser Arg Phe Asn Leu Tyr Gly Leu Gly Tyr Asp Asn
Arg Arg 130 135 140
Pro Glu Lys Cys Tyr Lys Ile Leu Gly Phe Gly Tyr Gly Tyr Ser Ser 145
150 155 160 Glu Ile Asn Gly Ser
Tyr Asn Arg Ile Asn Pro Arg Val Ser Val Phe 165
170 175 Glu Phe Glu Thr Asn Ala Trp Lys Asp Leu
Lys Phe Gly Leu Phe Asp 180 185
190 Trp His Leu Arg Ser Pro Arg Thr Val Leu Ser Leu Asn Gly Thr
Leu 195 200 205 Tyr
Trp Ile Ala Val Arg Cys Glu Ser Gly Gly Asp Gly Phe Ile Gln 210
215 220 Ser Phe Asp Phe Ser Arg
Glu Met Phe Glu Pro Phe Cys Leu Leu Pro 225 230
235 240 Cys Lys Asn Asp Phe Gly Asp Thr Gln Ile Leu
Glu Val Phe Arg Gly 245 250
255 Asp Arg Leu Ser Val Leu Glu Gln Cys Pro Thr Thr Asn Lys Ile Lys
260 265 270 Ile Trp
Val Thr Lys Asn Lys Ile Ser Gly Asp Arg Lys Glu Leu Val 275
280 285 Ser Trp Arg Leu Leu Met Thr
Val Ser Ile Pro Asn Phe Pro Arg Leu 290 295
300 Gln Asp Leu Tyr Ser Asn Ser Gln Pro Ser Tyr Phe
Met Asp Asn Asn 305 310 315
320 Asp Asp Lys Arg Leu Ile Val Cys Thr Cys Asp Glu Ser Gly Lys Pro
325 330 335 Cys Ile Tyr
Ile Val Lys Gly Asp Arg Phe Lys Lys Ile Gln Met Gly 340
345 350 Phe Glu Val Glu Pro Trp Pro Phe
His Leu Val Tyr Val Pro Ser Leu 355 360
365 Val Pro Ile Pro Leu Ala 370
751917DNAArabidopsis thaliana 75atggatgata caatggacat gagttcaggt
agtgatgaag aagtacaaga agagaagacc 60actgttaacg agagggtcat ctatcaggct
gcattacaag atctgaagca acccaagacc 120gaaaaggatc tacctcctgg tgttcttaca
gttcctctta tgaggcatca gaaaattgca 180ttgaactgga tgcgtaagaa agaaaaaaga
agcaggcact gtttgggagg gatattagca 240gatgatcagg gacttggtaa aacgatctcg
acgatctctc ttatcctgtt acaaaagttg 300aagtcacaat caaagcagag aaagcgaaaa
ggtcaaaact ctggtggtac attgattgtt 360tgtccagcaa gtgttgtaaa acaatgggca
agagaagtta aagagaaggt ttctgatgaa 420cacaaactct ctgttttagt ccaccatgga
tctcacagaa ccaaagatcc aacagaaata 480gcaatatatg atgtggtcat gacaacttac
gccattgtta caaatgaagt tccacaaaac 540cctatgctga atcgttatga tagtatgaga
ggcagagaaa gccttgacgg atcgagtttg 600attcagcctc acgttggtgc actaggaaga
gttaggtggt tgagagtagt attagatgaa 660gctcatacaa ttaaaaacca tagaacccta
attgcaaaag cttgttttag ccttagagcc 720aaaaggagat ggtgtttgac tggaacgccg
ataaagaaca aagtagacga tctttatagc 780tatttcagat ttcttagata tcatccatat
gccatgtgca attcatttca ccaaagaatc 840aaagctccaa ttgataaaaa gcctcttcat
ggttacaaga agcttcaagc tattctaagg 900ggtataatgt tgcgccgcac caaagaatgg
tctttctaca ggaagcttga attgaattca 960cgttggaagt ttgaggaata tgctgctgat
gggactttgc atgaacacat ggcttatctt 1020ttggtgatgc ttttgcgact acgccaagct
tgtaaccatc cacaacttgt taacggatat 1080agtcactcag atactacaag aaaaatgtca
gatggagttc gagtagcccc tagagagaat 1140ctaatcatgt tcctcgatct cttgaaatta
tcctcaacca cctgctctgt ttgtagtgat 1200ccaccaaaag accctgttgt tactttgtgt
ggccatgtgt tttgttatga gtgtgtgtct 1260gtaaacatta acggggataa caatacgtgc
cctgcactta attgccacag ccagcttaaa 1320catgatgttg ttttcactga atctgcagtt
agaagttgca tcaacgatta tgatgatcct 1380gaagataaaa atgctttagt tgcatcaagg
cgagtttatt tcatcgaaaa tccgagctgt 1440gatagagatt cttcagtcgc ttgcagagca
aggcagtcca gacactccac caataaagac 1500aatagtatca gtggactggt atgtgcgatg
ttgatgtctc ttaaagctgg aaaccttgga 1560ttgaatatgg tagctgcaag tcatgtcatt
ctactggacc tatggtggaa tccaacaaca 1620gaggatcaag ctattgatcg agctcatcgt
atcggacaaa ctcgagctgt tacggtcact 1680cgtattgcca tcaaaaatac cgttgaggaa
cgaattttga ctcttcatga acgtaaaagg 1740aacattgttg catctgcatt gggtgaaaaa
aactggcaaa agttctgcga ttcaactaac 1800actagaagat ctcgaatatc tgttttttgg
tgtgtagaat atcccagagt ttttattgat 1860aagaggaata aaacctttag ctatttaata
agtcacaagt gtgaatgtaa tgaataa 191776638PRTArabidopsis thaliana 76Met
Asp Asp Thr Met Asp Met Ser Ser Gly Ser Asp Glu Glu Val Gln 1
5 10 15 Glu Glu Lys Thr Thr Val
Asn Glu Arg Val Ile Tyr Gln Ala Ala Leu 20
25 30 Gln Asp Leu Lys Gln Pro Lys Thr Glu Lys
Asp Leu Pro Pro Gly Val 35 40
45 Leu Thr Val Pro Leu Met Arg His Gln Lys Ile Ala Leu Asn
Trp Met 50 55 60
Arg Lys Lys Glu Lys Arg Ser Arg His Cys Leu Gly Gly Ile Leu Ala 65
70 75 80 Asp Asp Gln Gly Leu
Gly Lys Thr Ile Ser Thr Ile Ser Leu Ile Leu 85
90 95 Leu Gln Lys Leu Lys Ser Gln Ser Lys Gln
Arg Lys Arg Lys Gly Gln 100 105
110 Asn Ser Gly Gly Thr Leu Ile Val Cys Pro Ala Ser Val Val Lys
Gln 115 120 125 Trp
Ala Arg Glu Val Lys Glu Lys Val Ser Asp Glu His Lys Leu Ser 130
135 140 Val Leu Val His His Gly
Ser His Arg Thr Lys Asp Pro Thr Glu Ile 145 150
155 160 Ala Ile Tyr Asp Val Val Met Thr Thr Tyr Ala
Ile Val Thr Asn Glu 165 170
175 Val Pro Gln Asn Pro Met Leu Asn Arg Tyr Asp Ser Met Arg Gly Arg
180 185 190 Glu Ser
Leu Asp Gly Ser Ser Leu Ile Gln Pro His Val Gly Ala Leu 195
200 205 Gly Arg Val Arg Trp Leu Arg
Val Val Leu Asp Glu Ala His Thr Ile 210 215
220 Lys Asn His Arg Thr Leu Ile Ala Lys Ala Cys Phe
Ser Leu Arg Ala 225 230 235
240 Lys Arg Arg Trp Cys Leu Thr Gly Thr Pro Ile Lys Asn Lys Val Asp
245 250 255 Asp Leu Tyr
Ser Tyr Phe Arg Phe Leu Arg Tyr His Pro Tyr Ala Met 260
265 270 Cys Asn Ser Phe His Gln Arg Ile
Lys Ala Pro Ile Asp Lys Lys Pro 275 280
285 Leu His Gly Tyr Lys Lys Leu Gln Ala Ile Leu Arg Gly
Ile Met Leu 290 295 300
Arg Arg Thr Lys Glu Trp Ser Phe Tyr Arg Lys Leu Glu Leu Asn Ser 305
310 315 320 Arg Trp Lys Phe
Glu Glu Tyr Ala Ala Asp Gly Thr Leu His Glu His 325
330 335 Met Ala Tyr Leu Leu Val Met Leu Leu
Arg Leu Arg Gln Ala Cys Asn 340 345
350 His Pro Gln Leu Val Asn Gly Tyr Ser His Ser Asp Thr Thr
Arg Lys 355 360 365
Met Ser Asp Gly Val Arg Val Ala Pro Arg Glu Asn Leu Ile Met Phe 370
375 380 Leu Asp Leu Leu Lys
Leu Ser Ser Thr Thr Cys Ser Val Cys Ser Asp 385 390
395 400 Pro Pro Lys Asp Pro Val Val Thr Leu Cys
Gly His Val Phe Cys Tyr 405 410
415 Glu Cys Val Ser Val Asn Ile Asn Gly Asp Asn Asn Thr Cys Pro
Ala 420 425 430 Leu
Asn Cys His Ser Gln Leu Lys His Asp Val Val Phe Thr Glu Ser 435
440 445 Ala Val Arg Ser Cys Ile
Asn Asp Tyr Asp Asp Pro Glu Asp Lys Asn 450 455
460 Ala Leu Val Ala Ser Arg Arg Val Tyr Phe Ile
Glu Asn Pro Ser Cys 465 470 475
480 Asp Arg Asp Ser Ser Val Ala Cys Arg Ala Arg Gln Ser Arg His Ser
485 490 495 Thr Asn
Lys Asp Asn Ser Ile Ser Gly Leu Val Cys Ala Met Leu Met 500
505 510 Ser Leu Lys Ala Gly Asn Leu
Gly Leu Asn Met Val Ala Ala Ser His 515 520
525 Val Ile Leu Leu Asp Leu Trp Trp Asn Pro Thr Thr
Glu Asp Gln Ala 530 535 540
Ile Asp Arg Ala His Arg Ile Gly Gln Thr Arg Ala Val Thr Val Thr 545
550 555 560 Arg Ile Ala
Ile Lys Asn Thr Val Glu Glu Arg Ile Leu Thr Leu His 565
570 575 Glu Arg Lys Arg Asn Ile Val Ala
Ser Ala Leu Gly Glu Lys Asn Trp 580 585
590 Gln Lys Phe Cys Asp Ser Thr Asn Thr Arg Arg Ser Arg
Ile Ser Val 595 600 605
Phe Trp Cys Val Glu Tyr Pro Arg Val Phe Ile Asp Lys Arg Asn Lys 610
615 620 Thr Phe Ser Tyr
Leu Ile Ser His Lys Cys Glu Cys Asn Glu 625 630
635 771965DNAArabidopsis thaliana 77atgtttctaa
gtcttcttga aacctgtatt cgctcaagga atctggtctt aggtcaggtc 60attcatcagc
atcttcttaa acgctctctt acgttaagtt cctctacagt gctcgtcaat 120ttaacacgtc
tttacgcatc atgcaatgaa gtggaacttg cacgccatgt gttcgatgaa 180attcctcatc
caaggatcaa tcctattgct tgggatttga tgatcagagc ctatgcttcg 240aatgatttcg
cggaaaaagc tttggatttg tactacaaga tgctgaattc tggtgttaga 300cccacgaaat
atacgtaccc gtttgttttg aaagcatgtg ctggtcttcg agcaattgac 360gatggtaagc
tgatacatag tcatgtgaat tgtagcgact ttgcaactga tatgtatgta 420tgtactgctc
tggttgattt ctatgctaag tgtggggaac ttgagatggc tataaaggtg 480ttcgacgaaa
tgcctaagag agatatggtt gcttggaatg ctatgatttc tgggttttct 540ttacattgct
gtttaactga tgtcattgga ttgtttttgg atatgcgtag aatcgatggt 600ctgagtccta
atctatccac catcgttggg atgtttcctg cactaggaag ggctggtgca 660ttgagggaag
ggaaagctgt tcatgggtat tgcacaagaa tgggttttag caatgattta 720gttgttaaga
ctgggatctt ggatgtatat gccaagagca agtgcattat ctatgcgaga 780agagttttcg
atttagactt taagaagaat gaggtaacct ggagtgctat gattggaggc 840tacgtagaaa
acgaaatgat aaaggaagct ggagaagtgt tttttcagat gttggttaat 900gataatgtgg
caatggtgac gccagttgcc attgggctta ttctgatggg ttgtgcaagg 960tttggagatc
taagtggagg gcgatgtgta cattgttacg cggttaaagc aggcttcatc 1020ttagacttaa
ctgttcaaaa caccataatt tcattttatg ctaagtatgg aagcttatgt 1080gatgctttta
ggcagtttag tgagattggc ttgaaagatg ttatttcata taattctctc 1140atcactgggt
gtgtagtgaa ctgtcgccca gaagagagtt ttcgtctatt tcatgagatg 1200agaacatctg
gaattcgtcc tgatattaca acattgcttg gtgtcttaac cgcttgctct 1260cacttggctg
ctttgggaca cggttctagt tgccacgggt attgtgttgt tcatggctat 1320gcagttaaca
caagcatttg taatgcactg atggatatgt acacaaagtg tggaaaactt 1380gatgtagcca
agagagtttt cgacacaatg cataagcggg atatagtttc gtggaacaca 1440atgctgttcg
gattcggaat tcatggtctt ggcaaagaag ctctttctct gttcaacagt 1500atgcaggaaa
caggtgtgaa cccagacgag gtgactcttc ttgctatttt gtctgcttgt 1560agccattcag
gactagtgga tgaagggaaa caactgttca actccatgtc tcgaggagat 1620ttcaacgtca
tcccaagaat agaccattac aattgcatga ctgatcttct agcccgtgcc 1680ggatacttgg
atgaagctta tgattttgta aacaagatgc catttgagcc cgatattcgc 1740gtgttgggta
cacttctctc tgcttgttgg acgtacaaga atgcggaact tgggaatgaa 1800gtgtcgaaaa
agatgcagag tcttggtgaa acaacagaaa gcttagttct tctatccaac 1860acctactcag
ctgctgagag atgggaagat gcagctagaa ttagaatgat acagaagaaa 1920agagggcttc
tcaagactcc gggttatagc tgggtcgatg tttga
196578654PRTArabidopsis thaliana 78Met Phe Leu Ser Leu Leu Glu Thr Cys
Ile Arg Ser Arg Asn Leu Val 1 5 10
15 Leu Gly Gln Val Ile His Gln His Leu Leu Lys Arg Ser Leu
Thr Leu 20 25 30
Ser Ser Ser Thr Val Leu Val Asn Leu Thr Arg Leu Tyr Ala Ser Cys
35 40 45 Asn Glu Val Glu
Leu Ala Arg His Val Phe Asp Glu Ile Pro His Pro 50
55 60 Arg Ile Asn Pro Ile Ala Trp Asp
Leu Met Ile Arg Ala Tyr Ala Ser 65 70
75 80 Asn Asp Phe Ala Glu Lys Ala Leu Asp Leu Tyr Tyr
Lys Met Leu Asn 85 90
95 Ser Gly Val Arg Pro Thr Lys Tyr Thr Tyr Pro Phe Val Leu Lys Ala
100 105 110 Cys Ala Gly
Leu Arg Ala Ile Asp Asp Gly Lys Leu Ile His Ser His 115
120 125 Val Asn Cys Ser Asp Phe Ala Thr
Asp Met Tyr Val Cys Thr Ala Leu 130 135
140 Val Asp Phe Tyr Ala Lys Cys Gly Glu Leu Glu Met Ala
Ile Lys Val 145 150 155
160 Phe Asp Glu Met Pro Lys Arg Asp Met Val Ala Trp Asn Ala Met Ile
165 170 175 Ser Gly Phe Ser
Leu His Cys Cys Leu Thr Asp Val Ile Gly Leu Phe 180
185 190 Leu Asp Met Arg Arg Ile Asp Gly Leu
Ser Pro Asn Leu Ser Thr Ile 195 200
205 Val Gly Met Phe Pro Ala Leu Gly Arg Ala Gly Ala Leu Arg
Glu Gly 210 215 220
Lys Ala Val His Gly Tyr Cys Thr Arg Met Gly Phe Ser Asn Asp Leu 225
230 235 240 Val Val Lys Thr Gly
Ile Leu Asp Val Tyr Ala Lys Ser Lys Cys Ile 245
250 255 Ile Tyr Ala Arg Arg Val Phe Asp Leu Asp
Phe Lys Lys Asn Glu Val 260 265
270 Thr Trp Ser Ala Met Ile Gly Gly Tyr Val Glu Asn Glu Met Ile
Lys 275 280 285 Glu
Ala Gly Glu Val Phe Phe Gln Met Leu Val Asn Asp Asn Val Ala 290
295 300 Met Val Thr Pro Val Ala
Ile Gly Leu Ile Leu Met Gly Cys Ala Arg 305 310
315 320 Phe Gly Asp Leu Ser Gly Gly Arg Cys Val His
Cys Tyr Ala Val Lys 325 330
335 Ala Gly Phe Ile Leu Asp Leu Thr Val Gln Asn Thr Ile Ile Ser Phe
340 345 350 Tyr Ala
Lys Tyr Gly Ser Leu Cys Asp Ala Phe Arg Gln Phe Ser Glu 355
360 365 Ile Gly Leu Lys Asp Val Ile
Ser Tyr Asn Ser Leu Ile Thr Gly Cys 370 375
380 Val Val Asn Cys Arg Pro Glu Glu Ser Phe Arg Leu
Phe His Glu Met 385 390 395
400 Arg Thr Ser Gly Ile Arg Pro Asp Ile Thr Thr Leu Leu Gly Val Leu
405 410 415 Thr Ala Cys
Ser His Leu Ala Ala Leu Gly His Gly Ser Ser Cys His 420
425 430 Gly Tyr Cys Val Val His Gly Tyr
Ala Val Asn Thr Ser Ile Cys Asn 435 440
445 Ala Leu Met Asp Met Tyr Thr Lys Cys Gly Lys Leu Asp
Val Ala Lys 450 455 460
Arg Val Phe Asp Thr Met His Lys Arg Asp Ile Val Ser Trp Asn Thr 465
470 475 480 Met Leu Phe Gly
Phe Gly Ile His Gly Leu Gly Lys Glu Ala Leu Ser 485
490 495 Leu Phe Asn Ser Met Gln Glu Thr Gly
Val Asn Pro Asp Glu Val Thr 500 505
510 Leu Leu Ala Ile Leu Ser Ala Cys Ser His Ser Gly Leu Val
Asp Glu 515 520 525
Gly Lys Gln Leu Phe Asn Ser Met Ser Arg Gly Asp Phe Asn Val Ile 530
535 540 Pro Arg Ile Asp His
Tyr Asn Cys Met Thr Asp Leu Leu Ala Arg Ala 545 550
555 560 Gly Tyr Leu Asp Glu Ala Tyr Asp Phe Val
Asn Lys Met Pro Phe Glu 565 570
575 Pro Asp Ile Arg Val Leu Gly Thr Leu Leu Ser Ala Cys Trp Thr
Tyr 580 585 590 Lys
Asn Ala Glu Leu Gly Asn Glu Val Ser Lys Lys Met Gln Ser Leu 595
600 605 Gly Glu Thr Thr Glu Ser
Leu Val Leu Leu Ser Asn Thr Tyr Ser Ala 610 615
620 Ala Glu Arg Trp Glu Asp Ala Ala Arg Ile Arg
Met Ile Gln Lys Lys 625 630 635
640 Arg Gly Leu Leu Lys Thr Pro Gly Tyr Ser Trp Val Asp Val
645 650 793321DNAArabidopsis
thaliana 79agacttttgc cttctctaac cagtgtttcg tgattttggg tgatcctaga
aatgggagat 60ggggctgaga ttgtaaccag gttatatggg gatgagaaga agcttgcaga
ggatggtaga 120attagtgagt tggtgggatc tgatgaagtg aaggataatg aagaagaggt
ctttgaggaa 180gcaattggtt cgcaggaggg tctaaaacct gaatctctca aaaccgatgt
gttgcaagag 240gattttcctt tagcttccaa tgatgaagtg tgtgatttgg aagaaacaag
tagaaatgag 300agaggagtag aaaatttaaa ggttaattat tcggagattg gagagagcca
tggtgaggtt 360aacgagcaat gtataactac gaaagaggct gattctgatt tggtgactct
caaaatgaat 420gattatgatc acggggaagt agcagatgca gatatttctt atggtaaaat
ggcatcaagc 480ttggatgtgg ttgagaacag tgagaaagct acttccaatt tagctactga
ggatgtgaat 540ttggaaaacg gaaatacaca ttcttcttca gaaaatggag tagtctctcc
tgatgagaat 600aaagaactgg tggcggaagt tatctcagta agtgcctgtt ccgtggaaac
agggagtaat 660ggtattgacg acgaaaaatg ggaggaagaa attgatgtat cagctggcat
ggtaacagaa 720caaagaaatg gtaagactgg tgctgagttc aatagtgtta aaattgtttc
aggtgacaaa 780tccttgaatg atagtattga agtagcagct gggaccttat ctccattgga
aaaatctagt 840tcggaggaga agggagagac tgaaagtcaa aacagtaatg gaggacatga
tattcaatct 900aataaggaaa ttgtaaagca gcaagatagc agtgtaaata taggtccaga
gattaaggaa 960agccaacata tggaaagaga atctgaggta ttaagttctg tttcaccaac
agagtctaga 1020agtgatactg cagcattacc acctgctcgc ccagcaggtc ttggtcgtgc
tgctccactt 1080ttggaacctg caccacgcgt tacacaacag cctcgtgtca atggaaatgt
gtctcacaat 1140cagcctcagc aagctgaaga ctctaccact gcagagacag atgagcatga
tgagacccgt 1200gagaagctcc agtttatcag ggtcaaattt ttgaggcttt cacatagatt
agggcaaact 1260ccacataatg ttgttgttgc tcaggttttg tacaggcttg gattggctga
acagttgagg 1320ggcagaaacg gaagccgtgt tggtgccttt agttttgatc gtgccagtgc
catggcagaa 1380cagcttgagg cagctgcaca agatcccctt gatttttctt gtacgattat
ggtgcttggt 1440aaaagtgggg ttggtaaaag tgcaaccatc aattctattt ttgatgaact
gaaaattagt 1500actgatgcat tccaggtggg gacaaagaag gttcaggata ttgagggttt
tgttcaggga 1560attaaggtac gggtaattga cactcccggt ctcttaccat cctggtcaga
tcaacacaag 1620aatgagaaga tcctgaagtc tgttagggca ttcatcaaga aaagtccgcc
tgacattgtg 1680ttatatcttg ataggttgga tatgcaaagc agagattctg gtgacatgcc
tctcttacgc 1740accatcactg atgtttttgg accatcaata tggtttaatg ccattgtggg
tttgactcat 1800gccgcttcgg ctccaccaga tggcccaaat ggtactgctt ctagctatga
catgtttgtg 1860acacaacgtt ctcatgtcat ccagcaggcc attcgccaag cagcgggaga
tatgaggctc 1920atgaaccctg tttctttagt tgagaaccac tctgcttgca ggacaaatcg
ggcaggccag 1980agagtattac ctaatggcca agtgtggaag cctcatttgt tattactctc
atttgcatcc 2040aagattcttg ccgaagcaaa tgctcttctg aaattacaag ataatattcc
agggggacaa 2100tttgcaactc ggtccaaggc tccgccacta ccattgctcc tctcatcgct
tctgcaatca 2160agaccacaag ctaagcttcc tgagcaacag tacgatgatg aagacgatga
agatgattta 2220gacgaatcat cagattctga ggaagaatca gagtatgatg agcttcctcc
ctttaagcgg 2280ttgactaaag cagagatgac taagcttagc aaatctcaga agaaggaata
tctcgatgag 2340atggagtatc gggagaaact atttatgaag agacagatga aagaggaaag
aaagagacgt 2400aagttgttga agaaatttgc tgctgagatt aaagatatgc ctaacgggta
tagtgaaaat 2460gtggaagagg agagaagtga acctgcatct gttccagttc caatgccaga
tttatctcta 2520cctgcatctt ttgactctga caatcctact catcggtacc ggtaccttga
tacctccaat 2580caatggcttg ttaggccagt gctggaaact catgggtggg atcatgatat
tggttatgaa 2640ggtgtgaatg cggaacgact atttgttgtt aaagacaaaa taccagtatc
tttctctggc 2700caagtgacaa aggacaagaa ggatgcacat gtgcagctag aattggccag
ctcggttaaa 2760catggagaag gtagatcaac ttccctaggt tttgacatgc aaaatgctgg
gaaggaatta 2820gcgtacacta ttcgaagtga aacaagattt aacaagttta ggaaaaacaa
agcagcagct 2880ggtctctctg ttacgctctt aggtgattca gtttccgcgg gactaaaagt
cgaagataag 2940ttgattgcta ataaacggtt caggatggtt atgtcaggtg gagcaatgac
tagtcgtgga 3000gatgttgctt atggtggtac tttagaagct cagtttcgag ataaagatta
tccgcttggt 3060cggtttttat caactcttgg actctctgtg atggattggc atggcgatct
tgctatcgga 3120gggaatatac agtctcaagt acccattgga cgttcctcta atctcattgc
tcgtgctaat 3180ctgaataaca gaggagcagg gcaagtaagc atccgcgtaa acagctctga
gcagcttcaa 3240cttgctgtgg ttgcacttgt tcctctgttc aagaagcttc ttacttatta
ttcccctgag 3300caaatgcaat atggacactg a
3321801089PRTArabidopsis thaliana 80Met Gly Asp Gly Ala Glu
Ile Val Thr Arg Leu Tyr Gly Asp Glu Lys 1 5
10 15 Lys Leu Ala Glu Asp Gly Arg Ile Ser Glu Leu
Val Gly Ser Asp Glu 20 25
30 Val Lys Asp Asn Glu Glu Glu Val Phe Glu Glu Ala Ile Gly Ser
Gln 35 40 45 Glu
Gly Leu Lys Pro Glu Ser Leu Lys Thr Asp Val Leu Gln Glu Asp 50
55 60 Phe Pro Leu Ala Ser Asn
Asp Glu Val Cys Asp Leu Glu Glu Thr Ser 65 70
75 80 Arg Asn Glu Arg Gly Val Glu Asn Leu Lys Val
Asn Tyr Ser Glu Ile 85 90
95 Gly Glu Ser His Gly Glu Val Asn Glu Gln Cys Ile Thr Thr Lys Glu
100 105 110 Ala Asp
Ser Asp Leu Val Thr Leu Lys Met Asn Asp Tyr Asp His Gly 115
120 125 Glu Val Ala Asp Ala Asp Ile
Ser Tyr Gly Lys Met Ala Ser Ser Leu 130 135
140 Asp Val Val Glu Asn Ser Glu Lys Ala Thr Ser Asn
Leu Ala Thr Glu 145 150 155
160 Asp Val Asn Leu Glu Asn Gly Asn Thr His Ser Ser Ser Glu Asn Gly
165 170 175 Val Val Ser
Pro Asp Glu Asn Lys Glu Leu Val Ala Glu Val Ile Ser 180
185 190 Val Ser Ala Cys Ser Val Glu Thr
Gly Ser Asn Gly Ile Asp Asp Glu 195 200
205 Lys Trp Glu Glu Glu Ile Asp Val Ser Ala Gly Met Val
Thr Glu Gln 210 215 220
Arg Asn Gly Lys Thr Gly Ala Glu Phe Asn Ser Val Lys Ile Val Ser 225
230 235 240 Gly Asp Lys Ser
Leu Asn Asp Ser Ile Glu Val Ala Ala Gly Thr Leu 245
250 255 Ser Pro Leu Glu Lys Ser Ser Ser Glu
Glu Lys Gly Glu Thr Glu Ser 260 265
270 Gln Asn Ser Asn Gly Gly His Asp Ile Gln Ser Asn Lys Glu
Ile Val 275 280 285
Lys Gln Gln Asp Ser Ser Val Asn Ile Gly Pro Glu Ile Lys Glu Ser 290
295 300 Gln His Met Glu Arg
Glu Ser Glu Val Leu Ser Ser Val Ser Pro Thr 305 310
315 320 Glu Ser Arg Ser Asp Thr Ala Ala Leu Pro
Pro Ala Arg Pro Ala Gly 325 330
335 Leu Gly Arg Ala Ala Pro Leu Leu Glu Pro Ala Pro Arg Val Thr
Gln 340 345 350 Gln
Pro Arg Val Asn Gly Asn Val Ser His Asn Gln Pro Gln Gln Ala 355
360 365 Glu Asp Ser Thr Thr Ala
Glu Thr Asp Glu His Asp Glu Thr Arg Glu 370 375
380 Lys Leu Gln Phe Ile Arg Val Lys Phe Leu Arg
Leu Ser His Arg Leu 385 390 395
400 Gly Gln Thr Pro His Asn Val Val Val Ala Gln Val Leu Tyr Arg Leu
405 410 415 Gly Leu
Ala Glu Gln Leu Arg Gly Arg Asn Gly Ser Arg Val Gly Ala 420
425 430 Phe Ser Phe Asp Arg Ala Ser
Ala Met Ala Glu Gln Leu Glu Ala Ala 435 440
445 Ala Gln Asp Pro Leu Asp Phe Ser Cys Thr Ile Met
Val Leu Gly Lys 450 455 460
Ser Gly Val Gly Lys Ser Ala Thr Ile Asn Ser Ile Phe Asp Glu Leu 465
470 475 480 Lys Ile Ser
Thr Asp Ala Phe Gln Val Gly Thr Lys Lys Val Gln Asp 485
490 495 Ile Glu Gly Phe Val Gln Gly Ile
Lys Val Arg Val Ile Asp Thr Pro 500 505
510 Gly Leu Leu Pro Ser Trp Ser Asp Gln His Lys Asn Glu
Lys Ile Leu 515 520 525
Lys Ser Val Arg Ala Phe Ile Lys Lys Ser Pro Pro Asp Ile Val Leu 530
535 540 Tyr Leu Asp Arg
Leu Asp Met Gln Ser Arg Asp Ser Gly Asp Met Pro 545 550
555 560 Leu Leu Arg Thr Ile Thr Asp Val Phe
Gly Pro Ser Ile Trp Phe Asn 565 570
575 Ala Ile Val Gly Leu Thr His Ala Ala Ser Ala Pro Pro Asp
Gly Pro 580 585 590
Asn Gly Thr Ala Ser Ser Tyr Asp Met Phe Val Thr Gln Arg Ser His
595 600 605 Val Ile Gln Gln
Ala Ile Arg Gln Ala Ala Gly Asp Met Arg Leu Met 610
615 620 Asn Pro Val Ser Leu Val Glu Asn
His Ser Ala Cys Arg Thr Asn Arg 625 630
635 640 Ala Gly Gln Arg Val Leu Pro Asn Gly Gln Val Trp
Lys Pro His Leu 645 650
655 Leu Leu Leu Ser Phe Ala Ser Lys Ile Leu Ala Glu Ala Asn Ala Leu
660 665 670 Leu Lys Leu
Gln Asp Asn Ile Pro Gly Gly Gln Phe Ala Thr Arg Ser 675
680 685 Lys Ala Pro Pro Leu Pro Leu Leu
Leu Ser Ser Leu Leu Gln Ser Arg 690 695
700 Pro Gln Ala Lys Leu Pro Glu Gln Gln Tyr Asp Asp Glu
Asp Asp Glu 705 710 715
720 Asp Asp Leu Asp Glu Ser Ser Asp Ser Glu Glu Glu Ser Glu Tyr Asp
725 730 735 Glu Leu Pro Pro
Phe Lys Arg Leu Thr Lys Ala Glu Met Thr Lys Leu 740
745 750 Ser Lys Ser Gln Lys Lys Glu Tyr Leu
Asp Glu Met Glu Tyr Arg Glu 755 760
765 Lys Leu Phe Met Lys Arg Gln Met Lys Glu Glu Arg Lys Arg
Arg Lys 770 775 780
Leu Leu Lys Lys Phe Ala Ala Glu Ile Lys Asp Met Pro Asn Gly Tyr 785
790 795 800 Ser Glu Asn Val Glu
Glu Glu Arg Ser Glu Pro Ala Ser Val Pro Val 805
810 815 Pro Met Pro Asp Leu Ser Leu Pro Ala Ser
Phe Asp Ser Asp Asn Pro 820 825
830 Thr His Arg Tyr Arg Tyr Leu Asp Thr Ser Asn Gln Trp Leu Val
Arg 835 840 845 Pro
Val Leu Glu Thr His Gly Trp Asp His Asp Ile Gly Tyr Glu Gly 850
855 860 Val Asn Ala Glu Arg Leu
Phe Val Val Lys Asp Lys Ile Pro Val Ser 865 870
875 880 Phe Ser Gly Gln Val Thr Lys Asp Lys Lys Asp
Ala His Val Gln Leu 885 890
895 Glu Leu Ala Ser Ser Val Lys His Gly Glu Gly Arg Ser Thr Ser Leu
900 905 910 Gly Phe
Asp Met Gln Asn Ala Gly Lys Glu Leu Ala Tyr Thr Ile Arg 915
920 925 Ser Glu Thr Arg Phe Asn Lys
Phe Arg Lys Asn Lys Ala Ala Ala Gly 930 935
940 Leu Ser Val Thr Leu Leu Gly Asp Ser Val Ser Ala
Gly Leu Lys Val 945 950 955
960 Glu Asp Lys Leu Ile Ala Asn Lys Arg Phe Arg Met Val Met Ser Gly
965 970 975 Gly Ala Met
Thr Ser Arg Gly Asp Val Ala Tyr Gly Gly Thr Leu Glu 980
985 990 Ala Gln Phe Arg Asp Lys Asp Tyr
Pro Leu Gly Arg Phe Leu Ser Thr 995 1000
1005 Leu Gly Leu Ser Val Met Asp Trp His Gly Asp
Leu Ala Ile Gly 1010 1015 1020
Gly Asn Ile Gln Ser Gln Val Pro Ile Gly Arg Ser Ser Asn Leu
1025 1030 1035 Ile Ala Arg
Ala Asn Leu Asn Asn Arg Gly Ala Gly Gln Val Ser 1040
1045 1050 Ile Arg Val Asn Ser Ser Glu Gln
Leu Gln Leu Ala Val Val Ala 1055 1060
1065 Leu Val Pro Leu Phe Lys Lys Leu Leu Thr Tyr Tyr Ser
Pro Glu 1070 1075 1080
Gln Met Gln Tyr Gly His 1085 811191DNAArabidopsis
thaliana 81atgagctaca ctttctttct ccttttgctc tctcttgtcc actccacttt
ctcttcatta 60gctcctacgg atcgagccgc gctccaatcc atcagagact ctttaaccga
catgcccggt 120tcagccttct tctcctcttg ggacttcaca gttcctgacc cttgttcctc
cttctctggc 180cttacctgct cttctcgcgg ccgtgtcacc ggcttaactc ttggccctaa
tctctcaggc 240tctctctccc cttccatctc cattctaacc cacttaaccc aactcattct
ctaccccggt 300tcagtcaccg gtcctctccc tcctcggttc gattccctcc ctctccttcg
agtcatttcc 360ttaacaagaa accgtttaac cggtcctata cccgtatctt tctcatctct
ctcaaatctc 420cacactcttg accttagcta taaccaactc tctggctctc tccctccttt
tctcaccact 480cttcctcgac tcaaagtcct tgttttagcc tcaaaccatt tctccaacaa
ccttaagcct 540gtctctagcc cattgttcca tttagaccta aagatgaacc aaatctccgg
ccaactccca 600cccgctttcc cgactactct ccggtactta tctctatccg gaaactcaat
gcagggcaca 660atcaatgcca tggagccatt aacagagcta atatacatcg atctaagcat
gaaccaattt 720accggcgcaa tccctagctc actctttagt cccacaatct caacaatgtt
cctacaacga 780aacaacttca catccattgc cacctcaaac gccacgtcat tgttacctga
gggctccatt 840gttgatctga gccataactc aatctccgga gagctaactc ccgcgcttgt
cggagcagag 900gctttgttct tgaacaacaa ccgtctcact ggagacattc cagaggaata
cgtcaagagc 960ttaatcaacg gtacaacaaa acagctcttc ttgcaacata actacttcac
gagattccct 1020tggaactctg gtctccaact accagactct gtttcgctct gtttgtcata
taactgtatg 1080gagacagatc cagtcgttgg tttgtccacg tgtccgatcg aagttgcacc
tctgctctca 1140agacctgctt cacaatgttc aagattctat aatcacagct ccactggtta a
119182396PRTArabidopsis thaliana 82Met Ser Tyr Thr Phe Phe Leu
Leu Leu Leu Ser Leu Val His Ser Thr 1 5
10 15 Phe Ser Ser Leu Ala Pro Thr Asp Arg Ala Ala
Leu Gln Ser Ile Arg 20 25
30 Asp Ser Leu Thr Asp Met Pro Gly Ser Ala Phe Phe Ser Ser Trp
Asp 35 40 45 Phe
Thr Val Pro Asp Pro Cys Ser Ser Phe Ser Gly Leu Thr Cys Ser 50
55 60 Ser Arg Gly Arg Val Thr
Gly Leu Thr Leu Gly Pro Asn Leu Ser Gly 65 70
75 80 Ser Leu Ser Pro Ser Ile Ser Ile Leu Thr His
Leu Thr Gln Leu Ile 85 90
95 Leu Tyr Pro Gly Ser Val Thr Gly Pro Leu Pro Pro Arg Phe Asp Ser
100 105 110 Leu Pro
Leu Leu Arg Val Ile Ser Leu Thr Arg Asn Arg Leu Thr Gly 115
120 125 Pro Ile Pro Val Ser Phe Ser
Ser Leu Ser Asn Leu His Thr Leu Asp 130 135
140 Leu Ser Tyr Asn Gln Leu Ser Gly Ser Leu Pro Pro
Phe Leu Thr Thr 145 150 155
160 Leu Pro Arg Leu Lys Val Leu Val Leu Ala Ser Asn His Phe Ser Asn
165 170 175 Asn Leu Lys
Pro Val Ser Ser Pro Leu Phe His Leu Asp Leu Lys Met 180
185 190 Asn Gln Ile Ser Gly Gln Leu Pro
Pro Ala Phe Pro Thr Thr Leu Arg 195 200
205 Tyr Leu Ser Leu Ser Gly Asn Ser Met Gln Gly Thr Ile
Asn Ala Met 210 215 220
Glu Pro Leu Thr Glu Leu Ile Tyr Ile Asp Leu Ser Met Asn Gln Phe 225
230 235 240 Thr Gly Ala Ile
Pro Ser Ser Leu Phe Ser Pro Thr Ile Ser Thr Met 245
250 255 Phe Leu Gln Arg Asn Asn Phe Thr Ser
Ile Ala Thr Ser Asn Ala Thr 260 265
270 Ser Leu Leu Pro Glu Gly Ser Ile Val Asp Leu Ser His Asn
Ser Ile 275 280 285
Ser Gly Glu Leu Thr Pro Ala Leu Val Gly Ala Glu Ala Leu Phe Leu 290
295 300 Asn Asn Asn Arg Leu
Thr Gly Asp Ile Pro Glu Glu Tyr Val Lys Ser 305 310
315 320 Leu Ile Asn Gly Thr Thr Lys Gln Leu Phe
Leu Gln His Asn Tyr Phe 325 330
335 Thr Arg Phe Pro Trp Asn Ser Gly Leu Gln Leu Pro Asp Ser Val
Ser 340 345 350 Leu
Cys Leu Ser Tyr Asn Cys Met Glu Thr Asp Pro Val Val Gly Leu 355
360 365 Ser Thr Cys Pro Ile Glu
Val Ala Pro Leu Leu Ser Arg Pro Ala Ser 370 375
380 Gln Cys Ser Arg Phe Tyr Asn His Ser Ser Thr
Gly 385 390 395 832396DNAArabidopsis
thaliana 83gagtccaagt tgactccttc gagctttgat tctcgttcca ataatacttc
ctccaccatc 60tctcctcctc tcgttagatc taagaaacag agaaaacaag agagatagaa
tgagaaaggg 120agttctaaat cctgacagag atcgtcagat agtggaacat gagttgcagg
aaactgggtt 180tagtccagaa acagagaaag tcaagaacaa gaattttgaa gaagatgaag
aggaagaaga 240tgaatctgtg gagaagatat ttgagagtag agaagtacct tcttggaaga
agcagttgac 300ggtgagggct tttgtggtga gctttatgct aagcatcttg tttagtttca
ttgttatgaa 360gcttaacctc acaacgggaa tcatcccttc gctcaatgtc tctgctggtc
ttttgggttt 420cttctttgtc aagacatgga ctaagatgct ccataggtct ggtctcttga
aacagccatt 480tactcgccag gagaatactg ttattcagac ctgtgttgtt gcctcttctg
gcattgcctt 540cagcggaggt tttgggacat acctctttgg catgagtgaa cgaattgcga
cccaatcagg 600agatgtatcc cgtggcgtca aggacccttc tttgggttgg attatcggtt
tcctctttgt 660cgtcagcttt cttggcctct tctcagttgt ccccctgcga aagataatgg
taatagactt 720caaactaaca tacccaagtg gtactgcaac agctcatctt atcaacagct
ttcacacccc 780tcaaggcgcc aagctagcca agaaacaagt gagggtgttg gggaaatttt
tctctttaag 840cttcttctgg agtttcttcc aatggttctt taccggagga gaaaattgtg
ggttctccaa 900cttcccaaca tttggactca aagcttacca gtacaagttc tactttgatt
tttcagcaac 960atatgttggt gttggaatga tatgtccgta tataatcaac atctctgtcc
tattgggagg 1020aatcctctct tgggggataa tgtggcccct cattgaaacc aaaaagggag
attggttccc 1080tgataatgtc ccatccagca gcatgcatgg tctccaagct tacaaggtgt
ttatagctgt 1140tgctataatc ctaggagatg gcttatacaa cttttgcaag gtgctgagcc
ggactctttc 1200aggattattt gtacagctcc gaggccctac tacatctatt tcaagaacct
ccttcacact 1260tgaagaagac cctcatgctt ccccactaag cccaaagcaa tcttatgatg
accaacgtcg 1320tacaagattc ttcctcaaag accaaatccc tacttggttt gctgttggag
gttatatcac 1380aatagctgca acatctacag cgatactccc tcacatgttc caccagctga
gatggtatta 1440cattctggtc atctatatct gcgcgcctgt cttagctttc tgtaacgctt
atggagctgg 1500actcacagac tggtccttgg cttcaactta tggaaagtta gccatattca
caattggagc 1560ttgggctggc tctgagcacg gtggtatgct ggctggtcta gcagcatgtg
gtgtcatgat 1620gaacatagtc tcgacagctt cggatctaac acaagacttc aagacaggct
acctcacttt 1680atcatctcca aagtcaatgt ttgtgagcca agtgattgga acagcaatgg
gttgtgtggt 1740atctccttgc gtgttctggc tattctacaa agcgtttgat gatttaggcc
tcccaaacac 1800tgaataccct gctccatttg ctactgtata tcgaagcatg gctaaactag
gagtggaagg 1860tgtcgcatct ctaccgagag aatgtcttgt tctatgctac gcgttcttcg
gtgtggcgat 1920tctcgtaaac atagtaaaag atagtctcca tagcaattgg ggaaggttca
ttccacttcc 1980catggcaatg gctataccgt ttttcttggg accttacttc gcaattgaca
tgtgtgtggg 2040aagtttgata ctttttatct gggaaagagt agatgcagcc aaggctgaag
cttttgggac 2100agcggtggct tctggtttga tatgcggaga tggcatttgg tctttgccga
gctccgtgct 2160cgctatagcc ggagttaatc ctcctgtttg catgaagttt ctctcttctg
caaccaattc 2220aaaggtcgac aacttcctga aaggatccat ttaaaactca aataagtaac
aacatctcaa 2280ccatgtgaaa gtgtaatgat gcttcaattg ttcttttacc attatgacga
ttttgaatgt 2340aactcgtata taaagatctt agatatgaaa gggctctgat tgatgattgt
caaaac 239684714PRTArabidopsis thaliana 84Met Arg Lys Gly Val Leu
Asn Pro Asp Arg Asp Arg Gln Ile Val Glu 1 5
10 15 His Glu Leu Gln Glu Thr Gly Phe Ser Pro Glu
Thr Glu Lys Val Lys 20 25
30 Asn Lys Asn Phe Glu Glu Asp Glu Glu Glu Glu Asp Glu Ser Val
Glu 35 40 45 Lys
Ile Phe Glu Ser Arg Glu Val Pro Ser Trp Lys Lys Gln Leu Thr 50
55 60 Val Arg Ala Phe Val Val
Ser Phe Met Leu Ser Ile Leu Phe Ser Phe 65 70
75 80 Ile Val Met Lys Leu Asn Leu Thr Thr Gly Ile
Ile Pro Ser Leu Asn 85 90
95 Val Ser Ala Gly Leu Leu Gly Phe Phe Phe Val Lys Thr Trp Thr Lys
100 105 110 Met Leu
His Arg Ser Gly Leu Leu Lys Gln Pro Phe Thr Arg Gln Glu 115
120 125 Asn Thr Val Ile Gln Thr Cys
Val Val Ala Ser Ser Gly Ile Ala Phe 130 135
140 Ser Gly Gly Phe Gly Thr Tyr Leu Phe Gly Met Ser
Glu Arg Ile Ala 145 150 155
160 Thr Gln Ser Gly Asp Val Ser Arg Gly Val Lys Asp Pro Ser Leu Gly
165 170 175 Trp Ile Ile
Gly Phe Leu Phe Val Val Ser Phe Leu Gly Leu Phe Ser 180
185 190 Val Val Pro Leu Arg Lys Ile Met
Val Ile Asp Phe Lys Leu Thr Tyr 195 200
205 Pro Ser Gly Thr Ala Thr Ala His Leu Ile Asn Ser Phe
His Thr Pro 210 215 220
Gln Gly Ala Lys Leu Ala Lys Lys Gln Val Arg Val Leu Gly Lys Phe 225
230 235 240 Phe Ser Leu Ser
Phe Phe Trp Ser Phe Phe Gln Trp Phe Phe Thr Gly 245
250 255 Gly Glu Asn Cys Gly Phe Ser Asn Phe
Pro Thr Phe Gly Leu Lys Ala 260 265
270 Tyr Gln Tyr Lys Phe Tyr Phe Asp Phe Ser Ala Thr Tyr Val
Gly Val 275 280 285
Gly Met Ile Cys Pro Tyr Ile Ile Asn Ile Ser Val Leu Leu Gly Gly 290
295 300 Ile Leu Ser Trp Gly
Ile Met Trp Pro Leu Ile Glu Thr Lys Lys Gly 305 310
315 320 Asp Trp Phe Pro Asp Asn Val Pro Ser Ser
Ser Met His Gly Leu Gln 325 330
335 Ala Tyr Lys Val Phe Ile Ala Val Ala Ile Ile Leu Gly Asp Gly
Leu 340 345 350 Tyr
Asn Phe Cys Lys Val Leu Ser Arg Thr Leu Ser Gly Leu Phe Val 355
360 365 Gln Leu Arg Gly Pro Thr
Thr Ser Ile Ser Arg Thr Ser Phe Thr Leu 370 375
380 Glu Glu Asp Pro His Ala Ser Pro Leu Ser Pro
Lys Gln Ser Tyr Asp 385 390 395
400 Asp Gln Arg Arg Thr Arg Phe Phe Leu Lys Asp Gln Ile Pro Thr Trp
405 410 415 Phe Ala
Val Gly Gly Tyr Ile Thr Ile Ala Ala Thr Ser Thr Ala Ile 420
425 430 Leu Pro His Met Phe His Gln
Leu Arg Trp Tyr Tyr Ile Leu Val Ile 435 440
445 Tyr Ile Cys Ala Pro Val Leu Ala Phe Cys Asn Ala
Tyr Gly Ala Gly 450 455 460
Leu Thr Asp Trp Ser Leu Ala Ser Thr Tyr Gly Lys Leu Ala Ile Phe 465
470 475 480 Thr Ile Gly
Ala Trp Ala Gly Ser Glu His Gly Gly Met Leu Ala Gly 485
490 495 Leu Ala Ala Cys Gly Val Met Met
Asn Ile Val Ser Thr Ala Ser Asp 500 505
510 Leu Thr Gln Asp Phe Lys Thr Gly Tyr Leu Thr Leu Ser
Ser Pro Lys 515 520 525
Ser Met Phe Val Ser Gln Val Ile Gly Thr Ala Met Gly Cys Val Val 530
535 540 Ser Pro Cys Val
Phe Trp Leu Phe Tyr Lys Ala Phe Asp Asp Leu Gly 545 550
555 560 Leu Pro Asn Thr Glu Tyr Pro Ala Pro
Phe Ala Thr Val Tyr Arg Ser 565 570
575 Met Ala Lys Leu Gly Val Glu Gly Val Ala Ser Leu Pro Arg
Glu Cys 580 585 590
Leu Val Leu Cys Tyr Ala Phe Phe Gly Val Ala Ile Leu Val Asn Ile
595 600 605 Val Lys Asp Ser
Leu His Ser Asn Trp Gly Arg Phe Ile Pro Leu Pro 610
615 620 Met Ala Met Ala Ile Pro Phe Phe
Leu Gly Pro Tyr Phe Ala Ile Asp 625 630
635 640 Met Cys Val Gly Ser Leu Ile Leu Phe Ile Trp Glu
Arg Val Asp Ala 645 650
655 Ala Lys Ala Glu Ala Phe Gly Thr Ala Val Ala Ser Gly Leu Ile Cys
660 665 670 Gly Asp Gly
Ile Trp Ser Leu Pro Ser Ser Val Leu Ala Ile Ala Gly 675
680 685 Val Asn Pro Pro Val Cys Met Lys
Phe Leu Ser Ser Ala Thr Asn Ser 690 695
700 Lys Val Asp Asn Phe Leu Lys Gly Ser Ile 705
710 85354DNAArabidopsis thaliana 85atgaacagga
aggcctctgt ttccaaggag ctcaacgcca agcattcaaa gatattggaa 60gcacttttga
agcatccaga caatcgagaa tgtgcagatt gtagatcaaa ggcaccaaga 120tgggcaagtg
tgaaccttgg gatattcatt tgtatgcaat gttctggaat ccatcgtagc 180cttggcgtcc
acatctctca ggtaaggtct ataactctgg atacatggct tccagatcag 240gttgctttca
tgaaatctac cggtaatgct aagggaaatg agtattggga atcagaattg 300cctcaacatt
tcgagagaag ttcaagcgac acgtttataa gagccaagta ttga
35486117PRTArabidopsis thaliana 86Met Asn Arg Lys Ala Ser Val Ser Lys Glu
Leu Asn Ala Lys His Ser 1 5 10
15 Lys Ile Leu Glu Ala Leu Leu Lys His Pro Asp Asn Arg Glu Cys
Ala 20 25 30 Asp
Cys Arg Ser Lys Ala Pro Arg Trp Ala Ser Val Asn Leu Gly Ile 35
40 45 Phe Ile Cys Met Gln Cys
Ser Gly Ile His Arg Ser Leu Gly Val His 50 55
60 Ile Ser Gln Val Arg Ser Ile Thr Leu Asp Thr
Trp Leu Pro Asp Gln 65 70 75
80 Val Ala Phe Met Lys Ser Thr Gly Asn Ala Lys Gly Asn Glu Tyr Trp
85 90 95 Glu Ser
Glu Leu Pro Gln His Phe Glu Arg Ser Ser Ser Asp Thr Phe 100
105 110 Ile Arg Ala Lys Tyr
115 871101DNAArabidopsis thaliana 87atggcggtga acgcgtgtct
atctccgccg gagatgatgg ctgtccggcc aggggaaggc 60gttccgaatt caaaatctac
gcagggaaaa actaggctct atctcaccaa accttcatgg 120atagtcagaa ctcagtctgg
agctaagacg tgtatgaagt cgaaggcgaa aggacgatgc 180gtaatctgcc atggaagtgg
aagagtcgat tgtttcaatt gttgtgggaa agggaggact 240aattgtgtgg atgtggaaat
gcttccaaga ggagaatggc ctaaatggtg caagagttgt 300ggagggagtg gattaagtga
ctgttctcgc tgtcttggca ccggagagcg cgcatctttc 360ttcttcttgt ggttcgatat
tcttatcgtt atgtcttccg tcgctttgcc ggcgatgagc 420tgccggagct caggtgaaca
agtgaaggag attcgcgttt gtacgaatcg cacctgccga 480agacaaggct ccttccagat
tctcgagact ttaacagctc tcgcacctcc cgaactccga 540gtcactcact gcgcttgcct
cggccgatgc ggctccggtc caaacctcgt ggctctccct 600caaggtctca tcctacgtca
ctgcgccacg ccttctcgag ctgctgaaat tttgttcagc 660ctatgtggtg acggtcgtga
agcttcttca tcctccgccg tcacagacgc tctcacggct 720ttagcgttaa ccaacaatgc
tctctctcaa atcgatgcgg gaaatttctc tgaagccgaa 780gcacttctca ctcaggcttt
agagctgaaa ccctacggtg gcttgcatag aatattcaaa 840cacagatcag tagcaaaatt
gggaatgctt gattactctg gggctcttga agatataagc 900caagctctag ctttagctcc
taactattct gagccctaca tatgccaagg ggatgtctac 960gtagcaaaag gtcaatatga
tcttgcagag aagtcatact tgacatgtct agagatagat 1020ccttctcttc gcagatcgaa
accattcaag gcccggattg cgaaacttca acagaaagtt 1080gttgaactag atgtaacata g
110188366PRTArabidopsis
thaliana 88Met Ala Val Asn Ala Cys Leu Ser Pro Pro Glu Met Met Ala Val
Arg 1 5 10 15 Pro
Gly Glu Gly Val Pro Asn Ser Lys Ser Thr Gln Gly Lys Thr Arg
20 25 30 Leu Tyr Leu Thr Lys
Pro Ser Trp Ile Val Arg Thr Gln Ser Gly Ala 35
40 45 Lys Thr Cys Met Lys Ser Lys Ala Lys
Gly Arg Cys Val Ile Cys His 50 55
60 Gly Ser Gly Arg Val Asp Cys Phe Asn Cys Cys Gly Lys
Gly Arg Thr 65 70 75
80 Asn Cys Val Asp Val Glu Met Leu Pro Arg Gly Glu Trp Pro Lys Trp
85 90 95 Cys Lys Ser Cys
Gly Gly Ser Gly Leu Ser Asp Cys Ser Arg Cys Leu 100
105 110 Gly Thr Gly Glu Arg Ala Ser Phe Phe
Phe Leu Trp Phe Asp Ile Leu 115 120
125 Ile Val Met Ser Ser Val Ala Leu Pro Ala Met Ser Cys Arg
Ser Ser 130 135 140
Gly Glu Gln Val Lys Glu Ile Arg Val Cys Thr Asn Arg Thr Cys Arg 145
150 155 160 Arg Gln Gly Ser Phe
Gln Ile Leu Glu Thr Leu Thr Ala Leu Ala Pro 165
170 175 Pro Glu Leu Arg Val Thr His Cys Ala Cys
Leu Gly Arg Cys Gly Ser 180 185
190 Gly Pro Asn Leu Val Ala Leu Pro Gln Gly Leu Ile Leu Arg His
Cys 195 200 205 Ala
Thr Pro Ser Arg Ala Ala Glu Ile Leu Phe Ser Leu Cys Gly Asp 210
215 220 Gly Arg Glu Ala Ser Ser
Ser Ser Ala Val Thr Asp Ala Leu Thr Ala 225 230
235 240 Leu Ala Leu Thr Asn Asn Ala Leu Ser Gln Ile
Asp Ala Gly Asn Phe 245 250
255 Ser Glu Ala Glu Ala Leu Leu Thr Gln Ala Leu Glu Leu Lys Pro Tyr
260 265 270 Gly Gly
Leu His Arg Ile Phe Lys His Arg Ser Val Ala Lys Leu Gly 275
280 285 Met Leu Asp Tyr Ser Gly Ala
Leu Glu Asp Ile Ser Gln Ala Leu Ala 290 295
300 Leu Ala Pro Asn Tyr Ser Glu Pro Tyr Ile Cys Gln
Gly Asp Val Tyr 305 310 315
320 Val Ala Lys Gly Gln Tyr Asp Leu Ala Glu Lys Ser Tyr Leu Thr Cys
325 330 335 Leu Glu Ile
Asp Pro Ser Leu Arg Arg Ser Lys Pro Phe Lys Ala Arg 340
345 350 Ile Ala Lys Leu Gln Gln Lys Val
Val Glu Leu Asp Val Thr 355 360
365 891123DNAArabidopsis thaliana 89tctctcatca cttcttgtct gaaaaaatgt
tggaaacaga ccttgaagct cggatgcaaa 60tcctgcgtga gtctggtttt caagaaagcc
aaggagatga tgataccttt gctcaacgag 120ctgaatggtt ttaccaggga cgacctttgc
ttctctcact ttgtctggac ctgtacaacg 180gctacgtcac tctcttgggt cgttcttctc
atcagaccag acttaaaccc actacttctc 240ttccgaacca gcttctccaa gatgatgatg
actgcatttc ggacattgat tccgttagtg 300aggtcagttc tgaagttgag agcaccttat
cctttcaaca gatgaaagat cctactgcgg 360tttctgagaa agtcgatgag cttgtatccc
aacttgtgac agcaagcttg gacaaagaga 420ttctgaaaca cgagttactt cacaaggacc
aacagtttca tgaagcctcc aagactatag 480agctgttgaa gaagtttgtc atgttgctgg
agatggagaa agaagtggct gtggaggaaa 540acgctaatct tggctacaaa ctcacttctc
tcttggagga gaacagagag ctagccactg 600aggcattgtt catgaagaac gaagctgttg
ggcttgctag gtgtgtgctt aagatgagag 660atgaccactt tcacaaggtc tgcattctcc
agaaccgcat ctactcgctt caggcatcta 720ggaactcaga gcccgtctct gataaggtct
catacggatg ctttggcctg gataagcata 780agaccaaaaa gaagaaggag aacaaaaccg
aagagaagaa gcctggattc aagtggttga 840agaaactgaa caccattaac ctgtttacaa
agtgcagcct taacccatcg gctgctgctc 900catcatgctg cactttcgac ttgccttatt
agcttaatcc tttgctgtat tagtaaacta 960tgaacaatgc atacataact gtgtatgttc
tatcgcctta ttaggtttaa tgcttttcag 1020tgcatcgccc tgatgcacag tttgttgtac
cccgcataca atctgtggct ccttgatcca 1080catatgtatg gttttcatga ctcacttatc
tggttaacac aac 112390301PRTArabidopsis thaliana 90Met
Leu Glu Thr Asp Leu Glu Ala Arg Met Gln Ile Leu Arg Glu Ser 1
5 10 15 Gly Phe Gln Glu Ser Gln
Gly Asp Asp Asp Thr Phe Ala Gln Arg Ala 20
25 30 Glu Trp Phe Tyr Gln Gly Arg Pro Leu Leu
Leu Ser Leu Cys Leu Asp 35 40
45 Leu Tyr Asn Gly Tyr Val Thr Leu Leu Gly Arg Ser Ser His
Gln Thr 50 55 60
Arg Leu Lys Pro Thr Thr Ser Leu Pro Asn Gln Leu Leu Gln Asp Asp 65
70 75 80 Asp Asp Cys Ile Ser
Asp Ile Asp Ser Val Ser Glu Val Ser Ser Glu 85
90 95 Val Glu Ser Thr Leu Ser Phe Gln Gln Met
Lys Asp Pro Thr Ala Val 100 105
110 Ser Glu Lys Val Asp Glu Leu Val Ser Gln Leu Val Thr Ala Ser
Leu 115 120 125 Asp
Lys Glu Ile Leu Lys His Glu Leu Leu His Lys Asp Gln Gln Phe 130
135 140 His Glu Ala Ser Lys Thr
Ile Glu Leu Leu Lys Lys Phe Val Met Leu 145 150
155 160 Leu Glu Met Glu Lys Glu Val Ala Val Glu Glu
Asn Ala Asn Leu Gly 165 170
175 Tyr Lys Leu Thr Ser Leu Leu Glu Glu Asn Arg Glu Leu Ala Thr Glu
180 185 190 Ala Leu
Phe Met Lys Asn Glu Ala Val Gly Leu Ala Arg Cys Val Leu 195
200 205 Lys Met Arg Asp Asp His Phe
His Lys Val Cys Ile Leu Gln Asn Arg 210 215
220 Ile Tyr Ser Leu Gln Ala Ser Arg Asn Ser Glu Pro
Val Ser Asp Lys 225 230 235
240 Val Ser Tyr Gly Cys Phe Gly Leu Asp Lys His Lys Thr Lys Lys Lys
245 250 255 Lys Glu Asn
Lys Thr Glu Glu Lys Lys Pro Gly Phe Lys Trp Leu Lys 260
265 270 Lys Leu Asn Thr Ile Asn Leu Phe
Thr Lys Cys Ser Leu Asn Pro Ser 275 280
285 Ala Ala Ala Pro Ser Cys Cys Thr Phe Asp Leu Pro Tyr
290 295 300 911186DNAArabidopsis
thaliana 91tgaacaaacg tgtcagctat cttctctctc tcactatttc tgggttgaag
aagatgaaga 60acaaagcatc catggaagct ccacagttgc catctctctc tgaccttgaa
gctcggatgc 120aaatcctgcg tgagtctggt tttcaagaaa gccaaggaga tgatgatacc
tttgctcaac 180gagctgaatg gttttaccag ggacgacctt tgcttctctc actttgtctg
gacctgtaca 240acggctacgt cactctcttg ggtcgttctt ctcatcagac cagacttaaa
cccactactt 300ctcttccgaa ccagcttctc caagatgatg atgactgcat ttcggacatt
gattccgtta 360gtgaggtcag ttctgaagtt gagagcacct tatcctttca acagatgaaa
gatcctactg 420cggtttctga gaaagtcgat gagcttgtat cccaacttgt gacagcaagc
ttggacaaag 480agattctgaa acacgagtta cttcacaagg accaacagtt tcatgaagcc
tccaagacta 540tagagctgtt gaagaagttt gtcatgttgc tggagatgga gaaagaagtg
gctgtggagg 600aaaacgctaa tcttggctac aaactcactt ctctcttgga ggagaacaga
gagctagcca 660ctgaggcatt gttcatgaag aacgaagctg ttgggcttgc taggtgtgtg
cttaagatga 720gagatgacca ctttcacaag gtctgcattc tccagaaccg catctactcg
cttcaggcat 780ctaggaactc agagcccgtc tctgataagg tctcatacgg atgctttggc
ctggataagc 840ataagaccaa aaagaagaag gagaacaaaa ccgaagagaa gaagcctgga
ttcaagtggt 900tgaagaaact gaacaccatt aacctgttta caaagtgcag ccttaaccca
tcggctgctg 960ctccatcatg ctgcactttc gacttgcctt attagcttaa tcctttgctg
tattagtaaa 1020ctatgaacaa tgcatacata actgtgtatg ttctatcgcc ttattaggtt
taatgctttt 1080cagtgcatcg ccctgatgca cagtttgttg taccccgcat acaatctgtg
gctccttgat 1140ccacatatgt atggttttca tgactcactt atctggttaa cacaac
118692313PRTArabidopsis thaliana 92Met Lys Asn Lys Ala Ser Met
Glu Ala Pro Gln Leu Pro Ser Leu Ser 1 5
10 15 Asp Leu Glu Ala Arg Met Gln Ile Leu Arg Glu
Ser Gly Phe Gln Glu 20 25
30 Ser Gln Gly Asp Asp Asp Thr Phe Ala Gln Arg Ala Glu Trp Phe
Tyr 35 40 45 Gln
Gly Arg Pro Leu Leu Leu Ser Leu Cys Leu Asp Leu Tyr Asn Gly 50
55 60 Tyr Val Thr Leu Leu Gly
Arg Ser Ser His Gln Thr Arg Leu Lys Pro 65 70
75 80 Thr Thr Ser Leu Pro Asn Gln Leu Leu Gln Asp
Asp Asp Asp Cys Ile 85 90
95 Ser Asp Ile Asp Ser Val Ser Glu Val Ser Ser Glu Val Glu Ser Thr
100 105 110 Leu Ser
Phe Gln Gln Met Lys Asp Pro Thr Ala Val Ser Glu Lys Val 115
120 125 Asp Glu Leu Val Ser Gln Leu
Val Thr Ala Ser Leu Asp Lys Glu Ile 130 135
140 Leu Lys His Glu Leu Leu His Lys Asp Gln Gln Phe
His Glu Ala Ser 145 150 155
160 Lys Thr Ile Glu Leu Leu Lys Lys Phe Val Met Leu Leu Glu Met Glu
165 170 175 Lys Glu Val
Ala Val Glu Glu Asn Ala Asn Leu Gly Tyr Lys Leu Thr 180
185 190 Ser Leu Leu Glu Glu Asn Arg Glu
Leu Ala Thr Glu Ala Leu Phe Met 195 200
205 Lys Asn Glu Ala Val Gly Leu Ala Arg Cys Val Leu Lys
Met Arg Asp 210 215 220
Asp His Phe His Lys Val Cys Ile Leu Gln Asn Arg Ile Tyr Ser Leu 225
230 235 240 Gln Ala Ser Arg
Asn Ser Glu Pro Val Ser Asp Lys Val Ser Tyr Gly 245
250 255 Cys Phe Gly Leu Asp Lys His Lys Thr
Lys Lys Lys Lys Glu Asn Lys 260 265
270 Thr Glu Glu Lys Lys Pro Gly Phe Lys Trp Leu Lys Lys Leu
Asn Thr 275 280 285
Ile Asn Leu Phe Thr Lys Cys Ser Leu Asn Pro Ser Ala Ala Ala Pro 290
295 300 Ser Cys Cys Thr Phe
Asp Leu Pro Tyr 305 310 932761DNAArabidopsis
thaliana 93aaaatacaca atggacaaag ctcttggata aagttttcaa agtaacacaa
gaggcagctt 60cttgaggttt tctctcttcc aacttttttg ctttacttac tactgaggtt
ttctattcct 120ttggaagctt cgttgatggg ttcaacacaa gatctaaaat gtaacatttc
ttttcttaaa 180tttcctgcaa agttcgatgt agttcatgtt tttttttttc cattcttttc
cttataaagt 240gtcgtccaca tttgcttgac gggatacaaa acgaaaccca agtctctgtc
ttcgtctcct 300tctttcttct tctctctgtc atcattttgc ttttttttct tctcctacat
gccctagatt 360ttgggtttct gaaataaaaa atggctcaca ctaggacttt cacttccaga
aaccgtagcg 420tttctctctc aaacccatct ttctccattg acggatttga caactcaact
gtgactttag 480gctacacggg tcctcttcga acccagagaa taagacctcc tttagtgcaa
atgagtggtc 540ctattcactc tactcgcaga acagaacctc tcttctctcc ttctcctcaa
gaatctcctg 600attcctcttc taccgttgat gttccacctg aagatgattt cgtcttcaaa
aacgcaaatc 660tcttgagatc tggacaatta gggatgtgca atgatcctta ctgcactact
tgcccttctt 720actacaaccg ccaagctgct caattgcaca cttccagagt ttctgcctct
aggtttcgca 780ctgttctgta tggtgatgct agaggttggg ctaagcgatt tgcctcctct
gttcgtagat 840gcttacccgg aataatgaat cctcattcca aatttgttca agtctggact
agagtcttag 900ccttttcaag cttagtggcc atttttatag accctctctt ctttttcctc
ttattgatcc 960aacaagacaa caaatgcata gcgattgatt ggcgtgcgac taaagtattg
gtgtctctta 1020gaagtataac ggatcttata ttcttcatta acattctgct tcagtttagg
ttggcctatg 1080tagctcctga gtctagaata gttggtgccg gccagttagt tgatcatcca
agaaaaattg 1140ctcgccatta cttccgagga aagtttctcc ttgacatgtt catagtcttt
cccattccac 1200agataatgat attaaggata ataccattac acttaggcac acgcagggaa
gaatctgaga 1260aacagatttt acgcgctacg gttctttttc aatacattcc aaagttatat
agactcttac 1320ctcttcttgc tggacaaaca tctactggct tcatatttga gtcagcttgg
gctaattttg 1380ttattaatct tctcaccttc atgcttgctg gtcacgctgt tggctcttgc
tggtatctct 1440ctgctctgca gagagttaag aaatgcatgc tgaatgcttg gaatatttct
gcggatgaac 1500gtagaaatct tatcgattgt gctcgtggaa gttatgcatc gaagtcacaa
cgagatctgt 1560ggagagataa tgctagtgtc aatgcttgtt ttcaagaaaa tggttatacc
tatgggatct 1620atttgaaggc agtgaatctt accaatgaat ctagtttctt cacaagattc
agttattctc 1680tgtattgggg attccaacaa ataagcacac ttgctggaaa cttatcccca
agttactcag 1740tgggtgaggt tttctttaca atgggtatca ttggactagg gcttttgctt
tttgcgcggc 1800ttatcggtaa catgcacaac ttccttcaat cacttgatcg aaggaggatg
gaaatgatgc 1860tgagaaagcg tgatgtggag cagtggatga gccatagacg tttgccagaa
gatataagaa 1920agagggtgag agaggttgag cggtacactt gggctgcgac aagaggagtt
aacgaagaat 1980tgctatttga gaacatgcct gatgaccttc aaagagatat aagaagacac
ctcttcaaat 2040ttctcaagaa ggtgagaata ttttcgttga tggatgaatc agttttagat
tcaatcagag 2100agaggctgaa acagaggact tacataagga gtagcacggt gttgcatcac
agaggtctag 2160tagagaaaat ggtattcata gtgagaggtg agatggagag cattggagaa
gacggttctg 2220ttcttccttt atcagaagga gacgtttgtg gtgaagaact tctcacttgg
tgcctctctt 2280ctataaaccc cgaaacttgg aactttggag ctgaatacgt tttgaaactt
gcagatggga 2340cgaggataaa gatgccacca aagggattgg ttagcaacag aaatgttagg
tgtgtgacaa 2400acgtggaggc gttttcgctg agtgtagcag atcttgaaga tgtaacaagc
ttgttttcaa 2460gattcttaag aagccatcga gtgcaaggag ctataaggta cgagtctcct
tattggaggt 2520tacgagcagc tatgcagatc caagtggctt ggagataccg aaagagacaa
ctccagagat 2580taaacactgc tcactccaat tccaaccgtt aaatttgatg atgatgtttg
gtttggtaga 2640ttagtaattt tattttgaag tataaagctt agtgattcac tataaaagat
gaatcgatga 2700ttcattcgtt gtaatcaatt cactcattag tgtttcttaa gtatcttttt
gctgtttttc 2760c
276194743PRTArabidopsis thaliana 94Met Ala His Thr Arg Thr Phe
Thr Ser Arg Asn Arg Ser Val Ser Leu 1 5
10 15 Ser Asn Pro Ser Phe Ser Ile Asp Gly Phe Asp
Asn Ser Thr Val Thr 20 25
30 Leu Gly Tyr Thr Gly Pro Leu Arg Thr Gln Arg Ile Arg Pro Pro
Leu 35 40 45 Val
Gln Met Ser Gly Pro Ile His Ser Thr Arg Arg Thr Glu Pro Leu 50
55 60 Phe Ser Pro Ser Pro Gln
Glu Ser Pro Asp Ser Ser Ser Thr Val Asp 65 70
75 80 Val Pro Pro Glu Asp Asp Phe Val Phe Lys Asn
Ala Asn Leu Leu Arg 85 90
95 Ser Gly Gln Leu Gly Met Cys Asn Asp Pro Tyr Cys Thr Thr Cys Pro
100 105 110 Ser Tyr
Tyr Asn Arg Gln Ala Ala Gln Leu His Thr Ser Arg Val Ser 115
120 125 Ala Ser Arg Phe Arg Thr Val
Leu Tyr Gly Asp Ala Arg Gly Trp Ala 130 135
140 Lys Arg Phe Ala Ser Ser Val Arg Arg Cys Leu Pro
Gly Ile Met Asn 145 150 155
160 Pro His Ser Lys Phe Val Gln Val Trp Thr Arg Val Leu Ala Phe Ser
165 170 175 Ser Leu Val
Ala Ile Phe Ile Asp Pro Leu Phe Phe Phe Leu Leu Leu 180
185 190 Ile Gln Gln Asp Asn Lys Cys Ile
Ala Ile Asp Trp Arg Ala Thr Lys 195 200
205 Val Leu Val Ser Leu Arg Ser Ile Thr Asp Leu Ile Phe
Phe Ile Asn 210 215 220
Ile Leu Leu Gln Phe Arg Leu Ala Tyr Val Ala Pro Glu Ser Arg Ile 225
230 235 240 Val Gly Ala Gly
Gln Leu Val Asp His Pro Arg Lys Ile Ala Arg His 245
250 255 Tyr Phe Arg Gly Lys Phe Leu Leu Asp
Met Phe Ile Val Phe Pro Ile 260 265
270 Pro Gln Ile Met Ile Leu Arg Ile Ile Pro Leu His Leu Gly
Thr Arg 275 280 285
Arg Glu Glu Ser Glu Lys Gln Ile Leu Arg Ala Thr Val Leu Phe Gln 290
295 300 Tyr Ile Pro Lys Leu
Tyr Arg Leu Leu Pro Leu Leu Ala Gly Gln Thr 305 310
315 320 Ser Thr Gly Phe Ile Phe Glu Ser Ala Trp
Ala Asn Phe Val Ile Asn 325 330
335 Leu Leu Thr Phe Met Leu Ala Gly His Ala Val Gly Ser Cys Trp
Tyr 340 345 350 Leu
Ser Ala Leu Gln Arg Val Lys Lys Cys Met Leu Asn Ala Trp Asn 355
360 365 Ile Ser Ala Asp Glu Arg
Arg Asn Leu Ile Asp Cys Ala Arg Gly Ser 370 375
380 Tyr Ala Ser Lys Ser Gln Arg Asp Leu Trp Arg
Asp Asn Ala Ser Val 385 390 395
400 Asn Ala Cys Phe Gln Glu Asn Gly Tyr Thr Tyr Gly Ile Tyr Leu Lys
405 410 415 Ala Val
Asn Leu Thr Asn Glu Ser Ser Phe Phe Thr Arg Phe Ser Tyr 420
425 430 Ser Leu Tyr Trp Gly Phe Gln
Gln Ile Ser Thr Leu Ala Gly Asn Leu 435 440
445 Ser Pro Ser Tyr Ser Val Gly Glu Val Phe Phe Thr
Met Gly Ile Ile 450 455 460
Gly Leu Gly Leu Leu Leu Phe Ala Arg Leu Ile Gly Asn Met His Asn 465
470 475 480 Phe Leu Gln
Ser Leu Asp Arg Arg Arg Met Glu Met Met Leu Arg Lys 485
490 495 Arg Asp Val Glu Gln Trp Met Ser
His Arg Arg Leu Pro Glu Asp Ile 500 505
510 Arg Lys Arg Val Arg Glu Val Glu Arg Tyr Thr Trp Ala
Ala Thr Arg 515 520 525
Gly Val Asn Glu Glu Leu Leu Phe Glu Asn Met Pro Asp Asp Leu Gln 530
535 540 Arg Asp Ile Arg
Arg His Leu Phe Lys Phe Leu Lys Lys Val Arg Ile 545 550
555 560 Phe Ser Leu Met Asp Glu Ser Val Leu
Asp Ser Ile Arg Glu Arg Leu 565 570
575 Lys Gln Arg Thr Tyr Ile Arg Ser Ser Thr Val Leu His His
Arg Gly 580 585 590
Leu Val Glu Lys Met Val Phe Ile Val Arg Gly Glu Met Glu Ser Ile
595 600 605 Gly Glu Asp Gly
Ser Val Leu Pro Leu Ser Glu Gly Asp Val Cys Gly 610
615 620 Glu Glu Leu Leu Thr Trp Cys Leu
Ser Ser Ile Asn Pro Glu Thr Trp 625 630
635 640 Asn Phe Gly Ala Glu Tyr Val Leu Lys Leu Ala Asp
Gly Thr Arg Ile 645 650
655 Lys Met Pro Pro Lys Gly Leu Val Ser Asn Arg Asn Val Arg Cys Val
660 665 670 Thr Asn Val
Glu Ala Phe Ser Leu Ser Val Ala Asp Leu Glu Asp Val 675
680 685 Thr Ser Leu Phe Ser Arg Phe Leu
Arg Ser His Arg Val Gln Gly Ala 690 695
700 Ile Arg Tyr Glu Ser Pro Tyr Trp Arg Leu Arg Ala Ala
Met Gln Ile 705 710 715
720 Gln Val Ala Trp Arg Tyr Arg Lys Arg Gln Leu Gln Arg Leu Asn Thr
725 730 735 Ala His Ser Asn
Ser Asn Arg 740 951952DNAArabidopsis thaliana
95tctctctcca atccaaaagg aagaacaaga acaagaaagc tcacaagaag tttcatcttc
60accaaatgca aaagaagttg atacaatgtc tctttgctgt gatcttcaaa tcaatctcaa
120taaccaattt actttcttcg tcaatcagga tttgatctca gagtactcag gcttcttgag
180gaagatgata aaacagagca ataagaagaa aaagaatcac aagaacagta gaatcatcat
240cgaggttgaa gattttccag gtgggtcaga tgggttcgac ttggttttaa gattctgtta
300tggtggagga atctcgatag atgtctcaaa tgtgtccatt ttgcattgct cttctgtctt
360ccttgagatg acagagaaac tctgttcctc gaatctcttg cttcgaacag agaagtttct
420agaaggaatg ttctactggt cctggaacga catcgtattg tgtctcaaga gctgcgagca
480agtgttctta cacgctgatt cttacggtct tgttgataag cttgttttcg gggttttagc
540caaaatccct cagaattcag acgtgagtca tgtcttttca tcatcctctc cgtcttcctc
600tgcctctgcc tcagcctcct ctcagtcgcc ggagacggca atgattaggt cgtattcaga
660caaaaggtct acttcgaggt ctttttcttg caggacaagt aacgagtggt ggttcgacga
720tatgtcaatt ctcgggccaa aaatcattga aaagctgata aatacacttg gtgcgcatga
780taagaacaat gacagcttgg tcctcacaaa atttcttctc cattacctca agacaaaggt
840cccaaacaag tcaaccaaca agctcgagta ttcaggttta gctgatacag cggttcaagg
900agtggttttc gcagcgaaaa ccgcgttttc atgcagaaaa atgttctggg ttctgcgagt
960tttatcggga tttagcataa gtaaagaatc aagaattggt ttagagaggg ttataggaga
1020aatgctggat caagcaacac ttgatgatct tctgatacca gctggaggaa aaggagaaaa
1080aggggtttac gatgtggatt tggtgataag attactcaaa gtgtttgtaa gaattggaaa
1140cacagaagaa ggagatcaga atttgagaat gagaagaatt gggaagttga ttgataagta
1200tctcagagag atatctccag accagaatct taaagtgtca aagtttcttg aagttgcaga
1260gagtttgcca gattcagcta gagattggtt tgatggatta tacagagcca ttaacatcta
1320tcttgagtct catccgaaac tatcatccga ggatagaaca aaactatgtc gatgtctaaa
1380ctacaagaaa ttgacattgg acacatgcaa acaacttgca aaaaatccca agatccctcc
1440aaatattgca gttcaagcac tcaagtcaca acaattatca aacgagactc gaccacactc
1500aagagaggac aagaacaaag taaacaagat ctggaattca cgtaagtact tagaagagaa
1560accaatactg gtgtgtttga aaggttttga tatgtcggag aagtttgaag atgatctaat
1620gatgaatttg gagaggaagc aatggaataa ttctgaaaaa gttagtaagg agaagaagag
1680tgaagtaatg tcaagatctg tgagacatgg acatacacat tcaagttcta gttttccaag
1740gctttgttaa ataattaatt cactcgtcat ttttttctta tttctctaga tatagatttt
1800tatgtcatca tatcatcatc acacacatgc acgtctcgtg tatattataa gctttttcat
1860gcaaaatgta ttttacgtag ttttgagaat gcatataatt atgtccttgt ggatgcaaat
1920aaaatggata ttttgtaatt tgagtaatca tg
195296554PRTArabidopsis thaliana 96Met Ser Leu Cys Cys Asp Leu Gln Ile
Asn Leu Asn Asn Gln Phe Thr 1 5 10
15 Phe Phe Val Asn Gln Asp Leu Ile Ser Glu Tyr Ser Gly Phe
Leu Arg 20 25 30
Lys Met Ile Lys Gln Ser Asn Lys Lys Lys Lys Asn His Lys Asn Ser
35 40 45 Arg Ile Ile Ile
Glu Val Glu Asp Phe Pro Gly Gly Ser Asp Gly Phe 50
55 60 Asp Leu Val Leu Arg Phe Cys Tyr
Gly Gly Gly Ile Ser Ile Asp Val 65 70
75 80 Ser Asn Val Ser Ile Leu His Cys Ser Ser Val Phe
Leu Glu Met Thr 85 90
95 Glu Lys Leu Cys Ser Ser Asn Leu Leu Leu Arg Thr Glu Lys Phe Leu
100 105 110 Glu Gly Met
Phe Tyr Trp Ser Trp Asn Asp Ile Val Leu Cys Leu Lys 115
120 125 Ser Cys Glu Gln Val Phe Leu His
Ala Asp Ser Tyr Gly Leu Val Asp 130 135
140 Lys Leu Val Phe Gly Val Leu Ala Lys Ile Pro Gln Asn
Ser Asp Val 145 150 155
160 Ser His Val Phe Ser Ser Ser Ser Pro Ser Ser Ser Ala Ser Ala Ser
165 170 175 Ala Ser Ser Gln
Ser Pro Glu Thr Ala Met Ile Arg Ser Tyr Ser Asp 180
185 190 Lys Arg Ser Thr Ser Arg Ser Phe Ser
Cys Arg Thr Ser Asn Glu Trp 195 200
205 Trp Phe Asp Asp Met Ser Ile Leu Gly Pro Lys Ile Ile Glu
Lys Leu 210 215 220
Ile Asn Thr Leu Gly Ala His Asp Lys Asn Asn Asp Ser Leu Val Leu 225
230 235 240 Thr Lys Phe Leu Leu
His Tyr Leu Lys Thr Lys Val Pro Asn Lys Ser 245
250 255 Thr Asn Lys Leu Glu Tyr Ser Gly Leu Ala
Asp Thr Ala Val Gln Gly 260 265
270 Val Val Phe Ala Ala Lys Thr Ala Phe Ser Cys Arg Lys Met Phe
Trp 275 280 285 Val
Leu Arg Val Leu Ser Gly Phe Ser Ile Ser Lys Glu Ser Arg Ile 290
295 300 Gly Leu Glu Arg Val Ile
Gly Glu Met Leu Asp Gln Ala Thr Leu Asp 305 310
315 320 Asp Leu Leu Ile Pro Ala Gly Gly Lys Gly Glu
Lys Gly Val Tyr Asp 325 330
335 Val Asp Leu Val Ile Arg Leu Leu Lys Val Phe Val Arg Ile Gly Asn
340 345 350 Thr Glu
Glu Gly Asp Gln Asn Leu Arg Met Arg Arg Ile Gly Lys Leu 355
360 365 Ile Asp Lys Tyr Leu Arg Glu
Ile Ser Pro Asp Gln Asn Leu Lys Val 370 375
380 Ser Lys Phe Leu Glu Val Ala Glu Ser Leu Pro Asp
Ser Ala Arg Asp 385 390 395
400 Trp Phe Asp Gly Leu Tyr Arg Ala Ile Asn Ile Tyr Leu Glu Ser His
405 410 415 Pro Lys Leu
Ser Ser Glu Asp Arg Thr Lys Leu Cys Arg Cys Leu Asn 420
425 430 Tyr Lys Lys Leu Thr Leu Asp Thr
Cys Lys Gln Leu Ala Lys Asn Pro 435 440
445 Lys Ile Pro Pro Asn Ile Ala Val Gln Ala Leu Lys Ser
Gln Gln Leu 450 455 460
Ser Asn Glu Thr Arg Pro His Ser Arg Glu Asp Lys Asn Lys Val Asn 465
470 475 480 Lys Ile Trp Asn
Ser Arg Lys Tyr Leu Glu Glu Lys Pro Ile Leu Val 485
490 495 Cys Leu Lys Gly Phe Asp Met Ser Glu
Lys Phe Glu Asp Asp Leu Met 500 505
510 Met Asn Leu Glu Arg Lys Gln Trp Asn Asn Ser Glu Lys Val
Ser Lys 515 520 525
Glu Lys Lys Ser Glu Val Met Ser Arg Ser Val Arg His Gly His Thr 530
535 540 His Ser Ser Ser Ser
Phe Pro Arg Leu Cys 545 550
971281DNAArabidopsis thaliana 97attgaaaaaa tggggataag agaaaatgga
ataatgcttg tgagcagaga gagagagcga 60gcgaggaggc tagagaatcg agaatcgatc
ttcgccgaac caccttgtct tctcttagct 120catcgaatct ctccgtcgcc gtcgattctt
cccgccgaag aggaggtcat ggacgtttct 180gctagaaagt cacaaaaagc tgggcgcgaa
aagttgagga gggaaaaact gaatgagcat 240tttgttgaac tgggaaatgt actcgatcca
gagagaccca agaatgacaa agccacgatt 300ctgactgata ctgttcagtt gttgaaagag
ctcacatctg aagtcaacaa actgaaatct 360gagtacaccg cattgacaga tgagtcccgc
gagttgacac aggagaaaaa cgacctgaga 420gaagaaaaga catcgctgaa atcagatata
gagaatctca atcttcaata ccagcagaga 480ttaaggtcaa tgtctccatg gggagctgcg
atggatcaca cagtcatgat ggctccacca 540ccctcctttc cataccctat gcctattgct
atgcctcccg ggtcaatccc aatgcatcca 600tcaatgccat cttacacata ctttgggaac
cagaacccta gcatgatccc agctccatgt 660cctacataca tgccctacat gcctcctaat
acagtcgttg agcaacaatc cgtgcacatt 720ccacagaacc ccggtaaccg ttctcgggaa
cctagagcaa aggtttcaag agagagcaga 780tctgagaaag cagaggactc caacgaagtt
gcaacacaac tcgaattaaa aacccctgga 840tctacttctg ataaggatac attgcaaagg
ccagagaaga caaagagatg taagagaaac 900aacaacaaca actcaataga agaaagctct
cattctagca agtgttcatc ttctccgagc 960gtacgagacc acagttcttc cagtagcgta
gctggtggcc aaaaacctga tgatgcaaaa 1020tgattcgaaa gaatctgatg ttgatcatct
caagtatcca agtatcgttt cgatgagtac 1080tgtatatagt gcgagtacaa aatgcactta
gctgtttaaa gcagtgtttt gatgcaccgt 1140ggcattcgtt ttcctcggat agtcatttct
cagatgattt tcatccttaa taggtctgct 1200ttagttctaa aactcggatg atttgtaatt
tccagtgtcc aaatctacta attttattaa 1260tcctataaat taaacaaact t
128198337PRTArabidopsis thaliana 98Met
Gly Ile Arg Glu Asn Gly Ile Met Leu Val Ser Arg Glu Arg Glu 1
5 10 15 Arg Ala Arg Arg Leu Glu
Asn Arg Glu Ser Ile Phe Ala Glu Pro Pro 20
25 30 Cys Leu Leu Leu Ala His Arg Ile Ser Pro
Ser Pro Ser Ile Leu Pro 35 40
45 Ala Glu Glu Glu Val Met Asp Val Ser Ala Arg Lys Ser Gln
Lys Ala 50 55 60
Gly Arg Glu Lys Leu Arg Arg Glu Lys Leu Asn Glu His Phe Val Glu 65
70 75 80 Leu Gly Asn Val Leu
Asp Pro Glu Arg Pro Lys Asn Asp Lys Ala Thr 85
90 95 Ile Leu Thr Asp Thr Val Gln Leu Leu Lys
Glu Leu Thr Ser Glu Val 100 105
110 Asn Lys Leu Lys Ser Glu Tyr Thr Ala Leu Thr Asp Glu Ser Arg
Glu 115 120 125 Leu
Thr Gln Glu Lys Asn Asp Leu Arg Glu Glu Lys Thr Ser Leu Lys 130
135 140 Ser Asp Ile Glu Asn Leu
Asn Leu Gln Tyr Gln Gln Arg Leu Arg Ser 145 150
155 160 Met Ser Pro Trp Gly Ala Ala Met Asp His Thr
Val Met Met Ala Pro 165 170
175 Pro Pro Ser Phe Pro Tyr Pro Met Pro Ile Ala Met Pro Pro Gly Ser
180 185 190 Ile Pro
Met His Pro Ser Met Pro Ser Tyr Thr Tyr Phe Gly Asn Gln 195
200 205 Asn Pro Ser Met Ile Pro Ala
Pro Cys Pro Thr Tyr Met Pro Tyr Met 210 215
220 Pro Pro Asn Thr Val Val Glu Gln Gln Ser Val His
Ile Pro Gln Asn 225 230 235
240 Pro Gly Asn Arg Ser Arg Glu Pro Arg Ala Lys Val Ser Arg Glu Ser
245 250 255 Arg Ser Glu
Lys Ala Glu Asp Ser Asn Glu Val Ala Thr Gln Leu Glu 260
265 270 Leu Lys Thr Pro Gly Ser Thr Ser
Asp Lys Asp Thr Leu Gln Arg Pro 275 280
285 Glu Lys Thr Lys Arg Cys Lys Arg Asn Asn Asn Asn Asn
Ser Ile Glu 290 295 300
Glu Ser Ser His Ser Ser Lys Cys Ser Ser Ser Pro Ser Val Arg Asp 305
310 315 320 His Ser Ser Ser
Ser Ser Val Ala Gly Gly Gln Lys Pro Asp Asp Ala 325
330 335 Lys 991330DNAArabidopsis thaliana
99ataatgcttg tgagcagaga gagagagcga gcgaggaggc tagagaatcg agaatcgatc
60ttcgccgaac caccttgtct tctcttagct catcgaatct ctccgtcgcc gtcgattctt
120cccgccggtg aatctctgcc ttattgtttt cttcaatttg atcgtcctga attcatcgtc
180ctatttaggg tttcgatcac aatctgaaga ggaggtcatg gacgtttctg ctagaaagtc
240acaaaaagct gggcgcgaaa agttgaggag ggaaaaactg aatgagcatt ttgttgaact
300gggaaatgta ctcgatccag agagacccaa gaatgacaaa gccacgattc tgactgatac
360tgttcagttg ttgaaagagc tcacatctga agtcaacaaa ctgaaatctg agtacaccgc
420attgacagat gagtcccgcg agttgacaca ggagaaaaac gacctgagag aagaaaagac
480atcgctgaaa tcagatatag agaatctcaa tcttcaatac cagcagagat taaggtcaat
540gtctccatgg ggagctgcga tggatcacac agtcatgatg gctccaccac cctcctttcc
600ataccctatg cctattgcta tgcctcccgg gtcaatccca atgcatccat caatgccatc
660ttacacatac tttgggaacc agaaccctag catgatccca gctccatgtc ctacatacat
720gccctacatg cctcctaata cagtcgttga gcaacaatcc gtgcacattc cacagaaccc
780cggtaaccgt tctcgggaac ctagagcaaa ggtttcaaga gagagcagat ctgagaaagc
840agaggactcc aacgaagttg caacacaact cgaattaaaa acccctggat ctacttctga
900taaggataca ttgcaaaggc cagagaagac aaagagatgt aagagaaaca acaacaacaa
960ctcaatagaa gaaagctctc attctagcaa gtgttcatct tctccgagcg tacgagacca
1020cagttcttcc agtagcgtag ctggtggcca aaaacctgat gatgcaaaat gattcgaaag
1080aatctgatgt tgatcatctc aagtatccaa gtatcgtttc gatgagtact gtatatagtg
1140cgagtacaaa atgcacttag ctgtttaaag cagtgttttg atgcaccgtg gcattcgttt
1200tcctcggata gtcatttctc agatgatttt catccttaat aggtctgctt tagttctaaa
1260actcggatga tttgtaattt ccagtgtcca aatctactaa ttttattaat cctataaatt
1320aaacaaactt
1330100284PRTArabidopsis thaliana 100Met Asp Val Ser Ala Arg Lys Ser Gln
Lys Ala Gly Arg Glu Lys Leu 1 5 10
15 Arg Arg Glu Lys Leu Asn Glu His Phe Val Glu Leu Gly Asn
Val Leu 20 25 30
Asp Pro Glu Arg Pro Lys Asn Asp Lys Ala Thr Ile Leu Thr Asp Thr
35 40 45 Val Gln Leu Leu
Lys Glu Leu Thr Ser Glu Val Asn Lys Leu Lys Ser 50
55 60 Glu Tyr Thr Ala Leu Thr Asp Glu
Ser Arg Glu Leu Thr Gln Glu Lys 65 70
75 80 Asn Asp Leu Arg Glu Glu Lys Thr Ser Leu Lys Ser
Asp Ile Glu Asn 85 90
95 Leu Asn Leu Gln Tyr Gln Gln Arg Leu Arg Ser Met Ser Pro Trp Gly
100 105 110 Ala Ala Met
Asp His Thr Val Met Met Ala Pro Pro Pro Ser Phe Pro 115
120 125 Tyr Pro Met Pro Ile Ala Met Pro
Pro Gly Ser Ile Pro Met His Pro 130 135
140 Ser Met Pro Ser Tyr Thr Tyr Phe Gly Asn Gln Asn Pro
Ser Met Ile 145 150 155
160 Pro Ala Pro Cys Pro Thr Tyr Met Pro Tyr Met Pro Pro Asn Thr Val
165 170 175 Val Glu Gln Gln
Ser Val His Ile Pro Gln Asn Pro Gly Asn Arg Ser 180
185 190 Arg Glu Pro Arg Ala Lys Val Ser Arg
Glu Ser Arg Ser Glu Lys Ala 195 200
205 Glu Asp Ser Asn Glu Val Ala Thr Gln Leu Glu Leu Lys Thr
Pro Gly 210 215 220
Ser Thr Ser Asp Lys Asp Thr Leu Gln Arg Pro Glu Lys Thr Lys Arg 225
230 235 240 Cys Lys Arg Asn Asn
Asn Asn Asn Ser Ile Glu Glu Ser Ser His Ser 245
250 255 Ser Lys Cys Ser Ser Ser Pro Ser Val Arg
Asp His Ser Ser Ser Ser 260 265
270 Ser Val Ala Gly Gly Gln Lys Pro Asp Asp Ala Lys 275
280
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20220005807 | MULTI-THRESHOLD VOLTAGE NON-PLANAR COMPLEMENTARY METAL-OXIDE-SEMICONDUCTOR DEVICES |
20220005806 | SEMICONDUCTOR DEVICE AND FABRICATION METHOD THEREOF |
20220005805 | 3D SEMICONDUCTOR APPARATUS MANUFACTURED WITH A CANTILEVER STRUCTURE AND METHOD OF MANUFACTURE THEREOF |
20220005804 | SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME |
20220005803 | ELECTRO-STATIC DISCHARGE PROTECTION DEVICES HAVING A LOW TRIGGER VOLTAGE |