Patent application title: COMPOSITIONS COMPRISING CROSS-SPECIES-SPECIFIC ANTIBODIES AND USES THEREOF
Inventors:
Roman Kischel (Karlsfield, DE)
Tobias Raum (München, DE)
Tobias Raum (München, DE)
Bernd Schlereth (Germering, DE)
Doris Rau (Unterhaching, DE)
Doris Rau (Unterhaching, DE)
Ronny Cierpka (München, DE)
Peter Kufer (Moosburg, DE)
Assignees:
AMGEN RESEARCH (MUNICH) GMBH
IPC8 Class: AA61K39395FI
USPC Class:
4241351
Class name: Immunoglobulin, antiserum, antibody, or antibody fragment, except conjugate or complex of the same with nonimmunoglobulin material structurally-modified antibody, immunoglobulin, or fragment thereof (e.g., chimeric, humanized, cdr-grafted, mutated, etc.) single chain antibody
Publication date: 2013-05-23
Patent application number: 20130129729
Abstract:
The present invention relates to uses of bispecific antibodies exhibiting
cross-species specificity for evaluating the in vivo safety and/or
activity and/or pharmacokinetic profile of the same in non-human species
and humans. The present invention moreover relates to methods for
evaluating the in vivo safety and/or activity and/or pharmacokinetic
profile of said bispecific antibodies exhibiting cross-species
specificity. The present invention also relates to methods of measuring
the biological activity and/or efficacy of such bispecific antibodies
exhibiting cross-species specificity. In addition, the present invention
relates to pharmaceutical compositions comprising bispecific single chain
antibodies exhibiting cross-species specificity and to methods for the
preparation of pharmaceutical compositions comprising said bispecific
single chain antibodies exhibiting cross-species specificity for the
treatment of diseases.Claims:
1. A bispecific single chain antibody which comprises (i) a first binding
domain binding to an epitope of human and non-chimpanzee primate CD3, and
(ii) a second binding domain binding to a cell surface antigen, wherein
the epitope comprises the amino acid sequence "FSEXE" (SEQ ID NO. 204),
wherein "X" represents L (Leucine) or M (Methionine).
2. (canceled)
3. The bispecific single chain antibody of claim 1, wherein said first binding domain is located C-terminally or N-terminally to the second binding domain.
4. The bispecific single chain antibody of claim 1, wherein the second binding domain binds to a human cell surface antigen and to the non-chimpanzee primate homolog of said cell surface antigen.
5. The bispecific single chain antibody of claim 1, wherein the cell surface antigen is a tumor antigen.
6. The bispecific single chain antibody of claim 1, wherein the first binding domain comprises a VH region having an amino acid sequence as shown in any of SEQ ID NOs. 2, 110 or 6.
7. The bispecific single chain antibody of claim 1, wherein the first binding domain comprises a VL region having an amino acid sequence as shown in any of SEQ ID NOs. 4, 148, 168 or 8.
8. The bispecific single chain antibody of claim 1, wherein the VH region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 2 and the VL region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 4.
9. The bispecific single chain antibody of claim 1, wherein the VH region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 110 and the VL region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 148 or SEQ ID NO: 168.
10. The bispecific single chain antibody of claim 1, wherein the VH region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 6 and the VL region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 8.
11. The bispecific single chain antibody of claim 5, wherein said tumor antigen is EpCAM, EGFR, EGFRvIII or Carboanhydrase IX (MN/CA IX).
12. The bispecific single chain antibody of claim 1, wherein the non-chimpanzee primate is a baboon, marmoset or an old world monkey.
13. The bispecific single chain antibody of claim 12, wherein the old world monkey is a monkey of the macaque genus.
14. The bispecific single chain antibody of claim 13, wherein the monkey of the macaque genus is Assamese macaque (Macaca assamensis), Barbary macaque (Macaca sylvanus), Bonnet macaque (Macaca radiata), Booted or Sulawesi-Booted macaque (Macaca ochreata), Sulawesi-crested macaque (Macaca nigra), Formosan rock macaque (Macaca cyclopsis), Japanese snow macaque or Japanese macaque (Macaca fuscata), Cynomolgus monkey or crab-eating macaque or long-tailed macaque or Java macaque (Macaca fascicularis), Lion-tailed macaque (Macaca silenus), Pigtailed macaque (Macaca nemestrina), Rhesus macaque (Macaca mulatta), Tibetan macaque (Macaca thibetana), Tonkean macaque (Macaca tonkeana), Toque macaque (Macaca sinica), Stump-tailed macaque or Red-faced macaque or Bear monkey (Macaca arctoides), or Moor macaque (Macaca maurus).
15. The bispecific single chain antibody of claim 1, wherein the non-chimpanzee primate CD3 comprises or consists of an amino acid sequence shown in SEQ ID NOs. 135, 136, 144 or 145.
16. The bispecific single chain antibody of claim 1, wherein said bispecific single chain antibody comprises an amino acid sequence selected from the group consisting of: (a) an amino acid sequence as depicted in any of SEQ ID NOs. 38, 40, 124, 42 or 44; (b) an amino acid sequence encoded by a nucleic acid sequence as shown in SEQ ID NOs. 37, 39, 125, 41 or 43; (c) an amino acid sequence encoded by a nucleic acid sequence hybridising under stringent conditions to the complementary nucleic acid sequence of (b); (d) an amino acid sequence encoded by a nucleic acid sequence which is degenerate as a result of the genetic code to a nucleotide sequence of (b); and (e) an amino acid sequence at least 85% identical, more preferred at least 90% identical, most preferred at least 95% identical to the amino acid sequence of (a) or (b).
17. The bispecific single chain antibody of claim 1, wherein said bispecific single chain antibody comprises an amino acid sequence selected from the group consisting of: (a) an amino acid sequence as depicted in any of SEQ ID NOs. 66, 68, 74, 76, 122, 70, 72, 78, 80, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, or 192; (b) an amino acid sequence encoded by a nucleic acid sequence as shown in SEQ ID NOs. 65, 67, 73, 75, 123, 69, 71, 77, 79, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, or 191; (c) an amino acid sequence encoded by a nucleic acid sequence hybridising under stringent conditions to the complementary nucleic acid sequence of (b); (d) an amino acid sequence encoded by a nucleic acid sequence which is degenerate as a result of the genetic code to a nucleotide sequence of (b); and (e) an amino acid sequence at least 85% identical, more preferred at least 90% identical, most preferred at least 95% identical to the amino acid sequence of (a) or (b).
18. The bispecific single chain antibody of claim 1, wherein at least one of said first or second binding domains is human, humanized, CDR-grafted and/or deimmunized.
19. An isolated nucleic acid sequence encoding the bispecific single chain antibody of claim 1.
20. A vector which comprises a nucleic acid sequence of claim 19, wherein said vector optionally comprises a regulatory sequence which is operably linked to said nucleic acid sequence.
21.-22. (canceled)
23. A host transformed or transfected with said nucleic acid sequence of claim 19 or a vector comprising said nucleic acid sequence.
24. The pharmaceutical composition of claim 26, further comprising a proteinaceous compound capable of providing an activation signal for immune effector cells.
25. A process for the production of a bispecific single chain antibody comprising culturing a host transformed or transfected with a nucleic acid sequence encoding the bispecific single chain antibody of claim 1 or a vector comprising said nucleic acid sequence, under conditions allowing the expression of the bispecific single chain antibody, and recovering the produced bispecific single chain antibody from the culture.
26. A pharmaceutical composition comprising the bispecific single chain antibody of claim 1, which is further comprises suitable formulations of carriers, stabilizers and/or excipients.
27.-30. (canceled)
31. A method for the prevention, treatment or amelioration of a disease in a subject in the need thereof, said method comprising the administration of an effective amount of a pharmaceutical composition of claim 26.
32. The method of claim 31, wherein said disease is a proliferative disease, a tumorous disease, or an immunological disorder.
33. The method of claim 32, wherein said tumorous disease is a malignant disease, preferably cancer.
34. The method of claim 31, wherein said pharmaceutical composition comprising the bispecific single chain antibody is administered in combination with an additional drug.
35. The method of claim 34, wherein said drug is a non-proteinaceous compound or a proteinaceous compound.
36. The method of claim 35, comprising the administration of a proteinaceous compound capable of providing an activation signal for immune effector cells.
37. The method of claim 35, wherein said proteinaceous compound or non-proteinaceous compound is administered simultaneously or non-simultaneously with the pharmaceutical composition comprising the bispecific single chain antibody.
38. The method of claim 31, wherein said subject is a human.
39. A kit comprising a bispecific single chain antibody of claim 1.
40.-43. (canceled)
Description:
[0001] The present invention relates to uses of bispecific antibodies
exhibiting cross-species specificity for evaluating the in vivo safety
and/or activity and/or pharmacokinetic profile of the same in non-human
species and humans. The present invention moreover relates to methods for
evaluating the in vivo safety and/or activity and/or pharmacokinetic
profile of said bispecific antibodies exhibiting cross-species
specificity. The present invention also relates to methods of measuring
the biological activity and/or efficacy of such bispecific antibodies
exhibiting cross-species specificity. In addition, the present invention
relates to pharmaceutical compositions comprising bispecific single chain
antibodies exhibiting cross-species specificity and to methods for the
preparation of pharmaceutical compositions comprising said bispecific
single chain antibodies exhibiting cross-species specificity for the
treatment of diseases.
[0002] In order to be marketed, any new candidate medication must pass through rigorous testing. Roughly, this testing can be subdivided into preclinical and clinical phases: Whereas the latter--further subdivided into the generally known clinical phases I, II and III--is performed in human patients, the former is performed in animals. Generally, the aim of pre-clinical testing is to prove that the drug candidate works and is efficacious and safe. Specifically, the purpose of these animal studies is to prove that the drug is not carcinogenic, mutagenic or teratogenic, as well as to understand the pharmacokinetic of the drug. Only when the safety in animals and possible effectiveness of the drug candidate has been established in preclinical testing will this drug candidate be approved for clinical testing in humans.
[0003] The behavior of a small molecule drug candidate, e.g. a new anthracycline-based antineoplastic agent, in animals will in many cases be indicative of the expected behavior of this drug candidate upon administration to humans. As a result, the data obtained from such preclinical testing will therefore generally have a high predictive power for the human case. However, such compatibility is not to be expected with all types of drug candidates; certain molecular formats would be expected to behave one way in animals and another way in humans. In such cases, the predictive power of preclinical tests--and hence the likelihood of approval of the drug candidate for clinical testing--is greatly reduced.
[0004] One format of drug candidate which often acts differently in animals than in humans is an antibody. Generally, antibodies function by way of highly specific recognition of--usually proteinaceous--target molecules. Most antibody drug candidates are monoclonal antibodies; they recognize only a single site, or epitope, on their target molecule. However, while this discriminatory ability inherent to monoclonal antibodies and fragments thereof makes these compounds very interesting candidates for drug development, it also complicates their preclinical testing. This is because of species-dependent variations in the sequence of the target molecule bound by such antibodies. A monoclonal antibody or fragment thereof which specifically recognizes and binds to, say, molecule Y via epitope X in humans, will often fail to specifically recognize and bind to the corresponding molecule Y' in a non-human species since the corresponding epitope X' may be different from its human counterpart X. Thus, monoclonal antibodies (e.g. against human antigens) by design tend to have limited reactivity to phylogenetically distant species such as rodents, except in the very rare cases in which the antigen is highly conserved. Even among the group of monoclonal antibodies with reactivity to human and primate antigens, there are numerous examples of antibodies which react only with the human and chimpanzee antigen homologs. This has also been observed for anti-CD3 monoclonal antibodies. One of the most widely used and best characterized monoclonal antibodies specific for the CD3 complex is OKT-3 which reacts with chimpanzee CD3 but not with the CD3 homolog of other primates, such as macaques, or with dog CD3 (Sandusky et al., J. Med. Primatol. 15 (1986), 441-451). The anti-CD3 monoclonal antibody UCHT-1 is also reactive with CD3 from chimpanzee but not with CD3 from macaques (own data; see the following Examples). On the other hand, there are also examples of monoclonal antibodies which recognize macaque antigens, but not their human counterparts. One example of this group is monoclonal antibody FN-18 directed to CD3 from macaques (Uda et al., J. Med. Primatol. 30 (2001), 141-147). Interestingly, it has been found that peripheral lymphocytes from about 12% of cynomolgus monkeys lacked reactivity with anti-rhesus monkey CD3 monoclonal antibody (FN-18) due to a polymorphism of the CD3 antigen in macaques. Uda et al. described a substitution of two amino acids in the CD3 sequence of cynomolgus monkeys which are not reactive with FN-18 antibodies, as compared to CD3 derived from animals which are reactive with FN-18 antibodies (Uda et al., J Med. Primatol. 32 (2003), 105-10; Uda et al., J Med. Primatol. 33 (2004), 34-7).
[0005] Similar difficulties with the high specificity of monoclonal antibodies in preclinical animal testing are observed with bispecific antibodies, for example a recombinant bispecific single chain antibody of the general type disclosed in, for example, U.S. Pat. No. 5,260,203. This added difficulty is due to the fact that a bispecific antibody, for example a bispecific single chain antibody, comprises two distinct binding domains, either one of which--or both--may fail to recognize the non-human counterpart of its human target molecule. Effectively, the risk that e.g. a bispecific single chain antibody, will fail to recognize its intended respective target molecules in an animal is twice as high as with a monospecific antibody or fragment thereof.
[0006] There exist several known strategies for countering such problems.
[0007] One known approach is to perform preclinical testing of the (bispecific) antibody drug candidate or fragment thereof in a chimpanzee model. The chimpanzee is the closest genetic relative to human, identical to the latter in over 99% of its genome, so the chimpanzee variant of a molecule specifically bound by a (bispecific) antibody drug candidate or fragment thereof is very likely to be identical to the human variant of this molecule. The danger of non-recognition of this molecule by the (bispecific) antibody drug candidate or fragment thereof in chimpanzee is therefore minimized. However, testing in chimpanzees is very expensive and fraught with ethical problems. Furthermore, chimpanzees are endangered animals so that the number of animals which can be used in experimentation is very limited. For most developers of (bispecific) antibody therapeutics, such preclinical testing in chimpanzees is therefore precluded.
[0008] The above approach is described e.g. in Schlereth et al. (Cancer Immunol. Immunother. 20 (2005), 1-12). In this study, the biological activity of a clinical drug candidate, bispecific single chain antibody CD19×CD3, has been tested in chimpanzee. CD19×CD3 antibody, previously described in WO 99/54440 for therapeutic administration in humans, is a bispecific single chain antibody specifically binding to human B cell antigen CD19 and human T cell antigen CD3. The authors of this paper found that this bispecific single chain antibody bound to both human and chimpanzee variants of the CD3 and CD19 molecule. However, no reactivity of said bispecific single chain antibody to B and T cells from other species, i.e. mouse, beagle dog, and non-chimpanzee primates (cynomolgus, rhesus and baboon), could be found, again confirming the extreme species sensitivity of monoclonal antibodies.
[0009] Another approach adapts the molecule used in preclinical testing to the animal used for this testing. According to this approach, the requisite safety information is obtained in preclinical studies by constructing so-called "surrogate" antibodies for administration to test animals. Generally, such a surrogate antibody is an antibody which has been modified so as to specifically recognize and bind to the test animal counterpart of the target molecule bound by the non-surrogate antibody, i.e. the actual drug candidate in humans. Thus, in approaches using such "surrogate" antibodies, two different molecules have to be separately developed and investigated: the clinical drug candidate and a candidate for preclinical testing in an animal species corresponding to the target specificity of the clinical candidate. The major drawback of such surrogate approaches is that the surrogate antibody for preclinical testing has been modified vis-a-vis the actual drug candidate antibody. Therefore, the data obtained in preclinical testing using a surrogate antibody are often not directly applicable to the human case. As explained above, this reduced applicability ultimately reduces the predictive power of any preclinical study using these approaches.
[0010] While the above approach adapts the drug candidate to match the animal used for testing, other known approaches do exactly the converse; according to these other known approaches, the animal used for testing is adapted to the drug candidate intended for administration to humans.
[0011] One example of the adaptation of the test animal to the drug candidate intended for administration to humans, is the creation of a transgenic animal expressing the human molecule specifically bound by the (bispecific) antibody or fragment thereof instead of the non-human molecule which is endogenous to its own species. In this way, the (bispecific) antibody or fragment thereof administered in preclinical trials will encounter and bind to the human antigen in the transgenic test animal. For example, in a study designed by Bugelski et al. (Bugelski et al., Hum Exp Toxicol. 19 (2000), 230-243), preclinical safety assessment of monoclonal antibody Keliximab has been carried out in a human CD4 transgenic mouse in order to support chronic treatment of rheumatoid arthritis in human patients. Keliximab is a monoclonal antibody with specificity for human and chimpanzee CD4. The authors conclude that the use of transgenic mice expressing human proteins provides a useful alternative to studies in chimpanzees with biopharmaceutical agents having limited cross-species specificity (Bugelski et al., Hum Exp Toxicol. 19 (2000), 230-243). However, creation of transgenic animals for test purposes is very labor- and therefore cost-intensive.
[0012] In the same vein, an alternative approach often employed is to inject a non-transgenic test animal with human cells expressing the molecule to be specifically bound by the (bispecific) antibody or fragment thereof being tested. However, while avoiding the costs and time associated with constructing transgenic animal species, this approach presents other problems. For one, in approaches using e.g. immunocompetent mice, foreign cells introduced into the animal are often recognized by the immune system of the test animal and are systematically eliminated. Although immunodeficient mice allow the injection and growth of non-syngeneic cells, for instance in xenograft tumor models, the applicability of the data obtained for the drug candidate in such studies is limited due to the phylogenetic distance between rodents and humans. In addition, multiple blood extractions are problematic in lower animals, say a mouse. However, such multiple blood extractions are essential for the determination of pharmacokinetic parameters and the continuous testing of blood parameters for evaluating the biological effects of a drug candidate in preclinical animal testing.
[0013] In summary, there are two main approaches of obtaining preclinical data on safety and toxicity of a drug candidate for administration in humans. One way is the application of the clinical drug candidate to transgenic animal models, mostly mouse models. However, preclinical data are of limited explanatory power due to the fact that rodents are less related to humans compared to primates. Another way is the testing of surrogate molecules in a relevant animal species. These surrogate molecules are specific for the animals used and are therefore different from the clinical drug candidate developed for administration in humans. The problem is that the clinical drug candidate cannot directly be applied in an animal other than chimpanzees which is closely related to humans and has highly predictive power when used in preclinical testing. Existing methods for obtaining meaningful preclinical data regarding a (bispecific) antibody or fragment thereof undergoing testing as a drug candidate either match this antibody to the test animal, in which case the data obtained are often of only limited applicability for the drug candidate or, conversely, match the test animal to the antibody, in which case ethical and/or cost difficulty arise/s and, in the worst case, the applicability of the data obtained for the drug candidate may still be limited.
[0014] It is therefore an aim of the invention to provide a solution to the problems outlined above.
[0015] The solution to these problems is the provision of bispecific single chain antibodies exhibiting cross-species specificity which bind to human and non-chimpanzee primate target molecules and therefore can be used both for preclinical evaluation of safety, activity and/or pharmacokinetic profile of said bispecific antibody in primates and--in the identical form--as drugs in humans.
[0016] Accordingly, one aspect of the invention relates to the use of a bispecific single chain antibody comprising a first binding domain binding to a non-chimpanzee primate CD3, and a second binding domain binding to a cell surface antigen antigen, wherein said first binding domain binds to human and non-chimpanzee primate CD3, for evaluating the (in vivo) safety and/or activity and/or pharmacokinetic profile of said bispecific single chain antibody in humans, comprising (i) administering said bispecific single chain antibody to a non-chimpanzee primate, (ii) measuring said (in vivo) safety and/or activity and/or pharmacokinetic profile of said bispecific single chain antibody in said non-chimpanzee primate, and (iii) evaluating the (in vivo) safety and/or activity and/or pharmacokinetic profile of said bispecific single chain antibody in humans.
[0017] In another aspect, the invention relates to a method for evaluating the biological activity/safety/toxicity of a bispecific single chain antibody as defined above, comprising
(i) administering said bispecific single chain antibody to a non-chimpanzee primate, (ii) measuring the in vivo safety and/or activity and/or pharmacokinetic profile of said bispecific single chain antibody in said non-chimpanzee primate, (iii) evaluating the in vivo safety and/or activity and/or pharmacokinetic profile of said bispecific single chain antibody in the non-chimpanzee primate, and (iv) determining an effective and non-toxic dose of said bispecific single chain antibody and administering said dose to humans.
[0018] In particular, it is an aim of the invention to provide means and methods which improve the predictive value of data obtained in preclinical animal testing for the administration of the drug candidate to humans.
[0019] As used herein, a "bispecific single chain antibody" denotes a single polypeptide chain comprising two binding domains. Each binding domain comprises one variable region from an antibody heavy chain ("VH region"), wherein the VH region of the first binding domain specifically binds to said first molecule, i.e. the CD3 molecule, and the VH region of the second binding domain specifically binds to a cell surface antigen, as defined in more detail below. The two binding domains are optionally linked to one another by a short polypeptide spacer generally comprising on the order of 5 amino acids. Each binding domain may additionally comprise one variable region from an antibody light chain ("VL region"), the VH region and VL region within each of the first and second binding domains being linked to one another via a polypeptide linker, for example of the type disclosed and claimed in EP 623679 B1, but in any case long enough to allow the VH region and VL region of the first binding domain and the VH region and VL region of the second binding domain to pair with one another such that, together, they are able to specifically bind to the respective first and second molecules.
[0020] As used herein, the term "binds" or related expressions such as "binding" or "reactivity with/to" etc. refer to the ability of the first and/or second binding domains of the bispecific single chain antibody as defined herein to discriminate between the respective first and/or second molecule to such an extent that, from a pool of a plurality of different molecules as potential binding partners, only said respective first and/or second molecule is/are bound, or is/are significantly bound. Such binding measurements can be routinely performed e.g. on a Biacore apparatus.
[0021] More specifically, the first binding domain of the bispecific single chain antibody as defined herein binds to human CD3 and to non-chimpanzee primate CD3. The term "non-chimpanzee primate" is explained in more detail below. As evident to the person skilled in the art, it is not excluded from the scope of the invention that the first binding domain of the bispecific single chain antibodies exhibiting cross-species specificity as defined herein may also bind, e.g., to chimpanzee CD3. On the other hand, it is apparent that binding domains which only bind to human CD3, but not to non-chimpanzee primate CD3, are excluded from the scope of the invention. This applies mutatis mutandis to binding domains which only bind to non-chimpanzee primate CD3, but not to human CD3, such as e.g. those of monoclonal antibody FN-18.
[0022] The second binding domain of the bispecific single chain antibodies as defined herein binds to a cell surface antigen, preferably a tumor antigen, as set forth below. Preferably, both binding molecules of the bispecific single chain antibodies as defined herein are binding to their respective human and non-chimpanzee primate target molecules. The second binding domain, thus, binds to a human cell surface antigen and to the corresponding homolog of the cell surface antigen in a non-chimpanzee primate. The identification and determination of homologs of human cell surface antigens in non-chimpanzee primates is well known to the person skilled in the art and can be carried out e.g. by sequence alignments.
[0023] The term "cross-species specificity" or "interspecies specificity" as used herein means binding of at least one of the two binding domains, preferably of both binding domains, of the bispecific single chain antibody described herein to the same target molecule in humans and non-chimpanzee primates. Thus, "cross-species specificity" or "interspecies specificity" is to be understood as an interspecies reactivity to the same molecule X, but not to a molecule other than X. Cross-species specificity of a monoclonal antibody recognizing e.g. human CD3, to a non-chimpanzee primate CD3, e.g. macaque CD3, can be determined, for instance, by FACS analysis. The FACS analysis is carried out in a way that the respective monoclonal antibody is tested for binding to human and non-chimpanzee primate cells, e.g. macaque cells, expressing said human and non-chimpanzee primate CD3 antigens, respectively. An appropriate assay is shown in the following examples. For the generation of the first binding domain of the bispecific single chain antibodies as defined herein, e.g. monoclonal antibodies binding to both the human and non-chimpanzee CD3 (e.g. macaque CD3) can be used. Similarly, for the generation of the second binding domain of the bispecific single chain antibodies as defined herein, monoclonal antibodies binding to both of the respective human and non-chimpanzee primate cell surface antigens can be utilized. Appropriate binding domains for the bispecific single chain antibodies as defined herein can be derived from cross-species specific monoclonal antibodies by recombinant methods described in the art. A monoclonal antibody binding to a human cell surface antigen and to the homolog of said cell surface antigen in a non-chimpanzee primate can be tested by FACS assays as set forth above. It is evident to those skilled in the art that cross-species specific monoclonal antibodies can also be generated by hybridoma techniques described in the literature (Milstein and Kohler, Nature 256 (1975), 495-7). For example, mice may be alternately immunized with human and non-chimpanzee primate CD3. From these mice, cross-species specific antibody-producing hybridoma cells are isolated via hybridoma technology and analysed by FACS as set forth above. The generation and analysis of bispecific single chain antibodies exhibiting cross-species specificity as described herein is shown in the following examples. The advantages of the bispecific single chain antibodies exhibiting cross-species specificity include the points enumerated below.
[0024] As used herein, "human" and "man" refers to the species Homo sapiens. A "human" molecule is therefore the variant of that molecule as it is naturally expressed in Homo sapiens. As far as the medical uses of the constructs described herein are concerned, human patients are to be treated with the same.
[0025] As used herein, a "non-chimpanzee primate" or "non-chimp primate" or grammatical variants thereof refers to any primate other than chimpanzee, i.e. other than an animal of belonging to the genus Pan, and including the species Pan paniscus and Pan troglodytes, also known as Anthropopithecus troglodytes or Simia satyrus. A "primate", "primate species", "primates" or grammatical variants thereof denote/s an order of eutherian mammals divided into the two suborders of prosimians and anthropoids and comprising man, apes, monkeys and lemurs. Specifically, "primates" as used herein comprises the suborder Strepsirrhini (non-tarsier prosimians), including the infraorder Lemuriformes (itself including the superfamilies Chemogaleoidea and Lemuroidea), the infraorder Chiromyiformes (itself including the family Daubentoniidae) and the infraorder Lorisiformes (itself including the families Lorisidae and Galagidae). "Primates" as used herein also comprises the suborder Haplorrhini, including the infraorder Tarsiiformes (itself including the family Tarsiidae), the infraorder Simiiformes (itself including the Platyrrhini, or New World monkeys, and the Catarrhini, including the Cercopithecidea, or Old-World Monkeys).
[0026] The non-chimpanzee primate species may be understood within the meaning of the invention to be a lemur, a tarsier, a gibbon, a marmoset (belonging to New World Monkeys of the family Cebidae) or an Old-World Monkey (belonging to the superfamily Cercopithecoidea).
[0027] As used herein, an "Old-World Monkey" comprises any monkey falling in the superfamily Cercopithecoidea, itself subdivided into the families: the Cercopithecinae, which are mainly African but include the diverse genus of macaques which are Asian and North African; and the Colobinae, which include most of the Asian genera but also the African colobus monkeys.
[0028] Specifically, within the subfamily Cercopithecinae, an advantageous non-chimpanzee primate may be from the Tribe Cercopithecini, within the genus Allenopithecus (Allen's Swamp Monkey, Allenopithecus nigroviridis); within the genus Miopithecus (Angolan Talapoin, Miopithecus talapoin; Gabon Talapoin, Miopithecus ogouensis); within the genus Erythrocebus (Patas Monkey, Erythrocebus patas); within the genus Chlorocebus (Green Monkey, Chlorocebus sabaceus; Grivet, Chlorocebus aethiops; Bale Mountains Vervet, Chlorocebus djamdjamensis; Tantalus Monkey, Chlorocebus tantalus; Vervet Monkey, Chlorocebus pygerythrus; Malbrouck, Chlorocebus cynosuros); or within the genus Cercopithecus (Dryas Monkey or Salongo Monkey, Cercopithecus dryas; Diana Monkey, Cercopithecus diana; Roloway Monkey, Cercopithecus roloway; Greater Spot-nosed Monkey, Cercopithecus nictitans; Blue Monkey, Cercopithecus mitis; Silver Monkey, Cercopithecus doggetti; Golden Monkey, Cercopithecus kandti; Sykes's Monkey, Cercopithecus albogularis; Mona Monkey, Cercopithecus mona; Campbell's Mona Monkey, Cercopithecus campbelli; Lowe's Mona Monkey, Cercopithecus lowei; Crested Mona Monkey, Cercopithecus pogonias; Wolfs Mona Monkey, Cercopithecus wolfi; Dent's Mona Monkey, Cercopithecus denti; Lesser Spot-nosed Monkey, Cercopithecus petaurista; White-throated Guenon, Cercopithecus erythrogaster; Sclater's Guenon, Cercopithecus sclateri; Red-eared Guenon, Cercopithecus erythrotis; Moustached Guenon, Cercopithecus cephus; Red-tailed Monkey, Cercopithecus ascanius; L'Hoest's Monkey, Cercopithecus lhoesti; Preuss's Monkey, Cercopithecus preussi; Sun-tailed Monkey, Cercopithecus solatus; Hamlyn's Monkey or Owl-faced Monkey, Cercopithecus hamlyni; De Brazza's Monkey, Cercopithecus neglectus).
[0029] Alternatively, an advantageous non-chimpanzee primate, also within the subfamily Cercopithecinae but within the Tribe Papionini, may be from within the genus Macaca (Barbary Macaque, Macaca sylvanus; Lion-tailed Macaque, Macaca silenus; Southern Pig-tailed Macaque or Beruk, Macaca nemestrina; Northern Pig-tailed Macaque, Macaca leonina; Pagai Island Macaque or Bokkoi, Macaca pagensis; Siberut Macaque, Macaca siberu; Moor Macaque, Macaca maura; Booted Macaque, Macaca ochreata; Tonkean Macaque, Macaca tonkeana; Heck's Macaque, Macaca hecki; Gorontalo Macaque, Macaca nigriscens; Celebes Crested Macaque or Black "Ape", Macaca nigra; Cynomolgus monkey or Crab-eating Macaque or Long-tailed Macaque or Kera, Macaca fascicularis; Stump-tailed Macaque or Bear Macaque, Macaca arctoides; Rhesus Macaque, Macaca mulatta; Formosan Rock Macaque, Macaca cyclopis; Japanese Macaque, Macaca fuscata; Toque Macaque, Macaca sinica; Bonnet Macaque, Macaca radiata; Barbary Macaque, Macaca sylvanmus; Assam Macaque, Macaca assamensis; Tibetan Macaque or Milne-Edwards' Macaque, Macaca thibetana; Arunachal Macaque or Munzala, Macaca munzala); within the genus Lophocebus (Gray-cheeked Mangabey, Lophocebus albigena; Lophocebus albigena albigena; Lophocebus albigena osmani; Lophocebus albigena johnstoni; Black Crested Mangabey, Lophocebus aterrimus; Opdenbosch's Mangabey, Lophocebus opdenboschi; Highland Mangabey, Lophocebus kipunji); within the genus Papio (Hamadryas Baboon, Papio hamadryas; Guinea Baboon, Papio papio; Olive Baboon, Papio anubis; Yellow Baboon, Papio cynocephalus; Chacma Baboon, Papio ursinus); within the genus Theropithecus (Gelada, Theropithecus gelada); within the genus Cercocebus (Sooty Mangabey, Cercocebus atys; Cercocebus atys atys; Cercocebus atys lunulatus; Collared Mangabey, Cercocebus torquatus; Agile Mangabey, Cercocebus agilis; Golden-bellied Mangabey, Cercocebus chrysogaster; Tana River Mangabey, Cercocebus galeritus; Sanje Mangabey, Cercocebus sanjei); or within the genus Mandrillus (Mandrill, Mandrillus sphinx; Drill, Mandrillus leucophaeus).
[0030] Most preferred is Macaca fascicularis (also known as Cynomolgus monkey and, therefore, in the Examples named "Cynomolgus") and Macaca mulatta (rhesus monkey, named "rhesus").
[0031] Within the subfamily Colobinae, an advantageous non-chimpanzee primate may be from the African group, within the genus Colobus (Black Colobus, Colobus satanas; Angola Colobus, Colobus angolensis; King Colobus, Colobus polykomos; Ursine Colobus, Colobus vellerosus; Mantled Guereza, Colobus guereza); within the genus Piliocolobus (Western Red Colobus, Piliocolobus badius; Piliocolobus badius badius; Piliocolobus badius temminckii; Piliocolobus badius waldronae; Pennant's Colobus, Piliocolobus pennantii; Piliocolobus pennantii pennantii; Piliocolobus pennantii epieni; Piliocolobus pennantii bouvieri; Preuss's Red Colobus, Piliocolobus preussi; Thollon's Red Colobus, Piliocolobus tholloni; Central African Red Colobus, Piliocolobus foai; Piliocolobus foai foai; Piliocolobus foai ellioti; Piliocolobus foai oustaleti; Piliocolobus foai semlikiensis; Piliocolobus foai parmentierorum; Ugandan Red Colobus, Piliocolobus tephrosceles; Uzyngwa Red Colobus, Piliocolobus gordonorum; Zanzibar Red Colobus, Piliocolobus kirkii; Tana River Red Colobus, Piliocolobus rufomitratus); or within the genus Procolobus (Olive Colobus, Procolobus verus).
[0032] Within the subfamily Colobinae, an advantageous non-chimpanzee primate may alternatively be from the Langur (leaf monkey) group, within the genus Semnopithecus (Nepal Gray Langur, Semnopithecus schistaceus; Kashmir Gray Langur, Semnopithecus ajax; Tarai Gray Langur, Semnopithecus hector; Northern Plains Gray Langur, Semnopithecus entellus; Black-footed Gray Langur, Semnopithecus hypoleucos; Southern Plains Gray Langur, Semnopithecus dussumieri; Tufted Gray Langur, Semnopithecus priam); within the T. vetulus group or the genus Trachypithecus (Purple-faced Langur, Trachypithecus vetulus; Nilgiri Langur, Trachypithecus johnii); within the T. cristatus group of the genus Trachypithecus (Javan Lutung, Trachypithecus auratus; Silvery Leaf Monkey or Silvery Lutung, Trachypithecus cristatus; Indochinese Lutung, Trachypithecus germaini; Tenasserim Lutung, Trachypithecus barbei); within the T. obscurus group of the genus Trachypithecus (Dusky Leaf Monkey or Spectacled Leaf Monkey, Trachypithecus obscurus; Phayre's Leaf Monkey, Trachypithecus phayrei); within the T. pileatus group of the genus Trachypithecus (Capped Langur, Trachypithecus pileatus; Shortridge's Langur, Trachypithecus shortridgei; Gee's Golden Langur, Trachypithecus geei); within the T. francoisi group of the genus Trachypithecus (Francois' Langur, Trachypithecus francoisi; Hatinh Langur, Trachypithecus hatinhensis; White-headed Langur, Trachypithecus poliocephalus; Laotian Langur, Trachypithecus laotum; Delacour's Langur, Trachypithecus delacouri; Indochinese Black Langur, Trachypithecus ebenus); or within the genus Presbytis (Sumatran Surili, Presbytis melalophos; Banded Surili, Presbytis femoralis; Sarawak Surili, Presbytis chrysomelas; White-thighed Surili, Presbytis siamensis; White-fronted Surili, Presbytis frontata; Javan Surili, Presbytis comata; Thomas's Langur, Presbytis thomasi; Hose's Langur, Presbytis hosei; Maroon Leaf Monkey, Presbytis rubicunda; Mentawai Langur or Joja, Presbytis potenziani; Natuna Island Surili, Presbytis natunae).
[0033] Within the subfamily Colobinae, an advantageous non-chimpanzee primate may alternatively be from the Odd-Nosed group, within the genus Pygathrix (Red-shanked Douc, Pygathrix nemaeus; Black-shanked Douc, Pygathrix nigripes; Gray-shanked Douc, Pygathrix cinerea); within the genus Rhinopithecus (Golden Snub-nosed Monkey, Rhinopithecus roxellana; Black Snub-nosed Monkey, Rhinopithecus bieti; Gray Snub-nosed Monkey, Rhinopithecus brelichi; Tonkin Snub-nosed Langur, Rhinopithecus avunculus); within the genus Nasalis (Proboscis Monkey, Nasalis larvatus); or within the genus Simias (Pig-tailed Langur, Simias concolor).
[0034] As used herein, the term "marmoset" denotes any New World Monkeys of the genus Callithrix, for example belonging to the Atlantic marmosets of subgenus Callithrix (sic!) (Common Marmoset, Callithrix (Callithrix) jacchus; Black-tufted Marmoset, Callithrix (Callithrix) penicillata; Wied's Marmoset, Callithrix (Callithrix) kuhlii; White-headed Marmoset, Callithrix (Callithrix) geoffroyi; Buffy-headed Marmoset, Callithrix (Callithrix) flaviceps; Buffy-tufted Marmoset, Callithrix (Callithrix) aurita); belonging to the Amazonian marmosets of subgenus Mico (Rio Acari Marmoset, Callithrix (Mico) acariensis; Manicore Marmoset, Callithrix (Mico) manicorensis; Silvery Marmoset, Callithrix (Mico) argentata; White Marmoset, Callithrix (Mico) leucippe; Emilia's Marmoset, Callithrix (Mico) emiliae; Black-headed Marmoset, Callithrix (Mico) nigriceps; Marca's Marmoset, Callithrix (Mico) marcai; Black-tailed Marmoset, Callithrix (Mico) melanura; Santarem Marmoset, Callithrix (Mico) humeralifera; Maues Marmoset, Callithrix (Mico) mauesi; Gold-and-white Marmoset, Callithrix (Mico) chrysoleuca; Hershkovitz's Marmoset, Callithrix (Mico) intermedia; Salere Marmoset, Callithrix (Mico) saterei); Roosmalens' Dwarf Marmoset belonging to the subgenus Callibella (Callithrix (Callibella) humilis); or the Pygmy Marmoset belonging to the subgenus Cebuella (Callithrix (Cebuella) pygmaea).
[0035] As used herein, CD3 denotes a molecule expressed as part of the T cell receptor and has the meaning as typically ascribed to it in the prior art. In human, it encompasses in individual or independently combined form all known CD3 subunits, for example CD3 epsilon, CD3 delta, CD3 gamma, CD3 zeta, CD3 alpha and CD3 beta. The non-chimpanzee primate CD3 antigens as referred to herein are, for example, Macaca fascicularis CD3 and Macaca mulatta CD3. In Macaca fascicularis, it encompasses CD3 epsilon FN-18 negative and CD3 epsilon FN-18 positive, CD3 gamma and CD3 delta. In Macaca mulatta, it encompasses CD3 epsilon, CD3 gamma and CD3 delta. Preferably, said CD3 as used herein is CD3 epsilon. The human CD3 epsilon is indicated in GenBank Accession No. NM--000733 and comprises SEQ ID NO. 134. The human CD3 gamma is indicated in GenBank Accession No. NM--000073 and comprises SEQ ID NO. 142. The human CD3 delta is indicated in GenBank Accession No. NM--000732 and comprises SEQ ID NO. 143.
[0036] The CD3 epsilon "FN-18 negative" of Macaca fascicularis (i.e. CD3 epsilon not recognized by monoclonal antibody FN-18 due to a polymorphism as set forth above) is indicated in GenBank Accession No. AB073994 and comprises SEQ ID NO. 136. The CD3 epsilon "FN-18 positive" of Macaca fascicularis (i.e. CD3 epsilon recognized by monoclonal antibody FN-18) is indicated in GenBank Accession No. AB073993 and comprises SEQ ID NO. 135. The CD3 gamma of Macaca fascicularis is indicated in GenBank Accession No. AB073992 and comprises SEQ ID NO. 144. The CD3 delta of Macaca fascicularis is indicated in GenBank Accession No. AB073991 and comprises SEQ ID NO. 145.
[0037] The nucleic acid sequences and amino acid sequences of the respective CD3 epsilon, gamma and delta homologs of Macaca mulatta can be identified and isolated by recombinant techniques described in the art (Sambrook et al. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press, 3rd edition 2001). This applies mutatis mutandis to the CD3 epsilon, gamma and delta homologs of other non-chimpanzee primates as defined herein.
[0038] As pointed out above and as disclosed herein, it is envisaged that the first binding domain of the bispecific single chain antibody comprised in the inventive pharmaceutical composition leads to an epitope of human and non-chimpanzee primate CD3 which comprises the amino acid sequence "phenylalanine (F)-serine (S)-glutamic acid (E)". The person skilled in the art is readily in the position to deduce an epitope detected by a given antibody/binding molecule and/or (as in the present invention) a given "binding domain" of a single chain construct by methods known in the art, said methods are also illustrated in the appended examples and may comprise Western blot analysis, epitope mapping or pepspot analysis and the like.
[0039] The epitope to be detected by said first binding domain is preferably in the range of 15 amino acids +/-3 amino acids. Envisaged are (but not limiting) 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4 or 3 amino acids in said epitope comprising the "F-S-E" stretch/"F-S-E" core epitope.
[0040] As shown in the following Examples, the minimum core epitope of human and non-chimpanzee primate CD3 bound by the first binding domain of the bispecific single chain antibody as defined herein is an epitope comprising the amino acid residues "FSE". More specifically, the minimum epitope comprises the amino acid residues "FSEXE" (SEQ ID NOs. 202 and 204), wherein the substitution of methionine to leucine is a conserved amino acid substitution between two neutral, non-polar amino acid residues. The minimum epitope may be part of a discontinuous epitope. As used herein, the term "discontinuous epitope" is to be understood as at least two non-adjacent amino acid sequence stretches within a given polypeptide chain, here e.g. CD3 (preferably CD3 epsilon), which are simultaneously bound by an antibody. These amino acid stretches might be of different length and may also be involved in the interaction of antibody and antigen. Accordingly, in addition to the minimum (core) epitope as defined above, the bispecific single chain antibody may simultaneously bind to one, two or even more non-adjacent epitopes. This (these) non-adjacent epitope(s) in combination with the minimal (core) epitope could represent the contact site between antigen and antibody. According to this definition, such simultaneous binding may be of the polypeptide in linear form. Here, one may imagine the polypeptide forming an extended loop, in one region of which the two sequences for example are more or less in parallel and in proximity of one another. Non-adjacent epitopes in the linear sequence could form a three dimensional structure leading to a close proximity of these epitopes. In this state they are simultaneously bound by the bispecific single chain antibody as defined herein. According to this definition, simultaneous binding of the at least two sequence stretches of the polypeptide indicated above (including the minimum (core) epitope) may also take the form of antibody binding to a conformational epitope. Here, the mature polypeptide has already formed its tertiary conformation as it normally exists in vivo. In this tertiary conformation, the polypeptide chain is folded in such a manner as to bring the at least two sequence stretches indicated above into spatial proximity, for example, on the outer surface of a particular region of mature, folded polypeptide, where they are then recognized by virtue of their three-dimensional conformation in the context of the surrounding polypeptide sequences.
[0041] The term "cell surface antigen" as used herein denotes a molecule which is displayed on the surface of a cell. In most cases, this molecule will be located in or on the plasma membrane of the cell such that at least part of this molecule remains accessible from outside the cell in tertiary form. A non-limiting example of a cell surface molecule which is located in the plasma membrane is a transmembrane protein comprising, in its tertiary conformation, regions of hydrophilicity and hydrophobicity. Here, at least one hydrophobic region allows the cell surface molecule to be embedded, or inserted in the hydrophobic plasma membrane of the cell while the hydrophilic regions extend on either side of the plasma membrane into the cytoplasm and extracellular space, respectively. Non-limiting examples of a cell surface molecules which are located on the plasma membrane are proteins which have been modified at a cysteine residue to bear a palmitoyl group, proteins modified at a C-terminal cysteine residue to bear a farnesyl group or proteins which have been modified at the C-terminus to bear a glycosyl phosphatidyl inositol ("GPI") anchor. These groups allow covalent attachment of proteins to the outer surface of the plasma membrane, where they remain accessible for recognition by extracellular molecules such as antibodies.
[0042] The "tumor antigen" as used herein may be understood as those antigens that are presented on tumor cells. These antigens can be presented on the cell surface with an extracellular part which is often combined with a transmembrane and cytoplasmic part of the molecule. These antigens can sometimes be presented only by tumor cells and never by the normal ones. Tumor antigens can be exclusively expressed on tumor cells or might represent a tumor specific mutation compared to normal cells. In this case, they are called tumor-specific antigens. More common are antigens that are presented by tumor cells and normal cells, and they are called tumor-associated antigens. These tumor-associated antigens can be overexpressed compared to normal cells or are accessible for antibody binding in tumor cells due to the less compact structure of the tumor tissue compared to normal tissue. Non-limiting examples of tumor antigens as used herein are EpCAM (Naundorf, Int. J. Cancer 100/1 (2002), 101-110), EGFR (Liu, Br. J. Cancer 82/12 (2000), 1991-1999; Bonner, Semin. Radiat. Oncol. 12 (2002), 11-20; Kiyota, Oncology 63/1 (2002), 92-98; Kuan, Brain Tumor Pathol. 17/2 (2000), 71-78), EGFRvIII (Kuan, Brain Tumor Pathol. 17/2 (2000), 71-78), or Carboanhydrase IX (MN/CA IX) (Uemura, Br. J. Cancer 81/4 (1999), 741-746; Longcaster, Cancer Res. 61/17 (2001), 6394-6399; Chia, J. Clin. Oncol. 19/16 (2001), 3660-3668; Beasley, Cancer Res. 61/13 (2001), 5262-5267).
[0043] The corresponding sequences of the human and non-chimpanzee primate nucleic acid and amino acid sequences can be found e.g. in NCBI databases.
[0044] A cross-species-specific monoclonal antibody binding to a human cell surface antigen (preferably a tumor antigen) and to the homolog of said cell surface antigen (preferably a tumor antigen) in a non-chimpanzee primate can be generated as set out above. "Homologs" as used herein refer to genes (encoding e.g. CD3, CD3 epsilon, cell surface antigens or tumor antigens) which encode gene products with similar or identical biological function in different species and which genes can be attributed to a common precursor gene. Cross-species specificity of said monoclonal antibody to the human and non-chimpanzee primate tumor antigen can be tested by FACS assays as set forth above. Alternatively, immunohistochemistry, radioimmunoassay, or ELISA assays may be used as known to the person skilled in the art. The second binding domain of the bispecific single chain antibody exhibiting cross-species specificity as described herein can for example be derived from such cross-species specific monoclonal antibodies by recombinant techniques described in the following examples.
[0045] The term "evaluating the in vivo safety and/or activity and/or pharmacokinetic profile" of the bispecific single chain antibody as used herein may be understood as set forth below. Before a new candidate medication can be marketed it must pass through rigorous testing, which may be roughly subdivided into preclinical testing in animals and clinical phases in human patients. The aim of preclinical testing in animals is to prove that the drug candidate is safe and efficacious (see e.g. the Preclinical safety evaluation of biotechnology-derived pharmaceuticals; ICH Harmonised Tripartite Guideline; ICH Steering Committee meeting on Jul. 16, 1997).
[0046] The term "drug", "drug candidate" or "pharmaceutical composition" as used herein refers to bispecific single chain antibodies defined herein.
[0047] The biological activity of the bispecific single chain antibody as defined herein can be determined for instance by cytotoxicity assays, as described in the following examples, in WO 99/54440 or by Schlereth et al. (Cancer Immunol. Immunother. 20 (2005), 1-12). "Efficacy" or "in vivo efficacy" as used herein refers to the response to therapy by the bispecific single chain antibody as defined herein, using e.g. standardized NCI response criteria. The success or in vivo efficacy of the therapy using a bispecific single chain antibody as defined herein refers to the effectiveness of the bispecific single chain antibody as defined herein for its intended purpose, i.e. the ability of the bispecific antibody to cause its desired effect, i.e. depletion of pathologic cells, e.g. tumor cells. The in vivo efficacy may be monitored by established standard methods for the respective disease entities including, but not limited to white blood cell counts, differentials, Fluorescence Activated Cell Sorting, bone marrow aspiration. In addition, various disease specific clinical chemistry parameters and other established standard methods may be used. Furthermore, computer-aided tomography, X-ray, nuclear magnetic resonance tomography (e.g. for National Cancer Institute-criteria based response assessment [Cheson B D, Horning S J, Coiffier B, Shipp M A, Fisher R I, Connors J M, Lister T A, Vose J, Grillo-Lopez A, Hagenbeek A, Cabanillas F, Klippensten D, Hiddemann W, Castellino R, Harris N L, Armitage J O, Carter W, Hoppe R, Canellos G P. Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999 April; 17(4): 1244]), positron-emission tomography scanning, white blood cell counts, differentials, Fluorescence Activated Cell Sorting, bone marrow aspiration, lymph node biopsies/histologies, and various lymphoma specific clinical chemistry parameters (e.g. lactate dehydrogenase) and other established standard methods may be used.
[0048] Another major challenge in the development of drugs is the predictable modulation of pharmacokinetic properties. To this end, a pharmacokinetic profile of the drug candidate, i.e. a profile of the pharmacokinetic parameters that effect the ability of a particular drug to treat a given condition, is established. Pharmacokinetic parameters of the drug influencing the ability of a drug for treating a certain disease entity include, but are not limited to: half-life, volume of distribution, hepatic first-pass metabolism and the degree of blood serum binding. The efficacy of a given drug agent can be influenced by each of the parameters mentioned above.
[0049] "Half-life" means the time where 50% of an administered drug are eliminated through biological processes, e.g. metabolism, excretion, etc.
[0050] By "hepatic first-pass metabolism" is meant the propensity of a drug to be metabolized upon first contact with the liver, i.e. during its first pass through the liver.
[0051] "Volume of distribution" means the degree of retention of a drug throughout the various compartments of the body, like e.g. intracellular and extracellular spaces, tissues and organs, etc. and the distribution of the drug within these compartments.
[0052] "Degree of blood serum binding" means the propensity of a drug to interact with and bind to blood serum proteins, such as albumin, leading to a reduction or loss of biological activity of the drug.
[0053] Pharmacokinetic parameters also include bioavailability, lag time (Tlag), Tmax, absorption rates, more onset and/or Cmax for a given amount of drug administered.
[0054] "Bioavailability" means the amount of a drug in the blood compartment.
[0055] "Lag time" means the time delay between the administration of the drug and its detection and measurability in blood or plasma.
[0056] "Tmax" is the time after which maximal blood concentration of the drug is reached, and
[0057] "Cmax" is the blood concentration maximally obtained with a given drug. The time to reach a blood or tissue concentration of the drug which is required for its biological effect is influenced by all parameters. Pharmacokinetik parameters of the bispecific single chain antibodies exhibiting cross-species specificity which may be determined in preclinical animal testing in non-chimpanzee primates as outlined above are also set forth e.g. in the publication by Schlereth et al. (Cancer Immunol. Immunother. 20 (2005), 1-12).
[0058] The term "toxicity" as used herein refers to the toxic effects of a drug manifested in adverse events or severe adverse events. These side events might refer to a lack of tolerability of the drug in general and/or a lack of local tolerance after administration. Toxicity could also include teratogenic or carcinogenic effects caused by the drug.
[0059] The term "safety", "in vivo safety" or "tolerability" as used herein defines the administration of a drug without inducing severe adverse events directly after administration (local tolerance) and during a longer period of application of the drug. "Safety", "in vivo safety" or "tolerability" can be evaluated e.g. at regular intervals during the treatment and follow-up period. Measurements include clinical evaluation, e.g. organ manifestations, and screening of laboratory abnormalities. Clinical evaluation may be carried out and deviating to normal findings recorded/coded according to NCI-CTC and/or MedDRA standards. Organ manifestations may include criteria such as allergy/immunology, blood/bone marrow, cardiac arrhythmia, coagulation and the like, as set forth e.g. in the Common Terminology Criteria for adverse events v3.0 (CTCAE). Laboratory parameters which may be tested include for instance haematology, clinical chemistry, coagulation profile and urine analysis and examination of other body fluids such as serum, plasma, lymphoid or spinal fluid, liquor and the like. Safety can thus be assessed e.g. by physical examination, imaging techniques (i.e. ultrasound, x-ray, CT scans, Magnetic Resonance Imaging (MRI), other measures with technical devices (i.e. electrocardiogram), vital signs, by measuring laboratory parameters and recording adverse events. For example, adverse events in non-chimpanzee primates in the uses and methods according to the invention may be examined by histopathological and/or histochemical methods.
[0060] The term "effective and non-toxic dose" as used herein refers to a tolerable dose of the bispecific single chain antibody as defined herein which is high enough to cause depletion of pathologic cells, tumor elimination, tumor shrinkage or stabilisation of disease without or essentially without major toxic effects. Such effective and non-toxic doses may be determined e.g. by dose escalation studies described in the art and should be below the dose inducing severe adverse side events (dose limiting toxicity, DLT).
[0061] The above terms are also referred to e.g. in the Preclinical safety evaluation of biotechnology-derived pharmaceuticals S6; ICH Harmonised Tripartite Guideline; ICH Steering Committee meeting on Jul. 16, 1997.
[0062] It has been surprisingly found that it is possible to generate bispecific antibody-based therapeutics for humans wherein the identical molecule can also be used in preclinical animal testing. This is due to the unexpected identification of bispecific single chain antibodies which, in addition to binding to human antigens (and due to genetic similarity likely to chimpanzee counterparts), also bind to the homologs of said antigens of non-chimpanzee primates, such as macaques. Thus, the need to construct a surrogate bispecific single chain antibody for testing in a phylogenetic distant (from humans) species disappears. As a result, the very same bispecific single chain antibody can be used in animal preclinical testing as is intended to be administered to humans in clinical testing as well as following market approval. The ability to use the same molecule for preclinical animal testing as in later administration to humans virtually eliminates, or at least greatly reduces, the danger that the data obtained in preclinical animal testing are not applicable to the human case. In short, obtaining preclinical safety data in animals using the same molecule as will actually be administered to humans does much to ensure the applicability of the data to a human-relevant scenario. In contrast, in conventional approaches using surrogate molecules, said surrogate antibodies have to be molecularly adapted to the animal test system used for preclinical safety assessment. Thus, the surrogate antibody to be used in human therapy in fact differs in sequence and also likely in structure from the one used in preclinical testing in pharmacokinetic parameters and/or biological activity, with the consequence that data obtained in preclinical animal testing have limited applicability/transferability to the human case. The use of surrogate molecules requires the construction, production, purification and characterization of a completely new antibody construct. This leads to additional development costs and time necessary to obtain that molecule. In sum, surrogates have to be developed separately in addition to the actual drug to be used in human therapy, so that two lines of development for two bispecific single chain antibody molecules have to be carried out. Therefore, a major advantage of the bispecific antibody-based constructs exhibiting cross-species specificity described herein is that the identical molecule can be used for therapeutics in humans and in preclinical animal testing.
[0063] On the other hand, it is also no longer necessary to adapt the test animal to the bispecific antibody-drug candidate intended for administration to humans, such as e.g. the creation of transgenic animals producing the human molecules bound by the bispecific antibody. The bispecific single chain antibodies exhibiting cross-species specificity according to the uses and methods of invention can be directly used for preclinical testing in non-chimpanzee primates, without any genetic manipulation of the animals. As well known to those skilled in the art, approaches in which the test animal is adapted to the drug candidate always bear the risk that the results obtained in the preclinical safety testing are less representative and predictive for humans due to the modification of the animal. For example, in transgenic animals, the proteins encoded by the transgenes are often highly over-expressed. Thus, data obtained for the biological activity of an antibody against this protein antigen may be limited in their predictive value for humans in which the protein is expressed at much lower, more physiological levels.
[0064] A further advantage of the uses of the bispecific single chain antibody exhibiting cross-species specificity of the invention lies in the avoidance of chimpanzee as a species for animal testing. Chimpanzees are the closest relatives to humans and were recently grouped into the family of hominids based on the genome sequencing data (Wildman et al., PNAS 100 (2003), 7181). Therefore, data obtained with chimpanzee is generally considered to be highly predictive for humans. However, due to their status as endangered species, the number of chimpanzees which can be used for medical experiments is highly restricted. As stated above, maintenance of chimpanzees for animal testing is therefore both costly and ethically problematic. The uses of the bispecific single chain antibody of the invention avoids both financial burden and ethical objection during preclinical testing without prejudicing the quality, i.e. applicability, of the animal testing data obtained. In light of this, the uses of bispecific single chain antibodies exhibiting cross-species specificity and methods according to the invention for preclinical animal testing in non-chimpanzee primates provides for a reasonable alternative for studies in chimpanzees.
[0065] A further advantage of the bispecific single chain antibody of the invention is the ability of extracting multiple blood samples when using it as part of animal preclinical testing, for example in the course of pharmacokinetic animal studies. Multiple blood extractions can be much more readily obtained with a non-chimpanzee primate than with lower animals, say a mouse. The extraction of multiple blood samples allows continuous testing of blood parameters for the determination of the biological effects induced by the bispecific single chain antibody of the invention. Furthermore, the extraction of multiple blood samples enables the researcher to evaluate the pharmacokinetic profile of the bispecific single chain antibody as defined herein. In addition, potential side effects which may be induced by said bispecific single chain antibody reflected in blood parameters can be measured in different blood samples extracted during the course of the administration of said antibody. This allows the determination of the potential toxicity profile of the bispecific single chain antibody as defined herein.
[0066] The advantages of the pharmaceutical compositions comprising bispecific single chain antibodies exhibiting cross-species specificity, uses of said bispecific antibodies and methods according to the invention may be briefly summarized as follows:
[0067] First, the bispecific single chain antibody exhibiting cross-species specificity used in preclinical testing is the same as the one used in human therapy. Thus, it is no longer necessary to develop two independent molecules which may differ in their pharmacokinetic properties and biological activity. This is highly advantageous in that e.g. the pharmacokinetic results are more directly transferable and applicable to the human setting than e.g. in conventional surrogate approaches.
[0068] Second, the uses of the bispecific antibody exhibiting cross-species specificity and methods according to the invention for the preparation of therapeutics in human is less cost- and labor-intensive than surrogate approaches.
[0069] Third, chimpanzee as a species for animal testing is avoided.
[0070] Fourth, multiple blood samples can be extracted for extensive pharmacokinetic studies.
[0071] A further aspect of the invention relates to a method of determining the biological activity and/or efficacy of a bispecific single chain antibody as defined above, wherein said bispecific single chain antibody is administered to a non-chimpanzee primate and the in vivo activity is measured.
[0072] Preferably, said in vivo activity is T cell activation, tumor target cell depletion, cytotoxicity, toxicity, occurrence of adverse side effects, and/or cytokine release. Methods for the determination of said in vivo activity are set forth e.g. in WO 99/54440.
[0073] The present invention in another aspect also provides for a pharmaceutical composition for the treatment of a human patient, comprising a bispecific single chain antibody which comprises
[0074] (i) a first binding domain binding to a non-chimpanzee primate CD3, and
[0075] (ii) a second binding domain binding to a cell surface antigen, wherein said first binding domain binds to human and non-chimpanzee primate CD3.
[0076] In accordance with this invention, the term "pharmaceutical composition" relates to a composition for administration to a patient, preferably a human patient. Preferably, the pharmaceutical composition comprises suitable formulations of carriers, stabilizers and/or excipients. In a preferred embodiment, the pharmaceutical composition comprises a composition for parenteral, transdermal, intraluminal, intraarterial, intrathecal and/or intranasal administration or by direct injection into tissue. It is in particular envisaged that said composition is administered to a patient via infusion or injection. Administration of the suitable compositions may be effected by different ways, e.g., by intravenous, intraperitoneal, subcutaneous, intramuscular, topical or intradermal administration. The composition of the present invention may further comprise a pharmaceutically acceptable carrier. Examples of suitable pharmaceutical carriers are well known in the art and include phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions, liposomes, etc. Compositions comprising such carriers can be formulated by well known conventional methods. These compositions can be administered to the subject at a suitable dose which can be determined e.g. by dose escalating studies by administration of increasing doses of the bispecific single chain antibody exhibiting cross-species specificity described herein to non-chimpanzee primates, for instance macaques. As set forth above, the bispecific single chain antibody exhibiting cross-species specificity described herein can be advantageously used in identical form in preclinical testing in non-chimpanzee primates and as drug in humans. These compositions can also be administered in combination with other proteinaceous and non-proteinaceous drugs. These drugs may be administered simultaneously with the composition comprising the bispecific single chain antibody as defined herein or separately before or after administration of said bispecific antibody in timely defined intervals and doses. The dosage regimen will be determined by the attending physician and clinical factors. As is well known in the medical arts, dosages for any one patient depend upon many factors, including the patient's size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health, and other drugs being administered concurrently. Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, inert gases and the like. In addition, the composition of the present invention might comprise proteinaceous carriers, like, e.g., serum albumin or immunoglobulin, preferably of human origin. It is envisaged that the composition of the invention might comprise, in addition to the bispecific single chain antibody as defined herein, further biologically active agents, depending on the intended use of the composition.
[0077] Such agents might be drugs acting on the gastro-intestinal system, drugs acting as cytostatica, drugs preventing hyperurikemia, drugs inhibiting immunoreactions (e.g. corticosteroids), drugs modulating the inflammatory response, drugs acting on the circulatory system and/or agents such as cytokines known in the art.
[0078] According to a preferred embodiment of the pharmaceutical composition of the invention, the first binding domain of the bispecific single chain antibody as defined herein binds to an epitope of human and non-chimpanzee primate CD3 comprising the amino acid sequence "FSE". The minimum core epitope comprising the amino acid residues "FSE", the minimum epitope comprising the amino acid sequence "FSEXE" (SEQ ID NOs. 202 and 204; wherein "X" corresponds to a leucine (L) or to a methionine (M)) or non-adjacent epitopes as defined herein are preferably 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4 or 3 amino acid residues in length. Preferably, said epitopes are 13 amino acid residues in length. Even more preferrred, the epitope with the "FSEXE" (SEQ ID NOs. 202 and 204; wherein "X" corresponds to a leucine (L) or to a methionine (M))--motif comprises the amino acid sequence "EFSELEQSGYYVC" (SEQ ID NO. 195) of human CD3 epsilon. In cynomolgus CD3 epsilon, the corresponding epitope reads "EFSEMEQSGYYVC" (SEQ ID NO. 201). The substitution of methionine to leucine is a conserved amino acid substitution between two neutral, non-polar amino acid residues. The corresponding sequence of the preferred epitope "EFSEXEQSGYYVC" wherein X represents L (Leucine) or M (Methionine) is depicted in SEQ ID NO. 207. As shown in the following Examples, the bispecific single chain antibody as defined herein not only binds to this epitope, but also to amino-acid stretches non-adjacent to said minimal epitope. For example, the bispecific single chain antibody as defined herein in addition to the minimum core epitope may simultaneously bind to (an) epitope(s) of human CD3 epsilon contained in said CD3 epsilon chain. Accordingly, said epitope may additionally comprise the amino acid sequence "QYPGSEILWQHND" (SEQ ID NO. 203). Also additional or (further) epitopes of cynomolgus CD3 epsilon contained in said chain may be detected by the binding molecule or molecule comprising the binding domains as defined therein. These additional or further sequences may comprise the amino acid sequence "QDGNEEMGSITQT" (SEQ ID NO. 199) and "YYVSYPRGSNPED" (SEQ ID NO. 200). Thus, the minimal epitope is most likely part of a discontinuous epitope or a conformational epitope. As evident to a person skilled in the art, the scope of the present invention includes bispecific single chain antibodies not only binding to this minimum (core) epitope, but also to one, two or even more non-adjacent amino acid sequence stretches within CD3 (preferably CD3 epsilon). Based on the results shown in the following Examples it is concluded that cross-species specific anti-CD3 antibodies contact CD3 epsilon in the area of amino acid residues 57-61 of both cynomolgus and human CD3 epsilon comprising the amino acid stretches FSEME (SEQ ID NO. 206) and FSELE (SEQ ID NO. 205) of cynomolgus and human CD3 epsilon, respectively, with the motif FSE forming the epitope core. This result--although plausible because of the accessibility of the E-F-loop (amino acids 56-62) of human CD3 epsilon (Kjer-Nielsen et al., PNAS 101 (2004), p. 7675-80) comprising the amino acids FSELE (SEQ ID NO. 205) or FSEME (SEQ ID NO. 206)--is surprising since there is no overlap of this newly defined epitope with the known epitope on the CD3 epsilon-chain of anti-CD3 antibodies OKT-3 and UCHT-1 (Kjer-Nielsen et al., loc.cit; Arnett et al., PNAS 101 (2004), p. 16268-73) which have so far been regarded as representative of all anti-CD3 antibodies thought to form a single family with the same or a very similar epitope. In summary, the epitopes "FSE" and "FSEXE" (SEQ ID NO. 204) are distinct from the epitopes recognized by UCHT-1 or OKT-3 (Kjer-Nielsen et al., PNAS 101 (2004), p. 7675-80; Arnett et al., PNAS 101 (2004), p. 16268-73) and are unique for cross-species specific anti-CD3 antibodies binding to human and macaque CD3. Preferably, the minimum epitope comprises the amino acid sequence "FSEXE" (SEQ ID NO. 204), wherein X represents L (Leucine) or M (Methionine) and stands for a substitution of non-polar, neutral amino acid residues.
[0079] It is envisaged that in the pharmaceutical composition of the invention, said first binding domain of the bispecific single chain antibody of the pharmaceutical composition of the invention is located C-terminally to the second binding domain. However, also part of this invention is a bispecific construct, wherein the "first binding domain to a non-chimpanzee primate CD3" is located N-terminally to the herein defined "second binding domain to a cell surface antigen".
[0080] As shown in the following examples, the advantages as described hereinabove are realizable not only when the first binding domain (binding to CD3) is located C-terminally to the second binding domain, i.e. closer to the C-terminus of the bispecific single chain antibody than the second binding domain, but also when the first binding domain (binding to CD3) is located N-terminally to the second binding domain, i.e. closer to the N-terminus of the bispecific single chain antibody than the second binding domain. The arrangement of the binding domains in the bispecific single chain antibody defined herein may therefore be one in which the first binding domain is located C-terminally to the second binding domain. The arrangement of the V chains may be VH (cell surface antigen)-VL (cell surface antigen)-VL(CD3)-VH(CD3), VH (cell surface antigen)-VL (cell surface antigen)-VH(CD3)-VL(CD3), VL (cell surface antigen)-VH (cell surface antigen)-VL(CD3)-VH(CD3) or VL (cell surface antigen)-VH (cell surface antigen)-VH(CD3)-VL(CD3). For an arrangement, in which the first binding domain is located N-terminally to the second binding domain, the following orders are possible: VH (CD3)-VL(CD3)-VL (cell surface antigen)-VH (cell surface antigen), VH(CD3)-VL(CD3)-VH (cell surface antigen)-VL (cell surface antigen), VL(CD3)-VH(CD3)-VL (cell surface antigen)-VH (cell surface antigen) or VL(CD3)-VH(CD3)-VH (cell surface antigen)-VL (cell surface antigen). As used herein, "N-terminally to" or "C-terminally to" and grammatical variants thereof denote relative location within the primary amino acid sequence rather than placement at the absolute N- or C-terminus of the bispecific single chain antibody. Hence, as a non-limiting example, a first binding domain which is "located C-terminally to the second binding domain" simply denotes that the first binding domain is located to the carboxyl side of the second binding domain within the bispecific single chain antibody, and does not exclude the possibility that an additional sequence, for example a His-tag, or another proteinaceous or non-proteinaceous compound such as a radioisotope, is located at the ultimate C-terminus of the bispecific single chain antibody.
[0081] In another preferred embodiment of the pharmaceutical composition, the second binding domain binds to a cell surface antigen and to the non-chimpanzee primate homolog of said cell surface antigen.
[0082] According to this embodiment of the invention, both the first and second binding domains of the bispecific single chain antibody described herein specifically bind to both human and non-chimpanzee primate variants of said first and second molecules, respectively. In light of the above statements, this is particularly advantageous since sufficient (cross-species) specificity exists on both sides of the bispecific single chain antibody, thus ensuring interspecies compatibility with respect to both first and second molecules and hence optimal extrapolability of the data obtained in preclinical animal studies to the case of administration in humans.
[0083] Preferably, said cell surface antigen is a tumor antigen. Even more preferred, said tumor antigen is EpCAM (Naundorf, Int. J. Cancer 100/1 (2002), 101-110), EGFR (Liu, Br. J. Cancer 82/12 (2000), 1991-1999; Bonner, Semin. Radiat. Oncol. 12 (2002), 11-20; Kiyota, Oncology 63/1 (2002), 92-98; Kuan, Brain Tumor Pathol. 17/2 (2000), 71-78), EGFRvIII (Kuan, Brain Tumor Pathol. 17/2 (2000), 71-78), or Carboanhydrase IX (MN/CA IX) (Uemura, Br. J. Cancer 81/4 (1999), 741-746; Longcaster, Cancer Res. 61/17 (2001), 6394-6399; Chia, J. Clin. Oncol. 19/16 (2001), 3660-3668; Beasley, Cancer Res. 61/13 (2001), 5262-5267).
[0084] Particularly preferred as cell surface antigen and/or tumor antigen is EpCAM. As shown in the following Examples, the present application for the first time provides for the nucleic acid and amino acid sequences of the extracellular domain of cynomolgus EpCAM shown in SEQ ID NOs. 47 and 48, respectively. Said sequences are essential tools for the generation and characterization of the bispecific single chain antibodies as defined herein exhibiting cross-species specificity to human and cynomolgus EpCAM.
[0085] In a further preferred embodiment of the pharmaceutical composition of the invention, the first binding domain comprises a VH region having an amino acid sequence as shown in any of SEQ ID NOs. 2, 110 or 6. It is envisaged and preferred that the VH region of the first binding domain comprises at least a third CDR (CDR-H3) comprising an amino acid sequence as set out in SEQ ID NO. 112 or CDR-H3* comprising an amino acid sequence as set out in SEQ ID NO. 113. The first binding domain may additionally comprise a second CDR (CDR-H2) comprising an amino acid sequence as set out in SEQ ID NO. 114. Further, the first binding domain may in addition comprise a first CDR (CDR-H1) comprising an amino acid sequence as set out in SEQ ID NO. 115. The VH region of the first binding domain thus may comprise one, two or all three of the mentioned CDRs. The mentioned CDRs are included for example in the VH regions shown in SEQ ID NOs. 2 and 110.
[0086] Alternatively, it is envisaged that the VH region of the first binding domain comprises a third CDR (CDR-H3) comprising an amino acid sequence as set out in SEQ ID NO. 119. Preferably, the first binding domain additionally comprises a second CDR (CDR-H2) comprising an amino acid sequence as set out in SEQ ID NO. 120. Especially preferred, the first binding domain additionally comprises a first CDR (CDR-H1) comprising an amino acid sequence as set out in SEQ ID NO. 121. The VH region of the first binding domain thus may comprise one, two or all three of the mentioned CDRs. The above-indicated CDRs are included for example in the VH region shown in SEQ ID NO. 6.
[0087] In another preferred embodiment of the pharmaceutical composition, the first binding domain comprises a VL region having an amino acid sequence as shown in any of SEQ ID NOs. 4, 148, 168 or 8. It is envisaged and preferred that the VL region of the first binding domain comprises at least a third CDR (CDR-L3) comprising an amino acid sequence as set out in SEQ ID NO. 116. The VL region may further comprise a second CDR (CDR-L2) comprising an amino acid sequence as set out in SEQ ID NO. 117. The VL region may in addition comprise a first CDR (CDR-L1) comprising an amino acid sequence as set out in SEQ ID NO. 118. The VL region of the first binding domain thus may comprise one, two or all three of the mentioned CDRs. The above-indicated CDRs are included for example in the VL regions shown in SEQ ID NOs. 4, 148 and 168.
[0088] Alternatively, it is envisaged that the VL region of the first binding domain comprises a third CDR (CDR-L3) comprising an amino acid sequence as set out in SEQ ID NO. 164. Preferably, the first binding domain additionally comprises a second CDR (CDR-L2) comprising an amino acid sequence as set out in SEQ ID NO. 165. Especially preferred, the first binding domain additionally comprises a first CDR (CDR-L1) comprising an amino acid sequence as set out in SEQ ID NO. 166. The VL region of the first binding domain thus may comprise one, two or all three of the mentioned CDRs. The above-indicated CDRs are included for example in the VL region shown in SEQ ID NO. 8.
[0089] Preferably, the first binding domain comprises CDR-L1 (SEQ ID NO. 118), CDR-L2 (SEQ ID NO. 117), and CDR-L3 (SEQ ID NO. 116) and CDR-H1 (SEQ ID NO. 115), CDR-H2 (SEQ ID NO. 114) and CDR-H3 (SEQ ID NO. 112) or CDR-H3* comprising the amino acid sequence "VSWFAY" (SEQ ID NO. 113).
[0090] Alternatively, the first binding domain comprises CDR-L1 (SEQ ID NO. 166), CDR-L2 (SEQ ID NO. 165), and CDR-L3 (SEQ ID NO. 164) and CDR-H1 (SEQ ID NO. 121), CDR-H2 (SEQ ID NO. 120) and CDR H3 (SEQ ID NO. 119).
[0091] Even more preferred, the VH region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 2 and the VL region of the first binding domain comprises or consists of the amino acid sequence shown SEQ ID NO. 4; or the VH region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 110 and the VL region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 148; or the VH region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 110 and the VL region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 168, or the VH region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 6 and the VL region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 8. Or the VH region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 2 and the VL region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 148. Or the VH region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 110 and the VL region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 4. Or the VH region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 2 and the VL region of the first binding domain comprises or consists of the amino acid sequence shown in SEQ ID NO. 168.
[0092] As set forth above, the order of the variable regions of the first binding domain may be VH-VL or VL-VH. Both arrangements are within the scope of the invention. For a first binding domain comprising the VH of SEQ ID NO. 2 and the VL of SEQ ID NO. 4, the VH-VL arrangement is shown in SEQ ID NOs. 9 and 10, whereas the VL-VH arrangement is depicted in SEQ ID NOs. 11 and 12.
[0093] For a first binding domain comprising the VH of SEQ ID NO. 110 and the VL of SEQ ID NO. 148, the VH-VL arrangement is shown in SEQ ID NOs. 146 and 147. For a first binding domain comprising the VH of SEQ ID NO. 110 and the VL of SEQ ID NO. 168, the VH-VL arrangement is shown in SEQ ID NOs. 169 and 170, whereas the VL-VH arrangement is depicted in SEQ ID NOs. 193 and 194. For a first binding domain comprising the VH of SEQ ID NO. 6 and the VL of SEQ ID NO. 8, the VH-VL arrangement is shown in SEQ ID NOs. 13 and 14, whereas the VL-VH arrangement is depicted in SEQ ID NOs. 15 and 16.
[0094] Similarly, the order of the variable regions of the second binding domain may be VH-VL or VL-VH. Both arrangements are within the scope of the invention. For example, the VH-VL arrangement of a second binding domain exhibiting cross-species specificity to human and cynomolgus EpCAM is shown in SEQ ID NOs. 53 and 54, whereas the VL-VH arrangement is depicted in SEQ ID NOs. 55 and 56.
[0095] In a particularly preferred embodiment of the pharmaceutical composition of the invention, the bispecific single chain antibody as defined herein comprises an amino acid sequence selected from the group consisting of:
[0096] (a) an amino acid sequence as depicted in any of SEQ ID NOs. 38, 40, 124, 42 or 44;
[0097] (b) an amino acid sequence encoded by a nucleic acid sequence as shown in SEQ ID NOs. 37, 39, 125, 41 or 43;
[0098] (c) an amino acid sequence encoded by a nucleic acid sequence hybridizing under stringent conditions to the complementary nucleic acid sequence of (b);
[0099] (d) an amino acid sequence encoded by a nucleic acid sequence which is degenerate as a result of the genetic code to a nucleotide sequence of (b); and
[0100] (e) an amino acid sequence at least 85% identical, more preferred at least 90% identical, most preferred at least 95% identical to the amino acid sequence of (a) or (b).
[0101] In the above-indicated preferred embodiment, only the first binding domain (binding to CD3) exhibits cross-species specificity.
[0102] Most preferably, the bispecific single chain antibody as defined herein comprises an amino acid sequence selected from the group consisting of:
[0103] (a) an amino acid sequence as depicted in any of SEQ ID NOs. 66, 68, 74, 76, 122, 70, 72, 78, 80, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, or 192;
[0104] (b) an amino acid sequence encoded by a nucleic acid sequence as shown in SEQ ID NOs. 65, 67, 73, 75, 123, 69, 71, 77, 79, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, or 191;
[0105] (c) an amino acid sequence encoded by a nucleic acid sequence hybridizing under stringent conditions to the complementary nucleic acid sequence of (b);
[0106] (f) an amino acid sequence encoded by a nucleic acid sequence which is degenerate as a result of the genetic code to a nucleotide sequence of (b); and
[0107] (g) an amino acid sequence at least 85% identical, more preferred at least 90% identical, most preferred at least 95% identical to the amino acid sequence of (a) or (b).
[0108] In this above-indicated embodiment, both the first and second binding domains exhibit cross-species specificity.
[0109] In another preferred embodiment of the pharmaceutical composition, the non-chimpanzee primate is a baboon, marmoset or an old world monkey.
[0110] In an even more preferred embodiment of the pharmaceutical composition, the old world monkey is a monkey of the macaque genus.
[0111] Most preferably, the monkey of the macaque genus is Assamese macaque (Macaca assamensis), Barbary macaque (Macaca sylvanus), Bonnet macaque (Macaca radiata), Booted or Sulawesi-Booted macaque (Macaca ochreata), Sulawesi-crested macaque (Macaca nigra), Formosan rock macaque (Macaca cyclopsis), Japanese snow macaque or Japanese macaque (Macaca fuscata), Cynomologus monkey or crab-eating macaque or long-tailed macaque or Java macaque (Macaca fascicularis), Lion-tailed macaque (Macaca silenus), Pigtailed macaque (Macaca nemestrina), Rhesus macaque (Macaca mulatta), Tibetan macaque (Macaca thibetana), Tonkean macaque (Macaca tonkeana), Toque macaque (Macaca sinica), Stump-tailed macaque or Red-faced macaque or Bear monkey (Macaca arctoides), or Moor macaque (Macaca maurus).
[0112] Preferably, the non-chimpanzee primate CD3 comprises or consists of an amino acid sequence shown in SEQ ID NOs. 135, 136, 144, or 145.
[0113] According to a further embodiment of the pharmaceutical composition of the invention, at least one of said first or second binding domains is human, humanized, CDR-grafted and/or deimmunized
[0114] The term "human" antibody as used herein is to be understood as meaning that the bispecific single chain antibody as defined herein, comprises (an) amino acid sequence(s) contained in the human germline antibody repertoire. For the purposes of definition herein, said bispecific single chain antibody may therefore be considered human if it consists of such (a) human germline amino acid sequence(s), i.e. if the amino acid sequence(s) of the bispecific single chain antibody in question is (are) identical to (an) expressed human germline amino acid sequence(s). A bispecific single chain antibody as defined herein may also be regarded as human if it consists of (a) sequence(s) that deviate(s) from its (their) closest human germline sequence(s) by no more than would be expected due to the imprint of somatic hypermutation. Additionally, the antibodies of many non-human mammals, for example rodents such as mice and rats, comprise VH CDR3 amino acid sequences which one may expect to exist in the expressed human antibody repertoire as well. Any such sequence(s) of human or non-human origin which may be expected to exist in the expressed human repertoire would also be considered "human" for the purposes of the present invention.
[0115] As used herein, the term "humanized", "humanization", "human-like" or grammatically related variants thereof are used interchangeably to refer to a bispecific single chain antibody comprising in at least one of its binding domains at least one complementarity determining region ("CDR") from a non-human antibody or fragment thereof. Humanization approaches are described for example in WO 91/09968 and U.S. Pat. No. 6,407,213. As non-limiting examples, the term encompasses the case in which a variable region of at least one binding domain comprises a single CDR region, for example the third CDR region of the VH, from another non-human animal, for example a rodent, as well as the case in which a or both variable region/s comprise at each of their respective first, second and third CDRs the CDRs from said non-human animal. In the event that all CDRs of a binding domain of the bispecific single chain antibody have been replaced by their corresponding equivalents from, for example, a rodent, one typically speaks of "CDR-grafting", and this term is to be understood as being encompassed by the term "humanized" or grammatically related variants thereof as used herein. The term "humanized" or grammatically related variants thereof also encompasses cases in which, in addition to replacement of one or more CDR regions within a VH and/or VL of the first and/or second binding domain further mutations (e.g. substitutions) of at least one single amino acid residue/s within the framework ("FR") regions between the CDRs has/have been effected such that the amino acids at that/those positions correspond/s to the amino acid/s at that/those position/s in the animal from which the CDR regions used for replacement is/are derived. As is known in the art, such individual mutations are often made in the framework regions following CDR-grafting in order to restore the original binding affinity of the non-human antibody used as a CDR-donor for its target molecule. The term "humanized" may further encompass (an) amino acid substitution(s) in the CDR regions from a non-human animal to the amino acid(s) of a corresponding CDR region from a human antibody, in addition to the amino acid substitutions in the framework regions as described above.
[0116] As used herein, the term "deimmunized," "deimmunization" or grammatically related variants thereof denotes modification of the first and/or second binding domain vis-a-vis an original wild type construct by rendering said wild type construct non-immunogenic or less immunogenic in humans. Deimmunization approaches are shown e.g. in WO 00/34317, WO 98/52976, WO 02/079415 or WO 92/10755. The term "deimmunized" also relates to constructs, which show reduced propensity to generate T cell epitopes. In accordance with this invention, the term "reduced propensity to generate T cell epitopes" relates to the removal of T-cell epitopes leading to specific T-cell activation. Furthermore, "reduced propensity to generate T cell epitopes" means substitution of amino acids contributing to the formation of T cell epitopes, i.e. substitution of amino acids, which are essential for formation of a T cell epitope. In other words, "reduced propensity to generate T cell epitopes" relates to reduced immunogenicity or reduced capacity to induce antigen independent T cell proliferation. The term "T cell epitope" relates to short peptide sequences which can be released during the degradation of peptides, polypeptides or proteins within cells and subsequently be presented by molecules of the major histocompatibility complex (MHC) in order to trigger the activation of T cells; see inter alia WO 02/066514. For peptides presented by MHC class II such activation of T cells can then give rise to an antibody response by direct stimulation of T cells to produce said antibodies. "Reduced propensity to generate T-cell epitopes" and/or "deimmunization" may be measured by techniques known in the art. Preferably, de-immunization of proteins may be tested in vitro by T cell proliferation assay. In this assay PBMCs from donors representing >80% of HLA-DR alleles in the world are screened for proliferation in response to either wild type or de-immunized peptides. Ideally cell proliferation is only detected upon loading of the antigen-presenting cells with wild type peptides. Alternatively, one may test deimmunization by expressing HLA-DR tetramers representing all haplotypes. These tetramers may be tested for peptide binding or loaded with peptides substitute for antigen-presenting cells in proliferation assays. In order to test whether deimmunized peptides are presented on HLA-DR haplotypes, binding of e.g. fluorescence-labeled peptides on PBMCs can be measured. Furthermore, deimmunization can be proven by determining whether antibodies against the deimmunized molecules have been formed after administration in patients. Preferably, antibody derived molecules are deimmunized in the framework regions and most of the CDR regions are not modified in order to generate reduced propensity to induce T cell epitope so that the binding affinity of the CDR regions is not affected. Even elimination of one T cell epitope results in reduced immunogenicity.
[0117] The invention also provides for a pharmaceutical composition comprising a nucleic acid sequence encoding a bispecific single chain antibody as defined herein.
[0118] The invention further relates to a pharmaceutical composition comprising a vector which comprises a nucleic acid sequence as defined above. Preferably said vector further comprises a regulatory sequence which is operably linked to said nucleic acid sequence defined above. More preferably, said vector is an expression vector.
[0119] In a further aspect, the invention relates to a pharmaceutical composition comprising a host transformed or transfected with a vector defined above.
[0120] A further aspect of the invention relates to a pharmaceutical composition as defined hereinabove, further comprising a proteinaceous compound capable of providing an activation signal for immune effector cells.
[0121] Preferably, the pharmaceutical composition further comprises suitable formulations of carriers, stabilizers and/or excipients.
[0122] In another aspect, the invention relates to a process for the production of a pharmaceutical composition as defined above, said process comprising culturing a host as defined above under conditions allowing the expression of the bispecific single chain antibody as defined hereinabove and recovering the produced bispecific single chain antibody from the culture.
[0123] A further aspect of the invention relates to a use of a bispecific single chain antibody as defined hereinabove or as produced by the process as defined hereinabove, a nucleic acid molecule as defined hereinabove, a vector as defined hereinabove or a host as defined hereinabove for the preparation of a pharmaceutical composition for the prevention, treatment or amelioration of a disease. Another aspect of the invention relates to a method for the prevention, treatment or amelioration of a disease in a subject in the need thereof, said method comprising the step of administration of an effective amount of a pharmaceutical composition of the invention or as produced according by the process set forth above.
[0124] Preferably, said disease is a proliferative disease, a tumorous disease, or an immunological disorder. Even more preferred, said tumorous disease is a malignant disease, preferably cancer. Cross-species specific bispecific single chain antibodies as defined herein with specificity for EpCAM, EGFR or EGFRvIII can be used for the therapy of epithelial cancers and tumors. Cross-species specific bispecific single chain antibody constructs as defined herein with specificity for CAIX can be used for the treatment of tumors with hypoxical regions or areas. Moreover, said CAIX constructs may be used for the treatment of renal or cervical carcinomas. In another preferred embodiment of the uses or methods of the invention, said pharmaceutical composition as defined hereinabove is suitable to be administered in combination with an additional drug, i.e. as part of a co-therapy. In said co-therapy, an active agent may be optionally included in the same pharmaceutical composition as the bispecific single chain antibody, or may be included in a separate pharmaceutical composition. In this latter case, said separate pharmaceutical composition is suitable for administration prior to, simultaneously as or following administration of said pharmaceutical composition comprising the bispecific single chain antibody. The additional drug or pharmaceutical composition may be a non-proteinaceous compound or a proteinaceous compound. In the case that the additional drug is a proteinaceous compound, it is advantageous that the proteinaceous compound be capable of providing an activation signal for immune effector cells.
[0125] Preferably, said proteinaceous compound or non-proteinaceous compound may be administered simultaneously or non-simultaneously with a bispecific single chain antibody as defined hereinabove, a nucleic acid molecule as defined hereinabove, a vector as defined as defined hereinabove, or a host as defined as defined hereinabove. Preferably, said subject to be treated is a human.
[0126] In a further aspect, the invention relates to a kit comprising a bispecific single chain antibody as defined hereinabove, a nucleic acid molecule as defined hereinabove, a vector as defined hereinabove, or a host as defined hereinabove.
[0127] These and other embodiments are disclosed and encompassed by the description and Examples of the present invention. Recombinant techniques and methods in immunology are described e.g. in Sambrook et al. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press, 3rd edition 2001; Lefkovits; Immunology Methods Manual; The Comprehensive Sourcebook of Techniques; Academic Press, 1997; Golemis; Protein-Protein Interactions: A Molecular Cloning Manual; Cold Spring Laboratory Press, 2002. Further literature concerning any one of the antibodies, methods, uses and compounds to be employed in accordance with the present invention may be retrieved from public libraries and databases, using for example electronic devices. For example, the public database "Medline", available on the Internet, may be utilized, for example under http://www.ncbi.nlm.nih.gov/PubMed/medline.html. Further databases and addresses, such as http://www.ncbi.nim.nih.gov/, http://www.infobioaen.fr/, http://www.fmi.ch/bioloqv/research tools.html, http://www.tiqr.orQ/. are known to the person skilled in the art and can also be obtained using, e.g., http://www.lvcos.com
[0128] The Figures show:
[0129] FIG. 1: Identification of cross-species specific antibodies to macaque CD3: Cross-species specificity of an anti-CD3 antibody shown in SEQ ID NO.162 described in WO 99/54440, OKT-3, an Ig comprising SEQ ID NOs. 6 and 8, an Ig comprising SEQ ID NOs. 2 and 4 and UCHT-1 to macaque (cynomolgus) CD3 were tested with Flow Cytometry as described in Example 1. An immunoglobulin (Ig) comprising SEQ ID NOs. 6 and 8 and an Ig comprising SEQ ID NOs. 2 and 4 show cross-species specificity to macaque CD3. In contrast, the anti-CD3 antibody shown in SEQ ID NO.162, OKT-3 and UCHT-1 fail to bind to macaque CD3.
[0130] FIG. 2: FACS assay for binding of an Ig comprising SEQ ID NOs. 2 and 4, an Ig comprising SEQ ID NOs. 6 and 8 and monoclonal antibody (mAb) FN-18 to HPB-ALL cells and PBMC of Macaca fascicularis (cynomolgus). HPB-ALL cells express the human CD3 complex. Cells stained with the respective antibodies are shown in comparison to unstained cells. Strong antigen binding on human as well as on cynomolgus cells was detected for the Ig comprising SEQ ID NOs. 2 and 4. For the Ig comprising SEQ ID NOs. 6 and 8, strong binding to human cells but weaker binding to cynomolgus cells was observed. For FN-18, strong binding to cynomolgus cells could be observed, whereas no binding to human cells could be detected.
[0131] FIG. 3: FACS assay for binding of 5-10LHxSEQ ID NO.12, 5-10LHxSEQ ID NO.10, 5-10LHxSEQ ID NO.16 and 5-10LHxSEQ ID NO.14 to human Kato III cells expressing EpCAM or human EpCAM transfected CHO cells and to HPB-ALL cells. Cells bound by the respective constructs (depicted as non-filled curves) are shown in comparison to cells incubated only with the detection antibodies (depicted as filled curves). Antigen binding of all bispecific constructs was clearly detectable for the anti human EpCAM specificity as well as for the anti CD3 specificities on the HPB-ALL cell line positive for human CD3.
[0132] FIG. 4: Cytotoxicity assay for 5-10LHxSEQ ID NO.12, 5-10LHxSEQ ID NO.10 and 5-10LHxSEQ ID NO.14 with human Kato III cells as target cells and human PBMC as effector cells. All constructs showed cytotoxic activity.
[0133] FIG. 5: Cytotoxicity assay for 5-10LHxSEQ ID NO.12, 5-10LHxSEQ ID NO.10, and 5-10LHxSEQ ID NO.14 with Kato III cells as target cells and cynomolgus PBMC as effector cells. 5-10LHxSEQ ID NO.14, 5-10LHxSEQ ID NO.12 and 5-10LHxSEQ ID NO.10 showed cytotoxic activity. 5-10LHxdi-anti CD3 (deimmunised anti-CD3 antibody shown in SEQ ID NO.163) which fails to bind to cynomolgus CD3 was used as a negative control.
[0134] FIG. 6: Amino acid sequence alignment of the extracellular portion of the cynomolgus EpCAM antigen (also shown in SEQ ID NO. 48) and the human EpCAM antigen.
[0135] FIG. 7: FACS assay for the detection of the cynomolgus EpCAM antigen on transfected CHO cells. Supernatants of three different anti human EpCAM hybridomas (M79, 3B10, 2G8) were tested for binding. Transfectants (depicted as non-filled curves) as compared to untransfected cells (depicted as filled curves) showed binding only with the supernatant of the 2G8 hybridoma which is therefore recognized as antibody cross-species specific for human and cynomolgus EpCAM.
[0136] FIG. 8: FACS assay for binding of 2G8LHxSEQ ID NO.12, 2G8LHxSEQ ID NO.10, 2G8LHxSEQ ID NO.16, 2G8LHxSEQ ID NO.14, 2G8HLxSEQ ID NO.12, 2G8HLxSEQ ID NO.10, 2G8HLxSEQ ID NO.16 and 2G8HLxSEQ ID NO.14 on Kato III (FIG. 8A) cells or cynomolgus EpCAM transfected CHO cells (FIG. 8B) and HPB-ALL cells. Antigen binding was clearly detectable for the anti EpCAM specificities as well as for the anti CD3 specificities. As a negative control for binding to cynomolgus EpCAM, the 5-10LHxSEQ ID NO.10 construct was included which shows binding to human CD3 (on HPB-ALL cells) but no binding to cynomolgus EpCAM (cynomolgus EpCAM transfected CHO cells).
[0137] FIG. 9: Cytotoxicity assay for 2G8LHxSEQ ID NO.10 and 2G8HLxSEQ ID NO.12 with cynomolgus EpCAM transfected CHO cells as target cells and human PBMC as effector cells. 2G8LHxSEQ ID NO.10 and 2G8HLxSEQ ID NO.12 showed cytotoxic activity. 5-10LHxdi-anti CD3 (deimmunised anti-CD3 antibody shown in SEQ ID NO.163) was included as negative control. 5-10LH fails to bind to cynomolgus EpCAM.
[0138] FIG. 10: Cytotoxicity assay for 2G8LHxSEQ ID NO.10 and 2G8HLxSEQ ID NO.12 with cynomolgus EpCAM transfected CHO cells as target cells and cynomolgus PBMC as effector cells. 2G8LHxSEQ ID NO.10 and 2G8HLxSEQ ID NO.12 showed cytotoxic activity. 5-10LHxdi-anti CD3 (deimmunised anti-CD3 antibody shown in SEQ ID NO.163) was included as negative control. This construct fails to bind to cynomolgus CD3 and cynomolgus EpCAM.
[0139] FIG. 11: Amino acid comparison of SEQ ID NO. 2 and human VH segment (hu)3-73.
[0140] FIG. 12: Amino acid and nucleotide sequences of a cross-species specific human-like VH region (also shown in SEQ ID NOs. 110 and 111, respectively).
[0141] FIG. 13: FACS analysis of a scFv comprising the human-like VH chain shown in SEQ ID NO. 110 and the VL chain shown in SEQ ID NO: 148. The complete scFv amino acid sequence is shown in SEQ ID NO.146. The control scFv of SEQ ID NO.10 shows a clear shift on human CD3 positive HPB-All cells and thus binds to human CD3. The scFv depicted in SEQ ID NO. 146 also shows clear binding to said CD3 positive human cells.
[0142] FIG. 14: Binding analysis of the scFv of SEQ ID NO. 146. The control scFv of SEQ ID NO. 10 shows a clear shift on cynomolgus CD3 positive T cells and thus binds to cynomolgus CD3 positive cells. Also the scFv of SEQ ID NO: 146 shows clear binding to cynomolgus CD3 positive cells.
[0143] FIG. 15: Alignment of amino acid sequences of human and cynomolgus CD3 epsilon.
[0144] FIG. 16: Amino acid sequences of the 13 mer peptides derived from cynomolgus CD3 epsilon (43 peptide-spots).
[0145] FIG. 17: Amino acid sequences of the 13 mer peptides derived from human CD3 epsilon (47 peptide-spots).
[0146] FIG. 18: Pepspots developed by enhanced chemiluminescence (A) Control pepspot with horseradish-peroxidase conjugated goat-anti-mouse IgG (B) Pepspot with cross-species specific anti-CD3 antibody I corresponding to an immunoglobulin (Ig) comprising the VH chain shown in SEQ ID NO. 2 and the VL chain shown in SEQ ID NO. 4.
[0147] FIG. 19: Pepspot with cross-species specific anti-CD3 antibody II corresponding to an immunoglobulin (Ig) comprising the VH chain shown in SEQ ID NO. 6 and the VL chain shown in SEQ ID NO. 8.
[0148] FIG. 20: Contact residues of OKT-3 and UCHT-1 and E-F-loop epitope of cross-species specific anti-CD3 antibodies I and II referred to in FIGS. 18 and 19, respectively, on cynomolgus and human CD3 epsilon.
[0149] FIG. 21: Amino acid sequence comparison of the murine VL shown in SEQ ID NO. 4 to the human germline lambda 7a segment.
[0150] FIG. 22: Binding of the murine scFv shown in SEQ ID NO. 10 and the human-like scFv shown in SEQ ID NO. 170 to human CD3-positive HPB-ALL cells.
[0151] FIG. 23: Upper Panel: Equal binding of the murine scFv shown in SEQ ID NO. 10 and the human-like scFv shown in SEQ ID NO. 170 to human and cynomolgus T cells in PBMCs. Lower Panel When preincubated with 10 ng/ml of the murine IgG antibody mAb I described in Example 1 having the same binding specificity as the scFvs (i.e. for CD3 epsilon), the shifts of cells stained with the above-mentioned murine scFv or the human-like scFv decrease significantly, underlining the similar binding region of the scFvs and the original murine antibody mAb I.
[0152] FIG. 24: Pepspots developed by the alkaline phosphatase detection system (A) Control pepspot with alkaline phosphatase conjugated goat-anti-mouse IgG (B) Pepspot with cross-species specific anti-CD3 antibody comprising the human-like VH shown in SEQ ID NO. 110 and the human-like VL shown in SEQ ID NO. 168 as described in Example 18.
[0153] FIG. 25: Dot Blot Assay with the cross-species specific anti-CD3 antibody comprising the human-like VH of SEQ ID NO. 110 and the human-like VL of SEQ ID NO. 168 as described in Example 19 in (A) and the anti-CD3 murine IgG1 antibody UCHT1 (B) binding to the blotted peptides "biotin-linker-EFSELEQSGYYVC" (1) and "EFSELEQSGYYVC-biotin" (2) derived from human CD3 epsilon
[0154] FIG. 26: FACS binding analysis of cross-species specific bispecific single chain construct CAIX HL×SEQ ID NO. 194 to HPB-ALL (human CD3+), cynomolgus PBMC (cynomolgus CD3+), A549 (human CAIX+) and CYNOM-K1 (cynomolgus CAIX+) cells, respectively. The FACS staining was performed as described in Example 23. The thick line represents cells incubated with 1 ng/ml purified monomeric protein that were subsequently incubated with the anti-his antibody and the PE labeled detection antibody. The thin histogram line reflects the negative control: cells only incubated with the anti-his antibody and the detection antibody.
[0155] FIG. 27: FACS binding analysis of cross-species specific bispecific single chain construct CAIX HL×SEQ ID NO. 170 to HPB-ALL (human CD3+), cynomolgus PBMC (cynomolgus CD3+), A549 (human CAIX+) and 4 MBr-5 (macaque CAIX+) cells, respectively. The FACS staining was performed as described in Example 23. The thick line represents cells incubated with 1 ng/ml purified monomeric protein that were subsequently incubated with the anti-his antibody and the PE labeled detection antibody. The thin histogram line reflects the negative control: cells only incubated with the anti-his antibody and the detection antibody.
[0156] FIG. 28: FACS binding analysis of cross-species specific bispecific single chain construct CAIX LH×SEQ ID NO. 170 to HPB-ALL (human CD3+), cynomolgus PBMC (cynomolgus CD3+), A549 (human CAIX+) and 4 MBr-5 (macaque CAIX+) cells, respectively. The FACS staining was performed as described in Example 23. The thick line represents cells incubated with 1 ng/ml purified monomeric protein that were subsequently incubated with the anti-his antibody and the PE labeled detection antibody. The thin histogram line reflects the negative control: cells only incubated with the anti-his antibody and the detection antibody.
[0157] FIG. 29: FACS binding analysis of cross-species specific bispecific single chain construct EGFR HL×SEQ ID NO. 170 to HPB-ALL (human CD3+), cynomolgus PBMC (cynomolgus CD3+), A431 (human EGFR+) and CHO cells transfected with cynomolgus EGFR (cynomolgus EGFR+), respectively. The FACS staining was performed as described in Example 23. The thick line represents cells incubated with 1 ng/ml purified monomeric protein that were subsequently incubated with the anti-his antibody and the PE labeled detection antibody. The thin histogram line reflects the negative control: cells only incubated with the anti-his antibody and the detection antibody.
[0158] FIG. 30: FACS binding analysis of cross-species specific bispecific single chain construct EGFR LH×SEQ ID NO. 170 to HPB-ALL (human CD3+), cynomolgus PBMC (cynomolgus CD3+), A431 (human EGFR+) and CHO cells transfected with cynomolgus EGFR (cynomolgus EGFR+), respectively. The FACS staining was performed as described in Example 23. The thick line represents cells incubated with 1 μg/ml purified monomeric protein that were subsequently incubated with the anti-his antibody and the PE labeled detection antibody. The thin histogram line reflects the negative control: cells only incubated with the anti-his antibody and the detection antibody.
[0159] FIG. 31: FACS binding analysis of cross-species specific bispecific single chain construct EGFR HL×SEQ ID NO. 194 to HPB-ALL (human CD3+), cynomolgus PBMC (cynomolgus CD3+), A431 (human EGFR+) and CHO cells transfected with cynomolgus EGFR (cynomolgus EGFR+), respectively. The FACS staining was performed as described in Example 23. The thick line represents cells incubated with 1 μg/ml purified monomeric protein that were subsequently incubated with the anti-his antibody and the PE labeled detection antibody. The thin histogram line reflects the negative control: cells only incubated with the anti-his antibody and the detection antibody.
[0160] FIG. 32: FACS binding analysis of cross-species specific bispecific single chain construct EGFR LH×SEQ ID NO. 194 to HPB-ALL (human CD3+), cynomolgus PBMC (cynomolgus CD3+), A431 (human EGFR+) and CHO cells transfected with cynomolgus EGFR (cynomolgus EGFR+), respectively. The FACS staining was performed as described in Example 23. The thick line represents cells incubated with 1 μg/ml purified monomeric protein that were subsequently incubated with the anti-his antibody and the PE labeled detection antibody. The thin histogram line reflects the negative control: cells only incubated with the anti-his antibody and the detection antibody.
[0161] FIG. 33: FACS binding analysis of cross-species specific bispecific single chain construct SEQ ID NO. 170×EGFR HL to HPB-ALL (human CD3+), cynomolgus PBMC (cynomolgus CD3+), A431 (human EGFR+) and CHO cells transfected with cynomolgus EGFR (cynomolgus EGFR+), respectively. The FACS staining was performed as described in Example 23. The thick line represents cells incubated with 1 ng/ml purified monomeric protein that were subsequently incubated with the anti-his antibody and the PE labeled detection antibody. The thin histogram line reflects the negative control: cells only incubated with the anti-his antibody and the detection antibody.
[0162] FIG. 34: FACS binding analysis of cross-species specific bispecific single chain construct SEQ ID NO. 170×EGFR LH to HPB-ALL (human CD3+), cynomolgus PBMC (cynomolgus CD3+), A431 (human EGFR+) and CHO cells transfected with cynomolgus EGFR (cynomolgus EGFR+), respectively. The FACS staining was performed as described in Example 23. The thick line represents cells incubated with 1 ng/ml purified monomeric protein that were subsequently incubated with the anti-his antibody and the PE labeled detection antibody. The thin histogram line reflects the negative control: cells only incubated with the anti-his antibody and the detection antibody.
[0163] FIG. 35: FACS binding analysis of cross-species specific bispecific single chain construct SEQ ID NO. 194×EGFR HL to HPB-ALL (human CD3+), cynomolgus PBMC (cynomolgus CD3+), A431 (human EGFR+) and CHO cells transfected with cynomolgus EGFR (cynomolgus EGFR+), respectively. The FACS staining was performed as described in Example 23. The thick line represents cells incubated with 1 ng/ml purified monomeric protein that were subsequently incubated with the anti-his antibody and the PE labeled detection antibody. The thin histogram line reflects the negative control: cells only incubated with the anti-his antibody and the detection antibody.
[0164] FIG. 36: FACS binding analysis of cross-species specific bispecific single chain construct SEQ ID NO. 194×EGFR LH to HPB-ALL (human CD3+), cynomolgus PBMC (cynomolgus CD3+), A431 (human EGFR+) and CHO cells transfected with cynomolgus EGFR (cynomolgus EGFR+), respectively. The FACS staining was performed as described in Example 23. The thick line represents cells incubated with 1 ng/ml purified monomeric protein that were subsequently incubated with the anti-his antibody and the PE labeled detection antibody. The thin histogram line reflects the negative control: cells only incubated with the anti-his antibody and the detection antibody.
[0165] FIG. 37: Cytotoxic activity induced by CAIX and CD3 cross-species specific bispecific single chain antibody constructs redirected to indicated target cell lines. Stimulated CD8 positive T cells from human and cynomolgus origin were used as effector cells, respectively. The assay was performed as described in Examples 24 and 25. In the left panel of FIG. 37, a bispecific single chain antibody with a variable domain reactive with CAIX and a de-immunized human CD3-specific variable domain has been used as a positive control. In the right panel, the same construct has been used as a negative control.
[0166] FIG. 38: Cytotoxic activity induced by the CAIX and CD3 cross-species specific bispecific single chain antibody construct CAIX HL×SEQ ID NO. 194 redirected to target cell line A549. Stimulated CD8 positive T cells from human and cynomolgus origin were used as effector cells, respectively. The assay was performed as described in Examples 24 and 25.
[0167] FIG. 39: Cytotoxic activity induced by EGFR and CD3 cross-species specific bispecific single chain antibody constructs redirected to CHO cells transfected with cynomolgus EGFR as target cell line. Stimulated CD8 positive T cells from cynomolgus origin were used as effector cells. The measurements shown in this figure were performed in a single assay. The assay was performed as described in Example 24. A bispecific single chain antibody with a variable domain reactive with EGFR and a de-immunized human CD3-specific variable domain (EGFR LH×di-anti CD3) has been used as a negative control.
[0168] FIG. 40: Cytotoxic activity induced by EGFR and CD3 cross-species specific bispecific single chain antibody constructs redirected to human A431 as target cell line. Stimulated CD8 positive T cells from human origin were used as effector cells. The measurements shown in this figure were performed in a single assay. The assay was performed as described in Example 24. A bispecific single chain antibody with a variable domain reactive with EGFR and a de-immunized human CD3-specific variable domain (EGFR LH×di-anti CD3) has been used as a positive control. As a negative control, an irrelevant bispecific single chain antibody has been used.
[0169] The following Examples illustrate the invention:
EXAMPLE 1
Flow Cytometric Analysis of Cross-Species Specific Antibodies
[0170] Cross-species specificity of anti-human CD3 antibodies to macaque CD3 (CD3 of Macaca fascicularis, in the following also named "Cynomolgus") was tested by flow cytometric analysis. Antibodies tested were an anti-CD3 antibody as described in WO 99/54440 (as shown in SEQ ID NO. 162 of the present application), monoclonal antibody (mAb) OKT-3 (Jansen-Cilag), UCHT-1-PE (BD PharMingen, San Diego, Calif.), an immunoglobulin (Ig) comprising the VH and VL chains shown in SEQ ID NOs. 2 and 4, respectively, and an Ig comprising the VH and VL chains shown in SEQ ID NOs. 6 and 8, respectively. 2×105 cells (macaque T cell lines of Macaca fascicularis and Macaca mulatta, respectively, as kindly provided by H. Fickenscher, Heidelberg, Germany) per sample were stained for 30 minutes at 4° C. in 25 of PBS/1% FCS/0.05% NaN3 containing working dilutions of monoclonal antibodies (as determined individually by titration). Cells were washed two times in PBS/1% FCS/0.05% NaN3 and a secondary antibody was added where necessary. After the addition of the secondary antibody, cells were washed again two times in the same solution and 10.000 living cells were acquired. A FACS Calibur flow cytometer and the CellQuest software from Becton Dickinson were used to collect and analyze the data. Non viable cells were excluded using forward and side scatter electronic gating. Isotype control or secondary antibody only were used as a negative control. As can be seen from FIG. 1, only the Ig comprising the VH and VL chains shown in SEQ ID NOs. 2 and 4, respectively, and the Ig comprising the VH and VL chains shown in SEQ ID NOs. 6 and 8, respectively, showed cross-species specificity for a non-chimpanzee primate CD3, i.e. macaque CD3.
EXAMPLE 2
FACS Assay for Binding of an Ig Comprising SEQ ID NOs. 2 and 4, an Ig Comprising SEQ ID NOs. 6 and 8 and mAb FN18 to HPB-ALL Cells and Cynomolgus PBMC
[0171] Binding of an Ig comprising SEQ ID NOs. 2 and 4, an Ig comprising SEQ ID NOs. 6 and 8 and mAb FN18 to the cynomolgus CD3 antigen on cynomolgus PBMC and to the human CD3 antigen on HPB-ALL cells (DSMZ No. ACC 483) was tested using an FACS assay. For that purpose, 2.5×105 cells were incubated with the FITC-conjugated Ig comprising SEQ ID NOs. 6 and 8 and the FITC-conjugated Ig comprising SEQ ID NOs. 2 and 4 diluted 1:25 in 50 nl PBS with 2% FCS, respectively. The incubation with the FITC-conjugated mAb FN18 antibody (Biosource International) was performed in 50 nl of undiluted antibody. The samples were measured on a FACSscan (BD biosciences, Heidelberg, FRG). The results for the assay are shown in FIG. 2. Strong antigen binding on human as well as on cynomolgus cells was detected for the Ig comprising SEQ ID NOs. 2 and 4. For the Ig comprising SEQ ID NOs. 6 and 8, strong binding to human cells but weaker binding to cynomolgus cells was observed. For FN18, strong binding to cynomolgus cells could be observed whereas no binding to human cells could be detected.
EXAMPLE 3
Sequence Determination of the Variable Regions of Two Anti-Human CD3 Antibodies Exhibiting Species Specificity for Non-Human Primates
[0172] For the sequence determination of the variable regions of the cross-species specific anti-CD3 Igs of Examples 1 and 2, PCR (denaturation at 93° C. for 5 min, annealing at 58° C. for 1 min, elongation at 72° C. for 1 min for the first cycle; denaturation at 93° C. for 1 min, annealing at 58° C. for 1 min, elongation at 72° C. for 1 min for 30 cycles; terminal extension at 72° C. for 5 min) was used to amplify the coding sequences of the variable regions of the antibodies. As the sequence of the 5' region of the variable regions is not known, instead of a single primer a set of 5' primers was used in combination with a constant 3' primer whereby the 3' primer was chosen according to the isotype of the respective antibody and there were two different sets of primers for the 5' region, one for the light chain variable region and the other for the heavy chain variable region. The primer combinations used in the PCR reactions are given below.
TABLE-US-00001 Heavy chain variable region: 5' primer: (SEQ ID NO. 81) 5'-SAGGTGCAGCTCGAGGAGTCAGGACCT-3' (SEQ ID NO. 82) 5'-GAGGTCCAGCTCGAGCAGTCTGGACCT-3' (SEQ ID NO. 83) 5'-CAGGTCCAACTCGAGCAGCCTGGGGCT-3' (SEQ ID NO. 84) 5'-GAGGTTCAGCTCGAGCAGTCTGGGGCA-3' (SEQ ID NO. 85) 5'-GARGTGAAGCTCGAGGAGTCTGGAGGA-3' (SEQ ID NO. 86) 5'-GAGGTGAAGCTTCTCGAGTCTGGAGGT-3' (SEQ ID NO. 87) 5'-GAAGTGAAGCTCGAGGAGTCTGGGGGA-3' (SEQ ID NO. 88) 5'-GAGGTTCAGCTCGAGCAGTCTGGAGCT-3' (SEQ ID NO. 89) 5'-GGGCTCGAGCACCATGGRATGSAGCTGKGTMATSCTCTT-3' (SEQ ID NO. 90) 5'-GGGCTCGAGCACCATGRACTTCGGGYTGAGCTKGGTTTT-3' (SEQ ID NO. 91) 5'-GGGCTCGAGCACCATGGCTGTCTTGGGGCTGCTCTTCT-3' 3' primer: (SEQ ID NO. 92) 5'-GAGGAATTCGAACTGGACAGGGATCCAGAGTTCC-3' (SEQ ID NO. 93) 5'-CGGAATTCGAATGACATGGACATCTGGGTCATCC-3' Light chain variable region: 5' primer: (SEQ ID NO. 94) 5'-CCAGTTCCGAGCTCGTTGTGACTCAGGAATCT-3' (SEQ ID NO. 95) 5'-CCAGTTCCGAGCTCGTGTTGACGCAGCCGCCC-3' (SEQ ID NO. 96) 5'-CCAGTTCCGAGCTCGTGCTCACCCAGTCTCCA-3' (SEQ ID NO. 97) 5'-CCAGTTCCGAGCTCCAGATGACCCAGTCTCCA-3' (SEQ ID NO. 98) 5'-CCAGATGTGAGCTCGTGATGACCCAGACTCCA-3' (SEQ ID NO. 99) 5'-CCAGATGTGAGCTCGTCATGACCCAGTCTCCA-3' (SEQ ID NO. 100) 5'-CCAGTTCCGAGCTCGTGATGACACAGTCTCCA-3' (SEQ ID NO. 101) 5'-GGGGAGCTCCACCATGGAGACAGACACACTCCTGCTAT-3' (SEQ ID NO. 102) 5'-GGGGAGCTCCACCATGGATTTTCAAGTGCAGATTTTCAG-3' (SEQ ID NO. 103) 5'-GGGGAGCTCCACCATGGAGWCACAKWCTCAGGTCTTTRTA-3' (SEQ ID NO. 104) 5'-GGGGAGCTCCACCATGKCCCCWRCTCAGYTYCTKGT-3' 3' primer: (SEQ ID NO. 105) 5'-GAGGAATTCGAACTGCTCACTGGATGGTGGG-3' (SEQ ID NO. 106) 5'-CGGAATTCGAACAAACTCTTCTCCACAGTGTGACC-3'
[0173] All PCR products with a length between 350 and 700 base pairs were isolated, purified and sequenced with the respective 3' primer according to standard protocols (Sambrook, Molecular Cloning; A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) (2001)).
[0174] The obtained sequences were examined for functional variable region coding sequences and for the heavy chain and the light chain of each antibody a sequence coding for the variable region was obtained. The nucleotide and amino acid sequences of the heavy and light chain variable regions of the cross-species specific anti-CD3 antibodies are described in SEQ ID NOs. 1 through 8 in the sequence listing included in the description, respectively.
EXAMPLE 4
Cloning of Anti Human EpCAM and CD3 Cross-Species Specific Bispecific Single Chain Antibodies
[0175] To generate bispecific single chain antibodies comprising the aforementioned CD3 cross-species specificities, the amplified variable regions had to be modified by PCR to obtain the corresponding single chain Fv antibody fragments. To determine suitable arrangements of the light and heavy chain variable regions in the single chain Fv antibody, two different single chain Fv antibodies were generated for each antibody. To this end, a two-step fusion PCR was used to amplify the sequence coding for the variable regions. A set of appropriate primers was designed to perform the PCR-based cloning steps, finally resulting in a single chain antibody connecting the two variable domains with a 15 amino acid linker ([Gly4Ser]3) in the order VH-Linker-VL and VL-Linker-VH. The corresponding nucleotide and amino acid sequences are described in SEQ ID NO. 9 through 12 and in SEQ ID NO. 13 through 16 of the sequence listing included in the description.
[0176] In short the following primer combinations were used:
[0177] For VL-VH scFv antibody shown in SEQ ID NOs. 11 and 12: SEQ ID NOs. 17 to 20.
[0178] For VH-VL scFv antibody shown in SEQ ID NOs. 9 and 10: SEQ ID NOs. 21 to 24.
[0179] For VL-VH scFv antibody shown in SEQ ID NOs. 15 and 16: SEQ ID NOs. 25 to 28.
[0180] For VH-VL scFv antibody shown in SEQ ID NOs. 13 and 14: SEQ ID NOs. 29 to 32.
[0181] To generate the single chain antibody, two PCRs with the respective primer combinations were performed. During this PCR overlapping complementary sequences were introduced into the PCR-products stemming from the respective linker primers that combined to form the coding sequence of the 15 amino acid linker during the subsequent fusion PCR. The amplified VH and VL domains were fused in a next PCR in which only the outer primers and both PCR-products were required. The resulting scFv antibody is flanked at the 5' end with a small Ser(Gly4)Ser linker preceded by the restriction enzyme recognition site for BspEI and at the 3' end with a 6 histidine affinity tag followed by a stop codon and by the restriction enzyme recognition site for SalI. The second single chain Fv antibody was an anti human EpCAM specificity designated "5-10" which is described in SEQ ID NO. 33 and 34 of the sequence listing included in the description. To accomplish the fusion of the single chain Fv antibodies and to allow for eukaryotic expression, the coding sequence of the single chain Fv antibodies was then cloned via BspEI (5' to the Ser(Gly4)Ser linker) and SalI into the pEFDHFR expression vector (pEFDHFR was described in Mack et al. Proc. Natl. Acad. Sci. USA 92 (1995) 7021-7025) containing the coding sequence for the human EpCAM specific single chain Fv antibody 5-10 and the restriction enzyme recognition site for BspEI. The coding sequence of an murine immunoglobulin leader peptide is described in SEQ ID NO. 35 and 36 of the sequence listing included in the description, preceded by a Kozak translation initiation consensus sequence and the restriction enzyme recognition site for EcoRI. Single clones of the constructs were isolated and sequenced with primers complementary to flanking regions in the vector according to standard protocols (Sambrook, Molecular Cloning; A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) (2001)). For further experiments a clone of each construct was selected. The nucleotide and amino acid sequences are described for 5-10LHxSEQ ID NO.12 in SEQ ID NOs. 37 and 38, for 5-10LHxSEQ ID NO.10 in SEQ ID NOs. 39 and 40, for 5-10LHxSEQ ID NO.16 in SEQ ID NOs. 41 and 42 and for 5-10LHxSEQ ID NOs.14 in SEQ ID NO. 43 and 44 of the sequence listing included in the description.
EXAMPLE 5
Expression of the 5-10LHxSEQ ID NO.12, 5-10LHxSEQ ID NO.10, 5-10LHxSEQ ID NO.16 and 5-10LHxSEQ ID NO.14 Bispecific Single Chain Antibodies in CHO Cells
[0182] The plasmids with the sequences coding for the bispecific single chain antibodies were transfected into DHFR deficient CHO cells for eukaryotic expression of the construct as described in Kaufmann R. J. (1990) Methods Enzymol. 185, 537-566). Gene amplification of the construct was induced by increasing concentrations of Methotrexat (MTX) to a final concentration of up to 500 nM MTX. The transfected cells were then expanded and 1 liter of supernatant produced. The construct was finally purified out of the culture supernatant as described in Kufer et al. Cancer immunity Vol. 1, p. 10 (2001).
EXAMPLE 6
FACS Assay for Binding of 5-10LHxSEQ ID NO.12, 5-10LHxSEQ ID NO.10, 5-10LHxSEQ ID NO.16 and 5-10LHxSEQ ID NO.14 to Kato III Cells or Human EpCAM Transfected CHO Cells and to HPB-ALL Cells
[0183] Binding of the bifunctional constructs to the EpCAM antigen on human Kato III cells expressing EpCAM (ATCC No. HTB-103) or on human EpCAM transfected CHO cells and to the human CD3 antigen on HPB-ALL cells was tested using an FACS assay. For that purpose 2.5×105 cells were incubated with 50u1 of cell culture supernatant containing the construct. The binding of the construct was detected with an anti-His antibody (Penta-His Antibody, BSA free, obtained from Qiagen GmbH, Hilden, FRG) at 2 μg/ml in 50 ul PBS with 2% FCS. As a second step reagent a R-Phycoerythrin-conjugated affinity purified F(ab')2 fragment, goat anti-mouse IgG, Fc-gamma fragment specific antibody, diluted 1:100 in 50 ul PBS with 2% FCS (obtained from Dianova, Hamburg, FRG) was used. The samples were measured on a FACSscan (BD biosciences, Heidelberg, FRG). Antigen binding was clearly detectable for the anti human EpCAM specificity as well as for the anti CD3 specificities on the cell line positive for human CD3 (see FIG. 3).
EXAMPLE 7
Cytotoxicity Assay for 5-10LHxSEQ ID NO. 12, 5-10LHxSEQ ID NO.10, and 5-10LHxSEQ ID NO.14 with Kato III Cells as Target Cells and Human PBMC as Effector Cells
[0184] Bioactivity of 5-10LHxSEQ ID NO.12, 5-10LHxSEQ ID NO.10, and 5LH-10×SEQ ID NO.14 was analyzed by FACS-based in vitro cytotoxicity assays using the human EpCAM positive Kato III cells as target cells and human PBMCs as effector cells. Target cells were washed twice with PBS and labeled with PKH26 dye (Sigma-Aldrich, Germany) according to the manufacturer's instructions. Labeled target cells were washed twice with RPMI/10% FCS and mixed with freshly isolated effector cells at an E:T ratio of 10:1. Two times 104 target and 2×105 effector cells in a volume of 50 μl RPMI/10% FCS were added per well in a 96-well round bottom plate. Ten-fold serial dilutions of different bispecific single chain constructs were prepared in RPMI/10% FCS to obtain a starting concentration of 1000 ng/ml in the final reaction volume. 50 μl of the different solutions were added in triplicates to the corresponding wells. Individual cytotoxicity mixtures were incubated for 24 to 48 hours at 37° C., 5% CO2.
[0185] Subsequently the measurement of cytotoxic activity was performed. To this end, Propidium iodide (PI) was added to a final concentration of 1 μg/ml per well and plates were incubated for 10 minutes at room temperature. The number of PKH and PI positive and negative target cells was determined by FACS. Cytotoxicity was measured as the ratio of PKH-positive and PI negative (living target cells) over the mean of living target cells (PKH-positive and PI negative) in the control containing no construct according to the formula: cytotoxicity (%)=[(PI-negative cells/mean of PI-negative cells in control)×100]. Sigmoidal dose response killing curves were analyzed by Prism Software (GraphPad Software Inc., San Diego, USA) and the BiTE concentration calculated that induced half maximal killing (EC50 value). The results of this assay are shown below in FIG. 4. All constructs showed cytotoxic activity. The resulting EC50 values for 5-10LHxSEQ ID NO.14, 5-10LHxSEQ ID NO.12 and 5-10LHxSEQ ID NO.10 were 1.3 pg/ml, 1.5 pg/ml and 5.8 pg/ml respectively.
EXAMPLE 8
Cytotoxicity Assay for 5-10LHxSEQ ID NO.12, 5-10LHxSEQ ID NO.10, and 5-10LHxSEQ ID NO.14 with Kato III Cells as Target Cells and Cynomolgus PBMC as Effector Cells
[0186] Bioactivity of 5-10LHxSEQ ID NO.12, 5-10LHxSEQ ID NO.10, and 5-10LHxSEQ ID NO.14 was analyzed by FACS-based in vitro cytotoxicity assays using the human EpCAM positive Kato III cells as target cells and cynomolgus PBMCs as effector cells.
[0187] Target cells were washed twice with PBS and labeled with PKH26 dye (Sigma-Aldrich, Germany) according to the manufacturer's instructions. Labeled target cells were washed twice with RPMI/10% FCS and mixed with freshly isolated effector cells at an E:T ratio of 10:1. Two times 104 target and 2×105 effector cells in a volume of 50 μl RPMI/10% FCS were added per well in a 96-well round bottom plate. Ten-fold serial dilutions of different Bispecific single chain antibodies were prepared in RPMI/10% FCS to obtain a starting concentration of 1000 ng/ml in the final reaction volume. 50 μl of the different solutions were added in triplicates to the corresponding wells. Individual cytotoxicity mixtures were incubated for 24 to 48 hours at 37° C., 5% CO2.
[0188] Subsequently the measurement of cytotoxic activity was performed. To this end, propidium iodide (PI) was added to a final concentration of 1 μg/ml per well and plates were incubated for 10 minutes at room temperature. The number of PKH and PI positive and negative target cells was determined by FACS. Cytotoxicity was measured as the ratio of PKH-positive and PI negative (living target cells) over the mean of living target cells (PKH-positive and PI negative) in the control containing no construct according to the formula: cytotoxicity (%)=[(PI-negative cells/mean of PI-negative cells in control)×100]. Sigmoidal dose response killing curves were analyzed by Prism Software (GraphPad Software Inc., San Diego, USA) and the bispecific single chain antibody concentration calculated that induced half maximal killing (EC50 value). The results of this assay are shown below in FIG. 5. 5-10LHxSEQ ID NO.14, 5-10LHxSEQ ID NO.12 and 5-10LHxSEQ ID NO.10 showed cytotoxic activity. The resulting EC50 values for 5-10LHxSEQ ID NO.14, 5-10LHxSEQ ID NO.12 and 5-10LHxSEQ ID NO.10 were 87 pg/ml, 69 pg/ml and 52 pg/ml respectively. 5-10LHxdi-anti CD3 (deimmunised anti-CD3 antibody as shown in SEQ ID NO.163) showed no activity. This is due to the fact that di-anti CD3 antibody only binds to human CD3, but not to cynomolgus CD3.
EXAMPLE 9
Sequence Determination of the Cynomolgus EpCAM Antigen and Generation of Cynomolgus EpCAM Transfected CHO Cells
[0189] To obtain the cynomolgus EpCAM antigen for testing of cross-species specificity of anti human EpCAM antibodies, first the coding sequence of the cynomolgus EpCAM antigen had to be determined. To this end, colon tissue samples of 3 animals were used in parallel for the isolation of total RNA and cDNA synthesis by random-primed reverse transcription, which were performed according to standard protocols (Sambrook, Molecular Cloning; A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) (2001)). A PCR (denaturation at 93° C. for 5 min, annealing at 58° C. for 1 min, elongation at 72° C. for 1 min for the first cycle; denaturation at 93° C. for 1 min, annealing at 58° C. for 1 min, elongation at 72° C. for 1 min for 35 cycles; terminal extension at 72° C. for 5 min) was used to amplify the coding sequence of the EpCAM antigen. As the coding sequence of the cynomolgus EpCAM antigen was not known, appropriate primers (5' primer described in SEQ ID NO. 45, 3' primer described in SEQ ID NO. 46) for the PCR reaction were designed according to the known coding sequence of the human EpCAM antigen (Szala S. et al., Proc Natl Acad Sci USA. 87 (1990); p. 3542-6). Primers were also designed as to allow for expression of the coding sequence of the entire antigen. For the 3 samples, PCR of 960 base pairs were isolated, purified and subcloned via XbaI and SalI, into pEFDHFR. Multiple clones for each sample were sequenced according to standard protocols (Sambrook, Molecular Cloning; A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) (2001)) using appropriate sequencing primers complementary to flanking sequences in the vector.
[0190] The novel nucleotide and amino acid sequences of the cynomolgus EpCAM antigen are described in SEQ ID NOs. 47 and 48 in the sequence listing included in the description, respectively.
[0191] The obtained sequences were examined by comparison with the coding sequence of the human EpCAM antigen. As shown in FIG. 6, there is a high degree of sequence homology between the coding sequence of the human EpCAM antigen and the sequences obtained from the colon samples of the 3 cynomolgus monkeys.
[0192] To generate a cell line positive for cynomolgus EpCAM, a clone of the aforementioned coding sequence of the cynomolgus EpCAM antigen subcloned into pEFDHFR with a verified nucleotide sequence was transfected into DHFR deficient CHO cells for eukaryotic expression of the construct as described in Kaufmann R. J. (1990) Methods Enzymol. 185, 537-566). Gene amplification of the construct was induced by increasing concentrations of MTX to a final concentration of up to 500 nM MTX. The transfected cells were then tested for expression of cynomolgus EpCAM using an FACS assay. For that purpose, a number of 2.5×105 cells was incubated with 50 μl supernatant three different mouse anti human EpCAM hybridomas (M79-Fogler et al., Cancer Res. 48 (1988); p. 6303-8; 3B10--Passlick et al. Int. J. Cancer 87 (2000), p. 548-552; 2G8--Balzar et al., J. Mol. Med. 77 (1999), p. 699-712). The binding of the antibodies was detected with a R-Phycoerythrin-conjugated affinity purified F(ab')2 fragment, goat anti-mouse IgG, Fc-gamma fragment specific antibody, diluted 1:100 in 50 μl PBS with 2% FCS (obtained from Dianova, Hamburg, FRG) was used. The samples were measured on a FACSscan (BD biosciences, Heidelberg, FRG). The anti EpCAM antibody 2G8 was recognized as cross-species specific and the expression of cynomolgus EpCAM was confirmed (see FIG. 7). Transfectants (depicted as non-filled curves) as compared to untransfected cells (depicted as filled curves) showed binding only with the supernatant of the 2G8 hybridoma which is therefore recognized as antibody species specific for human and cynomolgus EpCAM.
EXAMPLE 10
Sequence Determination of the Variable Regions of an Anti Human EpCAM Antibody Cross-Species Specific for Non-Human Primates
[0193] For the sequence determination of the variable regions of the anti-EpCAM antibody 2G8, the respective hybridoma cell line was used for isolation of total RNA and cDNA synthesis by random-primed reverse transcription, which were performed according to standard protocols (Sambrook, Molecular Cloning; A Laboratory Manual, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York (1989) (2001)). A PCR (denaturation at 93° C. for 5 min, annealing at 58° C. for 1 min, elongation at 72° C. for 1 min for the first cycle; denaturation at 93° C. for 1 min, annealing at 58° C. for 1 min, elongation at 72° C. for 1 min for 30 cycles; terminal extension at 72° C. for 5 min) was used to amplify the coding sequences of the variable regions of the antibody. As the sequence of the 5' region of the variable regions is not known the aforementioned set of 5' primers was used in combination with a constant 3' primer whereby the 3' primer was chosen according to the isotype of the antibody.
TABLE-US-00002 Heavy chain variable region: 3' primer: (SEQ ID NO. 107) 5'-TATGCAACTAGTACAACCACAATCCCTGGG-3' Light chain variable region: 3' primer: (SEQ ID NO. 108) 5'-GCGCCGTCTAGAATTAACACTCATTCCTGTTGAA-3'
[0194] All PCR products with a length between 350 and 700 base pairs were isolated, purified and sequenced with the respective 3' primer according to standard protocols (Molecular Cloning; A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) (2001)).
[0195] The obtained sequences were examined for functional variable region coding sequences and for the heavy chain and the light chain of the antibody a sequence coding for the variable region was isolated. The nucleotide and amino acid sequences of the variable regions are described in SEQ ID NOs. 49 through 52 in the sequence listing included in the description, respectively.
EXAMPLE 11
Cloning of EpCAM and CD3 Cross-Species Specific Bispecific Single Chain Antibodies
[0196] To generate bispecific single chain antibody molecules comprising the aforementioned CD3 cross-species specificity and the aforementioned EpCAM cross-species specificity, the amplified variable regions of the 2G8 antibody had to be modified by PCR to obtain the corresponding single chain Fv antibody fragments. Two single chain Fv antibodies with different arrangements of the light and heavy chain variable regions were generated. To this end, a two-step fusion PCR was used to amplify the sequence coding for the variable regions. A set of appropriate primers was designed to perform the PCR-based cloning steps, finally resulting in a 2G8 single chain antibody connecting the two variable domains with a 15 amino acid linker ([Gly4Ser]3) in the order VH-Linker-VL and VL-Linker-VH. The nucleotide and amino acid sequences are described in SEQ ID NOs. 53 through 56 of the sequence listing included in the description, respectively.
[0197] In short the following primer combinations were used:
[0198] For 2G8 VL-VH scFv antibody (hereafter designated as 2G8LH shown in SEQ ID NOs. 55 and 56): SEQ ID NOs. 57 to 60.
[0199] For 2G8 VH-VL scFv antibody (hereafter designated as 2G8HL shown in SEQ ID NOs. 53 and 54): SEQ ID NOs. 61 to 64.
[0200] To generate the single chain antibody, two PCRs with the respective primer combinations were performed. During this PCR, overlapping complementary sequences were introduced into the PCR-products (stemming from the respective linker primers that combined to form the coding sequence of the 15 amino acid linker during the subsequent fusion PCR). The amplified VH and VL domains were fused in this fusion PCR in which only the outer primers and both PCR-products were required. The resulting scFv antibody is flanked at the 5' end with the restriction enzyme recognition site for BsrGI and at the 3' end with the restriction enzyme recognition site for BspEI. The coding sequence of the EpCAM specific single chain Fv antibodies was then cloned via BsrGI and BspEI into the pEFDHFR expression vectors described above replacing the 5-10LH scFv. Single clones of the constructs were isolated and sequenced with primers complementary to flanking regions in the vector according to standard protocols (Sambrook, Molecular Cloning; A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) (2001)). For further experiments a clone of each construct was selected. The nucleotide and amino acid sequences are described for 2G8LHxSEQ ID NO.12 in SEQ ID NOs. 65 and 66, for 2G8LHxSEQ ID NO.10 in SEQ ID NOs. 67 and 68, for 2G8LHxSEQ ID NO.16 in SEQ ID NOs. 69 and 70, for 2G8LHxSEQ ID NO.14 in SEQ ID NOs. 71 and 72, for 2G8HLxSEQ ID NO.12 in SEQ ID NOs. 73 and 74, for 2G8HLxSEQ ID NO.10 in SEQ ID NOs. 75 and 76, for 2G8HLxSEQ ID NO.16 in SEQ ID NOs. 77 and 78, and for 2G8HLxSEQ ID NO.14 in SEQ ID NOs. 79 and 80 of the sequence listing included in the description.
EXAMPLE 12
Expression of the 2G8LHxSEQ ID NO.12, 2G8LHxSEQ ID NO.10, 2G8LHxSEQ ID NO.16, 2G8LHxSEQ ID NO.14, 2G8HLxSEQ ID NO.12, 2G8HLxSEQ ID NO.10, 2G8HLxSEQ ID NO.16 and 2G8HLxSEQ ID NO.14 Bispecific Single Chain antibodies in CHO cells
[0201] The plasmids with the sequences coding for the bispecific single chain antibodies were transfected into DHFR deficient CHO cells for eukaryotic expression of the construct as described in Kaufmann R.J. (1990) Methods Enzymol. 185, 537-566). Gene amplification of the construct was induced by increasing concentrations of MTX to a final concentration of up to 500 nM MTX. The transfected cells were then expanded and 1 liter of supernatant produced. The construct was finally purified out of the culture supernatant as described in Kufer et al. Cancer Immunity Vol. 1, p. 10 (2001).
EXAMPLE 13
FACS assay for binding of 2G8LHxSEQ ID NO.12, 2G8LHxSEQ ID NO.10, 2G8LHxSEQ ID NO.16, 2G8LHxSEQ ID NO.14, 2G8HLxSEQ ID NO.12, 2G8HLxSEQ ID NO.10, 2G8HLxSEQ ID NO.16 and 2G8HLxSEQ ID NO.14 on Kato III Cells or Cynomolgus EpCAM Transfected CHO Cells and HPB-ALL Cells
[0202] Binding of the bifunctional constructs from cell culture supernatants or binding of purified bifunctional constructs to the human EpCAM antigen on Kato III cells or cynomolgus EpCAM transfected CHO cells and to the CD3 antigen on HPB-ALL cells was tested using an FACS assay. For that purpose 2.5×105 cells were incubated with 50 μl supernatant or with 5 μg/ml of the purified constructs in 50 μl PBS with 2% FCS. The binding of the constructs was detected with an anti-His antibody (Penta-His Antibody, BSA free, obtained from Qiagen GmbH, Hilden, FRG) at 2 μg/ml in 50 μl PBS with 2% FCS. As a second step reagent a R-Phycoerythrin-conjugated affinity purified F(ab')2 fragment, goat anti-mouse IgG, Fc-gamma fragment specific antibody, diluted 1:100 in 50 μl PBS with 2% FCS (obtained from Dianova, Hamburg, FRG) was used. The samples were measured on a FACSscan (BD biosciences, Heidelberg, FRG). Antigen binding was clearly detectable for the anti EpCAM specificities as well as for the anti CD3 specificities (see FIG. 8). As a negative control for binding to cynomolgus EpCAM, the 5-10LHxSEQ ID NO.10 construct was included which shows binding on human CD3 (HPB-ALL cells) but no binding to cynomolgus EpCAM (cynomolgus EpCAM transfected CHO cells). The 5-10LH part only binds to human EpCAM.
EXAMPLE 14
Cytotoxicity Assay for 2G8LHxSEQ ID NO.10 and 2G8HLxSEQ ID NO.12 with Cynomolgus EpCAM Transfected CHO Cells as Target Cells and Human PBMC as Effector Cells
[0203] Bioactivity of selected bispecific single chain antibodies was analyzed by FACS-based in vitro cytotoxicity assays using the cynomolgus EpCAM transfected CHO cells as target cells and human PBMCs as effector cells.
[0204] Target cells were washed twice with PBS and labeled with PKH26 dye (Sigma-Aldrich, Germany) according to the manufacturer's instructions. Labeled target cells were washed twice with RPMI/10% FCS and mixed with freshly isolated effector cells at an E:T ratio of 10:1. 2×104 target and 2×105 effector cells in a volume of 50 nl RPMI/10% FCS were added per well in a 96-well round bottom plate. Ten-fold serial dilutions of different bispecific single chain antibodies were prepared in RPMI/10% FCS to obtain a starting concentration of 5000 ng/ml in the final reaction volume. 50 nl of the different solutions were added in triplicates to the corresponding wells and incubated for 24 to 48 hours at 37° C., 5% CO2.
[0205] Subsequently, the measurement of cytotoxic activity was performed. To this end propidium iodide (PI) was added to a final concentration of 1 ng/ml per well and plates were incubated for 10 minutes at room temperature. The number of PKH and PI positive target cells was determined by FACS. Cytotoxicity was measured as the ratio of PI positive (dead cells) over total number of target cells (PKH-positive) according to the formula: cytotoxicity (%)=[(PI-positive cells/PKH-positive cells)×100]. Sigmoidal dose response killing curves were analyzed by Prism Software (GraphPad Software Inc., San Diego, USA) and the bispecific single chain antibody concentration calculated that induced half maximal killing (EC50 value). The results of this assay are shown below in FIG. 9. The resulting EC50 values for 2G8LHxSEQ ID NO.10 and 2G8HLxSEQ ID NO.12 were 1103 pg/ml and 3638 pg/ml, respectively. 5-10LHxdi-anti CD3 (deimmunised version of the anti-CD3 antibody as shown in SEQ ID NO.163 binding to human CD3, but not to cynomolgus CD3) was included as negative control and showed no activity. This is due to the fact that 5-10LH only binds to human EpCAM but lacks cross-species specificity to cynomolgus EpCAM.
EXAMPLE 15
Cytotoxicity Assay for 2G8LHxSEQ ID NO.10 and 2G8HLxSEQ ID NO.12 with Cynomolgus EpCAM Transfected CHO Cells as Target Cells and Cynomolgus PBMC as Effector Cells
[0206] Bioactivity of selected bispecific single chain antibodies was analyzed by FACS-based in vitro cytotoxicity assays using the cynomolgus EpCAM transfected CHO cells as target cells and cynomolgus PBMCs as effector cells.
[0207] Target cells were washed twice with PBS and labeled with PKH26 dye (Sigma-Aldrich, Germany) according to the manufacturer's instructions. Labeled target cells were washed twice with RPMI/10% FCS and mixed with freshly isolated effector cells at an E:T ratio of 10:1. 2×104 target and 2×105 effector cells in a volume of 50 nl RPMI/10% FCS were added per well in a 96-well round bottom plate. Ten-fold serial dilutions of different bispecific single chain antibodies were prepared in RPMI/10% FCS to obtain a starting concentration of 5000 ng/ml in the final reaction volume. 50 μl of the different solutions were added in triplicates to the corresponding wells. Individual cytotoxicity mixtures were incubated for 24 to 48 hours at 37° C., 5% CO2.
[0208] Subsequently the measurement of cytotoxic activity was performed as described in Example 14. The resulting EC50 values for 2G8LHxSEQ ID NO.10 and 2G8HLxSEQ ID NO.12 were 39810 pg/ml and 60350 pg/ml respectively. 5-10LHxdi-anti CD3 (deimmunised version of the anti-CD3 antibody as shown in SEQ ID NO.163) was included as negative control and showed no activity. Di-anti CD3 only binds to human CD3, but fails to bind to macaque/cynomolgus CD3. 5-10LH only binds to human EpCAM but lacks cross-species specificity to cynomolgus EpCAM.
EXAMPLE 16
Generation of a Human-like CD3 Antibody Fragment that Binds to Human and Cynomolgus CD3
1. Determination of a Correlating Human VH
[0209] The amino acid sequence of the murine VH chain shown in SEQ ID NO. 2 was aligned to the repertoire of human VH germline sequences (http://vbase.mrc-cpe.cam.ac.uk) using the Vector NTI DNA analysis software. On the basis of this analysis, the human VH segment 3-73 was chosen as a template sequence (see FIG. 11). Definitions of CDRs and frameworks are according to the Kabat numbering scheme.
[0210] The corresponding amino acid residues that differ between the VH chain shown in SEQ ID NO. 2 and the human VH segment 3-73 within the framework regions were mutated on the DNA level towards the human residues. However, the construct retained potentially crucial framework residues of the original murine VH sequence (according to the Kabat numbering scheme): H-30, H-41, H49, H82b, H-93 (see FIG. 12). In this way, an amino acid sequence was designed that was identical to the murine VH chain shown in SEQ ID NO. 2 sequence within its CDRs. The corresponding amino acid sequence is shown in SEQ ID NO. 110, whereas the corresponding nucleic acid sequence is shown in SEQ ID NO. 111; see also FIG. 12. The N-terminal VH sequence was changed to "EVQLLE" to generate a suitable N-terminal cloning site (see FIG. 12).
2. Gene Synthesis and Cloning of the Human-Like VH Region
[0211] The afore-mentioned human-like VH region was gene synthesized (Entelechon, Germany) and subcloned via the restriction sites XhoI and BstEII into a suitable bacterial expression vector. This vector already contained the sequence coding for a VL chain (amino acid sequence shown in SEQ ID NO. 148; N-terminus in comparison to the original VL shown in SEQ ID NO. 4 slightly changed for cloning reasons) pairing with the human like VH region followed by a Flag and a His-6 Tag and preceded by a leader sequence that directs the functional scFv into the periplasma of E. coli. The functional domain arrangement after cloning was Leader sequence-VH-(G4S)3-VL-Flag-His6.
3. Functional Analysis of scFv Constructs Having the Original Murine VH Shown in SEQ ID NO.2/VL Shown in SEQ ID NO.4 in Comparison to the Human-Like VH Shown in SEQ ID NO.110/VL Shown in SEQ ID NO. 148
[0212] Plasmid DNA encoding a) for the original murine VH (SEQ ID NO. 2) and VL (SEQ ID NO. 4) and b) for the human-like VH (SEQ ID NO. 110) combined with the VL (SEQ ID NO. 148) was each transformed into E. coli TG1 according to standard protocols. The nucleotide and amino acid sequences of the VH-VL scFv comprising the original murine VH (SEQ ID NO. 2) and VL (SEQ ID NO. 4) are shown in SEQ ID NOs. 9 and 10, respectively. The nucleotide and amino acid sequences of the VH-VL scFv comprising the human-like VH (SEQ ID NO. 110) and the VL (SEQ ID NO. 148) are shown in SEQ ID NOs. 147 and 146, respectively.
[0213] Expression of different clones was performed in E. coli TG-1 in 96-well format. 100 μl LB/0.1% glucose were inoculated with 10 μl of an overnight culture of single clones and grown for 4 h at 37° C. After addition of IPTG to a final concentration of 1 mM, the culture was grown at 30° C. for another 18-20 h. Per well, 40 μl of BEL-buffer (400 mM boric acid, 320 mM NaCl, 4 mM EDTA pH 8.0+2.5 mg/ml lysozyme) were added and shaken at room temperature for 1 h. Cellular debris was eliminated by centrifugation and supernatants were tested in flow cytometric experiments.
[0214] The human T cell line HPB-All and T cells in cynomolgus peripheric blood mononuclear cells (PBMC) were used as human CD3 and cynomolgus CD3 positive cells, respectively. Typically 100,000 cells were incubated with 50 μl of the scFv containing bacterial supernatants and incubated for 30 min on ice.
[0215] Afterwards the cells were washed three times with PBS and subsequently resuspended in 50 μl PBS containing anti-His antibody (Pentahis, Roche) and further incubated on ice for 30 min. Then the cells were washed three times with PBS and incubated with a PE labeled anti mouse IgG antibody for 30 more min. on ice (in this step cynomolgus PBMCs were coincubated with anti-CD2 FITC to identify the T cells in the PBMC mixture). After washing the cells for one time the cells were resuspended in a suitable buffer and positivity of cell bound antibody construct determined in a flow cytometer (FACScalibur) and analyzed. The control scFv of SEQ ID NO. 10 shows a clear shift on human CD3 positive cells as well as on cynomolgus CD3 positive cells indicative of binding to both human and cynomolgus CD3. The scFv shown in SEQ ID NO. 146 containing the human-like VH also shows clear binding to CD3 positive human (see FIG. 13) and cynomolgus cells (see FIG. 14).
4. Determination of a Correlating Human VL
[0216] The amino acid sequence of the murine VH chain shown in SEQ ID NO. 2 was aligned to the repertoire of human VL germline sequences (http://vbase.mrc-cpe.cam.ac.uk) using the Vector NTI DNA analysis software. On the basis of this analysis, the human Vlambda segment 7a was chosen as a template sequence (see FIG. 21). Definitions of CDRs and frameworks are according to the Kabat numbering scheme. The corresponding amino acid residues that differ between the murine VL chain shown in SEQ ID NO. 4 and the human Vlambda segment 7a within the framework regions were mutated on the DNA level towards the human residues. However, the construct retained potentially crucial framework residues of the original murine Vlambda sequence (according to the Kabat numbering scheme): L 36, L 46, L 49, L 57 (see FIG. 21). In this way, an amino acid sequence was designed that was identical to the murine VL chain shown in SEQ ID NO. 4 sequence within its CDRs. The corresponding amino acid sequence of the generated human-like VL is shown in SEQ ID NO. 168, whereas the corresponding nucleic acid sequence is shown in SEQ ID NO. 167. The N-terminal VL sequence was changed to "EL" to generate a suitable N-terminal cloning site.
5. Gene Synthesis and Cloning of the Human-Like VL Region
[0217] The above-mentioned human-like VL region was gene synthesized (Entelechon, Germany) and subcloned via the restriction sites Sad and BsiWI into a suitable bacterial expression vector. This vector already contained the sequence coding for the above-mentioned human-like VH chain (amino acid sequence shown in SEQ ID NO. 110) pairing with the human-like VL region (amino acid sequence shown in SEQ ID NO. 168) followed by a Flag and a His-6 Tag and preceded by a leader sequence that directs the functional scFv into the periplasma of E. coli. The functional domain arrangement after cloning was Leader sequence-VH-(G4S)3 linker-VL-Flag tag-His6 tag.
6. Functional Analysis of scFv Constructs Having the Human-Like VH Shown in SEQ ID NO. 110 Combined with the Human-Like VL Shown in SEQ ID NO. 168
[0218] Plasmid DNA encoding a) for the original murine VH (SEQ ID NO. 2) and VL (SEQ ID NO. 4) and b) for the human-like VH (SEQ ID NO. 110) combined with the human-like VL (SEQ ID NO. 168) was each transformed into E. coli TG1 according to standard protocols. The nucleotide and amino acid sequences of the VH-VL scFv comprising the original murine VH (SEQ ID NO. 2) and VL (SEQ ID NO. 4) are shown in SEQ ID NOs. 9 and 10, respectively. The nucleotide and amino acid sequences of the VH-VL scFv comprising the human-like VH (SEQ ID NO. 110) and the human-like VL (SEQ ID NO. 168) are shown in SEQ ID NOs. 169 and 170, respectively. The nucleotide and amino acid sequences of the VL-VH scFv comprising the human-like VL (SEQ ID NO. 168) and the human-like VH (SEQ ID NO. 110) are shown in SEQ ID NOs. 193 and 194, respectively. Due to different cloning strategies, the amino acid sequence of the VL-VH scFv of SEQ ID NO. 194 shows three amino acid exchanges in comparison to the one of the VH-VL scFv of SEQ ID NO. 170, however, without affecting the binding capacity and specificity of said scFv. Expression of different clones was performed in E. coli TG-1 in 96-well format. 100 μl LB/0.1% glucose were inoculated with 10 μl of an overnight culture of single clones and grown for 4 h at 37° C. After addition of IPTG to a final concentration of 1 mM, the culture was grown at 30° C. for another 18-20 h. Per well, 40 p. 1 of BEL-buffer (400 mM boric acid, 320 mM NaCl, 4 mM EDTA pH 8.0+2.5 mg/ml lysozyme) were added and shaken at room temperature for 1 h. Cellular debris was eliminated by centrifugation and supernatants were tested in flow cytometric experiments.
[0219] The human T cell line HPB-ALL and human and cynomolgus T cells in peripheric blood mononuclear cells (PBMCs) were used as human CD3 and cynomolgus CD3 positive cells, respectively.
[0220] Typically 100,000 cells were incubated with 50 μl of the scFv containing bacterial supernatants and incubated for 30 min on ice.
a) HPB-ALL cells were washed three times with PBS and subsequently resuspended in 50 μl PBS containing anti-His antibody (Pentahis, Roche) and further incubated on ice for 30 mM. Then the cells were washed three times with PBS and incubated with a PE labeled anti mouse IgG antibody for 30 more min. on ice. After washing the cells for one time the cells were resuspended in a suitable buffer and positivity of cell bound antibody construct determined in a flow cytometer (FACScalibur) and analyzed. b) Human and cynomolgus PBMCs (containing T cells) were washed three times with PBS and subsequently resuspended in 50 μl PBS containing biotinylated anti-His antibody (biotinylated Pentahis, Roche) and further incubated on ice for 30 min. Then the cells were washed three times with PBS and incubated with PE labeled Streptavidin for 30 more min. on ice. In this step, PBMCs were coincubated with anti-CD2 FITC to identify the T cells in the PBMC mixture.
[0221] After washing the cells from a) or b) for one time the cells were resuspended in a suitable buffer and positivity of cell bound antibody construct determined in a flow cytometer (FACScalibur) and analyzed.
[0222] The control scFv of SEQ ID NO. 10 (murine VH of SEQ ID NO.4--murine VL of SEQ ID NO. 2) shows a clear shift on human CD3 positive cells as depicted in FIG. 22. The shift on human and cynomolgus T cells is less pronounced, most probably due to the less sensitive detection system (FIG. 23).
[0223] The human-like scFv of SEQ ID NO. 170 (human-like VH of SEQ ID NO.110--human-like VL of SEQ ID NO. 168) shows a positive shift on HPB-ALL cells (FIG. 22) and clear shifts on human as well as cynomolgus T cells (FIG. 23, upper panel). When preincubated with 10 μg/ml of the murine IgG antibody mAb I described in Example 1 having the same specificity as the scFvs (i.e. for CD3 epsilon), the shifts of cells stained with the above-mentioned murine scFv or the human-like scFv decrease significantly, underlining the similar binding region of the scFvs and the original murine antibody; see FIG. 23 lower panel.
EXAMPLE 17
Determination of an Epitope for Cross-Species Specific Anti-CD3 Antibodies Binding Both Human and Cynomolgus CD3 Epsilon
[0224] In order to determine the epitope of human and cynomolgus CD3 epsilon bound by cross-species specific anti-CD3 antibodies, epitope mapping was carried out with antibody I (Ig comprising the VH chain shown in SEQ ID NO. 2 and the VL chain shown in SEQ ID NO. 4) and antibody II (Ig comprising the VH chain shown in SEQ ID NO. 6 and the VL chain shown in SEQ ID NO. 8), both binding to human and cynomolgus CD3 epsilon; see also FIG. 1. For the peptide-spotting ("pepspot") analysis, overlapping 13 mer peptides derived from the amino acid sequences of human and cynomolgus CD3 epsilon (see FIG. 15) were covalently linked to a Whatman 50 cellulose-B-alanine-membrane via the C-terminus while the acetylated N-terminus remained free. In the peptides, the amino acid cystein--wherever occurring in the corresponding CD3 epsilon sequence--was exchanged by the amino acid serin. The individual 13 mer peptides generated (by JPT Peptide Technologies GmbH) are shown in FIGS. 16 and 17. For cynomolgus CD3 epsilon, 43 spots have been tested, whereas for the human CD3 epsilon 47 spots have been tested. The length of the overlapping sequence of two adjacent peptides was set to be 11 amino acids. The pepspot experiments were performed as follows. According to the manufacturer's protocol, the membrane was rinsed with methanol for 1 min, washed with 1×TBS and blocked with 1×TBS/1% (w/v) blocking reagent (BM Chemiluminescence Blotting Substrate (POD) of Roche Diagnostics GmbH) for 3 h. All incubation and washing steps were performed on an orbital shaker at room temperature, except for the overnight incubation of the primary antibody. Directly after discarding the blocking solution, the membranes were incubated overnight with 5 or 3 μg/ml of cross-species specific anti-CD3 antibodies as set forth above in 1×TBS/0.5% (w/v) blocking reagent at 4° C. on an orbital shaker. After washing 4 times with 1×TBS/0.05% Tween for 15 min, detection of bound anti-CD3 antibody was accomplished by incubation for 2 h with a commercially available horseradish-peroxidase-conjugated anti-IgG (F(ab)2 specific) antibody or an alkaline phosphatase-labeled anti-IgG antibody (diluted according to the manufacturer's recommendation in 1×TBS/0.5% blocking reagent, respectively). Subsequently, the membranes were washed 6 times with 1×TBS/0.05% Tween for 15 min. Horseradish-peroxidase was visualized by enhanced chemiluminescence (luminescence substrate solution A and starting solution B mixed 100:1; BM Chemiluminescence Blotting Substrate (POD) of Roche Diagnostics GmbH) and a BioMax Film (Kodak). Alkaline phosphatase was visualized using 5-bromo-4-chloro-indolyl phosphate/nitro blue tetrazolium liquid substrate system (Sigma). To exclude unspecific binding of horseradish-peroxidase-conjugated secondary antibody, the membrane was incubated with secondary antibody only. All other steps were performed as in the experiment above.
[0225] The control pepspot assay (see FIG. 18(A)) showed signals on spots 33 and 42 of cynomolgus CD3 epsilon and on spots 37, 39 and 46 of human CD3 epsilon. These signals are regarded as unspecific and will not be mentioned further.
1. Anti-CD3 Antibody I (Ig Comprising the VH Chain Shown in SEQ ID NO. 2 and the VL Chain Shown in SEQ ID NO. 4)
(i) Binding on Cynomolgus CD3 Epsilon
[0226] Strong binding signals of cross-species specific anti-CD3 antibody I (Ig comprising the VH chain shown in SEQ ID NO. 2 and the VL chain shown in SEQ ID NO. 4) to peptides derived from cynomolgus CD3 epsilon were detected on spot 1 as well as on the stretch of peptide-spots 24-29 (FIG. 18(B)). The latter corresponds to amino acid residues 47-69 of cynomolgus CD3 epsilon (see FIG. 15). All 13 mer peptides covering this region contain one minimal amino acid motif 56-59 (EFSE). Spot 1 corresponds to amino acid residues 1-13 (QDGNEEMGSITQT) of cynomolgus CD3 epsilon.
(ii) Binding on Human CD3 Epsilon
[0227] Cross-species specific anti-CD3 antibody I bound to peptide-spots 15, 28, 32, 33 and 40 derived from human CD3 epsilon (see FIG. 18(B)). The stretch of peptide-spots 28 to 33 corresponds to the amino acid residues 47-69 of human CD3 epsilon and comprises the minimal amino acid motif 57-59 (FSE). Spots 15 and 40 correspond to amino acid residues 30-42 (QYPGSEILWQHND) and 71-83 (RGSKPEDANFYLY), respectively.
2. Anti-CD3 Antibody II (Ig Comprising the VH Chain Shown in SEQ ID NO. 6 and the VL Chain Shown in SEQ ID NO. 8)
(i) Binding on Cynomolgus CD3 Epsilon
[0228] The pepspot analysis with cross-species specific anti-CD3 antibody II (Ig comprising the VH chain shown in SEQ ID NO. 6 and the VL chain shown in SEQ ID NO. 8) showed strong signals to cynomolgus CD3 epsilon on the stretch of peptide-spots 27-29 as well as on spot 33 (see FIG. 19). The stretch spanning spots 27 and 29 corresponds to the amino acid residues 53-69 of cynomolgus CD3 epsilon (see FIG. 15), wherein the 13 mer peptides have the minimal stretch of amino acids 57-61 (FSEME) in common Spot 33 correlates with amino acid residues 65-77 (YYVSYPRGSNPED).
(ii) Binding on Human CD3 Epsilon
[0229] Cross-reactive anti-CD3 antibody II bound the peptide-spots 15, 19, 32 and 33, 37, 39 and 40 of human CD3 epsilon (see FIG. 19). Spot 19 corresponds to amino acid residues 38-46d (WQHNDKNIGGDED) of human CD3 epsilon (see FIG. 15). The small stretch of spots 32 to 33 corresponds to amino acid residues 55-69 containing the minimal peptide FSELE (amino acids 57-61). The spots 37 and 39 match amino acid residues 65-77 (YYVSYPRGSKPED) and 69-81 (YPRGSKPEDANFY) of human CD3 epsilon, respectively. The correlations of spots 15 and 40 are already mentioned above.
[0230] In summary, both cross-species specific anti-CD3 antibodies recognize discontinous epitopes on human and cynomolgus CD3 epsilon. Regarding cynomolgus CD3 epsilon both cross-species specific anti-CD3 antibodies recognized a clear overlapping stretch of peptide-spots 27-29 (see FIG. 16). All 13 mer peptides covering this region contain one minimal peptide FSEME (amino acid residues 57-61 of cynomolgus CD3 epsilon). The peptide-intersection on human CD3 epsilon bound by both antibodies can be determined for spots 32 and 33 (see FIG. 17). This section contains the minimal peptide FSELE corresponding to residues 57-61 of human CD3 epsilon.
[0231] Based on these results it is concluded that cross-species specific CD3 antibody fragments contact CD3 epsilon in the area of amino acid residues 57-61 of both cynomolgus and human CD3 epsilon comprising, the amino acid stretches FSEME and FSELE of cynomolgus and human CD3 epsilon, respectively, with the motif FSE forming the epitope core. This result--although plausible because of the accessibility of the E-F-loop (amino acids 56-62; see FIG. 15) of human CD3 epsilon (Kjer-Nielsen et al., PNAS 101 (2004), p. 7675-80) comprising the amino acids FSELE or FSEME--is nevertheless surprising since there is no overlap of this newly defined epitope with the known epitope on the CD3 epsilon-chain of anti-CD3 antibodies OKT3 and UCHT1 (see FIG. 17; Kjer-Nielsen et al., loc.cit; Arnett et al., PNAS 101 (2004), p. 16268-73) which have so far been regarded as representative of all anti-CD3 antibodies thought to form a single family with the same or a very similar epitope.
EXAMPLE 18
Determination of the Epitope for the Human-Like Cross-Species Specific Anti-CD3 Antibody Binding Both to Human and Cynomolgus CD3 Epsilon
[0232] The epitope mapping of the human-like cross-species specific anti-CD3 antibody fragment described in Example 16 (SEQ ID NO. 170) was carried out by peptide-spotting ("pepspot") analysis as described in Example 17. For this purpose, said single chain Fv fragment shown in SEQ ID NO. 170 was converted into a full IgG antibody with a murine gammal heavy chain comprising the VH region as shown in SEQ ID NO. 110 and a kappa light chain comprising the VL region as shown in SEQ ID NO. 168. The procedure of the pepspot experiment was identical to the protocol used in Example 17.
[0233] The pepspot membrane was incubated with 4 ng/ml of the mentioned IgG1 antibody, and an alkaline phosphatase-labeled goat-anti-mouse IgG antibody detecting bound CD3 antibody. A second membrane was incubated with alkaline phosphatase-labeled goat-anti-mouse IgG antibody alone to reveal unspecific binding of the detection antibody.
[0234] The following signals detected in the control pepspot assay (see FIG. 24(A)) have been regarded as unspecific and will not be mentioned further: the stained spot-stretches 10-13, 15-19, 30-32, 35-41 of cynomolgus CD3 epsilon and 2-6, 14-19, 26, 34-39 and 46 of human CD3 epsilon.
(i) Binding on Cynomolgus CD3 Epsilon
[0235] The cross-species specific anti-CD3 antibody (murine IgG1 comprising the VH chain shown in SEQ ID NO. 110 and the VL chain shown in SEQ ID NO. 168) bound to the peptide-spots 1 and 33 as well as to the amino acid stretch of peptide-spots 24-29 (FIG. 24(B)) derived from cynomolgus CD3 epsilon. The stretch spanning spots 24 and 29 corresponds to the amino acid residues 47-69 of cynomolgus CD3 epsilon (see FIGS. 15 and 16), wherein the 13 mer peptides have the minimal stretch of amino acids 56-59 (EFSE) in common. Spot 1 and spot 33 correspond to amino acid residues 1-13 ("QDGNEEMGSITQT"; SEQ ID NO. 199) and 65-77 ("YYVSYPRGSNPED"; SEQ ID NO. 200) of cynomolgus CD3 epsilon, respectively.
(ii) Binding on Human CD3 Epsilon
[0236] Binding signals of the mentioned cross-species specific anti-CD3 IgG1 antibody to peptides derived from human CD3 epsilon (see FIG. 24(B)) were found on spots 28 and 33, which correspond to the amino acid residues 47-59 and 57-69 of human CD3 epsilon (see FIG. 17), respectively. The two stained spots comprise the minimal amino acid motif 57-59 (FSE).
[0237] The human-like cross-species specific anti-CD3 antibody recognizes the same discontinuous epitopes on human and cynomolgus CD3 epsilon as antibody I and II described in Examples 1 and 17. Binding signals of said human-like antibody on the peptide membrane reveal the peptide-intersections corresponding to the amino acid sequence "FSEME" (amino acid residues 57-61) of cynomolgus CD3 epsilon and those corresponding to amino acid sequence "FSELE" (amino acid residues 57-61) of human CD3 epsilon as core region. This is in line with the epitope determined for the cross-species specific anti-CD3 antibodies I and II on both cynomolgus and human CD3 epsilon (see Example 17).
EXAMPLE 19
Verification of the Identified Epitope on Human CD3 Epsilon for the Human-Like Cross-Species Specific Anti-CD3 Antibody
[0238] To verify the epitope of the human-like cross-species specific anti-CD3 antibody fragment described in Example 16 on human CD3 epsilon, the identified binding region as determined in Experiment 18 was further analyzed by a dot-blotting assay using a 13 mer peptide covering the defined binding area of amino acid residues "FSELE" on human CD3 epsilon. This peptide comprises the amino acid sequence "EFSELEQSGYYVC" (SEQ ID NO. 195) of human CD3 epsilon. The peptide exists in two forms and is either biotinylated N- or C-terminally. In case of the N-terminal labelling, a short linker connects the peptide with the biotin. As described in Example 18, the antibody fragment was converted to a murine IgG format with a murine gammal heavy chain comprising the VH region as shown in SEQ ID NO. 110 and a kappa light chain comprising the VL region as shown in SEQ ID NO. 168. The dot blotting was performed as follows. The Minifold I Spot Blot System from Schleicher & Schuell was used for immobilizing the peptides on a nitrocellulose membrane (Protran BA 85, 0.45 μm). 75 μg of each peptide in 100 p. 1 TBS were filtered through the membrane using vacuum. After the filtration step the membrane was blocked with 1×TBS/1% (w/v) blocking reagent (BM Chemiluminescence Blotting Substrate (POD) of Roche Diagnostics GmbH) for 2 h. All incubation and washing steps were performed on an orbital shaker at room temperature, except for the overnight incubation of the primary antibody. Directly after discarding the blocking solution, the membrane was incubated overnight with 3 μg/ml of the above-mentioned anti-CD3 antibody in 1×TBS/0.5% (w/v) blocking reagent at 4° C. on an orbital shaker. As a control, the anti-CD3 murine IgG1 antibody UCHT1 (BD Biosciences) binding to human CD3 epsilon was applied to a second membrane blotted with the same amounts of the two peptides. After washing three times with 1×TBS/0.05% Tween for 10 min, detection of bound anti-CD3 antibody was accomplished by incubation for 2 h with a commercially available alkaline phosphatase-conjugated anti-IgG antibody (diluted according to the manufacturer's recommendation in 1×TBS/0.5% blocking reagent). Subsequently, the membranes were washed three times with 1×TBS/0.05% Tween for 10 min. Alkaline phosphatase was visualized using 5-bromo-4-chloro-indolyl phosphate/nitro blue tetrazolium liquid substrate system (Sigma).
[0239] The mentioned CD3 specific antibody comprising the VH region shown in SEQ ID NO. 110 and the VL region shown in SEQ ID NO. 168 bound to both forms of the peptide "EFSELEQSGYYVC" (SEQ ID NO. 195) blotted to the membrane (see FIGS. 25 (A)(1) and (2)), whereas no binding could be obtained for the anti-CD3 murine IgG antibody UCHT1 (see FIGS. 25 (B) (1) and (2)). The epitope recognized by anti-CD3 antibody UCHT1 is described e.g. in Kjer-Nielsen et al., loc.cit; Arnett et al., PNAS (2204), p. 16268-73. These results support the identification of the newly defined epitope of the herein-described anti-CD3 antibody (with the VH region shown in SEQ ID NO. 110 and the VL region shown in SEQ ID NO. 168). Said epitope corresponds to the amino acid residues "EFSELEQSGYYVC" (SEQ ID NO. 195) on the human CD3 epsilon chain and comprises the amino acid stretch "FSELE".
EXAMPLE 20
Generation of CHO Cells Transfected with Cynomolgus EGFR
[0240] A shock frozen piece of EGFR positive cynomolgus colon was used to obtain the total RNA that was isolated according to the instructions of the kit manual (Qiagen, RNeasy Mini Kit). The obtained RNA was used for cDNA synthesis by random-primed reverse transcription. For cloning of the full length sequence of the EGFR antigen the following oligonucleotides were used:
TABLE-US-00003 5' EGFR AG XbaI (SEQ ID NO. 197) 5'-GGTCTAGAGCATGCGACCCTCCGGGACGGCCGGG-3' 3' EGFR AG SalI (SEQ ID NO. 199) 5'-TTTTAAGTCGACTCATGCTCCAATAAATTCACTGCT-3'.
[0241] A PCR (denaturation at 93° C. for 5 min, annealing at 58° C. for 1 min, elongation at 72° C. for 2 min for the first cycle; denaturation at 93° C. for 1 min, annealing at 58° C. for 1 min, elongation at 72° C. for 2 min for 30 cycles; terminal extension at 72° C. for 5 min) was used to amplify the coding sequence. The PCR product was subsequently digested with XbaI and SalI, ligated into the appropriately digested expression vector pEF-DHFR, and transformed into E. coli. The afore-mentioned procedures were carried out according to standard protocols (Sambrook, Molecular Cloning; A Laboratory Manual, 3rd edition, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York (2001)). A clone with sequence-verified nucleotide sequence was transfected into DHFR deficient CHO cells for eukaryotic expression of the construct. Eukaryotic protein expression in DHFR deficient CHO cells was performed as described in Kaufmann R.J. (1990) Methods Enzymol. 185, 537-566. Gene amplification of the construct was induced by increasing concentrations of MTX to a final concentration of up to 20 nM MTX.
EXAMPLE 21
Generation of EGFR and CD3 Cross-Species Specific Bispecific Single Chain Antibodies
[0242] Generally, bispecific single chain antibody molecules, each comprising a domain with a binding specificity for the human and the cynomolgus CD3 antigen as well as a domain with a binding specificity for the human and the cynomolgus EGFR antigen, were designed as set out in the following Table 1:
TABLE-US-00004 TABLE 1 Formats of anti-CD3 and anti-EGFR cross-species specific bispecific single chain antibody molecules SEQ ID Formats of protein constructs (nucl/prot) (N → C) 171/172 EGFR HL × SEQ ID NO. 170 173/174 EGFR LH × SEQ ID NO. 170 175/176 EGFR HL × SEQ ID NO. 194 177/178 EGFR LH × SEQ ID NO. 194 179/180 SEQ ID NO. 170 × EGFR HL 181/182 SEQ ID NO. 194 × EGFR HL 183/184 SEQ ID NO. 170 × EGFR LH 185/186 SEQ ID NO. 194 × EGFR LH
[0243] The afore-mentioned constructs containing the variable light-chain (L) and variable heavy-chain (H) domains reactive with the human and cynomolgus EGFR derived from murine hybridomas were obtained by gene synthesis and subsequent cloning into an expression vector comprising the CD3 specific VH and VL combinations reactive with the human and cynomolgus CD3. Herein, SEQ ID NO. 170 corresponds to amino acid sequence of the anti-CD3 VH-VL scFv comprising the human-like VH (SEQ ID NO. 110) and the human-like VL (SEQ ID NO. 168). SEQ ID NO. 194 corresponds to the amino acid sequence of the anti-CD3 VL-VH scFv comprising the human-like VL (SEQ ID NO. 168) and the human-like VH (SEQ ID NO. 110). The constructs were then transfected into DHFR-deficient CHO-cells by electroporation.
EXAMPLE 22
Expression and Purification of the EGFR and CD3 Cross-Species Specific Bispecific Single Chain Antibodies
[0244] The bispecific single chain antibodies were expressed in chinese hamster ovary cells (CHO). Eukaryotic protein expression in DHFR deficient CHO cells was performed as described in Kaufmann R. J. (1990) Methods Enzymol. 185, 537-566. Gene amplification of the constructs were induced by increasing concentrations of MTX to a final concentration of up to 20 nM MTX. After two passages of stationary culture the cells were grown in roller bottles with CHO modified MEM medium for 7 days before harvest. The cells were removed by centrifugation and the supernatant containing the expressed protein was stored at -20° C.
[0245] Akta® FPLC System (Pharmacia) and Unicorn® Software were used for chromatography. All chemicals were of research grade and purchased from Sigma (Deisenhofen) or Merck (Darmstadt) Immobilized metal affinity chromatography ("IMAC") was performed using a Fractogel® column (Merck) which was loaded with ZnCl2 according to the protocol provided by the manufacturer. The column was equilibrated with buffer A2 (20 mM sodium phosphate buffer pH 7.5, 0.4 M NaCl) and the cell culture supernatant (500 ml) was applied to the column (10 ml) at a flow rate of 3 ml/min. The column was washed with buffer A2 to remove unbound sample. Bound protein was eluted using a two step gradient of buffer B2 (20 mM sodium phosphate buffer pH 7.5, 0.4 M NaCl, 0.5 M Imidazol) according to the following:
[0246] Step 1: 20% buffer B2 in 6 column volumes;
[0247] Step 2: 100% buffer B2 in 6 column volumes.
[0248] Eluted protein fractions from step 2 were pooled for further purification.
[0249] Gel filtration chromatography was performed on a Sephadex S200 HiPrep column
[0250] (Pharmacia) equilibrated with PBS (Gibco). Eluted protein samples (flow rate 1 ml/min) were subjected to standard SDS-PAGE and Western Blot for detection. Prior to purification, the column was calibrated for molecular weight determination (molecular weight marker kit, Sigma MW GF-200). Protein concentrations were determined using protein assay dye (MicroBCA, Pierce) and IgG (Biorad) as standard protein.
[0251] The bispecific single chain antibodies were isolated in a two step purification process of IMAC and gel filtration. The main product had a molecular weight of about 52 kDa under native conditions as determined by gel filtration in PBS. This molecular weight corresponds to the bispecific single chain antibody. All constructs were purified according to this method.
[0252] Purified bispecific single chain antibody protein was analyzed in SDS PAGE under reducing conditions performed with pre-cast 4-12% Bis Tris gels (Invitrogen). Sample preparation and application were performed according to the protocol provided by the manufacturer. The molecular weight was determined with MultiMark protein standard (Invitrogen). The gel was stained with colloidal Coomassie (Invitrogen protocol). The purity of the isolated protein was >95% as determined by SDS-PAGE.
[0253] Western Blot was performed using an Optitran® BA-S83 membrane and the Invitrogen Blot Module according to the protocol provided by the manufacturer. The antibodies used were directed against the H is Tag (Penta H is, Qiagen) and Goat-anti-mouse Ig labeled with alkaline phosphatase (AP) (Sigma), and BCIP/NBT (Sigma) as substrate. The bispecific single chain antibody could be specifically detected by Western Blot. A single band was detected at 52 kD corresponding to the purified bispecific molecule.
EXAMPLE 23
Flow Cytometric Binding Analysis of the EGFR and CD3 Cross-Species Specific Bispecific Antibodies
[0254] In order to test the functionality of the cross-species specific bispecific antibody constructs with regard to binding capability to human and cynomolgus EGFR and CD3, respectively, a FACS analysis was performed. For this purpose the EGFR positive epidermoid carcinoma A431 cells (ATCC, CRL-1555) and CD3 positive human T cell leukemia cell line HPB-ALL (DSMZ, Braunschweig, ACC483) were used to check the binding to human antigens. The binding reactivity to cynomolgus antigens was tested by using the generated cynomolgus EGFR transfectants described in Example 20 and cynomolgus PBMCs which were obtained by Ficoll density gradient centrifugation. 200,000 cells of the respective cell population were incubated for 30 min on ice with 50 nl of the purified protein of the cross-species specific bispecific antibody constructs (1 ng/ml). The cells were washed twice in PBS and binding of the construct was detected with an unlabeled murine Penta H is antibody (diluted 1:20 in 50 nl PBS with 2% FCS; Qiagen; Order No. 34660). After washing, bound anti H is antibodies were detected with an Fc gamma-specific antibody (Dianova) conjugated to phycoerythrin, diluted 1:100 in 50 nl PBS with 2% FCS. Fresh culture medium was used as a negative control.
[0255] Cells were analyzed by flow cytometry on a FACS-Calibur apparatus (Becton Dickinson, Heidelberg). FACS staining and measuring of the fluorescence intensity were performed as described in Current Protocols in Immunology (Coligan, Kruisbeek, Margulies, Shevach and Strober, Wiley-Interscience, 2002).
[0256] The binding ability of several domain arrangements were clearly detectable as shown in FIGS. 29 to 36. In FACS analysis, all constructs with different arrangement of VH and VL domains specific for EGFR and CD3 showed binding to CD3 and EGFR compared to the negative control using culture medium and 1. and 2. detection antibody. In summary, the cross-species specificity of the bispecific antibody to human and cynomolgus CD3 and EGFR antigens could clearly be demonstrated.
EXAMPLE 24
Bioactivity of EGFR and CD3 Cross-Species Specific Bispecific Single Chain Antibodies
[0257] Bioactivity of the generated bispecific single chain antibodies was analyzed by chromium 51 release in vitro cytotoxicity assays using the EGFR positive cell lines described in Example 23; see also FIGS. 39 and 40. As effector cells stimulated human CD8 positive T cells or stimulated cynomolgus PBMCs were used, respectively.
[0258] The generation of the stimulated CD8+T cells was performed as follows:
[0259] A Petri dish (85 mm diameter, Nunc) was pre-coated with a commercially available anti-CD3 specific antibody in a final concentration of 1 ng/ml for 1 hour at 37° C. Unbound protein was removed by one washing step with PBS. The fresh PBMC's were isolated from peripheral blood (30-50 ml human blood or 10 ml cynomolgus blood) by Ficoll gradient centrifugation according to standard protocols. 3-5×107 PBMCs were added to the precoated petri dish in 50 ml of RPMI 1640/10% FCS/IL-2 20 U/ml (Proleukin, Chiron) and stimulated for 2 days. At the third day the cells were collected, washed once with RPMI 1640. IL-2 was added to a final concentration of 20 U/ml and cultivated again for one day. The CD8+CTLs were isolated by depleting CD4+T cells an CD56+NK cells.
[0260] Target cells were washed twice with PBS and labeled with 11.1 MBq 51Cr in a final volume of 100 nl RPMI with 50% FCS for 45 minutes at 37° C. Subsequently the labeled target cells were washed 3 times with 5 ml RPMI and then used in the cytotoxicity assay. The assay was performed in a 96 well plate in a total volume of 250 nl supplemented RPMI (as above) with an E:T ratio of 10:1 corresponding to 1000 target cells and 10000 effector cells per well. 1 ng/ml of the cross-species specific bispecific single chain antibody molecules and 20 threefold dilutions thereof were applied. The assay time was 18 hours and cytotoxicity was measured as relative values of released chromium in the supernatant related to the difference of maximum lysis (addition of Triton-X) and spontaneous lysis (without effector cells). All measurements were done in quadruplicates. Measurement of chromium activity in the supernatants was performed with a Wizard 3 gammacounter (Perkin Elmer Life Sciences GmbH, Koln, Germany). Analysis of the experimental data was performed with Prism 4 for Windows (version 4.02, GraphPad Software Inc., San Diego, Calif., USA). Sigmoidal dose response curves typically had R2 values >0.90 as determined by the software. EC50 values calculated by the analysis program were used for comparison of bioactivity.
[0261] As shown in FIGS. 39 and 40, all of the generated cross-species specific bispecific single chain antibody constructs revealed cytotoxic activity against human EGFR positive target cells elicited by human CD8+ cells and cynomolgus EGFR positive target cells elicited by cynomolgus CD8+ cells. In FIG. 39, a bispecific single chain antibody with a variable domain reactive with EGFR and a de-immunized human CD3-specific variable domain (EGFR LH×di-anti CD3) has been used as a negative control. In FIG. 40, the same construct (EGFR LH×di-anti CD3) has been used as a positive control. As a negative control, an irrelevant bispecific single chain antibody has been used.
EXAMPLE 25
Generation and Characterization of Carboanhydrase IX (CAIX) and CD3 Cross-Species Specific Bispecific Single Chain Antibodies
TABLE-US-00005
[0262] TABLE 2 Formats of CAIX and CD3 cross-species specific bispecific single chain antibodies SEQ ID Formats of protein constructs (nucl/prot) (N → C) 189/190 CAIX HL × SEQ ID NO. 170 191/192 CAIX LH × SEQ ID NO. 170 187/188 CAIX HL × SEQ ID NO. 194
[0263] In analogy to the afore-mentioned Examples, Carboanhydrase IX (CAIX/MN) and CD3 cross-species specific bispecific single chain antibodies containing the variable light-chain (L) and variable heavy-chain (H) domains reactive with the human and cynomolgus CAIX antigen were created and subsequently cloned into an expression vector comprising the CD3 specific VH and VL combinations reactive with the human and cynomolgus CD3. The experiments were carried out in essence as described in Examples 20 to 24, with the following exceptions:
[0264] The FACS binding experiments were performed with the CAIX positive human lung carcinoma cell line A549 (ATCC, CCL-185) to assess the binding capability to the human CAIX antigen. The cross-species specificity to cynomolgus tissue was tested by deploying the cynomolgus skin cell line CYNOM-K1 (National Institute for Cancer Research (IST) of Genova, Italy, ECACC 90071809) or the rhesus monkey epithelial cell line 4 MBr-5 (ATCC, CCL-208). The same changes in cell lines apply to the cytotoxicity assays performed with the CAIX and CD3 cross-species specific bispecific single chain antibodies.
[0265] As depicted in FIGS. 26 to 28, the generated CAIX and CD3 cross-species specific bispecific single chain antibodies demonstrated binding to both the human and cynomolgus antigens and proved to be fully cross-species specific. The cytolytic bioactivity of the analysed constructs is shown in FIGS. 37 and 38. In the left panel of FIG. 37, a bispecific single chain antibody with a variable domain reactive with CAIX and a de-immunized human CD3-specific variable domain has been used as a positive control. In the right panel, the same construct has been used as a negative control.
TABLE-US-00006 APPENDIX SEQ ID NO. DESIGNATION SOURCE TYPE SEQUENCE 1 VH Murine NA gaggtgaagcttctcgagtctggaggaggattggtgcagcctaaagggtcattgaaactctcatgtgcagcct- ctggattca ccttcaatacctacgccatgaactgggtccgccaggctccaggaaagggtttggaatgggttgctcgcat- aagaagtaaat ataataattatgcaacatattatgccgattcagtgaaagacaggttcaccatctccagagatgattcaca- aagcattctctatct acaaatgaacaacttgaaaactgaggacacagccatgtactactgtgtgagacatgggaacttcggtaat- agctacgtttcct ggtttgcttactggggccaagggactctggtcactgtctctgca 2 VH Murine AA EVKLLESGGGLVQPKGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARI RSKYNNYATYYADSVKDRFTISRDDSQSILYLQMNNLKTEDTAMYYCVRHG NFGNSYVSWFAYWGQGTLVTVSA 3 VL Murine NA caggctgttgtgactcaggaatctgcactcaccacatcacctggtgaaacagtcacactcacttgtcgctcaa- gtactgggg ctgttacaactagtaactatgccaactgggtccaagaaaaaccagatcatttattcactggtctaatagg- tggtaccaacaag cgagctccaggtgtgcctgccagattctcaggctccctgattggagacaaggctgccctcaccatcacag- gggcacagac tgaggatgaggcaatatatttctgtgctctatggtacagcaacctctgggtgttcggtggaggaaccaaa- ctgactgtccta 4 VL Murine AA QAVVTQESALTTSPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGG TNKRAPGVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWYSNLWVFGGGT KLTVL 5 VH Murine NA caggtccagctgcagcagtctggggctgaactggcaagacctggggcctcagtgaagatgtcctgcaaggctt- ctggcta cacctttactagatctacgatgcactgggtaaaacagaggcctggacagggtctggaatggattggatac- attaatcctagc agtgcttatactaattacaatcagaaattcaaggacaaggccacattgactgcagacaaatcctccagta- cagcctacatgc aactgagtagcctgacatctgaggactctgcagtctattactgtgcaagtccgcaagtccactatgatta- caacgggtttcctt actggggccaagggactctggtcactgtctctgca 6 VH Murine AA QVQLQQSGAELARPGASVKMSCKASGYTFTRSTMHWVKQRPGQGLEWIGYI NPSSAYTNYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSAVYYCASPQVHY DYNGFPYWGQGTLVTVSA 7 VL Murine NA caagttgttctcacccagtctccagcaatcatgtctgcatttccaggggagaaggtcaccatgacctgcagtg- ccagctcaa gtgtaagttacatgaactggtaccagcagaagtcaggcacctcccccaaaagatggatttatgactcatc- caaactggcttct ggagtccctgctcgcttcagtggcagtgggtctgggacctcttattctctcacaatcagcagcatggaga- ctgaagatgctg ccacttattactgccagcagtggagtcgtaacccacccacgttcggaggggggaccaagctacaaattac- a 8 VL Murine AA QVVLTQSPAIMSAFPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDSSK LASGVPARFSGSGSGTSYSLTISSMETEDAATYYCQQWSRNPPTFGGGTKLQI T 9 VH-VL scFv artificial NA gaggtgaagcttctcgagtctggaggaggattggtgcagcctaaagggtcattgaaactctcatgtgcagcct- ctggattca ccttcaatacctacgccatgaactgggtccgccaggctccaggaaagggtttggaatgggttgctcgcat- aagaagtaaat ataataattatgcaacatattatgccgattcagtgaaagacaggttcaccatctccagagatgattcaca- aagcattctctatct acaaatgaacaacttgaaaactgaggacacagccatgtactactgtgtgagacatgggaacttcggtaat- agctacgtttcct ggtttgcttactggggccaagggactctggtcactgtctctgcaggtggtggtggttctggcggcggcgg- ctccggtggtg gtggttctcaggctgttgtgactcaggaatctgcactcaccacatcacctggtgaaacagtcacactcac- ttgtcgctcaagt actggggctgttacaactagtaactatgccaactgggtccaagaaaaaccagatcatttattcactggtc- taataggtggtac caacaagcgagctccaggtgtgcctgccagattctcaggctccctgattggagacaaggctgccctcacc- atcacagggg cacagactgaggatgaggcaatatatttctgtgctctatggtacagcaacctctgggtgttcggtggagg- aaccaaactgac tgtccta 10 VH-VL scFv artificial AA EVKLLESGGGLVQPKGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARI RSKYNNYATYYADSVKDRFTISRDDSQSILYLQMNNLKTEDTAMYYCVRHG NFGNSYVSWFAYWGQGTLVTVSAGGGGSGGGGSGGGGSQAVVTQESALTT SPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGGTNKRAPGVPARF SGSLIGDKAALTITGAQTEDEAIYFCALWYSNLWVFGGGTKLTVL 11 VL-VH scFv artificial NA caggctgttgtgactcaggaatctgcactcaccacatcacctggtgaaacagtcacactcacttgtcgctcaa- gtactgggg ctgttacaactagtaactatgccaactgggtccaagaaaaaccagatcatttattcactggtctaatagg- tggtaccaacaag cgagctccaggtgtgcctgccagattctcaggctccctgattggagacaaggctgccctcaccatcacag- gggcacagac tgaggatgaggcaatatatttctgtgctctatggtacagcaacctctgggtgttcggtggaggaaccaaa- ctgactgtcctag gtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgaagcttctcgagtctggagg- aggattggtgc agcctaaagggtcattgaaactctcatgtgcagcctctggattcaccttcaatacctacgccatgaactg- ggtccgccaggct ccaggaaagggtttggaatgggttgctcgcataagaagtaaatataataattatgcaacatattatgccg- attcagtgaaaga caggttcaccatctccagagatgattcacaaagcattctctatctacaaatgaacaacttgaaaactgag- gacacagccatgt actactgtgtgagacatgggaacttcggtaatagctacgtttcctggtttgcttactggggccaagggac- tctggtcactgtct ctgca 12 VL-VH scFv artificial AA QAVVTQESALTTSPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGG TNKRAPGVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWYSNLWVFGGGT KLTVLGGGGSGGGGSGGGGSEVKLLESGGGLVQPKGSLKLSCAASGFTFNTY AMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSQSILYL QMNNLKTEDTAMYYCVRHGNFGNSYVSWFAYWGQGTLVTVSA 13 VH-VL scFv artificial NA caggtccagctgcagcagtctggggctgaactggcaagacctggggcctcagtgaagatgtcctgcaaggctt- ctggcta cacctttactagatctacgatgcactgggtaaaacagaggcctggacagggtctggaatggattggatac- attaatcctagc agtgcttatactaattacaatcagaaattcaaggacaaggccacattgactgcagacaaatcctccagta- cagcctacatgc aactgagtagcctgacatctgaggactctgcagtctattactgtgcaagtccgcaagtccactatgatta- caacgggtttcctt actggggccaagggactctggtcactgtctctgcaggtggtggtggttctggcggcggcggctccggtgg- tggtggttctc aagttgttctcacccagtctccagcaatcatgtctgcatttccaggggagaaggtcaccatgacctgcag- tgccagctcaag tgtaagttacatgaactggtaccagcagaagtcaggcacctcccccaaaagatggatttatgactcatcc- aaactggcttctg gagtccctgctcgcttcagtggcagtgggtctgggacctcttattctctcacaatcagcagcatggagac- tgaagatgctgc cacttattactgccagcagtggagtcgtaacccacccacgttcggaggggggaccaagctacaaattaca 14 VH-VL scFv artificial AA QVQLQQSGAELARPGASVKMSCKASGYTFTRSTMHWVKQRPGQGLEWIGYI NPSSAYTNYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSAVYYCASPQVHY DYNGFPYWGQGTLVTVSAGGGGSGGGGSGGGGSQVVLTQSPAIMSAFPGEK VTMTCSASSSVSYMNWYQQKSGTSPKRWIYDSSKLASGVPARFSGSGSGTSY SLTISSMETEDAATYYCQQWSRNPPTFGGGTKLQIT 15 VL-VH scFv artificial NA caagttgttctcacccagtctccagcaatcatgtctgcatttccaggggagaaggtcaccatgacctgcagtg- ccagctcaa gtgtaagttacatgaactggtaccagcagaagtcaggcacctcccccaaaagatggatttatgactcatc- caaactggcttct ggagtccctgctcgcttcagtggcagtgggtctgggacctcttattctctcacaatcagcagcatggaga- ctgaagatgctg ccacttattactgccagcagtggagtcgtaacccacccacgttcggaggggggaccaagctacaaattac- aggtggtggt ggttctggcggcggcggctccggtggtggtggttctcaggtccagctgcagcagtctggggctgaactgg- caagacctg gggcctcagtgaagatgtcctgcaaggcttctggctacacctttactagatctacgatgcactgggtaaa- acagaggcctgg acagggtctggaatggattggatacattaatcctagcagtgcttatactaattacaatcagaaattcaag- gacaaggccacat tgactgcagacaaatcctccagtacagcctacatgcaactgagtagcctgacatctgaggactctgcagt- ctattactgtgca agtccgcaagtccactatgattacaacgggtttccttactggggccaagggactctggtcactgtctctg- ca 16 VL-VH scFv artificial AA QVVLTQSPAIMSAFPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDSSK LASGVPARFSGSGSGTSYSLTISSMETEDAATYYCQQWSRNPPTFGGGTKLQI TGGGGSGGGGSGGGGSQVQLQQSGAELARPGASVKMSCKASGYTFTRSTM HWVKQRPGQGLEWIGYINPSSAYTNYNQKFKDKATLTADKSSSTAYMQLSS LTSEDSAVYYCASPQVHYDYNGFPYWGQGTLVTVSA 17 5' LH artificial NA acatccggaggtggtggatcccaggctgttgtgactcaggaatctgc 18 3' VL Linker artificial NA ggagccgccgccgccagaaccaccaccacctaggacagtcagtttggttcc 19 5' VH Linker artificial NA tctggcggcggcggctccggtggtggtggttctgaggtgaagcttctcgagtctggaggaggattggtgc 20 3' LH artificial NA agtgggtcgacctaatgatgatggtgatgatgtgcagagacagtgaccagagtccc 21 5' HL artificial NA acatccggaggtggtggatccgaggtgaagcttctcgagtctggaggaggattggtgc 22 3' VH Linker artificial NA ggagccgccgccgccagaaccaccaccacctgcagagacagtgaccagagtccc 23 5' VL Linker artificial NA tctggcggcggcggctccggtggtggtggttctcaggctgttgtgactcaggaatctgc 24 3' HL artificial NA agtgggtcgacctaatgatgatggtgatgatgtaggacagtcagtttggttcctcc 25 5' LH artificial NA acatccggaggtggtggatcccaagttgttctcacccagtctcc 26 3' VL Linker artificial NA ggagccgccgccgccagaaccaccaccacctgtaatttgtagcttggtccccc 27 5' VH Linker artificial NA tctggcggcggcggctccggtggtggtggttctcaggtccagctgcagcagtctgg 28 3' LH artificial NA agtgggtcgacctaatgatgatggtgatgatgtgcagagacagtgaccagagtcc 29 5' HL artificial NA acatccggaggtggtggatcccaggtccagctgcagcagtctgg 30 3' VH Linker artificial NA ggagccgccgccgccagaaccaccaccacctgcagagacagtgaccagagtcc 31 5' VL Linker artificial NA tctggcggcggcggctccggtggtggtggttctcaagttgttctcacccagtctcc 32 3' HL artificial NA agtgggtcgacctaatgatgatggtgatgatgtgtaatttgtagcttggtccccc 33 5-10 LH scFv artificial NA gagctcgtgatgacacagtctccatcctccctgactgtgacagcaggagagaaggtcactatgagctgcaagt- ccagtcag agtctgttaaacagtggaaatcaaaagaactacttgacctggtaccagcagaaaccagggcagcctccta- aactgttgatct actgggcatccactagggaatctggggtccctgatcgcttcacaggcagtggatctggaacagatttcac- tctcaccatcag cagtgtgcaggctgaagacctggcagtttattactgtcagaatgattatagttatccgctcacgttcggt- gctgggaccaagc ttgagatcaaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgcagctgct- cgagcagtctg gagctgagctggtaaggcctgggacttcagtgaagatatcctgcaaggcttctggatacgccttcactaa- ctactggctagg ttgggtaaagcagaggcctggacatggacttgagtggattggagatattttccctggaagtggtaatatc- cactacaatgag aagttcaagggcaaagccacactgactgcagacaaatcttcgagcacagcctatatgcagctcagtagcc- tgacatttgag gactctgctgtctatttctgtgcaagactgaggaactgggacgagcctatggactactggggccaaggga- ccacggtcacc gtctcctcc 34 5-10 LH scFv artificial AA ELVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPPK LLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDYSYPLTF GAGTKLEIKGGGGSGGGGSGGGGSEVQLLEQSGAELVRPGTSVKISCKASGY AFTNYWLGWVKQRPGHGLEWIGDIFPGSGNIHYNEKFKGKATLTADKSSSTA YMQLSSLTFEDSAVYFCARLRNWDEPMDYWGQGTTVTVSS 35 Leader peptide mouse NA atgggatggagctgtatcatcctcttcttggtagcaacagctacaggtgtacactcc cDNA
36 Leader peptide mouse AA MGWSCIILFLVATATGVHS cDNA 37 5-10 LHx artificial NA gagctcgtgatgacacagtctccatcctccctgactgtgacagcaggagagaaggtcactatgagctgcaagt- ccagtcag SEQ ID NO. 12 agtctgttaaacagtggaaatcaaaagaactacttgacctggtaccagcagaaaccagggcagcctcctaaac- tgttgatct actgggcatccactagggaatctggggtccctgatcgcttcacaggcagtggatctggaacagatttcac- tctcaccatcag cagtgtgcaggctgaagacctggcagtttattactgtcagaatgattatagttatccgctcacgttcggt- gctgggaccaagc ttgagatcaaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgcagctgct- cgagcagtctg gagctgagctggtaaggcctgggacttcagtgaagatatcctgcaaggcttctggatacgccttcactaa- ctactggctagg ttgggtaaagcagaggcctggacatggacttgagtggattggagatattttccctggaagtggtaatatc- cactacaatgag aagttcaagggcaaagccacactgactgcagacaaatcttcgagcacagcctatatgcagctcagtagcc- tgacatttgag gactctgctgtctatttctgtgcaagactgaggaactgggacgagcctatggactactggggccaaggga- ccacggtcacc gtctcctccggaggtggtggatcccaggctgttgtgactcaggaatctgcactcaccacatcacctggtg- aaacagtcaca ctcacttgtcgctcaagtactggggctgttacaactagtaactatgccaactgggtccaagaaaaaccag- atcatttattcact ggtctaataggtggtaccaacaagcgagctccaggtgtgcctgccagattctcaggctccctgattggag- acaaggctgcc ctcaccatcacaggggcacagactgaggatgaggcaatatatttctgtgctctatggtacagcaacctct- gggtgttcggtg gaggaaccaaactgactgtcctaggtggtggtggttctggcggcggcggctccggtggtggtggttctga- ggtgaagctt ctcgagtctggaggaggattggtgcagcctaaagggtcattgaaactctcatgtgcagcctctggattca- ccttcaataccta cgccatgaactgggtccgccaggctccaggaaagggtttggaatgggttgctcgcataagaagtaaatat- aataattatgca acatattatgccgattcagtgaaagacaggttcaccatctccagagatgattcacaaagcattctctatc- tacaaatgaacaac ttgaaaactgaggacacagccatgtactactgtgtgagacatgggaacttcggtaatagctacgtttcct- ggtttgcttactgg ggccaagggactctggtcactgtctctgca 38 5-10 LHx artificial AA ELVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPPK SEQ ID NO. 12 LLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDYSYPLTF GAGTKLEIKGGGGSGGGGSGGGGSEVQLLEQSGAELVRPGTSVKISCKASGY AFTNYWLGWVKQRPGHGLEWIGDIFPGSGNIHYNEKFKGKATLTADKSSSTA YMQLSSLTFEDSAVYFCARLRNWDEPMDYWGQGTTVTVSSGGGGSQAVVT QESALTTSPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGGTNKRA PGVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWYSNLWVFGGGTKLTVL GGGGSGGGGSGGGGSEVKLLESGGGLVQPKGSLKLSCAASGFTFNTYAMNW VRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSQSILYLQMNN LKTEDTAMYYCVRHGNFGNSYVSWFAYWGQGTLVTVSA 39 5-10 LHx artificial NA gagctcgtgatgacacagtctccatcctccctgactgtgacagcaggagagaaggtcactatgagctgcaagt- ccagtcag SEQ ID NO. 10 agtctgttaaacagtggaaatcaaaagaactacttgacctggtaccagcagaaaccagggcagcctcctaaac- tgttgatct actgggcatccactagggaatctggggtccctgatcgcttcacaggcagtggatctggaacagatttcac- tctcaccatcag cagtgtgcaggctgaagacctggcagtttattactgtcagaatgattatagttatccgctcacgttcggt- gctgggaccaagc ttgagatcaaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgcagctgct- cgagcagtctg gagctgagctggtaaggcctgggacttcagtgaagatatcctgcaaggcttctggatacgccttcactaa- ctactggctagg ttgggtaaagcagaggcctggacatggacttgagtggattggagatattttccctggaagtggtaatatc- cactacaatgag aagttcaagggcaaagccacactgactgcagacaaatcttcgagcacagcctatatgcagctcagtagcc- tgacatttgag gactctgctgtctatttctgtgcaagactgaggaactgggacgagcctatggactactggggccaaggga- ccacggtcacc gtctcctccggaggtggtggatccgaggtgaagcttctcgagtctggaggaggattggtgcagcctaaag- ggtcattgaaa ctctcatgtgcagcctctggattcaccttcaatacctacgccatgaactgggtccgccaggctccaggaa- agggtttggaat gggttgctcgcataagaagtaaatataataattatgcaacatattatgccgattcagtgaaagacaggtt- caccatctccaga gatgattcacaaagcattctctatctacaaatgaacaacttgaaaactgaggacacagccatgtactact- gtgtgagacatgg gaacttcggtaatagctacgtttcctggtttgcttactggggccaagggactctggtcactgtctctgca- ggtggtggtggttc tggcggcggcggctccggtggtggtggttctcaggctgttgtgactcaggaatctgcactcaccacatca- cctggtgaaac agtcacactcacttgtcgctcaagtactggggctgttacaactagtaactatgccaactgggtccaagaa- aaaccagatcatt tattcactggtctaataggtggtaccaacaagcgagctccaggtgtgcctgccagattctcaggctccct- gattggagacaa ggctgccctcaccatcacaggggcacagactgaggatgaggcaatatatttctgtgctctatggtacagc- aacctctgggtg ttcggtggaggaaccaaactgactgtccta 40 5-10 LHx artificial AA ELVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPPK SEQ ID NO. 10 LLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDYSYPLTF GAGTKLEIKGGGGSGGGGSGGGGSEVQLLEQSGAELVRPGTSVKISCKASGY AFTNYWLGWVKQRPGHGLEWIGDIFPGSGNIHYNEKFKGKATLTADKSSSTA YMQLSSLTFEDSAVYFCARLRNWDEPMDYWGQGTTVTVSSGGGGSEVKLLE SGGGLVQPKGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTISRDDSQSILYLQMNNLKTEDTAMYYCVRHGNFGNS YVSWFAYWGQGTLVTVSAGGGGSGGGGSGGGGSQAVVTQESALTTSPGET VTLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGGTNKRAPGVPARFSGSLIG DKAALTITGAQTEDEAIYFCALWYSNLWVFGGGTKLTVL 41 5-10 LHx artificial NA gagctcgtgatgacacagtctccatcctccctgactgtgacagcaggagagaaggtcactatgagctgcaagt- ccagtcag SEQ ID NO. 16 agtctgttaaacagtggaaatcaaaagaactacttgacctggtaccagcagaaaccagggcagcctcctaaac- tgttgatct actgggcatccactagggaatctggggtccctgatcgcttcacaggcagtggatctggaacagatttcac- tctcaccatcag cagtgtgcaggctgaagacctggcagtttattactgtcagaatgattatagttatccgctcacgttcggt- gctgggaccaagc ttgagatcaaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgcagctgct- cgagcagtctg gagctgagctggtaaggcctgggacttcagtgaagatatcctgcaaggcttctggatacgccttcactaa- ctactggctagg ttgggtaaagcagaggcctggacatggacttgagtggattggagatattttccctggaagtggtaatatc- cactacaatgag aagttcaagggcaaagccacactgactgcagacaaatcttcgagcacagcctatatgcagctcagtagcc- tgacatttgag gactctgctgtctatttctgtgcaagactgaggaactgggacgagcctatggactactggggccaaggga- ccacggtcacc gtctcctccggaggtggtggatcccaagttgttctcacccagtctccagcaatcatgtctgcatttccag- gggagaaggtca ccatgacctgcagtgccagctcaagtgtaagttacatgaactggtaccagcagaagtcaggcacctcccc- caaaagatgg atttatgactcatccaaactggcttctggagtccctgctcgcttcagtggcagtgggtctgggacctctt- attctctcacaatca gcagcatggagactgaagatgctgccacttattactgccagcagtggagtcgtaacccacccacgttcgg- aggggggac caagctacaaattacaggtggtggtggttctggcggcggcggctccggtggtggtggttctcaggtccag- ctgcagcagt ctggggctgaactggcaagacctggggcctcagtgaagatgtcctgcaaggcttctggctacacctttac- tagatctacgat gcactgggtaaaacagaggcctggacagggtctggaatggattggatacattaatcctagcagtgcttat- actaattacaatc agaaattcaaggacaaggccacattgactgcagacaaatcctccagtacagcctacatgcaactgagtag- cctgacatctg aggactctgcagtctattactgtgcaagtccgcaagtccactatgattacaacgggtttccttactgggg- ccaagggactctg gtcactgtctctgca 42 5-10 LHx artificial AA ELVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPPK SEQ ID NO. 16 LLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDYSYPLTF GAGTKLEIKGGGGSGGGGSGGGGSEVQLLEQSGAELVRPGTSVKISCKASGY AFTNYWLGWVKQRPGHGLEWIGDIFPGSGNIHYNEKFKGKATLTADKSSSTA YMQLSSLTFEDSAVYFCARLRNWDEPMDYWGQGTTVTVSSGGGGSQVVLT QSPAIMSAFPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDSSKLASGV PARFSGSGSGTSYSLTISSMETEDAATYYCQQWSRNPPTFGGGTKLQITGGGG SGGGGSGGGGSQVQLQQSGAELARPGASVKMSCKASGYTFTRSTMHWVKQ RPGQGLEWIGYINPSSAYTNYNQKFKDKATLTADKSSSTAYMQLSSLTSEDS AVYYCASPQVHYDYNGFPYWGQGTLVTVSA 43 5-10 LHx artificial NA gagctcgtgatgacacagtctccatcctccctgactgtgacagcaggagagaaggtcactatgagctgcaagt- ccagtcag SEQ ID NO.14 agtctgttaaacagtggaaatcaaaagaactacttgacctggtaccagcagaaaccagggcagcctcctaaac- tgttgatct actgggcatccactagggaatctggggtccctgatcgcttcacaggcagtggatctggaacagatttcac- tctcaccatcag cagtgtgcaggctgaagacctggcagtttattactgtcagaatgattatagttatccgctcacgttcggt- gctgggaccaagc ttgagatcaaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgcagctgct- cgagcagtctg gagctgagctggtaaggcctgggacttcagtgaagatatcctgcaaggcttctggatacgccttcactaa- ctactggctagg ttgggtaaagcagaggcctggacatggacttgagtggattggagatattttccctggaagtggtaatatc- cactacaatgag aagttcaagggcaaagccacactgactgcagacaaatcttcgagcacagcctatatgcagctcagtagcc- tgacatttgag gactctgctgtctatttctgtgcaagactgaggaactgggacgagcctatggactactggggccaaggga- ccacggtcacc gtctcctccggaggtggtggatcccaggtccagctgcagcagtctggggctgaactggcaagacctgggg- cctcagtga agatgtcctgcaaggcttctggctacacctttactagatctacgatgcactgggtaaaacagaggcctgg- acagggtctgga atggattggatacattaatcctagcagtgcttatactaattacaatcagaaattcaaggacaaggccaca- ttgactgcagaca aatcctccagtacagcctacatgcaactgagtagcctgacatctgaggactctgcagtctattactgtgc- aagtccgcaagtc cactatgattacaacgggtttccttactggggccaagggactctggtcactgtctctgcaggtggtggtg- gttctggcggcg gcggctccggtggtggtggttctcaagttgttctcacccagtctccagcaatcatgtctgcatttccagg- ggagaaggtcacc atgacctgcagtgccagctcaagtgtaagttacatgaactggtaccagcagaagtcaggcacctccccca- aaagatggatt tatgactcatccaaactggcttctggagtccctgctcgcttcagtggcagtgggtctgggacctcttatt- ctctcacaatcagc agcatggagactgaagatgctgccacttattactgccagcagtggagtcgtaacccacccacgttcggag- gggggaccaa gctacaaattaca 44 5-10 LHx artificial AA ELVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPPK SEQ ID NO. 14 LLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDYSYPLTF GAGTKLEIKGGGGSGGGGSGGGGSEVQLLEQSGAELVRPGTSVKISCKASGY AFTNYWLGWVKQRPGHGLEWIGDIFPGSGNIHYNEKFKGKATLTADKSSSTA YMQLSSLTFEDSAVYFCARLRNWDEPMDYWGQGTTVTVSSGGGGSQVQLQ QSGAELARPGASVKMSCKASGYTFTRSTMHWVKQRPGQGLEWIGYINPSSA YTNYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSAVYYCASPQVHYDYNG FPYWGQGTLVTVSAGGGGSGGGGSGGGGSQVVLTQSPAIMSAFPGEKVTMT CSASSSVSYMNWYQQKSGTSPKRWIYDSSKLASGVPARFSGSGSGTSYSLTIS SMETEDAATYYCQQWSRNPPTFGGGTKLQIT 45 5'EpCAM artificial NA ggttctagaccaccatggcgcccccgcaggtcctcgcgttcgg 46 3'EpCAM artificial NA agtgggtcgacttatgcattgagttccctatgcatctcaccc 47 cynomolgus Cyno- NA cagaaagaatgtgtctgtgaaaactacaagctggccgtaaactgctttttgaatgacaatggtcaatgccagt- gtacttcgatt EpCAM molgus ggtgcacaaaatactgtcctttgctcaaagctggctgccaaatgtttggtgatgaaggcagaaatgaacggct- caaaacttg extracellular cDNA ggagaagagcgaaacctgaaggggctctccagaacaatgatggcctttacgatcctgactgcgatgagagcgg- gctcttt portion aaggccaagcagtgcaacggcacctccacgtgctggtgtgtgaacactgctggggtcagaaga- actgacaaggacactg aaataacctgctctgagcgagtgagaacctactggatcatcattgaattaaaacacaaagcaagagaaaa- accttatgatgtt caaagtttgcggactgcacttgaggaggcgatcaaaacgcgttatcaactggatccaaaatttatcacaa- atattttgtatgag gataatgttatcactattgatctggttcaaaattcttctcagaaaactcagaatgatgtggacatagctg- atgtggcttattattttg aaaaagatgttaaaggtgaatccttgtttcattctaagaaaatggacctgagagtaaatggggaacaact- ggatctggatcct ggtcaaactttaatttattatgtcgatgaaaaagcacctgaattctcaatgcagggtctaaaa 48 cynomolgus Cyno- AA QKECVCENYKLAVNCFLNDNGQCQCTSIGAQNTVLCSKLAAKCLVMKAEM EpCAM molgus NGSKLGRRAKPEGALQNNDGLYDPDCDESGLFKAKQCNGTSTCWCVNTAG extracellular cDNA VRRTDKDTEITCSERVRTYWIIIELKHKAREKPYDVQSLRTALEEAIKTRYQL portion DPKFITNILYEDNVITIDLVQNSSQKTQNDVDIADVAYYFEKDVKGESLFHSK KMDLRVNGEQLDLDPGQTLIYYVDEKAPEFSMQGLK 49 2G8 VH Hybri- NA gaggttcagctgcagcagtctggggcagagcttgtgaggtcaggggcctcagtcaagttgtcctgcacagctt- ctggcttc doma aacattaaagactactatttgcactgggtgaagcagaggcctgaacagggcctggagtggattgcc- tggattgatcttgaga atggtgatattaaatatgccccgaagtttcagggcaaggccactataactgcagacacatcctccaacac-
agcctacctgca gctcagcagcctgacatctgaggacactgccgtctattactgtaatccctattactacggtagtaactac- gactatgctatgga ctactggggtcaaggaacctcagtcaccgtctcctca 50 2G8 VH Hybri- AA EVQLQQSGAELVRSGASVKLSCTASGFNIKDYYLHWVKQRPEQGLEWIAWI doma DLENGDIKYAPKFQGKATITADTSSNTAYLQLSSLTSEDTAVYYCNPYYYGS NYDYAMDYWGQGTSVTVSS 51 2G8 VL Hybri- NA gatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgcaagt- caagtcagagc doma ctcttatatagtaatggaaaaacctatttgaactggatattacagaggccaggccagtctccaaag- cgcctaatctatctggtg tctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacgctgaaaa- tcagcagagtgg aggctgaggatttgggagtttattactgcgtgcaaggtacacattttcctctcacgttcggtgctgggac- caagctggagctg aaa 52 2G8 VL Hybri- AA DVVMTQTPLTLSVTIGQPASISCKSSQSLLYSNGKTYLNWILQRPGQSPKRLIY doma LVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCVQGTHFPLTFGAGT KLELK 53 2G8VH-VL scFv artificial NA gaggttcagctgcagcagtctggggcagagcttgtgaggtcaggggcctcagtcaagttgtcctgcacagctt- ctggcttc aacattaaagactactatttgcactgggtgaagcagaggcctgaacagggcctggagtggattgcctgga- ttgatcttgaga atggtgatattaaatatgccccgaagtttcagggcaaggccactataactgcagacacatcctccaacac- agcctacctgca gctcagcagcctgacatctgaggacactgccgtctattactgtaatccctattactacggtagtaactac- gactatgctatgga ctactggggtcaaggaacctcagtcaccgtctcctcaggtggtggtggttctggcggcggcggctccggt- ggtggtggttc tgatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgc- aagtcaagtcagag cctcttatatagtaatggaaaaacctatttgaactggatattacagaggccaggccagtctccaaagcgc- ctaatctatctggt gtctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacgctgaaa- atcagcagagtg gaggctgaggatttgggagtttattactgcgtgcaaggtacacattttcctctcacgttcggtgctggga- ccaagctggagct gaaa 54 2G8VH-VL scFv artificial AA EVQLQQSGAELVRSGASVKLSCTASGFNIKDYYLHWVKQRPEQGLEWIAWI DLENGDIKYAPKFQGKATITADTSSNTAYLQLSSLTSEDTAVYYCNPYYYGS NYDYAMDYWGQGTSVTVSSGGGGSGGGGSGGGGSDVVMTQTPLTLSVTIG QPASISCKSSQSLLYSNGKTYLNWILQRPGQSPKRLIYLVSKLDSGVPDRFTGS GSGTDFTLKISRVEAEDLGVYYCVQGTHFPLTFGAGTKLELK 55 2G8VL-VH scFv artificial NA gatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgcaagt- caagtcagagc ctcttatatagtaatggaaaaacctatttgaactggatattacagaggccaggccagtctccaaagcgcc- taatctatctggtg tctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacgctgaaaa- tcagcagagtgg aggctgaggatttgggagtttattactgcgtgcaaggtacacattttcctctcacgttcggtgctgggac- caagctggagctg aaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggttcagctgcagcagtctg- gggcagagct tgtgaggtcaggggcctcagtcaagttgtcctgcacagcttctggcttcaacattaaagactactatttg- cactgggtgaagc agaggcctgaacagggcctggagtggattgcctggattgatcttgagaatggtgatattaaatatgcccc- gaagtttcaggg caaggccactataactgcagacacatcctccaacacagcctacctgcagctcagcagcctgacatctgag- gacactgccg tctattactgtaatccctattactacggtagtaactacgactatgctatggactactggggtcaaggaac- ctcagtcaccgtctc ctcc 56 2G8VL-VH scFv artificial AA DVVMTQTPLTLSVTIGQPASISCKSSQSLLYSNGKTYLNWILQRPGQSPKRLIY LVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCVQGTHFPLTFGAGT KLELKGGGGSGGGGSGGGGSEVQLQQSGAELVRSGASVKLSCTASGFNIKD YYLHWVKQRPEQGLEWIAWIDLENGDIKYAPKFQGKATITADTSSNTAYLQL SSLTSEDTAVYYCNPYYYGSNYDYAMDYWGQGTSVTVSS 57 5'2G8 LH artificial NA aggtgtacactccgatgttgtgatgacccagactccactcactttgtcg 58 3'2G8 VL Linker artificial NA ggagccgccgccgccagaaccaccaccacctttcagctccagcttggtcccagc 59 5'2G8 VH Linker artificial NA tctggcggcggcggctccggtggtggtggttctgaggttcagctgcagcagtctgg 60 3'2G8 LH artificial NA acatccggaggagacggtgactgaggttcc 61 5'2G8 HL artificial NA aggtgtacactccgaggttcagctgcagcagtctggg 62 3'2G8 VH Linker artificial NA ggagccgccgccgccagaaccaccaccacctgaggagacggtgactgaggttcc 63 5'2G8 VL Linker artificial NA tctggcggcggcggctccggtggtggtggttctgatgttgtgatgacccagactccactcactttgtcg 64 3'2G8 HL artificial NA acatccggatttcagctccagcttggtcccagc 65 2G8LHx artificial NA gatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgcaagt- caagtcagagc SEQ ID NO. 12 ctcttatatagtaatggaaaaacctatttgaactggatattacagaggccaggccagtctccaaagcgcctaa- tctatctggtg tctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacgctgaaaa- tcagcagagtgg aggctgaggatttgggagtttattactgcgtgcaaggtacacattttcctctcacgttcggtgctgggac- caagctggagctg aaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggttcagctgcagcagtctg- gggcagagct tgtgaggtcaggggcctcagtcaagttgtcctgcacagcttctggcttcaacattaaagactactatttg- cactgggtgaagc agaggcctgaacagggcctggagtggattgcctggattgatcttgagaatggtgatattaaatatgcccc- gaagtttcaggg caaggccactataactgcagacacatcctccaacacagcctacctgcagctcagcagcctgacatctgag- gacactgccg tctattactgtaatccctattactacggtagtaactacgactatgctatggactactggggtcaaggaac- ctcagtcaccgtctc ctccggaggtggtggatcccaggctgttgtgactcaggaatctgcactcaccacatcacctggtgaaaca- gtcacactcact tgtcgctcaagtactggggctgttacaactagtaactatgccaactgggtccaagaaaaaccagatcatt- tattcactggtcta ataggtggtaccaacaagcgagctccaggtgtgcctgccagattctcaggctccctgattggagacaagg- ctgccctcacc atcacaggggcacagactgaggatgaggcaatatatttctgtgctctatggtacagcaacctctgggtgt- tcggtggaggaa ccaaactgactgtcctaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgaa- gcttctcgagt ctggaggaggattggtgcagcctaaagggtcattgaaactctcatgtgcagcctctggattcaccttcaa- tacctacgccatg aactgggtccgccaggctccaggaaagggtttggaatgggttgctcgcataagaagtaaatataataatt- atgcaacatatta tgccgattcagtgaaagacaggttcaccatctccagagatgattcacaaagcattctctatctacaaatg- aacaacttgaaaa ctgaggacacagccatgtactactgtgtgagacatgggaacttcggtaatagctacgtttcctggtttgc- ttactggggccaa gggactctggtcactgtctctgca 66 2G8LHx artificial AA DVVMTQTPLTLSVTIGQPASISCKSSQSLLYSNGKTYLNWILQRPGQSPKRLIY SEQ ID NO. 12 LVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCVQGTHFPLTFGAGT KLELKGGGGSGGGGSGGGGSEVQLQQSGAELVRSGASVKLSCTASGFNIKD YYLHWVKQRPEQGLEWIAWIDLENGDIKYAPKFQGKATITADTSSNTAYLQL SSLTSEDTAVYYCNPYYYGSNYDYAMDYWGQGTSVTVSSGGGGSQAVVTQ ESALTTSPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGGTNKRAP GVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWYSNLWVFGGGTKLTVLG GGGSGGGGSGGGGSEVKLLESGGGLVQPKGSLKLSCAASGFTFNTYAMNWV RQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSQSILYLQMNNL KTEDTAMYYCVRHGNFGNSYVSWFAYWGQGTLVTVSA 67 2G8LHx artificial NA gatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgcaagt- caagtcagagc SEQ ID NO. 10 ctcttatatagtaatggaaaaacctatttgaactggatattacagaggccaggccagtctccaaagcgcctaa- tctatctggtg tctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacgctgaaaa- tcagcagagtgg aggctgaggatttgggagtttattactgcgtgcaaggtacacattttcctctcacgttcggtgctgggac- caagctggagctg aaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggttcagctgcagcagtctg- gggcagagct tgtgaggtcaggggcctcagtcaagttgtcctgcacagcttctggcttcaacattaaagactactatttg- cactgggtgaagc agaggcctgaacagggcctggagtggattgcctggattgatcttgagaatggtgatattaaatatgcccc- gaagtttcaggg caaggccactataactgcagacacatcctccaacacagcctacctgcagctcagcagcctgacatctgag- gacactgccg tctattactgtaatccctattactacggtagtaactacgactatgctatggactactggggtcaaggaac- ctcagtcaccgtctc ctccggaggtggtggatccgaggtgaagcttctcgagtctggaggaggattggtgcagcctaaagggtca- ttgaaactctc atgtgcagcctctggattcaccttcaatacctacgccatgaactgggtccgccaggctccaggaaagggt- ttggaatgggtt gctcgcataagaagtaaatataataattatgcaacatattatgccgattcagtgaaagacaggttcacca- tctccagagatgat tcacaaagcattctctatctacaaatgaacaacttgaaaactgaggacacagccatgtactactgtgtga- gacatgggaactt cggtaatagctacgtttcctggtttgcttactggggccaagggactctggtcactgtctctgcaggtggt- ggtggttctggcg gcggcggctccggtggtggtggttctcaggctgttgtgactcaggaatctgcactcaccacatcacctgg- tgaaacagtca cactcacttgtcgctcaagtactggggctgttacaactagtaactatgccaactgggtccaagaaaaacc- agatcatttattca ctggtctaataggtggtaccaacaagcgagctccaggtgtgcctgccagattctcaggctccctgattgg- agacaaggctg ccctcaccatcacaggggcacagactgaggatgaggcaatatatttctgtgctctatggtacagcaacct- ctgggtgttcgg tggaggaaccaaactgactgtccta 68 2G8LHx artificial AA DVVMTQTPLTLSVTIGQPASISCKSSQSLLYSNGKTYLNWILQRPGQSPKRLIY SEQ ID NO. 10 LVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCVQGTHFPLTFGAGT KLELKGGGGSGGGGSGGGGSEVQLQQSGAELVRSGASVKLSCTASGFNIKD YYLHWVKQRPEQGLEWIAWIDLENGDIKYAPKFQGKATITADTSSNTAYLQL SSLTSEDTAVYYCNPYYYGSNYDYAMDYWGQGTSVTVSSGGGGSEVKLLES GGGLVQPKGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNN YATYYADSVKDRFTISRDDSQSILYLQMNNLKTEDTAMYYCVRHGNFGNSY VSWFAYWGQGTLVTVSAGGGGSGGGGSGGGGSQAVVTQESALTTSPGETV TLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGGTNKRAPGVPARFSGSLIGD KAALTITGAQTEDEAIYFCALWYSNLWVFGGGTKLTVL 69 2G8LHx artificial NA gatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgcaagt- caagtcagagc SEQ ID NO. 16 ctcttatatagtaatggaaaaacctatttgaactggatattacagaggccaggccagtctccaaagcgcctaa- tctatctggtg tctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacgctgaaaa- tcagcagagtgg aggctgaggatttgggagtttattactgcgtgcaaggtacacattttcctctcacgttcggtgctgggac- caagctggagctg aaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggttcagctgcagcagtctg- gggcagagct tgtgaggtcaggggcctcagtcaagttgtcctgcacagcttctggcttcaacattaaagactactatttg- cactgggtgaagc agaggcctgaacagggcctggagtggattgcctggattgatcttgagaatggtgatattaaatatgcccc- gaagtttcaggg caaggccactataactgcagacacatcctccaacacagcctacctgcagctcagcagcctgacatctgag- gacactgccg tctattactgtaatccctattactacggtagtaactacgactatgctatggactactggggtcaaggaac- ctcagtcaccgtctc ctccggaggtggtggatcccaagttgttctcacccagtctccagcaatcatgtctgcatttccaggggag- aaggtcaccatg acctgcagtgccagctcaagtgtaagttacatgaactggtaccagcagaagtcaggcacctcccccaaaa- gatggatttat gactcatccaaactggcttctggagtccctgctcgcttcagtggcagtgggtctgggacctcttattctc- tcacaatcagcag catggagactgaagatgctgccacttattactgccagcagtggagtcgtaacccacccacgttcggaggg- gggaccaagc tacaaattacaggtggtggtggttctggcggcggcggctccggtggtggtggttctcaggtccagctgca- gcagtctggg gctgaactggcaagacctggggcctcagtgaagatgtcctgcaaggcttctggctacacctttactagat- ctacgatgcact gggtaaaacagaggcctggacagggtctggaatggattggatacattaatcctagcagtgcttatactaa- ttacaatcagaa attcaaggacaaggccacattgactgcagacaaatcctccagtacagcctacatgcaactgagtagcctg- acatctgagga ctctgcagtctattactgtgcaagtccgcaagtccactatgattacaacgggtttccttactggggccaa- gggactctggtca ctgtctctgca 70 2G8LHx artificial AA DVVMTQTPLTLSVTIGQPASISCKSSQSLLYSNGKTYLNWILQRPGQSPKRLIY SEQ ID NO. 16 LVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCVQGTHFPLTFGAGT KLELKGGGGSGGGGSGGGGSEVQLQQSGAELVRSGASVKLSCTASGFNIKD YYLHWVKQRPEQGLEWIAWIDLENGDIKYAPKFQGKATITADTSSNTAYLQL
SSLTSEDTAVYYCNPYYYGSNYDYAMDYWGQGTSVTVSSGGGGSQVVLTQ SPAIMSAFPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDSSKLASGVP ARFSGSGSGTSYSLTISSMETEDAATYYCQQWSRNPPTFGGGTKLQITGGGGS GGGGSGGGGSQVQLQQSGAELARPGASVKMSCKASGYTFTRSTMHWVKQR PGQGLEWIGYINPSSAYTNYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSA VYYCASPQVHYDYNGFPYWGQGTLVTVSA 71 2G8LHx artificial NA gatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgcaagt- caagtcagagc SEQ ID NO. 14 ctcttatatagtaatggaaaaacctatttgaactggatattacagaggccaggccagtctccaaagcgcctaa- tctatctggtg tctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacgctgaaaa- tcagcagagtgg aggctgaggatttgggagtttattactgcgtgcaaggtacacattttcctctcacgttcggtgctgggac- caagctggagctg aaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggttcagctgcagcagtctg- gggcagagct tgtgaggtcaggggcctcagtcaagttgtcctgcacagcttctggcttcaacattaaagactactatttg- cactgggtgaagc agaggcctgaacagggcctggagtggattgcctggattgatcttgagaatggtgatattaaatatgcccc- gaagtttcaggg caaggccactataactgcagacacatcctccaacacagcctacctgcagctcagcagcctgacatctgag- gacactgccg tctattactgtaatccctattactacggtagtaactacgactatgctatggactactggggtcaaggaac- ctcagtcaccgtctc ctccggaggtggtggatcccaggtccagctgcagcagtctggggctgaactggcaagacctggggcctca- gtgaagatg tcctgcaaggcttctggctacacctttactagatctacgatgcactgggtaaaacagaggcctggacagg- gtctggaatgga ttggatacattaatcctagcagtgcttatactaattacaatcagaaattcaaggacaaggccacattgac- tgcagacaaatcct ccagtacagcctacatgcaactgagtagcctgacatctgaggactctgcagtctattactgtgcaagtcc- gcaagtccactat gattacaacgggtttccttactggggccaagggactctggtcactgtctctgcaggtggtggtggttctg- gcggcggcggct ccggtggtggtggttctcaagttgttctcacccagtctccagcaatcatgtctgcatttccaggggagaa- ggtcaccatgacc tgcagtgccagctcaagtgtaagttacatgaactggtaccagcagaagtcaggcacctcccccaaaagat- ggatttatgact catccaaactggcttctggagtccctgctcgcttcagtggcagtgggtctgggacctcttattctctcac- aatcagcagcatg gagactgaagatgctgccacttattactgccagcagtggagtcgtaacccacccacgttcggagggggga- ccaagctaca aattaca 72 2G8LHx artificial AA DVVMTQTPLTLSVTIGQPASISCKSSQSLLYSNGKTYLNWILQRPGQSPKRLIY SEQ ID NO. 14 LVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCVQGTHFPLTFGAGT KLELKGGGGSGGGGSGGGGSEVQLQQSGAELVRSGASVKLSCTASGFNIKD YYLHWVKQRPEQGLEWIAWIDLENGDIKYAPKFQGKATITADTSSNTAYLQL SSLTSEDTAVYYCNPYYYGSNYDYAMDYWGQGTSVTVSSGGGGSQVQLQQ SGAELARPGASVKMSCKASGYTFTRSTMHWVKQRPGQGLEWIGYINPSSAY TNYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSAVYYCASPQVHYDYNGF PYWGQGTLVTVSAGGGGSGGGGSGGGGSQVVLTQSPAIMSAFPGEKVTMTC SASSSVSYMNWYQQKSGTSPKRWIYDSSKLASGVPARFSGSGSGTSYSLTISS METEDAATYYCQQWSRNPPTFGGGTKLQIT 73 2G8HLx artificial NA gaggttcagctgcagcagtctggggcagagcttgtgaggtcaggggcctcagtcaagttgtcctgcacagctt- ctggcttc SEQ ID NO. 12 aacattaaagactactatttgcactgggtgaagcagaggcctgaacagggcctggagtggattgcctggattg- atcttgaga atggtgatattaaatatgccccgaagtttcagggcaaggccactataactgcagacacatcctccaacac- agcctacctgca gctcagcagcctgacatctgaggacactgccgtctattactgtaatccctattactacggtagtaactac- gactatgctatgga ctactggggtcaaggaacctcagtcaccgtctcctcaggtggtggtggttctggcggcggcggctccggt- ggtggtggttc tgatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgc- aagtcaagtcagag cctcttatatagtaatggaaaaacctatttgaactggatattacagaggccaggccagtaccaaagcgcc- taatctatctggt gtctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacgctgaaa- atcagcagagtg gaggctgaggatttgggagtttattactgcgtgcaaggtacacattttcctctcacgttcggtgctggga- ccaagctggagct gaaatccggaggtggtggatcccaggctgttgtgactcaggaatctgcactcaccacatcacctggtgaa- acagtcacact cacttgtcgctcaagtactggggctgttacaactagtaactatgccaactgggtccaagaaaaaccagat- catttattcactg gtctaataggtggtaccaacaagcgagctccaggtgtgcctgccagattctcaggctccctgattggaga- caaggctgccc tcaccatcacaggggcacagactgaggatgaggcaatatatttctgtgctctatggtacagcaacctctg- ggtgttcggtgg aggaaccaaactgactgtcctaggtggtggtggttctggcggcggcggctccggtggtggtggttctgag- gtgaagcttct cgagtctggaggaggattggtgcagcctaaagggtcattgaaactctcatgtgcagcctaggattcacct- tcaatacctac gccatgaactgggtccgccaggctccaggaaagggtttggaatgggttgctcgcataagaagtaaatata- ataattatgcaa catattatgccgattcagtgaaagacaggttcaccatctccagagatgattcacaaagcattctctatct- acaaatgaacaact tgaaaactgaggacacagccatgtactactgtgtgagacatgggaacttcggtaatagctacgtttcctg- gtttgcttactgg ggccaagggactctggtcactgtctctgca 74 2G8HLx artificial AA EVQLQQSGAELVRSGASVKLSCTASGFNIKDYYLHWVKQRPEQGLEWIAWI SEQ ID NO. 12 DLENGDIKYAPKFQGKATITADTSSNTAYLQLSSLTSEDTAVYYCNPYYYGS NYDYAMDYWGQGTSVTVSSGGGGSGGGGSGGGGSDVVMTQTPLTLSVTIG QPASISCKSSQSLLYSNGKTYLNWILQRPGQSPKRLIYLVSKLDSGVPDRFTGS GSGTDFTLKISRVEAEDLGVYYCVQGTHFPLTFGAGTKLELKSGGGGSQAVV TQESALTTSPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGGTNKR APGVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWYSNLWVFGGGTKLTV LGGGGSGGGGSGGGGSEVKLLESGGGLVQPKGSLKLSCAASGFTFNTYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSQSILYLQMN NLKTEDTAMYYCVRHGNFGNSYVSWFAYWGQGTLVTVSA 75 2G8HLx artificial NA gaggttcagctgcagcagtctggggcagagcttgtgaggtcaggggcctcagtcaagttgtcctgcacagctt- ctggcttc SEQ ID NO. 10 aacattaaagactactatttgcactgggtgaagcagaggcctgaacagggcctggagtggattgcctggattg- atcttgaga atggtgatattaaatatgccccgaagtttcagggcaaggccactataactgcagacacatcctccaacac- agcctacctgca gctcagcagcctgacatctgaggacactgccgtctattactgtaatccctattactacggtagtaactac- gactatgctatgga ctactggggtcaaggaacctcagtcaccgtctcctcaggtggtggtggttctggcggcggcggctccggt- ggtggtggttc tgatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgc- aagtcaagtcagag cctcttatatagtaatggaaaaacctatttgaactggatattacagaggccaggccagtctccaaagcgc- ctaatctatctggt gtctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacgctgaaa- atcagcagagtg gaggctgaggatttgggagtttattactgcgtgcaaggtacacattttcctctcacgttcggtgctggga- ccaagctggagct gaaatccggaggtggtggatccgaggtgaagcttctcgagtctggaggaggattggtgcagcctaaaggg- tcattgaaac tctcatgtgcagcctctggattcaccttcaatacctacgccatgaactgggtccgccaggctccaggaaa- gggtttggaatg ggttgctcgcataagaagtaaatataataattatgcaacatattatgccgattcagtgaaagacaggttc- accatctccagaga tgattcacaaagcattctctatctacaaatgaacaacttgaaaactgaggacacagccatgtactactgt- gtgagacatggga acttcggtaatagctacgtttcctggtttgcttactggggccaagggactctggtcactgtctctgcagg- tggtggtggttctg gcggcggcggctccggtggtggtggttctcaggctgttgtgactcaggaatctgcactcaccacatcacc- tggtgaaacag tcacactcacttgtcgctcaagtactggggctgttacaactagtaactatgccaactgggtccaagaaaa- accagatcatttat tcactggtctaataggtggtaccaacaagcgagctccaggtgtgcctgccagattctcaggctccctgat- tggagacaagg ctgccctcaccatcacaggggcacagactgaggatgaggcaatatatttctgtgctctatggtacagcaa- cctctgggtgttc ggtggaggaaccaaactgactgtccta 76 2G8HLx artificial AA EVQLQQSGAELVRSGASVKLSCTASGFNIKDYYLHWVKQRPEQGLEWIAWI SEQ ID NO. 10 DLENGDIKYAPKFQGKATITADTSSNTAYLQLSSLTSEDTAVYYCNPYYYGS NYDYAMDYWGQGTSVTVSSGGGGSGGGGSGGGGSDVVMTQTPLTLSVTIG QPASISCKSSQSLLYSNGKTYLNWILQRPGQSPKRLIYLVSKLDSGVPDRFTGS GSGTDFTLKISRVEAEDLGVYYCVQGTHFPLTFGAGTKLELKSGGGGSEVKL LESGGGLVQPKGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKY NNYATYYADSVKDRFTISRDDSQSILYLQMNNLKTEDTAMYYCVRHGNFGN SYVSWFAYWGQGTLVTVSAGGGGSGGGGSGGGGSQAVVTQESALTTSPGET VTLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGGTNKRAPGVPARFSGSLIG DKAALTITGAQTEDEAIYFCALWYSNLWVFGGGTKLTVL 77 2G8HLx artificial NA gaggttcagctgcagcagtctggggcagagcttgtgaggtcaggggcctcagtcaagttgtcctgcacagctt- ctggcttc SEQ ID NO. 16 aacattaaagactactatttgcactgggtgaagcagaggcctgaacagggcctggagtggattgcctggattg- atcttgaga atggtgatattaaatatgccccgaagtttcagggcaaggccactataactgcagacacatcctccaacac- agcctacctgca gctcagcagcctgacatctgaggacactgccgtctattactgtaatccctattactacggtagtaactac- gactatgctatgga ctactggggtcaaggaacctcagtcaccgtctcctcaggtggtggtggttctggcggcggcggctccggt- ggtggtggttc tgatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgc- aagtcaagtcagag cctcttatatagtaatggaaaaacctatttgaactggatattacagaggccaggccagtctccaaagcgc- ctaatctatctggt gtctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacgctgaaa- atcagcagagtg gaggctgaggatttgggagtttattactgcgtgcaaggtacacattttcctctcacgttcggtgctggga- ccaagctggagct gaaatccggaggtggtggatcccaagttgttctcacccagtctccagcaatcatgtctgcatttccaggg- gagaaggtcacc atgacctgcagtgccagctcaagtgtaagttacatgaactggtaccagcagaagtcaggcacctccccca- aaagatggatt tatgactcatccaaactggcttctggagtccctgctcgcttcagtggcagtgggtctgggacctcttatt- ctctcacaatcagc agcatggagactgaagatgctgccacttattactgccagcagtggagtcgtaacccacccacgttcggag- gggggaccaa gctacaaattacaggtggtggtggttctggcggcggcggctccggtggtggtggttctcaggtccagctg- cagcagtctgg ggctgaactggcaagacctggggcctcagtgaagatgtcctgcaaggcttctggctacacctttactaga- tctacgatgcac tgggtaaaacagaggcctggacagggtctggaatggattggatacattaatcctagcagtgcttatacta- attacaatcagaa attcaaggacaaggccacattgactgcagacaaatcctccagtacagcctacatgcaactgagtagcctg- acatctgagga ctctgcagtctattactgtgcaagtccgcaagtccactatgattacaacgggtttccttactggggccaa- gggactctggtca ctgtctctgca 78 2G8HLx artificial AA EVQLQQSGAELVRSGASVKLSCTASGFNIKDYYLHWVKQRPEQGLEWIAWI SEQ ID NO. 16 DLENGDIKYAPKFQGKATITADTSSNTAYLQLSSLTSEDTAVYYCNPYYYGS NYDYAMDYWGQGTSVTVSSGGGGSGGGGSGGGGSDVVMTQTPLTLSVTIG QPASISCKSSQSLLYSNGKTYLNWILQRPGQSPKRLIYLVSKLDSGVPDRFTGS GSGTDFTLKISRVEAEDLGVYYCVQGTHFPLTFGAGTKLELKSGGGGSQVVL TQSPAIMSAFPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDSSKLASG VPARFSGSGSGTSYSLTISSMETEDAATYYCQQWSRNPPTFGGGTKLQITGGG GSGGGGSGGGGSQVQLQQSGAELARPGASVKMSCKASGYTFTRSTMHWVK QRPGQGLEWIGYINPSSAYTNYNQKFKDKATLTADKSSSTAYMQLSSLTSED SAVYYCASPQVHYDYNGFPYWGQGTLVTVSA 79 2G8HLx artificial NA gaggttcagctgcagcagtctggggcagagcttgtgaggtcaggggcctcagtcaagttgtcctgcacagatc- tggcttc SEQ ID NO. 14 aacattaaagactactatttgcactgggtgaagcagaggcctgaacagggcctggagtggattgcctggattg- atcttgaga atggtgatattaaatatgccccgaagtttcagggcaaggccactataactgcagacacatcctccaacac- agcctacctgca gctcagcagcctgacatctgaggacactgccgtctattactgtaatccctattactacggtagtaactac- gactatgctatgga ctactggggtcaaggaacctcagtcaccgtctcctcaggtggtggtggttctggcggcggcggctccggt- ggtggtggttc tgatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgc- aagtcaagtcagag cctcttatatagtaatggaaaaacctatttgaactggatattacagaggccaggccagtctccaaagcgc- ctaatctatctggt gtctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacgctgaaa- atcagcagagtg gaggctgaggatttgggagtttattactgcgtgcaaggtacacattttcctctcacgttcggtgctggga- ccaagctggagct gaaatccggaggtggtggatcccaggtccagctgcagcagtctggggctgaactggcaagacctggggcc- tcagtgaa gatgtcctgcaaggcttctggctacacctttactagatctacgatgcactgggtaaaacagaggcctgga- cagggtctggaa tggattggatacattaatcctagcagtgcttatactaattacaatcagaaattcaaggacaaggccacat- tgactgcagacaa atcctccagtacagcctacatgcaactgagtagcctgacatctgaggactctgcagtctattactgtgca- agtccgcaagtcc actatgattacaacgggtttccttactggggccaagggactctggtcactgtctctgcaggtggtggtgg- ttctggcggcgg cggctccggtggtggtggttctcaagttgttctcacccagtctccagcaatcatgtctgcatttccaggg- gagaaggtcacca tgacctgcagtgccagctcaagtgtaagttacatgaactggtaccagcagaagtcaggcacctcccccaa- aagatggattt atgactcatccaaactggcttctggagtccctgctcgcttcagtggcagtgggtctgggacctcttattc- tctcacaatcagca
gcatggagactgaagatgctgccacttattactgccagcagtggagtcgtaacccacccacgttcggagg- ggggaccaa gctacaaattaca 80 2G8HLx artificial AA EVQLQQSGAELVRSGASVKLSCTASGFNIKDYYLHWVKQRPEQGLEWIAWI SEQ ID NO. 14 DLENGDIKYAPKFQGKATITADTSSNTAYLQLSSLTSEDTAVYYCNPYYYGS NYDYAMDYWGQGTSVTVSSGGGGSGGGGSGGGGSDVVMTQTPLTLSVTIG QPASISCKSSQSLLYSNGKTYLNWILQRPGQSPKRLIYLVSKLDSGVPDRFTGS GSGTDFTLKISRVEAEDLGVYYCVQGTHFPLTFGAGTKLELKSGGGGSQVQL QQSGAELARPGASVKMSCKASGYTFTRSTMHWVKQRPGQGLEWIGYINPSS AYTNYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSAVYYCASPQVHYDYN GFPYWGQGTLVTVSAGGGGSGGGGSGGGGSQVVLTQSPAIMSAFPGEKVTM TCSASSSVSYMNWYQQKSGTSPKRWIYDSSKLASGVPARFSGSGSGTSYSLTI SSMETEDAATYYCQQWSRNPPTFGGGTKLQIT 81 5' primer VH artificial NA 5'-SAGGTGCAGCTCGAGGAGTCAGGACCT-3' 82 5' primer VH artificial NA 5'-GAGGTCCAGCTCGAGCAGTCTGGACCT-3' 83 5' primer VH artificial NA 5'-CAGGTCCAACTCGAGCAGCCTGGGGCT-3' 84 5' primer VH artificial NA 5'-GAGGTTCAGCTCGAGCAGTCTGGGGCA-3' 85 5' primer VH artificial NA 5'-GARGTGAAGCTCGAGGAGTCTGGAGGA-3' 86 5' primer VH artificial NA 5'-GAGGTGAAGCTTCTCGAGTCTGGAGGT-3' 87 5' primer VH artificial NA 5'-GAAGTGAAGCTCGAGGAGTCTGGGGGA-3' 88 5' primer VH artificial NA 5'-GAGGTTCAGCTCGAGCAGTCTGGAGCT-3' 89 5' primer VH artificial NA 5'-GGGCTCGAGCACCATGGRATGSAGCTGKGTMATSCTCTT-3' 90 5' primer VH artificial NA 5'-GGGCTCGAGCACCATGRACTTCGGGYTGAGCTKGGTTTT-3' 91 5' primer VH artificial NA 5'-GGGCTCGAGCACCATGGCTGTCTTGGGGCTGCTCTTCT-3' 92 3' primer VH artificial NA 5'-GAGGAATTCGAACTGGACAGGGATCCAGAGTTCC-3' 93 3' primer VH artificial NA 5'-CGGAATTCGAATGACATGGACATCTGGGTCATCC-3' 94 5' primer VL artificial NA 5'-CCAGTTCCGAGCTCGTTGTGACTCAGGAATCT-3' 95 5' primer VL artificial NA 5'-CCAGTTCCGAGCTCGTGTTGACGCAGCCGCCC-3' 96 5' primer VL artificial NA 5'-CCAGTTCCGAGCTCGTGCTCACCCAGTCTCCA-3' 97 5' primer VL artificial NA 5'-CCAGTTCCGAGCTCCAGATGACCCAGTCTCCA-3' 98 5' primer VL artificial NA 5'-CCAGATGTGAGCTCGTGATGACCCAGACTCCA-3' 99 5' primer VL artificial NA 5'-CCAGATGTGAGCTCGTCATGACCCAGTCTCCA-3' 100 5' primer VL artificial NA 5'-CCAGTTCCGAGCTCGTGATGACACAGTCTCCA-3' 101 5' primer VL artificial NA 5'-GGGGAGCTCCACCATGGAGACAGACACACTCCTGCTAT-3' 102 5' primer VL artificial NA 5'-GGGGAGCTCCACCATGGATTTTCAAGTGCAGATTTTCAG-3' 103 5' primer VL artificial NA 5'-GGGGAGCTCCACCATGGAGWCACAKWCTCAGGTCTTTRTA-3' 104 5' primer VL artificial NA 5'-GGGGAGCTCCACCATGKCCCCWRCTCAGYTYCTKGT-3' 105 3' primer VL artificial NA 5'-GAGGAATTCGAACTGCTCACTGGATGGTGGG-3' 106 3' primer VL artificial NA 5'-CGGAATTCGAACAAACTCTTCTCCACAGTGTGACC-3' 107 3' primer VH artificial NA 5'-TATGCAACTAGTACAACCACAATCCCTGGG-3' 108 3' primer VL artificial NA 5'-GCGCCGTCTAGAATTAACACTCATTCCTGTTGAA-3' 109 5-10 LH x artificial AA ELVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPPK deimmunised (di) LLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDYSYPLTF anti-CD3 GAGTKLEIKGGGGSGGGGSGGGGSEVQLLEQSGAELVRPGTSVKISCKASGY AFTNYWLGWVKQRPGHGLEWIGDIFPGSGNIHYNEKFKGKATLTADKSSSTA YMQLSSLTFEDSAVYFCARLRNWDEPMDYWGQGTTVTVSSGGGGSDVQLV QSGAEVKKPGASVKVSCKASGYTFTRYTMHWVRQAPGQGLEWIGYINPSRG YTNYADSVKGRFTITTDKSTSTAYMELSSLRSEDTATYYCARYYDDHYCLDY WGQGTTVTVSSGEGTSTGSGGSGGSGGADDIVLTQSPATLSLSPGERATLSCR ASQSVSYMNWYQQKPGKAPKRWIYDTSKVASGVPARFSGSGSGTDYSLTINS LEAEDAATYYCQQWSSNPLTFGGGTKVEIK 110 Human-like VH artificial AA EVQLLESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARI RSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRH GNFGNSYVSWFAYWGQGTLVTVSS 111 Human-like VH artificial NA gaggtgcagctgctcgagtctggaggaggattggtgcagcctggagggtcattgaaactc tcatgtgcagcctctggattcaccttcaatacctacgccatgaactgggtccgccaggct ccaggaaagggtttggaatgggttgctcgcataagaagtaaatataataattatgcaaca tattatgccgattcagtgaaagacaggttcaccatctccagagatgattcaaaaaacact gcctatctacaaatgaacaacttgaaaactgaggacactgccgtgtactactgtgtgaga catgggaacttcggtaatagctacgtttcctggtttgcttactggggccaagggactctg gtcaccgtctcctca 112 VH: CDR3 murine AA HGNFGNSYVSWFAY 113 VH: short CDR3 murine AA VSWFAY 114 VH: CDR2 murine AA RIRSKYNNYATYYADSVKD 115 VH: CDR1 murine AA TYAMN 116 VL: CDR3 murine AA ALWYSNLWV 117 VL: CDR2 murine AA GTNKRAP 118 VL: CDR1 murine AA RSSTGAVTTSNYAN 119 VH: CDR3 murine AA PQVHYDYNGFPY 120 VH: CDR2 murine AA YINPSSAYTNYNQKFKD 121 VH: CDR1 murine AA GYTFTRSTMH 122 2G8 LHx artificial AA DVVMTQTPLTLSVTIGQPASISCKSSQSLLYSNGKTYLNWILQRPGQSPKRLIY SEQ ID NO. 146 LVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCVQGTHFPLTFGAGT KLELKGGGGSGGGGSGGGGSEVQLQQSGAELVRSGASVKLSCTASGFNIKD YYLHWVKQRPEQGLEWIAWIDLENGDIKYAPKFQGKATITADTSSNTAYLQL SSLTSEDTAVYYCNPYYYGSNYDYAMDYWGQGTSVTVSSGGGGSEVKLLES GGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNN YATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSY VSWFAYWGQGTLVTVSSGGGGSGGGGSGGGGSELVVTQESALTTSPGETVT LTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGGTNKRAPGVPARFSGSLIGD KAALTITGAQTEDEAIYFCALWYSNLWVFGGGTKLTVLHHHHHH 123 2G8 LHx artificial NA gatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgcaagt- caagtcagagc SEQ ID NO. 146 ctcttatatagtaatggaaaaacctatttgaactggatattacagaggccaggccagtctccaaagcgcctaa- tctatctggtg tctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacgctgaaaa- tcagcagagtgg aggctgaggatttgggagtttattactgcgtgcaaggtacacattttcctctcacgttcggtgctgggac- caagctggagctg aaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggttcagctgcagcagtctg- gggcagagct tgtgaggtcaggggcctcagtcaagttgtcctgcacagcttctggcttcaacattaaagactactatttg- cactgggtgaagc agaggcctgaacagggcctggagtggattgcctggattgatcttgagaatggtgatattaaatatgcccc- gaagtttcaggg caaggccactataactgcagacacatcctccaacacagcctacctgcagctcagcagcctgacatctgag- gacactgccg tctattactgtaatccctattactacggtagtaactacgactatgctatggactactggggtcaaggaac- ctcagtcaccgtctc ctccggaggtggtggatccgaggtgaagcttctcgagtctggaggaggattggtgcagcctggagggtca- ttgaaactct catgtgcagcctctggattcaccttcaatacctacgccatgaactgggtccgccaggctccaggaaaggg- tttggaatgggt tgctcgcataagaagtaaatataataattatgcaacatattatgccgattcagtgaaagacaggttcacc- atctccagagatga ttcaaaaaacactgcctatctacaaatgaacaacttgaaaactgaggacactgccgtgtactactgtgtg- agacatgggaac ttcggtaatagctacgtttcctggtttgcttactggggccaagggactctggtcaccgtctcctcaggtg- gtggtggttctggc ggcggcggctccggtggtggtggttctgagctcgttgtgactcaggaatctgcactcaccacatcacctg- gtgaaacagtc acactcacttgtcgctcaagtactggggctgttacaactagtaactatgccaactgggtccaagaaaaac- cagatcatttattc actggtctaataggtggtaccaacaagcgagcaccaggtgtgcctgccagattctcaggctccctgattg- gagacaaggct gccctcaccatcacaggggcacagactgaggatgaggcaatatatttctgtgctctatggtacagcaacc- tctgggtgttcg gtggaggaaccaaactgactgtcctacatcatcaccatcatcat 124 5-10 LHx artificial AA ELVMTQSPSSLTVTAGEKVTMSCKSSQSLLNSGNQKNYLTWYQQKPGQPPK SEQ ID NO. 146 LLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDYSYPLTF GAGTKLEIKGGGGSGGGGSGGGGSEVQLLEQSGAELVRPGTSVKISCKASGY AFTNYWLGWVKQRPGHGLEWIGDIFPGSGNIHYNEKFKGKATLTADKSSSTA YMQLSSLTFEDSAVYFCARLRNWDEPMDYWGQGTTVTVSSGGGGSEVKLLE SGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYN NYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNS YVSWFAYWGQGTLVTVSSGGGGSGGGGSGGGGSELVVTQESALTTSPGETV TLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGGTNKRAPGVPARFSGSLIGD KAALTITGAQTEDEAIYFCALWYSNLWVFGGGTKLTVLHHHHHH 125 5-10 LHx artificial NA gagctcgtgatgacacagtctccatcctccctgactgtgacagcaggagagaaggtcactatgagctgcaagt- ccagtcag SEQ ID NO. 146 agtctgttaaacagtggaaatcaaaagaactacttgacctggtaccagcagaaaccagggcagcctcctaaac- tgttgatct actgggcatccactagggaatctggggtccctgatcgcttcacaggcagtggatctggaacagatttcac- tctcaccatcag cagtgtgcaggctgaagacctggcagtttattactgtcagaatgattatagttatccgctcacgttcggt- gctgggaccaagc ttgagatcaaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgcagctgct- cgagcagtctg gagctgagctggtaaggcctgggacttcagtgaagatatcctgcaaggcttctggatacgccttcactaa- ctactggctagg ttgggtaaagcagaggcctggacatggacttgagtggattggagatattttccctggaagtggtaatatc- cactacaatgag aagttcaagggcaaagccacactgactgcagacaaatcttcgagcacagcctatatgcagctcagtagcc- tgacatttgag gactctgctgtctatttctgtgcaagactgaggaactgggacgagcctatggactactggggccaaggga- ccacggtcacc gtctcctccggaggtggtggatccgaggtgaagcttctcgagtctggaggaggattggtgcagcctggag- ggtcattgaa actctcatgtgcagcctctggattcaccttcaatacctacgccatgaactgggtccgccaggctccagga- aagggtttggaa tgggttgctcgcataagaagtaaatataataattatgcaacatattatgccgattcagtgaaagacaggt- tcaccatctccaga gatgattcaaaaaacactgcctatctacaaatgaacaacttgaaaactgaggacactgccgtgtactact- gtgtgagacatg ggaacttcggtaatagctacgtttcctggtttgcttactggggccaagggactctggtcaccgtctcctc- aggtggtggtggtt ctggcggcggcggctccggtggtggtggttctgagctcgttgtgactcaggaatctgcactcaccacatc- acctggtgaaa cagtcacactcacttgtcgctcaagtactggggctgttacaactagtaactatgccaactgggtccaaga- aaaaccagatca tttattcactggtctaataggtggtaccaacaagcgagcaccaggtgtgcctgccagattctcaggctcc- ctgattggagaca aggctgccctcaccatcacaggggcacagactgaggatgaggcaatatatttctgtgctctatggtacag- caacctctgggt gttcggtggaggaaccaaactgactgtcctacatcatcaccatcatcat 126 FN18 VH hybridoma NA caggtccagctgcagcagtctgaagctgaactggcaagacctggggcctcagtgaagatgtcctgcaaggctt- ctggcta cacctttactgactacacgatacactggttaaaacagaggcctggacagggtctggactggattggatat- tttaatcctagca gtgaatctactgaatacaatcggaaattcaaggacaggaccatattgactgcagacagatcctcaaccac- agcctacatgc aactgagcagcctgacatctgaggactctgcggtctattactgttcaaggaaaggggagaaactacttgg- taaccgttactg gtacttcgatgtctggggcgcagggacctcggtcaccgtctcctca 127 FN18 VH hybridoma AA QVQLQQSEAELARPGASVKMSCKASGYTFTDYTIHWLKQRPGQGLDWIGYF NPSSESTEYNRKFKDRTILTADRSSTTAYMQLSSLTSEDSAVYYCSRKGEKLL GNRYWYFDVWGAGTSVTVSS 128 FN18 VL hybridoma NA gacattgtgatgtcacagtctccatcctccctagctgtgtcagttggagagaaggttactatgagctgcaagt- ccagtcagag ccttttatatagtagcaatcaaaagaactacttggcctggtaccagcagaagccagggcagtctcctaaa- ttgctgattaact gggcatccaccagggaatctggggtccctgatcgcttcacaggcagtggatctaggacagatttcactct- caccatcagca
gtgtgaaggctgaagacctggcagtttatttctgtcagcaattttatagttatcctccgacgttcggtgg- aggcaccaagctgg aaatcaaa 129 FN18 VL hybridoma AA DIVMSQSPSSLAVSVGEKVTMSCKSSQSLLYSSNQKNYLAWYQQKPGQSPKL LINWASTRESGVPDRFTGSGSRTDFTLTISSVKAEDLAVYFCQQFYSYPPTFGG GTKLEIK 130 FN18 VH-VL scFv artificial NA caggtccagctgcagcagtctgaagctgaactggcaagacctggggcctcagtgaagatgtcctgcaaggctt- ctggcta cacctttactgactacacgatacactggttaaaacagaggcctggacagggtctggactggattggatat- tttaatcctagca gtgaatctactgaatacaatcggaaattcaaggacaggaccatattgactgcagacagatcctcaaccac- agcctacatgc aactgagcagcctgacatctgaggactctgcggtctattactgttcaaggaaaggggagaaactacttgg- taaccgttactg gtacttcgatgtctggggcgcagggacctcggtcaccgtctcctcaggtggtggtggttctggcggcggc- ggctccggtg gtggtggttctgacattgtgatgtcacagtctccatcctccctagctgtgtcagttggagagaaggttac- tatgagctgcaagt ccagtcagagccttttatatagtagcaatcaaaagaactacttggcctggtaccagcagaagccagggca- gtctcctaaatt gctgattaactgggcatccaccagggaatctggggtccctgatcgcttcacaggcagtggatctaggaca- gatttcactctc accatcagcagtgtgaaggctgaagacctggcagtttatttctgtcagcaattttatagttatcctccga- cgttcggtggaggc accaagctggaaatcaaa 131 FN18 VH-VL scFv artificial AA QVQLQQSEAELARPGASVKMSCKASGYTFTDYTIHWLKQRPGQGLDWIGYF NPSSESTEYNRKFKDRTILTADRSSTTAYMQLSSLTSEDSAVYYCSRKGEKLL GNRYWYFDVWGAGTSVTVSSGGGGSGGGGSGGGGSDIVMSQSPSSLAVSVG EKVTMSCKSSQSLLYSSNQKNYLAWYQQKPGQSPKLLINWASTRESGVPDRF TGSGSRTDFTLTISSVKAEDLAVYFCQQFYSYPPTFGGGTKLEIK 132 FN18 VL-VH scFv artificial NA gacattgtgatgtcacagtctccatcctccctagctgtgtcagttggagagaaggttactatgagctgcaagt- ccagtcagag ccttttatatagtagcaatcaaaagaactacttggcctggtaccagcagaagccagggcagtctcctaaa- ttgctgattaact gggcatccaccagggaatctggggtccctgatcgcttcacaggcagtggatctaggacagatttcactct- caccatcagca gtgtgaaggctgaagacctggcagtttatttctgtcagcaattttatagttatcctccgacgttcggtgg- aggcaccaagctgg aaatcaaaggtggtggtggttctggcggcggcggctccggtggtggtggttctcaggtccagctgcagca- gtctgaagct gaactggcaagacctggggcctcagtgaagatgtcctgcaaggcttctggctacacctttactgactaca- cgatacactggt taaaacagaggcctggacagggtctggactggattggatattttaatcctagcagtgaatctactgaata- caatcggaaattc aaggacaggaccatattgactgcagacagatcctcaaccacagcctacatgcaactgagcagcctgacat- ctgaggactc tgcggtctattactgttcaaggaaaggggagaaactacttggtaaccgttactggtacttcgatgtctgg- ggcgcagggacc tcggtcaccgtctcctca 133 FN18 VL-VH scFv artificial AA DIVMSQSPSSLAVSVGEKVTMSCKSSQSLLYSSNQKNYLAWYQQKPGQSPKL LINWASTRESGVPDRFTGSGSRTDFTLTISSVKAEDLAVYFCQQFYSYPPTFGG GTKLEIKGGGGSGGGGSGGGGSQVQLQQSEAELARPGASVKMSCKASGYTF TDYTIHWLKQRPGQGLDWIGYFNPSSESTEYNRKFKDRTILTADRSSTTAYM QLSSLTSEDSAVYYCSRKGEKLLGNRYWYFDVWGAGTSVTVSS 134 CD3 epsilon human AA QDGNEEMGGITQTPYKVSISGTTVILTCPQYPGSEILWQHNDKNIGGDEDDKN extracellular cDNA; IGSDEDHLSLKEFSELEQSGYYVCYPRGSKPEDANFYLYLRARVCENCMEMD portion NM_0007 33 135 CD3 epsilon Cyno- AA QDGNEEMGSITQTPYQVSISGTTVILTCSQHLGSEAQWQHNGKNKEDSGDRL extracellular molgus FLPEFSEMEQSGYYVCYPRGSNPEDASHHLYLKARVCENCMEMD portion FN18+ cDNA; AB 073993 136 CD3 epsilon Cyno- AA QDGNEEMGSITQTPYQVSISGTTVILTCSQHLGSEAQWQHNGKNKGDSGDQL extracellular molgus FLPEFSEMEQSGYYVCYPRGSNPEDASHHLYLKARVCENCMEMD portion FN18- cDNA; AB 073993 137 EpCAM human AA QEECVCENYKLAVNCFVNNNRQCQCTSVGAQNTVICSKLAAKCLVMKAEM extracellular cDNA NGSKLGRRAKPEGALQNNDGLYDPDCDESGLFKAKQCNGTSTCWCVNTAG portion VRRTDKDTEITCSERVRTYWIIIELKHKAREKPYDSKSLRTALQKEITTRYQLD PKFITSILYENNVITIDLVQNSSQKTQNDVDIADVAYYFEKDVKGESLFHSKK MDLTVNGEQLDLDPGQTLIYYVDEKAPEFSMQGLK 138 EpCAM chimp AA QEECVCENYKLAVNCFVNNNHQCQCTSIGAQNTVICSKLAAKCLVMKAEMN extracellular cDNA GSKLGRRAKPEGALQNNDGLYDPDCDESGLFKAKQCNGTSTCWCVNTAGV portion RRTDKDTEITCSERVRTYWIIIELKHKAREKPYDGKSLRTALQKEITTRYQLDP KFITNILYENNVITIDLVQNSSQKTQNDVDIADVAYYFEKDVKGESLFHSKKM DLTVNGEQLDLDPGQTLIYYVDEKAPEFSMQGLK 139 EpCAM rhesus AA IDENTICAL WITH CYNOMOLGUS EPCAM SHOWN extracellular cDNA IN FIG. 6 AND SEQ ID NO. 48 portion 142 human CD3 human AA QSIKGNHLVKVYDYQEDGSVLLTCDAEAKNITWFKDGKMIGFLTEDKKKWN gamma cDNA; LGSNAKDPRGMYQCKGSQNKSKPLQVYYRMCQNCIELN extracellular NM_0000 portion 73 143 human CD3 delta human AA FKIPIEELEDRVFVNCNTSITWVEGTVGTLLSDITRLDLGKRILDPRGIYRCNGT extracellular cDNA; DIYKDKESTVQVHYRMCQSCVELDPAT portion NM_0007 32 144 cynomolgus CD3 cyno- AA QSFEENRKLNVYNQEDGSVLLTCHVKNTNITWFKEGKMIDILTAHKNKWNL gamma molgus GSNTKDPRGVYQCKGSKDKSKTLQVYYRMCQNCIELN extracellular cDNA; portion AB 073992 145 cynomolgus CD3 cyno- AA FKIPVEELEDRVFVKCNTSVTWVEGTVGTLLTNNTRLDLGKRILDPRGIYRCN delta molgus GTDIYKDKESAVQVHYRMCQNCVELDPAT extracellular cDNA; portion AB 073991 146 Human-like VH artificial AA EVQLLESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARI (SEQ ID NO. 110) RSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRH x murine VL GNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGSGGGGSELVVTQESALTT (SEQ ID NO. 148) SPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGGTNKRAPGVPARF scFv SGSLIGDKAALTITGAQTEDEAIYFCALWYSNLWVFGGGTKLTVL 147 Human-like VH artificial NA gaggtgcagctgctcgagtctggaggaggattggtgcagcctggagggtcattgaaactctcatgtgcagcct- ctggattc (SEQ ID NO. 110) accttcaatacctacgccatgaactgggtccgccaggctccaggaaagggtttggaatgggttgctcgcataa- gaagtaaa x murine VL tataataattatgcaacatattatgccgattcagtgaaagacaggttcaccatctccagagatgattcaaaaa- acactgcctat (SEQ ID NO. 148) ctacaaatgaacaacttgaaaactgaggacactgccgtgtactactgtgtgagacatgggaacttcggtaata- gctacgtttc scFv ctggtttgcttactggggccaagggactctggtcaccgtctcctcaggtggtggtggttctggcgg- cggcggctccggtgg tggtggttctgagctcgttgtgactcaggaatctgcactcaccacatcacctggtgaaacagtcacactc- acttgtcgctcaa gtactggggctgttacaactagtaactatgccaactgggtccaagaaaaaccagatcatttattcactgg- tctaataggtggta ccaacaagcgagcaccaggtgtgcctgccagattctcaggctccctgattggagacaaggctgccctcac- catcacaggg gcacagactgaggatgaggcaatatatttctgtgctctatggtacagcaacctctgggtgttcggtggag- gaaccaaactga ctgtccta 148 murine VL artificial AA ELVVTQESALTTSPGETVTLTCRSSTGAVTTSNYANWVQEKPDHLFTGLIGG [identical TNKRAPGVPARFSGSLIGDKAALTITGAQTEDEAIYFCALWYSNLWVFGGGT to VL of KLTVL SEQ ID NO. 4, with exception of the first two amino acid residues] 149 murine VL artificial NA Gagctcgttgtgactcaggaatctgcactcaccacatcacctggtgaaacagtcacactcacttgtcgctcaa- gtactgggg [identical ctgttacaactagtaactatgccaactgggtccaagaaaaaccagatcatttattcactggtctaataggtgg- taccaacaag to VL of cgagcaccaggtgtgcctgccagattctcaggctccctgattggagacaaggctgccctcaccatcacagggg- cacaga SEQ ID NO. 4, ctgaggatgaggcaatatatttctgtgctctatggtacagcaacctctgggtgttcggtggaggaaccaaact- gactgtccta with exception of nucleotides encoding the first two amino acid residues] 150 CAIX LH scFv artificial NA gacattgtgatgacccagtctcaaagattcatgtccacaacagtaggagacagggtcagcatcacctgcaagg- ccagtca gaatgtggtttctgctgttgcctggtatcaacagaaaccaggacaatctcctaaactactgatttactca- gcatccaatcggta cactggagtccctgatcgcttcacaggcagtggatctgggacagatttcactctcaccattagcaatatg- cagtctgaagac ctggctgattttttctgtcaacaatatagcaactatccgtggacgttcggtggaggcaccaagctggaaa- tcaaaggtggtgg tggttctggcggcggcggctccggtggtggtggttctgacgtgaagctcgtggagtctgggggaggctta- gtgaagcttg gagggtccctgaaactctcctgtgcagcctctggattcactttcagtaactattacatgtcttgggttcg- ccagactccagaga agaggctggagttggtcgcagccattaatagtgatggtggtatcacctactatctagacactgtgaaggg- ccgattcaccatt tcaagagacaatgccaagaacaccctgtacctgcaaatgagcagtctgaagtctgaggacacagccttgt- tttactgtgcaa gacaccgctcgggctacttttctatggactactggggtcaaggaacctcagtcaccgtctcctcc 151 CAIX LH scFv artificial AA DIVMTQSQRFMSTTVGDRVSITCKASQNVVSAVAWYQQKPGQSPKLLIYSAS NRYTGVPDRFTGSGSGTDFTLTISNMQSEDLADFFCQQYSNYPWTFGGGTKL EIKGGGGSGGGGSGGGGSDVKLVESGGGLVKLGGSLKLSCAASGFTFSNYY MSWVRQTPEKRLELVAAINSDGGITYYLDTVKGRFTISRDNAKNTLYLQMSS LKSEDTALFYCARHRSGYFSMDYWGQGTSVTVSS 152 EGFR21 LH scFv artificial NA gacattgtgctgacacagtctcctgcttccttacctgtgtctctggggcagagggccaccatctcatgcaggg- ccagccaaa gtgtcagttcatctacttatagttatatacactggtaccaacagaaaccaggacagccacccaaactcct- catcacgtatgcat ccaacctagaatctggggtccctgccaggttcagtggcagtgggtctgggacagacttcaccctcgacat- ccatcctgtgg aggaggatgattcttcaacatattactgtcagcacagttgggagattccatttacgttcggctcggggac- aaagttggaaata aaaggtggtggtggttctggcggcggcggctccggtggtggtggttctcaggttcagctgcagcagtctg- gacctgatctg gtgaagcctggggcctcagtgaagatgtcctgcaaggcttctggacacactttcactgactgtgttataa- tctgggtgaaaca gagagctggacagggccttgagtggattggacagatttatccagggactggtcgttcttactacaatgag- attttcaagggc aaggccacactgactgcagacaaatcctccaacacagtccacattcaactcagcagcctgacatctgagg- actctgcggtc tatttctgtgccctatctactatattcacgggacctggttttcttattggggccaagggactctggtcac- tgtctcttcc 153 EGFR21 LH scFv artificial AA DIVLTQSPASLPVSLGQRATISCRASQSVSSSTYSYIHWYQQKPGQPPKLLITY ASNLESGVPARFSGSGSGTDFTLDIHPVEEDDSSTYYCQHSWEIPFTFGSGTKL EIKGGGGSGGGGSGGGGSQVQLQQSGPDLVKPGASVKMSCKASGHTFTDCV IIWVKQRAGQGLEWIGQIYPGTGRSYYNEIFKGKATLTADKSSNTVHIQLSSL TSEDSAVYFCALSTLIHGTWFSYWGQGTLVTVSS 154 EGFRvIII-LH artificial NA gatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgcaagt- caagtcagagc scFv ctatatatagtaatggaaaaacctatttgaattggttattacagaggccaggccagtctccaaagc- gcctaatctatctggtat ctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacactgaaaat- cagcagagtgg aggctgaggatttgggaatttattactgcgtgcaagatacacattttcctcagacattcggtggaggcac- caagctggaaatc aaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtccagctgcaacagtctg- gacctgagct gctgaagcctggggcttcagtgaagatatcctgcaagacttctggatacacattcactgaatacaccata-
cactgggtgaag cagagccatggaaagagccttgagtggattggaggtattgatcctaacaatggtggtactatgtataacc- aaaaattcaagg gcaaggccacattgactgtagacaagtcttccagcacagcctacacggacctccgcagcctgacgtctga- ggattctgca gtctattactgcacaagagcagaggctatggactactggggtcaaggaacctcagtcaccgtctcctcc 155 EGFRvIIILH- artificial AA DVVMTQTPLTLSVTIGQPASISCKSSQSLLYSNGKTYLNWLLQRPGQSPKRLI scFv YLVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGIYYCVQDTHFPQTFGGG TKLEIKGGGGSGGGGSGGGGSEVQLQQSGPELLKPGASVKISCKTSGYTFTEY TIHWVKQSHGKSLEWIGGIDPNNGGTMYNQKFKGKATLTVDKSSSTAYTDL RSLTSEDSAVYYCTRAEAMDYWGQGTSVTVSS 156 CAIX LHx artificial NA gacattgtgatgacccagtctcaaagattcatgtccacaacagtaggagacagggtcagcatcacctgcaagg- ccagtca SEQ ID NO. 10 gaatgtggtttctgctgttgcctggtatcaacagaaaccaggacaatctcctaaactactgatttactcagca- tccaatcggta cactggagtccctgatcgcttcacaggcagtggatctgggacagatttcactctcaccattagcaatatg- cagtctgaagac ctggctgattttttctgtcaacaatatagcaactatccgtggacgttcggtggaggcaccaagctggaaa- tcaaaggtggtgg tggttctggcggcggcggctccggtggtggtggttctgacgtgaagctcgtggagtctgggggaggctta- gtgaagcttg gagggtccctgaaactctcctgtgcagcctctggattcactttcagtaactattacatgtcttgggttcg- ccagactccagaga agaggctggagttggtcgcagccattaatagtgatggtggtatcacctactatctagacactgtgaaggg- ccgattcaccatt tcaagagacaatgccaagaacaccctgtacctgcaaatgagcagtctgaagtctgaggacacagccttgt- tttactgtgcaa gacaccgctcgggctacttttctatggactactggggtcaaggaacctcagtcaccgtctcctccggagg- tggtggatccg aggtgaagcttctcgagtctggaggaggattggtgcagcctaaagggtcattgaaactctcatgtgcagc- ctctggattcac cttcaatacctacgccatgaactgggtccgccaggctccaggaaagggtttggaatgggttgctcgcata- agaagtaaatat aataattatgcaacatattatgccgattcagtgaaagacaggttcaccatctccagagatgattcacaaa- gcattctctatctac aaatgaacaacttgaaaactgaggacacagccatgtactactgtgtgagacatgggaacttcggtaatag- ctacgtttcctg gtttgcttactggggccaagggactctggtcactgtctctgcaggtggtggtggttctggcggcggcggc- tccggtggtgg tggttctcaggctgttgtgactcaggaatctgcactcaccacatcacctggtgaaacagtcacactcact- tgtcgctcaagta ctggggctgttacaactagtaactatgccaactgggtccaagaaaaaccagatcatttattcactggtct- aataggtggtacc aacaagcgagctccaggtgtgcctgccagattctcaggctccctgattggagacaaggctgccctcacca- tcacaggggc acagactgaggatgaggcaatatatttctgtgctctatggtacagcaacctctgggtgttcggtggagga- accaaactgact gtccta 157 CAIX LHx artificial AA DIVMTQSQRFMSTTVGDRVSITCKASQNVVSAVAWYQQKPGQSPKLLIYSAS SEQ ID NO. 10 NRYTGVPDRFTGSGSGTDFTLTISNMQSEDLADFFCQQYSNYPWTFGGGTKL EIKGGGGSGGGGSGGGGSDVKLVESGGGLVKLGGSLKLSCAASGFTFSNYY MSWVRQTPEKRLELVAAINSDGGITYYLDTVKGRFTISRDNAKNTLYLQMSS LKSEDTALFYCARHRSGYFSMDYWGQGTSVTVSSGGGGSEVKLLESGGGLV QPKGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATYY ADSVKDRFTISRDDSQSILYLQMNNLKTEDTAMYYCVRHGNFGNSYVSWFA YWGQGTLVTVSAGGGGSGGGGSGGGGSQAVVTQESALTTSPGETVTLTCRS STGAVTTSNYANWVQEKPDHLFTGLIGGTNKRAPGVPARFSGSLIGDKAALTI TGAQTEDEAIYFCALWYSNLWVFGGGTKLTVL 158 EGFR21 LHx artificial NA gacattgtgctgacacagtctcctgcttccttacctgtgtctctggggcagagggccaccatctcatgcaggg- ccagccaaa SEQ ID O. 10 gtgtcagttcatctacttatagttatatacactggtaccaacagaaaccaggacagccacccaaactcctcat- cacgtatgcat N ccaacctagaatctggggtccctgccaggttcagtggcagtgggtctgggacagacttcaccctcgaca- tccatcctgtgg aggaggatgattcttcaacatattactgtcagcacagttgggagattccatttacgttcggctcggggac- aaagttggaaata aaaggtggtggtggttctggcggcggcggctccggtggtggtggttctcaggttcagctgcagcagtctg- gacctgatctg gtgaagcctggggcctcagtgaagatgtcctgcaaggatctggacacactttcactgactgtgttataat- ctgggtgaaaca gagagctggacagggccttgagtggattggacagatttatccagggactggtcgttcttactacaatgag- attttcaagggc aaggccacactgactgcagacaaatcctccaacacagtccacattcaactcagcagcctgacatctgagg- actctgcggtc tatttctgtgccctatctactatattcacgggacctggttttcttattggggccaagggactctggtcac- tgtctcttccggaggt ggtggatccgaggtgaagatctcgagtctggaggaggattggtgcagcctaaagggtcattgaaactctc- atgtgcagcc tctggattcaccttcaatacctacgccatgaactgggtccgccaggctccaggaaagggtttggaatggg- ttgctcgcataa gaagtaaatataataattatgcaacatattatgccgattcagtgaaagacaggttcaccatctccagaga- tgattcacaaagc attctctatctacaaatgaacaacttgaaaactgaggacacagccatgtactactgtgtgagacatggga- acttcggtaatag ctacgtttcctggtttgcttactggggccaagggactctggtcactgtctctgcaggtggtggtggttct- ggcggcggcggct ccggtggtggtggttctcaggctgttgtgactcaggaatctgcactcaccacatcacctggtgaaacagt- cacactcacttgt cgctcaagtactggggctgttacaactagtaactatgccaactgggtccaagaaaaaccagatcatttat- tcactggtctaata ggtggtaccaacaagcgagctccaggtgtgcctgccagattctcaggctccctgattggagacaaggctg- ccctcaccatc acaggggcacagactgaggatgaggcaatatatttctgtgctctatggtacagcaacctctgggtgttcg- gtggaggaacc aaactgactgtccta 159 EGFR21 LHx artificial AA DIVLTQSPASLPVSLGQRATISCRASQSVSSSTYSYIHWYQQKPGQPPKLLITY SEQ ID NO. 10 ASNLESGVPARFSGSGSGTDFTLDIHPVEEDDSSTYYCQHSWEIPFTFGSGTKL EIKGGGGSGGGGSGGGGSQVQLQQSGPDLVKPGASVKMSCKASGHTFTDCV IIWVKQRAGQGLEWIGQIYPGTGRSYYNEIFKGKATLTADKSSNTVHIQLSSL TSEDSAVYFCALSTLIHGTWFSYWGQGTLVTVSSGGGGSEVKLLESGGGLVQ PKGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATYYA DSVKDRFTISRDDSQSILYLQMNNLKTEDTAMYYCVRHGNFGNSYVSWFAY WGQGTLVTVSAGGGGSGGGGSGGGGSQAVVTQESALTTSPGETVTLTCRSS TGAVTTSNYANWVQEKPDHLFTGLIGGTNKRAPGVPARFSGSLIGDKAALTI TGAQTEDEAIYFCALWYSNLWVFGGGTKLTVL 160 EGFRvIII-LHx artificial NA gatgttgtgatgacccagactccactcactttgtcggttaccattggacaaccagcctctatctcttgcaagt- caagtcagagc SEQ ID NO. 10 ctcttatatagtaatggaaaaacctatttgaattggttattacagaggccaggccagtctccaaagcgcctaa- tctatctggtat ctaaactggactctggagtccctgacaggttcactggcagtggatcaggaacagattttacactgaaaat- cagcagagtgg aggctgaggatttgggaatttattactgcgtgcaagatacacattttcctcagacattcggtggaggcac- caagctggaaatc aaaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtccagctgcaacagtctg- gacctgagct gctgaagcctggggcttcagtgaagatatcctgcaagacttctggatacacattcactgaatacaccata- cactgggtgaag cagagccatggaaagagccttgagtggattggaggtattgatcctaacaatggtggtactatgtataacc- aaaaattcaagg gcaaggccacattgactgtagacaagtcttccagcacagcctacacggacctccgcagcctgacgtctga- ggattctgca gtctattactgcacaagagcagaggctatggactactggggtcaaggaacctcagtcaccgtctcctccg- gaggtggtgga tccgaggtgaagcttctcgagtctggaggaggattggtgcagcctaaagggtcattgaaactctcatgtg- cagcctctggat tcaccttcaatacctacgccatgaactgggtccgccaggctccaggaaagggtttggaatgggttgctcg- cataagaagta aatataataattatgcaacatattatgccgattcagtgaaagacaggttcaccatctccagagatgattc- acaaagcattctcta tctacaaatgaacaacttgaaaactgaggacacagccatgtactactgtgtgagacatgggaacttcggt- aatagctacgttt cctggtttgcttactggggccaagggactctggtcactgtctctgcaggtggtggtggttctggcggcgg- cggctccggtg gtggtggttctcaggctgttgtgactcaggaatctgcactcaccacatcacctggtgaaacagtcacact- cacttgtcgctca agtactggggctgttacaactagtaactatgccaactgggtccaagaaaaaccagatcatttattcactg- gtctaataggtggt accaacaagcgagaccaggtgtgcctgccagattctcaggctccctgattggagacaaggctgccctcac- catcacagg ggcacagactgaggatgaggcaatatatttctgtgctctatggtacagcaacctctgggtgttcggtgga- ggaaccaaactg actgtccta 161 EGFRvIII-LHx artificial AA DVVMTQTPLTLSVTIGQPASISCKSSQSLLYSNGKTYLNWLLQRPGQSPKRLI SEQ ID NO. 10 YLVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGIYYCVQDTHFPQTFGGG TKLEIKGGGGSGGGGSGGGGSEVQLQQSGPELLKPGASVKISCKTSGYTFTEY TIHWVKQSHGKSLEWIGGIDPNNGGTMYNQKFKGKATLTVDKSSSTAYTDL RSLTSEDSAVYYCTRAEAMDYWGQGTSVTVSSGGGGSEVKLLESGGGLVQP KGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATYYAD SVKDRFTISRDDSQSILYLQMNNLKTEDTAMYYCVRHGNFGNSYVSWFAYW GQGTLVTVSAGGGGSGGGGSGGGGSQAVVTQESALTTSPGETVTLTCRSSTG AVTTSNYANWVQEKPDHLFTGLIGGTNKRAPGVPARFSGSLIGDKAALTITG AQTEDEAIYFCALWYSNLWVFGGGTKLTVL 162 anti CD3 (as artificial AA DIKLQQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPGQGLEWIGYI used in WO NPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDD 99/54440 HYCLDYWGQGTTLTVSSVEGGSGGSGGSGGSGGVDDIQLTQSPAIMSASPGE KVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGT SYSLTISSMEAEDAATYYCQQWSSNPLTFGAGTKLELK 163 deimmunised(di)- artificial AA DVQLVQSGAEVKKPGASVKVSCKASGYTFTRYTMHWVRQAPGQGLEWIGY anti CD3 INPSRGYTNYADSVKGRFTITTDKSTSTAYMELSSLRSEDTATYYCARYYDD HYCLDYWGQGTTVTVSSGEGTSTGSGGSGGSGGADDIVLTQSPATLSLSPGE RATLSCRASQSVSYMNWYQQKPGKAPKRWIYDTSKVASGVPARFSGSGSGT DYSLTINSLEAEDAATYYCQQWSSNPLTFGGGTKVEIK 164 VL: CDR3 murine AA QQWSRNPPT 165 VL: CDR2 murine AA DSSKLAS 166 VL: CDR1 murine AA SASSSVSYMN 167 Human-like VL artificial NA gagctcgttgtgactcaggaaccttcactcaccgtatcacctggtggaacagtcacactcacttgtcgctcgt- cgactgggg ctgttacaactagcaactatgccaactgggtccaacaaaaaccaggtcaggcaccccgtggtctaatagg- tggtaccaaca agcgcgcaccaggtactcctgccagattctcaggctccctgcttggaggcaaggctgccctcaccactca- ggggtacag ccagaggatgaggcagaatattactgtgactatggtacagcaacctctgggtgttcggtggaggaaccaa- actgactgtc cta 168 Human-like VL artificial AA ELVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGG TNKRAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNLWVFGGG TKLTVL 169 Human-like VH artificial NA gaggtgcagctgctcgagtctggaggaggattggtgcagcctggagggtcattgaaactctcatgtgcagcct- ctggattc (SEQ ID NO. 110) accttcaatacctacgccatgaactgggtccgccaggctccaggaaagggtttggaatgggttgctcgcataa- gaagtaaa x Human-like VL tataataattatgcaacatattatgccgattcagtgaaagacaggttcaccatctccagagatgattcaaaaa- acactgcctat (SEQ ID NO. 168) ctacaaatgaacaacttgaaaactgaggacactgccgtgtactactgtgtgagacatgggaacttcggtaata- gctacgtttc scFv ctggtttgcttactggggccaagggactctggtcaccgtctcctcaggtggtggtggttctggcgg- cggcggctccggtgg tggtggttctgagctcgttgtgactcaggaaccttcactcaccgtatcacctggtggaacagtcacactc- acttgtcgctcgtc gactggggctgttacaactagcaactatgccaactgggtccaacaaaaaccaggtcaggcaccccgtggt- ctaataggtg gtaccaacaagcgcgcaccaggtactcctgccagattctcaggctccctgcttggaggcaaggctgccct- caccctctcag gggtacagccagaggatgaggcagaatattactgtgctctatggtacagcaacctctgggtgttcggtgg- aggaaccaaa ctgactgtccta 170 Human-like VH artificial AA EVQLLESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARI (SEQ ID NO. 110) RSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRH x Human-like VL GNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGSGGGGSELVVTQEPSLTV (SEQ ID NO. 168) SPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARF scFv SGSLLGGKAALTLSGVQPEDEAEYYCALWYSNLWVFGGGTKLTVL 171 EGFR HL x artificial NA caggtgcagctgcagcagtctgggcctgatctggtgaagcctggggcctcagtgaagatgtcctgcaaggctt- ctggaca SEQ ID NO. 170 cactttcactgactgtgttataatctgggtgaaacagagagctggacagggccttgagtggattggacagatt- tatccaggg actggtcgttcttactacaatgagattttcaagggcaaggccacactgactgcagacaaatcctccaaca- cagtccacattca actcagcagcctgacatctgaggactctgcggtctatttctgtgccctatctactcttattcacgggacc- tggttttcttattggg gccaagggactctggtcactgtctcttccggtggtggtggttctggcggcggcggctccggtggtggtgg- ttctgacattgt actgacccagtctccagcttccttacctgtgtctctggggcagagggccaccatctcatgcagggccagc- caaagtgtcag
ttcatctacttatagttatatacactggtaccaacagaaaccaggacagccacccaaactcctcatcacg- tatgcatccaacct agaatctggggtccctgccaggttcagtggcagtgggtctgggacagacttcaccctcgacatccatcct- gtggaggagg atgattcttcaacatattactgtcagcacagttgggagattccatttacgttcggctcggggacaaagtt- ggaaataaaatccg gaggtggtggctccgaggtgcagctggtggagtctggaggaggattggtgcagcctggagggtcattgaa- actctcatgt gcagcctctggattcaccttcaatacctacgccatgaactgggtccgccaggctccaggaaagggtttgg- aatgggttgctc gcataagaagtaaatataataattatgcaacatattatgccgattcagtgaaagacaggttcaccatctc- cagagatgattcaa aaaacactgcctatctacaaatgaacaacttgaaaactgaggacactgccgtgtactactgtgtgagaca- tgggaacttcgg taatagctacgtttcctggtttgatactggggccaagggactctggtcaccgtctcctcaggtggtggtg- gttctggcggcg gcggctccggtggtggtggttctcagaccgttgtgactcaggaaccttcactcaccgtatcacctggtgg- aacagtcacact cacttgtcgctcgtccactggggctgttacaactagcaactatgccaactgggtccaacaaaaaccaggt- caggcaccccg tggtctaataggtggtaccaacaagcgcgcaccaggtactcctgccagattctcaggctccctgcttgga- ggcaaggctgc cctcaccctctcaggggtacagccagaggatgaggcagaatattactgtgctctatggtacagcaacctc- tgggtgttcggt ggaggaaccaaactgactgtcctacatcatcaccatcatcattaggtcgac 172 EGFR HL x artificial AA QVQLQQSGPDLVKPGASVKMSCKASGHTFTDCVIIWVKQRAGQGLEWIGQI SEQ ID NO. 170 YPGTGRSYYNEIFKGKATLTADKSSNTVHIQLSSLTSEDSAVYFCALSTLIHGT WFSYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVLTQSPASLPVSLGQRATIS CRASQSVSSSTYSYIHWYQQKPGQPPKLLITYASNLESGVPARFSGSGSGTDF TLDIHPVEEDDSSTYYCQHSWEIPFTFGSGTKLEIKSGGGGSEVQLVESGGGL VQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATY YADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYVSWF AYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCR SSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCALWYSNLWVFGGGTKLTVLHHHHHH*VD 173 EGFR LH x artificial NA gacattgtgctgacacagtctcctgcttccttacctgtgtctctggggcagagggccaccatctcatgcaggg- ccagccaaa SEQ ID NO. 170 gtgtcagttcatctacttatagttatatacactggtaccaacagaaaccaggacagccacccaaactcctcat- cacgtatgcat ccaacctagaatctggggtccctgccaggttcagtggcagtgggtctgggacagacttcaccctcgacat- ccatcctgtgg aggaggatgattcttcaacatattactgtcagcacagttgggagattccatttacgttcggctcggggac- aaagttggaaata aaaggtggtggtggttctggcggcggcggctccggtggtggtggttctcaggttcagctgcagcagtctg- gacctgatctg gtgaagcctggggcctcagtgaagatgtcctgcaaggcttctggacacactttcactgactgtgttataa- tctgggtgaaaca gagagctggacagggccttgagtggattggacagatttatccagggactggtcgttcttactacaatgag- attttcaagggc aaggccacactgactgcagacaaatcctccaacacagtccacattcaactcagcagcctgacatctgagg- actctgcggtc tatttctgtgccctatctactatattcacgggacctggttttcttattggggccaagggactctggtcac- tgtctcttccggaggt ggtggctccgaggtgcagctggtggagtctggaggaggattggtgcagcctggagggtcattgaaactct- catgtgcagc ctctggattcaccttcaatacctacgccatgaactgggtccgccaggctccaggaaagggtttggaatgg- gttgctcgcata agaagtaaatataataattatgcaacatattatgccgattcagtgaaagacaggttcaccatctccagag- atgattcaaaaaac actgcctatctacaaatgaacaacttgaaaactgaggacactgccgtgtactactgtgtgagacatggga- acttcggtaata gctacgtttcctggtttgatactggggccaagggactctggtcaccgtctcctcaggtggtggtggttct- ggcggcggcgg ctccggtggtggtggttctcagaccgttgtgactcaggaaccttcactcaccgtatcacctggtggaaca- gtcacactcactt gtcgctcgtccactggggctgttacaactagcaactatgccaactgggtccaacaaaaaccaggtcaggc- accccgtggt ctaataggtggtaccaacaagcgcgcaccaggtactcctgccagattctcaggctccctgcttggaggca- aggctgccctc accctctcaggggtacagccagaggatgaggcagaatattactgtgctctatggtacagcaacctctggg- tgttcggtgga ggaaccaaactgactgtcctacatcatcaccatcatcattaggtcgac 174 EGFR LH x artificial AA DIVLTQSPASLPVSLGQRATISCRASQSVSSSTYSYIHWYQQKPGQPPKLLITY SEQ ID NO. 170 ASNLESGVPARFSGSGSGTDFTLDIHPVEEDDSSTYYCQHSWEIPFTFGSGTKL EIKGGGGSGGGGSGGGGSQVQLQQSGPDLVKPGASVKMSCKASGHTFTDCV IIWVKQRAGQGLEWIGQIYPGTGRSYYNEIFKGKATLTADKSSNTVHIQLSSL TSEDSAVYFCALSTLIHGTWFSYWGQGTLVTVSSGGGGSEVQLVESGGGLVQ PGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATYYA DSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYV SWFAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTL TCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARFSGSLLGGK AALTLSGVQPEDEAEYYCALWYSNLWVFGGGTKLTVLHHHHHH*VD 175 EGFR HL x artificial NA caggtgcagctgcagcagtctgggcctgatctggtgaagcctggggcctcagtgaagatgtcctgcaaggctt- ctggaca SEQ ID NO. 194 cactttcactgactgtgttataatctgggtgaaacagagagctggacagggccttgagtggattggacagatt- tatccaggg actggtcgttcttactacaatgagattttcaagggcaaggccacactgactgcagacaaatcctccaaca- cagtccacattca actcagcagcctgacatctgaggactctgcggtctatttctgtgccctatctactcttattcacgggacc- tggttttcttattggg gccaagggactctggtcactgtctcttccggtggtggtggttctggcggcggcggctccggtggtggtgg- ttctgacattgt actgacccagtctccagcttccttacctgtgtctctggggcagagggccaccatctcatgcagggccagc- caaagtgtcag ttcatctacttatagttatatacactggtaccaacagaaaccaggacagccacccaaactcctcatcacg- tatgcatccaacct agaatctggggtccctgccaggttcagtggcagtgggtctgggacagacttcaccctcgacatccatcct- gtggaggagg atgattcttcaacatattactgtcagcacagttgggagattccatttacgttcggctcggggacaaagtt- ggaaataaaatccg gaggtggtggctcccagaccgttgtgactcaggaaccttcactcaccgtatcacctggtggaacagtcac- actcacttgtcg ctcgtccactggggctgttacaactagcaactatgccaactgggtccaacaaaaaccaggtcaggcaccc- cgtggtctaat aggtggtaccaacaagcgcgcaccaggtactcctgccagattctcaggctccctgcttggaggcaaggct- gccctcaccc tctcaggggtacagccagaggatgaggcagaatattactgtgctctatggtacagcaacctctgggtgtt- cggtggaggaa ccaaactgactgtcctaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgca- gctggtggagt ctggaggaggattggtgcagcctggagggtcattgaaactctcatgtgcagcctctggattcaccttcaa- tacctacgccat gaactgggtccgccaggctccaggaaagggtttggaatgggttgctcgcataagaagtaaatataataat- tatgcaacatat tatgccgattcagtgaaagacaggttcaccatctccagagatgattcaaaaaacactgcctatctacaaa- tgaacaacttgaa aactgaggacactgccgtgtactactgtgtgagacatgggaacttcggtaatagctacgtttcctggttt- gcttactggggcc aagggactctggtcaccgtctcctcacatcatcaccatcatcattaggtcgac 176 EGFR HL x artificial AA QVQLQQSGPDLVKPGASVKMSCKASGHTFTDCVIIWVKQRAGQGLEWIGQI SEQ ID NO. 194 YPGTGRSYYNEIFKGKATLTADKSSNTVHIQLSSLTSEDSAVYFCALSTLIHGT WFSYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVLTQSPASLPVSLGQRATIS CRASQSVSSSTYSYIHWYQQKPGQPPKLLITYASNLESGVPARFSGSGSGTDF TLDIHPVEEDDSSTYYCQHSWEIPFTFGSGTKLEIKSGGGGSQTVVTQEPSLTV SPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARF SGSLLGGKAALTLSGVQPEDEAEYYCALWYSNLWVFGGGTKLTV LGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQM NNLKTEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSSHHHHHH*VD 177 EGFR LH x artificial NA gacattgtgctgacacagtctcctgcttccttacctgtgtctctggggcagagggccaccatctcatgcaggg- ccagccaaa SEQ ID NO. 194 gtgtcagttcatctacttatagttatatacactggtaccaacagaaaccaggacagccacccaaactcctcat- cacgtatgcat ccaacctagaatctggggtccctgccaggttcagtggcagtgggtctgggacagacttcaccctcgacat- ccatcctgtgg aggaggatgattcttcaacatattactgtcagcacagttgggagattccatttacgttcggctcggggac- aaagttggaaata aaaggtggtggtggttctggcggcggcggctccggtggtggtggttctcaggttcagctgcagcagtctg- gacctgatctg gtgaagcctggggcctcagtgaagatgtcctgcaaggcttctggacacactttcactgactgtgttataa- tctgggtgaaaca gagagctggacagggccttgagtggattggacagatttatccagggactggtcgttcttactacaatgag- attttcaagggc aaggccacactgactgcagacaaatcctccaacacagtccacattcaactcagcagcctgacatctgagg- actctgcggtc tatttctgtgccctatctactatattcacgggacctggttttcttattggggccaagggactctggtcac- tgtctcttcctccgga ggtggtggctcccagaccgttgtgactcaggaaccttcactcaccgtatcacctggtggaacagtcacac- tcacttgtcgct cgtccactggggctgttacaactagcaactatgccaactgggtccaacaaaaaccaggtcaggcaccccg- tggtctaatag gtggtaccaacaagcgcgcaccaggtactcctgccagattctcaggctccctgcttggaggcaaggctgc- cctcaccctct caggggtacagccagaggatgaggcagaatattactgtgctctatggtacagcaacctctgggtgttcgg- tggaggaacc aaactgactgtcctaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgcagc- tggtggagtct ggaggaggattggtgcagcctggagggtcattgaaactctcatgtgcagcctctggattcaccttcaata- cctacgccatga actgggtccgccaggctccaggaaagggtttggaatgggttgctcgcataagaagtaaatataataatta- tgcaacatattat gccgattcagtgaaagacaggttcaccatctccagagatgattcaaaaaacactgcctatctacaaatga- acaacttgaaaa ctgaggacactgccgtgtactactgtgtgagacatgggaacttcggtaatagctacgtttcctggtttgc- ttactggggccaa gggactctggtcaccgtctcctcacatcatcaccatcatcattaggtcgac 178 EGFR LH x artificial AA DIVLTQSPASLPVSLGQRATISCRASQSVSSSTYSYIHWYQQKPGQPPKLLITY SEQ ID NO. 194 ASNLESGVPARFSGSGSGTDFTLDIHPVEEDDSSTYYCQHSWEIPFTFGSGTKL EIKGGGGSGGGGSGGGGSQVQLQQSGPDLVKPGASVKMSCKASGHTFTDCV IIWVKQRAGQGLEWIGQIYPGTGRSYYNEIFKGKATLTADKSSNTVHIQLSSL TSEDSAVYFCALSTLIHGTWFSYWGQGTLVTVSSSGGGGSQTVVTQEPSLTV SPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARF SGSLLGGKAALTLSGVQPEDEAEYYCALWYSNLWVFGGGTKLTV LGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMN WVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQM NNLKTEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSSHHHHHH*VD 179 SEQ ID NO. 170 artificial NA gaggtgcagctggtggagtctggaggaggattggtgcagcctggagggtcattgaaactctcatgtgcagcct- ctggattc x EGFR HL accttcaatacctacgccatgaactgggtccgccaggctccaggaaagggtttggaatgggttgctcgcataa- gaagtaaa tataataattatgcaacatattatgccgattcagtgaaagacaggttcaccatctccagagatgattcaa- aaaacactgcctat ctacaaatgaacaacttgaaaactgaggacactgccgtgtactactgtgtgagacatgggaacttcggta- atagctacgtttc ctggtttgcttactggggccaagggactctggtcaccgtctcctcaggtggtggtggttctggcggcggc- ggctccggtgg tggtggttctcagaccgttgtgactcaggaaccttcactcaccgtatcacctggtggaacagtcacactc- acttgtcgctcgtc cactggggctgttacaactagcaactatgccaactgggtccaacaaaaaccaggtcaggcaccccgtggt- ctaataggtg gtaccaacaagcgcgcaccaggtactcctgccagattctcaggctccctgcttggaggcaaggctgccct- caccctctcag gggtacagccagaggatgaggcagaatattactgtgctctatggtacagcaacctctgggtgttcggtgg- aggaaccaaa ctgactgtcctatccggaggtggtggctcccaggtgcagctgcagcagtctgggcctgatctggtgaagc- ctggggcctc agtgaagatgtcctgcaaggatctggacacactttcactgactgtgttataatctgggtgaaacagagag- ctggacagggc cttgagtggattggacagatttatccagggactggtcgttcttactacaatgagattttcaagggcaagg- ccacactgactgc agacaaatcctccaacacagtccacattcaactcagcagcctgacatctgaggactctgcggtctatttc- tgtgccctatctac tcttattcacgggacctggttttcttattggggccaagggactctggtcactgtctcttccggtggtggt- ggttctggcggcgg cggctccggtggtggtggttctgacattgtactgacccagtctccagcttccttacctgtgtctctgggg- cagagggccacc atctcatgcagggccagccaaagtgtcagttcatctacttatagttatatacactggtaccaacagaaac- caggacagccac ccaaactcctcatcacgtatgcatccaacctagaatctggggtccctgccaggttcagtggcagtgggtc- tgggacagactt caccctcgacatccatcctgtggaggaggatgattcttcaacatattactgtcagcacagttgggagatt- ccatttacgttcgg ctcggggacaaagttggaaataaaacatcatcaccatcatcattaggtcgac 180 SEQ ID NO. 170 artificial AA EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARI x EGFR HL RSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRH GNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLT VSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPAR FSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNLWVFGGGTKLTVLSGGGG SQVQLQQSGPDLVKPGASVKMSCKASGHTFTDCVIIWVKQRAGQGL EWIGQIYPGTGRSYYNEIFKGKATLTADKSSNTVHIQLSSLTSEDSAVYFCALS TLIHGTWFSYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVLTQSPASLPVSLG QRATISCRASQSVSSSTYSYIHWYQQKPGQPPKLLITYASNLESGVPARFSGSG SGTDFTLDIHPVEEDDSSTYYCQHSWEIPFTFGSGTKLEIKHHHHHH*VD 181 SEQ ID NO. 194 artificial NA cagaccgttgtgactcaggaaccttcactcaccgtatcacctggtggaacagtcacactcacttgtcgctcgt- ccactgggg x EGFR HL ctgttacaactagcaactatgccaactgggtccaacaaaaaccaggtcaggcaccccgtggtctaataggtgg-
taccaaca agcgcgcaccaggtactcctgccagattctcaggctccctgcttggaggcaaggctgccctcaccctctc- aggggtacag ccagaggatgaggcagaatattactgtgctctatggtacagcaacctctgggtgttcggtggaggaacca- aactgactgtc ctaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgcagctggtggagtctg- gaggaggatt ggtgcagcctggagggtcattgaaactctcatgtgcagcctctggattcaccttcaatacctacgccatg- aactgggtccgc caggctccaggaaagggtttggaatgggttgctcgcataagaagtaaatataataattatgcaacatatt- atgccgattcagt gaaagacaggttcaccatctccagagatgattcaaaaaacactgcctatctacaaatgaacaacttgaaa- actgaggacact gccgtgtactactgtgtgagacatgggaacttcggtaatagctacgtttcctggtttgcttactggggcc- aagggactctggt caccgtctcctcatccggaggtggtggctcccaggtgcagctgcagcagtctgggcctgatctggtgaag- cctggggcct cagtgaagatgtcctgcaaggcttctggacacactttcactgactgtgttataatctgggtgaaacagag- agctggacaggg ccttgagtggattggacagatttatccagggactggtcgttcttactacaatgagattttcaagggcaag- gccacactgactg cagacaaatcctccaacacagtccacattcaactcagcagcctgacatctgaggactctgcggtctattt- ctgtgccctatcta ctcttattcacgggacctggrtttcttattggggccaagggactctggtcactgtctcttccggtggtgg- tggttctggcggcg gcggctccggtggtggtggttctgacattgtactgacccagtctccagcttccttacctgtgtctctggg- gcagagggccac catctcatgcagggccagccaaagtgtcagttcatctacttatagttatatacactggtaccaacagaaa- ccaggacagcca cccaaactcctcatcacgtatgcatccaacctagaatctggggtccctgccaggttcagtggcagtgggt- ctgggacagac ttcaccctcgacatccatcctgtggaggaggatgattcttcaacatattactgtcagcacagttgggaga- ttccatttacgttcg gctcggggacaaagttggaaataaaacatcatcaccatcatcattaggtcgac 182 SEQ ID NO. 194 artificial AA QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGG x EGFR HL TNKRAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNLWVFGGG TKLTVLGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNT YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSSSGGGGS QVQLQQSGPDLVKPGASVKMSCKASGHTFTDCVIIWVKQRAGQGL EWIGQIYPGTGRSYYNEIFKGKATLTADKSSNTVHIQLSSLTSEDSAVYFCALS TLIHGTWFSYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVLTQSPASLPVSLG QRATISCRASQSVSSSTYSYIHWYQQKPGQPPKLLITYASNLESGVPARFSGSG SGTDFTLDIHPVEEDDSSTYYCQHSWEIPFTFGSGTKLEIKHHHHHH*VD 183 SEQ ID NO. 170 artificial NA gaggtgcagctggtggagtctggaggaggattggtgcagcctggagggtcattgaaactctcatgtgcagcct- ctggattc x EGFR LH accttcaatacctacgccatgaactgggtccgccaggctccaggaaagggtttggaatgggttgctcgcataa- gaagtaaa tataataattatgcaacatattatgccgattcagtgaaagacaggttcaccatctccagagatgattcaa- aaaacactgcctat ctacaaatgaacaacttgaaaactgaggacactgccgtgtactactgtgtgagacatgggaacttcggta- atagctacgtttc ctggtttgcttactggggccaagggactctggtcaccgtctcctcaggtggtggtggttctggcggcggc- ggctccggtgg tggtggttctcagaccgttgtgactcaggaaccttcactcaccgtatcacctggtggaacagtcacactc- acttgtcgctcgtc cactggggctgttacaactagcaactatgccaactgggtccaacaaaaaccaggtcaggcaccccgtggt- ctaataggtg gtaccaacaagcgcgcaccaggtactcctgccagattctcaggctccctgcttggaggcaaggctgccct- caccctctcag gggtacagccagaggatgaggcagaatattactgtgctctatggtacagcaacctctgggtgttcggtgg- aggaaccaaa ctgactgtcctatccggaggtggtggctccgacattgtgctgacacagtctcctgcttccttacctgtgt- ctctggggcagag ggccaccatctcatgcagggccagccaaagtgtcagttcatctacttatagttatatacactggtaccaa- cagaaaccagga cagccacccaaactcctcatcacgtatgcatccaacctagaatctggggtccctgccaggttcagtggca- gtgggtctggg acagacttcaccctcgacatccatcctgtggaggaggatgattcttcaacatattactgtcagcacagtt- gggagattccattt acgttcggctcggggacaaagttggaaataaaaggtggtggtggttctggcggcggcggctccggtggtg- gtggttctca ggttcagctgcagcagtctggacctgatctggtgaagcctggggcctcagtgaagatgtcctgcaaggct- tctggacacac tttcactgactgtgttataatctgggtgaaacagagagctggacagggccttgagtggattggacagatt- tatccagggactg gtcgttcttactacaatgagattttcaagggcaaggccacactgactgcagacaaatcctccaacacagt- ccacattcaactc agcagcctgacatctgaggactctgcggtctatttctgtgccctatctactcttattcacgggacctggt- tttcttattggggcca agggactctggtcactgtctcttcccatcatcaccatcatcattaggtcgac 184 SEQ ID NO. 170 artificial AA EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARI x EGFR LH RSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRH GNFGNSYVSWFAYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLT VSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPAR FSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNLWVFGGGTKLTVLSGGGG SDIVLTQSPASLPVSLGQRATISCRASQSVSSSTYSYIHWYQQKPGQPPKLLIT YASNLESGVPARFSGSGSGTDFTLDIHPVEEDDSSTYYCQHSWEIPFTFGSG TKLEIKGGGGSGGGGSGGGGSQVQLQQSGPDLVKPGASVKMSCKASGHTFT DCVIIWVKQRAGQGLEWIGQIYPGTGRSYYNEIFKGKATLTADKSSNTVHIQL SSLTSEDSAVYFCALSTLIHGTWFSYWGQGTLVTVSSHHHHHH*VD 185 SEQ ID NO. 194 artificial NA cagaccgttgtgactcaggaaccttcactcaccgtatcacctggtggaacagtcacactcacttgtcgctcgt- ccactgggg x EGFR LH ctgttacaactagcaactatgccaactgggtccaacaaaaaccaggtcaggcaccccgtggtctaataggtgg- taccaaca agcgcgcaccaggtactcctgccagattctcaggctccctgcttggaggcaaggctgccctcaccctctc- aggggtacag ccagaggatgaggcagaatattactgtgctctatggtacagcaacctctgggtgttcggtggaggaacca- aactgactgtc ctaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgcagctggtggagtctg- gaggaggatt ggtgcagcctggagggtcattgaaactctcatgtgcagcctctggattcaccttcaatacctacgccatg- aactgggtccgc caggctccaggaaagggtttggaatgggttgctcgcataagaagtaaatataataattatgcaacatatt- atgccgattcagt gaaagacaggttcaccatctccagagatgattcaaaaaacactgcctatctacaaatgaacaacttgaaa- actgaggacact gccgtgtactactgtgtgagacatgggaacttcggtaatagctacgtttcctggtttgcttactggggcc- aagggactctggt caccgtctcctcatccggaggtggtggctccgacattgtgctgacacagtctcctgcttccttacctgtg- tctctggggcaga gggccaccatctcatgcagggccagccaaagtgtcagttcatctacttatagttatatacactggtacca- acagaaaccagg acagccacccaaactcctcatcacgtatgcatccaacctagaatctggggtccctgccaggttcagtggc- agtgggtctgg gacagacttcaccctcgacatccatcctgtggaggaggatgattcttcaacatattactgtcagcacagt- tgggagattccatt tacgttcggctcggggacaaagttggaaataaaaggtggtggtggttctggcggcggcggctccggtggt- ggtggttctc aggttcagctgcagcagtctggacctgatctggtgaagcctggggcctcagtgaagatgtcctgcaaggc- ttctggacaca ctttcactgactgtgttataatctgggtgaaacagagagctggacagggccttgagtggattggacagat- ttatccagggact ggtcgttcttactacaatgagattttcaagggcaaggccacactgactgcagacaaatcctccaacacag- tccacattcaact cagcagcctgacatctgaggactctgcggtctatttctgtgccctatctactcttattcacgggacctgg- ttttcttattggggcc aagggactctggtcactgtctcttcccatcatcaccatcatcattaggtcgac 186 SEQ ID NO. 194 artificial AA QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGG x EGFR LH TNKRAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNLWVFGGG TKLTVLGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNT YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA YLQMNNLKTEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSSSGGGGS DIVLTQSPASLPVSLGQRATISCRASQSVSSSTYSYIHWYQQKPGQPPKLLITY ASNLESGVPARFSGSGSGTDFTLDIHPVEEDDSSTYYCQHSWEIPFTFGSG TKLEIKGGGGSGGGGSGGGGSQVQLQQSGPDLVKPGASVKMSCKASGHTFT DCVIIWVKQRAGQGLEWIGQIYPGTGRSYYNEIFKGKATLTADKSSNTVHIQL SSLTSEDSAVYFCALSTLIHGTWFSYWGQGTLVTVSSHHHHHH*VD 187 CAIX HL x artificial NA gacgtgaagctcgtggagtctgggggaggcttagtgaagcttggagggtccctgaaactctcctgtgcagcct- ctggattc SEQ ID NO. 194 actttcagtaactattacatgtcttgggttcgccagactccagagaagaggctggagttggtcgcagccatta- atagtgatgg tggtatcacctactatctagacactgtgaagggccgattcaccatttcaagagacaatgccaagaacacc- ctgtacctgcaa atgagcagtctgaagtctgaggacacagccttgttttactgtgcaagacaccgctcgggctacttttcta- tggactactgggg tcaaggaacctcagtcaccgtctcctcaggtggtggtggttctggcggcggcggctccggtggtggtggt- tctgacattgtg atgacccagtctcaaagattcatgtccacaacagtaggagacagggtcagcatcacctgcaaggccagtc- agaatgtggtt tctgctgttgcctggtatcaacagaaaccaggacaatctcctaaactactgatttactcagcatccaatc- ggtacactggagtc cctgatcgcttcacaggcagtggatctgggacagatttcactctcaccattagcaatatgcagtctgaag- acctggctgatttt ttctgtcaacaatatagcaactatccgtggacgttcggtggaggcaccaagctggaaatcaaatccggag- gtggtggctcc cagaccgttgtgactcaggaaccttcactcaccgtatcacctggtggaacagtcacactcacttgtcgct- cgtccactgggg ctgttacaactagcaactatgccaactgggtccaacaaaaaccaggtcaggcaccccgtggtctaatagg- tggtaccaaca agcgcgcaccaggtactcctgccagattctcaggctccctgcttggaggcaaggctgccctcaccctctc- aggggtacag ccagaggatgaggcagaatattactgtgctctatggtacagcaacctctgggtgttcggtggaggaacca- aactgactgtc ctaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgcagctggtggagtctg- gaggaggatt ggtgcagcctggagggtcattgaaactctcatgtgcagcctctggattcaccttcaatacctacgccatg- aactgggtccgc caggctccaggaaagggtttggaatgggttgctcgcataagaagtaaatataataattatgcaacatatt- atgccgattcagt gaaagacaggttcaccatctccagagatgattcaaaaaacactgcctatctacaaatgaacaacttgaaa- actgaggacact gccgtgtactactgtgtgagacatgggaacttcggtaatagctacgtttcctggtttgcttactggggcc- aagggactctggt caccgtctcctcacatcatcaccatcatcattaggtcgac 188 CAIX HL x artificial AA DVKLVESGGGLVKLGGSLKLSCAASGFTFSNYYMSWVRQTPEKRLELVAAI SEQ ID NO. 194 NSDGGITYYLDTVKGRFTISRDNAKNTLYLQMSSLKSEDTALFYCARHRSGY FSMDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVMTQSQRFMSTTVGDRVS ITCKASQNVVSAVAWYQQKPGQSPKLLIYSASNRYTGVPDRFTGSGSGTDFT LTISNMQSEDLADFFCQQYSNYPWTFGGGTKLEIKSGGGGSQTVVTQEPSLT VSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPAR FSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNLWVFGGGTKLTVLGGGG SGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQ APGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTAYLQMNNLKT EDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSSHHHHHH*VD 189 CAIX HL x artificial NA gacgtgaagctcgtggagtctgggggaggcttagtgaagcttggagggtccctgaaactctcctgtgcagcct- ctggattc SEQ ID NO. 170 actttcagtaactattacatgtcttgggttcgccagactccagagaagaggctggagttggtcgcagccatta- atagtgatgg tggtatcacctactatctagacactgtgaagggccgattcaccatttcaagagacaatgccaagaacacc- ctgtacctgcaa atgagcagtctgaagtctgaggacacagccttgttttactgtgcaagacaccgctcgggctacttttcta- tggactactgggg tcaaggaacctcagtcaccgtctcctcaggtggtggtggttctggcggcggcggctccggtggtggtggt- tctgacattgtg atgacccagtctcaaagattcatgtccacaacagtaggagacagggtcagcatcacctgcaaggccagtc- agaatgtggtt tctgctgttgcctggtatcaacagaaaccaggacaatctcctaaactactgatttactcagcatccaatc- ggtacactggagtc cctgatcgcttcacaggcagtggatctgggacagatttcactctcaccattagcaatatgcagtctgaag- acctggctgatttt ttctgtcaacaatatagcaactatccgtggacgttcggtggaggcaccaagctggaaatcaaatccggag- gtggtggctcc gaggtgcagctggtggagtctggaggaggattggtgcagcctggagggtcattgaaactctcatgtgcag- cctctggattc accttcaatacctacgccatgaactgggtccgccaggctccaggaaagggtttggaatgggttgctcgca- taagaagtaaa tataataattatgcaacatattatgccgattcagtgaaagacaggttcaccatctccagagatgattcaa- aaaacactgcctat ctacaaatgaacaacttgaaaactgaggacactgccgtgtactactgtgtgagacatgggaacttcggta- atagctacgtttc ctggtttgcttactggggccaagggactctggtcaccgtctcctcaggtggtggtggttctggcggcggc- ggctccggtgg tggtggttctcagaccgttgtgactcaggaaccttcactcaccgtatcacctggtggaacagtcacactc- acttgtcgctcgtc cactggggctgttacaactagcaactatgccaactgggtccaacaaaaaccaggtcaggcaccccgtggt- ctaataggtg gtaccaacaagcgcgcaccaggtactcctgccagattctcaggctccctgcttggaggcaaggctgccct- caccctctcag gggtacagccagaggatgaggcagaatattactgtgctctatggtacagcaacctctgggtgttcggtgg- aggaaccaaa ctgactgtcctacatcatcaccatcatcattaggtcgac 190 CAIX HL x artificial AA DVKLVESGGGLVKLGGSLKLSCAASGFTFSNYYMSWVRQTPEKRLELVAAI SEQ ID NO. 170 NSDGGITYYLDTVKGRFTISRDNAKNTLYLQMSSLKSEDTALFYCARHRSGY FSMDYWGQGTSVTVSSGGGGSGGGGSGGGGSDIVMTQSQRFMSTTVGDRVS ITCKASQNVVSAVAWYQQKPGQSPKLLIYSASNRYTGVPDRFTGSGSGTDFT LTISNMQSEDLADFFCQQYSNYPWTFGGGTKLEIKSGGGGSEVQLVESGGGL VQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATY YADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYVSWF
AYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCR SSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCALWYSNLWVFGGGTKLTVLHHHHHH*VD 191 CAIX LH x artificial NA gacattgtgatgacccagtctcaaagattcatgtccacaacagtaggagacagggtcagcatcacctgcaagg- ccagtca SEQ ID NO. 170 gaatgtggtttctgctgttgcctggtatcaacagaaaccaggacaatctcctaaactactgatttactcagca- tccaatcggta cactggagtccctgatcgcttcacaggcagtggatctgggacagatttcactctcaccattagcaatatg- cagtctgaagac ctggctgattttttctgtcaacaatatagcaactatccgtggacgttcggtggaggcaccaagctggaaa- tcaaaggtggtgg tggttctggcggcggcggctccggtggtggtggttctgacgtgaagctcgtggagtctgggggaggctta- gtgaagcttg gagggtccctgaaactctcctgtgcagcctctggattcactttcagtaactattacatgtcttgggttcg- ccagactccagaga agaggctggagttggtcgcagccattaatagtgatggtggtatcacctactatctagacactgtgaaggg- ccgattcaccatt tcaagagacaatgccaagaacaccctgtacctgcaaatgagcagtctgaagtctgaggacacagccttgt- tttactgtgcaa gacaccgctcgggctacttttctatggactactggggtcaaggaacctcagtcaccgtctcctcctccgg- aggtggtggctc cgaggtgcagctggtggagtctggaggaggattggtgcagcctggagggtcattgaaactctcatgtgca- gcctctggatt caccttcaatacctacgccatgaactgggtccgccaggctccaggaaagggtttggaatgggttgctcgc- ataagaagtaa atataataattatgcaacatattatgccgattcagtgaaagacaggttcaccatctccagagatgattca- aaaaacactgccta tctacaaatgaacaacttgaaaactgaggacactgccgtgtactactgtgtgagacatgggaacttcggt- aatagctacgttt cctggtttgcttactggggccaagggactctggtcaccgtctcctcaggtggtggtggttctggcggcgg- cggctccggtg gtggtggttctcagaccgttgtgactcaggaaccttcactcaccgtatcacctggtggaacagtcacact- cacttgtcgctcg tccactggggctgttacaactagcaactatgccaactgggtccaacaaaaaccaggtcaggcaccccgtg- gtctaataggt ggtaccaacaagcgcgcaccaggtactcctgccagattctcaggctccctgcttggaggcaaggctgccc- tcaccctctca ggggtacagccagaggatgaggcagaatattactgtgctctatggtacagcaacctctgggtgttcggtg- gaggaaccaa actgactgtcctacatcatcaccatcatcattaggtcgac 192 CAIX LH x artificial AA DIVMTQSQRFMSTTVGDRVSITCKASQNVVSAVAWYQQKPGQSPKLLIYSAS SEQ ID NO. 170 NRYTGVPDRFTGSGSGTDFTLTISNMQSEDLADFFCQQYSNYPWTFGGGTKL EIKGGGGSGGGGSGGGGSDVKLVESGGGLVKLGGSLKLSCAASGFTFSNYY MSWVRQTPEKRLELVAAINSDGGITYYLDTVKGRFTISRDNAKNTLYLQMSS LKSEDTALFYCARHRSGYFSMDYWGQGTSVTVSSSGGGGSEVQLVESGGGL VQPGGSLKLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATY YADSVKDRFTISRDDSKNTAYLQMNNLKTEDTAVYYCVRHGNFGNSYVSWF AYWGQGTLVTVSSGGGGSGGGGSGGGGSQTVVTQEPSLTVSPGGTVTLTCR SSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARFSGSLLGGKAA LTLSGVQPEDEAEYYCALWYSNLWVFGGGTKLTVLHHHHHH*VD 193 Human-like VL artificial NA cagaccgttgtgactcaggaaccttcactcaccgtatcacctggtggaacagtcacactcacttgtcgctcgt- ccactgggg (SEQ ID NO. 168) ctgttacaactagcaactatgccaactgggtccaacaaaaaccaggtcaggcaccccgtggtctaataggtgg- taccaaca x Human-like VH agcgcgcaccaggtactcctgccagattctcaggctccctgcttggaggcaaggctgccctcaccctctcagg- ggtacag (SEQ ID NO. 110) ccagaggatgaggcagaatattactgtgctctatggtacagcaacctctgggtgttcggtggaggaaccaaac- tgactgtc scFv ctaggtggtggtggttctggcggcggcggctccggtggtggtggttctgaggtgcagctggtggag- tctggaggaggatt ggtgcagcctggagggtcattgaaactctcatgtgcagcctctggattcaccttcaatacctacgccatg- aactgggtccgc caggctccaggaaagggtttggaatgggttgctcgcataagaagtaaatataataattatgcaacatatt- atgccgattcagt gaaagacaggttcaccatctccagagatgattcaaaaaacactgcctatctacaaatgaacaacttgaaa- actgaggacact gccgtgtactactgtgtgagacatgggaacttcggtaatagctacgtttcctggtttgcttactggggcc- aagggactctggt caccgtctcctca 194 Human-like VL artificial AA QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGG (SEQ ID NO. 168) TNKRAPGTPARFSGSLLGGKAALTLSGVQPEDEAEYYCALWYSNLWVFGGG x Human-like VH TKLTVLGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFNT (SEQ ID NO. 110) YAMNWVRQAPGKGLEWVARIRSKYNNYATYYADSVKDRFTISRDDSKNTA scFv YLQMNNLKTEDTAVYYCVRHGNFGNSYVSWFAYWGQGTLVTVSS 195 epitope artificial AA EFSELEQSGYYVC 196 epitope artificial AA EFSELEQSGYYVK 197 5' EGFR XbaI artificial NA GGTCTAGAGCATGCGACCCTCCGGGACGGCCGGG 198 3' EGFR SalI artificial NA TTTTAAGTCGACTCATGCTCCAATAAATTCACTGCT 199 epitope artificial AA QDGNEEMGSITQT 200 epitope artificial AA YYVSYPRGSNPED 201 epitope artificial AA EFSEMEQSGYYVC 202 epitope artificial AA FSEXE; X as in SEQ ID NO: 204 203 epitope artificial AA QYPGSEILWQHND 204 epitope artificial AA FSEXE, wherein X represents L (Leucine) or M (Methionine) 205 epitope artificial AA FSELE 206 epitope artificial AA FSEME 207 epitope artificial AA EFSEXEQSGYYVC, wherein X represents L (Leucine) or M (Methionine) Abbreviations: scFv = single chain Fv AA = amino acid sequence NA = nuclei acid sequence L = VL region H = VH region Single letter code as used in the sequence listing: B = C or G or T D = A or G or T H = A or C or T K = G or T M = A or C N = A or C or G or T R = A or G S = C or G V = A or C or G W = A or T Y = C or T
Sequence CWU
1
1
2071375DNAmus musculusmisc_feature(1)..(375)VH region 1gaggtgaagc
ttctcgagtc tggaggagga ttggtgcagc ctaaagggtc attgaaactc 60tcatgtgcag
cctctggatt caccttcaat acctacgcca tgaactgggt ccgccaggct 120ccaggaaagg
gtttggaatg ggttgctcgc ataagaagta aatataataa ttatgcaaca 180tattatgccg
attcagtgaa agacaggttc accatctcca gagatgattc acaaagcatt 240ctctatctac
aaatgaacaa cttgaaaact gaggacacag ccatgtacta ctgtgtgaga 300catgggaact
tcggtaatag ctacgtttcc tggtttgctt actggggcca agggactctg 360gtcactgtct
ctgca 3752125PRTmus
musculusmisc_feature(1)..(125)VH region 2Glu Val Lys Leu Leu Glu Ser Gly
Gly Gly Leu Val Gln Pro Lys Gly 1 5 10
15 Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
Asn Thr Tyr 20 25 30
Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45 Ala Arg Ile Arg
Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp 50
55 60 Ser Val Lys Asp Arg Phe Thr Ile
Ser Arg Asp Asp Ser Gln Ser Ile 65 70
75 80 Leu Tyr Leu Gln Met Asn Asn Leu Lys Thr Glu Asp
Thr Ala Met Tyr 85 90
95 Tyr Cys Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe
100 105 110 Ala Tyr Trp
Gly Gln Gly Thr Leu Val Thr Val Ser Ala 115 120
125 3327DNAMUS MUSCULUSmisc_feature(1)..(327)VL region
3caggctgttg tgactcagga atctgcactc accacatcac ctggtgaaac agtcacactc
60acttgtcgct caagtactgg ggctgttaca actagtaact atgccaactg ggtccaagaa
120aaaccagatc atttattcac tggtctaata ggtggtacca acaagcgagc tccaggtgtg
180cctgccagat tctcaggctc cctgattgga gacaaggctg ccctcaccat cacaggggca
240cagactgagg atgaggcaat atatttctgt gctctatggt acagcaacct ctgggtgttc
300ggtggaggaa ccaaactgac tgtccta
3274109PRTmus musculusmisc_feature(1)..(109)VL region 4Gln Ala Val Val
Thr Gln Glu Ser Ala Leu Thr Thr Ser Pro Gly Glu 1 5
10 15 Thr Val Thr Leu Thr Cys Arg Ser Ser
Thr Gly Ala Val Thr Thr Ser 20 25
30 Asn Tyr Ala Asn Trp Val Gln Glu Lys Pro Asp His Leu Phe
Thr Gly 35 40 45
Leu Ile Gly Gly Thr Asn Lys Arg Ala Pro Gly Val Pro Ala Arg Phe 50
55 60 Ser Gly Ser Leu Ile
Gly Asp Lys Ala Ala Leu Thr Ile Thr Gly Ala 65 70
75 80 Gln Thr Glu Asp Glu Ala Ile Tyr Phe Cys
Ala Leu Trp Tyr Ser Asn 85 90
95 Leu Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105 5363DNAMUS
MUSCULUSmisc_feature(1)..(363)VH region 5caggtccagc tgcagcagtc tggggctgaa
ctggcaagac ctggggcctc agtgaagatg 60tcctgcaagg cttctggcta cacctttact
agatctacga tgcactgggt aaaacagagg 120cctggacagg gtctggaatg gattggatac
attaatccta gcagtgctta tactaattac 180aatcagaaat tcaaggacaa ggccacattg
actgcagaca aatcctccag tacagcctac 240atgcaactga gtagcctgac atctgaggac
tctgcagtct attactgtgc aagtccgcaa 300gtccactatg attacaacgg gtttccttac
tggggccaag ggactctggt cactgtctct 360gca
3636121PRTmus
musculusmisc_feature(1)..(121)VH region 6Gln Val Gln Leu Gln Gln Ser Gly
Ala Glu Leu Ala Arg Pro Gly Ala 1 5 10
15 Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe
Thr Arg Ser 20 25 30
Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45 Gly Tyr Ile Asn
Pro Ser Ser Ala Tyr Thr Asn Tyr Asn Gln Lys Phe 50
55 60 Lys Asp Lys Ala Thr Leu Thr Ala
Asp Lys Ser Ser Ser Thr Ala Tyr 65 70
75 80 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala
Val Tyr Tyr Cys 85 90
95 Ala Ser Pro Gln Val His Tyr Asp Tyr Asn Gly Phe Pro Tyr Trp Gly
100 105 110 Gln Gly Thr
Leu Val Thr Val Ser Ala 115 120 7318DNAMUS
MUSCULUSmisc_feature(1)..(318)VL region 7caagttgttc tcacccagtc tccagcaatc
atgtctgcat ttccagggga gaaggtcacc 60atgacctgca gtgccagctc aagtgtaagt
tacatgaact ggtaccagca gaagtcaggc 120acctccccca aaagatggat ttatgactca
tccaaactgg cttctggagt ccctgctcgc 180ttcagtggca gtgggtctgg gacctcttat
tctctcacaa tcagcagcat ggagactgaa 240gatgctgcca cttattactg ccagcagtgg
agtcgtaacc cacccacgtt cggagggggg 300accaagctac aaattaca
3188106PRTmus
musculusmisc_feature(1)..(106)VL region 8Gln Val Val Leu Thr Gln Ser Pro
Ala Ile Met Ser Ala Phe Pro Gly 1 5 10
15 Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val
Ser Tyr Met 20 25 30
Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr
35 40 45 Asp Ser Ser Lys
Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser 50
55 60 Gly Ser Gly Thr Ser Tyr Ser Leu
Thr Ile Ser Ser Met Glu Thr Glu 65 70
75 80 Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Arg
Asn Pro Pro Thr 85 90
95 Phe Gly Gly Gly Thr Lys Leu Gln Ile Thr 100
105 9747DNAARTIFICIAL SEQUENCEVH-VL scFV single chain Fv
9gaggtgaagc ttctcgagtc tggaggagga ttggtgcagc ctaaagggtc attgaaactc
60tcatgtgcag cctctggatt caccttcaat acctacgcca tgaactgggt ccgccaggct
120ccaggaaagg gtttggaatg ggttgctcgc ataagaagta aatataataa ttatgcaaca
180tattatgccg attcagtgaa agacaggttc accatctcca gagatgattc acaaagcatt
240ctctatctac aaatgaacaa cttgaaaact gaggacacag ccatgtacta ctgtgtgaga
300catgggaact tcggtaatag ctacgtttcc tggtttgctt actggggcca agggactctg
360gtcactgtct ctgcaggtgg tggtggttct ggcggcggcg gctccggtgg tggtggttct
420caggctgttg tgactcagga atctgcactc accacatcac ctggtgaaac agtcacactc
480acttgtcgct caagtactgg ggctgttaca actagtaact atgccaactg ggtccaagaa
540aaaccagatc atttattcac tggtctaata ggtggtacca acaagcgagc tccaggtgtg
600cctgccagat tctcaggctc cctgattgga gacaaggctg ccctcaccat cacaggggca
660cagactgagg atgaggcaat atatttctgt gctctatggt acagcaacct ctgggtgttc
720ggtggaggaa ccaaactgac tgtccta
74710249PRTartificial sequenceVH-VL scFv single chain Fv 10Glu Val Lys
Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Lys Gly 1 5
10 15 Ser Leu Lys Leu Ser Cys Ala Ala
Ser Gly Phe Thr Phe Asn Thr Tyr 20 25
30 Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
Glu Trp Val 35 40 45
Ala Arg Ile Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp 50
55 60 Ser Val Lys Asp
Arg Phe Thr Ile Ser Arg Asp Asp Ser Gln Ser Ile 65 70
75 80 Leu Tyr Leu Gln Met Asn Asn Leu Lys
Thr Glu Asp Thr Ala Met Tyr 85 90
95 Tyr Cys Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser
Trp Phe 100 105 110
Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala Gly Gly Gly
115 120 125 Gly Ser Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gln Ala Val Val 130
135 140 Thr Gln Glu Ser Ala Leu Thr Thr
Ser Pro Gly Glu Thr Val Thr Leu 145 150
155 160 Thr Cys Arg Ser Ser Thr Gly Ala Val Thr Thr Ser
Asn Tyr Ala Asn 165 170
175 Trp Val Gln Glu Lys Pro Asp His Leu Phe Thr Gly Leu Ile Gly Gly
180 185 190 Thr Asn Lys
Arg Ala Pro Gly Val Pro Ala Arg Phe Ser Gly Ser Leu 195
200 205 Ile Gly Asp Lys Ala Ala Leu Thr
Ile Thr Gly Ala Gln Thr Glu Asp 210 215
220 Glu Ala Ile Tyr Phe Cys Ala Leu Trp Tyr Ser Asn Leu
Trp Val Phe 225 230 235
240 Gly Gly Gly Thr Lys Leu Thr Val Leu 245
11747DNAARTIFICIAL SEQUENCEVL-VH scFv single chain Fv 11caggctgttg
tgactcagga atctgcactc accacatcac ctggtgaaac agtcacactc 60acttgtcgct
caagtactgg ggctgttaca actagtaact atgccaactg ggtccaagaa 120aaaccagatc
atttattcac tggtctaata ggtggtacca acaagcgagc tccaggtgtg 180cctgccagat
tctcaggctc cctgattgga gacaaggctg ccctcaccat cacaggggca 240cagactgagg
atgaggcaat atatttctgt gctctatggt acagcaacct ctgggtgttc 300ggtggaggaa
ccaaactgac tgtcctaggt ggtggtggtt ctggcggcgg cggctccggt 360ggtggtggtt
ctgaggtgaa gcttctcgag tctggaggag gattggtgca gcctaaaggg 420tcattgaaac
tctcatgtgc agcctctgga ttcaccttca atacctacgc catgaactgg 480gtccgccagg
ctccaggaaa gggtttggaa tgggttgctc gcataagaag taaatataat 540aattatgcaa
catattatgc cgattcagtg aaagacaggt tcaccatctc cagagatgat 600tcacaaagca
ttctctatct acaaatgaac aacttgaaaa ctgaggacac agccatgtac 660tactgtgtga
gacatgggaa cttcggtaat agctacgttt cctggtttgc ttactggggc 720caagggactc
tggtcactgt ctctgca
74712249PRTartificial sequenceVL-VH scFv single chain Fv 12Gln Ala Val
Val Thr Gln Glu Ser Ala Leu Thr Thr Ser Pro Gly Glu 1 5
10 15 Thr Val Thr Leu Thr Cys Arg Ser
Ser Thr Gly Ala Val Thr Thr Ser 20 25
30 Asn Tyr Ala Asn Trp Val Gln Glu Lys Pro Asp His Leu
Phe Thr Gly 35 40 45
Leu Ile Gly Gly Thr Asn Lys Arg Ala Pro Gly Val Pro Ala Arg Phe 50
55 60 Ser Gly Ser Leu
Ile Gly Asp Lys Ala Ala Leu Thr Ile Thr Gly Ala 65 70
75 80 Gln Thr Glu Asp Glu Ala Ile Tyr Phe
Cys Ala Leu Trp Tyr Ser Asn 85 90
95 Leu Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
Gly Gly 100 105 110
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Val Lys Leu
115 120 125 Leu Glu Ser Gly
Gly Gly Leu Val Gln Pro Lys Gly Ser Leu Lys Leu 130
135 140 Ser Cys Ala Ala Ser Gly Phe Thr
Phe Asn Thr Tyr Ala Met Asn Trp 145 150
155 160 Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
Ala Arg Ile Arg 165 170
175 Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp Ser Val Lys Asp
180 185 190 Arg Phe Thr
Ile Ser Arg Asp Asp Ser Gln Ser Ile Leu Tyr Leu Gln 195
200 205 Met Asn Asn Leu Lys Thr Glu Asp
Thr Ala Met Tyr Tyr Cys Val Arg 210 215
220 His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe Ala
Tyr Trp Gly 225 230 235
240 Gln Gly Thr Leu Val Thr Val Ser Ala 245
13726DNAARTIFICIAL SEQUENCEVH-VL scFv single chain Fv 13caggtccagc
tgcagcagtc tggggctgaa ctggcaagac ctggggcctc agtgaagatg 60tcctgcaagg
cttctggcta cacctttact agatctacga tgcactgggt aaaacagagg 120cctggacagg
gtctggaatg gattggatac attaatccta gcagtgctta tactaattac 180aatcagaaat
tcaaggacaa ggccacattg actgcagaca aatcctccag tacagcctac 240atgcaactga
gtagcctgac atctgaggac tctgcagtct attactgtgc aagtccgcaa 300gtccactatg
attacaacgg gtttccttac tggggccaag ggactctggt cactgtctct 360gcaggtggtg
gtggttctgg cggcggcggc tccggtggtg gtggttctca agttgttctc 420acccagtctc
cagcaatcat gtctgcattt ccaggggaga aggtcaccat gacctgcagt 480gccagctcaa
gtgtaagtta catgaactgg taccagcaga agtcaggcac ctcccccaaa 540agatggattt
atgactcatc caaactggct tctggagtcc ctgctcgctt cagtggcagt 600gggtctggga
cctcttattc tctcacaatc agcagcatgg agactgaaga tgctgccact 660tattactgcc
agcagtggag tcgtaaccca cccacgttcg gaggggggac caagctacaa 720attaca
72614242PRTartificial sequenceVH-VL scFv single chain Fv 14Gln Val Gln
Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala 1 5
10 15 Ser Val Lys Met Ser Cys Lys Ala
Ser Gly Tyr Thr Phe Thr Arg Ser 20 25
30 Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu
Glu Trp Ile 35 40 45
Gly Tyr Ile Asn Pro Ser Ser Ala Tyr Thr Asn Tyr Asn Gln Lys Phe 50
55 60 Lys Asp Lys Ala
Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr 65 70
75 80 Met Gln Leu Ser Ser Leu Thr Ser Glu
Asp Ser Ala Val Tyr Tyr Cys 85 90
95 Ala Ser Pro Gln Val His Tyr Asp Tyr Asn Gly Phe Pro Tyr
Trp Gly 100 105 110
Gln Gly Thr Leu Val Thr Val Ser Ala Gly Gly Gly Gly Ser Gly Gly
115 120 125 Gly Gly Ser Gly
Gly Gly Gly Ser Gln Val Val Leu Thr Gln Ser Pro 130
135 140 Ala Ile Met Ser Ala Phe Pro Gly
Glu Lys Val Thr Met Thr Cys Ser 145 150
155 160 Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln
Gln Lys Ser Gly 165 170
175 Thr Ser Pro Lys Arg Trp Ile Tyr Asp Ser Ser Lys Leu Ala Ser Gly
180 185 190 Val Pro Ala
Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu 195
200 205 Thr Ile Ser Ser Met Glu Thr Glu
Asp Ala Ala Thr Tyr Tyr Cys Gln 210 215
220 Gln Trp Ser Arg Asn Pro Pro Thr Phe Gly Gly Gly Thr
Lys Leu Gln 225 230 235
240 Ile Thr 15726DNAARTIFICIAL SEQUENCEVL-VH scFv single chain Fv
15caagttgttc tcacccagtc tccagcaatc atgtctgcat ttccagggga gaaggtcacc
60atgacctgca gtgccagctc aagtgtaagt tacatgaact ggtaccagca gaagtcaggc
120acctccccca aaagatggat ttatgactca tccaaactgg cttctggagt ccctgctcgc
180ttcagtggca gtgggtctgg gacctcttat tctctcacaa tcagcagcat ggagactgaa
240gatgctgcca cttattactg ccagcagtgg agtcgtaacc cacccacgtt cggagggggg
300accaagctac aaattacagg tggtggtggt tctggcggcg gcggctccgg tggtggtggt
360tctcaggtcc agctgcagca gtctggggct gaactggcaa gacctggggc ctcagtgaag
420atgtcctgca aggcttctgg ctacaccttt actagatcta cgatgcactg ggtaaaacag
480aggcctggac agggtctgga atggattgga tacattaatc ctagcagtgc ttatactaat
540tacaatcaga aattcaagga caaggccaca ttgactgcag acaaatcctc cagtacagcc
600tacatgcaac tgagtagcct gacatctgag gactctgcag tctattactg tgcaagtccg
660caagtccact atgattacaa cgggtttcct tactggggcc aagggactct ggtcactgtc
720tctgca
72616242PRTartificial sequenceVL-VH scFv single chain Fv 16Gln Val Val
Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Phe Pro Gly 1 5
10 15 Glu Lys Val Thr Met Thr Cys Ser
Ala Ser Ser Ser Val Ser Tyr Met 20 25
30 Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg
Trp Ile Tyr 35 40 45
Asp Ser Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser 50
55 60 Gly Ser Gly Thr
Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Thr Glu 65 70
75 80 Asp Ala Ala Thr Tyr Tyr Cys Gln Gln
Trp Ser Arg Asn Pro Pro Thr 85 90
95 Phe Gly Gly Gly Thr Lys Leu Gln Ile Thr Gly Gly Gly Gly
Ser Gly 100 105 110
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val Gln Leu Gln Gln Ser
115 120 125 Gly Ala Glu Leu
Ala Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys 130
135 140 Ala Ser Gly Tyr Thr Phe Thr Arg
Ser Thr Met His Trp Val Lys Gln 145 150
155 160 Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile
Asn Pro Ser Ser 165 170
175 Ala Tyr Thr Asn Tyr Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr
180 185 190 Ala Asp Lys
Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr 195
200 205 Ser Glu Asp Ser Ala Val Tyr Tyr
Cys Ala Ser Pro Gln Val His Tyr 210 215
220 Asp Tyr Asn Gly Phe Pro Tyr Trp Gly Gln Gly Thr Leu
Val Thr Val 225 230 235
240 Ser Ala 1747DNAARTIFICIAL SEQUENCE5' LH oligonucleotide 17acatccggag
gtggtggatc ccaggctgtt gtgactcagg aatctgc
471851DNAartificial sequence3' VL Linker oligonucleotide 18ggagccgccg
ccgccagaac caccaccacc taggacagtc agtttggttc c
511970DNAartificial sequence5' VH Linker oligonucleotide 19tctggcggcg
gcggctccgg tggtggtggt tctgaggtga agcttctcga gtctggagga 60ggattggtgc
702056DNAartificial sequence3' LH oligonucleotide 20agtgggtcga cctaatgatg
atggtgatga tgtgcagaga cagtgaccag agtccc 562158DNAartificial
sequence5' HL oligonucleotide 21acatccggag gtggtggatc cgaggtgaag
cttctcgagt ctggaggagg attggtgc 582254DNAartificial sequence3' VH
Linker oligonucleotide 22ggagccgccg ccgccagaac caccaccacc tgcagagaca
gtgaccagag tccc 542359DNAartificial sequence5' VL Linker
oligonucleotide 23tctggcggcg gcggctccgg tggtggtggt tctcaggctg ttgtgactca
ggaatctgc 592456DNAartificial sequence3' HL oligonucleotide
24agtgggtcga cctaatgatg atggtgatga tgtaggacag tcagtttggt tcctcc
562544DNAartificial sequence5' LH oligonucleotide 25acatccggag gtggtggatc
ccaagttgtt ctcacccagt ctcc 442653DNAartificial
sequence3' VL Linker oligonucleotide 26ggagccgccg ccgccagaac caccaccacc
tgtaatttgt agcttggtcc ccc 532756DNAartificial sequence5' VH
Linker oligonucleotide 27tctggcggcg gcggctccgg tggtggtggt tctcaggtcc
agctgcagca gtctgg 562855DNAartificial sequence3' LH
oligonucleotide 28agtgggtcga cctaatgatg atggtgatga tgtgcagaga cagtgaccag
agtcc 552944DNAartificial sequence5' HL oligonucleotide
29acatccggag gtggtggatc ccaggtccag ctgcagcagt ctgg
443053DNAartificial sequence3' VH Linker oligonucleotide 30ggagccgccg
ccgccagaac caccaccacc tgcagagaca gtgaccagag tcc
533156DNAartificial sequence5' VL Linker oligonucleotide 31tctggcggcg
gcggctccgg tggtggtggt tctcaagttg ttctcaccca gtctcc
563255DNAartificial sequence3' HL oligonucleotide 32agtgggtcga cctaatgatg
atggtgatga tgtgtaattt gtagcttggt ccccc 5533744DNAartificial
sequence5-10 LH scFv single chain Fv 33gagctcgtga tgacacagtc tccatcctcc
ctgactgtga cagcaggaga gaaggtcact 60atgagctgca agtccagtca gagtctgtta
aacagtggaa atcaaaagaa ctacttgacc 120tggtaccagc agaaaccagg gcagcctcct
aaactgttga tctactgggc atccactagg 180gaatctgggg tccctgatcg cttcacaggc
agtggatctg gaacagattt cactctcacc 240atcagcagtg tgcaggctga agacctggca
gtttattact gtcagaatga ttatagttat 300ccgctcacgt tcggtgctgg gaccaagctt
gagatcaaag gtggtggtgg ttctggcggc 360ggcggctccg gtggtggtgg ttctgaggtg
cagctgctcg agcagtctgg agctgagctg 420gtaaggcctg ggacttcagt gaagatatcc
tgcaaggctt ctggatacgc cttcactaac 480tactggctag gttgggtaaa gcagaggcct
ggacatggac ttgagtggat tggagatatt 540ttccctggaa gtggtaatat ccactacaat
gagaagttca agggcaaagc cacactgact 600gcagacaaat cttcgagcac agcctatatg
cagctcagta gcctgacatt tgaggactct 660gctgtctatt tctgtgcaag actgaggaac
tgggacgagc ctatggacta ctggggccaa 720gggaccacgg tcaccgtctc ctcc
74434248PRTartificial sequence5-10 LH
scFv single chain Fv 34Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr
Val Thr Ala Gly 1 5 10
15 Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
20 25 30 Gly Asn Gln
Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly Gln 35
40 45 Pro Pro Lys Leu Leu Ile Tyr Trp
Ala Ser Thr Arg Glu Ser Gly Val 50 55
60 Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe
Thr Leu Thr 65 70 75
80 Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Asn
85 90 95 Asp Tyr Ser Tyr
Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile 100
105 110 Lys Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gly Gly Gly Gly Ser 115 120
125 Glu Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg
Pro Gly 130 135 140
Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn 145
150 155 160 Tyr Trp Leu Gly Trp
Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp 165
170 175 Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn
Ile His Tyr Asn Glu Lys 180 185
190 Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr
Ala 195 200 205 Tyr
Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val Tyr Phe 210
215 220 Cys Ala Arg Leu Arg Asn
Trp Asp Glu Pro Met Asp Tyr Trp Gly Gln 225 230
235 240 Gly Thr Thr Val Thr Val Ser Ser
245 3557DNAMUS MUSCULUSmisc_feature(1)..(57)leader
peptide 35atgggatgga gctgtatcat cctcttcttg gtagcaacag ctacaggtgt acactcc
573619PRTmus musculusmisc_feature(1)..(19)leader peptide 36Met Gly
Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5
10 15 Val His Ser
371506DNAARTIFICIAL SEQUENCE5-10 LHxSEQ ID NO 12 ; Bispecific single
chain antibody 37gagctcgtga tgacacagtc tccatcctcc ctgactgtga
cagcaggaga gaaggtcact 60atgagctgca agtccagtca gagtctgtta aacagtggaa
atcaaaagaa ctacttgacc 120tggtaccagc agaaaccagg gcagcctcct aaactgttga
tctactgggc atccactagg 180gaatctgggg tccctgatcg cttcacaggc agtggatctg
gaacagattt cactctcacc 240atcagcagtg tgcaggctga agacctggca gtttattact
gtcagaatga ttatagttat 300ccgctcacgt tcggtgctgg gaccaagctt gagatcaaag
gtggtggtgg ttctggcggc 360ggcggctccg gtggtggtgg ttctgaggtg cagctgctcg
agcagtctgg agctgagctg 420gtaaggcctg ggacttcagt gaagatatcc tgcaaggctt
ctggatacgc cttcactaac 480tactggctag gttgggtaaa gcagaggcct ggacatggac
ttgagtggat tggagatatt 540ttccctggaa gtggtaatat ccactacaat gagaagttca
agggcaaagc cacactgact 600gcagacaaat cttcgagcac agcctatatg cagctcagta
gcctgacatt tgaggactct 660gctgtctatt tctgtgcaag actgaggaac tgggacgagc
ctatggacta ctggggccaa 720gggaccacgg tcaccgtctc ctccggaggt ggtggatccc
aggctgttgt gactcaggaa 780tctgcactca ccacatcacc tggtgaaaca gtcacactca
cttgtcgctc aagtactggg 840gctgttacaa ctagtaacta tgccaactgg gtccaagaaa
aaccagatca tttattcact 900ggtctaatag gtggtaccaa caagcgagct ccaggtgtgc
ctgccagatt ctcaggctcc 960ctgattggag acaaggctgc cctcaccatc acaggggcac
agactgagga tgaggcaata 1020tatttctgtg ctctatggta cagcaacctc tgggtgttcg
gtggaggaac caaactgact 1080gtcctaggtg gtggtggttc tggcggcggc ggctccggtg
gtggtggttc tgaggtgaag 1140cttctcgagt ctggaggagg attggtgcag cctaaagggt
cattgaaact ctcatgtgca 1200gcctctggat tcaccttcaa tacctacgcc atgaactggg
tccgccaggc tccaggaaag 1260ggtttggaat gggttgctcg cataagaagt aaatataata
attatgcaac atattatgcc 1320gattcagtga aagacaggtt caccatctcc agagatgatt
cacaaagcat tctctatcta 1380caaatgaaca acttgaaaac tgaggacaca gccatgtact
actgtgtgag acatgggaac 1440ttcggtaata gctacgtttc ctggtttgct tactggggcc
aagggactct ggtcactgtc 1500tctgca
150638502PRTartificial sequence5-10 LHxSEQ ID NO 12
; Bispecific single chain antibody 38Glu Leu Val Met Thr Gln Ser Pro
Ser Ser Leu Thr Val Thr Ala Gly 1 5 10
15 Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu
Leu Asn Ser 20 25 30
Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45 Pro Pro Lys Leu
Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50
55 60 Pro Asp Arg Phe Thr Gly Ser Gly
Ser Gly Thr Asp Phe Thr Leu Thr 65 70
75 80 Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr
Tyr Cys Gln Asn 85 90
95 Asp Tyr Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile
100 105 110 Lys Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 115
120 125 Glu Val Gln Leu Leu Glu Gln Ser
Gly Ala Glu Leu Val Arg Pro Gly 130 135
140 Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala
Phe Thr Asn 145 150 155
160 Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp
165 170 175 Ile Gly Asp Ile
Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys 180
185 190 Phe Lys Gly Lys Ala Thr Leu Thr Ala
Asp Lys Ser Ser Ser Thr Ala 195 200
205 Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val
Tyr Phe 210 215 220
Cys Ala Arg Leu Arg Asn Trp Asp Glu Pro Met Asp Tyr Trp Gly Gln 225
230 235 240 Gly Thr Thr Val Thr
Val Ser Ser Gly Gly Gly Gly Ser Gln Ala Val 245
250 255 Val Thr Gln Glu Ser Ala Leu Thr Thr Ser
Pro Gly Glu Thr Val Thr 260 265
270 Leu Thr Cys Arg Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr
Ala 275 280 285 Asn
Trp Val Gln Glu Lys Pro Asp His Leu Phe Thr Gly Leu Ile Gly 290
295 300 Gly Thr Asn Lys Arg Ala
Pro Gly Val Pro Ala Arg Phe Ser Gly Ser 305 310
315 320 Leu Ile Gly Asp Lys Ala Ala Leu Thr Ile Thr
Gly Ala Gln Thr Glu 325 330
335 Asp Glu Ala Ile Tyr Phe Cys Ala Leu Trp Tyr Ser Asn Leu Trp Val
340 345 350 Phe Gly
Gly Gly Thr Lys Leu Thr Val Leu Gly Gly Gly Gly Ser Gly 355
360 365 Gly Gly Gly Ser Gly Gly Gly
Gly Ser Glu Val Lys Leu Leu Glu Ser 370 375
380 Gly Gly Gly Leu Val Gln Pro Lys Gly Ser Leu Lys
Leu Ser Cys Ala 385 390 395
400 Ala Ser Gly Phe Thr Phe Asn Thr Tyr Ala Met Asn Trp Val Arg Gln
405 410 415 Ala Pro Gly
Lys Gly Leu Glu Trp Val Ala Arg Ile Arg Ser Lys Tyr 420
425 430 Asn Asn Tyr Ala Thr Tyr Tyr Ala
Asp Ser Val Lys Asp Arg Phe Thr 435 440
445 Ile Ser Arg Asp Asp Ser Gln Ser Ile Leu Tyr Leu Gln
Met Asn Asn 450 455 460
Leu Lys Thr Glu Asp Thr Ala Met Tyr Tyr Cys Val Arg His Gly Asn 465
470 475 480 Phe Gly Asn Ser
Tyr Val Ser Trp Phe Ala Tyr Trp Gly Gln Gly Thr 485
490 495 Leu Val Thr Val Ser Ala
500 391506DNAARTIFICIAL SEQUENCE5-10 LHx SEQ ID NO 10 ;
bispecific single chain antibdoy 39gagctcgtga tgacacagtc tccatcctcc
ctgactgtga cagcaggaga gaaggtcact 60atgagctgca agtccagtca gagtctgtta
aacagtggaa atcaaaagaa ctacttgacc 120tggtaccagc agaaaccagg gcagcctcct
aaactgttga tctactgggc atccactagg 180gaatctgggg tccctgatcg cttcacaggc
agtggatctg gaacagattt cactctcacc 240atcagcagtg tgcaggctga agacctggca
gtttattact gtcagaatga ttatagttat 300ccgctcacgt tcggtgctgg gaccaagctt
gagatcaaag gtggtggtgg ttctggcggc 360ggcggctccg gtggtggtgg ttctgaggtg
cagctgctcg agcagtctgg agctgagctg 420gtaaggcctg ggacttcagt gaagatatcc
tgcaaggctt ctggatacgc cttcactaac 480tactggctag gttgggtaaa gcagaggcct
ggacatggac ttgagtggat tggagatatt 540ttccctggaa gtggtaatat ccactacaat
gagaagttca agggcaaagc cacactgact 600gcagacaaat cttcgagcac agcctatatg
cagctcagta gcctgacatt tgaggactct 660gctgtctatt tctgtgcaag actgaggaac
tgggacgagc ctatggacta ctggggccaa 720gggaccacgg tcaccgtctc ctccggaggt
ggtggatccg aggtgaagct tctcgagtct 780ggaggaggat tggtgcagcc taaagggtca
ttgaaactct catgtgcagc ctctggattc 840accttcaata cctacgccat gaactgggtc
cgccaggctc caggaaaggg tttggaatgg 900gttgctcgca taagaagtaa atataataat
tatgcaacat attatgccga ttcagtgaaa 960gacaggttca ccatctccag agatgattca
caaagcattc tctatctaca aatgaacaac 1020ttgaaaactg aggacacagc catgtactac
tgtgtgagac atgggaactt cggtaatagc 1080tacgtttcct ggtttgctta ctggggccaa
gggactctgg tcactgtctc tgcaggtggt 1140ggtggttctg gcggcggcgg ctccggtggt
ggtggttctc aggctgttgt gactcaggaa 1200tctgcactca ccacatcacc tggtgaaaca
gtcacactca cttgtcgctc aagtactggg 1260gctgttacaa ctagtaacta tgccaactgg
gtccaagaaa aaccagatca tttattcact 1320ggtctaatag gtggtaccaa caagcgagct
ccaggtgtgc ctgccagatt ctcaggctcc 1380ctgattggag acaaggctgc cctcaccatc
acaggggcac agactgagga tgaggcaata 1440tatttctgtg ctctatggta cagcaacctc
tgggtgttcg gtggaggaac caaactgact 1500gtccta
150640502PRTartificial sequence5-10 LHx
SEQ ID NO 10 ; bispecific single chain antibody 40Glu Leu Val Met
Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala Gly 1 5
10 15 Glu Lys Val Thr Met Ser Cys Lys Ser
Ser Gln Ser Leu Leu Asn Ser 20 25
30 Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro
Gly Gln 35 40 45
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50
55 60 Pro Asp Arg Phe Thr
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70
75 80 Ile Ser Ser Val Gln Ala Glu Asp Leu Ala
Val Tyr Tyr Cys Gln Asn 85 90
95 Asp Tyr Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
Ile 100 105 110 Lys
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 115
120 125 Glu Val Gln Leu Leu Glu
Gln Ser Gly Ala Glu Leu Val Arg Pro Gly 130 135
140 Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly
Tyr Ala Phe Thr Asn 145 150 155
160 Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp
165 170 175 Ile Gly
Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys 180
185 190 Phe Lys Gly Lys Ala Thr Leu
Thr Ala Asp Lys Ser Ser Ser Thr Ala 195 200
205 Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser
Ala Val Tyr Phe 210 215 220
Cys Ala Arg Leu Arg Asn Trp Asp Glu Pro Met Asp Tyr Trp Gly Gln 225
230 235 240 Gly Thr Thr
Val Thr Val Ser Ser Gly Gly Gly Gly Ser Glu Val Lys 245
250 255 Leu Leu Glu Ser Gly Gly Gly Leu
Val Gln Pro Lys Gly Ser Leu Lys 260 265
270 Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn Thr Tyr
Ala Met Asn 275 280 285
Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Arg Ile 290
295 300 Arg Ser Lys Tyr
Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp Ser Val Lys 305 310
315 320 Asp Arg Phe Thr Ile Ser Arg Asp Asp
Ser Gln Ser Ile Leu Tyr Leu 325 330
335 Gln Met Asn Asn Leu Lys Thr Glu Asp Thr Ala Met Tyr Tyr
Cys Val 340 345 350
Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe Ala Tyr Trp
355 360 365 Gly Gln Gly Thr
Leu Val Thr Val Ser Ala Gly Gly Gly Gly Ser Gly 370
375 380 Gly Gly Gly Ser Gly Gly Gly Gly
Ser Gln Ala Val Val Thr Gln Glu 385 390
395 400 Ser Ala Leu Thr Thr Ser Pro Gly Glu Thr Val Thr
Leu Thr Cys Arg 405 410
415 Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn Trp Val Gln
420 425 430 Glu Lys Pro
Asp His Leu Phe Thr Gly Leu Ile Gly Gly Thr Asn Lys 435
440 445 Arg Ala Pro Gly Val Pro Ala Arg
Phe Ser Gly Ser Leu Ile Gly Asp 450 455
460 Lys Ala Ala Leu Thr Ile Thr Gly Ala Gln Thr Glu Asp
Glu Ala Ile 465 470 475
480 Tyr Phe Cys Ala Leu Trp Tyr Ser Asn Leu Trp Val Phe Gly Gly Gly
485 490 495 Thr Lys Leu Thr
Val Leu 500 411485DNAARTIFICIAL SEQUENCE5-10 LHx SEQ
ID NO 16 ; bispecific single chain antibody 41gagctcgtga tgacacagtc
tccatcctcc ctgactgtga cagcaggaga gaaggtcact 60atgagctgca agtccagtca
gagtctgtta aacagtggaa atcaaaagaa ctacttgacc 120tggtaccagc agaaaccagg
gcagcctcct aaactgttga tctactgggc atccactagg 180gaatctgggg tccctgatcg
cttcacaggc agtggatctg gaacagattt cactctcacc 240atcagcagtg tgcaggctga
agacctggca gtttattact gtcagaatga ttatagttat 300ccgctcacgt tcggtgctgg
gaccaagctt gagatcaaag gtggtggtgg ttctggcggc 360ggcggctccg gtggtggtgg
ttctgaggtg cagctgctcg agcagtctgg agctgagctg 420gtaaggcctg ggacttcagt
gaagatatcc tgcaaggctt ctggatacgc cttcactaac 480tactggctag gttgggtaaa
gcagaggcct ggacatggac ttgagtggat tggagatatt 540ttccctggaa gtggtaatat
ccactacaat gagaagttca agggcaaagc cacactgact 600gcagacaaat cttcgagcac
agcctatatg cagctcagta gcctgacatt tgaggactct 660gctgtctatt tctgtgcaag
actgaggaac tgggacgagc ctatggacta ctggggccaa 720gggaccacgg tcaccgtctc
ctccggaggt ggtggatccc aagttgttct cacccagtct 780ccagcaatca tgtctgcatt
tccaggggag aaggtcacca tgacctgcag tgccagctca 840agtgtaagtt acatgaactg
gtaccagcag aagtcaggca cctcccccaa aagatggatt 900tatgactcat ccaaactggc
ttctggagtc cctgctcgct tcagtggcag tgggtctggg 960acctcttatt ctctcacaat
cagcagcatg gagactgaag atgctgccac ttattactgc 1020cagcagtgga gtcgtaaccc
acccacgttc ggagggggga ccaagctaca aattacaggt 1080ggtggtggtt ctggcggcgg
cggctccggt ggtggtggtt ctcaggtcca gctgcagcag 1140tctggggctg aactggcaag
acctggggcc tcagtgaaga tgtcctgcaa ggcttctggc 1200tacaccttta ctagatctac
gatgcactgg gtaaaacaga ggcctggaca gggtctggaa 1260tggattggat acattaatcc
tagcagtgct tatactaatt acaatcagaa attcaaggac 1320aaggccacat tgactgcaga
caaatcctcc agtacagcct acatgcaact gagtagcctg 1380acatctgagg actctgcagt
ctattactgt gcaagtccgc aagtccacta tgattacaac 1440gggtttcctt actggggcca
agggactctg gtcactgtct ctgca 148542495PRTartificial
sequence5-10 LHxSEQ ID NO 16 ; bispecific single chain antibody
42Glu Leu Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala Gly 1
5 10 15 Glu Lys Val Thr
Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser 20
25 30 Gly Asn Gln Lys Asn Tyr Leu Thr Trp
Tyr Gln Gln Lys Pro Gly Gln 35 40
45 Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser
Gly Val 50 55 60
Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65
70 75 80 Ile Ser Ser Val Gln
Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Asn 85
90 95 Asp Tyr Ser Tyr Pro Leu Thr Phe Gly Ala
Gly Thr Lys Leu Glu Ile 100 105
110 Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
Ser 115 120 125 Glu
Val Gln Leu Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro Gly 130
135 140 Thr Ser Val Lys Ile Ser
Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn 145 150
155 160 Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly
His Gly Leu Glu Trp 165 170
175 Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys
180 185 190 Phe Lys
Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala 195
200 205 Tyr Met Gln Leu Ser Ser Leu
Thr Phe Glu Asp Ser Ala Val Tyr Phe 210 215
220 Cys Ala Arg Leu Arg Asn Trp Asp Glu Pro Met Asp
Tyr Trp Gly Gln 225 230 235
240 Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gln Val Val
245 250 255 Leu Thr Gln
Ser Pro Ala Ile Met Ser Ala Phe Pro Gly Glu Lys Val 260
265 270 Thr Met Thr Cys Ser Ala Ser Ser
Ser Val Ser Tyr Met Asn Trp Tyr 275 280
285 Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr
Asp Ser Ser 290 295 300
Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly 305
310 315 320 Thr Ser Tyr Ser
Leu Thr Ile Ser Ser Met Glu Thr Glu Asp Ala Ala 325
330 335 Thr Tyr Tyr Cys Gln Gln Trp Ser Arg
Asn Pro Pro Thr Phe Gly Gly 340 345
350 Gly Thr Lys Leu Gln Ile Thr Gly Gly Gly Gly Ser Gly Gly
Gly Gly 355 360 365
Ser Gly Gly Gly Gly Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu 370
375 380 Leu Ala Arg Pro Gly
Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly 385 390
395 400 Tyr Thr Phe Thr Arg Ser Thr Met His Trp
Val Lys Gln Arg Pro Gly 405 410
415 Gln Gly Leu Glu Trp Ile Gly Tyr Ile Asn Pro Ser Ser Ala Tyr
Thr 420 425 430 Asn
Tyr Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys 435
440 445 Ser Ser Ser Thr Ala Tyr
Met Gln Leu Ser Ser Leu Thr Ser Glu Asp 450 455
460 Ser Ala Val Tyr Tyr Cys Ala Ser Pro Gln Val
His Tyr Asp Tyr Asn 465 470 475
480 Gly Phe Pro Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala
485 490 495
431485DNAARTIFICIAL SEQUENCE5-10 LHxSEQ ID NO 14 ; bispecific single
chain antibody 43gagctcgtga tgacacagtc tccatcctcc ctgactgtga
cagcaggaga gaaggtcact 60atgagctgca agtccagtca gagtctgtta aacagtggaa
atcaaaagaa ctacttgacc 120tggtaccagc agaaaccagg gcagcctcct aaactgttga
tctactgggc atccactagg 180gaatctgggg tccctgatcg cttcacaggc agtggatctg
gaacagattt cactctcacc 240atcagcagtg tgcaggctga agacctggca gtttattact
gtcagaatga ttatagttat 300ccgctcacgt tcggtgctgg gaccaagctt gagatcaaag
gtggtggtgg ttctggcggc 360ggcggctccg gtggtggtgg ttctgaggtg cagctgctcg
agcagtctgg agctgagctg 420gtaaggcctg ggacttcagt gaagatatcc tgcaaggctt
ctggatacgc cttcactaac 480tactggctag gttgggtaaa gcagaggcct ggacatggac
ttgagtggat tggagatatt 540ttccctggaa gtggtaatat ccactacaat gagaagttca
agggcaaagc cacactgact 600gcagacaaat cttcgagcac agcctatatg cagctcagta
gcctgacatt tgaggactct 660gctgtctatt tctgtgcaag actgaggaac tgggacgagc
ctatggacta ctggggccaa 720gggaccacgg tcaccgtctc ctccggaggt ggtggatccc
aggtccagct gcagcagtct 780ggggctgaac tggcaagacc tggggcctca gtgaagatgt
cctgcaaggc ttctggctac 840acctttacta gatctacgat gcactgggta aaacagaggc
ctggacaggg tctggaatgg 900attggataca ttaatcctag cagtgcttat actaattaca
atcagaaatt caaggacaag 960gccacattga ctgcagacaa atcctccagt acagcctaca
tgcaactgag tagcctgaca 1020tctgaggact ctgcagtcta ttactgtgca agtccgcaag
tccactatga ttacaacggg 1080tttccttact ggggccaagg gactctggtc actgtctctg
caggtggtgg tggttctggc 1140ggcggcggct ccggtggtgg tggttctcaa gttgttctca
cccagtctcc agcaatcatg 1200tctgcatttc caggggagaa ggtcaccatg acctgcagtg
ccagctcaag tgtaagttac 1260atgaactggt accagcagaa gtcaggcacc tcccccaaaa
gatggattta tgactcatcc 1320aaactggctt ctggagtccc tgctcgcttc agtggcagtg
ggtctgggac ctcttattct 1380ctcacaatca gcagcatgga gactgaagat gctgccactt
attactgcca gcagtggagt 1440cgtaacccac ccacgttcgg aggggggacc aagctacaaa
ttaca 148544495PRTartificial sequence5-10 LHxSEQ ID NO
14 ; bispecific single chain antibody 44Glu Leu Val Met Thr Gln Ser
Pro Ser Ser Leu Thr Val Thr Ala Gly 1 5
10 15 Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln
Ser Leu Leu Asn Ser 20 25
30 Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly
Gln 35 40 45 Pro
Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50
55 60 Pro Asp Arg Phe Thr Gly
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70
75 80 Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val
Tyr Tyr Cys Gln Asn 85 90
95 Asp Tyr Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile
100 105 110 Lys Gly
Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 115
120 125 Glu Val Gln Leu Leu Glu Gln
Ser Gly Ala Glu Leu Val Arg Pro Gly 130 135
140 Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr
Ala Phe Thr Asn 145 150 155
160 Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp
165 170 175 Ile Gly Asp
Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys 180
185 190 Phe Lys Gly Lys Ala Thr Leu Thr
Ala Asp Lys Ser Ser Ser Thr Ala 195 200
205 Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala
Val Tyr Phe 210 215 220
Cys Ala Arg Leu Arg Asn Trp Asp Glu Pro Met Asp Tyr Trp Gly Gln 225
230 235 240 Gly Thr Thr Val
Thr Val Ser Ser Gly Gly Gly Gly Ser Gln Val Gln 245
250 255 Leu Gln Gln Ser Gly Ala Glu Leu Ala
Arg Pro Gly Ala Ser Val Lys 260 265
270 Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Ser Thr
Met His 275 280 285
Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile 290
295 300 Asn Pro Ser Ser Ala
Tyr Thr Asn Tyr Asn Gln Lys Phe Lys Asp Lys 305 310
315 320 Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser
Thr Ala Tyr Met Gln Leu 325 330
335 Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Ser
Pro 340 345 350 Gln
Val His Tyr Asp Tyr Asn Gly Phe Pro Tyr Trp Gly Gln Gly Thr 355
360 365 Leu Val Thr Val Ser Ala
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 370 375
380 Gly Gly Gly Gly Ser Gln Val Val Leu Thr Gln
Ser Pro Ala Ile Met 385 390 395
400 Ser Ala Phe Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser
405 410 415 Ser Val
Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro 420
425 430 Lys Arg Trp Ile Tyr Asp Ser
Ser Lys Leu Ala Ser Gly Val Pro Ala 435 440
445 Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser
Leu Thr Ile Ser 450 455 460
Ser Met Glu Thr Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser 465
470 475 480 Arg Asn Pro
Pro Thr Phe Gly Gly Gly Thr Lys Leu Gln Ile Thr 485
490 495 4543DNAARTIFICIAL SEQUENCE5' EpCAM
oligonucleotide 45ggttctagac caccatggcg cccccgcagg tcctcgcgtt cgg
434642DNAartificial sequence3' EpCAM oligonucleotide
46agtgggtcga cttatgcatt gagttcccta tgcatctcac cc
4247726DNACynomolgusmisc_feature(1)..(726)cynomolgus EpCAM extracellular
portion 47cagaaagaat gtgtctgtga aaactacaag ctggccgtaa actgcttttt
gaatgacaat 60ggtcaatgcc agtgtacttc gattggtgca caaaatactg tcctttgctc
aaagctggct 120gccaaatgtt tggtgatgaa ggcagaaatg aacggctcaa aacttgggag
aagagcgaaa 180cctgaagggg ctctccagaa caatgatggc ctttacgatc ctgactgcga
tgagagcggg 240ctctttaagg ccaagcagtg caacggcacc tccacgtgct ggtgtgtgaa
cactgctggg 300gtcagaagaa ctgacaagga cactgaaata acctgctctg agcgagtgag
aacctactgg 360atcatcattg aattaaaaca caaagcaaga gaaaaacctt atgatgttca
aagtttgcgg 420actgcacttg aggaggcgat caaaacgcgt tatcaactgg atccaaaatt
tatcacaaat 480attttgtatg aggataatgt tatcactatt gatctggttc aaaattcttc
tcagaaaact 540cagaatgatg tggacatagc tgatgtggct tattattttg aaaaagatgt
taaaggtgaa 600tccttgtttc attctaagaa aatggacctg agagtaaatg gggaacaact
ggatctggat 660cctggtcaaa ctttaattta ttatgtcgat gaaaaagcac ctgaattctc
aatgcagggt 720ctaaaa
72648242PRTCynomolgusmisc_feature(1)..(242)cynomolgus EpCAM
extracellular portion 48Gln Lys Glu Cys Val Cys Glu Asn Tyr Lys Leu Ala
Val Asn Cys Phe 1 5 10
15 Leu Asn Asp Asn Gly Gln Cys Gln Cys Thr Ser Ile Gly Ala Gln Asn
20 25 30 Thr Val Leu
Cys Ser Lys Leu Ala Ala Lys Cys Leu Val Met Lys Ala 35
40 45 Glu Met Asn Gly Ser Lys Leu Gly
Arg Arg Ala Lys Pro Glu Gly Ala 50 55
60 Leu Gln Asn Asn Asp Gly Leu Tyr Asp Pro Asp Cys Asp
Glu Ser Gly 65 70 75
80 Leu Phe Lys Ala Lys Gln Cys Asn Gly Thr Ser Thr Cys Trp Cys Val
85 90 95 Asn Thr Ala Gly
Val Arg Arg Thr Asp Lys Asp Thr Glu Ile Thr Cys 100
105 110 Ser Glu Arg Val Arg Thr Tyr Trp Ile
Ile Ile Glu Leu Lys His Lys 115 120
125 Ala Arg Glu Lys Pro Tyr Asp Val Gln Ser Leu Arg Thr Ala
Leu Glu 130 135 140
Glu Ala Ile Lys Thr Arg Tyr Gln Leu Asp Pro Lys Phe Ile Thr Asn 145
150 155 160 Ile Leu Tyr Glu Asp
Asn Val Ile Thr Ile Asp Leu Val Gln Asn Ser 165
170 175 Ser Gln Lys Thr Gln Asn Asp Val Asp Ile
Ala Asp Val Ala Tyr Tyr 180 185
190 Phe Glu Lys Asp Val Lys Gly Glu Ser Leu Phe His Ser Lys Lys
Met 195 200 205 Asp
Leu Arg Val Asn Gly Glu Gln Leu Asp Leu Asp Pro Gly Gln Thr 210
215 220 Leu Ile Tyr Tyr Val Asp
Glu Lys Ala Pro Glu Phe Ser Met Gln Gly 225 230
235 240 Leu Lys
49366DNAHYBRIDOMAmisc_feature(1)..(366)2G8 VH VH region of monoclonal
antibody 2G8 49gaggttcagc tgcagcagtc tggggcagag cttgtgaggt caggggcctc
agtcaagttg 60tcctgcacag cttctggctt caacattaaa gactactatt tgcactgggt
gaagcagagg 120cctgaacagg gcctggagtg gattgcctgg attgatcttg agaatggtga
tattaaatat 180gccccgaagt ttcagggcaa ggccactata actgcagaca catcctccaa
cacagcctac 240ctgcagctca gcagcctgac atctgaggac actgccgtct attactgtaa
tccctattac 300tacggtagta actacgacta tgctatggac tactggggtc aaggaacctc
agtcaccgtc 360tcctca
36650122PRThybridomamisc_feature(1)..(122)2G8 VH VH region of
monoclonal antibody 2G8 50Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val
Arg Ser Gly Ala 1 5 10
15 Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Tyr
20 25 30 Tyr Leu His
Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile 35
40 45 Ala Trp Ile Asp Leu Glu Asn Gly
Asp Ile Lys Tyr Ala Pro Lys Phe 50 55
60 Gln Gly Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn
Thr Ala Tyr 65 70 75
80 Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 Asn Pro Tyr Tyr
Tyr Gly Ser Asn Tyr Asp Tyr Ala Met Asp Tyr Trp 100
105 110 Gly Gln Gly Thr Ser Val Thr Val Ser
Ser 115 120
51336DNAHYBRIDOMAmisc_feature(1)..(336)2G8 VL VL region of monoclonal
antibody 2G8 51gatgttgtga tgacccagac tccactcact ttgtcggtta ccattggaca
accagcctct 60atctcttgca agtcaagtca gagcctctta tatagtaatg gaaaaaccta
tttgaactgg 120atattacaga ggccaggcca gtctccaaag cgcctaatct atctggtgtc
taaactggac 180tctggagtcc ctgacaggtt cactggcagt ggatcaggaa cagattttac
gctgaaaatc 240agcagagtgg aggctgagga tttgggagtt tattactgcg tgcaaggtac
acattttcct 300ctcacgttcg gtgctgggac caagctggag ctgaaa
33652112PRThybridomamisc_feature(1)..(112)2G8 VL VL region of
monoclonal antibody 2G8 52Asp Val Val Met Thr Gln Thr Pro Leu Thr Leu Ser
Val Thr Ile Gly 1 5 10
15 Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser
20 25 30 Asn Gly Lys
Thr Tyr Leu Asn Trp Ile Leu Gln Arg Pro Gly Gln Ser 35
40 45 Pro Lys Arg Leu Ile Tyr Leu Val
Ser Lys Leu Asp Ser Gly Val Pro 50 55
60 Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr
Leu Lys Ile 65 70 75
80 Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Val Gln Gly
85 90 95 Thr His Phe Pro
Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys 100
105 110 53747DNAartificial sequence2G8VH-VL
scFv single chain Fv 53gaggttcagc tgcagcagtc tggggcagag cttgtgaggt
caggggcctc agtcaagttg 60tcctgcacag cttctggctt caacattaaa gactactatt
tgcactgggt gaagcagagg 120cctgaacagg gcctggagtg gattgcctgg attgatcttg
agaatggtga tattaaatat 180gccccgaagt ttcagggcaa ggccactata actgcagaca
catcctccaa cacagcctac 240ctgcagctca gcagcctgac atctgaggac actgccgtct
attactgtaa tccctattac 300tacggtagta actacgacta tgctatggac tactggggtc
aaggaacctc agtcaccgtc 360tcctcaggtg gtggtggttc tggcggcggc ggctccggtg
gtggtggttc tgatgttgtg 420atgacccaga ctccactcac tttgtcggtt accattggac
aaccagcctc tatctcttgc 480aagtcaagtc agagcctctt atatagtaat ggaaaaacct
atttgaactg gatattacag 540aggccaggcc agtctccaaa gcgcctaatc tatctggtgt
ctaaactgga ctctggagtc 600cctgacaggt tcactggcag tggatcagga acagatttta
cgctgaaaat cagcagagtg 660gaggctgagg atttgggagt ttattactgc gtgcaaggta
cacattttcc tctcacgttc 720ggtgctggga ccaagctgga gctgaaa
74754249PRTartificial sequence2G8VH-VL scFv single
chain Fv 54Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Ser Gly
Ala 1 5 10 15 Ser
Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Tyr
20 25 30 Tyr Leu His Trp Val
Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile 35
40 45 Ala Trp Ile Asp Leu Glu Asn Gly Asp
Ile Lys Tyr Ala Pro Lys Phe 50 55
60 Gln Gly Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn
Thr Ala Tyr 65 70 75
80 Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 Asn Pro Tyr Tyr
Tyr Gly Ser Asn Tyr Asp Tyr Ala Met Asp Tyr Trp 100
105 110 Gly Gln Gly Thr Ser Val Thr Val Ser
Ser Gly Gly Gly Gly Ser Gly 115 120
125 Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Val Val Met Thr
Gln Thr 130 135 140
Pro Leu Thr Leu Ser Val Thr Ile Gly Gln Pro Ala Ser Ile Ser Cys 145
150 155 160 Lys Ser Ser Gln Ser
Leu Leu Tyr Ser Asn Gly Lys Thr Tyr Leu Asn 165
170 175 Trp Ile Leu Gln Arg Pro Gly Gln Ser Pro
Lys Arg Leu Ile Tyr Leu 180 185
190 Val Ser Lys Leu Asp Ser Gly Val Pro Asp Arg Phe Thr Gly Ser
Gly 195 200 205 Ser
Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp 210
215 220 Leu Gly Val Tyr Tyr Cys
Val Gln Gly Thr His Phe Pro Leu Thr Phe 225 230
235 240 Gly Ala Gly Thr Lys Leu Glu Leu Lys
245 55747DNAARTIFICIAL SEQUENCE2G8VL-VH scFv single chain
Fv 55gatgttgtga tgacccagac tccactcact ttgtcggtta ccattggaca accagcctct
60atctcttgca agtcaagtca gagcctctta tatagtaatg gaaaaaccta tttgaactgg
120atattacaga ggccaggcca gtctccaaag cgcctaatct atctggtgtc taaactggac
180tctggagtcc ctgacaggtt cactggcagt ggatcaggaa cagattttac gctgaaaatc
240agcagagtgg aggctgagga tttgggagtt tattactgcg tgcaaggtac acattttcct
300ctcacgttcg gtgctgggac caagctggag ctgaaaggtg gtggtggttc tggcggcggc
360ggctccggtg gtggtggttc tgaggttcag ctgcagcagt ctggggcaga gcttgtgagg
420tcaggggcct cagtcaagtt gtcctgcaca gcttctggct tcaacattaa agactactat
480ttgcactggg tgaagcagag gcctgaacag ggcctggagt ggattgcctg gattgatctt
540gagaatggtg atattaaata tgccccgaag tttcagggca aggccactat aactgcagac
600acatcctcca acacagccta cctgcagctc agcagcctga catctgagga cactgccgtc
660tattactgta atccctatta ctacggtagt aactacgact atgctatgga ctactggggt
720caaggaacct cagtcaccgt ctcctcc
74756249PRTartificial sequence2G8VL-VH scFv single chain Fv 56Asp Val Val
Met Thr Gln Thr Pro Leu Thr Leu Ser Val Thr Ile Gly 1 5
10 15 Gln Pro Ala Ser Ile Ser Cys Lys
Ser Ser Gln Ser Leu Leu Tyr Ser 20 25
30 Asn Gly Lys Thr Tyr Leu Asn Trp Ile Leu Gln Arg Pro
Gly Gln Ser 35 40 45
Pro Lys Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp Ser Gly Val Pro 50
55 60 Asp Arg Phe Thr
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70
75 80 Ser Arg Val Glu Ala Glu Asp Leu Gly
Val Tyr Tyr Cys Val Gln Gly 85 90
95 Thr His Phe Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu
Leu Lys 100 105 110
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu
115 120 125 Val Gln Leu Gln
Gln Ser Gly Ala Glu Leu Val Arg Ser Gly Ala Ser 130
135 140 Val Lys Leu Ser Cys Thr Ala Ser
Gly Phe Asn Ile Lys Asp Tyr Tyr 145 150
155 160 Leu His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu
Glu Trp Ile Ala 165 170
175 Trp Ile Asp Leu Glu Asn Gly Asp Ile Lys Tyr Ala Pro Lys Phe Gln
180 185 190 Gly Lys Ala
Thr Ile Thr Ala Asp Thr Ser Ser Asn Thr Ala Tyr Leu 195
200 205 Gln Leu Ser Ser Leu Thr Ser Glu
Asp Thr Ala Val Tyr Tyr Cys Asn 210 215
220 Pro Tyr Tyr Tyr Gly Ser Asn Tyr Asp Tyr Ala Met Asp
Tyr Trp Gly 225 230 235
240 Gln Gly Thr Ser Val Thr Val Ser Ser 245
5749DNAARTIFICIAL SEQUENCE5'2G8 LH oligonucleotide 57aggtgtacac
tccgatgttg tgatgaccca gactccactc actttgtcg
495854DNAartificial sequence3'2G8 VL Linker oligonucleotide 58ggagccgccg
ccgccagaac caccaccacc tttcagctcc agcttggtcc cagc
545956DNAartificial sequence5'2G8 VH Linker oligonucleotide 59tctggcggcg
gcggctccgg tggtggtggt tctgaggttc agctgcagca gtctgg
566030DNAartificial sequence3'2G8 LH oligonucleotide 60acatccggag
gagacggtga ctgaggttcc
306137DNAartificial sequence5' 2G8 HL oligonucleotide 61aggtgtacac
tccgaggttc agctgcagca gtctggg
376254DNAartificial sequence3' 2G8 VH Linker oligonucleotide 62ggagccgccg
ccgccagaac caccaccacc tgaggagacg gtgactgagg ttcc
546369DNAartificial sequence5' 2G8 VL Linker oligonucleotide 63tctggcggcg
gcggctccgg tggtggtggt tctgatgttg tgatgaccca gactccactc 60actttgtcg
696433DNAartificial sequence3' 2G8 HL oligonucleotide 64acatccggat
ttcagctcca gcttggtccc agc
33651509DNAartificial sequence2G8LHxSEQ ID NO 12 ; bispecific single
chain antibody 65gatgttgtga tgacccagac tccactcact ttgtcggtta
ccattggaca accagcctct 60atctcttgca agtcaagtca gagcctctta tatagtaatg
gaaaaaccta tttgaactgg 120atattacaga ggccaggcca gtctccaaag cgcctaatct
atctggtgtc taaactggac 180tctggagtcc ctgacaggtt cactggcagt ggatcaggaa
cagattttac gctgaaaatc 240agcagagtgg aggctgagga tttgggagtt tattactgcg
tgcaaggtac acattttcct 300ctcacgttcg gtgctgggac caagctggag ctgaaaggtg
gtggtggttc tggcggcggc 360ggctccggtg gtggtggttc tgaggttcag ctgcagcagt
ctggggcaga gcttgtgagg 420tcaggggcct cagtcaagtt gtcctgcaca gcttctggct
tcaacattaa agactactat 480ttgcactggg tgaagcagag gcctgaacag ggcctggagt
ggattgcctg gattgatctt 540gagaatggtg atattaaata tgccccgaag tttcagggca
aggccactat aactgcagac 600acatcctcca acacagccta cctgcagctc agcagcctga
catctgagga cactgccgtc 660tattactgta atccctatta ctacggtagt aactacgact
atgctatgga ctactggggt 720caaggaacct cagtcaccgt ctcctccgga ggtggtggat
cccaggctgt tgtgactcag 780gaatctgcac tcaccacatc acctggtgaa acagtcacac
tcacttgtcg ctcaagtact 840ggggctgtta caactagtaa ctatgccaac tgggtccaag
aaaaaccaga tcatttattc 900actggtctaa taggtggtac caacaagcga gctccaggtg
tgcctgccag attctcaggc 960tccctgattg gagacaaggc tgccctcacc atcacagggg
cacagactga ggatgaggca 1020atatatttct gtgctctatg gtacagcaac ctctgggtgt
tcggtggagg aaccaaactg 1080actgtcctag gtggtggtgg ttctggcggc ggcggctccg
gtggtggtgg ttctgaggtg 1140aagcttctcg agtctggagg aggattggtg cagcctaaag
ggtcattgaa actctcatgt 1200gcagcctctg gattcacctt caatacctac gccatgaact
gggtccgcca ggctccagga 1260aagggtttgg aatgggttgc tcgcataaga agtaaatata
ataattatgc aacatattat 1320gccgattcag tgaaagacag gttcaccatc tccagagatg
attcacaaag cattctctat 1380ctacaaatga acaacttgaa aactgaggac acagccatgt
actactgtgt gagacatggg 1440aacttcggta atagctacgt ttcctggttt gcttactggg
gccaagggac tctggtcact 1500gtctctgca
150966503PRTartificial sequence2G8LHxSEQ ID NO 12 ;
bispecific single chain antibody 66Asp Val Val Met Thr Gln Thr Pro
Leu Thr Leu Ser Val Thr Ile Gly 1 5 10
15 Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu
Leu Tyr Ser 20 25 30
Asn Gly Lys Thr Tyr Leu Asn Trp Ile Leu Gln Arg Pro Gly Gln Ser
35 40 45 Pro Lys Arg Leu
Ile Tyr Leu Val Ser Lys Leu Asp Ser Gly Val Pro 50
55 60 Asp Arg Phe Thr Gly Ser Gly Ser
Gly Thr Asp Phe Thr Leu Lys Ile 65 70
75 80 Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr
Cys Val Gln Gly 85 90
95 Thr His Phe Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
100 105 110 Gly Gly Gly
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu 115
120 125 Val Gln Leu Gln Gln Ser Gly Ala
Glu Leu Val Arg Ser Gly Ala Ser 130 135
140 Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys
Asp Tyr Tyr 145 150 155
160 Leu His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile Ala
165 170 175 Trp Ile Asp Leu
Glu Asn Gly Asp Ile Lys Tyr Ala Pro Lys Phe Gln 180
185 190 Gly Lys Ala Thr Ile Thr Ala Asp Thr
Ser Ser Asn Thr Ala Tyr Leu 195 200
205 Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr
Cys Asn 210 215 220
Pro Tyr Tyr Tyr Gly Ser Asn Tyr Asp Tyr Ala Met Asp Tyr Trp Gly 225
230 235 240 Gln Gly Thr Ser Val
Thr Val Ser Ser Gly Gly Gly Gly Ser Gln Ala 245
250 255 Val Val Thr Gln Glu Ser Ala Leu Thr Thr
Ser Pro Gly Glu Thr Val 260 265
270 Thr Leu Thr Cys Arg Ser Ser Thr Gly Ala Val Thr Thr Ser Asn
Tyr 275 280 285 Ala
Asn Trp Val Gln Glu Lys Pro Asp His Leu Phe Thr Gly Leu Ile 290
295 300 Gly Gly Thr Asn Lys Arg
Ala Pro Gly Val Pro Ala Arg Phe Ser Gly 305 310
315 320 Ser Leu Ile Gly Asp Lys Ala Ala Leu Thr Ile
Thr Gly Ala Gln Thr 325 330
335 Glu Asp Glu Ala Ile Tyr Phe Cys Ala Leu Trp Tyr Ser Asn Leu Trp
340 345 350 Val Phe
Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gly Gly Gly Ser 355
360 365 Gly Gly Gly Gly Ser Gly Gly
Gly Gly Ser Glu Val Lys Leu Leu Glu 370 375
380 Ser Gly Gly Gly Leu Val Gln Pro Lys Gly Ser Leu
Lys Leu Ser Cys 385 390 395
400 Ala Ala Ser Gly Phe Thr Phe Asn Thr Tyr Ala Met Asn Trp Val Arg
405 410 415 Gln Ala Pro
Gly Lys Gly Leu Glu Trp Val Ala Arg Ile Arg Ser Lys 420
425 430 Tyr Asn Asn Tyr Ala Thr Tyr Tyr
Ala Asp Ser Val Lys Asp Arg Phe 435 440
445 Thr Ile Ser Arg Asp Asp Ser Gln Ser Ile Leu Tyr Leu
Gln Met Asn 450 455 460
Asn Leu Lys Thr Glu Asp Thr Ala Met Tyr Tyr Cys Val Arg His Gly 465
470 475 480 Asn Phe Gly Asn
Ser Tyr Val Ser Trp Phe Ala Tyr Trp Gly Gln Gly 485
490 495 Thr Leu Val Thr Val Ser Ala
500 671509DNAARTIFICIAL SEQUENCE2G8LHx SEQ ID NO 10 ;
bispecific single chain antibody 67gatgttgtga tgacccagac tccactcact
ttgtcggtta ccattggaca accagcctct 60atctcttgca agtcaagtca gagcctctta
tatagtaatg gaaaaaccta tttgaactgg 120atattacaga ggccaggcca gtctccaaag
cgcctaatct atctggtgtc taaactggac 180tctggagtcc ctgacaggtt cactggcagt
ggatcaggaa cagattttac gctgaaaatc 240agcagagtgg aggctgagga tttgggagtt
tattactgcg tgcaaggtac acattttcct 300ctcacgttcg gtgctgggac caagctggag
ctgaaaggtg gtggtggttc tggcggcggc 360ggctccggtg gtggtggttc tgaggttcag
ctgcagcagt ctggggcaga gcttgtgagg 420tcaggggcct cagtcaagtt gtcctgcaca
gcttctggct tcaacattaa agactactat 480ttgcactggg tgaagcagag gcctgaacag
ggcctggagt ggattgcctg gattgatctt 540gagaatggtg atattaaata tgccccgaag
tttcagggca aggccactat aactgcagac 600acatcctcca acacagccta cctgcagctc
agcagcctga catctgagga cactgccgtc 660tattactgta atccctatta ctacggtagt
aactacgact atgctatgga ctactggggt 720caaggaacct cagtcaccgt ctcctccgga
ggtggtggat ccgaggtgaa gcttctcgag 780tctggaggag gattggtgca gcctaaaggg
tcattgaaac tctcatgtgc agcctctgga 840ttcaccttca atacctacgc catgaactgg
gtccgccagg ctccaggaaa gggtttggaa 900tgggttgctc gcataagaag taaatataat
aattatgcaa catattatgc cgattcagtg 960aaagacaggt tcaccatctc cagagatgat
tcacaaagca ttctctatct acaaatgaac 1020aacttgaaaa ctgaggacac agccatgtac
tactgtgtga gacatgggaa cttcggtaat 1080agctacgttt cctggtttgc ttactggggc
caagggactc tggtcactgt ctctgcaggt 1140ggtggtggtt ctggcggcgg cggctccggt
ggtggtggtt ctcaggctgt tgtgactcag 1200gaatctgcac tcaccacatc acctggtgaa
acagtcacac tcacttgtcg ctcaagtact 1260ggggctgtta caactagtaa ctatgccaac
tgggtccaag aaaaaccaga tcatttattc 1320actggtctaa taggtggtac caacaagcga
gctccaggtg tgcctgccag attctcaggc 1380tccctgattg gagacaaggc tgccctcacc
atcacagggg cacagactga ggatgaggca 1440atatatttct gtgctctatg gtacagcaac
ctctgggtgt tcggtggagg aaccaaactg 1500actgtccta
150968503PRTartificial sequence2G8LHxSEQ
ID NO 10 ; bispecific single chain antibody 68Asp Val Val Met Thr
Gln Thr Pro Leu Thr Leu Ser Val Thr Ile Gly 1 5
10 15 Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser
Gln Ser Leu Leu Tyr Ser 20 25
30 Asn Gly Lys Thr Tyr Leu Asn Trp Ile Leu Gln Arg Pro Gly Gln
Ser 35 40 45 Pro
Lys Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp Ser Gly Val Pro 50
55 60 Asp Arg Phe Thr Gly Ser
Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70
75 80 Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr
Tyr Cys Val Gln Gly 85 90
95 Thr His Phe Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
100 105 110 Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu 115
120 125 Val Gln Leu Gln Gln Ser Gly
Ala Glu Leu Val Arg Ser Gly Ala Ser 130 135
140 Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile
Lys Asp Tyr Tyr 145 150 155
160 Leu His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile Ala
165 170 175 Trp Ile Asp
Leu Glu Asn Gly Asp Ile Lys Tyr Ala Pro Lys Phe Gln 180
185 190 Gly Lys Ala Thr Ile Thr Ala Asp
Thr Ser Ser Asn Thr Ala Tyr Leu 195 200
205 Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr
Tyr Cys Asn 210 215 220
Pro Tyr Tyr Tyr Gly Ser Asn Tyr Asp Tyr Ala Met Asp Tyr Trp Gly 225
230 235 240 Gln Gly Thr Ser
Val Thr Val Ser Ser Gly Gly Gly Gly Ser Glu Val 245
250 255 Lys Leu Leu Glu Ser Gly Gly Gly Leu
Val Gln Pro Lys Gly Ser Leu 260 265
270 Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn Thr Tyr
Ala Met 275 280 285
Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Arg 290
295 300 Ile Arg Ser Lys Tyr
Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp Ser Val 305 310
315 320 Lys Asp Arg Phe Thr Ile Ser Arg Asp Asp
Ser Gln Ser Ile Leu Tyr 325 330
335 Leu Gln Met Asn Asn Leu Lys Thr Glu Asp Thr Ala Met Tyr Tyr
Cys 340 345 350 Val
Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe Ala Tyr 355
360 365 Trp Gly Gln Gly Thr Leu
Val Thr Val Ser Ala Gly Gly Gly Gly Ser 370 375
380 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln
Ala Val Val Thr Gln 385 390 395
400 Glu Ser Ala Leu Thr Thr Ser Pro Gly Glu Thr Val Thr Leu Thr Cys
405 410 415 Arg Ser
Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn Trp Val 420
425 430 Gln Glu Lys Pro Asp His Leu
Phe Thr Gly Leu Ile Gly Gly Thr Asn 435 440
445 Lys Arg Ala Pro Gly Val Pro Ala Arg Phe Ser Gly
Ser Leu Ile Gly 450 455 460
Asp Lys Ala Ala Leu Thr Ile Thr Gly Ala Gln Thr Glu Asp Glu Ala 465
470 475 480 Ile Tyr Phe
Cys Ala Leu Trp Tyr Ser Asn Leu Trp Val Phe Gly Gly 485
490 495 Gly Thr Lys Leu Thr Val Leu
500 691488DNAARTIFICIAL SEQUENCE2G8LHxSEQ ID NO 16 ;
bispecific single chain antibody 69gatgttgtga tgacccagac tccactcact
ttgtcggtta ccattggaca accagcctct 60atctcttgca agtcaagtca gagcctctta
tatagtaatg gaaaaaccta tttgaactgg 120atattacaga ggccaggcca gtctccaaag
cgcctaatct atctggtgtc taaactggac 180tctggagtcc ctgacaggtt cactggcagt
ggatcaggaa cagattttac gctgaaaatc 240agcagagtgg aggctgagga tttgggagtt
tattactgcg tgcaaggtac acattttcct 300ctcacgttcg gtgctgggac caagctggag
ctgaaaggtg gtggtggttc tggcggcggc 360ggctccggtg gtggtggttc tgaggttcag
ctgcagcagt ctggggcaga gcttgtgagg 420tcaggggcct cagtcaagtt gtcctgcaca
gcttctggct tcaacattaa agactactat 480ttgcactggg tgaagcagag gcctgaacag
ggcctggagt ggattgcctg gattgatctt 540gagaatggtg atattaaata tgccccgaag
tttcagggca aggccactat aactgcagac 600acatcctcca acacagccta cctgcagctc
agcagcctga catctgagga cactgccgtc 660tattactgta atccctatta ctacggtagt
aactacgact atgctatgga ctactggggt 720caaggaacct cagtcaccgt ctcctccgga
ggtggtggat cccaagttgt tctcacccag 780tctccagcaa tcatgtctgc atttccaggg
gagaaggtca ccatgacctg cagtgccagc 840tcaagtgtaa gttacatgaa ctggtaccag
cagaagtcag gcacctcccc caaaagatgg 900atttatgact catccaaact ggcttctgga
gtccctgctc gcttcagtgg cagtgggtct 960gggacctctt attctctcac aatcagcagc
atggagactg aagatgctgc cacttattac 1020tgccagcagt ggagtcgtaa cccacccacg
ttcggagggg ggaccaagct acaaattaca 1080ggtggtggtg gttctggcgg cggcggctcc
ggtggtggtg gttctcaggt ccagctgcag 1140cagtctgggg ctgaactggc aagacctggg
gcctcagtga agatgtcctg caaggcttct 1200ggctacacct ttactagatc tacgatgcac
tgggtaaaac agaggcctgg acagggtctg 1260gaatggattg gatacattaa tcctagcagt
gcttatacta attacaatca gaaattcaag 1320gacaaggcca cattgactgc agacaaatcc
tccagtacag cctacatgca actgagtagc 1380ctgacatctg aggactctgc agtctattac
tgtgcaagtc cgcaagtcca ctatgattac 1440aacgggtttc cttactgggg ccaagggact
ctggtcactg tctctgca 148870496PRTartificial
sequence2G8LHxSEQ ID NO 16 ; bispecific single chain antibody 70Asp
Val Val Met Thr Gln Thr Pro Leu Thr Leu Ser Val Thr Ile Gly 1
5 10 15 Gln Pro Ala Ser Ile Ser
Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser 20
25 30 Asn Gly Lys Thr Tyr Leu Asn Trp Ile Leu
Gln Arg Pro Gly Gln Ser 35 40
45 Pro Lys Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp Ser Gly
Val Pro 50 55 60
Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65
70 75 80 Ser Arg Val Glu Ala
Glu Asp Leu Gly Val Tyr Tyr Cys Val Gln Gly 85
90 95 Thr His Phe Pro Leu Thr Phe Gly Ala Gly
Thr Lys Leu Glu Leu Lys 100 105
110 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
Glu 115 120 125 Val
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Ser Gly Ala Ser 130
135 140 Val Lys Leu Ser Cys Thr
Ala Ser Gly Phe Asn Ile Lys Asp Tyr Tyr 145 150
155 160 Leu His Trp Val Lys Gln Arg Pro Glu Gln Gly
Leu Glu Trp Ile Ala 165 170
175 Trp Ile Asp Leu Glu Asn Gly Asp Ile Lys Tyr Ala Pro Lys Phe Gln
180 185 190 Gly Lys
Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn Thr Ala Tyr Leu 195
200 205 Gln Leu Ser Ser Leu Thr Ser
Glu Asp Thr Ala Val Tyr Tyr Cys Asn 210 215
220 Pro Tyr Tyr Tyr Gly Ser Asn Tyr Asp Tyr Ala Met
Asp Tyr Trp Gly 225 230 235
240 Gln Gly Thr Ser Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gln Val
245 250 255 Val Leu Thr
Gln Ser Pro Ala Ile Met Ser Ala Phe Pro Gly Glu Lys 260
265 270 Val Thr Met Thr Cys Ser Ala Ser
Ser Ser Val Ser Tyr Met Asn Trp 275 280
285 Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile
Tyr Asp Ser 290 295 300
Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser 305
310 315 320 Gly Thr Ser Tyr
Ser Leu Thr Ile Ser Ser Met Glu Thr Glu Asp Ala 325
330 335 Ala Thr Tyr Tyr Cys Gln Gln Trp Ser
Arg Asn Pro Pro Thr Phe Gly 340 345
350 Gly Gly Thr Lys Leu Gln Ile Thr Gly Gly Gly Gly Ser Gly
Gly Gly 355 360 365
Gly Ser Gly Gly Gly Gly Ser Gln Val Gln Leu Gln Gln Ser Gly Ala 370
375 380 Glu Leu Ala Arg Pro
Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser 385 390
395 400 Gly Tyr Thr Phe Thr Arg Ser Thr Met His
Trp Val Lys Gln Arg Pro 405 410
415 Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile Asn Pro Ser Ser Ala
Tyr 420 425 430 Thr
Asn Tyr Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Ala Asp 435
440 445 Lys Ser Ser Ser Thr Ala
Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu 450 455
460 Asp Ser Ala Val Tyr Tyr Cys Ala Ser Pro Gln
Val His Tyr Asp Tyr 465 470 475
480 Asn Gly Phe Pro Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala
485 490 495
711488DNAARTIFICIAL SEQUENCE2G8LHxSEQ ID NO 14 ; bispecific single chain
antibody 71gatgttgtga tgacccagac tccactcact ttgtcggtta ccattggaca
accagcctct 60atctcttgca agtcaagtca gagcctctta tatagtaatg gaaaaaccta
tttgaactgg 120atattacaga ggccaggcca gtctccaaag cgcctaatct atctggtgtc
taaactggac 180tctggagtcc ctgacaggtt cactggcagt ggatcaggaa cagattttac
gctgaaaatc 240agcagagtgg aggctgagga tttgggagtt tattactgcg tgcaaggtac
acattttcct 300ctcacgttcg gtgctgggac caagctggag ctgaaaggtg gtggtggttc
tggcggcggc 360ggctccggtg gtggtggttc tgaggttcag ctgcagcagt ctggggcaga
gcttgtgagg 420tcaggggcct cagtcaagtt gtcctgcaca gcttctggct tcaacattaa
agactactat 480ttgcactggg tgaagcagag gcctgaacag ggcctggagt ggattgcctg
gattgatctt 540gagaatggtg atattaaata tgccccgaag tttcagggca aggccactat
aactgcagac 600acatcctcca acacagccta cctgcagctc agcagcctga catctgagga
cactgccgtc 660tattactgta atccctatta ctacggtagt aactacgact atgctatgga
ctactggggt 720caaggaacct cagtcaccgt ctcctccgga ggtggtggat cccaggtcca
gctgcagcag 780tctggggctg aactggcaag acctggggcc tcagtgaaga tgtcctgcaa
ggcttctggc 840tacaccttta ctagatctac gatgcactgg gtaaaacaga ggcctggaca
gggtctggaa 900tggattggat acattaatcc tagcagtgct tatactaatt acaatcagaa
attcaaggac 960aaggccacat tgactgcaga caaatcctcc agtacagcct acatgcaact
gagtagcctg 1020acatctgagg actctgcagt ctattactgt gcaagtccgc aagtccacta
tgattacaac 1080gggtttcctt actggggcca agggactctg gtcactgtct ctgcaggtgg
tggtggttct 1140ggcggcggcg gctccggtgg tggtggttct caagttgttc tcacccagtc
tccagcaatc 1200atgtctgcat ttccagggga gaaggtcacc atgacctgca gtgccagctc
aagtgtaagt 1260tacatgaact ggtaccagca gaagtcaggc acctccccca aaagatggat
ttatgactca 1320tccaaactgg cttctggagt ccctgctcgc ttcagtggca gtgggtctgg
gacctcttat 1380tctctcacaa tcagcagcat ggagactgaa gatgctgcca cttattactg
ccagcagtgg 1440agtcgtaacc cacccacgtt cggagggggg accaagctac aaattaca
148872496PRTartificial sequence2G8LHxSEQ ID NO 14 ; bispecific
single chain antibody 72Asp Val Val Met Thr Gln Thr Pro Leu Thr Leu
Ser Val Thr Ile Gly 1 5 10
15 Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser
20 25 30 Asn Gly
Lys Thr Tyr Leu Asn Trp Ile Leu Gln Arg Pro Gly Gln Ser 35
40 45 Pro Lys Arg Leu Ile Tyr Leu
Val Ser Lys Leu Asp Ser Gly Val Pro 50 55
60 Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe
Thr Leu Lys Ile 65 70 75
80 Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Val Gln Gly
85 90 95 Thr His Phe
Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys 100
105 110 Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gly Gly Gly Gly Ser Glu 115 120
125 Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Ser
Gly Ala Ser 130 135 140
Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Tyr Tyr 145
150 155 160 Leu His Trp Val
Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile Ala 165
170 175 Trp Ile Asp Leu Glu Asn Gly Asp Ile
Lys Tyr Ala Pro Lys Phe Gln 180 185
190 Gly Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn Thr Ala
Tyr Leu 195 200 205
Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys Asn 210
215 220 Pro Tyr Tyr Tyr Gly
Ser Asn Tyr Asp Tyr Ala Met Asp Tyr Trp Gly 225 230
235 240 Gln Gly Thr Ser Val Thr Val Ser Ser Gly
Gly Gly Gly Ser Gln Val 245 250
255 Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser
Val 260 265 270 Lys
Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Ser Thr Met 275
280 285 His Trp Val Lys Gln Arg
Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr 290 295
300 Ile Asn Pro Ser Ser Ala Tyr Thr Asn Tyr Asn
Gln Lys Phe Lys Asp 305 310 315
320 Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln
325 330 335 Leu Ser
Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Ser 340
345 350 Pro Gln Val His Tyr Asp Tyr
Asn Gly Phe Pro Tyr Trp Gly Gln Gly 355 360
365 Thr Leu Val Thr Val Ser Ala Gly Gly Gly Gly Ser
Gly Gly Gly Gly 370 375 380
Ser Gly Gly Gly Gly Ser Gln Val Val Leu Thr Gln Ser Pro Ala Ile 385
390 395 400 Met Ser Ala
Phe Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser 405
410 415 Ser Ser Val Ser Tyr Met Asn Trp
Tyr Gln Gln Lys Ser Gly Thr Ser 420 425
430 Pro Lys Arg Trp Ile Tyr Asp Ser Ser Lys Leu Ala Ser
Gly Val Pro 435 440 445
Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile 450
455 460 Ser Ser Met Glu
Thr Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp 465 470
475 480 Ser Arg Asn Pro Pro Thr Phe Gly Gly
Gly Thr Lys Leu Gln Ile Thr 485 490
495 731512DNAARTIFICIAL SEQUENCE2G8HLxSEQ ID NO 12 ;
bispecific single chain antibody 73gaggttcagc tgcagcagtc tggggcagag
cttgtgaggt caggggcctc agtcaagttg 60tcctgcacag cttctggctt caacattaaa
gactactatt tgcactgggt gaagcagagg 120cctgaacagg gcctggagtg gattgcctgg
attgatcttg agaatggtga tattaaatat 180gccccgaagt ttcagggcaa ggccactata
actgcagaca catcctccaa cacagcctac 240ctgcagctca gcagcctgac atctgaggac
actgccgtct attactgtaa tccctattac 300tacggtagta actacgacta tgctatggac
tactggggtc aaggaacctc agtcaccgtc 360tcctcaggtg gtggtggttc tggcggcggc
ggctccggtg gtggtggttc tgatgttgtg 420atgacccaga ctccactcac tttgtcggtt
accattggac aaccagcctc tatctcttgc 480aagtcaagtc agagcctctt atatagtaat
ggaaaaacct atttgaactg gatattacag 540aggccaggcc agtctccaaa gcgcctaatc
tatctggtgt ctaaactgga ctctggagtc 600cctgacaggt tcactggcag tggatcagga
acagatttta cgctgaaaat cagcagagtg 660gaggctgagg atttgggagt ttattactgc
gtgcaaggta cacattttcc tctcacgttc 720ggtgctggga ccaagctgga gctgaaatcc
ggaggtggtg gatcccaggc tgttgtgact 780caggaatctg cactcaccac atcacctggt
gaaacagtca cactcacttg tcgctcaagt 840actggggctg ttacaactag taactatgcc
aactgggtcc aagaaaaacc agatcattta 900ttcactggtc taataggtgg taccaacaag
cgagctccag gtgtgcctgc cagattctca 960ggctccctga ttggagacaa ggctgccctc
accatcacag gggcacagac tgaggatgag 1020gcaatatatt tctgtgctct atggtacagc
aacctctggg tgttcggtgg aggaaccaaa 1080ctgactgtcc taggtggtgg tggttctggc
ggcggcggct ccggtggtgg tggttctgag 1140gtgaagcttc tcgagtctgg aggaggattg
gtgcagccta aagggtcatt gaaactctca 1200tgtgcagcct ctggattcac cttcaatacc
tacgccatga actgggtccg ccaggctcca 1260ggaaagggtt tggaatgggt tgctcgcata
agaagtaaat ataataatta tgcaacatat 1320tatgccgatt cagtgaaaga caggttcacc
atctccagag atgattcaca aagcattctc 1380tatctacaaa tgaacaactt gaaaactgag
gacacagcca tgtactactg tgtgagacat 1440gggaacttcg gtaatagcta cgtttcctgg
tttgcttact ggggccaagg gactctggtc 1500actgtctctg ca
151274504PRTartificial sequence2G8HLxSEQ
ID NO 12 ; bispecific single chain antibody 74Glu Val Gln Leu Gln
Gln Ser Gly Ala Glu Leu Val Arg Ser Gly Ala 1 5
10 15 Ser Val Lys Leu Ser Cys Thr Ala Ser Gly
Phe Asn Ile Lys Asp Tyr 20 25
30 Tyr Leu His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp
Ile 35 40 45 Ala
Trp Ile Asp Leu Glu Asn Gly Asp Ile Lys Tyr Ala Pro Lys Phe 50
55 60 Gln Gly Lys Ala Thr Ile
Thr Ala Asp Thr Ser Ser Asn Thr Ala Tyr 65 70
75 80 Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr
Ala Val Tyr Tyr Cys 85 90
95 Asn Pro Tyr Tyr Tyr Gly Ser Asn Tyr Asp Tyr Ala Met Asp Tyr Trp
100 105 110 Gly Gln
Gly Thr Ser Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 115
120 125 Gly Gly Gly Ser Gly Gly Gly
Gly Ser Asp Val Val Met Thr Gln Thr 130 135
140 Pro Leu Thr Leu Ser Val Thr Ile Gly Gln Pro Ala
Ser Ile Ser Cys 145 150 155
160 Lys Ser Ser Gln Ser Leu Leu Tyr Ser Asn Gly Lys Thr Tyr Leu Asn
165 170 175 Trp Ile Leu
Gln Arg Pro Gly Gln Ser Pro Lys Arg Leu Ile Tyr Leu 180
185 190 Val Ser Lys Leu Asp Ser Gly Val
Pro Asp Arg Phe Thr Gly Ser Gly 195 200
205 Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu
Ala Glu Asp 210 215 220
Leu Gly Val Tyr Tyr Cys Val Gln Gly Thr His Phe Pro Leu Thr Phe 225
230 235 240 Gly Ala Gly Thr
Lys Leu Glu Leu Lys Ser Gly Gly Gly Gly Ser Gln 245
250 255 Ala Val Val Thr Gln Glu Ser Ala Leu
Thr Thr Ser Pro Gly Glu Thr 260 265
270 Val Thr Leu Thr Cys Arg Ser Ser Thr Gly Ala Val Thr Thr
Ser Asn 275 280 285
Tyr Ala Asn Trp Val Gln Glu Lys Pro Asp His Leu Phe Thr Gly Leu 290
295 300 Ile Gly Gly Thr Asn
Lys Arg Ala Pro Gly Val Pro Ala Arg Phe Ser 305 310
315 320 Gly Ser Leu Ile Gly Asp Lys Ala Ala Leu
Thr Ile Thr Gly Ala Gln 325 330
335 Thr Glu Asp Glu Ala Ile Tyr Phe Cys Ala Leu Trp Tyr Ser Asn
Leu 340 345 350 Trp
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gly Gly Gly 355
360 365 Ser Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Glu Val Lys Leu Leu 370 375
380 Glu Ser Gly Gly Gly Leu Val Gln Pro Lys Gly
Ser Leu Lys Leu Ser 385 390 395
400 Cys Ala Ala Ser Gly Phe Thr Phe Asn Thr Tyr Ala Met Asn Trp Val
405 410 415 Arg Gln
Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Arg Ile Arg Ser 420
425 430 Lys Tyr Asn Asn Tyr Ala Thr
Tyr Tyr Ala Asp Ser Val Lys Asp Arg 435 440
445 Phe Thr Ile Ser Arg Asp Asp Ser Gln Ser Ile Leu
Tyr Leu Gln Met 450 455 460
Asn Asn Leu Lys Thr Glu Asp Thr Ala Met Tyr Tyr Cys Val Arg His 465
470 475 480 Gly Asn Phe
Gly Asn Ser Tyr Val Ser Trp Phe Ala Tyr Trp Gly Gln 485
490 495 Gly Thr Leu Val Thr Val Ser Ala
500 751512DNAARTIFICIAL SEQUENCE2G8HLxSEQ ID
NO 10 ; bispecific single chain antibody 75gaggttcagc tgcagcagtc
tggggcagag cttgtgaggt caggggcctc agtcaagttg 60tcctgcacag cttctggctt
caacattaaa gactactatt tgcactgggt gaagcagagg 120cctgaacagg gcctggagtg
gattgcctgg attgatcttg agaatggtga tattaaatat 180gccccgaagt ttcagggcaa
ggccactata actgcagaca catcctccaa cacagcctac 240ctgcagctca gcagcctgac
atctgaggac actgccgtct attactgtaa tccctattac 300tacggtagta actacgacta
tgctatggac tactggggtc aaggaacctc agtcaccgtc 360tcctcaggtg gtggtggttc
tggcggcggc ggctccggtg gtggtggttc tgatgttgtg 420atgacccaga ctccactcac
tttgtcggtt accattggac aaccagcctc tatctcttgc 480aagtcaagtc agagcctctt
atatagtaat ggaaaaacct atttgaactg gatattacag 540aggccaggcc agtctccaaa
gcgcctaatc tatctggtgt ctaaactgga ctctggagtc 600cctgacaggt tcactggcag
tggatcagga acagatttta cgctgaaaat cagcagagtg 660gaggctgagg atttgggagt
ttattactgc gtgcaaggta cacattttcc tctcacgttc 720ggtgctggga ccaagctgga
gctgaaatcc ggaggtggtg gatccgaggt gaagcttctc 780gagtctggag gaggattggt
gcagcctaaa gggtcattga aactctcatg tgcagcctct 840ggattcacct tcaataccta
cgccatgaac tgggtccgcc aggctccagg aaagggtttg 900gaatgggttg ctcgcataag
aagtaaatat aataattatg caacatatta tgccgattca 960gtgaaagaca ggttcaccat
ctccagagat gattcacaaa gcattctcta tctacaaatg 1020aacaacttga aaactgagga
cacagccatg tactactgtg tgagacatgg gaacttcggt 1080aatagctacg tttcctggtt
tgcttactgg ggccaaggga ctctggtcac tgtctctgca 1140ggtggtggtg gttctggcgg
cggcggctcc ggtggtggtg gttctcaggc tgttgtgact 1200caggaatctg cactcaccac
atcacctggt gaaacagtca cactcacttg tcgctcaagt 1260actggggctg ttacaactag
taactatgcc aactgggtcc aagaaaaacc agatcattta 1320ttcactggtc taataggtgg
taccaacaag cgagctccag gtgtgcctgc cagattctca 1380ggctccctga ttggagacaa
ggctgccctc accatcacag gggcacagac tgaggatgag 1440gcaatatatt tctgtgctct
atggtacagc aacctctggg tgttcggtgg aggaaccaaa 1500ctgactgtcc ta
151276504PRTartificial
sequence2G8HLxSEQ ID NO 10 ; bispecific single chain antibody 76Glu
Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Ser Gly Ala 1
5 10 15 Ser Val Lys Leu Ser Cys
Thr Ala Ser Gly Phe Asn Ile Lys Asp Tyr 20
25 30 Tyr Leu His Trp Val Lys Gln Arg Pro Glu
Gln Gly Leu Glu Trp Ile 35 40
45 Ala Trp Ile Asp Leu Glu Asn Gly Asp Ile Lys Tyr Ala Pro
Lys Phe 50 55 60
Gln Gly Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn Thr Ala Tyr 65
70 75 80 Leu Gln Leu Ser Ser
Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Asn Pro Tyr Tyr Tyr Gly Ser Asn Tyr Asp
Tyr Ala Met Asp Tyr Trp 100 105
110 Gly Gln Gly Thr Ser Val Thr Val Ser Ser Gly Gly Gly Gly Ser
Gly 115 120 125 Gly
Gly Gly Ser Gly Gly Gly Gly Ser Asp Val Val Met Thr Gln Thr 130
135 140 Pro Leu Thr Leu Ser Val
Thr Ile Gly Gln Pro Ala Ser Ile Ser Cys 145 150
155 160 Lys Ser Ser Gln Ser Leu Leu Tyr Ser Asn Gly
Lys Thr Tyr Leu Asn 165 170
175 Trp Ile Leu Gln Arg Pro Gly Gln Ser Pro Lys Arg Leu Ile Tyr Leu
180 185 190 Val Ser
Lys Leu Asp Ser Gly Val Pro Asp Arg Phe Thr Gly Ser Gly 195
200 205 Ser Gly Thr Asp Phe Thr Leu
Lys Ile Ser Arg Val Glu Ala Glu Asp 210 215
220 Leu Gly Val Tyr Tyr Cys Val Gln Gly Thr His Phe
Pro Leu Thr Phe 225 230 235
240 Gly Ala Gly Thr Lys Leu Glu Leu Lys Ser Gly Gly Gly Gly Ser Glu
245 250 255 Val Lys Leu
Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Lys Gly Ser 260
265 270 Leu Lys Leu Ser Cys Ala Ala Ser
Gly Phe Thr Phe Asn Thr Tyr Ala 275 280
285 Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu
Trp Val Ala 290 295 300
Arg Ile Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp Ser 305
310 315 320 Val Lys Asp Arg
Phe Thr Ile Ser Arg Asp Asp Ser Gln Ser Ile Leu 325
330 335 Tyr Leu Gln Met Asn Asn Leu Lys Thr
Glu Asp Thr Ala Met Tyr Tyr 340 345
350 Cys Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp
Phe Ala 355 360 365
Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala Gly Gly Gly Gly 370
375 380 Ser Gly Gly Gly Gly
Ser Gly Gly Gly Gly Ser Gln Ala Val Val Thr 385 390
395 400 Gln Glu Ser Ala Leu Thr Thr Ser Pro Gly
Glu Thr Val Thr Leu Thr 405 410
415 Cys Arg Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn
Trp 420 425 430 Val
Gln Glu Lys Pro Asp His Leu Phe Thr Gly Leu Ile Gly Gly Thr 435
440 445 Asn Lys Arg Ala Pro Gly
Val Pro Ala Arg Phe Ser Gly Ser Leu Ile 450 455
460 Gly Asp Lys Ala Ala Leu Thr Ile Thr Gly Ala
Gln Thr Glu Asp Glu 465 470 475
480 Ala Ile Tyr Phe Cys Ala Leu Trp Tyr Ser Asn Leu Trp Val Phe Gly
485 490 495 Gly Gly
Thr Lys Leu Thr Val Leu 500
771491DNAARTIFICIAL SEQUENCE2G8HLxSEQ ID NO 16 ; bispecific single chain
antibody 77gaggttcagc tgcagcagtc tggggcagag cttgtgaggt caggggcctc
agtcaagttg 60tcctgcacag cttctggctt caacattaaa gactactatt tgcactgggt
gaagcagagg 120cctgaacagg gcctggagtg gattgcctgg attgatcttg agaatggtga
tattaaatat 180gccccgaagt ttcagggcaa ggccactata actgcagaca catcctccaa
cacagcctac 240ctgcagctca gcagcctgac atctgaggac actgccgtct attactgtaa
tccctattac 300tacggtagta actacgacta tgctatggac tactggggtc aaggaacctc
agtcaccgtc 360tcctcaggtg gtggtggttc tggcggcggc ggctccggtg gtggtggttc
tgatgttgtg 420atgacccaga ctccactcac tttgtcggtt accattggac aaccagcctc
tatctcttgc 480aagtcaagtc agagcctctt atatagtaat ggaaaaacct atttgaactg
gatattacag 540aggccaggcc agtctccaaa gcgcctaatc tatctggtgt ctaaactgga
ctctggagtc 600cctgacaggt tcactggcag tggatcagga acagatttta cgctgaaaat
cagcagagtg 660gaggctgagg atttgggagt ttattactgc gtgcaaggta cacattttcc
tctcacgttc 720ggtgctggga ccaagctgga gctgaaatcc ggaggtggtg gatcccaagt
tgttctcacc 780cagtctccag caatcatgtc tgcatttcca ggggagaagg tcaccatgac
ctgcagtgcc 840agctcaagtg taagttacat gaactggtac cagcagaagt caggcacctc
ccccaaaaga 900tggatttatg actcatccaa actggcttct ggagtccctg ctcgcttcag
tggcagtggg 960tctgggacct cttattctct cacaatcagc agcatggaga ctgaagatgc
tgccacttat 1020tactgccagc agtggagtcg taacccaccc acgttcggag gggggaccaa
gctacaaatt 1080acaggtggtg gtggttctgg cggcggcggc tccggtggtg gtggttctca
ggtccagctg 1140cagcagtctg gggctgaact ggcaagacct ggggcctcag tgaagatgtc
ctgcaaggct 1200tctggctaca cctttactag atctacgatg cactgggtaa aacagaggcc
tggacagggt 1260ctggaatgga ttggatacat taatcctagc agtgcttata ctaattacaa
tcagaaattc 1320aaggacaagg ccacattgac tgcagacaaa tcctccagta cagcctacat
gcaactgagt 1380agcctgacat ctgaggactc tgcagtctat tactgtgcaa gtccgcaagt
ccactatgat 1440tacaacgggt ttccttactg gggccaaggg actctggtca ctgtctctgc a
149178497PRTartificial sequence2G8HLxSEQ ID NO 16 ; bispecific
single chain antibody 78Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu
Val Arg Ser Gly Ala 1 5 10
15 Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Tyr
20 25 30 Tyr Leu
His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile 35
40 45 Ala Trp Ile Asp Leu Glu Asn
Gly Asp Ile Lys Tyr Ala Pro Lys Phe 50 55
60 Gln Gly Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser
Asn Thr Ala Tyr 65 70 75
80 Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 Asn Pro Tyr
Tyr Tyr Gly Ser Asn Tyr Asp Tyr Ala Met Asp Tyr Trp 100
105 110 Gly Gln Gly Thr Ser Val Thr Val
Ser Ser Gly Gly Gly Gly Ser Gly 115 120
125 Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Val Val Met
Thr Gln Thr 130 135 140
Pro Leu Thr Leu Ser Val Thr Ile Gly Gln Pro Ala Ser Ile Ser Cys 145
150 155 160 Lys Ser Ser Gln
Ser Leu Leu Tyr Ser Asn Gly Lys Thr Tyr Leu Asn 165
170 175 Trp Ile Leu Gln Arg Pro Gly Gln Ser
Pro Lys Arg Leu Ile Tyr Leu 180 185
190 Val Ser Lys Leu Asp Ser Gly Val Pro Asp Arg Phe Thr Gly
Ser Gly 195 200 205
Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp 210
215 220 Leu Gly Val Tyr Tyr
Cys Val Gln Gly Thr His Phe Pro Leu Thr Phe 225 230
235 240 Gly Ala Gly Thr Lys Leu Glu Leu Lys Ser
Gly Gly Gly Gly Ser Gln 245 250
255 Val Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Phe Pro Gly
Glu 260 265 270 Lys
Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met Asn 275
280 285 Trp Tyr Gln Gln Lys Ser
Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp 290 295
300 Ser Ser Lys Leu Ala Ser Gly Val Pro Ala Arg
Phe Ser Gly Ser Gly 305 310 315
320 Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Thr Glu Asp
325 330 335 Ala Ala
Thr Tyr Tyr Cys Gln Gln Trp Ser Arg Asn Pro Pro Thr Phe 340
345 350 Gly Gly Gly Thr Lys Leu Gln
Ile Thr Gly Gly Gly Gly Ser Gly Gly 355 360
365 Gly Gly Ser Gly Gly Gly Gly Ser Gln Val Gln Leu
Gln Gln Ser Gly 370 375 380
Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala 385
390 395 400 Ser Gly Tyr
Thr Phe Thr Arg Ser Thr Met His Trp Val Lys Gln Arg 405
410 415 Pro Gly Gln Gly Leu Glu Trp Ile
Gly Tyr Ile Asn Pro Ser Ser Ala 420 425
430 Tyr Thr Asn Tyr Asn Gln Lys Phe Lys Asp Lys Ala Thr
Leu Thr Ala 435 440 445
Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser 450
455 460 Glu Asp Ser Ala
Val Tyr Tyr Cys Ala Ser Pro Gln Val His Tyr Asp 465 470
475 480 Tyr Asn Gly Phe Pro Tyr Trp Gly Gln
Gly Thr Leu Val Thr Val Ser 485 490
495 Ala 791491DNAARTIFICIAL SEQUENCE2G8HLxSEQ ID NO 14 ;
bispecific single chain antibody 79gaggttcagc tgcagcagtc tggggcagag
cttgtgaggt caggggcctc agtcaagttg 60tcctgcacag cttctggctt caacattaaa
gactactatt tgcactgggt gaagcagagg 120cctgaacagg gcctggagtg gattgcctgg
attgatcttg agaatggtga tattaaatat 180gccccgaagt ttcagggcaa ggccactata
actgcagaca catcctccaa cacagcctac 240ctgcagctca gcagcctgac atctgaggac
actgccgtct attactgtaa tccctattac 300tacggtagta actacgacta tgctatggac
tactggggtc aaggaacctc agtcaccgtc 360tcctcaggtg gtggtggttc tggcggcggc
ggctccggtg gtggtggttc tgatgttgtg 420atgacccaga ctccactcac tttgtcggtt
accattggac aaccagcctc tatctcttgc 480aagtcaagtc agagcctctt atatagtaat
ggaaaaacct atttgaactg gatattacag 540aggccaggcc agtctccaaa gcgcctaatc
tatctggtgt ctaaactgga ctctggagtc 600cctgacaggt tcactggcag tggatcagga
acagatttta cgctgaaaat cagcagagtg 660gaggctgagg atttgggagt ttattactgc
gtgcaaggta cacattttcc tctcacgttc 720ggtgctggga ccaagctgga gctgaaatcc
ggaggtggtg gatcccaggt ccagctgcag 780cagtctgggg ctgaactggc aagacctggg
gcctcagtga agatgtcctg caaggcttct 840ggctacacct ttactagatc tacgatgcac
tgggtaaaac agaggcctgg acagggtctg 900gaatggattg gatacattaa tcctagcagt
gcttatacta attacaatca gaaattcaag 960gacaaggcca cattgactgc agacaaatcc
tccagtacag cctacatgca actgagtagc 1020ctgacatctg aggactctgc agtctattac
tgtgcaagtc cgcaagtcca ctatgattac 1080aacgggtttc cttactgggg ccaagggact
ctggtcactg tctctgcagg tggtggtggt 1140tctggcggcg gcggctccgg tggtggtggt
tctcaagttg ttctcaccca gtctccagca 1200atcatgtctg catttccagg ggagaaggtc
accatgacct gcagtgccag ctcaagtgta 1260agttacatga actggtacca gcagaagtca
ggcacctccc ccaaaagatg gatttatgac 1320tcatccaaac tggcttctgg agtccctgct
cgcttcagtg gcagtgggtc tgggacctct 1380tattctctca caatcagcag catggagact
gaagatgctg ccacttatta ctgccagcag 1440tggagtcgta acccacccac gttcggaggg
gggaccaagc tacaaattac a 149180497PRTArtificial
sequence2G8HLxSEQ ID NO 14 ; bispecific single chain antibody 80Glu
Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Ser Gly Ala 1
5 10 15 Ser Val Lys Leu Ser Cys
Thr Ala Ser Gly Phe Asn Ile Lys Asp Tyr 20
25 30 Tyr Leu His Trp Val Lys Gln Arg Pro Glu
Gln Gly Leu Glu Trp Ile 35 40
45 Ala Trp Ile Asp Leu Glu Asn Gly Asp Ile Lys Tyr Ala Pro
Lys Phe 50 55 60
Gln Gly Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn Thr Ala Tyr 65
70 75 80 Leu Gln Leu Ser Ser
Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85
90 95 Asn Pro Tyr Tyr Tyr Gly Ser Asn Tyr Asp
Tyr Ala Met Asp Tyr Trp 100 105
110 Gly Gln Gly Thr Ser Val Thr Val Ser Ser Gly Gly Gly Gly Ser
Gly 115 120 125 Gly
Gly Gly Ser Gly Gly Gly Gly Ser Asp Val Val Met Thr Gln Thr 130
135 140 Pro Leu Thr Leu Ser Val
Thr Ile Gly Gln Pro Ala Ser Ile Ser Cys 145 150
155 160 Lys Ser Ser Gln Ser Leu Leu Tyr Ser Asn Gly
Lys Thr Tyr Leu Asn 165 170
175 Trp Ile Leu Gln Arg Pro Gly Gln Ser Pro Lys Arg Leu Ile Tyr Leu
180 185 190 Val Ser
Lys Leu Asp Ser Gly Val Pro Asp Arg Phe Thr Gly Ser Gly 195
200 205 Ser Gly Thr Asp Phe Thr Leu
Lys Ile Ser Arg Val Glu Ala Glu Asp 210 215
220 Leu Gly Val Tyr Tyr Cys Val Gln Gly Thr His Phe
Pro Leu Thr Phe 225 230 235
240 Gly Ala Gly Thr Lys Leu Glu Leu Lys Ser Gly Gly Gly Gly Ser Gln
245 250 255 Val Gln Leu
Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser 260
265 270 Val Lys Met Ser Cys Lys Ala Ser
Gly Tyr Thr Phe Thr Arg Ser Thr 275 280
285 Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu
Trp Ile Gly 290 295 300
Tyr Ile Asn Pro Ser Ser Ala Tyr Thr Asn Tyr Asn Gln Lys Phe Lys 305
310 315 320 Asp Lys Ala Thr
Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met 325
330 335 Gln Leu Ser Ser Leu Thr Ser Glu Asp
Ser Ala Val Tyr Tyr Cys Ala 340 345
350 Ser Pro Gln Val His Tyr Asp Tyr Asn Gly Phe Pro Tyr Trp
Gly Gln 355 360 365
Gly Thr Leu Val Thr Val Ser Ala Gly Gly Gly Gly Ser Gly Gly Gly 370
375 380 Gly Ser Gly Gly Gly
Gly Ser Gln Val Val Leu Thr Gln Ser Pro Ala 385 390
395 400 Ile Met Ser Ala Phe Pro Gly Glu Lys Val
Thr Met Thr Cys Ser Ala 405 410
415 Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly
Thr 420 425 430 Ser
Pro Lys Arg Trp Ile Tyr Asp Ser Ser Lys Leu Ala Ser Gly Val 435
440 445 Pro Ala Arg Phe Ser Gly
Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr 450 455
460 Ile Ser Ser Met Glu Thr Glu Asp Ala Ala Thr
Tyr Tyr Cys Gln Gln 465 470 475
480 Trp Ser Arg Asn Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Gln Ile
485 490 495 Thr
8127DNAARTIFICIAL SEQUENCE5' primer VH ; oligonucleotide 81saggtgcagc
tcgaggagtc aggacct
278227DNAartificial sequence5' primer VH ; oligonucleotide 82gaggtccagc
tcgagcagtc tggacct
278327DNAartificial sequence5' primer VH ; oligonucleotide 83caggtccaac
tcgagcagcc tggggct
278427DNAartificial sequence5' primer VH ; oligonucleotide 84gaggttcagc
tcgagcagtc tggggca
278527DNAartificial sequence5' primer VH ; oligonucleotide 85gargtgaagc
tcgaggagtc tggagga
278627DNAartificial sequence5' primer VH ; oligonucleotide 86gaggtgaagc
ttctcgagtc tggaggt
278727DNAartificial sequence5' primer VH ; oligonucleotide 87gaagtgaagc
tcgaggagtc tggggga
278827DNAartificial sequence5' primer VH ; oligonucleotide 88gaggttcagc
tcgagcagtc tggagct
278939DNAartificial sequence5' primer VH ; oligonucleotide 89gggctcgagc
accatggrat gsagctgkgt matsctctt
399039DNAartificial sequence5' primer VH ; oligonucleotide 90gggctcgagc
accatgract tcgggytgag ctkggtttt
399138DNAartificial sequence5' primer VH ; oligonucleotide 91gggctcgagc
accatggctg tcttggggct gctcttct
389234DNAartificial sequence3' primer VH ; oligonucleotide 92gaggaattcg
aactggacag ggatccagag ttcc
349334DNAARTIFICIAL SEQUENCE3' primer VH ; oligonucleotide 93cggaattcga
atgacatgga catctgggtc atcc
349432DNAARTIFICIAL SEQUENCE5' primer VL ; oligonucleotide 94ccagttccga
gctcgttgtg actcaggaat ct
329532DNAartificial sequence5' primer VL ; oligonucleotide 95ccagttccga
gctcgtgttg acgcagccgc cc
329632DNAartificial sequence5' primer VL ; oligonucleotide 96ccagttccga
gctcgtgctc acccagtctc ca
329732DNAartificial sequence5' primer VL ; oligonucleotide 97ccagttccga
gctccagatg acccagtctc ca
329832DNAartificial sequence5' primer VL ; oligonucleotide 98ccagatgtga
gctcgtgatg acccagactc ca
329932DNAartificial sequence5' primer VL ; oligonucleotide 99ccagatgtga
gctcgtcatg acccagtctc ca
3210032DNAartificial sequence5' primer VL ; oligonucleotide 100ccagttccga
gctcgtgatg acacagtctc ca
3210138DNAartificial sequence5' primer VL ; oligonucleotide 101ggggagctcc
accatggaga cagacacact cctgctat
3810239DNAartificial sequence5' primer VL ; oligonucleotide 102ggggagctcc
accatggatt ttcaagtgca gattttcag
3910340DNAartificial sequence5' primer VL ; oligonucleotide 103ggggagctcc
accatggagw cacakwctca ggtctttrta
4010436DNAartificial sequence5' primer VL ; oligonucleotide 104ggggagctcc
accatgkccc cwrctcagyt yctkgt
3610531DNAartificial sequence3' primer VL ; oligonucleotide 105gaggaattcg
aactgctcac tggatggtgg g
3110635DNAARTIFICIAL SEQUENCE3' primer VL ; oligonucleotide 106cggaattcga
acaaactctt ctccacagtg tgacc
3510730DNAARTIFICIAL SEQUENCE3' primer VH ; oligonucleotide 107tatgcaacta
gtacaaccac aatccctggg
3010834DNAartificial sequence3' primer VL ; oligonucleotide 108gcgccgtcta
gaattaacac tcattcctgt tgaa
34109496PRTartificial sequence5-10 LH x deimmunised (di) anti-CD3 ;
bispecific single chain antibody 109Glu Leu Val Met Thr Gln Ser Pro Ser
Ser Leu Thr Val Thr Ala Gly 1 5 10
15 Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu
Asn Ser 20 25 30
Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45 Pro Pro Lys Leu
Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50
55 60 Pro Asp Arg Phe Thr Gly Ser Gly
Ser Gly Thr Asp Phe Thr Leu Thr 65 70
75 80 Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr
Tyr Cys Gln Asn 85 90
95 Asp Tyr Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Ile
100 105 110 Lys Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 115
120 125 Glu Val Gln Leu Leu Glu Gln Ser
Gly Ala Glu Leu Val Arg Pro Gly 130 135
140 Thr Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala
Phe Thr Asn 145 150 155
160 Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His Gly Leu Glu Trp
165 170 175 Ile Gly Asp Ile
Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys 180
185 190 Phe Lys Gly Lys Ala Thr Leu Thr Ala
Asp Lys Ser Ser Ser Thr Ala 195 200
205 Tyr Met Gln Leu Ser Ser Leu Thr Phe Glu Asp Ser Ala Val
Tyr Phe 210 215 220
Cys Ala Arg Leu Arg Asn Trp Asp Glu Pro Met Asp Tyr Trp Gly Gln 225
230 235 240 Gly Thr Thr Val Thr
Val Ser Ser Gly Gly Gly Gly Ser Asp Val Gln 245
250 255 Leu Val Gln Ser Gly Ala Glu Val Lys Lys
Pro Gly Ala Ser Val Lys 260 265
270 Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr Thr Met
His 275 280 285 Trp
Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr Ile 290
295 300 Asn Pro Ser Arg Gly Tyr
Thr Asn Tyr Ala Asp Ser Val Lys Gly Arg 305 310
315 320 Phe Thr Ile Thr Thr Asp Lys Ser Thr Ser Thr
Ala Tyr Met Glu Leu 325 330
335 Ser Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr Tyr Cys Ala Arg Tyr
340 345 350 Tyr Asp
Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr Thr Val 355
360 365 Thr Val Ser Ser Gly Glu Gly
Thr Ser Thr Gly Ser Gly Gly Ser Gly 370 375
380 Gly Ser Gly Gly Ala Asp Asp Ile Val Leu Thr Gln
Ser Pro Ala Thr 385 390 395
400 Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser
405 410 415 Gln Ser Val
Ser Tyr Met Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala 420
425 430 Pro Lys Arg Trp Ile Tyr Asp Thr
Ser Lys Val Ala Ser Gly Val Pro 435 440
445 Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser
Leu Thr Ile 450 455 460
Asn Ser Leu Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp 465
470 475 480 Ser Ser Asn Pro
Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 485
490 495 110125PRTARTIFICIAL
SEQUENCEHuman-like VH VH region 110Glu Val Gln Leu Leu Glu Ser Gly Gly
Gly Leu Val Gln Pro Gly Gly 1 5 10
15 Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn
Thr Tyr 20 25 30
Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45 Ala Arg Ile Arg
Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp 50
55 60 Ser Val Lys Asp Arg Phe Thr Ile
Ser Arg Asp Asp Ser Lys Asn Thr 65 70
75 80 Ala Tyr Leu Gln Met Asn Asn Leu Lys Thr Glu Asp
Thr Ala Val Tyr 85 90
95 Tyr Cys Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe
100 105 110 Ala Tyr Trp
Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120
125 111375DNAartificial sequenceHuman-like VH VH region
111gaggtgcagc tgctcgagtc tggaggagga ttggtgcagc ctggagggtc attgaaactc
60tcatgtgcag cctctggatt caccttcaat acctacgcca tgaactgggt ccgccaggct
120ccaggaaagg gtttggaatg ggttgctcgc ataagaagta aatataataa ttatgcaaca
180tattatgccg attcagtgaa agacaggttc accatctcca gagatgattc aaaaaacact
240gcctatctac aaatgaacaa cttgaaaact gaggacactg ccgtgtacta ctgtgtgaga
300catgggaact tcggtaatag ctacgtttcc tggtttgctt actggggcca agggactctg
360gtcaccgtct cctca
37511214PRTMUS MUSCULUSmisc_feature(1)..()CDR3 of VH 112His Gly Asn Phe
Gly Asn Ser Tyr Val Ser Trp Phe Ala Tyr 1 5
10 1136PRTmus musculusmisc_feature(1)..(6)VH short
CDR3 short CDR3 of SEQ ID NO 112 113Val Ser Trp Phe Ala Tyr 1
5 11419PRTmus musculusmisc_feature(1)..(19)CDR2 of VH 114Arg Ile
Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp Ser 1 5
10 15 Val Lys Asp 1155PRTmus
musculusmisc_feature(1)..(5)CDR1 of VH 115Thr Tyr Ala Met Asn 1
5 1169PRTmus musculusmisc_feature(1)..(9)CDR3 of VL 116Ala Leu Trp
Tyr Ser Asn Leu Trp Val 1 5 1177PRTmus
musculusmisc_feature(1)..(7)CDR2 of VL 117Gly Thr Asn Lys Arg Ala Pro 1
5 11814PRTmus musculusmisc_feature(1)..(14)CDR1 of
VL 118Arg Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn 1
5 10 11912PRTmus
musculusmisc_feature(1)..(12)CDR3 of VH 119Pro Gln Val His Tyr Asp Tyr
Asn Gly Phe Pro Tyr 1 5 10
12017PRTmus musculusmisc_feature(1)..(17)CDR2 of VH 120Tyr Ile Asn Pro
Ser Ser Ala Tyr Thr Asn Tyr Asn Gln Lys Phe Lys 1 5
10 15 Asp 12110PRTmus
musculusmisc_feature(1)..(10)CDR1 of VH 121Gly Tyr Thr Phe Thr Arg Ser
Thr Met His 1 5 10 122509PRTartificial
sequence2G8 LHx SEQ ID NO 146 ; bispecific single chain antibody
122Asp Val Val Met Thr Gln Thr Pro Leu Thr Leu Ser Val Thr Ile Gly 1
5 10 15 Gln Pro Ala Ser
Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser 20
25 30 Asn Gly Lys Thr Tyr Leu Asn Trp Ile
Leu Gln Arg Pro Gly Gln Ser 35 40
45 Pro Lys Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp Ser Gly
Val Pro 50 55 60
Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65
70 75 80 Ser Arg Val Glu Ala
Glu Asp Leu Gly Val Tyr Tyr Cys Val Gln Gly 85
90 95 Thr His Phe Pro Leu Thr Phe Gly Ala Gly
Thr Lys Leu Glu Leu Lys 100 105
110 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
Glu 115 120 125 Val
Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Ser Gly Ala Ser 130
135 140 Val Lys Leu Ser Cys Thr
Ala Ser Gly Phe Asn Ile Lys Asp Tyr Tyr 145 150
155 160 Leu His Trp Val Lys Gln Arg Pro Glu Gln Gly
Leu Glu Trp Ile Ala 165 170
175 Trp Ile Asp Leu Glu Asn Gly Asp Ile Lys Tyr Ala Pro Lys Phe Gln
180 185 190 Gly Lys
Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn Thr Ala Tyr Leu 195
200 205 Gln Leu Ser Ser Leu Thr Ser
Glu Asp Thr Ala Val Tyr Tyr Cys Asn 210 215
220 Pro Tyr Tyr Tyr Gly Ser Asn Tyr Asp Tyr Ala Met
Asp Tyr Trp Gly 225 230 235
240 Gln Gly Thr Ser Val Thr Val Ser Ser Gly Gly Gly Gly Ser Glu Val
245 250 255 Lys Leu Leu
Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu 260
265 270 Lys Leu Ser Cys Ala Ala Ser Gly
Phe Thr Phe Asn Thr Tyr Ala Met 275 280
285 Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
Val Ala Arg 290 295 300
Ile Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp Ser Val 305
310 315 320 Lys Asp Arg Phe
Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr Ala Tyr 325
330 335 Leu Gln Met Asn Asn Leu Lys Thr Glu
Asp Thr Ala Val Tyr Tyr Cys 340 345
350 Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe
Ala Tyr 355 360 365
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser 370
375 380 Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Glu Leu Val Val Thr Gln 385 390
395 400 Glu Ser Ala Leu Thr Thr Ser Pro Gly Glu
Thr Val Thr Leu Thr Cys 405 410
415 Arg Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn Trp
Val 420 425 430 Gln
Glu Lys Pro Asp His Leu Phe Thr Gly Leu Ile Gly Gly Thr Asn 435
440 445 Lys Arg Ala Pro Gly Val
Pro Ala Arg Phe Ser Gly Ser Leu Ile Gly 450 455
460 Asp Lys Ala Ala Leu Thr Ile Thr Gly Ala Gln
Thr Glu Asp Glu Ala 465 470 475
480 Ile Tyr Phe Cys Ala Leu Trp Tyr Ser Asn Leu Trp Val Phe Gly Gly
485 490 495 Gly Thr
Lys Leu Thr Val Leu His His His His His His 500
505 1231527DNAARTIFICIAL SEQUENCE2G8 LHxSEQ ID NO 146 ;
bispecific single chain antibody 123gatgttgtga tgacccagac tccactcact
ttgtcggtta ccattggaca accagcctct 60atctcttgca agtcaagtca gagcctctta
tatagtaatg gaaaaaccta tttgaactgg 120atattacaga ggccaggcca gtctccaaag
cgcctaatct atctggtgtc taaactggac 180tctggagtcc ctgacaggtt cactggcagt
ggatcaggaa cagattttac gctgaaaatc 240agcagagtgg aggctgagga tttgggagtt
tattactgcg tgcaaggtac acattttcct 300ctcacgttcg gtgctgggac caagctggag
ctgaaaggtg gtggtggttc tggcggcggc 360ggctccggtg gtggtggttc tgaggttcag
ctgcagcagt ctggggcaga gcttgtgagg 420tcaggggcct cagtcaagtt gtcctgcaca
gcttctggct tcaacattaa agactactat 480ttgcactggg tgaagcagag gcctgaacag
ggcctggagt ggattgcctg gattgatctt 540gagaatggtg atattaaata tgccccgaag
tttcagggca aggccactat aactgcagac 600acatcctcca acacagccta cctgcagctc
agcagcctga catctgagga cactgccgtc 660tattactgta atccctatta ctacggtagt
aactacgact atgctatgga ctactggggt 720caaggaacct cagtcaccgt ctcctccgga
ggtggtggat ccgaggtgaa gcttctcgag 780tctggaggag gattggtgca gcctggaggg
tcattgaaac tctcatgtgc agcctctgga 840ttcaccttca atacctacgc catgaactgg
gtccgccagg ctccaggaaa gggtttggaa 900tgggttgctc gcataagaag taaatataat
aattatgcaa catattatgc cgattcagtg 960aaagacaggt tcaccatctc cagagatgat
tcaaaaaaca ctgcctatct acaaatgaac 1020aacttgaaaa ctgaggacac tgccgtgtac
tactgtgtga gacatgggaa cttcggtaat 1080agctacgttt cctggtttgc ttactggggc
caagggactc tggtcaccgt ctcctcaggt 1140ggtggtggtt ctggcggcgg cggctccggt
ggtggtggtt ctgagctcgt tgtgactcag 1200gaatctgcac tcaccacatc acctggtgaa
acagtcacac tcacttgtcg ctcaagtact 1260ggggctgtta caactagtaa ctatgccaac
tgggtccaag aaaaaccaga tcatttattc 1320actggtctaa taggtggtac caacaagcga
gcaccaggtg tgcctgccag attctcaggc 1380tccctgattg gagacaaggc tgccctcacc
atcacagggg cacagactga ggatgaggca 1440atatatttct gtgctctatg gtacagcaac
ctctgggtgt tcggtggagg aaccaaactg 1500actgtcctac atcatcacca tcatcat
1527124508PRTartificial sequence5-10
LHxSEQ ID NO 146 ; bispecific single chain antibody 124Glu Leu Val
Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala Gly 1 5
10 15 Glu Lys Val Thr Met Ser Cys Lys
Ser Ser Gln Ser Leu Leu Asn Ser 20 25
30 Gly Asn Gln Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys
Pro Gly Gln 35 40 45
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50
55 60 Pro Asp Arg Phe
Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70
75 80 Ile Ser Ser Val Gln Ala Glu Asp Leu
Ala Val Tyr Tyr Cys Gln Asn 85 90
95 Asp Tyr Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu
Glu Ile 100 105 110
Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
115 120 125 Glu Val Gln Leu
Leu Glu Gln Ser Gly Ala Glu Leu Val Arg Pro Gly 130
135 140 Thr Ser Val Lys Ile Ser Cys Lys
Ala Ser Gly Tyr Ala Phe Thr Asn 145 150
155 160 Tyr Trp Leu Gly Trp Val Lys Gln Arg Pro Gly His
Gly Leu Glu Trp 165 170
175 Ile Gly Asp Ile Phe Pro Gly Ser Gly Asn Ile His Tyr Asn Glu Lys
180 185 190 Phe Lys Gly
Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala 195
200 205 Tyr Met Gln Leu Ser Ser Leu Thr
Phe Glu Asp Ser Ala Val Tyr Phe 210 215
220 Cys Ala Arg Leu Arg Asn Trp Asp Glu Pro Met Asp Tyr
Trp Gly Gln 225 230 235
240 Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Glu Val Lys
245 250 255 Leu Leu Glu Ser
Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Lys 260
265 270 Leu Ser Cys Ala Ala Ser Gly Phe Thr
Phe Asn Thr Tyr Ala Met Asn 275 280
285 Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala
Arg Ile 290 295 300
Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp Ser Val Lys 305
310 315 320 Asp Arg Phe Thr Ile
Ser Arg Asp Asp Ser Lys Asn Thr Ala Tyr Leu 325
330 335 Gln Met Asn Asn Leu Lys Thr Glu Asp Thr
Ala Val Tyr Tyr Cys Val 340 345
350 Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe Ala Tyr
Trp 355 360 365 Gly
Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly 370
375 380 Gly Gly Gly Ser Gly Gly
Gly Gly Ser Glu Leu Val Val Thr Gln Glu 385 390
395 400 Ser Ala Leu Thr Thr Ser Pro Gly Glu Thr Val
Thr Leu Thr Cys Arg 405 410
415 Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn Trp Val Gln
420 425 430 Glu Lys
Pro Asp His Leu Phe Thr Gly Leu Ile Gly Gly Thr Asn Lys 435
440 445 Arg Ala Pro Gly Val Pro Ala
Arg Phe Ser Gly Ser Leu Ile Gly Asp 450 455
460 Lys Ala Ala Leu Thr Ile Thr Gly Ala Gln Thr Glu
Asp Glu Ala Ile 465 470 475
480 Tyr Phe Cys Ala Leu Trp Tyr Ser Asn Leu Trp Val Phe Gly Gly Gly
485 490 495 Thr Lys Leu
Thr Val Leu His His His His His His 500 505
1251524DNAARTIFICIAL SEQUENCE5-10 LHxSEQ ID NO 146 ; bispecific
single chain antibody 125gagctcgtga tgacacagtc tccatcctcc ctgactgtga
cagcaggaga gaaggtcact 60atgagctgca agtccagtca gagtctgtta aacagtggaa
atcaaaagaa ctacttgacc 120tggtaccagc agaaaccagg gcagcctcct aaactgttga
tctactgggc atccactagg 180gaatctgggg tccctgatcg cttcacaggc agtggatctg
gaacagattt cactctcacc 240atcagcagtg tgcaggctga agacctggca gtttattact
gtcagaatga ttatagttat 300ccgctcacgt tcggtgctgg gaccaagctt gagatcaaag
gtggtggtgg ttctggcggc 360ggcggctccg gtggtggtgg ttctgaggtg cagctgctcg
agcagtctgg agctgagctg 420gtaaggcctg ggacttcagt gaagatatcc tgcaaggctt
ctggatacgc cttcactaac 480tactggctag gttgggtaaa gcagaggcct ggacatggac
ttgagtggat tggagatatt 540ttccctggaa gtggtaatat ccactacaat gagaagttca
agggcaaagc cacactgact 600gcagacaaat cttcgagcac agcctatatg cagctcagta
gcctgacatt tgaggactct 660gctgtctatt tctgtgcaag actgaggaac tgggacgagc
ctatggacta ctggggccaa 720gggaccacgg tcaccgtctc ctccggaggt ggtggatccg
aggtgaagct tctcgagtct 780ggaggaggat tggtgcagcc tggagggtca ttgaaactct
catgtgcagc ctctggattc 840accttcaata cctacgccat gaactgggtc cgccaggctc
caggaaaggg tttggaatgg 900gttgctcgca taagaagtaa atataataat tatgcaacat
attatgccga ttcagtgaaa 960gacaggttca ccatctccag agatgattca aaaaacactg
cctatctaca aatgaacaac 1020ttgaaaactg aggacactgc cgtgtactac tgtgtgagac
atgggaactt cggtaatagc 1080tacgtttcct ggtttgctta ctggggccaa gggactctgg
tcaccgtctc ctcaggtggt 1140ggtggttctg gcggcggcgg ctccggtggt ggtggttctg
agctcgttgt gactcaggaa 1200tctgcactca ccacatcacc tggtgaaaca gtcacactca
cttgtcgctc aagtactggg 1260gctgttacaa ctagtaacta tgccaactgg gtccaagaaa
aaccagatca tttattcact 1320ggtctaatag gtggtaccaa caagcgagca ccaggtgtgc
ctgccagatt ctcaggctcc 1380ctgattggag acaaggctgc cctcaccatc acaggggcac
agactgagga tgaggcaata 1440tatttctgtg ctctatggta cagcaacctc tgggtgttcg
gtggaggaac caaactgact 1500gtcctacatc atcaccatca tcat
1524126372DNAhybridomamisc_feature(1)..(372)FN18 VH
VH region of monoclonal antibody FN18 126caggtccagc tgcagcagtc tgaagctgaa
ctggcaagac ctggggcctc agtgaagatg 60tcctgcaagg cttctggcta cacctttact
gactacacga tacactggtt aaaacagagg 120cctggacagg gtctggactg gattggatat
tttaatccta gcagtgaatc tactgaatac 180aatcggaaat tcaaggacag gaccatattg
actgcagaca gatcctcaac cacagcctac 240atgcaactga gcagcctgac atctgaggac
tctgcggtct attactgttc aaggaaaggg 300gagaaactac ttggtaaccg ttactggtac
ttcgatgtct ggggcgcagg gacctcggtc 360accgtctcct ca
372127124PRThybridomamisc_feature(1)..(124)FN18 VH VH region of
monoclonal antibody FN18 127Gln Val Gln Leu Gln Gln Ser Glu Ala Glu Leu
Ala Arg Pro Gly Ala 1 5 10
15 Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
20 25 30 Thr Ile
His Trp Leu Lys Gln Arg Pro Gly Gln Gly Leu Asp Trp Ile 35
40 45 Gly Tyr Phe Asn Pro Ser Ser
Glu Ser Thr Glu Tyr Asn Arg Lys Phe 50 55
60 Lys Asp Arg Thr Ile Leu Thr Ala Asp Arg Ser Ser
Thr Thr Ala Tyr 65 70 75
80 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95 Ser Arg Lys
Gly Glu Lys Leu Leu Gly Asn Arg Tyr Trp Tyr Phe Asp 100
105 110 Val Trp Gly Ala Gly Thr Ser Val
Thr Val Ser Ser 115 120
128339DNAHYBRIDOMAmisc_feature(1)..(339)FN18 VL VL region of monoclonal
antibody FN18 128gacattgtga tgtcacagtc tccatcctcc ctagctgtgt cagttggaga
gaaggttact 60atgagctgca agtccagtca gagcctttta tatagtagca atcaaaagaa
ctacttggcc 120tggtaccagc agaagccagg gcagtctcct aaattgctga ttaactgggc
atccaccagg 180gaatctgggg tccctgatcg cttcacaggc agtggatcta ggacagattt
cactctcacc 240atcagcagtg tgaaggctga agacctggca gtttatttct gtcagcaatt
ttatagttat 300cctccgacgt tcggtggagg caccaagctg gaaatcaaa
339129113PRThybridomamisc_feature(1)..(113)FN18 VL VL region
of monoclonal antibody FN18 129Asp Ile Val Met Ser Gln Ser Pro Ser Ser
Leu Ala Val Ser Val Gly 1 5 10
15 Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Tyr
Ser 20 25 30 Ser
Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35
40 45 Ser Pro Lys Leu Leu Ile
Asn Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55
60 Pro Asp Arg Phe Thr Gly Ser Gly Ser Arg Thr
Asp Phe Thr Leu Thr 65 70 75
80 Ile Ser Ser Val Lys Ala Glu Asp Leu Ala Val Tyr Phe Cys Gln Gln
85 90 95 Phe Tyr
Ser Tyr Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile 100
105 110 Lys 130756DNAARTIFICIAL
SEQUENCEFN18 VH-VL scFv ; single chain Fv 130caggtccagc tgcagcagtc
tgaagctgaa ctggcaagac ctggggcctc agtgaagatg 60tcctgcaagg cttctggcta
cacctttact gactacacga tacactggtt aaaacagagg 120cctggacagg gtctggactg
gattggatat tttaatccta gcagtgaatc tactgaatac 180aatcggaaat tcaaggacag
gaccatattg actgcagaca gatcctcaac cacagcctac 240atgcaactga gcagcctgac
atctgaggac tctgcggtct attactgttc aaggaaaggg 300gagaaactac ttggtaaccg
ttactggtac ttcgatgtct ggggcgcagg gacctcggtc 360accgtctcct caggtggtgg
tggttctggc ggcggcggct ccggtggtgg tggttctgac 420attgtgatgt cacagtctcc
atcctcccta gctgtgtcag ttggagagaa ggttactatg 480agctgcaagt ccagtcagag
ccttttatat agtagcaatc aaaagaacta cttggcctgg 540taccagcaga agccagggca
gtctcctaaa ttgctgatta actgggcatc caccagggaa 600tctggggtcc ctgatcgctt
cacaggcagt ggatctagga cagatttcac tctcaccatc 660agcagtgtga aggctgaaga
cctggcagtt tatttctgtc agcaatttta tagttatcct 720ccgacgttcg gtggaggcac
caagctggaa atcaaa 756131252PRTartificial
sequenceFN18 VH-VL scFv ; single chain Fv 131Gln Val Gln Leu Gln Gln Ser
Glu Ala Glu Leu Ala Arg Pro Gly Ala 1 5
10 15 Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr
Thr Phe Thr Asp Tyr 20 25
30 Thr Ile His Trp Leu Lys Gln Arg Pro Gly Gln Gly Leu Asp Trp
Ile 35 40 45 Gly
Tyr Phe Asn Pro Ser Ser Glu Ser Thr Glu Tyr Asn Arg Lys Phe 50
55 60 Lys Asp Arg Thr Ile Leu
Thr Ala Asp Arg Ser Ser Thr Thr Ala Tyr 65 70
75 80 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser
Ala Val Tyr Tyr Cys 85 90
95 Ser Arg Lys Gly Glu Lys Leu Leu Gly Asn Arg Tyr Trp Tyr Phe Asp
100 105 110 Val Trp
Gly Ala Gly Thr Ser Val Thr Val Ser Ser Gly Gly Gly Gly 115
120 125 Ser Gly Gly Gly Gly Ser Gly
Gly Gly Gly Ser Asp Ile Val Met Ser 130 135
140 Gln Ser Pro Ser Ser Leu Ala Val Ser Val Gly Glu
Lys Val Thr Met 145 150 155
160 Ser Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser Ser Asn Gln Lys Asn
165 170 175 Tyr Leu Ala
Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu 180
185 190 Ile Asn Trp Ala Ser Thr Arg Glu
Ser Gly Val Pro Asp Arg Phe Thr 195 200
205 Gly Ser Gly Ser Arg Thr Asp Phe Thr Leu Thr Ile Ser
Ser Val Lys 210 215 220
Ala Glu Asp Leu Ala Val Tyr Phe Cys Gln Gln Phe Tyr Ser Tyr Pro 225
230 235 240 Pro Thr Phe Gly
Gly Gly Thr Lys Leu Glu Ile Lys 245 250
132756DNAARTIFICIAL SEQUENCEFN18 VL-VH scFv ; single chain Fv
132gacattgtga tgtcacagtc tccatcctcc ctagctgtgt cagttggaga gaaggttact
60atgagctgca agtccagtca gagcctttta tatagtagca atcaaaagaa ctacttggcc
120tggtaccagc agaagccagg gcagtctcct aaattgctga ttaactgggc atccaccagg
180gaatctgggg tccctgatcg cttcacaggc agtggatcta ggacagattt cactctcacc
240atcagcagtg tgaaggctga agacctggca gtttatttct gtcagcaatt ttatagttat
300cctccgacgt tcggtggagg caccaagctg gaaatcaaag gtggtggtgg ttctggcggc
360ggcggctccg gtggtggtgg ttctcaggtc cagctgcagc agtctgaagc tgaactggca
420agacctgggg cctcagtgaa gatgtcctgc aaggcttctg gctacacctt tactgactac
480acgatacact ggttaaaaca gaggcctgga cagggtctgg actggattgg atattttaat
540cctagcagtg aatctactga atacaatcgg aaattcaagg acaggaccat attgactgca
600gacagatcct caaccacagc ctacatgcaa ctgagcagcc tgacatctga ggactctgcg
660gtctattact gttcaaggaa aggggagaaa ctacttggta accgttactg gtacttcgat
720gtctggggcg cagggacctc ggtcaccgtc tcctca
756133252PRTartificial sequenceFN18 VL-VH scFv ; single chain Fv 133Asp
Ile Val Met Ser Gln Ser Pro Ser Ser Leu Ala Val Ser Val Gly 1
5 10 15 Glu Lys Val Thr Met Ser
Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser 20
25 30 Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr
Gln Gln Lys Pro Gly Gln 35 40
45 Ser Pro Lys Leu Leu Ile Asn Trp Ala Ser Thr Arg Glu Ser
Gly Val 50 55 60
Pro Asp Arg Phe Thr Gly Ser Gly Ser Arg Thr Asp Phe Thr Leu Thr 65
70 75 80 Ile Ser Ser Val Lys
Ala Glu Asp Leu Ala Val Tyr Phe Cys Gln Gln 85
90 95 Phe Tyr Ser Tyr Pro Pro Thr Phe Gly Gly
Gly Thr Lys Leu Glu Ile 100 105
110 Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
Ser 115 120 125 Gln
Val Gln Leu Gln Gln Ser Glu Ala Glu Leu Ala Arg Pro Gly Ala 130
135 140 Ser Val Lys Met Ser Cys
Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 145 150
155 160 Thr Ile His Trp Leu Lys Gln Arg Pro Gly Gln
Gly Leu Asp Trp Ile 165 170
175 Gly Tyr Phe Asn Pro Ser Ser Glu Ser Thr Glu Tyr Asn Arg Lys Phe
180 185 190 Lys Asp
Arg Thr Ile Leu Thr Ala Asp Arg Ser Ser Thr Thr Ala Tyr 195
200 205 Met Gln Leu Ser Ser Leu Thr
Ser Glu Asp Ser Ala Val Tyr Tyr Cys 210 215
220 Ser Arg Lys Gly Glu Lys Leu Leu Gly Asn Arg Tyr
Trp Tyr Phe Asp 225 230 235
240 Val Trp Gly Ala Gly Thr Ser Val Thr Val Ser Ser 245
250 134105PRTHOMO
SAPIENSmisc_feature(1)..(105)CD3 epsilon extracellular portion 134Gln Asp
Gly Asn Glu Glu Met Gly Gly Ile Thr Gln Thr Pro Tyr Lys 1 5
10 15 Val Ser Ile Ser Gly Thr Thr
Val Ile Leu Thr Cys Pro Gln Tyr Pro 20 25
30 Gly Ser Glu Ile Leu Trp Gln His Asn Asp Lys Asn
Ile Gly Gly Asp 35 40 45
Glu Asp Asp Lys Asn Ile Gly Ser Asp Glu Asp His Leu Ser Leu Lys
50 55 60 Glu Phe Ser
Glu Leu Glu Gln Ser Gly Tyr Tyr Val Cys Tyr Pro Arg 65
70 75 80 Gly Ser Lys Pro Glu Asp Ala
Asn Phe Tyr Leu Tyr Leu Arg Ala Arg 85
90 95 Val Cys Glu Asn Cys Met Glu Met Asp
100 105 13596PRTCYNOMOLGUSmisc_feature(1)..(96)CD3
epsilon extracellular portion FN18+ 135Gln Asp Gly Asn Glu Glu Met Gly
Ser Ile Thr Gln Thr Pro Tyr Gln 1 5 10
15 Val Ser Ile Ser Gly Thr Thr Val Ile Leu Thr Cys Ser
Gln His Leu 20 25 30
Gly Ser Glu Ala Gln Trp Gln His Asn Gly Lys Asn Lys Glu Asp Ser
35 40 45 Gly Asp Arg Leu
Phe Leu Pro Glu Phe Ser Glu Met Glu Gln Ser Gly 50
55 60 Tyr Tyr Val Cys Tyr Pro Arg Gly
Ser Asn Pro Glu Asp Ala Ser His 65 70
75 80 His Leu Tyr Leu Lys Ala Arg Val Cys Glu Asn Cys
Met Glu Met Asp 85 90
95 13696PRTCYNOMOLGUSmisc_feature(1)..(96)CD3 epsilon extracellular
portion FN18- 136Gln Asp Gly Asn Glu Glu Met Gly Ser Ile Thr Gln Thr Pro
Tyr Gln 1 5 10 15
Val Ser Ile Ser Gly Thr Thr Val Ile Leu Thr Cys Ser Gln His Leu
20 25 30 Gly Ser Glu Ala Gln
Trp Gln His Asn Gly Lys Asn Lys Gly Asp Ser 35
40 45 Gly Asp Gln Leu Phe Leu Pro Glu Phe
Ser Glu Met Glu Gln Ser Gly 50 55
60 Tyr Tyr Val Cys Tyr Pro Arg Gly Ser Asn Pro Glu Asp
Ala Ser His 65 70 75
80 His Leu Tyr Leu Lys Ala Arg Val Cys Glu Asn Cys Met Glu Met Asp
85 90 95 137242PRTHOMO
SAPIENSmisc_feature(1)..(242)EpCAM extracellular portion 137Gln Glu Glu
Cys Val Cys Glu Asn Tyr Lys Leu Ala Val Asn Cys Phe 1 5
10 15 Val Asn Asn Asn Arg Gln Cys Gln
Cys Thr Ser Val Gly Ala Gln Asn 20 25
30 Thr Val Ile Cys Ser Lys Leu Ala Ala Lys Cys Leu Val
Met Lys Ala 35 40 45
Glu Met Asn Gly Ser Lys Leu Gly Arg Arg Ala Lys Pro Glu Gly Ala 50
55 60 Leu Gln Asn Asn
Asp Gly Leu Tyr Asp Pro Asp Cys Asp Glu Ser Gly 65 70
75 80 Leu Phe Lys Ala Lys Gln Cys Asn Gly
Thr Ser Thr Cys Trp Cys Val 85 90
95 Asn Thr Ala Gly Val Arg Arg Thr Asp Lys Asp Thr Glu Ile
Thr Cys 100 105 110
Ser Glu Arg Val Arg Thr Tyr Trp Ile Ile Ile Glu Leu Lys His Lys
115 120 125 Ala Arg Glu Lys
Pro Tyr Asp Ser Lys Ser Leu Arg Thr Ala Leu Gln 130
135 140 Lys Glu Ile Thr Thr Arg Tyr Gln
Leu Asp Pro Lys Phe Ile Thr Ser 145 150
155 160 Ile Leu Tyr Glu Asn Asn Val Ile Thr Ile Asp Leu
Val Gln Asn Ser 165 170
175 Ser Gln Lys Thr Gln Asn Asp Val Asp Ile Ala Asp Val Ala Tyr Tyr
180 185 190 Phe Glu Lys
Asp Val Lys Gly Glu Ser Leu Phe His Ser Lys Lys Met 195
200 205 Asp Leu Thr Val Asn Gly Glu Gln
Leu Asp Leu Asp Pro Gly Gln Thr 210 215
220 Leu Ile Tyr Tyr Val Asp Glu Lys Ala Pro Glu Phe Ser
Met Gln Gly 225 230 235
240 Leu Lys 138242PRTChimpanzeemisc_feature(1)..(242)EpCAM extracellular
portion 138Gln Glu Glu Cys Val Cys Glu Asn Tyr Lys Leu Ala Val Asn Cys
Phe 1 5 10 15 Val
Asn Asn Asn His Gln Cys Gln Cys Thr Ser Ile Gly Ala Gln Asn
20 25 30 Thr Val Ile Cys Ser
Lys Leu Ala Ala Lys Cys Leu Val Met Lys Ala 35
40 45 Glu Met Asn Gly Ser Lys Leu Gly Arg
Arg Ala Lys Pro Glu Gly Ala 50 55
60 Leu Gln Asn Asn Asp Gly Leu Tyr Asp Pro Asp Cys Asp
Glu Ser Gly 65 70 75
80 Leu Phe Lys Ala Lys Gln Cys Asn Gly Thr Ser Thr Cys Trp Cys Val
85 90 95 Asn Thr Ala Gly
Val Arg Arg Thr Asp Lys Asp Thr Glu Ile Thr Cys 100
105 110 Ser Glu Arg Val Arg Thr Tyr Trp Ile
Ile Ile Glu Leu Lys His Lys 115 120
125 Ala Arg Glu Lys Pro Tyr Asp Gly Lys Ser Leu Arg Thr Ala
Leu Gln 130 135 140
Lys Glu Ile Thr Thr Arg Tyr Gln Leu Asp Pro Lys Phe Ile Thr Asn 145
150 155 160 Ile Leu Tyr Glu Asn
Asn Val Ile Thr Ile Asp Leu Val Gln Asn Ser 165
170 175 Ser Gln Lys Thr Gln Asn Asp Val Asp Ile
Ala Asp Val Ala Tyr Tyr 180 185
190 Phe Glu Lys Asp Val Lys Gly Glu Ser Leu Phe His Ser Lys Lys
Met 195 200 205 Asp
Leu Thr Val Asn Gly Glu Gln Leu Asp Leu Asp Pro Gly Gln Thr 210
215 220 Leu Ile Tyr Tyr Val Asp
Glu Lys Ala Pro Glu Phe Ser Met Gln Gly 225 230
235 240 Leu Lys 139242PRTRhesus
monkeymisc_feature(1)..(242)EpCAM extracellular portion 139Gln Lys Glu
Cys Val Cys Glu Asn Tyr Lys Leu Ala Val Asn Cys Phe 1 5
10 15 Leu Asn Asp Asn Gly Gln Cys Gln
Cys Thr Ser Ile Gly Ala Gln Asn 20 25
30 Thr Val Leu Cys Ser Lys Leu Ala Ala Lys Cys Leu Val
Met Lys Ala 35 40 45
Glu Met Asn Gly Ser Lys Leu Gly Arg Arg Ala Lys Pro Glu Gly Ala 50
55 60 Leu Gln Asn Asn
Asp Gly Leu Tyr Asp Pro Asp Cys Asp Glu Ser Gly 65 70
75 80 Leu Phe Lys Ala Lys Gln Cys Asn Gly
Thr Ser Thr Cys Trp Cys Val 85 90
95 Asn Thr Ala Gly Val Arg Arg Thr Asp Lys Asp Thr Glu Ile
Thr Cys 100 105 110
Ser Glu Arg Val Arg Thr Tyr Trp Ile Ile Ile Glu Leu Lys His Lys
115 120 125 Ala Arg Glu Lys
Pro Tyr Asp Val Gln Ser Leu Arg Thr Ala Leu Glu 130
135 140 Glu Ala Ile Lys Thr Arg Tyr Gln
Leu Asp Pro Lys Phe Ile Thr Asn 145 150
155 160 Ile Leu Tyr Glu Asp Asn Val Ile Thr Ile Asp Leu
Val Gln Asn Ser 165 170
175 Ser Gln Lys Thr Gln Asn Asp Val Asp Ile Ala Asp Val Ala Tyr Tyr
180 185 190 Phe Glu Lys
Asp Val Lys Gly Glu Ser Leu Phe His Ser Lys Lys Met 195
200 205 Asp Leu Arg Val Asn Gly Glu Gln
Leu Asp Leu Asp Pro Gly Gln Thr 210 215
220 Leu Ile Tyr Tyr Val Asp Glu Lys Ala Pro Glu Phe Ser
Met Gln Gly 225 230 235
240 Leu Lys 140242PRTCHIMPANZEEmisc_feature(1)..(242)EpCAM extracellular
portion 140Gln Glu Glu Cys Val Cys Glu Asn Tyr Lys Leu Ala Val Asn Cys
Phe 1 5 10 15 Val
Asn Asn Asn His Gln Cys Gln Cys Thr Ser Ile Gly Ala Gln Asn
20 25 30 Thr Val Ile Cys Ser
Lys Leu Ala Ala Lys Cys Leu Val Met Lys Ala 35
40 45 Glu Met Asn Gly Ser Lys Leu Gly Arg
Arg Ala Lys Pro Glu Gly Ala 50 55
60 Leu Gln Asn Asn Asp Gly Leu Tyr Asp Pro Asp Cys Asp
Glu Ser Gly 65 70 75
80 Leu Phe Lys Ala Lys Gln Cys Asn Gly Thr Ser Thr Cys Trp Cys Val
85 90 95 Asn Thr Ala Gly
Val Arg Arg Thr Asp Lys Asp Thr Glu Ile Thr Cys 100
105 110 Ser Glu Arg Val Arg Thr Tyr Trp Ile
Ile Ile Glu Leu Lys His Lys 115 120
125 Ala Arg Glu Lys Pro Tyr Asp Gly Lys Ser Leu Arg Thr Ala
Leu Gln 130 135 140
Lys Glu Ile Thr Thr Arg Tyr Gln Leu Asp Pro Lys Phe Ile Thr Asn 145
150 155 160 Ile Leu Tyr Glu Asn
Asn Val Ile Thr Ile Asp Leu Val Gln Asn Ser 165
170 175 Ser Gln Lys Thr Gln Asn Asp Val Asp Ile
Ala Asp Val Ala Tyr Tyr 180 185
190 Phe Glu Lys Asp Val Lys Gly Glu Ser Leu Phe His Ser Lys Lys
Met 195 200 205 Asp
Leu Thr Val Asn Gly Glu Gln Leu Asp Leu Asp Pro Gly Gln Thr 210
215 220 Leu Ile Tyr Tyr Val Asp
Glu Lys Ala Pro Glu Phe Ser Met Gln Gly 225 230
235 240 Leu Lys 141242PRTRhesus
monkeymisc_feat(1)..(242)EpCAM extracellular portion 141Gln Lys Glu Cys
Val Cys Glu Asn Tyr Lys Leu Ala Val Asn Cys Phe 1 5
10 15 Leu Asn Asp Asn Gly Gln Cys Gln Cys
Thr Ser Ile Gly Ala Gln Asn 20 25
30 Thr Val Leu Cys Ser Lys Leu Ala Ala Lys Cys Leu Val Met
Lys Ala 35 40 45
Glu Met Asn Gly Ser Lys Leu Gly Arg Arg Ala Lys Pro Glu Gly Ala 50
55 60 Leu Gln Asn Asn Asp
Gly Leu Tyr Asp Pro Asp Cys Asp Glu Ser Gly 65 70
75 80 Leu Phe Lys Ala Lys Gln Cys Asn Gly Thr
Ser Thr Cys Trp Cys Val 85 90
95 Asn Thr Ala Gly Val Arg Arg Thr Asp Lys Asp Thr Glu Ile Thr
Cys 100 105 110 Ser
Glu Arg Val Arg Thr Tyr Trp Ile Ile Ile Glu Leu Lys His Lys 115
120 125 Ala Arg Glu Lys Pro Tyr
Asp Val Gln Ser Leu Arg Thr Ala Leu Glu 130 135
140 Glu Ala Ile Lys Thr Arg Tyr Gln Leu Asp Pro
Lys Phe Ile Thr Asn 145 150 155
160 Ile Leu Tyr Glu Asp Asn Val Ile Thr Ile Asp Leu Val Gln Asn Ser
165 170 175 Ser Gln
Lys Thr Gln Asn Asp Val Asp Ile Ala Asp Val Ala Tyr Tyr 180
185 190 Phe Glu Lys Asp Val Lys Gly
Glu Ser Leu Phe His Ser Lys Lys Met 195 200
205 Asp Leu Arg Val Asn Gly Glu Gln Leu Asp Leu Asp
Pro Gly Gln Thr 210 215 220
Leu Ile Tyr Tyr Val Asp Glu Lys Ala Pro Glu Phe Ser Met Gln Gly 225
230 235 240 Leu Lys
14289PRTHOMO SAPIENSmisc_feature(1)..(89)human CD3 gamma extracellular
portion 142Gln Ser Ile Lys Gly Asn His Leu Val Lys Val Tyr Asp Tyr Gln
Glu 1 5 10 15 Asp
Gly Ser Val Leu Leu Thr Cys Asp Ala Glu Ala Lys Asn Ile Thr
20 25 30 Trp Phe Lys Asp Gly
Lys Met Ile Gly Phe Leu Thr Glu Asp Lys Lys 35
40 45 Lys Trp Asn Leu Gly Ser Asn Ala Lys
Asp Pro Arg Gly Met Tyr Gln 50 55
60 Cys Lys Gly Ser Gln Asn Lys Ser Lys Pro Leu Gln Val
Tyr Tyr Arg 65 70 75
80 Met Cys Gln Asn Cys Ile Glu Leu Asn 85
14382PRTHOMO SAPIENSmisc_feature(1)..(82)human CD3 delta extracellular
portion 143Phe Lys Ile Pro Ile Glu Glu Leu Glu Asp Arg Val Phe Val Asn
Cys 1 5 10 15 Asn
Thr Ser Ile Thr Trp Val Glu Gly Thr Val Gly Thr Leu Leu Ser
20 25 30 Asp Ile Thr Arg Leu
Asp Leu Gly Lys Arg Ile Leu Asp Pro Arg Gly 35
40 45 Ile Tyr Arg Cys Asn Gly Thr Asp Ile
Tyr Lys Asp Lys Glu Ser Thr 50 55
60 Val Gln Val His Tyr Arg Met Cys Gln Ser Cys Val Glu
Leu Asp Pro 65 70 75
80 Ala Thr 14488PRTCYNOMOLGUSmisc_feature(1)..(88)cynomolgus CD3 gamma
extracellular portion 144Gln Ser Phe Glu Glu Asn Arg Lys Leu Asn Val Tyr
Asn Gln Glu Asp 1 5 10
15 Gly Ser Val Leu Leu Thr Cys His Val Lys Asn Thr Asn Ile Thr Trp
20 25 30 Phe Lys Glu
Gly Lys Met Ile Asp Ile Leu Thr Ala His Lys Asn Lys 35
40 45 Trp Asn Leu Gly Ser Asn Thr Lys
Asp Pro Arg Gly Val Tyr Gln Cys 50 55
60 Lys Gly Ser Lys Asp Lys Ser Lys Thr Leu Gln Val Tyr
Tyr Arg Met 65 70 75
80 Cys Gln Asn Cys Ile Glu Leu Asn 85
14582PRTCYNOMOLGUSmisc_feature(1)..(82)cynomolgus CD3 delta extracellular
portion 145Phe Lys Ile Pro Val Glu Glu Leu Glu Asp Arg Val Phe Val Lys
Cys 1 5 10 15 Asn
Thr Ser Val Thr Trp Val Glu Gly Thr Val Gly Thr Leu Leu Thr
20 25 30 Asn Asn Thr Arg Leu
Asp Leu Gly Lys Arg Ile Leu Asp Pro Arg Gly 35
40 45 Ile Tyr Arg Cys Asn Gly Thr Asp Ile
Tyr Lys Asp Lys Glu Ser Ala 50 55
60 Val Gln Val His Tyr Arg Met Cys Gln Asn Cys Val Glu
Leu Asp Pro 65 70 75
80 Ala Thr 146249PRTARTIFICIAL SEQUENCEHuman-like VH (SEQ ID NO 110) x
murine VL (SEQ ID NO 148) scFv ; single chain Fv 146Glu Val Gln Leu
Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5
10 15 Ser Leu Lys Leu Ser Cys Ala Ala Ser
Gly Phe Thr Phe Asn Thr Tyr 20 25
30 Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu
Trp Val 35 40 45
Ala Arg Ile Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp 50
55 60 Ser Val Lys Asp Arg
Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr 65 70
75 80 Ala Tyr Leu Gln Met Asn Asn Leu Lys Thr
Glu Asp Thr Ala Val Tyr 85 90
95 Tyr Cys Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp
Phe 100 105 110 Ala
Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly 115
120 125 Gly Ser Gly Gly Gly Gly
Ser Gly Gly Gly Gly Ser Glu Leu Val Val 130 135
140 Thr Gln Glu Ser Ala Leu Thr Thr Ser Pro Gly
Glu Thr Val Thr Leu 145 150 155
160 Thr Cys Arg Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn
165 170 175 Trp Val
Gln Glu Lys Pro Asp His Leu Phe Thr Gly Leu Ile Gly Gly 180
185 190 Thr Asn Lys Arg Ala Pro Gly
Val Pro Ala Arg Phe Ser Gly Ser Leu 195 200
205 Ile Gly Asp Lys Ala Ala Leu Thr Ile Thr Gly Ala
Gln Thr Glu Asp 210 215 220
Glu Ala Ile Tyr Phe Cys Ala Leu Trp Tyr Ser Asn Leu Trp Val Phe 225
230 235 240 Gly Gly Gly
Thr Lys Leu Thr Val Leu 245
147747DNAARTIFICIAL SEQUENCEHuman-like VH (SEQ ID NO 110) x murine VL
(SEQ ID NO 148) scFv ; single chain Fv 147gaggtgcagc tgctcgagtc
tggaggagga ttggtgcagc ctggagggtc attgaaactc 60tcatgtgcag cctctggatt
caccttcaat acctacgcca tgaactgggt ccgccaggct 120ccaggaaagg gtttggaatg
ggttgctcgc ataagaagta aatataataa ttatgcaaca 180tattatgccg attcagtgaa
agacaggttc accatctcca gagatgattc aaaaaacact 240gcctatctac aaatgaacaa
cttgaaaact gaggacactg ccgtgtacta ctgtgtgaga 300catgggaact tcggtaatag
ctacgtttcc tggtttgctt actggggcca agggactctg 360gtcaccgtct cctcaggtgg
tggtggttct ggcggcggcg gctccggtgg tggtggttct 420gagctcgttg tgactcagga
atctgcactc accacatcac ctggtgaaac agtcacactc 480acttgtcgct caagtactgg
ggctgttaca actagtaact atgccaactg ggtccaagaa 540aaaccagatc atttattcac
tggtctaata ggtggtacca acaagcgagc accaggtgtg 600cctgccagat tctcaggctc
cctgattgga gacaaggctg ccctcaccat cacaggggca 660cagactgagg atgaggcaat
atatttctgt gctctatggt acagcaacct ctgggtgttc 720ggtggaggaa ccaaactgac
tgtccta 747148109PRTartificial
sequencemurine VL 148Glu Leu Val Val Thr Gln Glu Ser Ala Leu Thr Thr Ser
Pro Gly Glu 1 5 10 15
Thr Val Thr Leu Thr Cys Arg Ser Ser Thr Gly Ala Val Thr Thr Ser
20 25 30 Asn Tyr Ala Asn
Trp Val Gln Glu Lys Pro Asp His Leu Phe Thr Gly 35
40 45 Leu Ile Gly Gly Thr Asn Lys Arg Ala
Pro Gly Val Pro Ala Arg Phe 50 55
60 Ser Gly Ser Leu Ile Gly Asp Lys Ala Ala Leu Thr Ile
Thr Gly Ala 65 70 75
80 Gln Thr Glu Asp Glu Ala Ile Tyr Phe Cys Ala Leu Trp Tyr Ser Asn
85 90 95 Leu Trp Val Phe
Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105
149327DNAARTIFICIAL SEQUENCEmurine VL 149gagctcgttg
tgactcagga atctgcactc accacatcac ctggtgaaac agtcacactc 60acttgtcgct
caagtactgg ggctgttaca actagtaact atgccaactg ggtccaagaa 120aaaccagatc
atttattcac tggtctaata ggtggtacca acaagcgagc accaggtgtg 180cctgccagat
tctcaggctc cctgattgga gacaaggctg ccctcaccat cacaggggca 240cagactgagg
atgaggcaat atatttctgt gctctatggt acagcaacct ctgggtgttc 300ggtggaggaa
ccaaactgac tgtccta
327150723DNAartificial sequenceCAIX LH scFv , single chain Fv
150gacattgtga tgacccagtc tcaaagattc atgtccacaa cagtaggaga cagggtcagc
60atcacctgca aggccagtca gaatgtggtt tctgctgttg cctggtatca acagaaacca
120ggacaatctc ctaaactact gatttactca gcatccaatc ggtacactgg agtccctgat
180cgcttcacag gcagtggatc tgggacagat ttcactctca ccattagcaa tatgcagtct
240gaagacctgg ctgatttttt ctgtcaacaa tatagcaact atccgtggac gttcggtgga
300ggcaccaagc tggaaatcaa aggtggtggt ggttctggcg gcggcggctc cggtggtggt
360ggttctgacg tgaagctcgt ggagtctggg ggaggcttag tgaagcttgg agggtccctg
420aaactctcct gtgcagcctc tggattcact ttcagtaact attacatgtc ttgggttcgc
480cagactccag agaagaggct ggagttggtc gcagccatta atagtgatgg tggtatcacc
540tactatctag acactgtgaa gggccgattc accatttcaa gagacaatgc caagaacacc
600ctgtacctgc aaatgagcag tctgaagtct gaggacacag ccttgtttta ctgtgcaaga
660caccgctcgg gctacttttc tatggactac tggggtcaag gaacctcagt caccgtctcc
720tcc
723151241PRTartificial sequenceCAIX LH scFv ; single chain Fv 151Asp Ile
Val Met Thr Gln Ser Gln Arg Phe Met Ser Thr Thr Val Gly 1 5
10 15 Asp Arg Val Ser Ile Thr Cys
Lys Ala Ser Gln Asn Val Val Ser Ala 20 25
30 Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro
Lys Leu Leu Ile 35 40 45
Tyr Ser Ala Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly
50 55 60 Ser Gly Ser
Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Met Gln Ser 65
70 75 80 Glu Asp Leu Ala Asp Phe Phe
Cys Gln Gln Tyr Ser Asn Tyr Pro Trp 85
90 95 Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
Gly Gly Gly Gly Ser 100 105
110 Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Val Lys Leu Val
Glu 115 120 125 Ser
Gly Gly Gly Leu Val Lys Leu Gly Gly Ser Leu Lys Leu Ser Cys 130
135 140 Ala Ala Ser Gly Phe Thr
Phe Ser Asn Tyr Tyr Met Ser Trp Val Arg 145 150
155 160 Gln Thr Pro Glu Lys Arg Leu Glu Leu Val Ala
Ala Ile Asn Ser Asp 165 170
175 Gly Gly Ile Thr Tyr Tyr Leu Asp Thr Val Lys Gly Arg Phe Thr Ile
180 185 190 Ser Arg
Asp Asn Ala Lys Asn Thr Leu Tyr Leu Gln Met Ser Ser Leu 195
200 205 Lys Ser Glu Asp Thr Ala Leu
Phe Tyr Cys Ala Arg His Arg Ser Gly 210 215
220 Tyr Phe Ser Met Asp Tyr Trp Gly Gln Gly Thr Ser
Val Thr Val Ser 225 230 235
240 Ser 152738DNAARTIFICIAL SEQUENCEEGFR21 LH scFv ; single chain Fv
152gacattgtgc tgacacagtc tcctgcttcc ttacctgtgt ctctggggca gagggccacc
60atctcatgca gggccagcca aagtgtcagt tcatctactt atagttatat acactggtac
120caacagaaac caggacagcc acccaaactc ctcatcacgt atgcatccaa cctagaatct
180ggggtccctg ccaggttcag tggcagtggg tctgggacag acttcaccct cgacatccat
240cctgtggagg aggatgattc ttcaacatat tactgtcagc acagttggga gattccattt
300acgttcggct cggggacaaa gttggaaata aaaggtggtg gtggttctgg cggcggcggc
360tccggtggtg gtggttctca ggttcagctg cagcagtctg gacctgatct ggtgaagcct
420ggggcctcag tgaagatgtc ctgcaaggct tctggacaca ctttcactga ctgtgttata
480atctgggtga aacagagagc tggacagggc cttgagtgga ttggacagat ttatccaggg
540actggtcgtt cttactacaa tgagattttc aagggcaagg ccacactgac tgcagacaaa
600tcctccaaca cagtccacat tcaactcagc agcctgacat ctgaggactc tgcggtctat
660ttctgtgccc tatctactct tattcacggg acctggtttt cttattgggg ccaagggact
720ctggtcactg tctcttcc
738153246PRTartificial sequenceEGFR21 LH scFv ; single chain Fv 153Asp
Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Pro Val Ser Leu Gly 1
5 10 15 Gln Arg Ala Thr Ile Ser
Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20
25 30 Thr Tyr Ser Tyr Ile His Trp Tyr Gln Gln
Lys Pro Gly Gln Pro Pro 35 40
45 Lys Leu Leu Ile Thr Tyr Ala Ser Asn Leu Glu Ser Gly Val
Pro Ala 50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asp Ile His 65
70 75 80 Pro Val Glu Glu Asp
Asp Ser Ser Thr Tyr Tyr Cys Gln His Ser Trp 85
90 95 Glu Ile Pro Phe Thr Phe Gly Ser Gly Thr
Lys Leu Glu Ile Lys Gly 100 105
110 Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln
Val 115 120 125 Gln
Leu Gln Gln Ser Gly Pro Asp Leu Val Lys Pro Gly Ala Ser Val 130
135 140 Lys Met Ser Cys Lys Ala
Ser Gly His Thr Phe Thr Asp Cys Val Ile 145 150
155 160 Ile Trp Val Lys Gln Arg Ala Gly Gln Gly Leu
Glu Trp Ile Gly Gln 165 170
175 Ile Tyr Pro Gly Thr Gly Arg Ser Tyr Tyr Asn Glu Ile Phe Lys Gly
180 185 190 Lys Ala
Thr Leu Thr Ala Asp Lys Ser Ser Asn Thr Val His Ile Gln 195
200 205 Leu Ser Ser Leu Thr Ser Glu
Asp Ser Ala Val Tyr Phe Cys Ala Leu 210 215
220 Ser Thr Leu Ile His Gly Thr Trp Phe Ser Tyr Trp
Gly Gln Gly Thr 225 230 235
240 Leu Val Thr Val Ser Ser 245 154726DNAARTIFICIAL
SEQUENCEEGFRvIII-LH scFv ; single chain Fv 154gatgttgtga tgacccagac
tccactcact ttgtcggtta ccattggaca accagcctct 60atctcttgca agtcaagtca
gagcctctta tatagtaatg gaaaaaccta tttgaattgg 120ttattacaga ggccaggcca
gtctccaaag cgcctaatct atctggtatc taaactggac 180tctggagtcc ctgacaggtt
cactggcagt ggatcaggaa cagattttac actgaaaatc 240agcagagtgg aggctgagga
tttgggaatt tattactgcg tgcaagatac acattttcct 300cagacattcg gtggaggcac
caagctggaa atcaaaggtg gtggtggttc tggcggcggc 360ggctccggtg gtggtggttc
tgaggtccag ctgcaacagt ctggacctga gctgctgaag 420cctggggctt cagtgaagat
atcctgcaag acttctggat acacattcac tgaatacacc 480atacactggg tgaagcagag
ccatggaaag agccttgagt ggattggagg tattgatcct 540aacaatggtg gtactatgta
taaccaaaaa ttcaagggca aggccacatt gactgtagac 600aagtcttcca gcacagccta
cacggacctc cgcagcctga cgtctgagga ttctgcagtc 660tattactgca caagagcaga
ggctatggac tactggggtc aaggaacctc agtcaccgtc 720tcctcc
726155242PRTartificial
sequenceEGFRvIII-LH scFv ; single chain Fv 155Asp Val Val Met Thr Gln Thr
Pro Leu Thr Leu Ser Val Thr Ile Gly 1 5
10 15 Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln
Ser Leu Leu Tyr Ser 20 25
30 Asn Gly Lys Thr Tyr Leu Asn Trp Leu Leu Gln Arg Pro Gly Gln
Ser 35 40 45 Pro
Lys Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp Ser Gly Val Pro 50
55 60 Asp Arg Phe Thr Gly Ser
Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70
75 80 Ser Arg Val Glu Ala Glu Asp Leu Gly Ile Tyr
Tyr Cys Val Gln Asp 85 90
95 Thr His Phe Pro Gln Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110 Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu 115
120 125 Val Gln Leu Gln Gln Ser Gly
Pro Glu Leu Leu Lys Pro Gly Ala Ser 130 135
140 Val Lys Ile Ser Cys Lys Thr Ser Gly Tyr Thr Phe
Thr Glu Tyr Thr 145 150 155
160 Ile His Trp Val Lys Gln Ser His Gly Lys Ser Leu Glu Trp Ile Gly
165 170 175 Gly Ile Asp
Pro Asn Asn Gly Gly Thr Met Tyr Asn Gln Lys Phe Lys 180
185 190 Gly Lys Ala Thr Leu Thr Val Asp
Lys Ser Ser Ser Thr Ala Tyr Thr 195 200
205 Asp Leu Arg Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr
Tyr Cys Thr 210 215 220
Arg Ala Glu Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val 225
230 235 240 Ser Ser
1561485DNAARTIFICIAL SEQUENCECAIX LHxSEQ ID NO 10 ; bispecific single
chain antibody 156gacattgtga tgacccagtc tcaaagattc atgtccacaa
cagtaggaga cagggtcagc 60atcacctgca aggccagtca gaatgtggtt tctgctgttg
cctggtatca acagaaacca 120ggacaatctc ctaaactact gatttactca gcatccaatc
ggtacactgg agtccctgat 180cgcttcacag gcagtggatc tgggacagat ttcactctca
ccattagcaa tatgcagtct 240gaagacctgg ctgatttttt ctgtcaacaa tatagcaact
atccgtggac gttcggtgga 300ggcaccaagc tggaaatcaa aggtggtggt ggttctggcg
gcggcggctc cggtggtggt 360ggttctgacg tgaagctcgt ggagtctggg ggaggcttag
tgaagcttgg agggtccctg 420aaactctcct gtgcagcctc tggattcact ttcagtaact
attacatgtc ttgggttcgc 480cagactccag agaagaggct ggagttggtc gcagccatta
atagtgatgg tggtatcacc 540tactatctag acactgtgaa gggccgattc accatttcaa
gagacaatgc caagaacacc 600ctgtacctgc aaatgagcag tctgaagtct gaggacacag
ccttgtttta ctgtgcaaga 660caccgctcgg gctacttttc tatggactac tggggtcaag
gaacctcagt caccgtctcc 720tccggaggtg gtggatccga ggtgaagctt ctcgagtctg
gaggaggatt ggtgcagcct 780aaagggtcat tgaaactctc atgtgcagcc tctggattca
ccttcaatac ctacgccatg 840aactgggtcc gccaggctcc aggaaagggt ttggaatggg
ttgctcgcat aagaagtaaa 900tataataatt atgcaacata ttatgccgat tcagtgaaag
acaggttcac catctccaga 960gatgattcac aaagcattct ctatctacaa atgaacaact
tgaaaactga ggacacagcc 1020atgtactact gtgtgagaca tgggaacttc ggtaatagct
acgtttcctg gtttgcttac 1080tggggccaag ggactctggt cactgtctct gcaggtggtg
gtggttctgg cggcggcggc 1140tccggtggtg gtggttctca ggctgttgtg actcaggaat
ctgcactcac cacatcacct 1200ggtgaaacag tcacactcac ttgtcgctca agtactgggg
ctgttacaac tagtaactat 1260gccaactggg tccaagaaaa accagatcat ttattcactg
gtctaatagg tggtaccaac 1320aagcgagctc caggtgtgcc tgccagattc tcaggctccc
tgattggaga caaggctgcc 1380ctcaccatca caggggcaca gactgaggat gaggcaatat
atttctgtgc tctatggtac 1440agcaacctct gggtgttcgg tggaggaacc aaactgactg
tccta 1485157495PRTartificial sequenceCAIX LHxSEQ ID NO
10 ; bispecific single chain antibody 157Asp Ile Val Met Thr Gln Ser
Gln Arg Phe Met Ser Thr Thr Val Gly 1 5
10 15 Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln
Asn Val Val Ser Ala 20 25
30 Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu
Ile 35 40 45 Tyr
Ser Ala Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly 50
55 60 Ser Gly Ser Gly Thr Asp
Phe Thr Leu Thr Ile Ser Asn Met Gln Ser 65 70
75 80 Glu Asp Leu Ala Asp Phe Phe Cys Gln Gln Tyr
Ser Asn Tyr Pro Trp 85 90
95 Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly Gly Gly Gly Ser
100 105 110 Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Asp Val Lys Leu Val Glu 115
120 125 Ser Gly Gly Gly Leu Val Lys
Leu Gly Gly Ser Leu Lys Leu Ser Cys 130 135
140 Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Tyr Met
Ser Trp Val Arg 145 150 155
160 Gln Thr Pro Glu Lys Arg Leu Glu Leu Val Ala Ala Ile Asn Ser Asp
165 170 175 Gly Gly Ile
Thr Tyr Tyr Leu Asp Thr Val Lys Gly Arg Phe Thr Ile 180
185 190 Ser Arg Asp Asn Ala Lys Asn Thr
Leu Tyr Leu Gln Met Ser Ser Leu 195 200
205 Lys Ser Glu Asp Thr Ala Leu Phe Tyr Cys Ala Arg His
Arg Ser Gly 210 215 220
Tyr Phe Ser Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser 225
230 235 240 Ser Gly Gly Gly
Gly Ser Glu Val Lys Leu Leu Glu Ser Gly Gly Gly 245
250 255 Leu Val Gln Pro Lys Gly Ser Leu Lys
Leu Ser Cys Ala Ala Ser Gly 260 265
270 Phe Thr Phe Asn Thr Tyr Ala Met Asn Trp Val Arg Gln Ala
Pro Gly 275 280 285
Lys Gly Leu Glu Trp Val Ala Arg Ile Arg Ser Lys Tyr Asn Asn Tyr 290
295 300 Ala Thr Tyr Tyr Ala
Asp Ser Val Lys Asp Arg Phe Thr Ile Ser Arg 305 310
315 320 Asp Asp Ser Gln Ser Ile Leu Tyr Leu Gln
Met Asn Asn Leu Lys Thr 325 330
335 Glu Asp Thr Ala Met Tyr Tyr Cys Val Arg His Gly Asn Phe Gly
Asn 340 345 350 Ser
Tyr Val Ser Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr 355
360 365 Val Ser Ala Gly Gly Gly
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly 370 375
380 Gly Ser Gln Ala Val Val Thr Gln Glu Ser Ala
Leu Thr Thr Ser Pro 385 390 395
400 Gly Glu Thr Val Thr Leu Thr Cys Arg Ser Ser Thr Gly Ala Val Thr
405 410 415 Thr Ser
Asn Tyr Ala Asn Trp Val Gln Glu Lys Pro Asp His Leu Phe 420
425 430 Thr Gly Leu Ile Gly Gly Thr
Asn Lys Arg Ala Pro Gly Val Pro Ala 435 440
445 Arg Phe Ser Gly Ser Leu Ile Gly Asp Lys Ala Ala
Leu Thr Ile Thr 450 455 460
Gly Ala Gln Thr Glu Asp Glu Ala Ile Tyr Phe Cys Ala Leu Trp Tyr 465
470 475 480 Ser Asn Leu
Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 485
490 495 1581500DNAARTIFICIAL SEQUENCEEGFR21
LHxSEQ ID NO 10 ; bispecific single chain antibody 158gacattgtgc
tgacacagtc tcctgcttcc ttacctgtgt ctctggggca gagggccacc 60atctcatgca
gggccagcca aagtgtcagt tcatctactt atagttatat acactggtac 120caacagaaac
caggacagcc acccaaactc ctcatcacgt atgcatccaa cctagaatct 180ggggtccctg
ccaggttcag tggcagtggg tctgggacag acttcaccct cgacatccat 240cctgtggagg
aggatgattc ttcaacatat tactgtcagc acagttggga gattccattt 300acgttcggct
cggggacaaa gttggaaata aaaggtggtg gtggttctgg cggcggcggc 360tccggtggtg
gtggttctca ggttcagctg cagcagtctg gacctgatct ggtgaagcct 420ggggcctcag
tgaagatgtc ctgcaaggct tctggacaca ctttcactga ctgtgttata 480atctgggtga
aacagagagc tggacagggc cttgagtgga ttggacagat ttatccaggg 540actggtcgtt
cttactacaa tgagattttc aagggcaagg ccacactgac tgcagacaaa 600tcctccaaca
cagtccacat tcaactcagc agcctgacat ctgaggactc tgcggtctat 660ttctgtgccc
tatctactct tattcacggg acctggtttt cttattgggg ccaagggact 720ctggtcactg
tctcttccgg aggtggtgga tccgaggtga agcttctcga gtctggagga 780ggattggtgc
agcctaaagg gtcattgaaa ctctcatgtg cagcctctgg attcaccttc 840aatacctacg
ccatgaactg ggtccgccag gctccaggaa agggtttgga atgggttgct 900cgcataagaa
gtaaatataa taattatgca acatattatg ccgattcagt gaaagacagg 960ttcaccatct
ccagagatga ttcacaaagc attctctatc tacaaatgaa caacttgaaa 1020actgaggaca
cagccatgta ctactgtgtg agacatggga acttcggtaa tagctacgtt 1080tcctggtttg
cttactgggg ccaagggact ctggtcactg tctctgcagg tggtggtggt 1140tctggcggcg
gcggctccgg tggtggtggt tctcaggctg ttgtgactca ggaatctgca 1200ctcaccacat
cacctggtga aacagtcaca ctcacttgtc gctcaagtac tggggctgtt 1260acaactagta
actatgccaa ctgggtccaa gaaaaaccag atcatttatt cactggtcta 1320ataggtggta
ccaacaagcg agctccaggt gtgcctgcca gattctcagg ctccctgatt 1380ggagacaagg
ctgccctcac catcacaggg gcacagactg aggatgaggc aatatatttc 1440tgtgctctat
ggtacagcaa cctctgggtg ttcggtggag gaaccaaact gactgtccta
1500159500PRTartificial sequenceEGFR21 LHxSEQ ID NO 10 ; bispecific
single chain antibody 159Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu
Pro Val Ser Leu Gly 1 5 10
15 Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
20 25 30 Thr Tyr
Ser Tyr Ile His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro 35
40 45 Lys Leu Leu Ile Thr Tyr Ala
Ser Asn Leu Glu Ser Gly Val Pro Ala 50 55
60 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr
Leu Asp Ile His 65 70 75
80 Pro Val Glu Glu Asp Asp Ser Ser Thr Tyr Tyr Cys Gln His Ser Trp
85 90 95 Glu Ile Pro
Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Gly 100
105 110 Gly Gly Gly Ser Gly Gly Gly Gly
Ser Gly Gly Gly Gly Ser Gln Val 115 120
125 Gln Leu Gln Gln Ser Gly Pro Asp Leu Val Lys Pro Gly
Ala Ser Val 130 135 140
Lys Met Ser Cys Lys Ala Ser Gly His Thr Phe Thr Asp Cys Val Ile 145
150 155 160 Ile Trp Val Lys
Gln Arg Ala Gly Gln Gly Leu Glu Trp Ile Gly Gln 165
170 175 Ile Tyr Pro Gly Thr Gly Arg Ser Tyr
Tyr Asn Glu Ile Phe Lys Gly 180 185
190 Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Asn Thr Val His
Ile Gln 195 200 205
Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Leu 210
215 220 Ser Thr Leu Ile His
Gly Thr Trp Phe Ser Tyr Trp Gly Gln Gly Thr 225 230
235 240 Leu Val Thr Val Ser Ser Gly Gly Gly Gly
Ser Glu Val Lys Leu Leu 245 250
255 Glu Ser Gly Gly Gly Leu Val Gln Pro Lys Gly Ser Leu Lys Leu
Ser 260 265 270 Cys
Ala Ala Ser Gly Phe Thr Phe Asn Thr Tyr Ala Met Asn Trp Val 275
280 285 Arg Gln Ala Pro Gly Lys
Gly Leu Glu Trp Val Ala Arg Ile Arg Ser 290 295
300 Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp
Ser Val Lys Asp Arg 305 310 315
320 Phe Thr Ile Ser Arg Asp Asp Ser Gln Ser Ile Leu Tyr Leu Gln Met
325 330 335 Asn Asn
Leu Lys Thr Glu Asp Thr Ala Met Tyr Tyr Cys Val Arg His 340
345 350 Gly Asn Phe Gly Asn Ser Tyr
Val Ser Trp Phe Ala Tyr Trp Gly Gln 355 360
365 Gly Thr Leu Val Thr Val Ser Ala Gly Gly Gly Gly
Ser Gly Gly Gly 370 375 380
Gly Ser Gly Gly Gly Gly Ser Gln Ala Val Val Thr Gln Glu Ser Ala 385
390 395 400 Leu Thr Thr
Ser Pro Gly Glu Thr Val Thr Leu Thr Cys Arg Ser Ser 405
410 415 Thr Gly Ala Val Thr Thr Ser Asn
Tyr Ala Asn Trp Val Gln Glu Lys 420 425
430 Pro Asp His Leu Phe Thr Gly Leu Ile Gly Gly Thr Asn
Lys Arg Ala 435 440 445
Pro Gly Val Pro Ala Arg Phe Ser Gly Ser Leu Ile Gly Asp Lys Ala 450
455 460 Ala Leu Thr Ile
Thr Gly Ala Gln Thr Glu Asp Glu Ala Ile Tyr Phe 465 470
475 480 Cys Ala Leu Trp Tyr Ser Asn Leu Trp
Val Phe Gly Gly Gly Thr Lys 485 490
495 Leu Thr Val Leu 500 1601488DNAARTIFICIAL
SEQUENCEEGFRvIII-LHxSEQ ID NO 10 ; bispecific single chain antibody
160gatgttgtga tgacccagac tccactcact ttgtcggtta ccattggaca accagcctct
60atctcttgca agtcaagtca gagcctctta tatagtaatg gaaaaaccta tttgaattgg
120ttattacaga ggccaggcca gtctccaaag cgcctaatct atctggtatc taaactggac
180tctggagtcc ctgacaggtt cactggcagt ggatcaggaa cagattttac actgaaaatc
240agcagagtgg aggctgagga tttgggaatt tattactgcg tgcaagatac acattttcct
300cagacattcg gtggaggcac caagctggaa atcaaaggtg gtggtggttc tggcggcggc
360ggctccggtg gtggtggttc tgaggtccag ctgcaacagt ctggacctga gctgctgaag
420cctggggctt cagtgaagat atcctgcaag acttctggat acacattcac tgaatacacc
480atacactggg tgaagcagag ccatggaaag agccttgagt ggattggagg tattgatcct
540aacaatggtg gtactatgta taaccaaaaa ttcaagggca aggccacatt gactgtagac
600aagtcttcca gcacagccta cacggacctc cgcagcctga cgtctgagga ttctgcagtc
660tattactgca caagagcaga ggctatggac tactggggtc aaggaacctc agtcaccgtc
720tcctccggag gtggtggatc cgaggtgaag cttctcgagt ctggaggagg attggtgcag
780cctaaagggt cattgaaact ctcatgtgca gcctctggat tcaccttcaa tacctacgcc
840atgaactggg tccgccaggc tccaggaaag ggtttggaat gggttgctcg cataagaagt
900aaatataata attatgcaac atattatgcc gattcagtga aagacaggtt caccatctcc
960agagatgatt cacaaagcat tctctatcta caaatgaaca acttgaaaac tgaggacaca
1020gccatgtact actgtgtgag acatgggaac ttcggtaata gctacgtttc ctggtttgct
1080tactggggcc aagggactct ggtcactgtc tctgcaggtg gtggtggttc tggcggcggc
1140ggctccggtg gtggtggttc tcaggctgtt gtgactcagg aatctgcact caccacatca
1200cctggtgaaa cagtcacact cacttgtcgc tcaagtactg gggctgttac aactagtaac
1260tatgccaact gggtccaaga aaaaccagat catttattca ctggtctaat aggtggtacc
1320aacaagcgag ctccaggtgt gcctgccaga ttctcaggct ccctgattgg agacaaggct
1380gccctcacca tcacaggggc acagactgag gatgaggcaa tatatttctg tgctctatgg
1440tacagcaacc tctgggtgtt cggtggagga accaaactga ctgtccta
1488161496PRTartificial sequenceEGFRvIII-LHxSEQ ID NO 10 ; bispecific
single chain antibody 161Asp Val Val Met Thr Gln Thr Pro Leu Thr Leu
Ser Val Thr Ile Gly 1 5 10
15 Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser
20 25 30 Asn Gly
Lys Thr Tyr Leu Asn Trp Leu Leu Gln Arg Pro Gly Gln Ser 35
40 45 Pro Lys Arg Leu Ile Tyr Leu
Val Ser Lys Leu Asp Ser Gly Val Pro 50 55
60 Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe
Thr Leu Lys Ile 65 70 75
80 Ser Arg Val Glu Ala Glu Asp Leu Gly Ile Tyr Tyr Cys Val Gln Asp
85 90 95 Thr His Phe
Pro Gln Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100
105 110 Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gly Gly Gly Gly Ser Glu 115 120
125 Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Leu Lys Pro
Gly Ala Ser 130 135 140
Val Lys Ile Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Glu Tyr Thr 145
150 155 160 Ile His Trp Val
Lys Gln Ser His Gly Lys Ser Leu Glu Trp Ile Gly 165
170 175 Gly Ile Asp Pro Asn Asn Gly Gly Thr
Met Tyr Asn Gln Lys Phe Lys 180 185
190 Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala
Tyr Thr 195 200 205
Asp Leu Arg Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Thr 210
215 220 Arg Ala Glu Ala Met
Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val 225 230
235 240 Ser Ser Gly Gly Gly Gly Ser Glu Val Lys
Leu Leu Glu Ser Gly Gly 245 250
255 Gly Leu Val Gln Pro Lys Gly Ser Leu Lys Leu Ser Cys Ala Ala
Ser 260 265 270 Gly
Phe Thr Phe Asn Thr Tyr Ala Met Asn Trp Val Arg Gln Ala Pro 275
280 285 Gly Lys Gly Leu Glu Trp
Val Ala Arg Ile Arg Ser Lys Tyr Asn Asn 290 295
300 Tyr Ala Thr Tyr Tyr Ala Asp Ser Val Lys Asp
Arg Phe Thr Ile Ser 305 310 315
320 Arg Asp Asp Ser Gln Ser Ile Leu Tyr Leu Gln Met Asn Asn Leu Lys
325 330 335 Thr Glu
Asp Thr Ala Met Tyr Tyr Cys Val Arg His Gly Asn Phe Gly 340
345 350 Asn Ser Tyr Val Ser Trp Phe
Ala Tyr Trp Gly Gln Gly Thr Leu Val 355 360
365 Thr Val Ser Ala Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gly Gly 370 375 380
Gly Gly Ser Gln Ala Val Val Thr Gln Glu Ser Ala Leu Thr Thr Ser 385
390 395 400 Pro Gly Glu
Thr Val Thr Leu Thr Cys Arg Ser Ser Thr Gly Ala Val 405
410 415 Thr Thr Ser Asn Tyr Ala Asn Trp
Val Gln Glu Lys Pro Asp His Leu 420 425
430 Phe Thr Gly Leu Ile Gly Gly Thr Asn Lys Arg Ala Pro
Gly Val Pro 435 440 445
Ala Arg Phe Ser Gly Ser Leu Ile Gly Asp Lys Ala Ala Leu Thr Ile 450
455 460 Thr Gly Ala Gln
Thr Glu Asp Glu Ala Ile Tyr Phe Cys Ala Leu Trp 465 470
475 480 Tyr Ser Asn Leu Trp Val Phe Gly Gly
Gly Thr Lys Leu Thr Val Leu 485 490
495 162243PRTARTIFICIAL SEQUENCEanti CD3 162Asp Ile Lys Leu
Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala 1 5
10 15 Ser Val Lys Met Ser Cys Lys Thr Ser
Gly Tyr Thr Phe Thr Arg Tyr 20 25
30 Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu
Trp Ile 35 40 45
Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe 50
55 60 Lys Asp Lys Ala Thr
Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr 65 70
75 80 Met Gln Leu Ser Ser Leu Thr Ser Glu Asp
Ser Ala Val Tyr Tyr Cys 85 90
95 Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln
Gly 100 105 110 Thr
Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly 115
120 125 Gly Ser Gly Gly Ser Gly
Gly Val Asp Asp Ile Gln Leu Thr Gln Ser 130 135
140 Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys
Val Thr Met Thr Cys 145 150 155
160 Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser
165 170 175 Gly Thr
Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser 180
185 190 Gly Val Pro Tyr Arg Phe Ser
Gly Ser Gly Ser Gly Thr Ser Tyr Ser 195 200
205 Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala
Thr Tyr Tyr Cys 210 215 220
Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu 225
230 235 240 Glu Leu Lys
163243PRTartificial sequencedeimmunised(di)-anti CD3 deimmunised single
chain Fv 163Asp Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro
Gly Ala 1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr
20 25 30 Thr Met His Trp Val
Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35
40 45 Gly Tyr Ile Asn Pro Ser Arg Gly Tyr
Thr Asn Tyr Ala Asp Ser Val 50 55
60 Lys Gly Arg Phe Thr Ile Thr Thr Asp Lys Ser Thr Ser
Thr Ala Tyr 65 70 75
80 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr Tyr Cys
85 90 95 Ala Arg Tyr Tyr
Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly 100
105 110 Thr Thr Val Thr Val Ser Ser Gly Glu
Gly Thr Ser Thr Gly Ser Gly 115 120
125 Gly Ser Gly Gly Ser Gly Gly Ala Asp Asp Ile Val Leu Thr
Gln Ser 130 135 140
Pro Ala Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys 145
150 155 160 Arg Ala Ser Gln Ser
Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Pro 165
170 175 Gly Lys Ala Pro Lys Arg Trp Ile Tyr Asp
Thr Ser Lys Val Ala Ser 180 185
190 Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr
Ser 195 200 205 Leu
Thr Ile Asn Ser Leu Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys 210
215 220 Gln Gln Trp Ser Ser Asn
Pro Leu Thr Phe Gly Gly Gly Thr Lys Val 225 230
235 240 Glu Ile Lys 1649PRTmus musculus 164Gln Gln
Trp Ser Arg Asn Pro Pro Thr 1 5
1657PRTmus musculus 165Asp Ser Ser Lys Leu Ala Ser 1 5
16610PRTmus musculus 166Ser Ala Ser Ser Ser Val Ser Tyr Met Asn 1
5 10 167327DNAartificial sequenceHuman-like
VL VL region 167gagctcgttg tgactcagga accttcactc accgtatcac ctggtggaac
agtcacactc 60acttgtcgct cgtcgactgg ggctgttaca actagcaact atgccaactg
ggtccaacaa 120aaaccaggtc aggcaccccg tggtctaata ggtggtacca acaagcgcgc
accaggtact 180cctgccagat tctcaggctc cctgcttgga ggcaaggctg ccctcaccct
ctcaggggta 240cagccagagg atgaggcaga atattactgt gctctatggt acagcaacct
ctgggtgttc 300ggtggaggaa ccaaactgac tgtccta
327168109PRTartificial sequenceHuman-like VL VL region 168Glu
Leu Val Val Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly 1
5 10 15 Thr Val Thr Leu Thr Cys
Arg Ser Ser Thr Gly Ala Val Thr Thr Ser 20
25 30 Asn Tyr Ala Asn Trp Val Gln Gln Lys Pro
Gly Gln Ala Pro Arg Gly 35 40
45 Leu Ile Gly Gly Thr Asn Lys Arg Ala Pro Gly Thr Pro Ala
Arg Phe 50 55 60
Ser Gly Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Val 65
70 75 80 Gln Pro Glu Asp Glu
Ala Glu Tyr Tyr Cys Ala Leu Trp Tyr Ser Asn 85
90 95 Leu Trp Val Phe Gly Gly Gly Thr Lys Leu
Thr Val Leu 100 105
169747DNAARTIFICIAL SEQUENCEHuman-like VH (SEQ ID NO 110) x Human-like VL
(SEQ ID NO 168) scFv ; single chain Fv 169gaggtgcagc tgctcgagtc
tggaggagga ttggtgcagc ctggagggtc attgaaactc 60tcatgtgcag cctctggatt
caccttcaat acctacgcca tgaactgggt ccgccaggct 120ccaggaaagg gtttggaatg
ggttgctcgc ataagaagta aatataataa ttatgcaaca 180tattatgccg attcagtgaa
agacaggttc accatctcca gagatgattc aaaaaacact 240gcctatctac aaatgaacaa
cttgaaaact gaggacactg ccgtgtacta ctgtgtgaga 300catgggaact tcggtaatag
ctacgtttcc tggtttgctt actggggcca agggactctg 360gtcaccgtct cctcaggtgg
tggtggttct ggcggcggcg gctccggtgg tggtggttct 420gagctcgttg tgactcagga
accttcactc accgtatcac ctggtggaac agtcacactc 480acttgtcgct cgtcgactgg
ggctgttaca actagcaact atgccaactg ggtccaacaa 540aaaccaggtc aggcaccccg
tggtctaata ggtggtacca acaagcgcgc accaggtact 600cctgccagat tctcaggctc
cctgcttgga ggcaaggctg ccctcaccct ctcaggggta 660cagccagagg atgaggcaga
atattactgt gctctatggt acagcaacct ctgggtgttc 720ggtggaggaa ccaaactgac
tgtccta 747170249PRTartificial
sequenceHuman-like VH (SEQ ID NO 110) x Human-like VL (SEQ ID NO
168) scFv ; single chain Fv 170Glu Val Gln Leu Leu Glu Ser Gly Gly Gly
Leu Val Gln Pro Gly Gly 1 5 10
15 Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn Thr
Tyr 20 25 30 Ala
Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35
40 45 Ala Arg Ile Arg Ser Lys
Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp 50 55
60 Ser Val Lys Asp Arg Phe Thr Ile Ser Arg Asp
Asp Ser Lys Asn Thr 65 70 75
80 Ala Tyr Leu Gln Met Asn Asn Leu Lys Thr Glu Asp Thr Ala Val Tyr
85 90 95 Tyr Cys
Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe 100
105 110 Ala Tyr Trp Gly Gln Gly Thr
Leu Val Thr Val Ser Ser Gly Gly Gly 115 120
125 Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
Glu Leu Val Val 130 135 140
Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly Thr Val Thr Leu 145
150 155 160 Thr Cys Arg
Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn 165
170 175 Trp Val Gln Gln Lys Pro Gly Gln
Ala Pro Arg Gly Leu Ile Gly Gly 180 185
190 Thr Asn Lys Arg Ala Pro Gly Thr Pro Ala Arg Phe Ser
Gly Ser Leu 195 200 205
Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Val Gln Pro Glu Asp 210
215 220 Glu Ala Glu Tyr
Tyr Cys Ala Leu Trp Tyr Ser Asn Leu Trp Val Phe 225 230
235 240 Gly Gly Gly Thr Lys Leu Thr Val Leu
245 1711530DNAARTIFICIAL SEQUENCEEGFR HL
x SEQ ID NO 170 ; bispecific single chain antibody 171caggtgcagc
tgcagcagtc tgggcctgat ctggtgaagc ctggggcctc agtgaagatg 60tcctgcaagg
cttctggaca cactttcact gactgtgtta taatctgggt gaaacagaga 120gctggacagg
gccttgagtg gattggacag atttatccag ggactggtcg ttcttactac 180aatgagattt
tcaagggcaa ggccacactg actgcagaca aatcctccaa cacagtccac 240attcaactca
gcagcctgac atctgaggac tctgcggtct atttctgtgc cctatctact 300cttattcacg
ggacctggtt ttcttattgg ggccaaggga ctctggtcac tgtctcttcc 360ggtggtggtg
gttctggcgg cggcggctcc ggtggtggtg gttctgacat tgtactgacc 420cagtctccag
cttccttacc tgtgtctctg gggcagaggg ccaccatctc atgcagggcc 480agccaaagtg
tcagttcatc tacttatagt tatatacact ggtaccaaca gaaaccagga 540cagccaccca
aactcctcat cacgtatgca tccaacctag aatctggggt ccctgccagg 600ttcagtggca
gtgggtctgg gacagacttc accctcgaca tccatcctgt ggaggaggat 660gattcttcaa
catattactg tcagcacagt tgggagattc catttacgtt cggctcgggg 720acaaagttgg
aaataaaatc cggaggtggt ggctccgagg tgcagctggt ggagtctgga 780ggaggattgg
tgcagcctgg agggtcattg aaactctcat gtgcagcctc tggattcacc 840ttcaatacct
acgccatgaa ctgggtccgc caggctccag gaaagggttt ggaatgggtt 900gctcgcataa
gaagtaaata taataattat gcaacatatt atgccgattc agtgaaagac 960aggttcacca
tctccagaga tgattcaaaa aacactgcct atctacaaat gaacaacttg 1020aaaactgagg
acactgccgt gtactactgt gtgagacatg ggaacttcgg taatagctac 1080gtttcctggt
ttgcttactg gggccaaggg actctggtca ccgtctcctc aggtggtggt 1140ggttctggcg
gcggcggctc cggtggtggt ggttctcaga ccgttgtgac tcaggaacct 1200tcactcaccg
tatcacctgg tggaacagtc acactcactt gtcgctcgtc cactggggct 1260gttacaacta
gcaactatgc caactgggtc caacaaaaac caggtcaggc accccgtggt 1320ctaataggtg
gtaccaacaa gcgcgcacca ggtactcctg ccagattctc aggctccctg 1380cttggaggca
aggctgccct caccctctca ggggtacagc cagaggatga ggcagaatat 1440tactgtgctc
tatggtacag caacctctgg gtgttcggtg gaggaaccaa actgactgtc 1500ctacatcatc
accatcatca ttaggtcgac
1530172507PRTartificial sequenceEGFR HL x SEQ ID NO 170 ; bispecific
single chain antibody 172Gln Val Gln Leu Gln Gln Ser Gly Pro Asp Leu
Val Lys Pro Gly Ala 1 5 10
15 Ser Val Lys Met Ser Cys Lys Ala Ser Gly His Thr Phe Thr Asp Cys
20 25 30 Val Ile
Ile Trp Val Lys Gln Arg Ala Gly Gln Gly Leu Glu Trp Ile 35
40 45 Gly Gln Ile Tyr Pro Gly Thr
Gly Arg Ser Tyr Tyr Asn Glu Ile Phe 50 55
60 Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser
Asn Thr Val His 65 70 75
80 Ile Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys
85 90 95 Ala Leu Ser
Thr Leu Ile His Gly Thr Trp Phe Ser Tyr Trp Gly Gln 100
105 110 Gly Thr Leu Val Thr Val Ser Ser
Gly Gly Gly Gly Ser Gly Gly Gly 115 120
125 Gly Ser Gly Gly Gly Gly Ser Asp Ile Val Leu Thr Gln
Ser Pro Ala 130 135 140
Ser Leu Pro Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Arg Ala 145
150 155 160 Ser Gln Ser Val
Ser Ser Ser Thr Tyr Ser Tyr Ile His Trp Tyr Gln 165
170 175 Gln Lys Pro Gly Gln Pro Pro Lys Leu
Leu Ile Thr Tyr Ala Ser Asn 180 185
190 Leu Glu Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser
Gly Thr 195 200 205
Asp Phe Thr Leu Asp Ile His Pro Val Glu Glu Asp Asp Ser Ser Thr 210
215 220 Tyr Tyr Cys Gln His
Ser Trp Glu Ile Pro Phe Thr Phe Gly Ser Gly 225 230
235 240 Thr Lys Leu Glu Ile Lys Ser Gly Gly Gly
Gly Ser Glu Val Gln Leu 245 250
255 Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Lys
Leu 260 265 270 Ser
Cys Ala Ala Ser Gly Phe Thr Phe Asn Thr Tyr Ala Met Asn Trp 275
280 285 Val Arg Gln Ala Pro Gly
Lys Gly Leu Glu Trp Val Ala Arg Ile Arg 290 295
300 Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala
Asp Ser Val Lys Asp 305 310 315
320 Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr Ala Tyr Leu Gln
325 330 335 Met Asn
Asn Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys Val Arg 340
345 350 His Gly Asn Phe Gly Asn Ser
Tyr Val Ser Trp Phe Ala Tyr Trp Gly 355 360
365 Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly
Gly Ser Gly Gly 370 375 380
Gly Gly Ser Gly Gly Gly Gly Ser Gln Thr Val Val Thr Gln Glu Pro 385
390 395 400 Ser Leu Thr
Val Ser Pro Gly Gly Thr Val Thr Leu Thr Cys Arg Ser 405
410 415 Ser Thr Gly Ala Val Thr Thr Ser
Asn Tyr Ala Asn Trp Val Gln Gln 420 425
430 Lys Pro Gly Gln Ala Pro Arg Gly Leu Ile Gly Gly Thr
Asn Lys Arg 435 440 445
Ala Pro Gly Thr Pro Ala Arg Phe Ser Gly Ser Leu Leu Gly Gly Lys 450
455 460 Ala Ala Leu Thr
Leu Ser Gly Val Gln Pro Glu Asp Glu Ala Glu Tyr 465 470
475 480 Tyr Cys Ala Leu Trp Tyr Ser Asn Leu
Trp Val Phe Gly Gly Gly Thr 485 490
495 Lys Leu Thr Val Leu His His His His His His
500 505 1731527DNAartificial sequenceEGFR LH x
SEQ ID NO 170 ; bispecific single chain antibody 173gacattgtgc
tgacacagtc tcctgcttcc ttacctgtgt ctctggggca gagggccacc 60atctcatgca
gggccagcca aagtgtcagt tcatctactt atagttatat acactggtac 120caacagaaac
caggacagcc acccaaactc ctcatcacgt atgcatccaa cctagaatct 180ggggtccctg
ccaggttcag tggcagtggg tctgggacag acttcaccct cgacatccat 240cctgtggagg
aggatgattc ttcaacatat tactgtcagc acagttggga gattccattt 300acgttcggct
cggggacaaa gttggaaata aaaggtggtg gtggttctgg cggcggcggc 360tccggtggtg
gtggttctca ggttcagctg cagcagtctg gacctgatct ggtgaagcct 420ggggcctcag
tgaagatgtc ctgcaaggct tctggacaca ctttcactga ctgtgttata 480atctgggtga
aacagagagc tggacagggc cttgagtgga ttggacagat ttatccaggg 540actggtcgtt
cttactacaa tgagattttc aagggcaagg ccacactgac tgcagacaaa 600tcctccaaca
cagtccacat tcaactcagc agcctgacat ctgaggactc tgcggtctat 660ttctgtgccc
tatctactct tattcacggg acctggtttt cttattgggg ccaagggact 720ctggtcactg
tctcttccgg aggtggtggc tccgaggtgc agctggtgga gtctggagga 780ggattggtgc
agcctggagg gtcattgaaa ctctcatgtg cagcctctgg attcaccttc 840aatacctacg
ccatgaactg ggtccgccag gctccaggaa agggtttgga atgggttgct 900cgcataagaa
gtaaatataa taattatgca acatattatg ccgattcagt gaaagacagg 960ttcaccatct
ccagagatga ttcaaaaaac actgcctatc tacaaatgaa caacttgaaa 1020actgaggaca
ctgccgtgta ctactgtgtg agacatggga acttcggtaa tagctacgtt 1080tcctggtttg
cttactgggg ccaagggact ctggtcaccg tctcctcagg tggtggtggt 1140tctggcggcg
gcggctccgg tggtggtggt tctcagaccg ttgtgactca ggaaccttca 1200ctcaccgtat
cacctggtgg aacagtcaca ctcacttgtc gctcgtccac tggggctgtt 1260acaactagca
actatgccaa ctgggtccaa caaaaaccag gtcaggcacc ccgtggtcta 1320ataggtggta
ccaacaagcg cgcaccaggt actcctgcca gattctcagg ctccctgctt 1380ggaggcaagg
ctgccctcac cctctcaggg gtacagccag aggatgaggc agaatattac 1440tgtgctctat
ggtacagcaa cctctgggtg ttcggtggag gaaccaaact gactgtccta 1500catcatcacc
atcatcatta ggtcgac
1527174506PRTartificial sequenceEGFR LH x SEQ ID NO 170 ; bispecific
single chain antibody 174Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu
Pro Val Ser Leu Gly 1 5 10
15 Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
20 25 30 Thr Tyr
Ser Tyr Ile His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro 35
40 45 Lys Leu Leu Ile Thr Tyr Ala
Ser Asn Leu Glu Ser Gly Val Pro Ala 50 55
60 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr
Leu Asp Ile His 65 70 75
80 Pro Val Glu Glu Asp Asp Ser Ser Thr Tyr Tyr Cys Gln His Ser Trp
85 90 95 Glu Ile Pro
Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Gly 100
105 110 Gly Gly Gly Ser Gly Gly Gly Gly
Ser Gly Gly Gly Gly Ser Gln Val 115 120
125 Gln Leu Gln Gln Ser Gly Pro Asp Leu Val Lys Pro Gly
Ala Ser Val 130 135 140
Lys Met Ser Cys Lys Ala Ser Gly His Thr Phe Thr Asp Cys Val Ile 145
150 155 160 Ile Trp Val Lys
Gln Arg Ala Gly Gln Gly Leu Glu Trp Ile Gly Gln 165
170 175 Ile Tyr Pro Gly Thr Gly Arg Ser Tyr
Tyr Asn Glu Ile Phe Lys Gly 180 185
190 Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Asn Thr Val His
Ile Gln 195 200 205
Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Leu 210
215 220 Ser Thr Leu Ile His
Gly Thr Trp Phe Ser Tyr Trp Gly Gln Gly Thr 225 230
235 240 Leu Val Thr Val Ser Ser Gly Gly Gly Gly
Ser Glu Val Gln Leu Val 245 250
255 Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Lys Leu
Ser 260 265 270 Cys
Ala Ala Ser Gly Phe Thr Phe Asn Thr Tyr Ala Met Asn Trp Val 275
280 285 Arg Gln Ala Pro Gly Lys
Gly Leu Glu Trp Val Ala Arg Ile Arg Ser 290 295
300 Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp
Ser Val Lys Asp Arg 305 310 315
320 Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr Ala Tyr Leu Gln Met
325 330 335 Asn Asn
Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys Val Arg His 340
345 350 Gly Asn Phe Gly Asn Ser Tyr
Val Ser Trp Phe Ala Tyr Trp Gly Gln 355 360
365 Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly
Ser Gly Gly Gly 370 375 380
Gly Ser Gly Gly Gly Gly Ser Gln Thr Val Val Thr Gln Glu Pro Ser 385
390 395 400 Leu Thr Val
Ser Pro Gly Gly Thr Val Thr Leu Thr Cys Arg Ser Ser 405
410 415 Thr Gly Ala Val Thr Thr Ser Asn
Tyr Ala Asn Trp Val Gln Gln Lys 420 425
430 Pro Gly Gln Ala Pro Arg Gly Leu Ile Gly Gly Thr Asn
Lys Arg Ala 435 440 445
Pro Gly Thr Pro Ala Arg Phe Ser Gly Ser Leu Leu Gly Gly Lys Ala 450
455 460 Ala Leu Thr Leu
Ser Gly Val Gln Pro Glu Asp Glu Ala Glu Tyr Tyr 465 470
475 480 Cys Ala Leu Trp Tyr Ser Asn Leu Trp
Val Phe Gly Gly Gly Thr Lys 485 490
495 Leu Thr Val Leu His His His His His His 500
505 1751530DNAartificial sequenceEGFR HL x SEQ ID NO
194 ; bispecific single chain antibody 175caggtgcagc tgcagcagtc
tgggcctgat ctggtgaagc ctggggcctc agtgaagatg 60tcctgcaagg cttctggaca
cactttcact gactgtgtta taatctgggt gaaacagaga 120gctggacagg gccttgagtg
gattggacag atttatccag ggactggtcg ttcttactac 180aatgagattt tcaagggcaa
ggccacactg actgcagaca aatcctccaa cacagtccac 240attcaactca gcagcctgac
atctgaggac tctgcggtct atttctgtgc cctatctact 300cttattcacg ggacctggtt
ttcttattgg ggccaaggga ctctggtcac tgtctcttcc 360ggtggtggtg gttctggcgg
cggcggctcc ggtggtggtg gttctgacat tgtactgacc 420cagtctccag cttccttacc
tgtgtctctg gggcagaggg ccaccatctc atgcagggcc 480agccaaagtg tcagttcatc
tacttatagt tatatacact ggtaccaaca gaaaccagga 540cagccaccca aactcctcat
cacgtatgca tccaacctag aatctggggt ccctgccagg 600ttcagtggca gtgggtctgg
gacagacttc accctcgaca tccatcctgt ggaggaggat 660gattcttcaa catattactg
tcagcacagt tgggagattc catttacgtt cggctcgggg 720acaaagttgg aaataaaatc
cggaggtggt ggctcccaga ccgttgtgac tcaggaacct 780tcactcaccg tatcacctgg
tggaacagtc acactcactt gtcgctcgtc cactggggct 840gttacaacta gcaactatgc
caactgggtc caacaaaaac caggtcaggc accccgtggt 900ctaataggtg gtaccaacaa
gcgcgcacca ggtactcctg ccagattctc aggctccctg 960cttggaggca aggctgccct
caccctctca ggggtacagc cagaggatga ggcagaatat 1020tactgtgctc tatggtacag
caacctctgg gtgttcggtg gaggaaccaa actgactgtc 1080ctaggtggtg gtggttctgg
cggcggcggc tccggtggtg gtggttctga ggtgcagctg 1140gtggagtctg gaggaggatt
ggtgcagcct ggagggtcat tgaaactctc atgtgcagcc 1200tctggattca ccttcaatac
ctacgccatg aactgggtcc gccaggctcc aggaaagggt 1260ttggaatggg ttgctcgcat
aagaagtaaa tataataatt atgcaacata ttatgccgat 1320tcagtgaaag acaggttcac
catctccaga gatgattcaa aaaacactgc ctatctacaa 1380atgaacaact tgaaaactga
ggacactgcc gtgtactact gtgtgagaca tgggaacttc 1440ggtaatagct acgtttcctg
gtttgcttac tggggccaag ggactctggt caccgtctcc 1500tcacatcatc accatcatca
ttaggtcgac 1530176507PRTartificial
sequenceEGFR HL x SEQ ID NO 194 ; bispecific single chain antibody
176Gln Val Gln Leu Gln Gln Ser Gly Pro Asp Leu Val Lys Pro Gly Ala 1
5 10 15 Ser Val Lys Met
Ser Cys Lys Ala Ser Gly His Thr Phe Thr Asp Cys 20
25 30 Val Ile Ile Trp Val Lys Gln Arg Ala
Gly Gln Gly Leu Glu Trp Ile 35 40
45 Gly Gln Ile Tyr Pro Gly Thr Gly Arg Ser Tyr Tyr Asn Glu
Ile Phe 50 55 60
Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Asn Thr Val His 65
70 75 80 Ile Gln Leu Ser Ser
Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys 85
90 95 Ala Leu Ser Thr Leu Ile His Gly Thr Trp
Phe Ser Tyr Trp Gly Gln 100 105
110 Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly
Gly 115 120 125 Gly
Ser Gly Gly Gly Gly Ser Asp Ile Val Leu Thr Gln Ser Pro Ala 130
135 140 Ser Leu Pro Val Ser Leu
Gly Gln Arg Ala Thr Ile Ser Cys Arg Ala 145 150
155 160 Ser Gln Ser Val Ser Ser Ser Thr Tyr Ser Tyr
Ile His Trp Tyr Gln 165 170
175 Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile Thr Tyr Ala Ser Asn
180 185 190 Leu Glu
Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr 195
200 205 Asp Phe Thr Leu Asp Ile His
Pro Val Glu Glu Asp Asp Ser Ser Thr 210 215
220 Tyr Tyr Cys Gln His Ser Trp Glu Ile Pro Phe Thr
Phe Gly Ser Gly 225 230 235
240 Thr Lys Leu Glu Ile Lys Ser Gly Gly Gly Gly Ser Gln Thr Val Val
245 250 255 Thr Gln Glu
Pro Ser Leu Thr Val Ser Pro Gly Gly Thr Val Thr Leu 260
265 270 Thr Cys Arg Ser Ser Thr Gly Ala
Val Thr Thr Ser Asn Tyr Ala Asn 275 280
285 Trp Val Gln Gln Lys Pro Gly Gln Ala Pro Arg Gly Leu
Ile Gly Gly 290 295 300
Thr Asn Lys Arg Ala Pro Gly Thr Pro Ala Arg Phe Ser Gly Ser Leu 305
310 315 320 Leu Gly Gly Lys
Ala Ala Leu Thr Leu Ser Gly Val Gln Pro Glu Asp 325
330 335 Glu Ala Glu Tyr Tyr Cys Ala Leu Trp
Tyr Ser Asn Leu Trp Val Phe 340 345
350 Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gly Gly Gly Ser
Gly Gly 355 360 365
Gly Gly Ser Gly Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly 370
375 380 Gly Gly Leu Val Gln
Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala 385 390
395 400 Ser Gly Phe Thr Phe Asn Thr Tyr Ala Met
Asn Trp Val Arg Gln Ala 405 410
415 Pro Gly Lys Gly Leu Glu Trp Val Ala Arg Ile Arg Ser Lys Tyr
Asn 420 425 430 Asn
Tyr Ala Thr Tyr Tyr Ala Asp Ser Val Lys Asp Arg Phe Thr Ile 435
440 445 Ser Arg Asp Asp Ser Lys
Asn Thr Ala Tyr Leu Gln Met Asn Asn Leu 450 455
460 Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys Val
Arg His Gly Asn Phe 465 470 475
480 Gly Asn Ser Tyr Val Ser Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu
485 490 495 Val Thr
Val Ser Ser His His His His His His 500 505
1771530DNAartificial sequenceEGFR LH x SEQ ID NO 194 ; bispecific
single chain antibody 177gacattgtgc tgacacagtc tcctgcttcc ttacctgtgt
ctctggggca gagggccacc 60atctcatgca gggccagcca aagtgtcagt tcatctactt
atagttatat acactggtac 120caacagaaac caggacagcc acccaaactc ctcatcacgt
atgcatccaa cctagaatct 180ggggtccctg ccaggttcag tggcagtggg tctgggacag
acttcaccct cgacatccat 240cctgtggagg aggatgattc ttcaacatat tactgtcagc
acagttggga gattccattt 300acgttcggct cggggacaaa gttggaaata aaaggtggtg
gtggttctgg cggcggcggc 360tccggtggtg gtggttctca ggttcagctg cagcagtctg
gacctgatct ggtgaagcct 420ggggcctcag tgaagatgtc ctgcaaggct tctggacaca
ctttcactga ctgtgttata 480atctgggtga aacagagagc tggacagggc cttgagtgga
ttggacagat ttatccaggg 540actggtcgtt cttactacaa tgagattttc aagggcaagg
ccacactgac tgcagacaaa 600tcctccaaca cagtccacat tcaactcagc agcctgacat
ctgaggactc tgcggtctat 660ttctgtgccc tatctactct tattcacggg acctggtttt
cttattgggg ccaagggact 720ctggtcactg tctcttcctc cggaggtggt ggctcccaga
ccgttgtgac tcaggaacct 780tcactcaccg tatcacctgg tggaacagtc acactcactt
gtcgctcgtc cactggggct 840gttacaacta gcaactatgc caactgggtc caacaaaaac
caggtcaggc accccgtggt 900ctaataggtg gtaccaacaa gcgcgcacca ggtactcctg
ccagattctc aggctccctg 960cttggaggca aggctgccct caccctctca ggggtacagc
cagaggatga ggcagaatat 1020tactgtgctc tatggtacag caacctctgg gtgttcggtg
gaggaaccaa actgactgtc 1080ctaggtggtg gtggttctgg cggcggcggc tccggtggtg
gtggttctga ggtgcagctg 1140gtggagtctg gaggaggatt ggtgcagcct ggagggtcat
tgaaactctc atgtgcagcc 1200tctggattca ccttcaatac ctacgccatg aactgggtcc
gccaggctcc aggaaagggt 1260ttggaatggg ttgctcgcat aagaagtaaa tataataatt
atgcaacata ttatgccgat 1320tcagtgaaag acaggttcac catctccaga gatgattcaa
aaaacactgc ctatctacaa 1380atgaacaact tgaaaactga ggacactgcc gtgtactact
gtgtgagaca tgggaacttc 1440ggtaatagct acgtttcctg gtttgcttac tggggccaag
ggactctggt caccgtctcc 1500tcacatcatc accatcatca ttaggtcgac
1530178507PRTartificial sequenceEGFR LH x SEQ ID NO
194 ; bispecific single chain antibody 178Asp Ile Val Leu Thr Gln
Ser Pro Ala Ser Leu Pro Val Ser Leu Gly 1 5
10 15 Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Gln
Ser Val Ser Ser Ser 20 25
30 Thr Tyr Ser Tyr Ile His Trp Tyr Gln Gln Lys Pro Gly Gln Pro
Pro 35 40 45 Lys
Leu Leu Ile Thr Tyr Ala Ser Asn Leu Glu Ser Gly Val Pro Ala 50
55 60 Arg Phe Ser Gly Ser Gly
Ser Gly Thr Asp Phe Thr Leu Asp Ile His 65 70
75 80 Pro Val Glu Glu Asp Asp Ser Ser Thr Tyr Tyr
Cys Gln His Ser Trp 85 90
95 Glu Ile Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Gly
100 105 110 Gly Gly
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gln Val 115
120 125 Gln Leu Gln Gln Ser Gly Pro
Asp Leu Val Lys Pro Gly Ala Ser Val 130 135
140 Lys Met Ser Cys Lys Ala Ser Gly His Thr Phe Thr
Asp Cys Val Ile 145 150 155
160 Ile Trp Val Lys Gln Arg Ala Gly Gln Gly Leu Glu Trp Ile Gly Gln
165 170 175 Ile Tyr Pro
Gly Thr Gly Arg Ser Tyr Tyr Asn Glu Ile Phe Lys Gly 180
185 190 Lys Ala Thr Leu Thr Ala Asp Lys
Ser Ser Asn Thr Val His Ile Gln 195 200
205 Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe
Cys Ala Leu 210 215 220
Ser Thr Leu Ile His Gly Thr Trp Phe Ser Tyr Trp Gly Gln Gly Thr 225
230 235 240 Leu Val Thr Val
Ser Ser Ser Gly Gly Gly Gly Ser Gln Thr Val Val 245
250 255 Thr Gln Glu Pro Ser Leu Thr Val Ser
Pro Gly Gly Thr Val Thr Leu 260 265
270 Thr Cys Arg Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr
Ala Asn 275 280 285
Trp Val Gln Gln Lys Pro Gly Gln Ala Pro Arg Gly Leu Ile Gly Gly 290
295 300 Thr Asn Lys Arg Ala
Pro Gly Thr Pro Ala Arg Phe Ser Gly Ser Leu 305 310
315 320 Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser
Gly Val Gln Pro Glu Asp 325 330
335 Glu Ala Glu Tyr Tyr Cys Ala Leu Trp Tyr Ser Asn Leu Trp Val
Phe 340 345 350 Gly
Gly Gly Thr Lys Leu Thr Val Leu Gly Gly Gly Gly Ser Gly Gly 355
360 365 Gly Gly Ser Gly Gly Gly
Gly Ser Glu Val Gln Leu Val Glu Ser Gly 370 375
380 Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Lys
Leu Ser Cys Ala Ala 385 390 395
400 Ser Gly Phe Thr Phe Asn Thr Tyr Ala Met Asn Trp Val Arg Gln Ala
405 410 415 Pro Gly
Lys Gly Leu Glu Trp Val Ala Arg Ile Arg Ser Lys Tyr Asn 420
425 430 Asn Tyr Ala Thr Tyr Tyr Ala
Asp Ser Val Lys Asp Arg Phe Thr Ile 435 440
445 Ser Arg Asp Asp Ser Lys Asn Thr Ala Tyr Leu Gln
Met Asn Asn Leu 450 455 460
Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys Val Arg His Gly Asn Phe 465
470 475 480 Gly Asn Ser
Tyr Val Ser Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu 485
490 495 Val Thr Val Ser Ser His His His
His His His 500 505
1791530DNAartificial sequenceSEQ ID NO 170 x EGFR HL ; bispecific single
chain antibody 179gaggtgcagc tggtggagtc tggaggagga ttggtgcagc
ctggagggtc attgaaactc 60tcatgtgcag cctctggatt caccttcaat acctacgcca
tgaactgggt ccgccaggct 120ccaggaaagg gtttggaatg ggttgctcgc ataagaagta
aatataataa ttatgcaaca 180tattatgccg attcagtgaa agacaggttc accatctcca
gagatgattc aaaaaacact 240gcctatctac aaatgaacaa cttgaaaact gaggacactg
ccgtgtacta ctgtgtgaga 300catgggaact tcggtaatag ctacgtttcc tggtttgctt
actggggcca agggactctg 360gtcaccgtct cctcaggtgg tggtggttct ggcggcggcg
gctccggtgg tggtggttct 420cagaccgttg tgactcagga accttcactc accgtatcac
ctggtggaac agtcacactc 480acttgtcgct cgtccactgg ggctgttaca actagcaact
atgccaactg ggtccaacaa 540aaaccaggtc aggcaccccg tggtctaata ggtggtacca
acaagcgcgc accaggtact 600cctgccagat tctcaggctc cctgcttgga ggcaaggctg
ccctcaccct ctcaggggta 660cagccagagg atgaggcaga atattactgt gctctatggt
acagcaacct ctgggtgttc 720ggtggaggaa ccaaactgac tgtcctatcc ggaggtggtg
gctcccaggt gcagctgcag 780cagtctgggc ctgatctggt gaagcctggg gcctcagtga
agatgtcctg caaggcttct 840ggacacactt tcactgactg tgttataatc tgggtgaaac
agagagctgg acagggcctt 900gagtggattg gacagattta tccagggact ggtcgttctt
actacaatga gattttcaag 960ggcaaggcca cactgactgc agacaaatcc tccaacacag
tccacattca actcagcagc 1020ctgacatctg aggactctgc ggtctatttc tgtgccctat
ctactcttat tcacgggacc 1080tggttttctt attggggcca agggactctg gtcactgtct
cttccggtgg tggtggttct 1140ggcggcggcg gctccggtgg tggtggttct gacattgtac
tgacccagtc tccagcttcc 1200ttacctgtgt ctctggggca gagggccacc atctcatgca
gggccagcca aagtgtcagt 1260tcatctactt atagttatat acactggtac caacagaaac
caggacagcc acccaaactc 1320ctcatcacgt atgcatccaa cctagaatct ggggtccctg
ccaggttcag tggcagtggg 1380tctgggacag acttcaccct cgacatccat cctgtggagg
aggatgattc ttcaacatat 1440tactgtcagc acagttggga gattccattt acgttcggct
cggggacaaa gttggaaata 1500aaacatcatc accatcatca ttaggtcgac
1530180507PRTartificial sequenceSEQ ID NO 170 x
EGFR HL , bispecific single chain antibody 180Glu Val Gln Leu Val
Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5
10 15 Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly
Phe Thr Phe Asn Thr Tyr 20 25
30 Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
Val 35 40 45 Ala
Arg Ile Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp 50
55 60 Ser Val Lys Asp Arg Phe
Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr 65 70
75 80 Ala Tyr Leu Gln Met Asn Asn Leu Lys Thr Glu
Asp Thr Ala Val Tyr 85 90
95 Tyr Cys Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe
100 105 110 Ala Tyr
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly 115
120 125 Gly Ser Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Gln Thr Val Val 130 135
140 Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly
Thr Val Thr Leu 145 150 155
160 Thr Cys Arg Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn
165 170 175 Trp Val Gln
Gln Lys Pro Gly Gln Ala Pro Arg Gly Leu Ile Gly Gly 180
185 190 Thr Asn Lys Arg Ala Pro Gly Thr
Pro Ala Arg Phe Ser Gly Ser Leu 195 200
205 Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Val Gln
Pro Glu Asp 210 215 220
Glu Ala Glu Tyr Tyr Cys Ala Leu Trp Tyr Ser Asn Leu Trp Val Phe 225
230 235 240 Gly Gly Gly Thr
Lys Leu Thr Val Leu Ser Gly Gly Gly Gly Ser Gln 245
250 255 Val Gln Leu Gln Gln Ser Gly Pro Asp
Leu Val Lys Pro Gly Ala Ser 260 265
270 Val Lys Met Ser Cys Lys Ala Ser Gly His Thr Phe Thr Asp
Cys Val 275 280 285
Ile Ile Trp Val Lys Gln Arg Ala Gly Gln Gly Leu Glu Trp Ile Gly 290
295 300 Gln Ile Tyr Pro Gly
Thr Gly Arg Ser Tyr Tyr Asn Glu Ile Phe Lys 305 310
315 320 Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser
Ser Asn Thr Val His Ile 325 330
335 Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys
Ala 340 345 350 Leu
Ser Thr Leu Ile His Gly Thr Trp Phe Ser Tyr Trp Gly Gln Gly 355
360 365 Thr Leu Val Thr Val Ser
Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 370 375
380 Ser Gly Gly Gly Gly Ser Asp Ile Val Leu Thr
Gln Ser Pro Ala Ser 385 390 395
400 Leu Pro Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser
405 410 415 Gln Ser
Val Ser Ser Ser Thr Tyr Ser Tyr Ile His Trp Tyr Gln Gln 420
425 430 Lys Pro Gly Gln Pro Pro Lys
Leu Leu Ile Thr Tyr Ala Ser Asn Leu 435 440
445 Glu Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly
Ser Gly Thr Asp 450 455 460
Phe Thr Leu Asp Ile His Pro Val Glu Glu Asp Asp Ser Ser Thr Tyr 465
470 475 480 Tyr Cys Gln
His Ser Trp Glu Ile Pro Phe Thr Phe Gly Ser Gly Thr 485
490 495 Lys Leu Glu Ile Lys His His His
His His His 500 505
1811530DNAartificial sequenceSEQ ID NO 194 x EGFR HL ; bispecific single
chain antibody 181cagaccgttg tgactcagga accttcactc accgtatcac
ctggtggaac agtcacactc 60acttgtcgct cgtccactgg ggctgttaca actagcaact
atgccaactg ggtccaacaa 120aaaccaggtc aggcaccccg tggtctaata ggtggtacca
acaagcgcgc accaggtact 180cctgccagat tctcaggctc cctgcttgga ggcaaggctg
ccctcaccct ctcaggggta 240cagccagagg atgaggcaga atattactgt gctctatggt
acagcaacct ctgggtgttc 300ggtggaggaa ccaaactgac tgtcctaggt ggtggtggtt
ctggcggcgg cggctccggt 360ggtggtggtt ctgaggtgca gctggtggag tctggaggag
gattggtgca gcctggaggg 420tcattgaaac tctcatgtgc agcctctgga ttcaccttca
atacctacgc catgaactgg 480gtccgccagg ctccaggaaa gggtttggaa tgggttgctc
gcataagaag taaatataat 540aattatgcaa catattatgc cgattcagtg aaagacaggt
tcaccatctc cagagatgat 600tcaaaaaaca ctgcctatct acaaatgaac aacttgaaaa
ctgaggacac tgccgtgtac 660tactgtgtga gacatgggaa cttcggtaat agctacgttt
cctggtttgc ttactggggc 720caagggactc tggtcaccgt ctcctcatcc ggaggtggtg
gctcccaggt gcagctgcag 780cagtctgggc ctgatctggt gaagcctggg gcctcagtga
agatgtcctg caaggcttct 840ggacacactt tcactgactg tgttataatc tgggtgaaac
agagagctgg acagggcctt 900gagtggattg gacagattta tccagggact ggtcgttctt
actacaatga gattttcaag 960ggcaaggcca cactgactgc agacaaatcc tccaacacag
tccacattca actcagcagc 1020ctgacatctg aggactctgc ggtctatttc tgtgccctat
ctactcttat tcacgggacc 1080tggttttctt attggggcca agggactctg gtcactgtct
cttccggtgg tggtggttct 1140ggcggcggcg gctccggtgg tggtggttct gacattgtac
tgacccagtc tccagcttcc 1200ttacctgtgt ctctggggca gagggccacc atctcatgca
gggccagcca aagtgtcagt 1260tcatctactt atagttatat acactggtac caacagaaac
caggacagcc acccaaactc 1320ctcatcacgt atgcatccaa cctagaatct ggggtccctg
ccaggttcag tggcagtggg 1380tctgggacag acttcaccct cgacatccat cctgtggagg
aggatgattc ttcaacatat 1440tactgtcagc acagttggga gattccattt acgttcggct
cggggacaaa gttggaaata 1500aaacatcatc accatcatca ttaggtcgac
1530182507PRTartificial sequenceSEQ ID NO 194 x
EGFR HL ; bispecific single chain antibody 182Gln Thr Val Val Thr
Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly 1 5
10 15 Thr Val Thr Leu Thr Cys Arg Ser Ser Thr
Gly Ala Val Thr Thr Ser 20 25
30 Asn Tyr Ala Asn Trp Val Gln Gln Lys Pro Gly Gln Ala Pro Arg
Gly 35 40 45 Leu
Ile Gly Gly Thr Asn Lys Arg Ala Pro Gly Thr Pro Ala Arg Phe 50
55 60 Ser Gly Ser Leu Leu Gly
Gly Lys Ala Ala Leu Thr Leu Ser Gly Val 65 70
75 80 Gln Pro Glu Asp Glu Ala Glu Tyr Tyr Cys Ala
Leu Trp Tyr Ser Asn 85 90
95 Leu Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gly Gly
100 105 110 Gly Ser
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Val Gln Leu 115
120 125 Val Glu Ser Gly Gly Gly Leu
Val Gln Pro Gly Gly Ser Leu Lys Leu 130 135
140 Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn Thr Tyr
Ala Met Asn Trp 145 150 155
160 Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Arg Ile Arg
165 170 175 Ser Lys Tyr
Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp Ser Val Lys Asp 180
185 190 Arg Phe Thr Ile Ser Arg Asp Asp
Ser Lys Asn Thr Ala Tyr Leu Gln 195 200
205 Met Asn Asn Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr
Cys Val Arg 210 215 220
His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe Ala Tyr Trp Gly 225
230 235 240 Gln Gly Thr Leu
Val Thr Val Ser Ser Ser Gly Gly Gly Gly Ser Gln 245
250 255 Val Gln Leu Gln Gln Ser Gly Pro Asp
Leu Val Lys Pro Gly Ala Ser 260 265
270 Val Lys Met Ser Cys Lys Ala Ser Gly His Thr Phe Thr Asp
Cys Val 275 280 285
Ile Ile Trp Val Lys Gln Arg Ala Gly Gln Gly Leu Glu Trp Ile Gly 290
295 300 Gln Ile Tyr Pro Gly
Thr Gly Arg Ser Tyr Tyr Asn Glu Ile Phe Lys 305 310
315 320 Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser
Ser Asn Thr Val His Ile 325 330
335 Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys
Ala 340 345 350 Leu
Ser Thr Leu Ile His Gly Thr Trp Phe Ser Tyr Trp Gly Gln Gly 355
360 365 Thr Leu Val Thr Val Ser
Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 370 375
380 Ser Gly Gly Gly Gly Ser Asp Ile Val Leu Thr
Gln Ser Pro Ala Ser 385 390 395
400 Leu Pro Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser
405 410 415 Gln Ser
Val Ser Ser Ser Thr Tyr Ser Tyr Ile His Trp Tyr Gln Gln 420
425 430 Lys Pro Gly Gln Pro Pro Lys
Leu Leu Ile Thr Tyr Ala Ser Asn Leu 435 440
445 Glu Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly
Ser Gly Thr Asp 450 455 460
Phe Thr Leu Asp Ile His Pro Val Glu Glu Asp Asp Ser Ser Thr Tyr 465
470 475 480 Tyr Cys Gln
His Ser Trp Glu Ile Pro Phe Thr Phe Gly Ser Gly Thr 485
490 495 Lys Leu Glu Ile Lys His His His
His His His 500 505
1831530DNAartificial sequenceSEQ ID NO 170 x EGFR LH ; bispecific single
chain antibody 183gaggtgcagc tggtggagtc tggaggagga ttggtgcagc
ctggagggtc attgaaactc 60tcatgtgcag cctctggatt caccttcaat acctacgcca
tgaactgggt ccgccaggct 120ccaggaaagg gtttggaatg ggttgctcgc ataagaagta
aatataataa ttatgcaaca 180tattatgccg attcagtgaa agacaggttc accatctcca
gagatgattc aaaaaacact 240gcctatctac aaatgaacaa cttgaaaact gaggacactg
ccgtgtacta ctgtgtgaga 300catgggaact tcggtaatag ctacgtttcc tggtttgctt
actggggcca agggactctg 360gtcaccgtct cctcaggtgg tggtggttct ggcggcggcg
gctccggtgg tggtggttct 420cagaccgttg tgactcagga accttcactc accgtatcac
ctggtggaac agtcacactc 480acttgtcgct cgtccactgg ggctgttaca actagcaact
atgccaactg ggtccaacaa 540aaaccaggtc aggcaccccg tggtctaata ggtggtacca
acaagcgcgc accaggtact 600cctgccagat tctcaggctc cctgcttgga ggcaaggctg
ccctcaccct ctcaggggta 660cagccagagg atgaggcaga atattactgt gctctatggt
acagcaacct ctgggtgttc 720ggtggaggaa ccaaactgac tgtcctatcc ggaggtggtg
gctccgacat tgtgctgaca 780cagtctcctg cttccttacc tgtgtctctg gggcagaggg
ccaccatctc atgcagggcc 840agccaaagtg tcagttcatc tacttatagt tatatacact
ggtaccaaca gaaaccagga 900cagccaccca aactcctcat cacgtatgca tccaacctag
aatctggggt ccctgccagg 960ttcagtggca gtgggtctgg gacagacttc accctcgaca
tccatcctgt ggaggaggat 1020gattcttcaa catattactg tcagcacagt tgggagattc
catttacgtt cggctcgggg 1080acaaagttgg aaataaaagg tggtggtggt tctggcggcg
gcggctccgg tggtggtggt 1140tctcaggttc agctgcagca gtctggacct gatctggtga
agcctggggc ctcagtgaag 1200atgtcctgca aggcttctgg acacactttc actgactgtg
ttataatctg ggtgaaacag 1260agagctggac agggccttga gtggattgga cagatttatc
cagggactgg tcgttcttac 1320tacaatgaga ttttcaaggg caaggccaca ctgactgcag
acaaatcctc caacacagtc 1380cacattcaac tcagcagcct gacatctgag gactctgcgg
tctatttctg tgccctatct 1440actcttattc acgggacctg gttttcttat tggggccaag
ggactctggt cactgtctct 1500tcccatcatc accatcatca ttaggtcgac
1530184507PRTartificial sequenceSEQ ID NO 170 x
EGFR LH ; bispecific single chain antibody 184Glu Val Gln Leu Val
Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5
10 15 Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly
Phe Thr Phe Asn Thr Tyr 20 25
30 Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
Val 35 40 45 Ala
Arg Ile Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp 50
55 60 Ser Val Lys Asp Arg Phe
Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr 65 70
75 80 Ala Tyr Leu Gln Met Asn Asn Leu Lys Thr Glu
Asp Thr Ala Val Tyr 85 90
95 Tyr Cys Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe
100 105 110 Ala Tyr
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly 115
120 125 Gly Ser Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Gln Thr Val Val 130 135
140 Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly
Thr Val Thr Leu 145 150 155
160 Thr Cys Arg Ser Ser Thr Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn
165 170 175 Trp Val Gln
Gln Lys Pro Gly Gln Ala Pro Arg Gly Leu Ile Gly Gly 180
185 190 Thr Asn Lys Arg Ala Pro Gly Thr
Pro Ala Arg Phe Ser Gly Ser Leu 195 200
205 Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Val Gln
Pro Glu Asp 210 215 220
Glu Ala Glu Tyr Tyr Cys Ala Leu Trp Tyr Ser Asn Leu Trp Val Phe 225
230 235 240 Gly Gly Gly Thr
Lys Leu Thr Val Leu Ser Gly Gly Gly Gly Ser Asp 245
250 255 Ile Val Leu Thr Gln Ser Pro Ala Ser
Leu Pro Val Ser Leu Gly Gln 260 265
270 Arg Ala Thr Ile Ser Cys Arg Ala Ser Gln Ser Val Ser Ser
Ser Thr 275 280 285
Tyr Ser Tyr Ile His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys 290
295 300 Leu Leu Ile Thr Tyr
Ala Ser Asn Leu Glu Ser Gly Val Pro Ala Arg 305 310
315 320 Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe
Thr Leu Asp Ile His Pro 325 330
335 Val Glu Glu Asp Asp Ser Ser Thr Tyr Tyr Cys Gln His Ser Trp
Glu 340 345 350 Ile
Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Gly Gly 355
360 365 Gly Gly Ser Gly Gly Gly
Gly Ser Gly Gly Gly Gly Ser Gln Val Gln 370 375
380 Leu Gln Gln Ser Gly Pro Asp Leu Val Lys Pro
Gly Ala Ser Val Lys 385 390 395
400 Met Ser Cys Lys Ala Ser Gly His Thr Phe Thr Asp Cys Val Ile Ile
405 410 415 Trp Val
Lys Gln Arg Ala Gly Gln Gly Leu Glu Trp Ile Gly Gln Ile 420
425 430 Tyr Pro Gly Thr Gly Arg Ser
Tyr Tyr Asn Glu Ile Phe Lys Gly Lys 435 440
445 Ala Thr Leu Thr Ala Asp Lys Ser Ser Asn Thr Val
His Ile Gln Leu 450 455 460
Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Leu Ser 465
470 475 480 Thr Leu Ile
His Gly Thr Trp Phe Ser Tyr Trp Gly Gln Gly Thr Leu 485
490 495 Val Thr Val Ser Ser His His His
His His His 500 505
1851530DNAartificial sequenceSEQ ID NO 194 x EGFR LH ; bispecific single
chain antibody 185cagaccgttg tgactcagga accttcactc accgtatcac
ctggtggaac agtcacactc 60acttgtcgct cgtccactgg ggctgttaca actagcaact
atgccaactg ggtccaacaa 120aaaccaggtc aggcaccccg tggtctaata ggtggtacca
acaagcgcgc accaggtact 180cctgccagat tctcaggctc cctgcttgga ggcaaggctg
ccctcaccct ctcaggggta 240cagccagagg atgaggcaga atattactgt gctctatggt
acagcaacct ctgggtgttc 300ggtggaggaa ccaaactgac tgtcctaggt ggtggtggtt
ctggcggcgg cggctccggt 360ggtggtggtt ctgaggtgca gctggtggag tctggaggag
gattggtgca gcctggaggg 420tcattgaaac tctcatgtgc agcctctgga ttcaccttca
atacctacgc catgaactgg 480gtccgccagg ctccaggaaa gggtttggaa tgggttgctc
gcataagaag taaatataat 540aattatgcaa catattatgc cgattcagtg aaagacaggt
tcaccatctc cagagatgat 600tcaaaaaaca ctgcctatct acaaatgaac aacttgaaaa
ctgaggacac tgccgtgtac 660tactgtgtga gacatgggaa cttcggtaat agctacgttt
cctggtttgc ttactggggc 720caagggactc tggtcaccgt ctcctcatcc ggaggtggtg
gctccgacat tgtgctgaca 780cagtctcctg cttccttacc tgtgtctctg gggcagaggg
ccaccatctc atgcagggcc 840agccaaagtg tcagttcatc tacttatagt tatatacact
ggtaccaaca gaaaccagga 900cagccaccca aactcctcat cacgtatgca tccaacctag
aatctggggt ccctgccagg 960ttcagtggca gtgggtctgg gacagacttc accctcgaca
tccatcctgt ggaggaggat 1020gattcttcaa catattactg tcagcacagt tgggagattc
catttacgtt cggctcgggg 1080acaaagttgg aaataaaagg tggtggtggt tctggcggcg
gcggctccgg tggtggtggt 1140tctcaggttc agctgcagca gtctggacct gatctggtga
agcctggggc ctcagtgaag 1200atgtcctgca aggcttctgg acacactttc actgactgtg
ttataatctg ggtgaaacag 1260agagctggac agggccttga gtggattgga cagatttatc
cagggactgg tcgttcttac 1320tacaatgaga ttttcaaggg caaggccaca ctgactgcag
acaaatcctc caacacagtc 1380cacattcaac tcagcagcct gacatctgag gactctgcgg
tctatttctg tgccctatct 1440actcttattc acgggacctg gttttcttat tggggccaag
ggactctggt cactgtctct 1500tcccatcatc accatcatca ttaggtcgac
1530186507PRTartificial sequenceSEQ ID NO 194 x
EGFR LH ; bispecific single chain antibody 186Gln Thr Val Val Thr
Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly 1 5
10 15 Thr Val Thr Leu Thr Cys Arg Ser Ser Thr
Gly Ala Val Thr Thr Ser 20 25
30 Asn Tyr Ala Asn Trp Val Gln Gln Lys Pro Gly Gln Ala Pro Arg
Gly 35 40 45 Leu
Ile Gly Gly Thr Asn Lys Arg Ala Pro Gly Thr Pro Ala Arg Phe 50
55 60 Ser Gly Ser Leu Leu Gly
Gly Lys Ala Ala Leu Thr Leu Ser Gly Val 65 70
75 80 Gln Pro Glu Asp Glu Ala Glu Tyr Tyr Cys Ala
Leu Trp Tyr Ser Asn 85 90
95 Leu Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gly Gly
100 105 110 Gly Ser
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Val Gln Leu 115
120 125 Val Glu Ser Gly Gly Gly Leu
Val Gln Pro Gly Gly Ser Leu Lys Leu 130 135
140 Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn Thr Tyr
Ala Met Asn Trp 145 150 155
160 Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Arg Ile Arg
165 170 175 Ser Lys Tyr
Asn Asn Tyr Ala Thr Tyr Tyr Ala Asp Ser Val Lys Asp 180
185 190 Arg Phe Thr Ile Ser Arg Asp Asp
Ser Lys Asn Thr Ala Tyr Leu Gln 195 200
205 Met Asn Asn Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr
Cys Val Arg 210 215 220
His Gly Asn Phe Gly Asn Ser Tyr Val Ser Trp Phe Ala Tyr Trp Gly 225
230 235 240 Gln Gly Thr Leu
Val Thr Val Ser Ser Ser Gly Gly Gly Gly Ser Asp 245
250 255 Ile Val Leu Thr Gln Ser Pro Ala Ser
Leu Pro Val Ser Leu Gly Gln 260 265
270 Arg Ala Thr Ile Ser Cys Arg Ala Ser Gln Ser Val Ser Ser
Ser Thr 275 280 285
Tyr Ser Tyr Ile His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys 290
295 300 Leu Leu Ile Thr Tyr
Ala Ser Asn Leu Glu Ser Gly Val Pro Ala Arg 305 310
315 320 Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe
Thr Leu Asp Ile His Pro 325 330
335 Val Glu Glu Asp Asp Ser Ser Thr Tyr Tyr Cys Gln His Ser Trp
Glu 340 345 350 Ile
Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys Gly Gly 355
360 365 Gly Gly Ser Gly Gly Gly
Gly Ser Gly Gly Gly Gly Ser Gln Val Gln 370 375
380 Leu Gln Gln Ser Gly Pro Asp Leu Val Lys Pro
Gly Ala Ser Val Lys 385 390 395
400 Met Ser Cys Lys Ala Ser Gly His Thr Phe Thr Asp Cys Val Ile Ile
405 410 415 Trp Val
Lys Gln Arg Ala Gly Gln Gly Leu Glu Trp Ile Gly Gln Ile 420
425 430 Tyr Pro Gly Thr Gly Arg Ser
Tyr Tyr Asn Glu Ile Phe Lys Gly Lys 435 440
445 Ala Thr Leu Thr Ala Asp Lys Ser Ser Asn Thr Val
His Ile Gln Leu 450 455 460
Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Leu Ser 465
470 475 480 Thr Leu Ile
His Gly Thr Trp Phe Ser Tyr Trp Gly Gln Gly Thr Leu 485
490 495 Val Thr Val Ser Ser His His His
His His His 500 505
1871515DNAartificial sequenceCAIX HL x SEQ ID NO 194 ; bispecific single
chain antibody 187gacgtgaagc tcgtggagtc tgggggaggc ttagtgaagc
ttggagggtc cctgaaactc 60tcctgtgcag cctctggatt cactttcagt aactattaca
tgtcttgggt tcgccagact 120ccagagaaga ggctggagtt ggtcgcagcc attaatagtg
atggtggtat cacctactat 180ctagacactg tgaagggccg attcaccatt tcaagagaca
atgccaagaa caccctgtac 240ctgcaaatga gcagtctgaa gtctgaggac acagccttgt
tttactgtgc aagacaccgc 300tcgggctact tttctatgga ctactggggt caaggaacct
cagtcaccgt ctcctcaggt 360ggtggtggtt ctggcggcgg cggctccggt ggtggtggtt
ctgacattgt gatgacccag 420tctcaaagat tcatgtccac aacagtagga gacagggtca
gcatcacctg caaggccagt 480cagaatgtgg tttctgctgt tgcctggtat caacagaaac
caggacaatc tcctaaacta 540ctgatttact cagcatccaa tcggtacact ggagtccctg
atcgcttcac aggcagtgga 600tctgggacag atttcactct caccattagc aatatgcagt
ctgaagacct ggctgatttt 660ttctgtcaac aatatagcaa ctatccgtgg acgttcggtg
gaggcaccaa gctggaaatc 720aaatccggag gtggtggctc ccagaccgtt gtgactcagg
aaccttcact caccgtatca 780cctggtggaa cagtcacact cacttgtcgc tcgtccactg
gggctgttac aactagcaac 840tatgccaact gggtccaaca aaaaccaggt caggcacccc
gtggtctaat aggtggtacc 900aacaagcgcg caccaggtac tcctgccaga ttctcaggct
ccctgcttgg aggcaaggct 960gccctcaccc tctcaggggt acagccagag gatgaggcag
aatattactg tgctctatgg 1020tacagcaacc tctgggtgtt cggtggagga accaaactga
ctgtcctagg tggtggtggt 1080tctggcggcg gcggctccgg tggtggtggt tctgaggtgc
agctggtgga gtctggagga 1140ggattggtgc agcctggagg gtcattgaaa ctctcatgtg
cagcctctgg attcaccttc 1200aatacctacg ccatgaactg ggtccgccag gctccaggaa
agggtttgga atgggttgct 1260cgcataagaa gtaaatataa taattatgca acatattatg
ccgattcagt gaaagacagg 1320ttcaccatct ccagagatga ttcaaaaaac actgcctatc
tacaaatgaa caacttgaaa 1380actgaggaca ctgccgtgta ctactgtgtg agacatggga
acttcggtaa tagctacgtt 1440tcctggtttg cttactgggg ccaagggact ctggtcaccg
tctcctcaca tcatcaccat 1500catcattagg tcgac
1515188502PRTartificial sequenceCAIX HL x SEQ ID NO
194 ; bispecific single chain antibody 188Asp Val Lys Leu Val Glu
Ser Gly Gly Gly Leu Val Lys Leu Gly Gly 1 5
10 15 Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe
Thr Phe Ser Asn Tyr 20 25
30 Tyr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Leu
Val 35 40 45 Ala
Ala Ile Asn Ser Asp Gly Gly Ile Thr Tyr Tyr Leu Asp Thr Val 50
55 60 Lys Gly Arg Phe Thr Ile
Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 70
75 80 Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr
Ala Leu Phe Tyr Cys 85 90
95 Ala Arg His Arg Ser Gly Tyr Phe Ser Met Asp Tyr Trp Gly Gln Gly
100 105 110 Thr Ser
Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115
120 125 Ser Gly Gly Gly Gly Ser Asp
Ile Val Met Thr Gln Ser Gln Arg Phe 130 135
140 Met Ser Thr Thr Val Gly Asp Arg Val Ser Ile Thr
Cys Lys Ala Ser 145 150 155
160 Gln Asn Val Val Ser Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln
165 170 175 Ser Pro Lys
Leu Leu Ile Tyr Ser Ala Ser Asn Arg Tyr Thr Gly Val 180
185 190 Pro Asp Arg Phe Thr Gly Ser Gly
Ser Gly Thr Asp Phe Thr Leu Thr 195 200
205 Ile Ser Asn Met Gln Ser Glu Asp Leu Ala Asp Phe Phe
Cys Gln Gln 210 215 220
Tyr Ser Asn Tyr Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile 225
230 235 240 Lys Ser Gly Gly
Gly Gly Ser Gln Thr Val Val Thr Gln Glu Pro Ser 245
250 255 Leu Thr Val Ser Pro Gly Gly Thr Val
Thr Leu Thr Cys Arg Ser Ser 260 265
270 Thr Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn Trp Val Gln
Gln Lys 275 280 285
Pro Gly Gln Ala Pro Arg Gly Leu Ile Gly Gly Thr Asn Lys Arg Ala 290
295 300 Pro Gly Thr Pro Ala
Arg Phe Ser Gly Ser Leu Leu Gly Gly Lys Ala 305 310
315 320 Ala Leu Thr Leu Ser Gly Val Gln Pro Glu
Asp Glu Ala Glu Tyr Tyr 325 330
335 Cys Ala Leu Trp Tyr Ser Asn Leu Trp Val Phe Gly Gly Gly Thr
Lys 340 345 350 Leu
Thr Val Leu Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 355
360 365 Gly Gly Ser Glu Val Gln
Leu Val Glu Ser Gly Gly Gly Leu Val Gln 370 375
380 Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala
Ser Gly Phe Thr Phe 385 390 395
400 Asn Thr Tyr Ala Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
405 410 415 Glu Trp
Val Ala Arg Ile Arg Ser Lys Tyr Asn Asn Tyr Ala Thr Tyr 420
425 430 Tyr Ala Asp Ser Val Lys Asp
Arg Phe Thr Ile Ser Arg Asp Asp Ser 435 440
445 Lys Asn Thr Ala Tyr Leu Gln Met Asn Asn Leu Lys
Thr Glu Asp Thr 450 455 460
Ala Val Tyr Tyr Cys Val Arg His Gly Asn Phe Gly Asn Ser Tyr Val 465
470 475 480 Ser Trp Phe
Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 485
490 495 His His His His His His
500 1891515DNAartificial sequenceCAIX HL x SEQ ID NO 170 ;
bispecific single chain antibody 189gacgtgaagc tcgtggagtc tgggggaggc
ttagtgaagc ttggagggtc cctgaaactc 60tcctgtgcag cctctggatt cactttcagt
aactattaca tgtcttgggt tcgccagact 120ccagagaaga ggctggagtt ggtcgcagcc
attaatagtg atggtggtat cacctactat 180ctagacactg tgaagggccg attcaccatt
tcaagagaca atgccaagaa caccctgtac 240ctgcaaatga gcagtctgaa gtctgaggac
acagccttgt tttactgtgc aagacaccgc 300tcgggctact tttctatgga ctactggggt
caaggaacct cagtcaccgt ctcctcaggt 360ggtggtggtt ctggcggcgg cggctccggt
ggtggtggtt ctgacattgt gatgacccag 420tctcaaagat tcatgtccac aacagtagga
gacagggtca gcatcacctg caaggccagt 480cagaatgtgg tttctgctgt tgcctggtat
caacagaaac caggacaatc tcctaaacta 540ctgatttact cagcatccaa tcggtacact
ggagtccctg atcgcttcac aggcagtgga 600tctgggacag atttcactct caccattagc
aatatgcagt ctgaagacct ggctgatttt 660ttctgtcaac aatatagcaa ctatccgtgg
acgttcggtg gaggcaccaa gctggaaatc 720aaatccggag gtggtggctc cgaggtgcag
ctggtggagt ctggaggagg attggtgcag 780cctggagggt cattgaaact ctcatgtgca
gcctctggat tcaccttcaa tacctacgcc 840atgaactggg tccgccaggc tccaggaaag
ggtttggaat gggttgctcg cataagaagt 900aaatataata attatgcaac atattatgcc
gattcagtga aagacaggtt caccatctcc 960agagatgatt caaaaaacac tgcctatcta
caaatgaaca acttgaaaac tgaggacact 1020gccgtgtact actgtgtgag acatgggaac
ttcggtaata gctacgtttc ctggtttgct 1080tactggggcc aagggactct ggtcaccgtc
tcctcaggtg gtggtggttc tggcggcggc 1140ggctccggtg gtggtggttc tcagaccgtt
gtgactcagg aaccttcact caccgtatca 1200cctggtggaa cagtcacact cacttgtcgc
tcgtccactg gggctgttac aactagcaac 1260tatgccaact gggtccaaca aaaaccaggt
caggcacccc gtggtctaat aggtggtacc 1320aacaagcgcg caccaggtac tcctgccaga
ttctcaggct ccctgcttgg aggcaaggct 1380gccctcaccc tctcaggggt acagccagag
gatgaggcag aatattactg tgctctatgg 1440tacagcaacc tctgggtgtt cggtggagga
accaaactga ctgtcctaca tcatcaccat 1500catcattagg tcgac
1515190502PRTartificial sequenceCAIX HL
x SEQ ID NO 170 ; bispecific single chain antibody 190Asp Val Lys
Leu Val Glu Ser Gly Gly Gly Leu Val Lys Leu Gly Gly 1 5
10 15 Ser Leu Lys Leu Ser Cys Ala Ala
Ser Gly Phe Thr Phe Ser Asn Tyr 20 25
30 Tyr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu
Glu Leu Val 35 40 45
Ala Ala Ile Asn Ser Asp Gly Gly Ile Thr Tyr Tyr Leu Asp Thr Val 50
55 60 Lys Gly Arg Phe
Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 70
75 80 Leu Gln Met Ser Ser Leu Lys Ser Glu
Asp Thr Ala Leu Phe Tyr Cys 85 90
95 Ala Arg His Arg Ser Gly Tyr Phe Ser Met Asp Tyr Trp Gly
Gln Gly 100 105 110
Thr Ser Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
115 120 125 Ser Gly Gly Gly
Gly Ser Asp Ile Val Met Thr Gln Ser Gln Arg Phe 130
135 140 Met Ser Thr Thr Val Gly Asp Arg
Val Ser Ile Thr Cys Lys Ala Ser 145 150
155 160 Gln Asn Val Val Ser Ala Val Ala Trp Tyr Gln Gln
Lys Pro Gly Gln 165 170
175 Ser Pro Lys Leu Leu Ile Tyr Ser Ala Ser Asn Arg Tyr Thr Gly Val
180 185 190 Pro Asp Arg
Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 195
200 205 Ile Ser Asn Met Gln Ser Glu Asp
Leu Ala Asp Phe Phe Cys Gln Gln 210 215
220 Tyr Ser Asn Tyr Pro Trp Thr Phe Gly Gly Gly Thr Lys
Leu Glu Ile 225 230 235
240 Lys Ser Gly Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly
245 250 255 Gly Leu Val Gln
Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala Ser 260
265 270 Gly Phe Thr Phe Asn Thr Tyr Ala Met
Asn Trp Val Arg Gln Ala Pro 275 280
285 Gly Lys Gly Leu Glu Trp Val Ala Arg Ile Arg Ser Lys Tyr
Asn Asn 290 295 300
Tyr Ala Thr Tyr Tyr Ala Asp Ser Val Lys Asp Arg Phe Thr Ile Ser 305
310 315 320 Arg Asp Asp Ser Lys
Asn Thr Ala Tyr Leu Gln Met Asn Asn Leu Lys 325
330 335 Thr Glu Asp Thr Ala Val Tyr Tyr Cys Val
Arg His Gly Asn Phe Gly 340 345
350 Asn Ser Tyr Val Ser Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu
Val 355 360 365 Thr
Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 370
375 380 Gly Gly Ser Gln Thr Val
Val Thr Gln Glu Pro Ser Leu Thr Val Ser 385 390
395 400 Pro Gly Gly Thr Val Thr Leu Thr Cys Arg Ser
Ser Thr Gly Ala Val 405 410
415 Thr Thr Ser Asn Tyr Ala Asn Trp Val Gln Gln Lys Pro Gly Gln Ala
420 425 430 Pro Arg
Gly Leu Ile Gly Gly Thr Asn Lys Arg Ala Pro Gly Thr Pro 435
440 445 Ala Arg Phe Ser Gly Ser Leu
Leu Gly Gly Lys Ala Ala Leu Thr Leu 450 455
460 Ser Gly Val Gln Pro Glu Asp Glu Ala Glu Tyr Tyr
Cys Ala Leu Trp 465 470 475
480 Tyr Ser Asn Leu Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
485 490 495 His His His
His His His 500 1911515DNAartificial sequenceCAIX LH
x SEQ ID NO 170 ; bispecific single chain antibody 191gacattgtga
tgacccagtc tcaaagattc atgtccacaa cagtaggaga cagggtcagc 60atcacctgca
aggccagtca gaatgtggtt tctgctgttg cctggtatca acagaaacca 120ggacaatctc
ctaaactact gatttactca gcatccaatc ggtacactgg agtccctgat 180cgcttcacag
gcagtggatc tgggacagat ttcactctca ccattagcaa tatgcagtct 240gaagacctgg
ctgatttttt ctgtcaacaa tatagcaact atccgtggac gttcggtgga 300ggcaccaagc
tggaaatcaa aggtggtggt ggttctggcg gcggcggctc cggtggtggt 360ggttctgacg
tgaagctcgt ggagtctggg ggaggcttag tgaagcttgg agggtccctg 420aaactctcct
gtgcagcctc tggattcact ttcagtaact attacatgtc ttgggttcgc 480cagactccag
agaagaggct ggagttggtc gcagccatta atagtgatgg tggtatcacc 540tactatctag
acactgtgaa gggccgattc accatttcaa gagacaatgc caagaacacc 600ctgtacctgc
aaatgagcag tctgaagtct gaggacacag ccttgtttta ctgtgcaaga 660caccgctcgg
gctacttttc tatggactac tggggtcaag gaacctcagt caccgtctcc 720tcctccggag
gtggtggctc cgaggtgcag ctggtggagt ctggaggagg attggtgcag 780cctggagggt
cattgaaact ctcatgtgca gcctctggat tcaccttcaa tacctacgcc 840atgaactggg
tccgccaggc tccaggaaag ggtttggaat gggttgctcg cataagaagt 900aaatataata
attatgcaac atattatgcc gattcagtga aagacaggtt caccatctcc 960agagatgatt
caaaaaacac tgcctatcta caaatgaaca acttgaaaac tgaggacact 1020gccgtgtact
actgtgtgag acatgggaac ttcggtaata gctacgtttc ctggtttgct 1080tactggggcc
aagggactct ggtcaccgtc tcctcaggtg gtggtggttc tggcggcggc 1140ggctccggtg
gtggtggttc tcagaccgtt gtgactcagg aaccttcact caccgtatca 1200cctggtggaa
cagtcacact cacttgtcgc tcgtccactg gggctgttac aactagcaac 1260tatgccaact
gggtccaaca aaaaccaggt caggcacccc gtggtctaat aggtggtacc 1320aacaagcgcg
caccaggtac tcctgccaga ttctcaggct ccctgcttgg aggcaaggct 1380gccctcaccc
tctcaggggt acagccagag gatgaggcag aatattactg tgctctatgg 1440tacagcaacc
tctgggtgtt cggtggagga accaaactga ctgtcctaca tcatcaccat 1500catcattagg
tcgac
1515192502PRTartificial sequenceCAIX LH x SEQ ID NO 170 ; bispecific
single chain antibody 192Asp Ile Val Met Thr Gln Ser Gln Arg Phe Met
Ser Thr Thr Val Gly 1 5 10
15 Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asn Val Val Ser Ala
20 25 30 Val Ala
Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile 35
40 45 Tyr Ser Ala Ser Asn Arg Tyr
Thr Gly Val Pro Asp Arg Phe Thr Gly 50 55
60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
Asn Met Gln Ser 65 70 75
80 Glu Asp Leu Ala Asp Phe Phe Cys Gln Gln Tyr Ser Asn Tyr Pro Trp
85 90 95 Thr Phe Gly
Gly Gly Thr Lys Leu Glu Ile Lys Gly Gly Gly Gly Ser 100
105 110 Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Asp Val Lys Leu Val Glu 115 120
125 Ser Gly Gly Gly Leu Val Lys Leu Gly Gly Ser Leu Lys
Leu Ser Cys 130 135 140
Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Tyr Met Ser Trp Val Arg 145
150 155 160 Gln Thr Pro Glu
Lys Arg Leu Glu Leu Val Ala Ala Ile Asn Ser Asp 165
170 175 Gly Gly Ile Thr Tyr Tyr Leu Asp Thr
Val Lys Gly Arg Phe Thr Ile 180 185
190 Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr Leu Gln Met Ser
Ser Leu 195 200 205
Lys Ser Glu Asp Thr Ala Leu Phe Tyr Cys Ala Arg His Arg Ser Gly 210
215 220 Tyr Phe Ser Met Asp
Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser 225 230
235 240 Ser Ser Gly Gly Gly Gly Ser Glu Val Gln
Leu Val Glu Ser Gly Gly 245 250
255 Gly Leu Val Gln Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala
Ser 260 265 270 Gly
Phe Thr Phe Asn Thr Tyr Ala Met Asn Trp Val Arg Gln Ala Pro 275
280 285 Gly Lys Gly Leu Glu Trp
Val Ala Arg Ile Arg Ser Lys Tyr Asn Asn 290 295
300 Tyr Ala Thr Tyr Tyr Ala Asp Ser Val Lys Asp
Arg Phe Thr Ile Ser 305 310 315
320 Arg Asp Asp Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Asn Leu Lys
325 330 335 Thr Glu
Asp Thr Ala Val Tyr Tyr Cys Val Arg His Gly Asn Phe Gly 340
345 350 Asn Ser Tyr Val Ser Trp Phe
Ala Tyr Trp Gly Gln Gly Thr Leu Val 355 360
365 Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gly Gly 370 375 380
Gly Gly Ser Gln Thr Val Val Thr Gln Glu Pro Ser Leu Thr Val Ser 385
390 395 400 Pro Gly Gly
Thr Val Thr Leu Thr Cys Arg Ser Ser Thr Gly Ala Val 405
410 415 Thr Thr Ser Asn Tyr Ala Asn Trp
Val Gln Gln Lys Pro Gly Gln Ala 420 425
430 Pro Arg Gly Leu Ile Gly Gly Thr Asn Lys Arg Ala Pro
Gly Thr Pro 435 440 445
Ala Arg Phe Ser Gly Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu 450
455 460 Ser Gly Val Gln
Pro Glu Asp Glu Ala Glu Tyr Tyr Cys Ala Leu Trp 465 470
475 480 Tyr Ser Asn Leu Trp Val Phe Gly Gly
Gly Thr Lys Leu Thr Val Leu 485 490
495 His His His His His His 500
193747DNAartificial sequenceHuman-like VL (SEQ ID NO 168) x Human-like VH
(SEQ ID NO 110) scFv ; single chain Fv 193cagaccgttg tgactcagga
accttcactc accgtatcac ctggtggaac agtcacactc 60acttgtcgct cgtccactgg
ggctgttaca actagcaact atgccaactg ggtccaacaa 120aaaccaggtc aggcaccccg
tggtctaata ggtggtacca acaagcgcgc accaggtact 180cctgccagat tctcaggctc
cctgcttgga ggcaaggctg ccctcaccct ctcaggggta 240cagccagagg atgaggcaga
atattactgt gctctatggt acagcaacct ctgggtgttc 300ggtggaggaa ccaaactgac
tgtcctaggt ggtggtggtt ctggcggcgg cggctccggt 360ggtggtggtt ctgaggtgca
gctggtggag tctggaggag gattggtgca gcctggaggg 420tcattgaaac tctcatgtgc
agcctctgga ttcaccttca atacctacgc catgaactgg 480gtccgccagg ctccaggaaa
gggtttggaa tgggttgctc gcataagaag taaatataat 540aattatgcaa catattatgc
cgattcagtg aaagacaggt tcaccatctc cagagatgat 600tcaaaaaaca ctgcctatct
acaaatgaac aacttgaaaa ctgaggacac tgccgtgtac 660tactgtgtga gacatgggaa
cttcggtaat agctacgttt cctggtttgc ttactggggc 720caagggactc tggtcaccgt
ctcctca 747194249PRTartificial
sequenceHuman-like VL (SEQ ID NO 168) x Human-like VH (SEQ ID NO
110) scFv ; single chain Fv 194Gln Thr Val Val Thr Gln Glu Pro Ser Leu
Thr Val Ser Pro Gly Gly 1 5 10
15 Thr Val Thr Leu Thr Cys Arg Ser Ser Thr Gly Ala Val Thr Thr
Ser 20 25 30 Asn
Tyr Ala Asn Trp Val Gln Gln Lys Pro Gly Gln Ala Pro Arg Gly 35
40 45 Leu Ile Gly Gly Thr Asn
Lys Arg Ala Pro Gly Thr Pro Ala Arg Phe 50 55
60 Ser Gly Ser Leu Leu Gly Gly Lys Ala Ala Leu
Thr Leu Ser Gly Val 65 70 75
80 Gln Pro Glu Asp Glu Ala Glu Tyr Tyr Cys Ala Leu Trp Tyr Ser Asn
85 90 95 Leu Trp
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gly Gly 100
105 110 Gly Ser Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Glu Val Gln Leu 115 120
125 Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
Ser Leu Lys Leu 130 135 140
Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn Thr Tyr Ala Met Asn Trp 145
150 155 160 Val Arg Gln
Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Arg Ile Arg 165
170 175 Ser Lys Tyr Asn Asn Tyr Ala Thr
Tyr Tyr Ala Asp Ser Val Lys Asp 180 185
190 Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr Ala
Tyr Leu Gln 195 200 205
Met Asn Asn Leu Lys Thr Glu Asp Thr Ala Val Tyr Tyr Cys Val Arg 210
215 220 His Gly Asn Phe
Gly Asn Ser Tyr Val Ser Trp Phe Ala Tyr Trp Gly 225 230
235 240 Gln Gly Thr Leu Val Thr Val Ser Ser
245 19513PRTartificial sequenceepitope
195Glu Phe Ser Glu Leu Glu Gln Ser Gly Tyr Tyr Val Cys 1 5
10 19613PRTartificial sequenceepitope
196Glu Phe Ser Glu Leu Glu Gln Ser Gly Tyr Tyr Val Lys 1 5
10 19734DNAartificial sequence5' EGFR XbaI
; oligonucleotide 197ggtctagagc atgcgaccct ccgggacggc cggg
3419836DNAARTIFICIAL SEQUENCE3' EGFR SalI ;
oligonucleotide 198ttttaagtcg actcatgctc caataaattc actgct
3619913PRTartificial sequenceepitope 199Gln Asp Gly Asn
Glu Glu Met Gly Ser Ile Thr Gln Thr 1 5
10 20013PRTartificial sequenceepitope 200Tyr Tyr Val Ser Tyr
Pro Arg Gly Ser Asn Pro Glu Asp 1 5 10
20113PRTartificial sequenceepitope 201Glu Phe Ser Glu Met Glu
Gln Ser Gly Tyr Tyr Val Cys 1 5 10
2025PRTartificial sequenceepitope 202Phe Ser Glu Leu Glu 1
5 20313PRTartificial sequenceepitope 203Gln Tyr Pro Gly Ser Glu
Ile Leu Trp Gln His Asn Asp 1 5 10
2045PRTartificial sequenceepitope 204Phe Ser Glu Leu Glu 1
5 2055PRTartificial sequenceepitope 205Phe Ser Glu Leu Glu 1
5 2065PRTartificial sequenceepitope 206Phe Ser Glu Met Glu 1
5 20713PRTartificial sequenceepitope 207Glu Phe Ser Glu Leu
Glu Gln Ser Gly Tyr Tyr Val Cys 1 5 10
User Contributions:
Comment about this patent or add new information about this topic: