Patent application title: IMMORTALIZED AVIAN CELL LINES FOR VIRUS PRODUCTION
Inventors:
Volker Sandig (Berlin, DE)
Volker Sandig (Berlin, DE)
Ingo Jordan (Berlin, DE)
Ingo Jordan (Berlin, DE)
Assignees:
ProBioGen AG
IPC8 Class: AC12N510FI
USPC Class:
4352351
Class name: Chemistry: molecular biology and microbiology virus or bacteriophage, except for viral vector or bacteriophage vector; composition thereof; preparation or purification thereof; production of viral subunits; media for propagating
Publication date: 2012-11-15
Patent application number: 20120288916
Abstract:
The present invention relates to immortalized avian cell lines suitable
for production of biologicals or viruses for vaccination. In particular,
the cell lines are derived from primary cells which are transformed with
at least two viral or cellular genes, one of which causes cell cycle
progression whereas the other interferes with innate protective
mechanisms of the cell induced by dysregulated replication. The invention
moreover relates to the production of said immortalized cell lines and
their use for producing biologicals or viruses for vaccination.Claims:
1-14. (canceled)
15. An avian cell line free of reverse transcriptase activity and permissive for modified vaccinia virus Ankara (MVA).
16. The cell line of claim 15, wherein the cell line is infected with and replicates MVA.
17. The cell line of claim 15, wherein the cell line is not a neoplastic cell line derived from naturally occurring or spontaneous tumors.
18. The cell line of claim 15, wherein the cell line does not release infectious virus particles from endogenous retroviruses.
19. The cell line of claim 15, wherein the cell line does not release infectious virus particles from endogenous retroviruses, is infected with MVA and replicates MVA.
20. The cell line of claim 15, wherein the cells are immortalized.
21. The cell line of claim 20, wherein the immortalized cells are derived from primary cells, cells from isolated body segments or separated individual organs.
22. The cell line of claim 15, further comprising a first gene encoding an expression product capable of overcoming G1 checkpoint control and a second gene encoding an expression product capable of preventing apoptosis induced by expression product of the first gene.
23. The cell line of claim 15, further comprising an antitumor gene.
24. The cell line of claim 22, wherein the expression product of the first gene is capable of mediating disruption of complexes between retinoblastoma proteins and E2F transcription factors; and/or wherein the expression product of the second gene is capable of preventing transcriptional activation by p53.
25. The cell line of claim 15, which is immortalized with a combination of viral and/or cellular genes (gene(s)), wherein the cell line comprises a combination of viral and/or cellular genes including: at least one first gene encoding an expression product capable of affecting the function of the retinoblastoma protein by mediating disruption of complexes between retinoblastoma proteins and E2F transcription factors; and at least one second gene encoding an expression product capable of affecting the p53 protein or a family member thereof; wherein the first gene is a viral gene selected from the group consisting of an adenovirus E1A gene from mastadenoviruses, an E7 gene of papillomaviruses, an orf 22 gene of avian adenoviruses, and E43 open reading frames from ovine attadenovirus; or is a cellular gene mediating disruption of complexes between retinoblastoma proteins and E2F transcription factors and being selected from Cyclins D1, D2 and D3, and a mutated CDK4 not susceptible to inactivation by p16INK4a; and wherein the second gene is a viral gene coding for a protein preventing induction of growth arrest and apoptosis by p53 selected from the group consisting of adenovirus E1B55K protein of all groups, GAM-1 of chicken embryo lethal orphan virus CELO and E6 protein of papillomaviruses; or is mdm2 being a cellular gene preventing growth arrest and apoptosis by p53.
26. The cell line of claim 25, wherein the first gene is selected from the group consisting of an E1A gene from mastadenovirus of group C, and an E7 gene from a low-risk human papilloma virus (HPV) and/or wherein the second gene codes for an E6 protein from a low-risk HPV.
27. The cell line of claim 15, which is immortalized with (i) E1A and E1B encoding genes of an adenovirus from the genus Mastadenovirus; and/or (ii) orf22 and GAM-1 encoding genes from the genus aviadenovirus CELO.
28. The cell line of claim 15, further comprising non-natural functional sequences selected from the group consisting of transgenes, promoters, enhancers and selection markers.
29. The cell line of claim 15, wherein the cell line is free of animal serum.
30. The cell line of claim 15, wherein the cell line is a duck cell line.
31. The cell line of claim 30, wherein the duck cell line is a cell line originating from duck somites, duck neuronal tissue or duck retina.
32. The cell line of claim 15, wherein the cell line is cell line 12A07-A10 (DSM ACC 2695).
33. A method for producing MVA, which comprises (i) contacting MVA with an avian cell line as defined in claim 1; and (ii) cultivating said MVA on said avian cell line.
34. The method of claim 33, wherein the avian cell line does not release infectious virus particles from endogenous retroviruses.
35. The method of claim 33, wherein the avian cell line is a duck cell line.
Description:
[0001] The present invention relates to immortalized avian cell lines
suitable for production of biologicals or viruses for vaccination. In
particular, the cell lines are derived from primary cells which are
transformed with at least two viral or cellular genes, one of which
causes cell cycle progression whereas the other interferes with innate
protective mechanisms of the cell induced by dysregulated replication.
The invention moreover relates to the production of said immortalized
cell lines and their use for producing biologicals or viruses for
vaccination.
BACKGROUND
[0002] Embryonated chicken eggs still are one of the main substrates for the production of human vaccines. They are able to support the replication of a wide range of human and animal viruses. This spectrum includes attenuated viruses, i.e. defective viruses that have impaired potential to replicate in human or mammalian cells and can thus be used as vaccines. Attenuation can be generated or maintained by continuous passage in embryonated eggs. Chicken eggs used for human vaccine production must be certified to be free of a defined set of viral and bacterial contamination (specific pathogen-free or SPF). SPF eggs are available from commercial suppliers. The broad applicability and a long international track record has kept this strategy alive despite clear disadvantages:
[0003] SPF flocks of chicken and embryonated eggs are expensive and can constitute up to 40% of the cost of vaccines. Furthermore, it is difficult to continually maintain SPF flocks completely free of pathogens which is evidenced by periodic outbreaks of disease in SPF flocks. A vaccine lot cannot be released until the SPF supplier verifies that the parental chickens for the embryonated eggs used to manufacture the vaccine lot were completely free of any disease. This uncertainty adds a significant cost to the preparation of these vaccines. In pandemic situations with sudden need for a particular vaccine (e.g. influenza) the supply of SPF eggs may be severely limited. In addition, the large-scale processes for infecting eggs and maintaining virus growth are time consuming and sometimes inconsistent across different vaccine batches.
[0004] With the development of cell culture techniques vaccine manufacturers have replaced embryonated eggs with isolated chicken embryonic fibroblasts. While the use of primary cell cultures improves the safety profile, efficiency and reliability of the manufacturing process, it also further increases costs: chicken fibroblasts are prepared from SPF eggs by mincing embryos to establish and amplify viable cells. Typical for primary animal cells the fibroblasts suffer senescence: the doubling time increases with passaging and eventually all cells die. This process occurs after about 20 passages, much earlier than for rodent or some human cell substrates currently used in vaccine manufacture (such as MRC-5 or WI-38). Fibroblast cultures have to be maintained in the presence of 5-10% fetal calf serum, adding additional risk factors to the manufacturing process. They also require a solid surface for propagation and do not grow in suspension, a preferred state for bioreactor applications. Even with the use of multilayer cell factories this substantially limits scale-up procedures. Due to the limited live span a complete set of safety tests has to be applied for each lot of chicken fibroblasts.
[0005] Fibroblasts are the only cell type out of the wide variety of different tissues from a chicken embryo that proliferates well. The predominance of fibroblasts compared to other cell types has in some cases decreased theoretical virus yield because in eggs typically the chorioallantoic membrane, an epithelial cell layer, is the main site for virus amplification.
[0006] The discussed problems have contributed to severe influenza vaccine shortages in the last two years (2003 and 2004). To overcome these limitations, a permanent cell line growing in a synthetically defined medium, preferably in suspension or at least on carriers, would be highly desired.
[0007] Some of the viruses typically grown in chicken fibroblasts have been adapted to certain cell lines. BHK-21 (baby hamster kidney) cells support the growth of various vaccinia, influenza, and rabies vaccine strains (Drexler, I. et al., J. Gen. Virol. 79(Pt2):347-52 (1998); Gumusderelioglu M. et al., Biotechnol. Appl. Biochem. 33:167-72 (2001); Merten, O. W. et al., Adv. Exp. Med. Biol. 397:141-51 (1996)) and easily grow in large fermenters on carriers under serum-free conditions (Pay, T. W. et al., Dev. Biol. Stand 60:171-4 (1985); Gallegos Gallegos, R. M. et al., Arch. Med. Res. 26:59-63 (1995)). For vaccinia this applies even to the highly attenuated strain Ankara (MVA) which was developed on chicken cells. The BHK-21 cell line is accepted for production of certain vaccines for livestock animals (Lubiniecki, A. S., Bioprocess Technol. 10:495-513 (1990)). However, the BHK-21 line does not meet the safety requirements for human live vaccines. BHK cells have spontaneously formed, are highly tumorigenic and their history is inadequately reported.
[0008] According to the FDA, CBER Discussion from May 12, 2000 on cell substrates the development of "Minimally-Purified Live-Attenuated Viral Vaccines and Virus-Vectored Vaccines" in neoplastic cells derived from naturally occurring tumors from humans and other mammals or from human cells and mammalian cells that have been transformed by unknown mechanisms is discouraged.
[0009] As an exception to the rule the VERO cell line (originating from African green monkey) is allowed as a cell substrate for vaccine manufacture based on a proven safety profile and the lack of transformed phenotype for a defined number of passages. The cell line has been used extensively for the manufacture of the polio and smallpox vaccines for clinical use. However, VERO cells require attachment and are amenable only to carrier based processes.
[0010] Additionally MDCK cells (a spontaneous cell line from dog kidney epithelium) with a described history have been applied to the manufacture of influenza virus (Tree, J. A. et al., Vaccine 19:3444-50 (2001)).
[0011] More recently, triggered by the development of vector based vaccines and gene therapy approaches, new so-called designer cell lines of human origin are intensely discussed and included into the spectrum of potential cell substrates for vaccine production (Vaccines and Related Biological Products advisory committee, session from May 16, 2001). New permanent cell lines were created to provide complementing genes for recombinant viruses that are replication-deficient outside the production system. However, stable introduction of the complementing genes requires prolonged cultivation times, which either exceed the natural limit of passage numbers available to primary cells or the tolerated limit of passage numbers for VERO cells before full transformation occurs.
[0012] Designer cell lines are generated in vitro with extensive documentation using characterized genes for transformation. For example, the complementing genes from the E1 region of adenoviruses by themselves exhibit transforming properties and have allowed establishment of human cell lines, for example PER.C6 (Fallaux, F. J. et al., Hum. Gene Ther. 9:1909-17 (1998)). The application of these cell lines is not limited to the viral vector they are designed for but may be extended to other viruses. For example, influenza virus can be propagated on PER.C6 (Pau, M. G. et al., Vaccine 19:2716-21 (2001)). However, this finding does not apply to all viruses relevant to vaccine development, in particular avian viruses such as Marek's disease, infectious bursal disease, Newcastle disease, turkey herpes, or chicken anemia viruses. While some of these viruses replicate well on mammalian cell lines, virus growth is often poor. For other viruses, replication is poor and limited to particular especially adapted strains.
[0013] In addition, with adaptation to a primate-derived cell substrate, receptor binding sites on the virus are likely to change resulting in a modified antigen pattern and thus a general effect on immunogenicity. This genetic adaptation may reverse attenuation for strains which have been developed via passaging in avian cells such as MVA or chicken-adapted measles virus (Escoffier, C., Gerlier, D., 3. Virol. 73:5220-4 (1999)), or create new strains replicating more efficiently in human cells compared to their wild type isolates. Such viruses may also obtain a higher pathogenic potential.
[0014] For the above reasons vaccine manufacturers are reluctant to switch to mammalian cell lines and a need for immortal avian cell lines has developed.
[0015] The investigation of tumor induction in birds by the avian alpharetroviruses provided first molecular insights on cell transformation in general. The retroviral oncogenes are derived from cellular genes with essential regulator domains mutated or deleted. Some of the factors that have been identified in the course of these studies, such as v-myc or v-ras, directly affect components of both retinoblastoma (RB) and p53 pathways. Other proteins, such as v-src or v-erbB, are constitutively activated (hence, dysregulated) signal transducers that mimic impinging extracellular mitogens. The problem with these factors is that they target only one of several pathways required for efficient transformation. The presence of v-src or v-myc predisposes the cell for transformation and requires additional, spontaneous and unpredictable alterations within the cell for full transformation. The risks for the patient posed by cells transformed with one of the retroviral oncogenes therefore is difficult to estimate.
[0016] In other cases a single strong tumor antigen (e.g. v-jun) is able to directly cause tumor formation (Hartl, M. et al., Curr. Cancer Drug Targets 3:41-55 (2003)). Many avian viral oncogenes maintain their oncogenic potential in mammalian cells.
[0017] Cell lines created by these viruses are not suitable for vaccine manufacturing. A retrovirus carrying an oncogene may get activated and transferred together with the vaccine. Even a tumor antigen not enclosed by viral LTRs may pose a high risk when it is able to transform mammalian cells without the help of complementary antigens. This risk is typically estimated by consideration of the transforming potential, the number of vaccinees, and the amount of cellular nucleic acid transferred with the vaccine virus. This amount is limited by the efficiency of the purification process and currently cannot be reduced to below 10 pg/dose. This criterion is especially stringent for vaccine production where a healthy population often is inoculated at a very young age.
[0018] The same arguments apply to transforming DNA viruses such as papillomaviruses and polyomaviruses. These viruses are equiped with aggressive oncogenes: SV40 large T antigen is a multifunctional protein which affects both checkpoint control in G1 of the cell cycle and p53 activity. Therefore, large T readily immortalizes and transforms multiple mammalian tissues of rodent and human origin. With the addition of small T antigen (further enhancing large T action and additionally modulating the AKT3 pathway) it was possible to immortalize avian cells (part of patent application US 2001-0016348). However, even with sophisticated modern purification methods SV40 large-T antigen is considered too aggressive for use in cell lines generated for application in human medicine. In contrast to the above, the genes proposed in this invention affect checkpoint control of the cell cycle and p53 inactivation via separate factors: a required simultaneous transfer event of two distinct factors for transformation dramatically decreases any theoretical risk for the vaccinee.
[0019] US patent application 2001-0016348 describes the use of an anti-apoptotic pathway completely unrelated to the present invention. It does not provide a second gene that counters an internal signal for apoptosis due to forced cell cycle progression caused by a first gene. Apoptosis can also be induced by a variety of external simuli, for example lack of growth factors or loss of anchorage. Transmission of this type of pro-apoptotic signal can be inhibited by bcl-2 family genes, the focus of US patent application 2001-0016348.
[0020] Whereas 90% of cervix carcinomas carry papillomavirus sequences, C-type adenoviruses (which include types 2 and 5) are considered not to induce tumors in vivo, and adenoviral sequences have not been detected in human tumor tissue.
[0021] Alternatively, it has been tried to develop cell lines by continuous passaging of chicken embryonic fibroblasts. Whereas rodent cells appear to undergo spontaneous immortalization quite easily (Curatolo et al., In Vitro 20:597-601 (1984)), avian and primate cells are highly resistant to this approach (Harvey, et al., Genes and Development 5:2375-2385 (1991); Pereira-Smith, 3. Cell Physiol. 144:546-9 (1990); Smith et al., Science 273:63-67 (1996)). Somatic cells of avian or primate origin lack telomerase and senescence is caused by the shortening of chromosomal ends (telomeres). Nevertheless, a chicken fibroblast line UMNSAH-DF1 has been developed using this approach (U.S. Pat. Nos. 5,672,485 and 6,207,415). Immortalization by this approach is caused by spontaneous mutations in multiple oncogenes or tumor suppressor genes. This is a rare event which is unlikely to be reproduced especially in cells of other tissue origin. Most importantly, such an approach contradicts the Defined Risk approach as a general rule for human live vaccines proposing detailed knowledge about the immortalizing genes to assess the risk of oncogene transfer. Again, according to the FDA (CBER Discussion from May 12, 2000, on cell substrates) the use of neoplastic cells derived from naturally occurring tumors or cells that have been transformed by unknown mechanisms is discouraged for the development of minimally-purified live-attenuated viral vaccines and virus-vectored vaccines.
[0022] The spontaneously developed UMNSAH-DF1 chicken fibroblast line exhibits alterations in E2F and p53 activity (Kim et al., Oncogene 20: 2671-82 (2001)). This is not surprising because enhanced cell cycle activity requires active E2F, and because it is known from mammalian cell studies that high E2F activity induces apoptosis in the presence of active p53. The study characterizes the immortal stage without shedding light on the causative events: mutations in a large number of genes may have caused immortalization.
[0023] A spontaneous transformation process may be enhanced by the use of chemical mutagens (U.S. Pat. No. 5,989,805). The particular cell lines generated using this approach have overcome senescence but maintained a fibroblast like appearance and are non-tumorigenic. Although this represents a significant safety feature, these cells are of low value for large scale fermentation techniques. Furthermore, this chance-based approach also contradicts the Defined Risk guidelines.
[0024] Avian cell lines originating from naturally occurring tumors such as a quail fibrosarcoma (WO 97/08307) have also been proposed for biomanufacturing. Again, the Defined Risk guidelines for use in human vaccine production are violated by a method that is based on chance events.
[0025] The approaches taken in the studies described above are in sharp contrast to the active introduction of specific groups of immortalising genes according to this invention, which defines the causative agents for immortalization and allows to assess risk, provides high flexibility with respect to selection of various tissues, and allows to modulate certain features of the resulting cell line.
[0026] Despite the fact that chicken eggs and fibroblasts have a considerable track record they are also associated with a very specific risk factor that only recently has come into greater focus: chicken cells release at least two types of retroviral particles, the endogenous avian retrovirus (EAV) and the endogenous avian leukosis virus (ALV-E). The issue is similar to the presence of endogenous retrovirus particles in mouse cells which are used for the manufacture of recombinant proteins (such as NS0). However, in contrast to mouse cells, chicken cells have been shown to contain reverse transcriptase. Due to more efficient detection techniques RT activity has also been detected in chicken cell-derived measles, mumps and yellow fever vaccines (Hussain, A. I. et al., 3. Virol. 77:1105-11 (2003); Shahabuddin, M. et al., 3. Clin. Microbiol. 39:675-84 (2001)). Whether the presence of reverse transcriptase activity results in transmissible retroviruses remains controversial: a more detailed analysis has shown that CEF (from White Leghorn) contain five loci with integrated EAVs, two of which can express infectious ALV-E whereas the other three are defective (Johnson, J. A., Heneine, W., 1 Virol. 75:3605-12 (2001)). Tsang, S. X. et al., 3. Virol. 73:5843-51 (1999) also found RT activity and release of viral particles but did not observe any transmission after a careful search for EAV sequences in blood mononuclear cells of children that received mumps vaccine. According to the Weekly Epidemiological Record of the WHO (73) 28 (1998), independent laboratories have investigated the infectivity of the particles for a variety of human and other mammalian cells by extensive co-cultivation and could not detect transmission of RT activity or productive infection. This finding is supported by epidemiological studies that have revealed no association between the use of chicken cell-derived vaccines and incidence of cancers, including those of childhood.
[0027] Furthermore, in the mentioned Weekly Epidemiological Record, the WHO stresses the importance of chicken host cells to maintain attenuation of certain vaccine strains. Alternative production processes are not currently available, and this lack of alternatives is an important reason for the acceptance of a known and continous source for a viral contaminant.
[0028] However, epidemiological studies superimpose populations and do not investigate chance events or case studies. Epidemiological studies cannot refute theoretical risks, for example: the accepted endogenous RT activity may mask RT activity from unacceptable exogenous contamination, and the endogenous viruses may be mobilized and activated if packaging constructs are introduced into the cells (Ronfort, C. et al., Virology 207:271-5 (1995)).
[0029] It was shown, however, that cells from ducks and geese do not contain EAV and ALV related sequence and the Japanese quail is free of reverse transcriptase (Smith, L. M. et al., 3. Gen. Vrol. 80(pt1):261-8 (1999); Brudno, I. A. et al., Vopr. Virusol. 97-100 (1980)).
[0030] Adenoviruses (AdV) are well characterized, naked (non-enveloped) ubiquitous viruses. For the most common serotypes Ad2 and Ad5 the seroprevalence in the human population approaches 90%. Replication incompetent versions of these viruses are used as gene therapy and vaccine vectors in trials with human patients. Genes from the E1 region of human Adenovirus 5 have been used to transform some specific human cells in vitro (293 and PER.C6 cell lines; Fallaux, F. J. et al., Hum. Gene Ther. 9:1909-17 (1998); Graham, F. L. et al., J. Gen. Virol. 36:59-74 (1977)). The general process is inefficient compared to stronger multifunctional oncogenes such as SV40 large T antigen. Based on the observation that 293 show neuron specific markers and PER.C6 are of neuroectodermal origin it was suggested that Ad5 E1.-based transformation is limited to neuronal cells (Shaw et al. Faseb J 16(8): 869-71 (2002)). Considering the significant species barrier between human and avian cells efficient immor-talisation of multiple avian tissues by transfection is even more unexpected.
[0031] Mammalian E1 transformed cell lines have been used for the production of live purified adenovirus vectors in clinical trials. With careful monitoring of the amount of contaminating cellular DNA in a vaccine preparation and its size, the transforming genes of Ad5 are not considered a safety hurdle (Vaccines and Related Biological Products advisory committee, session from May 16, 2001).
[0032] Adenoviruses replicate in the nucleus of the infected cell. Because quiescent host cells are not permissive for a full viral life cycle adenoviruses have evolved mechanism to force cells into S-phase. To maximize burst size of progeny viruses they have also evolved mechanism to evade apoptosis as a response of the host cell to capsid penetration and viral replication. The genomic region that mediates both cell cycle progression and inhibition of apoptosis is the E1 region.
[0033] The E1 region actually consists of two distinct expression cassettes, E1A and E1B, arranged in tandem and each equipped with its own promoter and polyadenylation site. At least three proteins are translated from the E1A primary transcript by alternative splicing. Among others, E1A proteins have been found to disrupt RB/E2F complexes and to interfere with the p300 and CBP transcriptional co-activators. The escape of E2Fs from the RB repressor induces progression of the cell cycle from G1 to S phase, whereas the E1A/p300 complex induces apoptosis via several pathways (Putzer, B. M. et al., Cell Death Differ. 7:177-88 (2000)), including repression of transcription of MdM2, a negative regulator of the key sensor for apoptosis, p53.
[0034] As E1A sensitizes cells to TNF-induced apoptosis it is considered an antitumor agent, and it is used in experimental approaches for tumor treatment (Lee, W. P. et al., Cancer Res. 63:6229-36 (2003)).
[0035] Furthermore, acting as a transcription modulator it drives cells towards de-differentiation, a feature advantageous to a potential cell substrate.
[0036] It was shown by Guilhot et al. (Guilhot, C. et al., Oncogene 8:619-24 (1993)) that retroviral transduction of the 12S protein of E1A from Ad5 can lead to immortalization of quail cells. This is likely the consequence of interaction between the avian RB and EIA. However, the process fails when the gene is introduced by transfection of naked DNA instead of retrovirus infection (pers. observation). We propose that the extremely efficient and stable transduction via retrovirus infection creates a cell pool large enough to harbor individual cells with spontaneous genomic changes that have blocked apoptosis that normally is induced upon RB inactivation. These required but unknown changes increase the risk for vaccinees and the resulting cell line cannot be considered a designer cell line (the result of defined blocks in specific pathways). Moreover, the transforming gene introduced via retroviruses is flanked by inverted terminal repeats and can, therefore, be mobilized. Such an event may even be more pronounced in cell lines that express reverse transcriptase from endogenous retroviruses.
SUMMARY OF THE INVENTION
[0037] In view of the above, it is still desirable to develop an avian cell line with convenient growth properties for large scale manufacture, using a defined combination of immortalizing/transforming genes. It is further desirable that none of these genes is able to transform mammalian cells independent of the other genes. Moreover, the action of a single gene should either have no immortalizing/transforming effect or result in apoptosis of cells expressing the respective gene. The risk of joined transfer to a vaccine recipient should further be minimized by positioning the respective genes on separate expression units. Finally, it would be desirable--as the human population is typically exposed to the respective genes--that these genes are not associated with tumor formation in the human population. The cell line to be generated should not release infectious virus particles from endogenous retroviruses or not exhibit reverse transcriptase activity at all.
[0038] It was found that transformation of avian cells with two particular viral and/or cellular genes, one of which affecting the retinoblastoma proteins and the other the p53 protein, provided for a cell line well suited for the production of viruses for vaccination.
[0039] The invention thus provides:
(1) an avian cell line immortalized with a combination of viral and/or cellular genes (hereinafter shortly referred to as "gene(s)"), at (east one first gene affecting the function of the retinoblastoma protein and at least one second gene affecting the p53 protein or a family member thereof, wherein preferably the first gene overcomes G1 checkpoint control and the second gene prevents apoptosis induced by the first gene; (2) a method for preparing a cell line as defined in (1) above, which comprises transforming/transfecting a starting cell with the first and second gene; (3) the use of the cell line as defined in (1) above for the production of biologicals or viruses, preferably for the preparation of a vaccine or for gene therapy; and (4) a method for producing viruses or biologicals using a cell line as defined in (1) above.
SHORT DESCRIPTION OF THE FIGURES
[0040] FIG. 1: Schematic sections of the expression plasmids used for enhanced immortalization of primary duck cells (example 2). Polyadenylation signals are omitted for clarity. The alphanumerics at the left are short identifiers for the plasmids. mPGK and hPGK, phosphoglycerate kinase promoters of mouse and human, resp.; ad5, E1-endogenous promoter of Ad5; moCMV, mouse CMV immediate early promoter; tk, herpes simplex virus thymidine kinase promoter; orf 22 and gam1, CELO virus genes; E1A and E1B, adenovirus 5 E1 region genes.
[0041] FIG. 2: Phase contrast microscopy pictures as example of focus formation in Ad5-E1 transfected duck embryonal liver cells (plasmid 49E). A, initial magnification 4× to depict a complete focus embedded in senescent primary cells. B, initial magnification 20×: perimeter of a large round focus of small cells arranged in a compact monolayer visible at the right of the panel, primary cells in advanced senescence towards the left.
[0042] FIG. 3: Immunofluorescence assay for E1A and E1B 55K proteins (example 3). Upper two rows, mix of plasmid 49E-immortalized and primary duck liver cells; bottom two rows, 293 positive control cells. Left column, phase contrast images; middle column, immunostaining of E1A or E1B 55K proteins as indicated in the images; right column, DAPI stain. The E1B 55K protein characteristically localizes to the cytoplasm and accumulates in aggregates to yield an uneven, spotty distribution. E1A is a nuclear protein. Note the compacted nuclei that stain brightly with DAPI in the transformed duck cells.
[0043] FIG. 4: Q-PERT assay (quantitative PERTassay) on cell supernatant for detection of retroviral activity (example 4). Bold squares, CHO positive control; open squares, water negative control; bold diamonds, chicken embryonic fibroblasts; bold triangles, 293 cell line negative control; grey circles, substrate-only negative control; open triangles, duck liver cells immortalized with plasmid 49E; delta Rn, emission of the reporter dye over starting background fluorescence.
[0044] FIG. 5: MVA amplification on some of the described duck cell lines and CEFp (example 5). Infection was performed with an MOI of 0.1. Titration was performed on VERO cells 48 hours after infection (Example 2). CEFp, primary chicken embryonic fibroblasts.
[0045] FIG. 6: serial passaging of MVA on duck retina cells immortalized with plasmid 49E (example 5). Bold squares, burst size; bars, input virus adjusted to an MOI of 0.1. Input virus is given as reference to demonstrate that burst size is independent of experimental fluctuations in cell numbers (which in turn define input virus via MOI).
SEQUENCE LISTING
Free Text
TABLE-US-00001 [0046] SEQ ID NO: Description - free text 1 Primer VS182 2 Primer VS183 3 Primer VS184 4 Primer VS185 5 Primer VintSA-F 6 Primer VintSA-R 7 Plasmid pEFAd5E1A 8 Plasmid pEFAd5E1BSA 9 Plasmid 49E 10 Plasmid 25F 11 Primer V206 12 Primer V207 13 Primer V208 14 Primer V209 15 RT primer 16 Primer cDNA 1 17 Primer cDNA 2 18 Plasmid 60E 19 Plasmid 36E
DETAILED DESCRIPTION OF THE INVENTION
[0047] "Immortalized", "immortalized cells" and "immortalized cell line" according to the present invention relates to a cell or cell line which has been transfected/transformed by certain functional DNA sequences conferring the potential for at least 200 passages, preferably unlimited number of passages, i.e. immortality, to the respective starting cells.
[0048] A "gene cassette" of the present invention is to be understood as a DNA sequence comprising a gene affecting the function of the retinoblasoma protein, i.e. which directly or indirectly (e.g. after expression) mediates the disruption of complexes between retinoblastoma proteins and E2F transcription factors, and which in addition comprises a viral gene preventing induction of growth arrest and apoptosis by p53 such as the adenovirus E1B 55K protein of all groups, the E6 protein of papillomaviruses, preferably those of the low-risk human papillomaviruses (HPV) (such as HPV1, HPV6 and HPV11, but not HPV16, HPV18), or a cellular gene preventing growth arrest and apoptosis by p53 such as mdm2.
[0049] In more detail, the above gene cassette comprises a "first gene" which in a preferred aspect of (1) directly or indirectly (e.g. via cellular inducers) mediates the disruption of complexes between retinoblastoma proteins and E2F transcription factors. This first gene may be a viral gene such as a mastadenovirus E1A, gam1 and orf22 of CELO or E7 of papillomaviruses, preferably of the low-risk human papillomaviruses (such as HPV1, HPV6 and HPV11, but not HPV16, HPV18), or a cellular gene such as a constitutively active CDK4 or an over-expressed D type cycline. The activity of the first gene mediates cell cycle progression usually at the cost of induction of apoptosis or growth arrest with increased passaging.
[0050] A "second gene" is present in above gene cassette to counter this effect of the first gene. It prevents apoptosis or growth arrest and preferably acts by inhibiting transcriptional activation by p53 via augmenting the degradation of p53 or converting p53 from a trans-activator to a repressor of transcription. Preferably the "second gene" is capable of preventing transcriptional activation by p53, including repression of the function of p53 and causing a decrease in stability of p53. The "second gene" may be a viral gene such as the adenovirus E1B 55K protein of all groups, orf22 of CELO, the E6 protein of papillomaviruses, preferably of the low-risk human papillomaviruses (such as HPV1, HPV6 and HPV11, but not HPV16, HPV18), or a cellular gene preventing growth arrest and apoptosis by p53 such as mdm2. Preferably the "second gene" is orf22 of CELO or adenovirus E1B 55k.
[0051] This is exactly opposite to the introduction of exogenous active wild type p53 which was associated with the generation of a chicken fibroblast line by an unknown mechanism (U.S. Pat. No. 5,879,924).
[0052] "Biologicals" in the context of present invention comprises therapeutic and recombinant proteins, including antibodies, enzymes, hormones, receptors or their ligands and fusions thereof. Prefererred biologicals are recombinant proteins.
[0053] One preferred aspect of embodiment (1) is the use of a cell line derived from embryonic or hatched chicken, duck, goose, quail or the like, preferably from chicken or duck. In an especially preferred aspect of (1), additionally this cell line is free of reverse transcriptase activity, derived from immortalization of a primary cell originating from chicken embryos, hatched chicken, duck embryos or hatched ducks, is derived from extraembryonic membrane and/or is cultivated in a chemically defined medium. The medium is preferably free of animal serum.
[0054] Another preferred aspect of embodiment (1) is that the cells subjected to immortalization are primary cells including fibroblasts, cells from isolated body segments (somites) or separated individual organs including neuronal, brain, retina, kidney, liver, heart, muscle and extraembryonic tissues and membranes protecting the embryo. Most preferably, the cells are from extraembyonic membranes or retina.
[0055] The immortalization leading to the cells of embodiment (1) is preferably effected by non-viral transfection, including, but not limited to, transfection mediated by liposomes, dendrimers or hydroxyapatite ("calcium phosphate") precipitates and electroporation.
[0056] Preferably, the first gene in embodiment (1) is a viral gene mediating disruption of complexes between retinoblastoma proteins and E2F transcription factors. This includes, but is not limited to, an adenovirus E1A gene from mastadenoviruses (preferably from mastadenoviruses of group C), an E7 protein of papillomaviruses, preferably from low-risk human papilloma virus (HPV) (such as HPV1, HPV6 and HPV11, but not HPV16, HPV18), an orf 22 gene of avian adenoviruses and/or E43 open reading frames from ovine attadenovirus. Alternatively, the first gene of embodiment (1) is a cellular gene mediating disruption of complexes between retinoblastoma proteins and E2F transcription factors. This includes, but is not limited to, cyclin D1, cyclin D2, cyclin D3 and/or a mutated CDK4 not susceptible to inactivation by p16INK4a.
[0057] The second gene of embodiment (1) is preferably a viral gene coding for a protein preventing induction of growth arrest and apoptosis by p53. This includes, but is not limited to, genes coding for the adenovirus E1B55K protein of all groups, GAM-1 of CELO, the E6 protein of papillomaviruses, preferably those of the low-risk HPV (such as HPV1, HPV6 and HPV11, but not HPV16, HPV18). Most preferred are genes coding for the adenovirus E1B55K protein and GAM-1 of CELO. Alternatively, the second gene encodes a cellular protein preventing growth arrest and apoptosis by p53 such as mdm2.
[0058] The first gene and second gene of embodiment (1) are preferably either separated spatially by heterologous sequences or located on different nucleic acid segments or plasmids.
[0059] In an especially preferred aspect of embodiment (1) the first gene is the E1A and the second gene is the E1B region of an adenovirus from the genus Mastadenovirus, preferably from adenovirus 5. Most preferably said E1A regions have the sequence of by 1193 to 2309, preferably by 1239 to 2309, of SEQ ID NO:7 or the sequence complementary to by 4230 to 3113 of SEQ ID NO:9. Furthermore most preferably said E1B regions have the sequence of by 1145 to 3007, preferably by 1197 to 2810, of SEQ ID NO:8 or the sequence complementary to by 2345 to 550 of SEQ ID NO:9.
[0060] In a further especially preferred aspect of embodiment (1) the first gene is orf22 and the second gene is GAM-1 from an adenovirus, preferably from the genus aviadenovirus CELO, which preferably have the sequence represented by the sequence complementary to by 1252 to 635 of SEQ ID NO:10, and the sequence complementary to by 3138 to 2290 of SEQ ID NO:10.
[0061] In even a further especially preferred aspect of embodiment (1) and (2) the plasmids 36E (SEQ ID NO:19), 37E (FIG. 1), 49E (SEQ ID NO:9), 25F (SEQ ID NO:10) or 60E (SEQ ID NO:18) are used for immortalization of the cells.
[0062] Furthermore, combinations of nucleic acids encoding E1A and/or E1B with GAM-1 and/or Orf22 as defined above are preferred aspects of embodiment (1).
[0063] The cell line according to embodiment (1) may additionally carry non-natural functional sequences including, but not limited to, transgenes such as genes complementing deficient viruses (e.g. EBNA1, etc.), promoters (e.g. PGK-, EF1.alpha-, CMV-promoter, E1-promoters of Ad5, tk-promoter etc.), enhancers (e.g. RSV-LTR), selection markers such as neomycin-resistance, puromycin-resistance, etc. In one preferred aspect the first and second gene are under the control of separate promoters selected independently from PGK-, CMV-, E1- and tk-promoters.
[0064] The cell line according to embodiment (1) is in one preferred aspect further-more suitable for production of biologicals or viruses including vaccine strains (Marek's disease, infectious bursal disease, Newcastle disease, turkey herpes, chicken anemia, influenza, vaccinia (MVA), rubella, rabies viruses, etc.) and recombinant viral vectors (e.g. recombinant MVA or alphaviruses). Most preferred viruses for vaccination are MVA and influenza viruses. The most preferred recombinant viral vector is MVA.
[0065] In one aspect of embodiment (1) the cell line is cell line 12A07-A10 (DSM ACC2695) derived from immortalization of duck extraembryonal membrane cells with plasmid 49E (example 2).
[0066] Furthermore preferred is the generation of the cell lines according to embodiment (1) under cGMP conditions which renders them suitable for pharmaceutical application.
[0067] The method of embodiment (2) preferably comprises non-viral transfection of the starting cell such as listed above. Most preferred is liposomal transfection, especially transfection by the Effectene reagent.
[0068] A preferred use according to embodiment (3) is the use for the preparation of a vaccine or for gene therapy. A viral vaccine strain or gene therapy vector is brought into contact with cells of a cell line according to embodiment (1) so that infection occurs and the virus is amplified by said cells. Continued passaging of virus (repeated cycles of infection and harvest of virus on said cells) will lead to attenuation or adaptation of virus to this particular host cell line. Thus, a viral vector or vaccine strain with lesser virulence for the intended vaccinee (which is not duck, preferably not avian) is generated. Attenuated viruses allow the immune system of the vaccinee to launch a response that is more protective than vaccination with fully inactivated particles, and that is less severe than infection with a wildtype (natural) pathogen. The preferred viruses for this embodiment are measles and rabies viruses.
[0069] The method for producing viruses according to embodiment (4) preferably comprises the contacting of said viruses with a cell line according to embodi-ment (1) and/or the cultivation of said viruses on said cell line. Especially, this method can be used for producing a pox virus, preferably strain MVA, in a duck cell line, preferably a cell line originating from duck somites or duck neuronal tissue, even more preferred from duck retina. Especially duck retina and somite-derived cells obtained by transfection of Ad5-E1 region under cGMP conditions stably support amplification of MVA with an efficiency comparable to or better than primary chicken embryonic fibroblasts (Example 5).
