Patent application title: S. EPIDERMIDIS ANTIGENS
Inventors:
Andreas Meinke (Pressbaum, AT)
Intercell Ag (Vienna, AT)
Duc Min Bui (Vienna, AT)
Eszter Nagy (Vienna, AT)
Assignees:
Intercell AG
IPC8 Class: AA61K3900FI
USPC Class:
4241851
Class name: Drug, bio-affecting and body treating compositions antigen, epitope, or other immunospecific immunoeffector (e.g., immunospecific vaccine, immunospecific stimulator of cell-mediated immunity, immunospecific tolerogen, immunospecific immunosuppressor, etc.) amino acid sequence disclosed in whole or in part; or conjugate, complex, or fusion protein or fusion polypeptide including the same
Publication date: 2013-05-16
Patent application number: 20130122030
Abstract:
Hyperimmune serum reactive antigens and fragments thereof are disclosed.
In addition, methods for isolating such antigens and specific uses
thereof, including the treatment of S. epidermidis infections, are
disclosed.Claims:
1. An isolated hyperimmune serum-reactive antigen consisting of a
fragment of SEQ ID NO: 52, wherein said fragment comprises an amino acid
sequence selected from the group consisting of amino acids 89-94,
102-115, 123-129, 181-188, 200-206, 211-235, 239-249, 267-281, 295-310,
316-321, 331-341, 344-359, 365-386, 409-422, 443-453, 495-506, 514-521,
539-547, 553-560, 563-570, 586-596, 621-626, 633-638, 651-657, 666-683,
697-705, 731-739, 761-768, 865-883 and 213-265 of SEQ ID NO: 52, and
wherein said fragment is less than 892 amino acids in length.
2. An immunogenic composition comprising the isolated hyperimmune serum-reactive antigen of claim 1.
3. The immunogenic composition of claim 2, comprising at least 2 different hyperimmune serum-reactive antigens.
4. The immunogenic composition of claim 2, further comprising an adjuvant.
5. The immunogenic composition of claim 3, further comprising an adjuvant.
6. A fusion protein comprising the hyperimmune serum-reactive antigen according to claim 1.
7. An immunogenic composition comprising the fusion protein of claim 6.
8. The immunogenic composition of claim 7, further comprising an adjuvant.
9. A method of inducing an immune response in a subject comprising: administering the immunogenic composition of claim 2 to a subject; wherein an immune response is induced in the subject.
10. The method of claim 9, wherein the subject is a human.
11. The method of claim 9, wherein the subject has an S. epidermidis infection.
12. A method of inducing an immune response in a subject comprising: administering the immunogenic composition of claim 7 to a subject; wherein an immune response is induced in the subject.
13. The method of claim 12, wherein the subject is a human.
14. The method of claim 12, wherein the subject has an S. epidermidis infection.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a divisional application of U.S. application Ser. No. 13/540,696 filed on Jul. 3, 2012, which is a divisional of U.S. application Ser. No. 12/625,053 filed on Nov. 24, 2009, which is a divisional of U.S. application Ser. No. 10/551,492 filed on Oct. 13, 2006, which is a national phase application under 35 U.S.C. §371 of International Application No. PCT/EP2004/003398 filed Mar. 31, 2004, which claims priority to European Application No. 03450078.5 filed Mar. 31, 2003. The above-referenced applications are incorporated herein by reference in their entirety.
BACKGROUND
[0002] The present invention relates to isolated nucleic acid molecules, which encode antigens for Staphylococcus epidermidis, which are suitable for use in preparation of pharmaceutical medicaments for the prevention and treatment of bacterial infections caused by Staphylococcus epidermidis.
[0003] Staphylococci are opportunistic pathogens, which can cause illnesses, which range from minor infections to life threatening diseases. Of the large number of Staphylococci at least 3 are commonly associated with human disease: S. aureus, S. epidermidis and rarely S. saprophyticus (Crossley, K. B. and Archer G. L, eds. (1997). The Staphylococci in Human Disease. Churchill Livingston Inc.) Staphylococcal infections are imposing an increasing threat in hospitals worldwide. The appearance and disease causing capacity of Staphylococci are related to the widespread use of antibiotics, which induced and continue to induce multi-drug resistance. Both S. aureus and S. epidermidis have become resistant to many commonly used antibiotics, most importantly to methicillin (MRSA) and vancomycin (VISA). Drug resistance is an increasingly important public health concern, and soon many infections caused by staphylococci may be untreatable by antibiotics. In addition to its adverse effect on public health, antimicrobial resistance contributes to higher health care costs, since treating resistant infections often requires the use of more toxic and more expensive drugs, and can result in longer hospital stays for infected patients.
[0004] Moreover, even with the help of effective antibiotics, the most serious staphylococcal infections have 30-50% mortality.
[0005] Every human being is colonized with S. epidermidis. The normal habitats of S. epidermidis are the skin and the mucous membrane. Generally, the established flora of the nose prevents acquisition of new strains. However, colonization with other strains may occur when antibiotic treatment is given that leads to elimination of the susceptible carrier strain. Because this situation occurs in the hospitals, patients may become colonized with resistant nosocomial Staphylococci.
[0006] Staphylococci become potentially pathogenic as soon as the natural balance between microorganisms and the immune system gets disturbed, when natural barriers (skin, mucous membrane) are breached. The coagulase-positive S. aureus is the most pathogenic staphylococcal species, feared by surgeons for a long time. Most frequently it causes surgical wound infections, and induces the formation of abscesses. S. epidermidis causes diseases mostly related to the presence of foreign bodies and the use of devices, such as catheter related infections, cerebrospinal fluid shunt infections, peritonitis in dialysed patients (mainly CAPD), endocarditis in individuals with prosthetic valves. This is exemplified in immunocompromised individuals such as oncology patients and premature neonates in whom coagulase-negative staphylococcal infections frequently occur in association with the use of intravascular device. The increase in incidence is related to the increased used of these devices and increasing number of immuno-compromised patients.
[0007] The pathogenesis of staphylococci is multifactorial. In order to initiate infection the pathogen has to gain access to the cells and tissues of the host, that is adhere. Since adherence is obviously a crucial step in the initiation of foreign body infections, S. epidermidis is equipped with a number of cell surface molecules, which promote adherence to foreign material and through that mechanism establish infection in the host. A characteristic of many pathogenic strains of S. epidermidis is the production of a slime resulting in biofilm formation. The slime is predominantly a secreted teichoic acid, normally found in the cell wall of the staphylococci. This ability to form a biofilm on the surface of a prosthetic device is probably a significant determinant of virulence for these bacteria, since this prevents phagocytosis of the bacteria. A further means of staphylococci to cause damage to its host are the secreted products, such as enterotoxins, exotoxins, and tissue damaging enzymes. The toxins kill or misguide immune cells, which are important in the host defence. The several different types of toxins are responsible for most of the symptoms during infections.
[0008] For all the above-mentioned reasons there remains a need for an effective preventive and therapeutic treatment, but until today there is no effective preventive or therapeutic vaccine approved. It has been shown that an antibody deficiency state contributes to staphylococcal persistence, suggesting that anti-staphylococcal antibodies are important in host defence. Antibodies-added as passive immunisation or induced by active vaccination--directed towards surface components could both, prevent bacterial adherence, neutralize toxins and promote phagocytosis. An effective vaccine offers great potential for patients facing elective surgery in general, and those receiving endovascular devices, in particular. Moreover, patients suffering from chronic diseases, which decrease immune responses or undergoing continuous ambulatory peritoneal dialysis are likely to benefit from such a vaccine.
[0009] A vaccine can contain a whole variety of different antigens. Examples of antigens are wholekilled or attenuated organisms, subfractions of these organisms/tissues, proteins, or, in their most simple form, peptides. Antigens can also be recognized by the immune system in form of glycosylated proteins or peptides and may also be or contain polysaccharides or lipids. Short peptides can be used since for example cytotoxic T-cells (CTL) recognize antigens in form of short usually 8-11 amino acids long peptides in conjunction with major histocompatibility complex (MHC). B-cells can recognize linear epitopes as short as 4-5 amino acids, as well as three-dimensional structures (conformational epitopes). In order to obtain sustained, antigen-specific immune responses, adjuvants need to trigger immune cascades that involve all cells of the immune system necessary. Primarily, adjuvants are acting, but are not restricted in their mode of action, on so-called antigen presenting cells (APCs). These cells usually first encounter the antigen(s) followed by presentation of processed or unmodified antigen to immune effector cells. Intermediate cell types may also be involved. Only effector cells with the appropriate specificity are activated in a productive immune response. The adjuvant may also locally retain antigens and co-injected other factors. In addition the adjuvant may act as a chemoattractant for other immune cells or may act locally and/or systemically as a stimulating agent for the immune system.
[0010] Approaches to develop a vaccine have focused until today mainly on S. aureus {Shinefield, H. et al., 2002}. Therefore it would be of great value to develop a vaccine targeting S. epidermidis or preferentially both Staphylococci.
[0011] The present inventors have developed a method for identification, isolation and production of hyperimmune serum reactive antigens from a specific pathogen, especially from Staphylococcus aureus and Staphylococcus epidermidis (WO 02/059148). Importantly for the present invention, the selection of sera for the identification of antigens from S. epidermidis is different from that applied to the previous screens.
[0012] Individuals undergoing continuous peritoneal dialysis represent one of the most important groups of patients infected by S. epidermidis. Staphylococci preferentially infect patients with foreign bodies such as dialysis catheters. Peritoneal dialysis patients suffer from peritonitis mainly caused by S. aureus and coagulase negative staphylococci, especially S. epidermidis. In order to identify antigens expressed by S. epidermidis in humans during peritonitis, human serum samples were collected from patients undergoing peritoneal dialysis for an extended period of time and suffered from peritonitis caused by S. epidermidis within the previous 12 months, and thus considered to be in the late convalescent phase of the disease. It has been firmly established that patients with serious staphylococcal diseases--such as peritonitis--develop antibodies, which sustain for up to a year.
[0013] The problem underlying the present invention was to provide means for the development of medicaments such as vaccines against S. epidermidis infection. More particularly, the problem was to provide an efficient and relevant set of nucleic acid molecules or hyperimmune serum reactive antigens from S. epidermidis that can be used for the manufacture of said medicaments.
[0014] Therefore, the present invention provides an isolated nucleic acid molecule encoding a hyperimmune serum reactive antigen or a fragment thereof comprising a nucleic acid sequence, which is selected from the group consisting of:
[0015] a) a nucleic acid molecule having at least 70% sequence identity to a nucleic acid molecule selected from Seq ID No 1, 4, 6-9, 11-13, 15, 17, 19, 21, 25-26, 28-31.
[0016] b) a nucleic acid molecule which is complementary to the nucleic acid molecule of a),
[0017] c) a nucleic acid molecule comprising at least 15 sequential bases of the nucleic acid molecule of a) or b)
[0018] d) a nucleic acid molecule which anneals under stringent hybridisation conditions to the nucleic acid molecule of a), b), or c)
[0019] e) a nucleic acid molecule which, but for the degeneracy of the genetic code, would hybridise to the nucleic acid molecule defined in a), b), c) or d).
[0020] According to a preferred embodiment of the present invention the sequence identity is at least 80%, preferably at least 95%, especially 100%.
[0021] Furthermore, the present invention provides an isolated nucleic acid molecule encoding a hyperimmune serum reactive antigen or a fragment thereof comprising a nucleic acid sequence selected from the group consisting of
[0022] a) a nucleic acid molecule having at least 96% sequence identity to a nucleic acid molecule selected from Seq ID No 2-3, 5, 10, 14, 16, 18, 22-24, 27,
[0023] b) a nucleic acid molecule which is complementary to the nucleic acid molecule of a),
[0024] c) a nucleic acid molecule comprising at least 15 sequential bases of the nucleic acid molecule of a) or b)
[0025] d) a nucleic acid molecule which anneals under stringent hybridisation conditions to the nucleic acid molecule of a), b) or c),
[0026] e) a nucleic acid molecule which, but for the degeneracy of the genetic code, would hybridise to the nucleic acid defined in a), b), c) or d).
[0027] According to another aspect, the present invention provides an isolated nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of
[0028] a) a nucleic acid molecule selected from Seq ID No 20.
[0029] b) a nucleic acid molecule which is complementary to the nucleic acid of a),
[0030] c) a nucleic acid molecule which, but for the degeneracy of the genetic code, would hybridise to the nucleic acid defined in a), b), c) or d).
[0031] Preferably, the nucleic acid molecule is DNA or RNA.
[0032] According to a preferred embodiment of the present invention, the nucleic acid molecule is isolated from a genomic DNA, especially from a S. epidermidis genomic DNA.
[0033] According to the present invention a vector comprising a nucleic acid molecule according to any of the present invention is provided.
[0034] In a preferred embodiment the vector is adapted for recombinant expression of the hyperimmune serum reactive antigens or fragments thereof encoded by the nucleic acid molecule according to the present invention.
[0035] The present invention also provides a host cell comprising the vector according to the present invention.
[0036] According to another aspect the present invention further provides a hyperimmune serum-reactive antigen comprising an amino acid sequence being encoded by a nucleic acid molecule according to the present invention.
[0037] In a preferred embodiment the amino acid sequence (polypeptide) is selected from the group consisting of Seq ID No 32, 35, 37-40, 42-44, 46, 48, 50, 52, 56-57, 59-62.
[0038] In another preferred embodiment the amino acid sequence (polypeptide) is selected from the group consisting of Seq ID No 33-34, 36, 41, 45, 47, 49, 53-55, 58.
[0039] In a further preferred embodiment the amino acid sequence (polypeptide) is selected from the group consisting of Seq ID No 51.
[0040] According to a further aspect the present invention provides fragments of hyperimmune serum-reactive antigens selected from the group consisting of peptides comprising amino acid sequences of column "predicted immunogenic aa" and "location of identified immunogenic region" of Table 1; the serum reactive epitopes of Table 1, especially peptides comprising amino acids 6-28, 54-59, 135-147, 193-205, 274-279, 284-291, 298-308, 342-347, 360-366, 380-386, 408-425, 437-446, 457-464, 467-477, 504-510, 517-530, 535-543, 547-553, 562-569, 573-579, 592-600, 602-613, 626-631, 638-668 and 396-449 of Seq ID No 32; 5-24, 101-108, 111-117, 128-142, 170-184, 205-211, 252-267, 308-316, 329-337, 345-353, 360-371, 375-389, 393-399, 413-419, 429-439, 446-456, 471-485, 495-507, 541-556, 582-588, 592-602, 607-617, 622-628, 630-640 and 8-21 of Seq ID No 33; 10-20, 23-33, 40-45, 59-65, 72-107, 113-119, 127-136, 151-161 and 33-59 of Seq ID No 34; 4-16, 28-34, 39-61, 66-79, 100-113, 120-127, 130-137, 142-148, 150-157, 192-201, 203-210, 228-239, 245-250, 256-266, 268-278, 288-294, 312-322, 336-344, 346-358, 388-396, 399-413, 425-430, 445-461, 464-470, 476-482, 486-492, 503-511, 520-527, 531-541, 551-558, 566-572, 609-625, 635-642, 650-656, 683-689, 691-705, 734-741, 750-767, 782-789, 802-808, 812-818, 837-844, 878-885, 907-917, 930-936 and 913-933 of Seq ID No 35; 5-12, 20-27, 46-78, 85-92, 104-112, 121-132, 150-167, 179-185, 200-213, 221-227, 240-264, 271-279, 282-290, 311-317 and 177-206 of Seq ID No 36; 18-24, 31-40, 45-51, 89-97, 100-123, 127-132, 139-153, 164-170, 184-194, 200-205, 215-238, 244-255, 257-270, 272-280, 289-302, 312-318, 338-348, 356-367 and 132-152 of Seq ID No 37; 7-16, 39-45, 73-83, 90-98, 118-124, 130-136, 194-204, 269-280, 320-327, 373-381, 389-397, 403-408, 424-430, 436-441, 463-476, 487-499, 507-514, 527-534, 540-550, 571-577, 593-599, 620-629, 641-647, 650-664, 697-703, 708-717, 729-742, 773-790, 794-805, 821-828, 830-837, 839-851, 858-908, 910-917, 938-947, 965-980, 1025-1033, 1050-1056, 1073-1081, 1084-1098, 1106-1120, 1132-1140, 1164-1170, 1185-1194, 1201-1208, 1215-1224, 1226-1234, 1267-1279, 1325-1331, 1356-1364, 1394-1411, 1426-1439, 1445-1461, 1498-1504, 1556-1561, 1564-1573, 1613-1639, 1648-1655, 1694-1714, 1748-1755, 1778-1785, 1808-1813, 1821-1827, 1829-1837, 1846-1852, 1859-1865, 1874-1883, 1895-1900, 1908-1913, 1931-1937, 1964-1981, 1995-2005, 2020-2033, 2040-2047, 2103-2109, 2118-2127, 2138-2144, 2166-2175, 2180-2187, 2220-2225, 2237-2242, 2247-2253, 2273-2281, 2286-2306, 2314-2320, 2323-2345, 2350-2355, 2371-2384, 2415-2424, 2426-2431, 2452-2472, 2584-2589, 2610-2621, 2638-2655, 2664-2670, 2681-2690, 2692-2714, 2724-2730 and 687-730 of Seq ID No 38; 10-40, 53-59, 79-85, 98-104, 117-122, 130-136, 144-158, 169-175, 180-185, 203-223, 232-237, 243-254, 295-301 and 254-292 of Seq ID No 39; 28-50, 67-85, 93-115, 120-134, 144-179, 240-249, 328-340, 354-360, 368-400, 402-417, 419-427, 429-445, 447-455, 463-468, 472-480, 485-500, 502-510, 512-534, 537-546, 553-558, 582-594, 619-637, 645-654, 690-709, 735-745, 749-756, 786-792, 275-316 and 378-401 of Seq ID No 40; 5-16, 21-30, 33-40, 52-74, 101-108, 116-122, 164-182, 185-219, 256-261, 273-279, 285-291, 297-304, 312-328, 331-338, 355-362, 364-371, 373-401, 411-423 and 191-208 of Seq ID No 41; 34-55, 67-74, 85-93, 105-115, 138-152, 161-171, 182-189, 197-205, 213-219, 232-239, 241-248, 250-263, 272-277, 288-299 and 216-231 of Seq ID No 42; 21-27, 32-37, 43-51, 67-74, 82-92, 94-100, 106-112, 140-149, 153-159, 164-182, 193-215, 222-227, 260-267, 308-322, 330-340, 378-387, 396-403, 417-432, 435-441, 448-465, 476-482, 488-498, 500-510 and 214-280 of Seq ID No 43; 4-21, 29-52, 80-87, 104-123, 126-133, 141-157, 182-189, 194-202, 214-220, 227-235, 242-252 and 33-108 of Seq ID No 44; 12-18, 20-27, 29-59, 64-72, 84-90, 96-103, 109-121, 125-155, 164-177, 179-186, 188-201, 216-227, 235-253, 259-274, 276-294, 296-310, 322-339, 341-348, 369-379, 398-403, 409-421 and 76-96 of Seq ID No 45; 4-15, 24-41, 71-80, 104-111, 113-119, 123-130, 139-149, 168-178, 187-200 and 4-45 of Seq ID No 46; 13-19, 32-37, 44-56 and 1-14 of Seq ID No 47; 6-11, 16-35, 75-81, 95-100, 126-139, 206-214, 225-233, 241-259, 268-276, 319-325, 339-360, 371-401, 435-441, 452-459, 462-472, 491-503, 505-516, 549-556, 567-580, 590-595, 612-622, 624-630, 642-648, 656-662, 687-693, 698-704, 706-712, 736-750, 768-777, 784-789, 812-818, 847-858, 894-900, 922-931, 938-949, 967-984, 986-992, 1027-1032, 1041-1054, 1082-1088, 1091-1097, 1119-1124, 1234-1240, 1250-1258, 1274-1289, 1299-1305, 1392-1398, 1400-1405, 1429-1442, 1460-1474, 1505-1514, 1531-1537, 1540-1552, 1558-1571, 1582-1587, 1616-1623, 1659-1666, 1671-1677, 1680-1686, 1698-1704, 1706-1712, 1768-1774, 1783-1797, 1814-1819, 1849-1855, 1870-1876, 1890-1897, 1947-1953, 1972-1980, 1999-2013, 2044-2051, 2068-2084, 2093-2099, 2122-2131, 2142-2147, 2156-2163, 2170-2179, 2214-2220, 2235-2245, 2271-2281, 2287-2293, 2308-2317, 2352-2362, 2373-2378, 2387-2407, 2442-2448, 2458-2474, 2507-2516, 2531-2537, 2540-2551, 2555-2561, 2586-2599, 2617-2627, 2644-2649, 2661-2675, 2685-2692, 2695-2707, 2733-2739, 2741-2747, 2774-2783, 2788-2795, 2860-2870, 2891-2903, 2938-2947, 2973-2980, 2993-2999, 3004-3030, 3046-3059, 3066-3077, 3082-3088, 3120-3132, 3144-3149, 3153-3169, 3200-3212, 3232-3256, 3276-3290, 3308-3322, 3330-3338, 3353-3360, 3363-3371, 3390-3408, 3431-3447, 3454-3484, 3503-3515, 3524-3541, 3543-3550, 3560-3567, 3586-3599, 3616-3621, 3642-3647, 3663-3679, 213-276, 579-621 and 1516-1559 of Seq ID No 48; 19-41, 43-49, 55-62, 67-74, 114-121, 130-140, 188-197, 208-217, 226-232, 265-287, 292-299, 301-319, 372-394, 400-410, 421-427 and 12-56 of Seq ID No 49; 6-12, 44-51, 53-60, 67-88, 91-100, 104-123, 137-142, 148-158, 161-168, 175-201, 204-210, 222-231, 239-253, 258-264, 272-282 and 60-138 of Seq ID No 50; 4-63, 69-104, 110-121, 124-131, 134-152, 161-187, 204-221, 223-237, 239-296, 298-310, 331-365, 380-405, 423-451, 470-552, 554-562, 574-581, 592-649, 651-658, 661-671, 673-707, 713-734, 741-748, 758-765, 773-790 and 509-528 of Seq ID No 51; 89-94, 102-115, 123-129, 181-188, 200-206, 211-235, 239-249, 267-281, 295-310, 316-321, 331-341, 344-359, 365-386, 409-422, 443-453, 495-506, 514-521, 539-547, 553-560, 563-570, 586-596, 621-626, 633-638, 651-657, 666-683, 697-705, 731-739, 761-768, 865-883 and 213-265 of Seq ID No 52; 5-20, 24-34, 37-43, 92-102, 134-139, 156-162, 184-191, 193-205, 207-213, 225-231, 241-247, 259-267, 269-286, 337-350, 365-372, 378-386, 399-413, 415-421, 447-457, 467-481 and 145-183 of Seq ID No 53; 12-19, 29-41, 43-57, 80-98, 106-141, 143-156, 172-183, 185-210, 214-220, 226-234, 278-287 and 237-287 of Seq ID No 54; 5-12, 32-48, 50-72, 75-81, 88-94 and 16-40 of Seq ID No 55; 4-21, 29-42, 48-62, 65-80, 95-101, 103-118, 122-130, 134-140, 143-152, 155-165, 182-192, 198-208, 232-247, 260-268, 318-348, 364-369, 380-391, 403-411, 413-424 and 208-230 of Seq ID No 56; 4-18, 65-75, 82-92, 123-140, 144-159, 166-172, 188-194 and 174-195 of Seq ID No 57; 7-20, 58-71, 94-101, 110-119, 199-209, 231-242, 247-254, 267-277, 282-290, 297-306, 313-319, 333-342, 344-369, 390-402, 414-431, 436-448, 462-471 and 310-350 of Seq ID No 58; 4-25, 37-44, 53-59, 72-78, 86-99, 119-128, 197-203, 209-218, 220-226, 233-244, 246-254, 264-271, 277-289, 407-430, 437-445, 464-472, 482-488, 503-509 and 308-331 of Seq ID No 59; 4-12, 14-43, 52-58 and 43-58 of Seq ID No 60; 4-14, 21-29, 35-49 and 38-50 of Seq ID No 61; 4-19, 31-37, 58-72, 94-108 and 1-72 of Seq ID No 62.
[0041] The present invention also provides a process for producing a S. epidermidis hyperimmune serum reactive antigen or a fragment thereof according to the present invention comprising expressing one or more of the nucleic acid molecules according to the present invention in a suitable expression system.
[0042] Moreover, the present invention provides a process for producing a cell, which expresses a S. epidermidis hyperimmune serum reactive antigen or a fragment thereof according to the present invention comprising transforming or transfecting a suitable host cell with the vector according to the present invention.
[0043] According to the present invention a pharmaceutical composition, especially a vaccine, comprising a hyperimmune serum-reactive antigen or a fragment thereof as defined in the present invention or a nucleic acid molecule as defined in the present invention is provided.
[0044] In a preferred embodiment the pharmaceutical composition further comprises an immunostimulatory substance, preferably selected from the group comprising polycationic polymers, especially polycationic peptides, immunostimulatory deoxynucleotides (ODNs), peptides containing at least two LysLeuLys motifs, especially KLKLSKLK (SEQ ID NO:63), neuroactive compounds, espedully human growth hormone, alumn, Freund's complete or incomplete adjuvants or combinations thereof.
[0045] In a more preferred embodiment the immunostimulatory substance is a combination of either a polycationic polymer and immunostimulatory deoxynucleotides or of a peptide containing at least two LysLeuLys motifs and immunostimulatory deoxynucleotides.
[0046] In a still more preferred embodiment the polycationic polymer is a polycationic peptide, especially polyarginine.
[0047] According to the present invention the use of a nucleic acid molecule according to the present invention or a hyperimmune serum-reactive antigen or fragment thereof according to the present invention for the manufacture of a pharmaceutical preparation, especially for the manufacture of a vaccine against S. epidermidis infection, is provided.
[0048] Also an antibody, or at least an effective part thereof, which binds at least to a selective part of the hyperimmune serum-reactive antigen or a fragment thereof according to the present invention is provided herewith.
[0049] In a preferred embodiment the antibody is a monoclonal antibody.
[0050] In another preferred embodiment the effective part of the antibody comprises Fab fragments.
[0051] In a further preferred embodiment the antibody is a chimeric antibody.
[0052] In a still preferred embodiment the antibody is a humanized antibody.
[0053] The present invention also provides a hybridoma cell line, which produces an antibody according to the present invention.
[0054] Moreover, the present invention provides a method for producing an antibody according to the present invention, characterized by the following steps:
[0055] initiating an immune response in a non-human animal by administrating an hyperimmune serum-reactive antigen or a fragment thereof, as defined in the invention, to said animal,
[0056] removing an antibody containing body fluid from said animal, and
[0057] producing the antibody by subjecting said antibody containing body fluid to further purification steps.
[0058] Accordingly, the present invention also provides a method for producing an antibody according to the present invention, characterized by the following steps:
[0059] initiating an immune response in a non-human animal by administrating an hyperimmune serum-reactive antigen or a fragment thereof, as defined in the present invention, to said animal,
[0060] removing the spleen or spleen cells from said animal,
[0061] producing hybridoma cells of said spleen or spleen cells,
[0062] selecting and cloning hybridoma cells specific for said hyperimmune serum-reactive antigens or a fragment thereof,
[0063] producing the antibody by cultivation of said cloned hybridoma cells and optionally further purification steps.
[0064] The antibodies provided or produced according to the above methods may be used for the preparation of a medicament for treating or preventing S. epidermidis infections.
[0065] According to another aspect the present invention provides an antagonist, which binds to a hyperimmune serum-reactive antigen or a fragment thereof according to the present invention.
[0066] Such an antagonist capable of binding to a hyperimmune serum-reactive antigen or fragment thereof according to the present invention may be identified by a method comprising the following steps:
[0067] a) contacting an isolated or immobilized hyperimmune serum-reactive antigen or a fragment thereof according to the present invention with a candidate antagonist under conditions to permit binding of said candidate antagonist to said hyperimmune serum-reactive antigen or fragment, in the presence of a component capable of providing a detectable signal in response to the binding of the candidate antagonist to said hyperimmune serum reactive antigen or fragment thereof; and
[0068] b) detecting the presence or absence of a signal generated in response to the binding of the antagonist to the hyperimmune serum reactive antigen or the fragment thereof.
[0069] An antagonist capable of reducing or inhibiting the interaction activity of a hyperimmune serum-reactive antigen or a fragment thereof according to the present invention to its interaction partner may be identified by a method comprising the following steps:
[0070] a) providing a hyperimmune serum reactive antigen or a hyperimmune fragment thereof according to the present invention,
[0071] b) providing an interaction partner to said hyperimmune serum reactive antigen or a fragment thereof, especially an antibody according to the present invention,
[0072] c) allowing interaction of said hyperimmune serum reactive antigen or fragment thereof to said interaction partner to form an interaction complex,
[0073] d) providing a candidate antagonist,
[0074] e) allowing a competition reaction to occur between the candidate antagonist and the interaction complex,
[0075] f) determining whether the candidate antagonist inhibits or reduces the interaction activities of the hyperimmune serum reactive antigen or the fragment thereof with the interaction partner.
[0076] The hyperimmune serum reactive antigens or fragments thereof according to the present invention may be used for the isolation and/or purification and/or identification of an interaction partner of said hyperimmune serum reactive antigen or fragment thereof.
[0077] The present invention also provides a process for in vitro diagnosing a disease related to expression of a hyperimmune serum-reactive antigen or a fragment thereof according to the present invention comprising determining the presence of a nucleic acid sequence encoding said hyperimmune serum reactive antigen or fragment thereof according to the present invention or the presence of the hyperimmune serum reactive antigen or fragment thereof according to the present invention.
[0078] The present invention also provides a process for in vitro diagnosis of a bacterial infection, especially a S. epidermidis infection, comprising analyzing for the presence of a nucleic acid sequence encoding said hyperimmune serum reactive antigen or fragment thereof according to the present invention or the presence of the hyperimmune serum reactive antigen or fragment thereof according to the present invention.
[0079] Moreover, the present invention provides the use of a hyperimmune serum reactive antigen or fragment thereof according to the present invention for the generation of a peptide binding to said hyperimmune serum reactive antigen or fragment thereof, wherein the peptide is an anticaline.
[0080] The present invention also provides the use of a hyperimmune serum-reactive antigen or fragment thereof according to the present invention for the manufacture of a functional nucleic acid, wherein the functional nucleic acid is selected from the group comprising aptamers and spiegelmers.
[0081] The nucleic acid molecule according to the present invention may also be used for the manufacture of a functional ribonucleic acid, wherein the functional ribonucleic acid is selected from the group comprising ribozymes, antisense nucleic acids and siRNA.
[0082] The present invention advantageously provides an efficient and relevant set of isolated nucleic acid molecules and their encoded hyperimmune serum reactive antigens or fragments thereof identified from S. epidermidis using an antibody preparation from a human plasma pool and surface expression libraries derived from the genome of S. epidermidis. Thus, the present invention fulfils a widely felt demand for S. epidermidis antigens, vaccines, diagnostics and products useful in procedures for preparing antibodies and for identifying compounds effective against S. epidermidis infection.
[0083] An effective vaccine should be composed of proteins or polypeptides, which are expressed by all strains and are able to induce high affinity, abundant antibodies against cell surface components of S. epidermidis. The antibodies should be IgG1 and/or IgG3 for opsonization, and any IgG sub-type and IgA for neutralisation of adherence and toxin action. A chemically defined vaccine must be definitely superior compared to a whole cell vaccine (attenuated or killed), since components of S. epidermidis, which might cross-react with human tissues or inhibit opsonization can be eliminated, and the individual proteins inducing protective antibodies and/or a protective immune response can be selected.
[0084] The approach, which has been employed for the present invention, is based on the interaction of staphylococcal proteins or peptides with the antibodies present in human sera. The antibodies produced against S. epidermidis by the human immune system and present in human sera are indicative of the in vivo expression of the antigenic proteins and their immunogenicity. In addition, the antigenic proteins as identified by the bacterial surface display expression libraries using pools of pre-selected sera, are processed in a second and third round of screening by individual selected or generated sera. Thus the present invention supplies an efficient and relevant set of staphyloococcal antigens as a pharmaceutical composition, especially a vaccine preventing infection by S. epidermidis.
[0085] In the antigen identification program for identifying a relevant and efficient set of antigens according to the present invention, three different bacterial surface expression libraries are screened with a serum pool derived from a serum collection, which has been tested against antigenic compounds of S. epidermidis, such as whole cell extracts and culture supernatant proteins in order to be considered hyperimmune and therefore relevant in the screening method applied for the present invention. The antibodies produced against staphyloococci by the human immune system and present in human sera are indicative of the in vivo expression of the antigenic proteins and their immunogenicity.
[0086] The expression libraries as used in the present invention should allow expression of all potential antigens, e.g. derived from all surface proteins of S. epidermidis. Bacterial surface display libraries will be represented by a recombinant library of a bacterial host displaying a (total) set of expressed peptide sequences of staphylococci on a number of selected outer membrane proteins (LamB, FhuA) at the bacterial host membrane {Georgiou, G., 1997; Etz, H. et al., 2001}. One of the advantages of using recombinant expression libraries is that the identified hyperimmune serum-reactive antigens may be instantly produced by expression of the coding sequences of the screened and selected clones expressing the hyperimmune serum-reactive antigens without further recombinant DNA technology or cloning steps necessary.
[0087] The comprehensive set of antigens identified by the described program according to the present invention is analysed further by one or more additional rounds of screening. Therefore individual antibody preparations or antibodies generated against selected peptides, which were identified as immunogenic are used. According to a preferred embodiment the individual antibody preparations for the second round of screening are derived from patients who have suffered from an acute infection with staphylococci, especially from patients who show an antibody titer above a certain minimum level, for example an antibody titer being higher than 80 percentile, preferably higher than 90 percentile, especially higher than 95 percentile of the human (patient or healthy individual) sera tested. Using such high titer individual antibody preparations in the second screening round allows a very selective identification of the hyperimmune serum-reactive antigens and fragments thereof from S. epidermidis.
[0088] Following the screening procedure, the selected antigenic proteins, expressed as recombinant proteins or in vitro translated products, in case it can not be expressed in prokaryotic expression systems, or the identified antigenic peptides (produced synthetically) are tested in a second screening by a series of ELISA and Western blotting assays for the assessment of their immunogenicity with a large human serum collection (>100 uninfected, >50 patients sera).
[0089] It is important that the individual antibody preparations (which may also be the selected serum) allow a selective identification of the most promising candidates of all the hyperimmune serum-reactive antigens from all the promising candidates from the first round. Therefore, preferably at least 10 individual antibody preparations (i.e. antibody preparations (e.g. sera) from at least 10 different individuals having suffered from an infection to the chosen pathogen) should be used in identifying these antigens in the second screening round. Of course, it is possible to use also less than 10 individual preparations, however, selectivity of the step may not be optimal with a low number of individual antibody preparations. On the other hand, if a given hyperimmune serum-reactive antigen (or an antigenic fragment thereof) is recognized by at least 10 individual antibody preparations, preferably at least 30, especially at least 50 individual antibody preparations, identification of the hyperimmune serum-reactive antigen is also selective enough for a proper identification. Hyperimmune serum-reactivity may of course be tested with as many individual preparations as possible (e.g. with more than 100 or even with more than 1,000).
[0090] Therefore, the relevant portion of the hyperimmune serum-reactive antibody preparations according to the method of the present invention should preferably be at least 10, more preferred at least 30, especially at least 50 individual antibody preparations. Alternatively (or in combination) hyperimmune serum-reactive antigens may preferably be also identified with at least 20%, preferably at least 30%, especially at least 40% of all individual antibody preparations used in the second screening round.
[0091] According to a preferred embodiment of the present invention, the sera from which the individual antibody preparations for the second round of screening are prepared (or which are used as antibody preparations), are selected by their titer against S. epidermidis (e.g. against a preparation of this pathogen, such as a lysate, cell wall components and recombinant proteins). Preferably, some are selected with a total IgA titer above 4,000 U, especially above 6,000 U, and/or an IgG titer above 10,000 U, especially above 12,000 U (U=units, calculated from the OD405 nm reading at a given dilution) when the whole organism (total lysate or whole cells) is used as antigen in the ELISA.
[0092] The antibodies produced against staphylococci by the human immune system and present in human sera are indicative of the in vivo expression of the antigenic proteins and their immunogenicity. The recognition of linear epitopes by antibodies can be based on sequences as short as 4-5 amino acids. Of course it does not necessarily mean that these short peptides are capable of inducing the given antibody in vivo. For that reason the defined epitopes, polypeptides and proteins are further to be tested in animals (mainly in mice) for their capacity to induce antibodies against the selected proteins in vivo.
[0093] The preferred antigens are located on the cell surface or are secreted, and are therefore accessible extracellularly. Antibodies against cell wall proteins are expected to serve two purposes: to inhibit adhesion and to promote phagocytosis. Antibodies against secreted proteins are beneficial in neutralisation of their function as toxin or virulence component. It is also known that bacteria communicate with each other through secreted proteins. Neutralizing antibodies against these proteins will interrupt growth-promoting cross-talk between or within streptococcal species. Bioinformatic analyses (signal sequences, cell wall localisation signals, transmembrane domains) proved to be very useful in assessing cell surface localisation or secretion. The experimental approach includes the isolation of antibodies with the corresponding epitopes and proteins from human serum, and the generation of immune sera in mice against (poly)peptides selected by the bacterial surface display screens. These sera are then used in a third round of screening as reagents in the following assays: cell surface staining of staphylococci grown under different conditions (FACS, microscopy), determination of neutralizing capacity (toxin, adherence), and promotion of opsonization and phagocytosis (in vitro phagocytosis assay).
[0094] For that purpose, bacterial E. coli clones are directly injected into mice and immune sera are taken and tested in the relevant in vitro assay for functional opsonic or neutralizing antibodies. Alternatively, specific antibodies may be purified from human or mouse sera using peptides or proteins as substrate.
[0095] Host defence against S. epidermidis relies mainly on innate immunological mechanisms. Inducing high affinity antibodies of the opsonic and neutralizing type by vaccination helps the innate immune system to eliminate bacteria and toxins. This makes the method according to the present invention an optimal tool for the identification of staphylococcal antigenic proteins.
[0096] The skin and mucous membranes are formidable barriers against invasion by staphylococci. However, once the skin or the mucous membranes are breached the first line of non-adaptive cellular defence begins its co-ordinate action through complement and phagocytes, especially the polymorphonuclear leukocytes (PMNs). These cells can be regarded as the cornerstones in eliminating invading bacteria. As staphylococci are primarily extracellular pathogens, the major anti-staphylococcal adaptive response comes from the humoral arm of the immune system, and is mediated through three major mechanisms: promotion of opsonization, toxin neutralisation, and inhibition of adherence. It is believed that opsonization is especially important, because of its requirement for an effective phagocytosis. For efficient opsonization the microbial surface has to be coated with antibodies and complement factors for recognition by PMNs through receptors to the Fc fragment of the IgG molecule or to activated C3b. After opsonization, staphyloococci are phagocytosed and killed. Antibodies bound to specific antigens on the cell surface of bacteria serve as ligands for the attachment to PMNs and to promote phagocytosis. The very same antibodies bound to the adhesins and other cell surface proteins are expected to neutralize adhesion and prevent colonization. The selection of antigens as provided by the present invention is thus well suited to identify those that will lead to protection against infection in an animal model or in humans.
[0097] According to the antigen identification method used herein, the present invention can surprisingly provide a set of novel nucleic acids and novel hyperimmune serum reactive antigens and fragments thereof of S. epidermidis, among other things, as described below. According to one aspect, the invention particularly relates to the nucleotide sequences encoding hyperimmune serum reactive antigens which sequences are set forth in the Sequence listing Seq ID No: 1-31 and the corresponding encoded amino acid sequences representing hyperimmune serum reactive antigens are set forth in the Sequence Listing Seq ID No 32-62.
[0098] In a preferred embodiment of the present invention, a nucleic acid molecule is provided which exhibits 70% identity over their entire length to a nucleotide sequence set forth with Seq ID No 1, 4, 6-9, 11-13, 15, 17, 19, 21, 25-26, 28-31. Most highly preferred are nucleic acids that comprise a region that is at least 80% or at least 85% identical over their entire length to a nucleic acid molecule set forth with Seq ID No 1, 4, 6-9, 11-13, 15, 17, 19, 21, 25-26, 28-31. In this regard, nucleic acid molecules at least 90%, 91%, 92%, 93%, 94%, 95%, or 96% identical over their entire length to the same are particularly preferred. Furthermore, those with at least 97% are highly preferred, those with at least 98% and at least 99% are particularly highly preferred, with at least 99% or 99.5% being the more preferred, with 100% identity being especially preferred. Moreover, preferred embodiments in this respect are nucleic acids which encode hyperimmune serum reactive antigens or fragments thereof (polypeptides) which retain substantially the same biological function or activity as the mature polypeptide encoded by said nucleic acids set forth in the Seq ID No 1, 4, 6-9, 11-13, 15, 17, 19, 21, 25-26, 28-31.
[0099] Identity, as known in the art and used herein, is the relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, identity also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. Identity can be readily calculated. While there exist a number of methods to measure identity between two polynucleotide or two polypeptide sequences, the term is well known to skilled artisans (e.g. Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987). Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity are codified in computer programs. Preferred computer program methods to determine identity between two sequences include, but are not limited to, GCG program package {Devereux, J. et al., 1984}, BLASTP, BLASTN, and FASTA {Altschul, S. et al., 1990}.
[0100] According to another aspect of the invention, nucleic acid molecules are provided which exhibit at least 96% identity to the nucleic acid sequence set forth with Seq ID No 2-3, 5, 10, 14, 16, 18, 22-24, 27.
[0101] According to a further aspect of the present invention, nucleic acid molecules are provided which are identical to the nucleic acid sequences set forth with Seq ID No 20.
[0102] The nucleic acid molecules according to the present invention can as a second alternative also be a nucleic acid molecule which is at least essentially complementary to the nucleic acid described as the first alternative above. As used herein complementary means that a nucleic acid strand is base pairing via Watson-Crick base pairing with a second nucleic acid strand. Essentially complementary as used herein means that the base pairing is not occurring for all of the bases of the respective strands but leaves a certain number or percentage of the bases unpaired or wrongly paired. The percentage of correctly pairing bases is preferably at least 70%, more preferably 80%, even more preferably 90% and most preferably any percentage higher than 90%. It is to be noted that a percentage of 70% matching bases is considered as homology and the hybridization having this extent of matching base pairs is considered as stringent. Hybridization conditions for this kind of stringent hybridization may be taken from Current Protocols in Molecular Biology (John Wiley and Sons, Inc., 1987). More particularly, the hybridization conditions can be as follows:
[0103] Hybridization performed e.g. in 5×SSPE, 5×Denhardt's reagent, 0.1% SDS, 100 g/mL sheared DNA at 68° C.
[0104] Moderate stringency wash in 0.2×SSC, 0.1% SDS at 42° C.
[0105] High stringency wash in 0.1×SSC, 0.1% SDS at 68° C.
[0106] Genomic DNA with a GC content of 50% has an approximate TM of 96° C. For 1% mismatch, the TM is reduced by approximately 1° C.
[0107] In addition, any of the further hybridization conditions described herein are in principle applicable as well.
[0108] Of course, all nucleic acid sequence molecules which encode the same polypeptide molecule as those identified by the present invention are encompassed by any disclosure of a given coding sequence, since the degeneracy of the genetic code is directly applicable to unambiguously determine all possible nucleic acid molecules which encode a given polypeptide molecule, even if the number of such degenerated nucleic acid molecules may be high. This is also applicable for fragments of a given polypeptide, as long as the fragments encode a polypeptide being suitable to be used in a vaccination connection, e.g. as an active or passive vaccine.
[0109] The nucleic acid molecule according to the present invention can as a third alternative also be a nucleic acid which comprises a stretch of at least 15 bases of the nucleic acid molecule according to the first and second alternative of the nucleic acid molecules according to the present invention as outlined above. Preferably, the bases form a contiguous stretch of bases. However, it is also within the scope of the present invention that the stretch consists of two or more moieties, which are separated by a number of bases.
[0110] The present nucleic acids may preferably consist of at least 20, even more preferred at least 30, especially at least 50 contiguous bases from the sequences disclosed herein. The suitable length may easily be optimized due to the planned area of use (e.g. as (PCR) primers, probes, capture molecules (e.g. on a (DNA) chip), etc.). Preferred nucleic acid molecules contain at least a contiguous 15 base portion of one or more of the predicted immunogenic amino acid sequences listed in Table 1, especially the sequences of Table 1 with scores of more than 10, preferably more than 20, especially with a score of more than 25. Specifically preferred are nucleic acids containing a contiguous portion of a DNA sequence of any sequence in the sequence protocol of the present application which shows 1 or more, preferably more than 2, especially more than 5, non-identical nucleic acid residues compared to the published Staphylococcus epidermidis strain RP62A genome (http://www.tigr.org/tdb/mdb/mdbinprogress.html) and/or any other published S. epidermidis genome sequence or parts thereof. Specifically preferred non-identical nucleic acid residues are residues, which lead to a non-identical amino acid residue. Preferably, the nucleic acid sequences encode for polypeptides having at least 1, preferably at least 2, preferably at least three different amino acid residues compared to the published S. epidermidis counterparts mentioned above. Also such isolated polypeptides, being fragments of the proteins (or the whole protein) mentioned herein e.g. in the sequence listing, having at least 6, 7, or 8 amino acid residues and being encoded by these nucleic acids are preferred.
[0111] The nucleic acid molecule according to the present invention can as a fourth alternative also be a nucleic acid molecule which anneals under stringent hybridisation conditions to any of the nucleic acids of the present invention according to the above outlined first, second, and third alternative. Stringent hybridisation conditions are typically those described herein.
[0112] Finally, the nucleic acid molecule according to the present invention can as a fifth alternative also be a nucleic acid molecule which, but for the degeneracy of the genetic code, would hybridise to any of the nucleic acid molecules according to any nucleic acid molecule of the present invention according to the first, second, third, and fourth alternative as outlined above. This kind of nucleic acid molecule refers to the fact that preferably the nucleic acids according to the present invention code for the hyperimmune serum reactive antigens or fragments thereof according to the present invention. This kind of nucleic acid molecule is particularly useful in the detection of a nucleic acid molecule according to the present invention and thus the diagnosis of the respective microorganisms such as S. epidermidis and any disease or diseased condition where this kind of microorganims is involved. Preferably, the hybridisation would occur or be preformed under stringent conditions as described in connection with the fourth alternative described above.
[0113] Nucleic acid molecule as used herein generally refers to any ribonucleic acid molecule or deoxyribonucleic acid molecule, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, nucleic acid molecule as used herein refers to, among other, single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded RNA, and RNA that is a mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded, or triple-stranded, or a mixture of single- and double-stranded regions. In addition, nucleic acid molecule as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. As used herein, the term nucleic acid molecule includes DNAs or RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "nucleic acid molecule" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are nucleic acid molecule as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term nucleic acid molecule as it is employed herein embraces such chemically, enzymatically or metabolically modified forms of nucleic acid molecule, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells, inter alia. The term nucleic acid molecule also embraces short nucleic acid molecules often referred to as oligonucleotide(s). "Polynucleotide" and "nucleic acid" or "nucleic acid molecule" are often used interchangeably herein.
[0114] Nucleic acid molecules provided in the present invention also encompass numerous unique fragments, both longer and shorter than the nucleic acid molecule sequences set forth in the sequencing listing of the S. epidermidis coding regions, which can be generated by standard cloning methods. To be unique, a fragment must be of sufficient size to distinguish it from other known nucleic acid sequences, most readily determined by comparing any selected S. epidermidis fragment to the nucleotide sequences in computer databases such as GenBank.
[0115] Additionally, modifications can be made to the nucleic acid molecules and polypeptides that are encompassed by the present invention. For example, nucleotide substitutions can be made which do not affect the polypeptide encoded by the nucleic acid, and thus any nucleic acid molecule which encodes a hyperimmune serum reactive antigen or fragments thereof is encompassed by the present invention.
[0116] Furthermore, any of the nucleic acid molecules encoding hyperimmune serum reactive antigens or fragments thereof provided by the present invention can be functionally linked, using standard techniques such as standard cloning techniques, to any desired regulatory sequences, whether a S. epidermidis regulatory sequence or a heterologous regulatory sequence, heterologous leader sequence, heterologous marker sequence or a heterologous coding sequence to create a fusion protein.
[0117] Nucleic acid molecules of the present invention may be in the form of RNA, such as mRNA or cRNA, or in the form of DNA, including, for instance, cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The DNA may be triple-stranded, double-stranded or single-stranded. Single-stranded DNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the anti-sense strand.
[0118] The present invention further relates to variants of the herein above described nucleic acid molecules which encode fragments, analogs and derivatives of the hyperimmune serum reactive antigens and fragments thereof having a deducted S. epidermidis amino acid sequence set forth in the Sequence Listing. A variant of the nucleic acid molecule may be a naturally occurring variant such as a naturally occurring allelic variant, or it may be a variant that is not known to occur naturally. Such non-naturally occurring variants of the nucleic acid molecule may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells or organisms.
[0119] Among variants in this regard are variants that differ from the aforementioned nucleic acid molecules by nucleotide substitutions, deletions or additions. The substitutions, deletions or additions may involve one or more nucleotides. The variants may be altered in coding or non-coding regions or both. Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions. Preferred are nucleic acid molecules encoding a variant, analog, derivative or fragment, or a variant, analogue or derivative of a fragment, which have a S. epidermidis sequence as set forth in the Sequence Listing, in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid(s) is substituted, deleted or added, in any combination. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the S. epidermidis polypeptides set forth in the Sequence Listing. Also especially preferred in this regard are conservative substitutions.
[0120] The peptides and fragments according to the present invention also include modified epitopes wherein preferably one or two of the amino acids of a given epitope are modified or replaced according to the rules disclosed in e.g. {Tourdot, S. et al., 2000}, as well as the nucleic acid sequences encoding such modified epitopes.
[0121] It is clear that also epitopes derived from the present epitopes by amino acid exchanges improving, conserving or at least not significantly impeding the T cell activating capability of the epitopes are covered by the epitopes according to the present invention. Therefore the present epitopes also cover epitopes, which do not contain the original sequence as derived from S. epidermidis, but trigger the same or preferably an improved T cell response. These epitope are referred to as "heteroclitic"; they need to have a similar or preferably greater affinity to MHC/HLA molecules, and the need the ability to stimulate the T cell receptors (TCR) directed to the original epitope in a similar or preferably stronger manner.
[0122] Heteroclitic epitopes can be obtained by rational design i.e. taking into account the contribution of individual residues to binding to MHC/HLA as for instance described by {Rammensee, H. et al., 1999}, combined with a systematic exchange of residues potentially interacting with the TCR and testing the resulting sequences with T cells directed against the original epitope. Such a design is possible for a skilled man in the art without much experimentation.
[0123] Another possibility includes the screening of peptide libraries with T cells directed against the original epitope. A preferred way is the positional scanning of synthetic peptide libraries. Such approaches have been described in detail for instance by {Hemmer, B. et al., 1999} and the references given therein.
[0124] As an alternative to epitopes represented by the present derived amino acid sequences or heteroclitic epitopes, also substances mimicking these epitopes e.g. "peptidemimetica" or "retroinverso-peptides" can be applied.
[0125] Another aspect of the design of improved epitopes is their formulation or modification with substances increasing their capacity to stimulate T cells. These include T helper cell epitopes, lipids or liposomes or preferred modifications as described in WO 01/78767.
[0126] Another way to increase the T cell stimulating capacity of epitopes is their formulation with immune stimulating substances for instance cytokines or chemokines like interleukin-2, -7, -12, -18, class I and II interferons (IFN), especially IFN-gamma, GM-CSF, TNF-alpha, flt3-ligand and others.
[0127] As discussed additionally herein regarding nucleic acid molecule assays of the invention, for instance, nucleic acid molecules of the invention as discussed above, may be used as a hybridization probe for RNA, cDNA and genomic DNA to isolate full-length cDNAs and genomic clones encoding polypeptides of the present invention and to isolate cDNA and genomic clones of other genes that have a high sequence similarity to the nucleic acid molecules of the present invention. Such probes generally will comprise at least 15 bases. Preferably, such probes will have at least 20, at least 25 or at least 30 bases, and may have at least 50 bases. Particularly preferred probes will have at least 30 bases, and will have 50 bases or less, such as 30, 35, 40, 45, or 50 bases.
[0128] For example, the coding region of a nucleic acid molecule of the present invention may be isolated by screening a relevant library using the known DNA sequence to synthesize an oligonucleotide probe. A labeled oligonucleotide having a sequence complementary to that of a gene of the present invention is then used to screen a library of cDNA, genomic DNA or mRNA to determine to which members of the library the probe hybridizes.
[0129] The nucleic acid molecules and polypeptides of the present invention may be employed as reagents and materials for development of treatments of and diagnostics for disease, particularly human disease, as further discussed herein relating to nucleic acid molecule assays, inter alia.
[0130] The nucleic acid molecules of the present invention that are oligonucleotides can be used in the processes herein as described, but preferably for PCR, to determine whether or not the S. epidermidis genes identified herein in whole or in part are present and/or transcribed in infected tissue such as blood. It is recognized that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained. For this and other purposes the arrays comprising at least one of the nucleic acids according to the present invention as described herein, may be used.
[0131] The nucleic acid molecules according to the present invention may be used for the detection of nucleic acid molecules and organisms or samples containing these nucleic acids. Preferably such detection is for diagnosis, more preferable for the diagnosis of a disease related or linked to the present or abundance of S. epidermidis.
[0132] Eukaryotes (herein also "individual(s)"), particularly mammals, and especially humans, infected with S. epidermidis may be identifiable by detecting any of the nucleic acid molecules according to the present invention detected at the DNA level by a variety of techniques. Preferred nucleic acid molecules candidates for distinguishing a S. epidermidis from other organisms can be obtained.
[0133] The different polypeptides described herein can have therapeutic and/or diagnostic utilities. The present application identifies different immunogenic polypeptides, and immunogenic polypeptide regions, characteristic of S. epi. An immunogenic polypeptide region can be present by itself or part of a longer length polypeptide. The polypeptides and polypeptide regions can be used in diagnostic applications to provide an indication as to whether a person is, or has been, infected with S. epi. For example, a polypeptide containing an S. epi immunogenic region can be used to generate S. epi antibodies, which can be used to detect the presence of S. epi in serum; and a polypeptide containing an S. epi immunogenic region can be used to detect the presence of S. epi. antibodies in serum.
[0134] The invention provides a process for diagnosing disease, arising from infection with S. epidermidis, comprising determining from a sample isolated or derived from an individual an increased level of expression of a nucleic acid molecule having the sequence of a nucleic acid molecule set forth in the Sequence Listing. Expression of nucleic acid molecules can be measured using any one of the methods well known in the art for the quantitation of nucleic acid molecules, such as, for example, PCR, RT-PCR, Rnase protection, Northern blotting, other hybridisation methods and the arrays described herein.
[0135] Isolated as used herein means separated "by the hand of man" from its natural state; i.e., that, if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a naturally occurring nucleic acid molecule or a polypeptide naturally present in a living organism in its natural state is not "isolated," but the same nucleic acid molecule or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. As part of or following isolation, such nucleic acid molecules can be joined to other nucleic acid molecules, such as DNAs, for mutagenesis, to form fusion proteins, and for propagation or expression in a host, for instance. The isolated nucleic acid molecules, alone or joined to other nucleic acid molecules such as vectors, can be introduced into host cells, in culture or in whole organisms. Introduced into host cells in culture or in whole organisms, such DNAs still would be isolated, as the term is used herein, because they would not be in their naturally occurring form or environment. Similarly, the nucleic acid molecules and polypeptides may occur in a composition, such as a media formulations, solutions for introduction of nucleic acid molecules or polypeptides, for example, into cells, compositions or solutions for chemical or enzymatic reactions, for instance, which are not naturally occurring compositions, and, therein remain isolated nucleic acid molecules or polypeptides within the meaning of that term as it is employed herein.
[0136] The nucleic acids according to the present invention may be chemically synthesized. Alternatively, the nucleic acids can be isolated from S. epidermidis by methods known to the one skilled in the art.
[0137] According to another aspect of the present invention, a comprehensive set of novel hyperimmune serum reactive antigens and fragments thereof are provided by using the herein described antigen identification method. In a preferred embodiment of the invention, a hyperimmune serum-reactive antigen comprising an amino acid sequence being encoded by any one of the nucleic acids molecules herein described and fragments thereof are provided. In another preferred embodiment of the invention a novel set of hyperimmune serum-reactive antigens which comprises amino acid sequences selected from a group consisting of the polypeptide sequences as represented in Seq ID No 32, 35, 37-40, 42-44, 46, 48, 50, 52, 56-57, 59-62 and fragments thereof are provided. In a further preferred embodiment of the invention hyperimmune serum-reactive antigens, which comprise amino acid sequences selected from a group consisting of the polypeptide sequences as represented in Seq ID No 33-34, 36, 41, 45, 47, 49, 53-55, 58 and fragments thereof are provided. In a still preferred embodiment of the invention hyperimmune serum-reactive antigens which comprise amino acid sequences selected from a group consisting of the polypeptide sequences as represented in Seq ID No 51 and fragments thereof are provided.
[0138] The hyperimmune serum reactive antigens and fragments thereof as provided in the invention include any polypeptide set forth in the Sequence Listing as well as polypeptides which have at least 70% identity to a polypeptide set forth in the Sequence Listing, preferably at least 80% or 85% identity to a polypeptide set forth in the Sequence Listing, and more preferably at least 90% similarity (more preferably at least 90% identity) to a polypeptide set forth in the Sequence Listing and still more preferably at least 95%, 96%, 97%, 98%, 99% or 99.5% similarity (still more preferably at least 95%, 96%, 97%, 98%, 99%, or 99.5% identity) to a polypeptide set forth in the Sequence Listing and also include portions of such polypeptides with such portion of the polypeptide generally containing at least 4 amino acids and more preferably at least 8, still more preferably at least 30, still more preferably at least 50 amino acids, such as 4, 8, 10, 20, 30, 35, 40, 45 or 50 amino acids.
[0139] The invention also relates to fragments, analogs, and derivatives of these hyperimmune serum reactive antigens and fragments thereof. The terms "fragment", "derivative" and "analog" when referring to an antigen whose amino acid sequence is set forth in the Sequence Listing, means a polypeptide which retains essentially the same or a similar biological function or activity as such hyperimmune serum reactive antigen and fragment thereof.
[0140] The fragment, derivative or analog of a hyperimmune serum reactive antigen and fragment thereof may be 1) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or 2) one in which one or more of the amino acid residues includes a substituent group, or 3) one in which the mature hyperimmune serum reactive antigen or fragment thereof is fused with another compound, such as a compound to increase the half-life of the hyperimmune serum reactive antigen and fragment thereof (for example, polyethylene glycol), or 4) one in which the additional amino acids are fused to the mature hyperimmune serum reactive antigen or fragment thereof, such as a leader or secretory sequence or a sequence which is employed for purification of the mature hyperimmune serum reactive antigen or fragment thereof or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.
[0141] Among the particularly preferred embodiments of the invention in this regard are the hyperimmune serum reactive antigens set forth in the Sequence Listing, variants, analogs, derivatives and fragments thereof, and variants, analogs and derivatives of fragments. Additionally, fusion polypeptides comprising such hyperimmune serum reactive antigens, variants, analogs, derivatives and fragments thereof, and variants, analogs and derivatives of the fragments are also encompassed by the present invention. Such fusion polypeptides and proteins, as well as nucleic acid molecules encoding them, can readily be made using standard techniques, including standard recombinant techniques for producing and expression of a recombinant polynucleic acid encoding a fusion protein.
[0142] Among preferred variants are those that vary from a reference by conservative amino acid substitutions. Such substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gln, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe and Tyr.
[0143] Further particularly preferred in this regard are variants, analogs, derivatives and fragments, and variants, analogs and derivatives of the fragments, having the amino acid sequence of any polypeptide set forth in the Sequence Listing, in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, deleted or added, in any combination. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the polypeptide of the present invention. Also especially preferred in this regard are conservative substitutions. Most highly preferred are polypeptides having an amino acid sequence set forth in the Sequence Listing without substitutions.
[0144] The hyperimmune serum reactive antigens and fragments thereof of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.
[0145] Also among preferred embodiments of the present invention are polypeptides comprising fragments of the polypeptides having the amino acid sequence set forth in the Sequence Listing, and fragments of variants and derivatives of the polypeptides set forth in the Sequence Listing.
[0146] In this regard a fragment is a polypeptide having an amino acid sequence that entirely is the same as part but not all of the amino acid sequence of the afore mentioned hyperimmune serum reactive antigen and fragment thereof, and variants or derivative, analogs, fragments thereof. Such fragments may be "free-standing", i.e., not part of or fused to other amino acids or polypeptides, or they may be comprised within a larger polypeptide of which they form a part or region. Also preferred in this aspect of the invention are fragments characterised by structural or functional attributes of the polypeptide of the present invention, i.e. fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta-amphipathic regions, flexible regions, surface-forming regions, substrate binding regions, and high antigenic index regions of the polypeptide of the present invention, and combinations of such fragments. Preferred regions are those that mediate activities of the hyperimmune serum reactive antigens and fragments thereof of the present invention. Most highly preferred in this regard are fragments that have a chemical, biological or other activity of the hyperimmune serum reactive antigen and fragments thereof of the present invention, including those with a similar activity or an improved activity, or with a decreased undesirable activity. Particularly preferred are fragments comprising receptors or domains of enzymes that confer a function essential for viability of S. epidermidis or the ability to cause disease in humans. Further preferred polypeptide fragments are those that comprise or contain antigenic or immunogenic determinants in an animal, especially in a human.
[0147] An antigenic fragment is defined as a fragment of the identified antigen, which is for itself antigenic or may be made antigenic when provided as a hapten. Therefore, also antigens or antigenic fragments showing one or (for longer fragments) only a few amino acid exchanges are enabled with the present invention, provided that the antigenic capacities of such fragments with amino acid exchanges are not severely deteriorated on the exchange(s), i.e., suited for eliciting an appropriate immune response in an individual vaccinated with this antigen and identified by individual antibody preparations from individual sera.
[0148] Preferred examples of such fragments of a hyperimmune serum-reactive antigen are selected from the group consisting of peptides comprising amino acid sequences of column "predicted immunogenic aa", and "Location of identified immunogenic region" of Table 1; the serum reactive epitopes of Table 1, especially peptides comprising amino acid 6-28, 54-59, 135-147, 193-205, 274-279, 284-291, 298-308, 342-347, 360-366, 380-386, 408-425, 437-446, 457-464, 467-477, 504-510, 517-530, 535-543, 547-553, 562-569, 573-579, 592-600, 602-613, 626-631, 638-668 and 396-449 of Seq ID No 32; 5-24, 101-108, 111-117, 128-142, 170-184, 205-211, 252-267, 308-316, 329-337, 345-353, 360-371, 375-389, 393-399, 413-419, 429-439, 446-456, 471-485, 495-507, 541-556, 582-588, 592-602, 607-617, 622-628, 630-640 and 8-21 of Seq ID No 33; 10-20, 23-33, 40-45, 59-65, 72-107, 113-119, 127-136, 151-161 and 33-59 of Seq ID No 34; 4-16, 28-34, 39-61, 66-79, 100-113, 120-127, 130-137, 142-148, 150-157, 192-201, 203-210, 228-239, 245-250, 256-266, 268-278, 288-294, 312-322, 336-344, 346-358, 388-396, 399-413, 425-430, 445-461, 464-470, 476-482, 486-492, 503-511, 520-527, 531-541, 551-558, 566-572, 609-625, 635-642, 650-656, 683-689, 691-705, 734-741, 750-767, 782-789, 802-808, 812-818, 837-844, 878-885, 907-917, 930-936 and 913-933 of Seq ID No 35; 5-12, 20-27, 46-78, 85-92, 104-112, 121-132, 150-167, 179-185, 200-213, 221-227, 240-264, 271-279, 282-290, 311-317 and 177-206 of Seq ID No 36; 18-24, 31-40, 45-51, 89-97, 100-123, 127-132, 139-153, 164-170, 184-194, 200-205, 215-238, 244-255, 257-270, 272-280, 289-302, 312-318, 338-348, 356-367 and 132-152 of Seq ID No 37; 7-16, 39-45, 73-83, 90-98, 118-124, 130-136, 194-204, 269-280, 320-327, 373-381, 389-397, 403-408, 424-430, 436-441, 463-476, 487-499, 507-514, 527-534, 540-550, 571-577, 593-599, 620-629, 641-647, 650-664, 697-703, 708-717, 729-742, 773-790, 794-805, 821-828, 830-837, 839-851, 858-908, 910-917, 938-947, 965-980, 1025-1033, 1050-1056, 1073-1081, 1084-1098, 1106-1120, 1132-1140, 1164-1170, 1185-1194, 1201-1208, 1215-1224, 1226-1234, 1267-1279, 1325-1331, 1356-1364, 1394-1411, 1426-1439, 1445-1461, 1498-1504, 1556-1561, 1564-1573, 1613-1639, 1648-1655, 1694-1714, 1748-1755, 1778-1785, 1808-1813, 1821-1827, 1829-1837, 1846-1852, 1859-1865, 1874-1883, 1895-1900, 1908-1913, 1931-1937, 1964-1981, 1995-2005, 2020-2033, 2040-2047, 2103-2109, 2118-2127, 2138-2144, 2166-2175, 2180-2187, 2220-2225, 2237-2242, 2247-2253, 2273-2281, 2286-2306, 2314-2320, 2323-2345, 2350-2355, 2371-2384, 2415-2424, 2426-2431, 2452-2472, 2584-2589, 2610-2621, 2638-2655, 2664-2670, 2681-2690, 2692-2714, 2724-2730 and 687-730 of Seq ID No 38; 10-40, 53-59, 79-85, 98-104, 117-122, 130-136, 144-158, 169-175, 180-185, 203-223, 232-237, 243-254, 295-301 and 254-292 of Seq ID No 39; 28-50, 67-85, 93-115, 120-134, 144-179, 240-249, 328-340, 354-360, 368-400, 402-417, 419-427, 429-445, 447-455, 463-468, 472-480, 485-500, 502-510, 512-534, 537-546, 553-558, 582-594, 619-637, 645-654, 690-709, 735-745, 749-756, 786-792, 275-316 and 378-401 of Seq ID No 40; 5-16, 21-30, 33-40, 52-74, 101-108, 116-122, 164-182, 185-219, 256-261, 273-279, 285-291, 297-304, 312-328, 331-338, 355-362, 364-371, 373-401, 411-423 and 191-208 of Seq ID No 41; 34-55, 67-74, 85-93, 105-115, 138-152, 161-171, 182-189, 197-205, 213-219, 232-239, 241-248, 250-263, 272-277, 288-299 and 216-231 of Seq ID No 42; 21-27, 32-37, 43-51, 67-74, 82-92, 94-100, 106-112, 140-149, 153-159, 164-182, 193-215, 222-227, 260-267, 308-322, 330-340, 378-387, 396-403, 417-432, 435-441, 448-465, 476-482, 488-498, 500-510 and 214-280 of Seq ID No 43; 4-21, 29-52, 80-87, 104-123, 126-133, 141-157, 182-189, 194-202, 214-220, 227-235, 242-252 and 33-108 of Seq ID No 44; 12-18, 20-27, 29-59, 64-72, 84-90, 96-103, 109-121, 125-155, 164-177, 179-186, 188-201, 216-227, 235-253, 259-274, 276-294, 296-310, 322-339, 341-348, 369-379, 398-403, 409-421 and 76-96 of Seq ID No 45; 4-15, 24-41, 71-80, 104-111, 113-119, 123-130, 139-149, 168-178, 187-200 and 4-45 of Seq ID No 46; 13-19, 32-37, 44-56 and 1-14 of Seq ID No 47; 6-11, 16-35, 75-81, 95-100, 126-139, 206-214, 225-233, 241-259, 268-276, 319-325, 339-360, 371-401, 435-441, 452-459, 462-472, 491-503, 505-516, 549-556, 567-580, 590-595, 612-622, 624-630, 642-648, 656-662, 687-693, 698-704, 706-712, 736-750, 768-777, 784-789, 812-818, 847-858, 894-900, 922-931, 938-949, 967-984, 986-992, 1027-1032, 1041-1054, 1082-1088, 1091-1097, 1119-1124, 1234-1240, 1250-1258, 1274-1289, 1299-1305, 1392-1398, 1400-1405, 1429-1442, 1460-1474, 1505-1514, 1531-1537, 1540-1552, 1558-1571, 1582-1587, 1616-1623, 1659-1666, 1671-1677, 1680-1686, 1698-1704, 1706-1712, 1768-1774, 1783-1797, 1814-1819, 1849-1855, 1870-1876, 1890-1897, 1947-1953, 1972-1980, 1999-2013, 2044-2051, 2068-2084, 2093-2099, 2122-2131, 2142-2147, 2156-2163, 2170-2179, 2214-2220, 2235-2245, 2271-2281, 2287-2293, 2308-2317, 2352-2362, 2373-2378, 2387-2407, 2442-2448, 2458-2474, 2507-2516, 2531-2537, 2540-2551, 2555-2561, 2586-2599, 2617-2627, 2644-2649, 2661-2675, 2685-2692, 2695-2707, 2733-2739, 2741-2747, 2774-2783, 2788-2795, 2860-2870, 2891-2903, 2938-2947, 2973-2980, 2993-2999, 3004-3030, 3046-3059, 3066-3077, 3082-3088, 3120-3132, 3144-3149, 3153-3169, 3200-3212, 3232-3256, 3276-3290, 3308-3322, 3330-3338, 3353-3360, 3363-3371, 3390-3408, 3431-3447, 3454-3484, 3503-3515, 3524-3541, 3543-3550, 3560-3567, 3586-3599, 3616-3621, 3642-3647, 3663-3679, 213-276, 579-621 and 1516-1559 of Seq ID No 48; 19-41, 43-49, 55-62, 67-74, 114-121, 130-140, 188-197, 208-217, 226-232, 265-287, 292-299, 301-319, 372-394, 400-410, 421-427 and 12-56 of Seq ID No 49; 6-12, 44-51, 53-60, 67-88, 91-100, 104-123, 137-142, 148-158, 161-168, 175-201, 204-210, 222-231, 239-253, 258-264, 272-282 and 60-138 of Seq ID No 50; 4-63, 69-104, 110-121, 124-131, 134-152, 161-187, 204-221, 223-237, 239-296, 298-310, 331-365, 380-405, 423-451, 470-552, 554-562, 574-581, 592-649, 651-658, 661-671, 673-707, 713-734, 741-748, 758-765, 773-790 and 509-528 of Seq ID No 51; 89-94, 102-115, 123-129, 181-188, 200-206, 211-235, 239-249, 267-281, 295-310, 316-321, 331-341, 344-359, 365-386, 409-422, 443-453, 495-506, 514-521, 539-547, 553-560, 563-570, 586-596, 621-626, 633-638, 651-657, 666-683, 697-705, 731-739, 761-768, 865-883 and 213-265 of Seq ID No 52; 5-20, 24-34, 37-43, 92-102, 134-139, 156-162, 184-191, 193-205, 207-213, 225-231, 241-247, 259-267, 269-286, 337-350, 365-372, 378-386, 399-413, 415-421, 447-457, 467-481 and 145-183 of Seq ID No 53; 12-19, 29-41, 43-57, 80-98, 106-141, 143-156, 172-183, 185-210, 214-220, 226-234, 278-287 and 237-287 of Seq ID No 54; 5-12, 32-48, 50-72, 75-81, 88-94 and 16-40 of Seq ID No 55; 4-21, 29-42, 48-62, 65-80, 95-101, 103-118, 122-130, 134-140, 143-152, 155-165, 182-192, 198-208, 232-247, 260-268, 318-348, 364-369, 380-391, 403-411, 413-424 and 208-230 of Seq ID No 56; 4-18, 65-75, 82-92, 123-140, 144-159, 166-172, 188-194 and 174-195 of Seq ID No 57; 7-20, 58-71, 94-101, 110-119, 199-209, 231-242, 247-254, 267-277, 282-290, 297-306, 313-319, 333-342, 344-369, 390-402, 414-431, 436-448, 462-471 and 310-350 of Seq ID No 58; 4-25, 37-44, 53-59, 72-78, 86-99, 119-128, 197-203, 209-218, 220-226, 233-244, 246-254, 264-271, 277-289, 407-430, 437-445, 464-472, 482-488, 503-509 and 308-331 of Seq ID No 59; 4-12, 14-43, 52-58 and 43-58 of Seq ID No 60; 4-14, 21-29, 35-49 and 38-50 of Seq ID No 61; 4-19, 31-37, 58-72, 94-108 and 1-72 of Seq ID No 62, and fragments comprising at least 6, preferably more than 8, especially more than 10 aa of said sequences. All these fragments individually and each independently form a preferred selected aspect of the present invention.
[0149] All linear hyperimmune serum reactive fragments of a particular antigen may be identified by analysing the entire sequence of the protein antigen by a set of peptides overlapping by 1 amino acid with a length of at least 10 amino acids. Subsequently, non-linear epitopes can be identified by analysis of the protein antigen with hyperimmune sera using the expressed full-length protein or domain polypeptides thereof. Assuming that a distinct domain of a protein is sufficient to form the 3D structure independent from the native protein, the analysis of the respective recombinant or synthetically produced domain polypeptide with hyperimmune serum would allow the identification of conformational epitopes within the individual domains of multi-domain proteins. For those antigens where a domain possesses linear as well as conformational epitopes, competition experiments with peptides corresponding to the linear epitopes may be used to confirm the presence of conformational epitopes.
[0150] It will be appreciated that the invention also relates to, among others, nucleic acid molecules encoding the aforementioned fragments, nucleic acid molecules that hybridise to nucleic acid molecules encoding the fragments, particularly those that hybridise under stringent conditions, and nucleic acid molecules, such as PCR primers, for amplifying nucleic acid molecules that encode the fragments. In these regards, preferred nucleic acid molecules are those that correspond to the preferred fragments, as discussed above.
[0151] The present invention also relates to vectors, which comprise a nucleic acid molecule or nucleic acid molecules of the present invention, host cells which are genetically engineered with vectors of the invention and the production of hyperimmune serum reactive antigens and fragments thereof by recombinant techniques.
[0152] A great variety of expression vectors can be used to express a hyperimmune serum reactive antigen or fragment thereof according to the present invention. Generally, any vector suitable to maintain, propagate or express nucleic acids to express a polypeptide in a host may be used for expression in this regard. In accordance with this aspect of the invention the vector may be, for example, a plasmid vector, a single or double-stranded phage vector, a single or double-stranded RNA or DNA viral vector. Starting plasmids disclosed herein are either commercially available, publicly available, or can be constructed from available plasmids by routine application of well-known, published procedures. Preferred among vectors, in certain respects, are those for expression of nucleic acid molecules and hyperimmune serum reactive antigens or fragments thereof of the present invention. Nucleic acid constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Alternatively, the hyperimmune serum reactive antigens and fragments thereof of the invention can be synthetically produced by conventional peptide synthesizers. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA construct of the present invention.
[0153] Host cells can be genetically engineered to incorporate nucleic acid molecules and express nucleic acid molecules of the present invention. Representative examples of appropriate hosts include bacterial cells, such as staphylococci, streptococci, E. coli, Streptomyces and Bacillus subtillis cells; fungal cells, such as yeast cells and Aspergillus cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, Hela, C127, 3T3, BHK, 293 and Bowes melanoma cells; and plant cells.
[0154] The invention also provides a process for producing a S. epidermidis hyperimmune serum reactive antigen and a fragment thereof comprising expressing from the host cell a hyperimmune serum reactive antigen or fragment thereof encoded by the nucleic acid molecules provided by the present invention. The invention further provides a process for producing a cell, which expresses a S. epidermidis hyperimmune serum reactive antigen or a fragment thereof comprising trans-forming or transfecting a suitable host cell with the vector according to the present invention such that the transformed or transfected cell expresses the polypeptide encoded by the nucleic acid contained in the vector.
[0155] The polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals but also additional heterologous functional regions. Thus, for instance, a region of additional amino acids, particularly charged amino acids, may be added to the N- or C-terminus of the polypeptide to improve stability and persistence in the host cell, during purification or during subsequent handling and storage. Also, regions may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to polypeptides to engender secretion or excretion, to improve stability or to facilitate purification, among others, are familiar and routine techniques in the art. A preferred fusion protein comprises a heterologous region from immunoglobulin that is useful to solubilize or purify polypeptides. For example, EP-A-O 42-3, 5, 10, 14, 16, 18, 22-24, 27 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobin molecules together with another protein or part thereof. In drug discovery, for example, proteins have been fused with antibody Fc portions for the purpose of high-throughout screening assays to identify antagonists. See for example, {Bennett, D. et al., 1995} and {Johanson, K. et al., 1995}.
[0156] The S. epidermidis hyperimmune serum reactive antigen or a fragment thereof can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, hydroxylapatite chromatography and lectin chromatography.
[0157] The hyperimmune serum reactive antigens and fragments thereof according to the present invention can be produced by chemical synthesis as well as by biotechnological means. The latter comprise the transfection or transformation of a host cell with a vector containing a nucleic acid according to the present invention and the cultivation of the transfected or transformed host cell under conditions, which are known to the ones skilled in the art. The production method may also comprise a purification step in order to purify or isolate the polypeptide to be manufactured. In a preferred embodiment the vector is a vector according to the present invention.
[0158] The hyperimmune serum reactive antigens and fragments thereof according to the present invention may be used for the detection of the organism or organisms in a sample containing these or ganisms or polypeptides derived thereof. Preferably such detection is for diagnosis, more preferable for the diagnosis of a disease, most preferably for the diagnosis of a diseases related or linked to the presence or abundance of Gram-positive bacteria, especially bacteria selected from the group comprising staphylococci, streptococci and lactococci. More preferably, the microorganisms are selected from the group comprising Staphylococcus aureus and Staphylococcus saprophyticus, especially the microorganism is Staphylococcus epidermidis.
[0159] The present invention also relates to diagnostic assays such as quantitative and diagnostic assays for detecting levels of the hyperimmune serum reactive antigens and fragments thereof of the present invention in cells and tissues, including determination of normal and abnormal levels. Thus, for instance, a diagnostic assay in accordance with the invention for detecting overexpression of the polypeptide compared to normal control tissue samples may be used to detect the presence of an infection, for example, and to identify the infecting organism. Assay techniques that can be used to determine levels of a polypeptide, in a sample derived from a host are well known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays. Among these, ELISAs frequently are preferred. An ELISA assay initially comprises preparing an antibody specific to the polypeptide, preferably a monoclonal antibody. In addition, a reporter antibody generally is prepared which binds to the monoclonal antibody. The reporter antibody is attached to a detectable reagent such as radioactive, fluorescent or enzymatic reagent, such as horseradish peroxidase enzyme.
[0160] The hyperimmune serum reactive antigens and fragments thereof according to the present invention may also be used for the purpose of or in connection with an array. More particularly, at least one of the hyperimmune serum reactive antigens and fragments thereof according to the present invention may be immobilized on a support. Said support typically comprises a variety of hyperimmune serum reactive antigens and fragments thereof whereby the variety may be created by using one or several of the hyperimmune serum reactive antigens and fragments thereof according to the present invention and/or hyperimmune serum reactive antigens and fragments thereof being different. The characterizing feature of such array as well as of any array in general is the fact that at a distinct or predefined region or position on said support or a surface thereof, a distinct polypeptide is immobilized. Because of this any activity at a distinct position or region of an array can be correlated with a specific polypeptide. The number of different hyperimmune serum reactive antigens and fragments thereof immobilized on a support may range from as little as 10 to several 1000 different hyperimmune serum reactive antigens and fragments thereof. The density of hyperimmune serum reactive antigens and fragments thereof per cm2 is in a preferred embodiment as little as 10 peptides/polypeptides per cm2 to at least 400 different peptides/polypeptides per cm2 and more particularly at least 1000 different hyperimmune serum reactive antigens and fragments thereof per cm2.
[0161] The manufacture of such arrays is known to the one skilled in the art and, for example, described in U.S. Pat. No. 5,744,309. The array preferably comprises a planar, porous or non-porous solid support having at least a first surface. The hyperimmune serum reactive antigens and fragments thereof as disclosed herein, are immobilized on said surface. Preferred support materials are, among others, glass or cellulose. It is also within the present invention that the array is used for any of the diagnostic applications described herein. Apart from the hyperimmune serum reactive antigens and fragments thereof according to the present invention also the nucleic acid molecules according to the present invention may be used for the generation of an array as described above. This applies as well to an array made of antibodies, preferably monoclonal antibodies as, among others, described herein.
[0162] In a further aspect the present invention relates to an antibody directed to any of the hyperimmune serum reactive antigens and fragments thereof, derivatives or fragments thereof according to the present invention. The present invention includes, for example, monoclonal and polyclonal antibodies, chimeric, single chain, and humanized antibodies, as well as Fab fragments, or the product of a Fab expression library. It is within the present invention that the antibody may be chimeric, i.e. that different parts thereof stem from different species or at least the respective sequences are taken from different species.
[0163] Antibodies generated against the hyperimmune serum reactive antigens and fragments thereof corresponding to a sequence of the present invention can be obtained by direct injection of the hyperimmune serum reactive antigens and fragments thereof into an animal or by administering the hyperimmune serum reactive antigens and fragments thereof to an animal, preferably a non-human. The antibody so obtained will then bind the hyperimmune serum reactive antigens and fragments thereof itself. In this manner, even a sequence encoding only a fragment of a hyperimmune serum reactive antigen and fragments thereof can be used to generate antibodies binding the whole native hyperimmune serum reactive antigen and fragments thereof. Such antibodies can then be used to isolate the hyperimmune serum reactive antigens and fragments thereof from tissue expressing those hyperimmune serum reactive antigens and fragments thereof.
[0164] For preparation of monoclonal antibodies, any technique known in the art, which provides antibodies produced by continuous cell line cultures can be used. (as described originally in {Kohler, G. et al., 1975}.
[0165] Techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778) can be adapted to produce single chain antibodies to immunogenic hyperimmune serum reactive antigens and fragments thereof according to this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies to immunogenic hyperimmune serum reactive antigens and fragments thereof according to this invention.
[0166] Alternatively, phage display technology or ribosomal display could be utilized to select antibody genes with binding activities towards the hyperimmune serum reactive antigens and fragments thereof either from repertoires of PCR amplified v-genes of lymphocytes from humans screened for possessing respective target antigens or from naive libraries {McCafferty, J. et al., 1990}; {Marks, J. et al., 1992}. The affinity of these antibodies can also be improved by chain shuffling {Clackson, T. et al., 1991}.
[0167] If two antigen binding domains are present, each domain may be directed against a different epitope--termed `bispecific` antibodies.
[0168] The above-described antibodies may be employed to isolate or to identify clones expressing the hyperimmune serum reactive antigens and fragments thereof or purify the hyperimmune serum reactive antigens and fragments thereof of the present invention by attachment of the antibody to a solid support for isolation and/or purification by affinity chromatography.
[0169] Thus, among others, antibodies against the hyperimmune serum reactive antigens and fragments thereof of the present invention may be employed to inhibit and/or treat infections, particularly bacterial infections and especially infections arising from S. epidermidis.
[0170] Hyperimmune serum reactive antigens and fragments thereof include antigenically, epitopically or immunologically equivalent derivatives, which form a particular aspect of this invention. The term "antigenically equivalent derivative" as used herein encompasses a hyperimmune serum reactive antigen and fragments thereof or its equivalent which will be specifically recognized by certain antibodies which, when raised to the protein or hyperimmune serum reactive antigen and fragments thereof according to the present invention, interfere with the interaction between pathogen and mammalian host. The term "immunologically equivalent derivative" as used herein encompasses a peptide or its equivalent which when used in a suitable formulation to raise antibodies in a vertebrate, the antibodies act to interfere with the interaction between pathogen and mammalian host.
[0171] The hyperimmune serum reactive antigens and fragments thereof, such as an antigenically or immunologically equivalent derivative or a fusion protein thereof can be used as an antigen to immunize a mouse or other animal such as a rat or chicken. The fusion protein may provide stability to the hyperimmune serum reactive antigens and fragments thereof. The antigen may be associated, for example by conjugation, with an immunogenic carrier protein, for example bovine serum albumin (BSA) or keyhole limpet haemocyanin (KLH). Alternatively, an antigenic peptide comprising multiple copies of the protein or hyperimmune serum reactive antigen and fragments thereof, or an antigenically or immunologically equivalent hyperimmune serum reactive antigen and fragments thereof, may be sufficiently antigenic to improve immunogenicity so as to obviate the use of a carrier.
[0172] Preferably the antibody or derivative thereof is modified to make it less immunogenic in the individual. For example, if the individual is human the antibody may most preferably be "humanized", wherein the complimentarity determining region(s) of the hybridoma-derived antibody has been transplanted into a human monoclonal antibody, for example as described in {Jones, P. et al., 1986} or {Tempest, P. et al., 1991}.
[0173] The use of a polynucleotide of the invention in genetic immunization will preferably employ a suitable delivery method such as direct injection of plasmid DNA into muscle, delivery of DNA complexed with specific protein carriers, coprecipitation of DNA with calcium phosphate, encapsulation of DNA in various forms of liposomes, particle bombardment {Tang, D. et al., 1992}, {Eisenbraun, M. et al., 1993} and in vivo infection using cloned retroviral vectors {Seeger, C. et al., 1984}.
[0174] In a further aspect the present invention relates to a peptide binding to any of the hyperimmune serum reactive antigens and fragments thereof according to the present invention, and a method for the manufacture of such peptides whereby the method is characterized by the use of the hyperimmune serum reactive antigens and fragments thereof according to the present invention and the basic steps are known to the one skilled in the art.
[0175] Such peptides may be generated by using methods according to the state of the art such as phage display or ribosome display. In case of phage display, basically a library of peptides is generated, in form of phages, and this kind of library is contacted with the target molecule, in the present case a hyperimmune serum reactive antigen and fragments thereof according to the present invention. Those peptides binding to the target molecule are subsequently removed, preferably as a complex with the target molecule, from the respective reaction. It is known to the one skilled in the art that the binding characteristics, at least to a certain extent, depend on the particularly realized experimental set-up such as the salt concentration and the like. After separating those peptides binding to the target molecule with a higher affinity or a bigger force, from the non-binding members of the library, and optionally also after removal of the target molecule from the complex of target molecule and peptide, the respective peptide(s) may subsequently be characterised. Prior to the characterisation optionally an amplification step is realized such as, e.g. by propagating the peptide encoding phages. The characterisation preferably comprises the sequencing of the target binding peptides. Basically, the peptides are not limited in their lengths, however, peptides having a length from about 8 to 20 amino acids are preferably obtained in the respective methods. The size of the libraries may be about 102 to 1018, preferably 108 to 1015 different peptides, however, is not limited thereto.
[0176] A particular form of target binding hyperimmune serum reactive antigens and fragments thereof are the so-called "anticalines" which are, among others, described in German patent application DE 197 42 706.
[0177] In a further aspect the present invention relates to functional nucleic acids interacting with any of the hyperimmune serum reactive antigens and fragments thereof according to the present invention, and a method for the manufacture of such functional nucleic acids whereby the method is characterized by the use of the hyperimmune serum reactive antigens and fragments thereof α-cording to the present invention and the basic steps are known to the one skilled in the art. The functional nucleic acids are preferably aptamers and spiegelmers.
[0178] Aptamers are D-nucleic acids, which are either single stranded or double stranded and which specifically interact with a target molecule. The manufacture or selection of aptamers is, e.g., described in European patent EP 0 533 838. Basically the following steps are realized. First, a mixture of nucleic acids, i.e. potential aptamers, is provided whereby each nucleic acid typically comprises a segment of several, preferably at least eight subsequent randomised nucleotides. This mixture is subsequently contacted with the target molecule whereby the nucleic acid(s) bind to the target molecule, such as based on an increased affinity towards the target or with a bigger force thereto, compared to the candidate mixture. The binding nucleic acid(s) are/is subsequently separated from the remainder of the mixture. Optionally, the thus obtained nucleic acid(s) is amplified using, e.g. polymerase chain reaction. These steps may be repeated several times giving at the end a mixture having an increased ratio of nucleic acids specifically binding to the target from which the final binding nucleic acid is then optionally selected. These specifically binding nucleic acid(s) are referred to as aptamers. It is obvious that at any stage of the method for the generation or identification of the aptamers samples of the mixture of individual nucleic acids may be taken to determine the sequence thereof using standard techniques. It is within the present invention that the aptamers may be stabilized such as, e.g., by introducing defined chemical groups which are known to the one skilled in the art of generating aptamers. Such modification may for example reside in the introduction of an amino group at the 2'-position of the sugar moiety of the nucleotides. Aptamers are currently used as therapeutical agents. However, it is also within the present invention that the thus selected or generated aptamers may be used for target validation and/or as lead substance for the development of medicaments, preferably of medicaments based on small molecules. This is actually done by a competition assay whereby the specific interaction between the target molecule and the aptamer is inhibited by a candidate drug whereby upon replacement of the aptamer from the complex of target and aptamer it may be assumed that the respective drug candidate allows a specific inhibition of the interaction between target and aptamer, and if the interaction is specific, said candidate drug will, at least in principle, be suitable to block the target and thus decrease its biological availability or activity in a respective system comprising such target. The thus obtained small molecule may then be subject to further derivatisation and modification to optimise its physical, chemical, biological and/or medical characteristics such as toxicity, specificity, biodegradability and bioavailability.
[0179] Spiegelmers and their generation or manufacture is based on a similar principle. The manufacture of spiegelmers is described in international patent application WO 98/08856. Spiegelmers are L-nucleic acids, which means that they are composed of L-nucleotides rather than D-nucleotides as aptamers are. Spiegelmers are characterized by the fact that they have a very high stability in biological systems and, comparable to aptamers, specifically interact with the target molecule against which they are directed. In the process of generating spiegelmers, a heterogeonous population of D-nucleic acids is created and this population is contacted with the optical antipode of the target molecule, in the present case for example with the D-enantiomer of the naturally occurring L-enantiomer of the hyperimmune serum reactive antigens and fragments thereof according to the present invention. Subsequently, those D-nucleic acids are separated which do not interact with the optical antipode of the target molecule. But those D-nucleic acids interacting with the optical antipode of the target molecule are separated, optionally identified and/or sequenced and subsequently the corresponding L-nucleic acids are synthesized based on the nucleic acid sequence information obtained from the D-nucleic acids. These L-nucleic acids, which are identical in terms of sequence with the aforementioned D-nucleic acids interacting with the optical antipode of the target molecule, will specifically interact with the naturally occurring target molecule rather than with the optical antipode thereof. Similar to the method for the generation of aptamers it is also possible to repeat the various steps several times and thus to enrich those nucleic acids specifically interacting with the optical antipode of the target molecule.
[0180] In a further aspect the present invention relates to functional nucleic acids interacting with any of the nucleic acid molecules according to the present invention, and a method for the manufacture of such functional nucleic acids whereby the method is characterized by the use of the nucleic acid molecules and their respective sequences according to the present invention and the basic steps are known to the one skilled in the art. The functional nucleic acids are preferably ribozymes, antisense oligonucleotides and siRNA.
[0181] Ribozymes are catalytically active nucleic acids, which preferably consist of RNA, which basically comprises two moieties. The first moiety shows a catalytic activity whereas the second moiety is responsible for the specific interaction with the target nucleic acid, in the present case the nucleic acid coding for the hyperimmune serum reactive antigens and fragments thereof according to the present invention. Upon interaction between the target nucleic acid and the second moiety of the ribozyme, typically by hybridisation and Watson-Crick base pairing of essentially complementary stretches of bases on the two hybridising strands, the catalytically active moiety may become active which means that it catalyses, either intramolecularly or intermolecularly, the target nucleic acid in case the catalytic activity of the ribozyme is a phosphodiesterase activity. Subsequently, there may be a further degradation of the target nucleic acid, which in the end results in the degradation of the target nucleic acid as well as the protein derived from the said target nucleic acid. Ribozymes, their use and design principles are known to the one skilled in the art, and, for example described in {Doherty, E. et al., 2001} and {Lewin, A. et al., 2001}.
[0182] The activity and design of antisense oligonucleotides for the manufacture of a medicament and as a diagnostic agent, respectively, is based on a similar mode of action. Basically, antisense oligonucleotides hybridise based on base complementarity, with a target RNA, preferably with a mRNA, thereby activating RNase H. RNase H is activated by both phosphodiester and phosphorothioate-coupled DNA. Phosphodiester-coupled DNA, however, is rapidly degraded by cellular nucleases with the exception of phosphorothioate-coupled DNA. These resistant, non-naturally occurring DNA derivatives do not inhibit RNase H upon hybridisation with RNA. In other words, antisense polynucleotides are only effective as DNA RNA hybride complexes. Examples for this kind of antisense oligonucleotides are described, among others, in U.S. Pat. No. 5,849,902 and U.S. Pat. No. 5,989,912. In other words, based on the nucleic acid sequence of the target molecule which in the present case are the nucleic acid molecules for the hyperimmune serum reactive antigens and fragments thereof according to the present invention, either from the target protein from which a respective nucleic acid sequence may in principle be deduced, or by knowing the nucleic acid sequence as such, particularly the mRNA, suitable antisense oligonucleotides may be designed base on the principle of base complementarity.
[0183] Particularly preferred are antisense-oligonucleotides, which have a short stretch of phosphorothioate DNA (3 to 9 bases). A minimum of 3 DNA bases is required for activation of bacterial RNase H and a minimum of 5 bases is required for mammalian RNase H activation. In these chimeric oligonucleotides there is a central region that forms a substrate for RNase H that is flanked by hybridising "arms" comprised of modified nucleotides that do not form substrates for RNase H. The hybridising arms of the chimeric oligonucleotides may be modified such as by 2'-O-methyl or 2'-fluoro. Alternative approaches used methylphosphonate or phosphoramidate linkages in said arms. Further embodiments of the antisense oligonucleotide useful in the practice of the present invention are P-methoxyoligonucleotides, partial Pmethoxyoligodeoxyribonucleotides or P-methoxyoligonucleotides.
[0184] Of particular relevance and usefulness for the present invention are those antisense oligonucleotides as more particularly described in the above two mentioned US patents. These oligonucleotides contain no naturally occurring 5' 3'-linked nucleotides. Rather the oligonucleotides have two types of nucleotides: 2'-deoxyphosphorothioate, which activate RNase H, and 2'-modified nucleotides, which do not. The linkages between the 2'-modified nucleotides can be phosphodiesters, phosphorothioate or P-ethoxyphosphodiester. Activation of RNase H is accomplished by a contiguous RNase H-activating region, which contains between 3 and 5 2'-deoxyphosphorothioate nucleotides to activate bacterial RNase H and between 5 and 10 2'-deoxyphosphorothioate nucleotides to activate eukaryotic and, particularly, mammalian RNase H. Protection from degradation is accomplished by making the 5' and 3' terminal bases highly nuclease resistant and, optionally, by placing a 3' terminal blocking group.
[0185] More particularly, the antisense oligonucleotide comprises a 5' terminus and a 3' terminus; and from position 11 to 59 5' 3'-linked nucleotides independently selected from the group consisting of 2'-modified phosphodiester nucleotides and 2'-modified P-alkyloxyphosphotriester nucleotides; and wherein the 5'-terminal nucleoside is attached to an RNase H-activating region of between three and ten contiguous phosphorothioate-linked deoxyribonucleotides, and wherein the 3'-terminus of said oligonucleotide is selected from the group consisting of an inverted deoxyribonucleotide, a contiguous stretch of one to three phosphorothioate 2'-modified ribonucleotides, a biotin group and a P-alkyloxyphosphotriester nucleotide.
[0186] Also an antisense oligonucleotide may be used wherein not the 5' terminal nucleoside is attached to an RNase H-activating region but the 3' terminal nucleoside as specified above. Also, the 5' terminus is selected from the particular group rather than the 3' terminus of said oligonucleotide.
[0187] The nucleic acids as well as the hyperimmune serum reactive antigens and fragments thereof according to the present invention may be used as or for the manufacture of pharmaceutical compositions, especially vaccines. Preferably such pharmaceutical composition, preferably vaccine is for the prevention or treatment of diseases caused by, related to or associated with S. epidermidis. In so far another aspect of the invention relates to a method for inducing an immunological response in an individual, particularly a mammal, which comprises inoculating the individual with the hyperimmune serum reactive antigens and fragments thereof of the invention, or a fragment or variant thereof, adequate to produce antibodies to protect said individual from infection, particularly Staphylococcus infection and most particularly S. epidermidis infections.
[0188] Yet another aspect of the invention relates to a method of inducing an immunological response in an individual which comprises, through gene therapy or otherwise, delivering a nucleic acid functionally encoding hyperimmune serum reactive antigens and fragments thereof, or a fragment or a variant thereof, for expressing the hyperimmune serum reactive antigens and fragments thereof, or a fragment or a variant thereof in vivo in order to induce an immunological response to produce antibodies or a cell mediated T cell response, either cytokine-producing T cells or cytotoxic T cells, to protect said individual from disease, whether that disease is already established within the individual or not. One way of administering the gene is by accelerating it into the desired cells as a coating on particles or otherwise.
[0189] A further aspect of the invention relates to an immunological composition which, when introduced into a host capable of having induced within it an immunological response, induces an immunological response in such host, wherein the composition comprises recombinant DNA which codes for and expresses an antigen of the hyperimmune serum reactive antigens and fragments thereof of the present invention. The immunological response may be used therapeutically or prophylactically and may take the form of antibody immunity or cellular immunity such as that arising from CTL or CD4+ T cells.
[0190] The hyperimmune serum reactive antigens and fragments thereof of the invention or a fragment thereof may be fused with a co-protein which may not by itself produce antibodies, but is capable of stabilizing the first protein and producing a fused protein which will have immunogenic and protective properties. This fused recombinant protein preferably further comprises an antigenic co-protein, such as Glutathione-S-transferase (GST) or beta-galactosidase, relatively large coproteins which solubilise the protein and facilitate production and purification thereof. Moreover, the co-protein may act as an adjuvant in the sense of providing a generalized stimulation of the immune system. The co-protein may be attached to either the amino or carboxy terminus of the first protein.
[0191] Also, provided by this invention are methods using the described nucleic acid molecule or particular fragments thereof in such genetic immunization experiments in animal models of infection with S. epidermidis. Such fragments will be particularly useful for identifying protein epitopes able to provoke a prophylactic or therapeutic immune response. This approach can allow for the subsequent preparation of monoclonal antibodies of particular value from the requisite organ of the animal successfully resisting or clearing infection for the development of prophylactic agents or therapeutic treatments of S. epidermidis infection in mammals, particularly humans.
[0192] The hyperimmune serum reactive antigens and fragments thereof may be used as an antigen for vaccination of a host to produce specific antibodies which protect against invasion of bacteria, for example by blocking adherence of bacteria to damaged tissue. Examples of tissue damage include wounds in skin or connective tissue caused e.g. by mechanical, chemical or thermal damage or by implantation of indwelling devices, or wounds in the mucous membranes, such as the mouth, mammary glands, urethra or vagina.
[0193] The present invention also includes a vaccine formulation, which comprises the immunogenic recombinant protein together with a suitable carrier. Since the protein may be broken down in the stomach, it is preferably administered parenterally, including, for example, administration that is subcutaneous, intramuscular, intravenous, intradermal intranasal or transdermal. Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the bodily fluid, preferably the blood, of the individual; and aqueous and non-aqueous sterile suspensions which may include suspending agents or thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials, and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use. The vaccine formulation may also include adjuvant systems for enhancing the immunogenicity of the formulation, such as oil-in-water systems and other systems known in the art. The dosage will depend on the specific activity of the vaccine and can be readily determined by routine experimentation.
[0194] According to another aspect, the present invention relates to a pharmaceutical composition comprising such a hyperimmune serum-reactive antigen or a fragment thereof as provided in the present invention for S. epidermidis. Such a pharmaceutical composition may comprise one or more hyperimmune serum reactive antigens or fragments thereof against S. epidermidis. Optionally, such S. epidermidis hyperimmune serum reactive antigens or fragments thereof may also be combined with antigens against other pathogens in a combination pharmaceutical composition. Preferably, said pharmaceutical composition is a vaccine for preventing or treating an infection caused by S. epidermidis and/or other pathogens against which the antigens have been included in the vaccine.
[0195] According to a further aspect, the present invention relates to a pharmaceutical composition comprising a nucleic acid molecule encoding a hyperimmune serum-reactive antigen or a fragment thereof as identified above for S. epidermidis. Such a pharmaceutical composition may comprise one or more nucleic acid molecules encoding hyperimmune serum reactive antigens or fragments thereof against S. epidermidis. Optionally, such S. epidermidis nucleic acid molecules encoding hyperimmune serum reactive antigens or fragments thereof may also be combined with nucleic acid molecules encoding antigens against other pathogens in a combination pharmaceutical composition. Preferably, said pharmaceutical composition is a vaccine for preventing or treating an infection caused by S. epidermidis and/or other pathogens against which the antigens have been included in the vaccine.
[0196] The pharmaceutical composition may contain any suitable auxiliary substances, such as buffer substances, stabilisers or further active ingredients, especially ingredients known in connection of pharmaceutical composition and/or vaccine production.
[0197] A preferable carrier/or excipient for the hyperimmune serum-reactive antigens, fragments thereof or a coding nucleic acid molecule thereof according to the present invention is an immunostimulatory compound for further stimulating the immune response to the given hyperimmune serum-reactive antigen, fragment thereof or a coding nucleic acid molecule thereof. Preferably the immunostimulatory compound in the pharmaceutical preparation according to the present invention is selected from the group of polycationic substances, especially polycationic peptides, immunostimulatory nucleic acids molecules, preferably immunostimulatory deoxynucleotides, alum, Freund's complete adjuvants, Freund's incomplete adjuvants, neuroactive compounds, especially human growth hormone, or combinations thereof.
[0198] It is also within the scope of the present invention that the pharmaceutical composition, especially vaccine, comprises apart from the hyperimmune serum reactive antigens, fragments thereof and/or coding nucleic acid molecules thereof according to the present invention other compounds which are biologically or pharmaceutically active. Preferably, the vaccine composition comprises at least one polycationic peptide. The polycationic compound(s) to be used according to the present invention may be any polycationic compound, which shows the characteristic effects according to the WO 97/30721. Preferred polycationic compounds are selected from basic polypeptides, organic polycations, basic polyamino acids or mixtures thereof. These polyamino acids should have a chain length of at least 4 amino acid residues (WO 97/30721). Especially preferred are substances like polylysine, polyarginine and polypeptides containing more than 20%, especially more than 50% of basic amino acids in a range of more than 8, especially more than 20, amino acid residues or mixtures thereof. Other preferred polycations and their pharmaceutical compositions are described in WO 97/30721 (e.g. polyethyleneimine) and WO 99/38528. Preferably these polypeptides contain between 20 and 500 amino acid residues, especially between 30 and 200 residues.
[0199] These polycationic compounds may be produced chemically or recombinantly or may be derived from natural sources.
[0200] Cationic (poly)peptides may also be anti-microbial with properties as reviewed in {Ganz, T., 1999}. These (poly)peptides may be of prokaryotic or animal or plant origin or may be produced chemically or recombinantly (WO 02/13857). Peptides may also belong to the class of defensins (WO 02/13857). Sequences of such peptides can be, for example, found in the Antimicrobial Sequences Database available on the World Wide Web under the following internet address:
[0201] bbcm.univ.trieste.it/˜tossi/pag2.html
[0202] Such host defence peptides or defensives are also a preferred form of the polycationic polymer according to the present invention. Generally, a compound allowing as an end product activation (or down-regulation) of the adaptive immune system, preferably mediated by APCs (including dendritic cells) is used as polycationic polymer.
[0203] Especially preferred for use as polycationic substances in the present invention are cathelicidin derived antimicrobial peptides or derivatives thereof (International patent application WO 02/13857, incorporated herein by reference), especially antimicrobial peptides derived from mammalian cathelicidin, preferably from human, bovine or mouse.
[0204] Polycationic compounds derived from natural sources include HW-REV or HIV-TAT (derived cationic peptides, antennapedia peptides, chitosan or other derivatives of chitin) or other peptides derived from these peptides or proteins by biochemical or recombinant production. Other preferred polycationic compounds are cathelin or related or derived substances from cathelin. For example, mouse cathelin is a peptide, which has the amino acid sequence NH2-RLAGLLRKGGEKIGEKLKKIGQKIKNFFQKLVPQPE-COOH (SEQ ID NO:64). Related or derived cathelin substances contain the whole or parts of the cathelin sequence with at least 15-20 amino acid residues. Derivations may include the substitution or modification of the natural amino acids by amino acids, which are not among the 20 standard amino acids. Moreover, further cationic residues may be introduced into such cathelin molecules. These cathelin molecules are preferred to be combined with the antigen. These cathelin molecules surprisingly have turned out to be also effective as an adjuvant for an antigen without the addition of further adjuvants. It is therefore possible to use such cathelin molecules as efficient adjuvants in vaccine formulations with or without further immunoactivating substances.
[0205] Another preferred polycationic substance to be used according to the present invention is a synthetic peptide containing at least 2 KLK-motifs separated by a linker of 3 to 7 hydrophobic amino acids (International patent application WO 02/32451, incorporated herein by reference).
[0206] The pharmaceutical composition of the present invention may further comprise immunostimulatory nucleic acid(s). Immunostimulatory nucleic acids are e.g. neutral or artificial CpG containing nucleic acids, short stretches of nucleic acids derived from non-vertebrates or in form of short oligonucleotides (ODNs) containing non-methylated cytosine-guanine di-nucleotides (CpG) in a certain base context (e.g. described in WO 96/02555). Alternatively, also nucleic acids based on inosine and cytidine as e.g. described in the WO 01/93903, or deoxynucleic acids containing deoxy-inosine and/or deoxyuridine residues (described in WO 01/93905 and PCT/EP 02/05448, incorporated herein by reference) may preferably be used as immunostimulatory nucleic acids for the present invention. Preferably, the mixtures of different immunostimulatory nucleic acids may be used according to the present invention.
[0207] It is also within the present invention that any of the aforementioned polycationic compounds is combined with any of the immunostimulatory nucleic acids as aforementioned. Preferably, such combinations are according to the ones as described in WO 01/93905, WO 02/32451, WO 01/54720, WO 01/93903, WO 02/13857 and PCT/EP 02/05448 and the Austrian patent application A 1924/2001, incorporated herein by reference.
[0208] In addition or alternatively such vaccine composition may comprise apart from the hyperimmune serum reactive antigens and fragments thereof, and the coding nucleic acid molecules thereof according to the present invention a neuroactive compound. Preferably, the neuroactive compound is human growth factor as, e.g. described in WO 01/24822. Also preferably, the neuroactive compound is combined with any of the polycationic compounds and/or immunostimulatory nucleic acids as afore-mentioned.
[0209] In a further aspect the present invention is related to a pharmaceutical composition. Such pharmaceutical composition is, for example, the vaccine described herein. Also a pharmaceutical composition is a pharmaceutical composition which comprises any of the following compounds or combinations thereof: the nucleic acid molecules according to the present invention, the hyperimmune serum reactive antigens and fragments thereof according to the present invention, the vector according to the present invention, the cells according to the present invention, the antibody according to the present invention, the functional nucleic acids according to the present invention and the binding peptides such as the anticalines according to the present invention, any agonists and antagonists screened as described herein. In connection therewith any of these compounds may be employed in combination with a non-sterile or sterile carrier or carriers for use with cells, tissues or organisms, such as a pharmaceutical carrier suitable for administration to a subject. Such compositions comprise, for instance, a media additive or a therapeutically effective amount of a hyperimmune serum reactive antigen and fragments thereof of the invention and a pharmaceutically acceptable carrier or excipient. Such carriers may include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol and combinations thereof. The formulation should suit the mode of administration.
[0210] The pharmaceutical compositions may be administered in any effective, convenient manner including, for instance, administration by topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes among others.
[0211] In therapy or as a prophylactic, the active agent may be administered to an individual as an injectable composition, for example as a sterile aqueous dispersion, preferably isotonic.
[0212] Alternatively the composition may be formulated for topical application, for example in the form of ointments, creams, lotions, eye ointments, eye drops, ear drops, mouthwash, impregnated dressings and sutures and aerosols, and may contain appropriate conventional additives, including, for example, preservatives, solvents to assist drug penetration, and emollients in ointments and creams. Such topical formulations may also contain compatible conventional carriers, for example cream or ointment bases, and ethanol or oleyl alcohol for lotions. Such carriers may constitute from about 1% to about 98% by weight of the formulation; more usually they will constitute up to about 80% by weight of the formulation.
[0213] In addition to the therapy described above, the compositions of this invention may be used generally as a wound treatment agent to prevent adhesion of bacteria to matrix proteins exposed in wound tissue and for prophylactic use in dental treatment as an alternative to, or in conjunction with, antibiotic prophylaxis.
[0214] A vaccine composition is conveniently in injectable form. Conventional adjuvants may be employed to enhance the immune response. A suitable unit dose for vaccination is 0.05-5 μg antigen/per kg of body weight, and such dose is preferably administered 1-3 times and with an interval of 1-3 weeks.
[0215] With the indicated dose range, no adverse toxicological effects should be observed with the compounds of the invention, which would preclude their administration to suitable individuals.
[0216] In a further embodiment the present invention relates to diagnostic and pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the afore-mentioned compositions of the invention. The ingredient(s) can be present in a useful amount, dosage, formulation or combination. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, reflecting approval by the agency of the manufacture, use or sale of the product for human administration.
[0217] In connection with the present invention any disease related use as disclosed herein such as, e.g. use of the pharmaceutical composition or vaccine, is particularly a disease or diseased condition which is caused by, linked or associated with Staphylococci, more preferably, S. epidermidis. In connection therewith it is to be noted that S. epidermidis comprises several strains including those disclosed herein. A disease related, caused or associated with the bacterial infection to be prevented and/or treated according to the present invention includes besides other diseases mostly those related to the presence of foreign bodies and the use of devices, such as catheters, cerebrospinal fluid shunt infections, peritonitis and endocarditis in humans.
[0218] In a still further embodiment the present invention is related to a screening method using any of the hyperimmune serum reactive antigens or nucleic acids according to the present invention. Screening methods as such are known to the one skilled in the art and can be designed such that an agonist or an antagonist is screened. Preferably an antagonist is screened which in the present case inhibits or prevents the binding of any hyperimmune serum reactive antigen and fragment thereof according to the present invention to an interaction partner. Such interaction partner can be a naturally occurring interaction partner or a non-naturally occurring interaction partner.
[0219] The invention also provides a method of screening compounds to identify those, which enhance (agonist) or block (antagonist) the function of hyperimmune serum reactive antigens and fragments thereof or nucleic acid molecules of the present invention, such as its interaction with a binding molecule. The method of screening may involve high-throughput.
[0220] For example, to screen for agonists or antagonists, the interaction partner of the nucleic acid molecule and nucleic acid, respectively, according to the present invention, maybe a synthetic reaction mix, a cellular compartment, such as a membrane, cell envelope or cell wall, or a preparation of any thereof, may be prepared from a cell that expresses a molecule that binds to the hyperimmune serum reactive antigens and fragments thereof of the present invention. The preparation is incubated with labelled hyperimmune serum reactive antigens and fragments thereof in the absence or the presence of a candidate molecule, which may be an agonist or antagonist. The ability of the candidate molecule to bind the binding molecule is reflected in decreased binding of the labelled ligand. Molecules which bind gratuitously, i.e., without inducing the functional effects of the hyperimmune serum reactive antigens and fragments thereof, are most likely to be good antagonists. Molecules that bind well and elicit functional effects that are the same as or closely related to the hyperimmune serum reactive antigens and fragments thereof are good agonists.
[0221] The functional effects of potential agonists and antagonists may be measured, for instance, by determining the activity of a reporter system following interaction of the candidate molecule with a cell or appropriate cell preparation, and comparing the effect with that of the hyperimmune serum reactive antigens and fragments thereof of the present invention or molecules that elicit the same effects as the hyperimmune serum reactive antigens and fragments thereof. Reporter systems that may be useful in this regard include but are not limited to colorimetric labelled substrate converted into product, a reporter gene that is responsive to changes in the functional activity of the hyperimmune serum reactive antigens and fragments thereof, and binding assays known in the art.
[0222] Another example of an assay for antagonists is a competitive assay that combines the hyperimmune serum reactive antigens and fragments thereof of the present invention and a potential antagonist with membrane-bound binding molecules, recombinant binding molecules, natural substrates or ligands, or substrate or ligand mimetics, under appropriate conditions for a competitive inhibition assay. The hyperimmune serum reactive antigens and fragments thereof can be labelled such as by radioactivity or a colorimetric compound, such that the molecule number of hyperimmune serum reactive antigens and fragments thereof bound to a binding molecule or converted to product can be determined accurately to assess the effectiveness of the potential antagonist.
[0223] Potential antagonists include small organic molecules, peptides, polypeptides and antibodies that bind to a hyperimmune serum reactive antigen and fragments thereof of the invention and thereby inhibit or extinguish its activity. Potential antagonists also may be small organic molecules, a peptide, a polypeptide such as a closely related protein or antibody that binds to the same sites on a binding molecule without inducing functional activity of the hyperimmune serum reactive antigens and fragments thereof of the invention.
[0224] Potential antagonists include a small molecule, which binds to and occupies the binding site of the hyperimmune serum reactive antigens and fragments thereof thereby preventing binding to cellular binding molecules, such that normal biological activity is prevented. Examples of small molecules include but are not limited to small organic molecules, peptides or peptide-like molecules.
[0225] Other potential antagonists include antisense molecules (see {Okano, H. et al., 1991}; OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION; CRC Press, Boca Ration, Fla. (1988), for a description of these molecules).
[0226] Preferred potential antagonists include derivatives of the hyperimmune serum reactive antigens and fragments thereof of the invention.
[0227] As used herein the activity of a hyperimmune serum reactive antigen and fragment thereof according to the present invention is its capability to bind to any of its interaction partner or the extent of such capability to bind to its or any interaction partner.
[0228] In a particular aspect, the invention provides the use of the hyperimmune serum reactive antigens and fragments thereof, nucleic acid molecules or inhibitors of the invention to interfere with the initial physical interaction between a pathogen and mammalian host responsible for sequelae of infection. In particular the molecules of the invention may be used: i) in the prevention of adhesion of S. epidermidis to mammalian extracellular matrix proteins on in-dwelling devices or to extracellular matrix proteins in wounds; ii) to block protein mediated mammalian cell invasion by, for example, initiating phosphorylation of mammalian tyrosine kinases {Rosenshine, I. et al., 1992} to block bacterial adhesion between mammalian extracellular matrix proteins and bacterial proteins which mediate tissue damage; iv) to block the normal progression of pathogenesis in infections initiated other than by the implantation of in-dwelling devices or by other surgical techniques.
[0229] Each of the DNA coding sequences provided herein may be used in the discovery and development of antibacterial compounds. The encoded protein upon expression can be used as a target for the screening of antibacterial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest.
[0230] The antagonists and agonists may be employed, for instance, to inhibit diseases arising from infection with Staphylococcus, especially S. epidermidis, such as sepsis.
[0231] In a still further aspect the present invention is related to an affinity device such affinity device comprises as least a support material and any of the hyperimmune serum reactive antigens and fragments thereof according to the present invention, which is attached to the support material. Because of the specificity of the hyperimmune serum reactive antigens and fragments thereof according to the present invention for their target cells or target molecules or their interaction partners, the hyperimmune serum reactive antigens and fragments thereof allow a selective removal of their interaction partner(s) from any kind of sample applied to the support material provided that the conditions for binding are met. The sample may be a biological or medical sample, including but not limited to, fermentation broth, cell debris, cell preparation, tissue preparation, organ preparation, blood, urine, lymph liquid, liquor and the like.
[0232] The hyperimmune serum reactive antigens and fragments thereof may be attached to the matrix in a covalent or non-covalent manner. Suitable support material is known to the one skilled in the art and can be selected from the group comprising cellulose, silicon, glass, aluminium, paramagnetic beads, starch and dextrane.
[0233] The present invention is further illustrated by the following figures, examples and the sequence listing from which further features, embodiments and advantages may be taken. It is to be understood that the present examples are given by way of illustration only and not by way of limitation of the disclosure.
[0234] In connection with the present invention
[0235] FIG. 1 shows the characterization of the selected human high titre sera specific for S. epidermidis.
[0236] FIG. 2 shows the characterization of the small fragment genomic library, LSE-70, from Staphylococcus epidermidis RP62A.
[0237] FIG. 3 shows the selection of bacterial cells by MACS using biotinylated human IgGs.
[0238] FIG. 4 shows an example for the gene distribution study with the identified antigens.
[0239] Table 1 shows the summary of the screens performed with genomic S. epidermidis libraries and human serum and the gene distribution data for selected antigens.
[0240] The figures to which it might be referred to in the specification are described in the following in more details.
[0241] FIG. 1 shows the characterization and selection of human serum samples for identification of S. epidermidis antigens. (A) ELISA: Total anti-S. epidermidis IgGs were measured by standard ELISA using total bacterial lysate as coating antigen at two different serum dilutions. Five sera (EP.1-5) were selected from a serum collection obtained from patients with S. epidermidis peritonitis. C, control serum from a patient with unrelated infection. (B) Immunoblot analysis: Selected high titer sera were characterized by immunoblotting using total bacterial lysates prepared from eight different S. epidermidis clinical isolates (lanes 1-8), as well as from S. epidermidis strain RP62A (lane C). In each lane, ˜20 μg total lysate proteins extracted from bacteria grown in BHI medium overnight were loaded. A representative immunoblot is shown for the EP.4 serum. The membrane was incubated with EP.4 serum at a dilution of 5,000 and developed with anti-human IgG secondary reagent. Mw, Protein standards (kDa).
[0242] FIG. 2A shows the fragment size distribution of the Staphylococcus epidermidis RP62A small fragment genomic library, LSE-70. After sequencing 572 randomly selected clones, sequences were trimmed to eliminate vector residues and the numbers of clones with various genomic fragment sizes were plotted. (B) Graphic illustration of the distribution of the same set of randomly sequenced clones of LSE-70 over the S. epidermidis chromosome. Circles indicate matching sequences to annotated ORFs in +/+ and +/- orientation. Rectangles represent fully matched clones to non-coding chromosomal sequences in +/+ and +/- orientation. Diamonds position the best match of all chimeric clone sequences. Numeric distances in base pairs are indicated over the circular genome for orientation. Partitioning of various clone sets within the library is given in numbers and percentage at the bottom of the figure.
[0243] FIG. 3A shows the MACS selection with biotinylated human IgGs. The LSE-70 library in pMAL9.1 was screened with 10 μg biotinylated, human serum (P15-IgG) in the first and second selection round. As negative control, no serum was added to the library cells for screening. Number of cells selected after the 1st and 2nd elution are shown for each selection round. FIG. 3B shows the reactivity of specific clones (1-26) isolated by bacterial surface display as analysed by Western blot analysis with the human serum (P15-IgG) used for selection by MACS at a dilution of 1:3,000. As a loading control the same blot was also analysed with antibodies directed against the platform protein LamB at a dilution of 1:5,000. LB, Extract from a clone expressing LamB without foreign peptide insert.
[0244] FIG. 4 shows the PCR analysis for the gene distribution of ORF1163 with the respective oligonucleotides. The predicted size of the PCR fragments is approximately 1,000 bp. The 31 coagulase negative Staphylococcus and 11 S. epidermidis strains used for analysis are marked in the figure; N, no genomic DNA added; P, genomic DNA from S. epidermidis RP62A, which served as template for library construction.
[0245] Table 1: Immunogenic proteins identified by bacterial surface display.
[0246] A, LSE-70 library in lamB with P15-IgG (804), B, LSE-150 library in fhuA with P15-IgG (826), C, LSA-300 library in fhuA with P15-IgG (729), *, prediction of antigenic sequences longer than 5 amino acids was performed with the program ANTIGENIC {Kolaskar, A. et al., 1990}. §, Forty-two coagulase negative Staphylococcus or S. epidermidis strains were tested by PCR with oligonucleotides specific for the genes encoding relevant antigens. Since 6 of the 31 CNS strains were negative for all genes analysed, we eliminated these data from the summary, because these strains are most likely not closely related to S. epidermidis.
EXAMPLES
Example 1
Preparation of Antibodies from Human Serum
Experimental Procedures
Peptide Synthesis
[0247] Peptides were synthesized in small scale (4 mg resin; up to 288 in parallel) using standard F-moc chemistry on a Rink amide resin (PepChem, Tubingen, Germany) using a Syroll synthesizer (Multisyntech, Witten, Germany). After the sequence was assembled, peptides were elongated with Fmoc-epsilon-aminohexanoic acid (as a linker) and biotin (Sigma, St. Louis, Mo.; activated like a normal amino acid). Peptides were cleaved off the resin with 93% TFA, 5% triethylsilane, and 2% water for one hour. Peptides were dried under vacuum and freeze dried three times from acetonitrile/water (1:1). The presence of the correct mass was verified by mass spectrometry on a Reflex III MALDI-TOF (Bruker, Bremen Germany). The peptides were used without further purification.
[0248] Enzyme linked immune assay (ELISA).
[0249] For serum characterization: ELISA plates (Maxisorb, Millipore) were coated with 5-10 μg/ml total protein diluted in coating buffer (0.1M sodium carbonate pH 9.2). Three dilutions of sera (2,000×, 10,000×, 50,000×) were made in PBS-BSA.
[0250] For peptide serology: Biotin-labeled peptides were coating on Streptavidin ELISA plates (EXICON) at 10 μg/ml concentration according to the manufacturer's instructions. Sera were tested at two dilutions, 200× and 1,000×.
[0251] Highly specific Horse Radish Peroxidase (HRP)-conjugated anti-human IgG or anti-human IgA secondary antibodies (Southern Biotech) were used according to the manufacturers' recommendations (dilution: 1,000×). Antigen-antibody complexes were quantified by measuring the conversion of the substrate (ABTS) to colored product based on OD405 nm readings in an automated ELISA reader (TECAN SUNRISE). Following manual coating, peptide plates were processed and analyzed by the Gemini 160 ELISA robot (TECAN) with a built-in reader (GENIOS, TECAN).
Immunoblotting
[0252] Total bacterial lysate and culture supernatant samples were prepared from in vitro grown S. epidermidis RP62A. 10 to 25 μg total protein/lane was separated by SDS-PAGE using the BioRad Mini-Protean 3 Cell electrophoresis system and proteins transferred to nitrocellulose membrane (ECL, Amersham Pharmacia). After overnight blocking in 5% milk, antisera at 2,000× dilution were added, and HRPO labeled anti-mouse IgG was used for detection.
Preparation of Bacterial Antigen Extracts
[0253] Total bacterial lysate: Bacteria were lysed by repeated freeze-thaw cycles: incubation on dry ice/ethanol-mixture until frozen (1 min), then thawed at 370C (5 min): repeated 3 times. This was followed by sonication and collection of supernatant by centrifugation (3,500 rpm, 15 min, 40C).
[0254] Culture supernatant: After removal of bacteria, the supernatant of overnight grown bacterial cultures was precipitated with ice-cold ethanol (100%): 1 part supernatant/3 parts ethanol incubated o/n at -20° C. Precipitates were collected by centrifugation (2,600 g, for 15 min) and dried. Dry pellets were dissolved either in PBS for ELISA, or in urea and SDS-sample buffer for SDS-PAGE and immunoblotting. The protein concentration of samples was determined by Bradford assay.
[0255] Purification of antibodies for genomic screening. Five sera from the patient group were selected based on the overall anti-staphylococcal titers for a serum pool used in the screening procedure. Antibodies against E. coli proteins were removed by incubating the heat-inactivated sera with whole cell E. coli cells (DHSalpha, transformed with pHIE11, grown under the same condition as used for bacterial surface display). Highly enriched preparations of IgGs from the pooled, depleted sera were generated by protein G affinity chromatography, according to the manufacturer's instructions (UltraLink Immobilized Protein G, Pierce). IgA antibodies were purified also by affinity chromatography using biotin-labeled anti-human IgA (Southern Biotech) immobilized on Streptavidin-agarose (GIBCO BRL). The efficiency of depletion and purification was checked by SDS-PAGE, Western blotting, ELISA and protein concentration measurements.
[0256] The antibodies produced against S. epidermidis by the human immune system and present in human sera are indicative of the in vivo expression of the antigenic proteins and their immunogenicity. These molecules are essential for the identification of individual antigens in the approach as described in the present invention, which is based on the interaction of the specific anti-staphylococcal antibodies and the corresponding S. epidermidis peptides or proteins. To gain access to relevant antibody repertoires, human sera were collected from convalescent patients with S. epidermidis infections, namely peritonitis.
[0257] The sera were characterized for anti-S. epidermidis antibodies by a series of ELISA and immunoblotting assays. Bacterial lysate proteins prepared from S. epidermidis RP62A cultured overnight (stationary phase) in BHI (Brain Heart Infusion) growth medium have been used as staphylococcal antigens. Both IgG and IgA antibody levels were determined. Five sera having the highest antibody levels were pooled, and IgG prepared for use in bacterial surface display in order to identify antigenic proteins.
[0258] The titers were compared at given dilutions where the response was linear. Sera were ranked based on the reactivity against multiple staphylococcal components, and the highest ones were selected for further analysis by immunoblotting (FIG. 1). This extensive antibody characterization approach has led to the unambiguous identification of anti-staphylococcal hyperimmune sera.
Example 2
Generation of Highly Random, Frame-Selected, Small-Fragment, Genomic DNA Libraries of Staphylococcus epidermidis
Experimental Procedures
[0259] Preparation of staphylococcal genomic DNA. 50 ml BHI medium was inoculated with S. epidermidis RP62A bacteria from a frozen stab and grown with aeration and shaking for 18 h at 37° C. The culture was then harvested, centrifuged with 1,600×g for 15 min and the supernatant was removed. Bacterial pellets were washed 3× with PBS and carefully re-suspended in 0.5 ml of Lysozyme solution (100 mg/ml). 0.1 ml of 10 mg/ml heat treated RNase A and 20 U of RNase T1 were added, mixed carefully and the solution was incubated for 1 h at 37° C. Following the addition of 0.2 ml of 20% SDS solution and 0.1 ml of Proteinase K (10 mg/ml) the tube was incubated overnight at 55° C. 1/3 volume of saturated NaCl was then added and the solution was incubated for 20 min at 4° C. The extract was pelleted in a microfuge (13,000 rpm) and the supernatant transferred into a new tube. The solution was extracted with PhOH/CHCl3/IAA (25:24:1) and with CHCl3/IAA (24:1). DNA was precipitated at room temperature by adding 0.6× volume of Isopropanol, spooled from the solution with a sterile Pasteur pipette and transferred into tubes containing 80% ice-cold ethanol. DNA was recovered by centrifuging the precipitates with 10-12,000×g, then dried on air and dissolved in ddH2O.
[0260] Preparation of small genomic DNA fragments. Genomic DNA fragments were mechanically sheared into fragments ranging in size between 150 and 300 bp using a cup-horn sonicator (Bandelin Sonoplus UV 2200 sonicator equipped with a BB5 cup horn, 10 sec. pulses at 100% power output) or into fragments of size between 50 and 70 bp by mild DNase I treatment (Novagen). It was observed that sonication yielded a much tighter fragment size distribution when breaking the DNA into fragments of the 150-300 bp size range. However, despite extensive exposure of the DNA to ultrasonic wave-induced hydromechanical shearing force, subsequent decrease in fragment size could not be efficiently and reproducibly achieved. Therefore, fragments of 50 to 70 bp in size were obtained by mild DNase I treatment using Novagen's shotgun cleavage kit. A 1:20 dilution of DNase I provided with the kit was prepared and the digestion was performed in the presence of MnCl2 in a 60 μl volume at 20° C. for 5 min to ensure double-stranded cleavage by the enzyme. Reactions were stopped with 2 μl of 0.5 M EDTA and the fragmentation efficiency was evaluated on a 2% TAE-agarose gel. This treatment resulted in total fragmentation of genomic DNA into near 50-70 bp fragments. Fragments were then blunt-ended twice using T4 DNA Polymerase in the presence of 100 μM each of dNTPs to ensure efficient flushing of the ends. Fragments were used immediately in ligation reactions or frozen at -20° C. for subsequent use.
[0261] Description of the vectors. The vector pMAL4.31 was constructed on a pASK-IBA backbone {Skerra, A., 1994} with the beta-lactamase (bla) gene exchanged with the Kanamycin resistance gene. In addition the bla gene was cloned into the multiple cloning site. The sequence encoding mature beta-lactamase is preceded by the leader peptide sequence of ompA to allow efficient secretion across the cytoplasmic membrane. Furthermore a sequence encoding the first 12 amino acids (spacer sequence) of mature beta-lactamase follows the ompA leader peptide sequence to avoid fusion of sequences immediately after the leader peptidase cleavage site, since e.g. clusters of positive charged amino acids in this region would decrease or abolish translocation across the cytoplasmic membrane {Kajava, A. et al., 2000}. A SmaI restriction site serves for library insertion. An upstream FseI site and a downstream NotI site, which were used for recovery of the selected fragment, flank the SmaI site. The three restriction sites are inserted after the sequence encoding the 12 amino acid spacer sequence in such a way that the bla gene is transcribed in the -1 reading frame resulting in a stop codon 15 bp after the NotI site. A +1 bp insertion restores the bla ORF so that beta-lactamase protein is produced with a consequent gain of Ampicillin resistance.
[0262] The vector pMAL9.1 was constructed by cloning the lamB gene into the multiple cloning site of pEH1 {Hashemzadeh-Bonehi, L. et al., 1998}. Subsequently, a sequence was inserted in lamB after amino acid 154, containing the restriction sites FseI, SmaI and NotI. The reading frame for this insertion was constructed in such a way that transfer of frame-selected DNA fragments excised by digestion with FseI and NotI from plasmid pMAL4.31 yields a continuous reading frame of lamB and the respective insert.
[0263] The vector pHIE11 was constructed by cloning the fhuA gene into the multiple cloning site of pEH1. Thereafter, a sequence was inserted in fhuA after amino acid 405, containing the restriction site FseI, XbaI and NotI. The reading frame for this insertion was chosen in a way that transfer of frame-selected DNA fragments excised by digestion with FseI and NotI from plasmid pMAL4.31 yields a continuous reading frame of fhuA and the respective insert.
[0264] Cloning and evaluation of the library for frame selection. Genomic S. epidermidis DNA fragments were ligated into the SmaI site of the vector pMAL4.31. Recombinant DNA was electroporated into DH10B electrocompetent E. coli cells (GIBCO BRL) and transformants plated on LB-agar supplemented with Kanamycin (50 μg/ml) and Ampicillin (50 μg/ml). Plates were incubated over night at 37° C. and colonies collected for large scale DNA extraction. A representative plate was stored and saved for collecting colonies for colony PCR analysis and large-scale sequencing. A simple colony PCR assay was used to initially determine the rough fragment size distribution as well as insertion efficiency. From sequencing data the precise fragment size was evaluated, junction intactness at the insertion site as well as the frame selection accuracy (3n+1 rule).
[0265] Cloning and evaluation of the library for bacterial surface display. Genomic DNA fragments were excised from the pMAL4.31 vector, containing the S. epidermidis library with the restriction enzymes FseI and NotI. The entire population of fragments was then transferred into plasmids pMAL9.1 (LamB) or pHIE11 (FhuA), which have been digested with FseI and NotI.
[0266] Using these two restriction enzymes, which recognise an 8 bp GC rich sequence, the reading frame that was selected in the pMAL4.31 vector is maintained in each of the platform vectors. The plasmid library was then transformed into E. coli DHSalpha cells by electroporation. Cells were plated onto large LB-agar plates supplemented with 50 μg/ml Kanamycin and grown over night at 37° C. at a density yielding clearly visible single colonies. Cells were then scraped off the surface of these plates, washed with fresh LB medium and stored in aliquots for library screening at -80° C.
Results
[0267] Libraries for frame selection. Two libraries (LSE-70 and LSE-150) were generated in the pMAL4.31 vector with sizes of approximately 70, 150 and 300 bp, respectively. For each library, ligation and subsequent transformation of approximately 1 μg of pMAL4.31 plasmid DNA and 50 ng of fragmented genomic S. epidermidis DNA yielded 4×105 to 2×106 clones after frame selection. To assess the randomness of the libraries, approximately 600 randomly chosen clones of LSE-70 were sequenced. The bioinformatic analysis showed that of these clones only very few were present more than once. Furthermore, it was shown that 90% of the clones fell in the size range between 16 and 61 bp with an average size of 34 bp (FIG. 2). Almost all sequences followed the 3n+1 rule, showing that all clones were properly frame selected.
[0268] Bacterial surface display libraries. The display of peptides on the surface of E. coli required the transfer of the inserts from the LSE libraries from the frame selection vector pMAL4.31 to the display plasmids pMAL9.1 (LamB) or pHIE11 (FhuA). Genomic DNA fragments were excised by FseI and NotI restriction and ligation of 5 ng inserts with 0.1 μg plasmid DNA and subsequent transformation into DHSalpha cells resulted in 2-5×106 clones. The clones were scraped off the LB plates and frozen without further amplification.
Example 3
Identification of highly immunogenic peptide sequences from S. epidermidis using bacterial surface displayed genomic libraries and human serum
Experimental Procedures
[0269] MACS screening. Approximately 2.5×108 cells from a given library were grown in 5 ml LBmedium supplemented with 50 μg/ml Kanamycin for 2 h at 37° C. Expression was induced by the addition of 1 mM IPTG for 30 min. Cells were washed twice with fresh LB medium and approximately 2×107 cells re-suspended in 100 μl LB medium and transferred to an Eppendorf tube.
[0270] 10 μg of biotinylated, human IgGs purified from serum was added to the cells and the suspension incubated over night at 4° C. with gentle shaking. 900 μl of LB medium was added, the suspension mixed and subsequently centrifuged for 10 min at 6,000 rpm at 4° C. (For IgA screens, 10 μg of purified IgAs were used and these captured with biotinylated anti-human-IgG secondary antibodies). Cells were washed once with 1 ml LB and then re-suspended in 100 μl LB medium. 10 μl of MACS microbeads coupled to streptavidin (Miltenyi Biotech, Germany) were added and the incubation continued for 20 min at 4° C. Thereafter 900 μl of LB medium was added and the MACS microbead cell suspension was loaded onto the equilibrated MS column (Miltenyi Biotech, Germany) which was fixed to the magnet. (The MS columns were equilibrated by washing once with 1 ml 70% EtOH and twice with 2 ml LB medium.)
[0271] The column was then washed three times with 3 ml LB medium. After removal of the magnet, cells were eluted by washing with 2 ml LB medium. After washing the column with 3 ml LB medium, the 2 ml eluate was loaded a second time on the same column and the washing and elution process repeated. The loading, washing and elution process was performed a third time, resulting in a final eluate of 2 ml.
[0272] A second round of screening was performed as follows. The cells from the final eluate were collected by centrifugation and re-suspended in 1 ml LB medium supplemented with 50 μg/ml Kanamycin. The culture was incubated at 37° C. for 90 min and then induced with 1 mM IPTG for 30 min. Cells were subsequently collected, washed once with 1 ml LB medium and suspended in 10 μl LB medium. Since the volume was reduced, 10 μg of human, biotinylated IgGs was added and the suspension incubated over night at 4° C. with gentle shaking. All further steps were exactly the same as in the first selection round. Cells selected after two rounds of selection were plated onto LB-agar plates supplemented with 50 μg/ml Kanamycin and grown over night at 37° C.
[0273] Evaluation of selected clones by sequencing and Western blot analysis. Selected clones were grown over night at 37° C. in 3 ml LB medium supplemented with 50 μg/ml Kanamycin to prepare plasmid DNA using standard procedures. Sequencing was performed at MWG (Germany).
[0274] For Western blot analysis approximately 10 to 20 μg of total cellular protein was separated by 10% SDS-PAGE and blotted onto HybondC membrane (Amersham Pharmacia Biotech, England). The LamB or FhuA fusion proteins were detected using human serum as the primary antibody at a dilution of approximately 1:5,000 and anti-human IgG or IgA antibodies coupled to HRP at a dilution of 1:5,000 as secondary antibodies. Detection was performed using the ECL detection kit (Amersham Pharmacia Biotech, England). Alternatively, rabbit anti FhuA or mouse anti LamB antibodies were used as primary antibodies in combination with the respective secondary antibodies coupled to HRP for the detection of the fusion proteins.
Results
[0275] Screening of bacterial surface display libraries by magnetic activated cell sorting (MACS) using biotinylated Igs. The libraries LSE-70 in pMAL9.1 and LSE-150 in pHIE11 were screened with a pool of biotinylated, human IgG from patient sera (see Example 1: Preparation of antibodies from human serum). In addition, a S. aureus library (LSA-300 in pHIE11) was also screened with the same serum pool, P15-IgG. The selection procedure was performed as described under Experimental procedures. FIG. 3A shows a representative example of a screen with the LSE-70 library and P15-IgGs. As can be seen from the colony count after the first selection cycle from MACS screening, the total number of cells recovered at the end is drastically reduced from approximately 3×107 cells to app. 2×104 cells, whereas the selection without antibodies added showed a reduction to about 1×104 cells (FIG. 3A). After the second round, a similar number of cells was recovered with P15-IgG, while app. 8-fold fewer cells were recovered when no IgGs from human serum were added, clearly showing that selection was dependent on S. epidermidis specific antibodies. To evaluate the performance of the screen, 26 selected clones were picked randomly and subjected to Western blot analysis with the same, pooled serum (FIG. 3B). This analysis revealed that 70% of the selected clones showed reactivity with antibodies present in the relevant serum whereas the control strain expressing LamB without a S. epidermidis specific insert did not react with the same serum. In general, the rate of reactivity was observed to lie within the range of 35 to 75%. Colony PCR analysis showed that all selected clones contained an insert in the expected size range.
[0276] Subsequent sequencing of a larger number of randomly picked clones (600 to 1000 per screen) led to the identification of the gene and the corresponding peptide or protein sequence that was specifically recognized by the human serum used for screening. The frequency with which a specific clone is selected reflects at least in part the abundance and/or affinity of the specific antibodies in the serum used for selection and recognizing the epitope presented by this clone. Table 1 summarizes the data obtained for the three performed screens, but lists only those genes, which have not been identified by previous screens. All clones that are presented in Table 1 have been verified by Western blot analysis using whole cellular extracts from single clones to show the indicated reactivity with the pool of human serum used in the respective screen. As can be seen from Table 1, distinct regions of the identified ORF are identified as immunogenic, since variably sized fragments of the proteins are displayed on the surface by the platform proteins. The screen with the S. aureus library revealed one novel antigen, which had not been identified in previous screens.
[0277] It is further worth noticing that most of the genes identified by the bacterial surface display screen encode proteins that are either attached to the surface of S. epidermidis and/or are secreted. This is in accordance with the expected role of surface attached or secreted proteins in virulence of S. epidermidis.
Example 4
Gene Distribution Studies with Highly Immunogenic Proteins Identified from S. epidermidis
[0278] Gene distribution of staphylococcal antigens by PCR. An ideal vaccine antigen would be an antigen that is present in all, or the vast majority of strains of the target organism to which the vaccine is directed. In order to establish whether the genes encoding the identified Staphylococcus epidermidis antigens occur ubiquitously in S. epidermidis and coagulase negative Staphylococcus strains, PCR was performed on a series of independent S. epidermidis and coagulase negative Staphylococcus isolates with primers specific for the gene of interest. Oligonucleotide sequences as primers were designed for all identified ORFs yielding products of approximately 1,000 bp, if possible covering all identified immunogenic epitopes. Genomic DNA of all Staphylococcus strains was prepared as described under Example 2. PCR was performed in a reaction volume of 25 μl using Taq polymerase (1U), 200 nM dNTPs, 10 pMol of each oligonucleotide and the kit according to the manufacturers instructions (Invitrogen, The Netherlands). As standard, 30 cycles (1×: 5 min. 95° C., 30×: 30 sec. 95° C., 30 sec. 56° C., 30 sec. 72° C., 1× 4 min. 72° C.) were performed, unless conditions had to be adapted for individual primer pairs.
Results
[0279] Exemplarily, a number of genes encoding immunogenic proteins were tested by PCR for their presence in 42 different coagulase negative Staphylococcus (CNS) or S. epidermidis strains. FIG. 4 shows the PCR reaction for ORF1163 with all indicated 42 strains. It was expected that not all of the CNS strains represent S. epidermidis isolates. Therefore it was not surprising that 6 of the 31 CNS strains were negative for all genes analysed. Some of the eight selected genes encoding identified antigens and analysed by PCR, were present in many strains tested (e.g. ORF0026, ORF0217 and ORF1163), rendering them as good candidates for further development. A few genes were present in only a smaller number of the tested 42 strains (e.g. ORF0742 and ORF2700). This result may indicate the absence of the gene in the analysed isolates, or it could be due to a variation in the sequence used for the oligonucleotide for the PCR analysis. Interestingly, none of the eight analysed genes showed any variation in size. Sequencing of the generated PCR fragment from one strain and subsequent comparison to the RP62A strain confirmed the amplification of the correct DNA fragment. Importantly, the identified antigens, which are well conserved in all strains in sequence and size constitute novel vaccine candidates to prevent infections by S. epidermidis. As can be seen in Table 1, 20 of the listed 30 S. epidermidis antigens have a homolog in S. aureus COL with at least 50% sequence identity at the amino acid level, 4 have homologs with an identity below 50% and 6 antigens do not possess a homologous sequence in S. aureus COL. This indicates that several of the antigens have also the potential to show cross-protection with other Staphylococcal strains such as S. aureus.
REFERENCES
[0280] Altschul, S., et al. (1990). Journal of Molecular Biology 215: 403-10.
[0281] Bennett, D., et al. (1995). J Mol Recognit 8: 52-8.
[0282] Clackson, T., et al. (1991). Nature 352: 624-8.
[0283] Crossley, K. B. and Archer G. L., eds (1997). The Staphylocacci in Human Disease. Churchill Livingston Ing.
[0284] Devereux, J., et al. (1984). Nucleic acids research 12: 387-95.
[0285] Doherty, E., et al. (2001). Annu Rev Biophys Biomol Struct 30: 457-475.
[0286] Eisenbraun, M., et al. (1993). DNA Cell Biol 12: 791-7.
[0287] Etz, H., et al. (2001). J Bacteriol 183: 6924-35.
[0288] Ganz, T. (1999). Science 286: 420-421.
[0289] Georgiou, G. (1997). Nature Biotechnology 15: 29-34.
[0290] Hashemzadeh-Bonehi, L., et al. (1998). Mol Microbiol 30: 676-678.
[0291] Heinje, von G (1987) e.g. Sequence Analysis in Molecular Biology, Academic Press
[0292] Hemmer, B., et al. (1999). Nat Med 5: 1375-82.
[0293] Johanson, K., et al. (1995). J Biol Chem 270: 9459-71.
[0294] Jones, P., et al. (1986). Nature 321: 522-5.
[0295] Kajava, A., et al. (2000). J Bacteriol 182: 2163-9.
[0296] Kohler, G., et al. (1975). Nature 256: 495-7.
[0297] Kolaskar, A., et al. (1990). FEBS Lett 276: 172-4.
[0298] Lewin, A., et al. (2001). Trends Mol Med 7: 221-8.
[0299] Marks, J., et al. (1992). Biotechnology (N Y) 10: 779-83.
[0300] McCafferty, J., et al. (1990). Nature 348: 552-4.
[0301] Okano, H., et al. (1991). J Neurochem 56: 560-7.
[0302] Oligodeoxynucleotides as antisense Inhibitors of Gene Expression; CRC Press, Boca Ration, Fla. (1988) for a description o these molecules
[0303] Rammensee, H., et al. (1999). Immunogenetics 50: 213-9.
[0304] Rosenshine, I., et al. (1992). Infect Immun 60: 2211-7.
[0305] Seeger, C., et al. (1984). Proc Natl Acad Sci USA 81: 5849-52.
[0306] Shinefield, H., et al. (2002). N Engl J Med 346: 491-6.
[0307] Skerra, A. (1994). Gene 151: 131-5.
[0308] Tang, D., et al. (1992). Nature 356: 152-4.
[0309] Tempest, P., et al. (1991). Biotechnology (N Y) 9: 266-71.
[0310] Tourdot, S., et al. (2000). Eur J Immunol 30: 3411-21.
[0311] Wiley, J., et al. (1987) Current Protocols in Molecular Biology
TABLE-US-00001
[0311] TABLE 1 Immunogenic proteins identified by bacterial surface display. No. of selected Location of Gene Seq. S. epidermidis clones per identified Homology dis- ID or aureus anti- Putative function ORF and immunogenic with tribu- (DNA, genic protein (by homology) predicted immunogenic aa* screen region (aa) S. aureus tion.sup.§ Prot.) ORF00026 LPXTG-motif cell wall 6-28, 54-59, 135-147, 193-205, 274-279, A: 5 396-449 32% 26/36 1, 32 anchor domain protein 284-291, 298-308, 342-347, 360-366, SA2668 380-386, 408-425, 437-446, 457-464, 467-477, 504-510, 517-530, 535-543, 547-553, 562-569, 573-579, 592-600, 602-613, 626-631, 638-668 ORF00027 autolysin, putative 5-24, 101-108, 111-117, 128-142, 170- A: 3 8-21 53% n.d. 2, 33 184, 205-211, 252-267, 308-316, 329- SA2666 337, 345-353, 360-371, 375-389, 393- 399, 413-419, 429-439, 446-456, 471- 485, 495-507, 541-556, 582-588, 592- 602, 607-617, 622-628, 630-640 ORF00217 toxin resistance protein, 10-20, 23-33, 40-45, 59-65, 72-107, 113- A: 2 33-59 66% 29/36 3, 34 putative 119, 127-136, 151-161 SA2541 ORF00259 helicase-related protein 4-16, 28-34, 39-61, 66-79, 100-113, 120- A: 2 913-933 65% n.d. 4, 35 127, 130-137, 142-148, 150-157, 192- SA2499 201, 203-210, 228-239, 245-250, 256- 266, 268-278, 288-294, 312-322, 336- 344, 346-358, 388-396, 399-413, 425- 430, 445-461, 464-470, 476-482, 486- 492, 503-511, 520-527, 531-541, 551- 558, 566-572, 609-625, 635-642, 650- 656, 683-689, 691-705, 734-741, 750- 767, 782-789, 802-808, 812-818, 837- 844, 878-885, 907-917, 930-936 ORF00545 tagatose 1,6- 5-12, 20-27, 46-78, 85-92, 104-112, 121- A: 10 177-206 90% n.d. 5, 36 diphosphate aldolase 132, 150-167, 179-185, 200-213, 221- SA2183 (lacD) 227, 240-264, 271-279, 282-290, 311- 317 ORF00646 UDP-N- 18-24, 31-40, 45-51, 89-97, 100-123, A: 3 132-152 72% n.d. 6, 37 acetylglucosamine 2- 127-132, 139-153, 164-170, 184-194, SA2103 epimerase 200-205, 215-238, 244-255, 257-270, 62% 272-280, 289-302, 312-318, 338-348, SA0151 356-367 ORF00742 M23/M37 peptidase 7-16, 39-45, 73-83, 90-98, 118-124, 130- A: 14, B: 7 687-730 18% 5/36 7, 38 domain protein protein 136, 194-204, 269-280, 320-327, 373- SA0379 381, 389-397, 403-408, 424-430, 436- 441, 463-476, 487-499, 507-514, 527- 534, 540-550, 571-577, 593-599, 620- 629, 641-647, 650-664, 697-703, 708- 717, 729-742, 773-790, 794-805, 821- 828, 830-837, 839-851, 858-908, 910- 917, 938-947, 965-980, 1025-1033, 1050-1056, 1073-1081, 1084-1098, 1106-1120, 1132-1140, 1164-1170, 1185-1194, 1201-1208, 1215-1224, 1226-1234, 1267-1279, 1325-1331, 1356-1364, 1394-1411, 1426-1439, 1445-1461, 1498-1504, 1556-1561, 1564-1573, 1613-1639, 1648-1655, 1694-1714, 1748-1755, 1778-1785, 1808-1813, 1821-1827, 1829-1837, 1846-1852, 1859-1865, 1874-1883, 1895-1900, 1908-1913, 1931-1937, 1964-1981, 1995-2005, 2020-2033, 2040-2047, 2103-2109, 2118-2127, 2138-2144, 2166-2175, 2180-2187, 2220-2225, 2237-2242, 2247-2253, 2273-2281, 2286-2306, 2314-2320, 2323-2345, 2350-2355, 2371-2384, 2415-2424, 2426-2431, 2452-2472, 2584-2589, 2610-2621, 2638-2655, 2664-2670, 2681-2690, 2692-2714, 2724-2730 ORF00788 conserved hypothetical 10-40, 53-59, 79-85, 98-104, 117-122, B: 1 254-292 none 4/36 8, 39 protein 130-136, 144-158, 169-175, 180-185, 203-223, 232-237, 243-254, 295-301 ORF00891 cell division protein 28-50, 67-85, 93-115, 120-134, 144-179, B: 5 275-316; 378- 69% n.d. 9, 40 (42% FtsK (ftsK) 240-249, 328-340, 354-360, 368-400, 401 SA1295 ORF01770) 402-417, 419-427, 429-445, 447-455, 42% 463-468, 472-480, 485-500, 502-510, SA1791 512-534, 537-546, 553-558, 582-594, 619-637, 645-654, 690-709, 735-745, 749-756, 786-792 ORF00894 metalloprotease, 5-16, 21-30, 33-40, 52-74, 101-108, 116- A: 1 191-208 76% n.d. 10, 41 insulinase family, 122, 164-182, 185-219, 256-261, 273- SA1298 putative 279, 285-291, 297-304, 312-328, 331- 338, 355-362, 364-371, 373-401, 411- 423 ORF00988 membrane-bound 34-55, 67-74, 85-93, 105-115, 138-152, A: 1 216-231 74% n.d. 11, 42 protein LytR 161-171, 182-189, 197-205, 213-219, SA1398 232-239, 241-248, 250-263, 272-277, 288-299 ORF01054 ABC transporter, ATP- 21-27, 32-37, 43-51, 67-74, 82-92, 94- B: 4 214-280 75% n.d. 12, 43 (31% binding protein 100, 106-112, 140-149, 153-159, 164- SA0779 ORF00724) 182, 193-215, 222-227, 260-267, 308- 28% 322, 330-340, 378-387, 396-403, 417- SA2036 432, 435-441, 448-465, 476-482, 488- 498, 500-510 ORF01163 lipoprotein YaeC, 4-21, 29-52, 80-87, 104-123, 126-133, A: 3, B: 8 33-108 79% 31/36 13, 44 (38% putative 141-157, 182-189, 194-202, 214-220, SA0884 ORF02440) 227-235, 242-252 35% SA0506 ORF01182 UDP-sugar hydrolase, 12-18, 20-27, 29-59, 64-72, 84-90, 96- A: 3 76-96 71% n.d. 14, 45 putative 103, 109-121, 125-155, 164-177, 179- SA0926 186, 188-201, 216-227, 235-253, 259- 274, 276-294, 296-310, 322-339, 341- 348, 369-379, 398-403, 409-421 ORF01515 hypothetical protein 4-15, 24-41, 71-80, 104-111, 113-119, A: 17 4-45 none 5/36 15, 46 123-130, 139-149, 168-178, 187-200 ORF01596 conserved hypothetical 13-19, 32-37, 44-56 A: 3 1-14 60% n.d. 16, 47 protein SA1972 ORF01755 Mrp protein 6-11, 16-35, 75-81, 95-100, 126-139, A: 2, B: 8 213-276; 579- 31% n.d. 17, 48 206-214, 225-233, 241-259, 268-276, 621; 1516- SA1806 319-325, 339-360, 371-401, 435-441, 1559 28% 452-459, 462-472, 491-503, 505-516, SA2150 549-556, 567-580, 590-595, 612-622, 624-630, 642-648, 656-662, 687-693, 698-704, 706-712, 736-750, 768-777, 784-789, 812-818, 847-858, 894-900, 922-931, 938-949, 967-984, 986-992, 1027-1032, 1041-1054, 1082-1088, 1091-1097, 1119-1124, 1234-1240, 1250-1258, 1274-1289, 1299-1305, 1392-1398, 1400-1405, 1429-1442, 1460-1474, 1505-1514, 1531-1537, 1540-1552, 1558-1571, 1582-1587, 1616-1623, 1659-1666, 1671-1677, 1680-1686, 1698-1704, 1706-1712, 1768-1774, 1783-1797, 1814-1819, 1849-1855, 1870-1876, 1890-1897, 1947-1953, 1972-1980, 1999-2013, 2044-2051, 2068-2084, 2093-2099, 2122-2131, 2142-2147, 2156-2163, 2170-2179, 2214-2220, 2235-2245, 2271-2281, 2287-2293, 2308-2317, 2352-2362, 2373-2378, 2387-2407, 2442-2448, 2458-2474, 2507-2516, 2531-2537, 2540-2551, 2555-2561, 2586-2599, 2617-2627, 2644-2649, 2661-2675, 2685-2692, 2695-2707, 2733-2739, 2741-2747, 2774-2783, 2788-2795, 2860-2870, 2891-2903, 2938-2947, 2973-2980, 2993-2999, 3004-3030, 3046-3059, 3066-3077, 3082-3088, 3120-3132, 3144-3149, 3153-3169, 3200-3212, 3232-3256, 3276-3290, 3308-3322, 3330-3338, 3353-3360, 3363-3371, 3390-3408, 3431-3447, 3454-3484, 3503-3515, 3524-3541, 3543-3550, 3560-3567, 3586-3599, 3616-3621, 3642-3647, 3663-3679 ORF02009 2-oxo acid 19-41, 43-49, 55-62, 67-74, 114-121, B: 4 12-56 64% n.d. 18, 49 (32% dehydrogenase, 130-140, 188-197, 208-217, 226-232, SA1560 ORF01373 & E2 component, 265-287, 292-299, 301-319, 372-394, 32% ORF01042) lipoamide 400-410, 421-427 SA1104 31% SA1448 ORF02025 integrase/recombinase 6-12, 44-51, 53-60, 67-88, 91-100, 104- B: 3 60-138 85% n.d. 19, 50 (35% XerD (xerD) 123, 137-142, 148-158, 161-168, 175- SA1540 ORF00861) 201, 204-210, 222-231, 239-253, 258- 35% 264, 272-282 SA1269 ORF02209 NADH dehydrogenase, 4-63, 69-104, 110-121, 124-131, 134- A: 2 509-528 66% n.d. 20, 51 (37% putative 152, 161-187, 204-221, 223-237, 239- SA0679 ORF01212) 296, 298-310, 331-365, 380-405, 423- 38% 451, 470-552, 554-562, 574-581, 592- SA0955 649, 651-658, 661-671, 673-707, 713- 734, 741-748, 758-765, 773-790 ORF02289 fibrinogen-binding 89-94, 102-115, 123-129, 181-188, 200- B: 2 213-265 41% n.d. 21, 52 protein SdrG 206, 211-235, 239-249, 267-281, 295- SA0610 310, 316-321, 331-341, 344-359, 365- 32% 386, 409-422, 443-453, 495-506, 514- SA0608 521, 539-547, 553-560, 563-570, 586- 596, 621-626, 633-638, 651-657, 666- 30% 683, 697-705, 731-739, 761-768, 865- SA0609 883 ORF02329 glutamyl-tRNA 5-20, 24-34, 37-43, 92-102, 134-139, A: 7 145-183 82% n.d. 22, 53 synthetase (gltX) 156-162, 184-191, 193-205, 207-213, SA0574 225-231, 241-247, 259-267, 269-286, 337-350, 365-372, 378-386, 399-413, 415-421, 447-457, 467-481 ORF02393 dimethyladenosine 12-19, 29-41, 43-57, 80-98, 106-141, A: 3, B: 2 237-287 85% n.d. 23, 54 transferase (ksgA) 143-156, 172-183, 185-210, 214-220, SA0536 226-234, 278-287 ORF02412 conserved hypothetical 5-12, 32-48, 50-72, 75-81, 88-94 A: 1, B: 1 16-40 none n.d. 24, 55 (100% protein ORF02349 & ORF01658 & ORF00589 & ORF00701 ORF02680 Metallo-beta-lactamase 4-21, 29-42, 48-62, 65-80, 95-101, 103- A: 22 208-230 98% 20/36 25, 56 (74% superfamily domain 118, 122-130, 134-140, 143-152, 155- SA0046 ORF02594) protein 165, 182-192, 198-208, 232-247, 260- 73% 268, 318-348, 364-369, 380-391, 403- SA0064 411, 413-424 ORF02700 hypothetical protein 4-18, 65-75, 82-92, 123-140, 144-159, A: 1 174-195 none 2/36 26, 57 (lipoprotein) 166-172, 188-194 ORF02825 malate: quinone 7-20, 58-71, 94-101, 110-119, 199-209, B: 2 310-350 83% n.d. 27, 58 (83% oxidoreductase 231-242, 247-254, 267-277, 282-290, SA2623 ORF00132, 297-306, 313-319, 333-342, 344-369, 49% 67% 390-402, 414-431, 436-448, 462-471 SA2362 ORF02706, 51% ORF00369) ORF02853 hypothetical protein 4-25, 37-44, 53-59, 72-78, 86-99, 119- A: 1 308-331 61% n.d. 28, 59 128, 197-203, 209-218, 220-226, 233- SA0129 244, 246-254, 264-271, 277-289, 407- 430, 437-445, 464-472, 482-488, 503- 509 CRF0299 Hypothetical protein 4-12, 14-43, 52-58 A: 3, B: 4 43-58 none n.d. 29, 60 CRF1769 Hypothetical protein 4-14, 21-29, 35-49 A: 6 38-50 none n.d. 30, 61 SA1169 fibrinogen-binding 4-19, 31-37, 58-72, 94-108 C: 2 1-72 none n.d. 31, 62 protein precursor-related protein
Sequence CWU
1
1
6412028DNAStaphylococcus epidermidis 1atgaagagaa cagataaaat tggtgtctac
ctcaagctgt catgttctgc gttgttactt 60agtggttcgc tggttggtta tggcttcaca
aaagatgctt ttgcagattc agaaagtaca 120tcatcaaatg ttgaaaatac ttctaatagt
aactccatcg ctgacaaaat ccaacaagct 180aaagatgata ttaaagattt gaaagaactt
tctgacgcag atatcaaaag ttttgaagaa 240cgtttagata aagtcgataa tcaatcaagt
attgaccgta ttataaatga tgcaaaagat 300aaaaataatc atttaaaatc gacagactct
agtgccacat catcaaaaac tgaagatgac 360gatacatctg aaaaagataa tgatgatatg
actaaagact tagataaaat actgtcggat 420ttagattcaa ttgctaaaaa tgttgataac
cgtcaacaag gtgaagagag agcttctaaa 480cctagtgact caacaaccga tgaaaaagat
gattcaaata ataaagtaca cgatacaaat 540gctagtacac gtaatgcaac tactgatgat
tctgaagagt cggttattga taaattagat 600aaaatccaac aagattttaa atctgactct
aataataatc cttctgaaca aagcgatcag 660caagcatcac catctaataa aaccgaaaat
aacaaagaag aatctagtac gacaacaaat 720caatccgata gtgatagtaa agacgataaa
agtaatgatg gtcatcgctc aacattagaa 780cgtatagcat cagatactga tcaaattagg
gattcaaaag atcaacatgt cacagatgaa 840aaacaagata tacaagcaat tacacgttca
ttacaaggta gtgataagat tgaaaaagca 900cttgctaagg tacaatctga caatcaatca
ctagattcta attatataaa taataaatta 960atgaatttaa gatcactaga tacaaaagta
gaggataata acactttatc tgatgataag 1020aaacaagcgc ttaaacaaga aattgataag
actaagcaaa gtattgaccg acaaagaaat 1080attattatag atcaactcaa tggtgctagt
aataaaaaac aagcaaccga agatatctta 1140aatagtgttt ttagcaaaaa tgaagtagaa
gacataatga aacgtattaa aacaaatggc 1200cgaagtaatg aagatatcgc taatcaaatt
gccaagcaaa ttgatggtct tgcattaact 1260tctagtgatg atattttaaa atcaatgtta
gatcaatcta aagataaaga aagtttaatt 1320aaacaattgt tgacgacacg acttggtaat
gatgaagcag atcgtattgc taaaaaattg 1380ttaagccaaa acttgtcgaa ttctcaaatt
gtagaacaat taaaacgtca tttcaatagt 1440caaggaacag ctacagctga tgatatattg
aatggtgtga ttaatgatgc taaagacaaa 1500agacaagcga ttgaaacaat attacaaacc
cgtatcaata aagacaaagc taaaattatc 1560gctgatgtta ttgcgcgtgt acaaaaggac
aaatcagata tcatggatct cattcactct 1620gcgattgaag gcaaggcaaa tgatttatta
gatatagaaa aacgagcaaa acaagctaag 1680aaagatttag aatatatttt agatcctata
aagaatagac catccttgtt agatcgtatt 1740aacaaaggtg tcggtgattc taattcaata
tttgatagac caagtttact tgataaactt 1800cactcaagag gatctattct tgataaatta
gatcattcgg caccggagaa tggattatct 1860ttagataata aaggtggcct tttaagtgat
ctatttgacg acgatggtaa tatctcatta 1920ccagcgacag gtgaagtcat caaacaacat
tggataccag tggctgttgt actcatgtca 1980ttaggtgggg cgctcatctt tatggcgcgt
agaaaaaaac accaaaat 202821965DNAStaphylococcus epidermidis
2atgaagaaaa ataaattttt agtatattta ctatcgacgg cgcttatcac gccaaccttc
60gctacacaaa cagcttttgc tgaagattca tctaataaaa atacaaattc agataaaatg
120gaacaacatc aatcacaaaa agaaacatca aaacaatctg aaaaagatga atttaacaac
180gatgattcta aacacgattc tgatgataaa aaaagcactt ctgacagcaa ggacaaagac
240tctaataaac cattatcagc tgattcaaca catcgtaact ataaaatgaa agatgataat
300ttagttgatc aactttatga taattttaag tctcagtcag tagatttttc taaatactgg
360gaaccgaata aatacgaaga cagttttagt ttaacgtcac tcatccaaaa tttatttgat
420tttgattctg atataacaga ttacgaacag ccacaaaaga caagccattc ttctaatgac
480gaaaaagatc aagtagacca agcagatcag gcaaaacaac catcacaaca tcaagaacca
540tcacagtcgt ctgctaaaca agatcaagaa ccatcaaacg atgaaaaaga aaagacaact
600aaccaccaag ccgattctga cgtcagtgat ttacttggag aaatggataa agaagatcaa
660gaaggcgaaa acgtagatac aaacaaaaat caatcttctt ctgagcaaca acaaactcaa
720gcgaatgatg atagctcaga acgtaacaaa aaatattcta gtattacaga ttcagcatta
780gactctatat tagatgaata tagtcaggac gctaagaaaa cagaaaaaga ttacaataag
840agcaagaata caagtcacac taaaacatct caaagtgata atgccgacaa aaatccacaa
900ttaccaacag atgatgaatt aaaacatcaa tcaaaacctg cacaatcatt tgaggatgac
960attaaacgct caaatacacg ttcaacaagt cttttccaac aactacctga attagacaat
1020ggtgacttat cttctgattc atttaatgtt gttgacagtc aagacacacg tgatttcatt
1080caatcaattg ctaaagatgc gcatcagatt ggaaaagacc aagatatata tgcatcagtt
1140atgattgctc aagctatttt agaatctgac tctggaaaaa gttcacttgc acaatcacca
1200aatcataact tgtttggaat caaaggtgac tacaaaggac aatctgtaac ttttaatact
1260ttagaagctg atagcagtaa tcatatgttt agtatccaag caggtttccg taaataccca
1320agtactaaac aatctcttga agattatgca gatttaatca aacatggtat cgatggtaat
1380ccgtcaattt ataaaccaac ttggaagagt gaagctctat catataaaga tgctacttca
1440catctgtcac gctcatacgc cacagatcct aattattcta aaaaattaaa tagtattatt
1500aaacattatc atttaacatc ttttgacaaa gaaaaaatgc ctaacatgaa gaaatataat
1560aaatcaatag gtacggatgt gtctggtaat gacttcaaac catttactga aacttccggt
1620acatcacctt acccacatgg ccaatgtact tggtatgtgt accaccgtat gaatcaattt
1680gatgcatcca tttctggtga cttaggtgat gctcataatt ggaataaccg tgctgaaagt
1740gaaggctata cggtaacgca cacacctaaa aatcatactg cagttgtgtt tgaagctggg
1800caattaggtg ctgatacaca gtatggtcat gttgccttcg ttgaaaaagt taatgacgac
1860ggttcaattg ttatttctga atcaaatgtt aaaggattag gtgtcatttc attcagaact
1920attgatgcag gagatgctca agatttagat tacattaaag gtaaa
19653492DNAStaphylococcus epidermidis 3atgattagat ttgcacgact agaagatctt
caagatattt tgacaattta taatgatgcc 60atccttaata caacagctgt ttatacgtat
aagccacaac aattagatga acgtcttcaa 120tggtatcaat ctaaagcaaa aataaacgaa
cctatatggg tttatgaaaa agaagggaaa 180gtagttggtt ttgccactta tggttccttt
agacaatggc cggcctattt atatactatt 240gaacattcta tatatgttca tcaacagtac
agaggactag gtatcgcttc tcaattatta 300gagaatttaa ttcgttacgc taaagaacaa
ggttatcgca ccattgttgc tgggattgat 360gcatcgaaca tggatagtat cgcattgcat
aagaagtttg acttctcaca tgcaggtaca 420attaaaaatg taggttataa atttgatcga
tggctcgatt tatcatttta tcaatatgat 480ttatctgatt ca
49242856DNAStaphylococcus epidermidis
4ttgagtaatt tgatacaaga tattaagcaa tctttatata agggatttat agataaagat
60agttcccata aaggcaattt tgttccaaga ttactagtaa ataacaaaga agaaaatgta
120ctttctacta ttatagatca gctgcataat tgccaatcat tttgtatttc ggttgcattt
180ataaccgaga gtggtttagc aagtctaaaa tcacattttt atgatttaag taagaaaggc
240gtaaaaggaa ggataataac atcaaattac ttaggtttta atagtccgaa aatgtttgag
300gaattattga aattagagaa tgtagaggtt aaattaacaa acattgaggg gttccatgct
360aaggggtaca tatttgaaca tcataaccac acttctttta ttatagggag ttcgaattta
420acttctaatg cattgaaatt gaattatgaa cataatttat ttttatctac tcataaaaat
480ggagatcttg ttaacaatat taaatataaa tttgatgaac tttgggattc tagcttttct
540ttaactaatg aatggataaa tgaatataaa cagtcttttg aatatcaaac attgcaaaaa
600gtatttgata acactgttgt tcaaaattca gatattaaaa agtttaatga atcaaaactt
660ataaaaccca atttaatgca agaacacgca ttaaagtcat tagagtcttt gagaaatgtg
720ggagaagaaa aggggttaat tatatctgcg acagggactg gaaaaactat tttatgcgca
780cttgatgtaa gagcttattc tccagataaa tttctattta ttgttcataa tgaaggtata
840ttaaatagag ctatagaaga atttaagaaa gtatttccat atgaggatga aagtaatttt
900ggattattaa caggaaaacg aaaggatcat gatgctaaat tcctttttgc aacaattcaa
960acactttcta aaaaggaaaa ttataaattg tttaactcta atcattttga ctacatcgtt
1020tttgacgagg ctcatcgaat tgctgcatct agttatcaga aaatatttaa ttattttaaa
1080cctaactttt tgctaggaat gactgcaaca ccagaaagaa ctgatgaatt aaatattttt
1140gaattgttta attataatat tgcttatgaa attcgtttac aagaggcttt agagagtaat
1200attttatgtc cttttcatta ttttggagtt acagattata ttcaaaatga aatgagtcaa
1260gaagatgcat ttaatctaaa atatttagca tctaatgaac gtgttgaaca catcataaaa
1320aagactaatt attatggtta ttcaggtgac gttttaaagg gtttaatatt tgttagtagt
1380aggggtgagg cgtatcaatt agcaaaccaa ttaagtaaac gtggtatatc atcggttggt
1440ttgacaggaa aagattctat agcttataga gctgaaacaa ttcaacaact aaaagaagga
1500tctattaatt atataattac tgtagatttg tttaacgaag gaattgatat tcctgaaata
1560aatcaagttg taatgttaag acctactaaa tcaagtatta tatttattca acagcttggt
1620agaggattaa gaaaaagtac taataaagaa tttgttactg ttattgattt tatcggtaat
1680tataaaacta actatatgat cccaatagcc ttatctggaa ataaatctca aaataaggat
1740aattacagaa aattcttaac agatactacg gttttaaacg gtgtttcaac aataaatttt
1800gaagaagtag ctaaaaataa aatttataat tcactagatt ctgttaaatt aaatcaacca
1860aaattaatta aagaagcttt taacaatgta aaagaccgta taggtaaatt acctttactt
1920atggacttta taaataacga ttcgattgat ccaagtgtga ttttctcacg ttttaaaaat
1980tattatgagt ttttaataaa aaataaaatt attgagaatg aattaagtat taatgaattt
2040aaaaatttaa catttttatc aagacaatta acacctggac ttaaaaaagt agatattgat
2100gtattgaaag aaattataca aaatgacgta acttatgaaa atttaacaaa aaaaatgtta
2160aacattaata acgatatttc ggaatatgat attaacactt cattaagcat tttagatttt
2220acttttttca aaaagactat aggtaaaact tacggattac ctttaataca atataaggat
2280aatcttattt gtctagcaaa tgaatttaaa gaggctttaa ataaaccact atttaacaca
2340tttattcatg atttaattga tcttgctaat tataataatg acagatatca aaataagaaa
2400aacagtttaa ttctatataa caaatattct agggaagatt ttgttaagtt attaaactgg
2460gataaagatg aatctggaac aatcaatggt tatcgtatga aacatcgtac acttccttta
2520tttatcactt atgataaaca tgagaatatc agtgataata ctaagtacga cgatgaattt
2580ttgagccaag acgaattgaa atggtacacg cggtccaatc gtaaattaac ttcaccagaa
2640gtacaaaata ttttaaagca tgaagaaagt aatacagata tgtatatatt tgtgaaaaaa
2700agagatgatg aagggaaata tttctactat ttaggtaaag ccaaatatat taaaggaact
2760gagaagcaag attatatgcc taatggaaat agcgtggtaa ctatgcatct atcaatgaat
2820acgtccattc gagatgatat ttatagatac atcact
28565975DNAStaphylococcus epidermidis 5atgacaaaat cacaacaaaa agtgtcatca
attgagaaat taagtaatca agaaggtatt 60atttcagctt tagcatttga tcaacgtggt
gcattaaaaa gaatgatggc agaacatcaa 120tctgaaacac caacagttga acaaatagaa
caattaaaag tacttgtttc tgaagaatta 180actcaatatg cgtcttcaat tttattagat
ccagaatatg gtttaccagc atcagatgct 240cgaaataatg actgcggact attacttgca
tacgaaaaaa ctggatatga tgtgaatgcg 300aaaggtcgtt tgccagattg cttggtagaa
tggtctgcga aacgtttgaa agagcaaggg 360gccaatgcag ttaaattttt actttattat
gatgtagatg acacagaaga aattaacata 420caaaagaaag catatattga acgaattggt
tcagaatgtg ttgccgaaga tattcctttc 480ttcttggaag ttttaacata tgacgacaat
attcctgaca ataaaagtgc agaattcgct 540aaagttaagc cacgtaaagt taatgaagca
atgaagttat tctctgaaga tcgttttaat 600gtggatgtac ttaaagttga agtacctgtg
aatatgaatt ttgtggaagg attttcagaa 660ggagaagttg tttatactaa agaagaagct
gcacaacatt tccgtgatca agatgcagct 720actcacttac catatattta tttaagtgca
ggtgtatcag cagaattgtt ccaagataca 780ttaaaatttg cgcatgattc tggtgcgcaa
ttcaatggtg ttttatgtgg acgtgccaca 840tggtcaggag cagttaaggt atacattgaa
gaaggagagc aagctgccag agaatggttg 900cgtacggtag gatttaagaa tattgatgat
ttgaatacag tattgaaaac aacagctaca 960tcatggaaaa acaaa
97561146DNAStaphylococcus epidermidis
6ttgatgaaaa aagttatgac catatttgga actaggcctg aagctataaa aatggctccg
60ttgattaaaa cgttagagaa agattctgac ctggaacccg ttgttgtagt caccgcccaa
120catagagaga tgcttgattc agtgttgaat acttttaaca taagtgcaga ttatgatttg
180aatattatga aagctggtca aacattgtct gaagtaacat ctgaagcaat gaaaaagtta
240gaagatatca tacaaaagga agtgcctgat atggtacttg ttcatggtga tacagtgaca
300accttttctg gagcattagc cgcattttat agtcaaacac ctataggaca tgttgaagct
360ggattaagga gttataataa atattcacct tatcctgaag aaataaatag acaaatggtt
420ggggtaatgg cagatttgca ctttgcccca acctataatg ctgcacagaa tttagtaaaa
480gagggtaaat tagccaaaca tatagctatc actggtaata cagctattga cgcaatgaat
540tatacaatcg atcaccaata ttcatcatct atcatacaaa aacataaaaa taaaaacttt
600attttactca cagcacatag acgtgaaaat ataggtaaac ctatgataaa cgtgtttaaa
660gcgattagaa agttgattga tgaatatcag gatttagcgt tggtctatcc tatgcatatg
720aatcccaaag taagagatat tgcgcaaaaa tatttaggaa atcatcctag gattgaattg
780atagaaccac ttgatgtggt tgattttcat aattttgcta aacaagcata tctcattatg
840actgactctg gtggaataca agaggaggca ccatcattac acaaaccagt tttagtattg
900agagatagta ctgaaagacc ggagggagta gatgctggaa ctttgagagt cattggtacg
960aatgaagaag atgtctataa tgaaactaaa aaattaatag aaaacccaga cctttatcaa
1020aaaatgagtc aagctgttaa tccatatggc gatggacaag ctagtgagag aattgtgcaa
1080catataaaat attattttaa tttgacaaat gacagaccca atcattttga atttacaaaa
1140gattta
114678271DNAStaphylococcus epidermidis 7gtggcaagtg attttaatat aggtatatta
tctaccttag agatagactc tagctcctca 60agaaagaaga ttaacgacac acttaaaaat
attgaagcaa atattaatag cattaaagca 120gacttagaag tttcagatac aaagaaatca
gaaaataatg ctataaaaag tgcaaacaac 180gtaatcagaa acatcaattc aaacggtaat
ttaaagaaat taaatgttga actagatgta 240aacttaacaa aaagtagaca aaacattcaa
agagcattat ctactctatc aaaagatttt 300aagaataaga aaattgatgt tgaagttaat
gctaaagcta ataaaaattc aatcggacaa 360gttaagaatt ctatttctaa aggtgcaagt
cagccactag aaattaaaga gtcccctagt 420agtagaagca ctagtagaga tattaaagaa
cagcagtctt taatgacagg tttagcaaat 480tcttataaga acttagatga tttaacaaga
gctttaaata caagtacatt tgaagggctt 540agaaaaactg taaaagaaat taagaacgca
gataattctc ttaaaagtta tcaagttact 600ttagaacgtg ttaaccaaga aggtaaaaaa
ttaggctctc aaagatttga ttatacccct 660tctgcaaatg gtttgaagtt aaacaaaact
caattaactg atcaaacaga taaagctcgt 720aaagaagaaa atgctgctat taataaatta
ttagaaaatg aagtttctaa gtatgatcgt 780ttattgaata aaggtaaaat tgatattaaa
caacatcaaa ctttacttca aactcttaga 840caaattacta atgagaaatc aaaagctaac
caatttaata gaactgattt caatagagta 900gcaaaagctg ctgctgatga agcaaaagaa
tatcaatatc aaaatgatat gcttcgaaag 960aaattagctt taacttctca aattgagcgt
attgaaaaca gaatggctgc tacaattgat 1020aagcaacaaa caaatgcttt gaaaaatcaa
ttgaattctt taggtaataa tagaacacca 1080ttcggtaaag aagcagcttt ccatatgaac
caaattcaag acaaggttcg tcaaatctct 1140gctgaagctg aaagagcaac tagaactcag
ttaagttttg ttgatcaatt cagagaagca 1200atgacaaaat tcccagtttg gatgggtgct
actaccctat tcttcggtgc cataaatggt 1260gctaaagaaa tgcttgatgt aattactgaa
attgatggaa aaatgattac tcttgcaaaa 1320gttactggtg atgacaatgc acttcaacaa
acatttattg acgcaaataa tgctgcttct 1380caattcggac agacattagg aagcgtatta
gatgtatatg cagaattcgc tagacaaggt 1440gttaaaggta atgagttatc tcaattctca
aatgcagcat taattgctgc taacgttggt 1500gagattgacg ctaaacaagc ttctgaatat
ttaacttcta tgtctgctca gtgggaaacg 1560actggaaacc aagctatgag acaagttgac
tcactcaacg aagtttccaa taaatatgct 1620acaactgttg aaaagttagc acaaggtcaa
gcaaaagctg gctctactgc taaatcaatg 1680ggacttactt ttgatgaaac taatggtatt
attggtgcat taacagctaa gactaagcaa 1740tctggggacg aaattggtaa ctttatgaaa
gccactttac ctaaacttta tagtggtaaa 1800ggtaaatcaa ctattgaagg cttaggcatt
agtatgaaag atgaaaatgg acaattaaaa 1860tctgccattt ctcttttaga agaagtttct
cagaaaacta aaaacttaga aaaagaccaa 1920aaagccgctg ttataaatgg cttgggtgga
acataccact accaacgtat gcaagtatta 1980ttagatgatt tatctaaaac agatggctta
tataaacaaa ttaaagaaag ttccgaaagt 2040tcagctggct ctgcattaca agagaatgca
aaatacatgg agtcaattga agctaaagtt 2100aaccaagcaa aaacagcatt cgaacaattc
gcattagctg ttggtgaaac atttgctaaa 2160tcaggaatgc ttgatggtat cagaatggtt
actcaacttt taactggttt aactcatgga 2220attactgaat taggcacaac tgctccgatt
ttcggcatgg ttggtggtgc tgcctcatta 2280atgagtaaga atgttagaag tggttttgaa
ggtgctagaa gtagtgttgc taattatatt 2340actgaggtaa ataaattagc taaagttaac
aatgctgctg gtcaagttgt tggacttcaa 2400aaagttcaaa ctggtacagc ttcacaactt
cagtttaata aaaatggtga atatgataaa 2460gctgcttcac aagcaaaggc tgctgaacaa
gcaacttacc aattctctaa agctcaaaaa 2520gatgtatcag ctagtgctat gatcgcttca
ggtgcaatca acaaaacaac tgtggctacc 2580acagcaagca ctgttgccac tcgtgctgct
acacttgcag ttaatggttt aaaattagcc 2640tttagaggct tgttggctgc tactggtgtc
gggttagcaa taactggtgt ttcttttgta 2700ctggaaaaag ttgtaggtag ttttaatgct
gcaagtcaag ctgctgaaca atataaacaa 2760aaacaagagc aaacgaagca agcaatagct
tctatgagta atggtgaaat taattcactt 2820attagtagtt acgataaact acaacaaaaa
atgaattctg gtagtgcatt taatacagcg 2880gaagctgaga aatataaaga agtaacaagt
caattagcta atatattccc cgatttagtt 2940actggtgaaa accgttatgg taaggaaatg
gccggtaata aagaagtaat gaaacagaaa 3000attgagttaa tcaagcaaga aatggagctt
gaaagacaaa agaatgctat caaacaaaaa 3060gaagagcaag acgcttacat caaagaacaa
gatagcttag ctaagaaaaa cagaggtcaa 3120aaatggtatc aacttggtca aacaccagag
ttgaaacttc aggaacaagc acgtcctact 3180actgtttctg ataatagtaa cattaacaaa
attaatgcca ctatccaaaa agtgaagagt 3240caagcccaag ctgaaaaagc attagaacaa
gttgataagc aacttgctca atctcaaact 3300aagaatagac aaaatgaagt tcagcactta
caaaaagtta gacaagcttt acaagattat 3360attactaaaa ctggtcaagc aaatcaggca
acaagagctg cggtattaac tgcacagcaa 3420caattcacta accagatagc aacaatgaaa
aagcttggta ctactggtca acaagtgatg 3480actactattt ctaactcagt tgcgaaaaca
gcaaagtctg gtaaagctgc tcaagcaacc 3540ttcaagtcgt ttgaaacctc attagttaaa
agctcttcat tcaaaagcaa gatggctagt 3600tatgaagctt ctgttaagaa atttaaaaat
gctgctaacc aatctgctaa aattgctgct 3660cttaaagacg tagaacgtga ttactctaaa
gttgctaaag gtattatgca agcggcaaaa 3720gcggcaaaca tgagtaaatc tcaaatgaaa
gatttgaaaa aatctcttca acaaaatata 3780caagcagaaa caggctttag agcttcagta
agtaaagctg gtaaagttac tattgatcaa 3840tctaagaaaa tcaaacagaa tactgctgaa
acaagacgta actcaagtgc taaattacaa 3900aatgctgacg cttcagacca agcttctgaa
gaaaataaag agttagcaga ctcaatgcgt 3960gctggtattg aaagttctca attacttgga
aaagcgatgg gagaattaca atctcaagga 4020acacttagta cagaaacttt aattgaatta
actgagaagt atggagacga aattttagct 4080gttgctggag atcaggaagc tttaagtaac
ttcatcatgc aaaagcaaaa tgaagaaact 4140gataactaca acaaaaacct taaaactaaa
ttagaaaact cttcatcata ctataaggcg 4200gtagctggag ctgactctgc cctatccaac
tacttaatgg aaaactatgg tattgatact 4260aaaaactata agagtttaac agaagtcaaa
gctaaaatta cagaccttta ctacaatggt 4320tcagctgaag aacaagctaa agtagtagac
gctatcgcaa aagcttacca tattgactta 4380tctaactatg gctctctgaa tgagaaaaaa
gaagcattag agaaccaatt gatgaaaatc 4440ttaggtagta agtggaaaaa atatattggt
agcgtagcta aggatatgaa atctcttggt 4500gttgacgctg gtgaagttgg agcagatggt
tttgatgaca gtaaaatgtt caatccgggt 4560gctcttatcg gtgctaacaa tttccaaaac
gtttctaacc taagtaatat cagtaatgta 4620ttcaactcac ttaatggtgc atttaatgaa
gctaagaatg aagctgctgg tgttagtaga 4680ggcttagatg acgctgctag tggcttaaaa
gatgttggtg acagtgctgg ctcagctggt 4740agtggtttag gtaaaactgc taaaggcgcg
gataaagcgt ctgacagttt agatggtact 4800aataaagaat tagaaaaaac taaagaaaaa
gctgaagaag ctggtgtcac agttaaacaa 4860ctttataagc aatttacagt tactacttat
gttgctgata aactaagtat ggctttagat 4920aaaattaata ataagttaga gaaacaaaaa
cttttaactg aaaaatacgc aacttggtca 4980agcagttatc gtaactcact taaagcagaa
aataaattgc tcgatgaaaa gaccgctaag 5040attaaaaaac aaatcgagtc aatgaaagaa
caaatcgctc aaggtaaagt tattgagtat 5100ggtttagttg gtaaagatat taatgttcct
tactatgaat atactgcaaa taatttagat 5160gatggagaaa ctggtcgtat ttctcgatat
accggtaatt caactcaagc taaggtttgg 5220aatttcttta aatctaaagg gttatctgat
catgctgttg cgggtatcat gggtaatatg 5280gaacgtgagt ctagatttaa accgggagct
caagaacaag gcggtactgg tattggttta 5340gtacaacttt catttgggcg tgcaaataat
ttaagaaatt atgctgctag aagaggaaaa 5400agctggaaag acttaaatac tcaacttgac
ttcatttgga aagaattaaa tactactgaa 5460gttaatgctt tacgaggact taaatcagct
acttcagtta ttggtgcagc aaactctttc 5520caaagattat atgaacgtgc tggtgttgta
gcacaaggag aacgtaatgc ggcagctaaa 5580aagtattaca gacaatttaa aggtactaat
ggttcatctg gcttcctaag tggtggcgtg 5640gtcgctggaa caaatggtaa accacttact
tcagatagaa acgcttatat cttagataga 5700caattcggac gatataatgg tggtggtgtc
catcacggaa gagatatcac gagtgctact 5760attaacggat cacctattaa agctgcacgt
tcaggtatag ttacttttaa aggatggact 5820ggtggtggta atacactatc tatatttgat
ggtaaaaata cttatacata catgcatatg 5880aagaacccgg caagagtggt aaaaggacaa
cgagttaaag ctggacaaat tgttggtaac 5940gttggtacta cgcatgatag aagattaggt
ggcttctcta ctggccctca ccttcacgta 6000caagtaaact taggaaaaac tccttctggt
acatttatga acactttcaa tggtgctcat 6060agagcagtcg atcctgttaa atatggatat
actagagttt ctggtggcgg tagtctaaac 6120ttaggctcgc taacttctgg acattcagcg
atgtctggtt ctatcagtgc tgcaatggct 6180gaagacttaa atgaagctga acaagagcgt
ttaaacaaaa ttgaacaagc aattaacgca 6240cataataaag ctgaagaaat gaagcaaaaa
gttgatgagc ttagaaaaac gttaatggat 6300aaacagcttg aagaagttca aactgctaaa
gaaaaaagtg aaaatcttta taacatccaa 6360aaatctcacg tagaagaata tgatcattgg
agaacattac aagaagcacg atctgctaaa 6420ttagaatacg aattaaacaa aatcgaattc
gaaaaaggta gaaatactaa agaatggcgt 6480aataaaaata aacaacttca agcttctaga
caacttgaag ttaatttcga agactcaaaa 6540atacaatata ttaataaagc attgaagaag
aatgcaaata aaatatttgg taaaaataca 6600gtaaatcgtg atgagtttga aacaatgaag
cgagacgctc aacaaaatat aagagattta 6660aaagctggta ttcaaactgc ttctggtgaa
attgctactt caatgattga tcaaattctt 6720gatgaatatg aagaccgtgt aggtaaagtt
tcagctaaaa ttgaaaagat gggtaaacaa 6780aaagaaaaac ttgatttagc cgataataaa
caggctttga aaagttcatc cctaagtaga 6840caacaagcta aagactctaa gtcactagct
agttacatta atttctatat caaacaatta 6900gaacgccagt taaaattaac gggtaaaaac
catgaattac aacaaaaagt aaaagaacaa 6960attaaagaaa tgaaagttgc ttatgatgac
gctaccctag ccgctcatca atatattact 7020gaagctgctg aagttgatac agaaagacaa
cttcaattaa acgctaatcg tttaagagac 7080gcacaaaacg agttgtctaa agctgattat
aaagctggtt tcatttcaca agaatatcaa 7140attgacctat accgaaaaaa tcaagaagct
aagttcaaag gttacttaaa agaaaaagaa 7200gcacttgaac aaaataaatc agaacttcaa
gacatgtatg agatttataa atctgtccct 7260actcaagctc aaaaaatcaa agaagctcta
attgaaacca aaaatgctat tagagataat 7320aataaaggtc tctatgattt gaaatatgat
atggctaaca gtgttataaa tcaaattaag 7380gatatctatt caaaacaact agaggttgcc
acgaaagcgt atgatgatga atacaaagca 7440tacgaaaaaa tgatcaacaa aaagcttaaa
cttattgatg atgaacaaac tcaagagtca 7500ttcaataaag atgtccgtga tagaactgaa
gcaatggata aaattagaga tgaaattgct 7560caaagaagtg gtgacgatag tttagctaac
caaaagaaac ttaaagattt aagagaacaa 7620ttaaaacaac aagaagaaga ctatacgatg
ttcattaaca ataaaaatcg tgatgacaga 7680agaaaagctt tacaagatga gctaaacgat
aaaaacgaac aaatacaaga acaaaaagaa 7740gatttaaata aagctttcca agacttaatt
ggtgatacac gaagatttaa tgcgatccaa 7800gagtcactta tggaaggtca aattgataaa
tataaatctc taattgctga cttaactaaa 7860tacgtcaacg ataatatgaa agaaattgga
cgttctacta gtgaaggaat attagatggt 7920cttgctgctt catttaaagg tttgtcttct
ttatctaaag aacttcagaa acaagaaaaa 7980aataatttga acccagtacc taattcaaaa
ttaaaaccta ctaaggttga tgaagctaca 8040atcgctgcca ttaagaaagt taatggttta
tcccctacta ctatacttca aggtttagat 8100atcaaacctg ttaaccttcc taaagatgta
aaaccaagta aaacagttac taacaataat 8160aaaacgactg ctaaagcatt agttaacatt
gaaaacttca acggtacaaa agctgaagca 8220gataaattag ctaataactt agcaactgcc
atgagaaaac aaggcgtatt a 82718957DNAStaphylococcus epidermidis
8atggcagaaa ctaaaaaaca attcgaaaac aaagtaagcg tgacaggaac attaaaatca
60ttagaggtaa cagatttagt aacagctaaa aaagtcccaa tgaaaattgc tacattaaga
120attgaaactg gtaaaggtga aacacataca gctaaaatga tggcagttaa acattttgag
180cgtgatggtg ttaaaactga aaataaaagt tattctgcaa ttgaaacaat gcaaaaggaa
240tatgtatcaa ttgaagacat ttcagaaaac aaagctggag aagacgcaga agcaacagtt
300gttaacgtaa atggatcaat gtctattaat atgtataaaa ataaagcaga aaaagttgtt
360gaaactaatc aaattgaagc tcgttttgtt aatcgtgtaa aagatgttga aaatgctcaa
420tttggtgcag aattcacatt acaaacttac ttaatttcaa aaggacaacg tgttattaag
480aatgaagaag aaactgatga agtaacattc aaagcagcaa caattgatta tagaggacaa
540gcacatccat ttgaattcac tgctaatgat gagtatggcg tagctgaatg gatcgaagat
600gaagttgaat taggtcaatc acttatctta caaggtttaa ttattaataa atttatcgtt
660gagcaagtag aacgctcatc atcagctggt atcggtaaag caattgttga tactagacgt
720gaagtagaac gtaagttatt agttgaaggt attattccaa ttgaagatga ggatgatcca
780aaatacatca ctgaagaaga aattaaagaa gcaaacaaaa aatacgaaga taagaaaaca
840gaagtagaag cttctactaa tggaactaag aaaacagaag ttaaaaaagg tgtagcaact
900agcaaaccta aagctgctaa accaacaatc gaaattgatg atgacgattt accattc
95792391DNAStaphylococcus epidermidis 9ttgccacaag caaaaaaaag aacatcgacg
aagagaaagg gtaataaaaa aacgaataaa 60aaaaagcaaa atgaaacgcc tttaagatat
atattctcaa taattgtagt aattcttatt 120atactaggcg cttttcaatt aggaatcatt
ggtagaatga ttgatagctt ttttaattat 180ctttttggta tgagtcgata tttaacttat
attttagtac ttattgcaac aatttttata 240acatactcta agcaaatacc tagaactcga
cgtagtatcg gtgcaatagt tttacaatta 300gctttgttat ttatagcgca attgtatttt
catttttcac ataatatcac ttctcaaaga 360gagcctgtac tgtcctttgt ttataaagct
tatgaacaaa cacattttcc aaattttggg 420ggaggcttaa taggttttta tttacttaaa
ctatttatac ctctcatatc tattgtaggt 480gtaataataa ttactatcct attactagct
tcgagtttca ttttattact taatttaaga 540catagagatg ttacaaaaag tttattcgac
aacctcaagt catcaagtaa tcatgcatct 600gagtcaataa aacaaaaaag agaacaaaat
aagattaaaa aagaagaaaa agcccaatta 660aaagaggcaa aaattgaacg aaaaaaacaa
aaaaaatcac gtcagaataa taatgtcatt 720aaagatgtta gtgattttcc agagatttct
cagtcagacg atattccaat atatggtcat 780aatgagcaag aagataaaag accaaatact
gctaaccaac gtcaaaaacg tgttttggat 840aatgaacaat ttcaacaatc attaccaagt
accaaaaatc aatcaataaa taataatcag 900ccatctacaa ccgctgaaaa caatcaacaa
caaagtcagg ctgaaggctc aatatctgaa 960gctggtgaag aagccaatat tgagtatacg
gtgccacctt tatccttatt aaaacagcct 1020actaaacaaa aaactacttc aaaagctgaa
gtccaacgta aaggtcaggt tttagaatct 1080acactaaaaa actttggagt taatgctaaa
gtaacacaaa ttaaaatcgg tcctgcagtt 1140acgcaatatg aaattcaacc agcgcaaggt
gttaaagtaa gtaaaatagt caatctccat 1200aatgacattg cattagcttt ggctgcgaaa
gatgtacgaa tagaagcacc tattccaggt 1260cgctctgcgg taggaattga ggttcccaat
gataaaatct cacttgtcac tctaaaagaa 1320gttttagaag ataagttccc atctaagtat
aaattagaag tcggcattgg tagagatatt 1380tctggtgatc caatatcaat tcaattaaat
gaaatgcctc acttactcgt tgctggttca 1440acaggaagcg gtaaatcagt ttgtattaat
ggtattataa cgagtatatt actcaacaca 1500aaaccgcacg aagttaaact tatgttaatc
gatcctaaaa tggtagagtt aaatgtttac 1560aatggtattc ctcatttact tataccggtt
gtaacaaacc cacataaagc gtctcaagct 1620ttagaaaaaa ttgtttcaga aatggaacgt
cgttatgatt tgtttcaaca ttcatcgaca 1680cgaaatattg aaggatataa ccaatatata
cgcaaacaga atgaagaact tgatgaaaaa 1740caacctgagt taccgtatat cgtcgtaata
gtggatgaat tggctgattt aatgatggtt 1800gcaggtaaag aagtagaaaa tgctatccaa
cgtattactc aaatggctag agcagcgggt 1860atacacttaa ttgtagctac tcaaagacct
tccgttgatg ttattactgg tattattaaa 1920aataacattc catcaagaat tgcgttcgct
gtaagttctc aaactgactc tagaacaata 1980attggtgctg gtggagctga aaagctactt
ggtaaaggtg atatgctata tgttggtaac 2040ggagaatcta ctacaacccg aattcaaggt
gcttttttaa gtgatcaaga agtgcaagat 2100gttgttaatt atgttgtaga gcaacagaaa
gcaaattatg ttaaagaaat ggaaccagat 2160gcacctgtag ataaatcaga aatgaagagt
gaggatgctt tatatgatga agcttattta 2220tttgtaatag aaaagcaaaa agctagtact
tctttattac aacgacaatt tagaatcggt 2280tataatcgag cttcaaggct catggatgat
ttggaacgta accaagttat tggtccacaa 2340aaaggaagta aacctagaca aatattagtt
gatttagaaa atgacgaggt g 2391101287DNAStaphylococcus
epidermidis 10atgaaaacac atcaatatga acttatagat gagaaagttt tcgaacatga
gtttgataat 60ggattgaaat tatttatcat tcctaagcct ggttttcaaa aaacgtatgt
gacctacaca 120acacagtttg gttcattgga caatcatttt aagcccatag gtagtcagca
atttgtaaaa 180gttcctgacg gtgtggcaca ttttttagaa cataaattgt ttgaaaaaga
agatgaagat 240ttatttactg catttgccga agagaatgcg caagctaatg cttttacaag
ctttgatcgt 300acgagttatt tatttagcgc aacaagtaat attgaaagta acattaaacg
tctcctcaat 360atggtagaaa caccttattt tactgaagaa acagttaata aagaaaaagg
gattatagct 420gaggaaatta aaatgtacca ggaacaacca ggatataaat taatgtttaa
tactttaagg 480gctatgtatt ccaagcaccc gatacgggtg gatatcgctg gtagtgttga
aagcatttat 540gaaataacaa aagatgattt atatctatgc tatgagacat tttatcatcc
ctctaatatg 600gtgttgtttg tggtaggcga tgttagtcct caatcgataa ttaaacttgt
agaaaagcat 660gaaaatcaaa gaaataaaac ttatcaacca cgtattgaac gtgcgcaaat
tgatgagcct 720agagagataa atcaacggtt tgtttctgag aaaatgaagt tacagtcacc
acgattgatg 780ctaggtttta aaaatgaacc attagatgaa agtgcaacta aatttgttca
aagagatttg 840gaaatgacat ttttctacga attggttttt ggagaggaaa cggagtttta
tcaacaactt 900ttaaataaag atttaataga tgaaacattc ggttatcaat ttgtattgga
accgagctac 960agtttttcaa ttattactag tgcaacacaa cagcctgatc tatttaaaca
attaataatg 1020gatgaattaa gaaaatataa aggaaacctt aaagatcaag aagcatttga
tttgttgaaa 1080aagcaattta ttggagaatt catatcaagt ttaaattctc cagaatatat
tgctaatcaa 1140tatgcaaaac tctatttcga gggagtgagt gtatttgata tgcttgatat
cgtagaaaat 1200attacgttag agagtgtaaa tgaaacttcc gaattattct tgaactttga
ccaacttgtt 1260gatagtcgtt tggagatgga aaataga
128711987DNAStaphylococcus epidermidis 11atgactgaac agaaggatat
taaagaaaca gagtatcgac gacagaaagg aacaacttcg 60acaccttcta ggcgaagaaa
taaaaaaaga atgcggaagt taccttttat cattttagtc 120atccttatta ttttaatttc
tatcattgtg tatattaccc atcagtataa cagtggtatg 180aagtatgcta aagaacatgc
taaggatgtt aaggtgcata aatttaatgg gaatatgaaa 240aatgatggga agatttcagt
tcttgtcctt ggcgcggata aggctcaagg tggtaaatca 300cgtactgact cgattatgat
tgttcaatat gattacgtac ataaaaaaat gaaaatgatg 360tctgtcatga gagatattta
tgctgatatt cctggttatg ataaatataa aattaatgcc 420gcatattcac ttggaggccc
ggaattgtta agaaaaacac ttaacaaaaa tttaggtgtt 480aatcctgagt attacgctgt
agtagatttt actggatttg aaaaaatgat agatgaacta 540cagcctaatg gtgtcccaat
tgatgtggaa aaagacatgt ctgaaaatat aggtgtgtct 600ttgaaaaaag gacatcataa
gttaaatggt aaagaattac ttggttatgc tagattccgt 660catgatccgg aaggcgattt
tggtcgtgtg agaagacaac aacaagtgat gcaaacatta 720aagcaagagt tagttaattt
caatacagtt gcgaaactac caaaagttgc tggtatttta 780agaggttatg ttaatacaaa
tatgcctaac tctgcgattt ttcaaacagg tataagtttt 840ggaattcgtg gagataaaga
tgtgcaatct ttgacagtcc ctattaaagg aagctatcaa 900gatattaata caaataatga
tggtagtgcg cttcaaatag actctgagaa aaataagcaa 960gcaatcaaaa atttctttga
agataat 987121881DNAStaphylococcus
epidermidis 12atggaagcat acaaaattga acatttaaat aaatcctatg cagataaaga
aatttttaat 60gatcttaacc tatctatatc tgagcatgaa agaattggat tagtaggtat
caatggaaca 120ggtaaaagta cactattaaa agtcattggt ggtctagatg aagattttac
tgcagatatt 180acccacccta atcaatatcg cattcgttat tcctctcaaa aacaagacct
caatggccat 240atgactgtgt tcgaagctgt tttaagttcg gatactccta cattaagaat
tataaaaaaa 300tatgaagaag cagttaatcg ctatgcgtta gatcaaagtg actctaattt
taataaaatg 360atggaagcac aagaagaaat ggatcaaaag gatgcatggg actataatgc
agaaattaaa 420acgattttat ctaaactagg gattcacgat acaactaaga aaatagttga
actttcgggt 480ggtcaacaaa aaagagttgt attggctaaa actctaatag aacaaccgga
tttacttttg 540ctagatgaac cgacgaacca tcttgacttt gaatccatcc gttggctcat
taattatgtc 600aagcaatatc cacatacagt tttatttgta acacatgatc gctacttttt
aaatgaagta 660tcgacgcgaa ttattgaact ggatagaggg aagttaaaaa catatccagg
taattatgaa 720gattacatag taatgcgtgc agaaaatgaa ttagtagaac aaaaacaaca
agaaaaacaa 780aaagcattgt ataaacaaga gttagcatgg atgcgagcag gagcaaaggc
aagaactact 840aaacaacagg cacgtatcaa tagatttaat caactagaat cagacgttaa
gacgcaacat 900acacaagata agggtgaact taatcttgca tattcaaggt taggtaaaca
agtatatgaa 960ttaaagaatt tatcaaaatc aattaataat aaagttttat ttgaagatgt
cactgaaatt 1020attcaaagtg gtagacgtat aggtattgta ggacctaatg gagcgggaaa
aacaacatta 1080cttaatattt taagtaatga agatcaggac tatgagggtg agcttaaaat
cggtcagact 1140gttaaggtag cttattttaa gcaaacagaa aagacacttg accgtgatat
tagagtgatt 1200gactacctaa gagaagaaag tgaaatggct aaagaaaaag atggtacctc
aatttcagtt 1260acacaattgt tagaaagatt tttatttccg agcgctacac acggtaaaaa
agtttataaa 1320ctctcaggtg gagaacaaaa acgtctgtat ttattgcgtt tacttgttca
taaacctaat 1380gtactccttt tagatgaacc gactaatgat ttagatactg aaacacttac
gattttagaa 1440gattacattg atgatttcgg tggttctgtc attacggtca gtcatgatcg
ttatttctta 1500aataaagtgg tacaagaata ttggtttatt catgatggta aaatcgaaaa
aattattgga 1560tcatttgaag attatgaatc ttttaaaaag gaacatgaac gccaagccat
gctatctaaa 1620caaactgaac aacaaaataa acataagcat caaccaaaaa agaaaacagg
actatcttat 1680aaagagaagt tagaatacga aacaattatg acgcgtatag aaatgactga
aacgcgttta 1740gaagaccttg aacaagaaat gattaatgca agtgataatt atgcaagaat
caaagaactt 1800aatgaggaaa aagagcaact tgaagcaacc tatgaagcag acatcacgag
atggagtgag 1860cttgaggaaa ttaaagaaca a
188113810DNAStaphylococcus epidermidis 13atgaaaaaat tattcggaat
tattttagta ttggctttaa cgattgcctt agctgcatgt 60ggtggaggta aagataagga
aaaaactatc acagtaggtg catctccagc accacacgct 120gaaattttag aaaaagcaaa
accattattg aagaaaaaag gttatgattt aaaaatcaaa 180ccaattaacg attatacaac
gcctaataaa ttattagaca aaggtgaaat cgatgcgaac 240ttcttccaac atacaccata
cttaaatact gaaagtaaag aaaaagggta taaaattgaa 300tcggctggga atgttgaatt
agaacctatg gctgtatact caaaaaaata taaaagctta 360aaagatcttc ctaaaggtgc
aacagtatat gtatcaaata acccagctga acaaggacga 420ttcttaaaat tctttgtaga
tgaaggtctt attaaactta aaaaaggcgt taaaattgaa 480aatgctaaat ttgatgacat
aactgaaaac aaaaaagata ttaaatttaa caacaaacaa 540tcagcagaat atttaccaaa
aatctatcaa aatcaagacg ctgacgcagt aatcattaat 600tctaactatg cgattgacca
aaaattaagt cctaaaaaag attcgattgc tttagaatct 660cctaaagata acccatatgc
aaatttaatt gcagttaaaa aaggtcataa agatgataaa 720aatatcaaag tattaatgga
agtgctacaa tctaaagaaa ttcaagatta tattaaagat 780aagtatgatg gagctgtcgt
acctgctaag 810141317DNAStaphylococcus
epidermidis 14atggaattaa caatatatca cacgaatgat attcatagtc atttaaatga
atatgctcgt 60attcaagctt atatggcaaa acatagaccg caacttgaac atccctcact
ctatatagat 120ataggtgacc atgttgattt atcagcacct gtgacagaag ctacggtagg
acataaaaat 180atagaacttt taaatgaagc acattgtgat attgcaacca ttggaaataa
tgaaggaatg 240acaatttctc atgatgcttt acaaaatcta tataacgacg cggattttaa
agtgatttgc 300acgaatgtca tagatgaaga gggacatctt ccacatcata ttacctcttc
gtatatcaaa 360gaaataaaag gaacacgtat tttatttgtt gcagcaacgg caccgttcac
acctttttat 420cgagcactgg attggattgt tactgaccca ttagcggcaa tcaaagatga
aatcaatgca 480catcaaggtg aatatgatct tttaatggtt atgagccatg tcggtatctt
ttttgatgaa 540aagttatgcc aagagattcc ggaaatagat gttatctttg gtagtcatac
gcatcatcat 600tttgaacatg gagaaataaa caatggtgtt ttgatggcag ctgccggaaa
atatggctat 660tatttaggtg aagttaatat tacgattgaa aatggaaaaa tcgttgataa
aatcgccaaa 720attcatccta ttgaaacact tcccttagtc gagacacatt ttgaagaaga
aggaagagca 780cttctaagta aaccagtagt taatcatcat gtgaacttag tcaaaagaac
agatgttgtt 840acaagaacat cgtatttact ggctgaaagt gtatatgagt tttcaagggc
tgattgtgca 900atcgtaaatg ctggacttat agttaatggc attgaagctg ataaagtgac
ggaatatgat 960atacatcgca tgttacccca tccaatcaat attgtaagag ttcgattaac
cggtaaacaa 1020ttaaagcaag tgattcaaaa aagccaaaag caagaatata tgcacgaaca
tgcacaaggt 1080cttggtttta gaggggatat atttggagga tatattttat ataatctagg
ctttattgag 1140tcagaagacc gttattttat aggcgatgaa gagattcaaa atgataaaca
atatacgtta 1200ggtactgttg atatgtatac atttggaaga tatttcccat tgctaaaggg
gttatctaca 1260gattatatta tgcctgaatt tttacgtgat atttttaaag agaaattact
aaaatta 131715609DNAStaphylococcus epidermidis 15atggagaaag
taatttatct agctggccat attcttaatg aagcaatggt tgattataga 60gaaaaacaac
ataaccaagt tgaagcaatt gagggagtaa aaccttatag ccctcaccaa 120gacaaatcta
ttaatgataa gtctaatgca gttcaagaag gtttggccga gagaatttta 180aagaatgatt
ttaccgcaat ggaaaaatca gatatctatg ttcttgatgt tttaaatgaa 240ggtttaggaa
caatttctga gctcggaatt attattggaa tgaagaaaca agctcaaaaa 300acaattgata
gattgagtgt cttatctgaa gaaataaaac atgatgtata tggagatcaa 360acagaagctt
atgatttaat tcaagacgaa atctacaagc aagaaaaaat cttaaataaa 420acagttctat
gttactgttc agatattaga caaggacacg gaaaacctta tactgatcca 480gaccgtgctg
aattctctac taaccaattt gtatatggaa tggtactgga agctactaat 540ggtgaaggtt
ttattacttg ggatcaagtt ttacatagat tagatttgtt tggaagtggc 600ctaattgtt
60916177DNAStaphylococcus epidermidis 16atgagcaaaa agtttagagt tgaagataaa
gaaacaattg cagattgtct cgacagaatg 60aaaaaagaag ggtttatgcc aatacgtcgt
attgagaaac cagtttataa agagaacaaa 120gatggcagta tagagatttt aaaacaggat
attatatttg taggtgcttt aatccaa 1771711076DNAStaphylococcus
epidermidis 17atgaatctat ttagaaaaca gaaatttagt attagaaaat ttaatatagg
tattttttca 60gcattaatag ctacagtcgc atttttagct catccggggc aagcaacagc
atcagaactg 120gaaccttctc aaaataatga cactacagct caatctgatg gagggttaga
aaacacatct 180cagtctaatc ctataagtga ggaaaccaca aatacattat ctgggcaaac
agtaccttca 240tctactgaaa ataagcaaac acaaaatgtt cctaatcata acgctcaacc
aattgcaata 300aatactgaag aagctgaatc tgctcaaaca gcatcttata ccaatatcaa
tgaaaataat 360gatacgagtg acgatgggtt acatgttaat cagccggcta aacatcatat
tgaagcccaa 420tctgaagatg taacaaatca cacgaactca aatcattcaa attcatcgat
tccagaaaat 480aaagctacaa cagaatcatc aagtaaacct aaaaaaagag ggaaaagatc
attagataca 540aataacggaa atgacacgac aagtacaact caaaatacgg atccaaattt
aagtaataca 600ggtccaaatg gcattaacac tgtaattaca tttgatgatt taggaattaa
gacaagtact 660aatcgctctc gacctgaggt aaaggtagtt gatagtctaa atggctttac
aatggttaat 720ggtggtaagg tcggtttatt aaatagtgtg ttagaacgta caagcgtgtt
tgatagtgcc 780gatccgaaaa attatcaagc aatagataat gtcgtagcct taggacgtat
taaaggaaat 840gatccgaatg atcatgatgg tttcaacggt atagaaaaag aattttcagt
gaaccctaat 900tctgagataa tattttcatt taatacaatg actgctaaaa acagaaaagg
tggaactcaa 960ttagttttaa gaaatgcaga aaataatcaa gaaattgctt caactgatat
tcaaggaggc 1020ggcgtatatc gtttattcaa gttacctgat aacgtacata ggttaaaagt
tcaatttcta 1080cctatgaacg aaatacactc agattttaaa agaattcaac agctacatga
tgggtataga 1140tactattctt ttatagatac aattggtgtt aattctggtt cacatctata
tgtgaaatca 1200agacaagtta acaaaaatgt aaagaatggt aaagaatttg aagttaatac
tcgtatagag 1260aataatggta acttcgctgc tgctataggt caaaatgaac ttacttataa
agtaacacta 1320ccagaaaatt tcgaatacgt tgataattca actgaagttt catttgttaa
cgggaatgtg 1380cctaattcta cggtaaatcc gttttcagtt aatttcgata gacaaaatca
tactttaacg 1440tttagtagta atggtttaaa tttaggaaga agtgctcagg atgttgctag
attcttgccc 1500aataaaatac taaatattag atacaagctt agacctgtca acatctcaac
gccacgtgaa 1560gtgactttca atgaagcaat taaatataag acattttctg aatattacat
taacactaat 1620gacaatactg ttactggtca acaaacacct ttcagtatta atgtcatcat
gaataaagac 1680gatttatcag aacaggtcaa taaggatatc atcccatcga actatacact
tgcttcttat 1740aataaatata ataagttgaa agaacgtgct cagactgttc tggatgaaga
aacaaacaat 1800acacctttta accaaagata ctctcaaact caaattgatg atttgttaca
cgaattacaa 1860acaacactaa taaatcgtgt gagtgcttcg agagaaatta atgataaagc
tcaagaaatg 1920actgatgctg tatatgatag tacagaatta actactgaag aaaaagatac
attagttgat 1980caaattgaaa atcataaaaa tgaaatttct aataacattg atgatgaact
tacagatgat 2040ggtgttgaaa gagtcaaaga ggctggatta catactctag aaagtgatac
tccacatcca 2100gtaacaaaac caaatgcacg acaagttgtg aataacagag cagatcaaca
aaagacgctt 2160atacgtaaca atcatgaggc aactaccgaa gaacaaaatg aagcgattag
acaagttgag 2220gcacattcat ctgatgctat cgccaaaata ggtgaggcag aaacagatac
cactgtaaat 2280gaagctagag acaatggtac gaaattaata gctacagatg ttccaaatcc
aactaaaaaa 2340gcagaagcta gagcggcagt taccaacagt gcaaattcaa aaattaagga
tatcaacaat 2400aatacacaag caacattaga cgagagaaat gatgctatcg cacttgttaa
tagatcaaaa 2460gatgaagcaa ttcaaaatat taacactgca caaggtaatg atgatgtcac
tgaagcacaa 2520aataatggaa cgaatacgat acaacaagta ccattaactc cagtgaaaag
acaaaatgca 2580atagcaacta tcaatgctaa agcggatgaa caaaaacgtt taattcaagc
aaacaataat 2640gcaacgactg aagaaaaagc tgatgcagag cgtaaagtta atgaagcagt
cataactgca 2700aatcaaaata ttaccaatgc aactactaat agagatgttg atcaagcaca
aacaactgga 2760agtggtatca tatctgctat tagtcctgca acgaagatta aagaggatgc
acgtgcagca 2820gtagaagcta aagctattgc acaaaatcaa caaattaatt caaataatat
ggcaacaact 2880gaagaaaagg aggatgcatt aaatcaagta gaagcacata agcaggccgc
aatagcaact 2940atcaatcaag cgcagtcaac tcagcaagtt tctgaagcta agaataatgg
cataaatact 3000attaatcaag atcaacctaa cgcagttaag aaaaataata caaaaataat
attagaacaa 3060aaaggaaacg agaaaaagtc agcaatagct caaacacctg atgctaccac
tgaagagaaa 3120caagaagctg tcagtgctgt ttcgcaagct gttaccaatg gcattaccca
tatcaaccaa 3180gcaaattcta atgatgatgt tgatcaagaa cttagtaatg cagaacaaat
tattactcaa 3240actaatgtca atgttcaaaa aaaacctcaa gccagacaag cattgattgc
taaaacaaat 3300gaaaggcaga gtacgattaa tactgacaat gaaggcacta tagaagaaaa
acaaaaagca 3360attcaaagtt tgaatgatgc taaaaattta gctgatgaac aaattacaca
ggctgcttct 3420aatcaaaatg tcgacaacgc cttaaatata ggtataagta atatcagtaa
aatacagact 3480aatttcacta aaaagcaaca agctagagac caagtaaatc aaaagttcca
agaaaaagaa 3540gctgagttaa attcaacacc tcatgcaact caagatgaaa aacaagatgc
gttaactaga 3600ttaacacaag caaaggaaac tgcactcaac gacataaatc aagcacaaac
aaatcaaaat 3660gtggatacag cacttactag tggaattcaa aatattcaaa atacacaagt
taatgttagg 3720aaaaagcaag aagccaaaac tacgattaat gatattgttc aacaacataa
acaaactata 3780caaaataatg atgatgctac aactgaagag aaggaagtcg caaataattt
agttaatgca 3840tcacagcaaa atgtaattag taagattgat aatgctacaa cgaataatca
aattgatggt 3900attgtgagtg atggtagaca aagcataaat gcaattacac ctgatacatc
aattaaaaga 3960aatgctaaaa atgatattga tattaaagca gctgataaga aaataaaaat
tcaaagaata 4020aatgatgcta cagatgaaga aattcaagaa gcgaatcgta aaattgaaga
agctaagatt 4080gaagcaaaag ataatattca acgcaatagt actagagatc aagtaaatga
agcgaaaact 4140aatggaataa ataaaataga aaatataaca ccagcaacta ctgtgaaatc
tgaagctaga 4200caagcagtac agaataaagc aaatgaacag attaatcata ttcaaaacac
gcctgatgca 4260actaatgaag aaaaacaaga ggcaataaat agagtaagtg ctgaattagc
aagagttcaa 4320gcacaaataa atgcagaaca tacaacccaa ggtgtcaaaa ctatcaaaga
cgacgcgata 4380acttctttat ctcgaattaa tgcacaagtt gttgagaaag agtctgcaag
aaatgcaatc 4440gaacaaaagg caacacaaca aacgcaattt attaataata atgataatgc
tacagatgaa 4500gaaaaagagg tcgccaacaa tttagttatc gctacaaaac aaaaatcatt
agataatatt 4560aactccttat cttcaaataa tgatgttgaa aatgctaaag tagcaggaat
aaatgaaata 4620gctaacgttt taccagcaac cgctgttaag tcaaaagcaa aaaaagatat
tgatcaaaaa 4680ctcgcgcaac agattaatca aattcaaacg catcaaactg ctacaactga
ggaaaaagaa 4740gcggctattc aattggcaaa tcaaaaatca aatgaagcaa gaacagcaat
tcaaaatgaa 4800catagtaaca atggtgtcgc acaagctaaa tctaacggca ttcatgaaat
tgaattagtt 4860atgccagatg cgcacaaaaa atctgatgct aaacaaagta tcgataataa
atataatgag 4920caaagtaata ctatcaacac tacaccagat gcaacagatg aagaaaagca
aaaagcatta 4980gataaattaa aaatagctaa agatgcagga tacaacaaag ttgatcaagc
gcaaacaaac 5040caacaagtat ctgatgcaaa aactgaggct atagatacga taactaatat
tcaagcaaat 5100gttgcaaaaa aaccatccgc tcgagtggaa ttagattcaa agtttgagga
tttaaagcgt 5160caaatcaatg caacgcccaa tgctacagaa gaagaaaaac aagatgcaat
tcaaagattg 5220aatggtaaaa gagatgaagt taagaatcta ataaatcaag atagacgtga
caatgaagtt 5280gaacagcaca aaaatattgg acttcaagaa ttagaaacga ttcatgctaa
tccaactaga 5340aaatctgatg cgctccaaga gttacaaact aaatttattt cacaaacaga
gttaattaat 5400aataacaaag atgcaactaa tgaagaaaaa gatgaagcca aacgacttct
tgagattagt 5460aaaaataaaa ctataacaaa tatcaatcaa gcgcaaacta ataatcaagt
tgataatgct 5520aaagataacg gcatgaatga gattgctacc ataataccag caacaacaat
taaaacagat 5580gcaaaaacgg ctattgataa aaaagctgag caacaagtta caatcatcaa
tggtaacaac 5640gatgcaacag atgaagaaaa agcagaggct agaaagctgg ttgaaaaagc
gaaaattgaa 5700gccaaatcta atattacaaa tagtgatact gaaagggaag tcaatggtgc
taaaaccaat 5760gggttagaaa aaataaacaa tattcaacca tcaactcaaa ctaaaacaaa
tgctaagcaa 5820gaaataaatg acaaagctca agaacaatta atccaaatta ataacacgcc
tgatgcaacc 5880gaagaagaaa agcaagaggc aacaaataga gtcaatgctg gattagcaca
agcaatacaa 5940aatattaata atgcacatag tactcaagaa gtaaatgaat ctaaaacaaa
tagtattgct 6000acaatcaaga gtgtacaacc caatgtgatc aaaaaaccga ctgctataaa
tagtttgact 6060caagaagcta ataatcaaaa gacgttaata ggtaatgatg gtaatgctac
tgatgatgaa 6120aaagaggctg caaagcaatt agtgacccaa aaattaaatg aacaaattca
aaaaattcat 6180gaaagtacac aagataatca agttgataac gtaaaagcac aagctatcac
tgcaattaaa 6240ttgattaatg caaatgcaca taaaagacaa gatgccatta atattttgac
taatctagct 6300gaaagtaaaa aatcagatat aagagccaat caagatgcaa ctactgaaga
gaaaaatacg 6360gcaatacaat ctatagatga tacgttagca caagcacgta acaatattaa
tggtgcaaat 6420acaaatgcgt tagtggatga gaatttagaa gatggtaagc aaaagttaca
acgtattgtg 6480ttgtcaactc aaactaaaac acaagctaaa gcagacattg ctcaagcaat
aggtcaacaa 6540aggtcgacaa tagaccagaa tcaaaatgct acaacagaag aaaaacaaga
agcccttgag 6600agacttaatc aagaaacaaa tggagtcaat gatagaatac aagcagcttt
agcaaatcaa 6660aatgttacag acgaaaaaaa taatatatta gaaacaataa gaaatgttga
acctattgta 6720attgtaaaac caaaggctaa tgaaataatt agaaaaaaag ctgcggaaca
aacgacttta 6780ataaatcaaa atcaagatgc gacactagaa gaaaaacaaa tagcacttgg
caaattagaa 6840gaagtaaaga atgaagcgtt aaatcaagta tcacaggcac actcaaataa
tgatgtgaaa 6900attgtggaaa ataatggaat tgctaaaatt tctgaggtcc atcctgagac
tataattaaa 6960cgtaatgcta aacaagaaat tgaacaagat gcgcaaagtc aaattgatac
tatcaatgca 7020aataataaat caactaatga agaaaaatca gccgctatag atagagttaa
tgtagctaaa 7080attgatgcta ttaacaatat tactaatgct acaactacac aattagttaa
tgatgctaaa 7140aatagtggta acacgagtat tagccaaata ttaccaagta cagcagtcaa
aactaatgca 7200ttagcagctc tagctagcga agctaaaaat aaaaacgcta taatagatca
aacaccaaat 7260gcgacagcag aagaaaaaga agaagcaaat aataaagttg atcgtcttca
agaagaagca 7320gatgctaata tcctaaaagc acacactact gatgaagtta ataatattaa
aaatcaagct 7380gttcaaaata ttaacgctgt tcaagttgaa gttatcaaga aacaaaacgc
taaaaaccaa 7440ttaaatcaat tcattgataa tcaaaagaaa attattgaaa atacgcctga
tgcaacacta 7500gaagaaaaag ctgaagctaa tagattgctt caaaatgtac taacttccac
atcagatgaa 7560attgctaatg tagatcataa caacgaggtt gatcaagctt tagataaagc
tagaccaaaa 7620atcgaggcaa ttgtaccaca agttagtaag aaacgagatg ctttaaatgc
aatccaagaa 7680gcatttaatt cacaaactca agaaatacaa gagaaccaag aagctacgaa
tgaagaaaaa 7740actgaagcat taaataaaat aaaccaatta cttaatcagg ctaaagtaaa
tattgatcaa 7800gcacagtcaa ataaagatgt agatagtgcg aaaacacgta gtattcaaga
tatagagcaa 7860attcaaccac atccacaaac aaaagcaacc gggcgtcaca gattaaatga
aaaagctaac 7920caacaacaaa gtactattgc aactcatcct aattcaacaa ttgaagaaag
acaggaagca 7980agtgcaaaac tacaagaagt tcttaaaaaa gccatagcta aaatagataa
aggtcaaacc 8040aatgatgatg tagaaaagac tgtagtaaac ggaatagctg aaattgaaaa
tatattacct 8100gctactacag ttaaagataa agctaaagct gatgtaaatg ctgaaaaaga
ggagaaaaac 8160ctacaaatta atagtaatga tgaagcaacg actgaagaaa aattagttgc
tagtgacaat 8220ttaaatcacg ttgtcgagac aacaaatcaa gctattgagg atgcaccaga
taccaaccaa 8280gtgaatgtag aaaagaacaa aggtataggt acaattagag atattcaacc
acttgtagtt 8340aaaaaaccta ctgccaaatc taaaattgaa agcgcagtag aaaaaaagaa
aactgaaatt 8400aatcaaacac aaaatgcaac tcatgatgaa gtaagagagg gtttaaatca
gttaaatcaa 8460attcatgaaa aagccaaaaa tgatgtaaat caatctcaaa ctaatcagca
agttgaaaat 8520gctgagcaaa atagtttaga tcaaatcaat aacttcagac cagattttag
taaaaaacgt 8580aatgcagtag ctgaaattgt taaagcgcaa caaaacaaaa ttgatgaaat
agagcaagaa 8640tttagtgcta cacaagagga aaaagacaat gctttacaac atttagatga
acaggttaaa 8700gaaatcatta attctataaa tcaagctaat acagataatg aagtagataa
tgctaaaact 8760tctgggttga ataacataac tgaatacaga ccagaatata ataaaaagaa
aaatgctata 8820ttaaaattat atgatgtttc agatactcaa gaagctataa ttaatggtta
tcctgatgca 8880actgaagatg aacttcaaga agctaatagt aagttaaata aaatactttt
agatgcaaaa 8940aaacaaattg gtcttgcgca cacaaataat gaagttgatg atatttataa
tgaagtttcc 9000caaaaaatga aaactatttt accacgtgta gatacaaaag cggtagcacg
ttctgtactt 9060aatgcacttg ctaaacaatt gattaaaact tttgaaaata ctgcagatgt
tactcacgag 9120gaacgtaatg atgcgattaa tcatgtaaaa gaacaattat ctttagtatt
caatgccatt 9180gaaaaagacc gaaaagatat acaagttgcg caagatgaat tatttggatt
aaatgaatta 9240aatagtatat ttatcaacat aactcaaaag ccaactgcca gaaaagcaat
tagtggtatg 9300gcgagtcaat taaacaactc tatcaataat acgccatatg ctacagaaga
agaacgacaa 9360attgcactga ataaagttaa ggcgattgtt gatgatgcaa atgaaaaaat
acgagaagct 9420aacactgata gcgaagtact tggaacaaaa tcaaacgcaa taacattgtt
acaagcaatc 9480agtgcggatg tacaagttaa accacaagca tttgaagaaa tcaatgcaca
agctgaaatt 9540caaagagaac gaattaatgg aaatagtgat gcgacaagag aagaaaaaga
agaagcttta 9600aaacaagttg atacattagt aaatcattca tttattacaa ttaataatgt
taataaaaat 9660caagaagttt atgatactaa agacaaaacg attgaagcta ttcataaaat
caaaccaata 9720tcaactatca aaccacaagc attaaatgaa atcactattc aactagacac
tcaacgtgat 9780ttaataaaga ataataaaga gtctacagtt gaagaaaaag cctcggctat
cgataaatta 9840attaaaactg cagcaagaat agccgaatca atagataaag ctcaaacaaa
tgaagaagtt 9900aaaaatatta aaaaacaaag tattgatgaa atttctaaaa tactacctgt
tattgaaatt 9960aaatcagctg caagaaatga aattcatcaa aaagcagaag ttattcgcgg
attaattaat 10020gataatgaag aagcgactaa agaagaaaaa gatatcgcat taaatcaatt
agacacaact 10080ctaacacaag caaatgtttc aattgaccaa gcattaacaa atgaagctgt
taatagagct 10140aaagaaatag caaattctga aattaataaa atttctgtca ttgccattaa
aaagcctgaa 10200gctatagcag aaattcaaga actagcagat aaaaaattaa ataaatttaa
acaaagtcaa 10260gaagctacta ttgaagaaaa gcaatcagct atcaatgaat tagaacaagc
tttaaaatca 10320gctattaatc atattcatca atctcaaaat aatgaatcag tgagcgctgc
attaaaagaa 10380agtatatctt taatagactc gattgaaatt caagcacata aaaaattaga
agctaaagca 10440tacattgatg gatatagtga cgataaaatt aatgacatat cttctagagc
gactaacgaa 10500gaaaaacaaa tatttgtaag taaacttaaa gcattaatca atcgtacaca
taaacagatt 10560gacgaagctg aaacatttgt ttcagttgaa acaattgtcc gaaactttaa
agttgaagcg 10620gataaattaa actcaattgt acgtaaaaaa gctaaagcat cgaaggaaat
tgaattagaa 10680gcagaccatg taaagcaaat gataaatgca aatttaagtg ctagtactag
agtgaaacaa 10740aatgctcgta cattgataaa tgaaattgtt agtaacgctt taagtcaact
taataaagta 10800accacaaata aagaagttga tgaaatagtt aacgaaacga ttgaaaaact
taagtcaata 10860caaataagag aagataaaat attgagtagt caacgttcat caacatctat
gacggaaaaa 10920tctaatcaat gttatagttc cgagaataat acaattaaat ctctaccaga
ggcaggaaat 10980gctgataaat cactaccatt agcaggagtt actttaatat ctggtttagc
aatcatgtcc 11040tcacgtaaaa agaaaaaaga taaaaaagta aatgac
11076181317DNAStaphylococcus epidermidis 18ttggatataa
aaatgcctaa gcttggtgaa agtgtgcatg aaggtacgat tgaacaatgg 60ttagtatcag
taggagatca tgtagatgag tatgaaccat tatgtgaagt tattacagat 120aaagtaacag
ctgaagtgcc ttcaacaatt tctggaacaa taacagaatt agtggttgaa 180gaaggacaaa
ctgtcaatat taacacggtg atttgtaaaa tcgattcgga aaatggtcaa 240aatcaaacag
aatcggcaaa tgagtttaag gaagaacaaa atcagcattc tcaatcaaat 300ataaacgtgt
cacaattcga aaataatcct aaaactcatg aaagtgaggt gcatacagcc 360tctagtcgcg
caaataacaa tggacgattt tcaccagttg tctttaaatt agcttctgaa 420catgatattg
atttaacaca agtcaaagga actggttttg aaggtcgtgt tactaagaaa 480gatattcaaa
atattattaa caatccaaac gatcaagaaa aagagaaaga atttaaacaa 540acagataaaa
aagatcattc aacgaaccat tgtgactttt tacatcaatc ctcaactaaa 600aacgaacact
caccattatc aaatgaacgt gtcgtaccag ttaaaggtat tagaaaagct 660atcgcacaaa
atatggttac tagtgtcagc gaaataccac acggttggat gatggttgaa 720gctgatgcaa
cgaatttggt tcagactaga aactatcata aagctcaatt taaacagaat 780gagggttaca
atttaacttt ctttgcgttt tttgtaaaag ctgttgcaga ggctttaaaa 840gtaaatccat
tactcaatag tacatggcaa ggagatgaaa ttgttatcca caaagatatt 900aatatctcta
ttgctgttgc agacgatgat aagttgtatg tgccagtcat taaaaatgca 960gatgaaaaat
caattaaagg tatcgcgcgt gaaatcaatg atttagctac taaagcaaga 1020ttaggaaaat
tagcacaaag tgatatgcaa aacggtacat ttacggttaa taatactggt 1080tcttttggtt
ctgtttcttc aatgggaatc attaatcatc cacaagctgc cattttacaa 1140gtagaatcag
tcgttaagaa acctgtagtt atagatgata tgattgcaat tagaaatatg 1200gttaatttgt
gtatttcaat cgatcatcgt attctcgatg gtgttcaaac gggaaaattt 1260atgaatcttg
ttaagaaaaa aatagaacaa tattctattg aaaacacttc tatttat
131719885DNAStaphylococcus epidermidis 19atgaatacta tcattgaaga atatttaaat
ttcattcaaa ttgaaaaagg attaagtaac 60aatactatag gagcgtatcg aagagattta
aaaaaatata aagattatct tgaagataac 120aagatttcac atatcgattt tattgataga
caaattatcc aagagtgtct tggacacctt 180atagatatgg ggcaatcttc aaaatctctc
gcaaggttta tttctacaat aagaagcttt 240catcagtttg cattacgcga aaaatatgct
gctaaagacc caactgtttt aattgaaaca 300cccaaatatg aaaagaaatt accagatgtg
cttgaaatag acgaagtaat agcattactg 360gaaacgcctg atttaactaa gaataatgga
tatcgtgatc gtacgatgtt ggagctttta 420tacgccacag gtatgcgtgt aactgaaatt
attcaattag atgttgaaga cgtaaactta 480atgatgggat ttgtaagagt tttcgggaaa
gggaataagg aaagaatcgt tcccttagga 540gataccgtca tcgaatattt aactacatat
attgaaaccg taagacctca attactcaaa 600caaaccacaa ctcaagcgct atttcttaac
atgcatggaa agtctttatc aagacaaggc 660atttggaaaa tcattaaaca atatggtttg
aaagctaata tcaataaaac gcttacacca 720catacattac ggcattcatt tgcaacacat
ctcttagaaa atggtgctga tttaagagcc 780gtacaagaaa tgttaggtca ctctgatatt
tctacaactc aactttatac acatgtatct 840aaatcacaaa ttagaaaaat gtatacgcag
tttcatccaa gagct 885202400DNAStaphylococcus
epidermidis 20atgagtttag tatatcttat ggcgactaat ttattagtca tgctcatagt
tttattcact 60ctgagtcatc gtcaactaag aaaggttgcg ggctatgttg cattaatagc
tcctattgtg 120acatctacat attttattat gaaaatacca gatgtgattc gaaataagtt
tattgctgtt 180cgattaccat ggatgccttc aattgatatt aatttagatt taagattaga
tggtttaagt 240ttaatgttcg gcttaattat ttcgctaata ggtgtgggtg tattttttta
tgctacgcaa 300tatttatccc acagtacgga caatcttcct agatttttca tctatttact
attatttatg 360ttcagtatga ttggcattgt aatagctaat aataccatct taatgtatgt
attttgggaa 420ctcacaagta tttcctcatt cttgcttata tcctattggt acaataatgg
tgaaagtcaa 480ttaggcgcca ttcaatcttt catgattaca gtgtttggtg ggctagcgtt
attaacagga 540tttatcattt tatatatcat tacaggaaca aacacaatta ctgatatcct
taatcaacgc 600aatgcaattt cacgacatcc tttatttata ccaatgattt tgatgctatt
attaggtgct 660tttaccaaat ctgcacaatt tccgtttcat atttggttac caaaggccat
ggcagcacct 720acaccagtaa gtgcttatct tcattcggca acaatggtaa aggctggaat
ctttttacta 780tttagattta cacctttatt gggacttagt aatgtttata tttatacagt
gacatttgtt 840ggtctaataa ctatgttatt tggatcttta actgctttac gacaatacga
cttaaaaggt 900atactcgctt attctacaat aagtcaatta ggtatgatta tgacaatggt
aggtctaggt 960ggcggttatg ctcagcacac atcagatgaa ttgtctaagt tttatatttt
agttttattt 1020gctggcttat tccatttaat gaatcatgcg gtttttaaat gtgcattatt
tatgggcgtt 1080ggtatcattg atcacgagtc cggaacacgt gatattcgtt tgctaaatgg
tatgcgtaaa 1140gtcttcccta aaatgcatat tgtcatgttg ctcgctgcat tatctatggc
aggtgttcct 1200tttttaaatg gctttttaag taaggaaatg tttttagatt cgttaactaa
agcaaacgaa 1260cttgatcaat atggcttcgt attaacgttt gtgattattt caataggtgt
catcgcgagt 1320atattgactt ttacttatgc actttacatg ataaaagaaa cattctgggg
aaattacaat 1380atagaaaaat ttaaacgtaa acaaatacat gaaccatggc tatttagttt
accagctgtg 1440attttaatgt tactcattcc agttatcttc tttgttccaa acgtttttgg
caactttgtt 1500attttgcccg caaccagatc tgtatctggg ataggtgcgg aggttgatgc
atttgtgcca 1560catatttctc agtggcatgg tgtgaatctt ccattaattt taagtatagt
tgttattatt 1620attggactta ttttagctct agttgtgaat tggaaagagg ttacgcatca
aataatcaaa 1680agtgcttcga ttacagatgg ctatcggaaa atttatagag aatttgaatt
atactcagcc 1740cgtggtatac gtgcattgat gaataataaa ttgaattatt acatcatgat
tacattattt 1800atttttgtag ctattgtagt ttatggatat ttgactgtgg gttttcctca
tgtacatcag 1860cttcatatta gttctttcgg accgttggaa gttatcttat cagttgtaac
attgattatc 1920ggcatttcat taatctttat tcgtcaacga ctaacgatgg tggtattgaa
tggaatgatt 1980ggattcgcag ttacattata ttttattgca atgaaagctc cagatttagc
tttaacacag 2040ttagttgttg aaactattac gacaatctta tttattgtta gtttttcgag
actacctaac 2100atccctcgag ttaaggcaaa tttaaaaaaa gagaccttca aaatcattgt
gtcacttgtt 2160atggcattga cggtggtatc acttattttt gttgctcaac aagcagatgg
tatgccttca 2220attgctaaat tttatgaaga tgcatatgaa cttacaggtg gaaaaaatat
tgtcaatgct 2280atactaggtg acttcagagc tttagatact atgtttgaag gactagtgtt
aatcatagct 2340ggattaggta tttatacgtt acttaattac aaagatagga gggggcaaga
tgaaagagaa 2400212676DNAStaphylococcus epidermidis 21ttgtttggtt
taggtcataa tgaggccaaa gctgaggaga atacagtaca agacgttaaa 60gattcgaata
tggatgatga attatcagat agcaatgatc agtccagtaa tgaagaaaag 120aatgatgtaa
tcaataatag tcagtcaata aacaccgatg atgataacca aataaaaaaa 180gaagaaacga
atagcaacga tgccatagaa aatcgctcta aagatataac acagtcaaca 240acaaatgtag
atgaaaacga agcaacattt ttacaaaaga cccctcaaga taatactcag 300cttaaagaag
aagtggtaaa agaaccctca tcagtcgaat cctcaaattc atcaatggat 360actgcccaac
aaccatctca tacaacaata aatagtgaag catctattca aacaagtgat 420aatgaagaaa
attcccgcgt atcagatttt gctaactcta aaataataga gagtaacact 480gaatccaata
aagaagagaa tactatagag caacctaaca aagtaagaga agattcaata 540acaagtcaac
cgtctagcta taaaaatata gatgaaaaaa tttcaaatca agatgagtta 600ttaaatttac
caataaatga atatgaaaat aaggttagac cgttatctac aacatctgcc 660caaccatcga
gtaagcgtgt aaccgtaaat caattagcgg cagaacaagg ttcgaatgtt 720aatcatttaa
ttaaagttac tgatcaaagt attactgaag gatatgatga tagtgatggt 780attattaaag
cacatgatgc tgaaaactta atctatgatg taacttttga agtagatgat 840aaggtgaaat
ctggtgatac gatgacagtg aatatagata agaatacagt tccatcagat 900ttaaccgata
gttttgcaat accaaaaata aaagataatt ctggagaaat catcgctaca 960ggtacttatg
acaacacaaa taaacaaatt acctacactt ttacagatta tgtagataaa 1020tatgaaaata
ttaaagcgca ccttaaatta acatcataca ttgataaatc aaaggttcca 1080aataataaca
ctaagttaga tgtagaatat aagacggccc tttcatcagt aaataaaaca 1140attacggttg
aatatcaaaa acctaacgaa aatcggactg ctaaccttca aagtatgttc 1200acaaacatag
atacgaaaaa ccatacagtt gagcaaacga tttatattaa ccctcttcgt 1260tattcagcca
aagaaacaaa tgtaaatatt tcagggaatg gcgatgaagg ttcaacaatt 1320atcgacgata
gtacaatcat taaagtttat aaggttggag ataatcaaaa tttaccagat 1380agtaacagaa
tttatgatta cagtgaatat gaagatgtca caaatgatga ttatgcccaa 1440ttaggaaata
ataatgacgt gaatattaat tttggtaata tagattcacc atatattatt 1500aaagttatta
gtaaatatga ccctaataag gacgattaca cgacgataca gcaaactgtg 1560acaatgcaaa
cgactataaa tgagtatact ggtgagttta gaacagcatc ctatgataat 1620acaattgctt
tctctacaag ttcaggtcaa ggacaaggtg acttgcctcc tgaaaaaact 1680tataaaatcg
gagattacgt atgggaagat gtagataaag atggtattca aaatacaaat 1740gataatgaaa
aaccgcttag taatgtattg gtaactttga cgtatcctga tggaacttca 1800aaatcagtca
gaacagatga agaggggaaa tatcaatttg atgggttaaa aaacggattg 1860acttataaaa
ttacattcga aacaccggaa ggatatacgc cgacgcttaa acattcagga 1920acaaatcctg
cactagactc agaaggcaat tctgtatggg taactattaa cggacaagac 1980gatatgacta
ttgatagcgg attttatcaa acacctaaat atagcttagg gaactatgta 2040tggtatgaca
ctaataaaga tggtattcaa ggtgatgatg aaaaaggaat ctctggagta 2100aaagtgacgt
taaaagatga aaacggaaat atcattagta caacaacaac tgatgaaaat 2160ggaaagtatc
aatttgataa tttaaatagt ggtaattata ttgttcattt tgataaacct 2220tcaggtatga
ctcaaacaac aacagattct ggtgatgatg acgaacagga tgctgatggg 2280gaagaagtcc
atgtaacaat tactgatcat gatgacttta gtatagataa cggatactat 2340gatgacgact
cagattcaga tagtgattca gactcagata gcgacgactc agactccgat 2400agcgattccg
actcagacag cgactcagat tccgatagtg attcagattc agacagtgac 2460tcagactcag
atagtgattc agattcagac agcgattccg actcagacag tgactcagga 2520ttagacaata
gctcagataa gaatacaaaa gataaattac cggatacagg agctaatgaa 2580gatcatgatt
ctaaaggcac attacttgga gctttatttg caggtttagg agcgttatta 2640ttagggaagc
gtcgcaaaaa tagaaaaaat aaaaat
2676221452DNAStaphylococcus epidermidis 22atgagtgaac gtatcagagt
aagatatgcg ccaagtccaa caggatattt gcatattggt 60aatgcaagaa cagcattatt
caattattta tttgctaaac attataatgg tgattttgtt 120gttcgcatcg aagatacaga
tagtaaacgt aatttagaag atggtgaatc ttcacaattc 180gataatctaa aatggttagg
tttggattgg gatgaatctg tcgataaaga taaaggtttt 240ggaccttatc gtcaatctga
acgtgcagaa atctataatc cactaattca acagctatta 300gaggaagaca aagcatataa
atgttatatg actgaagaag agttagaagc agagcgtgaa 360gctcaaattg ctcgtggaga
gatgccaaga tatggtggac aacatgcgca cttaacagaa 420gaacagcgtc aacagtacga
agcggaaggg cgtaaaccat caattcgttt ccgtgtgcct 480aaagatcaaa catatacttt
caatgacatg gttaaaggag aaatttcctt tgaatctgac 540aatatcggag actgggtaat
tgtaaaaaaa gatggtgttc cgacttataa ttttgcagtt 600gccgtagatg atcattatat
gcaaatatca gatgttatac gtggtgatga ccatgtttca 660aatacaccta agcagttaat
gatatatgaa gcatttggat gggaagcacc tcgttttggt 720catatgtcac tcattgttaa
tgaagagcgt aaaaaattaa gcaagcgaga tggtcaaatc 780ctacaattta tcgagcaata
tcgtgactta ggatatcttc cagaagcatt atttaacttt 840attacattgt taggttggtc
acctgaaggt gaagaggaaa tcttttctaa agaagaattt 900ataaagattt ttgatgaaaa
acgcttgtct aagtctccag ctatgttcga tagacaaaaa 960cttgcttggg ttaacaatca
gtatatgaaa acaaaagata cagaaacagt attcgaactt 1020gcattacctc atttaatcaa
ggctaatctt atacctgaaa acccatcaga aaaggataga 1080gaatggggac gtaaattaat
agcgttgtat caaaaagaaa tgagttacgc tggtgaaatt 1140gttccattat cagaaatgtt
cttccatgaa atgccggaac ttggaaaaga tgaacaagag 1200gtattacaag gagaacaagt
gccagaacta atgaaccatt tatatggtaa attagaatct 1260ttagaatcgt ttgaggcaac
tgaaattaag aaaatgatta aagaagttca aaaagaaact 1320ggtattaaag gtaaacaatt
atttatgcct attcgtgttg ctgttactgg acaaatgcat 1380ggtcctgaat tacctaacac
aattgaagta ttaggcaaag ataaagtatt gtcacgctta 1440aaaaaccttg tt
145223888DNAStaphylococcus
epidermidis 23atggaatata aagatatagc aacaccatct cgaacacgtg ctttgcttga
tcaatatggg 60tttaatttta agaaaagttt aggacaaaat tttctaatag atgtaaatat
cattaataaa 120attatcgaag cgagtcatat agattgtaca acgggtgtaa ttgaagttgg
accaggtatg 180ggatcattga ctgaacaact tgcaaagaat gctaagaagg tgatggcttt
tgaaattgat 240caaagattaa tacctgtgct taaagataca ctttcaccat acgataatgt
aacaattatc 300aatgaagata tacttaaagc tgatattgct aaagctgtag atacacatct
acaagattgt 360gacaagatta tggttgttgc taatttaccg tattatatta ccacacctat
tttacttaat 420ttgatgcaac aggatgtacc tattgatggt tttgtcgtaa tgatgcaaaa
agaggtagga 480gaacgtttga acgctcaagt aggtaccaaa gcatacggtt cgttatcgat
tgttgctcaa 540tactatacgg agacaagtaa agttttaaca gttcctaaaa ctgtatttat
gcctcctcca 600aacgttgatt ctatcgttgt aaaattgatg caacgccaag aaccacttgt
acaggttgat 660gatgaggaag gcttttttaa gttagcaaag gccgcttttg cacaacgacg
taaaacaatt 720aataataact accaaaactt ctttaaagat ggtaagaaga ataaagaaac
tatacgacag 780tggctagaaa gcgctggtat tgatcctaaa agacgtggag aaacactcac
gattcaagat 840ttcgccacat tatatgaaca aaagaaaaaa ttctccgaat taacaaat
88824318DNAStaphylococcus epidermidis 24atgacgtcaa atcatcatgc
cccttatgat ttgggctaca cacgtgctac aatggacaat 60acaaagggca gcgaaaccgc
gaggtcaagc aaatcccata aagttgttct cagttcggat 120tgtagtctgc aactcgacta
tatgaagctg gaatcgctag taatcgtaga tcagcatgct 180acggtgaata cgttcccggg
tcttgtacac accgcccgtc acaccacgag agtttgtaac 240acccgaagcc ggtggagtaa
ccatttggag ctagccgtcg aaggtgggac aaatgattgg 300ggtgaagtcg taacaagg
318251326DNAStaphylococcus
epidermidis 25atgtttttta aacaatttta tgataaacac ttatctcaag catcttattt
aatcggttgt 60caaaaaactg gagaagccat gattattgat cctattcgtg acttatcttc
atatattcga 120gttgctgatg aagaaggttt aaccattact catgcagctg aaacacatat
acatgcagat 180tttgcttcag gaattagaga tgttgctata aagttaaatg ctagtattta
tgtatcgggt 240gaaagtgatg acacgttagg ttataaaaat atgcctaacc agactcattt
tgttcaacat 300aatgatgata tttatgtagg aaatataaaa ttaaaagtgc ttcatacacc
tggtcacacg 360ccagaaagta taagtttttt acttactgat gaaggtgctg gagcacaagt
tccaatggga 420ctattcagtg gtgattttat ttttgtagga gatatcggta gacctgattt
actagaaaaa 480gctgttaaag tagaaggatc atctgaaata ggcgctaaac aaatgtttaa
atctattgaa 540agtattaaag acttgccaaa ctacattcaa atttggcctg gccatggagc
tggtagtcct 600tgtggtaaat ctttaggtgc tattccaaca tctactcttg gctatgaaaa
acaaacaaac 660tgggcttttt ctgaaaataa cgaagctacc tttatcgata aactaatttc
tgaccaacct 720gcaccaccac atcattttgc acaaatgaaa aaaattaatc aattcggtat
gaatttatat 780caaccttata cggtttatcc agctacaaat acaaacagat taacttttga
tctccgcagt 840aaggaggctt atcatggtgg acatattgaa ggtacaatca atattccata
tgataaaaat 900ttcatcaatc aaattggctg gtatctaaac tatgatcaag aaattaactt
gattggagaa 960tatcaccttg tttcaaaagc aacacacacc ttacaactca ttggatatga
tgatgttgct 1020ggatatcaat tacctcaatc taagattcaa acacgttcca ttcatagtga
agatattaca 1080ggtaacgaat cacatatatt agatgtacgt aatgataatg aatggaataa
tggccactta 1140tctcaagcgg ttcatgtacc acacggcaaa cttttagaaa cagatttacc
tttcaataga 1200aacgatgtta tttatgtaca ctgtcagtct ggcattagaa gttcgatagc
tattggtatt 1260ttagaacata aaggttatca caacattatt aatgtaaatg aaggttacaa
agatatacac 1320ctttct
132626855DNAStaphylococcus epidermidis 26ttgaaaaaaa ttctggtgtt
aagtttaacg gcatttttag ttttggctgg ttgtaattca 60ggtgataaga ctgatactaa
agataagaaa gaagaaacaa agcaaacttc aaaggcaaat 120aaagagaaca aagaacaaca
tcataagcaa gagaatgata ataaggcttc aactcaattg 180tcagaaaaag aaaggttagc
attagcattt tatgcggatg gagtagaaaa atatatgtta 240actaaaaacg aagtgttgac
aggcgtgtat gattatcaaa aaggaaatga aacagagaag 300aaacaaatgg aacaattgat
gttagaaaaa gctgattcga tgaaaaatgc gccaaaggat 360atgaaatttt atcaagttta
tccgtctaaa ggacagttcg cttcaattgt tggtgtaaat 420aaaaataaaa tatttatagg
tagtacgcaa ggcgcactga ttgattatca aacattatta 480aataatggca aggagttaga
tattagtcaa ttgtatgaag ataataaaga caatcgctca 540ttggaagaaa tgaagaataa
aatagagatt gttgatagtg gagcagctca aaaagctgat 600gatcctgata aaaattctgc
aaatacgatg gcacatatga gaagtcaaat ttatgaaaaa 660ataagtgact ttgatggtaa
gttagataat aaaacttatc tatgggacaa tattagaatc 720aatgacgatg gtaattggac
agttcattac cgtaatcatg atggtgaaat tatgggtact 780tataagagtg agaaaaataa
aattattaaa cttgatcaaa atggaaataa aattaaagaa 840caacaaatgt ctaat
855271494DNAStaphylococcus
epidermidis 27atggctaata aagagtcaaa aaatgttgtt attattggcg ctggtgtctt
aagtacgaca 60tttggttcta tgattaaaga attagaacct gattggaaca tcaaactcta
tgaacgctta 120gatcgtccag gtattgaaag ttctaacgaa agaaacaatg ccggtacagg
acatgcggcg 180ttatgtgaat tgaactatac agtacaacaa cctgatggtt caattgatat
agaaaaagcc 240aaagaaatca acgaacaatt cgagatttca aaacaattct ggggtcactt
agtaaaaagt 300ggtaacatca gtaaccctag agatttcatt aatccacttc ctcacattag
tttcgtaaga 360ggtaaaaata acgttaaatt cttaaaaaac cgttacgaag caatgcgtaa
cttccctatg 420ttcgataaca tcgaatatac agaagatatc gaagaaatga gaaaatggat
gccattaatg 480atgacaggtc gtactggtaa cgaaatcatg gcggctagta aaatcgacga
aggtacagat 540gttaactacg gtgaattaac tcgtaaaatg gcaaaaagta ttgaaaaaca
tccaaatgct 600gatgttcaat acaaccacga agtaattaat ttcaatcgtc gtaaagacgg
tatttgggaa 660gttaaagtta aaaaccgtaa ttctggagac gttgaaactg ttctagctga
ttatgtattt 720atcggtgcag gcggtggcgc tattccacta ttacaaaaaa ctggtatccc
agaaagtaaa 780catcttggtg gattccctat cagtggtcag ttcttaattt gtacaaaccc
tgatgtaatt 840aatgaacatg acgtcaaagt atatggtaaa gaaccaccag gcacacctcc
aatgactgta 900ccacatttag atacacgtta tatcgatggt gaaagaacat tattatttgg
accatttgca 960aatattggcc ctaaattctt aagaaacggt tctaacttag acttattcaa
atcagttaaa 1020ccttataaca tcacaacatt actagcatct gcagttaaaa acttaccttt
aatcaaatac 1080tctatcgacc aagtattaat gactaaagaa ggttgtatga accatctacg
cacgttctac 1140cctgaagctc gtgacgaaga ttggcaatta tacactgcag gtaaacgtgt
tcaagttatc 1200aaagatacta aagaacacgg taaaggattc attcaatttg gtacagaagt
tgttaactct 1260aaagaccact ctgttatcgc actattgggt gaatcacctg gagcatcaac
ttcagtatca 1320gtagccctag aagttttaga gaaaaacttt gctgagtatg aaaaagattg
gactccaaaa 1380ttacaaaaaa tgatcccatc atatggtaaa tctcttatcg atgatgttaa
gttaatgaga 1440gcaactcgta aacaaacatc taaagattta gaattaaatt attacgaatc
taaa 1494281548DNAStaphylococcus epidermidis 28atgaaaatat
ttaaaacttt aagttctata ctagttacat ctgttctttc tgtgactgtg 60attccctcaa
catttgcatc aacagaatct actgctacaa atcagacaca acaaacagta 120ctttttgata
attctcatgc tcaaactgcg ggcgctgccg attgggtgat tgatggcgct 180ttctcagatt
atgcagattc aatgagaaag caaggttacc aagttaaaga actagaagga 240gaatcaaaca
tttctgatca atctttacag caggcgcatg tattagttat tcccgaagct 300aacaatccat
ttaaagaaaa tgagcagaaa gcaatcatta attttgttaa aaatggtggt 360agcgtcattt
tcatctcaga ccattataat gccgatcgta atttaaatcg tattgattct 420tcagaatcaa
tgaatggtta tcgacgtggc gcatacgaaa atatgactaa agatatgaat 480aatgaagaaa
agaattctaa cgttatgcat aacgttaaga gttctgattg gctctcacaa 540aacttcggtg
ttcgctttag atataatgca cttggagata tcaatactca aaatatcgtt 600tcaagcaaag
atagttttgg tattactaaa ggtgtacaat cagtttcgat gcacgcaggt 660tcaacattag
caataactga tcctaataaa gctaaaggca ttatttatat gccggaacat 720ttaacgcata
gtcaaaaatg gcctcacgca gttgatcaag gtatttacaa tgggggtggc 780atcaacgaag
gaccttatgt agccatttca aaaatcggca aaggtaaagc tgcatttatt 840ggcgatagct
ccctcgtaga agatcgttca cctaaatatc ttcgtgaaga taatgggaaa 900cctaaaaaaa
cgtacgatgg ttttaaagaa caagataatg gaaagttatt aaataattta 960acaacatggc
taggcaaaaa agaatctcaa tcttctatga aagacatggg gattaaactt 1020gataataaaa
caccgctact taactttgag caacctgaga attcaattga acctcaaaaa 1080gaaccgtgga
ctaacccaat agaaggttac aaatggtatg atcgttcaac atttaaaaca 1140ggtagttatg
gaagtaatca acggggtgct gacgatggag tagatgacaa aagctcttct 1200catcaaaatc
aaaatgccaa agttgaatta actttacctc aaaatatcca accgcatcat 1260ccatttcaat
ttacaatcaa actcacggga tatgagccta atagcacaat tagcgatgta 1320agagttggac
tttataaaga tggaggtaag caaatcggta gcttttcttc taaccgtaac 1380caattcaata
ctctcggcta tagtcctggc caatcaatta aagcaaatgg tgcgggtgaa 1440gcttcattca
cactcacagc taaagtgaca gatgaaatta aagatgctaa tattcgtgtt 1500aaacaaggga
aaaaaattct attaactcaa aaaatgaatg aaaatttt
154829252DNAStaphylococcus epidermidis 29ggtacaccat tagaattagt ttttgtcaat
actttaggac ctaaaccttg tttcgctaaa 60ccaaataaaa ttctactatt agaatatatt
ccgctatttg ttgcagatgc tgctgctgtt 120aaaacaacaa aattaactat gccagcagca
aagggaacac caattagtgt gaataattta 180acaaacggac tactatcagg atcaacttta
aaccatggaa tgacagacat gattacaagt 240aaaccaccta ta
25230162DNAStaphylococcus epidermidis
30tcatcgttaa gtaccataat tcctttttct ttaggagcat taggcaaatt taattctttc
60attgagcaaa tcataccact agaatctacc ccacgtaatt gggcatcttt aattaccatt
120ccgcttggca taacggcccc aacttttgca acaacgacct tc
16231348DNAStaphylococcus aureus 31atgaaattta aaaaatatat attaacagga
acattagcat tacttttatc atcaactggg 60atagcaacta tagaagggaa taaagcagat
gcaagtagtc tggacaaata tttaactgaa 120agtcagtttc atgataaacg catagcagaa
gaattaagaa ctttacttaa caaatcgaat 180gtatatgcat tagctgcagg aagcttaaat
ccatattata aacgtacgat tatgatgaat 240gaatatagag ctaaagcggc acttaagaaa
aatgatttcg tatcaatggc tgatgctaaa 300gttgcattag aaaaaatata caaagaaatt
gatgaaatta taaataga 34832676PRTStaphylococcus epidermidis
32Met Lys Arg Thr Asp Lys Ile Gly Val Tyr Leu Lys Leu Ser Cys Ser 1
5 10 15 Ala Leu Leu Leu
Ser Gly Ser Leu Val Gly Tyr Gly Phe Thr Lys Asp 20
25 30 Ala Phe Ala Asp Ser Glu Ser Thr Ser
Ser Asn Val Glu Asn Thr Ser 35 40
45 Asn Ser Asn Ser Ile Ala Asp Lys Ile Gln Gln Ala Lys Asp
Asp Ile 50 55 60
Lys Asp Leu Lys Glu Leu Ser Asp Ala Asp Ile Lys Ser Phe Glu Glu 65
70 75 80 Arg Leu Asp Lys Val
Asp Asn Gln Ser Ser Ile Asp Arg Ile Ile Asn 85
90 95 Asp Ala Lys Asp Lys Asn Asn His Leu Lys
Ser Thr Asp Ser Ser Ala 100 105
110 Thr Ser Ser Lys Thr Glu Asp Asp Asp Thr Ser Glu Lys Asp Asn
Asp 115 120 125 Asp
Met Thr Lys Asp Leu Asp Lys Ile Leu Ser Asp Leu Asp Ser Ile 130
135 140 Ala Lys Asn Val Asp Asn
Arg Gln Gln Gly Glu Glu Arg Ala Ser Lys 145 150
155 160 Pro Ser Asp Ser Thr Thr Asp Glu Lys Asp Asp
Ser Asn Asn Lys Val 165 170
175 His Asp Thr Asn Ala Ser Thr Arg Asn Ala Thr Thr Asp Asp Ser Glu
180 185 190 Glu Ser
Val Ile Asp Lys Leu Asp Lys Ile Gln Gln Asp Phe Lys Ser 195
200 205 Asp Ser Asn Asn Asn Pro Ser
Glu Gln Ser Asp Gln Gln Ala Ser Pro 210 215
220 Ser Asn Lys Thr Glu Asn Asn Lys Glu Glu Ser Ser
Thr Thr Thr Asn 225 230 235
240 Gln Ser Asp Ser Asp Ser Lys Asp Asp Lys Ser Asn Asp Gly His Arg
245 250 255 Ser Thr Leu
Glu Arg Ile Ala Ser Asp Thr Asp Gln Ile Arg Asp Ser 260
265 270 Lys Asp Gln His Val Thr Asp Glu
Lys Gln Asp Ile Gln Ala Ile Thr 275 280
285 Arg Ser Leu Gln Gly Ser Asp Lys Ile Glu Lys Ala Leu
Ala Lys Val 290 295 300
Gln Ser Asp Asn Gln Ser Leu Asp Ser Asn Tyr Ile Asn Asn Lys Leu 305
310 315 320 Met Asn Leu Arg
Ser Leu Asp Thr Lys Val Glu Asp Asn Asn Thr Leu 325
330 335 Ser Asp Asp Lys Lys Gln Ala Leu Lys
Gln Glu Ile Asp Lys Thr Lys 340 345
350 Gln Ser Ile Asp Arg Gln Arg Asn Ile Ile Ile Asp Gln Leu
Asn Gly 355 360 365
Ala Ser Asn Lys Lys Gln Ala Thr Glu Asp Ile Leu Asn Ser Val Phe 370
375 380 Ser Lys Asn Glu Val
Glu Asp Ile Met Lys Arg Ile Lys Thr Asn Gly 385 390
395 400 Arg Ser Asn Glu Asp Ile Ala Asn Gln Ile
Ala Lys Gln Ile Asp Gly 405 410
415 Leu Ala Leu Thr Ser Ser Asp Asp Ile Leu Lys Ser Met Leu Asp
Gln 420 425 430 Ser
Lys Asp Lys Glu Ser Leu Ile Lys Gln Leu Leu Thr Thr Arg Leu 435
440 445 Gly Asn Asp Glu Ala Asp
Arg Ile Ala Lys Lys Leu Leu Ser Gln Asn 450 455
460 Leu Ser Asn Ser Gln Ile Val Glu Gln Leu Lys
Arg His Phe Asn Ser 465 470 475
480 Gln Gly Thr Ala Thr Ala Asp Asp Ile Leu Asn Gly Val Ile Asn Asp
485 490 495 Ala Lys
Asp Lys Arg Gln Ala Ile Glu Thr Ile Leu Gln Thr Arg Ile 500
505 510 Asn Lys Asp Lys Ala Lys Ile
Ile Ala Asp Val Ile Ala Arg Val Gln 515 520
525 Lys Asp Lys Ser Asp Ile Met Asp Leu Ile His Ser
Ala Ile Glu Gly 530 535 540
Lys Ala Asn Asp Leu Leu Asp Ile Glu Lys Arg Ala Lys Gln Ala Lys 545
550 555 560 Lys Asp Leu
Glu Tyr Ile Leu Asp Pro Ile Lys Asn Arg Pro Ser Leu 565
570 575 Leu Asp Arg Ile Asn Lys Gly Val
Gly Asp Ser Asn Ser Ile Phe Asp 580 585
590 Arg Pro Ser Leu Leu Asp Lys Leu His Ser Arg Gly Ser
Ile Leu Asp 595 600 605
Lys Leu Asp His Ser Ala Pro Glu Asn Gly Leu Ser Leu Asp Asn Lys 610
615 620 Gly Gly Leu Leu
Ser Asp Leu Phe Asp Asp Asp Gly Asn Ile Ser Leu 625 630
635 640 Pro Ala Thr Gly Glu Val Ile Lys Gln
His Trp Ile Pro Val Ala Val 645 650
655 Val Leu Met Ser Leu Gly Gly Ala Leu Ile Phe Met Ala Arg
Arg Lys 660 665 670
Lys His Gln Asn 675 33655PRTStaphylococcus epidermidis 33Met
Lys Lys Asn Lys Phe Leu Val Tyr Leu Leu Ser Thr Ala Leu Ile 1
5 10 15 Thr Pro Thr Phe Ala Thr
Gln Thr Ala Phe Ala Glu Asp Ser Ser Asn 20
25 30 Lys Asn Thr Asn Ser Asp Lys Met Glu Gln
His Gln Ser Gln Lys Glu 35 40
45 Thr Ser Lys Gln Ser Glu Lys Asp Glu Phe Asn Asn Asp Asp
Ser Lys 50 55 60
His Asp Ser Asp Asp Lys Lys Ser Thr Ser Asp Ser Lys Asp Lys Asp 65
70 75 80 Ser Asn Lys Pro Leu
Ser Ala Asp Ser Thr His Arg Asn Tyr Lys Met 85
90 95 Lys Asp Asp Asn Leu Val Asp Gln Leu Tyr
Asp Asn Phe Lys Ser Gln 100 105
110 Ser Val Asp Phe Ser Lys Tyr Trp Glu Pro Asn Lys Tyr Glu Asp
Ser 115 120 125 Phe
Ser Leu Thr Ser Leu Ile Gln Asn Leu Phe Asp Phe Asp Ser Asp 130
135 140 Ile Thr Asp Tyr Glu Gln
Pro Gln Lys Thr Ser His Ser Ser Asn Asp 145 150
155 160 Glu Lys Asp Gln Val Asp Gln Ala Asp Gln Ala
Lys Gln Pro Ser Gln 165 170
175 His Gln Glu Pro Ser Gln Ser Ser Ala Lys Gln Asp Gln Glu Pro Ser
180 185 190 Asn Asp
Glu Lys Glu Lys Thr Thr Asn His Gln Ala Asp Ser Asp Val 195
200 205 Ser Asp Leu Leu Gly Glu Met
Asp Lys Glu Asp Gln Glu Gly Glu Asn 210 215
220 Val Asp Thr Asn Lys Asn Gln Ser Ser Ser Glu Gln
Gln Gln Thr Gln 225 230 235
240 Ala Asn Asp Asp Ser Ser Glu Arg Asn Lys Lys Tyr Ser Ser Ile Thr
245 250 255 Asp Ser Ala
Leu Asp Ser Ile Leu Asp Glu Tyr Ser Gln Asp Ala Lys 260
265 270 Lys Thr Glu Lys Asp Tyr Asn Lys
Ser Lys Asn Thr Ser His Thr Lys 275 280
285 Thr Ser Gln Ser Asp Asn Ala Asp Lys Asn Pro Gln Leu
Pro Thr Asp 290 295 300
Asp Glu Leu Lys His Gln Ser Lys Pro Ala Gln Ser Phe Glu Asp Asp 305
310 315 320 Ile Lys Arg Ser
Asn Thr Arg Ser Thr Ser Leu Phe Gln Gln Leu Pro 325
330 335 Glu Leu Asp Asn Gly Asp Leu Ser Ser
Asp Ser Phe Asn Val Val Asp 340 345
350 Ser Gln Asp Thr Arg Asp Phe Ile Gln Ser Ile Ala Lys Asp
Ala His 355 360 365
Gln Ile Gly Lys Asp Gln Asp Ile Tyr Ala Ser Val Met Ile Ala Gln 370
375 380 Ala Ile Leu Glu Ser
Asp Ser Gly Lys Ser Ser Leu Ala Gln Ser Pro 385 390
395 400 Asn His Asn Leu Phe Gly Ile Lys Gly Asp
Tyr Lys Gly Gln Ser Val 405 410
415 Thr Phe Asn Thr Leu Glu Ala Asp Ser Ser Asn His Met Phe Ser
Ile 420 425 430 Gln
Ala Gly Phe Arg Lys Tyr Pro Ser Thr Lys Gln Ser Leu Glu Asp 435
440 445 Tyr Ala Asp Leu Ile Lys
His Gly Ile Asp Gly Asn Pro Ser Ile Tyr 450 455
460 Lys Pro Thr Trp Lys Ser Glu Ala Leu Ser Tyr
Lys Asp Ala Thr Ser 465 470 475
480 His Leu Ser Arg Ser Tyr Ala Thr Asp Pro Asn Tyr Ser Lys Lys Leu
485 490 495 Asn Ser
Ile Ile Lys His Tyr His Leu Thr Ser Phe Asp Lys Glu Lys 500
505 510 Met Pro Asn Met Lys Lys Tyr
Asn Lys Ser Ile Gly Thr Asp Val Ser 515 520
525 Gly Asn Asp Phe Lys Pro Phe Thr Glu Thr Ser Gly
Thr Ser Pro Tyr 530 535 540
Pro His Gly Gln Cys Thr Trp Tyr Val Tyr His Arg Met Asn Gln Phe 545
550 555 560 Asp Ala Ser
Ile Ser Gly Asp Leu Gly Asp Ala His Asn Trp Asn Asn 565
570 575 Arg Ala Glu Ser Glu Gly Tyr Thr
Val Thr His Thr Pro Lys Asn His 580 585
590 Thr Ala Val Val Phe Glu Ala Gly Gln Leu Gly Ala Asp
Thr Gln Tyr 595 600 605
Gly His Val Ala Phe Val Glu Lys Val Asn Asp Asp Gly Ser Ile Val 610
615 620 Ile Ser Glu Ser
Asn Val Lys Gly Leu Gly Val Ile Ser Phe Arg Thr 625 630
635 640 Ile Asp Ala Gly Asp Ala Gln Asp Leu
Asp Tyr Ile Lys Gly Lys 645 650
655 34164PRTStaphylococcus epidermidis 34Met Ile Arg Phe Ala Arg
Leu Glu Asp Leu Gln Asp Ile Leu Thr Ile 1 5
10 15 Tyr Asn Asp Ala Ile Leu Asn Thr Thr Ala Val
Tyr Thr Tyr Lys Pro 20 25
30 Gln Gln Leu Asp Glu Arg Leu Gln Trp Tyr Gln Ser Lys Ala Lys
Ile 35 40 45 Asn
Glu Pro Ile Trp Val Tyr Glu Lys Glu Gly Lys Val Val Gly Phe 50
55 60 Ala Thr Tyr Gly Ser Phe
Arg Gln Trp Pro Ala Tyr Leu Tyr Thr Ile 65 70
75 80 Glu His Ser Ile Tyr Val His Gln Gln Tyr Arg
Gly Leu Gly Ile Ala 85 90
95 Ser Gln Leu Leu Glu Asn Leu Ile Arg Tyr Ala Lys Glu Gln Gly Tyr
100 105 110 Arg Thr
Ile Val Ala Gly Ile Asp Ala Ser Asn Met Asp Ser Ile Ala 115
120 125 Leu His Lys Lys Phe Asp Phe
Ser His Ala Gly Thr Ile Lys Asn Val 130 135
140 Gly Tyr Lys Phe Asp Arg Trp Leu Asp Leu Ser Phe
Tyr Gln Tyr Asp 145 150 155
160 Leu Ser Asp Ser 35952PRTStaphylococcus epidermidis 35Leu Ser Asn
Leu Ile Gln Asp Ile Lys Gln Ser Leu Tyr Lys Gly Phe 1 5
10 15 Ile Asp Lys Asp Ser Ser His Lys
Gly Asn Phe Val Pro Arg Leu Leu 20 25
30 Val Asn Asn Lys Glu Glu Asn Val Leu Ser Thr Ile Ile
Asp Gln Leu 35 40 45
His Asn Cys Gln Ser Phe Cys Ile Ser Val Ala Phe Ile Thr Glu Ser 50
55 60 Gly Leu Ala Ser
Leu Lys Ser His Phe Tyr Asp Leu Ser Lys Lys Gly 65 70
75 80 Val Lys Gly Arg Ile Ile Thr Ser Asn
Tyr Leu Gly Phe Asn Ser Pro 85 90
95 Lys Met Phe Glu Glu Leu Leu Lys Leu Glu Asn Val Glu Val
Lys Leu 100 105 110
Thr Asn Ile Glu Gly Phe His Ala Lys Gly Tyr Ile Phe Glu His His
115 120 125 Asn His Thr Ser
Phe Ile Ile Gly Ser Ser Asn Leu Thr Ser Asn Ala 130
135 140 Leu Lys Leu Asn Tyr Glu His Asn
Leu Phe Leu Ser Thr His Lys Asn 145 150
155 160 Gly Asp Leu Val Asn Asn Ile Lys Tyr Lys Phe Asp
Glu Leu Trp Asp 165 170
175 Ser Ser Phe Ser Leu Thr Asn Glu Trp Ile Asn Glu Tyr Lys Gln Ser
180 185 190 Phe Glu Tyr
Gln Thr Leu Gln Lys Val Phe Asp Asn Thr Val Val Gln 195
200 205 Asn Ser Asp Ile Lys Lys Phe Asn
Glu Ser Lys Leu Ile Lys Pro Asn 210 215
220 Leu Met Gln Glu His Ala Leu Lys Ser Leu Glu Ser Leu
Arg Asn Val 225 230 235
240 Gly Glu Glu Lys Gly Leu Ile Ile Ser Ala Thr Gly Thr Gly Lys Thr
245 250 255 Ile Leu Cys Ala
Leu Asp Val Arg Ala Tyr Ser Pro Asp Lys Phe Leu 260
265 270 Phe Ile Val His Asn Glu Gly Ile Leu
Asn Arg Ala Ile Glu Glu Phe 275 280
285 Lys Lys Val Phe Pro Tyr Glu Asp Glu Ser Asn Phe Gly Leu
Leu Thr 290 295 300
Gly Lys Arg Lys Asp His Asp Ala Lys Phe Leu Phe Ala Thr Ile Gln 305
310 315 320 Thr Leu Ser Lys Lys
Glu Asn Tyr Lys Leu Phe Asn Ser Asn His Phe 325
330 335 Asp Tyr Ile Val Phe Asp Glu Ala His Arg
Ile Ala Ala Ser Ser Tyr 340 345
350 Gln Lys Ile Phe Asn Tyr Phe Lys Pro Asn Phe Leu Leu Gly Met
Thr 355 360 365 Ala
Thr Pro Glu Arg Thr Asp Glu Leu Asn Ile Phe Glu Leu Phe Asn 370
375 380 Tyr Asn Ile Ala Tyr Glu
Ile Arg Leu Gln Glu Ala Leu Glu Ser Asn 385 390
395 400 Ile Leu Cys Pro Phe His Tyr Phe Gly Val Thr
Asp Tyr Ile Gln Asn 405 410
415 Glu Met Ser Gln Glu Asp Ala Phe Asn Leu Lys Tyr Leu Ala Ser Asn
420 425 430 Glu Arg
Val Glu His Ile Ile Lys Lys Thr Asn Tyr Tyr Gly Tyr Ser 435
440 445 Gly Asp Val Leu Lys Gly Leu
Ile Phe Val Ser Ser Arg Gly Glu Ala 450 455
460 Tyr Gln Leu Ala Asn Gln Leu Ser Lys Arg Gly Ile
Ser Ser Val Gly 465 470 475
480 Leu Thr Gly Lys Asp Ser Ile Ala Tyr Arg Ala Glu Thr Ile Gln Gln
485 490 495 Leu Lys Glu
Gly Ser Ile Asn Tyr Ile Ile Thr Val Asp Leu Phe Asn 500
505 510 Glu Gly Ile Asp Ile Pro Glu Ile
Asn Gln Val Val Met Leu Arg Pro 515 520
525 Thr Lys Ser Ser Ile Ile Phe Ile Gln Gln Leu Gly Arg
Gly Leu Arg 530 535 540
Lys Ser Thr Asn Lys Glu Phe Val Thr Val Ile Asp Phe Ile Gly Asn 545
550 555 560 Tyr Lys Thr Asn
Tyr Met Ile Pro Ile Ala Leu Ser Gly Asn Lys Ser 565
570 575 Gln Asn Lys Asp Asn Tyr Arg Lys Phe
Leu Thr Asp Thr Thr Val Leu 580 585
590 Asn Gly Val Ser Thr Ile Asn Phe Glu Glu Val Ala Lys Asn
Lys Ile 595 600 605
Tyr Asn Ser Leu Asp Ser Val Lys Leu Asn Gln Pro Lys Leu Ile Lys 610
615 620 Glu Ala Phe Asn Asn
Val Lys Asp Arg Ile Gly Lys Leu Pro Leu Leu 625 630
635 640 Met Asp Phe Ile Asn Asn Asp Ser Ile Asp
Pro Ser Val Ile Phe Ser 645 650
655 Arg Phe Lys Asn Tyr Tyr Glu Phe Leu Ile Lys Asn Lys Ile Ile
Glu 660 665 670 Asn
Glu Leu Ser Ile Asn Glu Phe Lys Asn Leu Thr Phe Leu Ser Arg 675
680 685 Gln Leu Thr Pro Gly Leu
Lys Lys Val Asp Ile Asp Val Leu Lys Glu 690 695
700 Ile Ile Gln Asn Asp Val Thr Tyr Glu Asn Leu
Thr Lys Lys Met Leu 705 710 715
720 Asn Ile Asn Asn Asp Ile Ser Glu Tyr Asp Ile Asn Thr Ser Leu Ser
725 730 735 Ile Leu
Asp Phe Thr Phe Phe Lys Lys Thr Ile Gly Lys Thr Tyr Gly 740
745 750 Leu Pro Leu Ile Gln Tyr Lys
Asp Asn Leu Ile Cys Leu Ala Asn Glu 755 760
765 Phe Lys Glu Ala Leu Asn Lys Pro Leu Phe Asn Thr
Phe Ile His Asp 770 775 780
Leu Ile Asp Leu Ala Asn Tyr Asn Asn Asp Arg Tyr Gln Asn Lys Lys 785
790 795 800 Asn Ser Leu
Ile Leu Tyr Asn Lys Tyr Ser Arg Glu Asp Phe Val Lys 805
810 815 Leu Leu Asn Trp Asp Lys Asp Glu
Ser Gly Thr Ile Asn Gly Tyr Arg 820 825
830 Met Lys His Arg Thr Leu Pro Leu Phe Ile Thr Tyr Asp
Lys His Glu 835 840 845
Asn Ile Ser Asp Asn Thr Lys Tyr Asp Asp Glu Phe Leu Ser Gln Asp 850
855 860 Glu Leu Lys Trp
Tyr Thr Arg Ser Asn Arg Lys Leu Thr Ser Pro Glu 865 870
875 880 Val Gln Asn Ile Leu Lys His Glu Glu
Ser Asn Thr Asp Met Tyr Ile 885 890
895 Phe Val Lys Lys Arg Asp Asp Glu Gly Lys Tyr Phe Tyr Tyr
Leu Gly 900 905 910
Lys Ala Lys Tyr Ile Lys Gly Thr Glu Lys Gln Asp Tyr Met Pro Asn
915 920 925 Gly Asn Ser Val
Val Thr Met His Leu Ser Met Asn Thr Ser Ile Arg 930
935 940 Asp Asp Ile Tyr Arg Tyr Ile Thr
945 950 36325PRTStaphylococcus epidermidis 36Met
Thr Lys Ser Gln Gln Lys Val Ser Ser Ile Glu Lys Leu Ser Asn 1
5 10 15 Gln Glu Gly Ile Ile Ser
Ala Leu Ala Phe Asp Gln Arg Gly Ala Leu 20
25 30 Lys Arg Met Met Ala Glu His Gln Ser Glu
Thr Pro Thr Val Glu Gln 35 40
45 Ile Glu Gln Leu Lys Val Leu Val Ser Glu Glu Leu Thr Gln
Tyr Ala 50 55 60
Ser Ser Ile Leu Leu Asp Pro Glu Tyr Gly Leu Pro Ala Ser Asp Ala 65
70 75 80 Arg Asn Asn Asp Cys
Gly Leu Leu Leu Ala Tyr Glu Lys Thr Gly Tyr 85
90 95 Asp Val Asn Ala Lys Gly Arg Leu Pro Asp
Cys Leu Val Glu Trp Ser 100 105
110 Ala Lys Arg Leu Lys Glu Gln Gly Ala Asn Ala Val Lys Phe Leu
Leu 115 120 125 Tyr
Tyr Asp Val Asp Asp Thr Glu Glu Ile Asn Ile Gln Lys Lys Ala 130
135 140 Tyr Ile Glu Arg Ile Gly
Ser Glu Cys Val Ala Glu Asp Ile Pro Phe 145 150
155 160 Phe Leu Glu Val Leu Thr Tyr Asp Asp Asn Ile
Pro Asp Asn Lys Ser 165 170
175 Ala Glu Phe Ala Lys Val Lys Pro Arg Lys Val Asn Glu Ala Met Lys
180 185 190 Leu Phe
Ser Glu Asp Arg Phe Asn Val Asp Val Leu Lys Val Glu Val 195
200 205 Pro Val Asn Met Asn Phe Val
Glu Gly Phe Ser Glu Gly Glu Val Val 210 215
220 Tyr Thr Lys Glu Glu Ala Ala Gln His Phe Arg Asp
Gln Asp Ala Ala 225 230 235
240 Thr His Leu Pro Tyr Ile Tyr Leu Ser Ala Gly Val Ser Ala Glu Leu
245 250 255 Phe Gln Asp
Thr Leu Lys Phe Ala His Asp Ser Gly Ala Gln Phe Asn 260
265 270 Gly Val Leu Cys Gly Arg Ala Thr
Trp Ser Gly Ala Val Lys Val Tyr 275 280
285 Ile Glu Glu Gly Glu Gln Ala Ala Arg Glu Trp Leu Arg
Thr Val Gly 290 295 300
Phe Lys Asn Ile Asp Asp Leu Asn Thr Val Leu Lys Thr Thr Ala Thr 305
310 315 320 Ser Trp Lys Asn
Lys 325 37382PRTStaphylococcus epidermidis 37Leu Met Lys
Lys Val Met Thr Ile Phe Gly Thr Arg Pro Glu Ala Ile 1 5
10 15 Lys Met Ala Pro Leu Ile Lys Thr
Leu Glu Lys Asp Ser Asp Leu Glu 20 25
30 Pro Val Val Val Val Thr Ala Gln His Arg Glu Met Leu
Asp Ser Val 35 40 45
Leu Asn Thr Phe Asn Ile Ser Ala Asp Tyr Asp Leu Asn Ile Met Lys 50
55 60 Ala Gly Gln Thr
Leu Ser Glu Val Thr Ser Glu Ala Met Lys Lys Leu 65 70
75 80 Glu Asp Ile Ile Gln Lys Glu Val Pro
Asp Met Val Leu Val His Gly 85 90
95 Asp Thr Val Thr Thr Phe Ser Gly Ala Leu Ala Ala Phe Tyr
Ser Gln 100 105 110
Thr Pro Ile Gly His Val Glu Ala Gly Leu Arg Ser Tyr Asn Lys Tyr
115 120 125 Ser Pro Tyr Pro
Glu Glu Ile Asn Arg Gln Met Val Gly Val Met Ala 130
135 140 Asp Leu His Phe Ala Pro Thr Tyr
Asn Ala Ala Gln Asn Leu Val Lys 145 150
155 160 Glu Gly Lys Leu Ala Lys His Ile Ala Ile Thr Gly
Asn Thr Ala Ile 165 170
175 Asp Ala Met Asn Tyr Thr Ile Asp His Gln Tyr Ser Ser Ser Ile Ile
180 185 190 Gln Lys His
Lys Asn Lys Asn Phe Ile Leu Leu Thr Ala His Arg Arg 195
200 205 Glu Asn Ile Gly Lys Pro Met Ile
Asn Val Phe Lys Ala Ile Arg Lys 210 215
220 Leu Ile Asp Glu Tyr Gln Asp Leu Ala Leu Val Tyr Pro
Met His Met 225 230 235
240 Asn Pro Lys Val Arg Asp Ile Ala Gln Lys Tyr Leu Gly Asn His Pro
245 250 255 Arg Ile Glu Leu
Ile Glu Pro Leu Asp Val Val Asp Phe His Asn Phe 260
265 270 Ala Lys Gln Ala Tyr Leu Ile Met Thr
Asp Ser Gly Gly Ile Gln Glu 275 280
285 Glu Ala Pro Ser Leu His Lys Pro Val Leu Val Leu Arg Asp
Ser Thr 290 295 300
Glu Arg Pro Glu Gly Val Asp Ala Gly Thr Leu Arg Val Ile Gly Thr 305
310 315 320 Asn Glu Glu Asp Val
Tyr Asn Glu Thr Lys Lys Leu Ile Glu Asn Pro 325
330 335 Asp Leu Tyr Gln Lys Met Ser Gln Ala Val
Asn Pro Tyr Gly Asp Gly 340 345
350 Gln Ala Ser Glu Arg Ile Val Gln His Ile Lys Tyr Tyr Phe Asn
Leu 355 360 365 Thr
Asn Asp Arg Pro Asn His Phe Glu Phe Thr Lys Asp Leu 370
375 380 382757PRTStaphylococcus epidermidis
38Val Ala Ser Asp Phe Asn Ile Gly Ile Leu Ser Thr Leu Glu Ile Asp 1
5 10 15 Ser Ser Ser Ser
Arg Lys Lys Ile Asn Asp Thr Leu Lys Asn Ile Glu 20
25 30 Ala Asn Ile Asn Ser Ile Lys Ala Asp
Leu Glu Val Ser Asp Thr Lys 35 40
45 Lys Ser Glu Asn Asn Ala Ile Lys Ser Ala Asn Asn Val Ile
Arg Asn 50 55 60
Ile Asn Ser Asn Gly Asn Leu Lys Lys Leu Asn Val Glu Leu Asp Val 65
70 75 80 Asn Leu Thr Lys Ser
Arg Gln Asn Ile Gln Arg Ala Leu Ser Thr Leu 85
90 95 Ser Lys Asp Phe Lys Asn Lys Lys Ile Asp
Val Glu Val Asn Ala Lys 100 105
110 Ala Asn Lys Asn Ser Ile Gly Gln Val Lys Asn Ser Ile Ser Lys
Gly 115 120 125 Ala
Ser Gln Pro Leu Glu Ile Lys Glu Ser Pro Ser Ser Arg Ser Thr 130
135 140 Ser Arg Asp Ile Lys Glu
Gln Gln Ser Leu Met Thr Gly Leu Ala Asn 145 150
155 160 Ser Tyr Lys Asn Leu Asp Asp Leu Thr Arg Ala
Leu Asn Thr Ser Thr 165 170
175 Phe Glu Gly Leu Arg Lys Thr Val Lys Glu Ile Lys Asn Ala Asp Asn
180 185 190 Ser Leu
Lys Ser Tyr Gln Val Thr Leu Glu Arg Val Asn Gln Glu Gly 195
200 205 Lys Lys Leu Gly Ser Gln Arg
Phe Asp Tyr Thr Pro Ser Ala Asn Gly 210 215
220 Leu Lys Leu Asn Lys Thr Gln Leu Thr Asp Gln Thr
Asp Lys Ala Arg 225 230 235
240 Lys Glu Glu Asn Ala Ala Ile Asn Lys Leu Leu Glu Asn Glu Val Ser
245 250 255 Lys Tyr Asp
Arg Leu Leu Asn Lys Gly Lys Ile Asp Ile Lys Gln His 260
265 270 Gln Thr Leu Leu Gln Thr Leu Arg
Gln Ile Thr Asn Glu Lys Ser Lys 275 280
285 Ala Asn Gln Phe Asn Arg Thr Asp Phe Asn Arg Val Ala
Lys Ala Ala 290 295 300
Ala Asp Glu Ala Lys Glu Tyr Gln Tyr Gln Asn Asp Met Leu Arg Lys 305
310 315 320 Lys Leu Ala Leu
Thr Ser Gln Ile Glu Arg Ile Glu Asn Arg Met Ala 325
330 335 Ala Thr Ile Asp Lys Gln Gln Thr Asn
Ala Leu Lys Asn Gln Leu Asn 340 345
350 Ser Leu Gly Asn Asn Arg Thr Pro Phe Gly Lys Glu Ala Ala
Phe His 355 360 365
Met Asn Gln Ile Gln Asp Lys Val Arg Gln Ile Ser Ala Glu Ala Glu 370
375 380 Arg Ala Thr Arg Thr
Gln Leu Ser Phe Val Asp Gln Phe Arg Glu Ala 385 390
395 400 Met Thr Lys Phe Pro Val Trp Met Gly Ala
Thr Thr Leu Phe Phe Gly 405 410
415 Ala Ile Asn Gly Ala Lys Glu Met Leu Asp Val Ile Thr Glu Ile
Asp 420 425 430 Gly
Lys Met Ile Thr Leu Ala Lys Val Thr Gly Asp Asp Asn Ala Leu 435
440 445 Gln Gln Thr Phe Ile Asp
Ala Asn Asn Ala Ala Ser Gln Phe Gly Gln 450 455
460 Thr Leu Gly Ser Val Leu Asp Val Tyr Ala Glu
Phe Ala Arg Gln Gly 465 470 475
480 Val Lys Gly Asn Glu Leu Ser Gln Phe Ser Asn Ala Ala Leu Ile Ala
485 490 495 Ala Asn
Val Gly Glu Ile Asp Ala Lys Gln Ala Ser Glu Tyr Leu Thr 500
505 510 Ser Met Ser Ala Gln Trp Glu
Thr Thr Gly Asn Gln Ala Met Arg Gln 515 520
525 Val Asp Ser Leu Asn Glu Val Ser Asn Lys Tyr Ala
Thr Thr Val Glu 530 535 540
Lys Leu Ala Gln Gly Gln Ala Lys Ala Gly Ser Thr Ala Lys Ser Met 545
550 555 560 Gly Leu Thr
Phe Asp Glu Thr Asn Gly Ile Ile Gly Ala Leu Thr Ala 565
570 575 Lys Thr Lys Gln Ser Gly Asp Glu
Ile Gly Asn Phe Met Lys Ala Thr 580 585
590 Leu Pro Lys Leu Tyr Ser Gly Lys Gly Lys Ser Thr Ile
Glu Gly Leu 595 600 605
Gly Ile Ser Met Lys Asp Glu Asn Gly Gln Leu Lys Ser Ala Ile Ser 610
615 620 Leu Leu Glu Glu
Val Ser Gln Lys Thr Lys Asn Leu Glu Lys Asp Gln 625 630
635 640 Lys Ala Ala Val Ile Asn Gly Leu Gly
Gly Thr Tyr His Tyr Gln Arg 645 650
655 Met Gln Val Leu Leu Asp Asp Leu Ser Lys Thr Asp Gly Leu
Tyr Lys 660 665 670
Gln Ile Lys Glu Ser Ser Glu Ser Ser Ala Gly Ser Ala Leu Gln Glu
675 680 685 Asn Ala Lys Tyr
Met Glu Ser Ile Glu Ala Lys Val Asn Gln Ala Lys 690
695 700 Thr Ala Phe Glu Gln Phe Ala Leu
Ala Val Gly Glu Thr Phe Ala Lys 705 710
715 720 Ser Gly Met Leu Asp Gly Ile Arg Met Val Thr Gln
Leu Leu Thr Gly 725 730
735 Leu Thr His Gly Ile Thr Glu Leu Gly Thr Thr Ala Pro Ile Phe Gly
740 745 750 Met Val Gly
Gly Ala Ala Ser Leu Met Ser Lys Asn Val Arg Ser Gly 755
760 765 Phe Glu Gly Ala Arg Ser Ser Val
Ala Asn Tyr Ile Thr Glu Val Asn 770 775
780 Lys Leu Ala Lys Val Asn Asn Ala Ala Gly Gln Val Val
Gly Leu Gln 785 790 795
800 Lys Val Gln Thr Gly Thr Ala Ser Gln Leu Gln Phe Asn Lys Asn Gly
805 810 815 Glu Tyr Asp Lys
Ala Ala Ser Gln Ala Lys Ala Ala Glu Gln Ala Thr 820
825 830 Tyr Gln Phe Ser Lys Ala Gln Lys Asp
Val Ser Ala Ser Ala Met Ile 835 840
845 Ala Ser Gly Ala Ile Asn Lys Thr Thr Val Ala Thr Thr Ala
Ser Thr 850 855 860
Val Ala Thr Arg Ala Ala Thr Leu Ala Val Asn Gly Leu Lys Leu Ala 865
870 875 880 Phe Arg Gly Leu Leu
Ala Ala Thr Gly Val Gly Leu Ala Ile Thr Gly 885
890 895 Val Ser Phe Val Leu Glu Lys Val Val Gly
Ser Phe Asn Ala Ala Ser 900 905
910 Gln Ala Ala Glu Gln Tyr Lys Gln Lys Gln Glu Gln Thr Lys Gln
Ala 915 920 925 Ile
Ala Ser Met Ser Asn Gly Glu Ile Asn Ser Leu Ile Ser Ser Tyr 930
935 940 Asp Lys Leu Gln Gln Lys
Met Asn Ser Gly Ser Ala Phe Asn Thr Ala 945 950
955 960 Glu Ala Glu Lys Tyr Lys Glu Val Thr Ser Gln
Leu Ala Asn Ile Phe 965 970
975 Pro Asp Leu Val Thr Gly Glu Asn Arg Tyr Gly Lys Glu Met Ala Gly
980 985 990 Asn Lys
Glu Val Met Lys Gln Lys Ile Glu Leu Ile Lys Gln Glu Met 995
1000 1005 Glu Leu Glu Arg Gln
Lys Asn Ala Ile Lys Gln Lys Glu Glu Gln 1010 1015
1020 Asp Ala Tyr Ile Lys Glu Gln Asp Ser Leu
Ala Lys Lys Asn Arg 1025 1030 1035
Gly Gln Lys Trp Tyr Gln Leu Gly Gln Thr Pro Glu Leu Lys Leu
1040 1045 1050 Gln Glu
Gln Ala Arg Pro Thr Thr Val Ser Asp Asn Ser Asn Ile 1055
1060 1065 Asn Lys Ile Asn Ala Thr Ile
Gln Lys Val Lys Ser Gln Ala Gln 1070 1075
1080 Ala Glu Lys Ala Leu Glu Gln Val Asp Lys Gln Leu
Ala Gln Ser 1085 1090 1095
Gln Thr Lys Asn Arg Gln Asn Glu Val Gln His Leu Gln Lys Val 1100
1105 1110 Arg Gln Ala Leu Gln
Asp Tyr Ile Thr Lys Thr Gly Gln Ala Asn 1115 1120
1125 Gln Ala Thr Arg Ala Ala Val Leu Thr Ala
Gln Gln Gln Phe Thr 1130 1135 1140
Asn Gln Ile Ala Thr Met Lys Lys Leu Gly Thr Thr Gly Gln Gln
1145 1150 1155 Val Met
Thr Thr Ile Ser Asn Ser Val Ala Lys Thr Ala Lys Ser 1160
1165 1170 Gly Lys Ala Ala Gln Ala Thr
Phe Lys Ser Phe Glu Thr Ser Leu 1175 1180
1185 Val Lys Ser Ser Ser Phe Lys Ser Lys Met Ala Ser
Tyr Glu Ala 1190 1195 1200
Ser Val Lys Lys Phe Lys Asn Ala Ala Asn Gln Ser Ala Lys Ile 1205
1210 1215 Ala Ala Leu Lys Asp
Val Glu Arg Asp Tyr Ser Lys Val Ala Lys 1220 1225
1230 Gly Ile Met Gln Ala Ala Lys Ala Ala Asn
Met Ser Lys Ser Gln 1235 1240 1245
Met Lys Asp Leu Lys Lys Ser Leu Gln Gln Asn Ile Gln Ala Glu
1250 1255 1260 Thr Gly
Phe Arg Ala Ser Val Ser Lys Ala Gly Lys Val Thr Ile 1265
1270 1275 Asp Gln Ser Lys Lys Ile Lys
Gln Asn Thr Ala Glu Thr Arg Arg 1280 1285
1290 Asn Ser Ser Ala Lys Leu Gln Asn Ala Asp Ala Ser
Asp Gln Ala 1295 1300 1305
Ser Glu Glu Asn Lys Glu Leu Ala Asp Ser Met Arg Ala Gly Ile 1310
1315 1320 Glu Ser Ser Gln Leu
Leu Gly Lys Ala Met Gly Glu Leu Gln Ser 1325 1330
1335 Gln Gly Thr Leu Ser Thr Glu Thr Leu Ile
Glu Leu Thr Glu Lys 1340 1345 1350
Tyr Gly Asp Glu Ile Leu Ala Val Ala Gly Asp Gln Glu Ala Leu
1355 1360 1365 Ser Asn
Phe Ile Met Gln Lys Gln Asn Glu Glu Thr Asp Asn Tyr 1370
1375 1380 Asn Lys Asn Leu Lys Thr Lys
Leu Glu Asn Ser Ser Ser Tyr Tyr 1385 1390
1395 Lys Ala Val Ala Gly Ala Asp Ser Ala Leu Ser Asn
Tyr Leu Met 1400 1405 1410
Glu Asn Tyr Gly Ile Asp Thr Lys Asn Tyr Lys Ser Leu Thr Glu 1415
1420 1425 Val Lys Ala Lys Ile
Thr Asp Leu Tyr Tyr Asn Gly Ser Ala Glu 1430 1435
1440 Glu Gln Ala Lys Val Val Asp Ala Ile Ala
Lys Ala Tyr His Ile 1445 1450 1455
Asp Leu Ser Asn Tyr Gly Ser Leu Asn Glu Lys Lys Glu Ala Leu
1460 1465 1470 Glu Asn
Gln Leu Met Lys Ile Leu Gly Ser Lys Trp Lys Lys Tyr 1475
1480 1485 Ile Gly Ser Val Ala Lys Asp
Met Lys Ser Leu Gly Val Asp Ala 1490 1495
1500 Gly Glu Val Gly Ala Asp Gly Phe Asp Asp Ser Lys
Met Phe Asn 1505 1510 1515
Pro Gly Ala Leu Ile Gly Ala Asn Asn Phe Gln Asn Val Ser Asn 1520
1525 1530 Leu Ser Asn Ile Ser
Asn Val Phe Asn Ser Leu Asn Gly Ala Phe 1535 1540
1545 Asn Glu Ala Lys Asn Glu Ala Ala Gly Val
Ser Arg Gly Leu Asp 1550 1555 1560
Asp Ala Ala Ser Gly Leu Lys Asp Val Gly Asp Ser Ala Gly Ser
1565 1570 1575 Ala Gly
Ser Gly Leu Gly Lys Thr Ala Lys Gly Ala Asp Lys Ala 1580
1585 1590 Ser Asp Ser Leu Asp Gly Thr
Asn Lys Glu Leu Glu Lys Thr Lys 1595 1600
1605 Glu Lys Ala Glu Glu Ala Gly Val Thr Val Lys Gln
Leu Tyr Lys 1610 1615 1620
Gln Phe Thr Val Thr Thr Tyr Val Ala Asp Lys Leu Ser Met Ala 1625
1630 1635 Leu Asp Lys Ile Asn
Asn Lys Leu Glu Lys Gln Lys Leu Leu Thr 1640 1645
1650 Glu Lys Tyr Ala Thr Trp Ser Ser Ser Tyr
Arg Asn Ser Leu Lys 1655 1660 1665
Ala Glu Asn Lys Leu Leu Asp Glu Lys Thr Ala Lys Ile Lys Lys
1670 1675 1680 Gln Ile
Glu Ser Met Lys Glu Gln Ile Ala Gln Gly Lys Val Ile 1685
1690 1695 Glu Tyr Gly Leu Val Gly Lys
Asp Ile Asn Val Pro Tyr Tyr Glu 1700 1705
1710 Tyr Thr Ala Asn Asn Leu Asp Asp Gly Glu Thr Gly
Arg Ile Ser 1715 1720 1725
Arg Tyr Thr Gly Asn Ser Thr Gln Ala Lys Val Trp Asn Phe Phe 1730
1735 1740 Lys Ser Lys Gly Leu
Ser Asp His Ala Val Ala Gly Ile Met Gly 1745 1750
1755 Asn Met Glu Arg Glu Ser Arg Phe Lys Pro
Gly Ala Gln Glu Gln 1760 1765 1770
Gly Gly Thr Gly Ile Gly Leu Val Gln Leu Ser Phe Gly Arg Ala
1775 1780 1785 Asn Asn
Leu Arg Asn Tyr Ala Ala Arg Arg Gly Lys Ser Trp Lys 1790
1795 1800 Asp Leu Asn Thr Gln Leu Asp
Phe Ile Trp Lys Glu Leu Asn Thr 1805 1810
1815 Thr Glu Val Asn Ala Leu Arg Gly Leu Lys Ser Ala
Thr Ser Val 1820 1825 1830
Ile Gly Ala Ala Asn Ser Phe Gln Arg Leu Tyr Glu Arg Ala Gly 1835
1840 1845 Val Val Ala Gln Gly
Glu Arg Asn Ala Ala Ala Lys Lys Tyr Tyr 1850 1855
1860 Arg Gln Phe Lys Gly Thr Asn Gly Ser Ser
Gly Phe Leu Ser Gly 1865 1870 1875
Gly Val Val Ala Gly Thr Asn Gly Lys Pro Leu Thr Ser Asp Arg
1880 1885 1890 Asn Ala
Tyr Ile Leu Asp Arg Gln Phe Gly Arg Tyr Asn Gly Gly 1895
1900 1905 Gly Val His His Gly Arg Asp
Ile Thr Ser Ala Thr Ile Asn Gly 1910 1915
1920 Ser Pro Ile Lys Ala Ala Arg Ser Gly Ile Val Thr
Phe Lys Gly 1925 1930 1935
Trp Thr Gly Gly Gly Asn Thr Leu Ser Ile Phe Asp Gly Lys Asn 1940
1945 1950 Thr Tyr Thr Tyr Met
His Met Lys Asn Pro Ala Arg Val Val Lys 1955 1960
1965 Gly Gln Arg Val Lys Ala Gly Gln Ile Val
Gly Asn Val Gly Thr 1970 1975 1980
Thr His Asp Arg Arg Leu Gly Gly Phe Ser Thr Gly Pro His Leu
1985 1990 1995 His Val
Gln Val Asn Leu Gly Lys Thr Pro Ser Gly Thr Phe Met 2000
2005 2010 Asn Thr Phe Asn Gly Ala His
Arg Ala Val Asp Pro Val Lys Tyr 2015 2020
2025 Gly Tyr Thr Arg Val Ser Gly Gly Gly Ser Leu Asn
Leu Gly Ser 2030 2035 2040
Leu Thr Ser Gly His Ser Ala Met Ser Gly Ser Ile Ser Ala Ala 2045
2050 2055 Met Ala Glu Asp Leu
Asn Glu Ala Glu Gln Glu Arg Leu Asn Lys 2060 2065
2070 Ile Glu Gln Ala Ile Asn Ala His Asn Lys
Ala Glu Glu Met Lys 2075 2080 2085
Gln Lys Val Asp Glu Leu Arg Lys Thr Leu Met Asp Lys Gln Leu
2090 2095 2100 Glu Glu
Val Gln Thr Ala Lys Glu Lys Ser Glu Asn Leu Tyr Asn 2105
2110 2115 Ile Gln Lys Ser His Val Glu
Glu Tyr Asp His Trp Arg Thr Leu 2120 2125
2130 Gln Glu Ala Arg Ser Ala Lys Leu Glu Tyr Glu Leu
Asn Lys Ile 2135 2140 2145
Glu Phe Glu Lys Gly Arg Asn Thr Lys Glu Trp Arg Asn Lys Asn 2150
2155 2160 Lys Gln Leu Gln Ala
Ser Arg Gln Leu Glu Val Asn Phe Glu Asp 2165 2170
2175 Ser Lys Ile Gln Tyr Ile Asn Lys Ala Leu
Lys Lys Asn Ala Asn 2180 2185 2190
Lys Ile Phe Gly Lys Asn Thr Val Asn Arg Asp Glu Phe Glu Thr
2195 2200 2205 Met Lys
Arg Asp Ala Gln Gln Asn Ile Arg Asp Leu Lys Ala Gly 2210
2215 2220 Ile Gln Thr Ala Ser Gly Glu
Ile Ala Thr Ser Met Ile Asp Gln 2225 2230
2235 Ile Leu Asp Glu Tyr Glu Asp Arg Val Gly Lys Val
Ser Ala Lys 2240 2245 2250
Ile Glu Lys Met Gly Lys Gln Lys Glu Lys Leu Asp Leu Ala Asp 2255
2260 2265 Asn Lys Gln Ala Leu
Lys Ser Ser Ser Leu Ser Arg Gln Gln Ala 2270 2275
2280 Lys Asp Ser Lys Ser Leu Ala Ser Tyr Ile
Asn Phe Tyr Ile Lys 2285 2290 2295
Gln Leu Glu Arg Gln Leu Lys Leu Thr Gly Lys Asn His Glu Leu
2300 2305 2310 Gln Gln
Lys Val Lys Glu Gln Ile Lys Glu Met Lys Val Ala Tyr 2315
2320 2325 Asp Asp Ala Thr Leu Ala Ala
His Gln Tyr Ile Thr Glu Ala Ala 2330 2335
2340 Glu Val Asp Thr Glu Arg Gln Leu Gln Leu Asn Ala
Asn Arg Leu 2345 2350 2355
Arg Asp Ala Gln Asn Glu Leu Ser Lys Ala Asp Tyr Lys Ala Gly 2360
2365 2370 Phe Ile Ser Gln Glu
Tyr Gln Ile Asp Leu Tyr Arg Lys Asn Gln 2375 2380
2385 Glu Ala Lys Phe Lys Gly Tyr Leu Lys Glu
Lys Glu Ala Leu Glu 2390 2395 2400
Gln Asn Lys Ser Glu Leu Gln Asp Met Tyr Glu Ile Tyr Lys Ser
2405 2410 2415 Val Pro
Thr Gln Ala Gln Lys Ile Lys Glu Ala Leu Ile Glu Thr 2420
2425 2430 Lys Asn Ala Ile Arg Asp Asn
Asn Lys Gly Leu Tyr Asp Leu Lys 2435 2440
2445 Tyr Asp Met Ala Asn Ser Val Ile Asn Gln Ile Lys
Asp Ile Tyr 2450 2455 2460
Ser Lys Gln Leu Glu Val Ala Thr Lys Ala Tyr Asp Asp Glu Tyr 2465
2470 2475 Lys Ala Tyr Glu Lys
Met Ile Asn Lys Lys Leu Lys Leu Ile Asp 2480 2485
2490 Asp Glu Gln Thr Gln Glu Ser Phe Asn Lys
Asp Val Arg Asp Arg 2495 2500 2505
Thr Glu Ala Met Asp Lys Ile Arg Asp Glu Ile Ala Gln Arg Ser
2510 2515 2520 Gly Asp
Asp Ser Leu Ala Asn Gln Lys Lys Leu Lys Asp Leu Arg 2525
2530 2535 Glu Gln Leu Lys Gln Gln Glu
Glu Asp Tyr Thr Met Phe Ile Asn 2540 2545
2550 Asn Lys Asn Arg Asp Asp Arg Arg Lys Ala Leu Gln
Asp Glu Leu 2555 2560 2565
Asn Asp Lys Asn Glu Gln Ile Gln Glu Gln Lys Glu Asp Leu Asn 2570
2575 2580 Lys Ala Phe Gln Asp
Leu Ile Gly Asp Thr Arg Arg Phe Asn Ala 2585 2590
2595 Ile Gln Glu Ser Leu Met Glu Gly Gln Ile
Asp Lys Tyr Lys Ser 2600 2605 2610
Leu Ile Ala Asp Leu Thr Lys Tyr Val Asn Asp Asn Met Lys Glu
2615 2620 2625 Ile Gly
Arg Ser Thr Ser Glu Gly Ile Leu Asp Gly Leu Ala Ala 2630
2635 2640 Ser Phe Lys Gly Leu Ser Ser
Leu Ser Lys Glu Leu Gln Lys Gln 2645 2650
2655 Glu Lys Asn Asn Leu Asn Pro Val Pro Asn Ser Lys
Leu Lys Pro 2660 2665 2670
Thr Lys Val Asp Glu Ala Thr Ile Ala Ala Ile Lys Lys Val Asn 2675
2680 2685 Gly Leu Ser Pro Thr
Thr Ile Leu Gln Gly Leu Asp Ile Lys Pro 2690 2695
2700 Val Asn Leu Pro Lys Asp Val Lys Pro Ser
Lys Thr Val Thr Asn 2705 2710 2715
Asn Asn Lys Thr Thr Ala Lys Ala Leu Val Asn Ile Glu Asn Phe
2720 2725 2730 Asn Gly
Thr Lys Ala Glu Ala Asp Lys Leu Ala Asn Asn Leu Ala 2735
2740 2745 Thr Ala Met Arg Lys Gln Gly
Val Leu 2750 2755 39319PRTStaphylococcus
epidermidis 39Met Ala Glu Thr Lys Lys Gln Phe Glu Asn Lys Val Ser Val Thr
Gly 1 5 10 15 Thr
Leu Lys Ser Leu Glu Val Thr Asp Leu Val Thr Ala Lys Lys Val
20 25 30 Pro Met Lys Ile Ala
Thr Leu Arg Ile Glu Thr Gly Lys Gly Glu Thr 35
40 45 His Thr Ala Lys Met Met Ala Val Lys
His Phe Glu Arg Asp Gly Val 50 55
60 Lys Thr Glu Asn Lys Ser Tyr Ser Ala Ile Glu Thr Met
Gln Lys Glu 65 70 75
80 Tyr Val Ser Ile Glu Asp Ile Ser Glu Asn Lys Ala Gly Glu Asp Ala
85 90 95 Glu Ala Thr Val
Val Asn Val Asn Gly Ser Met Ser Ile Asn Met Tyr 100
105 110 Lys Asn Lys Ala Glu Lys Val Val Glu
Thr Asn Gln Ile Glu Ala Arg 115 120
125 Phe Val Asn Arg Val Lys Asp Val Glu Asn Ala Gln Phe Gly
Ala Glu 130 135 140
Phe Thr Leu Gln Thr Tyr Leu Ile Ser Lys Gly Gln Arg Val Ile Lys 145
150 155 160 Asn Glu Glu Glu Thr
Asp Glu Val Thr Phe Lys Ala Ala Thr Ile Asp 165
170 175 Tyr Arg Gly Gln Ala His Pro Phe Glu Phe
Thr Ala Asn Asp Glu Tyr 180 185
190 Gly Val Ala Glu Trp Ile Glu Asp Glu Val Glu Leu Gly Gln Ser
Leu 195 200 205 Ile
Leu Gln Gly Leu Ile Ile Asn Lys Phe Ile Val Glu Gln Val Glu 210
215 220 Arg Ser Ser Ser Ala Gly
Ile Gly Lys Ala Ile Val Asp Thr Arg Arg 225 230
235 240 Glu Val Glu Arg Lys Leu Leu Val Glu Gly Ile
Ile Pro Ile Glu Asp 245 250
255 Glu Asp Asp Pro Lys Tyr Ile Thr Glu Glu Glu Ile Lys Glu Ala Asn
260 265 270 Lys Lys
Tyr Glu Asp Lys Lys Thr Glu Val Glu Ala Ser Thr Asn Gly 275
280 285 Thr Lys Lys Thr Glu Val Lys
Lys Gly Val Ala Thr Ser Lys Pro Lys 290 295
300 Ala Ala Lys Pro Thr Ile Glu Ile Asp Asp Asp Asp
Leu Pro Phe 305 310 315
40797PRTStaphylococcus epidermidis 40Leu Pro Gln Ala Lys Lys Arg Thr Ser
Thr Lys Arg Lys Gly Asn Lys 1 5 10
15 Lys Thr Asn Lys Lys Lys Gln Asn Glu Thr Pro Leu Arg Tyr
Ile Phe 20 25 30
Ser Ile Ile Val Val Ile Leu Ile Ile Leu Gly Ala Phe Gln Leu Gly
35 40 45 Ile Ile Gly Arg
Met Ile Asp Ser Phe Phe Asn Tyr Leu Phe Gly Met 50
55 60 Ser Arg Tyr Leu Thr Tyr Ile Leu
Val Leu Ile Ala Thr Ile Phe Ile 65 70
75 80 Thr Tyr Ser Lys Gln Ile Pro Arg Thr Arg Arg Ser
Ile Gly Ala Ile 85 90
95 Val Leu Gln Leu Ala Leu Leu Phe Ile Ala Gln Leu Tyr Phe His Phe
100 105 110 Ser His Asn
Ile Thr Ser Gln Arg Glu Pro Val Leu Ser Phe Val Tyr 115
120 125 Lys Ala Tyr Glu Gln Thr His Phe
Pro Asn Phe Gly Gly Gly Leu Ile 130 135
140 Gly Phe Tyr Leu Leu Lys Leu Phe Ile Pro Leu Ile Ser
Ile Val Gly 145 150 155
160 Val Ile Ile Ile Thr Ile Leu Leu Leu Ala Ser Ser Phe Ile Leu Leu
165 170 175 Leu Asn Leu Arg
His Arg Asp Val Thr Lys Ser Leu Phe Asp Asn Leu 180
185 190 Lys Ser Ser Ser Asn His Ala Ser Glu
Ser Ile Lys Gln Lys Arg Glu 195 200
205 Gln Asn Lys Ile Lys Lys Glu Glu Lys Ala Gln Leu Lys Glu
Ala Lys 210 215 220
Ile Glu Arg Lys Lys Gln Lys Lys Ser Arg Gln Asn Asn Asn Val Ile 225
230 235 240 Lys Asp Val Ser Asp
Phe Pro Glu Ile Ser Gln Ser Asp Asp Ile Pro 245
250 255 Ile Tyr Gly His Asn Glu Gln Glu Asp Lys
Arg Pro Asn Thr Ala Asn 260 265
270 Gln Arg Gln Lys Arg Val Leu Asp Asn Glu Gln Phe Gln Gln Ser
Leu 275 280 285 Pro
Ser Thr Lys Asn Gln Ser Ile Asn Asn Asn Gln Pro Ser Thr Thr 290
295 300 Ala Glu Asn Asn Gln Gln
Gln Ser Gln Ala Glu Gly Ser Ile Ser Glu 305 310
315 320 Ala Gly Glu Glu Ala Asn Ile Glu Tyr Thr Val
Pro Pro Leu Ser Leu 325 330
335 Leu Lys Gln Pro Thr Lys Gln Lys Thr Thr Ser Lys Ala Glu Val Gln
340 345 350 Arg Lys
Gly Gln Val Leu Glu Ser Thr Leu Lys Asn Phe Gly Val Asn 355
360 365 Ala Lys Val Thr Gln Ile Lys
Ile Gly Pro Ala Val Thr Gln Tyr Glu 370 375
380 Ile Gln Pro Ala Gln Gly Val Lys Val Ser Lys Ile
Val Asn Leu His 385 390 395
400 Asn Asp Ile Ala Leu Ala Leu Ala Ala Lys Asp Val Arg Ile Glu Ala
405 410 415 Pro Ile Pro
Gly Arg Ser Ala Val Gly Ile Glu Val Pro Asn Asp Lys 420
425 430 Ile Ser Leu Val Thr Leu Lys Glu
Val Leu Glu Asp Lys Phe Pro Ser 435 440
445 Lys Tyr Lys Leu Glu Val Gly Ile Gly Arg Asp Ile Ser
Gly Asp Pro 450 455 460
Ile Ser Ile Gln Leu Asn Glu Met Pro His Leu Leu Val Ala Gly Ser 465
470 475 480 Thr Gly Ser Gly
Lys Ser Val Cys Ile Asn Gly Ile Ile Thr Ser Ile 485
490 495 Leu Leu Asn Thr Lys Pro His Glu Val
Lys Leu Met Leu Ile Asp Pro 500 505
510 Lys Met Val Glu Leu Asn Val Tyr Asn Gly Ile Pro His Leu
Leu Ile 515 520 525
Pro Val Val Thr Asn Pro His Lys Ala Ser Gln Ala Leu Glu Lys Ile 530
535 540 Val Ser Glu Met Glu
Arg Arg Tyr Asp Leu Phe Gln His Ser Ser Thr 545 550
555 560 Arg Asn Ile Glu Gly Tyr Asn Gln Tyr Ile
Arg Lys Gln Asn Glu Glu 565 570
575 Leu Asp Glu Lys Gln Pro Glu Leu Pro Tyr Ile Val Val Ile Val
Asp 580 585 590 Glu
Leu Ala Asp Leu Met Met Val Ala Gly Lys Glu Val Glu Asn Ala 595
600 605 Ile Gln Arg Ile Thr Gln
Met Ala Arg Ala Ala Gly Ile His Leu Ile 610 615
620 Val Ala Thr Gln Arg Pro Ser Val Asp Val Ile
Thr Gly Ile Ile Lys 625 630 635
640 Asn Asn Ile Pro Ser Arg Ile Ala Phe Ala Val Ser Ser Gln Thr Asp
645 650 655 Ser Arg
Thr Ile Ile Gly Ala Gly Gly Ala Glu Lys Leu Leu Gly Lys 660
665 670 Gly Asp Met Leu Tyr Val Gly
Asn Gly Glu Ser Thr Thr Thr Arg Ile 675 680
685 Gln Gly Ala Phe Leu Ser Asp Gln Glu Val Gln Asp
Val Val Asn Tyr 690 695 700
Val Val Glu Gln Gln Lys Ala Asn Tyr Val Lys Glu Met Glu Pro Asp 705
710 715 720 Ala Pro Val
Asp Lys Ser Glu Met Lys Ser Glu Asp Ala Leu Tyr Asp 725
730 735 Glu Ala Tyr Leu Phe Val Ile Glu
Lys Gln Lys Ala Ser Thr Ser Leu 740 745
750 Leu Gln Arg Gln Phe Arg Ile Gly Tyr Asn Arg Ala Ser
Arg Leu Met 755 760 765
Asp Asp Leu Glu Arg Asn Gln Val Ile Gly Pro Gln Lys Gly Ser Lys 770
775 780 Pro Arg Gln Ile
Leu Val Asp Leu Glu Asn Asp Glu Val 785 790
795 41429PRTStaphylococcus epidermidis 41Met Lys Thr His Gln
Tyr Glu Leu Ile Asp Glu Lys Val Phe Glu His 1 5
10 15 Glu Phe Asp Asn Gly Leu Lys Leu Phe Ile
Ile Pro Lys Pro Gly Phe 20 25
30 Gln Lys Thr Tyr Val Thr Tyr Thr Thr Gln Phe Gly Ser Leu Asp
Asn 35 40 45 His
Phe Lys Pro Ile Gly Ser Gln Gln Phe Val Lys Val Pro Asp Gly 50
55 60 Val Ala His Phe Leu Glu
His Lys Leu Phe Glu Lys Glu Asp Glu Asp 65 70
75 80 Leu Phe Thr Ala Phe Ala Glu Glu Asn Ala Gln
Ala Asn Ala Phe Thr 85 90
95 Ser Phe Asp Arg Thr Ser Tyr Leu Phe Ser Ala Thr Ser Asn Ile Glu
100 105 110 Ser Asn
Ile Lys Arg Leu Leu Asn Met Val Glu Thr Pro Tyr Phe Thr 115
120 125 Glu Glu Thr Val Asn Lys Glu
Lys Gly Ile Ile Ala Glu Glu Ile Lys 130 135
140 Met Tyr Gln Glu Gln Pro Gly Tyr Lys Leu Met Phe
Asn Thr Leu Arg 145 150 155
160 Ala Met Tyr Ser Lys His Pro Ile Arg Val Asp Ile Ala Gly Ser Val
165 170 175 Glu Ser Ile
Tyr Glu Ile Thr Lys Asp Asp Leu Tyr Leu Cys Tyr Glu 180
185 190 Thr Phe Tyr His Pro Ser Asn Met
Val Leu Phe Val Val Gly Asp Val 195 200
205 Ser Pro Gln Ser Ile Ile Lys Leu Val Glu Lys His Glu
Asn Gln Arg 210 215 220
Asn Lys Thr Tyr Gln Pro Arg Ile Glu Arg Ala Gln Ile Asp Glu Pro 225
230 235 240 Arg Glu Ile Asn
Gln Arg Phe Val Ser Glu Lys Met Lys Leu Gln Ser 245
250 255 Pro Arg Leu Met Leu Gly Phe Lys Asn
Glu Pro Leu Asp Glu Ser Ala 260 265
270 Thr Lys Phe Val Gln Arg Asp Leu Glu Met Thr Phe Phe Tyr
Glu Leu 275 280 285
Val Phe Gly Glu Glu Thr Glu Phe Tyr Gln Gln Leu Leu Asn Lys Asp 290
295 300 Leu Ile Asp Glu Thr
Phe Gly Tyr Gln Phe Val Leu Glu Pro Ser Tyr 305 310
315 320 Ser Phe Ser Ile Ile Thr Ser Ala Thr Gln
Gln Pro Asp Leu Phe Lys 325 330
335 Gln Leu Ile Met Asp Glu Leu Arg Lys Tyr Lys Gly Asn Leu Lys
Asp 340 345 350 Gln
Glu Ala Phe Asp Leu Leu Lys Lys Gln Phe Ile Gly Glu Phe Ile 355
360 365 Ser Ser Leu Asn Ser Pro
Glu Tyr Ile Ala Asn Gln Tyr Ala Lys Leu 370 375
380 Tyr Phe Glu Gly Val Ser Val Phe Asp Met Leu
Asp Ile Val Glu Asn 385 390 395
400 Ile Thr Leu Glu Ser Val Asn Glu Thr Ser Glu Leu Phe Leu Asn Phe
405 410 415 Asp Gln
Leu Val Asp Ser Arg Leu Glu Met Glu Asn Arg 420
425 42329PRTStaphylococcus epidermidis 42Met Thr Glu
Gln Lys Asp Ile Lys Glu Thr Glu Tyr Arg Arg Gln Lys 1 5
10 15 Gly Thr Thr Ser Thr Pro Ser Arg
Arg Arg Asn Lys Lys Arg Met Arg 20 25
30 Lys Leu Pro Phe Ile Ile Leu Val Ile Leu Ile Ile Leu
Ile Ser Ile 35 40 45
Ile Val Tyr Ile Thr His Gln Tyr Asn Ser Gly Met Lys Tyr Ala Lys 50
55 60 Glu His Ala Lys
Asp Val Lys Val His Lys Phe Asn Gly Asn Met Lys 65 70
75 80 Asn Asp Gly Lys Ile Ser Val Leu Val
Leu Gly Ala Asp Lys Ala Gln 85 90
95 Gly Gly Lys Ser Arg Thr Asp Ser Ile Met Ile Val Gln Tyr
Asp Tyr 100 105 110
Val His Lys Lys Met Lys Met Met Ser Val Met Arg Asp Ile Tyr Ala
115 120 125 Asp Ile Pro Gly
Tyr Asp Lys Tyr Lys Ile Asn Ala Ala Tyr Ser Leu 130
135 140 Gly Gly Pro Glu Leu Leu Arg Lys
Thr Leu Asn Lys Asn Leu Gly Val 145 150
155 160 Asn Pro Glu Tyr Tyr Ala Val Val Asp Phe Thr Gly
Phe Glu Lys Met 165 170
175 Ile Asp Glu Leu Gln Pro Asn Gly Val Pro Ile Asp Val Glu Lys Asp
180 185 190 Met Ser Glu
Asn Ile Gly Val Ser Leu Lys Lys Gly His His Lys Leu 195
200 205 Asn Gly Lys Glu Leu Leu Gly Tyr
Ala Arg Phe Arg His Asp Pro Glu 210 215
220 Gly Asp Phe Gly Arg Val Arg Arg Gln Gln Gln Val Met
Gln Thr Leu 225 230 235
240 Lys Gln Glu Leu Val Asn Phe Asn Thr Val Ala Lys Leu Pro Lys Val
245 250 255 Ala Gly Ile Leu
Arg Gly Tyr Val Asn Thr Asn Met Pro Asn Ser Ala 260
265 270 Ile Phe Gln Thr Gly Ile Ser Phe Gly
Ile Arg Gly Asp Lys Asp Val 275 280
285 Gln Ser Leu Thr Val Pro Ile Lys Gly Ser Tyr Gln Asp Ile
Asn Thr 290 295 300
Asn Asn Asp Gly Ser Ala Leu Gln Ile Asp Ser Glu Lys Asn Lys Gln 305
310 315 320 Ala Ile Lys Asn Phe
Phe Glu Asp Asn 325
43627PRTStaphylococcus epidermidis 43Met Glu Ala Tyr Lys Ile Glu His Leu
Asn Lys Ser Tyr Ala Asp Lys 1 5 10
15 Glu Ile Phe Asn Asp Leu Asn Leu Ser Ile Ser Glu His Glu
Arg Ile 20 25 30
Gly Leu Val Gly Ile Asn Gly Thr Gly Lys Ser Thr Leu Leu Lys Val
35 40 45 Ile Gly Gly Leu
Asp Glu Asp Phe Thr Ala Asp Ile Thr His Pro Asn 50
55 60 Gln Tyr Arg Ile Arg Tyr Ser Ser
Gln Lys Gln Asp Leu Asn Gly His 65 70
75 80 Met Thr Val Phe Glu Ala Val Leu Ser Ser Asp Thr
Pro Thr Leu Arg 85 90
95 Ile Ile Lys Lys Tyr Glu Glu Ala Val Asn Arg Tyr Ala Leu Asp Gln
100 105 110 Ser Asp Ser
Asn Phe Asn Lys Met Met Glu Ala Gln Glu Glu Met Asp 115
120 125 Gln Lys Asp Ala Trp Asp Tyr Asn
Ala Glu Ile Lys Thr Ile Leu Ser 130 135
140 Lys Leu Gly Ile His Asp Thr Thr Lys Lys Ile Val Glu
Leu Ser Gly 145 150 155
160 Gly Gln Gln Lys Arg Val Val Leu Ala Lys Thr Leu Ile Glu Gln Pro
165 170 175 Asp Leu Leu Leu
Leu Asp Glu Pro Thr Asn His Leu Asp Phe Glu Ser 180
185 190 Ile Arg Trp Leu Ile Asn Tyr Val Lys
Gln Tyr Pro His Thr Val Leu 195 200
205 Phe Val Thr His Asp Arg Tyr Phe Leu Asn Glu Val Ser Thr
Arg Ile 210 215 220
Ile Glu Leu Asp Arg Gly Lys Leu Lys Thr Tyr Pro Gly Asn Tyr Glu 225
230 235 240 Asp Tyr Ile Val Met
Arg Ala Glu Asn Glu Leu Val Glu Gln Lys Gln 245
250 255 Gln Glu Lys Gln Lys Ala Leu Tyr Lys Gln
Glu Leu Ala Trp Met Arg 260 265
270 Ala Gly Ala Lys Ala Arg Thr Thr Lys Gln Gln Ala Arg Ile Asn
Arg 275 280 285 Phe
Asn Gln Leu Glu Ser Asp Val Lys Thr Gln His Thr Gln Asp Lys 290
295 300 Gly Glu Leu Asn Leu Ala
Tyr Ser Arg Leu Gly Lys Gln Val Tyr Glu 305 310
315 320 Leu Lys Asn Leu Ser Lys Ser Ile Asn Asn Lys
Val Leu Phe Glu Asp 325 330
335 Val Thr Glu Ile Ile Gln Ser Gly Arg Arg Ile Gly Ile Val Gly Pro
340 345 350 Asn Gly
Ala Gly Lys Thr Thr Leu Leu Asn Ile Leu Ser Asn Glu Asp 355
360 365 Gln Asp Tyr Glu Gly Glu Leu
Lys Ile Gly Gln Thr Val Lys Val Ala 370 375
380 Tyr Phe Lys Gln Thr Glu Lys Thr Leu Asp Arg Asp
Ile Arg Val Ile 385 390 395
400 Asp Tyr Leu Arg Glu Glu Ser Glu Met Ala Lys Glu Lys Asp Gly Thr
405 410 415 Ser Ile Ser
Val Thr Gln Leu Leu Glu Arg Phe Leu Phe Pro Ser Ala 420
425 430 Thr His Gly Lys Lys Val Tyr Lys
Leu Ser Gly Gly Glu Gln Lys Arg 435 440
445 Leu Tyr Leu Leu Arg Leu Leu Val His Lys Pro Asn Val
Leu Leu Leu 450 455 460
Asp Glu Pro Thr Asn Asp Leu Asp Thr Glu Thr Leu Thr Ile Leu Glu 465
470 475 480 Asp Tyr Ile Asp
Asp Phe Gly Gly Ser Val Ile Thr Val Ser His Asp 485
490 495 Arg Tyr Phe Leu Asn Lys Val Val Gln
Glu Tyr Trp Phe Ile His Asp 500 505
510 Gly Lys Ile Glu Lys Ile Ile Gly Ser Phe Glu Asp Tyr Glu
Ser Phe 515 520 525
Lys Lys Glu His Glu Arg Gln Ala Met Leu Ser Lys Gln Thr Glu Gln 530
535 540 Gln Asn Lys His Lys
His Gln Pro Lys Lys Lys Thr Gly Leu Ser Tyr 545 550
555 560 Lys Glu Lys Leu Glu Tyr Glu Thr Ile Met
Thr Arg Ile Glu Met Thr 565 570
575 Glu Thr Arg Leu Glu Asp Leu Glu Gln Glu Met Ile Asn Ala Ser
Asp 580 585 590 Asn
Tyr Ala Arg Ile Lys Glu Leu Asn Glu Glu Lys Glu Gln Leu Glu 595
600 605 Ala Thr Tyr Glu Ala Asp
Ile Thr Arg Trp Ser Glu Leu Glu Glu Ile 610 615
620 Lys Glu Gln 625
44270PRTStaphylococcus epidermidis 44Met Lys Lys Leu Phe Gly Ile Ile Leu
Val Leu Ala Leu Thr Ile Ala 1 5 10
15 Leu Ala Ala Cys Gly Gly Gly Lys Asp Lys Glu Lys Thr Ile
Thr Val 20 25 30
Gly Ala Ser Pro Ala Pro His Ala Glu Ile Leu Glu Lys Ala Lys Pro
35 40 45 Leu Leu Lys Lys
Lys Gly Tyr Asp Leu Lys Ile Lys Pro Ile Asn Asp 50
55 60 Tyr Thr Thr Pro Asn Lys Leu Leu
Asp Lys Gly Glu Ile Asp Ala Asn 65 70
75 80 Phe Phe Gln His Thr Pro Tyr Leu Asn Thr Glu Ser
Lys Glu Lys Gly 85 90
95 Tyr Lys Ile Glu Ser Ala Gly Asn Val Glu Leu Glu Pro Met Ala Val
100 105 110 Tyr Ser Lys
Lys Tyr Lys Ser Leu Lys Asp Leu Pro Lys Gly Ala Thr 115
120 125 Val Tyr Val Ser Asn Asn Pro Ala
Glu Gln Gly Arg Phe Leu Lys Phe 130 135
140 Phe Val Asp Glu Gly Leu Ile Lys Leu Lys Lys Gly Val
Lys Ile Glu 145 150 155
160 Asn Ala Lys Phe Asp Asp Ile Thr Glu Asn Lys Lys Asp Ile Lys Phe
165 170 175 Asn Asn Lys Gln
Ser Ala Glu Tyr Leu Pro Lys Ile Tyr Gln Asn Gln 180
185 190 Asp Ala Asp Ala Val Ile Ile Asn Ser
Asn Tyr Ala Ile Asp Gln Lys 195 200
205 Leu Ser Pro Lys Lys Asp Ser Ile Ala Leu Glu Ser Pro Lys
Asp Asn 210 215 220
Pro Tyr Ala Asn Leu Ile Ala Val Lys Lys Gly His Lys Asp Asp Lys 225
230 235 240 Asn Ile Lys Val Leu
Met Glu Val Leu Gln Ser Lys Glu Ile Gln Asp 245
250 255 Tyr Ile Lys Asp Lys Tyr Asp Gly Ala Val
Val Pro Ala Lys 260 265 270
45439PRTStaphylococcus epidermidis 45Met Glu Leu Thr Ile Tyr His Thr Asn
Asp Ile His Ser His Leu Asn 1 5 10
15 Glu Tyr Ala Arg Ile Gln Ala Tyr Met Ala Lys His Arg Pro
Gln Leu 20 25 30
Glu His Pro Ser Leu Tyr Ile Asp Ile Gly Asp His Val Asp Leu Ser
35 40 45 Ala Pro Val Thr
Glu Ala Thr Val Gly His Lys Asn Ile Glu Leu Leu 50
55 60 Asn Glu Ala His Cys Asp Ile Ala
Thr Ile Gly Asn Asn Glu Gly Met 65 70
75 80 Thr Ile Ser His Asp Ala Leu Gln Asn Leu Tyr Asn
Asp Ala Asp Phe 85 90
95 Lys Val Ile Cys Thr Asn Val Ile Asp Glu Glu Gly His Leu Pro His
100 105 110 His Ile Thr
Ser Ser Tyr Ile Lys Glu Ile Lys Gly Thr Arg Ile Leu 115
120 125 Phe Val Ala Ala Thr Ala Pro Phe
Thr Pro Phe Tyr Arg Ala Leu Asp 130 135
140 Trp Ile Val Thr Asp Pro Leu Ala Ala Ile Lys Asp Glu
Ile Asn Ala 145 150 155
160 His Gln Gly Glu Tyr Asp Leu Leu Met Val Met Ser His Val Gly Ile
165 170 175 Phe Phe Asp Glu
Lys Leu Cys Gln Glu Ile Pro Glu Ile Asp Val Ile 180
185 190 Phe Gly Ser His Thr His His His Phe
Glu His Gly Glu Ile Asn Asn 195 200
205 Gly Val Leu Met Ala Ala Ala Gly Lys Tyr Gly Tyr Tyr Leu
Gly Glu 210 215 220
Val Asn Ile Thr Ile Glu Asn Gly Lys Ile Val Asp Lys Ile Ala Lys 225
230 235 240 Ile His Pro Ile Glu
Thr Leu Pro Leu Val Glu Thr His Phe Glu Glu 245
250 255 Glu Gly Arg Ala Leu Leu Ser Lys Pro Val
Val Asn His His Val Asn 260 265
270 Leu Val Lys Arg Thr Asp Val Val Thr Arg Thr Ser Tyr Leu Leu
Ala 275 280 285 Glu
Ser Val Tyr Glu Phe Ser Arg Ala Asp Cys Ala Ile Val Asn Ala 290
295 300 Gly Leu Ile Val Asn Gly
Ile Glu Ala Asp Lys Val Thr Glu Tyr Asp 305 310
315 320 Ile His Arg Met Leu Pro His Pro Ile Asn Ile
Val Arg Val Arg Leu 325 330
335 Thr Gly Lys Gln Leu Lys Gln Val Ile Gln Lys Ser Gln Lys Gln Glu
340 345 350 Tyr Met
His Glu His Ala Gln Gly Leu Gly Phe Arg Gly Asp Ile Phe 355
360 365 Gly Gly Tyr Ile Leu Tyr Asn
Leu Gly Phe Ile Glu Ser Glu Asp Arg 370 375
380 Tyr Phe Ile Gly Asp Glu Glu Ile Gln Asn Asp Lys
Gln Tyr Thr Leu 385 390 395
400 Gly Thr Val Asp Met Tyr Thr Phe Gly Arg Tyr Phe Pro Leu Leu Lys
405 410 415 Gly Leu Ser
Thr Asp Tyr Ile Met Pro Glu Phe Leu Arg Asp Ile Phe 420
425 430 Lys Glu Lys Leu Leu Lys Leu
435 46203PRTStaphylococcus epidermidis 46Met Glu Lys
Val Ile Tyr Leu Ala Gly His Ile Leu Asn Glu Ala Met 1 5
10 15 Val Asp Tyr Arg Glu Lys Gln His
Asn Gln Val Glu Ala Ile Glu Gly 20 25
30 Val Lys Pro Tyr Ser Pro His Gln Asp Lys Ser Ile Asn
Asp Lys Ser 35 40 45
Asn Ala Val Gln Glu Gly Leu Ala Glu Arg Ile Leu Lys Asn Asp Phe 50
55 60 Thr Ala Met Glu
Lys Ser Asp Ile Tyr Val Leu Asp Val Leu Asn Glu 65 70
75 80 Gly Leu Gly Thr Ile Ser Glu Leu Gly
Ile Ile Ile Gly Met Lys Lys 85 90
95 Gln Ala Gln Lys Thr Ile Asp Arg Leu Ser Val Leu Ser Glu
Glu Ile 100 105 110
Lys His Asp Val Tyr Gly Asp Gln Thr Glu Ala Tyr Asp Leu Ile Gln
115 120 125 Asp Glu Ile Tyr
Lys Gln Glu Lys Ile Leu Asn Lys Thr Val Leu Cys 130
135 140 Tyr Cys Ser Asp Ile Arg Gln Gly
His Gly Lys Pro Tyr Thr Asp Pro 145 150
155 160 Asp Arg Ala Glu Phe Ser Thr Asn Gln Phe Val Tyr
Gly Met Val Leu 165 170
175 Glu Ala Thr Asn Gly Glu Gly Phe Ile Thr Trp Asp Gln Val Leu His
180 185 190 Arg Leu Asp
Leu Phe Gly Ser Gly Leu Ile Val 195 200
4759PRTStaphylococcus epidermidis 47Met Ser Lys Lys Phe Arg Val Glu Asp
Lys Glu Thr Ile Ala Asp Cys 1 5 10
15 Leu Asp Arg Met Lys Lys Glu Gly Phe Met Pro Ile Arg Arg
Ile Glu 20 25 30
Lys Pro Val Tyr Lys Glu Asn Lys Asp Gly Ser Ile Glu Ile Leu Lys
35 40 45 Gln Asp Ile Ile
Phe Val Gly Ala Leu Ile Gln 50 55
483692PRTStaphylococcus epidermidis 48Met Asn Leu Phe Arg Lys Gln Lys Phe
Ser Ile Arg Lys Phe Asn Ile 1 5 10
15 Gly Ile Phe Ser Ala Leu Ile Ala Thr Val Ala Phe Leu Ala
His Pro 20 25 30
Gly Gln Ala Thr Ala Ser Glu Leu Glu Pro Ser Gln Asn Asn Asp Thr
35 40 45 Thr Ala Gln Ser
Asp Gly Gly Leu Glu Asn Thr Ser Gln Ser Asn Pro 50
55 60 Ile Ser Glu Glu Thr Thr Asn Thr
Leu Ser Gly Gln Thr Val Pro Ser 65 70
75 80 Ser Thr Glu Asn Lys Gln Thr Gln Asn Val Pro Asn
His Asn Ala Gln 85 90
95 Pro Ile Ala Ile Asn Thr Glu Glu Ala Glu Ser Ala Gln Thr Ala Ser
100 105 110 Tyr Thr Asn
Ile Asn Glu Asn Asn Asp Thr Ser Asp Asp Gly Leu His 115
120 125 Val Asn Gln Pro Ala Lys His His
Ile Glu Ala Gln Ser Glu Asp Val 130 135
140 Thr Asn His Thr Asn Ser Asn His Ser Asn Ser Ser Ile
Pro Glu Asn 145 150 155
160 Lys Ala Thr Thr Glu Ser Ser Ser Lys Pro Lys Lys Arg Gly Lys Arg
165 170 175 Ser Leu Asp Thr
Asn Asn Gly Asn Asp Thr Thr Ser Thr Thr Gln Asn 180
185 190 Thr Asp Pro Asn Leu Ser Asn Thr Gly
Pro Asn Gly Ile Asn Thr Val 195 200
205 Ile Thr Phe Asp Asp Leu Gly Ile Lys Thr Ser Thr Asn Arg
Ser Arg 210 215 220
Pro Glu Val Lys Val Val Asp Ser Leu Asn Gly Phe Thr Met Val Asn 225
230 235 240 Gly Gly Lys Val Gly
Leu Leu Asn Ser Val Leu Glu Arg Thr Ser Val 245
250 255 Phe Asp Ser Ala Asp Pro Lys Asn Tyr Gln
Ala Ile Asp Asn Val Val 260 265
270 Ala Leu Gly Arg Ile Lys Gly Asn Asp Pro Asn Asp His Asp Gly
Phe 275 280 285 Asn
Gly Ile Glu Lys Glu Phe Ser Val Asn Pro Asn Ser Glu Ile Ile 290
295 300 Phe Ser Phe Asn Thr Met
Thr Ala Lys Asn Arg Lys Gly Gly Thr Gln 305 310
315 320 Leu Val Leu Arg Asn Ala Glu Asn Asn Gln Glu
Ile Ala Ser Thr Asp 325 330
335 Ile Gln Gly Gly Gly Val Tyr Arg Leu Phe Lys Leu Pro Asp Asn Val
340 345 350 His Arg
Leu Lys Val Gln Phe Leu Pro Met Asn Glu Ile His Ser Asp 355
360 365 Phe Lys Arg Ile Gln Gln Leu
His Asp Gly Tyr Arg Tyr Tyr Ser Phe 370 375
380 Ile Asp Thr Ile Gly Val Asn Ser Gly Ser His Leu
Tyr Val Lys Ser 385 390 395
400 Arg Gln Val Asn Lys Asn Val Lys Asn Gly Lys Glu Phe Glu Val Asn
405 410 415 Thr Arg Ile
Glu Asn Asn Gly Asn Phe Ala Ala Ala Ile Gly Gln Asn 420
425 430 Glu Leu Thr Tyr Lys Val Thr Leu
Pro Glu Asn Phe Glu Tyr Val Asp 435 440
445 Asn Ser Thr Glu Val Ser Phe Val Asn Gly Asn Val Pro
Asn Ser Thr 450 455 460
Val Asn Pro Phe Ser Val Asn Phe Asp Arg Gln Asn His Thr Leu Thr 465
470 475 480 Phe Ser Ser Asn
Gly Leu Asn Leu Gly Arg Ser Ala Gln Asp Val Ala 485
490 495 Arg Phe Leu Pro Asn Lys Ile Leu Asn
Ile Arg Tyr Lys Leu Arg Pro 500 505
510 Val Asn Ile Ser Thr Pro Arg Glu Val Thr Phe Asn Glu Ala
Ile Lys 515 520 525
Tyr Lys Thr Phe Ser Glu Tyr Tyr Ile Asn Thr Asn Asp Asn Thr Val 530
535 540 Thr Gly Gln Gln Thr
Pro Phe Ser Ile Asn Val Ile Met Asn Lys Asp 545 550
555 560 Asp Leu Ser Glu Gln Val Asn Lys Asp Ile
Ile Pro Ser Asn Tyr Thr 565 570
575 Leu Ala Ser Tyr Asn Lys Tyr Asn Lys Leu Lys Glu Arg Ala Gln
Thr 580 585 590 Val
Leu Asp Glu Glu Thr Asn Asn Thr Pro Phe Asn Gln Arg Tyr Ser 595
600 605 Gln Thr Gln Ile Asp Asp
Leu Leu His Glu Leu Gln Thr Thr Leu Ile 610 615
620 Asn Arg Val Ser Ala Ser Arg Glu Ile Asn Asp
Lys Ala Gln Glu Met 625 630 635
640 Thr Asp Ala Val Tyr Asp Ser Thr Glu Leu Thr Thr Glu Glu Lys Asp
645 650 655 Thr Leu
Val Asp Gln Ile Glu Asn His Lys Asn Glu Ile Ser Asn Asn 660
665 670 Ile Asp Asp Glu Leu Thr Asp
Asp Gly Val Glu Arg Val Lys Glu Ala 675 680
685 Gly Leu His Thr Leu Glu Ser Asp Thr Pro His Pro
Val Thr Lys Pro 690 695 700
Asn Ala Arg Gln Val Val Asn Asn Arg Ala Asp Gln Gln Lys Thr Leu 705
710 715 720 Ile Arg Asn
Asn His Glu Ala Thr Thr Glu Glu Gln Asn Glu Ala Ile 725
730 735 Arg Gln Val Glu Ala His Ser Ser
Asp Ala Ile Ala Lys Ile Gly Glu 740 745
750 Ala Glu Thr Asp Thr Thr Val Asn Glu Ala Arg Asp Asn
Gly Thr Lys 755 760 765
Leu Ile Ala Thr Asp Val Pro Asn Pro Thr Lys Lys Ala Glu Ala Arg 770
775 780 Ala Ala Val Thr
Asn Ser Ala Asn Ser Lys Ile Lys Asp Ile Asn Asn 785 790
795 800 Asn Thr Gln Ala Thr Leu Asp Glu Arg
Asn Asp Ala Ile Ala Leu Val 805 810
815 Asn Arg Ser Lys Asp Glu Ala Ile Gln Asn Ile Asn Thr Ala
Gln Gly 820 825 830
Asn Asp Asp Val Thr Glu Ala Gln Asn Asn Gly Thr Asn Thr Ile Gln
835 840 845 Gln Val Pro Leu
Thr Pro Val Lys Arg Gln Asn Ala Ile Ala Thr Ile 850
855 860 Asn Ala Lys Ala Asp Glu Gln Lys
Arg Leu Ile Gln Ala Asn Asn Asn 865 870
875 880 Ala Thr Thr Glu Glu Lys Ala Asp Ala Glu Arg Lys
Val Asn Glu Ala 885 890
895 Val Ile Thr Ala Asn Gln Asn Ile Thr Asn Ala Thr Thr Asn Arg Asp
900 905 910 Val Asp Gln
Ala Gln Thr Thr Gly Ser Gly Ile Ile Ser Ala Ile Ser 915
920 925 Pro Ala Thr Lys Ile Lys Glu Asp
Ala Arg Ala Ala Val Glu Ala Lys 930 935
940 Ala Ile Ala Gln Asn Gln Gln Ile Asn Ser Asn Asn Met
Ala Thr Thr 945 950 955
960 Glu Glu Lys Glu Asp Ala Leu Asn Gln Val Glu Ala His Lys Gln Ala
965 970 975 Ala Ile Ala Thr
Ile Asn Gln Ala Gln Ser Thr Gln Gln Val Ser Glu 980
985 990 Ala Lys Asn Asn Gly Ile Asn Thr
Ile Asn Gln Asp Gln Pro Asn Ala 995 1000
1005 Val Lys Lys Asn Asn Thr Lys Ile Ile Leu Glu
Gln Lys Gly Asn 1010 1015 1020
Glu Lys Lys Ser Ala Ile Ala Gln Thr Pro Asp Ala Thr Thr Glu
1025 1030 1035 Glu Lys Gln
Glu Ala Val Ser Ala Val Ser Gln Ala Val Thr Asn 1040
1045 1050 Gly Ile Thr His Ile Asn Gln Ala
Asn Ser Asn Asp Asp Val Asp 1055 1060
1065 Gln Glu Leu Ser Asn Ala Glu Gln Ile Ile Thr Gln Thr
Asn Val 1070 1075 1080
Asn Val Gln Lys Lys Pro Gln Ala Arg Gln Ala Leu Ile Ala Lys 1085
1090 1095 Thr Asn Glu Arg Gln
Ser Thr Ile Asn Thr Asp Asn Glu Gly Thr 1100 1105
1110 Ile Glu Glu Lys Gln Lys Ala Ile Gln Ser
Leu Asn Asp Ala Lys 1115 1120 1125
Asn Leu Ala Asp Glu Gln Ile Thr Gln Ala Ala Ser Asn Gln Asn
1130 1135 1140 Val Asp
Asn Ala Leu Asn Ile Gly Ile Ser Asn Ile Ser Lys Ile 1145
1150 1155 Gln Thr Asn Phe Thr Lys Lys
Gln Gln Ala Arg Asp Gln Val Asn 1160 1165
1170 Gln Lys Phe Gln Glu Lys Glu Ala Glu Leu Asn Ser
Thr Pro His 1175 1180 1185
Ala Thr Gln Asp Glu Lys Gln Asp Ala Leu Thr Arg Leu Thr Gln 1190
1195 1200 Ala Lys Glu Thr Ala
Leu Asn Asp Ile Asn Gln Ala Gln Thr Asn 1205 1210
1215 Gln Asn Val Asp Thr Ala Leu Thr Ser Gly
Ile Gln Asn Ile Gln 1220 1225 1230
Asn Thr Gln Val Asn Val Arg Lys Lys Gln Glu Ala Lys Thr Thr
1235 1240 1245 Ile Asn
Asp Ile Val Gln Gln His Lys Gln Thr Ile Gln Asn Asn 1250
1255 1260 Asp Asp Ala Thr Thr Glu Glu
Lys Glu Val Ala Asn Asn Leu Val 1265 1270
1275 Asn Ala Ser Gln Gln Asn Val Ile Ser Lys Ile Asp
Asn Ala Thr 1280 1285 1290
Thr Asn Asn Gln Ile Asp Gly Ile Val Ser Asp Gly Arg Gln Ser 1295
1300 1305 Ile Asn Ala Ile Thr
Pro Asp Thr Ser Ile Lys Arg Asn Ala Lys 1310 1315
1320 Asn Asp Ile Asp Ile Lys Ala Ala Asp Lys
Lys Ile Lys Ile Gln 1325 1330 1335
Arg Ile Asn Asp Ala Thr Asp Glu Glu Ile Gln Glu Ala Asn Arg
1340 1345 1350 Lys Ile
Glu Glu Ala Lys Ile Glu Ala Lys Asp Asn Ile Gln Arg 1355
1360 1365 Asn Ser Thr Arg Asp Gln Val
Asn Glu Ala Lys Thr Asn Gly Ile 1370 1375
1380 Asn Lys Ile Glu Asn Ile Thr Pro Ala Thr Thr Val
Lys Ser Glu 1385 1390 1395
Ala Arg Gln Ala Val Gln Asn Lys Ala Asn Glu Gln Ile Asn His 1400
1405 1410 Ile Gln Asn Thr Pro
Asp Ala Thr Asn Glu Glu Lys Gln Glu Ala 1415 1420
1425 Ile Asn Arg Val Ser Ala Glu Leu Ala Arg
Val Gln Ala Gln Ile 1430 1435 1440
Asn Ala Glu His Thr Thr Gln Gly Val Lys Thr Ile Lys Asp Asp
1445 1450 1455 Ala Ile
Thr Ser Leu Ser Arg Ile Asn Ala Gln Val Val Glu Lys 1460
1465 1470 Glu Ser Ala Arg Asn Ala Ile
Glu Gln Lys Ala Thr Gln Gln Thr 1475 1480
1485 Gln Phe Ile Asn Asn Asn Asp Asn Ala Thr Asp Glu
Glu Lys Glu 1490 1495 1500
Val Ala Asn Asn Leu Val Ile Ala Thr Lys Gln Lys Ser Leu Asp 1505
1510 1515 Asn Ile Asn Ser Leu
Ser Ser Asn Asn Asp Val Glu Asn Ala Lys 1520 1525
1530 Val Ala Gly Ile Asn Glu Ile Ala Asn Val
Leu Pro Ala Thr Ala 1535 1540 1545
Val Lys Ser Lys Ala Lys Lys Asp Ile Asp Gln Lys Leu Ala Gln
1550 1555 1560 Gln Ile
Asn Gln Ile Gln Thr His Gln Thr Ala Thr Thr Glu Glu 1565
1570 1575 Lys Glu Ala Ala Ile Gln Leu
Ala Asn Gln Lys Ser Asn Glu Ala 1580 1585
1590 Arg Thr Ala Ile Gln Asn Glu His Ser Asn Asn Gly
Val Ala Gln 1595 1600 1605
Ala Lys Ser Asn Gly Ile His Glu Ile Glu Leu Val Met Pro Asp 1610
1615 1620 Ala His Lys Lys Ser
Asp Ala Lys Gln Ser Ile Asp Asn Lys Tyr 1625 1630
1635 Asn Glu Gln Ser Asn Thr Ile Asn Thr Thr
Pro Asp Ala Thr Asp 1640 1645 1650
Glu Glu Lys Gln Lys Ala Leu Asp Lys Leu Lys Ile Ala Lys Asp
1655 1660 1665 Ala Gly
Tyr Asn Lys Val Asp Gln Ala Gln Thr Asn Gln Gln Val 1670
1675 1680 Ser Asp Ala Lys Thr Glu Ala
Ile Asp Thr Ile Thr Asn Ile Gln 1685 1690
1695 Ala Asn Val Ala Lys Lys Pro Ser Ala Arg Val Glu
Leu Asp Ser 1700 1705 1710
Lys Phe Glu Asp Leu Lys Arg Gln Ile Asn Ala Thr Pro Asn Ala 1715
1720 1725 Thr Glu Glu Glu Lys
Gln Asp Ala Ile Gln Arg Leu Asn Gly Lys 1730 1735
1740 Arg Asp Glu Val Lys Asn Leu Ile Asn Gln
Asp Arg Arg Asp Asn 1745 1750 1755
Glu Val Glu Gln His Lys Asn Ile Gly Leu Gln Glu Leu Glu Thr
1760 1765 1770 Ile His
Ala Asn Pro Thr Arg Lys Ser Asp Ala Leu Gln Glu Leu 1775
1780 1785 Gln Thr Lys Phe Ile Ser Gln
Thr Glu Leu Ile Asn Asn Asn Lys 1790 1795
1800 Asp Ala Thr Asn Glu Glu Lys Asp Glu Ala Lys Arg
Leu Leu Glu 1805 1810 1815
Ile Ser Lys Asn Lys Thr Ile Thr Asn Ile Asn Gln Ala Gln Thr 1820
1825 1830 Asn Asn Gln Val Asp
Asn Ala Lys Asp Asn Gly Met Asn Glu Ile 1835 1840
1845 Ala Thr Ile Ile Pro Ala Thr Thr Ile Lys
Thr Asp Ala Lys Thr 1850 1855 1860
Ala Ile Asp Lys Lys Ala Glu Gln Gln Val Thr Ile Ile Asn Gly
1865 1870 1875 Asn Asn
Asp Ala Thr Asp Glu Glu Lys Ala Glu Ala Arg Lys Leu 1880
1885 1890 Val Glu Lys Ala Lys Ile Glu
Ala Lys Ser Asn Ile Thr Asn Ser 1895 1900
1905 Asp Thr Glu Arg Glu Val Asn Gly Ala Lys Thr Asn
Gly Leu Glu 1910 1915 1920
Lys Ile Asn Asn Ile Gln Pro Ser Thr Gln Thr Lys Thr Asn Ala 1925
1930 1935 Lys Gln Glu Ile Asn
Asp Lys Ala Gln Glu Gln Leu Ile Gln Ile 1940 1945
1950 Asn Asn Thr Pro Asp Ala Thr Glu Glu Glu
Lys Gln Glu Ala Thr 1955 1960 1965
Asn Arg Val Asn Ala Gly Leu Ala Gln Ala Ile Gln Asn Ile Asn
1970 1975 1980 Asn Ala
His Ser Thr Gln Glu Val Asn Glu Ser Lys Thr Asn Ser 1985
1990 1995 Ile Ala Thr Ile Lys Ser Val
Gln Pro Asn Val Ile Lys Lys Pro 2000 2005
2010 Thr Ala Ile Asn Ser Leu Thr Gln Glu Ala Asn Asn
Gln Lys Thr 2015 2020 2025
Leu Ile Gly Asn Asp Gly Asn Ala Thr Asp Asp Glu Lys Glu Ala 2030
2035 2040 Ala Lys Gln Leu Val
Thr Gln Lys Leu Asn Glu Gln Ile Gln Lys 2045 2050
2055 Ile His Glu Ser Thr Gln Asp Asn Gln Val
Asp Asn Val Lys Ala 2060 2065 2070
Gln Ala Ile Thr Ala Ile Lys Leu Ile Asn Ala Asn Ala His Lys
2075 2080 2085 Arg Gln
Asp Ala Ile Asn Ile Leu Thr Asn Leu Ala Glu Ser Lys 2090
2095 2100 Lys Ser Asp Ile Arg Ala Asn
Gln Asp Ala Thr Thr Glu Glu Lys 2105 2110
2115 Asn Thr Ala Ile Gln Ser Ile Asp Asp Thr Leu Ala
Gln Ala Arg 2120 2125 2130
Asn Asn Ile Asn Gly Ala Asn Thr Asn Ala Leu Val Asp Glu Asn 2135
2140 2145 Leu Glu Asp Gly Lys
Gln Lys Leu Gln Arg Ile Val Leu Ser Thr 2150 2155
2160 Gln Thr Lys Thr Gln Ala Lys Ala Asp Ile
Ala Gln Ala Ile Gly 2165 2170 2175
Gln Gln Arg Ser Thr Ile Asp Gln Asn Gln Asn Ala Thr Thr Glu
2180 2185 2190 Glu Lys
Gln Glu Ala Leu Glu Arg Leu Asn Gln Glu Thr Asn Gly 2195
2200 2205 Val Asn Asp Arg Ile Gln Ala
Ala Leu Ala Asn Gln Asn Val Thr 2210 2215
2220 Asp Glu Lys Asn Asn Ile Leu Glu Thr Ile Arg Asn
Val Glu Pro 2225 2230 2235
Ile Val Ile Val Lys Pro Lys Ala Asn Glu Ile Ile Arg Lys Lys 2240
2245 2250 Ala Ala Glu Gln Thr
Thr Leu Ile Asn Gln Asn Gln Asp Ala Thr 2255 2260
2265 Leu Glu Glu Lys Gln Ile Ala Leu Gly Lys
Leu Glu Glu Val Lys 2270 2275 2280
Asn Glu Ala Leu Asn Gln Val Ser Gln Ala His Ser Asn Asn Asp
2285 2290 2295 Val Lys
Ile Val Glu Asn Asn Gly Ile Ala Lys Ile Ser Glu Val 2300
2305 2310 His Pro Glu Thr Ile Ile Lys
Arg Asn Ala Lys Gln Glu Ile Glu 2315 2320
2325 Gln Asp Ala Gln Ser Gln Ile Asp Thr Ile Asn Ala
Asn Asn Lys 2330 2335 2340
Ser Thr Asn Glu Glu Lys Ser Ala Ala Ile Asp Arg Val Asn Val 2345
2350 2355 Ala Lys Ile Asp Ala
Ile Asn Asn Ile Thr Asn Ala Thr Thr Thr 2360 2365
2370 Gln Leu Val Asn Asp Ala Lys Asn Ser Gly
Asn Thr Ser Ile Ser 2375 2380 2385
Gln Ile Leu Pro Ser Thr Ala Val Lys Thr Asn Ala Leu Ala Ala
2390 2395 2400 Leu Ala
Ser Glu Ala Lys Asn Lys Asn Ala Ile Ile Asp Gln Thr 2405
2410 2415 Pro Asn Ala Thr Ala Glu Glu
Lys Glu Glu Ala Asn Asn Lys Val 2420 2425
2430 Asp Arg Leu Gln Glu Glu Ala Asp Ala Asn Ile Leu
Lys Ala His 2435 2440 2445
Thr Thr Asp Glu Val Asn Asn Ile Lys Asn Gln Ala Val Gln Asn 2450
2455 2460 Ile Asn Ala Val Gln
Val Glu Val Ile Lys Lys Gln Asn Ala Lys 2465 2470
2475 Asn Gln Leu Asn Gln Phe Ile Asp Asn Gln
Lys Lys Ile Ile Glu 2480 2485 2490
Asn Thr Pro Asp Ala Thr Leu Glu Glu Lys Ala Glu Ala Asn Arg
2495 2500 2505 Leu Leu
Gln Asn Val Leu Thr Ser Thr Ser Asp Glu Ile Ala Asn 2510
2515 2520 Val Asp His Asn Asn Glu Val
Asp Gln Ala Leu Asp Lys Ala Arg 2525 2530
2535 Pro Lys Ile Glu Ala Ile Val Pro Gln Val Ser Lys
Lys Arg Asp 2540 2545 2550
Ala Leu Asn Ala Ile Gln Glu Ala Phe Asn Ser Gln Thr Gln Glu 2555
2560 2565 Ile Gln Glu Asn Gln
Glu Ala Thr Asn Glu Glu Lys Thr Glu Ala 2570 2575
2580 Leu Asn Lys Ile Asn Gln Leu Leu Asn Gln
Ala Lys Val Asn Ile 2585 2590 2595
Asp Gln Ala Gln Ser Asn Lys Asp Val Asp Ser Ala Lys Thr Arg
2600 2605 2610 Ser Ile
Gln Asp Ile Glu Gln Ile Gln Pro His Pro Gln Thr Lys 2615
2620 2625 Ala Thr Gly Arg His Arg Leu
Asn Glu Lys Ala Asn Gln Gln Gln 2630 2635
2640 Ser Thr Ile Ala Thr His Pro Asn Ser Thr Ile Glu
Glu Arg Gln 2645 2650 2655
Glu Ala Ser Ala Lys Leu Gln Glu Val Leu Lys Lys Ala Ile Ala 2660
2665 2670 Lys Ile Asp Lys Gly
Gln Thr Asn Asp Asp Val Glu Lys Thr Val 2675 2680
2685 Val Asn Gly Ile Ala Glu Ile Glu Asn Ile
Leu Pro Ala Thr Thr 2690 2695 2700
Val Lys Asp Lys Ala Lys Ala Asp Val Asn Ala Glu Lys Glu Glu
2705 2710 2715 Lys Asn
Leu Gln Ile Asn Ser Asn Asp Glu Ala Thr Thr Glu Glu 2720
2725 2730 Lys Leu Val Ala Ser Asp Asn
Leu Asn His Val Val Glu Thr Thr 2735 2740
2745 Asn Gln Ala Ile Glu Asp Ala Pro Asp Thr Asn Gln
Val Asn Val 2750 2755 2760
Glu Lys Asn Lys Gly Ile Gly Thr Ile Arg Asp Ile Gln Pro Leu 2765
2770 2775 Val Val Lys Lys Pro
Thr Ala Lys Ser Lys Ile Glu Ser Ala Val 2780 2785
2790 Glu Lys Lys Lys Thr Glu Ile Asn Gln Thr
Gln Asn Ala Thr His 2795 2800 2805
Asp Glu Val Arg Glu Gly Leu Asn Gln Leu Asn Gln Ile His Glu
2810 2815 2820 Lys Ala
Lys Asn Asp Val Asn Gln Ser Gln Thr Asn Gln Gln Val 2825
2830 2835 Glu Asn Ala Glu Gln Asn Ser
Leu Asp Gln Ile Asn Asn Phe Arg 2840 2845
2850 Pro Asp Phe Ser Lys Lys Arg Asn Ala Val Ala Glu
Ile Val Lys 2855 2860 2865
Ala Gln Gln Asn Lys Ile Asp Glu Ile Glu Gln Glu Phe Ser Ala 2870
2875 2880 Thr Gln Glu Glu Lys
Asp Asn Ala Leu Gln His Leu Asp Glu Gln 2885 2890
2895 Val Lys Glu Ile Ile Asn Ser Ile Asn Gln
Ala Asn Thr Asp Asn 2900 2905 2910
Glu Val Asp Asn Ala Lys Thr Ser Gly Leu Asn Asn Ile Thr Glu
2915 2920 2925 Tyr Arg
Pro Glu Tyr Asn Lys Lys Lys Asn Ala Ile Leu Lys Leu 2930
2935 2940 Tyr Asp Val Ser Asp Thr Gln
Glu Ala Ile Ile Asn Gly Tyr Pro 2945 2950
2955 Asp Ala Thr Glu Asp Glu Leu Gln Glu Ala Asn Ser
Lys Leu Asn 2960 2965 2970
Lys Ile Leu Leu Asp Ala Lys Lys Gln Ile Gly Leu Ala His Thr 2975
2980 2985 Asn Asn Glu Val Asp
Asp Ile Tyr Asn Glu Val Ser Gln Lys Met 2990 2995
3000 Lys Thr Ile Leu Pro Arg Val Asp Thr Lys
Ala Val Ala Arg Ser 3005 3010 3015
Val Leu Asn Ala Leu Ala Lys Gln Leu Ile Lys Thr Phe Glu Asn
3020 3025 3030 Thr Ala
Asp Val Thr His Glu Glu Arg Asn Asp Ala Ile Asn His 3035
3040 3045 Val Lys Glu Gln Leu Ser Leu
Val Phe Asn Ala Ile Glu Lys Asp 3050 3055
3060 Arg Lys Asp Ile Gln Val Ala Gln Asp Glu Leu Phe
Gly Leu Asn 3065 3070 3075
Glu Leu Asn Ser Ile Phe Ile Asn Ile Thr Gln Lys Pro Thr Ala 3080
3085 3090 Arg Lys Ala Ile Ser
Gly Met Ala Ser Gln Leu Asn Asn Ser Ile 3095 3100
3105 Asn Asn Thr Pro Tyr Ala Thr Glu Glu Glu
Arg Gln Ile Ala Leu 3110 3115 3120
Asn Lys Val Lys Ala Ile Val Asp Asp Ala Asn Glu Lys Ile Arg
3125 3130 3135 Glu Ala
Asn Thr Asp Ser Glu Val Leu Gly Thr Lys Ser Asn Ala 3140
3145 3150 Ile Thr Leu Leu Gln Ala Ile
Ser Ala Asp Val Gln Val Lys Pro 3155 3160
3165 Gln Ala Phe Glu Glu Ile Asn Ala Gln Ala Glu Ile
Gln Arg Glu 3170 3175 3180
Arg Ile Asn Gly Asn Ser Asp Ala Thr Arg Glu Glu Lys Glu Glu 3185
3190 3195 Ala Leu Lys Gln Val
Asp Thr Leu Val Asn His Ser Phe Ile Thr 3200 3205
3210 Ile Asn Asn Val Asn Lys Asn Gln Glu Val
Tyr Asp Thr Lys Asp 3215 3220 3225
Lys Thr Ile Glu Ala Ile His Lys Ile Lys Pro Ile Ser Thr Ile
3230 3235 3240 Lys Pro
Gln Ala Leu Asn Glu Ile Thr Ile Gln Leu Asp Thr Gln 3245
3250 3255 Arg Asp Leu Ile Lys Asn Asn
Lys Glu Ser Thr Val Glu Glu Lys 3260 3265
3270 Ala Ser Ala Ile Asp Lys Leu Ile Lys Thr Ala Ala
Arg Ile Ala 3275 3280 3285
Glu Ser Ile Asp Lys Ala Gln Thr Asn Glu Glu Val Lys Asn Ile 3290
3295 3300 Lys Lys Gln Ser Ile
Asp Glu Ile Ser Lys Ile Leu Pro Val Ile 3305 3310
3315 Glu Ile Lys Ser Ala Ala Arg Asn Glu Ile
His Gln Lys Ala Glu 3320 3325 3330
Val Ile Arg Gly Leu Ile Asn Asp Asn Glu Glu Ala Thr Lys Glu
3335 3340 3345 Glu Lys
Asp Ile Ala Leu Asn Gln Leu Asp Thr Thr Leu Thr Gln 3350
3355 3360 Ala Asn Val Ser Ile Asp Gln
Ala Leu Thr Asn Glu Ala Val Asn 3365 3370
3375 Arg Ala Lys Glu Ile Ala Asn Ser Glu Ile Asn Lys
Ile Ser Val 3380 3385 3390
Ile Ala Ile Lys Lys Pro Glu Ala Ile Ala Glu Ile Gln Glu Leu 3395
3400 3405 Ala Asp Lys Lys Leu
Asn Lys Phe Lys Gln Ser Gln Glu Ala Thr 3410 3415
3420 Ile Glu Glu Lys Gln Ser Ala Ile Asn Glu
Leu Glu Gln Ala Leu 3425 3430 3435
Lys Ser Ala Ile Asn His Ile His Gln Ser Gln Asn Asn Glu Ser
3440 3445 3450 Val Ser
Ala Ala Leu Lys Glu Ser Ile Ser Leu Ile Asp Ser Ile 3455
3460 3465 Glu Ile Gln Ala His Lys Lys
Leu Glu Ala Lys Ala Tyr Ile Asp 3470 3475
3480 Gly Tyr Ser Asp Asp Lys Ile Asn Asp Ile Ser Ser
Arg Ala Thr 3485 3490 3495
Asn Glu Glu Lys Gln Ile Phe Val Ser Lys Leu Lys Ala Leu Ile 3500
3505 3510 Asn Arg Thr His Lys
Gln Ile Asp Glu Ala Glu Thr Phe Val Ser 3515 3520
3525 Val Glu Thr Ile Val Arg Asn Phe Lys Val
Glu Ala Asp Lys Leu 3530 3535 3540
Asn Ser Ile Val Arg Lys Lys Ala Lys Ala Ser Lys Glu Ile Glu
3545 3550 3555 Leu Glu
Ala Asp His Val Lys Gln Met Ile Asn Ala Asn Leu Ser 3560
3565 3570 Ala Ser Thr Arg Val Lys Gln
Asn Ala Arg Thr Leu Ile Asn Glu 3575 3580
3585 Ile Val Ser Asn Ala Leu Ser Gln Leu Asn Lys Val
Thr Thr Asn 3590 3595 3600
Lys Glu Val Asp Glu Ile Val Asn Glu Thr Ile Glu Lys Leu Lys 3605
3610 3615 Ser Ile Gln Ile Arg
Glu Asp Lys Ile Leu Ser Ser Gln Arg Ser 3620 3625
3630 Ser Thr Ser Met Thr Glu Lys Ser Asn Gln
Cys Tyr Ser Ser Glu 3635 3640 3645
Asn Asn Thr Ile Lys Ser Leu Pro Glu Ala Gly Asn Ala Asp Lys
3650 3655 3660 Ser Leu
Pro Leu Ala Gly Val Thr Leu Ile Ser Gly Leu Ala Ile 3665
3670 3675 Met Ser Ser Arg Lys Lys Lys
Lys Asp Lys Lys Val Asn Asp 3680 3685
3690 49439PRTStaphylococcus epidermidis 49Leu Asp Ile Lys Met
Pro Lys Leu Gly Glu Ser Val His Glu Gly Thr 1 5
10 15 Ile Glu Gln Trp Leu Val Ser Val Gly Asp
His Val Asp Glu Tyr Glu 20 25
30 Pro Leu Cys Glu Val Ile Thr Asp Lys Val Thr Ala Glu Val Pro
Ser 35 40 45 Thr
Ile Ser Gly Thr Ile Thr Glu Leu Val Val Glu Glu Gly Gln Thr 50
55 60 Val Asn Ile Asn Thr Val
Ile Cys Lys Ile Asp Ser Glu Asn Gly Gln 65 70
75 80 Asn Gln Thr Glu Ser Ala Asn Glu Phe Lys Glu
Glu Gln Asn Gln His 85 90
95 Ser Gln Ser Asn Ile Asn Val Ser Gln Phe Glu Asn Asn Pro Lys Thr
100 105 110 His Glu
Ser Glu Val His Thr Ala Ser Ser Arg Ala Asn Asn Asn Gly 115
120 125 Arg Phe Ser Pro Val Val Phe
Lys Leu Ala Ser Glu His Asp Ile Asp 130 135
140 Leu Thr Gln Val Lys Gly Thr Gly Phe Glu Gly Arg
Val Thr Lys Lys 145 150 155
160 Asp Ile Gln Asn Ile Ile Asn Asn Pro Asn Asp Gln Glu Lys Glu Lys
165 170 175 Glu Phe Lys
Gln Thr Asp Lys Lys Asp His Ser Thr Asn His Cys Asp 180
185 190 Phe Leu His Gln Ser Ser Thr Lys
Asn Glu His Ser Pro Leu Ser Asn 195 200
205 Glu Arg Val Val Pro Val Lys Gly Ile Arg Lys Ala Ile
Ala Gln Asn 210 215 220
Met Val Thr Ser Val Ser Glu Ile Pro His Gly Trp Met Met Val Glu 225
230 235 240 Ala Asp Ala Thr
Asn Leu Val Gln Thr Arg Asn Tyr His Lys Ala Gln 245
250 255 Phe Lys Gln Asn Glu Gly Tyr Asn Leu
Thr Phe Phe Ala Phe Phe Val 260 265
270 Lys Ala Val Ala Glu Ala Leu Lys Val Asn Pro Leu Leu Asn
Ser Thr 275 280 285
Trp Gln Gly Asp Glu Ile Val Ile His Lys Asp Ile Asn Ile Ser Ile 290
295 300 Ala Val Ala Asp Asp
Asp Lys Leu Tyr Val Pro Val Ile Lys Asn Ala 305 310
315 320 Asp Glu Lys Ser Ile Lys Gly Ile Ala Arg
Glu Ile Asn Asp Leu Ala 325 330
335 Thr Lys Ala Arg Leu Gly Lys Leu Ala Gln Ser Asp Met Gln Asn
Gly 340 345 350 Thr
Phe Thr Val Asn Asn Thr Gly Ser Phe Gly Ser Val Ser Ser Met 355
360 365 Gly Ile Ile Asn His Pro
Gln Ala Ala Ile Leu Gln Val Glu Ser Val 370 375
380 Val Lys Lys Pro Val Val Ile Asp Asp Met Ile
Ala Ile Arg Asn Met 385 390 395
400 Val Asn Leu Cys Ile Ser Ile Asp His Arg Ile Leu Asp Gly Val Gln
405 410 415 Thr Gly
Lys Phe Met Asn Leu Val Lys Lys Lys Ile Glu Gln Tyr Ser 420
425 430 Ile Glu Asn Thr Ser Ile Tyr
435 50295PRTStaphylococcus epidermidis 50Met Asn
Thr Ile Ile Glu Glu Tyr Leu Asn Phe Ile Gln Ile Glu Lys 1 5
10 15 Gly Leu Ser Asn Asn Thr Ile
Gly Ala Tyr Arg Arg Asp Leu Lys Lys 20 25
30 Tyr Lys Asp Tyr Leu Glu Asp Asn Lys Ile Ser His
Ile Asp Phe Ile 35 40 45
Asp Arg Gln Ile Ile Gln Glu Cys Leu Gly His Leu Ile Asp Met Gly
50 55 60 Gln Ser Ser
Lys Ser Leu Ala Arg Phe Ile Ser Thr Ile Arg Ser Phe 65
70 75 80 His Gln Phe Ala Leu Arg Glu
Lys Tyr Ala Ala Lys Asp Pro Thr Val 85
90 95 Leu Ile Glu Thr Pro Lys Tyr Glu Lys Lys Leu
Pro Asp Val Leu Glu 100 105
110 Ile Asp Glu Val Ile Ala Leu Leu Glu Thr Pro Asp Leu Thr Lys
Asn 115 120 125 Asn
Gly Tyr Arg Asp Arg Thr Met Leu Glu Leu Leu Tyr Ala Thr Gly 130
135 140 Met Arg Val Thr Glu Ile
Ile Gln Leu Asp Val Glu Asp Val Asn Leu 145 150
155 160 Met Met Gly Phe Val Arg Val Phe Gly Lys Gly
Asn Lys Glu Arg Ile 165 170
175 Val Pro Leu Gly Asp Thr Val Ile Glu Tyr Leu Thr Thr Tyr Ile Glu
180 185 190 Thr Val
Arg Pro Gln Leu Leu Lys Gln Thr Thr Thr Gln Ala Leu Phe 195
200 205 Leu Asn Met His Gly Lys Ser
Leu Ser Arg Gln Gly Ile Trp Lys Ile 210 215
220 Ile Lys Gln Tyr Gly Leu Lys Ala Asn Ile Asn Lys
Thr Leu Thr Pro 225 230 235
240 His Thr Leu Arg His Ser Phe Ala Thr His Leu Leu Glu Asn Gly Ala
245 250 255 Asp Leu Arg
Ala Val Gln Glu Met Leu Gly His Ser Asp Ile Ser Thr 260
265 270 Thr Gln Leu Tyr Thr His Val Ser
Lys Ser Gln Ile Arg Lys Met Tyr 275 280
285 Thr Gln Phe His Pro Arg Ala 290
295 51800PRTStaphylococcus epidermidis 51Met Ser Leu Val Tyr Leu Met Ala
Thr Asn Leu Leu Val Met Leu Ile 1 5 10
15 Val Leu Phe Thr Leu Ser His Arg Gln Leu Arg Lys Val
Ala Gly Tyr 20 25 30
Val Ala Leu Ile Ala Pro Ile Val Thr Ser Thr Tyr Phe Ile Met Lys
35 40 45 Ile Pro Asp Val
Ile Arg Asn Lys Phe Ile Ala Val Arg Leu Pro Trp 50
55 60 Met Pro Ser Ile Asp Ile Asn Leu
Asp Leu Arg Leu Asp Gly Leu Ser 65 70
75 80 Leu Met Phe Gly Leu Ile Ile Ser Leu Ile Gly Val
Gly Val Phe Phe 85 90
95 Tyr Ala Thr Gln Tyr Leu Ser His Ser Thr Asp Asn Leu Pro Arg Phe
100 105 110 Phe Ile Tyr
Leu Leu Leu Phe Met Phe Ser Met Ile Gly Ile Val Ile 115
120 125 Ala Asn Asn Thr Ile Leu Met Tyr
Val Phe Trp Glu Leu Thr Ser Ile 130 135
140 Ser Ser Phe Leu Leu Ile Ser Tyr Trp Tyr Asn Asn Gly
Glu Ser Gln 145 150 155
160 Leu Gly Ala Ile Gln Ser Phe Met Ile Thr Val Phe Gly Gly Leu Ala
165 170 175 Leu Leu Thr Gly
Phe Ile Ile Leu Tyr Ile Ile Thr Gly Thr Asn Thr 180
185 190 Ile Thr Asp Ile Leu Asn Gln Arg Asn
Ala Ile Ser Arg His Pro Leu 195 200
205 Phe Ile Pro Met Ile Leu Met Leu Leu Leu Gly Ala Phe Thr
Lys Ser 210 215 220
Ala Gln Phe Pro Phe His Ile Trp Leu Pro Lys Ala Met Ala Ala Pro 225
230 235 240 Thr Pro Val Ser Ala
Tyr Leu His Ser Ala Thr Met Val Lys Ala Gly 245
250 255 Ile Phe Leu Leu Phe Arg Phe Thr Pro Leu
Leu Gly Leu Ser Asn Val 260 265
270 Tyr Ile Tyr Thr Val Thr Phe Val Gly Leu Ile Thr Met Leu Phe
Gly 275 280 285 Ser
Leu Thr Ala Leu Arg Gln Tyr Asp Leu Lys Gly Ile Leu Ala Tyr 290
295 300 Ser Thr Ile Ser Gln Leu
Gly Met Ile Met Thr Met Val Gly Leu Gly 305 310
315 320 Gly Gly Tyr Ala Gln His Thr Ser Asp Glu Leu
Ser Lys Phe Tyr Ile 325 330
335 Leu Val Leu Phe Ala Gly Leu Phe His Leu Met Asn His Ala Val Phe
340 345 350 Lys Cys
Ala Leu Phe Met Gly Val Gly Ile Ile Asp His Glu Ser Gly 355
360 365 Thr Arg Asp Ile Arg Leu Leu
Asn Gly Met Arg Lys Val Phe Pro Lys 370 375
380 Met His Ile Val Met Leu Leu Ala Ala Leu Ser Met
Ala Gly Val Pro 385 390 395
400 Phe Leu Asn Gly Phe Leu Ser Lys Glu Met Phe Leu Asp Ser Leu Thr
405 410 415 Lys Ala Asn
Glu Leu Asp Gln Tyr Gly Phe Val Leu Thr Phe Val Ile 420
425 430 Ile Ser Ile Gly Val Ile Ala Ser
Ile Leu Thr Phe Thr Tyr Ala Leu 435 440
445 Tyr Met Ile Lys Glu Thr Phe Trp Gly Asn Tyr Asn Ile
Glu Lys Phe 450 455 460
Lys Arg Lys Gln Ile His Glu Pro Trp Leu Phe Ser Leu Pro Ala Val 465
470 475 480 Ile Leu Met Leu
Leu Ile Pro Val Ile Phe Phe Val Pro Asn Val Phe 485
490 495 Gly Asn Phe Val Ile Leu Pro Ala Thr
Arg Ser Val Ser Gly Ile Gly 500 505
510 Ala Glu Val Asp Ala Phe Val Pro His Ile Ser Gln Trp His
Gly Val 515 520 525
Asn Leu Pro Leu Ile Leu Ser Ile Val Val Ile Ile Ile Gly Leu Ile 530
535 540 Leu Ala Leu Val Val
Asn Trp Lys Glu Val Thr His Gln Ile Ile Lys 545 550
555 560 Ser Ala Ser Ile Thr Asp Gly Tyr Arg Lys
Ile Tyr Arg Glu Phe Glu 565 570
575 Leu Tyr Ser Ala Arg Gly Ile Arg Ala Leu Met Asn Asn Lys Leu
Asn 580 585 590 Tyr
Tyr Ile Met Ile Thr Leu Phe Ile Phe Val Ala Ile Val Val Tyr 595
600 605 Gly Tyr Leu Thr Val Gly
Phe Pro His Val His Gln Leu His Ile Ser 610 615
620 Ser Phe Gly Pro Leu Glu Val Ile Leu Ser Val
Val Thr Leu Ile Ile 625 630 635
640 Gly Ile Ser Leu Ile Phe Ile Arg Gln Arg Leu Thr Met Val Val Leu
645 650 655 Asn Gly
Met Ile Gly Phe Ala Val Thr Leu Tyr Phe Ile Ala Met Lys 660
665 670 Ala Pro Asp Leu Ala Leu Thr
Gln Leu Val Val Glu Thr Ile Thr Thr 675 680
685 Ile Leu Phe Ile Val Ser Phe Ser Arg Leu Pro Asn
Ile Pro Arg Val 690 695 700
Lys Ala Asn Leu Lys Lys Glu Thr Phe Lys Ile Ile Val Ser Leu Val 705
710 715 720 Met Ala Leu
Thr Val Val Ser Leu Ile Phe Val Ala Gln Gln Ala Asp 725
730 735 Gly Met Pro Ser Ile Ala Lys Phe
Tyr Glu Asp Ala Tyr Glu Leu Thr 740 745
750 Gly Gly Lys Asn Ile Val Asn Ala Ile Leu Gly Asp Phe
Arg Ala Leu 755 760 765
Asp Thr Met Phe Glu Gly Leu Val Leu Ile Ile Ala Gly Leu Gly Ile 770
775 780 Tyr Thr Leu Leu
Asn Tyr Lys Asp Arg Arg Gly Gln Asp Glu Arg Glu 785 790
795 800 52892PRTStaphylococcus epidermidis
52Leu Phe Gly Leu Gly His Asn Glu Ala Lys Ala Glu Glu Asn Thr Val 1
5 10 15 Gln Asp Val Lys
Asp Ser Asn Met Asp Asp Glu Leu Ser Asp Ser Asn 20
25 30 Asp Gln Ser Ser Asn Glu Glu Lys Asn
Asp Val Ile Asn Asn Ser Gln 35 40
45 Ser Ile Asn Thr Asp Asp Asp Asn Gln Ile Lys Lys Glu Glu
Thr Asn 50 55 60
Ser Asn Asp Ala Ile Glu Asn Arg Ser Lys Asp Ile Thr Gln Ser Thr 65
70 75 80 Thr Asn Val Asp Glu
Asn Glu Ala Thr Phe Leu Gln Lys Thr Pro Gln 85
90 95 Asp Asn Thr Gln Leu Lys Glu Glu Val Val
Lys Glu Pro Ser Ser Val 100 105
110 Glu Ser Ser Asn Ser Ser Met Asp Thr Ala Gln Gln Pro Ser His
Thr 115 120 125 Thr
Ile Asn Ser Glu Ala Ser Ile Gln Thr Ser Asp Asn Glu Glu Asn 130
135 140 Ser Arg Val Ser Asp Phe
Ala Asn Ser Lys Ile Ile Glu Ser Asn Thr 145 150
155 160 Glu Ser Asn Lys Glu Glu Asn Thr Ile Glu Gln
Pro Asn Lys Val Arg 165 170
175 Glu Asp Ser Ile Thr Ser Gln Pro Ser Ser Tyr Lys Asn Ile Asp Glu
180 185 190 Lys Ile
Ser Asn Gln Asp Glu Leu Leu Asn Leu Pro Ile Asn Glu Tyr 195
200 205 Glu Asn Lys Val Arg Pro Leu
Ser Thr Thr Ser Ala Gln Pro Ser Ser 210 215
220 Lys Arg Val Thr Val Asn Gln Leu Ala Ala Glu Gln
Gly Ser Asn Val 225 230 235
240 Asn His Leu Ile Lys Val Thr Asp Gln Ser Ile Thr Glu Gly Tyr Asp
245 250 255 Asp Ser Asp
Gly Ile Ile Lys Ala His Asp Ala Glu Asn Leu Ile Tyr 260
265 270 Asp Val Thr Phe Glu Val Asp Asp
Lys Val Lys Ser Gly Asp Thr Met 275 280
285 Thr Val Asn Ile Asp Lys Asn Thr Val Pro Ser Asp Leu
Thr Asp Ser 290 295 300
Phe Ala Ile Pro Lys Ile Lys Asp Asn Ser Gly Glu Ile Ile Ala Thr 305
310 315 320 Gly Thr Tyr Asp
Asn Thr Asn Lys Gln Ile Thr Tyr Thr Phe Thr Asp 325
330 335 Tyr Val Asp Lys Tyr Glu Asn Ile Lys
Ala His Leu Lys Leu Thr Ser 340 345
350 Tyr Ile Asp Lys Ser Lys Val Pro Asn Asn Asn Thr Lys Leu
Asp Val 355 360 365
Glu Tyr Lys Thr Ala Leu Ser Ser Val Asn Lys Thr Ile Thr Val Glu 370
375 380 Tyr Gln Lys Pro Asn
Glu Asn Arg Thr Ala Asn Leu Gln Ser Met Phe 385 390
395 400 Thr Asn Ile Asp Thr Lys Asn His Thr Val
Glu Gln Thr Ile Tyr Ile 405 410
415 Asn Pro Leu Arg Tyr Ser Ala Lys Glu Thr Asn Val Asn Ile Ser
Gly 420 425 430 Asn
Gly Asp Glu Gly Ser Thr Ile Ile Asp Asp Ser Thr Ile Ile Lys 435
440 445 Val Tyr Lys Val Gly Asp
Asn Gln Asn Leu Pro Asp Ser Asn Arg Ile 450 455
460 Tyr Asp Tyr Ser Glu Tyr Glu Asp Val Thr Asn
Asp Asp Tyr Ala Gln 465 470 475
480 Leu Gly Asn Asn Asn Asp Val Asn Ile Asn Phe Gly Asn Ile Asp Ser
485 490 495 Pro Tyr
Ile Ile Lys Val Ile Ser Lys Tyr Asp Pro Asn Lys Asp Asp 500
505 510 Tyr Thr Thr Ile Gln Gln Thr
Val Thr Met Gln Thr Thr Ile Asn Glu 515 520
525 Tyr Thr Gly Glu Phe Arg Thr Ala Ser Tyr Asp Asn
Thr Ile Ala Phe 530 535 540
Ser Thr Ser Ser Gly Gln Gly Gln Gly Asp Leu Pro Pro Glu Lys Thr 545
550 555 560 Tyr Lys Ile
Gly Asp Tyr Val Trp Glu Asp Val Asp Lys Asp Gly Ile 565
570 575 Gln Asn Thr Asn Asp Asn Glu Lys
Pro Leu Ser Asn Val Leu Val Thr 580 585
590 Leu Thr Tyr Pro Asp Gly Thr Ser Lys Ser Val Arg Thr
Asp Glu Glu 595 600 605
Gly Lys Tyr Gln Phe Asp Gly Leu Lys Asn Gly Leu Thr Tyr Lys Ile 610
615 620 Thr Phe Glu Thr
Pro Glu Gly Tyr Thr Pro Thr Leu Lys His Ser Gly 625 630
635 640 Thr Asn Pro Ala Leu Asp Ser Glu Gly
Asn Ser Val Trp Val Thr Ile 645 650
655 Asn Gly Gln Asp Asp Met Thr Ile Asp Ser Gly Phe Tyr Gln
Thr Pro 660 665 670
Lys Tyr Ser Leu Gly Asn Tyr Val Trp Tyr Asp Thr Asn Lys Asp Gly
675 680 685 Ile Gln Gly Asp
Asp Glu Lys Gly Ile Ser Gly Val Lys Val Thr Leu 690
695 700 Lys Asp Glu Asn Gly Asn Ile Ile
Ser Thr Thr Thr Thr Asp Glu Asn 705 710
715 720 Gly Lys Tyr Gln Phe Asp Asn Leu Asn Ser Gly Asn
Tyr Ile Val His 725 730
735 Phe Asp Lys Pro Ser Gly Met Thr Gln Thr Thr Thr Asp Ser Gly Asp
740 745 750 Asp Asp Glu
Gln Asp Ala Asp Gly Glu Glu Val His Val Thr Ile Thr 755
760 765 Asp His Asp Asp Phe Ser Ile Asp
Asn Gly Tyr Tyr Asp Asp Asp Ser 770 775
780 Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Asp Ser
Asp Ser Asp 785 790 795
800 Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp
805 810 815 Ser Asp Ser Asp
Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp Ser Asp 820
825 830 Ser Asp Ser Asp Ser Asp Ser Gly Leu
Asp Asn Ser Ser Asp Lys Asn 835 840
845 Thr Lys Asp Lys Leu Pro Asp Thr Gly Ala Asn Glu Asp His
Asp Ser 850 855 860
Lys Gly Thr Leu Leu Gly Ala Leu Phe Ala Gly Leu Gly Ala Leu Leu 865
870 875 880 Leu Gly Lys Arg Arg
Lys Asn Arg Lys Asn Lys Asn 885 890
53484PRTStaphylococcus epidermidis 53Met Ser Glu Arg Ile Arg Val Arg
Tyr Ala Pro Ser Pro Thr Gly Tyr 1 5 10
15 Leu His Ile Gly Asn Ala Arg Thr Ala Leu Phe Asn Tyr
Leu Phe Ala 20 25 30
Lys His Tyr Asn Gly Asp Phe Val Val Arg Ile Glu Asp Thr Asp Ser
35 40 45 Lys Arg Asn Leu
Glu Asp Gly Glu Ser Ser Gln Phe Asp Asn Leu Lys 50
55 60 Trp Leu Gly Leu Asp Trp Asp Glu
Ser Val Asp Lys Asp Lys Gly Phe 65 70
75 80 Gly Pro Tyr Arg Gln Ser Glu Arg Ala Glu Ile Tyr
Asn Pro Leu Ile 85 90
95 Gln Gln Leu Leu Glu Glu Asp Lys Ala Tyr Lys Cys Tyr Met Thr Glu
100 105 110 Glu Glu Leu
Glu Ala Glu Arg Glu Ala Gln Ile Ala Arg Gly Glu Met 115
120 125 Pro Arg Tyr Gly Gly Gln His Ala
His Leu Thr Glu Glu Gln Arg Gln 130 135
140 Gln Tyr Glu Ala Glu Gly Arg Lys Pro Ser Ile Arg Phe
Arg Val Pro 145 150 155
160 Lys Asp Gln Thr Tyr Thr Phe Asn Asp Met Val Lys Gly Glu Ile Ser
165 170 175 Phe Glu Ser Asp
Asn Ile Gly Asp Trp Val Ile Val Lys Lys Asp Gly 180
185 190 Val Pro Thr Tyr Asn Phe Ala Val Ala
Val Asp Asp His Tyr Met Gln 195 200
205 Ile Ser Asp Val Ile Arg Gly Asp Asp His Val Ser Asn Thr
Pro Lys 210 215 220
Gln Leu Met Ile Tyr Glu Ala Phe Gly Trp Glu Ala Pro Arg Phe Gly 225
230 235 240 His Met Ser Leu Ile
Val Asn Glu Glu Arg Lys Lys Leu Ser Lys Arg 245
250 255 Asp Gly Gln Ile Leu Gln Phe Ile Glu Gln
Tyr Arg Asp Leu Gly Tyr 260 265
270 Leu Pro Glu Ala Leu Phe Asn Phe Ile Thr Leu Leu Gly Trp Ser
Pro 275 280 285 Glu
Gly Glu Glu Glu Ile Phe Ser Lys Glu Glu Phe Ile Lys Ile Phe 290
295 300 Asp Glu Lys Arg Leu Ser
Lys Ser Pro Ala Met Phe Asp Arg Gln Lys 305 310
315 320 Leu Ala Trp Val Asn Asn Gln Tyr Met Lys Thr
Lys Asp Thr Glu Thr 325 330
335 Val Phe Glu Leu Ala Leu Pro His Leu Ile Lys Ala Asn Leu Ile Pro
340 345 350 Glu Asn
Pro Ser Glu Lys Asp Arg Glu Trp Gly Arg Lys Leu Ile Ala 355
360 365 Leu Tyr Gln Lys Glu Met Ser
Tyr Ala Gly Glu Ile Val Pro Leu Ser 370 375
380 Glu Met Phe Phe His Glu Met Pro Glu Leu Gly Lys
Asp Glu Gln Glu 385 390 395
400 Val Leu Gln Gly Glu Gln Val Pro Glu Leu Met Asn His Leu Tyr Gly
405 410 415 Lys Leu Glu
Ser Leu Glu Ser Phe Glu Ala Thr Glu Ile Lys Lys Met 420
425 430 Ile Lys Glu Val Gln Lys Glu Thr
Gly Ile Lys Gly Lys Gln Leu Phe 435 440
445 Met Pro Ile Arg Val Ala Val Thr Gly Gln Met His Gly
Pro Glu Leu 450 455 460
Pro Asn Thr Ile Glu Val Leu Gly Lys Asp Lys Val Leu Ser Arg Leu 465
470 475 480 Lys Asn Leu Val
54296PRTStaphylococcus epidermidis 54Met Glu Tyr Lys Asp Ile Ala Thr Pro
Ser Arg Thr Arg Ala Leu Leu 1 5 10
15 Asp Gln Tyr Gly Phe Asn Phe Lys Lys Ser Leu Gly Gln Asn
Phe Leu 20 25 30
Ile Asp Val Asn Ile Ile Asn Lys Ile Ile Glu Ala Ser His Ile Asp
35 40 45 Cys Thr Thr Gly
Val Ile Glu Val Gly Pro Gly Met Gly Ser Leu Thr 50
55 60 Glu Gln Leu Ala Lys Asn Ala Lys
Lys Val Met Ala Phe Glu Ile Asp 65 70
75 80 Gln Arg Leu Ile Pro Val Leu Lys Asp Thr Leu Ser
Pro Tyr Asp Asn 85 90
95 Val Thr Ile Ile Asn Glu Asp Ile Leu Lys Ala Asp Ile Ala Lys Ala
100 105 110 Val Asp Thr
His Leu Gln Asp Cys Asp Lys Ile Met Val Val Ala Asn 115
120 125 Leu Pro Tyr Tyr Ile Thr Thr Pro
Ile Leu Leu Asn Leu Met Gln Gln 130 135
140 Asp Val Pro Ile Asp Gly Phe Val Val Met Met Gln Lys
Glu Val Gly 145 150 155
160 Glu Arg Leu Asn Ala Gln Val Gly Thr Lys Ala Tyr Gly Ser Leu Ser
165 170 175 Ile Val Ala Gln
Tyr Tyr Thr Glu Thr Ser Lys Val Leu Thr Val Pro 180
185 190 Lys Thr Val Phe Met Pro Pro Pro Asn
Val Asp Ser Ile Val Val Lys 195 200
205 Leu Met Gln Arg Gln Glu Pro Leu Val Gln Val Asp Asp Glu
Glu Gly 210 215 220
Phe Phe Lys Leu Ala Lys Ala Ala Phe Ala Gln Arg Arg Lys Thr Ile 225
230 235 240 Asn Asn Asn Tyr Gln
Asn Phe Phe Lys Asp Gly Lys Lys Asn Lys Glu 245
250 255 Thr Ile Arg Gln Trp Leu Glu Ser Ala Gly
Ile Asp Pro Lys Arg Arg 260 265
270 Gly Glu Thr Leu Thr Ile Gln Asp Phe Ala Thr Leu Tyr Glu Gln
Lys 275 280 285 Lys
Lys Phe Ser Glu Leu Thr Asn 290 295
55106PRTStaphylococcus epidermidis 55Met Thr Ser Asn His His Ala Pro Tyr
Asp Leu Gly Tyr Thr Arg Ala 1 5 10
15 Thr Met Asp Asn Thr Lys Gly Ser Glu Thr Ala Arg Ser Ser
Lys Ser 20 25 30
His Lys Val Val Leu Ser Ser Asp Cys Ser Leu Gln Leu Asp Tyr Met
35 40 45 Lys Leu Glu Ser
Leu Val Ile Val Asp Gln His Ala Thr Val Asn Thr 50
55 60 Phe Pro Gly Leu Val His Thr Ala
Arg His Thr Thr Arg Val Cys Asn 65 70
75 80 Thr Arg Ser Arg Trp Ser Asn His Leu Glu Leu Ala
Val Glu Gly Gly 85 90
95 Thr Asn Asp Trp Gly Glu Val Val Thr Arg 100
105 56442PRTStaphylococcus epidermidis 56Met Phe Phe Lys Gln
Phe Tyr Asp Lys His Leu Ser Gln Ala Ser Tyr 1 5
10 15 Leu Ile Gly Cys Gln Lys Thr Gly Glu Ala
Met Ile Ile Asp Pro Ile 20 25
30 Arg Asp Leu Ser Ser Tyr Ile Arg Val Ala Asp Glu Glu Gly Leu
Thr 35 40 45 Ile
Thr His Ala Ala Glu Thr His Ile His Ala Asp Phe Ala Ser Gly 50
55 60 Ile Arg Asp Val Ala Ile
Lys Leu Asn Ala Ser Ile Tyr Val Ser Gly 65 70
75 80 Glu Ser Asp Asp Thr Leu Gly Tyr Lys Asn Met
Pro Asn Gln Thr His 85 90
95 Phe Val Gln His Asn Asp Asp Ile Tyr Val Gly Asn Ile Lys Leu Lys
100 105 110 Val Leu
His Thr Pro Gly His Thr Pro Glu Ser Ile Ser Phe Leu Leu 115
120 125 Thr Asp Glu Gly Ala Gly Ala
Gln Val Pro Met Gly Leu Phe Ser Gly 130 135
140 Asp Phe Ile Phe Val Gly Asp Ile Gly Arg Pro Asp
Leu Leu Glu Lys 145 150 155
160 Ala Val Lys Val Glu Gly Ser Ser Glu Ile Gly Ala Lys Gln Met Phe
165 170 175 Lys Ser Ile
Glu Ser Ile Lys Asp Leu Pro Asn Tyr Ile Gln Ile Trp 180
185 190 Pro Gly His Gly Ala Gly Ser Pro
Cys Gly Lys Ser Leu Gly Ala Ile 195 200
205 Pro Thr Ser Thr Leu Gly Tyr Glu Lys Gln Thr Asn Trp
Ala Phe Ser 210 215 220
Glu Asn Asn Glu Ala Thr Phe Ile Asp Lys Leu Ile Ser Asp Gln Pro 225
230 235 240 Ala Pro Pro His
His Phe Ala Gln Met Lys Lys Ile Asn Gln Phe Gly 245
250 255 Met Asn Leu Tyr Gln Pro Tyr Thr Val
Tyr Pro Ala Thr Asn Thr Asn 260 265
270 Arg Leu Thr Phe Asp Leu Arg Ser Lys Glu Ala Tyr His Gly
Gly His 275 280 285
Ile Glu Gly Thr Ile Asn Ile Pro Tyr Asp Lys Asn Phe Ile Asn Gln 290
295 300 Ile Gly Trp Tyr Leu
Asn Tyr Asp Gln Glu Ile Asn Leu Ile Gly Glu 305 310
315 320 Tyr His Leu Val Ser Lys Ala Thr His Thr
Leu Gln Leu Ile Gly Tyr 325 330
335 Asp Asp Val Ala Gly Tyr Gln Leu Pro Gln Ser Lys Ile Gln Thr
Arg 340 345 350 Ser
Ile His Ser Glu Asp Ile Thr Gly Asn Glu Ser His Ile Leu Asp 355
360 365 Val Arg Asn Asp Asn Glu
Trp Asn Asn Gly His Leu Ser Gln Ala Val 370 375
380 His Val Pro His Gly Lys Leu Leu Glu Thr Asp
Leu Pro Phe Asn Arg 385 390 395
400 Asn Asp Val Ile Tyr Val His Cys Gln Ser Gly Ile Arg Ser Ser Ile
405 410 415 Ala Ile
Gly Ile Leu Glu His Lys Gly Tyr His Asn Ile Ile Asn Val 420
425 430 Asn Glu Gly Tyr Lys Asp Ile
His Leu Ser 435 440
57285PRTStaphylococcus epidermidis 57Leu Lys Lys Ile Leu Val Leu Ser Leu
Thr Ala Phe Leu Val Leu Ala 1 5 10
15 Gly Cys Asn Ser Gly Asp Lys Thr Asp Thr Lys Asp Lys Lys
Glu Glu 20 25 30
Thr Lys Gln Thr Ser Lys Ala Asn Lys Glu Asn Lys Glu Gln His His
35 40 45 Lys Gln Glu Asn
Asp Asn Lys Ala Ser Thr Gln Leu Ser Glu Lys Glu 50
55 60 Arg Leu Ala Leu Ala Phe Tyr Ala
Asp Gly Val Glu Lys Tyr Met Leu 65 70
75 80 Thr Lys Asn Glu Val Leu Thr Gly Val Tyr Asp Tyr
Gln Lys Gly Asn 85 90
95 Glu Thr Glu Lys Lys Gln Met Glu Gln Leu Met Leu Glu Lys Ala Asp
100 105 110 Ser Met Lys
Asn Ala Pro Lys Asp Met Lys Phe Tyr Gln Val Tyr Pro 115
120 125 Ser Lys Gly Gln Phe Ala Ser Ile
Val Gly Val Asn Lys Asn Lys Ile 130 135
140 Phe Ile Gly Ser Thr Gln Gly Ala Leu Ile Asp Tyr Gln
Thr Leu Leu 145 150 155
160 Asn Asn Gly Lys Glu Leu Asp Ile Ser Gln Leu Tyr Glu Asp Asn Lys
165 170 175 Asp Asn Arg Ser
Leu Glu Glu Met Lys Asn Lys Ile Glu Ile Val Asp 180
185 190 Ser Gly Ala Ala Gln Lys Ala Asp Asp
Pro Asp Lys Asn Ser Ala Asn 195 200
205 Thr Met Ala His Met Arg Ser Gln Ile Tyr Glu Lys Ile Ser
Asp Phe 210 215 220
Asp Gly Lys Leu Asp Asn Lys Thr Tyr Leu Trp Asp Asn Ile Arg Ile 225
230 235 240 Asn Asp Asp Gly Asn
Trp Thr Val His Tyr Arg Asn His Asp Gly Glu 245
250 255 Ile Met Gly Thr Tyr Lys Ser Glu Lys Asn
Lys Ile Ile Lys Leu Asp 260 265
270 Gln Asn Gly Asn Lys Ile Lys Glu Gln Gln Met Ser Asn
275 280 285 58498PRTStaphylococcus
epidermidis 58Met Ala Asn Lys Glu Ser Lys Asn Val Val Ile Ile Gly Ala Gly
Val 1 5 10 15 Leu
Ser Thr Thr Phe Gly Ser Met Ile Lys Glu Leu Glu Pro Asp Trp
20 25 30 Asn Ile Lys Leu Tyr
Glu Arg Leu Asp Arg Pro Gly Ile Glu Ser Ser 35
40 45 Asn Glu Arg Asn Asn Ala Gly Thr Gly
His Ala Ala Leu Cys Glu Leu 50 55
60 Asn Tyr Thr Val Gln Gln Pro Asp Gly Ser Ile Asp Ile
Glu Lys Ala 65 70 75
80 Lys Glu Ile Asn Glu Gln Phe Glu Ile Ser Lys Gln Phe Trp Gly His
85 90 95 Leu Val Lys Ser
Gly Asn Ile Ser Asn Pro Arg Asp Phe Ile Asn Pro 100
105 110 Leu Pro His Ile Ser Phe Val Arg Gly
Lys Asn Asn Val Lys Phe Leu 115 120
125 Lys Asn Arg Tyr Glu Ala Met Arg Asn Phe Pro Met Phe Asp
Asn Ile 130 135 140
Glu Tyr Thr Glu Asp Ile Glu Glu Met Arg Lys Trp Met Pro Leu Met 145
150 155 160 Met Thr Gly Arg Thr
Gly Asn Glu Ile Met Ala Ala Ser Lys Ile Asp 165
170 175 Glu Gly Thr Asp Val Asn Tyr Gly Glu Leu
Thr Arg Lys Met Ala Lys 180 185
190 Ser Ile Glu Lys His Pro Asn Ala Asp Val Gln Tyr Asn His Glu
Val 195 200 205 Ile
Asn Phe Asn Arg Arg Lys Asp Gly Ile Trp Glu Val Lys Val Lys 210
215 220 Asn Arg Asn Ser Gly Asp
Val Glu Thr Val Leu Ala Asp Tyr Val Phe 225 230
235 240 Ile Gly Ala Gly Gly Gly Ala Ile Pro Leu Leu
Gln Lys Thr Gly Ile 245 250
255 Pro Glu Ser Lys His Leu Gly Gly Phe Pro Ile Ser Gly Gln Phe Leu
260 265 270 Ile Cys
Thr Asn Pro Asp Val Ile Asn Glu His Asp Val Lys Val Tyr 275
280 285 Gly Lys Glu Pro Pro Gly Thr
Pro Pro Met Thr Val Pro His Leu Asp 290 295
300 Thr Arg Tyr Ile Asp Gly Glu Arg Thr Leu Leu Phe
Gly Pro Phe Ala 305 310 315
320 Asn Ile Gly Pro Lys Phe Leu Arg Asn Gly Ser Asn Leu Asp Leu Phe
325 330 335 Lys Ser Val
Lys Pro Tyr Asn Ile Thr Thr Leu Leu Ala Ser Ala Val 340
345 350 Lys Asn Leu Pro Leu Ile Lys Tyr
Ser Ile Asp Gln Val Leu Met Thr 355 360
365 Lys Glu Gly Cys Met Asn His Leu Arg Thr Phe Tyr Pro
Glu Ala Arg 370 375 380
Asp Glu Asp Trp Gln Leu Tyr Thr Ala Gly Lys Arg Val Gln Val Ile 385
390 395 400 Lys Asp Thr Lys
Glu His Gly Lys Gly Phe Ile Gln Phe Gly Thr Glu 405
410 415 Val Val Asn Ser Lys Asp His Ser Val
Ile Ala Leu Leu Gly Glu Ser 420 425
430 Pro Gly Ala Ser Thr Ser Val Ser Val Ala Leu Glu Val Leu
Glu Lys 435 440 445
Asn Phe Ala Glu Tyr Glu Lys Asp Trp Thr Pro Lys Leu Gln Lys Met 450
455 460 Ile Pro Ser Tyr Gly
Lys Ser Leu Ile Asp Asp Val Lys Leu Met Arg 465 470
475 480 Ala Thr Arg Lys Gln Thr Ser Lys Asp Leu
Glu Leu Asn Tyr Tyr Glu 485 490
495 Ser Lys 59516PRTStaphylococcus epidermidis 59Met Lys Ile
Phe Lys Thr Leu Ser Ser Ile Leu Val Thr Ser Val Leu 1 5
10 15 Ser Val Thr Val Ile Pro Ser Thr
Phe Ala Ser Thr Glu Ser Thr Ala 20 25
30 Thr Asn Gln Thr Gln Gln Thr Val Leu Phe Asp Asn Ser
His Ala Gln 35 40 45
Thr Ala Gly Ala Ala Asp Trp Val Ile Asp Gly Ala Phe Ser Asp Tyr 50
55 60 Ala Asp Ser Met
Arg Lys Gln Gly Tyr Gln Val Lys Glu Leu Glu Gly 65 70
75 80 Glu Ser Asn Ile Ser Asp Gln Ser Leu
Gln Gln Ala His Val Leu Val 85 90
95 Ile Pro Glu Ala Asn Asn Pro Phe Lys Glu Asn Glu Gln Lys
Ala Ile 100 105 110
Ile Asn Phe Val Lys Asn Gly Gly Ser Val Ile Phe Ile Ser Asp His
115 120 125 Tyr Asn Ala Asp
Arg Asn Leu Asn Arg Ile Asp Ser Ser Glu Ser Met 130
135 140 Asn Gly Tyr Arg Arg Gly Ala Tyr
Glu Asn Met Thr Lys Asp Met Asn 145 150
155 160 Asn Glu Glu Lys Asn Ser Asn Val Met His Asn Val
Lys Ser Ser Asp 165 170
175 Trp Leu Ser Gln Asn Phe Gly Val Arg Phe Arg Tyr Asn Ala Leu Gly
180 185 190 Asp Ile Asn
Thr Gln Asn Ile Val Ser Ser Lys Asp Ser Phe Gly Ile 195
200 205 Thr Lys Gly Val Gln Ser Val Ser
Met His Ala Gly Ser Thr Leu Ala 210 215
220 Ile Thr Asp Pro Asn Lys Ala Lys Gly Ile Ile Tyr Met
Pro Glu His 225 230 235
240 Leu Thr His Ser Gln Lys Trp Pro His Ala Val Asp Gln Gly Ile Tyr
245 250 255 Asn Gly Gly Gly
Ile Asn Glu Gly Pro Tyr Val Ala Ile Ser Lys Ile 260
265 270 Gly Lys Gly Lys Ala Ala Phe Ile Gly
Asp Ser Ser Leu Val Glu Asp 275 280
285 Arg Ser Pro Lys Tyr Leu Arg Glu Asp Asn Gly Lys Pro Lys
Lys Thr 290 295 300
Tyr Asp Gly Phe Lys Glu Gln Asp Asn Gly Lys Leu Leu Asn Asn Leu 305
310 315 320 Thr Thr Trp Leu Gly
Lys Lys Glu Ser Gln Ser Ser Met Lys Asp Met 325
330 335 Gly Ile Lys Leu Asp Asn Lys Thr Pro Leu
Leu Asn Phe Glu Gln Pro 340 345
350 Glu Asn Ser Ile Glu Pro Gln Lys Glu Pro Trp Thr Asn Pro Ile
Glu 355 360 365 Gly
Tyr Lys Trp Tyr Asp Arg Ser Thr Phe Lys Thr Gly Ser Tyr Gly 370
375 380 Ser Asn Gln Arg Gly Ala
Asp Asp Gly Val Asp Asp Lys Ser Ser Ser 385 390
395 400 His Gln Asn Gln Asn Ala Lys Val Glu Leu Thr
Leu Pro Gln Asn Ile 405 410
415 Gln Pro His His Pro Phe Gln Phe Thr Ile Lys Leu Thr Gly Tyr Glu
420 425 430 Pro Asn
Ser Thr Ile Ser Asp Val Arg Val Gly Leu Tyr Lys Asp Gly 435
440 445 Gly Lys Gln Ile Gly Ser Phe
Ser Ser Asn Arg Asn Gln Phe Asn Thr 450 455
460 Leu Gly Tyr Ser Pro Gly Gln Ser Ile Lys Ala Asn
Gly Ala Gly Glu 465 470 475
480 Ala Ser Phe Thr Leu Thr Ala Lys Val Thr Asp Glu Ile Lys Asp Ala
485 490 495 Asn Ile Arg
Val Lys Gln Gly Lys Lys Ile Leu Leu Thr Gln Lys Met 500
505 510 Asn Glu Asn Phe 515
6084PRTStaphylococcus epidermidis 60Gly Thr Pro Leu Glu Leu Val Phe Val
Asn Thr Leu Gly Pro Lys Pro 1 5 10
15 Cys Phe Ala Lys Pro Asn Lys Ile Leu Leu Leu Glu Tyr Ile
Pro Leu 20 25 30
Phe Val Ala Asp Ala Ala Ala Val Lys Thr Thr Lys Leu Thr Met Pro
35 40 45 Ala Ala Lys Gly
Thr Pro Ile Ser Val Asn Asn Leu Thr Asn Gly Leu 50
55 60 Leu Ser Gly Ser Thr Leu Asn His
Gly Met Thr Asp Met Ile Thr Ser 65 70
75 80 Lys Pro Pro Ile 6154PRTStaphylococcus
epidermidis 61Ser Ser Leu Ser Thr Ile Ile Pro Phe Ser Leu Gly Ala Leu Gly
Lys 1 5 10 15 Phe
Asn Ser Phe Ile Glu Gln Ile Ile Pro Leu Glu Ser Thr Pro Arg
20 25 30 Asn Trp Ala Ser Leu
Ile Thr Ile Pro Leu Gly Ile Thr Ala Pro Thr 35
40 45 Phe Ala Thr Thr Thr Phe 50
62116PRTStaphylococcus aureus 62Met Lys Phe Lys Lys Tyr Ile Leu
Thr Gly Thr Leu Ala Leu Leu Leu 1 5 10
15 Ser Ser Thr Gly Ile Ala Thr Ile Glu Gly Asn Lys Ala
Asp Ala Ser 20 25 30
Ser Leu Asp Lys Tyr Leu Thr Glu Ser Gln Phe His Asp Lys Arg Ile
35 40 45 Ala Glu Glu Leu
Arg Thr Leu Leu Asn Lys Ser Asn Val Tyr Ala Leu 50
55 60 Ala Ala Gly Ser Leu Asn Pro Tyr
Tyr Lys Arg Thr Ile Met Met Asn 65 70
75 80 Glu Tyr Arg Ala Lys Ala Ala Leu Lys Lys Asn Asp
Phe Val Ser Met 85 90
95 Ala Asp Ala Lys Val Ala Leu Glu Lys Ile Tyr Lys Glu Ile Asp Glu
100 105 110 Ile Ile Asn
Arg 1156311PRTArtificial SequenceSynthetic Peptide 63Lys Leu Lys
Leu Leu Leu Leu Leu Lys Leu Lys 1 5
10 6436PRTArtificial SequenceSynthetic Peptide 64Arg
Leu Ala Gly Leu Leu Arg Lys Gly Gly Glu Lys Ile Gly Glu Lys Leu Lys1
5 10 15Lys Ile Gly Gln Lys
Ile Lys Asn Phe Phe Gln Lys Leu Val Pro Gln Pro Glu 20
25 30 35
User Contributions:
Comment about this patent or add new information about this topic: