Patent application title: COMPOUNDS AND METHODS FOR IMMUNOTHERAPY AND DIAGNOSIS OF TUBERCULOSIS
Inventors:
Steven G. Reed (Bellevue, WA, US)
Yasir A. W. Skeiky (Seattle, WA, US)
Davin C. Dillon (Redmond, WA, US)
Antonio Campos-Neto (Bainbridge Island, WA, US)
Antonio Campos-Neto (Bainbridge Island, WA, US)
Raymond Houghton (Bothell, WA, US)
Thomas S. Vedvick (Federal Way, WA, US)
Thomas S. Vedvick (Federal Way, WA, US)
Daniel R. Twardzik (Bainbridge Island, WA, US)
Assignees:
Corixa Corporation
IPC8 Class: AA61K3904FI
USPC Class:
4241901
Class name: Antigen, epitope, or other immunospecific immunoeffector (e.g., immunospecific vaccine, immunospecific stimulator of cell-mediated immunity, immunospecific tolerogen, immunospecific immunosuppressor, etc.) amino acid sequence disclosed in whole or in part; or conjugate, complex, or fusion protein or fusion polypeptide including the same disclosed amino acid sequence derived from bacterium (e.g., mycoplasma, anaplasma, etc.)
Publication date: 2011-12-15
Patent application number: 20110305721
Abstract:
Compounds and methods for inducing protective immunity against
tuberculosis are disclosed. The compounds provided include polypeptides
that contain at least one immunogenic portion of one or more M.
tuberculosis proteins and DNA molecules encoding such polypeptides. Such
compounds may be formulated into vaccines and/or pharmaceutical
compositions for immunization against M. tuberculosis infection, or may
be used for the diagnosis of tuberculosis.Claims:
1. An isolated polypeptide comprising the amino acid sequence of SEQ ID
NO: 107.
2. A fusion protein comprising a first polypeptide comprising the amino acid sequence of SEQ ID NO:107 and a second polypeptide.
3. A composition comprising a polypeptide of claim 1 and a physiologically acceptable carrier.
4. The composition of claim 3, further comprising a non-specific immune response enhancer.
5. The composition of claim 4, wherein the non-specific immune response enhancer is an adjuvant.
6. An isolated polypeptide comprising an immunogenic fragment of SEQ ID NO:107, wherein the immunogenic fragment of SEQ ID NO:107 is at least 9 amino acids in length.
7. A fusion protein comprising a first polypeptide comprising an immunogenic fragment of SEQ ID NO:107, wherein the immunogenic fragment of SEQ ID NO:107 is at least 9 amino acids in length and a second polypeptide.
8. A composition comprising a polypeptide of claim 6 and a physiologically acceptable carrier.
9. The composition of claim 8, further comprising a non-specific immune response enhancer.
10. The composition of claim 9, wherein the non-specific immune response enhancer is an adjuvant.
11. A fusion protein according to claim 2, where said second polypeptide is an M. tuberculosis antigen.
12. A composition comprising a fusion protein of claim 2 and a physiologically acceptable carrier.
13. The composition of claim 12, further comprising a non-specific immune response enhancer.
14. The composition of claim 13, wherein the non-specific immune response enhancer is an adjuvant.
15. A fusion protein according to claim 7, where said second polypeptide is an M. tuberculosis antigen.
16. A composition comprising a fusion protein of claim 7 and a physiologically acceptable carrier.
17. The composition of claim 16, further comprising a non-specific immune response enhancer.
18. The composition of claim 17, where the non-specific immune response enhancer is an adjuvant.
19. An isolated polypeptide consisting of the amino acid sequence of SEQ ID NO:107.
20. A fusion protein comprising a first polypeptide consisting of the amino acid sequence of SEQ ID NO:107 and a second polypeptide.
21. A fusion protein according to claim 20, where said second polypeptide is an M. tuberculosis antigen.
22. A composition comprising a polypeptide of claim 19 and a physiologically acceptable carrier.
23. A composition comprising a fusion protein of claim 20 and a physiologically acceptable carrier.
24. The composition of claim 22, further comprising a non-specific immune response enhancer.
25. The composition of claim 24, wherein the non-specific immune response enhancer is an adjuvant.
26. The composition of claim 23, further comprising a non-specific immune response enhancer.
27. The composition of claim 26, wherein the non-specific immune response enhancer is an adjuvant.
28. An isolated polypeptide consisting of an immunogenic fragment of SEQ ID NO:107, wherein the immunogenic fragment of SEQ ID NO:107 is at least 9 amino acids in length.
29. A fusion protein comprising a first polypeptide consisting of an immunogenic fragment of SEQ ID NO:107, wherein the immunogenic fragment of SEQ ID NO:107 is at least 9 amino acids in length, and a second polypeptide.
30. A fusion protein according to claim 29, where said second polypeptide is an M. tuberculosis antigen.
31. A composition comprising a polypeptide of claim 28 and a physiologically acceptable carrier.
32. A composition comprising a fusion protein of claim 29 and physiologically acceptable carrier.
33. The composition of claim 31, further comprising a non-specific immune response enhancer.
34. The composition of claim 33, wherein the non-specific immune response enhancer is an adjuvant.
35. The composition of claim 32, further comprising a non-specific immune response enhancer.
36. The composition of claim 35, wherein the non-specific immune response enhancer is an adjuvant.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation-in-part of U.S. application Ser. No. 08/730,510, filed Oct. 11, 1996; which claims priority from PCT Application no. PCT/US 96/14674, filed Aug. 30, 1996; and is a continuation-in-part of U.S. application Ser. No. 08/680,574, filed Jul. 12, 1996; which is a continuation-in-part of U.S. application Ser. No. 08/659,683, filed Jun. 5, 1996; which is a continuation-in-part of U.S. application Ser. No. 08/620,874, filed Marcia 22, 1996; which is a continuation-in-part of U.S. application Ser. No. 08/533,634, filed Sep. 22, 1995; which is a continuation-in-part of U.S. application Ser. No. 08/523,436, filed Sep. 1, 1995, now abandoned.
TECHNICAL FIELD
[0002] The present invention relates generally to detecting, treating and preventing Mycobacterium tuberculosis infection. The invention is more particularly related to polypeptides comprising a Mycobacterium tuberculosis antigen, or a portion or other variant thereof, and the use of such polypeptides for diagnosing and vaccinating against Mycobacterium tuberculosis infection.
BACKGROUND OF THE INVENTION
[0003] Tuberculosis is a chronic, infectious disease, that is generally caused by infection with Mycobacterium tuberculosis. It is a major disease in developing countries, as well as an increasing problem in developed areas of the world, with about 8 million new cases and 3 million deaths each year. Although the infection may be asymptomatic for a considerable period of time, the disease is most commonly manifested as an acute inflammation of the lungs, resulting in fever and a nonproductive cough. If left untreated, serious complications and death typically result.
[0004] Although tuberculosis can generally be controlled using extended antibiotic therapy, such treatment is not sufficient to prevent the spread of the disease. Infected individuals may be asymptomatic, but contagious, for some time. In addition, although compliance with the treatment regimen is critical, patient behavior is difficult to monitor. Some patients do not complete the course of treatment, which can lead to ineffective treatment and the development of drug resistance.
[0005] Inhibiting the spread of tuberculosis requires effective vaccination and accurate, early diagnosis of the disease. Currently, vaccination with live bacteria is the most efficient method for inducing protective immunity. The most common Mycobacterium employed for this purpose is Bacillus Calmette-Guerin (BCG), an avirulent strain of Mycobacterium bovis. However, the safety and efficacy of BCG is a source of controversy and some countries, such as the United States, do not vaccinate the general public. Diagnosis is commonly achieved using a skin test, which involves intradermal exposure to tuberculin PPD (protein-purified derivative). Antigen-specific T cell responses result in measurable induration at the injection site by 48-72 hours after injection, which indicates exposure to Mycobacterial antigens. Sensitivity and specificity have, however, been a problem with this test, and individuals vaccinated with BCG cannot be distinguished from infected individuals.
[0006] While macrophages have been shown to act as the principal effectors of M. tuberculosis immunity, T cells are the predominant inducers of such immunity. The essential role of T cells in protection against M. tuberculosis infection is illustrated by the frequent occurrence of M. tuberculosis in AIDS patients, due to the depletion of CD4 T cells associated with human immunodeficiency virus (HIV) infection. Mycobacterium-reactive CD4 T cells have been shown to be potent producers of gamma-interferon (IFN-γ), which, in turn, has been shown to trigger the anti-mycobacterial effects of macrophages in mice. While the role of IFN-γ in humans is less clear, studies have shown that 1,25-dihydroxy-vitamin D3, either alone or in combination with IFN-γ or tumor necrosis factor-alpha, activates human macrophages to inhibit M. tuberculosis infection. Furthermore, it is known that IFN-γ stimulates human macrophages to make 1,25-dihydroxy-vitamin D3. Similarly, TL-12 has been shown to play a role in stimulating resistance to M. tuberculosis infection. For a review of the immunology of M. tuberculosis infection see Chan and Kaufmann in Tuberculosis: Pathogenesis, Protection and Control, Bloom (ed.), ASM Press, Washington, D.C., 1994.
[0007] Accordingly, there is a need in the art for improved vaccines and methods for preventing, treating and detecting tuberculosis. The present invention fulfills these needs and further provides other related advantages.
SUMMARY OF THE INVENTION
[0008] Briefly stated, this invention provides compounds and methods for preventing and diagnosing tuberculosis. In one aspect, polypeptides are provided comprising an immunogenic portion of a soluble M. tuberculosis antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. In one embodiment of this aspect, the soluble antigen has one of the following N-terminal sequences:
TABLE-US-00001 (a) (SEQ ID No. 120) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn- Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (b) (SEQ ID No. 121) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro- Ala-Pro-Ser; (c) (SEQ ID No. 122) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu- Glu-Ala-Ala-Lys-Glu-Gly-Arg; (d) (SEQ ID No. 123) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala- Trp-Gly-Pro; (e) (SEQ ID No. 124) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa- Ala-Val; (f) (SEQ ID No. 125) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val- Pro; (g) (SEQ ID No. 126) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala- Ala-Ser-Pro-Pro-Ser, (h) (SEQ ID No. 127) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr- Asp-Thr-Gly; (i) (SEQ ID No. 128) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala- Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro- Asn-Val-Ser-Phe-Ala-Asn; (j) (SEQ ID No. 134) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr- Asp-Ala-Ser; (k) (SEQ ID No. 135) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu- Thr-Ala-Asp; or (l) (SEQ ID No. 136) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val- Gln-Ala-Gly;
wherein Xaa may be any amino acid.
[0009] In a related aspect, polypeptides are provided comprising an immunogenic portion of an M. tuberculosis antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications, the antigen having one of the following N-terminal sequences:
TABLE-US-00002 (m) (SEQ ID No. 137) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val- Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; or (n) (SEQ ID No. 129) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys- Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe;
wherein Xaa may be any amino acid.
[0010] In another embodiment, the antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 1, 2, 4-10, 13-25, 52, 99 and 101 or a complement thereof under moderately stringent conditions.
[0011] In a related aspect, the polypeptides comprise an immunogenic portion of a M. tuberculosis antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications, wherein the antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos.: 26-51, 138 and 139, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 26-51, 133 and 139 or a complement thereof under moderately stringent conditions.
[0012] In related aspects, DNA sequences encoding the above polypeptides, expression vectors comprising these DNA sequences and host cells transformed or transfected with such expression vectors are also provided.
[0013] In another aspect, the present invention provides fission proteins comprising a first and a second inventive polypeptide or, alternatively, an inventive polypeptide and a known M. tuberculosis antigen.
[0014] Within other aspects, the present invention provides pharmaceutical compositions that comprise one or more of the above polypeptides, or a DNA molecule encoding such polypeptides, and a physiologically acceptable carrier. The invention also provides vaccines comprising one or more of the polypeptides as described above and a non-specific immune response enhancer, together with vaccines comprising one or more DNA sequences encoding such polypeptides and a non-specific immune response enhancer.
[0015] In yet another aspect, methods are provided for inducing protective immunity in a patient, comprising administering to a patient an effective amount of one or more of the above polypeptides.
[0016] In further aspects of this invention, methods and diagnostic kits are provided for detecting tuberculosis in a patient. The methods comprise contacting dermal cells of a patient with one or more of the above polypeptides and detecting an immune response on the patient's skin. The diagnostic kits comprise one or more of the above polypeptides in combination with an apparatus sufficient to contact the polypeptide with the dermal cells of a patient.
[0017] In yet other aspects, methods are provided for detecting tuberculosis in a patient, such methods comprising contacting dermal cells of a patient with one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos.: 3, 11, 12, 140 and 141, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos.: 3, 11, 12, 140 and 141; and detecting an immune response on the patient's skin. Diagnostic kits for use in such methods are also provided.
[0018] These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.
BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE IDENTIFIERS
[0019] FIGS. 1A and B illustrate the stimulation of proliferation and interferon-γ production in T cells derived from a first and a second M. tuberculosis-immune donor, respectively, by the 14 Kd, 20 Kd and 26 Kd antigens described in Example 1.
[0020] FIG. 2 illustrates the stimulation of proliferation and interferon-γ production in T cells derived from an M. tuberculosis-immune individual by the two representative polypeptides TbRa3 and TbRa9.
[0021] FIGS. 3A-D illustrate the reactivity of antisera raised against secretory M. tuberculosis proteins, the known M. tuberculosis antigen 85b and the inventive antigens Tb38-1 and TbH-9, respectively, with M. tuberculosis lysate (lane 2), M. tuberculosis secretory proteins (lane 3), recombinant Tb38-1 (lane 4), recombinant TbH-9 (lane 5) and recombinant 85b (lane 5).
[0022] FIG. 4A illustrates the stimulation of proliferation in a TbH-9-specific T cell clone by secretory M. tuberculosis proteins, recombinant TbH-9 and a control antigen, TbRa11.
[0023] FIG. 4B illustrates the stimulation of interferon-γ production in a TbH-9-specific T cell clone by secretory M. tuberculosis proteins, PPD and recombinant TbH-9.
[0024] FIGS. 5A and B illustrate the stimulation of proliferation and interferon-γ production in TbH9-specific T cells by the fusion protein TbH9-Tb38-1.
[0025] FIGS. 6A and B illustrate the stimulation of proliferation and interferon-γ production in Tb38-1-specific T cells by the fusion protein TbH9-Tb38-1.
[0026] FIGS. 7A and B illustrate the stimulation of proliferation and interferon-γ production in T cells previously shown to respond to both TbH-9 and Tb38-1 by the fusion protein TbH9-Tb38-1.
[0027] SEQ. ID NO. 1 is the DNA sequence of TbRa1. [0028] SEQ. ID NO. 2 is the DNA sequence of TbRa10. [0029] SEQ. ID NO. 3 is the DNA sequence of TbRa11. [0030] SEQ. ID NO. 4 is the DNA sequence of TbRa12. [0031] SEQ. ID NO. 5 is the DNA sequence of TbRa13. [0032] SEQ. ID NO. 6 is the DNA sequence of TbRa16. [0033] SEQ. ID NO. 7 is the DNA sequence of TbRa17. [0034] SEQ. ID NO. 8 is the DNA sequence of TbRa18. [0035] SEQ. ID NO. 9 is the DNA sequence of TbRa19. [0036] SEQ. ID NO. 10 is the DNA sequence of TbRa24. [0037] SEQ. ID NO. 11 is the DNA sequence of TbRa26. [0038] SEQ. ID NO. 12 is the DNA sequence of TbRa28. [0039] SEQ. ID NO. 13 is the DNA sequence of TbRa29. [0040] SEQ. ID NO. 14 is the DNA sequence of TbRa2A. [0041] SEQ. ID NO. 15 is the DNA sequence of TbRa3. [0042] SEQ. ID NO. 16 is the DNA sequence of TbRa32. [0043] SEQ. ID NO. 17 is the DNA sequence of TbRa35. [0044] SEQ. ID NO. 18 is the DNA sequence of TbRa36. [0045] SEQ. ID NO. 19 is the DNA sequence of TbRa4. [0046] SEQ. ID NO. 20 is the DNA sequence of TbRa9. [0047] SEQ. ID NO. 21 is the DNA sequence of TbRaB. [0048] SEQ. ID NO. 22 is the DNA sequence of TbRaC. [0049] SEQ. ID NO. 23 is the DNA sequence of TbRaD. [0050] SEQ. ID NO. 24 is the DNA sequence of YYWCPG. [0051] SEQ. ID NO. 25 is the DNA sequence of AAMK. [0052] SEQ. ID NO. 26 is the DNA sequence of TbL-23. [0053] SEQ. ID NO. 27 is the DNA sequence of TbL-24. [0054] SEQ. ID NO. 28 is the DNA sequence of TbL-25. [0055] SEQ. ID NO. 29 is the DNA sequence of TbL-28. [0056] SEQ. ID NO. 30 is the DNA sequence of TbL-29. [0057] SEQ. ID NO. 31 is the DNA sequence of TbH-5. [0058] SEQ. ID NO. 32 is the DNA sequence of TbH-8. [0059] SEQ. ID NO. 33 is the DNA sequence of TbH-9. [0060] SEQ. ID NO. 34 is the DNA sequence of TbM-1. [0061] SEQ. ID NO. 35 is the DNA sequence of TbM-3. [0062] SEQ. ID NO. 36 is the DNA sequence of TbM-6. [0063] SEQ. ID NO. 37 is the DNA sequence of TbM-7. [0064] SEQ. ID NO. 38 is the DNA sequence of TbM-9. [0065] SEQ. ID NO. 39 is the DNA sequence of TbM-12. [0066] SEQ. ID NO. 40 is the DNA sequence of TbM-13. [0067] SEQ. ID NO. 41 is the DNA sequence of TbM-14. [0068] SEQ. ID NO. 42 is the DNA sequence of TbM-15. [0069] SEQ. ID NO. 43 is the DNA sequence of TbH-4. [0070] SEQ. ID NO. 44 is the DNA sequence of TbH-4-FWD. [0071] SEQ. ID NO. 45 is the DNA sequence of TbH-12. [0072] SEQ. ID NO. 46 is the DNA sequence of Tb38-1. [0073] SEQ. ID NO. 47 is the DNA sequence of Tb38-4. [0074] SEQ. ID NO. 48 is the DNA sequence of TbL-17. [0075] SEQ. ID NO. 49 is the DNA sequence of TbL-20. [0076] SEQ. ID NO. 50 is the DNA sequence of TbL-21. [0077] SEQ. ID NO. 51 is the DNA sequence of TbH-16. [0078] SEQ. ID NO. 52 is the DNA sequence of DPEP. [0079] SEQ. ID NO. 53 is the deduced amino acid sequence of DPEP. [0080] SEQ. ID NO. 54 is the protein sequence of DPV N-terminal Antigen. [0081] SEQ. ID NO. 55 is the protein sequence of AVGS N-terminal Antigen. [0082] SEQ. ID NO. 56 is the protein sequence of AAMK N-terminal Antigen. [0083] SEQ. ID NO. 57 is the protein sequence of YYWC N-terminal Antigen. [0084] SEQ. ID NO. 58 is the protein sequence of DIGS N-terminal Antigen. [0085] SEQ. ID NO. 59 is the protein sequence of AEES N-terminal Antigen. [0086] SEQ. ID NO. 60 is the protein sequence of DPEP N-terminal Antigen. [0087] SEQ. ID NO. 61 is the protein sequence of APKT N-terminal Antigen. [0088] SEQ. ID NO. 62 is the protein sequence of DPAS N-terminal Antigen. [0089] SEQ. ID NO. 63 is the deduced amino acid sequence of TbRa1. [0090] SEQ. ID NO. 64 is the deduced amino acid sequence of TbRa10. [0091] SEQ. ID NO. 65 is the deduced amino acid sequence of TbRa11. [0092] SEQ. ID NO. 66 is the deduced amino acid sequence of TbRa12. [0093] SEQ. ID NO. 67 is the deduced amino acid sequence of TbRa13. [0094] SEQ. ID NO. 68 is the deduced amino acid sequence of TbRa16. [0095] SEQ. ID NO. 69 is the deduced amino acid sequence of TbRa17. [0096] SEQ. ID NO. 70 is the deduced amino acid sequence of TbRa18. [0097] SEQ. ID NO. 71 is the deduced amino acid sequence of TbRa19. [0098] SEQ. ID NO. 72 is the deduced amino acid sequence of TbRa24. [0099] SEQ. ID NO. 73 is the deduced amino acid sequence of TbRa26. [0100] SEQ. ID NO. 74 is the deduced amino acid sequence of TbRa28. [0101] SEQ. ID NO. 75 is the deduced amino acid sequence of TbRa29. [0102] SEQ. ID NO. 76 is the deduced amino acid sequence of TbRa2A. [0103] SEQ. ID NO. 77 is the deduced amino acid sequence of TbRa3. [0104] SEQ. ID NO. 78 is the deduced amino acid sequence of TbRa32. [0105] SEQ. ID NO. 79 is the deduced amino acid sequence of TbRa35. [0106] SEQ. ID NO. 80 is the deduced amino acid sequence of TbRa36. [0107] SEQ. ID NO. 81 is the deduced amino acid sequence of TbRa4. [0108] SEQ. ID NO. 82 is the deduced amino acid sequence of TbRa9. [0109] SEQ. ID NO. 83 is the deduced amino acid sequence of TbRaB. [0110] SEQ. ID NO. 84 is the deduced amino acid sequence of TbRaC. [0111] SEQ. ID NO. 85 is the deduced amino acid sequence of TbRaD. [0112] SEQ. ID NO. 86 is the deduced amino acid sequence of YYWCPG. [0113] SEQ. ID NO. 87 is the deduced amino acid sequence of TbAAMK. [0114] SEQ. ID NO. 88 is the deduced amino acid sequence of Tb38-1. [0115] SEQ. ID NO. 89 is the deduced amino acid sequence of TbH-4. [0116] SEQ. ID NO. 90 is the deduced amino acid sequence of TbH-8. [0117] SEQ. ID NO. 91 is the deduced amino acid sequence of TbH-9. [0118] SEQ. ID NO: 92 is the deduced amino acid sequence of TbH-12. [0119] SEQ. ID NO. 93 is the amino acid sequence of Tb38-1 Peptide 1. [0120] SEQ. ID NO. 94 is the amino acid sequence of Tb38-1 Peptide 2. [0121] SEQ. ID NO. 95 is the amino acid sequence of Tb38-1 Peptide 3. [0122] SEQ. ID NO. 96 is the amino acid sequence of Tb38-1 Peptide 4. [0123] SEQ. ID NO. 97 is the amino acid sequence of Tb38-1 Peptide 5. [0124] SEQ. ID NO. 98 is the amino acid sequence of Tb38-1 Peptide 6. [0125] SEQ. ID NO. 99 is the DNA sequence of DPAS. [0126] SEQ. ID NO. 100 is the deduced amino acid sequence of DPAS. [0127] SEQ. ID NO. 101 is the DNA sequence of DPV. [0128] SEQ. ID NO. 102 is the deduced amino acid sequence of DPV. [0129] SEQ. ID NO. 103 is the DNA sequence of ESAT-6. [0130] SEQ. ID NO. 104 is the deduced amino acid sequence of ESAT-6. [0131] SEQ. ID NO. 105 is the DNA sequence of TbH-8-2. [0132] SEQ. ID NO. 106 is the DNA sequence of TbH-9FL. [0133] SEQ. ID NO. 107 is the deduced amino acid sequence of TbH-9 μL. [0134] SEQ. ID NO. 108 is the DNA sequence of TbH-9-1. [0135] SEQ. ID NO. 109 is the deduced amino acid sequence of TbH-9-1. [0136] SEQ. ID NO. 110 is the DNA sequence of TbH-9-4. [0137] SEQ. ID NO. 111 is the deduced amino acid sequence of TbH-9-4. [0138] SEQ. ID NO. 112 is the DNA sequence of Tb38-1F2 IN. [0139] SEQ. ID NO. 113 is the DNA sequence of Tb38-2F2 RP. [0140] SEQ. ID NO. 114 is the deduced amino acid sequence of Tb37-FL. [0141] SEQ. ID NO. 115 is the deduced amino acid sequence of Tb38-IN. [0142] SEQ. ID NO. 116 is the DNA sequence of Tb38-1F3. [0143] SEQ. ID NO. 117 is the deduced amino acid sequence of Tb38-1F3. [0144] SEQ. ID NO. 118 is the DNA sequence of Tb38-1F5. [0145] SEQ. ID NO. 119 is the DNA sequence of Tb38-1F6. [0146] SEQ. ID NO. 120 is the deduced N-terminal amino acid sequence of DPV. [0147] SEQ. ID NO. 121 is the deduced N-terminal amino acid sequence of AVGS. [0148] SEQ. ID NO. 122 is the deduced N-terminal amino acid sequence of AAMK. [0149] SEQ. ID NO. 123 is the deduced N-terminal amino acid sequence of YYWC. [0150] SEQ. ID NO. 124 is the deduced N-terminal amino acid sequence of DIGS. [0151] SEQ. ID NO. 125 is the deduced N-terminal amino acid sequence of AEES. [0152] SEQ. ID NO. 126 is the deduced N-terminal amino acid sequence of DPEP. [0153] SEQ. ID NO. 127 is the deduced N-terminal amino acid sequence of APKT. [0154] SEQ. ID NO. 128 is the deduced amino acid sequence of DPAS. [0155] SEQ.
ID NO. 129 is the protein sequence of DPPD N-terminal Antigen. [0156] SEQ ID NO. 130-133 are the protein sequences of four DPPD cyanogen bromide fragments. [0157] SEQ ID NO. 134 is the N-terminal protein sequence of XDS antigen. [0158] SEQ ID NO. 135 is the N-terminal protein sequence of AGD antigen. [0159] SEQ ID NO. 136 is the N-terminal protein sequence of APE antigen. [0160] SEQ ID NO. 137 is the N-terminal protein sequence of XYI antigen. [0161] SEQ ID NO. 138 is the DNA sequence of TbH-29. [0162] SEQ ID NO. 139 is the DNA sequence of TbH-30. [0163] SEQ ID NO. 140 is the DNA sequence of TbH-32. [0164] SEQ ID NO. 141 is the DNA sequence of TbH-33. [0165] SEQ ID NO. 142 is the predicted amino acid sequence of TbH-29. [0166] SEQ ID NO. 143 is the predicted amino acid sequence of TbH-30. [0167] SEQ ID NO. 144 is the predicted amino acid sequence of TbH-32. [0168] SEQ ID NO. 145 is the predicted amino acid sequence of TbH-33. [0169] SEQ ID NO: 146-151 are PCR primers used in the preparation of a fusion protein containing TbRa3, 38 kD and Tb38-1. [0170] SEQ ID NO: 152 is the DNA sequence of the fusion protein containing TbRa3, 38 kD and Tb38-1. [0171] SEQ ID NO: 153 is the amino acid sequence of the fusion protein containing TbRa3, 38 kD and Tb38-1. [0172] SEQ ID NO: 154 is the DNA sequence of the M. tuberculosis antigen 38 kD. [0173] SEQ ID NO: 155 is the amino acid sequence of the M. tuberculosis antigen 38
DETAILED DESCRIPTION OF THE INVENTION
[0174] As noted above, the present invention is generally directed to compositions and methods for preventing, treating and diagnosing tuberculosis. The compositions of the subject invention include polypeptides that comprise at least one immunogenic portion of a M. tuberculosis antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. Polypeptides within the scope of the present invention include, but are not limited to, immunogenic soluble M. tuberculosis antigens. A "soluble M. tuberculosis antigen" is a protein of M. tuberculosis origin that is present in M. tuberculosis culture filtrate. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins (i.e., antigens), wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising an immunogenic portion of one of the above antigens may consist entirely of the immunogenic portion, or may contain additional sequences. The additional sequences may be derived from the native M. tuberculosis antigen or may be heterologous, and such sequences may (but need not) be immunogenic.
[0175] "Immunogenic," as used herein, refers to the ability to elicit an immune response (e.g., cellular) in a patient, such as a human, and/or in a biological sample. In particular, antigens that are immunogenic (and immunogenic portions or other variants of such antigens) are capable of stimulating cell proliferation, interleukin-12 production and/or interferon-γ production in biological samples comprising one or more cells selected from the group of T cells, NK cells, B cells and macrophages, where the cells are derived from an M. tuberculosis-immune individual. Polypeptides comprising at least an immunogenic portion of one or more M. tuberculosis antigens may generally be used to detect tuberculosis or to induce protective immunity against tuberculosis in a patient.
[0176] The compositions and methods of this invention also encompass variants of the above polypeptides. A "variant," as used herein, is a polypeptide that differs from the native antigen only in conservative substitutions and/or modifications, such that the ability of the polypeptide to induce an immune response is retained. Such variants may generally be identified by modifying one of the above polypeptide sequences, and evaluating the immunogenic properties of the modified polypeptide using, for example, the representative procedures described herein.
[0177] A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.
[0178] Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.
[0179] In a related aspect, combination polypeptides are disclosed. A "combination polypeptide" is a polypeptide comprising at least one of the above immunogenic portions and one or more additional immunogenic M. tuberculosis sequences, which are joined via a peptide linkage into a single amino acid chain. The sequences may be joined directly (i.e., with no intervening amino acids) or may be joined by way of a linker sequence (e.g., Gly-Cys-Gly) that does not significantly diminish the immunogenic properties of the component polypeptides.
[0180] In general, M. tuberculosis antigens, and DNA sequences encoding such antigens, may be prepared using any of a variety of procedures. For example, soluble antigens may be isolated from M. tuberculosis culture filtrate by procedures known to those of ordinary skill in the art, including anion-exchange and reverse phase chromatography. Purified antigens are then evaluated for their ability to elicit an appropriate immune response (e.g., cellular) using, for example, the representative methods described herein. Immunogenic antigens may then be partially sequenced using techniques such as traditional Edman chemistry. See Edman and Berg, Eur. J. Biochem. 80:116-132, 1967.
[0181] Immunogenic antigens may also be produced recombinantly using a DNA sequence that encodes the antigen, which has been inserted into an expression vector and expressed in an appropriate host. DNA molecules encoding soluble antigens may be isolated by screening an appropriate M. tuberculosis expression library with anti-sera (e.g., rabbit) raised specifically against soluble M. tuberculosis antigens. DNA sequences encoding antigens that may or may not be soluble may be identified by screening an appropriate M. tuberculosis genomic or cDNA expression library with sera obtained from patients infected with M. tuberculosis. Such screens may generally be performed using techniques well known to those of ordinary skill in the art, such as those described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y., 1989.
[0182] DNA sequences encoding soluble antigens may also be obtained by screening an appropriate M. tuberculosis cDNA or genomic DNA library for DNA sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated soluble antigens. Degenerate oligonucleotide sequences for use in such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y., 1989 (and references cited therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.
[0183] Alternatively, genomic or cDNA libraries derived from M. tuberculosis may be screened directly using peripheral blood mononuclear cells (PBMCs) or T cell lines or clones derived from one or more M. tuberculosis-immune individuals. In general, PBMCs and/or T cells for use in such screens may be prepared as described below. Direct library screens may generally be performed by assaying pools of expressed recombinant proteins for the ability to induce proliferation and/or interferon-γ production in T cells derived from an M. tuberculosis-immune individual. Alternatively, potential T cell antigens may be first selected based on antibody reactivity, as described above.
[0184] Regardless of the method of preparation, the antigens (and immunogenic portions thereof) described herein (which may or may not be soluble) have the ability to induce an immunogenic response. More specifically, the antigens have the ability to induce proliferation and/or cytokine production (i.e., interferon-γ and/or interleukin-12 production) in T cells, NK cells, B cells and/or macrophages derived from an M. tuberculosis-immune individual. The selection of cell type for use in evaluating an immunogenic response to a antigen will, of course, depend on the desired response. For example, interleukin-12 production is most readily evaluated using preparations containing B cells and/or macrophages. An M. tuberculosis-immune individual is one who is considered to be resistant to the development of tuberculosis by virtue of having mounted an effective T cell response to M. tuberculosis (i.e., substantially free of disease symptoms). Such individuals may be identified based on a strongly positive (i.e., greater than about 10 mm diameter induration) intradermal skin test response to tuberculosis proteins (PPD) and an absence of any signs or symptoms of tuberculosis disease. T cells, NK cells, B cells and macrophages derived from M. tuberculosis-immune individuals may be prepared using methods known to those of ordinary skill in the art. For example, a preparation of PBMCs (i.e., peripheral blood mononuclear cells) may be employed without further separation of component cells. PBMCs may generally be prepared, for example, using density centrifugation through Ficoll® (Winthrop Laboratories, NY). T cells for use in the assays described herein may also be purified directly from PBMCs. Alternatively, an enriched T cell line reactive against mycobacterial proteins, or T cell clones reactive to individual mycobacterial proteins, may be employed. Such T cell clones may be generated by, for example, culturing PBMCs from M. tuberculosis-immune individuals with mycobacterial proteins for a period of 2-4 weeks. This allows expansion of only the mycobacterial protein-specific T cells, resulting in a line composed solely of such cells. These cells may then be cloned and tested with individual proteins, using methods known to those of ordinary skill in the art, to more accurately define individual T cell specificity. In general, antigens that test positive in assays for proliferation and/or cytokine production (i.e., interferon-γ and/or interleukin-12 production) performed using T cells, NK cells, B cells and/or macrophages derived from an M. tuberculosis-immune individual are considered immunogenic. Such assays may be performed, for example, using the representative procedures described below. Immunogenic portions of such antigens may be identified using similar assays, and may be present within the polypeptides described herein.
[0185] The ability of a polypeptide (e.g., an immunogenic antigen, or a portion or other variant thereof) to induce cell proliferation is evaluated by contacting the cells (e.g., T cells and/or NK cells) with the polypeptide and measuring the proliferation of the cells. In general, the amount of polypeptide that is sufficient for evaluation of about 105 cells ranges from about 10 ng/mL to about 100 μg/mL and preferably is about 10 μg/mL. The incubation of polypeptide with cells is typically performed at 37° C. for about six days. Following incubation with polypeptide, the cells are assayed for a proliferative response, which may be evaluated by methods known to those of ordinary skill in the art, such as exposing cells to a pulse of radiolabeled thymidine and measuring the incorporation of label into cellular DNA. In general, a polypeptide that results in at least a three increase in proliferation above background (i.e., the proliferation observed for cells cultured without polypeptide) is considered to be able to induce proliferation.
[0186] The ability of a polypeptide to stimulate the production of interferon-γ and/or interleukin-12 in cells may be evaluated by contacting the cells with the polypeptide and measuring the level of interferon-γ or interleukin-12 produced by the cells. In general, the amount of polypeptide that is sufficient for the evaluation of about 105 cells ranges from about 10 ng/mL to about 100.1 g/mL and preferably is about 10 μg/mL. The polypeptide may, but need not, be immobilized on a solid support, such as a bead or a biodegradable microsphere, such as those described in U.S. Pat. Nos. 4,897,268 and 5,075,109. The incubation of polypeptide with the cells is typically performed at 37° C. for about six days. Following incubation with polypeptide, the cells are assayed for interferon-γ and/or interleukin-12 (or one or more subunits thereof), which may be evaluated by methods known to those of ordinary skill in the art, such as an enzyme-linked immunosorbent assay (ELISA) or, in the case of IL-12 P70 subunit, a bioassay such as an assay measuring proliferation of T cells. In general, a polypeptide that results in the production of at least 50 pg of interferon-γ per mL of cultured supernatant (containing 104-105 T cells per mL) is considered able to stimulate the production of interferon-γ. A polypeptide that stimulates the production of at least 10 pg/mL of IL-12 P70 subunit, and/or at least 100 pg/mL of IL-12 P40 subunit, per 105 macrophages or B cells (or per 3×105 PBMC) is considered able to stimulate the production of IL-12.
[0187] In general, immunogenic antigens are those antigens that stimulate proliferation and/or cytokine production (i.e., interferon-γ and/or interleukin-12 production) in T cells, NK cells, B cells and/or macrophages derived from at least about 25% of M. tuberculosis-immune individuals. Among these immunogenic antigens, polypeptides having superior therapeutic properties may be distinguished based on the magnitude of the responses in the above assays and based on the percentage of individuals for which a response is observed. In addition, antigens having superior therapeutic properties will not stimulate proliferation and/or cytokine production in vitro in cells derived from more than about 25% of individuals that are not M. tuberculosis-immune, thereby eliminating responses that are not specifically due to M. tuberculosis-responsive cells. Those antigens that induce a response in a high percentage of T cell, NK cell, B cell and/or macrophage preparations from M. tuberculosis-immune individuals (with a low incidence of responses in cell preparations from other individuals) have superior therapeutic properties.
[0188] Antigens with superior therapeutic properties may also be identified based on their ability to diminish the severity of M. tuberculosis infection in experimental animals, when administered as a vaccine. Suitable vaccine preparations for use on experimental animals are described in detail below. Efficacy may be determined based on the ability of the antigen to provide at least about a 50% reduction in bacterial numbers and/or at least about a 40% decrease in mortality following experimental infection. Suitable experimental animals include mice, guinea pigs and primates.
[0189] Antigens having superior diagnostic properties may generally be identified based on the ability to elicit a response in an intradermal skin test performed on an individual with active tuberculosis, but not in a test performed on an individual who is not infected with M. tuberculosis. Skin tests may generally be performed as described below, with a response of at least 5 mm induration considered positive.
[0190] Immunogenic portions of the antigens described herein may be prepared and identified using well known techniques, such as those summarized in Paul, Fundamental Immunology, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for immunogenic properties. The representative proliferation and cytokine production assays described herein may generally be employed in these screens. An immunogenic portion of a polypeptide is a portion that, within such representative assays, generates an immune response (e.g., proliferation, interferon-γ production and/or interleukin-12 production) that is substantially similar to that generated by the full length antigen. In other words, an immunogenic portion of an antigen may generate at least about 20%, and preferably about 100%, of the proliferation induced by the full length antigen in the model proliferation assay described herein. An immunogenic portion may also, or alternatively, stimulate the production of at least about 20%, and preferably about 100%, of the interferon-γ and/or interleukin-12 induced by the full length antigen in the model assay described herein.
[0191] Portions and other variants of M. tuberculosis antigens may be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Applied BioSystems, Inc., Foster City, Calif., and may be operated according to the manufacturer's instructions. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Sections of the DNA sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.
[0192] Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a DNA sequence encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.
[0193] Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are E. coli, yeast or a mammalian cell line such as COS or CHO. The DNA sequences expressed in this mariner may encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof.
[0194] In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in substantially pure form. Preferably, the polypeptides are at least about 80% pure, more preferably at least about 90% pure and most preferably at least about 99% pure. In certain preferred embodiments, described in detail below, the substantially pure polypeptides are incorporated into pharmaceutical compositions or vaccines for use in one or more of the methods disclosed herein.
[0195] In certain specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a soluble M. tuberculosis antigen having one of the following N-terminal sequences, or a variant thereof that differs only in conservative substitutions and/or modifications:
TABLE-US-00003 (a) (SEQ ID No. 120) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn- Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (b) (SEQ ID No. 121) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro- Ala-Pro-Ser; (c) (SEQ ID No. 122) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu- Glu-Ala-Ala-Lys-Glu-Gly-Arg; (d) (SEQ ID No. 123) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala- Trp-Gly-Pro; (e) (SEQ ID No. 124) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa- Ala-Val; (f) (SEQ ID. No. 125) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val- Pro; (g) (SEQ ID No. 126) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala- Ala-Ser-Pro-Pro-Ser; (h) (SEQ ID No. 127) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr- Asp-Thr-Gly; (i) (SEQ ID No. 128) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala- Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro- Asn-Val-Ser-Phe-Ala-Asn; (j) (SEQ ID No. 134) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr- Asp-Ala-Ser; (k) (SEQ ID No. 135) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Lle-Val-Gly-Asn-Leu- Thr-Ala-Asp; or (l) (SEQ ID No. 136) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val- Gln-Ala-Gly;
wherein Xaa may be any amino acid, preferably a cysteine residue. A DNA sequence encoding the antigen identified as (g) above is provided in SEQ ID No. 52, and the polypeptide encoded by SEQ ID No. 52 is provided in SEQ ID No. 53. A DNA sequence encoding the antigen defined as (a) above is provided in SEQ ID No. 101; its deduced amino acid sequence is provided in SEQ ID No. 102. A DNA sequence corresponding to antigen (d) above is provided in SEQ ID No. 24 a DNA sequence corresponding to antigen (c) is provided in SEQ ID No. 25 and a DNA sequence corresponding to antigen (i) is provided in SEQ ID No. 99; its deduced amino acid sequence is provided in SEQ ID No. 100.
[0196] In a further specific embodiment, the subject invention discloses polypeptides comprising at least an immunogenic portion of an M. tuberculosis antigen having one of the following N-terminal sequences, or a variant thereof that differs only in conservative substitutions and/or modifications:
TABLE-US-00004 (m) (SEQ ID No 137) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val- Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; or (n) (SEQ ID No. 129) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys- Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe;
wherein Xaa may be any amino acid, preferably a cysteine residue.
[0197] In other specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a soluble M. tuberculosis antigen (or a variant of such an antigen) that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID Nos.: 1, 2, 4-10, 13-25 and 52; (b) the complements of such DNA sequences, or (c) DNA sequences substantially homologous to a sequence in (a) or (b).
[0198] In further specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a M. tuberculosis antigen (or a variant of such an antigen), which may or may not be soluble, that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID Nos.: 26-51, 138 and 139, (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b).
[0199] In the specific embodiments discussed above, the XL tuberculosis antigens include variants that are encoded by DNA sequences which are substantially homologous to one or more of DNA sequences specifically recited herein. "Substantial homology," as used herein, refers to DNA sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5×SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50° C.-65° C., 5×SSC, overnight or, in the case of cross-species homology at 45° C., 0.5×SSC; followed by washing twice at 65° C. for 20 minutes with each of 2×, 0.5× and 0.2×SSC containing 0.1% SDS). Such hybridizing DNA sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing DNA sequence.
[0200] In a related aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, a polypeptide of the present invention and a known M. tuberculosis antigen, such as the 38 kD antigen described in Andersen and Hansen, Infect. Immun. 57:2481-2488, 1989, (Genbank Accession No. M30046) or ESAT-6 (SEQ ID Nos. 103 and 104), together with variants of such fusion proteins. The fusion proteins of the present invention may also include linker peptide between the first and second polypeptides.
[0201] A DNA sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding the first and second polypeptides into an appropriate expression vector. The 3' end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker; to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.
[0202] A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA 83:8258-8262, 1986; U.S. Pat. No. 4,935,233 and U.S. Pat. No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.
[0203] The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons require to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.
[0204] In another aspect, the present invention provides methods for using one or more of the above polypeptides or fusion proteins (or DNA molecules encoding such polypeptides) to induce protective immunity against tuberculosis in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with a disease, or may be free of detectable disease and/or infection. In other words, protective immunity may be induced to prevent or treat tuberculosis.
[0205] In this aspect, the polypeptide, fusion protein or DNA molecule is generally present within a pharmaceutical composition and/or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. Vaccines may comprise one or more of the above polypeptides and a non-specific immune response enhancer, such as an adjuvant or a liposome (into which the polypeptide is incorporated). Such pharmaceutical compositions and vaccines may also contain other M. tuberculosis antigens, either incorporated into a combination polypeptide or present within a separate polypeptide.
[0206] Alternatively, a vaccine may contain DNA encoding one or more polypeptides as described above, such that the polypeptide is generated in situ. In such vaccines, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacterial and viral expression systems. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on, its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., Science 259:1745-1749, 1993 and reviewed by Cohen, Science 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.
[0207] In a related aspect, a DNA vaccine as described above may be administered simultaneously with or sequentially to either a polypeptide of the present invention or a known M. tuberculosis antigen, such as the 38 kD antigen described above. For example, administration of DNA encoding a polypeptide of the present invention, either "naked" or in a delivery system as described above, may be followed by administration of an antigen in order to enhance the protective immune effect of the vaccine.
[0208] Routes and frequency of administration, as well as dosage, will vary from individual to individual and may parallel those currently being used in immunization using BCG. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 3 doses may be administered for a 1-36 week period. Preferably, 3 doses are administered, at intervals of 3-4 months, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that, when administered as described above, is capable of raising an immune response in an immunized patient sufficient to protect the patient from M. tuberculosis infection for at least 1-2 years. In general, the amount of polypeptide present in a dose (or produced in situ by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 μg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.
[0209] While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactic galactide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Pat. Nos. 4,897,268 and 5,075,109.
[0210] Any of a variety of adjuvants may be employed in the vaccines of this invention to nonspecifically enhance the immune response. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a nonspecific stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Freund's Complete Adjuvant (Difco Laboratories) and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, N.J.). Other suitable adjuvants include alum, biodegradable microspheres, monophosphoryl lipid A and quil A.
[0211] In another aspect, this invention provides methods for using one or more of the polypeptides described above to diagnose tuberculosis using a skin test. As used herein, a "skin test" is any assay performed directly on a patient in which a delayed-type hypersensitivity (DTH) reaction (such as swelling, reddening or dermatitis) is measured following intradermal injection of one or more polypeptides as described above. Such injection may be achieved using any suitable device sufficient to contact the polypeptide or polypeptides with dermal cells of the patient, such as a tuberculin syringe or 1 mL syringe. Preferably, the reaction is measured at least 48 hours after injection, more preferably 48-72 hours.
[0212] The DTH reaction is a cell-mediated immune response, which is greater in patients that have been exposed previously to the test antigen (i.e., the immunogenic portion of the polypeptide employed, or a variant thereof). The response may be measured visually, using a ruler. In general, a response that is greater than about 0.5 cm in diameter, preferably greater than about 1.0 cm in diameter, is a positive response, indicative of tuberculosis infection, which may or may not be manifested as an active disease.
[0213] The polypeptides of this invention are preferably formulated, for use in a skin test, as pharmaceutical compositions containing a polypeptide and a physiologically acceptable carrier, as described above. Such compositions typically contain one or more of the above polypeptides in an amount ranging from about 1 μg to about 100 μg, preferably from about 10 μg to about 50 μg in a volume of 0.1 mL. Preferably, the carrier employed in such pharmaceutical compositions is a saline solution with appropriate preservatives, such as phenol and/or Tween 80®.
[0214] In a preferred embodiment, a polypeptide employed in a skin test is of sufficient size such that it remains at the site of injection for the duration of the reaction period. In general, a polypeptide that is at least 9 amino acids in length is sufficient. The polypeptide is also preferably broken down by macrophages within hours of injection to allow presentation to T-cells. Such polypeptides may contain repeats of one or more of the above sequences and/or other immunogenic or nonimmunogenic sequences.
[0215] The following Examples are offered by way of illustration and not by way of limitation.
EXAMPLES
Example 1
Purification and Characterization of Polypeptides from M. tuberculosis Culture Filtrate
[0216] This example illustrates the preparation of M. tuberculosis soluble polypeptides from culture filtrate. Unless otherwise noted, all percentages in the following example are weight per volume.
[0217] M. tuberculosis (either H37Ra, ATCC No. 25177, or H37Rv, ATCC No. 25618) was cultured in sterile GAS media at 37° C. for fourteen days. The media was then vacuum filtered (leaving the bulk of the cells) through a 0.45μ filter into a sterile 2.5 L bottle. The media was next filtered through a 0.2μ filter into a sterile 4 L bottle and NaN3 was added to the culture filtrate to a concentration of 0.04%. The bottles were then placed in a 4° C. cold room.
[0218] The culture filtrate was concentrated by placing the filtrate in a 12 L reservoir that had been autoclaved and feeding the filtrate into a 400 ml Amicon stir cell which had been rinsed with ethanol and contained a 10,000 kDa MWCO membrane. The pressure was maintained at 60 psi using nitrogen gas. This procedure reduced the 12 L volume to approximately 50 ml.
[0219] The culture filtrate was dialyzed into 0.1% ammonium bicarbonate using a 8,000 kDa MWCO cellulose ester membrane, with two changes of ammonium bicarbonate solution. Protein concentration was then determined by a commercially available BCA assay (Pierce, Rockford, Ill.).
[0220] The dialyzed culture filtrate was then lyophilized, and the polypeptides resuspended in distilled water. The polypeptides were dialyzed against 0.01 mM 1,3 bis[tris(hydroxymethyl)-methylamino]propane, pH 7.5 (Bis-Tris propane buffer), the initial conditions for anion exchange chromatography. Fractionation was performed using gel profusion chromatography on a POROS 146 II Q/M anion exchange column 4.6 mm×100 mm (Perseptive BioSystems, Framingham, Mass.) equilibrated in 0.01 mM Bis-Tris propane buffer pH 7.5. Polypeptides were eluted with a linear 0-0.5 M NaCl gradient in the above buffer system. The column eluent was monitored at a wavelength of 220 nm.
[0221] The pools of polypeptides eluting from the ion exchange column were dialyzed against distilled water and lyophilized. The resulting material was dissolved in 0.1% trifluoroacetic acid (TFA) pH 1.9 in water, and the polypeptides were purified on a Delta-Pak C18 column (Waters, Milford, Mass.) 300 Angstrom pore size, 5 micron particle size (3.9×150 mm). The polypeptides were eluted from the column with a linear gradient from 0-60% dilution buffer (0.1% TFA in acetonitrile). The flow rate was 0.75 ml/minute and the HPLC eluent was monitored at 214 nm. Fractions containing the eluted polypeptides were collected to maximize the purity of the individual samples. Approximately 200 purified polypeptides were obtained.
[0222] The purified polypeptides were then screened for the ability to induce T-cell proliferation in PBMC preparations. The PBMCs from donors known to be PPD skin test positive and whose T-cells were shown to proliferate in response to PPD and crude soluble proteins from MTB were cultured in medium comprising RPM: 1640 supplemented with 10% pooled human serum and 50 μg/ml gentamicin. Purified polypeptides were added in duplicate at concentrations of 0.5 to 10 pg/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 μl of medium was removed from each well for determination of IFN-γ levels, as described below. The plates were then pulsed with 1 μCi/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that resulted in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone were considered positive.
[0223] IFN-γ was measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates were coated with a mouse monoclonal antibody directed to human IFN-γ (PharMingen, San Diego, Calif.) in PBS for four hours at room temperature. Wells were then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates were then washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates were incubated overnight at room temperature. The plates were again washed and a polyclonal rabbit anti-human IFN-γ serum diluted 1:3000 in PBS/10% normal goat serum was added to each well. The plates were then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Sigma Chemical So., St. Louis, Mo.) was added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates were washed and TMB substrate added. The reaction was stopped after 20 min with 1 N sulfuric acid. Optical density was determined at 450 nm using 570 nm as a reference wavelength. Fractions that resulted in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, were considered positive.
[0224] For sequencing, the polypeptides were individually dried onto Biobrene® (Perkin Elmer/Applied BioSystems Division, Foster City, Calif.) treated glass fiber filters. The filters with polypeptide were loaded onto a Perkin Elmer/Applied BioSystems Division Procise 492 protein sequencer. The polypeptides were sequenced from the amino terminal and using traditional Edman chemistry. The amino acid sequence was determined for each polypeptide by comparing the retention time of the PTH amino acid derivative to the appropriate PTH derivative standards.
[0225] Using the procedure described above, antigens having the following N-terminal sequences were isolated:
TABLE-US-00005 (a) (SEQ ID No. 54) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Xaa-Asn- Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu; (b) (SEQ ID No. 55) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro- Ala-Pro-Ser; (c) (SEQ ID No. 56) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu- Glu-Ala-Ala-Lys-Glu-Gly-Arg; (d) (SEQ ID No. 57) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala- Trp-Gly-Pro; (e) (SEQ ID No. 58) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa- Ala-Val; (f) (SEQ ID No. 59) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val- Pro; (g) (SEQ ID No. 60) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala- Ala-Ala-Pro-Pro-Ala; and (h) (SEQ ID No. 61) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr- Asp-Thr-Gly;
wherein Xaa may be any amino acid.
[0226] An additional antigen was isolated employing a microbore HPLC purification step in addition to the procedure described above. Specifically, 20 μl of a fraction comprising a mixture of antigens from the chromatographic purification step previously described, was purified on an Aquapore C18 column (Perkin Elmer/Applied Biosystems Division, Foster City, Calif.) with a 7 micron pore size, column size 1 mm×100 mm, in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted from the column with a linear gradient of 1%/minute of acetonitrile (containing 0.05% TFA) in water (0.05% TFA) at a flow rate of 80 μl/minute. The eluent was monitored at 250 nm. The original fraction was separated into 4 major peaks plus other smaller components and a polypeptide was obtained which was shown to have a molecular weight of 12.054 Kd (by mass spectrometry) and the following N-terminal sequence:
TABLE-US-00006 (i) (SEQ ID No. 62) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala- Gln-Gln-Thr-Ser-Leu-Leu-Asn-Asn-Leu-Ala-Asp-Pro- Asp-Val-Ser-Phe-Ala-Asp.
This polypeptide was shown to induce proliferation and IFN-γ production in PBMC preparations using the assays described above.
[0227] Additional soluble antigens were isolated from M. tuberculosis culture filtrate as follows. M. tuberculosis culture filtrate was prepared as described above. Following dialysis against Bis-Tris propane buffer, at pH 5.5, fractionation was performed using anion exchange chromatography on a Poros QE column 4.6×100 mm (Perseptive Biosystems) equilibrated in Bis-Tris propane buffer pH 5.5. Polypeptides were eluted with a linear 0-1.5 M NaCl gradient in the above buffer system at a flow rate of 10 ml/min. The column eluent was monitored at a wavelength of 214 nm.
[0228] The fractions eluting from the ion exchange column were pooled and subjected to reverse phase chromatography using a Poros R2 column 4.6×100 mm (Perseptive Biosystems). Polypeptides were eluted from the column with a linear gradient from 0-100% acetonitrile (0.1% TFA) at a flow rate of 5 ml/min. The eluent was monitored at 214 nm.
[0229] Fractions containing the eluted polypeptides were lyophilized and resuspended in 80 μl of aqueous 0.1% TFA and further subjected to reverse phase chromatography on a Vydac C4 column 4 6×150 mm (Western Analytical, Temecula, Calif.) with a linear gradient of 0-100% acetonitrile (0.1% TFA) at a flow rate of 2 ml/min. Eluent was monitored at 214 nm.
[0230] The fraction with biological activity was separated into one major peak plus other smaller components. Western blot of this peak onto PVDF membrane revealed three major bands of molecular weights 14 Kd, 20 Kd and 26 Kd. These polypeptides were determined to have the following N-terminal sequences, respectively: [0231] (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 134) [0232] (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 135) and [0233] (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 136), wherein Xaa may be any amino acid. Using the assays described above, these polypeptides were shown to induce proliferation and IFN-γ production in PBMC preparations. FIGS. 1A and B show the results of such assays using PBMC preparations from a first and a second donor, respectively.
[0234] DNA sequences that encode the antigens designated as (a), (c), (d) and (g) above were obtained by screening a genomic M. tuberculosis library using 32P end labeled degenerate oligonucleotides corresponding to the N-terminal sequence and containing M. tuberculosis codon bias. The screen performed using a probe corresponding to antigen (a) above identified a clone having the sequence provided in SEQ ID No. 101. The polypeptide encoded by SEQ ID No. 101 is provided in SEQ ID No. 102. The screen performed using a probe corresponding to antigen (g) above identified a clone having the sequence provided in SEQ ID No. 52. The polypeptide encoded by SEQ ID No. 52 is provided in SEQ ID No. 53. The screen performed using a probe corresponding to antigen (d) above identified a clone having the sequence provided in SEQ ID No. 24, and the screen performed with a probe corresponding to antigen (c) identified a clone having the sequence provided in SEQ ID No: 25.
[0235] The above amino acid sequences were compared to known amino acid sequences in the gene bank using the DNA STAR system. The database searched contains some 173,000 proteins and is a combination of the Swiss, PIR databases along with translated protein sequences (Version 87). No significant homologies to the amino acid sequences for antigens (a)-(h) and (l) were detected.
[0236] The amino acid sequence for antigen (i) was found to be homologous to a sequence from M. leprae. The full length M. leprae sequence was amplified from genomic DNA using the sequence obtained from GENBANK. This sequence was then used to screen the M. tuberculosis library described below in Example 2 and a full length copy of the M. tuberculosis homologue was obtained (SEQ-ID No. 99).
[0237] The amino acid sequence for antigen (j) was found to be homologous to a known M. tuberculosis protein translated from a DNA sequence. To the best of the inventors' knowledge, this protein has not been previously shown to possess T-cell stimulatory activity. The amino acid sequence for antigen (k) was found to be related to a sequence from M. leprae.
[0238] In the proliferation and IFN-γ assays described above, using three PPD positive donors, the results for representative antigens provided above are presented in Table 1:
TABLE-US-00007 TABLE 1 RESULTS OF PBMC PROLIFERATION AND IFN-γ ASSAYS Sequence Proliferation IFN-γ (a) + - (c) +++ +++ (d) ++ ++ (g) +++ +++ (h) +++ +++
[0239] In Table 1, responses that gave a stimulation index (SI) of between 2 and 4 (compared to cells cultured in medium alone) were scored as +, an SI of 4-8 or 2-4 at a concentration of 1 μg or less was scored as ++ and an SI of greater than 8 was scored as +++. The antigen of sequence (i) was found to have a high SI (+++) for one donor and lower SI (++ and +) for the two other donors in both proliferation and IFN-γ assays. These results indicate that these antigens are capable of inducing proliferation and/or interferon-γ production.
Example 2
Use of Patient Sera to Isolate M. tuberculosis Antigens
[0240] This example illustrates the isolation of antigens from M. tuberculosis lysate by screening with serum from M. tuberculosis-infected individuals.
[0241] Dessicated M. tuberculosis H37Ra (Difco Laboratories) was added to a 2% NP40 solution, and alternately homogenized and sonicated three times. The resulting suspension was centrifuged at 13,000 rpm in microfuge tubes and the supernatant put through a 0.2 micron syringe filter. The filtrate was bound to Macro Prep DEAE beads (BioRad, Hercules, Calif.). The beads were extensively washed with 20 mM Tris pH 7.5 and bound proteins eluted with 1M NaCl. The 1M NaCl elute was dialyzed overnight against 10 mM Tris, pH 7.5. Dialyzed solution was treated with DNase and RNase at 0.05 mg/ml for 30 min. at room temperature and then with α-D-mannosidase, 0.5 U/mg at pH 4.5 for 3-4 hours at room temperature. After returning to pH 7.5, the material was fractionated via FPLC over a Bio Scale-Q-20 column (BioRad). Fractions were combined into nine pools, concentrated in a Centriprep 10 (Amicon, Beverley, Mass.) and then screened by Western blot for serological activity using a serum pool from M. tuberculosis-infected patients which was not immunoreactive with other antigens of the present invention.
[0242] The most reactive fraction was run in SDS-PAGE and transferred to PVDF. A band at approximately 85 Kd was cut out yielding the sequence: [0243] (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-H- is-Leu-Val; (SEQ ID No. 137), wherein Xaa may be any amino acid.
[0244] Comparison of this sequence with those in the gene bank as described above, revealed no significant homologies to known sequences.
Example 3
Preparation of DNA Sequences Encoding M. tuberculosis Antigens
[0245] This example illustrates the preparation of DNA sequences encoding M. tuberculosis antigens by screening a M. tuberculosis expression library with sera obtained from patients infected with M. tuberculosis, or with anti-sera raised against soluble M. tuberculosis antigens.
A. Preparation of M. tuberculosis Soluble Antigens Using Rabbit Anti-Sera
[0246] Genomic DNA was isolated from the M. tuberculosis strain H37Ra. The DNA was randomly sheared and used to construct an expression library using the Lambda ZAP expression system (Stratagene, La Jolla, Calif.). Rabbit anti-sera was generated against secretory proteins of the M. tuberculosis strains H37Ra , H37Rv and Erdman by immunizing a rabbit with concentrated supernatant of the M. tuberculosis cultures. Specifically, the rabbit was first immunized subcutaneously with 200 μg of protein antigen in a total volume of 2 ml containing 10 μg muramyl dipeptide (Calbiochem, La Jolla, Calif.) and 1 ml of incomplete Freund's adjuvant. Four weeks later the rabbit was boosted subcutaneously with 100 pg antigen in incomplete Freund's adjuvant. Finally, the rabbit was immunized intravenously four weeks later with 50 μg protein antigen. The anti-sera were used to screen the expression library as described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y., 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the M. tuberculosis clones deduced.
[0247] Thirty two clones were purified. Of these, 25 represent sequences that have not been previously identified in human M. tuberculosis. Recombinant antigens were expressed and purified antigens used in the immunological analysis described in Example 1. Proteins were induced by IPTG and purified by gel elution, as described to Skeiky et al., J. Exp. Med. 181:1527-1537, 1995. Representative sequences of DNA molecules identified in this screen are provided in SEQ ID Nos.: 1-25. The corresponding predicted amino acid sequences are shown in SEQ ID Nos. 63-87.
[0248] On comparison of these sequences with known sequences in the gene bank using the databases described above, it was found that the clones referred to hereinafter as TbRA2A, TbRA16, TbRA18, and TbRA29 (SEQ ID Nos. 76, 68, 70, 75) show some homology to sequences previously identified in Mycobacterium leprae but not in M. tuberculosis. TbRA11, TbRA26, TbRA28 and TbDPEP (SEQ ID Nos.: 65, 73, 74, 53) have been previously identified in M. tuberculosis. No significant homologies were found to TbRA1, TbRA3, TbRA4, TbRA9, TbRA10, TbRA13, TbRA17, TbRa19, TbRA29, TbRA32, TbRA36 and the overlapping clones TbRA35 and TbRA12 (SEQ ID Nos. 63, 77, 81, 82, 64, 67, 69, 71, 75, 78, 80, 79, 66). The clone TbRa24 is overlapping with clone TbRa29.
[0249] The results of PBMC proliferation and interferon-γ assays performed on representative recombinant antigens, and using T-cell preparations from several different M. tuberculosis-immune patients, are presented in Tables 2 and 3, respectively.
TABLE-US-00008 TABLE 2 RESULTS OF PBMC PROLIFERATION TO REPRESENTATIVE SOLUBLE ANTIGENS Patient Antigen 1 2 3 4 5 6 7 8 9 10 11 12 13 TbRa1 - - ± ++ - - ± ± - - + ± - TbRa3 - ± ++ - ± - - ++ ± - - - - TbRa9 - - nt nt ++ ++ nt nt nt nt nt nt nt TbRa10 - - ± ± ± + nt ± - + ± ± - TbRa11 ± ± + ++ ++ + nt - ++ ++ ++ ± nt TbRa12 - - + + ± ++ + ± ± - + - - TbRa16 nt nt nt nt - + nt nt nt nt nt nt nt TbRa24 nt nt nt nt - - nt nt nt nt nt nt nt TbRa26 - + nt nt - - nt nt nt nt nt nt nt TbRa29 nt nt nt nt - - nt nt nt nt nt nt nt TbRa35 ++ nt ++ ++ ++ ++ nt ++ ++ ++ ++ ++ nt TbRaB nt nt nt nt - - nt nt nt nt nt nt nt TbRaC nt nt nt nt - - nt nt nt nt nt nt nt TbRaD nt nt nt nt - - nt nt nt nt nt nt nt AAMK - - ± - - - nt - - - nt ± nt YY - - - - - - nt - - - nt + nt DPEP - + - ++ - - nt ++ ± + ± ± nt Control - - - - - - - - - - - - - nt = not tested
TABLE-US-00009 TABLE 3 RESULTS OF PBMC INTERFERON-γ PRODUCTION TO REPRESENTATIVE SOLUBLE ANTIGENS Patient Antigen 1 2 3 4 5 6 7 8 9 10 11 12 13 TbRa1 + ++ +++ + - ± - - + ± - TbRa3 - ± ++ - ± - - ++ ± - - - - TbRa9 ++ + nt nt ++ - nt nt nt nt nt nt nt TbRa10 + + ± ± ± + nt ± - + ± ± - TbRa11 ± + ++ ++ + nt - ++ ++ ++ ± nt TbRa12 - - + + ± +++ + ± ± - + - - TbRa16 nt nt nt nt + + nt nt nt nt nt nt nt TbRa24 nt nt nt nt + - nt nt nt nt nt nt nt TbRa26 ++ ++ nt nt + + nt nt nt nt nt nt nt TbRa29 nt nt nt nt + - nt nt nt nt nt nt nt TbRa35 ++ nt ++ ++ +++ +++ nt ++ ++ +++ +++ ++ nt TbRaB nt nt nt nt ++ + nt nt nt nt nt nt nt TbRaC nt nt nt nt + + nt nt nt nt nt nt nt TbRaD nt nt nt nt + + nt nt nt nt nt nt nt AAMK - - ± - - - nt - - - nt ± nt YY - - - - - - nt - - - nt + nt DPEP + + + +++ + - nt +++ ± + ± ± nt Control - - - - - - - - - - - - -
[0250] In Tables 2 and 3, responses that gave a stimulation index (SI) of between 1.2 and 2 (compared to cells cultured in medium alone) were scored as ±, a SI of 2-4 was scored as +, as SI of 4-8 or 2-4 at a concentration of 1 μg or less was scored as ++ and an SI of greater than 8 was scored as +++. In addition, the effect of concentration on proliferation and interferon-γ production is shown for two of the above antigens in the attached Figure. For both proliferation and interferon-γ production, TbRa3 was scored as ++ and TbRa9 as +.
[0251] These results indicate that these soluble antigens can induce proliferation and/or interferon-γ production in T-cells derived from an M. tuberculosis-immune individual.
B. Use of Patient Sera to Identify DNA Sequences Encoding M. tuberculosis Antigens
[0252] The genomic DNA library described above, and an additional H37Rv library, were screened using pools of sera obtained from patients with active tuberculosis. To prepare the H37Rv library, M. tuberculosis strain H37Rv genomic DNA was isolated, subjected to partial Sau3A digestion and used to construct an expression library using the Lambda Zap expression system (Stratagene, La Jolla, Calif.). Three different pools of sera, each containing sera obtained from three individuals with active pulmonary or pleural disease, were used in the expression screening. The pools were designated TbL, TbM and TbH, referring to relative reactivity with H37Ra lysate (i.e., TbL=low reactivity, TbM=medium reactivity and TbH=high reactivity) in both ELISA and immunoblot format. A fourth pool of sera from seven patients with active pulmonary tuberculosis was also employed. All of the sera lacked increased reactivity with the recombinant 38 kD M. tuberculosis H37Ra phosphate-binding protein.
[0253] All pools were pre-adsorbed with E. coli lysate and used to screen the H37Ra and H37Rv expression libraries, as described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab Laboratories, Cold Spring Harbor, N.Y., 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the M. tuberculosis clones deduced.
[0254] Thirty two clones were purified. Of these, 31 represented sequences that had not been previously identified in human M. tuberculosis. Representative sequences of the DNA molecules identified are provided in SEQ ID Nos.: 26-51 and 105. Of these, TbH-8-2 (SEQ. ID NO. 105) is a partial clone of TbH-8, and TbH-4 (SEQ. ID NO. 43) and TbH-4-FWD (SEQ. ID NO. 44) are non-contiguous sequences from the same clone. Amino acid sequences for the antigens hereinafter identified as Tb38-1, TbH-4, TbH-8, TbH-9, and TbH-12 are shown in SEQ ID Nos.: 88-92. Comparison of these sequences with known sequences in the gene bank using the databases identified above revealed no significant homologies to TbH-4, TbH-8, TbH-9 and TbM-3, although weak homologies were found to TbH-9. TbH-12 was found to be homologous to a 34 kD antigenic protein previously identified in M. paratuberculosis (Acc. No. S28515). Tb38-1 was found to be located 34 base pairs upstream of the open reading frame for the antigen ESAT-6 previously identified in M. bovis (Acc. No. U34848) and in M. tuberculosis (Sorensen et al., Infec. Immun. 63:1710-1717, 1995).
[0255] Probes derived from Tb38-1 and TbH-9, both isolated from an H37Ra library, were used to identify clones in an H37Rv library. Tb38-1 hybridized to Tb38-1F2, Tb38-1F3, Tb38-1F5 and Tb38-1F6 (SEQ. ID NOS. 112, 113, 116, 118, and 119). (SEQ ID NOS. 112 and 113 are non-contiguous sequences from clone Tb38-1F2.) Two open reading frames were deduced in Tb38-IF2; one corresponds to Tb37FL (SEQ. ID. NO. 114), the second, a partial sequence, may be the homologue of Tb38-1 and is called Tb38-IN (SEQ. ID NO. 115). The deduced amino acid sequence of Tb38-1F3 is presented in SEQ. ID. NO. 117. A TbH-9 probe identified three clones in the H37Rv library: TbH-9-FL (SEQ. ID NO. 106), which may be the homologue of TbH-9 (R37Ra ), TbH-9-1 (SEQ. ID NO. 108), and TbH-9-4 (SEQ. ID NO. 110), all of which are highly related sequences to TbH-9. The deduced amino acid sequences for these three clones are presented in SEQ ID NOS. 107, 109 and 111.
[0256] Further screening of the M. tuberculosis genomic DNA library, as described above, resulted in the recovery of ten additional reactive clones, representing seven different genes. One of these genes was identified as the 38 Kd antigen discussed above, one was determined to be identical to the 14 Kd alpha crystallin heat shock protein previously shown to be present in M. tuberculosis, and a third was determined to be identical to the antigen TbH-8 described above. The determined DNA sequences for the remaining five clones (hereinafter referred to as TbH-29, TbH-30, TbH-32 and TbH-33) are provided in SEQ ID NO: 138-141, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 142-145, respectively. The DNA and amino acid sequences for these antigens were compared with those in the gene bank as described above. No homologies were found to the 5' end of TbH-29 (which contains the reactive open reading frame), although the 3' end of TbH-29 was found to be identical to the M. tuberculosis cosmid Y227. TbH-32 and TbH-33 were found to be identical to the previously identified M. tuberculosis insertion element IS6110 and to the M. tuberculosis cosmid Y50, respectively. No significant homologies to TbH-30 were found.
[0257] Positive phagemid from this additional screening were used to infect E. coli XL-1 Blue MRF', as described in Sambrook et al., supra. Induction of recombinant protein was accomplished by the addition of IPTG. Induced and uninduced lysates were run in duplicate on SDS-PAGE and transferred to nitrocellulose filters. Filters were reacted with human M. tuberculosis sera (1:200 dilution) reactive with TbH and a rabbit sera (1:200 or 1:250 dilution) reactive with the N-terminal 4 Kd portion of lacZ. Sera incubations were performed for 2 hours at room temperature. Bound antibody was detected by addition of 125I-labeled Protein A and subsequent exposure to film for variable times ranging from 16 hours to 11 days. The results of the immunoblots are summarized in Table 4.
TABLE-US-00010 TABLE 4 Human M. tb Anti-lacZ Antigen Sera Sera TbH-29 45 Kd 45 Kd TbH-30 No reactivity 29 Kd TbH-32 12 Kd 12 Kd TbH-33 16 Kd 16 Kd
[0258] Positive reaction of the recombinant human M. tuberculosis antigens with both the human M. tuberculosis sera and anti-lacZ sera indicate that reactivity of the human M. tuberculosis sera is directed towards the fusion protein. Antigens reactive with the anti-lacZ sera but not with the human M. tuberculosis sera may be the result of the human M. tuberculosis sera recognizing conformational epitopes, or the antigen-antibody binding kinetics may be such that the 2 hour sera exposure in the immunoblot is not sufficient.
[0259] The results of T-cell assays performed on Tb38-1, ESAT-6 and other representative recombinant antigens are presented in Tables 5A, B and 6, respectively, below:
TABLE-US-00011 TABLE 5A RESULTS OF PBMC PROLIFERATION TO REPRESENTATIVE ANTIGENS Donor Antigen 1 2 3 4 5 6 7 8 9 10 11 Tb38.1 +++ + - - - ++ - + - ++ +++ ESAT-6 +++ + + + - + - + + ++ +++ TbH-9 ++ ++ - ++ ± ± ++ ++ ++ ++ ++
TABLE-US-00012 TABLE 5B RESULTS OF PBMC INTERFERON-γ PRODUCTION TO REPRESENTATIVE ANTIGENS Donor Antigen 1 2 3 4 5 6 7 8 9 10 11 Tb38.1 +++ + - + + +++ - ++ - +++ +++ ESAT-6 +++ + + + +- + - + + +++ +++ TbH-9 ++ ++ - +++ ± ± +++ +++ ++ +++ ++
TABLE-US-00013 TABLE 6 SUMMARY OF T-CELL RESPONSES TO REPRESENTATIVE ANTIGENS Proliferation Interferon-y Antigen patient 4 patient 5 patient 6 patient 4 patient 5 patient 6 total TbH9 ++ ++ ++ +++ ++ ++ 13 TbM7 - + - ++ + - 4 TbH5 - + + ++ ++ ++ 8 TbL23 - + ± ++ ++ + 7.5 TbH4 - ++ ± ++ ++ ± 7 - control - - - - - - 0
[0260] These results indicate that both the inventive M. tuberculosis antigens and ESAT-6 can induce proliferation and/or interferon-γ production in T-cells derived from an M. tuberculosis-immune individual. To the best of the inventors' knowledge, ESAT-6 has not been previously shown to stimulate human immune responses
[0261] A set of six overlapping peptides covering the amino acid sequence of the antigen Tb38-1 was constructed using the method described in Example 6. The sequences of these peptides, hereinafter referred to as pep 1-6, are provided in SEQ ID Nos. 93-98, respectively. The results of T-cell assays using these peptides are shown in Tables 7 and 8. These results confirm the existence, and help to localize T-cell epitopes within Tb38-1 capable of inducing proliferation and interferon-γ production in T-cells derived from an M. tuberculosis immune individual.
TABLE-US-00014 TABLE 7 RESULTS OF PBMC PROLIFERATION TO TB38-1 PEPTIDES Patient Peptide 1 2 3 4 5 6 7 8 9 10 11 12 13 pep1 - - - - ± - - - - ± - - + pep2 ± - - - ± - - - ± ± - - + pep3 - - - - - - - - ± - - - ± pep4 ++ - - - - - + - ± ± - - + pep5 ++ ± - - - - + - ± - - - + pep6 - ++ - - - - ± - ± + - - + Control - - - - - - - - - - - - -
TABLE-US-00015 TABLE 8 RESULTS OF PBMC INTEFERON-γ PRODUCTION TO TB38-1 PEPTIDES Patient Peptide 1 2 3 4 5 6 7 8 9 10 11 12 13 pep1 + - - - ± - - - - ± - - + pep2 - - - ± - - - ± ± - - + pep3 - - - - - - - - ± - - - ± pep4 ++ - - - - - + - ± ± - - + pep5 ++ ± - - - - + - ± - - - + pep6 + ++ - - - - ± - ± + - - + Control - - - - - - - - - - - - -
[0262] Studies were undertaken to determine whether the antigens TbH-9 and Tb38-1 represent cellular proteins or are secreted into M. tuberculosis culture media. In the first study, rabbit sera were raised against A) secretory proteins of M. tuberculosis, B) the known secretory recombinant M. tuberculosis antigen 85b, C) recombinant Tb38-1 and D) recombinant TbH-9, using protocols substantially the same as that as described in Example 3A. Total M. tuberculosis lysate, concentrated supernatant of M. tuberculosis cultures and the recombinant antigens 85b, TbH-9 and Tb38-1 were resolved on denaturing gels, immobilized on nitrocellulose membranes and duplicate blots were probed using the rabbit sera described above.
[0263] The results of this analysis using control sera (panel I) and antisera (panel II) against secretory proteins, recombinant 85b, recombinant Tb38-1 and recombinant TbH-9 are shown in FIGS. 3A-D, respectively, wherein the lane designations are as follows: 1) molecular weight protein standards; 2) 5 μg of M. tuberculosis lysate; 3) 5 μg secretory proteins; 4) 50 ng recombinant Tb38-1; 5) 50 ng recombinant TbH-9; and 6) 50 ng recombinant 85b. The recombinant antigens were engineered with six terminal histidine residues and would therefore be expected to migrate with a mobility approximately 1 kD larger that the native protein. In FIG. 3D, recombinant TbH-9 is lacking approximately 10 kD of the full-length 42 kD antigen, hence the significant difference in the size of the immunoreactive native TbH-9 antigen in the lysate lane (indicated by an arrow). These results demonstrate that Tb38-1 and TbH-9 are intracellular antigens and are not actively secreted by M. tuberculosis.
[0264] The finding that TbH-9 is an intracellular antigen was confirmed by determining the reactivity of TbH-9-specific human T cell clones to recombinant TbH-9, secretory M. tuberculosis proteins and PPD. A TbH-9-specific T cell clone (designated 131TbH-9) was generated from PBMC of a healthy PPD-positive donor. The proliferative response of 131TbH-9 to secretory proteins, recombinant TbH-9 and a control M. tuberculosis antigen, TbRa11, was determined by measuring uptake of tritiated thymidine, as described in Example 1. As shown in FIG. 4A, the clone 131TbH-9 responds specifically to TbH-9, showing that TbH-9 is not a significant component of M. tuberculosis secretory proteins. FIG. 4B shows the production of IFN-γ by a second TbH-9-specific T cell clone (designated PPD 800-10) prepared from PBMC from a healthy PPD-positive donor, following stimulation of the T cell clone with secretory proteins, PPD or recombinant TbH-9. These results further confirm that TbH-9 is not secreted by M. tuberculosis.
Example 4
Purification and Characterization of a Polypeptide from Tuberculin Purified Protein Derivative
[0265] An M. tuberculosis polypeptide was isolated from tuberculin purified protein derivative (PPD) as follows.
[0266] PPD was prepared as published with some modification (Seibert, F. et al., Tuberculin purified protein derivative. Preparation and analyses of a large quantity for standard. The American Review of Tuberculosis 44:9-25, 1941).
[0267] M. tuberculosis Rv strain was grown for 6 weeks in synthetic medium in roller bottles at 37° C. Bottles containing the bacterial growth were then heated to 100° C. in water vapor for 3 hours. Cultures were sterile filtered using a 0.22μ filter and the liquid phase was concentrated 20 times using a 3 kD cut-off membrane. Proteins were precipitated once with 50% ammonium sulfate solution and eight times with 25% ammonium sulfate solution. The resulting proteins (PPD) were fractionated by reverse phase liquid chromatography (RP-HPLC) using a C18 column (7.8×300 mM; Waters, Milford, Mass.) in a Biocad HPLC system (Perseptive Biosystems, Framingham, Mass.). Fractions were eluted from the column with a linear gradient from 0-100% buffer (0.1% TFA in acetonitrile). The flow rate was 10 ml/minute and eluent was monitored at 214 nm and 280 nm.
[0268] Six fractions were collected, dried, suspended in PBS and tested individually in M. tuberculosis-infected guinea pigs for induction of delayed type hypersensitivity (DTH) reaction. One fraction was found to induce a strong DTH reaction and was subsequently fractionated further by RP-HPLC on a microbore Vydac C18 column (Cat. No. 218TP5115) in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted with a linear gradient from 5-100% buffer (0.05% TFA in acetonitrile) with a flow rate of 80 μl/minute. Eluent was monitored at 215 nm. Eight fractions were collected and tested for induction of DTH in M. tuberculosis-infected guinea pigs. One fraction was found to induce strong DTH of about 16 mm induration. The other fractions did not induce detectable DTH. The positive fraction was submitted to SDS-PAGE gel electrophoresis and found to contain a single protein band of approximately 12 kD molecular weight.
[0269] This polypeptide, herein after referred to as DPPD, was sequenced from the amino terminal using a Perkin Elmer/Applied Biosystems Division Procise 492 protein sequencer as described above and found to have the N-terminal sequence shown in SEQ ID No.: 129. Comparison of this sequence with known sequences in the gene bank as described above revealed no known homologies. Four cyanogen bromide fragments of DPPD were isolated and found to have the sequences shown in SEQ ID Nos.: 130-133.
[0270] The ability of the antigen DPPD to stimulate human PBMC to proliferate and to produce IFN-γ was assayed as described in Example 1. As shown in Table 9, DPPD was found to stimulate proliferation and elicit production of large quantities of IFN-γ; more than that elicited by commercial PPD.
TABLE-US-00016 TABLE 9 RESULTS OF PROLIFERATION AND INTERFERON-γ ASSAYS TO DPPD PBMC Donor Stimulator Proliferation (CPM) IFN-γ (OD450) A Medium 1,089 0.17 PPD (commercial) 8,394 1.29 DPPD 13,451 2.21 B Medium 450 0.09 PPD (commercial) 3,929 1.26 DPPD 6,184 1.49 C Medium 541 0.11 PPD (commercial) 8,907 0.76 DPPD 23,024 >2.70
Example 5
Use of Representative Antigens for Diagnosis of Tuberculosis
[0271] This example illustrates the effectiveness of several representative polypeptides in skin tests for the diagnosis of M. tuberculosis infection.
[0272] Individuals were injected intradermally with 100 μl of either PBS or PBS plus Tween 20® containing either 0.1 μg of protein (for TbH-9 and TbRa35) or 1.0 μg of protein (for TbRa38-1). Induration was measured between 5-7 days after injection, with a response of 5 mm or greater being considered positive. Of the 20 individuals tested, 2 were PPD negative and 18 were PPD positive. Of the PPD positive individuals, 3 had active tuberculosis, 3 had been previously infected with tuberculosis and 9 were healthy. In a second study, 13 PPD positive individuals were tested with 0.1 μg TbRa11 in either PBS or PBS plus Tween 20® as described above. The results of both studies are shown in Table 10.
TABLE-US-00017 TABLE 10 RESULTS OF DTH TESTING WITH REPRESENTATIVE ANTIGENS TbH-9 Tb38-1 TbRa35 Cumulative TbRa11 Pos/Total Pos/Total Pos/Total Pos/Total Pos/Total PPD 0/2 0/2 0/2 0/2 negative PPD positive healthy 5/9 4/9 4/9 6/9 1/4 prior TB 3/5 2/5 2/5 4/5 3/5 active 3/4 3/4 0/4 4/4 1/4 TOTAL 11/18 9/18 6/18 14/18 5/13
Example 6
Synthesis of Synthetic Polypeptides
[0273] Polypeptides may be synthesized on a Millipore 9050 peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.
Example 7
Preparation and Characterization of M. tuberculosis Fusion Proteins
[0274] A fusion protein containing TbRa3, the 38 kD antigen and Tb38-1 was prepared as follows.
[0275] Each of the DNA constructs TbRa3, 38 kD and Tb38-1 were modified by PCR in order to facilitate their fusion and the subsequent expression of the fusion protein TbRa3-38 kD-Tb38-1. TbRa3, 38 kD and Tb38-1 DNA was used to perform PCR using the primers PDM-64 and PDM-65 (SEQ ID NO: 146 and 147), PDM-57 and PDM-58 (SEQ ID NO: 148 and 149), and PDM-69 and PDM-60 (SEQ ID NO: 150 and 151), respectively. In each case, the DNA amplification was performed using 10 μl 10×Pfu buffer, 2 μl 10 mM dNTPs, 2 μl each of the PCR primers at 10 μM concentration, 81.5 μl water, 1.5 μl Pfu DNA polymerase (Stratagene, La Jolla, Calif.) and 1 μl DNA at either 70 ng/μl (for TbRa3) or 50 ng/μl (for 38 kD and Tb38-1). For TbRa3, denaturation at 94° C. was performed for 2 min, followed by 40 cycles of 96° C. for 15 sec and 72° C. for 1 min, and lastly by 72° C. for 4 min. For 38 kD, denaturation at 96° C. was performed for 2 min, followed by 40 cycles of 96° C. for 30 sec, 68° C. for 15 sec and 72° C. for 3 min, and finally by 72° C. for 4 min. For Tb38-1 denaturation at 94° C. for 2 min was followed by 10 cycles of 96° C. for 15 sec, 68° C. for 15 sec and 72° C. for 1.5 min, 30 cycles of 96° C. for 15 sec, 64° C. for 15 sec and 72° C. for 1.5, and finally by 72° C. for 4 min.
[0276] The TbRa3PCR fragment was digested with NdeI and EcoRI and cloned directly into pT7 L2 IL 1 vector using NdeI and EcoRI sites. The 38 kD PCR fragment was digested with Sse83871, treated with T4 DNA polymerase to make blunt ends and then digested with EcoRI for direct cloning into the pT7 L2Ra3-1 vector which was digested with StuI and EcoRI. The 38-1 PCR fragment was digested with Eco47III and EcoRI and directly subcloned into pT7 L2Ra3/38 kD-17 digested with the same enzymes. The whole fusion was then transferred to pET28b NT LMEIF-1 using NdeI and EcoRI sites. The fusion construct was confirmed by DNA sequencing.
[0277] The expression construct was transformed to BLR pLys S E. coli (Novagen, Madison, Wis.) and grown overnight in LB broth with kanamycin (30 μg/ml) and chloramphenicol (34 μg/ml). This culture (12 ml) was used to inoculate 500 ml 2XYT with the same antibiotics and the culture was induced with IPTG at an OD560 of 0.44 to a final concentration of 1.2 mM. Four hours post-induction, the bacteria were harvested and sonicated in 20 mM Tris (8.0), 100 mM NaCl, 0.1% DOC, 20 μg/ml Leupeptin, 20 mM PMSF followed by centrifugation at 26,000×g. The resulting pellet was resuspended in 8 M urea, 20 mM Tris (8.0), 100 mM NaCl and bound to Pro-bond nickel resin (Invitrogen, Carlsbad, Calif.). The column was washed several times with the above buffer then eluted with an imidazole gradient (50 mM, 100 mM, 500 mM imidazole was added to 8 M urea, 20 mM Tris (8.0), 100 mM NaCl). The eluates containing the protein of interest were then dialzyed against 10 mM Tris (8.0).
[0278] The DNA and amino acid sequences for the resulting fusion protein (hereinafter referred to as TbRa3-38 kD-Tb38-1) are provided in SEQ ID NO: 152 and 153, respectively.
[0279] A fusion protein containing the two antigens TbH-9 and Tb38-1 (hereinafter referred to as TbH9-Tb38-1) without a hinge sequence, was prepared using a similar procedure to that described above. The DNA sequence for the TbH9-Tb38-1 fusion protein is provided in SEQ ID NO: 156.
[0280] The ability of the fusion protein TbH9-Tb38-1 to induce T cell proliferation and IFN-γ production in PBMC preparations was examined using the protocol described above in Example 1. PBMC from three donors were employed: one who had been previously shown to respond to TbH9 but not Tb38-1 (donor 131); one who had been shown to respond to Tb38-1 but not TbH9 (donor 184); and one who had been shown to respond to both antigens (donor 201). The results of these studies (FIGS. 5-7, respectively) demonstrate the functional activity of both the antigens in the fusion protein.
[0281] From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.
Sequence CWU
1
1531766DNAMycobacterium tuberculosismisc_feature(1)..(765)ANY NUCLEOTIDE
1cgaggcaccg gtagtttgaa ccaaacgcac aatcgacggg caaacgaacg gaagaacaca
60accatgaaga tggtgaaatc gatcgccgca ggtctgaccg ccgcggctgc aatcggcgcc
120gctgcggccg gtgtgacttc gatcatggct ggcggcccgg tcgtatacca gatgcagccg
180gtcgtcttcg gcgcgccact gccgttggac ccggcatccg cccctgacgt cccgaccgcc
240gcccagttga ccagcctgct caacagcctc gccgatccca acgtgtcgtt tgcgaacaag
300ggcagtctgg tcgagggcgg catcgggggc accgaggcgc gcatcgccga ccacaagctg
360aagaaggccg ccgagcacgg ggatctgccg ctgtcgttca gcgtgacgaa catccagccg
420gcggccgccg gttcggccac cgccgacgtt tccgtctcgg gtccgaagct ctcgtcgccg
480gtcacgcaga acgtcacgtt cgtgaatcaa ggcggctgga tgctgtcacg cgcatcggcg
540atggagttgc tgcaggccgc agggnaactg attggcgggc cggnttcagc ccgctgttca
600gctacgccgc ccgcctggtg acgcgtccat gtcgaacact cgcgcgtgta gcacggtgcg
660gtntgcgcag ggncgcacgc accgcccggt gcaagccgtc ctcgagatag gtggtgnctc
720gncaccagng ancacccccn nntcgncnnt tctcgntgnt gnatga
7662752DNAMycobacterium tuberculosismisc_feature(1)..(752)ANY NUCLEOTIDE
2atgcatcacc atcaccatca cgatgaagtc acggtagaga cgacctccgt cttccgcgca
60gacttcctca gcgagctgga cgctcctgcg caagcgggta cggagagcgc ggtctccggg
120gtggaagggc tcccgccggg ctcggcgttg ctggtagtca aacgaggccc caacgccggg
180tcccggttcc tactcgacca agccatcacg tcggctggtc ggcatcccga cagcgacata
240tttctcgacg acgtgaccgt gagccgtcgc catgctgaat tccggttgga aaacaacgaa
300ttcaatgtcg tcgatgtcgg gagtctcaac ggcacctacg tcaaccgcga gcccgtggat
360tcggcggtgc tggcgaacgg cgacgaggtc cagatcggca agctccggtt ggtgttcttg
420accggaccca agcaaggcga ggatgacggg agtaccgggg gcccgtgagc gcacccgata
480gccccgcgct ggccgggatg tcgatcgggg cggtcctccg acctgctacg accggatttt
540ccctgatgtc caccatctcc aagattcgat tcttgggagg cttgagggtc ngggtgaccc
600ccccgcgggc ctcattcngg ggtntcggcn ggtttcaccc cntaccnact gccncccggn
660ttgcnaattc nttcttcnct gcccnnaaag ggaccnttan cttgccgctn gaaanggtna
720tccngggccc ntcctngaan ccccntcccc ct
7523813DNAMycobacterium tuberculosismisc_feature(1)..(813)ANY NUCLEOTIDE
3catatgcatc accatcacca tcacacttct aaccgcccag cgcgtcgggg gcgtcgagca
60ccacgcgaca ccgggcccga tcgatctgct agcttgagtc tggtcaggca tcgtcgtcag
120cagcgcgatg ccctatgttt gtcgtcgact cagatatcgc ggcaatccaa tctcccgcct
180gcggccggcg gtgctgcaaa ctactcccgg aggaatttcg acgtgcgcat caagatcttc
240atgctggtca cggctgtcgt tttgctctgt tgttcgggtg tggccacggc cgcgcccaag
300acctactgcg aggagttgaa aggcaccgat accggccagg cgtgccagat tcaaatgtcc
360gacccggcct acaacatcaa catcagcctg cccagttact accccgacca gaagtcgctg
420gaaaattaca tcgcccagac gcgcgacaag ttcctcagcg cggccacatc gtccactcca
480cgcgaagccc cctacgaatt gaatatcacc tcggccacat accagtccgc gataccgccg
540cgtggtacgc aggccgtggt gctcamggtc taccacaacg ccggcggcac gcacccaacg
600accacgtaca aggccttcga ttgggaccag gcctatcgca agccaatcac ctatgacacg
660ctgtggcagg ctgacaccga tccgctgcca gtcgtcttcc ccattgttgc aaggtgaact
720gagcaacgca gaccgggaca acwggtatcg atagccgccn aatgccggct tggaacccng
780tgaaattatc acaacttcgc agtcacnaaa naa
8134447DNAMycobacterium tuberculosis 4cggtatgaac acggccgcgt ccgataactt
ccagctgtcc cagggtgggc agggattcgc 60cattccgatc gggcaggcga tggcgatcgc
gggccagatc cgatcgggtg gggggtcacc 120caccgttcat atcgggccta ccgccttcct
cggcttgggt gttgtcgaca acaacggcaa 180cggcgcacga gtccaacgcg tggtcgggag
cgctccggcg gcaagtctcg gcatctccac 240cggcgacgtg atcaccgcgg tcgacggcgc
tccgatcaac tcggccaccg cgatggcgga 300cgcgcttaac gggcatcatc ccggtgacgt
catctcggtg aactggcaaa ccaagtcggg 360cggcacgcgt acagggaacg tgacattggc
cgagggaccc ccggcctgat ttcgtcgygg 420ataccacccg ccggccggcc aattgga
4475604DNAMycobacterium
tuberculosismisc_feature(1)..(604)ANY NUCLEOTIDE 5gtcccactgc ggtcgccgag
tatgtcgccc agcaaatgtc tggcagccgc ccaacggaat 60ccggtgatcc gacgtcgcag
gttgtcgaac ccgccgccgc ggaagtatcg gtccatgcct 120agcccggcga cggcgagcgc
cggaatggcg cgagtgagga ggcgggcaat ttggcggggc 180ccggcgacgg ngagcgccgg
aatggcgcga gtgaggaggt ggncagtcat gcccagngng 240atccaatcaa cctgnattcg
gnctgngggn ccatttgaca atcgaggtag tgagcgcaaa 300tgaatgatgg aaaacgggng
gngacgtccg ntgttctggt ggtgntaggt gnctgnctgg 360ngtngnggnt atcaggatgt
tcttcgncga aanctgatgn cgaggaacag ggtgtncccg 420nnannccnan ggngtccnan
cccnnnntcc tcgncganat cananagncg nttgatgnga 480naaaagggtg gancagnnnn
aantngnggn ccnaanaanc nnnanngnng nnagntngnt 540nnntnttnnc annnnnnntg
nngnngnncn nnncaancnn ntnnnngnaa nnggnttntt 600naat
6046633DNAMycobacterium
tuberculosismisc_feature(1)..(633)ANY NUCLEOTIDE 6ttgcangtcg aaccacctca
ctaaagggaa caaaagctng agctccaccg cggtggcggc 60cgctctagaa ctagtgkatm
yyyckggctg cagsaatycg gyacgagcat taggacagtc 120taacggtcct gttacggtga
tcgaatgacc gacgacatcc tgctgatcga caccgacgaa 180cgggtgcgaa ccctcaccct
caaccggccg cagtcccgya acgcgctctc ggcggcgcta 240cgggatcggt ttttcgcggy
gttggycgac gccgaggycg acgacgacat cgacgtcgtc 300atcctcaccg gygccgatcc
ggtgttctgc gccggactgg acctcaaggt agctggccgg 360gcagaccgcg ctgccggaca
tctcaccgcg gtgggcggcc atgaccaagc cggtgatcgg 420cgcgatcaac ggcgccgcgg
tcaccggcgg gctcgaactg gcgctgtact gcgacatcct 480gatcgcctcc gagcacgccc
gcttcgncga cacccacgcc cgggtggggc tgctgcccac 540ctggggactc agtgtgtgct
tgccgcaaaa ggtcggcatc ggnctgggcc ggtggatgag 600cctgaccggc gactacctgt
ccgtgaccga cgc 63371362DNAMycobacterium
tuberculosis 7cgacgacgac ggcgccggag agcgggcgcg aacggcgatc gacgcggccc
tggccagagt 60cggcaccacc caggagggag tcgaatcatg aaatttgtca accatattga
gcccgtcgcg 120ccccgccgag ccggcggcgc ggtcgccgag gtctatgccg aggcccgccg
cgagttcggc 180cggctgcccg agccgctcgc catgctgtcc ccggacgagg gactgctcac
cgccggctgg 240gcgacgttgc gcgagacact gctggtgggc caggtgccgc gtggccgcaa
ggaagccgtc 300gccgccgccg tcgcggccag cctgcgctgc ccctggtgcg tcgacgcaca
caccaccatg 360ctgtacgcgg caggccaaac cgacaccgcc gcggcgatct tggccggcac
agcacctgcc 420gccggtgacc cgaacgcgcc gtatgtggcg tgggcggcag gaaccgggac
accggcggga 480ccgccggcac cgttcggccc ggatgtcgcc gccgaatacc tgggcaccgc
ggtgcaattc 540cacttcatcg cacgcctggt cctggtgctg ctggacgaaa ccttcctgcc
ggggggcccg 600cgcgcccaac agctcatgcg ccgcgccggt ggactggtgt tcgcccgcaa
ggtgcgcgcg 660gagcatcggc cgggccgctc cacccgccgg ctcgagccgc gaacgctgcc
cgacgatctg 720gcatgggcaa caccgtccga gcccatagaa accgcgttcg ccgcgctcag
ccaccacctg 780gacaccgcgc cgcacctgcc gccaccgact cgtcaggtgg tcaggcgggt
cgtggggtcg 840tggcacggcg agccaatgcc gatgagcagt cgctggacga acgagcacac
cgccgagctg 900cccgccgacc tgcacgcgcc cacccgtctt gccctgctga ccggcctggc
cccgcatcag 960gtgaccgacg acgacgtcgc cgcggcccga tccctgctcg acaccgatgc
ggcgctggtt 1020ggcgccctgg cctgggccgc cttcaccgcc gcgcggcgca tcggcacctg
gatcggcgcc 1080gccgccgagg gccaggtgtc gcggcaaaac ccgactgggt gagtgtgcgc
gccctgtcgg 1140tagggtgtca tcgctggccc gagggatctc gcggcggcga acggaggtgg
cgacacaggt 1200ggaagctgcg cccactggct tgcgccccaa cgccgtcgtg ggcgttcggt
tggccgcact 1260ggccgatcag gtcggcgccg gcccttggcc gaaggtccag ctcaacgtgc
cgtcaccgaa 1320ggaccggacg gtcaccgggg gtcaccctgc gcgcccaagg aa
136281458DNAMycobacterium tuberculosis 8gcgacgaccc cgatatgccg
ggcaccgtag cgaaagccgt cgccgacgca ctcgggcgcg 60gtatcgctcc cgttgaggac
attcaggact gcgtggaggc ccggctgggg gaagccggtc 120tggatgacgt ggcccgtgtt
tacatcatct accggcagcg gcgcgccgag ctgcggacgg 180ctaaggcctt gctcggcgtg
cgggacgagt taaagctgag cttggcggcc gtgacggtac 240tgcgcgagcg ctatctgctg
cacgacgagc agggccggcc ggccgagtcg accggcgagc 300tgatggaccg atcggcgcgc
tgtgtcgcgg cggccgagga ccagtatgag ccgggctcgt 360cgaggcggtg ggccgagcgg
ttcgccacgc tattacgcaa cctggaattc ctgccgaatt 420cgcccacgtt gatgaactct
ggcaccgacc tgggactgct cgccggctgt tttgttctgc 480cgattgagga ttcgctgcaa
tcgatctttg cgacgctggg acaggccgcc gagctgcagc 540gggctggagg cggcaccgga
tatgcgttca gccacctgcg acccgccggg gatcgggtgg 600cctccacggg cggcacggcc
agcggaccgg tgtcgtttct acggctgtat gacagtgccg 660cgggtgtggt ctccatgggc
ggtcgccggc gtggcgcctg tatggctgtg cttgatgtgt 720cgcacccgga tatctgtgat
ttcgtcaccg ccaaggccga atcccccagc gagctcccgc 780atttcaacct atcggttggt
gtgaccgacg cgttcctgcg ggccgtcgaa cgcaacggcc 840tacaccggct ggtcaatccg
cgaaccggca agatcgtcgc gcggatgccc gccgccgagc 900tgttcgacgc catctgcaaa
gccgcgcacg ccggtggcga tcccgggctg gtgtttctcg 960acacgatcaa tagggcaaac
ccggtgccgg ggagaggccg catcgaggcg accaacccgt 1020gcggggaggt cccactgctg
ccttacgagt catgtaatct cggctcgatc aacctcgccc 1080ggatgctcgc cgacggtcgc
gtcgactggg accggctcga ggaggtcgcc ggtgtggcgg 1140tgcggttcct tgatgacgtc
atcgatgtca gccgctaccc cttccccgaa ctgggtgagg 1200cggcccgcgc cacccgcaag
atcgggctgg gagtcatggg tttggcggaa ctgcttgccg 1260cactgggtat tccgtacgac
agtgaagaag ccgtgcggtt agccacccgg ctcatgcgtc 1320gcatacagca ggcggcgcac
acggcatcgc ggaggctggc cgaagagcgg ggcgcattcc 1380cggcgttcac cgatagccgg
ttcgcgcggt cgggcccgag gcgcaacgca caggtcacct 1440ccgtcgctcc gacgggca
14589862DNAMycobacterium
tuberculosis 9acggtgtaat cgtgctggat ctggaaccgc gtggcccgct acctaccgag
atctactggc 60ggcgcagggg gctggccctg ggcatcgcgg tcgtcgtagt cgggatcgcg
gtggccatcg 120tcatcgcctt cgtcgacagc agcgccggtg ccaaaccggt cagcgccgac
aagccggcct 180ccgcccagag ccatccgggc tcgccggcac cccaagcacc ccagccggcc
gggcaaaccg 240aaggtaacgc cgccgcggcc ccgccgcagg gccaaaaccc cgagacaccc
acgcccaccg 300ccgcggtgca gccgccgccg gtgctcaagg aaggggacga ttgccccgat
tcgacgctgg 360ccgtcaaagg tttgaccaac gcgccgcagt actacgtcgg cgaccagccg
aagttcacca 420tggtggtcac caacatcggc ctggtgtcct gtaaacgcga cgttggggcc
gcggtgttgg 480ccgcctacgt ttactcgctg gacaacaagc ggttgtggtc caacctggac
tgcgcgccct 540cgaatgagac gctggtcaag acgttttccc ccggtgagca ggtaacgacc
gcggtgacct 600ggaccgggat gggatcggcg ccgcgctgcc cattgccgcg gccggcgatc
gggccgggca 660cctacaatct cgtggtacaa ctgggcaatc tgcgctcgct gccggttccg
ttcatcctga 720atcagccgcc gccgccgccc gggccggtac ccgctccggg tccagcgcag
gcgcctccgc 780cggagtctcc cgcgcaaggc ggataattat tgatcgctga tggtcgattc
cgccagctgt 840gacaacccct cgcctcgtgc cg
86210622DNAMycobacterium
tuberculosismisc_feature(1)..(622)ANY NUCLEOTIDE 10ttgatcagca ccggcaaggc
gtcacatgcc tccctgggtg tgcaggtgac caatgacaaa 60gacaccccgg gcgccaagat
cgtcgaagta gtggccggtg gtgctgccgc gaacgctgga 120gtgccgaagg gcgtcgttgt
caccaaggtc gacgaccgcc cgatcaacag cgcggacgcg 180ttggttgccg ccgtgcggtc
caaagcgccg ggcgccacgg tggcgctaac ctttcaggat 240ccctcgggcg gtagccgcac
agtgcaagtc accctcggca aggcggagca gtgatgaagg 300tcgccgcgca gtgttcaaag
ctcggatata cggtggcacc catggaacag cgtgcggagt 360tggtggttgg ccgggcactt
gtcgtcgtcg ttgacgatcg cacggcgcac ggcgatgaag 420accacagcgg gccgcttgtc
accgagctgc tcaccgaggc cgggtttgtt gtcgacggcg 480tggtggcggt gtcggccgac
gaggtcgaga tccgaaatgc gctgaacaca gcggtgatcg 540gcggggtgga cctggtggtg
tcggtcggcg ggaccggngt gacgnctcgc gatgtcaccc 600cggaagccac ccgngacatt
ct 622111200DNAMycobacterium
tuberculosis 11ggcgcagcgg taagcctgtt ggccgccggc acactggtgt tgacagcatg
cggcggtggc 60accaacagct cgtcgtcagg cgcaggcgga acgtctgggt cggtgcactg
cggcggcaag 120aaggagctcc actccagcgg ctcgaccgca caagaaaatg ccatggagca
gttcgtctat 180gcctacgtgc gatcgtgccc gggctacacg ttggactaca acgccaacgg
gtccggtgcc 240ggggtgaccc agtttctcaa caacgaaacc gatttcgccg gctcggatgt
cccgttgaat 300ccgtcgaccg gtcaacctga ccggtcggcg gagcggtgcg gttccccggc
atgggacctg 360ccgacggtgt tcggcccgat cgcgatcacc tacaatatca agggcgtgag
cacgctgaat 420cttgacggac ccactaccgc caagattttc aacggcacca tcaccgtgtg
gaatgatcca 480cagatccaag ccctcaactc cggcaccgac ctgccgccaa caccgattag
cgttatcttc 540cgcagcgaca agtccggtac gtcggacaac ttccagaaat acctcgacgg
tgtatccaac 600ggggcgtggg gcaaaggcgc cagcgaaacg ttcagcgggg gcgtcggcgt
cggcgccagc 660gggaacaacg gaacgtcggc cctactgcag acgaccgacg ggtcgatcac
ctacaacgag 720tggtcgtttg cggtgggtaa gcagttgaac atggcccaga tcatcacgtc
ggcgggtccg 780gatccagtgg cgatcaccac cgagtcggtc ggtaagacaa tcgccggggc
caagatcatg 840ggacaaggca acgacctggt attggacacg tcgtcgttct acagacccac
ccagcctggc 900tcttacccga tcgtgctggc gacctatgag atcgtctgct cgaaataccc
ggatgcgacg 960accggtactg cggtaagggc gtttatgcaa gccgcgattg gtccaggcca
agaaggcctg 1020gaccaatacg gctccattcc gttgcccaaa tcgttccaag caaaattggc
ggccgcggtg 1080aatgctattt cttgacctag tgaagggaat tcgacggtga gcgatgccgt
tccgcaggta 1140gggtcgcaat ttgggccgta tcagctattg cggctgctgg gccgaggcgg
gatgggcgag 1200121155DNAMycobacterium tuberculosis 12gcaagcagct
gcaggtcgtg ctgttcgacg aactgggcat gccgaagacc aaacgcacca 60agaccggcta
caccacggat gccgacgcgc tgcagtcgtt gttcgacaag accgggcatc 120cgtttctgca
acatctgctc gcccaccgcg acgtcacccg gctcaaggtc accgtcgacg 180ggttgctcca
agcggtggcc gccgacggcc gcatccacac cacgttcaac cagacgatcg 240ccgcgaccgg
ccggctctcc tcgaccgaac ccaacctgca gaacatcccg atccgcaccg 300acgcgggccg
gcggatccgg gacgcgttcg tggtcgggga cggttacgcc gagttgatga 360cggccgacta
cagccagatc gagatgcgga tcatggggca cctgtccggg gacgagggcc 420tcatcgaggc
gttcaacacc ggggaggacc tgtattcgtt cgtcgcgtcc cgggtgttcg 480gtgtgcccat
cgacgaggtc accggcgagt tgcggcgccg ggtcaaggcg atgtcctacg 540ggctggttta
cgggttgagc gcctacggcc tgtcgcagca gttgaaaatc tccaccgagg 600aagccaacga
gcagatggac gcgtatttcg cccgattcgg cggggtgcgc gactacctgc 660gcgccgtagt
cgagcgggcc cgcaaggacg gctacacctc gacggtgctg ggccgtcgcc 720gctacctgcc
cgagctggac agcagcaacc gtcaagtgcg ggaggccgcc gagcgggcgg 780cgctgaacgc
gccgatccag ggcagcgcgg ccgacatcat caaggtggcc atgatccagg 840tcgacaaggc
gctcaacgag gcacagctgg cgtcgcgcat gctgctgcag gtccacgacg 900agctgctgtt
cgaaatcgcc cccggtgaac gcgagcgggt cgaggccctg gtgcgcgaca 960agatgggcgg
cgcttacccg ctcgacgtcc cgctggaggt gtcggtgggc tacggccgca 1020gctgggacgc
ggcggcgcac tgagtgccga gcgtgcatct ggggcgggaa ttcggcgatt 1080tttccgccct
gagttcacgc tcggcgcaat cgggaccgag tttgtccagc gtgtacccgt 1140cgagtagcct
cgtca
1155131771DNAMycobacterium tuberculosis 13gagcgccgtc tggtgtttga
acggttttac cggtcggcat cggcacgggc gttgccgggt 60tcgggcctcg ggttggcgat
cgtcaaacag gtggtgctca accacggcgg attgctgcgc 120atcgaagaca ccgacccagg
cggccagccc cctggaacgt cgatttacgt gctgctcccc 180ggccgtcgga tgccgattcc
gcagcttccc ggtgcgacgg ctggcgctcg gagcacggac 240atcgagaact ctcggggttc
ggcgaacgtt atctcagtgg aatctcagtc cacgcgcgca 300acctagttgt gcagttactg
ttgaaagcca cacccatgcc agtccacgca tggccaagtt 360ggcccgagta gtgggcctag
tacaggaaga gcaacctagc gacatgacga atcacccacg 420gtattcgcca ccgccgcagc
agccgggaac cccaggttat gctcaggggc agcagcaaac 480gtacagccag cagttcgact
ggcgttaccc accgtccccg cccccgcagc caacccagta 540ccgtcaaccc tacgaggcgt
tgggtggtac ccggccgggt ctgatacctg gcgtgattcc 600gaccatgacg ccccctcctg
ggatggttcg ccaacgccct cgtgcaggca tgttggccat 660cggcgcggtg acgatagcgg
tggtgtccgc cggcatcggc ggcgcggccg catccctggt 720cgggttcaac cgggcacccg
ccggccccag cggcggccca gtggctgcca gcgcggcgcc 780aagcatcccc gcagcaaaca
tgccgccggg gtcggtcgaa caggtggcgg ccaaggtggt 840gcccagtgtc gtcatgttgg
aaaccgatct gggccgccag tcggaggagg gctccggcat 900cattctgtct gccgaggggc
tgatcttgac caacaaccac gtgatcgcgg cggccgccaa 960gcctcccctg ggcagtccgc
cgccgaaaac gacggtaacc ttctctgacg ggcggaccgc 1020acccttcacg gtggtggggg
ctgaccccac cagtgatatc gccgtcgtcc gtgttcaggg 1080cgtctccggg ctcaccccga
tctccctggg ttcctcctcg gacctgaggg tcggtcagcc 1140ggtgctggcg atcgggtcgc
cgctcggttt ggagggcacc gtgaccacgg ggatcgtcag 1200cgctctcaac cgtccagtgt
cgacgaccgg cgaggccggc aaccagaaca ccgtgctgga 1260cgccattcag accgacgccg
cgatcaaccc cggtaactcc gggggcgcgc tggtgaacat 1320gaacgctcaa ctcgtcggag
tcaactcggc cattgccacg ctgggcgcgg actcagccga 1380tgcgcagagc ggctcgatcg
gtctcggttt tgcgattcca gtcgaccagg ccaagcgcat 1440cgccgacgag ttgatcagca
ccggcaaggc gtcacatgcc tccctgggtg tgcaggtgac 1500caatgacaaa gacaccccgg
gcgccaagat cgtcgaagta gtggccggtg gtgctgccgc 1560gaacgctgga gtgccgaagg
gcgtcgttgt caccaaggtc gacgaccgcc cgatcaacag 1620cgcggacgcg ttggttgccg
ccgtgcggtc caaagcgccg ggcgccacgg tggcgctaac 1680ctttcaggat ccctcgggcg
gtagccgcac agtgcaagtc accctcggca aggcggagca 1740gtgatgaagg tcgccgcgca
gtgttcaaag c 1771141058DNAMycobacterium
tuberculosismisc_feature(1)..(1058)ANY NUCLEOTIDE 14ctccaccgcg gtggcggccg
ctctagaact agtggatccc ccgggctgca ggaattcggc 60acgaggatcc gacgtcgcag
gttgtcgaac ccgccgccgc ggaagtatcg gtccatgcct 120agcccggcga cggcgagcgc
cggaatggcg cgagtgagga ggcgggcaat ttggcggggc 180ccggcgacgg cgagcgccgg
aatggcgcga gtgaggaggc gggcagtcat gcccagcgtg 240atccaatcaa cctgcattcg
gcctgcgggc ccatttgaca atcgaggtag tgagcgcaaa 300tgaatgatgg aaaacgggcg
gtgacgtccg ctgttctggt ggtgctaggt gcctgcctgg 360cgttgtggct atcaggatgt
tcttcgccga aacctgatgc cgaggaacag ggtgttcccg 420tgagcccgac ggcgtccgac
cccgcgctcc tcgccgagat caggcagtcg cttgatgcga 480caaaagggtt gaccagcgtg
cacgtagcgg tccgaacaac cgggaaagtc gacagcttgc 540tgggtattac cagtgccgat
gtcgacgtcc gggccaatcc gctcgcggca aagggcgtat 600gcacctacaa cgacgagcag
ggtgtcccgt ttcgggtaca aggcgacaac atctcggtga 660aactgttcga cgactggagc
aatctcggct cgatttctga actgtcaact tcacgcgtgc 720tcgatcctgc cgctggggtg
acgcagctgc tgtccggtgt cacgaacctc caagcgcaag 780gtaccgaagt gatagacgga
atttcgacca ccaaaatcac cgggaccatc cccgcgagct 840ctgtcaagat gcttgatcct
ggcgccaaga gtgcaaggcc ggcgaccgtg tggattgccc 900aggacggctc gcaccacctc
gtccgagcga gcatcgacct cggatccggg tcgattcagc 960tcacgcagtc gaaatggaac
gaacccgtca acgtcgacta ggccgaagtt gcgtcgacgc 1020gttgntcgaa acgcccttgt
gaacggtgtc aacggnac 105815542DNAMycobacterium
tuberculosismisc_feature(1)..(542)ANY NUCLEOTIDE 15gaattcggca cgagaggtga
tcgacatcat cgggaccagc cccacatcct gggaacaggc 60ggcggcggag gcggtccagc
gggcgcggga tagcgtcgat gacatccgcg tcgctcgggt 120cattgagcag gacatggccg
tggacagcgc cggcaagatc acctaccgca tcaagctcga 180agtgtcgttc aagatgaggc
cggcgcaacc gcgctagcac gggccggcga gcaagacgca 240aaatcgcacg gtttgcggtt
gattcgtgcg attttgtgtc tgctcgccga ggcctaccag 300gcgcggccca ggtccgcgtg
ctgccgtatc caggcgtgca tcgcgattcc ggcggccacg 360ccggagttaa tgcttcgcgt
cgacccgaac tgggcgatcc gccggngagc tgatcgatga 420ccgtggccag cccgtcgatg
cccgagttgc ccgaggaaac gtgctgccag gccggtagga 480agcgtccgta ggcggcggtg
ctgaccggct ctgcctgcgc cctcagtgcg gccagcgagc 540gg
54216913DNAMycobacterium
tuberculosismisc_feature(1)..(913)ANY NUCLEOTIDE 16cggtgccgcc cgcgcctccg
ttgcccccat tgccgccgtc gccgatcagc tgcgcatcgc 60caccatcacc gcctttgccg
ccggcaccgc cggtggcgcc ggggccgccg atgccaccgc 120ttgaccctgg ccgccggcgc
cgccattgcc atacagcacc ccgccggggg caccgttacc 180gccgtcgcca ccgtcgccgc
cgctgccgtt tcaggccggg gaggccgaat gaaccgccgc 240caagcccgcc gccggcaccg
ttgccgcctt ttccgcccgc cccgccggcg ccgccaattg 300ccgaacagcc amgcaccgtt
gccgccagcc ccgccgccgt taacggcgct gccgggcgcc 360gccgccggac ccgccattac
cgccgttccc gttcggtgcc ccgccgttac cggcgccgcc 420gtttgccgcc aatattcggc
gggcaccgcc agacccgccg gggccaccat tgccgccggg 480caccgaaaca acagcccaac
ggtgccgccg gccccgccgt ttgccgccat caccggccat 540tcaccgccag caccgccgtt
aatgtttatg aacccggtac cgccagcgcg gcccctattg 600ccgggcgccg gagngcgtgc
ccgccggcgc cgccaacgcc caaaagcccg gggttgccac 660cggccccgcc ggacccaccg
gtcccgccga tccccccgtt gccgccggtg ccgccgccat 720tggtgctgct gaagccgtta
gcgccggttc cgcsggttcc ggcggtggcg ccntggccgc 780cggccccgcc gttgccgtac
agccaccccc cggtggcgcc gttgccgcca ttgccgccat 840tgccgccgtt gccgccattg
ccgccgttcc cgccgccacc gccggnttgg ccgccggcgc 900cgccggcggc cgc
913171872DNAMycobacterium
tuberculosismisc_feature(1)..(1872)ANY NUCLEOTIDE 17gactacgttg gtgtagaaaa
atcctgccgc ccggaccctt aaggctggga caatttctga 60tagctacccc gacacaggag
gttacgggat gagcaattcg cgccgccgct cactcaggtg 120gtcatggttg ctgagcgtgc
tggctgccgt cgggctgggc ctggccacgg cgccggccca 180ggcggccccg ccggccttgt
cgcaggaccg gttcgccgac ttccccgcgc tgcccctcga 240cccgtccgcg atggtcgccc
aagtggcgcc acaggtggtc aacatcaaca ccaaactggg 300ctacaacaac gccgtgggcg
ccgggaccgg catcgtcatc gatcccaacg gtgtcgtgct 360gaccaacaac cacgtgatcg
cgggcgccac cgacatcaat gcgttcagcg tcggctccgg 420ccaaacctac ggcgtcgatg
tggtcgggta tgaccgcacc caggatgtcg cggtgctgca 480gctgcgcggt gccggtggcc
tgccgtcggc ggcgatcggt ggcggcgtcg cggttggtga 540gcccgtcgtc gcgatgggca
acagcggtgg gcagggcgga acgccccgtg cggtgcctgg 600cagggtggtc gcgctcggcc
aaaccgtgca ggcgtcggat tcgctgaccg gtgccgaaga 660gacattgaac gggttgatcc
agttcgatgc cgcaatccag cccggtgatt cgggcgggcc 720cgtcgtcaac ggcctaggac
aggtggtcgg tatgaacacg gccgcgtccg ataacttcca 780gctgtcccag ggtgggcagg
gattcgccat tccgatcggg caggcgatgg cgatcgcggg 840ccaaatccga tcgggtgggg
ggtcacccac cgttcatatc gggcctaccg ccttcctcgg 900cttgggtgtt gtcgacaaca
acggcaacgg cgcacgagtc caacgcgtgg tcggaagcgc 960tccggcggca agtctcggca
tctccaccgg cgacgtgatc accgcggtcg acggcgctcc 1020gatcaactcg gccaccgcga
tggcggacgc gcttaacggg catcatcccg gtgacgtcat 1080ctcggtgaac tggcaaacca
agtcgggcgg cacgcgtaca gggaacgtga cattggccga 1140gggacccccg gcctgatttg
tcgcggatac cacccgccgg ccggccaatt ggattggcgc 1200cagccgtgat tgccgcgtga
gcccccgagt tccgtctccc gtgcgcgtgg cattgtggaa 1260gcaatgaacg aggcagaaca
cagcgttgag caccctcccg tgcagggcag ttacgtcgaa 1320ggcggtgtgg tcgagcatcc
ggatgccaag gacttcggca gcgccgccgc cctgcccgcc 1380gatccgacct ggtttaagca
cgccgtcttc tacgaggtgc tggtccgggc gttcttcgac 1440gccagcgcgg acggttccgn
cgatctgcgt ggactcatcg atcgcctcga ctacctgcag 1500tggcttggca tcgactgcat
ctgttgccgc cgttcctacg actcaccgct gcgcgacggc 1560ggttacgaca ttcgcgactt
ctacaaggtg ctgcccgaat tcggcaccgt cgacgatttc 1620gtcgccctgg tcgacaccgc
tcaccggcga ggtatccgca tcatcaccga cctggtgatg 1680aatcacacct cggagtcgca
cccctggttt caggagtccc gccgcgaccc agacggaccg 1740tacggtgact attacgtgtg
gagcgacacc agcgagcgct acaccgacgc ccggatcatc 1800ttcgtcgaca ccgaagagtc
gaactggtca ttcgatcctg tccgccgaca gttnctactg 1860gcaccgattc tt
1872181482DNAMycobacterium
tuberculosis 18cttcgccgaa acctgatgcc gaggaacagg gtgttcccgt gagcccgacg
gcgtccgacc 60ccgcgctcct cgccgagatc aggcagtcgc ttgatgcgac aaaagggttg
accagcgtgc 120acgtagcggt ccgaacaacc gggaaagtcg acagcttgct gggtattacc
agtgccgatg 180tcgacgtccg ggccaatccg ctcgcggcaa agggcgtatg cacctacaac
gacgagcagg 240gtgtcccgtt tcgggtacaa ggcgacaaca tctcggtgaa actgttcgac
gactggagca 300atctcggctc gatttctgaa ctgtcaactt cacgcgtgct cgatcctgcc
gctggggtga 360cgcagctgct gtccggtgtc acgaacctcc aagcgcaagg taccgaagtg
atagacggaa 420tttcgaccac caaaatcacc gggaccatcc ccgcgagctc tgtcaagatg
cttgatcctg 480gcgccaagag tgcaaggccg gcgaccgtgt ggattgccca ggacggctcg
caccacctcg 540tccgagcgag catcgacctc ggatccgggt cgattcagct cacgcagtcg
aaatggaacg 600aacccgtcaa cgtcgactag gccgaagttg cgtcgacgcg ttgctcgaaa
cgcccttgtg 660aacggtgtca acggcacccg aaaactgacc ccctgacggc atctgaaaat
tgacccccta 720gaccgggcgg ttggtggtta ttcttcggtg gttccggctg gtgggacgcg
gccgaggtcg 780cggtctttga gccggtagct gtcgcctttg agggcgacga cttcagcatg
gtggacgagg 840cggtcgatca tggcggcagc aacgacgtcg tcgccgccga aaacctcgcc
ccaccggccg 900aaggccttat tggacgtgac gatcaagctg gcccgctcat accgggagga
caccagctgg 960aagaagaggt tggcggcctc gggctcaaac ggaatgtaac cgacttcgtc
aaccaccagg 1020agcggatagc ggccaaaccg ggtgagttcg gcgtagatgc gcccggcgtg
gtgagcctcg 1080gcgaaccgtg ctacccattc ggcggcggtg gcgaacagca cccgatgacc
ggcctgacac 1140gcgcgtatcg ccaggccgac cgcaagatga gtcttcccgg tgccaggcgg
ggcccaaaaa 1200cacgacgtta tcgcgggcgg tgatgaaatc cagggtgccc agatgtgcga
tggtgtcgcg 1260tttgaggcca cgagcatgct caaagtcgaa ctcttccaac gacttccgaa
ccgggaagcg 1320ggcggcgcgg atgcggccct caccaccatg ggactcccgg gctgacactt
cccgctgcag 1380gcaggcggcc aggtattctt cgtggctcca gttctcggcg cgggcgcgat
cggccagccg 1440ggacactgac tcacgcaggg tgggagcttt caatgctctt gt
148219876DNAMycobacterium
tuberculosismisc_feature(1)..(876)ANY NUCLEOTIDE 19gaattcggca cgagccggcg
atagcttctg ggccgcggcc gaccagatgg ctcgagggtt 60cgtgctcggg gccaccgccg
ggcgcaccac cctgaccggt gagggcctgc aacacgccga 120cggtcactcg ttgctgctgg
acgccaccaa cccggcggtg gttgcctacg acccggcctt 180cgcctacgaa atcggctaca
tcgnggaaag cggactggcc aggatgtgcg gggagaaccc 240ggagaacatc ttcttctaca
tcaccgtcta caacgagccg tacgtgcagc cgccggagcc 300ggagaacttc gatcccgagg
gcgtgctggg gggtatctac cgntatcacg cggccaccga 360gcaacgcacc aacaaggngc
agatcctggc ctccggggta gcgatgcccg cggcgctgcg 420ggcagcacag atgctggccg
ccgagtggga tgtcgccgcc gacgtgtggt cggtgaccag 480ttggggcgag ctaaaccgcg
acggggtggt catcgagacc gagaagctcc gccaccccga 540tcggccggcg ggcgtgccct
acgtgacgag agcgctggag aatgctcggg gcccggtgat 600cgcggtgtcg gactggatgc
gcgcggtccc cgagcagatc cgaccgtggg tgccgggcac 660atacctcacg ttgggcaccg
acgggttcgg tttttccgac actcggcccg ccggtcgtcg 720ttacttcaac accgacgccg
aatcccaggt tggtcgcggt tttgggaggg gttggccggg 780tcgacgggtg aatatcgacc
cattcggtgc cggtcgtggg ccgcccgccc agttacccgg 840attcgacgaa ggtggggggt
tgcgcccgan taagtt 876201021DNAMycobacterium
tuberculosismisc_feature(1)..(1021)ANY NUCLEOTIDE 20atccccccgg gctgcaggaa
ttcggcacga gagacaaaat tccacgcgtt aatgcaggaa 60cagattcata acgaattcac
agcggcacaa caatatgtcg cgatcgcggt ttatttcgac 120agcgaagacc tgccgcagtt
ggcgaagcat ttttacagcc aagcggtcga ggaacgaaac 180catgcaatga tgctcgtgca
acacctgctc gaccgcgacc ttcgtgtcga aattcccggc 240gtagacacgg tgcgaaacca
gttcgacaga ccccgcgagg cactggcgct ggcgctcgat 300caggaacgca cagtcaccga
ccaggtcggt cggctgacag cggtggcccg cgacgagggc 360gatttcctcg gcgagcagtt
catgcagtgg ttcttgcagg aacagatcga agaggtggcc 420ttgatggcaa ccctggtgcg
ggttgccgat cgggccgggg ccaacctgtt cgagctagag 480aacttcgtcg cacgtgaagt
ggatgtggcg ccggccgcat caggcgcccc gcacgctgcc 540gggggccgcc tctagatccc
tgggggggat cagcgagtgg tcccgttcgc ccgcccgtct 600tccagccagg ccttggtgcg
gccggggtgg tgagtaccaa tccaggccac cccgacctcc 660cggnaaaagt cgatgtcctc
gtactcatcg acgttccagg agtacaccgc ccggccctga 720gctgccgagc ggtcaacgag
ttgcggatat tcctttaacg caggcagtga gggtcccacg 780gcggttggcc cgaccgccgt
ggccgcactg ctggtcaggt atcggggggt cttggcgagc 840aacaacgtcg gcaggagggg
tggagcccgc cggatccgca gaccgggggg gcgaaaacga 900catcaacacc gcacgggatc
gatctgcgga ggggggtgcg ggaataccga accggtgtag 960gagcgccagc agttgttttt
ccaccagcga agcgttttcg ggtcatcggn ggcnnttaag 1020t
102121321DNAMycobacterium
tuberculosismisc_feature(1)..(321)ANY NUCLEOTIDE 21cgtgccgacg aacggaagaa
cacaaccatg aagatggtga aatcgatcgc cgcaggtctg 60accgccgcgg ctgcaatcgg
cgccgctgcg gccggtgtga cttcgatcat ggctggcggn 120ccggtcgtat accagatgca
gccggtcgtc ttcggcgcgc cactgccgtt ggacccggna 180tccgcccctg angtcccgac
cgccgcccag tggaccagnc tgctcaacag nctcgncgat 240cccaacgtgt cgtttgngaa
caagggnagt ctggtcgagg gnggnatcgg nggnancgag 300ggngngnatc gncgancaca a
32122373DNAMycobacterium
tuberculosismisc_feature(1)..(373)ANY NUCLEOTIDE 22tcttatcggt tccggttggc
gacgggtttt gggngcgggt ggttaacccg ctcggccagc 60cgatcgacgg gcgcggagac
gtcgactccg atactcggcg cgcgctggag ctccaggcgc 120cctcggtggt gnaccggcaa
ggcgtgaagg agccgttgna gaccgggatc aaggcgattg 180acgcgatgac cccgatcggc
cgcgggcagc gccagctgat catcggggac cgcaagaccg 240gcaaaaaccg ccgtctgtgt
cggacaccat cctcaaacca gcgggaagaa ctgggagtcc 300ggtggatccc aagaagcagg
tgcgcttgtg tatacgttgg ccatcgggca agaaggggaa 360cttaccatcg ccg
37323352DNAMycobacterium
tuberculosismisc_feature(1)..(352)ANY NUCLEOTIDE 23gtgacgccgt gatgggattc
ctgggcgggg ccggtccgct ggcggtggtg gatcagcaac 60tggttacccg ggtgccgcaa
ggctggtcgt ttgctcaggc agccgctgtg ccggtggtgt 120tcttgacggc ctggtacggg
ttggccgatt tagccgagat caaggcgggc gaatcggtgc 180tgatccatgc cggtaccggc
ggtgtgggca tggcggctgt gcagctggct cgccagtggg 240gcgtggaggt tttcgtcacc
gccagccgtg gnaagtggga cacgctgcgc gccatngngt 300ttgacgacga nccatatcgg
ngattcccnc acatncgaag ttccgangga ga 35224726DNAMycobacterium
tuberculosis 24gaaatccgcg ttcattccgt tcgaccagcg gctggcgata atcgacgaag
tgatcaagcc 60gcggttcgcg gcgctcatgg gtcacagcga gtaatcagca agttctctgg
tatatcgcac 120ctagcgtcca gttgcttgcc agatcgcttt cgtaccgtca tcgcatgtac
cggttcgcgt 180gccgcacgct catgctggcg gcgtgcatcc tggccacggg tgtggcgggt
ctcggggtcg 240gcgcgcagtc cgcagcccaa accgcgccgg tgcccgacta ctactggtgc
ccggggcagc 300ctttcgaccc cgcatggggg cccaactggg atccctacac ctgccatgac
gacttccacc 360gcgacagcga cggccccgac cacagccgcg actaccccgg acccatcctc
gaaggtcccg 420tgcttgacga tcccggtgct gcgccgccgc ccccggctgc cggtggcggc
gcatagcgct 480cgttgaccgg gccgcatcag cgaatacgcg tataaacccg ggcgtgcccc
cggcaagcta 540cgacccccgg cggggcagat ttacgctccc gtgccgatgg atcgcgccgt
ccgatgacag 600aaaataggcg acggttttgg caaccgcttg gaggacgctt gaagggaacc
tgtcatgaac 660ggcgacagcg cctccaccat cgacatcgac aaggttgtta cccgcacacc
cgttcgccgg 720atcgtg
72625580DNAMycobacterium tuberculosis 25cgcgacgacg acgaacgtcg
ggcccaccac cgcctatgcg ttgatgcagg cgaccgggat 60ggtcgccgac catatccaag
catgctgggt gcccactgag cgaccttttg accagccggg 120ctgcccgatg gcggcccggt
gaagtcattg cgccggggct tgtgcacctg atgaacccga 180atagggaaca ataggggggt
gatttggcag ttcaatgtcg ggtatggctg gaaatccaat 240ggcggggcat gctcggcgcc
gaccaggctc gcgcaggcgg gccagcccga atctggaggg 300agcactcaat ggcggcgatg
aagccccgga ccggcgacgg tcctttggaa gcaactaagg 360aggggcgcgg cattgtgatg
cgagtaccac ttgagggtgg cggtcgcctg gtcgtcgagc 420tgacacccga cgaagccgcc
gcactgggtg acgaactcaa aggcgttact agctaagacc 480agcccaacgg cgaatggtcg
gcgttacgcg cacaccttcc ggtagatgtc cagtgtctgc 540tcggcgatgt atgcccagga
gaactcttgg atacagcgct 58026160DNAMycobacterium
tuberculosis 26aacggaggcg ccgggggttt tggcggggcc ggggcggtcg gcggcaacgg
cggggccggc 60ggtaccgccg ggttgttcgg tgtcggcggg gccggtgggg ccggaggcaa
cggcatcgcc 120ggtgtcacgg gtacgtcggc cagcacaccg ggtggatccg
16027272DNAMycobacterium tuberculosis 27gacaccgata cgatggtgat
gtacgccaac gttgtcgaca cgctcgaggc gttcacgatc 60cagcgcacac ccgacggcgt
gaccatcggc gatgcggccc cgttcgcgga ggcggctgcc 120aaggcgatgg gaatcgacaa
gctgcgggta attcataccg gaatggaccc cgtcgtcgct 180gaacgcgaac agtgggacga
cggcaacaac acgttggcgt tggcgcccgg tgtcgttgtc 240gcctacgagc gcaacgtaca
gaccaacgcc cg 27228317DNAMycobacterium
tuberculosis 28gcagccggtg gttctcggac tatctgcgca cggtgacgca gcgcgacgtg
cgcgagctga 60agcggatcga gcagacggat cgcctgccgc ggttcatgcg ctacctggcc
gctatcaccg 120cgcaggagct gaacgtggcc gaagcggcgc gggtcatcgg ggtcgacgcg
gggacgatcc 180gttcggatct ggcgtggttc gagacggtct atctggtaca tcgcctgccc
gcctggtcgc 240ggaatctgac cgcgaagatc aagaagcggt caaagatcca cgtcgtcgac
agtggcttcg 300cggcctggtt gcgcggg
31729182DNAMycobacterium tuberculosis 29gatcgtggag ctgtcgatga
acagcgttgc cggacgcgcg gcggccagca cgtcggtgta 60gcagcgccgg accacctcgc
cggtgggcag catggtgatg accacgtcgg cctcggccac 120cscttcgggc gcgctacgaa
acaccgcgac accgtgcgcg gcggcgccgg acgccgccgt 180gg
18230308DNAMycobacterium
tuberculosis 30gatcgcgaag tttggtgagc aggtggtcga cgcgaaagtc tgggcgcctg
cgaagcgggt 60cggcgttcac gaggcgaaga cacgcctgtc cgagctgctg cggctcgtct
acggcgggca 120gaggttgaga ttgcccgccg cggcgagccg gtagcaaagc ttgtgccgct
gcatcctcat 180gagactcggc ggttaggcat tgaccatggc gtgtaccgcg tgcccgacga
tttggacgct 240ccgttgtcag acgacgtgct cgaacgcttt caccggtgaa gcgctacctc
atcgacaccc 300acgtttgg
30831267DNAMycobacterium tuberculosis 31ccgacgacga gcaactcacg
tggatgatgg tcggcagcgg cattgaggac ggagagaatc 60cggccgaagc tgccgcgcgg
caagtgctca tagtgaccgg ccgtagaggg ctcccccgat 120ggcaccggac tattctggtg
tgccgctggc cggtaagagc gggtaaaaga atgtgagggg 180acacgatgag caatcacacc
taccgagtga tcgagatcgt cgggacctcg cccgacggcg 240tcgacgcggc aatccagggc
ggtctgg 267321539DNAMycobacterium
tuberculosis 32ctcgtgccga aagaatgtga ggggacacga tgagcaatca cacctaccga
gtgatcgaga 60tcgtcgggac ctcgcccgac ggcgtcgacg cggcaatcca gggcggtctg
gcccgagctg 120cgcagaccat gcgcgcgctg gactggttcg aagtacagtc aattcgaggc
cacctggtcg 180acggagcggt cgcgcacttc caggtgacta tgaaagtcgg cttccgctgg
aggattcctg 240aaccttcaag cgcggccgat aactgaggtg catcattaag cgacttttcc
agaacatcct 300gacgcgctcg aaacgcggtt cagccgacgg tggctccgcc gaggcgctgc
ctccaaaatc 360cctgcgacaa ttcgtcggcg gcgcctacaa ggaagtcggt gctgaattcg
tcgggtatct 420ggtcgacctg tgtgggctgc agccggacga agcggtgctc gacgtcggct
gcggctcggg 480gcggatggcg ttgccgctca ccggctatct gaacagcgag ggacgctacg
ccggcttcga 540tatctcgcag aaagccatcg cgtggtgcca ggagcacatc acctcggcgc
accccaactt 600ccagttcgag gtctccgaca tctacaactc gctgtacaac ccgaaaggga
aataccagtc 660actagacttt cgctttccat atccggatgc gtcgttcgat gtggtgtttc
ttacctcggt 720gttcacccac atgtttccgc cggacgtgga gcactatctg gacgagatct
cccgcgtgct 780gaagcccggc ggacgatgcc tgtgcacgta cttcttgctc aatgacgagt
cgttagccca 840catcgcggaa ggaaagagtg cgcacaactt ccagcatgag ggaccgggtt
atcggacaat 900ccacaagaag cggcccgaag aagcaatcgg cttgccggag accttcgtca
gggatgtcta 960tggcaagttc ggcctcgccg tgcacgaacc attgcactac ggctcatgga
gtggccggga 1020accacgccta agcttccagg acatcgtcat cgcgaccaaa accgcgagct
aggtcggcat 1080ccgggaagca tcgcgacacc gtggcgccga gcgccgctgc cggcaggccg
attaggcggg 1140cagattagcc cgccgcggct cccggctccg agtacggcgc cccgaatggc
gtcaccggct 1200ggtaaccacg cttgcgcgcc tgggcggcgg cctgccggat caggtggtag
atgccgacaa 1260agcctgcgtg atcggtcatc accaacggtg acagcagccg gttgtgcacc
agcgcgaacg 1320ccaccccggt ctccgggtct gtccagccga tcgagccgcc caagcccaca
tgaccaaacc 1380ccggcatcac gttgccgatc ggcataccgt gatagccaag atgaaaattt
aagggcacca 1440atagatttcg atccggcaga acttgccgtc ggttgcgggt caggcccgtg
accagctccc 1500gcgacaagaa ccgtatgccg tcgatctcgc ctcgtgccg
153933851DNAMycobacterium
tuberculosismisc_feature(1)..(851)ANY NUCLEOTIDE 33ctgcagggtg gcgtggatga
gcgtcaccgc ggggcaggcc gagctgaccg ccgcccaggt 60ccgggttgct gcggcggcct
acgagacggc gtatgggctg acggtgcccc cgccggtgat 120cgccgagaac cgtgctgaac
tgatgattct gatagcgacc aacctcttgg ggcaaaacac 180cccggcgatc gcggtcaacg
aggccgaata cggcgagatg tgggcccaag acgccgccgc 240gatgtttggc tacgccgcgg
cgacggcgac ggcgacggcg acgttgctgc cgttcgagga 300ggcgccggag atgaccagcg
cgggtgggct cctcgagcag gccgccgcgg tcgaggaggc 360ctccgacacc gccgcggcga
accagttgat gaacaatgtg ccccaggcgc tgaaacagtt 420ggcccagccc acgcagggca
ccacgccttc ttccaagctg ggtggcctgt ggaagacggt 480ctcgccgcat cggtcgccga
tcagcaacat ggtgtcgatg gccaacaacc acatgtcgat 540gaccaactcg ggtgtgtcga
tgaccaacac cttgagctcg atgttgaagg gctttgctcc 600ggcggcggcc gcccaggccg
tgcaaaccgc ggcgcaaaac ggggtccggg cgatgagctc 660gctgggcagc tcgctgggtt
cttcgggtct gggcggtggg gtggccgcca acttgggtcg 720ggcggcctcg gtacggtatg
gtcaccggga tggcggaaaa tatgcanagt ctggtcggcg 780gaacggtggt ccggcgtaag
gtttaccccc gttttctgga tgcggtgaac ttcgtcaacg 840gaaacagtta c
85134254DNAMycobacterium
tuberculosis 34gatcgatcgg gcggaaattt ggaccagatt cgcctccggc gataacccaa
tcaatcgaac 60ctagatttat tccgtccagg ggcccgagta atggctcgca ggagaggaac
cttactgctg 120cgggcacctg tcgtaggtcc tcgatacggc ggaaggcgtc gacattttcc
accgacaccc 180ccatccaaac gttcgagggc cactccagct tgtgagcgag gcgacgcagt
cgcaggctgc 240gcttggtcaa gatc
254351227DNAMycobacterium tuberculosis 35gatcctgacc
gaagcggccg ccgccaaggc gaagtcgctg ttggaccagg agggacggga 60cgatctggcg
ctgcggatcg cggttcagcc gggggggtgc gctggattgc gctataacct 120tttcttcgac
gaccggacgc tggatggtga ccaaaccgcg gagttcggtg gtgtcaggtt 180gatcgtggac
cggatgagcg cgccgtatgt ggaaggcgcg tcgatcgatt tcgtcgacac 240tattgagaag
caaggttcac catcgacaat cccaacgcca ccggctcctg cgcgtgcggg 300gattcgttca
actgataaaa cgctagtacg accccgcggt gcgcaacacg tacgagcaca 360ccaagacctg
accgcgctgg aaaagcaact gagcgatgcc ttgcacctga ccgcgtggcg 420ggccgccggc
ggcaggtgtc acctgcatgg tgaacagcac ctgggcctga tattgcgacc 480agtacacgat
tttgtcgatc gaggtcactt cgacctggga gaactgcttg cggaacgcgt 540cgctgctcag
cttggccaag gcctgatcgg agcgcttgtc gcgcacgccg tcgtggatac 600cgcacagcgc
attgcgaacg atggtgtcca catcgcggtt ctccagcgcg ttgaggtatc 660cctgaatcgc
ggttttggcc ggtccctccg agaatgtgcc tgccgtgttg gctccgttgg 720tgcggacccc
gtatatgatc gccgccgtca tagccgacac cagcgcgagg gctaccacaa 780tgccgatcag
cagccgcttg tgccgtcgct tcgggtagga cacctgcggc ggcacgccgg 840gatatgcggc
gggcggcagc gccgcgtcgt ctgccggtcc cggggcgaag gccggttcgg 900dcggcgccga
ggtcgtgggg gtagtccagg gcttggggtt cgtgggatga ggctcggggt 960acggcgccgg
tccgttggtg ccgacaccgg ggttcggcga gtggggaccg ggcattgtgg 1020ttctcctagg
gtggtggacg ggaccagctg ctagggcgac aaccgcccgt cgcgtcagcc 1080ggcagcatcg
gcaatcaggt gagctcccta ggcaggctag cgcaacagct gccgtcagct 1140ctcaacgcga
cggggcgggc cgcggcgccg ataatgttga aagactaggc aaccttagga 1200acgaaggacg
gagattttgt gacgatc
122736181DNAMycobacterium tuberculosismisc_feature(1)..(181)ANY
NUCLEOTIDE 36gcggtgtcgg cggatccggc gggtggttga acggcaacgg cggggccggc
ggggccggcg 60ggaccggcgc taacggtggt gccggcggca acgcctggtt gttcggggcc
ggcgggtccg 120gcggngccgg caccaatggt ggngtcggcg ggtccggcgg atttgtctac
ggcaacggcg 180g
18137290DNAMycobacterium
tuberculosismisc_feature(1)..(290)ANY NUCLEOTIDE 37gcggtgtcgg cggatccggc
gggtggttga acggcaacgg cggtgtcggc ggccggggcg 60gcgacggcgt ctttgccggt
gccggcggcc agggcggcct cggtgggcag ggcggcaatg 120gcggcggctc caccggcggc
aacggcggtc ttggcggcgc gggcggtggc ggaggcaacg 180ccccggacgg cggcttcggt
ggcaacggcg gtaagggtgg ccagggcggn attggcggcg 240gcactcagag cgcgaccggc
ctcggnggtg acggcggtga cggcggtgac 2903834DNAMycobacterium
tuberculosismisc_feature(1)..(34)ANY NUCLEOTIDE 38gatccagtgg catggngggt
gtcagtggaa gcat 3439155DNAMycobacterium
tuberculosismisc_feature(1)..(155)ANY NUCLEOTIDE 39gatcgctgct cgtccccccc
ttgccgccga cgccaccggt cccaccgtta ccgaacaagc 60tggcgtggtc gccagcaccc
ccggcaccgc cgacgccgga gtcgaacaat ggcaccgtcg 120tatccccacc attgccgccg
gncccaccgg caccg 1554053DNAMycobacterium
tuberculosismisc_feature(1)..(53)ANY NUCLEOTIDE 40atggcgttca cggggcgccg
gggaccgggc agcccggngg ggccgggggg tgg 5341132DNAMycobacterium
tuberculosismisc_feature(1)..(132)ANY NUCLEOTIDE 41gatccaccgc gggtgcagac
ggtgcccgcg gcgccacccc gaccagcggc ggcaacggcg 60gcaccggcgg caacggcgcg
aacgccaccg tcgtcggngg ggccggcggg gccggcggca 120agggcggcaa cg
13242132DNAMycobacterium
tuberculosismisc_feature(1)..(132)ANY NUCLEOTIDE 42gatcggcggc cggnacggnc
ggggacggcg gcaagggcgg naacgggggc gccgnagcca 60ccngccaaga atcctccgng
tccnccaatg gcgcgaatgg cggacagggc ggcaacggcg 120gcancggcgg ca
13243702DNAMycobacterium
tuberculosismisc_feature(1)..(701)ANY NUCLEOTIDE 43cggcacgagg atcggtaccc
cgcggcatcg gcagctgccg attcgccggg tttccccacc 60cgaggaaagc cgctaccaga
tggcgctgcc gaagtagggc gatccgttcg cgatgccggc 120atgaacgggc ggcatcaaat
tagtgcagga acctttcagt ttagcgacga taatggctat 180agcactaagg aggatgatcc
gatatgacgc agtcgcagac cgtgacggtg gatcagcaag 240agatttrgaa cagggccaac
gaggtggagg ccccgatggc ggacccaccg actgatgtcc 300ccatcacacc gtgcgaactc
acggnggnta aaaacgccgc ccaacagntg gtnttgtccg 360ccgacaacat gcgggaatac
ctggcggccg gtgccaaaga gcggcagcgt ctggcgacct 420cgctgcgcaa cgcggccaag
gngtatggcg aggttgatga ggaggctgcg accgcgctgg 480acaacgacgg cgaaggaact
gtgcaggcag aatcggccgg ggccgtcgga ggggacagtt 540cggccgaact aaccgatacg
ccgagggtgg ccacggccgg tgaacccaac ttcatggatc 600tcaaagaagc ggcaaggaag
ctcgaaacgg gcgaccaagg cgcatcgctc gcgcactgng 660gggatgggtg gaacacttnc
accctgacgc tgcaaggcga cg 70244298DNAMycobacterium
tuberculosis 44gaagccgcag cgctgtcggg cgacgtggcg gtcaaagcgg catcgctcgg
tggcggtgga 60ggcggcgggg tgccgtcggc gccgttggga tccgcgatcg ggggcgccga
atcggtgcgg 120cccgctggcg ctggtgacat tgccggctta ggccagggaa gggccggcgg
cggcgccgcg 180ctgggcggcg gtggcatggg aatgccgatg ggtgccgcgc atcagggaca
agggggcgcc 240aagtccaagg gttctcagca ggaagacgag gcgctctaca ccgaggatcc
tcgtgccg 298451058DNAMycobacterium tuberculosis 45cggcacgagg
atcgaatcgc gtcgccggga gcacagcgtc gcactgcacc agtggaggag 60ccatgaccta
ctcgccgggt aaccccggat acccgcaagc gcagcccgca ggctcctacg 120gaggcgtcac
accctcgttc gcccacgccg atgagggtgc gagcaagcta ccgatgtacc 180tgaacatcgc
ggtggcagtg ctcggtctgg ctgcgtactt cgccagcttc ggcccaatgt 240tcaccctcag
taccgaactc ggggggggtg atggcgcagt gtccggtgac actgggctgc 300cggtcggggt
ggctctgctg gctgcgctgc ttgccggggt ggttctggtg cctaaggcca 360agagccatgt
gacggtagtt gcggtgctcg gggtactcgg cgtatttctg atggtctcgg 420cgacgtttaa
caagcccagc gcctattcga ccggttgggc attgtgggtt gtgttggctt 480tcatcgtgtt
ccaggcggtt gcggcagtcc tggcgctctt ggtggagacc ggcgctatca 540ccgcgccggc
gccgcggccc aagttcgacc cgtatggaca gtacgggcgg tacgggcagt 600acgggcagta
cggggtgcag ccgggtgggt actacggtca gcagggtgct cagcaggccg 660cgggactgca
gtcgcccggc ccgcagcagt ctccgcagcc tcccggatat gggtcgcagt 720acggcggcta
ttcgtccagt ccgagccaat cgggcagtgg atacactgct cagcccccgg 780cccagccgcc
ggcgcagtcc gggtcgcaac aatcgcacca gggcccatcc acgccaccta 840ccggctttcc
gagcttcagc ccaccaccac cggtcagtgc cgggacgggg tcgcaggctg 900gttcggctcc
agtcaactat tcaaacccca gcgggggcga gcagtcgtcg tcccccgggg 960gggcgccggt
ctaaccgggc gttcccgcgt ccggtcgcgc gtgtgcgcga agagtgaaca 1020gggtgtcagc
aagcgcggac gatcctcgtg ccgaattc
105846327DNAMycobacterium tuberculosis 46cggcacgaga gaccgatgcc gctaccctcg
cgcaggaggc aggtaatttc gagcggatct 60ccggcgacct gaaaacccag atcgaccagg
tggagtcgac ggcaggttcg ttgcagggcc 120agtggcgcgg cgcggcgggg acggccgccc
aggccgcggt ggtgcgcttc caagaagcag 180ccaataagca gaagcaggaa ctcgacgaga
tctcgacgaa tattcgtcag gccggcgtcc 240aatactcgag ggccgacgag gagcagcagc
aggcgctgtc ctcgcaaatg ggcttctgac 300ccgctaatac gaaaagaaac ggagcaa
32747170DNAMycobacterium
tuberculosismisc_feature(1)..(170)ANY NUCLEOTIDE 47cggtcgcgat gatggcgttg
tcgaacgtga ccgattctgt accgccgtcg ttgagatcaa 60ccaacaacgt gttggcgtcg
gcaaatgtgc cgnacccgtg gatctcggtg atcttgttct 120tcttcatcag gaagtgcaca
ccggccaccc tgccctcggn tacctttcgg 17048127DNAMycobacterium
tuberculosis 48gatccggcgg cacggggggt gccggcggca gcaccgctgg cgctggcggc
aacggcgggg 60ccgggggtgg cggcggaacc ggtgggttgc tcttcggcaa cggcggtgcc
ggcgggcacg 120gggccgt
1274981DNAMycobacterium tuberculosis 49cggcggcaag ggcggcaccg
ccggcaacgg gagcggcgcg gccggcggca acggcggcaa 60cggcggctcc ggcctcaacg g
8150149DNAMycobacterium
tuberculosismisc_feature(1)..(149)ANY NUCLEOTIDE 50gatcagggct ggccggctcc
ggccagaagg gcggtaacgg aggagctgcc ggattgtttg 60gcaacggcgg ggccggnggt
gccggcgcgt ccaaccaagc cggtaacggc ggngccggcg 120gaaacggtgg tgccggtggg
ctgatctgg 14951355DNAMycobacterium
tuberculosismisc_feature(1)..(355)ANY NUCLEOTIDE 51cggcacgaga tcacacctac
cgagtgatcg agatcgtcgg gacctcgccc gacggtgtcg 60acgcggnaat ccagggcggt
ctggcccgag ctgcgcagac catgcgcgcg ctggactggt 120tcgaagtaca gtcaattcga
ggccacctgg tcgacggagc ggtcgcgcac ttccaggtga 180ctatgaaagt cggcttccgc
ctggaggatt cctgaacctt caagcgcggc cgataactga 240ggtgcatcat taagcgactt
ttccagaaca tcctgacgcg ctcgaaacgc ggttcagccg 300acggtggctc cgccgaggcg
ctgcctccaa aatccctgcg acaattcgtc ggcgg 35552999DNAMycobacterium
tuberculosis 52atgcatcacc atcaccatca catgcatcag gtggacccca acttgacacg
tcgcaaggga 60cgattggcgg cactggctat cgcggcgatg gccagcgcca gcctggtgac
cgttgcggtg 120cccgcgaccg ccaacgccga tccggagcca gcgcccccgg tacccacaac
ggccgcctcg 180ccgccgtcga ccgctgcagc gccacccgca ccggcgacac ctgttgcccc
cccaccaccg 240gccgccgcca acacgccgaa tgcccagccg ggcgatccca acgcagcacc
tccgccggcc 300gacccgaacg caccgccgcc acctgtcatt gccccaaacg caccccaacc
tgtccggatc 360gacaacccgg ttggaggatt cagcttcgcg ctgcctgctg gctgggtgga
gtctgacgcc 420gcccacttcg actacggttc agcactcctc agcaaaacca ccggggaccc
gccatttccc 480ggacagccgc cgccggtggc caatgacacc cgtatcgtgc tcggccggct
agaccaaaag 540ctttacgcca gcgccgaagc caccgactcc aaggccgtgc cccggttggg
ctcggacatg 600ggtgagttct atatgcccta cccgggcacc cggatcaacc aggaaaccgt
ctcgctcgac 660gccaacgggg tgtctggaag cgcgtcgtat tacgaagtca agttcagcga
tccgagtaag 720ccgaacggcc agatctggac gggcgtaatc ggctcgcccg cggcgaacgc
accggacgcc 780gggccccctc agcgctggtt tgtggtatgg ctcgggaccg ccaacaaccc
ggtggacaag 840ggcgcggcca aggcgctggc cgaatcgatc cggcctttgg tcgccccgcc
gccggcgccg 900gcaccggctc ctgcagagcc cgctccggcg ccggcgccgg ccggggaagt
cgctcctacc 960ccgacgacac cgacaccgca gcggacctta ccggcctga
99953332PRTMycobacterium tuberculosis 53Met His His His His
His His Met His Gln Val Asp Pro Asn Leu Thr1 5
10 15Arg Arg Lys Gly Arg Leu Ala Ala Leu Ala Ile
Ala Ala Met Ala Ser 20 25
30Ala Ser Leu Val Thr Val Ala Val Pro Ala Thr Ala Asn Ala Asp Pro
35 40 45Glu Pro Ala Pro Pro Val Pro Thr
Thr Ala Ala Ser Pro Pro Ser Thr 50 55
60Ala Ala Ala Pro Pro Ala Pro Ala Thr Pro Val Ala Pro Pro Pro Pro65
70 75 80Ala Ala Ala Asn Thr
Pro Asn Ala Gln Pro Gly Asp Pro Asn Ala Ala 85
90 95Pro Pro Pro Ala Asp Pro Asn Ala Pro Pro Pro
Pro Val Ile Ala Pro 100 105
110Asn Ala Pro Gln Pro Val Arg Ile Asp Asn Pro Val Gly Gly Phe Ser
115 120 125Phe Ala Leu Pro Ala Gly Trp
Val Glu Ser Asp Ala Ala His Phe Asp 130 135
140Tyr Gly Ser Ala Leu Leu Ser Lys Thr Thr Gly Asp Pro Pro Phe
Pro145 150 155 160Gly Gln
Pro Pro Pro Val Ala Asn Asp Thr Arg Ile Val Leu Gly Arg
165 170 175Leu Asp Gln Lys Leu Tyr Ala
Ser Ala Glu Ala Thr Asp Ser Lys Ala 180 185
190Ala Ala Arg Leu Gly Ser Asp Met Gly Glu Phe Tyr Met Pro
Tyr Pro 195 200 205Gly Thr Arg Ile
Asn Gln Glu Thr Val Ser Leu Asp Ala Asn Gly Val 210
215 220Ser Gly Ser Ala Ser Tyr Tyr Glu Val Lys Phe Ser
Asp Pro Ser Lys225 230 235
240Pro Asn Gly Gln Ile Trp Thr Gly Val Ile Gly Ser Pro Ala Ala Asn
245 250 255Ala Pro Asp Ala Gly
Pro Pro Gln Arg Trp Phe Val Val Trp Leu Gly 260
265 270Thr Ala Asn Asn Pro Val Asp Lys Gly Ala Ala Lys
Ala Leu Ala Glu 275 280 285Ser Ile
Arg Pro Leu Val Ala Pro Pro Pro Ala Pro Ala Pro Ala Pro 290
295 300Ala Glu Pro Ala Pro Ala Pro Ala Pro Ala Gly
Glu Val Ala Pro Thr305 310 315
320Pro Thr Thr Pro Thr Pro Gln Arg Thr Leu Pro Ala
325 3305420PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(20)ANY AMINO ACID 54Asp Pro Val Asp Ala Val
Ile Asn Thr Thr Xaa Asn Tyr Gly Gln Val1 5
10 15Val Ala Ala Leu 205515PRTMycobacterium
tuberculosis 55Ala Val Glu Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro
Ser1 5 10
155619PRTMycobacterium tuberculosis 56Ala Ala Met Lys Pro Arg Thr Gly Asp
Gly Pro Leu Glu Ala Ala Lys1 5 10
15Glu Gly Arg5715PRTMycobacterium tuberculosis 57Tyr Tyr Trp Cys
Pro Gly Gln Pro Phe Asp Pro Ala Trp Gly Pro1 5
10 155814PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(14)ANY AMINO ACID 58Asp Ile Gly Ser Glu Ser
Thr Glu Asp Gln Gln Xaa Ala Val1 5
105913PRTMycobacterium tuberculosisMISC_FEATURE(1)..(13)ANY AMINO ACID
59Ala Glu Glu Ser Ile Ser Thr Xaa Glu Xaa Ile Val Pro1 5
106017PRTMycobacterium tuberculosis 60Asp Pro Glu Pro Ala
Pro Pro Val Pro Thr Ala Ala Ala Ala Pro Pro1 5
10 15Ala6115PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(15)ANY AMINO ACID 61Ala Pro Lys Thr Tyr Xaa
Glu Glu Leu Lys Gly Thr Asp Thr Gly1 5 10
156230PRTMycobacterium tuberculosis 62Asp Pro Ala Ser
Ala Pro Asp Val Pro Thr Ala Ala Gln Gln Thr Ser1 5
10 15Leu Leu Asn Asn Leu Ala Asp Pro Asp Val
Ser Phe Ala Asp 20 25
3063187PRTMycobacterium tuberculosisMISC_FEATURE(1)..(187)ANY AMINO ACID
63Thr Gly Ser Leu Asn Gln Thr His Asn Arg Arg Ala Asn Glu Arg Lys1
5 10 15Asn Thr Thr Met Lys Met
Val Lys Ser Ile Ala Ala Gly Leu Thr Ala 20 25
30Ala Ala Ala Ile Gly Ala Ala Ala Ala Gly Val Thr Ser
Ile Met Ala 35 40 45Gly Gly Pro
Val Val Tyr Gln Met Gln Pro Val Val Phe Gly Ala Pro 50
55 60Leu Pro Leu Asp Pro Ala Ser Ala Pro Asp Val Pro
Thr Ala Ala Gln65 70 75
80Leu Thr Ser Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe Ala
85 90 95Asn Lys Gly Ser Leu Val
Glu Gly Gly Ile Gly Gly Thr Glu Ala Arg 100
105 110Ile Ala Asp His Lys Leu Lys Lys Ala Ala Glu His
Gly Asp Leu Pro 115 120 125Leu Ser
Phe Ser Val Thr Asn Ile Gln Pro Ala Ala Ala Gly Ser Ala 130
135 140Thr Ala Asp Val Ser Val Ser Gly Pro Lys Leu
Ser Ser Pro Val Thr145 150 155
160Gln Asn Val Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser Arg Ala
165 170 175Ser Ala Met Glu
Leu Leu Gln Ala Ala Gly Xaa 180
18564148PRTMycobacterium tuberculosis 64Asp Glu Val Thr Val Glu Thr Thr
Ser Val Phe Arg Ala Asp Phe Leu1 5 10
15Ser Glu Leu Asp Ala Pro Ala Gln Ala Gly Thr Glu Ser Ala
Val Ser 20 25 30Gly Val Glu
Gly Leu Pro Pro Gly Ser Ala Leu Leu Val Val Lys Arg 35
40 45Gly Pro Asn Ala Gly Ser Arg Phe Leu Leu Asp
Gln Ala Ile Thr Ser 50 55 60Ala Gly
Arg His Pro Asp Ser Asp Ile Phe Leu Asp Asp Val Thr Val65
70 75 80Ser Arg Arg His Ala Glu Phe
Arg Leu Glu Asn Asn Glu Phe Asn Val 85 90
95Val Asp Val Gly Ser Leu Asn Gly Thr Tyr Val Asn Arg
Glu Pro Val 100 105 110Asp Ser
Ala Val Leu Ala Asn Gly Asp Glu Val Gln Ile Gly Lys Leu 115
120 125Arg Leu Val Phe Leu Thr Gly Pro Lys Gln
Gly Glu Asp Asp Gly Ser 130 135 140Thr
Gly Gly Pro14565230PRTMycobacterium tuberculosisMISC_FEATURE(1)..(230)ANY
AMINO ACID 65Thr Ser Asn Arg Pro Ala Arg Arg Gly Arg Arg Ala Pro Arg Asp
Thr1 5 10 15Gly Pro Asp
Arg Ser Ala Ser Leu Ser Leu Val Arg His Arg Arg Gln 20
25 30Gln Arg Asp Ala Leu Cys Leu Ser Ser Thr
Gln Ile Ser Arg Gln Ser 35 40
45Asn Leu Pro Pro Ala Ala Gly Gly Ala Ala Asn Tyr Ser Arg Arg Asn 50
55 60Phe Asp Val Arg Ile Lys Ile Phe Met
Leu Val Thr Ala Val Val Leu65 70 75
80Leu Cys Cys Ser Gly Val Ala Thr Ala Ala Pro Lys Thr Tyr
Cys Glu 85 90 95Glu Leu
Lys Gly Thr Asp Thr Gly Gln Ala Cys Gln Ile Gln Met Ser 100
105 110Asp Pro Ala Tyr Asn Ile Asn Ile Ser
Leu Pro Ser Tyr Tyr Pro Asp 115 120
125Gln Lys Ser Leu Glu Asn Tyr Ile Ala Gln Thr Arg Asp Lys Phe Leu
130 135 140Ser Ala Ala Thr Ser Ser Thr
Pro Arg Glu Ala Pro Tyr Glu Leu Asn145 150
155 160Ile Thr Ser Ala Thr Tyr Gln Ser Ala Ile Pro Pro
Arg Gly Thr Gln 165 170
175Ala Val Val Leu Xaa Val Tyr His Asn Ala Gly Gly Thr His Pro Thr
180 185 190Thr Thr Tyr Lys Ala Phe
Asp Trp Asp Gln Ala Tyr Arg Lys Pro Ile 195 200
205Thr Tyr Asp Thr Leu Trp Gln Ala Asp Thr Asp Pro Leu Pro
Val Val 210 215 220Phe Pro Ile Val Ala
Arg225 23066132PRTMycobacterium tuberculosis 66Thr Ala
Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly Phe1 5
10 15Ala Ile Pro Ile Gly Gln Ala Met
Ala Ile Ala Gly Gln Ile Arg Ser 20 25
30Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu
Gly 35 40 45Leu Gly Val Val Asp
Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val 50 55
60Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly
Asp Val65 70 75 80Ile
Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala
85 90 95Asp Ala Leu Asn Gly His His
Pro Gly Asp Val Ile Ser Val Asn Trp 100 105
110Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu
Ala Glu 115 120 125Gly Pro Pro Ala
13067100PRTMycobacterium tuberculosisMISC_FEATURE(1)..(100)ANY AMINO
ACID 67Val Pro Leu Arg Ser Pro Ser Met Ser Pro Ser Lys Cys Leu Ala Ala1
5 10 15Ala Gln Arg Asn Pro
Val Ile Arg Arg Arg Arg Leu Ser Asn Pro Pro 20
25 30Pro Arg Lys Tyr Arg Ser Met Pro Ser Pro Ala Thr
Ala Ser Ala Gly 35 40 45Met Ala
Arg Val Arg Arg Arg Ala Ile Trp Arg Gly Pro Ala Thr Xaa 50
55 60Ser Ala Gly Met Ala Arg Val Arg Arg Trp Xaa
Val Met Pro Xaa Val65 70 75
80Ile Gln Ser Thr Xaa Ile Arg Xaa Xaa Gly Pro Phe Asp Asn Arg Gly
85 90 95Ser Glu Arg Lys
10068163PRTMycobacterium tuberculosisMISC_FEATURE(1)..(163)ANY
AMINO ACID 68Met Thr Asp Asp Ile Leu Leu Ile Asp Thr Asp Glu Arg Val Arg
Thr1 5 10 15Leu Thr Leu
Asn Arg Pro Gln Ser Arg Asn Ala Leu Ser Ala Ala Leu 20
25 30Arg Asp Arg Phe Phe Ala Xaa Leu Xaa Asp
Ala Glu Xaa Asp Asp Asp 35 40
45Ile Asp Val Val Ile Leu Thr Gly Ala Asp Pro Val Phe Cys Ala Gly 50
55 60Leu Asp Leu Lys Val Ala Gly Arg Ala
Asp Arg Ala Ala Gly His Leu65 70 75
80Thr Ala Val Gly Gly His Asp Gln Ala Gly Asp Arg Arg Asp
Gln Arg 85 90 95Arg Arg
Gly His Arg Arg Ala Arg Thr Gly Ala Val Leu Arg His Pro 100
105 110Asp Arg Leu Arg Ala Arg Pro Leu Arg
Arg His Pro Arg Pro Gly Gly 115 120
125Ala Ala Ala His Leu Gly Thr Gln Cys Val Leu Ala Ala Lys Gly Arg
130 135 140His Arg Xaa Gly Pro Val Asp
Glu Pro Asp Arg Arg Leu Pro Val Arg145 150
155 160Asp Arg Arg69344PRTMycobacterium tuberculosis
69Met Lys Phe Val Asn His Ile Glu Pro Val Ala Pro Arg Arg Ala Gly1
5 10 15Gly Ala Val Ala Glu Val
Tyr Ala Glu Ala Arg Arg Glu Phe Gly Arg 20 25
30Leu Pro Glu Pro Leu Ala Met Leu Ser Pro Asp Glu Gly
Leu Leu Thr 35 40 45Ala Gly Trp
Ala Thr Leu Arg Glu Thr Leu Leu Val Gly Gln Val Pro 50
55 60Arg Gly Arg Lys Glu Ala Val Ala Ala Ala Val Ala
Ala Ser Leu Arg65 70 75
80Cys Pro Trp Cys Val Asp Ala His Thr Thr Met Leu Tyr Ala Ala Gly
85 90 95Gln Thr Asp Thr Ala Ala
Ala Ile Leu Ala Gly Thr Ala Pro Ala Ala 100
105 110Gly Asp Pro Asn Ala Pro Tyr Val Ala Trp Ala Ala
Gly Thr Gly Thr 115 120 125Pro Ala
Gly Pro Pro Ala Pro Phe Gly Pro Asp Val Ala Ala Glu Tyr 130
135 140Leu Gly Thr Ala Val Gln Phe His Phe Ile Ala
Arg Leu Val Leu Val145 150 155
160Leu Leu Asp Glu Thr Phe Leu Pro Gly Gly Pro Arg Ala Gln Gln Leu
165 170 175Met Arg Arg Ala
Gly Gly Leu Val Phe Ala Arg Lys Val Arg Ala Glu 180
185 190His Arg Pro Gly Arg Ser Thr Arg Arg Leu Glu
Pro Arg Thr Leu Pro 195 200 205Asp
Asp Leu Ala Trp Ala Thr Pro Ser Glu Pro Ile Ala Thr Ala Phe 210
215 220Ala Ala Leu Ser His His Leu Asp Thr Ala
Pro His Leu Pro Pro Pro225 230 235
240Thr Arg Gln Val Val Arg Arg Val Val Gly Ser Trp His Gly Glu
Pro 245 250 255Met Pro Met
Ser Ser Arg Trp Thr Asn Glu His Thr Ala Glu Leu Pro 260
265 270Ala Asp Leu His Ala Pro Thr Arg Leu Ala
Leu Leu Thr Gly Leu Ala 275 280
285Pro His Gln Val Thr Asp Asp Asp Val Ala Ala Ala Arg Ser Leu Leu 290
295 300Asp Thr Asp Ala Ala Leu Val Gly
Ala Leu Ala Trp Ala Ala Phe Thr305 310
315 320Ala Ala Arg Arg Ile Gly Thr Trp Ile Gly Ala Ala
Ala Glu Gly Gln 325 330
335Val Ser Arg Gln Asn Pro Thr Gly 34070485PRTMycobacterium
tuberculosis 70Asp Asp Pro Asp Met Pro Gly Thr Val Ala Lys Ala Val Ala
Asp Ala1 5 10 15Leu Gly
Arg Gly Ile Ala Pro Val Glu Asp Ile Gln Asp Cys Val Glu 20
25 30Ala Arg Leu Gly Glu Ala Gly Leu Asp
Asp Val Ala Arg Val Tyr Ile 35 40
45Ile Tyr Arg Gln Arg Arg Ala Glu Leu Arg Thr Ala Lys Ala Leu Leu 50
55 60Gly Val Arg Asp Glu Leu Lys Leu Ser
Leu Ala Ala Val Thr Val Leu65 70 75
80Arg Glu Arg Tyr Leu Leu His Asp Glu Gln Gly Arg Pro Ala
Glu Ser 85 90 95Thr Gly
Glu Leu Met Asp Arg Ser Ala Arg Cys Val Ala Ala Ala Glu 100
105 110Asp Gln Tyr Glu Pro Gly Ser Ser Arg
Arg Trp Ala Glu Arg Phe Ala 115 120
125Thr Leu Leu Arg Asn Leu Glu Phe Leu Pro Asn Ser Pro Thr Leu Met
130 135 140Asn Ser Gly Thr Asp Leu Gly
Leu Leu Ala Gly Cys Phe Val Leu Pro145 150
155 160Ile Glu Asp Ser Leu Gln Ser Ile Phe Ala Thr Leu
Gly Gln Ala Ala 165 170
175Glu Leu Gln Arg Ala Gly Gly Gly Thr Gly Tyr Ala Phe Ser His Leu
180 185 190Arg Pro Ala Gly Asp Arg
Val Ala Ser Thr Gly Gly Thr Ala Ser Gly 195 200
205Pro Val Ser Phe Leu Arg Leu Tyr Asp Ser Ala Ala Gly Val
Val Ser 210 215 220Met Gly Gly Arg Arg
Arg Gly Ala Cys Met Ala Val Leu Asp Val Ser225 230
235 240His Pro Asp Ile Cys Asp Phe Val Thr Ala
Lys Ala Glu Ser Pro Ser 245 250
255Glu Leu Pro His Phe Asn Leu Ser Val Gly Val Thr Asp Ala Phe Leu
260 265 270Arg Ala Val Glu Arg
Asn Gly Leu His Arg Leu Val Asn Pro Arg Thr 275
280 285Gly Lys Ile Val Ala Arg Met Pro Ala Ala Glu Leu
Phe Asp Ala Ile 290 295 300Cys Lys Ala
Ala His Ala Gly Gly Asp Pro Gly Leu Val Phe Leu Asp305
310 315 320Thr Ile Asn Arg Ala Asn Pro
Val Pro Gly Arg Gly Arg Ile Glu Ala 325
330 335Thr Asn Pro Cys Gly Glu Val Pro Leu Leu Pro Tyr
Glu Ser Cys Asn 340 345 350Leu
Gly Ser Ile Asn Leu Ala Arg Met Leu Ala Asp Gly Arg Val Asp 355
360 365Trp Asp Arg Leu Glu Glu Val Ala Gly
Val Ala Val Arg Phe Leu Asp 370 375
380Asp Val Ile Asp Val Ser Arg Tyr Pro Phe Pro Glu Leu Gly Glu Ala385
390 395 400Ala Arg Ala Thr
Arg Lys Ile Gly Leu Gly Val Met Gly Leu Ala Glu 405
410 415Leu Leu Ala Ala Leu Gly Ile Pro Tyr Asp
Ser Glu Glu Ala Val Arg 420 425
430Leu Ala Thr Arg Leu Met Arg Arg Ile Gln Gln Ala Ala His Thr Ala
435 440 445Ser Arg Arg Leu Ala Glu Glu
Arg Gly Ala Phe Pro Ala Phe Thr Asp 450 455
460Ser Arg Phe Ala Arg Ser Gly Pro Arg Arg Asn Ala Gln Val Thr
Ser465 470 475 480Val Ala
Pro Thr Gly 48571267PRTMycobacterium tuberculosis 71Gly
Val Ile Val Leu Asp Leu Glu Pro Arg Gly Pro Leu Pro Thr Glu1
5 10 15Ile Tyr Trp Arg Arg Arg Gly
Leu Ala Leu Gly Ile Ala Val Val Val 20 25
30Val Gly Ile Ala Val Ala Ile Val Ile Ala Phe Val Asp Ser
Ser Ala 35 40 45Gly Ala Lys Pro
Val Ser Ala Asp Lys Pro Ala Ser Ala Gln Ser His 50 55
60Pro Gly Ser Pro Ala Pro Gln Ala Pro Gln Pro Ala Gly
Gln Thr Glu65 70 75
80Gly Asn Ala Ala Ala Ala Pro Pro Gln Gly Gln Asn Pro Glu Thr Pro
85 90 95Thr Pro Thr Ala Ala Val
Gln Pro Pro Pro Val Leu Lys Glu Gly Asp 100
105 110Asp Cys Pro Asp Ser Thr Leu Ala Val Lys Gly Leu
Thr Asn Ala Pro 115 120 125Gln Tyr
Tyr Val Gly Asp Gln Pro Lys Phe Thr Met Val Val Thr Asn 130
135 140Ile Gly Leu Val Ser Cys Lys Arg Asp Val Gly
Ala Ala Val Leu Ala145 150 155
160Ala Tyr Val Tyr Ser Leu Asp Asn Lys Arg Leu Trp Ser Asn Leu Asp
165 170 175Cys Ala Pro Ser
Asn Glu Thr Leu Val Lys Thr Phe Ser Pro Gly Glu 180
185 190Gln Val Thr Thr Ala Val Thr Trp Thr Gly Met
Gly Ser Ala Pro Arg 195 200 205Cys
Pro Leu Pro Arg Pro Ala Ile Gly Pro Gly Thr Tyr Asn Leu Val 210
215 220Val Gln Leu Gly Asn Leu Arg Ser Leu Pro
Val Pro Phe Ile Leu Asn225 230 235
240Gln Pro Pro Pro Pro Pro Gly Pro Val Pro Ala Pro Gly Pro Ala
Gln 245 250 255Ala Pro Pro
Pro Glu Ser Pro Ala Gln Gly Gly 260
2657297PRTMycobacterium tuberculosis 72Leu Ile Ser Thr Gly Lys Ala Ser
His Ala Ser Leu Gly Val Gln Val1 5 10
15Thr Asn Asp Lys Asp Thr Pro Gly Ala Lys Ile Val Glu Val
Val Ala 20 25 30Gly Gly Ala
Ala Ala Asn Ala Gly Val Pro Lys Gly Val Val Val Thr 35
40 45Lys Val Asp Asp Arg Pro Ile Asn Ser Ala Asp
Ala Leu Val Ala Ala 50 55 60Val Arg
Ser Lys Ala Pro Gly Ala Thr Val Ala Leu Thr Phe Gln Asp65
70 75 80Pro Ser Gly Gly Ser Arg Thr
Val Gln Val Thr Leu Gly Lys Ala Glu 85 90
95Gln73364PRTMycobacterium tuberculosis 73Gly Ala Ala
Val Ser Leu Leu Ala Ala Gly Thr Leu Val Leu Thr Ala1 5
10 15Cys Gly Gly Gly Thr Asn Ser Ser Ser
Ser Gly Ala Gly Gly Thr Ser 20 25
30Gly Ser Val His Cys Gly Gly Lys Lys Glu Leu His Ser Ser Gly Ser
35 40 45Thr Ala Gln Glu Asn Ala Met
Glu Gln Phe Val Tyr Ala Tyr Val Arg 50 55
60Ser Cys Pro Gly Tyr Thr Leu Asp Tyr Asn Ala Asn Gly Ser Gly Ala65
70 75 80Gly Val Thr Gln
Phe Leu Asn Asn Glu Thr Asp Phe Ala Gly Ser Asp 85
90 95Val Pro Leu Asn Pro Ser Thr Gly Gln Pro
Asp Arg Ser Ala Glu Arg 100 105
110Cys Gly Ser Pro Ala Trp Asp Leu Pro Thr Val Phe Gly Pro Ile Ala
115 120 125Ile Thr Tyr Asn Ile Lys Gly
Val Ser Thr Leu Asn Leu Asp Gly Pro 130 135
140Thr Thr Ala Lys Ile Phe Asn Gly Thr Ile Thr Val Trp Asn Asp
Pro145 150 155 160Gln Ile
Gln Ala Leu Asn Ser Gly Thr Asp Leu Pro Pro Thr Pro Ile
165 170 175Ser Val Ile Phe Arg Ser Asp
Lys Ser Gly Thr Ser Asp Asn Phe Gln 180 185
190Lys Tyr Leu Asp Gly Val Ser Asn Gly Ala Trp Gly Lys Gly
Ala Ser 195 200 205Glu Thr Phe Ser
Gly Gly Val Gly Val Gly Ala Ser Gly Asn Asn Gly 210
215 220Thr Ser Ala Leu Leu Gln Thr Thr Asp Gly Ser Ile
Thr Tyr Asn Glu225 230 235
240Trp Ser Phe Ala Val Gly Lys Gln Leu Asn Met Ala Gln Ile Ile Thr
245 250 255Ser Ala Gly Pro Asp
Pro Val Ala Ile Thr Thr Glu Ser Val Gly Lys 260
265 270Thr Ile Ala Gly Ala Lys Ile Met Gly Gln Gly Asn
Asp Leu Val Leu 275 280 285Asp Thr
Ser Ser Phe Tyr Arg Pro Thr Gln Pro Gly Ser Tyr Pro Ile 290
295 300Val Leu Ala Thr Tyr Glu Ile Val Cys Ser Lys
Tyr Pro Asp Ala Thr305 310 315
320Thr Gly Thr Ala Val Arg Ala Phe Met Gln Ala Ala Ile Gly Pro Gly
325 330 335Gln Glu Gly Leu
Asp Gln Tyr Gly Ser Ile Pro Leu Pro Lys Ser Phe 340
345 350Gln Ala Lys Leu Ala Ala Ala Val Asn Ala Ile
Ser 355 36074309PRTMycobacterium tuberculosis
74Gln Ala Ala Ala Gly Arg Ala Val Arg Arg Thr Gly His Ala Glu Asp1
5 10 15Gln Thr His Gln Asp Arg
Leu His His Gly Cys Arg Arg Ala Ala Val 20 25
30Val Val Arg Gln Asp Arg Ala Ser Val Ser Ala Thr Ser
Ala Arg Pro 35 40 45Pro Arg Arg
His Pro Ala Gln Gly His Arg Arg Arg Val Ala Pro Ser 50
55 60Gly Gly Arg Arg Arg Pro His Pro His His Val Gln
Pro Asp Asp Arg65 70 75
80Arg Asp Arg Pro Ala Leu Leu Asp Arg Thr Gln Pro Ala Glu His Pro
85 90 95Asp Pro His Arg Arg Gly
Pro Ala Asp Pro Gly Arg Val Arg Gly Arg 100
105 110Gly Arg Leu Arg Arg Val Asp Asp Gly Arg Leu Gln
Pro Asp Arg Asp 115 120 125Ala Asp
His Gly Ala Pro Val Arg Gly Arg Gly Pro His Arg Gly Val 130
135 140Gln His Arg Gly Gly Pro Val Phe Val Arg Arg
Val Pro Gly Val Arg145 150 155
160Cys Ala His Arg Arg Gly His Arg Arg Val Ala Ala Pro Gly Gln Gly
165 170 175Asp Val Leu Arg
Ala Gly Leu Arg Val Glu Arg Leu Arg Pro Val Ala 180
185 190Ala Val Glu Asn Leu His Arg Gly Ser Gln Arg
Ala Asp Gly Arg Val 195 200 205Phe
Arg Pro Ile Arg Arg Gly Ala Arg Leu Pro Ala Arg Arg Ser Arg 210
215 220Ala Gly Pro Gln Gly Arg Leu His Leu Asp
Gly Ala Gly Pro Ser Pro225 230 235
240Leu Pro Ala Arg Ala Gly Gln Gln Gln Pro Ser Ser Ala Gly Gly
Arg 245 250 255Arg Ala Gly
Gly Ala Glu Arg Ala Asp Pro Gly Gln Arg Gly Arg His 260
265 270His Gln Gly Gly His Asp Pro Gly Arg Gln
Gly Ala Gln Arg Gly Thr 275 280
285Ala Gly Val Ala His Ala Ala Ala Gly Pro Arg Arg Ala Ala Val Arg 290
295 300Asn Arg Pro Arg
Arg30575580PRTMycobacterium tuberculosis 75Ser Ala Val Trp Cys Leu Asn
Gly Phe Thr Gly Arg His Arg His Gly1 5 10
15Arg Cys Arg Val Arg Ala Ser Gly Trp Arg Ser Ser Asn
Arg Trp Cys 20 25 30Ser Thr
Thr Ala Asp Cys Cys Ala Ser Lys Thr Pro Thr Gln Ala Ala 35
40 45Ser Pro Leu Glu Arg Arg Phe Thr Cys Cys
Ser Pro Ala Val Gly Cys 50 55 60Arg
Phe Arg Ser Phe Pro Val Arg Arg Leu Ala Leu Gly Ala Arg Thr65
70 75 80Ser Arg Thr Leu Gly Val
Arg Arg Thr Leu Ser Gln Trp Asn Leu Ser 85
90 95Pro Arg Ala Gln Pro Ser Cys Ala Val Thr Val Glu
Ser His Thr His 100 105 110Ala
Ser Pro Arg Met Ala Lys Leu Ala Arg Val Val Gly Leu Val Gln 115
120 125Glu Glu Gln Pro Ser Asp Met Thr Asn
His Pro Arg Tyr Ser Pro Pro 130 135
140Pro Gln Gln Pro Gly Thr Pro Gly Tyr Ala Gln Gly Gln Gln Gln Thr145
150 155 160Tyr Ser Gln Gln
Phe Asp Trp Arg Tyr Pro Pro Ser Pro Pro Pro Gln 165
170 175Pro Thr Gln Tyr Arg Gln Pro Tyr Glu Ala
Leu Gly Gly Thr Arg Pro 180 185
190Gly Leu Ile Pro Gly Val Ile Pro Thr Met Thr Pro Pro Pro Gly Met
195 200 205Val Arg Gln Arg Pro Arg Ala
Gly Met Leu Ala Ile Gly Ala Val Thr 210 215
220Ile Ala Val Val Ser Ala Gly Ile Gly Gly Ala Ala Ala Ser Leu
Val225 230 235 240Gly Phe
Asn Arg Ala Pro Ala Gly Pro Ser Gly Gly Pro Val Ala Ala
245 250 255Ser Ala Ala Pro Ser Ile Pro
Ala Ala Asn Met Pro Pro Gly Ser Val 260 265
270Glu Gln Val Ala Ala Lys Val Val Pro Ser Val Val Met Leu
Glu Thr 275 280 285Asp Leu Gly Arg
Gln Ser Glu Glu Gly Ser Gly Ile Ile Leu Ser Ala 290
295 300Glu Gly Leu Ile Leu Thr Asn Asn His Val Ile Ala
Ala Ala Ala Lys305 310 315
320Pro Pro Leu Gly Ser Pro Pro Pro Lys Thr Thr Val Thr Phe Ser Asp
325 330 335Gly Arg Thr Ala Pro
Phe Thr Val Val Gly Ala Asp Pro Thr Ser Asp 340
345 350Ile Ala Val Val Arg Val Gln Gly Val Ser Gly Leu
Thr Pro Ile Ser 355 360 365Leu Gly
Ser Ser Ser Asp Leu Arg Val Gly Gln Pro Val Leu Ala Ile 370
375 380Gly Ser Pro Leu Gly Leu Glu Gly Thr Val Thr
Thr Gly Ile Val Ser385 390 395
400Ala Leu Asn Arg Pro Val Ser Thr Thr Gly Glu Ala Gly Asn Gln Asn
405 410 415Thr Val Leu Asp
Ala Ile Gln Thr Asp Ala Ala Ile Asn Pro Gly Asn 420
425 430Ser Gly Gly Ala Leu Val Asn Met Asn Ala Gln
Leu Val Gly Val Asn 435 440 445Ser
Ala Ile Ala Thr Leu Gly Ala Asp Ser Ala Asp Ala Gln Ser Gly 450
455 460Ser Ile Gly Leu Gly Phe Ala Ile Pro Val
Asp Gln Ala Lys Arg Ile465 470 475
480Ala Asp Glu Leu Ile Ser Thr Gly Lys Ala Ser His Ala Ser Leu
Gly 485 490 495Val Gln Val
Thr Asn Asp Lys Asp Thr Pro Gly Ala Lys Ile Val Glu 500
505 510Val Val Ala Gly Gly Ala Ala Ala Asn Ala
Gly Val Pro Lys Gly Val 515 520
525Val Val Thr Lys Val Asp Asp Arg Pro Ile Asn Ser Ala Asp Ala Leu 530
535 540Val Ala Ala Val Arg Ser Lys Ala
Pro Gly Ala Thr Val Ala Leu Thr545 550
555 560Phe Gln Asp Pro Ser Gly Gly Ser Arg Thr Val Gln
Val Thr Leu Gly 565 570
575Lys Ala Glu Gln 58076233PRTMycobacterium tuberculosis 76Met
Asn Asp Gly Lys Arg Ala Val Thr Ser Ala Val Leu Val Val Leu1
5 10 15Gly Ala Cys Leu Ala Leu Trp
Leu Ser Gly Cys Ser Ser Pro Lys Pro 20 25
30Asp Ala Glu Glu Gln Gly Val Pro Val Ser Pro Thr Ala Ser
Asp Pro 35 40 45Ala Leu Leu Ala
Glu Ile Arg Gln Ser Leu Asp Ala Thr Lys Gly Leu 50 55
60Thr Ser Val His Val Ala Val Arg Thr Thr Gly Lys Val
Asp Ser Leu65 70 75
80Leu Gly Ile Thr Ser Ala Asp Val Asp Val Arg Ala Asn Pro Leu Ala
85 90 95Ala Lys Gly Val Cys Thr
Tyr Asn Asp Glu Gln Gly Val Pro Phe Arg 100
105 110Val Gln Gly Asp Asn Ile Ser Val Lys Leu Phe Asp
Asp Trp Ser Asn 115 120 125Leu Gly
Ser Ile Ser Glu Leu Ser Thr Ser Arg Val Leu Asp Pro Ala 130
135 140Ala Gly Val Thr Gln Leu Leu Ser Gly Val Thr
Asn Leu Gln Ala Gln145 150 155
160Gly Thr Glu Val Ile Asp Gly Ile Ser Thr Thr Lys Ile Thr Gly Thr
165 170 175Ile Pro Ala Ser
Ser Val Lys Met Leu Asp Pro Gly Ala Lys Ser Ala 180
185 190Arg Pro Ala Thr Val Trp Ile Ala Gln Asp Gly
Ser His His Leu Val 195 200 205Arg
Ala Ser Ile Asp Leu Gly Ser Gly Ser Ile Gln Leu Thr Gln Ser 210
215 220Lys Trp Asn Glu Pro Val Asn Val Asp225
2307766PRTMycobacterium tuberculosis 77Val Ile Asp Ile Ile
Gly Thr Ser Pro Thr Ser Trp Glu Gln Ala Ala1 5
10 15Ala Glu Ala Val Gln Arg Ala Arg Asp Ser Val
Asp Asp Ile Arg Val 20 25
30Ala Arg Val Ile Glu Gln Asp Met Ala Val Asp Ser Ala Gly Lys Ile
35 40 45Thr Tyr Arg Ile Lys Leu Glu Val
Ser Phe Lys Met Arg Pro Ala Gln 50 55
60Pro Arg657869PRTMycobacterium tuberculosis 78Val Pro Pro Ala Pro Pro
Leu Pro Pro Leu Pro Pro Ser Pro Ile Ser1 5
10 15Cys Ala Ser Pro Pro Ser Pro Pro Leu Pro Pro Ala
Pro Pro Val Ala 20 25 30Pro
Gly Pro Pro Met Pro Pro Leu Asp Pro Trp Pro Pro Ala Pro Pro 35
40 45Leu Pro Tyr Ser Thr Pro Pro Gly Ala
Pro Leu Pro Pro Ser Pro Pro 50 55
60Ser Pro Pro Leu Pro6579355PRTMycobacterium tuberculosis 79Met Ser Asn
Ser Arg Arg Arg Ser Leu Arg Trp Ser Trp Leu Leu Ser1 5
10 15Val Leu Ala Ala Val Gly Leu Gly Leu
Ala Thr Ala Pro Ala Gln Ala 20 25
30Ala Pro Pro Ala Leu Ser Gln Asp Arg Phe Ala Asp Phe Pro Ala Leu
35 40 45Pro Leu Asp Pro Ser Ala Met
Val Ala Gln Val Ala Pro Gln Val Val 50 55
60Asn Ile Asn Thr Lys Leu Gly Tyr Asn Asn Ala Val Gly Ala Gly Thr65
70 75 80Gly Ile Val Ile
Asp Pro Asn Gly Val Val Leu Thr Asn Asn His Val 85
90 95Ile Ala Gly Ala Thr Asp Ile Asn Ala Phe
Ser Val Gly Ser Gly Gln 100 105
110Thr Tyr Gly Val Asp Val Val Gly Tyr Asp Arg Thr Gln Asp Val Ala
115 120 125Val Leu Gln Leu Arg Gly Ala
Gly Gly Leu Pro Ser Ala Ala Ile Gly 130 135
140Gly Gly Val Ala Val Gly Glu Pro Val Val Ala Met Gly Asn Ser
Gly145 150 155 160Gly Gln
Gly Gly Thr Pro Arg Ala Val Pro Gly Arg Val Val Ala Leu
165 170 175Gly Gln Thr Val Gln Ala Ser
Asp Ser Leu Thr Gly Ala Glu Glu Thr 180 185
190Leu Asn Gly Leu Ile Gln Phe Asp Ala Ala Ile Gln Pro Gly
Asp Ser 195 200 205Gly Gly Pro Val
Val Asn Gly Leu Gly Gln Val Val Gly Met Asn Thr 210
215 220Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly
Gln Gly Phe Ala225 230 235
240Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser Gly
245 250 255Gly Gly Ser Pro Thr
Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu 260
265 270Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val
Gln Arg Val Val 275 280 285Gly Ser
Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile 290
295 300Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala
Thr Ala Met Ala Asp305 310 315
320Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp Gln
325 330 335Thr Lys Ser Gly
Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly 340
345 350Pro Pro Ala 35580205PRTMycobacterium
tuberculosis 80Ser Pro Lys Pro Asp Ala Glu Glu Gln Gly Val Pro Val Ser
Pro Thr1 5 10 15Ala Ser
Asp Pro Ala Leu Leu Ala Glu Ile Arg Gln Ser Leu Asp Ala 20
25 30Thr Lys Gly Leu Thr Ser Val His Val
Ala Val Arg Thr Thr Gly Lys 35 40
45Val Asp Ser Leu Leu Gly Ile Thr Ser Ala Asp Val Asp Val Arg Ala 50
55 60Asn Pro Leu Ala Ala Lys Gly Val Cys
Thr Tyr Asn Asp Glu Gln Gly65 70 75
80Val Pro Phe Arg Val Gln Gly Asp Asn Ile Ser Val Lys Leu
Phe Asp 85 90 95Asp Trp
Ser Asn Leu Gly Ser Ile Ser Glu Leu Ser Thr Ser Arg Val 100
105 110Leu Asp Pro Ala Ala Gly Val Thr Gln
Leu Leu Ser Gly Val Thr Asn 115 120
125Leu Gln Ala Gln Gly Thr Glu Val Ile Asp Gly Ile Ser Thr Thr Lys
130 135 140Ile Thr Gly Thr Ile Pro Ala
Ser Ser Val Lys Met Leu Asp Pro Gly145 150
155 160Ala Lys Ser Ala Arg Pro Ala Thr Val Trp Ile Ala
Gln Asp Gly Ser 165 170
175His His Leu Val Arg Ala Ser Ile Asp Leu Gly Ser Gly Ser Ile Gln
180 185 190Leu Thr Gln Ser Lys Trp
Asn Glu Pro Val Asn Val Asp 195 200
20581286PRTMycobacterium tuberculosisMISC_FEATURE(1)..(285)ANY AMINO
ACID 81Gly Asp Ser Phe Trp Ala Ala Ala Asp Gln Met Ala Arg Gly Phe Val1
5 10 15Leu Gly Ala Thr Ala
Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu Gln 20
25 30His Ala Asp Gly His Ser Leu Leu Leu Asp Ala Thr
Asn Pro Ala Val 35 40 45Val Ala
Tyr Asp Pro Ala Phe Ala Tyr Glu Ile Gly Tyr Ile Xaa Glu 50
55 60Ser Gly Leu Ala Arg Met Cys Gly Glu Asn Pro
Glu Asn Ile Phe Phe65 70 75
80Tyr Ile Thr Val Tyr Asn Glu Pro Tyr Val Gln Pro Pro Glu Pro Glu
85 90 95Asn Phe Asp Pro Glu
Gly Val Leu Gly Gly Ile Tyr Arg Tyr His Ala 100
105 110Ala Thr Glu Gln Arg Thr Asn Lys Xaa Gln Ile Leu
Ala Ser Gly Val 115 120 125Ala Met
Pro Ala Ala Leu Arg Ala Ala Gln Met Leu Ala Ala Glu Trp 130
135 140Asp Val Ala Ala Asp Val Trp Ser Val Thr Ser
Trp Gly Glu Leu Asn145 150 155
160Arg Asp Gly Val Val Ile Glu Thr Glu Lys Leu Arg His Pro Asp Arg
165 170 175Pro Ala Gly Val
Pro Tyr Val Thr Arg Ala Leu Glu Asn Ala Arg Gly 180
185 190Pro Val Ile Ala Val Ser Asp Trp Met Arg Ala
Val Pro Glu Gln Ile 195 200 205Arg
Pro Trp Val Pro Gly Thr Tyr Leu Thr Leu Gly Thr Asp Gly Phe 210
215 220Gly Phe Ser Asp Thr Arg Pro Ala Gly Arg
Arg Tyr Phe Asn Thr Asp225 230 235
240Ala Glu Ser Gln Val Gly Arg Gly Phe Gly Arg Gly Trp Pro Gly
Arg 245 250 255Arg Val Asn
Ile Asp Pro Phe Gly Ala Gly Arg Gly Pro Pro Ala Gln 260
265 270Leu Pro Gly Phe Asp Glu Gly Gly Gly Leu
Arg Pro Xaa Lys 275 280
28582173PRTMycobacterium tuberculosis 82Thr Lys Phe His Ala Leu Met Gln
Glu Gln Ile His Asn Glu Phe Thr1 5 10
15Ala Ala Gln Gln Tyr Val Ala Ile Ala Val Tyr Phe Asp Ser
Glu Asp 20 25 30Leu Pro Gln
Leu Ala Lys His Phe Tyr Ser Gln Ala Val Glu Glu Arg 35
40 45Asn His Ala Met Met Leu Val Gln His Leu Leu
Asp Arg Asp Leu Arg 50 55 60Val Glu
Ile Pro Gly Val Asp Thr Val Arg Asn Gln Phe Asp Arg Pro65
70 75 80Arg Glu Ala Leu Ala Leu Ala
Leu Asp Gln Glu Arg Thr Val Thr Asp 85 90
95Gln Val Gly Arg Leu Thr Ala Val Ala Arg Asp Glu Gly
Asp Phe Leu 100 105 110Gly Glu
Gln Phe Met Gln Trp Phe Leu Gln Glu Gln Ile Glu Glu Val 115
120 125Ala Leu Met Ala Thr Leu Val Arg Val Ala
Asp Arg Ala Gly Ala Asn 130 135 140Leu
Phe Glu Leu Glu Asn Phe Val Ala Arg Glu Val Asp Val Ala Pro145
150 155 160Ala Ala Ser Gly Ala Pro
His Ala Ala Gly Gly Arg Leu 165
17083107PRTMycobacterium tuberculosisMISC_FEATURE(1)..(107)ANY AMINO ACID
83Arg Ala Asp Glu Arg Leu Asn Thr Thr Met Lys Met Val Lys Ser Ile1
5 10 15Ala Ala Gly Leu Thr Ala
Ala Ala Ala Ile Gly Ala Ala Ala Ala Gly 20 25
30Val Thr Ser Ile Met Ala Gly Gly Pro Val Val Tyr Gln
Met Gln Pro 35 40 45Val Val Phe
Gly Ala Pro Leu Pro Leu Asp Pro Xaa Ser Ala Pro Xaa 50
55 60Val Pro Thr Ala Ala Gln Trp Thr Xaa Leu Leu Asn
Xaa Leu Xaa Asp65 70 75
80Pro Asn Val Ser Phe Xaa Asn Lys Gly Ser Leu Val Glu Gly Gly Ile
85 90 95Gly Gly Xaa Glu Gly Xaa
Xaa Arg Arg Xaa Gln 100
10584125PRTMycobacterium tuberculosisMISC_FEATURE(1)..(125)ANY AMINO ACID
84Val Leu Ser Val Pro Val Gly Asp Gly Phe Trp Xaa Arg Val Val Asn1
5 10 15Pro Leu Gly Gln Pro Ile
Asp Gly Arg Gly Asp Val Asp Ser Asp Thr 20 25
30Arg Arg Ala Leu Glu Leu Gln Ala Pro Ser Val Val Xaa
Arg Gln Gly 35 40 45Val Lys Glu
Pro Leu Xaa Thr Gly Ile Lys Ala Ile Asp Ala Met Thr 50
55 60Pro Ile Gly Arg Gly Gln Arg Gln Leu Ile Ile Gly
Asp Arg Lys Thr65 70 75
80Gly Lys Asn Arg Arg Leu Cys Arg Thr Pro Ser Ser Asn Gln Arg Glu
85 90 95Glu Leu Gly Val Arg Trp
Ile Pro Arg Ser Arg Cys Ala Cys Val Tyr 100
105 110Val Gly His Arg Ala Arg Arg Gly Thr Tyr His Arg
Arg 115 120
12585117PRTMycobacterium tuberculosisMISC_FEATURE(1)..(117)ANY AMINO ACID
85Cys Asp Ala Val Met Gly Phe Leu Gly Gly Ala Gly Pro Leu Ala Val1
5 10 15Val Asp Gln Gln Leu Val
Thr Arg Val Pro Gln Gly Trp Ser Phe Ala 20 25
30Gln Ala Ala Ala Val Pro Val Val Phe Leu Thr Ala Trp
Tyr Gly Leu 35 40 45Ala Asp Leu
Ala Glu Ile Lys Ala Gly Glu Ser Val Leu Ile His Ala 50
55 60Gly Thr Gly Gly Val Gly Met Ala Ala Val Gln Leu
Ala Arg Gln Trp65 70 75
80Gly Val Glu Val Phe Val Thr Ala Ser Arg Gly Lys Trp Asp Thr Leu
85 90 95Arg Ala Xaa Xaa Phe Asp
Asp Xaa Pro Tyr Arg Xaa Phe Pro His Xaa 100
105 110Arg Ser Ser Xaa Gly
11586103PRTMycobacterium tuberculosis 86Met Tyr Arg Phe Ala Cys Arg Thr
Leu Met Leu Ala Ala Cys Ile Leu1 5 10
15Ala Thr Gly Val Ala Gly Leu Gly Val Gly Ala Gln Ser Ala
Ala Gln 20 25 30Thr Ala Pro
Val Pro Asp Tyr Tyr Trp Cys Pro Gly Gln Pro Phe Asp 35
40 45Pro Ala Trp Gly Pro Asn Trp Asp Pro Tyr Thr
Cys His Asp Asp Phe 50 55 60His Arg
Asp Ser Asp Gly Pro Asp His Ser Arg Asp Tyr Pro Gly Pro65
70 75 80Ile Leu Glu Gly Pro Val Leu
Asp Asp Pro Gly Ala Ala Pro Pro Pro 85 90
95Pro Ala Ala Gly Gly Gly Ala
1008788PRTMycobacterium tuberculosis 87Val Gln Cys Arg Val Trp Leu Glu
Ile Gln Trp Arg Gly Met Leu Gly1 5 10
15Ala Asp Gln Ala Arg Ala Gly Gly Pro Ala Arg Ile Trp Arg
Glu His 20 25 30Ser Met Ala
Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala 35
40 45Thr Lys Glu Gly Arg Gly Ile Val Met Arg Val
Pro Leu Glu Gly Gly 50 55 60Gly Arg
Leu Val Val Glu Leu Thr Pro Asp Glu Ala Ala Ala Leu Gly65
70 75 80Asp Glu Leu Lys Gly Val Thr
Ser 858895PRTMycobacterium tuberculosis 88Thr Asp Ala Ala
Thr Leu Ala Gln Glu Ala Gly Asn Phe Glu Arg Ile1 5
10 15Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln
Val Glu Ser Thr Ala Gly 20 25
30Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln Ala
35 40 45Ala Val Val Arg Phe Gln Glu Ala
Ala Asn Lys Gln Lys Gln Glu Leu 50 55
60Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg65
70 75 80Ala Asp Glu Glu Gln
Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 85
90 9589166PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(165)ANY AMINO ACID 89Met Thr Gln Ser Gln
Thr Val Thr Val Asp Gln Gln Glu Ile Leu Asn1 5
10 15Arg Ala Asn Glu Val Glu Ala Pro Met Ala Asp
Pro Pro Thr Asp Val 20 25
30Pro Ile Thr Pro Cys Glu Leu Thr Xaa Xaa Lys Asn Ala Ala Gln Gln
35 40 45Xaa Val Leu Ser Ala Asp Asn Met
Arg Glu Tyr Leu Ala Ala Gly Ala 50 55
60Lys Glu Arg Gln Arg Leu Ala Thr Ser Leu Arg Asn Ala Ala Lys Xaa65
70 75 80Tyr Gly Glu Val Asp
Glu Glu Ala Ala Thr Ala Leu Asp Asn Asp Gly 85
90 95Glu Gly Thr Val Gln Ala Glu Ser Ala Gly Ala
Val Gly Gly Asp Ser 100 105
110Ser Ala Glu Leu Thr Asp Thr Pro Arg Val Ala Thr Ala Gly Glu Pro
115 120 125Asn Phe Met Asp Leu Lys Glu
Ala Ala Arg Lys Leu Glu Thr Gly Asp 130 135
140Gln Gly Ala Ser Leu Ala His Xaa Gly Asp Gly Trp Asn Thr Xaa
Thr145 150 155 160Leu Thr
Leu Gln Gly Asp 165905PRTMycobacterium tuberculosis 90Arg
Ala Glu Arg Met1 591263PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(263)ANY AMINO ACID 91Val Ala Trp Met Ser
Val Thr Ala Gly Gln Ala Glu Leu Thr Ala Ala1 5
10 15Gln Val Arg Val Ala Ala Ala Ala Tyr Glu Thr
Ala Tyr Gly Leu Thr 20 25
30Val Pro Pro Pro Val Ile Ala Glu Asn Arg Ala Glu Leu Met Ile Leu
35 40 45Ile Ala Thr Asn Leu Leu Gly Gln
Asn Thr Pro Ala Ile Ala Val Asn 50 55
60Glu Ala Glu Tyr Gly Glu Met Trp Ala Gln Asp Ala Ala Ala Met Phe65
70 75 80Gly Tyr Ala Ala Ala
Thr Ala Thr Ala Thr Ala Thr Leu Leu Pro Phe 85
90 95Glu Glu Ala Pro Glu Met Thr Ser Ala Gly Gly
Leu Leu Glu Gln Ala 100 105
110Ala Ala Val Glu Glu Ala Ser Asp Thr Ala Ala Ala Asn Gln Leu Met
115 120 125Asn Asn Val Pro Gln Ala Leu
Lys Gln Leu Ala Gln Pro Thr Gln Gly 130 135
140Thr Thr Pro Ser Ser Lys Leu Gly Gly Leu Trp Lys Thr Val Ser
Pro145 150 155 160His Arg
Ser Pro Ile Ser Asn Met Val Ser Met Ala Asn Asn His Met
165 170 175Ser Met Thr Asn Ser Gly Val
Ser Met Thr Asn Thr Leu Ser Ser Met 180 185
190Leu Lys Gly Phe Ala Pro Ala Ala Ala Ala Gln Ala Val Gln
Thr Ala 195 200 205Ala Gln Asn Gly
Val Arg Ala Met Ser Ser Leu Gly Ser Ser Leu Gly 210
215 220Ser Ser Gly Leu Gly Gly Gly Val Ala Ala Asn Leu
Gly Arg Ala Ala225 230 235
240Ser Val Arg Tyr Gly His Arg Asp Gly Gly Lys Tyr Ala Xaa Ser Gly
245 250 255Arg Arg Asn Gly Gly
Pro Ala 26092303PRTMycobacterium tuberculosis 92Met Thr Tyr
Ser Pro Gly Asn Pro Gly Tyr Pro Gln Ala Gln Pro Ala1 5
10 15Gly Ser Tyr Gly Gly Val Thr Pro Ser
Phe Ala His Ala Asp Glu Gly 20 25
30Ala Ser Lys Leu Pro Met Tyr Leu Asn Ile Ala Val Ala Val Leu Gly
35 40 45Leu Ala Ala Tyr Phe Ala Ser
Phe Gly Pro Met Phe Thr Leu Ser Thr 50 55
60Glu Leu Gly Gly Gly Asp Gly Ala Val Ser Gly Asp Thr Gly Leu Pro65
70 75 80Val Gly Val Ala
Leu Leu Ala Ala Leu Leu Ala Gly Val Val Leu Val 85
90 95Pro Lys Ala Lys Ser His Val Thr Val Val
Ala Val Leu Gly Val Leu 100 105
110Gly Val Phe Leu Met Val Ser Ala Thr Phe Asn Lys Pro Ser Ala Tyr
115 120 125Ser Thr Gly Trp Ala Leu Trp
Val Val Leu Ala Phe Ile Val Phe Gln 130 135
140Ala Val Ala Ala Val Leu Ala Leu Leu Val Glu Thr Gly Ala Ile
Thr145 150 155 160Ala Pro
Ala Pro Arg Pro Lys Phe Asp Pro Tyr Gly Gln Tyr Gly Arg
165 170 175Tyr Gly Gln Tyr Gly Gln Tyr
Gly Val Gln Pro Gly Gly Tyr Tyr Gly 180 185
190Gln Gln Gly Ala Gln Gln Ala Ala Gly Leu Gln Ser Pro Gly
Pro Gln 195 200 205Gln Ser Pro Gln
Pro Pro Gly Tyr Gly Ser Gln Tyr Gly Gly Tyr Ser 210
215 220Ser Ser Pro Ser Gln Ser Gly Ser Gly Tyr Thr Ala
Gln Pro Pro Ala225 230 235
240Gln Pro Pro Ala Gln Ser Gly Ser Gln Gln Ser His Gln Gly Pro Ser
245 250 255Thr Pro Pro Thr Gly
Phe Pro Ser Phe Ser Pro Pro Pro Pro Val Ser 260
265 270Ala Gly Thr Gly Ser Gln Ala Gly Ser Ala Pro Val
Asn Tyr Ser Asn 275 280 285Pro Ser
Gly Gly Glu Gln Ser Ser Ser Pro Gly Gly Ala Pro Val 290
295 3009328PRTMycobacterium tuberculosis 93Gly Cys Gly
Glu Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly Asn1 5
10 15Phe Glu Arg Ile Ser Gly Asp Leu Lys
Thr Gln Ile 20 259416PRTMycobacterium
tuberculosis 94Asp Gln Val Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp
Arg Gly1 5 10
159527PRTMycobacterium tuberculosis 95Gly Cys Gly Ser Thr Ala Gly Ser Leu
Gln Gly Gln Trp Arg Gly Ala1 5 10
15Ala Gly Thr Ala Ala Gln Ala Ala Val Val Arg 20
259627PRTMycobacterium tuberculosis 96Gly Cys Gly Gly Thr Ala
Ala Gln Ala Ala Val Val Arg Phe Gln Glu1 5
10 15Ala Ala Asn Lys Gln Lys Gln Glu Leu Asp Glu
20 259727PRTMycobacterium tuberculosis 97Gly Cys Gly
Ala Asn Lys Gln Lys Gln Glu Leu Asp Glu Ile Ser Thr1 5
10 15Asn Ile Arg Gln Ala Gly Val Gln Tyr
Ser Arg 20 259828PRTMycobacterium
tuberculosis 98Gly Cys Gly Ile Arg Gln Ala Gly Val Gln Tyr Ser Arg Ala
Asp Glu1 5 10 15Glu Gln
Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 20
2599507DNAMycobacterium tuberculosis 99atgaagatgg tgaaatcgat cgccgcaggt
ctgaccgccg cggctgcaat cggcgccgct 60gcggccggtg tgacttcgat catggctggc
ggcccggtcg tataccagat gcagccggtc 120gtcttcggcg cgccactgcc gttggacccg
gcatccgccc ctgacgtccc gaccgccgcc 180cagttgacca gcctgctcaa cagcctcgcc
gatcccaacg tgtcgtttgc gaacaagggc 240agtctggtcg agggcggcat cgggggcacc
gaggcgcgca tcgccgacca caagctgaag 300aaggccgccg agcacgggga tctgccgctg
tcgttcagcg tgacgaacat ccagccggcg 360gccgccggtt cggccaccgc cgacgtttcc
gtctcgggtc cgaagctctc gtcgccggtc 420acgcagaacg tcacgttcgt gaatcaaggc
ggctggatgc tgtcacgcgc atcggcgatg 480gagttgctgc aggccgcagg gaactga
507100168PRTMycobacterium tuberculosis
100Met Lys Met Val Lys Ser Ile Ala Ala Gly Leu Thr Ala Ala Ala Ala1
5 10 15Ile Gly Ala Ala Ala Ala
Gly Val Thr Ser Ile Met Ala Gly Gly Pro 20 25
30Val Val Tyr Gln Met Gln Pro Val Val Phe Gly Ala Pro
Leu Pro Leu 35 40 45Asp Pro Ala
Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Leu Thr Ser 50
55 60Leu Leu Asn Ser Leu Ala Asp Pro Asn Val Ser Phe
Ala Asn Lys Gly65 70 75
80Ser Leu Val Glu Gly Gly Ile Gly Gly Thr Glu Ala Arg Ile Ala Asp
85 90 95His Lys Leu Lys Lys Ala
Ala Glu His Gly Asp Leu Pro Leu Ser Phe 100
105 110Ser Val Thr Asn Ile Gln Pro Ala Ala Ala Gly Ser
Ala Thr Ala Asp 115 120 125Val Ser
Val Ser Gly Pro Lys Leu Ser Ser Pro Val Thr Gln Asn Val 130
135 140Thr Phe Val Asn Gln Gly Gly Trp Met Leu Ser
Arg Ala Ser Ala Met145 150 155
160Glu Leu Leu Gln Ala Ala Gly Asn
165101500DNAMycobacterium tuberculosis 101cgtggcaatg tcgttgaccg
tcggggccgg ggtcgcctcc gcagatcccg tggacgcggt 60cattaacacc acctgcaatt
acgggcaggt agtagctgcg ctcaacgcga cggatccggg 120ggctgccgca cagttcaacg
cctcaccggt ggcgcagtcc tatttgcgca atttcctcgc 180cgcaccgcca cctcagcgcg
ctgccatggc cgcgcaattg caagctgtgc cgggggcggc 240acagtacatc ggccttgtcg
agtcggttgc cggctcctgc aacaactatt aagcccatgc 300gggccccatc ccgcgacccg
gcatcgtcgc cggggctagg ccagattgcc ccgctcctca 360acgggccgca tcccgcgacc
cggcatcgtc gccggggcta ggccagattg ccccgctcct 420caacgggccg catctcgtgc
cgaattcctg cagcccgggg gatccactag ttctagagcg 480gccgccaccg cggtggagct
50010296PRTMycobacterium
tuberculosis 102Val Ala Met Ser Leu Thr Val Gly Ala Gly Val Ala Ser Ala
Asp Pro1 5 10 15Val Asp
Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly Gln Val Val Ala 20
25 30Ala Leu Asn Ala Thr Asp Pro Gly Ala
Ala Ala Gln Phe Asn Ala Ser 35 40
45Pro Val Ala Gln Ser Tyr Leu Arg Asn Phe Leu Ala Ala Pro Pro Pro 50
55 60Gln Arg Ala Ala Met Ala Ala Gln Leu
Gln Ala Val Pro Gly Ala Ala65 70 75
80Gln Tyr Ile Gly Leu Val Glu Ser Val Ala Gly Ser Cys Asn
Asn Tyr 85 90
95103154DNAMycobacterium tuberculosis 103atgacagagc agcagtggaa tttcgcgggt
atcgaggccg cggcaagcgc aatccaggga 60aatgtcacgt ccattcattc cctccttgac
gaggggaagc agtccctgac caagctcgca 120gcggcctggg gcggtagcgg ttcggaagcg
tacc 15410451PRTMycobacterium tuberculosis
104Met Thr Glu Gln Gln Trp Asn Phe Ala Gly Ile Glu Ala Ala Ala Ser1
5 10 15Ala Ile Gln Gly Asn Val
Thr Ser Ile His Ser Leu Leu Asp Glu Gly 20 25
30Lys Gln Ser Leu Thr Lys Leu Ala Ala Ala Trp Gly Gly
Ser Gly Ser 35 40 45Glu Ala Tyr
50105282DNAMycobacterium tuberculosismisc_feature(1)..(282)ANY
NUCLEOTIDE 105cggtcgcgca cttccaggtg actatgaaag tcggcttccg nctggaggat
tcctgaacct 60tcaagcgcgg ccgataactg aggtgcatca ttaagcgact tttccagaac
atcctgacgc 120gctcgaaacg cggcacagcc gacggtggct ccgncgaggc gctgnctcca
aaatccctga 180gacaattcgn cgggggcgcc tacaaggaag tcggtgctga attcgncgng
tatctggtcg 240acctgtgtgg tctgnagccg gacgaagcgg tgctcgacgt cg
2821063058DNAMycobacterium tuberculosis 106gatcgtaccc
gtgcgagtgc tcgggccgtt tgaggatgga gtgcacgtgt ctttcgtgat 60ggcataccca
gagatgttgg cggcggcggc tgacaccctg cagagcatcg gtgctaccac 120tgtggctagc
aatgccgctg cggcggcccc gacgactggg gtggtgcccc ccgctgccga 180tgaggtgtcg
gcgctgactg cggcgcactt cgccgcacat gcggcgatgt atcagtccgt 240gagcgctcgg
gctgctgcga ttcatgacca gttcgtggcc acccttgcca gcagcgccag 300ctcgtatgcg
gccactgaag tcgccaatgc ggcggcggcc agctaagcca ggaacagtcg 360gcacgagaaa
ccacgagaaa tagggacacg taatggtgga tttcggggcg ttaccaccgg 420agatcaactc
cgcgaggatg tacgccggcc cgggttcggc ctcgctggtg gccgcggctc 480agatgtggga
cagcgtggcg agtgacctgt tttcggccgc gtcggcgttt cagtcggtgg 540tctggggtct
gacggtgggg tcgtggatag gttcgtcggc gggtctgatg gtggcggcgg 600cctcgccgta
tgtggcgtgg atgagcgtca ccgcggggca ggccgagctg accgccgccc 660aggtccgggt
tgctgcggcg gcctacgaga cggcgtatgg gctgacggtg cccccgccgg 720tgatcgccga
gaaccgtgct gaactgatga ttctgatagc gaccaacctc ttggggcaaa 780acaccccggc
gatcgcggtc aacgaggccg aatacggcga gatgtgggcc caagacgccg 840ccgcgatgtt
tggctacgcc gcggcgacgg cgacggcgac ggcgacgttg ctgccgttcg 900aggaggcgcc
ggagatgacc agcgcgggtg ggctcctcga gcaggccgcc gcggtcgagg 960aggcctccga
caccgccgcg gcgaaccagt tgatgaacaa tgtgccccag gcgctgcaac 1020agctggccca
gcccacgcag ggcaccacgc cttcttccaa gctgggtggc ctgtggaaga 1080cggtctcgcc
gcatcggtcg ccgatcagca acatggtgtc gatggccaac aaccacatgt 1140cgatgaccaa
ctcgggtgtg tcgatgacca acaccttgag ctcgatgttg aagggctttg 1200ctccggcggc
ggccgcccag gccgtgcaaa ccgcggcgca aaacggggtc cgggcgatga 1260gctcgctggg
cagctcgctg ggttcttcgg gtctgggcgg tggggtggcc gccaacttgg 1320gtcgggcggc
ctcggtcggt tcgttgtcgg tgccgcaggc ctgggccgcg gccaaccagg 1380cagtcacccc
ggcggcgcgg gcgctgccgc tgaccagcct gaccagcgcc gcggaaagag 1440ggcccgggca
gatgctgggc gggctgccgg tggggcagat gggcgccagg gccggtggtg 1500ggctcagtgg
tgtgctgcgt gttccgccgc gaccctatgt gatgccgcat tctccggcgg 1560ccggctagga
gagggggcgc agactgtcgt tatttgacca gtgatcggcg gtctcggtgt 1620ttccgcggcc
ggctatgaca acagtcaatg tgcatgacaa gttacaggta ttaggtccag 1680gttcaacaag
gagacaggca acatggcctc acgttttatg acggatccgc acgcgatgcg 1740ggacatggcg
ggccgttttg aggtgcacgc ccagacggtg gaggacgagg ctcgccggat 1800gtgggcgtcc
gcgcaaaaca tttccggtgc gggctggagt ggcatggccg aggcgacctc 1860gctagacacc
atggcccaga tgaatcaggc gtttcgcaac atcgtgaaca tgctgcacgg 1920ggtgcgtgac
gggctggttc gcgacgccaa caactacgag cagcaagagc aggcctccca 1980gcagatcctc
agcagctaac gtcagccgct gcagcacaat acttttacaa gcgaaggaga 2040acaggttcga
tgaccatcaa ctatcaattc ggggatgtcg acgctcacgg cgccatgatc 2100cgcgctcagg
ccgggttgct ggaggccgag catcaggcca tcattcgtga tgtgttgacc 2160gcgagtgact
tttggggcgg cgccggttcg gcggcctgcc aggggttcat tacccagttg 2220ggccgtaact
tccaggtgat ctacgagcag gccaacgccc acgggcagaa ggtgcaggct 2280gccggcaaca
acatggcgca aaccgacagc gccgtcggct ccagctgggc ctgacaccag 2340gccaaggcca
gggacgtggt gtacgagtga agttcctcgc gtgatccttc gggtggcagt 2400ctaagtggtc
agtgctgggg tgttggtggt ttgctgcttg gcgggttctt cggtgctggt 2460cagtgctgct
cgggctcggg tgaggacctc gaggcccagg tagcgccgtc cttcgatcca 2520ttcgtcgtgt
tgttcggcga ggacggctcc gacgaggcgg atgatcgagg cgcggtcggg 2580gaagatgccc
acgacgtcgg ttcggcgtcg tacctctcgg ttgaggcgtt cctgggggtt 2640gttggaccag
atttggcgcc agatctgctt ggggaaggcg gtgaacgcca gcaggtcggt 2700gcgggcggtg
tcgaggtgct cggccaccgc ggggagtttg tcggtcagag cgtcgagtac 2760ccgatcatat
tgggcaacaa ctgattcggc gtcgggctgg tcgtagatgg agtgcagcag 2820ggtgcgcacc
cacggccagg agggcttcgg ggtggctgcc atcagattgg ctgcgtagtg 2880ggttctgcag
cgctgccagg ccgctgcggg cagggtggcg ccgatcgcgg ccaccaggcc 2940ggcgtgggcg
tcgctggtga ccagcgcgac cccggacagg ccgcgggcga ccaggtcgcg 3000gaagaacgcc
agccagccgg ccccgtcctc ggcggaggtg acctggatgc ccaggatc
3058107391PRTMycobacterium tuberculosis 107Met Val Asp Phe Gly Ala Leu
Pro Pro Glu Ile Asn Ser Ala Arg Met1 5 10
15Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala
Gln Met Trp 20 25 30Asp Ser
Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35
40 45Val Val Trp Gly Leu Thr Val Gly Ser Trp
Ile Gly Ser Ser Ala Gly 50 55 60Leu
Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr65
70 75 80Ala Gly Gln Ala Glu Leu
Thr Ala Ala Gln Val Arg Val Ala Ala Ala 85
90 95Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro
Pro Val Ile Ala 100 105 110Glu
Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly 115
120 125Gln Asn Thr Pro Ala Ile Ala Val Asn
Glu Ala Glu Tyr Gly Glu Met 130 135
140Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Ala Thr Ala145
150 155 160Thr Ala Thr Ala
Thr Leu Leu Pro Phe Glu Glu Ala Pro Glu Met Thr 165
170 175Ser Ala Gly Gly Leu Leu Glu Gln Ala Ala
Ala Val Glu Glu Ala Ser 180 185
190Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu
195 200 205Gln Gln Leu Ala Gln Pro Thr
Gln Gly Thr Thr Pro Ser Ser Lys Leu 210 215
220Gly Gly Leu Trp Lys Thr Val Ser Pro His Arg Ser Pro Ile Ser
Asn225 230 235 240Met Val
Ser Met Ala Asn Asn His Met Ser Met Thr Asn Ser Gly Val
245 250 255Ser Met Thr Asn Thr Leu Ser
Ser Met Leu Lys Gly Phe Ala Pro Ala 260 265
270Ala Ala Ala Gln Ala Val Gln Thr Ala Ala Gln Asn Gly Val
Arg Ala 275 280 285Met Ser Ser Leu
Gly Ser Ser Leu Gly Ser Ser Gly Leu Gly Gly Gly 290
295 300Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly
Ser Leu Ser Val305 310 315
320Pro Gln Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro Ala Ala Arg
325 330 335Ala Leu Pro Leu Thr
Ser Leu Thr Ser Ala Ala Glu Arg Gly Pro Gly 340
345 350Gln Met Leu Gly Gly Leu Pro Val Gly Gln Met Gly
Ala Arg Ala Gly 355 360 365Gly Gly
Leu Ser Gly Val Leu Arg Val Pro Pro Arg Pro Tyr Val Met 370
375 380Pro His Ser Pro Ala Ala Gly385
3901081725DNAMycobacterium tuberculosis 108gacgtcagca cccgccgtgc
agggctggag cgtggtcggt tttgatctgc ggtcaaggtg 60acgtccctcg gcgtgtcgcc
ggcgtggatg cagactcgat gccgctcttt agtgcaacta 120atttcgttga agtgcctgcg
aggtatagga cttcacgatt ggttaatgta gcgttcaccc 180cgtgttgggg tcgatttggc
cggaccagtc gtcaccaacg cttggcgtgc gcgccaggcg 240ggcgatcaga tcgcttgact
accaatcaat cttgagctcc cgggccgatg ctcgggctaa 300atgaggagga gcacgcgtgt
ctttcactgc gcaaccggag atgttggcgg ccgcggctgg 360cgaacttcgt tccctggggg
caacgctgaa ggctagcaat gccgccgcag ccgtgccgac 420gactggggtg gtgcccccgg
ctgccgacga ggtgtcgctg ctgcttgcca cacaattccg 480tacgcatgcg gcgacgtatc
agacggccag cgccaaggcc gcggtgatcc atgagcagtt 540tgtgaccacg ctggccacca
gcgctagttc atatgcggac accgaggccg ccaacgctgt 600ggtcaccggc tagctgacct
gacggtattc gagcggaagg attatcgaag tggtggattt 660cggggcgtta ccaccggaga
tcaactccgc gaggatgtac gccggcccgg gttcggcctc 720gctggtggcc gccgcgaaga
tgtgggacag cgtggcgagt gacctgtttt cggccgcgtc 780ggcgtttcag tcggtggtct
ggggtctgac ggtggggtcg tggataggtt cgtcggcggg 840tctgatggcg gcggcggcct
cgccgtatgt ggcgtggatg agcgtcaccg cggggcaggc 900ccagctgacc gccgcccagg
tccgggttgc tgcggcggcc tacgagacag cgtataggct 960gacggtgccc ccgccggtga
tcgccgagaa ccgtaccgaa ctgatgacgc tgaccgcgac 1020caacctcttg gggcaaaaca
cgccggcgat cgaggccaat caggccgcat acagccagat 1080gtggggccaa gacgcggagg
cgatgtatgg ctacgccgcc acggcggcga cggcgaccga 1140ggcgttgctg ccgttcgagg
acgccccact gatcaccaac cccggcgggc tccttgagca 1200ggccgtcgcg gtcgaggagg
ccatcgacac cgccgcggcg aaccagttga tgaacaatgt 1260gccccaagcg ctgcaacagc
tggcccagcc agcgcagggc gtcgtacctt cttccaagct 1320gggtgggctg tggacggcgg
tctcgccgca tctgtcgccg ctcagcaacg tcagttcgat 1380agccaacaac cacatgtcga
tgatgggcac gggtgtgtcg atgaccaaca ccttgcactc 1440gatgttgaag ggcttagctc
cggcggcggc tcaggccgtg gaaaccgcgg cggaaaacgg 1500ggtctgggcg atgagctcgc
tgggcagcca gctgggttcg tcgctgggtt cttcgggtct 1560gggcgctggg gtggccgcca
acttgggtcg ggcggcctcg gtcggttcgt tgtcggtgcc 1620gccagcatgg gccgcggcca
accaggcggt caccccggcg gcgcgggcgc tgccgctgac 1680cagcctgacc agcgccgccc
aaaccgcccc cggacacatg ctggg 1725109359PRTMycobacterium
tuberculosis 109Val Val Asp Phe Gly Ala Leu Pro Pro Glu Ile Asn Ser Ala
Arg Met1 5 10 15Tyr Ala
Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala Lys Met Trp 20
25 30Asp Ser Val Ala Ser Asp Leu Phe Ser
Ala Ala Ser Ala Phe Gln Ser 35 40
45Val Val Trp Gly Leu Thr Thr Gly Ser Trp Ile Gly Ser Ser Ala Gly 50
55 60Leu Met Val Ala Ala Ala Ser Pro Tyr
Val Ala Trp Met Ser Val Thr65 70 75
80Ala Gly Gln Ala Glu Leu Thr Ala Ala Gln Val Arg Val Ala
Ala Ala 85 90 95Ala Tyr
Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro Pro Val Ile Ala 100
105 110Glu Asn Arg Ala Glu Leu Met Ile Leu
Ile Ala Thr Asn Leu Leu Gly 115 120
125Gln Asn Thr Pro Ala Ile Ala Val Asn Glu Ala Glu Tyr Gly Glu Met
130 135 140Trp Ala Gln Asp Ala Ala Ala
Met Phe Gly Tyr Ala Ala Thr Ala Ala145 150
155 160Thr Ala Thr Glu Ala Leu Leu Pro Phe Glu Asp Ala
Pro Leu Ile Thr 165 170
175Asn Pro Gly Gly Leu Leu Glu Gln Ala Val Ala Val Glu Glu Ala Ile
180 185 190Asp Thr Ala Ala Ala Asn
Gln Leu Met Asn Asn Val Pro Gln Ala Leu 195 200
205Gln Gln Leu Ala Gln Pro Ala Gln Gly Val Val Pro Ser Ser
Lys Leu 210 215 220Gly Gly Leu Trp Thr
Ala Val Ser Pro His Leu Ser Pro Leu Ser Asn225 230
235 240Val Ser Ser Ile Ala Asn Asn His Met Ser
Met Met Gly Thr Gly Val 245 250
255Ser Met Thr Asn Thr Leu His Ser Met Leu Lys Gly Leu Ala Pro Ala
260 265 270Ala Ala Gln Ala Val
Glu Thr Ala Ala Gln Asn Gly Val Trp Ala Met 275
280 285Ser Ser Leu Gly Ser Gln Leu Gly Ser Ser Leu Gly
Ser Ser Gly Leu 290 295 300Gly Ala Gly
Val Ala Ala Asn Leu Gly Arg Ala Ala Ser Val Gly Ser305
310 315 320Leu Ser Val Pro Pro Ala Trp
Ala Ala Ala Asn Gln Ala Val Thr Pro 325
330 335Ala Ala Arg Ala Leu Pro Leu Thr Ser Leu Thr Ser
Ala Ala Gln Thr 340 345 350Ala
Pro Gly His Met Leu Gly 3551103027DNAMycobacterium tuberculosis
110agttcagtcg agaatgatac tgacgggctg tatccacgat ggctgagaca accgaaccac
60cgtcggacgc ggggacatcg caagccgacg cgatggcgtt ggccgccgaa gccgaagccg
120ccgaagccga agcgctggcc gccgcggcgc gggcccgtgc ccgtgccgcc cggttgaagc
180gtgaggcgct ggcgatggcc ccagccgagg acgagaacgt ccccgaggat atgcagactg
240ggaagacgcc gaagactatg acgactatga cgactatgag gccgcagacc aggaggccgc
300acggtcggca tcctggcgac ggcggttgcg ggtgcggtta ccaagactgt ccacgattgc
360catggcggcc gcagtcgtca tcatctgcgg cttcaccggg ctcagcggat acattgtgtg
420gcaacaccat gaggccaccg aacgccagca gcgcgccgcg gcgttcgccg ccggagccaa
480gcaaggtgtc atcaacatga cctcgctgga cttcaacaag gccaaagaag acgtcgcgcg
540tgtgatcgac agctccaccg gcgaattcag ggatgacttc cagcagcggg cagccgattt
600caccaaggtt gtcgaacagt ccaaagtggt caccgaaggc acggtgaacg cgacagccgt
660cgaatccatg aacgagcatt ccgccgtggt gctcgtcgcg gcgacttcac gggtcaccaa
720ttccgctggg gcgaaagacg aaccacgtgc gtggcggctc aaagtgaccg tgaccgaaga
780ggggggacag tacaagatgt cgaaagttga gttcgtaccg tgaccgatga cgtacgcgac
840gtcaacaccg aaaccactga cgccaccgaa gtcgctgaga tcgactcagc cgcaggcgaa
900gccggtgatt cggcgaccga ggcatttgac accgactctg caacggaatc taccgcgcag
960aagggtcagc ggcaccgtga cctgtggcgc atgcaggtta ccttgaaacc cgttccggtg
1020attctcatcc tgctcatgtt gatctctggg ggcgcgacgg gatggctata ccttgagcaa
1080tacgacccga tcagcagacg gactccggcg ccgcccgtgc tgccgtcgcc gcggcgtctg
1140acgggacaat cgcgctgttg tgtattcacc cgacacgtcg accaagactt cgctaccgcc
1200aggtcgcacc tcgccggcga tttcctgtcc tatacgacca gttcacgcag cagatcgtgg
1260ctccggcggc caaacagaag tcactgaaaa ccaccgccaa ggtggtgcgc gcggccgtgt
1320cggagctaca tccggattcg gccgtcgttc tggtttttgt cgaccagagc actaccagta
1380aggacagccc caatccgtcg atggcggcca gcagcgtgat ggtgacccta gccaaggtcg
1440acggcaattg gctgatcacc aagttcaccc cggtttaggt tgccgtaggc ggtcgccaag
1500tctgacgggg gcgcgggtgg ctgctcgtgc gagataccgg ccgttctccg gacaatcacg
1560gcccgacctc aaacagatct cggccgctgt ctaatcggcc gggttattta agattagttg
1620ccactgtatt tacctgatgt tcagattgtt cagctggatt tagcttcgcg gcagggcggc
1680tggtgcactt tgcatctggg gttgtgacta cttgagagaa tttgacctgt tgccgacgtt
1740gtttgctgtc catcattggt gctagttatg gccgagcgga aggattatcg aagtggtgga
1800cttcggggcg ttaccaccgg agatcaactc cgcgaggatg tacgccggcc cgggttcggc
1860ctcgctggtg gccgccgcga agatgtggga cagcgtggcg agtgacctgt tttcggccgc
1920gtcggcgttt cagtcggtgg tctggggtct gacgacggga tcgtggatag gttcgtcggc
1980gggtctgatg gtggcggcgg cctcgccgta tgtggcgtgg atgagcgtca ccgcggggca
2040ggccgagctg accgccgccc aggtccgggt tgctgcggcg gcctacgaga cggcgtatgg
2100gctgacggtg cccccgccgg tgatcgccga gaaccgtgct gaactgatga ttctgatagc
2160gaccaacctc ttggggcaaa acaccccggc gatcgcggtc aacgaggccg aatacgggga
2220gatgtgggcc caagacgccg ccgcgatgtt tggctacgcc gccacggcgg cgacggcgac
2280cgaggcgttg ctgccgttcg aggacgcccc actgatcacc aaccccggcg ggctccttga
2340gcaggccgtc gcggtcgagg aggccatcga caccgccgcg gcgaaccagt tgatgaacaa
2400tgtgccccaa gcgctgcaac aactggccca gcccacgaaa agcatctggc cgttcgacca
2460actgagtgaa ctctggaaag ccatctcgcc gcatctgtcg ccgctcagca acatcgtgtc
2520gatgctcaac aaccacgtgt cgatgaccaa ctcgggtgtg tcgatggcca gcaccttgca
2580ctcaatgttg aagggctttg ctccggcggc ggctcaggcc gtggaaaccg cggcgcaaaa
2640cggggtccag gcgatgagct cgctgggcag ccagctgggt tcgtcgctgg gttcttcggg
2700tctgggcgct ggggtggccg ccaacttggg tcgggcggcc tcggtcggtt cgttgtcggt
2760gccgcaggcc tgggccgcgg ccaaccaggc ggtcaccccg gcggcgcggg cgctgccgct
2820gaccagcctg accagcgccg cccaaaccgc ccccggacac atgctgggcg ggctaccgct
2880ggggcaactg accaatagcg gcggcgggtt cggcggggtt agcaatgcgt tgcggatgcc
2940gccgcgggcg tacgtaatgc cccgtgtgcc cgccgccggg taacgccgat ccgcacgcaa
3000tgcgggccct ctatgcgggc agcgatc
3027111396PRTMycobacterium tuberculosis 111Val Val Asp Phe Gly Ala Leu
Pro Pro Glu Ile Asn Ser Ala Arg Met1 5 10
15Tyr Ala Gly Pro Gly Ser Ala Ser Leu Val Ala Ala Ala
Lys Met Trp 20 25 30Asp Ser
Val Ala Ser Asp Leu Phe Ser Ala Ala Ser Ala Phe Gln Ser 35
40 45Val Val Trp Gly Leu Thr Thr Gly Ser Trp
Ile Gly Ser Ser Ala Gly 50 55 60Leu
Met Val Ala Ala Ala Ser Pro Tyr Val Ala Trp Met Ser Val Thr65
70 75 80Ala Gly Gln Ala Glu Leu
Thr Ala Ala Gln Val Arg Val Ala Ala Ala 85
90 95Ala Tyr Glu Thr Ala Tyr Gly Leu Thr Val Pro Pro
Pro Val Ile Ala 100 105 110Glu
Asn Arg Ala Glu Leu Met Ile Leu Ile Ala Thr Asn Leu Leu Gly 115
120 125Gln Asn Thr Pro Ala Ile Ala Val Asn
Glu Ala Glu Tyr Gly Glu Met 130 135
140Trp Ala Gln Asp Ala Ala Ala Met Phe Gly Tyr Ala Ala Thr Ala Ala145
150 155 160Thr Ala Thr Glu
Ala Leu Leu Pro Phe Glu Asp Ala Pro Leu Ile Thr 165
170 175Asn Pro Gly Gly Leu Leu Glu Gln Ala Val
Ala Val Glu Glu Ala Ile 180 185
190Asp Thr Ala Ala Ala Asn Gln Leu Met Asn Asn Val Pro Gln Ala Leu
195 200 205Gln Gln Leu Ala Gln Pro Thr
Lys Ser Ile Trp Pro Phe Asp Gln Leu 210 215
220Ser Glu Leu Trp Lys Ala Ile Ser Pro His Leu Ser Pro Leu Ser
Asn225 230 235 240Ile Val
Ser Met Leu Asn Asn His Val Ser Met Thr Asn Ser Gly Val
245 250 255Ser Met Ala Ser Thr Leu His
Ser Met Leu Lys Gly Phe Ala Pro Ala 260 265
270Ala Ala Gln Ala Val Glu Thr Ala Ala Gln Asn Gly Val Gln
Ala Met 275 280 285Ser Ser Leu Gly
Ser Gln Leu Gly Ser Ser Leu Gly Ser Ser Gly Leu 290
295 300Gly Ala Gly Val Ala Ala Asn Leu Gly Arg Ala Ala
Ser Val Gly Ser305 310 315
320Leu Ser Val Pro Gln Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro
325 330 335Ala Ala Arg Ala Leu
Pro Leu Thr Ser Leu Thr Ser Ala Ala Gln Thr 340
345 350Ala Pro Gly His Met Leu Gly Gly Leu Pro Leu Gly
Gln Leu Thr Asn 355 360 365Ser Gly
Gly Gly Phe Gly Gly Val Ser Asn Ala Leu Arg Met Pro Pro 370
375 380Arg Ala Tyr Val Met Pro Arg Val Pro Ala Ala
Gly385 390 3951121616DNAMycobacterium
tuberculosis 112catcggaggg agtgatcacc atgctgtggc acgcaatgcc accggagtaa
ataccgcacg 60gctgatggcc ggcgcgggtc cggctccaat gcttgcggcg gccgcgggat
ggcagacgct 120ttcggcggct ctggacgctc aggccgtcga gttgaccgcg cgcctgaact
ctctgggaga 180agcctggact ggaggtggca gcgacaaggc gcttgcggct gcaacgccga
tggtggtctg 240gctacaaacc gcgtcaacac aggccaagac ccgtgcgatg caggcgacgg
cgcaagccgc 300ggcatacacc caggccatgg ccacgacgcc gtcgctgccg gagatcgccg
ccaaccacat 360cacccaggcc gtccttacgg ccaccaactt cttcggtatc aacacgatcc
cgatcgcgtt 420gaccgagatg gattatttca tccgtatgtg gaaccaggca gccctggcaa
tggaggtcta 480ccaggccgag accgcggtta acacgctttt cgagaagctc gagccgatgg
cgtcgatcct 540tgatcccggc gcgagccaga gcacgacgaa cccgatcttc ggaatgccct
cccctggcag 600ctcaacaccg gttggccagt tgccgccggc ggctacccag accctcggcc
aactgggtga 660gatgagcbgc ccgatgcagc agctgaccca gccgctgcag caggtgacgt
cgttgttcag 720ccaggtgggc ggcaccggcg gcggcaaccc agccgacgag gaagccgcgc
agatgggcct 780gctcggcacc agtccgctgt cgaaccatcc gctggctggt ggatcaggcc
ccagcgcggg 840cgcgggcctg ctgcgcgcgg agtcgctacc tggcgcaggt gggtcgttga
cccgcacgcc 900gctgatgtct cagctgatcg aaaagccggt tgccccctcg gtgatgccgg
cggctgctgc 960cggatcgtcg gcgacgggtg gcgccgctcc ggtgggtgcg ggagcgatgg
gccagggtgc 1020gcaatccggc ggctccacca ggccgggtct ggtcgcgccg gcaccgctcg
cgcaggagcg 1080tgaagaagac gacgaggacg actgggacga agaggacgac tggtgagctc
ccgtaatgac 1140aacagacttc ccggccaccc gggccggaag acttgccaac attttggcga
ggaaggtaaa 1200gagagaaagt agtccagcat ggcagagatg aagaccgatg ccgctaccct
cgcgcaggag 1260gcaggtaatt tcgagcggat ctccggcgac ctgaaaaccc agatcgacca
ggtggagtcg 1320acggcaggtt cgttgcaggg ccagtggcgc ggcgcggcgg ggacggccgc
ccaggccgcg 1380gtggtgcgct tccaagaagc agccaataag cagaagcagg aactcgacga
gatctcgacg 1440aatattcgtc aggccggcgt ccaatactcg agggccgacg aggagcagca
gcaggcgctg 1500tcctcgcaaa tgggcttctg acccgctaat acgaaaagaa acggagcaaa
aacatgacag 1560agcagcagtg gaatttcgcg ggtatcgagg ccgcggcaag cgcaatccag
ggaaat 1616113432DNAMycobacterium tuberculosis 113ctagtggatg
ggaccatggc cattttctgc agtctcactg ccttctgtgt tgacattttg 60gcacgccggc
ggaaacgaag cactggggtc gaagaacggc tgcgctgcca tatcgtccgg 120agcttccata
ccttcgtgcg gccggaagag cttgtcgtag tcggccgcca tgacaacctc 180tcagagtgcg
ctcaaacgta taaacacgag aaagggcgag accgacggaa ggtcgaactc 240gcccgatccc
gtgtttcgct attctacgcg aactcggcgt tgccctatgc gaacatccca 300gtgacgttgc
cttcggtcga agccattgcc tgaccggctt cgctgatcgt ccgcgccagg 360ttctgcagcg
cgttgttcag ctcggtagcc gtggcgtccc atttttgctg gacaccctgg 420tacgcctccg
aa
432114368PRTMycobacterium tuberculosisMISC_FEATURE(1)..(368)ANY AMINO
ACID 114Met Leu Trp His Ala Met Pro Pro Glu Xaa Asn Thr Ala Arg Leu Met1
5 10 15Ala Gly Ala Gly
Pro Ala Pro Met Leu Ala Ala Ala Ala Gly Trp Gln 20
25 30Thr Leu Ser Ala Ala Leu Asp Ala Gln Ala Val
Glu Leu Thr Ala Arg 35 40 45Leu
Asn Ser Leu Gly Glu Ala Trp Thr Gly Gly Gly Ser Asp Lys Ala 50
55 60Leu Ala Ala Ala Thr Pro Met Val Val Trp
Leu Gln Thr Ala Ser Thr65 70 75
80Gln Ala Lys Thr Arg Ala Met Gln Ala Thr Ala Gln Ala Ala Ala
Tyr 85 90 95Thr Gln Ala
Met Ala Thr Thr Pro Ser Leu Pro Glu Ile Ala Ala Asn 100
105 110His Ile Thr Gln Ala Val Leu Thr Ala Thr
Asn Phe Phe Gly Ile Asn 115 120
125Thr Ile Pro Ile Ala Leu Thr Glu Met Asp Tyr Phe Ile Arg Met Trp 130
135 140Asn Gln Ala Ala Leu Ala Met Glu
Val Tyr Gln Ala Glu Thr Ala Val145 150
155 160Asn Thr Leu Phe Glu Lys Leu Glu Pro Met Ala Ser
Ile Leu Asp Pro 165 170
175Gly Ala Ser Gln Ser Thr Thr Asn Pro Ile Phe Gly Met Pro Ser Pro
180 185 190Gly Ser Ser Thr Pro Val
Gly Gln Leu Pro Pro Ala Ala Thr Gln Thr 195 200
205Leu Gly Gln Leu Gly Glu Met Ser Gly Pro Met Gln Gln Leu
Thr Gln 210 215 220Pro Leu Gln Gln Val
Thr Ser Leu Phe Ser Gln Val Gly Gly Thr Gly225 230
235 240Gly Gly Asn Pro Ala Asp Glu Glu Ala Ala
Gln Met Gly Leu Leu Gly 245 250
255Thr Ser Pro Leu Ser Asn His Pro Leu Ala Gly Gly Ser Gly Pro Ser
260 265 270Ala Gly Ala Gly Leu
Leu Arg Ala Glu Ser Leu Pro Gly Ala Gly Gly 275
280 285Ser Leu Thr Arg Thr Pro Leu Met Ser Gln Leu Ile
Glu Lys Pro Val 290 295 300Ala Pro Ser
Val Met Pro Ala Ala Ala Ala Gly Ser Ser Ala Thr Gly305
310 315 320Gly Ala Ala Pro Val Gly Ala
Gly Ala Met Gly Gln Gly Ala Gln Ser 325
330 335Gly Gly Ser Thr Arg Pro Gly Leu Val Ala Pro Ala
Pro Leu Ala Gln 340 345 350Glu
Arg Glu Glu Asp Asp Glu Asp Asp Trp Asp Glu Glu Asp Asp Trp 355
360 365115100PRTMycobacterium tuberculosis
115Met Ala Glu Met Lys Thr Asp Ala Ala Thr Leu Ala Gln Glu Ala Gly1
5 10 15Asn Phe Glu Arg Ile Ser
Gly Asp Leu Lys Thr Gln Ile Asp Gln Val 20 25
30Glu Ser Thr Ala Gly Ser Leu Gln Gly Gln Trp Arg Gly
Ala Ala Gly 35 40 45Thr Ala Ala
Gln Ala Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys 50
55 60Gln Lys Gln Glu Leu Asp Glu Ile Ser Thr Asn Ile
Arg Gln Ala Gly65 70 75
80Val Gln Tyr Ser Arg Ala Asp Glu Glu Gln Gln Gln Ala Leu Ser Ser
85 90 95Gln Met Gly Phe
100116396DNAMycobacterium tuberculosis 116gatctccggc gacctgaaaa
cccagatcga ccaggtggag tcgacggcag gttcgttgca 60gggccagtgg cgcggcgcgg
cggggacggc cgcccaggcc gcggtggtgc gcttccaaga 120agcagccaat aagcagaagc
aggaactcga cgagatctcg acgaatattc gtcaggccgg 180cgtccaatac tcgagggccg
acgaggagca gcagcaggcg ctgtcctcgc aaatgggctt 240ctgacccgct aatacgaaaa
gaaacggagc aaaaacatga cagagcagca gtggaatttc 300gcgggtatcg aggccgcggc
aagcgcaatc cagggaaatg tcacgtccat tcattccctc 360cttgacgagg ggaagcagtc
cctgaccaag ctcgca 39611780PRTMycobacterium
tuberculosis 117Ile Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser
Thr Ala1 5 10 15Gly Ser
Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln 20
25 30Ala Ala Val Val Arg Phe Gln Glu Ala
Ala Asn Lys Gln Lys Gln Glu 35 40
45Leu Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser 50
55 60Arg Ala Asp Glu Glu Gln Gln Gln Ala
Leu Ser Ser Gln Met Gly Phe65 70 75
80118387DNAMycobacterium tuberculosis 118gtggatcccg
atcccgtgtt tcgctattct acgcgaactc ggcgttgccc tatgcgaaca 60tcccagtgac
gttgccttcg gtcgaagcca ttgcctgacc ggcttcgctg atcgtccgcg 120ccaggttctg
cagcgcgttg ttcagctcgg tagccgtggc gtcccatttt tgctggacac 180cctggtacgc
ctccgaaccg ctaccgcccc aggccgctgc gagcttggtc agggactgct 240tcccctcgtc
aaggagggaa tgaatggacg tgacatttcc ctggattgcg cttgccgcgg 300cctcgatacc
cgcgaaattc cactgctgct ctgtcatgtt tttgctccgt ttcttttcgt 360attagcgggt
cagaagccca tttgcga
387119272DNAMycobacterium tuberculosis 119cggcacgagg atctcggttg
gcccaacggc gctggcgagg gctccgttcc gggggcgagc 60tgcgcgccgg atgcttcctc
tgcccgcagc cgcgcctgga tggatggacc agttgctacc 120ttcccgacgt ttcgttcggt
gtctgtgcga tagcggtgac cccggcgcgc acgtcgggag 180tgttgggggg caggccgggt
cggtggttcg gccggggacg cagacggtct ggacggaacg 240ggcgggggtt cgccgattgg
catctttgcc ca 27212020PRTMycobacterium
tuberculosis 120Asp Pro Val Asp Ala Val Ile Asn Thr Thr Cys Asn Tyr Gly
Gln Val1 5 10 15Val Ala
Ala Leu 2012115PRTMycobacterium tuberculosis 121Ala Val Glu
Ser Gly Met Leu Ala Leu Gly Thr Pro Ala Pro Ser1 5
10 1512219PRTMycobacterium tuberculosis 122Ala
Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala Ala Lys1
5 10 15Glu Gly
Arg12315PRTMycobacterium tuberculosis 123Tyr Tyr Trp Cys Pro Gly Gln Pro
Phe Asp Pro Ala Trp Gly Pro1 5 10
1512414PRTMycobacterium tuberculosisMISC_FEATURE(1)..(14)ANY
AMINO ACID 124Asp Ile Gly Ser Glu Ser Thr Glu Asp Gln Gln Xaa Ala Val1
5 1012513PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(13)ANY AMINO ACID 125Ala Glu Glu Ser Ile
Ser Thr Xaa Glu Xaa Ile Val Pro1 5
1012617PRTMycobacterium tuberculosis 126Asp Pro Glu Pro Ala Pro Pro Val
Pro Thr Thr Ala Ala Ser Pro Pro1 5 10
15Ser12715PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(15)ANY AMINO ACID 127Ala Pro Lys Thr Tyr
Xaa Glu Glu Leu Lys Gly Thr Asp Thr Gly1 5
10 1512830PRTMycobacterium tuberculosis 128Asp Pro Ala
Ser Ala Pro Asp Val Pro Thr Ala Ala Gln Leu Thr Ser1 5
10 15Leu Leu Asn Ser Leu Ala Asp Pro Asn
Val Ser Phe Ala Asn 20 25
3012922PRTMycobacterium tuberculosisMISC_FEATURE(1)..(22)ANY AMINO ACID
129Asp Pro Pro Asp Pro His Gln Xaa Asp Met Thr Lys Gly Tyr Tyr Pro1
5 10 15Gly Gly Arg Arg Xaa Phe
201307PRTMycobacterium tuberculosis 130Asp Pro Gly Tyr Thr Pro
Gly1 513110PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(1)ANY AMINO ACID 131Xaa Xaa Gly Phe Thr Gly
Pro Gln Phe Tyr1 5 101329PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(1)ANY AMINO ACID 132Xaa Pro Xaa Val Thr Ala
Tyr Ala Gly1 51339PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(9)ANY AMINO ACID 133Xaa Xaa Xaa Glu Lys Pro
Phe Leu Arg1 513415PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(15)ANY AMINO ACID 134Xaa Asp Ser Glu Lys
Ser Ala Thr Ile Lys Val Thr Asp Ala Ser1 5
10 1513515PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(15)ANY AMINO ACID 135Ala Gly Asp Thr Xaa
Ile Tyr Ile Val Gly Asn Leu Thr Ala Asp1 5
10 1513615PRTMycobacterium tuberculosis 136Ala Pro Glu
Ser Gly Ala Gly Leu Gly Gly Thr Val Gln Ala Gly1 5
10 1513721PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(21)ANY AMINO ACID 137Xaa Tyr Ile Ala Tyr
Xaa Thr Thr Ala Gly Ile Val Pro Gly Lys Ile1 5
10 15Asn Val His Leu Val
20138882DNAMycobacterium tuberculosis 138gcaacgctgt cgtggccttt gcggtgatcg
gtttcgcctc gctggcggtg gcggtggcgg 60tcaccatccg accgaccgcg gcctcaaaac
cggtagaggg acaccaaaac gcccagccag 120ggaagttcat gccgttgttg ccgacgcaac
agcaggcgcc ggtcccgccg cctccgcccg 180atgatcccac cgctggattc cagggcggca
ccattccggc tgtacagaac gtggtgccgc 240ggccgggtac ctcacccggg gtgggtggga
cgccggcttc gcctgcgccg gaagcgccgg 300ccgtgcccgg tgttgtgcct gccccggtgc
caatcccggt cccgatcatc attcccccgt 360tcccgggttg gcagcctgga atgccgacca
tccccaccgc accgccgacg acgccggtga 420ccacgtcggc gacgacgtcg ccgaccacgc
cgccgaccac gccggtgacc acgccgccaa 480cgacgccgcc gaccacgccg gtgaccacgc
cgccaacgac gccgccgacc acgccggtga 540ccacgccacc aacgaccgtc gccccgacga
ccgtcgcccc gacgacggtc gctccgacca 600ccgtcgcccc gaccacggtc gctccagcca
ccgccacgcc gacgaccgtc gctccgcagc 660cgacgcagca gcccacgcaa caaccaaccc
aacagatgcc aacccagcag cagaccgtgg 720ccccgcagac ggtggcgccg gctccgcagc
cgccgtccgg tggcgcaacg gcagcggcgg 780ggggcgactt attcggcggg ttctgatcac
ggtcgcggct tcactacggt cggaggacat 840ggccggtgat gcggtgacgg tggtgctgcc
ctgtctcaac ga 882139815DNAMycobacterium
tuberculosismisc_feature(1)..(815)ANY NUCLEOTIDE 139ccatcaacca accgctcgcg
ccgcccgcgc cgccggatcc gccgtcgccg ccacgcccgc 60cggtgcctcc ggtgcccccg
ttgccgccgt cgccgccgtc gccgccgacc ggctgggtgc 120ctagggcgct gttaccgccc
tggttggcgg ggacgccgcc ggcaccaccg gtaccgccga 180tggcgccgtt gccgccggcg
gcaccgttgc caccgttgcc accgttgcca ccgttgccga 240ccagccaccc gccgcgacca
ccggcaccgc cggcgccgcc cgcaccgccg gcgtgcccgt 300tcgtgcccgt accgccggca
ccgccgttgc cgccgtcacc gccgacggaa ctaccggcgg 360acgcggcctg cccgccggcg
ccgcccgcac cgccattggc accgccgtca ccgccggctg 420ggagtgccgc gattagggca
ctgaccggcg caaccagcgc aagtactctc ggtcaccgag 480cacttccaga cgacaccaca
gcacggggtt gtcggcggac tgggtgaaat ggcagccgat 540agcggctagc tgtcggctgc
ggtcaacctc gatcatgatg tcgaggtgac cgtgaccgcg 600ccccccgaag gaggcgctga
actcggcgtt gagccgatcg gcgatcggtt ggggcagtgc 660ccaggccaat acggggatac
cgggtgtcna agccgccgcg agcgcagctt cggttgcgcg 720acngtggtcg gggtggcctg
ttacgccgtt gtcntcgaac acgagtagca ggtctgctcc 780ggcgagggca tccaccacgc
gttgcgtcag ctcgt 8151401152DNAMycobacterium
tuberculosis 140accagccgcc ggctgaggtc tcagatcaga gagtctccgg actcaccggg
gcggttcagc 60cttctcccag aacaactgct gaagatcctc gcccgcgaaa caggcgctga
tttgacgctc 120tatgaccggt tgaacgacga gatcatccgg cagattgata tggcaccgct
gggctaacag 180gtgcgcaaga tggtgcagct gtatgtctcg gactccgtgt cgcggatcag
ctttgccgac 240ggccgggtga tcgtgtggag cgaggagctc ggcgagagtc agtatccgat
cgagacgctg 300gacggcatca cgctgtttgg gcggccgacg atgacaacgc ccttcatcgt
tgagatgctc 360aagcgtgagc gcgacatcca gctcttcacg accgacggcc actaccaggg
ccggatctca 420acacccgacg tgtcatacgc gccgcggctc cgtcagcaag ttcaccgcac
cgacgatcct 480gcgttctgcc tgtcgttaag caagcggatc gtgtcgagga agatcctgaa
tcagcaggcc 540ttgattcggg cacacacgtc ggggcaagac gttgctgaga gcatccgcac
gatgaagcac 600tcgctggcct gggtcgatcg atcgggctcc ctggcggagt tgaacgggtt
cgagggaaat 660gccgcaaagg catacttcac cgcgctgggg catctcgtcc cgcaggagtt
cgcattccag 720ggccgctcga ctcggccgcc gttggacgcc ttcaactcga tggtcagcct
cggctattcg 780ctgctgtaca agaacatcat aggggcgatc gagcgtcaca gcctgaacgc
gtatatcggt 840ttcctacacc aggattcacg agggcacgca acgtctcgtg ccgaattcgg
cacgagctcc 900gctgaaaccg ctggccggct gctcagtgcc cgtacgtaat ccgctgcgcc
caggccggcc 960cgccggccga ataccagcag atcggacagc gaattgccgc ccagccggtt
ggagccgtgc 1020ataccgccgg cacactcacc ggcagcgaac aggcctggca ccgtggcggc
gccggtgtcc 1080gcgtctactt cgacaccgcc catcacgtag tgacacgtcg gcccgacttc
cattgcctgc 1140gttcggcacg ag
1152141655DNAMycobacterium
tuberculosismisc_feature(1)..(655)ANY NUCLEOTIDE 141ctcgtgccga ttcggcaggg
tgtacttgcc ggtggtgtan gccgcatgag tgccgacgac 60cagcaatgcg gcaacagcac
ggatcccggt caacgacgcc acccggtcca cgtgggcgat 120ccgctcgagt ccgccctggg
cggctctttc cttgggcagg gtcatccgac gtgtttccgc 180cgtggtttgc cgccattatg
ccggcgcgcc gcgtcgggcg gccggtatgg ccgaangtcg 240atcagcacac ccgagatacg
ggtctgtgca agctttttga gcgtcgcgcg gggcagcttc 300gccggcaatt ctactagcga
gaagtctggc ccgatacgga tctgaccgaa gtcgctgcgg 360tgcagcccac cctcattggc
gatggcgccg acgatggcgc ctggaccgat cttgtgccgc 420ttgccgacgg cgacgcggta
ggtggtcaag tccggtctac gcttgggcct ttgcggacgg 480tcccgacgct ggtcgcggtt
gcgccgcgaa agcggcgggt cgggtgccat caggaatgcc 540tcaccgccgc ggcactgcac
ggccagtgcc gcggcgatgt cagccatcgg gacatcatgc 600tcgcgttcat actcctcgac
cagtcggcgg aacagctcga ttcccggacc gccca 655142267PRTMycobacterium
tuberculosis 142Asn Ala Val Val Ala Phe Ala Val Ile Gly Phe Ala Ser Leu
Ala Val1 5 10 15Ala Val
Ala Val Thr Ile Arg Pro Thr Ala Ala Ser Lys Pro Val Glu 20
25 30Gly His Gln Asn Ala Gln Pro Gly Lys
Phe Met Pro Leu Leu Pro Thr 35 40
45Gln Gln Gln Ala Pro Val Pro Pro Pro Pro Pro Asp Asp Pro Thr Ala 50
55 60Gly Phe Gln Gly Gly Thr Ile Pro Ala
Val Gln Asn Val Val Pro Arg65 70 75
80Pro Gly Thr Ser Pro Gly Val Gly Gly Thr Pro Ala Ser Pro
Ala Pro 85 90 95Glu Ala
Pro Ala Val Pro Gly Val Val Pro Ala Pro Val Pro Ile Pro 100
105 110Val Pro Ile Ile Ile Pro Pro Phe Pro
Gly Trp Gln Pro Gly Met Pro 115 120
125Thr Ile Pro Thr Ala Pro Pro Thr Thr Pro Val Thr Thr Ser Ala Thr
130 135 140Thr Pro Pro Thr Thr Pro Pro
Thr Thr Pro Val Thr Thr Pro Pro Thr145 150
155 160Thr Pro Pro Thr Thr Pro Val Thr Thr Pro Pro Thr
Thr Pro Pro Thr 165 170
175Thr Pro Val Thr Thr Pro Pro Thr Thr Val Ala Pro Thr Thr Val Ala
180 185 190Pro Thr Thr Val Ala Pro
Thr Thr Val Ala Pro Thr Thr Val Ala Pro 195 200
205Ala Thr Ala Thr Pro Thr Thr Val Ala Pro Gln Pro Thr Gln
Gln Pro 210 215 220Thr Gln Gln Pro Thr
Gln Gln Met Pro Thr Gln Gln Gln Thr Val Ala225 230
235 240Pro Gln Thr Val Ala Pro Ala Pro Gln Pro
Pro Ser Gly Gly Arg Asn 245 250
255Gly Ser Gly Gly Gly Asp Leu Phe Gly Gly Phe 260
265143174PRTMycobacterium tuberculosis 143Ile Asn Gln Pro Leu
Ala Pro Pro Ala Pro Pro Asp Pro Pro Ser Pro1 5
10 15Pro Arg Pro Pro Val Pro Pro Val Pro Pro Leu
Pro Pro Ser Pro Pro 20 25
30Ser Pro Pro Thr Gly Trp Val Pro Arg Ala Leu Leu Pro Pro Trp Leu
35 40 45Ala Gly Thr Pro Pro Ala Pro Pro
Val Pro Pro Met Ala Pro Leu Pro 50 55
60Pro Ala Ala Pro Leu Pro Pro Leu Pro Pro Leu Pro Pro Leu Pro Thr65
70 75 80Ser His Pro Pro Arg
Pro Pro Ala Pro Pro Ala Pro Pro Ala Pro Pro 85
90 95Ala Cys Pro Phe Val Pro Val Pro Pro Ala Pro
Pro Leu Pro Pro Ser 100 105
110Pro Pro Thr Glu Leu Pro Ala Asp Ala Ala Cys Pro Pro Ala Pro Pro
115 120 125Ala Pro Pro Leu Ala Pro Pro
Ser Pro Pro Ala Gly Ser Ala Ala Ile 130 135
140Arg Ala Leu Thr Gly Ala Thr Ser Ala Ser Thr Leu Gly His Arg
Ala145 150 155 160Leu Pro
Asp Asp Thr Thr Ala Arg Gly Cys Arg Arg Thr Gly 165
17014435PRTMycobacterium tuberculosis 144Gln Pro Pro Ala Glu Val
Ser Asp Gln Arg Val Ser Gly Leu Thr Gly1 5
10 15Ala Val Gln Pro Ser Pro Arg Thr Thr Ala Glu Asp
Pro Arg Pro Arg 20 25 30Asn
Arg Arg 35145104PRTMycobacterium
tuberculosisMISC_FEATURE(1)..(104)ANY AMINO ACID 145Arg Ala Asp Ser Ala
Gly Cys Thr Cys Arg Trp Cys Xaa Pro His Glu1 5
10 15Cys Arg Arg Pro Ala Met Arg Gln Gln His Gly
Ser Arg Ser Thr Thr 20 25
30Pro Pro Gly Pro Arg Gly Arg Ser Ala Arg Val Arg Pro Gly Arg Leu
35 40 45Phe Pro Trp Ala Gly Ser Ser Asp
Val Phe Pro Pro Trp Phe Ala Ala 50 55
60Ile Met Pro Ala Arg Arg Val Gly Arg Pro Val Trp Pro Xaa Val Asp65
70 75 80Gln His Thr Arg Asp
Thr Gly Leu Cys Lys Leu Phe Glu Arg Arg Ala 85
90 95Gly Gln Leu Arg Arg Gln Phe Tyr
10014653DNAMycobacterium tuberculosis 146ggatccatat gggccatcat catcatcatc
acgtgatcga catcatcggg acc 5314742DNAMycobacterium tuberculosis
147cctgaattca ggcctcggtt gcgccggcct catcttgaac ga
4214831DNAMycobacterium tuberculosis 148ggatcctgca ggctcgaaac caccgagcgg
t 3114931DNAMycobacterium tuberculosis
149ctctgaattc agcgctggaa atcgtcgcga t
3115033DNAMycobacterium tuberculosis 150ggatccagcg ctgagatgaa gaccgatgcc
gct 3315133DNAMycobacterium tuberculosis
151gagagaattc tcagaagccc atttgcgagg aca
331521992DNAMycobacterium tuberculosis 152tgttcttcga cggcaggctg
gtggaggaag ggcccaccga acagctgttc tcctcgccga 60agcatgcgga aaccgcccga
tacgtcgccg gactgtcggg ggacgtcaag gacgccaagc 120gcggaaattg aagagcacag
aaaggtatgg cgtgaaaatt cgtttgcata cgctgttggc 180cgtgttgacc gctgcgccgc
tgctgctagc agcggcgggc tgtggctcga aaccaccgag 240cggttcgcct gaaacgggcg
ccggcgccgg tactgtcgcg actacccccg cgtcgtcgcc 300ggtgacgttg gcggagaccg
gtagcacgct gctctacccg ctgttcaacc tgtggggtcc 360ggcctttcac gagaggtatc
cgaacgtcac gatcaccgct cagggcaccg gttctggtgc 420cgggatcgcg caggccgccg
ccgggacggt caacattggg gcctccgacg cctatctgtc 480ggaaggtgat atggccgcgc
acaaggggct gatgaacatc gcgctagcca tctccgctca 540gcaggtcaac tacaacctgc
ccggagtgag cgagcacctc aagctgaacg gaaaagtcct 600ggcggccatg taccagggca
ccatcaaaac ctgggacgac ccgcagatcg ctgcgctcaa 660ccccggcgtg aacctgcccg
gcaccgcggt agttccgctg caccgctccg acgggtccgg 720tgacaccttc ttgttcaccc
agtacctgtc caagcaagat cccgagggct ggggcaagtc 780gcccggcttc ggcaccaccg
tcgacttccc ggcggtgccg ggtgcgctgg gtgagaacgg 840caacggcggc atggtgaccg
gttgcgccga gacaccgggc tgcgtggcct atatcggcat 900cagcttcctc gaccaggcca
gtcaacgggg actcggcgag gcccaactag gcaatagctc 960tggcaatttc ttgttgcccg
acgcgcaaag cattcaggcc gcggcggctg gcttcgcatc 1020gaaaaccccg gcgaaccagg
cgatttcgat gatcgacggg cccgccccgg acggctaccc 1080gatcatcaac tacgagtacg
ccatcgtcaa caaccggcaa aaggacgccg ccaccgcgca 1140gaccttgcag gcatttctgc
actgggcgat caccgacggc aacaaggcct cgttcctcga 1200ccaggtcatt tccagccgct
gccgcccgcg gtggtgaagt tgtctgacgc gttgatcgcg 1260acgatttcca gctagcctcg
ttgaccacca cgcgacagca acctccgtcg ggccatcggg 1320ctgctttgcg gagcatgctg
gcccgtgccg gtgaagtcgg ccgcgctggc ccggccatcc 1380ggtggttggg tgggataggt
gcggtgatcc cgctgcttgc gctggtcttg gtgctggtgg 1440tgctggtcat cgaggcgatg
ggtgcgatca ggctcaacgg gttgcatttc ttcaccgcca 1500ccgaatggaa tccaggcaac
acctacggcg aaaccgttgt caccgacgcg tcgcccatcc 1560ggtcggcgcc tactacgggg
cgttgccgct gatcgtcggg acgctggcga cctcggcaat 1620cgccctgatc atcgcggtgc
cggtctctgt aggagcggcg ctggtgatcg tggaacggct 1680gccgaaacgg ttggccgagg
ctgtgggaat agtcctggaa ttgctcgccg gaatccccag 1740cgtggtcgtc ggtttgtggg
gggcaatgac gttcgggccg ttcatcgctc atcacatcgc 1800tccggtgatc gctcacaacg
ctcccgatgt gccggtgctg aactacttgc gcggcgaccc 1860gggcaacggg gagggcatgt
tggtgtccgg tctggtgttg gcggtgatgg tcgttcccat 1920tatcgccacc accactcatg
acctgttccg gcaggtgccg gtgttgcccc gggagggcgc 1980gatcgggaat tc
1992153374PRTMycobacterium
tuberculosis 153Val Lys Ile Arg Leu His Thr Leu Leu Ala Val Leu Thr Ala
Ala Pro1 5 10 15Leu Leu
Leu Ala Ala Ala Gly Cys Gly Ser Lys Pro Pro Ser Gly Ser 20
25 30Pro Glu Thr Gly Ala Gly Ala Gly Thr
Val Ala Thr Thr Pro Ala Ser 35 40
45Ser Pro Val Thr Leu Ala Glu Thr Gly Ser Thr Leu Leu Tyr Pro Leu 50
55 60Phe Asn Leu Trp Gly Pro Ala Phe His
Glu Arg Tyr Pro Asn Val Thr65 70 75
80Ile Thr Ala Gln Gly Thr Gly Ser Gly Ala Gly Ile Ala Gln
Ala Ala 85 90 95Ala Gly
Thr Val Asn Ile Gly Ala Ser Asp Ala Tyr Leu Ser Glu Gly 100
105 110Asp Met Ala Ala His Lys Gly Leu Met
Asn Ile Ala Leu Ala Ile Ser 115 120
125Ala Gln Gln Val Asn Tyr Asn Leu Pro Gly Val Ser Glu His Leu Lys
130 135 140Leu Ala Gly Lys Val Leu Ala
Ala Met Tyr Gln Gly Thr Ile Leu Thr145 150
155 160Trp Asp Asp Pro Gln Ile Ala Ala Leu Asn Pro Gly
Val Asn Leu Pro 165 170
175Gly Thr Ala Val Val Pro Leu His Arg Ser Asp Gly Ser Gly Asp Thr
180 185 190Phe Leu Phe Thr Gln Tyr
Leu Ser Lys Gln Asp Pro Glu Gly Trp Gly 195 200
205Lys Ser Pro Gly Phe Gly Thr Thr Val Asp Phe Pro Ala Val
Pro Gly 210 215 220Ala Leu Gly Glu Asn
Gly Asn Gly Gly Met Val Thr Gly Cys Ala Glu225 230
235 240Thr Pro Gly Cys Val Ala Tyr Ile Gly Ile
Ser Phe Leu Asp Gln Ala 245 250
255Ser Gln Arg Gly Leu Gly Glu Ala Gln Leu Gly Asn Ser Ser Gly Asn
260 265 270Phe Leu Leu Pro Asp
Ala Gln Ser Ile Gln Ala Ala Ala Ala Gly Phe 275
280 285Ala Ser Lys Thr Pro Ala Asn Gln Ala Ile Ser Met
Ile Asp Gly Pro 290 295 300Ala Pro Ala
Gly Tyr Pro Ile Ile Asn Tyr Glu Tyr Ala Ile Val Asn305
310 315 320Asn Arg Gln Lys Asp Ala Ala
Thr Ala Gln Thr Leu Gln Ala Phe Leu 325
330 335His Trp Ala Ile Thr Asp Gly Asn Lys Ala Ser Phe
Leu Asp Gln Val 340 345 350His
Phe Gln Pro Leu Pro Pro Ala Val Val Lys Leu Ser Asp Ala Leu 355
360 365Ile Ala Thr Ile Ser Ser 370
User Contributions:
Comment about this patent or add new information about this topic: