Patent application title: Methods and Compositions for Producing Alkenes of Various Chain Length
Inventors:
Christian Perry Ridley (Acton, MA, US)
Christian Perry Ridley (Acton, MA, US)
Assignees:
Joule Unlimited Technologies, Inc.
IPC8 Class: AC12P502FI
USPC Class:
435167
Class name: Micro-organism, tissue cell culture or enzyme using process to synthesize a desired chemical compound or composition preparing hydrocarbon only acyclic
Publication date: 2014-02-06
Patent application number: 20140038255
Abstract:
The NonA alkene synthase in Synechococcus sp. displays selective
synthesis of 1-nonadecene. Heterologous recombination of a domain, i.e.
the acyl binding domain, with other acyl binding proteins, affects acyl
substrate chain-length binding selectivity and therefore the chain-length
of the synthesized 1-alkenes. Compositions and methods are provided to
selectively synthesize 1-alkenes of various chain lengths.Claims:
1. An isolated or recombinant chimeric NonA alkene synthase comprising a
heterologous acyl binding pocket.
2. The alkene synthase of claim 1, wherein said heterologous acyl binding pocket comprises a polypeptide sequence selected from the group consisting of: a. SEQ ID NO: 8, SEQ ID NO: 12, SEQ ID NO: 16; and b. a polypeptide sequence at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%%, at least 99.1%, at least 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8% or at least 99.9% identical to SEQ ID NO: 8, SEQ ID NO: 12, or SEQ ID NO: 16.
3. An isolated or recombinant polynucleotide encoding the heterologous acyl binding pocket of claim 1, comprising or consisting of: a. SEQ ID NO: 35, SEQ ID NO: 36, or SEQ ID NO: 34; b. a nucleotide sequence that is a degenerate variant of SEQ ID NO: 35, SEQ ID NO: 36, or SEQ ID NO: 34; c. a nucleic acid sequence at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or at least 99.9% identical to SEQ ID NO: 35, SEQ ID NO: 36, or SEQ ID NO: 34; d. a nucleic acid sequence that encodes a polypeptide at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%%, at least 99.1%, at least 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8% or at least 99.9% identical to SEQ ID NO: 8, SEQ ID NO: 12, or SEQ ID NO: 16; or e. a nucleic acid sequence that hybridizes under stringent conditions to SEQ ID NO: 35, SEQ ID NO: 36, or SEQ ID NO: 34.
4. An isolated or recombinant polypeptide comprising or consisting of: a. SEQ ID NO: 30, SEQ ID NO: 31, or SEQ ID NO: 29; or b. a polypeptide sequence at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%%, at least 99.1%, at least 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8% or at least 99.9% identical to SEQ ID NO: 30, SEQ ID NO: 31, or SEQ ID NO: 29.
5. An isolated or recombinant polynucleotide comprising or consisting of: a. SEQ ID NO: 27, SEQ ID NO: 28, or SEQ ID NO: 26; b. a nucleotide sequence that is a degenerate variant of SEQ ID NO: 27, SEQ ID NO: 28, or SEQ ID NO: 26; c. an nucleotide sequence at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or at least 99.9% identical to SEQ ID NO: 27, SEQ ID NO: 28, or SEQ ID NO: 26; d. a nucleic acid sequence that encodes a polypeptide having the amino acid sequence of SEQ ID NO: 30, SEQ ID NO: 31, or SEQ ID NO: 29; e. a nucleic acid sequence that encodes a polypeptide at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%%, at least 99.1%, at least 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8% or at least 99.9% identical to SEQ ID NO: 30, SEQ ID NO: 31, or SEQ ID NO: 29; or f. a nucleic acid sequence that hybridizes under stringent conditions to a nucleic acid sequence that encodes a polypeptide having the amino acid sequence of SEQ ID NO: 27, SEQ ID NO: 28, or SEQ ID NO: 26.
6. The isolated or recombinant polynucleotide of claim 3 or claim 5, wherein the nucleic acid sequence is operably linked to one or more expression control sequences.
7. A vector comprising the isolated or recombinant polynucleotide of claim 3 or claim 5.
8. A fusion protein comprising the polypeptide of claim 2 or claim 4 fused to a heterologous amino acid sequence.
9. A host cell comprising the isolated or recombinant polynucleotide of claim 3 or claim 5.
10. The host cell of claim 9, wherein the host cell is selected from the group consisting of prokaryotes, eukaryotes, yeasts, filamentous fungi, protozoa, algae and synthetic cells.
11. The host cell of claim 9, wherein the host cell is a photoautotroph.
12. The host cell of claim 9, wherein the host cell is E. coli.
13. The host cell of claims 9 wherein the host cell produces carbon-based products of interest.
14. An isolated antibody or antigen-binding fragment or derivative thereof which binds selectively to the polypeptide of claim 3 or claim 5.
15. A method for producing a carbon-based product of interest comprising: a. culturing a host cell to produce the carbon-based product of interest, wherein said host cell comprises an engineered chimeric alkene synthase comprising a heterologous acyl binding pocket; and b. isolating the carbon-based product of interest.
16. The method of claim 15, wherein the chimeric alkene synthase is derived from NonA.
17. The method of claim 16, wherein said NonA comprises SEQ ID NO: 2.
18. The method of claim 16, wherein said NonA comprises SEQ ID NO: 24.
19. The method of claim 15, wherein the heterologous acyl binding pocket comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 8, SEQ ID NO: 12, and SEQ ID NO: 16.
20. The method of claim 15, wherein said chimeric alkene synthase selectively synthesizes one or more alkenes with specific chain lengths.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to earlier filed U.S. Ser. No. 13/370,654, filed Feb. 10, 2012 (pending), and U.S. Provisional Patent Application No. 61/441,619, filed Feb. 10, 2011, each of which is herein incorporated by reference.
SEQUENCE LISTING
[0002] The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Feb. 10, 2012, is named 20073US.txt and is 368,275 bytes in size.
BACKGROUND OF THE INVENTION
[0003] Unsaturated linear hydrocarbons such as α-olefins or 1-alkenes are an industrially important group of molecules which can serve as feedstocks for producing various materials such as detergents, fuels, pharmaceutical products, plastics, synthetic rubbers and viscosity additives. Olefins or alkenes are unsaturated hydrocarbons whose molecules contain one or more pairs of carbon atoms linked together by a double bond.
[0004] Shorter alkene products are desirable in industry because of their usefulness as surfactants and lubricants. Because 1-alkenes are hydrocarbons, they can also serve as fuels. In this context, 1-alkenes with shorter carbon chain lengths are also preferred because they have lower melting points (FIG. 1). Thus, a need exists for improved methods and compositions for synthesizing 1-alkenes of desired chain lengths.
SUMMARY OF THE INVENTION
[0005] The invention described herein relates to compositions and methods for synthesizing 1-alkenes with defined chain lengths. In one embodiment, the disclosure provides alkene synthases that are modified such that the resulting chain length of the primary alkene product is different than the primary product produced by the unmodified or native alkene synthase. For example, an alkene synthase that produces primarily nonadecene can be modified to produce primarily shorter alkenes, e.g., heptadecene, tridecene, pentadecene, etc.
[0006] The present disclosure provides an isolated or recombinant NonA alkene synthase comprising a heterologous acyl binding pocket. In one embodiment, the heterologous acyl binding pocket comprises a polypeptide sequence of SEQ ID NO: 8. In another embodiment, the heterologous acyl binding pocket comprises a polypeptide sequence of SEQ ID NO: 12. In still another embodiment, the heterologous acyl binding pocket comprises a polypeptide sequence of SEQ ID NO: 16. In further embodiments, the heterologous acyl binding pocket comprises a polypeptide sequence at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%%, at least 99.1%, at least 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8% or at least 99.9% identical to SEQ ID NO: 8, SEQ ID NO: 12, or SEQ ID NO: 16.
[0007] The present disclosure also provides an isolated or recombinant polynucleotide encoding a heterologous acyl binding pocket. In one aspect, the nucleotide sequence encoding the heterologous acyl binding pocket comprises SEQ ID NO: 35. In another aspect, the nucleotide sequence encoding the heterologous acyl binding pocket comprises SEQ ID NO: 36. In yet another aspect, the nucleotide sequence encoding the heterologous acyl binding pocket comprises SEQ ID NO: 34. In one embodiment, the nucleotide sequence encoding the heterologous acyl binding pocket comprises a nucleotide sequence that is a degenerate variant of SEQ ID NO: 35, SEQ ID NO: 36, or SEQ ID NO: 34. In another embodiment, the nucleotide sequence encoding the heterologous acyl binding pocket comprises a nucleotide sequence that is at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or at least 99.9% identical to SEQ ID NO: 35, SEQ ID NO: 36, or SEQ ID NO: 34. In yet another embodiment, the nucleotide sequence encoding the heterologous acyl binding pocket comprises a nucleotide sequence that encodes a polypeptide at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%%, at least 99.1%, at least 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8% or at least 99.9% identical to SEQ ID NO: 8, SEQ ID NO: 12, or SEQ ID NO: 16. In still another embodiment, the nucleotide sequence encoding the heterologous acyl binding pocket comprises a nucleotide sequence that hybridizes under stringent conditions to SEQ ID NO: 35, SEQ ID NO: 36, or SEQ ID NO: 34.
[0008] The invention relates to an isolated or recombinant polypeptide encoding a chimeric alkene synthase comprising or consisting of an amino acid sequence SEQ ID NO: 30, SEQ ID NO: 31, or SEQ ID NO: 29. In one embodiment, the polypeptide sequence is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%%, at least 99.1%, at least 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8% or at least 99.9% identical to SEQ ID NO: 30, SEQ ID NO: 31, or SEQ ID NO: 29.
[0009] The present disclosure provides an isolated or recombinant polynucleotide encoding a chimeric alkene synthase comprising or consisting of a nucleotide sequence selected from the group consisting of SEQ ID NO: 27, SEQ ID NO: 28, and SEQ ID NO: 26. In one embodiment, the nucleotide sequence is a degenerate variant of SEQ ID NO: 27, SEQ ID NO: 28, or SEQ ID NO: 26. In another embodiment, the nucleotide sequence is at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99% or at least 99.9% identical to SEQ ID NO: 27, SEQ ID NO: 28, or SEQ ID NO: 26. In still another embodiment, the nucleotide sequence encodes a polypeptide having the amino acid sequence of SEQ ID NO: 30, SEQ ID NO: 31, or SEQ ID NO: 29. In yet another embodiment, the nucleotide sequence encodes a polypeptide at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%%, at least 99.1%, at least 99.2%, at least 99.3%, at least 99.4%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8% or at least 99.9% identical to SEQ ID NO: 30, SEQ ID NO: 31, or SEQ ID NO: 29. In one aspect, the nucleotide sequence hybridizes under stringent conditions to a nucleic acid sequence that encodes a polypeptide having the amino acid sequence of SEQ ID NO: 27, SEQ ID NO: 28, or SEQ ID NO: 26.
[0010] In one aspect, the isolated polynucleotide of the invention is operably linked to one or more expression control sequences. In another aspect, a vector is provided, wherein said vector comprises an isolated polynucleotide described herein. In yet another aspect, a fusion protein comprising the isolated polypeptide is fused to a heterologous amino acid sequence is provided.
[0011] In one embodiment, the invention provides a host cell comprising one or more isolated polynucleotides described herein. In a further embodiment, the host cell is a photoautotroph. In another further embodiment, the host cell is E. coli. In another embodiment, the host cell is a prokaryote, a eukaryote, a yeast, a filamentous fungus, a protozoa, an algae, or a synthetic cell. In yet another embodiment, the host cell produces a carbon-based product of interest. Also provided is an isolated antibody or antigen-binding fragment or derivative thereof which binds selectively to an isolated polypeptide described herein.
[0012] The present disclosure also provides methods for producing carbon-based products of interest, comprising: culturing a host cell to produce the carbon-based product of interest, wherein the host cell comprises a recombinant nucleotide sequence encoding a chimeric alkene synthase comprising a heterologous acyl binding pocket; and isolating the carbon-based product of interest. In another embodiment, the chimeric alkene synthase is an engineered NonA protein. In a further embodiment, the NonA comprises SEQ ID NO: 2. In another further embodiment, the NonA comprises SEQ ID NO: 24. In still another embodiment, the heterologous acyl binding pocket comprises the amino acid sequence SEQ ID NO: 8, SEQ ID NO: 12, or SEQ ID NO: 14. In still another embodiment, the chimeric alkene synthase selectively synthesizes an alkene with a specific chain length. In a further embodiment, the synthesized alkene is a propene, a butene, a pentene, a heptene, an octene, a nonene, a decene, an undecene, a dodecane, a tridecene, a tetradecene, a pentadecene, a hexadecene, a heptadecene, an octadecene, a nonadecene, an eicosene, an uneicosene, or a doeicosene, or isomers and mixtures thereof. In yet another embodiment, the synthesized alkene is 1-tridecene, 1-pentadecene, 1, heptadecene, or 1-nonadecene.
[0013] In yet another embodiment, a method is provided for identifying a modified alkene synthase gene that selectively catalyzes the formation of a desired alkene, comprising: modifying an alkene synthase by replacing the acyl carrier binding domain with a heterologous acyl carrier binding domain; expressing the modified alkene synthase in a host cell; and screening the host cell for production of the selected alkene. Also provided is an improved alkene synthase enzyme identified by the above method.
[0014] In one aspect, a method for producing a carbon-based product of interest is provided, comprising the steps of: culturing a host cell to produce the carbon-based product of interest, wherein the host cell comprises an engineered chimeric NonA comprising a heterologous binding pocket; and isolating the carbon-based product of interest. In a further aspect, the chimeric alkene synthase selectively synthesizes one or more alkenes with specific chain lengths. In yet another further aspect, the one or more alkenes are selected from the group consisting of: propene, butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, tridecene, tetradecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uneicosene, doeicosene, and isomers and mixtures thereof. In yet another embodiment, the synthesized alkene is 1-tridecene, 1-pentadecene, 1, heptadecene, or 1-nonadecene.
[0015] In one embodiment, a method for producing a tridecene or pentadecene is provided, comprising the steps of: culturing a host cell to produce the tridecene or pentadecene, wherein the host cell comprises an engineered chimeric NonA comprising a heterologous SafB binding pocket (SEQ ID NO: 8); and isolating the tridecene or pentadecene. In another embodiment, a method for producing a heptadecene is provided, comprising the steps of: culturing a host cell to produce the heptadecene, wherein the host cell comprises an engineered chimeric NonA comprising a heterologous MycA binding pocket (SEQ ID NO: 12); and isolating the heptadecene. In still another embodiment, a method for producing a heptadecene is provided, comprising the steps of: culturing a host cell to produce the heptadecene, wherein the host cell comprises an engineered chimeric NonA comprising a heterologous DptE binding pocket (SEQ ID NO: 16); and isolating the heptadecene.
[0016] In still another embodiment, a method for producing a nonadecene or heptadecene is provided, comprising the steps of: culturing a host cell to produce the nonadecene or heptadecene, wherein the host cell comprises an engineered NonA (SEQ ID NO: 24); and isolating the nonadecene or heptadecene.
[0017] Additional information related to the invention may be found in the following Drawings and Detailed Description.
DRAWINGS
[0018] FIG. 1 provides melting and boiling points of alkenes with various chain lengths.
[0019] FIG. 2 is a representation of the domains found in the 1-alkene synthase YP--001734428 (NonA), as identified by the conserved domain (CD) searching program available on the NCBI website. Abbreviations for domains: acyl-carrier protein (ACP); phosphopantetheinyl (PP); ketosynthase (KS); acyltransferase (AT); ketoreductase (KR); sulfotransferase (ST); and thioesterase (TE). By reference to the YP--001734428 gene sequence, the domains are located at the following residues: LuxE domain: 10-557; ACP domain: 598-675; KS domain: 693-1095; AT domain: 1216-1490; KR domain: 1777-1943; ST domain: 2145-2360; TE domain: 2449-2708.
[0020] FIG. 3 illustrates the putative mechanism of 1-nonadecene biosynthesis from stearic acid, stearyl-ACP or stearyl-CoA. AT, acyltransferase; ACP, acyl-carrier protein; KS, ketosynthase; KR, ketoreductase; ST, sulfotransferase; TE, thioesterase.
[0021] FIG. 4A-B is a representation of the residues of the acyl binding domain of saframycin M×1 synthetase B complexed with an acyl-adenylate ligand. FIG. 4(A) The residues of the acyl binding pocket of the saframycin M×1 synthetase B acyl-transferase are shown surrounding the dodecanoyl-ligand (white). The end of the acyl chain of the ligand is indicated. FIG. 4(B) The residues of the binding pocket which are not strictly conserved between the four acyl binding pockets are show in black while the others are shown in grey. "*" indicates Cys324.
[0022] FIG. 5 is an amino acid alignment of acyl ligase domains of NonA (SEQ ID NO: 40), DptE (SEQ ID NO: 14), MycA (SEQ ID NO: 39), and SafB (SEQ ID NO: 6). The interior acyl binding domain (IABD) of NonA, DptE, MycA, and SafB is underlined in black.
[0023] FIG. 6A-B provides representations of the interior acyl binding pocket of the SafB acyl ligase domain. FIG. 6(A) The amino acids of the interior acyl binding pocket in the SafB acyl ligase domain are black while the rest are grey. FIG. 6(B) View of the binding pocket with all residues 5 angstroms or closer to the acyl-adenylate (white) indicated. The end of the acyl chain of the ligand is indicated.
[0024] FIG. 7 depicts a stack of GC/MS chromatograms comparing cell pellet extracts of JCC2157 and JCC308. The interval between the tick marks on the MS detector axis is 1000.
[0025] FIG. 8A-D provides mass spectra of identified 1-alkenes in cell extracts. FIG. 8 (A) The MS fragmentation spectrum of the JCC2157 1-heptadecene peak plotted above the spectrum in the NIST database. FIG. 8 (B) The MS fragmentation spectrum of the JCC2157 1-octadecene peak plotted above the spectrum in the NIST database. FIG. 8 (C) The MS fragmentation spectrum of the JCC2157 1-nonadecene peak plotted above the spectrum in the NIST database. FIG. 8 (D) The mass spectrum of the JCC2157 peak identified as 1,x-nonadecadiene (C19:2).
[0026] FIG. 9 shows the GC/MS chromatogram of the cell pellet extract of JCC2375 plotted above the chromatogram of the cell pellet extract of JCC2157. The interval between the tick marks on the MS detector axis is 2000.
[0027] FIG. 10 represents the MS fragmentation spectrum of the JCC23751-tridecene peak plotted above the spectrum in the NIST database.
DETAILED DESCRIPTION OF THE INVENTION
[0028] Unless otherwise defined herein, scientific and technical terms used in connection with the invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include the plural and plural terms shall include the singular. Generally, nomenclatures used in connection with, and techniques of, biochemistry, enzymology, molecular and cellular biology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art.
[0029] The methods and techniques are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989); Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992, and Supplements to 2002); Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1990); Taylor and Drickamer, Introduction to Glycobiology, Oxford Univ. Press (2003); Worthington Enzyme Manual, Worthington Biochemical Corp., Freehold, N.J.; Handbook of Biochemistry: Section A Proteins, Vol. I, CRC Press (1976); Handbook of Biochemistry: Section A Proteins, Vol. II, CRC Press (1976); Essentials of Glycobiology, Cold Spring Harbor Laboratory Press (1999).
[0030] All publications, patents and other references mentioned herein are hereby incorporated by reference in their entireties.
[0031] The following terms, unless otherwise indicated, shall be understood to have the following meanings:
[0032] The term "polynucleotide" or "nucleic acid molecule" refers to a polymeric form of nucleotides of at least 10 bases in length. The term includes DNA molecules (e.g., cDNA or genomic or synthetic DNA) and RNA molecules (e.g., mRNA or synthetic RNA), as well as analogs of DNA or RNA containing non-natural nucleotide analogs, non-native inter-nucleoside bonds, or both. The nucleic acid can be in any topological conformation. For instance, the nucleic acid can be single-stranded, double-stranded, triple-stranded, quadruplexed, partially double-stranded, branched, hair-pinned, circular, or in a padlocked conformation.
[0033] Unless otherwise indicated, and as an example for all sequences described herein under the general format "SEQ ID NO:", "nucleic acid comprising SEQ ID NO:1" refers to a nucleic acid, at least a portion of which has either (i) the sequence of SEQ ID NO:1, or (ii) a sequence complementary to SEQ ID NO:1. The choice between the two is dictated by the context. For instance, if the nucleic acid is used as a probe, the choice between the two is dictated by the requirement that the probe be complementary to the desired target.
[0034] An "isolated" RNA, DNA or a mixed polymer is one which is substantially separated from other cellular components that naturally accompany the native polynucleotide in its natural host cell, e.g., ribosomes, polymerases and genomic sequences with which it is naturally associated.
[0035] As used herein, an "isolated" organic molecule (e.g., an alkane, alkene, or alkanal) is one which is substantially separated from the cellular components (membrane lipids, chromosomes, proteins) of the host cell from which it originated, or from the medium in which the host cell was cultured. The term does not require that the biomolecule has been separated from all other chemicals, although certain isolated biomolecules may be purified to near homogeneity.
[0036] The term "recombinant" refers to a biomolecule, e.g., a gene or protein, that (1) has been removed from its naturally occurring environment, (2) is not associated with all or a portion of a polynucleotide in which the gene is found in nature, (3) is operatively linked to a polynucleotide which it is not linked to in nature, or (4) does not occur in nature. The term "recombinant" can be used in reference to cloned DNA isolates, chemically synthesized polynucleotide analogs, or polynucleotide analogs that are biologically synthesized by heterologous systems, as well as proteins and/or mRNAs encoded by such nucleic acids.
[0037] As used herein, an endogenous nucleic acid sequence in the genome of an organism (or the encoded protein product of that sequence) is deemed "recombinant" herein if a heterologous sequence is placed adjacent to the endogenous nucleic acid sequence, such that the expression of this endogenous nucleic acid sequence is altered. In this context, a heterologous sequence is a sequence that is not naturally adjacent to the endogenous nucleic acid sequence, whether or not the heterologous sequence is itself endogenous (originating from the same host cell or progeny thereof) or exogenous (originating from a different host cell or progeny thereof). By way of example, a promoter sequence can be substituted (e.g., by homologous recombination) for the native promoter of a gene in the genome of a host cell, such that this gene has an altered expression pattern. This gene would now become "recombinant" because it is separated from at least some of the sequences that naturally flank it.
[0038] A nucleic acid is also considered "recombinant" if it contains any modifications that do not naturally occur to the corresponding nucleic acid in a genome. For instance, an endogenous coding sequence is considered "recombinant" if it contains an insertion, deletion or a point mutation introduced artificially, e.g., by human intervention. A "recombinant nucleic acid" also includes a nucleic acid integrated into a host cell chromosome at a heterologous site and a nucleic acid construct present as an episome.
[0039] As used herein, the phrase "degenerate variant" of a reference nucleic acid sequence encompasses nucleic acid sequences that can be translated, according to the standard genetic code, to provide an amino acid sequence identical to that translated from the reference nucleic acid sequence. The term "degenerate oligonucleotide" or "degenerate primer" is used to signify an oligonucleotide capable of hybridizing with target nucleic acid sequences that are not necessarily identical in sequence but that are homologous to one another within one or more particular segments.
[0040] The term "percent sequence identity" or "identical" in the context of nucleic acid sequences refers to the residues in the two sequences which are the same when aligned for maximum correspondence. The length of sequence identity comparison may be over a stretch of at least about nine nucleotides, usually at least about 20 nucleotides, more usually at least about 24 nucleotides, typically at least about 28 nucleotides, more typically at least about 32 nucleotides, and preferably at least about 36 or more nucleotides. There are a number of different algorithms known in the art which can be used to measure nucleotide sequence identity. For instance, polynucleotide sequences can be compared using FASTA, Gap or Bestfit, which are programs in Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wis. FASTA provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences. Pearson, Methods Enzymol. 183:63-98 (1990) (hereby incorporated by reference in its entirety). For instance, percent sequence identity between nucleic acid sequences can be determined using FASTA with its default parameters (a word size of 6 and the NOPAM factor for the scoring matrix) or using Gap with its default parameters as provided in GCG Version 6.1, herein incorporated by reference. Alternatively, sequences can be compared using the computer program, BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990); Gish and States, Nature Genet. 3:266-272 (1993); Madden et al., Meth. Enzymol. 266:131-141 (1996); Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997); Zhang and Madden, Genome Res. 7:649-656 (1997)), especially blastp or tblastn (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)).
[0041] A particular, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is that of Karlin and Altschul (Proc. Natl. Acad. Sci. (1990) USA 87:2264-68; Proc. Natl. Acad. Sci. USA (1993) 90: 5873-77) as used in the NBLAST and XBLAST programs (version 2.0) of Altschul et al. (J. Mol. Biol. (1990) 215:403-10). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to nucleic acid molecules of the invention. BLAST polypeptide searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to polypeptide molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (Nucleic Acids Research (1997) 25(17):3389-3402). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used (http://www.ncbi.nlm.nih.gov). One skilled in the art may also use the ALIGN program incorporating the non-linear algorithm of Myers and Miller (Comput. Appl. Biosci. (1988) 4:11-17). For amino acid sequence comparison using the ALIGN program one skilled in the art may use a PAM 120 weight residue table, a gap length penalty of 12, and a gap penalty of 4.
[0042] The term "substantial homology" or "substantial similarity," when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, preferably at least about 90%, and more preferably at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or Gap, as discussed above.
[0043] Alternatively, substantial homology or similarity exists when a nucleic acid or fragment thereof hybridizes to another nucleic acid, to a strand of another nucleic acid, or to the complementary strand thereof, under stringent hybridization conditions. "Stringent hybridization conditions" and "stringent wash conditions" in the context of nucleic acid hybridization experiments depend upon a number of different physical parameters. Nucleic acid hybridization will be affected by such conditions as salt concentration, temperature, solvents, the base composition of the hybridizing species, length of the complementary regions, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art. One having ordinary skill in the art knows how to vary these parameters to achieve a particular stringency of hybridization.
[0044] In general, "stringent hybridization" is performed at about 25° C. below the thermal melting point (Tm) for the specific DNA hybrid under a particular set of conditions. "Stringent washing" is performed at temperatures about 5° C. lower than the Tm for the specific DNA hybrid under a particular set of conditions. The Tm is the temperature at which 50% of the target sequence hybridizes to a perfectly matched probe. See Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), page 9.51, hereby incorporated by reference. For purposes herein, "stringent conditions" are defined for solution phase hybridization as aqueous hybridization (i.e., free of formamide) in 6×SSC (where 20×SSC contains 3.0 M NaCl and 0.3 M sodium citrate), 1% SDS at 65° C. for 8-12 hours, followed by two washes in 0.2×SSC, 0.1% SDS at 65° C. for 20 minutes. It will be appreciated by the skilled worker that hybridization at 65° C. will occur at different rates depending on a number of factors including the length and percent identity of the sequences which are hybridizing.
[0045] A preferred, non-limiting example of stringent hybridization conditions includes hybridization in 4× sodium chloride/sodium citrate (SSC), at about 65-70° C. (or hybridization in 4×SSC plus 50% formamide at about 42-50° C.) followed by one or more washes in 1×SSC, at about 65-70° C. A preferred, non-limiting example of highly stringent hybridization conditions includes hybridization in 1×SSC, at about 65-70° C. (or hybridization in 1×SSC plus 50% formamide at about 42-50° C.) followed by one or more washes in 0.3×SSC, at about 65-70° C. A preferred, non-limiting example of reduced stringency hybridization conditions includes hybridization in 4×SSC, at about 50-60° C. (or alternatively hybridization in 6×SSC plus 50% formamide at about 40-45° C.) followed by one or more washes in 2×SSC, at about 50-60° C. Intermediate ranges e.g., at 65-70° C. or at 42-50° C. are also within the scope of the invention. SSPE (1×SSPE is 0.15 M NaCl, 10 mM NaH2PO4, and 1.25 mM EDTA, pH 7.4) can be substituted for SSC (1×SSC is 0.15 M NaCl and 15 mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes each after hybridization is complete. The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10° C. less than the melting temperature (Tm) of the hybrid, where Tm is determined according to the following equations. For hybrids less than 18 base pairs in length, Tm (° C.)=2(# of A+T bases)+4(# of G+C bases). For hybrids between 18 and 49 base pairs in length, Tm(° C.)=81.5+16.6(log10[Na.sup.+])+0.41 (% G+C)-(600/N), where N is the number of bases in the hybrid, and [Na.sup.+] is the concentration of sodium ions in the hybridization buffer ([Na.sup.+] for 1×SSC=0.165 M).
[0046] The skilled practitioner recognizes that reagents can be added to hybridization and/or wash buffers. For example, to decrease non-specific hybridization of nucleic acid molecules to, for example, nitrocellulose or nylon membranes, blocking agents, including but not limited to, BSA or salmon or herring sperm carrier DNA and/or detergents, including but not limited to, SDS, chelating agents EDTA, Ficoll, PVP and the like can be used. When using nylon membranes, in particular, an additional, non-limiting example of stringent hybridization conditions is hybridization in 0.25-0.5M NaH2PO4, 7% SDS at about 65° C., followed by one or more washes at 0.02M NaH2PO4, 1% SDS at 65° C. (Church and Gilbert (1984) Proc. Natl. Acad. Sci. USA 81:1991-1995,) or, alternatively, 0.2×SSC, 1% SDS.
[0047] The nucleic acids (also referred to as polynucleotides) may include both sense and antisense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of the above. They may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), pendent moieties (e.g., polypeptides), intercalators (e.g., acridine, psoralen, etc.), chelators, alkylators, and modified linkages (e.g., alpha anomeric nucleic acids, etc.) Also included are synthetic molecules that mimic polynucleotides in their ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules are known in the art and include, for example, those in which peptide linkages substitute for phosphate linkages in the backbone of the molecule. Other modifications can include, for example, analogs in which the ribose ring contains a bridging moiety or other structure such as the modifications found in "locked" nucleic acids.
[0048] The term "mutated" when applied to nucleic acid sequences means that nucleotides in a nucleic acid sequence may be inserted, deleted or changed compared to a reference nucleic acid sequence. A single alteration may be made at a locus (a point mutation) or multiple nucleotides may be inserted, deleted or changed at a single locus. In addition, one or more alterations may be made at any number of loci within a nucleic acid sequence. A nucleic acid sequence may be mutated by any method known in the art including but not limited to mutagenesis techniques such as "error-prone PCR" (a process for performing PCR under conditions where the copying fidelity of the DNA polymerase is low, such that a high rate of point mutations is obtained along the entire length of the PCR product; see, e.g., Leung et al., Technique, 1:11-15 (1989) and Caldwell and Joyce, PCR Methods Applic. 2:28-33 (1992)); and "oligonucleotide-directed mutagenesis" (a process which enables the generation of site-specific mutations in any cloned DNA segment of interest; see, e.g., Reidhaar-Olson and Sauer, Science 241:53-57 (1988)).
[0049] The term "attenuate" as used herein generally refers to a functional deletion, including a mutation, partial or complete deletion, insertion, or other variation made to a gene sequence or a sequence controlling the transcription of a gene sequence, which reduces or inhibits production of the gene product, or renders the gene product non-functional. In some instances a functional deletion is described as a knockout mutation. Attenuation also includes amino acid sequence changes by altering the nucleic acid sequence, placing the gene under the control of a less active promoter, down-regulation, expressing interfering RNA, ribozymes or antisense sequences that target the gene of interest, or through any other technique known in the art. In one example, the sensitivity of a particular enzyme to feedback inhibition or inhibition caused by a composition that is not a product or a reactant (non-pathway specific feedback) is lessened such that the enzyme activity is not impacted by the presence of a compound. In other instances, an enzyme that has been altered to be less active can be referred to as attenuated.
[0050] A "deletion" is the removal of one or more nucleotides from a nucleic acid molecule or one or more amino acids from a protein, the regions on either side being joined together.
[0051] A "knock-out" is a gene whose level of expression or activity has been reduced to zero. In some examples, a gene is knocked-out via deletion of some or all of its coding sequence. In other examples, a gene is knocked-out via introduction of one or more nucleotides into its open-reading frame, which results in translation of a non-sense or otherwise non-functional protein product.
[0052] The term "vector" as used herein is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid," which refers to a circular double stranded DNA loop into which additional DNA segments may be ligated. Other vectors include cosmids, bacterial artificial chromosomes (BAC) and yeast artificial chromosomes (YAC), fosmids, phage and phagemids. Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome (discussed in more detail below). Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., vectors having an origin of replication which functions in the host cell). Other vectors can be integrated into the genome of a host cell upon introduction into the host cell, and are thereby replicated along with the host genome. Moreover, certain preferred vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply "expression vectors").
[0053] "Operatively linked" or "operably linked" expression control sequences refers to a linkage in which the expression control sequence is contiguous with the gene of interest to control the gene of interest, as well as expression control sequences that act in trans or at a distance to control the gene of interest.
[0054] The term "expression control sequence" as used herein refers to polynucleotide sequences which are necessary to affect the expression of coding sequences to which they are operatively linked. Expression control sequences are sequences which control the transcription, post-transcriptional events and translation of nucleic acid sequences. Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (e.g., ribosome binding sites); sequences that enhance protein stability; and when desired, sequences that enhance protein secretion. The nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence. The term "control sequences" is intended to include, at a minimum, all components whose presence is essential for expression, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.
[0055] The term "recombinant host cell" (or simply "host cell"), as used herein, is intended to refer to a cell into which a recombinant vector has been introduced. It should be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein. A recombinant host cell may be an isolated cell or cell line grown in culture or may be a cell which resides in a living tissue or organism.
[0056] The term "peptide" as used herein refers to a short polypeptide, e.g., one that is typically less than about 50 amino acids long and more typically less than about 30 amino acids long. The term as used herein encompasses analogs and mimetics that mimic structural and thus biological function.
[0057] The term "polypeptide" encompasses both naturally-occurring and non-naturally-occurring proteins, and fragments, mutants, derivatives and analogs thereof. A polypeptide may be monomeric or polymeric. Further, a polypeptide may comprise a number of different domains each of which has one or more distinct activities.
[0058] The term "isolated protein" or "isolated polypeptide" is a protein or polypeptide that by virtue of its origin or source of derivation (1) is not associated with naturally associated components that accompany it in its native state, (2) exists in a purity not found in nature, where purity can be adjudged with respect to the presence of other cellular material (e.g., is free of other proteins from the same species) (3) is expressed by a cell from a different species, or (4) does not occur in nature (e.g., it is a fragment of a polypeptide found in nature or it includes amino acid analogs or derivatives not found in nature or linkages other than standard peptide bonds). Thus, a polypeptide that is chemically synthesized or synthesized in a cellular system different from the cell from which it naturally originates will be "isolated" from its naturally associated components. A polypeptide or protein may also be rendered substantially free of naturally associated components by isolation, using protein purification techniques well known in the art. As thus defined, "isolated" does not necessarily require that the protein, polypeptide, peptide or oligopeptide so described has been physically removed from its native environment.
[0059] An isolated or purified polypeptide is substantially free of cellular material or other contaminating polypeptides from the expression host cell from which the polypeptide is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. In one embodiment, an isolated or purified polypeptide has less than about 30% (by dry weight) of contaminating polypeptide or chemicals, more advantageously less than about 20% of contaminating polypeptide or chemicals, still more advantageously less than about 10% of contaminating polypeptide or chemicals, and most advantageously less than about 5% contaminating polypeptide or chemicals.
[0060] The term "polypeptide fragment" as used herein refers to a polypeptide that has a deletion, e.g., an amino-terminal and/or carboxy-terminal deletion compared to a full-length polypeptide. In a preferred embodiment, the polypeptide fragment is a contiguous sequence in which the amino acid sequence of the fragment is identical to the corresponding positions in the naturally-occurring sequence. Fragments typically are at least 5, 6, 7, 8, 9 or 10 amino acids long, preferably at least 12, 14, 16 or 18 amino acids long, more preferably at least 20 amino acids long, more preferably at least 25, 30, 35, 40 or 45, amino acids, even more preferably at least 50 or 60 amino acids long, and even more preferably at least 70 amino acids long.
[0061] A "modified derivative" refers to polypeptides or fragments thereof that are substantially homologous in primary structural sequence but which include, e.g., in vivo or in vitro chemical and biochemical modifications or which incorporate amino acids that are not found in the native polypeptide. Such modifications include, for example, acetylation, carboxylation, phosphorylation, glycosylation, ubiquitination, labeling, e.g., with radionuclides, and various enzymatic modifications, as will be readily appreciated by those skilled in the art. A variety of methods for labeling polypeptides and of substituents or labels useful for such purposes are well known in the art, and include radioactive isotopes such as 125I, 32P, 35S, and 3H, ligands which bind to labeled antiligands (e.g., antibodies), fluorophores, chemiluminescent agents, enzymes, and antiligands which can serve as specific binding pair members for a labeled ligand. The choice of label depends on the sensitivity required, ease of conjugation with the primer, stability requirements, and available instrumentation. Methods for labeling polypeptides are well known in the art. See, e.g., Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992, and Supplements to 2002) (hereby incorporated by reference).
[0062] The terms "thermal stability" and "thermostability" are used interchangeably and refer to the ability of an enzyme (e.g., whether expressed in a cell, present in an cellular extract, cell lysate, or in purified or partially purified form) to exhibit the ability to catalyze a reaction at least at about 20° C., preferably at about 25° C. to 35° C., more preferably at about 37° C. or higher, in more preferably at about 50° C. or higher, and even more preferably at least about 60° C. or higher.
[0063] The term "fusion protein" refers to a polypeptide comprising a polypeptide or fragment coupled to heterologous amino acid sequences. Fusion proteins are useful because they can be constructed to contain two or more desired functional elements from two or more different proteins. A fusion protein comprises at least 10 contiguous amino acids from a polypeptide of interest, more preferably at least 20 or 30 amino acids, even more preferably at least 40, 50 or 60 amino acids, yet more preferably at least 75, 100 or 125 amino acids. Fusions that include the entirety of the proteins have particular utility. The heterologous polypeptide included within the fusion protein is at least 6 amino acids in length, often at least 8 amino acids in length, and usefully at least 15, 20, and 25 amino acids in length. Fusions that include larger polypeptides, such as an IgG Fc region, and even entire proteins, such as the green fluorescent protein ("GFP") chromophore-containing proteins, have particular utility. Fusion proteins can be produced recombinantly by constructing a nucleic acid sequence which encodes the polypeptide or a fragment thereof in frame with a nucleic acid sequence encoding a different protein or peptide and then expressing the fusion protein. Alternatively, a fusion protein can be produced chemically by crosslinking the polypeptide or a fragment thereof to another protein.
[0064] As used herein, the term "antibody" refers to a polypeptide, at least a portion of which is encoded by at least one immunoglobulin gene, or fragment thereof, and that can bind specifically to a desired target molecule. The term includes naturally-occurring forms, as well as fragments and derivatives.
[0065] Fragments within the scope of the term "antibody" include those produced by digestion with various proteases, those produced by chemical cleavage and/or chemical dissociation and those produced recombinantly, so long as the fragment remains capable of specific binding to a target molecule. Among such fragments are Fab, Fab', Fv, F(ab')2, and single chain Fv (scFv) fragments.
[0066] Derivatives within the scope of the term include antibodies (or fragments thereof) that have been modified in sequence, but remain capable of specific binding to a target molecule, including: interspecies chimeric and humanized antibodies; antibody fusions; heteromeric antibody complexes and antibody fusions, such as diabodies (bispecific antibodies), single-chain diabodies, and intrabodies (see, e.g., Intracellular Antibodies: Research and Disease Applications (1998) Marasco, ed., Springer-Verlag New York, Inc.), the disclosure of which is incorporated herein by reference in its entirety).
[0067] As used herein, antibodies can be produced by any known technique, including harvest from cell culture of native B lymphocytes, harvest from culture of hybridomas, recombinant expression systems and phage display.
[0068] The term "non-peptide analog" refers to a compound with properties that are analogous to those of a reference polypeptide. A non-peptide compound may also be termed a "peptide mimetic" or a "peptidomimetic." See, e.g., Jones, Amino Acid and Peptide Synthesis, Oxford University Press (1992); Jung, Combinatorial Peptide and Nonpeptide Libraries: A Handbook, John Wiley (1997); Bodanszky et al., Peptide Chemistry--A Practical Textbook, Springer Verlag (1993); Synthetic Peptides: A Users Guide, (Grant, ed., W. H. Freeman and Co., 1992); Evans et al., J. Med. Chem. 30:1229 (1987); Fauchere, J. Adv. Drug Res. 15:29 (1986); Veber and Freidinger, Trends Neurosci., 8:392-396 (1985); and references sited in each of the above, which are incorporated herein by reference. Such compounds are often developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to useful peptides may be used to produce an equivalent effect and are therefore envisioned to be part of the invention.
[0069] A "polypeptide mutant" or "mutein" refers to a polypeptide whose sequence contains an insertion, duplication, deletion, rearrangement or substitution of one or more amino acids compared to the amino acid sequence of a native or wild-type protein. A mutein may have one or more amino acid point substitutions, in which a single amino acid at a position has been changed to another amino acid, one or more insertions and/or deletions, in which one or more amino acids are inserted or deleted, respectively, in the sequence of the naturally-occurring protein, and/or truncations of the amino acid sequence at either or both the amino or carboxy termini. A mutein may have the same but preferably has a different biological activity compared to the naturally-occurring protein.
[0070] A mutein has at least 85% overall sequence homology to its wild-type counterpart. Even more preferred are muteins having at least 90% overall sequence homology to the wild-type protein.
[0071] In an even more preferred embodiment, a mutein exhibits at least 95% sequence identity, even more preferably 98%, even more preferably 99% and even more preferably 99.9% overall sequence identity.
[0072] Sequence homology may be measured by any common sequence analysis algorithm, such as Gap or Bestfit.
[0073] Amino acid substitutions can include those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter binding affinity or enzymatic activity, and (5) confer or modify other physicochemical or functional properties of such analogs.
[0074] As used herein, the twenty conventional amino acids and their abbreviations follow conventional usage. See Immunology--A Synthesis (Golub and Gren eds., Sinauer Associates, Sunderland, Mass., 2nd ed. 1991), which is incorporated herein by reference. Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as α-, α-disubstituted amino acids, N-alkyl amino acids, and other unconventional amino acids may also be suitable components for polypeptides. Examples of unconventional amino acids include: 4-hydroxyproline, γ-carboxyglutamate, ε-N,N,N-trimethyllysine, ε-N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the left-hand end corresponds to the amino terminal end and the right-hand end corresponds to the carboxy-terminal end, in accordance with standard usage and convention.
[0075] A protein has "homology" or is "homologous" to a second protein if the nucleic acid sequence that encodes the protein has a similar sequence to the nucleic acid sequence that encodes the second protein. Alternatively, a protein has homology to a second protein if the two proteins have "similar" amino acid sequences. (Thus, the term "homologous proteins" is defined to mean that the two proteins have similar amino acid sequences.) As used herein, homology between two regions of amino acid sequence (especially with respect to predicted structural similarities) is interpreted as implying similarity in function.
[0076] When "homologous" is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions. A "conservative amino acid substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent sequence identity or degree of homology may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. See, e.g., Pearson, 1994, Methods Mol. Biol. 24:307-331 and 25:365-389 (herein incorporated by reference).
[0077] The following six groups each contain amino acids that are conservative substitutions for one another: 1) Serine (S), Threonine (T); 2) Aspartic Acid (D), Glutamic Acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Alanine (A), Valine (V), and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).
[0078] Sequence homology for polypeptides, which is also referred to as percent sequence identity, is typically measured using sequence analysis software. See, e.g., the Sequence Analysis Software Package of the Genetics Computer Group (GCG), University of Wisconsin Biotechnology Center, 910 University Avenue, Madison, Wis. 53705. Protein analysis software matches similar sequences using a measure of homology assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG contains programs such as "Gap" and "Bestfit" which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild-type protein and a mutein thereof. See, e.g., GCG Version 6.1.
[0079] A preferred algorithm when comparing a particular polypeptide sequence to a database containing a large number of sequences from different organisms is the computer program BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990); Gish and States, Nature Genet. 3:266-272 (1993); Madden et al., Meth. Enzymol. 266:131-141 (1996); Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997); Zhang and Madden, Genome Res. 7:649-656 (1997)), especially blastp or tblastn (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)).
[0080] Preferred parameters for BLASTp are: Expectation value: 10 (default); Filter: seg (default); Cost to open a gap: 11 (default); Cost to extend a gap: 1 (default); Max. alignments: 100 (default); Word size: 11 (default); No. of descriptions: 100 (default); Penalty Matrix: BLOWSUM62.
[0081] The length of polypeptide sequences compared for homology will generally be at least about 16 amino acid residues, usually at least about 20 residues, more usually at least about 24 residues, typically at least about 28 residues, and preferably more than about 35 residues. When searching a database containing sequences from a large number of different organisms, it is preferable to compare amino acid sequences. Database searching using amino acid sequences can be measured by algorithms other than blastp known in the art. For instance, polypeptide sequences can be compared using FASTA, a program in GCG Version 6.1. FASTA provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences. (Pearson, Methods Enzymol. 183:63-98 (1990) (herein incorporated by reference). For example, percent sequence identity between amino acid sequences can be determined using FASTA with its default parameters (a word size of 2 and the PAM250 scoring matrix), as provided in GCG Version 6.1, herein incorporated by reference.
[0082] "Specific binding" refers to the ability of two molecules to bind to each other in preference to binding to other molecules in the environment. Typically, "specific binding" discriminates over adventitious binding in a reaction by at least two-fold, more typically by at least 10-fold, often at least 100-fold. Typically, the affinity or avidity of a specific binding reaction, as quantified by a dissociation constant, is about 10-7 M or stronger (e.g., about 10-8 M, 10-9 M or even stronger).
[0083] "Percent dry cell weight" refers to a measurement of hydrocarbon production obtained as follows: a defined volume of culture is centrifuged to pellet the cells. Cells are washed then dewetted by at least one cycle of microcentrifugation and aspiration. Cell pellets are lyophilized overnight, and the tube containing the dry cell mass is weighed again such that the mass of the cell pellet can be calculated within ±0.1 mg. At the same time cells are processed for dry cell weight determination, a second sample of the culture in question is harvested, washed, and dewetted. The resulting cell pellet, corresponding to 1-3 mg of dry cell weight, is then extracted by vortexing in approximately 1 ml acetone plus butylated hydroxytolune (BHT) as antioxidant and an internal standard, e.g., n-heptacosane. Cell debris is then pelleted by centrifugation and the supernatant (extractant) is taken for analysis by GC. For accurate quantitation of 1-alkene, flame ionization detection (FID) was used as opposed to MS total ion count. 1-alkene concentrations in the biological extracts were calculated using calibration relationships between GC-FID peak area and known concentrations of authentic 1-alkene standards. Knowing the volume of the extractant, the resulting concentrations of the 1-alkenespecies in the extracant, and the dry cell weight of the cell pellet extracted, the percentage of dry cell weight that comprised 1-alkene can be determined.
[0084] The term "region" as used herein refers to a physically contiguous portion of the primary structure of a biomolecule. In the case of proteins, a region is defined by a contiguous portion of the amino acid sequence of that protein.
[0085] The term "domain" as used herein refers to a structure of a biomolecule that contributes to a known or suspected function of the biomolecule. Domains may be co-extensive with regions or portions thereof; domains may also include distinct, non-contiguous regions of a biomolecule. Examples of protein domains include, but are not limited to, an Ig domain, an extracellular domain, a transmembrane domain, and a cytoplasmic domain.
[0086] As used herein, the term "molecule" means any compound, including, but not limited to, a small molecule, peptide, protein, sugar, nucleotide, nucleic acid, lipid, etc., and such a compound can be natural or synthetic.
[0087] The term "substrate affinity" as used herein refers to the binding kinetics, Km, the Michaelis-Menten constant as understood by one having skill in the art, for a substrate. Various chimeric alkene synthases can have a higher substrate affinity for alkenes of a certain chain length, making them selective for these alkenes.
[0088] The term "carbon source" as used herein refers to inorganic carbon, exogenous sugar or biomass.
[0089] Inorganic carbon is carbon provided in a molecule that cannot itself be metabolized for energy by an organism, such as CO2, carbonic acid, and carbonate. Sources of inorganic carbon include CO2, air, carbonic acid, carbonate salts, and emissions such as flue gas.
[0090] Carbon dioxide (which, along with carbonic acid, bicarbonate and/or carbonate define the term "inorganic carbon") is converted in the photosynthetic process to organic compounds. The inorganic carbon source includes any way of delivering inorganic carbon, optionally in admixture with any other combination of compounds which do not serve as the primary carbon feedstock, but only as a mixture or carrier (for example, emissions from biofuel (e.g., ethanol) plants, power plants, petroleum-based refineries, as well as atmospheric and subterranean sources).
[0091] A reduced or organic carbon source is a carbon based molecule that can be metabolized by an organism for energy such as, for example, a carbohydrate (including a sugar or polysaccharide), amino acid, protein, organic acid, fatty acid, lipid, acetyl CoA, or any biosynthetic precursor of any of these biomolecules.
[0092] "Carbon-based products of interest" include alkenes such as propene, butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, tridecene, tetradecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uneicosene, doeicosene, and isomers and mixtures thereof.
[0093] A "biofuel" as used herein is any fuel that derives from a biological source. Biofuel refers to one or more hydrocarbons (e.g., 1-nonadecene), one or more alcohols, one or more fatty esters or a mixture thereof. Preferably, liquid hydrocarbons are used.
[0094] As used herein, the term "hydrocarbon" generally refers to a chemical compound that consists of the elements carbon (C), hydrogen (H) and optionally oxygen (O). There are essentially three types of hydrocarbons, e.g., aromatic hydrocarbons, saturated hydrocarbons and unsaturated hydrocarbons such as alkenes, alkynes, and dienes. The term also includes fuels, biofuels, plastics, waxes, solvents and oils. Hydrocarbons encompass biofuels, as well as plastics, waxes, solvents and oils.
[0095] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Exemplary methods and materials are described below, although methods and materials similar or equivalent to those described herein can also be used and will be apparent to those of skill in the art. All publications and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. The materials, methods, and examples are illustrative only and not intended to be limiting.
[0096] Throughout this specification and claims, the word "comprise" or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
Nucleic Acid Sequences
[0097] Cyanobacteria are known to be producers of hydrocarbons (Lin et al. (1996) Bioch. Biophy. Res. Comm., 228: 764-773; Chang et al., (2004) J. Nat. Prod. 67: 1356-1367). WO/2011/005548, herein incorporated by reference, describes genes responsible for the production of 1-alkenes in Synechococcus sp. PCC 7002. Other long chain hydrocarbons are known to be produced in related, but distinct, microorganisms, e.g., Synechococcus sp. PCC 7942 (produces heptadecane), Synechocystis sp. PCC 6803 (reported to produce heptadecane), Nostoc sp. PCC 7120 (produces heptadecane), Thermosynechococcus sp. BP-1 (produces heptadecane) and Cyanothece sp. ATCC 51142 (produces pentadecane).
[0098] The 1-alkene synthase YP--001734428 contains 7 domains which implicate it in the biosynthesis of 1-nonadecene (FIG. 2). A LuxE domain is present which indicates that the protein can attach a fatty acid by acting as an acyltransferase (AT). LuxE is the protein which serves as an acyl-protein synthetase in the Lux operon (Lin et al. (1996)). A phosphopantetheinyl (PP) attachment site is next which is characteristic of acyl-carrier protein (ACP) domains present in polyketide synthases (i.e. alkene synthases). Several other domains characteristic of polyketide synthases are also present including: a ketosynthase (KS) domain; an acyltransferase (AT) domain; an NADP site which indicates a ketoreductase (KR) domain; a sulfotransferase (ST) domain; and a thioesterase (TE) domain.
[0099] The biosynthesis of alkenes is similar to polyketide biosynthesis, where a thioester bond is formed between the acyl starter unit and the ACP domain of the enzyme. A Claisen condensation catalyzed by a β-ketosynthase (KS) occurs between the acyl-thioester substrate and malonyl-CoA to extend the chain by two carbons. The β-carbonyl is reduced by the ketoreductase domain, and the sulfotransferase domain serves to attach a sulfonate to the β-hydroxy group to form a sulfate intermediate. The last step in the pathway is a decarboxylative elimination of sulfate catalyzed by the thioesterase domain to yield the terminal alkene (FIG. 3). This mechanism of terminal alkene formation via action of a sulfotransferase and thioesterase domain has been demonstrated for the unrelated metabolite curacin A (Gu et al. 2009).
[0100] An object of the invention described herein is to express in a host cell a gene encoding a chimeric alkene synthase which selectively binds to an alkene precursor of a pre-defined carbon chain length in an alkene synthesis pathway to produce 1-alkenes of chain length-specific alkenes and other carbon-based products of interest. The pathway and/or chimeric alkene synthase can be over-expressed in a Synechococcus strain such as Synechococcus sp. PCC 7002 or expressed in any other photosynthetic organism to produce a hydrocarbon from light and inorganic carbon. It can also be expressed in non-photosynthetic organisms to produce hydrocarbons from sugar sources.
[0101] Accordingly, one embodiment provides isolated nucleic acid molecules encoding proteins having alkene synthase activity and/or hydrolase activity, and variants thereof, including expression optimized forms of acyl binding pockets, and methods of improvement thereon. The full-length nucleic acid sequence (SEQ ID NO: 1) for the alkene synthase gene from Synechococcus sp. PCC 7002, YP--001734428, is provided herein, as is the protein sequence (SEQ ID NO: 2) (see FIG. 2). Also provided herein are optimized coding sequences for the alkene synthase gene, nonA_optV6, encoded by the nucleotide sequence of SEQ ID NO: 23, and expressing the recombinant NonA_optV6 protein encoded by SEQ ID NO: 24. Also provided herein is a coding (SEQ ID NO: 5) and amino acid sequence (SEQ ID NO: 6) for a saframycin M×1 synthetase from Legionella pneumophila, a coding (SEQ ID NO: 9) and amino acid sequence (SEQ ID NO: 10) for a mycosubtilin synthase from Bacillus subtilis, and a coding (SEQ ID NO: 13) and amino acid sequence (SEQ ID NO: 14) for an acyl-CoA ligase from Streptomyces filamentosus. Also provided herein are sequences of acyl binding pocket alignments of the above genes, and chimeric forms of the full-length nucleic acid sequence.
[0102] In addition, one embodiment provides a chimeric alkene synthase consisting of the Synechococcus sp. PCC 7002 NonA alkene synthase with a heterologous acyl binding pocket replacing the native binding pocket. In one embodiment, the heterologous binding pocket may be selected from the group consisting of SEQ ID NO: 18, SEQ ID NO: 20, and SEQ ID NO: 22. In another embodiment, the heterologous binding pocket may be selected from the group consisting of SEQ ID NO: 30, SEQ ID NO: 31, and SEQ ID NO: 29. Locations for insertion of the heterologous binding pocket into the NonA alkene synthase gene for one embodiment are provided. In other embodiments, the heterologous binding pocket is inserted into the NonA alkene synthase gene in a region comparable to the native heterologous binding pocket region location i.e., less than 5 peptides, less than 10 peptides, less than 20 peptides, less than 50 peptides, less than 75 peptides, less than 100 peptides, less than 150 peptides, or less than 200 peptides upstream or downstream from the location of the native binding pocket region. The invention also includes nucleic acids encoding the above-mentioned chimeric alkene synthases.
[0103] One embodiment provides an isolated nucleic acid molecule having a nucleic acid sequence comprising or consisting of a chimeric alkene synthase gene homologs, variants and derivatives of the chimeric alkene synthase selected from the gene coding sequences SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 28. Another embodiment provides nucleic acid molecules comprising or consisting of sequences which are structurally and functionally optimized versions of the chimeric alkene synthase gene. In a preferred embodiment, nucleic acid molecules and homologs, variants and derivatives comprising or consisting of sequences optimized for substrate affinity and/or substrate catalytic conversion rate are provided.
[0104] A further embodiment provides nucleic acid molecules and homologs, variants and derivatives thereof comprising or consisting of sequences which are variants of the chimeric NonA gene having at least 90% identity to SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 28. Another embodiment provides nucleic acid molecules and homologs, variants and derivatives comprising or consisting of sequences which are variants of the chimeric alkene synthase gene having at least 90% identity to SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO: 26, SEQ ID NO: 27, and SEQ ID NO: 28 and optimized for substrate affinity, substrate catalytic conversion rate, improved thermostability, activity at a different pH and/or optimized codon usage for improved expression in a host cell. The nucleic acid sequences can be preferably 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 90%, 95%, 98%, 99%, 99.9% or even higher identity to the chimeric alkene synthase gene.
[0105] In one embodiment, the nucleic acid molecule encodes a polypeptide having the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 18, SEQ ID NO: 20, or SEQ ID NO: 22. In another embodiment, the nucleic acid molecule encodes a polypeptide having the amino acid sequence of SEQ ID NO: 24, SEQ ID NO: 29, SEQ ID NO: 30, or SEQ ID NO: 31. Also provided is a nucleic acid molecule encoding a polypeptide sequence that is at least 50% identical to either SEQ ID NO: 2, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 29, SEQ ID NO: 30, or SEQ ID NO: 31. Preferably, the nucleic acid molecule encodes a polypeptide sequence of at least 55%, 60%, 70%, 80%, 90% or 95% identical to SEQ ID NO: 2, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 29, SEQ ID NO: 30, or SEQ ID NO: 31, and the identity can even more preferably be 98%, 99%, 99.9% or even higher.
[0106] Provided also are nucleic acid molecules that hybridize under stringent conditions to the above-described nucleic acid molecules. As defined above, and as is well known in the art, stringent hybridizations are performed at about 25° C. below the thermal melting point (Tm) for the specific DNA hybrid under a particular set of conditions, where the Tm is the temperature at which 50% of the target sequence hybridizes to a perfectly matched probe. Stringent washing can be performed at temperatures about 5° C. lower than the Tm for the specific DNA hybrid under a particular set of conditions.
[0107] The nucleic acid molecule includes DNA molecules (e.g., linear, circular, cDNA, chromosomal DNA, double stranded or single stranded) and RNA molecules (e.g., tRNA, rRNA, mRNA) and analogs of the DNA or RNA molecules of the described herein using nucleotide analogs. The isolated nucleic acid molecule of the invention includes a nucleic acid molecule free of naturally flanking sequences (i.e., sequences located at the 5' and 3' ends of the nucleic acid molecule) in the chromosomal DNA of the organism from which the nucleic acid is derived. In various embodiments, an isolated nucleic acid molecule can contain less than about 10 kb, 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, 0.1 kb, 50 bp, 25 bp or 10 bp of naturally flanking nucleotide chromosomal DNA sequences of the microorganism from which the nucleic acid molecule is derived.
[0108] The chimeric alkene synthase genes, as described herein, include nucleic acid molecules, for example, a polypeptide or RNA-encoding nucleic acid molecule, separated from another gene or other genes by intergenic DNA (for example, an intervening or spacer DNA which naturally flanks the gene and/or separates genes in the chromosomal DNA of the organism).
[0109] Nucleic acid molecules comprising a fragment of any one of the above-described nucleic acid sequences are also provided. These fragments preferably contain at least 20 contiguous nucleotides. More preferably the fragments of the nucleic acid sequences contain at least 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 or even more contiguous nucleotides.
[0110] In another embodiment, an isolated alkene synthase-encoding nucleic acid molecule hybridizes to all or a portion of a nucleic acid molecule having the nucleotide sequence set forth in SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28; or hybridizes to all or a portion of a nucleic acid molecule having a nucleotide sequence that encodes a polypeptide having the amino acid sequence of SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31. The nucleic acid sequence fragments display utility in a variety of systems and methods. For example, the fragments may be used as probes in various hybridization techniques. Depending on the method, the target nucleic acid sequences may be either DNA or RNA. The target nucleic acid sequences may be fractionated (e.g., by gel electrophoresis) prior to the hybridization, or the hybridization may be performed on samples in situ. One of skill in the art will appreciate that nucleic acid probes of known sequence find utility in determining chromosomal structure (e.g., by Southern blotting) and in measuring gene expression (e.g., by Northern blotting). In such experiments, the sequence fragments are preferably detectably labeled, so that their specific hybridization to target sequences can be detected and optionally quantified. One of skill in the art will appreciate that the nucleic acid fragments may be used in a wide variety of blotting techniques not specifically described herein.
[0111] It should also be appreciated that the nucleic acid sequence fragments disclosed herein also find utility as probes when immobilized on microarrays. Methods for creating microarrays by deposition and fixation of nucleic acids onto support substrates are well known in the art. Reviewed in DNA Microarrays: A Practical Approach (Practical Approach Series), Schena (ed.), Oxford University Press (1999) (ISBN: 0199637768); Nature Genet. 21(1)(suppl):1-60 (1999); Microarray Biochip: Tools and Technology, Schena (ed.), Eaton Publishing Company/BioTechniques Books Division (2000) (ISBN: 1881299376), the disclosures of which are incorporated herein by reference in their entireties. Analysis of, for example, gene expression using microarrays comprising nucleic acid sequence fragments, such as the nucleic acid sequence fragments disclosed herein, is a well-established utility for sequence fragments in the field of cell and molecular biology. Other uses for sequence fragments immobilized on microarrays are described in Gerhold et al., Trends Biochem. Sci. 24:168-173 (1999) and Zweiger, Trends Biotechnol. 17:429-436 (1999); DNA Microarrays: A Practical Approach (Practical Approach Series), Schena (ed.), Oxford University Press (1999) (ISBN: 0199637768); Nature Genet. 21(1)(suppl):1-60 (1999); Microarray Biochip: Tools and Technology, Schena (ed.), Eaton Publishing Company/BioTechniques Books Division (2000) (ISBN: 1881299376), the disclosures of each of which is incorporated herein by reference in its entirety.
[0112] In another embodiment, the present disclosure provides isolated nucleic acid molecules encoding a chimeric alkene synthase which exhibits increased activity relative to the unmodified, native protein. For example, a particular chimeric alkene synthase may synthesize more 1-pentadecene over a given time period, under identical conditions, when compared to the unmodified native protein from which it is derived. As is well known in the art, enzyme activities are measured in various ways, e.g. spectroscopically. (Grubmeyer et al., J. Biol. Chem. 268:20299-20304 (1993)), or chromatographically, including the use of high performance liquid chromatography (Chung and Sloan, J. Chromatogr. 371:71-81 (1986)). As another alternative the activity is indirectly measured by determining the levels of product made from the enzyme activity. More modern techniques include using gas chromatography linked to mass spectrometry (Niessen, W. M. A. (2001). Current practice of gas chromatography--mass spectrometry. New York, N.Y: Marcel Dekker. (ISBN: 0824704738)). Additional modern techniques for identification of recombinant protein activity and products including liquid chromatography-mass spectrometry (LCMS), high performance liquid chromatography (HPLC), capillary electrophoresis, Matrix-Assisted Laser Desorption Ionization time of flight-mass spectrometry (MALDI-TOF MS), nuclear magnetic resonance (NMR), near-infrared (NIR) spectroscopy, viscometry (Knothe, G., R. O. Dunn, and M. O. Bagby. 1997. Biodiesel: The use of vegetable oils and their derivatives as alternative diesel fuels. Am. Chem. Soc. Symp. Series 666: 172-208), physical property-based methods, wet chemical methods, etc. are used to analyze the levels and the identity of the product produced by the organisms. Other methods and techniques may also be suitable for the measurement of enzyme activity, as would be known by one of skill in the art.
Vectors
[0113] The recombinant vector can be altered, modified or engineered to have different or a different quantity of nucleic acid sequences than in the derived or natural recombinant vector nucleic acid molecule. Preferably, the recombinant vector includes a gene or recombinant nucleic acid molecule operably linked to regulatory sequences including, but not limited to, promoter sequences, terminator sequences and/or artificial ribosome binding sites (RBSs), as defined herein.
[0114] Typically, a gene encoding a chimeric alkene synthase is operably linked to regulatory sequence(s) in a manner which allows for the desired expression characteristics of the nucleotide sequence. Preferably, the gene encoding a chimeric alkene synthase in a 1-nonadecene biosynthetic pathway is transcribed and translated into a gene product encoded by the nucleotide sequence when the recombinant nucleic acid molecule is included in a recombinant vector, as defined herein, and is introduced into a microorganism.
[0115] The regulatory sequence may be comprised of nucleic acid sequences which modulate, regulate or otherwise affect expression of other nucleic acid sequences. In one embodiment, a regulatory sequence can be in a similar or identical position and/or orientation relative to a nucleic acid sequence as observed in its natural state, e.g., in a native position and/or orientation. For example, a gene of interest can be included in a recombinant nucleic acid molecule or recombinant vector operably linked to a regulatory sequence which accompanies or is adjacent to the gene of interest in the natural host cell, or can be adjacent to a different gene in the natural host cell, or can be operably linked to a regulatory sequence from another organism. Regulatory sequences operably linked to a gene can be from other bacterial regulatory sequences, bacteriophage regulatory sequences and the like.
[0116] In one embodiment, a regulatory sequence is a sequence which has been modified, mutated, substituted, derivated, deleted, including sequences which are chemically synthesized. Preferably, regulatory sequences include promoters, enhancers, termination signals, anti-termination signals and other expression control elements that, for example, serve as sequences to which repressors or inducers bind or serve as or encode binding sites for transcriptional and/or translational regulatory polypeptides, for example, in the transcribed mRNA (see Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989). Regulatory sequences include promoters directing constitutive expression of a nucleotide sequence in a host cell, promoters directing inducible expression of a nucleotide sequence in a host cell and promoters which attenuate or repress expression of a nucleotide sequence in a host cell. Regulating expression of a gene of interest also can be done by removing or deleting regulatory sequences. For example, sequences involved in the negative regulation of transcription can be removed such that expression of a gene of interest is enhanced. In one embodiment, a recombinant nucleic acid molecule or recombinant vector includes a nucleic acid sequence or gene that encodes at least one chimeric alkene synthase in an alkene biosynthetic pathway, wherein the gene encoding the enzyme(s) is operably linked to a promoter or promoter sequence. Preferably, promoters include native promoters, surrogate promoters and/or bacteriophage promoters.
[0117] In one embodiment, a promoter is associated with a biochemical housekeeping gene or a promoter associated with an ethanologenic pathway. In another embodiment, a promoter is a bacteriophage promoter. Other promoters include tef (the translational elongation factor (TEF) promoter) which promotes high level expression in Bacillus (e.g. Bacillus subtilis). Additional advantageous promoters, for example, for use in Gram positive microorganisms include, but are not limited to, the amyE promoter or phage SP02 promoters. Additional advantageous promoters, for example, for use in Gram negative microorganisms include, but are not limited to tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacIq, T7, T5, T3, gal, trc, ara, SP6, λ-pR or λ-pL.
[0118] In another embodiment, a recombinant nucleic acid molecule or recombinant vector includes a transcription terminator sequence or sequences. Typically, terminator sequences refer to the regulatory sequences which serve to terminate transcription of a gene. Terminator sequences (or tandem transcription terminators) can further serve to stabilize mRNA (e.g., by adding structure to mRNA), for example, against nucleases.
[0119] In another embodiment, a recombinant nucleic acid molecule or recombinant vector has sequences allowing for detection of the vector containing sequences (i.e., detectable and/or selectable markers), for example, sequences that overcome auxotrophic mutations, for example, ura3 or ilvE, fluorescent markers, and/or calorimetric markers (e.g., lacZ/β-galactosidase), and/or antibiotic resistance genes (e.g., bla or tet).
[0120] It is understood that any one of the chimeric alkene synthase gene of the invention can be introduced into a vector also comprising one or more genes involved in the biosynthesis of alkenes from light, water and inorganic carbon.
[0121] Also provided are vectors, including expression vectors, which comprise the above nucleic acid molecules, as described further herein. In a first embodiment, the vectors include the isolated nucleic acid molecules described above. In an alternative embodiment, the vectors include the above-described nucleic acid molecules operably linked to one or more expression control sequences. The vectors of the instant invention may thus be used to express a polypeptide having chimeric alkene synthase activity in an alkene biosynthetic pathway.
[0122] Vectors useful for expression of nucleic acids in prokaryotes are well known in the art. A useful vector herein is plasmid pCDF Duet-1 that is available from Novagen. Another useful vector is the endogenous Synechococcus sp. PCC 7002 plasmid pAQ1 (Genbank accession number NC 010476).
Isolated Polypeptides
[0123] In one embodiment, polypeptides encoded by nucleic acid sequences are produced by recombinant DNA techniques and can be isolated from expression host cells by an appropriate purification scheme using standard polypeptide purification techniques. In another embodiment, polypeptides encoded by nucleic acid sequences are synthesized chemically using standard peptide synthesis techniques.
[0124] Included within the scope of the invention are chimeric alkene synthase polypeptides or gene products that are derived polypeptides or gene products encoded by naturally-occurring bacterial genes. Further, included within the inventive scope, are bacteria-derived polypeptides or gene products which differ from wild-type genes, including genes that have altered, inserted or deleted nucleic acids but which encode polypeptides substantially similar in structure and/or function to the wild-type and/or chimeric alkene synthase gene.
[0125] For example, it is well understood that one of skill in the art can mutate (e.g., substitute) nucleic acids which, due to the degeneracy of the genetic code, encode for an identical amino acid as that encoded by the naturally-occurring gene. This may be desirable in order to improve the codon usage of a nucleic acid to be expressed in a particular organism. Moreover, it is well understood that one of skill in the art can mutate (e.g., substitute) nucleic acids which encode for conservative amino acid substitutions. It is further well understood that one of skill in the art can substitute, add or delete amino acids to a certain degree to improve upon or at least insubstantially affect the function and/or structure of a gene product (e.g., alcohol dehydrogenase activity) as compared with a naturally-occurring gene product, each instance of which is intended to be included within the scope of the invention.
[0126] In various aspects, isolated polypeptides (including muteins, allelic variants, fragments, derivatives, and analogs) encoded by the nucleic acid molecules are provided. In one embodiment, the isolated polypeptide comprises the polypeptide sequence corresponding to SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 29, SEQ ID NO: 30, or SEQ ID NO: 31. In an alternative embodiment, the isolated polypeptide comprises a polypeptide sequence at least 50% identical to SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 29, SEQ ID NO: 30, or SEQ ID NO: 31. Preferably the isolated polypeptide has preferably 50%, 60%-70%, 70%-80%, 80%-90%, 90%-95%, 95%-98%, 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9% or even higher identity to the sequences optimized for substrate affinity and/or substrate catalytic conversion rate.
[0127] According to other embodiments, isolated polypeptides comprising a fragment of the above-described polypeptide sequences are provided. These fragments preferably include at least 20 contiguous amino acids, more preferably at least 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 or even more contiguous amino acids.
[0128] The polypeptides also include fusions between the above-described polypeptide sequences and heterologous polypeptides. The heterologous sequences can, for example, include sequences designed to facilitate purification, e.g. histidine tags, and/or visualization of recombinantly-expressed proteins. Other non-limiting examples of protein fusions include those that permit display of the encoded protein on the surface of a phage or a cell, fusions to intrinsically fluorescent proteins, such as green fluorescent protein (GFP), and fusions to the IgG Fc region.
Host Cell Transformants
[0129] In other aspects, host cells transformed with the nucleic acid molecules or vectors, and descendants thereof, are provided. In some embodiments, these cells carry the nucleic acid sequences on vectors, which may but need not be freely replicating vectors. In other embodiments, the nucleic acids have been integrated into the genome of the host cells.
[0130] In a preferred embodiment, the host cell comprises one or more nucleic acids of SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 26, SEQ ID NO: 27, or SEQ ID NO: 28 operably linked to promoters for the expression of chimeric alkene synthase in an alkene biosynthesis pathway.
[0131] In another embodiment, the host cell containing a chimeric alkene synthase in the alkene pathway is suitable for producing 1-alkenes. In a particular embodiment, the host cell is a recombinant host cell that produces 1-alkenes comprising a chimeric nucleic acid encoding a nucleic acid of SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 26, SEQ ID NO: 27, or SEQ ID NO: 28.
[0132] In certain aspects, methods for expressing a polypeptide under suitable culture conditions and choice of host cell line for optimal enzyme expression, activity and stability (codon usage, salinity, pH, temperature, etc.) are provided.
[0133] In another aspect, methods for producing 1-alkene by culturing a host cell under conditions in which the chimeric alkene synthase is expressed at sufficient levels to produce a measureable quantity of 1-alkene are described. In a related embodiment, methods for producing 1-alkene are performed by contacting a cell lysate obtained from the above host cell under conditions in which 1-alkene is produced from light, water and inorganic carbon. Accordingly, the present disclosure provides enzyme extracts having chain-length specific alkene synthase activity, and having, for example, thermal stability, activity at various pH, and/or superior substrate affinity or specificity.
Selected or Engineered Microorganisms for the Production of Carbon-Based Products of Interest
[0134] Microorganism: Includes prokaryotic and eukaryotic microbial species from the Domains Archaea, Bacteria and Eucarya, the latter including yeast and filamentous fungi, protozoa, algae, or higher Protista. The terms "microbial cells" and "microbes" are used interchangeably with the term microorganism.
[0135] A variety of host organisms can be transformed to produce a product of interest. Photoautotrophic organisms include eukaryotic plants and algae, as well as prokaryotic cyanobacteria, green-sulfur bacteria, green non-sulfur bacteria, purple sulfur bacteria, and purple non-sulfur bacteria.
[0136] Host cells can be a Gram-negative bacterial cell or a Gram-positive bacterial cell. A Gram-negative host cell of the invention can be, e.g., Gluconobacter, Rhizobium, Bradyrhizobium, Alcaligenes, Rhodobacter, Rhodococcus. Azospirillum, Rhodospirillum, Sphingomonas, Burkholderia, Desulfomonas, Geospirillum, Succinomonas, Aeromonas, Shewanella, Halochromatium, Citrobacter, Escherichia, Klebsiella, Zymomonas Zymobacter, or Acetobacter. A Gram-positive host cell of the invention can be, e.g., Fibrobacter, Acidobacter, Bacteroides, Sphingobacterium, Actinomyces, Corynebacterium, Nocardia, Rhodococcus, Propionibacterium, Bifidobacterium, Bacillus, Geobacillus, Paenibacillus, Sulfobacillus, Clostridium, Anaerobacter, Eubacterium, Streptococcus, Lactobacillus, Leuconostoc, Enterococcus, Lactococcus, Thermobifida, Cellulomonas, or Sarcina.
[0137] Extremophiles are also contemplated as suitable organisms. Such organisms withstand various environmental parameters such as temperature, radiation, pressure, gravity, vacuum, desiccation, salinity, pH, oxygen tension, and chemicals. They include hyperthermophiles, which grow at or above 80° C. such as Pyrolobus fumarii; thermophiles, which grow between 60-80° C. such as Synechococcus lividis; mesophiles, which grow between 15-60° C. and psychrophiles, which grow at or below 15° C. such as Psychrobacter and some insects. Radiation tolerant organisms include Deinococcus radiodurans. Pressure tolerant organisms include piezophiles or barophiles which tolerate pressure of 130 MPa. Hypergravity (e.g., >1 g) hypogravity (e.g., <1 g) tolerant organisms are also contemplated. Vacuum tolerant organisms include tardigrades, insects, microbes and seeds. Dessicant tolerant and anhydrobiotic organisms include xerophiles such as Artemia salina; nematodes, microbes, fungi and lichens. Salt tolerant organisms include halophiles (e.g., 2-5 M NaCl) Halobacteriacea and Dunaliella salina. pH tolerant organisms include alkaliphiles such as Natronobacterium, Bacillus firmus OF4, Spirulina spp. (e.g., pH>9) and acidophiles such as Cyanidium caldarium, Ferroplasma sp. (e.g., low pH). Anaerobes, which cannot tolerate O2 such as Methanococcus jannaschii; microaerophils, which tolerate some O2 such as Clostridium and aerobes, which require O2 are also contemplated. Gas tolerant organisms, which tolerate pure CO2 include Cyanidium caldarium and metal tolerant organisms include metalotolerants such as Ferroplasma acidarmanus (e.g., Cu, As, Cd, Zn), Ralstonia sp. CH34 (e.g., Zn, Co, Cd, Hg, Pb). Gross, Michael. Life on the Edge: Amazing Creatures Thriving in Extreme Environments. New York: Plenum (1998) and Seckbach, J. "Search for Life in the Universe with Terrestrial Microbes Which Thrive Under Extreme Conditions." In Cristiano Batalli Cosmovici, Stuart Bowyer, and Dan Wertheimer, eds., Astronomical and Biochemical Origins and the Search for Life in the Universe, p. 511. Milan: Editrice Compositori (1997).
[0138] Plants include but are not limited to the following genera: Arabidopsis, Beta, Glycine, Jatropha, Miscanthus, Panicum, Phalaris, Populus, Saccharum, Salix, Simmondsia and Zea.
[0139] Algae and cyanobacteria include but are not limited to the following genera: Acanthoceras, Acanthococcus, Acaryochloris, Achnanthes, Achnanthidium, Actinastrum, Actinochloris, Actinocyclus, Actinotaenium, Amphichrysis, Amphidinium, Amphikrikos, Amphipleura, Amphiprora, Amphithrix, Amphora, Anabaena, Anabaenopsis, Aneumastus, Ankistrodesmus, Ankyra, Anomoeoneis, Apatococcus, Aphanizomenon, Aphanocapsa, Aphanochaete, Aphanothece, Apiocystis, Apistonema, Arthrodesmus, Artherospira, Ascochloris, Asterionella, Asterococcus, Audouinella, Aulacoseira, Bacillaria, Balbiania, Bambusina, Bangia, Basichlamys, Batrachospermum, Binuclearia, Bitrichia, Blidingia, Botrdiopsis, Botrydium, Botryococcus, Botryosphaerella, Brachiomonas, Brachysira, Brachytrichia, Brebissonia, Bulbochaete, Bumilleria, Bumilleriopsis, Caloneis, Calothrix, Campylodiscus, Capsosiphon, Carteria, Catena, Cavinula, Centritractus, Centronella, Ceratium, Chaetoceros, Chaetochloris, Chaetomorpha, Chaetonella, Chaetonema, Chaetopeltis, Chaetophora, Chaetosphaeridium, Chamaesiphon, Chara, Characiochloris, Characiopsis, Characium, Charales, Chilomonas, Chlainomonas, Chlamydoblepharis, Chlamydocapsa, Chlamydomonas, Chlamydomonopsis, Chlamydomyxa, Chlamydonephris, Chlorangiella, Chlorangiopsis, Chlorella, Chlorobotrys, Chlorobrachis, Chlorochytrium, Chlorococcum, Chlorogloea, Chlorogloeopsis, Chlorogonium, Chlorolobion, Chloromonas, Chlorophysema, Chlorophyta, Chlorosaccus, Chlorosarcina, Choricystis, Chromophyton, Chromulina, Chroococcidiopsis, Chroococcus, Chroodactylon, Chroomonas, Chroothece, Chrysamoeba, Chrysapsis, Chrysidiastrum, Chrysocapsa, Chrysocapsella, Chrysochaete, Chrysochromulina, Chrysococcus, Chrysocrinus, Chrysolepidomonas, Chrysolykos, Chrysonebula, Chrysophyta, Chrysopyxis, Chrysosaccus, Chrysophaerella, Chrysostephanosphaera, Clodophora, Clastidium, Closteriopsis, Closterium, Coccomyxa, Cocconeis, Coelastrella, Coelastrum, Coelosphaerium, Coenochloris, Coenococcus, Coenocystis, Colacium, Coleochaete, Collodictyon, Compsogonopsis, Compsopogon, Conjugatophyta, Conochaete, Coronastrum, Cosmarium, Cosmioneis, Cosmocladium, Crateriportula, Craticula, Crinalium, Crucigenia, Crucigeniella, Cryptoaulax, Cryptomonas, Cryptophyta, Ctenophora, Cyanodictyon, Cyanonephron, Cyanophora, Cyanophyta, Cyanothece, Cyanothomonas, Cyclonexis, Cyclostephanos, Cyclotella, Cylindrocapsa, Cylindrocystis, Cylindrospermum, Cylindrotheca, Cymatopleura, Cymbella, Cymbellonitzschia, Cystodinium Dactylococcopsis, Debarya, Denticula, Dermatochrysis, Dermocarpa, Dermocarpella, Desmatractum, Desmidium, Desmococcus, Desmonema, Desmosiphon, Diacanthos, Diacronema, Diadesmis, Diatoma, Diatomella, Dicellula, Dichothrix, Dichotomococcus, Dicranochaete, Dictyochloris, Dictyococcus, Dictyosphaerium, Didymocystis, Didymogenes, Didymosphenia, Dilabifilum, Dimorphococcus, Dinobryon, Dinococcus, Diplochloris, Diploneis, Diplostauron, Distrionella, Docidium, Draparnaldia, Dunaliella, Dysmorphococcus, Ecballocystis, Elakatothrix, Ellerbeckia, Encyonema, Enteromorpha, Entocladia, Entomoneis, Entophysalis, Epichrysis, Epipyxis, Epithemia, Eremosphaera, Euastropsis, Euastrum, Eucapsis, Eucocconeis, Eudorina, Euglena, Euglenophyta, Eunotia, Eustigmatophyta, Eutreptia, Fallacia, Fischerella, Fragilaria, Fragilariforma, Franceia, Frustulia, Curcilla, Geminella, Genicularia, Glaucocystis, Glaucophyta, Glenodiniopsis, Glenodinium, Gloeocapsa, Gloeochaete, Gloeochrysis, Gloeococcus, Gloeocystis, Gloeodendron, Gloeomonas, Gloeoplax, Gloeothece, Gloeotila, Gloeotrichia, Gloiodictyon, Golenkinia, Golenkiniopsis, Gomontia, Gomphocymbella, Gomphonema, Gomphosphaeria, Gonatozygon, Gongrosia, Gongrosira, Goniochloris, Gonium, Gonyostomum, Granulochloris, Granulocystopsis, Groenbladia, Gymnodinium, Gymnozyga, Gyrosigma, Haematococcus, Hafniomonas, Hallassia, Hammatoidea, Hannaea, Hantzschia, Hapalosiphon, Haplotaenium, Haptophyta, Haslea, Hemidinium, Hemitoma, Heribaudiella, Heteromastix, Heterothrix, Hibberdia, Hildenbrandia, Hillea, Holopedium, Homoeothrix, Hormanthonema, Hormotila, Hyalobrachion, Hyalocardium, Hyalodiscus, Hyalogonium, Hyalotheca, Hydrianum, Hydrococcus, Hydrocoleum, Hydrocoryne, Hydrodictyon, Hydrosera, Hydrurus, Hyella, Hymenomonas, Isthmochloron, Johannesbaptistia, Juranyiella, Karayevia, Kathablepharis, Katodinium, Kephyrion, Keratococcus, Kirchneriella, Klebsormidium, Kolbesia, Koliella, Komarekia, Korshikoviella, Kraskella, Lagerheimia, Lagynion, Lamprothamnium, Lemanea, Lepocinclis, Leptosira, Lobococcus, Lobocystis, Lobomonas, Luticola, Lyngbya, Malleochloris, Mallomonas, Mantoniella, Marssoniella, Martyana, Mastigocoleus, Gastogloia, Melosira, Merismopedia, Mesostigma, Mesotaenium, Micractinium, Micrasterias, Microchaete, Microcoleus, Microcystis, Microglena, Micromonas, Microspora, Microthamnion, Mischococcus, Monochrysis, Monodus, Monomastix, Monoraphidium, Monostroma, Mougeotia, Mougeotiopsis, Myochloris, Myromecia, Myxosarcina, Naegeliella, Nannochloris, Nautococcus, Navicula, Neglectella, Neidium, Nephroclamys, Nephrocytium, Nephrodiella, Nephroselmis, Netrium, Nitella, Nitellopsis, Nitzschia, Nodularia, Nostoc, Ochromonas, Oedogonium, Oligochaetophora, Onychonema, Oocardium, Oocystis, Opephora, Ophiocytium, Orthoseira, Oscillatoria, Oxyneis, Pachycladella, Palmella, Palmodictyon, Pnadorina, Pannus, Paralia, Pascherina, Paulschulzia, Pediastrum, Pedinella, Pedinomonas, Pedinopera, Pelagodictyon, Penium, Peranema, Peridiniopsis, Peridinium, Peronia, Petroneis, Phacotus, Phacus, Phaeaster, Phaeodermatium, Phaeophyta, Phaeosphaera, Phaeothamnion, Phormidium, Phycopeltis, Phyllariochloris, Phyllocardium, Phyllomitas, Pinnularia, Pitophora, Placoneis, Planctonema, Planktosphaeria, Planothidium, Plectonema, Pleodorina, Pleurastrum, Pleurocapsa, Pleurocladia, Pleurodiscus, Pleurosigma, Pleurosira, Pleurotaenium, Pocillomonas, Podohedra, Polyblepharides, Polychaetophora, Polyedriella, Polyedriopsis, Polygoniochloris, Polyepidomonas, Polytaenia, Polytoma, Polytomella, Porphyridium, Posteriochromonas, Prasinochloris, Prasinocladus, Prasinophyta, Prasiola, Prochlorphyta, Prochlorothrix, Protoderma, Protosiphon, Provasoliella, Prymnesium, Psammodictyon, Psammothidium, Pseudanabaena, Pseudenoclonium, Psuedocarteria, Pseudochate, Pseudocharacium, Pseudococcomyxa, Pseudodictyosphaerium, Pseudokephyrion, Pseudoncobyrsa, Pseudoquadrigula, Pseudosphaerocystis, Pseudostaurastrum, Pseudostaurosira, Pseudotetrastrum, Pteromonas, Punctastruata, Pyramichlamys, Pyramimonas, Pyrrophyta, Quadrichloris, Quadricoccus, Quadrigula, Radiococcus, Radiofilum, Raphidiopsis, Raphidocelis, Raphidonema, Raphidophyta, Peimeria, Rhabdoderma, Rhabdomonas, Rhizoclonium, Rhodomonas, Rhodophyta, Rhoicosphenia, Rhopalodia, Rivularia, Rosenvingiella, Rossithidium, Roya, Scenedesmus, Scherffelia, Schizochlamydella, Schizochlamys, Schizomeris, Schizothrix, Schroederia, Scolioneis, Scotiella, Scotiellopsis, Scourfieldia, Scytonema, Selenastrum, Selenochloris, Sellaphora, Semiorbis, Siderocelis, Diderocystopsis, Dimonsenia, Siphononema, Sirocladium, Sirogonium, Skeletonema, Sorastrum, Spermatozopsis, Sphaerellocystis, Sphaerellopsis, Sphaerodinium, Sphaeroplea, Sphaerozosma, Spiniferomonas, Spirogyra, Spirotaenia, Spirulina, Spondylomorum, Spondylosium, Sporotetras, Spumella, Staurastrum, Stauerodesmus, Stauroneis, Staurosira, Staurosirella, Stenopterobia, Stephanocostis, Stephanodiscus, Stephanoporos, Stephanosphaera, Stichococcus, Stichogloea, Stigeoclonium, Stigonema, Stipitococcus, Stokesiella, Strombomonas, Stylochrysalis, Stylodinium, Styloyxis, Stylosphaeridium, Surirella, Sykidion, Symploca, Synechococcus, Synechocystis, Synedra, Synochromonas, Synura, Tabellaria, Tabularia, Teilingia, Temnogametum, Tetmemorus, Tetrachlorella, Tetracyclus, Tetradesmus, Tetraedriella, Tetraedron, Tetraselmis, Tetraspora, Tetrastrum, Thalassiosira, Thamniochaete, Thorakochloris, Thorea, Tolypella, Tolypothrix, Trachelomonas, Trachydiscus, Trebouxia, Trentepholia, Treubaria, Tribonema, Trichodesmium, Trichodiscus, Trochiscia, Tryblionella, Ulothrix, Uroglena, Uronema, Urosolenia, Urospora, Uva, Vacuolaria, Vaucheria, Volvox, Volvulina, Westella, Woloszynskia, Xanthidium, Xanthophyta, Xenococcus, Zygnema, Zygnemopsis, and Zygonium.
[0140] Green non-sulfur bacteria include but are not limited to the following genera: Chloroflexus, Chloronema, Oscillochloris, Heliothrix, Herpetosiphon, Roseiflexus, and Thermomicrobium.
[0141] Green sulfur bacteria include but are not limited to the following genera: Chlorobium, Clathrochloris, and Prosthecochloris.
[0142] Purple sulfur bacteria include but are not limited to the following genera: Allochromatium, Chromatium, Halochromatium, Isochromatium, Marichromatium, Rhodovulum, Thermochromatium, Thiocapsa, Thiorhodococcus, and Thiocystis,
[0143] Purple non-sulfur bacteria include but are not limited to the following genera: Phaeospirillum, Rhodobaca, Rhodobacter, Rhodomicrobium, Rhodopila, Rhodopseudomonas, Rhodothalassium, Rhodospirillum, Rodovibrio, and Roseospira.
[0144] Aerobic chemolithotrophic bacteria include but are not limited to nitrifying bacteria such as Nitrobacteraceae sp., Nitrobacter sp., Nitrospina sp., Nitrococcus sp., Nitrospira sp., Nitrosomonas sp., Nitrosococcus sp., Nitrosospira sp., Nitrosolobus sp., Nitrosovibrio sp.; colorless sulfur bacteria such as, Thiovulum sp., Thiobacillus sp., Thiomicrospira sp., Thiosphaera sp., Thermothrix sp.; obligately chemolithotrophic hydrogen bacteria such as Hydrogenobacter sp., iron and manganese-oxidizing and/or depositing bacteria such as Siderococcus sp., and magnetotactic bacteria such as Aquaspirillum sp.
[0145] Archaeobacteria include but are not limited to methanogenic archaeobacteria such as Methanobacterium sp., Methanobrevibacter sp., Methanothermus sp., Methanococcus sp., Methanomicrobium sp., Methanospirillum sp., Methanogenium sp., Methanosarcina sp., Methanolobus sp., Methanothrix sp., Methanococcoides sp., Methanoplanus sp.; extremely thermophilic sulfur-metabolizers such as Thermoproteus sp., Pyrodictium sp., Sulfolobus sp., Acidianus sp. and other microorganisms such as, Bacillus subtilis, Saccharomyces cerevisiae, Streptomyces sp., Ralstonia sp., Rhodococcus sp., Corynebacteria sp., Brevibacteria sp., Mycobacteria sp., and oleaginous yeast.
[0146] HyperPhotosynthetic conversion requires extensive genetic modification; thus, in preferred embodiments the parental photoautotrophic organism can be transformed with exogenous DNA.
[0147] Preferred organisms for HyperPhotosynthetic conversion include: Arabidopsis thaliana, Panicum virgatum, Miscanthus giganteus, and Zea mays (plants), Botryococcus braunii, Chlamydomonas reinhardtii and Dunaliela salina (algae), Synechococcus sp PCC 7002, Synechococcus sp. PCC 7942, Synechocystis sp. PCC 6803, and Thermosynechococcus elongatus BP-1 (cyanobacteria), Chlorobium tepidum (green sulfur bacteria), Chloroflexus auranticus (green non-sulfur bacteria), Chromatium tepidum and Chromatium vinosum (purple sulfur bacteria), Rhodospirillum rubrum, Rhodobacter capsulatus, and Rhodopseudomonas palusris (purple non-sulfur bacteria).
[0148] Yet other suitable organisms include synthetic cells or cells produced by synthetic genomes as described in Venter et al. US Pat. Pub. No. 2007/0264688, and cell-like systems or synthetic cells as described in Glass et al. US Pat. Pub. No. 2007/0269862.
[0149] Still, other suitable organisms include microorganisms that can be engineered to fix inorganic carbon, such as Escherichia coli, Acetobacter aceti, Bacillus subtilis, yeast and fungi such as Clostridium ljungdahlii, Clostridium thermocellum, Penicillium chrysogenum, Pichia pastoris, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pseudomonas fluorescens, or Zymomonas mobilis.
[0150] A common theme in selecting or engineering a suitable organism is autotrophic fixation of CO2 to products. This would cover photosynthesis and methanogenesis. Acetogenesis, encompassing the three types of CO2 fixation; Calvin cycle, acetyl CoA pathway and reductive TCA pathway is also covered. The capability to use carbon dioxide as the sole source of cell carbon (autotrophy) is found in almost all major groups ofprokaryotes. The CO2 fixation pathways differ between groups, and there is no clear distribution pattern of the four presently-known autotrophic pathways. Fuchs, G. 1989. Alternative pathways of autotrophic CO2 fixation, p. 365-382. In H. G. Schlegel, and B. Bowien (ed.), Autotrophic bacteria. Springer-Verlag, Berlin, Germany. The reductive pentose phosphate cycle (Calvin-Bassham-Benson cycle) represents the CO2 fixation pathway in many aerobic autotrophic bacteria, for example, cyanobacteria.
Gene Integration and Propagation
[0151] The 1-alkene producing genes can be propagated by insertion into the host cell genome. Integration into the genome of the host cell is optionally done at particular loci to impair or disable unwanted gene products or metabolic pathways.
[0152] In another embodiment is described the integration of a chimeric alkene synthase gene into a plasmid. The plasmid can express one or more genes, optionally an operon including one or more genes, preferably one or more chimeric genes involved in the synthesis of 1-alkene, or more preferably one or more chimeric genes of a related metabolic pathway that feeds into the biosynthetic pathway for 1-alkenes.
Antibodies
[0153] In another aspect, provided herein are isolated antibodies, including fragments and derivatives thereof that bind specifically to the isolated polypeptides and polypeptide fragments or to one or more of the polypeptides encoded by the isolated nucleic acids. The antibodies may be specific for linear epitopes, discontinuous epitopes or conformational epitopes of such polypeptides or polypeptide fragments, either as present on the polypeptide in its native conformation or, in some cases, as present on the polypeptides as denatured, as, e.g., by solubilization in SDS. Among the useful antibody fragments are Fab, Fab', Fv, F(ab')2, and single chain Fv fragments.
[0154] By "bind specifically" and "specific binding" is here intended the ability of the antibody to bind to a first molecular species in preference to binding to other molecular species with which the antibody and first molecular species are admixed. An antibody is said specifically to "recognize" a first molecular species when it can bind specifically to that first molecular species.
[0155] As is well known in the art, the degree to which an antibody can discriminate as among molecular species in a mixture will depend, in part, upon the conformational relatedness of the species in the mixture; typically, the antibodies will discriminate over adventitious binding to unrelated polypeptides by at least two-fold, more typically by at least 5-fold, typically by more than 10-fold, 25-fold, 50-fold, 75-fold, and often by more than 100-fold, and on occasion by more than 500-fold or 1000-fold.
[0156] Typically, the affinity or avidity of an antibody (or antibody multimer, as in the case of an IgM pentamer) for a polypeptide or polypeptide fragment will be at least about 1×10-6 M, typically at least about 5×10-7 M, usefully at least about 1×10-7 M, with affinities and avidities of 1×10-8 M, 5×10-9 M, 1×10-10 M and even stronger proving especially useful.
[0157] The isolated antibodies may be naturally-occurring forms, such as IgG, IgM, IgD, IgE, and IgA, from any mammalian species. For example, antibodies are usefully obtained from species including rodents-typically mouse, but also rat, guinea pig, and hamster-lagomorphs, typically rabbits, and also larger mammals, such as sheep, goats, cows, and horses. The animal is typically affirmatively immunized, according to standard immunization protocols, with the polypeptide or polypeptide fragment.
[0158] Virtually all fragments of 8 or more contiguous amino acids of the polypeptides may be used effectively as immunogens when conjugated to a carrier, typically a protein such as bovine thyroglobulin, keyhole limpet hemocyanin, or bovine serum albumin, conveniently using a bifunctional linker. Immunogenicity may also be conferred by fusion of the polypeptide and polypeptide fragments to other moieties. For example, peptides can be produced by solid phase synthesis on a branched polylysine core matrix; these multiple antigenic peptides (MAPs) provide high purity, increased avidity, accurate chemical definition and improved safety in vaccine development. See, e.g., Tam et al., Proc. Natl. Acad. Sci. USA 85:5409-5413 (1988); Posnett et al., J. Biol. Chem. 263, 1719-1725 (1988).
[0159] Protocols for immunization are well-established in the art. Such protocols often include multiple immunizations, either with or without adjuvants such as Freund's complete adjuvant and Freund's incomplete adjuvant. Antibodies may be polyclonal or monoclonal, with polyclonal antibodies having certain advantages in immunohistochemical detection of the proteins and monoclonal antibodies having advantages in identifying and distinguishing particular epitopes of the proteins. Following immunization, the antibodies may be produced using any art-accepted technique. Host cells for recombinant antibody production--either whole antibodies, antibody fragments, or antibody derivatives--can be prokaryotic or eukaryotic. Prokaryotic hosts are particularly useful for producing phage displayed antibodies, as is well known in the art. Eukaryotic cells, including mammalian, insect, plant and fungal cells are also useful for expression of the antibodies, antibody fragments, and antibody derivatives. Antibodies can also be prepared by cell free translation.
[0160] The isolated antibodies, including fragments and derivatives thereof, can usefully be labeled. It is, therefore, another aspect to provide labeled antibodies that bind specifically to one or more of the polypeptides and polypeptide fragments. The choice of label depends, in part, upon the desired use. In some cases, the antibodies may usefully be labeled with an enzyme. Alternatively, the antibodies may be labeled with colloidal gold or with a fluorophore. For secondary detection using labeled avidin, streptavidin, captavidin or neutravidin, the antibodies may usefully be labeled with biotin. When the antibodies are used, e.g., for Western blotting applications, they may usefully be labeled with radioisotopes, such as 33P, 32P, 35S, 3H and 125I. As would be understood, use of the labels described above is not restricted to any particular application.
Methods for Designing Chimeric Protein Variants
[0161] Chain length-specific alkene production can be achieved through the expression and optimization of chimeric alkene synthase in organisms well suited for modern genetic engineering techniques, i.e., those that rapidly grow, are capable of thriving on inexpensive food resources and from which isolation of a desired product is easily and inexpensively achieved. To control the chain length of alkene production it would be advantageous to design and select variants of the chimeric enzymes, including but not limited to, variants optimized for substrate affinity, substrate specificity, substrate catalytic conversion rate, improved thermostability, activity at a different pH and/or optimized codon usage for improved expression in a host cell. See, for example, amino acid changes correlated to alterations in the catalytic rate while maintaining similar affinities (R L Zheng and R G Kemp, J. Biol. Chem. (1994) Vol. 269:18475-18479) or amino acid changes correlated with changes in the stability of the transition state that affect catalytic turnover (MA Phillips, et al., J. Biol. Chem., (1990) Vol. 265:20692-20698). It would be another advantage to design and select for chimeric enzymes altered to have substantially decreased reverse reaction activity in which enzyme-substrate products would be the result of energetically unfavorable bond formation or molecular re-configuration of the substrate, and have improved forward reaction activity in which enzyme-substrate products would be the result of energetically favorable molecular bond reduction or molecular re-configuration.
[0162] Accordingly, one method for the design of improved chimeric alkene synthase proteins for synthesing 1-alkenes utilizes computational and bioinformatic analysis to design and select for advantageous changes in chimeric amino acid sequences encoding alkene synthase enzyme activity. Computational methods and bioinformatics provide tractable alternatives for rational design of protein structure and function. Recently, algorithms analyzing protein structure for biophysical character (for example, motional dynamics and total energy or Gibb's Free Energy evaluations) have become a commercially feasible methodology supplementing protein sequence analysis data that assess homology, identity and/or degree of sequence and domain conservation to improve upon or design the desirable qualities of a protein (Rosetta++, University of Washington). For example, an in silico redesign of the endonuclease I-MsoI was based on computational evaluation of biophysical parameters of rationally selected changes to the primary amino acid sequence. Researchers were able to maintain wild-type binding selectivity and affinity yet improve the catalytic turnover by four orders of magnitude (Ashworth, et al., Nature (2006) vol. 441:656-659).
[0163] In one embodiment, chimeric polypeptide sequences or related homologues in a complex with a substrate are obtained for computational analysis on steady state and/or changes in Gibb's free energy relative to the wild type protein. Substitutions of one amino acid residue for another are accomplished in silico interactively as a means for identifying specific residue substitutions that optimize structural or catalytic contacts between the protein and substrate using standard software programs for viewing molecules as is well known to those skilled in the art. To the extent that in silico structures for the chimeric polypeptides (and homologues) described herein are available, those structures can be used to rationally design modified proteins with desired (typically, improved) activities. Specific amino acid substitutions are rationally chosen based on substituted residue characteristics that optimize, for example, Van der Waal's interactions, hydrophobicity, hydrophilicity, steric non-interferences, pH-dependent electrostatics and related chemical interactions. The overall energetic change of the substitution protein model when unbound and bound to its substrate is calculated and assessed by one having skill in the art to be evaluated for the change in free energy for correlations to overall structural stability (e.g., Meiler, J. and D. Baker, Proteins (2006) 65:538-548). In addition, such computational methods provide a means for accurately predicting quaternary protein structure interactions such that in silico modifications are predictive or determinative of overall multimeric structural stability (Wollacott, A M, et al., Protein Science (2007) 16:165-175; Joachimiak, L A, et al., J. Mol. Biol. (2006) 361:195-208).
[0164] Preferably, a rational design change to the primary structure of chimeric alkene synthase protein sequences minimally alter the Gibb's free energy state of the unbound polypeptide and maintain a folded, functional and similar wild-type enzyme structure. More preferably a lower computational total free energy change of the protein sequence is achieved to indicate the potential for optimized enzyme structural stability.
[0165] Although lower free energy of a protein structure relative to the original chimeric structure is an indicator of thermodynamic stability, the positive correlation of increased thermal stability to optimized function does not always exist. Therefore, preferably, optimal catalytic contacts between the modified chimeric alkene synthase and the substrate are achieved with a concomitant predicted favorable change in total free energy of the catabolic reaction, for example by rationally designing chimeric alkene synthase protein/substrate interactions that stabilize the transition state of the enzymatic reaction while maintaining a similar or favorable change in free energy of the unbound chimeric alkene synthase protein for a desired environment in which a host cell expresses the mutant chimeric alkene synthase protein. Even more preferably, rationally selected amino acid changes result in a substantially decreased chimeric alkene synthase enzyme's anabolic protein/substrate reaction or increase the chimeric alkene synthases protein/substrate reaction, for example wherein specific chain-length 1-alkenes are synthesized for a desired environment in which a host cell expresses the mutant chimeric alkene synthase. In a further embodiment any and/or all chimeric alkene synthase sequences are expression optimized for the specific expression host cell.
Methods for Generating Protein Variants
[0166] Several methods well known to those with skill in the art are available to generate random nucleotide sequence variants for a corresponding chimeric polypeptide sequence using the Polymerase Chain Reaction ("PCR") (U.S. Pat. No. 4,683,202). One embodiment is the generation of chimeric alkene synthase gene variants using the method of error prone PCR. (R. Cadwell and G. Joyce, PCR Meth. Appl. (1991) Vol. 2:28-33; Leung, et al., Technique (1989) Vol. 1:11-15). Error prone PCR is achieved by the establishment of a chemical environment during the PCR experiment that causes an increase in unfaithful replication of a parent copy of DNA sought to be replicated. For example, increasing the manganese or magnesium ion content of the chemical admixture used in the PCR experiment, very low annealing temperatures, varying the balance among di-deoxy nucleotides added, starting with a low population of parent DNA templates or using polymerases designed to have increased inefficiencies in accurate DNA replication all result in nucleotide changes in progeny DNA sequences during the PCR replication process. The resultant mutant DNA sequences are genetically engineered into an appropriate vector to be expressed in a host cell and analyzed to screen and select for the desired effect on whole cell production of a product or process of interest. In one embodiment, random mutagenesis of the chimeric alkene synthase-encoding nucleotide sequences is generated through error prone PCR using techniques well known to one skilled in the art. Resultant nucleotide sequences are analyzed for structural and functional attributes through clonal screening assays and other methods as described herein.
[0167] Another embodiment is generating a specifically desired protein mutant using site-directed mutagenesis. For example, with overlap extension (An, et al., Appl. Microbiol. Biotech. (2005) vol. 68(6):774-778) or mega-primer PCR (E. Burke and S. Batik, Methods Mol. Bio. (2003) vol 226:525-532) one can use nucleotide primers that have been altered at corresponding codon positions in the parent nucleotide to yield DNA progeny sequences containing the desired mutation. Alternatively, one can use cassette mutagenesis (Kegler-Ebo, et al., Nucleic Acids Res. (1994) vol. 22(9):1593-1599) as is commonly known by one skilled in the art.
[0168] Several authors (Korkhin, et al., J. Mol. Bio. (1998) vol. 278:967-981; E. Goiberg, et al., Proteins (2008) vol. 72:711-719) have demonstrated protein amino acid substitutions at single positions in the alcohol dehydrogenase protein sequence enhance protein fold thermostability. In one aspect, using site-directed mutagenesis and cassette mutagenesis, all possible positions in SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 29, SEQ ID NO: 30, or SEQ ID NO: 31 are changed to a proline, transformed into a suitable high expression vector and expressed at high levels in a suitable expression host cell. Purified aliquots at concentrations necessary for the appropriate biophysical analytical technique are obtained by methods as known to those with skill in the art (P. Rellos and R. K. Scopes, Prot. Exp. Purific. (1994) Vol. 5:270-277) and evaluated for increased thermostability.
[0169] Another embodiment is to select for a polypeptide variant for expression in a recipient host cell by comparing a first nucleic acid sequence encoding the polypeptide with the nucleic acid sequence of a second, related nucleic acid sequence encoding a polypeptide having more desirable qualities, and altering at least one codon of the first nucleic acid sequence to have identity with the corresponding codon of the second nucleic acid sequence, such that improved polypeptide activity, substrate specificity, substrate affinity (for example, NADPH and acetaldehyde), substrate catalytic conversion rate, improved thermostability, activity at a different pH and/or optimized codon usage for expression and/or structure of the altered polypeptide is achieved in the host cell.
[0170] In yet another embodiment, all amino acid residue variations are encoded at any desired, specified nucleotide codon position using such methods as site saturation mutagenesis (Meyers, et al., Science (1985) Vol. 229:242-247; Derbyshire, et al., Gene (1986) Vol. 46:145-152; U.S. Pat. No. 6,171,820). Whole gene site saturation mutagenesis (K. Kretz, et al., Meth. Enzym. (2004) Vol. 388:3-11) is preferred wherein all amino acid residue variations are encoded at every nucleotide codon position. Both methods yield a population of protein variants differing from the parent polypeptide by one amino acid, with each amino acid substitution being correlated to structural/functional attributes at any position in the polypeptide. Saturation mutagenesis uses PCR and primers homologous to the parent sequence wherein one or more codon encoding nucleotide triplets is randomized. Randomization results in the incorporation of codons corresponding to all amino acid replacements in the final, translated polypeptide. Each PCR product is genetically engineered into an expression vector to be introduced into an expression host and screened for structural and functional attributes through clonal screening assays and other methods as described herein.
[0171] In one aspect of saturation mutagenesis, correlated saturation mutagenesis ("CSM") is used wherein two or more amino acids at rationally designated positions are changed concomitantly to different amino acid residues to engineer improved enzyme function and structure. Correlated saturation mutagenesis allows for the identification of complimentary amino acid changes having positive, synergistic effects on chimeric alkene synthase enzyme structure and function. Such synergistic effects include, but are not limited to, significantly altered enzyme stability, substrate affinity, substrate specificity or catalytic turnover rate, independently or concomitantly increasing advantageously the production of 1-alkenes.
[0172] In yet another embodiment, amino acid substitution combinations of CSM derived protein variants being optimized for a particular function are combined with one or more CSM derived protein variants being optimized for another particular function to derive a chimeric alkene synthase protein variant exhibiting multiple optimized structural and functional characteristics. For example, amino acid changes in combinatorial mutants showing optimized protomer interactions are combined with amino acid changes in combinatorial mutants showing optimized catalytic turnover.
[0173] In one embodiment, mutational variants derived from the methods described herein are cloned. DNA sequences produced by saturation mutagenesis are designed to have restriction sites at the ends of the gene sequences to allow for excision and transformation into a host cell plasmid. Generated plasmid stocks are transformed into a host cell and incubated at optimal growth conditions to identify successfully transformed colonies.
[0174] In a further embodiment any and/or all sequences additionally are expression optimized for the specific expression host cell.
Methods for Measuring Protein Variant Efficacy
[0175] Variations in expressed polypeptide sequences may result in measurable differences in the whole-cell rate of substrate conversion. It is desirable to determine differences in the rate of substrate conversion by assessing productivity in a host cell having a particular protein variant relative to other whole cells having a different protein variant. Additionally, it would be desirable to determine the efficacies of whole-cell substrate conversion as a function of environmental factors including, but not limited to, pH, temperature nutrient concentration and salinity.
[0176] Therefore, in one embodiment, the biophysical analyses described herein on protein variants are performed to measure structural/functional attributes. Standard analyses of polypeptide activity are well known to one of ordinary skill in the art. Such analysis can require the expression and high purification of large quantities of polypeptide, followed by various physical methods (including, but not limited to, calorimetry, fluorescence, spectrophotometric, spectrometric, liquid chromatography (LC), mass spectrometry (MS), LC-MS, affinity chromatography, light scattering, nuclear magnetic resonance and the like) to assay function in a specific environment or functional differences among homologues.
[0177] In another embodiment, the polypeptides are expressed, purified and subject to the aforementioned analytical techniques to assess the functional difference among polypeptide sequence homologues, for example, the rate of substrate conversion specific for a particular enzyme function.
[0178] Batch culture (or closed system culture) analysis is well known in the art and can provide information on host cell population effects for host cells expressing genetically engineered genes. In batch cultures a host cell population will grow until available nutrients are depleted from the culture media.
[0179] In one embodiment, the polypeptides are expressed in a batch culture and analyzed for approximate doubling times, expression efficacy of the engineered polypeptide and end-point net product formation and net biomass production.
[0180] Turbidostats are well known in the art as one form of a continuous culture within which media and nutrients are provided on an uninterrupted basis and allow for non-stop propagation of host cell populations. Turbidostats allow the user to determine information on whole cell propagation and steady-state productivity for a particular biologically produced end product such as host cell doubling time, temporally delimited biomass production rates for a particular host cell population density, temporally delimited host cell population density effects on substrate conversion and net productivity of a host cell substrate conversion of, for example, octadecanoic acid to 1-nonadecene. Turbidostats can be designed to monitor the partitioning of substrate conversion products to the liquid or gaseous state. Additionally, quantitative evaluation of net productivity of a carbon-based product of interest can be accurately performed due to the exacting level of control that one skilled in the art has over the operation of the turbidostat. These types of information are useful to assess the parsed and net efficacies of a host cell genetically engineered to produce a specific carbon-based product of interest.
[0181] In one embodiment, identical host cell lines differing only in the nucleic acid and expressed polypeptide sequence of a homologous enzyme are cultured in a uniform-environment turbidostat to determine highest whole cell efficacy for the desired carbon-based product of interest.
[0182] In another embodiment, identical host cell lines differing only in the nucleic acid and expressed polypeptide sequence of a homologous enzyme are cultured in a batch culture or a turbidostat in varying environments (e.g. temperature, pH, salinity, nutrient exposure) to determine highest whole cell efficacy for the desired carbon-based product of interest.
[0183] In one embodiment, mutational variants derived from the methods described herein are cloned. DNA sequences produced by saturation mutagenesis are designed to have restriction sites at the ends of the gene sequences to allow for cleavage and transformation into a host cell plasmid. Generated plasmid stocks are transformed into a host cell and incubated at optimal growth conditions to identify successfully transformed colonies.
[0184] In one embodiment, to select protein variants, a colorimetric assay is used to screen for acetaldehyde to qualitatively determine the activity of variants of chimeric alkene synthase in a 1-alkene biosynthetic pathway.
Methods for Producing 1-Alkenes
[0185] It is desirable to engineer into an organism suited for industrial use a genetic system from which a chain length-specific 1-alkene can be produced efficiently and cleanly.
[0186] Accordingly, the invention includes the conversion of water, inorganic carbon, and light into a selected 1-alkene using the chimeric alkene synthase described herein. In one embodiment, the genetically engineered host cells expresses a chimeric alkene synthase and one or more genes in an alkene biosynthetic pathway enabling the host cell to convert water, light and inorganic carbon and/or a selected 1-alkene precursor into a specific pre-selected 1-alkene.
[0187] In another embodiment of the invention, the genetically engineered host cell is processed into an enzymatic lysate for performing the above conversion reaction. In yet another embodiment, the chimeric alkene synthase is purified, as described herein, for carrying out the conversion reaction.
[0188] The host cells and/or enzymes, for example in the lysate, partially purified, or purified, used in the conversion reactions are in a form allowing them to perform their intended function, producing a desired 1-alkene, for example, 1-pentadecene. The microorganisms used can be whole cells, or can be only those portions of the cells necessary to obtain the desired end result. The microorganisms can be suspended (e.g., in an appropriate solution such as buffered solutions or media), rinsed (e.g., rinsed free of media from culturing the microorganism), acetone-dried, immobilized (e.g., with polyacrylamide gel or k-carrageenan or on synthetic supports, for example, beads, matrices and the like), fixed, cross-linked or permeabilized (e.g., have permeabilized membranes and/or walls such that compounds, for example, substrates, intermediates or products can more easily pass through said membrane or wall).
[0189] In yet another embodiment, purified or unpurified chimeric alkene synthase enzymes (e.g., SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 29, SEQ ID NO: 30, or SEQ ID NO: 31) are used in the conversion reactions. The enzyme is in a form that allows it to perform its intended function. For example, the enzyme can be immobilized, conjugated or floating freely.
[0190] The following examples are for illustrative purposes and are not intended to limit the scope of the invention.
Example 1
Identification and Characterization of the Acyl Binding Pocket of Alkene Synthase
[0191] NonA has several catalytic domains (FIG. 2) with a LuxE-superfamily acyltransferase domain at the N-terminus. This domain serves to load a C18, C17 or C16 acyl chain to the acyl-carrier protein (ACP) domain (i.e. the acyl binding pocket or the interior acyl binding pocket) triggering the biosynthetic pathway of 1-alkenes (FIG. 3, showing 1-nonadecene biosynthesis from a C18:0 acyl chain substrate). In order to identify the acyl binding pocket of NonA, the primary amino acid sequence was aligned with the acyl binding pocket of saframycin M×1 synthetase B (i.e. SafB) (Li et al. 2008) for which two crystal structures exist with the protein in a complex with 5'-O-[(S)(dodecanoyloxy)(hydroxy) phosphoryl]adenosine (PDB #3KXW, 3LNV). The amino acids comprising the acyl binding pocket were annotated using PyMOL 0.99rc6 by identifying the amino acids located five angstroms or less from the acyl-adenylate ligand (FIG. 4A).
[0192] Alignment of the amino acids comprising the SafB acyl binding pocket domain with the corresponding amino acids in NonA and two other acyl binding pocket domains of known substrate specificity for saturated acyl chains of different lengths (Table 1) showed that each acyl binding pocket domain is strongly conserved towards the front of the acyl binding pocket (FIG. 4B, FIG. 5). One residue (327) of SafB at the front of the acyl binding pocket was changed from leucine in SafB to methionine in NonA (FIG. 4B, FIG. 5). This residue may play a role with substrate selectivity, as the other enzymes specifically bind acyl-CoA or acyl-adenylate substrates. The amino acid Ser374, which was close to the adenylate core, is not conserved in all four enzymes and is separated from Cys324 by 4.2 angstroms. Cys324 is at the front of the acyl binding pocket and is also not conserved (FIG. 4B). Ser374-Cys324 (also found in NonA) therefore may be important in stabilizing the pocket. The amino acid residues toward the back of the pocket varied considerably between the four enzymes (FIG. 4B, FIG. 5) as would be expected given their anticipated role in chain length selectivity.
Example 2
Identification of NonA Synthase Enzymes with Varied Alkene Substrate Specificity
[0193] Two conserved regions in the primary amino acid sequence of the four acyl binding pocket domains were identified that flanked the interior acyl binding pocket (IABP) of the SafB acyl binding pocket domain. These conserved regions were aligned with NonA as described above and used as the points to designate where to replace the IABP sequence of NonA with IABP sequences of the three other heterologous enzymes, each having a unique chain length specificity (FIG. 5). The IABP residues in SafB are 197-294 (SEQ ID NO:8), and spatially these amino acids form a compact subunit in SafB (FIG. 6A). The IABP residues surround the middle to end of the acyl chain of the ligand (FIG. 6B) and comprise the surrounding pocket.
Example 3
Engineering and Expression of Chimeric NonA Synthase
[0194] The corresponding nucleotides of the acyl binding pocket of NonA (SEQ ID NO: 3) are replaced with the coding nucleotides for the acyl binding pocket of SafB (SEQ ID NO:7), MycA (SEQ ID NO:11), or DptE (SEQ ID NO:15), resulting in a NonA chimeric alkene synthase encoded by SEQ ID NO:17, SEQ ID NO:19, or SEQ ID NO:21. The chimeric NonA alkene synthase enzyme comprises a heterologous acyl binding pocket with its native NonA IABP amino acid residues (SEQ ID NO:4) replaced with the IABP amino acids from SafB (SEQ ID NO: 8), MycA (SEQ ID NO:12), and DptE (SEQ ID NO:16). The resulting chimeric alkene synthase has a polypeptide sequence of SEQ ID NO:18, SEQ ID NO:20, or SEQ ID NO:22.
[0195] The resulting chimeric alkene synthases are assayed and characterized by their differing acyl-binding pocket specificities. The pre-determined specific chain length 1-alkenes produced by a chimeric NonA alkene synthase having a heterologous acyl binding pocket are consistent with the chain length specificities of the protein source of the acyl binding pocket as shown in Table 1, where the last column indicates the expected 1-alkenes produced by a chimeric NonA alkene synthase containing a heterologous interior acyl binding pocket from the indicated proteins.
TABLE-US-00001 TABLE 1 Proteins that contain acyl binding pockets and their anticipated substrate preference for fatty acids. Chain length Expected 1- Proteins Accession # preference Reference alkene(s) NonA YP_001734428.1 C16:0, C18:0 Our C17:1, C19:1 results (WT) SafB AAU28294.1 C14:0, C16:0 Koketsu et C15:1, C17:1 al. 2010 MycA YP_003866245.1 C16:0 Hansen et C17:1 al. 2007 DptE AAX31555.1 C12:0 Wittmann C13:1 et al. 2008
Example 4
Construction of Escherichia coli Comprising Recombinant NonA
[0196] The Synechococcus sp. PCC 7002 nonA (Genbank NC--010475, locus A1173) was purchased from DNA 2.0. The sequence of nonA was codon optimized and optimized for mRNA secondary structure. Unwanted restriction sites were removed from nonA and unique restriction sites flanking domains and N- and C-terminal Strep-tag II and His tags were added to the nonA sequence. The resulting gene and encoded protein sequence for this optimized gene (nonA_optV6) is given in SEQ ID NO: 23 and 24, respectively. The broad spectrum phosphopantetheinyl transferase sfp (Quadri et al. 1998, Genbank protein P39135.2) was purchased from DNA 2.0 following codon optimization, checking for mRNA secondary structure effects and removal of unwanted restriction sites (SEQ ID NO: 25). The Synechococcus sp. PCC 7002 gene A2265 (SEQ ID NO: 37) (Genbank NC 010475, locus A2265) was amplified from Synechococcus sp. PCC 7002 genomic DNA using the Phusion high-fidelity PCR kit (New England Biolabs) following the manufacturer's instructions and the PCR primers A2265 FP Sad (ggGAGCTCaaggaattatagttatgcgcaaaccctggttaga) (SEQ ID NO: 32) and A2265 RP SbfI (ggCCTGCAGGttatagggactggatcgccagttttttctgct) (SEQ ID NO: 33). NonA_optV6 was cloned into the NdeI-MfeI and sfp was cloned into the NcoI-EcoRI restriction sites of pCDFDuet-1 (Novagen) to yield pJB1412. A2265 was cloned into the SacI-SbfI restriction sites of pJB1412 to yield pJB1522. The NonA interior acyl-binding pocket (IABP) variants were generated by cloning in the respective expression-optimized sequences from DptE, SafB and MycA (prepared by DNA 2.0) into the AccI-HindIII restriction sites present in nonA_optV6 to yield nonA_dptE, nonA_safB and nonA_mycA, respectively. The gene and encoded protein sequence for these chimeric alkene synthases are given in SEQ ID NOs: 26 through 31. The IABPs from nonA_dptE, nonA_safB and nonA_mycA were cloned into the NdeI-StuI restriction sites of nonA_optV6 in pJB1522 to yield pJB1629, pJB1630 and pJB1639, respectively. The plasmids containing the four nonA variants (pJB1522, pJB1629, pJB1630 and pJB1639) and pCDFDuet-1 were transformed into chemically competent E. coli BL21 DE(3) (Invitrogen) following the manufacturer's directions to generate strains JCC2157, JCC2358, JCC2375, and JCC2372 (Table 2).
TABLE-US-00002 TABLE 2 Engineered E. coli BL21 DE(3) strains investigated for the production of 1-alkenes. Strain Plasmid Genes JCC308 pCDFDuet-1 -- JCC2157 pJB1522 sfp, nonA_optV6, A2265 JCC2358 pJB1629 sfp, nonA_dptE, A2265 JCC2375 pJB1630 sfp, nonA_safB, A2265 JCC2372 pJB1639 sfp, nonA_mycA, A2265
Example 5
Olefin Chain-Lengths Produced Via Expression of NonA-optV6 in Escherichia coli
Culture Conditions and Sampling:
[0197] Single colonies of JCC308 and JCC2157 from LB plates containing 1% glucose and 50 mg/L spectinomycin were grown for 6 h at 37° C. in 4 ml of LB medium containing the same glucose and antibiotic concentration. These starter cultures were used to inoculate 15 ml cultures at a starting OD600 of 0.05 in a 2% casamino acid M9-derived medium that was amended to contain three times the M9 concentration of phosphate (33.9 g/L Na2HPO4 and 9 g/L KH2PO4) and was supplemented with 3 mg/L FeSO4.7H2O, 0.01 mM IPTG and 50 mg/L spectinomycin. The cultures were incubated for 68 h at 30° C./225 rpm in a New Brunswick shaking incubator. At this point, 50 μl of the cultures were removed to determine the OD600 and the remaining volume of the cultures (13 ml) was pelleted by centrifugation. The supernatant was discarded, the cells resuspended in 1 ml of milli-Q water, transferred to a microcentrifuge tube and pelleted by centrifugation. After removing any residual aqueous medium, the cell pellets were vortexed for 20 seconds in 1 ml of acetone (Acros Organics 326570010) containing 25 mg/L butylated hydroxytoluene (antioxidant) and 25 mg/L eicosane (internal standard). The debris was pelleted by centrifugation and the acetone supernatants were analyzed for the presence of 1-alkenes.
Identification and Quantification of 1-Alkenes
[0198] An Agilent 7890A GC/5975C EI-MS equipped with a 7683B autosampler was used to identify the 1-alkenes. One μL of each sample was injected into the GC inlet using pulsed splitless injection (pressure: 20 psi, pulse time: 0.3 min, purge time: 0.2 min, purge flow: 15 mL/min) and an inlet temperature of 290° C. The column was a HP-5MS-UI (Agilent, 20 m×0.18 mm×0.18 μm) and the carrier gas was helium at a flow of 0.72 mL/min. The GC oven temperature program was 80° C., hold 0.3 minute; 17.6°/min increase to 290° C.; hold six minutes. The GC/MS interface was 290° C., the MS mass range monitored was 25 to 400 amu and the temperatures of the source and quadrupole were 230° and 150° C., respectively. 1-nonadecene (rt 8.4 min), 1-octadecene (rt 7.8) and 1-heptadecene (rt 7.2 min) were identified based on comparison of their mass spectra (NIST MS database; 2008) and retention times with authentic standards. Shorter chain-length 1-alkenes were not detected in this experiment. The C19:2 1,x-nonadecadiene (rt 8.3) was identified based on interpretation of the mass spectrum and a chemically consistent retention time. In some embodiments, 1,12-(cis)-nonadecadiene as cis-vaccenic acid is the precursor for NonA to generate the nonadecadiene.
[0199] An Agilent 7890A GC/FID equipped with a 7683 series autosampler was used to quantify the 1-alkenes. One μL of each sample was injected into the GC inlet (split 8:1, pressure: 20 psi, pulse time: 0.3 min, purge time: 0.2 min, purge flow: 15 mL/min) which had an inlet temperature of 290° C. The column was a HP-5MS (Agilent, 20 m×0.18 mm×0.18 μm) and the carrier gas was helium at a flow of 1.0 mL/min. The GC oven temperature program was 80° C., hold 0.3 minute; 17.6°/min increase to 290° C.; hold 6 minutes. Calibration curves were constructed for the detected 1-alkenes using commercially available standards (Sigma-Aldrich), and the concentrations of the 1-alkenes present in the extracts were determined based on the linear regressions of the peak areas and concentrations. The concentration of 1-nonadecadiene in the samples was determined using the calibration curve for 1-nonadecene. The concentrations of the compounds were normalized to the internal standard (eicosane) and reported as mg/L of culture.
[0200] The total ion count (TIC) chromatograms for JCC2157 and JCC308 are shown in FIG. 7. Four 1-alkenes are present in JCC2157 that are not found in JCC308. The mass spectra for the 1-alkenes and comparison with authentic standards where possible are shown in FIG. 8. The quantification data from the experiment are summarized in Table 3.
TABLE-US-00003 TABLE 3 The optical densities of the cultures and the total mg/L of 1-alkenes produced by the BL21 DE(3) strains. The % DCW was estimated based on the OD measurement using an average of 400 mg L-1 OD600-1 1-alkenes 1-alkenes (% of Strain OD600 (mg/L) DCW) JCC308 2.7 -- -- JCC2157 3.2 0.28 0.022
Example 6
Production of Shorter Chain-Length 1-Alkenes with Engineered Alkene Synthases
Culture Conditions and Sampling:
[0201] Single colonies of JCC2157, JCC2358, JCC2375 and JCC2372 from LB plates containing 50 mg/L spectinomycin were incubated for 18 h at 37° C. in 4 ml of LB medium containing 50 mg/L spectinomycin. These starter cultures were used to inoculate 15 ml cultures at a starting OD600 of 0.05 in a 2% glucose M9-derived medium that was amended to contain three times the M9 concentration of phosphate (33.9 g/L Na2HPO4 and 9 g/L KH2PO4) and was supplemented with 3 mg/L FeSO4.7H2O, 0.01 mM IPTG and 50 mg/L spectinomycin. The cultures were incubated for 54 h at 30° C./225 rpm in a New Brunswick shaking incubator. At this point, 50 μl of the cultures were removed to determine the OD600 and the remaining volume of the cultures (14 ml) was pelleted by centrifugation. The supernatant was discarded, the cells resuspended in 1 ml of milli-Q water, transferred to a microcentrifuge tube and pelleted by centrifugation. After removing any residual aqueous medium, the cell pellets were vortexed for 20 seconds in 1 ml of acetone (Acros Organics 326570010) containing 25 mg/L butylated hydroxytoluene (antioxidant) and 25 mg/L eicosane (internal standard). The debris was pelleted by centrifugation and the acetone supernatants were analyzed for the presence of 1-alkenes. The cell pellet extractions and GC analysis was performed as described in Example 5.
[0202] Analysis of the GC chromatograms and quantification of peaks with the same retention times as authentic standards revealed the presence of shorter chain-length alkenes produced by some of the engineered alkene synthases (Table 4). JCC2375 (nonA_safB) was particularly noteworthy as the 1-alkenes produced were primarily 1-tridecene and 1-pentadecene as opposed to the longer chain length 1-alkenes detected from JCC2157 bearing nonA_optV6 (FIG. 9). The mass spectra for the 1-tridecene peak in comparison with the authentic standard is shown in FIG. 10. This olefin (1-tridecene) is 4-6 methylene units shorter than the 1-alkenes produced by the wild-type enzyme. This demonstrates that the chain length specificity of these enzymes can be changed via tailoring of their acyl-binding pockets.
TABLE-US-00004 TABLE 4 The optical densities of the cultures and the mg/L of the 1-alkenes produced by the BL21 DE(3) strains. Distribution of 1-alkenes in cells as mg/L of BL21 Total 1-alkenes culture strain IABP OD600 (mg/L of culture) C19:1 C19:2 C17:1 C15:1 C13:1 JCC2358 dptE 6.2 0.03 0.007 -- 0.027 -- 0.008 JCC2375 safB 6.2 0.05 0.006 -- 0.004 0.036 0.015 JCC2372 mycA 5.9 0.04 0.009 0.009 0.026 -- 0.009 JCC2157 nonA 6.1 0.39 0.153 0.088 0.149 0.004 --
[0203] Complete cites to various articles referred to herein are provided below:
[0204] Arora, P., Goyal, A., Natarajan, V. T., Rajakumara, E., Verma, P., Gupta, R., Yousuf, M., Triveda, O. A., Mohanty, D., Tyagi, A., Sankaranarayanan, R. and Gokhale, R. S. 2009. Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis. Nature Chemical Biology 5: 166-173.
[0205] Gu, L., Wang, B., Kulkarni, A., Gehret, J. J., Lloyd, K. R., Gerwick, L., Gerwick, W. H., Wipf, P., Hakannson, K., Smith, J. L. and Sherman, D. H. 2009. Polyketide decarboxylative chain termination preceded by O-sulfonation in curacin A biosynthesis. Journal of the American Chemical Society 131: 16033-16035.
[0206] Hansen, D. B., Bumpus, S. B., Aron, Z. D., Kelleher, N. L. and Walsh, C. T. 2007. The loading module of mycosubtilin: An adenylation domain with fatty acid selectivity. Journal of the American Chemical Society 129: 6366-6367.
[0207] Koketsu, K., Watanabe, K., Suda, H., Oguri, H. and Oikawa, H. 2010. Reconstruction of the saframycin core scaffold defines dual Pictet-Spengler mechanisms. Nature Chemical Biology 6: 408-410.
[0208] Kopp, F., Linne, U., Oberthur, M. and Marahiel, M. A. 2008. Harnessing the chemical activation inherent to carrier protein-bound thioesters for the characterization of lipopeptide fatty acid tailoring enzymes. Journal of the American Chemical Society 130: 2656-2666.
[0209] Li, L., Deng, W., Song, J., Ding, W., Zhao, Q.-F., Peng, C., Song, W.-W., Tang, G.-L. and Liu, W. 2008. Characterization of the Saframycin A gene cluster from Streptomyces lavendulae NRRL 11002 revealing a nonribosomal peptide synthetase system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. Journal of Bacteriology 190: 251-263.
[0210] Lin, J.-W., Chao, Y-.F. and Weng, S.-F. 1996. Nucleotide sequence and functional analysis of the luxE gene encoding acyl-protein synthetase of the lux operon from Photobacterium leiognathi. Biochemical and Biophysical Research Communications 228: 764-773.
[0211] Murata, N., Wada, H. and Gombos, Z. 1992. Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiology 33: 933-941.
[0212] Wittmann, M., Linne, U., Pohlmann, V. and Marahiel, M. A. 2008. Role of DptE and DptF in the lipidation reaction of daptomycin. FEBS Journal 275: 5343-5354.
[0213] Wyckoff, T. J. O., Lin, S., Cotter, R. J., Dotson, G. D. and Raetz, C. R. H. 1998. Hydrocarbon rulers in UDP-N-acetylglucosamine acyltransferases. The Journal of Biological Chemistry 273: 32369-32372.
[0214] Yuan, L., Voelker, T. A. and Hawkins, D. J. 1995. Modification in the substrate specificity of an acyl-acyl carrier protein thioesterase by protein engineering. Proceedings of the National Academy of Sciences of the United States of America 92: 10639-10643.
[0215] All publications, patents and other references mentioned herein are hereby incorporated by reference in their entireties and for all purposes.
TABLE-US-00005 INFORMAL SEQUENCE LISTING SEQ ID NO: 1 Nucleotide nonA >SYNPCC7002_A1173 polyketide synthase (PKS) [Synechococcus sp. PCC 7002 Interior Acyl Binding Pocket underlined ATGGTTGGTCAATTTGCAAATTTCGTCGATCTGCTCCAGTACAGAGCTAAACTTCAGGCGCGGAAAACCG TGTTTAGTTTTCTGGCTGATGGCGAAGCGGAATCTGCGGCCCTGACCTACGGAGAATTAGACCAAAAAGC CCAGGCGATCGCCGCTTTTTTGCAAGCTAACCAGGCTCAAGGGCAACGGGCATTATTACTTTATCCACCG GGTTTAGAGTTTATCGGTGCCTTTTTGGGATGTTTGTATGCTGGTGTTGTTGCGGTGCCAGCTTACCCAC CACGGCCGAATAAATCCTTTGACCGCCTCCATAGCATTATCCAAGATGCCCAGGCAAAATTTGCCCTCAC CACAACAGAACTTAAAGATAAAATTGCCGATCGCCTCGAAGCTTTAGAAGGTACGGATTTTCATTGTTTG GCTACAGATCAAGTTGAATTAATTTCAGGAAAAAATTGGCAAAAACCGAACATTTCCGGCACAGATCTCG CTTTTTTGCAATACACCAGTGGCTCCACGGGCGATCCTAAAGGAGTGATGGTTTCCCACCACAATTTGAT CCACAACTCCGGCTTGATTAACCAAGGATTCCAGGATACAGAGGCGAGTATGGGCGTTTCCTGGTTGCCG CCCTACCATGATATGGGCTTGATCGGTGGGATTTTACAGCCCATCTATGTGGGAGCAACGCAAATTTTAA TGCCTCCCGTGGCCTTTTTGCAGCGACCTTTTCGGTGGCTAAAGGCGATCAACGATTATCGGGTTTCCAC CAGCGGTGCGCCGAATTTTGCCTATGATCTCTGTGCCAGCCAAATTACCCCGGAACAAATCAGAGAACTC GATTTGAGCTGTTGGCGACTGGCTTTTTCCGGGGCCGAACCGATCCGCGCTGTGACCCTCGAAAATTTTG CGAAAACCTTCGCTACAGCAGGCTTTCAAAAATCAGCATTTTATCCCTGTTATGGTATGGCTGAAACCAC CCTGATCGTTTCCGGTGGTAATGGTCGTGCCCAGCTTCCCCAGGAAATTATCGTCAGCAAACAGGGCATC GAAGCAAACCAAGTTCGCCCTGCCCAAGGGACAGAAACAACGGTGACCTTGGTCGGCAGTGGTGAAGTGA TTGGCGACCAAATTGTCAAAATTGTTGACCCCCAGGCTTTAACAGAATGTACCGTCGGTGAAATTGGCGA AGTATGGGTTAAGGGCGAAAGTGTTGCCCAGGGCTATTGGCAAAAGCCAGACCTCACCCAGCAACAATTC CAGGGAAACGTCGGTGCAGAAACGGGCTTTTTACGCACGGGCGATCTGGGTTTTTTGCAAGGTGGCGAAC TGTATATTACGGGTCGTTTAAAGGATCTCCTGATTATCCGGGGGCGCAACCACTATCCCCAGGACATTGA ATTAACCGTCGAAGTGGCCCATCCCGCTTTACGACAGGGGGCCGGAGCCGCTGTATCAGTAGACGTTAAC GGGGAAGAACAGTTAGTCATTGTCCAGGAAGTTGAGCGTAAATATGCCCGCAAATTAAATGTCGCGGCAG TAGCCCAAGCTATTCGTGGGGCGATCGCCGCCGAACATCAACTGCAACCCCAGGCCATTTGTTTTATTAA ACCCGGTAGCATTCCCAAAACATCCAGCGGGAAGATTCGTCGCCATGCCTGCAAAGCTGGTTTTCTAGAC GGAAGCTTGGCTGTGGTTGGGGAGTGGCAACCCAGCCACCAAAAAGAAGGAAAAGGAATTGGGACACAAG CCGTTACCCCTTCTACGACAACATCAACGAATTTTCCCCTGCCTGACCAGCACCAACAGCAAATTGAAGC CTGGCTTAAGGATAATATTGCCCATCGCCTCGGCATTACGCCCCAACAATTAGACGAAACGGAACCCTTT GCAAGTTATGGGCTGGATTCAGTGCAAGCAGTACAGGTCACAGCCGACTTAGAGGATTGGCTAGGTCGAA AATTAGACCCCACTCTGGCCTACGATTATCCGACCATTCGCACCCTGGCTCAGTTTTTGGTCCAGGGTAA TCAAGCGCTAGAGAAAATACCACAGGTGCCGAAAATTCAGGGCAAAGAAATTGCCGTGGTGGGTCTCAGT TGTCGTTTTCCCCAAGCTGACAACCCCGAAGCTTTTTGGGAATTATTACGTAATGGTAAAGATGGAGTTC GCCCCCTTAAAACTCGCTGGGCCACGGGAGAATGGGGTGGTTTTTTAGAAGATATTGACCAGTTTGAGCC GCAATTTTTTGGCATTTCCCCCCGGGAAGCGGAACAAATGGATCCCCAGCAACGCTTACTGTTAGAAGTA ACCTGGGAAGCCTTGGAACGGGCAAATATTCCGGCAGAAAGTTTACGCCATTCCCAAACGGGGGTTTTTG TCGGCATTAGTAATAGTGATTATGCCCAGTTGCAGGTGCGGGAAAACAATCCGATCAATCCCTACATGGG GACGGGCAACGCCCACAGTATTGCTGCGAATCGTCTGTCTTATTTCCTCGATCTCCGGGGCGTTTCTCTG AGCATCGATACGGCCTGTTCCTCTTCTCTGGTGGCGGTACATCTGGCCTGTCAAAGTTTAATCAACGGCG AATCGGAGTTGGCGATCGCCGCCGGGGTGAATTTGATTTTGACCCCCGATGTGACCCAGACTTTTACCCA GGCGGGCATGATGAGTAAGACGGGCCGTTGCCAGACCTTTGATGCCGAGGCTGATGGCTATGTGCGGGGC GAAGGTTGTGGGGTCGTTCTCCTCAAACCCCTGGCCCAGGCAGAACGGGACGGGGATAATATTCTCGCGG TGATCCACGGTTCGGCGGTGAATCAAGATGGACGCAGTAACGGTTTGACGGCTCCCAACGGGCGATCGCA ACAGGCCGTTATTCGCCAAGCCCTGGCCCAAGCCGGCATTACCGCCGCCGATTTAGCTTACCTAGAGGCC CACGGCACCGGCACGCCCCTGGGTGATCCCATTGAAATTAATTCCCTGAAGGCGGTTTTACAAACGGCGC AGCGGGAACAGCCCTGTGTGGTGGGTTCTGTGAAAACAAACATTGGTCACCTCGAGGCAGCGGCGGGCAT CGCGGGCTTAATCAAGGTGATTTTGTCCCTAGAGCATGGAATGATTCCCCAACATTTGCATTTTAAGCAG CTCAATCCCCGCATTGATCTAGACGGTTTAGTGACCATTGCGAGCAAAGATCAGCCTTGGTCAGGCGGGT CACAAAAACGGTTTGCTGGGGTAAGTTCCTTTGGGTTTGGTGGCACCAATGCCCACGTGATTGTCGGGGA CTATGCTCAACAAAAATCTCCCCTTGCTCCTCCGGCTACCCAAGACCGCCCTTGGCATTTGCTGACCCTT TCTGCTAAAAATGCCCAGGCCTTAAATGCCCTGCAAAAAAGCTATGGAGACTATCTGGCCCAACATCCCA GCGTTGACCCACGCGATCTCTGTTTGTCTGCCAATACCGGGCGATCGCCCCTCAAAGAACGTCGTTTTTT TGTCTTTAAACAAGTCGCCGATTTACAACAAACTCTCAATCAAGATTTTCTGGCCCAACCACGCCTCAGT TCCCCCGCAAAAATTGCCTTTTTGTTTACGGGGCAAGGTTCCCAATACTACGGCATGGGGCAACAACTGT ACCAAACCAGCCCAGTATTTCGGCAAGTGCTGGATGAGTGCGATCGCCTCTGGCAGACCTATTCCCCCGA AGCCCCTGCCCTCACCGACCTGCTGTACGGTAACCATAACCCTGACCTCGTCCACGAAACTGTCTATACC CAGCCCCTCCTCTTTGCTGTTGAATATGCGATCGCCCAACTATGGTTAAGCTGGGGCGTGACGCCAGACT TTTGCATGGGCCATAGCGTCGGCGAATATGTCGCGGCTTGTCTGGCGGGGGTATTTTCCCTGGCAGACGG CATGAAATTAATTACGGCCCGGGGCAAACTGATGCACGCCCTACCCAGCAATGGCAGTATGGCGGCGGTC TTTGCCGATAAAACGGTCATCAAACCCTACCTATCGGAGCATTTGACCGTCGGAGCCGAAAACGGTTCCC ATTTGGTGCTATCAGGAAAGACCCCCTGCCTCGAAGCCAGTATTCACAAACTCCAAAGCCAAGGGATCAA AACCAAACCCCTCAAGGTTTCCCATGCTTTCCACTCCCCTTTGATGGCTCCCATGCTGGCAGAGTTTCGG GAAATTGCTGAACAAATTACTTTCCACCCGCCGCGTATCCCGCTCATTTCCAATGTCACGGGCGGCCAGA TTGAAGCGGAAATTGCCCAGGCCGACTATTGGGTTAAGCACGTTTCGCAACCCGTCAAATTTGTCCAGAG CATCCAAACCCTGGCCCAAGCGGGTGTCAATGTTTATCTCGAAATCGGCGTAAAACCAGTGCTCCTGAGT ATGGGACGCCATTGCTTAGCTGAACAAGAAGCGGTTTGGTTGCCCAGTTTACGTCCCCATAGTGAGCCTT GGCCGGAAATTTTGACCAGTCTCGGCAAACTGTATGAGCAAGGGCTAAACATTGACTGGCAGACCGTGGA AGCTGGCGATCGCCGCCGGAAACTGATTCTGCCCACCTATCCCTTCCAACGGCAACGATATTGGTTTAAT CAAGGCTCTTGGCAAACTGTTGAGACCGAATCTGTGAACCCAGGCCCTGACGATCTCAATGATTGGTTGT ATCAGGTGGCGTGGACGCCCCTGGACACTTTGCCCCCGGCCCCTGAACCGTCGGCTAAGCTGTGGTTAAT CTTGGGCGATCGCCATGATCACCAGCCCATTGAAGCCCAATTTAAAAACGCCCAGCGGGTGTATCTCGGC CAAAGCAATCATTTTCCGACGAATGCCCCCTGGGAAGTATCTGCCGATGCGTTGGATAATTTATTTACTC ACGTCGGCTCCCAAAATTTAGCAGGCATCCTTTACCTGTGTCCCCCAGGGGAAGACCCAGAAGACCTAGA TGAAATTCAAAAGCAAACCAGTGGCTTCGCCCTCCAACTGATCCAAACCCTGTATCAACAAAAGATCGCG GTTCCCTGCTGGTTTGTGACCCACCAGAGCCAACGGGTGCTTGAAACCGATGCTGTCACCGGATTTGCCC AAGGGGGATTATGGGGACTCGCCCAGGCGATCGCCCTCGAACATCCAGAGTTGTGGGGGGGAATTATTGA TGTCGATGACAGCCTGCCAAATTTTGCCCAGATTTGCCAACAAAGACAGGTGCAGCAGTTGGCCGTGCGG CACCAAAAACTCTACGGGGCACAGCTCAAAAAGCAACCGTCACTGCCCCAGAAAAATCTCCAGATTCAAC CCCAACAGACCTATCTAGTGACAGGGGGACTGGGGGCCATTGGCCGTAAAATTGCCCAATGGCTAGCCGC AGCAGGAGCAGAAAAAGTAATTCTCGTCAGCCGGCGCGCTCCGGCAGCGGATCAGCAGACGTTACCGACC AATGCGGTGGTTTATCCTTGCGATTTAGCCGACGCAGCCCAGGTGGCAAAGCTGTTTCAAACCTATCCCC ACATCAAAGGAATTTTCCATGCGGCGGGTACCTTAGCTGATGGTTTGCTGCAACAACAAACTTGGCAAAA GTTCCAGACCGTCGCCGCCGCCAAAATGAAAGGGACATGGCATCTGCACCGCCATAGTCAAAAGCTCGAT CTGGATTTTTTTGTGTTGTTTTCCTCTGTGGCAGGGGTGCTCGGTTCACCGGGACAGGGGAATTATGCCG CCGCAAACCGGGGCATGGCGGCGATCGCCCAATATCGACAAGCCCAAGGTTTACCCGCCCTGGCGATCCA TTGGGGGCCTTGGGCCGAAGGGGGAATGGCCAACTCCCTCAGCAACCAAAATTTAGCGTGGCTGCCGCCC CCCCAGGGACTAACAATCCTCGAAAAAGTCTTGGGCGCCCAGGGGGAAATGGGGGTCTTTAAACCGGACT GGCAAAACCTGGCCAAACAGTTCCCCGAATTTGCCAAAACCCATTACTTTGCAGCCGTTATTCCCTCTGC TGAGGCTGTGCCCCCAACGGCTTCAATTTTTGACAAATTAATCAACCTAGAAGCTTCTCAGCGGGCTGAC TATCTACTGGATTATCTGCGGCGGTCTGTGGCGCAAATCCTCAAGTTAGAAATTGAGCAAATTCAAAGCC ACGATAGCCTGTTGGATCTGGGCATGGATTCGTTGATGATCATGGAGGCGATCGCCAGCCTCAAGCAGGA TTTACAACTGATGTTGTACCCCAGGGAAATCTACGAACGGCCCAGACTTGATGTGTTGACGGCCTATCTA GCGGCGGAATTCACCAAGGCCCATGATTCTGAAGCAGCAACGGCGGCAGCAGCGATTCCCTCCCAAAGCC TTTCGGTCAAAACAAAAAAACAGTGGCAAAAACCTGACCACAAAAACCCGAATCCCATTGCCTTTATCCT CTCTAGCCCCCGGTCGGGTTCGACGTTGCTGCGGGTGATGTTAGCCGGACATCCGGGGTTATATTCGCCG CCAGAGCTGCATTTGCTCCCCTTTGAGACTATGGGCGATCGCCACCAGGAATTGGGTCTATCCCACCTCG GCGAAGGGTTACAACGGGCCTTAATGGATCTAGAAAACCTCACCCCAGAGGCAAGCCAGGCGAAGGTCAA CCAATGGGTCAAAGCGAATACACCCATTGCAGACATCTATGCCTATCTCCAACGGCAGGCGGAACAACGT TTACTCATCGACAAATCTCCCAGCTACGGCAGCGATCGCCATATTCTAGACCACAGCGAAATCCTCTTTG ACCAGGCCAAATATATCCATCTGGTACGCCATCCCTACGCGGTGATTGAATCCTTTACCCGACTGCGGAT GGATAAACTGCTGGGGGCCGAGCAGCAGAACCCCTACGCCCTCGCGGAGTCCATTTGGCGCACCAGCAAC CGCAATATTTTAGACCTGGGTCGCACGGTTGGTGCGGATCGATATCTCCAGGTGATTTACGAAGATCTCG TCCGTGACCCCCGCAAAGTTTTGACAAATATTTGTGATTTCCTGGGGGTGGACTTTGACGAAGCGCTCCT CAATCCCTACAGCGGCGATCGCCTTACCGATGGCCTCCACCAACAGTCCATGGGCGTCGGGGATCCCAAT TTCCTCCAGCACAAAACCATTGATCCGGCCCTCGCCGACAAATGGCGCTCAATTACCCTGCCCGCTGCTC TCCAGCTGGATACGATCCAGTTGGCCGAAACGTTTGCTTACGATCTCCCCCAGGAACCCCAGCTAACACC CCAGACCCAATCCTTGCCCTCGATGGTGGAGCGGTTCGTGACAGTGCGCGGTTTAGAAACCTGTCTCTGT GAGTGGGGCGATCGCCACCAACCATTGGTGCTACTTCTCCACGGCATCCTCGAACAGGGGGCCTCCTGGC AACTCATCGCGCCCCAGTTGGCGGCCCAGGGCTATTGGGTTGTGGCCCCAGACCTGCGTGGTCACGGCAA ATCCGCCCATGCCCAGTCCTACAGCATGCTTGATTTTTTGGCTGACGTAGATGCCCTTGCCAAACAATTA GGCGATCGCCCCTTTACCTTGGTGGGCCACTCCATGGGTTCCATCATCGGTGCCATGTATGCAGGAATTC GCCAAACCCAGGTAGAAAAGTTGATCCTCGTTGAAACCATTGTCCCCAACGACATCGACGACGCTGAAAC CGGTAATCACCTGACGACCCATCTCGATTACCTCGCCGCGCCCCCCCAACACCCGATCTTCCCCAGCCTA GAAGTGGCCGCCCGTCGCCTCCGCCAAGCCACGCCCCAACTACCCAAAGACCTCTCGGCGTTCCTCACCC AGCGCAGCACCAAATCCGTCGAAAAAGGGGTGCAGTGGCGTTGGGATGCTTTCCTCCGTACCCGGGCGGG CATTGAATTCAATGGCATTAGCAGACGACGTTACCTGGCCCTGCTCAAAGATATCCAAGCGCCGATCACC CTCATCTATGGCGATCAGAGTGAATTTAACCGCCCTGCTGATCTCCAGGCGATCCAAGCGGCTCTCCCCC AGGCCCAACGTTTAACGGTTGCTGGCGGCCATAACCTCCATTTTGAGAATCCCCAGGCGATCGCCCAAAT TGTTTATCAACAACTCCAGACCCCTGTACCCAAAACACAATAA SEQ ID NO: 2 Amino Acid NonA >gi|170077790|ref|YP_001734428.1|polyketide synthase [Synechococcus sp. PCC 7002] Interior Acyl Binding Pocket underlined MVGQFANFVDLLQYRAKLQARKTVFSFLADGEAESAALTYGELDQKAQAIAAFLQANQAQGQRALLLYPP GLEFIGAFLGCLYAGVVAVPAYPPRPNKSFDRLHSIIQDAQAKFALTTTELKDKIADRLEALEGTDFHCL ATDQVELISGKNWQKPNISGTDLAFLQYTSGSTGDPKGVMVSHHNLIHNSGLINQGFQDTEASMGVSWLP PYHDMGLIGGILQPIYVGATQILMPPVAFLQRPFRWLKAINDYRVSTSGAPNFAYDLCASQITPEQIREL DLSCWRLAFSGAEPIRAVTLENFAKTFATAGFQKSAFYPCYGMAETTLIVSGGNGRAQLPQEIIVSKQGI EANQVRPAQGTETTVTLVGSGEVIGDQIVKIVDPQALTECTVGEIGEVWVKGESVAQGYWQKPDLTQQQF QGNVGAETGFLRTGDLGFLQGGELYITGRLKDLLIIRGRNHYPQDIELTVEVAHPALRQGAGAAVSVDVN GEEQLVIVQEVERKYARKLNVAAVAQAIRGAIAAEHQLQPQAICFIKPGSIPKTSSGKIRRHACKAGFLD GSLAVVGEWQPSHQKEGKGIGTQAVTPSTTTSTNFPLPDQHQQQIEAWLKDNIAHRLGITPQQLDETEPF ASYGLDSVQAVQVTADLEDWLGRKLDPTLAYDYPTIRTLAQFLVQGNQALEKIPQVPKIQGKEIAVVGLS CRFPQADNPEAFWELLRNGKDGVRPLKTRWATGEWGGFLEDIDQFEPQFFGISPREAEQMDPQQRLLLEV TWEALERANIPAESLRHSQTGVFVGISNSDYAQLQVRENNPINPYMGTGNAHSIAANRLSYFLDLRGVSL SIDTACSSSLVAVHLACQSLINGESELAIAAGVNLILTPDVTQTFTQAGMMSKTGRCQTFDAEADGYVRG EGCGVVLLKPLAQAERDGDNILAVIHGSAVNQDGRSNGLTAPNGRSQQAVIRQALAQAGITAADLAYLEA HGTGTPLGDPIEINSLKAVLQTAQREQPCVVGSVKTNIGHLEAAAGIAGLIKVILSLEHGMIPQHLHFKQ LNPRIDLDGLVTIASKDQPWSGGSQKRFAGVSSFGFGGTNAHVIVGDYAQQKSPLAPPATQDRPWHLLTL SAKNAQALNALQKSYGDYLAQHPSVDPRDLCLSANTGRSPLKERRFFVFKQVADLQQTLNQDFLAQPRLS SPAKIAFLFTGQGSQYYGMGQQLYQTSPVFRQVLDECDRLWQTYSPEAPALTDLLYGNHNPDLVHETVYT QPLLFAVEYAIAQLWLSWGVTPDFCMGHSVGEYVAACLAGVFSLADGMKLITARGKLMHALPSNGSMAAV FADKTVIKPYLSEHLTVGAENGSHLVLSGKTPCLEASIHKLQSQGIKTKPLKVSHAFHSPLMAPMLAEFR EIAEQITFHPPRIPLISNVTGGQIEAEIAQADYWVKHVSQPVKFVQSIQTLAQAGVNVYLEIGVKPVLLS MGRHCLAEQEAVWLPSLRPHSEPWPEILTSLGKLYEQGLNIDWQTVEAGDRRRKLILPTYPFQRQRYWFN QGSWQTVETESVNPGPDDLNDWLYQVAWTPLDTLPPAPEPSAKLWLILGDRHDHQPIEAQFKNAQRVYLG QSNHFPTNAPWEVSADALDNLFTHVGSQNLAGILYLCPPGEDPEDLDEIQKQTSGFALQLIQTLYQQKIA VPCWFVTHQSQRVLETDAVTGFAQGGLWGLAQAIALEHPELWGGIIDVDDSLPNFAQICQQRQVQQLAVR HQKLYGAQLKKQPSLPQKNLQIQPQQTYLVTGGLGAIGRKIAQWLAAAGAEKVILVSRRAPAADQQTLPT NAVVYPCDLADAAQVAKLFQTYPHIKGIFHAAGTLADGLLQQQTWQKFQTVAAAKMKGTWHLHRHSQKLD LDFFVLFSSVAGVLGSPGQGNYAAANRGMAAIAQYRQAQGLPALAIHWGPWAEGGMANSLSNQNLAWLPP PQGLTILEKVLGAQGEMGVFKPDWQNLAKQFPEFAKTHYFAAVIPSAEAVPPTASIFDKLINLEASQRAD YLLDYLRRSVAQILKLEIEQIQSHDSLLDLGMDSLMIMEAIASLKQDLQLMLYPREIYERPRLDVLTAYL AAEFTKAHDSEAATAAAAIPSQSLSVKTKKQWQKPDHKNPNPIAFILSSPRSGSTLLRVMLAGHPGLYSP PELHLLPFETMGDRHQELGLSHLGEGLQRALMDLENLTPEASQAKVNQWVKANTPIADIYAYLQRQAEQR LLIDKSPSYGSDRHILDHSEILFDQAKYIHLVRHPYAVIESFTRLRMDKLLGAEQQNPYALAESIWRTSN RNILDLGRTVGADRYLQVIYEDLVRDPRKVLTNICDFLGVDFDEALLNPYSGDRLTDGLHQQSMGVGDPN FLQHKTIDPALADKWRSITLPAALQLDTIQLAETFAYDLPQEPQLTPQTQSLPSMVERFVTVRGLETCLC EWGDRHQPLVLLLHGILEQGASWQLIAPQLAAQGYWVVAPDLRGHGKSAHAQSYSMLDFLADVDALAKQL GDRPFTLVGHSMGSIIGAMYAGIRQTQVEKLILVETIVPNDIDDAETGNHLTTHLDYLAAPPQHPIFPSL EVAARRLRQATPQLPKDLSAFLTQRSTKSVEKGVQWRWDAFLRTRAGIEFNGISRRRYLALLKDIQAPIT LIYGDQSEFNRPADLQAIQAALPQAQRLTVAGGHNLHFENPQAIAQIVYQQLQTPVPKTQ SEQ ID NO: 3: Nucleotide IABP (Interior Acyl Binding Pocket) of nonA ATTAACCAAGGATTCCAGGATACAGAGGCGAGTATGGGCGTTTCCTGGTTGCCGCCCTACCATGATATGGGCTT- GAT CGGTGGGATTTTACAGCCCATCTATGTGGGAGCAACGCAAATTTTAATGCCTCCCGTGGCCTTTTTGCAGCGAC- CTT TTCGGTGGCTAAAGGCGATCAACGATTATCGGGTTTCCACCAGCGGTGCGCCGAATTTTGCCTATGATCTCTGT- GCC AGCCAAATTACCCCGGAACAAATCAGAGAACTCGATTTGAGCTGTTGGCGACTGGCTTTTTCC SEQ ID NO: 4: Amino Acid IABP (Interior Acyl Binding Pocket) of NonA INQGFQDTEASMGVSWLPPYHDMGLIGGILQPIYVGATQILMPPVAFLQRPFRWLKAINDYRVSTSGAPNFAYD- LCS QITPEQIRELDLSCWRLAFS SEQ ID NO: 5 Nucleotide Ipg2229 saframycin Mx1 synthetase B (safB) >gi|52840256: 25|9995-2521740 Legionella pneumophila subsp. pneumophila str. Philadelphia 1 chromosome, complete genome Interior Acyl Binding Pocket underlined GTGAAAAAAGAATATTTGCAGTGCCAGTCTCTGGTTGACGTCGTCAGGTTACGTGCTTTACACAGCCCTA ACAAGAAAAGCTGTACTTTTCTGAACAAAGAGTTGGAAGAGACGATGACTTATGAGCAACTGGATCAACA CGCCAAAGCAATTGCGGCAACTTTGCAAGCAGAAGGAGCAAAACCTGGGGATAGGGTCTTGTTATTGTTT GCACCTGGATTACCCCTTATCCAGGCATTTTTGGGCTGCCTTTATGCAGGCTGCATTGCTGTACCCATTT ACCCACCAGCCCAAGAAAAATTATTGGACAAGGCACAACGCATAGTTACCAACTCAAAACCGGTCATAGT ACTGATGATTGCGGATCACATCAAAAAATTCACCGCAGACGAATTAAATACAAATCCCAAATTCCTGAAA ATTCCTGCTATTGCGCTTGAGAGCATTGAGTTAAACAGAAGTAGTAGTTGGCAACCAACCTCCATTAAGA GCAATGACATTGCGTTTCTGCAATACACTTCCGGCTCAACCATGCACCCTAAAGGAGTGATGGTAAGCCA CCATAATTTACTGGATAATCTGAATAAS ATTTTTACCTCTTTTCATATGAATGATGAAACCATTATTTTC AGCTGGCTGCCCCCACATCATGATATGGGTTTGATTGGCTGCATTCTGACCCCCATCTATGGTGGAATTC AGGCAATCATGATGTCCCCTTTCTCATTTTTACAAAACCCGCTTTCCTGGTTAAAACATATTACCAAATA CAAAGCAACTATCAGTGGAAGCCCTAACTTCGCTTACGATTATTGTGTCAAACGAATCAGGGAAGAAAAA AAAGAAGGGCTGGATTTAAGTTCATGGGTGACTGCTTTCAAC GGTGCTGAGCCAGTACGAGAAGAAACCA TGGAACATTTTTATCAGGCATTTAAAGAGTTTGGATTTCGTAAAGAAGCCTTCTATCCATGCTATGGCCT GGCTGAGGCCACTTTGTTAGTGACGGGAGGAACACCAGGAAGTTCATACAAAACATTAACTCTGGCCAAA GAACAATTTCAAGATCATCGCGTGCATTTTGCAGACGATAACAGTCCAGGCAGTTACAAGTTAGTCAGCA GTGGTAATCCCATTCAAGAAGTTAAAATTATAGATCCTGATACCTTGATCCCATGTGATTTTGACCAGGT TGGTGAAATTTGGGTACAAAGTAACAGTGTCGCCAAAGGATATTGGAATCAACCCGAAGAAACAAGGCAT GCGTTCGCAGGAAAAATTAAAGACGATGAGCGTAGCGCAATCTATTTAAGAACCGGGGACTTGGGCTTTC TCCATGAAAATGAGTTATACGTTACTGGACGCATTAAAGACTTAATTATTATTTATGGTAAAAATCATTA TCCTCAGGACATAGAGTTCAGCCTGATGCATTCTCCGCTCCATCACGTATTGGGCAAATGCGCTGCTTTT GTGATTCAGGAGGAGCATGAATATAAACTGACTGTGATGTGTGAAGTAAAAAATCGATTCATGGATGACG TAGCTCAAGACAATTTATTCAATGAGATTTTTGAGCTTGTTTACGAAAACCACCAATTGGAGGTACATAC TATAGTCCTGATTCCTCTTAAAGCAATGCCACATACTACCAGCGGAAAAATTCGCAGGAATTTTTGTCGA AAACATCTTTTGGATAAAACTCTGCCAATAGTGGCTACCTGGCAACTCAATAAAATTGAGGAATAA SEQ ID NO: 6 Amino Acid Saframycin Mx1 synthetase B (Legionella pneumophila) SafB AAU28294.1 Interior Acyl Binding Pocket domain underlined 10 20 30 40 50 60 MKKEYLQCQS LVDVVRLRAL HSPNKKSCTF LNKELEETMT YEQLDQHAKA IAATLQAEGA 70 80 90 100 110 120 KPGDRVLLLF APGLPLIQAF LGCLYAGCIA VPIYPPAQEK LLDKAQRIVT NSKPVIVLMI 130 140 150 160 170 180 ADHIKKFTAD ELNTNPKFLK IPAIALESIE LNRSSSWQPT SIKSNDIAFL QYTSGSTMHP 190 200 210 220 230 240 KGVMVSHHNL LDNLNKIFTS FHMNDETIIF SWLPPHHDMG LIGCILTPIY GGIQAIMMSP 250 260 270 280 290 300 FSFLQNPLSW LKHITKYKAT ISGSPNFAYD YCVKRIREEK KEGLDLSSWV TAFNGAEPVR 310 320 330 340 350 360 EETMEHFYQA FKEFGFRKEA FYPCYGLAEA TLLVTGGTPG SSYKTLTLAK EQFQDHRVHF 370 380 390 400 410 420
ADDNSPGSYK LVSSGNPIQE VKIIDPDTLI PCDFDQVGEI WVQSNSVAKG YWNQPEETRH 430 440 450 460 470 480 AFAGKIKDDE RSAIYLRTGD LGFLHENELY VTGRIKDLII IYGKNHYPQD IEFSLMHSPL 490 500 510 520 530 540 HHVLGKCAAF VIQEEHEYKL TVMCEVKNRF MDDVAQDNLF NEIFELVYEN HQLEVHTIVL 550 560 570 580 IPLKAMPHTT SGKIRRNFCR KHLLDKTLPI VATWQLNKIE E SEQ ID NO: 7 Nucleotide Interior Acyl Binding Pocket of safB ATTTTTACCTCTTTTCATATGAATGATGAAACCATTATTTTCAGCTGGCTGCCCCCACATCATGATATGGGTTT- GAT TGGCTGCATTCTGACCCCCATCTATGGTGGAATTCAGGCAATCATGATGTCCCCTTTCTCATTTTTACAAAACC- CGC TTTCCTGGTTAAAACATATTACCAAATACAAAGCAACTATCAGTGGAAGCCCTAACTTCGCTTACGATTATTGT- GTC AAACGAATCAGGGAAGAAAAAAAAGAAGGGCTGGATTTAAGTTCATGGGTGACTGCTTTCAAC SEQ ID NO: 8 Amino Acid Interior Acyl Binding Pocket of SafB IFTSFHMNDETIIFSWLPPHHDMGLIGCILTPIYGGIQAIMMSPFSFLQNPLSWLKHITKYKATISGSPNFAYD- YCV KRIREEKKEGLDLSSWVTAFN SEQ ID NO: 9 Nucleotide Mycosubtilin synthase subunit mycA(YP_003866245.1) >gi|305672698: c1947930-1936015 Bacillus subtilis subsp. spizizenii str. W23 chromosome, complete genome Interior Acyl Binding Pocket domain underlined ATGTATACCAGTCAATTTCAAACCTTAGTCGATGTTATTCGGAATAGAAGCAATATATCAGATCGCGGGA TCCGTTTTATCGAATCCGATAAAATCGAGACATTTGTCTCTTATCGCCAATTGTTTGACGAGGCGCAAGG TTTTCTTGGCTACTTACAACATATCGGCATTCAGCCAAAGCAAGAAATTGTGTTTCAAATTCAAGAAAAC AAATCATTTGTCGTCGCTTTTTGGGCGTGTTTATTAGGAGGAATGATTCCGGTACCCGTCAGTATCGGAG AAGATAATGACCACAAGCTAAAGGTATGGCGCATTTGGAATATTTTAAACAATCCATTCTTGCTAGCCTC TGAAACAGTATTAGATAAAATGAAAAAATTTGCTGCTGATCACGATTTACAAGATTTCCATCATCAATTA ATCGAGAAATCCGACATCATTCAGGATCGAATCTACGATCACCCGGCTTCGCAATATGAACCTGAAGCCG ATGAATTGGCCTTTATTCAATTTTCTTCGGGATCAACAGGAGACCCGAAAGGAGTCATGCTAACCCATCA TAACTTAATACATAATACATGTGCAATCCGGAATGCGCTGGCTATCGACTTAAAAGATACTCTTTTATCT TGGATGCCCTTAACCCATGACATGGGGCTCATAGCTTGCCACCTTGTTCCTGCCTTAGCCGGAATCAATC AAAATTTAATGCCGACAGAATTATTTATTCGAAGACCTATTCTCTGGATGAAAAAAGCTCATGAACATAA AGCCAGCATTCTATCCTCACCTAATTTTGGATACAATTACTTTCTTAAATTTCTGAAAGACAATAAAAGT TACGACTGGGATTTATCCCATATCAGGGTCATTGCAAACGGAGCAGAACCTATATTGCCAGAGCTATGTG ATGAATTTTTGACTAGATGCGCAGCATTCAATATGAAACGATCTGCCATCTTAAATGTTTACGGTTTAGC TGAGGCTTCGGTTGGCGCAACATTCTCTAACATCGGAGAAAGATTTGTCCCTGTTTATTTGCATCGCGAT CATCTAAATCTAGGTGAAAGAGCCGTTGAAGTAAGCAAAGAGGATCAAAATTGCGCTTCATTCGTCGAAG TAGGAAAGCCTATTGATTACTGCCAAATTCGAATCTGTAATGAAGCAAACGAAGGATTGGAAGACGGATT TATCGGTCATATCCAGATCAAGGGGGAGAATGTGACCCAAGGGTATTATAACAACCCCGAAAGTACGAAC AGAGCGCTGACTCCCGATGGATGGGTGAAAACGGGAGATCTTGGCTTCATTAGAAAAGGGAATTTAGTCG TAACCGGAAGGGAAAAAGACATTATTTTTGTGAACGGAAAAAATGTGTATCCTCACGATATTGAACGAGT CGCCATTGAATTAGAGGACATTGATTTAGGAAGAGTTGCAGCCTGTGGTGTATATGATCAAGAGACACGA AGCAGAGAAATTGTACTTTTTGCTGTTTACAAAAAATCAGCGGAGCAGTTTGCACCACTTGTTAAAGACA TTAAAAAGCATTTGTACCAGCGAGGCGGATGGAGCATCAAAGAAATCCTGCCGATCCGAAAGCTGCCAAA AACGACAAGCGGGAAAGTTAAACGCTATGAGCTGGCTGAGCAGTATGAGTCGGGGAAATTTGCGCTAGAG TCAACCAAAATCAAGGAATTTTTGGAGGGTCATTCGACGGAACCGGTACAGACTCCTATTCATGAAATCG AAACAGCATTGCTGTCTATCTTTTCAGAAGTGATGGATGGAAAAAAGATTCACCTAAATGATCATTATTT TGACATGGGTGCAACCTCATTACAGTTATCTCAAATTGCCGAACGCATTGAACAAAAGTTTGGTTGTGAG CTTACGGTTGCTGATCTCTTTACATATCCTTCAATCGCTGATTTAGCGGCATTCCTTGTCGAAAACCATT CCGAAATCAAGCAAACTGATACAGCGAAGCCAAGCCGCTCTTCGTCAAAAGACATCGCTATTATCGGGAT GTCCCTCAATGTTCCAGGGGCATCGAATAAGAGTGATTTTTGGCACCTGCTCGAAAACGGTGAGCATGGC ATTCGGGAATATCCTGCACCAAGAGTTAAAGATGCGATAGATTATTTACGATCCATTAAAAGCGAACGTA ACGAAAAACAATTTGTGAAGGGCGGCTATTTAGATGAGATAGACCGTTTTGATTATTCGTTCTTTGGTTT AGCTCCCAAAACCGCAAAATTCATGGATCCCAATCAAAGGCTATTTTTGCAATCCGCATGGCATGCGATT GAAGATGCAGGCTATGCCGGCGACACCATTAGCGGGAGTCAGCTCGGGGTATATGTAGGGTACTCGAAGG TGGGATACGATTACGAACGTCTCCTTTCTGCGAATTATCCGGAGGAGCTTCATCATTATATTGTGGGCAA TCTTCCCTCGGTGTTGGCGAGTCGAATTGCTTACTTTCTAAATTTGAAAGGACCAGCGGTTACCGTGGAT ACAGCTTGCTCTTCGTCACTTGTTGCTGTTCATATGGCATGTAAAGCTTTGCTTACAGGCGATTGTGAAA TGGCTCTTGCCGGGGGTATTCGAACTTCGCTATTACCGATGCGTATCGGTCTCGATATGGAATCTTCTGA CGGGCTCACGAAAACGTTCAGCAAGGATTCGGACGGAACAGGCTCTGGCGAAGGCGTGGCAGCAGTCCTG TTGAAACCTTTGCAGGCTGCGATTCGCGATGGAGATCATATTTATGGTGTGATCAAGGGAAGCGCGATAA ACCAAGACGGGACAACCGTTGGAATCACCGCACCGAGCCCGGCAGCTCAGACCGAGGTGATTGAGATGGC CTGGAAAGACGCTGGCATTGCTCCTGAAACATTGTCTTTCATTGAAGCACACGGCACCGGAACCAAGCTC GGGGATCCTGTTGAATTTAACGGTCTTTGTAAAGCGTTTGAGAAGGTTACGGAAAAGAAACAGTTTTGTG CGATCGGCTCTGTTAAAGCAAACATCGGTCATTTGTTTGAAGCGGCAGGCATCGTTGGACTGATAAAATC TGCCCTTATGTTGAATCACAAAAAAATCCCGCCGCTGGCTCACTTTAATAAACCGAATCCATTAATTCCA TTTCACTCTTCTCCTTTTTATGTGAACCAAGAAGTGATGGATTTCACACCTGAAGACCGACCGCTGCGGG GTGGTATCAGTTCATTCGGTTTTAGCGGAACGAATGCCCATGTAGTATTGGAAGAATATACTCCTGAAAG TGAGTATGCACCGGAGGACGGGAATGATCCGCATTTATTTGTGTTATCCGCCCATACTGAAGCTTCACTA TATGAACTGACTCATCAGTATCGGCAATATATTTCAGATGACAGCCAATCATCATTGAGGTCAATTTGCT ATACGGCCAGTACAGGAAGGGCTCATTTAGATTATTGTTTAGCCATGATTGTATCCAGCAACCAAGAATT AATAGATAAGCTGACCAGTTTGATTCAAGGCGAAAGAAATCTTCCCCAAGTACACTTTGGCTATAAAAAC ATCAAGGAAATGCAGCCTGCCGAAAAAGACAATCTGAGTAAACAAATCTCTGATCTCATGCAGCATCGGC CCTGCACAAAGGATGAACGAATCACATGGTTGAATCGTATTGCAGAATTATATGTGCAAAGAGCCGTGAT TGACTGGCGAGCGGTTTATTCCAATGAAGTTGTACAAAAAACGCCATTGCCTTTGTATCCATTTGAACGG AATCGCTGTTGGGTTGAGGCTGTCTATGAAAGCGCCAAGGAAAGAAAAGAGAAAGGGGAAGTAGCATTGG ATATAAATCATACGAAGACACATATTGAGTCCTTTCTGAAGACTGTCATCAGCAATGCATCGGGAATCAG AGCGGATGAGATCGATTCGAATGCCCATTTTATCGGATTCGGATTGGATTCCATTATGCTGACACAGGTC AAAAAAGCGATCGCAGACGAATTTAATGTGGATATCCCGATGGAACGTTTTTTTGATACGATGAACAACA TTGAAAGTGTTGTCGATTATTTGGCAGAAAATGTTCCATCAGCTGCATCCACTCCGCCTCAAGAAAGTGT TACGGCACAGGAAGAGCTTGTGATATCAGGAGCACAGCCCGAGTTGGAACATCAAGAGCATATGTTGGAC AAAATTATTGCTTCTCAGAATCAATTAATCCAGCAAACTTTACAAGCTCAATTGGATAGCTTTAATTTGT TGAGAAACAACAGCCATTTTGTATCGAAAGAATCCGAGATTTCGCAAGATAAAACGAGCCTTTCTCCTAA ATCTGTCACTGCAAAAAAGAATTCGGCTCAAGAAGCAAAACCTTATATTCCTTTTCAGCGTCAGACCTTG AATGAACAGGTCAACTATACTCCGCAGCAAAGACAATATTTAGAATCATTTATAGAGAAATACGTAGACA AAACGAAAGGTTCCAAGCAATATACGGACGAAACCCGATTTGCTCATGCCAATAACCGCAACTTGTCCAG CTTCCGGTCTTATTGGAAAGAAATGGTTTACCCGATCATCGCTGAACGCTCGGACGGTTCTAGAATGTGG GATATTGATGGAAATGAATATATCGATATCACCATGGGATTTGGGGTTAATCTTTTTGGGCATCACCCGT CCTTTATTACTCAAACCGTCGTTGATTCAACACATTCTGCATTGCCGCCTCTTGGTCCGATGTCAAATGT CGCCGGAGAAGTTGCAGATCGAATTCGTGCATGCACAGGAGTAGAAAGGGTCGCTTTTTATAATTCAGGC ACGGAGGCAGTCATGGTTGCCCTGCGTTTGGCGAGGGCGGCAACAGGAAGAACGAAAGTGGTAGTGTTTG CGGGCTCTTATCACGGCACCTTTGACGGCGTATTAGGTGTTGCCAACACAAAAGGCGGGGCTGAGCCTGC GAATCCGCTGGCTCCGGGCATACCGCAAAGCTTTATGAATGATTTGATTATTTTGCATTACAACCATCCG GATTCATTGGACGTGATTCGCAATTTGGGAAATGAATTGGCAGCCGTTCTGGTGGAACCGGTACAAAGCC GCAGGCCGGATTTGCAGCCAGAATCATTTTTGAAAGAACTGCGGGCAATCACACAGCAATCCGGAACAGC TCTGATTATGGATGAAATTATTACAGGATTTCGGATCGGTCTCGGCGGCGCGCAGGAATGGTTCGACATC CAAGCAGATTTAGTCACTTACGGGAAAATCATCGGCGGCGGCCAGCCTCTAGGTATTGTTGCCGGAAAAG CAGAGTTCATGAATACGATCGATGGCGGCACATGGCAGTATGGAGACGACTCCTATCCAACGGATGAGGC AAAACGCACGTTTGTAGCGGGCACCTTTAATACTCACCCGCTTACGATGAGAATGTCATTAGCCGTGCTT CGATATCTTCAAGCCGAGGGAGAAACTCTGTATGAACGGTTAAATCAAAAGACAACCTACTTGGTTGATC AATTGAATTCCTATTTTGAACAATCGCAAGTGCCCATTCGTATGGTCCAATTTGGTTCCTTATTCCGGTT TGTCTCTTCGGTTGATAATGATTTGTTCTTTTACCATCTCAATTATAAAGGAGTCTATGTTTGGGAAGGA CGCAACTGCTTCTTGTCTACGGCCCATACTTCCGATGATATTGCTTATATCATTCAAGCCGTTCAAGAAA CGGTGAAAGATCTTCGCCGCGGCGGATTTATTCCAGAAGGGCCGGATTCTCCTAATGACGGAGGCCATAA AGAACCCGAAACATACGAGCTTTCTCCTGAACAAAAACAATTGGCTGTAGTATCCCAGTATGGGAATGAT GCTTCTGCGGCATTGAATCAATCTATTATGCTAAAAGTGAAAGGGGCGGTGCAGCATACGCTGTTAAAAC AAGCGGTGCGAAATATTGTAAAACGCCATGACGCTTTACGCACAGTCATTCATGTCGATGACGAAGTACA GCAAGTGCAGGCTCGAATAAATGTTGAAATTCCTATCATCGATTTTACCGGTTACCCGAATGAACAGCGA GAGTCGGAGGTTCAAAAATGGCTGACGGAAGATGCCAAGCGCCCGTTTCATTTCCATGAACAGAAGCCCT TGTTTAGAGTTCATGTACTTACGTCGAAACAAGACGAACATCTGATCGTTCTGACATTTCATCATATCAT CGCCGATGGCTGGTCGATCGCTGTTTTTGTACAAGAGCTAGAGAGCACGTACGCCGCCATTGTACAAGGA AGCCCGCTTCCATCTCATGAGGTTGTTTCGTTTCGCCAATATTTAGATTGGCAGCAAGCTCAGATAGAGA ATGGTCATTATGAAGAAGGAATTCGTTATTGGCGGCAGTATCTCTCTGAACCAATCCCGCAGGCAATCTT GACCAGTATGAGTTCTTCCCGTTATCCGCATGGTTACGAGGGAGATCGCTATACAGTTACACTGGACCGT CCATTGAGCAAGGCGATAAAGTCATTAAGCATTCGGATGAAAAATAGCGTTTTTGCAACTATTCTGGGAG CATTTCATCTTTTTCTGCAGCAGCTTACCAAGCAGGCTGGCCTTGTAATTGGGATTCCAACCGCAGGCCA GTTGCATATGAAACAACCTATGCTGGTTGGAAATTGTGTCAACATGGTTCCCGTGAAGAACACTGCTTCT TCAGAAAGCACATTAGCCGATTATCTGGGTCATATGAAGGAAAACATGGATCAAGTCATGCGGCATCAAG ATGTTCCGATGACATTAGTGGCCAGCCAGCTTCCACACGATCAAATGCCGGATATGCGTATTATTTTTAA TTTGGATAGACCTTTTCGAAAGCTGCATTTCGGACAGATGGAAGCTGAGCTCATTGCGTACCCTATAAAA TGCATTTCATACGATTTATTTCTTAACGTAACGGAATTTGATCAAGAGTATGTTCTTGATTTCGATTTTA ATACAAGCGTCATCAGTTCGGAAATCATGAACAAGTGGGGAACGGGCTTTGTAAACTTGCTGAAAAAAAT GGTTGAGGGGGACTCCGCCTCTCTTGATTCCTTAAAAATGTTTTCGAAGGAAGATCAACACGACTTGCTT GAGCTGTATGCTGATCATCAGCTGCGAATCTCTTCAACATTAGACCATAAGGGTGTTCGTGCCGTTTACG AAGAGCCGGAAAATGAAACAGAGCTGCAAATTGCGCAGATTTGGGCGGAGCTTCTCGGCCTGGAGAAAGT GGGCAGATCTGACCACTTTCTGTCTCTGGGTGGAAACTCGCTAAAAGCGACGCTTATGCTTTCTAAGATT CAGCAAACATTTAATCAAAAGGTATCTATAGGGCAATTCTTCAGCCATCAGACTGTTAAGGAGTTGGCGA ATTTCATCCGGGGTGAAAAGAATGTCAAGTATCCCCCGATGAAGCCTGTTGAGCAGAAAGCCTTTTACCG GACATCTCCAGCTCAGCAAAGAGTATATTTCCTGCATCAAATGGAACCGAATCAAGTTTCGCAAAATATG TTTGGCCAAATATCGATTATAGGGAAGTACGATGAAAAAGCCTTGATTGCATCCCTTCAACAGGTCATGC AGCGGCATGAAGCGTTTCGCACTTCTTTTCACATCATAGATGGTGAAATTGTGCAGCAGATTGCTGGCGA GCTTGATTTTAACGTTCGTGTCCATTCGATGGACCGTGAAGAATTTGAAGCCTACGCAGATGGGTATGTA AAACCTTTCCGTCTGGAACAAGCTCCTTTGGTTCGTGCGGAGCTGATCAAGGTCGATAACGAACAGGCTG AATTGCTCATCGATATGCATCATATCATTTCCGACGGCTATTCCATGAGCATACTTACAAATGAATTGTT CGCTTTGTATCATGGTAACCCATTACCGGAAATTCCATTTGAATATAAAGACTTCGCAGAGTGGCAAAAC CAGCTGTTAATCGGAGAGGTCATGGAGCAGCAGGAAGAATACTGGCTCGAGCAATTCAAGCAAGAAGTTC CTATCCTTCAATTGCCGGCAGACGGTTCAAGAGCGATGGAATGGTCTTCCGAAGGGCAGCGTGTGACCTG TTCCTTGCAGTCGAGTTTAATCCGTTCGCTTCAAGAAATGGCGCAACAGAAGGGAACGACTCTGTATATG GTGCTTCTGGCTGCTTACAACGTGCTGCTTCACAAATATACGGGCCAAGAAGATATCGTCGTAGGCACGC CAGTTTCCGGAAGAAATCAACCGAATATTGAAAGCATGATTGGTATATTCATTCAAACCATGGGGATTCG CACGAAACCACAGGCTAATAAAAGGTTTACGGATTATTTGGACGAAGTTAAACGGCAAACGCTTGATGCG TTCGAAAACCAGGATTATCCGTTTGACTGGCTAGTAGAAAAAGTAAACGTACAACGGGAAACAACAGGTA AGTCACTATTTAACACAATGTTTGTGTATCAAAATATTGAATTTCAAGAGATCCATCAAGATGGGTGTAC GTTTAGGGTAAAAGAACGTAATCCCGGAGTCTCTTTATATGATTTGATGTTAACGATCGAGGATGCAGAA AAACAGTTAGATATTCATTTCGATTTTAATCCAAACCAGTTTGAACAAGAAACGATTGAACAAATCATAA GGCACTACACCAGCCTTTTAGACAGTCTTGTTAAGGAGCCGGAGAAATCCTTGTCTTCCGTTCCTATGCT GTCTGACATCGAGAGGCACCAGCTTCTGATGGGGTGTAATGACACGGAGACGCCGTTTCCGCACAATGAC ACAGTATGTCAATGGTTTGAAACGCAAGCAGAACAGCGGCCTGATGATGAAGCCGTTATATTTGGCAATG AACGGTGCACGTACGGGCAGCTAAATGAGCGGGTAAATCAATTGGCGCGCACGTTAAGAACGAAGGGCGT TCAAGCGGATCAGTTTGTTGCCATCATCTGCCCGCATCGCATCGAGCTGATTGTTGGAATTTTGGCTGTT CTAAAAGCCGGCGGCGCATACGTGCCAATTGATCCGGAGTATCCAGAGGACCGGATACAATATATGCTGA AGGATTCAGAGGCTAAGATCGTTTTGGCACAGCTCGATTTGCATAAACACTTAACGTTTGATGCTGACGT TGTGCTTTTGGATGAGGAAAGCTCATATCATGAGGATCGTTCGAATCTTGAACCGACCTGCGGTGCAAAT GATTTGGCATACATGATCTATACGTCGGGCTCCACAGGGAACCCGAAAGGTGTACTCATTGAGCACCGGG GATTAGCTAATTATATTGAGTGGGCGAAAGAGGTTTATGTGAATGATGAGAAAACCAACTTCCCTTTATA CTCGTCCATCTCTTTTGATCTAACGGTGACGTCGATTTTTACACCGCTGGTTACAGGAAATACCATCATT GTCTTTGATGGTGAAGACAAAAGTGCGGTGCTTTCAACAATTATGCAGGATCCGAGAATAGATATCATCA AATTGACGCCGGCGCATTTGCATGTGCTCAAAGAAATGAAGATAGCAGATGGAACGACAATTCGAAAAAT GATTGTCGGCGGGGAAAATTTAAGCACCCGGCTTGCCCAAAGTGTCAGTGAGCAGTTTAAAGGCCAACTG GACATATTCAATGAATACGGACCGACAGAAGCGGTCGTCGGATGTATGATTTATCGGTACGACACTAAAC GTGACAGGCGAGAATTTGTGCCAATAGGCTCCCCTGCCGCCAATACGAGCATTTATGTGTTGGATGCCAG CATGAACTTGGTTCCGGTCGGCGTACCGGGTGAAATGTATATCGGTGGAGCCGGTGTAGCCAGAGGATAC TGGAATCGCCCGGATTTAACAGCAGAGAAGTTCGTTCACAACCCGTTTGCTCCGGGAACGATAATGTACA AAACGGGTGACTTGGCAAAACGATTACGTGATGGAAATCTCATATATTTAGGCCGAATCGATGAACAAGT CAAAATCCGAGGACATCGAATTGAACTTGGTGAAGTTGAAGCTGCAATGCATAAAGTGGAAGCGGTCCAA AAGGCCGTAGTTTTAGCCAGAGAAGAAGAGGATGGCTTACAACAACTGTGTGCGTATTATGTGAGCAATA AACCTATAACAATTGCGGAGATTAGAGAACAATTATCACTGGAGCTGCCGGACTACATGGTTCCGTCCCA TTATATCCAACTTGAGCAATTACCGTTAACGTCCAACGGGAAAATAAATCGTAAAGCACTGCCTGCACCA GAGGTAAGTTTAGAGCAAATAGCTGAATATGTACCGCCAGGCAATGAGGTTGAATCTAAGCTTGCAGTCT TATGGCAAGAGATGCTCGGAATACATCGTGTGGGGATCAAGCACAATTTCTTCGATCTTGGAGGAAATTC CATACGCGCGACGGCCTTAGCCGCCAGAATCCACAAAGAACTGGATGTCAATCTGTCTGTAAAAGACATA TTTAAGTTTCCTACTATTGAACAGTTGGCTAACATGGCGTTACGCATGGAGAAAATTCGATATGTATCAA TTCCGTCTGCACAGAAAATCTCCTATTATCCAGTTTCTTCGGCACAGAAACGGATGTATTTGTTAAGTCA TACAGAAGGAGGCGAGCTGACGTACAATATGACGGGCGCCATGAGTGTAGAAGGGGCTATTGATCTAGAA CGATTGACCGCTGCTTTTCAAAAATTAATTGAACGTCATGAAGTTTTGCGGACCAGCTTTGAACTATACG AAGGCGAGCCGGCACAGCGAATTCATCCAAGCATTGAATTTACAATAGAACAGATTCAAGCGAGAGAAGA GGAAGTGGAAGACCATGTACTTGATTTTATCAAATCGTTTGATTTAGCCAAGCCGCCGTTAATGCGAGTG GGACTGATTGAACTTACACCCGAAAAGCATGTACTGCTAGTCGATATGCATCATATCATTTCCGATGGCG TGTCTATGAACATTCTAATGAAAGATTTAAATCAATTTTATAAAGGGATCGAACCGGATCCGCTTCCCAT TCAATATAAGGACTATGCGGTTTGGCAGCAAACGGAAGCTCAGAGGCAAAACATCAAAAAACAGGAAGCG TATTGGCTTAATCGTTTTCATGATGAGATTCCTGTATTGGATATGCCAACGGATTACGAGAGACCTGCTA TACGCGATTACGAAGGCGAATCATTTGAATTTCTTATACCGATAGAATTAAAACAGCGCTTAAGTCAAAT GGAAGAAGCTACAGGAACAACATTGTATATGATTTTAATGGCAGCTTATACAATTCTTTTATCCAAATAC AGCGGACAGGAAGATATCGTCGTAGGGACCCCGGTCTCCGGCCGAAGTCATATGGATGTAGAGTCTGTTG TGGGAATGTTTGTAAACACCTTAGTCATTCGCAATCACCCGGCAGGCCGTAAAATATTCGAGGATTACTT AAACGAAGTGAAGGAAAACATGCTAAATGCCTATCAAAATCAAGACTATCCATTGGAAGAATTGATCCAA CATGTACATCTTCTAAAAGATTCAAGCCGCAACCCTTTATTCGATACGATGTTTGTGCTGCAAAATCTCG ATCAGGTTGAATTGAACCTTGATTCCCTTCGATTCACGCCTTATAAGCTTCATCATACAGTTGCCAAATT CGATTTGACCTTGTCGATTCAGACAGATCAAGACAAACATCACGGTCTGTTCGAATATTCGAAGAAACTA TTTAAGAAAAGCAGAATCGAAGCTTTGTCAAAAGACTATTTACACATCTTATCCGTTATCAGTCAACAGC CAAGTATACAAATCGAACATATCGAATTAAGCGGCAGCACCGCGGAAGATGATAACTTGATCCATTCTAT TGAACTGAACTTTTAA SEQ ID NO: 10 Amino Acid Mycosubtilin synthase subunit A MycA (YP_003866245.1) Interior Acyl Binding Pocket domain underlined 1 MYTSQFQTLV DVIRNRSNIS DRGIRFIESD KIETFVSYRQ LFDEAQGFLG YLQHIGIQPK 61 QEIVFQIQEN KSFVVAFWAC LLGGMIPVPV SIGEDNDHKL KVWRIWNILN NPFLLASETV 121 LDKMKKFAAD HDLQDFHHQL IEKSDIIQDR IYDHPASQYE PEADELAFIQ FSSGSTGDPK 181 GVMLTHHNLI HNTCAIRNAL AIDLKDTLLS WMPLTHDMGL IACHLVPALA GINQNLMPTE 241 LFIRRPILWM KKAHEHKASI LSSPNFGYNY FLKFLKDNKS YDWDLSHIRV IANGAEPILP 301 ELCDEFLTRC AAFNMKRSAI LNVYGLAEAS VGATFSNIGE RFVPVYLHRD HLNLGERAVE 361 VSKEDQNCAS FVEVGKPIDY CQIRICNEAN EGLEDGFIGH IQIKGENVTQ GYYNNPESTN 421 RALTPDGWVK TGDLGFIRKG NLVVTGREKD IIFVNGKNVY PHDIERVAIE LEDIDLGRVA 481 ACGVYDQETR SREIVLFAVY KKSAEQFAPL VKDIKKHLYQ RGGWSIKEIL PIRKLPKTTS 541 GKVKRYELAE QYESGKFALE STKIKEFLEG HSTEPVQTPI HEIETALLSI FSEVMDGKKI 601 HLNDHYFDMG ATSLQLSQIA ERIEQKFGCE LTVADLFTYP SIADLAAFLV ENHSEIKQTD 661 TAKPSRSSSK DIAIIGMSLN VPGASNKSDF WHLLENGEHG IREYPAPRVK DAIDYLRSIK 721 SERNEKQFVK GGYLDEIDRF DYSFFGLAPK TAKFMDPNQR LFLQSAWHAI EDAGYAGDTI 781 SGSQLGVYVG YSKVGYDYER LLSANYPEEL HHYIVGNLPS VLASRIAYFL NLKGPAVTVD 841 TACSSSLVAV HMACKALLTG DCEMALAGGI RTSLLPMRIG LDMESSDGLT KTFSKDSDGT 901 GSGEGVAAVL LKPLQAAIRD GDHIYGVIKG SAINQDGTTV GITAPSPAAQ TEVIEMAWKD 961 AGIAPETLSF IEAHGTGTKL GDPVEFNGLC KAFEKVTEKK QFCAIGSVKA NIGHLFEAAG 1021 IVGLIKSALM LNHKKIPPLA HFNKPNPLIP FHSSPFYVNQ EVMDFTPEDR PLRGGISSFG 1081 FSGTNAHVVL EEYTPESEYA PEDGNDPHLF VLSAHTEASL YELTHQYRQY ISDDSQSSLR 1141 SICYTASTGR AHLDYCLAMI VSSNQELIDK LTSLIQGERN LPQVHFGYKN IKEMQPAEKD 1201 NLSKQISDLM QHRPCTKDER ITWLNRIAEL YVQRAVIDWR AVYSNEVVQK TPLPLYPFER 1261 NRCWVEAVYE SAKERKEKGE VALDINHTKT HIESFLKTVI SNASGIRADE IDSNAHFIGF 1321 GLDSIMLTQV KKAIADEFNV DIPMERFFDT MNNIESVVDY LAENVPSAAS TPPQESVTAQ 1381 EELVISGAQP ELEHQEHMLD KIIASQNQLI QQTLQAQLDS FNLLRNNSHF VSKESEISQD 1441 KTSLSPKSVT AKKNSAQEAK PYIPFQRQTL NEQVNYTPQQ RQYLESFIEK YVDKTKGSKQ 1501 YTDETRFAHA NNRNLSSFRS YWKEMVYPII AERSDGSRMW DIDGNEYIDI TMGFGVNLFG 1561 HHPSFITQTV VDSTHSALPP LGPMSNVAGE VADRIRACTG VERVAFYNSG TEAVMVALRL 1621 ARAATGRTKV VVFAGSYHGT FDGVLGVANT KGGAEPANPL APGIPQSFMN DLIILHYNHP 1681 DSLDVIRNLG NELAAVLVEP VQSRRPDLQP ESFLKELRAI TQQSGTALIM DEIITGFRIG 1741 LGGAQEWFDI QADLVTYGKI IGGGQPLGIV AGKAEFMNTI DGGTWQYGDD SYPTDEAKRT 1801 FVAGTFNTHP LTMRMSLAVL RYLQAEGETL YERLNQKTTY LVDQLNSYFE QSQVPIRMVQ 1861 FGSLFRFVSS VDNDLFFYHL NYKGVYVWEG RNCFLSTAHT SDDIAYIIQA VQETVKDLRR 1921 GGFIPEGPDS PNDGGHKEPE TYELSPEQKQ LAVVSQYGND ASAALNQSIM LKVKGAVQHT 1981 LLKQAVRNIV KRHDALRTVI HVDDEVQQVQ ARINVEIPII DFTGYPNEQR ESEVQKWLTE 2041 DAKRPFHFHE QKPLFRVHVL TSKQDEHLIV LTFHHIIADG WSIAVFVQEL ESTYAAIVQG 2101 SPLPSHEVVS FRQYLDWQQA QIENGHYEEG IRYWRQYLSE PIPQAILTSM SSSRYPHGYE 2161 GDRYTVTLDR PLSKAIKSLS IRMKNSVFAT ILGAFHLFLQ QLTKQAGLVI GIPTAGQLHM
2221 KQPMLVGNCV NMVPVKNTAS SESTLADYLG HMKENMDQVM RHQDVPMTLV ASQLPHDQMP 2281 DMRIIFNLDR PFRKLHFGQM EAELIAYPIK CISYDLFLNV TEFDQEYVLD FDFNTSVISS 2341 EIMNKWGTGF VNLLKKMVEG DSASLDSLKM FSKEDQHDLL ELYADHQLRI SSTLDHKGVR 2401 AVYEEPENET ELQIAQIWAE LLGLEKVGRS DHFLSLGGNS LKATLMLSKI QQTFNQKVSI 2461 GQFFSHQTVK ELANFIRGEK NVKYPPMKPV EQKAFYRTSP AQQRVYFLHQ MEPNQVSQNM 2521 FGQISIIGKY DEKALIASLQ QVMQRHEAFR TSFHIIDGEI VQQIAGELDF NVRVHSMDRE 2581 EFEAYADGYV KPFRLEQAPL VRAELIKVDN EQAELLIDMH HIISDGYSMS ILTNELFALY 2641 HGNPLPEIPF EYKDFAEWQN QLLIGEVMEQ QEEYWLEQFK QEVPILQLPA DGSRAMEWSS 2701 EGQRVTCSLQ SSLIRSLQEM AQQKGTTLYM VLLAAYNVLL HKYTGQEDIV VGTPVSGRNQ 2761 PNIESMIGIF IQTMGIRTKP QANKRFTDYL DEVKRQTLDA FENQDYPFDW LVEKVNVQRE 2821 TTGKSLFNTM FVYQNIEFQE IHQDGCTFRV KERNPGVSLY DLMLTIEDAE KQLDIHFDFN 2881 PNQFEQETIE QIIRHYTSLL DSLVKEPEKS LSSVPMLSDI ERHQLLMGCN DTETPFPHND 2941 TVCQWFETQA EQRPDDEAVI FGNERCTYGQ LNERVNQLAR TLRTKGVQAD QFVAIICPHR 3001 IELIVGILAV LKAGGAYVPI DPEYPEDRIQ YMLKDSEAKI VLAQLDLHKH LTFDADVVLL 3061 DEESSYHEDR SNLEPTCGAN DLAYMIYTSG STGNPKGVLI EHRGLANYIE WAKEVYVNDE 3121 KTNFPLYSSI SFDLTVTSIF TPLVTGNTII VFDGEDKSAV LSTIMQDPRI DIIKLTPAHL 3181 HVLKEMKIAD GTTIRKMIVG GENLSTRLAQ SVSEQFKGQL DIFNEYGPTE AVVGCMIYRY 3241 DTKRDRREFV PIGSPAANTS IYVLDASMNL VPVGVPGEMY IGGAGVARGY WNRPDLTAEK 3301 FVHNPFAPGT IMYKTGDLAK RLRDGNLIYL GRIDEQVKIR GHRIELGEVE AAMHKVEAVQ 3361 KAVVLAREEE DGLQQLCAYY VSNKPITIAE IREQLSLELP DYMVPSHYIQ LEQLPLTSNG 3421 KINRKALPAP EVSLEQIAEY VPPGNEVESK LAVLWQEMLG IHRVGIKHNF FDLGGNSIRA 3481 TALAARIHKE LDVNLSVKDI FKFPTIEQLA NMALRMEKIR YVSIPSAQKI SYYPVSSAQK 3541 RMYLLSHTEG GELTYNMTGA MSVEGAIDLE RLTAAFQKLI ERHEVLRTSF ELYEGEPAQR 3601 IHPSIEFTIE QIQAREEEVE DHVLDFIKSF DLAKPPLMRV GLIELTPEKH VLLVDMHHII 3661 SDGVSMNILM KDLNQFYKGI EPDPLPIQYK DYAVWQQTEA QRQNIKKQEA YWLNRFHDEI 3721 PVLDMPTDYE RPAIRDYEGE SFEFLIPIEL KQRLSQMEEA TGTTLYMILM AAYTILLSKY 3781 SGQEDIVVGT PVSGRSHMDV ESVVGMFVNT LVIRNHPAGR KIFEDYLNEV KENMLNAYQN 3841 QDYPLEELIQ HVHLLKDSSR NPLFDTMFVL QNLDQVELNL DSLRFTPYKL HHTVAKFDLT 3901 LSIQTDQDKH HGLFEYSKKL FKKSRIEALS KDYLHILSVI SQQPSIQIEH IELSGSTAED 3961 DNLIHSIELN F SEQ ID NO: 11 Nucleotide Interior Acyl Binding Pocket of mycA ATCCGGAATGCGCTGGCTATCGACTTAAAAGATACTCTTTTATCTTGGATGCCCTTAACCCATGACATGGGGCT- CAT AGCTTGCCACCTTGTTCCTGCCTTAGCCGGAATCAATCAAAATTTAATGCCGACAGAATTATTTATTCGAAGAC- CTA TTCTCTGGATGAAAAAAGCTCATGAACATAAAGCCAGCATTCTATCCTCACCTAATTTTGGATACAATTACTTT- CTT AAATTTCTGAAAGACAATAAAAGTTACGACTGGGATTTATCCCATATCAGGGTCATTGCAAAC SEQ ID NO: 12 Amino Acid Interior Acyl Binding Pocket of MycA IRNALAIDLKDTLLSWMPLTHDMGLIACHLVPALAGINQNLMPTELFIRRPILWMKKAHEHKASILSSPNFGYN- YFL KFLKDNKSYDWDLSHIRVIAN SEQ ID NO: 13 Nucleotide dptE Interior Acyl Binding Pocket domain underlined ACCESSION: AY787762 REGION: 49421 . . . 51214 VERSION: AY787762.1 GI: 60650890 1 gtgagtgaga gccgctgtgc cgggcagggc ctggtggggg cactgcggac ctgggcacgg 61 acacgtgccc gggagactgc cgtggttctc gtacgggaca ccggaaccac cgacgacacg 121 gcgtcggtgg actacggaca gctggacgag tgggccagaa gcatcgcggt gaccctccga 181 cagcaactcg cgccgggggg acgggcactt ctgctgctgc cgtccggccc ggagttcacg 241 gccgcgtacc tcggctgcct gtacgcgggt ctggccgccg taccggcgcc gctgcccggg 301 gggcgccact tcgaacgccg ccgtgtcgcg gccatcgccg ccgacagcgg agccggcgtg 361 gtgctgaccg tcgcgggtga gaccgcctcc gtccacgact ggctgaccga gaccacggcc 421 ccggctactc gcgtcgtggc cgtggacgac cgggcggcgc tcggcgaccc ggcgcagtgg 481 gacgacccgg gcgtcgcgcc cgacgacgtg gctctcatcc agtacacctc gggctcgacc 541 ggcaacccca agggcgtggt cgtgacccac gccaacctgc tggcgaacgc gcggaatctc 601 gccgaggcct gcgagctgac cgccgccact cccatgggcg gctggctgcc catgtaccac 661 gacatggggc tcctgggcac gctgacaccg gccctgtacc tcggcaccac gtgcgtgctg 721 atgagctcca cggcattcat caaacggccg cacctgtggc tacggaccat cgaccggttc 781 ggcctggtct ggtcgtcggc tcccgacttc gcgtacgaca tgtgtctgaa gcgcgtcacc 841 gacgagcaga tcgccgggct ggacctgtcc cgctggcggt gggccggcaa cggcgcggag 901 cccatccggg cagccaccgt acgggccttc ggcgaacggt tcgcccggta cggcctgcgc 961 cccgaggcgc tcaccgccgg ctacgggctg gccgaggcca ccctgttcgt gtcgaggtcg 1021 caggggctgc acacggcacg agtcgccacc gccgccctcg aacgccacga attccgcctc 1081 gccgtacccg gcgaggcagc ccgggagatc gtcagctgcg gtcccgtcgg ccacttccgc 1141 gcccgcatcg tcgaacccgg cgggcaccgt gttctgccgc ccggccaggt cggcgagctg 1201 gtcctccagg gagccgccgt ctgcgccggc tactggcagg ccaaggagga gaccgagcag 1261 accttcggcc tcaccctcga cggcgaggac ggtcactggc tgcgcaccgg cgatctcgcc 1321 gccctgcacg aagggaatct ccacatcacc ggccgctgca aagaggccct ggtgatacga 1381 ggacgcaatc tgtacccgca ggacatcgag cacgaactcc gcctgcaaca cccggaactt 1441 gagagcgtcg gcgccgcgtt caccgtcccg gcggcacctg gcacgccggg cttgatggtg 1501 gtccacgaag tccgcacccc ggtccccgcc gacgaccacc cggccctggt cagcgccctg 1561 cgggggacga tcaaccgcga attcggactc gacgcccagg gcatcgccct ggtgagccgc 1621 ggcaccgtac tgcgtaccac cagcggcaag gtccgccggg gcgccatgcg tgacctctgc 1681 ctccgcgggg agctgaacat cgtccacgcg gacaagggct ggcacgccat cgccggcacg 1741 gccggagagg acatcgcccc cactgaccac gctccacatc cgcaccccgc gtaa SEQ ID NO: 14 Amino Acid DptE (AAX31555.1) Interior Acyl Binding Pocket domain underlined 1 MSESRCAGQG LVGALRTWAR TRARETAVVL VRDTGTTDDT ASVDYGQLDE WARSIAVTLR 61 QQLAPGGRAL LLLPSGPEFT AAYLGCLYAG LAAVPAPLPG GRHFERRRVA AIAADSGAGV 121 VLTVAGETAS VHDWLTETTA PATRVVAVDD RAALGDPAQW DDPGVAPDDV ALIQYTSGST 181 GNPKGVVVTH ANLLANARNL AEACELTAAT PMGGWLPMYH DMGLLGTLTP ALYLGTTCVL 241 MSSTAFIKRP HLWLRTIDRF GLVWSSAPDF AYDMCLKRVT DEQIAGLDLS RWRWAGNGAE 301 PIRAATVRAF GERFARYGLR PEALTAGYGL AEATLFVSRS QGLHTARVAT AALERHEFRL 361 AVPGEAAREI VSCGPVGHFR ARIVEPGGHR VLPPGQVGEL VLQGAAVCAG YWQAKEETEQ 421 TFGLTLDGED GHWLRTGDLA ALHEGNLHIT GRCKEALVIR GRNLYPQDIE HELRLQHPEL 481 ESVGAAFTVP AAPGTPGLMV VHEVRTPVPA DDHPALVSAL RGTINREFGL DAQGIALVSR 541 GTVLRTTSGK VRRGAMRDLC LRGELNIVHA DKGWHAIAGT AGEDIAPTDH APHPHPA SEQ ID NO: 15 Nucleotide Interior Acyl Binding Pocket of dptE CTCGCCGAGGCCTGCGAGCTGACCGCCGCCACTCCCATGGGCGGCTGGCTGCCCATGTACCACGACATGGGGCT- CCT GGGCACGCTGACACCGGCCCTGTACCTCGGCACCACGTGCGTGCTGATGAGCTCCACGGCATTCATCAAACGGC- CGC ACCTGTGGCTACGGACCATCGACCGGTTCGGCCTGGTCTGGTCGTCGGCTCCCGACTTCGCGTACGACATGTGT- CTG AAGCGCGTCACCGACGAGCAGATCGCCGGGCTGGACCTGTCCCGCTGGCGGTGGGCCGGCAAC SEQ ID NO: 16 Amino Acid Interior Acyl Binding Pocket of DptE LAEACELTAATPMGGWLPMYHDMGLLGTLTPALYLGTTCVLMSSTAFIKRPHLWLRTIDRFGLVWSSAPDFAYD- MCL KRVTDEQIAGLDLSRWRWAGN SEQ ID NO: 17 Nucleotide Engineered NonA with safB Interior Acyl Binding Pocket domain (underlined) ATGGTTGGTCAATTTGCAAATTTCGTCGATCTGCTCCAGTACAGAGCTAAACTTCAGGCGCGGAAAACCG TGTTTAGTTTTCTGGCTGATGGCGAAGCGGAATCTGCGGCCCTGACCTACGGAGAATTAGACCAAAAAGC CCAGGCGATCGCCGCTTTTTTGCAAGCTAACCAGGCTCAAGGGCAACGGGCATTATTACTTTATCCACCG GGTTTAGAGTTTATCGGTGCCTTTTTGGGATGTTTGTATGCTGGTGTTGTTGCGGTGCCAGCTTACCCAC CACGGCCGAATAAATCCTTTGACCGCCTCCATAGCATTATCCAAGATGCCCAGGCAAAATTTGCCCTCAC CACAACAGAACTTAAAGATAAAATTGCCGATCGCCTCGAAGCTTTAGAAGGTACGGATTTTCATTGTTTG GCTACAGATCAAGTTGAATTAATTTCAGGAAAAAATTGGCAAAAACCGAACATTTCCGGCACAGATCTCG CTTTTTTGCAATACACCAGTGGCTCCACGGGCGATCCTAAAGGAGTGATGGTTTCCCACCACAATTTGAT CCACAACTCCGGCTTGATTTTTACCTCTTTTCATATGAATGATGAAACCATTATTTTCAGCTGGCTGCCC CCACATCATGATATGGGTTTGATTGGCTGCATTCTGACCCCCATCTATGGTGGAATTCAGGCAATCATGA TGTCCCCTTTCTCATTTTTACAAAACCCGCTTTCCTGGTTAAAACATATTACCAAATACAAAGCAACTAT CAGTGGAAGCCCTAACTTCGCTTACGATTATTGTGTCAAACGAATCAGGGAAGAAAAAAAAGAAGGGCTG GATTTAAGTTCATGGGTGACTGCTTTCAACGGGGCCGAACCGATCCGCGCTGTGACCCTCGAAAATTTTG CGAAAACCTTCGCTACAGCAGGCTTTCAAAAATCAGCATTTTATCCCTGTTATGGTATGGCTGAAACCAC CCTGATCGTTTCCGGTGGTAATGGTCGTGCCCAGCTTCCCCAGGAAATTATCGTCAGCAAACAGGGCATC GAAGCAAACCAAGTTCGCCCTGCCCAAGGGACAGAAACAACGGTGACCTTGGTCGGCAGTGGTGAAGTGA TTGGCGACCAAATTGTCAAAATTGTTGACCCCCAGGCTTTAACAGAATGTACCGTCGGTGAAATTGGCGA AGTATGGGTTAAGGGCGAAAGTGTTGCCCAGGGCTATTGGCAAAAGCCAGACCTCACCCAGCAACAATTC CAGGGAAACGTCGGTGCAGAAACGGGCTTTTTACGCACGGGCGATCTGGGTTTTTTGCAAGGTGGCGAAC TGTATATTACGGGTCGTTTAAAGGATCTCCTGATTATCCGGGGGCGCAACCACTATCCCCAGGACATTGA ATTAACCGTCGAAGTGGCCCATCCCGCTTTACGACAGGGGGCCGGAGCCGCTGTATCAGTAGACGTTAAC GGGGAAGAACAGTTAGTCATTGTCCAGGAAGTTGAGCGTAAATATGCCCGCAAATTAAATGTCGCGGCAG TAGCCCAAGCTATTCGTGGGGCGATCGCCGCCGAACATCAACTGCAACCCCAGGCCATTTGTTTTATTAA ACCCGGTAGCATTCCCAAAACATCCAGCGGGAAGATTCGTCGCCATGCCTGCAAAGCTGGTTTTCTAGAC GGAAGCTTGGCTGTGGTTGGGGAGTGGCAACCCAGCCACCAAAAAGAAGGAAAAGGAATTGGGACACAAG CCGTTACCCCTTCTACGACAACATCAACGAATTTTCCCCTGCCTGACCAGCACCAACAGCAAATTGAAGC CTGGCTTAAGGATAATATTGCCCATCGCCTCGGCATTACGCCCCAACAATTAGACGAAACGGAACCCTTT GCAAGTTATGGGCTGGATTCAGTGCAAGCAGTACAGGTCACAGCCGACTTAGAGGATTGGCTAGGTCGAA AATTAGACCCCACTCTGGCCTACGATTATCCGACCATTCGCACCCTGGCTCAGTTTTTGGTCCAGGGTAA TCAAGCGCTAGAGAAAATACCACAGGTGCCGAAAATTCAGGGCAAAGAAATTGCCGTGGTGGGTCTCAGT TGTCGTTTTCCCCAAGCTGACAACCCCGAAGCTTTTTGGGAATTATTACGTAATGGTAAAGATGGAGTTC GCCCCCTTAAAACTCGCTGGGCCACGGGAGAATGGGGTGGTTTTTTAGAAGATATTGACCAGTTTGAGCC GCAATTTTTTGGCATTTCCCCCCGGGAAGCGGAACAAATGGATCCCCAGCAACGCTTACTGTTAGAAGTA ACCTGGGAAGCCTTGGAACGGGCAAATATTCCGGCAGAAAGTTTACGCCATTCCCAAACGGGGGTTTTTG TCGGCATTAGTAATAGTGATTATGCCCAGTTGCAGGTGCGGGAAAACAATCCGATCAATCCCTACATGGG GACGGGCAACGCCCACAGTATTGCTGCGAATCGTCTGTCTTATTTCCTCGATCTCCGGGGCGTTTCTCTG AGCATCGATACGGCCTGTTCCTCTTCTCTGGTGGCGGTACATCTGGCCTGTCAAAGTTTAATCAACGGCG AATCGGAGTTGGCGATCGCCGCCGGGGTGAATTTGATTTTGACCCCCGATGTGACCCAGACTTTTACCCA GGCGGGCATGATGAGTAAGACGGGCCGTTGCCAGACCTTTGATGCCGAGGCTGATGGCTATGTGCGGGGC GAAGGTTGTGGGGTCGTTCTCCTCAAACCCCTGGCCCAGGCAGAACGGGACGGGGATAATATTCTCGCGG TGATCCACGGTTCGGCGGTGAATCAAGATGGACGCAGTAACGGTTTGACGGCTCCCAACGGGCGATCGCA ACAGGCCGTTATTCGCCAAGCCCTGGCCCAAGCCGGCATTACCGCCGCCGATTTAGCTTACCTAGAGGCC CACGGCACCGGCACGCCCCTGGGTGATCCCATTGAAATTAATTCCCTGAAGGCGGTTTTACAAACGGCGC AGCGGGAACAGCCCTGTGTGGTGGGTTCTGTGAAAACAAACATTGGTCACCTCGAGGCAGCGGCGGGCAT CGCGGGCTTAATCAAGGTGATTTTGTCCCTAGAGCATGGAATGATTCCCCAACATTTGCATTTTAAGCAG CTCAATCCCCGCATTGATCTAGACGGTTTAGTGACCATTGCGAGCAAAGATCAGCCTTGGTCAGGCGGGT CACAAAAACGGTTTGCTGGGGTAAGTTCCTTTGGGTTTGGTGGCACCAATGCCCACGTGATTGTCGGGGA CTATGCTCAACAAAAATCTCCCCTTGCTCCTCCGGCTACCCAAGACCGCCCTTGGCATTTGCTGACCCTT TCTGCTAAAAATGCCCAGGCCTTAAATGCCCTGCAAAAAAGCTATGGAGACTATCTGGCCCAACATCCCA GCGTTGACCCACGCGATCTCTGTTTGTCTGCCAATACCGGGCGATCGCCCCTCAAAGAACGTCGTTTTTT TGTCTTTAAACAAGTCGCCGATTTACAACAAACTCTCAATCAAGATTTTCTGGCCCAACCACGCCTCAGT TCCCCCGCAAAAATTGCCTTTTTGTTTACGGGGCAAGGTTCCCAATACTACGGCATGGGGCAACAACTGT ACCAAACCAGCCCAGTATTTCGGCAAGTGCTGGATGAGTGCGATCGCCTCTGGCAGACCTATTCCCCCGA AGCCCCTGCCCTCACCGACCTGCTGTACGGTAACCATAACCCTGACCTCGTCCACGAAACTGTCTATACC CAGCCCCTCCTCTTTGCTGTTGAATATGCGATCGCCCAACTATGGTTAAGCTGGGGCGTGACGCCAGACT TTTGCATGGGCCATAGCGTCGGCGAATATGTCGCGGCTTGTCTGGCGGGGGTATTTTCCCTGGCAGACGG CATGAAATTAATTACGGCCCGGGGCAAACTGATGCACGCCCTACCCAGCAATGGCAGTATGGCGGCGGTC TTTGCCGATAAAACGGTCATCAAACCCTACCTATCGGAGCATTTGACCGTCGGAGCCGAAAACGGTTCCC ATTTGGTGCTATCAGGAAAGACCCCCTGCCTCGAAGCCAGTATTCACAAACTCCAAAGCCAAGGGATCAA AACCAAACCCCTCAAGGTTTCCCATGCTTTCCACTCCCCTTTGATGGCTCCCATGCTGGCAGAGTTTCGG GAAATTGCTGAACAAATTACTTTCCACCCGCCGCGTATCCCGCTCATTTCCAATGTCACGGGCGGCCAGA TTGAAGCGGAAATTGCCCAGGCCGACTATTGGGTTAAGCACGTTTCGCAACCCGTCAAATTTGTCCAGAG CATCCAAACCCTGGCCCAAGCGGGTGTCAATGTTTATCTCGAAATCGGCGTAAAACCAGTGCTCCTGAGT ATGGGACGCCATTGCTTAGCTGAACAAGAAGCGGTTTGGTTGCCCAGTTTACGTCCCCATAGTGAGCCTT GGCCGGAAATTTTGACCAGTCTCGGCAAACTGTATGAGCAAGGGCTAAACATTGACTGGCAGACCGTGGA AGCTGGCGATCGCCGCCGGAAACTGATTCTGCCCACCTATCCCTTCCAACGGCAACGATATTGGTTTAAT CAAGGCTCTTGGCAAACTGTTGAGACCGAATCTGTGAACCCAGGCCCTGACGATCTCAATGATTGGTTGT ATCAGGTGGCGTGGACGCCCCTGGACACTTTGCCCCCGGCCCCTGAACCGTCGGCTAAGCTGTGGTTAAT CTTGGGCGATCGCCATGATCACCAGCCCATTGAAGCCCAATTTAAAAACGCCCAGCGGGTGTATCTCGGC CAAAGCAATCATTTTCCGACGAATGCCCCCTGGGAAGTATCTGCCGATGCGTTGGATAATTTATTTACTC ACGTCGGCTCCCAAAATTTAGCAGGCATCCTTTACCTGTGTCCCCCAGGGGAAGACCCAGAAGACCTAGA TGAAATTCAAAAGCAAACCAGTGGCTTCGCCCTCCAACTGATCCAAACCCTGTATCAACAAAAGATCGCG GTTCCCTGCTGGTTTGTGACCCACCAGAGCCAACGGGTGCTTGAAACCGATGCTGTCACCGGATTTGCCC AAGGGGGATTATGGGGACTCGCCCAGGCGATCGCCCTCGAACATCCAGAGTTGTGGGGGGGAATTATTGA TGTCGATGACAGCCTGCCAAATTTTGCCCAGATTTGCCAACAAAGACAGGTGCAGCAGTTGGCCGTGCGG CACCAAAAACTCTACGGGGCACAGCTCAAAAAGCAACCGTCACTGCCCCAGAAAAATCTCCAGATTCAAC CCCAACAGACCTATCTAGTGACAGGGGGACTGGGGGCCATTGGCCGTAAAATTGCCCAATGGCTAGCCGC AGCAGGAGCAGAAAAAGTAATTCTCGTCAGCCGGCGCGCTCCGGCAGCGGATCAGCAGACGTTACCGACC AATGCGGTGGTTTATCCTTGCGATTTAGCCGACGCAGCCCAGGTGGCAAAGCTGTTTCAAACCTATCCCC ACATCAAAGGAATTTTCCATGCGGCGGGTACCTTAGCTGATGGTTTGCTGCAACAACAAACTTGGCAAAA GTTCCAGACCGTCGCCGCCGCCAAAATGAAAGGGACATGGCATCTGCACCGCCATAGTCAAAAGCTCGAT CTGGATTTTTTTGTGTTGTTTTCCTCTGTGGCAGGGGTGCTCGGTTCACCGGGACAGGGGAATTATGCCG CCGCAAACCGGGGCATGGCGGCGATCGCCCAATATCGACAAGCCCAAGGTTTACCCGCCCTGGCGATCCA TTGGGGGCCTTGGGCCGAAGGGGGAATGGCCAACTCCCTCAGCAACCAAAATTTAGCGTGGCTGCCGCCC CCCCAGGGACTAACAATCCTCGAAAAAGTCTTGGGCGCCCAGGGGGAAATGGGGGTCTTTAAACCGGACT GGCAAAACCTGGCCAAACAGTTCCCCGAATTTGCCAAAACCCATTACTTTGCAGCCGTTATTCCCTCTGC TGAGGCTGTGCCCCCAACGGCTTCAATTTTTGACAAATTAATCAACCTAGAAGCTTCTCAGCGGGCTGAC TATCTACTGGATTATCTGCGGCGGTCTGTGGCGCAAATCCTCAAGTTAGAAATTGAGCAAATTCAAAGCC ACGATAGCCTGTTGGATCTGGGCATGGATTCGTTGATGATCATGGAGGCGATCGCCAGCCTCAAGCAGGA TTTACAACTGATGTTGTACCCCAGGGAAATCTACGAACGGCCCAGACTTGATGTGTTGACGGCCTATCTA GCGGCGGAATTCACCAAGGCCCATGATTCTGAAGCAGCAACGGCGGCAGCAGCGATTCCCTCCCAAAGCC TTTCGGTCAAAACAAAAAAACAGTGGCAAAAACCTGACCACAAAAACCCGAATCCCATTGCCTTTATCCT CTCTAGCCCCCGGTCGGGTTCGACGTTGCTGCGGGTGATGTTAGCCGGACATCCGGGGTTATATTCGCCG CCAGAGCTGCATTTGCTCCCCTTTGAGACTATGGGCGATCGCCACCAGGAATTGGGTCTATCCCACCTCG GCGAAGGGTTACAACGGGCCTTAATGGATCTAGAAAACCTCACCCCAGAGGCAAGCCAGGCGAAGGTCAA CCAATGGGTCAAAGCGAATACACCCATTGCAGACATCTATGCCTATCTCCAACGGCAGGCGGAACAACGT TTACTCATCGACAAATCTCCCAGCTACGGCAGCGATCGCCATATTCTAGACCACAGCGAAATCCTCTTTG ACCAGGCCAAATATATCCATCTGGTACGCCATCCCTACGCGGTGATTGAATCCTTTACCCGACTGCGGAT GGATAAACTGCTGGGGGCCGAGCAGCAGAACCCCTACGCCCTCGCGGAGTCCATTTGGCGCACCAGCAAC CGCAATATTTTAGACCTGGGTCGCACGGTTGGTGCGGATCGATATCTCCAGGTGATTTACGAAGATCTCG TCCGTGACCCCCGCAAAGTTTTGACAAATATTTGTGATTTCCTGGGGGTGGACTTTGACGAAGCGCTCCT CAATCCCTACAGCGGCGATCGCCTTACCGATGGCCTCCACCAACAGTCCATGGGCGTCGGGGATCCCAAT TTCCTCCAGCACAAAACCATTGATCCGGCCCTCGCCGACAAATGGCGCTCAATTACCCTGCCCGCTGCTC TCCAGCTGGATACGATCCAGTTGGCCGAAACGTTTGCTTACGATCTCCCCCAGGAACCCCAGCTAACACC CCAGACCCAATCCTTGCCCTCGATGGTGGAGCGGTTCGTGACAGTGCGCGGTTTAGAAACCTGTCTCTGT GAGTGGGGCGATCGCCACCAACCATTGGTGCTACTTCTCCACGGCATCCTCGAACAGGGGGCCTCCTGGC AACTCATCGCGCCCCAGTTGGCGGCCCAGGGCTATTGGGTTGTGGCCCCAGACCTGCGTGGTCACGGCAA ATCCGCCCATGCCCAGTCCTACAGCATGCTTGATTTTTTGGCTGACGTAGATGCCCTTGCCAAACAATTA GGCGATCGCCCCTTTACCTTGGTGGGCCACTCCATGGGTTCCATCATCGGTGCCATGTATGCAGGAATTC GCCAAACCCAGGTAGAAAAGTTGATCCTCGTTGAAACCATTGTCCCCAACGACATCGACGACGCTGAAAC CGGTAATCACCTGACGACCCATCTCGATTACCTCGCCGCGCCCCCCCAACACCCGATCTTCCCCAGCCTA GAAGTGGCCGCCCGTCGCCTCCGCCAAGCCACGCCCCAACTACCCAAAGACCTCTCGGCGTTCCTCACCC AGCGCAGCACCAAATCCGTCGAAAAAGGGGTGCAGTGGCGTTGGGATGCTTTCCTCCGTACCCGGGCGGG CATTGAATTCAATGGCATTAGCAGACGACGTTACCTGGCCCTGCTCAAAGATATCCAAGCGCCGATCACC CTCATCTATGGCGATCAGAGTGAATTTAACCGCCCTGCTGATCTCCAGGCGATCCAAGCGGCTCTCCCCC AGGCCCAACGTTTAACGGTTGCTGGCGGCCATAACCTCCATTTTGAGAATCCCCAGGCGATCGCCCAAAT TGTTTATCAACAACTCCAGACCCCTGTACCCAAAACACAATAA SEQ ID NO: 18 Amino Acid Engineered NonA with SafB Interior Acyl Binding Pocket domain (underlined) MVGQFANFVDLLQYRAKLQARKTVFSFLADGEAESAALTYGELDQKAQAIAAFLQANQAQGQRALLLYPP GLEFIGAFLGCLYAGVVAVPAYPPRPNKSFDRLHSIIQDAQAKFALTTTELKDKIADRLEALEGTDFHCL ATDQVELISGKNWQKPNISGTDLAFLQYTSGSTGDPKGVMVSHHNLIHNSGLIFTSFHMNDETIIFSWLP PHHDMGLIGCILTPIYGGIQAIMMSPFSFLQNPLSWLKHITKYKATISGSPNFAYDYCVKRIREEKKEGL DLSSWVTAFNGAEPIRAVTLENFAKTFATAGFQKSAFYPCYGMAETTLIVSGGNGRAQLPQEIIVSKQGI EANQVRPAQGTETTVTLVGSGEVIGDQIVKIVDPQALTECTVGEIGEVWVKGESVAQGYWQKPDLTQQQF
QGNVGAETGFLRTGDLGFLQGGELYITGRLKDLLIIRGRNHYPQDIELTVEVAHPALRQGAGAAVSVDVN GEEQLVIVQEVERKYARKLNVAAVAQAIRGAIAAEHQLQPQAICFIKPGSIPKTSSGKIRRHACKAGFLD GSLAVVGEWQPSHQKEGKGIGTQAVTPSTTTSTNFPLPDQHQQQIEAWLKDNIAHRLGITPQQLDETEPF ASYGLDSVQAVQVTADLEDWLGRKLDPTLAYDYPTIRTLAQFLVQGNQALEKIPQVPKIQGKEIAVVGLS CRFPQADNPEAFWELLRNGKDGVRPLKTRWATGEWGGFLEDIDQFEPQFFGISPREAEQMDPQQRLLLEV TWEALERANIPAESLRHSQTGVFVGISNSDYAQLQVRENNPINPYMGTGNAHSIAANRLSYFLDLRGVSL SIDTACSSSLVAVHLACQSLINGESELAIAAGVNLILTPDVTQTFTQAGMMSKTGRCQTFDAEADGYVRG EGCGVVLLKPLAQAERDGDNILAVIHGSAVNQDGRSNGLTAPNGRSQQAVIRQALAQAGITAADLAYLEA HGTGTPLGDPIEINSLKAVLQTAQREQPCVVGSVKTNIGHLEAAAGIAGLIKVILSLEHGMIPQHLHFKQ LNPRIDLDGLVTIASKDQPWSGGSQKRFAGVSSFGFGGTNAHVIVGDYAQQKSPLAPPATQDRPWHLLTL SAKNAQALNALQKSYGDYLAQHPSVDPRDLCLSANTGRSPLKERRFFVFKQVADLQQTLNQDFLAQPRLS SPAKIAFLFTGQGSQYYGMGQQLYQTSPVFRQVLDECDRLWQTYSPEAPALTDLLYGNHNPDLVHETVYT QPLLFAVEYAIAQLWLSWGVTPDFCMGHSVGEYVAACLAGVFSLADGMKLITARGKLMHALPSNGSMAAV FADKTVIKPYLSEHLTVGAENGSHLVLSGKTPCLEASIHKLQSQGIKTKPLKVSHAFHSPLMAPMLAEFR EIAEQITFHPPRIPLISNVTGGQIEAEIAQADYWVKHVSQPVKFVQSIQTLAQAGVNVYLEIGVKPVLLS MGRHCLAEQEAVWLPSLRPHSEPWPEILTSLGKLYEQGLNIDWQTVEAGDRRRKLILPTYPFQRQRYWFN QGSWQTVETESVNPGPDDLNDWLYQVAWTPLDTLPPAPEPSAKLWLILGDRHDHQPIEAQFKNAQRVYLG QSNHFPTNAPWEVSADALDNLFTHVGSQNLAGILYLCPPGEDPEDLDEIQKQTSGFALQLIQTLYQQKIA VPCWFVTHQSQRVLETDAVTGFAQGGLWGLAQAIALEHPELWGGIIDVDDSLPNFAQICQQRQVQQLAVR HQKLYGAQLKKQPSLPQKNLQIQPQQTYLVTGGLGAIGRKIAQWLAAAGAEKVILVSRRAPAADQQTLPT NAVVYPCDLADAAQVAKLFQTYPHIKGIFHAAGTLADGLLQQQTWQKFQTVAAAKMKGTWHLHRHSQKLD LDFFVLFSSVAGVLGSPGQGNYAAANRGMAAIAQYRQAQGLPALAIHWGPWAEGGMANSLSNQNLAWLPP PQGLTILEKVLGAQGEMGVFKPDWQNLAKQFPEFAKTHYFAAVIPSAEAVPPTASIFDKLINLEASQRAD YLLDYLRRSVAQILKLEIEQIQSHDSLLDLGMDSLMIMEAIASLKQDLQLMLYPREIYERPRLDVLTAYL AAEFTKAHDSEAATAAAAIPSQSLSVKTKKQWQKPDHKNPNPIAFILSSPRSGSTLLRVMLAGHPGLYSP PELHLLPFETMGDRHQELGLSHLGEGLQRALMDLENLTPEASQAKVNQWVKANTPIADIYAYLQRQAEQR LLIDKSPSYGSDRHILDHSEILFDQAKYIHLVRHPYAVIESFTRLRMDKLLGAEQQNPYALAESIWRTSN RNILDLGRTVGADRYLQVIYEDLVRDPRKVLTNICDFLGVDFDEALLNPYSGDRLTDGLHQQSMGVGDPN FLQHKTIDPALADKWRSITLPAALQLDTIQLAETFAYDLPQEPQLTPQTQSLPSMVERFVTVRGLETCLC EWGDRHQPLVLLLHGILEQGASWQLIAPQLAAQGYWVVAPDLRGHGKSAHAQSYSMLDFLADVDALAKQL GDRPFTLVGHSMGSIIGAMYAGIRQTQVEKLILVETIVPNDIDDAETGNHLTTHLDYLAAPPQHPIFPSL EVAARRLRQATPQLPKDLSAFLTQRSTKSVEKGVQWRWDAFLRTRAGIEFNGISRRRYLALLKDIQAPIT LIYGDQSEFNRPADLQAIQAALPQAQRLTVAGGHNLHFENPQAIAQIVYQQLQTPVPKTQ SEQ ID NO: 19 Nucleotide Engineered NonA with mycA Interior Acyl Binding Pocket domain (underlined) ATGGTTGGTCAATTTGCAAATTTCGTCGATCTGCTCCAGTACAGAGCTAAACTTCAGGCGCGGAAAACCG TGTTTAGTTTTCTGGCTGATGGCGAAGCGGAATCTGCGGCCCTGACCTACGGAGAATTAGACCAAAAAGC CCAGGCGATCGCCGCTTTTTTGCAAGCTAACCAGGCTCAAGGGCAACGGGCATTATTACTTTATCCACCG GGTTTAGAGTTTATCGGTGCCTTTTTGGGATGTTTGTATGCTGGTGTTGTTGCGGTGCCAGCTTACCCAC CACGGCCGAATAAATCCTTTGACCGCCTCCATAGCATTATCCAAGATGCCCAGGCAAAATTTGCCCTCAC CACAACAGAACTTAAAGATAAAATTGCCGATCGCCTCGAAGCTTTAGAAGGTACGGATTTTCATTGTTTG GCTACAGATCAAGTTGAATTAATTTCAGGAAAAAATTGGCAAAAACCGAACATTTCCGGCACAGATCTCG CTTTTTTGCAATACACCAGTGGCTCCACGGGCGATCCTAAAGGAGTGATGGTTTCCCACCACAATTTGAT CCACAACTCCGGCTTGATCCGGAATGCGCTGGCTATCGACTTAAAAGATACTCTTTTATCTTGGATGCCC TTAACCCATGACATGGGGCTCATAGCTTGCCACCTTGTTCCTGCCTTAGCCGGAATCAATCAAAATTTAA TGCCGACAGAATTATTTATTCGAAGACCTATTCTCTGGATGAAAAAAGCTCATGAACATAAAGCCAGCAT TCTATCCTCACCTAATTTTGGATACAATTACTTTCTTAAATTTCTGAAAGACAATAAAAGTTACGACTGG GATTTATCCCATATCAGGGTCATTGCAAACGGGGCCGAACCGATCCGCGCTGTGACCCTCGAAAATTTTG CGAAAACCTTCGCTACAGCAGGCTTTCAAAAATCAGCATTTTATCCCTGTTATGGTATGGCTGAAACCAC CCTGATCGTTTCCGGTGGTAATGGTCGTGCCCAGCTTCCCCAGGAAATTATCGTCAGCAAACAGGGCATC GAAGCAAACCAAGTTCGCCCTGCCCAAGGGACAGAAACAACGGTGACCTTGGTCGGCAGTGGTGAAGTGA TTGGCGACCAAATTGTCAAAATTGTTGACCCCCAGGCTTTAACAGAATGTACCGTCGGTGAAATTGGCGA AGTATGGGTTAAGGGCGAAAGTGTTGCCCAGGGCTATTGGCAAAAGCCAGACCTCACCCAGCAACAATTC CAGGGAAACGTCGGTGCAGAAACGGGCTTTTTACGCACGGGCGATCTGGGTTTTTTGCAAGGTGGCGAAC TGTATATTACGGGTCGTTTAAAGGATCTCCTGATTATCCGGGGGCGCAACCACTATCCCCAGGACATTGA ATTAACCGTCGAAGTGGCCCATCCCGCTTTACGACAGGGGGCCGGAGCCGCTGTATCAGTAGACGTTAAC GGGGAAGAACAGTTAGTCATTGTCCAGGAAGTTGAGCGTAAATATGCCCGCAAATTAAATGTCGCGGCAG TAGCCCAAGCTATTCGTGGGGCGATCGCCGCCGAACATCAACTGCAACCCCAGGCCATTTGTTTTATTAA ACCCGGTAGCATTCCCAAAACATCCAGCGGGAAGATTCGTCGCCATGCCTGCAAAGCTGGTTTTCTAGAC GGAAGCTTGGCTGTGGTTGGGGAGTGGCAACCCAGCCACCAAAAAGAAGGAAAAGGAATTGGGACACAAG CCGTTACCCCTTCTACGACAACATCAACGAATTTTCCCCTGCCTGACCAGCACCAACAGCAAATTGAAGC CTGGCTTAAGGATAATATTGCCCATCGCCTCGGCATTACGCCCCAACAATTAGACGAAACGGAACCCTTT GCAAGTTATGGGCTGGATTCAGTGCAAGCAGTACAGGTCACAGCCGACTTAGAGGATTGGCTAGGTCGAA AATTAGACCCCACTCTGGCCTACGATTATCCGACCATTCGCACCCTGGCTCAGTTTTTGGTCCAGGGTAA TCAAGCGCTAGAGAAAATACCACAGGTGCCGAAAATTCAGGGCAAAGAAATTGCCGTGGTGGGTCTCAGT TGTCGTTTTCCCCAAGCTGACAACCCCGAAGCTTTTTGGGAATTATTACGTAATGGTAAAGATGGAGTTC GCCCCCTTAAAACTCGCTGGGCCACGGGAGAATGGGGTGGTTTTTTAGAAGATATTGACCAGTTTGAGCC GCAATTTTTTGGCATTTCCCCCCGGGAAGCGGAACAAATGGATCCCCAGCAACGCTTACTGTTAGAAGTA ACCTGGGAAGCCTTGGAACGGGCAAATATTCCGGCAGAAAGTTTACGCCATTCCCAAACGGGGGTTTTTG TCGGCATTAGTAATAGTGATTATGCCCAGTTGCAGGTGCGGGAAAACAATCCGATCAATCCCTACATGGG GACGGGCAACGCCCACAGTATTGCTGCGAATCGTCTGTCTTATTTCCTCGATCTCCGGGGCGTTTCTCTG AGCATCGATACGGCCTGTTCCTCTTCTCTGGTGGCGGTACATCTGGCCTGTCAAAGTTTAATCAACGGCG AATCGGAGTTGGCGATCGCCGCCGGGGTGAATTTGATTTTGACCCCCGATGTGACCCAGACTTTTACCCA GGCGGGCATGATGAGTAAGACGGGCCGTTGCCAGACCTTTGATGCCGAGGCTGATGGCTATGTGCGGGGC GAAGGTTGTGGGGTCGTTCTCCTCAAACCCCTGGCCCAGGCAGAACGGGACGGGGATAATATTCTCGCGG TGATCCACGGTTCGGCGGTGAATCAAGATGGACGCAGTAACGGTTTGACGGCTCCCAACGGGCGATCGCA ACAGGCCGTTATTCGCCAAGCCCTGGCCCAAGCCGGCATTACCGCCGCCGATTTAGCTTACCTAGAGGCC CACGGCACCGGCACGCCCCTGGGTGATCCCATTGAAATTAATTCCCTGAAGGCGGTTTTACAAACGGCGC AGCGGGAACAGCCCTGTGTGGTGGGTTCTGTGAAAACAAACATTGGTCACCTCGAGGCAGCGGCGGGCAT CGCGGGCTTAATCAAGGTGATTTTGTCCCTAGAGCATGGAATGATTCCCCAACATTTGCATTTTAAGCAG CTCAATCCCCGCATTGATCTAGACGGTTTAGTGACCATTGCGAGCAAAGATCAGCCTTGGTCAGGCGGGT CACAAAAACGGTTTGCTGGGGTAAGTTCCTTTGGGTTTGGTGGCACCAATGCCCACGTGATTGTCGGGGA CTATGCTCAACAAAAATCTCCCCTTGCTCCTCCGGCTACCCAAGACCGCCCTTGGCATTTGCTGACCCTT TCTGCTAAAAATGCCCAGGCCTTAAATGCCCTGCAAAAAAGCTATGGAGACTATCTGGCCCAACATCCCA GCGTTGACCCACGCGATCTCTGTTTGTCTGCCAATACCGGGCGATCGCCCCTCAAAGAACGTCGTTTTTT TGTCTTTAAACAAGTCGCCGATTTACAACAAACTCTCAATCAAGATTTTCTGGCCCAACCACGCCTCAGT TCCCCCGCAAAAATTGCCTTTTTGTTTACGGGGCAAGGTTCCCAATACTACGGCATGGGGCAACAACTGT ACCAAACCAGCCCAGTATTTCGGCAAGTGCTGGATGAGTGCGATCGCCTCTGGCAGACCTATTCCCCCGA AGCCCCTGCCCTCACCGACCTGCTGTACGGTAACCATAACCCTGACCTCGTCCACGAAACTGTCTATACC CAGCCCCTCCTCTTTGCTGTTGAATATGCGATCGCCCAACTATGGTTAAGCTGGGGCGTGACGCCAGACT TTTGCATGGGCCATAGCGTCGGCGAATATGTCGCGGCTTGTCTGGCGGGGGTATTTTCCCTGGCAGACGG CATGAAATTAATTACGGCCCGGGGCAAACTGATGCACGCCCTACCCAGCAATGGCAGTATGGCGGCGGTC TTTGCCGATAAAACGGTCATCAAACCCTACCTATCGGAGCATTTGACCGTCGGAGCCGAAAACGGTTCCC ATTTGGTGCTATCAGGAAAGACCCCCTGCCTCGAAGCCAGTATTCACAAACTCCAAAGCCAAGGGATCAA AACCAAACCCCTCAAGGTTTCCCATGCTTTCCACTCCCCTTTGATGGCTCCCATGCTGGCAGAGTTTCGG GAAATTGCTGAACAAATTACTTTCCACCCGCCGCGTATCCCGCTCATTTCCAATGTCACGGGCGGCCAGA TTGAAGCGGAAATTGCCCAGGCCGACTATTGGGTTAAGCACGTTTCGCAACCCGTCAAATTTGTCCAGAG CATCCAAACCCTGGCCCAAGCGGGTGTCAATGTTTATCTCGAAATCGGCGTAAAACCAGTGCTCCTGAGT ATGGGACGCCATTGCTTAGCTGAACAAGAAGCGGTTTGGTTGCCCAGTTTACGTCCCCATAGTGAGCCTT GGCCGGAAATTTTGACCAGTCTCGGCAAACTGTATGAGCAAGGGCTAAACATTGACTGGCAGACCGTGGA AGCTGGCGATCGCCGCCGGAAACTGATTCTGCCCACCTATCCCTTCCAACGGCAACGATATTGGTTTAAT CAAGGCTCTTGGCAAACTGTTGAGACCGAATCTGTGAACCCAGGCCCTGACGATCTCAATGATTGGTTGT ATCAGGTGGCGTGGACGCCCCTGGACACTTTGCCCCCGGCCCCTGAACCGTCGGCTAAGCTGTGGTTAAT CTTGGGCGATCGCCATGATCACCAGCCCATTGAAGCCCAATTTAAAAACGCCCAGCGGGTGTATCTCGGC CAAAGCAATCATTTTCCGACGAATGCCCCCTGGGAAGTATCTGCCGATGCGTTGGATAATTTATTTACTC ACGTCGGCTCCCAAAATTTAGCAGGCATCCTTTACCTGTGTCCCCCAGGGGAAGACCCAGAAGACCTAGA TGAAATTCAAAAGCAAACCAGTGGCTTCGCCCTCCAACTGATCCAAACCCTGTATCAACAAAAGATCGCG GTTCCCTGCTGGTTTGTGACCCACCAGAGCCAACGGGTGCTTGAAACCGATGCTGTCACCGGATTTGCCC AAGGGGGATTATGGGGACTCGCCCAGGCGATCGCCCTCGAACATCCAGAGTTGTGGGGGGGAATTATTGA TGTCGATGACAGCCTGCCAAATTTTGCCCAGATTTGCCAACAAAGACAGGTGCAGCAGTTGGCCGTGCGG CACCAAAAACTCTACGGGGCACAGCTCAAAAAGCAACCGTCACTGCCCCAGAAAAATCTCCAGATTCAAC CCCAACAGACCTATCTAGTGACAGGGGGACTGGGGGCCATTGGCCGTAAAATTGCCCAATGGCTAGCCGC AGCAGGAGCAGAAAAAGTAATTCTCGTCAGCCGGCGCGCTCCGGCAGCGGATCAGCAGACGTTACCGACC AATGCGGTGGTTTATCCTTGCGATTTAGCCGACGCAGCCCAGGTGGCAAAGCTGTTTCAAACCTATCCCC ACATCAAAGGAATTTTCCATGCGGCGGGTACCTTAGCTGATGGTTTGCTGCAACAACAAACTTGGCAAAA GTTCCAGACCGTCGCCGCCGCCAAAATGAAAGGGACATGGCATCTGCACCGCCATAGTCAAAAGCTCGAT CTGGATTTTTTTGTGTTGTTTTCCTCTGTGGCAGGGGTGCTCGGTTCACCGGGACAGGGGAATTATGCCG CCGCAAACCGGGGCATGGCGGCGATCGCCCAATATCGACAAGCCCAAGGTTTACCCGCCCTGGCGATCCA TTGGGGGCCTTGGGCCGAAGGGGGAATGGCCAACTCCCTCAGCAACCAAAATTTAGCGTGGCTGCCGCCC CCCCAGGGACTAACAATCCTCGAAAAAGTCTTGGGCGCCCAGGGGGAAATGGGGGTCTTTAAACCGGACT GGCAAAACCTGGCCAAACAGTTCCCCGAATTTGCCAAAACCCATTACTTTGCAGCCGTTATTCCCTCTGC TGAGGCTGTGCCCCCAACGGCTTCAATTTTTGACAAATTAATCAACCTAGAAGCTTCTCAGCGGGCTGAC TATCTACTGGATTATCTGCGGCGGTCTGTGGCGCAAATCCTCAAGTTAGAAATTGAGCAAATTCAAAGCC ACGATAGCCTGTTGGATCTGGGCATGGATTCGTTGATGATCATGGAGGCGATCGCCAGCCTCAAGCAGGA TTTACAACTGATGTTGTACCCCAGGGAAATCTACGAACGGCCCAGACTTGATGTGTTGACGGCCTATCTA GCGGCGGAATTCACCAAGGCCCATGATTCTGAAGCAGCAACGGCGGCAGCAGCGATTCCCTCCCAAAGCC TTTCGGTCAAAACAAAAAAACAGTGGCAAAAACCTGACCACAAAAACCCGAATCCCATTGCCTTTATCCT CTCTAGCCCCCGGTCGGGTTCGACGTTGCTGCGGGTGATGTTAGCCGGACATCCGGGGTTATATTCGCCG CCAGAGCTGCATTTGCTCCCCTTTGAGACTATGGGCGATCGCCACCAGGAATTGGGTCTATCCCACCTCG GCGAAGGGTTACAACGGGCCTTAATGGATCTAGAAAACCTCACCCCAGAGGCAAGCCAGGCGAAGGTCAA CCAATGGGTCAAAGCGAATACACCCATTGCAGACATCTATGCCTATCTCCAACGGCAGGCGGAACAACGT TTACTCATCGACAAATCTCCCAGCTACGGCAGCGATCGCCATATTCTAGACCACAGCGAAATCCTCTTTG ACCAGGCCAAATATATCCATCTGGTACGCCATCCCTACGCGGTGATTGAATCCTTTACCCGACTGCGGAT GGATAAACTGCTGGGGGCCGAGCAGCAGAACCCCTACGCCCTCGCGGAGTCCATTTGGCGCACCAGCAAC CGCAATATTTTAGACCTGGGTCGCACGGTTGGTGCGGATCGATATCTCCAGGTGATTTACGAAGATCTCG TCCGTGACCCCCGCAAAGTTTTGACAAATATTTGTGATTTCCTGGGGGTGGACTTTGACGAAGCGCTCCT CAATCCCTACAGCGGCGATCGCCTTACCGATGGCCTCCACCAACAGTCCATGGGCGTCGGGGATCCCAAT TTCCTCCAGCACAAAACCATTGATCCGGCCCTCGCCGACAAATGGCGCTCAATTACCCTGCCCGCTGCTC TCCAGCTGGATACGATCCAGTTGGCCGAAACGTTTGCTTACGATCTCCCCCAGGAACCCCAGCTAACACC CCAGACCCAATCCTTGCCCTCGATGGTGGAGCGGTTCGTGACAGTGCGCGGTTTAGAAACCTGTCTCTGT GAGTGGGGCGATCGCCACCAACCATTGGTGCTACTTCTCCACGGCATCCTCGAACAGGGGGCCTCCTGGC AACTCATCGCGCCCCAGTTGGCGGCCCAGGGCTATTGGGTTGTGGCCCCAGACCTGCGTGGTCACGGCAA ATCCGCCCATGCCCAGTCCTACAGCATGCTTGATTTTTTGGCTGACGTAGATGCCCTTGCCAAACAATTA GGCGATCGCCCCTTTACCTTGGTGGGCCACTCCATGGGTTCCATCATCGGTGCCATGTATGCAGGAATTC GCCAAACCCAGGTAGAAAAGTTGATCCTCGTTGAAACCATTGTCCCCAACGACATCGACGACGCTGAAAC CGGTAATCACCTGACGACCCATCTCGATTACCTCGCCGCGCCCCCCCAACACCCGATCTTCCCCAGCCTA GAAGTGGCCGCCCGTCGCCTCCGCCAAGCCACGCCCCAACTACCCAAAGACCTCTCGGCGTTCCTCACCC AGCGCAGCACCAAATCCGTCGAAAAAGGGGTGCAGTGGCGTTGGGATGCTTTCCTCCGTACCCGGGCGGG CATTGAATTCAATGGCATTAGCAGACGACGTTACCTGGCCCTGCTCAAAGATATCCAAGCGCCGATCACC CTCATCTATGGCGATCAGAGTGAATTTAACCGCCCTGCTGATCTCCAGGCGATCCAAGCGGCTCTCCCCC AGGCCCAACGTTTAACGGTTGCTGGCGGCCATAACCTCCATTTTGAGAATCCCCAGGCGATCGCCCAAAT TGTTTATCAACAACTCCAGACCCCTGTACCCAAAACACAATAA SEQ ID NO: 20 Amino Acid Engineered NonA with MycA Interior Acyl Binding Pocket domain (underlined) MVGQFANFVDLLQYRAKLQARKTVFSFLADGEAESAALTYGELDQKAQAIAAFLQANQAQGQRALLLYPP GLEFIGAFLGCLYAGVVAVPAYPPRPNKSFDRLHSIIQDAQAKFALTTTELKDKIADRLEALEGTDFHCL ATDQVELISGKNWQKPNISGTDLAFLQYTSGSTGDPKGVMVSHHNLIHNSGLIRNALAIDLKDTLLSWMP LTHDMGLIACHLVPALAGINQNLMPTELFIRRPILWMKKAHEHKASILSSPNFGYNYFLKFLKDNKSYDW DLSHIRVIANGAEPIRAVTLENFAKTFATAGFQKSAFYPCYGMAETTLIVSGGNGRAQLPQEIIVSKQGI EANQVRPAQGTETTVTLVGSGEVIGDQIVKIVDPQALTECTVGEIGEVWVKGESVAQGYWQKPDLTQQQF QGNVGAETGFLRTGDLGFLQGGELYITGRLKDLLIIRGRNHYPQDIELTVEVAHPALRQGAGAAVSVDVN GEEQLVIVQEVERKYARKLNVAAVAQAIRGAIAAEHQLQPQAICFIKPGSIPKTSSGKIRRHACKAGFLD GSLAVVGEWQPSHQKEGKGIGTQAVTPSTTTSTNFPLPDQHQQQIEAWLKDNIAHRLGITPQQLDETEPF ASYGLDSVQAVQVTADLEDWLGRKLDPTLAYDYPTIRTLAQFLVQGNQALEKIPQVPKIQGKEIAVVGLS CRFPQADNPEAFWELLRNGKDGVRPLKTRWATGEWGGFLEDIDQFEPQFFGISPREAEQMDPQQRLLLEV TWEALERANIPAESLRHSQTGVFVGISNSDYAQLQVRENNPINPYMGTGNAHSIAANRLSYFLDLRGVSL SIDTACSSSLVAVHLACQSLINGESELAIAAGVNLILTPDVTQTFTQAGMMSKTGRCQTFDAEADGYVRG EGCGVVLLKPLAQAERDGDNILAVIHGSAVNQDGRSNGLTAPNGRSQQAVIRQALAQAGITAADLAYLEA HGTGTPLGDPIEINSLKAVLQTAQREQPCVVGSVKTNIGHLEAAAGIAGLIKVILSLEHGMIPQHLHFKQ LNPRIDLDGLVTIASKDQPWSGGSQKRFAGVSSFGFGGTNAHVIVGDYAQQKSPLAPPATQDRPWHLLTL SAKNAQALNALQKSYGDYLAQHPSVDPRDLCLSANTGRSPLKERRFFVFKQVADLQQTLNQDFLAQPRLS SPAKIAFLFTGQGSQYYGMGQQLYQTSPVFRQVLDECDRLWQTYSPEAPALTDLLYGNHNPDLVHETVYT QPLLFAVEYAIAQLWLSWGVTPDFCMGHSVGEYVAACLAGVFSLADGMKLITARGKLMHALPSNGSMAAV FADKTVIKPYLSEHLTVGAENGSHLVLSGKTPCLEASIHKLQSQGIKTKPLKVSHAFHSPLMAPMLAEFR EIAEQITFHPPRIPLISNVTGGQIEAEIAQADYWVKHVSQPVKFVQSIQTLAQAGVNVYLEIGVKPVLLS MGRHCLAEQEAVWLPSLRPHSEPWPEILTSLGKLYEQGLNIDWQTVEAGDRRRKLILPTYPFQRQRYWFN QGSWQTVETESVNPGPDDLNDWLYQVAWTPLDTLPPAPEPSAKLWLILGDRHDHQPIEAQFKNAQRVYLG QSNHFPTNAPWEVSADALDNLFTHVGSQNLAGILYLCPPGEDPEDLDEIQKQTSGFALQLIQTLYQQKIA VPCWFVTHQSQRVLETDAVTGFAQGGLWGLAQAIALEHPELWGGIIDVDDSLPNFAQICQQRQVQQLAVR HQKLYGAQLKKQPSLPQKNLQIQPQQTYLVTGGLGAIGRKIAQWLAAAGAEKVILVSRRAPAADQQTLPT NAVVYPCDLADAAQVAKLFQTYPHIKGIFHAAGTLADGLLQQQTWQKFQTVAAAKMKGTWHLHRHSQKLD LDFFVLFSSVAGVLGSPGQGNYAAANRGMAAIAQYRQAQGLPALAIHWGPWAEGGMANSLSNQNLAWLPP PQGLTILEKVLGAQGEMGVFKPDWQNLAKQFPEFAKTHYFAAVIPSAEAVPPTASIFDKLINLEASQRAD YLLDYLRRSVAQILKLEIEQIQSHDSLLDLGMDSLMIMEAIASLKQDLQLMLYPREIYERPRLDVLTAYL AAEFTKAHDSEAATAAAAIPSQSLSVKTKKQWQKPDHKNPNPIAFILSSPRSGSTLLRVMLAGHPGLYSP PELHLLPFETMGDRHQELGLSHLGEGLQRALMDLENLTPEASQAKVNQWVKANTPIADIYAYLQRQAEQR LLIDKSPSYGSDRHILDHSEILFDQAKYIHLVRHPYAVIESFTRLRMDKLLGAEQQNPYALAESIWRTSN RNILDLGRTVGADRYLQVIYEDLVRDPRKVLTNICDFLGVDFDEALLNPYSGDRLTDGLHQQSMGVGDPN FLQHKTIDPALADKWRSITLPAALQLDTIQLAETFAYDLPQEPQLTPQTQSLPSMVERFVTVRGLETCLC EWGDRHQPLVLLLHGILEQGASWQLIAPQLAAQGYWVVAPDLRGHGKSAHAQSYSMLDFLADVDALAKQL GDRPFTLVGHSMGSIIGAMYAGIRQTQVEKLILVETIVPNDIDDAETGNHLTTHLDYLAAPPQHPIFPSL EVAARRLRQATPQLPKDLSAFLTQRSTKSVEKGVQWRWDAFLRTRAGIEFNGISRRRYLALLKDIQAPIT LIYGDQSEFNRPADLQAIQAALPQAQRLTVAGGHNLHFENPQAIAQIVYQQLQTPVPKTQ SEQ ID NO: 21 Nucleotide Engineered NonA with dptE Interior Acyl Binding Pocket domain (underlined) ATGGTTGGTCAATTTGCAAATTTCGTCGATCTGCTCCAGTACAGAGCTAAACTTCAGGCGCGGAAAACCG TGTTTAGTTTTCTGGCTGATGGCGAAGCGGAATCTGCGGCCCTGACCTACGGAGAATTAGACCAAAAAGC CCAGGCGATCGCCGCTTTTTTGCAAGCTAACCAGGCTCAAGGGCAACGGGCATTATTACTTTATCCACCG GGTTTAGAGTTTATCGGTGCCTTTTTGGGATGTTTGTATGCTGGTGTTGTTGCGGTGCCAGCTTACCCAC CACGGCCGAATAAATCCTTTGACCGCCTCCATAGCATTATCCAAGATGCCCAGGCAAAATTTGCCCTCAC CACAACAGAACTTAAAGATAAAATTGCCGATCGCCTCGAAGCTTTAGAAGGTACGGATTTTCATTGTTTG GCTACAGATCAAGTTGAATTAATTTCAGGAAAAAATTGGCAAAAACCGAACATTTCCGGCACAGATCTCG CTTTTTTGCAATACACCAGTGGCTCCACGGGCGATCCTAAAGGAGTGATGGTTTCCCACCACAATTTGAT CCACAACTCCGGCTTGCTCGCCGAGGCCTGCGAGCTGACCGCCGCCACTCCCATGGGCGGCTGGCTGCCC ATGTACCACGACATGGGGCTCCTGGGCACGCTGACACCGGCCCTGTACCTCGGCACCACGTGCGTGCTGA TGAGCTCCACGGCATTCATCAAACGGCCGCACCTGTGGCTACGGACCATCGACCGGTTCGGCCTGGTCTG GTCGTCGGCTCCCGACTTCGCGTACGACATGTGTCTGAAGCGCGTCACCGACGAGCAGATCGCCGGGCTG GACCTGTCCCGCTGGCGGTGGGCCGGCAACGGGGCCGAACCGATCCGCGCTGTGACCCTCGAAAATTTTG CGAAAACCTTCGCTACAGCAGGCTTTCAAAAATCAGCATTTTATCCCTGTTATGGTATGGCTGAAACCAC CCTGATCGTTTCCGGTGGTAATGGTCGTGCCCAGCTTCCCCAGGAAATTATCGTCAGCAAACAGGGCATC GAAGCAAACCAAGTTCGCCCTGCCCAAGGGACAGAAACAACGGTGACCTTGGTCGGCAGTGGTGAAGTGA TTGGCGACCAAATTGTCAAAATTGTTGACCCCCAGGCTTTAACAGAATGTACCGTCGGTGAAATTGGCGA AGTATGGGTTAAGGGCGAAAGTGTTGCCCAGGGCTATTGGCAAAAGCCAGACCTCACCCAGCAACAATTC CAGGGAAACGTCGGTGCAGAAACGGGCTTTTTACGCACGGGCGATCTGGGTTTTTTGCAAGGTGGCGAAC TGTATATTACGGGTCGTTTAAAGGATCTCCTGATTATCCGGGGGCGCAACCACTATCCCCAGGACATTGA ATTAACCGTCGAAGTGGCCCATCCCGCTTTACGACAGGGGGCCGGAGCCGCTGTATCAGTAGACGTTAAC GGGGAAGAACAGTTAGTCATTGTCCAGGAAGTTGAGCGTAAATATGCCCGCAAATTAAATGTCGCGGCAG TAGCCCAAGCTATTCGTGGGGCGATCGCCGCCGAACATCAACTGCAACCCCAGGCCATTTGTTTTATTAA ACCCGGTAGCATTCCCAAAACATCCAGCGGGAAGATTCGTCGCCATGCCTGCAAAGCTGGTTTTCTAGAC GGAAGCTTGGCTGTGGTTGGGGAGTGGCAACCCAGCCACCAAAAAGAAGGAAAAGGAATTGGGACACAAG CCGTTACCCCTTCTACGACAACATCAACGAATTTTCCCCTGCCTGACCAGCACCAACAGCAAATTGAAGC CTGGCTTAAGGATAATATTGCCCATCGCCTCGGCATTACGCCCCAACAATTAGACGAAACGGAACCCTTT GCAAGTTATGGGCTGGATTCAGTGCAAGCAGTACAGGTCACAGCCGACTTAGAGGATTGGCTAGGTCGAA AATTAGACCCCACTCTGGCCTACGATTATCCGACCATTCGCACCCTGGCTCAGTTTTTGGTCCAGGGTAA TCAAGCGCTAGAGAAAATACCACAGGTGCCGAAAATTCAGGGCAAAGAAATTGCCGTGGTGGGTCTCAGT TGTCGTTTTCCCCAAGCTGACAACCCCGAAGCTTTTTGGGAATTATTACGTAATGGTAAAGATGGAGTTC GCCCCCTTAAAACTCGCTGGGCCACGGGAGAATGGGGTGGTTTTTTAGAAGATATTGACCAGTTTGAGCC GCAATTTTTTGGCATTTCCCCCCGGGAAGCGGAACAAATGGATCCCCAGCAACGCTTACTGTTAGAAGTA ACCTGGGAAGCCTTGGAACGGGCAAATATTCCGGCAGAAAGTTTACGCCATTCCCAAACGGGGGTTTTTG TCGGCATTAGTAATAGTGATTATGCCCAGTTGCAGGTGCGGGAAAACAATCCGATCAATCCCTACATGGG GACGGGCAACGCCCACAGTATTGCTGCGAATCGTCTGTCTTATTTCCTCGATCTCCGGGGCGTTTCTCTG AGCATCGATACGGCCTGTTCCTCTTCTCTGGTGGCGGTACATCTGGCCTGTCAAAGTTTAATCAACGGCG AATCGGAGTTGGCGATCGCCGCCGGGGTGAATTTGATTTTGACCCCCGATGTGACCCAGACTTTTACCCA GGCGGGCATGATGAGTAAGACGGGCCGTTGCCAGACCTTTGATGCCGAGGCTGATGGCTATGTGCGGGGC GAAGGTTGTGGGGTCGTTCTCCTCAAACCCCTGGCCCAGGCAGAACGGGACGGGGATAATATTCTCGCGG TGATCCACGGTTCGGCGGTGAATCAAGATGGACGCAGTAACGGTTTGACGGCTCCCAACGGGCGATCGCA ACAGGCCGTTATTCGCCAAGCCCTGGCCCAAGCCGGCATTACCGCCGCCGATTTAGCTTACCTAGAGGCC CACGGCACCGGCACGCCCCTGGGTGATCCCATTGAAATTAATTCCCTGAAGGCGGTTTTACAAACGGCGC AGCGGGAACAGCCCTGTGTGGTGGGTTCTGTGAAAACAAACATTGGTCACCTCGAGGCAGCGGCGGGCAT CGCGGGCTTAATCAAGGTGATTTTGTCCCTAGAGCATGGAATGATTCCCCAACATTTGCATTTTAAGCAG CTCAATCCCCGCATTGATCTAGACGGTTTAGTGACCATTGCGAGCAAAGATCAGCCTTGGTCAGGCGGGT CACAAAAACGGTTTGCTGGGGTAAGTTCCTTTGGGTTTGGTGGCACCAATGCCCACGTGATTGTCGGGGA
CTATGCTCAACAAAAATCTCCCCTTGCTCCTCCGGCTACCCAAGACCGCCCTTGGCATTTGCTGACCCTT TCTGCTAAAAATGCCCAGGCCTTAAATGCCCTGCAAAAAAGCTATGGAGACTATCTGGCCCAACATCCCA GCGTTGACCCACGCGATCTCTGTTTGTCTGCCAATACCGGGCGATCGCCCCTCAAAGAACGTCGTTTTTT TGTCTTTAAACAAGTCGCCGATTTACAACAAACTCTCAATCAAGATTTTCTGGCCCAACCACGCCTCAGT TCCCCCGCAAAAATTGCCTTTTTGTTTACGGGGCAAGGTTCCCAATACTACGGCATGGGGCAACAACTGT ACCAAACCAGCCCAGTATTTCGGCAAGTGCTGGATGAGTGCGATCGCCTCTGGCAGACCTATTCCCCCGA AGCCCCTGCCCTCACCGACCTGCTGTACGGTAACCATAACCCTGACCTCGTCCACGAAACTGTCTATACC CAGCCCCTCCTCTTTGCTGTTGAATATGCGATCGCCCAACTATGGTTAAGCTGGGGCGTGACGCCAGACT TTTGCATGGGCCATAGCGTCGGCGAATATGTCGCGGCTTGTCTGGCGGGGGTATTTTCCCTGGCAGACGG CATGAAATTAATTACGGCCCGGGGCAAACTGATGCACGCCCTACCCAGCAATGGCAGTATGGCGGCGGTC TTTGCCGATAAAACGGTCATCAAACCCTACCTATCGGAGCATTTGACCGTCGGAGCCGAAAACGGTTCCC ATTTGGTGCTATCAGGAAAGACCCCCTGCCTCGAAGCCAGTATTCACAAACTCCAAAGCCAAGGGATCAA AACCAAACCCCTCAAGGTTTCCCATGCTTTCCACTCCCCTTTGATGGCTCCCATGCTGGCAGAGTTTCGG GAAATTGCTGAACAAATTACTTTCCACCCGCCGCGTATCCCGCTCATTTCCAATGTCACGGGCGGCCAGA TTGAAGCGGAAATTGCCCAGGCCGACTATTGGGTTAAGCACGTTTCGCAACCCGTCAAATTTGTCCAGAG CATCCAAACCCTGGCCCAAGCGGGTGTCAATGTTTATCTCGAAATCGGCGTAAAACCAGTGCTCCTGAGT ATGGGACGCCATTGCTTAGCTGAACAAGAAGCGGTTTGGTTGCCCAGTTTACGTCCCCATAGTGAGCCTT GGCCGGAAATTTTGACCAGTCTCGGCAAACTGTATGAGCAAGGGCTAAACATTGACTGGCAGACCGTGGA AGCTGGCGATCGCCGCCGGAAACTGATTCTGCCCACCTATCCCTTCCAACGGCAACGATATTGGTTTAAT CAAGGCTCTTGGCAAACTGTTGAGACCGAATCTGTGAACCCAGGCCCTGACGATCTCAATGATTGGTTGT ATCAGGTGGCGTGGACGCCCCTGGACACTTTGCCCCCGGCCCCTGAACCGTCGGCTAAGCTGTGGTTAAT CTTGGGCGATCGCCATGATCACCAGCCCATTGAAGCCCAATTTAAAAACGCCCAGCGGGTGTATCTCGGC CAAAGCAATCATTTTCCGACGAATGCCCCCTGGGAAGTATCTGCCGATGCGTTGGATAATTTATTTACTC ACGTCGGCTCCCAAAATTTAGCAGGCATCCTTTACCTGTGTCCCCCAGGGGAAGACCCAGAAGACCTAGA TGAAATTCAAAAGCAAACCAGTGGCTTCGCCCTCCAACTGATCCAAACCCTGTATCAACAAAAGATCGCG GTTCCCTGCTGGTTTGTGACCCACCAGAGCCAACGGGTGCTTGAAACCGATGCTGTCACCGGATTTGCCC AAGGGGGATTATGGGGACTCGCCCAGGCGATCGCCCTCGAACATCCAGAGTTGTGGGGGGGAATTATTGA TGTCGATGACAGCCTGCCAAATTTTGCCCAGATTTGCCAACAAAGACAGGTGCAGCAGTTGGCCGTGCGG CACCAAAAACTCTACGGGGCACAGCTCAAAAAGCAACCGTCACTGCCCCAGAAAAATCTCCAGATTCAAC CCCAACAGACCTATCTAGTGACAGGGGGACTGGGGGCCATTGGCCGTAAAATTGCCCAATGGCTAGCCGC AGCAGGAGCAGAAAAAGTAATTCTCGTCAGCCGGCGCGCTCCGGCAGCGGATCAGCAGACGTTACCGACC AATGCGGTGGTTTATCCTTGCGATTTAGCCGACGCAGCCCAGGTGGCAAAGCTGTTTCAAACCTATCCCC ACATCAAAGGAATTTTCCATGCGGCGGGTACCTTAGCTGATGGTTTGCTGCAACAACAAACTTGGCAAAA GTTCCAGACCGTCGCCGCCGCCAAAATGAAAGGGACATGGCATCTGCACCGCCATAGTCAAAAGCTCGAT CTGGATTTTTTTGTGTTGTTTTCCTCTGTGGCAGGGGTGCTCGGTTCACCGGGACAGGGGAATTATGCCG CCGCAAACCGGGGCATGGCGGCGATCGCCCAATATCGACAAGCCCAAGGTTTACCCGCCCTGGCGATCCA TTGGGGGCCTTGGGCCGAAGGGGGAATGGCCAACTCCCTCAGCAACCAAAATTTAGCGTGGCTGCCGCCC CCCCAGGGACTAACAATCCTCGAAAAAGTCTTGGGCGCCCAGGGGGAAATGGGGGTCTTTAAACCGGACT GGCAAAACCTGGCCAAACAGTTCCCCGAATTTGCCAAAACCCATTACTTTGCAGCCGTTATTCCCTCTGC TGAGGCTGTGCCCCCAACGGCTTCAATTTTTGACAAATTAATCAACCTAGAAGCTTCTCAGCGGGCTGAC TATCTACTGGATTATCTGCGGCGGTCTGTGGCGCAAATCCTCAAGTTAGAAATTGAGCAAATTCAAAGCC ACGATAGCCTGTTGGATCTGGGCATGGATTCGTTGATGATCATGGAGGCGATCGCCAGCCTCAAGCAGGA TTTACAACTGATGTTGTACCCCAGGGAAATCTACGAACGGCCCAGACTTGATGTGTTGACGGCCTATCTA GCGGCGGAATTCACCAAGGCCCATGATTCTGAAGCAGCAACGGCGGCAGCAGCGATTCCCTCCCAAAGCC TTTCGGTCAAAACAAAAAAACAGTGGCAAAAACCTGACCACAAAAACCCGAATCCCATTGCCTTTATCCT CTCTAGCCCCCGGTCGGGTTCGACGTTGCTGCGGGTGATGTTAGCCGGACATCCGGGGTTATATTCGCCG CCAGAGCTGCATTTGCTCCCCTTTGAGACTATGGGCGATCGCCACCAGGAATTGGGTCTATCCCACCTCG GCGAAGGGTTACAACGGGCCTTAATGGATCTAGAAAACCTCACCCCAGAGGCAAGCCAGGCGAAGGTCAA CCAATGGGTCAAAGCGAATACACCCATTGCAGACATCTATGCCTATCTCCAACGGCAGGCGGAACAACGT TTACTCATCGACAAATCTCCCAGCTACGGCAGCGATCGCCATATTCTAGACCACAGCGAAATCCTCTTTG ACCAGGCCAAATATATCCATCTGGTACGCCATCCCTACGCGGTGATTGAATCCTTTACCCGACTGCGGAT GGATAAACTGCTGGGGGCCGAGCAGCAGAACCCCTACGCCCTCGCGGAGTCCATTTGGCGCACCAGCAAC CGCAATATTTTAGACCTGGGTCGCACGGTTGGTGCGGATCGATATCTCCAGGTGATTTACGAAGATCTCG TCCGTGACCCCCGCAAAGTTTTGACAAATATTTGTGATTTCCTGGGGGTGGACTTTGACGAAGCGCTCCT CAATCCCTACAGCGGCGATCGCCTTACCGATGGCCTCCACCAACAGTCCATGGGCGTCGGGGATCCCAAT TTCCTCCAGCACAAAACCATTGATCCGGCCCTCGCCGACAAATGGCGCTCAATTACCCTGCCCGCTGCTC TCCAGCTGGATACGATCCAGTTGGCCGAAACGTTTGCTTACGATCTCCCCCAGGAACCCCAGCTAACACC CCAGACCCAATCCTTGCCCTCGATGGTGGAGCGGTTCGTGACAGTGCGCGGTTTAGAAACCTGTCTCTGT GAGTGGGGCGATCGCCACCAACCATTGGTGCTACTTCTCCACGGCATCCTCGAACAGGGGGCCTCCTGGC AACTCATCGCGCCCCAGTTGGCGGCCCAGGGCTATTGGGTTGTGGCCCCAGACCTGCGTGGTCACGGCAA ATCCGCCCATGCCCAGTCCTACAGCATGCTTGATTTTTTGGCTGACGTAGATGCCCTTGCCAAACAATTA GGCGATCGCCCCTTTACCTTGGTGGGCCACTCCATGGGTTCCATCATCGGTGCCATGTATGCAGGAATTC GCCAAACCCAGGTAGAAAAGTTGATCCTCGTTGAAACCATTGTCCCCAACGACATCGACGACGCTGAAAC CGGTAATCACCTGACGACCCATCTCGATTACCTCGCCGCGCCCCCCCAACACCCGATCTTCCCCAGCCTA GAAGTGGCCGCCCGTCGCCTCCGCCAAGCCACGCCCCAACTACCCAAAGACCTCTCGGCGTTCCTCACCC AGCGCAGCACCAAATCCGTCGAAAAAGGGGTGCAGTGGCGTTGGGATGCTTTCCTCCGTACCCGGGCGGG CATTGAATTCAATGGCATTAGCAGACGACGTTACCTGGCCCTGCTCAAAGATATCCAAGCGCCGATCACC CTCATCTATGGCGATCAGAGTGAATTTAACCGCCCTGCTGATCTCCAGGCGATCCAAGCGGCTCTCCCCC AGGCCCAACGTTTAACGGTTGCTGGCGGCCATAACCTCCATTTTGAGAATCCCCAGGCGATCGCCCAAAT TGTTTATCAACAACTCCAGACCCCTGTACCCAAAACACAATAA SEQ ID NO: 22 Amino Acid Engineered NonA with DptE Interior Acyl Binding Pocket domain (underlined) MVGQFANFVDLLQYRAKLQARKTVFSFLADGEAESAALTYGELDQKAQAIAAFLQANQAQGQRALLLYPP GLEFIGAFLGCLYAGVVAVPAYPPRPNKSFDRLHSIIQDAQAKFALTTTELKDKIADRLEALEGTDFHCL ATDQVELISGKNWQKPNISGTDLAFLQYTSGSTGDPKGVMVSHHNLIHNSGLLAEACELTAATPMGGWLP MYHDMGLLGTLTPALYLGTTCVLMSSTAFIKRPHLWLRTIDRFGLVWSSAPDFAYDMCLKRVTDEQIAGL DLSRWRWAGNGAEPIRAVTLENFAKTFATAGFQKSAFYPCYGMAETTLIVSGGNGRAQLPQEIIVSKQGI EANQVRPAQGTETTVTLVGSGEVIGDQIVKIVDPQALTECTVGEIGEVWVKGESVAQGYWQKPDLTQQQF QGNVGAETGFLRTGDLGFLQGGELYITGRLKDLLIIRGRNHYPQDIELTVEVAHPALRQGAGAAVSVDVN GEEQLVIVQEVERKYARKLNVAAVAQAIRGAIAAEHQLQPQAICFIKPGSIPKTSSGKIRRHACKAGFLD GSLAVVGEWQPSHQKEGKGIGTQAVTPSTTTSTNFPLPDQHQQQIEAWLKDNIAHRLGITPQQLDETEPF ASYGLDSVQAVQVTADLEDWLGRKLDPTLAYDYPTIRTLAQFLVQGNQALEKIPQVPKIQGKEIAVVGLS CRFPQADNPEAFWELLRNGKDGVRPLKTRWATGEWGGFLEDIDQFEPQFFGISPREAEQMDPQQRLLLEV TWEALERANIPAESLRHSQTGVFVGISNSDYAQLQVRENNPINPYMGTGNAHSIAANRLSYFLDLRGVSL SIDTACSSSLVAVHLACQSLINGESELAIAAGVNLILTPDVTQTFTQAGMMSKTGRCQTFDAEADGYVRG EGCGVVLLKPLAQAERDGDNILAVIHGSAVNQDGRSNGLTAPNGRSQQAVIRQALAQAGITAADLAYLEA HGTGTPLGDPIEINSLKAVLQTAQREQPCVVGSVKTNIGHLEAAAGIAGLIKVILSLEHGMIPQHLHFKQ LNPRIDLDGLVTIASKDQPWSGGSQKRFAGVSSFGFGGTNAHVIVGDYAQQKSPLAPPATQDRPWHLLTL SAKNAQALNALQKSYGDYLAQHPSVDPRDLCLSANTGRSPLKERRFFVFKQVADLQQTLNQDFLAQPRLS SPAKIAFLFTGQGSQYYGMGQQLYQTSPVFRQVLDECDRLWQTYSPEAPALTDLLYGNHNPDLVHETVYT QPLLFAVEYAIAQLWLSWGVTPDFCMGHSVGEYVAACLAGVFSLADGMKLITARGKLMHALPSNGSMAAV FADKTVIKPYLSEHLTVGAENGSHLVLSGKTPCLEASIHKLQSQGIKTKPLKVSHAFHSPLMAPMLAEFR EIAEQITFHPPRIPLISNVTGGQIEAEIAQADYWVKHVSQPVKFVQSIQTLAQAGVNVYLEIGVKPVLLS MGRHCLAEQEAVWLPSLRPHSEPWPEILTSLGKLYEQGLNIDWQTVEAGDRRRKLILPTYPFQRQRYWFN QGSWQTVETESVNPGPDDLNDWLYQVAWTPLDTLPPAPEPSAKLWLILGDRHDHQPIEAQFKNAQRVYLG QSNHFPTNAPWEVSADALDNLFTHVGSQNLAGILYLCPPGEDPEDLDEIQKQTSGFALQLIQTLYQQKIA VPCWFVTHQSQRVLETDAVTGFAQGGLWGLAQAIALEHPELWGGIIDVDDSLPNFAQICQQRQVQQLAVR HQKLYGAQLKKQPSLPQKNLQIQPQQTYLVTGGLGAIGRKIAQWLAAAGAEKVILVSRRAPAADQQTLPT NAVVYPCDLADAAQVAKLFQTYPHIKGIFHAAGTLADGLLQQQTWQKFQTVAAAKMKGTWHLHRHSQKLD LDFFVLFSSVAGVLGSPGQGNYAAANRGMAAIAQYRQAQGLPALAIHWGPWAEGGMANSLSNQNLAWLPP PQGLTILEKVLGAQGEMGVFKPDWQNLAKQFPEFAKTHYFAAVIPSAEAVPPTASIFDKLINLEASQRAD YLLDYLRRSVAQILKLEIEQIQSHDSLLDLGMDSLMIMEAIASLKQDLQLMLYPREIYERPRLDVLTAYL AAEFTKAHDSEAATAAAAIPSQSLSVKTKKQWQKPDHKNPNPIAFILSSPRSGSTLLRVMLAGHPGLYSP PELHLLPFETMGDRHQELGLSHLGEGLQRALMDLENLTPEASQAKVNQWVKANTPIADIYAYLQRQAEQR LLIDKSPSYGSDRHILDHSEILFDQAKYIHLVRHPYAVIESFTRLRMDKLLGAEQQNPYALAESIWRTSN RNILDLGRTVGADRYLQVIYEDLVRDPRKVLTNICDFLGVDFDEALLNPYSGDRLTDGLHQQSMGVGDPN FLQHKTIDPALADKWRSITLPAALQLDTIQLAETFAYDLPQEPQLTPQTQSLPSMVERFVTVRGLETCLC EWGDRHQPLVLLLHGILEQGASWQLIAPQLAAQGYWVVAPDLRGHGKSAHAQSYSMLDFLADVDALAKQL GDRPFTLVGHSMGSIIGAMYAGIRQTQVEKLILVETIVPNDIDDAETGNHLTTHLDYLAAPPQHPIFPSL EVAARRLRQATPQLPKDLSAFLTQRSTKSVEKGVQWRWDAFLRTRAGIEFNGISRRRYLALLKDIQAPIT LIYGDQSEFNRPADLQAIQAALPQAQRLTVAGGHNLHFENPQAIAQ IVYQQLQTPVPKTQ SEQ ID NO: 23 nonA_optV6 Nucleotide Sequence The flanking DNA base pairs added to generate restriction sites are in lower case. The Interior Acyl Binding Pocket-encoding sequence is underlined. catATGGCAAGCTGGTCCCACCCGCAATTCGAGAAAGAAGTACATCACCATCACCATCATGGCGCAGTGGGCCA- GTT TGCGAACTTTGTAGACCTGTTGCAATACCGTGCCAAGCTGCAAGCACGTAAGACCGTCTTTAGCTTCCTGGCGG- ACG GCGAAGCGGAGAGCGCCGCTCTGACCTATGGTGAGCTGGATCAAAAGGCGCAGGCAATCGCGGCGTTCCTGCAA- GCA AATCAGGCACAAGGCCAACGTGCATTGCTGCTGTATCCGCCAGGTCTGGAGTTCATCGGTGCCTTCCTGGGTTG- TCT GTATGCGGGTGTCGTCGCGGTTCCGGCATATCCTCCGCGTCCGAACAAGTCCTTCGACCGTTTGCACTCCATCA- TTC AGGACGCCCAAGCGAAGTTTGCACTGACGACGACCGAGTTGAAGGATAAGATTGCAGACCGTCTGGAAGCGCTG- GAG GGTACGGACTTCCATTGCCTGGCGACCGACCAAGTCGAGCTGATCAGCGGCAAAAACTGGCAAAAGCCGAATAT- CTC CGGTACGGATCTGGCGTTTCTGCAATACACCAGCGGCAGCACGGGTGATCCAAAAGGCGTGATGGTCAGCCACC- ATA ACCTGATTCACAATAGCGGTCTGATTAACCAGGGTTTCCAAGACACCGAAGCGAGCATGGGTGTGTCCTGGCTG- CCG CCGTATCACGACATGGGTCTGATTGGCGGCATCCTGCAACCTATCTACGTTGGCGCAACGCAAATCCTGATGCC- ACC AGTCGCCTTTCTGCAACGTCCGTTCCGCTGGCTGAAGGCGATCAACGATTACCGTGTCAGCACCAGCGGTGCGC- CGA ACTTTGCTTACGACCTGTGCGCTTCTCAGATTACCCCGGAACAAATCCGCGAGCTGGATCTGAGCTGTTGGCGT- CTG GCATTCAGCGGTGCAGAGCCGATTCGCGCTGTCACGCTGGAAAACTTTGCGAAAACGTTCGCAACCGCGGGTTT- CCA GAAATCGGCCTTCTACCCTTGTTACGGTATGGCGGAAACCACCCTGATCGTGAGCGGTGGCAATGGCCGTGCCC- AAC TGCCACAGGAGATCATCGTTAGCAAGCAGGGCATTGAGGCGAACCAAGTGCGTCCGGCTCAAGGCACGGAAACG- ACC GTGACCCTGGTGGGTAGCGGTGAGGTCATTGGTGACCAGATCGTTAAGATCGTTGACCCTCAAGCGCTGACCGA- GTG CACCGTCGGTGAAATTGGCGAGGTGTGGGTTAAAGGTGAAAGCGTTGCTCAGGGCTACTGGCAGAAGCCGGACT- TGA CGCAGCAGCAGTTCCAGGGTAACGTGGGTGCCGAAACGGGTTTCCTGCGCACCGGCGATCTGGGTTTCCTGCAA- GGC GGCGAGCTGTATATCACCGGCCGTCTGAAGGATCTGCTGATCATTCGTGGCCGTAATCACTATCCTCAGGACAT- TGA GCTGACCGTGGAAGTTGCTCACCCAGCCCTGCGTCAGGGCGCAGGTGCCGCGGTGAGCGTGGACGTTAATGGTG- AAG AACAACTGGTGATCGTTCAAGAGGTTGAGCGTAAGTACGCACGCAAGCTGAATGTGGCAGCAGTCGCTCAGGCC- ATC CGTGGTGCGATTGCGGCAGAGCACCAGTTGCAGCCGCAGGCGATCTGCTTTATCAAACCGGGCAGCATCCCGAA- AAC TAGCAGCGGCAAAATCCGTCGTCACGCATGTAAGGCCGGTTTTCTGGACGGAAGCTTGGCGGTTGTTGGTGAGT- GGC AACCGAGCCATCAGAAAGAGGGCAAAGGTATTGGTACCCAGGCAGTGACCCCGAGCACCACGACGTCCACCAAC- TTT CCGCTGCCGGATCAACACCAGCAACAGATCGAGGCGTGGCTGAAGGACAACATCGCGCACCGCCTGGGTATTAC- GCC GCAGCAGTTGGATGAAACGGAACCGTTCGCTTCTTACGGTCTGGACAGCGTTCAAGCAGTCCAGGTCACCGCAG- ACC TGGAGGACTGGCTGGGCCGCAAGCTGGACCCGACTCTGGCCTATGATTACCCGACCATTCGCACGCTGGCGCAA- TTC CTGGTTCAGGGCAACCAGGCCTTGGAGAAAATCCCGCAAGTTCCAAAGATTCAGGGTAAAGAGATTGCGGTGGT- GGG CCTGAGCTGCCGCTTTCCGCAGGCGGACAATCCGGAGGCGTTCTGGGAACTGTTGCGCAATGGCAAGGATGGCG- TGC GTCCGCTGAAAACCCGTTGGGCCACTGGTGAGTGGGGTGGTTTCCTGGAGGATATCGACCAGTTTGAGCCGCAG- TTC TTTGGTATTAGCCCGCGTGAGGCGGAGCAAATGGACCCGCAACAGCGTCTGCTGCTGGAGGTCACCTGGGAGGC- ACT GGAGCGTGCGAATATCCCTGCCGAATCCCTGCGTCACAGCCAGACCGGCGTCTTTGTGGGCATTAGCAACAGCG- ATT ACGCACAACTGCAAGTGCGTGAGAACAACCCGATCAATCCGTACATGGGTACTGGTAACGCACATAGCATCGCG- GCG AATCGTCTGAGCTACTTTCTGGATCTGCGCGGTGTCTCCCTGAGCATTGATACCGCGTGTTCTAGCAGCCTGGT- CGC AGTTCATCTGGCGTGCCAAAGCCTGATTAACGGCGAGAGCGAGCTGGCGATTGCTGCGGGTGTTAATCTGATTC- TGA CCCCGGATGTCACGCAAACCTTTACCCAAGCGGGTATGATGAGCAAGACGGGCCGTTGCCAGACGTTTGATGCG- GAG GCGGACGGCTACGTGCGCGGTGAAGGCTGCGGCGTTGTTCTGCTGAAACCGCTGGCTCAGGCGGAGCGTGATGG- CGA CAATATCCTGGCGGTCATCCACGGTAGCGCGGTTAACCAGGACGGTCGCAGCAATGGTCTGACTGCGCCGAACG- GCC GCTCTCAGCAAGCGGTTATCCGTCAGGCCCTGGCGCAGGCGGGCATCACCGCGGCAGACCTGGCGTATTTGGAA- GCG CATGGTACGGGCACCCCGCTGGGCGACCCGATTGAAATCAACAGCTTGAAAGCAGTGCTGCAAACCGCCCAGCG- CGA GCAACCGTGCGTTGTGGGCAGCGTCAAGACGAACATTGGCCACCTGGAGGCAGCAGCGGGTATTGCAGGTCTGA- TCA AGGTGATTCTGTCCCTGGAGCACGGCATGATTCCGCAACACCTGCACTTTAAGCAACTGAATCCGCGCATCGAC- CTG GACGGCCTGGTTACCATCGCGAGCAAAGACCAGCCGTGGTCGGGTGGTAGCCAGAAGCGTTTCGCCGGTGTCAG- CAG CTTTGGTTTTGGCGGTACGAATGCTCACGTGATTGTTGGTGATTATGCCCAGCAAAAGTCCCCGCTGGCTCCGC- CTG CGACCCAAGACCGTCCTTGGCATCTGCTGACTCTGAGCGCGAAGAACGCACAAGCGTTGAACGCGTTGCAAAAG- AGC TATGGTGACTACCTGGCGCAACATCCGAGCGTTGACCCTCGCGATCTGTGCCTGAGCGCTAACACTGGTCGCTC- TCC GCTGAAAGAACGCCGCTTCTTCGTGTTCAAGCAGGTTGCCGACTTGCAACAAACCCTGAATCAGGACTTTCTGG- CGC AGCCGAGGCTGAGCAGCCCAGCCAAGATTGCGTTCCTGTTCACGGGTCAGGGCAGCCAGTACTACGGTATGGGC- CAG CAACTGTATCAGACGTCCCCGGTTTTCCGTCAAGTCCTGGATGAATGCGACCGTCTGTGGCAGACGTACAGCCC- GGA GGCACCGGCGCTGACCGATCTGCTGTACGGCAATCATAATCCTGACCTGGTTCATGAAACGGTTTACACGCAAC- CGC TGCTGTTCGCGGTGGAGTATGCTATCGCGCAGTTGTGGTTGAGCTGGGGCGTTACTCCGGATTTCTGCATGGGT- CAT AGCGTCGGTGAGTATGTGGCGGCCTGCCTGGCGGGTGTGTTTAGCCTGGCGGATGGCATGAAACTGATTACCGC- GCG TGGTAAACTGATGCATGCACTGCCGAGCAATGGCAGCATGGCGGCTGTGTTTGCGGACAAAACCGTTATCAAGC- CGT ATCTGAGCGAACACCTGACCGTCGGCGCAGAAAATGGCAGCCACCTGGTTCTGAGCGGTAAGACCCCTTGTCTG- GAA GCATCCATCCACAAACTGCAAAGCCAGGGCATCAAAACCAAGCCTCTGAAAGTCTCCCATGCGTTCCACTCGCC- GCT GATGGCGCCGATGCTGGCGGAATTTCGTGAGATCGCCGAACAGATTACGTTCCATCCGCCACGTATCCCGCTGA- TTA GCAACGTGACGGGTGGTCAAATCGAGGCCGAGATCGCGCAAGCAGACTATTGGGTTAAACATGTTAGCCAGCCG- GTG AAGTTCGTTCAGAGCATTCAGACCCTGGCCCAAGCGGGTGTGAATGTGTACCTGGAAATCGGTGTTAAACCAGT- CCT GCTGTCTATGGGTCGCCACTGTCTGGCAGAGCAGGAAGCGGTTTGGCTGCCGAGCCTGCGTCCACATAGCGAGC- CTT GGCCGGAAATCTTGACTAGTCTGGGCAAACTGTACGAGCAAGGTCTGAATATCGACTGGCAAACGGTTGAAGCC- GGT GATCGCCGTCGTAAGCTGATTTTGCCGACCTACCCGTTCCAGCGTCAGCGTTATTGGTTCAACCAAGGTAGCTG- GCA AACCGTCGAAACTGAGAGCGTGAATCCAGGCCCGGACGACCTGAATGACTGGCTGTACCAAGTGGCATGGACTC- CGC TGGATACGCTGCCGCCTGCACCGGAACCGTCGGCGAAACTGTGGCTGATTCTGGGTGATCGTCACGATCACCAA- CCG ATTGAGGCCCAGTTCAAAAACGCCCAACGTGTGTACCTGGGCCAAAGCAACCACTTTCCGACGAACGCCCCGTG- GGA GGTGAGCGCGGACGCACTGGATAACTTGTTTACCCATGTGGGTAGCCAAAACCTGGCAGGCATTCTGTATCTGT- GCC
CGCCTGGTGAAGATCCGGAGGATCTGGATGAGATTCAGAAACAAACTTCCGGCTTTGCGTTGCAACTGATTCAG- ACC CTGTATCAGCAGAAAATCGCAGTGCCGTGTTGGTTTGTTACCCATCAAAGCCAGCGTGTGCTGGAAACGGACGC- GGT GACGGGTTTTGCCCAAGGTGGTCTGTGGGGTTTGGCGCAAGCGATTGCACTGGAACATCCGGAACTGTGGGGTG- GTA TCATTGACGTGGATGATAGCCTGCCGAACTTCGCGCAGATTTGTCAGCAACGTCAGGTTCAGCAACTGGCTGTC- CGT CACCAGAAACTGTATGGTGCGCAACTGAAGAAGCAGCCGAGCCTGCCGCAGAAGAATCTGCAGATCCAACCTCA- ACA GACCTACCTGGTCACGGGCGGTTTGGGTGCAATCGGTCGTAAGATTGCGCAGTGGCTGGCGGCTGCGGGTGCTG- AGA AAGTTATCCTGGTTAGCCGTCGTGCACCGGCAGCGGATCAACAAACCTTGCCGACCAACGCCGTGGTGTACCCG- TGC GATCTGGCGGATGCGGCGCAGGTTGCGAAACTGTTCCAAACCTATCCGCACATTAAGGGTATCTTTCATGCAGC- CGG TACGCTGGCTGACGGTTTGCTGCAACAGCAAACCTGGCAGAAATTCCAGACTGTCGCTGCGGCGAAGATGAAGG- GCA CCTGGCACCTGCATCGCCACTCTCAGAAGTTGGACTTGGATTTCTTTGTTTTGTTTTCGTCTGTTGCGGGTGTG- CTG GGTAGCCCTGGTCAAGGCAATTACGCGGCAGCCAACCGTGGCATGGCCGCCATCGCTCAGTACCGCCAGGCTCA- AGG TCTGCCGGCACTGGCGATTCACTGGGGCCCTTGGGCGGAAGGTGGTATGGCAAACAGCTTGAGCAACCAAAATC- TGG CATGGTTGCCTCCGCCGCAGGGCTTGACCATTCTGGAAAAAGTTTTGGGTGCCCAAGGCGAAATGGGCGTGTTC- AAA CCGGACTGGCAGAACTTGGCCAAACAATTCCCGGAGTTCGCGAAAACCCATTACTTTGCGGCGGTCATTCCGAG- CGC TGAAGCGGTTCCACCGACCGCATCTATCTTCGACAAGCTGATCAATCTGGAAGCGAGCCAGCGCGCAGATTACC- TGC TGGACTATCTGCGTAGATCTGTGGCACAAATTCTGAAACTGGAAATTGAGCAGATTCAGAGCCACGACTCCCTG- CTG GATCTGGGTATGGATAGCCTGATGATCATGGAGGCGATTGCGTCCCTGAAACAAGACCTGCAACTGATGCTGTA- TCC GCGTGAGATTTACGAGCGTCCGCGTCTGGATGTTCTGACTGCTTACTTGGCCGCTGAGTTTACCAAAGCGCATG- ATT CTGAAGCAGCTACCGCCGCAGCTGCGATCCCTAGCCAGAGCCTGAGCGTCAAAACCAAAAAGCAATGGCAGAAA- CCG GATCATAAGAACCCGAATCCGATTGCGTTCATCCTGAGCAGCCCGCGTAGCGGTAGCACCCTGCTGCGCGTGAT- GCT GGCCGGTCACCCGGGTCTGTATTCCCCACCGGAACTGCACCTGCTGCCGTTTGAAACGATGGGTGACCGCCACC- AGG AACTGGGTCTGTCTCATCTGGGCGAGGGTCTGCAACGTGCCCTGATGGACTTGGAAAATCTGACGCCGGAAGCA- TCC CAGGCAAAGGTGAACCAATGGGTGAAGGCGAATACGCCGATTGCAGACATCTACGCATACCTGCAACGTCAAGC- CGA GCAACGTCTGCTGATTGACAAAAGCCCGAGCTATGGCAGCGACCGCCACATTCTGGATCACAGCGAGATCCTGT- TCG ATCAGGCGAAATACATCCACCTGGTTCGCCATCCTTATGCGGTCATTGAGAGCTTTACCCGCCTGCGTATGGAC- AAG CTGCTGGGTGCAGAGCAACAGAATCCGTATGCGCTGGCGGAAAGCATTTGGCGTACCTCGAATCGCAACATTCT- GGA CTTGGGTCGTACCGTCGGCGCTGACCGCTACCTGCAAGTCATCTACGAGGATCTGGTGCGTGACCCGCGTAAAG- TTC TGACCAACATTTGTGATTTTCTGGGTGTCGATTTCGACGAGGCACTGCTGAATCCGTACTCCGGCGACCGCCTG- ACC GACGGCCTGCACCAGCAAAGCATGGGTGTGGGTGACCCGAACTTCTTGCAGCACAAGACCATTGATCCGGCGCT- AGC GGACAAATGGCGTAGCATTACCCTGCCGGCTGCTCTGCAACTGGATACGATTCAACTGGCCGAAACCTTCGCAT- ACG ACCTGCCGCAGGAGCCGCAGTTGACGCCGCAGACCCAATCTTTGCCATCGATGGTCGAACGTTTCGTCACGGTT- CGC GGCCTGGAAACCTGTCTGTGCGAGTGGGGTGATCGCCATCAACCTCTGGTCTTGCTGTTGCACGGTATCCTGGA- GCA AGGCGCGTCTTGGCAGTTGATCGCGCCTCAACTGGCAGCGCAGGGCTATTGGGTCGTCGCTCCGGATCTGCGCG- GTC ACGGTAAATCTGCGCACGCGCAGTCTTATAGCATGCTGGATTTTCTGGCCGATGTGGACGCGCTGGCCAAACAG- TTG GGCGACCGTCCGTTCACCTTGGTTGGTCACAGCATGGGTTCCATCATTGGCGCAATGTATGCTGGCATTCGTCA- AAC CCAGGTTGAAAAACTGATTCTGGTCGAAACCATCGTCCCGAATGATATTGATGATGCCGAAACCGGCAATCACC- TGA CCACCCATCTGGATTACCTGGCAGCCCCTCCGCAGCACCCGATCTTTCCGAGCCTGGAAGTTGCGGCTCGTCGT- CTG CGCCAAGCCACCCCGCAGTTGCCGAAAGACCTGTCTGCATTTCTGACGCAACGTTCCACGAAGAGCGTCGAGAA- GGG TGTGCAGTGGCGCTGGGATGCCTTCTTGCGCACCCGTGCAGGTATCGAGTTTAACGGTATCAGCCGTCGCCGTT- ATC TGGCGCTGCTGAAAGATATCCAGGCCCCAATTACTTTGATTTACGGTGATCAGTCTGAGTTCAATCGCCCAGCA- GAC CTGCAAGCGATCCAGGCGGCACTGCCGCAAGCGCAACGCCTGACGGTTGCTGGCGGTCACAACTTGCACTTTGA- GAA TCCGCAGGCCATCGCCCAGATTGTCTATCAGCAGTTGCAGACACCGGTTCCGAAAACCCAAGGTTTGCACCATC- ACC ACCATCATAGCGCCTGGAGCCACCCGCAGTTTGAAAAGTAAgaattc SEQ ID NO: 24 NonA_optV6 Amino Acid Sequence Interior Acyl Binding Pocket is underlined. MASWSHPQFEKEVHHHHHHGAVGQFANFVDLLQYRAKLQARKTVFSFLADGEAESAALTYGELDQKAQAIAAFL- QAN QAQGQRALLLYPPGLEFIGAFLGCLYAGVVAVPAYPPRPNKSFDRLHSIIQDAQAKFALTTTELKDKIADRLEA- LEG TDFHCLATDQVELISGKNWQKPNISGTDLAFLQYTSGSTGDPKGVMVSHHNLIHNSGLINQGFQDTEASMGVSW- LPP YHDMGLIGGILQPIYVGATQILMPPVAFLQRPFRWLKAINDYRVSTSGAPNFAYDLCASQITPEQIRELDLSCW- RLA FSGAEPIRAVTLENFAKTFATAGFQKSAFYPCYGMAETTLIVSGGNGRAQLPQEIIVSKQGIEANQVRPAQGTE- TTV TLVGSGEVIGDQIVKIVDPQALTECTVGEIGEVWVKGESVAQGYWQKPDLTQQQFQGNVGAETGFLRTGDLGFL- QGG ELYITGRLKDLLIIRGRNHYPQDIELTVEVAHPALRQGAGAAVSVDVNGEEQLVIVQEVERKYARKLNVAAVAQ- AIR GAIAAEHQLQPQAICFIKPGSIPKTSSGKIRRHACKAGFLDGSLAVVGEWQPSHQKEGKGIGTQAVTPSTTTST- NFP LPDQHQQQIEAWLKDNIAHRLGITPQQLDETEPFASYGLDSVQAVQVTADLEDWLGRKLDPTLAYDYPTIRTLA- QFL VQGNQALEKIPQVPKIQGKEIAVVGLSCRFPQADNPEAFWELLRNGKDGVRPLKTRWATGEWGGFLEDIDQFEP- QFF GISPREAEQMDPQQRLLLEVTWEALERANIPAESLRHSQTGVFVGISNSDYAQLQVRENNPINPYMGTGNAHSI- AAN RLSYFLDLRGVSLSIDTACSSSLVAVHLACQSLINGESELAIAAGVNLILTPDVTQTFTQAGMMSKTGRCQTFD- AEA DGYVRGEGCGVVLLKPLAQAERDGDNILAVIHGSAVNQDGRSNGLTAPNGRSQQAVIRQALAQAGITAADLAYL- EAH GTGTPLGDPIEINSLKAVLQTAQREQPCVVGSVKTNIGHLEAAAGIAGLIKVILSLEHGMIPQHLHFKQLNPRI- DLD GLVTIASKDQPWSGGSQKRFAGVSSFGFGGTNAHVIVGDYAQQKSPLAPPATQDRPWHLLTLSAKNAQALNALQ- KSY GDYLAQHPSVDPRDLCLSANTGRSPLKERRFFVFKQVADLQQTLNQDFLAQPRLSSPAKIAFLFTGQGSQYYGM- GQQ LYQTSPVFRQVLDECDRLWQTYSPEAPALTDLLYGNHNPDLVHETVYTQPLLFAVEYAIAQLWLSWGVTPDFCM- GHS VGEYVAACLAGVFSLADGMKLITARGKLMHALPSNGSMAAVFADKTVIKPYLSEHLTVGAENGSHLVLSGKTPC- LEA SIHKLQSQGIKTKPLKVSHAFHSPLMAPMLAEFREIAEQITFHPPRIPLISNVTGGQIEAEIAQADYWVKHVSQ- PVK FVQSIQTLAQAGVNVYLEIGVKPVLLSMGRHCLAEQEAVWLPSLRPHSEPWPEILTSLGKLYEQGLNIDWQTVE- AGD RRRKLILPTYPFQRQRYWFNQGSWQTVETESVNPGPDDLNDWLYQVAWTPLDTLPPAPEPSAKLWLILGDRHDH- QPI EAQFKNAQRVYLGQSNHFPTNAPWEVSADALDNLFTHVGSQNLAGILYLCPPGEDPEDLDEIQKQTSGFALQLI- QTL YQQKIAVPCWFVTHQSQRVLETDAVTGFAQGGLWGLAQAIALEHPELWGGIIDVDDSLPNFAQICQQRQVQQLA- VRH QKLYGAQLKKQPSLPQKNLQIQPQQTYLVTGGLGAIGRKIAQWLAAAGAEKVILVSRRAPAADQQTLPTNAVVY- PCD LADAAQVAKLFQTYPHIKGIFHAAGTLADGLLQQQTWQKFQTVAAAKMKGTWHLHRHSQKLDLDFFVLFSSVAG- VLG SPGQGNYAAANRGMAAIAQYRQAQGLPALAIHWGPWAEGGMANSLSNQNLAWLPPPQGLTILEKVLGAQGEMGV- FKP DWQNLAKQFPEFAKTHYFAAVIPSAEAVPPTASIFDKLINLEASQRADYLLDYLRRSVAQILKLEIEQIQSHDS- LLD LGMDSLMIMEAIASLKQDLQLMLYPREIYERPRLDVLTAYLAAEFTKAHDSEAATAAAAIPSQSLSVKTKKQWQ- KPD HKNPNPIAFILSSPRSGSTLLRVMLAGHPGLYSPPELHLLPFETMGDRHQELGLSHLGEGLQRALMDLENLTPE- ASQ AKVNQWVKANTPIADIYAYLQRQAEQRLLIDKSPSYGSDRHILDHSEILFDQAKYIHLVRHPYAVIESFTRLRM- DKL LGAEQQNPYALAESIWRTSNRNILDLGRTVGADRYLQVIYEDLVRDPRKVLTNICDFLGVDFDEALLNPYSGDR- LTD GLHQQSMGVGDPNFLQHKTIDPALADKWRSITLPAALQLDTIQLAETFAYDLPQEPQLTPQTQSLPSMVERFVT- VRG LETCLCEWGDRHQPLVLLLHGILEQGASWQLIAPQLAAQGYWVVAPDLRGHGKSAHAQSYSMLDFLADVDALAK- QLG DRPFTLVGHSMGSIIGAMYAGIRQTQVEKLILVETIVPNDIDDAETGNHLTTHLDYLAAPPQHPIFPSLEVAAR- RLR QATPQLPKDLSAFLTQRSTKSVEKGVQWRWDAFLRTRAGIEFNGISRRRYLALLKDIQAPITLIYGDQSEFNRP- ADL QAIQAALPQAQRLTVAGGHNLHFENPQAIAQIVYQQLQTPVPKTQGLHHHHHHSAWSHPQFEK SEQ ID NO: 25 Codon-optimized sfp Nucleotide Sequence The flanking DNA base pairs added to generate restriction sites are in lower case. tcATGAAAATTTACGGCATTTACATGGACCGTCCTTTGAGCCAAGAAGAAAATGAGCGTTTTATGTCGTTCATC- AGC CCGGAAAAACGCGAGAAGTGCCGTCGTTTCTATCATAAGGAGGATGCCCATCGCACGCTGCTGGGTGATGTTCT- GGT TCGTTCCGTGATCTCCCGCCAATACCAGCTGGACAAAAGCGATATCCGCTTTTCCACCCAGGAGTACGGCAAAC- CAT GTATCCCGGACCTGCCGGACGCTCACTTCAACATTAGCCACAGCGGTCGTTGGGTGATTTGTGCGTTCGATAGC- CAG CCGATTGGTATTGACATTGAAAAGACGAAGCCTATTAGCCTGGAGATCGCCAAGCGCTTCTTCAGCAAAACCGA- GTA TAGCGATCTGCTGGCGAAAGACAAAGACGAGCAAACCGACTACTTTTACCACCTGTGGAGCATGAAAGAAAGCT- TTA TCAAGCAAGAAGGTAAGGGTTTGAGCTTGCCGCTGGACAGCTTTAGCGTGCGTCTGCATCAGGATGGTCAGGTC- AGC ATCGAGCTGCCGGACTCTCACTCTCCGTGCTATATTAAAACCTACGAGGTCGATCCGGGCTATAAAATGGCGGT- TTG CGCAGCACACCCGGACTTTCCGGAGGATATCACTATGGTGAGCTATGAAGAGTTGCTGTAAgaattc SEQ ID NO: 26 nonA_dptE Nucleotide Sequence The Interior Acyl Binding Pocket-encoding sequence is underlined. ATGGCAAGCTGGTCCCACCCGCAATTCGAGAAAGAAGTACATCACCATCACCATCATGGCGCAGTGGGCCAGTT- TGC GAACTTTGTAGACCTGTTGCAATACCGTGCCAAGCTGCAAGCACGTAAGACCGTCTTTAGCTTCCTGGCGGACG- GCG AAGCGGAGAGCGCCGCTCTGACCTATGGTGAGCTGGATCAAAAGGCGCAGGCAATCGCGGCGTTCCTGCAAGCA- AAT CAGGCACAAGGCCAACGTGCATTGCTGCTGTATCCGCCAGGTCTGGAGTTCATCGGTGCCTTCCTGGGTTGTCT- GTA TGCGGGTGTCGTCGCGGTTCCGGCATATCCTCCGCGTCCGAACAAGTCCTTCGACCGTTTGCACTCCATCATTC- AGG ACGCCCAAGCGAAGTTTGCACTGACGACGACCGAGTTGAAGGATAAGATTGCAGACCGTCTGGAAGCGCTGGAG- GGT ACGGACTTCCATTGCCTGGCGACCGACCAAGTCGAGCTGATCAGCGGCAAAAACTGGCAAAAGCCGAATATCTC- CGG TACGGATCTGGCGTTTCTGCAATACACCAGCGGCAGCACGGGTGATCCAAAAGGCGTGATGGTCAGCCACCATA- ACC TGATTCACAATAGCGGTCTGTTGGCGGAAGCGTGCGAACTGACCGCTGCGACCCCGATGGGCGGTTGGCTGCCG- ATG TACCATGATATGGGCTTGCTGGGTACTCTGACGCCAGCGTTGTACCTGGGTACTACCTGTGTCCTGATGTCTAG- CAC CGCCTTCATCAAACGCCCGCATCTGTGGCTGCGCACCATTGATCGCTTTGGTCTGGTTTGGTCTAGCGCTCCGG- ATT TCGCGTACGATATGTGCCTGAAACGTGTTACCGATGAGCAGATTGCGGGTCTGGATCTGTCTCGCTGGCGCTGG- GCG GGTAACGGTGCAGAGCCGATTCGCGCTGTCACGCTGGAAAACTTTGCGAAAACGTTCGCAACCGCGGGTTTCCA- GAA ATCGGCCTTCTACCCTTGTTACGGTATGGCGGAAACCACCCTGATCGTGAGCGGTGGCAATGGCCGTGCCCAAC- TGC CACAGGAGATCATCGTTAGCAAGCAGGGCATTGAGGCGAACCAAGTGCGTCCGGCTCAAGGCACGGAAACGACC- GTG ACCCTGGTGGGTAGCGGTGAGGTCATTGGTGACCAGATCGTTAAGATCGTTGACCCTCAAGCGCTGACCGAGTG- CAC CGTCGGTGAAATTGGCGAGGTGTGGGTTAAAGGTGAAAGCGTTGCTCAGGGCTACTGGCAGAAGCCGGACTTGA- CGC AGCAGCAGTTCCAGGGTAACGTGGGTGCCGAAACGGGTTTCCTGCGCACCGGCGATCTGGGTTTCCTGCAAGGC- GGC GAGCTGTATATCACCGGCCGTCTGAAGGATCTGCTGATCATTCGTGGCCGTAATCACTATCCTCAGGACATTGA- GCT GACCGTGGAAGTTGCTCACCCAGCCCTGCGTCAGGGCGCAGGTGCCGCGGTGAGCGTGGACGTTAATGGTGAAG- AAC AACTGGTGATCGTTCAAGAGGTTGAGCGTAAGTACGCACGCAAGCTGAATGTGGCAGCAGTCGCTCAGGCCATC- CGT GGTGCGATTGCGGCAGAGCACCAGTTGCAGCCGCAGGCGATCTGCTTTATCAAACCGGGCAGCATCCCGAAAAC- TAG CAGCGGCAAAATCCGTCGTCACGCATGTAAGGCCGGTTTTCTGGACGGAAGCTTGGCGGTTGTTGGTGAGTGGC- AAC CGAGCCATCAGAAAGAGGGCAAAGGTATTGGTACCCAGGCAGTGACCCCGAGCACCACGACGTCCACCAACTTT- CCG CTGCCGGATCAACACCAGCAACAGATCGAGGCGTGGCTGAAGGACAACATCGCGCACCGCCTGGGTATTACGCC- GCA GCAGTTGGATGAAACGGAACCGTTCGCTTCTTACGGTCTGGACAGCGTTCAAGCAGTCCAGGTCACCGCAGACC- TGG AGGACTGGCTGGGCCGCAAGCTGGACCCGACTCTGGCCTATGATTACCCGACCATTCGCACGCTGGCGCAATTC- CTG GTTCAGGGCAACCAGGCCTTGGAGAAAATCCCGCAAGTTCCAAAGATTCAGGGTAAAGAGATTGCGGTGGTGGG- CCT GAGCTGCCGCTTTCCGCAGGCGGACAATCCGGAGGCGTTCTGGGAACTGTTGCGCAATGGCAAGGATGGCGTGC- GTC CGCTGAAAACCCGTTGGGCCACTGGTGAGTGGGGTGGTTTCCTGGAGGATATCGACCAGTTTGAGCCGCAGTTC- TTT GGTATTAGCCCGCGTGAGGCGGAGCAAATGGACCCGCAACAGCGTCTGCTGCTGGAGGTCACCTGGGAGGCACT- GGA
GCGTGCGAATATCCCTGCCGAATCCCTGCGTCACAGCCAGACCGGCGTCTTTGTGGGCATTAGCAACAGCGATT- ACG CACAACTGCAAGTGCGTGAGAACAACCCGATCAATCCGTACATGGGTACTGGTAACGCACATAGCATCGCGGCG- AAT CGTCTGAGCTACTTTCTGGATCTGCGCGGTGTCTCCCTGAGCATTGATACCGCGTGTTCTAGCAGCCTGGTCGC- AGT TCATCTGGCGTGCCAAAGCCTGATTAACGGCGAGAGCGAGCTGGCGATTGCTGCGGGTGTTAATCTGATTCTGA- CCC CGGATGTCACGCAAACCTTTACCCAAGCGGGTATGATGAGCAAGACGGGCCGTTGCCAGACGTTTGATGCGGAG- GCG GACGGCTACGTGCGCGGTGAAGGCTGCGGCGTTGTTCTGCTGAAACCGCTGGCTCAGGCGGAGCGTGATGGCGA- CAA TATCCTGGCGGTCATCCACGGTAGCGCGGTTAACCAGGACGGTCGCAGCAATGGTCTGACTGCGCCGAACGGCC- GCT CTCAGCAAGCGGTTATCCGTCAGGCCCTGGCGCAGGCGGGCATCACCGCGGCAGACCTGGCGTATTTGGAAGCG- CAT GGTACGGGCACCCCGCTGGGCGACCCGATTGAAATCAACAGCTTGAAAGCAGTGCTGCAAACCGCCCAGCGCGA- GCA ACCGTGCGTTGTGGGCAGCGTCAAGACGAACATTGGCCACCTGGAGGCAGCAGCGGGTATTGCAGGTCTGATCA- AGG TGATTCTGTCCCTGGAGCACGGCATGATTCCGCAACACCTGCACTTTAAGCAACTGAATCCGCGCATCGACCTG- GAC GGCCTGGTTACCATCGCGAGCAAAGACCAGCCGTGGTCGGGTGGTAGCCAGAAGCGTTTCGCCGGTGTCAGCAG- CTT TGGTTTTGGCGGTACGAATGCTCACGTGATTGTTGGTGATTATGCCCAGCAAAAGTCCCCGCTGGCTCCGCCTG- CGA CCCAAGACCGTCCTTGGCATCTGCTGACTCTGAGCGCGAAGAACGCACAAGCGTTGAACGCGTTGCAAAAGAGC- TAT GGTGACTACCTGGCGCAACATCCGAGCGTTGACCCTCGCGATCTGTGCCTGAGCGCTAACACTGGTCGCTCTCC- GCT GAAAGAACGCCGCTTCTTCGTGTTCAAGCAGGTTGCCGACTTGCAACAAACCCTGAATCAGGACTTTCTGGCGC- AGC CGAGGCTGAGCAGCCCAGCCAAGATTGCGTTCCTGTTCACGGGTCAGGGCAGCCAGTACTACGGTATGGGCCAG- CAA CTGTATCAGACGTCCCCGGTTTTCCGTCAAGTCCTGGATGAATGCGACCGTCTGTGGCAGACGTACAGCCCGGA- GGC ACCGGCGCTGACCGATCTGCTGTACGGCAATCATAATCCTGACCTGGTTCATGAAACGGTTTACACGCAACCGC- TGC TGTTCGCGGTGGAGTATGCTATCGCGCAGTTGTGGTTGAGCTGGGGCGTTACTCCGGATTTCTGCATGGGTCAT- AGC GTCGGTGAGTATGTGGCGGCCTGCCTGGCGGGTGTGTTTAGCCTGGCGGATGGCATGAAACTGATTACCGCGCG- TGG TAAACTGATGCATGCACTGCCGAGCAATGGCAGCATGGCGGCTGTGTTTGCGGACAAAACCGTTATCAAGCCGT- ATC TGAGCGAACACCTGACCGTCGGCGCAGAAAATGGCAGCCACCTGGTTCTGAGCGGTAAGACCCCTTGTCTGGAA- GCA TCCATCCACAAACTGCAAAGCCAGGGCATCAAAACCAAGCCTCTGAAAGTCTCCCATGCGTTCCACTCGCCGCT- GAT GGCGCCGATGCTGGCGGAATTTCGTGAGATCGCCGAACAGATTACGTTCCATCCGCCACGTATCCCGCTGATTA- GCA ACGTGACGGGTGGTCAAATCGAGGCCGAGATCGCGCAAGCAGACTATTGGGTTAAACATGTTAGCCAGCCGGTG- AAG TTCGTTCAGAGCATTCAGACCCTGGCCCAAGCGGGTGTGAATGTGTACCTGGAAATCGGTGTTAAACCAGTCCT- GCT GTCTATGGGTCGCCACTGTCTGGCAGAGCAGGAAGCGGTTTGGCTGCCGAGCCTGCGTCCACATAGCGAGCCTT- GGC CGGAAATCTTGACTAGTCTGGGCAAACTGTACGAGCAAGGTCTGAATATCGACTGGCAAACGGTTGAAGCCGGT- GAT CGCCGTCGTAAGCTGATTTTGCCGACCTACCCGTTCCAGCGTCAGCGTTATTGGTTCAACCAAGGTAGCTGGCA- AAC CGTCGAAACTGAGAGCGTGAATCCAGGCCCGGACGACCTGAATGACTGGCTGTACCAAGTGGCATGGACTCCGC- TGG ATACGCTGCCGCCTGCACCGGAACCGTCGGCGAAACTGTGGCTGATTCTGGGTGATCGTCACGATCACCAACCG- ATT GAGGCCCAGTTCAAAAACGCCCAACGTGTGTACCTGGGCCAAAGCAACCACTTTCCGACGAACGCCCCGTGGGA- GGT GAGCGCGGACGCACTGGATAACTTGTTTACCCATGTGGGTAGCCAAAACCTGGCAGGCATTCTGTATCTGTGCC- CGC CTGGTGAAGATCCGGAGGATCTGGATGAGATTCAGAAACAAACTTCCGGCTTTGCGTTGCAACTGATTCAGACC- CTG TATCAGCAGAAAATCGCAGTGCCGTGTTGGTTTGTTACCCATCAAAGCCAGCGTGTGCTGGAAACGGACGCGGT- GAC GGGTTTTGCCCAAGGTGGTCTGTGGGGTTTGGCGCAAGCGATTGCACTGGAACATCCGGAACTGTGGGGTGGTA- TCA TTGACGTGGATGATAGCCTGCCGAACTTCGCGCAGATTTGTCAGCAACGTCAGGTTCAGCAACTGGCTGTCCGT- CAC CAGAAACTGTATGGTGCGCAACTGAAGAAGCAGCCGAGCCTGCCGCAGAAGAATCTGCAGATCCAACCTCAACA- GAC CTACCTGGTCACGGGCGGTTTGGGTGCAATCGGTCGTAAGATTGCGCAGTGGCTGGCGGCTGCGGGTGCTGAGA- AAG TTATCCTGGTTAGCCGTCGTGCACCGGCAGCGGATCAACAAACCTTGCCGACCAACGCCGTGGTGTACCCGTGC- GAT CTGGCGGATGCGGCGCAGGTTGCGAAACTGTTCCAAACCTATCCGCACATTAAGGGTATCTTTCATGCAGCCGG- TAC GCTGGCTGACGGTTTGCTGCAACAGCAAACCTGGCAGAAATTCCAGACTGTCGCTGCGGCGAAGATGAAGGGCA- CCT GGCACCTGCATCGCCACTCTCAGAAGTTGGACTTGGATTTCTTTGTTTTGTTTTCGTCTGTTGCGGGTGTGCTG- GGT AGCCCTGGTCAAGGCAATTACGCGGCAGCCAACCGTGGCATGGCCGCCATCGCTCAGTACCGCCAGGCTCAAGG- TCT GCCGGCACTGGCGATTCACTGGGGCCCTTGGGCGGAAGGTGGTATGGCAAACAGCTTGAGCAACCAAAATCTGG- CAT GGTTGCCTCCGCCGCAGGGCTTGACCATTCTGGAAAAAGTTTTGGGTGCCCAAGGCGAAATGGGCGTGTTCAAA- CCG GACTGGCAGAACTTGGCCAAACAATTCCCGGAGTTCGCGAAAACCCATTACTTTGCGGCGGTCATTCCGAGCGC- TGA AGCGGTTCCACCGACCGCATCTATCTTCGACAAGCTGATCAATCTGGAAGCGAGCCAGCGCGCAGATTACCTGC- TGG ACTATCTGCGTAGATCTGTGGCACAAATTCTGAAACTGGAAATTGAGCAGATTCAGAGCCACGACTCCCTGCTG- GAT CTGGGTATGGATAGCCTGATGATCATGGAGGCGATTGCGTCCCTGAAACAAGACCTGCAACTGATGCTGTATCC- GCG TGAGATTTACGAGCGTCCGCGTCTGGATGTTCTGACTGCTTACTTGGCCGCTGAGTTTACCAAAGCGCATGATT- CTG AAGCAGCTACCGCCGCAGCTGCGATCCCTAGCCAGAGCCTGAGCGTCAAAACCAAAAAGCAATGGCAGAAACCG- GAT CATAAGAACCCGAATCCGATTGCGTTCATCCTGAGCAGCCCGCGTAGCGGTAGCACCCTGCTGCGCGTGATGCT- GGC CGGTCACCCGGGTCTGTATTCCCCACCGGAACTGCACCTGCTGCCGTTTGAAACGATGGGTGACCGCCACCAGG- AAC TGGGTCTGTCTCATCTGGGCGAGGGTCTGCAACGTGCCCTGATGGACTTGGAAAATCTGACGCCGGAAGCATCC- CAG GCAAAGGTGAACCAATGGGTGAAGGCGAATACGCCGATTGCAGACATCTACGCATACCTGCAACGTCAAGCCGA- GCA ACGTCTGCTGATTGACAAAAGCCCGAGCTATGGCAGCGACCGCCACATTCTGGATCACAGCGAGATCCTGTTCG- ATC AGGCGAAATACATCCACCTGGTTCGCCATCCTTATGCGGTCATTGAGAGCTTTACCCGCCTGCGTATGGACAAG- CTG CTGGGTGCAGAGCAACAGAATCCGTATGCGCTGGCGGAAAGCATTTGGCGTACCTCGAATCGCAACATTCTGGA- CTT GGGTCGTACCGTCGGCGCTGACCGCTACCTGCAAGTCATCTACGAGGATCTGGTGCGTGACCCGCGTAAAGTTC- TGA CCAACATTTGTGATTTTCTGGGTGTCGATTTCGACGAGGCACTGCTGAATCCGTACTCCGGCGACCGCCTGACC- GAC GGCCTGCACCAGCAAAGCATGGGTGTGGGTGACCCGAACTTCTTGCAGCACAAGACCATTGATCCGGCGCTAGC- GGA CAAATGGCGTAGCATTACCCTGCCGGCTGCTCTGCAACTGGATACGATTCAACTGGCCGAAACCTTCGCATACG- ACC TGCCGCAGGAGCCGCAGTTGACGCCGCAGACCCAATCTTTGCCATCGATGGTCGAACGTTTCGTCACGGTTCGC- GGC CTGGAAACCTGTCTGTGCGAGTGGGGTGATCGCCATCAACCTCTGGTCTTGCTGTTGCACGGTATCCTGGAGCA- AGG CGCGTCTTGGCAGTTGATCGCGCCTCAACTGGCAGCGCAGGGCTATTGGGTCGTCGCTCCGGATCTGCGCGGTC- ACG GTAAATCTGCGCACGCGCAGTCTTATAGCATGCTGGATTTTCTGGCCGATGTGGACGCGCTGGCCAAACAGTTG- GGC GACCGTCCGTTCACCTTGGTTGGTCACAGCATGGGTTCCATCATTGGCGCAATGTATGCTGGCATTCGTCAAAC- CCA GGTTGAAAAACTGATTCTGGTCGAAACCATCGTCCCGAATGATATTGATGATGCCGAAACCGGCAATCACCTGA- CCA CCCATCTGGATTACCTGGCAGCCCCTCCGCAGCACCCGATCTTTCCGAGCCTGGAAGTTGCGGCTCGTCGTCTG- CGC CAAGCCACCCCGCAGTTGCCGAAAGACCTGTCTGCATTTCTGACGCAACGTTCCACGAAGAGCGTCGAGAAGGG- TGT GCAGTGGCGCTGGGATGCCTTCTTGCGCACCCGTGCAGGTATCGAGTTTAACGGTATCAGCCGTCGCCGTTATC- TGG CGCTGCTGAAAGATATCCAGGCCCCAATTACTTTGATTTACGGTGATCAGTCTGAGTTCAATCGCCCAGCAGAC- CTG CAAGCGATCCAGGCGGCACTGCCGCAAGCGCAACGCCTGACGGTTGCTGGCGGTCACAACTTGCACTTTGAGAA- TCC GCAGGCCATCGCCCAGATTGTCTATCAGCAGTTGCAGACACCGGTTCCGAAAACCCAAGGTTTGCACCATCACC- ACC ATCATAGCGCCTGGAGCCACCCGCAGTTTGAAAAGTAA SEQ ID NO: 27 nonA_safB Nucleotide Sequence The Interior Acyl Binding Pocket-encoding sequence is underlined. ATGGCAAGCTGGTCCCACCCGCAATTCGAGAAAGAAGTACATCACCATCACCATCATGGCGCAGTGGGCCAGTT- TGC GAACTTTGTAGACCTGTTGCAATACCGTGCCAAGCTGCAAGCACGTAAGACCGTCTTTAGCTTCCTGGCGGACG- GCG AAGCGGAGAGCGCCGCTCTGACCTATGGTGAGCTGGATCAAAAGGCGCAGGCAATCGCGGCGTTCCTGCAAGCA- AAT CAGGCACAAGGCCAACGTGCATTGCTGCTGTATCCGCCAGGTCTGGAGTTCATCGGTGCCTTCCTGGGTTGTCT- GTA TGCGGGTGTCGTCGCGGTTCCGGCATATCCTCCGCGTCCGAACAAGTCCTTCGACCGTTTGCACTCCATCATTC- AGG ACGCCCAAGCGAAGTTTGCACTGACGACGACCGAGTTGAAGGATAAGATTGCAGACCGTCTGGAAGCGCTGGAG- GGT ACGGACTTCCATTGCCTGGCGACCGACCAAGTCGAGCTGATCAGCGGCAAAAACTGGCAAAAGCCGAATATCTC- CGG TACGGATCTGGCGTTTCTGCAATACACCAGCGGCAGCACGGGTGATCCAAAAGGCGTGATGGTCAGCCACCATA- ACC TGATTCACAATAGCGGTCTGATTTTCACCTCTTTTCACATGAACGATGAAACTATCATTTTCTCGTGGCTGCCG- CCA CATCACGATATGGGTTTGATTGGCTGCATTCTGACCCCGATTTACGGTGGTATTCAGGCTATCATGATGAGCCC- GTT TAGCTTTTTGCAGAACCCGCTGTCCTGGCTGAAACATATCACTAAGTACAAAGCGACCATTTCTGGTAGCCCGA- ACT TTGCGTACGACTATTGCGTTAAACGCATTCGCGAAGAAAAGAAAGAGGGTCTGGATCTGTCTAGCTGGGTTACC- GCG TTCAATGGTGCAGAGCCGATTCGCGCTGTCACGCTGGAAAACTTTGCGAAAACGTTCGCAACCGCGGGTTTCCA- GAA ATCGGCCTTCTACCCTTGTTACGGTATGGCGGAAACCACCCTGATCGTGAGCGGTGGCAATGGCCGTGCCCAAC- TGC CACAGGAGATCATCGTTAGCAAGCAGGGCATTGAGGCGAACCAAGTGCGTCCGGCTCAAGGCACGGAAACGACC- GTG ACCCTGGTGGGTAGCGGTGAGGTCATTGGTGACCAGATCGTTAAGATCGTTGACCCTCAAGCGCTGACCGAGTG- CAC CGTCGGTGAAATTGGCGAGGTGTGGGTTAAAGGTGAAAGCGTTGCTCAGGGCTACTGGCAGAAGCCGGACTTGA- CGC AGCAGCAGTTCCAGGGTAACGTGGGTGCCGAAACGGGTTTCCTGCGCACCGGCGATCTGGGTTTCCTGCAAGGC- GGC GAGCTGTATATCACCGGCCGTCTGAAGGATCTGCTGATCATTCGTGGCCGTAATCACTATCCTCAGGACATTGA- GCT GACCGTGGAAGTTGCTCACCCAGCCCTGCGTCAGGGCGCAGGTGCCGCGGTGAGCGTGGACGTTAATGGTGAAG- AAC AACTGGTGATCGTTCAAGAGGTTGAGCGTAAGTACGCACGCAAGCTGAATGTGGCAGCAGTCGCTCAGGCCATC- CGT GGTGCGATTGCGGCAGAGCACCAGTTGCAGCCGCAGGCGATCTGCTTTATCAAACCGGGCAGCATCCCGAAAAC- TAG CAGCGGCAAAATCCGTCGTCACGCATGTAAGGCCGGTTTTCTGGACGGAAGCTTGGCGGTTGTTGGTGAGTGGC- AAC CGAGCCATCAGAAAGAGGGCAAAGGTATTGGTACCCAGGCAGTGACCCCGAGCACCACGACGTCCACCAACTTT- CCG CTGCCGGATCAACACCAGCAACAGATCGAGGCGTGGCTGAAGGACAACATCGCGCACCGCCTGGGTATTACGCC- GCA GCAGTTGGATGAAACGGAACCGTTCGCTTCTTACGGTCTGGACAGCGTTCAAGCAGTCCAGGTCACCGCAGACC- TGG AGGACTGGCTGGGCCGCAAGCTGGACCCGACTCTGGCCTATGATTACCCGACCATTCGCACGCTGGCGCAATTC- CTG GTTCAGGGCAACCAGGCCTTGGAGAAAATCCCGCAAGTTCCAAAGATTCAGGGTAAAGAGATTGCGGTGGTGGG- CCT GAGCTGCCGCTTTCCGCAGGCGGACAATCCGGAGGCGTTCTGGGAACTGTTGCGCAATGGCAAGGATGGCGTGC- GTC CGCTGAAAACCCGTTGGGCCACTGGTGAGTGGGGTGGTTTCCTGGAGGATATCGACCAGTTTGAGCCGCAGTTC- TTT GGTATTAGCCCGCGTGAGGCGGAGCAAATGGACCCGCAACAGCGTCTGCTGCTGGAGGTCACCTGGGAGGCACT- GGA GCGTGCGAATATCCCTGCCGAATCCCTGCGTCACAGCCAGACCGGCGTCTTTGTGGGCATTAGCAACAGCGATT- ACG CACAACTGCAAGTGCGTGAGAACAACCCGATCAATCCGTACATGGGTACTGGTAACGCACATAGCATCGCGGCG- AAT CGTCTGAGCTACTTTCTGGATCTGCGCGGTGTCTCCCTGAGCATTGATACCGCGTGTTCTAGCAGCCTGGTCGC- AGT TCATCTGGCGTGCCAAAGCCTGATTAACGGCGAGAGCGAGCTGGCGATTGCTGCGGGTGTTAATCTGATTCTGA- CCC CGGATGTCACGCAAACCTTTACCCAAGCGGGTATGATGAGCAAGACGGGCCGTTGCCAGACGTTTGATGCGGAG- GCG GACGGCTACGTGCGCGGTGAAGGCTGCGGCGTTGTTCTGCTGAAACCGCTGGCTCAGGCGGAGCGTGATGGCGA- CAA TATCCTGGCGGTCATCCACGGTAGCGCGGTTAACCAGGACGGTCGCAGCAATGGTCTGACTGCGCCGAACGGCC- GCT CTCAGCAAGCGGTTATCCGTCAGGCCCTGGCGCAGGCGGGCATCACCGCGGCAGACCTGGCGTATTTGGAAGCG- CAT GGTACGGGCACCCCGCTGGGCGACCCGATTGAAATCAACAGCTTGAAAGCAGTGCTGCAAACCGCCCAGCGCGA- GCA ACCGTGCGTTGTGGGCAGCGTCAAGACGAACATTGGCCACCTGGAGGCAGCAGCGGGTATTGCAGGTCTGATCA- AGG TGATTCTGTCCCTGGAGCACGGCATGATTCCGCAACACCTGCACTTTAAGCAACTGAATCCGCGCATCGACCTG- GAC GGCCTGGTTACCATCGCGAGCAAAGACCAGCCGTGGTCGGGTGGTAGCCAGAAGCGTTTCGCCGGTGTCAGCAG- CTT TGGTTTTGGCGGTACGAATGCTCACGTGATTGTTGGTGATTATGCCCAGCAAAAGTCCCCGCTGGCTCCGCCTG- CGA CCCAAGACCGTCCTTGGCATCTGCTGACTCTGAGCGCGAAGAACGCACAAGCGTTGAACGCGTTGCAAAAGAGC- TAT GGTGACTACCTGGCGCAACATCCGAGCGTTGACCCTCGCGATCTGTGCCTGAGCGCTAACACTGGTCGCTCTCC- GCT GAAAGAACGCCGCTTCTTCGTGTTCAAGCAGGTTGCCGACTTGCAACAAACCCTGAATCAGGACTTTCTGGCGC-
AGC CGAGGCTGAGCAGCCCAGCCAAGATTGCGTTCCTGTTCACGGGTCAGGGCAGCCAGTACTACGGTATGGGCCAG- CAA CTGTATCAGACGTCCCCGGTTTTCCGTCAAGTCCTGGATGAATGCGACCGTCTGTGGCAGACGTACAGCCCGGA- GGC ACCGGCGCTGACCGATCTGCTGTACGGCAATCATAATCCTGACCTGGTTCATGAAACGGTTTACACGCAACCGC- TGC TGTTCGCGGTGGAGTATGCTATCGCGCAGTTGTGGTTGAGCTGGGGCGTTACTCCGGATTTCTGCATGGGTCAT- AGC GTCGGTGAGTATGTGGCGGCCTGCCTGGCGGGTGTGTTTAGCCTGGCGGATGGCATGAAACTGATTACCGCGCG- TGG TAAACTGATGCATGCACTGCCGAGCAATGGCAGCATGGCGGCTGTGTTTGCGGACAAAACCGTTATCAAGCCGT- ATC TGAGCGAACACCTGACCGTCGGCGCAGAAAATGGCAGCCACCTGGTTCTGAGCGGTAAGACCCCTTGTCTGGAA- GCA TCCATCCACAAACTGCAAAGCCAGGGCATCAAAACCAAGCCTCTGAAAGTCTCCCATGCGTTCCACTCGCCGCT- GAT GGCGCCGATGCTGGCGGAATTTCGTGAGATCGCCGAACAGATTACGTTCCATCCGCCACGTATCCCGCTGATTA- GCA ACGTGACGGGTGGTCAAATCGAGGCCGAGATCGCGCAAGCAGACTATTGGGTTAAACATGTTAGCCAGCCGGTG- AAG TTCGTTCAGAGCATTCAGACCCTGGCCCAAGCGGGTGTGAATGTGTACCTGGAAATCGGTGTTAAACCAGTCCT- GCT GTCTATGGGTCGCCACTGTCTGGCAGAGCAGGAAGCGGTTTGGCTGCCGAGCCTGCGTCCACATAGCGAGCCTT- GGC CGGAAATCTTGACTAGTCTGGGCAAACTGTACGAGCAAGGTCTGAATATCGACTGGCAAACGGTTGAAGCCGGT- GAT CGCCGTCGTAAGCTGATTTTGCCGACCTACCCGTTCCAGCGTCAGCGTTATTGGTTCAACCAAGGTAGCTGGCA- AAC CGTCGAAACTGAGAGCGTGAATCCAGGCCCGGACGACCTGAATGACTGGCTGTACCAAGTGGCATGGACTCCGC- TGG ATACGCTGCCGCCTGCACCGGAACCGTCGGCGAAACTGTGGCTGATTCTGGGTGATCGTCACGATCACCAACCG- ATT GAGGCCCAGTTCAAAAACGCCCAACGTGTGTACCTGGGCCAAAGCAACCACTTTCCGACGAACGCCCCGTGGGA- GGT GAGCGCGGACGCACTGGATAACTTGTTTACCCATGTGGGTAGCCAAAACCTGGCAGGCATTCTGTATCTGTGCC- CGC CTGGTGAAGATCCGGAGGATCTGGATGAGATTCAGAAACAAACTTCCGGCTTTGCGTTGCAACTGATTCAGACC- CTG TATCAGCAGAAAATCGCAGTGCCGTGTTGGTTTGTTACCCATCAAAGCCAGCGTGTGCTGGAAACGGACGCGGT- GAC GGGTTTTGCCCAAGGTGGTCTGTGGGGTTTGGCGCAAGCGATTGCACTGGAACATCCGGAACTGTGGGGTGGTA- TCA TTGACGTGGATGATAGCCTGCCGAACTTCGCGCAGATTTGTCAGCAACGTCAGGTTCAGCAACTGGCTGTCCGT- CAC CAGAAACTGTATGGTGCGCAACTGAAGAAGCAGCCGAGCCTGCCGCAGAAGAATCTGCAGATCCAACCTCAACA- GAC CTACCTGGTCACGGGCGGTTTGGGTGCAATCGGTCGTAAGATTGCGCAGTGGCTGGCGGCTGCGGGTGCTGAGA- AAG TTATCCTGGTTAGCCGTCGTGCACCGGCAGCGGATCAACAAACCTTGCCGACCAACGCCGTGGTGTACCCGTGC- GAT CTGGCGGATGCGGCGCAGGTTGCGAAACTGTTCCAAACCTATCCGCACATTAAGGGTATCTTTCATGCAGCCGG- TAC GCTGGCTGACGGTTTGCTGCAACAGCAAACCTGGCAGAAATTCCAGACTGTCGCTGCGGCGAAGATGAAGGGCA- CCT GGCACCTGCATCGCCACTCTCAGAAGTTGGACTTGGATTTCTTTGTTTTGTTTTCGTCTGTTGCGGGTGTGCTG- GGT AGCCCTGGTCAAGGCAATTACGCGGCAGCCAACCGTGGCATGGCCGCCATCGCTCAGTACCGCCAGGCTCAAGG- TCT GCCGGCACTGGCGATTCACTGGGGCCCTTGGGCGGAAGGTGGTATGGCAAACAGCTTGAGCAACCAAAATCTGG- CAT GGTTGCCTCCGCCGCAGGGCTTGACCATTCTGGAAAAAGTTTTGGGTGCCCAAGGCGAAATGGGCGTGTTCAAA- CCG GACTGGCAGAACTTGGCCAAACAATTCCCGGAGTTCGCGAAAACCCATTACTTTGCGGCGGTCATTCCGAGCGC- TGA AGCGGTTCCACCGACCGCATCTATCTTCGACAAGCTGATCAATCTGGAAGCGAGCCAGCGCGCAGATTACCTGC- TGG ACTATCTGCGTAGATCTGTGGCACAAATTCTGAAACTGGAAATTGAGCAGATTCAGAGCCACGACTCCCTGCTG- GAT CTGGGTATGGATAGCCTGATGATCATGGAGGCGATTGCGTCCCTGAAACAAGACCTGCAACTGATGCTGTATCC- GCG TGAGATTTACGAGCGTCCGCGTCTGGATGTTCTGACTGCTTACTTGGCCGCTGAGTTTACCAAAGCGCATGATT- CTG AAGCAGCTACCGCCGCAGCTGCGATCCCTAGCCAGAGCCTGAGCGTCAAAACCAAAAAGCAATGGCAGAAACCG- GAT CATAAGAACCCGAATCCGATTGCGTTCATCCTGAGCAGCCCGCGTAGCGGTAGCACCCTGCTGCGCGTGATGCT- GGC CGGTCACCCGGGTCTGTATTCCCCACCGGAACTGCACCTGCTGCCGTTTGAAACGATGGGTGACCGCCACCAGG- AAC TGGGTCTGTCTCATCTGGGCGAGGGTCTGCAACGTGCCCTGATGGACTTGGAAAATCTGACGCCGGAAGCATCC- CAG GCAAAGGTGAACCAATGGGTGAAGGCGAATACGCCGATTGCAGACATCTACGCATACCTGCAACGTCAAGCCGA- GCA ACGTCTGCTGATTGACAAAAGCCCGAGCTATGGCAGCGACCGCCACATTCTGGATCACAGCGAGATCCTGTTCG- ATC AGGCGAAATACATCCACCTGGTTCGCCATCCTTATGCGGTCATTGAGAGCTTTACCCGCCTGCGTATGGACAAG- CTG CTGGGTGCAGAGCAACAGAATCCGTATGCGCTGGCGGAAAGCATTTGGCGTACCTCGAATCGCAACATTCTGGA- CTT GGGTCGTACCGTCGGCGCTGACCGCTACCTGCAAGTCATCTACGAGGATCTGGTGCGTGACCCGCGTAAAGTTC- TGA CCAACATTTGTGATTTTCTGGGTGTCGATTTCGACGAGGCACTGCTGAATCCGTACTCCGGCGACCGCCTGACC- GAC GGCCTGCACCAGCAAAGCATGGGTGTGGGTGACCCGAACTTCTTGCAGCACAAGACCATTGATCCGGCGCTAGC- GGA CAAATGGCGTAGCATTACCCTGCCGGCTGCTCTGCAACTGGATACGATTCAACTGGCCGAAACCTTCGCATACG- ACC TGCCGCAGGAGCCGCAGTTGACGCCGCAGACCCAATCTTTGCCATCGATGGTCGAACGTTTCGTCACGGTTCGC- GGC CTGGAAACCTGTCTGTGCGAGTGGGGTGATCGCCATCAACCTCTGGTCTTGCTGTTGCACGGTATCCTGGAGCA- AGG CGCGTCTTGGCAGTTGATCGCGCCTCAACTGGCAGCGCAGGGCTATTGGGTCGTCGCTCCGGATCTGCGCGGTC- ACG GTAAATCTGCGCACGCGCAGTCTTATAGCATGCTGGATTTTCTGGCCGATGTGGACGCGCTGGCCAAACAGTTG- GGC GACCGTCCGTTCACCTTGGTTGGTCACAGCATGGGTTCCATCATTGGCGCAATGTATGCTGGCATTCGTCAAAC- CCA GGTTGAAAAACTGATTCTGGTCGAAACCATCGTCCCGAATGATATTGATGATGCCGAAACCGGCAATCACCTGA- CCA CCCATCTGGATTACCTGGCAGCCCCTCCGCAGCACCCGATCTTTCCGAGCCTGGAAGTTGCGGCTCGTCGTCTG- CGC CAAGCCACCCCGCAGTTGCCGAAAGACCTGTCTGCATTTCTGACGCAACGTTCCACGAAGAGCGTCGAGAAGGG- TGT GCAGTGGCGCTGGGATGCCTTCTTGCGCACCCGTGCAGGTATCGAGTTTAACGGTATCAGCCGTCGCCGTTATC- TGG CGCTGCTGAAAGATATCCAGGCCCCAATTACTTTGATTTACGGTGATCAGTCTGAGTTCAATCGCCCAGCAGAC- CTG CAAGCGATCCAGGCGGCACTGCCGCAAGCGCAACGCCTGACGGTTGCTGGCGGTCACAACTTGCACTTTGAGAA- TCC GCAGGCCATCGCCCAGATTGTCTATCAGCAGTTGCAGACACCGGTTCCGAAAACCCAAGGTTTGCACCATCACC- ACC ATCATAGCGCCTGGAGCCACCCGCAGTTTGAAAAGTAA SEQ ID NO: 28 nonA_mycA Nucleotide Sequence The Interior Acyl Binding Pocket-encoding sequence is underlined. ATGGCAAGCTGGTCCCACCCGCAATTCGAGAAAGAAGTACATCACCATCACCATCATGGCGCAGTGGGCCAGTT- TGC GAACTTTGTAGACCTGTTGCAATACCGTGCCAAGCTGCAAGCACGTAAGACCGTCTTTAGCTTCCTGGCGGACG- GCG AAGCGGAGAGCGCCGCTCTGACCTATGGTGAGCTGGATCAAAAGGCGCAGGCAATCGCGGCGTTCCTGCAAGCA- AAT CAGGCACAAGGCCAACGTGCATTGCTGCTGTATCCGCCAGGTCTGGAGTTCATCGGTGCCTTCCTGGGTTGTCT- GTA TGCGGGTGTCGTCGCGGTTCCGGCATATCCTCCGCGTCCGAACAAGTCCTTCGACCGTTTGCACTCCATCATTC- AGG ACGCCCAAGCGAAGTTTGCACTGACGACGACCGAGTTGAAGGATAAGATTGCAGACCGTCTGGAAGCGCTGGAG- GGT ACGGACTTCCATTGCCTGGCGACCGACCAAGTCGAGCTGATCAGCGGCAAAAACTGGCAAAAGCCGAATATCTC- CGG TACGGATCTGGCGTTTCTGCAATACACCAGCGGCAGCACGGGTGATCCAAAAGGCGTGATGGTCAGCCACCATA- ACC TGATTCACAATAGCGGTCTGATTCGCAACGCGCTGGCGATTGATCTGAAAGATACCCTGCTGTCTTGGATGCCG- TTG ACTCACGATATGGGTTTGATTGCGTGCCATCTGGTTCCGGCGCTGGCGGGCATTAACCAGAATTTGATGCCGAC- TGA ACTGTTCATTCGTCGCCCGATTCTGTGGATGAAGAAAGCTCACGAACATAAAGCGTCTATTCTGTCTAGCCCGA- ATT TCGGTTACAACTACTTTCTGAAATTCCTGAAAGACAACAAAAGCTACGATTGGGATCTGTCCCATATTCGCGTT- ATC GCGAACGGTGCAGAGCCGATTCGCGCTGTCACGCTGGAAAACTTTGCGAAAACGTTCGCAACCGCGGGTTTCCA- GAA ATCGGCCTTCTACCCTTGTTACGGTATGGCGGAAACCACCCTGATCGTGAGCGGTGGCAATGGCCGTGCCCAAC- TGC CACAGGAGATCATCGTTAGCAAGCAGGGCATTGAGGCGAACCAAGTGCGTCCGGCTCAAGGCACGGAAACGACC- GTG ACCCTGGTGGGTAGCGGTGAGGTCATTGGTGACCAGATCGTTAAGATCGTTGACCCTCAAGCGCTGACCGAGTG- CAC CGTCGGTGAAATTGGCGAGGTGTGGGTTAAAGGTGAAAGCGTTGCTCAGGGCTACTGGCAGAAGCCGGACTTGA- CGC AGCAGCAGTTCCAGGGTAACGTGGGTGCCGAAACGGGTTTCCTGCGCACCGGCGATCTGGGTTTCCTGCAAGGC- GGC GAGCTGTATATCACCGGCCGTCTGAAGGATCTGCTGATCATTCGTGGCCGTAATCACTATCCTCAGGACATTGA- GCT GACCGTGGAAGTTGCTCACCCAGCCCTGCGTCAGGGCGCAGGTGCCGCGGTGAGCGTGGACGTTAATGGTGAAG- AAC AACTGGTGATCGTTCAAGAGGTTGAGCGTAAGTACGCACGCAAGCTGAATGTGGCAGCAGTCGCTCAGGCCATC- CGT GGTGCGATTGCGGCAGAGCACCAGTTGCAGCCGCAGGCGATCTGCTTTATCAAACCGGGCAGCATCCCGAAAAC- TAG CAGCGGCAAAATCCGTCGTCACGCATGTAAGGCCGGTTTTCTGGACGGAAGCTTGGCGGTTGTTGGTGAGTGGC- AAC CGAGCCATCAGAAAGAGGGCAAAGGTATTGGTACCCAGGCAGTGACCCCGAGCACCACGACGTCCACCAACTTT- CCG CTGCCGGATCAACACCAGCAACAGATCGAGGCGTGGCTGAAGGACAACATCGCGCACCGCCTGGGTATTACGCC- GCA GCAGTTGGATGAAACGGAACCGTTCGCTTCTTACGGTCTGGACAGCGTTCAAGCAGTCCAGGTCACCGCAGACC- TGG AGGACTGGCTGGGCCGCAAGCTGGACCCGACTCTGGCCTATGATTACCCGACCATTCGCACGCTGGCGCAATTC- CTG GTTCAGGGCAACCAGGCCTTGGAGAAAATCCCGCAAGTTCCAAAGATTCAGGGTAAAGAGATTGCGGTGGTGGG- CCT GAGCTGCCGCTTTCCGCAGGCGGACAATCCGGAGGCGTTCTGGGAACTGTTGCGCAATGGCAAGGATGGCGTGC- GTC CGCTGAAAACCCGTTGGGCCACTGGTGAGTGGGGTGGTTTCCTGGAGGATATCGACCAGTTTGAGCCGCAGTTC- TTT GGTATTAGCCCGCGTGAGGCGGAGCAAATGGACCCGCAACAGCGTCTGCTGCTGGAGGTCACCTGGGAGGCACT- GGA GCGTGCGAATATCCCTGCCGAATCCCTGCGTCACAGCCAGACCGGCGTCTTTGTGGGCATTAGCAACAGCGATT- ACG CACAACTGCAAGTGCGTGAGAACAACCCGATCAATCCGTACATGGGTACTGGTAACGCACATAGCATCGCGGCG- AAT CGTCTGAGCTACTTTCTGGATCTGCGCGGTGTCTCCCTGAGCATTGATACCGCGTGTTCTAGCAGCCTGGTCGC- AGT TCATCTGGCGTGCCAAAGCCTGATTAACGGCGAGAGCGAGCTGGCGATTGCTGCGGGTGTTAATCTGATTCTGA- CCC CGGATGTCACGCAAACCTTTACCCAAGCGGGTATGATGAGCAAGACGGGCCGTTGCCAGACGTTTGATGCGGAG- GCG GACGGCTACGTGCGCGGTGAAGGCTGCGGCGTTGTTCTGCTGAAACCGCTGGCTCAGGCGGAGCGTGATGGCGA- CAA TATCCTGGCGGTCATCCACGGTAGCGCGGTTAACCAGGACGGTCGCAGCAATGGTCTGACTGCGCCGAACGGCC- GCT CTCAGCAAGCGGTTATCCGTCAGGCCCTGGCGCAGGCGGGCATCACCGCGGCAGACCTGGCGTATTTGGAAGCG- CAT GGTACGGGCACCCCGCTGGGCGACCCGATTGAAATCAACAGCTTGAAAGCAGTGCTGCAAACCGCCCAGCGCGA- GCA ACCGTGCGTTGTGGGCAGCGTCAAGACGAACATTGGCCACCTGGAGGCAGCAGCGGGTATTGCAGGTCTGATCA- AGG TGATTCTGTCCCTGGAGCACGGCATGATTCCGCAACACCTGCACTTTAAGCAACTGAATCCGCGCATCGACCTG- GAC GGCCTGGTTACCATCGCGAGCAAAGACCAGCCGTGGTCGGGTGGTAGCCAGAAGCGTTTCGCCGGTGTCAGCAG- CTT TGGTTTTGGCGGTACGAATGCTCACGTGATTGTTGGTGATTATGCCCAGCAAAAGTCCCCGCTGGCTCCGCCTG- CGA CCCAAGACCGTCCTTGGCATCTGCTGACTCTGAGCGCGAAGAACGCACAAGCGTTGAACGCGTTGCAAAAGAGC- TAT GGTGACTACCTGGCGCAACATCCGAGCGTTGACCCTCGCGATCTGTGCCTGAGCGCTAACACTGGTCGCTCTCC- GCT GAAAGAACGCCGCTTCTTCGTGTTCAAGCAGGTTGCCGACTTGCAACAAACCCTGAATCAGGACTTTCTGGCGC- AGC CGAGGCTGAGCAGCCCAGCCAAGATTGCGTTCCTGTTCACGGGTCAGGGCAGCCAGTACTACGGTATGGGCCAG- CAA CTGTATCAGACGTCCCCGGTTTTCCGTCAAGTCCTGGATGAATGCGACCGTCTGTGGCAGACGTACAGCCCGGA- GGC ACCGGCGCTGACCGATCTGCTGTACGGCAATCATAATCCTGACCTGGTTCATGAAACGGTTTACACGCAACCGC- TGC TGTTCGCGGTGGAGTATGCTATCGCGCAGTTGTGGTTGAGCTGGGGCGTTACTCCGGATTTCTGCATGGGTCAT- AGC GTCGGTGAGTATGTGGCGGCCTGCCTGGCGGGTGTGTTTAGCCTGGCGGATGGCATGAAACTGATTACCGCGCG- TGG TAAACTGATGCATGCACTGCCGAGCAATGGCAGCATGGCGGCTGTGTTTGCGGACAAAACCGTTATCAAGCCGT- ATC TGAGCGAACACCTGACCGTCGGCGCAGAAAATGGCAGCCACCTGGTTCTGAGCGGTAAGACCCCTTGTCTGGAA- GCA TCCATCCACAAACTGCAAAGCCAGGGCATCAAAACCAAGCCTCTGAAAGTCTCCCATGCGTTCCACTCGCCGCT- GAT GGCGCCGATGCTGGCGGAATTTCGTGAGATCGCCGAACAGATTACGTTCCATCCGCCACGTATCCCGCTGATTA- GCA ACGTGACGGGTGGTCAAATCGAGGCCGAGATCGCGCAAGCAGACTATTGGGTTAAACATGTTAGCCAGCCGGTG- AAG TTCGTTCAGAGCATTCAGACCCTGGCCCAAGCGGGTGTGAATGTGTACCTGGAAATCGGTGTTAAACCAGTCCT- GCT GTCTATGGGTCGCCACTGTCTGGCAGAGCAGGAAGCGGTTTGGCTGCCGAGCCTGCGTCCACATAGCGAGCCTT- GGC CGGAAATCTTGACTAGTCTGGGCAAACTGTACGAGCAAGGTCTGAATATCGACTGGCAAACGGTTGAAGCCGGT- GAT CGCCGTCGTAAGCTGATTTTGCCGACCTACCCGTTCCAGCGTCAGCGTTATTGGTTCAACCAAGGTAGCTGGCA- AAC CGTCGAAACTGAGAGCGTGAATCCAGGCCCGGACGACCTGAATGACTGGCTGTACCAAGTGGCATGGACTCCGC- TGG
ATACGCTGCCGCCTGCACCGGAACCGTCGGCGAAACTGTGGCTGATTCTGGGTGATCGTCACGATCACCAACCG- ATT GAGGCCCAGTTCAAAAACGCCCAACGTGTGTACCTGGGCCAAAGCAACCACTTTCCGACGAACGCCCCGTGGGA- GGT GAGCGCGGACGCACTGGATAACTTGTTTACCCATGTGGGTAGCCAAAACCTGGCAGGCATTCTGTATCTGTGCC- CGC CTGGTGAAGATCCGGAGGATCTGGATGAGATTCAGAAACAAACTTCCGGCTTTGCGTTGCAACTGATTCAGACC- CTG TATCAGCAGAAAATCGCAGTGCCGTGTTGGTTTGTTACCCATCAAAGCCAGCGTGTGCTGGAAACGGACGCGGT- GAC GGGTTTTGCCCAAGGTGGTCTGTGGGGTTTGGCGCAAGCGATTGCACTGGAACATCCGGAACTGTGGGGTGGTA- TCA TTGACGTGGATGATAGCCTGCCGAACTTCGCGCAGATTTGTCAGCAACGTCAGGTTCAGCAACTGGCTGTCCGT- CAC CAGAAACTGTATGGTGCGCAACTGAAGAAGCAGCCGAGCCTGCCGCAGAAGAATCTGCAGATCCAACCTCAACA- GAC CTACCTGGTCACGGGCGGTTTGGGTGCAATCGGTCGTAAGATTGCGCAGTGGCTGGCGGCTGCGGGTGCTGAGA- AAG TTATCCTGGTTAGCCGTCGTGCACCGGCAGCGGATCAACAAACCTTGCCGACCAACGCCGTGGTGTACCCGTGC- GAT CTGGCGGATGCGGCGCAGGTTGCGAAACTGTTCCAAACCTATCCGCACATTAAGGGTATCTTTCATGCAGCCGG- TAC GCTGGCTGACGGTTTGCTGCAACAGCAAACCTGGCAGAAATTCCAGACTGTCGCTGCGGCGAAGATGAAGGGCA- CCT GGCACCTGCATCGCCACTCTCAGAAGTTGGACTTGGATTTCTTTGTTTTGTTTTCGTCTGTTGCGGGTGTGCTG- GGT AGCCCTGGTCAAGGCAATTACGCGGCAGCCAACCGTGGCATGGCCGCCATCGCTCAGTACCGCCAGGCTCAAGG- TCT GCCGGCACTGGCGATTCACTGGGGCCCTTGGGCGGAAGGTGGTATGGCAAACAGCTTGAGCAACCAAAATCTGG- CAT GGTTGCCTCCGCCGCAGGGCTTGACCATTCTGGAAAAAGTTTTGGGTGCCCAAGGCGAAATGGGCGTGTTCAAA- CCG GACTGGCAGAACTTGGCCAAACAATTCCCGGAGTTCGCGAAAACCCATTACTTTGCGGCGGTCATTCCGAGCGC- TGA AGCGGTTCCACCGACCGCATCTATCTTCGACAAGCTGATCAATCTGGAAGCGAGCCAGCGCGCAGATTACCTGC- TGG ACTATCTGCGTAGATCTGTGGCACAAATTCTGAAACTGGAAATTGAGCAGATTCAGAGCCACGACTCCCTGCTG- GAT CTGGGTATGGATAGCCTGATGATCATGGAGGCGATTGCGTCCCTGAAACAAGACCTGCAACTGATGCTGTATCC- GCG TGAGATTTACGAGCGTCCGCGTCTGGATGTTCTGACTGCTTACTTGGCCGCTGAGTTTACCAAAGCGCATGATT- CTG AAGCAGCTACCGCCGCAGCTGCGATCCCTAGCCAGAGCCTGAGCGTCAAAACCAAAAAGCAATGGCAGAAACCG- GAT CATAAGAACCCGAATCCGATTGCGTTCATCCTGAGCAGCCCGCGTAGCGGTAGCACCCTGCTGCGCGTGATGCT- GGC CGGTCACCCGGGTCTGTATTCCCCACCGGAACTGCACCTGCTGCCGTTTGAAACGATGGGTGACCGCCACCAGG- AAC TGGGTCTGTCTCATCTGGGCGAGGGTCTGCAACGTGCCCTGATGGACTTGGAAAATCTGACGCCGGAAGCATCC- CAG GCAAAGGTGAACCAATGGGTGAAGGCGAATACGCCGATTGCAGACATCTACGCATACCTGCAACGTCAAGCCGA- GCA ACGTCTGCTGATTGACAAAAGCCCGAGCTATGGCAGCGACCGCCACATTCTGGATCACAGCGAGATCCTGTTCG- ATC AGGCGAAATACATCCACCTGGTTCGCCATCCTTATGCGGTCATTGAGAGCTTTACCCGCCTGCGTATGGACAAG- CTG CTGGGTGCAGAGCAACAGAATCCGTATGCGCTGGCGGAAAGCATTTGGCGTACCTCGAATCGCAACATTCTGGA- CTT GGGTCGTACCGTCGGCGCTGACCGCTACCTGCAAGTCATCTACGAGGATCTGGTGCGTGACCCGCGTAAAGTTC- TGA CCAACATTTGTGATTTTCTGGGTGTCGATTTCGACGAGGCACTGCTGAATCCGTACTCCGGCGACCGCCTGACC- GAC GGCCTGCACCAGCAAAGCATGGGTGTGGGTGACCCGAACTTCTTGCAGCACAAGACCATTGATCCGGCGCTAGC- GGA CAAATGGCGTAGCATTACCCTGCCGGCTGCTCTGCAACTGGATACGATTCAACTGGCCGAAACCTTCGCATACG- ACC TGCCGCAGGAGCCGCAGTTGACGCCGCAGACCCAATCTTTGCCATCGATGGTCGAACGTTTCGTCACGGTTCGC- GGC CTGGAAACCTGTCTGTGCGAGTGGGGTGATCGCCATCAACCTCTGGTCTTGCTGTTGCACGGTATCCTGGAGCA- AGG CGCGTCTTGGCAGTTGATCGCGCCTCAACTGGCAGCGCAGGGCTATTGGGTCGTCGCTCCGGATCTGCGCGGTC- ACG GTAAATCTGCGCACGCGCAGTCTTATAGCATGCTGGATTTTCTGGCCGATGTGGACGCGCTGGCCAAACAGTTG- GGC GACCGTCCGTTCACCTTGGTTGGTCACAGCATGGGTTCCATCATTGGCGCAATGTATGCTGGCATTCGTCAAAC- CCA GGTTGAAAAACTGATTCTGGTCGAAACCATCGTCCCGAATGATATTGATGATGCCGAAACCGGCAATCACCTGA- CCA CCCATCTGGATTACCTGGCAGCCCCTCCGCAGCACCCGATCTTTCCGAGCCTGGAAGTTGCGGCTCGTCGTCTG- CGC CAAGCCACCCCGCAGTTGCCGAAAGACCTGTCTGCATTTCTGACGCAACGTTCCACGAAGAGCGTCGAGAAGGG- TGT GCAGTGGCGCTGGGATGCCTTCTTGCGCACCCGTGCAGGTATCGAGTTTAACGGTATCAGCCGTCGCCGTTATC- TGG CGCTGCTGAAAGATATCCAGGCCCCAATTACTTTGATTTACGGTGATCAGTCTGAGTTCAATCGCCCAGCAGAC- CTG CAAGCGATCCAGGCGGCACTGCCGCAAGCGCAACGCCTGACGGTTGCTGGCGGTCACAACTTGCACTTTGAGAA- TCC GCAGGCCATCGCCCAGATTGTCTATCAGCAGTTGCAGACACCGGTTCCGAAAACCCAAGGTTTGCACCATCACC- ACC ATCATAGCGCCTGGAGCCACCCGCAGTTTGAAAAGTAA SEQ ID NO: 29 NonA_dptE Amino Acid Sequence The Interior Acyl Binding Pocket sequence is underlined. MASWSHPQFEKEVHHHHHHGAVGQFANFVDLLQYRAKLQARKTVFSFLADGEAESAALTYGELDQKAQAIAAFL- QAN QAQGQRALLLYPPGLEFIGAFLGCLYAGVVAVPAYPPRPNKSFDRLHSIIQDAQAKFALTTTELKDKIADRLEA- LEG TDFHCLATDQVELISGKNWQKPNISGTDLAFLQYTSGSTGDPKGVMVSHHNLIHNSGLLAEACELTAATPMGGW- LPM YHDMGLLGTLTPALYLGTTCVLMSSTAFIKRPHLWLRTIDRFGLVWSSAPDFAYDMCLKRVTDEQIAGLDLSRW- RWA GNGAEPIRAVTLENFAKTFATAGFQKSAFYPCYGMAETTLIVSGGNGRAQLPQEIIVSKQGIEANQVRPAQGTE- TTV TLVGSGEVIGDQIVKIVDPQALTECTVGEIGEVWVKGESVAQGYWQKPDLTQQQFQGNVGAETGFLRTGDLGFL- QGG ELYITGRLKDLLIIRGRNHYPQDIELTVEVAHPALRQGAGAAVSVDVNGEEQLVIVQEVERKYARKLNVAAVAQ- AIR GAIAAEHQLQPQAICFIKPGSIPKTSSGKIRRHACKAGFLDGSLAVVGEWQPSHQKEGKGIGTQAVTPSTTTST- NFP LPDQHQQQIEAWLKDNIAHRLGITPQQLDETEPFASYGLDSVQAVQVTADLEDWLGRKLDPTLAYDYPTIRTLA- QFL VQGNQALEKIPQVPKIQGKEIAVVGLSCRFPQADNPEAFWELLRNGKDGVRPLKTRWATGEWGGFLEDIDQFEP- QFF GISPREAEQMDPQQRLLLEVTWEALERANIPAESLRHSQTGVFVGISNSDYAQLQVRENNPINPYMGTGNAHSI- AAN RLSYFLDLRGVSLSIDTACSSSLVAVHLACQSLINGESELAIAAGVNLILTPDVTQTFTQAGMMSKTGRCQTFD- AEA DGYVRGEGCGVVLLKPLAQAERDGDNILAVIHGSAVNQDGRSNGLTAPNGRSQQAVIRQALAQAGITAADLAYL- EAH GTGTPLGDPIEINSLKAVLQTAQREQPCVVGSVKTNIGHLEAAAGIAGLIKVILSLEHGMIPQHLHFKQLNPRI- DLD GLVTIASKDQPWSGGSQKRFAGVSSFGFGGTNAHVIVGDYAQQKSPLAPPATQDRPWHLLTLSAKNAQALNALQ- KSY GDYLAQHPSVDPRDLCLSANTGRSPLKERRFFVFKQVADLQQTLNQDFLAQPRLSSPAKIAFLFTGQGSQYYGM- GQQ LYQTSPVFRQVLDECDRLWQTYSPEAPALTDLLYGNHNPDLVHETVYTQPLLFAVEYAIAQLWLSWGVTPDFCM- GHS VGEYVAACLAGVFSLADGMKLITARGKLMHALPSNGSMAAVFADKTVIKPYLSEHLTVGAENGSHLVLSGKTPC- LEA SIHKLQSQGIKTKPLKVSHAFHSPLMAPMLAEFREIAEQITFHPPRIPLISNVTGGQIEAEIAQADYWVKHVSQ- PVK FVQSIQTLAQAGVNVYLEIGVKPVLLSMGRHCLAEQEAVWLPSLRPHSEPWPEILTSLGKLYEQGLNIDWQTVE- AGD RRRKLILPTYPFQRQRYWFNQGSWQTVETESVNPGPDDLNDWLYQVAWTPLDTLPPAPEPSAKLWLILGDRHDH- QPI EAQFKNAQRVYLGQSNHFPTNAPWEVSADALDNLFTHVGSQNLAGILYLCPPGEDPEDLDEIQKQTSGFALQLI- QTL YQQKIAVPCWFVTHQSQRVLETDAVTGFAQGGLWGLAQAIALEHPELWGGIIDVDDSLPNFAQICQQRQVQQLA- VRH QKLYGAQLKKQPSLPQKNLQIQPQQTYLVTGGLGAIGRKIAQWLAAAGAEKVILVSRRAPAADQQTLPTNAVVY- PCD LADAAQVAKLFQTYPHIKGIFHAAGTLADGLLQQQTWQKFQTVAAAKMKGTWHLHRHSQKLDLDFFVLFSSVAG- VLG SPGQGNYAAANRGMAAIAQYRQAQGLPALAIHWGPWAEGGMANSLSNQNLAWLPPPQGLTILEKVLGAQGEMGV- FKP DWQNLAKQFPEFAKTHYFAAVIPSAEAVPPTASIFDKLINLEASQRADYLLDYLRRSVAQILKLEIEQIQSHDS- LLD LGMDSLMIMEAIASLKQDLQLMLYPREIYERPRLDVLTAYLAAEFTKAHDSEAATAAAAIPSQSLSVKTKKQWQ- KPD HKNPNPIAFILSSPRSGSTLLRVMLAGHPGLYSPPELHLLPFETMGDRHQELGLSHLGEGLQRALMDLENLTPE- ASQ AKVNQWVKANTPIADIYAYLQRQAEQRLLIDKSPSYGSDRHILDHSEILFDQAKYIHLVRHPYAVIESFTRLRM- DKL LGAEQQNPYALAESIWRTSNRNILDLGRTVGADRYLQVIYEDLVRDPRKVLTNICDFLGVDFDEALLNPYSGDR- LTD GLHQQSMGVGDPNFLQHKTIDPALADKWRSITLPAALQLDTIQLAETFAYDLPQEPQLTPQTQSLPSMVERFVT- VRG LETCLCEWGDRHQPLVLLLHGILEQGASWQLIAPQLAAQGYWVVAPDLRGHGKSAHAQSYSMLDFLADVDALAK- QLG DRPFTLVGHSMGSIIGAMYAGIRQTQVEKLILVETIVPNDIDDAETGNHLTTHLDYLAAPPQHPIFPSLEVAAR- RLR QATPQLPKDLSAFLTQRSTKSVEKGVQWRWDAFLRTRAGIEFNGISRRRYLALLKDIQAPITLIYGDQSEFNRP- ADL QAIQAALPQAQRLTVAGGHNLHFENPQAIAQIVYQQLQTPVPKTQGLHHHHHHSAWSHPQFEK SEQ ID NO: 30 NonA_safB Amino Acid Sequence The Interior Acyl Binding Pocket sequence is underlined. MASWSHPQFEKEVHHHHHHGAVGQFANFVDLLQYRAKLQARKTVFSFLADGEAESAALTYGELDQKAQAIAAFL- QAN QAQGQRALLLYPPGLEFIGAFLGCLYAGVVAVPAYPPRPNKSFDRLHSIIQDAQAKFALTTTELKDKIADRLEA- LEG TDFHCLATDQVELISGKNWQKPNISGTDLAFLQYTSGSTGDPKGVMVSHHNLIHNSGLIFTSFHMNDETIIFSW- LPP HHDMGLIGCILTPIYGGIQAIMMSPFSFLQNPLSWLKHITKYKATISGSPNFAYDYCVKRIREEKKEGLDLSSW- VTA FNGAEPIRAVTLENFAKTFATAGFQKSAFYPCYGMAETTLIVSGGNGRAQLPQEIIVSKQGIEANQVRPAQGTE- TTV TLVGSGEVIGDQIVKIVDPQALTECTVGEIGEVWVKGESVAQGYWQKPDLTQQQFQGNVGAETGFLRTGDLGFL- QGG ELYITGRLKDLLIIRGRNHYPQDIELTVEVAHPALRQGAGAAVSVDVNGEEQLVIVQEVERKYARKLNVAAVAQ- AIR GAIAAEHQLQPQAICFIKPGSIPKTSSGKIRRHACKAGFLDGSLAVVGEWQPSHQKEGKGIGTQAVTPSTTTST- NFP LPDQHQQQIEAWLKDNIAHRLGITPQQLDETEPFASYGLDSVQAVQVTADLEDWLGRKLDPTLAYDYPTIRTLA- QFL VQGNQALEKIPQVPKIQGKEIAVVGLSCRFPQADNPEAFWELLRNGKDGVRPLKTRWATGEWGGFLEDIDQFEP- QFF GISPREAEQMDPQQRLLLEVTWEALERANIPAESLRHSQTGVFVGISNSDYAQLQVRENNPINPYMGTGNAHSI- AAN RLSYFLDLRGVSLSIDTACSSSLVAVHLACQSLINGESELAIAAGVNLILTPDVTQTFTQAGMMSKTGRCQTFD- AEA DGYVRGEGCGVVLLKPLAQAERDGDNILAVIHGSAVNQDGRSNGLTAPNGRSQQAVIRQALAQAGITAADLAYL- EAH GTGTPLGDPIEINSLKAVLQTAQREQPCVVGSVKTNIGHLEAAAGIAGLIKVILSLEHGMIPQHLHFKQLNPRI- DLD GLVTIASKDQPWSGGSQKRFAGVSSFGFGGTNAHVIVGDYAQQKSPLAPPATQDRPWHLLTLSAKNAQALNALQ- KSY GDYLAQHPSVDPRDLCLSANTGRSPLKERRFFVFKQVADLQQTLNQDFLAQPRLSSPAKIAFLFTGQGSQYYGM- GQQ LYQTSPVFRQVLDECDRLWQTYSPEAPALTDLLYGNHNPDLVHETVYTQPLLFAVEYAIAQLWLSWGVTPDFCM- GHS VGEYVAACLAGVFSLADGMKLITARGKLMHALPSNGSMAAVFADKTVIKPYLSEHLTVGAENGSHLVLSGKTPC- LEA SIHKLQSQGIKTKPLKVSHAFHSPLMAPMLAEFREIAEQITFHPPRIPLISNVTGGQIEAEIAQADYWVKHVSQ- PVK FVQSIQTLAQAGVNVYLEIGVKPVLLSMGRHCLAEQEAVWLPSLRPHSEPWPEILTSLGKLYEQGLNIDWQTVE- AGD RRRKLILPTYPFQRQRYWFNQGSWQTVETESVNPGPDDLNDWLYQVAWTPLDTLPPAPEPSAKLWLILGDRHDH- QPI EAQFKNAQRVYLGQSNHFPTNAPWEVSADALDNLFTHVGSQNLAGILYLCPPGEDPEDLDEIQKQTSGFALQLI- QTL YQQKIAVPCWFVTHQSQRVLETDAVTGFAQGGLWGLAQAIALEHPELWGGIIDVDDSLPNFAQICQQRQVQQLA- VRH QKLYGAQLKKQPSLPQKNLQIQPQQTYLVTGGLGAIGRKIAQWLAAAGAEKVILVSRRAPAADQQTLPTNAVVY- PCD LADAAQVAKLFQTYPHIKGIFHAAGTLADGLLQQQTWQKFQTVAAAKMKGTWHLHRHSQKLDLDFFVLFSSVAG- VLG SPGQGNYAAANRGMAAIAQYRQAQGLPALAIHWGPWAEGGMANSLSNQNLAWLPPPQGLTILEKVLGAQGEMGV- FKP DWQNLAKQFPEFAKTHYFAAVIPSAEAVPPTASIFDKLINLEASQRADYLLDYLRRSVAQILKLEIEQIQSHDS- LLD LGMDSLMIMEAIASLKQDLQLMLYPREIYERPRLDVLTAYLAAEFTKAHDSEAATAAAAIPSQSLSVKTKKQWQ- KPD HKNPNPIAFILSSPRSGSTLLRVMLAGHPGLYSPPELHLLPFETMGDRHQELGLSHLGEGLQRALMDLENLTPE- ASQ AKVNQWVKANTPIADIYAYLQRQAEQRLLIDKSPSYGSDRHILDHSEILFDQAKYIHLVRHPYAVIESFTRLRM- DKL LGAEQQNPYALAESIWRTSNRNILDLGRTVGADRYLQVIYEDLVRDPRKVLTNICDFLGVDFDEALLNPYSGDR- LTD GLHQQSMGVGDPNFLQHKTIDPALADKWRSITLPAALQLDTIQLAETFAYDLPQEPQLTPQTQSLPSMVERFVT- VRG LETCLCEWGDRHQPLVLLLHGILEQGASWQLIAPQLAAQGYWVVAPDLRGHGKSAHAQSYSMLDFLADVDALAK- QLG DRPFTLVGHSMGSIIGAMYAGIRQTQVEKLILVETIVPNDIDDAETGNHLTTHLDYLAAPPQHPIFPSLEVAAR- RLR QATPQLPKDLSAFLTQRSTKSVEKGVQWRWDAFLRTRAGIEFNGISRRRYLALLKDIQAPITLIYGDQSEFNRP- ADL QAIQAALPQAQRLTVAGGHNLHFENPQAIAQIVYQQLQTPVPKTQGLHHHHHHSAWSHPQFEK SEQ ID NO: 31 NonA_mycA Amino Acid Sequence The Interior Acyl Binding Pocket sequence is underlined. MASWSHPQFEKEVHHHHHHGAVGQFANFVDLLQYRAKLQARKTVFSFLADGEAESAALTYGELDQKAQAIAAFL- QAN QAQGQRALLLYPPGLEFIGAFLGCLYAGVVAVPAYPPRPNKSFDRLHSIIQDAQAKFALTTTELKDKIADRLEA-
LEG TDFHCLATDQVELISGKNWQKPNISGTDLAFLQYTSGSTGDPKGVMVSHHNLIHNSGLIRNALAIDLKDTLLSW- MPL THDMGLIACHLVPALAGINQNLMPTELFIRRPILWMKKAHEHKASILSSPNFGYNYFLKFLKDNKSYDWDLSHI- RVI ANGAEPIRAVTLENFAKTFATAGFQKSAFYPCYGMAETTLIVSGGNGRAQLPQEIIVSKQGIEANQVRPAQGTE- TTV TLVGSGEVIGDQIVKIVDPQALTECTVGEIGEVWVKGESVAQGYWQKPDLTQQQFQGNVGAETGFLRTGDLGFL- QGG ELYITGRLKDLLIIRGRNHYPQDIELTVEVAHPALRQGAGAAVSVDVNGEEQLVIVQEVERKYARKLNVAAVAQ- AIR GAIAAEHQLQPQAICFIKPGSIPKTSSGKIRRHACKAGFLDGSLAVVGEWQPSHQKEGKGIGTQAVTPSTTTST- NFP LPDQHQQQIEAWLKDNIAHRLGITPQQLDETEPFASYGLDSVQAVQVTADLEDWLGRKLDPTLAYDYPTIRTLA- QFL VQGNQALEKIPQVPKIQGKEIAVVGLSCRFPQADNPEAFWELLRNGKDGVRPLKTRWATGEWGGFLEDIDQFEP- QFF GISPREAEQMDPQQRLLLEVTWEALERANIPAESLRHSQTGVFVGISNSDYAQLQVRENNPINPYMGTGNAHSI- AAN RLSYFLDLRGVSLSIDTACSSSLVAVHLACQSLINGESELAIAAGVNLILTPDVTQTFTQAGMMSKTGRCQTFD- AEA DGYVRGEGCGVVLLKPLAQAERDGDNILAVIHGSAVNQDGRSNGLTAPNGRSQQAVIRQALAQAGITAADLAYL- EAH GTGTPLGDPIEINSLKAVLQTAQREQPCVVGSVKTNIGHLEAAAGIAGLIKVILSLEHGMIPQHLHFKQLNPRI- DLD GLVTIASKDQPWSGGSQKRFAGVSSFGFGGTNAHVIVGDYAQQKSPLAPPATQDRPWHLLTLSAKNAQALNALQ- KSY GDYLAQHPSVDPRDLCLSANTGRSPLKERRFFVFKQVADLQQTLNQDFLAQPRLSSPAKIAFLFTGQGSQYYGM- GQQ LYQTSPVFRQVLDECDRLWQTYSPEAPALTDLLYGNHNPDLVHETVYTQPLLFAVEYAIAQLWLSWGVTPDFCM- GHS VGEYVAACLAGVFSLADGMKLITARGKLMHALPSNGSMAAVFADKTVIKPYLSEHLTVGAENGSHLVLSGKTPC- LEA SIHKLQSQGIKTKPLKVSHAFHSPLMAPMLAEFREIAEQITFHPPRIPLISNVTGGQIEAEIAQADYWVKHVSQ- PVK FVQSIQTLAQAGVNVYLEIGVKPVLLSMGRHCLAEQEAVWLPSLRPHSEPWPEILTSLGKLYEQGLNIDWQTVE- AGD RRRKLILPTYPFQRQRYWFNQGSWQTVETESVNPGPDDLNDWLYQVAWTPLDTLPPAPEPSAKLWLILGDRHDH- QPI EAQFKNAQRVYLGQSNHFPTNAPWEVSADALDNLFTHVGSQNLAGILYLCPPGEDPEDLDEIQKQTSGFALQLI- QTL YQQKIAVPCWFVTHQSQRVLETDAVTGFAQGGLWGLAQAIALEHPELWGGIIDVDDSLPNFAQICQQRQVQQLA- VRH QKLYGAQLKKQPSLPQKNLQIQPQQTYLVTGGLGAIGRKIAQWLAAAGAEKVILVSRRAPAADQQTLPTNAVVY- PCD LADAAQVAKLFQTYPHIKGIFHAAGTLADGLLQQQTWQKFQTVAAAKMKGTWHLHRHSQKLDLDFFVLFSSVAG- VLG SPGQGNYAAANRGMAAIAQYRQAQGLPALAIHWGPWAEGGMANSLSNQNLAWLPPPQGLTILEKVLGAQGEMGV- FKP DWQNLAKQFPEFAKTHYFAAVIPSAEAVPPTASIFDKLINLEASQRADYLLDYLRRSVAQILKLEIEQIQSHDS- LLD LGMDSLMIMEAIASLKQDLQLMLYPREIYERPRLDVLTAYLAAEFTKAHDSEAATAAAAIPSQSLSVKTKKQWQ- KPD HKNPNPIAFILSSPRSGSTLLRVMLAGHPGLYSPPELHLLPFETMGDRHQELGLSHLGEGLQRALMDLENLTPE- ASQ AKVNQWVKANTPIADIYAYLQRQAEQRLLIDKSPSYGSDRHILDHSEILFDQAKYIHLVRHPYAVIESFTRLRM- DKL LGAEQQNPYALAESIWRTSNRNILDLGRTVGADRYLQVIYEDLVRDPRKVLTNICDFLGVDFDEALLNPYSGDR- LTD GLHQQSMGVGDPNFLQHKTIDPALADKWRSITLPAALQLDTIQLAETFAYDLPQEPQLTPQTQSLPSMVERFVT- VRG LETCLCEWGDRHQPLVLLLHGILEQGASWQLIAPQLAAQGYWVVAPDLRGHGKSAHAQSYSMLDFLADVDALAK- QLG DRPFTLVGHSMGSIIGAMYAGIRQTQVEKLILVETIVPNDIDDAETGNHLTTHLDYLAAPPQHPIFPSLEVAAR- RLR QATPQLPKDLSAFLTQRSTKSVEKGVQWRWDAFLRTRAGIEFNGISRRRYLALLKDIQAPITLIYGDQSEFNRP- ADL QAIQAALPQAQRLTVAGGHNLHFENPQAIAQIVYQQLQTPVPKTQGLHHHHHHSAWSHPQFEK SEQ ID NO: 32 PCR primer A2265 Forward Primer SacI Nucleotide Sequence ggGAGCTCaaggaattatagttatgcgcaaaccctggttaga SEQ ID NO: 33 PCR primer A2265 Reverse Primer SacI Nucleotide Sequence ggCCTGCAGGttatagggactggatcgccagttttttctgct SEQ ID NO: 34 Nucleotide Interior Acyl Binding Pocket of dptE CTCGCCGAGGCCTGCGAGCTGACCGCCGCCACTCCCATGGGCGGCTGGCTGCCCATGTACCACGACATGGGGCT- CCT GGGCACGCTGACACCGGCCCTGTACCTCGGCACCACGTGCGTGCTGATGAGCTCCACGGCATTCATCAAACGGC- CGC ACCTGTGGCTACGGACCATCGACCGGTTCGGCCTGGTCTGGTCGTCGGCTCCCGACTTCGCGTACGACATGTGT- CTG AAGCGCGTCACCGACGAGCAGATCGCCGGGCTGGACCTGTCCCGCTGGCGGTGGGCCGGCAAC SEQ ID NO: 35 Nucleotide Interior Acyl Binding Pocket of safB ATTTTTACCTCTTTTCATATGAATGATGAAACCATTATTTTCAGCTGGCTGCCCCCACATCATGATATGGGTTT- GAT TGGCTGCATTCTGACCCCCATCTATGGTGGAATTCAGGCAATCATGATGTCCCCTTTCTCATTTTTACAAAACC- CGC TTTCCTGGTTAAAACATATTACCAAATACAAAGCAACTATCAGTGGAAGCCCTAACTTCGCTTACGATTATTGT- GTC AAACGAATCAGGGAAGAAAAAAAAGAAGGGCTGGATTTAAGTTCATGGGTGACTGCTTTCAAC SEQ ID NO: 36 Nucleotide Interior Acyl Binding Pocket of mycA ATCCGGAATGCGCTGGCTATCGACTTAAAAGATACTCTTTTATCTTGGATGCCCTTAACCCATGACATGGGGCT- CAT AGCTTGCCACCTTGTTCCTGCCTTAGCCGGAATCAATCAAAATTTAATGCCGACAGAATTATTTATTCGAAGAC- CTA TTCTCTGGATGAAAAAAGCTCATGAACATAAAGCCAGCATTCTATCCTCACCTAATTTTGGATACAATTACTTT- CTT AAATTTCTGAAAGACAATAAAAGTTACGACTGGGATTTATCCCATATCAGGGTCATTGCAAAC SEQ ID NO: 37 Nucleotide A2265 Synechococcus sp. PCC 7002 locus: SYNPCC7002_A2265 Accession No: NC_010475.1: 2037569 . . . 2038552 1 gtgcgcaaac cctggttaga acttcccttg gcgatttttt cctttggctt ttataaagtc 61 aacaaatttc tgattgggaa tctctacact ttgtatttag cgctgaataa aaaaaatgct 121 aaggaatggc gcattattgg agaaaaatcc ctccagaaat tcctgagttt acccgtttta 181 atgaccaaag cgccccggtg gaatacccac gccattatcg gcaccctggg accactctct 241 gtagaaaaag aactcaccat taacctcgaa acgattcgtc aatccacgga agcttgggtc 301 ggttgcatct atgactttcc gggctatcgc acggtgttaa atttcacgca actcaccgat 361 gaccccaacc aaacagaact caaaattttc ttacctaaag ggaaatatac cgtcgggtta 421 cgttactacc atcccaaggt aaatcctcgc tttccggtcg ttaaaacaga tctaaatcta 481 accgtgccga ctttggttgt ttcgccccaa aacaacgact tttatcaagc cctggcccag 541 aaaacaaacc tttattttcg tctgcttcac tactacattt ttacgctatt taaatttcgc 601 gatgtcttac ccgctgcttt tgtgaaagga gaattcctcc ctgtcggcgc caccgatact 661 caattttttt acggcgcttt agaagcagca gaaaacttag agattaccat cccagccccc 721 tggcttcaga cctttgattt ttatctcacc ttctataacc gcgccagttt tcccctacgt 781 tggcaaaaaa tcaccgaagc gatgatctgt gatcccctgg gagaaaaagg ctattaccta 841 attcggatgc ggccccgtac tcaggacgcc gaggcacaat taccaacggt tagaggagaa 901 gaaacccagg tcacgcccca gcagaaaaaa ctggcgatcc agtccctata a SEQ ID NO: 38 Amino Acid Synechococcus sp. PCC 7002 aoa locus: SYNPCC7002_A2265 Accession No: YP_001735499.1 1 mrkpwlelpl aifsfgfykv nkflignlyt lylalnkkna kewriigeks lqkflslpvl 61 mtkaprwnth aiigtlgpls vekeltinle tirqsteawv gciydfpgyr tvinftqltd 121 dpnqtelkif lpkgkytvgl ryyhpkvnpr fpvvktdlnl tvptlvvspq nndfyqalaq 181 ktnlyfrllh yyiftlfkfr dvlpaafvkg eflpvgatdt qffygaleaa enleitipap 241 wlqtfdfylt fynrasfplr wqkiteamic dplgekgyyl irmrprtqda eaqlptvrge 301 etqvtpqqkk laiqsl
Sequence CWU
1
1
4018163DNASynechococcus sp. 1atggttggtc aatttgcaaa tttcgtcgat ctgctccagt
acagagctaa acttcaggcg 60cggaaaaccg tgtttagttt tctggctgat ggcgaagcgg
aatctgcggc cctgacctac 120ggagaattag accaaaaagc ccaggcgatc gccgcttttt
tgcaagctaa ccaggctcaa 180gggcaacggg cattattact ttatccaccg ggtttagagt
ttatcggtgc ctttttggga 240tgtttgtatg ctggtgttgt tgcggtgcca gcttacccac
cacggccgaa taaatccttt 300gaccgcctcc atagcattat ccaagatgcc caggcaaaat
ttgccctcac cacaacagaa 360cttaaagata aaattgccga tcgcctcgaa gctttagaag
gtacggattt tcattgtttg 420gctacagatc aagttgaatt aatttcagga aaaaattggc
aaaaaccgaa catttccggc 480acagatctcg cttttttgca atacaccagt ggctccacgg
gcgatcctaa aggagtgatg 540gtttcccacc acaatttgat ccacaactcc ggcttgatta
accaaggatt ccaggataca 600gaggcgagta tgggcgtttc ctggttgccg ccctaccatg
atatgggctt gatcggtggg 660attttacagc ccatctatgt gggagcaacg caaattttaa
tgcctcccgt ggcctttttg 720cagcgacctt ttcggtggct aaaggcgatc aacgattatc
gggtttccac cagcggtgcg 780ccgaattttg cctatgatct ctgtgccagc caaattaccc
cggaacaaat cagagaactc 840gatttgagct gttggcgact ggctttttcc ggggccgaac
cgatccgcgc tgtgaccctc 900gaaaattttg cgaaaacctt cgctacagca ggctttcaaa
aatcagcatt ttatccctgt 960tatggtatgg ctgaaaccac cctgatcgtt tccggtggta
atggtcgtgc ccagcttccc 1020caggaaatta tcgtcagcaa acagggcatc gaagcaaacc
aagttcgccc tgcccaaggg 1080acagaaacaa cggtgacctt ggtcggcagt ggtgaagtga
ttggcgacca aattgtcaaa 1140attgttgacc cccaggcttt aacagaatgt accgtcggtg
aaattggcga agtatgggtt 1200aagggcgaaa gtgttgccca gggctattgg caaaagccag
acctcaccca gcaacaattc 1260cagggaaacg tcggtgcaga aacgggcttt ttacgcacgg
gcgatctggg ttttttgcaa 1320ggtggcgaac tgtatattac gggtcgttta aaggatctcc
tgattatccg ggggcgcaac 1380cactatcccc aggacattga attaaccgtc gaagtggccc
atcccgcttt acgacagggg 1440gccggagccg ctgtatcagt agacgttaac ggggaagaac
agttagtcat tgtccaggaa 1500gttgagcgta aatatgcccg caaattaaat gtcgcggcag
tagcccaagc tattcgtggg 1560gcgatcgccg ccgaacatca actgcaaccc caggccattt
gttttattaa acccggtagc 1620attcccaaaa catccagcgg gaagattcgt cgccatgcct
gcaaagctgg ttttctagac 1680ggaagcttgg ctgtggttgg ggagtggcaa cccagccacc
aaaaagaagg aaaaggaatt 1740gggacacaag ccgttacccc ttctacgaca acatcaacga
attttcccct gcctgaccag 1800caccaacagc aaattgaagc ctggcttaag gataatattg
cccatcgcct cggcattacg 1860ccccaacaat tagacgaaac ggaacccttt gcaagttatg
ggctggattc agtgcaagca 1920gtacaggtca cagccgactt agaggattgg ctaggtcgaa
aattagaccc cactctggcc 1980tacgattatc cgaccattcg caccctggct cagtttttgg
tccagggtaa tcaagcgcta 2040gagaaaatac cacaggtgcc gaaaattcag ggcaaagaaa
ttgccgtggt gggtctcagt 2100tgtcgttttc cccaagctga caaccccgaa gctttttggg
aattattacg taatggtaaa 2160gatggagttc gcccccttaa aactcgctgg gccacgggag
aatggggtgg ttttttagaa 2220gatattgacc agtttgagcc gcaatttttt ggcatttccc
cccgggaagc ggaacaaatg 2280gatccccagc aacgcttact gttagaagta acctgggaag
ccttggaacg ggcaaatatt 2340ccggcagaaa gtttacgcca ttcccaaacg ggggtttttg
tcggcattag taatagtgat 2400tatgcccagt tgcaggtgcg ggaaaacaat ccgatcaatc
cctacatggg gacgggcaac 2460gcccacagta ttgctgcgaa tcgtctgtct tatttcctcg
atctccgggg cgtttctctg 2520agcatcgata cggcctgttc ctcttctctg gtggcggtac
atctggcctg tcaaagttta 2580atcaacggcg aatcggagtt ggcgatcgcc gccggggtga
atttgatttt gacccccgat 2640gtgacccaga cttttaccca ggcgggcatg atgagtaaga
cgggccgttg ccagaccttt 2700gatgccgagg ctgatggcta tgtgcggggc gaaggttgtg
gggtcgttct cctcaaaccc 2760ctggcccagg cagaacggga cggggataat attctcgcgg
tgatccacgg ttcggcggtg 2820aatcaagatg gacgcagtaa cggtttgacg gctcccaacg
ggcgatcgca acaggccgtt 2880attcgccaag ccctggccca agccggcatt accgccgccg
atttagctta cctagaggcc 2940cacggcaccg gcacgcccct gggtgatccc attgaaatta
attccctgaa ggcggtttta 3000caaacggcgc agcgggaaca gccctgtgtg gtgggttctg
tgaaaacaaa cattggtcac 3060ctcgaggcag cggcgggcat cgcgggctta atcaaggtga
ttttgtccct agagcatgga 3120atgattcccc aacatttgca ttttaagcag ctcaatcccc
gcattgatct agacggttta 3180gtgaccattg cgagcaaaga tcagccttgg tcaggcgggt
cacaaaaacg gtttgctggg 3240gtaagttcct ttgggtttgg tggcaccaat gcccacgtga
ttgtcgggga ctatgctcaa 3300caaaaatctc cccttgctcc tccggctacc caagaccgcc
cttggcattt gctgaccctt 3360tctgctaaaa atgcccaggc cttaaatgcc ctgcaaaaaa
gctatggaga ctatctggcc 3420caacatccca gcgttgaccc acgcgatctc tgtttgtctg
ccaataccgg gcgatcgccc 3480ctcaaagaac gtcgtttttt tgtctttaaa caagtcgccg
atttacaaca aactctcaat 3540caagattttc tggcccaacc acgcctcagt tcccccgcaa
aaattgcctt tttgtttacg 3600gggcaaggtt cccaatacta cggcatgggg caacaactgt
accaaaccag cccagtattt 3660cggcaagtgc tggatgagtg cgatcgcctc tggcagacct
attcccccga agcccctgcc 3720ctcaccgacc tgctgtacgg taaccataac cctgacctcg
tccacgaaac tgtctatacc 3780cagcccctcc tctttgctgt tgaatatgcg atcgcccaac
tatggttaag ctggggcgtg 3840acgccagact tttgcatggg ccatagcgtc ggcgaatatg
tcgcggcttg tctggcgggg 3900gtattttccc tggcagacgg catgaaatta attacggccc
ggggcaaact gatgcacgcc 3960ctacccagca atggcagtat ggcggcggtc tttgccgata
aaacggtcat caaaccctac 4020ctatcggagc atttgaccgt cggagccgaa aacggttccc
atttggtgct atcaggaaag 4080accccctgcc tcgaagccag tattcacaaa ctccaaagcc
aagggatcaa aaccaaaccc 4140ctcaaggttt cccatgcttt ccactcccct ttgatggctc
ccatgctggc agagtttcgg 4200gaaattgctg aacaaattac tttccacccg ccgcgtatcc
cgctcatttc caatgtcacg 4260ggcggccaga ttgaagcgga aattgcccag gccgactatt
gggttaagca cgtttcgcaa 4320cccgtcaaat ttgtccagag catccaaacc ctggcccaag
cgggtgtcaa tgtttatctc 4380gaaatcggcg taaaaccagt gctcctgagt atgggacgcc
attgcttagc tgaacaagaa 4440gcggtttggt tgcccagttt acgtccccat agtgagcctt
ggccggaaat tttgaccagt 4500ctcggcaaac tgtatgagca agggctaaac attgactggc
agaccgtgga agctggcgat 4560cgccgccgga aactgattct gcccacctat cccttccaac
ggcaacgata ttggtttaat 4620caaggctctt ggcaaactgt tgagaccgaa tctgtgaacc
caggccctga cgatctcaat 4680gattggttgt atcaggtggc gtggacgccc ctggacactt
tgcccccggc ccctgaaccg 4740tcggctaagc tgtggttaat cttgggcgat cgccatgatc
accagcccat tgaagcccaa 4800tttaaaaacg cccagcgggt gtatctcggc caaagcaatc
attttccgac gaatgccccc 4860tgggaagtat ctgccgatgc gttggataat ttatttactc
acgtcggctc ccaaaattta 4920gcaggcatcc tttacctgtg tcccccaggg gaagacccag
aagacctaga tgaaattcaa 4980aagcaaacca gtggcttcgc cctccaactg atccaaaccc
tgtatcaaca aaagatcgcg 5040gttccctgct ggtttgtgac ccaccagagc caacgggtgc
ttgaaaccga tgctgtcacc 5100ggatttgccc aagggggatt atggggactc gcccaggcga
tcgccctcga acatccagag 5160ttgtgggggg gaattattga tgtcgatgac agcctgccaa
attttgccca gatttgccaa 5220caaagacagg tgcagcagtt ggccgtgcgg caccaaaaac
tctacggggc acagctcaaa 5280aagcaaccgt cactgcccca gaaaaatctc cagattcaac
cccaacagac ctatctagtg 5340acagggggac tgggggccat tggccgtaaa attgcccaat
ggctagccgc agcaggagca 5400gaaaaagtaa ttctcgtcag ccggcgcgct ccggcagcgg
atcagcagac gttaccgacc 5460aatgcggtgg tttatccttg cgatttagcc gacgcagccc
aggtggcaaa gctgtttcaa 5520acctatcccc acatcaaagg aattttccat gcggcgggta
ccttagctga tggtttgctg 5580caacaacaaa cttggcaaaa gttccagacc gtcgccgccg
ccaaaatgaa agggacatgg 5640catctgcacc gccatagtca aaagctcgat ctggattttt
ttgtgttgtt ttcctctgtg 5700gcaggggtgc tcggttcacc gggacagggg aattatgccg
ccgcaaaccg gggcatggcg 5760gcgatcgccc aatatcgaca agcccaaggt ttacccgccc
tggcgatcca ttgggggcct 5820tgggccgaag ggggaatggc caactccctc agcaaccaaa
atttagcgtg gctgccgccc 5880ccccagggac taacaatcct cgaaaaagtc ttgggcgccc
agggggaaat gggggtcttt 5940aaaccggact ggcaaaacct ggccaaacag ttccccgaat
ttgccaaaac ccattacttt 6000gcagccgtta ttccctctgc tgaggctgtg cccccaacgg
cttcaatttt tgacaaatta 6060atcaacctag aagcttctca gcgggctgac tatctactgg
attatctgcg gcggtctgtg 6120gcgcaaatcc tcaagttaga aattgagcaa attcaaagcc
acgatagcct gttggatctg 6180ggcatggatt cgttgatgat catggaggcg atcgccagcc
tcaagcagga tttacaactg 6240atgttgtacc ccagggaaat ctacgaacgg cccagacttg
atgtgttgac ggcctatcta 6300gcggcggaat tcaccaaggc ccatgattct gaagcagcaa
cggcggcagc agcgattccc 6360tcccaaagcc tttcggtcaa aacaaaaaaa cagtggcaaa
aacctgacca caaaaacccg 6420aatcccattg cctttatcct ctctagcccc cggtcgggtt
cgacgttgct gcgggtgatg 6480ttagccggac atccggggtt atattcgccg ccagagctgc
atttgctccc ctttgagact 6540atgggcgatc gccaccagga attgggtcta tcccacctcg
gcgaagggtt acaacgggcc 6600ttaatggatc tagaaaacct caccccagag gcaagccagg
cgaaggtcaa ccaatgggtc 6660aaagcgaata cacccattgc agacatctat gcctatctcc
aacggcaggc ggaacaacgt 6720ttactcatcg acaaatctcc cagctacggc agcgatcgcc
atattctaga ccacagcgaa 6780atcctctttg accaggccaa atatatccat ctggtacgcc
atccctacgc ggtgattgaa 6840tcctttaccc gactgcggat ggataaactg ctgggggccg
agcagcagaa cccctacgcc 6900ctcgcggagt ccatttggcg caccagcaac cgcaatattt
tagacctggg tcgcacggtt 6960ggtgcggatc gatatctcca ggtgatttac gaagatctcg
tccgtgaccc ccgcaaagtt 7020ttgacaaata tttgtgattt cctgggggtg gactttgacg
aagcgctcct caatccctac 7080agcggcgatc gccttaccga tggcctccac caacagtcca
tgggcgtcgg ggatcccaat 7140ttcctccagc acaaaaccat tgatccggcc ctcgccgaca
aatggcgctc aattaccctg 7200cccgctgctc tccagctgga tacgatccag ttggccgaaa
cgtttgctta cgatctcccc 7260caggaacccc agctaacacc ccagacccaa tccttgccct
cgatggtgga gcggttcgtg 7320acagtgcgcg gtttagaaac ctgtctctgt gagtggggcg
atcgccacca accattggtg 7380ctacttctcc acggcatcct cgaacagggg gcctcctggc
aactcatcgc gccccagttg 7440gcggcccagg gctattgggt tgtggcccca gacctgcgtg
gtcacggcaa atccgcccat 7500gcccagtcct acagcatgct tgattttttg gctgacgtag
atgcccttgc caaacaatta 7560ggcgatcgcc cctttacctt ggtgggccac tccatgggtt
ccatcatcgg tgccatgtat 7620gcaggaattc gccaaaccca ggtagaaaag ttgatcctcg
ttgaaaccat tgtccccaac 7680gacatcgacg acgctgaaac cggtaatcac ctgacgaccc
atctcgatta cctcgccgcg 7740cccccccaac acccgatctt ccccagccta gaagtggccg
cccgtcgcct ccgccaagcc 7800acgccccaac tacccaaaga cctctcggcg ttcctcaccc
agcgcagcac caaatccgtc 7860gaaaaagggg tgcagtggcg ttgggatgct ttcctccgta
cccgggcggg cattgaattc 7920aatggcatta gcagacgacg ttacctggcc ctgctcaaag
atatccaagc gccgatcacc 7980ctcatctatg gcgatcagag tgaatttaac cgccctgctg
atctccaggc gatccaagcg 8040gctctccccc aggcccaacg tttaacggtt gctggcggcc
ataacctcca ttttgagaat 8100ccccaggcga tcgcccaaat tgtttatcaa caactccaga
cccctgtacc caaaacacaa 8160taa
816322720PRTSynechococcus sp. 2Met Val Gly Gln Phe
Ala Asn Phe Val Asp Leu Leu Gln Tyr Arg Ala 1 5
10 15 Lys Leu Gln Ala Arg Lys Thr Val Phe Ser
Phe Leu Ala Asp Gly Glu 20 25
30 Ala Glu Ser Ala Ala Leu Thr Tyr Gly Glu Leu Asp Gln Lys Ala
Gln 35 40 45 Ala
Ile Ala Ala Phe Leu Gln Ala Asn Gln Ala Gln Gly Gln Arg Ala 50
55 60 Leu Leu Leu Tyr Pro Pro
Gly Leu Glu Phe Ile Gly Ala Phe Leu Gly 65 70
75 80 Cys Leu Tyr Ala Gly Val Val Ala Val Pro Ala
Tyr Pro Pro Arg Pro 85 90
95 Asn Lys Ser Phe Asp Arg Leu His Ser Ile Ile Gln Asp Ala Gln Ala
100 105 110 Lys Phe
Ala Leu Thr Thr Thr Glu Leu Lys Asp Lys Ile Ala Asp Arg 115
120 125 Leu Glu Ala Leu Glu Gly Thr
Asp Phe His Cys Leu Ala Thr Asp Gln 130 135
140 Val Glu Leu Ile Ser Gly Lys Asn Trp Gln Lys Pro
Asn Ile Ser Gly 145 150 155
160 Thr Asp Leu Ala Phe Leu Gln Tyr Thr Ser Gly Ser Thr Gly Asp Pro
165 170 175 Lys Gly Val
Met Val Ser His His Asn Leu Ile His Asn Ser Gly Leu 180
185 190 Ile Asn Gln Gly Phe Gln Asp Thr
Glu Ala Ser Met Gly Val Ser Trp 195 200
205 Leu Pro Pro Tyr His Asp Met Gly Leu Ile Gly Gly Ile
Leu Gln Pro 210 215 220
Ile Tyr Val Gly Ala Thr Gln Ile Leu Met Pro Pro Val Ala Phe Leu 225
230 235 240 Gln Arg Pro Phe
Arg Trp Leu Lys Ala Ile Asn Asp Tyr Arg Val Ser 245
250 255 Thr Ser Gly Ala Pro Asn Phe Ala Tyr
Asp Leu Cys Ala Ser Gln Ile 260 265
270 Thr Pro Glu Gln Ile Arg Glu Leu Asp Leu Ser Cys Trp Arg
Leu Ala 275 280 285
Phe Ser Gly Ala Glu Pro Ile Arg Ala Val Thr Leu Glu Asn Phe Ala 290
295 300 Lys Thr Phe Ala Thr
Ala Gly Phe Gln Lys Ser Ala Phe Tyr Pro Cys 305 310
315 320 Tyr Gly Met Ala Glu Thr Thr Leu Ile Val
Ser Gly Gly Asn Gly Arg 325 330
335 Ala Gln Leu Pro Gln Glu Ile Ile Val Ser Lys Gln Gly Ile Glu
Ala 340 345 350 Asn
Gln Val Arg Pro Ala Gln Gly Thr Glu Thr Thr Val Thr Leu Val 355
360 365 Gly Ser Gly Glu Val Ile
Gly Asp Gln Ile Val Lys Ile Val Asp Pro 370 375
380 Gln Ala Leu Thr Glu Cys Thr Val Gly Glu Ile
Gly Glu Val Trp Val 385 390 395
400 Lys Gly Glu Ser Val Ala Gln Gly Tyr Trp Gln Lys Pro Asp Leu Thr
405 410 415 Gln Gln
Gln Phe Gln Gly Asn Val Gly Ala Glu Thr Gly Phe Leu Arg 420
425 430 Thr Gly Asp Leu Gly Phe Leu
Gln Gly Gly Glu Leu Tyr Ile Thr Gly 435 440
445 Arg Leu Lys Asp Leu Leu Ile Ile Arg Gly Arg Asn
His Tyr Pro Gln 450 455 460
Asp Ile Glu Leu Thr Val Glu Val Ala His Pro Ala Leu Arg Gln Gly 465
470 475 480 Ala Gly Ala
Ala Val Ser Val Asp Val Asn Gly Glu Glu Gln Leu Val 485
490 495 Ile Val Gln Glu Val Glu Arg Lys
Tyr Ala Arg Lys Leu Asn Val Ala 500 505
510 Ala Val Ala Gln Ala Ile Arg Gly Ala Ile Ala Ala Glu
His Gln Leu 515 520 525
Gln Pro Gln Ala Ile Cys Phe Ile Lys Pro Gly Ser Ile Pro Lys Thr 530
535 540 Ser Ser Gly Lys
Ile Arg Arg His Ala Cys Lys Ala Gly Phe Leu Asp 545 550
555 560 Gly Ser Leu Ala Val Val Gly Glu Trp
Gln Pro Ser His Gln Lys Glu 565 570
575 Gly Lys Gly Ile Gly Thr Gln Ala Val Thr Pro Ser Thr Thr
Thr Ser 580 585 590
Thr Asn Phe Pro Leu Pro Asp Gln His Gln Gln Gln Ile Glu Ala Trp
595 600 605 Leu Lys Asp Asn
Ile Ala His Arg Leu Gly Ile Thr Pro Gln Gln Leu 610
615 620 Asp Glu Thr Glu Pro Phe Ala Ser
Tyr Gly Leu Asp Ser Val Gln Ala 625 630
635 640 Val Gln Val Thr Ala Asp Leu Glu Asp Trp Leu Gly
Arg Lys Leu Asp 645 650
655 Pro Thr Leu Ala Tyr Asp Tyr Pro Thr Ile Arg Thr Leu Ala Gln Phe
660 665 670 Leu Val Gln
Gly Asn Gln Ala Leu Glu Lys Ile Pro Gln Val Pro Lys 675
680 685 Ile Gln Gly Lys Glu Ile Ala Val
Val Gly Leu Ser Cys Arg Phe Pro 690 695
700 Gln Ala Asp Asn Pro Glu Ala Phe Trp Glu Leu Leu Arg
Asn Gly Lys 705 710 715
720 Asp Gly Val Arg Pro Leu Lys Thr Arg Trp Ala Thr Gly Glu Trp Gly
725 730 735 Gly Phe Leu Glu
Asp Ile Asp Gln Phe Glu Pro Gln Phe Phe Gly Ile 740
745 750 Ser Pro Arg Glu Ala Glu Gln Met Asp
Pro Gln Gln Arg Leu Leu Leu 755 760
765 Glu Val Thr Trp Glu Ala Leu Glu Arg Ala Asn Ile Pro Ala
Glu Ser 770 775 780
Leu Arg His Ser Gln Thr Gly Val Phe Val Gly Ile Ser Asn Ser Asp 785
790 795 800 Tyr Ala Gln Leu Gln
Val Arg Glu Asn Asn Pro Ile Asn Pro Tyr Met 805
810 815 Gly Thr Gly Asn Ala His Ser Ile Ala Ala
Asn Arg Leu Ser Tyr Phe 820 825
830 Leu Asp Leu Arg Gly Val Ser Leu Ser Ile Asp Thr Ala Cys Ser
Ser 835 840 845 Ser
Leu Val Ala Val His Leu Ala Cys Gln Ser Leu Ile Asn Gly Glu 850
855 860 Ser Glu Leu Ala Ile Ala
Ala Gly Val Asn Leu Ile Leu Thr Pro Asp 865 870
875 880 Val Thr Gln Thr Phe Thr Gln Ala Gly Met Met
Ser Lys Thr Gly Arg 885 890
895 Cys Gln Thr Phe Asp Ala Glu Ala Asp Gly Tyr Val Arg Gly Glu Gly
900 905 910 Cys Gly
Val Val Leu Leu Lys Pro Leu Ala Gln Ala Glu Arg Asp Gly 915
920 925 Asp Asn Ile Leu Ala Val Ile
His Gly Ser Ala Val Asn Gln Asp Gly 930 935
940 Arg Ser Asn Gly Leu Thr Ala Pro Asn Gly Arg Ser
Gln Gln Ala Val 945 950 955
960 Ile Arg Gln Ala Leu Ala Gln Ala Gly Ile Thr Ala Ala Asp Leu Ala
965 970 975 Tyr Leu Glu
Ala His Gly Thr Gly Thr Pro Leu Gly Asp Pro Ile Glu 980
985 990 Ile Asn Ser Leu Lys Ala Val Leu
Gln Thr Ala Gln Arg Glu Gln Pro 995 1000
1005 Cys Val Val Gly Ser Val Lys Thr Asn Ile Gly
His Leu Glu Ala 1010 1015 1020
Ala Ala Gly Ile Ala Gly Leu Ile Lys Val Ile Leu Ser Leu Glu
1025 1030 1035 His Gly Met
Ile Pro Gln His Leu His Phe Lys Gln Leu Asn Pro 1040
1045 1050 Arg Ile Asp Leu Asp Gly Leu Val
Thr Ile Ala Ser Lys Asp Gln 1055 1060
1065 Pro Trp Ser Gly Gly Ser Gln Lys Arg Phe Ala Gly Val
Ser Ser 1070 1075 1080
Phe Gly Phe Gly Gly Thr Asn Ala His Val Ile Val Gly Asp Tyr 1085
1090 1095 Ala Gln Gln Lys Ser
Pro Leu Ala Pro Pro Ala Thr Gln Asp Arg 1100 1105
1110 Pro Trp His Leu Leu Thr Leu Ser Ala Lys
Asn Ala Gln Ala Leu 1115 1120 1125
Asn Ala Leu Gln Lys Ser Tyr Gly Asp Tyr Leu Ala Gln His Pro
1130 1135 1140 Ser Val
Asp Pro Arg Asp Leu Cys Leu Ser Ala Asn Thr Gly Arg 1145
1150 1155 Ser Pro Leu Lys Glu Arg Arg
Phe Phe Val Phe Lys Gln Val Ala 1160 1165
1170 Asp Leu Gln Gln Thr Leu Asn Gln Asp Phe Leu Ala
Gln Pro Arg 1175 1180 1185
Leu Ser Ser Pro Ala Lys Ile Ala Phe Leu Phe Thr Gly Gln Gly 1190
1195 1200 Ser Gln Tyr Tyr Gly
Met Gly Gln Gln Leu Tyr Gln Thr Ser Pro 1205 1210
1215 Val Phe Arg Gln Val Leu Asp Glu Cys Asp
Arg Leu Trp Gln Thr 1220 1225 1230
Tyr Ser Pro Glu Ala Pro Ala Leu Thr Asp Leu Leu Tyr Gly Asn
1235 1240 1245 His Asn
Pro Asp Leu Val His Glu Thr Val Tyr Thr Gln Pro Leu 1250
1255 1260 Leu Phe Ala Val Glu Tyr Ala
Ile Ala Gln Leu Trp Leu Ser Trp 1265 1270
1275 Gly Val Thr Pro Asp Phe Cys Met Gly His Ser Val
Gly Glu Tyr 1280 1285 1290
Val Ala Ala Cys Leu Ala Gly Val Phe Ser Leu Ala Asp Gly Met 1295
1300 1305 Lys Leu Ile Thr Ala
Arg Gly Lys Leu Met His Ala Leu Pro Ser 1310 1315
1320 Asn Gly Ser Met Ala Ala Val Phe Ala Asp
Lys Thr Val Ile Lys 1325 1330 1335
Pro Tyr Leu Ser Glu His Leu Thr Val Gly Ala Glu Asn Gly Ser
1340 1345 1350 His Leu
Val Leu Ser Gly Lys Thr Pro Cys Leu Glu Ala Ser Ile 1355
1360 1365 His Lys Leu Gln Ser Gln Gly
Ile Lys Thr Lys Pro Leu Lys Val 1370 1375
1380 Ser His Ala Phe His Ser Pro Leu Met Ala Pro Met
Leu Ala Glu 1385 1390 1395
Phe Arg Glu Ile Ala Glu Gln Ile Thr Phe His Pro Pro Arg Ile 1400
1405 1410 Pro Leu Ile Ser Asn
Val Thr Gly Gly Gln Ile Glu Ala Glu Ile 1415 1420
1425 Ala Gln Ala Asp Tyr Trp Val Lys His Val
Ser Gln Pro Val Lys 1430 1435 1440
Phe Val Gln Ser Ile Gln Thr Leu Ala Gln Ala Gly Val Asn Val
1445 1450 1455 Tyr Leu
Glu Ile Gly Val Lys Pro Val Leu Leu Ser Met Gly Arg 1460
1465 1470 His Cys Leu Ala Glu Gln Glu
Ala Val Trp Leu Pro Ser Leu Arg 1475 1480
1485 Pro His Ser Glu Pro Trp Pro Glu Ile Leu Thr Ser
Leu Gly Lys 1490 1495 1500
Leu Tyr Glu Gln Gly Leu Asn Ile Asp Trp Gln Thr Val Glu Ala 1505
1510 1515 Gly Asp Arg Arg Arg
Lys Leu Ile Leu Pro Thr Tyr Pro Phe Gln 1520 1525
1530 Arg Gln Arg Tyr Trp Phe Asn Gln Gly Ser
Trp Gln Thr Val Glu 1535 1540 1545
Thr Glu Ser Val Asn Pro Gly Pro Asp Asp Leu Asn Asp Trp Leu
1550 1555 1560 Tyr Gln
Val Ala Trp Thr Pro Leu Asp Thr Leu Pro Pro Ala Pro 1565
1570 1575 Glu Pro Ser Ala Lys Leu Trp
Leu Ile Leu Gly Asp Arg His Asp 1580 1585
1590 His Gln Pro Ile Glu Ala Gln Phe Lys Asn Ala Gln
Arg Val Tyr 1595 1600 1605
Leu Gly Gln Ser Asn His Phe Pro Thr Asn Ala Pro Trp Glu Val 1610
1615 1620 Ser Ala Asp Ala Leu
Asp Asn Leu Phe Thr His Val Gly Ser Gln 1625 1630
1635 Asn Leu Ala Gly Ile Leu Tyr Leu Cys Pro
Pro Gly Glu Asp Pro 1640 1645 1650
Glu Asp Leu Asp Glu Ile Gln Lys Gln Thr Ser Gly Phe Ala Leu
1655 1660 1665 Gln Leu
Ile Gln Thr Leu Tyr Gln Gln Lys Ile Ala Val Pro Cys 1670
1675 1680 Trp Phe Val Thr His Gln Ser
Gln Arg Val Leu Glu Thr Asp Ala 1685 1690
1695 Val Thr Gly Phe Ala Gln Gly Gly Leu Trp Gly Leu
Ala Gln Ala 1700 1705 1710
Ile Ala Leu Glu His Pro Glu Leu Trp Gly Gly Ile Ile Asp Val 1715
1720 1725 Asp Asp Ser Leu Pro
Asn Phe Ala Gln Ile Cys Gln Gln Arg Gln 1730 1735
1740 Val Gln Gln Leu Ala Val Arg His Gln Lys
Leu Tyr Gly Ala Gln 1745 1750 1755
Leu Lys Lys Gln Pro Ser Leu Pro Gln Lys Asn Leu Gln Ile Gln
1760 1765 1770 Pro Gln
Gln Thr Tyr Leu Val Thr Gly Gly Leu Gly Ala Ile Gly 1775
1780 1785 Arg Lys Ile Ala Gln Trp Leu
Ala Ala Ala Gly Ala Glu Lys Val 1790 1795
1800 Ile Leu Val Ser Arg Arg Ala Pro Ala Ala Asp Gln
Gln Thr Leu 1805 1810 1815
Pro Thr Asn Ala Val Val Tyr Pro Cys Asp Leu Ala Asp Ala Ala 1820
1825 1830 Gln Val Ala Lys Leu
Phe Gln Thr Tyr Pro His Ile Lys Gly Ile 1835 1840
1845 Phe His Ala Ala Gly Thr Leu Ala Asp Gly
Leu Leu Gln Gln Gln 1850 1855 1860
Thr Trp Gln Lys Phe Gln Thr Val Ala Ala Ala Lys Met Lys Gly
1865 1870 1875 Thr Trp
His Leu His Arg His Ser Gln Lys Leu Asp Leu Asp Phe 1880
1885 1890 Phe Val Leu Phe Ser Ser Val
Ala Gly Val Leu Gly Ser Pro Gly 1895 1900
1905 Gln Gly Asn Tyr Ala Ala Ala Asn Arg Gly Met Ala
Ala Ile Ala 1910 1915 1920
Gln Tyr Arg Gln Ala Gln Gly Leu Pro Ala Leu Ala Ile His Trp 1925
1930 1935 Gly Pro Trp Ala Glu
Gly Gly Met Ala Asn Ser Leu Ser Asn Gln 1940 1945
1950 Asn Leu Ala Trp Leu Pro Pro Pro Gln Gly
Leu Thr Ile Leu Glu 1955 1960 1965
Lys Val Leu Gly Ala Gln Gly Glu Met Gly Val Phe Lys Pro Asp
1970 1975 1980 Trp Gln
Asn Leu Ala Lys Gln Phe Pro Glu Phe Ala Lys Thr His 1985
1990 1995 Tyr Phe Ala Ala Val Ile Pro
Ser Ala Glu Ala Val Pro Pro Thr 2000 2005
2010 Ala Ser Ile Phe Asp Lys Leu Ile Asn Leu Glu Ala
Ser Gln Arg 2015 2020 2025
Ala Asp Tyr Leu Leu Asp Tyr Leu Arg Arg Ser Val Ala Gln Ile 2030
2035 2040 Leu Lys Leu Glu Ile
Glu Gln Ile Gln Ser His Asp Ser Leu Leu 2045 2050
2055 Asp Leu Gly Met Asp Ser Leu Met Ile Met
Glu Ala Ile Ala Ser 2060 2065 2070
Leu Lys Gln Asp Leu Gln Leu Met Leu Tyr Pro Arg Glu Ile Tyr
2075 2080 2085 Glu Arg
Pro Arg Leu Asp Val Leu Thr Ala Tyr Leu Ala Ala Glu 2090
2095 2100 Phe Thr Lys Ala His Asp Ser
Glu Ala Ala Thr Ala Ala Ala Ala 2105 2110
2115 Ile Pro Ser Gln Ser Leu Ser Val Lys Thr Lys Lys
Gln Trp Gln 2120 2125 2130
Lys Pro Asp His Lys Asn Pro Asn Pro Ile Ala Phe Ile Leu Ser 2135
2140 2145 Ser Pro Arg Ser Gly
Ser Thr Leu Leu Arg Val Met Leu Ala Gly 2150 2155
2160 His Pro Gly Leu Tyr Ser Pro Pro Glu Leu
His Leu Leu Pro Phe 2165 2170 2175
Glu Thr Met Gly Asp Arg His Gln Glu Leu Gly Leu Ser His Leu
2180 2185 2190 Gly Glu
Gly Leu Gln Arg Ala Leu Met Asp Leu Glu Asn Leu Thr 2195
2200 2205 Pro Glu Ala Ser Gln Ala Lys
Val Asn Gln Trp Val Lys Ala Asn 2210 2215
2220 Thr Pro Ile Ala Asp Ile Tyr Ala Tyr Leu Gln Arg
Gln Ala Glu 2225 2230 2235
Gln Arg Leu Leu Ile Asp Lys Ser Pro Ser Tyr Gly Ser Asp Arg 2240
2245 2250 His Ile Leu Asp His
Ser Glu Ile Leu Phe Asp Gln Ala Lys Tyr 2255 2260
2265 Ile His Leu Val Arg His Pro Tyr Ala Val
Ile Glu Ser Phe Thr 2270 2275 2280
Arg Leu Arg Met Asp Lys Leu Leu Gly Ala Glu Gln Gln Asn Pro
2285 2290 2295 Tyr Ala
Leu Ala Glu Ser Ile Trp Arg Thr Ser Asn Arg Asn Ile 2300
2305 2310 Leu Asp Leu Gly Arg Thr Val
Gly Ala Asp Arg Tyr Leu Gln Val 2315 2320
2325 Ile Tyr Glu Asp Leu Val Arg Asp Pro Arg Lys Val
Leu Thr Asn 2330 2335 2340
Ile Cys Asp Phe Leu Gly Val Asp Phe Asp Glu Ala Leu Leu Asn 2345
2350 2355 Pro Tyr Ser Gly Asp
Arg Leu Thr Asp Gly Leu His Gln Gln Ser 2360 2365
2370 Met Gly Val Gly Asp Pro Asn Phe Leu Gln
His Lys Thr Ile Asp 2375 2380 2385
Pro Ala Leu Ala Asp Lys Trp Arg Ser Ile Thr Leu Pro Ala Ala
2390 2395 2400 Leu Gln
Leu Asp Thr Ile Gln Leu Ala Glu Thr Phe Ala Tyr Asp 2405
2410 2415 Leu Pro Gln Glu Pro Gln Leu
Thr Pro Gln Thr Gln Ser Leu Pro 2420 2425
2430 Ser Met Val Glu Arg Phe Val Thr Val Arg Gly Leu
Glu Thr Cys 2435 2440 2445
Leu Cys Glu Trp Gly Asp Arg His Gln Pro Leu Val Leu Leu Leu 2450
2455 2460 His Gly Ile Leu Glu
Gln Gly Ala Ser Trp Gln Leu Ile Ala Pro 2465 2470
2475 Gln Leu Ala Ala Gln Gly Tyr Trp Val Val
Ala Pro Asp Leu Arg 2480 2485 2490
Gly His Gly Lys Ser Ala His Ala Gln Ser Tyr Ser Met Leu Asp
2495 2500 2505 Phe Leu
Ala Asp Val Asp Ala Leu Ala Lys Gln Leu Gly Asp Arg 2510
2515 2520 Pro Phe Thr Leu Val Gly His
Ser Met Gly Ser Ile Ile Gly Ala 2525 2530
2535 Met Tyr Ala Gly Ile Arg Gln Thr Gln Val Glu Lys
Leu Ile Leu 2540 2545 2550
Val Glu Thr Ile Val Pro Asn Asp Ile Asp Asp Ala Glu Thr Gly 2555
2560 2565 Asn His Leu Thr Thr
His Leu Asp Tyr Leu Ala Ala Pro Pro Gln 2570 2575
2580 His Pro Ile Phe Pro Ser Leu Glu Val Ala
Ala Arg Arg Leu Arg 2585 2590 2595
Gln Ala Thr Pro Gln Leu Pro Lys Asp Leu Ser Ala Phe Leu Thr
2600 2605 2610 Gln Arg
Ser Thr Lys Ser Val Glu Lys Gly Val Gln Trp Arg Trp 2615
2620 2625 Asp Ala Phe Leu Arg Thr Arg
Ala Gly Ile Glu Phe Asn Gly Ile 2630 2635
2640 Ser Arg Arg Arg Tyr Leu Ala Leu Leu Lys Asp Ile
Gln Ala Pro 2645 2650 2655
Ile Thr Leu Ile Tyr Gly Asp Gln Ser Glu Phe Asn Arg Pro Ala 2660
2665 2670 Asp Leu Gln Ala Ile
Gln Ala Ala Leu Pro Gln Ala Gln Arg Leu 2675 2680
2685 Thr Val Ala Gly Gly His Asn Leu His Phe
Glu Asn Pro Gln Ala 2690 2695 2700
Ile Ala Gln Ile Val Tyr Gln Gln Leu Gln Thr Pro Val Pro Lys
2705 2710 2715 Thr Gln
2720 3294DNASynechococcus sp. 3attaaccaag gattccagga tacagaggcg
agtatgggcg tttcctggtt gccgccctac 60catgatatgg gcttgatcgg tgggatttta
cagcccatct atgtgggagc aacgcaaatt 120ttaatgcctc ccgtggcctt tttgcagcga
ccttttcggt ggctaaaggc gatcaacgat 180tatcgggttt ccaccagcgg tgcgccgaat
tttgcctatg atctctgtgc cagccaaatt 240accccggaac aaatcagaga actcgatttg
agctgttggc gactggcttt ttcc 294497PRTSynechococcus sp. 4Ile Asn
Gln Gly Phe Gln Asp Thr Glu Ala Ser Met Gly Val Ser Trp 1 5
10 15 Leu Pro Pro Tyr His Asp Met
Gly Leu Ile Gly Gly Ile Leu Gln Pro 20 25
30 Ile Tyr Val Gly Ala Thr Gln Ile Leu Met Pro Pro
Val Ala Phe Leu 35 40 45
Gln Arg Pro Phe Arg Trp Leu Lys Ala Ile Asn Asp Tyr Arg Val Ser
50 55 60 Thr Ser Gly
Ala Pro Asn Phe Ala Tyr Asp Leu Cys Ser Gln Ile Thr 65
70 75 80 Pro Glu Gln Ile Arg Glu Leu
Asp Leu Ser Cys Trp Arg Leu Ala Phe 85
90 95 Ser 51746DNALegionella pneumophila
5gtgaaaaaag aatatttgca gtgccagtct ctggttgacg tcgtcaggtt acgtgcttta
60cacagcccta acaagaaaag ctgtactttt ctgaacaaag agttggaaga gacgatgact
120tatgagcaac tggatcaaca cgccaaagca attgcggcaa ctttgcaagc agaaggagca
180aaacctgggg atagggtctt gttattgttt gcacctggat taccccttat ccaggcattt
240ttgggctgcc tttatgcagg ctgcattgct gtacccattt acccaccagc ccaagaaaaa
300ttattggaca aggcacaacg catagttacc aactcaaaac cggtcatagt actgatgatt
360gcggatcaca tcaaaaaatt caccgcagac gaattaaata caaatcccaa attcctgaaa
420attcctgcta ttgcgcttga gagcattgag ttaaacagaa gtagtagttg gcaaccaacc
480tccattaaga gcaatgacat tgcgtttctg caatacactt ccggctcaac catgcaccct
540aaaggagtga tggtaagcca ccataattta ctggataatc tgaataaaat ttttacctct
600tttcatatga atgatgaaac cattattttc agctggctgc ccccacatca tgatatgggt
660ttgattggct gcattctgac ccccatctat ggtggaattc aggcaatcat gatgtcccct
720ttctcatttt tacaaaaccc gctttcctgg ttaaaacata ttaccaaata caaagcaact
780atcagtggaa gccctaactt cgcttacgat tattgtgtca aacgaatcag ggaagaaaaa
840aaagaagggc tggatttaag ttcatgggtg actgctttca acggtgctga gccagtacga
900gaagaaacca tggaacattt ttatcaggca tttaaagagt ttggatttcg taaagaagcc
960ttctatccat gctatggcct ggctgaggcc actttgttag tgacgggagg aacaccagga
1020agttcataca aaacattaac tctggccaaa gaacaatttc aagatcatcg cgtgcatttt
1080gcagacgata acagtccagg cagttacaag ttagtcagca gtggtaatcc cattcaagaa
1140gttaaaatta tagatcctga taccttgatc ccatgtgatt ttgaccaggt tggtgaaatt
1200tgggtacaaa gtaacagtgt cgccaaagga tattggaatc aacccgaaga aacaaggcat
1260gcgttcgcag gaaaaattaa agacgatgag cgtagcgcaa tctatttaag aaccggggac
1320ttgggctttc tccatgaaaa tgagttatac gttactggac gcattaaaga cttaattatt
1380atttatggta aaaatcatta tcctcaggac atagagttca gcctgatgca ttctccgctc
1440catcacgtat tgggcaaatg cgctgctttt gtgattcagg aggagcatga atataaactg
1500actgtgatgt gtgaagtaaa aaatcgattc atggatgacg tagctcaaga caatttattc
1560aatgagattt ttgagcttgt ttacgaaaac caccaattgg aggtacatac tatagtcctg
1620attcctctta aagcaatgcc acatactacc agcggaaaaa ttcgcaggaa tttttgtcga
1680aaacatcttt tggataaaac tctgccaata gtggctacct ggcaactcaa taaaattgag
1740gaataa
17466581PRTLegionella pneumophila 6Met Lys Lys Glu Tyr Leu Gln Cys Gln
Ser Leu Val Asp Val Val Arg 1 5 10
15 Leu Arg Ala Leu His Ser Pro Asn Lys Lys Ser Cys Thr Phe
Leu Asn 20 25 30
Lys Glu Leu Glu Glu Thr Met Thr Tyr Glu Gln Leu Asp Gln His Ala
35 40 45 Lys Ala Ile Ala
Ala Thr Leu Gln Ala Glu Gly Ala Lys Pro Gly Asp 50
55 60 Arg Val Leu Leu Leu Phe Ala Pro
Gly Leu Pro Leu Ile Gln Ala Phe 65 70
75 80 Leu Gly Cys Leu Tyr Ala Gly Cys Ile Ala Val Pro
Ile Tyr Pro Pro 85 90
95 Ala Gln Glu Lys Leu Leu Asp Lys Ala Gln Arg Ile Val Thr Asn Ser
100 105 110 Lys Pro Val
Ile Val Leu Met Ile Ala Asp His Ile Lys Lys Phe Thr 115
120 125 Ala Asp Glu Leu Asn Thr Asn Pro
Lys Phe Leu Lys Ile Pro Ala Ile 130 135
140 Ala Leu Glu Ser Ile Glu Leu Asn Arg Ser Ser Ser Trp
Gln Pro Thr 145 150 155
160 Ser Ile Lys Ser Asn Asp Ile Ala Phe Leu Gln Tyr Thr Ser Gly Ser
165 170 175 Thr Met His Pro
Lys Gly Val Met Val Ser His His Asn Leu Leu Asp 180
185 190 Asn Leu Asn Lys Ile Phe Thr Ser Phe
His Met Asn Asp Glu Thr Ile 195 200
205 Ile Phe Ser Trp Leu Pro Pro His His Asp Met Gly Leu Ile
Gly Cys 210 215 220
Ile Leu Thr Pro Ile Tyr Gly Gly Ile Gln Ala Ile Met Met Ser Pro 225
230 235 240 Phe Ser Phe Leu Gln
Asn Pro Leu Ser Trp Leu Lys His Ile Thr Lys 245
250 255 Tyr Lys Ala Thr Ile Ser Gly Ser Pro Asn
Phe Ala Tyr Asp Tyr Cys 260 265
270 Val Lys Arg Ile Arg Glu Glu Lys Lys Glu Gly Leu Asp Leu Ser
Ser 275 280 285 Trp
Val Thr Ala Phe Asn Gly Ala Glu Pro Val Arg Glu Glu Thr Met 290
295 300 Glu His Phe Tyr Gln Ala
Phe Lys Glu Phe Gly Phe Arg Lys Glu Ala 305 310
315 320 Phe Tyr Pro Cys Tyr Gly Leu Ala Glu Ala Thr
Leu Leu Val Thr Gly 325 330
335 Gly Thr Pro Gly Ser Ser Tyr Lys Thr Leu Thr Leu Ala Lys Glu Gln
340 345 350 Phe Gln
Asp His Arg Val His Phe Ala Asp Asp Asn Ser Pro Gly Ser 355
360 365 Tyr Lys Leu Val Ser Ser Gly
Asn Pro Ile Gln Glu Val Lys Ile Ile 370 375
380 Asp Pro Asp Thr Leu Ile Pro Cys Asp Phe Asp Gln
Val Gly Glu Ile 385 390 395
400 Trp Val Gln Ser Asn Ser Val Ala Lys Gly Tyr Trp Asn Gln Pro Glu
405 410 415 Glu Thr Arg
His Ala Phe Ala Gly Lys Ile Lys Asp Asp Glu Arg Ser 420
425 430 Ala Ile Tyr Leu Arg Thr Gly Asp
Leu Gly Phe Leu His Glu Asn Glu 435 440
445 Leu Tyr Val Thr Gly Arg Ile Lys Asp Leu Ile Ile Ile
Tyr Gly Lys 450 455 460
Asn His Tyr Pro Gln Asp Ile Glu Phe Ser Leu Met His Ser Pro Leu 465
470 475 480 His His Val Leu
Gly Lys Cys Ala Ala Phe Val Ile Gln Glu Glu His 485
490 495 Glu Tyr Lys Leu Thr Val Met Cys Glu
Val Lys Asn Arg Phe Met Asp 500 505
510 Asp Val Ala Gln Asp Asn Leu Phe Asn Glu Ile Phe Glu Leu
Val Tyr 515 520 525
Glu Asn His Gln Leu Glu Val His Thr Ile Val Leu Ile Pro Leu Lys 530
535 540 Ala Met Pro His Thr
Thr Ser Gly Lys Ile Arg Arg Asn Phe Cys Arg 545 550
555 560 Lys His Leu Leu Asp Lys Thr Leu Pro Ile
Val Ala Thr Trp Gln Leu 565 570
575 Asn Lys Ile Glu Glu 580 7294DNALegionella
pneumophila 7atttttacct cttttcatat gaatgatgaa accattattt tcagctggct
gcccccacat 60catgatatgg gtttgattgg ctgcattctg acccccatct atggtggaat
tcaggcaatc 120atgatgtccc ctttctcatt tttacaaaac ccgctttcct ggttaaaaca
tattaccaaa 180tacaaagcaa ctatcagtgg aagccctaac ttcgcttacg attattgtgt
caaacgaatc 240agggaagaaa aaaaagaagg gctggattta agttcatggg tgactgcttt
caac 294898PRTLegionella pneumophila 8Ile Phe Thr Ser Phe His
Met Asn Asp Glu Thr Ile Ile Phe Ser Trp 1 5
10 15 Leu Pro Pro His His Asp Met Gly Leu Ile Gly
Cys Ile Leu Thr Pro 20 25
30 Ile Tyr Gly Gly Ile Gln Ala Ile Met Met Ser Pro Phe Ser Phe
Leu 35 40 45 Gln
Asn Pro Leu Ser Trp Leu Lys His Ile Thr Lys Tyr Lys Ala Thr 50
55 60 Ile Ser Gly Ser Pro Asn
Phe Ala Tyr Asp Tyr Cys Val Lys Arg Ile 65 70
75 80 Arg Glu Glu Lys Lys Glu Gly Leu Asp Leu Ser
Ser Trp Val Thr Ala 85 90
95 Phe Asn 911916DNABacillus subtilis 9atgtatacca gtcaatttca
aaccttagtc gatgttattc ggaatagaag caatatatca 60gatcgcggga tccgttttat
cgaatccgat aaaatcgaga catttgtctc ttatcgccaa 120ttgtttgacg aggcgcaagg
ttttcttggc tacttacaac atatcggcat tcagccaaag 180caagaaattg tgtttcaaat
tcaagaaaac aaatcatttg tcgtcgcttt ttgggcgtgt 240ttattaggag gaatgattcc
ggtacccgtc agtatcggag aagataatga ccacaagcta 300aaggtatggc gcatttggaa
tattttaaac aatccattct tgctagcctc tgaaacagta 360ttagataaaa tgaaaaaatt
tgctgctgat cacgatttac aagatttcca tcatcaatta 420atcgagaaat ccgacatcat
tcaggatcga atctacgatc acccggcttc gcaatatgaa 480cctgaagccg atgaattggc
ctttattcaa ttttcttcgg gatcaacagg agacccgaaa 540ggagtcatgc taacccatca
taacttaata cataatacat gtgcaatccg gaatgcgctg 600gctatcgact taaaagatac
tcttttatct tggatgccct taacccatga catggggctc 660atagcttgcc accttgttcc
tgccttagcc ggaatcaatc aaaatttaat gccgacagaa 720ttatttattc gaagacctat
tctctggatg aaaaaagctc atgaacataa agccagcatt 780ctatcctcac ctaattttgg
atacaattac tttcttaaat ttctgaaaga caataaaagt 840tacgactggg atttatccca
tatcagggtc attgcaaacg gagcagaacc tatattgcca 900gagctatgtg atgaattttt
gactagatgc gcagcattca atatgaaacg atctgccatc 960ttaaatgttt acggtttagc
tgaggcttcg gttggcgcaa cattctctaa catcggagaa 1020agatttgtcc ctgtttattt
gcatcgcgat catctaaatc taggtgaaag agccgttgaa 1080gtaagcaaag aggatcaaaa
ttgcgcttca ttcgtcgaag taggaaagcc tattgattac 1140tgccaaattc gaatctgtaa
tgaagcaaac gaaggattgg aagacggatt tatcggtcat 1200atccagatca agggggagaa
tgtgacccaa gggtattata acaaccccga aagtacgaac 1260agagcgctga ctcccgatgg
atgggtgaaa acgggagatc ttggcttcat tagaaaaggg 1320aatttagtcg taaccggaag
ggaaaaagac attatttttg tgaacggaaa aaatgtgtat 1380cctcacgata ttgaacgagt
cgccattgaa ttagaggaca ttgatttagg aagagttgca 1440gcctgtggtg tatatgatca
agagacacga agcagagaaa ttgtactttt tgctgtttac 1500aaaaaatcag cggagcagtt
tgcaccactt gttaaagaca ttaaaaagca tttgtaccag 1560cgaggcggat ggagcatcaa
agaaatcctg ccgatccgaa agctgccaaa aacgacaagc 1620gggaaagtta aacgctatga
gctggctgag cagtatgagt cggggaaatt tgcgctagag 1680tcaaccaaaa tcaaggaatt
tttggagggt cattcgacgg aaccggtaca gactcctatt 1740catgaaatcg aaacagcatt
gctgtctatc ttttcagaag tgatggatgg aaaaaagatt 1800cacctaaatg atcattattt
tgacatgggt gcaacctcat tacagttatc tcaaattgcc 1860gaacgcattg aacaaaagtt
tggttgtgag cttacggttg ctgatctctt tacatatcct 1920tcaatcgctg atttagcggc
attccttgtc gaaaaccatt ccgaaatcaa gcaaactgat 1980acagcgaagc caagccgctc
ttcgtcaaaa gacatcgcta ttatcgggat gtccctcaat 2040gttccagggg catcgaataa
gagtgatttt tggcacctgc tcgaaaacgg tgagcatggc 2100attcgggaat atcctgcacc
aagagttaaa gatgcgatag attatttacg atccattaaa 2160agcgaacgta acgaaaaaca
atttgtgaag ggcggctatt tagatgagat agaccgtttt 2220gattattcgt tctttggttt
agctcccaaa accgcaaaat tcatggatcc caatcaaagg 2280ctatttttgc aatccgcatg
gcatgcgatt gaagatgcag gctatgccgg cgacaccatt 2340agcgggagtc agctcggggt
atatgtaggg tactcgaagg tgggatacga ttacgaacgt 2400ctcctttctg cgaattatcc
ggaggagctt catcattata ttgtgggcaa tcttccctcg 2460gtgttggcga gtcgaattgc
ttactttcta aatttgaaag gaccagcggt taccgtggat 2520acagcttgct cttcgtcact
tgttgctgtt catatggcat gtaaagcttt gcttacaggc 2580gattgtgaaa tggctcttgc
cgggggtatt cgaacttcgc tattaccgat gcgtatcggt 2640ctcgatatgg aatcttctga
cgggctcacg aaaacgttca gcaaggattc ggacggaaca 2700ggctctggcg aaggcgtggc
agcagtcctg ttgaaacctt tgcaggctgc gattcgcgat 2760ggagatcata tttatggtgt
gatcaaggga agcgcgataa accaagacgg gacaaccgtt 2820ggaatcaccg caccgagccc
ggcagctcag accgaggtga ttgagatggc ctggaaagac 2880gctggcattg ctcctgaaac
attgtctttc attgaagcac acggcaccgg aaccaagctc 2940ggggatcctg ttgaatttaa
cggtctttgt aaagcgtttg agaaggttac ggaaaagaaa 3000cagttttgtg cgatcggctc
tgttaaagca aacatcggtc atttgtttga agcggcaggc 3060atcgttggac tgataaaatc
tgcccttatg ttgaatcaca aaaaaatccc gccgctggct 3120cactttaata aaccgaatcc
attaattcca tttcactctt ctccttttta tgtgaaccaa 3180gaagtgatgg atttcacacc
tgaagaccga ccgctgcggg gtggtatcag ttcattcggt 3240tttagcggaa cgaatgccca
tgtagtattg gaagaatata ctcctgaaag tgagtatgca 3300ccggaggacg ggaatgatcc
gcatttattt gtgttatccg cccatactga agcttcacta 3360tatgaactga ctcatcagta
tcggcaatat atttcagatg acagccaatc atcattgagg 3420tcaatttgct atacggccag
tacaggaagg gctcatttag attattgttt agccatgatt 3480gtatccagca accaagaatt
aatagataag ctgaccagtt tgattcaagg cgaaagaaat 3540cttccccaag tacactttgg
ctataaaaac atcaaggaaa tgcagcctgc cgaaaaagac 3600aatctgagta aacaaatctc
tgatctcatg cagcatcggc cctgcacaaa ggatgaacga 3660atcacatggt tgaatcgtat
tgcagaatta tatgtgcaaa gagccgtgat tgactggcga 3720gcggtttatt ccaatgaagt
tgtacaaaaa acgccattgc ctttgtatcc atttgaacgg 3780aatcgctgtt gggttgaggc
tgtctatgaa agcgccaagg aaagaaaaga gaaaggggaa 3840gtagcattgg atataaatca
tacgaagaca catattgagt cctttctgaa gactgtcatc 3900agcaatgcat cgggaatcag
agcggatgag atcgattcga atgcccattt tatcggattc 3960ggattggatt ccattatgct
gacacaggtc aaaaaagcga tcgcagacga atttaatgtg 4020gatatcccga tggaacgttt
ttttgatacg atgaacaaca ttgaaagtgt tgtcgattat 4080ttggcagaaa atgttccatc
agctgcatcc actccgcctc aagaaagtgt tacggcacag 4140gaagagcttg tgatatcagg
agcacagccc gagttggaac atcaagagca tatgttggac 4200aaaattattg cttctcagaa
tcaattaatc cagcaaactt tacaagctca attggatagc 4260tttaatttgt tgagaaacaa
cagccatttt gtatcgaaag aatccgagat ttcgcaagat 4320aaaacgagcc tttctcctaa
atctgtcact gcaaaaaaga attcggctca agaagcaaaa 4380ccttatattc cttttcagcg
tcagaccttg aatgaacagg tcaactatac tccgcagcaa 4440agacaatatt tagaatcatt
tatagagaaa tacgtagaca aaacgaaagg ttccaagcaa 4500tatacggacg aaacccgatt
tgctcatgcc aataaccgca acttgtccag cttccggtct 4560tattggaaag aaatggttta
cccgatcatc gctgaacgct cggacggttc tagaatgtgg 4620gatattgatg gaaatgaata
tatcgatatc accatgggat ttggggttaa tctttttggg 4680catcacccgt cctttattac
tcaaaccgtc gttgattcaa cacattctgc attgccgcct 4740cttggtccga tgtcaaatgt
cgccggagaa gttgcagatc gaattcgtgc atgcacagga 4800gtagaaaggg tcgcttttta
taattcaggc acggaggcag tcatggttgc cctgcgtttg 4860gcgagggcgg caacaggaag
aacgaaagtg gtagtgtttg cgggctctta tcacggcacc 4920tttgacggcg tattaggtgt
tgccaacaca aaaggcgggg ctgagcctgc gaatccgctg 4980gctccgggca taccgcaaag
ctttatgaat gatttgatta ttttgcatta caaccatccg 5040gattcattgg acgtgattcg
caatttggga aatgaattgg cagccgttct ggtggaaccg 5100gtacaaagcc gcaggccgga
tttgcagcca gaatcatttt tgaaagaact gcgggcaatc 5160acacagcaat ccggaacagc
tctgattatg gatgaaatta ttacaggatt tcggatcggt 5220ctcggcggcg cgcaggaatg
gttcgacatc caagcagatt tagtcactta cgggaaaatc 5280atcggcggcg gccagcctct
aggtattgtt gccggaaaag cagagttcat gaatacgatc 5340gatggcggca catggcagta
tggagacgac tcctatccaa cggatgaggc aaaacgcacg 5400tttgtagcgg gcacctttaa
tactcacccg cttacgatga gaatgtcatt agccgtgctt 5460cgatatcttc aagccgaggg
agaaactctg tatgaacggt taaatcaaaa gacaacctac 5520ttggttgatc aattgaattc
ctattttgaa caatcgcaag tgcccattcg tatggtccaa 5580tttggttcct tattccggtt
tgtctcttcg gttgataatg atttgttctt ttaccatctc 5640aattataaag gagtctatgt
ttgggaagga cgcaactgct tcttgtctac ggcccatact 5700tccgatgata ttgcttatat
cattcaagcc gttcaagaaa cggtgaaaga tcttcgccgc 5760ggcggattta ttccagaagg
gccggattct cctaatgacg gaggccataa agaacccgaa 5820acatacgagc tttctcctga
acaaaaacaa ttggctgtag tatcccagta tgggaatgat 5880gcttctgcgg cattgaatca
atctattatg ctaaaagtga aaggggcggt gcagcatacg 5940ctgttaaaac aagcggtgcg
aaatattgta aaacgccatg acgctttacg cacagtcatt 6000catgtcgatg acgaagtaca
gcaagtgcag gctcgaataa atgttgaaat tcctatcatc 6060gattttaccg gttacccgaa
tgaacagcga gagtcggagg ttcaaaaatg gctgacggaa 6120gatgccaagc gcccgtttca
tttccatgaa cagaagccct tgtttagagt tcatgtactt 6180acgtcgaaac aagacgaaca
tctgatcgtt ctgacatttc atcatatcat cgccgatggc 6240tggtcgatcg ctgtttttgt
acaagagcta gagagcacgt acgccgccat tgtacaagga 6300agcccgcttc catctcatga
ggttgtttcg tttcgccaat atttagattg gcagcaagct 6360cagatagaga atggtcatta
tgaagaagga attcgttatt ggcggcagta tctctctgaa 6420ccaatcccgc aggcaatctt
gaccagtatg agttcttccc gttatccgca tggttacgag 6480ggagatcgct atacagttac
actggaccgt ccattgagca aggcgataaa gtcattaagc 6540attcggatga aaaatagcgt
ttttgcaact attctgggag catttcatct ttttctgcag 6600cagcttacca agcaggctgg
ccttgtaatt gggattccaa ccgcaggcca gttgcatatg 6660aaacaaccta tgctggttgg
aaattgtgtc aacatggttc ccgtgaagaa cactgcttct 6720tcagaaagca cattagccga
ttatctgggt catatgaagg aaaacatgga tcaagtcatg 6780cggcatcaag atgttccgat
gacattagtg gccagccagc ttccacacga tcaaatgccg 6840gatatgcgta ttatttttaa
tttggataga ccttttcgaa agctgcattt cggacagatg 6900gaagctgagc tcattgcgta
ccctataaaa tgcatttcat acgatttatt tcttaacgta 6960acggaatttg atcaagagta
tgttcttgat ttcgatttta atacaagcgt catcagttcg 7020gaaatcatga acaagtgggg
aacgggcttt gtaaacttgc tgaaaaaaat ggttgagggg 7080gactccgcct ctcttgattc
cttaaaaatg ttttcgaagg aagatcaaca cgacttgctt 7140gagctgtatg ctgatcatca
gctgcgaatc tcttcaacat tagaccataa gggtgttcgt 7200gccgtttacg aagagccgga
aaatgaaaca gagctgcaaa ttgcgcagat ttgggcggag 7260cttctcggcc tggagaaagt
gggcagatct gaccactttc tgtctctggg tggaaactcg 7320ctaaaagcga cgcttatgct
ttctaagatt cagcaaacat ttaatcaaaa ggtatctata 7380gggcaattct tcagccatca
gactgttaag gagttggcga atttcatccg gggtgaaaag 7440aatgtcaagt atcccccgat
gaagcctgtt gagcagaaag ccttttaccg gacatctcca 7500gctcagcaaa gagtatattt
cctgcatcaa atggaaccga atcaagtttc gcaaaatatg 7560tttggccaaa tatcgattat
agggaagtac gatgaaaaag ccttgattgc atcccttcaa 7620caggtcatgc agcggcatga
agcgtttcgc acttcttttc acatcataga tggtgaaatt 7680gtgcagcaga ttgctggcga
gcttgatttt aacgttcgtg tccattcgat ggaccgtgaa 7740gaatttgaag cctacgcaga
tgggtatgta aaacctttcc gtctggaaca agctcctttg 7800gttcgtgcgg agctgatcaa
ggtcgataac gaacaggctg aattgctcat cgatatgcat 7860catatcattt ccgacggcta
ttccatgagc atacttacaa atgaattgtt cgctttgtat 7920catggtaacc cattaccgga
aattccattt gaatataaag acttcgcaga gtggcaaaac 7980cagctgttaa tcggagaggt
catggagcag caggaagaat actggctcga gcaattcaag 8040caagaagttc ctatccttca
attgccggca gacggttcaa gagcgatgga atggtcttcc 8100gaagggcagc gtgtgacctg
ttccttgcag tcgagtttaa tccgttcgct tcaagaaatg 8160gcgcaacaga agggaacgac
tctgtatatg gtgcttctgg ctgcttacaa cgtgctgctt 8220cacaaatata cgggccaaga
agatatcgtc gtaggcacgc cagtttccgg aagaaatcaa 8280ccgaatattg aaagcatgat
tggtatattc attcaaacca tggggattcg cacgaaacca 8340caggctaata aaaggtttac
ggattatttg gacgaagtta aacggcaaac gcttgatgcg 8400ttcgaaaacc aggattatcc
gtttgactgg ctagtagaaa aagtaaacgt acaacgggaa 8460acaacaggta agtcactatt
taacacaatg tttgtgtatc aaaatattga atttcaagag 8520atccatcaag atgggtgtac
gtttagggta aaagaacgta atcccggagt ctctttatat 8580gatttgatgt taacgatcga
ggatgcagaa aaacagttag atattcattt cgattttaat 8640ccaaaccagt ttgaacaaga
aacgattgaa caaatcataa ggcactacac cagcctttta 8700gacagtcttg ttaaggagcc
ggagaaatcc ttgtcttccg ttcctatgct gtctgacatc 8760gagaggcacc agcttctgat
ggggtgtaat gacacggaga cgccgtttcc gcacaatgac 8820acagtatgtc aatggtttga
aacgcaagca gaacagcggc ctgatgatga agccgttata 8880tttggcaatg aacggtgcac
gtacgggcag ctaaatgagc gggtaaatca attggcgcgc 8940acgttaagaa cgaagggcgt
tcaagcggat cagtttgttg ccatcatctg cccgcatcgc 9000atcgagctga ttgttggaat
tttggctgtt ctaaaagccg gcggcgcata cgtgccaatt 9060gatccggagt atccagagga
ccggatacaa tatatgctga aggattcaga ggctaagatc 9120gttttggcac agctcgattt
gcataaacac ttaacgtttg atgctgacgt tgtgcttttg 9180gatgaggaaa gctcatatca
tgaggatcgt tcgaatcttg aaccgacctg cggtgcaaat 9240gatttggcat acatgatcta
tacgtcgggc tccacaggga acccgaaagg tgtactcatt 9300gagcaccggg gattagctaa
ttatattgag tgggcgaaag aggtttatgt gaatgatgag 9360aaaaccaact tccctttata
ctcgtccatc tcttttgatc taacggtgac gtcgattttt 9420acaccgctgg ttacaggaaa
taccatcatt gtctttgatg gtgaagacaa aagtgcggtg 9480ctttcaacaa ttatgcagga
tccgagaata gatatcatca aattgacgcc ggcgcatttg 9540catgtgctca aagaaatgaa
gatagcagat ggaacgacaa ttcgaaaaat gattgtcggc 9600ggggaaaatt taagcacccg
gcttgcccaa agtgtcagtg agcagtttaa aggccaactg 9660gacatattca atgaatacgg
accgacagaa gcggtcgtcg gatgtatgat ttatcggtac 9720gacactaaac gtgacaggcg
agaatttgtg ccaataggct cccctgccgc caatacgagc 9780atttatgtgt tggatgccag
catgaacttg gttccggtcg gcgtaccggg tgaaatgtat 9840atcggtggag ccggtgtagc
cagaggatac tggaatcgcc cggatttaac agcagagaag 9900ttcgttcaca acccgtttgc
tccgggaacg ataatgtaca aaacgggtga cttggcaaaa 9960cgattacgtg atggaaatct
catatattta ggccgaatcg atgaacaagt caaaatccga 10020ggacatcgaa ttgaacttgg
tgaagttgaa gctgcaatgc ataaagtgga agcggtccaa 10080aaggccgtag ttttagccag
agaagaagag gatggcttac aacaactgtg tgcgtattat 10140gtgagcaata aacctataac
aattgcggag attagagaac aattatcact ggagctgccg 10200gactacatgg ttccgtccca
ttatatccaa cttgagcaat taccgttaac gtccaacggg 10260aaaataaatc gtaaagcact
gcctgcacca gaggtaagtt tagagcaaat agctgaatat 10320gtaccgccag gcaatgaggt
tgaatctaag cttgcagtct tatggcaaga gatgctcgga 10380atacatcgtg tggggatcaa
gcacaatttc ttcgatcttg gaggaaattc catacgcgcg 10440acggccttag ccgccagaat
ccacaaagaa ctggatgtca atctgtctgt aaaagacata 10500tttaagtttc ctactattga
acagttggct aacatggcgt tacgcatgga gaaaattcga 10560tatgtatcaa ttccgtctgc
acagaaaatc tcctattatc cagtttcttc ggcacagaaa 10620cggatgtatt tgttaagtca
tacagaagga ggcgagctga cgtacaatat gacgggcgcc 10680atgagtgtag aaggggctat
tgatctagaa cgattgaccg ctgcttttca aaaattaatt 10740gaacgtcatg aagttttgcg
gaccagcttt gaactatacg aaggcgagcc ggcacagcga 10800attcatccaa gcattgaatt
tacaatagaa cagattcaag cgagagaaga ggaagtggaa 10860gaccatgtac ttgattttat
caaatcgttt gatttagcca agccgccgtt aatgcgagtg 10920ggactgattg aacttacacc
cgaaaagcat gtactgctag tcgatatgca tcatatcatt 10980tccgatggcg tgtctatgaa
cattctaatg aaagatttaa atcaatttta taaagggatc 11040gaaccggatc cgcttcccat
tcaatataag gactatgcgg tttggcagca aacggaagct 11100cagaggcaaa acatcaaaaa
acaggaagcg tattggctta atcgttttca tgatgagatt 11160cctgtattgg atatgccaac
ggattacgag agacctgcta tacgcgatta cgaaggcgaa 11220tcatttgaat ttcttatacc
gatagaatta aaacagcgct taagtcaaat ggaagaagct 11280acaggaacaa cattgtatat
gattttaatg gcagcttata caattctttt atccaaatac 11340agcggacagg aagatatcgt
cgtagggacc ccggtctccg gccgaagtca tatggatgta 11400gagtctgttg tgggaatgtt
tgtaaacacc ttagtcattc gcaatcaccc ggcaggccgt 11460aaaatattcg aggattactt
aaacgaagtg aaggaaaaca tgctaaatgc ctatcaaaat 11520caagactatc cattggaaga
attgatccaa catgtacatc ttctaaaaga ttcaagccgc 11580aaccctttat tcgatacgat
gtttgtgctg caaaatctcg atcaggttga attgaacctt 11640gattcccttc gattcacgcc
ttataagctt catcatacag ttgccaaatt cgatttgacc 11700ttgtcgattc agacagatca
agacaaacat cacggtctgt tcgaatattc gaagaaacta 11760tttaagaaaa gcagaatcga
agctttgtca aaagactatt tacacatctt atccgttatc 11820agtcaacagc caagtataca
aatcgaacat atcgaattaa gcggcagcac cgcggaagat 11880gataacttga tccattctat
tgaactgaac ttttaa 11916103971PRTBacillus
subtilis 10Met Tyr Thr Ser Gln Phe Gln Thr Leu Val Asp Val Ile Arg Asn
Arg 1 5 10 15 Ser
Asn Ile Ser Asp Arg Gly Ile Arg Phe Ile Glu Ser Asp Lys Ile
20 25 30 Glu Thr Phe Val Ser
Tyr Arg Gln Leu Phe Asp Glu Ala Gln Gly Phe 35
40 45 Leu Gly Tyr Leu Gln His Ile Gly Ile
Gln Pro Lys Gln Glu Ile Val 50 55
60 Phe Gln Ile Gln Glu Asn Lys Ser Phe Val Val Ala Phe
Trp Ala Cys 65 70 75
80 Leu Leu Gly Gly Met Ile Pro Val Pro Val Ser Ile Gly Glu Asp Asn
85 90 95 Asp His Lys Leu
Lys Val Trp Arg Ile Trp Asn Ile Leu Asn Asn Pro 100
105 110 Phe Leu Leu Ala Ser Glu Thr Val Leu
Asp Lys Met Lys Lys Phe Ala 115 120
125 Ala Asp His Asp Leu Gln Asp Phe His His Gln Leu Ile Glu
Lys Ser 130 135 140
Asp Ile Ile Gln Asp Arg Ile Tyr Asp His Pro Ala Ser Gln Tyr Glu 145
150 155 160 Pro Glu Ala Asp Glu
Leu Ala Phe Ile Gln Phe Ser Ser Gly Ser Thr 165
170 175 Gly Asp Pro Lys Gly Val Met Leu Thr His
His Asn Leu Ile His Asn 180 185
190 Thr Cys Ala Ile Arg Asn Ala Leu Ala Ile Asp Leu Lys Asp Thr
Leu 195 200 205 Leu
Ser Trp Met Pro Leu Thr His Asp Met Gly Leu Ile Ala Cys His 210
215 220 Leu Val Pro Ala Leu Ala
Gly Ile Asn Gln Asn Leu Met Pro Thr Glu 225 230
235 240 Leu Phe Ile Arg Arg Pro Ile Leu Trp Met Lys
Lys Ala His Glu His 245 250
255 Lys Ala Ser Ile Leu Ser Ser Pro Asn Phe Gly Tyr Asn Tyr Phe Leu
260 265 270 Lys Phe
Leu Lys Asp Asn Lys Ser Tyr Asp Trp Asp Leu Ser His Ile 275
280 285 Arg Val Ile Ala Asn Gly Ala
Glu Pro Ile Leu Pro Glu Leu Cys Asp 290 295
300 Glu Phe Leu Thr Arg Cys Ala Ala Phe Asn Met Lys
Arg Ser Ala Ile 305 310 315
320 Leu Asn Val Tyr Gly Leu Ala Glu Ala Ser Val Gly Ala Thr Phe Ser
325 330 335 Asn Ile Gly
Glu Arg Phe Val Pro Val Tyr Leu His Arg Asp His Leu 340
345 350 Asn Leu Gly Glu Arg Ala Val Glu
Val Ser Lys Glu Asp Gln Asn Cys 355 360
365 Ala Ser Phe Val Glu Val Gly Lys Pro Ile Asp Tyr Cys
Gln Ile Arg 370 375 380
Ile Cys Asn Glu Ala Asn Glu Gly Leu Glu Asp Gly Phe Ile Gly His 385
390 395 400 Ile Gln Ile Lys
Gly Glu Asn Val Thr Gln Gly Tyr Tyr Asn Asn Pro 405
410 415 Glu Ser Thr Asn Arg Ala Leu Thr Pro
Asp Gly Trp Val Lys Thr Gly 420 425
430 Asp Leu Gly Phe Ile Arg Lys Gly Asn Leu Val Val Thr Gly
Arg Glu 435 440 445
Lys Asp Ile Ile Phe Val Asn Gly Lys Asn Val Tyr Pro His Asp Ile 450
455 460 Glu Arg Val Ala Ile
Glu Leu Glu Asp Ile Asp Leu Gly Arg Val Ala 465 470
475 480 Ala Cys Gly Val Tyr Asp Gln Glu Thr Arg
Ser Arg Glu Ile Val Leu 485 490
495 Phe Ala Val Tyr Lys Lys Ser Ala Glu Gln Phe Ala Pro Leu Val
Lys 500 505 510 Asp
Ile Lys Lys His Leu Tyr Gln Arg Gly Gly Trp Ser Ile Lys Glu 515
520 525 Ile Leu Pro Ile Arg Lys
Leu Pro Lys Thr Thr Ser Gly Lys Val Lys 530 535
540 Arg Tyr Glu Leu Ala Glu Gln Tyr Glu Ser Gly
Lys Phe Ala Leu Glu 545 550 555
560 Ser Thr Lys Ile Lys Glu Phe Leu Glu Gly His Ser Thr Glu Pro Val
565 570 575 Gln Thr
Pro Ile His Glu Ile Glu Thr Ala Leu Leu Ser Ile Phe Ser 580
585 590 Glu Val Met Asp Gly Lys Lys
Ile His Leu Asn Asp His Tyr Phe Asp 595 600
605 Met Gly Ala Thr Ser Leu Gln Leu Ser Gln Ile Ala
Glu Arg Ile Glu 610 615 620
Gln Lys Phe Gly Cys Glu Leu Thr Val Ala Asp Leu Phe Thr Tyr Pro 625
630 635 640 Ser Ile Ala
Asp Leu Ala Ala Phe Leu Val Glu Asn His Ser Glu Ile 645
650 655 Lys Gln Thr Asp Thr Ala Lys Pro
Ser Arg Ser Ser Ser Lys Asp Ile 660 665
670 Ala Ile Ile Gly Met Ser Leu Asn Val Pro Gly Ala Ser
Asn Lys Ser 675 680 685
Asp Phe Trp His Leu Leu Glu Asn Gly Glu His Gly Ile Arg Glu Tyr 690
695 700 Pro Ala Pro Arg
Val Lys Asp Ala Ile Asp Tyr Leu Arg Ser Ile Lys 705 710
715 720 Ser Glu Arg Asn Glu Lys Gln Phe Val
Lys Gly Gly Tyr Leu Asp Glu 725 730
735 Ile Asp Arg Phe Asp Tyr Ser Phe Phe Gly Leu Ala Pro Lys
Thr Ala 740 745 750
Lys Phe Met Asp Pro Asn Gln Arg Leu Phe Leu Gln Ser Ala Trp His
755 760 765 Ala Ile Glu Asp
Ala Gly Tyr Ala Gly Asp Thr Ile Ser Gly Ser Gln 770
775 780 Leu Gly Val Tyr Val Gly Tyr Ser
Lys Val Gly Tyr Asp Tyr Glu Arg 785 790
795 800 Leu Leu Ser Ala Asn Tyr Pro Glu Glu Leu His His
Tyr Ile Val Gly 805 810
815 Asn Leu Pro Ser Val Leu Ala Ser Arg Ile Ala Tyr Phe Leu Asn Leu
820 825 830 Lys Gly Pro
Ala Val Thr Val Asp Thr Ala Cys Ser Ser Ser Leu Val 835
840 845 Ala Val His Met Ala Cys Lys Ala
Leu Leu Thr Gly Asp Cys Glu Met 850 855
860 Ala Leu Ala Gly Gly Ile Arg Thr Ser Leu Leu Pro Met
Arg Ile Gly 865 870 875
880 Leu Asp Met Glu Ser Ser Asp Gly Leu Thr Lys Thr Phe Ser Lys Asp
885 890 895 Ser Asp Gly Thr
Gly Ser Gly Glu Gly Val Ala Ala Val Leu Leu Lys 900
905 910 Pro Leu Gln Ala Ala Ile Arg Asp Gly
Asp His Ile Tyr Gly Val Ile 915 920
925 Lys Gly Ser Ala Ile Asn Gln Asp Gly Thr Thr Val Gly Ile
Thr Ala 930 935 940
Pro Ser Pro Ala Ala Gln Thr Glu Val Ile Glu Met Ala Trp Lys Asp 945
950 955 960 Ala Gly Ile Ala Pro
Glu Thr Leu Ser Phe Ile Glu Ala His Gly Thr 965
970 975 Gly Thr Lys Leu Gly Asp Pro Val Glu Phe
Asn Gly Leu Cys Lys Ala 980 985
990 Phe Glu Lys Val Thr Glu Lys Lys Gln Phe Cys Ala Ile Gly
Ser Val 995 1000 1005
Lys Ala Asn Ile Gly His Leu Phe Glu Ala Ala Gly Ile Val Gly 1010
1015 1020 Leu Ile Lys Ser Ala
Leu Met Leu Asn His Lys Lys Ile Pro Pro 1025 1030
1035 Leu Ala His Phe Asn Lys Pro Asn Pro Leu
Ile Pro Phe His Ser 1040 1045 1050
Ser Pro Phe Tyr Val Asn Gln Glu Val Met Asp Phe Thr Pro Glu
1055 1060 1065 Asp Arg
Pro Leu Arg Gly Gly Ile Ser Ser Phe Gly Phe Ser Gly 1070
1075 1080 Thr Asn Ala His Val Val Leu
Glu Glu Tyr Thr Pro Glu Ser Glu 1085 1090
1095 Tyr Ala Pro Glu Asp Gly Asn Asp Pro His Leu Phe
Val Leu Ser 1100 1105 1110
Ala His Thr Glu Ala Ser Leu Tyr Glu Leu Thr His Gln Tyr Arg 1115
1120 1125 Gln Tyr Ile Ser Asp
Asp Ser Gln Ser Ser Leu Arg Ser Ile Cys 1130 1135
1140 Tyr Thr Ala Ser Thr Gly Arg Ala His Leu
Asp Tyr Cys Leu Ala 1145 1150 1155
Met Ile Val Ser Ser Asn Gln Glu Leu Ile Asp Lys Leu Thr Ser
1160 1165 1170 Leu Ile
Gln Gly Glu Arg Asn Leu Pro Gln Val His Phe Gly Tyr 1175
1180 1185 Lys Asn Ile Lys Glu Met Gln
Pro Ala Glu Lys Asp Asn Leu Ser 1190 1195
1200 Lys Gln Ile Ser Asp Leu Met Gln His Arg Pro Cys
Thr Lys Asp 1205 1210 1215
Glu Arg Ile Thr Trp Leu Asn Arg Ile Ala Glu Leu Tyr Val Gln 1220
1225 1230 Arg Ala Val Ile Asp
Trp Arg Ala Val Tyr Ser Asn Glu Val Val 1235 1240
1245 Gln Lys Thr Pro Leu Pro Leu Tyr Pro Phe
Glu Arg Asn Arg Cys 1250 1255 1260
Trp Val Glu Ala Val Tyr Glu Ser Ala Lys Glu Arg Lys Glu Lys
1265 1270 1275 Gly Glu
Val Ala Leu Asp Ile Asn His Thr Lys Thr His Ile Glu 1280
1285 1290 Ser Phe Leu Lys Thr Val Ile
Ser Asn Ala Ser Gly Ile Arg Ala 1295 1300
1305 Asp Glu Ile Asp Ser Asn Ala His Phe Ile Gly Phe
Gly Leu Asp 1310 1315 1320
Ser Ile Met Leu Thr Gln Val Lys Lys Ala Ile Ala Asp Glu Phe 1325
1330 1335 Asn Val Asp Ile Pro
Met Glu Arg Phe Phe Asp Thr Met Asn Asn 1340 1345
1350 Ile Glu Ser Val Val Asp Tyr Leu Ala Glu
Asn Val Pro Ser Ala 1355 1360 1365
Ala Ser Thr Pro Pro Gln Glu Ser Val Thr Ala Gln Glu Glu Leu
1370 1375 1380 Val Ile
Ser Gly Ala Gln Pro Glu Leu Glu His Gln Glu His Met 1385
1390 1395 Leu Asp Lys Ile Ile Ala Ser
Gln Asn Gln Leu Ile Gln Gln Thr 1400 1405
1410 Leu Gln Ala Gln Leu Asp Ser Phe Asn Leu Leu Arg
Asn Asn Ser 1415 1420 1425
His Phe Val Ser Lys Glu Ser Glu Ile Ser Gln Asp Lys Thr Ser 1430
1435 1440 Leu Ser Pro Lys Ser
Val Thr Ala Lys Lys Asn Ser Ala Gln Glu 1445 1450
1455 Ala Lys Pro Tyr Ile Pro Phe Gln Arg Gln
Thr Leu Asn Glu Gln 1460 1465 1470
Val Asn Tyr Thr Pro Gln Gln Arg Gln Tyr Leu Glu Ser Phe Ile
1475 1480 1485 Glu Lys
Tyr Val Asp Lys Thr Lys Gly Ser Lys Gln Tyr Thr Asp 1490
1495 1500 Glu Thr Arg Phe Ala His Ala
Asn Asn Arg Asn Leu Ser Ser Phe 1505 1510
1515 Arg Ser Tyr Trp Lys Glu Met Val Tyr Pro Ile Ile
Ala Glu Arg 1520 1525 1530
Ser Asp Gly Ser Arg Met Trp Asp Ile Asp Gly Asn Glu Tyr Ile 1535
1540 1545 Asp Ile Thr Met Gly
Phe Gly Val Asn Leu Phe Gly His His Pro 1550 1555
1560 Ser Phe Ile Thr Gln Thr Val Val Asp Ser
Thr His Ser Ala Leu 1565 1570 1575
Pro Pro Leu Gly Pro Met Ser Asn Val Ala Gly Glu Val Ala Asp
1580 1585 1590 Arg Ile
Arg Ala Cys Thr Gly Val Glu Arg Val Ala Phe Tyr Asn 1595
1600 1605 Ser Gly Thr Glu Ala Val Met
Val Ala Leu Arg Leu Ala Arg Ala 1610 1615
1620 Ala Thr Gly Arg Thr Lys Val Val Val Phe Ala Gly
Ser Tyr His 1625 1630 1635
Gly Thr Phe Asp Gly Val Leu Gly Val Ala Asn Thr Lys Gly Gly 1640
1645 1650 Ala Glu Pro Ala Asn
Pro Leu Ala Pro Gly Ile Pro Gln Ser Phe 1655 1660
1665 Met Asn Asp Leu Ile Ile Leu His Tyr Asn
His Pro Asp Ser Leu 1670 1675 1680
Asp Val Ile Arg Asn Leu Gly Asn Glu Leu Ala Ala Val Leu Val
1685 1690 1695 Glu Pro
Val Gln Ser Arg Arg Pro Asp Leu Gln Pro Glu Ser Phe 1700
1705 1710 Leu Lys Glu Leu Arg Ala Ile
Thr Gln Gln Ser Gly Thr Ala Leu 1715 1720
1725 Ile Met Asp Glu Ile Ile Thr Gly Phe Arg Ile Gly
Leu Gly Gly 1730 1735 1740
Ala Gln Glu Trp Phe Asp Ile Gln Ala Asp Leu Val Thr Tyr Gly 1745
1750 1755 Lys Ile Ile Gly Gly
Gly Gln Pro Leu Gly Ile Val Ala Gly Lys 1760 1765
1770 Ala Glu Phe Met Asn Thr Ile Asp Gly Gly
Thr Trp Gln Tyr Gly 1775 1780 1785
Asp Asp Ser Tyr Pro Thr Asp Glu Ala Lys Arg Thr Phe Val Ala
1790 1795 1800 Gly Thr
Phe Asn Thr His Pro Leu Thr Met Arg Met Ser Leu Ala 1805
1810 1815 Val Leu Arg Tyr Leu Gln Ala
Glu Gly Glu Thr Leu Tyr Glu Arg 1820 1825
1830 Leu Asn Gln Lys Thr Thr Tyr Leu Val Asp Gln Leu
Asn Ser Tyr 1835 1840 1845
Phe Glu Gln Ser Gln Val Pro Ile Arg Met Val Gln Phe Gly Ser 1850
1855 1860 Leu Phe Arg Phe Val
Ser Ser Val Asp Asn Asp Leu Phe Phe Tyr 1865 1870
1875 His Leu Asn Tyr Lys Gly Val Tyr Val Trp
Glu Gly Arg Asn Cys 1880 1885 1890
Phe Leu Ser Thr Ala His Thr Ser Asp Asp Ile Ala Tyr Ile Ile
1895 1900 1905 Gln Ala
Val Gln Glu Thr Val Lys Asp Leu Arg Arg Gly Gly Phe 1910
1915 1920 Ile Pro Glu Gly Pro Asp Ser
Pro Asn Asp Gly Gly His Lys Glu 1925 1930
1935 Pro Glu Thr Tyr Glu Leu Ser Pro Glu Gln Lys Gln
Leu Ala Val 1940 1945 1950
Val Ser Gln Tyr Gly Asn Asp Ala Ser Ala Ala Leu Asn Gln Ser 1955
1960 1965 Ile Met Leu Lys Val
Lys Gly Ala Val Gln His Thr Leu Leu Lys 1970 1975
1980 Gln Ala Val Arg Asn Ile Val Lys Arg His
Asp Ala Leu Arg Thr 1985 1990 1995
Val Ile His Val Asp Asp Glu Val Gln Gln Val Gln Ala Arg Ile
2000 2005 2010 Asn Val
Glu Ile Pro Ile Ile Asp Phe Thr Gly Tyr Pro Asn Glu 2015
2020 2025 Gln Arg Glu Ser Glu Val Gln
Lys Trp Leu Thr Glu Asp Ala Lys 2030 2035
2040 Arg Pro Phe His Phe His Glu Gln Lys Pro Leu Phe
Arg Val His 2045 2050 2055
Val Leu Thr Ser Lys Gln Asp Glu His Leu Ile Val Leu Thr Phe 2060
2065 2070 His His Ile Ile Ala
Asp Gly Trp Ser Ile Ala Val Phe Val Gln 2075 2080
2085 Glu Leu Glu Ser Thr Tyr Ala Ala Ile Val
Gln Gly Ser Pro Leu 2090 2095 2100
Pro Ser His Glu Val Val Ser Phe Arg Gln Tyr Leu Asp Trp Gln
2105 2110 2115 Gln Ala
Gln Ile Glu Asn Gly His Tyr Glu Glu Gly Ile Arg Tyr 2120
2125 2130 Trp Arg Gln Tyr Leu Ser Glu
Pro Ile Pro Gln Ala Ile Leu Thr 2135 2140
2145 Ser Met Ser Ser Ser Arg Tyr Pro His Gly Tyr Glu
Gly Asp Arg 2150 2155 2160
Tyr Thr Val Thr Leu Asp Arg Pro Leu Ser Lys Ala Ile Lys Ser 2165
2170 2175 Leu Ser Ile Arg Met
Lys Asn Ser Val Phe Ala Thr Ile Leu Gly 2180 2185
2190 Ala Phe His Leu Phe Leu Gln Gln Leu Thr
Lys Gln Ala Gly Leu 2195 2200 2205
Val Ile Gly Ile Pro Thr Ala Gly Gln Leu His Met Lys Gln Pro
2210 2215 2220 Met Leu
Val Gly Asn Cys Val Asn Met Val Pro Val Lys Asn Thr 2225
2230 2235 Ala Ser Ser Glu Ser Thr Leu
Ala Asp Tyr Leu Gly His Met Lys 2240 2245
2250 Glu Asn Met Asp Gln Val Met Arg His Gln Asp Val
Pro Met Thr 2255 2260 2265
Leu Val Ala Ser Gln Leu Pro His Asp Gln Met Pro Asp Met Arg 2270
2275 2280 Ile Ile Phe Asn Leu
Asp Arg Pro Phe Arg Lys Leu His Phe Gly 2285 2290
2295 Gln Met Glu Ala Glu Leu Ile Ala Tyr Pro
Ile Lys Cys Ile Ser 2300 2305 2310
Tyr Asp Leu Phe Leu Asn Val Thr Glu Phe Asp Gln Glu Tyr Val
2315 2320 2325 Leu Asp
Phe Asp Phe Asn Thr Ser Val Ile Ser Ser Glu Ile Met 2330
2335 2340 Asn Lys Trp Gly Thr Gly Phe
Val Asn Leu Leu Lys Lys Met Val 2345 2350
2355 Glu Gly Asp Ser Ala Ser Leu Asp Ser Leu Lys Met
Phe Ser Lys 2360 2365 2370
Glu Asp Gln His Asp Leu Leu Glu Leu Tyr Ala Asp His Gln Leu 2375
2380 2385 Arg Ile Ser Ser Thr
Leu Asp His Lys Gly Val Arg Ala Val Tyr 2390 2395
2400 Glu Glu Pro Glu Asn Glu Thr Glu Leu Gln
Ile Ala Gln Ile Trp 2405 2410 2415
Ala Glu Leu Leu Gly Leu Glu Lys Val Gly Arg Ser Asp His Phe
2420 2425 2430 Leu Ser
Leu Gly Gly Asn Ser Leu Lys Ala Thr Leu Met Leu Ser 2435
2440 2445 Lys Ile Gln Gln Thr Phe Asn
Gln Lys Val Ser Ile Gly Gln Phe 2450 2455
2460 Phe Ser His Gln Thr Val Lys Glu Leu Ala Asn Phe
Ile Arg Gly 2465 2470 2475
Glu Lys Asn Val Lys Tyr Pro Pro Met Lys Pro Val Glu Gln Lys 2480
2485 2490 Ala Phe Tyr Arg Thr
Ser Pro Ala Gln Gln Arg Val Tyr Phe Leu 2495 2500
2505 His Gln Met Glu Pro Asn Gln Val Ser Gln
Asn Met Phe Gly Gln 2510 2515 2520
Ile Ser Ile Ile Gly Lys Tyr Asp Glu Lys Ala Leu Ile Ala Ser
2525 2530 2535 Leu Gln
Gln Val Met Gln Arg His Glu Ala Phe Arg Thr Ser Phe 2540
2545 2550 His Ile Ile Asp Gly Glu Ile
Val Gln Gln Ile Ala Gly Glu Leu 2555 2560
2565 Asp Phe Asn Val Arg Val His Ser Met Asp Arg Glu
Glu Phe Glu 2570 2575 2580
Ala Tyr Ala Asp Gly Tyr Val Lys Pro Phe Arg Leu Glu Gln Ala 2585
2590 2595 Pro Leu Val Arg Ala
Glu Leu Ile Lys Val Asp Asn Glu Gln Ala 2600 2605
2610 Glu Leu Leu Ile Asp Met His His Ile Ile
Ser Asp Gly Tyr Ser 2615 2620 2625
Met Ser Ile Leu Thr Asn Glu Leu Phe Ala Leu Tyr His Gly Asn
2630 2635 2640 Pro Leu
Pro Glu Ile Pro Phe Glu Tyr Lys Asp Phe Ala Glu Trp 2645
2650 2655 Gln Asn Gln Leu Leu Ile Gly
Glu Val Met Glu Gln Gln Glu Glu 2660 2665
2670 Tyr Trp Leu Glu Gln Phe Lys Gln Glu Val Pro Ile
Leu Gln Leu 2675 2680 2685
Pro Ala Asp Gly Ser Arg Ala Met Glu Trp Ser Ser Glu Gly Gln 2690
2695 2700 Arg Val Thr Cys Ser
Leu Gln Ser Ser Leu Ile Arg Ser Leu Gln 2705 2710
2715 Glu Met Ala Gln Gln Lys Gly Thr Thr Leu
Tyr Met Val Leu Leu 2720 2725 2730
Ala Ala Tyr Asn Val Leu Leu His Lys Tyr Thr Gly Gln Glu Asp
2735 2740 2745 Ile Val
Val Gly Thr Pro Val Ser Gly Arg Asn Gln Pro Asn Ile 2750
2755 2760 Glu Ser Met Ile Gly Ile Phe
Ile Gln Thr Met Gly Ile Arg Thr 2765 2770
2775 Lys Pro Gln Ala Asn Lys Arg Phe Thr Asp Tyr Leu
Asp Glu Val 2780 2785 2790
Lys Arg Gln Thr Leu Asp Ala Phe Glu Asn Gln Asp Tyr Pro Phe 2795
2800 2805 Asp Trp Leu Val Glu
Lys Val Asn Val Gln Arg Glu Thr Thr Gly 2810 2815
2820 Lys Ser Leu Phe Asn Thr Met Phe Val Tyr
Gln Asn Ile Glu Phe 2825 2830 2835
Gln Glu Ile His Gln Asp Gly Cys Thr Phe Arg Val Lys Glu Arg
2840 2845 2850 Asn Pro
Gly Val Ser Leu Tyr Asp Leu Met Leu Thr Ile Glu Asp 2855
2860 2865 Ala Glu Lys Gln Leu Asp Ile
His Phe Asp Phe Asn Pro Asn Gln 2870 2875
2880 Phe Glu Gln Glu Thr Ile Glu Gln Ile Ile Arg His
Tyr Thr Ser 2885 2890 2895
Leu Leu Asp Ser Leu Val Lys Glu Pro Glu Lys Ser Leu Ser Ser 2900
2905 2910 Val Pro Met Leu Ser
Asp Ile Glu Arg His Gln Leu Leu Met Gly 2915 2920
2925 Cys Asn Asp Thr Glu Thr Pro Phe Pro His
Asn Asp Thr Val Cys 2930 2935 2940
Gln Trp Phe Glu Thr Gln Ala Glu Gln Arg Pro Asp Asp Glu Ala
2945 2950 2955 Val Ile
Phe Gly Asn Glu Arg Cys Thr Tyr Gly Gln Leu Asn Glu 2960
2965 2970 Arg Val Asn Gln Leu Ala Arg
Thr Leu Arg Thr Lys Gly Val Gln 2975 2980
2985 Ala Asp Gln Phe Val Ala Ile Ile Cys Pro His Arg
Ile Glu Leu 2990 2995 3000
Ile Val Gly Ile Leu Ala Val Leu Lys Ala Gly Gly Ala Tyr Val 3005
3010 3015 Pro Ile Asp Pro Glu
Tyr Pro Glu Asp Arg Ile Gln Tyr Met Leu 3020 3025
3030 Lys Asp Ser Glu Ala Lys Ile Val Leu Ala
Gln Leu Asp Leu His 3035 3040 3045
Lys His Leu Thr Phe Asp Ala Asp Val Val Leu Leu Asp Glu Glu
3050 3055 3060 Ser Ser
Tyr His Glu Asp Arg Ser Asn Leu Glu Pro Thr Cys Gly 3065
3070 3075 Ala Asn Asp Leu Ala Tyr Met
Ile Tyr Thr Ser Gly Ser Thr Gly 3080 3085
3090 Asn Pro Lys Gly Val Leu Ile Glu His Arg Gly Leu
Ala Asn Tyr 3095 3100 3105
Ile Glu Trp Ala Lys Glu Val Tyr Val Asn Asp Glu Lys Thr Asn 3110
3115 3120 Phe Pro Leu Tyr Ser
Ser Ile Ser Phe Asp Leu Thr Val Thr Ser 3125 3130
3135 Ile Phe Thr Pro Leu Val Thr Gly Asn Thr
Ile Ile Val Phe Asp 3140 3145 3150
Gly Glu Asp Lys Ser Ala Val Leu Ser Thr Ile Met Gln Asp Pro
3155 3160 3165 Arg Ile
Asp Ile Ile Lys Leu Thr Pro Ala His Leu His Val Leu 3170
3175 3180 Lys Glu Met Lys Ile Ala Asp
Gly Thr Thr Ile Arg Lys Met Ile 3185 3190
3195 Val Gly Gly Glu Asn Leu Ser Thr Arg Leu Ala Gln
Ser Val Ser 3200 3205 3210
Glu Gln Phe Lys Gly Gln Leu Asp Ile Phe Asn Glu Tyr Gly Pro 3215
3220 3225 Thr Glu Ala Val Val
Gly Cys Met Ile Tyr Arg Tyr Asp Thr Lys 3230 3235
3240 Arg Asp Arg Arg Glu Phe Val Pro Ile Gly
Ser Pro Ala Ala Asn 3245 3250 3255
Thr Ser Ile Tyr Val Leu Asp Ala Ser Met Asn Leu Val Pro Val
3260 3265 3270 Gly Val
Pro Gly Glu Met Tyr Ile Gly Gly Ala Gly Val Ala Arg 3275
3280 3285 Gly Tyr Trp Asn Arg Pro Asp
Leu Thr Ala Glu Lys Phe Val His 3290 3295
3300 Asn Pro Phe Ala Pro Gly Thr Ile Met Tyr Lys Thr
Gly Asp Leu 3305 3310 3315
Ala Lys Arg Leu Arg Asp Gly Asn Leu Ile Tyr Leu Gly Arg Ile 3320
3325 3330 Asp Glu Gln Val Lys
Ile Arg Gly His Arg Ile Glu Leu Gly Glu 3335 3340
3345 Val Glu Ala Ala Met His Lys Val Glu Ala
Val Gln Lys Ala Val 3350 3355 3360
Val Leu Ala Arg Glu Glu Glu Asp Gly Leu Gln Gln Leu Cys Ala
3365 3370 3375 Tyr Tyr
Val Ser Asn Lys Pro Ile Thr Ile Ala Glu Ile Arg Glu 3380
3385 3390 Gln Leu Ser Leu Glu Leu Pro
Asp Tyr Met Val Pro Ser His Tyr 3395 3400
3405 Ile Gln Leu Glu Gln Leu Pro Leu Thr Ser Asn Gly
Lys Ile Asn 3410 3415 3420
Arg Lys Ala Leu Pro Ala Pro Glu Val Ser Leu Glu Gln Ile Ala 3425
3430 3435 Glu Tyr Val Pro Pro
Gly Asn Glu Val Glu Ser Lys Leu Ala Val 3440 3445
3450 Leu Trp Gln Glu Met Leu Gly Ile His Arg
Val Gly Ile Lys His 3455 3460 3465
Asn Phe Phe Asp Leu Gly Gly Asn Ser Ile Arg Ala Thr Ala Leu
3470 3475 3480 Ala Ala
Arg Ile His Lys Glu Leu Asp Val Asn Leu Ser Val Lys 3485
3490 3495 Asp Ile Phe Lys Phe Pro Thr
Ile Glu Gln Leu Ala Asn Met Ala 3500 3505
3510 Leu Arg Met Glu Lys Ile Arg Tyr Val Ser Ile Pro
Ser Ala Gln 3515 3520 3525
Lys Ile Ser Tyr Tyr Pro Val Ser Ser Ala Gln Lys Arg Met Tyr 3530
3535 3540 Leu Leu Ser His Thr
Glu Gly Gly Glu Leu Thr Tyr Asn Met Thr 3545 3550
3555 Gly Ala Met Ser Val Glu Gly Ala Ile Asp
Leu Glu Arg Leu Thr 3560 3565 3570
Ala Ala Phe Gln Lys Leu Ile Glu Arg His Glu Val Leu Arg Thr
3575 3580 3585 Ser Phe
Glu Leu Tyr Glu Gly Glu Pro Ala Gln Arg Ile His Pro 3590
3595 3600 Ser Ile Glu Phe Thr Ile Glu
Gln Ile Gln Ala Arg Glu Glu Glu 3605 3610
3615 Val Glu Asp His Val Leu Asp Phe Ile Lys Ser Phe
Asp Leu Ala 3620 3625 3630
Lys Pro Pro Leu Met Arg Val Gly Leu Ile Glu Leu Thr Pro Glu 3635
3640 3645 Lys His Val Leu Leu
Val Asp Met His His Ile Ile Ser Asp Gly 3650 3655
3660 Val Ser Met Asn Ile Leu Met Lys Asp Leu
Asn Gln Phe Tyr Lys 3665 3670 3675
Gly Ile Glu Pro Asp Pro Leu Pro Ile Gln Tyr Lys Asp Tyr Ala
3680 3685 3690 Val Trp
Gln Gln Thr Glu Ala Gln Arg Gln Asn Ile Lys Lys Gln 3695
3700 3705 Glu Ala Tyr Trp Leu Asn Arg
Phe His Asp Glu Ile Pro Val Leu 3710 3715
3720 Asp Met Pro Thr Asp Tyr Glu Arg Pro Ala Ile Arg
Asp Tyr Glu 3725 3730 3735
Gly Glu Ser Phe Glu Phe Leu Ile Pro Ile Glu Leu Lys Gln Arg 3740
3745 3750 Leu Ser Gln Met Glu
Glu Ala Thr Gly Thr Thr Leu Tyr Met Ile 3755 3760
3765 Leu Met Ala Ala Tyr Thr Ile Leu Leu Ser
Lys Tyr Ser Gly Gln 3770 3775 3780
Glu Asp Ile Val Val Gly Thr Pro Val Ser Gly Arg Ser His Met
3785 3790 3795 Asp Val
Glu Ser Val Val Gly Met Phe Val Asn Thr Leu Val Ile 3800
3805 3810 Arg Asn His Pro Ala Gly Arg
Lys Ile Phe Glu Asp Tyr Leu Asn 3815 3820
3825 Glu Val Lys Glu Asn Met Leu Asn Ala Tyr Gln Asn
Gln Asp Tyr 3830 3835 3840
Pro Leu Glu Glu Leu Ile Gln His Val His Leu Leu Lys Asp Ser 3845
3850 3855 Ser Arg Asn Pro Leu
Phe Asp Thr Met Phe Val Leu Gln Asn Leu 3860 3865
3870 Asp Gln Val Glu Leu Asn Leu Asp Ser Leu
Arg Phe Thr Pro Tyr 3875 3880 3885
Lys Leu His His Thr Val Ala Lys Phe Asp Leu Thr Leu Ser Ile
3890 3895 3900 Gln Thr
Asp Gln Asp Lys His His Gly Leu Phe Glu Tyr Ser Lys 3905
3910 3915 Lys Leu Phe Lys Lys Ser Arg
Ile Glu Ala Leu Ser Lys Asp Tyr 3920 3925
3930 Leu His Ile Leu Ser Val Ile Ser Gln Gln Pro Ser
Ile Gln Ile 3935 3940 3945
Glu His Ile Glu Leu Ser Gly Ser Thr Ala Glu Asp Asp Asn Leu 3950
3955 3960 Ile His Ser Ile Glu
Leu Asn Phe 3965 3970 11294DNABacillus subtilis
11atccggaatg cgctggctat cgacttaaaa gatactcttt tatcttggat gcccttaacc
60catgacatgg ggctcatagc ttgccacctt gttcctgcct tagccggaat caatcaaaat
120ttaatgccga cagaattatt tattcgaaga cctattctct ggatgaaaaa agctcatgaa
180cataaagcca gcattctatc ctcacctaat tttggataca attactttct taaatttctg
240aaagacaata aaagttacga ctgggattta tcccatatca gggtcattgc aaac
2941298PRTBacillus subtilis 12Ile Arg Asn Ala Leu Ala Ile Asp Leu Lys Asp
Thr Leu Leu Ser Trp 1 5 10
15 Met Pro Leu Thr His Asp Met Gly Leu Ile Ala Cys His Leu Val Pro
20 25 30 Ala Leu
Ala Gly Ile Asn Gln Asn Leu Met Pro Thr Glu Leu Phe Ile 35
40 45 Arg Arg Pro Ile Leu Trp Met
Lys Lys Ala His Glu His Lys Ala Ser 50 55
60 Ile Leu Ser Ser Pro Asn Phe Gly Tyr Asn Tyr Phe
Leu Lys Phe Leu 65 70 75
80 Lys Asp Asn Lys Ser Tyr Asp Trp Asp Leu Ser His Ile Arg Val Ile
85 90 95 Ala Asn
131794DNAStreptomyces roseosporus 13gtgagtgaga gccgctgtgc cgggcagggc
ctggtggggg cactgcggac ctgggcacgg 60acacgtgccc gggagactgc cgtggttctc
gtacgggaca ccggaaccac cgacgacacg 120gcgtcggtgg actacggaca gctggacgag
tgggccagaa gcatcgcggt gaccctccga 180cagcaactcg cgccgggggg acgggcactt
ctgctgctgc cgtccggccc ggagttcacg 240gccgcgtacc tcggctgcct gtacgcgggt
ctggccgccg taccggcgcc gctgcccggg 300gggcgccact tcgaacgccg ccgtgtcgcg
gccatcgccg ccgacagcgg agccggcgtg 360gtgctgaccg tcgcgggtga gaccgcctcc
gtccacgact ggctgaccga gaccacggcc 420ccggctactc gcgtcgtggc cgtggacgac
cgggcggcgc tcggcgaccc ggcgcagtgg 480gacgacccgg gcgtcgcgcc cgacgacgtg
gctctcatcc agtacacctc gggctcgacc 540ggcaacccca agggcgtggt cgtgacccac
gccaacctgc tggcgaacgc gcggaatctc 600gccgaggcct gcgagctgac cgccgccact
cccatgggcg gctggctgcc catgtaccac 660gacatggggc tcctgggcac gctgacaccg
gccctgtacc tcggcaccac gtgcgtgctg 720atgagctcca cggcattcat caaacggccg
cacctgtggc tacggaccat cgaccggttc 780ggcctggtct ggtcgtcggc tcccgacttc
gcgtacgaca tgtgtctgaa gcgcgtcacc 840gacgagcaga tcgccgggct ggacctgtcc
cgctggcggt gggccggcaa cggcgcggag 900cccatccggg cagccaccgt acgggccttc
ggcgaacggt tcgcccggta cggcctgcgc 960cccgaggcgc tcaccgccgg ctacgggctg
gccgaggcca ccctgttcgt gtcgaggtcg 1020caggggctgc acacggcacg agtcgccacc
gccgccctcg aacgccacga attccgcctc 1080gccgtacccg gcgaggcagc ccgggagatc
gtcagctgcg gtcccgtcgg ccacttccgc 1140gcccgcatcg tcgaacccgg cgggcaccgt
gttctgccgc ccggccaggt cggcgagctg 1200gtcctccagg gagccgccgt ctgcgccggc
tactggcagg ccaaggagga gaccgagcag 1260accttcggcc tcaccctcga cggcgaggac
ggtcactggc tgcgcaccgg cgatctcgcc 1320gccctgcacg aagggaatct ccacatcacc
ggccgctgca aagaggccct ggtgatacga 1380ggacgcaatc tgtacccgca ggacatcgag
cacgaactcc gcctgcaaca cccggaactt 1440gagagcgtcg gcgccgcgtt caccgtcccg
gcggcacctg gcacgccggg cttgatggtg 1500gtccacgaag tccgcacccc ggtccccgcc
gacgaccacc cggccctggt cagcgccctg 1560cgggggacga tcaaccgcga attcggactc
gacgcccagg gcatcgccct ggtgagccgc 1620ggcaccgtac tgcgtaccac cagcggcaag
gtccgccggg gcgccatgcg tgacctctgc 1680ctccgcgggg agctgaacat cgtccacgcg
gacaagggct ggcacgccat cgccggcacg 1740gccggagagg acatcgcccc cactgaccac
gctccacatc cgcaccccgc gtaa 179414597PRTStreptomyces roseosporus
14Met Ser Glu Ser Arg Cys Ala Gly Gln Gly Leu Val Gly Ala Leu Arg 1
5 10 15 Thr Trp Ala Arg
Thr Arg Ala Arg Glu Thr Ala Val Val Leu Val Arg 20
25 30 Asp Thr Gly Thr Thr Asp Asp Thr Ala
Ser Val Asp Tyr Gly Gln Leu 35 40
45 Asp Glu Trp Ala Arg Ser Ile Ala Val Thr Leu Arg Gln Gln
Leu Ala 50 55 60
Pro Gly Gly Arg Ala Leu Leu Leu Leu Pro Ser Gly Pro Glu Phe Thr 65
70 75 80 Ala Ala Tyr Leu Gly
Cys Leu Tyr Ala Gly Leu Ala Ala Val Pro Ala 85
90 95 Pro Leu Pro Gly Gly Arg His Phe Glu Arg
Arg Arg Val Ala Ala Ile 100 105
110 Ala Ala Asp Ser Gly Ala Gly Val Val Leu Thr Val Ala Gly Glu
Thr 115 120 125 Ala
Ser Val His Asp Trp Leu Thr Glu Thr Thr Ala Pro Ala Thr Arg 130
135 140 Val Val Ala Val Asp Asp
Arg Ala Ala Leu Gly Asp Pro Ala Gln Trp 145 150
155 160 Asp Asp Pro Gly Val Ala Pro Asp Asp Val Ala
Leu Ile Gln Tyr Thr 165 170
175 Ser Gly Ser Thr Gly Asn Pro Lys Gly Val Val Val Thr His Ala Asn
180 185 190 Leu Leu
Ala Asn Ala Arg Asn Leu Ala Glu Ala Cys Glu Leu Thr Ala 195
200 205 Ala Thr Pro Met Gly Gly Trp
Leu Pro Met Tyr His Asp Met Gly Leu 210 215
220 Leu Gly Thr Leu Thr Pro Ala Leu Tyr Leu Gly Thr
Thr Cys Val Leu 225 230 235
240 Met Ser Ser Thr Ala Phe Ile Lys Arg Pro His Leu Trp Leu Arg Thr
245 250 255 Ile Asp Arg
Phe Gly Leu Val Trp Ser Ser Ala Pro Asp Phe Ala Tyr 260
265 270 Asp Met Cys Leu Lys Arg Val Thr
Asp Glu Gln Ile Ala Gly Leu Asp 275 280
285 Leu Ser Arg Trp Arg Trp Ala Gly Asn Gly Ala Glu Pro
Ile Arg Ala 290 295 300
Ala Thr Val Arg Ala Phe Gly Glu Arg Phe Ala Arg Tyr Gly Leu Arg 305
310 315 320 Pro Glu Ala Leu
Thr Ala Gly Tyr Gly Leu Ala Glu Ala Thr Leu Phe 325
330 335 Val Ser Arg Ser Gln Gly Leu His Thr
Ala Arg Val Ala Thr Ala Ala 340 345
350 Leu Glu Arg His Glu Phe Arg Leu Ala Val Pro Gly Glu Ala
Ala Arg 355 360 365
Glu Ile Val Ser Cys Gly Pro Val Gly His Phe Arg Ala Arg Ile Val 370
375 380 Glu Pro Gly Gly His
Arg Val Leu Pro Pro Gly Gln Val Gly Glu Leu 385 390
395 400 Val Leu Gln Gly Ala Ala Val Cys Ala Gly
Tyr Trp Gln Ala Lys Glu 405 410
415 Glu Thr Glu Gln Thr Phe Gly Leu Thr Leu Asp Gly Glu Asp Gly
His 420 425 430 Trp
Leu Arg Thr Gly Asp Leu Ala Ala Leu His Glu Gly Asn Leu His 435
440 445 Ile Thr Gly Arg Cys Lys
Glu Ala Leu Val Ile Arg Gly Arg Asn Leu 450 455
460 Tyr Pro Gln Asp Ile Glu His Glu Leu Arg Leu
Gln His Pro Glu Leu 465 470 475
480 Glu Ser Val Gly Ala Ala Phe Thr Val Pro Ala Ala Pro Gly Thr Pro
485 490 495 Gly Leu
Met Val Val His Glu Val Arg Thr Pro Val Pro Ala Asp Asp 500
505 510 His Pro Ala Leu Val Ser Ala
Leu Arg Gly Thr Ile Asn Arg Glu Phe 515 520
525 Gly Leu Asp Ala Gln Gly Ile Ala Leu Val Ser Arg
Gly Thr Val Leu 530 535 540
Arg Thr Thr Ser Gly Lys Val Arg Arg Gly Ala Met Arg Asp Leu Cys 545
550 555 560 Leu Arg Gly
Glu Leu Asn Ile Val His Ala Asp Lys Gly Trp His Ala 565
570 575 Ile Ala Gly Thr Ala Gly Glu Asp
Ile Ala Pro Thr Asp His Ala Pro 580 585
590 His Pro His Pro Ala 595
15294DNAStreptomyces roseosporus 15ctcgccgagg cctgcgagct gaccgccgcc
actcccatgg gcggctggct gcccatgtac 60cacgacatgg ggctcctggg cacgctgaca
ccggccctgt acctcggcac cacgtgcgtg 120ctgatgagct ccacggcatt catcaaacgg
ccgcacctgt ggctacggac catcgaccgg 180ttcggcctgg tctggtcgtc ggctcccgac
ttcgcgtacg acatgtgtct gaagcgcgtc 240accgacgagc agatcgccgg gctggacctg
tcccgctggc ggtgggccgg caac 2941698PRTStreptomyces roseosporus
16Leu Ala Glu Ala Cys Glu Leu Thr Ala Ala Thr Pro Met Gly Gly Trp 1
5 10 15 Leu Pro Met Tyr
His Asp Met Gly Leu Leu Gly Thr Leu Thr Pro Ala 20
25 30 Leu Tyr Leu Gly Thr Thr Cys Val Leu
Met Ser Ser Thr Ala Phe Ile 35 40
45 Lys Arg Pro His Leu Trp Leu Arg Thr Ile Asp Arg Phe Gly
Leu Val 50 55 60
Trp Ser Ser Ala Pro Asp Phe Ala Tyr Asp Met Cys Leu Lys Arg Val 65
70 75 80 Thr Asp Glu Gln Ile
Ala Gly Leu Asp Leu Ser Arg Trp Arg Trp Ala 85
90 95 Gly Asn 178163DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
17atggttggtc aatttgcaaa tttcgtcgat ctgctccagt acagagctaa acttcaggcg
60cggaaaaccg tgtttagttt tctggctgat ggcgaagcgg aatctgcggc cctgacctac
120ggagaattag accaaaaagc ccaggcgatc gccgcttttt tgcaagctaa ccaggctcaa
180gggcaacggg cattattact ttatccaccg ggtttagagt ttatcggtgc ctttttggga
240tgtttgtatg ctggtgttgt tgcggtgcca gcttacccac cacggccgaa taaatccttt
300gaccgcctcc atagcattat ccaagatgcc caggcaaaat ttgccctcac cacaacagaa
360cttaaagata aaattgccga tcgcctcgaa gctttagaag gtacggattt tcattgtttg
420gctacagatc aagttgaatt aatttcagga aaaaattggc aaaaaccgaa catttccggc
480acagatctcg cttttttgca atacaccagt ggctccacgg gcgatcctaa aggagtgatg
540gtttcccacc acaatttgat ccacaactcc ggcttgattt ttacctcttt tcatatgaat
600gatgaaacca ttattttcag ctggctgccc ccacatcatg atatgggttt gattggctgc
660attctgaccc ccatctatgg tggaattcag gcaatcatga tgtccccttt ctcattttta
720caaaacccgc tttcctggtt aaaacatatt accaaataca aagcaactat cagtggaagc
780cctaacttcg cttacgatta ttgtgtcaaa cgaatcaggg aagaaaaaaa agaagggctg
840gatttaagtt catgggtgac tgctttcaac ggggccgaac cgatccgcgc tgtgaccctc
900gaaaattttg cgaaaacctt cgctacagca ggctttcaaa aatcagcatt ttatccctgt
960tatggtatgg ctgaaaccac cctgatcgtt tccggtggta atggtcgtgc ccagcttccc
1020caggaaatta tcgtcagcaa acagggcatc gaagcaaacc aagttcgccc tgcccaaggg
1080acagaaacaa cggtgacctt ggtcggcagt ggtgaagtga ttggcgacca aattgtcaaa
1140attgttgacc cccaggcttt aacagaatgt accgtcggtg aaattggcga agtatgggtt
1200aagggcgaaa gtgttgccca gggctattgg caaaagccag acctcaccca gcaacaattc
1260cagggaaacg tcggtgcaga aacgggcttt ttacgcacgg gcgatctggg ttttttgcaa
1320ggtggcgaac tgtatattac gggtcgttta aaggatctcc tgattatccg ggggcgcaac
1380cactatcccc aggacattga attaaccgtc gaagtggccc atcccgcttt acgacagggg
1440gccggagccg ctgtatcagt agacgttaac ggggaagaac agttagtcat tgtccaggaa
1500gttgagcgta aatatgcccg caaattaaat gtcgcggcag tagcccaagc tattcgtggg
1560gcgatcgccg ccgaacatca actgcaaccc caggccattt gttttattaa acccggtagc
1620attcccaaaa catccagcgg gaagattcgt cgccatgcct gcaaagctgg ttttctagac
1680ggaagcttgg ctgtggttgg ggagtggcaa cccagccacc aaaaagaagg aaaaggaatt
1740gggacacaag ccgttacccc ttctacgaca acatcaacga attttcccct gcctgaccag
1800caccaacagc aaattgaagc ctggcttaag gataatattg cccatcgcct cggcattacg
1860ccccaacaat tagacgaaac ggaacccttt gcaagttatg ggctggattc agtgcaagca
1920gtacaggtca cagccgactt agaggattgg ctaggtcgaa aattagaccc cactctggcc
1980tacgattatc cgaccattcg caccctggct cagtttttgg tccagggtaa tcaagcgcta
2040gagaaaatac cacaggtgcc gaaaattcag ggcaaagaaa ttgccgtggt gggtctcagt
2100tgtcgttttc cccaagctga caaccccgaa gctttttggg aattattacg taatggtaaa
2160gatggagttc gcccccttaa aactcgctgg gccacgggag aatggggtgg ttttttagaa
2220gatattgacc agtttgagcc gcaatttttt ggcatttccc cccgggaagc ggaacaaatg
2280gatccccagc aacgcttact gttagaagta acctgggaag ccttggaacg ggcaaatatt
2340ccggcagaaa gtttacgcca ttcccaaacg ggggtttttg tcggcattag taatagtgat
2400tatgcccagt tgcaggtgcg ggaaaacaat ccgatcaatc cctacatggg gacgggcaac
2460gcccacagta ttgctgcgaa tcgtctgtct tatttcctcg atctccgggg cgtttctctg
2520agcatcgata cggcctgttc ctcttctctg gtggcggtac atctggcctg tcaaagttta
2580atcaacggcg aatcggagtt ggcgatcgcc gccggggtga atttgatttt gacccccgat
2640gtgacccaga cttttaccca ggcgggcatg atgagtaaga cgggccgttg ccagaccttt
2700gatgccgagg ctgatggcta tgtgcggggc gaaggttgtg gggtcgttct cctcaaaccc
2760ctggcccagg cagaacggga cggggataat attctcgcgg tgatccacgg ttcggcggtg
2820aatcaagatg gacgcagtaa cggtttgacg gctcccaacg ggcgatcgca acaggccgtt
2880attcgccaag ccctggccca agccggcatt accgccgccg atttagctta cctagaggcc
2940cacggcaccg gcacgcccct gggtgatccc attgaaatta attccctgaa ggcggtttta
3000caaacggcgc agcgggaaca gccctgtgtg gtgggttctg tgaaaacaaa cattggtcac
3060ctcgaggcag cggcgggcat cgcgggctta atcaaggtga ttttgtccct agagcatgga
3120atgattcccc aacatttgca ttttaagcag ctcaatcccc gcattgatct agacggttta
3180gtgaccattg cgagcaaaga tcagccttgg tcaggcgggt cacaaaaacg gtttgctggg
3240gtaagttcct ttgggtttgg tggcaccaat gcccacgtga ttgtcgggga ctatgctcaa
3300caaaaatctc cccttgctcc tccggctacc caagaccgcc cttggcattt gctgaccctt
3360tctgctaaaa atgcccaggc cttaaatgcc ctgcaaaaaa gctatggaga ctatctggcc
3420caacatccca gcgttgaccc acgcgatctc tgtttgtctg ccaataccgg gcgatcgccc
3480ctcaaagaac gtcgtttttt tgtctttaaa caagtcgccg atttacaaca aactctcaat
3540caagattttc tggcccaacc acgcctcagt tcccccgcaa aaattgcctt tttgtttacg
3600gggcaaggtt cccaatacta cggcatgggg caacaactgt accaaaccag cccagtattt
3660cggcaagtgc tggatgagtg cgatcgcctc tggcagacct attcccccga agcccctgcc
3720ctcaccgacc tgctgtacgg taaccataac cctgacctcg tccacgaaac tgtctatacc
3780cagcccctcc tctttgctgt tgaatatgcg atcgcccaac tatggttaag ctggggcgtg
3840acgccagact tttgcatggg ccatagcgtc ggcgaatatg tcgcggcttg tctggcgggg
3900gtattttccc tggcagacgg catgaaatta attacggccc ggggcaaact gatgcacgcc
3960ctacccagca atggcagtat ggcggcggtc tttgccgata aaacggtcat caaaccctac
4020ctatcggagc atttgaccgt cggagccgaa aacggttccc atttggtgct atcaggaaag
4080accccctgcc tcgaagccag tattcacaaa ctccaaagcc aagggatcaa aaccaaaccc
4140ctcaaggttt cccatgcttt ccactcccct ttgatggctc ccatgctggc agagtttcgg
4200gaaattgctg aacaaattac tttccacccg ccgcgtatcc cgctcatttc caatgtcacg
4260ggcggccaga ttgaagcgga aattgcccag gccgactatt gggttaagca cgtttcgcaa
4320cccgtcaaat ttgtccagag catccaaacc ctggcccaag cgggtgtcaa tgtttatctc
4380gaaatcggcg taaaaccagt gctcctgagt atgggacgcc attgcttagc tgaacaagaa
4440gcggtttggt tgcccagttt acgtccccat agtgagcctt ggccggaaat tttgaccagt
4500ctcggcaaac tgtatgagca agggctaaac attgactggc agaccgtgga agctggcgat
4560cgccgccgga aactgattct gcccacctat cccttccaac ggcaacgata ttggtttaat
4620caaggctctt ggcaaactgt tgagaccgaa tctgtgaacc caggccctga cgatctcaat
4680gattggttgt atcaggtggc gtggacgccc ctggacactt tgcccccggc ccctgaaccg
4740tcggctaagc tgtggttaat cttgggcgat cgccatgatc accagcccat tgaagcccaa
4800tttaaaaacg cccagcgggt gtatctcggc caaagcaatc attttccgac gaatgccccc
4860tgggaagtat ctgccgatgc gttggataat ttatttactc acgtcggctc ccaaaattta
4920gcaggcatcc tttacctgtg tcccccaggg gaagacccag aagacctaga tgaaattcaa
4980aagcaaacca gtggcttcgc cctccaactg atccaaaccc tgtatcaaca aaagatcgcg
5040gttccctgct ggtttgtgac ccaccagagc caacgggtgc ttgaaaccga tgctgtcacc
5100ggatttgccc aagggggatt atggggactc gcccaggcga tcgccctcga acatccagag
5160ttgtgggggg gaattattga tgtcgatgac agcctgccaa attttgccca gatttgccaa
5220caaagacagg tgcagcagtt ggccgtgcgg caccaaaaac tctacggggc acagctcaaa
5280aagcaaccgt cactgcccca gaaaaatctc cagattcaac cccaacagac ctatctagtg
5340acagggggac tgggggccat tggccgtaaa attgcccaat ggctagccgc agcaggagca
5400gaaaaagtaa ttctcgtcag ccggcgcgct ccggcagcgg atcagcagac gttaccgacc
5460aatgcggtgg tttatccttg cgatttagcc gacgcagccc aggtggcaaa gctgtttcaa
5520acctatcccc acatcaaagg aattttccat gcggcgggta ccttagctga tggtttgctg
5580caacaacaaa cttggcaaaa gttccagacc gtcgccgccg ccaaaatgaa agggacatgg
5640catctgcacc gccatagtca aaagctcgat ctggattttt ttgtgttgtt ttcctctgtg
5700gcaggggtgc tcggttcacc gggacagggg aattatgccg ccgcaaaccg gggcatggcg
5760gcgatcgccc aatatcgaca agcccaaggt ttacccgccc tggcgatcca ttgggggcct
5820tgggccgaag ggggaatggc caactccctc agcaaccaaa atttagcgtg gctgccgccc
5880ccccagggac taacaatcct cgaaaaagtc ttgggcgccc agggggaaat gggggtcttt
5940aaaccggact ggcaaaacct ggccaaacag ttccccgaat ttgccaaaac ccattacttt
6000gcagccgtta ttccctctgc tgaggctgtg cccccaacgg cttcaatttt tgacaaatta
6060atcaacctag aagcttctca gcgggctgac tatctactgg attatctgcg gcggtctgtg
6120gcgcaaatcc tcaagttaga aattgagcaa attcaaagcc acgatagcct gttggatctg
6180ggcatggatt cgttgatgat catggaggcg atcgccagcc tcaagcagga tttacaactg
6240atgttgtacc ccagggaaat ctacgaacgg cccagacttg atgtgttgac ggcctatcta
6300gcggcggaat tcaccaaggc ccatgattct gaagcagcaa cggcggcagc agcgattccc
6360tcccaaagcc tttcggtcaa aacaaaaaaa cagtggcaaa aacctgacca caaaaacccg
6420aatcccattg cctttatcct ctctagcccc cggtcgggtt cgacgttgct gcgggtgatg
6480ttagccggac atccggggtt atattcgccg ccagagctgc atttgctccc ctttgagact
6540atgggcgatc gccaccagga attgggtcta tcccacctcg gcgaagggtt acaacgggcc
6600ttaatggatc tagaaaacct caccccagag gcaagccagg cgaaggtcaa ccaatgggtc
6660aaagcgaata cacccattgc agacatctat gcctatctcc aacggcaggc ggaacaacgt
6720ttactcatcg acaaatctcc cagctacggc agcgatcgcc atattctaga ccacagcgaa
6780atcctctttg accaggccaa atatatccat ctggtacgcc atccctacgc ggtgattgaa
6840tcctttaccc gactgcggat ggataaactg ctgggggccg agcagcagaa cccctacgcc
6900ctcgcggagt ccatttggcg caccagcaac cgcaatattt tagacctggg tcgcacggtt
6960ggtgcggatc gatatctcca ggtgatttac gaagatctcg tccgtgaccc ccgcaaagtt
7020ttgacaaata tttgtgattt cctgggggtg gactttgacg aagcgctcct caatccctac
7080agcggcgatc gccttaccga tggcctccac caacagtcca tgggcgtcgg ggatcccaat
7140ttcctccagc acaaaaccat tgatccggcc ctcgccgaca aatggcgctc aattaccctg
7200cccgctgctc tccagctgga tacgatccag ttggccgaaa cgtttgctta cgatctcccc
7260caggaacccc agctaacacc ccagacccaa tccttgccct cgatggtgga gcggttcgtg
7320acagtgcgcg gtttagaaac ctgtctctgt gagtggggcg atcgccacca accattggtg
7380ctacttctcc acggcatcct cgaacagggg gcctcctggc aactcatcgc gccccagttg
7440gcggcccagg gctattgggt tgtggcccca gacctgcgtg gtcacggcaa atccgcccat
7500gcccagtcct acagcatgct tgattttttg gctgacgtag atgcccttgc caaacaatta
7560ggcgatcgcc cctttacctt ggtgggccac tccatgggtt ccatcatcgg tgccatgtat
7620gcaggaattc gccaaaccca ggtagaaaag ttgatcctcg ttgaaaccat tgtccccaac
7680gacatcgacg acgctgaaac cggtaatcac ctgacgaccc atctcgatta cctcgccgcg
7740cccccccaac acccgatctt ccccagccta gaagtggccg cccgtcgcct ccgccaagcc
7800acgccccaac tacccaaaga cctctcggcg ttcctcaccc agcgcagcac caaatccgtc
7860gaaaaagggg tgcagtggcg ttgggatgct ttcctccgta cccgggcggg cattgaattc
7920aatggcatta gcagacgacg ttacctggcc ctgctcaaag atatccaagc gccgatcacc
7980ctcatctatg gcgatcagag tgaatttaac cgccctgctg atctccaggc gatccaagcg
8040gctctccccc aggcccaacg tttaacggtt gctggcggcc ataacctcca ttttgagaat
8100ccccaggcga tcgcccaaat tgtttatcaa caactccaga cccctgtacc caaaacacaa
8160taa
8163182720PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 18Met Val Gly Gln Phe Ala Asn Phe Val Asp Leu
Leu Gln Tyr Arg Ala 1 5 10
15 Lys Leu Gln Ala Arg Lys Thr Val Phe Ser Phe Leu Ala Asp Gly Glu
20 25 30 Ala Glu
Ser Ala Ala Leu Thr Tyr Gly Glu Leu Asp Gln Lys Ala Gln 35
40 45 Ala Ile Ala Ala Phe Leu Gln
Ala Asn Gln Ala Gln Gly Gln Arg Ala 50 55
60 Leu Leu Leu Tyr Pro Pro Gly Leu Glu Phe Ile Gly
Ala Phe Leu Gly 65 70 75
80 Cys Leu Tyr Ala Gly Val Val Ala Val Pro Ala Tyr Pro Pro Arg Pro
85 90 95 Asn Lys Ser
Phe Asp Arg Leu His Ser Ile Ile Gln Asp Ala Gln Ala 100
105 110 Lys Phe Ala Leu Thr Thr Thr Glu
Leu Lys Asp Lys Ile Ala Asp Arg 115 120
125 Leu Glu Ala Leu Glu Gly Thr Asp Phe His Cys Leu Ala
Thr Asp Gln 130 135 140
Val Glu Leu Ile Ser Gly Lys Asn Trp Gln Lys Pro Asn Ile Ser Gly 145
150 155 160 Thr Asp Leu Ala
Phe Leu Gln Tyr Thr Ser Gly Ser Thr Gly Asp Pro 165
170 175 Lys Gly Val Met Val Ser His His Asn
Leu Ile His Asn Ser Gly Leu 180 185
190 Ile Phe Thr Ser Phe His Met Asn Asp Glu Thr Ile Ile Phe
Ser Trp 195 200 205
Leu Pro Pro His His Asp Met Gly Leu Ile Gly Cys Ile Leu Thr Pro 210
215 220 Ile Tyr Gly Gly Ile
Gln Ala Ile Met Met Ser Pro Phe Ser Phe Leu 225 230
235 240 Gln Asn Pro Leu Ser Trp Leu Lys His Ile
Thr Lys Tyr Lys Ala Thr 245 250
255 Ile Ser Gly Ser Pro Asn Phe Ala Tyr Asp Tyr Cys Val Lys Arg
Ile 260 265 270 Arg
Glu Glu Lys Lys Glu Gly Leu Asp Leu Ser Ser Trp Val Thr Ala 275
280 285 Phe Asn Gly Ala Glu Pro
Ile Arg Ala Val Thr Leu Glu Asn Phe Ala 290 295
300 Lys Thr Phe Ala Thr Ala Gly Phe Gln Lys Ser
Ala Phe Tyr Pro Cys 305 310 315
320 Tyr Gly Met Ala Glu Thr Thr Leu Ile Val Ser Gly Gly Asn Gly Arg
325 330 335 Ala Gln
Leu Pro Gln Glu Ile Ile Val Ser Lys Gln Gly Ile Glu Ala 340
345 350 Asn Gln Val Arg Pro Ala Gln
Gly Thr Glu Thr Thr Val Thr Leu Val 355 360
365 Gly Ser Gly Glu Val Ile Gly Asp Gln Ile Val Lys
Ile Val Asp Pro 370 375 380
Gln Ala Leu Thr Glu Cys Thr Val Gly Glu Ile Gly Glu Val Trp Val 385
390 395 400 Lys Gly Glu
Ser Val Ala Gln Gly Tyr Trp Gln Lys Pro Asp Leu Thr 405
410 415 Gln Gln Gln Phe Gln Gly Asn Val
Gly Ala Glu Thr Gly Phe Leu Arg 420 425
430 Thr Gly Asp Leu Gly Phe Leu Gln Gly Gly Glu Leu Tyr
Ile Thr Gly 435 440 445
Arg Leu Lys Asp Leu Leu Ile Ile Arg Gly Arg Asn His Tyr Pro Gln 450
455 460 Asp Ile Glu Leu
Thr Val Glu Val Ala His Pro Ala Leu Arg Gln Gly 465 470
475 480 Ala Gly Ala Ala Val Ser Val Asp Val
Asn Gly Glu Glu Gln Leu Val 485 490
495 Ile Val Gln Glu Val Glu Arg Lys Tyr Ala Arg Lys Leu Asn
Val Ala 500 505 510
Ala Val Ala Gln Ala Ile Arg Gly Ala Ile Ala Ala Glu His Gln Leu
515 520 525 Gln Pro Gln Ala
Ile Cys Phe Ile Lys Pro Gly Ser Ile Pro Lys Thr 530
535 540 Ser Ser Gly Lys Ile Arg Arg His
Ala Cys Lys Ala Gly Phe Leu Asp 545 550
555 560 Gly Ser Leu Ala Val Val Gly Glu Trp Gln Pro Ser
His Gln Lys Glu 565 570
575 Gly Lys Gly Ile Gly Thr Gln Ala Val Thr Pro Ser Thr Thr Thr Ser
580 585 590 Thr Asn Phe
Pro Leu Pro Asp Gln His Gln Gln Gln Ile Glu Ala Trp 595
600 605 Leu Lys Asp Asn Ile Ala His Arg
Leu Gly Ile Thr Pro Gln Gln Leu 610 615
620 Asp Glu Thr Glu Pro Phe Ala Ser Tyr Gly Leu Asp Ser
Val Gln Ala 625 630 635
640 Val Gln Val Thr Ala Asp Leu Glu Asp Trp Leu Gly Arg Lys Leu Asp
645 650 655 Pro Thr Leu Ala
Tyr Asp Tyr Pro Thr Ile Arg Thr Leu Ala Gln Phe 660
665 670 Leu Val Gln Gly Asn Gln Ala Leu Glu
Lys Ile Pro Gln Val Pro Lys 675 680
685 Ile Gln Gly Lys Glu Ile Ala Val Val Gly Leu Ser Cys Arg
Phe Pro 690 695 700
Gln Ala Asp Asn Pro Glu Ala Phe Trp Glu Leu Leu Arg Asn Gly Lys 705
710 715 720 Asp Gly Val Arg Pro
Leu Lys Thr Arg Trp Ala Thr Gly Glu Trp Gly 725
730 735 Gly Phe Leu Glu Asp Ile Asp Gln Phe Glu
Pro Gln Phe Phe Gly Ile 740 745
750 Ser Pro Arg Glu Ala Glu Gln Met Asp Pro Gln Gln Arg Leu Leu
Leu 755 760 765 Glu
Val Thr Trp Glu Ala Leu Glu Arg Ala Asn Ile Pro Ala Glu Ser 770
775 780 Leu Arg His Ser Gln Thr
Gly Val Phe Val Gly Ile Ser Asn Ser Asp 785 790
795 800 Tyr Ala Gln Leu Gln Val Arg Glu Asn Asn Pro
Ile Asn Pro Tyr Met 805 810
815 Gly Thr Gly Asn Ala His Ser Ile Ala Ala Asn Arg Leu Ser Tyr Phe
820 825 830 Leu Asp
Leu Arg Gly Val Ser Leu Ser Ile Asp Thr Ala Cys Ser Ser 835
840 845 Ser Leu Val Ala Val His Leu
Ala Cys Gln Ser Leu Ile Asn Gly Glu 850 855
860 Ser Glu Leu Ala Ile Ala Ala Gly Val Asn Leu Ile
Leu Thr Pro Asp 865 870 875
880 Val Thr Gln Thr Phe Thr Gln Ala Gly Met Met Ser Lys Thr Gly Arg
885 890 895 Cys Gln Thr
Phe Asp Ala Glu Ala Asp Gly Tyr Val Arg Gly Glu Gly 900
905 910 Cys Gly Val Val Leu Leu Lys Pro
Leu Ala Gln Ala Glu Arg Asp Gly 915 920
925 Asp Asn Ile Leu Ala Val Ile His Gly Ser Ala Val Asn
Gln Asp Gly 930 935 940
Arg Ser Asn Gly Leu Thr Ala Pro Asn Gly Arg Ser Gln Gln Ala Val 945
950 955 960 Ile Arg Gln Ala
Leu Ala Gln Ala Gly Ile Thr Ala Ala Asp Leu Ala 965
970 975 Tyr Leu Glu Ala His Gly Thr Gly Thr
Pro Leu Gly Asp Pro Ile Glu 980 985
990 Ile Asn Ser Leu Lys Ala Val Leu Gln Thr Ala Gln Arg
Glu Gln Pro 995 1000 1005
Cys Val Val Gly Ser Val Lys Thr Asn Ile Gly His Leu Glu Ala
1010 1015 1020 Ala Ala Gly
Ile Ala Gly Leu Ile Lys Val Ile Leu Ser Leu Glu 1025
1030 1035 His Gly Met Ile Pro Gln His Leu
His Phe Lys Gln Leu Asn Pro 1040 1045
1050 Arg Ile Asp Leu Asp Gly Leu Val Thr Ile Ala Ser Lys
Asp Gln 1055 1060 1065
Pro Trp Ser Gly Gly Ser Gln Lys Arg Phe Ala Gly Val Ser Ser 1070
1075 1080 Phe Gly Phe Gly Gly
Thr Asn Ala His Val Ile Val Gly Asp Tyr 1085 1090
1095 Ala Gln Gln Lys Ser Pro Leu Ala Pro Pro
Ala Thr Gln Asp Arg 1100 1105 1110
Pro Trp His Leu Leu Thr Leu Ser Ala Lys Asn Ala Gln Ala Leu
1115 1120 1125 Asn Ala
Leu Gln Lys Ser Tyr Gly Asp Tyr Leu Ala Gln His Pro 1130
1135 1140 Ser Val Asp Pro Arg Asp Leu
Cys Leu Ser Ala Asn Thr Gly Arg 1145 1150
1155 Ser Pro Leu Lys Glu Arg Arg Phe Phe Val Phe Lys
Gln Val Ala 1160 1165 1170
Asp Leu Gln Gln Thr Leu Asn Gln Asp Phe Leu Ala Gln Pro Arg 1175
1180 1185 Leu Ser Ser Pro Ala
Lys Ile Ala Phe Leu Phe Thr Gly Gln Gly 1190 1195
1200 Ser Gln Tyr Tyr Gly Met Gly Gln Gln Leu
Tyr Gln Thr Ser Pro 1205 1210 1215
Val Phe Arg Gln Val Leu Asp Glu Cys Asp Arg Leu Trp Gln Thr
1220 1225 1230 Tyr Ser
Pro Glu Ala Pro Ala Leu Thr Asp Leu Leu Tyr Gly Asn 1235
1240 1245 His Asn Pro Asp Leu Val His
Glu Thr Val Tyr Thr Gln Pro Leu 1250 1255
1260 Leu Phe Ala Val Glu Tyr Ala Ile Ala Gln Leu Trp
Leu Ser Trp 1265 1270 1275
Gly Val Thr Pro Asp Phe Cys Met Gly His Ser Val Gly Glu Tyr 1280
1285 1290 Val Ala Ala Cys Leu
Ala Gly Val Phe Ser Leu Ala Asp Gly Met 1295 1300
1305 Lys Leu Ile Thr Ala Arg Gly Lys Leu Met
His Ala Leu Pro Ser 1310 1315 1320
Asn Gly Ser Met Ala Ala Val Phe Ala Asp Lys Thr Val Ile Lys
1325 1330 1335 Pro Tyr
Leu Ser Glu His Leu Thr Val Gly Ala Glu Asn Gly Ser 1340
1345 1350 His Leu Val Leu Ser Gly Lys
Thr Pro Cys Leu Glu Ala Ser Ile 1355 1360
1365 His Lys Leu Gln Ser Gln Gly Ile Lys Thr Lys Pro
Leu Lys Val 1370 1375 1380
Ser His Ala Phe His Ser Pro Leu Met Ala Pro Met Leu Ala Glu 1385
1390 1395 Phe Arg Glu Ile Ala
Glu Gln Ile Thr Phe His Pro Pro Arg Ile 1400 1405
1410 Pro Leu Ile Ser Asn Val Thr Gly Gly Gln
Ile Glu Ala Glu Ile 1415 1420 1425
Ala Gln Ala Asp Tyr Trp Val Lys His Val Ser Gln Pro Val Lys
1430 1435 1440 Phe Val
Gln Ser Ile Gln Thr Leu Ala Gln Ala Gly Val Asn Val 1445
1450 1455 Tyr Leu Glu Ile Gly Val Lys
Pro Val Leu Leu Ser Met Gly Arg 1460 1465
1470 His Cys Leu Ala Glu Gln Glu Ala Val Trp Leu Pro
Ser Leu Arg 1475 1480 1485
Pro His Ser Glu Pro Trp Pro Glu Ile Leu Thr Ser Leu Gly Lys 1490
1495 1500 Leu Tyr Glu Gln Gly
Leu Asn Ile Asp Trp Gln Thr Val Glu Ala 1505 1510
1515 Gly Asp Arg Arg Arg Lys Leu Ile Leu Pro
Thr Tyr Pro Phe Gln 1520 1525 1530
Arg Gln Arg Tyr Trp Phe Asn Gln Gly Ser Trp Gln Thr Val Glu
1535 1540 1545 Thr Glu
Ser Val Asn Pro Gly Pro Asp Asp Leu Asn Asp Trp Leu 1550
1555 1560 Tyr Gln Val Ala Trp Thr Pro
Leu Asp Thr Leu Pro Pro Ala Pro 1565 1570
1575 Glu Pro Ser Ala Lys Leu Trp Leu Ile Leu Gly Asp
Arg His Asp 1580 1585 1590
His Gln Pro Ile Glu Ala Gln Phe Lys Asn Ala Gln Arg Val Tyr 1595
1600 1605 Leu Gly Gln Ser Asn
His Phe Pro Thr Asn Ala Pro Trp Glu Val 1610 1615
1620 Ser Ala Asp Ala Leu Asp Asn Leu Phe Thr
His Val Gly Ser Gln 1625 1630 1635
Asn Leu Ala Gly Ile Leu Tyr Leu Cys Pro Pro Gly Glu Asp Pro
1640 1645 1650 Glu Asp
Leu Asp Glu Ile Gln Lys Gln Thr Ser Gly Phe Ala Leu 1655
1660 1665 Gln Leu Ile Gln Thr Leu Tyr
Gln Gln Lys Ile Ala Val Pro Cys 1670 1675
1680 Trp Phe Val Thr His Gln Ser Gln Arg Val Leu Glu
Thr Asp Ala 1685 1690 1695
Val Thr Gly Phe Ala Gln Gly Gly Leu Trp Gly Leu Ala Gln Ala 1700
1705 1710 Ile Ala Leu Glu His
Pro Glu Leu Trp Gly Gly Ile Ile Asp Val 1715 1720
1725 Asp Asp Ser Leu Pro Asn Phe Ala Gln Ile
Cys Gln Gln Arg Gln 1730 1735 1740
Val Gln Gln Leu Ala Val Arg His Gln Lys Leu Tyr Gly Ala Gln
1745 1750 1755 Leu Lys
Lys Gln Pro Ser Leu Pro Gln Lys Asn Leu Gln Ile Gln 1760
1765 1770 Pro Gln Gln Thr Tyr Leu Val
Thr Gly Gly Leu Gly Ala Ile Gly 1775 1780
1785 Arg Lys Ile Ala Gln Trp Leu Ala Ala Ala Gly Ala
Glu Lys Val 1790 1795 1800
Ile Leu Val Ser Arg Arg Ala Pro Ala Ala Asp Gln Gln Thr Leu 1805
1810 1815 Pro Thr Asn Ala Val
Val Tyr Pro Cys Asp Leu Ala Asp Ala Ala 1820 1825
1830 Gln Val Ala Lys Leu Phe Gln Thr Tyr Pro
His Ile Lys Gly Ile 1835 1840 1845
Phe His Ala Ala Gly Thr Leu Ala Asp Gly Leu Leu Gln Gln Gln
1850 1855 1860 Thr Trp
Gln Lys Phe Gln Thr Val Ala Ala Ala Lys Met Lys Gly 1865
1870 1875 Thr Trp His Leu His Arg His
Ser Gln Lys Leu Asp Leu Asp Phe 1880 1885
1890 Phe Val Leu Phe Ser Ser Val Ala Gly Val Leu Gly
Ser Pro Gly 1895 1900 1905
Gln Gly Asn Tyr Ala Ala Ala Asn Arg Gly Met Ala Ala Ile Ala 1910
1915 1920 Gln Tyr Arg Gln Ala
Gln Gly Leu Pro Ala Leu Ala Ile His Trp 1925 1930
1935 Gly Pro Trp Ala Glu Gly Gly Met Ala Asn
Ser Leu Ser Asn Gln 1940 1945 1950
Asn Leu Ala Trp Leu Pro Pro Pro Gln Gly Leu Thr Ile Leu Glu
1955 1960 1965 Lys Val
Leu Gly Ala Gln Gly Glu Met Gly Val Phe Lys Pro Asp 1970
1975 1980 Trp Gln Asn Leu Ala Lys Gln
Phe Pro Glu Phe Ala Lys Thr His 1985 1990
1995 Tyr Phe Ala Ala Val Ile Pro Ser Ala Glu Ala Val
Pro Pro Thr 2000 2005 2010
Ala Ser Ile Phe Asp Lys Leu Ile Asn Leu Glu Ala Ser Gln Arg 2015
2020 2025 Ala Asp Tyr Leu Leu
Asp Tyr Leu Arg Arg Ser Val Ala Gln Ile 2030 2035
2040 Leu Lys Leu Glu Ile Glu Gln Ile Gln Ser
His Asp Ser Leu Leu 2045 2050 2055
Asp Leu Gly Met Asp Ser Leu Met Ile Met Glu Ala Ile Ala Ser
2060 2065 2070 Leu Lys
Gln Asp Leu Gln Leu Met Leu Tyr Pro Arg Glu Ile Tyr 2075
2080 2085 Glu Arg Pro Arg Leu Asp Val
Leu Thr Ala Tyr Leu Ala Ala Glu 2090 2095
2100 Phe Thr Lys Ala His Asp Ser Glu Ala Ala Thr Ala
Ala Ala Ala 2105 2110 2115
Ile Pro Ser Gln Ser Leu Ser Val Lys Thr Lys Lys Gln Trp Gln 2120
2125 2130 Lys Pro Asp His Lys
Asn Pro Asn Pro Ile Ala Phe Ile Leu Ser 2135 2140
2145 Ser Pro Arg Ser Gly Ser Thr Leu Leu Arg
Val Met Leu Ala Gly 2150 2155 2160
His Pro Gly Leu Tyr Ser Pro Pro Glu Leu His Leu Leu Pro Phe
2165 2170 2175 Glu Thr
Met Gly Asp Arg His Gln Glu Leu Gly Leu Ser His Leu 2180
2185 2190 Gly Glu Gly Leu Gln Arg Ala
Leu Met Asp Leu Glu Asn Leu Thr 2195 2200
2205 Pro Glu Ala Ser Gln Ala Lys Val Asn Gln Trp Val
Lys Ala Asn 2210 2215 2220
Thr Pro Ile Ala Asp Ile Tyr Ala Tyr Leu Gln Arg Gln Ala Glu 2225
2230 2235 Gln Arg Leu Leu Ile
Asp Lys Ser Pro Ser Tyr Gly Ser Asp Arg 2240 2245
2250 His Ile Leu Asp His Ser Glu Ile Leu Phe
Asp Gln Ala Lys Tyr 2255 2260 2265
Ile His Leu Val Arg His Pro Tyr Ala Val Ile Glu Ser Phe Thr
2270 2275 2280 Arg Leu
Arg Met Asp Lys Leu Leu Gly Ala Glu Gln Gln Asn Pro 2285
2290 2295 Tyr Ala Leu Ala Glu Ser Ile
Trp Arg Thr Ser Asn Arg Asn Ile 2300 2305
2310 Leu Asp Leu Gly Arg Thr Val Gly Ala Asp Arg Tyr
Leu Gln Val 2315 2320 2325
Ile Tyr Glu Asp Leu Val Arg Asp Pro Arg Lys Val Leu Thr Asn 2330
2335 2340 Ile Cys Asp Phe Leu
Gly Val Asp Phe Asp Glu Ala Leu Leu Asn 2345 2350
2355 Pro Tyr Ser Gly Asp Arg Leu Thr Asp Gly
Leu His Gln Gln Ser 2360 2365 2370
Met Gly Val Gly Asp Pro Asn Phe Leu Gln His Lys Thr Ile Asp
2375 2380 2385 Pro Ala
Leu Ala Asp Lys Trp Arg Ser Ile Thr Leu Pro Ala Ala 2390
2395 2400 Leu Gln Leu Asp Thr Ile Gln
Leu Ala Glu Thr Phe Ala Tyr Asp 2405 2410
2415 Leu Pro Gln Glu Pro Gln Leu Thr Pro Gln Thr Gln
Ser Leu Pro 2420 2425 2430
Ser Met Val Glu Arg Phe Val Thr Val Arg Gly Leu Glu Thr Cys 2435
2440 2445 Leu Cys Glu Trp Gly
Asp Arg His Gln Pro Leu Val Leu Leu Leu 2450 2455
2460 His Gly Ile Leu Glu Gln Gly Ala Ser Trp
Gln Leu Ile Ala Pro 2465 2470 2475
Gln Leu Ala Ala Gln Gly Tyr Trp Val Val Ala Pro Asp Leu Arg
2480 2485 2490 Gly His
Gly Lys Ser Ala His Ala Gln Ser Tyr Ser Met Leu Asp 2495
2500 2505 Phe Leu Ala Asp Val Asp Ala
Leu Ala Lys Gln Leu Gly Asp Arg 2510 2515
2520 Pro Phe Thr Leu Val Gly His Ser Met Gly Ser Ile
Ile Gly Ala 2525 2530 2535
Met Tyr Ala Gly Ile Arg Gln Thr Gln Val Glu Lys Leu Ile Leu 2540
2545 2550 Val Glu Thr Ile Val
Pro Asn Asp Ile Asp Asp Ala Glu Thr Gly 2555 2560
2565 Asn His Leu Thr Thr His Leu Asp Tyr Leu
Ala Ala Pro Pro Gln 2570 2575 2580
His Pro Ile Phe Pro Ser Leu Glu Val Ala Ala Arg Arg Leu Arg
2585 2590 2595 Gln Ala
Thr Pro Gln Leu Pro Lys Asp Leu Ser Ala Phe Leu Thr 2600
2605 2610 Gln Arg Ser Thr Lys Ser Val
Glu Lys Gly Val Gln Trp Arg Trp 2615 2620
2625 Asp Ala Phe Leu Arg Thr Arg Ala Gly Ile Glu Phe
Asn Gly Ile 2630 2635 2640
Ser Arg Arg Arg Tyr Leu Ala Leu Leu Lys Asp Ile Gln Ala Pro 2645
2650 2655 Ile Thr Leu Ile Tyr
Gly Asp Gln Ser Glu Phe Asn Arg Pro Ala 2660 2665
2670 Asp Leu Gln Ala Ile Gln Ala Ala Leu Pro
Gln Ala Gln Arg Leu 2675 2680 2685
Thr Val Ala Gly Gly His Asn Leu His Phe Glu Asn Pro Gln Ala
2690 2695 2700 Ile Ala
Gln Ile Val Tyr Gln Gln Leu Gln Thr Pro Val Pro Lys 2705
2710 2715 Thr Gln 2720
198163DNAArtificial SequenceDescription of Artificial Sequence Synthetic
polynucleotide 19atggttggtc aatttgcaaa tttcgtcgat ctgctccagt
acagagctaa acttcaggcg 60cggaaaaccg tgtttagttt tctggctgat ggcgaagcgg
aatctgcggc cctgacctac 120ggagaattag accaaaaagc ccaggcgatc gccgcttttt
tgcaagctaa ccaggctcaa 180gggcaacggg cattattact ttatccaccg ggtttagagt
ttatcggtgc ctttttggga 240tgtttgtatg ctggtgttgt tgcggtgcca gcttacccac
cacggccgaa taaatccttt 300gaccgcctcc atagcattat ccaagatgcc caggcaaaat
ttgccctcac cacaacagaa 360cttaaagata aaattgccga tcgcctcgaa gctttagaag
gtacggattt tcattgtttg 420gctacagatc aagttgaatt aatttcagga aaaaattggc
aaaaaccgaa catttccggc 480acagatctcg cttttttgca atacaccagt ggctccacgg
gcgatcctaa aggagtgatg 540gtttcccacc acaatttgat ccacaactcc ggcttgatcc
ggaatgcgct ggctatcgac 600ttaaaagata ctcttttatc ttggatgccc ttaacccatg
acatggggct catagcttgc 660caccttgttc ctgccttagc cggaatcaat caaaatttaa
tgccgacaga attatttatt 720cgaagaccta ttctctggat gaaaaaagct catgaacata
aagccagcat tctatcctca 780cctaattttg gatacaatta ctttcttaaa tttctgaaag
acaataaaag ttacgactgg 840gatttatccc atatcagggt cattgcaaac ggggccgaac
cgatccgcgc tgtgaccctc 900gaaaattttg cgaaaacctt cgctacagca ggctttcaaa
aatcagcatt ttatccctgt 960tatggtatgg ctgaaaccac cctgatcgtt tccggtggta
atggtcgtgc ccagcttccc 1020caggaaatta tcgtcagcaa acagggcatc gaagcaaacc
aagttcgccc tgcccaaggg 1080acagaaacaa cggtgacctt ggtcggcagt ggtgaagtga
ttggcgacca aattgtcaaa 1140attgttgacc cccaggcttt aacagaatgt accgtcggtg
aaattggcga agtatgggtt 1200aagggcgaaa gtgttgccca gggctattgg caaaagccag
acctcaccca gcaacaattc 1260cagggaaacg tcggtgcaga aacgggcttt ttacgcacgg
gcgatctggg ttttttgcaa 1320ggtggcgaac tgtatattac gggtcgttta aaggatctcc
tgattatccg ggggcgcaac 1380cactatcccc aggacattga attaaccgtc gaagtggccc
atcccgcttt acgacagggg 1440gccggagccg ctgtatcagt agacgttaac ggggaagaac
agttagtcat tgtccaggaa 1500gttgagcgta aatatgcccg caaattaaat gtcgcggcag
tagcccaagc tattcgtggg 1560gcgatcgccg ccgaacatca actgcaaccc caggccattt
gttttattaa acccggtagc 1620attcccaaaa catccagcgg gaagattcgt cgccatgcct
gcaaagctgg ttttctagac 1680ggaagcttgg ctgtggttgg ggagtggcaa cccagccacc
aaaaagaagg aaaaggaatt 1740gggacacaag ccgttacccc ttctacgaca acatcaacga
attttcccct gcctgaccag 1800caccaacagc aaattgaagc ctggcttaag gataatattg
cccatcgcct cggcattacg 1860ccccaacaat tagacgaaac ggaacccttt gcaagttatg
ggctggattc agtgcaagca 1920gtacaggtca cagccgactt agaggattgg ctaggtcgaa
aattagaccc cactctggcc 1980tacgattatc cgaccattcg caccctggct cagtttttgg
tccagggtaa tcaagcgcta 2040gagaaaatac cacaggtgcc gaaaattcag ggcaaagaaa
ttgccgtggt gggtctcagt 2100tgtcgttttc cccaagctga caaccccgaa gctttttggg
aattattacg taatggtaaa 2160gatggagttc gcccccttaa aactcgctgg gccacgggag
aatggggtgg ttttttagaa 2220gatattgacc agtttgagcc gcaatttttt ggcatttccc
cccgggaagc ggaacaaatg 2280gatccccagc aacgcttact gttagaagta acctgggaag
ccttggaacg ggcaaatatt 2340ccggcagaaa gtttacgcca ttcccaaacg ggggtttttg
tcggcattag taatagtgat 2400tatgcccagt tgcaggtgcg ggaaaacaat ccgatcaatc
cctacatggg gacgggcaac 2460gcccacagta ttgctgcgaa tcgtctgtct tatttcctcg
atctccgggg cgtttctctg 2520agcatcgata cggcctgttc ctcttctctg gtggcggtac
atctggcctg tcaaagttta 2580atcaacggcg aatcggagtt ggcgatcgcc gccggggtga
atttgatttt gacccccgat 2640gtgacccaga cttttaccca ggcgggcatg atgagtaaga
cgggccgttg ccagaccttt 2700gatgccgagg ctgatggcta tgtgcggggc gaaggttgtg
gggtcgttct cctcaaaccc 2760ctggcccagg cagaacggga cggggataat attctcgcgg
tgatccacgg ttcggcggtg 2820aatcaagatg gacgcagtaa cggtttgacg gctcccaacg
ggcgatcgca acaggccgtt 2880attcgccaag ccctggccca agccggcatt accgccgccg
atttagctta cctagaggcc 2940cacggcaccg gcacgcccct gggtgatccc attgaaatta
attccctgaa ggcggtttta 3000caaacggcgc agcgggaaca gccctgtgtg gtgggttctg
tgaaaacaaa cattggtcac 3060ctcgaggcag cggcgggcat cgcgggctta atcaaggtga
ttttgtccct agagcatgga 3120atgattcccc aacatttgca ttttaagcag ctcaatcccc
gcattgatct agacggttta 3180gtgaccattg cgagcaaaga tcagccttgg tcaggcgggt
cacaaaaacg gtttgctggg 3240gtaagttcct ttgggtttgg tggcaccaat gcccacgtga
ttgtcgggga ctatgctcaa 3300caaaaatctc cccttgctcc tccggctacc caagaccgcc
cttggcattt gctgaccctt 3360tctgctaaaa atgcccaggc cttaaatgcc ctgcaaaaaa
gctatggaga ctatctggcc 3420caacatccca gcgttgaccc acgcgatctc tgtttgtctg
ccaataccgg gcgatcgccc 3480ctcaaagaac gtcgtttttt tgtctttaaa caagtcgccg
atttacaaca aactctcaat 3540caagattttc tggcccaacc acgcctcagt tcccccgcaa
aaattgcctt tttgtttacg 3600gggcaaggtt cccaatacta cggcatgggg caacaactgt
accaaaccag cccagtattt 3660cggcaagtgc tggatgagtg cgatcgcctc tggcagacct
attcccccga agcccctgcc 3720ctcaccgacc tgctgtacgg taaccataac cctgacctcg
tccacgaaac tgtctatacc 3780cagcccctcc tctttgctgt tgaatatgcg atcgcccaac
tatggttaag ctggggcgtg 3840acgccagact tttgcatggg ccatagcgtc ggcgaatatg
tcgcggcttg tctggcgggg 3900gtattttccc tggcagacgg catgaaatta attacggccc
ggggcaaact gatgcacgcc 3960ctacccagca atggcagtat ggcggcggtc tttgccgata
aaacggtcat caaaccctac 4020ctatcggagc atttgaccgt cggagccgaa aacggttccc
atttggtgct atcaggaaag 4080accccctgcc tcgaagccag tattcacaaa ctccaaagcc
aagggatcaa aaccaaaccc 4140ctcaaggttt cccatgcttt ccactcccct ttgatggctc
ccatgctggc agagtttcgg 4200gaaattgctg aacaaattac tttccacccg ccgcgtatcc
cgctcatttc caatgtcacg 4260ggcggccaga ttgaagcgga aattgcccag gccgactatt
gggttaagca cgtttcgcaa 4320cccgtcaaat ttgtccagag catccaaacc ctggcccaag
cgggtgtcaa tgtttatctc 4380gaaatcggcg taaaaccagt gctcctgagt atgggacgcc
attgcttagc tgaacaagaa 4440gcggtttggt tgcccagttt acgtccccat agtgagcctt
ggccggaaat tttgaccagt 4500ctcggcaaac tgtatgagca agggctaaac attgactggc
agaccgtgga agctggcgat 4560cgccgccgga aactgattct gcccacctat cccttccaac
ggcaacgata ttggtttaat 4620caaggctctt ggcaaactgt tgagaccgaa tctgtgaacc
caggccctga cgatctcaat 4680gattggttgt atcaggtggc gtggacgccc ctggacactt
tgcccccggc ccctgaaccg 4740tcggctaagc tgtggttaat cttgggcgat cgccatgatc
accagcccat tgaagcccaa 4800tttaaaaacg cccagcgggt gtatctcggc caaagcaatc
attttccgac gaatgccccc 4860tgggaagtat ctgccgatgc gttggataat ttatttactc
acgtcggctc ccaaaattta 4920gcaggcatcc tttacctgtg tcccccaggg gaagacccag
aagacctaga tgaaattcaa 4980aagcaaacca gtggcttcgc cctccaactg atccaaaccc
tgtatcaaca aaagatcgcg 5040gttccctgct ggtttgtgac ccaccagagc caacgggtgc
ttgaaaccga tgctgtcacc 5100ggatttgccc aagggggatt atggggactc gcccaggcga
tcgccctcga acatccagag 5160ttgtgggggg gaattattga tgtcgatgac agcctgccaa
attttgccca gatttgccaa 5220caaagacagg tgcagcagtt ggccgtgcgg caccaaaaac
tctacggggc acagctcaaa 5280aagcaaccgt cactgcccca gaaaaatctc cagattcaac
cccaacagac ctatctagtg 5340acagggggac tgggggccat tggccgtaaa attgcccaat
ggctagccgc agcaggagca 5400gaaaaagtaa ttctcgtcag ccggcgcgct ccggcagcgg
atcagcagac gttaccgacc 5460aatgcggtgg tttatccttg cgatttagcc gacgcagccc
aggtggcaaa gctgtttcaa 5520acctatcccc acatcaaagg aattttccat gcggcgggta
ccttagctga tggtttgctg 5580caacaacaaa cttggcaaaa gttccagacc gtcgccgccg
ccaaaatgaa agggacatgg 5640catctgcacc gccatagtca aaagctcgat ctggattttt
ttgtgttgtt ttcctctgtg 5700gcaggggtgc tcggttcacc gggacagggg aattatgccg
ccgcaaaccg gggcatggcg 5760gcgatcgccc aatatcgaca agcccaaggt ttacccgccc
tggcgatcca ttgggggcct 5820tgggccgaag ggggaatggc caactccctc agcaaccaaa
atttagcgtg gctgccgccc 5880ccccagggac taacaatcct cgaaaaagtc ttgggcgccc
agggggaaat gggggtcttt 5940aaaccggact ggcaaaacct ggccaaacag ttccccgaat
ttgccaaaac ccattacttt 6000gcagccgtta ttccctctgc tgaggctgtg cccccaacgg
cttcaatttt tgacaaatta 6060atcaacctag aagcttctca gcgggctgac tatctactgg
attatctgcg gcggtctgtg 6120gcgcaaatcc tcaagttaga aattgagcaa attcaaagcc
acgatagcct gttggatctg 6180ggcatggatt cgttgatgat catggaggcg atcgccagcc
tcaagcagga tttacaactg 6240atgttgtacc ccagggaaat ctacgaacgg cccagacttg
atgtgttgac ggcctatcta 6300gcggcggaat tcaccaaggc ccatgattct gaagcagcaa
cggcggcagc agcgattccc 6360tcccaaagcc tttcggtcaa aacaaaaaaa cagtggcaaa
aacctgacca caaaaacccg 6420aatcccattg cctttatcct ctctagcccc cggtcgggtt
cgacgttgct gcgggtgatg 6480ttagccggac atccggggtt atattcgccg ccagagctgc
atttgctccc ctttgagact 6540atgggcgatc gccaccagga attgggtcta tcccacctcg
gcgaagggtt acaacgggcc 6600ttaatggatc tagaaaacct caccccagag gcaagccagg
cgaaggtcaa ccaatgggtc 6660aaagcgaata cacccattgc agacatctat gcctatctcc
aacggcaggc ggaacaacgt 6720ttactcatcg acaaatctcc cagctacggc agcgatcgcc
atattctaga ccacagcgaa 6780atcctctttg accaggccaa atatatccat ctggtacgcc
atccctacgc ggtgattgaa 6840tcctttaccc gactgcggat ggataaactg ctgggggccg
agcagcagaa cccctacgcc 6900ctcgcggagt ccatttggcg caccagcaac cgcaatattt
tagacctggg tcgcacggtt 6960ggtgcggatc gatatctcca ggtgatttac gaagatctcg
tccgtgaccc ccgcaaagtt 7020ttgacaaata tttgtgattt cctgggggtg gactttgacg
aagcgctcct caatccctac 7080agcggcgatc gccttaccga tggcctccac caacagtcca
tgggcgtcgg ggatcccaat 7140ttcctccagc acaaaaccat tgatccggcc ctcgccgaca
aatggcgctc aattaccctg 7200cccgctgctc tccagctgga tacgatccag ttggccgaaa
cgtttgctta cgatctcccc 7260caggaacccc agctaacacc ccagacccaa tccttgccct
cgatggtgga gcggttcgtg 7320acagtgcgcg gtttagaaac ctgtctctgt gagtggggcg
atcgccacca accattggtg 7380ctacttctcc acggcatcct cgaacagggg gcctcctggc
aactcatcgc gccccagttg 7440gcggcccagg gctattgggt tgtggcccca gacctgcgtg
gtcacggcaa atccgcccat 7500gcccagtcct acagcatgct tgattttttg gctgacgtag
atgcccttgc caaacaatta 7560ggcgatcgcc cctttacctt ggtgggccac tccatgggtt
ccatcatcgg tgccatgtat 7620gcaggaattc gccaaaccca ggtagaaaag ttgatcctcg
ttgaaaccat tgtccccaac 7680gacatcgacg acgctgaaac cggtaatcac ctgacgaccc
atctcgatta cctcgccgcg 7740cccccccaac acccgatctt ccccagccta gaagtggccg
cccgtcgcct ccgccaagcc 7800acgccccaac tacccaaaga cctctcggcg ttcctcaccc
agcgcagcac caaatccgtc 7860gaaaaagggg tgcagtggcg ttgggatgct ttcctccgta
cccgggcggg cattgaattc 7920aatggcatta gcagacgacg ttacctggcc ctgctcaaag
atatccaagc gccgatcacc 7980ctcatctatg gcgatcagag tgaatttaac cgccctgctg
atctccaggc gatccaagcg 8040gctctccccc aggcccaacg tttaacggtt gctggcggcc
ataacctcca ttttgagaat 8100ccccaggcga tcgcccaaat tgtttatcaa caactccaga
cccctgtacc caaaacacaa 8160taa
8163202720PRTArtificial SequenceDescription of
Artificial Sequence Synthetic polypeptide 20Met Val Gly Gln Phe Ala
Asn Phe Val Asp Leu Leu Gln Tyr Arg Ala 1 5
10 15 Lys Leu Gln Ala Arg Lys Thr Val Phe Ser Phe
Leu Ala Asp Gly Glu 20 25
30 Ala Glu Ser Ala Ala Leu Thr Tyr Gly Glu Leu Asp Gln Lys Ala
Gln 35 40 45 Ala
Ile Ala Ala Phe Leu Gln Ala Asn Gln Ala Gln Gly Gln Arg Ala 50
55 60 Leu Leu Leu Tyr Pro Pro
Gly Leu Glu Phe Ile Gly Ala Phe Leu Gly 65 70
75 80 Cys Leu Tyr Ala Gly Val Val Ala Val Pro Ala
Tyr Pro Pro Arg Pro 85 90
95 Asn Lys Ser Phe Asp Arg Leu His Ser Ile Ile Gln Asp Ala Gln Ala
100 105 110 Lys Phe
Ala Leu Thr Thr Thr Glu Leu Lys Asp Lys Ile Ala Asp Arg 115
120 125 Leu Glu Ala Leu Glu Gly Thr
Asp Phe His Cys Leu Ala Thr Asp Gln 130 135
140 Val Glu Leu Ile Ser Gly Lys Asn Trp Gln Lys Pro
Asn Ile Ser Gly 145 150 155
160 Thr Asp Leu Ala Phe Leu Gln Tyr Thr Ser Gly Ser Thr Gly Asp Pro
165 170 175 Lys Gly Val
Met Val Ser His His Asn Leu Ile His Asn Ser Gly Leu 180
185 190 Ile Arg Asn Ala Leu Ala Ile Asp
Leu Lys Asp Thr Leu Leu Ser Trp 195 200
205 Met Pro Leu Thr His Asp Met Gly Leu Ile Ala Cys His
Leu Val Pro 210 215 220
Ala Leu Ala Gly Ile Asn Gln Asn Leu Met Pro Thr Glu Leu Phe Ile 225
230 235 240 Arg Arg Pro Ile
Leu Trp Met Lys Lys Ala His Glu His Lys Ala Ser 245
250 255 Ile Leu Ser Ser Pro Asn Phe Gly Tyr
Asn Tyr Phe Leu Lys Phe Leu 260 265
270 Lys Asp Asn Lys Ser Tyr Asp Trp Asp Leu Ser His Ile Arg
Val Ile 275 280 285
Ala Asn Gly Ala Glu Pro Ile Arg Ala Val Thr Leu Glu Asn Phe Ala 290
295 300 Lys Thr Phe Ala Thr
Ala Gly Phe Gln Lys Ser Ala Phe Tyr Pro Cys 305 310
315 320 Tyr Gly Met Ala Glu Thr Thr Leu Ile Val
Ser Gly Gly Asn Gly Arg 325 330
335 Ala Gln Leu Pro Gln Glu Ile Ile Val Ser Lys Gln Gly Ile Glu
Ala 340 345 350 Asn
Gln Val Arg Pro Ala Gln Gly Thr Glu Thr Thr Val Thr Leu Val 355
360 365 Gly Ser Gly Glu Val Ile
Gly Asp Gln Ile Val Lys Ile Val Asp Pro 370 375
380 Gln Ala Leu Thr Glu Cys Thr Val Gly Glu Ile
Gly Glu Val Trp Val 385 390 395
400 Lys Gly Glu Ser Val Ala Gln Gly Tyr Trp Gln Lys Pro Asp Leu Thr
405 410 415 Gln Gln
Gln Phe Gln Gly Asn Val Gly Ala Glu Thr Gly Phe Leu Arg 420
425 430 Thr Gly Asp Leu Gly Phe Leu
Gln Gly Gly Glu Leu Tyr Ile Thr Gly 435 440
445 Arg Leu Lys Asp Leu Leu Ile Ile Arg Gly Arg Asn
His Tyr Pro Gln 450 455 460
Asp Ile Glu Leu Thr Val Glu Val Ala His Pro Ala Leu Arg Gln Gly 465
470 475 480 Ala Gly Ala
Ala Val Ser Val Asp Val Asn Gly Glu Glu Gln Leu Val 485
490 495 Ile Val Gln Glu Val Glu Arg Lys
Tyr Ala Arg Lys Leu Asn Val Ala 500 505
510 Ala Val Ala Gln Ala Ile Arg Gly Ala Ile Ala Ala Glu
His Gln Leu 515 520 525
Gln Pro Gln Ala Ile Cys Phe Ile Lys Pro Gly Ser Ile Pro Lys Thr 530
535 540 Ser Ser Gly Lys
Ile Arg Arg His Ala Cys Lys Ala Gly Phe Leu Asp 545 550
555 560 Gly Ser Leu Ala Val Val Gly Glu Trp
Gln Pro Ser His Gln Lys Glu 565 570
575 Gly Lys Gly Ile Gly Thr Gln Ala Val Thr Pro Ser Thr Thr
Thr Ser 580 585 590
Thr Asn Phe Pro Leu Pro Asp Gln His Gln Gln Gln Ile Glu Ala Trp
595 600 605 Leu Lys Asp Asn
Ile Ala His Arg Leu Gly Ile Thr Pro Gln Gln Leu 610
615 620 Asp Glu Thr Glu Pro Phe Ala Ser
Tyr Gly Leu Asp Ser Val Gln Ala 625 630
635 640 Val Gln Val Thr Ala Asp Leu Glu Asp Trp Leu Gly
Arg Lys Leu Asp 645 650
655 Pro Thr Leu Ala Tyr Asp Tyr Pro Thr Ile Arg Thr Leu Ala Gln Phe
660 665 670 Leu Val Gln
Gly Asn Gln Ala Leu Glu Lys Ile Pro Gln Val Pro Lys 675
680 685 Ile Gln Gly Lys Glu Ile Ala Val
Val Gly Leu Ser Cys Arg Phe Pro 690 695
700 Gln Ala Asp Asn Pro Glu Ala Phe Trp Glu Leu Leu Arg
Asn Gly Lys 705 710 715
720 Asp Gly Val Arg Pro Leu Lys Thr Arg Trp Ala Thr Gly Glu Trp Gly
725 730 735 Gly Phe Leu Glu
Asp Ile Asp Gln Phe Glu Pro Gln Phe Phe Gly Ile 740
745 750 Ser Pro Arg Glu Ala Glu Gln Met Asp
Pro Gln Gln Arg Leu Leu Leu 755 760
765 Glu Val Thr Trp Glu Ala Leu Glu Arg Ala Asn Ile Pro Ala
Glu Ser 770 775 780
Leu Arg His Ser Gln Thr Gly Val Phe Val Gly Ile Ser Asn Ser Asp 785
790 795 800 Tyr Ala Gln Leu Gln
Val Arg Glu Asn Asn Pro Ile Asn Pro Tyr Met 805
810 815 Gly Thr Gly Asn Ala His Ser Ile Ala Ala
Asn Arg Leu Ser Tyr Phe 820 825
830 Leu Asp Leu Arg Gly Val Ser Leu Ser Ile Asp Thr Ala Cys Ser
Ser 835 840 845 Ser
Leu Val Ala Val His Leu Ala Cys Gln Ser Leu Ile Asn Gly Glu 850
855 860 Ser Glu Leu Ala Ile Ala
Ala Gly Val Asn Leu Ile Leu Thr Pro Asp 865 870
875 880 Val Thr Gln Thr Phe Thr Gln Ala Gly Met Met
Ser Lys Thr Gly Arg 885 890
895 Cys Gln Thr Phe Asp Ala Glu Ala Asp Gly Tyr Val Arg Gly Glu Gly
900 905 910 Cys Gly
Val Val Leu Leu Lys Pro Leu Ala Gln Ala Glu Arg Asp Gly 915
920 925 Asp Asn Ile Leu Ala Val Ile
His Gly Ser Ala Val Asn Gln Asp Gly 930 935
940 Arg Ser Asn Gly Leu Thr Ala Pro Asn Gly Arg Ser
Gln Gln Ala Val 945 950 955
960 Ile Arg Gln Ala Leu Ala Gln Ala Gly Ile Thr Ala Ala Asp Leu Ala
965 970 975 Tyr Leu Glu
Ala His Gly Thr Gly Thr Pro Leu Gly Asp Pro Ile Glu 980
985 990 Ile Asn Ser Leu Lys Ala Val Leu
Gln Thr Ala Gln Arg Glu Gln Pro 995 1000
1005 Cys Val Val Gly Ser Val Lys Thr Asn Ile Gly
His Leu Glu Ala 1010 1015 1020
Ala Ala Gly Ile Ala Gly Leu Ile Lys Val Ile Leu Ser Leu Glu
1025 1030 1035 His Gly Met
Ile Pro Gln His Leu His Phe Lys Gln Leu Asn Pro 1040
1045 1050 Arg Ile Asp Leu Asp Gly Leu Val
Thr Ile Ala Ser Lys Asp Gln 1055 1060
1065 Pro Trp Ser Gly Gly Ser Gln Lys Arg Phe Ala Gly Val
Ser Ser 1070 1075 1080
Phe Gly Phe Gly Gly Thr Asn Ala His Val Ile Val Gly Asp Tyr 1085
1090 1095 Ala Gln Gln Lys Ser
Pro Leu Ala Pro Pro Ala Thr Gln Asp Arg 1100 1105
1110 Pro Trp His Leu Leu Thr Leu Ser Ala Lys
Asn Ala Gln Ala Leu 1115 1120 1125
Asn Ala Leu Gln Lys Ser Tyr Gly Asp Tyr Leu Ala Gln His Pro
1130 1135 1140 Ser Val
Asp Pro Arg Asp Leu Cys Leu Ser Ala Asn Thr Gly Arg 1145
1150 1155 Ser Pro Leu Lys Glu Arg Arg
Phe Phe Val Phe Lys Gln Val Ala 1160 1165
1170 Asp Leu Gln Gln Thr Leu Asn Gln Asp Phe Leu Ala
Gln Pro Arg 1175 1180 1185
Leu Ser Ser Pro Ala Lys Ile Ala Phe Leu Phe Thr Gly Gln Gly 1190
1195 1200 Ser Gln Tyr Tyr Gly
Met Gly Gln Gln Leu Tyr Gln Thr Ser Pro 1205 1210
1215 Val Phe Arg Gln Val Leu Asp Glu Cys Asp
Arg Leu Trp Gln Thr 1220 1225 1230
Tyr Ser Pro Glu Ala Pro Ala Leu Thr Asp Leu Leu Tyr Gly Asn
1235 1240 1245 His Asn
Pro Asp Leu Val His Glu Thr Val Tyr Thr Gln Pro Leu 1250
1255 1260 Leu Phe Ala Val Glu Tyr Ala
Ile Ala Gln Leu Trp Leu Ser Trp 1265 1270
1275 Gly Val Thr Pro Asp Phe Cys Met Gly His Ser Val
Gly Glu Tyr 1280 1285 1290
Val Ala Ala Cys Leu Ala Gly Val Phe Ser Leu Ala Asp Gly Met 1295
1300 1305 Lys Leu Ile Thr Ala
Arg Gly Lys Leu Met His Ala Leu Pro Ser 1310 1315
1320 Asn Gly Ser Met Ala Ala Val Phe Ala Asp
Lys Thr Val Ile Lys 1325 1330 1335
Pro Tyr Leu Ser Glu His Leu Thr Val Gly Ala Glu Asn Gly Ser
1340 1345 1350 His Leu
Val Leu Ser Gly Lys Thr Pro Cys Leu Glu Ala Ser Ile 1355
1360 1365 His Lys Leu Gln Ser Gln Gly
Ile Lys Thr Lys Pro Leu Lys Val 1370 1375
1380 Ser His Ala Phe His Ser Pro Leu Met Ala Pro Met
Leu Ala Glu 1385 1390 1395
Phe Arg Glu Ile Ala Glu Gln Ile Thr Phe His Pro Pro Arg Ile 1400
1405 1410 Pro Leu Ile Ser Asn
Val Thr Gly Gly Gln Ile Glu Ala Glu Ile 1415 1420
1425 Ala Gln Ala Asp Tyr Trp Val Lys His Val
Ser Gln Pro Val Lys 1430 1435 1440
Phe Val Gln Ser Ile Gln Thr Leu Ala Gln Ala Gly Val Asn Val
1445 1450 1455 Tyr Leu
Glu Ile Gly Val Lys Pro Val Leu Leu Ser Met Gly Arg 1460
1465 1470 His Cys Leu Ala Glu Gln Glu
Ala Val Trp Leu Pro Ser Leu Arg 1475 1480
1485 Pro His Ser Glu Pro Trp Pro Glu Ile Leu Thr Ser
Leu Gly Lys 1490 1495 1500
Leu Tyr Glu Gln Gly Leu Asn Ile Asp Trp Gln Thr Val Glu Ala 1505
1510 1515 Gly Asp Arg Arg Arg
Lys Leu Ile Leu Pro Thr Tyr Pro Phe Gln 1520 1525
1530 Arg Gln Arg Tyr Trp Phe Asn Gln Gly Ser
Trp Gln Thr Val Glu 1535 1540 1545
Thr Glu Ser Val Asn Pro Gly Pro Asp Asp Leu Asn Asp Trp Leu
1550 1555 1560 Tyr Gln
Val Ala Trp Thr Pro Leu Asp Thr Leu Pro Pro Ala Pro 1565
1570 1575 Glu Pro Ser Ala Lys Leu Trp
Leu Ile Leu Gly Asp Arg His Asp 1580 1585
1590 His Gln Pro Ile Glu Ala Gln Phe Lys Asn Ala Gln
Arg Val Tyr 1595 1600 1605
Leu Gly Gln Ser Asn His Phe Pro Thr Asn Ala Pro Trp Glu Val 1610
1615 1620 Ser Ala Asp Ala Leu
Asp Asn Leu Phe Thr His Val Gly Ser Gln 1625 1630
1635 Asn Leu Ala Gly Ile Leu Tyr Leu Cys Pro
Pro Gly Glu Asp Pro 1640 1645 1650
Glu Asp Leu Asp Glu Ile Gln Lys Gln Thr Ser Gly Phe Ala Leu
1655 1660 1665 Gln Leu
Ile Gln Thr Leu Tyr Gln Gln Lys Ile Ala Val Pro Cys 1670
1675 1680 Trp Phe Val Thr His Gln Ser
Gln Arg Val Leu Glu Thr Asp Ala 1685 1690
1695 Val Thr Gly Phe Ala Gln Gly Gly Leu Trp Gly Leu
Ala Gln Ala 1700 1705 1710
Ile Ala Leu Glu His Pro Glu Leu Trp Gly Gly Ile Ile Asp Val 1715
1720 1725 Asp Asp Ser Leu Pro
Asn Phe Ala Gln Ile Cys Gln Gln Arg Gln 1730 1735
1740 Val Gln Gln Leu Ala Val Arg His Gln Lys
Leu Tyr Gly Ala Gln 1745 1750 1755
Leu Lys Lys Gln Pro Ser Leu Pro Gln Lys Asn Leu Gln Ile Gln
1760 1765 1770 Pro Gln
Gln Thr Tyr Leu Val Thr Gly Gly Leu Gly Ala Ile Gly 1775
1780 1785 Arg Lys Ile Ala Gln Trp Leu
Ala Ala Ala Gly Ala Glu Lys Val 1790 1795
1800 Ile Leu Val Ser Arg Arg Ala Pro Ala Ala Asp Gln
Gln Thr Leu 1805 1810 1815
Pro Thr Asn Ala Val Val Tyr Pro Cys Asp Leu Ala Asp Ala Ala 1820
1825 1830 Gln Val Ala Lys Leu
Phe Gln Thr Tyr Pro His Ile Lys Gly Ile 1835 1840
1845 Phe His Ala Ala Gly Thr Leu Ala Asp Gly
Leu Leu Gln Gln Gln 1850 1855 1860
Thr Trp Gln Lys Phe Gln Thr Val Ala Ala Ala Lys Met Lys Gly
1865 1870 1875 Thr Trp
His Leu His Arg His Ser Gln Lys Leu Asp Leu Asp Phe 1880
1885 1890 Phe Val Leu Phe Ser Ser Val
Ala Gly Val Leu Gly Ser Pro Gly 1895 1900
1905 Gln Gly Asn Tyr Ala Ala Ala Asn Arg Gly Met Ala
Ala Ile Ala 1910 1915 1920
Gln Tyr Arg Gln Ala Gln Gly Leu Pro Ala Leu Ala Ile His Trp 1925
1930 1935 Gly Pro Trp Ala Glu
Gly Gly Met Ala Asn Ser Leu Ser Asn Gln 1940 1945
1950 Asn Leu Ala Trp Leu Pro Pro Pro Gln Gly
Leu Thr Ile Leu Glu 1955 1960 1965
Lys Val Leu Gly Ala Gln Gly Glu Met Gly Val Phe Lys Pro Asp
1970 1975 1980 Trp Gln
Asn Leu Ala Lys Gln Phe Pro Glu Phe Ala Lys Thr His 1985
1990 1995 Tyr Phe Ala Ala Val Ile Pro
Ser Ala Glu Ala Val Pro Pro Thr 2000 2005
2010 Ala Ser Ile Phe Asp Lys Leu Ile Asn Leu Glu Ala
Ser Gln Arg 2015 2020 2025
Ala Asp Tyr Leu Leu Asp Tyr Leu Arg Arg Ser Val Ala Gln Ile 2030
2035 2040 Leu Lys Leu Glu Ile
Glu Gln Ile Gln Ser His Asp Ser Leu Leu 2045 2050
2055 Asp Leu Gly Met Asp Ser Leu Met Ile Met
Glu Ala Ile Ala Ser 2060 2065 2070
Leu Lys Gln Asp Leu Gln Leu Met Leu Tyr Pro Arg Glu Ile Tyr
2075 2080 2085 Glu Arg
Pro Arg Leu Asp Val Leu Thr Ala Tyr Leu Ala Ala Glu 2090
2095 2100 Phe Thr Lys Ala His Asp Ser
Glu Ala Ala Thr Ala Ala Ala Ala 2105 2110
2115 Ile Pro Ser Gln Ser Leu Ser Val Lys Thr Lys Lys
Gln Trp Gln 2120 2125 2130
Lys Pro Asp His Lys Asn Pro Asn Pro Ile Ala Phe Ile Leu Ser 2135
2140 2145 Ser Pro Arg Ser Gly
Ser Thr Leu Leu Arg Val Met Leu Ala Gly 2150 2155
2160 His Pro Gly Leu Tyr Ser Pro Pro Glu Leu
His Leu Leu Pro Phe 2165 2170 2175
Glu Thr Met Gly Asp Arg His Gln Glu Leu Gly Leu Ser His Leu
2180 2185 2190 Gly Glu
Gly Leu Gln Arg Ala Leu Met Asp Leu Glu Asn Leu Thr 2195
2200 2205 Pro Glu Ala Ser Gln Ala Lys
Val Asn Gln Trp Val Lys Ala Asn 2210 2215
2220 Thr Pro Ile Ala Asp Ile Tyr Ala Tyr Leu Gln Arg
Gln Ala Glu 2225 2230 2235
Gln Arg Leu Leu Ile Asp Lys Ser Pro Ser Tyr Gly Ser Asp Arg 2240
2245 2250 His Ile Leu Asp His
Ser Glu Ile Leu Phe Asp Gln Ala Lys Tyr 2255 2260
2265 Ile His Leu Val Arg His Pro Tyr Ala Val
Ile Glu Ser Phe Thr 2270 2275 2280
Arg Leu Arg Met Asp Lys Leu Leu Gly Ala Glu Gln Gln Asn Pro
2285 2290 2295 Tyr Ala
Leu Ala Glu Ser Ile Trp Arg Thr Ser Asn Arg Asn Ile 2300
2305 2310 Leu Asp Leu Gly Arg Thr Val
Gly Ala Asp Arg Tyr Leu Gln Val 2315 2320
2325 Ile Tyr Glu Asp Leu Val Arg Asp Pro Arg Lys Val
Leu Thr Asn 2330 2335 2340
Ile Cys Asp Phe Leu Gly Val Asp Phe Asp Glu Ala Leu Leu Asn 2345
2350 2355 Pro Tyr Ser Gly Asp
Arg Leu Thr Asp Gly Leu His Gln Gln Ser 2360 2365
2370 Met Gly Val Gly Asp Pro Asn Phe Leu Gln
His Lys Thr Ile Asp 2375 2380 2385
Pro Ala Leu Ala Asp Lys Trp Arg Ser Ile Thr Leu Pro Ala Ala
2390 2395 2400 Leu Gln
Leu Asp Thr Ile Gln Leu Ala Glu Thr Phe Ala Tyr Asp 2405
2410 2415 Leu Pro Gln Glu Pro Gln Leu
Thr Pro Gln Thr Gln Ser Leu Pro 2420 2425
2430 Ser Met Val Glu Arg Phe Val Thr Val Arg Gly Leu
Glu Thr Cys 2435 2440 2445
Leu Cys Glu Trp Gly Asp Arg His Gln Pro Leu Val Leu Leu Leu 2450
2455 2460 His Gly Ile Leu Glu
Gln Gly Ala Ser Trp Gln Leu Ile Ala Pro 2465 2470
2475 Gln Leu Ala Ala Gln Gly Tyr Trp Val Val
Ala Pro Asp Leu Arg 2480 2485 2490
Gly His Gly Lys Ser Ala His Ala Gln Ser Tyr Ser Met Leu Asp
2495 2500 2505 Phe Leu
Ala Asp Val Asp Ala Leu Ala Lys Gln Leu Gly Asp Arg 2510
2515 2520 Pro Phe Thr Leu Val Gly His
Ser Met Gly Ser Ile Ile Gly Ala 2525 2530
2535 Met Tyr Ala Gly Ile Arg Gln Thr Gln Val Glu Lys
Leu Ile Leu 2540 2545 2550
Val Glu Thr Ile Val Pro Asn Asp Ile Asp Asp Ala Glu Thr Gly 2555
2560 2565 Asn His Leu Thr Thr
His Leu Asp Tyr Leu Ala Ala Pro Pro Gln 2570 2575
2580 His Pro Ile Phe Pro Ser Leu Glu Val Ala
Ala Arg Arg Leu Arg 2585 2590 2595
Gln Ala Thr Pro Gln Leu Pro Lys Asp Leu Ser Ala Phe Leu Thr
2600 2605 2610 Gln Arg
Ser Thr Lys Ser Val Glu Lys Gly Val Gln Trp Arg Trp 2615
2620 2625 Asp Ala Phe Leu Arg Thr Arg
Ala Gly Ile Glu Phe Asn Gly Ile 2630 2635
2640 Ser Arg Arg Arg Tyr Leu Ala Leu Leu Lys Asp Ile
Gln Ala Pro 2645 2650 2655
Ile Thr Leu Ile Tyr Gly Asp Gln Ser Glu Phe Asn Arg Pro Ala 2660
2665 2670 Asp Leu Gln Ala Ile
Gln Ala Ala Leu Pro Gln Ala Gln Arg Leu 2675 2680
2685 Thr Val Ala Gly Gly His Asn Leu His Phe
Glu Asn Pro Gln Ala 2690 2695 2700
Ile Ala Gln Ile Val Tyr Gln Gln Leu Gln Thr Pro Val Pro Lys
2705 2710 2715 Thr Gln
2720 218163DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 21atggttggtc aatttgcaaa tttcgtcgat
ctgctccagt acagagctaa acttcaggcg 60cggaaaaccg tgtttagttt tctggctgat
ggcgaagcgg aatctgcggc cctgacctac 120ggagaattag accaaaaagc ccaggcgatc
gccgcttttt tgcaagctaa ccaggctcaa 180gggcaacggg cattattact ttatccaccg
ggtttagagt ttatcggtgc ctttttggga 240tgtttgtatg ctggtgttgt tgcggtgcca
gcttacccac cacggccgaa taaatccttt 300gaccgcctcc atagcattat ccaagatgcc
caggcaaaat ttgccctcac cacaacagaa 360cttaaagata aaattgccga tcgcctcgaa
gctttagaag gtacggattt tcattgtttg 420gctacagatc aagttgaatt aatttcagga
aaaaattggc aaaaaccgaa catttccggc 480acagatctcg cttttttgca atacaccagt
ggctccacgg gcgatcctaa aggagtgatg 540gtttcccacc acaatttgat ccacaactcc
ggcttgctcg ccgaggcctg cgagctgacc 600gccgccactc ccatgggcgg ctggctgccc
atgtaccacg acatggggct cctgggcacg 660ctgacaccgg ccctgtacct cggcaccacg
tgcgtgctga tgagctccac ggcattcatc 720aaacggccgc acctgtggct acggaccatc
gaccggttcg gcctggtctg gtcgtcggct 780cccgacttcg cgtacgacat gtgtctgaag
cgcgtcaccg acgagcagat cgccgggctg 840gacctgtccc gctggcggtg ggccggcaac
ggggccgaac cgatccgcgc tgtgaccctc 900gaaaattttg cgaaaacctt cgctacagca
ggctttcaaa aatcagcatt ttatccctgt 960tatggtatgg ctgaaaccac cctgatcgtt
tccggtggta atggtcgtgc ccagcttccc 1020caggaaatta tcgtcagcaa acagggcatc
gaagcaaacc aagttcgccc tgcccaaggg 1080acagaaacaa cggtgacctt ggtcggcagt
ggtgaagtga ttggcgacca aattgtcaaa 1140attgttgacc cccaggcttt aacagaatgt
accgtcggtg aaattggcga agtatgggtt 1200aagggcgaaa gtgttgccca gggctattgg
caaaagccag acctcaccca gcaacaattc 1260cagggaaacg tcggtgcaga aacgggcttt
ttacgcacgg gcgatctggg ttttttgcaa 1320ggtggcgaac tgtatattac gggtcgttta
aaggatctcc tgattatccg ggggcgcaac 1380cactatcccc aggacattga attaaccgtc
gaagtggccc atcccgcttt acgacagggg 1440gccggagccg ctgtatcagt agacgttaac
ggggaagaac agttagtcat tgtccaggaa 1500gttgagcgta aatatgcccg caaattaaat
gtcgcggcag tagcccaagc tattcgtggg 1560gcgatcgccg ccgaacatca actgcaaccc
caggccattt gttttattaa acccggtagc 1620attcccaaaa catccagcgg gaagattcgt
cgccatgcct gcaaagctgg ttttctagac 1680ggaagcttgg ctgtggttgg ggagtggcaa
cccagccacc aaaaagaagg aaaaggaatt 1740gggacacaag ccgttacccc ttctacgaca
acatcaacga attttcccct gcctgaccag 1800caccaacagc aaattgaagc ctggcttaag
gataatattg cccatcgcct cggcattacg 1860ccccaacaat tagacgaaac ggaacccttt
gcaagttatg ggctggattc agtgcaagca 1920gtacaggtca cagccgactt agaggattgg
ctaggtcgaa aattagaccc cactctggcc 1980tacgattatc cgaccattcg caccctggct
cagtttttgg tccagggtaa tcaagcgcta 2040gagaaaatac cacaggtgcc gaaaattcag
ggcaaagaaa ttgccgtggt gggtctcagt 2100tgtcgttttc cccaagctga caaccccgaa
gctttttggg aattattacg taatggtaaa 2160gatggagttc gcccccttaa aactcgctgg
gccacgggag aatggggtgg ttttttagaa 2220gatattgacc agtttgagcc gcaatttttt
ggcatttccc cccgggaagc ggaacaaatg 2280gatccccagc aacgcttact gttagaagta
acctgggaag ccttggaacg ggcaaatatt 2340ccggcagaaa gtttacgcca ttcccaaacg
ggggtttttg tcggcattag taatagtgat 2400tatgcccagt tgcaggtgcg ggaaaacaat
ccgatcaatc cctacatggg gacgggcaac 2460gcccacagta ttgctgcgaa tcgtctgtct
tatttcctcg atctccgggg cgtttctctg 2520agcatcgata cggcctgttc ctcttctctg
gtggcggtac atctggcctg tcaaagttta 2580atcaacggcg aatcggagtt ggcgatcgcc
gccggggtga atttgatttt gacccccgat 2640gtgacccaga cttttaccca ggcgggcatg
atgagtaaga cgggccgttg ccagaccttt 2700gatgccgagg ctgatggcta tgtgcggggc
gaaggttgtg gggtcgttct cctcaaaccc 2760ctggcccagg cagaacggga cggggataat
attctcgcgg tgatccacgg ttcggcggtg 2820aatcaagatg gacgcagtaa cggtttgacg
gctcccaacg ggcgatcgca acaggccgtt 2880attcgccaag ccctggccca agccggcatt
accgccgccg atttagctta cctagaggcc 2940cacggcaccg gcacgcccct gggtgatccc
attgaaatta attccctgaa ggcggtttta 3000caaacggcgc agcgggaaca gccctgtgtg
gtgggttctg tgaaaacaaa cattggtcac 3060ctcgaggcag cggcgggcat cgcgggctta
atcaaggtga ttttgtccct agagcatgga 3120atgattcccc aacatttgca ttttaagcag
ctcaatcccc gcattgatct agacggttta 3180gtgaccattg cgagcaaaga tcagccttgg
tcaggcgggt cacaaaaacg gtttgctggg 3240gtaagttcct ttgggtttgg tggcaccaat
gcccacgtga ttgtcgggga ctatgctcaa 3300caaaaatctc cccttgctcc tccggctacc
caagaccgcc cttggcattt gctgaccctt 3360tctgctaaaa atgcccaggc cttaaatgcc
ctgcaaaaaa gctatggaga ctatctggcc 3420caacatccca gcgttgaccc acgcgatctc
tgtttgtctg ccaataccgg gcgatcgccc 3480ctcaaagaac gtcgtttttt tgtctttaaa
caagtcgccg atttacaaca aactctcaat 3540caagattttc tggcccaacc acgcctcagt
tcccccgcaa aaattgcctt tttgtttacg 3600gggcaaggtt cccaatacta cggcatgggg
caacaactgt accaaaccag cccagtattt 3660cggcaagtgc tggatgagtg cgatcgcctc
tggcagacct attcccccga agcccctgcc 3720ctcaccgacc tgctgtacgg taaccataac
cctgacctcg tccacgaaac tgtctatacc 3780cagcccctcc tctttgctgt tgaatatgcg
atcgcccaac tatggttaag ctggggcgtg 3840acgccagact tttgcatggg ccatagcgtc
ggcgaatatg tcgcggcttg tctggcgggg 3900gtattttccc tggcagacgg catgaaatta
attacggccc ggggcaaact gatgcacgcc 3960ctacccagca atggcagtat ggcggcggtc
tttgccgata aaacggtcat caaaccctac 4020ctatcggagc atttgaccgt cggagccgaa
aacggttccc atttggtgct atcaggaaag 4080accccctgcc tcgaagccag tattcacaaa
ctccaaagcc aagggatcaa aaccaaaccc 4140ctcaaggttt cccatgcttt ccactcccct
ttgatggctc ccatgctggc agagtttcgg 4200gaaattgctg aacaaattac tttccacccg
ccgcgtatcc cgctcatttc caatgtcacg 4260ggcggccaga ttgaagcgga aattgcccag
gccgactatt gggttaagca cgtttcgcaa 4320cccgtcaaat ttgtccagag catccaaacc
ctggcccaag cgggtgtcaa tgtttatctc 4380gaaatcggcg taaaaccagt gctcctgagt
atgggacgcc attgcttagc tgaacaagaa 4440gcggtttggt tgcccagttt acgtccccat
agtgagcctt ggccggaaat tttgaccagt 4500ctcggcaaac tgtatgagca agggctaaac
attgactggc agaccgtgga agctggcgat 4560cgccgccgga aactgattct gcccacctat
cccttccaac ggcaacgata ttggtttaat 4620caaggctctt ggcaaactgt tgagaccgaa
tctgtgaacc caggccctga cgatctcaat 4680gattggttgt atcaggtggc gtggacgccc
ctggacactt tgcccccggc ccctgaaccg 4740tcggctaagc tgtggttaat cttgggcgat
cgccatgatc accagcccat tgaagcccaa 4800tttaaaaacg cccagcgggt gtatctcggc
caaagcaatc attttccgac gaatgccccc 4860tgggaagtat ctgccgatgc gttggataat
ttatttactc acgtcggctc ccaaaattta 4920gcaggcatcc tttacctgtg tcccccaggg
gaagacccag aagacctaga tgaaattcaa 4980aagcaaacca gtggcttcgc cctccaactg
atccaaaccc tgtatcaaca aaagatcgcg 5040gttccctgct ggtttgtgac ccaccagagc
caacgggtgc ttgaaaccga tgctgtcacc 5100ggatttgccc aagggggatt atggggactc
gcccaggcga tcgccctcga acatccagag 5160ttgtgggggg gaattattga tgtcgatgac
agcctgccaa attttgccca gatttgccaa 5220caaagacagg tgcagcagtt ggccgtgcgg
caccaaaaac tctacggggc acagctcaaa 5280aagcaaccgt cactgcccca gaaaaatctc
cagattcaac cccaacagac ctatctagtg 5340acagggggac tgggggccat tggccgtaaa
attgcccaat ggctagccgc agcaggagca 5400gaaaaagtaa ttctcgtcag ccggcgcgct
ccggcagcgg atcagcagac gttaccgacc 5460aatgcggtgg tttatccttg cgatttagcc
gacgcagccc aggtggcaaa gctgtttcaa 5520acctatcccc acatcaaagg aattttccat
gcggcgggta ccttagctga tggtttgctg 5580caacaacaaa cttggcaaaa gttccagacc
gtcgccgccg ccaaaatgaa agggacatgg 5640catctgcacc gccatagtca aaagctcgat
ctggattttt ttgtgttgtt ttcctctgtg 5700gcaggggtgc tcggttcacc gggacagggg
aattatgccg ccgcaaaccg gggcatggcg 5760gcgatcgccc aatatcgaca agcccaaggt
ttacccgccc tggcgatcca ttgggggcct 5820tgggccgaag ggggaatggc caactccctc
agcaaccaaa atttagcgtg gctgccgccc 5880ccccagggac taacaatcct cgaaaaagtc
ttgggcgccc agggggaaat gggggtcttt 5940aaaccggact ggcaaaacct ggccaaacag
ttccccgaat ttgccaaaac ccattacttt 6000gcagccgtta ttccctctgc tgaggctgtg
cccccaacgg cttcaatttt tgacaaatta 6060atcaacctag aagcttctca gcgggctgac
tatctactgg attatctgcg gcggtctgtg 6120gcgcaaatcc tcaagttaga aattgagcaa
attcaaagcc acgatagcct gttggatctg 6180ggcatggatt cgttgatgat catggaggcg
atcgccagcc tcaagcagga tttacaactg 6240atgttgtacc ccagggaaat ctacgaacgg
cccagacttg atgtgttgac ggcctatcta 6300gcggcggaat tcaccaaggc ccatgattct
gaagcagcaa cggcggcagc agcgattccc 6360tcccaaagcc tttcggtcaa aacaaaaaaa
cagtggcaaa aacctgacca caaaaacccg 6420aatcccattg cctttatcct ctctagcccc
cggtcgggtt cgacgttgct gcgggtgatg 6480ttagccggac atccggggtt atattcgccg
ccagagctgc atttgctccc ctttgagact 6540atgggcgatc gccaccagga attgggtcta
tcccacctcg gcgaagggtt acaacgggcc 6600ttaatggatc tagaaaacct caccccagag
gcaagccagg cgaaggtcaa ccaatgggtc 6660aaagcgaata cacccattgc agacatctat
gcctatctcc aacggcaggc ggaacaacgt 6720ttactcatcg acaaatctcc cagctacggc
agcgatcgcc atattctaga ccacagcgaa 6780atcctctttg accaggccaa atatatccat
ctggtacgcc atccctacgc ggtgattgaa 6840tcctttaccc gactgcggat ggataaactg
ctgggggccg agcagcagaa cccctacgcc 6900ctcgcggagt ccatttggcg caccagcaac
cgcaatattt tagacctggg tcgcacggtt 6960ggtgcggatc gatatctcca ggtgatttac
gaagatctcg tccgtgaccc ccgcaaagtt 7020ttgacaaata tttgtgattt cctgggggtg
gactttgacg aagcgctcct caatccctac 7080agcggcgatc gccttaccga tggcctccac
caacagtcca tgggcgtcgg ggatcccaat 7140ttcctccagc acaaaaccat tgatccggcc
ctcgccgaca aatggcgctc aattaccctg 7200cccgctgctc tccagctgga tacgatccag
ttggccgaaa cgtttgctta cgatctcccc 7260caggaacccc agctaacacc ccagacccaa
tccttgccct cgatggtgga gcggttcgtg 7320acagtgcgcg gtttagaaac ctgtctctgt
gagtggggcg atcgccacca accattggtg 7380ctacttctcc acggcatcct cgaacagggg
gcctcctggc aactcatcgc gccccagttg 7440gcggcccagg gctattgggt tgtggcccca
gacctgcgtg gtcacggcaa atccgcccat 7500gcccagtcct acagcatgct tgattttttg
gctgacgtag atgcccttgc caaacaatta 7560ggcgatcgcc cctttacctt ggtgggccac
tccatgggtt ccatcatcgg tgccatgtat 7620gcaggaattc gccaaaccca ggtagaaaag
ttgatcctcg ttgaaaccat tgtccccaac 7680gacatcgacg acgctgaaac cggtaatcac
ctgacgaccc atctcgatta cctcgccgcg 7740cccccccaac acccgatctt ccccagccta
gaagtggccg cccgtcgcct ccgccaagcc 7800acgccccaac tacccaaaga cctctcggcg
ttcctcaccc agcgcagcac caaatccgtc 7860gaaaaagggg tgcagtggcg ttgggatgct
ttcctccgta cccgggcggg cattgaattc 7920aatggcatta gcagacgacg ttacctggcc
ctgctcaaag atatccaagc gccgatcacc 7980ctcatctatg gcgatcagag tgaatttaac
cgccctgctg atctccaggc gatccaagcg 8040gctctccccc aggcccaacg tttaacggtt
gctggcggcc ataacctcca ttttgagaat 8100ccccaggcga tcgcccaaat tgtttatcaa
caactccaga cccctgtacc caaaacacaa 8160taa
8163222720PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
22Met Val Gly Gln Phe Ala Asn Phe Val Asp Leu Leu Gln Tyr Arg Ala 1
5 10 15 Lys Leu Gln Ala
Arg Lys Thr Val Phe Ser Phe Leu Ala Asp Gly Glu 20
25 30 Ala Glu Ser Ala Ala Leu Thr Tyr Gly
Glu Leu Asp Gln Lys Ala Gln 35 40
45 Ala Ile Ala Ala Phe Leu Gln Ala Asn Gln Ala Gln Gly Gln
Arg Ala 50 55 60
Leu Leu Leu Tyr Pro Pro Gly Leu Glu Phe Ile Gly Ala Phe Leu Gly 65
70 75 80 Cys Leu Tyr Ala Gly
Val Val Ala Val Pro Ala Tyr Pro Pro Arg Pro 85
90 95 Asn Lys Ser Phe Asp Arg Leu His Ser Ile
Ile Gln Asp Ala Gln Ala 100 105
110 Lys Phe Ala Leu Thr Thr Thr Glu Leu Lys Asp Lys Ile Ala Asp
Arg 115 120 125 Leu
Glu Ala Leu Glu Gly Thr Asp Phe His Cys Leu Ala Thr Asp Gln 130
135 140 Val Glu Leu Ile Ser Gly
Lys Asn Trp Gln Lys Pro Asn Ile Ser Gly 145 150
155 160 Thr Asp Leu Ala Phe Leu Gln Tyr Thr Ser Gly
Ser Thr Gly Asp Pro 165 170
175 Lys Gly Val Met Val Ser His His Asn Leu Ile His Asn Ser Gly Leu
180 185 190 Leu Ala
Glu Ala Cys Glu Leu Thr Ala Ala Thr Pro Met Gly Gly Trp 195
200 205 Leu Pro Met Tyr His Asp Met
Gly Leu Leu Gly Thr Leu Thr Pro Ala 210 215
220 Leu Tyr Leu Gly Thr Thr Cys Val Leu Met Ser Ser
Thr Ala Phe Ile 225 230 235
240 Lys Arg Pro His Leu Trp Leu Arg Thr Ile Asp Arg Phe Gly Leu Val
245 250 255 Trp Ser Ser
Ala Pro Asp Phe Ala Tyr Asp Met Cys Leu Lys Arg Val 260
265 270 Thr Asp Glu Gln Ile Ala Gly Leu
Asp Leu Ser Arg Trp Arg Trp Ala 275 280
285 Gly Asn Gly Ala Glu Pro Ile Arg Ala Val Thr Leu Glu
Asn Phe Ala 290 295 300
Lys Thr Phe Ala Thr Ala Gly Phe Gln Lys Ser Ala Phe Tyr Pro Cys 305
310 315 320 Tyr Gly Met Ala
Glu Thr Thr Leu Ile Val Ser Gly Gly Asn Gly Arg 325
330 335 Ala Gln Leu Pro Gln Glu Ile Ile Val
Ser Lys Gln Gly Ile Glu Ala 340 345
350 Asn Gln Val Arg Pro Ala Gln Gly Thr Glu Thr Thr Val Thr
Leu Val 355 360 365
Gly Ser Gly Glu Val Ile Gly Asp Gln Ile Val Lys Ile Val Asp Pro 370
375 380 Gln Ala Leu Thr Glu
Cys Thr Val Gly Glu Ile Gly Glu Val Trp Val 385 390
395 400 Lys Gly Glu Ser Val Ala Gln Gly Tyr Trp
Gln Lys Pro Asp Leu Thr 405 410
415 Gln Gln Gln Phe Gln Gly Asn Val Gly Ala Glu Thr Gly Phe Leu
Arg 420 425 430 Thr
Gly Asp Leu Gly Phe Leu Gln Gly Gly Glu Leu Tyr Ile Thr Gly 435
440 445 Arg Leu Lys Asp Leu Leu
Ile Ile Arg Gly Arg Asn His Tyr Pro Gln 450 455
460 Asp Ile Glu Leu Thr Val Glu Val Ala His Pro
Ala Leu Arg Gln Gly 465 470 475
480 Ala Gly Ala Ala Val Ser Val Asp Val Asn Gly Glu Glu Gln Leu Val
485 490 495 Ile Val
Gln Glu Val Glu Arg Lys Tyr Ala Arg Lys Leu Asn Val Ala 500
505 510 Ala Val Ala Gln Ala Ile Arg
Gly Ala Ile Ala Ala Glu His Gln Leu 515 520
525 Gln Pro Gln Ala Ile Cys Phe Ile Lys Pro Gly Ser
Ile Pro Lys Thr 530 535 540
Ser Ser Gly Lys Ile Arg Arg His Ala Cys Lys Ala Gly Phe Leu Asp 545
550 555 560 Gly Ser Leu
Ala Val Val Gly Glu Trp Gln Pro Ser His Gln Lys Glu 565
570 575 Gly Lys Gly Ile Gly Thr Gln Ala
Val Thr Pro Ser Thr Thr Thr Ser 580 585
590 Thr Asn Phe Pro Leu Pro Asp Gln His Gln Gln Gln Ile
Glu Ala Trp 595 600 605
Leu Lys Asp Asn Ile Ala His Arg Leu Gly Ile Thr Pro Gln Gln Leu 610
615 620 Asp Glu Thr Glu
Pro Phe Ala Ser Tyr Gly Leu Asp Ser Val Gln Ala 625 630
635 640 Val Gln Val Thr Ala Asp Leu Glu Asp
Trp Leu Gly Arg Lys Leu Asp 645 650
655 Pro Thr Leu Ala Tyr Asp Tyr Pro Thr Ile Arg Thr Leu Ala
Gln Phe 660 665 670
Leu Val Gln Gly Asn Gln Ala Leu Glu Lys Ile Pro Gln Val Pro Lys
675 680 685 Ile Gln Gly Lys
Glu Ile Ala Val Val Gly Leu Ser Cys Arg Phe Pro 690
695 700 Gln Ala Asp Asn Pro Glu Ala Phe
Trp Glu Leu Leu Arg Asn Gly Lys 705 710
715 720 Asp Gly Val Arg Pro Leu Lys Thr Arg Trp Ala Thr
Gly Glu Trp Gly 725 730
735 Gly Phe Leu Glu Asp Ile Asp Gln Phe Glu Pro Gln Phe Phe Gly Ile
740 745 750 Ser Pro Arg
Glu Ala Glu Gln Met Asp Pro Gln Gln Arg Leu Leu Leu 755
760 765 Glu Val Thr Trp Glu Ala Leu Glu
Arg Ala Asn Ile Pro Ala Glu Ser 770 775
780 Leu Arg His Ser Gln Thr Gly Val Phe Val Gly Ile Ser
Asn Ser Asp 785 790 795
800 Tyr Ala Gln Leu Gln Val Arg Glu Asn Asn Pro Ile Asn Pro Tyr Met
805 810 815 Gly Thr Gly Asn
Ala His Ser Ile Ala Ala Asn Arg Leu Ser Tyr Phe 820
825 830 Leu Asp Leu Arg Gly Val Ser Leu Ser
Ile Asp Thr Ala Cys Ser Ser 835 840
845 Ser Leu Val Ala Val His Leu Ala Cys Gln Ser Leu Ile Asn
Gly Glu 850 855 860
Ser Glu Leu Ala Ile Ala Ala Gly Val Asn Leu Ile Leu Thr Pro Asp 865
870 875 880 Val Thr Gln Thr Phe
Thr Gln Ala Gly Met Met Ser Lys Thr Gly Arg 885
890 895 Cys Gln Thr Phe Asp Ala Glu Ala Asp Gly
Tyr Val Arg Gly Glu Gly 900 905
910 Cys Gly Val Val Leu Leu Lys Pro Leu Ala Gln Ala Glu Arg Asp
Gly 915 920 925 Asp
Asn Ile Leu Ala Val Ile His Gly Ser Ala Val Asn Gln Asp Gly 930
935 940 Arg Ser Asn Gly Leu Thr
Ala Pro Asn Gly Arg Ser Gln Gln Ala Val 945 950
955 960 Ile Arg Gln Ala Leu Ala Gln Ala Gly Ile Thr
Ala Ala Asp Leu Ala 965 970
975 Tyr Leu Glu Ala His Gly Thr Gly Thr Pro Leu Gly Asp Pro Ile Glu
980 985 990 Ile Asn
Ser Leu Lys Ala Val Leu Gln Thr Ala Gln Arg Glu Gln Pro 995
1000 1005 Cys Val Val Gly Ser
Val Lys Thr Asn Ile Gly His Leu Glu Ala 1010 1015
1020 Ala Ala Gly Ile Ala Gly Leu Ile Lys Val
Ile Leu Ser Leu Glu 1025 1030 1035
His Gly Met Ile Pro Gln His Leu His Phe Lys Gln Leu Asn Pro
1040 1045 1050 Arg Ile
Asp Leu Asp Gly Leu Val Thr Ile Ala Ser Lys Asp Gln 1055
1060 1065 Pro Trp Ser Gly Gly Ser Gln
Lys Arg Phe Ala Gly Val Ser Ser 1070 1075
1080 Phe Gly Phe Gly Gly Thr Asn Ala His Val Ile Val
Gly Asp Tyr 1085 1090 1095
Ala Gln Gln Lys Ser Pro Leu Ala Pro Pro Ala Thr Gln Asp Arg 1100
1105 1110 Pro Trp His Leu Leu
Thr Leu Ser Ala Lys Asn Ala Gln Ala Leu 1115 1120
1125 Asn Ala Leu Gln Lys Ser Tyr Gly Asp Tyr
Leu Ala Gln His Pro 1130 1135 1140
Ser Val Asp Pro Arg Asp Leu Cys Leu Ser Ala Asn Thr Gly Arg
1145 1150 1155 Ser Pro
Leu Lys Glu Arg Arg Phe Phe Val Phe Lys Gln Val Ala 1160
1165 1170 Asp Leu Gln Gln Thr Leu Asn
Gln Asp Phe Leu Ala Gln Pro Arg 1175 1180
1185 Leu Ser Ser Pro Ala Lys Ile Ala Phe Leu Phe Thr
Gly Gln Gly 1190 1195 1200
Ser Gln Tyr Tyr Gly Met Gly Gln Gln Leu Tyr Gln Thr Ser Pro 1205
1210 1215 Val Phe Arg Gln Val
Leu Asp Glu Cys Asp Arg Leu Trp Gln Thr 1220 1225
1230 Tyr Ser Pro Glu Ala Pro Ala Leu Thr Asp
Leu Leu Tyr Gly Asn 1235 1240 1245
His Asn Pro Asp Leu Val His Glu Thr Val Tyr Thr Gln Pro Leu
1250 1255 1260 Leu Phe
Ala Val Glu Tyr Ala Ile Ala Gln Leu Trp Leu Ser Trp 1265
1270 1275 Gly Val Thr Pro Asp Phe Cys
Met Gly His Ser Val Gly Glu Tyr 1280 1285
1290 Val Ala Ala Cys Leu Ala Gly Val Phe Ser Leu Ala
Asp Gly Met 1295 1300 1305
Lys Leu Ile Thr Ala Arg Gly Lys Leu Met His Ala Leu Pro Ser 1310
1315 1320 Asn Gly Ser Met Ala
Ala Val Phe Ala Asp Lys Thr Val Ile Lys 1325 1330
1335 Pro Tyr Leu Ser Glu His Leu Thr Val Gly
Ala Glu Asn Gly Ser 1340 1345 1350
His Leu Val Leu Ser Gly Lys Thr Pro Cys Leu Glu Ala Ser Ile
1355 1360 1365 His Lys
Leu Gln Ser Gln Gly Ile Lys Thr Lys Pro Leu Lys Val 1370
1375 1380 Ser His Ala Phe His Ser Pro
Leu Met Ala Pro Met Leu Ala Glu 1385 1390
1395 Phe Arg Glu Ile Ala Glu Gln Ile Thr Phe His Pro
Pro Arg Ile 1400 1405 1410
Pro Leu Ile Ser Asn Val Thr Gly Gly Gln Ile Glu Ala Glu Ile 1415
1420 1425 Ala Gln Ala Asp Tyr
Trp Val Lys His Val Ser Gln Pro Val Lys 1430 1435
1440 Phe Val Gln Ser Ile Gln Thr Leu Ala Gln
Ala Gly Val Asn Val 1445 1450 1455
Tyr Leu Glu Ile Gly Val Lys Pro Val Leu Leu Ser Met Gly Arg
1460 1465 1470 His Cys
Leu Ala Glu Gln Glu Ala Val Trp Leu Pro Ser Leu Arg 1475
1480 1485 Pro His Ser Glu Pro Trp Pro
Glu Ile Leu Thr Ser Leu Gly Lys 1490 1495
1500 Leu Tyr Glu Gln Gly Leu Asn Ile Asp Trp Gln Thr
Val Glu Ala 1505 1510 1515
Gly Asp Arg Arg Arg Lys Leu Ile Leu Pro Thr Tyr Pro Phe Gln 1520
1525 1530 Arg Gln Arg Tyr Trp
Phe Asn Gln Gly Ser Trp Gln Thr Val Glu 1535 1540
1545 Thr Glu Ser Val Asn Pro Gly Pro Asp Asp
Leu Asn Asp Trp Leu 1550 1555 1560
Tyr Gln Val Ala Trp Thr Pro Leu Asp Thr Leu Pro Pro Ala Pro
1565 1570 1575 Glu Pro
Ser Ala Lys Leu Trp Leu Ile Leu Gly Asp Arg His Asp 1580
1585 1590 His Gln Pro Ile Glu Ala Gln
Phe Lys Asn Ala Gln Arg Val Tyr 1595 1600
1605 Leu Gly Gln Ser Asn His Phe Pro Thr Asn Ala Pro
Trp Glu Val 1610 1615 1620
Ser Ala Asp Ala Leu Asp Asn Leu Phe Thr His Val Gly Ser Gln 1625
1630 1635 Asn Leu Ala Gly Ile
Leu Tyr Leu Cys Pro Pro Gly Glu Asp Pro 1640 1645
1650 Glu Asp Leu Asp Glu Ile Gln Lys Gln Thr
Ser Gly Phe Ala Leu 1655 1660 1665
Gln Leu Ile Gln Thr Leu Tyr Gln Gln Lys Ile Ala Val Pro Cys
1670 1675 1680 Trp Phe
Val Thr His Gln Ser Gln Arg Val Leu Glu Thr Asp Ala 1685
1690 1695 Val Thr Gly Phe Ala Gln Gly
Gly Leu Trp Gly Leu Ala Gln Ala 1700 1705
1710 Ile Ala Leu Glu His Pro Glu Leu Trp Gly Gly Ile
Ile Asp Val 1715 1720 1725
Asp Asp Ser Leu Pro Asn Phe Ala Gln Ile Cys Gln Gln Arg Gln 1730
1735 1740 Val Gln Gln Leu Ala
Val Arg His Gln Lys Leu Tyr Gly Ala Gln 1745 1750
1755 Leu Lys Lys Gln Pro Ser Leu Pro Gln Lys
Asn Leu Gln Ile Gln 1760 1765 1770
Pro Gln Gln Thr Tyr Leu Val Thr Gly Gly Leu Gly Ala Ile Gly
1775 1780 1785 Arg Lys
Ile Ala Gln Trp Leu Ala Ala Ala Gly Ala Glu Lys Val 1790
1795 1800 Ile Leu Val Ser Arg Arg Ala
Pro Ala Ala Asp Gln Gln Thr Leu 1805 1810
1815 Pro Thr Asn Ala Val Val Tyr Pro Cys Asp Leu Ala
Asp Ala Ala 1820 1825 1830
Gln Val Ala Lys Leu Phe Gln Thr Tyr Pro His Ile Lys Gly Ile 1835
1840 1845 Phe His Ala Ala Gly
Thr Leu Ala Asp Gly Leu Leu Gln Gln Gln 1850 1855
1860 Thr Trp Gln Lys Phe Gln Thr Val Ala Ala
Ala Lys Met Lys Gly 1865 1870 1875
Thr Trp His Leu His Arg His Ser Gln Lys Leu Asp Leu Asp Phe
1880 1885 1890 Phe Val
Leu Phe Ser Ser Val Ala Gly Val Leu Gly Ser Pro Gly 1895
1900 1905 Gln Gly Asn Tyr Ala Ala Ala
Asn Arg Gly Met Ala Ala Ile Ala 1910 1915
1920 Gln Tyr Arg Gln Ala Gln Gly Leu Pro Ala Leu Ala
Ile His Trp 1925 1930 1935
Gly Pro Trp Ala Glu Gly Gly Met Ala Asn Ser Leu Ser Asn Gln 1940
1945 1950 Asn Leu Ala Trp Leu
Pro Pro Pro Gln Gly Leu Thr Ile Leu Glu 1955 1960
1965 Lys Val Leu Gly Ala Gln Gly Glu Met Gly
Val Phe Lys Pro Asp 1970 1975 1980
Trp Gln Asn Leu Ala Lys Gln Phe Pro Glu Phe Ala Lys Thr His
1985 1990 1995 Tyr Phe
Ala Ala Val Ile Pro Ser Ala Glu Ala Val Pro Pro Thr 2000
2005 2010 Ala Ser Ile Phe Asp Lys Leu
Ile Asn Leu Glu Ala Ser Gln Arg 2015 2020
2025 Ala Asp Tyr Leu Leu Asp Tyr Leu Arg Arg Ser Val
Ala Gln Ile 2030 2035 2040
Leu Lys Leu Glu Ile Glu Gln Ile Gln Ser His Asp Ser Leu Leu 2045
2050 2055 Asp Leu Gly Met Asp
Ser Leu Met Ile Met Glu Ala Ile Ala Ser 2060 2065
2070 Leu Lys Gln Asp Leu Gln Leu Met Leu Tyr
Pro Arg Glu Ile Tyr 2075 2080 2085
Glu Arg Pro Arg Leu Asp Val Leu Thr Ala Tyr Leu Ala Ala Glu
2090 2095 2100 Phe Thr
Lys Ala His Asp Ser Glu Ala Ala Thr Ala Ala Ala Ala 2105
2110 2115 Ile Pro Ser Gln Ser Leu Ser
Val Lys Thr Lys Lys Gln Trp Gln 2120 2125
2130 Lys Pro Asp His Lys Asn Pro Asn Pro Ile Ala Phe
Ile Leu Ser 2135 2140 2145
Ser Pro Arg Ser Gly Ser Thr Leu Leu Arg Val Met Leu Ala Gly 2150
2155 2160 His Pro Gly Leu Tyr
Ser Pro Pro Glu Leu His Leu Leu Pro Phe 2165 2170
2175 Glu Thr Met Gly Asp Arg His Gln Glu Leu
Gly Leu Ser His Leu 2180 2185 2190
Gly Glu Gly Leu Gln Arg Ala Leu Met Asp Leu Glu Asn Leu Thr
2195 2200 2205 Pro Glu
Ala Ser Gln Ala Lys Val Asn Gln Trp Val Lys Ala Asn 2210
2215 2220 Thr Pro Ile Ala Asp Ile Tyr
Ala Tyr Leu Gln Arg Gln Ala Glu 2225 2230
2235 Gln Arg Leu Leu Ile Asp Lys Ser Pro Ser Tyr Gly
Ser Asp Arg 2240 2245 2250
His Ile Leu Asp His Ser Glu Ile Leu Phe Asp Gln Ala Lys Tyr 2255
2260 2265 Ile His Leu Val Arg
His Pro Tyr Ala Val Ile Glu Ser Phe Thr 2270 2275
2280 Arg Leu Arg Met Asp Lys Leu Leu Gly Ala
Glu Gln Gln Asn Pro 2285 2290 2295
Tyr Ala Leu Ala Glu Ser Ile Trp Arg Thr Ser Asn Arg Asn Ile
2300 2305 2310 Leu Asp
Leu Gly Arg Thr Val Gly Ala Asp Arg Tyr Leu Gln Val 2315
2320 2325 Ile Tyr Glu Asp Leu Val Arg
Asp Pro Arg Lys Val Leu Thr Asn 2330 2335
2340 Ile Cys Asp Phe Leu Gly Val Asp Phe Asp Glu Ala
Leu Leu Asn 2345 2350 2355
Pro Tyr Ser Gly Asp Arg Leu Thr Asp Gly Leu His Gln Gln Ser 2360
2365 2370 Met Gly Val Gly Asp
Pro Asn Phe Leu Gln His Lys Thr Ile Asp 2375 2380
2385 Pro Ala Leu Ala Asp Lys Trp Arg Ser Ile
Thr Leu Pro Ala Ala 2390 2395 2400
Leu Gln Leu Asp Thr Ile Gln Leu Ala Glu Thr Phe Ala Tyr Asp
2405 2410 2415 Leu Pro
Gln Glu Pro Gln Leu Thr Pro Gln Thr Gln Ser Leu Pro 2420
2425 2430 Ser Met Val Glu Arg Phe Val
Thr Val Arg Gly Leu Glu Thr Cys 2435 2440
2445 Leu Cys Glu Trp Gly Asp Arg His Gln Pro Leu Val
Leu Leu Leu 2450 2455 2460
His Gly Ile Leu Glu Gln Gly Ala Ser Trp Gln Leu Ile Ala Pro 2465
2470 2475 Gln Leu Ala Ala Gln
Gly Tyr Trp Val Val Ala Pro Asp Leu Arg 2480 2485
2490 Gly His Gly Lys Ser Ala His Ala Gln Ser
Tyr Ser Met Leu Asp 2495 2500 2505
Phe Leu Ala Asp Val Asp Ala Leu Ala Lys Gln Leu Gly Asp Arg
2510 2515 2520 Pro Phe
Thr Leu Val Gly His Ser Met Gly Ser Ile Ile Gly Ala 2525
2530 2535 Met Tyr Ala Gly Ile Arg Gln
Thr Gln Val Glu Lys Leu Ile Leu 2540 2545
2550 Val Glu Thr Ile Val Pro Asn Asp Ile Asp Asp Ala
Glu Thr Gly 2555 2560 2565
Asn His Leu Thr Thr His Leu Asp Tyr Leu Ala Ala Pro Pro Gln 2570
2575 2580 His Pro Ile Phe Pro
Ser Leu Glu Val Ala Ala Arg Arg Leu Arg 2585 2590
2595 Gln Ala Thr Pro Gln Leu Pro Lys Asp Leu
Ser Ala Phe Leu Thr 2600 2605 2610
Gln Arg Ser Thr Lys Ser Val Glu Lys Gly Val Gln Trp Arg Trp
2615 2620 2625 Asp Ala
Phe Leu Arg Thr Arg Ala Gly Ile Glu Phe Asn Gly Ile 2630
2635 2640 Ser Arg Arg Arg Tyr Leu Ala
Leu Leu Lys Asp Ile Gln Ala Pro 2645 2650
2655 Ile Thr Leu Ile Tyr Gly Asp Gln Ser Glu Phe Asn
Arg Pro Ala 2660 2665 2670
Asp Leu Gln Ala Ile Gln Ala Ala Leu Pro Gln Ala Gln Arg Leu 2675
2680 2685 Thr Val Ala Gly Gly
His Asn Leu His Phe Glu Asn Pro Gln Ala 2690 2695
2700 Ile Ala Gln Ile Val Tyr Gln Gln Leu Gln
Thr Pro Val Pro Lys 2705 2710 2715
Thr Gln 2720 238286DNAArtificial SequenceDescription of
Artificial Sequence Synthetic polynucleotide 23catatggcaa gctggtccca
cccgcaattc gagaaagaag tacatcacca tcaccatcat 60ggcgcagtgg gccagtttgc
gaactttgta gacctgttgc aataccgtgc caagctgcaa 120gcacgtaaga ccgtctttag
cttcctggcg gacggcgaag cggagagcgc cgctctgacc 180tatggtgagc tggatcaaaa
ggcgcaggca atcgcggcgt tcctgcaagc aaatcaggca 240caaggccaac gtgcattgct
gctgtatccg ccaggtctgg agttcatcgg tgccttcctg 300ggttgtctgt atgcgggtgt
cgtcgcggtt ccggcatatc ctccgcgtcc gaacaagtcc 360ttcgaccgtt tgcactccat
cattcaggac gcccaagcga agtttgcact gacgacgacc 420gagttgaagg ataagattgc
agaccgtctg gaagcgctgg agggtacgga cttccattgc 480ctggcgaccg accaagtcga
gctgatcagc ggcaaaaact ggcaaaagcc gaatatctcc 540ggtacggatc tggcgtttct
gcaatacacc agcggcagca cgggtgatcc aaaaggcgtg 600atggtcagcc accataacct
gattcacaat agcggtctga ttaaccaggg tttccaagac 660accgaagcga gcatgggtgt
gtcctggctg ccgccgtatc acgacatggg tctgattggc 720ggcatcctgc aacctatcta
cgttggcgca acgcaaatcc tgatgccacc agtcgccttt 780ctgcaacgtc cgttccgctg
gctgaaggcg atcaacgatt accgtgtcag caccagcggt 840gcgccgaact ttgcttacga
cctgtgcgct tctcagatta ccccggaaca aatccgcgag 900ctggatctga gctgttggcg
tctggcattc agcggtgcag agccgattcg cgctgtcacg 960ctggaaaact ttgcgaaaac
gttcgcaacc gcgggtttcc agaaatcggc cttctaccct 1020tgttacggta tggcggaaac
caccctgatc gtgagcggtg gcaatggccg tgcccaactg 1080ccacaggaga tcatcgttag
caagcagggc attgaggcga accaagtgcg tccggctcaa 1140ggcacggaaa cgaccgtgac
cctggtgggt agcggtgagg tcattggtga ccagatcgtt 1200aagatcgttg accctcaagc
gctgaccgag tgcaccgtcg gtgaaattgg cgaggtgtgg 1260gttaaaggtg aaagcgttgc
tcagggctac tggcagaagc cggacttgac gcagcagcag 1320ttccagggta acgtgggtgc
cgaaacgggt ttcctgcgca ccggcgatct gggtttcctg 1380caaggcggcg agctgtatat
caccggccgt ctgaaggatc tgctgatcat tcgtggccgt 1440aatcactatc ctcaggacat
tgagctgacc gtggaagttg ctcacccagc cctgcgtcag 1500ggcgcaggtg ccgcggtgag
cgtggacgtt aatggtgaag aacaactggt gatcgttcaa 1560gaggttgagc gtaagtacgc
acgcaagctg aatgtggcag cagtcgctca ggccatccgt 1620ggtgcgattg cggcagagca
ccagttgcag ccgcaggcga tctgctttat caaaccgggc 1680agcatcccga aaactagcag
cggcaaaatc cgtcgtcacg catgtaaggc cggttttctg 1740gacggaagct tggcggttgt
tggtgagtgg caaccgagcc atcagaaaga gggcaaaggt 1800attggtaccc aggcagtgac
cccgagcacc acgacgtcca ccaactttcc gctgccggat 1860caacaccagc aacagatcga
ggcgtggctg aaggacaaca tcgcgcaccg cctgggtatt 1920acgccgcagc agttggatga
aacggaaccg ttcgcttctt acggtctgga cagcgttcaa 1980gcagtccagg tcaccgcaga
cctggaggac tggctgggcc gcaagctgga cccgactctg 2040gcctatgatt acccgaccat
tcgcacgctg gcgcaattcc tggttcaggg caaccaggcc 2100ttggagaaaa tcccgcaagt
tccaaagatt cagggtaaag agattgcggt ggtgggcctg 2160agctgccgct ttccgcaggc
ggacaatccg gaggcgttct gggaactgtt gcgcaatggc 2220aaggatggcg tgcgtccgct
gaaaacccgt tgggccactg gtgagtgggg tggtttcctg 2280gaggatatcg accagtttga
gccgcagttc tttggtatta gcccgcgtga ggcggagcaa 2340atggacccgc aacagcgtct
gctgctggag gtcacctggg aggcactgga gcgtgcgaat 2400atccctgccg aatccctgcg
tcacagccag accggcgtct ttgtgggcat tagcaacagc 2460gattacgcac aactgcaagt
gcgtgagaac aacccgatca atccgtacat gggtactggt 2520aacgcacata gcatcgcggc
gaatcgtctg agctactttc tggatctgcg cggtgtctcc 2580ctgagcattg ataccgcgtg
ttctagcagc ctggtcgcag ttcatctggc gtgccaaagc 2640ctgattaacg gcgagagcga
gctggcgatt gctgcgggtg ttaatctgat tctgaccccg 2700gatgtcacgc aaacctttac
ccaagcgggt atgatgagca agacgggccg ttgccagacg 2760tttgatgcgg aggcggacgg
ctacgtgcgc ggtgaaggct gcggcgttgt tctgctgaaa 2820ccgctggctc aggcggagcg
tgatggcgac aatatcctgg cggtcatcca cggtagcgcg 2880gttaaccagg acggtcgcag
caatggtctg actgcgccga acggccgctc tcagcaagcg 2940gttatccgtc aggccctggc
gcaggcgggc atcaccgcgg cagacctggc gtatttggaa 3000gcgcatggta cgggcacccc
gctgggcgac ccgattgaaa tcaacagctt gaaagcagtg 3060ctgcaaaccg cccagcgcga
gcaaccgtgc gttgtgggca gcgtcaagac gaacattggc 3120cacctggagg cagcagcggg
tattgcaggt ctgatcaagg tgattctgtc cctggagcac 3180ggcatgattc cgcaacacct
gcactttaag caactgaatc cgcgcatcga cctggacggc 3240ctggttacca tcgcgagcaa
agaccagccg tggtcgggtg gtagccagaa gcgtttcgcc 3300ggtgtcagca gctttggttt
tggcggtacg aatgctcacg tgattgttgg tgattatgcc 3360cagcaaaagt ccccgctggc
tccgcctgcg acccaagacc gtccttggca tctgctgact 3420ctgagcgcga agaacgcaca
agcgttgaac gcgttgcaaa agagctatgg tgactacctg 3480gcgcaacatc cgagcgttga
ccctcgcgat ctgtgcctga gcgctaacac tggtcgctct 3540ccgctgaaag aacgccgctt
cttcgtgttc aagcaggttg ccgacttgca acaaaccctg 3600aatcaggact ttctggcgca
gccgaggctg agcagcccag ccaagattgc gttcctgttc 3660acgggtcagg gcagccagta
ctacggtatg ggccagcaac tgtatcagac gtccccggtt 3720ttccgtcaag tcctggatga
atgcgaccgt ctgtggcaga cgtacagccc ggaggcaccg 3780gcgctgaccg atctgctgta
cggcaatcat aatcctgacc tggttcatga aacggtttac 3840acgcaaccgc tgctgttcgc
ggtggagtat gctatcgcgc agttgtggtt gagctggggc 3900gttactccgg atttctgcat
gggtcatagc gtcggtgagt atgtggcggc ctgcctggcg 3960ggtgtgttta gcctggcgga
tggcatgaaa ctgattaccg cgcgtggtaa actgatgcat 4020gcactgccga gcaatggcag
catggcggct gtgtttgcgg acaaaaccgt tatcaagccg 4080tatctgagcg aacacctgac
cgtcggcgca gaaaatggca gccacctggt tctgagcggt 4140aagacccctt gtctggaagc
atccatccac aaactgcaaa gccagggcat caaaaccaag 4200cctctgaaag tctcccatgc
gttccactcg ccgctgatgg cgccgatgct ggcggaattt 4260cgtgagatcg ccgaacagat
tacgttccat ccgccacgta tcccgctgat tagcaacgtg 4320acgggtggtc aaatcgaggc
cgagatcgcg caagcagact attgggttaa acatgttagc 4380cagccggtga agttcgttca
gagcattcag accctggccc aagcgggtgt gaatgtgtac 4440ctggaaatcg gtgttaaacc
agtcctgctg tctatgggtc gccactgtct ggcagagcag 4500gaagcggttt ggctgccgag
cctgcgtcca catagcgagc cttggccgga aatcttgact 4560agtctgggca aactgtacga
gcaaggtctg aatatcgact ggcaaacggt tgaagccggt 4620gatcgccgtc gtaagctgat
tttgccgacc tacccgttcc agcgtcagcg ttattggttc 4680aaccaaggta gctggcaaac
cgtcgaaact gagagcgtga atccaggccc ggacgacctg 4740aatgactggc tgtaccaagt
ggcatggact ccgctggata cgctgccgcc tgcaccggaa 4800ccgtcggcga aactgtggct
gattctgggt gatcgtcacg atcaccaacc gattgaggcc 4860cagttcaaaa acgcccaacg
tgtgtacctg ggccaaagca accactttcc gacgaacgcc 4920ccgtgggagg tgagcgcgga
cgcactggat aacttgttta cccatgtggg tagccaaaac 4980ctggcaggca ttctgtatct
gtgcccgcct ggtgaagatc cggaggatct ggatgagatt 5040cagaaacaaa cttccggctt
tgcgttgcaa ctgattcaga ccctgtatca gcagaaaatc 5100gcagtgccgt gttggtttgt
tacccatcaa agccagcgtg tgctggaaac ggacgcggtg 5160acgggttttg cccaaggtgg
tctgtggggt ttggcgcaag cgattgcact ggaacatccg 5220gaactgtggg gtggtatcat
tgacgtggat gatagcctgc cgaacttcgc gcagatttgt 5280cagcaacgtc aggttcagca
actggctgtc cgtcaccaga aactgtatgg tgcgcaactg 5340aagaagcagc cgagcctgcc
gcagaagaat ctgcagatcc aacctcaaca gacctacctg 5400gtcacgggcg gtttgggtgc
aatcggtcgt aagattgcgc agtggctggc ggctgcgggt 5460gctgagaaag ttatcctggt
tagccgtcgt gcaccggcag cggatcaaca aaccttgccg 5520accaacgccg tggtgtaccc
gtgcgatctg gcggatgcgg cgcaggttgc gaaactgttc 5580caaacctatc cgcacattaa
gggtatcttt catgcagccg gtacgctggc tgacggtttg 5640ctgcaacagc aaacctggca
gaaattccag actgtcgctg cggcgaagat gaagggcacc 5700tggcacctgc atcgccactc
tcagaagttg gacttggatt tctttgtttt gttttcgtct 5760gttgcgggtg tgctgggtag
ccctggtcaa ggcaattacg cggcagccaa ccgtggcatg 5820gccgccatcg ctcagtaccg
ccaggctcaa ggtctgccgg cactggcgat tcactggggc 5880ccttgggcgg aaggtggtat
ggcaaacagc ttgagcaacc aaaatctggc atggttgcct 5940ccgccgcagg gcttgaccat
tctggaaaaa gttttgggtg cccaaggcga aatgggcgtg 6000ttcaaaccgg actggcagaa
cttggccaaa caattcccgg agttcgcgaa aacccattac 6060tttgcggcgg tcattccgag
cgctgaagcg gttccaccga ccgcatctat cttcgacaag 6120ctgatcaatc tggaagcgag
ccagcgcgca gattacctgc tggactatct gcgtagatct 6180gtggcacaaa ttctgaaact
ggaaattgag cagattcaga gccacgactc cctgctggat 6240ctgggtatgg atagcctgat
gatcatggag gcgattgcgt ccctgaaaca agacctgcaa 6300ctgatgctgt atccgcgtga
gatttacgag cgtccgcgtc tggatgttct gactgcttac 6360ttggccgctg agtttaccaa
agcgcatgat tctgaagcag ctaccgccgc agctgcgatc 6420cctagccaga gcctgagcgt
caaaaccaaa aagcaatggc agaaaccgga tcataagaac 6480ccgaatccga ttgcgttcat
cctgagcagc ccgcgtagcg gtagcaccct gctgcgcgtg 6540atgctggccg gtcacccggg
tctgtattcc ccaccggaac tgcacctgct gccgtttgaa 6600acgatgggtg accgccacca
ggaactgggt ctgtctcatc tgggcgaggg tctgcaacgt 6660gccctgatgg acttggaaaa
tctgacgccg gaagcatccc aggcaaaggt gaaccaatgg 6720gtgaaggcga atacgccgat
tgcagacatc tacgcatacc tgcaacgtca agccgagcaa 6780cgtctgctga ttgacaaaag
cccgagctat ggcagcgacc gccacattct ggatcacagc 6840gagatcctgt tcgatcaggc
gaaatacatc cacctggttc gccatcctta tgcggtcatt 6900gagagcttta cccgcctgcg
tatggacaag ctgctgggtg cagagcaaca gaatccgtat 6960gcgctggcgg aaagcatttg
gcgtacctcg aatcgcaaca ttctggactt gggtcgtacc 7020gtcggcgctg accgctacct
gcaagtcatc tacgaggatc tggtgcgtga cccgcgtaaa 7080gttctgacca acatttgtga
ttttctgggt gtcgatttcg acgaggcact gctgaatccg 7140tactccggcg accgcctgac
cgacggcctg caccagcaaa gcatgggtgt gggtgacccg 7200aacttcttgc agcacaagac
cattgatccg gcgctagcgg acaaatggcg tagcattacc 7260ctgccggctg ctctgcaact
ggatacgatt caactggccg aaaccttcgc atacgacctg 7320ccgcaggagc cgcagttgac
gccgcagacc caatctttgc catcgatggt cgaacgtttc 7380gtcacggttc gcggcctgga
aacctgtctg tgcgagtggg gtgatcgcca tcaacctctg 7440gtcttgctgt tgcacggtat
cctggagcaa ggcgcgtctt ggcagttgat cgcgcctcaa 7500ctggcagcgc agggctattg
ggtcgtcgct ccggatctgc gcggtcacgg taaatctgcg 7560cacgcgcagt cttatagcat
gctggatttt ctggccgatg tggacgcgct ggccaaacag 7620ttgggcgacc gtccgttcac
cttggttggt cacagcatgg gttccatcat tggcgcaatg 7680tatgctggca ttcgtcaaac
ccaggttgaa aaactgattc tggtcgaaac catcgtcccg 7740aatgatattg atgatgccga
aaccggcaat cacctgacca cccatctgga ttacctggca 7800gcccctccgc agcacccgat
ctttccgagc ctggaagttg cggctcgtcg tctgcgccaa 7860gccaccccgc agttgccgaa
agacctgtct gcatttctga cgcaacgttc cacgaagagc 7920gtcgagaagg gtgtgcagtg
gcgctgggat gccttcttgc gcacccgtgc aggtatcgag 7980tttaacggta tcagccgtcg
ccgttatctg gcgctgctga aagatatcca ggccccaatt 8040actttgattt acggtgatca
gtctgagttc aatcgcccag cagacctgca agcgatccag 8100gcggcactgc cgcaagcgca
acgcctgacg gttgctggcg gtcacaactt gcactttgag 8160aatccgcagg ccatcgccca
gattgtctat cagcagttgc agacaccggt tccgaaaacc 8220caaggtttgc accatcacca
ccatcatagc gcctggagcc acccgcagtt tgaaaagtaa 8280gaattc
8286242758PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
24Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Glu Val His His His 1
5 10 15 His His His Gly
Ala Val Gly Gln Phe Ala Asn Phe Val Asp Leu Leu 20
25 30 Gln Tyr Arg Ala Lys Leu Gln Ala Arg
Lys Thr Val Phe Ser Phe Leu 35 40
45 Ala Asp Gly Glu Ala Glu Ser Ala Ala Leu Thr Tyr Gly Glu
Leu Asp 50 55 60
Gln Lys Ala Gln Ala Ile Ala Ala Phe Leu Gln Ala Asn Gln Ala Gln 65
70 75 80 Gly Gln Arg Ala Leu
Leu Leu Tyr Pro Pro Gly Leu Glu Phe Ile Gly 85
90 95 Ala Phe Leu Gly Cys Leu Tyr Ala Gly Val
Val Ala Val Pro Ala Tyr 100 105
110 Pro Pro Arg Pro Asn Lys Ser Phe Asp Arg Leu His Ser Ile Ile
Gln 115 120 125 Asp
Ala Gln Ala Lys Phe Ala Leu Thr Thr Thr Glu Leu Lys Asp Lys 130
135 140 Ile Ala Asp Arg Leu Glu
Ala Leu Glu Gly Thr Asp Phe His Cys Leu 145 150
155 160 Ala Thr Asp Gln Val Glu Leu Ile Ser Gly Lys
Asn Trp Gln Lys Pro 165 170
175 Asn Ile Ser Gly Thr Asp Leu Ala Phe Leu Gln Tyr Thr Ser Gly Ser
180 185 190 Thr Gly
Asp Pro Lys Gly Val Met Val Ser His His Asn Leu Ile His 195
200 205 Asn Ser Gly Leu Ile Asn Gln
Gly Phe Gln Asp Thr Glu Ala Ser Met 210 215
220 Gly Val Ser Trp Leu Pro Pro Tyr His Asp Met Gly
Leu Ile Gly Gly 225 230 235
240 Ile Leu Gln Pro Ile Tyr Val Gly Ala Thr Gln Ile Leu Met Pro Pro
245 250 255 Val Ala Phe
Leu Gln Arg Pro Phe Arg Trp Leu Lys Ala Ile Asn Asp 260
265 270 Tyr Arg Val Ser Thr Ser Gly Ala
Pro Asn Phe Ala Tyr Asp Leu Cys 275 280
285 Ala Ser Gln Ile Thr Pro Glu Gln Ile Arg Glu Leu Asp
Leu Ser Cys 290 295 300
Trp Arg Leu Ala Phe Ser Gly Ala Glu Pro Ile Arg Ala Val Thr Leu 305
310 315 320 Glu Asn Phe Ala
Lys Thr Phe Ala Thr Ala Gly Phe Gln Lys Ser Ala 325
330 335 Phe Tyr Pro Cys Tyr Gly Met Ala Glu
Thr Thr Leu Ile Val Ser Gly 340 345
350 Gly Asn Gly Arg Ala Gln Leu Pro Gln Glu Ile Ile Val Ser
Lys Gln 355 360 365
Gly Ile Glu Ala Asn Gln Val Arg Pro Ala Gln Gly Thr Glu Thr Thr 370
375 380 Val Thr Leu Val Gly
Ser Gly Glu Val Ile Gly Asp Gln Ile Val Lys 385 390
395 400 Ile Val Asp Pro Gln Ala Leu Thr Glu Cys
Thr Val Gly Glu Ile Gly 405 410
415 Glu Val Trp Val Lys Gly Glu Ser Val Ala Gln Gly Tyr Trp Gln
Lys 420 425 430 Pro
Asp Leu Thr Gln Gln Gln Phe Gln Gly Asn Val Gly Ala Glu Thr 435
440 445 Gly Phe Leu Arg Thr Gly
Asp Leu Gly Phe Leu Gln Gly Gly Glu Leu 450 455
460 Tyr Ile Thr Gly Arg Leu Lys Asp Leu Leu Ile
Ile Arg Gly Arg Asn 465 470 475
480 His Tyr Pro Gln Asp Ile Glu Leu Thr Val Glu Val Ala His Pro Ala
485 490 495 Leu Arg
Gln Gly Ala Gly Ala Ala Val Ser Val Asp Val Asn Gly Glu 500
505 510 Glu Gln Leu Val Ile Val Gln
Glu Val Glu Arg Lys Tyr Ala Arg Lys 515 520
525 Leu Asn Val Ala Ala Val Ala Gln Ala Ile Arg Gly
Ala Ile Ala Ala 530 535 540
Glu His Gln Leu Gln Pro Gln Ala Ile Cys Phe Ile Lys Pro Gly Ser 545
550 555 560 Ile Pro Lys
Thr Ser Ser Gly Lys Ile Arg Arg His Ala Cys Lys Ala 565
570 575 Gly Phe Leu Asp Gly Ser Leu Ala
Val Val Gly Glu Trp Gln Pro Ser 580 585
590 His Gln Lys Glu Gly Lys Gly Ile Gly Thr Gln Ala Val
Thr Pro Ser 595 600 605
Thr Thr Thr Ser Thr Asn Phe Pro Leu Pro Asp Gln His Gln Gln Gln 610
615 620 Ile Glu Ala Trp
Leu Lys Asp Asn Ile Ala His Arg Leu Gly Ile Thr 625 630
635 640 Pro Gln Gln Leu Asp Glu Thr Glu Pro
Phe Ala Ser Tyr Gly Leu Asp 645 650
655 Ser Val Gln Ala Val Gln Val Thr Ala Asp Leu Glu Asp Trp
Leu Gly 660 665 670
Arg Lys Leu Asp Pro Thr Leu Ala Tyr Asp Tyr Pro Thr Ile Arg Thr
675 680 685 Leu Ala Gln Phe
Leu Val Gln Gly Asn Gln Ala Leu Glu Lys Ile Pro 690
695 700 Gln Val Pro Lys Ile Gln Gly Lys
Glu Ile Ala Val Val Gly Leu Ser 705 710
715 720 Cys Arg Phe Pro Gln Ala Asp Asn Pro Glu Ala Phe
Trp Glu Leu Leu 725 730
735 Arg Asn Gly Lys Asp Gly Val Arg Pro Leu Lys Thr Arg Trp Ala Thr
740 745 750 Gly Glu Trp
Gly Gly Phe Leu Glu Asp Ile Asp Gln Phe Glu Pro Gln 755
760 765 Phe Phe Gly Ile Ser Pro Arg Glu
Ala Glu Gln Met Asp Pro Gln Gln 770 775
780 Arg Leu Leu Leu Glu Val Thr Trp Glu Ala Leu Glu Arg
Ala Asn Ile 785 790 795
800 Pro Ala Glu Ser Leu Arg His Ser Gln Thr Gly Val Phe Val Gly Ile
805 810 815 Ser Asn Ser Asp
Tyr Ala Gln Leu Gln Val Arg Glu Asn Asn Pro Ile 820
825 830 Asn Pro Tyr Met Gly Thr Gly Asn Ala
His Ser Ile Ala Ala Asn Arg 835 840
845 Leu Ser Tyr Phe Leu Asp Leu Arg Gly Val Ser Leu Ser Ile
Asp Thr 850 855 860
Ala Cys Ser Ser Ser Leu Val Ala Val His Leu Ala Cys Gln Ser Leu 865
870 875 880 Ile Asn Gly Glu Ser
Glu Leu Ala Ile Ala Ala Gly Val Asn Leu Ile 885
890 895 Leu Thr Pro Asp Val Thr Gln Thr Phe Thr
Gln Ala Gly Met Met Ser 900 905
910 Lys Thr Gly Arg Cys Gln Thr Phe Asp Ala Glu Ala Asp Gly Tyr
Val 915 920 925 Arg
Gly Glu Gly Cys Gly Val Val Leu Leu Lys Pro Leu Ala Gln Ala 930
935 940 Glu Arg Asp Gly Asp Asn
Ile Leu Ala Val Ile His Gly Ser Ala Val 945 950
955 960 Asn Gln Asp Gly Arg Ser Asn Gly Leu Thr Ala
Pro Asn Gly Arg Ser 965 970
975 Gln Gln Ala Val Ile Arg Gln Ala Leu Ala Gln Ala Gly Ile Thr Ala
980 985 990 Ala Asp
Leu Ala Tyr Leu Glu Ala His Gly Thr Gly Thr Pro Leu Gly 995
1000 1005 Asp Pro Ile Glu Ile
Asn Ser Leu Lys Ala Val Leu Gln Thr Ala 1010 1015
1020 Gln Arg Glu Gln Pro Cys Val Val Gly Ser
Val Lys Thr Asn Ile 1025 1030 1035
Gly His Leu Glu Ala Ala Ala Gly Ile Ala Gly Leu Ile Lys Val
1040 1045 1050 Ile Leu
Ser Leu Glu His Gly Met Ile Pro Gln His Leu His Phe 1055
1060 1065 Lys Gln Leu Asn Pro Arg Ile
Asp Leu Asp Gly Leu Val Thr Ile 1070 1075
1080 Ala Ser Lys Asp Gln Pro Trp Ser Gly Gly Ser Gln
Lys Arg Phe 1085 1090 1095
Ala Gly Val Ser Ser Phe Gly Phe Gly Gly Thr Asn Ala His Val 1100
1105 1110 Ile Val Gly Asp Tyr
Ala Gln Gln Lys Ser Pro Leu Ala Pro Pro 1115 1120
1125 Ala Thr Gln Asp Arg Pro Trp His Leu Leu
Thr Leu Ser Ala Lys 1130 1135 1140
Asn Ala Gln Ala Leu Asn Ala Leu Gln Lys Ser Tyr Gly Asp Tyr
1145 1150 1155 Leu Ala
Gln His Pro Ser Val Asp Pro Arg Asp Leu Cys Leu Ser 1160
1165 1170 Ala Asn Thr Gly Arg Ser Pro
Leu Lys Glu Arg Arg Phe Phe Val 1175 1180
1185 Phe Lys Gln Val Ala Asp Leu Gln Gln Thr Leu Asn
Gln Asp Phe 1190 1195 1200
Leu Ala Gln Pro Arg Leu Ser Ser Pro Ala Lys Ile Ala Phe Leu 1205
1210 1215 Phe Thr Gly Gln Gly
Ser Gln Tyr Tyr Gly Met Gly Gln Gln Leu 1220 1225
1230 Tyr Gln Thr Ser Pro Val Phe Arg Gln Val
Leu Asp Glu Cys Asp 1235 1240 1245
Arg Leu Trp Gln Thr Tyr Ser Pro Glu Ala Pro Ala Leu Thr Asp
1250 1255 1260 Leu Leu
Tyr Gly Asn His Asn Pro Asp Leu Val His Glu Thr Val 1265
1270 1275 Tyr Thr Gln Pro Leu Leu Phe
Ala Val Glu Tyr Ala Ile Ala Gln 1280 1285
1290 Leu Trp Leu Ser Trp Gly Val Thr Pro Asp Phe Cys
Met Gly His 1295 1300 1305
Ser Val Gly Glu Tyr Val Ala Ala Cys Leu Ala Gly Val Phe Ser 1310
1315 1320 Leu Ala Asp Gly Met
Lys Leu Ile Thr Ala Arg Gly Lys Leu Met 1325 1330
1335 His Ala Leu Pro Ser Asn Gly Ser Met Ala
Ala Val Phe Ala Asp 1340 1345 1350
Lys Thr Val Ile Lys Pro Tyr Leu Ser Glu His Leu Thr Val Gly
1355 1360 1365 Ala Glu
Asn Gly Ser His Leu Val Leu Ser Gly Lys Thr Pro Cys 1370
1375 1380 Leu Glu Ala Ser Ile His Lys
Leu Gln Ser Gln Gly Ile Lys Thr 1385 1390
1395 Lys Pro Leu Lys Val Ser His Ala Phe His Ser Pro
Leu Met Ala 1400 1405 1410
Pro Met Leu Ala Glu Phe Arg Glu Ile Ala Glu Gln Ile Thr Phe 1415
1420 1425 His Pro Pro Arg Ile
Pro Leu Ile Ser Asn Val Thr Gly Gly Gln 1430 1435
1440 Ile Glu Ala Glu Ile Ala Gln Ala Asp Tyr
Trp Val Lys His Val 1445 1450 1455
Ser Gln Pro Val Lys Phe Val Gln Ser Ile Gln Thr Leu Ala Gln
1460 1465 1470 Ala Gly
Val Asn Val Tyr Leu Glu Ile Gly Val Lys Pro Val Leu 1475
1480 1485 Leu Ser Met Gly Arg His Cys
Leu Ala Glu Gln Glu Ala Val Trp 1490 1495
1500 Leu Pro Ser Leu Arg Pro His Ser Glu Pro Trp Pro
Glu Ile Leu 1505 1510 1515
Thr Ser Leu Gly Lys Leu Tyr Glu Gln Gly Leu Asn Ile Asp Trp 1520
1525 1530 Gln Thr Val Glu Ala
Gly Asp Arg Arg Arg Lys Leu Ile Leu Pro 1535 1540
1545 Thr Tyr Pro Phe Gln Arg Gln Arg Tyr Trp
Phe Asn Gln Gly Ser 1550 1555 1560
Trp Gln Thr Val Glu Thr Glu Ser Val Asn Pro Gly Pro Asp Asp
1565 1570 1575 Leu Asn
Asp Trp Leu Tyr Gln Val Ala Trp Thr Pro Leu Asp Thr 1580
1585 1590 Leu Pro Pro Ala Pro Glu Pro
Ser Ala Lys Leu Trp Leu Ile Leu 1595 1600
1605 Gly Asp Arg His Asp His Gln Pro Ile Glu Ala Gln
Phe Lys Asn 1610 1615 1620
Ala Gln Arg Val Tyr Leu Gly Gln Ser Asn His Phe Pro Thr Asn 1625
1630 1635 Ala Pro Trp Glu Val
Ser Ala Asp Ala Leu Asp Asn Leu Phe Thr 1640 1645
1650 His Val Gly Ser Gln Asn Leu Ala Gly Ile
Leu Tyr Leu Cys Pro 1655 1660 1665
Pro Gly Glu Asp Pro Glu Asp Leu Asp Glu Ile Gln Lys Gln Thr
1670 1675 1680 Ser Gly
Phe Ala Leu Gln Leu Ile Gln Thr Leu Tyr Gln Gln Lys 1685
1690 1695 Ile Ala Val Pro Cys Trp Phe
Val Thr His Gln Ser Gln Arg Val 1700 1705
1710 Leu Glu Thr Asp Ala Val Thr Gly Phe Ala Gln Gly
Gly Leu Trp 1715 1720 1725
Gly Leu Ala Gln Ala Ile Ala Leu Glu His Pro Glu Leu Trp Gly 1730
1735 1740 Gly Ile Ile Asp Val
Asp Asp Ser Leu Pro Asn Phe Ala Gln Ile 1745 1750
1755 Cys Gln Gln Arg Gln Val Gln Gln Leu Ala
Val Arg His Gln Lys 1760 1765 1770
Leu Tyr Gly Ala Gln Leu Lys Lys Gln Pro Ser Leu Pro Gln Lys
1775 1780 1785 Asn Leu
Gln Ile Gln Pro Gln Gln Thr Tyr Leu Val Thr Gly Gly 1790
1795 1800 Leu Gly Ala Ile Gly Arg Lys
Ile Ala Gln Trp Leu Ala Ala Ala 1805 1810
1815 Gly Ala Glu Lys Val Ile Leu Val Ser Arg Arg Ala
Pro Ala Ala 1820 1825 1830
Asp Gln Gln Thr Leu Pro Thr Asn Ala Val Val Tyr Pro Cys Asp 1835
1840 1845 Leu Ala Asp Ala Ala
Gln Val Ala Lys Leu Phe Gln Thr Tyr Pro 1850 1855
1860 His Ile Lys Gly Ile Phe His Ala Ala Gly
Thr Leu Ala Asp Gly 1865 1870 1875
Leu Leu Gln Gln Gln Thr Trp Gln Lys Phe Gln Thr Val Ala Ala
1880 1885 1890 Ala Lys
Met Lys Gly Thr Trp His Leu His Arg His Ser Gln Lys 1895
1900 1905 Leu Asp Leu Asp Phe Phe Val
Leu Phe Ser Ser Val Ala Gly Val 1910 1915
1920 Leu Gly Ser Pro Gly Gln Gly Asn Tyr Ala Ala Ala
Asn Arg Gly 1925 1930 1935
Met Ala Ala Ile Ala Gln Tyr Arg Gln Ala Gln Gly Leu Pro Ala 1940
1945 1950 Leu Ala Ile His Trp
Gly Pro Trp Ala Glu Gly Gly Met Ala Asn 1955 1960
1965 Ser Leu Ser Asn Gln Asn Leu Ala Trp Leu
Pro Pro Pro Gln Gly 1970 1975 1980
Leu Thr Ile Leu Glu Lys Val Leu Gly Ala Gln Gly Glu Met Gly
1985 1990 1995 Val Phe
Lys Pro Asp Trp Gln Asn Leu Ala Lys Gln Phe Pro Glu 2000
2005 2010 Phe Ala Lys Thr His Tyr Phe
Ala Ala Val Ile Pro Ser Ala Glu 2015 2020
2025 Ala Val Pro Pro Thr Ala Ser Ile Phe Asp Lys Leu
Ile Asn Leu 2030 2035 2040
Glu Ala Ser Gln Arg Ala Asp Tyr Leu Leu Asp Tyr Leu Arg Arg 2045
2050 2055 Ser Val Ala Gln Ile
Leu Lys Leu Glu Ile Glu Gln Ile Gln Ser 2060 2065
2070 His Asp Ser Leu Leu Asp Leu Gly Met Asp
Ser Leu Met Ile Met 2075 2080 2085
Glu Ala Ile Ala Ser Leu Lys Gln Asp Leu Gln Leu Met Leu Tyr
2090 2095 2100 Pro Arg
Glu Ile Tyr Glu Arg Pro Arg Leu Asp Val Leu Thr Ala 2105
2110 2115 Tyr Leu Ala Ala Glu Phe Thr
Lys Ala His Asp Ser Glu Ala Ala 2120 2125
2130 Thr Ala Ala Ala Ala Ile Pro Ser Gln Ser Leu Ser
Val Lys Thr 2135 2140 2145
Lys Lys Gln Trp Gln Lys Pro Asp His Lys Asn Pro Asn Pro Ile 2150
2155 2160 Ala Phe Ile Leu Ser
Ser Pro Arg Ser Gly Ser Thr Leu Leu Arg 2165 2170
2175 Val Met Leu Ala Gly His Pro Gly Leu Tyr
Ser Pro Pro Glu Leu 2180 2185 2190
His Leu Leu Pro Phe Glu Thr Met Gly Asp Arg His Gln Glu Leu
2195 2200 2205 Gly Leu
Ser His Leu Gly Glu Gly Leu Gln Arg Ala Leu Met Asp 2210
2215 2220 Leu Glu Asn Leu Thr Pro Glu
Ala Ser Gln Ala Lys Val Asn Gln 2225 2230
2235 Trp Val Lys Ala Asn Thr Pro Ile Ala Asp Ile Tyr
Ala Tyr Leu 2240 2245 2250
Gln Arg Gln Ala Glu Gln Arg Leu Leu Ile Asp Lys Ser Pro Ser 2255
2260 2265 Tyr Gly Ser Asp Arg
His Ile Leu Asp His Ser Glu Ile Leu Phe 2270 2275
2280 Asp Gln Ala Lys Tyr Ile His Leu Val Arg
His Pro Tyr Ala Val 2285 2290 2295
Ile Glu Ser Phe Thr Arg Leu Arg Met Asp Lys Leu Leu Gly Ala
2300 2305 2310 Glu Gln
Gln Asn Pro Tyr Ala Leu Ala Glu Ser Ile Trp Arg Thr 2315
2320 2325 Ser Asn Arg Asn Ile Leu Asp
Leu Gly Arg Thr Val Gly Ala Asp 2330 2335
2340 Arg Tyr Leu Gln Val Ile Tyr Glu Asp Leu Val Arg
Asp Pro Arg 2345 2350 2355
Lys Val Leu Thr Asn Ile Cys Asp Phe Leu Gly Val Asp Phe Asp 2360
2365 2370 Glu Ala Leu Leu Asn
Pro Tyr Ser Gly Asp Arg Leu Thr Asp Gly 2375 2380
2385 Leu His Gln Gln Ser Met Gly Val Gly Asp
Pro Asn Phe Leu Gln 2390 2395 2400
His Lys Thr Ile Asp Pro Ala Leu Ala Asp Lys Trp Arg Ser Ile
2405 2410 2415 Thr Leu
Pro Ala Ala Leu Gln Leu Asp Thr Ile Gln Leu Ala Glu 2420
2425 2430 Thr Phe Ala Tyr Asp Leu Pro
Gln Glu Pro Gln Leu Thr Pro Gln 2435 2440
2445 Thr Gln Ser Leu Pro Ser Met Val Glu Arg Phe Val
Thr Val Arg 2450 2455 2460
Gly Leu Glu Thr Cys Leu Cys Glu Trp Gly Asp Arg His Gln Pro 2465
2470 2475 Leu Val Leu Leu Leu
His Gly Ile Leu Glu Gln Gly Ala Ser Trp 2480 2485
2490 Gln Leu Ile Ala Pro Gln Leu Ala Ala Gln
Gly Tyr Trp Val Val 2495 2500 2505
Ala Pro Asp Leu Arg Gly His Gly Lys Ser Ala His Ala Gln Ser
2510 2515 2520 Tyr Ser
Met Leu Asp Phe Leu Ala Asp Val Asp Ala Leu Ala Lys 2525
2530 2535 Gln Leu Gly Asp Arg Pro Phe
Thr Leu Val Gly His Ser Met Gly 2540 2545
2550 Ser Ile Ile Gly Ala Met Tyr Ala Gly Ile Arg Gln
Thr Gln Val 2555 2560 2565
Glu Lys Leu Ile Leu Val Glu Thr Ile Val Pro Asn Asp Ile Asp 2570
2575 2580 Asp Ala Glu Thr Gly
Asn His Leu Thr Thr His Leu Asp Tyr Leu 2585 2590
2595 Ala Ala Pro Pro Gln His Pro Ile Phe Pro
Ser Leu Glu Val Ala 2600 2605 2610
Ala Arg Arg Leu Arg Gln Ala Thr Pro Gln Leu Pro Lys Asp Leu
2615 2620 2625 Ser Ala
Phe Leu Thr Gln Arg Ser Thr Lys Ser Val Glu Lys Gly 2630
2635 2640 Val Gln Trp Arg Trp Asp Ala
Phe Leu Arg Thr Arg Ala Gly Ile 2645 2650
2655 Glu Phe Asn Gly Ile Ser Arg Arg Arg Tyr Leu Ala
Leu Leu Lys 2660 2665 2670
Asp Ile Gln Ala Pro Ile Thr Leu Ile Tyr Gly Asp Gln Ser Glu 2675
2680 2685 Phe Asn Arg Pro Ala
Asp Leu Gln Ala Ile Gln Ala Ala Leu Pro 2690 2695
2700 Gln Ala Gln Arg Leu Thr Val Ala Gly Gly
His Asn Leu His Phe 2705 2710 2715
Glu Asn Pro Gln Ala Ile Ala Gln Ile Val Tyr Gln Gln Leu Gln
2720 2725 2730 Thr Pro
Val Pro Lys Thr Gln Gly Leu His His His His His His 2735
2740 2745 Ser Ala Trp Ser His Pro Gln
Phe Glu Lys 2750 2755 25683DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
25tcatgaaaat ttacggcatt tacatggacc gtcctttgag ccaagaagaa aatgagcgtt
60ttatgtcgtt catcagcccg gaaaaacgcg agaagtgccg tcgtttctat cataaggagg
120atgcccatcg cacgctgctg ggtgatgttc tggttcgttc cgtgatctcc cgccaatacc
180agctggacaa aagcgatatc cgcttttcca cccaggagta cggcaaacca tgtatcccgg
240acctgccgga cgctcacttc aacattagcc acagcggtcg ttgggtgatt tgtgcgttcg
300atagccagcc gattggtatt gacattgaaa agacgaagcc tattagcctg gagatcgcca
360agcgcttctt cagcaaaacc gagtatagcg atctgctggc gaaagacaaa gacgagcaaa
420ccgactactt ttaccacctg tggagcatga aagaaagctt tatcaagcaa gaaggtaagg
480gtttgagctt gccgctggac agctttagcg tgcgtctgca tcaggatggt caggtcagca
540tcgagctgcc ggactctcac tctccgtgct atattaaaac ctacgaggtc gatccgggct
600ataaaatggc ggtttgcgca gcacacccgg actttccgga ggatatcact atggtgagct
660atgaagagtt gctgtaagaa ttc
683268277DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 26atggcaagct ggtcccaccc gcaattcgag
aaagaagtac atcaccatca ccatcatggc 60gcagtgggcc agtttgcgaa ctttgtagac
ctgttgcaat accgtgccaa gctgcaagca 120cgtaagaccg tctttagctt cctggcggac
ggcgaagcgg agagcgccgc tctgacctat 180ggtgagctgg atcaaaaggc gcaggcaatc
gcggcgttcc tgcaagcaaa tcaggcacaa 240ggccaacgtg cattgctgct gtatccgcca
ggtctggagt tcatcggtgc cttcctgggt 300tgtctgtatg cgggtgtcgt cgcggttccg
gcatatcctc cgcgtccgaa caagtccttc 360gaccgtttgc actccatcat tcaggacgcc
caagcgaagt ttgcactgac gacgaccgag 420ttgaaggata agattgcaga ccgtctggaa
gcgctggagg gtacggactt ccattgcctg 480gcgaccgacc aagtcgagct gatcagcggc
aaaaactggc aaaagccgaa tatctccggt 540acggatctgg cgtttctgca atacaccagc
ggcagcacgg gtgatccaaa aggcgtgatg 600gtcagccacc ataacctgat tcacaatagc
ggtctgttgg cggaagcgtg cgaactgacc 660gctgcgaccc cgatgggcgg ttggctgccg
atgtaccatg atatgggctt gctgggtact 720ctgacgccag cgttgtacct gggtactacc
tgtgtcctga tgtctagcac cgccttcatc 780aaacgcccgc atctgtggct gcgcaccatt
gatcgctttg gtctggtttg gtctagcgct 840ccggatttcg cgtacgatat gtgcctgaaa
cgtgttaccg atgagcagat tgcgggtctg 900gatctgtctc gctggcgctg ggcgggtaac
ggtgcagagc cgattcgcgc tgtcacgctg 960gaaaactttg cgaaaacgtt cgcaaccgcg
ggtttccaga aatcggcctt ctacccttgt 1020tacggtatgg cggaaaccac cctgatcgtg
agcggtggca atggccgtgc ccaactgcca 1080caggagatca tcgttagcaa gcagggcatt
gaggcgaacc aagtgcgtcc ggctcaaggc 1140acggaaacga ccgtgaccct ggtgggtagc
ggtgaggtca ttggtgacca gatcgttaag 1200atcgttgacc ctcaagcgct gaccgagtgc
accgtcggtg aaattggcga ggtgtgggtt 1260aaaggtgaaa gcgttgctca gggctactgg
cagaagccgg acttgacgca gcagcagttc 1320cagggtaacg tgggtgccga aacgggtttc
ctgcgcaccg gcgatctggg tttcctgcaa 1380ggcggcgagc tgtatatcac cggccgtctg
aaggatctgc tgatcattcg tggccgtaat 1440cactatcctc aggacattga gctgaccgtg
gaagttgctc acccagccct gcgtcagggc 1500gcaggtgccg cggtgagcgt ggacgttaat
ggtgaagaac aactggtgat cgttcaagag 1560gttgagcgta agtacgcacg caagctgaat
gtggcagcag tcgctcaggc catccgtggt 1620gcgattgcgg cagagcacca gttgcagccg
caggcgatct gctttatcaa accgggcagc 1680atcccgaaaa ctagcagcgg caaaatccgt
cgtcacgcat gtaaggccgg ttttctggac 1740ggaagcttgg cggttgttgg tgagtggcaa
ccgagccatc agaaagaggg caaaggtatt 1800ggtacccagg cagtgacccc gagcaccacg
acgtccacca actttccgct gccggatcaa 1860caccagcaac agatcgaggc gtggctgaag
gacaacatcg cgcaccgcct gggtattacg 1920ccgcagcagt tggatgaaac ggaaccgttc
gcttcttacg gtctggacag cgttcaagca 1980gtccaggtca ccgcagacct ggaggactgg
ctgggccgca agctggaccc gactctggcc 2040tatgattacc cgaccattcg cacgctggcg
caattcctgg ttcagggcaa ccaggccttg 2100gagaaaatcc cgcaagttcc aaagattcag
ggtaaagaga ttgcggtggt gggcctgagc 2160tgccgctttc cgcaggcgga caatccggag
gcgttctggg aactgttgcg caatggcaag 2220gatggcgtgc gtccgctgaa aacccgttgg
gccactggtg agtggggtgg tttcctggag 2280gatatcgacc agtttgagcc gcagttcttt
ggtattagcc cgcgtgaggc ggagcaaatg 2340gacccgcaac agcgtctgct gctggaggtc
acctgggagg cactggagcg tgcgaatatc 2400cctgccgaat ccctgcgtca cagccagacc
ggcgtctttg tgggcattag caacagcgat 2460tacgcacaac tgcaagtgcg tgagaacaac
ccgatcaatc cgtacatggg tactggtaac 2520gcacatagca tcgcggcgaa tcgtctgagc
tactttctgg atctgcgcgg tgtctccctg 2580agcattgata ccgcgtgttc tagcagcctg
gtcgcagttc atctggcgtg ccaaagcctg 2640attaacggcg agagcgagct ggcgattgct
gcgggtgtta atctgattct gaccccggat 2700gtcacgcaaa cctttaccca agcgggtatg
atgagcaaga cgggccgttg ccagacgttt 2760gatgcggagg cggacggcta cgtgcgcggt
gaaggctgcg gcgttgttct gctgaaaccg 2820ctggctcagg cggagcgtga tggcgacaat
atcctggcgg tcatccacgg tagcgcggtt 2880aaccaggacg gtcgcagcaa tggtctgact
gcgccgaacg gccgctctca gcaagcggtt 2940atccgtcagg ccctggcgca ggcgggcatc
accgcggcag acctggcgta tttggaagcg 3000catggtacgg gcaccccgct gggcgacccg
attgaaatca acagcttgaa agcagtgctg 3060caaaccgccc agcgcgagca accgtgcgtt
gtgggcagcg tcaagacgaa cattggccac 3120ctggaggcag cagcgggtat tgcaggtctg
atcaaggtga ttctgtccct ggagcacggc 3180atgattccgc aacacctgca ctttaagcaa
ctgaatccgc gcatcgacct ggacggcctg 3240gttaccatcg cgagcaaaga ccagccgtgg
tcgggtggta gccagaagcg tttcgccggt 3300gtcagcagct ttggttttgg cggtacgaat
gctcacgtga ttgttggtga ttatgcccag 3360caaaagtccc cgctggctcc gcctgcgacc
caagaccgtc cttggcatct gctgactctg 3420agcgcgaaga acgcacaagc gttgaacgcg
ttgcaaaaga gctatggtga ctacctggcg 3480caacatccga gcgttgaccc tcgcgatctg
tgcctgagcg ctaacactgg tcgctctccg 3540ctgaaagaac gccgcttctt cgtgttcaag
caggttgccg acttgcaaca aaccctgaat 3600caggactttc tggcgcagcc gaggctgagc
agcccagcca agattgcgtt cctgttcacg 3660ggtcagggca gccagtacta cggtatgggc
cagcaactgt atcagacgtc cccggttttc 3720cgtcaagtcc tggatgaatg cgaccgtctg
tggcagacgt acagcccgga ggcaccggcg 3780ctgaccgatc tgctgtacgg caatcataat
cctgacctgg ttcatgaaac ggtttacacg 3840caaccgctgc tgttcgcggt ggagtatgct
atcgcgcagt tgtggttgag ctggggcgtt 3900actccggatt tctgcatggg tcatagcgtc
ggtgagtatg tggcggcctg cctggcgggt 3960gtgtttagcc tggcggatgg catgaaactg
attaccgcgc gtggtaaact gatgcatgca 4020ctgccgagca atggcagcat ggcggctgtg
tttgcggaca aaaccgttat caagccgtat 4080ctgagcgaac acctgaccgt cggcgcagaa
aatggcagcc acctggttct gagcggtaag 4140accccttgtc tggaagcatc catccacaaa
ctgcaaagcc agggcatcaa aaccaagcct 4200ctgaaagtct cccatgcgtt ccactcgccg
ctgatggcgc cgatgctggc ggaatttcgt 4260gagatcgccg aacagattac gttccatccg
ccacgtatcc cgctgattag caacgtgacg 4320ggtggtcaaa tcgaggccga gatcgcgcaa
gcagactatt gggttaaaca tgttagccag 4380ccggtgaagt tcgttcagag cattcagacc
ctggcccaag cgggtgtgaa tgtgtacctg 4440gaaatcggtg ttaaaccagt cctgctgtct
atgggtcgcc actgtctggc agagcaggaa 4500gcggtttggc tgccgagcct gcgtccacat
agcgagcctt ggccggaaat cttgactagt 4560ctgggcaaac tgtacgagca aggtctgaat
atcgactggc aaacggttga agccggtgat 4620cgccgtcgta agctgatttt gccgacctac
ccgttccagc gtcagcgtta ttggttcaac 4680caaggtagct ggcaaaccgt cgaaactgag
agcgtgaatc caggcccgga cgacctgaat 4740gactggctgt accaagtggc atggactccg
ctggatacgc tgccgcctgc accggaaccg 4800tcggcgaaac tgtggctgat tctgggtgat
cgtcacgatc accaaccgat tgaggcccag 4860ttcaaaaacg cccaacgtgt gtacctgggc
caaagcaacc actttccgac gaacgccccg 4920tgggaggtga gcgcggacgc actggataac
ttgtttaccc atgtgggtag ccaaaacctg 4980gcaggcattc tgtatctgtg cccgcctggt
gaagatccgg aggatctgga tgagattcag 5040aaacaaactt ccggctttgc gttgcaactg
attcagaccc tgtatcagca gaaaatcgca 5100gtgccgtgtt ggtttgttac ccatcaaagc
cagcgtgtgc tggaaacgga cgcggtgacg 5160ggttttgccc aaggtggtct gtggggtttg
gcgcaagcga ttgcactgga acatccggaa 5220ctgtggggtg gtatcattga cgtggatgat
agcctgccga acttcgcgca gatttgtcag 5280caacgtcagg ttcagcaact ggctgtccgt
caccagaaac tgtatggtgc gcaactgaag 5340aagcagccga gcctgccgca gaagaatctg
cagatccaac ctcaacagac ctacctggtc 5400acgggcggtt tgggtgcaat cggtcgtaag
attgcgcagt ggctggcggc tgcgggtgct 5460gagaaagtta tcctggttag ccgtcgtgca
ccggcagcgg atcaacaaac cttgccgacc 5520aacgccgtgg tgtacccgtg cgatctggcg
gatgcggcgc aggttgcgaa actgttccaa 5580acctatccgc acattaaggg tatctttcat
gcagccggta cgctggctga cggtttgctg 5640caacagcaaa cctggcagaa attccagact
gtcgctgcgg cgaagatgaa gggcacctgg 5700cacctgcatc gccactctca gaagttggac
ttggatttct ttgttttgtt ttcgtctgtt 5760gcgggtgtgc tgggtagccc tggtcaaggc
aattacgcgg cagccaaccg tggcatggcc 5820gccatcgctc agtaccgcca ggctcaaggt
ctgccggcac tggcgattca ctggggccct 5880tgggcggaag gtggtatggc aaacagcttg
agcaaccaaa atctggcatg gttgcctccg 5940ccgcagggct tgaccattct ggaaaaagtt
ttgggtgccc aaggcgaaat gggcgtgttc 6000aaaccggact ggcagaactt ggccaaacaa
ttcccggagt tcgcgaaaac ccattacttt 6060gcggcggtca ttccgagcgc tgaagcggtt
ccaccgaccg catctatctt cgacaagctg 6120atcaatctgg aagcgagcca gcgcgcagat
tacctgctgg actatctgcg tagatctgtg 6180gcacaaattc tgaaactgga aattgagcag
attcagagcc acgactccct gctggatctg 6240ggtatggata gcctgatgat catggaggcg
attgcgtccc tgaaacaaga cctgcaactg 6300atgctgtatc cgcgtgagat ttacgagcgt
ccgcgtctgg atgttctgac tgcttacttg 6360gccgctgagt ttaccaaagc gcatgattct
gaagcagcta ccgccgcagc tgcgatccct 6420agccagagcc tgagcgtcaa aaccaaaaag
caatggcaga aaccggatca taagaacccg 6480aatccgattg cgttcatcct gagcagcccg
cgtagcggta gcaccctgct gcgcgtgatg 6540ctggccggtc acccgggtct gtattcccca
ccggaactgc acctgctgcc gtttgaaacg 6600atgggtgacc gccaccagga actgggtctg
tctcatctgg gcgagggtct gcaacgtgcc 6660ctgatggact tggaaaatct gacgccggaa
gcatcccagg caaaggtgaa ccaatgggtg 6720aaggcgaata cgccgattgc agacatctac
gcatacctgc aacgtcaagc cgagcaacgt 6780ctgctgattg acaaaagccc gagctatggc
agcgaccgcc acattctgga tcacagcgag 6840atcctgttcg atcaggcgaa atacatccac
ctggttcgcc atccttatgc ggtcattgag 6900agctttaccc gcctgcgtat ggacaagctg
ctgggtgcag agcaacagaa tccgtatgcg 6960ctggcggaaa gcatttggcg tacctcgaat
cgcaacattc tggacttggg tcgtaccgtc 7020ggcgctgacc gctacctgca agtcatctac
gaggatctgg tgcgtgaccc gcgtaaagtt 7080ctgaccaaca tttgtgattt tctgggtgtc
gatttcgacg aggcactgct gaatccgtac 7140tccggcgacc gcctgaccga cggcctgcac
cagcaaagca tgggtgtggg tgacccgaac 7200ttcttgcagc acaagaccat tgatccggcg
ctagcggaca aatggcgtag cattaccctg 7260ccggctgctc tgcaactgga tacgattcaa
ctggccgaaa ccttcgcata cgacctgccg 7320caggagccgc agttgacgcc gcagacccaa
tctttgccat cgatggtcga acgtttcgtc 7380acggttcgcg gcctggaaac ctgtctgtgc
gagtggggtg atcgccatca acctctggtc 7440ttgctgttgc acggtatcct ggagcaaggc
gcgtcttggc agttgatcgc gcctcaactg 7500gcagcgcagg gctattgggt cgtcgctccg
gatctgcgcg gtcacggtaa atctgcgcac 7560gcgcagtctt atagcatgct ggattttctg
gccgatgtgg acgcgctggc caaacagttg 7620ggcgaccgtc cgttcacctt ggttggtcac
agcatgggtt ccatcattgg cgcaatgtat 7680gctggcattc gtcaaaccca ggttgaaaaa
ctgattctgg tcgaaaccat cgtcccgaat 7740gatattgatg atgccgaaac cggcaatcac
ctgaccaccc atctggatta cctggcagcc 7800cctccgcagc acccgatctt tccgagcctg
gaagttgcgg ctcgtcgtct gcgccaagcc 7860accccgcagt tgccgaaaga cctgtctgca
tttctgacgc aacgttccac gaagagcgtc 7920gagaagggtg tgcagtggcg ctgggatgcc
ttcttgcgca cccgtgcagg tatcgagttt 7980aacggtatca gccgtcgccg ttatctggcg
ctgctgaaag atatccaggc cccaattact 8040ttgatttacg gtgatcagtc tgagttcaat
cgcccagcag acctgcaagc gatccaggcg 8100gcactgccgc aagcgcaacg cctgacggtt
gctggcggtc acaacttgca ctttgagaat 8160ccgcaggcca tcgcccagat tgtctatcag
cagttgcaga caccggttcc gaaaacccaa 8220ggtttgcacc atcaccacca tcatagcgcc
tggagccacc cgcagtttga aaagtaa 8277278277DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
27atggcaagct ggtcccaccc gcaattcgag aaagaagtac atcaccatca ccatcatggc
60gcagtgggcc agtttgcgaa ctttgtagac ctgttgcaat accgtgccaa gctgcaagca
120cgtaagaccg tctttagctt cctggcggac ggcgaagcgg agagcgccgc tctgacctat
180ggtgagctgg atcaaaaggc gcaggcaatc gcggcgttcc tgcaagcaaa tcaggcacaa
240ggccaacgtg cattgctgct gtatccgcca ggtctggagt tcatcggtgc cttcctgggt
300tgtctgtatg cgggtgtcgt cgcggttccg gcatatcctc cgcgtccgaa caagtccttc
360gaccgtttgc actccatcat tcaggacgcc caagcgaagt ttgcactgac gacgaccgag
420ttgaaggata agattgcaga ccgtctggaa gcgctggagg gtacggactt ccattgcctg
480gcgaccgacc aagtcgagct gatcagcggc aaaaactggc aaaagccgaa tatctccggt
540acggatctgg cgtttctgca atacaccagc ggcagcacgg gtgatccaaa aggcgtgatg
600gtcagccacc ataacctgat tcacaatagc ggtctgattt tcacctcttt tcacatgaac
660gatgaaacta tcattttctc gtggctgccg ccacatcacg atatgggttt gattggctgc
720attctgaccc cgatttacgg tggtattcag gctatcatga tgagcccgtt tagctttttg
780cagaacccgc tgtcctggct gaaacatatc actaagtaca aagcgaccat ttctggtagc
840ccgaactttg cgtacgacta ttgcgttaaa cgcattcgcg aagaaaagaa agagggtctg
900gatctgtcta gctgggttac cgcgttcaat ggtgcagagc cgattcgcgc tgtcacgctg
960gaaaactttg cgaaaacgtt cgcaaccgcg ggtttccaga aatcggcctt ctacccttgt
1020tacggtatgg cggaaaccac cctgatcgtg agcggtggca atggccgtgc ccaactgcca
1080caggagatca tcgttagcaa gcagggcatt gaggcgaacc aagtgcgtcc ggctcaaggc
1140acggaaacga ccgtgaccct ggtgggtagc ggtgaggtca ttggtgacca gatcgttaag
1200atcgttgacc ctcaagcgct gaccgagtgc accgtcggtg aaattggcga ggtgtgggtt
1260aaaggtgaaa gcgttgctca gggctactgg cagaagccgg acttgacgca gcagcagttc
1320cagggtaacg tgggtgccga aacgggtttc ctgcgcaccg gcgatctggg tttcctgcaa
1380ggcggcgagc tgtatatcac cggccgtctg aaggatctgc tgatcattcg tggccgtaat
1440cactatcctc aggacattga gctgaccgtg gaagttgctc acccagccct gcgtcagggc
1500gcaggtgccg cggtgagcgt ggacgttaat ggtgaagaac aactggtgat cgttcaagag
1560gttgagcgta agtacgcacg caagctgaat gtggcagcag tcgctcaggc catccgtggt
1620gcgattgcgg cagagcacca gttgcagccg caggcgatct gctttatcaa accgggcagc
1680atcccgaaaa ctagcagcgg caaaatccgt cgtcacgcat gtaaggccgg ttttctggac
1740ggaagcttgg cggttgttgg tgagtggcaa ccgagccatc agaaagaggg caaaggtatt
1800ggtacccagg cagtgacccc gagcaccacg acgtccacca actttccgct gccggatcaa
1860caccagcaac agatcgaggc gtggctgaag gacaacatcg cgcaccgcct gggtattacg
1920ccgcagcagt tggatgaaac ggaaccgttc gcttcttacg gtctggacag cgttcaagca
1980gtccaggtca ccgcagacct ggaggactgg ctgggccgca agctggaccc gactctggcc
2040tatgattacc cgaccattcg cacgctggcg caattcctgg ttcagggcaa ccaggccttg
2100gagaaaatcc cgcaagttcc aaagattcag ggtaaagaga ttgcggtggt gggcctgagc
2160tgccgctttc cgcaggcgga caatccggag gcgttctggg aactgttgcg caatggcaag
2220gatggcgtgc gtccgctgaa aacccgttgg gccactggtg agtggggtgg tttcctggag
2280gatatcgacc agtttgagcc gcagttcttt ggtattagcc cgcgtgaggc ggagcaaatg
2340gacccgcaac agcgtctgct gctggaggtc acctgggagg cactggagcg tgcgaatatc
2400cctgccgaat ccctgcgtca cagccagacc ggcgtctttg tgggcattag caacagcgat
2460tacgcacaac tgcaagtgcg tgagaacaac ccgatcaatc cgtacatggg tactggtaac
2520gcacatagca tcgcggcgaa tcgtctgagc tactttctgg atctgcgcgg tgtctccctg
2580agcattgata ccgcgtgttc tagcagcctg gtcgcagttc atctggcgtg ccaaagcctg
2640attaacggcg agagcgagct ggcgattgct gcgggtgtta atctgattct gaccccggat
2700gtcacgcaaa cctttaccca agcgggtatg atgagcaaga cgggccgttg ccagacgttt
2760gatgcggagg cggacggcta cgtgcgcggt gaaggctgcg gcgttgttct gctgaaaccg
2820ctggctcagg cggagcgtga tggcgacaat atcctggcgg tcatccacgg tagcgcggtt
2880aaccaggacg gtcgcagcaa tggtctgact gcgccgaacg gccgctctca gcaagcggtt
2940atccgtcagg ccctggcgca ggcgggcatc accgcggcag acctggcgta tttggaagcg
3000catggtacgg gcaccccgct gggcgacccg attgaaatca acagcttgaa agcagtgctg
3060caaaccgccc agcgcgagca accgtgcgtt gtgggcagcg tcaagacgaa cattggccac
3120ctggaggcag cagcgggtat tgcaggtctg atcaaggtga ttctgtccct ggagcacggc
3180atgattccgc aacacctgca ctttaagcaa ctgaatccgc gcatcgacct ggacggcctg
3240gttaccatcg cgagcaaaga ccagccgtgg tcgggtggta gccagaagcg tttcgccggt
3300gtcagcagct ttggttttgg cggtacgaat gctcacgtga ttgttggtga ttatgcccag
3360caaaagtccc cgctggctcc gcctgcgacc caagaccgtc cttggcatct gctgactctg
3420agcgcgaaga acgcacaagc gttgaacgcg ttgcaaaaga gctatggtga ctacctggcg
3480caacatccga gcgttgaccc tcgcgatctg tgcctgagcg ctaacactgg tcgctctccg
3540ctgaaagaac gccgcttctt cgtgttcaag caggttgccg acttgcaaca aaccctgaat
3600caggactttc tggcgcagcc gaggctgagc agcccagcca agattgcgtt cctgttcacg
3660ggtcagggca gccagtacta cggtatgggc cagcaactgt atcagacgtc cccggttttc
3720cgtcaagtcc tggatgaatg cgaccgtctg tggcagacgt acagcccgga ggcaccggcg
3780ctgaccgatc tgctgtacgg caatcataat cctgacctgg ttcatgaaac ggtttacacg
3840caaccgctgc tgttcgcggt ggagtatgct atcgcgcagt tgtggttgag ctggggcgtt
3900actccggatt tctgcatggg tcatagcgtc ggtgagtatg tggcggcctg cctggcgggt
3960gtgtttagcc tggcggatgg catgaaactg attaccgcgc gtggtaaact gatgcatgca
4020ctgccgagca atggcagcat ggcggctgtg tttgcggaca aaaccgttat caagccgtat
4080ctgagcgaac acctgaccgt cggcgcagaa aatggcagcc acctggttct gagcggtaag
4140accccttgtc tggaagcatc catccacaaa ctgcaaagcc agggcatcaa aaccaagcct
4200ctgaaagtct cccatgcgtt ccactcgccg ctgatggcgc cgatgctggc ggaatttcgt
4260gagatcgccg aacagattac gttccatccg ccacgtatcc cgctgattag caacgtgacg
4320ggtggtcaaa tcgaggccga gatcgcgcaa gcagactatt gggttaaaca tgttagccag
4380ccggtgaagt tcgttcagag cattcagacc ctggcccaag cgggtgtgaa tgtgtacctg
4440gaaatcggtg ttaaaccagt cctgctgtct atgggtcgcc actgtctggc agagcaggaa
4500gcggtttggc tgccgagcct gcgtccacat agcgagcctt ggccggaaat cttgactagt
4560ctgggcaaac tgtacgagca aggtctgaat atcgactggc aaacggttga agccggtgat
4620cgccgtcgta agctgatttt gccgacctac ccgttccagc gtcagcgtta ttggttcaac
4680caaggtagct ggcaaaccgt cgaaactgag agcgtgaatc caggcccgga cgacctgaat
4740gactggctgt accaagtggc atggactccg ctggatacgc tgccgcctgc accggaaccg
4800tcggcgaaac tgtggctgat tctgggtgat cgtcacgatc accaaccgat tgaggcccag
4860ttcaaaaacg cccaacgtgt gtacctgggc caaagcaacc actttccgac gaacgccccg
4920tgggaggtga gcgcggacgc actggataac ttgtttaccc atgtgggtag ccaaaacctg
4980gcaggcattc tgtatctgtg cccgcctggt gaagatccgg aggatctgga tgagattcag
5040aaacaaactt ccggctttgc gttgcaactg attcagaccc tgtatcagca gaaaatcgca
5100gtgccgtgtt ggtttgttac ccatcaaagc cagcgtgtgc tggaaacgga cgcggtgacg
5160ggttttgccc aaggtggtct gtggggtttg gcgcaagcga ttgcactgga acatccggaa
5220ctgtggggtg gtatcattga cgtggatgat agcctgccga acttcgcgca gatttgtcag
5280caacgtcagg ttcagcaact ggctgtccgt caccagaaac tgtatggtgc gcaactgaag
5340aagcagccga gcctgccgca gaagaatctg cagatccaac ctcaacagac ctacctggtc
5400acgggcggtt tgggtgcaat cggtcgtaag attgcgcagt ggctggcggc tgcgggtgct
5460gagaaagtta tcctggttag ccgtcgtgca ccggcagcgg atcaacaaac cttgccgacc
5520aacgccgtgg tgtacccgtg cgatctggcg gatgcggcgc aggttgcgaa actgttccaa
5580acctatccgc acattaaggg tatctttcat gcagccggta cgctggctga cggtttgctg
5640caacagcaaa cctggcagaa attccagact gtcgctgcgg cgaagatgaa gggcacctgg
5700cacctgcatc gccactctca gaagttggac ttggatttct ttgttttgtt ttcgtctgtt
5760gcgggtgtgc tgggtagccc tggtcaaggc aattacgcgg cagccaaccg tggcatggcc
5820gccatcgctc agtaccgcca ggctcaaggt ctgccggcac tggcgattca ctggggccct
5880tgggcggaag gtggtatggc aaacagcttg agcaaccaaa atctggcatg gttgcctccg
5940ccgcagggct tgaccattct ggaaaaagtt ttgggtgccc aaggcgaaat gggcgtgttc
6000aaaccggact ggcagaactt ggccaaacaa ttcccggagt tcgcgaaaac ccattacttt
6060gcggcggtca ttccgagcgc tgaagcggtt ccaccgaccg catctatctt cgacaagctg
6120atcaatctgg aagcgagcca gcgcgcagat tacctgctgg actatctgcg tagatctgtg
6180gcacaaattc tgaaactgga aattgagcag attcagagcc acgactccct gctggatctg
6240ggtatggata gcctgatgat catggaggcg attgcgtccc tgaaacaaga cctgcaactg
6300atgctgtatc cgcgtgagat ttacgagcgt ccgcgtctgg atgttctgac tgcttacttg
6360gccgctgagt ttaccaaagc gcatgattct gaagcagcta ccgccgcagc tgcgatccct
6420agccagagcc tgagcgtcaa aaccaaaaag caatggcaga aaccggatca taagaacccg
6480aatccgattg cgttcatcct gagcagcccg cgtagcggta gcaccctgct gcgcgtgatg
6540ctggccggtc acccgggtct gtattcccca ccggaactgc acctgctgcc gtttgaaacg
6600atgggtgacc gccaccagga actgggtctg tctcatctgg gcgagggtct gcaacgtgcc
6660ctgatggact tggaaaatct gacgccggaa gcatcccagg caaaggtgaa ccaatgggtg
6720aaggcgaata cgccgattgc agacatctac gcatacctgc aacgtcaagc cgagcaacgt
6780ctgctgattg acaaaagccc gagctatggc agcgaccgcc acattctgga tcacagcgag
6840atcctgttcg atcaggcgaa atacatccac ctggttcgcc atccttatgc ggtcattgag
6900agctttaccc gcctgcgtat ggacaagctg ctgggtgcag agcaacagaa tccgtatgcg
6960ctggcggaaa gcatttggcg tacctcgaat cgcaacattc tggacttggg tcgtaccgtc
7020ggcgctgacc gctacctgca agtcatctac gaggatctgg tgcgtgaccc gcgtaaagtt
7080ctgaccaaca tttgtgattt tctgggtgtc gatttcgacg aggcactgct gaatccgtac
7140tccggcgacc gcctgaccga cggcctgcac cagcaaagca tgggtgtggg tgacccgaac
7200ttcttgcagc acaagaccat tgatccggcg ctagcggaca aatggcgtag cattaccctg
7260ccggctgctc tgcaactgga tacgattcaa ctggccgaaa ccttcgcata cgacctgccg
7320caggagccgc agttgacgcc gcagacccaa tctttgccat cgatggtcga acgtttcgtc
7380acggttcgcg gcctggaaac ctgtctgtgc gagtggggtg atcgccatca acctctggtc
7440ttgctgttgc acggtatcct ggagcaaggc gcgtcttggc agttgatcgc gcctcaactg
7500gcagcgcagg gctattgggt cgtcgctccg gatctgcgcg gtcacggtaa atctgcgcac
7560gcgcagtctt atagcatgct ggattttctg gccgatgtgg acgcgctggc caaacagttg
7620ggcgaccgtc cgttcacctt ggttggtcac agcatgggtt ccatcattgg cgcaatgtat
7680gctggcattc gtcaaaccca ggttgaaaaa ctgattctgg tcgaaaccat cgtcccgaat
7740gatattgatg atgccgaaac cggcaatcac ctgaccaccc atctggatta cctggcagcc
7800cctccgcagc acccgatctt tccgagcctg gaagttgcgg ctcgtcgtct gcgccaagcc
7860accccgcagt tgccgaaaga cctgtctgca tttctgacgc aacgttccac gaagagcgtc
7920gagaagggtg tgcagtggcg ctgggatgcc ttcttgcgca cccgtgcagg tatcgagttt
7980aacggtatca gccgtcgccg ttatctggcg ctgctgaaag atatccaggc cccaattact
8040ttgatttacg gtgatcagtc tgagttcaat cgcccagcag acctgcaagc gatccaggcg
8100gcactgccgc aagcgcaacg cctgacggtt gctggcggtc acaacttgca ctttgagaat
8160ccgcaggcca tcgcccagat tgtctatcag cagttgcaga caccggttcc gaaaacccaa
8220ggtttgcacc atcaccacca tcatagcgcc tggagccacc cgcagtttga aaagtaa
8277288277DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 28atggcaagct ggtcccaccc gcaattcgag
aaagaagtac atcaccatca ccatcatggc 60gcagtgggcc agtttgcgaa ctttgtagac
ctgttgcaat accgtgccaa gctgcaagca 120cgtaagaccg tctttagctt cctggcggac
ggcgaagcgg agagcgccgc tctgacctat 180ggtgagctgg atcaaaaggc gcaggcaatc
gcggcgttcc tgcaagcaaa tcaggcacaa 240ggccaacgtg cattgctgct gtatccgcca
ggtctggagt tcatcggtgc cttcctgggt 300tgtctgtatg cgggtgtcgt cgcggttccg
gcatatcctc cgcgtccgaa caagtccttc 360gaccgtttgc actccatcat tcaggacgcc
caagcgaagt ttgcactgac gacgaccgag 420ttgaaggata agattgcaga ccgtctggaa
gcgctggagg gtacggactt ccattgcctg 480gcgaccgacc aagtcgagct gatcagcggc
aaaaactggc aaaagccgaa tatctccggt 540acggatctgg cgtttctgca atacaccagc
ggcagcacgg gtgatccaaa aggcgtgatg 600gtcagccacc ataacctgat tcacaatagc
ggtctgattc gcaacgcgct ggcgattgat 660ctgaaagata ccctgctgtc ttggatgccg
ttgactcacg atatgggttt gattgcgtgc 720catctggttc cggcgctggc gggcattaac
cagaatttga tgccgactga actgttcatt 780cgtcgcccga ttctgtggat gaagaaagct
cacgaacata aagcgtctat tctgtctagc 840ccgaatttcg gttacaacta ctttctgaaa
ttcctgaaag acaacaaaag ctacgattgg 900gatctgtccc atattcgcgt tatcgcgaac
ggtgcagagc cgattcgcgc tgtcacgctg 960gaaaactttg cgaaaacgtt cgcaaccgcg
ggtttccaga aatcggcctt ctacccttgt 1020tacggtatgg cggaaaccac cctgatcgtg
agcggtggca atggccgtgc ccaactgcca 1080caggagatca tcgttagcaa gcagggcatt
gaggcgaacc aagtgcgtcc ggctcaaggc 1140acggaaacga ccgtgaccct ggtgggtagc
ggtgaggtca ttggtgacca gatcgttaag 1200atcgttgacc ctcaagcgct gaccgagtgc
accgtcggtg aaattggcga ggtgtgggtt 1260aaaggtgaaa gcgttgctca gggctactgg
cagaagccgg acttgacgca gcagcagttc 1320cagggtaacg tgggtgccga aacgggtttc
ctgcgcaccg gcgatctggg tttcctgcaa 1380ggcggcgagc tgtatatcac cggccgtctg
aaggatctgc tgatcattcg tggccgtaat 1440cactatcctc aggacattga gctgaccgtg
gaagttgctc acccagccct gcgtcagggc 1500gcaggtgccg cggtgagcgt ggacgttaat
ggtgaagaac aactggtgat cgttcaagag 1560gttgagcgta agtacgcacg caagctgaat
gtggcagcag tcgctcaggc catccgtggt 1620gcgattgcgg cagagcacca gttgcagccg
caggcgatct gctttatcaa accgggcagc 1680atcccgaaaa ctagcagcgg caaaatccgt
cgtcacgcat gtaaggccgg ttttctggac 1740ggaagcttgg cggttgttgg tgagtggcaa
ccgagccatc agaaagaggg caaaggtatt 1800ggtacccagg cagtgacccc gagcaccacg
acgtccacca actttccgct gccggatcaa 1860caccagcaac agatcgaggc gtggctgaag
gacaacatcg cgcaccgcct gggtattacg 1920ccgcagcagt tggatgaaac ggaaccgttc
gcttcttacg gtctggacag cgttcaagca 1980gtccaggtca ccgcagacct ggaggactgg
ctgggccgca agctggaccc gactctggcc 2040tatgattacc cgaccattcg cacgctggcg
caattcctgg ttcagggcaa ccaggccttg 2100gagaaaatcc cgcaagttcc aaagattcag
ggtaaagaga ttgcggtggt gggcctgagc 2160tgccgctttc cgcaggcgga caatccggag
gcgttctggg aactgttgcg caatggcaag 2220gatggcgtgc gtccgctgaa aacccgttgg
gccactggtg agtggggtgg tttcctggag 2280gatatcgacc agtttgagcc gcagttcttt
ggtattagcc cgcgtgaggc ggagcaaatg 2340gacccgcaac agcgtctgct gctggaggtc
acctgggagg cactggagcg tgcgaatatc 2400cctgccgaat ccctgcgtca cagccagacc
ggcgtctttg tgggcattag caacagcgat 2460tacgcacaac tgcaagtgcg tgagaacaac
ccgatcaatc cgtacatggg tactggtaac 2520gcacatagca tcgcggcgaa tcgtctgagc
tactttctgg atctgcgcgg tgtctccctg 2580agcattgata ccgcgtgttc tagcagcctg
gtcgcagttc atctggcgtg ccaaagcctg 2640attaacggcg agagcgagct ggcgattgct
gcgggtgtta atctgattct gaccccggat 2700gtcacgcaaa cctttaccca agcgggtatg
atgagcaaga cgggccgttg ccagacgttt 2760gatgcggagg cggacggcta cgtgcgcggt
gaaggctgcg gcgttgttct gctgaaaccg 2820ctggctcagg cggagcgtga tggcgacaat
atcctggcgg tcatccacgg tagcgcggtt 2880aaccaggacg gtcgcagcaa tggtctgact
gcgccgaacg gccgctctca gcaagcggtt 2940atccgtcagg ccctggcgca ggcgggcatc
accgcggcag acctggcgta tttggaagcg 3000catggtacgg gcaccccgct gggcgacccg
attgaaatca acagcttgaa agcagtgctg 3060caaaccgccc agcgcgagca accgtgcgtt
gtgggcagcg tcaagacgaa cattggccac 3120ctggaggcag cagcgggtat tgcaggtctg
atcaaggtga ttctgtccct ggagcacggc 3180atgattccgc aacacctgca ctttaagcaa
ctgaatccgc gcatcgacct ggacggcctg 3240gttaccatcg cgagcaaaga ccagccgtgg
tcgggtggta gccagaagcg tttcgccggt 3300gtcagcagct ttggttttgg cggtacgaat
gctcacgtga ttgttggtga ttatgcccag 3360caaaagtccc cgctggctcc gcctgcgacc
caagaccgtc cttggcatct gctgactctg 3420agcgcgaaga acgcacaagc gttgaacgcg
ttgcaaaaga gctatggtga ctacctggcg 3480caacatccga gcgttgaccc tcgcgatctg
tgcctgagcg ctaacactgg tcgctctccg 3540ctgaaagaac gccgcttctt cgtgttcaag
caggttgccg acttgcaaca aaccctgaat 3600caggactttc tggcgcagcc gaggctgagc
agcccagcca agattgcgtt cctgttcacg 3660ggtcagggca gccagtacta cggtatgggc
cagcaactgt atcagacgtc cccggttttc 3720cgtcaagtcc tggatgaatg cgaccgtctg
tggcagacgt acagcccgga ggcaccggcg 3780ctgaccgatc tgctgtacgg caatcataat
cctgacctgg ttcatgaaac ggtttacacg 3840caaccgctgc tgttcgcggt ggagtatgct
atcgcgcagt tgtggttgag ctggggcgtt 3900actccggatt tctgcatggg tcatagcgtc
ggtgagtatg tggcggcctg cctggcgggt 3960gtgtttagcc tggcggatgg catgaaactg
attaccgcgc gtggtaaact gatgcatgca 4020ctgccgagca atggcagcat ggcggctgtg
tttgcggaca aaaccgttat caagccgtat 4080ctgagcgaac acctgaccgt cggcgcagaa
aatggcagcc acctggttct gagcggtaag 4140accccttgtc tggaagcatc catccacaaa
ctgcaaagcc agggcatcaa aaccaagcct 4200ctgaaagtct cccatgcgtt ccactcgccg
ctgatggcgc cgatgctggc ggaatttcgt 4260gagatcgccg aacagattac gttccatccg
ccacgtatcc cgctgattag caacgtgacg 4320ggtggtcaaa tcgaggccga gatcgcgcaa
gcagactatt gggttaaaca tgttagccag 4380ccggtgaagt tcgttcagag cattcagacc
ctggcccaag cgggtgtgaa tgtgtacctg 4440gaaatcggtg ttaaaccagt cctgctgtct
atgggtcgcc actgtctggc agagcaggaa 4500gcggtttggc tgccgagcct gcgtccacat
agcgagcctt ggccggaaat cttgactagt 4560ctgggcaaac tgtacgagca aggtctgaat
atcgactggc aaacggttga agccggtgat 4620cgccgtcgta agctgatttt gccgacctac
ccgttccagc gtcagcgtta ttggttcaac 4680caaggtagct ggcaaaccgt cgaaactgag
agcgtgaatc caggcccgga cgacctgaat 4740gactggctgt accaagtggc atggactccg
ctggatacgc tgccgcctgc accggaaccg 4800tcggcgaaac tgtggctgat tctgggtgat
cgtcacgatc accaaccgat tgaggcccag 4860ttcaaaaacg cccaacgtgt gtacctgggc
caaagcaacc actttccgac gaacgccccg 4920tgggaggtga gcgcggacgc actggataac
ttgtttaccc atgtgggtag ccaaaacctg 4980gcaggcattc tgtatctgtg cccgcctggt
gaagatccgg aggatctgga tgagattcag 5040aaacaaactt ccggctttgc gttgcaactg
attcagaccc tgtatcagca gaaaatcgca 5100gtgccgtgtt ggtttgttac ccatcaaagc
cagcgtgtgc tggaaacgga cgcggtgacg 5160ggttttgccc aaggtggtct gtggggtttg
gcgcaagcga ttgcactgga acatccggaa 5220ctgtggggtg gtatcattga cgtggatgat
agcctgccga acttcgcgca gatttgtcag 5280caacgtcagg ttcagcaact ggctgtccgt
caccagaaac tgtatggtgc gcaactgaag 5340aagcagccga gcctgccgca gaagaatctg
cagatccaac ctcaacagac ctacctggtc 5400acgggcggtt tgggtgcaat cggtcgtaag
attgcgcagt ggctggcggc tgcgggtgct 5460gagaaagtta tcctggttag ccgtcgtgca
ccggcagcgg atcaacaaac cttgccgacc 5520aacgccgtgg tgtacccgtg cgatctggcg
gatgcggcgc aggttgcgaa actgttccaa 5580acctatccgc acattaaggg tatctttcat
gcagccggta cgctggctga cggtttgctg 5640caacagcaaa cctggcagaa attccagact
gtcgctgcgg cgaagatgaa gggcacctgg 5700cacctgcatc gccactctca gaagttggac
ttggatttct ttgttttgtt ttcgtctgtt 5760gcgggtgtgc tgggtagccc tggtcaaggc
aattacgcgg cagccaaccg tggcatggcc 5820gccatcgctc agtaccgcca ggctcaaggt
ctgccggcac tggcgattca ctggggccct 5880tgggcggaag gtggtatggc aaacagcttg
agcaaccaaa atctggcatg gttgcctccg 5940ccgcagggct tgaccattct ggaaaaagtt
ttgggtgccc aaggcgaaat gggcgtgttc 6000aaaccggact ggcagaactt ggccaaacaa
ttcccggagt tcgcgaaaac ccattacttt 6060gcggcggtca ttccgagcgc tgaagcggtt
ccaccgaccg catctatctt cgacaagctg 6120atcaatctgg aagcgagcca gcgcgcagat
tacctgctgg actatctgcg tagatctgtg 6180gcacaaattc tgaaactgga aattgagcag
attcagagcc acgactccct gctggatctg 6240ggtatggata gcctgatgat catggaggcg
attgcgtccc tgaaacaaga cctgcaactg 6300atgctgtatc cgcgtgagat ttacgagcgt
ccgcgtctgg atgttctgac tgcttacttg 6360gccgctgagt ttaccaaagc gcatgattct
gaagcagcta ccgccgcagc tgcgatccct 6420agccagagcc tgagcgtcaa aaccaaaaag
caatggcaga aaccggatca taagaacccg 6480aatccgattg cgttcatcct gagcagcccg
cgtagcggta gcaccctgct gcgcgtgatg 6540ctggccggtc acccgggtct gtattcccca
ccggaactgc acctgctgcc gtttgaaacg 6600atgggtgacc gccaccagga actgggtctg
tctcatctgg gcgagggtct gcaacgtgcc 6660ctgatggact tggaaaatct gacgccggaa
gcatcccagg caaaggtgaa ccaatgggtg 6720aaggcgaata cgccgattgc agacatctac
gcatacctgc aacgtcaagc cgagcaacgt 6780ctgctgattg acaaaagccc gagctatggc
agcgaccgcc acattctgga tcacagcgag 6840atcctgttcg atcaggcgaa atacatccac
ctggttcgcc atccttatgc ggtcattgag 6900agctttaccc gcctgcgtat ggacaagctg
ctgggtgcag agcaacagaa tccgtatgcg 6960ctggcggaaa gcatttggcg tacctcgaat
cgcaacattc tggacttggg tcgtaccgtc 7020ggcgctgacc gctacctgca agtcatctac
gaggatctgg tgcgtgaccc gcgtaaagtt 7080ctgaccaaca tttgtgattt tctgggtgtc
gatttcgacg aggcactgct gaatccgtac 7140tccggcgacc gcctgaccga cggcctgcac
cagcaaagca tgggtgtggg tgacccgaac 7200ttcttgcagc acaagaccat tgatccggcg
ctagcggaca aatggcgtag cattaccctg 7260ccggctgctc tgcaactgga tacgattcaa
ctggccgaaa ccttcgcata cgacctgccg 7320caggagccgc agttgacgcc gcagacccaa
tctttgccat cgatggtcga acgtttcgtc 7380acggttcgcg gcctggaaac ctgtctgtgc
gagtggggtg atcgccatca acctctggtc 7440ttgctgttgc acggtatcct ggagcaaggc
gcgtcttggc agttgatcgc gcctcaactg 7500gcagcgcagg gctattgggt cgtcgctccg
gatctgcgcg gtcacggtaa atctgcgcac 7560gcgcagtctt atagcatgct ggattttctg
gccgatgtgg acgcgctggc caaacagttg 7620ggcgaccgtc cgttcacctt ggttggtcac
agcatgggtt ccatcattgg cgcaatgtat 7680gctggcattc gtcaaaccca ggttgaaaaa
ctgattctgg tcgaaaccat cgtcccgaat 7740gatattgatg atgccgaaac cggcaatcac
ctgaccaccc atctggatta cctggcagcc 7800cctccgcagc acccgatctt tccgagcctg
gaagttgcgg ctcgtcgtct gcgccaagcc 7860accccgcagt tgccgaaaga cctgtctgca
tttctgacgc aacgttccac gaagagcgtc 7920gagaagggtg tgcagtggcg ctgggatgcc
ttcttgcgca cccgtgcagg tatcgagttt 7980aacggtatca gccgtcgccg ttatctggcg
ctgctgaaag atatccaggc cccaattact 8040ttgatttacg gtgatcagtc tgagttcaat
cgcccagcag acctgcaagc gatccaggcg 8100gcactgccgc aagcgcaacg cctgacggtt
gctggcggtc acaacttgca ctttgagaat 8160ccgcaggcca tcgcccagat tgtctatcag
cagttgcaga caccggttcc gaaaacccaa 8220ggtttgcacc atcaccacca tcatagcgcc
tggagccacc cgcagtttga aaagtaa 8277292758PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
29Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Glu Val His His His 1
5 10 15 His His His Gly
Ala Val Gly Gln Phe Ala Asn Phe Val Asp Leu Leu 20
25 30 Gln Tyr Arg Ala Lys Leu Gln Ala Arg
Lys Thr Val Phe Ser Phe Leu 35 40
45 Ala Asp Gly Glu Ala Glu Ser Ala Ala Leu Thr Tyr Gly Glu
Leu Asp 50 55 60
Gln Lys Ala Gln Ala Ile Ala Ala Phe Leu Gln Ala Asn Gln Ala Gln 65
70 75 80 Gly Gln Arg Ala Leu
Leu Leu Tyr Pro Pro Gly Leu Glu Phe Ile Gly 85
90 95 Ala Phe Leu Gly Cys Leu Tyr Ala Gly Val
Val Ala Val Pro Ala Tyr 100 105
110 Pro Pro Arg Pro Asn Lys Ser Phe Asp Arg Leu His Ser Ile Ile
Gln 115 120 125 Asp
Ala Gln Ala Lys Phe Ala Leu Thr Thr Thr Glu Leu Lys Asp Lys 130
135 140 Ile Ala Asp Arg Leu Glu
Ala Leu Glu Gly Thr Asp Phe His Cys Leu 145 150
155 160 Ala Thr Asp Gln Val Glu Leu Ile Ser Gly Lys
Asn Trp Gln Lys Pro 165 170
175 Asn Ile Ser Gly Thr Asp Leu Ala Phe Leu Gln Tyr Thr Ser Gly Ser
180 185 190 Thr Gly
Asp Pro Lys Gly Val Met Val Ser His His Asn Leu Ile His 195
200 205 Asn Ser Gly Leu Leu Ala Glu
Ala Cys Glu Leu Thr Ala Ala Thr Pro 210 215
220 Met Gly Gly Trp Leu Pro Met Tyr His Asp Met Gly
Leu Leu Gly Thr 225 230 235
240 Leu Thr Pro Ala Leu Tyr Leu Gly Thr Thr Cys Val Leu Met Ser Ser
245 250 255 Thr Ala Phe
Ile Lys Arg Pro His Leu Trp Leu Arg Thr Ile Asp Arg 260
265 270 Phe Gly Leu Val Trp Ser Ser Ala
Pro Asp Phe Ala Tyr Asp Met Cys 275 280
285 Leu Lys Arg Val Thr Asp Glu Gln Ile Ala Gly Leu Asp
Leu Ser Arg 290 295 300
Trp Arg Trp Ala Gly Asn Gly Ala Glu Pro Ile Arg Ala Val Thr Leu 305
310 315 320 Glu Asn Phe Ala
Lys Thr Phe Ala Thr Ala Gly Phe Gln Lys Ser Ala 325
330 335 Phe Tyr Pro Cys Tyr Gly Met Ala Glu
Thr Thr Leu Ile Val Ser Gly 340 345
350 Gly Asn Gly Arg Ala Gln Leu Pro Gln Glu Ile Ile Val Ser
Lys Gln 355 360 365
Gly Ile Glu Ala Asn Gln Val Arg Pro Ala Gln Gly Thr Glu Thr Thr 370
375 380 Val Thr Leu Val Gly
Ser Gly Glu Val Ile Gly Asp Gln Ile Val Lys 385 390
395 400 Ile Val Asp Pro Gln Ala Leu Thr Glu Cys
Thr Val Gly Glu Ile Gly 405 410
415 Glu Val Trp Val Lys Gly Glu Ser Val Ala Gln Gly Tyr Trp Gln
Lys 420 425 430 Pro
Asp Leu Thr Gln Gln Gln Phe Gln Gly Asn Val Gly Ala Glu Thr 435
440 445 Gly Phe Leu Arg Thr Gly
Asp Leu Gly Phe Leu Gln Gly Gly Glu Leu 450 455
460 Tyr Ile Thr Gly Arg Leu Lys Asp Leu Leu Ile
Ile Arg Gly Arg Asn 465 470 475
480 His Tyr Pro Gln Asp Ile Glu Leu Thr Val Glu Val Ala His Pro Ala
485 490 495 Leu Arg
Gln Gly Ala Gly Ala Ala Val Ser Val Asp Val Asn Gly Glu 500
505 510 Glu Gln Leu Val Ile Val Gln
Glu Val Glu Arg Lys Tyr Ala Arg Lys 515 520
525 Leu Asn Val Ala Ala Val Ala Gln Ala Ile Arg Gly
Ala Ile Ala Ala 530 535 540
Glu His Gln Leu Gln Pro Gln Ala Ile Cys Phe Ile Lys Pro Gly Ser 545
550 555 560 Ile Pro Lys
Thr Ser Ser Gly Lys Ile Arg Arg His Ala Cys Lys Ala 565
570 575 Gly Phe Leu Asp Gly Ser Leu Ala
Val Val Gly Glu Trp Gln Pro Ser 580 585
590 His Gln Lys Glu Gly Lys Gly Ile Gly Thr Gln Ala Val
Thr Pro Ser 595 600 605
Thr Thr Thr Ser Thr Asn Phe Pro Leu Pro Asp Gln His Gln Gln Gln 610
615 620 Ile Glu Ala Trp
Leu Lys Asp Asn Ile Ala His Arg Leu Gly Ile Thr 625 630
635 640 Pro Gln Gln Leu Asp Glu Thr Glu Pro
Phe Ala Ser Tyr Gly Leu Asp 645 650
655 Ser Val Gln Ala Val Gln Val Thr Ala Asp Leu Glu Asp Trp
Leu Gly 660 665 670
Arg Lys Leu Asp Pro Thr Leu Ala Tyr Asp Tyr Pro Thr Ile Arg Thr
675 680 685 Leu Ala Gln Phe
Leu Val Gln Gly Asn Gln Ala Leu Glu Lys Ile Pro 690
695 700 Gln Val Pro Lys Ile Gln Gly Lys
Glu Ile Ala Val Val Gly Leu Ser 705 710
715 720 Cys Arg Phe Pro Gln Ala Asp Asn Pro Glu Ala Phe
Trp Glu Leu Leu 725 730
735 Arg Asn Gly Lys Asp Gly Val Arg Pro Leu Lys Thr Arg Trp Ala Thr
740 745 750 Gly Glu Trp
Gly Gly Phe Leu Glu Asp Ile Asp Gln Phe Glu Pro Gln 755
760 765 Phe Phe Gly Ile Ser Pro Arg Glu
Ala Glu Gln Met Asp Pro Gln Gln 770 775
780 Arg Leu Leu Leu Glu Val Thr Trp Glu Ala Leu Glu Arg
Ala Asn Ile 785 790 795
800 Pro Ala Glu Ser Leu Arg His Ser Gln Thr Gly Val Phe Val Gly Ile
805 810 815 Ser Asn Ser Asp
Tyr Ala Gln Leu Gln Val Arg Glu Asn Asn Pro Ile 820
825 830 Asn Pro Tyr Met Gly Thr Gly Asn Ala
His Ser Ile Ala Ala Asn Arg 835 840
845 Leu Ser Tyr Phe Leu Asp Leu Arg Gly Val Ser Leu Ser Ile
Asp Thr 850 855 860
Ala Cys Ser Ser Ser Leu Val Ala Val His Leu Ala Cys Gln Ser Leu 865
870 875 880 Ile Asn Gly Glu Ser
Glu Leu Ala Ile Ala Ala Gly Val Asn Leu Ile 885
890 895 Leu Thr Pro Asp Val Thr Gln Thr Phe Thr
Gln Ala Gly Met Met Ser 900 905
910 Lys Thr Gly Arg Cys Gln Thr Phe Asp Ala Glu Ala Asp Gly Tyr
Val 915 920 925 Arg
Gly Glu Gly Cys Gly Val Val Leu Leu Lys Pro Leu Ala Gln Ala 930
935 940 Glu Arg Asp Gly Asp Asn
Ile Leu Ala Val Ile His Gly Ser Ala Val 945 950
955 960 Asn Gln Asp Gly Arg Ser Asn Gly Leu Thr Ala
Pro Asn Gly Arg Ser 965 970
975 Gln Gln Ala Val Ile Arg Gln Ala Leu Ala Gln Ala Gly Ile Thr Ala
980 985 990 Ala Asp
Leu Ala Tyr Leu Glu Ala His Gly Thr Gly Thr Pro Leu Gly 995
1000 1005 Asp Pro Ile Glu Ile
Asn Ser Leu Lys Ala Val Leu Gln Thr Ala 1010 1015
1020 Gln Arg Glu Gln Pro Cys Val Val Gly Ser
Val Lys Thr Asn Ile 1025 1030 1035
Gly His Leu Glu Ala Ala Ala Gly Ile Ala Gly Leu Ile Lys Val
1040 1045 1050 Ile Leu
Ser Leu Glu His Gly Met Ile Pro Gln His Leu His Phe 1055
1060 1065 Lys Gln Leu Asn Pro Arg Ile
Asp Leu Asp Gly Leu Val Thr Ile 1070 1075
1080 Ala Ser Lys Asp Gln Pro Trp Ser Gly Gly Ser Gln
Lys Arg Phe 1085 1090 1095
Ala Gly Val Ser Ser Phe Gly Phe Gly Gly Thr Asn Ala His Val 1100
1105 1110 Ile Val Gly Asp Tyr
Ala Gln Gln Lys Ser Pro Leu Ala Pro Pro 1115 1120
1125 Ala Thr Gln Asp Arg Pro Trp His Leu Leu
Thr Leu Ser Ala Lys 1130 1135 1140
Asn Ala Gln Ala Leu Asn Ala Leu Gln Lys Ser Tyr Gly Asp Tyr
1145 1150 1155 Leu Ala
Gln His Pro Ser Val Asp Pro Arg Asp Leu Cys Leu Ser 1160
1165 1170 Ala Asn Thr Gly Arg Ser Pro
Leu Lys Glu Arg Arg Phe Phe Val 1175 1180
1185 Phe Lys Gln Val Ala Asp Leu Gln Gln Thr Leu Asn
Gln Asp Phe 1190 1195 1200
Leu Ala Gln Pro Arg Leu Ser Ser Pro Ala Lys Ile Ala Phe Leu 1205
1210 1215 Phe Thr Gly Gln Gly
Ser Gln Tyr Tyr Gly Met Gly Gln Gln Leu 1220 1225
1230 Tyr Gln Thr Ser Pro Val Phe Arg Gln Val
Leu Asp Glu Cys Asp 1235 1240 1245
Arg Leu Trp Gln Thr Tyr Ser Pro Glu Ala Pro Ala Leu Thr Asp
1250 1255 1260 Leu Leu
Tyr Gly Asn His Asn Pro Asp Leu Val His Glu Thr Val 1265
1270 1275 Tyr Thr Gln Pro Leu Leu Phe
Ala Val Glu Tyr Ala Ile Ala Gln 1280 1285
1290 Leu Trp Leu Ser Trp Gly Val Thr Pro Asp Phe Cys
Met Gly His 1295 1300 1305
Ser Val Gly Glu Tyr Val Ala Ala Cys Leu Ala Gly Val Phe Ser 1310
1315 1320 Leu Ala Asp Gly Met
Lys Leu Ile Thr Ala Arg Gly Lys Leu Met 1325 1330
1335 His Ala Leu Pro Ser Asn Gly Ser Met Ala
Ala Val Phe Ala Asp 1340 1345 1350
Lys Thr Val Ile Lys Pro Tyr Leu Ser Glu His Leu Thr Val Gly
1355 1360 1365 Ala Glu
Asn Gly Ser His Leu Val Leu Ser Gly Lys Thr Pro Cys 1370
1375 1380 Leu Glu Ala Ser Ile His Lys
Leu Gln Ser Gln Gly Ile Lys Thr 1385 1390
1395 Lys Pro Leu Lys Val Ser His Ala Phe His Ser Pro
Leu Met Ala 1400 1405 1410
Pro Met Leu Ala Glu Phe Arg Glu Ile Ala Glu Gln Ile Thr Phe 1415
1420 1425 His Pro Pro Arg Ile
Pro Leu Ile Ser Asn Val Thr Gly Gly Gln 1430 1435
1440 Ile Glu Ala Glu Ile Ala Gln Ala Asp Tyr
Trp Val Lys His Val 1445 1450 1455
Ser Gln Pro Val Lys Phe Val Gln Ser Ile Gln Thr Leu Ala Gln
1460 1465 1470 Ala Gly
Val Asn Val Tyr Leu Glu Ile Gly Val Lys Pro Val Leu 1475
1480 1485 Leu Ser Met Gly Arg His Cys
Leu Ala Glu Gln Glu Ala Val Trp 1490 1495
1500 Leu Pro Ser Leu Arg Pro His Ser Glu Pro Trp Pro
Glu Ile Leu 1505 1510 1515
Thr Ser Leu Gly Lys Leu Tyr Glu Gln Gly Leu Asn Ile Asp Trp 1520
1525 1530 Gln Thr Val Glu Ala
Gly Asp Arg Arg Arg Lys Leu Ile Leu Pro 1535 1540
1545 Thr Tyr Pro Phe Gln Arg Gln Arg Tyr Trp
Phe Asn Gln Gly Ser 1550 1555 1560
Trp Gln Thr Val Glu Thr Glu Ser Val Asn Pro Gly Pro Asp Asp
1565 1570 1575 Leu Asn
Asp Trp Leu Tyr Gln Val Ala Trp Thr Pro Leu Asp Thr 1580
1585 1590 Leu Pro Pro Ala Pro Glu Pro
Ser Ala Lys Leu Trp Leu Ile Leu 1595 1600
1605 Gly Asp Arg His Asp His Gln Pro Ile Glu Ala Gln
Phe Lys Asn 1610 1615 1620
Ala Gln Arg Val Tyr Leu Gly Gln Ser Asn His Phe Pro Thr Asn 1625
1630 1635 Ala Pro Trp Glu Val
Ser Ala Asp Ala Leu Asp Asn Leu Phe Thr 1640 1645
1650 His Val Gly Ser Gln Asn Leu Ala Gly Ile
Leu Tyr Leu Cys Pro 1655 1660 1665
Pro Gly Glu Asp Pro Glu Asp Leu Asp Glu Ile Gln Lys Gln Thr
1670 1675 1680 Ser Gly
Phe Ala Leu Gln Leu Ile Gln Thr Leu Tyr Gln Gln Lys 1685
1690 1695 Ile Ala Val Pro Cys Trp Phe
Val Thr His Gln Ser Gln Arg Val 1700 1705
1710 Leu Glu Thr Asp Ala Val Thr Gly Phe Ala Gln Gly
Gly Leu Trp 1715 1720 1725
Gly Leu Ala Gln Ala Ile Ala Leu Glu His Pro Glu Leu Trp Gly 1730
1735 1740 Gly Ile Ile Asp Val
Asp Asp Ser Leu Pro Asn Phe Ala Gln Ile 1745 1750
1755 Cys Gln Gln Arg Gln Val Gln Gln Leu Ala
Val Arg His Gln Lys 1760 1765 1770
Leu Tyr Gly Ala Gln Leu Lys Lys Gln Pro Ser Leu Pro Gln Lys
1775 1780 1785 Asn Leu
Gln Ile Gln Pro Gln Gln Thr Tyr Leu Val Thr Gly Gly 1790
1795 1800 Leu Gly Ala Ile Gly Arg Lys
Ile Ala Gln Trp Leu Ala Ala Ala 1805 1810
1815 Gly Ala Glu Lys Val Ile Leu Val Ser Arg Arg Ala
Pro Ala Ala 1820 1825 1830
Asp Gln Gln Thr Leu Pro Thr Asn Ala Val Val Tyr Pro Cys Asp 1835
1840 1845 Leu Ala Asp Ala Ala
Gln Val Ala Lys Leu Phe Gln Thr Tyr Pro 1850 1855
1860 His Ile Lys Gly Ile Phe His Ala Ala Gly
Thr Leu Ala Asp Gly 1865 1870 1875
Leu Leu Gln Gln Gln Thr Trp Gln Lys Phe Gln Thr Val Ala Ala
1880 1885 1890 Ala Lys
Met Lys Gly Thr Trp His Leu His Arg His Ser Gln Lys 1895
1900 1905 Leu Asp Leu Asp Phe Phe Val
Leu Phe Ser Ser Val Ala Gly Val 1910 1915
1920 Leu Gly Ser Pro Gly Gln Gly Asn Tyr Ala Ala Ala
Asn Arg Gly 1925 1930 1935
Met Ala Ala Ile Ala Gln Tyr Arg Gln Ala Gln Gly Leu Pro Ala 1940
1945 1950 Leu Ala Ile His Trp
Gly Pro Trp Ala Glu Gly Gly Met Ala Asn 1955 1960
1965 Ser Leu Ser Asn Gln Asn Leu Ala Trp Leu
Pro Pro Pro Gln Gly 1970 1975 1980
Leu Thr Ile Leu Glu Lys Val Leu Gly Ala Gln Gly Glu Met Gly
1985 1990 1995 Val Phe
Lys Pro Asp Trp Gln Asn Leu Ala Lys Gln Phe Pro Glu 2000
2005 2010 Phe Ala Lys Thr His Tyr Phe
Ala Ala Val Ile Pro Ser Ala Glu 2015 2020
2025 Ala Val Pro Pro Thr Ala Ser Ile Phe Asp Lys Leu
Ile Asn Leu 2030 2035 2040
Glu Ala Ser Gln Arg Ala Asp Tyr Leu Leu Asp Tyr Leu Arg Arg 2045
2050 2055 Ser Val Ala Gln Ile
Leu Lys Leu Glu Ile Glu Gln Ile Gln Ser 2060 2065
2070 His Asp Ser Leu Leu Asp Leu Gly Met Asp
Ser Leu Met Ile Met 2075 2080 2085
Glu Ala Ile Ala Ser Leu Lys Gln Asp Leu Gln Leu Met Leu Tyr
2090 2095 2100 Pro Arg
Glu Ile Tyr Glu Arg Pro Arg Leu Asp Val Leu Thr Ala 2105
2110 2115 Tyr Leu Ala Ala Glu Phe Thr
Lys Ala His Asp Ser Glu Ala Ala 2120 2125
2130 Thr Ala Ala Ala Ala Ile Pro Ser Gln Ser Leu Ser
Val Lys Thr 2135 2140 2145
Lys Lys Gln Trp Gln Lys Pro Asp His Lys Asn Pro Asn Pro Ile 2150
2155 2160 Ala Phe Ile Leu Ser
Ser Pro Arg Ser Gly Ser Thr Leu Leu Arg 2165 2170
2175 Val Met Leu Ala Gly His Pro Gly Leu Tyr
Ser Pro Pro Glu Leu 2180 2185 2190
His Leu Leu Pro Phe Glu Thr Met Gly Asp Arg His Gln Glu Leu
2195 2200 2205 Gly Leu
Ser His Leu Gly Glu Gly Leu Gln Arg Ala Leu Met Asp 2210
2215 2220 Leu Glu Asn Leu Thr Pro Glu
Ala Ser Gln Ala Lys Val Asn Gln 2225 2230
2235 Trp Val Lys Ala Asn Thr Pro Ile Ala Asp Ile Tyr
Ala Tyr Leu 2240 2245 2250
Gln Arg Gln Ala Glu Gln Arg Leu Leu Ile Asp Lys Ser Pro Ser 2255
2260 2265 Tyr Gly Ser Asp Arg
His Ile Leu Asp His Ser Glu Ile Leu Phe 2270 2275
2280 Asp Gln Ala Lys Tyr Ile His Leu Val Arg
His Pro Tyr Ala Val 2285 2290 2295
Ile Glu Ser Phe Thr Arg Leu Arg Met Asp Lys Leu Leu Gly Ala
2300 2305 2310 Glu Gln
Gln Asn Pro Tyr Ala Leu Ala Glu Ser Ile Trp Arg Thr 2315
2320 2325 Ser Asn Arg Asn Ile Leu Asp
Leu Gly Arg Thr Val Gly Ala Asp 2330 2335
2340 Arg Tyr Leu Gln Val Ile Tyr Glu Asp Leu Val Arg
Asp Pro Arg 2345 2350 2355
Lys Val Leu Thr Asn Ile Cys Asp Phe Leu Gly Val Asp Phe Asp 2360
2365 2370 Glu Ala Leu Leu Asn
Pro Tyr Ser Gly Asp Arg Leu Thr Asp Gly 2375 2380
2385 Leu His Gln Gln Ser Met Gly Val Gly Asp
Pro Asn Phe Leu Gln 2390 2395 2400
His Lys Thr Ile Asp Pro Ala Leu Ala Asp Lys Trp Arg Ser Ile
2405 2410 2415 Thr Leu
Pro Ala Ala Leu Gln Leu Asp Thr Ile Gln Leu Ala Glu 2420
2425 2430 Thr Phe Ala Tyr Asp Leu Pro
Gln Glu Pro Gln Leu Thr Pro Gln 2435 2440
2445 Thr Gln Ser Leu Pro Ser Met Val Glu Arg Phe Val
Thr Val Arg 2450 2455 2460
Gly Leu Glu Thr Cys Leu Cys Glu Trp Gly Asp Arg His Gln Pro 2465
2470 2475 Leu Val Leu Leu Leu
His Gly Ile Leu Glu Gln Gly Ala Ser Trp 2480 2485
2490 Gln Leu Ile Ala Pro Gln Leu Ala Ala Gln
Gly Tyr Trp Val Val 2495 2500 2505
Ala Pro Asp Leu Arg Gly His Gly Lys Ser Ala His Ala Gln Ser
2510 2515 2520 Tyr Ser
Met Leu Asp Phe Leu Ala Asp Val Asp Ala Leu Ala Lys 2525
2530 2535 Gln Leu Gly Asp Arg Pro Phe
Thr Leu Val Gly His Ser Met Gly 2540 2545
2550 Ser Ile Ile Gly Ala Met Tyr Ala Gly Ile Arg Gln
Thr Gln Val 2555 2560 2565
Glu Lys Leu Ile Leu Val Glu Thr Ile Val Pro Asn Asp Ile Asp 2570
2575 2580 Asp Ala Glu Thr Gly
Asn His Leu Thr Thr His Leu Asp Tyr Leu 2585 2590
2595 Ala Ala Pro Pro Gln His Pro Ile Phe Pro
Ser Leu Glu Val Ala 2600 2605 2610
Ala Arg Arg Leu Arg Gln Ala Thr Pro Gln Leu Pro Lys Asp Leu
2615 2620 2625 Ser Ala
Phe Leu Thr Gln Arg Ser Thr Lys Ser Val Glu Lys Gly 2630
2635 2640 Val Gln Trp Arg Trp Asp Ala
Phe Leu Arg Thr Arg Ala Gly Ile 2645 2650
2655 Glu Phe Asn Gly Ile Ser Arg Arg Arg Tyr Leu Ala
Leu Leu Lys 2660 2665 2670
Asp Ile Gln Ala Pro Ile Thr Leu Ile Tyr Gly Asp Gln Ser Glu 2675
2680 2685 Phe Asn Arg Pro Ala
Asp Leu Gln Ala Ile Gln Ala Ala Leu Pro 2690 2695
2700 Gln Ala Gln Arg Leu Thr Val Ala Gly Gly
His Asn Leu His Phe 2705 2710 2715
Glu Asn Pro Gln Ala Ile Ala Gln Ile Val Tyr Gln Gln Leu Gln
2720 2725 2730 Thr Pro
Val Pro Lys Thr Gln Gly Leu His His His His His His 2735
2740 2745 Ser Ala Trp Ser His Pro Gln
Phe Glu Lys 2750 2755 302758PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
30Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Glu Val His His His 1
5 10 15 His His His Gly
Ala Val Gly Gln Phe Ala Asn Phe Val Asp Leu Leu 20
25 30 Gln Tyr Arg Ala Lys Leu Gln Ala Arg
Lys Thr Val Phe Ser Phe Leu 35 40
45 Ala Asp Gly Glu Ala Glu Ser Ala Ala Leu Thr Tyr Gly Glu
Leu Asp 50 55 60
Gln Lys Ala Gln Ala Ile Ala Ala Phe Leu Gln Ala Asn Gln Ala Gln 65
70 75 80 Gly Gln Arg Ala Leu
Leu Leu Tyr Pro Pro Gly Leu Glu Phe Ile Gly 85
90 95 Ala Phe Leu Gly Cys Leu Tyr Ala Gly Val
Val Ala Val Pro Ala Tyr 100 105
110 Pro Pro Arg Pro Asn Lys Ser Phe Asp Arg Leu His Ser Ile Ile
Gln 115 120 125 Asp
Ala Gln Ala Lys Phe Ala Leu Thr Thr Thr Glu Leu Lys Asp Lys 130
135 140 Ile Ala Asp Arg Leu Glu
Ala Leu Glu Gly Thr Asp Phe His Cys Leu 145 150
155 160 Ala Thr Asp Gln Val Glu Leu Ile Ser Gly Lys
Asn Trp Gln Lys Pro 165 170
175 Asn Ile Ser Gly Thr Asp Leu Ala Phe Leu Gln Tyr Thr Ser Gly Ser
180 185 190 Thr Gly
Asp Pro Lys Gly Val Met Val Ser His His Asn Leu Ile His 195
200 205 Asn Ser Gly Leu Ile Phe Thr
Ser Phe His Met Asn Asp Glu Thr Ile 210 215
220 Ile Phe Ser Trp Leu Pro Pro His His Asp Met Gly
Leu Ile Gly Cys 225 230 235
240 Ile Leu Thr Pro Ile Tyr Gly Gly Ile Gln Ala Ile Met Met Ser Pro
245 250 255 Phe Ser Phe
Leu Gln Asn Pro Leu Ser Trp Leu Lys His Ile Thr Lys 260
265 270 Tyr Lys Ala Thr Ile Ser Gly Ser
Pro Asn Phe Ala Tyr Asp Tyr Cys 275 280
285 Val Lys Arg Ile Arg Glu Glu Lys Lys Glu Gly Leu Asp
Leu Ser Ser 290 295 300
Trp Val Thr Ala Phe Asn Gly Ala Glu Pro Ile Arg Ala Val Thr Leu 305
310 315 320 Glu Asn Phe Ala
Lys Thr Phe Ala Thr Ala Gly Phe Gln Lys Ser Ala 325
330 335 Phe Tyr Pro Cys Tyr Gly Met Ala Glu
Thr Thr Leu Ile Val Ser Gly 340 345
350 Gly Asn Gly Arg Ala Gln Leu Pro Gln Glu Ile Ile Val Ser
Lys Gln 355 360 365
Gly Ile Glu Ala Asn Gln Val Arg Pro Ala Gln Gly Thr Glu Thr Thr 370
375 380 Val Thr Leu Val Gly
Ser Gly Glu Val Ile Gly Asp Gln Ile Val Lys 385 390
395 400 Ile Val Asp Pro Gln Ala Leu Thr Glu Cys
Thr Val Gly Glu Ile Gly 405 410
415 Glu Val Trp Val Lys Gly Glu Ser Val Ala Gln Gly Tyr Trp Gln
Lys 420 425 430 Pro
Asp Leu Thr Gln Gln Gln Phe Gln Gly Asn Val Gly Ala Glu Thr 435
440 445 Gly Phe Leu Arg Thr Gly
Asp Leu Gly Phe Leu Gln Gly Gly Glu Leu 450 455
460 Tyr Ile Thr Gly Arg Leu Lys Asp Leu Leu Ile
Ile Arg Gly Arg Asn 465 470 475
480 His Tyr Pro Gln Asp Ile Glu Leu Thr Val Glu Val Ala His Pro Ala
485 490 495 Leu Arg
Gln Gly Ala Gly Ala Ala Val Ser Val Asp Val Asn Gly Glu 500
505 510 Glu Gln Leu Val Ile Val Gln
Glu Val Glu Arg Lys Tyr Ala Arg Lys 515 520
525 Leu Asn Val Ala Ala Val Ala Gln Ala Ile Arg Gly
Ala Ile Ala Ala 530 535 540
Glu His Gln Leu Gln Pro Gln Ala Ile Cys Phe Ile Lys Pro Gly Ser 545
550 555 560 Ile Pro Lys
Thr Ser Ser Gly Lys Ile Arg Arg His Ala Cys Lys Ala 565
570 575 Gly Phe Leu Asp Gly Ser Leu Ala
Val Val Gly Glu Trp Gln Pro Ser 580 585
590 His Gln Lys Glu Gly Lys Gly Ile Gly Thr Gln Ala Val
Thr Pro Ser 595 600 605
Thr Thr Thr Ser Thr Asn Phe Pro Leu Pro Asp Gln His Gln Gln Gln 610
615 620 Ile Glu Ala Trp
Leu Lys Asp Asn Ile Ala His Arg Leu Gly Ile Thr 625 630
635 640 Pro Gln Gln Leu Asp Glu Thr Glu Pro
Phe Ala Ser Tyr Gly Leu Asp 645 650
655 Ser Val Gln Ala Val Gln Val Thr Ala Asp Leu Glu Asp Trp
Leu Gly 660 665 670
Arg Lys Leu Asp Pro Thr Leu Ala Tyr Asp Tyr Pro Thr Ile Arg Thr
675 680 685 Leu Ala Gln Phe
Leu Val Gln Gly Asn Gln Ala Leu Glu Lys Ile Pro 690
695 700 Gln Val Pro Lys Ile Gln Gly Lys
Glu Ile Ala Val Val Gly Leu Ser 705 710
715 720 Cys Arg Phe Pro Gln Ala Asp Asn Pro Glu Ala Phe
Trp Glu Leu Leu 725 730
735 Arg Asn Gly Lys Asp Gly Val Arg Pro Leu Lys Thr Arg Trp Ala Thr
740 745 750 Gly Glu Trp
Gly Gly Phe Leu Glu Asp Ile Asp Gln Phe Glu Pro Gln 755
760 765 Phe Phe Gly Ile Ser Pro Arg Glu
Ala Glu Gln Met Asp Pro Gln Gln 770 775
780 Arg Leu Leu Leu Glu Val Thr Trp Glu Ala Leu Glu Arg
Ala Asn Ile 785 790 795
800 Pro Ala Glu Ser Leu Arg His Ser Gln Thr Gly Val Phe Val Gly Ile
805 810 815 Ser Asn Ser Asp
Tyr Ala Gln Leu Gln Val Arg Glu Asn Asn Pro Ile 820
825 830 Asn Pro Tyr Met Gly Thr Gly Asn Ala
His Ser Ile Ala Ala Asn Arg 835 840
845 Leu Ser Tyr Phe Leu Asp Leu Arg Gly Val Ser Leu Ser Ile
Asp Thr 850 855 860
Ala Cys Ser Ser Ser Leu Val Ala Val His Leu Ala Cys Gln Ser Leu 865
870 875 880 Ile Asn Gly Glu Ser
Glu Leu Ala Ile Ala Ala Gly Val Asn Leu Ile 885
890 895 Leu Thr Pro Asp Val Thr Gln Thr Phe Thr
Gln Ala Gly Met Met Ser 900 905
910 Lys Thr Gly Arg Cys Gln Thr Phe Asp Ala Glu Ala Asp Gly Tyr
Val 915 920 925 Arg
Gly Glu Gly Cys Gly Val Val Leu Leu Lys Pro Leu Ala Gln Ala 930
935 940 Glu Arg Asp Gly Asp Asn
Ile Leu Ala Val Ile His Gly Ser Ala Val 945 950
955 960 Asn Gln Asp Gly Arg Ser Asn Gly Leu Thr Ala
Pro Asn Gly Arg Ser 965 970
975 Gln Gln Ala Val Ile Arg Gln Ala Leu Ala Gln Ala Gly Ile Thr Ala
980 985 990 Ala Asp
Leu Ala Tyr Leu Glu Ala His Gly Thr Gly Thr Pro Leu Gly 995
1000 1005 Asp Pro Ile Glu Ile
Asn Ser Leu Lys Ala Val Leu Gln Thr Ala 1010 1015
1020 Gln Arg Glu Gln Pro Cys Val Val Gly Ser
Val Lys Thr Asn Ile 1025 1030 1035
Gly His Leu Glu Ala Ala Ala Gly Ile Ala Gly Leu Ile Lys Val
1040 1045 1050 Ile Leu
Ser Leu Glu His Gly Met Ile Pro Gln His Leu His Phe 1055
1060 1065 Lys Gln Leu Asn Pro Arg Ile
Asp Leu Asp Gly Leu Val Thr Ile 1070 1075
1080 Ala Ser Lys Asp Gln Pro Trp Ser Gly Gly Ser Gln
Lys Arg Phe 1085 1090 1095
Ala Gly Val Ser Ser Phe Gly Phe Gly Gly Thr Asn Ala His Val 1100
1105 1110 Ile Val Gly Asp Tyr
Ala Gln Gln Lys Ser Pro Leu Ala Pro Pro 1115 1120
1125 Ala Thr Gln Asp Arg Pro Trp His Leu Leu
Thr Leu Ser Ala Lys 1130 1135 1140
Asn Ala Gln Ala Leu Asn Ala Leu Gln Lys Ser Tyr Gly Asp Tyr
1145 1150 1155 Leu Ala
Gln His Pro Ser Val Asp Pro Arg Asp Leu Cys Leu Ser 1160
1165 1170 Ala Asn Thr Gly Arg Ser Pro
Leu Lys Glu Arg Arg Phe Phe Val 1175 1180
1185 Phe Lys Gln Val Ala Asp Leu Gln Gln Thr Leu Asn
Gln Asp Phe 1190 1195 1200
Leu Ala Gln Pro Arg Leu Ser Ser Pro Ala Lys Ile Ala Phe Leu 1205
1210 1215 Phe Thr Gly Gln Gly
Ser Gln Tyr Tyr Gly Met Gly Gln Gln Leu 1220 1225
1230 Tyr Gln Thr Ser Pro Val Phe Arg Gln Val
Leu Asp Glu Cys Asp 1235 1240 1245
Arg Leu Trp Gln Thr Tyr Ser Pro Glu Ala Pro Ala Leu Thr Asp
1250 1255 1260 Leu Leu
Tyr Gly Asn His Asn Pro Asp Leu Val His Glu Thr Val 1265
1270 1275 Tyr Thr Gln Pro Leu Leu Phe
Ala Val Glu Tyr Ala Ile Ala Gln 1280 1285
1290 Leu Trp Leu Ser Trp Gly Val Thr Pro Asp Phe Cys
Met Gly His 1295 1300 1305
Ser Val Gly Glu Tyr Val Ala Ala Cys Leu Ala Gly Val Phe Ser 1310
1315 1320 Leu Ala Asp Gly Met
Lys Leu Ile Thr Ala Arg Gly Lys Leu Met 1325 1330
1335 His Ala Leu Pro Ser Asn Gly Ser Met Ala
Ala Val Phe Ala Asp 1340 1345 1350
Lys Thr Val Ile Lys Pro Tyr Leu Ser Glu His Leu Thr Val Gly
1355 1360 1365 Ala Glu
Asn Gly Ser His Leu Val Leu Ser Gly Lys Thr Pro Cys 1370
1375 1380 Leu Glu Ala Ser Ile His Lys
Leu Gln Ser Gln Gly Ile Lys Thr 1385 1390
1395 Lys Pro Leu Lys Val Ser His Ala Phe His Ser Pro
Leu Met Ala 1400 1405 1410
Pro Met Leu Ala Glu Phe Arg Glu Ile Ala Glu Gln Ile Thr Phe 1415
1420 1425 His Pro Pro Arg Ile
Pro Leu Ile Ser Asn Val Thr Gly Gly Gln 1430 1435
1440 Ile Glu Ala Glu Ile Ala Gln Ala Asp Tyr
Trp Val Lys His Val 1445 1450 1455
Ser Gln Pro Val Lys Phe Val Gln Ser Ile Gln Thr Leu Ala Gln
1460 1465 1470 Ala Gly
Val Asn Val Tyr Leu Glu Ile Gly Val Lys Pro Val Leu 1475
1480 1485 Leu Ser Met Gly Arg His Cys
Leu Ala Glu Gln Glu Ala Val Trp 1490 1495
1500 Leu Pro Ser Leu Arg Pro His Ser Glu Pro Trp Pro
Glu Ile Leu 1505 1510 1515
Thr Ser Leu Gly Lys Leu Tyr Glu Gln Gly Leu Asn Ile Asp Trp 1520
1525 1530 Gln Thr Val Glu Ala
Gly Asp Arg Arg Arg Lys Leu Ile Leu Pro 1535 1540
1545 Thr Tyr Pro Phe Gln Arg Gln Arg Tyr Trp
Phe Asn Gln Gly Ser 1550 1555 1560
Trp Gln Thr Val Glu Thr Glu Ser Val Asn Pro Gly Pro Asp Asp
1565 1570 1575 Leu Asn
Asp Trp Leu Tyr Gln Val Ala Trp Thr Pro Leu Asp Thr 1580
1585 1590 Leu Pro Pro Ala Pro Glu Pro
Ser Ala Lys Leu Trp Leu Ile Leu 1595 1600
1605 Gly Asp Arg His Asp His Gln Pro Ile Glu Ala Gln
Phe Lys Asn 1610 1615 1620
Ala Gln Arg Val Tyr Leu Gly Gln Ser Asn His Phe Pro Thr Asn 1625
1630 1635 Ala Pro Trp Glu Val
Ser Ala Asp Ala Leu Asp Asn Leu Phe Thr 1640 1645
1650 His Val Gly Ser Gln Asn Leu Ala Gly Ile
Leu Tyr Leu Cys Pro 1655 1660 1665
Pro Gly Glu Asp Pro Glu Asp Leu Asp Glu Ile Gln Lys Gln Thr
1670 1675 1680 Ser Gly
Phe Ala Leu Gln Leu Ile Gln Thr Leu Tyr Gln Gln Lys 1685
1690 1695 Ile Ala Val Pro Cys Trp Phe
Val Thr His Gln Ser Gln Arg Val 1700 1705
1710 Leu Glu Thr Asp Ala Val Thr Gly Phe Ala Gln Gly
Gly Leu Trp 1715 1720 1725
Gly Leu Ala Gln Ala Ile Ala Leu Glu His Pro Glu Leu Trp Gly 1730
1735 1740 Gly Ile Ile Asp Val
Asp Asp Ser Leu Pro Asn Phe Ala Gln Ile 1745 1750
1755 Cys Gln Gln Arg Gln Val Gln Gln Leu Ala
Val Arg His Gln Lys 1760 1765 1770
Leu Tyr Gly Ala Gln Leu Lys Lys Gln Pro Ser Leu Pro Gln Lys
1775 1780 1785 Asn Leu
Gln Ile Gln Pro Gln Gln Thr Tyr Leu Val Thr Gly Gly 1790
1795 1800 Leu Gly Ala Ile Gly Arg Lys
Ile Ala Gln Trp Leu Ala Ala Ala 1805 1810
1815 Gly Ala Glu Lys Val Ile Leu Val Ser Arg Arg Ala
Pro Ala Ala 1820 1825 1830
Asp Gln Gln Thr Leu Pro Thr Asn Ala Val Val Tyr Pro Cys Asp 1835
1840 1845 Leu Ala Asp Ala Ala
Gln Val Ala Lys Leu Phe Gln Thr Tyr Pro 1850 1855
1860 His Ile Lys Gly Ile Phe His Ala Ala Gly
Thr Leu Ala Asp Gly 1865 1870 1875
Leu Leu Gln Gln Gln Thr Trp Gln Lys Phe Gln Thr Val Ala Ala
1880 1885 1890 Ala Lys
Met Lys Gly Thr Trp His Leu His Arg His Ser Gln Lys 1895
1900 1905 Leu Asp Leu Asp Phe Phe Val
Leu Phe Ser Ser Val Ala Gly Val 1910 1915
1920 Leu Gly Ser Pro Gly Gln Gly Asn Tyr Ala Ala Ala
Asn Arg Gly 1925 1930 1935
Met Ala Ala Ile Ala Gln Tyr Arg Gln Ala Gln Gly Leu Pro Ala 1940
1945 1950 Leu Ala Ile His Trp
Gly Pro Trp Ala Glu Gly Gly Met Ala Asn 1955 1960
1965 Ser Leu Ser Asn Gln Asn Leu Ala Trp Leu
Pro Pro Pro Gln Gly 1970 1975 1980
Leu Thr Ile Leu Glu Lys Val Leu Gly Ala Gln Gly Glu Met Gly
1985 1990 1995 Val Phe
Lys Pro Asp Trp Gln Asn Leu Ala Lys Gln Phe Pro Glu 2000
2005 2010 Phe Ala Lys Thr His Tyr Phe
Ala Ala Val Ile Pro Ser Ala Glu 2015 2020
2025 Ala Val Pro Pro Thr Ala Ser Ile Phe Asp Lys Leu
Ile Asn Leu 2030 2035 2040
Glu Ala Ser Gln Arg Ala Asp Tyr Leu Leu Asp Tyr Leu Arg Arg 2045
2050 2055 Ser Val Ala Gln Ile
Leu Lys Leu Glu Ile Glu Gln Ile Gln Ser 2060 2065
2070 His Asp Ser Leu Leu Asp Leu Gly Met Asp
Ser Leu Met Ile Met 2075 2080 2085
Glu Ala Ile Ala Ser Leu Lys Gln Asp Leu Gln Leu Met Leu Tyr
2090 2095 2100 Pro Arg
Glu Ile Tyr Glu Arg Pro Arg Leu Asp Val Leu Thr Ala 2105
2110 2115 Tyr Leu Ala Ala Glu Phe Thr
Lys Ala His Asp Ser Glu Ala Ala 2120 2125
2130 Thr Ala Ala Ala Ala Ile Pro Ser Gln Ser Leu Ser
Val Lys Thr 2135 2140 2145
Lys Lys Gln Trp Gln Lys Pro Asp His Lys Asn Pro Asn Pro Ile 2150
2155 2160 Ala Phe Ile Leu Ser
Ser Pro Arg Ser Gly Ser Thr Leu Leu Arg 2165 2170
2175 Val Met Leu Ala Gly His Pro Gly Leu Tyr
Ser Pro Pro Glu Leu 2180 2185 2190
His Leu Leu Pro Phe Glu Thr Met Gly Asp Arg His Gln Glu Leu
2195 2200 2205 Gly Leu
Ser His Leu Gly Glu Gly Leu Gln Arg Ala Leu Met Asp 2210
2215 2220 Leu Glu Asn Leu Thr Pro Glu
Ala Ser Gln Ala Lys Val Asn Gln 2225 2230
2235 Trp Val Lys Ala Asn Thr Pro Ile Ala Asp Ile Tyr
Ala Tyr Leu 2240 2245 2250
Gln Arg Gln Ala Glu Gln Arg Leu Leu Ile Asp Lys Ser Pro Ser 2255
2260 2265 Tyr Gly Ser Asp Arg
His Ile Leu Asp His Ser Glu Ile Leu Phe 2270 2275
2280 Asp Gln Ala Lys Tyr Ile His Leu Val Arg
His Pro Tyr Ala Val 2285 2290 2295
Ile Glu Ser Phe Thr Arg Leu Arg Met Asp Lys Leu Leu Gly Ala
2300 2305 2310 Glu Gln
Gln Asn Pro Tyr Ala Leu Ala Glu Ser Ile Trp Arg Thr 2315
2320 2325 Ser Asn Arg Asn Ile Leu Asp
Leu Gly Arg Thr Val Gly Ala Asp 2330 2335
2340 Arg Tyr Leu Gln Val Ile Tyr Glu Asp Leu Val Arg
Asp Pro Arg 2345 2350 2355
Lys Val Leu Thr Asn Ile Cys Asp Phe Leu Gly Val Asp Phe Asp 2360
2365 2370 Glu Ala Leu Leu Asn
Pro Tyr Ser Gly Asp Arg Leu Thr Asp Gly 2375 2380
2385 Leu His Gln Gln Ser Met Gly Val Gly Asp
Pro Asn Phe Leu Gln 2390 2395 2400
His Lys Thr Ile Asp Pro Ala Leu Ala Asp Lys Trp Arg Ser Ile
2405 2410 2415 Thr Leu
Pro Ala Ala Leu Gln Leu Asp Thr Ile Gln Leu Ala Glu 2420
2425 2430 Thr Phe Ala Tyr Asp Leu Pro
Gln Glu Pro Gln Leu Thr Pro Gln 2435 2440
2445 Thr Gln Ser Leu Pro Ser Met Val Glu Arg Phe Val
Thr Val Arg 2450 2455 2460
Gly Leu Glu Thr Cys Leu Cys Glu Trp Gly Asp Arg His Gln Pro 2465
2470 2475 Leu Val Leu Leu Leu
His Gly Ile Leu Glu Gln Gly Ala Ser Trp 2480 2485
2490 Gln Leu Ile Ala Pro Gln Leu Ala Ala Gln
Gly Tyr Trp Val Val 2495 2500 2505
Ala Pro Asp Leu Arg Gly His Gly Lys Ser Ala His Ala Gln Ser
2510 2515 2520 Tyr Ser
Met Leu Asp Phe Leu Ala Asp Val Asp Ala Leu Ala Lys 2525
2530 2535 Gln Leu Gly Asp Arg Pro Phe
Thr Leu Val Gly His Ser Met Gly 2540 2545
2550 Ser Ile Ile Gly Ala Met Tyr Ala Gly Ile Arg Gln
Thr Gln Val 2555 2560 2565
Glu Lys Leu Ile Leu Val Glu Thr Ile Val Pro Asn Asp Ile Asp 2570
2575 2580 Asp Ala Glu Thr Gly
Asn His Leu Thr Thr His Leu Asp Tyr Leu 2585 2590
2595 Ala Ala Pro Pro Gln His Pro Ile Phe Pro
Ser Leu Glu Val Ala 2600 2605 2610
Ala Arg Arg Leu Arg Gln Ala Thr Pro Gln Leu Pro Lys Asp Leu
2615 2620 2625 Ser Ala
Phe Leu Thr Gln Arg Ser Thr Lys Ser Val Glu Lys Gly 2630
2635 2640 Val Gln Trp Arg Trp Asp Ala
Phe Leu Arg Thr Arg Ala Gly Ile 2645 2650
2655 Glu Phe Asn Gly Ile Ser Arg Arg Arg Tyr Leu Ala
Leu Leu Lys 2660 2665 2670
Asp Ile Gln Ala Pro Ile Thr Leu Ile Tyr Gly Asp Gln Ser Glu 2675
2680 2685 Phe Asn Arg Pro Ala
Asp Leu Gln Ala Ile Gln Ala Ala Leu Pro 2690 2695
2700 Gln Ala Gln Arg Leu Thr Val Ala Gly Gly
His Asn Leu His Phe 2705 2710 2715
Glu Asn Pro Gln Ala Ile Ala Gln Ile Val Tyr Gln Gln Leu Gln
2720 2725 2730 Thr Pro
Val Pro Lys Thr Gln Gly Leu His His His His His His 2735
2740 2745 Ser Ala Trp Ser His Pro Gln
Phe Glu Lys 2750 2755 312758PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
31Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Glu Val His His His 1
5 10 15 His His His Gly
Ala Val Gly Gln Phe Ala Asn Phe Val Asp Leu Leu 20
25 30 Gln Tyr Arg Ala Lys Leu Gln Ala Arg
Lys Thr Val Phe Ser Phe Leu 35 40
45 Ala Asp Gly Glu Ala Glu Ser Ala Ala Leu Thr Tyr Gly Glu
Leu Asp 50 55 60
Gln Lys Ala Gln Ala Ile Ala Ala Phe Leu Gln Ala Asn Gln Ala Gln 65
70 75 80 Gly Gln Arg Ala Leu
Leu Leu Tyr Pro Pro Gly Leu Glu Phe Ile Gly 85
90 95 Ala Phe Leu Gly Cys Leu Tyr Ala Gly Val
Val Ala Val Pro Ala Tyr 100 105
110 Pro Pro Arg Pro Asn Lys Ser Phe Asp Arg Leu His Ser Ile Ile
Gln 115 120 125 Asp
Ala Gln Ala Lys Phe Ala Leu Thr Thr Thr Glu Leu Lys Asp Lys 130
135 140 Ile Ala Asp Arg Leu Glu
Ala Leu Glu Gly Thr Asp Phe His Cys Leu 145 150
155 160 Ala Thr Asp Gln Val Glu Leu Ile Ser Gly Lys
Asn Trp Gln Lys Pro 165 170
175 Asn Ile Ser Gly Thr Asp Leu Ala Phe Leu Gln Tyr Thr Ser Gly Ser
180 185 190 Thr Gly
Asp Pro Lys Gly Val Met Val Ser His His Asn Leu Ile His 195
200 205 Asn Ser Gly Leu Ile Arg Asn
Ala Leu Ala Ile Asp Leu Lys Asp Thr 210 215
220 Leu Leu Ser Trp Met Pro Leu Thr His Asp Met Gly
Leu Ile Ala Cys 225 230 235
240 His Leu Val Pro Ala Leu Ala Gly Ile Asn Gln Asn Leu Met Pro Thr
245 250 255 Glu Leu Phe
Ile Arg Arg Pro Ile Leu Trp Met Lys Lys Ala His Glu 260
265 270 His Lys Ala Ser Ile Leu Ser Ser
Pro Asn Phe Gly Tyr Asn Tyr Phe 275 280
285 Leu Lys Phe Leu Lys Asp Asn Lys Ser Tyr Asp Trp Asp
Leu Ser His 290 295 300
Ile Arg Val Ile Ala Asn Gly Ala Glu Pro Ile Arg Ala Val Thr Leu 305
310 315 320 Glu Asn Phe Ala
Lys Thr Phe Ala Thr Ala Gly Phe Gln Lys Ser Ala 325
330 335 Phe Tyr Pro Cys Tyr Gly Met Ala Glu
Thr Thr Leu Ile Val Ser Gly 340 345
350 Gly Asn Gly Arg Ala Gln Leu Pro Gln Glu Ile Ile Val Ser
Lys Gln 355 360 365
Gly Ile Glu Ala Asn Gln Val Arg Pro Ala Gln Gly Thr Glu Thr Thr 370
375 380 Val Thr Leu Val Gly
Ser Gly Glu Val Ile Gly Asp Gln Ile Val Lys 385 390
395 400 Ile Val Asp Pro Gln Ala Leu Thr Glu Cys
Thr Val Gly Glu Ile Gly 405 410
415 Glu Val Trp Val Lys Gly Glu Ser Val Ala Gln Gly Tyr Trp Gln
Lys 420 425 430 Pro
Asp Leu Thr Gln Gln Gln Phe Gln Gly Asn Val Gly Ala Glu Thr 435
440 445 Gly Phe Leu Arg Thr Gly
Asp Leu Gly Phe Leu Gln Gly Gly Glu Leu 450 455
460 Tyr Ile Thr Gly Arg Leu Lys Asp Leu Leu Ile
Ile Arg Gly Arg Asn 465 470 475
480 His Tyr Pro Gln Asp Ile Glu Leu Thr Val Glu Val Ala His Pro Ala
485 490 495 Leu Arg
Gln Gly Ala Gly Ala Ala Val Ser Val Asp Val Asn Gly Glu 500
505 510 Glu Gln Leu Val Ile Val Gln
Glu Val Glu Arg Lys Tyr Ala Arg Lys 515 520
525 Leu Asn Val Ala Ala Val Ala Gln Ala Ile Arg Gly
Ala Ile Ala Ala 530 535 540
Glu His Gln Leu Gln Pro Gln Ala Ile Cys Phe Ile Lys Pro Gly Ser 545
550 555 560 Ile Pro Lys
Thr Ser Ser Gly Lys Ile Arg Arg His Ala Cys Lys Ala 565
570 575 Gly Phe Leu Asp Gly Ser Leu Ala
Val Val Gly Glu Trp Gln Pro Ser 580 585
590 His Gln Lys Glu Gly Lys Gly Ile Gly Thr Gln Ala Val
Thr Pro Ser 595 600 605
Thr Thr Thr Ser Thr Asn Phe Pro Leu Pro Asp Gln His Gln Gln Gln 610
615 620 Ile Glu Ala Trp
Leu Lys Asp Asn Ile Ala His Arg Leu Gly Ile Thr 625 630
635 640 Pro Gln Gln Leu Asp Glu Thr Glu Pro
Phe Ala Ser Tyr Gly Leu Asp 645 650
655 Ser Val Gln Ala Val Gln Val Thr Ala Asp Leu Glu Asp Trp
Leu Gly 660 665 670
Arg Lys Leu Asp Pro Thr Leu Ala Tyr Asp Tyr Pro Thr Ile Arg Thr
675 680 685 Leu Ala Gln Phe
Leu Val Gln Gly Asn Gln Ala Leu Glu Lys Ile Pro 690
695 700 Gln Val Pro Lys Ile Gln Gly Lys
Glu Ile Ala Val Val Gly Leu Ser 705 710
715 720 Cys Arg Phe Pro Gln Ala Asp Asn Pro Glu Ala Phe
Trp Glu Leu Leu 725 730
735 Arg Asn Gly Lys Asp Gly Val Arg Pro Leu Lys Thr Arg Trp Ala Thr
740 745 750 Gly Glu Trp
Gly Gly Phe Leu Glu Asp Ile Asp Gln Phe Glu Pro Gln 755
760 765 Phe Phe Gly Ile Ser Pro Arg Glu
Ala Glu Gln Met Asp Pro Gln Gln 770 775
780 Arg Leu Leu Leu Glu Val Thr Trp Glu Ala Leu Glu Arg
Ala Asn Ile 785 790 795
800 Pro Ala Glu Ser Leu Arg His Ser Gln Thr Gly Val Phe Val Gly Ile
805 810 815 Ser Asn Ser Asp
Tyr Ala Gln Leu Gln Val Arg Glu Asn Asn Pro Ile 820
825 830 Asn Pro Tyr Met Gly Thr Gly Asn Ala
His Ser Ile Ala Ala Asn Arg 835 840
845 Leu Ser Tyr Phe Leu Asp Leu Arg Gly Val Ser Leu Ser Ile
Asp Thr 850 855 860
Ala Cys Ser Ser Ser Leu Val Ala Val His Leu Ala Cys Gln Ser Leu 865
870 875 880 Ile Asn Gly Glu Ser
Glu Leu Ala Ile Ala Ala Gly Val Asn Leu Ile 885
890 895 Leu Thr Pro Asp Val Thr Gln Thr Phe Thr
Gln Ala Gly Met Met Ser 900 905
910 Lys Thr Gly Arg Cys Gln Thr Phe Asp Ala Glu Ala Asp Gly Tyr
Val 915 920 925 Arg
Gly Glu Gly Cys Gly Val Val Leu Leu Lys Pro Leu Ala Gln Ala 930
935 940 Glu Arg Asp Gly Asp Asn
Ile Leu Ala Val Ile His Gly Ser Ala Val 945 950
955 960 Asn Gln Asp Gly Arg Ser Asn Gly Leu Thr Ala
Pro Asn Gly Arg Ser 965 970
975 Gln Gln Ala Val Ile Arg Gln Ala Leu Ala Gln Ala Gly Ile Thr Ala
980 985 990 Ala Asp
Leu Ala Tyr Leu Glu Ala His Gly Thr Gly Thr Pro Leu Gly 995
1000 1005 Asp Pro Ile Glu Ile
Asn Ser Leu Lys Ala Val Leu Gln Thr Ala 1010 1015
1020 Gln Arg Glu Gln Pro Cys Val Val Gly Ser
Val Lys Thr Asn Ile 1025 1030 1035
Gly His Leu Glu Ala Ala Ala Gly Ile Ala Gly Leu Ile Lys Val
1040 1045 1050 Ile Leu
Ser Leu Glu His Gly Met Ile Pro Gln His Leu His Phe 1055
1060 1065 Lys Gln Leu Asn Pro Arg Ile
Asp Leu Asp Gly Leu Val Thr Ile 1070 1075
1080 Ala Ser Lys Asp Gln Pro Trp Ser Gly Gly Ser Gln
Lys Arg Phe 1085 1090 1095
Ala Gly Val Ser Ser Phe Gly Phe Gly Gly Thr Asn Ala His Val 1100
1105 1110 Ile Val Gly Asp Tyr
Ala Gln Gln Lys Ser Pro Leu Ala Pro Pro 1115 1120
1125 Ala Thr Gln Asp Arg Pro Trp His Leu Leu
Thr Leu Ser Ala Lys 1130 1135 1140
Asn Ala Gln Ala Leu Asn Ala Leu Gln Lys Ser Tyr Gly Asp Tyr
1145 1150 1155 Leu Ala
Gln His Pro Ser Val Asp Pro Arg Asp Leu Cys Leu Ser 1160
1165 1170 Ala Asn Thr Gly Arg Ser Pro
Leu Lys Glu Arg Arg Phe Phe Val 1175 1180
1185 Phe Lys Gln Val Ala Asp Leu Gln Gln Thr Leu Asn
Gln Asp Phe 1190 1195 1200
Leu Ala Gln Pro Arg Leu Ser Ser Pro Ala Lys Ile Ala Phe Leu 1205
1210 1215 Phe Thr Gly Gln Gly
Ser Gln Tyr Tyr Gly Met Gly Gln Gln Leu 1220 1225
1230 Tyr Gln Thr Ser Pro Val Phe Arg Gln Val
Leu Asp Glu Cys Asp 1235 1240 1245
Arg Leu Trp Gln Thr Tyr Ser Pro Glu Ala Pro Ala Leu Thr Asp
1250 1255 1260 Leu Leu
Tyr Gly Asn His Asn Pro Asp Leu Val His Glu Thr Val 1265
1270 1275 Tyr Thr Gln Pro Leu Leu Phe
Ala Val Glu Tyr Ala Ile Ala Gln 1280 1285
1290 Leu Trp Leu Ser Trp Gly Val Thr Pro Asp Phe Cys
Met Gly His 1295 1300 1305
Ser Val Gly Glu Tyr Val Ala Ala Cys Leu Ala Gly Val Phe Ser 1310
1315 1320 Leu Ala Asp Gly Met
Lys Leu Ile Thr Ala Arg Gly Lys Leu Met 1325 1330
1335 His Ala Leu Pro Ser Asn Gly Ser Met Ala
Ala Val Phe Ala Asp 1340 1345 1350
Lys Thr Val Ile Lys Pro Tyr Leu Ser Glu His Leu Thr Val Gly
1355 1360 1365 Ala Glu
Asn Gly Ser His Leu Val Leu Ser Gly Lys Thr Pro Cys 1370
1375 1380 Leu Glu Ala Ser Ile His Lys
Leu Gln Ser Gln Gly Ile Lys Thr 1385 1390
1395 Lys Pro Leu Lys Val Ser His Ala Phe His Ser Pro
Leu Met Ala 1400 1405 1410
Pro Met Leu Ala Glu Phe Arg Glu Ile Ala Glu Gln Ile Thr Phe 1415
1420 1425 His Pro Pro Arg Ile
Pro Leu Ile Ser Asn Val Thr Gly Gly Gln 1430 1435
1440 Ile Glu Ala Glu Ile Ala Gln Ala Asp Tyr
Trp Val Lys His Val 1445 1450 1455
Ser Gln Pro Val Lys Phe Val Gln Ser Ile Gln Thr Leu Ala Gln
1460 1465 1470 Ala Gly
Val Asn Val Tyr Leu Glu Ile Gly Val Lys Pro Val Leu 1475
1480 1485 Leu Ser Met Gly Arg His Cys
Leu Ala Glu Gln Glu Ala Val Trp 1490 1495
1500 Leu Pro Ser Leu Arg Pro His Ser Glu Pro Trp Pro
Glu Ile Leu 1505 1510 1515
Thr Ser Leu Gly Lys Leu Tyr Glu Gln Gly Leu Asn Ile Asp Trp 1520
1525 1530 Gln Thr Val Glu Ala
Gly Asp Arg Arg Arg Lys Leu Ile Leu Pro 1535 1540
1545 Thr Tyr Pro Phe Gln Arg Gln Arg Tyr Trp
Phe Asn Gln Gly Ser 1550 1555 1560
Trp Gln Thr Val Glu Thr Glu Ser Val Asn Pro Gly Pro Asp Asp
1565 1570 1575 Leu Asn
Asp Trp Leu Tyr Gln Val Ala Trp Thr Pro Leu Asp Thr 1580
1585 1590 Leu Pro Pro Ala Pro Glu Pro
Ser Ala Lys Leu Trp Leu Ile Leu 1595 1600
1605 Gly Asp Arg His Asp His Gln Pro Ile Glu Ala Gln
Phe Lys Asn 1610 1615 1620
Ala Gln Arg Val Tyr Leu Gly Gln Ser Asn His Phe Pro Thr Asn 1625
1630 1635 Ala Pro Trp Glu Val
Ser Ala Asp Ala Leu Asp Asn Leu Phe Thr 1640 1645
1650 His Val Gly Ser Gln Asn Leu Ala Gly Ile
Leu Tyr Leu Cys Pro 1655 1660 1665
Pro Gly Glu Asp Pro Glu Asp Leu Asp Glu Ile Gln Lys Gln Thr
1670 1675 1680 Ser Gly
Phe Ala Leu Gln Leu Ile Gln Thr Leu Tyr Gln Gln Lys 1685
1690 1695 Ile Ala Val Pro Cys Trp Phe
Val Thr His Gln Ser Gln Arg Val 1700 1705
1710 Leu Glu Thr Asp Ala Val Thr Gly Phe Ala Gln Gly
Gly Leu Trp 1715 1720 1725
Gly Leu Ala Gln Ala Ile Ala Leu Glu His Pro Glu Leu Trp Gly 1730
1735 1740 Gly Ile Ile Asp Val
Asp Asp Ser Leu Pro Asn Phe Ala Gln Ile 1745 1750
1755 Cys Gln Gln Arg Gln Val Gln Gln Leu Ala
Val Arg His Gln Lys 1760 1765 1770
Leu Tyr Gly Ala Gln Leu Lys Lys Gln Pro Ser Leu Pro Gln Lys
1775 1780 1785 Asn Leu
Gln Ile Gln Pro Gln Gln Thr Tyr Leu Val Thr Gly Gly 1790
1795 1800 Leu Gly Ala Ile Gly Arg Lys
Ile Ala Gln Trp Leu Ala Ala Ala 1805 1810
1815 Gly Ala Glu Lys Val Ile Leu Val Ser Arg Arg Ala
Pro Ala Ala 1820 1825 1830
Asp Gln Gln Thr Leu Pro Thr Asn Ala Val Val Tyr Pro Cys Asp 1835
1840 1845 Leu Ala Asp Ala Ala
Gln Val Ala Lys Leu Phe Gln Thr Tyr Pro 1850 1855
1860 His Ile Lys Gly Ile Phe His Ala Ala Gly
Thr Leu Ala Asp Gly 1865 1870 1875
Leu Leu Gln Gln Gln Thr Trp Gln Lys Phe Gln Thr Val Ala Ala
1880 1885 1890 Ala Lys
Met Lys Gly Thr Trp His Leu His Arg His Ser Gln Lys 1895
1900 1905 Leu Asp Leu Asp Phe Phe Val
Leu Phe Ser Ser Val Ala Gly Val 1910 1915
1920 Leu Gly Ser Pro Gly Gln Gly Asn Tyr Ala Ala Ala
Asn Arg Gly 1925 1930 1935
Met Ala Ala Ile Ala Gln Tyr Arg Gln Ala Gln Gly Leu Pro Ala 1940
1945 1950 Leu Ala Ile His Trp
Gly Pro Trp Ala Glu Gly Gly Met Ala Asn 1955 1960
1965 Ser Leu Ser Asn Gln Asn Leu Ala Trp Leu
Pro Pro Pro Gln Gly 1970 1975 1980
Leu Thr Ile Leu Glu Lys Val Leu Gly Ala Gln Gly Glu Met Gly
1985 1990 1995 Val Phe
Lys Pro Asp Trp Gln Asn Leu Ala Lys Gln Phe Pro Glu 2000
2005 2010 Phe Ala Lys Thr His Tyr Phe
Ala Ala Val Ile Pro Ser Ala Glu 2015 2020
2025 Ala Val Pro Pro Thr Ala Ser Ile Phe Asp Lys Leu
Ile Asn Leu 2030 2035 2040
Glu Ala Ser Gln Arg Ala Asp Tyr Leu Leu Asp Tyr Leu Arg Arg 2045
2050 2055 Ser Val Ala Gln Ile
Leu Lys Leu Glu Ile Glu Gln Ile Gln Ser 2060 2065
2070 His Asp Ser Leu Leu Asp Leu Gly Met Asp
Ser Leu Met Ile Met 2075 2080 2085
Glu Ala Ile Ala Ser Leu Lys Gln Asp Leu Gln Leu Met Leu Tyr
2090 2095 2100 Pro Arg
Glu Ile Tyr Glu Arg Pro Arg Leu Asp Val Leu Thr Ala 2105
2110 2115 Tyr Leu Ala Ala Glu Phe Thr
Lys Ala His Asp Ser Glu Ala Ala 2120 2125
2130 Thr Ala Ala Ala Ala Ile Pro Ser Gln Ser Leu Ser
Val Lys Thr 2135 2140 2145
Lys Lys Gln Trp Gln Lys Pro Asp His Lys Asn Pro Asn Pro Ile 2150
2155 2160 Ala Phe Ile Leu Ser
Ser Pro Arg Ser Gly Ser Thr Leu Leu Arg 2165 2170
2175 Val Met Leu Ala Gly His Pro Gly Leu Tyr
Ser Pro Pro Glu Leu 2180 2185 2190
His Leu Leu Pro Phe Glu Thr Met Gly Asp Arg His Gln Glu Leu
2195 2200 2205 Gly Leu
Ser His Leu Gly Glu Gly Leu Gln Arg Ala Leu Met Asp 2210
2215 2220 Leu Glu Asn Leu Thr Pro Glu
Ala Ser Gln Ala Lys Val Asn Gln 2225 2230
2235 Trp Val Lys Ala Asn Thr Pro Ile Ala Asp Ile Tyr
Ala Tyr Leu 2240 2245 2250
Gln Arg Gln Ala Glu Gln Arg Leu Leu Ile Asp Lys Ser Pro Ser 2255
2260 2265 Tyr Gly Ser Asp Arg
His Ile Leu Asp His Ser Glu Ile Leu Phe 2270 2275
2280 Asp Gln Ala Lys Tyr Ile His Leu Val Arg
His Pro Tyr Ala Val 2285 2290 2295
Ile Glu Ser Phe Thr Arg Leu Arg Met Asp Lys Leu Leu Gly Ala
2300 2305 2310 Glu Gln
Gln Asn Pro Tyr Ala Leu Ala Glu Ser Ile Trp Arg Thr 2315
2320 2325 Ser Asn Arg Asn Ile Leu Asp
Leu Gly Arg Thr Val Gly Ala Asp 2330 2335
2340 Arg Tyr Leu Gln Val Ile Tyr Glu Asp Leu Val Arg
Asp Pro Arg 2345 2350 2355
Lys Val Leu Thr Asn Ile Cys Asp Phe Leu Gly Val Asp Phe Asp 2360
2365 2370 Glu Ala Leu Leu Asn
Pro Tyr Ser Gly Asp Arg Leu Thr Asp Gly 2375 2380
2385 Leu His Gln Gln Ser Met Gly Val Gly Asp
Pro Asn Phe Leu Gln 2390 2395 2400
His Lys Thr Ile Asp Pro Ala Leu Ala Asp Lys Trp Arg Ser Ile
2405 2410 2415 Thr Leu
Pro Ala Ala Leu Gln Leu Asp Thr Ile Gln Leu Ala Glu 2420
2425 2430 Thr Phe Ala Tyr Asp Leu Pro
Gln Glu Pro Gln Leu Thr Pro Gln 2435 2440
2445 Thr Gln Ser Leu Pro Ser Met Val Glu Arg Phe Val
Thr Val Arg 2450 2455 2460
Gly Leu Glu Thr Cys Leu Cys Glu Trp Gly Asp Arg His Gln Pro 2465
2470 2475 Leu Val Leu Leu Leu
His Gly Ile Leu Glu Gln Gly Ala Ser Trp 2480 2485
2490 Gln Leu Ile Ala Pro Gln Leu Ala Ala Gln
Gly Tyr Trp Val Val 2495 2500 2505
Ala Pro Asp Leu Arg Gly His Gly Lys Ser Ala His Ala Gln Ser
2510 2515 2520 Tyr Ser
Met Leu Asp Phe Leu Ala Asp Val Asp Ala Leu Ala Lys 2525
2530 2535 Gln Leu Gly Asp Arg Pro Phe
Thr Leu Val Gly His Ser Met Gly 2540 2545
2550 Ser Ile Ile Gly Ala Met Tyr Ala Gly Ile Arg Gln
Thr Gln Val 2555 2560 2565
Glu Lys Leu Ile Leu Val Glu Thr Ile Val Pro Asn Asp Ile Asp 2570
2575 2580 Asp Ala Glu Thr Gly
Asn His Leu Thr Thr His Leu Asp Tyr Leu 2585 2590
2595 Ala Ala Pro Pro Gln His Pro Ile Phe Pro
Ser Leu Glu Val Ala 2600 2605 2610
Ala Arg Arg Leu Arg Gln Ala Thr Pro Gln Leu Pro Lys Asp Leu
2615 2620 2625 Ser Ala
Phe Leu Thr Gln Arg Ser Thr Lys Ser Val Glu Lys Gly 2630
2635 2640 Val Gln Trp Arg Trp Asp Ala
Phe Leu Arg Thr Arg Ala Gly Ile 2645 2650
2655 Glu Phe Asn Gly Ile Ser Arg Arg Arg Tyr Leu Ala
Leu Leu Lys 2660 2665 2670
Asp Ile Gln Ala Pro Ile Thr Leu Ile Tyr Gly Asp Gln Ser Glu 2675
2680 2685 Phe Asn Arg Pro Ala
Asp Leu Gln Ala Ile Gln Ala Ala Leu Pro 2690 2695
2700 Gln Ala Gln Arg Leu Thr Val Ala Gly Gly
His Asn Leu His Phe 2705 2710 2715
Glu Asn Pro Gln Ala Ile Ala Gln Ile Val Tyr Gln Gln Leu Gln
2720 2725 2730 Thr Pro
Val Pro Lys Thr Gln Gly Leu His His His His His His 2735
2740 2745 Ser Ala Trp Ser His Pro Gln
Phe Glu Lys 2750 2755 3242DNAArtificial
SequenceDescription of Artificial Sequence Synthetic primer
32gggagctcaa ggaattatag ttatgcgcaa accctggtta ga
423342DNAArtificial SequenceDescription of Artificial Sequence Synthetic
primer 33ggcctgcagg ttatagggac tggatcgcca gttttttctg ct
4234294DNAStreptomyces roseosporus 34ctcgccgagg cctgcgagct
gaccgccgcc actcccatgg gcggctggct gcccatgtac 60cacgacatgg ggctcctggg
cacgctgaca ccggccctgt acctcggcac cacgtgcgtg 120ctgatgagct ccacggcatt
catcaaacgg ccgcacctgt ggctacggac catcgaccgg 180ttcggcctgg tctggtcgtc
ggctcccgac ttcgcgtacg acatgtgtct gaagcgcgtc 240accgacgagc agatcgccgg
gctggacctg tcccgctggc ggtgggccgg caac 29435294DNALegionella
pneumophila 35atttttacct cttttcatat gaatgatgaa accattattt tcagctggct
gcccccacat 60catgatatgg gtttgattgg ctgcattctg acccccatct atggtggaat
tcaggcaatc 120atgatgtccc ctttctcatt tttacaaaac ccgctttcct ggttaaaaca
tattaccaaa 180tacaaagcaa ctatcagtgg aagccctaac ttcgcttacg attattgtgt
caaacgaatc 240agggaagaaa aaaaagaagg gctggattta agttcatggg tgactgcttt
caac 29436294DNABacillus subtilis 36atccggaatg cgctggctat
cgacttaaaa gatactcttt tatcttggat gcccttaacc 60catgacatgg ggctcatagc
ttgccacctt gttcctgcct tagccggaat caatcaaaat 120ttaatgccga cagaattatt
tattcgaaga cctattctct ggatgaaaaa agctcatgaa 180cataaagcca gcattctatc
ctcacctaat tttggataca attactttct taaatttctg 240aaagacaata aaagttacga
ctgggattta tcccatatca gggtcattgc aaac 29437951DNASynechococcus
sp. 37gtgcgcaaac cctggttaga acttcccttg gcgatttttt cctttggctt ttataaagtc
60aacaaatttc tgattgggaa tctctacact ttgtatttag cgctgaataa aaaaaatgct
120aaggaatggc gcattattgg agaaaaatcc ctccagaaat tcctgagttt acccgtttta
180atgaccaaag cgccccggtg gaatacccac gccattatcg gcaccctggg accactctct
240gtagaaaaag aactcaccat taacctcgaa acgattcgtc aatccacgga agcttgggtc
300ggttgcatct atgactttcc gggctatcgc acggtgttaa atttcacgca actcaccgat
360gaccccaacc aaacagaact caaaattttc ttacctaaag ggaaatatac cgtcgggtta
420cgttactacc atcccaaggt aaatcctcgc tttccggtcg ttaaaacaga tctaaatcta
480accgtgccga ctttggttgt ttcgccccaa aacaacgact tttatcaagc cctggcccag
540aaaacaaacc tttattttcg tctgcttcac tactacattt ttacgctatt taaatttcgc
600gatgtcttac ccgctgcttt tgtgaaagga gaattcctcc ctgtcggcgc caccgatact
660caattttttt acggcgcttt agaagcagca gaaaacttag agattaccat cccagccccc
720tggcttcaga cctttgattt ttatctcacc ttctataacc gcgccagttt tcccctacgt
780tggcaaaaaa tcaccgaagc gatgatctgt gatcccctgg gagaaaaagg ctattaccta
840attcggatgc ggccccgtac tcaggacgcc gaggcacaat taccaacggt tagaggagaa
900gaaacccagg tcacgcccca gcagaaaaaa ctggcgatcc agtccctata a
95138316PRTSynechococcus sp. 38Met Arg Lys Pro Trp Leu Glu Leu Pro Leu
Ala Ile Phe Ser Phe Gly 1 5 10
15 Phe Tyr Lys Val Asn Lys Phe Leu Ile Gly Asn Leu Tyr Thr Leu
Tyr 20 25 30 Leu
Ala Leu Asn Lys Lys Asn Ala Lys Glu Trp Arg Ile Ile Gly Glu 35
40 45 Lys Ser Leu Gln Lys Phe
Leu Ser Leu Pro Val Leu Met Thr Lys Ala 50 55
60 Pro Arg Trp Asn Thr His Ala Ile Ile Gly Thr
Leu Gly Pro Leu Ser 65 70 75
80 Val Glu Lys Glu Leu Thr Ile Asn Leu Glu Thr Ile Arg Gln Ser Thr
85 90 95 Glu Ala
Trp Val Gly Cys Ile Tyr Asp Phe Pro Gly Tyr Arg Thr Val 100
105 110 Leu Asn Phe Thr Gln Leu Thr
Asp Asp Pro Asn Gln Thr Glu Leu Lys 115 120
125 Ile Phe Leu Pro Lys Gly Lys Tyr Thr Val Gly Leu
Arg Tyr Tyr His 130 135 140
Pro Lys Val Asn Pro Arg Phe Pro Val Val Lys Thr Asp Leu Asn Leu 145
150 155 160 Thr Val Pro
Thr Leu Val Val Ser Pro Gln Asn Asn Asp Phe Tyr Gln 165
170 175 Ala Leu Ala Gln Lys Thr Asn Leu
Tyr Phe Arg Leu Leu His Tyr Tyr 180 185
190 Ile Phe Thr Leu Phe Lys Phe Arg Asp Val Leu Pro Ala
Ala Phe Val 195 200 205
Lys Gly Glu Phe Leu Pro Val Gly Ala Thr Asp Thr Gln Phe Phe Tyr 210
215 220 Gly Ala Leu Glu
Ala Ala Glu Asn Leu Glu Ile Thr Ile Pro Ala Pro 225 230
235 240 Trp Leu Gln Thr Phe Asp Phe Tyr Leu
Thr Phe Tyr Asn Arg Ala Ser 245 250
255 Phe Pro Leu Arg Trp Gln Lys Ile Thr Glu Ala Met Ile Cys
Asp Pro 260 265 270
Leu Gly Glu Lys Gly Tyr Tyr Leu Ile Arg Met Arg Pro Arg Thr Gln
275 280 285 Asp Ala Glu Ala
Gln Leu Pro Thr Val Arg Gly Glu Glu Thr Gln Val 290
295 300 Thr Pro Gln Gln Lys Lys Leu Ala
Ile Gln Ser Leu 305 310 315
39522PRTBacillus subtilis 39Ser Tyr Arg Gln Leu Phe Asp Glu Ala Gln Gly
Phe Leu Gly Tyr Leu 1 5 10
15 Gln His Ile Gly Ile Gln Pro Lys Gln Glu Ile Val Phe Gln Ile Gln
20 25 30 Glu Asn
Lys Ser Phe Val Val Ala Phe Trp Ala Cys Leu Leu Gly Gly 35
40 45 Met Ile Pro Val Pro Val Ser
Ile Gly Glu Asp Asn Asp His Lys Leu 50 55
60 Lys Val Trp Arg Ile Trp Asn Ile Leu Asn Asn Pro
Phe Leu Leu Ala 65 70 75
80 Ser Glu Thr Val Leu Asp Lys Met Lys Lys Phe Ala Ala Asp His Asp
85 90 95 Leu Gln Asp
Phe His His Gln Leu Ile Glu Lys Ser Asp Ile Ile Gln 100
105 110 Asp Arg Ile Tyr Asp His Pro Ala
Ser Gln Tyr Glu Pro Glu Ala Asp 115 120
125 Glu Leu Ala Phe Ile Gln Phe Ser Ser Gly Ser Thr Gly
Asp Pro Lys 130 135 140
Gly Val Met Leu Thr His His Asn Leu Ile His Asn Thr Cys Ala Ile 145
150 155 160 Arg Asn Ala Leu
Ala Ile Asp Leu Lys Asp Thr Leu Leu Ser Trp Met 165
170 175 Pro Leu Thr His Asp Met Gly Leu Ile
Ala Cys His Leu Val Pro Ala 180 185
190 Leu Ala Gly Ile Asn Gln Asn Leu Met Pro Thr Glu Leu Phe
Ile Arg 195 200 205
Arg Pro Ile Leu Trp Met Lys Lys Ala His Glu His Lys Ala Ser Ile 210
215 220 Leu Ser Ser Pro Asn
Phe Gly Tyr Asn Tyr Phe Leu Lys Phe Leu Lys 225 230
235 240 Asp Asn Lys Ser Tyr Asp Trp Asp Leu Ser
His Ile Arg Val Ile Ala 245 250
255 Asn Gly Ala Glu Pro Ile Leu Pro Glu Leu Cys Asp Glu Phe Leu
Thr 260 265 270 Arg
Cys Ala Ala Phe Asn Met Lys Arg Ser Ala Ile Leu Asn Val Tyr 275
280 285 Gly Leu Ala Glu Ala Ser
Val Gly Ala Thr Phe Ser Asn Ile Gly Glu 290 295
300 Arg Phe Val Pro Val Tyr Leu His Arg Asp His
Leu Asn Leu Gly Glu 305 310 315
320 Arg Ala Val Glu Val Ser Lys Glu Asp Gln Asn Cys Ala Ser Phe Val
325 330 335 Glu Val
Gly Lys Pro Ile Asp Tyr Cys Gln Ile Arg Ile Cys Asn Glu 340
345 350 Ala Asn Glu Gly Leu Glu Asp
Gly Phe Ile Gly His Ile Gln Ile Lys 355 360
365 Gly Glu Asn Val Thr Gln Gly Tyr Tyr Asn Asn Pro
Glu Ser Thr Asn 370 375 380
Arg Ala Leu Thr Pro Asp Gly Trp Val Lys Thr Gly Asp Leu Gly Phe 385
390 395 400 Ile Arg Lys
Gly Asn Leu Val Val Thr Gly Arg Glu Lys Asp Ile Ile 405
410 415 Phe Val Asn Gly Lys Asn Val Tyr
Pro His Asp Ile Glu Arg Val Ala 420 425
430 Ile Glu Leu Glu Asp Ile Asp Leu Gly Arg Val Ala Ala
Cys Gly Val 435 440 445
Tyr Asp Gln Glu Thr Arg Ser Arg Glu Ile Val Leu Phe Ala Val Tyr 450
455 460 Lys Lys Ser Ala
Glu Gln Phe Ala Pro Leu Val Lys Asp Ile Lys Lys 465 470
475 480 His Leu Tyr Gln Arg Gly Gly Trp Ser
Ile Lys Glu Ile Leu Pro Ile 485 490
495 Arg Lys Leu Pro Lys Thr Thr Ser Gly Lys Val Lys Arg Tyr
Glu Leu 500 505 510
Ala Glu Gln Tyr Glu Ser Gly Lys Phe Ala 515 520
40548PRTSynechococcus sp. 40Asp Leu Leu Gln Tyr Arg Ala Lys Leu Gln
Ala Arg Lys Thr Val Phe 1 5 10
15 Ser Phe Leu Ala Asp Gly Glu Ala Glu Ser Ala Ala Leu Thr Tyr
Gly 20 25 30 Glu
Leu Asp Gln Lys Ala Gln Ala Ile Ala Ala Phe Leu Gln Ala Asn 35
40 45 Gln Ala Gln Gly Gln Arg
Ala Leu Leu Leu Tyr Pro Pro Gly Leu Glu 50 55
60 Phe Ile Gly Ala Phe Leu Gly Cys Leu Tyr Ala
Gly Val Val Ala Val 65 70 75
80 Pro Ala Tyr Pro Pro Arg Pro Asn Lys Ser Phe Asp Arg Leu His Ser
85 90 95 Ile Ile
Gln Asp Ala Gln Ala Lys Phe Ala Leu Thr Thr Thr Glu Leu 100
105 110 Lys Asp Lys Ile Ala Asp Arg
Leu Glu Ala Leu Glu Gly Thr Asp Phe 115 120
125 His Cys Leu Ala Thr Asp Gln Val Glu Leu Ile Ser
Gly Lys Asn Trp 130 135 140
Gln Lys Pro Asn Ile Ser Gly Thr Asp Leu Ala Phe Leu Gln Tyr Thr 145
150 155 160 Ser Gly Ser
Thr Gly Asp Pro Lys Gly Val Met Val Ser His His Asn 165
170 175 Leu Ile His Asn Ser Gly Leu Ile
Asn Gln Gly Phe Gln Asp Thr Glu 180 185
190 Ala Ser Met Gly Val Ser Trp Leu Pro Pro Tyr His Asp
Met Gly Leu 195 200 205
Ile Gly Gly Ile Leu Gln Pro Ile Tyr Val Gly Ala Thr Gln Ile Leu 210
215 220 Met Pro Pro Val
Ala Phe Leu Gln Arg Pro Phe Arg Trp Leu Lys Ala 225 230
235 240 Ile Asn Asp Tyr Arg Val Ser Thr Ser
Gly Ala Pro Asn Phe Ala Tyr 245 250
255 Asp Leu Cys Ala Ser Gln Ile Thr Pro Glu Gln Ile Arg Glu
Leu Asp 260 265 270
Leu Ser Cys Trp Arg Leu Ala Phe Ser Gly Ala Glu Pro Ile Arg Ala
275 280 285 Val Thr Leu Glu
Asn Phe Ala Lys Thr Phe Ala Thr Ala Gly Phe Gln 290
295 300 Lys Ser Ala Phe Tyr Pro Cys Tyr
Gly Met Ala Glu Thr Thr Leu Ile 305 310
315 320 Val Ser Gly Gly Asn Gly Arg Ala Gln Leu Pro Gln
Glu Ile Ile Val 325 330
335 Ser Lys Gln Gly Ile Glu Ala Asn Gln Val Arg Pro Ala Gln Gly Thr
340 345 350 Glu Thr Thr
Val Thr Leu Val Gly Ser Gly Glu Val Ile Gly Asp Gln 355
360 365 Ile Val Lys Ile Val Asp Pro Gln
Ala Leu Thr Glu Cys Thr Val Gly 370 375
380 Glu Ile Gly Glu Val Trp Val Lys Gly Glu Ser Val Ala
Gln Gly Tyr 385 390 395
400 Trp Gln Lys Pro Asp Leu Thr Gln Gln Gln Phe Gln Gly Asn Val Gly
405 410 415 Ala Glu Thr Gly
Phe Leu Arg Thr Gly Asp Leu Gly Phe Leu Gln Gly 420
425 430 Gly Glu Leu Tyr Ile Thr Gly Arg Leu
Lys Asp Leu Leu Ile Ile Arg 435 440
445 Gly Arg Asn His Tyr Pro Gln Asp Ile Glu Leu Thr Val Glu
Val Ala 450 455 460
His Pro Ala Leu Arg Gln Gly Ala Gly Ala Ala Val Ser Val Asp Val 465
470 475 480 Asn Gly Glu Glu Gln
Leu Val Ile Val Gln Glu Val Glu Arg Lys Tyr 485
490 495 Ala Arg Lys Leu Asn Val Ala Ala Val Ala
Gln Ala Ile Arg Gly Ala 500 505
510 Ile Ala Ala Glu His Gln Leu Gln Pro Gln Ala Ile Cys Phe Ile
Lys 515 520 525 Pro
Gly Ser Ile Pro Lys Thr Ser Ser Gly Lys Ile Arg Arg His Ala 530
535 540 Cys Lys Ala Gly 545
User Contributions:
Comment about this patent or add new information about this topic: