Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof

Inventors:  Benjamin M. Hause (Currie, MN, US)
Assignees:  Merial Limited
IPC8 Class: AA61K39145FI
USPC Class: 4242091
Class name: Antigen, epitope, or other immunospecific immunoeffector (e.g., immunospecific vaccine, immunospecific stimulator of cell-mediated immunity, immunospecific tolerogen, immunospecific immunosuppressor, etc.) virus or component thereof orthomyxoviridae (e.g., influenza virus, fowl plague virus, etc.)
Publication date: 2014-01-23
Patent application number: 20140023681



Abstract:

This disclosure provides attenuated swine influenza strains, particularly those produced via a reverse genetics approach, compositions comprising same, and methods of production and use thereof. The attenuated strains are engineered to encode HA proteins having additional glycosylation sites, relative to the HA proteins encoded by the corresponding virulent parental viruses. Advantageously, the attenuated influenza strains may be administered

Claims:

1. An attenuated swine influenza strain capable of providing a safe and effective immune response in porcine against influenza or diseases caused by influenza.

2. The strain of claim 1 encoding an HA gene having at least 1 additional glycosylation site relative to virulent parental strain.

3. The strain of claim 2 encoding an HA gene having at least 4 additional glycosylation sites relative to virulent parental strain.

4. The strain of claim 3 wherein the glycosylation sites are selected from S71N, K90N, L173T, P287T, and K294T, and wherein the location of the Amino Acid change(s) is based upon the HA gene encoded by the virulent parental strain having the sequence as set forth in SEQ ID NO:18.

5. The strain of claim 4 encoding the HA protein having the sequence as set forth in SEQ ID NO:22 or having a sequence with at least 90% homology to SEQ ID NO:22 provided the following locations have the following amino acids: 71N, 90N, 173T, 287T, and 294T.

6. The strain of claim 5, wherein the HA protein has the sequence as set forth in SEQ ID NO:22.

7. The strain of claim 4 encoding the HA protein having the sequence as set forth in SEQ ID NO:24 or having a sequence with at least 90% homology to SEQ IN NO:24 provided the following locations have the following amino acids: 71N, 90N, 173T, 287T.

8. The strain of claim 7, wherein the HA protein has the sequence as set forth in SEQ ID NO:24.

9. An immunological composition comprising the attenuated strain of any of claims 4 to 8.

10. The composition of claim 9 further comprising a pharmaceutically or veterinary acceptable vehicle, diluent or excipient, and which provides a protective immune response in porcine against virulent swine influenza challenge.

11. The composition of claim 10 further comprising at least one additional antigen associated with or derived from a porcine pathogen other than swine influenza.

12. The composition of claim 11 wherein the at least one or more additional antigen(s) is capable of eliciting in a porcine an immune response against M. hyo, PCV2, PRRSV, SIV or other pathogen capable of infecting and causing illness or susceptibility to illness in a porcine.

13. A method of vaccinating an animal comprising at least one administration of the composition of claim 10.

14. The method of claim 13 wherein the porcine is a sow from about 3 weeks to about 6 weeks prefarrowing.

15. The method of 14 wherein the resulting piglets have a reduced morbidity and/or mortality as compared to piglets coming from unvaccinated sows.

16. A composition comprising a plurality of vectors for production of attenuated swine influenza including a vector comprising a promoter operably linked to an influenza virus HA cDNA, wherein the HA cDNA encodes additional glycosylation sites relative to an HA encoded by a virulent parent swine influenza strain.

17. The composition of claim 16 wherein the additional glycosylation sites are selected from S71N, K90N, L173T, P287T, and K294T, and wherein the numbering of the Amino Acid changes is based upon the HA gene encoded by the virulent parental strain having the sequence as set forth in SEQ ID NO:18.

18. The composition of claim 17 wherein the HA cDNA for producing attenuated influenza encodes the protein as set forth in SEQ ID NO:22 or 24.

19. A method to prepare influenza virus, comprising: contacting a cell with the composition of any one of claims 16 to 18 in an amount effective to yield infectious influenza virus.

20. A cell comprising the plurality of vectors of claim 19.

Description:

INCORPORATION BY REFERENCE

[0001] This application claims priority to provisional application U.S. Ser. No. 61/672,398, filed on Jul. 17, 2012, and incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates generally to attenuated viral vaccines, particularly those providing broad, safe, and effective protection to porcines against infections/disease caused by swine influenza. The invention further relates to methods of producing the attenuated viruses, and to the identification of nucleic acid variations that are associated with decreased virulence of the attenuated virus.

[0003] The invention accordingly relates to immunogenic or vaccine compositions comprising the viruses of the invention; e.g., live attenuated virus. The viruses also could be inactivated in the compositions; but it may be advantageous that the viruses are live attenuated swine influenza. The invention therefore further relates to methods for preparing and/or formulating such compositions; e.g., culturing or growing or propagating the viruses on or in suitable medium, harvesting the viruses, optionally inactivating the viruses, and optionally admixing with a suitable veterinarily or pharmaceutically acceptable carrier, excipient, diluent or vehicle and/or an adjuvant and/or stabilizer. Thus, the invention also relates to the use of the viruses in formulating such compositions.

BACKGROUND OF THE INVENTION

[0004] Influenza viruses possess a number of mechanisms to elude host humoral immunity against hemagglutinin (HA) that mediates viral entry. Reassortment of genome segments can lead to antigenic shift while gradual accumulation of mutations leads to genetic drift (Desselberger U, et al. 1978, Schild G, et al. 1974). In addition to mutations in the antigenic epitopes of the HA that can impact the ability of pre-existing antibodies to recognize mutant HA, mutations in N-linked glycosylation of HA can promote viral evasion of antibody recognition by altering the oligosaccharide layer surrounding the HA (Schulze I T, 1997). Glycan residues can restrict the binding of some antibodies to their epitopes, leading to loss of antibody recognition and immunogenicity in a phenomenon known as glycan shielding (Wanzeck K, et al. 2011, Wei C-J, et al. 2010). Additionally, mutation and genetic drift preferentially occur at positions in the HA globular head that are not protected by glycans (Das S R, et al. 2010). Glycan residues also influence receptor binding and consequently can affect viral replication kinetics.

[0005] The evolution of influenza viruses frequently includes modification of the number and position of glycosylation sites (Long J, et al. 2011). For H3N2 viruses, the number of glycosylation sites has increased from two to ten over the last 40 years (4). However, increasingly glycosylated HA has been correlated with decreased virulence in mice and reduced viral fitness (Das S R, et al. 2011, Vigerust D J, et al. 2007). While increasing glycosylation can shield HA from neutralizing antibodies, the viral affinity for cellular receptors is obligatorily decreased (Abe Y, et al. 2004, Das S R, et al. 2011). Also, compensatory mutations in either the HA or neuraminidase (NA) are required to balance receptor binding and release activities (Wagner R, et al. 2000). These compensatory mutations in NA have been associated with the acquisition of natural resistance to NA inhibitors (Hensley S E, et al. 2011).

[0006] Numerous genetic and antigenically distinct lineages of swine influenza virus circulate concurrently in pigs, including β, γ and δ-cluster H1N1 and H1N2 viruses, as well as the H3N2 subtype (Lorusso A, et al. 2012). The δ-cluster was originally subdivided into two subclusters (δ-I and δ-II), however, more recent work demonstrated five distinct genetic subclusters (δ-A, δ-B, δ-C, δ-D, δ-E) representing at least three antigenically distinct groups (Hause B M, et al. 2011, Vincent A L, et al. 2009).

[0007] While killed viral vaccines are efficacious when the vaccine strains match the field challenge virus, the rapid mutation rate of influenza requires frequent strain changes to ensure genetic and antigenic match between the vaccine strains and circulating viruses. Additionally, the multiple subtypes and lineages co-circulating in swine frequently require five or more vaccine strains in order to include representatives of each type. A single live vaccine that elicits broad spectrum immunity offer a significant advance in swine health programs.

SUMMARY OF THE INVENTION

[0008] An object of this invention is to provide attenuated vaccines as well as methods for treatment and prophylaxis of infection by swine influenza.

[0009] In an embodiment, the vaccines comprise attenuated influenza viruses, which have been modified to express HA genes having additional glycosylation sites relative to their parental strain.

[0010] In a particular embodiment, the HA genes and/or gene products have the same modifications as are present between SEQ ID NOs:17 and 21; SEQ ID NOs:17 and 23; SEQ ID NOs:18 and 22; or SEQ ID NOs:18 and 24. In yet another embodiment, the HA genes and/or gene products have at least 1 out of the 5 modifications. In a more particular embodiment, the HA genes and/or gene products have 4 or 5 of the modifications, results in +4 and +5 glycosylation sites, relative to the parent HA gene products.

[0011] Another object of this invention is to provide cDNA and/or plasmids for use in a reverse genetics system for producing attenuated influenza according to the instant disclosure. In an embodiment, at least one of the cDNA and/or plasmids comprises a HA sequence having increased number of glycosylation sites relative to the sequence as set forth in SEQ ID NO:18.

[0012] In a particular embodiment, the HA sequence is as set forth in SEQ ID NOs:21 or 23.

[0013] The present invention further relates to new attenuated strains of Influenza, which provide safe, effective, and broad protective immunity. Relative to a parent Influenza strain, the attenuated strains may have additional glycosylation sites and/or putative glycosylation sites encoded by their HA genes, whose presence is associated with reduced virulence.

[0014] Thus, the invention provides a mutant virus comprising a mutation(s) in one or more nucleic acids sequences, relative to the wild type/parental virus, which renders the mutant virus attenuated, relative to the parent virus, which parent virus comprises nucleic acids encoding a wild type HA protein. As defined herein, the "wild type" HA protein is one having the same number of glycosylation sites and/or putative glycosylation sites relative to the sequences as set forth in SEQ ID NO:18.

[0015] In a particular embodiment, the mutant virus comprises vRNA nucleic acid sequences which correspond to (i.e. are reverse complementary and have uracils in place of thymidines) the DNA sequences set forth in SEQ ID NOs:21 or 23, which encode for peptides as set forth in SEQ ID NOs:22 or 24, respectively, and which cause the mutant virus to be attenuated/non-virulent, relative to the virulent wild type/parental virus.

[0016] As defined herein, the term "gene" will be used in a broad sense, and shall encompass both coding and non-coding sequences (i.e. upstream and downstream regulatory sequences, promoters, 5'/3' UTR, introns, and exons). Where reference to only a gene's coding sequence is intended, the term "gene's coding sequence" or "CDS" will be used interchangeably throughout this disclosure. When a specific nucleic acid is discussed, for example, the sequence as set forth in SEQ ID NO:17 (the DNA sequence equivalent of parental virus cRNA "sense" strand), the skilled person will instantly be in possession of all derivable forms of that sequence (mRNA, vRNA, cRNA, DNA, protein, etc.). For example, the influenza virus is a negative single strand RNA virus (ssRNA). To replicate, its negative ssRNA (defined herein as "vRNA") must be transcribed to positive or sense RNA (defined herein as "cRNA"). Host cell machinery is co-opted to use the cRNA to produce the viral proteins and vRNA. A skilled person using the well-known genetic code can routinely derive from a DNA sequence the vRNA, cRNA, and peptide sequences.

[0017] In a particular embodiment, the attenuated vaccines comprise an adjuvant. The adjuvant may be any substance which increases and/or augments the elicited immune response, as compared to attenuated vaccine alone. Mucosal adjuvants, including chitosans and derivatives thereof, are particularly useful for the disclosed oral attenuated vaccines.

[0018] The invention further provides methods for inducing an immunological (or immunogenic) or protective response against Influenza, as well as methods for preventing or treating Influenza, or disease state(s) caused by Influenza, comprising administering the attenuated virus, or a composition comprising the attenuated virus to animals in need thereof.

[0019] Kits comprising at least the attenuated Influenza strain and instructions for use are also provided.

[0020] These and other embodiments are disclosed or are obvious from and encompassed by, the following Detailed Description.

BRIEF DESCRIPTION OF DRAWINGS

[0021] A full and enabling disclosure of the present invention, including the best mode thereof, to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, wherein:

[0022] FIG. 1 presents the genotype of viruses created using reverse genetics;

[0023] FIG. 2 is an amino acid alignment between SEQ ID NO:18 (HA protein of parent influenza virus) and SEQ ID NO:22 (HA protein of n+5 glycosylation mutant);

[0024] FIG. 3 is a graph of the growth in cultured cells of parent and glycosylation mutant influenza viruses harboring between 1 and 5 additional glycosylation sites in their HA gene, relative to parent;

[0025] FIG. 4 is a table listing the SEQ ID of this disclosure.

DETAILED DESCRIPTION OF THE INVENTION

[0026] The present invention provides nucleotide sequences and genes involved in the attenuation of a microorganism, such as virus, for instance, Influenza, products (e.g., proteins, antigens, immunogens, epitopes) encoded by the nucleotide sequences, methods for producing such nucleotide sequences, products, micro-organisms, and uses therefore, such as for preparing vaccine or immunogenic compositions or for eliciting an immunological or immune response or as a vector, e.g., as an expression vector (for instance, an in vitro or in vivo expression vector).

[0027] Mutations introduced into nucleotide sequences and genes of micro-organisms produce novel and nonobvious attenuated mutants. These mutants are useful for the production of live attenuated immunogenic compositions or live attenuated vaccines having a high degree of immunogenicity.

[0028] Identification of the mutations provides novel and nonobvious nucleotide sequences and genes, as well as novel and nonobvious gene products encoded by the nucleotide sequences and genes.

[0029] In an embodiment, the invention provides an attenuated hyperglycosylated swine influenza strain capable of providing a safe and effective immune response in porcine against influenza or diseases caused by influenza. In one embodiment, the strain may encode an HA gene having at least 1 additional glycosylation site relative to virulent parental strain.

[0030] In another embodiment, the attenuated strain may encode an HA gene having 4 or 5 additional glycosylation sites relative to virulent parental strain. In a particular embodiment, the strain glycosylation sites are selected from S71N, K90N, L173T, P287T, and K294T, with the locations of the Amino Acid changes being based upon an HA gene having the sequence as set forth in SEQ ID NO:18.

[0031] In one embodiment, the HA protein produced by the attenuated influenza strain has the sequence as set forth in SEQ ID NO:22 or a sequence with at least 90% homology to SEQ ID NO:22 provided the following locations have the following amino acids: 71N, 90N, 173T, 287T, and 294T.

[0032] In another embodiment, the attenuated influenza produces an HA protein having the sequence as set forth in SEQ ID NO:24 or a sequence with at least 90% homology to SEQ IN NO:24 provided the following locations have the following amino acids: 71N, 90N, 173T, 287T. In another aspect, the invention provides immunological composition comprising attenuated influenza strains, which encode hyperglycosylated HA proteins. In one embodiment, the compositions may further comprise a pharmaceutically or veterinary acceptable vehicle, diluent or excipient.

[0033] In an embodiment, the composition provides a protective immune response in porcine against virulent swine influenza challenge. In some embodiments, the composition further comprises at least one additional antigen associated with a pathogen other than swine influenza.

[0034] In another embodiment, the at least one additional antigen is selected from M. hyo, PCV2, PRRSV, SIV or other pathogen capable of infecting and causing illness or susceptibility to illness in a porcine, or combinations thereof.

[0035] In an embodiment, the invention provides methods of vaccinating an animal comprising at least one administration of the compositions comprising sequences encoding hyperglycosylated influenza HA proteins. In another embodiment, the porcine is a sow from about 3 weeks to about 6 weeks prefarrowing. In yet another embodiment, the resulting piglets may have a reduced morbidity and/or mortality as compared to piglets coming from unvaccinated sows.

[0036] In another embodiment, the invention provides a composition comprising a plurality of vectors for production of attenuated swine influenza including a vector comprising a promoter operably linked to an influenza virus HA cDNA, wherein the HA cDNA encodes additional glycosylation sites relative to an HA encoded by a virulent parent swine influenza strain. In one particular embodiment, the additional glycosylation sites are selected from S71N, K90N, L173T, P287T, and K294T, and the location of the Amino Acid changes is based upon an HA gene having the sequence as set forth in SEQ ID NO:18.

[0037] In an embodiment, the HA cDNA for producing attenuated influenza encodes the protein as set forth in SEQ ID NO:22. In another embodiment, HA cDNA encodes the protein as set forth in SEQ ID NO:24.

[0038] In an embodiment, the invention provides a method to prepare influenza virus, comprising: contacting a cell with one of the inventive compositions in an amount effective to yield infectious influenza virus. In one embodiment, the method further comprises isolating the virus.

[0039] In another embodiment, the invention provides a method to prepare a gene delivery vehicle, comprising: contacting cells with the inventive composition in an amount effective to yield influenza virus, and isolating the virus. The invention further provides a cell contacted with the inventive composition.

[0040] In an embodiment, the invention provides a vertebrate cell comprising a plurality of vectors for production of attenuated swine influenza including a vector comprising a promoter operably linked to an influenza virus HA cDNA, wherein the HA cDNA encodes additional glycosylation sites relative to an HA encoded by a virulent parent swine influenza strain.

[0041] The invention further encompasses gene products, which provide antigens, immunogens and epitopes, and are useful as isolated gene products.

[0042] Such isolated gene products, as well as epitopes thereof, are also useful for generating antibodies, which are useful in diagnostic applications.

[0043] Such gene products, which can provide or generate epitopes, antigens or immunogens, are also useful for immunogenic or immunological compositions, as well as vaccines.

[0044] In an aspect, the invention provides viruses containing an attenuating mutation in a nucleotide sequence or a gene wherein the mutation modifies the biological activity of a polypeptide or protein encoded by a gene, resulting in attenuated virulence of the virus.

[0045] In particular, the present invention encompasses attenuated swine influenza strains and vaccines comprising the same, which elicit an immunogenic response in an animal, particularly the attenuated swine influenza strains that elicit, induce or stimulate a response in a porcine.

[0046] Particular swine influenza attenuated strains of interest have mutations in genes, relative to wild type virulent parent strain, which are associated with virulence. It is recognized that, in addition to strains having the disclosed mutations, attenuated strains having any number of mutations in the disclosed virulence genes can be used in the practice of this invention.

[0047] In another aspect, the novel attenuated swine influenza strains are formulated into safe, effective vaccine against swine influenza and infections/diseases cause by swine influenza.

[0048] In an embodiment, the swine influenza vaccines further comprise an adjuvant. In a particular embodiment, the adjuvant is a mucosal adjuvant, such as chitosan, methylated chitosan, trimethylated chitosan, or derivatives or combinations thereof.

[0049] In an embodiment, the adjuvant comprises whole bacteria and/or viruses, including H. parasuis, clostridium, swine influenza virus (SIV), porcine circovirus (PCV), porcine reproductive and respiratory syndrome virus (PRRSV), Mannheimia, Pasteurella, Histophious, Salmonella, Escherichia coli, or combinations and/or variations thereof. In several embodiments, the adjuvant increases the animal's production of IgM, IgG, IgA, and/or combinations thereof.

[0050] By "antigen" or "immunogen" means a substance that induces a specific immune response in a host animal. The antigen may comprise a whole organism, killed, attenuated or live; a subunit or portion of an organism; a recombinant vector containing an insert with immunogenic properties; a piece or fragment of DNA capable of inducing an immune response upon presentation to a host animal; a polypeptide, an epitope, a hapten, or any combination thereof. Alternately, the immunogen or antigen may comprise a toxin or antitoxin.

[0051] The terms "protein", "peptide", "polypeptide" and "polypeptide fragment" are used interchangeably herein to refer to polymers of amino acid residues of any length. The polymer can be linear or branched, it may comprise modified amino acids or amino acid analogs, and it may be interrupted by chemical moieties other than amino acids. The terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling or bioactive component.

[0052] The term "immunogenic or antigenic polypeptide" as used herein includes polypeptides that are immunologically active in the sense that once administered to the host, it is able to evoke an immune response of the humoral and/or cellular type directed against the protein. Preferably the protein fragment is such that it has substantially the same immunological activity as the total protein. Thus, a protein fragment according to the invention comprises or consists essentially of or consists of at least one epitope or antigenic determinant. An "immunogenic" protein or polypeptide, as used herein, includes the full-length sequence of the protein, analogs thereof, or immunogenic fragments thereof. By "immunogenic fragment" is meant a fragment of a protein which includes one or more epitopes and thus elicits the immunological response described above. Such fragments can be identified using any number of epitope mapping techniques, well known in the art. See, e.g., Epitope Mapping Protocols in Methods in Molecular Biology, Vol. 66 (Glenn E. Morris, Ed., 1996). For example, linear epitopes may be determined by e.g., concurrently synthesizing large numbers of peptides on solid supports, the peptides corresponding to portions of the protein molecule, and reacting the peptides with antibodies while the peptides are still attached to the supports. Such techniques are known in the art and described in, e.g., U.S. Pat. No. 4,708,871; Geysen et al., 1984; Geysen et al., 1986. Similarly, conformational epitopes are readily identified by determining spatial conformation of amino acids such as by, e.g., x-ray crystallography and 2-dimensional nuclear magnetic resonance. See, e.g., Epitope Mapping Protocols, supra. Methods especially applicable to the proteins of T. parva are fully described in PCT/US2004/022605 incorporated herein by reference in its entirety.

[0053] As discussed herein, the invention encompasses active fragments and variants of the antigenic polypeptide. Thus, the term "immunogenic or antigenic polypeptide" further contemplates deletions, additions and substitutions to the sequence, so long as the polypeptide functions to produce an immunological response as defined herein. The term "conservative variation" denotes the replacement of an amino acid residue by another biologically similar residue, or the replacement of a nucleotide in a nucleic acid sequence such that the encoded amino acid residue does not change or is another biologically similar residue. In this regard, particularly preferred substitutions will generally be conservative in nature, i.e., those substitutions that take place within a family of amino acids. For example, amino acids are generally divided into four families: (1) acidic--aspartate and glutamate; (2) basic--lysine, arginine, histidine; (3) non-polar--alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar--glycine, asparagine, glutamine, cystine, serine, threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified as aromatic amino acids. Examples of conservative variations include the substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another hydrophobic residue, or the substitution of one polar residue for another polar residue, such as the substitution of arginine for lysine, glutamic acid for aspartic acid, or glutamine for asparagine, and the like; or a similar conservative replacement of an amino acid with a structurally related amino acid that will not have a major effect on the biological activity. Proteins having substantially the same amino acid sequence as the reference molecule but possessing minor amino acid substitutions that do not substantially affect the immunogenicity of the protein are, therefore, within the definition of the reference polypeptide. All of the polypeptides produced by these modifications are included herein. The term "conservative variation" also includes the use of a substituted amino acid in place of an unsubstituted parent amino acid provided that antibodies raised to the substituted polypeptide also immunoreact with the unsubstituted polypeptide.

[0054] The term "epitope" refers to the site on an antigen or hapten to which specific B cells and/or T cells respond. The term is also used interchangeably with "antigenic determinant" or "antigenic determinant site". Antibodies that recognize the same epitope can be identified in a simple immunoassay showing the ability of one antibody to block the binding of another antibody to a target antigen.

[0055] An "immunological response" to a composition or vaccine is the development in the host of a cellular and/or antibody-mediated immune response to a composition or vaccine of interest. Usually, an "immunological response" includes but is not limited to one or more of the following effects: the production of antibodies, B cells, helper T cells, and/or cytotoxic T cells, directed specifically to an antigen or antigens included in the composition or vaccine of interest. Preferably, the host will display either a therapeutic or protective immunological response such that resistance to new infection will be enhanced and/or the clinical severity of the disease reduced. Such protection will be demonstrated by either a reduction or lack of symptoms and/or clinical disease signs normally displayed by an infected host, a quicker recovery time and/or a lowered viral titer in the infected host.

[0056] By "animal" is intended mammals, birds, and the like. Animal or host as used herein includes mammals and human. The animal may be selected from the group consisting of equine (e.g., horse), canine (e.g., dogs, wolves, foxes, coyotes, jackals), feline (e.g., lions, tigers, domestic cats, wild cats, other big cats, and other felines including cheetahs and lynx), ovine (e.g., sheep), bovine (e.g., cattle), porcine (e.g., pig), avian (e.g., chicken, duck, goose, turkey, quail, pheasant, parrot, finches, hawk, crow, ostrich, emu and cassowary), primate (e.g., prosimian, tarsier, monkey, gibbon, ape), ferrets, seals, and fish. The term "animal" also includes an individual animal in all stages of development, including newborn, embryonic and fetal stages.

[0057] Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The singular terms "a", "an", and "the" include plural referents unless context clearly indicates otherwise. Similarly, the word "or" is intended to include "and" unless the context clearly indicate otherwise.

[0058] It is noted that in this disclosure and particularly in the claims and/or paragraphs, terms such as "comprises", "comprised", "comprising" and the like can have the meaning attributed to it in U.S. Patent law; e.g., they can mean "includes", "included", "including", and the like; and that terms such as "consisting essentially of" and "consists essentially of" have the meaning ascribed to them in U.S. Patent law, e.g., they allow for elements not explicitly recited, but exclude elements that are found in the prior art or that affect a basic or novel characteristic of the invention.

Compositions

[0059] The present invention relates to a swine influenza vaccine or composition which may comprise an attenuated swine influenza strain and a pharmaceutically or veterinarily acceptable carrier, excipient, or vehicle, which elicits, induces or stimulates a response in an animal.

[0060] The term "nucleic acid" and "polynucleotide" refers to RNA or DNA that is linear or branched, single or double stranded, or a hybrid thereof. The term also encompasses RNA/DNA hybrids. The following are non-limiting examples of polynucleotides: a gene or gene fragment, exons, introns, mRNA, tRNA, rRNA, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes and primers. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs, uracyl, other sugars and linking groups such as fluororibose and thiolate, and nucleotide branches. The sequence of nucleotides may be further modified after polymerization, such as by conjugation, with a labeling component. Other types of modifications included in this definition are caps, substitution of one or more of the naturally occurring nucleotides with an analog, and introduction of means for attaching the polynucleotide to proteins, metal ions, labeling components, other polynucleotides or solid support. The polynucleotides can be obtained by chemical synthesis or derived from a microorganism.

[0061] The term "gene" is used broadly to refer to any segment of polynucleotide associated with a biological function. Thus, genes include introns and exons as in genomic sequence, or just the coding sequences as in cDNAs and/or the regulatory sequences required for their expression. For example, gene also refers to a nucleic acid fragment that expresses mRNA or functional RNA, or encodes a specific protein, and which includes regulatory sequences.

[0062] An "isolated" biological component (such as a nucleic acid or protein or organelle) refers to a component that has been substantially separated or purified away from other biological components in the cell of the organism in which the component naturally occurs, for instance, other chromosomal and extra-chromosomal DNA and RNA, proteins, and organelles. Nucleic acids and proteins that have been "isolated" include nucleic acids and proteins purified by standard purification methods. The term also embraces nucleic acids and proteins prepared by recombinant technology as well as chemical synthesis.

[0063] The term "conservative variation" denotes the replacement of an amino acid residue by another biologically similar residue, or the replacement of a nucleotide in a nucleic acid sequence such that the encoded amino acid residue does not change or is another biologically similar residue. In this regard, particularly preferred substitutions will generally be conservative in nature, as described above.

[0064] The term "recombinant" means a polynucleotide with semisynthetic, or synthetic origin which either does not occur in nature or is linked to another polynucleotide in an arrangement not found in nature.

[0065] "Heterologous" means derived from a genetically distinct entity from the rest of the entity to which it is being compared. For example, a polynucleotide may be placed by genetic engineering techniques into a plasmid or vector derived from a different source, and is a heterologous polynucleotide. A promoter removed from its native coding sequence and operatively linked to a coding sequence other than the native sequence is a heterologous promoter.

[0066] The polynucleotides of the invention may comprise additional sequences, such as additional encoding sequences within the same transcription unit, controlling elements such as promoters, ribosome binding sites, 5'UTR, 3'UTR, transcription terminators, polyadenylation sites, additional transcription units under control of the same or a different promoter, sequences that permit cloning, expression, homologous recombination, and transformation of a host cell, and any such construct as may be desirable to provide embodiments of this invention.

Methods of use and Article of Manufacture

[0067] The present invention includes the following method embodiments. In an embodiment, a method of vaccinating an animal comprising administering a composition comprising an attenuated swine influenza strain and a pharmaceutical or veterinarily acceptable carrier, excipient, or vehicle to an animal is disclosed. In one aspect of this embodiment, the animal is a porcine.

[0068] In one embodiment of the invention, a prime-boost regimen can be employed, which is comprised of at least one primary administration and at least one booster administration using at least one common polypeptide, antigen, epitope or immunogen. Typically the immunological composition or vaccine used in primary administration is different in nature from those used as a booster. However, it is noted that the same composition can be used as the primary administration and the booster administration. This administration protocol is called "prime-boost".

[0069] A prime-boost regimen comprises at least one prime-administration and at least one boost administration using at least one common polypeptide and/or variants or fragments thereof. The vaccine used in prime-administration may be different in nature from those used as a later booster vaccine. The prime-administration may comprise one or more administrations. Similarly, the boost administration may comprise one or more administrations.

[0070] The dose volume of compositions for target species that are mammals, e.g., the dose volume of pig or swine compositions, based on viral antigens, is generally between about 0.1 to about 2.0 ml, between about 0.1 to about 1.0 ml, and between about 0.5 ml to about 1.0 ml.

[0071] The efficacy of the vaccines may be tested about 2 to 4 weeks after the last immunization by challenging animals, such as porcine, with a virulent strain of swine influenza. Both homologous and heterologous strains are used for challenge to test the efficacy of the vaccine. The animal may be challenged by IM or SC injection, spray, intra-nasally, intra-ocularly, intra-tracheally, and/or orally. Samples from joints, lungs, brain, and/or mouth may be collected before and post-challenge and may be analyzed for the presence of swine influenza-specific antibody.

[0072] The compositions comprising the attenuated viral strains of the invention used in the prime-boost protocols are contained in a pharmaceutically or veterinary acceptable vehicle, diluent or excipient. The protocols of the invention protect the animal from swine influenza and/or prevent disease progression in an infected animal.

[0073] The various administrations are preferably carried out 1 to 6 weeks apart. Preferred time interval is 3 to 5 weeks, and optimally 4 weeks according to one embodiment, an annual booster is also envisioned. The animals, for example pigs, may be at least 3-4 weeks of age at the time of the first administration.

[0074] It should be understood by one of skill in the art that the disclosure herein is provided by way of example and the present invention is not limited thereto. From the disclosure herein and the knowledge in the art, the skilled artisan can determine the number of administrations, the administration route, and the doses to be used for each injection protocol, without any undue experimentation.

[0075] Another embodiment of the invention is a kit for performing a method of eliciting or inducing an immunological or protective response against swine influenza in an animal comprising an attenuated swine influenza immunological composition or vaccine and instructions for performing the method of delivery in an effective amount for eliciting an immune response in the animal.

[0076] Another embodiment of the invention is a kit for performing a method of inducing an immunological or protective response against swine influenza in an animal comprising a composition or vaccine comprising an attenuated swine influenza strain of the invention, and instructions for performing the method of delivery in an effective amount for eliciting an immune response in the animal.

[0077] Yet another aspect of the present invention relates to a kit for prime-boost vaccination according to the present invention as described above. The kit may comprise at least two vials: a first vial containing a vaccine or composition for the prime-vaccination according to the present invention, and a second vial containing a vaccine or composition for the boost-vaccination according to the present invention. The kit may advantageously contain additional first or second vials for additional prime-vaccinations or additional boost-vaccinations.

[0078] The pharmaceutically or veterinarily acceptable carriers or vehicles or excipients are well known to the one skilled in the art. For example, a pharmaceutically or veterinarily acceptable carrier or vehicle or excipient can be a 0.9% NaCl (e.g., saline) solution or a phosphate buffer. Other pharmaceutically or veterinarily acceptable carrier or vehicle or excipients that can be used for methods of this invention include, but are not limited to, poly-(L-glutamate) or polyvinylpyrrolidone. The pharmaceutically or veterinarily acceptable carrier or vehicle or excipients may be any compound or combination of compounds facilitating the administration of the vector (or protein expressed from an inventive vector in vitro); advantageously, the carrier, vehicle or excipient may facilitate transfection and/or improve preservation of the vector (or protein). Doses and dose volumes are herein discussed in the general description and can also be determined by the skilled artisan from this disclosure read in conjunction with the knowledge in the art, without any undue experimentation.

[0079] The immunological compositions and vaccines according to the invention may comprise or consist essentially of one or more adjuvants. Suitable adjuvants for use in the practice of the present invention are (1) polymers of acrylic or methacrylic acid, maleic anhydride and alkenyl derivative polymers, (2) immunostimulating sequences (ISS), such as oligodeoxyribonucleotide sequences having one or more non-methylated CpG units (Klinman et al., 1996; WO98/16247), (3) an oil in water emulsion, such as the SPT emulsion described on page 147 of "Vaccine Design, The Subunit and Adjuvant Approach" published by M. Powell, M. Newman, Plenum Press 1995, and the emulsion MF59 described on page 183 of the same work, (4) cationic lipids containing a quaternary ammonium salt, e.g., DDA (5) cytokines, (6) aluminum hydroxide or aluminum phosphate, (7) saponin or (8) other adjuvants discussed in any document cited and incorporated by reference into the instant application, or (9) any combinations or mixtures thereof.

[0080] In an embodiment, adjuvants include those which promote improved absorption through mucosal linings. Some examples include MPL, LTK63, toxins, PLG microparticles and several others (Vajdy, M. Immunology and Cell Biology (2004) 82, 617-627). In an embodiment, the adjuvant may be a chitosan (Van der Lubben et al. 2001; Patel et al. 2005; Majithiya et al. 2008; U.S. Pat. No. 5,980.912).

REFERENCES



[0081] Abe Y, Takashita E, Sugawara K, Matsuzaki Y, Muraki Y, Hongo S. 2004. Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin. J. Virology 78:9605-9611.

[0082] Altschul S F, Madden T L. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.

[0083] Bohne-Lang A, von der Lieth C W. 2005. GlyProt: in silico glycosylation of proteins. Nucleic Acids Res. 33:W214-219.

[0084] Bragstad K, Nielsen L P, Fomsgaard A. 2008. The evolution of human influenza A viruses from 1999 to 2006: A complete genome study. Virology J. 5:40.

[0085] Cai Z, Zhang T, Wan X-F. 2010. A computational framework for influenza antigenic cartography. PLoS Computational Biology, 6(10):e1000949.

[0086] Caton A J, Brownlee G G, Yewdell J W, Gerhard W. 1982. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31:417-427.

[0087] Cottey R, Rowe C A, Bender B S. 2001. Influenza virus. Curr. Protoc. Immunol. 19.11:1-32.

[0088] Das S R, Hensley S E, David A, Schmidt L, Gibbs J S, Puigbo P, Ince W L, Bennick J R, Yewdell J W. 2011. Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy. Proc. Natl. Acad. Sci. 108:E1417-E1422.

[0089] Das S R, Puigbo P, Hensley S E, Hurt D E, Bennick J R, Yewdell J W. 2010. Glycosylation focuses sequence variation in the influenza A virus H1 hemagglutinin globular domain. PLoS Pathog 6:e1001211.

[0090] Desselberger U, Nakajima K, Alfino P, Pedersen F, Haseltine W, Hannoun C, Palese P. 1978. Biochemical evidence that "new" influenza virus strains in nature may arise by recombination (reassortment). Proc. Natl. Acad. Sci. 75:3341-3345.

[0091] Hause B M, Oleson T A, Stine D L, Bey R F, Simonson R R. 2011. Genetic and antigenic characterization of recent human-like H1 (6-cluster) swine influenza virus isolates. J. Swine Health Prod. 19:268-276.

[0092] Hause B M, Oleson T A, Bey R F, Stine D L, Simonson R R. 2010. Antigenic categorization of contemporary H3N2 swine influenza virus isolates using a high-throughput serum neutralization assay. J. Vet. Diagn. Invest. 22:352-359.

[0093] Hay A J, Gregory V, Douglas A R, Lin Y P. 2001. The evolution of human influenza viruses. Philos. T. R. Soc. B. 356:1861-1870.

[0094] Hensley S E, Das S R, Gibbs J S, Bailey A L, Schmidt L M, Bennick J R, Yewdell J W. 2011. Influenza A virus hemagglutinin antibody escape promotes neuraminidase antigenic variation and drug resistance. PLoS ONE 6:e15190.

[0095] Hoffmann E, Stech J, Guan Y, Webster R G, Perez D R. 2001. Universal primer set for the full length amplification of al influenza viruses. Arch. Virol. 146:2275-2289.

[0096] Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster R G. 2000. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. 97:6108-6113.

[0097] Karasin A I, Carman S, Olsen C W. 2006. Identification of human H1N2 and human-swine reassortant H1N2 and H1N1 influenza A viruses among pigs in Ontario, Canada (2003-2005). J. Clin. Microbiol. 44:1123-1126.

[0098] Long J, Bushnell R V, Tobin J K, Pan K, Deem M W, Nara P L, Tobin G J. 2011. Evolution of H3N2 influenza virus in a guinea pig model. PLoS ONE 6:e20130.

[0099] Lorusso A, Vincent A L, Gramer M R, Lager K M, Ciacci-Zanella J R. 2012. Contemporary epidemiology of North American lineage triple reassortant influenza A viruses in pigs. Curr. Top. Microbiol. Immunol. Jan. 22 [epub ahead of print].

[0100] Sali A, Potterton L. 1995. Evaluation of comparative protein modeling by MODELLER." Proteins 23: 318-326.

[0101] Schild G, Oxford J, Dowdle W, Coleman M, Pereira M, Chakraverty P. 1974. Antigenic variation in current influenza A viruses: evidence for a high frequency of antigenic `drift` for the Hong Kong virus. Bull. World Health Organ. 51:1-11.

[0102] Schulze I T. 1997. Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. J. Infect. Dis. 176:S24-S28

[0103] Strengell M, Ikonen N, Ziegler T, Julkunen I. 2011. Minor changes in the hemagglutinin of influenza A (H1N1)2009 virus alter its antigenic properties. PLoS ONE 6:e25848.

[0104] Sun S, Wang Q, Zhao F, Chen W, Li Z. 2011. Glycosylation site alteration in the evolution of influenza A (H1N1) viruses. PLoS ONE 6:e22844.

[0105] Sun S, Wang Q, Zhao F, Chen W, Li Z. 2012. Prediction of biological functions on glycosylation site migrations in human influenza H1N1 viruses. PLoS ONE 7:e32119.

[0106] WHO Manual on Animal Influenza Diagnosis and Surveillance, 2002 (http://whqlibdoc.who.int/hq/2002/WHO_CDS_CSR_NCS--2002.5.pdf).

[0107] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.

[0108] Vigerust D J, Ulett K B, Boyd K L, Madsen J, Hawgood S, McCullers J A. 2007. N-linked glycosylation attenuates H3N2 influenza viruses. J. Virology 81:8593-8600.

[0109] Vincent A L, Ma W, Lager K M, Gramer M R, Richt J A, Janke B H. 2009. Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States. Virus Genes 39:176-185.

[0110] Wagner R, Wolff T, Herwig A, Pleschka S, Klenk H-D. 2000. Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J. Virology 74:6316-6323.

[0111] Wanzeck K, Boyd K L, McCullers J A. 2011. Glycan shielding of the influenza virus hemagglutinin contributes to immunopathology in mice. Am. J. Respir. Crit. Care Med. 183:767-773.

[0112] Wei C-J, Boyington J C, Dai K, Houser K V, Pearce M B, Kong W-P, Yang Z, Tumpey T M, Nabel G J. 2010. Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design. Sci. Trans. Med. 2:24fa21. doi:10.1126/scitrans1med.3000799.

[0113] Zhou B, Donnelly M E, Scholes D T, George K S, Hatta M, Kawaoka Y, Wentworth D E. 2009. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and swine origin human influenza A viruses. J. Virology 83:10309-10313.

[0114] The invention will now be further described by way of the following non-limiting examples.

EXAMPLES

Example 1

Construction of Hyperglycosylated Swine Influenza Viruses

Materials/Methods.

[0115] Clinical samples (nasal swabs or lung tissue) were collected from pigs exhibiting influenza-like illness and were submitted for viral isolation and characterization (routine diagnostic testing). Virus isolation was performed on swine testicle (ST) cells grown in DMEM containing 5% fetal bovine serum at 37° C. with 5% CO2. For viral propagation, fetal bovine serum was omitted from the DMEM. 293T and MDCK cells were propagated in DMEM containing 10% fetal bovine serum. RNA was harvested from infected cell culture harvest fluids using the 5× MagMax-96 Viral Isolation Kit (Life Technologies).

[0116] Complete viral genomes were amplified using a previously described multisegment reverse transcription PCR method (Zhou B, et al. 2009). Viral cDNA libraries were prepared using the NEBNext Fast DNA Fragmentation and Library Prep Set 4 kit according to the manufacturer's instructions (New England Biolabs) with the exception that the kit adaptors were replaced with barcoded adaptors (Ion Xpress Barcode Adaptor 1-16 Kit, Life Technologies). DNA sequencing templates were prepared using the Ion Xpress Template Kit version 2.0 (Life Technologies) and sequenced using an Ion Torrent Personal Genome Machine (Life Technologies). Contigs were assembled using SeqMan NGen software (DNAStar). Contigs encoding full length HA were identified by BLAST analysis. Full length HA DNA sequences were aligned using the ClustalW method. Phylogenetic analyses were performed using MEGA 5.0 using the neighbor joining method and tree topology was verified with 1000 bootstrap replicates (Tamura K, et al. 2011). HA gene sequences were deposited to Genbank under accession numbers JQ638655-JQ638665.

[0117] Reverse Genetics. In the context of molecular biology, "reverse genetics" is defined as the generation of virus possessing a genome derived from cloned cDNAs (for a review, see Neumann et al., J. Gen. Viral., 83:2635; 2002). In the instant study, a triple reassortant internal gene cassette (TRIG) swine influenza virus (A/swine/North Carolina/3793/08(H1N1)) was used as the template to create a TRIG swine influenza virus reverse genetics system. All eight segments were PCR amplified, digested with BsmBI and ligated into a similarly digested pHW2000 as previously described (Hoffmann E, et al. 2001). Plasmids bearing insert were identified by restriction digest and sequenced to verify identity with A/swine/North Carolina/3793/08. The HA and NA genes (SEQ ID NOs:7 & 11) from 10-0036-2 were also cloned into pHW2000 (Hoffmann et al 2000, PNAS 97(11):6108-6113) and transfected along with plasmids bearing polymerase basic 2 (PB2), polymerase basic 1 (PB1), polymerase acid (PA), nucleoprotein (NP), matrix (M) and non-structural genes (NS) derived from A/swine/North Carolina/3793/08 to produce reverse genetics-derived 10-0036-2 (RG 10-0036-2, FIG. 1). Site directed mutagenesis was performed on the plasmid containing HA gene from 10-0036-2 to create mutants with an additional 1-5 N-linked glycosylation sites using the Quik Change II Site Directed Mutagenesis kit (Agilent Technologies) (Table 1, FIG. 2). Glycans are added to proteins at asparagine (N) residues located in the context of the N-linked glycosylation motif of N-X-S/T, where N is the amino acid asparagine, X is any amino acid and S/T is serine or threonine.

TABLE-US-00001 TABLE 1 Additional N-linked glycosylation sites engineered into the HA gene of RG10-0036-2 using site directed mutagenesis Number additional N-linked glycosylation sites Nucleotide Change Amino Acid Change 1 G212A S71N 2 G212A, G270T S71N, K90N 3 G212A, G270T, CT517- S71N, K90N, L173T 518AC 4 G212A, G270T, CT517- S71N, K90N, L173T, 518AC, C859A P287T 5 G212A, G270T, CT517- S71N, K90N, L173T, 518AC, C859A, A881C P287T, K294T

[0118] Rescue of recombinant viruses was performed as previously described (Hoffmann E, et al. 2000). In brief, 293T and MDCK cells were co-cultured in Opti-MEM I containing 5% FBS in 6-well plates approximately 1×106 cells of each 293T and MDCK approximately 18 hours prior to transfection. One hundred nanograms of each of the eight plasmids were pooled in 100 μL of Opti-MEM I and combined with 100 μL Opti-MEM containing 3 μL Lipofectamine (Invitrogen) and incubated at room temperature 15 minutes before being diluted to 1 mL with Opti-MEM I and transferred to a single well of the 6-well plate. Plates were incubated at 37° C. with 5% CO2 for 6 hours before the transfection mixture was replaced with Opti-MEM I. At 24 hours post transfection, 1.5 mL was transferred to a 6-well plate of confluent MDCK cells and 1.5 mL of DMEM containing 1 μg/mL of TPCK-treated trypsin was added. Viruses were harvested on day 5 post infection and their titers determined by the HA assay. The HA genes of rescued viruses were sequenced to verify the correct sequence.

[0119] Results. Genetic analysis of predicted N-linked glycosylation sites (N-X-S/T) found sites at N28, N40, N104, N142, N176, N303, N497 and N556 for virus 10-0036-2. Site directed mutagenesis was used to add an additional 1-5 N-linked glycosylation sites to the globular head portion of HA (Table 1). Following virus rescue from cell culture, mutant viruses were characterized by growth studies on ST cells. Growth studies were performed as attenuated viruses often demonstrate decreased growth rates and titers in vitro. Mutant viruses with 4 or 5 additional N-linked glycosylation sites showed such growth defects, suggesting that additional glycosylation attenuated the viruses. The attenuated viruses were next evaluated in swine to evaluate their virulence in vivo and characterize the immune response against these mutant viruses.

Example 2

Efficacy of Attenuated Swine Influenza Vaccines In Pigs

[0120] Materials & Methods. Sixty 3-week old high health pigs (confirmed SIV seronegative by IDEXX FlockChek ELISA) were separated into 4 groups of 15 in separate rooms. On day 0 (d0), pigs were inoculated intranasally with 2 mL of 6.0 TCID50/mL virus. Group 1 was mock infected with cell culture media (DMEM). Group 2 received 10-0036-2 n+5. Group 3 received 10-0036-2 n+4 (a mutant with 4 additional glycosylation sites; similar to n+5 but lacking the mutation A881C [K2941]). Group 4 received reverse genetics created 10-0036-2 parent (no mutations). Pigs were swabbed (nasal) at day 0 and samples were run by QPCR for SIV detection to verify no active infection. Results are summarized in Table 2. For Tables 2 and 3, groups with different letters have statistically different means (P<0.05). For example, "A" is statistically different from "B", and "BC" is statistically different from "A" but not "B" or "C".

TABLE-US-00002 TABLE 2 Vaccination study Nasal Swab, Lung Titer, Nasal Swab, Day 5 Day 5 Vaccination Day 3 (TCID50/ (TCID50/ Lung IHC (H1N2) (TCID50/mL) mL) mL) Score Score Neg. Con 0.0 A 0.0 A 0.0 A 0.0 A 0.0 A n + 4 mutant 3.1 B 2.8 B 0.9 A 0.0 A 0.0 A n + 5 mutant 2.6 C 2.7 B 0.4 A 0.2 A 0.2 A parent 4.1 D 3.2 C 5.4 B 1.5 B 2.0 B

[0121] Nasal swabs collected on days 1, 3 and 5. Five pigs from each group were euthanized at day 5 and lung samples were collected. Swabs from day 1 were analyzed by QPCR. Swabs from days 3 and 5 as well as lung samples were titrated for SIV. Lungs were sent to a University Diagnostic lab for histopathological analysis and IHC. On day 21 pigs were revaccinated as above. These results demonstrate the mutants containing 4 or 5 additionally N-linked glycosylation sites are attenuated and avirulent in swine, in agreement with the in vitro growth studies. Nasal swab titrations indicated that the virus was capable of replicating in vivo, however, absence of virus in lungs and lack of lung damage suggest replication limited to the upper respiratory tract. Mutations in other influenza genes that confer temperature sensitivity have been shown to limit infection to the upper respiratory tract and are the basis of the human live attenuated influenza vaccine FluMist®.

[0122] On day 31, pigs were challenged with a field isolate 12-1110-1 (H3N2). The results of the challenge study are summarized in Table 3. For the challenge (performed comparably to Richt et al 2006, J. Virology 80(22):11009-11018) 2mL of 4.6 TCID50/mL was delivered intranasally. Blood and nasal swabs were collected on day 31 prior to challenge. Nasal swabs were collected on days 0 and 1, and analyzed by QPCR. Nasal swabs were collected on days 3 and 5 and SIV titer determined by titration. All pigs were euthanized on day 5 and lung samples analyzed by titration. Lung samples analyzed as above.

TABLE-US-00003 TABLE 3 Challenge study Nasal Swab, Lung Titer, Nasal Swab, Day 5 Day 5 H3N2 Day 3 (TCID50/ (TCID50/ Lung IHC Challenge (TCID50/mL) mL) mL) Score Score Neg. Con 5.4 A 5.8 A 3.0 A 1.6 A 1.5 A n + 4 mutant 2.3 B 0.7 B 0.0 B 0.0 B 0.0 B n + 5 mutant .sup. 2.9 BC 1.8 C 0.1 B 0.0 B 0.0 B parent 0.5 C .sup. 0.9 BC 0.0 B 0.0 B 0.0 B

These results demonstrate that pigs vaccinated with mutants n+4 or n+5 were protected from disease as evident by lack of virus in lungs by titration and IHC, as well as no evidence of lung lesions. Naive (negative control) pigs were readily infected with the H3N2 challenge virus and demonstrated classical influenza disease. Pigs previously infected with the parent virus 10-0036-2 were also protected from the H3N2 challenge.

[0123] Having thus described in detail preferred embodiments of the present invention, it is to be understood that the invention defined by the above paragraphs is not to be limited to particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope of the present invention.

Sequence CWU 1

1

3012277DNAInfluenza A virus 1atggagagaa taaaagaact aagagatctg atgtcgcagt ctcgcactcg cgagatactc 60acaaagacca ctgtggacca tatggccata atcaaaaagt acacatcagg aaggcaagag 120aagaaccccg cactcagaat gaagtggatg atggcaatga aatacccaat tacagcagac 180aagagaataa tggacatgat tccagagagg aatgaacaag gacaaaccct ctggagcaaa 240acaaacgatg ctggatcgga ccgtgtgatg gtatcacccc tggccgtaac atggtggaat 300aggaatggcc caacaacaag cacagttcac taccctaagg tatataaaac ttatttcgaa 360aagatcgaaa ggttaaaaca tggtatcttt ggccctgtcc acttcagaaa tcaagttaaa 420ataagaagga gggttgacac aaaccctggt catgcagatc tcagtgccaa ggaggcacag 480gatgtgatca tggaagttgt tttcccaaat gaagtggggg caagagtact gacgtcagag 540tcacagctga caataacaaa ggaaaagaaa gaagagctcc aggattgtaa gattgctccc 600ctgatggtgg catacatgct agaaagagag ttggttcgca agacgaggtt tctcccggtg 660gctggtggaa caagcagtgt ttatattgaa gtgctacact taactcaggg aacatgctgg 720gaacaaatgt acactccagg aggagaagtg agaaatgatg atgttgacca aagtttgatt 780atcgctgcta gaaacatagt aagaagagca gcagtgtcag cagacccatt agcatctctc 840ttggaaatgt gccacagcac acagattgga ggaataagga tggtggacat ccttagacag 900aacccaacgg aggaacaagc cgtagacata tgcaaggcag caatggggct gaggattagc 960tcttctttca gctttggtgg gttcaccttc aaaagaacaa gcggatcatc agttaagaaa 1020gaagaagaag tgctcacggg caacctccaa acactgaaaa taagagtaca tgaaggatat 1080gaagaattca caatggtagg gagaagagca actgctattc tcagaaaagc aaccaggaga 1140ttgatccagt taatagtaag tgggagagac gatcaatcaa ttgctgaggc aataattgta 1200gccatggtat tttcacaaga ggattgcatg atcaaggcag ttaggggcga tctgaacttt 1260gtcaataggg caaaccagcg actgaatccc atgcaccaac tcttgaggca tttccaaaaa 1320gatgcaaaag tgcttttcca gaactgggga attgaaccca tcgacagtgt gatgggaatg 1380atcgggatat tgcctgatat gaccccaagc acggaaatgt cgctgagagg tataagagtc 1440agcaaaatgg gagtagatga gtattccagc acggagagag tggtagtgag cattgaccga 1500tttttgagag ttcgggatca acgagggaac gtactattgt cccccgaaga ggtcagcgag 1560acacaaggaa ctgagaaatt gacaataact tattcgtcat caatgatgtg ggagatcaat 1620ggtcctgagt cagtgctggt caacacttat caatggatca taaggaattg ggaaagcttg 1680aaaattcaat ggtcacaaga tcccacgatg ttatacaaca aaatggaatt tgaaccattc 1740cagtctcttg tccctaaggc aaccagaagt cgttacagtg gattcgtgag gacactgttc 1800cagcaaatgc gggatgtgct tggaacattt gacactgtcc aaataataaa acttctcccc 1860tttgctgctg ctccaccgga acagagtagg atacagttct cctcgctgac tgtgaatgtg 1920agaggatcag ggctgaggat actggtaaga ggcaattctc cagtgttcaa ttacaacaaa 1980gcaaccaaaa ggcttacaat tcttggaaaa gatgcaggtg cattgactga agatccagat 2040gaaggcacag ctggagtgga gtctgctgtc ctgaggggat tcctcatttt gggtaaagaa 2100gacaagagat atggcccagc attaagcatc aatgaactga gcaatcttgc aaaaggagag 2160aaggctaatg tgttaattgg gcaaggagac gtggtgttgg taatgaaacg gaaacggaac 2220tctagcatac ttactgacag ccagacagcg accaaaagaa ttcggatggc catcaat 22772759PRTInfluenza A virus 2Met Glu Arg Ile Lys Glu Leu Arg Asp Leu Met Ser Gln Ser Arg Thr 1 5 10 15 Arg Glu Ile Leu Thr Lys Thr Thr Val Asp His Met Ala Ile Ile Lys 20 25 30 Lys Tyr Thr Ser Gly Arg Gln Glu Lys Asn Pro Ala Leu Arg Met Lys 35 40 45 Trp Met Met Ala Met Lys Tyr Pro Ile Thr Ala Asp Lys Arg Ile Met 50 55 60 Asp Met Ile Pro Glu Arg Asn Glu Gln Gly Gln Thr Leu Trp Ser Lys 65 70 75 80 Thr Asn Asp Ala Gly Ser Asp Arg Val Met Val Ser Pro Leu Ala Val 85 90 95 Thr Trp Trp Asn Arg Asn Gly Pro Thr Thr Ser Thr Val His Tyr Pro 100 105 110 Lys Val Tyr Lys Thr Tyr Phe Glu Lys Ile Glu Arg Leu Lys His Gly 115 120 125 Ile Phe Gly Pro Val His Phe Arg Asn Gln Val Lys Ile Arg Arg Arg 130 135 140 Val Asp Thr Asn Pro Gly His Ala Asp Leu Ser Ala Lys Glu Ala Gln 145 150 155 160 Asp Val Ile Met Glu Val Val Phe Pro Asn Glu Val Gly Ala Arg Val 165 170 175 Leu Thr Ser Glu Ser Gln Leu Thr Ile Thr Lys Glu Lys Lys Glu Glu 180 185 190 Leu Gln Asp Cys Lys Ile Ala Pro Leu Met Val Ala Tyr Met Leu Glu 195 200 205 Arg Glu Leu Val Arg Lys Thr Arg Phe Leu Pro Val Ala Gly Gly Thr 210 215 220 Ser Ser Val Tyr Ile Glu Val Leu His Leu Thr Gln Gly Thr Cys Trp 225 230 235 240 Glu Gln Met Tyr Thr Pro Gly Gly Glu Val Arg Asn Asp Asp Val Asp 245 250 255 Gln Ser Leu Ile Ile Ala Ala Arg Asn Ile Val Arg Arg Ala Ala Val 260 265 270 Ser Ala Asp Pro Leu Ala Ser Leu Leu Glu Met Cys His Ser Thr Gln 275 280 285 Ile Gly Gly Ile Arg Met Val Asp Ile Leu Arg Gln Asn Pro Thr Glu 290 295 300 Glu Gln Ala Val Asp Ile Cys Lys Ala Ala Met Gly Leu Arg Ile Ser 305 310 315 320 Ser Ser Phe Ser Phe Gly Gly Phe Thr Phe Lys Arg Thr Ser Gly Ser 325 330 335 Ser Val Lys Lys Glu Glu Glu Val Leu Thr Gly Asn Leu Gln Thr Leu 340 345 350 Lys Ile Arg Val His Glu Gly Tyr Glu Glu Phe Thr Met Val Gly Arg 355 360 365 Arg Ala Thr Ala Ile Leu Arg Lys Ala Thr Arg Arg Leu Ile Gln Leu 370 375 380 Ile Val Ser Gly Arg Asp Asp Gln Ser Ile Ala Glu Ala Ile Ile Val 385 390 395 400 Ala Met Val Phe Ser Gln Glu Asp Cys Met Ile Lys Ala Val Arg Gly 405 410 415 Asp Leu Asn Phe Val Asn Arg Ala Asn Gln Arg Leu Asn Pro Met His 420 425 430 Gln Leu Leu Arg His Phe Gln Lys Asp Ala Lys Val Leu Phe Gln Asn 435 440 445 Trp Gly Ile Glu Pro Ile Asp Ser Val Met Gly Met Ile Gly Ile Leu 450 455 460 Pro Asp Met Thr Pro Ser Thr Glu Met Ser Leu Arg Gly Ile Arg Val 465 470 475 480 Ser Lys Met Gly Val Asp Glu Tyr Ser Ser Thr Glu Arg Val Val Val 485 490 495 Ser Ile Asp Arg Phe Leu Arg Val Arg Asp Gln Arg Gly Asn Val Leu 500 505 510 Leu Ser Pro Glu Glu Val Ser Glu Thr Gln Gly Thr Glu Lys Leu Thr 515 520 525 Ile Thr Tyr Ser Ser Ser Met Met Trp Glu Ile Asn Gly Pro Glu Ser 530 535 540 Val Leu Val Asn Thr Tyr Gln Trp Ile Ile Arg Asn Trp Glu Ser Leu 545 550 555 560 Lys Ile Gln Trp Ser Gln Asp Pro Thr Met Leu Tyr Asn Lys Met Glu 565 570 575 Phe Glu Pro Phe Gln Ser Leu Val Pro Lys Ala Thr Arg Ser Arg Tyr 580 585 590 Ser Gly Phe Val Arg Thr Leu Phe Gln Gln Met Arg Asp Val Leu Gly 595 600 605 Thr Phe Asp Thr Val Gln Ile Ile Lys Leu Leu Pro Phe Ala Ala Ala 610 615 620 Pro Pro Glu Gln Ser Arg Ile Gln Phe Ser Ser Leu Thr Val Asn Val 625 630 635 640 Arg Gly Ser Gly Leu Arg Ile Leu Val Arg Gly Asn Ser Pro Val Phe 645 650 655 Asn Tyr Asn Lys Ala Thr Lys Arg Leu Thr Ile Leu Gly Lys Asp Ala 660 665 670 Gly Ala Leu Thr Glu Asp Pro Asp Glu Gly Thr Ala Gly Val Glu Ser 675 680 685 Ala Val Leu Arg Gly Phe Leu Ile Leu Gly Lys Glu Asp Lys Arg Tyr 690 695 700 Gly Pro Ala Leu Ser Ile Asn Glu Leu Ser Asn Leu Ala Lys Gly Glu 705 710 715 720 Lys Ala Asn Val Leu Ile Gly Gln Gly Asp Val Val Leu Val Met Lys 725 730 735 Arg Lys Arg Asn Ser Ser Ile Leu Thr Asp Ser Gln Thr Ala Thr Lys 740 745 750 Arg Ile Arg Met Ala Ile Asn 755 32271DNAInfluenza A virus 3atggatgtca acccgactct acttttccta aaggttccag cgcaaaatgc cataagcacc 60acattccctt atactggaga tcctccatac agccatggaa caggaacagg atacaccatg 120gacacagtca acagaacaca ccagtattca gaaaaaggga aatggacgac aaacacagag 180actggggcac cccagctcaa cccgattgat ggaccactac ccgatgataa tgaaccaagt 240gggtatgcac aaacagactg tgtcctggag gccatggctt tccttgaaga atcccaccca 300gggatatttg agaattcatg ccttgaaaca atggaaattg tccaacaaac aagggtggat 360aaactaactc aaggtcgcca gacttatgat tggacattaa acagaaatca accggcagca 420actgcattgg ccaacaccat agaagttttt agatcaaacg gtctaacagc taatgagtca 480ggaaggctaa tagatttcct aaaggatgta atggaatcaa tggataagga ggaaatagag 540ataacaacac attttcaaag aaaaaggaga gtaagagaca acatgaccaa gaagatggtc 600acacaaagaa caatagggaa gaaaaaacaa aaattgaata agagaagtta tctaataaga 660gcactgacat tgaatacgat gaccaaagat gcagagagag gcaagttaaa aaggagggct 720atcgcaacac ctgggatgca gattagaggg ttcgtgtact ttgttgagac tttagctaga 780agcatctgcg aaaagcttga acagtccgga ctcccagtag ggggcaatga aaagaaagcc 840aaattggcaa atgttgtgag aaagatgatg actaattcac aagacacaga gctttctttc 900acaatcactg gagataacac taaatggaat gaaaaccaga atcctcgaat gttcctggcg 960atgatcacat acattaccag aaatcaaccc gagtggttca gaaacatact gagtatggca 1020ccaataatgt tctcaaacaa aatggcaaga ctaggaaaag ggtacatgtt cgagagtaaa 1080agaatgaagc tccgaacaca ggtaccagca gaaatgctag caagcattga tcttaagtat 1140ttcaatgaat caacaaggaa gaaaattgag aaaataaggc ctctcctaat agatggcaca 1200gcatcattga gccctgggat gatgatgggc atgttcaaca tgctaagtac ggttttggga 1260gtctcaatac tgaatcttgg acaaaagaaa tacaccagga caacatactg gtgggatgga 1320ctccaatcct cagacgattt tgccctcata gtaaatgcac caaatcatga gggaatacaa 1380gcaggagtgg atagattcta caggacctgc aagttagtag ggatcaacat gagcaaaaag 1440aagtcctata taaataagac tgggacattt gaattcacaa gcttttttta tcgctatggg 1500tttgtagcta attttagcat ggagctgccc agttttggag tgtctggaat aaacgaatca 1560gctgatatga gcatcggagt aacagtgata aagaacaaca tgataaataa tgatcttgga 1620cctgcaacag cccagatggc cctccagttg ttcatcaaag actacagata cacatataga 1680tgccatagag gggacacaca aatccagacg agaagatcat tcgagctaaa gagcctgtgg 1740aatcaaactc aatcaaaggc aggattatta gtatctgatg gaggaccaaa tttatacaat 1800atccggaatc ttcacattcc tgaagtctgc ttaaaatggg agctaatgga tgaggattat 1860cggggaagac tttgtaatcc cctgaatccc tttgtcagcc ataaagagat tgattctgta 1920aacagtgctg tggtgatgcc agcccatggt ccagccaaaa gtatggagta tgatgccgtt 1980gcaactacac actcctggat tcccaagagg aaccgctcta ttctcaacac aagccaaagg 2040ggaattcttg aggatgaaca gatgtaccag aagtgctgca acctgttcga gaaatttttc 2100cctagtagtt catacagaag accagttgga atttctagca tggtggaggc catggtgtct 2160agggcccgga ttgatgccag gattgacttc gagtctggac ggattaagaa agaagagttc 2220tctgagatca tgaagatctg ttccaccatt gaagaactca gacggcaaaa g 22714757PRTInfluenza A virus 4Met Asp Val Asn Pro Thr Leu Leu Phe Leu Lys Val Pro Ala Gln Asn 1 5 10 15 Ala Ile Ser Thr Thr Phe Pro Tyr Thr Gly Asp Pro Pro Tyr Ser His 20 25 30 Gly Thr Gly Thr Gly Tyr Thr Met Asp Thr Val Asn Arg Thr His Gln 35 40 45 Tyr Ser Glu Lys Gly Lys Trp Thr Thr Asn Thr Glu Thr Gly Ala Pro 50 55 60 Gln Leu Asn Pro Ile Asp Gly Pro Leu Pro Asp Asp Asn Glu Pro Ser 65 70 75 80 Gly Tyr Ala Gln Thr Asp Cys Val Leu Glu Ala Met Ala Phe Leu Glu 85 90 95 Glu Ser His Pro Gly Ile Phe Glu Asn Ser Cys Leu Glu Thr Met Glu 100 105 110 Ile Val Gln Gln Thr Arg Val Asp Lys Leu Thr Gln Gly Arg Gln Thr 115 120 125 Tyr Asp Trp Thr Leu Asn Arg Asn Gln Pro Ala Ala Thr Ala Leu Ala 130 135 140 Asn Thr Ile Glu Val Phe Arg Ser Asn Gly Leu Thr Ala Asn Glu Ser 145 150 155 160 Gly Arg Leu Ile Asp Phe Leu Lys Asp Val Met Glu Ser Met Asp Lys 165 170 175 Glu Glu Ile Glu Ile Thr Thr His Phe Gln Arg Lys Arg Arg Val Arg 180 185 190 Asp Asn Met Thr Lys Lys Met Val Thr Gln Arg Thr Ile Gly Lys Lys 195 200 205 Lys Gln Lys Leu Asn Lys Arg Ser Tyr Leu Ile Arg Ala Leu Thr Leu 210 215 220 Asn Thr Met Thr Lys Asp Ala Glu Arg Gly Lys Leu Lys Arg Arg Ala 225 230 235 240 Ile Ala Thr Pro Gly Met Gln Ile Arg Gly Phe Val Tyr Phe Val Glu 245 250 255 Thr Leu Ala Arg Ser Ile Cys Glu Lys Leu Glu Gln Ser Gly Leu Pro 260 265 270 Val Gly Gly Asn Glu Lys Lys Ala Lys Leu Ala Asn Val Val Arg Lys 275 280 285 Met Met Thr Asn Ser Gln Asp Thr Glu Leu Ser Phe Thr Ile Thr Gly 290 295 300 Asp Asn Thr Lys Trp Asn Glu Asn Gln Asn Pro Arg Met Phe Leu Ala 305 310 315 320 Met Ile Thr Tyr Ile Thr Arg Asn Gln Pro Glu Trp Phe Arg Asn Ile 325 330 335 Leu Ser Met Ala Pro Ile Met Phe Ser Asn Lys Met Ala Arg Leu Gly 340 345 350 Lys Gly Tyr Met Phe Glu Ser Lys Arg Met Lys Leu Arg Thr Gln Val 355 360 365 Pro Ala Glu Met Leu Ala Ser Ile Asp Leu Lys Tyr Phe Asn Glu Ser 370 375 380 Thr Arg Lys Lys Ile Glu Lys Ile Arg Pro Leu Leu Ile Asp Gly Thr 385 390 395 400 Ala Ser Leu Ser Pro Gly Met Met Met Gly Met Phe Asn Met Leu Ser 405 410 415 Thr Val Leu Gly Val Ser Ile Leu Asn Leu Gly Gln Lys Lys Tyr Thr 420 425 430 Arg Thr Thr Tyr Trp Trp Asp Gly Leu Gln Ser Ser Asp Asp Phe Ala 435 440 445 Leu Ile Val Asn Ala Pro Asn His Glu Gly Ile Gln Ala Gly Val Asp 450 455 460 Arg Phe Tyr Arg Thr Cys Lys Leu Val Gly Ile Asn Met Ser Lys Lys 465 470 475 480 Lys Ser Tyr Ile Asn Lys Thr Gly Thr Phe Glu Phe Thr Ser Phe Phe 485 490 495 Tyr Arg Tyr Gly Phe Val Ala Asn Phe Ser Met Glu Leu Pro Ser Phe 500 505 510 Gly Val Ser Gly Ile Asn Glu Ser Ala Asp Met Ser Ile Gly Val Thr 515 520 525 Val Ile Lys Asn Asn Met Ile Asn Asn Asp Leu Gly Pro Ala Thr Ala 530 535 540 Gln Met Ala Leu Gln Leu Phe Ile Lys Asp Tyr Arg Tyr Thr Tyr Arg 545 550 555 560 Cys His Arg Gly Asp Thr Gln Ile Gln Thr Arg Arg Ser Phe Glu Leu 565 570 575 Lys Ser Leu Trp Asn Gln Thr Gln Ser Lys Ala Gly Leu Leu Val Ser 580 585 590 Asp Gly Gly Pro Asn Leu Tyr Asn Ile Arg Asn Leu His Ile Pro Glu 595 600 605 Val Cys Leu Lys Trp Glu Leu Met Asp Glu Asp Tyr Arg Gly Arg Leu 610 615 620 Cys Asn Pro Leu Asn Pro Phe Val Ser His Lys Glu Ile Asp Ser Val 625 630 635 640 Asn Ser Ala Val Val Met Pro Ala His Gly Pro Ala Lys Ser Met Glu 645 650 655 Tyr Asp Ala Val Ala Thr Thr His Ser Trp Ile Pro Lys Arg Asn Arg 660 665 670 Ser Ile Leu Asn Thr Ser Gln Arg Gly Ile Leu Glu Asp Glu Gln Met 675 680 685 Tyr Gln Lys Cys Cys Asn Leu Phe Glu Lys Phe Phe Pro Ser Ser Ser 690 695 700 Tyr Arg Arg Pro Val Gly Ile Ser Ser Met Val Glu Ala Met Val Ser 705 710 715 720 Arg Ala Arg Ile Asp Ala Arg Ile Asp Phe Glu Ser Gly Arg Ile Lys 725 730 735 Lys Glu Glu Phe Ser Glu Ile Met Lys Ile Cys Ser Thr Ile Glu Glu 740 745 750 Leu Arg Arg Gln Lys 755 52148DNAInfluenza A virus 5atggaagact ttgtgcgaca atgcttcaat ccaatgatcg tcgagcttgc ggaaaaggca 60atgaaagaat atggagaaga tccgaaaatt gaaactaaca aattcgctgc aatatgcaca 120cacttggaag tatgtttcat gtattcagat ttccatttca ttgacgagcg gggtgaatca 180atcattgtag aatctggtga tccaaatgca ttactgaagc accgatttga gataattgaa 240ggacgagacc ggaccatggc ctggacagta gtgaacagta tctgcaacac cacaggggta 300gagaagccta aatttcttcc ggatttatac gactacaaag aaaatcggtt cattgaaatt 360ggagtgacac gaagggaggt ccacatatac tacctagaga aagccaacaa aataaaatcc 420gagaagacac acattcacat tttttcattc actggagagg agatggccac caaagcagac 480tacacccttg

atgaagaaag cagggcaaga atcaaaacca ggcttttcac cataagacaa 540gaaatggcaa gtaggggtct atgggattcc tttcgtcagt ccgaaagagg cgaggagaca 600attgaagaaa gatttgaaat tacaggaacc atgcgcagac ttgccgacca aagtctccca 660ccgaacttct ccagtcttga aaactttaga gcttatgtag atgggttcga accaaacggc 720tgcattgagg gcaagctttc tcaaatgtca aaagaagtga gcgcccaaat tgaacccttc 780ttgaagacaa caccacgccc tctaaaattg cctgatgggc ctccttgctc tcagcggtca 840aagttcttgc tgatggatgc tctgaaacta agtattgaag acccgagtca tgaaggagaa 900ggaataccac tatatgatgc aatcaagtgc atgaagacat tttttggctg gaaagaaccc 960aacataatca aaccacatga gaaaggcata aaccccaatt acctactggc ttggaagcag 1020gtgctagcag agctccaaga cattgaaaat gaagagaaga tcccaaagac aaagaacatg 1080aggagaacaa gccaattgaa gtgggcactc ggtgagaata tggcaccaga gaaagtagat 1140tttgatgact gcaaagatgt tggtgatctt aaacagtatg acagcgacga gccagagccc 1200agatctctag caagttgggt ccaaaatgaa ttcaacaagg catgtgaatt gaccgattca 1260agctggatag aacttgatga gataggagaa gatattgcac cgattgaaca catcgcaagt 1320atgaggagga actattttac agcagaagtg tcccattgta gggctacgga atacataatg 1380aagggagtgt acataaacac ggctttgctt aatgcatctt gtgcagccat ggatgacttt 1440cagctgatcc caatgataag caaatgcagg accaaagaag gaagacgaaa aacaaatctg 1500tatgggttca ttataaaagg aaggtcccat ctgaggaatg atactgacgt ggtgaacttt 1560gtaagcatgg agttctccct caccgacccg agactggagc cacacaaatg ggaaaaatac 1620tgtgttcttg aaataggaga catgctcctg aggactgcga taggccaagt gtcgaggccc 1680atgttcttat atgtgagaac caatggaacc tccaagatca agatgaaatg gggcatggaa 1740atgaggcgct gccttcttca atctcttcag cagattgaga gcatgattga ggctgagtct 1800tctgtaaaag agaaagacat gaccaaggaa ttttttgaaa acaaatcgga aacatggcca 1860attggagaat cacccaaagg agtggaggaa ggctctattg ggaaagtgtg caggacctta 1920ctggcaaaat ctgtattcaa cagtctatac gcgtctccac aacttgaggg attttcggct 1980gaatcgagaa agttgcttct cattgttcag gcacttaggg acaacctgga acctggaacc 2040ttcgatcttg gggggctata tgaagcaatc gaggagtgcc tgattaatga tccctgggtt 2100ttgcttaatg catcttggtt caactccttc ctcacacatg cactgaaa 21486716PRTInfluenza A virus 6Met Glu Asp Phe Val Arg Gln Cys Phe Asn Pro Met Ile Val Glu Leu 1 5 10 15 Ala Glu Lys Ala Met Lys Glu Tyr Gly Glu Asp Pro Lys Ile Glu Thr 20 25 30 Asn Lys Phe Ala Ala Ile Cys Thr His Leu Glu Val Cys Phe Met Tyr 35 40 45 Ser Asp Phe His Phe Ile Asp Glu Arg Gly Glu Ser Ile Ile Val Glu 50 55 60 Ser Gly Asp Pro Asn Ala Leu Leu Lys His Arg Phe Glu Ile Ile Glu 65 70 75 80 Gly Arg Asp Arg Thr Met Ala Trp Thr Val Val Asn Ser Ile Cys Asn 85 90 95 Thr Thr Gly Val Glu Lys Pro Lys Phe Leu Pro Asp Leu Tyr Asp Tyr 100 105 110 Lys Glu Asn Arg Phe Ile Glu Ile Gly Val Thr Arg Arg Glu Val His 115 120 125 Ile Tyr Tyr Leu Glu Lys Ala Asn Lys Ile Lys Ser Glu Lys Thr His 130 135 140 Ile His Ile Phe Ser Phe Thr Gly Glu Glu Met Ala Thr Lys Ala Asp 145 150 155 160 Tyr Thr Leu Asp Glu Glu Ser Arg Ala Arg Ile Lys Thr Arg Leu Phe 165 170 175 Thr Ile Arg Gln Glu Met Ala Ser Arg Gly Leu Trp Asp Ser Phe Arg 180 185 190 Gln Ser Glu Arg Gly Glu Glu Thr Ile Glu Glu Arg Phe Glu Ile Thr 195 200 205 Gly Thr Met Arg Arg Leu Ala Asp Gln Ser Leu Pro Pro Asn Phe Ser 210 215 220 Ser Leu Glu Asn Phe Arg Ala Tyr Val Asp Gly Phe Glu Pro Asn Gly 225 230 235 240 Cys Ile Glu Gly Lys Leu Ser Gln Met Ser Lys Glu Val Ser Ala Gln 245 250 255 Ile Glu Pro Phe Leu Lys Thr Thr Pro Arg Pro Leu Lys Leu Pro Asp 260 265 270 Gly Pro Pro Cys Ser Gln Arg Ser Lys Phe Leu Leu Met Asp Ala Leu 275 280 285 Lys Leu Ser Ile Glu Asp Pro Ser His Glu Gly Glu Gly Ile Pro Leu 290 295 300 Tyr Asp Ala Ile Lys Cys Met Lys Thr Phe Phe Gly Trp Lys Glu Pro 305 310 315 320 Asn Ile Ile Lys Pro His Glu Lys Gly Ile Asn Pro Asn Tyr Leu Leu 325 330 335 Ala Trp Lys Gln Val Leu Ala Glu Leu Gln Asp Ile Glu Asn Glu Glu 340 345 350 Lys Ile Pro Lys Thr Lys Asn Met Arg Arg Thr Ser Gln Leu Lys Trp 355 360 365 Ala Leu Gly Glu Asn Met Ala Pro Glu Lys Val Asp Phe Asp Asp Cys 370 375 380 Lys Asp Val Gly Asp Leu Lys Gln Tyr Asp Ser Asp Glu Pro Glu Pro 385 390 395 400 Arg Ser Leu Ala Ser Trp Val Gln Asn Glu Phe Asn Lys Ala Cys Glu 405 410 415 Leu Thr Asp Ser Ser Trp Ile Glu Leu Asp Glu Ile Gly Glu Asp Ile 420 425 430 Ala Pro Ile Glu His Ile Ala Ser Met Arg Arg Asn Tyr Phe Thr Ala 435 440 445 Glu Val Ser His Cys Arg Ala Thr Glu Tyr Ile Met Lys Gly Val Tyr 450 455 460 Ile Asn Thr Ala Leu Leu Asn Ala Ser Cys Ala Ala Met Asp Asp Phe 465 470 475 480 Gln Leu Ile Pro Met Ile Ser Lys Cys Arg Thr Lys Glu Gly Arg Arg 485 490 495 Lys Thr Asn Leu Tyr Gly Phe Ile Ile Lys Gly Arg Ser His Leu Arg 500 505 510 Asn Asp Thr Asp Val Val Asn Phe Val Ser Met Glu Phe Ser Leu Thr 515 520 525 Asp Pro Arg Leu Glu Pro His Lys Trp Glu Lys Tyr Cys Val Leu Glu 530 535 540 Ile Gly Asp Met Leu Leu Arg Thr Ala Ile Gly Gln Val Ser Arg Pro 545 550 555 560 Met Phe Leu Tyr Val Arg Thr Asn Gly Thr Ser Lys Ile Lys Met Lys 565 570 575 Trp Gly Met Glu Met Arg Arg Cys Leu Leu Gln Ser Leu Gln Gln Ile 580 585 590 Glu Ser Met Ile Glu Ala Glu Ser Ser Val Lys Glu Lys Asp Met Thr 595 600 605 Lys Glu Phe Phe Glu Asn Lys Ser Glu Thr Trp Pro Ile Gly Glu Ser 610 615 620 Pro Lys Gly Val Glu Glu Gly Ser Ile Gly Lys Val Cys Arg Thr Leu 625 630 635 640 Leu Ala Lys Ser Val Phe Asn Ser Leu Tyr Ala Ser Pro Gln Leu Glu 645 650 655 Gly Phe Ser Ala Glu Ser Arg Lys Leu Leu Leu Ile Val Gln Ala Leu 660 665 670 Arg Asp Asn Leu Glu Pro Gly Thr Phe Asp Leu Gly Gly Leu Tyr Glu 675 680 685 Ala Ile Glu Glu Cys Leu Ile Asn Asp Pro Trp Val Leu Leu Asn Ala 690 695 700 Ser Trp Phe Asn Ser Phe Leu Thr His Ala Leu Lys 705 710 715 71692DNAInfluenza A virus 7atgaaggcaa tactagtagt cctgctatat acatttacaa ccgcaaatgc cgacacatta 60tgcataggtt atcatgcgaa caattcaact gacaccgtag acacagtgct agaaaaaaat 120gtaacagtaa cacactctgt caaccttcta gaaaacaggc ataatgggaa actatgtaaa 180ctaagagggg tagctccatt gcatttgggt aaatgtaaca ttgctggctg gctcctggga 240aatccagagt gtgagtcaat ctccaaagca agctcatggt cctacattgt ggaaacatct 300aattcagaca atgggacgtg ttacccagga gatttcatca attatgagga gctaagagag 360cagttgagct cagtgtcatc atttgaaaga tttgagatat tccccatgac aagttcatgg 420cccaatcatg acacgaacag aggtgtgacg gcagcatgtc ctcacgctgg gacaaatagc 480ttctacaaaa atttaatatg gctggtcaaa aaaggaaatt catacccaaa gatcaacaaa 540tcctacatta acaacaaaga gaaagaagtt ctcgtgctat gggccataca tcatccacct 600accaatgccg accaacaaag cctctaccaa aatgcagatg cctatgtttt tgtggggtca 660tcaagataca gcaggaagtt cgagccagaa atagcaacaa gacccaaggt gagagaccaa 720gcagggagaa tgaactatta ctggacattg gtagagcctg gagacaagat aacattcgaa 780gcaactggaa atctagtggt accgagatat gccttcgcat tgaaaagaaa ttctggatct 840ggtattatca tttcagatac atcagtccac gattgtgata cgacttgtca gacacccaat 900ggtgctataa acaccagcct cccatttcaa aatatacatc cagtcacaat tggagaatgt 960ccaaaatatg taaaaagtac taaactgaga atggccacag gattaaggaa tatcccgtct 1020attcaatcta gaggcctgtt tggggccatt gctggcttta ttgaaggggg ctggacagga 1080atgatagacg gatggtacgg ttaccaccat caaaatgagc agggatcagg atatgcagcc 1140gacctgaaaa gcacacagaa tgccattgac gggatcacta acaaggtaaa ttctgttatt 1200gaaaagatga acacacaatt cacagcagta ggtaaagagt tcagccactt ggaaagaaga 1260atagagaatt taaataaaaa ggttgatgat ggttttctag atatttggac ttacaatgcc 1320gaactgttgg ttctgttgga gaatgaaaga actttggatt accacgattc aaatgtgaaa 1380aacttatatg aaaaagtaag aagccaacta aaaaacaatg ccaaagaaat tggaaatggc 1440tgctttgaat tttaccacaa atgtgatgac acgtgtatgg aaagcgtcaa aaatgggact 1500tatgattacc caaaatactc agaggaagca aaactaaaca gagaggaaat agatggggta 1560aagttggaat caacaagggt ttaccaaatt ttggcgatct attcaacggt cgccagttca 1620ttggtactgg tagtctccct gggggcaatc agtttctgga tgtgctctaa tgggtcgcta 1680cagtgcagaa ta 16928564PRTInfluenza A virus 8Met Lys Ala Ile Leu Val Val Leu Leu Tyr Thr Phe Thr Thr Ala Asn 1 5 10 15 Ala Asp Thr Leu Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Asp Thr 20 25 30 Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn 35 40 45 Leu Leu Glu Asn Arg His Asn Gly Lys Leu Cys Lys Leu Arg Gly Val 50 55 60 Ala Pro Leu His Leu Gly Lys Cys Asn Ile Ala Gly Trp Leu Leu Gly 65 70 75 80 Asn Pro Glu Cys Glu Ser Ile Ser Lys Ala Ser Ser Trp Ser Tyr Ile 85 90 95 Val Glu Thr Ser Asn Ser Asp Asn Gly Thr Cys Tyr Pro Gly Asp Phe 100 105 110 Ile Asn Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe 115 120 125 Glu Arg Phe Glu Ile Phe Pro Met Thr Ser Ser Trp Pro Asn His Asp 130 135 140 Thr Asn Arg Gly Val Thr Ala Ala Cys Pro His Ala Gly Thr Asn Ser 145 150 155 160 Phe Tyr Lys Asn Leu Ile Trp Leu Val Lys Lys Gly Asn Ser Tyr Pro 165 170 175 Lys Ile Asn Lys Ser Tyr Ile Asn Asn Lys Glu Lys Glu Val Leu Val 180 185 190 Leu Trp Ala Ile His His Pro Pro Thr Asn Ala Asp Gln Gln Ser Leu 195 200 205 Tyr Gln Asn Ala Asp Ala Tyr Val Phe Val Gly Ser Ser Arg Tyr Ser 210 215 220 Arg Lys Phe Glu Pro Glu Ile Ala Thr Arg Pro Lys Val Arg Asp Gln 225 230 235 240 Ala Gly Arg Met Asn Tyr Tyr Trp Thr Leu Val Glu Pro Gly Asp Lys 245 250 255 Ile Thr Phe Glu Ala Thr Gly Asn Leu Val Val Pro Arg Tyr Ala Phe 260 265 270 Ala Leu Lys Arg Asn Ser Gly Ser Gly Ile Ile Ile Ser Asp Thr Ser 275 280 285 Val His Asp Cys Asp Thr Thr Cys Gln Thr Pro Asn Gly Ala Ile Asn 290 295 300 Thr Ser Leu Pro Phe Gln Asn Ile His Pro Val Thr Ile Gly Glu Cys 305 310 315 320 Pro Lys Tyr Val Lys Ser Thr Lys Leu Arg Met Ala Thr Gly Leu Arg 325 330 335 Asn Ile Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly 340 345 350 Phe Ile Glu Gly Gly Trp Thr Gly Met Ile Asp Gly Trp Tyr Gly Tyr 355 360 365 His His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Leu Lys Ser 370 375 380 Thr Gln Asn Ala Ile Asp Gly Ile Thr Asn Lys Val Asn Ser Val Ile 385 390 395 400 Glu Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Ser His 405 410 415 Leu Glu Arg Arg Ile Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe 420 425 430 Leu Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn 435 440 445 Glu Arg Thr Leu Asp Tyr His Asp Ser Asn Val Lys Asn Leu Tyr Glu 450 455 460 Lys Val Arg Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly 465 470 475 480 Cys Phe Glu Phe Tyr His Lys Cys Asp Asp Thr Cys Met Glu Ser Val 485 490 495 Lys Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ala Lys Leu 500 505 510 Asn Arg Glu Glu Ile Asp Gly Val Lys Leu Glu Ser Thr Arg Val Tyr 515 520 525 Gln Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Val 530 535 540 Val Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu 545 550 555 560 Gln Cys Arg Ile 91512DNAInfluenza A virus 9atgagtgaca tcgaagccat ggcgtctcaa ggcaccaaac gatcatatga acaaatggag 60actggtggtg aacgccagga tgccacagaa atcagagcat ctgtcggaag aatgattggt 120ggaatcggga aattctacat ccaaatgtgc actgaactca aactcagtga ctatgaggga 180cgactaatcc aaaatagcat aacaatagag agaatggtgc tctctgcttt tgatgagaga 240agaaataaat acctagaaga gcatcccagt gctgggaaag accctaagaa aactggagga 300cccatatata gaagagtaga cggaaagtgg atgagagaac tcattcttta tgacaaagaa 360gaaataagga gagtttggcg ccaggcaaac aatggtgatg atgcaacagc tggtcttact 420catatcatga tttggcattc caatctgaat gatgccacgt accagagaac aagagcactt 480gttcgcaccg gaatggatcc cagaatgtgc tctctaatgc aaggttcaac acttcccaga 540aggtctggag cagcaggtgc tgcagtgaaa ggagttggaa caataacaat ggaattaatc 600agaatgatca aacgggggat caatgaccga aatttctgga gaggtgaaaa tggaagaagg 660acaaggattg catatgaaag aatgtgcaat attctcaaag gaaaatttca gacagctgcc 720caaagggcaa tgatggatca agtgagagaa agtcggaacc cagggaacgc tgagattgaa 780gatctcattt tcctggcacg gtcagcactt atcctaaggg gatcagttgc acataagtct 840tgcctgcctg cttgcgtgta tgggcttgca gtggcaagtg ggcatgactt tgaaagggaa 900gggtattcgc tggtcgggat agacccattt aaattactcc agaacagtca agtgttcagc 960ctggtaagac caaatgaaaa cccagctcac aagagtcaat tagtgtggat ggcatgccac 1020tctgctgcat ttgaggatct aagggtctca agtttcataa gagggaagaa agtgattcca 1080aggggaaagc tttccacaag aggggttcag attgcttcaa atgagaatgt ggaagccatg 1140gattccaata ccttagagct gagaagcaga tactgggcta taaggaccag aagtggagga 1200aatactaatc aacagaaagc atccgcaggc cagatcagtg tgcaacctac attctcagtg 1260caacggaatc tcccttttga aagagcaacc gttatggcag ctttcagcgg aaacaatgaa 1320ggacggacat ccgatatgcg gacagaaatt ataaggatga tggaaaatgc aaaaccagaa 1380gatttgtcct tccaggggcg gggagtcttc gagctctcgg acgaaaaggc aacgagcccg 1440atcgtgcctt cctttgacat gagtaatgaa gggtcttatt tcttcggaga caatgcagag 1500gagtatgaca gt 151210504PRTInfluenza A virus 10Met Ser Asp Ile Glu Ala Met Ala Ser Gln Gly Thr Lys Arg Ser Tyr 1 5 10 15 Glu Gln Met Glu Thr Gly Gly Glu Arg Gln Asp Ala Thr Glu Ile Arg 20 25 30 Ala Ser Val Gly Arg Met Ile Gly Gly Ile Gly Lys Phe Tyr Ile Gln 35 40 45 Met Cys Thr Glu Leu Lys Leu Ser Asp Tyr Glu Gly Arg Leu Ile Gln 50 55 60 Asn Ser Ile Thr Ile Glu Arg Met Val Leu Ser Ala Phe Asp Glu Arg 65 70 75 80 Arg Asn Lys Tyr Leu Glu Glu His Pro Ser Ala Gly Lys Asp Pro Lys 85 90 95 Lys Thr Gly Gly Pro Ile Tyr Arg Arg Val Asp Gly Lys Trp Met Arg 100 105 110 Glu Leu Ile Leu Tyr Asp Lys Glu Glu Ile Arg Arg Val Trp Arg Gln 115 120 125 Ala Asn Asn Gly Asp Asp Ala Thr Ala Gly Leu Thr His Ile Met Ile 130 135 140 Trp His Ser Asn Leu Asn Asp Ala Thr Tyr Gln Arg Thr Arg Ala Leu 145 150 155 160 Val Arg Thr Gly Met Asp Pro Arg Met Cys Ser Leu Met Gln Gly Ser 165 170 175 Thr Leu Pro Arg Arg Ser Gly Ala Ala Gly Ala Ala Val Lys Gly Val 180 185 190 Gly Thr Ile Thr Met Glu Leu Ile Arg Met Ile Lys Arg Gly Ile Asn 195 200 205 Asp Arg Asn Phe Trp Arg Gly Glu Asn Gly Arg Arg Thr Arg Ile Ala 210 215 220 Tyr Glu Arg Met Cys Asn Ile Leu Lys Gly Lys Phe Gln Thr Ala Ala 225 230 235 240 Gln Arg Ala Met Met Asp Gln Val Arg Glu Ser Arg Asn Pro Gly Asn

245 250 255 Ala Glu Ile Glu Asp Leu Ile Phe Leu Ala Arg Ser Ala Leu Ile Leu 260 265 270 Arg Gly Ser Val Ala His Lys Ser Cys Leu Pro Ala Cys Val Tyr Gly 275 280 285 Leu Ala Val Ala Ser Gly His Asp Phe Glu Arg Glu Gly Tyr Ser Leu 290 295 300 Val Gly Ile Asp Pro Phe Lys Leu Leu Gln Asn Ser Gln Val Phe Ser 305 310 315 320 Leu Val Arg Pro Asn Glu Asn Pro Ala His Lys Ser Gln Leu Val Trp 325 330 335 Met Ala Cys His Ser Ala Ala Phe Glu Asp Leu Arg Val Ser Ser Phe 340 345 350 Ile Arg Gly Lys Lys Val Ile Pro Arg Gly Lys Leu Ser Thr Arg Gly 355 360 365 Val Gln Ile Ala Ser Asn Glu Asn Val Glu Ala Met Asp Ser Asn Thr 370 375 380 Leu Glu Leu Arg Ser Arg Tyr Trp Ala Ile Arg Thr Arg Ser Gly Gly 385 390 395 400 Asn Thr Asn Gln Gln Lys Ala Ser Ala Gly Gln Ile Ser Val Gln Pro 405 410 415 Thr Phe Ser Val Gln Arg Asn Leu Pro Phe Glu Arg Ala Thr Val Met 420 425 430 Ala Ala Phe Ser Gly Asn Asn Glu Gly Arg Thr Ser Asp Met Arg Thr 435 440 445 Glu Ile Ile Arg Met Met Glu Asn Ala Lys Pro Glu Asp Leu Ser Phe 450 455 460 Gln Gly Arg Gly Val Phe Glu Leu Ser Asp Glu Lys Ala Thr Ser Pro 465 470 475 480 Ile Val Pro Ser Phe Asp Met Ser Asn Glu Gly Ser Tyr Phe Phe Gly 485 490 495 Asp Asn Ala Glu Glu Tyr Asp Ser 500 111407DNAInfluenza A virus 11atgaatacaa atcaaagaat aataaccatt gggacagttt gtctgatagt tggaataatt 60agtctattgt tacagatagg aaacatggtt tcgttatgga tcagccattc aattcagact 120gaagggaaaa atcatactga gatgtgcaat caaaatgtca ttacatatgt aaataacaca 180tgggtgaacc gaacttatgt aaacattagc aataccaaaa ttgttaatgt acaggacgtg 240gtttcagtaa tattaaccgg caattcctct ctctgcccaa taagtgggtg ggctatatac 300agcaaagaca atagcataag gattggttct aaaggggaca tttttgtcat aagagaacca 360ttcatttcat gctctcactt ggaatgcaga actttttttc tgacccaagg cgctttgctg 420aatgacaagc attctaatgg aaccgtcaag gacaggagtc cctatagaac tttaatgagc 480tgtcccatcg gtgaagctcc atctccatat aactcaaggt tcgaatcagt tgcttggtca 540gcaagtgcat gccatgatgg gatgggatgg ctaacaatcg gaatctccgg tccagataat 600ggagcagtag ctgttttaaa atacaacggt ataataacag atacaataaa aagttggaga 660aacaaaatat taagaacaca agagtcagaa tgtgtttgta tgaacggttc ttgttttact 720gtattaactg atggcccaag caatgggcaa gcatcgtaca aaatattcaa gatggaaaaa 780ggaaaaataa ttaaatcaat tgagctggat gcacccaatt accactatga ggaatgctcc 840tgttatcctg atgcaggcaa agtaatgtgt gtttgcagag acaactggca tgcctcgaac 900cggccatggg tctctttcga tcagaatctt aattatcaaa tagggtacat atgcagtggg 960gttttcggtg ataacccgcg ttctaatgat ggaaagggca attgtggccc agtacattct 1020aatggagcaa atggagtgaa aggattctca tataaatatg gtaatggtgt ttggatagga 1080aggactaaaa gtatcaactc cagaagtgga tttgaaatga tttgggatcc aaatgggtgg 1140actggaactg atagtagttt ctctatgaag caggatatta tagcattaac tgattggtca 1200ggatacagtg gaagttttgt ccaacatcct gaattaacag gaatgaattg cataaggccc 1260tgtttctggg tagaattaat cagagggcaa cccaaggaaa acaccatctg ggctagcgga 1320agcagcatct ctttctgtgg tgtaaatggt gaaaccgcaa gctggtcatg gccagacgga 1380gctgatctgc cattcaccat tgacaag 140712469PRTInfluenza A virus 12Met Asn Thr Asn Gln Arg Ile Ile Thr Ile Gly Thr Val Cys Leu Ile 1 5 10 15 Val Gly Ile Ile Ser Leu Leu Leu Gln Ile Gly Asn Met Val Ser Leu 20 25 30 Trp Ile Ser His Ser Ile Gln Thr Glu Gly Lys Asn His Thr Glu Met 35 40 45 Cys Asn Gln Asn Val Ile Thr Tyr Val Asn Asn Thr Trp Val Asn Arg 50 55 60 Thr Tyr Val Asn Ile Ser Asn Thr Lys Ile Val Asn Val Gln Asp Val 65 70 75 80 Val Ser Val Ile Leu Thr Gly Asn Ser Ser Leu Cys Pro Ile Ser Gly 85 90 95 Trp Ala Ile Tyr Ser Lys Asp Asn Ser Ile Arg Ile Gly Ser Lys Gly 100 105 110 Asp Ile Phe Val Ile Arg Glu Pro Phe Ile Ser Cys Ser His Leu Glu 115 120 125 Cys Arg Thr Phe Phe Leu Thr Gln Gly Ala Leu Leu Asn Asp Lys His 130 135 140 Ser Asn Gly Thr Val Lys Asp Arg Ser Pro Tyr Arg Thr Leu Met Ser 145 150 155 160 Cys Pro Ile Gly Glu Ala Pro Ser Pro Tyr Asn Ser Arg Phe Glu Ser 165 170 175 Val Ala Trp Ser Ala Ser Ala Cys His Asp Gly Met Gly Trp Leu Thr 180 185 190 Ile Gly Ile Ser Gly Pro Asp Asn Gly Ala Val Ala Val Leu Lys Tyr 195 200 205 Asn Gly Ile Ile Thr Asp Thr Ile Lys Ser Trp Arg Asn Lys Ile Leu 210 215 220 Arg Thr Gln Glu Ser Glu Cys Val Cys Met Asn Gly Ser Cys Phe Thr 225 230 235 240 Val Leu Thr Asp Gly Pro Ser Asn Gly Gln Ala Ser Tyr Lys Ile Phe 245 250 255 Lys Met Glu Lys Gly Lys Ile Ile Lys Ser Ile Glu Leu Asp Ala Pro 260 265 270 Asn Tyr His Tyr Glu Glu Cys Ser Cys Tyr Pro Asp Ala Gly Lys Val 275 280 285 Met Cys Val Cys Arg Asp Asn Trp His Ala Ser Asn Arg Pro Trp Val 290 295 300 Ser Phe Asp Gln Asn Leu Asn Tyr Gln Ile Gly Tyr Ile Cys Ser Gly 305 310 315 320 Val Phe Gly Asp Asn Pro Arg Ser Asn Asp Gly Lys Gly Asn Cys Gly 325 330 335 Pro Val His Ser Asn Gly Ala Asn Gly Val Lys Gly Phe Ser Tyr Lys 340 345 350 Tyr Gly Asn Gly Val Trp Ile Gly Arg Thr Lys Ser Ile Asn Ser Arg 355 360 365 Ser Gly Phe Glu Met Ile Trp Asp Pro Asn Gly Trp Thr Gly Thr Asp 370 375 380 Ser Ser Phe Ser Met Lys Gln Asp Ile Ile Ala Leu Thr Asp Trp Ser 385 390 395 400 Gly Tyr Ser Gly Ser Phe Val Gln His Pro Glu Leu Thr Gly Met Asn 405 410 415 Cys Ile Arg Pro Cys Phe Trp Val Glu Leu Ile Arg Gly Gln Pro Lys 420 425 430 Glu Asn Thr Ile Trp Ala Ser Gly Ser Ser Ile Ser Phe Cys Gly Val 435 440 445 Asn Gly Glu Thr Ala Ser Trp Ser Trp Pro Asp Gly Ala Asp Leu Pro 450 455 460 Phe Thr Ile Asp Lys 465 13756DNAInfluenza A virus 13atgagtcttc taaccgaggt cgaaacgtat gttctctcta tcgtcccgtc aggccccctc 60aaagccgaga tagcacagag gctcgaagac gtttttgcag ggaaaaacac cgatcttgag 120gctctcatgg aatggctaaa gacaagacca atcctgtcac ctctgactaa agggatttta 180gggtttgtgt tcacgctcac cgtgcccagt gagcgaggac tgcagcgtag acgttttgtc 240cagaatgccc tcaatgggaa tggtgaccca aacaacatgg acaaggcggt aaaactgtac 300aggaaactaa aaagggaaat aacattccat ggggccaagg aagtagcgct cagttactct 360gctggtgcac ttgccagttg catgggcctc atatacaaca gaatggggac tgtcgccact 420gaggtggcat ttggtctggt atgcgcaacc tgtgaacaaa ttgctgattc tcagcatcga 480tctcatagac aaatggtgac aacaaccaat ccactaatca ggcacgagaa cagaatggta 540atagccagca caacagctaa ggccatggaa caaatggctg gatcaagtga acaagcagca 600gaggctatgg aggttgccag tcaggctaga caaatggtac aggcaatgag aacaattggg 660actcacccta gttccagcac tggtctaaaa gatgatcttc ttgaaaattt acaggcctat 720cagaaacgga tgggagtgca aatgcaacga ttcaag 75614252PRTInfluenza A virus 14Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Leu Ser Ile Val Pro 1 5 10 15 Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Arg Leu Glu Asp Val Phe 20 25 30 Ala Gly Lys Asn Thr Asp Leu Glu Ala Leu Met Glu Trp Leu Lys Thr 35 40 45 Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe 50 55 60 Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val 65 70 75 80 Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Lys Ala 85 90 95 Val Lys Leu Tyr Arg Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala 100 105 110 Lys Glu Val Ala Leu Ser Tyr Ser Ala Gly Ala Leu Ala Ser Cys Met 115 120 125 Gly Leu Ile Tyr Asn Arg Met Gly Thr Val Ala Thr Glu Val Ala Phe 130 135 140 Gly Leu Val Cys Ala Thr Cys Glu Gln Ile Ala Asp Ser Gln His Arg 145 150 155 160 Ser His Arg Gln Met Val Thr Thr Thr Asn Pro Leu Ile Arg His Glu 165 170 175 Asn Arg Met Val Ile Ala Ser Thr Thr Ala Lys Ala Met Glu Gln Met 180 185 190 Ala Gly Ser Ser Glu Gln Ala Ala Glu Ala Met Glu Val Ala Ser Gln 195 200 205 Ala Arg Gln Met Val Gln Ala Met Arg Thr Ile Gly Thr His Pro Ser 210 215 220 Ser Ser Thr Gly Leu Lys Asp Asp Leu Leu Glu Asn Leu Gln Ala Tyr 225 230 235 240 Gln Lys Arg Met Gly Val Gln Met Gln Arg Phe Lys 245 250 15657DNAInfluenza A virus 15atggactcca atactgtgtc aagctttcag gtagactgtt tcctttggca catccgcaaa 60cgatttgcag acaatggatt gggtgatgcc ccattccttg atcggctccg ccgagatcaa 120aagtccctaa aaggaagggg caacaccctt agcctagaca tcgaaacagc cactcttgtt 180gggaaacaaa ttgttgagtg gattttgaaa gaggaatcca gcgatatact taagatgacc 240attgcatctg tgcctacttc gcgctaccta gctgacatga ccctcgagga aatgtcacga 300gactggttca tgctaatgcc taggcaaaag ataataggcc ctctttgtgt gcgagtggac 360caggcgatca tggaaaagaa catcatactg aaagcgaact tcagtgtgat ctttaaccga 420ttagagactt tgatactact aagggctttc actgaggagg gagcaatcgt tggagaaatt 480tcaccattac cttatcttcc aggacatact aatgaggatg tcaaaaatgc agttggggtc 540ctcatcggag ggcttgaatg gaatggtaac acggttcgag gctctgaaaa tctacagaga 600ttcgcttgga gaaaccataa tgaggatggg agatcttcac tacctccaga acagaaa 65716219PRTInfluenza A virus 16Met Asp Ser Asn Thr Val Ser Ser Phe Gln Val Asp Cys Phe Leu Trp 1 5 10 15 His Ile Arg Lys Arg Phe Ala Asp Asn Gly Leu Gly Asp Ala Pro Phe 20 25 30 Leu Asp Arg Leu Arg Arg Asp Gln Lys Ser Leu Lys Gly Arg Gly Asn 35 40 45 Thr Leu Ser Leu Asp Ile Glu Thr Ala Thr Leu Val Gly Lys Gln Ile 50 55 60 Val Glu Trp Ile Leu Lys Glu Glu Ser Ser Asp Ile Leu Lys Met Thr 65 70 75 80 Ile Ala Ser Val Pro Thr Ser Arg Tyr Leu Ala Asp Met Thr Leu Glu 85 90 95 Glu Met Ser Arg Asp Trp Phe Met Leu Met Pro Arg Gln Lys Ile Ile 100 105 110 Gly Pro Leu Cys Val Arg Val Asp Gln Ala Ile Met Glu Lys Asn Ile 115 120 125 Ile Leu Lys Ala Asn Phe Ser Val Ile Phe Asn Arg Leu Glu Thr Leu 130 135 140 Ile Leu Leu Arg Ala Phe Thr Glu Glu Gly Ala Ile Val Gly Glu Ile 145 150 155 160 Ser Pro Leu Pro Tyr Leu Pro Gly His Thr Asn Glu Asp Val Lys Asn 165 170 175 Ala Val Gly Val Leu Ile Gly Gly Leu Glu Trp Asn Gly Asn Thr Val 180 185 190 Arg Gly Ser Glu Asn Leu Gln Arg Phe Ala Trp Arg Asn His Asn Glu 195 200 205 Asp Gly Arg Ser Ser Leu Pro Pro Glu Gln Lys 210 215 171695DNAInfluenza A virus 17atgaaagtaa aactaatggt tctgttatgt acatttacag ctacatatgc agacacaata 60tgtgtaggct accatgccaa caactcaact gacactgttg acacagtact tgagaagaat 120gtgacagtga cacactctgt caacctactt gaggacagcc acaatggaaa actatgtcta 180ctaaaaggaa tagctccact acaattgggt agttgcagcg ttgccggatg gatcttagga 240aacccagagt gcgaattgct gatttccaag gaatcttggt cctacattgt agaaacacca 300aatcctgaga atggaacatg ttacccaggg tatttcacag actatgaaga actgagggag 360caattgagtt cagtatcttc atttaagagg ttcgaaatat tccccaaaga gagctcatgg 420cccaaccaca ccgtaaccgg agtgtcatca tcatgctccc ataacgggaa aagcagcttc 480tacagaaatt tgctatggct gacggtgaag aacggtctgt acccaaacct gagcaagtcc 540tatacaaaca aaaaggagaa agaagtcctt gtactatggg gtgttcatca cccatctaac 600ataggggacc aaagggccct ctatcataca gaaaatgctt atgtctctgt agtgtcttca 660cattatagca gaagattcac cccagaaata gccaaaagac ccaaggtgag aaatcaggaa 720ggaagaatca actactactg gaccctgcta gaacccgggg atacaataat atttgaggca 780aatggaaatc taatagcacc aaggtatgcc ttcgaactga gtaagggttt tggatcagga 840atcatcacat caaatgcacc aatgggtgaa tgtaatgcaa agtgtcaaac acctcaggga 900gctataaaca gcagtcttcc tttccagaat gtacacccag taacaatagg agagtgccca 960aagtatgtca aaagtgcaaa attaaggatg gttacaggac taaggaacac cccatccatt 1020caatccagag gtttgtttgg agccattgcc ggtttcattg aaggagggtg gactggaatg 1080gtagatggtt ggtatggtta tcaccatcag aatgagcaag gatctgggta tgctgcagac 1140caacaaagca cacaaaatgc cattaatggg attacaaaca aggtgaattc tgtgattgaa 1200aaaatgaaca ctcaattcac agctgtgggc aaagaattca acaaactgga aagaagaatg 1260gaaaacttaa ataaaaaggt tgatgatggg tttctagaca tttggacata taatgcagaa 1320ttgttagttc tactggaaaa tgaaaggact ttggatttcc atgactccaa cgtgaagaat 1380ctgtatgaga aagtaaaaag ccaattaaaa aataatgcca aagaaatagg aaacgggtgt 1440tttgaattct atcataagtg taacgatgaa tgcatggaga gtgtgaaaaa tggaacttat 1500gactatccaa aatattccga agaatcaaag ttaaacaggg agaaaattga tggagtgaaa 1560ttggaatcaa tgggagtcta taatatcctg gcgatctact caacagtcgc cagttcccta 1620gttcttttag tctccctggg ggcaatcagc ttctggatgt gttccaatgg gtctttacag 1680tgtagaatat gcatc 169518565PRTInfluenza A virus 18Met Lys Val Lys Leu Met Val Leu Leu Cys Thr Phe Thr Ala Thr Tyr 1 5 10 15 Ala Asp Thr Ile Cys Val Gly Tyr His Ala Asn Asn Ser Thr Asp Thr 20 25 30 Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn 35 40 45 Leu Leu Glu Asp Ser His Asn Gly Lys Leu Cys Leu Leu Lys Gly Ile 50 55 60 Ala Pro Leu Gln Leu Gly Ser Cys Ser Val Ala Gly Trp Ile Leu Gly 65 70 75 80 Asn Pro Glu Cys Glu Leu Leu Ile Ser Lys Glu Ser Trp Ser Tyr Ile 85 90 95 Val Glu Thr Pro Asn Pro Glu Asn Gly Thr Cys Tyr Pro Gly Tyr Phe 100 105 110 Thr Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe 115 120 125 Lys Arg Phe Glu Ile Phe Pro Lys Glu Ser Ser Trp Pro Asn His Thr 130 135 140 Val Thr Gly Val Ser Ser Ser Cys Ser His Asn Gly Lys Ser Ser Phe 145 150 155 160 Tyr Arg Asn Leu Leu Trp Leu Thr Val Lys Asn Gly Leu Tyr Pro Asn 165 170 175 Leu Ser Lys Ser Tyr Thr Asn Lys Lys Glu Lys Glu Val Leu Val Leu 180 185 190 Trp Gly Val His His Pro Ser Asn Ile Gly Asp Gln Arg Ala Leu Tyr 195 200 205 His Thr Glu Asn Ala Tyr Val Ser Val Val Ser Ser His Tyr Ser Arg 210 215 220 Arg Phe Thr Pro Glu Ile Ala Lys Arg Pro Lys Val Arg Asn Gln Glu 225 230 235 240 Gly Arg Ile Asn Tyr Tyr Trp Thr Leu Leu Glu Pro Gly Asp Thr Ile 245 250 255 Ile Phe Glu Ala Asn Gly Asn Leu Ile Ala Pro Arg Tyr Ala Phe Glu 260 265 270 Leu Ser Lys Gly Phe Gly Ser Gly Ile Ile Thr Ser Asn Ala Pro Met 275 280 285 Gly Glu Cys Asn Ala Lys Cys Gln Thr Pro Gln Gly Ala Ile Asn Ser 290 295 300 Ser Leu Pro Phe Gln Asn Val His Pro Val Thr Ile Gly Glu Cys Pro 305 310 315 320 Lys Tyr Val Lys Ser Ala Lys Leu Arg Met Val Thr Gly Leu Arg Asn 325 330 335 Thr Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe 340 345 350 Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr His 355 360 365 His Gln Asn Glu Gln Gly Ser Gly

Tyr Ala Ala Asp Gln Gln Ser Thr 370 375 380 Gln Asn Ala Ile Asn Gly Ile Thr Asn Lys Val Asn Ser Val Ile Glu 385 390 395 400 Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn Lys Leu 405 410 415 Glu Arg Arg Met Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe Leu 420 425 430 Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn Glu 435 440 445 Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Glu Lys 450 455 460 Val Lys Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly Cys 465 470 475 480 Phe Glu Phe Tyr His Lys Cys Asn Asp Glu Cys Met Glu Ser Val Lys 485 490 495 Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ser Lys Leu Asn 500 505 510 Arg Glu Lys Ile Asp Gly Val Lys Leu Glu Ser Met Gly Val Tyr Asn 515 520 525 Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Leu Val 530 535 540 Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln 545 550 555 560 Cys Arg Ile Cys Ile 565 191407DNAInfluenza A virus 19atgaatccaa atcaaaagat aataacgatt ggctctgttt ctcttactat tgccacaatg 60tgcttcctta tgcaaattgc catcctggta actaatgtaa cattgcactt caatcaatat 120gaatgcaact accccccaaa caaccaagta atactgtgtg aaccaacaat aatagaaaga 180aacataacag agatagtgta tctgaccaac accaccatag agaaggaaat atgccccaaa 240ctagcagaat acagaaattg gtcaaagccg caatgtaaaa ttacagggtt tgcacctttt 300tccaaggaca attcgattag gctttctgct ggtggggaca tttgggtgac gagagaacct 360tatgtgtcat gcgatcctga taagtgttat cagtttgccc ttggacaagg aacaacatta 420aacaacaggc attcaaatga cacagtacat gataggaccc cttatcgaac cctattgatg 480aatgagttgg gtattccatt ccatttgggg accaaacaag tgtgcatagc atggtccagc 540tcaagttgtc atgatggaaa agcatggctt cacgtttgta ttactgggca tgatraaaat 600gcaactgcta gcttcattta caatgggagg cttgtagata gtattggttc atggtccaaa 660aaaatactca ggacacagga gtcggaatgt gtttgcatca atggaacttg tacagtagta 720atgactgatg ggagtgcttc aggaatagct gacactaaaa tattattcat tgaagagggg 780aaaatcgttc atattagccy attgttagga agtgctcagc atgtagagga gtgctcctgt 840tatccccgat atcctggtgt cagatgcatc tgtagagaca actggaaagg ttccaataga 900cccgtcgtag atataaatgt aaaggattat agcattgttt ccagttatgt gtgctcagga 960cttgttggag atacacccag aaaagacgac agatccagca gtagcgattg tctgaatcct 1020aacaatgagg aaggggggca tggagtgaaa ggctgggcct ttgatgatgg aaatgatgtg 1080tggatgggaa gaacaatcaa cgagacgtta cgctcaggtt atgaaacctt caaagtcatt 1140gaaggctggt ccaaacctaa ttccaaattg cagataaata ggcaagtcat agttgaaaga 1200ggtgataggt ccggttattc tggcattttc tctgttgaag gcaaaagctg tatcaatcgg 1260tgcttttatg tggagttgat aagaggaagg aaacaggaaa ctgcagtatg gtggacgtca 1320aacagtattg ttgtgttttg tggcacctca ggtacatatg gaacaggctc atggcctgat 1380ggggcgaaca tcaatctcat gcctgta 140720469PRTInfluenza A virusmisc_feature(199)..(199)Xaa can be any naturally occurring amino acid 20Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Val Ser Leu Thr 1 5 10 15 Ile Ala Thr Met Cys Phe Leu Met Gln Ile Ala Ile Leu Val Thr Asn 20 25 30 Val Thr Leu His Phe Asn Gln Tyr Glu Cys Asn Tyr Pro Pro Asn Asn 35 40 45 Gln Val Ile Leu Cys Glu Pro Thr Ile Ile Glu Arg Asn Ile Thr Glu 50 55 60 Ile Val Tyr Leu Thr Asn Thr Thr Ile Glu Lys Glu Ile Cys Pro Lys 65 70 75 80 Leu Ala Glu Tyr Arg Asn Trp Ser Lys Pro Gln Cys Lys Ile Thr Gly 85 90 95 Phe Ala Pro Phe Ser Lys Asp Asn Ser Ile Arg Leu Ser Ala Gly Gly 100 105 110 Asp Ile Trp Val Thr Arg Glu Pro Tyr Val Ser Cys Asp Pro Asp Lys 115 120 125 Cys Tyr Gln Phe Ala Leu Gly Gln Gly Thr Thr Leu Asn Asn Arg His 130 135 140 Ser Asn Asp Thr Val His Asp Arg Thr Pro Tyr Arg Thr Leu Leu Met 145 150 155 160 Asn Glu Leu Gly Ile Pro Phe His Leu Gly Thr Lys Gln Val Cys Ile 165 170 175 Ala Trp Ser Ser Ser Ser Cys His Asp Gly Lys Ala Trp Leu His Val 180 185 190 Cys Ile Thr Gly His Asp Xaa Asn Ala Thr Ala Ser Phe Ile Tyr Asn 195 200 205 Gly Arg Leu Val Asp Ser Ile Gly Ser Trp Ser Lys Lys Ile Leu Arg 210 215 220 Thr Gln Glu Ser Glu Cys Val Cys Ile Asn Gly Thr Cys Thr Val Val 225 230 235 240 Met Thr Asp Gly Ser Ala Ser Gly Ile Ala Asp Thr Lys Ile Leu Phe 245 250 255 Ile Glu Glu Gly Lys Ile Val His Ile Ser Xaa Leu Leu Gly Ser Ala 260 265 270 Gln His Val Glu Glu Cys Ser Cys Tyr Pro Arg Tyr Pro Gly Val Arg 275 280 285 Cys Ile Cys Arg Asp Asn Trp Lys Gly Ser Asn Arg Pro Val Val Asp 290 295 300 Ile Asn Val Lys Asp Tyr Ser Ile Val Ser Ser Tyr Val Cys Ser Gly 305 310 315 320 Leu Val Gly Asp Thr Pro Arg Lys Asp Asp Arg Ser Ser Ser Ser Asp 325 330 335 Cys Leu Asn Pro Asn Asn Glu Glu Gly Gly His Gly Val Lys Gly Trp 340 345 350 Ala Phe Asp Asp Gly Asn Asp Val Trp Met Gly Arg Thr Ile Asn Glu 355 360 365 Thr Leu Arg Ser Gly Tyr Glu Thr Phe Lys Val Ile Glu Gly Trp Ser 370 375 380 Lys Pro Asn Ser Lys Leu Gln Ile Asn Arg Gln Val Ile Val Glu Arg 385 390 395 400 Gly Asp Arg Ser Gly Tyr Ser Gly Ile Phe Ser Val Glu Gly Lys Ser 405 410 415 Cys Ile Asn Arg Cys Phe Tyr Val Glu Leu Ile Arg Gly Arg Lys Gln 420 425 430 Glu Thr Ala Val Trp Trp Thr Ser Asn Ser Ile Val Val Phe Cys Gly 435 440 445 Thr Ser Gly Thr Tyr Gly Thr Gly Ser Trp Pro Asp Gly Ala Asn Ile 450 455 460 Asn Leu Met Pro Val 465 211695DNAArtificial SequenceHA gene of Influenza 10-0036-2 (n+5, relative to parent) 21atgaaagtaa aactaatggt tctgttatgt acatttacag ctacatatgc agacacaata 60tgtgtaggct accatgccaa caactcaact gacactgttg acacagtact tgagaagaat 120gtgacagtga cacactctgt caacctactt gaggacagcc acaatggaaa actatgtcta 180ctaaaaggaa tagctccact acaattgggt aattgcagcg ttgccggatg gatcttagga 240aacccagagt gcgaattgct gatttccaat gaatcttggt cctacattgt agaaacacca 300aatcctgaga atggaacatg ttacccaggg tatttcacag actatgaaga actgagggag 360caattgagtt cagtatcttc atttaagagg ttcgaaatat tccccaaaga gagctcatgg 420cccaaccaca ccgtaaccgg agtgtcatca tcatgctccc ataacgggaa aagcagcttc 480tacagaaatt tgctatggct gacggtgaag aacggtacgt acccaaacct gagcaagtcc 540tatacaaaca aaaaggagaa agaagtcctt gtactatggg gtgttcatca cccatctaac 600ataggggacc aaagggccct ctatcataca gaaaatgctt atgtctctgt agtgtcttca 660cattatagca gaagattcac cccagaaata gccaaaagac ccaaggtgag aaatcaggaa 720ggaagaatca actactactg gaccctgcta gaacccgggg atacaataat atttgaggca 780aatggaaatc taatagcacc aaggtatgcc ttcgaactga gtaagggttt tggatcagga 840atcatcacat caaatgcaac aatgggtgaa tgtaatgcaa cgtgtcaaac acctcaggga 900gctataaaca gcagtcttcc tttccagaat gtacacccag taacaatagg agagtgccca 960aagtatgtca aaagtgcaaa attaaggatg gttacaggac taaggaacac cccatccatt 1020caatccagag gtttgtttgg agccattgcc ggtttcattg aaggagggtg gactggaatg 1080gtagatggtt ggtatggtta tcaccatcag aatgagcaag gatctgggta tgctgcagac 1140caacaaagca cacaaaatgc cattaatggg attacaaaca aggtgaattc tgtgattgaa 1200aaaatgaaca ctcaattcac agctgtgggc aaagaattca acaaactgga aagaagaatg 1260gaaaacttaa ataaaaaggt tgatgatggg tttctagaca tttggacata taatgcagaa 1320ttgttagttc tactggaaaa tgaaaggact ttggatttcc atgactccaa cgtgaagaat 1380ctgtatgaga aagtaaaaag ccaattaaaa aataatgcca aagaaatagg aaacgggtgt 1440tttgaattct atcataagtg taacgatgaa tgcatggaga gtgtgaaaaa tggaacttat 1500gactatccaa aatattccga agaatcaaag ttaaacaggg agaaaattga tggagtgaaa 1560ttggaatcaa tgggagtcta taatatcctg gcgatctact caacagtcgc cagttcccta 1620gttcttttag tctccctggg ggcaatcagc ttctggatgt gttccaatgg gtctttacag 1680tgtagaatat gcatc 169522565PRTArtificial SequenceHA predicted AA of Influenza 10-0036-2 (n+5, relative to parent) 22Met Lys Val Lys Leu Met Val Leu Leu Cys Thr Phe Thr Ala Thr Tyr 1 5 10 15 Ala Asp Thr Ile Cys Val Gly Tyr His Ala Asn Asn Ser Thr Asp Thr 20 25 30 Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn 35 40 45 Leu Leu Glu Asp Ser His Asn Gly Lys Leu Cys Leu Leu Lys Gly Ile 50 55 60 Ala Pro Leu Gln Leu Gly Asn Cys Ser Val Ala Gly Trp Ile Leu Gly 65 70 75 80 Asn Pro Glu Cys Glu Leu Leu Ile Ser Asn Glu Ser Trp Ser Tyr Ile 85 90 95 Val Glu Thr Pro Asn Pro Glu Asn Gly Thr Cys Tyr Pro Gly Tyr Phe 100 105 110 Thr Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe 115 120 125 Lys Arg Phe Glu Ile Phe Pro Lys Glu Ser Ser Trp Pro Asn His Thr 130 135 140 Val Thr Gly Val Ser Ser Ser Cys Ser His Asn Gly Lys Ser Ser Phe 145 150 155 160 Tyr Arg Asn Leu Leu Trp Leu Thr Val Lys Asn Gly Thr Tyr Pro Asn 165 170 175 Leu Ser Lys Ser Tyr Thr Asn Lys Lys Glu Lys Glu Val Leu Val Leu 180 185 190 Trp Gly Val His His Pro Ser Asn Ile Gly Asp Gln Arg Ala Leu Tyr 195 200 205 His Thr Glu Asn Ala Tyr Val Ser Val Val Ser Ser His Tyr Ser Arg 210 215 220 Arg Phe Thr Pro Glu Ile Ala Lys Arg Pro Lys Val Arg Asn Gln Glu 225 230 235 240 Gly Arg Ile Asn Tyr Tyr Trp Thr Leu Leu Glu Pro Gly Asp Thr Ile 245 250 255 Ile Phe Glu Ala Asn Gly Asn Leu Ile Ala Pro Arg Tyr Ala Phe Glu 260 265 270 Leu Ser Lys Gly Phe Gly Ser Gly Ile Ile Thr Ser Asn Ala Thr Met 275 280 285 Gly Glu Cys Asn Ala Thr Cys Gln Thr Pro Gln Gly Ala Ile Asn Ser 290 295 300 Ser Leu Pro Phe Gln Asn Val His Pro Val Thr Ile Gly Glu Cys Pro 305 310 315 320 Lys Tyr Val Lys Ser Ala Lys Leu Arg Met Val Thr Gly Leu Arg Asn 325 330 335 Thr Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe 340 345 350 Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr His 355 360 365 His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Gln Gln Ser Thr 370 375 380 Gln Asn Ala Ile Asn Gly Ile Thr Asn Lys Val Asn Ser Val Ile Glu 385 390 395 400 Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn Lys Leu 405 410 415 Glu Arg Arg Met Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe Leu 420 425 430 Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn Glu 435 440 445 Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Glu Lys 450 455 460 Val Lys Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly Cys 465 470 475 480 Phe Glu Phe Tyr His Lys Cys Asn Asp Glu Cys Met Glu Ser Val Lys 485 490 495 Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ser Lys Leu Asn 500 505 510 Arg Glu Lys Ile Asp Gly Val Lys Leu Glu Ser Met Gly Val Tyr Asn 515 520 525 Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Leu Val 530 535 540 Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln 545 550 555 560 Cys Arg Ile Cys Ile 565 231695DNAArtificial SequenceHA gene of Influenza 10-0036-2 (n+4, relative to parent) 23atgaaagtaa aactaatggt tctgttatgt acatttacag ctacatatgc agacacaata 60tgtgtaggct accatgccaa caactcaact gacactgttg acacagtact tgagaagaat 120gtgacagtga cacactctgt caacctactt gaggacagcc acaatggaaa actatgtcta 180ctaaaaggaa tagctccact acaattgggt aattgcagcg ttgccggatg gatcttagga 240aacccagagt gcgaattgct gatttccaat gaatcttggt cctacattgt agaaacacca 300aatcctgaga atggaacatg ttacccaggg tatttcacag actatgaaga actgagggag 360caattgagtt cagtatcttc atttaagagg ttcgaaatat tccccaaaga gagctcatgg 420cccaaccaca ccgtaaccgg agtgtcatca tcatgctccc ataacgggaa aagcagcttc 480tacagaaatt tgctatggct gacggtgaag aacggtacgt acccaaacct gagcaagtcc 540tatacaaaca aaaaggagaa agaagtcctt gtactatggg gtgttcatca cccatctaac 600ataggggacc aaagggccct ctatcataca gaaaatgctt atgtctctgt agtgtcttca 660cattatagca gaagattcac cccagaaata gccaaaagac ccaaggtgag aaatcaggaa 720ggaagaatca actactactg gaccctgcta gaacccgggg atacaataat atttgaggca 780aatggaaatc taatagcacc aaggtatgcc ttcgaactga gtaagggttt tggatcagga 840atcatcacat caaatgcaac aatgggtgaa tgtaatgcaa agtgtcaaac acctcaggga 900gctataaaca gcagtcttcc tttccagaat gtacacccag taacaatagg agagtgccca 960aagtatgtca aaagtgcaaa attaaggatg gttacaggac taaggaacac cccatccatt 1020caatccagag gtttgtttgg agccattgcc ggtttcattg aaggagggtg gactggaatg 1080gtagatggtt ggtatggtta tcaccatcag aatgagcaag gatctgggta tgctgcagac 1140caacaaagca cacaaaatgc cattaatggg attacaaaca aggtgaattc tgtgattgaa 1200aaaatgaaca ctcaattcac agctgtgggc aaagaattca acaaactgga aagaagaatg 1260gaaaacttaa ataaaaaggt tgatgatggg tttctagaca tttggacata taatgcagaa 1320ttgttagttc tactggaaaa tgaaaggact ttggatttcc atgactccaa cgtgaagaat 1380ctgtatgaga aagtaaaaag ccaattaaaa aataatgcca aagaaatagg aaacgggtgt 1440tttgaattct atcataagtg taacgatgaa tgcatggaga gtgtgaaaaa tggaacttat 1500gactatccaa aatattccga agaatcaaag ttaaacaggg agaaaattga tggagtgaaa 1560ttggaatcaa tgggagtcta taatatcctg gcgatctact caacagtcgc cagttcccta 1620gttcttttag tctccctggg ggcaatcagc ttctggatgt gttccaatgg gtctttacag 1680tgtagaatat gcatc 169524565PRTArtificial SequenceHA predicted AA of Influenza 10-0036-2 (n+4, relative to parent) 24Met Lys Val Lys Leu Met Val Leu Leu Cys Thr Phe Thr Ala Thr Tyr 1 5 10 15 Ala Asp Thr Ile Cys Val Gly Tyr His Ala Asn Asn Ser Thr Asp Thr 20 25 30 Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn 35 40 45 Leu Leu Glu Asp Ser His Asn Gly Lys Leu Cys Leu Leu Lys Gly Ile 50 55 60 Ala Pro Leu Gln Leu Gly Asn Cys Ser Val Ala Gly Trp Ile Leu Gly 65 70 75 80 Asn Pro Glu Cys Glu Leu Leu Ile Ser Asn Glu Ser Trp Ser Tyr Ile 85 90 95 Val Glu Thr Pro Asn Pro Glu Asn Gly Thr Cys Tyr Pro Gly Tyr Phe 100 105 110 Thr Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe 115 120 125 Lys Arg Phe Glu Ile Phe Pro Lys Glu Ser Ser Trp Pro Asn His Thr 130 135 140 Val Thr Gly Val Ser Ser Ser Cys Ser His Asn Gly Lys Ser Ser Phe 145 150 155 160 Tyr Arg Asn Leu Leu Trp Leu Thr Val Lys Asn Gly Thr Tyr Pro Asn 165 170 175 Leu Ser Lys Ser Tyr Thr Asn Lys Lys Glu Lys Glu Val Leu Val Leu 180 185 190 Trp Gly Val His His Pro Ser Asn Ile Gly Asp Gln Arg Ala Leu Tyr 195 200 205 His Thr Glu Asn Ala Tyr Val Ser Val Val Ser Ser His Tyr Ser Arg 210 215 220 Arg Phe Thr Pro Glu Ile Ala Lys Arg Pro Lys Val Arg Asn Gln Glu 225 230 235 240 Gly Arg Ile Asn Tyr Tyr Trp Thr Leu Leu Glu Pro Gly Asp Thr Ile 245 250 255 Ile Phe Glu Ala Asn Gly Asn Leu Ile

Ala Pro Arg Tyr Ala Phe Glu 260 265 270 Leu Ser Lys Gly Phe Gly Ser Gly Ile Ile Thr Ser Asn Ala Thr Met 275 280 285 Gly Glu Cys Asn Ala Lys Cys Gln Thr Pro Gln Gly Ala Ile Asn Ser 290 295 300 Ser Leu Pro Phe Gln Asn Val His Pro Val Thr Ile Gly Glu Cys Pro 305 310 315 320 Lys Tyr Val Lys Ser Ala Lys Leu Arg Met Val Thr Gly Leu Arg Asn 325 330 335 Thr Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe 340 345 350 Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr His 355 360 365 His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Gln Gln Ser Thr 370 375 380 Gln Asn Ala Ile Asn Gly Ile Thr Asn Lys Val Asn Ser Val Ile Glu 385 390 395 400 Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn Lys Leu 405 410 415 Glu Arg Arg Met Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe Leu 420 425 430 Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn Glu 435 440 445 Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Glu Lys 450 455 460 Val Lys Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly Cys 465 470 475 480 Phe Glu Phe Tyr His Lys Cys Asn Asp Glu Cys Met Glu Ser Val Lys 485 490 495 Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ser Lys Leu Asn 500 505 510 Arg Glu Lys Ile Asp Gly Val Lys Leu Glu Ser Met Gly Val Tyr Asn 515 520 525 Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Leu Val 530 535 540 Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln 545 550 555 560 Cys Arg Ile Cys Ile 565 251695DNAArtificial SequenceHA gene of Influenza 10-0036-2 (n+3, relative to parent) 25atgaaagtaa aactaatggt tctgttatgt acatttacag ctacatatgc agacacaata 60tgtgtaggct accatgccaa caactcaact gacactgttg acacagtact tgagaagaat 120gtgacagtga cacactctgt caacctactt gaggacagcc acaatggaaa actatgtcta 180ctaaaaggaa tagctccact acaattgggt aattgcagcg ttgccggatg gatcttagga 240aacccagagt gcgaattgct gatttccaat gaatcttggt cctacattgt agaaacacca 300aatcctgaga atggaacatg ttacccaggg tatttcacag actatgaaga actgagggag 360caattgagtt cagtatcttc atttaagagg ttcgaaatat tccccaaaga gagctcatgg 420cccaaccaca ccgtaaccgg agtgtcatca tcatgctccc ataacgggaa aagcagcttc 480tacagaaatt tgctatggct gacggtgaag aacggtacgt acccaaacct gagcaagtcc 540tatacaaaca aaaaggagaa agaagtcctt gtactatggg gtgttcatca cccatctaac 600ataggggacc aaagggccct ctatcataca gaaaatgctt atgtctctgt agtgtcttca 660cattatagca gaagattcac cccagaaata gccaaaagac ccaaggtgag aaatcaggaa 720ggaagaatca actactactg gaccctgcta gaacccgggg atacaataat atttgaggca 780aatggaaatc taatagcacc aaggtatgcc ttcgaactga gtaagggttt tggatcagga 840atcatcacat caaatgcacc aatgggtgaa tgtaatgcaa agtgtcaaac acctcaggga 900gctataaaca gcagtcttcc tttccagaat gtacacccag taacaatagg agagtgccca 960aagtatgtca aaagtgcaaa attaaggatg gttacaggac taaggaacac cccatccatt 1020caatccagag gtttgtttgg agccattgcc ggtttcattg aaggagggtg gactggaatg 1080gtagatggtt ggtatggtta tcaccatcag aatgagcaag gatctgggta tgctgcagac 1140caacaaagca cacaaaatgc cattaatggg attacaaaca aggtgaattc tgtgattgaa 1200aaaatgaaca ctcaattcac agctgtgggc aaagaattca acaaactgga aagaagaatg 1260gaaaacttaa ataaaaaggt tgatgatggg tttctagaca tttggacata taatgcagaa 1320ttgttagttc tactggaaaa tgaaaggact ttggatttcc atgactccaa cgtgaagaat 1380ctgtatgaga aagtaaaaag ccaattaaaa aataatgcca aagaaatagg aaacgggtgt 1440tttgaattct atcataagtg taacgatgaa tgcatggaga gtgtgaaaaa tggaacttat 1500gactatccaa aatattccga agaatcaaag ttaaacaggg agaaaattga tggagtgaaa 1560ttggaatcaa tgggagtcta taatatcctg gcgatctact caacagtcgc cagttcccta 1620gttcttttag tctccctggg ggcaatcagc ttctggatgt gttccaatgg gtctttacag 1680tgtagaatat gcatc 169526565PRTArtificial SequenceHA predicted AA of Influenza 10-0036-2 (n+3, relative to parent) 26Met Lys Val Lys Leu Met Val Leu Leu Cys Thr Phe Thr Ala Thr Tyr 1 5 10 15 Ala Asp Thr Ile Cys Val Gly Tyr His Ala Asn Asn Ser Thr Asp Thr 20 25 30 Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn 35 40 45 Leu Leu Glu Asp Ser His Asn Gly Lys Leu Cys Leu Leu Lys Gly Ile 50 55 60 Ala Pro Leu Gln Leu Gly Asn Cys Ser Val Ala Gly Trp Ile Leu Gly 65 70 75 80 Asn Pro Glu Cys Glu Leu Leu Ile Ser Asn Glu Ser Trp Ser Tyr Ile 85 90 95 Val Glu Thr Pro Asn Pro Glu Asn Gly Thr Cys Tyr Pro Gly Tyr Phe 100 105 110 Thr Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe 115 120 125 Lys Arg Phe Glu Ile Phe Pro Lys Glu Ser Ser Trp Pro Asn His Thr 130 135 140 Val Thr Gly Val Ser Ser Ser Cys Ser His Asn Gly Lys Ser Ser Phe 145 150 155 160 Tyr Arg Asn Leu Leu Trp Leu Thr Val Lys Asn Gly Thr Tyr Pro Asn 165 170 175 Leu Ser Lys Ser Tyr Thr Asn Lys Lys Glu Lys Glu Val Leu Val Leu 180 185 190 Trp Gly Val His His Pro Ser Asn Ile Gly Asp Gln Arg Ala Leu Tyr 195 200 205 His Thr Glu Asn Ala Tyr Val Ser Val Val Ser Ser His Tyr Ser Arg 210 215 220 Arg Phe Thr Pro Glu Ile Ala Lys Arg Pro Lys Val Arg Asn Gln Glu 225 230 235 240 Gly Arg Ile Asn Tyr Tyr Trp Thr Leu Leu Glu Pro Gly Asp Thr Ile 245 250 255 Ile Phe Glu Ala Asn Gly Asn Leu Ile Ala Pro Arg Tyr Ala Phe Glu 260 265 270 Leu Ser Lys Gly Phe Gly Ser Gly Ile Ile Thr Ser Asn Ala Pro Met 275 280 285 Gly Glu Cys Asn Ala Lys Cys Gln Thr Pro Gln Gly Ala Ile Asn Ser 290 295 300 Ser Leu Pro Phe Gln Asn Val His Pro Val Thr Ile Gly Glu Cys Pro 305 310 315 320 Lys Tyr Val Lys Ser Ala Lys Leu Arg Met Val Thr Gly Leu Arg Asn 325 330 335 Thr Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe 340 345 350 Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr His 355 360 365 His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Gln Gln Ser Thr 370 375 380 Gln Asn Ala Ile Asn Gly Ile Thr Asn Lys Val Asn Ser Val Ile Glu 385 390 395 400 Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn Lys Leu 405 410 415 Glu Arg Arg Met Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe Leu 420 425 430 Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn Glu 435 440 445 Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Glu Lys 450 455 460 Val Lys Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly Cys 465 470 475 480 Phe Glu Phe Tyr His Lys Cys Asn Asp Glu Cys Met Glu Ser Val Lys 485 490 495 Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ser Lys Leu Asn 500 505 510 Arg Glu Lys Ile Asp Gly Val Lys Leu Glu Ser Met Gly Val Tyr Asn 515 520 525 Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Leu Val 530 535 540 Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln 545 550 555 560 Cys Arg Ile Cys Ile 565 271695DNAArtificial SequenceHA gene of Influenza 10-0036-2 (n+2, relative to parent) 27atgaaagtaa aactaatggt tctgttatgt acatttacag ctacatatgc agacacaata 60tgtgtaggct accatgccaa caactcaact gacactgttg acacagtact tgagaagaat 120gtgacagtga cacactctgt caacctactt gaggacagcc acaatggaaa actatgtcta 180ctaaaaggaa tagctccact acaattgggt aattgcagcg ttgccggatg gatcttagga 240aacccagagt gcgaattgct gatttccaat gaatcttggt cctacattgt agaaacacca 300aatcctgaga atggaacatg ttacccaggg tatttcacag actatgaaga actgagggag 360caattgagtt cagtatcttc atttaagagg ttcgaaatat tccccaaaga gagctcatgg 420cccaaccaca ccgtaaccgg agtgtcatca tcatgctccc ataacgggaa aagcagcttc 480tacagaaatt tgctatggct gacggtgaag aacggtctgt acccaaacct gagcaagtcc 540tatacaaaca aaaaggagaa agaagtcctt gtactatggg gtgttcatca cccatctaac 600ataggggacc aaagggccct ctatcataca gaaaatgctt atgtctctgt agtgtcttca 660cattatagca gaagattcac cccagaaata gccaaaagac ccaaggtgag aaatcaggaa 720ggaagaatca actactactg gaccctgcta gaacccgggg atacaataat atttgaggca 780aatggaaatc taatagcacc aaggtatgcc ttcgaactga gtaagggttt tggatcagga 840atcatcacat caaatgcacc aatgggtgaa tgtaatgcaa agtgtcaaac acctcaggga 900gctataaaca gcagtcttcc tttccagaat gtacacccag taacaatagg agagtgccca 960aagtatgtca aaagtgcaaa attaaggatg gttacaggac taaggaacac cccatccatt 1020caatccagag gtttgtttgg agccattgcc ggtttcattg aaggagggtg gactggaatg 1080gtagatggtt ggtatggtta tcaccatcag aatgagcaag gatctgggta tgctgcagac 1140caacaaagca cacaaaatgc cattaatggg attacaaaca aggtgaattc tgtgattgaa 1200aaaatgaaca ctcaattcac agctgtgggc aaagaattca acaaactgga aagaagaatg 1260gaaaacttaa ataaaaaggt tgatgatggg tttctagaca tttggacata taatgcagaa 1320ttgttagttc tactggaaaa tgaaaggact ttggatttcc atgactccaa cgtgaagaat 1380ctgtatgaga aagtaaaaag ccaattaaaa aataatgcca aagaaatagg aaacgggtgt 1440tttgaattct atcataagtg taacgatgaa tgcatggaga gtgtgaaaaa tggaacttat 1500gactatccaa aatattccga agaatcaaag ttaaacaggg agaaaattga tggagtgaaa 1560ttggaatcaa tgggagtcta taatatcctg gcgatctact caacagtcgc cagttcccta 1620gttcttttag tctccctggg ggcaatcagc ttctggatgt gttccaatgg gtctttacag 1680tgtagaatat gcatc 169528565PRTArtificial SequenceHA predicted AA of Influenza 10-0036-2 (n+2, relative to parent) 28Met Lys Val Lys Leu Met Val Leu Leu Cys Thr Phe Thr Ala Thr Tyr 1 5 10 15 Ala Asp Thr Ile Cys Val Gly Tyr His Ala Asn Asn Ser Thr Asp Thr 20 25 30 Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn 35 40 45 Leu Leu Glu Asp Ser His Asn Gly Lys Leu Cys Leu Leu Lys Gly Ile 50 55 60 Ala Pro Leu Gln Leu Gly Asn Cys Ser Val Ala Gly Trp Ile Leu Gly 65 70 75 80 Asn Pro Glu Cys Glu Leu Leu Ile Ser Asn Glu Ser Trp Ser Tyr Ile 85 90 95 Val Glu Thr Pro Asn Pro Glu Asn Gly Thr Cys Tyr Pro Gly Tyr Phe 100 105 110 Thr Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe 115 120 125 Lys Arg Phe Glu Ile Phe Pro Lys Glu Ser Ser Trp Pro Asn His Thr 130 135 140 Val Thr Gly Val Ser Ser Ser Cys Ser His Asn Gly Lys Ser Ser Phe 145 150 155 160 Tyr Arg Asn Leu Leu Trp Leu Thr Val Lys Asn Gly Leu Tyr Pro Asn 165 170 175 Leu Ser Lys Ser Tyr Thr Asn Lys Lys Glu Lys Glu Val Leu Val Leu 180 185 190 Trp Gly Val His His Pro Ser Asn Ile Gly Asp Gln Arg Ala Leu Tyr 195 200 205 His Thr Glu Asn Ala Tyr Val Ser Val Val Ser Ser His Tyr Ser Arg 210 215 220 Arg Phe Thr Pro Glu Ile Ala Lys Arg Pro Lys Val Arg Asn Gln Glu 225 230 235 240 Gly Arg Ile Asn Tyr Tyr Trp Thr Leu Leu Glu Pro Gly Asp Thr Ile 245 250 255 Ile Phe Glu Ala Asn Gly Asn Leu Ile Ala Pro Arg Tyr Ala Phe Glu 260 265 270 Leu Ser Lys Gly Phe Gly Ser Gly Ile Ile Thr Ser Asn Ala Pro Met 275 280 285 Gly Glu Cys Asn Ala Lys Cys Gln Thr Pro Gln Gly Ala Ile Asn Ser 290 295 300 Ser Leu Pro Phe Gln Asn Val His Pro Val Thr Ile Gly Glu Cys Pro 305 310 315 320 Lys Tyr Val Lys Ser Ala Lys Leu Arg Met Val Thr Gly Leu Arg Asn 325 330 335 Thr Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe 340 345 350 Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr His 355 360 365 His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Gln Gln Ser Thr 370 375 380 Gln Asn Ala Ile Asn Gly Ile Thr Asn Lys Val Asn Ser Val Ile Glu 385 390 395 400 Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn Lys Leu 405 410 415 Glu Arg Arg Met Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe Leu 420 425 430 Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn Glu 435 440 445 Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Glu Lys 450 455 460 Val Lys Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly Cys 465 470 475 480 Phe Glu Phe Tyr His Lys Cys Asn Asp Glu Cys Met Glu Ser Val Lys 485 490 495 Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ser Lys Leu Asn 500 505 510 Arg Glu Lys Ile Asp Gly Val Lys Leu Glu Ser Met Gly Val Tyr Asn 515 520 525 Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Leu Val 530 535 540 Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln 545 550 555 560 Cys Arg Ile Cys Ile 565 291695DNAArtificial SequenceHA gene of Influenza 10-0036-2 (n+1, relative to parent) 29atgaaagtaa aactaatggt tctgttatgt acatttacag ctacatatgc agacacaata 60tgtgtaggct accatgccaa caactcaact gacactgttg acacagtact tgagaagaat 120gtgacagtga cacactctgt caacctactt gaggacagcc acaatggaaa actatgtcta 180ctaaaaggaa tagctccact acaattgggt agttgcagcg ttgccggatg gatcttagga 240aacccagagt gcgaattgct gatttccaat gaatcttggt cctacattgt agaaacacca 300aatcctgaga atggaacatg ttacccaggg tatttcacag actatgaaga actgagggag 360caattgagtt cagtatcttc atttaagagg ttcgaaatat tccccaaaga gagctcatgg 420cccaaccaca ccgtaaccgg agtgtcatca tcatgctccc ataacgggaa aagcagcttc 480tacagaaatt tgctatggct gacggtgaag aacggtctgt acccaaacct gagcaagtcc 540tatacaaaca aaaaggagaa agaagtcctt gtactatggg gtgttcatca cccatctaac 600ataggggacc aaagggccct ctatcataca gaaaatgctt atgtctctgt agtgtcttca 660cattatagca gaagattcac cccagaaata gccaaaagac ccaaggtgag aaatcaggaa 720ggaagaatca actactactg gaccctgcta gaacccgggg atacaataat atttgaggca 780aatggaaatc taatagcacc aaggtatgcc ttcgaactga gtaagggttt tggatcagga 840atcatcacat caaatgcacc aatgggtgaa tgtaatgcaa agtgtcaaac acctcaggga 900gctataaaca gcagtcttcc tttccagaat gtacacccag taacaatagg agagtgccca 960aagtatgtca aaagtgcaaa attaaggatg gttacaggac taaggaacac cccatccatt 1020caatccagag gtttgtttgg agccattgcc ggtttcattg aaggagggtg gactggaatg 1080gtagatggtt ggtatggtta tcaccatcag aatgagcaag gatctgggta tgctgcagac 1140caacaaagca cacaaaatgc cattaatggg attacaaaca aggtgaattc tgtgattgaa 1200aaaatgaaca ctcaattcac agctgtgggc aaagaattca acaaactgga aagaagaatg 1260gaaaacttaa ataaaaaggt tgatgatggg tttctagaca tttggacata taatgcagaa 1320ttgttagttc tactggaaaa tgaaaggact ttggatttcc atgactccaa cgtgaagaat 1380ctgtatgaga aagtaaaaag ccaattaaaa aataatgcca aagaaatagg aaacgggtgt 1440tttgaattct atcataagtg taacgatgaa tgcatggaga gtgtgaaaaa tggaacttat 1500gactatccaa aatattccga agaatcaaag ttaaacaggg agaaaattga tggagtgaaa 1560ttggaatcaa tgggagtcta taatatcctg gcgatctact caacagtcgc cagttcccta 1620gttcttttag tctccctggg ggcaatcagc ttctggatgt gttccaatgg gtctttacag 1680tgtagaatat gcatc 169530565PRTArtificial SequenceHA predicted AA of Influenza 10-0036-2 (n+1, relative to parent) 30Met Lys Val Lys Leu

Met Val Leu Leu Cys Thr Phe Thr Ala Thr Tyr 1 5 10 15 Ala Asp Thr Ile Cys Val Gly Tyr His Ala Asn Asn Ser Thr Asp Thr 20 25 30 Val Asp Thr Val Leu Glu Lys Asn Val Thr Val Thr His Ser Val Asn 35 40 45 Leu Leu Glu Asp Ser His Asn Gly Lys Leu Cys Leu Leu Lys Gly Ile 50 55 60 Ala Pro Leu Gln Leu Gly Asn Cys Ser Val Ala Gly Trp Ile Leu Gly 65 70 75 80 Asn Pro Glu Cys Glu Leu Leu Ile Ser Lys Glu Ser Trp Ser Tyr Ile 85 90 95 Val Glu Thr Pro Asn Pro Glu Asn Gly Thr Cys Tyr Pro Gly Tyr Phe 100 105 110 Thr Asp Tyr Glu Glu Leu Arg Glu Gln Leu Ser Ser Val Ser Ser Phe 115 120 125 Lys Arg Phe Glu Ile Phe Pro Lys Glu Ser Ser Trp Pro Asn His Thr 130 135 140 Val Thr Gly Val Ser Ser Ser Cys Ser His Asn Gly Lys Ser Ser Phe 145 150 155 160 Tyr Arg Asn Leu Leu Trp Leu Thr Val Lys Asn Gly Leu Tyr Pro Asn 165 170 175 Leu Ser Lys Ser Tyr Thr Asn Lys Lys Glu Lys Glu Val Leu Val Leu 180 185 190 Trp Gly Val His His Pro Ser Asn Ile Gly Asp Gln Arg Ala Leu Tyr 195 200 205 His Thr Glu Asn Ala Tyr Val Ser Val Val Ser Ser His Tyr Ser Arg 210 215 220 Arg Phe Thr Pro Glu Ile Ala Lys Arg Pro Lys Val Arg Asn Gln Glu 225 230 235 240 Gly Arg Ile Asn Tyr Tyr Trp Thr Leu Leu Glu Pro Gly Asp Thr Ile 245 250 255 Ile Phe Glu Ala Asn Gly Asn Leu Ile Ala Pro Arg Tyr Ala Phe Glu 260 265 270 Leu Ser Lys Gly Phe Gly Ser Gly Ile Ile Thr Ser Asn Ala Pro Met 275 280 285 Gly Glu Cys Asn Ala Lys Cys Gln Thr Pro Gln Gly Ala Ile Asn Ser 290 295 300 Ser Leu Pro Phe Gln Asn Val His Pro Val Thr Ile Gly Glu Cys Pro 305 310 315 320 Lys Tyr Val Lys Ser Ala Lys Leu Arg Met Val Thr Gly Leu Arg Asn 325 330 335 Thr Pro Ser Ile Gln Ser Arg Gly Leu Phe Gly Ala Ile Ala Gly Phe 340 345 350 Ile Glu Gly Gly Trp Thr Gly Met Val Asp Gly Trp Tyr Gly Tyr His 355 360 365 His Gln Asn Glu Gln Gly Ser Gly Tyr Ala Ala Asp Gln Gln Ser Thr 370 375 380 Gln Asn Ala Ile Asn Gly Ile Thr Asn Lys Val Asn Ser Val Ile Glu 385 390 395 400 Lys Met Asn Thr Gln Phe Thr Ala Val Gly Lys Glu Phe Asn Lys Leu 405 410 415 Glu Arg Arg Met Glu Asn Leu Asn Lys Lys Val Asp Asp Gly Phe Leu 420 425 430 Asp Ile Trp Thr Tyr Asn Ala Glu Leu Leu Val Leu Leu Glu Asn Glu 435 440 445 Arg Thr Leu Asp Phe His Asp Ser Asn Val Lys Asn Leu Tyr Glu Lys 450 455 460 Val Lys Ser Gln Leu Lys Asn Asn Ala Lys Glu Ile Gly Asn Gly Cys 465 470 475 480 Phe Glu Phe Tyr His Lys Cys Asn Asp Glu Cys Met Glu Ser Val Lys 485 490 495 Asn Gly Thr Tyr Asp Tyr Pro Lys Tyr Ser Glu Glu Ser Lys Leu Asn 500 505 510 Arg Glu Lys Ile Asp Gly Val Lys Leu Glu Ser Met Gly Val Tyr Asn 515 520 525 Ile Leu Ala Ile Tyr Ser Thr Val Ala Ser Ser Leu Val Leu Leu Val 530 535 540 Ser Leu Gly Ala Ile Ser Phe Trp Met Cys Ser Asn Gly Ser Leu Gln 545 550 555 560 Cys Arg Ile Cys Ile 565


Patent applications by Benjamin M. Hause, Currie, MN US

Patent applications by Merial Limited

Patent applications in class Orthomyxoviridae (e.g., influenza virus, fowl plague virus, etc.)

Patent applications in all subclasses Orthomyxoviridae (e.g., influenza virus, fowl plague virus, etc.)


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
People who visited this patent also read:
Patent application numberTitle
20140023500VERTICAL AXIS WIND AND HYDRAULIC TURBINE WITH FLOW CONTROL
20140023499PROPELLER OPERATION
20140023498ROTATING STALL DETECTION USING OPTICAL MEASUREMENT OF BLADE UNTWIST
20140023497COOLED TURBINE BLADE TIP SHROUD WITH FILM/PURGE HOLES
20140023496BEARING HOUSING OF AN EXHAUST-GAS TURBOCHARGER
Images included with this patent application:
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Attenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and imageAttenuated Swine Influenza Vaccines and Methods of Making and Use Thereof diagram and image
Similar patent applications:
DateTitle
2014-07-31Antibacterial imidazolium compound and antibacterial photocurable thiol-ene compositions comprising the same, and antibacterial polymer coatins prepared therefrom
2014-07-31Feeding attractant of spodoptera liturae larva and use thereof
2014-07-31Bionematicide composition and method for controlling phytopathogenic nematodes using the same
2014-07-31The controlled release method for a pharmaceutical composition composed of chelating complex micelles
New patent applications in this class:
DateTitle
2019-05-16Influenza vaccine regimens for pandemic associated strains
2016-09-01Esters of short chains fatty acids for use in the treatment of immunogenic disorders
2016-07-07Methods of immunization with varicella zoster virus antigen
2016-06-30Intranasal vaccination dosage regimen
2016-06-30Methods for the prevention of aggregation of viral components
New patent applications from these inventors:
DateTitle
2016-05-05Attenuated swine influenza vaccines and methods of making and use thereof
2013-08-01Influenza c virus and vaccine
2009-04-30Method of determining vaccine compliance
Top Inventors for class "Drug, bio-affecting and body treating compositions"
RankInventor's name
1David M. Goldenberg
2Hy Si Bui
3Lowell L. Wood, Jr.
4Roderick A. Hyde
5Yat Sun Or
Website © 2025 Advameg, Inc.