[0070] The method for producing biologicals, especially recombinant proteins, according to embodiment (4) comprises the introduction of a gene coding for a recombinant protein, operably linked to a promoter into a cell line according to embodiment (1), cultivating said modified cell line and harvesting the recombinant protein.
[0071] The method of embodiment (4) is used preferably for the production of viruses and biologicals usable for vaccination or gene therapy.
[0072] Historically, chicken eggs and the respective cells (chicken fibroblasts) are the dominating substrate for the manufacturing of vaccines. For pharmaceutical purposes chicken are available from pathogen-controlled environments with an extensive monitoring system. A large body of literature suggests chicken eggs as the primary target for cell line development. Therefore, chicken cells are one preferred source for starting cells of the invention. However, chicken-derived cells and cell lines will be most likely RT positive. Literature data suggest a low risk for release of infectious virus. However, the absence of transmissible virus will have to be monitored for any cell line to be used in manufacturing. Indeed, most of the avian cell lines established so far are originating from chicken (U.S. Pat. No. 5,830,723, U.S. Pat. No. 5,879,924). Although it was possible to breed a chicken lineage (line 0) free of avian leucosis virus, endogenous avian retroviruses (EAV-HP) (Boyce-Jacino et al., J. Virol 66(8):4919-29 (1992)) are present in chicken cells including line 0. EAVs provide an active reverse transcriptase, but expression levels vary substantially. Therefore, even primary chicken cells and cell lines such as DF1 that tested RT negative in less sensitive assays (Crittenden et al., Virology 57(1):128-38 (1974)) presumably will test positive in modern real time PCR approaches and may harbor retroviruses that are activated under certain growth conditions.
[0073] Alternatively preferred avian species of this invention for cell line development are those which do not contain endogenous retroviruses or express reverse transcriptase (RT). This includes ducks, which are suitable for two additional reasons: Duck eggs are also available from pathogen free monitored stocks and ducks are, in contrast to geese, less likely to develop spontaneous tumors. While it is known that many of the relevant vaccine strains replicate well in duck (embryonal) cells as they do in chicken (embryonal) cells (e.g. Marek's disease virus (Witter, R. L., Avian Dis. 46:925-37 (2002)) or rubella (Rocchi, G., Salvador', A., Nuovi Ann. Ig Microbiol. 21:336-40 (1970))), this remains to be shown for virus strains of primary interest. For other vaccines such data is not available.
[0074] To our knowledge it is a novel and unexpected finding of this invention that the highly attenuated pox virus strain MVA (modified vaccinia Ankara) replicates in duck cell lines at similar or higher efficiencies than in commonly used primary chicken embryonic fibroblasts. One intention of the inventors was to provide a safe and robust alternative to primary cells for amplification of viruses that require an avian host, or vaccine strains where a non-mammalian host is preferred. An important virus for which convenient host cells are not available is MVA (modified vaccinia virus Ankara). MVA is a highly attenuated pox virus and an extremely promising tool for therapeutic and protective vaccine applications. MVA will serve as a model virus for characterization of duck cells but should not be taken as an exclusive example: the described experiments can also be performed with a range of other viruses, whether pathogens or therapeutic vectors, such as measles, rubella, rabies, or influenza viruses.
[0075] Fibroblasts have been selected as the preferred cell type mainly for historic and practical reasons. Fibroblasts are the fastest growing primary cells from mammalian as well as avian species. When a cell suspension from whole chicken embryos is brought into culture, this is not the only but the predominant cell type. However, fibroblasts grow strongly adherent and loose this feature only after complete (tumorigenic) transformation. This process requires the presence of strong transforming genes such as v-ras interfering with signal transduction pathways. Early senescence of fibroblast cultures is in part caused by the total absence of telomerase activity in birds and man (Forsyth, N. R. et al., Differentiation 69 (4-5):188-97 (2002)).
[0076] Human primary fibroblasts are refractory to transformation with the E1 genes of adenovirus type 5 which do not directly interfere with these pathways (personal observation). Efficient immortalization and growth in suspension culture has a higher chance to succeed for epithelial and neuronal cells. Moreover, epithelia instead of fibroblasts seem to be the primary site for virus replication inside the bird egg. Interestingly, in contrast to the human situation, bird kidney does express telomerase throughout life which makes bird kidney cells a good target for immortalization. Taken together, bird epithelial cells including kidney epithelium and neuronal cells are considered the most promising targets to develop a cell line of the required features.
[0077] It is therefore only for the ease with which fibroblasts are obtained that avian cell line development has almost exclusively focused on these cells (Cowen, B. S., Braune, M. O., Avian Dis 32(2):282-97 (1988); U.S. Pat. No. 5,830,723). In some cases whole embryos have been used (US 2001-0016348).
[0078] Viruses do not only exhibit species but also organ and tissue specificity based on receptor distribution and cellular factors supporting replication. Therefore, in contrast to the typical approach, a preferred way to perform present invention is the separation of organs prior to cultivation to obtain a most preferred host cell.
[0079] For influenza virus, whose vaccine-adequate production is a major application for the cell lines of present invention, the typical site of replication is not the embryo itself but extraembyonic membranes. Therefore, a specific aim was to also develop cell lines from extraembryonic material, including protective membranes of the embryo. Some tissue specific primary cultures including those of the extraembryonic membranes have very short survival times compared to fibroblasts. This further highlights the need for designed immortalization to obtain optimized host cells. Successful immortalization of multiple tissues in a limited time window requires the specific combination of genes used within present invention.
[0080] It was not known which of the avian tissues has the highest replicative potential for pox viruses such as MVA or Canarypox. The typical manufacturing process for MVA involves a mixture of cells from an embryo excluding the head which is removed prior to disintegration. It is therefore completely unexpected that a cell line of neuronal origin, developed from the retina, has such a high capacitiy for MVA replication whereas other tissues have not.
[0081] The same tissue specificity applies to protein production. The transcriptional capacity is dependent on the available set of transcription factors and even strong ubiquitous viral and cellular promoters exhibit variable strength in different tissues. Moreover, yields of secreted protein strongly depend on the capability of a particular cell type to fold and process (e.g. glycosylate) the protein properly.
[0082] The mechanisms leading to immortalization and transformation of primary cells have been well described (Hahn, W. C. et al., Nature 400:464-8 (1999)). Required elements interfere with (1) control of cell cycle progression, (2) programmed cell death induced by the deregulated cell cycle, (3) growth factor signal transduction and for human and avian cells (4) shortening of the telomeres, the linear termini of the chromosomes. A large number of factors are known that can drive primary cells to an immortalized and transformed phenotype but immortalization comes at the cost of inhibiting cellular checkpoints that are responsible to minimize tumor formation in the host. It is therefore desired to select transforming factors that can effect experimental generation of a cell line but pose a minimal risk of tumor induction in the recipients of biologicals derived from the designer cells. This requirement needs to be balanced with the strength of the transforming factors: they should be strong enough to cause transformation without the need for accumulation of additional spontaneous mutations; that is, the molecular pathway leading to the resulting cell line should be known completely (categories I and II according to the FDA CBER Office of Vaccine's presentations at the May 2000 Advisory Committee). It is furthermore desired to select a synergistic combination of factors that individually cannot transform primary cells so that a concurrent transfer of genetic material is required which further minimizes the risk of inadvertent transformation in vaccinees or patients. Finally, it is desired that the transforming factor elicits an immune response in the recipient of biologicals so that immune tumor surveillance is activated in the unlikely event of tumor formation due to product application. The last criterion can be realized if non-cellular but foreign, for example viral, transforming proteins are utilized.
[0083] It was now found that the E1 region from human adenovirus 5 (Ad5) is ideally suited to transform avian cells so that the resulting designer cell complies with all of the above criteria.
[0084] The E1B region encodes two open reading frames on a bicistronic mRNA, the 21K and 55K proteins. The 55K protein binds to p53 and thus turns the pro-apoptotic transcriptional activator into a repressor. The 21K protein comple-ments this anti-apoptotic activity by binding to Bax, thus maintaining integrity of the mitochondrial membrane and preventing the release of cytochrome C. This protein is essential to drive adherent cells towards substrate independent growth and hence is essential to a fermentation process in suspension.
[0085] It has not been shown before whether human adenovirus E1B 55K can affect the avian homologues of p53. Furthermore, the avian adenoviruses are not equipped with genes resembling E1B so that inference also was not possible. Contrary to all expectations, the inventors have found that E1B can provide the essential functions to allow immortalization by E1A.
[0086] A novel and crucial factor for the here described achievement was removal of E1B from its weak natural context and placement under control of a strong, recombinant promoter. This novel modification and combination allowed efficient immortalization of multiple tissues from duck and chicken by transfection instead of retroviral transduction.
[0087] Although the underlying mechanism for transformation by E1 is complex one hallmark is a most desirable feature: E1A is a strong inducer of cell proliferation and apoptosis whereas E1B proteins efficiently interfere with apoptosis but cannot release restriction on cell cycle control.
[0088] Hence, not a single factor but the continuous presence of E1A and E1B proteins are required to sustain the experimentally induced transformed phenotype.
[0089] Since the description of v-src in the 1970s (Brugge, J. S., Erikson, R. L., Nature 269:346-8 (1977)) a panoply of transforming factors have been discovered and characterized. Indeed, it was the study of induction of tumors in birds by alpharetroviruses that provided first molecular insights (Martin, G. S., Nature 227:1021-3 (1970)). The retroviral oncogenes are derived from cellular genes with essential regulator domains mutated or deleted. Some of the factors that have been identified in the course of these studies, such as v-myc or v-ras, directly affect components of the RB and p53 pathways. Other proteins, such as v-src or v-erbB, are constitutively activated (hence, dysregulated) signal transducers that mimic impinging extracellular mitogens. The problem with these factors is that they target only one of several pathways required for efficient transformation. The presence of v-src or v-myc predisposes the cell for transformation and requires additional, spontaneous and unpredictable alterations within the cell for full transformation. The risks for the patient posed by cells transformed with one of the retroviral oncogenes therefore is difficult to estimate.
[0090] Other DNA viruses such as papillomaviruses and polyomaviruses are also known to transform cells in vitro. However, the selected transgenes should not be too aggressive to minimize the risk of tumor induction in the recipients of biologicals via inadvertently transferred cellular DNA. This criterion is especially stringent for vaccine production where a healthy population often is inoculated at a very young age. Even with sophisticated modern purification methods polyomavirus Large-T antigen is considered too aggressive for use in cell lines generated for application in human medicine. Whereas 90% of cervix carcinomas carry papillomavirus sequences (Munoz, N. et al., N. Engl., J. Med. 34816):518-27 (2003)) C-type adenoviruses (which include type 2 and type 5) are not considered to induce tumors in vivo and adenoviral have not been detected in human tumor tissue.
[0091] Based on the complementary features of the transforming genes shown above, it was found that a combination of genes each interfering with single pathways in the cell cycle and apoptosis is necessary to obtain a genetically stable cell line growing in suspension.
[0092] It was shown that the complete E1 region of adenovirus 5 can fulfill these requirements. Whereas it was shown, that the 12S protein of E1A from Ad5 can interact with avian RB (Guilhot, C. et al., Oncogene 8:619-24 (1993)) the functional activity of 55K and 21K proteins in avian cells is demonstrated for the first time in present invention. It is not surprising that some clones of quail cells expressing the 12S protein of E1A exhibit transformed features (Guilhot, C. et al., Oncogene 8:619-24 (1993)). The extremely efficient and stable transduction via retrovirus infection creates a large enough cell pool to allow individual cells to overcome the cell cycle block or induction of apoptosis by spontaneous genomic changes. These required but unknown changes increase the medicinal risk and the resulting cell line can not be considered a designer cell line, which should be based on known genes. Moreover, transfection techniques are not sufficient to create the large clone pool required for natural selection. Instead retrovirus transduction was required. The transforming gene introduced via this approach will be flanked by ITRs and can, therefore, be mobilized, even more in a cell line expressing reverse transcriptase.
[0093] Recently, an avian adenovirus, termed fowl adenovirus type 1 strain CELO (for chick embryo lethal orphan), has been described in greater detail (Chiocca, S. et al., J. Virol. 70:2939-49 (1996)). Large, central genomic stretches of CELO are homologous to Ad5 but differ in important aspects--among others, CELO is not equipped with an E1-homologous region. Furthermore, CELO cannot complement Ad5 mutagenized in E1A and, conversely, Ad5 E1 proteins cannot trans-activate transcription of delayed-early CELO genes (Li, P. et al., J. Gen. Virol. 65(Pt 10):1817-25 (1984)). And yet, CELO is capable to transform hamster cells in vitro (May, J. T. et al., Virology 68:483-9 (1975)). Genes interfering with cell cycle and apoptosis, orf22 and GAM-1, have been identified in the CELO virus (Lehrmann, H., Cotton, M., J. Virol. 73:6517-25 (1999)). orf22 encodes a protein that interact with RB, and GAM-1 interferes with apoptosis in a fashion similar to the prototypical 21K protein (Chiocca, S. et al., J. Virol. 71:3168-77 (1997)).
[0094] It was now found that the genes orf22 and GAM-1 from CELO virus are suitable substitutes for E1A and E1B. The spectrum of available transgenes for transformation of avian cells is therewith expanded. These proteins have not been used previously to transform avian cells.
[0095] Furthermore, one of the viral genes may be replaced by a cellular gene. Candidates for such replacement are E2F family members or D group cyclins for the E1A region of adenovirus and mdm2 for the E1B region.
[0096] The following cell lines were deposited at the DMSZ, Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH, Mascheroder Weg 1b, 38124 Braunschweig, Germany:
1. PBG04 as DSM ACC2577, deposited on Sep. 18, 2002; 2. 12A07-A10 as DSM ACC2695, deposited on Oct. 20, 2004.
[0097] The invention will be explained in more detail by reference to the following Examples, which are, however, not to be construed as to limit the invention.
EXAMPLES
Example 1
Immortalization of Primary Duck Cells with Adenovirus 5 E1A,B
[0098] The adenovirus sequences for E1A and E1B were amplified from the culture of passage 8 of the first generation (E1 deleted) adenovirus Admuc grown in HEK 293 which was heavily contaminated with wild type virus using provestart polymerase (Qiagen).
[0099] The following primers were used:
TABLE-US-00002 (SEQ ID NO: 1) VS182 ACTCGAGCTGACGTGTAGTGTATT (SEQ ID NO: 2) VS183 CACACGCAATCACAGGTT
to amplify the E1 A region and
TABLE-US-00003 (SEQ ID NO: 3) VS184 ACTCGAGTCATGGAGGCTTGGGAGT (SEQ ID NO: 4) VS185 ACACATTTCAGTACCTCA
to amplify the E1 B region. Both fragments were first cloned into pPCR4blunttopo (Invitrogene).
[0100] The E1B construct misses the splice acceptor from the E1B message. It was therefore replaced by a synthetic one amplified using primers from the leader intron of a human immunoglobulin heavy chain. As template, the genomic DNA from PBG04 (DMSZ ACC2577), a murine-human heterohybridoma was used.
Primers:
TABLE-US-00004 [0101] (SEQ ID NO: 5) VintSA-F AAGGTACCCTCCCTAGTCCCAGTGA (SEQ ID NO: 6) VintSA-R CAATGTACAGAGTG GGCTCCTGTGG
[0102] This splice acceptor was directly cloned into pEFmyc, containing aEF1 alpha promoter and the myc leader peptide to create fusion proteins. The E1A region was removed from ptopoE1A using EcoR I and Xho I sites and cloned into pEFmyc directly, removing the myc leader sequence and fusing the E1A to the bovine growth hormone poly A. The E1B region was again removed with EcoR I and Xho I restriction enzymes and cloned into pEFmycSA containing the heterologous splice acceptor site. The resulting plasmids were named pEFAd5E1A (SEQ ID NO:7) and pEFAd5E1BSA (SEQ ID NO:8).
[0103] Embryonated duck eggs were incubated at 37° C., 60% air humidity, for 12 days (older embryos yielded more cells but also contained a higher number of contaminating, differentiated fibroblasts). The shell was sterilized with 70% isopropanol, opened at the large end, and the embryo was removed aseptically to a sterile petri dish. The fetal brain and kidneys were removed, transferred to separate petri dishes filled with trypsin/EDTA and minced. After a brief incubation a suspension thereof was mixed with an excess of F12 medium (Gibco/Invitrogen) supplemented with 10% fetal calf serum (Biochrom) and 2% Ultroser G (Ciphergen). This suspension was transferred into a petri dish and cultivation was performed at 37° C. (which is lower than the 41.6° C. physiological temperature of chicken) and 5% CO2. The culture medium with non-adherent debris was replaced the following day and cultivation continued until at least 5×105 cells per 3.5 cm dishes were available for transfection of plasmids pEFAd5E1A and pEFAd5E1BSA.
[0104] Initial experiments comparing liposomal (Effectene; Qiagen) and dendromeric (Polyfect; Qiagen) transfection reagents suggested best efficiencies with Effectene. Transfection there was performed using the Effectene reagent; briefly: 2 μg of plasmid DNA was diluted in 200 μl EC Buffer containing 16 μl Enhancer. After an incubation time of 5 min, 16 μl Effectene was added. After an incubation time of 10 min, supernatant was removed from the culture in 3.5 cm dishes and replaced with 1 ml fresh medium containing the transfection mix. After an incubation time of 2 hours at 37° C. and 5% CO2, additional 2.5 ml fresh medium was added to the culture.
[0105] The transfected cells were allowed to reach confluency, trypsinated, resuspended in FCS/Ultroser G-supplemented F12 medium, and re-seeded into two 6 well plates (corresponding to a 12-fold expansion). After 5 and 10 days, the medium was replaced with F12 supplemented only with 5% FCS. The plates were scanned for the appearance of foci of cells with changed morphology (decrease in overall cell size, increased size of nucleus, increased visibility of plasma membranes under phase contrast) and increased confluency.
[0106] Approximately 14 days post transfection, once the foci reached a diameter of 1-3 mm the medium was aspirated and the culture washed twice with trypsin/EDTA (Gibco). Trypsin-soaked cloning disks (Sigma) were placed on top of the aspirated foci for 3 min, then transferred into wells of a 24-well plate filled with 500 μl of F12 medium supplemented with 5% FCS.
[0107] The cloned, transformed cells were allowed to proliferate until confluency, trypsinized, resuspended in F12 medium supplemented with 5% FCS and transferred into 6-well plates. Once the culture reached confluency in the 6-well plate the cells were transferred to T25 flasks for continuous passaging.
[0108] For cryopreservation at defined intervals cells were trypsinized, resuspended in F12 medium containing 5% FCS, collected by centrifugation at 100 g for 10 min, resuspended in F12 medium containing 50% FCS and 10% DMSO (Sigma) to a concentration of approximately 3×106 cells per ml, and placed in cryovials in an isopropanol-based cooling device at -75° C. The cooling device ensures a constant cooling rate of 1° C. per min. After 24 hours the cells were transferred to liquid nitrogen for permanent storage.
Example 2
Improved Preparation of Immortalized Avian Cell Lines
a) Preparation of Primary Cells
[0109] The flock of origin for the duck eggs was certified to be free of Salmonella enteritidis and S. typhimurium; Mycoplasma gallisepticum and M. synoviae; cases of leucosis, reticulo-endotheliosis, psittacosis, avian influenza, duck hepatitis, and Derzsy's disease. The animals intentionally were not vaccinated against parvovirus and no cases of parvovirosis were detected. Animals in the flock of origin have been vaccinated against S. enteritidis and S. typhimurium; Pasteurella multicodica; the metapneumovirus Turkey rhinotracheitis; and the paramyxovirus causing Newcastle disease.
[0110] The eggs were allowed to equilibrate without agitation at room temperature and after two days were incubated at 38° C. in a damp chamber, rotated frequently by alternating +45° and -45°.
[0111] Duck embryos were sacrificed for isolation of primary cells after one or three weeks of incubation. Eggs were transferred to a cGMP unit (a closed laboratory performing as outlined by the Current Good Manufacturing Practices) and the shell was sterilized by wiping with 70% isopropanol under a laminar flow hood. All subsequent steps were performed in the GMP unit under sterile conditions with defined solutions or media.
[0112] Eggs were opened carefully, embryos transfered to a large petri dish and killed immediately by decapitation. Samples from the following organs were removed: brain, retina, liver, esophagus, heart, and extra-embryonic membranes.
[0113] In addition, cells from somites were prepared from an 8-day-old embryo.
[0114] All samples were rinsed with PBS (phosphate buffered saline; Gibco/Invitrogen, USA), treated with trypsin (Gibco/Invitrogen, USA) for 1 to 10 min, and triturated in DMEM:F12 culture medium (Gibco/Invitrogen, USA) supplemented with 10% FCS (Biochrom AG, Germany) by repeated passaging through an 18G syringe. The homogenized samples were cultivated at 37° C. and 5% CO2. Debris was removed from adherent cells by change of medium the following day.
b) Plasmid Constructions
[0115] Expression plasmids for E1A, E1B, Orf22, and Gam1 were constructed by extraction of the relevant target regions from the genomic DNA of adenovirus serotype 5 or chicken embryo lethal orphan (CELO) wildtype virus, respectively, by PCR and insertion into vectors equipped with human or mouse phosphoglycerate kinase (hPGK or mPGK), mouse CMV (moCMV) or tk promoters (FIG. 1).
[0116] The adenovirus sequences for E1A and E1B were amplified from wild type virus using ProofStart polymerase (Qiagen, Germany). The following primers were used:
TABLE-US-00005 (SEQ ID NO: 1) VS182 ACTCGAGCTGACGTGTAGTGTATT (SEQ ID NO: 2) VS183 CACACGCAATCACAGGTT
to amplify the E1 A region and
TABLE-US-00006 (SEQ ID NO: 3) VS184 ACTCGAGTCATGGAGGCTTGGGAGT (SEQ ID NO: 4) VS185 ACACATTTCAGTACCTCA
to amplify the E1 B region. Both fragments were first cloned into pPCR4-Blunt-TOPO (Invitrogene, USA).
[0117] The E1B construct misses the splice acceptor from the E1B message. It was therefore replaced by a synthetic one amplified using primers from the leader intron of a human immunoglobulin heavy chain. As template, the genomic DNA from PBG04 (DMSZ ACC2577), a murine-human hetero-hybridoma was used.
Primers Used for Amplification:
TABLE-US-00007 [0118] (SEQ ID NO: 5) VintSA-F AAGGTACCCTCCCTAGTCCCAGTGA (SEQ ID NO: 6) VintSA-R CAATGTACAGAGTGGGCTCCTGTGG
[0119] The genes GAM-1 and ORF-22 were amplified from wild type CELO virus with primers
TABLE-US-00008 (SEQ ID NO: 11) V206 AAC CTC GAG ACC CCC CTG TAC ATT CTA and (SEQ ID NO: 12) V207 GCC GTT AAC TTC AGG GAT TGG TTA CAG, and (SEQ ID NO: 13) V208 CAC CTC GAG TCC GGA TTA AGA TGA ACG and (SEQ ID NO: 14) V209 CCA GTT AAC AGG TGA ACC ATT TAT ACA G,
respectively.
[0120] Representative examples for the resulting plasmids are given with plasmid 49E (adenoviral factors under control of human PGK and mouse CMV promoters; SEQ ID NO:9), plasmid 25F (CELO factors under control of mouse and human PGK promoters; SEQ ID NO:10), plasmid 60E (adenoviral factors under control of human PGK and tk promoters; SEQ ID NO:18) and plasmid 36E (CELO factor under control of mouse PGK promoter; SEQ ID NO:19) (see also FIG. 1).
[0121] Integrity of the expression plasmids was confirmed by sequencing. The plasmids are not equipped to express resistance factors against antibiotics (such as ampicillin) in eukaryotic cells.
c) Transfection
[0122] Primary cultures were transfected with expression plasmids for E1 or Orf22/Gam1 shortly after isolation or after single subcultivation. Depending on the experiment, plasmids were transfected as supercoils or after linearization with the Sca I (New Englands Biolabs, USA) restriction enzyme. Initial experiments comparing liposomal (Effectene; Qiagen, Germany) and dendromeric (Polyfect; Qiagen, Germany) transfection reagents suggested best efficiencies with Effectene. Transfection was performed as follows: 2 μg total DNA was diluted into 200 μl provided EC buffer and mixed with 16 μl provided enhancer. After an incubation for 2-5 min at room temperature 20 μl Effectene reagent was added. After 5-10 min at room temperature this mixture was applied to the cells in a 8 cm2 dish under 1 ml culture medium. After 2-5 hours an additional 1.5 ml culture medium was added. On the following day, the medium was replaced with 2 ml fresh culture medium, and thereafter once per week. Successful transfection was confirmed in parallel experiments with a reporter gene.
[0123] The cells were continously passaged in DMEM:F12 medium containing 10% FCS.
[0124] Twenty days after transfection changes of morphology in defined subpopulations (foci; FIG. 2) of some cultures were observed; in other cultures foci did not appear or were not able to compete with robust proliferation of the primary cells; again other cultures suffered massive cell death and senescence shortly after transfection.
[0125] A large number of independent foci were expanded from plasmid 49E-transfected cultures with cells derived from liver, retina and extra-embryonic membrane. At passage 10, e.g., cell line 12A07-A10 derived from duck extraembryonal membrane cells transformed with plasmid 49E was isolated and deposited at the DSMZ.
[0126] Foci were also obtained from plasmid 60E-transfected cultures with cells from retina and somites.
[0127] In plasmid 49E, PGK and mouse CMV promoters drive expression of E1A and E1B, respectively. Plasmid 60E (SEQ ID NO:18) also encodes the full Ad5-E1 region but expression of the protective E1B region is driven by tk, i.e. a promoter that is not as strong as the mouse CMV promoter (but stronger than the native E1B promoter). Consistent with the protective effect conferred by E1B far fewer foci in fewer cell samples were obtained with this construct when compared to the results with plasmid 49E.
[0128] Formation of foci with both primary cell appearance and transformed phenotype was also observed in cultures of liver transfected with CELO plasmids 36E (SEQ ID NO:19) and 25F (SEQ ID NO:10).
[0129] Cultures with foci were expanded by treatment with trypsin for 2-3 min and resuspension in DMEM:F12 medium for transfer to fresh culture vessels.
[0130] For cryopreservation at regular intervals cells were removed with trypsin, resuspended in DMEM:F12 medium containing 10% FCS, collected by centrifugation at 200×g for 10 min, resuspended in DMEM:F12 medium containing 50% FCS and 10% DMSO (Sigma, USA) to a concentration of approximately 3×106 cells per ml, and cooled with a rate of 1° C. per min to -80° C. After 24 hours, the cells were transferred to liquid nitrogen for permanent storage.
Example 3
Immunofluorescence Assay for Stable Transfection
[0131] Cultures of potentially immortalized cells were seeded on glass slides and allowed to proliferate for several days before fixation with ice-cold methanol for 10 min. The fixed cells were incubated with antibodies against E1A and E1B 55K proteins, condary antibodies, and fluorescent dye specific against the latter according to standard immunofluorescene methods (Becton Dickinson, UK, #554155 antibody against E1A, diluted 1:30; Oncogene, USA, #DP08-100UG antibody against E1B 55K, diluted 1:30; secondary antibody directed against mouse or rat, respectively, and conjugated to biotin, both from Jackson Immuno Research, USA, diluted 1:80; visualization with Jackson Immuno Research, USA, #016-070-084 streptavidin-Texas Red conjugate, diluted 1:100). Primary cells still abundant in early, not yet fully established immortalized cell lines and readily distinguishable by morphology provided a convenient internal negative control for antibody specificity. 293 cells (human embryonic kidney cells) that stably express the Ad5 E1-region served as positive control. DAPI (4',6-diamidino-2-phenylindol; Sigma, USA) to 1 μg/ml was added in the final incubation step to stain the nuclei of the cells for orientation purposes.
[0132] A strong signal for E1A and 55K was observed only in cells that underwent characteristic changes in morphology confirming successful immortalization by the transfected plasmids (FIG. 3). Furthermore, spontaneous transformation, a formal possibility, was not observed as all cells with altered phenotype were E1-positive. None of the cells with primary phenotype expressed E1-proteins. Although possible in transfections of supercoils where the linearization of plasmid in the process of integration occurs at random positions none of the examined foci exhibited E1A expression in absence of E1B expression, further emphasizing the requirement for dual pathway disruption for immortalization.
Example 4
Assay for Endogenous and Exogenous Retroviruses
[0133] A common problem encountered when vaccines are produced in primary chicken fibroblasts is contamination with exogenous or endogenous retroviruses. The diversity of the retrovirus family is too complex to predict whether a given species is a carrier for retroviruses. Reports from the literature therefore usually are limited to a subset of the retrovirus family, for example EAV-HP/ALV subgroup J (Smith, L. M. et al., J. Gen. Virol. 80(pt1):261-8 (1999)), and then only to a subset of avian species.
[0134] A reliable confirmation of contamination with retroviruses therefore should focus on a common motif present in these viruses. Sequence diversity precludes nucleic acid-based detection methods. However, common to all retroviruses is the presence of the reverse transcriptase enzyme. The supernatant of expanded foci from duck liver cells immortalized with plasmid 49E was therefore assayed by quantitative probe-based product enhanced PCR for reverse transcriptase (Q-PERT) and compared to several controls, inter alia CHO as positive control and 293 cells as negative control (see below and FIG. 4), to detect both endogenous retroviral activity or contamination with free retroviruses. The assay is a modification from the literature (Lovatt, A. et al., J. Virol. Methods 82(2): 185-200 (1999)). Briefly: retroviruses were enriched from culture supernatant by ultracentrifugation with 100000×g through a barrier of 20% sucrose in PBS to remove cellular debris. Virions (if present) were resuspended into lysis buffer (50 mM Tris pH 7.8, 80 mM KCl, 2.5 mM DTT, 0.75 mM EDTA, 0.5% Triton X-100) and mixed with substrate buffer (10 mM each of dATP, dCTP, dGTP, and dTTP; 15 μM specific primer [GCC TTT GAG AGT TAC TCT TTG; SEQ ID NO:15]; and 0.5 mg/ml fragmented herring sperm DNA [Promega Corp, #D1811]) containing a model RNA (5 μg/ml Brome Mosaic Virus RNA [Promega Corp, USA, #D1541]) that is reverse transcribed if RT activity is present in the sample. cDNA from the model RNA is amplified by PCR with primers (MA CAC TGT ACG GCA CCC GCA TT; SEQ ID NO:16) and (GCC UT GAG AGT TAC TCT TTG; SEQ ID NO:17) and detected via SYBR green fluorescence in an AB 7000 Sequence Detection System using the QPCR SYBR Green ROX Mix #AB-1163 from Abgene, UK, according to the instructions of the manufacturer.
[0135] FIG. 4 demonstrates strong RT activity in CHO cells as expected from reports in the literature (for example, Anderson, K. P. et al., Virology 181(1): 305-311 (1991)). With these cells as positive control and human 293 cells free of retroviral activity as negative control a bracket is defined that allows interpretation of unknown RT activity in the supernatant of cell cultures (FIG. 4, bold squares and bold triangles).
[0136] We found moderate RT-activity in chicken embryo fibroblasts (FIG. 4, bold diamond symbols).
[0137] The signal for RT activity in the duck cell supernatant was congruent with the signal for RT activity in 293 cells, and both again congruent with a control representing the detection limit for our assay consisting of model RNA not incubated with RT (FIG. 4, compare curves with open and bold triangles and grey circles). Equivalent levels of signal intensity (delta Rn) were separated by at least two cycle numbers between samples from CHO cells and chicken embryo fibroblasts (that for these experiments are derived from a source known to be only weakly RT-positive) and by at least four cycle numbers between samples from CHO cells and the 293 negative control and the duck cell culture. Thus, contrary to chicken cells the described duck cells do not exhibit RT activity and thus fulfill an essential attribute for suitability in pharmaceutical applications.
Example 5
Modified Vaccinia Virus Ankara (MVA)
[0138] Suitability of the expanded foci as substrate for amplification of MVA was determined for liver, retina, somites and extra-embryonic membrane lines. Table 1 and FIG. 5 show results obtained by infection of the cell lines with an inoculum prepared from a large scale preparation of MVA (ATCC #VR-1508) on CEFp, primary chicken embryonic fibroblasts. The data in the table obtained by infection with an MOI (multiplicity of infection or number of infectious particles per host cell) of 0.1 demonstrates that viral output of retina and somite cells (in plaque forming units per ml) are comparable to or even exceed the output obtained with CEFp cells.
TABLE-US-00009 TABLE 1 Comparison of virus titers obtained in parallel infections of 1 to 5 × 105 cells in cavities of 24-well plates. MVA yield in pfu/ml (after 48 h, infection with MOI of 0.1) CEFp 3.54 × 107 retina 2.06 × 107 liver 3.20 × 104 somite 4.60 × 107 membrane 4.03 × 103 Input virus was adjusted for an MOI of 0.1. CEFp, fresh primary chicken embryonic fibroblasts; membrane, extra-embryonic membrane.
[0139] Plaque-forming units for MVA on duck cells were determined as follows: MVA virus was recovered from infected cells after 48 hours from the supernatant and from adherent cells opened by repeated freeze-thawing. VERO (African green monkey kidney) cells were seeded in 96 well plates (2×104 cells per well) and infected with serial 10-fold dilutions of MVA-containing suspension on the following day. Two days thereafter, the cultures were fixed with methanol and infected cells incubated with polyclonal vaccinia virus antibodies (Quartett, Germany, #9503-2057, at 1:1000 dilution in PBS containing 1% fetal calf serum) for 1 hour at 37° C. Two wash steps were performed with PBS containing 0.05% Tween 20 (Sigma Corp, USA) and secondary antibody to the vaccinia-specific antibody is added at 1:1000 dilution in PBS containing 1% fetal calf serum. This secondary antibody is coupled to the peroxidase enzyme that catalyzes a color reaction upon incubation with AEC reagent (3-amino-9-ethyl-carbozole; 0.3 mg/ml in 0.1 M acetate buffer pH 5.0 containing 0.015% F602). Infected foci are identified by light microscopy and plaque forming units are calculated from the maximum dilution of MVA suspension that yields a positive dye reaction.
[0140] FIG. 5 depicts the output of virus per cell. The output of virus per cell correlates with permissiveness of a given host cell for a particular virus. Permissiveness is influenced by biochemical properties such as receptor density or efficiency of processing of viral structural proteins. FIG. 5 demonstrates that the number of infectious particles released per retina cell or per somite cell compares favourably with the obtained infectious particles per chicken embryonic fibroblast.
[0141] Division of "output virus per cell" by the "MOI" yields the burst size, the ratio of input virus to output virus. Burst size is equivialent to amplification of virus and thus important to estimate cost and required resources for large scale production. The determined burst sizes in the described example are 374 for CEFp, 513 for retina cells, and 1108 for somite-derived cells. Retina cells and somite cells yield better values than fresh primary chicken embryo fibroblasts and thus should provide superior substrates for large scale production of MVA.
[0142] The unsatisfactory results for MVA amplification obtained with cells derived from liver or extra-embryonic membrane cannot be extended to other virus families: it is evident to one familiar with the art that amplification of other viruses, for example vaccine-relevant influenza viruses; may be extremely successful on these cells.
[0143] It is conceivable that with subsequent passaging of virus on a given host cell the output titer decreases. Such events may occur if host cells support most but not all steps in the various stages of the infectious cycle. To address this question serial passage of MVA was performed on duck retina cells transformed with plasmid 49E. The data in FIG. 6 demonstrate that MVA is not lost with passaging on these cells: at similar levels of input virus adjusted to an MOI of 0.3 (given by bars in FIG. 6) the burst size (bold squares) increases nine-fold from 35 to 315. The reason for the increase in burst size may be due to to improved properties of the host cell as passage number increases.
[0144] In conclusion, duck retina and somite-derived cells obtained by transfection of Ad5-E1 region under cGMP conditions stably support amplification of MVA with an efficiency comparable to or better than primary chicken embryonic fibroblasts. Due to the highly attenuated nature of MVA conventional cell lines for large-scale production of viruses are not suitable. It is a surprising finding that designed duck cell lines performed better than primary chicken cells in propagation of MVA and thus are able to provide novel production platforms for this important vaccine candidate. The described cell lines were generated under cGMP conditions and are therefore suitable for pharmaceutical application.
Sequence CWU
1
19124DNAArtificial SequenceDescription of Artificial Sequence Primer
VS182 1actcgagctg acgtgtagtg tatt
24218DNAArtificial SequenceDescription of Artificial Sequence Primer
VS183 2cacacgcaat cacaggtt
18325DNAArtificial SequenceDescription of Artificial Sequence
Primer VS184 3actcgagtca tggaggcttg ggagt
25418DNAArtificial SequenceDescription of Artificial
Sequence Primer VS185 4acacatttca gtacctca
18525DNAArtificial SequenceDescription of
Artificial Sequence Primer VintSA-F 5aaggtaccct ccctagtccc agtga
25625DNAArtificial
SequenceDescription of Artificial Sequence Primer Vint SA-R
6caatgtacag agtgggctcc tgtgg
2576471DNAArtificial SequenceDescription of Artificial Sequence Plasmid
pEFAd5E1A 7gtaccgaatt caagcttcgt gaggctccgg tgcccgtcag tgggcagagc
gcacatcgcc 60cacagtcccc gagaagttgg ggggaggggt cggcaattga accggtgcct
agagaaggtg 120gcgcggggta aactgggaaa gtgatgtcgt gtactggctc cgcctttttc
ccgagggtgg 180gggagaaccg tatataagtg cagtagtcgc cgtgaacgtt ctttttcgca
acgggtttgc 240cgccagaaca caggtaagtg ccgtgtgtgg ttcccgcggg cctggcctct
ttacgggtta 300tggcccttgc gtgccttgaa ttacttccac ctggctccag tacgtgattc
ttgatcccga 360gctggagcca ggggcgggcc ttgcgcttta ggagcccctt cgcctcgtgc
ttgagttgag 420gcctggcctg ggcgctgggg ccgccgcgtg cgaatctggt ggcaccttcg
cgcctgtctc 480gctgctttcg ataagtctct agccatttaa aatttttgat gacctgctgc
gacgcttttt 540ttctggcaag atagtcttgt aaatgcgggc caggatctgc acactggtat
ttcggttttt 600gggcccgcgg ccggcgacgg ggcccgtgcg tcccagcgca catgttcggc
gaggcggggc 660ctgcgagcgc ggccaccgag aatcggacgg gggtagtctc aagctggccg
gcctgctctg 720gtgcctggcc tcgcgccgcc gtgtatcgcc ccgccctggg cggcaaggct
ggcccggtcg 780gcaccagttg cgtgagcgga aagatggccg cttcccggcc ctgctccagg
gggctcaaaa 840tggaggacgc ggcgctcggg agagcgggcg ggtgagtcac ccacacaaag
gaaaagggcc 900tttccgtcct cagccgtcgc ttcatgtgac tccacggagt accgggcgcc
gtccaggcac 960ctcgattagt tctggagctt ttggagtacg tcgtctttag gttgggggga
ggggttttat 1020gcgatggagt ttccccacac tgagtgggtg gagactgaag ttaggccagc
ttggcacttg 1080atgtaattct ccttggaatt tggccttttt gagtttggat cttggttcat
tctcaagcct 1140cagacagtgg ttcaaagttt ttttcttcca tttcaggtgt cgtgaacact
cgagctgacg 1200tgtagtgtat ttatacccgg tgagttcctc aagaggccac tcttgagtgc
cagcgagtag 1260agttttctcc tccgagccgc tccgacaccg ggactgaaaa tgagacatat
tatctgccac 1320ggaggtgtta ttaccgaaga aatggccgcc agtcttttgg accagctgat
cgaagaggta 1380ctggctgata atcttccacc tcctagccat tttgaaccac ctacccttca
cgaactgtat 1440gatttagacg tgacggcccc cgaagatccc aacgaggagg cggtttcgca
gatttttccc 1500gactctgtaa tgttggcggt gcaggaaggg attgacttac tcacttttcc
gccggcgccc 1560ggttctccgg agccgcctca cctttcccgg cagcccgagc agccggagca
gagagccttg 1620ggtccggttt ctatgccaaa ccttgtaccg gaggtgatcg atcttacctg
ccacgaggct 1680ggctttccac ccagtgacga cgaggatgaa gagggtgagg agtttgtgtt
agattatgtg 1740gagcaccccg ggcacggttg caggtcttgt cattatcacc ggaggaatac
gggggaccca 1800gatattatgt gttcgctttg ctatatgagg acctgtggca tgtttgtcta
cagtaagtga 1860aaattatggg cagtgggtga tagagtggtg ggtttggtgt ggtaattttt
tttttaattt 1920ttacagtttt gtggtttaaa gaattttgta ttgtgatttt tttaaaaggt
cctgtgtctg 1980aacctgagcc tgagcccgag ccagaaccgg agcctgcaag acctacccgc
cgtcctaaaa 2040tggcgcctgc tatcctgaga cgcccgacat cacctgtgtc tagagaatgc
aatagtagta 2100cggatagctg tgactccggt ccttctaaca cacctcctga gatacacccg
gtggtcccgc 2160tgtgccccat taaaccagtt gccgtgagag ttggtgggcg tcgccaggct
gtggaatgta 2220tcgaggactt gcttaacgag cctgggcaac ctttggactt gagctgtaaa
cgccccaggc 2280cataaggtgt aaacctgtga ttgcgtgtgg aattctagaa gctcgctgat
cagcctcgac 2340tgtgccttct agttgccagc catctgttgt ttgcccctcc cccgtgcctt
ccttgaccct 2400ggaaggtgcc actcccactg tcctttccta ataaaatgag gaaattgcat
cgcattgtct 2460gagtaggtgt cattctattc tggggggtgg ggtggggcag gacagcaagg
gggaggattg 2520ggaagacaat agcaggcatg ctggggatgg cccgggctct atggcttctg
aggcggaaag 2580aaccagctgg ggctctaggg ggtatcccca cgcgccctgt agcggcgcat
taagcgcggc 2640gggtgtggtg gttacgcgca gcgtgaccgc tacacttgcc agcgccctag
cgcccgctcc 2700tttcgctttc ttcccttcct ttctcgccac gttcgccggc tttccccgtc
aagctctaaa 2760tcggggcatc cctttagggt tccgatttag tgctttacgg cacctcgacc
ccaaaaaact 2820tgattagggt gatggttcac gtagtgggcc atcgccctga tagacggttt
ttcgcccttt 2880gacgttggag tccacgttct ttaatagtgg actcttgttc caaactggaa
caacactcaa 2940ccctatctcg gtctattctt ttgatttata agggattttg gggatttcgg
cctattggtt 3000aaaaaatgag ctgatttaac aaaaatttaa cgcgaattaa ttctgtggaa
tgtgtgtcag 3060ttagggtgtg gaaagtcccc aggctcccca ggcaggcaga agtatgcaaa
gcatgcatct 3120caattagtca gcaaccaggt gtggaaagtc cccaggctcc ccagcaggca
gaagtatgca 3180aagcatgcat ctcaattagt cagcaaccat agtcccgccc ctaactccgc
ccatcccgcc 3240cctaactccg cccagttccg cccattctcc gcccctaggc tgactaattt
tttttattta 3300tgcagaggcc gaggccgcct ctgcctctga gctattccag aagtagtgag
gaggcttttt 3360tggaggccta ggcttttgca aaaagctccc gggaggtcca caatgattga
acaagatgga 3420ttgcacgcag gttctccggc cgcttgggtg gagaggctat tcggctatga
ctgggcacaa 3480cagacaatcg gctgctctga tgccgccgtg ttccggctgt cagcgcaggg
gcgcccggtt 3540ctttttgtca agaccgacct gtccggtgcc ctgaatgaac tccaggacga
ggcagcgcgg 3600ctatcgtggc tggccacgac gggcgttcct tgcgcagctg tgctcgacgt
tgtcactgaa 3660gcgggaaggg actggctgct attgggcgaa gtgccggggc aggatctcct
gtcatctcac 3720cttgctcctg ccgagaaagt atccatcatg gctgatgcaa tgcggcggct
gcatacgctt 3780gatccggcta cctgcccatt cgaccaccaa gcgaaacatc gcatcgagcg
agcacgtact 3840cggatggaag ccggtcttgt cgatcaggat gatctggacg aagagcatca
ggggctcgcg 3900ccagccgaac tgttcgccag gctcaaggcg cgtatgcccg acggcgagga
tctcgtcgtg 3960actcatggcg atgcctgctt gccgaatatc atggtggaaa atggccgctt
ttctggattc 4020atcgactgtg gccggctggg tgtggcggac cgctatcagg acatagcgtt
ggctacccgt 4080gatattgctg aagagcttgg cggcgaatgg gctgaccgct tcctcgtgct
ttacggtatc 4140gccgctcccg attcgcagcg catcgccttc tatcgccttc ttgacgagtt
cttctgagcg 4200ggactctggg gttcgaaatg accgaccaag cgacgcccaa cctgccatca
cgagatttcg 4260attccaccgc cgccttctat gaaaggttgg gcttcggaat cgttttccgg
gacgccggct 4320ggatgatcct ccagcgcggg gatctcatgc tggagttctt cgcccacccc
aacttgttta 4380ttgcagctta taatggttac aaataaagca atagcatcac aaatttcaca
aataaagcat 4440ttttttcact gcattctagt tgtggtttgt ccaaactcat caatgtatct
tatcatgtct 4500gtataccgga tctttccgct tcctcgctca ctgactcgct gcgctcggtc
gttcggctgc 4560ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa
tcaggggata 4620acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt
aaaaaggccg 4680cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa
aatcgacgct 4740caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt
ccccctggaa 4800gctccctcgt gcgctctcct gttccgaccc tgccgcttac cggatacctg
tccgcctttc 4860tcccttcggg aagcgtggcg ctttctcaat gctcacgctg taggtatctc
agttcggtgt 4920aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc
gaccgctgcg 4980ccttatccgg taactatcgt cttgagtcca acccggtaag acacgactta
tcgccactgg 5040cagcagccac tggtaacagg attagcagag cgaggtatgt aggcggtgct
acagagttct 5100tgaagtggtg gcctaactac ggctacacta gaaggacagt atttggtatc
tgcgctctgc 5160tgaagccagt taccttcgga aaaagagttg gtagctcttg atccggcaaa
caaaccaccg 5220ctggtagcgg tggttttttt gtttgcaagc agcagattac gcgcagaaaa
aaaggatctc 5280aagaagatcc tttgatcttt tctacggggt ctgacgctca gtggaacgaa
aactcacgtt 5340aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt
ttaaattaaa 5400aatgaagttt taaatcaatc taaagtatat atgagtaaac ttggtctgac
agttaccaat 5460gcttaatcag tgaggcacct atctcagcga tctgtctatt tcgttcatcc
atagttgcct 5520gactccccgt cgtgtagata actacgatac gggagggctt accatctggc
cccagtgctg 5580caatgatacc gcgagaccca cgctcaccgg ctccagattt atcagcaata
aaccagccag 5640ccggaagggc cgagcgcaga agtggtcctg caactttatc cgcctccatc
cagtctatta 5700attgttgccg ggaagctaga gtaagtagtt cgccagttaa tagtttgcgc
aacgttgttg 5760ccattgctac aggcatcgtg gtgtcacgct cgtcgtttgg tatggcttca
ttcagctccg 5820gttcccaacg atcaaggcga gttacatgat cccccatgtt gtgcaaaaaa
gcggttagct 5880ccttcggtcc tccgatcgtt gtcagaagta agttggccgc agtgttatca
ctcatggtta 5940tggcagcact gcataattct cttactgtca tgccatccgt aagatgcttt
tctgtgactg 6000gtgagtactc aaccaagtca ttctgagaat agtgtatgcg gcgaccgagt
tgctcttgcc 6060cggcgtcaat acgggataat accgcgccac atagcagaac tttaaaagtg
ctcatcattg 6120gaaaacgttc ttcggggcga aaactctcaa ggatcttacc gctgttgaga
tccagttcga 6180tgtaacccac tcgtgcaccc aactgatctt cagcatcttt tactttcacc
agcgtttctg 6240ggtgagcaaa aacaggaagg caaaatgccg caaaaaaggg aataagggcg
acacggaaat 6300gttgaatact catactcttc ctttttcaat attattgaag catttatcag
ggttattgtc 6360tcatgagcgg atacatattt gaatgtattt agaaaaataa acaaataggg
gttccgcgca 6420catttccccg aaaagtgcca cctgacgtca gatcgacgga tcgggagatc g
647186629DNAArtificial SequenceDescription of Artificial
Sequence Plasmid pEFAd5E1BSA 8tcttccgctt cctcgctcac tgactcgctg
cgctcggtcg ttcggctgcg gcgagcggta 60tcagctcact caaaggcggt aatacggtta
tccacagaat caggggataa cgcaggaaag 120aacatgtgag caaaaggcca gcaaaagccc
aggaaccgta aaaaggccgc gttgctggcg 180tttttccata ggctccgccc ccctgacgag
catcacaaaa atcgacgctc aagtcagagg 240tggcgaaacc cgacaggact ataaagatac
caggcgtttc cccctggaag ctccctcgtg 300cgctctcctg ttccgaccct gccgcttacc
ggatacctgt ccgcctttct cccttcggga 360agcgtggcgc tttctcatag ctcacgctgt
aggtatctca gttcggtgta ggtcgttcgc 420tccaagctgg gctgtgtgca cgaacccccc
gttcagcccg accgctgcgc cttatccggt 480aactatcgtc ttgagtccaa cccggtaaga
cacgacttat cgccactggc agcagccact 540ggtaacagga ttagcagagc gaggtatgta
ggcggtgcta cagagttctt gaagtggtgg 600cctaactacg gctacactag aaggacagta
tttggtatct gcgctctgct gaagccagtt 660accttcggaa aaagagttgg tagctcttga
tccggcaaac aaaccaccgc tggtagcggt 720ggtttttttg tttgcaagca gcagattacg
cgcagaaaaa aaggatctca agaagatcct 780ttgatctttt ctacggggtc tgacgctcag
tggaacgaaa actcacgtta agggattttg 840gtcatgagat tatcaaaaag gatcttcacc
tagatccttt taaattaaaa atgaagtttt 900aaatcaatct aaagtatata tgagtaaact
tggtctgaca gttaccaatg cttaatcagt 960gaggcaccta tctcagcgat ctgtctattt
cgttcatcca tagttgcctg actccccgtc 1020gtgtagataa ctacgatacg ggagggctta
ccatctggcc ccagtgctgc aatgataccg 1080cgagacccac gctcaccggc tccagattta
tcagcaataa accagccagc cggaagggcc 1140gagcgcagaa gtggtcctgc aactttatcc
gcctccatcc agtctattaa ttgttgccgg 1200gaagctagag taagtagttc gccagttaat
agtttgcgca acgttgttgc cattgctaca 1260ggcatcgtgg tgtcacgctc gtcgtttggt
atggcttcat tcagctccgg ttcccaacga 1320tcaaggcgag ttacatgatc ccccatgttg
tgcaaaaaag cggttagctc cttcggtcct 1380ccgatcgttg tcagaagtaa gttggccgca
gtgttatcac tcatggttat ggcagcactg 1440cataattctc ttactgtcat gccatccgta
agatgctttt ctgtgactgg tgagtactca 1500accaagtcat tctgagaata gtgtatgcgg
cgaccgagtt gctcttgccc ggcgtcaata 1560cgggataata ccgcgccaca tagcagaact
ttaaaagtgc tcatcattgg aaaacgttct 1620tcggggcgaa aactctcaag gatcttaccg
ctgttgagat ccagttcgat gtaacccact 1680cgtgcaccca actgatcttc agcatctttt
actttcacca gcgtttctgg gtgagcaaaa 1740acaggaaggc aaaatgccgc aaaaaaggga
ataagggcga cacggaaatg ttgaatactc 1800atactcttcc tttttcaata ttattgaagc
atttatcagg gttattgtct catgagcgga 1860tacatatttg aatgtattta gaaaaataaa
caaatagggg ttccgcgcac atttccccga 1920aaagtgccac ctgtatgcgg tgtgaaatac
cgcacagatg cgtaaggaga aaataccgca 1980tcaggaaatt gtaagcgtta ataattcaga
agaactcgtc aagaaggcga tagaaggcga 2040tgcgctgcga atcgggagcg gcgataccgt
aaagcacgag gaagcggtca gcccattcgc 2100cgccaagctc ttcagcaata tcacgggtag
ccaacgctat gtcctgatag cggtccgcca 2160cacccagccg gccacagtcg atgaatccag
aaaagcggcc attttccacc atgatattcg 2220gcaagcaggc atcgccatgg gtcacgacga
gatcctcgcc gtcgggcatg ctcgccttga 2280gcctggcgaa cagttcggct ggcgcgagcc
cctgatgctc ttcgtccaga tcatcctgat 2340cgacaagacc ggcttccatc cgagtacgtg
ctcgctcgat gcgatgtttc gcttggtggt 2400cgaatgggca ggtagccgga tcaagcgtat
gcagccgccg cattgcatca gccatgatgg 2460atactttctc ggcaggagca aggtgagatg
acaggagatc ctgccccggc acttcgccca 2520atagcagcca gtcccttccc gcttcagtga
caacgtcgag cacagctgcg caaggaacgc 2580ccgtcgtggc cagccacgat agccgcgctg
cctcgtcttg cagttcattc agggcaccgg 2640acaggtcggt cttgacaaaa agaaccgggc
gcccctgcgc tgacagccgg aacacggcgg 2700catcagagca gccgattgtc tgttgtgccc
agtcatagcc gaatagcctc tccacccaag 2760cggccggaga acctgcgtgc aatccatctt
gttcaatcat gcgaaacgat cctcatcctg 2820tctcttgatc agagcttgat cccctgcgcc
atcagatcct tggcggcgag aaagccatcc 2880agtttacttt gcagggcttc ccaaccttac
cagagggcgc cccagctggc aattccggtt 2940cgcttgctgt ccataaaacc gcccagtcta
gctatcgcca tgtaagccca ctgcaagcta 3000cctgctttct ctttgcgctt gcgttttccc
ttgtccagat agcccagtag ctgacattca 3060tccggggtca gcaccgtttc tgcggactgg
ctttctacgt gaaaaggatc taggtgaaga 3120tcctttttga taatctcatg cctgacattt
atattcccca gaacatcagg ttaatggcgt 3180ttttgatgtc attttcgcgg tggctgagat
cagccacttc ttccccgata acggagaccg 3240gcacactggc catatcggtg gtcatcatgc
gccagctttc atccccgata tgcaccaccg 3300ggtaaagttc acgggagact ttatctgaca
gcagacgtgc actggccagg gggatcacca 3360tccgtcgccc cggcgtgtca ataatatcac
tctgtacatc cacaaacaga cgataacggc 3420tctctctttt ataggtgtaa accttaaact
gccgtacgta taggctgcgc aactgttggg 3480aagggcgatc ggtgcgggcc tcttcgctat
tacgccagct ggcgaaaggg ggatgtgctg 3540caaggcgatt aagttgggta acgccagggt
tttcccagtc acgacgttgt aaaacgacgg 3600ccagtgaatt gtaatacgac tcactatagg
gcgaattgaa tttagcggcc gcgaattcta 3660ccgggtaggg gaggcgcttt tcccaaggca
gtctggagca tgcgctttag cagccccgct 3720ggcacttggc gctacacaag tggcctctgg
cctcgcacac attccacatc caccggtagg 3780cgccaaccgg ctccgttctt tggtggcccc
ttcgcgccac cttctactcc tcccctagtc 3840aggaagttcc cccccgcccc gcagctcgcg
tcgtgcagga cgtgacaaat ggaagtagca 3900cgtctcacta gtctcgtgca gatggacagc
accgctgagc aatggaagcg ggtaggcctt 3960tggggcagcg gccaatagca gctttgctcc
ttcgctttct gggctcagag gctgggaagg 4020ggtgggtccg ggggcgggct caggggcggg
ctcaggggcg gggcgggcgc ccgaaggtcc 4080tccggaggcc cggcattctc gcacgcttca
aaagcgcacg tctgccgcgc tgttctcctc 4140ttcctcatct ccgggccttt ctcgagcatg
gaggcttggg agtgtttgga agatttttct 4200gctgtgcgta acttgctgga acagagctct
aacagtacct cttggttttg gaggtttctg 4260tggggctcat cccaggcaaa gttagtctgc
agaattaagg aggattacaa gtgggaattt 4320gaagagcttt tgaaatcctg tggtgagctg
tttgattctt tgaatctggg tcaccaggcg 4380cttttccaag agaaggtcat caagactttg
gatttttcca caccggggcg cgctgcggct 4440gctgttgctt ttttgagttt tataaaggat
aaatggagcg aagaaaccca tctgagcggg 4500gggtacctgc tggattttct ggccatgcat
ctgtggagag cggttgtgag acacaagaat 4560cgcctgctac tgttgtcttc cgtccgcccg
gcgataatac cgacggagga gcagcagcag 4620cagcaggagg aagccaggcg gcggcggcag
gagcagagcc catggaaccc gagagccggc 4680ctggaccctc gggaatgaat gttgtacagg
tggctgaact gtatccagaa ctgagacgca 4740ttttgacaat tacagaggat gggcaggggc
taaagggggt aaagagggag cggggggctt 4800gtgaggctac agaggaggct aggaatctag
cttttagctt aatgaccaga caccgtcctg 4860agtgtattac ttttcaacag atcaaggata
attgcgctaa tgagcttgat ctgctggcgc 4920agaagtattc catagagcag ctgaccactt
actggctgca gccaggggat gattttgagg 4980aggctattag ggtatatgca aaggtggcac
ttaggccaga ttgcaagtac aagatcagca 5040aacttgtaaa tatcaggaat tgttgctaca
tttctgggaa cggggccgag gtggagatag 5100atacggagga tagggtggcc tttagatgta
gcatgataaa tatgtggccg ggggtgcttg 5160gcatggacgg ggtggttatt atgaatgtaa
ggtttactgg ccccaatttt agcggtacgg 5220ttttcctggc caataccaac cttatcctac
acggtgtaag cttctatggg tttaacaata 5280cctgtgtgga agcctggacc gatgtaaggg
ttcggggctg tgccttttac tgctgctgga 5340agggggtggt gtgtcgcccc aaaagcaggg
cttcaattaa gaaatgcctc tttgaaaggt 5400gtaccttggg tatcctgtct gagggtaact
ccagggtgcg ccacaatgtg gcctccgact 5460gtggttgctt catgctagtg aaaagcgtgg
ctgtgattaa gcataacatg gtatgtggca 5520actgcgagga cagggcctct cagatgctga
cctgctcgga cggcaactgt cacctgctga 5580agaccattca cgtagccagc cactctcgca
aggcctggcc agtgtttgag cataacatac 5640tgacccgctg ttccttgcat ttgggtaaca
ggaggggggt gttcctacct taccaatgca 5700atttgagtca cactaagata ttgcttgagc
ccgagagcat gtccaaggtg aacctgaacg 5760gggtgtttga catgaccatg aagatctgga
aggtgctgag gtacgatgag acccgcacca 5820ggtgcagacc ctgcgagtgt ggcggtaaac
atattaggaa ccagcctgtg atgctggatg 5880tgaccgagga gctgaggccc gatcacttgg
tgctggcctg cacccgcgct gagtttggct 5940ctagcgatga agatacagat tgaggtactg
aaatggctag cagtgtaccc tccctagtcc 6000cagtgatgag aaagagattg agtccagtcc
agggagatct catccacttc tgtgttctct 6060ccacaggagc ccactctgta caagtaaagc
ggccgcgact ctagatcata atcagccata 6120ccacatttgt agaggtttta cttgctttaa
aaaacctccc acacctcccc ctgaacctga 6180aacataaaat gaatgcaatt gttgttgtta
acttgtttat tgcagcttat aatggttaca 6240aataaagcaa tagcatcaca aatttcacaa
ataaagcatt tttttcactg cattctagtt 6300gtggtttgtc caaactcatc aatgtatctt
aagattaagg gcgaattcgt ttaaacctgc 6360aggactagtc cctttagtga gggttaattc
tgagcttggc gtaatcatgg tcatagctgt 6420ttcctgtgtg aaattgttat ccgctcacaa
ttccacacaa catacgagcc ggaagcataa 6480agtgtaaagc ctggggtgcc taatgagtga
gctaactcac attaattgcg ttgcgctcac 6540tgcccgcttt ccagtcggga aacctgtcgt
gccagctgca ttaatgaatc ggccaacgcg 6600cggggagagg cggtttgcgt attgggcgc
662998297DNAArtificial
SequenceDescription of Artificial Sequence Plasmid 49E 9agcgcccaat
acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc 60acgacaggtt
tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc 120tcactcatta
ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa 180ttgtgagcgg
ataacaattt cacacaggaa acagctatga ccatgattac gccaagctca 240gaattaaccc
tcactaaagg gactagtcct gcaggtttaa acgaattcgc ccttaatctt 300aagctgccgc
cccgacgttg gctgcgagcc ctgggccttc acccgaactt ggggggtggg 360gtggggaaaa
ggaagaaacg cgggcgtatt ggccccaatg gggtctcggt ggggtatcga 420cagagtgcca
gccctgggac cgaaccccgc gtttatgaac aaacgaccca acaccgtgcg 480ttttattctg
tctttttatt gccgtcatag cgcgggttcc ttccggtatt gtctccttcc 540gtgttatcct
caatctgtat cttcatcgct agagccaaac tcagcgcggg tgcaggccag 600caccaagtga
tcgggcctca gctcctcggt cacatccagc atcacaggct ggttcctaat 660atgtttaccg
ccacactcgc agggtctgca cctggtgcgg gtctcatcgt acctcagcac 720cttccagatc
ttcatggtca tgtcaaacac cccgttcagg ttcaccttgg acatgctctc 780gggctcaagc
aatatcttag tgtgactcaa attgcattgg taaggtagga acacccccct 840cctgttaccc
aaatgcaagg aacagcgggt cagtatgtta tgctcaaaca ctggccaggc 900cttgcgagag
tggctggcta cgtgaatggt cttcagcagg tgacagttgc cgtccgagca 960ggtcagcatc
tgagaggccc tgtcctcgca gttgccacat accatgttat gcttaatcac 1020agccacgctt
ttcactagca tgaagcaacc acagtcggag gccacattgt ggcgcaccct 1080ggagttaccc
tcagacagga tacccaaggt acacctttca aagaggcatt tcttaattga 1140agccctgctt
ttggggcgac acaccacccc cttccagcag cagtaaaagg cacagccccg 1200aacccttaca
tcggtccagg cttccacaca ggtattgtta aacccataga agcttacacc 1260gtgtaggata
aggttggtat tggccaggaa aaccgtaccg ctaaaattgg ggccagtaaa 1320ccttacattc
ataataacca ccccgtccat gccaagcacc cccggccaca tatttatcat 1380gctacatcta
aaggccaccc tatcctccgt atctatctcc acctcggccc cgttcccaga 1440aatgtagcaa
caattcctga tatttacaag tttgctgatc ttgtacttgc aatctggcct 1500aagtgccacc
tttgcatata ccctaatagc ctcctcaaaa tcatcccctg gctgcagcca 1560gtaagtggtc
agctgctcta tggaatactt ctgcgccagc agatcaagct cattagcgca 1620attatccttg
atctgttgaa aagtaataca ctcaggacgg tgtctggtca ttaagctaaa 1680agctagattc
ctagcctcct ctgtagcctc acaagccccc cgctccctct ttaccccctt 1740tagcccctgc
ccatcctctg taattgtcaa aatgcgtctc agttctggat acagttcagc 1800cacctgtaca
acattcattc ccgagggtcc aggccggctc tcgggttcca tgggctctgc 1860tcctgccgcc
gccgcctggc ttcctcctgc tgctgctgct gctcctccgt cggtattatc 1920gccgggcgga
cggaagacaa cagtagcagg cgattcttgt gtctcacaac cgctctccac 1980agatgcatgg
ccagaaaatc cagcaggtac cccccgctca gatgggtttc ttcgctccat 2040ttatccttta
taaaactcaa aaaagcaaca gcagccgcag cgcgccccgg tgtggaaaaa 2100tccaaagtct
tgatgacctt ctcttggaaa agcgcctggt gacccagatt caaagaatca 2160aacagctcac
cacaggattt caaaagctct tcaaattccc acttgtaatc ctccttaatt 2220ctgcagacta
actttgcctg ggatgagccc cacagaaacc tccaaaacca agaggtactg 2280ttagagctct
gttccagcaa gttacgcaca gcagaaaaat cttccaaaca ctcccaagcc 2340tccatgctcg
accggtccct accgacgctg gtcgcgcctc ttatacccac gtagaacgca 2400gctcagccaa
tagaatgagt gccaatatgg aatttccagg ggaaaaccgg ggcggtgtta 2460cgttttggct
gccctttcac ttcccattga cgtgtattgg ctcgagaacg gtactttccc 2520attaatcagc
tatgggaaag taccgtttaa aggtcacgtt gcattagttt caatagccca 2580ttgacgtcaa
tggtgggaaa gtacatggcg ttttataaat ggctggaaaa acccaatgac 2640tcacccctat
tgaccttatg tacgtgccaa taatgggaaa aacccattga ctcaccccct 2700attgaccttt
tgtactgggc aaaacccaat ggaaagtccc tattgactca gtgtacttgg 2760ctccaatggg
actttcctgt tgattcaccc ctattgacct tatgtactgg gcaaaaccca 2820ttggaaagtc
cctaatgact cagtatatgg cggccgatac ttggcctcgg tggccgatga 2880cctcgagggg
gggcccggta cccggtggat gtggaatgtg tgcgaggcca gaggccactt 2940gtgtagcgcc
aagtgccagc ggggctgcta aagcgcatgc tccagactgc cttgggaaaa 3000gcgcctcccc
tacccggtag aattcgtaac caagattagc ccacggcgca ttatataccc 3060tttaagcccc
gccccattta acacgccatg caagttaaac attatctcac cctttattaa 3120acttacatca
actcattcag caaacaaagg cgttaaccac acacgcaatc acaggtttac 3180accttatggc
ctggggcgtt tacagctcaa gtccaaaggt tgcccaggct cgttaagcaa 3240gtcctcgata
cattccacag cctggcgacg cccaccaact ctcacggcaa ctggtttaat 3300ggggcacagc
gggaccaccg ggtgtatctc aggaggtgtg ttagaaggac cggagtcaca 3360gctatccgta
ctactattgc attctctaga cacaggtgat gtcgggcgtc tcaggatagc 3420aggcgccatt
ttaggacggc gggtaggtct tgcaggctcc ggttctggct cgggctcagg 3480ctcaggttca
gacacaggac cttttaaaaa aatcacaata caaaattctt taaaccacaa 3540aactgtaaaa
attaaaaaaa aaattaccac accaaaccca ccactctatc acccactgcc 3600cataattttc
acttactgta gacaaacatg ccacaggtcc tcatatagca aagcgaacac 3660ataatatctg
ggtcccccgt attcctccgg tgataatgac aagacctgca accgtgcccg 3720gggtgctcca
cataatctaa cacaaactcc tcaccctctt catcctcgtc gtcactgggt 3780ggaaagccag
cctcgtggca ggtaagatcg atcacctccg gtacaaggtt tggcatagaa 3840accggaccca
aggctctctg ctccggctgc tcgggctgcc gggaaaggtg aggcggctcc 3900ggagaaccgg
gcgccggcgg aaaagtgagt aagtcaatcc cttcctgcac cgccaacatt 3960acagagtcgg
gaaaaatctg cgaaaccgcc tcctcgttgg gatcttcggg ggccgtcacg 4020tctaaatcat
acagttcgtg aagggtaggt ggttcaaaat ggctaggagg tggaagatta 4080tcagccagta
cctcttcgat cagctggtcc aaaagactgg cggccatttc ttcggtaata 4140acacctccgt
ggcagataat atgtctcatt ttcagtcccg gtgtcggagc ggctcggagg 4200agaaaactct
actcgctggc actcaagagt ggcctcttga ggaactcacc gggtataaat 4260acactacacg
tcagctgact ataactcgag aacgagggag ccgactgccg acgtgcgctc 4320cggaggcttg
cagaatgcgg aacaccgcgc gggcaggaac agggcccaca ctaccgcccc 4380acaccccgcc
tcccgcaccg ccccttcccg gccgctgctc tcggcgcgcc ctgctgagca 4440gccgctattg
gccacagccc atcgcggtcg gcgcgctgcc attgctccct ggcgctgtcc 4500gtctgcgagg
gtactagtga gacgtgcggc ttccgtttgt cacgtccggc acgccgcgaa 4560ccgcaaggaa
ccttcccgac ttaggggcgg acgaggaagc gtcgccgggg ggcccacaag 4620ggtagcggcg
aagatccggg tgacgctgcg aacggacgtg aagaatgtgc gagacccagg 4680gtcggcgccg
ctgcgtttcc cggaaccacg cccagagcag ccgcgtccct gcgcaaaccc 4740agggctgcct
tggaaaaggc gcaaccccaa ccattaataa ctaatgcatg gcggtaatac 4800ggttatccac
agaatcaggg gataacgcag gaaagaacat ggtacggcag tttaaggttt 4860acacctataa
aagagagagc cgttatcgtc tgtttgtgga tgtacagagt gatattattg 4920acacgccggg
gcgacggatg gtgatccccc tggccagtgc acgtctgctg tcagataaag 4980tctcccgtga
actttacccg gtggtgcata tcggggatga aagctggcgc atgatgacca 5040ccgatatggc
cagtgtgccg gtctccgtta tcggggaaga agtggctgat ctcagccacc 5100gcgaaaatga
catcaaaaac gccattaacc tgatgttctg gggaatataa atgtcaggca 5160tgagattatc
aaaaaggatc ttcacctaga tccttttcac gtagaaagcc agtccgcaga 5220aacggtgctg
accccggatg aatgtcagct actgggctat ctggacaagg gaaaacgcaa 5280gcgcaaagag
aaagcaggta gcttgcagtg ggcttacatg gcgatagcta gactgggcgg 5340ttttatggac
agcaagcgaa ccggaattgc cagctggggc gccctctggt aaggttggga 5400agccctgcaa
agtaaactgg atggctttct cgccgccaag gatctgatgg cgcaggggat 5460caagctctga
tcaagagaca ggatgaggat cgtttcgcat gattgaacaa gatggattgc 5520acgcaggttc
tccggccgct tgggtggaga ggctattcgg ctatgactgg gcacaacaga 5580caatcggctg
ctctgatgcc gccgtgttcc ggctgtcagc gcaggggcgc ccggttcttt 5640ttgtcaagac
cgacctgtcc ggtgccctga atgaactgca agacgaggca gcgcggctat 5700cgtggctggc
cacgacgggc gttccttgcg cagctgtgct cgacgttgtc actgaagcgg 5760gaagggactg
gctgctattg ggcgaagtgc cggggcagga tctcctgtca tctcaccttg 5820ctcctgccga
gaaagtatcc atcatggctg atgcaatgcg gcggctgcat acgcttgatc 5880cggctacctg
cccattcgac caccaagcga aacatcgcat cgagcgagca cgtactcgga 5940tggaagccgg
tcttgtcgat caggatgatc tggacgaaga gcatcagggg ctcgcgccag 6000ccgaactgtt
cgccaggctc aaggcgagca tgcccgacgg cgaggatctc gtcgtgaccc 6060atggcgatgc
ctgcttgccg aatatcatgg tggaaaatgg ccgcttttct ggattcatcg 6120actgtggccg
gctgggtgtg gcggaccgct atcaggacat agcgttggct acccgtgata 6180ttgctgaaga
gcttggcggc gaatgggctg accgcttcct cgtgctttac ggtatcgccg 6240ctcccgattc
gcagcgcatc gccttctatc gccttcttga cgagttcttc tgaattatta 6300acgcttacaa
tttcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc 6360gcatacaggt
ggcacttttc ggggaaatgt gcgcggaacc cctatttgtt tatttttcta 6420aatacattca
aatatgtatc cgctcatgag acaataaccc tgataaatgc ttcaataata 6480ttgaaaaagg
aagagtatga gtattcaaca tttccgtgtc gcccttattc ccttttttgc 6540ggcattttgc
cttcctgttt ttgctcaccc agaaacgctg gtgaaagtaa aagatgctga 6600agatcagttg
ggtgcacgag tgggttacat cgaactggat ctcaacagcg gtaagatcct 6660tgagagtttt
cgccccgaag aacgttttcc aatgatgagc acttttaaag ttctgctatg 6720tggcgcggta
ttatcccgta ttgacgccgg gcaagagcaa ctcggtcgcc gcatacacta 6780ttctcagaat
gacttggttg agtactcacc agtcacagaa aagcatctta cggatggcat 6840gacagtaaga
gaattatgca gtgctgccat aaccatgagt gataacactg cggccaactt 6900acttctgaca
acgatcggag gaccgaagga gctaaccgct tttttgcaca acatggggga 6960tcatgtaact
cgccttgatc gttgggaacc ggagctgaat gaagccatac caaacgacga 7020gcgtgacacc
acgatgcctg tagcaatggc aacaacgttg cgcaaactat taactggcga 7080actacttact
ctagcttccc ggcaacaatt aatagactgg atggaggcgg ataaagttgc 7140aggaccactt
ctgcgctcgg cccttccggc tggctggttt attgctgata aatctggagc 7200cggtgagcgt
gggtctcgcg gtatcattgc agcactgggg ccagatggta agccctcccg 7260tatcgtagtt
atctacacga cggggagtca ggcaactatg gatgaacgaa atagacagat 7320cgctgagata
ggtgcctcac tgattaagca ttggtaactg tcagaccaag tttactcata 7380tatactttag
attgatttaa aacttcattt ttaatttaaa aggatctagg tgaagatcct 7440ttttgataat
ctcatgacca aaatccctta acgtgagttt tcgttccact gagcgtcaga 7500ccccgtagaa
aagatcaaag gatcttcttg agatcctttt tttctgcgcg taatctgctg 7560cttgcaaaca
aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc aagagctacc 7620aactcttttt
ccgaaggtaa ctggcttcag cagagcgcag ataccaaata ctgtccttct 7680agtgtagccg
tagttaggcc accacttcaa gaactctgta gcaccgccta catacctcgc 7740tctgctaatc
ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc ttaccgggtt 7800ggactcaaga
cgatagttac cggataaggc gcagcggtcg ggctgaacgg ggggttcgtg 7860cacacagccc
agcttggagc gaacgaccta caccgaactg agatacctac agcgtgagct 7920atgagaaagc
gccacgcttc ccgaagggag aaaggcggac aggtatccgg taagcggcag 7980ggtcggaaca
ggagagcgca cgagggagct tccaggggga aacgcctggt atctttatag 8040tcctgtcggg
tttcgccacc tctgacttga gcgtcgattt ttgtgatgct cgtcaggggg 8100gcggagccta
tggaaaaacg ccagcaacgc ggccttttta cggttcctgg gcttttgctg 8160gccttttgct
cacatgttct ttcctgcgtt atcccctgat tctgtggata accgtattac 8220cgcctttgag
tgagctgata ccgctcgccg cagccgaacg accgagcgca gcgagtcagt 8280gagcgaggaa
gcggaag
8297107174DNAArtificial SequenceDescription of Artificial Sequence
Plasmid 25F 10agcgcccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa
tgcagctggc 60acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat
gtgagttagc 120tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg
ttgtgtggaa 180ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac
gccaagctca 240gaattaaccc tcactaaagg gactagtcct gcaggtttaa acgaattcgc
ccttaatctt 300aagctcggga gtagcggatg ccccggggag aggagtgtta gtaaccgcga
cgctggtggg 360ggtcggcttg ttaagagggg cgctgctaac gctgcaagag tgggttgtca
gcgtggggcc 420ggtgctactg gaatcgatac cggcatgatt gacagcctgg gcgaggatgt
cacctgatgg 480tgataagaag acacgggaga cttagtacgg tttcacaggc gtgacacgtt
tattgagtag 540gattacagag tataacatag agtataatat agagtataca atagtgacgt
gggatccgtt 600aacaggtgaa ccatttatac agtctcacgt ctctttattg catacgctcc
gctaaatgtt 660tccattcgct catttgccag taatacagca gattcgcaaa ctcactgaac
caatcttctg 720tataaaaatg tacgcgctgc gtgtccaaat caacatcaat tttcctcata
tacagacagg 780ggctgccacc cgcctccccc aagcgcgaca ccgcaattag gaatggtagc
ctgctgtgca 840ggtccacgtg aattaacatc ccgcacacgt tcccgatcgg tcgctgcata
aatactggag 900agaaatcgct aaaccccggt gacgcccaca tagccacgaa gtacacccct
gccacattca 960agtcatcctc caacctggcc caaacataag tggccaaatc ggaaggagcc
aggtggcaag 1020ccgataaccc catacgatgc aaaggtaacc cgtggcaagc gcatcccccg
aaatgaagtt 1080cgaaagaatc gtaacacagt agctgatagg catgaagcgg cgtcggcatc
tgaagaccgt 1140catcatcttc gtcgtcttcc atgtcatccc caacttcctc ctcgcgctcc
gcttcctgtt 1200ggcggcgctg ctggtgctgc agcaccatct ccaggatctg ctcgtcgttc
atcttaatcc 1260ggactcgaga aaggcccgga gatgaggaag aggagaacag cgcggcagac
gtgcgctttt 1320gaagcgtgcg agaatgccgg gcctccggag gaccttcggg cgcccgcccc
gcccctgagc 1380ccgcccctga gcccgccccc ggacccaccc cttcccagcc tctgagccca
gaaagcgaag 1440gagcaaagct gctattggcc gctgccccaa aggcctaccc gcttccattg
ctcagcggtg 1500ctgtccatct gcacgagact agtgagacgt gctacttcca tttgtcacgt
cctgcacgac 1560gcgagctgcg gggcgggggg gaacttcctg actaggggag gagtagaagg
tggcgcgaag 1620gggccaccaa agaacggagc cggttggcgc ctaccggtgg atgtggaatg
tgtgcgaggc 1680cagaggccac ttgtgtagcg ccaagtgcca gcggggctgc taaagcgcat
gctccagact 1740gccttgggaa aagcgcctcc cctacccggt agaattcgcg gcctcgacgg
cctcggtggc 1800cagtctagtc aataatcaat gtccgagctc gaatacactc cgctatcgct
acgtgactgg 1860gtcatggctg cgccccgaca cccgccaaca cccgctgacg cgccctgacg
ggcttgtctg 1920ctcccggcat ccgcttacag acaagctgtg accgtctccg ggagctgcat
gtgtcagagg 1980ttttcaccgt catcaccgaa acgcgcgagg cagccggatc ataatcagcc
ataccacatt 2040tgtagaggtt ttacttgctt taaaaaacct cccacacctc cccctgaacc
tgaaacataa 2100aatgaatgca attgttgttg ttaacttgtt tattgcagct tataatggtt
acaaataaag 2160caatagcatc acaaatttca caaataaagc atttttttca ctgcattcta
gttgtggttt 2220gtccaaactc atcaatgtat cttatcatgt ctggatcgaa gctctagagc
ggccaacttc 2280agggattggt tacagagaat ggtaggggtg gtgccgagac ccgagtcccc
gcctactcat 2340acgtaggcag gtttccatga cacccagtct tgcccaatct tggagagaat
ggggatttct 2400gggttcattt ctctcggggg cggggctatc cccgccgaga gtcatacacc
aaatttctgt 2460agaaaacgga tttttgccag tcttgatggc acaaacttcg ggagtttggt
taaaaaatcg 2520gctgaagaat ggttctggaa gtgttctttt cagatctttt ttggtgaaaa
ctccagtggt 2580caggagccga tattgtcggg gggctttgat ggtggtggtc ccacagagac
cctcatagcc 2640agggaccccc actccgcgag ggacatggat cttcagtgtg tctagcgcca
tcttcagggc 2700atgcacggaa ccaatgggga agcccaggtc ccccacgtgg gttatgccgt
gggggagggg 2760atccgagtat tccctggcca cccaatcagg aaccgcgaac gcgccacgga
ccgccttctc 2820catcataatg agggcctcac tgggggtctt gggttccgcg gagcgccccc
taatggtaac 2880gtggataatg cgctggggac cctcgtagtc tgcgaagatt gcctttctcc
ccatggacac 2940tagggggctg aatgagtatt cccgcagttg ctcgccggtc aggttagggt
taaaaatcag 3000gccggtggtc accatttctc taaggctagt ggtgggattc cgctggctag
ggtccacagg 3060gaccaccgaa gtaaaggaaa tggtccccat gtagtatgga aggtccccag
ggaacatgcg 3120gaatgggttg cgggccatac ctgtagaatg tacagggggg tctcgagaac
gagggagccg 3180actgccgacg tgcgctccgg aggcttgcag aatgcggaac accgcgcggg
caggaacagg 3240gcccacacta ccgccccaca ccccgcctcc cgcaccgccc cttcccggcc
gctgctctcg 3300gcgcgccctg ctgagcagcc gctattggcc acagcccatc gcggtcggcg
cgctgccatt 3360gctccctggc gctgtccgtc tgcgagggta ctagtgagac gtgcggcttc
cgtttgtcac 3420gtccggcacg ccgcgaaccg caaggaacct tcccgactta ggggcggacg
aggaagcgtc 3480gccggggggc ccacaagggt agcggcgaag atccgggtga cgctgcgaac
ggacgtgaag 3540aatgtgcgag acccagggtc ggcgccgctg cgtttcccgg aaccacgccc
agagcagccg 3600cgtccctgcg caaacccagg gctgccttgg aaaaggcgca accccaacca
ttaataacta 3660atgcatggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa
agaacatggt 3720acggcagttt aaggtttaca cctataaaag agagagccgt tatcgtctgt
ttgtggatgt 3780acagagtgat attattgaca cgccggggcg acggatggtg atccccctgg
ccagtgcacg 3840tctgctgtca gataaagtct cccgtgaact ttacccggtg gtgcatatcg
gggatgaaag 3900ctggcgcatg atgaccaccg atatggccag tgtgccggtc tccgttatcg
gggaagaagt 3960ggctgatctc agccaccgcg aaaatgacat caaaaacgcc attaacctga
tgttctgggg 4020aatataaatg tcaggcatga gattatcaaa aaggatcttc acctagatcc
ttttcacgta 4080gaaagccagt ccgcagaaac ggtgctgacc ccggatgaat gtcagctact
gggctatctg 4140gacaagggaa aacgcaagcg caaagagaaa gcaggtagct tgcagtgggc
ttacatggcg 4200atagctagac tgggcggttt tatggacagc aagcgaaccg gaattgccag
ctggggcgcc 4260ctctggtaag gttgggaagc cctgcaaagt aaactggatg gctttctcgc
cgccaaggat 4320ctgatggcgc aggggatcaa gctctgatca agagacagga tgaggatcgt
ttcgcatgat 4380tgaacaagat ggattgcacg caggttctcc ggccgcttgg gtggagaggc
tattcggcta 4440tgactgggca caacagacaa tcggctgctc tgatgccgcc gtgttccggc
tgtcagcgca 4500ggggcgcccg gttctttttg tcaagaccga cctgtccggt gccctgaatg
aactgcaaga 4560cgaggcagcg cggctatcgt ggctggccac gacgggcgtt ccttgcgcag
ctgtgctcga 4620cgttgtcact gaagcgggaa gggactggct gctattgggc gaagtgccgg
ggcaggatct 4680cctgtcatct caccttgctc ctgccgagaa agtatccatc atggctgatg
caatgcggcg 4740gctgcatacg cttgatccgg ctacctgccc attcgaccac caagcgaaac
atcgcatcga 4800gcgagcacgt actcggatgg aagccggtct tgtcgatcag gatgatctgg
acgaagagca 4860tcaggggctc gcgccagccg aactgttcgc caggctcaag gcgagcatgc
ccgacggcga 4920ggatctcgtc gtgacccatg gcgatgcctg cttgccgaat atcatggtgg
aaaatggccg 4980cttttctgga ttcatcgact gtggccggct gggtgtggcg gaccgctatc
aggacatagc 5040gttggctacc cgtgatattg ctgaagagct tggcggcgaa tgggctgacc
gcttcctcgt 5100gctttacggt atcgccgctc ccgattcgca gcgcatcgcc ttctatcgcc
ttcttgacga 5160gttcttctga attattaacg cttacaattt cctgatgcgg tattttctcc
ttacgcatct 5220gtgcggtatt tcacaccgca tacaggtggc acttttcggg gaaatgtgcg
cggaacccct 5280atttgtttat ttttctaaat acattcaaat atgtatccgc tcatgagaca
ataaccctga 5340taaatgcttc aataatattg aaaaaggaag agtatgagta ttcaacattt
ccgtgtcgcc 5400cttattccct tttttgcggc attttgcctt cctgtttttg ctcacccaga
aacgctggtg 5460aaagtaaaag atgctgaaga tcagttgggt gcacgagtgg gttacatcga
actggatctc 5520aacagcggta agatccttga gagttttcgc cccgaagaac gttttccaat
gatgagcact 5580tttaaagttc tgctatgtgg cgcggtatta tcccgtattg acgccgggca
agagcaactc 5640ggtcgccgca tacactattc tcagaatgac ttggttgagt actcaccagt
cacagaaaag 5700catcttacgg atggcatgac agtaagagaa ttatgcagtg ctgccataac
catgagtgat 5760aacactgcgg ccaacttact tctgacaacg atcggaggac cgaaggagct
aaccgctttt 5820ttgcacaaca tgggggatca tgtaactcgc cttgatcgtt gggaaccgga
gctgaatgaa 5880gccataccaa acgacgagcg tgacaccacg atgcctgtag caatggcaac
aacgttgcgc 5940aaactattaa ctggcgaact acttactcta gcttcccggc aacaattaat
agactggatg 6000gaggcggata aagttgcagg accacttctg cgctcggccc ttccggctgg
ctggtttatt 6060gctgataaat ctggagccgg tgagcgtggg tctcgcggta tcattgcagc
actggggcca 6120gatggtaagc cctcccgtat cgtagttatc tacacgacgg ggagtcaggc
aactatggat 6180gaacgaaata gacagatcgc tgagataggt gcctcactga ttaagcattg
gtaactgtca 6240gaccaagttt actcatatat actttagatt gatttaaaac ttcattttta
atttaaaagg 6300atctaggtga agatcctttt tgataatctc atgaccaaaa tcccttaacg
tgagttttcg 6360ttccactgag cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga
tccttttttt 6420ctgcgcgtaa tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt
ggtttgtttg 6480ccggatcaag agctaccaac tctttttccg aaggtaactg gcttcagcag
agcgcagata 6540ccaaatactg tccttctagt gtagccgtag ttaggccacc acttcaagaa
ctctgtagca 6600ccgcctacat acctcgctct gctaatcctg ttaccagtgg ctgctgccag
tggcgataag 6660tcgtgtctta ccgggttgga ctcaagacga tagttaccgg ataaggcgca
gcggtcgggc 6720tgaacggggg gttcgtgcac acagcccagc ttggagcgaa cgacctacac
cgaactgaga 6780tacctacagc gtgagctatg agaaagcgcc acgcttcccg aagggagaaa
ggcggacagg 6840tatccggtaa gcggcagggt cggaacagga gagcgcacga gggagcttcc
agggggaaac 6900gcctggtatc tttatagtcc tgtcgggttt cgccacctct gacttgagcg
tcgatttttg 6960tgatgctcgt caggggggcg gagcctatgg aaaaacgcca gcaacgcggc
ctttttacgg 7020ttcctgggct tttgctggcc ttttgctcac atgttctttc ctgcgttatc
ccctgattct 7080gtggataacc gtattaccgc ctttgagtga gctgataccg ctcgccgcag
ccgaacgacc 7140gagcgcagcg agtcagtgag cgaggaagcg gaag
71741127DNAArtificial SequenceDescription of Artificial
Sequence Primer V206 11aacctcgaga cccccctgta cattcta
271227DNAArtificial SequenceDescription of Artificial
Sequence Primer V207 12gccgttaact tcagggattg gttacag
271327DNAArtificial SequenceDescription of Artificial
Sequence Primer V208 13cacctcgagt ccggattaag atgaacg
271428DNAArtificial SequenceDescription of Artificial
Sequence Primer V209 14ccagttaaca ggtgaaccat ttatacag
281521DNAArtificial SequenceDescription of Artificial
Sequence RT primer 15gcctttgaga gttactcttt g
211623DNAArtificial SequenceDescription of Artificial
Sequence primer cDNA 1 16aaacactgta cggcacccgc att
231721DNAArtificial SequenceDescription of
Artificial Sequence Primer cDNA 2 17gcctttgaga gttactcttt g
21188681DNAArtificial
SequenceDescription of Artificial Sequence Plasmid 60E 18agcgcccaat
acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc 60acgacaggtt
tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc 120tcactcatta
ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa 180ttgtgagcgg
ataacaattt cacacaggaa acagctatga ccatgattac gccaagctca 240gaattaaccc
tcactaaagg gactagtcct gcaggtttct agtcctgcag gtttaaacga 300attcgccctt
aatcttaagc tgccgccccg acgttggctg cgagccctgg gccttcaccc 360gaacttgggg
ggtggggtgg ggaaaaggaa gaaacgcggg cgtattggcc ccaatggggt 420ctcggtgggg
tatcgacaga gtgccagccc tgggaccgaa ccccgcgttt atgaacaaac 480gacccaacac
cgtgcgtttt attctgtctt tttattgccg tcatagcgcg ggttccttcc 540ggtattgtct
ccttccgtgt tatcctcaat ctgtatcttc atcgctagag ccaaactcag 600cgcgggtgca
ggccagcacc aagtgatcgg gcctcagctc ctcggtcaca tccagcatca 660caggctggtt
cctaatatgt ttaccgccac actcgcaggg tctgcacctg gtgcgggtct 720catcgtacct
cagcaccttc cagatcttca tggtcatgtc aaacaccccg ttcaggttca 780ccttggacat
gctctcgggc tcaagcaata tcttagtgtg actcaaattg cattggtaag 840gtaggaacac
ccccctcctg ttacccaaat gcaaggaaca gcgggtcagt atgttatgct 900caaacactgg
ccaggccttg cgagagtggc tggctacgtg aatggtcttc agcaggtgac 960agttgccgtc
cgagcaggtc agcatctgag aggccctgtc ctcgcagttg ccacatacca 1020tgttatgctt
aatcacagcc acgcttttca ctagcatgaa gcaaccacag tcggaggcca 1080cattgtggcg
caccctggag ttaccctcag acaggatacc caaggtacac ctttcaaaga 1140ggcatttctt
aattgaagcc ctgcttttgg ggcgacacac cacccccttc cagcagcagt 1200aaaaggcaca
gccccgaacc cttacatcgg tccaggcttc cacacaggta ttgttaaacc 1260catagaagct
tacaccgtgt aggataaggt tggtattggc caggaaaacc gtaccgctaa 1320aattggggcc
agtaaacctt acattcataa taaccacccc gtccatgcca agcacccccg 1380gccacatatt
tatcatgcta catctaaagg ccaccctatc ctccgtatct atctccacct 1440cggccccgtt
cccagaaatg tagcaacaat tcctgatatt tacaagtttg ctgatcttgt 1500acttgcaatc
tggcctaagt gccacctttg catataccct aatagcctcc tcaaaatcat 1560cccctggctg
cagccagtaa gtggtcagct gctctatgga atacttctgc gccagcagat 1620caagctcatt
agcgcaatta tccttgatct gttgaaaagt aatacactca ggacggtgtc 1680tggtcattaa
gctaaaagct agattcctag cctcctctgt agcctcacaa gccccccgct 1740ccctctttac
cccctttagc ccctgcccat cctctgtaat tgtcaaaatg cgtctcagtt 1800ctggatacag
ttcagccacc tgtacaacat tcattcccga gggtccaggc cggctctcgg 1860gttccatggg
ctctgctcct gccgccgccg cctggcttcc tcctgctgct gctgctgctc 1920ctccgtcggt
attatcgccg ggcggacgga agacaacagt agcaggcgat tcttgtgtct 1980cacaaccgct
ctccacagat gcatggccag aaaatccagc aggtaccccc cgctcagatg 2040ggtttcttcg
ctccatttat cctttataaa actcaaaaaa gcaacagcag ccgcagcgcg 2100ccccggtgtg
gaaaaatcca aagtcttgat gaccttctct tggaaaagcg cctggtgacc 2160cagattcaaa
gaatcaaaca gctcaccaca ggatttcaaa agctcttcaa attcccactt 2220gtaatcctcc
ttaattctgc agactaactt tgcctgggat gagccccaca gaaacctcca 2280aaaccaagag
gtactgttag agctctgttc cagcaagtta cgcacagcag aaaaatcttc 2340caaacactcc
caagcctcca tgctcgagat ccttcctcct cgggcgggtg tggaccaccg 2400cctcgcctct
ctccggaaaa aaaaaatgaa ataaacaaca aaaccgaaca aaagcgaaac 2460gccacggatg
gagcgcaaaa ccctcttcga agttctgcga ctgcacacag acagtcaaat 2520ggagcagagc
caggcgagcg accgcccgag ccgcagtagc gcgcaggtct ggggaagaga 2580ggcgcaggta
ggggatctga gtccggtagc gatctgcggc acgctgttga cgctgttaag 2640cgggtcgctg
cagggtcgct cggtattcga ggccacacgc gtcaccttaa tatgcgaagt 2700ggacctggga
ccgcgccgcc ccgactgcat ctgcgtgttc gaattcgcca atgacaagac 2760gctgggcggg
gtttgtgtca tcatagaact aaagacatgc aaatatattt cttccgggga 2820caccgccagc
aaacgcgagc aacgggccac ggggatgaag cagctgcgcc actccctgaa 2880gctcctgcag
tccctcgcgc ctccgggtga caagatagtg tacctgtgcc ccgtcctggt 2940gtttgtcgcc
caacggacgc tccgcgtcag ccgcgtgacc cggctcgtcc cgcagaaggt 3000ctccggtaat
atcaccgcag tcgtgcggat gctccagagc ctgtccacgt atacggtccc 3060cattgagcct
aggacccagc gagcccgtcg ccgccgcggc ggcgccgccc gggggtctgc 3120gagcagaccg
aaaaggtcac actctggggc gcgcgacccg cccgagtcag cggcccgcca 3180gttaccaccc
gccgaccaaa cccccacctc cacggagggc gggggggtgc ttaagaggat 3240cgcggcgctc
ttctgcgtgc ccgtggccac caagaccaaa ccccgagccg cctccgaatg 3300agagtgtttc
gttccttccc cctccccccg cgtcagacaa accctaacca ccgcttaagc 3360ggcccccgcg
aggtccgaag actcatttgg atccactaga aacgaattcg taaccaagat 3420tagcccacgg
cgcattatat accctttaag ccccgcccca tttaacacgc catgcaagtt 3480aaacattatc
tcacccttta ttaaacttac atcaactcat tcagcaaaca aaggcgttaa 3540ccacacacgc
aatcacaggt ttacacctta tggcctgggg cgtttacagc tcaagtccaa 3600aggttgccca
ggctcgttaa gcaagtcctc gatacattcc acagcctggc gacgcccacc 3660aactctcacg
gcaactggtt taatggggca cagcgggacc accgggtgta tctcaggagg 3720tgtgttagaa
ggaccggagt cacagctatc cgtactacta ttgcattctc tagacacagg 3780tgatgtcggg
cgtctcagga tagcaggcgc cattttagga cggcgggtag gtcttgcagg 3840ctccggttct
ggctcgggct caggctcagg ttcagacaca ggacctttta aaaaaatcac 3900aatacaaaat
tctttaaacc acaaaactgt aaaaattaaa aaaaaaatta ccacaccaaa 3960cccaccactc
tatcacccac tgcccataat tttcacttac tgtagacaaa catgccacag 4020gtcctcatat
agcaaagcga acacataata tctgggtccc ccgtattcct ccggtgataa 4080tgacaagacc
tgcaaccgtg cccggggtgc tccacataat ctaacacaaa ctcctcaccc 4140tcttcatcct
cgtcgtcact gggtggaaag ccagcctcgt ggcaggtaag atcgatcacc 4200tccggtacaa
ggtttggcat agaaaccgga cccaaggctc tctgctccgg ctgctcgggc 4260tgccgggaaa
ggtgaggcgg ctccggagaa ccgggcgccg gcggaaaagt gagtaagtca 4320atcccttcct
gcaccgccaa cattacagag tcgggaaaaa tctgcgaaac cgcctcctcg 4380ttgggatctt
cgggggccgt cacgtctaaa tcatacagtt cgtgaagggt aggtggttca 4440aaatggctag
gaggtggaag attatcagcc agtacctctt cgatcagctg gtccaaaaga 4500ctggcggcca
tttcttcggt aataacacct ccgtggcaga taatatgtct cattttcagt 4560cccggtgtcg
gagcggctcg gaggagaaaa ctctactcgc tggcactcaa gagtggcctc 4620ttgaggaact
caccgggtat aaatacacta cacgtcagct gactataact cgagaacgag 4680ggagccgact
gccgacgtgc gctccggagg cttgcagaat gcggaacacc gcgcgggcag 4740gaacagggcc
cacactaccg ccccacaccc cgcctcccgc accgcccctt cccggccgct 4800gctctcggcg
cgccctgctg agcagccgct attggccaca gcccatcgcg gtcggcgcgc 4860tgccattgct
ccctggcgct gtccgtctgc gagggtacta gtgagacgtg cggcttccgt 4920ttgtcacgtc
cggcacgccg cgaaccgcaa ggaaccttcc cgacttaggg gcggacgagg 4980aagcgtcgcc
ggggggccca caagggtagc ggcgaagatc cgggtgacgc tgcgaacgga 5040cgtgaagaat
gtgcgagacc cagggtcggc gccgctgcgt ttcccggaac cacgcccaga 5100gcagccgcgt
ccctgcgcaa acccagggct gccttggaaa aggcgcaacc ccaaccatta 5160ataactaatg
catggcggta atacggttat ccacagaatc aggggataac gcaggaaaga 5220acatggtacg
gcagtttaag gtttacacct ataaaagaga gagccgttat cgtctgtttg 5280tggatgtaca
gagtgatatt attgacacgc cggggcgacg gatggtgatc cccctggcca 5340gtgcacgtct
gctgtcagat aaagtctccc gtgaacttta cccggtggtg catatcgggg 5400atgaaagctg
gcgcatgatg accaccgata tggccagtgt gccggtctcc gttatcgggg 5460aagaagtggc
tgatctcagc caccgcgaaa atgacatcaa aaacgccatt aacctgatgt 5520tctggggaat
ataaatgtca ggcatgagat tatcaaaaag gatcttcacc tagatccttt 5580tcacgtagaa
agccagtccg cagaaacggt gctgaccccg gatgaatgtc agctactggg 5640ctatctggac
aagggaaaac gcaagcgcaa agagaaagca ggtagcttgc agtgggctta 5700catggcgata
gctagactgg gcggttttat ggacagcaag cgaaccggaa ttgccagctg 5760gggcgccctc
tggtaaggtt gggaagccct gcaaagtaaa ctggatggct ttctcgccgc 5820caaggatctg
atggcgcagg ggatcaagct ctgatcaaga gacaggatga ggatcgtttc 5880gcatgattga
acaagatgga ttgcacgcag gttctccggc cgcttgggtg gagaggctat 5940tcggctatga
ctgggcacaa cagacaatcg gctgctctga tgccgccgtg ttccggctgt 6000cagcgcaggg
gcgcccggtt ctttttgtca agaccgacct gtccggtgcc ctgaatgaac 6060tgcaagacga
ggcagcgcgg ctatcgtggc tggccacgac gggcgttcct tgcgcagctg 6120tgctcgacgt
tgtcactgaa gcgggaaggg actggctgct attgggcgaa gtgccggggc 6180aggatctcct
gtcatctcac cttgctcctg ccgagaaagt atccatcatg gctgatgcaa 6240tgcggcggct
gcatacgctt gatccggcta cctgcccatt cgaccaccaa gcgaaacatc 6300gcatcgagcg
agcacgtact cggatggaag ccggtcttgt cgatcaggat gatctggacg 6360aagagcatca
ggggctcgcg ccagccgaac tgttcgccag gctcaaggcg agcatgcccg 6420acggcgagga
tctcgtcgtg acccatggcg atgcctgctt gccgaatatc atggtggaaa 6480atggccgctt
ttctggattc atcgactgtg gccggctggg tgtggcggac cgctatcagg 6540acatagcgtt
ggctacccgt gatattgctg aagagcttgg cggcgaatgg gctgaccgct 6600tcctcgtgct
ttacggtatc gccgctcccg attcgcagcg catcgccttc tatcgccttc 6660ttgacgagtt
cttctgaatt attaacgctt acaatttcct gatgcggtat tttctcctta 6720cgcatctgtg
cggtatttca caccgcatac aggtggcact tttcggggaa atgtgcgcgg 6780aacccctatt
tgtttatttt tctaaataca ttcaaatatg tatccgctca tgagacaata 6840accctgataa
atgcttcaat aatattgaaa aaggaagagt atgagtattc aacatttccg 6900tgtcgccctt
attccctttt ttgcggcatt ttgccttcct gtttttgctc acccagaaac 6960gctggtgaaa
gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaact 7020ggatctcaac
agcggtaaga tccttgagag ttttcgcccc gaagaacgtt ttccaatgat 7080gagcactttt
aaagttctgc tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga 7140gcaactcggt
cgccgcatac actattctca gaatgacttg gttgagtact caccagtcac 7200agaaaagcat
cttacggatg gcatgacagt aagagaatta tgcagtgctg ccataaccat 7260gagtgataac
actgcggcca acttacttct gacaacgatc ggaggaccga aggagctaac 7320cgcttttttg
cacaacatgg gggatcatgt aactcgcctt gatcgttggg aaccggagct 7380gaatgaagcc
ataccaaacg acgagcgtga caccacgatg cctgtagcaa tggcaacaac 7440gttgcgcaaa
ctattaactg gcgaactact tactctagct tcccggcaac aattaataga 7500ctggatggag
gcggataaag ttgcaggacc acttctgcgc tcggcccttc cggctggctg 7560gtttattgct
gataaatctg gagccggtga gcgtgggtct cgcggtatca ttgcagcact 7620ggggccagat
ggtaagccct cccgtatcgt agttatctac acgacgggga gtcaggcaac 7680tatggatgaa
cgaaatagac agatcgctga gataggtgcc tcactgatta agcattggta 7740actgtcagac
caagtttact catatatact ttagattgat ttaaaacttc atttttaatt 7800taaaaggatc
taggtgaaga tcctttttga taatctcatg accaaaatcc cttaacgtga 7860gttttcgttc
cactgagcgt cagaccccgt agaaaagatc aaaggatctt cttgagatcc 7920tttttttctg
cgcgtaatct gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt 7980ttgtttgccg
gatcaagagc taccaactct ttttccgaag gtaactggct tcagcagagc 8040gcagatacca
aatactgtcc ttctagtgta gccgtagtta ggccaccact tcaagaactc 8100tgtagcaccg
cctacatacc tcgctctgct aatcctgtta ccagtggctg ctgccagtgg 8160cgataagtcg
tgtcttaccg ggttggactc aagacgatag ttaccggata aggcgcagcg 8220gtcgggctga
acggggggtt cgtgcacaca gcccagcttg gagcgaacga cctacaccga 8280actgagatac
ctacagcgtg agctatgaga aagcgccacg cttcccgaag ggagaaaggc 8340ggacaggtat
ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg agcttccagg 8400gggaaacgcc
tggtatcttt atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg 8460atttttgtga
tgctcgtcag gggggcggag cctatggaaa aacgccagca acgcggcctt 8520tttacggttc
ctgggctttt gctggccttt tgctcacatg ttctttcctg cgttatcccc 8580tgattctgtg
gataaccgta ttaccgcctt tgagtgagct gataccgctc gccgcagccg 8640aacgaccgag
cgcagcgagt cagtgagcga ggaagcggaa g
8681195428DNAArtificial SequenceDescription of Artificial Sequence
Plasmid 36E 19tcttccgctt cctcgctcac tgactcgctg cgctcggtcg ttcggctgcg
gcgagcggta 60tcagctcact caaaggcggt aatacggtta tccacagaat caggggataa
cgcaggaaag 120aacatgtgag caaaaggcca gcaaaagccc aggaaccgta aaaaggccgc
gttgctggcg 180tttttccata ggctccgccc ccctgacgag catcacaaaa atcgacgctc
aagtcagagg 240tggcgaaacc cgacaggact ataaagatac caggcgtttc cccctggaag
ctccctcgtg 300cgctctcctg ttccgaccct gccgcttacc ggatacctgt ccgcctttct
cccttcggga 360agcgtggcgc tttctcatag ctcacgctgt aggtatctca gttcggtgta
ggtcgttcgc 420tccaagctgg gctgtgtgca cgaacccccc gttcagcccg accgctgcgc
cttatccggt 480aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc
agcagccact 540ggtaacagga ttagcagagc gaggtatgta ggcggtgcta cagagttctt
gaagtggtgg 600cctaactacg gctacactag aaggacagta tttggtatct gcgctctgct
gaagccagtt 660accttcggaa aaagagttgg tagctcttga tccggcaaac aaaccaccgc
tggtagcggt 720ggtttttttg tttgcaagca gcagattacg cgcagaaaaa aaggatctca
agaagatcct 780ttgatctttt ctacggggtc tgacgctcag tggaacgaaa actcacgtta
agggattttg 840gtcatgagat tatcaaaaag gatcttcacc tagatccttt taaattaaaa
atgaagtttt 900aaatcaatct aaagtatata tgagtaaact tggtctgaca gttaccaatg
cttaatcagt 960gaggcaccta tctcagcgat ctgtctattt cgttcatcca tagttgcctg
actccccgtc 1020gtgtagataa ctacgatacg ggagggctta ccatctggcc ccagtgctgc
aatgataccg 1080cgagacccac gctcaccggc tccagattta tcagcaataa accagccagc
cggaagggcc 1140gagcgcagaa gtggtcctgc aactttatcc gcctccatcc agtctattaa
ttgttgccgg 1200gaagctagag taagtagttc gccagttaat agtttgcgca acgttgttgc
cattgctaca 1260ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat tcagctccgg
ttcccaacga 1320tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag cggttagctc
cttcggtcct 1380ccgatcgttg tcagaagtaa gttggccgca gtgttatcac tcatggttat
ggcagcactg 1440cataattctc ttactgtcat gccatccgta agatgctttt ctgtgactgg
tgagtactca 1500accaagtcat tctgagaata gtgtatgcgg cgaccgagtt gctcttgccc
ggcgtcaata 1560cgggataata ccgcgccaca tagcagaact ttaaaagtgc tcatcattgg
aaaacgttct 1620tcggggcgaa aactctcaag gatcttaccg ctgttgagat ccagttcgat
gtaacccact 1680cgtgcaccca actgatcttc agcatctttt actttcacca gcgtttctgg
gtgagcaaaa 1740acaggaaggc aaaatgccgc aaaaaaggga ataagggcga cacggaaatg
ttgaatactc 1800atactcttcc tttttcaata ttattgaagc atttatcagg gttattgtct
catgagcgga 1860tacatatttg aatgtattta gaaaaataaa caaatagggg ttccgcgcac
atttccccga 1920aaagtgccac ctgtatgcgg tgtgaaatac cgcacagatg cgtaaggaga
aaataccgca 1980tcaggaaatt gtaagcgtta ataattcaga agaactcgtc aagaaggcga
tagaaggcga 2040tgcgctgcga atcgggagcg gcgataccgt aaagcacgag gaagcggtca
gcccattcgc 2100cgccaagctc ttcagcaata tcacgggtag ccaacgctat gtcctgatag
cggtccgcca 2160cacccagccg gccacagtcg atgaatccag aaaagcggcc attttccacc
atgatattcg 2220gcaagcaggc atcgccatgg gtcacgacga gatcctcgcc gtcgggcatg
ctcgccttga 2280gcctggcgaa cagttcggct ggcgcgagcc cctgatgctc ttcgtccaga
tcatcctgat 2340cgacaagacc ggcttccatc cgagtacgtg ctcgctcgat gcgatgtttc
gcttggtggt 2400cgaatgggca ggtagccgga tcaagcgtat gcagccgccg cattgcatca
gccatgatgg 2460atactttctc ggcaggagca aggtgagatg acaggagatc ctgccccggc
acttcgccca 2520atagcagcca gtcccttccc gcttcagtga caacgtcgag cacagctgcg
caaggaacgc 2580ccgtcgtggc cagccacgat agccgcgctg cctcgtcttg cagttcattc
agggcaccgg 2640acaggtcggt cttgacaaaa agaaccgggc gcccctgcgc tgacagccgg
aacacggcgg 2700catcagagca gccgattgtc tgttgtgccc agtcatagcc gaatagcctc
tccacccaag 2760cggccggaga acctgcgtgc aatccatctt gttcaatcat gcgaaacgat
cctcatcctg 2820tctcttgatc agagcttgat cccctgcgcc atcagatcct tggcggcgag
aaagccatcc 2880agtttacttt gcagggcttc ccaaccttac cagagggcgc cccagctggc
aattccggtt 2940cgcttgctgt ccataaaacc gcccagtcta gctatcgcca tgtaagccca
ctgcaagcta 3000cctgctttct ctttgcgctt gcgttttccc ttgtccagat agcccagtag
ctgacattca 3060tccggggtca gcaccgtttc tgcggactgg ctttctacgt gaaaaggatc
taggtgaaga 3120tcctttttga taatctcatg cctgacattt atattcccca gaacatcagg
ttaatggcgt 3180ttttgatgtc attttcgcgg tggctgagat cagccacttc ttccccgata
acggagaccg 3240gcacactggc catatcggtg gtcatcatgc gccagctttc atccccgata
tgcaccaccg 3300ggtaaagttc acgggagact ttatctgaca gcagacgtgc actggccagg
gggatcacca 3360tccgtcgccc cggcgtgtca ataatatcac tctgtacatc cacaaacaga
cgataacggc 3420tctctctttt ataggtgtaa accttaaact gccgtacgta taggctgcgc
aactgttggg 3480aagggcgatc ggtgcgggcc tcttcgctat tacgccagct ggcgaaaggg
ggatgtgctg 3540caaggcgatt aagttgggta acgccagggt tttcccagtc acgacgttgt
aaaacgacgg 3600ccagtgaatt gtaatacgac tcactatagg gcgaattgaa tttagcggcc
gcgaattcta 3660ccgggtaggg gaggcgcttt tcccaaggca gtctggagca tgcgctttag
cagccccgct 3720ggcacttggc gctacacaag tggcctctgg cctcgcacac attccacatc
caccggtagg 3780cgccaaccgg ctccgttctt tggtggcccc ttcgcgccac cttctactcc
tcccctagtc 3840aggaagttcc cccccgcccc gcagctcgcg tcgtgcagga cgtgacaaat
ggaagtagca 3900cgtctcacta gtctcgtgca gatggacagc accgctgagc aatggaagcg
ggtaggcctt 3960tggggcagcg gccaatagca gctttgctcc ttcgctttct gggctcagag
gctgggaagg 4020ggtgggtccg ggggcgggct caggggcggg ctcaggggcg gggcgggcgc
ccgaaggtcc 4080tccggaggcc cggcattctc gcacgcttca aaagcgcacg tctgccgcgc
tgttctcctc 4140ttcctcatct ccgggccttt ctcgagtccg gattaagatg aacgacgagc
agatcctgga 4200gatggtgctg cagcaccagc agcgccgcca acaggaagcg gagcgcgagg
aggaagttgg 4260ggatgacatg gaagacgacg aagatgatga cggtcttcag atgccgacgc
cgcttcatgc 4320ctatcagcta ctgtgttacg attctttcga acttcatttc gggggatgcg
cttgccacgg 4380gttacctttg catcgtatgg ggttatcggc ttgccacctg gctccttccg
atttggccac 4440ttatgtttgg gccaggttgg aggatgactt gaatgtggca ggggtgtact
tcgtggctat 4500gtgggcgtca ccggggttta gcgatttctc tccagtattt atgcagcgac
cgatcgggaa 4560cgtgtgcggg atgttaattc acgtggacct gcacagcagg ctaccattcc
taattgcggt 4620gtcgcgcttg ggggaggcgg gtggcagccc ctgtctgtat atgaggaaaa
ttgatgttga 4680tttggacacg cagcgcgtac atttttatac agaagattgg ttcagtgagt
ttgcgaatct 4740gctgtattac tggcaaatga gcgaatggaa acatttagcg gagcgtatgc
aataaagaga 4800cgtgagactg tataaatggt tcacctgtta acggatccca cgtcactatt
gtatactcta 4860tattatactc tatgttatac tctgtaatcc tactcaataa acgtgtcacg
cctgtgaaac 4920cgtactaagt ctcccgtgtc ttcttatcac catcaggtga catcctcgcc
caggctgtca 4980atcatgccgg tatcgattcc agtagcaccg gccccacgct gacaacccac
tcttgcagcg 5040ttagcagcgc ccctcttaac aagccgaccc ccaccagcgt cgcggttact
aacactcctc 5100tccccggggc atccgctact cccgagctta agattaaggg cgaattcgtt
taaacctgca 5160ggactagtcc ctttagtgag ggttaattct gagcttggcg taatcatggt
catagctgtt 5220tcctgtgtga aattgttatc cgctcacaat tccacacaac atacgagccg
gaagcataaa 5280gtgtaaagcc tggggtgcct aatgagtgag ctaactcaca ttaattgcgt
tgcgctcact 5340gcccgctttc cagtcgggaa acctgtcgtg ccagctgcat taatgaatcg
gccaacgcgc 5400ggggagaggc ggtttgcgta ttgggcgc
5428
User Contributions:
Comment about this patent or add new information about this topic: