Patent application title: HENDRA VIRUS RECOMBINANT COMPOSITIONS AND USES THEREOF
Inventors:
Jean-Christophe Audonnet (Lyon, FR)
Jean-Christophe Audonnet (Lyon, FR)
Jules Maarten Minke (Corbas, FR)
Jules Maarten Minke (Corbas, FR)
Teshome Mebatsion (Watkinsville, GA, US)
Teshome Mebatsion (Watkinsville, GA, US)
Catherine Charreyre (Lyon, FR)
IPC8 Class: AA61K317088FI
USPC Class:
4241591
Class name: Drug, bio-affecting and body treating compositions immunoglobulin, antiserum, antibody, or antibody fragment, except conjugate or complex of the same with nonimmunoglobulin material binds virus or component thereof
Publication date: 2012-11-29
Patent application number: 20120301479
Abstract:
The present invention provides vectors that contain and express in vivo
or in vitro one or more Hendra virus polypeptides or antigens that elicit
an immune response in animal or human against Hendra virus and Nipah
virus, compositions comprising said vectors and/or Hendra virus
polypeptides, methods of vaccination against Hendra virus and Nipah
virus, and kits for use with such methods and compositions.Claims:
1. A composition comprising one or more expression vectors, wherein the
vector comprises a polynucleotide encoding one or more polypeptide
selected from the group consisting of a Hendra virus G polypeptide, a
variant or fragment of the Hendra virus G polypeptide, a Hendra virus F
polypeptide, a variant or fragment of the Hendra virus F polypeptide, and
a mixture thereof.
2. The composition of claim 1, wherein the vector comprises a first polynucleotide encoding a Hendra virus G polypeptide and a second polynucleotide encoding a Hendra virus F polypeptide.
3. The composition of claim 1, wherein the composition comprises a first expression vector comprising a polynucleotide encoding a Hendra virus G polypeptide and a second expression vector comprising a polynucleotide encoding a Hendra virus F polypeptide.
4. The composition of claim 1 further comprising one or more additional antigens.
5. The composition of claim 4, wherein the additional antigens are Nipah antigens.
6. The composition of claim 2, wherein the first polynucleotide encodes a Hendra virus G polypeptide having at least 80% sequence identity to the sequence as set forth in SEQ ID NO: 3, and wherein the second polynucleotide encodes a Hendra virus F polypeptide having at least 80% sequence identity to the sequence as set forth in SEQ ID NO: 6.
7. The composition of claim 1, wherein the polynucleotide encodes a Hendra virus G polypeptide having at least 80% sequence identity to the sequence as set forth in SEQ ID NO:3.
8. The composition of claim 1, wherein the polynucleotide encodes a Hendra virus F polypeptide having at least 80% sequence identity to the sequence as set forth in SEQ ID NO:6.
9. The composition of claim 1, wherein the polynucleotide has at least 70% sequence identity to the sequence as set forth in SEQ ID NO:1, 2, 4, or 5.
10. The composition of claim 1, wherein the vector is a poxvirus.
11. The composition of claim 1, wherein the composition further comprises a pharmaceutically or veterinary acceptable vehicle, adjuvant, diluent or excipient.
12. A vector comprising one or more polynucleotide encoding one or more polypeptide selected from the group consisting of a Hendra virus G polypeptide, a variant or fragment of the Hendra virus G, a Hendra virus F polypeptide, a variant or fragment of the Hendra virus F polypeptide, and a mixture thereof.
13. The vector of claim 12, wherein the polynucleotide encodes a Hendra virus G polypeptide having at least 80% sequence identity to the sequence as set forth in SEQ ID NO:3.
14. The vector of claim 12, wherein the polynucleotide encodes a Hendra virus F polypeptide having at least 80% sequence identity to the sequence as set forth in SEQ ID NO:6.
15. The vector of claim 12, wherein the vector comprises a first polynucleotide encoding a Hendra virus G polypeptide and a second polynucleotide encoding a Hendra virus F polypeptide.
16. The vector of claim 15, wherein the first polynucleotide encodes a Hendra virus G polypeptide having at least 80% sequence identity to the sequence as set forth in SEQ ID NO: 3, and wherein the second polynucleotide encodes a Hendra virus F polypeptide having at least 80% sequence identity to the sequence as set forth in SEQ ID NO: 6.
17. The vector of claim 12, wherein the polynucleotide is operably linked to a promoter.
18. The vector of claim 12, wherein the vector is a poxvirus.
19. A method of vaccinating an animal comprising at least one administration of the composition of claim 1 or vector of claim 12.
20. The method of claim 19, wherein the method comprises a prime-boost administration regime.
21. A method for inducing an immunogenic or protective response against Hendra virus or Nipah virus comprising at least one administration of the composition of claim 1 or vector of claim 12.
22. A method of hyperimmunizing horses to induce polyclonal antibodies for serotherapy in animals and humans comprising at least one administration of the composition of claim 1 or vector of claim 12.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims benefit of U.S. provisional application Ser. No. 61/491,037 filed May 27, 2011.
FIELD OF THE INVENTION
[0002] The present invention relates to formulations for combating Hendra virus and Nipah virus in animals. Specifically, the present invention provides vectors that contain and express in vivo or in vitro Hendra virus F and G antigens that elicit an immune response in animals and human against Hendra virus and Nipah virus, including compositions comprising said vectors, methods of vaccination against Hendra virus and Nipah virus, and kits for use with such methods and compositions. The present invention also provides vectors that contain and express in vivo or in vitro Hendra F or G protein that elicit an immune response in animals against Hendra virus and Nipah, and compositions comprising said vectors.
BACKGROUND OF THE INVENTION
[0003] Hendra virus is the source of a recently emerging disease in animals and human. Hendra virus was first recognized in September 1994 after an outbreak of respiratory illness among twenty horses and two humans in Hendra, Queensland, Australia (Selvey L A, et al., Med J Australia 1995, 162:642-5). Thirteen horses and one human died. In 1995, a second unrelated outbreak was identified that had occurred in August 1994 in Mackay, Queensland, in which two horses died and one human became infected (Hooper P T, et al., Australian Vet J 1996; 74:244-5; Rogers R J, et al., Australia Vet J 1996; 74:243-4). Four of the seven people who contracted the virus from infected horses have died since the disease first emerged in 1994. The fatality rate has been reported at more than 70% in horses and 50% in humans.
[0004] Nipah virus is a member of the Paramyxoviridae family and is related to the Hendra virus (formerly called equine morbillivirus). The Nipah virus was initially isolated in 1999 upon examining samples from an outbreak of encephalitis and respiratory illness among adult men in Malaysia and Singapore (see, e.g., Chua et al., Lancet. 1999, 354 (9186):1257-9 and Paton et al., Lancet. 1999 Oct. 9; 354(9186):1253-6). The host for Nipah virus is still unknown, but flying foxes (bats of the Pteropus genus) are suspected to be the natural host. Infection with Nipah virus in humans has been associated with an encephalitis characterized by fever and drowsiness and more serious central nerve system disease, such as coma, seizures and inability to maintain breathing (see, e.g., Lee et al., Ann Neurol. 1999 September; 46(3):428-32). Illness with Nipah virus begins with 3-14 days of fever and headache, followed by drowsiness and disorientation characterized by mental confusion. These signs and symptoms can progress to coma within 24-48 hours. Some patients have had a respiratory illness during the early part of their infections. Serious nerve disease with Nipah virus encephalitis has been marked by some sequelae, such as persistent convulsions and personality changes. During the Nipah virus disease outbreak in 1998-1999, about 40% of the patients with serious nerve disease who entered hospitals died from the illness (see, e.g., Lam & Chua, Clin Infect Dis. 2002 May 1; 34 Suppl 2:S48-51).
[0005] Hendra virus, like the majority of other paramyxoviruses, possess two surface glycoproteins, a fusion protein (F) and an attachment protein (G), that are involved in promotion of fusion between the viral membrane and the membrane of the target host cell. Hendra and Nipah viruses require both their attachment and fusion proteins to initiate membrane fusion (Bossart et al., J Virol. 2002; 76:11186-98). Various studies were conducted to understand the functions of the G and F proteins in virus infection. A soluble G glycoprotein of Hendra virus was constructed and showed the capability to bind to Hedra virus and Nipah virus infection-permissive cells (Bossart et al., J Virol. 2005; 79:6690-6702). Monoclonal antibodies specific for the Nipah virus fusion protein were shown to neutralize Hedra virus in vitro and protected hamsters from Hendra virus (Guillaume et al., Virology 2009; 387:459-465). A recombinant soluble Hendra G protein in CpG adjuvant was evaluated in a cat model (McEachern et al., Vaccine 2008; 26:3842-3852).
[0006] Currently there is no licensed Hendra vaccine. Therefore, there is a general need for a Hendra vaccine for the protection against Hendra virus and Nipah virus infection, prevention of the disease in animals and human and prevention of spreading of the virus to uninfected animals or human.
[0007] The invention provides a solution for optimizing the immunological and efficacious effect of Hendra virus vaccine while retaining high safety for the vaccinated animals.
SUMMARY OF THE INVENTION
[0008] An object of this invention can be any one or all of providing recombinant vectors or viruses as well as methods for making such viruses, and providing compositions and/or vaccines as well as methods for treatment and prophylaxis of infection by Hendra virus or Nipah virus.
[0009] The invention provides a recombinant vector, such as a recombinant virus, that contains and expresses at least one exogenous nucleic acid molecule and, the at least one exogenous nucleic acid molecule may comprise a nucleic acid molecule encoding an immunogen or epitope of interest from Hendra virus, such as F or G or a combination thereof.
[0010] The invention further provides compositions or vaccines comprising such an expression vector or the expression product(s) of such an expression vector. The compositions or vaccines may comprise two or more such expression vectors or the expression product(s) of such expression vectors. The invention further relates to a vaccine or composition which may comprise one or more aforementioned recombinant or expression vector a pharmaceutically or veterinarily acceptable carrier, excipient, adjuvant, or vehicle, and additionally one or more antigens. The additional antigen(s) may be Nipah virus antigen(s).
[0011] The invention further provides methods for inducing an immunological (or immunogenic) or protective response against Hendra virus or Nipah virus, as well as methods for preventing or treating the disease state(s) caused by Hendra virus or Nipah virus, comprising administering the expression vector or an expression product of the expression vector, or a composition comprising the expression vector, or a composition comprising an expression product of the expression vector.
[0012] The invention relates to expression products from the virus as well as antibodies generated from the expression products or the expression thereof in vivo and uses for such products and antibodies, e.g., in diagnostic applications. The invention also relates to a method of hyperimmunizing horses to induce polyclonal antibodies for serotherapy in animals and humans comprising at least one administration of the composition or vector of the present invention.
[0013] These and other embodiments are disclosed or are obvious from and encompassed by, the following Detailed Description.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] The following detailed description, given by way of example, but not intended to limit the invention solely to the specific embodiments described, may best be understood in conjunction with the accompanying drawings, in which:
[0015] FIG. 1 is the table showing the SEQ ID NO assigned to the respective DNA and Protein sequences.
[0016] FIG. 2 depicts the plasmid maps of p362-Hendra G and p362-Hendra F.
[0017] FIG. 3 shows the vCP3004 (Hendra G) Southern Blot result.
[0018] FIG. 4 shows the vCP3004 (Hendra G) Western Blot result.
[0019] FIG. 5 shows the vCP3005 (Hendra F) Southern Blot result.
[0020] FIG. 6 shows the vCP3005 (Hendra F) Western Blot result.
[0021] FIG. 7 depicts the fusion assay of vCP3004, vCP3005, and vCP3004+vCP3005.
[0022] FIGS. 8A-8C show the ELISA binding and blocking assays and SNT against Hendra.
[0023] FIGS. 9A-9C show the ELISA binding and blocking assays and SNT against Nipah.
[0024] FIG. 10A-10B show the VN serology data of horses vaccinated with vCP3004+vCP3005 against Hendra and Nipah.
[0025] FIG. 11 shows DNA and protein sequences.
[0026] FIG. 12 shows the protein and DNA sequence alignment and sequence identity percentages
DETAILED DESCRIPTION
[0027] Compositions comprising one or more expression vector(s) comprising one or more polynucleotide(s) encoding one or more Hendra virus antigen(s), polypeptide(s) and fragments and variants thereof that elicit an immunogenic response in an animal or human are provided. The expression vector comprising the polynucleotide encoding Hendra virus antigen(s) or polypeptide(s) or fragments or variants may be formulated into vaccines or pharmaceutical compositions and used to elicit or stimulate a protective response in an animal or human. In one embodiment the Hendra virus antigen or polypeptide is a Hendra virus fusion protein (F), a Hendra virus attachment protein (G), or active fragment or variant thereof.
[0028] It is recognized that the polypeptides of the invention may be full length polypeptides or active fragments or variants thereof. By "active fragments" or "active variants" is intended that the fragments or variants retain the antigenic nature of the polypeptide. Thus, the present invention encompasses any Hendra virus polypeptide, antigen, epitope or immunogen that elicits an immunogenic response in an animal. The Hendra virus polypeptide, antigen, epitope or immunogen may be any Hendra virus polypeptide, antigen, epitope or immunogen, such as, but not limited to, a protein, peptide or fragment or variant thereof, that elicits, induces or stimulates a response in an animal.
[0029] A particular Hendra virus polypeptide of interest is Hendra virus fusion protein (F) and Hendra virus attachment protein (G). It is further recognized that precursors of any of these antigens can be used. The antigenic polypeptides of the invention are capable of protecting against Hendra virus. That is, they are capable of stimulating an immune response in an animal or human.
[0030] The term "antigen" or "immunogen" means a substance that induces a specific immune response in a host animal. The antigen may comprise a whole organism, killed, attenuated or live; a subunit or portion of an organism; a recombinant vector containing an insert with immunogenic properties; a piece or fragment of DNA capable of inducing an immune response upon presentation to a host animal; a polypeptide, an epitope, a hapten, or any combination thereof. Alternately, the immunogen or antigen may comprise a toxin or antitoxin.
[0031] The terms "protein", "peptide", "polypeptide" and "polypeptide fragment" are used interchangeably herein to refer to polymers of amino acid residues of any length. The polymer can be linear or branched, it may comprise modified amino acids or amino acid analogs, and it may be interrupted by chemical moieties other than amino acids. The terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling or bioactive component.
[0032] The term "Hendra virus polypeptide or antigen" refers to any antigen or polypeptide identified in any Hendra virus strain. The antigen or polypeptide may be native to the particular Hendra virus strain. The antigen or polypeptide may be optimized from its native form. Hendra virus polypeptide or antigen include, for example, fusion protein (F), attachment protein (G), and Nucleocapsid (N) protein.
[0033] The term "immunogenic or antigenic polypeptide" as used herein includes polypeptides that are immunologically active in the sense that once administered to the host, it is able to evoke an immune response of the humoral and/or cellular type directed against the protein. Preferably the protein fragment is such that it has substantially the same immunological activity as the total protein. Thus, a protein fragment according to the invention comprises or consists essentially of or consists of at least one epitope or antigenic determinant. An "immunogenic" protein or polypeptide, as used herein, includes the full-length sequence of the protein, analogs thereof, or immunogenic fragments thereof. By "immunogenic fragment" is meant a fragment of a protein which includes one or more epitopes and thus elicits the immunological response described above. Such fragments can be identified using any number of epitope mapping techniques well known in the art. See, e.g., Epitope Mapping Protocols in Methods in Molecular Biology, Vol. 66 (Glenn E. Morris, Ed., 1996). For example, linear epitopes may be determined by e.g., concurrently synthesizing large numbers of peptides on solid supports, the peptides corresponding to portions of the protein molecule, and reacting the peptides with antibodies while the peptides are still attached to the supports. Such techniques are known in the art and described in, e.g., U.S. Pat. No. 4,708,871; Geysen et al., 1984; Geysen et al., 1986. Similarly, conformational epitopes are readily identified by determining spatial conformation of amino acids such as by, e.g., x-ray crystallography and 2-dimensional nuclear magnetic resonance. See, e.g., Epitope Mapping Protocols, supra.
[0034] As discussed herein, the invention encompasses active fragments and variants of the antigenic polypeptide. Thus, the term "immunogenic or antigenic polypeptide" further contemplates deletions, additions and substitutions to the sequence, so long as the polypeptide functions to produce an immunological response as defined herein. The term "conservative variation" denotes the replacement of an amino acid residue by another biologically similar residue, or the replacement of a nucleotide in a nucleic acid sequence such that the encoded amino acid residue does not change or is another biologically similar residue. In this regard, particularly preferred substitutions will generally be conservative in nature, i.e., those substitutions that take place within a family of amino acids. For example, amino acids are generally divided into four families: (1) acidic--aspartate and glutamate; (2) basic--lysine, arginine, histidine; (3) non-polar--alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar--glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified as aromatic amino acids. Examples of conservative variations include the substitution of one hydrophobic residue such as isoleucine, valine, leucine or methionine for another hydrophobic residue, or the substitution of one polar residue for another polar residue, such as the substitution of arginine for lysine, glutamic acid for aspartic acid, or glutamine for asparagine, and the like; or a similar conservative replacement of an amino acid with a structurally related amino acid that will not have a major effect on the biological activity. Proteins having substantially the same amino acid sequence as the reference molecule but possessing minor amino acid substitutions that do not substantially affect the immunogenicity of the protein are, therefore, within the definition of the reference polypeptide. All of the polypeptides produced by these modifications are included herein. The term "conservative variation" also includes the use of a substituted amino acid in place of an unsubstituted parent amino acid provided that antibodies raised to the substituted polypeptide also immunoreact with the unsubstituted polypeptide.
[0035] The term "epitope" refers to the site on an antigen or hapten to which specific B cells and/or T cells respond. The term is also used interchangeably with "antigenic determinant" or "antigenic determinant site". Antibodies that recognize the same epitope can be identified in a simple immunoassay showing the ability of one antibody to block the binding of another antibody to a target antigen.
[0036] An "immunological response" to a composition or vaccine is the development in the host of a cellular and/or antibody-mediated immune response to a composition or vaccine of interest. Usually, an "immunological response" includes but is not limited to one or more of the following effects: the production of antibodies, B cells, helper T cells, and/or cytotoxic T cells, directed specifically to an antigen or antigens included in the composition or vaccine of interest. Preferably, the host will display either a therapeutic or protective immunological response such that resistance to new infection will be enhanced and/or the clinical severity of the disease reduced. Such protection will be demonstrated by either a reduction or lack of symptoms normally displayed by an infected host, a quicker recovery time and/or a lowered viral titer in the infected host.
[0037] By "animal" is intended mammals, birds, and the like. Animal or host as used herein includes mammals and human. The animal may be selected from the group consisting of equine (e.g., horse), canine (e.g., dogs, wolves, foxes, coyotes, jackals), feline (e.g., lions, tigers, domestic cats, wild cats, other big cats, and other felines including cheetahs and lynx), ovine (e.g., sheep), bovine (e.g., cattle), porcine (e.g., pig), avian (e.g., chicken, duck, goose, turkey, quail, pheasant, parrot, finches, hawk, crow, ostrich, emu and cassowary), primate (e.g., prosimian, tarsier, monkey, gibbon, ape), ferrets, seals, and fish. The term "animal" also includes an individual animal in all stages of development, including embryonic and fetal stages.
[0038] Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The singular terms "a", "an", and "the" include plural referents unless context clearly indicates otherwise. Similarly, the word "or" is intended to include "and" unless the context clearly indicate otherwise.
[0039] It is noted that in this disclosure and particularly in the claims and/or paragraphs, terms such as "comprises", "comprised", "comprising" and the like can have the meaning attributed to it in U.S. patent law; e.g., they can mean "includes", "included", "including", and the like; and that terms such as "consisting essentially of" and "consists essentially of" have the meaning ascribed to them in U.S. patent law, e.g., they allow for elements not explicitly recited, but exclude elements that are found in the prior art or that affect a basic or novel characteristic of the invention.
Compositions
[0040] The present invention relates to a Hendra virus recombinant vaccine or composition which may comprise at least one recombinant or expression vector comprising one or more polynucleotide(s) encoding one or more Hendra virus polypeptide, antigen, epitope or immunogen. The vaccine or composition may further comprise a pharmaceutically or veterinarily acceptable carrier, excipient, adjuvant, or vehicle. The Hendra virus polypeptide, antigen, epitope or immunogen may be any Hendra virus polypeptide, antigen, epitope or immunogen, such as, but not limited to, a protein, peptide or fragment thereof, that elicits, induces or stimulates a response in an animal.
[0041] In another embodiment, the pharmaceutically or veterinarily acceptable carrier, excipient, adjuvant, or vehicle may be a water-in-oil emulsion. In yet another embodiment, the water-in-oil emulsion may be a water/oil/water (W/O/W) triple emulsion. In yet another embodiment, the pharmaceutically or veterinarily acceptable carrier, excipient, adjuvant, or vehicle may be an oil-in-water emulsion. In another embodiment, the pharmaceutically or veterinarily acceptable carriers, excipients, adjuvants, or vehicles may be polymers of acrylic or methacrylic acid, maleic anhydride and alkenyl derivative polymers.
[0042] In an embodiment, the Hendra virus polypeptide, antigen or fragment or variant thereof may be a Hendra virus F polypeptide or fragment or variant thereof. In an aspect of this embodiment, the Hendra virus F polypeptide or fragment or variant thereof is a recombinant polypeptide produced by a Hendra virus F gene. In another aspect of this embodiment, the Hendra virus F gene has at least 70% identity to the sequence as set forth in SEQ ID NO: 4 or 5. In another aspect of this embodiment, the Hendra virus F polypeptide or fragment or variant thereof has at least 80% identity to the sequence as set forth in SEQ ID NO: 6.
[0043] In another embodiment, the Hendra virus polypeptide, antigen or fragment or variant thereof may be a Hendra virus G polypeptide or fragment or variant thereof. In an aspect of this embodiment, the Hendra virus G polypeptide or fragment or variant thereof is a recombinant polypeptide produced by a Hendra virus G gene. In another aspect of this embodiment, the Hendra virus G gene has at least 70% identity to the sequence as set forth in SEQ ID NO: 1 or 2. In another aspect of this embodiment, the Hendra virus G polypeptide or fragment or variant thereof has at least 80% identity to the sequence as set forth in SEQ ID NO: 3.
[0044] Synthetic antigens are also included within the definition, for example, polyepitopes, flanking epitopes, and other recombinant or synthetically derived antigens. Immunogenic fragments, for purposes of the present invention, will usually include at least about 3 amino acids, at least about 5 amino acids, at least about 10-15 amino acids, or about 15-25 amino acids or more amino acids, of the molecule. There is no critical upper limit to the length of the fragment, which could comprise nearly the full-length of the protein sequence, or even a fusion protein comprising at least one epitope of the protein.
[0045] Accordingly, a minimum structure of a polynucleotide expressing an epitope is that it comprises or consists essentially of or consists of nucleotides encoding an epitope or antigenic determinant of a Hendra virus polypeptide. A polynucleotide encoding a fragment of a Hendra virus polypeptide may comprise or consist essentially of or consist of a minimum of 15 nucleotides, about 30-45 nucleotides, about 45-75, or at least 75, 87 or 150 consecutive or contiguous nucleotides of the sequence encoding the polypeptide. Epitope determination procedures, such as, generating overlapping peptide libraries (Hemmer et al., 1998), Pepscan (Geysen et al., 1984; Geysen et al., 1985; Van der Zee R. et al., 1989; Geysen, 1990; MultipinĀ® Peptide Synthesis Kits de Chiron) and algorithms (De Groot et al., 1999; PCT/US2004/022605) can be used in the practice of the invention.
[0046] The term "nucleic acid" and "polynucleotide" refers to RNA or DNA that is linear or branched, single or double stranded, or a hybrid thereof. The term also encompasses RNA/DNA hybrids. The following are non-limiting examples of polynucleotides: a gene or gene fragment, exons, introns, mRNA, tRNA, rRNA, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes and primers. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs, uracyl, other sugars and linking groups such as fluororibose and thiolate, and nucleotide branches. The sequence of nucleotides may be further modified after polymerization, such as by conjugation, with a labeling component. Other types of modifications included in this definition are caps, substitution of one or more of the naturally occurring nucleotides with an analog, and introduction of means for attaching the polynucleotide to proteins, metal ions, labeling components, other polynucleotides or solid support. The polynucleotides can be obtained by chemical synthesis or derived from a microorganism.
[0047] The term "gene" is used broadly to refer to any segment of polynucleotide associated with a biological function. Thus, genes include introns and exons as in genomic sequence, or just the coding sequences as in cDNAs and/or the regulatory sequences required for their expression. For example, gene also refers to a nucleic acid fragment that expresses mRNA or functional RNA, or encodes a specific protein, and which includes regulatory sequences.
[0048] An "isolated" biological component (such as a nucleic acid or protein or organelle) refers to a component that has been substantially separated or purified away from other biological components in the cell of the organism in which the component naturally occurs, for instance, other chromosomal and extra-chromosomal DNA and RNA, proteins, and organelles. Nucleic acids and proteins that have been "isolated" include nucleic acids and proteins purified by standard purification methods. The term also embraces nucleic acids and proteins prepared by recombinant technology as well as chemical synthesis.
[0049] The term "purified" as used herein does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a partially purified polypeptide preparation is one in which the polypeptide is more enriched than the polypeptide is in its natural environment. That is the polypeptide is separated from cellular components. By "substantially purified" is intended that at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98%, or more of the cellular components or materials have been removed. Likewise, a polypeptide may be partially purified. By "partially purified" is intended that less than 60% of the cellular components or material is removed. The same applies to polynucleotides. The polypeptides disclosed herein can be purified by any of the means known in the art.
[0050] Moreover, homologs of Hendra virus F or G polypeptides are intended to be within the scope of the present invention. As used herein, the term "homologs" includes orthologs, analogs and paralogs. The term "anologs" refers to two polynucleotides or polypeptides that have the same or similar function, but that have evolved separately in unrelated organisms. The term "orthologs" refers to two polynucleotides or polypeptides from different species, but that have evolved from a common ancestral gene by speciation. Normally, orthologs encode polypeptides having the same or similar functions. The term "paralogs" refers to two polynucleotides or polypeptides that are related by duplication within a genome. Paralogs usually have different functions, but these functions may be related. For example, analogs, orthologs, and paralogs of a wild-type Hendra virus polypeptide can differ from the wild-type Hendra virus polypeptide by post-translational modifications, by amino acid sequence differences, or by both. In particular, homologs of the invention will generally exhibit at least 80-85%, 85-90%, 90-95%, or 95%, 96%, 97%, 98% , 99% sequence identity, with all or part of the wild-type Hendra virus polypeptide or polynucleotide sequences, and will exhibit a similar function.
[0051] In one embodiment, the present invention provides an expression vector comprising one or more polynucleotides encoding one or more polypeptides having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, 96%, 97%, 98% or 99% sequence identity to a polypeptide having a sequence as set forth in SEQ ID NO: 3 or 6. In another embodiment, the present invention provides fragments and variants of the Hendra virus F or G polypeptides identified above (SEQ ID NO: 3, 6) which may readily be prepared by one of skill in the art using well-known molecular biology techniques. Variants are homologous polypeptides having amino acid sequences at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequences as set forth in SEQ ID NO: 3 or 6.
[0052] Variants include allelic variants. The term "allelic variant" refers to a polynucleotide or a polypeptide containing polymorphisms that lead to changes in the amino acid sequences of a protein and that exist within a natural population (e.g., a virus species or variety). Such natural allelic variations can typically result in 1-5% variance in a polynucleotide or a polypeptide. Allelic variants can be identified by sequencing the nucleic acid sequence of interest in a number of different species, which can be readily carried out by using hybridization probes to identify the same genetic locus in those species. Any and all such nucleic acid variations and resulting amino acid polymorphisms or variations that are the result of natural allelic variation and that do not alter the functional activity of gene of interest, are intended to be within the scope of the invention.
[0053] As used herein, the term "derivative" or "variant" refers to a polypeptide, or a nucleic acid encoding a polypeptide, that has one or more conservative amino acid variations or other minor modifications such that (1) the corresponding polypeptide has substantially equivalent function when compared to the wild type polypeptide or (2) an antibody raised against the polypeptide is immunoreactive with the wild-type polypeptide. These variants or derivatives include polypeptides having minor modifications of the Hendra virus polypeptide primary amino acid sequences that may result in peptides which have substantially equivalent activity as compared to the unmodified counterpart polypeptide. Such modifications may be deliberate, as by site-directed mutagenesis, or may be spontaneous. The term "variant" further contemplates deletions, additions and substitutions to the sequence, so long as the polypeptide functions to produce an immunological response as defined herein.
[0054] An immunogenic fragment of a Hendra virus polypeptide includes at least 8, 10, 13, 14, 15, or 20 consecutive amino acids, at least 21 amino acids, at least 23 amino acids, at least 25 amino acids, or at least 30 amino acids of a Hendra virus polypeptide having a sequence as set forth in SEQ ID NO: 3, 6, or variants thereof.
[0055] In another aspect, the present invention provides an expression vector comprising a polynucleotide encoding a Hendra virus F polypeptide, such as a polynucleotide encoding a polypeptide having a sequence as set forth in SEQ ID NO: 6. In yet another aspect, the present invention provides an expression vector comprising a polynucleotide encoding a polypeptide having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, 96%, 97%, 98% or 99% sequence identity to a polypeptide having a sequence as set forth in SEQ ID NO: 6, or a conservative variant, an allelic variant, a homolog or an immunogenic fragment comprising at least eight or at east ten consecutive amino acids of one of these polypeptides, or a combination of these polypeptides.
[0056] In yet another aspect, the present invention provides an expression vector comprising a polynucleotide encoding a Hendra virus G polypeptide, such as a polynucleotide encoding a polypeptide having a sequence as set forth in SEQ ID NO: 3. In yet another aspect, the present invention provides an expression vector comprising a polynucleotide encoding a polypeptide having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, 96%, 97%, 98% or 99% sequence identity to a polypeptide having a sequence as set forth in SEQ ID NO: 3, or a conservative variant, an allelic variant, a homolog or an immunogenic fragment comprising at least eight or at east ten consecutive amino acids of one of these polypeptides, or a combination of these polypeptides.
[0057] In yet another aspect, the present invention provides an expression vector comprising two polynucleotides encoding a Hendra virus F polypeptide, such as a polynucleotide encoding a polypeptide having a sequence as set forth in SEQ ID NO: 6 and a Hendra virus G polypeptide, such as a polynucleotide encoding a polypeptide having a sequence as set forth in SEQ ID NO: 3.
[0058] In one embodiment the polynucleotide of the present invention includes a polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 1, 2, 4, 5, or a variant thereof. In another embodiment, the polynucleotide of the present invention includes a polynucleotide having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 95%, 96%, 97%, 98% or 99% sequence identity to one of a polynucleotide having a sequence as set forth in SEQ ID NO: 1, 2, 4, 5, or a variant thereof.
[0059] The polynucleotides of the disclosure include sequences that are degenerate as a result of the genetic code, e.g., optimized codon usage for a specific host. As used herein, "optimized" refers to a polynucleotide that is genetically engineered to increase its expression in a given species. To provide optimized polynucleotides coding for Hendra virus polypeptides, the DNA sequence of the Hendra virus gene can be modified to 1) comprise codons preferred by highly expressed genes in a particular species; 2) comprise an A+T or G+C content in nucleotide base composition to that substantially found in said species; 3) form an initiation sequence of said species; or 4) eliminate sequences that cause destabilization, inappropriate polyadenylation, degradation and termination of RNA, or that form secondary structure hairpins or RNA splice sites. Increased expression of Hendra virus protein in said species can be achieved by utilizing the distribution frequency of codon usage in eukaryotes and prokaryotes, or in a particular species. The term "frequency of preferred codon usage" refers to the preference exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. There are 20 natural amino acids, most of which are specified by more than one codon. Therefore, all degenerate nucleotide sequences are included in the disclosure as long as the amino acid sequence of the Hendra virus polypeptide encoded by the nucleotide sequence is functionally unchanged.
[0060] The sequence identity between two amino acid sequences may be established by the NCBI (National Center for Biotechnology Information) pairwise blast and the blosum62 matrix, using the standard parameters (see, e.g., the BLAST or BLASTX algorithm available on the "National Center for Biotechnology Information" (NCBI, Bethesda, Md., USA) server, as well as in Altschul et al.).
[0061] The "identity" with respect to sequences can refer to the number of positions with identical nucleotides or amino acids divided by the number of nucleotides or amino acids in the shorter of the two sequences wherein alignment of the two sequences can be determined in accordance with the Wilbur and Lipman algorithm (Wilbur and Lipman), for instance, using a window size of 20 nucleotides, a word length of 4 nucleotides, and a gap penalty of 4, and computer-assisted analysis and interpretation of the sequence data including alignment can be conveniently performed using commercially available programs (e.g., IntelligeneticsĀ® Suite, Intelligenetics Inc. CA). When RNA sequences are said to be similar, or have a degree of sequence identity or homology with DNA sequences, thymidine (T) in the DNA sequence is considered equal to uracil (U) in the RNA sequence. Thus, RNA sequences are within the scope of the invention and can be derived from DNA sequences, by thymidine (T) in the DNA sequence being considered equal to uracil (U) in RNA sequences.
[0062] The sequence identity or sequence similarity of two amino acid sequences, or the sequence identity between two nucleotide sequences can be determined using Vector NTI software package (Invitrogen, 1600 Faraday Ave., Carlsbad, Calif.).
[0063] The following documents provide algorithms for comparing the relative identity or homology of sequences, and additionally or alternatively with respect to the foregoing, the teachings in these references can be used for determining percent homology or identity: Needleman S B and Wunsch C D; Smith T F and Waterman M S; Smith T F, Waterman M S and Sadler J R; Feng D F and Dolittle R F; Higgins D G and Sharp P M; Thompson J D, Higgins D G and Gibson T J; and, Devereux J, Haeberlie P and Smithies O. And, without undue experimentation, the skilled artisan can consult with many other programs or references for determining percent homology.
[0064] Hybridization reactions can be performed under conditions of different stringency. Conditions that increase stringency of a hybridization reaction are well known. See for example, "Molecular Cloning: A Laboratory Manual", second edition (Sambrook et al., 1989).
[0065] The invention encompasses the Hendra virus polynucleotide(s) contained in a vector molecule or an expression vector and operably linked to a promoter element and optionally to an enhancer.
[0066] The present invention further encompasses a vaccine or composition which may comprise one or more aforementioned recombinant vector comprising one or more polynucleotides encoding one or more Hendra virus polypeptides or antigens, a pharmaceutically or veterinarily acceptable carrier, excipient, adjuvant, or vehicle. The present invention further relates to a vaccine or composition which may comprise one or more aforementioned recombinant or expression vector and additionally one or more antigens. The additional antigen(s) may be Nipah virus antigen(s). The antigen may comprise a whole organism, killed, attenuated or live; a subunit or portion of an organism; a recombinant vector containing an insert with immunogenic properties; a piece or fragment of DNA capable of inducing an immune response upon presentation to a host animal; a polypeptide, an epitope, a hapten, or any combination thereof.
[0067] A "vector" refers to a recombinant DNA or RNA plasmid or virus that comprises a heterologous polynucleotide to be delivered to a target cell, either in vitro or in vivo. The heterologous polynucleotide may comprise a sequence of interest for purposes of prevention or therapy, and may optionally be in the form of an expression cassette. As used herein, a vector needs not be capable of replication in the ultimate target cell or subject. The term includes cloning vectors and viral vectors.
[0068] The term "recombinant" means a polynucleotide with semisynthetic, or synthetic origin which either does not occur in nature or is linked to another polynucleotide in an arrangement not found in nature.
[0069] "Heterologous" means derived from a genetically distinct entity from the rest of the entity to which it is being compared. For example, a polynucleotide may be placed by genetic engineering techniques into a plasmid or vector derived from a different source, and is a heterologous polynucleotide. A promoter removed from its native coding sequence and operatively linked to a coding sequence other than the native sequence is a heterologous promoter.
[0070] The polynucleotides of the invention may comprise additional sequences, such as additional encoding sequences within the same transcription unit, controlling elements such as promoters, ribosome binding sites, 5'UTR, 3'UTR, transcription terminators, polyadenylation sites, additional transcription units under control of the same or a different promoter, sequences that permit cloning, expression, homologous recombination, and transformation of a host cell, and any such construct as may be desirable to provide embodiments of this invention.
[0071] Elements for the expression of a Hendra virus polypeptide, antigen, epitope or immunogen are present in an inventive vector. In minimum manner, this comprises an initiation codon (ATG), a stop codon and a promoter, and optionally also a polyadenylation sequence for certain vectors such as plasmid and certain viral vectors, e.g., viral vectors other than poxviruses. When the polynucleotide encodes a polypeptide fragment, e.g. a Hendra virus polypeptide, in the vector, an ATG is placed at 5' of the reading frame and a stop codon is placed at 3'. Other elements for controlling expression may be present, such as enhancer sequences, stabilizing sequences, such as intron and signal sequences permitting the secretion of the protein.
[0072] The present invention also relates to compositions or vaccines comprising vectors.
[0073] The composition or vaccine can comprise one or more vectors, e.g., expression vectors, such as in vivo expression vectors, comprising and expressing one or more Hendra virus polypeptides, antigens, epitopes or immunogens. In one embodiment, the vector contains and expresses one or more polynucleotides that comprise one or more polynucleotides coding for and/or expressing one or more Hendra virus antigen, polypeptide, epitope or immunogen, in a pharmaceutically or veterinarily acceptable carrier, excipient, adjuvant, or vehicle.
[0074] According to another embodiment, the vector or vectors in the composition or vaccine comprise, or consist essentially of, or consist of polynucleotide(s) encoding one or more proteins or fragment(s) of a Hendra virus polypeptide, antigen, epitope or immunogen. In another embodiment, the composition or vaccine comprises one, two, or more vectors comprising polynucleotides encoding and expressing, advantageously in vivo, a Hendra virus polypeptide, antigen, fusion protein or an epitope thereof. The invention is also directed at mixtures of vectors that comprise polynucleotides encoding and expressing different Hendra virus polypeptides, antigens, epitopes, fusion protein, or immunogens, e.g., a Hendra virus F and/or G polypeptide, antigen, epitope or immunogen from pathogens causing disease in different species such as, but not limited to, humans, horses, pigs, cows or cattle, dogs, and cats.
[0075] In the present invention a recombinant viral vector is used to express one or more coding sequences or fragments thereof encoding one or more Hendra virus polypeptide or fragment or variant thereof. Specifically, the viral vector can express one or more Hendra virus sequences, more specifically one or more Hendra virus genes or fragments thereof that encode Hendra virus F or G polypeptides. Viral vector contemplated herein includes, but not limited to, poxvirus [e.g., vaccinia virus or attenuated vaccinia virus, avipox virus or attenuated avipox virus (e.g., canarypox, fowlpox, dovepox, pigeonpox, quailpox, ALVAC, TROVAC; see e.g., U.S. Pat. No. 5,505,941, U.S. Pat. No. 5,494,8070), raccoonpox virus, swinepox virus, etc.], adenovirus (e.g., human adenovirus, canine adenovirus), herpesvirus (e.g. canine herpesvirus, feline herpesvirus, bovine herpesvirus, swine herpesvirus, equine herpesvirus), baculovirus, retrovirus, etc. In another embodiment, the avipox expression vector may be a canarypox vector, such as, ALVAC. In yet another embodiment, the avipox expression vector may be a fowlpox vector, such as, TROVAC. The Hendra virus polypeptide, antigen, epitope or immunogen may be a Hendra virus F or G protein. The one or more polynucleotides encoding Hendra virus F polypeptide, or Hendra virus G polypeptide, or both F and G proteins are inserted under the control of a specific poxvirus promoter, e.g., the vaccinia promoter 7.5 kDa (Cochran et al., 1985), the vaccinia promoter I3L (Riviere et al., 1992), the vaccinia promoter HA (Shida, 1986), the cowpox promoter ATI (Funahashi et al., 1988), the vaccinia promoter H6 (Taylor et al., 1988b; Guo et al., 1989; Perkus et al., 1989), inter alia.
[0076] According to a yet further embodiment of the invention, the expression vector is a plasmid vector, in particular an in vivo expression vector. In a specific, non-limiting example, the pVR1020 or 1012 plasmid (VICAL Inc.; Luke et al., 1997; Hartikka et al., 1996, see, e.g., U.S. Pat. Nos. 5,846,946 and 6,451,769) can be utilized as a vector for the insertion of a polynucleotide sequence. The pVR1020 plasmid is derived from pVR1012 and contains the human tPA signal sequence. In one embodiment the human tPA signal comprises from amino acid M(1) to amino acid S(23) of GenBank accession number HUMTPA14. In another specific, non-limiting example, the plasmid utilized as a vector for the insertion of a polynucleotide sequence can contain the signal peptide sequence of equine IGF1 from amino acid M(24) to amino acid A(48) of GenBank accession number U28070. Additional information on DNA plasmids which may be consulted or employed in the practice are found, for example, in U.S. Pat. Nos. 6,852,705; 6,818,628; 6,586,412; 6,576,243; 6,558,674; 6,464,984; 6,451,770; 6,376,473 and 6,221,362.
[0077] The term plasmid covers any DNA transcription unit comprising a polynucleotide according to the invention and the elements necessary for its in vivo expression in a cell or cells of the desired host or target; and, in this regard, it is noted that a supercoiled or non-supercoiled, circular plasmid, as well as a linear form, are intended to be within the scope of the invention.
[0078] Each plasmid comprises or contains or consists essentially of, in addition to the polynucleotide(s) encoding the Hendra virus polypeptide(s), antigen(s), epitopes or immunogens, optionally fused with a heterologous peptide sequence, variant, analog or fragment, operably linked to a promoter or under the control of a promoter or dependent upon a promoter. In general, it is advantageous to employ a strong promoter functional in eukaryotic cells. The strong promoter may be, but not limited to, the immediate early cytomegalovirus promoter (CMV-IE) of human or murine origin, or optionally having another origin such as the rat or guinea pig.
[0079] In more general terms, the promoter has either a viral, or a cellular origin. A strong viral promoter other than CMV-IE that may be usefully employed in the practice of the invention is the early/late promoter of the SV40 virus or the LTR promoter of the Rous sarcoma virus. A strong cellular promoter that may be usefully employed in the practice of the invention is the promoter of a gene of the cytoskeleton, such as e.g. the desmin promoter (Kwissa et al., 2000), or the actin promoter (Miyazaki et al., 1989).
[0080] As to the polyadenylation signal (polyA) for the plasmids and viral vectors other than poxviruses, use can be made of the poly(A) signal of the bovine growth hormone (bGH) gene (see U.S. Pat. No. 5,122,458), or the poly(A) signal of the rabbit β-globin gene or the poly(A) signal of the SV40 virus.
[0081] A "host cell" denotes a prokaryotic or eukaryotic cell that has been genetically altered, or is capable of being genetically altered by administration of an exogenous polynucleotide, such as a recombinant plasmid or vector. When referring to genetically altered cells, the term refers both to the originally altered cell and to the progeny thereof.
Methods of use and Article of Manufacture
[0082] The present invention includes the following method embodiments. In an embodiment, a method of vaccinating an animal comprising administering composition comprising a vector comprising one or more polynucleotides encoding one or more Hendra virus polypeptides or fragments or variants thereof and a pharmaceutical or veterinarily acceptable carrier, excipient, vehicle, or adjuvant to an animal and human is disclosed. In one aspect of this embodiment, the animal is an equine, a canine, a feline, or a porcine.
[0083] In yet another embodiment, a method of vaccinating an animal comprising a composition comprising one or more vectors comprising one or more polynucleotides encoding one or more Hendra virus polypeptides and optionally a pharmaceutical or veterinarily acceptable carrier, excipient, vehicle, or adjuvant and optionally one or more compositions comprising additional antigens is disclosed.
[0084] In one embodiment of the invention, a prime-boost regimen can be employed, which is comprised of at least one primary administration and at least one booster administration using at least one common polypeptide, antigen, epitope or immunogen. The administration may comprise one, two, or more vaccines or compositions comprising same or different antigens. Typically the immunological composition(s) or vaccine(s) used in primary administration is different in nature from those used as a booster. However, it is noted that the same composition(s) can be used as the primary administration and the booster administration. This administration protocol is called "prime-boost".
[0085] A prime-boost regimen comprises at least one prime-administration and at least one boost administration using at least one common polypeptide and/or variants or fragments thereof. The prime-administration may comprise one or more administrations. Similarly, the boost administration may comprise one or more administrations. The prime-administration may comprise one or more antigens and the boost administration may comprise one or more antigens.
[0086] In one aspect of the prime-boost protocol or regime of the invention, a prime-boost protocol may comprise the administration of a composition comprising a recombinant viral vector that contains and expresses one or more Hendra virus polypeptides, antigens and/or variants or fragments thereof in vivo followed by the administration of one or more recombinant Hendra virus polypeptides or antigens, or an inactivated viral composition or vaccine comprising the Hendra virus polypeptides or antigens, or a DNA plasmid-based composition or vaccine expressing one or more Hendra virus polypeptides or antigens. Likewise, a prime-boost protocol may comprise the administration of a composition comprising one or more recombinant Hendra virus antigens, or an inactivated viral composition or vaccine comprising the Hendra virus polypeptides or antigens, or a DNA plasmid-based composition or vaccine expressing the Hendra virus polypeptide or antigen followed by the administration of a recombinant viral vector that contains and expresses one or more Hendra virus polypeptides or antigens and/or variants or fragments thereof in vivo. It is further noted that both the primary and the secondary administrations may comprise the recombinant viral vector that contains and expresses one or more Hendra virus polypeptides of the invention. Thus, the recombinant Hendra viral vector of the invention may be administered in any order with one or more recombinant Hendra virus antigens, an inactivated viral composition or vaccine comprising the Hendra virus antigens, or a DNA plasmid-based composition or vaccine expressing one or more Hendra virus antigens, or alternatively may be used alone as both the primary and secondary compositions.
[0087] The dose volume of compositions for target species that are mammals, e.g., the dose volume of dog compositions, based on viral vectors, e.g., non-poxvirus-viral-vector-based compositions, is generally between about 0.1 to about 2.0 ml, between about 0.1 to about 1.0 ml, and between about 0.5 ml to about 1.0 ml.
[0088] The efficacy of the vaccines may be tested about 2 to 4 weeks after the last immunization by challenging animals, such as horses, cats, dogs, pigs, or experimental laboratory animals (such as ferrets and guinea pigs) with a virulent strain of Hendra virus strain. Both homologous and heterologous strains are used for challenge to test the efficacy of the vaccine. The animal may be challenged by spray, intra-nasally, intra-ocularly, intra-tracheally, and/or orally. The challenge viral may be about 105-8 EID50 in a volume depending upon the route of administration. For example, if the administration is by spray, a virus suspension is aerosolized to generate about 1 to 100 μm droplets, if the administration is intra-nasal, intra-tracheal or oral, the volume of the challenge virus is about 0.5 ml, 1-2 ml, and 5-10 ml, respectively. Animals may be observed daily for 14 days following challenge for clinical signs, for example, dehydration and fever. In addition, the groups of animals may be euthanized and evaluated for pathological findings of pulmonary and pleural hemorrhage, tracheitis, bronchitis, bronchiolitis, bronchopneumonia and internal organs. Orophayngeal swabs may be collected from all animals post challenge for virus isolation. The presence or absence of viral antigens in respiratory tissues may be evaluated by quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR). Blood samples may be collected before and post-challenge and may be analyzed for the presence of Hendra virus-specific antibody.
[0089] The various administrations are preferably carried out 1 to 6 weeks apart. Preferred time interval is 3 to 5 weeks, and optimally 4 weeks. According to one embodiment, a six-month booster interval or an annual booster interval is also envisioned. The animals, for examples horses, may be at least four months of age at the time of the first administration.
[0090] It should be understood by one of skill in the art that the disclosure herein is provided by way of example and the present invention is not limited thereto. From the disclosure herein and the knowledge in the art, the skilled artisan can determine the number of administrations, the administration route, and the doses to be used for each injection protocol, without any undue experimentation.
[0091] The present invention contemplates at least one administration to an animal of an efficient amount of the therapeutic composition made according to the invention. The animal may be male, female, pregnant female and newborn. This administration may be via various routes including, but not limited to, intramuscular (IM), intradermal (ID) or subcutaneous (SC) injection or via intranasal or oral administration. The therapeutic composition according to the invention can also be administered by a needleless apparatus (as, for example with a Pigjet, Dermojet, Biojector, Avijet (Merial, GA, USA), Vet et or Vitajet apparatus (Bioject, Oregon, USA)). Another approach to administering plasmid compositions is to use electroporation (see, e.g. Tollefsen et al., 2002; Tollefsen et al., 2003; Babiuk et al., 2002; PCT Application No. WO99/01158). In another embodiment, the therapeutic composition is delivered to the animal by gene gun or gold particle bombardment.
[0092] The recombinant composition or vaccine can be administered to an animal or infected or transfected into cells in an amount of about 1.0 log 10 TCID50 (or CCID50) to about 20.0 log 10 TCID50 (or CCID50), about 1.0 log 10 TCID50 (or CCID50) to about 15.0 log 10 TCID50 (or CCID50), about 2.0 log 10 TCID50 (or CCID50) to about 10.0 log 10 TCID50 (or CCID50), or about 4.0 log 10 TCID50 (or CCID50) to about 8.0 log 10 TCID50 (or CCID50).
[0093] In one embodiment, the invention provides for the administration of a therapeutically effective amount of a formulation for the delivery and expression of a Hendra virus antigen or epitope in a target cell. Determination of the therapeutically effective amount is routine experimentation for one of ordinary skill in the art. In one embodiment, the formulation comprises an expression vector comprising a polynucleotide that expresses one or more Hendra virus antigens or epitopes and a pharmaceutically or veterinarily acceptable carrier, vehicle, adjuvant, or excipient.
[0094] The pharmaceutically or veterinarily acceptable carriers or vehicles or excipients or adjuvants are well known to the one skilled in the art. For example, a pharmaceutically or veterinarily acceptable carrier or vehicle or excipient or adjuvant can be a 0.9% NaCl (e.g., saline) solution or a phosphate buffer. Other pharmaceutically or veterinarily acceptable carrier or vehicle or excipient or adjuvant that can be used for methods of this invention include, but are not limited to, poly-(L-glutamate) or polyvinylpyrrolidone. The pharmaceutically or veterinarily acceptable carrier or vehicle or excipient or adjuvant may be any compound or combination of compounds facilitating the administration of the vector (or protein expressed from an inventive vector in vitro) and the transfection or infection and/or improves preservation of the vector or protein in a host. Doses and dose volumes are herein discussed in the general description and can also be determined by the skilled artisan from this disclosure read in conjunction with the knowledge in the art, without any undue experimentation.
[0095] The cationic lipids containing a quaternary ammonium salt which are advantageously but not exclusively suitable for plasmids, are those having the following formula:
##STR00001##
[0096] in which R1 is a saturated or unsaturated straight-chain aliphatic radical having 12 to 18 carbon atoms, R2 is another aliphatic radical containing 2 or 3 carbon atoms and X is an amine or hydroxyl group, e.g. the DMRIE. In another embodiment the cationic lipid can be associated with a neutral lipid, e.g. the DOPE.
[0097] Among these cationic lipids, preference is given to DMRIE (N-(2-hydroxyethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-propane ammonium; WO96/34109), advantageously associated with a neutral lipid, advantageously DOPE (dioleoyl-phosphatidyl-ethanol amine; Behr, 1994), to form DMRIE-DOPE.
[0098] When DOPE is present, the DMRIE:DOPE molar ratio is advantageously about 95:about 5 to about 5:about 95, more advantageously about 1:about 1, e.g., 1:1.
[0099] In another embodiment, pharmaceutically or veterinarily acceptable carrier, excipient, vehicle or adjuvant may be a water-in-oil emulsion. Examples of suitable water-in-oil emulsions include oil-based water-in-oil vaccinal emulsions which are stable and fluid at 4° C. containing: from 6 to 50 v/v % of an antigen-containing aqueous phase, preferably from 12 to 25 v/v %, from 50 to 94 v/v % of an oil phase containing in total or in part a non-metabolizable oil (e.g., mineral oil such as paraffin oil) and/or metabolizable oil (e.g., vegetable oil, or fatty acid, polyol or alcohol esters), from 0.2 to 20 p/v % of surfactants, preferably from 3 to 8 p/v %, the latter being in total or in part, or in a mixture either polyglycerol esters, said polyglycerol esters being preferably polyglycerol (poly)ricinoleates, or polyoxyethylene ricin oils or else hydrogenated polyoxyethylene ricin oils. Examples of surfactants that may be used in a water-in-oil emulsion include ethoxylated sorbitan esters (e.g., polyoxyethylene (20) sorbitan monooleate (TWEEN 80®), available from AppliChem, Inc., Cheshire, Conn.) and sorbitan esters (e.g., sorbitan monooleate (SPAN 80®), available from Sigma Aldrich, St. Louis, Mo.). In addition, with respect to a water-in-oil emulsion, see also U.S. Pat. No. 6,919,084. In some embodiments, the antigen-containing aqueous phase comprises a saline solution comprising one or more buffering agents. An example of a suitable buffering solution is phosphate buffered saline. In one embodiment, the water-in-oil emulsion may be a water/oil/water (W/O/W) triple emulsion (U.S. Pat. No. 6,358,500). Examples of other suitable emulsions are described in U.S. Pat. No. 7,371,395.
[0100] The immunological compositions and vaccines according to the invention may comprise or consist essentially of one or more pharmaceutically or veterinarily acceptable carriers, excipients, vehicles or adjuvants. Suitable adjuvants for use in the practice of the present invention are (1) polymers of acrylic or methacrylic acid, maleic anhydride and alkenyl derivative polymers, (2) immunostimulating sequences (ISS), such as oligodeoxyribonucleotide sequences having one or more non-methylated CpG units (Klinman et al., 1996; WO98/16247), (3) an oil in water emulsion, such as the SPT emulsion described on page 147 of "Vaccine Design, The Subunit and Adjuvant Approach" published by M. Powell, M. Newman, Plenum Press 1995, and the emulsion MF59 described on page 183 of the same work, (4) cation lipids containing a quaternary ammonium salt, e.g., DDA (5) cytokines, (6) aluminum hydroxide or aluminum phosphate, (7) saponin or (8) other adjuvants discussed in any document cited and incorporated by reference into the instant application, or (9) any combinations or mixtures thereof.
[0101] The oil in water emulsion (3), which is especially appropriate for viral vectors, can be based on: light liquid paraffin oil (European pharmacopoeia type), isoprenoid oil such as squalane, squalene, oil resulting from the oligomerization of alkenes, e.g. isobutene or decene, esters of acids or alcohols having a straight-chain alkyl group, such as vegetable oils, ethyl oleate, propylene glycol, di(caprylate/caprate), glycerol tri(caprylate/caprate) and propylene glycol dioleate, or esters of branched, fatty alcohols or acids, especially isostearic acid esters.
[0102] The oil is used in combination with emulsifiers to form an emulsion. The emulsifiers may be nonionic surfactants, such as: esters of on the one hand sorbitan, mannide (e.g. anhydromannitol oleate), glycerol, polyglycerol or propylene glycol and on the other hand oleic, isostearic, ricinoleic or hydroxystearic acids, said esters being optionally ethoxylated, or polyoxypropylene-polyoxyethylene copolymer blocks, such as Pluronic, e.g., L121.
[0103] Among the type (1) adjuvant polymers, preference is given to polymers of crosslinked acrylic or methacrylic acid, especially crosslinked by polyalkenyl ethers of sugars or polyalcohols. These compounds are known under the name carbomer (Pharmeuropa, vol. 8, no. 2, June 1996). One skilled in the art can also refer to U.S. Pat. No. 2,909,462, which provides such acrylic polymers crosslinked by a polyhydroxyl compound having at least three hydroxyl groups, preferably no more than eight such groups, the hydrogen atoms of at least three hydroxyl groups being replaced by unsaturated, aliphatic radicals having at least two carbon atoms. The preferred radicals are those containing 2 to 4 carbon atoms, e.g. vinyls, allyls and other ethylenically unsaturated groups. The unsaturated radicals can also contain other substituents, such as methyl. Products sold under the name Carbopol (BF Goodrich, Ohio, USA) are especially suitable. They are crosslinked by allyl saccharose or by allyl pentaerythritol. Among them, reference is made to Carbopol 974P, 934P and 971P.
[0104] As to the maleic anhydride-alkenyl derivative copolymers, preference is given to EMA (Monsanto), which are straight-chain or crosslinked ethylene-maleic anhydride copolymers and they are, for example, crosslinked by divinyl ether.
[0105] With regard to structure, the acrylic or methacrylic acid polymers and EMA are preferably formed by basic units having the following formula:
##STR00002##
in which: [0106] R1 and R2, which can be the same or different, represent H or CH3 [0107] x=0 or 1, preferably x=1 [0108] y=1 or 2, with x+y=2.
[0109] For EMA, x=0 and y=2 and for carbomers x=y=1.
[0110] These polymers are soluble in water or physiological salt solution (20 g/l NaCl) and the pH can be adjusted to 7.3 to 7.4, e.g., by soda (NaOH), to provide the adjuvant solution in which the expression vector(s) can be incorporated. The polymer concentration in the final immunological or vaccine composition can range between about 0.01 to about 1.5% w/v, about 0.05 to about 1% w/v, and about 0.1 to about 0.4% w/v.
[0111] The cytokine or cytokines (5) can be in protein form in the immunological or vaccine composition, or can be co-expressed in the host with the immunogen or immunogens or epitope(s) thereof. Preference is given to the co-expression of the cytokine or cytokines, either by the same vector as that expressing the immunogen or immunogens or epitope(s) thereof, or by a separate vector thereof.
[0112] The invention comprehends preparing such combination compositions; for instance by admixing the active components, advantageously together and with an adjuvant, carrier, cytokine, and/or diluent.
[0113] Cytokines that may be used in the present invention include, but are not limited to, granulocyte colony stimulating factor (G-CSF), granulocyte/macrophage colony stimulating factor (GM-CSF), interferon α (IFNα), interferon β (IFNβ), interferon γ, (IFNγ), interleukin-1α (IL-1α), interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-3 (IL-3), interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-6 (IL-6), interleukin-7 (IL-7), interleukin-8 (IL-8), interleukin-9 (IL-9), interleukin-10 (IL-10), interleukin-11 (IL-11), interleukin-12 (IL-12), tumor necrosis factor α (TNFα), tumor necrosis factor β (TNFβ), OX40L, and transforming growth factor β (TGFβ). It is understood that cytokines can be co-administered and/or sequentially administered with the immunological or vaccine composition of the present invention. Thus, for instance, the vaccine of the instant invention can also contain an exogenous nucleic acid molecule that expresses in vivo a suitable cytokine, e.g., a cytokine matched to this host to be vaccinated or in which an immunological response is to be elicited (for instance, a canine cytokine for preparations to be administered to canine).
[0114] The invention will now be further described by way of the following non-limiting examples.
EXAMPLES
[0115] Without further elaboration, it is believed that one skilled in the art can, using the preceding descriptions, practice the present invention to its fullest extent. The following detailed examples are to be construed as merely illustrative, and not limitations of the preceding disclosure in any way whatsoever. Those skilled in the art will promptly recognize appropriate variations from the procedures both as to reactants and as to reaction conditions and techniques.
[0116] Construction of DNA inserts, plasmids and recombinant viral or plant vectors was carried out using the standard molecular biology techniques described by J. Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989).
Example 1
Construction of Plasmid Containing Hendra Virus G Gene-pC5 H6p, Plasmid p362-Hendra G
[0117] The synthetic Hendra virus G polypeptide (SEQ ID NO:2) optimized for expression in Equus caballus was cloned into pUC57 (GenScript Corporation, New Jersey, USA) vector. The EcoRV/KpnI fragment containing Hendra virus G fragment from the pUC57 vector was cloned into pCXL-148-2 (Merial Limited proprietary material) containing vaccinia H6 promoter resulting in plasmid p362-Hendra G (see FIG. 2 plasmid map).
Example 2
Construction of Plasmid Containing Hendra Virus F Gene-pC5 H6p, Plasmid p362-Hendra F
[0118] The synthetic Hendra virus G polynucleotide (SEQ ID NO:5) optimized for expression in Equus caballus was cloned into pUC57 vector. The EcoRV/KpnI fragment containing Hendra virus G fragment from the pUC57 vector was cloned into pCXL-148-2 (Merial Limited proprietary material) containing vaccinia H6 promoter resulting in plasmid p362-Hendra F (see FIG. 2 plasmid map).
Example 3
Generation and Characterization of ALVAC Recombinant Containing Hendra Virus G Gene in C5 Loci of ALVAC (vCP3004)
[0119] A. Generation of vCP3004
[0120] The IVR (in vitro recombinant) was performed by transfection of Primary chicken embryo fibroblast (1°CEF) cells with NotI linearized donor plasmid p362-Hendra G. The transfected cells were subsequently infected with parental ALVAC as rescue virus at MOI (multiplicity of infection) of 10. After 24 hours, the transfected/infected cells were harvested, sonicated and used for recombinant virus screening. Recombinant plaques were screened based on the plaque lift hybridization method using Hendra G-specific probe which was labeled with horse radish peroxidase according to the manufacturer's protocol (GE Healthcare, Cat #RPN3001). After four sequential rounds of plaque purification, the recombinants designated as vCP3004.1.1.1.1. and vCP3004.5.3.2.2 were generated and confirmed by hybridization as 100% positive for the Hendra G insert and 100% negative for the C5 ORF.
B. Genomic Analysis
[0121] Genomic DNA from vCP3004.1.1.1.1 was extracted and digested with BamHI, HindIII and PstI, separated by agarose electrophoresis and then transferred to nylon membrane. Southern blot was performed by probing with a Hendra G probe. The primers used to generate the Hendra G probe are:
TABLE-US-00001 HenG.1F (SEQ ID NO: 13) GGCTCTGACCGACAAAATCG HenG.1R (SEQ ID NO: 14) GAACTGCAGGATGATGTCCC
[0122] Specific 704 bp and 903 bp of BamHI digest bands, 12293 bp of HindIII digest band, 614 bp, 309 bp, and 94 bp of PstI digest bands were observed at the expected sizes, indicating the correct insertion of Hendra G into the C5 locus (see FIG. 3).
C. Expression Analysis
[0123] Primary CEF cells were infected with vCP3004.1.1.1.1 at MOI of 10 and incubated at 37° C. for 24 hours. The cells and culture supernatant were then harvested. Sample proteins were separated on a 10% SDS-PAGE gel, transferred to PVDF membrane. A serum raised in guinea pig reacted strongly with the G protein at an apparent molecular size of approximately 70 kDa. The result is shown in FIG. 4.
D. Sequence Analysis
[0124] A more detailed analysis of the P3 stock genomic DNA was performed by PCR amplification and sequence analysis of the flanking arms of the C5 locus and the Hendra G insert. Primers C5R.1F and C5L.2R located at the end of the arms of the C5 locus in the donor plasmid were used to amplify the entire C5R-Hendra G insert-C5L fragment.
TABLE-US-00002 C5R.1F (SEQ ID NO: 15) ATTCTATCGGAAGATAGGATACCAG C5L.2R (SEQ ID NO: 16) GGAGATACCTTTAGATATGGATCTG
[0125] The results showed that the sequences of the Hendra G insert and the C5 left and right arms around the G insert in vCP3004.1.1.1.1 were correct.
Example 4
Generation and Characterization of ALVAC Recombinant Containing Hendra Virus F Gene in C5 Loci of ALVAC (vCP3005)
[0126] A. Generation of vCP3005
[0127] The IVR (in vitro recombinant) was performed by transfection of Primary chicken embryo fibroblast (1°CEF) cells with NotI linearized donor plasmid p362-Hendra F. The transfected cells were subsequently infected with parental ALVAC as rescue virus at MOI (multiplicity of infection) of 10. After 24 hours, the transfected/infected cells were harvested, sonicated and used for recombinant virus screening. Recombinant plaques were screened based on the plaque lift hybridization method using Hendra F-specific probe which was labelled with horse radish peroxidase according to the manufacturer's protocol (GE Healthcare, Cat #RPN3001). After four sequential rounds of plaque purification, the recombinants designated as vCP3005.3.4.1 and vCP3005.5.3.2 were generated and confirmed by hybridization as 100% positive for the Hendra F insert and 100% negative for the C5 ORF.
B. Genomic Analysis
[0128] Genomic DNA from vCP3005.3.4.1 was extracted and digested with BamHI, HindIII and PstI, separated by agarose electrophoresis and then transferred to nylon membrane. Southern blot was performed by probing with a Hendra F probe. The primers used to generate the Hendra F probe are:
TABLE-US-00003 HenF.1F (SEQ ID NO: 17) CCATCGAACTGTATAACAAT HenF.1R (SEQ ID NO: 18) GGAGATGATGATGTTGCCCA
[0129] Specific 704 bp and 903 bp of BamHI digest bands, 12293 bp of HindII band, 614 bp, 309 bp and 94 bp of PstI digest bands were observed at the expected sizes, indicating the correct insertion of Hendra F into the C5 locus (see FIG. 5).
C. Expression Analysis
[0130] Primary CEF cells were infected with vCP3005.3.4.1 at MOI of 10 and incubated at 37° C. for 24 hours. The cells and culture supernatant were then harvested. Sample proteins were separated on a 10% SDS-PAGE gel, transferred to PVDF membrane. When a serum raised in guinea pig was used in the Western blot, a faint band corresponding to uncleaved F0 protein at approximately 60 kDa was recognized. The result is shown in FIG. 6.
D. Sequence Analysis
[0131] A more detailed analysis of the P3 stock genomic DNA was performed by PCR amplification and sequence analysis of the flanking arms of the C5 locus and the Hendra F insert. Primers C5R.1F (SEQ ID NO:15) and C5L.2R (SEQ ID NO:16) located at the end of the arms of the C5 locus in the donor plasmid were used to amplify the entire C5R-Hendra F inset-C5L fragment.
Example 5
Fusion Assay
[0132] Simultaneous co-infection of HEK293 cells with the ALVAC-Hendra G (vCP3004) and ALVAC-Hendra F (vCP3005) at an MOI of 10+10 resulted in syncytium formation, while single infections either ALVAC-Hendra F (vCP3005) or ALVAC-Hendra G (vCP3004) recombinant virus at MOI of 20 did not result in syncytium formation, demonstrating the functionality of both proteins (see FIG. 7).
Example 6
Serology Study of Horses Vaccinated with ALVAC-Hendra F or G and ALVAC-Nipah F or G
[0133] The Canarypox vectors (ALVAC) containing polynucleotides (SEQ ID NO:19 and 21) encoding Nipah F protein (SEQ ID NO:20) and Nipah G protein (SEQ ID NO:22) were constructed as described in US patent application US 2007/0031455.
[0134] In this study, two groups of horses were vaccinated IM with the mixture of vCP-Hendra G vector (vCP3004) and vCP-Nipah F vector (ALVAC vector containing Nipah F) on D0 and D28. Group 1 received the vector mixture in Carbomer at 5.8 log 10 TCID50/dose. Group 2 received the vector mixture in Carbomer at 6.8 log 10 TCID50/dose. Sera were titrated for antibodies against Hendra G and F proteins and Nipah G and F proteins in serum neutralization titre (SNT) test. Sera were also tested in ELISA blocking and binding assays using antibodies against Hendra G protein and Nipah G protein respectively.
[0135] FIGS. 8A-C show the ELISA binding assay and blocking assay using antibodies against Hendra G protein, and SNT test against Hendra G and F proteins. FIGS. 9A-C show the binding assay and blocking assay using antibodies against Nipah G protein, and SNT test against Nipah G and F proteins.
[0136] The results showed that vaccination of horses with vCP-Hendra G vector and vCP-Nipah F vector induced anti-Hendra and anti-Nipah responses even as late as D70.
Example 8
Clinical and Serology Study of Vaccinated Horses and Canaries
[0137] Vaccinations of horses and canaries using vCP3004 (ALVAC-Hendra G)+vCP3005 (ALVAC-Hendra F), vCP3004 (ALVAC-Hendra G) alone and vCP3005 (ALVAC-Hendra F) alone were done on Day 0, Day 28 and D183. Blood, urine, nasal/oral/rectal and ocular swabs were collected and tested for spread/shed evaluation. The vCP3004 (ALVAC-Hendra G)+vCP3005 (ALVAC-Hendra F) experiment design is shown in Table 1 below.
TABLE-US-00004 TABLE 1 vCP3004 (ALVAC-Hendra G) + vCP3005 (ALVAC-Hendra F) vaccination and clinical test in horses Target antigen titre (after Serum Clinical Biodiffusibility Group Vaccine dilution) vaccination collection exam sampling 1 Recombinant 5.5log10CCID50/ D0, D28 D0, D14, D0, Not (n = 4) canarypox dose and D183 D28, D71, D0 + 4/6 h, performed 2 expressing 6.9log10CCID50/ 1 ml D85, D99, D1 to D3, D0, (n = 4) Hendra F dose IM route D127, D28, D0 + 4/6 h, (vCP3005) D155, D28 + 4/6 h, D1, D2, D3, and G D183, D29 to D31 D7, D14 (vCP3004) D197, in Carbopol D204, D211
[0138] The clinical result showed that vaccinations are safe for both groups. There is no difference between groups 1 and 2. Biodiffusibility data showed that no virus was detected in any samples.
[0139] FIG. 10A shows the virus neutralization (VN) test against Hendra. Both groups showed above the theoretical protection threshold (64 titre) from D70 onward up to D155. After the third injection on D183, both groups showed clear booster effect.
[0140] FIG. 10B shows the VN test against Nipah. The results showed good cross reactivity against Nipah. Most horses showed above the protection threshold (60 titre) after the third injection on D183, and some horses showed some protection even after the second injection on D28.
[0141] The vCP3004 (ALVAC-Hendra G) experiment design is shown in Table 2 below.
TABLE-US-00005 TABLE 2 vCP3004 (ALVAC-Hendra G) vaccination and clinical test in canaries Inoculation on D0 by Euthanasia and Group transcutaneous route Clinical exam Sampling* A A1 vCP3004 50 μl D0, 8 birds on D8 (n = 16) (7.0log10CCID50/dose) D0 + 3h/5h, 8 birds on D16 A2 PBS + 50% glycerin D1, D3, D6, D8, D16 (n = 4) (inoculated with D10, D13, D15, placebo and D16 remained in contact with canaries in A1) B B1 CPpp** 50 μl 8 birds on D8 (n = 16) (7.0log10CCID50/dose) 8 birds on D16 B2 PBS + 50% glycerin D16 (n = 4) (inoculated with placebo and remained in contact with canaries in B1) *Sampling: skin at the injection site for histology and virus isolation brain, lung, spleen, liver, kidney pooled for virus isolation **CPpp: inactivated canarypox virus as a control.
[0142] No clinical signs were reported in any one of the four groups. There is no difference in histology between the vaccinated groups.
[0143] On D8, virus was detected on the skin of all canaries vaccinated with CPpp (ranging from 2.79 to 6.65 log10 CCID50/ml) and all but one canaries vaccinated with vCP3004 (ranging from 3.22 to 6.80 log10 CCID50/m1). On D16, no virus was detected in any vaccinated groups.
[0144] Sampling of the pool of organs showed that no virus was detected in any canaries in the two inoculated groups and the two contact groups on D8 and D16.
[0145] The results demonstrated the safety and the absence of spreading of vCP3004 administered at high titre by transcutaneous route to the canary. The absence of reactions and virus isolation in the sentinel canaries confirmed the absence of spread of vCP3004 in this species.
[0146] The vCP3005 (ALVAC-Hendra F) experiment design is shown in Table 3 below.
TABLE-US-00006 TABLE 3 vCP3005 (ALVAC-Hendra F) vaccination and clinical test design in canaries Inoculation on D0 by Euthanasia and Group transcutaneous route Clinical exam Sampling A A1 vCP3005 50 μl D0, 8 birds on D8 (n = 16) (7.0log10CCID50/dose) D0 + 3h/5h, 8 birds on D16 A2 PBS + 50% glycerin D1, D3, D6, D8, D16 (n = 4) (inoculated with D10, D13, D15, placebo and D16 remained in contact with canaries in A1) B B1 CPpp 50 μl 8 birds on D8 (n = 16) (7.0log10CCID50/dose) 8 birds on D16 B2 PBS + 50% glycerin D16 (n = 4) (inoculated with placebo and remained in contact with canaries in B1)
[0147] The result showed that there was no clinical sign for any vaccinated group. On D8 and D16, after the first passage, no virus could be isolated from the organ samples in both inoculated groups and contact animals. This study demonstrated the safety and the absence of spreading of vCP3005 administered at high titre by transcutaneous route to the canary. The absence of reactions and virus isolation in the sentinel canaries confirmed the absence of spread of vCP3005 in this species.
[0148] Having thus described in detail preferred embodiments of the present invention, it is to be understood that the invention defined by the above paragraphs is not to be limited to particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope of the present invention.
[0149] All documents cited or referenced in the application cited documents, and all documents cited or referenced herein ("herein cited documents"), and all documents cited or referenced in herein cited documents, together with any manufacturer's instructions, descriptions, product specifications, and product sheets for any products mentioned herein or in any document incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention.
Sequence CWU
1
3311815DNAartificial sequenceHendra virus wildtype DNA encoding G protien
1atgatggctg attccaaatt ggtaagcctg aacaataatc tatctggtaa aatcaaggat
60caaggtaaag ttatcaagaa ttattacggc acaatggaca tcaagaaaat taacgatggg
120ttattagata gtaagatact tggggcgttt aacacagtga tagctttgtt gggatcaatc
180atcatcattg tgatgaatat catgataatt caaaattaca ccagaacgac tgataatcag
240gcactaatca aagagtcact ccagagtgta cagcaacaaa tcaaagcttt aacagacaaa
300atcgggacag agataggccc caaagtctca ctaattgaca catccagcac catcacaatt
360cctgctaaca tagggttact gggatccaag ataagtcagt ctaccagcag tattaatgag
420aatgttaacg ataaatgcaa atttactctt cctcctttaa agattcatga gtgtaatatc
480tcttgtccga atcctttgcc tttcagagaa taccgaccaa tctcacaagg ggtgagtgat
540cttgtaggac tgccgaacca gatctgtcta cagaagacaa catcaacaat cttaaagccc
600aggctgatat cctatactct accaattaat accagagaag gggtttgcat cactgaccca
660cttttggctg ttgataatgg cttcttcgcc tatagccatc ttgaaaagat cggatcatgt
720actagaggaa ttgcaaaaca aaggataata ggggtgggtg aggtattgga taggggtgat
780aaggtgccat caatgtttat gaccaatgtt tggacaccac ccaatccaag caccatccat
840cattgcagct caacttacca tgaagatttt tattacacat tgtgcgcagt gtcccatgtg
900ggagatccta tccttaacag tacttcctgg acagagtcac tgtctctgat tcgtcttgct
960gtaagaccaa aaagtgatag tggagactac aatcagaaat acatcgctat aactaaagtt
1020gaaagaggga agtacgataa ggtgatgcct tacggtccat caggtatcaa gcaaggggat
1080acattgtact ttccggccgt cggttttttg ccaaggaccg aatttcaata taatgactct
1140aattgtccca taattcattg caagtacagc aaagcagaaa actgtaggct ttcaatgggt
1200gtcaactcca aaagtcatta tattttgaga tcaggactat tgaagtataa tctatctctt
1260ggaggagaca tcatactcca atttatcgag attgctgaca atagattgac catcggttct
1320cctagtaaga tatacaattc cctaggtcaa cccgttttct accaggcatc atattcttgg
1380gatacgatga ttaaattagg cgatgttgat accgttgacc ctctaagagt acagtggaga
1440aataacagtg tgatttctag acctggacag tcacagtgtc ctcgatttaa tgtctgtccc
1500gaggtatgct gggaagggac atataatgat gcttttctaa tagaccggct aaactgggtt
1560agtgctggtg tttatttaaa cagtaaccaa actgcagaga accctgtgtt tgccgtattc
1620aaggataacg agatccttta ccaagttcca ctggctgaag atgacacaaa tgcacaaaaa
1680accatcacag attgcttctt gctggagaat gtcatatggt gtatatcact agtagaaata
1740tacgatacag gagacagtgt gataaggcca aaactatttg cagtcaagat acctgcccaa
1800tgttcagaga gttga
181521812DNAartificial sequencecodon-optimized DNA encoding Hendra G
protein 2atggccgact ccaagctggt gtctctgaac aataacctga gcggcaagat
caaagaccag 60ggcaaagtga tcaagaacta ctatggaacc atggacatca agaagatcaa
cgacggactg 120ctggattcca agatcctggg cgccttcaac acagtgatcg ctctgctggg
ctctatcatc 180atcatcgtga tgaacatcat gatcatccag aattacacca gaaccacaga
caaccaggcc 240ctgatcaagg agtctctgca gagcgtgcag cagcagatca aggctctgac
cgacaaaatc 300gggacagaaa tcggacccaa ggtgagcctg atcgatacca gctccaccat
cacaatccct 360gccaacatcg gactgctggg ctccaaaatc agccagtcca cctctagcat
caacgagaat 420gtgaacgaca agtgcaaatt cacactgccc cctctgaaga tccacgagtg
caacatcagc 480tgtccaaatc ccctgccttt tagggaatac agacctatca gccagggagt
gtccgacctg 540gtgggactgc caaaccagat ctgtctgcag aagaccacat ccaccatcct
gaaacctagg 600ctgatctctt acaccctgcc aatcaacaca agagagggcg tgtgcatcac
agaccccctg 660ctggccgtgg ataatgggtt ctttgcttat agccatctgg agaagatcgg
atcctgtacc 720aggggcatcg ccaaacagag aatcatcggg gtgggagaag tgctggacag
gggcgataag 780gtgccaagca tgttcatgac caacgtgtgg acaccaccca atccctccac
catccaccat 840tgctcctcta cataccacga ggacttttac tataccctgt gtgccgtgtc
ccatgtgggc 900gatccaatcc tgaactctac cagctggaca gaatccctgt ctctgatcag
gctggccgtg 960agacctaaga gcgactccgg ggattacaat cagaagtata tcgctatcac
caaagtggag 1020aggggaaagt acgacaaagt gatgccatat gggcccagcg gaatcaagca
gggcgatacc 1080ctgtacttcc ccgccgtggg gtttctgcct agaacagagt tccagtacaa
cgactccaat 1140tgccccatca tccactgtaa gtattctaaa gctgaaaact gcaggctgag
catgggagtg 1200aattctaaga gccattacat cctgagatcc ggcctgctga aatataacct
gtctctgggc 1260ggggacatca tcctgcagtt catcgagatc gccgataaca gactgaccat
cgggtccccc 1320tctaagatct acaatagcct gggacagcct gtgttttacc aggctagcta
ttcctgggac 1380accatgatca aactgggcga cgtggataca gtggatcctc tgcgcgtgca
gtggcggaat 1440aactccgtga tctctaggcc aggacagtcc cagtgtccca gattcaacgt
gtgccctgaa 1500gtgtgttggg aaggcaccta caacgacgcc tttctgatcg ataggctgaa
ttgggtgtct 1560gctggggtgt atctgaatag caaccagaca gccgagaacc ctgtgttcgc
tgtgtttaag 1620gacaatgaga tcctgtacca ggtgccactg gccgaagacg ataccaacgc
tcagaaaacc 1680atcacagatt gcttcctgct ggagaatgtg atctggtgta tctctctggt
ggaaatctat 1740gacaccggcg atagcgtgat cagacccaag ctgtttgccg tgaaaatccc
tgctcagtgc 1800tctgaaagct ga
18123600PRTartificial sequenceHendra G protein 3Met Ala Asp
Ser Lys Leu Val Ser Leu Asn Asn Asn Leu Ser Gly Lys1 5
10 15Ile Lys Asp Gln Gly Lys Val Ile Lys
Asn Tyr Tyr Gly Thr Met Asp 20 25
30Ile Lys Lys Ile Asn Asp Gly Leu Leu Asp Ser Lys Ile Leu Gly Ala
35 40 45Phe Asn Thr Val Ile Ala Leu
Leu Gly Ser Ile Ile Ile Ile Val Met 50 55
60Asn Ile Met Ile Ile Gln Asn Tyr Thr Arg Thr Thr Asp Asn Gln Ala65
70 75 80Leu Ile Lys Glu
Ser Leu Gln Ser Val Gln Gln Gln Ile Lys Ala Leu 85
90 95Thr Asp Lys Ile Gly Thr Glu Ile Gly Pro
Lys Val Ser Leu Ile Asp 100 105
110Thr Ser Ser Thr Ile Thr Ile Pro Ala Asn Ile Gly Leu Leu Gly Ser
115 120 125Lys Ile Ser Gln Ser Thr Ser
Ser Ile Asn Glu Asn Val Asn Asp Lys 130 135
140Cys Lys Phe Thr Leu Pro Pro Leu Lys Ile His Glu Cys Asn Ile
Ser145 150 155 160Cys Pro
Asn Pro Leu Pro Phe Arg Glu Tyr Arg Pro Ile Ser Gln Gly
165 170 175Val Ser Asp Leu Val Gly Leu
Pro Asn Gln Ile Cys Leu Gln Lys Thr 180 185
190Thr Ser Thr Ile Leu Lys Pro Arg Leu Ile Ser Tyr Thr Leu
Pro Ile 195 200 205Asn Thr Arg Glu
Gly Val Cys Ile Thr Asp Pro Leu Leu Ala Val Asp 210
215 220Asn Gly Phe Phe Ala Tyr Ser His Leu Glu Lys Ile
Gly Ser Cys Thr225 230 235
240Arg Gly Ile Ala Lys Gln Arg Ile Ile Gly Val Gly Glu Val Leu Asp
245 250 255Arg Gly Asp Lys Val
Pro Ser Met Phe Met Thr Asn Val Trp Thr Pro 260
265 270Pro Asn Pro Ser Thr Ile His His Cys Ser Ser Thr
Tyr His Glu Asp 275 280 285Phe Tyr
Tyr Thr Leu Cys Ala Val Ser His Val Gly Asp Pro Ile Leu 290
295 300Asn Ser Thr Ser Trp Thr Glu Ser Leu Ser Leu
Ile Arg Leu Ala Val305 310 315
320Arg Pro Lys Ser Asp Ser Gly Asp Tyr Asn Gln Lys Tyr Ile Ala Ile
325 330 335Thr Lys Val Glu
Arg Gly Lys Tyr Asp Lys Val Met Pro Tyr Gly Pro 340
345 350Ser Gly Ile Lys Gln Gly Asp Thr Leu Tyr Phe
Pro Ala Val Gly Phe 355 360 365Leu
Pro Arg Thr Glu Phe Gln Tyr Asn Asp Ser Asn Cys Pro Ile Ile 370
375 380His Cys Lys Tyr Ser Lys Ala Glu Asn Cys
Arg Leu Ser Met Gly Val385 390 395
400Asn Ser Lys Ser His Tyr Ile Leu Arg Ser Gly Leu Leu Lys Tyr
Asn 405 410 415Leu Ser Leu
Gly Gly Asp Ile Ile Leu Gln Phe Ile Glu Ile Ala Asp 420
425 430Asn Arg Leu Thr Ile Gly Ser Pro Ser Lys
Ile Tyr Asn Ser Leu Gly 435 440
445Gln Pro Val Phe Tyr Gln Ala Ser Tyr Ser Trp Asp Thr Met Ile Lys 450
455 460Leu Gly Asp Val Asp Thr Val Asp
Pro Leu Arg Val Gln Trp Arg Asn465 470
475 480Asn Ser Val Ile Ser Arg Pro Gly Gln Ser Gln Cys
Pro Arg Phe Asn 485 490
495Val Cys Pro Glu Val Cys Trp Glu Gly Thr Tyr Asn Asp Ala Phe Leu
500 505 510Ile Asp Arg Leu Asn Trp
Val Ser Ala Gly Val Tyr Leu Asn Ser Asn 515 520
525Gln Thr Ala Glu Asn Pro Val Phe Ala Val Phe Lys Asp Asn
Glu Ile 530 535 540Leu Tyr Gln Val Pro
Leu Ala Glu Asp Asp Thr Asn Ala Gln Lys Thr545 550
555 560Ile Thr Asp Cys Phe Leu Leu Glu Asn Val
Ile Trp Cys Ile Ser Leu 565 570
575Val Glu Ile Tyr Asp Thr Gly Asp Ser Val Ile Arg Pro Lys Leu Phe
580 585 590Ala Val Lys Ile Pro
Ala Gln Cys 595 60041641DNAartificial
sequencewildtype DNA encoding Hendra F protein 4atggctacac aagaggtcag
gctaaagtgt ttgctctgtg ggatcatagt tctggttttg 60tcattagaag ggctagggat
actacattat gagaaactta gtaagatagg gctggttaaa 120ggtattacaa gaaagtacaa
gattaagagt aaccctttga ccaaggatat tgtgatcaaa 180atgatcccta atgtctcgaa
tgtctcaaag tgcaccggga ctgttatgga gaattacaaa 240agcagactca cagggattct
ctcaccaatc aaaggcgcca tcgaactgta caataataac 300acgcatgacc tagttggtga
tgtcaagctt gcaggtgtgg tgatggcagg gattgcaatc 360gggatagcta ctgctgcaca
aatcacagca ggtgttgcct tatatgaggc aatgaagaac 420gcagacaata tcaataaact
caagagcagc atagagtcta caaatgaggc tgttgtcaaa 480ttacaggaaa cagctgagaa
aacagtctac gtccttactg ctcttcaaga ttacatcaac 540actaaccttg ttcctacaat
agatcaaatt agctgcaagc aaacagagct cgcattagac 600ttggcgttgt ctaagtatct
gtctgatctg ctctttgttt tcggacctaa cttacaggat 660ccagtctcta attccatgac
tatccaagca atatctcaag catttggggg caattacgaa 720accttactga gaacgcttgg
ttacgcgacc gaggacttcg acgacctttt agaaagtgat 780agcatagcag gccagatagt
ctatgtagat ctcagtagct attacataat agtaagggtg 840tattttccca tactaacaga
gatccaacag gcttatgtgc aggagttgct tccagtgagt 900tttaataacg ataattcaga
atggatcagc attgtcccga atttcgtgct gattaggaac 960acgctgattt caaatataga
agtcaagtac tgcttaatca ccaagaaaag tgtgatttgt 1020aatcaggact atgctacacc
catgacggct agcgtgagag aatgcttgac aggatccaca 1080gataagtgcc caagggagtt
agtagtctca tcccatgttc caagatttgc cctctcagga 1140ggagtcttgt ttgcaaattg
tataagtgtg acatgtcagt gtcagactac tgggagggca 1200atatctcaat caggggaaca
gacactactg atgattgaca atactacctg cacaacagtt 1260gttctaggaa acataatcat
aagccttgga aaatatttgg gatcaataaa ttacaattct 1320gagagcattg ctgttgggcc
accagtctat acagacaaag ttgatatctc aagtcagata 1380tctagtatga atcaatcact
acaacaatct aaggattaca ttaaagaagc tcaaaagatc 1440ttggacactg tgaatccgtc
gttgataagt atgctatcaa tgatcatcct ttatgttttg 1500tccattgcag cactgtgcat
tggtctgatc actttcataa gctttgtaat agttgagaaa 1560aagagaggga attacagcag
gctagatgat aggcaagtgc gaccggtcag taatggtgat 1620ctgtattata ttggaacata a
164151641DNAartificial
sequencecodon-optimized DNA encoding Hendra F protein 5atggccaccc
aggaggtgcg cctgaagtgc ctgctgtgtg gcatcatcgt gctggtgctg 60agcctggagg
gactgggaat cctgcactac gaaaaactgt ccaagatcgg cctggtgaag 120gggatcaccc
ggaagtataa aatcaagagc aatcccctga caaaggacat cgtgatcaaa 180atgatcccta
atgtgagcaa cgtgtccaag tgcaccggca cagtgatgga gaactacaaa 240tctaggctga
ccgggatcct gagccctatc aagggagcca tcgaactgta taacaataac 300acacatgacc
tggtgggcga tgtgaaactg gccggggtgg tcatggccgg aatcgctatc 360ggcatcgcta
ccgctgctca gatcacagct ggagtggctc tgtacgaggc catgaagaat 420gctgacaata
tcaacaaact gaagagctcc atcgagtcca ccaacgaagc cgtggtgaag 480ctgcaggaga
ccgctgaaaa aacagtgtac gtgctgacag ccctgcagga ctatatcaat 540accaacctgg
tgccaacaat cgatcagatc agctgtaagc agaccgaact ggccctggac 600ctggctctgt
ctaaatacct gagcgatctg ctgttcgtgt ttggcccaaa tctgcaggat 660cccgtgtcca
actctatgac catccaggcc atctcccagg ctttcggcgg gaactacgag 720accctgctga
ggacactggg gtatgccacc gaggactttg acgatctgct ggaaagcgat 780tccatcgctg
gacagatcgt gtacgtggac ctgtctagct actatatcat cgtgagagtg 840tacttcccaa
tcctgaccga gatccagcag gcctatgtgc aggaactgct gcccgtgagc 900ttcaataacg
ataattccga gtggatctct atcgtgccta actttgtgct gatccgcaat 960accctgatct
ctaacatcga agtgaagtac tgcctgatca caaagaaaag cgtgatctgt 1020aaccaggact
atgccacccc catgacagct agcgtgcggg agtgcctgac cggatccacc 1080gataagtgtc
ctagggaact ggtggtgtcc tctcacgtgc caagattcgc cctgtctgga 1140ggcgtgctgt
ttgctaactg catcagcgtg acctgccagt gtcagaccac aggcagagcc 1200atctctcaga
gcggggagca gacactgctg atgatcgaca ataccacatg taccacagtg 1260gtgctgggca
acatcatcat ctccctgggg aagtacctgg gatctatcaa ttataactcc 1320gaatctatcg
ccgtggggcc ccctgtgtac accgacaaag tggacatcag cagccagatc 1380tctagcatga
atcagagcct gcagcagtcc aaagactata tcaaggaggc ccagaaaatc 1440ctggataccg
tgaacccatc tctgatcagc atgctgtcca tgatcatcct gtacgtgctg 1500tccatcgccg
ctctgtgcat cggactgatc accttcatca gctttgtgat cgtggagaag 1560aaacgcggca
attactcccg gctggacgat aggcaggtga gacccgtgtc taacggagac 1620ctgtactata
tcggcacctg a
16416546PRTartificial sequenceHendra F protein 6Met Ala Thr Gln Glu Val
Arg Leu Lys Cys Leu Leu Cys Gly Ile Ile1 5
10 15Val Leu Val Leu Ser Leu Glu Gly Leu Gly Ile Leu
His Tyr Glu Lys 20 25 30Leu
Ser Lys Ile Gly Leu Val Lys Gly Ile Thr Arg Lys Tyr Lys Ile 35
40 45Lys Ser Asn Pro Leu Thr Lys Asp Ile
Val Ile Lys Met Ile Pro Asn 50 55
60Val Ser Asn Val Ser Lys Cys Thr Gly Thr Val Met Glu Asn Tyr Lys65
70 75 80Ser Arg Leu Thr Gly
Ile Leu Ser Pro Ile Lys Gly Ala Ile Glu Leu 85
90 95Tyr Asn Asn Asn Thr His Asp Leu Val Gly Asp
Val Lys Leu Ala Gly 100 105
110Val Val Met Ala Gly Ile Ala Ile Gly Ile Ala Thr Ala Ala Gln Ile
115 120 125Thr Ala Gly Val Ala Leu Tyr
Glu Ala Met Lys Asn Ala Asp Asn Ile 130 135
140Asn Lys Leu Lys Ser Ser Ile Glu Ser Thr Asn Glu Ala Val Val
Lys145 150 155 160Leu Gln
Glu Thr Ala Glu Lys Thr Val Tyr Val Leu Thr Ala Leu Gln
165 170 175Asp Tyr Ile Asn Thr Asn Leu
Val Pro Thr Ile Asp Gln Ile Ser Cys 180 185
190Lys Gln Thr Glu Leu Ala Leu Asp Leu Ala Leu Ser Lys Tyr
Leu Ser 195 200 205Asp Leu Leu Phe
Val Phe Gly Pro Asn Leu Gln Asp Pro Val Ser Asn 210
215 220Ser Met Thr Ile Gln Ala Ile Ser Gln Ala Phe Gly
Gly Asn Tyr Glu225 230 235
240Thr Leu Leu Arg Thr Leu Gly Tyr Ala Thr Glu Asp Phe Asp Asp Leu
245 250 255Leu Glu Ser Asp Ser
Ile Ala Gly Gln Ile Val Tyr Val Asp Leu Ser 260
265 270Ser Tyr Tyr Ile Ile Val Arg Val Tyr Phe Pro Ile
Leu Thr Glu Ile 275 280 285Gln Gln
Ala Tyr Val Gln Glu Leu Leu Pro Val Ser Phe Asn Asn Asp 290
295 300Asn Ser Glu Trp Ile Ser Ile Val Pro Asn Phe
Val Leu Ile Arg Asn305 310 315
320Thr Leu Ile Ser Asn Ile Glu Val Lys Tyr Cys Leu Ile Thr Lys Lys
325 330 335Ser Val Ile Cys
Asn Gln Asp Tyr Ala Thr Pro Met Thr Ala Ser Val 340
345 350Arg Glu Cys Leu Thr Gly Ser Thr Asp Lys Cys
Pro Arg Glu Leu Val 355 360 365Val
Ser Ser His Val Pro Arg Phe Ala Leu Ser Gly Gly Val Leu Phe 370
375 380Ala Asn Cys Ile Ser Val Thr Cys Gln Cys
Gln Thr Thr Gly Arg Ala385 390 395
400Ile Ser Gln Ser Gly Glu Gln Thr Leu Leu Met Ile Asp Asn Thr
Thr 405 410 415Cys Thr Thr
Val Val Leu Gly Asn Ile Ile Ile Ser Leu Gly Lys Tyr 420
425 430Leu Gly Ser Ile Asn Tyr Asn Ser Glu Ser
Ile Ala Val Gly Pro Pro 435 440
445Val Tyr Thr Asp Lys Val Asp Ile Ser Ser Gln Ile Ser Ser Met Asn 450
455 460Gln Ser Leu Gln Gln Ser Lys Asp
Tyr Ile Lys Glu Ala Gln Lys Ile465 470
475 480Leu Asp Thr Val Asn Pro Ser Leu Ile Ser Met Leu
Ser Met Ile Ile 485 490
495Leu Tyr Val Leu Ser Ile Ala Ala Leu Cys Ile Gly Leu Ile Thr Phe
500 505 510Ile Ser Phe Val Ile Val
Glu Lys Lys Arg Gly Asn Tyr Ser Arg Leu 515 520
525Asp Asp Arg Gln Val Arg Pro Val Ser Asn Gly Asp Leu Tyr
Tyr Ile 530 535 540Gly
Thr54571936DNAartificial sequencepart of plasmid p362 containing Hendra G
and H6 promoter 7ttctttattc tatacttaaa aagtgaaaat aaatacaaag
gttcttgagg gttgtgttaa 60attgaaagcg agaaataatc ataaattatt tcattatcgc
gatatccgtt aagtttgtat 120cgtaatggcc gactccaagc tggtgtctct gaacaataac
ctgagcggca agatcaaaga 180ccagggcaaa gtgatcaaga actactatgg aaccatggac
atcaagaaga tcaacgacgg 240actgctggat tccaagatcc tgggcgcctt caacacagtg
atcgctctgc tgggctctat 300catcatcatc gtgatgaaca tcatgatcat ccagaattac
accagaacca cagacaacca 360ggccctgatc aaggagtctc tgcagagcgt gcagcagcag
atcaaggctc tgaccgacaa 420aatcgggaca gaaatcggac ccaaggtgag cctgatcgat
accagctcca ccatcacaat 480ccctgccaac atcggactgc tgggctccaa aatcagccag
tccacctcta gcatcaacga 540gaatgtgaac gacaagtgca aattcacact gccccctctg
aagatccacg agtgcaacat 600cagctgtcca aatcccctgc cttttaggga atacagacct
atcagccagg gagtgtccga 660cctggtggga ctgccaaacc agatctgtct gcagaagacc
acatccacca tcctgaaacc 720taggctgatc tcttacaccc tgccaatcaa cacaagagag
ggcgtgtgca tcacagaccc 780cctgctggcc gtggataatg ggttctttgc ttatagccat
ctggagaaga tcggatcctg 840taccaggggc atcgccaaac agagaatcat cggggtggga
gaagtgctgg acaggggcga 900taaggtgcca agcatgttca tgaccaacgt gtggacacca
cccaatccct ccaccatcca 960ccattgctcc tctacatacc acgaggactt ttactatacc
ctgtgtgccg tgtcccatgt 1020gggcgatcca atcctgaact ctaccagctg gacagaatcc
ctgtctctga tcaggctggc 1080cgtgagacct aagagcgact ccggggatta caatcagaag
tatatcgcta tcaccaaagt 1140ggagagggga aagtacgaca aagtgatgcc atatgggccc
agcggaatca agcagggcga 1200taccctgtac ttccccgccg tggggtttct gcctagaaca
gagttccagt acaacgactc 1260caattgcccc atcatccact gtaagtattc taaagctgaa
aactgcaggc tgagcatggg 1320agtgaattct aagagccatt acatcctgag atccggcctg
ctgaaatata acctgtctct 1380gggcggggac atcatcctgc agttcatcga gatcgccgat
aacagactga ccatcgggtc 1440cccctctaag atctacaata gcctgggaca gcctgtgttt
taccaggcta gctattcctg 1500ggacaccatg atcaaactgg gcgacgtgga tacagtggat
cctctgcgcg tgcagtggcg 1560gaataactcc gtgatctcta ggccaggaca gtcccagtgt
cccagattca acgtgtgccc 1620tgaagtgtgt tgggaaggca cctacaacga cgcctttctg
atcgataggc tgaattgggt 1680gtctgctggg gtgtatctga atagcaacca gacagccgag
aaccctgtgt tcgctgtgtt 1740taaggacaat gagatcctgt accaggtgcc actggccgaa
gacgatacca acgctcagaa 1800aaccatcaca gattgcttcc tgctggagaa tgtgatctgg
tgtatctctc tggtggaaat 1860ctatgacacc ggcgatagcg tgatcagacc caagctgttt
gccgtgaaaa tccctgctca 1920gtgctctgaa agctga
193684113DNAartificial sequencepart p362 plasmid
containing G gene, H6 promoter and C5 arms 8ggaaacagct atgaccatga
ttacgaattg cggccgcaat tctgaatgtt aaatgttata 60ctttggatga agctataaat
atgcattgga aaaataatcc atttaaagaa aggattcaaa 120tactacaaaa cctaagcgat
aatatgttaa ctaagcttat tcttaacgac gctttaaata 180tacacaaata aacataattt
ttgtataacc taacaaataa ctaaaacata aaaataataa 240aaggaaatgt aatatcgtaa
ttattttact caggaatggg gttaaatatt tatatcacgt 300gtatatctat actgttatcg
tatactcttt acaattacta ttacgaatat gcaagagata 360ataagattac gtatttaaga
gaatcttgtc atgataattg ggtacgacat agtgataaat 420gctatttcgc atcgttacat
aaagtcagtt ggaaagatgg atttgacaga tgtaacttaa 480taggtgcaaa aatgttaaat
aacagcattc tatcggaaga taggatacca gttatattat 540acaaaaatca ctggttggat
aaaacagatt ctgcaatatt cgtaaaagat gaagattact 600gcgaatttgt aaactatgac
aataaaaagc catttatctc aacgacatcg tgtaattctt 660ccatgtttta tgtatgtgtt
tcagatatta tgagattact ataaactttt tgtatactta 720tattccgtaa actatattaa
tcatgaagaa aatgaaaaag tatagaagct gttcacgagc 780ggttgttgaa aacaacaaaa
ttatacattc aagatggctt acatatacgt ctgtgaggct 840atcatggata atgacaatgc
atctctaaat aggtttttgg acaatggatt cgaccctaac 900acggaatatg gtactctaca
atctcctctt gaaatggctg taatgttcaa gaataccgag 960gctataaaaa tcttgatgag
gtatggagct aaacctgtag ttactgaatg cacaacttct 1020tgtctgcatg atgcggtgtt
gagagacgac tacaaaatag tgaaagatct gttgaagaat 1080aactatgtaa acaatgttct
ttacagcgga ggctttactc ctttgtgttt ggcagcttac 1140cttaacaaag ttaatttggt
taaacttcta ttggctcatt cggcggatgt agatatttca 1200aacacggatc ggttaactcc
tctacatata gccgtatcaa ataaaaattt aacaatggtt 1260aaacttctat tgaacaaagg
tgctgatact gacttgctgg ataacatggg acgtactcct 1320ttaatgatcg ctgtacaatc
tggaaatatt gaaatatgta gcacactact taaaaaaaat 1380aaaatgtcca gaactgggaa
aaattgatct tgccagctgt aattcatggt agaaaagaag 1440tgctcaggct acttttcaac
aaaggagcag atgtaaacta catctttgaa agaaatggaa 1500aatcatatac tgttttggaa
ttgattaaag aaagttactc tgagacacaa aagaggtagc 1560tgaagtggta ctctcaaagg
tacgtgacta attagctata aaaaggatcc gggttaatta 1620attagtcatc aggcagggcg
agaacgagac tatctgctcg ttaattaatt agagcttctt 1680tattctatac ttaaaaagtg
aaaataaata caaaggttct tgagggttgt gttaaattga 1740aagcgagaaa taatcataaa
ttatttcatt atcgcgatat ccgttaagtt tgtatcgtaa 1800tggccgactc caagctggtg
tctctgaaca ataacctgag cggcaagatc aaagaccagg 1860gcaaagtgat caagaactac
tatggaacca tggacatcaa gaagatcaac gacggactgc 1920tggattccaa gatcctgggc
gccttcaaca cagtgatcgc tctgctgggc tctatcatca 1980tcatcgtgat gaacatcatg
atcatccaga attacaccag aaccacagac aaccaggccc 2040tgatcaagga gtctctgcag
agcgtgcagc agcagatcaa ggctctgacc gacaaaatcg 2100ggacagaaat cggacccaag
gtgagcctga tcgataccag ctccaccatc acaatccctg 2160ccaacatcgg actgctgggc
tccaaaatca gccagtccac ctctagcatc aacgagaatg 2220tgaacgacaa gtgcaaattc
acactgcccc ctctgaagat ccacgagtgc aacatcagct 2280gtccaaatcc cctgcctttt
agggaataca gacctatcag ccagggagtg tccgacctgg 2340tgggactgcc aaaccagatc
tgtctgcaga agaccacatc caccatcctg aaacctaggc 2400tgatctctta caccctgcca
atcaacacaa gagagggcgt gtgcatcaca gaccccctgc 2460tggccgtgga taatgggttc
tttgcttata gccatctgga gaagatcgga tcctgtacca 2520ggggcatcgc caaacagaga
atcatcgggg tgggagaagt gctggacagg ggcgataagg 2580tgccaagcat gttcatgacc
aacgtgtgga caccacccaa tccctccacc atccaccatt 2640gctcctctac ataccacgag
gacttttact ataccctgtg tgccgtgtcc catgtgggcg 2700atccaatcct gaactctacc
agctggacag aatccctgtc tctgatcagg ctggccgtga 2760gacctaagag cgactccggg
gattacaatc agaagtatat cgctatcacc aaagtggaga 2820ggggaaagta cgacaaagtg
atgccatatg ggcccagcgg aatcaagcag ggcgataccc 2880tgtacttccc cgccgtgggg
tttctgccta gaacagagtt ccagtacaac gactccaatt 2940gccccatcat ccactgtaag
tattctaaag ctgaaaactg caggctgagc atgggagtga 3000attctaagag ccattacatc
ctgagatccg gcctgctgaa atataacctg tctctgggcg 3060gggacatcat cctgcagttc
atcgagatcg ccgataacag actgaccatc gggtccccct 3120ctaagatcta caatagcctg
ggacagcctg tgttttacca ggctagctat tcctgggaca 3180ccatgatcaa actgggcgac
gtggatacag tggatcctct gcgcgtgcag tggcggaata 3240actccgtgat ctctaggcca
ggacagtccc agtgtcccag attcaacgtg tgccctgaag 3300tgtgttggga aggcacctac
aacgacgcct ttctgatcga taggctgaat tgggtgtctg 3360ctggggtgta tctgaatagc
aaccagacag ccgagaaccc tgtgttcgct gtgtttaagg 3420acaatgagat cctgtaccag
gtgccactgg ccgaagacga taccaacgct cagaaaacca 3480tcacagattg cttcctgctg
gagaatgtga tctggtgtat ctctctggtg gaaatctatg 3540acaccggcga tagcgtgatc
agacccaagc tgtttgccgt gaaaatccct gctcagtgct 3600ctgaaagctg atttttatgg
taccctcgag tctagaatcg atcccgggtt tttatgacta 3660gttaatcacg gccgcttata
aagatctaaa atgcataatt tctaaataat gaaaaaaagt 3720acatcatgag caacgcgtta
gtatatttta caatggagat taacgctcta taccgttcta 3780tgtttattga ttcagatgat
gttttagaaa agaaagttat tgaatatgaa aactttaatg 3840aagatgaaga tgacgacgat
gattattgtt gtaaatctgt tttagatgaa gaagatgacg 3900cgctaaagta tactatggtt
acaaagtata agtctatact actaatggcg acttgtgcaa 3960gaaggtatag tatagtgaaa
atgttgttag attatgatta tgaaaaacca aataaatcag 4020atccatatct aaaggtatct
cctttgcaca taatttcatc tattcctagt ttagaatacc 4080tgcagccaag cttggcactg
gccgtcgttt tac 411396698DNAartificial
sequenceentire p362 plasmid sequence 9gcgcccaata cgcaaaccgc ctctccccgc
gcgttggccg attcattaat gcagctggca 60cgacaggttt cccgactgga aagcgggcag
tgagcgcaac gcaattaatg tgagttagct 120cactcattag gcaccccagg ctttacactt
tatgcttccg gctcgtatgt tgtgtggaat 180tgtgagcgga taacaatttc acacaggaaa
cagctatgac catgattacg aattgcggcc 240gcaattctga atgttaaatg ttatactttg
gatgaagcta taaatatgca ttggaaaaat 300aatccattta aagaaaggat tcaaatacta
caaaacctaa gcgataatat gttaactaag 360cttattctta acgacgcttt aaatatacac
aaataaacat aatttttgta taacctaaca 420aataactaaa acataaaaat aataaaagga
aatgtaatat cgtaattatt ttactcagga 480atggggttaa atatttatat cacgtgtata
tctatactgt tatcgtatac tctttacaat 540tactattacg aatatgcaag agataataag
attacgtatt taagagaatc ttgtcatgat 600aattgggtac gacatagtga taaatgctat
ttcgcatcgt tacataaagt cagttggaaa 660gatggatttg acagatgtaa cttaataggt
gcaaaaatgt taaataacag cattctatcg 720gaagatagga taccagttat attatacaaa
aatcactggt tggataaaac agattctgca 780atattcgtaa aagatgaaga ttactgcgaa
tttgtaaact atgacaataa aaagccattt 840atctcaacga catcgtgtaa ttcttccatg
ttttatgtat gtgtttcaga tattatgaga 900ttactataaa ctttttgtat acttatattc
cgtaaactat attaatcatg aagaaaatga 960aaaagtatag aagctgttca cgagcggttg
ttgaaaacaa caaaattata cattcaagat 1020ggcttacata tacgtctgtg aggctatcat
ggataatgac aatgcatctc taaataggtt 1080tttggacaat ggattcgacc ctaacacgga
atatggtact ctacaatctc ctcttgaaat 1140ggctgtaatg ttcaagaata ccgaggctat
aaaaatcttg atgaggtatg gagctaaacc 1200tgtagttact gaatgcacaa cttcttgtct
gcatgatgcg gtgttgagag acgactacaa 1260aatagtgaaa gatctgttga agaataacta
tgtaaacaat gttctttaca gcggaggctt 1320tactcctttg tgtttggcag cttaccttaa
caaagttaat ttggttaaac ttctattggc 1380tcattcggcg gatgtagata tttcaaacac
ggatcggtta actcctctac atatagccgt 1440atcaaataaa aatttaacaa tggttaaact
tctattgaac aaaggtgctg atactgactt 1500gctggataac atgggacgta ctcctttaat
gatcgctgta caatctggaa atattgaaat 1560atgtagcaca ctacttaaaa aaaataaaat
gtccagaact gggaaaaatt gatcttgcca 1620gctgtaattc atggtagaaa agaagtgctc
aggctacttt tcaacaaagg agcagatgta 1680aactacatct ttgaaagaaa tggaaaatca
tatactgttt tggaattgat taaagaaagt 1740tactctgaga cacaaaagag gtagctgaag
tggtactctc aaaggtacgt gactaattag 1800ctataaaaag gatccgggtt aattaattag
tcatcaggca gggcgagaac gagactatct 1860gctcgttaat taattagagc ttctttattc
tatacttaaa aagtgaaaat aaatacaaag 1920gttcttgagg gttgtgttaa attgaaagcg
agaaataatc ataaattatt tcattatcgc 1980gatatccgtt aagtttgtat cgtaatggcc
gactccaagc tggtgtctct gaacaataac 2040ctgagcggca agatcaaaga ccagggcaaa
gtgatcaaga actactatgg aaccatggac 2100atcaagaaga tcaacgacgg actgctggat
tccaagatcc tgggcgcctt caacacagtg 2160atcgctctgc tgggctctat catcatcatc
gtgatgaaca tcatgatcat ccagaattac 2220accagaacca cagacaacca ggccctgatc
aaggagtctc tgcagagcgt gcagcagcag 2280atcaaggctc tgaccgacaa aatcgggaca
gaaatcggac ccaaggtgag cctgatcgat 2340accagctcca ccatcacaat ccctgccaac
atcggactgc tgggctccaa aatcagccag 2400tccacctcta gcatcaacga gaatgtgaac
gacaagtgca aattcacact gccccctctg 2460aagatccacg agtgcaacat cagctgtcca
aatcccctgc cttttaggga atacagacct 2520atcagccagg gagtgtccga cctggtggga
ctgccaaacc agatctgtct gcagaagacc 2580acatccacca tcctgaaacc taggctgatc
tcttacaccc tgccaatcaa cacaagagag 2640ggcgtgtgca tcacagaccc cctgctggcc
gtggataatg ggttctttgc ttatagccat 2700ctggagaaga tcggatcctg taccaggggc
atcgccaaac agagaatcat cggggtggga 2760gaagtgctgg acaggggcga taaggtgcca
agcatgttca tgaccaacgt gtggacacca 2820cccaatccct ccaccatcca ccattgctcc
tctacatacc acgaggactt ttactatacc 2880ctgtgtgccg tgtcccatgt gggcgatcca
atcctgaact ctaccagctg gacagaatcc 2940ctgtctctga tcaggctggc cgtgagacct
aagagcgact ccggggatta caatcagaag 3000tatatcgcta tcaccaaagt ggagagggga
aagtacgaca aagtgatgcc atatgggccc 3060agcggaatca agcagggcga taccctgtac
ttccccgccg tggggtttct gcctagaaca 3120gagttccagt acaacgactc caattgcccc
atcatccact gtaagtattc taaagctgaa 3180aactgcaggc tgagcatggg agtgaattct
aagagccatt acatcctgag atccggcctg 3240ctgaaatata acctgtctct gggcggggac
atcatcctgc agttcatcga gatcgccgat 3300aacagactga ccatcgggtc cccctctaag
atctacaata gcctgggaca gcctgtgttt 3360taccaggcta gctattcctg ggacaccatg
atcaaactgg gcgacgtgga tacagtggat 3420cctctgcgcg tgcagtggcg gaataactcc
gtgatctcta ggccaggaca gtcccagtgt 3480cccagattca acgtgtgccc tgaagtgtgt
tgggaaggca cctacaacga cgcctttctg 3540atcgataggc tgaattgggt gtctgctggg
gtgtatctga atagcaacca gacagccgag 3600aaccctgtgt tcgctgtgtt taaggacaat
gagatcctgt accaggtgcc actggccgaa 3660gacgatacca acgctcagaa aaccatcaca
gattgcttcc tgctggagaa tgtgatctgg 3720tgtatctctc tggtggaaat ctatgacacc
ggcgatagcg tgatcagacc caagctgttt 3780gccgtgaaaa tccctgctca gtgctctgaa
agctgatttt tatggtaccc tcgagtctag 3840aatcgatccc gggtttttat gactagttaa
tcacggccgc ttataaagat ctaaaatgca 3900taatttctaa ataatgaaaa aaagtacatc
atgagcaacg cgttagtata ttttacaatg 3960gagattaacg ctctataccg ttctatgttt
attgattcag atgatgtttt agaaaagaaa 4020gttattgaat atgaaaactt taatgaagat
gaagatgacg acgatgatta ttgttgtaaa 4080tctgttttag atgaagaaga tgacgcgcta
aagtatacta tggttacaaa gtataagtct 4140atactactaa tggcgacttg tgcaagaagg
tatagtatag tgaaaatgtt gttagattat 4200gattatgaaa aaccaaataa atcagatcca
tatctaaagg tatctccttt gcacataatt 4260tcatctattc ctagtttaga atacctgcag
ccaagcttgg cactggccgt cgttttacaa 4320cgtcgtgact gggaaaaccc tggcgttacc
caacttaatc gccttgcagc acatccccct 4380ttcgccagct ggcgtaatag cgaagaggcc
cgcaccgatc gcccttccca acagttgcgc 4440agcctgaatg gcgaatggcg cctgatgcgg
tattttctcc ttacgcatct gtgcggtatt 4500tcacaccgca tatggtgcac tctcagtaca
atctgctctg atgccgcata gttaagccag 4560ccccgacacc cgccaacacc cgctgacgcg
ccctgacggg cttgtctgct cccggcatcc 4620gcttacagac aagctgtgac cgtctccggg
agctgcatgt gtcagaggtt ttcaccgtca 4680tcaccgaaac gcgcgagacg aaagggcctc
gtgatacgcc tatttttata ggttaatgtc 4740atgataataa tggtttctta gacgtcaggt
ggcacttttc ggggaaatgt gcgcggaacc 4800cctatttgtt tatttttcta aatacattca
aatatgtatc cgctcatgag acaataaccc 4860tgataaatgc ttcaataata ttgaaaaagg
aagagtatga gtattcaaca tttccgtgtc 4920gcccttattc ccttttttgc ggcattttgc
cttcctgttt ttgctcaccc agaaacgctg 4980gtgaaagtaa aagatgctga agatcagttg
ggtgcacgag tgggttacat cgaactggat 5040ctcaacagcg gtaagatcct tgagagtttt
cgccccgaag aacgttttcc aatgatgagc 5100acttttaaag ttctgctatg tggcgcggta
ttatcccgta ttgacgccgg gcaagagcaa 5160ctcggtcgcc gcatacacta ttctcagaat
gacttggttg agtactcacc agtcacagaa 5220aagcatctta cggatggcat gacagtaaga
gaattatgca gtgctgccat aaccatgagt 5280gataacactg cggccaactt acttctgaca
acgatcggag gaccgaagga gctaaccgct 5340tttttgcaca acatggggga tcatgtaact
cgccttgatc gttgggaacc ggagctgaat 5400gaagccatac caaacgacga gcgtgacacc
acgatgcctg tagcaatggc aacaacgttg 5460cgcaaactat taactggcga actacttact
ctagcttccc ggcaacaatt aatagactgg 5520atggaggcgg ataaagttgc aggaccactt
ctgcgctcgg cccttccggc tggctggttt 5580attgctgata aatctggagc cggtgagcgt
gggtctcgcg gtatcattgc agcactgggg 5640ccagatggta agccctcccg tatcgtagtt
atctacacga cggggagtca ggcaactatg 5700gatgaacgaa atagacagat cgctgagata
ggtgcctcac tgattaagca ttggtaactg 5760tcagaccaag tttactcata tatactttag
attgatttaa aacttcattt ttaatttaaa 5820aggatctagg tgaagatcct ttttgataat
ctcatgacca aaatccctta acgtgagttt 5880tcgttccact gagcgtcaga ccccgtagaa
aagatcaaag gatcttcttg agatcctttt 5940tttctgcgcg taatctgctg cttgcaaaca
aaaaaaccac cgctaccagc ggtggtttgt 6000ttgccggatc aagagctacc aactcttttt
ccgaaggtaa ctggcttcag cagagcgcag 6060ataccaaata ctgtccttct agtgtagccg
tagttaggcc accacttcaa gaactctgta 6120gcaccgccta catacctcgc tctgctaatc
ctgttaccag tggctgctgc cagtggcgat 6180aagtcgtgtc ttaccgggtt ggactcaaga
cgatagttac cggataaggc gcagcggtcg 6240ggctgaacgg ggggttcgtg cacacagccc
agcttggagc gaacgaccta caccgaactg 6300agatacctac agcgtgagct atgagaaagc
gccacgcttc ccgaagggag aaaggcggac 6360aggtatccgg taagcggcag ggtcggaaca
ggagagcgca cgagggagct tccaggggga 6420aacgcctggt atctttatag tcctgtcggg
tttcgccacc tctgacttga gcgtcgattt 6480ttgtgatgct cgtcaggggg gcggagccta
tggaaaaacg ccagcaacgc ggccttttta 6540cggttcctgg ccttttgctg gccttttgct
cacatgttct ttcctgcgtt atcccctgat 6600tctgtggata accgtattac cgcctttgag
tgagctgata ccgctcgccg cagccgaacg 6660accgagcgca gcgagtcagt gagcgaggaa
gcggaaga 6698101765DNAartificial sequencepart
p362 plasmid containing F gene and H6 promoter 10ttctttattc
tatacttaaa aagtgaaaat aaatacaaag gttcttgagg gttgtgttaa 60attgaaagcg
agaaataatc ataaattatt tcattatcgc gatatccgtt aagtttgtat 120cgtaatggcc
acccaggagg tgcgcctgaa gtgcctgctg tgtggcatca tcgtgctggt 180gctgagcctg
gagggactgg gaatcctgca ctacgaaaaa ctgtccaaga tcggcctggt 240gaaggggatc
acccggaagt ataaaatcaa gagcaatccc ctgacaaagg acatcgtgat 300caaaatgatc
cctaatgtga gcaacgtgtc caagtgcacc ggcacagtga tggagaacta 360caaatctagg
ctgaccggga tcctgagccc tatcaaggga gccatcgaac tgtataacaa 420taacacacat
gacctggtgg gcgatgtgaa actggccggg gtggtcatgg ccggaatcgc 480tatcggcatc
gctaccgctg ctcagatcac agctggagtg gctctgtacg aggccatgaa 540gaatgctgac
aatatcaaca aactgaagag ctccatcgag tccaccaacg aagccgtggt 600gaagctgcag
gagaccgctg aaaaaacagt gtacgtgctg acagccctgc aggactatat 660caataccaac
ctggtgccaa caatcgatca gatcagctgt aagcagaccg aactggccct 720ggacctggct
ctgtctaaat acctgagcga tctgctgttc gtgtttggcc caaatctgca 780ggatcccgtg
tccaactcta tgaccatcca ggccatctcc caggctttcg gcgggaacta 840cgagaccctg
ctgaggacac tggggtatgc caccgaggac tttgacgatc tgctggaaag 900cgattccatc
gctggacaga tcgtgtacgt ggacctgtct agctactata tcatcgtgag 960agtgtacttc
ccaatcctga ccgagatcca gcaggcctat gtgcaggaac tgctgcccgt 1020gagcttcaat
aacgataatt ccgagtggat ctctatcgtg cctaactttg tgctgatccg 1080caataccctg
atctctaaca tcgaagtgaa gtactgcctg atcacaaaga aaagcgtgat 1140ctgtaaccag
gactatgcca cccccatgac agctagcgtg cgggagtgcc tgaccggatc 1200caccgataag
tgtcctaggg aactggtggt gtcctctcac gtgccaagat tcgccctgtc 1260tggaggcgtg
ctgtttgcta actgcatcag cgtgacctgc cagtgtcaga ccacaggcag 1320agccatctct
cagagcgggg agcagacact gctgatgatc gacaatacca catgtaccac 1380agtggtgctg
ggcaacatca tcatctccct ggggaagtac ctgggatcta tcaattataa 1440ctccgaatct
atcgccgtgg ggccccctgt gtacaccgac aaagtggaca tcagcagcca 1500gatctctagc
atgaatcaga gcctgcagca gtccaaagac tatatcaagg aggcccagaa 1560aatcctggat
accgtgaacc catctctgat cagcatgctg tccatgatca tcctgtacgt 1620gctgtccatc
gccgctctgt gcatcggact gatcaccttc atcagctttg tgatcgtgga 1680gaagaaacgc
ggcaattact cccggctgga cgataggcag gtgagacccg tgtctaacgg 1740agacctgtac
tatatcggca cctga
1765113942DNAartificial sequencepart p362 plasmid containing F gene, H6
promoter and C5 arms 11ggaaacagct atgaccatga ttacgaattg cggccgcaat
tctgaatgtt aaatgttata 60ctttggatga agctataaat atgcattgga aaaataatcc
atttaaagaa aggattcaaa 120tactacaaaa cctaagcgat aatatgttaa ctaagcttat
tcttaacgac gctttaaata 180tacacaaata aacataattt ttgtataacc taacaaataa
ctaaaacata aaaataataa 240aaggaaatgt aatatcgtaa ttattttact caggaatggg
gttaaatatt tatatcacgt 300gtatatctat actgttatcg tatactcttt acaattacta
ttacgaatat gcaagagata 360ataagattac gtatttaaga gaatcttgtc atgataattg
ggtacgacat agtgataaat 420gctatttcgc atcgttacat aaagtcagtt ggaaagatgg
atttgacaga tgtaacttaa 480taggtgcaaa aatgttaaat aacagcattc tatcggaaga
taggatacca gttatattat 540acaaaaatca ctggttggat aaaacagatt ctgcaatatt
cgtaaaagat gaagattact 600gcgaatttgt aaactatgac aataaaaagc catttatctc
aacgacatcg tgtaattctt 660ccatgtttta tgtatgtgtt tcagatatta tgagattact
ataaactttt tgtatactta 720tattccgtaa actatattaa tcatgaagaa aatgaaaaag
tatagaagct gttcacgagc 780ggttgttgaa aacaacaaaa ttatacattc aagatggctt
acatatacgt ctgtgaggct 840atcatggata atgacaatgc atctctaaat aggtttttgg
acaatggatt cgaccctaac 900acggaatatg gtactctaca atctcctctt gaaatggctg
taatgttcaa gaataccgag 960gctataaaaa tcttgatgag gtatggagct aaacctgtag
ttactgaatg cacaacttct 1020tgtctgcatg atgcggtgtt gagagacgac tacaaaatag
tgaaagatct gttgaagaat 1080aactatgtaa acaatgttct ttacagcgga ggctttactc
ctttgtgttt ggcagcttac 1140cttaacaaag ttaatttggt taaacttcta ttggctcatt
cggcggatgt agatatttca 1200aacacggatc ggttaactcc tctacatata gccgtatcaa
ataaaaattt aacaatggtt 1260aaacttctat tgaacaaagg tgctgatact gacttgctgg
ataacatggg acgtactcct 1320ttaatgatcg ctgtacaatc tggaaatatt gaaatatgta
gcacactact taaaaaaaat 1380aaaatgtcca gaactgggaa aaattgatct tgccagctgt
aattcatggt agaaaagaag 1440tgctcaggct acttttcaac aaaggagcag atgtaaacta
catctttgaa agaaatggaa 1500aatcatatac tgttttggaa ttgattaaag aaagttactc
tgagacacaa aagaggtagc 1560tgaagtggta ctctcaaagg tacgtgacta attagctata
aaaaggatcc gggttaatta 1620attagtcatc aggcagggcg agaacgagac tatctgctcg
ttaattaatt agagcttctt 1680tattctatac ttaaaaagtg aaaataaata caaaggttct
tgagggttgt gttaaattga 1740aagcgagaaa taatcataaa ttatttcatt atcgcgatat
ccgttaagtt tgtatcgtaa 1800tggccaccca ggaggtgcgc ctgaagtgcc tgctgtgtgg
catcatcgtg ctggtgctga 1860gcctggaggg actgggaatc ctgcactacg aaaaactgtc
caagatcggc ctggtgaagg 1920ggatcacccg gaagtataaa atcaagagca atcccctgac
aaaggacatc gtgatcaaaa 1980tgatccctaa tgtgagcaac gtgtccaagt gcaccggcac
agtgatggag aactacaaat 2040ctaggctgac cgggatcctg agccctatca agggagccat
cgaactgtat aacaataaca 2100cacatgacct ggtgggcgat gtgaaactgg ccggggtggt
catggccgga atcgctatcg 2160gcatcgctac cgctgctcag atcacagctg gagtggctct
gtacgaggcc atgaagaatg 2220ctgacaatat caacaaactg aagagctcca tcgagtccac
caacgaagcc gtggtgaagc 2280tgcaggagac cgctgaaaaa acagtgtacg tgctgacagc
cctgcaggac tatatcaata 2340ccaacctggt gccaacaatc gatcagatca gctgtaagca
gaccgaactg gccctggacc 2400tggctctgtc taaatacctg agcgatctgc tgttcgtgtt
tggcccaaat ctgcaggatc 2460ccgtgtccaa ctctatgacc atccaggcca tctcccaggc
tttcggcggg aactacgaga 2520ccctgctgag gacactgggg tatgccaccg aggactttga
cgatctgctg gaaagcgatt 2580ccatcgctgg acagatcgtg tacgtggacc tgtctagcta
ctatatcatc gtgagagtgt 2640acttcccaat cctgaccgag atccagcagg cctatgtgca
ggaactgctg cccgtgagct 2700tcaataacga taattccgag tggatctcta tcgtgcctaa
ctttgtgctg atccgcaata 2760ccctgatctc taacatcgaa gtgaagtact gcctgatcac
aaagaaaagc gtgatctgta 2820accaggacta tgccaccccc atgacagcta gcgtgcggga
gtgcctgacc ggatccaccg 2880ataagtgtcc tagggaactg gtggtgtcct ctcacgtgcc
aagattcgcc ctgtctggag 2940gcgtgctgtt tgctaactgc atcagcgtga cctgccagtg
tcagaccaca ggcagagcca 3000tctctcagag cggggagcag acactgctga tgatcgacaa
taccacatgt accacagtgg 3060tgctgggcaa catcatcatc tccctgggga agtacctggg
atctatcaat tataactccg 3120aatctatcgc cgtggggccc cctgtgtaca ccgacaaagt
ggacatcagc agccagatct 3180ctagcatgaa tcagagcctg cagcagtcca aagactatat
caaggaggcc cagaaaatcc 3240tggataccgt gaacccatct ctgatcagca tgctgtccat
gatcatcctg tacgtgctgt 3300ccatcgccgc tctgtgcatc ggactgatca ccttcatcag
ctttgtgatc gtggagaaga 3360aacgcggcaa ttactcccgg ctggacgata ggcaggtgag
acccgtgtct aacggagacc 3420tgtactatat cggcacctga tttttatggt accctcgagt
ctagaatcga tcccgggttt 3480ttatgactag ttaatcacgg ccgcttataa agatctaaaa
tgcataattt ctaaataatg 3540aaaaaaagta catcatgagc aacgcgttag tatattttac
aatggagatt aacgctctat 3600accgttctat gtttattgat tcagatgatg ttttagaaaa
gaaagttatt gaatatgaaa 3660actttaatga agatgaagat gacgacgatg attattgttg
taaatctgtt ttagatgaag 3720aagatgacgc gctaaagtat actatggtta caaagtataa
gtctatacta ctaatggcga 3780cttgtgcaag aaggtatagt atagtgaaaa tgttgttaga
ttatgattat gaaaaaccaa 3840ataaatcaga tccatatcta aaggtatctc ctttgcacat
aatttcatct attcctagtt 3900tagaatacct gcagccaagc ttggcactgg ccgtcgtttt
ac 3942126527DNAartificial sequenceentire p362
plasmid sequence containing F gene 12gcgcccaata cgcaaaccgc ctctccccgc
gcgttggccg attcattaat gcagctggca 60cgacaggttt cccgactgga aagcgggcag
tgagcgcaac gcaattaatg tgagttagct 120cactcattag gcaccccagg ctttacactt
tatgcttccg gctcgtatgt tgtgtggaat 180tgtgagcgga taacaatttc acacaggaaa
cagctatgac catgattacg aattgcggcc 240gcaattctga atgttaaatg ttatactttg
gatgaagcta taaatatgca ttggaaaaat 300aatccattta aagaaaggat tcaaatacta
caaaacctaa gcgataatat gttaactaag 360cttattctta acgacgcttt aaatatacac
aaataaacat aatttttgta taacctaaca 420aataactaaa acataaaaat aataaaagga
aatgtaatat cgtaattatt ttactcagga 480atggggttaa atatttatat cacgtgtata
tctatactgt tatcgtatac tctttacaat 540tactattacg aatatgcaag agataataag
attacgtatt taagagaatc ttgtcatgat 600aattgggtac gacatagtga taaatgctat
ttcgcatcgt tacataaagt cagttggaaa 660gatggatttg acagatgtaa cttaataggt
gcaaaaatgt taaataacag cattctatcg 720gaagatagga taccagttat attatacaaa
aatcactggt tggataaaac agattctgca 780atattcgtaa aagatgaaga ttactgcgaa
tttgtaaact atgacaataa aaagccattt 840atctcaacga catcgtgtaa ttcttccatg
ttttatgtat gtgtttcaga tattatgaga 900ttactataaa ctttttgtat acttatattc
cgtaaactat attaatcatg aagaaaatga 960aaaagtatag aagctgttca cgagcggttg
ttgaaaacaa caaaattata cattcaagat 1020ggcttacata tacgtctgtg aggctatcat
ggataatgac aatgcatctc taaataggtt 1080tttggacaat ggattcgacc ctaacacgga
atatggtact ctacaatctc ctcttgaaat 1140ggctgtaatg ttcaagaata ccgaggctat
aaaaatcttg atgaggtatg gagctaaacc 1200tgtagttact gaatgcacaa cttcttgtct
gcatgatgcg gtgttgagag acgactacaa 1260aatagtgaaa gatctgttga agaataacta
tgtaaacaat gttctttaca gcggaggctt 1320tactcctttg tgtttggcag cttaccttaa
caaagttaat ttggttaaac ttctattggc 1380tcattcggcg gatgtagata tttcaaacac
ggatcggtta actcctctac atatagccgt 1440atcaaataaa aatttaacaa tggttaaact
tctattgaac aaaggtgctg atactgactt 1500gctggataac atgggacgta ctcctttaat
gatcgctgta caatctggaa atattgaaat 1560atgtagcaca ctacttaaaa aaaataaaat
gtccagaact gggaaaaatt gatcttgcca 1620gctgtaattc atggtagaaa agaagtgctc
aggctacttt tcaacaaagg agcagatgta 1680aactacatct ttgaaagaaa tggaaaatca
tatactgttt tggaattgat taaagaaagt 1740tactctgaga cacaaaagag gtagctgaag
tggtactctc aaaggtacgt gactaattag 1800ctataaaaag gatccgggtt aattaattag
tcatcaggca gggcgagaac gagactatct 1860gctcgttaat taattagagc ttctttattc
tatacttaaa aagtgaaaat aaatacaaag 1920gttcttgagg gttgtgttaa attgaaagcg
agaaataatc ataaattatt tcattatcgc 1980gatatccgtt aagtttgtat cgtaatggcc
acccaggagg tgcgcctgaa gtgcctgctg 2040tgtggcatca tcgtgctggt gctgagcctg
gagggactgg gaatcctgca ctacgaaaaa 2100ctgtccaaga tcggcctggt gaaggggatc
acccggaagt ataaaatcaa gagcaatccc 2160ctgacaaagg acatcgtgat caaaatgatc
cctaatgtga gcaacgtgtc caagtgcacc 2220ggcacagtga tggagaacta caaatctagg
ctgaccggga tcctgagccc tatcaaggga 2280gccatcgaac tgtataacaa taacacacat
gacctggtgg gcgatgtgaa actggccggg 2340gtggtcatgg ccggaatcgc tatcggcatc
gctaccgctg ctcagatcac agctggagtg 2400gctctgtacg aggccatgaa gaatgctgac
aatatcaaca aactgaagag ctccatcgag 2460tccaccaacg aagccgtggt gaagctgcag
gagaccgctg aaaaaacagt gtacgtgctg 2520acagccctgc aggactatat caataccaac
ctggtgccaa caatcgatca gatcagctgt 2580aagcagaccg aactggccct ggacctggct
ctgtctaaat acctgagcga tctgctgttc 2640gtgtttggcc caaatctgca ggatcccgtg
tccaactcta tgaccatcca ggccatctcc 2700caggctttcg gcgggaacta cgagaccctg
ctgaggacac tggggtatgc caccgaggac 2760tttgacgatc tgctggaaag cgattccatc
gctggacaga tcgtgtacgt ggacctgtct 2820agctactata tcatcgtgag agtgtacttc
ccaatcctga ccgagatcca gcaggcctat 2880gtgcaggaac tgctgcccgt gagcttcaat
aacgataatt ccgagtggat ctctatcgtg 2940cctaactttg tgctgatccg caataccctg
atctctaaca tcgaagtgaa gtactgcctg 3000atcacaaaga aaagcgtgat ctgtaaccag
gactatgcca cccccatgac agctagcgtg 3060cgggagtgcc tgaccggatc caccgataag
tgtcctaggg aactggtggt gtcctctcac 3120gtgccaagat tcgccctgtc tggaggcgtg
ctgtttgcta actgcatcag cgtgacctgc 3180cagtgtcaga ccacaggcag agccatctct
cagagcgggg agcagacact gctgatgatc 3240gacaatacca catgtaccac agtggtgctg
ggcaacatca tcatctccct ggggaagtac 3300ctgggatcta tcaattataa ctccgaatct
atcgccgtgg ggccccctgt gtacaccgac 3360aaagtggaca tcagcagcca gatctctagc
atgaatcaga gcctgcagca gtccaaagac 3420tatatcaagg aggcccagaa aatcctggat
accgtgaacc catctctgat cagcatgctg 3480tccatgatca tcctgtacgt gctgtccatc
gccgctctgt gcatcggact gatcaccttc 3540atcagctttg tgatcgtgga gaagaaacgc
ggcaattact cccggctgga cgataggcag 3600gtgagacccg tgtctaacgg agacctgtac
tatatcggca cctgattttt atggtaccct 3660cgagtctaga atcgatcccg ggtttttatg
actagttaat cacggccgct tataaagatc 3720taaaatgcat aatttctaaa taatgaaaaa
aagtacatca tgagcaacgc gttagtatat 3780tttacaatgg agattaacgc tctataccgt
tctatgttta ttgattcaga tgatgtttta 3840gaaaagaaag ttattgaata tgaaaacttt
aatgaagatg aagatgacga cgatgattat 3900tgttgtaaat ctgttttaga tgaagaagat
gacgcgctaa agtatactat ggttacaaag 3960tataagtcta tactactaat ggcgacttgt
gcaagaaggt atagtatagt gaaaatgttg 4020ttagattatg attatgaaaa accaaataaa
tcagatccat atctaaaggt atctcctttg 4080cacataattt catctattcc tagtttagaa
tacctgcagc caagcttggc actggccgtc 4140gttttacaac gtcgtgactg ggaaaaccct
ggcgttaccc aacttaatcg ccttgcagca 4200catccccctt tcgccagctg gcgtaatagc
gaagaggccc gcaccgatcg cccttcccaa 4260cagttgcgca gcctgaatgg cgaatggcgc
ctgatgcggt attttctcct tacgcatctg 4320tgcggtattt cacaccgcat atggtgcact
ctcagtacaa tctgctctga tgccgcatag 4380ttaagccagc cccgacaccc gccaacaccc
gctgacgcgc cctgacgggc ttgtctgctc 4440ccggcatccg cttacagaca agctgtgacc
gtctccggga gctgcatgtg tcagaggttt 4500tcaccgtcat caccgaaacg cgcgagacga
aagggcctcg tgatacgcct atttttatag 4560gttaatgtca tgataataat ggtttcttag
acgtcaggtg gcacttttcg gggaaatgtg 4620cgcggaaccc ctatttgttt atttttctaa
atacattcaa atatgtatcc gctcatgaga 4680caataaccct gataaatgct tcaataatat
tgaaaaagga agagtatgag tattcaacat 4740ttccgtgtcg cccttattcc cttttttgcg
gcattttgcc ttcctgtttt tgctcaccca 4800gaaacgctgg tgaaagtaaa agatgctgaa
gatcagttgg gtgcacgagt gggttacatc 4860gaactggatc tcaacagcgg taagatcctt
gagagttttc gccccgaaga acgttttcca 4920atgatgagca cttttaaagt tctgctatgt
ggcgcggtat tatcccgtat tgacgccggg 4980caagagcaac tcggtcgccg catacactat
tctcagaatg acttggttga gtactcacca 5040gtcacagaaa agcatcttac ggatggcatg
acagtaagag aattatgcag tgctgccata 5100accatgagtg ataacactgc ggccaactta
cttctgacaa cgatcggagg accgaaggag 5160ctaaccgctt ttttgcacaa catgggggat
catgtaactc gccttgatcg ttgggaaccg 5220gagctgaatg aagccatacc aaacgacgag
cgtgacacca cgatgcctgt agcaatggca 5280acaacgttgc gcaaactatt aactggcgaa
ctacttactc tagcttcccg gcaacaatta 5340atagactgga tggaggcgga taaagttgca
ggaccacttc tgcgctcggc ccttccggct 5400ggctggttta ttgctgataa atctggagcc
ggtgagcgtg ggtctcgcgg tatcattgca 5460gcactggggc cagatggtaa gccctcccgt
atcgtagtta tctacacgac ggggagtcag 5520gcaactatgg atgaacgaaa tagacagatc
gctgagatag gtgcctcact gattaagcat 5580tggtaactgt cagaccaagt ttactcatat
atactttaga ttgatttaaa acttcatttt 5640taatttaaaa ggatctaggt gaagatcctt
tttgataatc tcatgaccaa aatcccttaa 5700cgtgagtttt cgttccactg agcgtcagac
cccgtagaaa agatcaaagg atcttcttga 5760gatccttttt ttctgcgcgt aatctgctgc
ttgcaaacaa aaaaaccacc gctaccagcg 5820gtggtttgtt tgccggatca agagctacca
actctttttc cgaaggtaac tggcttcagc 5880agagcgcaga taccaaatac tgtccttcta
gtgtagccgt agttaggcca ccacttcaag 5940aactctgtag caccgcctac atacctcgct
ctgctaatcc tgttaccagt ggctgctgcc 6000agtggcgata agtcgtgtct taccgggttg
gactcaagac gatagttacc ggataaggcg 6060cagcggtcgg gctgaacggg gggttcgtgc
acacagccca gcttggagcg aacgacctac 6120accgaactga gatacctaca gcgtgagcta
tgagaaagcg ccacgcttcc cgaagggaga 6180aaggcggaca ggtatccggt aagcggcagg
gtcggaacag gagagcgcac gagggagctt 6240ccagggggaa acgcctggta tctttatagt
cctgtcgggt ttcgccacct ctgacttgag 6300cgtcgatttt tgtgatgctc gtcagggggg
cggagcctat ggaaaaacgc cagcaacgcg 6360gcctttttac ggttcctggc cttttgctgg
ccttttgctc acatgttctt tcctgcgtta 6420tcccctgatt ctgtggataa ccgtattacc
gcctttgagt gagctgatac cgctcgccgc 6480agccgaacga ccgagcgcag cgagtcagtg
agcgaggaag cggaaga 65271320DNAartificial sequenceHenG.1F
primer 13ggctctgacc gacaaaatcg
201420DNAartificial sequenceHenG.1R primer 14gaactgcagg atgatgtccc
201525DNAartificial
sequenceC5R.1F primer 15attctatcgg aagataggat accag
251625DNAartificial sequenceC5L.2R primer
16ggagatacct ttagatatgg atctg
251720DNAartificial sequenceHenF.1F primer 17ccatcgaact gtataacaat
201820DNAartificial
sequenceHenF.1R primer 18ggagatgatg atgttgccca
20191641DNAartificial sequenceDNA encoding Nipah F
protein 19atggtagtta tacttgacaa gagatgttat tgtaatcttt taatattgat
tttgatgatc 60tcggagtgta gtgttgggat tctacattat gagaaattga gtaaaattgg
acttgtcaaa 120ggagtaacaa gaaaatacaa gattaaaagc aatcctctca caaaagacat
tgttataaaa 180atgattccga atgtgtcgaa catgtctcag tgcacaggga gtgtcatgga
aaattataaa 240acacgattaa acggtatctt aacacctata aagggagcgt tagagatcta
caaaaacaac 300actcatgacc ttgtcggtga tgtgagatta gccggagtta taatggcagg
agttgctatt 360gggattgcaa ccgcagctca aatcactgca ggtgtagcac tatatgaggc
aatgaagaat 420gctgacaaca tcaacaaact caaaagcagc attgaatcaa ctaatgaagc
tgtcgttaaa 480cttcaagaga ctgcagaaaa gacagtctat gtgctgactg ctctacagga
ttacattaat 540actaatttag taccgacaat tgacaagata agctgcaaac agacagaact
ctcactagat 600ctggcattat caaagtacct ctctgatttg ctttttgtat ttggccccaa
ccttcaagac 660ccagtttcta attcaatgac tatacaggct atatctcagg cattcggtgg
aaattatgaa 720acactgctaa gaacattggg ttacgctaca gaagactttg atgatcttct
agaaagtgac 780agcataacag gtcaaatcat ctatgttgat ctaagtagct actatataat
tgtcagggtt 840tattttccta ttctgactga aattcaacag gcctatatcc aagagttgtt
accagtgagc 900ttcaacaatg ataattcaga atggatcagt attgtcccaa atttcatatt
ggtaaggaat 960acattaatat caaatataga gattggattt tgcctaatta caaagaggag
cgtgatctgc 1020aaccaagatt atgccacacc tatgaccaac aacatgagag aatgtttaac
gggatcgact 1080gagaagtgtc ctcgagagct ggttgtttca tcacatgttc ccagatttgc
actatctaac 1140ggggttctgt ttgccaattg cataagtgtt acatgtcagt gtcaaacaac
aggcagggca 1200atctcacaat caggagaaca aactctgctg atgattgaca acaccacctg
tcctacagcc 1260gtactcggta atgtgattat cagcttaggg aaatatctgg ggtcagtaaa
ttataattct 1320gaaggcattg ctatcggtcc tccagtcttt acagataaag ttgatatatc
aagtcagata 1380tccagcatga atcagtcctt acaacagtct aaggactata tcaaagaggc
tcaacgactc 1440cttgatactg ttaatccatc attaataagc atgttgtcta tgatcatact
gtatgtatta 1500tcgatcgcat cgttgtgtat agggttgatt acatttatca gttttatcat
tgttgagaaa 1560aagagaaaca cctacagcag attagaggat aggagagtca gacctacaag
cagtggggat 1620ctctactaca ttgggacata g
164120546PRTartificial sequenceNipah F protein 20Met Val Val
Ile Leu Asp Lys Arg Cys Tyr Cys Asn Leu Leu Ile Leu1 5
10 15Ile Leu Met Ile Ser Glu Cys Ser Val
Gly Ile Leu His Tyr Glu Lys 20 25
30Leu Ser Lys Ile Gly Leu Val Lys Gly Val Thr Arg Lys Tyr Lys Ile
35 40 45Lys Ser Asn Pro Leu Thr Lys
Asp Ile Val Ile Lys Met Ile Pro Asn 50 55
60Val Ser Asn Met Ser Gln Cys Thr Gly Ser Val Met Glu Asn Tyr Lys65
70 75 80Thr Arg Leu Asn
Gly Ile Leu Thr Pro Ile Lys Gly Ala Leu Glu Ile 85
90 95Tyr Lys Asn Asn Thr His Asp Leu Val Gly
Asp Val Arg Leu Ala Gly 100 105
110Val Ile Met Ala Gly Val Ala Ile Gly Ile Ala Thr Ala Ala Gln Ile
115 120 125Thr Ala Gly Val Ala Leu Tyr
Glu Ala Met Lys Asn Ala Asp Asn Ile 130 135
140Asn Lys Leu Lys Ser Ser Ile Glu Ser Thr Asn Glu Ala Val Val
Lys145 150 155 160Leu Gln
Glu Thr Ala Glu Lys Thr Val Tyr Val Leu Thr Ala Leu Gln
165 170 175Asp Tyr Ile Asn Thr Asn Leu
Val Pro Thr Ile Asp Lys Ile Ser Cys 180 185
190Lys Gln Thr Glu Leu Ser Leu Asp Leu Ala Leu Ser Lys Tyr
Leu Ser 195 200 205Asp Leu Leu Phe
Val Phe Gly Pro Asn Leu Gln Asp Pro Val Ser Asn 210
215 220Ser Met Thr Ile Gln Ala Ile Ser Gln Ala Phe Gly
Gly Asn Tyr Glu225 230 235
240Thr Leu Leu Arg Thr Leu Gly Tyr Ala Thr Glu Asp Phe Asp Asp Leu
245 250 255Leu Glu Ser Asp Ser
Ile Thr Gly Gln Ile Ile Tyr Val Asp Leu Ser 260
265 270Ser Tyr Tyr Ile Ile Val Arg Val Tyr Phe Pro Ile
Leu Thr Glu Ile 275 280 285Gln Gln
Ala Tyr Ile Gln Glu Leu Leu Pro Val Ser Phe Asn Asn Asp 290
295 300Asn Ser Glu Trp Ile Ser Ile Val Pro Asn Phe
Ile Leu Val Arg Asn305 310 315
320Thr Leu Ile Ser Asn Ile Glu Ile Gly Phe Cys Leu Ile Thr Lys Arg
325 330 335Ser Val Ile Cys
Asn Gln Asp Tyr Ala Thr Pro Met Thr Asn Asn Met 340
345 350Arg Glu Cys Leu Thr Gly Ser Thr Glu Lys Cys
Pro Arg Glu Leu Val 355 360 365Val
Ser Ser His Val Pro Arg Phe Ala Leu Ser Asn Gly Val Leu Phe 370
375 380Ala Asn Cys Ile Ser Val Thr Cys Gln Cys
Gln Thr Thr Gly Arg Ala385 390 395
400Ile Ser Gln Ser Gly Glu Gln Thr Leu Leu Met Ile Asp Asn Thr
Thr 405 410 415Cys Pro Thr
Ala Val Leu Gly Asn Val Ile Ile Ser Leu Gly Lys Tyr 420
425 430Leu Gly Ser Val Asn Tyr Asn Ser Glu Gly
Ile Ala Ile Gly Pro Pro 435 440
445Val Phe Thr Asp Lys Val Asp Ile Ser Ser Gln Ile Ser Ser Met Asn 450
455 460Gln Ser Leu Gln Gln Ser Lys Asp
Tyr Ile Lys Glu Ala Gln Arg Leu465 470
475 480Leu Asp Thr Val Asn Pro Ser Leu Ile Ser Met Leu
Ser Met Ile Ile 485 490
495Leu Tyr Val Leu Ser Ile Ala Ser Leu Cys Ile Gly Leu Ile Thr Phe
500 505 510Ile Ser Phe Ile Ile Val
Glu Lys Lys Arg Asn Thr Tyr Ser Arg Leu 515 520
525Glu Asp Arg Arg Val Arg Pro Thr Ser Ser Gly Asp Leu Tyr
Tyr Ile 530 535 540Gly
Thr545211809DNAartificial sequenceDNA encoding Nipah G protein
21atgccggcag aaaacaagaa agttagattc gaaaatacta cttcagacaa agggaaaatt
60cctagtaaag ttattaagag ctactacgga accatggaca ttaagaaaat aaatgaagga
120ttattggaca gcaaaatatt aagtgctttc aacacagtaa tagcattgct tggatctatc
180gtgatcatag tgatgaatat aatgatcatc caaaattaca caagatcaac agacaatcag
240gccgtgatca aagatgcgtt gcagggtatc caacagcaga tcaaagggct tgctgacaaa
300atcggcacag agatagggcc caaagtatca ctgattgaca catccagtac cattactatc
360ccagctaaca ttgggctgtt aggttcaaag atcagccagt cgactgcaag tataaatgag
420aatgtgaatg aaaaatgcaa attcacactg cctcccttga aaatccacga atgtaacatt
480tcttgtccta acccactccc ttttagagag tataggccac agacagaagg ggtgagcaat
540ctagtaggat tacctaataa tatttgcctg caaaagacat ctaatcagat attgaagcca
600aagctgattt catacacttt acccgtagtc ggtcaaagtg gtacctgtat cacagaccca
660ttgctggcta tggacgaggg ctattttgca tatagccacc tggaaagaat cggatcatgt
720tcaagagggg tctccaaaca aagaataata ggagttggag aggtactaga cagaggtgat
780gaagttcctt ctttatttat gaccaatgtc tggaccccac caaatccaaa caccgtttac
840cactgtagtg ctgtatacaa caatgaattc tattatgtac tttgtgcagt gtcaactgtt
900ggagacccta ttctgaatag cacctactgg tccggatctc taatgatgac ccgtctagct
960gtgaaaccca agagtaatgg tgggggttac aatcaacatc aacttgccct acgaagtatc
1020gagaaaggga ggtatgataa agttatgccg tatggacctt caggcatcaa acagggtgac
1080accctgtatt ttcctgctgt aggatttttg gtcaggacag agtttaaata caatgattca
1140aattgtccca tcacgaagtg tcaatacagt aaacctgaaa attgcaggct atctatgggg
1200attagaccaa acagccatta tatccttcga tctggactat taaaatacaa tctatcagat
1260ggggagaacc ccaaagttgt attcattgaa atatctgatc aaagattatc tattggatct
1320cctagcaaaa tctatgattc tttgggtcaa cctgttttct accaagcgtc attttcatgg
1380gatactatga ttaaatttgg agatgttcta acagtcaacc ctctggttgt caattggcgt
1440aataacacgg taatatcaag acccgggcaa tcacaatgcc ctagattcaa tacatgtcca
1500gagatctgct gggaaggagt ttataatgat gcattcctaa ttgacagaat caattggata
1560agcgcgggtg tattccttga cagcaatcag accgcagaaa atcctgtttt tactgtattc
1620aaagataatg aaatacttta tagggcacaa ctggcttctg aggacaccaa tgcacaaaaa
1680acaataacta attgttttct cttgaagaat aagatttggt gcatatcatt ggttgagata
1740tatgacacag gagacaatgt cataagaccc aaactattcg cggttaagat accagagcaa
1800tgtacataa
180922602PRTartificial sequenceNipah G protein 22Met Pro Ala Glu Asn Lys
Lys Val Arg Phe Glu Asn Thr Thr Ser Asp1 5
10 15Lys Gly Lys Ile Pro Ser Lys Val Ile Lys Ser Tyr
Tyr Gly Thr Met 20 25 30Asp
Ile Lys Lys Ile Asn Glu Gly Leu Leu Asp Ser Lys Ile Leu Ser 35
40 45Ala Phe Asn Thr Val Ile Ala Leu Leu
Gly Ser Ile Val Ile Ile Val 50 55
60Met Asn Ile Met Ile Ile Gln Asn Tyr Thr Arg Ser Thr Asp Asn Gln65
70 75 80Ala Val Ile Lys Asp
Ala Leu Gln Gly Ile Gln Gln Gln Ile Lys Gly 85
90 95Leu Ala Asp Lys Ile Gly Thr Glu Ile Gly Pro
Lys Val Ser Leu Ile 100 105
110Asp Thr Ser Ser Thr Ile Thr Ile Pro Ala Asn Ile Gly Leu Leu Gly
115 120 125Ser Lys Ile Ser Gln Ser Thr
Ala Ser Ile Asn Glu Asn Val Asn Glu 130 135
140Lys Cys Lys Phe Thr Leu Pro Pro Leu Lys Ile His Glu Cys Asn
Ile145 150 155 160Ser Cys
Pro Asn Pro Leu Pro Phe Arg Glu Tyr Arg Pro Gln Thr Glu
165 170 175Gly Val Ser Asn Leu Val Gly
Leu Pro Asn Asn Ile Cys Leu Gln Lys 180 185
190Thr Ser Asn Gln Ile Leu Lys Pro Lys Leu Ile Ser Tyr Thr
Leu Pro 195 200 205Val Val Gly Gln
Ser Gly Thr Cys Ile Thr Asp Pro Leu Leu Ala Met 210
215 220Asp Glu Gly Tyr Phe Ala Tyr Ser His Leu Glu Arg
Ile Gly Ser Cys225 230 235
240Ser Arg Gly Val Ser Lys Gln Arg Ile Ile Gly Val Gly Glu Val Leu
245 250 255Asp Arg Gly Asp Glu
Val Pro Ser Leu Phe Met Thr Asn Val Trp Thr 260
265 270Pro Pro Asn Pro Asn Thr Val Tyr His Cys Ser Ala
Val Tyr Asn Asn 275 280 285Glu Phe
Tyr Tyr Val Leu Cys Ala Val Ser Thr Val Gly Asp Pro Ile 290
295 300Leu Asn Ser Thr Tyr Trp Ser Gly Ser Leu Met
Met Thr Arg Leu Ala305 310 315
320Val Lys Pro Lys Ser Asn Gly Gly Gly Tyr Asn Gln His Gln Leu Ala
325 330 335Leu Arg Ser Ile
Glu Lys Gly Arg Tyr Asp Lys Val Met Pro Tyr Gly 340
345 350Pro Ser Gly Ile Lys Gln Gly Asp Thr Leu Tyr
Phe Pro Ala Val Gly 355 360 365Phe
Leu Val Arg Thr Glu Phe Lys Tyr Asn Asp Ser Asn Cys Pro Ile 370
375 380Thr Lys Cys Gln Tyr Ser Lys Pro Glu Asn
Cys Arg Leu Ser Met Gly385 390 395
400Ile Arg Pro Asn Ser His Tyr Ile Leu Arg Ser Gly Leu Leu Lys
Tyr 405 410 415Asn Leu Ser
Asp Gly Glu Asn Pro Lys Val Val Phe Ile Glu Ile Ser 420
425 430Asp Gln Arg Leu Ser Ile Gly Ser Pro Ser
Lys Ile Tyr Asp Ser Leu 435 440
445Gly Gln Pro Val Phe Tyr Gln Ala Ser Phe Ser Trp Asp Thr Met Ile 450
455 460Lys Phe Gly Asp Val Leu Thr Val
Asn Pro Leu Val Val Asn Trp Arg465 470
475 480Asn Asn Thr Val Ile Ser Arg Pro Gly Gln Ser Gln
Cys Pro Arg Phe 485 490
495Asn Thr Cys Pro Glu Ile Cys Trp Glu Gly Val Tyr Asn Asp Ala Phe
500 505 510Leu Ile Asp Arg Ile Asn
Trp Ile Ser Ala Gly Val Phe Leu Asp Ser 515 520
525Asn Gln Thr Ala Glu Asn Pro Val Phe Thr Val Phe Lys Asp
Asn Glu 530 535 540Ile Leu Tyr Arg Ala
Gln Leu Ala Ser Glu Asp Thr Asn Ala Gln Lys545 550
555 560Thr Ile Thr Asn Cys Phe Leu Leu Lys Asn
Lys Ile Trp Cys Ile Ser 565 570
575Leu Val Glu Ile Tyr Asp Thr Gly Asp Asn Val Ile Arg Pro Lys Leu
580 585 590Phe Ala Val Lys Ile
Pro Glu Gln Cys Thr 595 60023546PRTartificial
sequenceHendra F protein AAB39505 23Met Ala Thr Gln Glu Val Arg Leu Lys
Cys Leu Leu Cys Gly Ile Ile1 5 10
15Val Leu Val Leu Ser Leu Glu Gly Leu Gly Ile Leu His Tyr Glu
Lys 20 25 30Leu Ser Lys Ile
Gly Leu Val Lys Gly Ile Thr Arg Lys Tyr Lys Ile 35
40 45Lys Ser Asn Pro Leu Thr Lys Asp Ile Val Ile Lys
Met Ile Pro Asn 50 55 60Val Ser Asn
Val Ser Lys Cys Thr Gly Thr Val Met Glu Asn Tyr Lys65 70
75 80Ser Arg Leu Thr Gly Ile Leu Ser
Pro Ile Lys Gly Ala Ile Glu Leu 85 90
95Tyr Asn Asn Asn Thr His Asp Leu Val Gly Asp Val Lys Leu
Ala Gly 100 105 110Val Val Met
Ala Gly Ile Ala Ile Gly Ile Ala Thr Ala Ala Gln Ile 115
120 125Thr Ala Gly Val Ala Leu Tyr Glu Ala Met Lys
Asn Ala Asp Asn Ile 130 135 140Asn Lys
Leu Lys Ser Ser Ile Glu Ser Thr Asn Glu Ala Val Val Lys145
150 155 160Leu Gln Glu Thr Ala Glu Lys
Thr Val Tyr Val Leu Thr Ala Leu Gln 165
170 175Asp Tyr Ile Asn Thr Asn Leu Val Pro Thr Ile Asp
Gln Ile Ser Cys 180 185 190Lys
Gln Thr Glu Leu Ala Leu Asp Leu Ala Leu Ser Lys Tyr Leu Leu 195
200 205Ile Cys Ser Cys Phe Gly Pro Asn Leu
Gln Asp Pro Val Ser Asn Ser 210 215
220Met Thr Ile Gln Ala Ile Ser Gln Ala Phe Gly Gly Asn Tyr Glu Thr225
230 235 240Leu Leu Arg Thr
Leu Gly Tyr Ala Thr Glu Asp Phe Asp Asp Leu Leu 245
250 255Glu Ser Asp Ser Ile Thr Gly Gln Ile Val
Tyr Val Asp Leu Ser Ser 260 265
270Tyr Tyr Ile Ile Val Arg Val Tyr Phe Pro Ile Leu Thr Glu Ile Gln
275 280 285Gln Ala Tyr Val Gln Glu Leu
Leu Pro Val Ser Phe Asn Asn Asp Asn 290 295
300Ser Glu Trp Ile Ser Ile Val Pro Asn Phe Val Leu Ile Arg Asn
Thr305 310 315 320Leu Ile
Ser Asn Ile Glu Val Lys Tyr Cys Leu Ile Thr Lys Lys Ser
325 330 335Val Ile Cys Asn Gln Asp Tyr
Ala Thr Pro Met Thr Ala Ser Val Arg 340 345
350Glu Cys Leu Thr Gly Ser Thr Asp Lys Cys Pro Arg Glu Leu
Val Val 355 360 365Ser Ser His Val
Pro Arg Phe Ala Leu Ser Gly Gly Val Leu Phe Ala 370
375 380Asn Cys Ile Ser Val Thr Cys Gln Cys Gln Thr Thr
Gly Arg Ala Ile385 390 395
400Ser Gln Ser Arg Glu Gln Thr Leu Leu Met Ile Asp Asn Thr Thr Cys
405 410 415Thr Thr Val Val Leu
Gly Asn Ile Ile Ile Ser Leu Pro Lys Tyr Leu 420
425 430Gly Ser Ile Lys Leu Gln Val Leu Arg Ala Leu Leu
Leu Gly His Gln 435 440 445Ser Ile
Gln Thr Lys Val Asp Ile Ser Ser Gln Ile Ser Ser Met Asn 450
455 460Gln Ser Leu Gln Gln Ser Lys Asp Tyr Ile Lys
Glu Ala Gln Lys Ile465 470 475
480Leu Asp Thr Val Asn Pro Ser Leu Ile Ser Met Leu Ser Met Ile Ile
485 490 495Leu Tyr Val Leu
Ser Ile Ala Ala Leu Cys Ile Gly Leu Ile Thr Phe 500
505 510Ile Ser Phe Val Ile Val Glu Lys Lys Arg Gly
Asn Tyr Ser Arg Leu 515 520 525Asp
Asp Arg Gln Val Arg Pro Val Ser Asn Gly Asp Leu Tyr Tyr Ile 530
535 540Gly Thr54524552PRTartificial
sequenceHendra F protein AAV80428 24Met Val Val Ile Leu Asp Lys Arg Cys
Tyr Cys Asn Leu Leu Ile Leu1 5 10
15Ile Leu Met Ile Ser Glu Cys Ser Val Gly Ile Leu His Tyr Glu
Lys 20 25 30Leu Ser Lys Ile
Gly Leu Val Lys Gly Val Thr Arg Lys Tyr Lys Ile 35
40 45Lys Ser Asn Pro Leu Thr Lys Asp Ile Val Ile Lys
Met Ile Pro Asn 50 55 60Val Ser Asn
Met Ser Gln Cys Thr Gly Ser Val Met Glu Asn Tyr Lys65 70
75 80Thr Arg Leu Asn Gly Ile Leu Thr
Pro Ile Lys Gly Ala Leu Glu Ile 85 90
95Tyr Lys Asn Asn Thr His Asp Leu Val Gly Asp Val Arg Leu
Ala Gly 100 105 110Val Ile Met
Ala Gly Val Ala Ile Gly Ile Ala Thr Ala Ala Gln Ile 115
120 125Thr Ala Gly Val Ala Leu Tyr Glu Ala Met Lys
Asn Ala Asp Asn Ile 130 135 140Asn Lys
Leu Lys Ser Ser Ile Glu Ser Thr Asn Glu Ala Val Val Lys145
150 155 160Leu Gln Glu Thr Ala Glu Lys
Thr Val Tyr Val Leu Thr Ala Leu Gln 165
170 175Asp Tyr Ile Asn Thr Asn Leu Val Pro Thr Ile Asp
Lys Ile Ser Cys 180 185 190Lys
Gln Thr Glu Leu Ser Leu Asp Leu Ala Leu Ser Lys Tyr Leu Ser 195
200 205Asp Leu Leu Phe Val Phe Gly Pro Asn
Leu Gln Asp Pro Val Ser Asn 210 215
220Ser Met Thr Ile Gln Ala Ile Ser Gln Ala Phe Gly Gly Asn Tyr Glu225
230 235 240Thr Leu Leu Arg
Thr Leu Gly Tyr Ala Thr Glu Asp Phe Asp Asp Leu 245
250 255Leu Glu Ser Asp Ser Ile Thr Gly Gln Ile
Ile Tyr Val Asp Leu Ser 260 265
270Ser Tyr Tyr Ile Ile Val Arg Val Tyr Phe Pro Ile Leu Thr Glu Ile
275 280 285Gln Gln Ala Tyr Ile Gln Glu
Leu Leu Pro Val Ser Phe Asn Asn Asp 290 295
300Asn Ser Glu Trp Ile Ser Ile Val Pro Asn Phe Ile Leu Val Arg
Asn305 310 315 320Thr Leu
Ile Ser Asn Ile Glu Ile Gly Phe Cys Leu Ile Thr Lys Arg
325 330 335Ser Val Ile Cys Asn Gln Asp
Tyr Ala Thr Pro Met Thr Asn Asn Met 340 345
350Arg Glu Cys Leu Thr Gly Ser Thr Glu Lys Cys Pro Arg Glu
Leu Val 355 360 365Val Ser Ser His
Val Pro Arg Phe Ala Leu Ser Asn Gly Val Leu Phe 370
375 380Ala Asn Cys Ile Ser Val Thr Cys Gln Cys Gln Thr
Thr Gly Arg Ala385 390 395
400Ile Ser Gln Ser Gly Glu Gln Thr Leu Leu Met Ile Asp Asn Thr Thr
405 410 415Cys Pro Thr Ala Val
Leu Gly Asn Val Ile Ile Ser Leu Gly Lys Tyr 420
425 430Leu Gly Ser Val Asn Tyr Asn Ser Glu Gly Ile Ala
Ile Gly Pro Pro 435 440 445Val Phe
Thr Asp Lys Val Asp Ile Ser Ser Gln Ile Ser Ser Met Asn 450
455 460Gln Ser Leu Gln Gln Ser Lys Asp Tyr Ile Lys
Glu Ala Gln Arg Leu465 470 475
480Leu Asp Thr Val Asn Pro Ser Leu Ile Ser Met Leu Ser Met Ile Ile
485 490 495Leu Tyr Val Leu
Ser Ile Ala Ser Leu Cys Ile Gly Leu Ile Thr Phe 500
505 510Ile Ser Phe Ile Ile Val Glu Lys Lys Arg Asn
Thr Tyr Ser Arg Leu 515 520 525Glu
Asp Arg Arg Val Arg Pro Thr Ser Ser Gly Asp Leu Tyr Tyr Ile 530
535 540Gly Thr Asp Thr Tyr Arg Tyr Ile545
55025546PRTartificial sequenceHendra F protein NP_112026 25Met
Val Val Ile Leu Asp Lys Arg Cys Tyr Cys Asn Leu Leu Ile Leu1
5 10 15Ile Leu Met Ile Ser Glu Cys
Ser Val Gly Ile Leu His Tyr Glu Lys 20 25
30Leu Ser Lys Ile Gly Leu Val Lys Gly Val Thr Arg Lys Tyr
Lys Ile 35 40 45Lys Ser Asn Pro
Leu Thr Lys Asp Ile Val Ile Lys Met Ile Pro Asn 50 55
60Val Ser Asn Met Ser Gln Cys Thr Gly Ser Val Met Glu
Asn Tyr Lys65 70 75
80Thr Arg Leu Asn Gly Ile Leu Thr Pro Ile Lys Gly Ala Leu Glu Ile
85 90 95Tyr Lys Asn Asn Thr His
Asp Leu Val Gly Asp Val Arg Leu Ala Gly 100
105 110Val Ile Met Ala Gly Val Ala Ile Gly Ile Ala Thr
Ala Ala Gln Ile 115 120 125Thr Ala
Gly Val Ala Leu Tyr Glu Ala Met Lys Asn Ala Asp Asn Ile 130
135 140Asn Lys Leu Lys Ser Ser Ile Glu Ser Thr Asn
Glu Ala Val Val Lys145 150 155
160Leu Gln Glu Thr Ala Glu Lys Thr Val Tyr Val Leu Thr Ala Leu Gln
165 170 175Asp Tyr Ile Asn
Thr Asn Leu Val Pro Thr Ile Asp Lys Ile Ser Cys 180
185 190Lys Gln Thr Glu Leu Ser Leu Asp Leu Ala Leu
Ser Lys Tyr Leu Ser 195 200 205Asp
Leu Leu Phe Val Phe Gly Pro Asn Leu Gln Asp Pro Val Ser Asn 210
215 220Ser Met Thr Ile Gln Ala Ile Ser Gln Ala
Phe Gly Gly Asn Tyr Glu225 230 235
240Thr Leu Leu Arg Thr Leu Gly Tyr Ala Thr Glu Asp Phe Asp Asp
Leu 245 250 255Leu Glu Ser
Asp Ser Ile Thr Gly Gln Ile Ile Tyr Val Asp Leu Ser 260
265 270Ser Tyr Tyr Ile Ile Val Arg Val Tyr Phe
Pro Ile Leu Thr Glu Ile 275 280
285Gln Gln Ala Tyr Ile Gln Glu Leu Leu Pro Val Ser Phe Asn Asn Asp 290
295 300Asn Ser Glu Trp Ile Ser Ile Val
Pro Asn Phe Ile Leu Val Arg Asn305 310
315 320Thr Leu Ile Ser Asn Ile Glu Ile Gly Phe Cys Leu
Ile Thr Lys Arg 325 330
335Ser Val Ile Cys Asn Gln Asp Tyr Ala Thr Pro Met Thr Asn Asn Met
340 345 350Arg Glu Cys Leu Thr Gly
Ser Thr Glu Lys Cys Pro Arg Glu Leu Val 355 360
365Val Ser Ser His Val Pro Arg Phe Ala Leu Ser Asn Gly Val
Leu Phe 370 375 380Ala Asn Cys Ile Ser
Val Thr Cys Gln Cys Gln Thr Thr Gly Arg Ala385 390
395 400Ile Ser Gln Ser Gly Glu Gln Thr Leu Leu
Met Ile Asp Asn Thr Thr 405 410
415Cys Pro Thr Ala Val Leu Gly Asn Val Ile Ile Ser Leu Gly Lys Tyr
420 425 430Leu Gly Ser Val Asn
Tyr Asn Ser Glu Gly Ile Ala Ile Gly Pro Pro 435
440 445Val Phe Thr Asp Lys Val Asp Ile Ser Ser Gln Ile
Ser Ser Met Asn 450 455 460Gln Ser Leu
Gln Gln Ser Lys Asp Tyr Ile Lys Glu Ala Gln Arg Leu465
470 475 480Leu Asp Thr Val Asn Pro Ser
Leu Ile Ser Met Leu Ser Met Ile Ile 485
490 495Leu Tyr Val Leu Ser Ile Ala Ser Leu Cys Ile Gly
Leu Ile Thr Phe 500 505 510Ile
Ser Phe Ile Ile Val Glu Lys Lys Arg Asn Thr Tyr Ser Arg Leu 515
520 525Glu Asp Arg Arg Val Arg Pro Thr Ser
Ser Gly Asp Leu Tyr Tyr Ile 530 535
540Gly Thr54526546PRTartificial sequenceHendra F protein AEQ38114 26Met
Ala Thr Gln Glu Val Arg Leu Lys Cys Leu Leu Cys Gly Ile Ile1
5 10 15Val Leu Val Leu Ser Leu Glu
Gly Leu Gly Ile Leu His Tyr Glu Lys 20 25
30Leu Ser Lys Ile Gly Leu Val Lys Gly Ile Thr Arg Lys Tyr
Lys Ile 35 40 45Lys Ser Asn Pro
Leu Thr Lys Asp Ile Val Ile Lys Met Ile Pro Asn 50 55
60Val Ser Asn Val Ser Lys Cys Thr Gly Thr Val Met Glu
Asn Tyr Lys65 70 75
80Ser Arg Leu Thr Gly Ile Leu Ser Pro Ile Lys Gly Ala Ile Glu Leu
85 90 95Tyr Asn Asn Asn Thr His
Asp Leu Val Gly Asp Val Lys Leu Ala Gly 100
105 110Val Val Met Ala Gly Ile Ala Ile Gly Ile Ala Thr
Ala Ala Gln Ile 115 120 125Thr Ala
Gly Val Ala Leu Tyr Glu Ala Met Lys Asn Ala Asp Asn Ile 130
135 140Asn Lys Leu Lys Ser Ser Ile Glu Ser Thr Asn
Glu Ala Val Val Lys145 150 155
160Leu Gln Glu Thr Ala Glu Lys Thr Val Tyr Val Leu Thr Ala Leu Gln
165 170 175Asp Tyr Ile Asn
Thr Asn Leu Val Pro Thr Ile Asp Gln Ile Ser Cys 180
185 190Lys Gln Thr Glu Leu Ala Leu Asp Leu Ala Leu
Ser Lys Tyr Leu Ser 195 200 205Asp
Leu Leu Phe Val Phe Gly Pro Asn Leu Gln Asp Pro Val Ser Asn 210
215 220Ser Met Thr Ile Gln Ala Ile Ser Gln Ala
Phe Gly Gly Asn Tyr Glu225 230 235
240Thr Leu Leu Arg Thr Leu Gly Tyr Ala Thr Glu Asp Phe Asp Asp
Leu 245 250 255Leu Glu Ser
Asp Ser Ile Thr Gly Gln Ile Val Tyr Val Asp Leu Ser 260
265 270Ser Tyr Tyr Ile Ile Val Arg Val Tyr Phe
Pro Ile Leu Thr Glu Ile 275 280
285Gln Gln Ala Tyr Val Gln Glu Leu Leu Pro Val Ser Phe Asn Asn Asp 290
295 300Asn Ser Glu Trp Ile Ser Ile Val
Pro Asn Phe Val Leu Ile Arg Asn305 310
315 320Thr Leu Ile Ser Asn Ile Glu Val Lys Tyr Cys Leu
Ile Thr Lys Lys 325 330
335Ser Val Ile Cys Asn Gln Asp Tyr Ala Thr Pro Met Thr Ala Ser Val
340 345 350Arg Glu Cys Leu Thr Gly
Ser Thr Asp Lys Cys Pro Arg Glu Leu Val 355 360
365Val Ser Ser His Val Pro Arg Phe Ala Leu Ser Gly Gly Val
Leu Phe 370 375 380Ala Asn Cys Ile Ser
Val Thr Cys Gln Cys Gln Thr Thr Gly Arg Ala385 390
395 400Ile Ser Gln Ser Gly Glu Gln Thr Leu Leu
Met Ile Asp Asn Thr Thr 405 410
415Cys Thr Thr Val Val Leu Gly Asn Ile Ile Ile Ser Leu Gly Lys Tyr
420 425 430Leu Gly Ser Ile Asn
Tyr Asn Ser Glu Ser Ile Ala Val Gly Pro Pro 435
440 445Val Tyr Thr Asp Lys Val Asp Ile Ser Ser Gln Ile
Ser Ser Met Asn 450 455 460Gln Ser Leu
Gln Gln Ser Lys Asp Tyr Ile Lys Glu Ala Gln Lys Ile465
470 475 480Leu Asp Thr Val Asn Pro Ser
Leu Ile Ser Met Leu Ser Met Ile Ile 485
490 495Leu Tyr Val Leu Ser Ile Ala Ala Leu Cys Ile Gly
Leu Ile Thr Phe 500 505 510Ile
Ser Phe Ile Ile Val Glu Lys Lys Arg Gly Asn Tyr Ser Arg Leu 515
520 525Asp Asp Arg Gln Val Arg Pro Val Ser
Asn Gly Asp Leu Tyr Tyr Ile 530 535
540Gly Thr54527546PRTartificial sequenceHendra F protein AEB21197 27Met
Ala Thr Gln Glu Val Arg Leu Lys Cys Leu Leu Cys Gly Ile Ile1
5 10 15Val Leu Val Leu Ser Leu Glu
Gly Leu Gly Ile Leu His Tyr Glu Lys 20 25
30Leu Ser Lys Ile Gly Leu Val Lys Gly Ile Thr Arg Lys Tyr
Lys Ile 35 40 45Lys Ser Asn Pro
Leu Thr Lys Asp Ile Val Ile Lys Met Ile Pro Asn 50 55
60Val Ser Asn Val Ser Lys Cys Thr Gly Thr Val Met Glu
Asn Tyr Lys65 70 75
80Ser Arg Leu Thr Gly Ile Leu Ser Pro Ile Lys Gly Ala Ile Glu Leu
85 90 95Tyr Asn Asn Asn Thr His
Asp Leu Val Gly Asp Val Lys Leu Ala Gly 100
105 110Val Val Met Ala Gly Ile Ala Ile Gly Ile Ala Thr
Ala Ala Gln Ile 115 120 125Thr Ala
Gly Val Ala Leu Tyr Glu Ala Met Lys Asn Ala Asp Asn Ile 130
135 140Asn Lys Leu Lys Ser Ser Ile Glu Ser Thr Asn
Glu Ala Val Val Lys145 150 155
160Leu Gln Glu Thr Ala Glu Lys Thr Val Tyr Val Leu Thr Ala Leu Gln
165 170 175Asp Tyr Ile Asn
Thr Asn Leu Val Pro Thr Ile Asp Gln Ile Ser Cys 180
185 190Lys Gln Thr Glu Leu Ala Leu Asp Leu Ala Leu
Ser Lys Tyr Leu Ser 195 200 205Asp
Leu Leu Phe Val Phe Gly Pro Asn Leu Gln Asp Pro Val Ser Asn 210
215 220Ser Met Thr Ile Gln Ala Ile Ser Gln Ala
Phe Gly Gly Asn Tyr Glu225 230 235
240Thr Leu Leu Arg Thr Leu Gly Tyr Ala Thr Glu Asp Phe Asp Asp
Leu 245 250 255Leu Glu Ser
Asp Ser Ile Thr Gly Gln Ile Val Tyr Val Asp Leu Ser 260
265 270Ser Tyr Tyr Ile Ile Val Arg Val Tyr Phe
Pro Ile Leu Thr Glu Ile 275 280
285Gln Gln Ala Tyr Val Gln Glu Leu Leu Pro Val Ser Phe Asn Asn Asp 290
295 300Asn Ser Glu Trp Ile Ser Ile Val
Pro Asn Phe Val Leu Ile Arg Asn305 310
315 320Thr Leu Ile Ser Asn Ile Glu Val Lys Tyr Cys Leu
Ile Thr Lys Lys 325 330
335Ser Val Ile Cys Asn Gln Asp Tyr Ala Thr Pro Met Thr Ala Ser Val
340 345 350Arg Glu Cys Leu Thr Gly
Ser Thr Asp Lys Cys Pro Arg Glu Leu Val 355 360
365Val Ser Ser His Val Pro Arg Phe Ala Leu Ser Gly Gly Val
Leu Phe 370 375 380Ala Asn Cys Ile Ser
Val Thr Cys Gln Cys Gln Thr Thr Gly Arg Ala385 390
395 400Ile Ser Gln Ser Gly Glu Gln Thr Leu Leu
Met Ile Asp Asn Thr Thr 405 410
415Cys Thr Thr Val Val Leu Gly Asn Ile Ile Ile Ser Leu Gly Lys Tyr
420 425 430Leu Gly Ser Ile Asn
Tyr Asn Ser Glu Ser Ile Ala Val Gly Pro Pro 435
440 445Val Tyr Thr Asp Lys Val Asp Ile Ser Ser Gln Ile
Ser Ser Met Asn 450 455 460Gln Ser Leu
Gln Gln Ser Lys Asp Tyr Ile Lys Glu Ala Gln Lys Ile465
470 475 480Leu Asp Thr Val Asn Pro Ser
Leu Ile Ser Met Leu Ser Met Ile Ile 485
490 495Leu Tyr Val Leu Ser Ile Ala Ala Leu Cys Ile Gly
Leu Ile Thr Phe 500 505 510Ile
Ser Phe Val Ile Val Glu Lys Lys Arg Gly Asn Tyr Ser Arg Leu 515
520 525Asp Asp Arg Gln Val Arg Pro Val Ser
Asn Gly Asp Leu Tyr Tyr Ile 530 535
540Gly Thr54528611PRTartificial sequenceHendra F protein AAV80425 28Met
Gly Pro Ala Glu Asn Lys Lys Val Arg Phe Glu Asn Thr Thr Ser1
5 10 15Asp Lys Gly Lys Ile Pro Ser
Lys Val Ile Lys Ser Tyr Tyr Gly Thr 20 25
30Met Asp Ile Lys Lys Ile Asn Glu Gly Leu Leu Asp Ser Lys
Ile Leu 35 40 45Ser Ala Phe Asn
Thr Val Ile Ala Leu Leu Gly Ser Ile Val Ile Ile 50 55
60Val Met Asn Ile Met Ile Ile Gln Asn Tyr Thr Arg Ser
Thr Asp Asn65 70 75
80Gln Ala Val Ile Lys Asp Ala Leu Gln Gly Ile Gln Gln Gln Ile Lys
85 90 95Gly Leu Ala Asp Lys Ile
Gly Thr Glu Ile Gly Pro Lys Val Ser Leu 100
105 110Ile Asp Thr Ser Ser Thr Ile Thr Ile Pro Ala Asn
Ile Gly Leu Leu 115 120 125Gly Ser
Lys Ile Ser Gln Ser Thr Ala Ser Ile Asn Glu Asn Val Asn 130
135 140Glu Lys Cys Lys Phe Thr Leu Pro Pro Leu Lys
Ile His Glu Cys Asn145 150 155
160Ile Ser Cys Pro Asn Pro Leu Pro Phe Arg Glu Tyr Arg Pro Gln Thr
165 170 175Glu Gly Val Ser
Asn Leu Val Gly Leu Pro Asn Asn Ile Cys Leu Gln 180
185 190Lys Thr Ser Asn Gln Ile Leu Lys Pro Lys Leu
Ile Ser Tyr Thr Leu 195 200 205Pro
Val Val Gly Gln Ser Gly Thr Cys Ile Thr Asp Pro Leu Leu Ala 210
215 220Met Asp Glu Gly Tyr Phe Ala Tyr Ser His
Leu Glu Arg Ile Gly Ser225 230 235
240Cys Ser Arg Gly Val Ser Lys Gln Arg Ile Ile Gly Val Gly Glu
Val 245 250 255Leu Asp Arg
Gly Asp Glu Val Pro Ser Leu Phe Met Thr Asn Val Trp 260
265 270Thr Pro Pro Asn Pro Asn Thr Val Tyr His
Cys Ser Ala Val Tyr Asn 275 280
285Asn Glu Phe Tyr Tyr Val Leu Cys Ala Val Ser Thr Val Gly Asp Pro 290
295 300Ile Leu Asn Ser Thr Tyr Trp Ser
Gly Ser Leu Met Met Thr Arg Leu305 310
315 320Ala Val Lys Pro Lys Ser Asn Gly Gly Gly Tyr Asn
Gln His Gln Leu 325 330
335Ala Leu Arg Ser Ile Glu Lys Gly Arg Tyr Asp Lys Val Met Pro Tyr
340 345 350Gly Pro Ser Gly Ile Lys
Gln Gly Asp Thr Leu Tyr Phe Pro Ala Val 355 360
365Gly Phe Leu Val Arg Thr Glu Phe Lys Tyr Asn Asp Ser Asn
Cys Pro 370 375 380Ile Thr Lys Cys Gln
Tyr Ser Lys Pro Glu Asn Cys Arg Leu Ser Met385 390
395 400Gly Ile Arg Pro Asn Ser His Tyr Ile Leu
Arg Ser Gly Leu Leu Lys 405 410
415Tyr Asn Leu Ser Asp Gly Glu Asn Pro Lys Val Val Phe Ile Glu Ile
420 425 430Ser Asp Gln Arg Leu
Ser Ile Gly Ser Pro Ser Lys Ile Tyr Asp Ser 435
440 445Leu Gly Gln Pro Val Phe Tyr Gln Ala Ser Phe Ser
Trp Asp Thr Met 450 455 460Ile Lys Phe
Gly Asp Val Leu Thr Val Asn Pro Leu Val Val Asn Trp465
470 475 480Arg Asn Asn Thr Val Ile Ser
Arg Pro Gly Gln Ser Gln Cys Pro Arg 485
490 495Phe Asn Thr Cys Pro Glu Ile Cys Trp Glu Gly Val
Tyr Asn Asp Ala 500 505 510Phe
Leu Ile Asp Arg Ile Asn Trp Ile Ser Ala Gly Val Phe Leu Asp 515
520 525Ser Asn Gln Thr Ala Glu Asn Pro Val
Phe Thr Val Phe Lys Asp Asn 530 535
540Glu Ile Leu Tyr Arg Ala Gln Leu Ala Ser Glu Asp Thr Asn Ala Gln545
550 555 560Lys Thr Ile Thr
Asn Cys Phe Leu Leu Lys Asn Lys Ile Trp Cys Ile 565
570 575Ser Leu Val Glu Ile Tyr Asp Thr Gly Asp
Asn Val Ile Arg Pro Lys 580 585
590Leu Phe Ala Val Lys Ile Pro Glu Gln Cys Tyr Pro Tyr Asp Val Pro
595 600 605Asp Tyr Ala
61029604PRTartificial sequenceHendra G protein AEB21216 29Met Met Ala Asp
Ser Lys Leu Val Ser Pro Asn Asn Asn Leu Ser Gly1 5
10 15Lys Ile Lys Asp Gln Gly Lys Val Ile Lys
Asn Tyr Tyr Gly Thr Met 20 25
30Asp Ile Lys Lys Ile Asn Asp Gly Leu Leu Asp Ser Lys Ile Leu Gly
35 40 45Ala Phe Asn Thr Val Ile Ala Leu
Leu Gly Ser Ile Ile Ile Ile Val 50 55
60Met Asn Ile Met Ile Ile Gln Asn Tyr Thr Arg Thr Thr Asp Asn Gln65
70 75 80Ala Leu Ile Lys Glu
Ser Leu Gln Ser Val Gln Gln Gln Ile Lys Ala 85
90 95Leu Thr Asp Lys Ile Gly Thr Glu Ile Gly Pro
Lys Val Ser Leu Ile 100 105
110Asp Thr Ser Ser Thr Ile Thr Ile Pro Ala Asn Ile Gly Leu Leu Gly
115 120 125Ser Lys Ile Ser Gln Ser Thr
Ser Ser Ile Asn Glu Asn Val Asn Asp 130 135
140Lys Cys Lys Phe Thr Leu Pro Pro Leu Lys Ile His Glu Cys Asn
Ile145 150 155 160Ser Cys
Pro Asn Pro Leu Pro Phe Arg Glu Tyr Arg Pro Ile Ser Gln
165 170 175Gly Val Ser Asp Leu Val Gly
Leu Pro Asn Gln Ile Cys Leu Gln Lys 180 185
190Thr Thr Ser Thr Ile Leu Lys Pro Arg Leu Ile Ser Tyr Thr
Leu Pro 195 200 205Ile Asn Thr Arg
Glu Gly Val Cys Ile Thr Asp Pro Leu Leu Ala Val 210
215 220Asp Asn Gly Phe Phe Ala Tyr Ser His Leu Glu Lys
Ile Gly Ser Cys225 230 235
240Thr Arg Gly Ile Ala Lys Gln Arg Ile Ile Gly Val Gly Glu Val Leu
245 250 255Asp Arg Gly Asp Lys
Val Pro Ser Met Phe Met Thr Asn Val Trp Thr 260
265 270Pro Pro Asn Pro Ser Thr Ile His His Cys Ser Ser
Thr Tyr His Glu 275 280 285Asp Phe
Tyr Tyr Thr Leu Cys Ala Val Ser His Val Gly Asp Pro Ile 290
295 300Leu Asn Ser Thr Ser Trp Thr Glu Ser Leu Ser
Leu Ile Arg Leu Ala305 310 315
320Val Arg Pro Lys Ser Asp Ser Gly Asp Tyr Asn Gln Lys Tyr Ile Ala
325 330 335Ile Asn Lys Val
Glu Arg Gly Lys Tyr Asp Lys Val Met Pro Tyr Gly 340
345 350Pro Ser Gly Ile Lys Gln Gly Asp Thr Leu Tyr
Phe Pro Ala Val Gly 355 360 365Phe
Leu Pro Arg Thr Glu Phe Gln Tyr Asn Asp Ser Asn Cys Pro Ile 370
375 380Ile His Cys Lys Tyr Ser Lys Ala Glu Asn
Cys Arg Leu Ser Met Gly385 390 395
400Val Asn Ser Lys Ser His Tyr Ile Leu Arg Ser Gly Leu Leu Lys
Tyr 405 410 415Asn Leu Ser
Leu Gly Gly Asp Ile Ile Leu Gln Phe Ile Glu Ile Ala 420
425 430Asp Asn Arg Leu Thr Ile Gly Ser Pro Ser
Lys Ile Tyr Asn Ser Leu 435 440
445Gly Gln Pro Val Phe Tyr Gln Ala Ser Tyr Ser Trp Asp Thr Met Ile 450
455 460Lys Leu Gly Asp Val Asp Thr Val
Asp Pro Leu Arg Val Gln Trp Arg465 470
475 480Asn Asn Ser Val Ile Ser Arg Pro Gly Gln Ser Gln
Cys Pro Arg Phe 485 490
495Asn Val Cys Pro Glu Val Cys Trp Glu Gly Thr Tyr Asn Asp Ala Phe
500 505 510Leu Ile Asp Arg Leu Asn
Trp Val Ser Ala Gly Val Tyr Leu Asn Ser 515 520
525Asn Gln Thr Ala Glu Asn Pro Val Phe Ala Val Phe Lys Asp
Asn Glu 530 535 540Ile Leu Tyr Gln Val
Pro Leu Ala Glu Asp Asp Thr Asn Ala Gln Lys545 550
555 560Thr Ile Thr Asp Cys Phe Leu Leu Glu Asn
Val Ile Trp Cys Ile Ser 565 570
575Leu Val Glu Ile Tyr Asp Thr Gly Asp Ser Val Ile Arg Pro Lys Leu
580 585 590Phe Ala Val Lys Ile
Pro Ala Gln Cys Ser Glu Ser 595
60030604PRTartificial sequencehendra G protein AEB21206 30Met Met Ala Asp
Ser Lys Leu Val Ser Leu Asn Asn Asn Leu Ser Gly1 5
10 15Lys Ile Lys Asp Gln Gly Lys Val Ile Lys
Asn Tyr Tyr Gly Thr Met 20 25
30Asp Ile Lys Lys Ile Asn Asp Gly Leu Leu Asp Ser Lys Ile Leu Gly
35 40 45Ala Phe Asn Thr Val Ile Ala Leu
Leu Gly Ser Ile Ile Ile Ile Val 50 55
60Met Asn Ile Met Ile Ile Gln Asn Tyr Thr Arg Thr Thr Asp Asn Gln65
70 75 80Ala Leu Ile Lys Glu
Ser Leu Gln Ser Val Gln Gln Gln Ile Lys Ala 85
90 95Leu Thr Asp Lys Ile Gly Thr Glu Ile Gly Pro
Lys Val Ser Leu Ile 100 105
110Asp Thr Ser Ser Thr Ile Thr Ile Pro Ala Asn Ile Gly Leu Leu Gly
115 120 125Ser Lys Ile Ser Gln Ser Thr
Ser Ser Ile Asn Glu Asn Val Asn Asp 130 135
140Lys Cys Lys Phe Thr Leu Pro Pro Leu Lys Ile His Glu Cys Asn
Ile145 150 155 160Ser Cys
Pro Asn Pro Leu Pro Phe Arg Glu Tyr Arg Pro Ile Ser Gln
165 170 175Gly Val Ser Asp Leu Val Gly
Leu Pro Asn Gln Ile Cys Leu Gln Lys 180 185
190Thr Thr Ser Thr Ile Leu Lys Pro Arg Leu Ile Ser Tyr Thr
Leu Pro 195 200 205Ile Asn Thr Arg
Glu Gly Val Cys Ile Thr Asp Pro Leu Leu Ala Val 210
215 220Asp Asn Gly Phe Phe Ala Tyr Ser His Leu Glu Lys
Ile Gly Ser Cys225 230 235
240Thr Arg Gly Ile Ala Lys Gln Arg Ile Ile Gly Val Gly Glu Val Leu
245 250 255Asp Arg Gly Asp Lys
Val Pro Ser Met Phe Met Thr Asn Val Trp Thr 260
265 270Pro Pro Asn Pro Ser Thr Ile His His Cys Ser Ser
Thr Tyr His Glu 275 280 285Asp Phe
Tyr Tyr Thr Leu Cys Ala Val Ser His Val Gly Asp Pro Ile 290
295 300Leu Asn Ser Thr Ser Trp Thr Glu Ser Leu Ser
Leu Ile Arg Leu Ala305 310 315
320Val Arg Pro Lys Ser Asp Ser Gly Asn Tyr Asn Gln Lys Tyr Ile Ala
325 330 335Ile Thr Lys Val
Glu Arg Gly Lys Tyr Asp Lys Val Met Pro Tyr Gly 340
345 350Pro Ser Gly Ile Lys Gln Gly Asp Thr Leu Tyr
Phe Pro Ala Val Gly 355 360 365Phe
Leu Pro Arg Thr Glu Phe Gln Tyr Asn Asp Ser Asn Cys Pro Ile 370
375 380Ile His Cys Lys Tyr Ser Lys Ala Glu Asn
Cys Arg Leu Ser Met Gly385 390 395
400Val Asn Ser Lys Ser His Tyr Ile Leu Arg Ser Gly Leu Leu Lys
Tyr 405 410 415Asn Leu Ser
Leu Gly Gly Asp Ile Ile Leu Gln Phe Ile Glu Ile Ala 420
425 430Asp Asn Arg Leu Thr Ile Gly Ser Pro Ser
Lys Ile Tyr Asn Ser Leu 435 440
445Gly Gln Pro Val Phe Tyr Gln Ala Ser Tyr Ser Trp Asp Thr Met Ile 450
455 460Lys Leu Gly Asp Ile Asp Thr Val
Asp Pro Leu Arg Val Gln Trp Arg465 470
475 480Asn Asn Ser Val Ile Ser Arg Pro Gly Gln Ser Gln
Cys Pro Arg Phe 485 490
495Asn Val Cys Pro Glu Val Cys Trp Glu Gly Thr Tyr Asn Asp Ala Phe
500 505 510Leu Ile Asp Arg Leu Asn
Trp Val Ser Ala Gly Val Tyr Leu Asn Ser 515 520
525Asn Gln Thr Ala Glu Asn Pro Val Phe Ala Val Phe Lys Asp
Asn Glu 530 535 540Ile Leu Tyr Gln Val
Pro Leu Ala Glu Asp Asp Thr Asn Ala Gln Lys545 550
555 560Thr Ile Thr Asp Cys Phe Leu Leu Glu Asn
Val Ile Trp Cys Ile Ser 565 570
575Leu Val Glu Ile Tyr Asp Thr Gly Asp Ser Val Ile Arg Pro Lys Leu
580 585 590Phe Ala Val Lys Ile
Pro Ala Gln Cys Ser Glu Ser 595
60031613PRTartificial sequenceHendra G protein AAV80426 31Met Met Ala Asp
Ser Lys Leu Val Ser Leu Asn Asn Asn Leu Ser Gly1 5
10 15Lys Ile Lys Asp Gln Gly Lys Val Ile Lys
Asn Tyr Tyr Gly Thr Met 20 25
30Asp Ile Lys Lys Ile Asn Asp Gly Leu Leu Asp Ser Lys Ile Leu Gly
35 40 45Ala Phe Asn Thr Val Ile Ala Leu
Leu Gly Ser Ile Ile Ile Ile Val 50 55
60Met Asn Ile Met Ile Ile Gln Asn Tyr Thr Arg Thr Thr Asp Asn Gln65
70 75 80Ala Leu Ile Lys Glu
Ser Leu Gln Ser Val Gln Gln Gln Ile Lys Ala 85
90 95Leu Thr Asp Lys Ile Gly Thr Glu Ile Gly Pro
Lys Val Ser Leu Ile 100 105
110Asp Thr Ser Ser Thr Ile Thr Ile Pro Ala Asn Ile Gly Leu Leu Gly
115 120 125Ser Lys Ile Ser Gln Cys Thr
Ser Ser Ile Asn Glu Asn Val Asn Asp 130 135
140Lys Cys Lys Phe Thr Leu Pro Pro Leu Lys Ile His Glu Cys Asn
Ile145 150 155 160Ser Cys
Pro Asn Pro Leu Pro Phe Arg Glu Tyr Arg Pro Ile Ser Gln
165 170 175Gly Val Ser Asp Leu Val Gly
Leu Pro Asn Gln Ile Cys Leu Gln Lys 180 185
190Thr Thr Ser Thr Ile Leu Lys Pro Arg Leu Ile Ser Tyr Thr
Leu Pro 195 200 205Ile Asn Thr Arg
Glu Gly Val Cys Ile Thr Asp Pro Leu Leu Ala Val 210
215 220Asp Asn Gly Phe Phe Ala Tyr Ser His Leu Glu Lys
Ile Gly Ser Cys225 230 235
240Thr Arg Gly Ile Ala Lys Gln Arg Ile Ile Gly Val Gly Glu Val Leu
245 250 255Asp Arg Gly Asp Lys
Val Pro Ser Met Phe Met Thr Asn Val Trp Thr 260
265 270Pro Pro Asn Pro Ser Thr Ile His His Cys Ser Ser
Thr Tyr His Glu 275 280 285Asp Phe
Tyr Tyr Thr Leu Cys Ala Val Ser His Val Gly Asp Pro Ile 290
295 300Leu Asn Ser Thr Ser Trp Thr Glu Ser Leu Ser
Leu Ile Arg Leu Ala305 310 315
320Val Arg Pro Lys Ser Asp Ser Gly Asp Tyr Asn Gln Lys Tyr Ile Ala
325 330 335Ile Thr Lys Val
Glu Arg Gly Lys Tyr Asp Lys Val Met Pro Tyr Gly 340
345 350Pro Ser Gly Ile Lys Gln Gly Asp Thr Leu Tyr
Phe Pro Ala Val Gly 355 360 365Phe
Leu Pro Arg Thr Glu Phe Gln Tyr Asn Asp Ser Asn Cys Pro Ile 370
375 380Ile His Cys Lys Tyr Ser Lys Ala Glu Asn
Cys Arg Leu Ser Met Gly385 390 395
400Val Asn Ser Lys Ser His Tyr Ile Leu Arg Ser Gly Leu Leu Lys
Tyr 405 410 415Asn Leu Ser
Leu Gly Gly Asp Ile Ile Leu Gln Phe Ile Glu Ile Ala 420
425 430Asp Asn Arg Leu Thr Ile Gly Ser Pro Ser
Lys Ile Tyr Asn Ser Leu 435 440
445Gly Gln Pro Val Phe Tyr Gln Ala Ser Tyr Ser Trp Asp Thr Met Ile 450
455 460Lys Leu Gly Asp Val Asp Thr Val
Asp Pro Leu Arg Val Gln Trp Arg465 470
475 480Asn Asn Ser Val Ile Ser Arg Pro Gly Gln Ser Gln
Cys Pro Arg Phe 485 490
495Asn Val Cys Pro Glu Val Cys Trp Glu Gly Ser Tyr Asn Asp Ala Phe
500 505 510Leu Ile Asp Arg Leu Asn
Trp Val Ser Ala Gly Val Tyr Leu Asn Ser 515 520
525Asn Gln Thr Ala Glu Asn Pro Val Phe Ala Val Phe Lys Asp
Asn Glu 530 535 540Ile Leu Tyr Gln Val
Pro Leu Ala Glu Asp Asp Thr Asn Ala Gln Lys545 550
555 560Thr Ile Thr Asp Cys Phe Leu Leu Glu Asn
Val Ile Trp Cys Ile Ser 565 570
575Leu Val Glu Ile Tyr Asp Thr Gly Asp Ser Val Ile Arg Pro Lys Leu
580 585 590Phe Ala Val Lys Ile
Pro Ala Gln Cys Ser Glu Ser Tyr Pro Tyr Asp 595
600 605Val Pro Asp Tyr Ala 61032604PRTartificial
sequenceHendra G protein AEQ38108 32Met Met Ala Asp Ser Lys Leu Val Ser
Leu Asn Asn Asn Leu Ser Gly1 5 10
15Lys Ile Lys Asp Gln Gly Lys Val Ile Lys Asn Tyr Tyr Gly Thr
Met 20 25 30Asp Ile Lys Lys
Ile Asn Asp Gly Leu Leu Asp Ser Lys Ile Leu Gly 35
40 45Ala Phe Asn Thr Val Ile Ala Leu Leu Gly Ser Ile
Ile Ile Ile Val 50 55 60Met Asn Ile
Met Ile Ile Gln Asn Tyr Thr Arg Thr Thr Asp Asn Gln65 70
75 80Ala Leu Ile Lys Glu Ser Leu Gln
Ser Val Gln Gln Gln Ile Lys Ala 85 90
95Leu Thr Asp Lys Ile Gly Thr Glu Ile Gly Pro Lys Val Ser
Leu Ile 100 105 110Asp Thr Ser
Ser Thr Ile Thr Ile Pro Ala Asn Ile Gly Leu Leu Gly 115
120 125Ser Lys Ile Ser Gln Ser Thr Ser Ser Ile Asn
Glu Asn Val Asn Asp 130 135 140Lys Cys
Lys Phe Thr Leu Pro Pro Leu Lys Ile His Glu Cys Asn Ile145
150 155 160Ser Cys Pro Asn Pro Leu Pro
Phe Arg Glu Tyr Arg Pro Ile Ser Gln 165
170 175Gly Val Ser Asp Leu Val Gly Leu Pro Asn Gln Ile
Cys Leu Gln Lys 180 185 190Thr
Thr Ser Thr Ile Leu Lys Pro Arg Leu Ile Ser Tyr Thr Leu Pro 195
200 205Ile Asn Thr Arg Glu Gly Val Cys Ile
Thr Asp Pro Leu Leu Ala Val 210 215
220Asp Asn Gly Phe Phe Ala Tyr Ser His Leu Glu Lys Ile Gly Ser Cys225
230 235 240Thr Arg Gly Ile
Ala Lys Gln Arg Ile Ile Gly Val Gly Glu Val Leu 245
250 255Asp Arg Gly Asp Lys Val Pro Ser Met Phe
Met Thr Asn Val Trp Thr 260 265
270Pro Pro Asn Pro Ser Thr Ile His His Cys Ser Ser Thr Tyr His Glu
275 280 285Asp Phe Tyr Tyr Thr Leu Cys
Ala Val Ser His Val Gly Asp Pro Ile 290 295
300Leu Asn Ser Thr Ser Trp Thr Glu Ser Leu Ser Leu Ile Arg Leu
Ala305 310 315 320Val Arg
Pro Lys Ser Asp Ser Gly Asp Tyr Asn Gln Lys Tyr Ile Thr
325 330 335Ile Thr Lys Val Glu Arg Gly
Lys Tyr Asp Lys Val Met Pro Tyr Gly 340 345
350Pro Ser Gly Ile Lys Gln Gly Asn Thr Leu Tyr Phe Pro Ala
Val Gly 355 360 365Phe Leu Pro Arg
Thr Glu Phe Gln Tyr Asn Asp Ser Asn Cys Pro Ile 370
375 380Ile His Cys Lys Tyr Ser Lys Ala Glu Asn Cys Arg
Leu Ser Met Gly385 390 395
400Val Asn Ser Lys Ser His Tyr Ile Leu Arg Ser Gly Leu Leu Lys Tyr
405 410 415Asn Leu Ser Leu Gly
Gly Asp Ile Ile Leu Gln Phe Ile Glu Ile Ala 420
425 430Asp Asn Arg Leu Thr Ile Gly Ser Pro Ser Lys Ile
Tyr Asn Ser Leu 435 440 445Gly Gln
Pro Val Phe Tyr Gln Ala Ser Tyr Ser Trp Asp Thr Met Ile 450
455 460Lys Leu Gly Asp Val Asp Thr Val Asp Pro Leu
Arg Val Gln Trp Arg465 470 475
480Asn Asn Ser Val Ile Ser Arg Pro Gly Gln Ser Gln Cys Pro Arg Phe
485 490 495Asn Val Cys Pro
Glu Val Cys Trp Glu Gly Thr Tyr Asn Asp Ala Phe 500
505 510Leu Ile Asp Arg Leu Asn Trp Val Ser Ala Gly
Val Tyr Leu Asn Ser 515 520 525Asn
Gln Thr Ala Glu Asn Pro Val Phe Ala Val Phe Lys Asp Asn Glu 530
535 540Ile Leu Tyr Gln Val Pro Leu Ala Glu Asp
Asp Thr Asn Ala Gln Lys545 550 555
560Thr Ile Thr Asp Cys Phe Leu Leu Glu Asn Val Ile Trp Cys Ile
Ser 565 570 575Leu Val Glu
Ile Tyr Asp Thr Gly Asp Ser Val Ile Arg Pro Lys Leu 580
585 590Phe Ala Val Lys Ile Pro Ala Gln Cys Ser
Glu Ser 595 60033604PRTartificial sequenceHendra G
protein AEQ38115 33Met Met Ala Asp Ser Lys Leu Val Ser Leu Asn Asn Asn
Leu Ser Gly1 5 10 15Lys
Ile Lys Asp Gln Gly Lys Val Ile Lys Asn Tyr Tyr Gly Thr Met 20
25 30Asp Ile Lys Lys Ile Asn Asp Gly
Leu Leu Asp Ser Lys Ile Leu Gly 35 40
45Ala Phe Asn Thr Val Ile Ala Leu Leu Gly Ser Ile Ile Ile Ile Val
50 55 60Met Asn Ile Met Ile Ile Gln Asn
Tyr Thr Arg Thr Thr Asp Asn Gln65 70 75
80Ala Leu Ile Lys Glu Ser Leu Gln Ser Val Gln Gln Gln
Ile Lys Ala 85 90 95Leu
Thr Asp Lys Ile Gly Thr Glu Ile Gly Pro Lys Val Ser Leu Ile
100 105 110Asp Thr Ser Ser Thr Ile Thr
Ile Pro Ala Asn Ile Gly Leu Leu Gly 115 120
125Ser Lys Ile Ser Gln Ser Thr Ser Ser Ile Asn Glu Asn Val Asn
Asp 130 135 140Lys Cys Lys Phe Thr Leu
Pro Pro Leu Lys Ile His Glu Cys Asn Ile145 150
155 160Ser Cys Pro Asn Pro Leu Pro Phe Arg Glu Tyr
Arg Pro Ile Ser Gln 165 170
175Gly Val Ser Asp Leu Val Gly Leu Pro Asn Gln Ile Cys Leu Gln Lys
180 185 190Thr Thr Ser Thr Ile Leu
Lys Pro Arg Leu Ile Ser Tyr Thr Leu Pro 195 200
205Ile Asn Thr Arg Glu Gly Val Cys Ile Thr Asp Pro Leu Leu
Ala Val 210 215 220Asp Asn Gly Phe Phe
Ala Tyr Ser His Leu Glu Lys Ile Gly Ser Cys225 230
235 240Thr Arg Gly Ile Ala Lys Gln Arg Ile Ile
Gly Val Gly Glu Val Leu 245 250
255Asp Arg Gly Asp Lys Val Pro Ser Met Phe Met Thr Asn Val Trp Thr
260 265 270Pro Pro Asn Pro Ser
Thr Ile His His Cys Ser Ser Thr Tyr His Glu 275
280 285Asp Phe Tyr Tyr Thr Leu Cys Ala Val Ser His Val
Gly Asp Pro Ile 290 295 300Leu Asn Ser
Thr Ser Trp Thr Glu Ser Leu Ser Leu Ile Arg Leu Ala305
310 315 320Val Arg Pro Lys Ser Asp Asn
Gly Asp Tyr Asn Gln Lys Tyr Ile Ala 325
330 335Ile Thr Lys Val Glu Arg Gly Lys Tyr Asp Lys Val
Met Pro Tyr Gly 340 345 350Pro
Ser Gly Ile Lys Gln Gly Asp Thr Leu Tyr Phe Pro Ala Val Gly 355
360 365Phe Leu Pro Arg Thr Glu Phe Gln Tyr
Asn Asp Ser Asn Cys Pro Ile 370 375
380Ile His Cys Lys Tyr Ser Lys Ala Glu Asn Cys Arg Leu Ser Met Gly385
390 395 400Val Asn Ser Lys
Ser His Tyr Ile Leu Arg Ser Gly Leu Leu Lys Tyr 405
410 415Asn Leu Ser Leu Gly Gly Asp Ile Ile Leu
Gln Phe Ile Glu Ile Ala 420 425
430Asp Asn Arg Leu Thr Ile Gly Ser Pro Ser Lys Ile Tyr Asn Ser Leu
435 440 445Gly Gln Pro Val Phe Tyr Gln
Ala Ser Tyr Ser Trp Asp Thr Met Ile 450 455
460Lys Leu Gly Asp Val Asp Thr Val Asp Pro Leu Arg Val Gln Trp
Arg465 470 475 480Asn Asn
Ser Val Ile Ser Arg Pro Gly Gln Ser Gln Cys Pro Arg Phe
485 490 495Asn Val Cys Pro Glu Val Cys
Trp Glu Gly Thr Tyr Asn Asp Ala Phe 500 505
510Leu Ile Asp Arg Leu Asn Trp Val Ser Ala Gly Val Tyr Leu
Asn Ser 515 520 525Asn Gln Thr Ala
Glu Asn Pro Val Phe Ala Val Phe Lys Asp Asn Glu 530
535 540Ile Leu Tyr Gln Val Pro Leu Ala Glu Asp Asp Thr
Asn Ala Gln Lys545 550 555
560Thr Ile Thr Asp Cys Phe Leu Leu Glu Asn Val Ile Trp Cys Ile Ser
565 570 575Leu Val Glu Ile Tyr
Asp Thr Gly Asp Ser Val Ile Arg Pro Lys Leu 580
585 590Phe Ala Val Lys Ile Pro Ala Gln Cys Ser Glu Ser
595 600
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20130038851 | DISCHARGE LAMP, CONNECTING CABLE, LIGHT SOURCE APPARATUS, AND EXPOSURE APPARATUS |
20130038850 | ILLUMINATION SYSTEM AND PROJECTION OBJECTIVE OF A MASK INSPECTION APPARATUS |
20130038849 | OPTICAL COMPONENT COMPRISING RADIATION PROTECTIVE LAYER |
20130038848 | OPTICAL DEVICES HAVING KINEMATIC COMPONENTS |
20130038847 | ILLUMINATION OPTICAL SYSTEM AND A PROJECTOR USING THE SAME |