Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS

Inventors:  Nicolas Mano (Talence, FR)  Nicolas Mano (Talence, FR)  Olivier Courjean (Bordeaux, FR)  Emilie Tremey (Talence, FR)  Sebastien Gounel (Berthez, FR)
Assignees:  Centre National De La Recherche Scientique
IPC8 Class: AC12Q100FI
USPC Class: 2057775
Class name: Electrolysis: processes, compositions used therein, and methods of preparing the compositions electrolytic analysis or testing (process and electrolyte composition) involving enzyme or micro-organism
Publication date: 2014-10-16
Patent application number: 20140305809



Abstract:

The present invention relates to mutants of the Penicillium amagasakiense glucose oxidase (GOx) enzyme which are of use for assaying glucose and to the development in particular of glucose electrodes and of biocells which use glucose as fuel.

Claims:

1. A glucose oxidase (GOx) mutant with a percentage of identity of at least 95%, relative to the wild-type GOx of Penicillium amagasakiense, characterized in that its amino acid in position 564, with reference to the protein sequence of the wild-type GOx of Penicillium amagasakiense of SEQ. ID. No. 2, is replaced with an amino acid selected from the group consisting of a serine (V564S mutant), a threonine (V564T mutant) or an isoleucine V564I mutant).

2. The GOx mutant as claimed in claim 1, characterized in that the V564S mutant also comprises a replacement of the lysine in position 424 with a glutamic acid (V564S+K424E mutant), glutamine (V564S+K424Q mutant), methionine (V564S+K424M mutant) or leucine (V564S+K424L mutant).

3. The GOx mutant as claimed in claim 1, characterized in that it has an amino acid sequence selected from the group consisting of SEQ. ID. No. 4, 6, 8, 10, 22, 24 and 26.

4. A nucleic acid molecule, characterized in that it codes for a GOx mutant as claimed in claim 1.

5. The nucleic acid molecule as claimed in claim 5, characterized in that it is obtained by mutation of the nucleic acid molecule of sequence SEQ. ID. No. 1 with an oligonucleotide pair selected from the group consisting of pairs of SEQ. ID. No. 13 and 14; 15 and 16; 17 and 18; 19 and 20; 27 and 28; 29 and 30 and 31 and 32.

6. The nucleic acid molecule as claimed in claim 4, characterized in that it has a sequence selected from the group consisting of SEQ. ID. No. 3, 5, 7, 9, 21, 23 and 25.

7. An expression vector, characterized in that it comprises a nucleic acid molecule as claimed in claim 4.

8. A host cell expressing an enzyme, characterized in that it is transformed with an expression vector as claimed in claim 7.

9. The use of a GOx mutant as claimed in claim 1, for measuring the glucose concentration in a sample.

10. The use as claimed in claim 9, characterized in that the sample is a biological sample, and in particular is blood.

11. A glucose assay kit, characterized in that it comprises a GOx mutant as claimed in claim 1.

12. A glucose electrode, characterized in that it comprises a conductive material covered with a deposit comprising at least one GOx mutant as claimed in claim 1.

13. A glucose sensor, characterized in that it consists of an electrode as claimed in claim 12.

14. A glucose biocell, characterized in that it comprises a first electrode as claimed in claim 12 as anode and a second electrode as cathode.

15. A process for assaying in solution glucose of a sample, characterized in that it comprises the following steps: a) introduction into said sample of a redox reagent whose reduction leads to a color change and of a GOx mutant as claimed in claim 1; b) measurement of the coloration intensity of the sample after enzymatic reaction; c) comparison of the coloration intensity measured in step b) with the intensity measured for standard solutions having a known glucose content; d) determination of the glucose concentration of said sample.

16. A process for assaying the glucose of a sample, characterized in that it comprises the following steps: a) introduction into said sample of a glucose electrode as claimed in claim 12; b) measurement of the intensity of the current in the sample; c) comparison of the intensity of the current measured in step b) with the intensity measured for standard solutions having a known glucose content; d) determination of the glucose concentration of said sample.

Description:

[0001] The present invention relates to the field of developing glucose electrodes which are of interest in assaying glucose, in particular the blood glucose of diabetic individuals, and for the use of biocells using glucose as fuel.

[0002] The present invention is more particularly directed toward mutants of the glucose oxidase enzyme (also referred to hereinbelow as GOx) of Penicillium amagasakiense which have advantageous properties over the wild-type enzymes, in particular the commercialized enzymes.

[0003] Type-2 diabetes affects nearly two million people in France, added to which are 600 000 people who are unaware of their disease. In the United States, the situation is even more critical. In developed countries, diabetes is the main cause of blindness among 20-65 year olds.

[0004] The monitoring and surveillance of the disease is based, inter alia, on daily assay of the blood glucose and the injection of insulin. Various companies propose glucose sensors that enable patients to measure their glycemia at home. These sensors may be amperometric, potentiometric or coulometric; they are all based on the use of an enzyme that is capable of oxidizing glucose; the two main enzymes being glucose oxidase and PQQ s-GDH.

[0005] Glucose oxidase (also referred to hereinbelow as GOx) is an oxidoreductase enzyme (EC 1.1.3.4) which catalyzes the oxidation of glucose to hydrogen peroxide and D-glucono-δ-lactone according to the following reaction scheme:

##STR00001##

[0006] Glucose oxidase was isolated for the first time from Aspergillus niger; the GOx most conventionally produced are those from Penicillium chrysogenum, Penicillium glaucum, Penicillium purpurogenum, Penicillium amagasakiense, Aspergillus niger and Aspergillus fumaricus.

[0007] The marketed GOx are usually those from Aspergillus niger and Penicillium amagasakiense; they are mainly used in the food industry, especially for conservation purposes as a source of hydrogen peroxide. They are also used for assaying glucose or in glucose biocells. These two enzymes were especially studied and compared in the article by Wohlfahart et al. (Acta. Cryst (1999) D55, 969-977).

[0008] As regards GOx from Penicillium amagasakiense, Witt et al. described its cloning and its expression with Escherichia coli (Applied and Environmental Microbiology (1998) vol. 64, No. 4, 1405-1411).

[0009] The drawback of the currently available glucose oxidases is their sensitivity to O2 which participates as an electron acceptor in the reaction catalyzed by GOx. Specifically, oxygen is the natural cofactor of GOx and enables their reoxidation after the oxidation of glucose. During the use of these enzymes in glucose sensors, there is thus competition for recovery of the electrons from the enzyme between oxygen and the redox mediators which provide the electrical connection of the enzyme to the surface of the electrodes.

[0010] In addition, for their use in glucose sensors, it is necessary to have available more active GOx mutants, i.e. mutants which allow a faster transformation reaction of glucose to D-gluconolactone than with the existing enzymes.

[0011] It thus remains necessary to improve the properties of the existing GOx.

[0012] This is what the Inventors have managed to do by developing novel mutants of the wild-type GOx of Penicillium amagasakiense.

[0013] The term "mutant or variant" means a GOx whose protein sequence comprises the insertion, deletion and/or replacement of at least one amino acid relative to the protein sequence of the wild-type GOx; hereinbelow, the reference nucleotide and protein sequences of GOx are those of the wild-type GOx of Penicillium amagasakiense (respectively SEQ. ID. No. 1 and 2).

[0014] The mutants according to the present invention are such that the valine in position 564 is replaced with a serine (V564S mutant), a threonine (V564T mutant) or an isoleucine (V564I mutant); when said valine is replaced with a serine, the mutants such that the lysine in position 424 is replaced with a glutamic acid, glutamine, methionine and leucine are also subjects of the present invention (V564S+K424E, V564S+K424Q, V564S+K424M and V564S+K424L mutants, respectively).

[0015] Thus, a first subject of the invention relates to a GOx mutant with a percentage of identity of at least 80%, and, in order of increasing preference, at least 85%, 90%, 95%, 97%, 98% and 99%, relative to the wild-type GOx of Penicillium amagasakiense, characterized in that its amino acid in position 564, with reference to the protein sequence of the wild-type GOx of Penicillium amagasakiense (SEQ. ID. No. 2), is replaced with an amino acid selected from the group consisting of a serine (V564S mutant), a threonine (V564T mutant) or an isoleucine (V564I mutant).

[0016] According to a particular variant, the V564S mutant also comprises a replacement of the lysine in position 424 with a glutamic acid, glutamine, methionine or leucine (V564S+K424E, V564S+K424Q, V564S+K424M and V564S+K424L mutants, respectively).

[0017] The numbering of the amino acids refers to the sequence of the wild-type GOx of Penicillium amagasakiense.

[0018] The identity of a sequence relative to the sequence of the wild-type GOx of Penicillium amagasakiense (SEQ. ID. No. 2) as reference sequence is assessed as a function of the percentage of amino acid residues that are identical, when the two sequences are aligned, so as to obtain the maximum correspondence between them.

[0019] The percentage of identity may be calculated by a person skilled in the art using a computer program for comparing sequences, for instance the BLAST software (Altschul et al., NAR, 25, 3389-3402). The BLAST programs are used on the comparison window consisting of all of the SEQ. ID. No. 2 indicated as the reference sequence.

[0020] A peptide with an amino acid sequence having at least X % identity with a reference sequence is defined in the present invention as a peptide whose sequence may include up to 100-X alterations per 100 amino acids of the reference sequence, while conserving the functional properties of said reference peptide, in the present case its enzymatic activity for the oxidation of glucose. For the purposes of the present invention, the term "alteration" includes consecutive or dispersed deletions, replacements or insertions of amino acids in the reference sequence.

[0021] The amino acid corresponding to the amino acid in position 564 of the wild-type GOx of Penicillium amagasakiense is identified by aligning the sequence of said homologous enzyme with the GOx of Penicillium amagasakiense.

[0022] A particular subject of the invention relates to a GOx mutant with an amino acid sequence chosen from SEQ. ID. No. 4, 6, 8, 10, 22, 24 and 26 corresponding, respectively, to the amino acid sequences of the mutants V564S, V564T, V564I, V564+K424E, V564S+K424Q, V564S+KL424M and V564S+K424L of GOx; these mutated enzymes are encoded by nucleotide fragments obtained by mutation of the wild-type GOx gene of Penicillium amagasakiense with adapted pairs of oligonucleotides.

[0023] These novel GOx mutants according to the invention have improved performance qualities over the wild-type enzyme of Aspergillus niger which is the enzyme used in commercial glucose sensors.

[0024] More particularly, the improved properties of the mutants according to the invention lie in a reduced sensitivity to oxygen: in solution in the presence of 1 mM of glucose and in air, the mutants are 17 times less sensitive to oxygen than the GOx of A. niger. Once adsorbed onto the surface of electrodes, under 1 atm of O2 and at 1 mM of glucose, the mutants are 70% less sensitive to O2.

[0025] The advantageous properties of the GOx mutants according to the invention make their use particularly suited to bioelectric systems such as biocells using glucose as a source of energy and glucose biosensors.

[0026] The present invention also relates to a nucleic acid molecule coding for a GOx mutant according to the invention; said nucleic acid molecule being obtained by modification of a wild-type GOx, such as that of Penicillium amagasakiense, with an oligonucleotide pair selected from the group consisting of the oligonucleotide pairs represented in Table I.

TABLE-US-00001 TABLE I sequence listing of the oligonucleotides used for the preparation of the GOx mutants according to the invention Oligo- nucleotides Sequences Oligonucleotide pair corresponding to the wild-type enzyme Sense 5'-g gtg tct tcc cat gtc atg acc att ttc tac gg-3' (SEQ. ID. No. 11) Antisense 5'-cc gta gaa aat ggt cat gac atg gga aga cac c-3' (SEQ. ID. No. 12) Oligonucleotide pair used for the preparation of the V564S mutant Sense 5'-g gtg tct tcc cat tcc atg acc att ttc tac gg-3' (SEQ. ID. No. 13) Antisense 5'-cc gta gaa aat ggt cat gga atg gga aga cac c-3' (SEQ. ID. No. 14) Oligonucleotide pair used for the preparation of the V564T mutant Sense 5'-g gtg tct tcc cat acc atg acc att ttc tac gg-3' (SEQ. ID. NO. 15) Antisense 5'-cc gta gaa aat ggt cat ggt atg gga aga cac c-3' (SEQ. ID. No. 16) Oligonucleotide pair used for the preparation of the V564I mutant Sense 5'-g gtg tct tcc cat att atg acc att ttc tac gg-3' (SEQ. ID. NO. 17) Antisense 5'-cc gta gaa aat ggt cat aat atg gga aga cac c-3' (SEQ. ID. No. 18) Oligonucleotide pair used for the preparation of the K424E mutatation of the V564S-K424E mutant (this mutation is performed after the V564S mutation) Sense 5'-ggacaccgagggcgagatcaacttcg-3' (SEQ. ID. No. 19) Antisense 5'-cgaagttgatctcgccctcggtgtcc-3' (SEQ. ID. No. 20) Oligonucleotide pair used for the preparation of the K424Q mutatation of the V564S-K424Q mutant (this mutation is performed after the V564S mutation) Sense 5'-ggacaccgagggccagatcaacttcgat ttatg-3' (SEQ. ID. No. 27) Antisense 5'-cataaatcgaagttgatctggccctcgg tgtcc-3' (SEQ. ID. No. 28) Oligonucleotide pair used for the preparation of the K424M mutatation of the V564S-K424M mutant (this mutation is performed after the V564S mutation) Sense 5'-ggacaccgagggcatgatcaacttcgat ttatg-3' (SEQ. ID. No. 29) Antisense 5'-cataaatcgaagttgatcatgccctcgg tgtcc-3' (SEQ. ID. No. 30) Oligonucleotide pair used for the preparation of the K424L mutatation of the V564S-K424L mutant (this mutation is performed after the V564S mutation) Sense 5'-ggacaccgagggcttgatcaacttcgat ttatg-3' (SEQ. ID. No. 31) Antisense 5'-cataaatcgaagttgatcaagccctcgg tgtcc-3' (SEQ. ID. No. 32)

[0027] The nucleic acid molecules coding for the GOx mutants according to the invention may especially be prepared by modifying the nucleotide sequence of the gene coding for the wild-type enzyme of sequence SEQ. ID. No. 1 produced by Penicillium amagasakiense. Several techniques for modifying the gene sequence are known to those skilled in the art (see the review by Igarashi et al., Archives of Biochemistry and Biophysocs 428 (2004) 52-63). In a particular mode of preparation, the nucleic acid molecules coding for the GOx mutants according to the invention are prepared by mutagenesis by PCR in the presence of an oligonucleotide bearing the mutation to be introduced (see the experimental section, point 2.5 below).

[0028] According to a particular embodiment, the present invention relates to a nucleic acid molecule coding for a GOx mutant according to the invention whose sequence is selected from the group consisting of sequences SEQ. ID. No. 3, 5, 7, 9, 21, 23 and 25. The nucleic acid molecules coding for the GOx mutants according to the invention may then be cloned in an expression vector such as a plasmid, and then transformed in a suitable host such as a bacterium, a yeast or a cell culture.

[0029] The term "expression vector" means a vector bearing a region for insertion of a coding nucleotide sequence between the signals that are essential for its expression, especially a promoter (constitutive or inducible), a ribosome binding site, a transcription termination signal, and, optionally, a selection marker such as a gene for resistance to an antibiotic.

[0030] The present invention also relates to an expression vector comprising said nucleic acid molecule and to a host cell transformed with said expression vector and expressing a GOx mutant according to the invention.

[0031] The introduction of the expression vector into the host cell may be performed via any method known to those skilled in the art, in particular by modification of the membrane permeability of the host cell, for example in the presence of calcium ions, or by electroporation.

[0032] After culturing the transformed host cells to express a GOx mutant according to the invention, said cells may be recovered by centrifugation, lyzed so as to release the enzymes including said GOx mutant according to the invention.

[0033] If Escherichia coli is the host microorganism, the plasmids that may be used are especially the plasmids pET24a, pBluescript, pUC18 or the like.

[0034] By way of example, the host cells that may be used comprise Escherichia coli BL21, Escherichia coli W3110, Escherichia coli C600, Escherichia coli JM109, Escherichia coli JM101, Escherichia coli DH5α, etc.

[0035] Preferably, the GOx mutants according to the invention are produced in a strain of Escherichia coli BL21; the nucleic acid molecule which codes them is obtained by modification of the GOx gene of Penicillium amagasakiense and cloned in the vector pET24a. The mutants thus produced are exported into the periplasm of the bacterium by means of the signal sequence of GOx. The mutants thus produced are exported in the inclusion bodies of the bacterium. The mutants are then purified after rupturing the bacteria by cell lysis in the presence of 8M urea.

[0036] The invention also relates to the use of a GOx mutant according to the invention for assaying glucose in solution, i.e. for measuring the concentration of glucose in a sample, especially a biological sample, in particular in blood.

[0037] The assay of glucose in solution in a given biological sample may be performed by introducing into said sample a redox reagent and a GOx mutant according to the invention and then by comparing the intensity of the coloration obtained with standard solutions having a known glucose content.

[0038] The present invention also relates to a kit for assaying a glucose solution, characterized in that it comprises a GOx mutant according to the invention.

[0039] Typically, said assay kit also contains the reagents necessary for performing the glucose assay test, in particular buffers; any buffer may be used in the kit according to the invention, mention may be made without any limiting nature of phosphate or acetate buffers, tris(hydroxymethyl)aminomethane (TRIS) buffer, N-morpholino-3-propanesulfonic acid (MPOS), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), buffer comprising a mixture of buffers such as TRIS-acetate, etc., the redox reagents may be any reagent that allows the GOx mutant to be oxidized, and may be selected from the group consisting of phenazine methosulfate (PMS) in combination with 2,6-dichlorophenolindophenol (DCIP); potassium ferricyanide; ferrocene and ferrocene-based complexes such as ferrocenemethanol, ferrocenecarboxylic acid; and osmium and ruthenium complexes, standard glucose solutions for preparing calibration curves, and the necessary instructions for use for performing the assay.

[0040] The present invention also relates to glucose electrodes comprising a conductive material such as a conductive metal, especially platinum, copper, silver, aluminum, gold or carbon steel, such as vitreous carbon, carbon fibers, carbon nanotube fibers or diamond, etc., said conductive material is covered with a deposit comprising at least one GOx mutant according to the invention; said deposit also possibly comprising a redox polymer to improve the conductive properties of the conductive material.

[0041] The redox polymer is chosen from polymers based on ferrocene, osmium and ruthenium and conductive polymers such as polypyrrole and polyaniline.

[0042] The methods for immobilizing the GOx mutant on said conductive material may be chosen from the standard methods available to a person skilled in the art, which especially comprise inclusion of the GOx mutant in a polymer matrix, adsorption of the GOx mutant onto the surface of the polymer membrane, binding by covalent bonding or alternatively electrodeposition (Gao et al., Chem. Int. ED. 2002, 41, No. 5, 810-813).

[0043] Such electrodes are advantageously used in bioelectrical systems such as glucose biocells or glucose biosensors.

[0044] The present invention thus also relates to a glucose biosensor comprising an electrode according to the invention.

[0045] A glucose biosensor consists of an electrode on which is immobilized a bioreceptor that is capable of recognizing a biological target; the binding of the biological target to the bioreceptor leads to physicochemical modifications of the membrane and the production of an electrical signal via an electrochemical transducer (amperometric, potentiometric, conductimetric, etc.) attached to the electrode; in the present case, the bioreceptor is a GOx mutant according to the invention and the biological target is its substrate: glucose.

[0046] According to an embodiment variant, the electrode on which is immobilized the GOx mutant is also covered with a membrane which prevents detachment of said mutant from the electrode. Said membrane may consist of nafium, cellulose or any biocompatible material, i.e. any material that is compatible with a physiological environment.

[0047] According to a variant of the invention, the glucose biosensor is implanted under the skin and allows the glucose concentration of the blood to be recorded.

[0048] The present invention also relates to biocells using glucose as a source of energy and comprising a first electrode according to the invention as anode and a second electrode as cathode. The cathode may be, for example, an enzymatic electrode for reducing oxygen, bearing an enzyme chosen from the class of copper-based enzymes (multicopper oxidases) and particularly bilirubine oxidase and laccase. It may also be a metal electrode, for example made of platinum, gold or a platinum or gold alloy.

[0049] FIG. 1 more specifically illustrates an enzymatic glucose biocell; such an enzymatic biocell consists of two electrodes modified by immobilization of enzymes. A glucose oxidase (GOx) is attached to the anode (1) via a conductive polymer "I" and a bilirubine oxidase (BOD) is attached to the cathode (2) via a conductive polymer "II". When functioning, at the anode, the electrons are transferred from the glucose present in the physiological fluid to the GOx, and then from the GOx to the conductive polymer "I" and from the conductive polymer "I" to the anode. At the cathode, the electrons are transferred from the cathode to the conductive polymer "II" and then to the BOD and finally from the BOD to the oxygen present in the physiological fluid.

[0050] It should be noted that a biocell may also optionally function by modifying the electrodes with their respective enzymes and by adding soluble mediators, such as ferrocenemethanol for the anode and potassium ferricyanide for the cathode, and by adding, where appropriate, a membrane separating the anode and the cathode.

[0051] The invention also relates to a process for assaying glucose in solution in a sample, comprising the following steps:

[0052] a) introduction into said sample of a redox reagent whose reduction leads to a color change and of a GOx mutant according to the invention;

[0053] b) measurement of the coloration intensity of the sample after enzymatic reaction;

[0054] c) comparison of the coloration intensity measured in step b) with the intensity measured for standard solutions having a known glucose content;

[0055] d) determination of the glucose concentration of said sample.

[0056] The redox reagent whose reduction leads to a color change is chosen from phenazinemethosulfate (PMS) in combination with 2,6-dichlorophenolindophenol (DCIP), potassium ferricyanide and ferrocene.

[0057] The invention also relates to a process for assaying the glucose of a sample, characterized in that it comprises the following steps:

[0058] a) introduction into said sample of a glucose electrode according to the invention;

[0059] b) measurement of the intensity of the current in the sample;

[0060] c) comparison of the intensity of the current measured in step b) with the intensity measured for standard solutions having a known glucose content;

[0061] d) determination of the glucose concentration of said sample.

[0062] Besides the preceding arrangements, the invention also comprises other arrangements that will emerge from the description that follows, which refer to examples of implementation of the present invention, and also to the attached figures, in which:

FIGURES

[0063] FIG. 1 schematically represents a biocell.

[0064] FIG. 2 represents the plasmid map of the vector pET24a-GOx-penag-wt-His.

[0065] FIG. 3 is a graph illustrating the specific activity in U/mg of wild-type and mutant GOx from Penicillium amagasakiense.

[0066] FIG. 4 is a graph representing the ferrocenemethanol activity/oxygen activity ratio.

[0067] FIG. 5 shows a comparison of the specific activity of the wild-type and mutant GOx with glucose and xylose.

[0068] FIG. 6 is a graph representing the change in glucose oxidation current as a function of the glucose concentration.

[0069] FIG. 7 is a graph representing the change in the ratio of the glucose oxidation current under oxygen divided by the current under argon as a function of the glucose concentration.

1. MATERIALS

1.1 Bacterial Strains of Escherichia coli

[0070] DH5α:supE44, ΔlacU169, (Φ80 lacZDM15), hsdR17, recA1, endA1, gyrA96, thi-1, relA1 (Hanahan, 1983). This strain is used for the amplification of the plasmid during the steps of construction of the protein expression vectors. BL21: F- ompT hsdSB(rB-, mB-) gal dcm (DE3) (Invitrogen). This strain is used for the production in conical flasks of GOx from Penicillium amagasakiense (penag). This strain is then transformed by the plasmid pET24a which contains the DNA sequence coding for the GOx of Penicillium amagasakiense under the dependence of the T7 promoter in the vector pET24a.

1.2 Vector

[0071] pET24a: plasmid pET24a containing the DNA sequence coding for the GOx of Penicillium amagasakiense cloned in phase with the C-terminal 6xHis label (the map of this plasmid is represented in FIG. 2).

1.3 Culture Medium

[0072] LB-rich medium:

[0073] Tryptone 10 g/1

[0074] Yeast extract 5 g/1

[0075] NaCl 5 g/1

[0076] Distilled H2O qsp 1 L

[0077] pH not adjusted, autoclaved for 50 minutes at 1 bar.

2. GENETIC ENGINEERING TECHNIQUES

2.1 Preparation of the Electrocompetent Bacteria

[0078] 5 ml of DH5α cell preculture are inoculated in 1 L of LB and are cultured at 37° C. up to the exponential phase (OD between 0.6 and 0.8). The cells thus harvested by centrifugation at 4000 g are successively washed with cold milliQ® water until 2 ml of cells that have become electrocompetent are obtained.

2.2 Transformation of the Electrocompetent Bacteria

[0079] 1 μl of plasmid DNA is incorporated into 40 μl of electrocompetent cells, placed in an electroporation tank and immediately transformed by the electroporator. 500 μl of SOC (culture medium containing 2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4) are added, incubated for 5 minutes in ice and cultured for 1 hour at 37° C. The 500 μl of cultures are then deposited in an LB-agar dish and incubated overnight at 37° C.

2.3 Preparation of the DNA

[0080] This step is performed using the QIAprep® Miniprep kit (Qiagen) which makes it possible to extract and purify the plasmid DNA from 10 ml of culture of DH5α cells transformed with the desired plasmid. After collecting the cells by centrifugation, they undergo alkaline lysis, in the presence of RNase, and also a precipitation of the genomic DNA with acetic acid. The DNA is then removed by centrifugation and the supernatant deposited on a column comprising a silica matrix, allowing selective adsorption of the plasmid DNA in the presence of a strong concentration of salt. After washing with ethanol to remove the salts, the RNA and the protein, the plasmid DNA is eluted with a buffer of weak ionic strength (water or buffer: Tris-HCl 10 mM pH 8.5). The DNA thus purified may be quantified by UV-visible spectrometry at 260 nm. An absorbance of 1 corresponds to a DNA concentration of 50 ngμl-1. The purified plasmid DNA is stored at -20° C.

2.4 Digestion of the DNA

[0081] For total digestion, 200 to 500 ng of plasmid DNA are digested with 0.5 μl of Xbal restriction enzyme in the appropriate reaction buffer, in a final volume of 15 μl. The reaction takes place at 37° C. for 1 hour.

2.5 PCR-Directed Mutagenesis

[0082] The GOx mutants V564I, V564S, V564T and V564S+K424E are obtained by directed mutagenesis. This method requires the use of a double-stranded plasmid (plasmid pET24a) bearing the gene of interest (GOx) and also 2 synthetic oligonucleotides whose sequence is complementary to the DNA strand to be modified, with the exception of the desired mutation. These oligonucleotides contain between and 45 bases, with a melting point (Tm) of greater than or equal to 70° C.

[0083] Tm=81.5+0.41 (% GC)-675/N-% (not paired)

[0084] With N the number of bases in the sequence, % GC the percentage of G and C bases in the sequence and % (not paired) the number of mutated bases (zero value in the case of deletion or insertion of a base). The chosen sequence must contain at least 40% of GC bases and must terminate with a C or a G.

[0085] The sequences of the oligonucleotides used are presented in table I above.

[0086] 10 ng of parental plasmid, 12.5 ng of each of the primers, 1 μl of a mixture of 10 mM concentrated dNTP, 5 μl of reaction buffer, 1 μl of Pfu Turbo DNA polymerase (2.5 Uμl-1) and 50 μl qs of sterile water are mixed in a sterile Eppendorf flask.

[0087] The mutagenesis is performed via a sequence of temperature cycles performed automatically by a thermocycler. Each cycle comprises three steps. In a first stage, the 2 strands of the matrix DNA are separated by thermal denaturing, the oligonucleotides are then paired with their complementary sequence on the matrix DNA. They serve as primers for the elongation step, during which PfuTurbo polymerase (a heat-resistant DNA polymerase) synthesizes the DNA complementary to the parental strand.

[0088] Once this sequence of cycles is complete, the reaction product is treated with Dpn I, an endonuclease which specifically digests the methylated and hemimethylated DNA of the parental plasmid. The mutated DNA is finally introduced into competent cells which link the ends of the plasmid that are still free after the DNA synthesis.

2.6 Sequencing of the Double-Stranded DNA

[0089] The double-stranded DNA is sequenced with the genomics platform of the universite Victor Segalen. The sequence reactions are performed with the BigDye Terminator v.1.1 or v3.1 sequencing kit. The reagent contains the four ddNTPs with different fluorescent markers (BigDye Terminators), AmpliTaq DNA polymerase, and all the other components necessary for the reaction. The extension products must be purified before passage on the ABI 3130x1 sequencer, to remove the markers not incorporated, salts and other contaminants.

3. PRODUCTION AND PURIFICATION OF THE GLUCOSE OXIDASE ENZYME OF PENICILLIUM AMAGASAKIENSE

3.1 Production of the Wild-Type and Mutated GOx Enzymes

[0090] The GOx enzyme is produced in the strain E. coli BL21 via the recombinant plasmid pET24a bearing the sequence coding for the wild-type or mutated GOx. A preculture of 2 ml of LB medium supplemented with kanamycin (1×) is seeded with an isolated clone on an LB agar dish supplemented with kanamycin (1×) and left stirring at 220 rpm overnight at 37° C. A 50 ml culture is then seeded at 1/25 in LB medium supplemented with kanamycin (1×) in a 250 ml conical flask. This flask is incubated at 37° C. with stirring (220 rpm) to an OD600 nm of between 0.8 and 1 OD600 nm/ml. The culture is then induced with 500 μM of IPTG and then left stirring (220 rpm) at 37° C. for 2 hours.

3.2 Preparation of the Soluble Extracts

[0091] The cells harvested by centrifugation (4500 g, 4° C.) are first washed in 5 ml of Tris/HCl 20 mM buffer; NaCl 100 mM; EDTA 1 mM. The cells harvested by centrifugation (4500 g, 4° C.) are then washed in 5 ml of Tris/HCl 20 mM buffer; NaCl 100 mM; EDTA 1 mM containing 3 M urea in order to embrittle the cell membrane. The harvested cells (4500 g, 4° C.) are incubated for 1 hour on ice in the presence of 5 ml of Tris/HCl 20 mM buffer; NaCl 100 mM; EDTA 1 mM containing 8M urea allowing complete lysis of the cells. The supernatant is harvested after centrifugation at 4500 g at 4° C. and then stored at -20° C.

3.3 Reconstitution of the GOx

[0092] In the bacterium E. coli BL21, glucose oxidase from Penicillium amagasakiense is overexpressed in its Apo form, i.e. in the absence of its cofactor flavine adenine dinucleotide (FAD). It is thus necessary to reconstitute it chemically. To do this, the 5 ml of soluble extract obtained are added dropwise with vigorous stirring, so as to avoid the precipitation of the protein, to 500 ml of a reconstitution solution containing 10% glycerol, 1 mM of reduced glutathione, 1 mM of oxidized glutathione, 100 μM of FAD in Tris/HCl 20 mM pH 8 buffer. This solution is stored for 5 days at 4° C. protected from light.

3.4 Purification of the GOx

Anion-Exchange Chromatography

[0093] The reconstitution solution, dialyzed in 20 mM pH 6 acetate buffer to allow precipitation of the remaining Apo form, is concentrated to 5 ml on an Amicon YM10 membrane and then filtered through a 0.22 μm filter. This solution is injected onto a QFF anion-exchange column (GE Healthcare®), coupled to the AKTA purifier system (GE Healthcare®) equilibrated in a 20 mM pH 6 sodium acetate buffer. The elution is performed with a gradient of from 0% to 30% of a 50 mM sodium acetate, 250 mM NaCl, pH 3 buffer at a flow rate of 1 ml/min. The fractions containing the GOx protein are identified by an ABTS activity test and are combined, concentrated and desalified with a 100 mM pH 5 phosphate buffer by centrifugation on an Amicon YM10 membrane. At this stage, the GOx protein is pure and can be stored at 4° C. in soluble form.

4. CHARACTERIZATION OF THE WILD-TYPE AND MUTATED GOX ENZYMES

4.1 Measurement of the Concentration

[0094] The protein concentration determination is performed by UV-visible spectroscopy using a Varian spectrophotometer in a 100 mM pH 5 phosphate buffer at 25° C. The purified GOx proteins have a characteristic spectrum between 200 and 800 nm. The first band at 280 nm is characteristic of the absorption of the aromatic amino acids and makes it possible to obtain the enzyme concentration (ε=263 mM-1cm-1). The other two bands at 380 and 461 nm are characteristic of the FAD integrated into the protein.

[0095] The absorbance value at 461 nm makes it possible to obtain the concentration of cofactor present in the protein (ε=12.83 mM-1cm-1). The ratio between the GOx concentration and the FAD concentration is equal to 2 when the protein is completely reconstituted.

4.2 Enzymatic Test

[0096] The enzymatic tests are performed by UV-visible spectroscopy using a Varian spectrophotometer in air.

[0097] The enzymatic tests are performed in the presence of a strong excess of glucose (150 mM) so as to be able to observe only the reoxidation of GOx by the mediators.

[0098] Two enzymatic tests are performed. The first with an ABTS-HRP mixture (2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)-horseradish peroxidase) to be able to observe the reoxidation with oxygen. The ABTS is oxidized in the presence of HRP and H2O2. And the second with oxidized ferrocenemethanol, so as to be able to observe the reoxidation of the GOx by a redox mediator having a redox potential close to that used in electrochemistry.

4.2.1 ABTS-HRP Enzymatic Test

[0099] The tests are performed in a 100 mM pH 5 phosphate buffer at 37° C. in a volume of 3 ml containing 100 μl of HRP (60 U/ml), 24 μL of ABTS (11.5 mg/ml) and 150 mM of glucose. The ABTS oxidation is monitored at 405 nm as a function of time (ε=36.8 mM-1cm-1). The specific activity of the enzyme is expressed as micromoles of product appeared per mg of enzyme (U/mg). The enzyme is diluted to 50 nM so as to measure a slope of between 0.05 and 0.3 OD405 nm/min.

4.2.2 Ferrocenemethanol Enzymatic Test (FMox)

4.2.2.1 Preparation of the Ferrocenemethanol

[0100] Commercial ferrocenemethanol is in reduced form, and it is thus necessary to oxidize it in order to be able to use it in the enzymatic tests. To do this, 100 mg of reduced ferrocenemethanol are dissolved in 50 ml of 50 mM pH 7.5 phosphate buffer and placed in an electrolysis cell comprising a working electrode (carbon electrode), an Ag/AgCl reference electrode, a platinum counterelectrode placed in a sinter containing 50 mM pH 7.5 phosphate buffer. The system is under argon. The electrolysis is performed at 0.5 V for 4 hours.

4.2.2.2 Enzymatic Test

[0101] The tests are performed in a 50 mM pH 7.5 phosphate buffer at 37° C. in a volume of 3 ml containing 1 mM of FMox and 150 mM glucose. The ferrocenemethanol reduction is monitored at 625 nm as a function of time (ε=0.413 mM-1cm-1) The specific activity of the enzyme is expressed in micromoles of product appeared per mg of enzyme (U/mg) (FIG. 3). The enzyme is diluted to 50 nM so as to be able to measure a slope of between 0.001 and 0.1 OD625 nm/min.

[0102] It is noted that the four mutants show a marked decrease in activity toward oxygen relative to the wild-type GOx.

[0103] The activity toward ferrocenemethanol is different depending on the mutant. Thus, the V564S mutant has a lower activity, the V564I mutant has a similar activity, whereas the V564T mutant shows a strong increase in activity relative to the wild-type GOx.

[0104] The FMox activity/ABTS activity ratio makes it possible to obtain the specificity of the enzyme toward the substrate (ABTS or FMox). The greater the ratio, the less sensitive the enzyme is to oxygen (FIG. 4).

[0105] It is noted that the mutants V564S and V564T are very insensitive to oxygen, which makes them good candidates for use in electrochemical systems.

[0106] The same enzymatic tests were performed in the presence of xylose (FIG. 5): the ABTS and FMox activities for xylose are very low compared with the activities for glucose. Xylose does not come into competition with glucose as a substrate for the wild-type and mutant glucose oxidases of Penicillium amagasakiense.

5. ELECTROCHEMICAL TESTS

[0107] By way of example, FIG. 6 represents the change in the glucose oxidation current as a function of the glucose concentration in a PBS buffer under argon and at 37° C. Each electrode is composed of 5% by mass of glucose oxidase, 10% by mass of crosslinking agent and 75% by mass of redox polymer. FIG. 7 represents the change in the ratio of the glucose oxidation current under oxygen divided by the current under argon as a function of the glucose concentration. This figure clearly shows a decrease in the effect of oxygen on the glucose oxidation when the mutated enzymes are used.

Sequence CWU 1

1

3217001DNAPenicillium amagasakiense 1tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540tccgctcatg aattaattct tagaaaaact catcgagcat caaatgaaac tgcaatttat 600tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 660actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc 720gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc 840agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc ggaagaggca 1140taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260tcgcacctga ttgcccgaca ttatcgcgag cccatttata cccatataaa tcagcatcca 1320tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 1560gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 1620agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 1680aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 1740agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1800cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1860accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 1980ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 2040cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 2100gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta 2160tcccctgatt ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc 2220agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cctgatgcgg 2280tattttctcc ttacgcatct gtgcggtatt tcacaccgca tatatggtgc actctcagta 2340caatctgctc tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg 2400ggtcatggct gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct 2460gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag 2520gttttcaccg tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtggtc 2580gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agctcgttga gtttctccag 2640aagcgttaat gtctggcttc tgataaagcg ggccatgtta agggcggttt tttcctgttt 2700ggtcactgat gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa 2760acgagagagg atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg 2820ttgtgagggt aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg 2880tcaatgccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc 2940tgcgatgcag atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta 3000cgaaacacgg aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca 3060gcagtcgctt cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc 3120ccgccagcct agccgggtcc tcaacgacag gagcacgatc atgcgcaccc gtggggccgc 3180catgccggcg ataatggcct gcttctcgcc gaaacgtttg gtggcgggac cagtgacgaa 3240ggcttgagcg agggcgtgca agattccgaa taccgcaagc gacaggccga tcatcgtcgc 3300gctccagcga aagcggtcct cgccgaaaat gacccagagc gctgccggca cctgtcctac 3360gagttgcatg ataaagaaga cagtcataag tgcggcgacg atagtcatgc cccgcgccca 3420ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc ccggtgccta 3480atgagtgagc taacttacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa 3540cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 3600tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga ttgcccttca 3660ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc agcaggcgaa 3720aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg gtatcgtcgt 3780atcccactac cgagatatcc gcaccaacgc gcagcccgga ctcggtaatg gcgcgcattg 3840cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg ccctcattca 3900gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc cgttccgcta 3960tcggctgaat ttgattgcga gtgagatatt tatgccagcc agccagacgc agacgcgccg 4020agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat gcgaccagat 4080gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg atgggtgtct 4140ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc acagcaatgg 4200catcctggtc atccagcgga tagttaatga tcagcccact gacgcgttgc gcgagaagat 4260tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac accaccacgc 4320tggcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac ggcgcgtgca 4380gggccagact ggaggtggca acgccaatca gcaacgactg tttgcccgcc agttgttgtg 4440ccacgcggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt tcccgcgttt 4500tcgcagaaac gtggctggcc tggttcacca cgcgggaaac ggtctgataa gagacaccgg 4560catactctgc gacatcgtat aacgttactg gtttcacatt caccaccctg aattgactct 4620cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga 4680tctcgacgct ctcccttatg cgactcctgc attaggaagc agcccagtag taggttgagg 4740ccgttgagca ccgccgccgc aaggaatggt gcatgcaagg agatggcgcc caacagtccc 4800ccggccacgg ggcctgccac catacccacg ccgaaacaag cgctcatgag cccgaagtgg 4860cgagcccgat cttccccatc ggtgatgtcg gcgatatagg cgccagcaac cgcacctgtg 4920gcgccggtga tgccggccac gatgcgtccg gcgtagagga tcgagatctc gatcccgcga 4980aattaatacg actcactata ggggaattgt gagcggataa caattcccct ctagaaataa 5040ttttgtttaa ctttaagaag gagatataca tatgtacctg cctgcccaac agattgatgt 5100ccagtctagt cttctcagtg accctagcaa ggttgcagga aagacctatg attacatcat 5160tgctggtggt ggtttgactg gccttactgt tgctgccaaa ttgacagaaa accccaagat 5220caaagtcctg gtcattgaaa agggcttcta tgagtccaac gatggagcca tcatcgagga 5280tccaaatgct tatggacaaa tctttggcac cactgttgac cagaactacc tcaccgttcc 5340cctgatcaac aaccgcacga acaatatcaa ggccggtaaa ggtcttggag gatcaacctt 5400gataaacggt gactcctgga ctcgcccaga caaagtccag attgattctt gggagaaggt 5460ctttggcatg gaaggttgga attgggacaa catgttcgag tacatgaaga aggccgaggc 5520tgcacgtacc cctactgctg ctcagcttgc tgctggccac tccttcaatg ctacctgcca 5580tggaaccaac ggtactgttc aatccggagc ccgtgacaac ggccagcctt ggtctcctat 5640tatgaaggcc cttatgaaca ccgtctcggc ccttggtgtc cccgtacagc aagactttct 5700ctgtggtcat ccacgaggtg tctctatgat catgaacaat ctcgacgaaa accaagttcg 5760tgttgatgct gcccgtgcat ggctgcttcc caactaccag cgctcgaatt tggagatcct 5820tactggtcag atggttggaa aggttctgtt taaacagacc gcatccggtc cccaggctgt 5880tggtgtgaac ttcggtacta ataaggccgt caactttgac gtctttgcta agcatgaggt 5940ccttttggct gctggctcag ctatctctcc gctgatcttg gaatattctg gcataggctt 6000gaagtctgtt cttgatcaag ccaatgtcac tcagcttctt gatcttcctg ttggtatcaa 6060tatgcaagat cagaccacaa ccactgtcag ttcccgtgct agttccgctg gtgctggtca 6120gggtcaggcc gtcttcttcg ccaatttcac tgagaccttc ggtgactacg ccccccaggc 6180cagggactta ctcaacacca agctcgacca atgggccgag gagaccgttg cgcgcggtgg 6240tttccataat gtaactgctc tcaaagtaca atacgaaaac tatcgtaact ggctccttga 6300cgaagacgtc gccttcgccg agcttttcat ggacaccgag ggcaagatca acttcgattt 6360atgggatctc atccctttca ctcgtggttc cgtccatatc ctcagtagcg atccttacct 6420atggcaattc gccaacgacc ccaaattctt cctgaacgag tttgacctcc ttggtcaagc 6480tgccgcttcc aagcttgctc gtgatctcac tagccaaggc gctatgaagg agtacttcgc 6540cggggagact cttccaggat acaacttggt ccagaatgct actctttccc agtggtcgga 6600ttatgtctta cagaacttcc gtcccaactg gcatgctgtg agcagctgct ctatgatgtc 6660tagagagctt ggtggtgtcg ttgatgctac tgccaaggtg tacggtaccc aaggcctacg 6720tgtcattgac gggtctattc ctccgactca ggtgtcttcc catgtcatga ccattttcta 6780cggaatggct ttgaaggttg ctgatgccat tttggatgac tatgccaaaa gtgcctcgct 6840cgagcaccac caccaccacc actgagatcc ggctgctaac aaagcccgaa aggaagctga 6900gttggctgct gccaccgctg agcaataact agcataaccc cttggggcct ctaaacgggt 6960cttgaggggt tttttgctga aaggaggaac tatatccgga t 70012587PRTPenicillium amagasakiense 2Tyr Leu Pro Ala Gln Gln Ile Asp Val Gln Ser Ser Leu Leu Ser Asp 1 5 10 15 Pro Ser Lys Val Ala Gly Lys Thr Tyr Asp Tyr Ile Ile Ala Gly Gly 20 25 30 Gly Leu Thr Gly Leu Thr Val Ala Ala Lys Leu Thr Glu Asn Pro Lys 35 40 45 Ile Lys Val Leu Val Ile Glu Lys Gly Phe Tyr Glu Ser Asn Asp Gly 50 55 60 Ala Ile Ile Glu Asp Pro Asn Ala Tyr Gly Gln Ile Phe Gly Thr Thr 65 70 75 80 Val Asp Gln Asn Tyr Leu Thr Val Pro Leu Ile Asn Asn Pro Thr Asn 85 90 95 Asn Ile Lys Ala Gly Lys Gly Leu Gly Gly Ser Thr Leu Ile Asn Gly 100 105 110 Asp Ser Trp Thr Arg Pro Asp Lys Val Gln Ile Asp Ser Trp Glu Lys 115 120 125 Val Phe Gly Met Glu Gly Trp Asn Trp Asp Asn Met Phe Glu Tyr Met 130 135 140 Lys Lys Ala Glu Ala Ala Arg Thr Pro Thr Ala Ala Gln Leu Ala Ala 145 150 155 160 Gly His Ser Phe Asn Pro Thr Cys His Gly Thr Asn Pro Thr Val Gln 165 170 175 Ser Gly Ala Arg Asp Asn Gly Gln Pro Trp Ser Pro Ile Met Lys Ala 180 185 190 Leu Met Asn Thr Val Ser Ala Leu Gly Val Pro Val Gln Gln Asp Phe 195 200 205 Leu Cys Gly His Pro Arg Gly Val Ser Met Ile Met Asn Asn Leu Asp 210 215 220 Glu Asn Gln Val Arg Val Asp Ala Ala Arg Ala Trp Leu Leu Pro Asn 225 230 235 240 Tyr Gln Arg Ser Asn Leu Glu Ile Leu Thr Gly Gln Met Val Gly Lys 245 250 255 Val Leu Phe Lys Gln Thr Ala Ser Gly Pro Gln Ala Val Gly Val Asn 260 265 270 Phe Gly Thr Asn Lys Ala Val Asn Phe Asp Val Phe Ala Lys His Glu 275 280 285 Val Leu Leu Ala Ala Gly Ser Ala Ile Ser Pro Leu Ile Leu Glu Tyr 290 295 300 Ser Gly Ile Gly Leu Lys Ser Val Leu Asp Gln Ala Asn Pro Thr Gln 305 310 315 320 Leu Leu Asp Leu Pro Val Gly Ile Asn Met Gln Asp Gln Thr Thr Thr 325 330 335 Thr Val Ser Ser Arg Ala Ser Ser Ala Gly Ala Gly Gln Gly Gln Ala 340 345 350 Val Phe Phe Ala Asn Pro Thr Glu Thr Phe Gly Asp Tyr Ala Pro Gln 355 360 365 Ala Arg Asp Leu Leu Asn Thr Lys Leu Asp Gln Trp Ala Glu Glu Thr 370 375 380 Val Ala Arg Gly Gly Phe His Asn Pro Thr Ala Leu Lys Val Gln Tyr 385 390 395 400 Glu Asn Tyr Arg Asn Trp Leu Leu Asp Glu Asp Val Ala Phe Ala Glu 405 410 415 Leu Phe Met Asp Thr Glu Gly Lys Ile Asn Phe Asp Leu Trp Asp Leu 420 425 430 Ile Pro Phe Thr Arg Gly Ser Val His Ile Leu Ser Ser Asp Pro Tyr 435 440 445 Leu Trp Gln Phe Ala Asn Asp Pro Lys Phe Phe Leu Asn Glu Phe Asp 450 455 460 Leu Leu Gly Gln Ala Ala Ala Ser Lys Leu Ala Arg Asp Leu Thr Ser 465 470 475 480 Gln Gly Ala Met Lys Glu Tyr Phe Ala Gly Glu Thr Leu Pro Gly Tyr 485 490 495 Asn Leu Val Gln Asn Pro Thr Leu Ser Gln Trp Ser Asp Tyr Val Leu 500 505 510 Gln Asn Phe Arg Pro Asn Trp His Ala Val Ser Ser Cys Ser Met Met 515 520 525 Ser Arg Glu Leu Gly Gly Val Val Asp Ala Thr Ala Lys Val Tyr Gly 530 535 540 Thr Gln Gly Leu Arg Val Ile Asp Gly Ser Ile Pro Pro Thr Gln Val 545 550 555 560 Ser Ser His Val Met Thr Ile Phe Tyr Gly Met Ala Leu Lys Val Ala 565 570 575 Asp Ala Ile Leu Asp Asp Tyr Ala Lys Ser Ala 580 585 31770DNAPenicillium amagasakiense 3tatgtacctg cctgcccaac agattgatgt ccagtctagt cttctcagtg accctagcaa 60ggttgcagga aagacctatg attacatcat tgctggtggt ggtttgactg gccttactgt 120tgctgccaaa ttgacagaaa accccaagat caaagtcctg gtcattgaaa agggcttcta 180tgagtccaac gatggagcca tcatcgagga tccaaatgct tatggacaaa tctttggcac 240cactgttgac cagaactacc tcaccgttcc cctgatcaac aaccgcacga acaatatcaa 300ggccggtaaa ggtcttggag gatcaacctt gataaacggt gactcctgga ctcgcccaga 360caaagtccag attgattctt gggagaaggt ctttggcatg gaaggttgga attgggacaa 420catgttcgag tacatgaaga aggccgaggc tgcacgtacc cctactgctg ctcagcttgc 480tgctggccac tccttcaatg ctacctgcca tggaaccaac ggtactgttc aatccggagc 540ccgtgacaac ggccagcctt ggtctcctat tatgaaggcc cttatgaaca ccgtctcggc 600ccttggtgtc cccgtacagc aagactttct ctgtggtcat ccacgaggtg tctctatgat 660catgaacaat ctcgacgaaa accaagttcg tgttgatgct gcccgtgcat ggctgcttcc 720caactaccag cgctcgaatt tggagatcct tactggtcag atggttggaa aggttctgtt 780taaacagacc gcatccggtc cccaggctgt tggtgtgaac ttcggtacta ataaggccgt 840caactttgac gtctttgcta agcatgaggt ccttttggct gctggctcag ctatctctcc 900gctgatcttg gaatattctg gcataggctt gaagtctgtt cttgatcaag ccaatgtcac 960tcagcttctt gatcttcctg ttggtatcaa tatgcaagat cagaccacaa ccactgtcag 1020ttcccgtgct agttccgctg gtgctggtca gggtcaggcc gtcttcttcg ccaatttcac 1080tgagaccttc ggtgactacg ccccccaggc cagggactta ctcaacacca agctcgacca 1140atgggccgag gagaccgttg cgcgcggtgg tttccataat gtaactgctc tcaaagtaca 1200atacgaaaac tatcgtaact ggctccttga cgaagacgtc gccttcgccg agcttttcat 1260ggacaccgag ggcaagatca acttcgattt atgggatctc atccctttca ctcgtggttc 1320cgtccatatc ctcagtagcg atccttacct atggcaattc gccaacgacc ccaaattctt 1380cctgaacgag tttgacctcc ttggtcaagc tgccgcttcc aagcttgctc gtgatctcac 1440tagccaaggc gctatgaagg agtacttcgc cggggagact cttccaggat acaacttggt 1500ccagaatgct actctttccc agtggtcgga ttatgtctta cagaacttcc gtcccaactg 1560gcatgctgtg agcagctgct ctatgatgtc tagagagctt ggtggtgtcg ttgatgctac 1620tgccaaggtg tacggtaccc aaggcctacg tgtcattgac gggtctattc ctccgactca 1680ggtgtcttcc cattccatga ccattttcta cggaatggct ttgaaggttg ctgatgccat 1740tttggatgac tatgccaaaa gtgcctcgct 17704587PRTPenicillium amagasakiense 4Tyr Leu Pro Ala Gln Gln Ile Asp Val Gln Ser Ser Leu Leu Ser Asp 1 5 10 15 Pro Ser Lys Val Ala Gly Lys Thr Tyr Asp Tyr Ile Ile Ala Gly Gly 20 25 30 Gly Leu Thr Gly Leu Thr Val Ala Ala Lys Leu Thr Glu Asn Pro Lys 35 40 45 Ile Lys Val Leu Val Ile Glu Lys Gly Phe Tyr Glu Ser Asn Asp Gly 50 55 60 Ala Ile Ile Glu Asp Pro Asn Ala Tyr Gly Gln Ile Phe Gly Thr Thr 65 70 75 80 Val Asp Gln Asn Tyr Leu Thr Val Pro Leu Ile Asn Asn Pro Thr Asn 85 90 95 Asn Ile Lys Ala Gly Lys Gly Leu Gly Gly Ser Thr Leu Ile Asn Gly 100 105 110 Asp Ser Trp Thr Arg Pro Asp Lys Val Gln Ile Asp Ser Trp Glu Lys 115 120 125 Val Phe Gly Met Glu Gly Trp Asn Trp Asp Asn Met Phe Glu Tyr Met 130 135 140 Lys Lys Ala Glu Ala Ala Arg Thr Pro Thr Ala Ala Gln Leu Ala Ala 145 150 155 160 Gly His Ser Phe Asn Pro Thr Cys His Gly Thr Asn Pro Thr Val Gln 165 170 175 Ser Gly Ala Arg Asp Asn Gly Gln Pro Trp Ser Pro Ile Met Lys Ala 180 185 190 Leu Met Asn Thr Val Ser Ala Leu Gly Val Pro Val Gln Gln Asp Phe 195 200 205 Leu Cys Gly His Pro Arg Gly Val Ser Met Ile Met Asn Asn Leu Asp 210 215 220 Glu Asn Gln Val Arg Val Asp Ala Ala Arg Ala Trp Leu Leu Pro Asn 225 230 235 240 Tyr Gln Arg Ser Asn Leu Glu Ile Leu Thr Gly Gln Met Val Gly Lys 245 250 255 Val Leu Phe Lys Gln Thr Ala Ser Gly Pro Gln Ala Val Gly Val Asn 260 265 270 Phe Gly Thr Asn Lys Ala Val Asn Phe Asp Val Phe Ala Lys His Glu 275 280 285 Val Leu Leu Ala Ala Gly Ser Ala Ile Ser Pro Leu Ile Leu Glu Tyr 290 295 300 Ser Gly Ile Gly Leu Lys Ser Val Leu Asp Gln Ala Asn Pro Thr Gln 305 310 315 320 Leu Leu Asp Leu Pro Val Gly Ile Asn Met Gln Asp Gln Thr Thr Thr 325 330 335 Thr Val Ser Ser Arg Ala Ser Ser Ala Gly Ala Gly Gln Gly Gln Ala 340 345

350 Val Phe Phe Ala Asn Pro Thr Glu Thr Phe Gly Asp Tyr Ala Pro Gln 355 360 365 Ala Arg Asp Leu Leu Asn Thr Lys Leu Asp Gln Trp Ala Glu Glu Thr 370 375 380 Val Ala Arg Gly Gly Phe His Asn Pro Thr Ala Leu Lys Val Gln Tyr 385 390 395 400 Glu Asn Tyr Arg Asn Trp Leu Leu Asp Glu Asp Val Ala Phe Ala Glu 405 410 415 Leu Phe Met Asp Thr Glu Gly Lys Ile Asn Phe Asp Leu Trp Asp Leu 420 425 430 Ile Pro Phe Thr Arg Gly Ser Val His Ile Leu Ser Ser Asp Pro Tyr 435 440 445 Leu Trp Gln Phe Ala Asn Asp Pro Lys Phe Phe Leu Asn Glu Phe Asp 450 455 460 Leu Leu Gly Gln Ala Ala Ala Ser Lys Leu Ala Arg Asp Leu Thr Ser 465 470 475 480 Gln Gly Ala Met Lys Glu Tyr Phe Ala Gly Glu Thr Leu Pro Gly Tyr 485 490 495 Asn Leu Val Gln Asn Pro Thr Leu Ser Gln Trp Ser Asp Tyr Val Leu 500 505 510 Gln Asn Phe Arg Pro Asn Trp His Ala Val Ser Ser Cys Ser Met Met 515 520 525 Ser Arg Glu Leu Gly Gly Val Val Asp Ala Thr Ala Lys Val Tyr Gly 530 535 540 Thr Gln Gly Leu Arg Val Ile Asp Gly Ser Ile Pro Pro Thr Gln Val 545 550 555 560 Ser Ser His Ser Met Thr Ile Phe Tyr Gly Met Ala Leu Lys Val Ala 565 570 575 Asp Ala Ile Leu Asp Asp Tyr Ala Lys Ser Ala 580 585 51768DNAPenicillium amagasakiense 5tatgtacctg cctgcccaac agattgatgt ccagtctagt cttctcagtg accctagcaa 60ggttgcagga aagacctatg attacatcat tgctggtggt ggtttgactg gccttactgt 120tgctgccaaa ttgacagaaa accccaagat caaagtcctg gtcattgaaa agggcttcta 180tgagtccaac gatggagcca tcatcgagga tccaaatgct tatggacaaa tctttggcac 240cactgttgac cagaactacc tcaccgttcc cctgatcaac aaccgcacga acaatatcaa 300ggccggtaaa ggtcttggag atcaaccttg ataaacggtg actcctggac tcgcccagac 360aaagtccaga ttgattcttg ggagaaggtc tttggcatga aggttggaat tgggacaaca 420tgttcgagta catgaagaag gccgaggctg cacgtacccc tactgctgct cagcttgctg 480ctggccactc cttcaatgct acctgccatg gaaccaacgg tactgttcaa tccggagccc 540gtgacaacgg ccagccttgg tctcctatta tgaaggccct tatgaacacc gtctcggccc 600ttggtgtccc cgtacagcaa gactttctct gtggtcatcc acgaggtgtc tctatgatca 660tgaacaatct cgacgaaaac caagttcgtg ttgatgctgc ccgtgcatgg ctgcttccca 720actaccagcg ctcgaatttg gagatcctta ctggtcagat ggttggaaag gttctgttta 780aacagaccgc atccggtccc caggctgttg gtgtgaactt cggtactaat aaggccgtca 840actttgacgt ctttgctaag catgaggtcc ttttggctgc tggctcagct atctctccgc 900tgatcttgga atattctggc ataggcttga agtctgttct tgatcaagcc aatgtcactc 960agcttcttga tcttcctgtt ggtatcaata tgcaagatca gaccacaacc actgtcagtt 1020cccgtgctag ttccgctggt gctggtcagg gtcaggccgt cttcttcgcc aatttcactg 1080agaccttcgg tgactacgcc ccccaggcca gggacttact caacaccaag ctcgaccaat 1140gggccgagga gaccgttgcg cgcggtggtt tccataatgt aactgctctc aaagtacaat 1200acgaaaacta tcgtaactgg ctccttgacg aagacgtcgc cttcgccgag cttttcatgg 1260acaccgaggg caagatcaac ttcgatttat gggatctcat ccctttcact cgtggttccg 1320tccatatcct cagtagcgat ccttacctat ggcaattcgc caacgacccc aaattcttcc 1380tgaacgagtt tgacctcctt ggtcaagctg ccgcttccaa gcttgctcgt gatctcacta 1440gccaaggcgc tatgaaggag tacttcgccg gggagactct tccaggatac aacttggtcc 1500agaatgctac tctttcccag tggtcggatt atgtcttaca gaacttccgt cccaactggc 1560atgctgtgag cagctgctct atgatgtcta gagagcttgg tggtgtcgtt gatgctactg 1620ccaaggtgta cggtacccaa ggcctacgtg tcattgacgg gtctattcct ccgactcagg 1680tgtcttccca taccatgacc attttctacg gaatggcttt gaaggttgct gatgccattt 1740tggatgacta tgccaaaagt gcctcgct 17686587PRTPenicillium amagasakiense 6Tyr Leu Pro Ala Gln Gln Ile Asp Val Gln Ser Ser Leu Leu Ser Asp 1 5 10 15 Pro Ser Lys Val Ala Gly Lys Thr Tyr Asp Tyr Ile Ile Ala Gly Gly 20 25 30 Gly Leu Thr Gly Leu Thr Val Ala Ala Lys Leu Thr Glu Asn Pro Lys 35 40 45 Ile Lys Val Leu Val Ile Glu Lys Gly Phe Tyr Glu Ser Asn Asp Gly 50 55 60 Ala Ile Ile Glu Asp Pro Asn Ala Tyr Gly Gln Ile Phe Gly Thr Thr 65 70 75 80 Val Asp Gln Asn Tyr Leu Thr Val Pro Leu Ile Asn Asn Pro Thr Asn 85 90 95 Asn Ile Lys Ala Gly Lys Gly Leu Gly Gly Ser Thr Leu Ile Asn Gly 100 105 110 Asp Ser Trp Thr Arg Pro Asp Lys Val Gln Ile Asp Ser Trp Glu Lys 115 120 125 Val Phe Gly Met Glu Gly Trp Asn Trp Asp Asn Met Phe Glu Tyr Met 130 135 140 Lys Lys Ala Glu Ala Ala Arg Thr Pro Thr Ala Ala Gln Leu Ala Ala 145 150 155 160 Gly His Ser Phe Asn Pro Thr Cys His Gly Thr Asn Pro Thr Val Gln 165 170 175 Ser Gly Ala Arg Asp Asn Gly Gln Pro Trp Ser Pro Ile Met Lys Ala 180 185 190 Leu Met Asn Thr Val Ser Ala Leu Gly Val Pro Val Gln Gln Asp Phe 195 200 205 Leu Cys Gly His Pro Arg Gly Val Ser Met Ile Met Asn Asn Leu Asp 210 215 220 Glu Asn Gln Val Arg Val Asp Ala Ala Arg Ala Trp Leu Leu Pro Asn 225 230 235 240 Tyr Gln Arg Ser Asn Leu Glu Ile Leu Thr Gly Gln Met Val Gly Lys 245 250 255 Val Leu Phe Lys Gln Thr Ala Ser Gly Pro Gln Ala Val Gly Val Asn 260 265 270 Phe Gly Thr Asn Lys Ala Val Asn Phe Asp Val Phe Ala Lys His Glu 275 280 285 Val Leu Leu Ala Ala Gly Ser Ala Ile Ser Pro Leu Ile Leu Glu Tyr 290 295 300 Ser Gly Ile Gly Leu Lys Ser Val Leu Asp Gln Ala Asn Pro Thr Gln 305 310 315 320 Leu Leu Asp Leu Pro Val Gly Ile Asn Met Gln Asp Gln Thr Thr Thr 325 330 335 Thr Val Ser Ser Arg Ala Ser Ser Ala Gly Ala Gly Gln Gly Gln Ala 340 345 350 Val Phe Phe Ala Asn Pro Thr Glu Thr Phe Gly Asp Tyr Ala Pro Gln 355 360 365 Ala Arg Asp Leu Leu Asn Thr Lys Leu Asp Gln Trp Ala Glu Glu Thr 370 375 380 Val Ala Arg Gly Gly Phe His Asn Pro Thr Ala Leu Lys Val Gln Tyr 385 390 395 400 Glu Asn Tyr Arg Asn Trp Leu Leu Asp Glu Asp Val Ala Phe Ala Glu 405 410 415 Leu Phe Met Asp Thr Glu Gly Lys Ile Asn Phe Asp Leu Trp Asp Leu 420 425 430 Ile Pro Phe Thr Arg Gly Ser Val His Ile Leu Ser Ser Asp Pro Tyr 435 440 445 Leu Trp Gln Phe Ala Asn Asp Pro Lys Phe Phe Leu Asn Glu Phe Asp 450 455 460 Leu Leu Gly Gln Ala Ala Ala Ser Lys Leu Ala Arg Asp Leu Thr Ser 465 470 475 480 Gln Gly Ala Met Lys Glu Tyr Phe Ala Gly Glu Thr Leu Pro Gly Tyr 485 490 495 Asn Leu Val Gln Asn Pro Thr Leu Ser Gln Trp Ser Asp Tyr Val Leu 500 505 510 Gln Asn Phe Arg Pro Asn Trp His Ala Val Ser Ser Cys Ser Met Met 515 520 525 Ser Arg Glu Leu Gly Gly Val Val Asp Ala Thr Ala Lys Val Tyr Gly 530 535 540 Thr Gln Gly Leu Arg Val Ile Asp Gly Ser Ile Pro Pro Thr Gln Val 545 550 555 560 Ser Ser His Thr Met Thr Ile Phe Tyr Gly Met Ala Leu Lys Val Ala 565 570 575 Asp Ala Ile Leu Asp Asp Tyr Ala Lys Ser Ala 580 585 71770DNAPenicillium amagasakiense 7tatgtacctg cctgcccaac agattgatgt ccagtctagt cttctcagtg accctagcaa 60ggttgcagga aagacctatg attacatcat tgctggtggt ggtttgactg gccttactgt 120tgctgccaaa ttgacagaaa accccaagat caaagtcctg gtcattgaaa agggcttcta 180tgagtccaac gatggagcca tcatcgagga tccaaatgct tatggacaaa tctttggcac 240cactgttgac cagaactacc tcaccgttcc cctgatcaac aaccgcacga acaatatcaa 300ggccggtaaa ggtcttggag gatcaacctt gataaacggt gactcctgga ctcgcccaga 360caaagtccag attgattctt gggagaaggt ctttggcatg gaaggttgga attgggacaa 420catgttcgag tacatgaaga aggccgaggc tgcacgtacc cctactgctg ctcagcttgc 480tgctggccac tccttcaatg ctacctgcca tggaaccaac ggtactgttc aatccggagc 540ccgtgacaac ggccagcctt ggtctcctat tatgaaggcc cttatgaaca ccgtctcggc 600ccttggtgtc cccgtacagc aagactttct ctgtggtcat ccacgaggtg tctctatgat 660catgaacaat ctcgacgaaa accaagttcg tgttgatgct gcccgtgcat ggctgcttcc 720caactaccag cgctcgaatt tggagatcct tactggtcag atggttggaa aggttctgtt 780taaacagacc gcatccggtc cccaggctgt tggtgtgaac ttcggtacta ataaggccgt 840caactttgac gtctttgcta agcatgaggt ccttttggct gctggctcag ctatctctcc 900gctgatcttg gaatattctg gcataggctt gaagtctgtt cttgatcaag ccaatgtcac 960tcagcttctt gatcttcctg ttggtatcaa tatgcaagat cagaccacaa ccactgtcag 1020ttcccgtgct agttccgctg gtgctggtca gggtcaggcc gtcttcttcg ccaatttcac 1080tgagaccttc ggtgactacg ccccccaggc cagggactta ctcaacacca agctcgacca 1140atgggccgag gagaccgttg cgcgcggtgg tttccataat gtaactgctc tcaaagtaca 1200atacgaaaac tatcgtaact ggctccttga cgaagacgtc gccttcgccg agcttttcat 1260ggacaccgag ggcaagatca acttcgattt atgggatctc atccctttca ctcgtggttc 1320cgtccatatc ctcagtagcg atccttacct atggcaattc gccaacgacc ccaaattctt 1380cctgaacgag tttgacctcc ttggtcaagc tgccgcttcc aagcttgctc gtgatctcac 1440tagccaaggc gctatgaagg agtacttcgc cggggagact cttccaggat acaacttggt 1500ccagaatgct actctttccc agtggtcgga ttatgtctta cagaacttcc gtcccaactg 1560gcatgctgtg agcagctgct ctatgatgtc tagagagctt ggtggtgtcg ttgatgctac 1620tgccaaggtg tacggtaccc aaggcctacg tgtcattgac gggtctattc ctccgactca 1680ggtgtcttcc catattatga ccattttcta cggaatggct ttgaaggttg ctgatgccat 1740tttggatgac tatgccaaaa gtgcctcgct 17708587PRTPenicillium amagasakiense 8Tyr Leu Pro Ala Gln Gln Ile Asp Val Gln Ser Ser Leu Leu Ser Asp 1 5 10 15 Pro Ser Lys Val Ala Gly Lys Thr Tyr Asp Tyr Ile Ile Ala Gly Gly 20 25 30 Gly Leu Thr Gly Leu Thr Val Ala Ala Lys Leu Thr Glu Asn Pro Lys 35 40 45 Ile Lys Val Leu Val Ile Glu Lys Gly Phe Tyr Glu Ser Asn Asp Gly 50 55 60 Ala Ile Ile Glu Asp Pro Asn Ala Tyr Gly Gln Ile Phe Gly Thr Thr 65 70 75 80 Val Asp Gln Asn Tyr Leu Thr Val Pro Leu Ile Asn Asn Pro Thr Asn 85 90 95 Asn Ile Lys Ala Gly Lys Gly Leu Gly Gly Ser Thr Leu Ile Asn Gly 100 105 110 Asp Ser Trp Thr Arg Pro Asp Lys Val Gln Ile Asp Ser Trp Glu Lys 115 120 125 Val Phe Gly Met Glu Gly Trp Asn Trp Asp Asn Met Phe Glu Tyr Met 130 135 140 Lys Lys Ala Glu Ala Ala Arg Thr Pro Thr Ala Ala Gln Leu Ala Ala 145 150 155 160 Gly His Ser Phe Asn Pro Thr Cys His Gly Thr Asn Pro Thr Val Gln 165 170 175 Ser Gly Ala Arg Asp Asn Gly Gln Pro Trp Ser Pro Ile Met Lys Ala 180 185 190 Leu Met Asn Thr Val Ser Ala Leu Gly Val Pro Val Gln Gln Asp Phe 195 200 205 Leu Cys Gly His Pro Arg Gly Val Ser Met Ile Met Asn Asn Leu Asp 210 215 220 Glu Asn Gln Val Arg Val Asp Ala Ala Arg Ala Trp Leu Leu Pro Asn 225 230 235 240 Tyr Gln Arg Ser Asn Leu Glu Ile Leu Thr Gly Gln Met Val Gly Lys 245 250 255 Val Leu Phe Lys Gln Thr Ala Ser Gly Pro Gln Ala Val Gly Val Asn 260 265 270 Phe Gly Thr Asn Lys Ala Val Asn Phe Asp Val Phe Ala Lys His Glu 275 280 285 Val Leu Leu Ala Ala Gly Ser Ala Ile Ser Pro Leu Ile Leu Glu Tyr 290 295 300 Ser Gly Ile Gly Leu Lys Ser Val Leu Asp Gln Ala Asn Pro Thr Gln 305 310 315 320 Leu Leu Asp Leu Pro Val Gly Ile Asn Met Gln Asp Gln Thr Thr Thr 325 330 335 Thr Val Ser Ser Arg Ala Ser Ser Ala Gly Ala Gly Gln Gly Gln Ala 340 345 350 Val Phe Phe Ala Asn Pro Thr Glu Thr Phe Gly Asp Tyr Ala Pro Gln 355 360 365 Ala Arg Asp Leu Leu Asn Thr Lys Leu Asp Gln Trp Ala Glu Glu Thr 370 375 380 Val Ala Arg Gly Gly Phe His Asn Pro Thr Ala Leu Lys Val Gln Tyr 385 390 395 400 Glu Asn Tyr Arg Asn Trp Leu Leu Asp Glu Asp Val Ala Phe Ala Glu 405 410 415 Leu Phe Met Asp Thr Glu Gly Lys Ile Asn Phe Asp Leu Trp Asp Leu 420 425 430 Ile Pro Phe Thr Arg Gly Ser Val His Ile Leu Ser Ser Asp Pro Tyr 435 440 445 Leu Trp Gln Phe Ala Asn Asp Pro Lys Phe Phe Leu Asn Glu Phe Asp 450 455 460 Leu Leu Gly Gln Ala Ala Ala Ser Lys Leu Ala Arg Asp Leu Thr Ser 465 470 475 480 Gln Gly Ala Met Lys Glu Tyr Phe Ala Gly Glu Thr Leu Pro Gly Tyr 485 490 495 Asn Leu Val Gln Asn Pro Thr Leu Ser Gln Trp Ser Asp Tyr Val Leu 500 505 510 Gln Asn Phe Arg Pro Asn Trp His Ala Val Ser Ser Cys Ser Met Met 515 520 525 Ser Arg Glu Leu Gly Gly Val Val Asp Ala Thr Ala Lys Val Tyr Gly 530 535 540 Thr Gln Gly Leu Arg Val Ile Asp Gly Ser Ile Pro Pro Thr Gln Val 545 550 555 560 Ser Ser His Ile Met Thr Ile Phe Tyr Gly Met Ala Leu Lys Val Ala 565 570 575 Asp Ala Ile Leu Asp Asp Tyr Ala Lys Ser Ala 580 585 91770DNAPenicillium amagasakiense 9tatgtacctg cctgcccaac agattgatgt ccagtctagt cttctcagtg accctagcaa 60ggttgcagga aagacctatg attacatcat tgctggtggt ggtttgactg gccttactgt 120tgctgccaaa ttgacagaaa accccaagat caaagtcctg gtcattgaaa agggcttcta 180tgagtccaac gatggagcca tcatcgagga tccaaatgct tatggacaaa tctttggcac 240cactgttgac cagaactacc tcaccgttcc cctgatcaac aaccgcacga acaatatcaa 300ggccggtaaa ggtcttggag gatcaacctt gataaacggt gactcctgga ctcgcccaga 360caaagtccag attgattctt gggagaaggt ctttggcatg gaaggttgga attgggacaa 420catgttcgag tacatgaaga aggccgaggc tgcacgtacc cctactgctg ctcagcttgc 480tgctggccac tccttcaatg ctacctgcca tggaaccaac ggtactgttc aatccggagc 540ccgtgacaac ggccagcctt ggtctcctat tatgaaggcc cttatgaaca ccgtctcggc 600ccttggtgtc cccgtacagc aagactttct ctgtggtcat ccacgaggtg tctctatgat 660catgaacaat ctcgacgaaa accaagttcg tgttgatgct gcccgtgcat ggctgcttcc 720caactaccag cgctcgaatt tggagatcct tactggtcag atggttggaa aggttctgtt 780taaacagacc gcatccggtc cccaggctgt tggtgtgaac ttcggtacta ataaggccgt 840caactttgac gtctttgcta agcatgaggt ccttttggct gctggctcag ctatctctcc 900gctgatcttg gaatattctg gcataggctt gaagtctgtt cttgatcaag ccaatgtcac 960tcagcttctt gatcttcctg ttggtatcaa tatgcaagat cagaccacaa ccactgtcag 1020ttcccgtgct agttccgctg gtgctggtca gggtcaggcc gtcttcttcg ccaatttcac 1080tgagaccttc ggtgactacg ccccccaggc cagggactta ctcaacacca agctcgacca 1140atgggccgag gagaccgttg cgcgcggtgg tttccataat gtaactgctc tcaaagtaca 1200atacgaaaac tatcgtaact ggctccttga cgaagacgtc gccttcgccg agcttttcat 1260ggacaccgag ggcgagatca acttcgattt atgggatctc atccctttca ctcgtggttc 1320cgtccatatc ctcagtagcg atccttacct atggcaattc gccaacgacc ccaaattctt 1380cctgaacgag tttgacctcc ttggtcaagc tgccgcttcc aagcttgctc gtgatctcac 1440tagccaaggc gctatgaagg agtacttcgc cggggagact cttccaggat acaacttggt 1500ccagaatgct actctttccc agtggtcgga ttatgtctta cagaacttcc gtcccaactg 1560gcatgctgtg agcagctgct ctatgatgtc tagagagctt ggtggtgtcg ttgatgctac 1620tgccaaggtg tacggtaccc aaggcctacg tgtcattgac gggtctattc ctccgactca 1680ggtgtcttcc cattccatga ccattttcta cggaatggct ttgaaggttg ctgatgccat 1740tttggatgac tatgccaaaa gtgcctcgct 177010587PRTPenicillium amagasakiense 10Tyr Leu Pro Ala Gln Gln Ile Asp Val Gln Ser Ser Leu Leu Ser Asp 1 5 10 15 Pro Ser Lys Val Ala Gly Lys Thr Tyr Asp Tyr Ile Ile Ala Gly Gly 20 25 30 Gly Leu Thr Gly Leu Thr Val Ala Ala

Lys Leu Thr Glu Asn Pro Lys 35 40 45 Ile Lys Val Leu Val Ile Glu Lys Gly Phe Tyr Glu Ser Asn Asp Gly 50 55 60 Ala Ile Ile Glu Asp Pro Asn Ala Tyr Gly Gln Ile Phe Gly Thr Thr 65 70 75 80 Val Asp Gln Asn Tyr Leu Thr Val Pro Leu Ile Asn Asn Pro Thr Asn 85 90 95 Asn Ile Lys Ala Gly Lys Gly Leu Gly Gly Ser Thr Leu Ile Asn Gly 100 105 110 Asp Ser Trp Thr Arg Pro Asp Lys Val Gln Ile Asp Ser Trp Glu Lys 115 120 125 Val Phe Gly Met Glu Gly Trp Asn Trp Asp Asn Met Phe Glu Tyr Met 130 135 140 Lys Lys Ala Glu Ala Ala Arg Thr Pro Thr Ala Ala Gln Leu Ala Ala 145 150 155 160 Gly His Ser Phe Asn Pro Thr Cys His Gly Thr Asn Pro Thr Val Gln 165 170 175 Ser Gly Ala Arg Asp Asn Gly Gln Pro Trp Ser Pro Ile Met Lys Ala 180 185 190 Leu Met Asn Thr Val Ser Ala Leu Gly Val Pro Val Gln Gln Asp Phe 195 200 205 Leu Cys Gly His Pro Arg Gly Val Ser Met Ile Met Asn Asn Leu Asp 210 215 220 Glu Asn Gln Val Arg Val Asp Ala Ala Arg Ala Trp Leu Leu Pro Asn 225 230 235 240 Tyr Gln Arg Ser Asn Leu Glu Ile Leu Thr Gly Gln Met Val Gly Lys 245 250 255 Val Leu Phe Lys Gln Thr Ala Ser Gly Pro Gln Ala Val Gly Val Asn 260 265 270 Phe Gly Thr Asn Lys Ala Val Asn Phe Asp Val Phe Ala Lys His Glu 275 280 285 Val Leu Leu Ala Ala Gly Ser Ala Ile Ser Pro Leu Ile Leu Glu Tyr 290 295 300 Ser Gly Ile Gly Leu Lys Ser Val Leu Asp Gln Ala Asn Pro Thr Gln 305 310 315 320 Leu Leu Asp Leu Pro Val Gly Ile Asn Met Gln Asp Gln Thr Thr Thr 325 330 335 Thr Val Ser Ser Arg Ala Ser Ser Ala Gly Ala Gly Gln Gly Gln Ala 340 345 350 Val Phe Phe Ala Asn Pro Thr Glu Thr Phe Gly Asp Tyr Ala Pro Gln 355 360 365 Ala Arg Asp Leu Leu Asn Thr Lys Leu Asp Gln Trp Ala Glu Glu Thr 370 375 380 Val Ala Arg Gly Gly Phe His Asn Pro Thr Ala Leu Lys Val Gln Tyr 385 390 395 400 Glu Asn Tyr Arg Asn Trp Leu Leu Asp Glu Asp Val Ala Phe Ala Glu 405 410 415 Leu Phe Met Asp Thr Glu Gly Glu Ile Asn Phe Asp Leu Trp Asp Leu 420 425 430 Ile Pro Phe Thr Arg Gly Ser Val His Ile Leu Ser Ser Asp Pro Tyr 435 440 445 Leu Trp Gln Phe Ala Asn Asp Pro Lys Phe Phe Leu Asn Glu Phe Asp 450 455 460 Leu Leu Gly Gln Ala Ala Ala Ser Lys Leu Ala Arg Asp Leu Thr Ser 465 470 475 480 Gln Gly Ala Met Lys Glu Tyr Phe Ala Gly Glu Thr Leu Pro Gly Tyr 485 490 495 Asn Leu Val Gln Asn Pro Thr Leu Ser Gln Trp Ser Asp Tyr Val Leu 500 505 510 Gln Asn Phe Arg Pro Asn Trp His Ala Val Ser Ser Cys Ser Met Met 515 520 525 Ser Arg Glu Leu Gly Gly Val Val Asp Ala Thr Ala Lys Val Tyr Gly 530 535 540 Thr Gln Gly Leu Arg Val Ile Asp Gly Ser Ile Pro Pro Thr Gln Val 545 550 555 560 Ser Ser His Ser Met Thr Ile Phe Tyr Gly Met Ala Leu Lys Val Ala 565 570 575 Asp Ala Ile Leu Asp Asp Tyr Ala Lys Ser Ala 580 585 1133DNAPenicillium amagasakiense 11ggtgtcttcc catgtcatga ccattttcta cgg 331233DNAPenicillium amagasakiense 12ccgtagaaaa tggtcatgac atgggaagac acc 331333DNAPenicillium amagasakiense 13ggtgtcttcc cattccatga ccattttcta cgg 331433DNAPenicillium amagasakiense 14ccgtagaaaa tggtcatgga atgggaagac acc 331533DNAPenicillium amagasakiense 15ggtgtcttcc cataccatga ccattttcta cgg 331633DNAPenicillium amagasakiense 16ccgtagaaaa tggtcatggt atgggaagac acc 331733DNAPenicillium amagasakiense 17ggtgtcttcc catattatga ccattttcta cgg 331833DNAPenicillium amagasakiense 18ccgtagaaaa tggtcataat atgggaagac acc 331926DNAPenicillium amagasakiense 19ggacaccgag ggcgagatca acttcg 262026DNAPenicillium amagasakiense 20cgaagttgat ctcgccctcg gtgtcc 26211769DNAPenicillium aculeatum 21atgtacctgc ctgcccaaca gattgatgtc cagtctagtc ttctcagtga ccctagcaag 60gttgcaggaa agacctatga ttacatcatt gctggtggtg gtttgactgg ccttactgtt 120gctgccaaat tgacagaaaa ccccaagatc aaagtcctgg tcattgaaaa gggcttctat 180gagtccaacg atggagccat catcgaggat ccaaatgctt atggacaaat ctttggcacc 240actgttgacc agaactacct caccgttccc ctgatcaaca accgcacgaa caatatcaag 300gccggtaaag gtcttggagg atcaaccttg ataaacggtg actcctggac tcgcccagac 360aaagtccaga ttgattcttg ggagaaggtc tttggcatgg aaggttggaa ttgggacaac 420atgttcgagt acatgaagaa ggccgaggct gcacgtaccc ctactgctgc tcagcttgct 480gctggccact ccttcaatgc tacctgccat ggaaccaacg gtactgttca atccggagcc 540cgtgacaacg gccagccttg gtctcctatt atgaaggccc ttatgaacac cgtctcggcc 600cttggtgtcc ccgtacagca agactttctc tgtggtcatc cacgaggtgt ctctatgatc 660atgaacaatc tcgacgaaaa ccaagttcgt gttgatgctg cccgtgcatg gctgcttccc 720aactaccagc gctcgaattt ggagatcctt actggtcaga tggttggaaa ggttctgttt 780aaacagaccg catccggtcc ccaggctgtt ggtgtgaact tcggtactaa taaggccgtc 840aactttgacg tctttgctaa gcatgaggtc cttttggctg ctggctcagc tatctctccg 900ctgatcttgg aatattctgg cataggcttg aagtctgttc ttgatcaagc caatgtcact 960cagcttcttg atcttcctgt tggtatcaat atgcaagatc agaccacaac cactgtcagt 1020tcccgtgcta gttccgctgg tgctggtcag ggtcaggccg tcttcttcgc caatttcact 1080gagaccttcg gtgactacgc cccccaggcc agggacttac tcaacaccaa gctcgaccaa 1140tgggccgagg agaccgttgc gcgcggtggt ttccataatg taactgctct caaagtacaa 1200tacgaaaact atcgtaactg gctccttgac gaagacgtcg ccttcgccga gcttttcatg 1260gacaccgagg gccagatcaa cttcgattta tgggatctca tccctttcac tcgtggttcc 1320gtccatatcc tcagtagcga tccttaccta tggcaattcg ccaacgaccc caaattcttc 1380ctgaacgagt ttgacctcct tggtcaagct gccgcttcca agcttgctcg tgatctcact 1440agccaaggcg ctatgaagga gtacttcgcc ggggagactc ttccaggata caacttggtc 1500cagaatgcta ctctttccca gtggtcggat tatgtcttac agaacttccg tcccaactgg 1560catgctgtga gcagctgctc tatgatgtct agagagcttg gtggtgtcgt tgatgctact 1620gccaaggtgt acggtaccca aggcctacgt gtcattgacg ggtctattcc tccgactcag 1680gtgtcttccc attccatgac cattttctac ggaatggctt tgaaggttgc tgatgccatt 1740ttggatgact atgccaaaag tgcctcgct 176922588PRTPenicillium amagasakiense 22Tyr Leu Pro Ala Gln Gln Ile Asp Val Gln Ser Ser Leu Leu Ser Asp 1 5 10 15 Pro Ser Lys Val Ala Gly Lys Thr Tyr Asp Tyr Ile Ile Ala Gly Gly 20 25 30 Gly Leu Thr Gly Leu Thr Val Ala Ala Lys Leu Thr Glu Asn Pro Lys 35 40 45 Ile Lys Val Leu Val Ile Glu Lys Gly Phe Tyr Glu Ser Asn Asp Gly 50 55 60 Ala Ile Ile Glu Asp Pro Asn Ala Tyr Gly Gln Ile Phe Gly Thr Thr 65 70 75 80 Val Asp Gln Asn Tyr Leu Thr Val Pro Leu Ile Asn Asn Arg Thr Asn 85 90 95 Asn Ile Lys Ala Gly Lys Gly Leu Gly Gly Ser Thr Leu Ile Asn Gly 100 105 110 Asp Ser Trp Thr Arg Pro Asp Lys Val Gln Ile Asp Ser Trp Glu Lys 115 120 125 Val Phe Gly Met Glu Gly Trp Asn Trp Asp Asn Met Phe Glu Tyr Met 130 135 140 Lys Lys Ala Glu Ala Ala Arg Thr Pro Thr Ala Ala Gln Leu Ala Ala 145 150 155 160 Gly His Ser Phe Asn Ala Thr Cys His Gly Thr Asn Gly Thr Val Gln 165 170 175 Ser Gly Ala Arg Asp Asn Gly Gln Pro Trp Ser Pro Ile Met Lys Ala 180 185 190 Leu Met Asn Thr Val Ser Ala Leu Gly Val Pro Val Gln Gln Asp Phe 195 200 205 Leu Cys Gly His Pro Arg Gly Val Ser Met Ile Met Asn Asn Leu Asp 210 215 220 Glu Asn Gln Val Arg Val Asp Ala Ala Arg Ala Trp Leu Leu Pro Asn 225 230 235 240 Tyr Gln Arg Ser Asn Leu Glu Ile Leu Thr Gly Gln Met Val Gly Lys 245 250 255 Val Leu Phe Lys Gln Thr Ala Ser Gly Pro Gln Ala Val Gly Val Asn 260 265 270 Phe Gly Thr Asn Lys Ala Val Asn Phe Asp Val Phe Ala Lys His Glu 275 280 285 Val Leu Leu Ala Ala Gly Ser Ala Ile Ser Pro Leu Ile Leu Glu Tyr 290 295 300 Ser Gly Ile Gly Leu Lys Ser Val Leu Asp Gln Ala Asn Val Thr Gln 305 310 315 320 Leu Leu Asp Leu Pro Val Gly Ile Asn Met Gln Asp Gln Thr Thr Thr 325 330 335 Thr Val Ser Ser Arg Ala Ser Ser Ala Gly Ala Gly Gln Gly Gln Ala 340 345 350 Val Phe Phe Ala Asn Phe Thr Glu Thr Phe Gly Asp Tyr Ala Pro Gln 355 360 365 Ala Arg Asp Leu Leu Asn Thr Lys Leu Asp Gln Trp Ala Glu Glu Thr 370 375 380 Val Ala Arg Gly Gly Phe His Asn Val Thr Ala Leu Lys Val Gln Tyr 385 390 395 400 Glu Asn Tyr Arg Asn Trp Leu Leu Asp Glu Asp Val Ala Phe Ala Glu 405 410 415 Leu Phe Met Asp Thr Glu Gly Gln Ile Asn Phe Asp Leu Trp Asp Leu 420 425 430 Ile Pro Phe Thr Arg Gly Ser Val His Ile Leu Ser Ser Asp Pro Tyr 435 440 445 Leu Trp Gln Phe Ala Asn Asp Pro Lys Phe Phe Leu Asn Glu Phe Asp 450 455 460 Leu Leu Gly Gln Ala Ala Ala Ser Lys Leu Ala Arg Asp Leu Thr Ser 465 470 475 480 Gln Gly Ala Met Lys Glu Tyr Phe Ala Gly Glu Thr Leu Pro Gly Tyr 485 490 495 Asn Leu Val Gln Asn Ala Thr Leu Ser Gln Trp Ser Asp Tyr Val Leu 500 505 510 Gln Asn Phe Arg Pro Asn Trp His Ala Val Ser Ser Cys Ser Met Met 515 520 525 Ser Arg Glu Leu Gly Gly Val Val Asp Ala Thr Ala Lys Val Tyr Gly 530 535 540 Thr Gln Gly Leu Arg Val Ile Asp Gly Ser Ile Pro Pro Thr Gln Val 545 550 555 560 Ser Ser His Ser Met Thr Ile Phe Tyr Gly Met Ala Leu Lys Val Ala 565 570 575 Asp Ala Ile Leu Asp Asp Tyr Ala Lys Ser Ala Ser 580 585 231769DNAPenicillium amagasakiense 23atgtacctgc ctgcccaaca gattgatgtc cagtctagtc ttctcagtga ccctagcaag 60gttgcaggaa agacctatga ttacatcatt gctggtggtg gtttgactgg ccttactgtt 120gctgccaaat tgacagaaaa ccccaagatc aaagtcctgg tcattgaaaa gggcttctat 180gagtccaacg atggagccat catcgaggat ccaaatgctt atggacaaat ctttggcacc 240actgttgacc agaactacct caccgttccc ctgatcaaca accgcacgaa caatatcaag 300gccggtaaag gtcttggagg atcaaccttg ataaacggtg actcctggac tcgcccagac 360aaagtccaga ttgattcttg ggagaaggtc tttggcatgg aaggttggaa ttgggacaac 420atgttcgagt acatgaagaa ggccgaggct gcacgtaccc ctactgctgc tcagcttgct 480gctggccact ccttcaatgc tacctgccat ggaaccaacg gtactgttca atccggagcc 540cgtgacaacg gccagccttg gtctcctatt atgaaggccc ttatgaacac cgtctcggcc 600cttggtgtcc ccgtacagca agactttctc tgtggtcatc cacgaggtgt ctctatgatc 660atgaacaatc tcgacgaaaa ccaagttcgt gttgatgctg cccgtgcatg gctgcttccc 720aactaccagc gctcgaattt ggagatcctt actggtcaga tggttggaaa ggttctgttt 780aaacagaccg catccggtcc ccaggctgtt ggtgtgaact tcggtactaa taaggccgtc 840aactttgacg tctttgctaa gcatgaggtc cttttggctg ctggctcagc tatctctccg 900ctgatcttgg aatattctgg cataggcttg aagtctgttc ttgatcaagc caatgtcact 960cagcttcttg atcttcctgt tggtatcaat atgcaagatc agaccacaac cactgtcagt 1020tcccgtgcta gttccgctgg tgctggtcag ggtcaggccg tcttcttcgc caatttcact 1080gagaccttcg gtgactacgc cccccaggcc agggacttac tcaacaccaa gctcgaccaa 1140tgggccgagg agaccgttgc gcgcggtggt ttccataatg taactgctct caaagtacaa 1200tacgaaaact atcgtaactg gctccttgac gaagacgtcg ccttcgccga gcttttcatg 1260gacaccgagg gcatgatcaa cttcgattta tgggatctca tccctttcac tcgtggttcc 1320gtccatatcc tcagtagcga tccttaccta tggcaattcg ccaacgaccc caaattcttc 1380ctgaacgagt ttgacctcct tggtcaagct gccgcttcca agcttgctcg tgatctcact 1440agccaaggcg ctatgaagga gtacttcgcc ggggagactc ttccaggata caacttggtc 1500cagaatgcta ctctttccca gtggtcggat tatgtcttac agaacttccg tcccaactgg 1560catgctgtga gcagctgctc tatgatgtct agagagcttg gtggtgtcgt tgatgctact 1620gccaaggtgt acggtaccca aggcctacgt gtcattgacg ggtctattcc tccgactcag 1680gtgtcttccc attccatgac cattttctac ggaatggctt tgaaggttgc tgatgccatt 1740ttggatgact atgccaaaag tgcctcgct 176924588PRTPenicillium amagasakiense 24Tyr Leu Pro Ala Gln Gln Ile Asp Val Gln Ser Ser Leu Leu Ser Asp 1 5 10 15 Pro Ser Lys Val Ala Gly Lys Thr Tyr Asp Tyr Ile Ile Ala Gly Gly 20 25 30 Gly Leu Thr Gly Leu Thr Val Ala Ala Lys Leu Thr Glu Asn Pro Lys 35 40 45 Ile Lys Val Leu Val Ile Glu Lys Gly Phe Tyr Glu Ser Asn Asp Gly 50 55 60 Ala Ile Ile Glu Asp Pro Asn Ala Tyr Gly Gln Ile Phe Gly Thr Thr 65 70 75 80 Val Asp Gln Asn Tyr Leu Thr Val Pro Leu Ile Asn Asn Arg Thr Asn 85 90 95 Asn Ile Lys Ala Gly Lys Gly Leu Gly Gly Ser Thr Leu Ile Asn Gly 100 105 110 Asp Ser Trp Thr Arg Pro Asp Lys Val Gln Ile Asp Ser Trp Glu Lys 115 120 125 Val Phe Gly Met Glu Gly Trp Asn Trp Asp Asn Met Phe Glu Tyr Met 130 135 140 Lys Lys Ala Glu Ala Ala Arg Thr Pro Thr Ala Ala Gln Leu Ala Ala 145 150 155 160 Gly His Ser Phe Asn Ala Thr Cys His Gly Thr Asn Gly Thr Val Gln 165 170 175 Ser Gly Ala Arg Asp Asn Gly Gln Pro Trp Ser Pro Ile Met Lys Ala 180 185 190 Leu Met Asn Thr Val Ser Ala Leu Gly Val Pro Val Gln Gln Asp Phe 195 200 205 Leu Cys Gly His Pro Arg Gly Val Ser Met Ile Met Asn Asn Leu Asp 210 215 220 Glu Asn Gln Val Arg Val Asp Ala Ala Arg Ala Trp Leu Leu Pro Asn 225 230 235 240 Tyr Gln Arg Ser Asn Leu Glu Ile Leu Thr Gly Gln Met Val Gly Lys 245 250 255 Val Leu Phe Lys Gln Thr Ala Ser Gly Pro Gln Ala Val Gly Val Asn 260 265 270 Phe Gly Thr Asn Lys Ala Val Asn Phe Asp Val Phe Ala Lys His Glu 275 280 285 Val Leu Leu Ala Ala Gly Ser Ala Ile Ser Pro Leu Ile Leu Glu Tyr 290 295 300 Ser Gly Ile Gly Leu Lys Ser Val Leu Asp Gln Ala Asn Val Thr Gln 305 310 315 320 Leu Leu Asp Leu Pro Val Gly Ile Asn Met Gln Asp Gln Thr Thr Thr 325 330 335 Thr Val Ser Ser Arg Ala Ser Ser Ala Gly Ala Gly Gln Gly Gln Ala 340 345 350 Val Phe Phe Ala Asn Phe Thr Glu Thr Phe Gly Asp Tyr Ala Pro Gln 355 360 365 Ala Arg Asp Leu Leu Asn Thr Lys Leu Asp Gln Trp Ala Glu Glu Thr 370 375 380 Val Ala Arg Gly Gly Phe His Asn Val Thr Ala Leu Lys Val Gln Tyr 385 390 395 400 Glu Asn Tyr Arg Asn Trp Leu Leu Asp Glu Asp Val Ala Phe Ala Glu 405 410 415 Leu Phe Met Asp Thr Glu Gly Met Ile Asn Phe Asp Leu Trp Asp Leu 420 425 430 Ile Pro Phe Thr Arg Gly Ser Val His Ile Leu Ser Ser Asp Pro Tyr 435 440 445 Leu Trp Gln Phe Ala Asn Asp Pro Lys Phe Phe Leu Asn Glu Phe Asp 450 455

460 Leu Leu Gly Gln Ala Ala Ala Ser Lys Leu Ala Arg Asp Leu Thr Ser 465 470 475 480 Gln Gly Ala Met Lys Glu Tyr Phe Ala Gly Glu Thr Leu Pro Gly Tyr 485 490 495 Asn Leu Val Gln Asn Ala Thr Leu Ser Gln Trp Ser Asp Tyr Val Leu 500 505 510 Gln Asn Phe Arg Pro Asn Trp His Ala Val Ser Ser Cys Ser Met Met 515 520 525 Ser Arg Glu Leu Gly Gly Val Val Asp Ala Thr Ala Lys Val Tyr Gly 530 535 540 Thr Gln Gly Leu Arg Val Ile Asp Gly Ser Ile Pro Pro Thr Gln Val 545 550 555 560 Ser Ser His Ser Met Thr Ile Phe Tyr Gly Met Ala Leu Lys Val Ala 565 570 575 Asp Ala Ile Leu Asp Asp Tyr Ala Lys Ser Ala Ser 580 585 251769DNAPenicillium amagasakiense 25atgtacctgc ctgcccaaca gattgatgtc cagtctagtc ttctcagtga ccctagcaag 60gttgcaggaa agacctatga ttacatcatt gctggtggtg gtttgactgg ccttactgtt 120gctgccaaat tgacagaaaa ccccaagatc aaagtcctgg tcattgaaaa gggcttctat 180gagtccaacg atggagccat catcgaggat ccaaatgctt atggacaaat ctttggcacc 240actgttgacc agaactacct caccgttccc ctgatcaaca accgcacgaa caatatcaag 300gccggtaaag gtcttggagg atcaaccttg ataaacggtg actcctggac tcgcccagac 360aaagtccaga ttgattcttg ggagaaggtc tttggcatgg aaggttggaa ttgggacaac 420atgttcgagt acatgaagaa ggccgaggct gcacgtaccc ctactgctgc tcagcttgct 480gctggccact ccttcaatgc tacctgccat ggaaccaacg gtactgttca atccggagcc 540cgtgacaacg gccagccttg gtctcctatt atgaaggccc ttatgaacac cgtctcggcc 600cttggtgtcc ccgtacagca agactttctc tgtggtcatc cacgaggtgt ctctatgatc 660atgaacaatc tcgacgaaaa ccaagttcgt gttgatgctg cccgtgcatg gctgcttccc 720aactaccagc gctcgaattt ggagatcctt actggtcaga tggttggaaa ggttctgttt 780aaacagaccg catccggtcc ccaggctgtt ggtgtgaact tcggtactaa taaggccgtc 840aactttgacg tctttgctaa gcatgaggtc cttttggctg ctggctcagc tatctctccg 900ctgatcttgg aatattctgg cataggcttg aagtctgttc ttgatcaagc caatgtcact 960cagcttcttg atcttcctgt tggtatcaat atgcaagatc agaccacaac cactgtcagt 1020tcccgtgcta gttccgctgg tgctggtcag ggtcaggccg tcttcttcgc caatttcact 1080gagaccttcg gtgactacgc cccccaggcc agggacttac tcaacaccaa gctcgaccaa 1140tgggccgagg agaccgttgc gcgcggtggt ttccataatg taactgctct caaagtacaa 1200tacgaaaact atcgtaactg gctccttgac gaagacgtcg ccttcgccga gcttttcatg 1260gacaccgagg gcttgatcaa cttcgattta tgggatctca tccctttcac tcgtggttcc 1320gtccatatcc tcagtagcga tccttaccta tggcaattcg ccaacgaccc caaattcttc 1380ctgaacgagt ttgacctcct tggtcaagct gccgcttcca agcttgctcg tgatctcact 1440agccaaggcg ctatgaagga gtacttcgcc ggggagactc ttccaggata caacttggtc 1500cagaatgcta ctctttccca gtggtcggat tatgtcttac agaacttccg tcccaactgg 1560catgctgtga gcagctgctc tatgatgtct agagagcttg gtggtgtcgt tgatgctact 1620gccaaggtgt acggtaccca aggcctacgt gtcattgacg ggtctattcc tccgactcag 1680gtgtcttccc attccatgac cattttctac ggaatggctt tgaaggttgc tgatgccatt 1740ttggatgact atgccaaaag tgcctcgct 176926588PRTPenicillium amagasakiense 26Tyr Leu Pro Ala Gln Gln Ile Asp Val Gln Ser Ser Leu Leu Ser Asp 1 5 10 15 Pro Ser Lys Val Ala Gly Lys Thr Tyr Asp Tyr Ile Ile Ala Gly Gly 20 25 30 Gly Leu Thr Gly Leu Thr Val Ala Ala Lys Leu Thr Glu Asn Pro Lys 35 40 45 Ile Lys Val Leu Val Ile Glu Lys Gly Phe Tyr Glu Ser Asn Asp Gly 50 55 60 Ala Ile Ile Glu Asp Pro Asn Ala Tyr Gly Gln Ile Phe Gly Thr Thr 65 70 75 80 Val Asp Gln Asn Tyr Leu Thr Val Pro Leu Ile Asn Asn Arg Thr Asn 85 90 95 Asn Ile Lys Ala Gly Lys Gly Leu Gly Gly Ser Thr Leu Ile Asn Gly 100 105 110 Asp Ser Trp Thr Arg Pro Asp Lys Val Gln Ile Asp Ser Trp Glu Lys 115 120 125 Val Phe Gly Met Glu Gly Trp Asn Trp Asp Asn Met Phe Glu Tyr Met 130 135 140 Lys Lys Ala Glu Ala Ala Arg Thr Pro Thr Ala Ala Gln Leu Ala Ala 145 150 155 160 Gly His Ser Phe Asn Ala Thr Cys His Gly Thr Asn Gly Thr Val Gln 165 170 175 Ser Gly Ala Arg Asp Asn Gly Gln Pro Trp Ser Pro Ile Met Lys Ala 180 185 190 Leu Met Asn Thr Val Ser Ala Leu Gly Val Pro Val Gln Gln Asp Phe 195 200 205 Leu Cys Gly His Pro Arg Gly Val Ser Met Ile Met Asn Asn Leu Asp 210 215 220 Glu Asn Gln Val Arg Val Asp Ala Ala Arg Ala Trp Leu Leu Pro Asn 225 230 235 240 Tyr Gln Arg Ser Asn Leu Glu Ile Leu Thr Gly Gln Met Val Gly Lys 245 250 255 Val Leu Phe Lys Gln Thr Ala Ser Gly Pro Gln Ala Val Gly Val Asn 260 265 270 Phe Gly Thr Asn Lys Ala Val Asn Phe Asp Val Phe Ala Lys His Glu 275 280 285 Val Leu Leu Ala Ala Gly Ser Ala Ile Ser Pro Leu Ile Leu Glu Tyr 290 295 300 Ser Gly Ile Gly Leu Lys Ser Val Leu Asp Gln Ala Asn Val Thr Gln 305 310 315 320 Leu Leu Asp Leu Pro Val Gly Ile Asn Met Gln Asp Gln Thr Thr Thr 325 330 335 Thr Val Ser Ser Arg Ala Ser Ser Ala Gly Ala Gly Gln Gly Gln Ala 340 345 350 Val Phe Phe Ala Asn Phe Thr Glu Thr Phe Gly Asp Tyr Ala Pro Gln 355 360 365 Ala Arg Asp Leu Leu Asn Thr Lys Leu Asp Gln Trp Ala Glu Glu Thr 370 375 380 Val Ala Arg Gly Gly Phe His Asn Val Thr Ala Leu Lys Val Gln Tyr 385 390 395 400 Glu Asn Tyr Arg Asn Trp Leu Leu Asp Glu Asp Val Ala Phe Ala Glu 405 410 415 Leu Phe Met Asp Thr Glu Gly Leu Ile Asn Phe Asp Leu Trp Asp Leu 420 425 430 Ile Pro Phe Thr Arg Gly Ser Val His Ile Leu Ser Ser Asp Pro Tyr 435 440 445 Leu Trp Gln Phe Ala Asn Asp Pro Lys Phe Phe Leu Asn Glu Phe Asp 450 455 460 Leu Leu Gly Gln Ala Ala Ala Ser Lys Leu Ala Arg Asp Leu Thr Ser 465 470 475 480 Gln Gly Ala Met Lys Glu Tyr Phe Ala Gly Glu Thr Leu Pro Gly Tyr 485 490 495 Asn Leu Val Gln Asn Ala Thr Leu Ser Gln Trp Ser Asp Tyr Val Leu 500 505 510 Gln Asn Phe Arg Pro Asn Trp His Ala Val Ser Ser Cys Ser Met Met 515 520 525 Ser Arg Glu Leu Gly Gly Val Val Asp Ala Thr Ala Lys Val Tyr Gly 530 535 540 Thr Gln Gly Leu Arg Val Ile Asp Gly Ser Ile Pro Pro Thr Gln Val 545 550 555 560 Ser Ser His Ser Met Thr Ile Phe Tyr Gly Met Ala Leu Lys Val Ala 565 570 575 Asp Ala Ile Leu Asp Asp Tyr Ala Lys Ser Ala Ser 580 585 2733DNAPenicillium amagasakiense 27ggacaccgag ggccagatca acttcgattt atg 332833DNAPenicillium amagasakiense 28cataaatcga agttgatctg gccctcggtg tcc 332933DNAPenicillium amagasakiense 29ggacaccgag ggcatgatca acttcgattt atg 333033DNAPenicillium amagasakiense 30cataaatcga agttgatcat gccctcggtg tcc 333133DNAPenicillium amagasakiense 31ggacaccgag ggcttgatca acttcgattt atg 333233DNAPenicillium amagasakiense 32cataaatcga agttgatcaa gccctcggtg tcc 33


Patent applications by Nicolas Mano, Talence FR

Patent applications by Centre National De La Recherche Scientique

Patent applications in class Involving enzyme or micro-organism

Patent applications in all subclasses Involving enzyme or micro-organism


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
Images included with this patent application:
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and imagePENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
PENICILLIUM AMAGASAKIENSE GLUCOSE OXIDASE MUTANTS diagram and image
Similar patent applications:
DateTitle
2014-12-18Electrochemical reduction of co2 with co-oxidation of an alcohol
2014-07-17Saliva glucose monitoring system
2014-12-18Non-contact sheet resistance measurement of barrier and/or seed layers prior to electroplating
2014-12-18Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
2014-12-18Electroplating tool with feedback of metal thickness distribution and correction
New patent applications in this class:
DateTitle
2016-12-29Electronic measurements of monolayers following homogenous reactions of their components
2016-12-29Sensor, sensor system, method of manufacturing sensor, and method of measuring concentration of target substance
2016-09-01Devices and methods for testing analytes
2016-07-14Matrix-enhanced electrochemical detector for pathogenic bacteria
2016-07-14Enzyme cascade methods for e-trace assay signal amplification
New patent applications from these inventors:
DateTitle
2020-12-31Modification enzymatique de la lignine pour sa solubilisation et applications
2015-04-09Bacillus pumilus bilirubin oxidase and applications thereof
2014-05-01Bilirubin oxidase from magnaporthe oryzae and applications thereof
2013-04-25Enzymatic modifications of a cellular monolithic carbon and uses thereof
Top Inventors for class "Electrolysis: processes, compositions used therein, and methods of preparing the compositions"
RankInventor's name
1Benjamin J. Feldman
2Adam Heller
3Michael S. Lockard
4Fei Mao
5Joseph A. Vivolo
Website © 2025 Advameg, Inc.