Patent application title: COMPOSITIONS AND METHODS FOR THE MODIFICATION OF GENE EXPRESSION
Inventors:
Ranjan Perera (Carlsbad, CA, US)
Stephen Rice (Auckland, NZ)
Clare Eagleton (Auckland, NZ)
Clare Eagleton (Auckland, NZ)
Marion Wood (Auckland, NZ)
Elizabeth Visser (Auckland, NZ)
Assignees:
RUBICON FORESTS HOLDINGS LIMITED
ARBORGEN, LLC
IPC8 Class: AA01H100FI
USPC Class:
800278
Class name: Multicellular living organisms and unmodified parts thereof and related processes method of introducing a polynucleotide molecule into or rearrangement of genetic material within a plant or plant part
Publication date: 2011-11-24
Patent application number: 20110289623
Abstract:
Novel isolated plant polynucleotide promoter sequences are provided,
together with genetic constructs comprising such polynucleotides. Methods
for using such constructs in modulating the transcription of DNA
sequences of interest are also disclosed, together with transgenic plants
comprising such constructs.Claims:
1. An isolated polynucleotide comprising a sequence selected from the
group consisting of: (a) sequences recited in SEQ ID NOs: 105, 106 and
116; (b) complements of the sequence recited in SEQ ID NOs: 105, 106 and
116; (c) reverse complements of the sequence recited in SEQ ID NOs: 105,
106 and 116; (d) reverse sequences of the sequences recited in SEQ ID
NOs: 105, 106 and 116; (e) sequences having at least 40% identical
nucleotides to a sequence provided in SEQ ID NOs: 105, 106 and 116; (f)
sequences having at least 60% identical nucleotides to a sequence
provided in SEQ ID NOs: 105, 106 and 116; (g) sequences having at least
75% identical nucleotides to a sequence provided in SEQ ID NOs: 105, 106
and 116; (h) sequences having at least 90% identical nucleotides to a
sequence provided in SEQ ID NOs: 105, 106 and 116; and, (i) sequences
having an E value of 0.01 when aligned with a sequence provided in SEQ ID
NOs: 105, 106 and 116.
2. A genetic construct comprising a polynucleotide of claim 1.
3. A genetic construct comprising, in the 5'-3' direction: (a) a promoter sequence, (b) a DNA sequence of interest; and (c) a gene termination sequence, wherein the promoter sequence comprises an isolated polynucleotide of 1.
4. The genetic construct of claim 3, wherein the DNA sequence of interest comprises an open reading frame encoding a polypeptide of interest.
5. A transgenic cell comprising a genetic construct of claim 3.
6. An organism comprising a transgenic cell of claim 5.
7. A plant comprising a transgenic cell of claim 5, or a part or propagule or progeny thereof.
8. A method for modifying gene expression in a target organism comprising stably incorporating into the genome of the organism a genetic construct according to any claim 3.
9. The method of claim 8 wherein the organism is a plant.
10. A method for producing a plant having modified gene expression comprising: (a) transforming a plant cell with a genetic construct to provide a transgenic cell, wherein the genetic construct comprises: (i) a promoter sequence comprising a sequence of claim 1; (ii) a DNA sequence of interest; and (c) a gene termination sequence; and (b) cultivating the transgenic cell under condition conducive to regeneration and mature plant growth.
11. A method for modifying a phenotype of a target organism, comprising stably incorporating into the genome of the target organism a genetic construct comprising: (a) a promoter sequence of claim 1; (b) a DNA sequence of interest; and (c) a gene termination sequence.
12. The method of claim 11, wherein the target organism is a plant.
13-14. (canceled)
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation of U.S. patent application Ser. No. 10/137,036, filed Apr. 30, 2002, the entire contents of which are incorporated herein by reference, which is a continuation-in-part of U.S. patent application Ser. No. 09/724,624, filed Nov. 28, 2000, which is a continuation-in-part of U.S. patent application Ser. No. 09/598,401, filed Jun. 20, 2000, which is a continuation-in-part of U.S. patent application Ser. No. 09/276,599, filed Mar. 25, 1999, now U.S. Pat. No. 6,380,459.
[0002] This application claims priority to International Patent Application No. PCT/NZ01/00115, filed Jun. 20, 2001; U.S. application Ser. No. 09/724,624 filed Nov. 28, 2000; U.S. patent application Ser. No. 09/598,401 filed Jun. 20, 2000; International Patent Application No. PCT/NZ00/00018, filed Feb. 24, 2000; U.S. Provisional Patent Application No. 60/146,591, filed Jul. 30, 1999; and U.S. patent application Ser. No. 09/276,599, filed Mar. 25, 1999.
TECHNICAL FIELD OF THE INVENTION
[0003] This invention relates to the regulation of polynucleotide transcription and/or expression. More specifically, this invention relates to polynucleotide regulatory sequences isolated from plants that are capable of initiating and driving the transcription of polynucleotides, and the use of such regulatory sequences in the modification of transcription of endogenous and/or heterologous polynucleotides and production of polypeptides. Polypeptide sequences are also disclosed.
BACKGROUND OF THE INVENTION
[0004] Gene expression is regulated, in part, by the cellular processes involved in transcription. During transcription, a single-stranded RNA complementary to the DNA sequence to be transcribed is formed by the action of RNA polymerases. Initiation of transcription in eukaryotic cells is regulated by complex interactions between cis-acting DNA motifs, located within the gene to be transcribed, and trans-acting protein factors. Among the cis-acting regulatory regions are sequences of DNA, termed promoters, to which RNA polymerase is first bound, either directly or indirectly. As used herein, the term "promoter" refers to the 5' untranslated region of a gene that is associated with transcription and which generally includes a transcription start site. Other cis-acting DNA motifs, such as enhancers, may be situated further up- and/or down-stream from the initiation site.
[0005] Both promoters and enhancers are generally composed of several discrete, often redundant elements, each of which may be recognized by one or more trans-acting regulatory proteins, known as transcription factors. Promoters generally comprise both proximal and more distant elements. For example, the so-called TATA box, which is important for the binding of regulatory proteins, is generally found about 25 basepairs upstream from the initiation site. The so-called CAAT box is generally found about 75 basepairs upstream of the initiation site. Promoters generally contain between about 100 and 1000 nucleotides, although longer promoter sequences are possible.
[0006] For the development of transgenic plants, constitutive promoters that drive strong transgene expression are preferred. Currently, the only available constitutive plant promoter that is widely used is derived from Cauliflower Mosaic Virus. Furthermore, there exists a need for plant-derived promoters for use in transgenic food plants due to public conceptions regarding the use of viral promoters. Few gymnosperm promoters have been cloned and those derived from angiosperms have been found to function poorly in gymnosperms. There thus remains a need in the art for polynucleotide promoter regions isolated from plants for use in modulating transcription and expression of polynucleotides in transgenic plants.
SUMMARY OF THE INVENTION
[0007] Briefly, isolated polynucleotide regulatory sequences from eucalyptus and pine that are involved in the regulation of gene expression are disclosed, together with methods for the use of such polynucleotide regulatory regions in the modification of expression of endogenous and/or heterologous polynucleotides in transgenic plants. The present invention provides polynucleotide promoter sequences from 5' untranslated, or non-coding, regions of plant genes that initiate and regulate transcription of polynucleotides placed under their control, together with isolated polynucleotides comprising such promoter sequences.
[0008] In a first aspect, the present invention provides isolated polynucleotide sequences comprising a polynucleotide selected from the group consisting of: (a) sequences recited in SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127; (b) complements of the sequences recited in SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127; (c) reverse complements of the sequences recited in SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127; (d) reverse sequences of the sequences recited in SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127; (e) sequences having either 40%, 60%, 75% or 90% identical nucleotides, as defined herein, to a sequence of (a)-(d); probes and primers corresponding to the sequences set out in SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127; polynucleotides comprising at least a specified number of contiguous residues of any of the polynucleotides identified as SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127; and extended sequences comprising portions of the sequences set out in SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127; all of which are referred to herein as "polynucleotides of the present invention." The present invention also provides isolated polypeptide sequences identified in the attached Sequence Listing as SEQ ID NO: 63-80, 87 and 130; polypeptide variants of those sequences; and polypeptides comprising the isolated polypeptide sequences and variants of those sequences.
[0009] In another aspect, the present invention provides genetic constructs comprising a polynucleotide of the present invention, either alone, or in combination with one or more additional polynucleotides of the present invention, or in combination with one or more known polynucleotides, together with cells and target organisms comprising such constructs.
[0010] In a related aspect, the present invention provides genetic constructs comprising, in the 5'-3' direction, a polynucleotide promoter sequence of the present invention, a polynucleotide to be transcribed, and a gene termination sequence. The polynucleotide to be transcribed may comprise an open reading frame of a polynucleotide that encodes a polypeptide of interest, or it may be a non-coding, or untranslated, region of a polynucleotide of interest. The open reading frame may be orientated in either a sense or antisense direction. Preferably, the gene termination sequence is functional in a host plant. Most preferably, the gene termination sequence is that of the gene of interest, but others generally used in the art, such as the Agrobacterium tumefaciens nopalin synthase terminator may be usefully employed in the present invention. The genetic construct may further include a marker for the identification of transformed cells.
[0011] In a further aspect, transgenic plant cells comprising the genetic constructs of the present invention are provided, together with organisms, such as plants, comprising such transgenic cells, and fruits, seeds and other products, derivatives, or progeny of such plants. Propagules of the inventive transgenic plants are included in the present invention. As used herein, the word "propagule" means any part of a plant that may be used in reproduction or propagation, sexual or asexual, including cuttings.
[0012] Plant varieties, particularly registerable plant varieties according to Plant Breeders' Rights, may be excluded from the present invention. A plant need not be considered a "plant variety" simply because it contains stably within its genome a transgene, introduced into a cell of the plant or an ancestor thereof.
[0013] In yet another aspect, methods for modifying gene expression in a target organism, such as a plant, are provided, such methods including stably incorporating into the genome of the organism a genetic construct of the present invention. In a preferred embodiment, the target organism is a plant, more preferably a woody plant, most preferably selected from the group consisting of eucalyptus and pine species, most preferably from the group consisting of Eucalyptus grandis and Pinus radiata.
[0014] In another aspect, methods for producing a target organism, such as a plant, having modified polypeptide expression are provided, such methods comprising transforming a plant cell with a genetic construct of the present invention to provide a transgenic cell, and cultivating the transgenic cell under conditions conducive to regeneration and mature plant growth.
[0015] In other aspects, methods for identifying a gene responsible for a desired function or phenotype are provided, the methods comprising transforming a plant cell with a genetic construct comprising a polynucleotide promoter sequence of the present invention operably linked to a polynucleotide to be tested, cultivating the plant cell under conditions conducive to regeneration and mature plant growth to provide a transgenic plant; and comparing the phenotype of the transgenic plant with the phenotype of non-transformed, or wild-type, plants.
[0016] In yet a further aspect, the present invention provides isolated polynucleotides that encode ubiquitin. In specific embodiments, the isolated polynucleotides comprise a polynucleotide selected from the group consisting of: (a) sequences recited in SEQ ID NO: 1 and 34; (b) complements of the sequences recited in SEQ ID NO: 1 and 34; (c) reverse complements of the sequences recited in SEQ ID NO: 1 and 34; (d) reverse sequences of the sequence recited in SEQ ID NO: 1 and 34; and (e) sequences having either 40%, 60%, 75% or 90% identical nucleotides, as defined herein, to a sequence of (a)-(d). Polypeptides encoded by such polynucleotides are also provided, together with genetic constructs comprising such polynucleotides, and host cells and transgenic organisms, for example plants, transformed with such genetic constructs. In specific embodiments, such polypeptides comprise a sequence provided in SEQ ID NO: 80 or 67.
[0017] In yet further aspects, the present invention provides isolated polynucleotides comprising the DNA sequence of SEQ ID NO: 21, or a complement, reverse complement or variant of SEQ ID NO: 21, together with genetic constructs comprising such polynucleotides and cells transformed with such sequences. As discussed below, removal of the sequence of SEQ ID NO: 21 from a polynucleotide that comprises the sequence of SEQ ID NO: 21 may enhance expression of the polynucleotide. Conversely, the inclusion of the sequence of SEQ ID NO: 21 in a genetic construct comprising a polynucleotide of interest may decrease expression of the polynucleotide.
[0018] The above-mentioned and additional features of the present invention and the manner of obtaining them will become apparent, and the invention will be best understood by reference to the following more detailed description. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.
BRIEF DESCRIPTION OF THE DRAWINGS
[0019] FIG. 1 shows the expression in A. thaliana of the GUS gene in promoter reporter constructs containing either the superubiquitin promoter with introns, the superubiquitin promoter without introns, or the CaMV 35S promoter. The GUS expression was measured by fluorimetric determination of 4-methyl-umbelliferone (MU) in protein extracts from these plants.
[0020] FIG. 2 shows the expression of the GUS gene in tobacco plant protoplasts by deletion constructs containing the superubiquitin promoter with or without the intron. The constructs contained 1,103; 753; 573; 446; 368; and 195 bp upstream of the TATA sequence (bp numbers 1,104-1,110 of SEQ ID NO: 2). The GUS expression was measured by fluorimetric determination of 4-methyl-umbelliferone (MU) in protein extracts from these protoplasts.
[0021] FIG. 3 shows the expression of the GUS gene in tobacco plant protoplasts by constructs containing P. radiata either the constitutive promoters Elongation factor-1 alpha, 5-adenosylmethionine synthetase or the superubiquitin promoter without the intron. The GUS expression was measured by fluorimetric determination of 4-methyl-umbelliferone (MU) in protein extracts from these protoplasts.
[0022] FIG. 4 shows the expression in A. thaliana of the GUS gene in promoter reporter constructs containing the 3' UTR of the superubiquitin promoter in sense or antisense orientation together with either the superubiquitin promoter with intron, the superubiquitin promoter without intron, or the CaMV 35S promoter. The GUS expression was measured by fluorimetric determination of 4-methyl-umbelliferone (MU) in protein extracts from these plants.
[0023] FIG. 5 shows the expression of the GUS gene in tobacco plant protoplasts by a deletion construct containing a fragment of the E. grandis constitutive promoter Elongation factor-1 alpha.
[0024] FIGS. 6A and 6B show an annotated version of the full-length superubiquitin promoter, including the intron and the coding sequence. The intron is underlined and the coding sequence is in bold. Motifs are identified in boxes and described in the specification.
[0025] FIG. 7 shows an annotated superubiquitin construct without the intron identified and described as a 195 bp deletion.
[0026] FIG. 8 shows an annotated superubiquitin construct without the intron identified and described as a 368 bp deletion.
[0027] FIG. 9 shows an annotated superubiquitin construct without the intron identified and described as a 446 bp deletion.
[0028] FIG. 10 shows an annotated superubiquitin construct without the intron identified and described as a 573 bp deletion.
[0029] FIG. 11 shows an annotated superubiquitin construct without the intron identified and described as a 753 bp deletion.
[0030] FIG. 12 shows an annotated superubiquitin construct with the intron identified and described as a 195 bp deletion.
[0031] FIG. 13 shows an annotated superubiquitin construct with the intron identified and described as a 368 bp deletion.
[0032] FIG. 14 shows an annotated superubiquitin construct with the intron identified and described as a 446 bp deletion.
[0033] FIG. 15 shows an annotated superubiquitin construct with the intron identified and described as a 573 bp deletion.
[0034] FIGS. 16A and 16B show an annotated superubiquitin construct with the intron identified and described as a 753 bp deletion.
DETAILED DESCRIPTION OF THE INVENTION
[0035] The present invention provides isolated polynucleotide regulatory regions that may be employed in the manipulation of plant phenotypes, together with isolated polynucleotides comprising such regulatory regions. More specifically, polynucleotide promoter sequences isolated from pine and eucalyptus are disclosed. As discussed above, promoters are components of the cellular "transcription apparatus" and are involved in the regulation of gene expression. Both tissue- and temporal-specific gene expression patterns have been shown to be initiated and controlled by promoters during the natural development of a plant. The isolated polynucleotide promoter sequences of the present invention may thus be employed in the modification of growth and development of plants, and of cellular responses to external stimuli, such as environmental factors and disease pathogens.
[0036] Using the methods and materials of the present invention, the amount of a specific polypeptide of interest may be increased or reduced by incorporating additional copies of genes, or coding sequences, encoding the polypeptide, operably linked to an inventive promoter sequence, into the genome of a target organism, such as a plant. Similarly, an increase or decrease in the amount of the polypeptide may be obtained by transforming the target plant with antisense copies of such genes.
[0037] The polynucleotides of the present invention were isolated from forestry plant sources, namely from Eucalyptus grandis and Pinus radiata, but they may alternatively be synthesized using conventional synthesis techniques. Specifically, isolated polynucleotides of the present invention include polynucleotides comprising a sequence selected from the group consisting of sequences identified as SEQ ID NO: 1-14, 20, 22-62, 81-86, 88-127 and 131-143; complements of the sequences identified as SEQ ID NO: 1-14, 20, 22-62, 81-86, 88-127 and 131-143; reverse complements of the sequences identified as SEQ ID NO: 1-14, 20, 22-62, 81-86, 88-127 and 131-143; at least a specified number of contiguous residues (x-mers) of any of the above-mentioned polynucleotides; extended sequences corresponding to any of the above polynucleotides; antisense sequences corresponding to any of the above polynucleotides; and variants of any of the above polynucleotides, as that term is described in this specification.
[0038] In another embodiment, the present invention provides isolated polypeptides encoded by the polynucleotides of SEQ ID NO: 63-80, 87 and 130.
[0039] The polynucleotides and polypeptides of the present invention were identified by DNA and polypeptide similarity searches. In the attached Sequence Listing, SEQ ID NOS. 1-14, 20, 22-62, 81-86, 88-127 and 131-143 are polynucleotide sequences, and SEQ ID NOS. 63-80, 87 and 130 are polypeptide sequences. The polynucleotides and polypeptides of the present invention are involved in regulation of transcription and/or expression in plants. The identity of each of the inventive polynucleotides is shown below in Table 1, together with the 5' untranslated region (5' UTR) or promoter region (identified by residue number).
TABLE-US-00001 TABLE 1 Polynucleotide Polypeptide SEQ ID NO: SEQ ID NO: 5' UTR IDENTITY 1 80 1-2064 Super Ubiquitin coding region and UTRs 2 -- 1-2064 Super Ubiquitin promoter with intron 3 -- 1-1226 Super Ubiquitin promoter without intron 4 -- 1-431 Cell division control 5 -- 1-167 Xylogenesis-specific 6 -- 1-600 4-Coumarate-CoA Ligase (4CL) 7 -- 1-591 Cellulose synthase 8 -- 1-480 3' end, Cellulose synthase 20 -- 1-363 5' end, Cellulose synthase 9 -- 1-259 Leaf specific 10 -- 1-251 Leaf specific 11 -- 1-248 Leaf specific 12 -- 1-654 O-methyl transferase 13 -- 1-396 Root specific 14 -- 1-763 Root specific 22 63 1-406 Pollen coat protein 23 -- 1-350 Pollen allergen 24 -- 1-49 Pollen allergen 25 64 1-284 Pollen allergen 26 65 1-77 Auxin-induced protein 27 -- 1-74 Auxin-induced protein 28 66 1-99 Auxin-induced protein 29 -- 1-927 Flower specific 30 -- 1-411 Flower specific 31 -- 1-178 Flower specific 32 -- 1-178 Flower specific 33 -- 1-178 Flower specific 34 67 1-805 Ubiquitin 35 68 1-81 Glyceraldehyde-3-phosphate dehydrogenase 36 69 1-694 Carbonic anhydrase 37 -- 1-648 Isoflavone reductase 38 -- 1-288 Isoflavone reductase 39 -- 1-382 Glyceraldehyde-3-phosphate dehydrogenase 40 70 1-343 Bud specific 41 -- 1-313 Xylem-specific 42 -- 1-713 Xylem-specific 43 -- 1-28 Xylem-specific 44 -- 1-35 Xylem-specific 45 71 1-180 Meristem-specific 46 72 1-238 Senescence-like protein 47 -- 1-91 Senescence-like protein 48 -- 1-91 Senescence-like protein 49 -- 1-809 Pollen-specific 50 -- 1-428 Pollen-specific 51 73 1-55 Pollen-specific 52 74 1-575 Pollen-specific 53 75 1-35 Pollen-specific 54 -- 1-335 Nodulin homolog pollen specific 55 -- 1-336 Nodulin homolog pollen specific 56 76 1-157 Sucrose synthase 57 77 1-446 Sucrose synthase 58 -- 1-326 Sucrose synthase 59 -- 1-311 Flower specific 60 78 1-694 O-methyl transferase 61 79 1-112 Elongation factor A 62 -- 1-420 Elongation factor A 81 -- -- MIF homologue 82 -- -- MIF homologue 83 -- -- MIF homologue 84 -- -- MIF homologue 85 -- -- MIF homologue 86 87 1-87 MIF homologue 88 -- 1-1156 Chalcone synthase 89 -- 1-2590 Unknown flower specific 90 -- 1-1172 Unknown flower specific 91 -- 1-446 Sucrose synthase 92 -- 1-2119 Unknown xylem specific 93 -- 1-2571 Glyceraldehyde-3-Phosphate dehydrogenase 94 -- 1-1406 Unknown pollen specific 95 -- 1-2546 Pinus radiata male-specific protein (PrMALE1) 96 -- 1-4726 Pinus radiata male-specific protein (PrMALE1) 97 -- 1-635 UDP glucose glycosyltransferase 98 -- 1-468 Elongation Factor A1 99 -- 1-222 Elongation Factor A1 100 -- 1-410 S-adenosylmethionine synthetase 101 -- 1-482 S-adenosylmethionine synthetase 102 -- 1-230 S-adenosylmethionine synthetase 103 -- 1-596 UDP glucose 6 dehydrogenase 104 -- 1-653 Hypothetical protein 105 -- 1-342 Laccase 1 106 -- 1-342 Laccase 1 106 -- 1-948 Arabinogalactan-like 1 108 -- 1-362 Arabinogalactan-like 2 109 -- 1-326 Arabinogalactan like-2 110 -- 1-296 Root Receptor-like kinase 111 -- 1-723 Root Receptor-like kinase 112 -- 1-1301 Pinus radiata Lipid Transfer Protein 2 (PrLTP2) 113 -- 1-1668 Caffeic acid O-methyltransferase 114 -- 1-850 UDP glucose glycosyltransferase 115 -- 1-986 UDP glucose 6 dehydrogenase 116 -- 1-947 Laccase 1 117 -- 1-1766 Arabinogalactan like-1 118 -- 1-1614 Constans 119 -- 1-602 Flowering Promoting Factor 1 (FPF1) 120 -- 1-901 Agamous 121 -- 1-1,245 Dreb 1A Transcription factor 122 -- 1-959 Drought Induced Protein 19 123 -- 1-1,140 Salt Tolerance protein 124 130 1-887 Low Temperature Induced LTI-16 125 -- 1-1,243 Xylem specific receptor-like kinase 126 -- 1-1,047 Root specific 127 -- 1-3,552 Elongation Factor 1-alpha 131 1- Superubiquitin deletion sequence without intron including 195 bp upstream of TATA box 132 1- Superubiquitin deletion sequence without intron including 368 bp upstream of TATA box 133 1- Superubiquitin deletion sequence without intron including 446 bp upstream of TATA box 134 1- Superubiquitin deletion sequence without intron including 573 bp upstream of TATA box 135 1- Superubiquitin deletion sequence without intron including 753 bp upstream of TATA box 136 1-1156 Superubiquitin deletion sequence with intron including 195 bp upstream of TATA box 137 1-1329 Superubiquitin deletion sequence with intron including 368 bp upstream of TATA box 138 1-1407 Superubiquitin deletion sequence with intron including 446 bp upstream of TATA box 139 1-1534 Superubiquitin deletion sequence with intron including 573 bp upstream of TATA box 140 1-1714 Superubiquitin deletion sequence with intron including 753 bp upstream of TATA box 141 1-1193 Full length superubiquitin promoter 142 1- Full length superubiquitin promoter with intron 143 1- Full length superubiquitin promoter with intron and coding sequence and 3' UTR
[0040] In one embodiment, the present invention provides polynucleotide sequences isolated from Pinus radiata and Eucalyptus grandis that have promoter activity and, in Pinus radiata and Eucalyptus grandis are associated with the coding region for a ubiquitin polypeptide. The ubiquitin promoter isolated from Pinus radiata and disclosed herein is referred to herein as "superubiquitin" as a consequence of its high level of promoter activity. Full-length sequences for the ubiquitin polynucleotide isolated from Pinus radiata, including the full-length superubiquitin promoter, an intron, the ubiquitin coding sequence and the 3' UTR are provided in SEQ ID NOS: 1 and 143, with sequences for the promoter region including an intron being provided in SEQ ID NOS: 2 and 142, and sequences for the promoter region excluding the intron being provided in SEQ ID NOS: 3 and 141. The sequences vary slightly in length and composition as a consequence of using different sequencing techniques and criteria.
[0041] An annotated version of the full-length ubiquitin polynucleotide of SEQ ID NO: 143, including the full-length superubiquitin promoter, an intron, the ubiquitin coding sequence and the 3' UTR, is shown in FIGS. 6A and 6B. In the figures, an intron is shown, underlined, at residues 1196-2035; the coding region for the ubiquitin protein is shown, in bold, at residues 2066-2755; the 3'UTR is shown at residues 2756-3084; and the full-length promoter is shown at residues 1-1193.
[0042] Polynucleotide motifs identified in the full-length ubiquitin polynucleotide of SEQ ID NO: 143 are shown in the annotations of FIGS. 6A and 6B.
[0043] Numerous forms and variations of the superubiquitin promoter have demonstrated promoter activity in experimental studies. Preliminary studies, performed by introducing constructs containing the GFP reporter gene operably linked to either the superubituitin promoter of SEQ ID NO: 2 (promoter with intron) or SEQ ID NO: 3 (promoter without intron) into Arabidopsis, are described below in Example 1. These preliminary studies showed that the superubiquitin promoter, both with and without the intron, demonstrated promoter activity, with the intron-less sequence showing higher levels of expression than the promoter sequence with the intron.
[0044] Subsequent studies are described in Examples 16, 17, 20 and 21. Experimental studies described in Example 16, done in Arabidopsis plants and quantitating GUS activity, demonstrated that a construct containing the superubiquitin promoter without the intron showed seven (7) times more GUS activity than the commercial CaMV 35S promoter, and the construct containing the superubiquitin promoter with the intron showed sixty-two (62) times more GUS activity than the CaMV 35S promoter. These follow-up studies thus confirmed that both the superubiquitin promoter sequence, with and without the intron, show high levels of promoter activity, with the superubiquitin sequence including the intron showing exceptionally high levels of promoter activity. Studies described in Example 17, done in tobacco protoplasts, demonstrated promoter activity of deletion constructs of the superubiquitin promoter, both with and without the intron. These studies confirmed that both the superubiquitin promoter sequence, with and without the intron, show high levels of promoter activity, with the superubiquitin sequence including the intron showing exceptionally high levels of promoter activity. Some of the deletion constructs demonstrated promoter activity, with greater activity in the longer constructs and no activity in the shortest constructs.
[0045] Experimental studies using superubiquitin deletion constructs, both with and without the intron, were repeated in Arabidopsis and tobacco plants, as described in Example 21. These experiments demonstrated that the partial superubiquitin promoter sequences of SEQ ID NOS: 132, 133, 134, 135, 137, 138, 139 and 140 showed constitutive promoter activity by GUS staining, in both Arabidopsis and tobacco plants. Only the shortest deletion constructs, SEQ ID NOS: 131 and 136, did not show constitutive promoter activity by GUS staining in the experimental studies described in Example 21.
[0046] Example 20 describes experimental work done to determine the effect of the 3'UTR superubiquitin sequences on gene expression in Arabidopsis. These studies showed that a construct containing the superubiquitin 3'UTR in the sense orientation and the intron-less superubiquitin promoter demonstrated high GUS expression levels, and enhanced the expression of the superubiquitin intron-less promoter to nearly the level of the superubiquitin promoter with the intron. This demonstrates that the combination of the superubiquitin promoter without the intron and the ubiquitin 3'UTR shows high levels of promoter activity.
[0047] The present invention thus contemplates a polynucleotide having promoter activity comprising a sequence of one of SEQ ID NOS: 2, 3, 132-135 and 137-142, as well as fragments and variants of such sequences having promoter activity. The present invention furthermore contemplates a polynucleotide having promoter activity comprising a sequence of one of SEQ ID NOS: 2, 3, 132-135 and 137-142, as well as fragments and variants of such sequences having promoter activity, in combination with a fragment of the 3'UTR ubiquitin sequence in the sense orientation. The 3'UTR ubiquitin sequence includes residues 2,755-3,073 of SEQ ID NO: 1 and is shown, in FIGS. 6A and 6B, as residues 2756-3084. A 250 bp fragment of the 3'UTR ubiquitin sequence, including residues 2,755-3,073 of SEQ ID NO: 1 is suitable and one of skill in the art would anticipate that smaller fragments and fragments from elsewhere within the ubiquitin 3'UTR would, in combination with a sequence of one of SEQ ID NOS: 2, 3, 132-135 and 137-142, as well as fragments and variants of such sequences, provide a sequence having promoter activity.
[0048] Numerous motifs have been identified in superubiquitin sequences, and in deletion constructs used to test the promoter activity of fragments of the superubiquitin promoter. Various of the motifs are described below in Table 2, and are identified in the sequences shown in FIGS. 6-16.
TABLE-US-00002 TABLE 2 REFERENCE POLYNUCLEOTIDE NUMBER MOTIF DESCRIPTION 1 TATAAT -10 Mustard plastid box, also a Pribnow box, first TA and last T highly conserved 2 TATAAAA (TATTAAA in SU promoter); a -35 Mustard plastid gene TATA box 3 TATTTWAT (TATTTAAT in SU promoter); Nodule specific nuclear factor (NAT2, soybean). This sequence is important for protein recognition (Forde et al., Plant Cell 2: 925-939, 1990) 4 CACGTG G-box-binding factor (GBF) commonly found in many plant promoters which binds a subclass of bZIP DNA binding proteins. These elements are targets for nuclear DNA-binding factors, e.g. chlorophyll a/b binding proteins and chalcone synthase. ACGT is the core sequence and is also known as R-motif. Found in light-responsive genes, e.g., rbcS and chalcone synthase (chs), but also in other unrelated genes such as adh, Bz-2, Em, and chs. Binds with GBF (G box of rbcS), with GT-1 or with cG-1 (chs); ABA; UV; visible light; Factors groups 1, 2 and 3 have affinity for C-box; G-box is not essential for the elicitor responsiveness of the Str1 gene. GBF4 has similarities to Fos oncoprotein (Menkens and Cashmore, Proc. Natl. Acad. Sci. USA 91: 2522-2526, 1994). The G-box is a cis-acting DNA sequence present in several plant promoters that are regulated by diverse signals such as UV irradiation, anaerobiosis, abscissic acid and light. Several basic/leucine zipper (bZIP) proteins from different plant species have been identified as high affinity G-box binding proteins. Although their capability to enhance transcription has been demonstrated, their precise function in transcriptional activation is still unknown (Meier and Gruissem, Nucleic Acids Res. 22: 470-478, 1994). 5 TCTTTTC (C/T Pyrimidine box sequence, amylase gene, is CTTTT C/T) implied but not required for GA3 inducibility. 6 ACCTTTCC If G is substituted for T, this motif is an 8 bp motif adjacent to wound inducible nuclear protein binding site. 7 TCTCCAC Origin of genes and nuclear extract - Parsley PAL and 4CL genes 8 GATAAG Origin of genes and nuclear extract - Lemna and Arabidopsis rbcS gene, tobacco cabE gene I- box, binding factor LRF-1 9 AACCCA Soybean embryo factor 3 (SEF3) binding site. Soybean B-conglycinin gene alpha subunit (embryo-specific) SEF-3, SEF-1 binding factors. Soybean (Glycine max) consensus sequence found in the 5' upstream region of beta-conglycinin (7S globulin) gene; AACCCA(-27bp-)AACCCA. 10 TGACG ASF-1 binding site in CaMV 35S promoter. ASF-1 binds to two TGACG motifs. The same motif is also found in HBP-1 binding site of wheat histone H3 gene. TGACG motifs are found in many promoters and are involved in transcriptional activation of several genes by auxin and/or salicylic acid and play a role in light regulation. It is also the binding site of tobacco TGA1a (TGA1a-sequence specific binding protein). Activating sequence factor 1 (ASF-1) is a nuclear DNA-binding activity that is found in monocots and dicots. It interacts with several TGACG-containing elements that have been characterized from viral and T-DNA genes, the prototypes of which are the as-1 element of the CaMV 35S promoter and the ocs element from the octopine synthase promoter. This class of cis-acting elements can respond to auxin and salicylic acid treatments (Lam and Lam, Nucleic Acids Res. 23: 3778-3785, 1005). 11 GATA Binding site, designated as-2 (activating sequence-2) at the -100 region of the cauliflower mosaic virus 35S promoter. These motifs are related to the 1-boxes which bind nuclear factors. Similar to the GATA motif in CaMV 35S promoter. Binding with ASF-2; three GATA box repeats were found in the promoter of Petunia (P.h.) chlorophyll a/b binding protein, Cab22 gene; required for high level, light regulated, and tissue specific expression; Conserved in the promoter of all LHCII type I Cab genes. 12 GTGG Maize Adh1 B1 G-box cis-acting DNA sequence elements are present in the promoter region of a number of signal-inducible plant genes and are essential for gene expression. 13 CCCC Arabidopsis AdH interacts with GBF 14 CCAGCGG The AT-1 binding site in cabE gene, tobacco, if C were a T. 15 GAGAAG I-box binding GA-1 for tobacco cabE gene >IBOX "I box"; "I-box"; Conserved sequence upstream of light-regulated genes; Sequence found in the promoter region of rbcS of tomato and Arabidopsis; I box (Giuliano et al. 1988); Binding site of LeMYB1, which is a member of a novel class of myb-like proteins; LeMYBI act as a transcriptional activator GAGAA = >IBOXCORE "I box"; "I-box"; Conserved sequence upstream of light-regulated genes; Conserved sequence upstream of light-regulated genes of both monocots and dicots; See IBOX (S000124) 16 GGATA MYBST1 core motif >MYBST1 Core motif of MybSt1 (a potato MYB homolog) binding site; core motif of MybSt1 (a potato MYB homolog) binding site; MybSt1 cDNA clone was isolated by using CaMV 35S promoter domain A as a probe (Baranowskij et al. 1994); The Myb motif of the MybSt1 protein is distinct from the plant Myb DNA binding domain described thus far. 17 TGTAAAG Prolamin box or P Box is a highly conserved 7- bp sequence element found in the promoters of many cereal seed storage protein genes. Nuclear factors from maize endosperm specifically interact with the P-box present in maize prolamin genes (zeins). A prolamin-box binding factor (PBF) has been identified that encodes a member of the recently described Dof class of plant Cys2-Cys2 zinc-finger DNA binding proteins. PBF interacts in vitro with the basic leucine zipper protein Opaque2, a known transcriptional activator of zein gene expression. (Vicente-Carbajosa et al., Proc. Natl. Acad. Sci. USA 94: 7685-7690, 1997). 18 TGTCTC Occurs 3 times in intron: auxin response factor (ARF) binding site found in the promoters of primary/early auxin response genes of Arabidopsis thaliana. More than 10 ARFs have been identified in A. thaliana. This conserved sequence is the binding site of Arabidopsis ARF1 (Auxin response factor 1) in auxin response elements (Ulmasov et al., Science 276: 1865-1868, 1997). The sequence is also found in the NDE element in soybean (Li et al., Plant Physiol. 106: 37-43, 1994) 15A gene promoter. The NDE element is involved in auxin responsiveness in SAUR (Small Auxin- Up RNA) by conferring auxin inducibility to the SAUR promoters. 19 AGCGGG BS1 (binding site 1) found in Eucalyptus gunnii Cinnamoyl-CoA reductase (CCR) gene promoter. Cinnamoyl-CoA reductase (CCR) catalyzes the first specific step in the biosynthesis of monolignols, the monomeric units of lignins. BS1 is a nuclear protein binding site that is required for vascular expression. 20 CAAT CAAT promoter consensus sequence is found in legA gene of pea 21 TGCAGG This motif is commonly found at the 3' of intron-exon splice junctions of plant introns and exons. 22 ACCGACA Low temperature responsive element (LTRE) found in Arabidopsis thaliana low-temperature- induced (lti) genes. This element is repeated four times in lti78 or cor78 and rd29A (Baker et al., Plant Mol. Biol. 24: 701, 1994). The element is also found in the barley low temperature responsive genes blt4.2, blt4.6, blt4.9 (lipid transfer genes) and is cold inducible (Nordin et al., Plant Mol. Biol. 21: 641-653, 1993). The core motif is CCGAC and is a portion of repeat-C (C-repeat), TGGCCGAC, which is repeated twice in cor15a promoter. This element plays a role in cold-regulated gene expression of the cor15a gene and is also involved in drought and abscisic acid (ABA) responsiveness (Baker et al., Plant Mol. Biol. 24: 701-713 1994). 23 CTAACCA Binding site for MYB (ATMYB2) in the dehydration-responsive gene rd22, that is induced by ABA-induction (Iwasaki et al., Mol. Gen. Genet. 247: 391-398, 1995). 24 TAACAAA Central element of gibberellin (GA) response complex (GARC) in high-pI alpha-amylase gene in barley and similar to c-myb and v-myb consensus binding site. GAmyb binds specifically to the TAACAAA box in vitro and is the sole GA-regulated transcriptional factor required for transcriptional activation of the high-pI alpha-amylase (Rogers and Rogers, Plant Cell 4: 1443-1451, 1992). 25 CCWACC Core of consensus maize P (myb homolog) binding site where W could be A or T. Maize P gene specifies red pigmentation of kernel pericarp, cob, and other floral organs. (Grotewold et al., Cell 76: 543-553 1994). 26 CACATG Identified in SU intron. Binding site for MYC (rd22BP1) in Arabidopsis dehydration-resposive gene, rd22 rd22, that is induced by ABA- induction (Iwasaki et al., Mol. Gen. Genet. 247: 391-398, 1995). 27 CATCCAACG Nonamer motif found in promoter of wheat histone genes H3 and H4 (Shen and Gigot, Plant Mol. Biol. 33: 367-379, 1997). 28 ACTTTA Identified in SU intron - BBF1 (Dof protein from tobacco) binding site in Agrobacterium rhizogenes rolB oncogene and is required for tissue-specific expression and auxin induction of rolB (Baumann et al., Plant Cell 11: 323-334, 1999). 29 AGAAA AGAAA and TCCACCATA (S000246) are required for pollen specific expression in SU; TCCACCATA: one of two co-dependent regulatory elements responsible for pollen specific activation of tomato (L.e.) lat52 gene; Found at -72 to -68 region; See S000246 (POLLEN2LELAT52). 30 CCTTTT In intron; pyrimidine box found in rice (O.s.) alpha-amylase (RAmy1A) gene; Gibberellin- response cis-element of GARS and pyrimidine box are partially involved in sugar repression.
31 CAACA Binding consensus sequence of Arabidopsis (A.t.) transcription factor, RAV1; RAV1 specifically binds to DNA with bipartite sequence motifs of RAV1-A (CAACA) and RAV1-B (CACCTG); RAV1 protein contain AP2-like and B3-like domains; The AP2-like and B3-like domains recognize the CAACA and CACCTG motifs, respectively; The expression level of RAV1 were relatively high in rosette leaves and roots; See S000315(CACCTG). 32 AATCCAA "rbcS general consensus sequence"; AATCCAA or AATCCAAC 33 AACCAA 2 motifs present; "REalpha" found in Lemma gibba Lhcb21 gene promoter; Located at -134 to -129; Binding site of proteins of whole-cell extracts; The DNA bindnig activity is high in etiolated plants but much lower in green plants; Required for phytochrome regulation; See S000363 34 TACTATT In intron; one of SPBF binding site (SP8b); Found at -330, -220, and -200 of gSPO-B1 (sporamin) gene, and also at -80 of gB-Amy (beta-amylase) gene; SP8BF recognizes both SP8a and SP8b sequences; See also SP8BFIBSP8AIB (S000183); SP8BF activity is also found in tobacco; "SP8b" found in the 5' upstream region of three different genes coding for sporamin and beta-amylase; Binding site of SPF1; SPF1 also binds to the SP8b; See S000184. 35 TATCCAY (TATCCAC in SU promoter); "TATCCAY motif" found in rice (O.s) RAmy3D alpha- amylase gene promoter; Y = T/C; a GATA motif as its antisense sequence; TATCCAY motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998). 36 ATAAAAAAAATT The AT-1 binding site in cabE gene, tobacco, if A were a T.
[0049] SEQ ID NO: 132 is the shortest fragment of the superubiquitin promoter for which promoter activity has been demonstrated experimentally. SEQ ID NO: 32 includes motifs 12, 14, 4, 15, 10, 9, 22, 4, 13, 19, 15, 27, 2, 5, 1 and 11, as described above in Table 2. It is expected that a sequence comprising at least ten (10), more preferably twelve (12), and most preferably fifteen (15) of the sixteen (16) motifs, selected from the group consisting of: motifs 12, 14, 4, 15, 10, 9, 22, 4, 13, 19, 15, 27, 2, 5, 1 and 11, as described above in Table 2, would exhibit promoter activity, and such sequences are contemplated by the present invention. Such sequences may also be combined with a 3'UTR fragment of the ubiquitin sequence comprising at least 50 consecutive bp, more preferably at least 100 or 150 consecutive bp, and most preferably at least 250 consecutive by from the ubiquitin 3'UTR sequence identified as residues 2,755-3,073 of SEQ ID NO: 1. Additionally or alternatively, such sequences may also be combined with an intron, such as the intron identified as residues 1196-2034 of SEQ ID NO: 143 or 142. Fragments of the 3'UTR and intron sequences may also be combined with the sequences of SEQ ID NOS: 132-135 and 137-140 to provide promoters of the present invention. All of these sequences have features in common, in that they share ten or more common motifs, as described above, and more likely share sequence similarities over a substantial portion of the sequence.
[0050] The sequence for the ubiquitin polynucleotide isolated from Eucalyptus grandis is provided in SEQ ID NO: 34. In a related embodiment, the present invention provides isolated polypeptides encoded by the isolated polynucleotides of SEQ ID NO: 1 and 34, including polypeptides comprising the sequences of SEQ ID NO: 80 and 67.
[0051] The term "polynucleotide(s)," as used herein, means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and corresponding RNA molecules, including HnRNA and mRNA molecules, both sense and anti-sense strands, and comprehends cDNA, genomic DNA and recombinant DNA, as well as wholly or partially synthesized polynucleotides. An HnRNA molecule contains introns and corresponds to a DNA molecule in a generally one-to-one manner. An mRNA molecule corresponds to an HnRNA and DNA molecule from which the introns have been excised. A polynucleotide may consist of an entire gene, or any portion thereof. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes all such operable anti-sense fragments. Anti-sense polynucleotides and techniques involving anti-sense polynucleotides are well known in the art and are described, for example, in Robinson-Benion et al. "Antisense techniques," Methods in Enzymol. 254(23):363-375, 1995; and Kawasaki et al., in Artific. Organs 20(8):836-848, 1996.
[0052] All of the polynucleotides and polypeptides described herein are isolated and purified, as those terms are commonly used in the art. Preferably, the polypeptides and polynucleotides are at least about 80% pure, more preferably at least about 90% pure, and most preferably at least about 99% pure.
[0053] The definition of the terms "complement", "reverse complement" and "reverse sequence", as used herein, is best illustrated by the following example. For the sequence 5' AGGACC 3', the complement, reverse complement and reverse sequence are as follows:
TABLE-US-00003 Complement 3' TCCTGG 5' Reverse complement 3' GGTCCT 5' Reverse sequence 5' CCAGGA 3'
[0054] Some of the polynucleotides of the present invention are "partial" sequences, in that they do not represent a full-length gene encoding a full-length polypeptide. Such partial sequences may be extended by analyzing and sequencing various DNA libraries using primers and/or probes and well known hybridization and/or PCR techniques. Partial sequences may be extended until an open reading frame encoding a polypeptide, a full-length polynucleotide and/or gene capable of expressing a polypeptide, or another useful portion of the genome is identified. Such extended sequences, including full-length polynucleotides and genes, are described as "corresponding to" a sequence identified as one of the sequences of SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127, or a variant thereof, or a portion of one of the sequences of SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127, or a variant thereof, when the extended polynucleotide comprises an identified sequence or its variant, or an identified contiguous portion (x-mer) of one of the sequences of SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127, or a variant thereof. Such extended polynucleotides may have a length of from about 50 to about 4,000 nucleic acids or base pairs, and preferably have a length of less than about 4,000 nucleic acids or base pairs, more preferably yet a length of less than about 3,000 nucleic acids or base pairs, more preferably yet a length of less than about 2,000 nucleic acids or base pairs. Under some circumstances, extended polynucleotides of the present invention may have a length of less than about 1,800 nucleic acids or base pairs, preferably less than about 1,600 nucleic acids or base pairs, more preferably less than about 1,400 nucleic acids or base pairs, more preferably yet less than about 1,200 nucleic acids or base pairs, and most preferably less than about 1,000 nucleic acids or base pairs.
[0055] Similarly, RNA sequences, reverse sequences, complementary sequences, antisense sequences, and the like, corresponding to the polynucleotides of the present invention, may be routinely ascertained and obtained using the cDNA sequences identified as SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127.
[0056] The polynucleotides identified as SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127, and their extensions, may contain open reading frames ("ORFs") or partial open reading frames encoding polypeptides. Additionally, open reading frames encoding polypeptides may be identified in extended or full length sequences corresponding to the sequences set out as SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127. Open reading frames may be identified using techniques that are well known in the art. These techniques include, for example, analysis for the location of known start and stop codons, most likely reading frame identification based on codon frequencies, etc. Suitable tools and software for ORE analysis include, for example, "GeneWise", available from The Sanger Center, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom; "Diogenes", available from Computational Biology Centers, University of Minnesota, Academic Health Center, UMHG Box 43, Minneapolis Minn. 55455 and "GRAIL", available from the Informatics Group, Oak Ridge National Laboratories, Oak Ridge, Tenn. Open reading frames and portions of open reading frames may be identified in the polynucleotides of the present invention. Once a partial open reading frame is identified, the polynucleotide may be extended in the area of the partial open reading frame using techniques that are well known in the art until the polynucleotide for the full open reading frame is identified. Thus, open reading frames encoding polypeptides may be identified using the polynucleotides of the present invention.
[0057] Once open reading frames are identified in the polynucleotides of the present invention, the open reading frames may be isolated and/or synthesized. Expressible genetic constructs comprising the open reading frames and suitable promoters, initiators, terminators, etc., which are well known in the art, may then be constructed. Such genetic constructs may be introduced into a host cell to express the polypeptide encoded by the open reading frame. Suitable host cells may include various prokaryotic and eukaryotic cells, including plant cells, mammalian cells, bacterial cells, algae and the like.
[0058] Polypeptides encoded by the polynucleotides of the present invention may be expressed and used in various assays to determine their biological activity. Such polypeptides may be used to raise antibodies, to isolate corresponding interacting proteins or other compounds, and to quantitatively determine levels of interacting proteins or other compounds.
[0059] The term "polypeptide", as used herein, encompasses amino acid chains of any length including full length proteins, wherein amino acid residues are linked by covalent peptide bonds. Polypeptides of the present invention may be isolated and purified natural products, or may be produced partially or wholly using recombinant techniques. The term "polypeptide encoded by a polynucleotide" as used herein, includes polypeptides encoded by a nucleotide sequence which includes the partial isolated DNA sequences of the present invention.
[0060] In a related aspect, polypeptides are provided that comprise at least a functional portion of a polypeptide having a sequence selected from the group consisting of sequences provided in SEQ ID NO: 63-80, 87 and 130, and variants thereof. As used herein, the "functional portion" of a polypeptide is that portion which contains the active site essential for affecting the function of the polypeptide, for example, the portion of the molecule that is capable of binding one or more reactants. The active site may be made up of separate portions present on one or more polypeptide chains and will generally exhibit high binding affinity.
[0061] Functional portions of a polypeptide may be identified by first preparing fragments of the polypeptide by either chemical or enzymatic digestion of the polypeptide, or by mutation analysis of the polynucleotide that encodes the polypeptide and subsequent expression of the resulting mutant polypeptides. The polypeptide fragments or mutant polypeptides are then tested to determine which portions retain biological activity, using, for example, the representative assays provided below. A functional portion comprising an active site may be made up of separate portions present on one or more polypeptide chains and generally exhibits high substrate specificity.
[0062] Portions and other variants of the inventive polypeptides may be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, wherein amino acids are sequentially added to a growing amino acid chain. (Merrifield, J. Am. Chem. Soc. 85: 2149-2154, 1963). Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied Biosystems, Inc. (Foster City, Calif.), and may be operated according to the manufacturer's instructions. Variants of a native polypeptide may be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (Kunkel, Proc. Natl. Acad. Sci. USA 82: 488-492, 1985). Sections of DNA sequences may also be removed using standard techniques to permit preparation of truncated polypeptides.
[0063] As used herein, the term "variant" comprehends nucleotide or amino acid sequences different from the specifically identified sequences, wherein one or more nucleotides or amino acid residues is deleted, substituted, or added. Variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant sequences (polynucleotide or polypeptide) preferably exhibit at least 50%, more preferably at least 75%, and most preferably at least 90% identity to a sequence of the present invention. The percentage identity is determined by aligning the two sequences to be compared as described below, determining the number of identical residues in the aligned portion, dividing that number by the total number of residues in the inventive (queried) sequence, and multiplying the result by 100.
[0064] Polynucleotide and polypeptide sequences may be aligned, and percentage of identical residues in a specified region may be determined against other polynucleotide and polypeptide sequences, using computer algorithms that are publicly available. Two exemplary algorithms for aligning and identifying the similarity of polynucleotide sequences are the BLASTN and FASTA algorithms. Polynucleotides may also be analyzed using the BLASTX algorithm, which compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database. The similarity of polypeptide sequences may be examined using the BLASTP algorithm. The BLASTN algorithm Version 2.0.4 [Feb. 24, 1998], Version 2.0.6 [Sep. 16, 1998] and Version 2.0.11 [Jan. 20, 2000], set to the default parameters described in the documentation and distributed with the algorithm, are preferred for use in the determination of polynucleotide variants according to the present invention. The BLASTP algorithm, is preferred for use in the determination of polypeptide variants according to the present invention. The use of the BLAST family of algorithms, including BLASTN, BLASTP, and BLASTX, is described in the publication of Altschul, et al., "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," Nucleic Acids Res. 25: 3389-3402, 1997. The BLASTN software is available on the NCBI anonymous FTP server (ftp://ncbi.nlm.nih.gov) under/blast/executables/and is available from the National Center for Biotechnology Information (NCBI), National Library of Medicine, Building 38A, Room 8N805, Bethesda, Md. 20894 USA.
[0065] The FASTA software package is available from the University of Virginia (University of Virginia, PO Box 9025, Charlottesville, Va. 22906-9025). Version 2.0u4, February 1996, set to the default parameters described in the documentation and distributed with the algorithm, may be used in the determination of variants according to the present invention. The use of the FASTA algorithm is described in Pearson and Lipman, "Improved Tools for Biological Sequence Analysis," Proc. Natl. Acad. Sci. USA 85: 2444-2448, 1988; and Pearson, "Rapid and Sensitive Sequence Comparison with FASTP and PASTA," Methods in Enzymol. 183: 63-98, 1990.
[0066] The following running parameters are preferred for determination of alignments and similarities using BLASTN that contribute to the E values and percentage identity for polynucleotide sequences: Unix running command: blastall -p blastn -d embldb -e 10 -G0-E0-r 1-v 30-b 30-i queryseq -o results; the parameters are: -p Program Name [String]; -d Database [String]; -e Expectation value (E) [Real]; -G Cost to open a gap (zero invokes default behavior) [Integer]; -E Cost to extend a gap (zero invokes default behavior) [Integer]; -r Reward for a nucleotide match (BLASTN only) [Integer]; -v Number of one-line descriptions (V) [Integer]; -b Number of alignments to show (B) [Integer]; -i Query File [File In]; and -o BLAST report Output File [File Out] Optional.
[0067] The following running parameters are preferred for determination of alignments and similarities using BLASTP that contribute to the E values and percentage identity of polypeptide sequences: blastall -p blastp -d swissprotdb -e 10-G 0 -E 0 -v 30 -b 30 -i queryseq -o results; the parameters are: -p Program Name [String]; -d Database [String]; -e Expectation value (E) [Real]; -G Cost to open a gap (zero invokes default behavior) [Integer]; -E Cost to extend a gap (zero invokes default behavior) [Integer]; -v Number of one-line descriptions (v) [Integer]; -b Number of alignments to show (b) [Integer]; -I Query File [File In]; -o BLAST report Output File [File Out] Optional.
[0068] The "hits" to one or more database sequences by a queried sequence produced by BLASTN, FASTA, BLASTP or a similar algorithm, align and identify similar portions of sequences. The hits are arranged in order of the degree of similarity and the length of sequence overlap. Hits to a database sequence generally represent an overlap over only a fraction of the sequence length of the queried sequence.
[0069] The BLASTN, FASTA and BLASTP algorithms also produce "Expect" values for alignments. The Expect value (E) indicates the number of hits one can "expect" to see over a certain number of contiguous sequences by chance when searching a database of a certain size. The Expect value is used as a significance threshold for determining whether the hit to a database, such as the preferred EMBL database, indicates true similarity. For example, an E value of 0.1 assigned to a polynucleotide hit is interpreted as meaning that in a database of the size of the EMBL database, one might expect to see 0.1 matches over the aligned portion of the sequence with a similar score simply by chance. By this criterion, the aligned and matched portions of the polynucleotide sequences then have a probability of 90% of being the same. For sequences having an E value of 0.01 or less over aligned and matched portions, the probability of finding a match by chance in the EMBL database is 1% or less using the BLASTN or FASTA algorithm.
[0070] According to one embodiment, "variant" polynucleotides and polypeptides, with reference to each of the polynucleotides and polypeptides of the present invention, preferably comprise sequences having the same number or fewer nucleic or amino acids than each of the polynucleotides or polypeptides of the present invention and producing an E value of 0.01 or less when compared to the polynucleotide or polypeptide of the present invention. That is, a variant polynucleotide or polypeptide is any sequence that has at least a 99% probability of being the same as the polynucleotide or polypeptide of the present invention, measured as having an E value of 0.01 or less using the BLASTN, FASTA, or BLASTP algorithms set at parameters described above. According to a preferred embodiment, a variant polynucleotide is a sequence having the same number or fewer nucleic acids than a polynucleotide of the present invention that has at least a 99% probability of being the same as the polynucleotide of the present invention, measured as having an E value of 0.01 or less using the BLASTN or FASTA algorithms set at parameters described above. Similarly, according to a preferred embodiment, a variant polypeptide is a sequence having the same number or fewer amino acids than a polypeptide of the present invention that has at least a 99% probability of being the same as a polypeptide of the present invention, measured as having an E value of 0.01 or less using the BLASTP algorithm set at the parameters described above.
[0071] Alternatively, variant polynucleotides of the present invention hybridize to the polynucleotide sequences recited in SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127, or complements, reverse sequences, or reverse complements of those sequences under stringent conditions. As used herein, "stringent conditions" refers to prewashing in a solution of 6×SSC, 0.2% SDS; hybridizing at 65° C., 6×SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1×SSC, 0.1% SDS at 65° C. and two washes of 30 minutes each in 0.2×SSC, 0.1% SDS at 65° C.
[0072] The present invention also encompasses polynucleotides that differ from the disclosed sequences but that, as a consequence of the discrepancy of the genetic code, encode a polypeptide having similar activity to a polypeptide encoded by a polynucleotide of the present invention. Thus, polynucleotides comprising sequences that differ from the polynucleotide sequences recited in SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127, or complements, reverse sequences, or reverse complements thereof, as a result of conservative substitutions are contemplated by and encompassed within the present invention. Additionally, polynucleotides comprising sequences that differ from the polynucleotide sequences recited in SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127, or complements, reverse complements or reverse sequences thereof, as a result of deletions and/or insertions totaling less than 10% of the total sequence length are also contemplated by and encompassed within the present invention. Similarly, polypeptides comprising sequences that differ from the polypeptide sequences recited in SEQ ID NO: 63-80, 87 and 130, as a result of amino acid substitutions, insertions, and/or deletions totaling less than 10% of the total sequence length are contemplated by an encompassed within the present invention. In certain embodiments, variants of the inventive polypeptides and polynucleotides possess biological activities that are the same or similar to those of the inventive polypeptides or polynucleotides. Such variant polynucleotides function as promoter sequences and are thus capable of modifying gene expression in a plant.
[0073] The polynucleotides of the present invention may be isolated from various libraries, or may be synthesized using techniques that are well known in the art. The polynucleotides may be synthesized, for example, using automated oligonucleotide synthesizers (e.g., Beckman Oligo 1000M DNA Synthesizer) to obtain polynucleotide segments of up to 50 or more nucleic acids. A plurality of such polynucleotide segments may then be ligated using standard DNA manipulation techniques that are well known in the art of molecular biology. One conventional and exemplary polynucleotide synthesis technique involves synthesis of a single stranded polynucleotide segment having, for example, 80 nucleic acids, and hybridizing that segment to a synthesized complementary 85 nucleic acid segment to produce a 5-nucleotide overhang. The next segment may then be synthesized in a similar fashion, with a 5-nucleotide overhang on the opposite strand. The "sticky" ends ensure proper ligation when the two portions are hybridized. In this way, a complete polynucleotide of the present invention may be synthesized entirely in vitro.
[0074] Polynucleotides of the present invention also comprehend polynucleotides comprising at least a specified number of contiguous residues (x-mers) of any of the polynucleotides identified as SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127, complements, reverse sequences, and reverse complements of such sequences, and their variants. Similarly, polypeptides of the present invention comprehend polypeptides comprising at least a specified number of contiguous residues (x-mers) of any of the polypeptides identified as SEQ ID NO: 63-80, 87 and 130, and their variants. As used herein, the term "x-mer," with reference to a specific value of "x," refers to a sequence comprising at least a specified number ("x") of contiguous residues of any of the polynucleotides identified as SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127, or the polypeptides identified as SEQ ID NO: 63-80, 87 and 130. According to preferred embodiments, the value of x is preferably at least 20, more preferably at least 40, more preferably yet at least 60, and most preferably at least 80. Thus, polynucleotides and polypeptides of the present invention comprise a 20-mer, a 40-mer, a 60-mer, an 80-mer, a 100-mer, a 120-mer, a 150-mer, a 180-mer, a 220-mer, a 250-mer, a 300-mer, 400-mer, 500-mer or 600-mer of a polynucleotide or polypeptide identified as SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127, and variants thereof.
[0075] As noted above, the inventive polynucleotide promoter sequences may be employed in genetic constructs to drive transcription and/or expression of a polynucleotide of interest. The polynucleotide of interest may be either endogenous or heterologous to an organism, for example a plant, to be transformed. The inventive genetic constructs may thus be employed to modulate levels of transcription and/or expression of a polynucleotide, for example gene, that is present in the wild-type plant, or may be employed to provide transcription and/or expression of a DNA sequence that is not found in the wild-type plant.
[0076] In certain embodiments, the polynucleotide of interest comprises an open reading frame that encodes a target polypeptide. The open reading frame is inserted in the genetic construct in either a sense or antisense orientation, such that transformation of a target plant with the genetic construct will lead to a change in the amount of polypeptide compared to the wild-type plant. Transformation with a genetic construct comprising an open reading frame in a sense orientation will generally result in over-expression of the selected polypeptide, while transformation with a genetic construct comprising an open reading frame in an antisense orientation will generally result in reduced expression of the selected polypeptide. A population of plants transformed with a genetic construct comprising an open reading frame in either a sense or antisense orientation may be screened for increased or reduced expression of the polypeptide in question using techniques well known to those of skill in the art, and plants having the desired phenotypes may thus be isolated.
[0077] Alternatively, expression of a target polypeptide may be inhibited by inserting a portion of the open reading frame, in either sense or antisense orientation, in the genetic construct. Such portions need not be full-length but preferably comprise at least 25 and more preferably at least 50 residues of the open reading frame. A much longer portion or even the full length DNA corresponding to the complete open reading frame may be employed. The portion of the open reading frame does not need to be precisely the same as the endogenous sequence, provided that there is sufficient sequence similarity to achieve inhibition of the target gene. Thus a sequence derived from one species may be used to inhibit expression of a gene in a different species.
[0078] In further embodiments, the inventive genetic constructs comprise a polynucleotide including an untranslated, or non-coding, region of a gene coding for a target polypeptide, or a polynucleotide complementary to such an untranslated region. Examples of untranslated regions which may be usefully employed in such constructs include introns and 5'-untranslated leader sequences. Transformation of a target plant with such a genetic construct may lead to a reduction in the amount of the polypeptide expressed in the plant by the process of cosuppression, in a manner similar to that discussed, for example, by Napoli et al., Plant Cell 2:279-290, 1990 and de Carvalho Niebel et al., Plant Cell 7:347-358, 1995.
[0079] Alternatively, regulation of polypeptide expression can be achieved by inserting appropriate sequences or subsequences (e.g. DNA or RNA) in ribozyme constructs (McIntyre and Manners, Transgenic Res. 5(4):257-262, 1996). Ribozymes are synthetic RNA molecules that comprise a hybridizing region complementary to two regions, each of which comprises at least 5 contiguous nucleotides in a mRNA molecule encoded by one of the inventive polynucleotides. Ribozymes possess highly specific endonuclease activity, which autocatalytically cleaves the mRNA.
[0080] The polynucleotide of interest, such as a coding sequence, is operably linked to a polynucleotide promoter sequence of the present invention such that a host cell is able to transcribe an RNA from the promoter sequence linked to the polynucleotide of interest. The polynucleotide promoter sequence is generally positioned at the 5' end of the polynucleotide to be transcribed. Use of a constitutive promoter, such as the Pinus radiata ubiquitin polynucleotide promoter sequence of SEQ ID NO: 2 and 3 or the Eucalyptus grandis ubiquitin polynucleotide promoter sequence contained within SEQ ID NO: 34, will affect transcription of the polynucleotide of interest in all parts of the transformed plant. Use of a tissue specific promoter, such as the leaf-specific promoters of SEQ ID NO: 9-11, the root-specific promoters of SEQ ID NO: 13 and 14, the flower-specific promoters of SEQ ID NO: 29-33, 59 and 89-90, the pollen-specific promoters of SEQ ID NO: 49-55 and 94, the bud-specific promoter of SEQ ID NO: 40 or the meristem-specific promoter of SEQ ID NO: 45, will result in production of the desired sense or antisense RNA only in the tissue of interest. Temporally regulated promoters, such as the xylogenesis-specific promoters of SEQ ID NO: 5, 41-44 and 92, can be employed to effect modulation of the rate of DNA transcription at a specific time during development of a transformed plant. With genetic constructs employing inducible gene promoter sequences, the rate of DNA transcription can be modulated by external stimuli, such as light, heat, anaerobic stress, alteration in nutrient conditions and the like.
[0081] The inventive genetic constructs further comprise a gene termination sequence which is located 3' to the polynucleotide of interest. A variety of gene termination sequences which may be usefully employed in the genetic constructs of the present invention are well known in the art. One example of such a gene termination sequence is the 3' end of the Agrobacterium tumefaciens nopaline synthase gene. The gene termination sequence may be endogenous to the target plant or may be exogenous, provided the promoter is functional in the target plant. For example, the termination sequence may be from other plant species, plant viruses, bacterial plasmids and the like.
[0082] The genetic constructs of the present invention may also contain a selection marker that is effective in cells of the target organism, such as a plant, to allow for the detection of transformed cells containing the inventive construct. Such markers, which are well known in the art, typically confer resistance to one or more toxins. One example of such a marker is the NPTII gene whose expression results in resistance to kanamycin or hygromycin, antibiotics which are usually toxic to plant cells at a moderate concentration (Rogers et al., in Weissbach A and H, eds. Methods for Plant Molecular Biology, Academic Press Inc.: San Diego, Calif., 1988). Transformed cells can thus be identified by their ability to grow in media containing the antibiotic in question. Alternatively, the presence of the desired construct in transformed cells can be determined by means of other techniques well known in the art, such as Southern and Western blots.
[0083] Techniques for operatively linking the components of the inventive genetic constructs are well known in the art and include the use of synthetic linkers containing one or more restriction endonuclease sites as described, for example, by Sambrook et al., (Molecular cloning: a laboratory manual, CSHL Press: Cold Spring Harbor, N.Y., 1989). The genetic construct of the present invention may be linked to a vector having at least one replication system, for example E. coli, whereby after each manipulation, the resulting construct can be cloned and sequenced and the correctness of the manipulation determined.
[0084] The genetic constructs of the present invention may be used to transform a variety of target organisms including, but not limited to, plants. Plants which may be transformed using the inventive constructs include both monocotyledonous angiosperms (e.g., grasses, corn, grains, oat, wheat and barley) and dicotyledonous angiosperms (e.g., Arabidopsis, tobacco, legumes, alfalfa, oaks, eucalyptus, maple), and Gymnosperms (e.g., Scots pine; see Aronen, Finnish Forest Res. Papers, Vol. 595, 1996), white spruce (Ellis et al., Biotechnology 11:84-89, 1993), and larch (Huang et al., In Vitro Cell 27:201-207, 1991). In a preferred embodiment, the inventive genetic constructs are employed to transform woody plants, herein defined as a tree or shrub whose stem lives for a number of years and increases in diameter each year by the addition of woody tissue. Preferably the target plant is selected from the group consisting of eucalyptus and pine species, most preferably from the group consisting of Eucalyptus grandis and Pinus radiata. Other species which may be usefully transformed with the genetic constructs of the present invention include, but are not limited to: pines such as Pinus banksiana, Pinus brutia, Pinus caribaea, Pinus clausa, Pinus contorta, Pinus coulteri, Pinus echinata, Pinus eldarica, Pinus ellioti, Pinus jeffreyi, Pinus lambertiana, Pinus monticola, Pinus nigra, Pinus palustrus, Pinus pinaster, Pinus ponderosa, Pinus resinosa, Pinus rigida, Pinus serotina, Pinus strobus, Pinus sylvestris, Pinus taeda, Pinus virginiana; other gymnosperms, such as Abies amabilis, Abies balsamea, Abies concolor, Abies grandis, Abies lasiocarpa, Abies magnifica, Abies procera, Chamaecyparis lawsoniona, Chamaecyparis nootkatensis, Chamaecyparis thyoides, Huniperus virginiana, Larix decidua, Larix laricina, Larix leptolepis, Larix occidentalis, Larix siberica, Libocedrus decurrens, Picea abies, Picea engelmanni, Picea glauca, Picea mariana, Picea pungens, Picea rubens, Picea sitchensis, Pseudotsuga menziesii, Sequoia gigantea, Sequoia sempervirens, Taxodium distichum, Tsuga canadensis, Tsuga heterophylla, Tsuga mertensiana, Thuja occidentalis, Thuja plicata; and Eucalypts, such as Eucalyptus alba, Eucalyptus bancroftii, Eucalyptus botyroides, Eucalyptus bridgesiana, Eucalyptus calophylla, Eucalyptus camaldulensis, Eucalyptus citriodora, Eucalyptus cladocalyx, Eucalyptus coccifera, Eucalyptus curtisii, Eucalyptus dalrympleana, Eucalyptus deglupta, Eucalyptus delagatensis, Eucalyptus diversicolor, Eucalyptus dunnii, Eucalyptus ficifolia, Eucalyptus globulus, Eucalyptus gomphocephala, Eucalyptus gunnii, Eucalyptus henryi, Eucalyptus laevopinea, Eucalyptus macarthurii, Eucalyptus macrorhyncha, Eucalyptus maculata, Eucalyptus marginata, Eucalyptus megacarpa, Eucalyptus melliodora, Eucalyptus nicholii, Eucalyptus nitens, Eucalyptus nova-anglica, Eucalyptus obliqua, Eucalyptus obtusiflora, Eucalyptus oreades, Eucalyptus pauciflora, Eucalyptus polybractea, Eucalyptus regnans, Eucalyptus resinifera, Eucalyptus robusta, Eucalyptus rudis, Eucalyptus saligna, Eucalyptus sideroxylon, Eucalyptus stuartiana, Eucalyptus tereticornis, Eucalyptus torelliana, Eucalyptus urnigera, Eucalyptus urophylla, Eucalyptus viminalis, Eucalyptus viridis, Eucalyptus wandoo and Eucalyptus youmanni; and hybrids of any of these species.
[0085] Techniques for stably incorporating genetic constructs into the genome of target plants are well known in the art and include Agrobacterium tumefaciens mediated introduction, electroporation, protoplast fusion, injection into reproductive organs, injection into immature embryos, high velocity projectile introduction and the like. The choice of technique will depend upon the target plant to be transformed. For example, dicotyledonous plants and certain monocots and gymnosperms may be transformed by Agrobacterium Ti plasmid technology, as described, for example by Bevan, Nucleic Acids Res. 12:8711-8721, 1984. Targets for the introduction of the genetic constructs of the present invention include tissues, such as leaf tissue, dissociated cells, protoplasts, seeds, embryos, meristematic regions; cotyledons, hypocotyls, and the like. The preferred method for transforming eucalyptus and pine is a biolistic method using pollen (see, for example, Aronen, Finnish Forest Res. Papers, Vol. 595, S3 pp, 1996) or easily regenerable embryonic tissues.
[0086] Once the cells are transformed, cells having the inventive genetic construct incorporated in their genome may be selected by means of a marker, such as the kanamycin resistance marker discussed above. Transgenic cells may then be cultured in an appropriate medium to regenerate whole plants, using techniques well known in the art. In the case of protoplasts, the cell wall is allowed to reform under appropriate osmotic conditions. In the case of seeds or embryos, an appropriate germination or callus initiation medium is employed. For explants, an appropriate regeneration medium is used. Regeneration of plants is well established for many species. For a review of regeneration of forest trees see Dunstan et al., "Somatic embryogenesis in woody plants," in Thorpe TA, ed., In Vitro Embryogenesis of Plants (Current Plant Science and Biotechnology in Agriculture Vol. 20), Chapter 12, pp. 471-540, 1995. Specific protocols for the regeneration of spruce are discussed by Roberts et al., "Somatic embryogenesis of spruce," in Redenbaugh K, ed., Synseed: applications of synthetic seed to crop improvement, CRC Press: Chapter 23, pp. 427-449, 1993). Transformed plants having the desired phenotype may be selected using techniques well known in the art. The resulting transformed plants may be reproduced sexually or asexually, using methods well known in the art, to give successive generations of transgenic plants.
[0087] As discussed above, the production of RNA in target cells can be controlled by choice of the promoter sequence, or by selecting the number of functional copies or the site of integration of the polynucleotides incorporated into the genome of the target host. A target organism may be transformed with more than one genetic construct of the present invention, thereby modulating the activity of more than gene. Similarly, a genetic construct may be assembled containing more than one open reading frame coding for a polypeptide of interest or more than one untranslated region of a gene coding for such a polypeptide.
[0088] The isolated polynucleotides of the present invention also have utility in genome mapping, in physical mapping, and in positional cloning of genes. As detailed below, the polynucleotide sequences identified as SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127, and their variants, may be used to design oligonucleotide probes and primers. Oligonucleotide probes designed using the polynucleotides of the present invention may be used to detect the presence and examine the expression patterns of genes in any organism having sufficiently similar DNA and RNA sequences in their cells using techniques that are well known in the art, such as slot blot DNA hybridization techniques. Oligonucleotide primers designed using the polynucleotides of the present invention may be used for PCR amplifications. Oligonucleotide probes and primers designed using the polynucleotides of the present invention may also be used in connection with various microarray technologies, including the microarray technology of Affymetrix (Santa Clara, Calif.).
[0089] As used herein, the term "oligonucleotide" refers to a relatively short segment of a polynucleotide sequence, generally comprising between 6 and 60 nucleotides, and comprehends both probes for use in hybridization assays and primers for use in the amplification of DNA by polymerase chain reaction.
[0090] An oligonucleotide probe or primer is described as "corresponding to" a polynucleotide of the present invention, including one of the sequences set out as SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127, or a variant, if the oligonucleotide probe or primer, or its complement, is contained within one of the sequences set out as SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-127, or a variant of one of the specified sequences. Oligonucleotide probes and primers of the present invention are substantially complementary to a polynucleotide disclosed herein.
[0091] Two single stranded sequences are said to be substantially complementary when the nucleotides of one strand, optimally aligned and compared, with the appropriate nucleotide insertions and/or deletions, pair with at least 80%, preferably at least 90% to 95% and more preferably at least 98% to 100% of the nucleotides of the other strand. Alternatively, substantial complementarity exists when a first DNA strand will selectively hybridize to a second DNA strand under stringent hybridization conditions. Stringent hybridization conditions for determining complementarity include salt conditions of less than about 1 M, more usually less than about 500 mM, and preferably less than about 200 mM. Hybridization temperatures can be as low as 5° C., but are generally greater than about 22° C., more preferably greater than about 30° C., and most preferably greater than about 37° C. Longer DNA fragments may require higher hybridization temperatures for specific hybridization. Since the stringency of hybridization may be affected by other factors such as probe composition, presence of organic solvents and extent of base mismatching, the combination of parameters is more important than the absolute measure of any one alone.
[0092] In specific embodiments, the oligonucleotide probes and/or primers comprise at least about 6 contiguous residues, more preferably at least about 10 contiguous residues, and most preferably at least about 20 contiguous residues complementary to a polynucleotide sequence of the present invention. Probes and primers of the present invention may be from about 8 to 100 base pairs in length or, preferably from about 10 to 50 base pairs in length or, more preferably from about 15 to 40 base pairs in length. The probes can be easily selected using procedures well known in the art, taking into account DNA-DNA hybridization stringencies, annealing and melting temperatures, and potential for formation of loops and other factors, which are well known in the art. Preferred techniques for designing PCR primers are disclosed in Dieffenbach, C W and Dyksler, G S. PCR Primer: a laboratory manual, CSHL Press: Cold Spring Harbor, N.Y., 1995. A software program suitable for designing probes, and especially for designing PCR primers, is available from Premier Biosoft International, 3786 Corina Way, Palo Alto, Calif. 94303-4504.
[0093] A plurality of oligonucleotide probes or primers corresponding to a polynucleotide of the present invention may be provided in a kit form. Such kits generally comprise multiple DNA or oligonucleotide probes, each probe being specific for a polynucleotide sequence. Kits of the present invention may comprise one or more probes or primers corresponding to a polynucleotide of the present invention, including a polynucleotide sequence identified in SEQ ID NO: 1-14, 20, 22-62, 81-86 and 88-120.
[0094] In one embodiment useful for high-throughput assays, the oligonucleotide probe kits of the present invention comprise multiple probes in an array format, wherein each probe is immobilized at a predefined, spatially addressable location on the surface of a solid substrate. Array formats which may be usefully employed in the present invention are disclosed, for example, in U.S. Pat. Nos. 5,412,087 and 5,545,451; and PCT Publication No. WO 95/00450, the disclosures of which are hereby incorporated by reference.
[0095] The polynucleotides of the present invention may also be used to tag or identify an organism or reproductive material therefrom. Such tagging may be accomplished, for example, by stably introducing a non-disruptive non-functional heterologous polynucleotide identifier into an organism, the polynucleotide comprising one of the polynucleotides of the present invention.
[0096] The following examples are offered by way of illustration and not by way of limitation.
Example 1
Isolation and Characterization of a Ubiquitin Gene Promoter from Pinus radiata
[0097] Pinus radiata cDNA expression libraries were constructed and screened as follows. mRNA was extracted from plant tissue using the protocol of Chang et al., Plant Molecular Biology Reporter 11:113-116, 1993 with minor modifications. Specifically, samples were dissolved in CPC-RNAXB (100 mM Tris-Cl, pH 8,0; 25 mM EDTA; 2.0 M NaCl; 2% CTAB; 2% PVP and 0.05% Spermidine*3HCl) and extracted with chloroform:isoamyl alcohol, 24:1. mRNA was precipitated with ethanol and the total RNA preparate was purified using a Poly(A) Quik mRNA Isolation Kit (Stratagene, La Jolla, Calif.). A cDNA expression library was constructed from the purified mRNA by reverse transcriptase synthesis followed by insertion of the resulting cDNA clones in Lambda ZAP using a ZAP Express cDNA Synthesis Kit (Stratagene), according to the manufacturer's protocol. The resulting cDNAs were packaged using a Gigapack II Packaging Extract (Stratagene) employing 1 μl of sample DNA from the 5 μl ligation mix. Mass excision of the library was done using XL1-Blue MRF' cells and XLOLR cells (Stratagene) with ExAssist helper phage (Stratagene). The excised phagemids were diluted with NZY broth (Gibco BRL, Gaithersburg, Md.) and plated out onto LB-kanamycin agar plates containing X-gal and isopropylthio-beta-galactoside (IPTG).
[0098] Of the colonies plated and picked for DNA miniprep, 99% contained an insert suitable for sequencing. Positive colonies were cultured in NZY broth with kanamycin and cDNA was purified by means of alkaline lysis and polyethylene glycol (PEG) precipitation. Agarose gel at 1% was used to screen sequencing templates for chromosomal contamination. Dye primer sequences were prepared using a Turbo Catalyst 800 machine (Perkin Elmer/Applied Biosystems Division, Foster City, Calif.) according to the manufacturer's protocol.
[0099] DNA sequence for positive clones was obtained using a Perkin Elmer/Applied Biosystems Division Prism 377 sequencer. cDNA clones were sequenced first from the 5' end and, in some cases, also from the 3' end. For some clones, internal sequence was obtained using subcloned fragments. Subcloning was performed using standard procedures of restriction mapping and subcloning to pBluescript II SK+ vector.
[0100] As described below, one of the most abundant sequences identified was a ubiquitin gene, hereinafter referred to as the "Super-Ubiquitin or SU" gene.
Isolation of cDNA Clones Containing the Ubiquitin Gene
[0101] Sequences of cDNA clones with homology to the ubiquitin gene were obtained from high-throughput cDNA sequencing as described above. Sequences from several independent clones were assembled in a contig and a consensus sequence was generated from overlapping clones. The determined nucleotide sequence of the isolated Super Ubiquitin clone, comprising the promoter region (including an intron), coding region and 3' untranslated region (UTR) is provided in SEQ ID NO: 1. The 5' UTR is represented by residues 1 to 2,064, the intron by residues 1,196 to 2,033, and the coding region of the gene, which contains three direct repeats, by residues 2,065 to 2,751. The 3' UTR is 328 residues long (residues 2,755 to 3,083). The nucleotide sequence of the Super Ubiquitin promoter region only, including the intron, is given in SEQ ID NO: 2. The nucleotide sequence of the Super Ubiquitin promoter region only, excluding the intron, is given in SEQ ID NO: 3. The predicted amino acid sequence for the Pinus radiata Super Ubiquitin is provided in SEQ ID NO: 80.
[0102] Ubiquitin proteins function as part of a protein degradation pathway, in which they covalently attach to proteins, thereby targeting them for degradation (for a review, see Belknap and Garbarino, Trends in Plant Sciences 1:331-335, 1996). The protein is produced from a precursor polypeptide, encoded by a single mRNA. The Super Ubiquitin mRNA contains three copies of the ubiquitin monomer.
Cloning of the Super Ubiquitin Promoter
[0103] Fragments of the Super Ubiquitin promoter were cloned by two different PCR-based approaches.
Method 1: Long Distance Gene Walking PCR
[0104] Using "Long Distance Gene Walking" PCR (Min and Powell, Biotechniques 24:398-400, 1998), a 2 kb fragment was obtained that contained the entire coding region of the ubiquitin gene, a 900 bp intron in the 5' UTR and approximately 100 bp of the promoter.
[0105] To generate this fragment, 2 nested primers were designed from the 3' UTR of the Super Ubiquitin cDNA sequence isolated from pine. Generally, the 5' UTR is used for primer design to amplify upstream sequence. However, the available 5' UTR of Super Ubiquitin was very short, and two initial primers derived from this region failed to amplify any fragments. Therefore, the primers of SEQ ID NO: 15 and 16 were designed from the 3' UTR.
[0106] The method involved an initial, linear PCR step with pine genomic DNA as template using the primer of SEQ ID NO: 15, and subsequent C-tailing of the single stranded DNA product using terminal transferase. The second PCR-step used these fragments as template for amplification with the primer of SEQ ID NO: 16 and primer AP of SEQ ID NO: 17. The AP primer was designed to bind to the polyC tail generated by the terminal transferase. Both primers (SEQ ID NO: 16 and 17) contained a 5'-Nod restriction site for the cloning of products into the Nod site of a suitable vector. The final PCR product contained fragments of different sizes. These fragments were separated by electrophoresis and the largest were purified from the gel, digested with restriction endonuclease NotI and cloned in the NotI site of expression vector pBK-CMV (Stratagene, La Jolla, Calif.). The largest of these clones contained the complete coding region of the gene (no introns were found in the coding sequence) and a 5' UTR which contained a 900 bp intron.
Method 2: "Genome Walker" Kit
[0107] The Super Ubiquitin gene promoter was cloned using a "Genome Walker" kit (Clontech, Palo Alto, Calif.). This is also a PCR-based method, which requires two PCR primers to be constructed, one of which must be gene-specific. Although the ubiquitin coding region is highly conserved, the 5' UTR from different ubiquitin genes is not conserved and could therefore be used to design a gene-specific primer. A 2.2 kb fragment was amplified and subcloned in pGEM-T-easy (Promega, Madison, Wis.). Analysis by PCR and DNA sequencing showed that the clone contained 5' UTR sequence of the Super Ubiquitin gene, including the 900 bp intron and approximately 1 kb of putative promoter region. An intron in the 5' UTR is a common feature of plant polyubiquitin genes and may be involved in determining gene expression levels.
[0108] The gene specific primers used for these PCR reactions are provided in SEQ ID NO: 18 and 19.
Expression of Super Ubiquitin
[0109] Using primers derived from the gene-specific 5' and 3' UTR sequences, expression levels of Super Ubiquitin in different plant tissues was examined by means of RT-PCR, Super Ubiquitin was found to be expressed in all plant tissues examined, including branch phloem and xylem, feeder roots, fertilized cones, needles, one year old cones, pollen sacs, pollinated cones, root xylem, shoot buds, structural roots, trunk phloem and trunk. Expression of Super Ubiquitin in plant tissues was also demonstrated in a Northern blot assay using a PCR probe prepared from the 5'UTR.
Functional Analysis of the Super Ubiquitin Promoter
[0110] To test the function of the Super Ubiquitin promoter in plants, Arabidopsis thaliana was transformed with constructs containing the reporter gene for Green Fluorescent Protein (GFP) operably linked to either the Super Ubiquitin promoter of SEQ ID NO: 2 or SEQ ID NO: 3 (i.e., either with or without the intron). Constructs lacking a promoter were used as a negative control, with a plant T-DNA vector carrying a CaMV 35S promoter cloned in front of GFP being used as a positive control. The constructs were introduced into Arabidopsis via Agrobacterium-mediated transformation.
[0111] All the plant culture media were according to the protocol of Valvekens and Van Montagu, Proc. Natl. Acad. Sci. USA 85:5536-5540, 1988 with minor modifications. For root transformation, sterilized seeds were placed in a line on the surface of germination medium, the plates were placed on their sides to facilitate root harvesting, and the seeds were grown for two weeks at 24° C. with a 16 h photoperiod.
[0112] Expression of the constructs was measured by determining expression levels of the reporter gene for Green Fluorescent Protein (GFP). Preliminary GFP expression (transient) was detected in early transgenic roots during T-DNA transfer. Transgenic roots that developed green callus, growing on shoot-inducing medium containing 50 μg/ml Kanamycin and 100 μg/ml Timentin, were further tested for GFP expression. After several weeks of stringent selection on Kanamycin medium, several independent transgenic Arabidopsis lines were engineered and tested for GFP expression.
[0113] Expression was seen both with the Super Ubiquitin promoter including intron and the Super Ubiquitin promoter without the intron. However, preliminary results indicated that the levels of expression obtained with the Super Ubiquitin intron-less promoter construct were significantly higher than those seen with the promoter including intron, suggesting that the intron may contain a repressor. The sequence of the intron is provided in SEQ ID NO: 21.
Example 2
Isolation of a CDC Promoter from Pinus radiata
[0114] Plant polynucleotide sequences homologous to the Cell Division Control (CDC) protein gene were isolated from a Pinus radiata cDNA expression library as described in Example 1. Using the "Genome Walker" protocol described above and gene specific primers designed from these plant polynucleotide sequences, 5'UTR sequence containing the putative promoter of the P. radiata CDC gene was isolated from genomic DNA. The determined nucleotide sequence is given in SEQ ID NO: 4.
Example 3
Isolation of a Xylogenesis-Specific Promoter from Pinus radiata
[0115] Plant polynucleotide sequences specific for plant xylogenesis were isolated from Pinus radiata cDNA expression libraries prepared from xylem, essentially as described in Example 1. Using the "Genome Walker" protocol described above and gene specific primers designed from these plant polynucleotide sequences, sequences containing putative Pinus radiata xylogenesis-specific promoters were isolated from genomic DNA. The determined nucleotide sequences are provided in SEQ ID NO: 5 and 41-44. An extended cDNA sequence for the clone of SEQ ID NO: 41-44 is provided in SEQ ID NO: 92.
Example 4
Isolation of a 4-Coumarate-CoA Ligase Promoter from Pinus radiata
[0116] Plant polynucleotide sequences homologous to the 4-Coumarate-CoA Ligase (4CL) gene were isolated from a Pinus radiata cDNA expression library as described in Example 1. Using the "Genome Walker" protocol described above and gene specific primers designed from these plant polynucleotide sequences, sequences containing the putative promoter of the P. radiata 4CL gene was isolated from genomic DNA. The determined nucleotide sequence is given in SEQ ID NO: 6.
[0117] Genetic constructs comprising the reporter gene for Green Fluorescent Protein (GFP) or GUS reporter genes operably linked to the promoter of SEQ ID NO: 6 were prepared and used to transform Arabidopsis thaliana plants.
Example 5
Isolation of a Cellulose Synthase Promoter from Eucalyptus grandis
[0118] Plant polynucleotide sequences homologous to the cellulose synthase gene were isolated from a Eucalyptus grandis cDNA expression library essentially as described in Example 1. Using the "Genome Walker" protocol described above and gene specific primers designed from these plant polynucleotide sequences, 5'UTR sequences containing the putative promoter of the E. grandis cellulose synthase gene were isolated from genomic DNA. Independent PCR experiments using different DNA bands as templates yielded two sequences which contained a number of base differences. One band was 750 bp in length and the nucleotide sequence of this band is given in SEQ ID NO: 7. The other band was 3 kb in length. The sequence of the 3' end of this band corresponded to the sequence given in SEQ ID NO: 7, with a number of base pair differences. The sequence of this 3' end is given in SEQ ID NO: 8. The sequence of the 5' end of this band is given in SEQ ID NO: 20.
Example 6
Isolation of a Leaf-Specific Promoter from Eucalyptus grandis
[0119] Plant polynucleotide sequences specific for leaf were isolated from Eucalyptus grandis cDNA expression libraries prepared from leaf tissue, essentially as described in Example 1. Using the "Genome Walker" protocol described above and gene specific primers designed from these plant polynucleotide sequences, 5'UTR sequence containing a leaf-specific promoter of a novel E. grandis gene (of unknown function) was isolated from genomic DNA. Independent PCR experiments using different DNA bands as templates yielded three sequences which contained a number of base differences and deletions. The determined nucleotide sequences of the three PCR fragments are given in SEQ ID NO: 9-11.
Example 7
Isolation of an O-Methyl Transferase Promoter from Eucalyptus grandis
[0120] Plant polynucleotide sequences homologous to an O-methyl transferase (OMT) gene were isolated from a Eucalyptus grandis cDNA expression library essentially as described in Example 1. Using the "Genome Walker" protocol described above and gene specific primers designed from these plant polynucleotide sequences, 5'UTR sequences containing the putative promoter of the E. grandis OMT gene was isolated from genomic DNA. The determined nucleotide sequence is given in SEQ ID NO: 12. This promoter sequence was extended by further sequencing. The extended cDNA sequences are given in SEQ ID NO: 60 and 113.
[0121] Genetic constructs comprising the reporter gene for Green Fluorescent Protein (GFP) operably linked to the promoter of SEQ ID NO: 12 were prepared and used to transform Arabidopsis thaliana.
Example 8
Isolation of Root-Specific Promoters from Pinus radiata
[0122] Plant polynucleotide sequences homologous to the root-specific receptor-like kinase gene were isolated from a Pinus radiata cDNA expression library as described in Example 1. Using the "Genome Walker" protocol described above and gene specific primers designed from these plant polynucleotide sequences, 5'UTR sequence containing a putative P. radiata root-specific promoter was isolated from genomic DNA. Two independent PCR experiments yielded sequences that contained a number of base differences. The determined nucleotide sequences from the two experiments are given in SEQ ID NO: 13, 14, 110 and 111.
Example 9
Isolation of an EF1-alpha Promoter from Eucalyptus Grandis
[0123] Plant polynucleotide sequences homologous to the Eucalyptus Elongation Factor-alpha (EF1-alpha) gene were isolated from a Eucalyptus grandis cDNA expression library and used to screen a Eucalyptus grandis genomic DNA library as follows.
[0124] The Eucalyptus grandis genomic DNA library was constructed using genomic DNA extracted from Eucalyptus nitens×grandis plant tissue, according to the protocol of Doyle and Doyle, Focus 12:13-15, 1990, with minor modifications. Specifically, plant tissue was ground under liquid nitrogen and dissolved in 2×CTAB extraction buffer (2% CTAB, hexadecyltrimethylammonium bromide; 1.4 M NaCl, 20 mM EDTA pH 8.0, 100 mM Tris.HCl pH 8.0, 1% polyvinylpyrollidone). After extraction with chloroform:isoamylalcohol (24:1), 10% CTAB was added to the aqueous layer and the chloroform:isoamylalcohol extraction repeated. Genomic DNA was precipitated with isopropanol.
[0125] The resulting DNA was digested with restriction endonuclease Sau3A1 following standard procedures, extracted once with phenol:chloroform:isoamylalcohol (25:24:1) and ethanol precipitated. The digested fragments were separated on a sucrose density gradient using ultracentrifugation. Fractions containing fragments of 9-23 kb were pooled and ethanol precipitated. The resulting fragments were cloned into the lambda DASH II/BamHI vector (Stratagene, La Jolla, Calif.) following the manufacturer's protocol and packaged using a Gigapack II Packaging Extract (Stratagene). The library was amplified once.
[0126] The library was screened with radiolabeled EST fragments isolated from a Eucalyptus grandis library (as described in Example 1), that showed homology to the Eucalyptus EF1-alpha gene. Phage lysates were prepared from positive plaques and genomic DNA was extracted.
[0127] From this genomic DNA, the 5'UTR region containing the putative promoter of the Eucalyptus EF1-alpha gene was obtained using the ELONGASE Amplification System (Gibco BRL). A 10 kb fragment was amplified and restriction mapped. The putative promoter region of the Eucalyptus elongation factor A (EF1-alpha) gene was identified on a 4 kb fragment, which was subcloned into a pUC19 vector (Gibco BRL) containing an engineered NotI-site. The determined genomic DNA sequences of the isolated fragment containing the promoter region are provided in SEQ ID NO: 61 and 62, with the amino acid encoded by SEQ ID NO: 61 being provided in SEQ ID NO: 79. An extended sequence of the clone of SEQ ID NO: 61 is provided in SEQ ID NO: 127.
Example 10
Isolation of Flower-Specific Promoters from Eucalyptus grandis
[0128] Plant polynucleotide sequences specific for flower-derived tissue were isolated from Eucalyptus grandis cDNA expression libraries prepared from flower tissue, essentially as described in Example 1. Using the "Genome Walker" protocol described above and gene specific primers designed from these plant polynucleotide sequences, several sequences, each containing a putative Eucalyptus grandis flower-specific promoter, were isolated from genomic DNA. The determined nucleotide sequences are given in SEQ ID NO: 29-33 and 59. An extended sequence of the clone of SEQ ID NO: 30-33 is provided in SEQ ID NO: 89. An extended sequence of the clone of SEQ ID NO: 29 is provided in SEQ ID NO: 90.
Example 11
Isolation of Pollen-Specific Promoters from Eucalyptus grandis and Pinus radiata
[0129] Plant polynucleotide sequences specific for pollen were isolated from Eucalyptus grandis and Pinus radiata cDNA expression libraries prepared from pollen, essentially as described in Example 1. Using the "Genome Walker" protocol described above and gene specific primers designed from these plant polynucleotide sequences, several sequences, each containing a putative pollen-specific promoter, were isolated from genomic DNA. The determined nucleotide sequences isolated from Pinus radiata are given in SEQ ID NO: 49-53, with the predicted amino acid sequences encoded by SEQ ID NO: 51-53 being provided in SEQ ID NO: 73-75, respectively. An extended sequence for the clone of SEQ ID NO: 49 is provided in SEQ ID NO: 94.
Example 12
Isolation of Bud-Specific and Meristem-Specific Promoter from Pinus radiata
[0130] Plant polynucleotide sequences specific for bud and meristem were isolated from Pinus radiata cDNA expression libraries prepared from bud and meristem, essentially as described in Example 1. Using the "Genome Walker" protocol described above and gene specific primers designed from these plant polynucleotide sequences, two sequences, one containing a putative bud-specific promoter and the other containing a putative meristem-specific promoter, were isolated from genomic DNA. The determined nucleotide sequences for these two promoters are given in SEQ ID NO: 40 and 45, respectively. The predicted amino acid sequences encoded by the DNA sequences of SEQ ID NO: 40 and 45 are provided in SEQ ID NO: 70 and 71, respectively.
Example 13
Isolation of Promoters from Eucalyptus Grandis
[0131] Plant polynucleotide sequences showing some homology to various known genes were isolated from Eucalyptus grandis cDNA expression libraries essentially as described in Example 1. Using the "Genome Walker" protocol described above and gene specific primers designed from these plant polynucleotide sequences, sequences containing the putative promoters for the following E. grandis genes were isolated from genomic DNA: auxin induced protein (SEQ ID NO: 26-28); carbonic anhydrase (SEQ ID NO: 36); isoflavone reductase (SEQ ID NO: 37 and 38); pollen allergen (SEQ ID NO: 23-25); pollen coat protein (SEQ ID NO: 22), sucrose synthase (SEQ ID NO: 56-58); ubiquitin (SEQ ID NO: 34); glyceraldehyde-3-phosphate dehydrogenase (SEQ ID NO: 35 and 39); O-methyl transferase (OMT; SEQ ID NO: 60); macrophage migration inhibition factor from mammals (MIF; SEQ ID NO: 81-86); UDP glucose 6-dehydrogenase (SEQ ID NO: 103); laccase 1 (SEQ ID NO: 105, 106 and 116); arabinogalactan-like 1 (SEQ ID NO: 107); arabinogalactan-like 2 (SEQ ID NO: 108, 109); a hypothetical protein (SEQ ID NO: 104); constans (SEQ ID NO: 118); Flowering Promoting Factor 1 (FPF1; SEQ ID NO: 119); transcription factor DREB-1 (SEQ ID NO: 121); salt tolerance protein (SEQ ID NO: 123); xylem-specific histidine kinase-like (SEQ ID NO: 125) and root specific (SEQ ID NO: 126). The amino acid sequences encoded by the DNA sequences of SEQ ID NO: 22, 25, 26, 28, 34, 35, 36, 56, 57, 60, 86 and 124 are provided in SEQ ID NO: 63, 64, 65, 66, 67, 68, 69, 76, 77, 78, 87 and 130, respectively. Extended cDNA sequences for the clones of SEQ ID NO: 58, 35, 60, 103, 106 and 107 are provided in SEQ ID NO: 91, 93, 113 and 115-117, respectively.
Example 14
Isolation of Promoters from Pinus radiata
[0132] Plant polynucleotide sequences showing some homology to various known genes were isolated from Pinus radiata cDNA expression libraries essentially as described in Example 1. Using the "Genome Walker" protocol described above and gene specific primers designed from these plant polynucleotide sequences, sequences containing the putative promoters for the following Pinus radiata genes were isolated from genomic DNA: senescence-like protein (SEQ ID NO: 46-48); nodulin homolog pollen specific (SEQ ID NO: 54 and 55); chalcone synthase (SEQ ID NO: 88); PrMALE1 (SEQ ID NO: 95, 96); UDP glucose glycosyltransferase (SEQ ID NO: 97); elogation factor 1 alpha (SEQ ID NO: 98, 99); S-adenosylmethionine synthase (SEQ ID NO: 100-102); Pinus radiata lipid transfer protein 2 (PrLTP2; SEQ ID NO: 112); Pinus radiata agamous protein (SEQ ID NO: 120); Drought Induced DI-19 (SEQ ID NO: 122) and low temperature induced protein LTI (SEQ ID NO 124). The amino acid sequences encoded by the polynucleotide sequences of SEQ ID NOS: 46 and 124 are provided in SEQ ID NOS: 72 and 130. An extended cDNA sequence for the clone of SEQ ID NO: 97 is provided in SEQ ID NO: 114.
Example 15
Polynucleotide and Amino Acid Analysis
[0133] The determined cDNA sequences described above were compared to and aligned with known sequences in the EMBL database (as updated to October 2000). Specifically, the polynucleotides identified in SEQ ID NOS: 22-62 and 88-120 were compared to polynucleotides in the EMBL database using the BLASTN algorithm Version 2.0.6 [Sep. 16, 1998] and the polynucleotides identified in SEQ ID NOS: 121-127 were compared to polynucleotides in the EMBL database using the BLASTN algorithm Version 2.0.11 [Jan. 20, 2000] set to the following running parameters: Unix running command: blastall -p blastn -d embldb -e 10 -G0 -E0 -r1 -v30 -b30 queryseq -o results. Multiple alignments of redundant sequences were used to build up reliable consensus sequences. Based on similarity to known sequences from other plant or non-plant species, the isolated polynucleotides of the present invention identified as SEQ ID NOS: 22-62 and 88-127 were putatively identified as having the functions shown in Table 1, above.
[0134] The cDNA sequences of SEQ ID NO: 1-22, 23, 25-42, 45-49, 57-59, 62, 88-99, 101-112 and 114-127 were determined to have less than 40% identity to sequences in the EMBL database using the computer algorithm BLASTN, as described above. The cDNA sequences of SEQ ID NO: 56 and 113 were determined to have less than 60% identity to sequences in the EMBL database using BLASTN, as described above. The cDNA sequences of SEQ ID NO: 43, 52, 60 and 61 were determined to have less than 75% identity to sequences in the EMBL database using BLASTN, as described above. The cDNA sequences of SEQ ID NO: 24, 51 and 100 were determined to have less than 90% identity to sequences in the EMBL database using BLASTN, as described above.
Example 16
Modification of a Reporter Gene Under Control of the Superubiquitin Promoter
[0135] Six independent Arabidopsis thaliana transgenic lines were transformed with Pinus radiata superubiquitin promoter constructs to demonstrate the relative expression of a GUS reporter gene under control of different superubiquitin promoter constructs. The reporter constructs in the plasmid pBI-101 contained the GUS (β-D-glucuronidase) reporter gene in frame with the superubiquitin promoter with the intron (SEQ ID NO: 2), the superubiquitin promoter without the intron (SEQ ID NO: 3), and the CaMV 35S promoter. A reporter gene construct without a promoter sequence was used as control.
[0136] Groups of six Arabidopsis thaliana plants were transformed with the reporter constructs described above, using Agrobacterium tumefaciens transformation protocols. A. tumefaciens was transformed with 100 ng of the plasmid DNA according to standard techniques, as described, for example, by Bevan (Nucleic Acids Res. 12:8711-8721, 1984). Fresh plant material was collected from each plant, protein extracted from the whole plant, and the protein concentration determined (Bradford, Anal. Biochem. 72:248-254, 1976). The protein samples were diluted with carrier bovine serum albumin to 100 ng protein to maintain readings on the fluorimeter in the linear part of the standard curve using 4-methyl-umbelliferone (MU). GUS activity was quantified by fluorimetric analysis, using a Victor2 1420 multi-label counter (Wallac, Turku, Finland) as described by Jefferson (Plant Mol. Biol. Rep. 5:387-405, 1987). As shown in FIG. 1, the construct containing the superubiquitin promoter without the intron showed seven times more GUS activity than the CaMV 35S promoter and the construct containing the superubiquitin promoter with the intron showed sixty two times more GUS activity than the CaMV 35S promoter. No activity was detected for the promoter-less control construct.
Example 17
Determination of the Activity of Superubiquitin Promoter Constructs in Tobacco Plant Protoplasts
Isolation of Protoplasts
[0137] Protoplasts were isolated from sterile tobacco (Nicotiana tabacum) leaf tissue and transformed with superubiquitin promoter constructs. Mesophyllprotoplasts were prepared according to the method of Bilang et al., Plant Molecular Biology Manual A1:1-16, 1994. A number of fully expanded leaves were removed from sterile wild type tobacco plants, sliced perpendicular to the midrib and submerged in a digestion enzyme solution containing 1.2% cellulase and 0.4% pectinase (Sigma, St. Louis Mo.). The leaves were left to incubate in the dark without agitation at 26° C. for approximately 18 hours. The leaf strips were then gently agitated for 30 min to release the protoplasts. Protoplasts were further purified by filtration through 100 μm nylon mesh. One ml of W5 solution (154 mM MgCl2, 125 mM CaCl2, 5 mM KCl, 5 mM glucose, pH 5.8-6) was carefully layered on top of the filtrate and centrifuged at 80×g for 10 min. The live protoplast layer was removed with a wide bore pipette, washed twice with 10 ml W5 solution using centrifugation at 70×g for 5 min, with final resuspension in 5 ml W5 solution. Protoplasts were counted in a hemocytometer and viability was determined under the microscope after staining with 5 mg/ml fluoroscein diacetate (FDA) in 100% acetone.
Transformation with Promoter Constructs
[0138] The isolated protoplasts were transformed with plasmid DNA using a polyethylene glycol protocol. After centrifugation of the purified protoplasts at 70×g for 5 min, they were resuspended in MMM solution (15 mM MgCl2, 0.1% w/v 2[N-morpholino]ethanesulfonic acid (MES), 0.5 M mannitol pH 5.8) to a density of 2×106 protoplasts/ml. Aliquots containing 5×105 protoplasts/ml in 250 μl were distributed to 15 ml tubes and mixed with 20 μg plasmid DNA. 250 μl polyethylene glycol-4000 (40%) was gently added and incubated for 5 minutes at room temperature. Ten ml W5 solution was slowly added, the protoplasts centrifuged at 70×g for 5 min and finally resuspended in 2 ml K3 medium (Bilang et al., Plant Molecular Biology Manual A1:1-16, 1994). The transformed protoplasts were incubated in the dark at 26° C. for 24 hours before protein was extracted for reporter enzyme assays using 4-methyl-umbelliferyl-glucuronide (MUG).
[0139] Protein was extracted from the protoplasts using the following protocol. Transformed protoplast suspensions were centrifuged at 70×g for 10 min, resuspended in 50 μl extraction buffer (Jefferson, Plant Mol. Biol. Rep. 5:387-405, 1987) and vigorously mixed using a vortex. The homogenate was cleared by centrifugation at 4,300 rpm for 5 min, the supernatant removed and used for protein assays (Bradford, Anal. Biochem. 72:248-254, 1976).
[0140] The results shown in FIG. 2 demonstrate the promoter activity of deletion constructs of the superubiquitin promoter without the intron (SEQ ID NO: 3) and the superubiquitin promoter with the intron (SEQ ID NO: 2) in tobacco plant protoplasts transformed as described above. The deletion constructs were made in plasmid pBI-101 that contained the GUS reporter gene, using Endonuclease III (Gibco BRL, Gaithersburg, Md.) according to the manufacturer's protocols. The deletion constructs contained 1,103; 753; 573; 446; 368 and 195 bp of superubiquitin promoter sequence, respectively, upstream of the TATA sequence (bp numbers 1,104-1,110 of SEQ ID NO: 2). A control construct containing no sequence upstream of the TATA sequence was also made. These results show that the construct containing the entire superubiquitin promoter with the intron had the highest MU activity in the protoplasts.
[0141] In FIG. 3, the tobacco protoplasts were transformed with four different promoter constructs in plasmid pBI-101 containing the GUS reporter gene. These included the superubiquitin promoter without the intron (SEQ ID NO: 3), an elongation factor 1α promoter (SEQ ID NO: 99) and a 5-adenosylmethionine synthetase promoter (SEQ ID NO: 100). A promoterless control was included in the experiment, and is referred to in FIG. 3 as pBI-101.
Example 18
Determination of the Activity of P. Radiata Pollen-Specific Promoter and E. grandis Pollen Specific Promoter Constructs in transformed Arabidopsis thaliana cv Columbia
[0142] Arabidopsis thaliana transgenic lines were transformed with A. tumefaciens containing constructs of the P. radiata pollen specific promoter (SEQ ID NO: 94) and E. grandis pollen specific promoter (SEQ ID NO: 22) to demonstrate the relative expression of a GUS reporter gene under control of these promoter constructs. The promoter sequences were cloned into plasmid pBI-101 containing a GUS reporter gene.
Agrobacterium Tumefaciens Transformation
[0143] Agrobacterium tumefaciens strain GV3101 was transformed with these constructs using electroporation. Electrocompetent A. tumefaciens cells were prepared according to the method of Walkerpeach and Velten, Plant Mol. Biol. Man. B1:1-19, 1994. Construct DNA (4 ng) was added to 40 μl competent A. tumefaciens GV3101 cells and electroporation was done using a BTX Electro Cell Manipulator 600 at the following settings: Mode: T 2.5 kV Resistance high voltage (HV), Set Capacitance: C (not used in HV mode), Set Resistance: R R5 (129 Ohm), Set charging voltage: S1.44 kV, Desired field strength: 14.4 kV/cm and Desired pulse strength: t 5.0 msec. 400 μl YEP liquid media (20 g/l yeast, 20 g/l peptone and 10 g/l sodium chloride) was added to the cuvette and left to recover for one hour at room temperature. Transformed bacteria in YEP medium were spread out on solid YEP medium containing 50 mg/l kanamycin and 50 mg/l rifampicin and incubated at 29° C. for two days to allow colony growth.
Confirmation of Transformation of Constructs into A. tumefaciens
[0144] To confirm that the constructs have been transformed into A. tumefaciens, DNA from the A. tumefaciens colonies from the YEP plates were isolated using standard protocols and amplified using the polymerase chain reaction (PCR) with primers designed from the pBI-101 vector sequence. The primer sequences are given in SEQ ID NOS: 128 and 129. PCR reactions were set up following standard protocols and 30 PCR cycles were done with extension temperature of 72° C.
Transformation of A. thaliana with Transformed A. tumefaciens
[0145] The optical density of the A. tumefaciens bacterial culture was adjusted to 0.7 with infiltration medium (5% sucrose, 0.05% Silwett L-77 surfactant). A. thaliana cv. Columbia plants (6 punnets per construct and 10-12 plants per punnet) were pruned by removing secondary bolts. Pruned A. thaliana plants in punnets were dipped into infiltration solution and moved back and forth for 5 seconds. Punnets were put on their side to allow excess infiltration medium to drain covered with a top tray and wrapped in plastic wrap to maintain humidity. Plants were placed in a growth room at ambient conditions for 24 hours. After this period, the top tray and plastic wrap were removed and plants were set upright until siliques formed.
[0146] Seeds were harvested and sterilized with a 5% sodium hypochlorite solution to destroy any residual A. tumefaciens bacteria and fungal contamination.
[0147] Under sterile conditions, 100 μl seeds from the transformed A. thaliana plants were placed into an Eppendorf tube. One ml sterile water was added and the seeds left to imbibe the water for no longer than an hour. The water was remove by centrifugation, 1 ml 70% ethanol added to the seeds and gently mixed. This step was not allowed to last longer than one minute. The ethanol was removed by centrifugation, 1 ml 5% sodium hypochlorite solution was added to the seeds and gently mixed for up to 5 min. The sodium hypochlorite solution was removed by centrifugation and the seeds washed with sterile water for 1 min. The washing step was repeated three more times with centrifugation. Seeds were finally resuspended in sterile water. 500 μl of seeds in solution were pipetted onto half-strength Murashige and Skoog medium (MS; Gibco BRL) agar plates containing 50 mg/l kanamycin and 250 mg/l timentin and spread evenly with a flamed wire-loop. The Petri dishes were placed in a refrigerator for 3 days to allow the seeds to stratify. Thereafter the plates were placed in growth room and grown under lights at 22° C. with a 14 hour photoperiod until germination. Putative transformant seedlings were selected as those growing on the antibiotic-containing medium, with large, healthy-looking dark green leaves and a strong root system. These transgenic plants were removed and placed into soil culture at 22° C. with a 12 hour photoperiod.
Staining of Plant Tissues
[0148] Tissue were taken from the flower, leaf, stem and root of A. thaliana transformed with constructs of P. radiata unknown pollen specific promoter and E. grandis pollen specific promoter and stained histochemically to determine the expression of the GUS gene under control of the pollen specific promoters. The GUS staining protocol is described by Campisi et al., Plant J. 17:699-707, 1999.
[0149] A. thaliana flower, leaf, stem and root tissue were immersed in staining solution (50 mM NaPO4 pH 7.2; 0.5% Triton X-100; 1 mM X Glucuronide sodium salt (Gibco BRL)) for immunochemical staining. Vacuum was applied twice for 5 min to infiltrate the tissue with the staining solution. The tissue was left in the staining solution for 2 days (with agitation) at 37° for color development and then destained in 70% ethanol for 24 hours at 37° C. (with agitation). The tissues were examined for blue GUS staining using a light microscope. GUS expression was observed only in the flower buds of plants transformed with the P. radiata pollen specific promoter construct, and not in the leaf, stem or root tissue. With the E. grandis pollen specific promoter construct, Gus expression was observed in the floral buds as well as in the hydathodes of the leaves. No expression was observed in the stem or root tissues.
[0150] To determine in which cell layers the GUS gene was expressed, flower buds were fixed for thin sectioning. The flower buds were fixed with formaldehyde acetic acid (FAA) in an Eppendorf tube and vacuum was applied twice for 15 min. After incubation for 2 hours at room temperature, vacuum was again applied for 15 min and the tissue left overnight at 4° C. The tissues were then dehydrated using a series of ethanol and then passed into a xylene series. Paraffin wax (Sigma) was added slowly and the tissues left for 72 hours with wax changes every 12 hours. Sections of 8 to 10 μm thickness were prepared using a microtome.
[0151] The thin sections illustrated that GUS expression was restricted to the tapetum cell layer in the anther of the floral bud of A. thaliana transformed with the P. radiata construct (SEQ ID NO: 49). No staining was observed in other tissues from the floral bud. GUS expression was confined to the pollen grains within the flower bud of A. thaliana transformed with the E. grandis pollen specific promoter construct, with low levels of GUS expression in the fibrous and connective tissue of the anther. No GUS expression was observed in other organs of the floral bud.
Example 19
Determination of the Activity of an E. grandis EF1 Alpha Promoter Deletion Construct in Transformed Arabidopsis thaliana cv Columbia
[0152] Protoplasts from Nicotiana tabacum Bright Yellow 2 (BY-2) cell suspension were transformed with a deletion construct of the E. grandis EF1-alpha promoter to determine GUS expression. Base pairs 2,174 to 3,720 of SEQ ID NO: 127 were cloned into expression vector pART9, containing the reporter gene GUS and an OCS termination sequence.
Preparation of Protoplasts
[0153] Sterile Nicotiana tabacum Bright Yellow-2 (BY-2) suspension cultures were prepared as described in Example 17. After incubation for 3 to 5 days, 3 g of the N. tabacum BY-2 cell suspension were suspended in an enzyme solution containing 1% cellulase, 0.3% pectinase and 0.5% driselase in 0.4 M mannitol. These were left to digest in the dark, with agitation at 26° C., for 3-4 hours. Protoplasts were purified by filtration through a 63 μm nylon mesh. Protoplasts were centrifuged at 80×g for 5 min, washed twice with 10 ml FMS medium (Fukuda, Murashige and Skoog medium; Hasezawa & Syono, Plant Cell Physiol. 24:127-132, 1983) and finally resuspended in 5 ml FMS medium. Protoplasts were counted in a hemocytometer and viability determined by staining with 5 mg/ml FDA (fluorescein deacetate; Sigma St Louis Mich.) in 100% acetone by viewing under the fluorescent microscope.
Transformation of Protoplasts
[0154] Protoplasts were transformed according to the protocol described by Morgan and Ow (In: Methods in Plant Molecular Biology: a laboratory course manual, pp. 1-16. P. Maliga, D. Klessig, A. R. Cashmore, W. Gruissem, and J. E. Varner, eds. Cold Spring Harbor Laboratory, CSHP, NY). Briefly, the protocol is as follows. Following the counting step, protoplasts were centrifuged at 80×g for 5 min and resuspended in 1× MaMg solution (0.4 M manniotol, 15 mM MgCl2.6H2O, 0.1% 2-(N-Morpholino)ethane sulfonic acid (MES)) to a density of 5×106 protoplasts/ml. Aliquots of 100 μl (0.5×105 protoplasts) were distributed to 15 ml tubes and washed with 5 ml 1× MaMg (200 g, 5 min). Pelleted protoplasts were resuspended in 500 ul 1× MaMg solution, and heat shocked by placing at 45° C. for 5 minutes. After incubation at room temperature 5-10 minutes, the transforming DNA was added (10-20 μg DNA+10 μg carrier DNA). To this, 500 μl 40% PEG-3500 was gently added and incubated for 25 minutes at room temperature. 5 ml W5 (154 mM NaCl, 125 mM CaCl2.2H2O, 5 mM KCl, 5 mM Glucose) solution was slowly added stepwise followed by centrifugation at 200×g for 5 min. Pelleted protoplasts were resuspended in 1 ml K3AM medium at approximately 0.5×105 protoplasts/ml. Samples were transferred to 6-well plates and incubated in the dark at 26° C. for 48 hours.
[0155] To extract protein, protoplasts were centrifuged at 200×g for 5 min in a microfuge, resuspended in 100 μl GUS extraction buffer (50 mM NaPO4 pH 7.2, 10 mM EDTA pH 8, 0.01% Sarcosyl, 0.1% Triton X-100) containing β-mercaptoethanol (Jefferson et al., Plant Mol. Biol. Rep. 5:387-405, 1987) and vortexed for 1 min. The homogenate was cleared by centrifugation at 5,000 rpm for 5 minutes. The supernatant containing the protein was transferred to a fresh tube and stored at -80° C. The protein concentrations were determined by BioRad protein assay kit (BioRad, Hercules, Calif.) following the manufacturer's protocols. Protein extracts were diluted 1/10 with extraction buffer.
Determination of GUS Expression
[0156] GUS expression in the protoplast extracts was determined using a MUG (4-methyl umbelliferyl β-D-glucuronide) assay. Protein samples, containing 1 μg protein made up to a total volume of 45 μl with extraction buffer, were aliquoted onto a microtitre plate and incubated at 37° C. To each sample, 5 μl of 10 mM MUG was added so that the final concentration of MUG was 1 mM. The plate was incubated at 37° C. for 30 min and terminated by adding 150 μl stop solution (0.2 M Na2CO3, pH 11.20), still keeping the plates at 37° C. Plates were read in a Victor2 1420 Multilabel counter with excitation set at 365 nm and emission at 455 nm. The concentration of 4-methyl-umbelliferone (MU) was calculated against a standard curve and the GUS expression calculated.
[0157] In FIG. 5, increased expression of the GUS reporter gene in N. tabacum BY-2 protoplasts transformed with an E. grandis EF1 alpha deletion construct was seen compared to the control plasmid without an insert.
Example 20
Determination of the Effect of the 3'UTR Super-Ubiquitin (SU) Sequences on Gene Expression in Arabidopsis thaliana cv Columbia
[0158] In the polynucleotide sequences given in SEQ ID NO: 1 encoding P. radiata superubiquitin (SU) promoter and gene sequences, an 3' untranslated region (UTR) was identified (nucleotides 1,754 to 3,083). To determine the effect of this region on the expression of genes, 250 bp of the 3' UTR (nucleotides 2,755 to 3,073 from SEQ ID NO: 1) was cloned in the sense and antisense orientation into plasmid pBI-121 containing the GUS gene under control of the 35S CaMV promoter and plasmid pBI-101 containing the GUS gene under control of the P. radiata SU promoter (including the intron) given in SEQ ID NO: 2. For controls, constructs were made that contained the SU promoter without an intron (SEQ ID NO: 3) and without the SU 3' UTR sequence, the SU promoter with an intron (SEQ ID NO: 2) and without the SU 3' UTR sequence as well as a construct containing the 35S CaMV promoter but not the SU 3' UTR sequence.
[0159] A. thaliana cv Columbia were transformed with these constructs using the floral dip protocol described in Example 18.
Determining the Level of Gene Expression Using a Mug Assay.
[0160] Six A. thaliana plants were harvested by trimming off the dried tissue and then harvesting the rest of the plant, including the roots. The roots were rinsed in tap water and the samples immersed in liquid nitrogen before storing at -80° C. Six plants from each construct were ground under liquid nitrogen and approximately 100 mg transferred to a microfuge tube. Five samples from each control were included in the assay. Extraction buffer (50 mM NaPO4 pH 7.2, 10 mM EDTA pH 8, 0.01% Sarcosyl, 0.1% Triton X-100) was prepared. To 32 ml of extraction buffer, 8 ml methanol and 28 μl β-mercaptoethanol was added. Of this buffer, 200 μl was added to each sample, vortexed and stored on ice. Samples were spun at 4° C. at 15,000 rpm for 15 min. The supernatant was transferred to a fresh tube and diluted with 800 μl of extraction buffer. Protein concentration was determined using the BioRad Protein Assay Kit.
[0161] The expression of GUS by the four constructs was determined using a MUG assay, as follows. To 28 ml extraction buffer (as described in Example 18), 8 ml methanol, 56 μl β-mercaptoethanol and 4 ml of 10 mg/ml bovine serum albumin (BSA) were added. To microtitre plate wells, 100 and 10 ng of protein from each construct was added as well as 25 μl extraction buffer containing BSA and 5 μl 10 mM MUG. The plate was covered in foil and incubated at 37° C. for exactly 20 minutes. The reaction was terminated by adding 150 μl 0.2 M Na2CO3 pH 11.2. Plates were read with a Victor2 1420 Multilabel counter with excitation set at 365 nm and emission at 455 nm. GUS expression levels were determined against a MU standard curve.
[0162] In FIG. 4, construct SR34 containing the SU 3'UTR in the sense orientation enhanced the expression of the SU without intron promoter almost to the level of the SU promoter with the intron. In constructs SR33 and SR35 containing the 3'UTR in the antisense orientation, promoter activity was reduced to basal levels.
Example 21
Determination of the Activity of P. radiata Ubiquitin Promoter Constructs in Transformed Arabidopsis thaliana cv Columbia and Tobacco Plant Protoplasts
A. Tobacco Plant Protoplasts
[0163] 1. Isolation of Protoplasts
[0164] Protoplasts were isolated from sterile tobacco (Nicotiana tabacum) leaf tissue and transformed with superubiquitin promoter constructs. Mesophyll protoplasts were prepared according to the method of Bilang et al., Plant Molecular Biology Manual A1:1-16, 1994. A number of fully expanded leaves were removed from sterile wild type tobacco plants, sliced perpendicular to the midrib and submerged in a digestion enzyme solution containing 1.2% cellulase and 0.4% pectinase (Sigma, St. Louis Mo.). The leaves were left to incubate in the dark without agitation at 26° C. for approximately 18 hours. The leaf strips were then gently agitated for 30 min to release the protoplasts. Protoplasts were further purified by filtration through 100 μm nylon mesh. One ml of W5 solution (154 mM MgCl2, 125 mM CaCl2, 5 mM KCl, 5 mM glucose, pH 5.8-6) was carefully layered on top of the filtrate and centrifuged at 80×g for 10 min. The live protoplast layer was removed with a wide bore pipette, washed twice with 10 ml W5 solution using centrifugation at 70×g for 5 min, with final resuspension in 5 ml W5 solution. Protoplasts were counted in a hemocytometer and viability was determined under the microscope after staining with 5 mg/ml fluoroscein diacetate (FDA) in 100% acetone.
[0165] 2. Transformation with Promoter Constructs
[0166] The isolated protoplasts were transformed with plasmid BI-101 containing the GUS (β-D-glucuronidase) reporter gene in frame with the specified deletion constructs of the superubiquitin promoter, with and without the intron. The deletion constructs contained 753, 573, 446, 368 and 195 bp of superubiquitin promoter sequence, respectively, upstream of the TATA sequence (bp numbers 1104-1,110 of SEQ ID NO: 2. The constructs tested, and the results, are described in the table, below.
TABLE-US-00004 Deletion GUS staining Construct Ref. construct SEQ ID NO: Annotated Fig. constitutive? S38 195 bp 131 FIG. 7 No S39 368 bp 132 FIG. 8 Yes S40 446 bp 133 FIG. 9 Yes S41 573 bp 134 FIG. 10 Yes S48 753 bp 135 FIG. 11 yes S52 195 bp 136 FIG. 12 No S53 446 bp 138 FIG. 14 Yes S54 368 bp 137 FIG. 13 Yes S55 573 bp 139 FIG. 15 Yes S56 753 bp 140 FIGS. 16A, B Yes
[0167] Transformation was carried out using a polyethylene glycol protocol. After centrifugation of the purified protoplasts at 70×g for 5 min, they were resuspended in MMM solution (15 mM MgCl2, 0.1% w/v 2[N-morpholino]ethanesulfonic acid (MES), 0.5 M mannitol pH 5.8) to a density of 2×106 protoplasts/ml. Aliquots containing 5×105 protoplasts/ml in 250 μl were distributed to 15 ml tubes and mixed with 20 μg plasmid DNA. 250 μl polyethylene glycol-4000 (40%) was gently added and incubated for 5 minutes at room temperature. Ten ml W5 solution was slowly added, the protoplasts centrifuged at 70×g for 5 min and finally resuspended in 2 ml K3 medium (Bilang et al., Plant Molecular Biology Manual A1:1-16, 1994).
[0168] For quantitation of GUS activity, the transformed protoplasts are incubated in the dark at 26° C. for 24 hours before protein is extracted for reporter enzyme assays using 4-methyl-umbelliferyl-glucuronide (MUG). GUS activity is quantified by fluorimetric analysis, as described by Jefferson (Plant Mol. Biol. Rep. 5: 387-405, 1987).
[0169] Protein is extracted from the protoplasts using the following protocol. Transformed protoplast suspensions were centrifuged at 70×g for 10 min, resuspended in 50 μl extraction buffer (Jefferson, Plant Mol. Biol. Rep. 5:387-405, 1987) and vigorously mixed using a vortex. The homogenate is cleared by centrifugation at 4,300 rpm for 5 min, the supernatant removed and used for protein assays (Bradford, Anal. Biochem. 72:248-254, 1976).
B. Arabidopsis thaliana Transgenic Lines
[0170] Arabidopsis thaliana plants were transformed with A. tumefaciens containing deletion constructs of the P. radiate ubiquitin promoter described above.
[0171] 1. Agrobacterium tumefaciens Transformation
[0172] Agrobacterium tumefaciens strain GV3101 was transformed with the. the above-described deletion constructs using electroporation. The deletion constructs were prepared using restriction digestion and PCR. The deletion constructs were made in plasmid pBI-101 that contained the GUS reporter gene, using Endonuclease III (Gibco BRL, Gaithersburg, Md.) according to the manufacturer's protocols. A control construct containing no sequence upstream of the TATA sequence was also made.
[0173] Electrocompetent A. tumefaciens cells were prepared according to the method of Walkerpeach and Velten, Plant Mol. Biol. Man. B1:1-19, 1994. Construct DNA (4 ng) was added to 40 μl competent A. tumefaciens GV3101 cells and electroporation was done using a BTX Electro Cell Manipulator 600 at the following settings: Mode: T 2.5 kV Resistance high voltage (HV), Set Capacitance: C (not used in HV mode), Set Resistance: R R5 (129 Ohm), Set charging voltage: S1.44 kV, Desired field strength: 14.4 kV/cm and Desired pulse strength: t 5.09 msec. 400 μl YEP liquid media (20 g/l yeast, 20 g/l peptone and 10 g/l sodium chloride) was added to the cuvette and left to recover for one hour at room temperature. Transformed bacteria in YEP medium were spread out on solid YEP medium containing 50 mg/l kanamycin and 50 mg/l rifampicin and incubated at 29° C. for two days to allow colony growth.
[0174] 2. Confirmation of Transformation of Constructs into A. tumefaciens
[0175] To confirm that the constructs have been transformed into A. tumefaciens, DNA from the A. tumefaciens colonies from the YEP plates were isolated using standard protocols and amplified using the polymerase chain reaction (PCR) with primers designed from the pBI-101 vector sequence. The primer sequences are given in SEQ ID NOS: 128 and 129. PCR reactions were set up following standard protocols and 30 PCR cycles were done with extension temperature of 72° C.
[0176] 3. Transformation of A. thaliana with Transformed A. tumefaciens
[0177] The optical density of the A. tumefaciens bacterial culture was adjusted to 0.7 with infiltration medium (5% sucrose, 0.05% Silwett L-77 surfactant). A. thaliana cv. Columbia plants (6 punnets per construct and 10-12 plants per punnet) were pruned by removing secondary bolts. Pruned A. thaliana plants in punnets were dipped into infiltration solution and moved back and forth for 5 seconds. Punnets were put on their side to allow excess infiltration medium to drain covered with a top tray and wrapped in plastic wrap to maintain humidity. Plants were placed in a growth room at ambient condition for 24 hours. After this period, the top tray and plastic wrap were removed and plants were set upright until siliques formed.
[0178] Seeds were harvested and sterilized with a 5% sodium hypochlorite solution to destroy any residual A. tumefaciens bacteria and fungal contamination.
[0179] Under sterile conditions, 100 μl seeds from the transformed A. thaliana plants were placed into an Eppendorf tube. One ml sterile water was added and the seeds left to imbibe the water for no longer than an hour. The water was remove by centrifugation, 1 ml 70% ethanol added to the seeds and gently mixed. This step was not allowed to last longer than one minute. The ethanol was removed by centrifugation, 1 ml 5% sodium hypochlorite solution was added to the seeds and gently mixed for up to 5 min. The sodium hypochlorite solution was removed by centrifugation and the seeds washed with sterile water for 1 min. The washing step was repeated three more times with centrifugation. Seeds were finally resuspended in sterile water. 500 μl of seeds in solution were pitpetted onto half-strength Murashige and Skoog medium (MS; Gibco BRL) agar plates containing 50 mg/l kanamycin and 250 mg/l timentin and spread evenly with a flamed wire-loop. The Petri dishes were placed in a refrigerator for 3 days to allow the seeds to stratify. Thereafter the plates were placed in growth room and grown under lights at 22° C. with a 14 hour photoperiod until germination. Putative transformant seedlings were selected as those growing on the antibiotic-containing medium, with large, healthy-looking dark green leaves and a strong root system. These transgenic plants were removed and placed into soil culture at 22° with a 12 hour photoperiod.
[0180] 4. Staining of Plant Tissues
[0181] Tissue were taken from the flower, leaf, stem and root of A. thaliana transformed with constructs of P. radiata ubiquitin promoter and stained histochemically to determine the expression of the GUS gene under control of the pollen specific promoters. The GUS staining protocol is described by Campisi et al., Plant J. 17:699-707, 1999.
[0182] A. thaliana flower, leaf, stem and root tissue were immersed in a staining solution (50 mM NaPO4 pH 7.2; 0.5% Triton X-100; 1 mM X Glucuronide sodium salt (Gibco BRL)) for immunochemical staining. Vacuum was applied twice for 5 min to infiltrate the tissue with the staining solution. The tissue was left in the staining solution for 2 days (with agitation) at 37° for color development and then destained in 70% ethanol for 24 hours at 37° C. (with agitation). The tissues were examined for blue GUS staining using a light microscope.
[0183] The results showed that constitutive expression was lost in the smallest deletion constructs (SEQ ID NOS: 131 AND 136) but was observed in all the other constructs tested, including both the intronless and intron-containing deletion constructs. These results demonstrate that the sequences described in SEQ ID NOS: 132-135 and 138-140 have constitutive promoter activity in both Arabidopsis and tobacco plants.
Sequence CWU
1
14313083DNAPinus
radiata5'UTR(1)...(2064)intron(1196)...(2033)CDS(2065)...(2751)3'UTR(2755-
)...(3083) 1aaaacccctc acaaatacat aaaaaaaatt ctttatttaa ttatcaaact
ctccactacc 60tttcccacca accgttacaa tcctgaatgt tggaaaaaac taactacatt
gatataaaaa 120aactacatta cttcctaaat catatcaaaa ttgtataaat atatccactc
aaaggagtct 180agaagatcca cttggacaaa ttgcccatag ttggaaagat gttcaccaag
tcaacaagat 240ttatcaatgg aaaaatccat ctaccaaact tactttcaag aaaatccaag
gattatagag 300taaaaaatct atgtattatt aagtcaaaaa gaaaaccaaa gtgaacaaat
attgatgtac 360aagtttgaga ggataagaca ttggaatcgt ctaaccagga ggcggaggaa
ttccctagac 420agttaaaagt ggccggaatc ccggtaaaaa agattaaaat ttttttgtag
agggagtgct 480tgaatcatgt tttttatgat ggaaatagat tcagcaccat caaaaacatt
caggacacct 540aaaattttga agtttaacaa aaataacttg gatctacaaa aatccgtatc
ggattttctc 600taaatataac tagaattttc ataactttca aagcaactcc tcccctaacc
gtaaaacttt 660tcctacttca ccgttaatta cattccttaa gagtagataa agaaataaag
taaataaaag 720tattcacaaa ccaacaattt atttctttta tttacttaaa aaaacaaaaa
gtttatttat 780tttacttaaa tggcataatg acatatcgga gatccctcga acgagaatct
tttatctccc 840tggttttgta ttaaaaagta atttattgtg gggtccacgc ggagttggaa
tcctacagac 900gcgctttaca tacgtctcga gaagcgtgac ggatgtgcga ccggatgacc
ctgtataacc 960caccgacaca gccagcgcac agtatacacg tgtcatttct ctattggaaa
atgtcgttgt 1020tatccccgct ggtacgcaac caccgatggt gacaggtcgt ctgttgtcgt
gtcgcgtagc 1080gggagaaggg tctcatccaa cgctattaaa tactcgcctt caccgcgtta
cttctcatct 1140tttctcttgc gttgtataat cagtgcgata ttctcagaga gcttttcatt
caaaggtatg 1200gagttttgaa gggctttact cttaacattt gtttttcttt gtaaattgtt
aatggtggtt 1260tctgtggggg aagaatcttt tgccaggtcc ttttgggttt cgcatgttta
tttgggttat 1320ttttctcgac tatggctgac attactaggg ctttcgtgct ttcatctgtg
ttttcttccc 1380ttaataggtc tgtctctctg gaatatttaa ttttcgtatg taagttatga
gtagtcgctg 1440tttgtaatag gctcttgtct gtaaaggttt cagcaggtgt ttgcgtttta
ttgcgtcatg 1500tgtttcagaa ggcctttgca gattattgcg ttgtacttta atattttgtc
tccaaccttg 1560ttatagtttc cctcctttga tctcacagga accctttctt ctttgagcat
tttcttgtgg 1620cgttctgtag taatatttta attttgggcc cgggttctga gggtaggtga
ttattccagt 1680gatgtgcttt ccctataagg tcctctatgt gtaagctgtt agggtttgtg
cgttactatt 1740gacatgtcac atgtcacata ttttcttcct cttatccttc gaactgatgg
ttctttttct 1800aattcgtgga ttgctggtgc catattttat ttctattgca actgtatttt
agggtgtctc 1860tttctttttg atttcttgtt aatatttgtg ttcaggttgt aactatgggt
tgctagggtg 1920tctgccctct tcttttgtgc ttctttcgca gaatctgtcc gttggtctgt
atttgggtga 1980tgaattattt attccttgaa gtatctgtct aattagcttg tgatgatgtg
caggtatatt 2040cgttagtcat atttcaattt caag atg cag atc ttt gtc aag act
ctc acc 2091 Met Gln Ile Phe Val Lys Thr
Leu Thr 1 5ggt aag acc atc act
ctc gag gtc gag agc tct gac acc att gac aat 2139Gly Lys Thr Ile Thr
Leu Glu Val Glu Ser Ser Asp Thr Ile Asp Asn10 15
20 25gtt aaa gct aag atc cag gac aag gaa ggg
att ccc ccc gac cag cag 2187Val Lys Ala Lys Ile Gln Asp Lys Glu Gly
Ile Pro Pro Asp Gln Gln 30 35
40cgt ctg atc ttc gca gga aag cag ctt gag gac ggc cga acc ctt gcc
2235Arg Leu Ile Phe Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Ala
45 50 55gat tac aac atc cag aaa
gaa tct acc ctc cac ctt gtt ctc cgt ttg 2283Asp Tyr Asn Ile Gln Lys
Glu Ser Thr Leu His Leu Val Leu Arg Leu 60 65
70agg ggt ggc atg caa atc ttt gta aaa aca cta act gga aag
aca att 2331Arg Gly Gly Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys
Thr Ile 75 80 85aca ttg gaa gtt gag
agc tcg gac acc att gac aac gtc aag gcc aag 2379Thr Leu Glu Val Glu
Ser Ser Asp Thr Ile Asp Asn Val Lys Ala Lys90 95
100 105atc cag gac aag gaa gga att ccc cct gac
cag cag agg ctt atc ttc 2427Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp
Gln Gln Arg Leu Ile Phe 110 115
120gct ggt aag cag ctg gag gat ggc agg acc ttg gct gat tac aat att
2475Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Ala Asp Tyr Asn Ile
125 130 135caa aag gaa tcg acc ctg
cat ttg gtg ctt cgt cta aga gga ggc atg 2523Gln Lys Glu Ser Thr Leu
His Leu Val Leu Arg Leu Arg Gly Gly Met 140 145
150caa atc ttt gtg aaa acc ctt aca ggt aaa acc att act ctg
gaa gtg 2571Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu
Glu Val 155 160 165gaa agc tcg gac acc
att gac aat gtg aag gct aag atc cag gac aag 2619Glu Ser Ser Asp Thr
Ile Asp Asn Val Lys Ala Lys Ile Gln Asp Lys170 175
180 185gag gga att cca cct gac cag cag agg ttg
atc ttt gcc ggt aag cag 2667Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu
Ile Phe Ala Gly Lys Gln 190 195
200ctg gaa gat ggt cgt act ctc gcc gat tac aat att cag aag gaa tcg
2715Leu Glu Asp Gly Arg Thr Leu Ala Asp Tyr Asn Ile Gln Lys Glu Ser
205 210 215acc ctt cac ctg gtg ctc
cgt ctc cgc ggt ggc ttt taggtttggg 2761Thr Leu His Leu Val Leu
Arg Leu Arg Gly Gly Phe 220 225tgttatttgt
ggataataaa ttcgggtgat gttcagtgtt tgtcgtattt ctcacgaata 2821aattgtgttt
atgtatgtgt tagtgttgtt tgtctgtttc agaccctctt atgttatatt 2881tttcttttcg
tcggtcagtt gaagccaata ctggtgtcct ggccggcact gcaataccat 2941ttcgtttaat
ataaagactc tgttatccgt tatgtaattc catgttatgt ggtgaaatgt 3001ggatgaaatt
cttagaaatt attattgtaa tttgaaactt ccttcgtcaa taatctgcac 3061aacacattta
ccaaaaaaaa aa
308322064DNAPinus radiata5'UTR(1)...(2064)intron(1196)...(2033)
2aaaacccctc acaaatacat aaaaaaaatt ctttatttaa ttatcaaact ctccactacc
60tttcccacca accgttacaa tcctgaatgt tggaaaaaac taactacatt gatataaaaa
120aactacatta cttcctaaat catatcaaaa ttgtataaat atatccactc aaaggagtct
180agaagatcca cttggacaaa ttgcccatag ttggaaagat gttcaccaag tcaacaagat
240ttatcaatgg aaaaatccat ctaccaaact tactttcaag aaaatccaag gattatagag
300taaaaaatct atgtattatt aagtcaaaaa gaaaaccaaa gtgaacaaat attgatgtac
360aagtttgaga ggataagaca ttggaatcgt ctaaccagga ggcggaggaa ttccctagac
420agttaaaagt ggccggaatc ccggtaaaaa agattaaaat ttttttgtag agggagtgct
480tgaatcatgt tttttatgat ggaaatagat tcagcaccat caaaaacatt caggacacct
540aaaattttga agtttaacaa aaataacttg gatctacaaa aatccgtatc ggattttctc
600taaatataac tagaattttc ataactttca aagcaactcc tcccctaacc gtaaaacttt
660tcctacttca ccgttaatta cattccttaa gagtagataa agaaataaag taaataaaag
720tattcacaaa ccaacaattt atttctttta tttacttaaa aaaacaaaaa gtttatttat
780tttacttaaa tggcataatg acatatcgga gatccctcga acgagaatct tttatctccc
840tggttttgta ttaaaaagta atttattgtg gggtccacgc ggagttggaa tcctacagac
900gcgctttaca tacgtctcga gaagcgtgac ggatgtgcga ccggatgacc ctgtataacc
960caccgacaca gccagcgcac agtatacacg tgtcatttct ctattggaaa atgtcgttgt
1020tatccccgct ggtacgcaac caccgatggt gacaggtcgt ctgttgtcgt gtcgcgtagc
1080gggagaaggg tctcatccaa cgctattaaa tactcgcctt caccgcgtta cttctcatct
1140tttctcttgc gttgtataat cagtgcgata ttctcagaga gcttttcatt caaaggtatg
1200gagttttgaa gggctttact cttaacattt gtttttcttt gtaaattgtt aatggtggtt
1260tctgtggggg aagaatcttt tgccaggtcc ttttgggttt cgcatgttta tttgggttat
1320ttttctcgac tatggctgac attactaggg ctttcgtgct ttcatctgtg ttttcttccc
1380ttaataggtc tgtctctctg gaatatttaa ttttcgtatg taagttatga gtagtcgctg
1440tttgtaatag gctcttgtct gtaaaggttt cagcaggtgt ttgcgtttta ttgcgtcatg
1500tgtttcagaa ggcctttgca gattattgcg ttgtacttta atattttgtc tccaaccttg
1560ttatagtttc cctcctttga tctcacagga accctttctt ctttgagcat tttcttgtgg
1620cgttctgtag taatatttta attttgggcc cgggttctga gggtaggtga ttattccagt
1680gatgtgcttt ccctataagg tcctctatgt gtaagctgtt agggtttgtg cgttactatt
1740gacatgtcac atgtcacata ttttcttcct cttatccttc gaactgatgg ttctttttct
1800aattcgtgga ttgctggtgc catattttat ttctattgca actgtatttt agggtgtctc
1860tttctttttg atttcttgtt aatatttgtg ttcaggttgt aactatgggt tgctagggtg
1920tctgccctct tcttttgtgc ttctttcgca gaatctgtcc gttggtctgt atttgggtga
1980tgaattattt attccttgaa gtatctgtct aattagcttg tgatgatgtg caggtatatt
2040cgttagtcat atttcaattt caag
206431226DNAPinus radiata5'UTR(1)...(1226) 3aaaacccctc acaaatacat
aaaaaaaatt ctttatttaa ttatcaaact ctccactacc 60tttcccacca accgttacaa
tcctgaatgt tggaaaaaac taactacatt gatataaaaa 120aactacatta cttcctaaat
catatcaaaa ttgtataaat atatccactc aaaggagtct 180agaagatcca cttggacaaa
ttgcccatag ttggaaagat gttcaccaag tcaacaagat 240ttatcaatgg aaaaatccat
ctaccaaact tactttcaag aaaatccaag gattatagag 300taaaaaatct atgtattatt
aagtcaaaaa gaaaaccaaa gtgaacaaat attgatgtac 360aagtttgaga ggataagaca
ttggaatcgt ctaaccagga ggcggaggaa ttccctagac 420agttaaaagt ggccggaatc
ccggtaaaaa agattaaaat ttttttgtag agggagtgct 480tgaatcatgt tttttatgat
ggaaatagat tcagcaccat caaaaacatt caggacacct 540aaaattttga agtttaacaa
aaataacttg gatctacaaa aatccgtatc ggattttctc 600taaatataac tagaattttc
ataactttca aagcaactcc tcccctaacc gtaaaacttt 660tcctacttca ccgttaatta
cattccttaa gagtagataa agaaataaag taaataaaag 720tattcacaaa ccaacaattt
atttctttta tttacttaaa aaaacaaaaa gtttatttat 780tttacttaaa tggcataatg
acatatcgga gatccctcga acgagaatct tttatctccc 840tggttttgta ttaaaaagta
atttattgtg gggtccacgc ggagttggaa tcctacagac 900gcgctttaca tacgtctcga
gaagcgtgac ggatgtgcga ccggatgacc ctgtataacc 960caccgacaca gccagcgcac
agtatacacg tgtcatttct ctattggaaa atgtcgttgt 1020tatccccgct ggtacgcaac
caccgatggt gacaggtcgt ctgttgtcgt gtcgcgtagc 1080gggagaaggg tctcatccaa
cgctattaaa tactcgcctt caccgcgtta cttctcatct 1140tttctcttgc gttgtataat
cagtgcgata ttctcagaga gcttttcatt caaaggtata 1200ttcgttagtc atatttcaat
ttcaag 12264485DNAPinus
radiata5'UTR(1)...(431)TATA_signal(350)...(356)CAAT_signal(326)...(333)
4agtaaaattg gcccatgtag gactaagtca aaatcaaaat tccatctcta aaagcggaac
60tttgtcccct gaaaattttg actaatttcc aaccaaaaaa aagtggggga aaatataaaa
120ctctaactaa taaaacaata atcaccaaaa atctatcacc aaaaatgaaa aaagattttg
180aatactaggc catatgagct acacaaattt caaaagtatc ttacacttat tacgcacccg
240gatgtcccca ctttcgaaaa acccgtttca agcctttcac gaaagtccaa cggtcagaaa
300attcaaaatg actgtttgag gcagagccaa tctaggacca cgctccattt atatatggcc
360tctgcttctc tcgaccctta gagtcctctg ctctgcgaat cttgttgtta gttactgtgt
420acgctgtaac aatggatgcc tatgagaagt tggagaaggt gggagaagga acctatggga
480aggtg
4855246DNAPinus radiata5'UTR(1)...(167)TATA_signal(185)...(191)
5tgagaacatg ataagctgtg taaattcatg ctagtcacca taacttttct cattgctttt
60catccacact gttgattcat tcattatata agatcagatt cgtatgatat acaggcaacc
120atagaaacaa ccagcaaagt tactagcagg aaatccaact aggtatcatg aagactacca
180acgcaggctc gataatgttg gtgctcatta tttttgggtg ctgtttcatt ggggtcatag
240ctacat
2466600DNAPinus
radiata5'UTR(1)...(167)TATA_signal(471)...(477)CAAT_signal(444)...(451)
6caccaattta atgggatttc agatttgtat cccatgctat tggctaagcc atttttctta
60ttgtaatcta accaattcca atttccaccc tggtgtgaac tgactgacaa atgcggcccg
120aaaacagcga atgaaatgtc tgggtgatcg gtcaaacaag cggtgggcga gagaacgcgg
180gtgttggcct agccgggatg ggggtaggta gacggcgtat taccggcgag ttgtccgaat
240ggagttttcg gggtaggtag taacgtagac gtcaatggaa aaagtcataa tctccgtcaa
300aaatccaacc gctccttcac accgcagagt tggtggccac gggaccctcc acccactcac
360tcaatcgatc gcctgccgtg gttgcccatt attcaaccat acgccacttg actcttcacc
420aacaattcca ggccggcttt cgagacaatg tactgcacag gaaaatccaa tataaaaggc
480cggcctccgc ttccttctca gtagccccca gctcattcaa ttcttcccac tgcaggctac
540atttgtcaga cacgttttcc gccatttttc gcctgtttct gcggagaatt tgatcaggtt
6007591DNAEucalyptus grandis5'UTR(1)...(591)TATA_signal(432)...(437)
7agtttggaat gtgttgtgtg tgatgtgatg gagagtatca gcattccaaa catgacatgg
60ttttaactta tctgcaatgg tttctttttt attcagcgaa ctcgatggct gatgctgaga
120gaaatgaatt gggaagtcga tcgacaatgg cagctcaact caatgatcct caggtataag
180catttttttg gcagctctgg tcattgtgtc ttcaactttt agatgagagc aaatcaaatt
240gactctaata ccggttatgt gatgagtgaa tcatttgctt ttagtagctt taatttatgc
300ccccatctta gttgggtata aaggttcaga gtgcgaagat tacatctatt ttggttcttg
360caggacacag ggattcatgc tagacacatc agcagtgttt ctacgttgga tagtggtatg
420tacttagcta ctataaagga aattttgata gatatgtttg atatggtgct tgtacagatc
480tatttaatgt caatgtattt gaaactatct tgtctcataa ctttcttgaa gaatacaatg
540atgagactgg gaaccctatc tggaagaata gagtggagag ctggaaggac a
5918480DNAEucalyptus grandis5'UTR(1)...(480) 8atgctgagag aaatgaattg
ggaagtcgat cgacaatggc agctcaactc aatgatcctc 60aggtataagc atttttttgg
cagctctggt cattgtgtct tcaactttta gatgagagca 120aatcaaattg actctaatac
cagttatgtg atgagtgaat catttgcttt tagtagcttt 180aatttatgcc cccatcttag
ttgggtataa aggttcagag tgcgaagatt acatctattt 240tggttcttgc aggacacagg
gattcatgct agacacatca gcagtgtttc tacgttggat 300agtggtatgt acttagctac
tataaaggaa attttgatag atatgtttga tatggtgctt 360gtacagatct atttaatgcc
aatgtatttg aaactatctt gtctcataac tttcttgaag 420aatacaatga tgagactggg
aaccctatct ggaagaatag agtggagagc tggaaggaca 4809308DNAEucalyptus
grandis5'UTR(1)...(259) 9gcccatctca ggtgcaacgg tttaactgat gtttactaca
cgcaaggggg aggtatccgg 60aaagcttgca aatcgggtaa aaacgaaaat gggcgacgtg
gactcagcct gcccatgttt 120tcggtctctc tcctggactt ccatgcccga taagggccgc
caactctctc tctctctctc 180tttttctctc acatctctct gcctgttcat gtcgcctgca
agtgaagatt cgtcggagca 240agaaggacga accgggcaca tggcggggtc ggcggtcgcg
acggttctaa agggtctctt 300cctggtgt
30810300DNAEucalyptus grandis5'UTR(1)...(251)
10gcccatctca ggtgcaacgg tttaactgat gtttactaca cgcaaggggg aggtatccgg
60aaagcttgca aatcgggtaa aaacgaaaat gggcgacgtg gactcagcct gcccatgttt
120tcggtccctc tcctggactt ccatgcccga taaaggccgc caactctctc tctttttctc
180tcacatctct ctgcctgttc atgtcgcctg caagtgaaga ttcgtcggag caagaaggac
240gaactgggca tatggcgggg tcggcggtcg cgacggttct aaagggtctc ttcctggtgt
30011297DNAEucalyptus grandis 11gtgcaacggt ttaactgatg tttactacac
gcaaggggga ggtatccgga aagcttgcaa 60atcgggtaaa aacgaaaatg ggcgacgtgg
actcagcctg cccatgtttt cggtctctct 120cctggacttc catgcccgat aagggccgcc
aactctctct ctctctctct ttttctctca 180catctctctg cctgttcatg tcgcctgcaa
gtgaagattc gtcggagcaa gaaggacgaa 240ctgggcatat ggcggggtcg gcggtcgcga
cggttctaaa gggtctcttc ctggtgt 29712661DNAEucalyptus grandis
12ctgagccatt taattcgaga gcacatcgcc caaaattatt cttcttgctg ccataactgt
60cgaattttct cttttaggta agtaaccaat gatgcatcat gttgacaaaa aggctgatta
120gtatgatctt ggagttgttg gtgcaaattt gcaagctgac gatggcccct cagggaaatt
180aaggcgccaa cccagattgc aaagagcaca aagagcacga tccaaccttt ccttaacaag
240atcatcacca gatcggccag taagggtaat attaatttaa caaatagctc ttgtaccggg
300aactccgtat ttctctcact tccataaacc cctgattaat ttggtgggaa agcgacagcc
360aacccacaaa aggtcagatg tcatcccacg agagagagag agagagagag agagagagag
420agagttttct ctctatattc tggttcaccg gttggagtca atggcatgcg tgacgaatgt
480acatattggt gtagggtcca atattttgcg ggagggttgg tgaaccgcaa agttcctata
540tatcgaacct ccaccaccat acctcacttc aatccccacc atttatccgt tttatttcct
600ctgctttcct ttgctcgagt ctcgcggaag agagagaaga gaggagagga gagaatgggt
660t
66113336DNAPinus radiata 13actagtgatt tgttgagaat gagtaggcat tgctacaccc
atcatcacaa gcatcatcat 60gaggagaaga agatccattt ctcactctat tactcgaact
tccttcagat taggctgtgt 120atttctcact ctaccactcc aacttccttc aaatgctgtg
agtttttgtt gtaattgccc 180cgtctattta taatcgcagc agcactcgtc atataaagac
ccgtgtgtgt gaacaacaac 240caagtgattt gaattggaaa tgaagagcga gaatggcggt
gtcatgaccg ggagcaacca 300gcccgggccg tcgaccacgc gtgccctata gtaatc
33614763DNAPinus radiata 14actagtgatt tgttgagaat
gagtaggcat tgctacaccc atcatcacaa gcatcaacat 60gaagagaaga agacgatcca
tttctcactc tatcactcca acttccttca gattaggctg 120tgtatttctc actctaccac
tccaactacc actccaactt attgccgcaa aagagagagg 180ttcccaaact ctgtcggaat
tctcccactc aaagcattaa aggaaagatc taattgctgc 240aaaaaagaga gattcccaat
atatttctca actcccttca aatgatttct cactctacca 300ctccaactcc cttcaaatga
tttctcactc taccactcca acttccttca aatgctgtga 360gtttttgttg taattgcccc
gtctatttat aatcgcagca gcactcgtca tataaagacc 420cgtgcgtgtg aacaacaatg
gcggtgtctt gactgggagc aaccgcataa agaaagtggg 480cttcatacat taaaaaaatc
tgtaaatttt acggatttgg aaaaaggaag agcaggaggg 540acctcccgac ttgacccgag
aatggcggtg tcttgaccgc gtaaagaaag tggtcttctg 600tacccgactt gacccgaaaa
aagaggaaac gttgaacgag acaatctctg ggaacttcat 660cgaaatgaac ctcacgactt
gactctttcg attgtactgt tttcattgtt cccgcgtaaa 720acgaccagcc cgggccgtcg
accacgcgtg ccctatagta atc 7631540DNAArtificial
SequenceMade in a lab 15acggataaca gagtctttat attaaacgaa atggtattgc
401651DNAArtificial SequenceMade in a lab
16tgacgcggcc gcgaccgacg aaaagaaaaa tataacataa gagagtctga a
511727DNAArtificial SequenceMade in a lab 17tatagcggcc gcgggggggg ggggggg
271830DNAArtificial SequenceMade
in a lab 18cggagaacaa ggtggagggt agattctttc
301931DNAArtificial SequenceMade in a lab 19tctgcatctt gaaattgaaa
tatgactaac g 3120363DNAEucalyptus
grandis 20aatcgggtga aaatagggcc gccctaaatt agaattgaca acatttcttg
ggcaaagtta 60atgtaagtta catgaaaaaa aaaaaaaagg atagtttgtt ggaagtaatg
gagcatttgt 120attgtgaaat tcacgataga gctaacaaaa ataaaggtag ttggtgggtt
aacccagtta 180aaaaagaaca ataatttgaa gagaggagag agagagagag gagggggaga
gcatttcgat 240aaattcacta gaaaaaatgc gtgttttagt ataaatgaga gtggaaatag
ggccatctag 300ggaacgatcg atcgcccctg cacccggcca tctggagagt ctgtttatac
ttctctccgg 360ctt
36321839DNAPinus radiatamisc_feature(1)...(839)n = A,T,C or G
21gtatggagtt ttgaagggct ttactcttaa catttgtttt tctttgtaaa ttgttaatgg
60tggtttctgt gggggaagaa tcttttgcca ggtccttttg ggtttcgcat gtttatttgg
120gttatttttc tcgactatgg ctgacattac tagggctttc gtgctttcat ctgtgttttc
180ttcccttaat aggtctgtct ctctggaata tttaattttc gtatgtaagt tatgagtagt
240cgctgtttgt aataggctct tgtctgtaaa ggtttcagca ggtgtttgcg ttttattgcg
300tcatgtgttt cagaaggcct ttgcagatta ttgcgttgta ctttaatatt ttgtctccaa
360ccttgttata gtttccctcc tttgatctca caggaaccct ttcttctttg agcattttct
420tgtggcgttc tgtagtaata ttttaatttt gggcccgggt tctgagggta ggtgattatt
480cncagtgatg tgctttccct ataaggtcct ctatgtgtaa gctgttaggg tttgtgcgtt
540actattgaca tgtcacatgt cacatatttt cttcctctta tccttcgaac tgatggttct
600ttttctaatt cgtggattgc tggtgccata ttttatttct attgcaactg tattttaggg
660tgtctctttc tttttgattt cttgttaata tttgtgttca ggttgtaact atgggttgct
720agggtgtctg ccctcttctt ttgtgcttct ttcgcagaat ctgtccgttg gtctgtattt
780gggtgatgaa ttatttattc cttgaagtat ctgtctaatt agcttgtgat gatgtgcag
83922881DNAEucalyptus grandis 22acgtgacgat gctcgagtct cgcgttctcc
tctctcttgt tctgcaaaac agaaaagaga 60gaatggaggt tggcctctct caattacgtg
gacgccaatg agataactca ggtgggcgac 120aaaacaaacg cctcttgatt tcctcaaacc
ccaaaccgaa tccctcgtca aggggcaagg 180cttttggtcc cgcggcccca cggatcgctc
gttcccgtct cgccacgtcg cgtcgcagcg 240tgtcgagcaa acagaggggt ccgagcgact
ataaaatccc gacgccatcg acaccacagt 300ccatcgaaaa ccttgttcaa ttcccaagtg
aaagtgagta actgtgaacg aagagttgaa 360ctttgcatct cggcgtgtgg attcaagagg
aagcagcaaa gtggaaatgg acaactccaa 420gatgggcttc aatgcagggc aggccaaggg
ccagactcag gagaagagca accagatgat 480ggataaggca tccaacactg ctcaatctgc
aagggattcc atgcaagaga ctggtcagca 540gatgaaggcc aaagcccagg gtgctgctga
tgcagtgaag aatgccaccg ggatgaacaa 600atgaagagct caagacatga atgaataaat
aattaagctc tggttatcat ttgcttttcc 660ggtcgtttgt tgtcctgttt ttccttgtca
agagcttatt atgagggtcc ttttgctctt 720tccttagttc tttttgtttc ttggttgttc
catgaagaga gcaactctct gtgtttgaga 780gtactcatct cgcttcataa ggtctcagta
tgtagttgcc tttcgagaat gttatgttct 840ctctcataat gctattctga ttttataaaa
aaaaaaaaaa a 88123350DNAEucalyptus grandis
23ctatagggca cgcgtggtcg acggcccggg ctggtccttt cttacaaaaa gcaaaattct
60tataattttt tttgatataa taaaaatgat ccataaactt ttgcttaatg tgcaacgtaa
120accataatat attcaacgtg atgcttaaac tttaatcgag tatgcaatgt agtccataat
180atattcaata tgatccttca atccaattga agtgtgcaat gtggtcgcta gattttttta
240tgtattcaac ttagtcttta agctaccaac cttccaataa tttatgtttt agaaataata
300tcgaacatct tttatattat tcaaggaata aaacgaacat gcatcaaaag
3502449DNAEucalyptus grandis 24actatagggc acgcgtggtc gacggcccgg
gctggtactt tttttttct 4925909DNAEucalyptus grandis
25cagggtaaag aaaatggaat atttgcttgg ccccccagct ttgaaagttg ctgtaagaac
60acactcacct tgcatttata cgatggttgt gagcagtgca ggctggtggt gctgcaaatt
120tatgatgctg atgtgatagg cagatgaatg gcagttgagc taagttaaag ccctcataca
180tagatcagag caggaggagt agtatatata ggcatcttgg caagtcccta aaagagcggc
240ttcgtgtatt cccacatatt cctctctcgt tagaacgttc agaaatgggt ggccctttga
300ctcttgatgc agaggttgag gttaagtctc ctgcagacaa gttctgggtg agcgtgagag
360actccaccaa actgttccca aagatcttcc cggaccagta caagaatatt gaagtccttg
420agggagatgg gaaggctcct ggctcagttc gcctcttcac gtatggtgaa ggttctccac
480ttgttaaagt atcaaaggag aagattgatg gtgtggacga agcagacaag gtcgtgacct
540acagcgttat agacggtgat ctcctgaagt actacaagaa tttcaatggc agcatcaagg
600taattcctaa aggagacgga agcttggtga aatggtcgtg tgggtttgag aaggcaagcg
660atgaaattcc tgatccccac gtaatcaagg acttcgcaat ccagaatttc aaagagcttg
720atgagttcat cctcaaggca tagatgccgc caatcgtcta tccggatttg cactaaatat
780caataaaata atgcggagct ggactccgca cttctatatg catctagtat gagagtcccc
840tgctgtctct gtttgtattc acttgaaggg ttttctatta agctctcttt actgcctccg
900aaaaaaaaa
90926430DNAEucalyptus grandis 26tggagcttga gatagatcga ccgagagatc
ccagcggaaa tagaagattt cctgatacca 60tcgatccttc ttctccaatg gctgcgaatt
tcgtcattcc gaccaaaatg aaggcttggg 120tgtaccgtga gcacggaaac gtcgccgacg
tattgggatt ggacccggaa ctcaaggtcc 180ctgaattgca agaaggccaa gtgctggtta
aagttcttgc cgcagcgctc aatccagtcg 240acgccgcgag aatgaagggg gttatcaagc
tcccgggctt ttctctaccg gccgtgccag 300gttacgatct cgccggcgtt gtggtaaagg
tgggccgcga agtgaaggag ctcaagatcg 360gggacgaggt atatggattt atgtttcacg
ccaagaaaga cgggacgctg gctgagtacg 420cagccgtgga
430271253DNAEucalyptus grandis
27gcttgagata gatcgactga gagatcctag tggaaataga agatttcctg ataccatcga
60tccattcttc tccaatggct gcgaatttcg tcattccaac caaaatgaag gcttgggtgt
120accgtgagca cggagacgtc gccaacgtat tgggattgga cccggaactc aaggtccctg
180aattgcaaga aggccaagtg ctggttaaag ttcttgccgc ggcgctcaat ccaatcgaca
240ccgcgagagt gaagggggtt atcaagctcc cgggcttttc tctaccggcc gtgccaggtt
300acgatctcgc cggcgttgtg gtgaaggtgg gccgcgaagt gaaggagctc aaggtcgggg
360acgaggtata tggatttatg tttcacgcca agaaagacgg gacgctggct gagtacgcag
420ccgtggaaga gtcgttcttg gctttgaagc ccaagaagct gcgtttcggg gaggctgctt
480ctctgccggt ggtcattcag accgcctatg gaggccttga aagagctggc ctctctcatg
540gcaagtccct cctcgtctta ggtggtgctg gtggcgtcgg cacactcata atacagctag
600ctaaggaagt ttttggtgca tcaagagtag cagctacatc cagcactggg aagctagagt
660tgttgaagag cttgggtgct gatctggcca ttgactacac caaagtcaac tttgaagacc
720tcccagaaaa gtttgatgtt gtctacgata cagttgggga aattgagcgg gcagcgaagg
780ctgtgaagcc aggagggagc atcgtgacga tcgtaaaaca aaacaagaca ttacccccgc
840ctgctttctt ttttgcagta acttcgaacc gttcgacctt ggagaagttg aagcccttct
900tggagagcgg gaaggtgaag ccggtgatcg accccaagag cccgttccca ttttcgcaag
960ccattgaggc cttctcgtat cttcaaaccc gccgggcaac tggaaaactc gtgattcacc
1020ccgtcccatg atacacaaac gagaaagaaa taaagcgtcc acatggatct gccttaatca
1080cgagtcctta attagtagtc gatggtgctt gctgtttgtc tccgtacatt cagcttctct
1140ttgcatagta gtttctacat agtgcgtgta gagaagcaag tggatgtaca agtaaaataa
1200ttactttttc tataaacaat attacaaact caaaaaaaaa aaaaaaaaaa aaa
12532899DNAEucalyptus grandis 28gatagatcga ccgagagatc ccagcggaaa
tagaagattt cctgatacca tcgatccatt 60cttctccaat ggctgcgaat ttcgtcattc
cgaccaaaa 9929927DNAEucalyptus grandis
29cgacgtcgca tgctcccggc cgccatgcgg ccgcgggaat tcgattacta tagggcacgc
60gtggtcgacg gcccgggctg gtactctcac taattcttta gttttccaat ttagcccctt
120ctgtaattgc tcatcttctt taccaaattc tctaatttgg ccggcgaagg gctgacaagg
180gattggtcat gtcaccctca ccaaaggttg ccgaaggtcc ggtgacctca gctgacggcc
240acctacacca aatctagctc actagcagcc taagcccttc atcaactcta gtgaaaggtt
300ttgagtattt tttaataaaa aatatttaaa aaatatatag cgagagctca ttacaaaaaa
360attttaaaaa aaaatctaaa cattacttga actcaaagtg actttataaa gagtttttac
420caaaggatct tggtttcatc atttgcacta cacccaaaac ccaatttcta agttaaatca
480aacccactgt ctaatagaga taaggtaaat gttataaacc aaattccaaa attccgaagc
540actaaatata tttgctgatc ttataatcgc caattgagag ggtctcattc tccaagggat
600tgtgacatat tagtaattga tagggtctca tccgtaggac tccgactcag ccgcgccacg
660tgactggatc gctgaacggc gcggaaccag aggagcgtga ttacctaata ttttctccta
720ccttggcctt gagattgaat ttcagaaaaa gaaaaagaaa aaggaacaac ttcgccgact
780gttctataaa atgcatgcgc caccccgacc cccacccacg catcacatcc atccagcctc
840cacgacagac gcataaacac aacacacgtc ggttagagag agagagagag agagagagag
900agagagagag atgcttggac agttgtc
92730411DNAEucalyptus grandis 30actatagggc acgcgtggtc gacggcccgg
gctggtctga aactgtcgct cggcgatgca 60taccaaaggc tgaaggtatc agaatctaat
gcagcttatg taaaagcgcg atcaatttat 120tgaccccgac gaccttgact ccatacttca
cgcctcagct ttgtgttgga tggtcttgac 180ctctctcacc ctaaaaggta gctcaaaaga
atgagacttt ccgtcatact tataaaccga 240ccaccagcct ctttcacaac cgacatggga
caacctcaaa tagaattttt aacaacaccc 300ttgcacgctc tttctatcca ctttattatg
ccatcacatg agcgttttcc acgcgtaaat 360cggctaccac ccactttcac acggcggcga
aacgagaaaa aggtcctacc t 41131178DNAEucalyptus grandis
31cgagtcagca gaaacccagt tacactccgc ccaaacggaa gctaaacctg atgggccata
60cgatttcttt cactgagcct cttgcttttc ctccggaatc tcacggcacc ggaatgccgg
120aggaacttgg gaagaaccaa tgatgcctgg tcactgagtg atcgatgaat gcaatagt
17832178DNAEucalyptus grandis 32gtccaatgtc ctgtcaaagg aggaaagatg
actatggccc cggcgccggc ggggactgca 60tgggatttag tatgttgatt gagtacccgt
cgccaccacc ttcaagtaaa tcaggagtca 120gcagaaaccc agtacactcg ccaaacggag
ctaaacctga tggccatacg atttcttt 17833178DNAEucalyptus grandis
33gcatgggatt tagtatgttg attgagtacc cgtcgccacc accttcaagt aaatcaggag
60tcagcagaaa cccagtacac tcgccaaacg gagctaaacc tgatggccat acgatttctt
120tcactgagcc tcttgctttt cctccggaat ctcacggcac cggaatgccg gaggcaac
178341274DNAEucalyptus grandis 34ctatagggca cgcgtggtcg acggcccggg
ctggtccttt cttacaaaaa gcaaaattct 60tataattttt tttgatataa taaaaatgat
ccataaactt ttgcttaatg tgcaacgtaa 120accataatat attcaacgtg atgcttaaac
tttaatcgag tatgcaatgt agtccataat 180atattcaata tgatccttca attttaattg
aatgtgcaat gtggtcgcta gattttttta 240tgtattcaac ttagtcttta agctaccaac
cttccaataa tttatgttta gaaataatat 300cgaacatctt ttatattatt caaggaataa
aacgaacatg catcaaaagt ttaaatatat 360caaataaaat aaaattttaa gaattatatt
acatattaaa attaaagttc atgattaaat 420tgaaataaaa taaaaattta aaaatcacgt
tgtatgttgt gccgaaacaa aattcagtga 480cttgtggtgt caattttctt aggtggagct
ccacaagcat tgagatggag tgttccttcc 540gccgaggttt tcattgcgtg gctcaaaacg
gtggcgcgtt ttgcacgaca cgagatgcct 600cgattgccgc atcgtgtagg cgacgcaacg
gaaaaacgcg ttgccgtggc gtctatccgg 660ggtttcgtct ccgatgcggc acgtagccta
taaatgcgca cgatctcccg gtctgccaat 720tcgctatcga ttgcagaaga aaactcaaac
cctaggcgct ctctctccgt tcgacctctc 780gaagttctcc tctcttcgcg tcaagatgca
aatctttgtg aaaaccctta ctggcaagac 840aatcaccctc gaggtggaaa gctcggacac
agtcgataat gtgaaagcaa aaatccagga 900caaggaaggg atccctccgg accagcagag
gcttatcttt gctggcaagc agctggaaga 960tggccgaacc ttggccgatt ataacattca
gaaggagtcc accctccact tggtgctccg 1020tctcagggga ggcatgcaaa tttttgtgaa
gactcttact ggcaagacaa tcaccctcga 1080ggtggaaagc tccgacacag ttgataatgt
gaaagcaaaa atccaggaca aggaagggat 1140ccctccggac cagcagaggc ttatctttgc
tggcaagcag ctggaagatg gccgaacctt 1200ggccgattat aacattcaga aggagtccac
cctccacttg gtgctccgtc tcaagggagg 1260catgcaaatc tttg
127435795DNAEucalyptus grandis
35aaaaatacag gctttcgaaa gctagtgcgg tataaataac ctgggaaaag caagccgctt
60gagctttagt ttcagtcagc catggccact cacgcagctc ttgctccctc aaccctcccc
120gccaatgcca agttctctag caagagctcc tctcactcct tccccactca atgcttctct
180aagaggctcg aggtggcgga attctcaggc cttcgtgctg gatcgtgtgt gacttatgcg
240aagaatgccg gggagggatc cttcttcgat gctgtggctg ctcagctcac tcccaagact
300tcagcaccag ctccagctaa gggagagact gtcgctaaac tgaaggtggc aatcaatggt
360ttcggtcgca ttggtcggaa cttccttaga tgctggcacg ggagaaagaa ctcgcccctt
420gatgtcattg ttgtcaatga cagcggtggt gtcaaaaatg cttcacattt gctgaagtat
480gattccatgc tggggacttt caaagctgat gtgaaaattg tggacaatga gaccatcagc
540gtcgatggga agcccgttaa ggtcgtctct aaccgggacc ctctcaagct cccctgggct
600gagctcggca tcgacattgt cattgaggga actggagtct tcgtggatgg ccctggtgct
660ggaaaacata ttcaagctgg tgccaagaaa gttatcatca ctgcaccagc aaaaggcgct
720gatataccca cctacgtcta tggtgtgaat gagacagatt attcgcatga agttgctaac
780ataatcagca atgct
795361200DNAEucalyptus grandis 36aaaatatcca tcgacagcat caccccgctt
agagaacggt gtctcggctt ctcacaatgt 60ctatagccga atgtacaaaa tcggcataat
gttctataat atagcggact ttacagatga 120gcattcaaat acgtacgccg tactcgattc
ccattcgatt gttcattcat ccgcatgcaa 180atttcataga gataatatct gtgcacgtcc
ttagattaag aacaaccaaa gagtatctgg 240tggaagtttg aagcatgacc accgaagtca
gatggaacaa acaaggtggg tggtggggat 300atagtggaca aaggaacgag aggtgaatag
gaaaaggaga aggcaagatg cgggagatag 360gatttacgtg gcgagcggcg attgcacgca
tggtccaccc caccctcaac ctcaaacttt 420cgaaaatgca acgggcatca gggtggcgat
gaaggagacg atggagatat tgttgctttc 480tccccccaaa aaacatcatc caatccatcc
ccattcctca tcttcaccac aaggagtctg 540aagctctcct tcaccggtcc gtcgctttct
ctcttatctt cttcttctcc ctcctcttct 600cgttcttcct tcgaccgttc tctcggtatc
gtgaatttat tgcggggtgg ttcgcatgct 660ataaattcca cagcaacgag ggccccttgc
cacaatgtcg acgtctccgg ttagcagctg 720gtgcgccacc tccttctccc ctgcccattc
ctcgctcaag agagccgccg gcctacggcc 780ctctctctcc gcccgcctcg gcccttcctc
ctcctcctcc tccgtctctc ctccgaccct 840catccgtaac gagcccgttt tcgccgcccc
cgcccctgtc atcaacccca cttggacaga 900agagatgggc aaggactatg acgaggccat
tgaggctctc aagaaactcc tcagtgagaa 960gggggacctg aaagccacag cagccgcaaa
agtggagcaa ataactgcgg agttgcaaac 1020tgcttcccca gacatcaagc catccagctc
cgttgacaga atcaaaactg gcttcacctt 1080cttcaagaag gagaaatacg acaagaaccc
tgctttatat ggtgaactgg caaagcagag 1140tccaaagttc atggtgtttg cttgctcgga
ctcgagagtg tgcccatctc atgtgctgga 120037648DNAEucalyptus grandis
37cgacggactc ctttcacgat atcgaaacga ggaaacggag gagaagcaga agaaagaaga
60tgaagaaagg cagatggttg gtgatggatg aaactgtcgg gaagctggga gcttcaggga
120gttctattta tggggcgaaa caggggaggg gaaaccgaat ttaccaagat gcccttcttg
180gtgggattgg acatggagct gcacgaccgt cgtcccatca cgaagagtct tgctcttcgg
240tacacatgca atcgtcggcg aaccgacctt atccgaccgg ttccaagctt gtcctggtaa
300aaggtttcga accttggaaa aggcttaaga gatgtatcgg tgccttaacc attattccat
360gttcacataa tatttggccc ggttttcagg tcaattttgg agtagcccgg ttcggttcta
420gtcccgctcc cgattcaaaa attcattggg aacaaatttt gacactgtct ggtatttttg
480gtctaagacc ctacccaatt ttagaactgt acacccttgc tttatcccaa aataaaattg
540tcaattagtc aacttttcac acttgatgat cgattaagta gatggatgac atggtctttt
600accagcccgg gccgtcgacc acgcgtgccc tatagtgagt cgtattac
64838288DNAEucalyptus grandis 38gattgtaata cgactcacta tagggcacgc
gtggtcgacg gcccgggctg gtatcgtgaa 60agaagtccgt cgacgacaat ggccgagaag
agcaaggtcc tgatcatcgg agagaagagc 120aaggtcctga tcatcggaga gaagagcaag
gtcctgatca tcggagagaa gagcagggtc 180cttatcatcg gagaatcgaa ttcccgcggc
cgccatggcg gccgggagca tgcgacgtcg 240ggcccaattc gccctatagt gagtcgtatt
acaattcact ggccgtcg 28839382DNAEucalyptus grandis
39acagcaatct catctgatga ttcttcagtt cggagctcag aggatacatc atctatagct
60gaattgagct gtgcaatctt ctcggcaagc accttcctcg ttttctgaaa atcatcagat
120tttaaggtga atccatattt cgcagatggc catgttactg ctacactctc ttcacagcat
180acatgaagga ggtcacatag caagcataca taggacctca tatacaaata tgacagcaga
240ccagcccggg ccgtcgacca cgcgtgccct atagtagtag tggggaagga gtgagaggag
300ctcttgatga ggaatgtcgg cttttcttcc atcagttgat gttccgggtt cctagtcatt
360atgccgatgg tggccactcc ag
38240986DNAEucalyptus grandis 40aaatacaaac tggtttaata ttcaactcag
ataattacat gacaccacct aaataatgga 60aagtcaagca aatagacata ttatccccac
acataatcaa ctatattcat gactggagag 120gtgctagatg gtatagagtc cctagttatt
atttattttt ttgggcccga gaagatcctg 180atggatctat gctgtttgat actttcagat
ttgttttgtc tacagctcaa ataaattagt 240gcttgggttt tgatatatta tctaatctga
tacaagtctt tgtcctggcc aatttttgca 300gagtttcctg caaaacagtg cactaaagct
tccagaggac ctcatgccat gcccaagggc 360accacctatg atggaacgga gaatcaaacc
acagactgaa caggcgttga aatgccccag 420atgtgattct acaaacacaa aattctgtta
ctataacaac tacaatcttt cacaacctcg 480ccatttctgc aagacctgca ggcgatactg
gaccaaagga ggtgccttac gtaacgttcc 540tgttggtggg ggttgcagaa agaataaacg
agccaagcga gcagtagacc atcctgtctc 600tgctcagaat gaagcatcca cctctgcagc
cccaggcaac gaagtacctg accggtctcc 660ctttgagcca ccatcttcaa aatccattta
ctatggggga gaaaacatga acttaaccgg 720tctccccttt agcagaattc agcaggaccg
agctgcattg gcccactgca actcttcttc 780ctttctagga atgtcatgtg gcacccaatc
ggcctctctg gaaccacatc tttcggcttt 840aaatacattt aattcattca agtctaacaa
tcctggtctg gattttccta gcttaagcac 900agaccagaat tcactgtttg agaccagcca
gccacaactg tcaagagcaa tggcatctgc 960ccttttttct atgccaatgg ctcctg
98641313DNAPinus radiata 41aaaggaaaat
tcaaagatct ttagccaatt tttgttgttg tgaccttgaa tttctaaaaa 60atttaatgga
ttcgttttct aaattcctga ttcgtcaaag gctgaagggc acgatagtaa 120tagaaaatgg
acggcagttt atcctttcat ggctggacac acagaatttg tggagggact 180ctccattctg
gtttatccgc cgttagttct ctctgtactc cacccttagt tctctttgta 240ctcgagacct
ttaatgatta gccctgctta tgctgtcatt actgaactca cttccagagc 300cccaaaaatc
tct
31342713DNAPinus radiata 42taattcacaa gtagaaaatg agatttttgc aattttgtaa
ctaacatttc ccggtctcct 60ctgtatgttt tcacccctta atgtaattga aatttgcacc
cgggttagat tcaaagcgga 120gaataacatc ggggccttgt tctagacaga gatttttcac
aaataacagg ttcgaaggta 180tgtgtagaca tctgggtagt tgtagaataa agacggagcc
cattaggtga tccaatcgaa 240gagctcagat gggaaaacag ataaaaatta tcgggtggac
cttccttcac atgttaatta 300tatatcaagt gtcgccaatc cttatgtgaa acatttagta
aagcttcgcc agagcacttc 360ttataggcat tctgtgggct ctgttgttgt ggttggaagt
actcctttaa gggaggtatc 420tgaatatttg caacagaagt cagttaaaca agtggttgac
tgtctgtttg tacaagatgt 480tactggcata cctgtgggct tgatagagac ttccaggcgc
attgtgcatg taaatcattt 540ggtgatgcag aagctagccg gagtagagtc tatagagccc
actgaagcaa ttggtgtaat 600caagcttcct agcagcttct acaacttgga atctcttgaa
attcactcta gttcccagat 660atggtgctcg tcgccacatc gtctgcttgt acttgatggc
attcaggatc ctg 7134328DNAPinus radiata 43ccacctcaca tcaataaatt
ttatacga 284435DNAPinus radiata
44gctgtttcat tggggtcata gctacgtggt gctga
35451729DNAPinus radiata 45cttattgaca tataaaagca aagttggatc catctgttat
tttgggtccc ctccagaagc 60cttactaaat gcggacaaaa aatccacgta aagaacttct
gaatttaccg tcatctgggc 120tctgtaatta cgaatttagg gtttcctctg tcaatatctg
gtagtgacaa acaaggttta 180atggcagcct tagcaacaac tgaagtttgt gatacatatc
cacgccttgt ggagaatggt 240gagcttcgtg tcttgcaacc aattttccag atatatggtc
gacgtcgagc tttctctgga 300cctatagtta cactgaaggt ctttgaggac aatgtccttt
tgcgggaatt ccttgaggag 360agaggtaatg gaagagtttt ggtagttgat ggaggaggaa
gccttagatg tgccatactg 420gggggcaatg tagttgtatc tgcccaaaac aatggttggt
ctggaataat tgtcactggc 480tgcataaggg acgttgatga aataaacaga tgtgacattg
gtataagagc actgacatct 540aacccactga aggccaacaa gaagggtgtg ggtgaaaaac
atgcgcctat ttacattgct 600ggtacccgca ttcttccggg ggaatggtgt tatgctgaca
gtgatggtat tcttgtttca 660cagcaagagt tatcactgtg agataataaa attcataagt
ttcagattgt gactttcatg 720tcctgtggaa catatatttg actcgagtta gattctaata
ggattaattg atagattctg 780aaaattgagg aatatctctg gtcatgaaaa tcttcttctc
atgtgatctt ttatgctcag 840ctttgagtac aggatgataa gaagtttgtg catgtttgtc
taaaggttta gcaagtatta 900tcggaccatc ataagagata gattatggaa ctcagggact
tgctattttt aatccaaaat 960aacatttatt ctttgtgttt ttgccaaatt aacttttatt
tcccttggca ccactagtga 1020tttgcaatat ccagttgctg agaacataga agtgggcaac
ggtgagagtt gcaacagtat 1080ctagcataga tttaacaagt attgttggat cattataaga
aaataaacta cagaaccaag 1140ggaatctagt tgacaacata gttaaagtag gcatggtgct
actgtatcga tacatcttca 1200taaacagaaa aatatgaaca agctctaatg atgggagaaa
ctccagcttg gtgttttgat 1260taagcatcca tattcacacc taaaaggtta caagttccaa
aataaaaatt ccaatgaatt 1320tagccaatct aatcagacct tataagaaat acactaggca
tctggggatc aaaatccagt 1380agtttagaaa gtagttgtaa ataacccaga gacaaaaatc
tcaatgatag cttgcttggg 1440tcataggttt gataataatt gaaaacatag ttgaaaggag
aatcctagca atggctagct 1500tgaataatag atgtacagca aaattacagt agttgagaac
aaagatggaa ggataatccc 1560aacgatagct agcttggaca gtaggatgat tacatcaaaa
tcatagcagt tgagaacata 1620gttggaagga gaatccttat gatggctacg ttggataata
ggcgtgatta tcgtaggtag 1680attagagcac aagatcaaac taatagctgg cgcagctatc
gactatttt 1729461038DNAPinus radiata 46tgattactat
agggcacgcg tggtcgacgg cccgggctgg taaatgagaa catgataagc 60tgtgtaaatt
catgctagtc accataactt ttctcattgc ttttcatcca cactgttgat 120tcattcatta
tataagatca gattcgtatg atatacaggc aaccatagaa acaaccagca 180aagttactag
caggaaatcc aactaggtat catgaagact accaacgcag gctcgataat 240gttggtgctc
attatttttg ggtgctgttt cattggggtc atagctacat cttttgattt 300ctattacttc
gttcaacagt ggcctggttc atactgcgat actcgtagag gatgctgtta 360ccctcgcacg
ggaaggcctg cttccgaatt ttccattcat ggcctctggc ccaactacaa 420gaccggtaaa
tggccacagt tctgtggttc ctccgaagaa ttcgactact caaagatctc 480agatctggag
gaggagctga acaggtattg gggttcgtta agctgtccaa gcagcgatgg 540acaggaattt
tggggacacg agtgggagaa acatggcact tgctctctca atcttgatga 600gcattcatac
tttgagaagg ctctctcctt gagacaaaat atagacattc ttggggctct 660taaaactgca
ggtattaaac ccgatggaag ccaatacagt ttgagcgata tcaaggaagc 720cattaaacaa
aacactgggc agctcccagg aatcgattgc aacacgagcg cagagggaga 780gcatcaacta
tatcaggtgt atgtgtgtgt tgataaatcc gatgcttcca ctgttattga 840atgccccatt
tatccacaca gcaattgccc atccatggtt gtgtttcctc cttttgggga 900ggatcaggag
gaccgagatg gttacacaga aggaatgtac gagctgtaga tctggacaaa 960cagcatttct
tctctccgca tttgattttt atcaatgaaa tttccgattc caacattttg 1020taaaaaaaaa
aaaaaaaa 10384791DNAPinus
radiata 47aattttccat tcatgcctct gcccaactac aagaccggta aatggccaca
gttctgtggt 60tcctccgaag aattcgatat caagcttatc g
914891DNAPinus radiata 48gcttttcatc cacactggtg cctcattcat
tatataagat cagattcgtg tgatatacag 60gcaaccatag aaacaaccgg caaagttact a
9149809DNAPinus radiata 49tgatatatat
aacttctagc agaatgacac gcgacttgta tatcttttca ttttttaacc 60catgaaaacc
gattagggta ttgcaaatta gggcattgcc attcaaataa ttctcagatg 120aaagattctc
tctaacaatt acaaatgatt atttttttcc atgagtgttg catgttcgaa 180cggtctgccc
agtctgtgag agagcataga gaaccctccc tgcccaattt gttagagcat 240agagaaccct
actgcatgag tagtaagaaa aatattcggt ctcaattcgg caaagaccac 300ctcgaatgga
tgacttcaac gacaatctca tgatagtgtt ctgatcagca ccagttcacc 360tatatatttt
atctagggtt tagtttgcat gtatcaatcc tctggtgcac taggtaattc 420tttcccagta
tcatatatcc ttaatactgt tttgtctttt aatccatggc taccatcaga 480acaagctcaa
agcagaataa gggagcatca gccatcctct tgcttatcgc gattgcaggg 540ttagtaaatg
cgtgcaacgc tgtgggtatt gagccaatgt gcgacactgt ggtgtcgagt 600cttctgaggc
ttctgccatg caggacggct gttgatccct caattgccgc cattccactt 660ccaagctgct
gcaacgcggt tgagtcagct gggcttcaat gcctctgtct cgtcgttaac 720ggccctcctt
ttccaggggt cgaccgcggc ctcgcaatgc agctgcctgc caaatgccat 780ctcacccttc
ctccctgtaa cagttagtt
80950428DNAEucalyptus grandis 50tttcttgtga ctattcattt tcctcctgat
tatccattca agcccccgaa ggttgcattt 60aggactaaag ttttccaccc aaatataaat
aacaatggaa gtatctgcct tgacatcttg 120aaggaacagt ggagtcctgc tttgacaatc
tccaaggttt tgctctcaat ttgctctttg 180ttgacggatc caaacccaga tgatcctctt
gtaccagaga ttgctcatat gtacaagact 240gataggggca aatatgagtc cactgcacgg
agttggactc agaaatatgc aatgggttaa 300ctttaaaaac tatatatcag tgatggaact
ttatccctaa gttggaatct cttcgaatca 360atgacttgtt tgcttgtaag aaatgtttcc
ttaagataag tggctttcct caaaacttga 420ttgaagtg
42851525DNAPinus radiata 51cccttctttg
ccttcaacta atcctgctca tcctctcctg cccccattcc caaagatggc 60tgcacccaga
tcatccgcta aattgggtgc acttttggca atactgctca tagttgcggc 120agcgcaggct
caagattgct caaatgccat ggacaaattg gctccatgca cttcagcagt 180gggactgtct
agcaatggag tgaagccctc atctgagtgc tgtgatgccc tcaaaggaac 240cagtactggc
tgcgtctgca agtctgtgag agcagtgata tcacttcctg ctaagtgcaa 300tctcccagcc
ataacctgct ctggatctcg ctgaaggctc tctgttatgg cgattctcag 360atcgtggatc
tctttaagat tttcagcaag caagtgatag aataaattct cagattttga 420gatatctata
tagcgatttt cagtatcaga ttgtctatag tactcatata tttaagtgat 480tgaatagcat
tctccgattc cgagttggaa acacagacac aatga
525521126DNAPinus radiata 52actagtgatt actatagggc acgcgtggtc gacggcccgg
gctggtaaat acccaactta 60atttaattgt tattgagcca gagagatgcg tagtcgctca
tgtcacttgt gtttaccaaa 120aagacataca taaacacctg cacctaaaag ttataatgat
aacatgcata caaccctaca 180acgtacgtag tcacatgcgg ctagaactta aacccctacc
acaaacatag ccacctgcac 240ccagaagtta taataataac atacatagaa cccttacaat
aaaaaaagtt atctccaatg 300attattaatc tactgcaggc cagccatact cagcttgaac
gtgaaaattc gcattgtaag 360catggcgcca cattaaaata acctcggcaa tattttcatg
tccaagtggc cggccagcca 420cgctcctcgc actctgagaa tactctattc atccacttgt
ctctgccccg caactcatat 480aaatgtggcc aacccaagca ccatatccat gttcattaat
cccctctttg ccttcaacta 540atcctgctca tcccctcttg ccccaattcc caaagatggc
tgcacccaga tcatccgcta 600aatcggctgc acttttcgca atactgctca tagttgcggc
agtacaggct gaagattgct 660caaatgccat ggacaaattg gctccatgca cttcagcagt
gggactgtct agcaatggag 720tgaagccctc atctgagtgc tgtgatgccc tcaaaggaac
cagtactggc tgcgtctgca 780aatctgtgag agcagtgata tcacttcctg ctaagtgcaa
tctcccagcc ttaacctgct 840ctggatctcg ctgaaggctc tctgttatgg cgattctcag
atcgtggatc tctttaagat 900tttcaggaag caagtgatag aataaattct cagatgttga
gatatctata tagcgatttt 960cagtatcaga ttgtctacag taccaatata tttaagtgat
tgaatggaat tctcggattc 1020tgagatagaa atataggcac agaatgtggc cggaggaatg
ttcgaattcg agaatgataa 1080taaataataa atgattgatt tctctctgca aaaaaaaaaa
aaaaaa 112653454DNAPinus radiata 53atcctgctca tcctctcctg
cccccattcc caaagatggc tgcacccaga tcatccgcta 60aattgggtgc acttttggca
atactgctca tagttgcggc agcgcaggct caagattgct 120caaatgccat ggacaaattg
gctccatgca cttcagcagt gggactgtct agcaatggag 180tgaagccctc atctgagtgc
tgtgatgccc tcaaaggaac cagtactggc tgcgtctgca 240agtctgtgag agcagtgata
tcacttcctg ctaagtgcaa tctcccagcc ataacctgct 300ctggatctcg ctgaaggctc
tctgttatgg cgattctcag atcgtggata tctttaagat 360tttcagcaag tgatagaata
aattctcaga ttttgagata tctatatagc gattttcagt 420atcagattgt ctatagtact
catatattta agtg 45454335DNAPinus radiata
54agaagcacct gttaaaaagg aggcctgctc tttgttcatg agcttataga taagccctag
60tctgcaagga ttattgccct gtagttattt ggaagtagat cattttcaca ggcccagatg
120cattatattc taatgcagtt gtttgttaat tgaagtgcaa atagttccaa aatgtttaca
180tgaatcaata gtgaacaaat ccctctgttt tatatcatat tgatggatta ttcgattttt
240tggtgacgtg gcgcgaaact gcttttcgaa ctcatggaaa tagtaattgt tataatccat
300aggcatgaga ttcttgttaa tcgtgcacaa ggttt
33555336DNAPinus radiata 55aaaccttgtg cacgattaac aagaatctca tgcctatgga
ttataacaat tactatttcc 60atgagttcga aaagcagttt cgcgccacgt caccaaaaaa
tcgaataatc catcaatatg 120atataaaaca gagggatttg ttcactattg attcatgtaa
acattttgga actatttgca 180cttcaattaa caaacaactg cattagaata taatgcatct
ggtgcctgtg aaaatgatct 240acttccaaat aactacaggg caataatcct tgcagactag
ggcttatcta taagctcatg 300aacaaagagc aggcctcctt tttaacaggt gcttct
33656532DNAPinus radiata 56cgttcgttcc cttccctttc
cattgttgcg tttaagccct ccaattttct tttggcgtcc 60cgtttttggg gctcccttga
agatctcctc ttcatttcgg gatttcctgc cttcgccgcg 120ccatttgaag ttctttttct
gagagaagaa tttagacatg gctgatcgca tgttgactcg 180aagccacagc cttcgcgagc
gtttggacga gaccctctct gctcaccgca acgatattgt 240ggccttcctt tcaagggttg
aagccaaggg caaaggcatc ttgcagcgcc accagatttt 300tgctgagttt gaggccatct
ctgaggagag cagagcaaag cttcttgatg gggcctttgg 360tgaagtcctc aaatccactc
aggaagcgat tgtgtcgcct ccatgggttg ctcttgctgt 420tcgtccaagg ccgggcgtgt
gggagcacat ccgtgtgaac gtccatgcgc ttgttcttga 480gcaattggag gttgctgagt
atctgcactt caaagaagag cttgctgatg ga 532573103DNAEucalyptus
grandis 57gggtgaaaac aattaatgag atcatttgaa ttaaggaaag tggaaaggcg
gttttctgat 60tggtacactg aaacaacagg aaggtggtgg aggccgcaat gatggaattt
atccacttta 120atcattttat gaaatcgata cactaacctt tgtttctcct aaacccaaag
gcattaatcc 180ctgtcctcct cactcgatct cgaaggccag aagggggagg ccgagcctct
tgcttttttt 240cgtgtataaa agggcctccc ccattcctca tttttcacca tcctccgttc
gttcgttccc 300ttccctttcc attgttgcgt ttaagccctc caattttctt ttggcgtccc
gtttttgggg 360ctcccttgaa gatctcctct tcatttcggg atttcctgcc ttcgccgcgc
catttgaagt 420tctttttctg agagaagaat ttagacatgg ctgatcgcat gttgactcga
agccacagcc 480ttcgcgagcg tttggacgag accctctctg ctcaccgcaa cgatattgtg
gccttccttt 540caagggttga agccaagggc aaaggcatct tgcagcgcca ccagattttt
gctgagtttg 600aggccatctc tgaggagagc agagcaaagc ttcttgatgg ggcctttggt
gaagtcctca 660aatccactca ggaagcgatt gtgtcgcctc catgggttgc tcttgctgtt
cgtccaaggc 720cgggcgtgtg ggagcacatc cgtgtgaacg tccatgcgct tgttcttgag
caattggagg 780ttgctgagta tctgcacttc aaagaagagc ttgctgatgg aagcttgaat
ggtaactttg 840tgcttgagct tgactttgag ccattcactg cctcttttcc gcgcccgact
ctttccaagt 900ctattggcaa tggcgtcgag tttctcaatc gccatctctc cgctaagctc
ttccatgaca 960aggaaagctt gcaccctctg cttgaattcc tccaagtcca ctgctacaag
gggaagaaca 1020tgatggtgaa tgccagaatc cagaatgtgt tctccctcca acatgtcctg
aggaaggcgg 1080aggagtatct gacctcgctc aaacccgaga ccccgtactc ccagttcgag
cacaagttcc 1140aggagatcgg gctcgagcgg gggtggggtg acacggctga gcgcgtcctc
gagatgatcc 1200agctcctgtt ggatctcctt gaggctcccg acccgtgcac tctcgagaag
ttcttggata 1260gggttcccat ggtcttcaac gtcgtgatca tgtctcccca cggatacttt
gctcaggacg 1320acgtccttgg ttatccggat accggtggcc aggttgttta catcctggat
caagttcgtg 1380ccctagagga agaaatgctt caccgcatta agcaacaagg actggatatt
actcctcgga 1440ttctcattat cactcggctt cttccagacg cggttggaac cacctgtggc
cagcgccttg 1500agaaagtttt tgggaccgag tactcccaca ttcttcgcgt ccccttcaga
aatgagaagg 1560gagtcgtccg caagtggatt tcccggttcg aggtgtggcc ctatttggaa
agatacactg 1620aggatgtcgc gagcgaactt gctggagagt tgcagggcaa gcctgatctg
atcatcggaa 1680actacagtga tggaaacatt gttgcttcct tgttagcaca taaattaggt
gttacacagt 1740gtacaatagc ccatgccctc gagaagacga agtacccaga gtcagacata
tactggaaga 1800aatttgagga aaagtaccac ttctcttgcc agttcactgc tgatctcatc
gccatgaacc 1860acaccgactt cattatcacc agcaccttcc aagaaattgc tggaagcaag
gatacagtgg 1920ggcagtatga gagtcacatg aacttcactc ttcctggact ctaccgagtt
gtccacggga 1980tcgacgtctt cgacccgaag ttcaacattg tttcaccagg tgctgacatg
agcatctact 2040ttgcttacac cgaacaggag cggcggttga aatccttcca ccctgagatc
gaggaactcc 2100tcttcagcga tgttgagaac aaggaacact tgtgtgtgtt gaaagataag
aagaagccta 2160ttattttcac catggcaagg ctggaccgtg tcaagaactt gacagggctt
gttgagtggt 2220atggcaagaa ctccaagttg agggaactcg ccaacttggt cgtggttgga
ggtgacagga 2280ggaaggattc gaaggacttg gaagagcagt ctgagatgaa gaaaatgtac
gacctcatcg 2340aaaagtacaa gctgaatggc cagttcaggt ggatttcctc ccagatgaac
cgggtgagga 2400atggagagct ctaccgctac atctgtgaca cgaagggagt cttcgttcaa
ccggctatct 2460atgaagcttt cgggttgacc gtggttgagg ccatgacttg tggattgcca
acctttgcca 2520cttgcaatgg tggaccagct gagatcattg tgcatggcaa atcgggctac
cacattgatc 2580cttaccatgg tgaccaggcg gccgagcttc ttgtagactt cttcaacaag
tgcaagattg 2640accagtccca ctgggacgag atctcaaagg gtgccatgca gagaattgaa
gagaagtata 2700catggaaaat atattctgag aggctgttga acctgactgc cgtgtatggc
ttctggaagc 2760atgtgactaa ccttgatcgg cgcgagagtc gccggtacct tgaaatgttc
tatgccctca 2820agtatcgccc actggcacag tctgttcctc cggctgtcga gtaaacaaag
agacagattg 2880ttaccagaag acggaagcat tggacttttg aagttttcaa ggaataaaca
ttggaaattg 2940tttgaatttg ggattgccaa gagcgatctt tttcgtttcc tttttttggt
cctttttctc 3000ttctttgttt ccattccgcg aatgtttgca ttttggggtt tgtacccatc
aattcagtaa 3060atggttcatt ttcttttcaa aaaaaaaaaa aaaaaaaaaa aaa
310358326DNAEucalyptus grandis 58ctcgaaaccg agacgctgac
tgtgggttga gctctaacca atgggagtga tgtctctctt 60acgtgcctgc cgtgggcccc
agtgacgggc cccaaaagtg taaacgaagg aagctcccgg 120ggatctgatt ggccgcgacg
tccgcctctg acgtggcacc accgacgatt tttttttaat 180atcttggtca agtcctaatt
taactatggg gtccagatta gaagcttatc cactatggat 240taaattaaat caaatgggaa
ttaaattaaa ttaaaatcat cgtgcggagg tgcacgagat 300gcacgagatc cgacggcgca
gagcag 32659311DNAEucalyptus
grandis 59attactatag ggcacgcgtg gtcgacggcc cgggctggta ctctcactaa
ttctttagtt 60ttccaattta gccccttctg taattgctca tcttctttac caaattctct
aatttggccg 120gcgaagggct gacaagggat tggtcatgtc accctcacca aaggttgccg
aaggtccggt 180gacctcagct gacggccacc tacaccaaat ctagctcact agcagcctaa
gcccttcatc 240aactctagtg aaaggttttg agtatttttt aataaaaaat atttaaaaaa
tatatagcga 300gagctcatta c
311602096DNAEucalyptus grandis 60gattactata gggcacgcgt
ggtcgacggc ccgggctggt ctgagccatt taattcgaga 60gcacatcgcc caaaattatt
cttcttgctg ccataactgt cgaattttct cttttaggta 120agtaaccaat gatgcatcat
gttgacaaaa aggctgatta gtatgatctt ggagttgttg 180gtgcaaattt gcaagctgac
gatggcccct cagggaaatt aaggcgccaa cccagattgc 240aaagagcaca aagagcacga
tccaaccttt ccttaacaag atcatcacca gatcggccag 300taagggtaat attaatttaa
caaatagctc ttgtaccggg aactccgtat ttctctcact 360tccataaacc cctgattaat
ttggtgggaa agcgacagcc aacccacaaa aggtcagatg 420tcatcccacg agagagagag
agagagagag agagagagag agagttttct ctctatattc 480tggttcaccg gttggagtca
atggcatgcg tgacgaatgt acatattggt gtagggtcca 540atattttgcg ggagggttgg
tgaaccgcaa agttcctata tatcgaacct ccaccaccat 600acctcacttc aatccccacc
atttatccgt tttatttcct ctgctttcct ttgctcgagt 660ctcgcggaag agagagaaga
gaggagagga gagaatgggt tcgaccggat ccgagaccca 720gatgaccccg acccaagtct
cggacgagga ggcgaacctc ttcgccatgc agctggcgag 780cgcctccgtg ctccccatgg
tcctcaaggc cgccatcgag ctcgacctcc tcgagatcat 840ggccaaggcc gggccgggcg
cgttcctctc cccgggggaa gtcgcggccc agctcccgac 900ccagaacccc gaggcacccg
tcatgctcga ccggatcttc cggctgctgg ccagctactc 960cgtgctcacg tgcaccctcc
gcgacctccc cgatggcaag gtcgagcggc tctacggctt 1020agcgccggtg tgcaagttct
tggtcaagaa cgaggacggg gtctccatcg ccgcactcaa 1080cttgatgaac caggacaaaa
tcctcatgga aagctggtat tacctgaaag atgcggtcct 1140tgaaggcgga atcccattca
acaaggcgta cgggatgacc gcgttcgagt atcatggcac 1200cgacccgcga ttcaacaaga
tctttaaccg gggaatgtct gatcactcca ccattactat 1260gaagaagata ctggaaacat
acaagggctt cgagggcctc gagaccgtgg tcgatgtcgg 1320aggcggcact ggggccgtgc
tcagcatgat cgttgccaaa tacccatcaa tgaaagggat 1380caacttcgac cgccccaacg
gattgaagac gccccacccc ttcctggtgt caagcacgtc 1440ggaggcgaca tgttcgtcag
cgttccaaag ggagatgcca ttttcatgaa gtggatatgc 1500catgactgga gtgacgacca
ttgcgcgaag ttcctcaaga actgctacga tgcgcttccc 1560aacaatggaa aggtgatcgt
tgcagagtgc gtactccctg tgtacccaga cacgagccta 1620gcgaccaaga atgtgatcca
catcgactgc atcatgttgg cccacaaccc aggcgggaaa 1680gagaggacac agaaggagtt
cgaggcattg gccaaagggg ccggatttca gggcttccaa 1740gtcatgtgct gcgctttcgg
cactcacgtc atggagttcc tgaagaccgc ttgatctgct 1800cctctgtggt gatgttcatg
gttcttggat ttgaaaggtc gtgaaggagc ccttttctca 1860cagttggctt cggcatacca
agttcttctc ataaaaggaa acaataagaa gcgactgtat 1920gatggcgcaa gtggaagtta
caagatttgt tgttttatgt ctataaagtt ttgagtcttc 1980tgcatactga tttcacagaa
tgtgtaacga aacggcgtat atggatgtgc ctgaatgatg 2040gaaattgtga tattctgtct
tctttttcag taaatcactt cgaacaaaaa aaaaaa 209661522DNAEucalyptus
grandis 61ctaaaacgct aatcctgccc tgcccttccc ttctgctgct gctgctcgtc
acctctctct 60ccctctcgcg gccagctgcg agatctgccg agtttaagcc tcgtacatca
aaatgggtaa 120ggagaagatt cacatcagca ttgtggtcat tggccatgtc gattctggga
agtcaaccac 180aactggccac ttgatataca agctcggagg aatcgacaag cgtgtgattg
agagattcga 240gaaggaagct gctgagatga acaagagatc gttcaagtat gcttgggtgc
ttgacaagct 300caaggccgag cgcgagcgcg gtattaccat tgatattgcc ttgtggaagt
tcgagaccac 360caagtactac tgcactgtca ttgatgctcc tggacatcgt gactttatta
agaatatgat 420tactggaacc tcccaggccg actgtgctgt ccttatcatt gattccacca
ctggtggttt 480cgaagctggt atttccaagg atggccagac ccgtgaacat gc
52262420DNAEucalyptus grandis 62tttgatacgc taacaaacaa
aacatgtgaa aagcttaatt atggcaatta tcataaatag 60aaaaaaatta gaaaaaaaga
gaggaaatgg gccattattt aaattgcaat cgaaagattg 120agggcaattc tgtttctcta
gtgtaaataa gggtgtattt aataattgag ggatggaaat 180agcatggtca ctcggtaatt
atcaaggaaa gcaagaataa aaatggaaaa aaaaaaaaaa 240aaagcttgaa gaggccaatg
tcgaaattat gagcgcgaga tgaggacact cctgggaaac 300gaaaaatggc attcgcgggg
ggtgctatat aaagcctcgt gtaagggtgc gttcctcact 360ctcaaaccct aatcctgccc
ttcccttctg ctgctgctgc tcgtcacctc tctcctccct 4206365PRTEucalyptus
grandis 63Met Asp Asn Ser Lys Met Gly Phe Asn Ala Gly Gln Ala Lys Gly
Gln1 5 10 15Thr Gln Glu
Lys Ser Asn Gln Met Met Asp Lys Ala Ser Asn Thr Ala 20
25 30Gln Ser Ala Arg Asp Ser Met Gln Glu Thr
Gly Gln Gln Met Lys Ala 35 40
45Lys Ala Gln Gly Ala Ala Asp Ala Val Lys Asn Ala Thr Gly Met Asn 50
55 60Lys6564152PRTEucalyptus grandis
64Met Gly Gly Pro Leu Thr Leu Asp Ala Glu Val Glu Val Lys Ser Pro1
5 10 15Ala Asp Lys Phe Trp Val
Ser Val Arg Asp Ser Thr Lys Leu Phe Pro 20 25
30Lys Ile Phe Pro Asp Gln Tyr Lys Asn Ile Glu Val Leu
Glu Gly Asp 35 40 45Gly Lys Ala
Pro Gly Ser Val Arg Leu Phe Thr Tyr Gly Glu Gly Ser 50
55 60Pro Leu Val Lys Val Ser Lys Glu Lys Ile Asp Gly
Val Asp Glu Ala65 70 75
80Asp Lys Val Val Thr Tyr Ser Val Ile Asp Gly Asp Leu Leu Lys Tyr
85 90 95Tyr Lys Asn Phe Asn Gly
Ser Ile Lys Val Ile Pro Lys Gly Asp Gly 100
105 110Ser Leu Val Lys Trp Ser Cys Gly Phe Glu Lys Ala
Ser Asp Glu Ile 115 120 125Pro Asp
Pro His Val Ile Lys Asp Phe Ala Ile Gln Asn Phe Lys Glu 130
135 140Leu Asp Glu Phe Ile Leu Lys Ala145
15065117PRTEucalyptus grandis 65Met Ala Ala Asn Phe Val Ile Pro Thr
Lys Met Lys Ala Trp Val Tyr1 5 10
15Arg Glu His Gly Asn Val Ala Asp Val Leu Gly Leu Asp Pro Glu
Leu 20 25 30Lys Val Pro Glu
Leu Gln Glu Gly Gln Val Leu Val Lys Val Leu Ala 35
40 45Ala Ala Leu Asn Pro Val Asp Ala Ala Arg Met Lys
Gly Val Ile Lys 50 55 60Leu Pro Gly
Phe Ser Leu Pro Ala Val Pro Gly Tyr Asp Leu Ala Gly65 70
75 80Val Val Val Lys Val Gly Arg Glu
Val Lys Glu Leu Lys Ile Gly Asp 85 90
95Glu Val Tyr Gly Phe Met Phe His Ala Lys Lys Asp Gly Thr
Leu Ala 100 105 110Glu Tyr Ala
Ala Val 11566318PRTEucalyptus grandis 66Met Ala Ala Asn Phe Val
Ile Pro Thr Lys Met Lys Ala Trp Val Tyr1 5
10 15Arg Glu His Gly Asp Val Ala Asn Val Leu Gly Leu
Asp Pro Glu Leu 20 25 30Lys
Val Pro Glu Leu Gln Glu Gly Gln Val Leu Val Lys Val Leu Ala 35
40 45Ala Ala Leu Asn Pro Ile Asp Thr Ala
Arg Val Lys Gly Val Ile Lys 50 55
60Leu Pro Gly Phe Ser Leu Pro Ala Val Pro Gly Tyr Asp Leu Ala Gly65
70 75 80Val Val Val Lys Val
Gly Arg Glu Val Lys Glu Leu Lys Val Gly Asp 85
90 95Glu Val Tyr Gly Phe Met Phe His Ala Lys Lys
Asp Gly Thr Leu Ala 100 105
110Glu Tyr Ala Ala Val Glu Glu Ser Phe Leu Ala Leu Lys Pro Lys Lys
115 120 125Leu Arg Phe Gly Glu Ala Ala
Ser Leu Pro Val Val Ile Gln Thr Ala 130 135
140Tyr Gly Gly Leu Glu Arg Ala Gly Leu Ser His Gly Lys Ser Leu
Leu145 150 155 160Val Leu
Gly Gly Ala Gly Gly Val Gly Thr Leu Ile Ile Gln Leu Ala
165 170 175Lys Glu Val Phe Gly Ala Ser
Arg Val Ala Ala Thr Ser Ser Thr Gly 180 185
190Lys Leu Glu Leu Leu Lys Ser Leu Gly Ala Asp Leu Ala Ile
Asp Tyr 195 200 205Thr Lys Val Asn
Phe Glu Asp Leu Pro Glu Lys Phe Asp Val Val Tyr 210
215 220Asp Thr Val Gly Glu Ile Glu Arg Ala Ala Lys Ala
Val Lys Pro Gly225 230 235
240Gly Ser Ile Val Thr Ile Val Lys Gln Asn Lys Thr Leu Pro Pro Pro
245 250 255Ala Phe Phe Phe Ala
Val Thr Ser Asn Arg Ser Thr Leu Glu Lys Leu 260
265 270Lys Pro Phe Leu Glu Ser Gly Lys Val Lys Pro Val
Ile Asp Pro Lys 275 280 285Ser Pro
Phe Pro Phe Ser Gln Ala Ile Glu Ala Phe Ser Tyr Leu Gln 290
295 300Thr Arg Arg Ala Thr Gly Lys Leu Val Ile His
Pro Val Pro305 310 31567156PRTEucalyptus
grandis 67Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu
Glu1 5 10 15Val Glu Ser
Ser Asp Thr Val Asp Asn Val Lys Ala Lys Ile Gln Asp 20
25 30Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg
Leu Ile Phe Ala Gly Lys 35 40
45Gln Leu Glu Asp Gly Arg Thr Leu Ala Asp Tyr Asn Ile Gln Lys Glu 50
55 60Ser Thr Leu His Leu Val Leu Arg Leu
Arg Gly Gly Met Gln Ile Phe65 70 75
80Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu Val Glu
Ser Ser 85 90 95Asp Thr
Val Asp Asn Val Lys Ala Lys Ile Gln Asp Lys Glu Gly Ile 100
105 110Pro Pro Asp Gln Gln Arg Leu Ile Phe
Ala Gly Lys Gln Leu Glu Asp 115 120
125Gly Arg Thr Leu Ala Asp Tyr Asn Ile Gln Lys Glu Ser Thr Leu His
130 135 140Leu Val Leu Arg Leu Lys Gly
Gly Met Gln Ile Phe145 150
15568238PRTEucalyptus grandis 68Met Ala Thr His Ala Ala Leu Ala Pro Ser
Thr Leu Pro Ala Asn Ala1 5 10
15Lys Phe Ser Ser Lys Ser Ser Ser His Ser Phe Pro Thr Gln Cys Phe
20 25 30Ser Lys Arg Leu Glu Val
Ala Glu Phe Ser Gly Leu Arg Ala Gly Ser 35 40
45Cys Val Thr Tyr Ala Lys Asn Ala Gly Glu Gly Ser Phe Phe
Asp Ala 50 55 60Val Ala Ala Gln Leu
Thr Pro Lys Thr Ser Ala Pro Ala Pro Ala Lys65 70
75 80Gly Glu Thr Val Ala Lys Leu Lys Val Ala
Ile Asn Gly Phe Gly Arg 85 90
95Ile Gly Arg Asn Phe Leu Arg Cys Trp His Gly Arg Lys Asn Ser Pro
100 105 110Leu Asp Val Ile Val
Val Asn Asp Ser Gly Gly Val Lys Asn Ala Ser 115
120 125His Leu Leu Lys Tyr Asp Ser Met Leu Gly Thr Phe
Lys Ala Asp Val 130 135 140Lys Ile Val
Asp Asn Glu Thr Ile Ser Val Asp Gly Lys Pro Val Lys145
150 155 160Val Val Ser Asn Arg Asp Pro
Leu Lys Leu Pro Trp Ala Glu Leu Gly 165
170 175Ile Asp Ile Val Ile Glu Gly Thr Gly Val Phe Val
Asp Gly Pro Gly 180 185 190Ala
Gly Lys His Ile Gln Ala Gly Ala Lys Lys Val Ile Ile Thr Ala 195
200 205Pro Ala Lys Gly Ala Asp Ile Pro Thr
Tyr Val Tyr Gly Val Asn Glu 210 215
220Thr Asp Tyr Ser His Glu Val Ala Asn Ile Ile Ser Asn Ala225
230 23569168PRTEucalyptus grandis 69Met Ser Thr Ser
Pro Val Ser Ser Trp Cys Ala Thr Ser Phe Ser Pro1 5
10 15Ala His Ser Ser Leu Lys Arg Ala Ala Gly
Leu Arg Pro Ser Leu Ser 20 25
30Ala Arg Leu Gly Pro Ser Ser Ser Ser Ser Ser Val Ser Pro Pro Thr
35 40 45Leu Ile Arg Asn Glu Pro Val Phe
Ala Ala Pro Ala Pro Val Ile Asn 50 55
60Pro Thr Trp Thr Glu Glu Met Gly Lys Asp Tyr Asp Glu Ala Ile Glu65
70 75 80Ala Leu Lys Lys Leu
Leu Ser Glu Lys Gly Asp Leu Lys Ala Thr Ala 85
90 95Ala Ala Lys Val Glu Gln Ile Thr Ala Glu Leu
Gln Thr Ala Ser Pro 100 105
110Asp Ile Lys Pro Ser Ser Ser Val Asp Arg Ile Lys Thr Gly Phe Thr
115 120 125Phe Phe Lys Lys Glu Lys Tyr
Asp Lys Asn Pro Ala Leu Tyr Gly Glu 130 135
140Leu Ala Lys Gln Ser Pro Lys Phe Met Val Phe Ala Cys Ser Asp
Ser145 150 155 160Arg Val
Cys Pro Ser His Val Leu 16570214PRTEucalyptus grandis
70Met Pro Cys Pro Arg Ala Pro Pro Met Met Glu Arg Arg Ile Lys Pro1
5 10 15Gln Thr Glu Gln Ala Leu
Lys Cys Pro Arg Cys Asp Ser Thr Asn Thr 20 25
30Lys Phe Cys Tyr Tyr Asn Asn Tyr Asn Leu Ser Gln Pro
Arg His Phe 35 40 45Cys Lys Thr
Cys Arg Arg Tyr Trp Thr Lys Gly Gly Ala Leu Arg Asn 50
55 60Val Pro Val Gly Gly Gly Cys Arg Lys Asn Lys Arg
Ala Lys Arg Ala65 70 75
80Val Asp His Pro Val Ser Ala Gln Asn Glu Ala Ser Thr Ser Ala Ala
85 90 95Pro Gly Asn Glu Val Pro
Asp Arg Ser Pro Phe Glu Pro Pro Ser Ser 100
105 110Lys Ser Ile Tyr Tyr Gly Gly Glu Asn Met Asn Leu
Thr Gly Leu Pro 115 120 125Phe Ser
Arg Ile Gln Gln Asp Arg Ala Ala Leu Ala His Cys Asn Ser 130
135 140Ser Ser Phe Leu Gly Met Ser Cys Gly Thr Gln
Ser Ala Ser Leu Glu145 150 155
160Pro His Leu Ser Ala Leu Asn Thr Phe Asn Ser Phe Lys Ser Asn Asn
165 170 175Pro Gly Leu Asp
Phe Pro Ser Leu Ser Thr Asp Gln Asn Ser Leu Phe 180
185 190Glu Thr Ser Gln Pro Gln Leu Ser Arg Ala Met
Ala Ser Ala Leu Phe 195 200 205Ser
Met Pro Met Ala Pro 21071166PRTPinus radiata 71Met Ala Ala Leu Ala Thr
Thr Glu Val Cys Asp Thr Tyr Pro Arg Leu1 5
10 15Val Glu Asn Gly Glu Leu Arg Val Leu Gln Pro Ile
Phe Gln Ile Tyr 20 25 30Gly
Arg Arg Arg Ala Phe Ser Gly Pro Ile Val Thr Leu Lys Val Phe 35
40 45Glu Asp Asn Val Leu Leu Arg Glu Phe
Leu Glu Glu Arg Gly Asn Gly 50 55
60Arg Val Leu Val Val Asp Gly Gly Gly Ser Leu Arg Cys Ala Ile Leu65
70 75 80Gly Gly Asn Val Val
Val Ser Ala Gln Asn Asn Gly Trp Ser Gly Ile 85
90 95Ile Val Thr Gly Cys Ile Arg Asp Val Asp Glu
Ile Asn Arg Cys Asp 100 105
110Ile Gly Ile Arg Ala Leu Thr Ser Asn Pro Leu Lys Ala Asn Lys Lys
115 120 125Gly Val Gly Glu Lys His Ala
Pro Ile Tyr Ile Ala Gly Thr Arg Ile 130 135
140Leu Pro Gly Glu Trp Cys Tyr Ala Asp Ser Asp Gly Ile Leu Val
Ser145 150 155 160Gln Gln
Glu Leu Ser Leu 16572236PRTPinus radiata 72Met Leu Val Leu
Ile Ile Phe Gly Cys Cys Phe Ile Gly Val Ile Ala1 5
10 15Thr Ser Phe Asp Phe Tyr Tyr Phe Val Gln
Gln Trp Pro Gly Ser Tyr 20 25
30Cys Asp Thr Arg Arg Gly Cys Cys Tyr Pro Arg Thr Gly Arg Pro Ala
35 40 45Ser Glu Phe Ser Ile His Gly Leu
Trp Pro Asn Tyr Lys Thr Gly Lys 50 55
60Trp Pro Gln Phe Cys Gly Ser Ser Glu Glu Phe Asp Tyr Ser Lys Ile65
70 75 80Ser Asp Leu Glu Glu
Glu Leu Asn Arg Tyr Trp Gly Ser Leu Ser Cys 85
90 95Pro Ser Ser Asp Gly Gln Glu Phe Trp Gly His
Glu Trp Glu Lys His 100 105
110Gly Thr Cys Ser Leu Asn Leu Asp Glu His Ser Tyr Phe Glu Lys Ala
115 120 125Leu Ser Leu Arg Gln Asn Ile
Asp Ile Leu Gly Ala Leu Lys Thr Ala 130 135
140Gly Ile Lys Pro Asp Gly Ser Gln Tyr Ser Leu Ser Asp Ile Lys
Glu145 150 155 160Ala Ile
Lys Gln Asn Thr Gly Gln Leu Pro Gly Ile Asp Cys Asn Thr
165 170 175Ser Ala Glu Gly Glu His Gln
Leu Tyr Gln Val Tyr Val Cys Val Asp 180 185
190Lys Ser Asp Ala Ser Thr Val Ile Glu Cys Pro Ile Tyr Pro
His Ser 195 200 205Asn Cys Pro Ser
Met Val Val Phe Pro Pro Phe Gly Glu Asp Gln Glu 210
215 220Asp Arg Asp Gly Tyr Thr Glu Gly Met Tyr Glu Leu225
230 2357392PRTPinus radiata 73Met Ala Ala
Pro Arg Ser Ser Ala Lys Leu Gly Ala Leu Leu Ala Ile1 5
10 15Leu Leu Ile Val Ala Ala Ala Gln Ala
Gln Asp Cys Ser Asn Ala Met 20 25
30Asp Lys Leu Ala Pro Cys Thr Ser Ala Val Gly Leu Ser Ser Asn Gly
35 40 45Val Lys Pro Ser Ser Glu Cys
Cys Asp Ala Leu Lys Gly Thr Ser Thr 50 55
60Gly Cys Val Cys Lys Ser Val Arg Ala Val Ile Ser Leu Pro Ala Lys65
70 75 80Cys Asn Leu Pro
Ala Ile Thr Cys Ser Gly Ser Arg 85
907492PRTPinus radiata 74Met Ala Ala Pro Arg Ser Ser Ala Lys Ser Ala Ala
Leu Phe Ala Ile1 5 10
15Leu Leu Ile Val Ala Ala Val Gln Ala Glu Asp Cys Ser Asn Ala Met
20 25 30Asp Lys Leu Ala Pro Cys Thr
Ser Ala Val Gly Leu Ser Ser Asn Gly 35 40
45Val Lys Pro Ser Ser Glu Cys Cys Asp Ala Leu Lys Gly Thr Ser
Thr 50 55 60Gly Cys Val Cys Lys Ser
Val Arg Ala Val Ile Ser Leu Pro Ala Lys65 70
75 80Cys Asn Leu Pro Ala Leu Thr Cys Ser Gly Ser
Arg 85 907592PRTPinus radiata 75Met Ala
Ala Pro Arg Ser Ser Ala Lys Leu Gly Ala Leu Leu Ala Ile1 5
10 15Leu Leu Ile Val Ala Ala Ala Gln
Ala Gln Asp Cys Ser Asn Ala Met 20 25
30Asp Lys Leu Ala Pro Cys Thr Ser Ala Val Gly Leu Ser Ser Asn
Gly 35 40 45Val Lys Pro Ser Ser
Glu Cys Cys Asp Ala Leu Lys Gly Thr Ser Thr 50 55
60Gly Cys Val Cys Lys Ser Val Arg Ala Val Ile Ser Leu Pro
Ala Lys65 70 75 80Cys
Asn Leu Pro Ala Ile Thr Cys Ser Gly Ser Arg 85
9076125PRTEucalyptus grandis 76Met Ala Asp Arg Met Leu Thr Arg Ser
His Ser Leu Arg Glu Arg Leu1 5 10
15Asp Glu Thr Leu Ser Ala His Arg Asn Asp Ile Val Ala Phe Leu
Ser 20 25 30Arg Val Glu Ala
Lys Gly Lys Gly Ile Leu Gln Arg His Gln Ile Phe 35
40 45Ala Glu Phe Glu Ala Ile Ser Glu Glu Ser Arg Ala
Lys Leu Leu Asp 50 55 60Gly Ala Phe
Gly Glu Val Leu Lys Ser Thr Gln Glu Ala Ile Val Ser65 70
75 80Pro Pro Trp Val Ala Leu Ala Val
Arg Pro Arg Pro Gly Val Trp Glu 85 90
95His Ile Arg Val Asn Val His Ala Leu Val Leu Glu Gln Leu
Glu Val 100 105 110Ala Glu Tyr
Leu His Phe Lys Glu Glu Leu Ala Asp Gly 115 120
12577805PRTEucalyptus grandis 77Met Ala Asp Arg Met Leu Thr
Arg Ser His Ser Leu Arg Glu Arg Leu1 5 10
15Asp Glu Thr Leu Ser Ala His Arg Asn Asp Ile Val Ala
Phe Leu Ser 20 25 30Arg Val
Glu Ala Lys Gly Lys Gly Ile Leu Gln Arg His Gln Ile Phe 35
40 45Ala Glu Phe Glu Ala Ile Ser Glu Glu Ser
Arg Ala Lys Leu Leu Asp 50 55 60Gly
Ala Phe Gly Glu Val Leu Lys Ser Thr Gln Glu Ala Ile Val Ser65
70 75 80Pro Pro Trp Val Ala Leu
Ala Val Arg Pro Arg Pro Gly Val Trp Glu 85
90 95His Ile Arg Val Asn Val His Ala Leu Val Leu Glu
Gln Leu Glu Val 100 105 110Ala
Glu Tyr Leu His Phe Lys Glu Glu Leu Ala Asp Gly Ser Leu Asn 115
120 125Gly Asn Phe Val Leu Glu Leu Asp Phe
Glu Pro Phe Thr Ala Ser Phe 130 135
140Pro Arg Pro Thr Leu Ser Lys Ser Ile Gly Asn Gly Val Glu Phe Leu145
150 155 160Asn Arg His Leu
Ser Ala Lys Leu Phe His Asp Lys Glu Ser Leu His 165
170 175Pro Leu Leu Glu Phe Leu Gln Val His Cys
Tyr Lys Gly Lys Asn Met 180 185
190Met Val Asn Ala Arg Ile Gln Asn Val Phe Ser Leu Gln His Val Leu
195 200 205Arg Lys Ala Glu Glu Tyr Leu
Thr Ser Leu Lys Pro Glu Thr Pro Tyr 210 215
220Ser Gln Phe Glu His Lys Phe Gln Glu Ile Gly Leu Glu Arg Gly
Trp225 230 235 240Gly Asp
Thr Ala Glu Arg Val Leu Glu Met Ile Gln Leu Leu Leu Asp
245 250 255Leu Leu Glu Ala Pro Asp Pro
Cys Thr Leu Glu Lys Phe Leu Asp Arg 260 265
270Val Pro Met Val Phe Asn Val Val Ile Met Ser Pro His Gly
Tyr Phe 275 280 285Ala Gln Asp Asp
Val Leu Gly Tyr Pro Asp Thr Gly Gly Gln Val Val 290
295 300Tyr Ile Leu Asp Gln Val Arg Ala Leu Glu Glu Glu
Met Leu His Arg305 310 315
320Ile Lys Gln Gln Gly Leu Asp Ile Thr Pro Arg Ile Leu Ile Ile Thr
325 330 335Arg Leu Leu Pro Asp
Ala Val Gly Thr Thr Cys Gly Gln Arg Leu Glu 340
345 350Lys Val Phe Gly Thr Glu Tyr Ser His Ile Leu Arg
Val Pro Phe Arg 355 360 365Asn Glu
Lys Gly Val Val Arg Lys Trp Ile Ser Arg Phe Glu Val Trp 370
375 380Pro Tyr Leu Glu Arg Tyr Thr Glu Asp Val Ala
Ser Glu Leu Ala Gly385 390 395
400Glu Leu Gln Gly Lys Pro Asp Leu Ile Ile Gly Asn Tyr Ser Asp Gly
405 410 415Asn Ile Val Ala
Ser Leu Leu Ala His Lys Leu Gly Val Thr Gln Cys 420
425 430Thr Ile Ala His Ala Leu Glu Lys Thr Lys Tyr
Pro Glu Ser Asp Ile 435 440 445Tyr
Trp Lys Lys Phe Glu Glu Lys Tyr His Phe Ser Cys Gln Phe Thr 450
455 460Ala Asp Leu Ile Ala Met Asn His Thr Asp
Phe Ile Ile Thr Ser Thr465 470 475
480Phe Gln Glu Ile Ala Gly Ser Lys Asp Thr Val Gly Gln Tyr Glu
Ser 485 490 495His Met Asn
Phe Thr Leu Pro Gly Leu Tyr Arg Val Val His Gly Ile 500
505 510Asp Val Phe Asp Pro Lys Phe Asn Ile Val
Ser Pro Gly Ala Asp Met 515 520
525Ser Ile Tyr Phe Ala Tyr Thr Glu Gln Glu Arg Arg Leu Lys Ser Phe 530
535 540His Pro Glu Ile Glu Glu Leu Leu
Phe Ser Asp Val Glu Asn Lys Glu545 550
555 560His Leu Cys Val Leu Lys Asp Lys Lys Lys Pro Ile
Ile Phe Thr Met 565 570
575Ala Arg Leu Asp Arg Val Lys Asn Leu Thr Gly Leu Val Glu Trp Tyr
580 585 590Gly Lys Asn Ser Lys Leu
Arg Glu Leu Ala Asn Leu Val Val Val Gly 595 600
605Gly Asp Arg Arg Lys Asp Ser Lys Asp Leu Glu Glu Gln Ser
Glu Met 610 615 620Lys Lys Met Tyr Asp
Leu Ile Glu Lys Tyr Lys Leu Asn Gly Gln Phe625 630
635 640Arg Trp Ile Ser Ser Gln Met Asn Arg Val
Arg Asn Gly Glu Leu Tyr 645 650
655Arg Tyr Ile Cys Asp Thr Lys Gly Val Phe Val Gln Pro Ala Ile Tyr
660 665 670Glu Ala Phe Gly Leu
Thr Val Val Glu Ala Met Thr Cys Gly Leu Pro 675
680 685Thr Phe Ala Thr Cys Asn Gly Gly Pro Ala Glu Ile
Ile Val His Gly 690 695 700Lys Ser Gly
Tyr His Ile Asp Pro Tyr His Gly Asp Gln Ala Ala Glu705
710 715 720Leu Leu Val Asp Phe Phe Asn
Lys Cys Lys Ile Asp Gln Ser His Trp 725
730 735Asp Glu Ile Ser Lys Gly Ala Met Gln Arg Ile Glu
Glu Lys Tyr Thr 740 745 750Trp
Lys Ile Tyr Ser Glu Arg Leu Leu Asn Leu Thr Ala Val Tyr Gly 755
760 765Phe Trp Lys His Val Thr Asn Leu Asp
Arg Arg Glu Ser Arg Arg Tyr 770 775
780Leu Glu Met Phe Tyr Ala Leu Lys Tyr Arg Pro Leu Ala Gln Ser Val785
790 795 800Pro Pro Ala Val
Glu 80578264PRTEucalyptus grandis 78Met Gly Ser Thr Gly
Ser Glu Thr Gln Met Thr Pro Thr Gln Val Ser1 5
10 15Asp Glu Glu Ala Asn Leu Phe Ala Met Gln Leu
Ala Ser Ala Ser Val 20 25
30Leu Pro Met Val Leu Lys Ala Ala Ile Glu Leu Asp Leu Leu Glu Ile
35 40 45Met Ala Lys Ala Gly Pro Gly Ala
Phe Leu Ser Pro Gly Glu Val Ala 50 55
60Ala Gln Leu Pro Thr Gln Asn Pro Glu Ala Pro Val Met Leu Asp Arg65
70 75 80Ile Phe Arg Leu Leu
Ala Ser Tyr Ser Val Leu Thr Cys Thr Leu Arg 85
90 95Asp Leu Pro Asp Gly Lys Val Glu Arg Leu Tyr
Gly Leu Ala Pro Val 100 105
110Cys Lys Phe Leu Val Lys Asn Glu Asp Gly Val Ser Ile Ala Ala Leu
115 120 125Asn Leu Met Asn Gln Asp Lys
Ile Leu Met Glu Ser Trp Tyr Tyr Leu 130 135
140Lys Asp Ala Val Leu Glu Gly Gly Ile Pro Phe Asn Lys Ala Tyr
Gly145 150 155 160Met Thr
Ala Phe Glu Tyr His Gly Thr Asp Pro Arg Phe Asn Lys Ile
165 170 175Phe Asn Arg Gly Met Ser Asp
His Ser Thr Ile Thr Met Lys Lys Ile 180 185
190Leu Glu Thr Tyr Lys Gly Phe Glu Gly Leu Glu Thr Val Val
Asp Val 195 200 205Gly Gly Gly Thr
Gly Ala Val Leu Ser Met Ile Val Ala Lys Tyr Pro 210
215 220Ser Met Lys Gly Ile Asn Phe Asp Arg Pro Asn Gly
Leu Lys Thr Pro225 230 235
240His Pro Phe Leu Val Ser Ser Thr Ser Glu Ala Thr Cys Ser Ser Ala
245 250 255Phe Gln Arg Glu Met
Pro Phe Ser 26079136PRTEucalyptus grandis 79Met Gly Lys Glu
Lys Ile His Ile Ser Ile Val Val Ile Gly His Val1 5
10 15Asp Ser Gly Lys Ser Thr Thr Thr Gly His
Leu Ile Tyr Lys Leu Gly 20 25
30Gly Ile Asp Lys Arg Val Ile Glu Arg Phe Glu Lys Glu Ala Ala Glu
35 40 45Met Asn Lys Arg Ser Phe Lys Tyr
Ala Trp Val Leu Asp Lys Leu Lys 50 55
60Ala Glu Arg Glu Arg Gly Ile Thr Ile Asp Ile Ala Leu Trp Lys Phe65
70 75 80Glu Thr Thr Lys Tyr
Tyr Cys Thr Val Ile Asp Ala Pro Gly His Arg 85
90 95Asp Phe Ile Lys Asn Met Ile Thr Gly Thr Ser
Gln Ala Asp Cys Ala 100 105
110Val Leu Ile Ile Asp Ser Thr Thr Gly Gly Phe Glu Ala Gly Ile Ser
115 120 125Lys Asp Gly Gln Thr Arg Glu
His 130 13580229PRTEucalyptus grandis 80Met Gln Ile
Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu1 5
10 15Val Glu Ser Ser Asp Thr Ile Asp Asn
Val Lys Ala Lys Ile Gln Asp 20 25
30Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys
35 40 45Gln Leu Glu Asp Gly Arg Thr
Leu Ala Asp Tyr Asn Ile Gln Lys Glu 50 55
60Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Met Gln Ile Phe65
70 75 80Val Lys Thr Leu
Thr Gly Lys Thr Ile Thr Leu Glu Val Glu Ser Ser 85
90 95Asp Thr Ile Asp Asn Val Lys Ala Lys Ile
Gln Asp Lys Glu Gly Ile 100 105
110Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys Gln Leu Glu Asp
115 120 125Gly Arg Thr Leu Ala Asp Tyr
Asn Ile Gln Lys Glu Ser Thr Leu His 130 135
140Leu Val Leu Arg Leu Arg Gly Gly Met Gln Ile Phe Val Lys Thr
Leu145 150 155 160Thr Gly
Lys Thr Ile Thr Leu Glu Val Glu Ser Ser Asp Thr Ile Asp
165 170 175Asn Val Lys Ala Lys Ile Gln
Asp Lys Glu Gly Ile Pro Pro Asp Gln 180 185
190Gln Arg Leu Ile Phe Ala Gly Lys Gln Leu Glu Asp Gly Arg
Thr Leu 195 200 205Ala Asp Tyr Asn
Ile Gln Lys Glu Ser Thr Leu His Leu Val Leu Arg 210
215 220Leu Arg Gly Gly Phe22581345DNAEucalyptus grandis
81taataaatga tgaatttatt ataaacgtat ccgtttgaga tttttgtggg tcataggtgt
60atcaatttga aatctttgat agtaacaaaa ataattttag gtagtttatg tttttcatga
120tataaacctt gaaagttaat gctactaaat tgttatatat atattaggca aattacaacc
180ttaatgcaac agttaatgac gtgatactgt tcagattata gatacaatgg ttatccttga
240atgaataaga agaagtccta agggcaagtg ctatgagctt gcacgactgc ttttgcgcca
300tttttgttta ccagcccggg ccgtcgacca cgcgtgccct atagt
3458272DNAEucalyptus grandis 82cagtagggga cttgttcccc caagggcacg
tgtcgttggt gaagctctgg cggtggatga 60accgcgtggg cc
7283544DNAEucalyptus grandis
83actagtgatt tcgtcgtctt cgtcttcttc gtcttctgga acttcgttgc tccgagcttt
60atcagaaccg gcgatggaaa tgaaaccctc gttctctctc cctcgctcct ctctttcttc
120tatccaggag cgtttgtaca ctgggagtac agagcttctt gcgataccga aactaccctt
180ggacgactgg cctttttgcc tcgcgccccc tctctgagcc ggggcgcaat ttgtcccttt
240cccagagcga agtgtcgatt ttgtccttcc acgaggcttt acctactccc atcgcccgag
300ccccaagccc aggcccaaat gcctgttcct tgtggccctg ccaacattcc ctttgaaatt
360aaaaaattaa aaaaaaactc tctgccaggc aaaagtaaag attaacacca ccaaaattta
420taacaaattt atcattcatt aattttcgtt aaattttatt ttcaaattac tgagtcgaat
480tacatgtata aattcacgga tgtatcggtt cgagatttta tcctctaatt atcattagtg
540tatg
54484515DNAEucalyptus grandis 84gattactata gggcacgcgt ggtcgacggc
ccgggctggt ctgccttcct ttaactcccc 60ttttttgtaa ctttttaaaa tgtagtttta
aatttaattt aattactttt tatattaatt 120atttaccaca tcagagacaa aacaatgtct
tttttgtatt ttctagtcac gtcaacatgc 180aaaacaacgc cattttgcac tcaccttgcc
ggaaaattgc cacgtcaaca atttggctag 240agtggcgctt aagtgatcta ttttgctcca
attttggcac ttaagtgtca ttttcctaaa 300ttttagcact taaagtattc ctctatgtca
agttttgaca cttggggtgt actttgtcca 360atcataaacc gtataagttc actttaaaca
aaaatggcgc aaaagcagtc gtgcaagctc 420atagcacttg cccttaggac ttcttcttat
tcattcaagg ataaccattg tatctataat 480ctgaacagta tcacgtcatt aactgttgca
ttaag 51585515DNAEucalyptus grandis
85actagtgatt tcgtcgtctt cgtcttcttc gtcttctgga acttcgttgc tccgagcttt
60atcagaaccg gcgatggaaa tgaaaccctc gttctctctc cctcgctcct ctctttcttc
120tatccaggag cgtttgtaca ctgggagtac agagcttctt gcgataccga aactaccctt
180ggacgactgg cctttttgcc tcgtgccccc tctctgagcc ggggcgcaat ttgtcccttt
240cccagagcga agtgtcgatt ttgtccttcc acgaggcttt acctactccc atcgcccgag
300ccccaagccc aggcccaaat gcctgttcct tgtggccctg ccaacattcc ctttgaaatt
360aaaaaattaa aaaaaaactc tctgccaggc aaaagtaaag attaacacca ccaaaattta
420taacaaattt atcattcatt aattttcgtt aaattttatt ttcaaattac tgagtcgaat
480tacatgtata aattcacgga tgtatcggtt cgaga
51586782DNAEucalyptus grandis 86gagggtttca tttccatcgc cggttctgat
aaagctcgga gcaacgaagt tccagaagac 60gaagaagacg aagacgacga cggcgacatg
ccttgcttga acatctccac caacgtcagc 120ctcgacggcc tcgacacctc cgccattctc
tccgagacca cctccggcgt cgccaagctc 180atcggcaagc ccgaggccta tgtgatgatt
gtgttgaagg ggtcagtccc catggctttt 240ggtgggactg agcaacctgc tgcctatggc
gagttggtgt caatcggcgg tttgaacccc 300gatgtgaaca agaagctgag tgctgcaatt
gcttcaatcc tcgaaaccaa gctgtccatc 360cccaagtcgc ggttcttcct gaaattttat
gataccaagg gttccttctt tggatggaat 420ggatccacct tctgagctgt tggtcgcatt
ctcctcagtg tttaccatgt atttcggccc 480taaactctac ttctaggcct gttaaaagtg
tcttttttaa ggtaattctg ctattacccc 540tcttaagtgc atcttatcag taaacatgga
atatcctgaa ctttgattat atgccggctc 600gtggctgtgg aagcacttct ttatgttacc
accagcttct caggtgaata taagctttgc 660ccagtctgtt ctctggggga tttgcttggt
gggtagtggc aatcagatgg ttttgtcact 720tttgtgcata tttaagtagt aaatgtccac
gacagcccaa agagtagcaa tccgggtgca 780ct
78287115PRTEucalyptus grandis 87Met Pro
Cys Leu Asn Ile Ser Thr Asn Val Ser Leu Asp Gly Leu Asp1 5
10 15Thr Ser Ala Ile Leu Ser Glu Thr
Thr Ser Gly Val Ala Lys Leu Ile 20 25
30Gly Lys Pro Glu Ala Tyr Val Met Ile Val Leu Lys Gly Ser Val
Pro 35 40 45Met Ala Phe Gly Gly
Thr Glu Gln Pro Ala Ala Tyr Gly Glu Leu Val 50 55
60Ser Ile Gly Gly Leu Asn Pro Asp Val Asn Lys Lys Leu Ser
Ala Ala65 70 75 80Ile
Ala Ser Ile Leu Glu Thr Lys Leu Ser Ile Pro Lys Ser Arg Phe
85 90 95Phe Leu Lys Phe Tyr Asp Thr
Lys Gly Ser Phe Phe Gly Trp Asn Gly 100 105
110Ser Thr Phe 115881521DNAPinus radiata 88ccttcaaaga
caacagagaa agttatgcaa tatgctggca gctagctctt gggataatct 60atttagcgat
gggtttgtcg agaagttggg agcatttatt gtgaagcttc acagaaaaaa 120tgtcgaatac
atcaagcaca tgaagaagca atttgtgcca taggctatct ttagcctcat 180ggatgttaaa
ataatttctt tctttccttc cttcttcttt cttacccacc aaaacacaaa 240ataatagttt
caaattttga attttcaccc aattttatga gaggacaaaa ttacttagag 300tctttcactc
tttaatttat attctacata agtacctaaa gaggctctcc gacaatcata 360tgataccata
aaagtaacct cgattagaga gcgcctctcc atacaatcat ttgattttcg 420agttaaatca
aaattatagg ctatttccaa atcaatctat cgtccaactg aaaatttcaa 480atgaatggaa
ccagcacgga gtttcgtagg aaatagaagt aataggtgaa aagaagcatt 540gtcgaatttg
aaagaatacc ctacgttttc atttcaaaaa ccatggtttt ttgtaagagg 600gattaagttg
actcaaggtt gtagaaggtt gacataacaa tagcatgcag gcacaggatg 660catgtagtgc
ccgtaatttg gaccaaccta gtaagattgt cacccgtttc aaatgactgc 720ctacaagtgc
atgcaaaggc catggaagtt gatggttagt gaaaagatcc ggagagacga 780ttattccatc
atgcaatgca catcgcacgc ttgctttatt actcacacga ccaacgttcc 840cttcatccac
ggaattaatt tctctaatcg atccaataaa ccgccttcga tgtcgatttc 900caaatgaatt
aaatcgttac atgcccaccc gacttcacac atgctccctg cacgtgcaac 960caaatccatt
acgcccaccg ggcccggccc tgctcacaca tcttgcatcg cccaactact 1020ctgattttac
atgaatatca atactattcc ctccacttat aaaatggcca aacgccctgc 1080ttagttctca
aagcagatca gagcctttca agagcttccg caaagatttt ctttgcgagt 1140aatttgatcg
agaaggatgt ctgcatcgaa cggaactaat ggtgttgtcg cagtcaagtc 1200tcgccgacag
cacagacctg ggaaaacgac agccatggcg ttcgggaggg cgtttccaga 1260tcagctggtg
atgcaggagt tcctcgtcga tggatatttc cgcaacacga attgccagga 1320ccccgtcctc
cgccagaagc tcgaaaggct ttgcaagacg acgacggtga agacgcgata 1380cgtggtgatg
tcggatgaaa tattggcgca gcatcctgag ctggcagtgg aaggttcggc 1440caccgtccga
cagcgactcg agatctcgaa cgtggccgtg accgacatgg cggtggacgc 1500gtgccgtgac
tgcctcaaag a
1521892590DNAEucalyptus grandis 89ctgaaactgt cgctcggcga tgcataccaa
aggctgaagg tatcagaatc taatgcagct 60tatgtaaaag cgcgatcaat ttattgaccc
cgacgacctt gactccatac ttcacgcctc 120agctttgtgt tggatggtct tgacctctct
caccctaaaa ggtagctcaa aagaatgaga 180ctttccgtca tacttataaa ccgaccacca
gcctctttca caaccgacat gggacaacct 240caaatagaat ttttaacaac acccttgcac
gctctttcta tccactttat tatgccatca 300catgagcgtt ttccacgcgt aaatcggcta
ccacccactt tcacacggcg gcgaaacgag 360aaaaaggtcc tacctttgac tccccccgcg
tcccaaattc tcactcccga ccggtaaccg 420agctcacaag tttcagcctt tcatcatcat
cactcgaagg cagagagaag gacatacact 480aaagacaacg aaacagtctc tccatcccgc
catccgacac gatccacatt acggtacgga 540acacatcccg cggagcaacc cgacgtccca
aactcttcgc tgatcaaaac cagtccggtc 600gactccgttt cgcgcggacg caacgtgaga
gagggagaga gagagagaga gtaccggcga 660ggggatgatg ctgtgcggaa gcgtcgtcgg
gcgctctccc ggcgaacgcg tctctacatt 720ccggcgacgg cgacggcgac gaaggcgggg
aggggaatgc cgcggggttt ctgcaacgac 780ggaagctcac ggcatttttc agagagagag
agagagatgg cacgtcagag cgccattccc 840ccacgcgacg ttccgccttc cggtattcct
tccgggagaa aaagtgggca aattgcaata 900gacaaaaaaa aaaagaaaaa aaagacggtc
acccaaatta tttcttataa cacaaaaaat 960cgtacctata taatatatct atcactaact
tgtgcagtat gacaaattta cacatttacc 1020tgaaactgtt tttataacat aaaaaattta
aacatttttc tgtgacaata aatgttcaca 1080caaatataaa actgggattt ttatttcaat
tacaaattta gaataaatgc gcaacataaa 1140tacaaattta tgatttttcg tgttggcaag
aaagtttgag ataaatgtat cattgtaggt 1200aaagtttaga gttttttttt atggctttta
accaaaatgc acattttagt tccgagttct 1260aaaagaaaaa ttactatttt cctttacatt
tacttatgta ggtgtgtaat tataaatatt 1320aattctcttt aggatttgta acaattcttt
gagcttttgt tttgccttta ggccattaga 1380attactaaaa agttaataat ataaacattt
tttcgaccac ggtcaccatt catacctaac 1440ttctaattat tgaaagattc tcgcatttga
tcgaaatcca tttactctca taaatttgag 1500gttttgaacg gtatctacca taagatcatg
gtttattaca aaacacttat ggcgggtggc 1560gcggacctgg cgagaatgtg gctactttaa
tgatgaggat ttgagatatt ataccacgat 1620ccataataat aaaggagcgc ggcaatcata
tcttttttca tataaaggac gatttatttt 1680ctatgctgtg agtatttgct cttggaatta
taagatatta gagatcaaac ctatcaccaa 1740cggtgatttg aaattaaaga agtccttgta
tcacttacaa aaataaatat ataaaaaaag 1800ctttcattgt gcacttgaat atttaaacat
aaattattag tagtagataa ttttttaatt 1860taactaataa tgagcactca tttttagaaa
aatagttttc aaatcattca ttttctactt 1920aaaaaaacca attgaccaac taaattagta
tctctcattc agttggtgaa tgaatgactc 1980gcactctaac ccttcacttg gcgagtcatt
ctgtgtagac cagtctctgc aaatctagcc 2040atgctcatct agcaactacc ttcaagcgca
agtactttgt catgtagacc aaacgttgag 2100caacacggaa tgaatcctaa cgcacttgga
aaacaatcaa tccacgctac gcaagctaat 2160gctcacacaa gcatcatgat acccgaagcc
gaaaatacat gagtcgaaag acatcgaact 2220ccgccgtcct cgcgaatcat ccgaatcgca
tgtcacgccg ctcgacttgg tagcttaacg 2280agccttccag tacctgctgt ttaaatgctt
tgtcaatgtg attcgaatcc tttcaaagat 2340cctgaaagtg cagcttcaaa aatggcgtcg
accaaatggg cttgcgttgc tgcaatctcg 2400ctcctactga gcctaggatc gagcgctgct
cagaggtctc tccttatgag cagcgccaac 2460tggcaagagg ccggtgagcc gacggatctg
gacttacgtg gaggaattgc cggaaccctg 2520gggtcatcaa gtgagggcgg caccatggcc
agctccgaca tgggcggttt tggccaggac 2580atgcctggtg
2590901172DNAEucalyptus grandis
90actctcacta attctttagt tttccaattt agccccttct gtaattgctc atcttcttta
60ccaaattctc taatttggcc ggcgaagggc tgacaaggga ttggtcatgt caccctcacc
120aaaggttgcc gaaggtccgg tgacctcagc tgacggccac ctacaccaaa tctagctcac
180tagcagccta agcccttcat caactctagt gaaaggtttt gagtattttt taataaaaaa
240tatttaaaaa atatatagcg agagctcatt acaaaaaaat tttaaaaaaa aatctaaaca
300ttacttgaac tcaaagtgac tttataaaga gtttttacca aaggatcttg gtttcatcat
360ttgcactaca cccaaaaccc aatttctaag ttaaatcaaa cccactgtct aatagagata
420aggtaaatgt tataaaccaa attccaaaat tccgaagcac taaatatatt tgctgatctt
480ataatcgcca attgagaggg tctcattctc caagggattg tgacatatta gtaattgata
540gggtctcatc cgtaggactc cgactcagcc gcgccacgtg actggatcgc tgaacggcgc
600ggaaccagag gagcgtgatt acctaatatt ttctcctacc ttggccttga gattgaattt
660cagaaaaaga aaaagaaaaa ggaacaactt cgccgactgt tctataaaat gcatgcgcca
720ccccgacccc cacccacgca tcacatccat ccagcctcca cgacagacgc ataaacacaa
780cacacgtcgg ttagagagag agagagagag agagagagag agagagagat gcttggacag
840ttgtcgcacg agacggaaat gaaggtggga gcaggcaaag catgggagct gtatggcacg
900ctcaagctgg tcctgctggc caagcaggaa ttctctaata ccatctgcga cgtcttggaa
960ggtgatggcg gcgttggcac cgtcatcaag ctcaattttg gaagtttatc ctatacagag
1020aagtacacaa aggtggacca cgagcgccgc gtgaaagaaa cggaggcgat cgaaggtggg
1080ttcctggaca tggggtctcg ctgtatcgat tgcgattcga agtgataggc aaggacgagg
1140aggagtcgtt ccgttattaa agcccccccc cc
117291446DNAEucalyptus grandis 91gggtgaaaac aattaatgag atcatttgaa
ttaaggaaag tggaaaggcg gttttctgat 60tggtacactg aaacaacagg aaggtggtgg
aggccgcaat gatggaattt atccacttta 120atcattttat gaaatcgata cactaacctt
tgtttctcct aaacccaaag gcattaatcc 180ctgtcctcct cactcgatct cgaaggccag
aagggggagg ccgagcctct tgcttttttt 240cgtgtataaa agggcctccc ccattcctca
tttttcacca tcctccgttc gttcgttccc 300ttccctttcc attgttgcgt ttaagccctc
caattttctt ttggcgtccc gtttttgggg 360ctcccttgaa gatctcctct tcatttcggg
atttcctgcc ttcgccgcgc catttgaagt 420tctttttctg agagaagaat ttagac
446922119DNAPinus radiata 92atcttattcc
cacctcacat caataaattt tatacgattt taacatcttt aaaattaaaa 60gaatcaagaa
ggcatccagg tgataaagcc acgtccaata taaaatctcc tcggtggatc 120ctttcaatcc
agctacccaa tgcggcgaaa ataacgctga ttggactggg ctacactgta 180atcacaaatt
cccttccgtt tagatttcaa ctcgttgacc tacgagtatt ttatcgattt 240aaaattatac
aaaaaattgt ggaatgtttt acataagcaa aacttaaata atgtaaatag 300cgatgatgct
ttacttgtac ctaaaaattt cttccaaatt aaaccaaata tcaaatccta 360gattgatgag
ttccagtgga gtctgccatt ttatttcttt ctctctttca ttctttgcaa 420cgaaaggaga
aaatccttaa cacaattcga aaacgataat gattctggca aaagagaaaa 480aaaacgtgaa
gattagacac ttgttttgtt ttaaatgagc aatcacatgt gaatagagag 540ggttttatgg
gcctggtttt gtgtgcataa tttcttatga aagcgatgtg cctggagcgt 600tgaagctcat
agaacattgc aacaagagat cgagagtgtg ggttagaaaa ccgcaacaat 660agtttgtgtc
gtgtttttct atattcagag gtgttgtgtg gtaaatatct ctggatttat 720ctcgaatgcg
tcacttttac agacacagaa gctcagcgga aaccctcaac gctttaaggg 780ccataaattt
gctcagtttt aaaaattgtt tgatttccca ggtttgaata ttttcttttt 840gttatcggaa
gtggctctgc cttatgagta tcatgttctt ggttttgtgt tgggcgctta 900ttgattcagg
tatgtattat ttctagtcct ttttatcagc ataggtggaa tgttctgtat 960tttatatttt
ggggccatac acatggaacc gttgtcatta ccatgcttta tagataatgt 1020ctctctgaat
ttgtttttat aggcttttgc ctcctacgca gatttttaaa ggaaaataca 1080aagatattta
gccaattttt gttgttgtga ccttgaattt ctaaaaaatt taatggattc 1140gttttctaaa
ttcctgattc gtcaaaggct gaagggcgcg atagtaatag aaaatggacg 1200agagtttatc
ttttcatggc tggacacaca gaatttgtgg aggggattct ccattctggt 1260ttatccaccg
ttagttctct ctgtactcca cccttagttc tctttgtact cgagaccttt 1320aatgattaac
cctgcttatg ctgtcagtac tgaactcact tccagagccc caaaaatctc 1380tcccaagttt
gccttatttc ttaaaataat tcacaagtag aaaatgagat ttttgcaatt 1440ttgtaactaa
catttcccgg tctcctctgt atgttttcac cccttaatgt aattgaaatt 1500tgcacccggg
ttagattcaa agcggagaat aacatcgggg ccttgttcta gacagagatt 1560tttcacaaat
aacaggttcg aaggtatgtg tagacatctg ggtagttgta gaataaagac 1620ggagcccatt
aggtggatcc aatcgaagaa ctcagatggg aaaacagata aaaattatcg 1680ggtggacctt
cctccacatg ttaattatat atcaagtgtc gccaatcctt atgtgaaaca 1740tttagtaaag
cttcgccaga gcacttctta taggcattct gtgggctctg ttgttgtggt 1800tggaagtact
cctttaaggg aggtatctga atatttgcaa cagaagtcag taaaacaagt 1860ggttgactgt
ctgtttgtac aagatgttac tggcatacct gtgggcttga tagagacttc 1920caggcgcatt
gtgcatgtaa atcatttggt gatgcagaag ctagccggag tagagtctat 1980agagcccact
gaagcaattg gtgtaatcaa gcttcctagc agcttctaca acttggaatc 2040tcttgaaatc
actctagttc ccagatatgg tgctcgtcgc cacatcgtct gcttgtactt 2100gatggcattc
aggatcctg
2119932571DNAEucalyptus grandis 93aaggtaactg gttcagcaga gcgcagatac
caaatacttg ttcttctagt gtagccgtag 60ttaggccacc acttcaagaa ctctgtagca
ccgcctacat acctcgctct gctaatcctg 120ttaccagtgg ctgctgccag tggcgataag
tcgtgtctta ccgggttgga ctcaagacga 180tagttaccgg ataaggcgca gcggtcgggc
tgaacggggg gttcgtgcac acagcccagc 240ttggagcgaa cgacctacac cgaactgaga
tacctacagc gtgagctatg agaaagcgcc 300acgcttcccg aagggagaaa ggcggacagg
tatccggtaa gcggcagggt cggaacagga 360gagcgcacga gggagcttcc agggggaaac
gcctggtatc tttatagtcc tgtcgggttt 420cgccacctct gacttgagcg tcgatttttg
tgatgctcgt caggggggcg gagcctatgg 480aaaaacgcca gcaacgcggc ctttttacgg
ttcctggcct tttgctggcc ttttgctcac 540atgttctttc ctgcgttatc ccctgattct
gtggataacc gtattaccgc ctttgagtga 600gctgataccg ctcgccgcag ccgaacgacc
gagcgcagcg agtcagtgag cgaggaagcg 660gaagagcgcc caatacgcaa accgcctctc
cccgcgcgtt ggccgattca ttaatgcagc 720tggcacgaca ggtttcccga ctggaaagcg
ggcagtgagc gcaacgcaat taatgtgagt 780tagctcactc attaggcacc ccaggcttta
cactttatgc ttccggctcg tatgttgtgt 840ggaattgtga gcggataaca atttcacaca
ggaaacagct atgaccatga ttacgccaag 900ctatttaggt gacactatag aatactcaag
ctatgcatcc aacgcgttgg gagctctccc 960atatggtcga cctgcaggcg gccgcgaatt
cactagtgat tggcccgggc tggtctggag 1020tggccaccat cggcataatg actaggaacc
cggaacatca actgatggaa gaaaagccga 1080cattcctcat caagagctcc tctcactcct
tccccactac tactataggg cacgcgtggt 1140cgacggcccg ggctggtctg ctgtcatatt
tgtatatgag gtcctatgta tgcttgctat 1200gtgacctcct tcatgtatgc tgtgaagaga
gtgtagcagt aacatggcca tctgcgaaat 1260atggattcac cttaaaatct gatgattttc
agaaaacgag gaaggtgctt gccgagaaga 1320ttgcacagct caattcagct atagatgatg
tatcctctga gctccgaact gaagaatcat 1380cagatgagat tgctgttgcc cctgatgaaa
ttgaagctgc tgtttgatgg cccaaacctc 1440ccaggcctac gatcatggtc atcttctgtt
ttggtgcaat tggctctacc tttttggtgg 1500cctccatata acagaataat ggttcatatt
gtaaaatctt ctgtttattt ctaaagacca 1560atgcactcag tttcttttga tatgattgtc
tcgattgagg aagtgcatca ttcgtggtat 1620gattatgcag aataccattt aactcagcag
actttgtacc gtatcatcgc agcttttccc 1680ttcttgtgta tgcataaatc tagtccttca
ttgaaggtga tcgccgttac agtctggata 1740gtgtgtgcca tcagatggca ctacgattag
tgtggttgac atggtgtcaa cttgaaagcc 1800aattggtgac gatggtactt aatgtaagat
tggcagatgg tgagaacgag attttgctcc 1860agaatggcaa agcaaggcta agttgtagcg
aatcaaatga tctacgaacc atcctagctg 1920gctgtgtgac cacacactga agttctattg
aactaagcca gttatggatg atatgggagg 1980agaaaattga gaaatccatc agatggagtg
ttggccgtgt tgggcttttg tcgcaggccg 2040atacttcgaa ttcaggcgta tttttattcc
tgactgccgc ctctcccgga aagggaaggc 2100ggatattatt ctctgaacga tttccaccat
caactccaca tcgatctcca agccagaaat 2160atacacaccc caattttctt ttaaatatat
gggacatata tggtgtaggc tctcgcgcat 2220gttaacacat aagctctctc aacaaaaatc
tggctcgtgc ttttaaccga gaagttcacg 2280agtcattgaa ggagtggcct ttaggggagg
gagagagatg gattggtggt taaaatcagt 2340ctgtggctca catttatacc gtggagatcc
cccaacagca accttatccc attatatatc 2400cccacaacac catattcacc actcgttcct
tctaattggc ttccaaccat aattcacaga 2460cacacatgta gtgaccaatg agaaaggaag
aaaaatacag gctttcgaaa gctagtgcgg 2520tataaataac ctgggaaaag caagccgctt
gagctttagt ttcagtcagc c 2571941406DNAPinus radiata
94aaagaggcgg aggaattgtc tagatggtca aaagtgaccg gaatctaagc aaaaaatttc
60aaaaaatgtt gtaaaggtag cgtttgaatt gtgtttttga tggtggaaat ggattcaacg
120ccatcaaaaa cgtctaagac acctaaaatt ttgaatttta acaactatat cttggattta
180caaaaatcct tgccggattt tctctaaact ccttcacctt acgcaaaaga tatatatttt
240tttgtgtgat gttgtgcatt ataagtttga tagtgaagta atgatatata tcctttatgt
300gatggatgat tgaataatga atatattaaa tgaaataaat aatgatggga taatgaatat
360attatatgaa ataaatataa agtaaaatgc tattttttaa tggtgttaat gatgaattag
420tatcatcctt aaataatttg ttagtgaatt attaaaatga tgagttagca tggtcgttaa
480ataaattgtt agtgaattat tatatttata tatttcctta ttagaaagtt ttttttttgt
540aaaagttttc cttgaacttc acccatattt aattatcaat aatttatatt taataaatga
600tatatataac ttctagcaga atgacacgcg acttgtatat cttttcattt tttaacccat
660gaaaaccgat tagggtattg caaattaggg cattgccatt caaataattc tcagatgaaa
720gattctctct aacaattaca aatgattatt tttttccatg agtgttgcat gttcgaacgg
780tctgcccagt ctgtgagaga gcatagagaa ccctccctgc ccaatttgtt agagcataga
840gaaccctact gcatgagtag taagaaaaat attcggtctc aattcggcaa agaccacctc
900gaatggatga cttcaacgac aatctcatga tagtgttctg atcagcacca gttcacctat
960atattttatc tagggtttag tttgcatgta tcaatcctct ggtgcactag gtaattcttt
1020cctagtatca tatatcctta atactgtttt gtcttttaat ccatggctac catcagaaca
1080agctcaaagc agaaatcggg agcatcagcc atcctcttgc ttatcgcgct tgcagggtta
1140gtaaatgcgt gcaacgctgt gggtattgag ccaatgtgcg acactgtggt gtcgagtctt
1200ctgaggcttc tgccatgcag gacggctgtt gatccctcaa ttgccgccat tccacttcca
1260agctgctgca acgcggttga gtcagctggg cttcaatgcc tctgtctcgt cgttaacggc
1320cctccttttc caggggtcga ccgcggcctc gcaatgcagc tgcctgccaa atgccatctc
1380acccttcctc cctgtaacag ttagtt
1406952546DNAPinus radiata 95ctggtagaac aagcagctca aggagcacca aggcacgagc
ccactttgca tgttgtagac 60taacgaattt tacattagaa taaaatatgt cgacaatatc
gaggagatct tctccaaaat 120ccaactcatt aatctctatt atgcacaaac gagtgatgtg
tcgagactca tctgccaaca 180agccatcaac atcaagaagg gaacggaata gagccaaagg
gaaccctaga gaccctcatc 240cacataataa tgaaatattc cacgtgtgtt tttcaaaatt
tgaaaatttc atgtattttt 300tggttgattg gttgtggtct ggttttttcc aaattcaatc
tagttcaagt ttttggagtc 360gaccagttgg gtaaccagtc taattctggt aacattgcat
tgtacttgat ctcaataaaa 420gcatatagga tagaattatc ttctgtcttg atggtttcca
tgagaaccaa ctgctatact 480atgaaaaata tcaatgttcc acaatatttt tgggacaagg
gaacacaaga ttgagtcaac 540agttcaggac cccagaaaaa ttattcctga gttcgcagat
tattttccta aaagtgaaca 600attcaagacc ctagccaaat cattcccaag tccaagttat
gtgacactgc gactaacaag 660gcaagttgga agaaaccatc aatcaatctc ctagttaatg
acagtccttg taagaagttc 720aagaagatta acaccagaag aggtcatgct gactgctttt
atccaattct ctctgctctt 780caccaacaga aatagccaag atggttgtac ccattcccta
atctaattta ttatatgaat 840ttctctttat ttttctacat ataaaaaaca aaaacttttc
ttgatggtca aacagaaaag 900gcagttcgat tggatttaaa catccaaata cctcccacag
attgagaagg ccaagcccca 960atccaacagt ccatgatata atatttattc aatcacactc
aagataatgc aatgaaggtg 1020caccacgcta ttagattctg cacagaactc agatgactgt
aattatcaac tttaaccagg 1080agtaatttaa aaactcaatt gtgcttcagc tatgtggaaa
aactttggca ctggaaatgg 1140tataaatgtt gttgaataag caaacatttt tcaagcactg
aattcaaagt caagtcaaag 1200gaacatctta cttgggctgt acaggaaatc tgaagtacaa
aattagcgaa aaaacaggag 1260aaagagagta gtcattacat gttataacat taccatatag
gattttgtaa tacttcttga 1320tatttcaact tcccgactga tgaaatgtat gccactacag
aacaggtcag tcatgtatgt 1380gagcaattag ccaaactagg tcctaaggtt caaccagtgc
agacaacgct gtaactgaaa 1440caaatttgtg ggacaattaa aaattctcta ccaggatagt
tgtaccagta ggtgcccttt 1500tcaaaccatg atttaaaaca caagggtggc ttaccacttg
accaaatcat ttaataacca 1560acccctcgaa catatcaaga aagaaaacat ctgcatataa
gtaaattgaa agatgatatt 1620taagaggcac tgccttaaat tttccatttg gacaaatcca
cattgcttga taagcataaa 1680accttggtta agagcaagtt tagggaacca tcaaatattt
ctacatactt tacaatagtg 1740tgtttataaa gctaatcaaa tgcttctatt taaatatata
gcaacctaca caagaaattc 1800actaggacag caatcacttg gccaatgtga ttaccaatat
aaccatactt gaagagcata 1860cataaatcac aaataatgat tcaattagaa atatcttaaa
gataaactat tattcaatgt 1920acatgttaca aagaacctca cctgtccgcc tttgaggagc
aagtagacaa ctaaaagcgg 1980aggttacatc ctgaactgaa cttgttctcc tctgttccaa
gaacttgcat tgtattttga 2040gtaacttcac tcgtgccgaa ttcggcacga gaaaacactt
tgattgcttc cgcgggtggg 2100ttttactttc tctggaatag ttagttccgc cgtttttgga
agatttatca gaatggccaa 2160aattcaggtg tcaaacggga gcgtcgtggt ggtggcggcg
atgatattta tggtggcggt 2220ggccatgcaa aaccatcacg tcgccgccca aagtgctgac
tgcgcaccac cgcggagttg 2280ctgagcccct gcgcctcggc ggtgggaaac aacccgcaga
ccccactccc gaatgctgtg 2340ctgttctcca gaccgccgat gtcgactgca tctgcgccct
cgtcgaatca accataaaat 2400tgccttccga atgtggtctt gacacccccc agtgcccaag
cgactagatt ctcaagaccg 2460tgactgagtg ttggtttcag agccagtaaa cattcattct
gctaataaat gagtgtatgg 2520agctttaata ttggaaaatg cttcat
2546964726DNAPinus radiata 96gattactata gggcacgcgt
ggtcgacggc cctggctggt cctaggacac cgtaatatat 60aacctcgaca tggcttacaa
agctttgact tgcattctca ttgggcttac aatggtgctg 120ccaaaaatga aaaagtacat
atgtacccct gttgaaatga gcagtaatag gcttgaacaa 180tagtgaattg ctacaaaatt
atgaatgcct ttctttgctt gaatgtgggc taaggagaag 240tgggatttac atttgacttg
caaatcctaa gacttgtcta gagctaagcc tccagaggag 300gaaccatctt acatagtctt
gagtctagag cggagaagat agccaaattt gaaaggaaac 360ttttatttat ggggagaagg
caaacaactt gagggggaag gatgatcaat aagtagggta 420agggaatcca caacagaggg
cactaaggaa atgggggtgt tagaattggc aactagggcc 480aaattccacc ttgggatagc
tctctggatg gagatgatga ttgcattaga ttcctctttt 540cgagaggacc aagattgata
taaagatcat ctcatttgga caagcatagg tatgattttg 600aatttatacc cactcatgca
caattttttt aggtccgcca catcatcatg taggctcatg 660aagcccaacg gacatgactc
ttcgccctta tcgtcttgta taaatacaag tgtcctccca 720cctcatttgg catcttcatc
tcttacagat tctctcttct tccctcattg gttcttgcat 780cattgggcat tctctctctc
ccacgtgtgg cacaaggagg atgaaattac aagaccgaaa 840ataatagaaa ttttgcaatt
tgaccagcat tgaccatgac cttccaagca tcattcgact 900tcaatttttt tgggttattt
ttgtctcaac aagccgcata ttttggcaaa aaaatcgagg 960cattctgggc acttcgacta
caaaccaaaa ttgtaggttg actgcaaatt tcaaatagtt 1020tgactattga cattgtcact
gttttcgatt gactttgacc tcctaattag gccgagtttg 1080actaggggag gctgatttgt
tttaaggaca tttgattgat gctttgacta gcattgactt 1140ttatagttaa ggttgaagtt
tgactacagt tgactgcata aatttgcaga gatgttttga 1200ctttgaattg ggcaagtcaa
tttgaatttt gtactatctc tctattttga acatttgata 1260taataataag aagattcgat
caaagggttt tccccgcatt gggttttttc cctggcatcc 1320gccaaatctg gtgttctctt
gtctttgctt gtcttatgca ttttgtttca ttttctatct 1380acttttactg tcaatgtgat
tattgtcagt gttattggaa attggaaatt gtgattgggc 1440tgctaaggaa cattgaagta
aattgtgcta aacaaagaac ataccattgt taacgaaaat 1500taacaaaggg gaaacacaga
ggaatggttg caattgcaag attgtcattg attttgactt 1560caagtgagga aggtcgcgtg
gaggtcgcaa ggggagagga ataggagaga aggccctatc 1620aacttgttca aggagagggg
caatacaagg aatggaggaa ccctcaccaa tgaataatcc 1680atgcacaaaa gtaatagaat
gaacaaactt accacacgga agagcttcct tgttgccaaa 1740agccttgcct ccgagacctg
aatcctccaa tgcatcaaaa ttattgatca ttgaatcaac 1800cacgattagg gccacttcct
tggctaataa agcaattagt gtagcaaatt ctaaagctaa 1860cttcaaagaa accttagctt
tccaaaaaac aattgaaggg aggcaatgaa gatggcttat 1920cacactaagc ctaaacatgc
cccaccctat ggcatctaaa acatctaaaa gggattcact 1980agtaatcgat cttttgtact
tatgaaaaat tcccatgaac caattcgatc tcttccaaaa 2040agccatctat gaggtcaacc
tcaacctggc tctaatgttg attgagcttg taatcctagc 2100cctactccaa tcttaagaac
caaccaattt tatttccaat tgattcaagg acccctacac 2160tccaaaagaa gcaagggaag
gccaaggaga atggcccaaa cttgagcaga gaataaggat 2220tctctgtgag ggtcgaaact
aacatcccat tcacgtaaaa tcaaaccaga gagacctcaa 2280ctccaactct tcttaatgat
gaagcacaaa tattattttg agtgaaattt gaaaccaaga 2340aaacctctca ctaatatatg
gaagaggggc aatattcaac cattggtacc caaatcgcct 2400caagacactt accaagggag
ccaaccaaac aatcttacca caaaaccaac caacagtgtt 2460tttacccaca agctcttgga
tggaatccag gataatgtct tcaccaacaa ccatcttatg 2520tctatccttg caagcacaaa
tgcattgagc tttagatttg gagtgcataa atacaggggg 2580gtatccaggg gggggagggg
gtttgctaga accccagact caccaaggca tgaagacaaa 2640atgaggagag agggatctag
attgggggat gcaagttgat gaagcatgaa aaggcaatcc 2700atcaccctgc atggcatatt
tacgaaggtt gttcagagga atgagaacta atggatgaac 2760aacagctggt agaacaagca
gctcaaggag cgccaaggca cgagcccact ttgcatgttg 2820tagactaacg aattttacat
tagaataaaa tatgtcgaca atatcgagga gatcttctcc 2880aaaatccaac tcattaatct
ctattatgca caaacgagtg atgtgtcgag actcatctgc 2940caacaagcca tcaacatcaa
gaagggaacg gaatagagcc aaagggaacc ctagagaccc 3000tcatccacat aataatgaaa
tattccacgt gtgtttttca aaatttggaa atttcatgta 3060ttttttggtt gattgttgtg
gtctggtttt ttccaaattc aatctagttc aagtttttgg 3120agtcgaccag ttgggtaacc
agtctaattc tggtaacatt gcattgtact tgatctcaat 3180aaaagcatat aggatagaat
tatcttctgt cttgatggtt gccatgagaa ccaactgcta 3240tactatgaaa aatatcaatg
ttccacaata tttttgggac aagggaacac aagattgagt 3300caacagttca ggaccccaga
aaaattattc ctgagtttgc agattatttt cctaaaagtg 3360aacaattcaa gaccctagcc
aaatcattcc caagtccaag ttatgtgaca ctgcgactaa 3420caaggcaagt tggaagaaac
catcaatcaa tctcctagtt aatgacagtc cttgtaagaa 3480gttcaagaag attaacacca
gaagaggtca tgctgactgc ttttatccaa ttctctctgc 3540tcttcaccaa cagaaatagc
caagatggtt gtacccattc cctaatctaa tttattatat 3600gaatttctct ttatttttct
acatataaaa aacaaaaact tttcttgatg gtgaaacaga 3660aaaggcagtt cgattggatt
taaacatcca aatacctccc acagattgag aaggccaagc 3720cccaatccaa cagtccatga
tataatattt attcaatcac actcaagata atgcaatgaa 3780ggtgcaccac gctattagat
tctgcacaga actcagatga ctgtaattat caactttaac 3840caggagtaat ttaaaaactc
aattgtgctt cagctatgtg gaaaaacttt ggcactggaa 3900atggtataaa tgttgttgaa
taagcaaaca ttttagaaca tttttcaagc actgaattca 3960aagtcaagtc aaaggaacat
cttacttggg ctgtacagga aatctgaagt acaaaattag 4020tgaaaaaaca ggagaaagag
agtagtcatt acatgttata acattaccat ataggatttt 4080gtaatacttc ttgatatttc
aacttcccga ctgatgaaat gtataccact acagaacagg 4140tcagtcatgt atgtgagcaa
ttagccaaac taggtcctaa ggttcaacca gtgcagacaa 4200cgctgtaact gaaacaaatt
tgtgggacaa ttaaaaattc tctaccagga tagttgtgcc 4260agtaggtgcc cttttcaaac
catgatttaa aacacaaggg tggcttacca cttgaccaaa 4320tcatttaata accaacccct
cgaacatatc aagaaagaaa acatctgcat ataagtaaat 4380tgaaagatga tatttaagag
gcactgcctt aaattttcca tttggcaaat ccacattgct 4440tgataagcat aaaaccttgg
ttaagagcaa gtttagggaa ccatcaaata tttctacata 4500ctttacaata gtgtgtttat
aaagctaatc aaatgcttct atttaaatat atagcaacct 4560acacaagaaa ttcactagga
cagcaatcac ttggccaatg tgattaccaa tataaccata 4620cttgaagagc atacataaat
cacaaataat gattcaatta gaaatatctt aaagataaac 4680tattattcaa tgtacatgtt
acaaagaacc tcacctgtcc gccttt 472697635DNAPinus radiata
97aaattctatg aaaaaaatcc aatcatatta aaagtccaat tgattagcaa ttttatgaga
60aaaatccaat tatgttaaaa gtcactgagt gtggccgaaa ttgtgaccga aattgaatgc
120aataaccgag ggtttttcaa accaaggtta agcctctcat cattggggtg tgtatgaaaa
180tgtaatgggc atcgataacc ttttattaca acttcacgaa aattgcctct attcaatggg
240tgtggatgaa aatgtaagtg cgcatcgata atggaaagcg atatgcagca aaatcaataa
300acctgacttc ccatgtgagt gatgatttga tcgtacaact gatggtgtga agttactttc
360agcttcacct tcgggcataa tcagggaagt agggccaagt ttgcttagta tcactctaat
420ccccaacacc gtgattacta tcttcatcaa caatggccac cttcgtcatt actttaactg
480gtgggataca gctactttac aactgtaaat ttgttgaggc agcctatcct cagcctatac
540atactaatta ttgcagctcg attaggtatc tgctgtgaga atagctgtgt atctctgcgc
600tggttgcagg atccaagttc ctctcagagc cctcc
63598468DNAPinus radiata 98ctggtaaatt gagattccaa attattgatg cgaagcttcc
tcgtggctgg tcggtgctgc 60tggcatccaa accctaaatg aaaaagaaaa aggtgtccgg
acggattttt ttagtatttt 120tttcttattt tttttatgaa ccgtcggatt cgagatcgga
cggcgatccg aaactgcaag 180cgtcggccgt cggatgcagc atcggacggc aaagaaggaa
ccctaaaacg cattgcaacg 240tgcttggtgg gtggagggtc tatggccagt atatgttgat
aacaagggag aggaagtagt 300cctcttcatc tagtgcgagt ctctctgctt ttctacgccg
ctgcgaagct gttctgtggt 360gtttctgatt ctccagactc aggcagtcgt ttttgtaaga
gaatttagtt catcatggga 420aaggagaaaa cccatatcaa cattgtggtt attggccatg
tcgactcc 46899222DNAPinus radiata 99atccaaaccc taaatgaaaa
agaaaaaggt gtccggacgg atttttttag tatttttttt 60tcttattttt tttttatgaa
ccgtcggatt cgagatcgga cggcgatccg aaactgcaag 120cgtcggccgt cggatgcagc
atcggacggc aaagaaggaa ccctaaaacg cattgcaacg 180tgcttggtgg gtggagggtc
tatggccaga tatgttgtaa tc 222100597DNAPinus radiata
100aaatgaggca gctaactatt tatttggttt tggcttcact gacttgttcc ttagtgtatt
60aatgaacaat ctctttagac tcagagatgg tgagaaagat tctatgagaa atattcttgt
120tattgcttcg actcatatcc cccaaagagt ggatccagct ctaatagctc caaatcgatt
180agatagatcg atcaatattc gaatgcttgt tatcccacaa cgacaaaggg aatttcctat
240tcttttatgt agcaaaggat tatactcggg aaaatgtccc gatgaatttg gatctataac
300catagattat gatgcacgag ctctattagc tcaggcctct ctgctgctcc ttggattgca
360atctcattct ctgatttgcc gtgctgtttg ctctgctcac ttcagcccag atggagacct
420tcttgttcac atcggagtct gtaaatgagg gacacccaga caaactctgt gaccagattt
480ctgatgcagt gttggatgca tgcctcaccc aggaccccga cagcaaggta gcatgcgaga
540cttgcactaa aacgaacatg gtcatggttt ttggtgaaat caccaccaag gccgatg
597101669DNAPinus radiata 101cctggaaatg ctatattaac tcaacaaagg attttcagcc
aatcacaatt tgacaggttt 60gaaatgaaag attacaggca tttccaatgg aacagaatat
aattacttta ttccctcaaa 120gtatcgtata aaataaatct tttgctccac acactttgga
aaatacattt tcaacaatgc 180accgacaaac tttttctacc acgttatgga accatacaag
ttaaatttaa acacgaatta 240cgcgtatatt tctaataaat cgatggttga gattgaatgc
cgtgggcgat tctcacgcgt 300ccgattggga tcactagtcc atcactcatg gtctgcattg
cctttaaatt ggcggggcga 360ggaaagacca atgcgtcatt ggtgtagacg agctctatta
gctcaggcct ctctgctgct 420ccttggattg caatctcatt ctctgatttg ccgtgctgtt
tgctctgctc acttcagccc 480agatggagac cttcttgttc acatcggagt ctgtaaatga
gggacaccca gacaaactct 540gtgaccagat ttctgatgca gtgttggatg catgcctcac
ccaggacccc gacagcaagg 600tagcatgcga gacttgcact aaaacgaaca tggtcatggt
ttttggtgaa atcaccacca 660aggccgatg
669102230DNAPinus radiata 102atccacctcg gaatgaaatc
actatgcaca ctccaccttt tttttggctt cttttctcgt 60tgcctttacc atcagaatca
agcacgaaga gtaaatatca cccatgcttt acaagtgggt 120tggtagcatt agcgattccc
ttcaccaaat gaaccctttg ctggtgatga gtggacaacc 180taaagttgtt tgctggtgat
gagtggacaa ccagagtggg ggttggggaa 230103596DNAEucalyptus
grandis 103actttgaaag ggtctcgagt caaagtgctc aaattgagag ggagaatttt
agaacaaaat 60cagatttgga gaatacatgc cattttaggg ggattttggg gatttcgcat
atggcgtcgc 120gtcgtcggcg ccttcttctt tacagattgt atcctcccat taaccgcgtg
gacctgcact 180gtaaccccga aacggtgggg gccaatttcg tctttccgcc tcctccactc
agcttcgtgg 240aagattaaaa tcctcaccgt ccgtgcaaac gccacgtggc gcgttagttt
gcgcgtggaa 300aggtcctcac gaaccgtaaa gggcaaaaaa aagggaaaat aaaaaaggag
gaggaggagg 360gaggaggaag aattgtccga ttgaaaataa gagtgcggtg gtgtggtgtg
ggtagatctt 420gaattgaacg agctcaatcc gcgtatttaa acccgccccg cttcctcatt
cttccttgtc 480catttcaact ctccctctct ccctctcttc tgcccctcga tcgatccagc
gatcttccta 540tttccggacg cggggagcag ctcctcttgt cgaaggttct aaattagtgt
ggagag 596104653DNAEucalyptus grandis 104aaaattttcc tttattttct
tttcattaaa aagataaata aataaaaaaa aaaaagaagg 60aaaacacatc gaggtgaggc
ttaaaggtgc taggcaagga ccaccaagcc tacacaaggg 120tcggcgaccc tcaccaatgc
tggggcgagg gtgagcaacc ctcatccaaa tctggagagg 180gttgtcactc gagaaagggt
cactggccct cccctaaccg ctactaacat cgttggcctt 240cgtcaccacc gcactaacaa
tgggccacta attttatatt tttcgtgata ttaatcctat 300taaaaatgaa aatatctcct
taattaatta agcttgtcag gaccgatgta aacaaaatta 360atgtaaatgg acgcgccttt
gacttgccaa caaactcgaa acgacgtttc ctccgtctga 420taactatctc gcgacctccg
acgacatccg acggtgcaga tcgggtcccg gtcaaccatc 480cagatccacc cgattttctc
ccggccctcg acaactccca ccaccacctc tttcctccct 540ctttccttcc ttcctttctc
accagatttt cccgagaaaa tcacagagag agaaagaaaa 600acctcaccgc ctagagagag
aaagagagaa agagggaaga gagagagaga gag 653105342DNAEucalyptus
grandis 105agttgggtaa ccagtctaat tctggtaaca ttgcattgta cttgatctca
ataaaagcat 60ataggataga attatcttct gtcttgatgg tttccatgag aaccaactgc
tatactatga 120aaaatatcaa tgttccacaa tatttttggg acaagggaac acaagattga
gtcaacagtt 180caggacccca gaaaaattat tcctgagttc gcagattatt ttcctaaaag
tgaacaattc 240aagaccctag ccaaatcatt cccaagtcca agttatgtga cactgcgact
aacaaggcaa 300gttggaagaa accatcaatc aatctcctag ttaatgacag tc
342106342DNAEucalyptus grandis 106ggtctggaag ctcatctctc
caatttggtg aagattacag ctataagagg tagctatgat 60gtgctggcca aatgcaagtg
atgaaatacg tggaccacca agtgcgaagg cattcgaaga 120acgagggtcg aatttatagt
gggcgaagga tgattaggtg gaatatgaca agaaaatagg 180tttgaaagag aaataaatat
tatgatagtg aagggtcttc acatggttag tttgatctgt 240ccgagggtgt ccacccttgt
ctgatccgca attgctcttg gtcgtgctga attttagagt 300gtagccaaag taagaatttt
cctttcactg tccggacatt tc 342107948DNAEucalyptus
grandis 107ctgacaaatg caaatatcta aaaccattgg ttgtttggtg cttgcaagtc
tggattaccc 60cactttatgt ttcacctttc aataatgaat aacaaggtac tcgggaaaaa
aaggaaaggg 120aaattcgcac aaccaaagtt gctatgcaga agtcaactca atcctaatca
agttgatgag 180agtgttgggc cctattttct gcagcaaaca tgaatctcga ttcatctccc
tcgcaaaaga 240taaggaagct gcaaaagctt tcctcctaag tttgttggca agcaaattga
ttttgtacca 300gaaataaata caaagtgaaa cccaagcaat cacgcatggc ctgatttgtg
ccatgtccat 360ttgatctccc tctactattt ttcctgcttt ctcaagcaaa ctagttgctg
taacagtgaa 420tgatcccccg gctctctctc tctctctctc tctctctctc catttattcc
atccatgttt 480ttgcttttcg cacaacactt atcattgagg tgctaactac tgaattcccc
taactaaaaa 540ttggaacctc tcacctaatt tcattttctc ccactttgat gagcaccact
ctctttccca 600gatttcaaat aaattgccac tctctccctc ctctttcctc acacaaccaa
aagccttctt 660caagtaccac ttcttcactg tcctctcttc acaatccccc tcttaccaag
agcaaagcaa 720aaaacatgat gaagagactg tcatttctgc tcctactggt cctgctcttc
caatgctcta 780ccaccttggc tcagcctgcg gccgccccag ctccgcctgt gatagccccg
gctgcacctg 840ctacgcctgc cttaggcccg gctcctcctg tcttaggccc agctcctgca
ggcccaaccg 900acatcacgaa ggtcctcaag aaggtgagcc aatttacggt gctgctca
948108362DNAEucalyptus grandis 108ccatcactca taatcaacaa
ggatatctca tcatgtcttc caaccaaatt aaaccccaga 60catctctaaa gcagtatgga
aaagaaaaca gtccggaagt ctctagctca aaaactgtaa 120ccccgaccta attccggttg
tctctgatta catcaattct tatgtcttaa cactccattc 180gcacctccac aataaataga
tcggcccttc atctcccctt accatcgaat ccaatcccaa 240aaacacttgc tcagacacca
tcaaatcctt cgcaaagtct ttttcttaca aaaaacaaac 300gaaagcaacc atgaagcacc
agttcattgt tctggctctc ttattcctca tcaacacagc 360cc
362109326DNAEucalyptus
grandis 109aaaaattaca atcaatggtt atcaatggat gttacaaagg gaggttacat
atagaggtta 60taaaagaggg ttacaaatag atgtctcaaa caattaccaa gcggttagat
tgactccact 120attttgacgg ttctcttgac tttactatct caacgattac tttatttcat
catgttgacg 180gttgcatcca tgattgttga cttcactttt tgtcgattcc ttcaagctgc
tgattcttca 240agttgccaat aattttattc ataaatgacg aaactctagc ctcatccatt
aagtttgtta 300cttgtccaca ataattaaat tcggta
326110296DNAPinus radiata 110tgctcccggt catgacaccg ccattctcgc
tcttcatttc caattcaaat cacttggttg 60ttgttcacac acacgggtct ttatatgacg
agtgctgctg cgattataaa tagacggggc 120aattacaaca aaaactcaca gcatttgaag
gaagttggag tggtagagtg agaaatacac 180agcctaatct gaaggaagtt cgagtaatag
agtgagaaat ggatcttctt ctcctcatga 240tgatgcttgt gatgatgggt gtagcaatgc
ctactcattc tcaacaaatc actagt 296111723DNAPinus radiata
111cgttttacgc gggaacaatg aaaacagtac aatcgaaaga gtcaagtcgt gaggttcatt
60tcgatgaagt tcccagagat tgtctcgttc aacgtttcct cttttttcgg gtcaagtcgg
120gtacagaaga ccactttctt tacgcggtca agacaccgcc attctcgggt caagtcggga
180ggtccctcct gctcttcctt tttccaaatc cgtaaaattt acagattttt ttaatgtatg
240aagcccactt tctttatgcg gttgctccca gtcaagacac cgccattgtt gttcacacgc
300acgggtcttt atatgacgag tgctgctgcg attataaata gacggggcaa ttacaacaaa
360aactcacagc atttgaagga agttggagtg gtagagtgag aaatcatttg aagggagttg
420gagtggtaga gtgagaaatc atttgaaggg agttgagaaa tatattggga atctctcttt
480tttgcagcaa ttagatcttt cctttaatgc tttgagtggg agaattccga cagagtttgg
540gaacctctct cttttgcggc aataagttgg agtggtagtt ggagtggtag agtgagaaat
600acacagccta atctgaagga agttggagtg atagagtgag aaatggatcg tcttcttctc
660ttcatgttga tgcttgtgat gatgggtgta gcaatgccta ctcattctca acaaatcact
720agt
7231121301DNAPinus radiata 112actatagggc acgcgtggtc gacggccctg gctggtagcg
acagagctgg ttcagtgacc 60gttcgtgatt agccgcagta aaacaaaacc ctaaccgtaa
ccctttcgcg cagattccat 120ccttccccgt cctaccaaaa cccaaacttc ttgcccgaac
tcaccttcta tgtattaatt 180cttattatta tttaataata ataaatagtt aaacataaat
ttataaatta attaattttt 240atgattttta ttttagttta aaaatgtgac attgttatag
attaatgctt atgaacgttt 300attggccata attaccctaa ttaattataa ttaaaatata
tagttataat taaaaaattg 360tatattttat aaattgaatt aagaatttct gatgatattt
catcattcaa ttccatctta 420tcaaagttag agggaatagt taaccatgta ctagatctat
tcatagctaa catttgccaa 480gttcgtacta ggagacttgg atttttttta aaacataatt
ttggcagtaa aaagtgaatt 540ctattgtttt gaaaacaaaa caaaatacag gaagcgtgat
tgtggggttg ttgttgaact 600tgcccgggca aaagaagaat gattagcggt agaggagtta
gtagttacgt tcaactaaat 660gcgtgactaa attatttatc ctccgccatg gaagcaggtg
attcacacac aacttgctgc 720acacattgct ctcaaacctt tcctataaat atccgtagca
ggggctgcga tgatacacaa 780cgcatttaat caaactactt tgattacttt ctgtgggttc
tactttcttt gaatagtcag 840ttctgctgtt tttagaagat ttataagaat ggccaaaatt
caggtatcaa acgggaacgt 900cgtggtggtg gctgcgatgt tatttatggt ggtggtggcc
atgcaaaacc atcacgtcgc 960cgcccaaagt gctgactgcg ccgccaccgc ggagtccctg
agcccctgcg cctcggcggt 1020gggaaacaac ccacaggatc ccactcccga atgctgtgct
gttcttcaga ccgctaatgt 1080cgactgcatc tgcgccctcg tccaatcaac catgcaattg
ccttccgaat gcggtcttga 1140gactcctcag tgcccaagcg actagggtct caagaccgtg
actgagtgct ggtttcagag 1200acagtagaca ttctgcctaa taaatgattg tatgagagct
tttatatatg gaattgctca 1260tatgctttcc tagatatgaa attattaaat tccatatgct t
13011133070DNAEucalyptus grandis 113agcaccatca
gcaaaaaata gatgggatag agtgggacac cacctgttca gtttgattcc 60cttgagatga
cctacagtga tagcttgatg aataagatgg gataatagat tcaccagagg 120gataaaaagg
tagggagata ggggatctcc ccgtctgatg cctcgggtag gttgaaaata 180aggcaaaagt
tcgccgttga atttgacagc aaaagacacc gtcgttatgc attgcatgat 240ccattgtacc
catgtagggt gaaatcctag agtgaggaga tagtccttta gaaagtccca 300ttccacccta
tcataggctt tctgcatatc cattttaaga acagcccgga attgacgtct 360acattttctg
actttaaatt gatgtagaac ctcttagact attaaaatat tgtcctgaat 420ttgacgtcca
ctgacaaaag cgctttgctc ctggaaaata agtacaggca ggtagggctt 480aaggcgattg
gcaatcacct tagaaatgat cttatatgcg taattacaaa gactgatggg 540gcggtattgg
tctaattgtt caggatgtgg taccttgggt attagggcta tgatggttcg 600attgagattc
ggtggtatga tgccagaatt aaaaaagtgc tgcactgatg agaatagttc 660atcctggagt
atatcccaat gatgctggta gaagagtcca ttcaagccat ctggaccggg 720ggccttggta
agtcccagtt ggaaagtagc ctctctaact tccttcttgg taacaggagc 780tattagggac
atattcatct cattagtaac aacctaagga cactggttca gaataggcaa 840gtagtctcga
tgtcccactg tctgaaatag atgtgaaaag taacctatcg tcatcatctt 900caaaatttca
ggatcgcgca cccaagcttg attgtcatcc tgcaacatac taatcttgtt 960tcgttgttgt
ctttgtatag ttgttgcatg aaaaaattta gtatttttgt ccccccagct 1020gagccattta
attcgagagc acatcgccca aaattattct tcttgctgcc ataactgtcg 1080aattttctct
tttaggtaag taaccaatga tgcgccatgt tgacaaaaag gctgattagt 1140atgatcttgg
agttgttggt gcaaatttgc aagctgacga tggcccctca gggaaattaa 1200ggcgccaacc
cagattgcaa agagcacaaa gagcacgacc caacctttcc ttaacaagat 1260catcaccaga
tcggccagta agggtaatat taatttaaca aatagctctt gtaccgggaa 1320ctccgtattt
ctctcacttc cataaacccc tgattaattt ggtgggaaag cgacagccaa 1380cccacaaaag
gtcagatgtc atcccacgag agagagagag agagagagag agagagagtt 1440ttctctctat
attctggttc accggttgga gtcaatggca tgcgtgacga atgtacatat 1500tggtgtaggg
tccaatattt tgcgggaggg ttggtgaacc gcaaagttcc tatatatcga 1560acctccacca
ccatacctca cttcaatccc caccatttat ccgttttatt tcctctgctt 1620tcctttgctc
gagtctcgcg gaagagagag aagagaggag aggagagaat gggttcgacc 1680ggctccgaga
cccagatgac cccgacccaa gtctcggacg acgaggcgaa cctcttcgcc 1740atgcagctgg
cgagcgcctc cgtgctcccc atggtcctaa aggccgccat cgagatcgac 1800ctcctcgaga
tcatggccaa ggacgggccg ggcgcgttcc tctccacggg ggaaatcgcg 1860gcacagctcc
cgacccagaa ccccgaggca cccgtcatgc tcgaccggat cttccggctg 1920ctggccagct
actccgtgct cacgtgcacc ctccgcgacc tccccgatgg caaggtcgag 1980cggctctacg
gcttagcgcc ggtgtgcaag ttcttggtca agaacgagga cggggtctcc 2040atcgccgcac
tcaacttgat gaaccaggac aaaatcctca tggaaagctg gtattacctg 2100aaagatgcgg
tccttgaagg cggaatccca ttcaacaagg cgtacgggat gaccgcgttc 2160gagtatcatg
gcaccgaccc gcgattcaac aagatcttta accggggaat gtctgatcac 2220tccaccatta
ctatgaagaa gatactggaa acatacaagg gcttcgaggg cctcgagacc 2280gtggtcgatg
tcggaggcgg cactggggcc gtgctcagca tgatcgttgc caaataccca 2340tcaatgaaag
ggatcaactt cgaccgcccc aacggattga agacgcccca ccccttcctg 2400gtgtcaagca
cgtcggaggc gacatgttcg tcagcgttcc aaagggagat gccattttca 2460tgaagtggat
atgccatgac tggagtgacg accattgcgc gaagttcctc aagaactgct 2520acgatgcgct
tcccaacaat ggaaaggtga tcgttgcaga gtgcgtactc cctgtgtacc 2580cagacacgag
cctagcgacc aagaatgtga tccacatcga ctgcatcatg ttggcccaca 2640acccaggcgg
gaaagagagg acacagaagg agttcgaggc attggccaaa ggggccggat 2700ttcagggctt
ccaagtcatg tgctgcgctt tcggcactca cgtcatggag ttcctgaaga 2760ccgcttgatc
tgctcctctg tggtgatgtt catggttctt ggatttgaaa ggtcgtgaag 2820gagccctttt
ctcacagttg gcttcggcat accaagttct tctcataaaa ggaaacaata 2880agaagcgact
gtatgatggc gcaagtggaa gttacaagat ttgttgtttt atgtctataa 2940agttttgagt
cttctgcata ctgatttcac agaatgtgta acgaaacggc gtatatggat 3000gtgcctgaat
gatggaaatt gtgatattct gtcttctttt tcagtaaatc acttcgaaca 3060aaaaaaaaaa
30701141227DNAPinus radiata 114aaatttcaag aggaagagat taattctttt
aatttataaa attatataat aaaatattta 60tatttaattt agatgataag tttatgaggt
gtagaataga tagtgatggg tgtattattg 120agttattccc ctaatgtgga gacaattgat
tagaagttct atgagaaaaa tccaatcatg 180ttaaagtgac ccctaatgtg aagacaattg
attagaaatt ctatgaaaaa aatccaatca 240tattaaaagt ccaattgatt agcaatttta
tgagaaaaat ccaattatgt taaaagtcac 300tgagtgtggc cgaaattgtg accgaaattg
aatgcaataa ccgagggttt ttcaaaccaa 360ggttaagcct ctcatcattg gggtgtgtat
gaaaatgtaa tgggcatcga taacctttta 420ttacaacttc acgaaaattg cctctattca
atgggtgtgg atgaaaatgt aagtgcgcat 480cgataatgga aagcgatatg cagcaaaatc
aataaacctg acttcccatg tgagtgatga 540tttgatcgta caactgatgg tgtgaagtta
ctttcagctt caccttcggg cataatcagg 600gaagtagggc caagtttgct tagtatcact
ctaatcccca acaccgtgat tactatcttc 660atcaacaatg gccaccttcg tcattacttt
aactggtggg atacagctac tttacaactg 720taaatttgtt gaggcagcct atcctcagcc
tatacatact aattattgca gctcgattag 780gtatctgctg tgagaatagc tgtgtatctc
tgcgctggtt gcaggatcca agttcctctc 840agagccctcc atggaagcgc agtcagtttc
agttgttgag cagcgccccc atgccctact 900attttcattt ccgttacagg gccacatcaa
gcctttcatg aacttggcca agattttgtc 960cagccggggc ttctatgtca cttttgccag
taccgaattt gttgtaaagc gcctcgcaga 1020atgtggtgaa agtatcgccc atcgtgattc
gatggtgtgc agcgagaacg atgatgtatg 1080taacataaaa tttgaaacag tgcccgacgg
actgcctccc caccacgatc gcagtactca 1140gaatcttgcg gagctcttcc aatccatgga
agagaacgct catattcact tccacaagtt 1200gatggagaag ctccagaatc ttcggga
12271151169DNAEucalyptus grandis
115ttcattatat gattattacg tcataatgat cgatttctag aaatttggag acatatgtaa
60attcaggagg aatttcaaga aacgcgcgtt actttgaaag ggtctcgagt caaagtgctc
120aaattgagag ggagaatttt agaacaaaat cagatttgga gaatacatgc cattttaggg
180ggattttggg gatttcgcat atggcgtcgc gtcgtcggcg ccttcttctt tacagattgt
240atcctcccat taaccgcgtg gacctgcata gggcacgcgt ggtcgacggc ccgggctggt
300ttcattatat gattattacg tcataatgat cgatttctag aaatttggag acatatgtaa
360attcaggagg aatttcaaga aacgcgcgtt actttgaaag ggtctcgagt caaagtgctc
420aaattgagag ggagaatttt agaacaaaat cagatttgga gaatacatgc cattttaggg
480ggattttggg gatttcgcat atggcgtcgc gtcgtcggcg ccttcttctt tacagattgt
540atcctcccat taaccgcgtg gacctgcact gtaaccccga aacggtgggg gccaatttcg
600tctttccgcc tcctccactc agcttcgtgg aagattaaaa tcctcaccgt ccgtgcaaac
660gccacgtggc gcgttagttt gcgcgtggaa aggtcctcac gaaccgtaaa gggcaaaaaa
720aagggaaaat aaaaaaggag gaggaggagg gaggaggaag aattgtccga ttgaaaataa
780gagtgcggtg gtgtggtgtg ggtagatctt gaattgaacg agctcaattc gcgtatttaa
840acccgccccg cttcctcatt cttccttgtc catttcaact ctccctctct ccctctcttc
900tgcccctcga tcgatccagc gatcttccta tttccggacg cggggagcag ctcctcttgt
960cgaaggttct aaattagtgt ggagagatgg tgaagatctg ctgcattggt gctggctatg
1020tcggcgggcc tactatggcc gtgattgctc tcaagtgccc gtcagtagaa gttgcggtcg
1080ttgatatttc tgtctctcgc atacaagcct ggaacagcga acagctccct atctatgaac
1140caggccttga tgcggtggtg aagcaatgc
1169116947DNAEucalyptus grandis 116ggtctggaag ctcatctctc caatttggtg
aagattacag ctataagagg tagctatgat 60gtgctggcca aatgcaagtg atgaaatacg
tggaccacca agtgcgaagg cattcgaaga 120acgagggtcg aatttatagt gggcgaagga
tgattaggtg gaatatgaca agaaaatagg 180tttgaaagag aaataaatat tatgatagtg
aagggtcttc acatggttag tttgatctgt 240ccgagggtgt ccacccttgt ctgatccgca
attgctcttg gtcgtgctga attttagagt 300gtagccaaag taagaatttt cctttcactg
tccggacatt tcgattgcta catggaccat 360cccgtgtcta cccattcttg agaaccttcg
agtggaaagc atgaataacc caccttgtac 420tatataggtt gccgaatatg cctagggcgc
gaccatcatt gagacggagt tggggtgctc 480cgctcggttc accaccacca ccaccaccac
caccaccacc accaccattg ggcactgata 540tagcgactcc accactaccc caaccgaggt
tggcaaactc tagattgtac atgggatata 600tcggagtagt tgaacatgat cagatcaatg
gtagtggtta agactctaga aattattgaa 660gcaatatgtt aaatcagata cgtgtgagaa
agtgacttac taattgctat ggctttcatg 720atacttaaac ttcaatgaat tggtaatgtg
aagagcaatg tgatctccac aaatactact 780agaaggccaa gtccttttct ttatgccgaa
gtcctaaagt ttaatatttc aactctacct 840atatcaaatt tgtatgcaaa ttgcataatc
gcactgattt ctatggtttt attaatctag 900ataagaactc tctccaagac attaactaat
taagattgac cccattt 9471171766DNAEucalyptus grandis
117atccagatcc ctacgaactg gattcacaca gtcactgctg taagctctgg ttttttttag
60cttaggaagc aggttatgat caaacatgat taaaccatcg cgtgttcgcc agccatcaga
120aatggaaagg caaatgttgt tatagtgatg gacagatcat gctgagatga ttgattatga
180atcttactga tgactgtcat ttatgttatc gcactctgtg tgtgtgggtg tgtgtaatga
240gtaatatcaa attaaccaga cgataggtgt tgaagattag ctgttgggcc accgtggcga
300aaggtgtctt atacaagcca tcggcagtga cgcagaactg tagagaaccg ctgtaacaag
360tcttcgaatg cattctttta atgtacagca cgacatgaag ggggttcgag tgtagcgaac
420agttcgtgcg agaaagatca ttttcaatag cataaaagag tctgctttct gctgcaaaca
480tggaaagaac ttacatttca atcattgagg agaagattat aacaaatcct aaatggttga
540gattttagtt agtccattcg aactaaagtg gcgaagatgt cagtttttca agtggatgat
600atttctcatg tatgttccgc agaggcaatc accttgtttg taactagaca tctagagaac
660ctaacaagga ttgatggggg tgaggtgaaa tgtctgtttc ctctttaata tggatccagc
720gatgccttac agagcggatg gatggcactg gcaagtctta atccttagct cgaatgtttg
780attggtaaca gatgcctttt ctttcttttc aatcacagct gacaaatgca aatatctaaa
840accattggtt gtttggtgct tgcaagtctg gattacccca ctttatgttt cacctttcaa
900taatgaataa caaggtactc gggaaaaaaa ggaaagggaa attcgcacaa ccaaagttgc
960tatgcagaag tcaactcaat cctaatcaag ctgatgagag tgttgggccc tattttctgc
1020agcaaacatg aatctcgatt catctccctc gcaaaagata aggaagctgc aaaagctttc
1080ctcctaagtt tgttggcaag caaattgatt ttgtaccaga aataaataca aagtgaaacc
1140caagcaatca cgcatggcct gatttgtgcc atgtccattt gatctccctc tactattttt
1200cctgctttct caagcaaact agttgctgta acagtgaatg atcccccggc tctccccctc
1260tctctctctc tctctctcca tttattccat ccatgttttt gcttttcgca caacacttat
1320cattgaggtg ctaactactg aattccccta actaaaaatt ggaacctctc gcctaatttc
1380attttctccc actttgatga gcaccactct ctttcccaga tttcaaataa attgccactc
1440tctccctcct ctttcctcac acaaccaaaa gccttcttca agtaccactt cttcactgtc
1500ctctcttcac aatccccctc ttaccaagag caaagcaaaa aacatgatga agagactgtc
1560atttctgctc ctactggtcc tgctcttcca atgctctacc accttggctc agcctgcggc
1620cgccccagct ccgcctgtga tagccccggc tgcacctgct acgcctgcct taggcccggc
1680tcctcctgtc ttaggcccag ctcctgcagg cccaaccgac atcacgaagg tcctcaagaa
1740ggtgagccaa tttacggtgc tgctca
17661181928DNAEucalyptus grandis 118ctggttccac gtcaagcacc tcctggagtg
acaaggaaat gccaccggaa aatcaagatt 60gctgttttag gctcactttt ttcctgagct
aagtgggtcg catttcaaga aacagtagaa 120gttacgttct ccatggaaac tcgaaaggat
aaaaattaag aaacggaagc tccatgagaa 180cgatgggggt cagcatcact cctattgtat
tgtgctctca ttatctctgg cctacttgag 240aagtgatctg ggattcgcta ttagtgaaaa
caatcgcagg ctaactaaga tcttttatgc 300taatcatatg gagaaatatc cctcttaagg
gaagcatatg agttttttct taggatgact 360acgcttattc aaaacctatc atacacgtca
tgccaataat acccacttgt tgttccttta 420ctcaggatcc tcgatagcca atactaattg
gcaagaacct tgagtaacaa gctgaggtat 480acataggcct atcattcatt tactagactc
gattgcaagc acacatgatg cacatttata 540tcagcaatca gcaatcatat ttccgaaaat
tgtctctcag agaaaaagag agagagagag 600agtccatagt atgtcatagc caaaagaaaa
attagcaaca agatctcgag gtattgttga 660aaggtagggc aatatcaaga attccattgt
aattaatgtg tctagacaac atctaagaaa 720aaaaagtgaa agaaaagagc tatatagtta
ataatattta tacatgttgg agataaactt 780gagttagagg tttatgacct cctagattga
ttaaacagac caaatagtag taatcagggc 840acttcttaaa tctactaata tattgttcaa
acatgacttt taacctatct tgattagaaa 900tgagtgttca aagaaaacta atcatgcata
tattttgtcg cccaatcacc ctagggtgga 960aaaaaggcta tctactcaac aaatgctaaa
attttacggc tacacgtggc cacagttgca 1020gtacaattca tctcaaggaa ggactaaaac
tgcaaagaga agaagactac ataggaaaaa 1080ggaaaacaaa gaagccttga agtaaagagg
agcataactc actcaactga gtgtgttcgc 1140caatgtggca aagaaaaagc ctctaagatc
ctcacaaatg gccacgtgga ctcacacggc 1200accctataca agtactacta ctactacagg
actatgccag aaggagaagt gttagcgtga 1260gtaccacgtg cgcacgcaga atctaagcct
agcaaaaact atgctgagtc aagcagctcc 1320cccacccatg aagatagtac tgtaatgtga
ctcttgacag cgaaaccaaa cagtactcca 1380agagaaaagc caaagcagca aaaatggggc
ccgcagcaag aacctctgac tcgacctgga 1440cccaccaaga acaacagcca gccacaaaat
aacgtaaaga ctttttgcgg ccactaactc 1500ctcgacaagt ggcactgctt ggattccctt
catcttgcct tcacttaacc cccaccctcc 1560ctcacactgc attcacttca aacactcccc
agtttcagag tttcattgag aaatatgttg 1620aaggaagaca cgagtggcag cggcggcagc
agcggcagcg gcagcggtgg taatagctgg 1680gcacgtgtgt gtgacacttg ccgctcggca
gcatgcaccg tgtactgccg tgccgacttg 1740gcttacctat gctccagctg tgacgctcgt
attcacgcag ccaccgtgtg gcctcgcgcc 1800atgagcgcgt gtgggtgtgc gaagcgtgcg
agcgcgcccc ggctgccttc ctctgcaagg 1860ctgatgcagc atcactgtgc accgcctgcg
atgcagacat acactcagcc aacccgcttg 1920cgcgccgc
1928119602DNAEucalyptus grandis
119attgggagga agtagagtgt gctgtgtgag attggtcgat gagctggctc ttgtggagat
60ggcaagtgat tgtggcttct gtgatgcata tatataggca agggacgtga tgcggaggaa
120gtatgtatca tcagcttata ataatgattg gtcagtttgt aagtgaatat taagggcctc
180atgggtgttg gttcacggcc caaggcgggg cccactcacc gggggattta tcgtgtaagg
240atacatccag ggtcagggtg tttggggaca cactttgcca tcttatgtgg gcatgatcag
300attgagaaga atccgatcct tctttttcct aaaccattga acccaccatg agaatctttg
360tttggaggga aaaataaaaa aatagattga gacgtattct aggagaggat agcaaaagaa
420tgtgactttg tttgtttgtg tatcggattg atctaaggaa aaaagacact aaccgttcta
480caattttcat acaactcttt catttaagca ccgtgacttc caaaaatcga tcatccttat
540acggttggaa atcacacgtg gcattgctgt aaaagaaata gttgatgggt ctcattgaag
600at
6021201326DNAPinus radiata 120aaaaaaggga aacattatac caaattttat gatatctttc
aacaacatac tcttctatat 60atggtgcctc ctctgatgga cccttgtcaa ctttctcttt
ttatgtgtaa tgcctcaaga 120gcccccactc acaagataat atcttttcca taatataata
tatattccta ttgaagcagt 180cttttgatgt accgagtaca ctactcatgg tgaaggccgt
gtcttgcagc ttttcccatg 240gtttattttg aaagtaatag tactggacct catttgcaac
gacacataat attcttactg 300acgacacttt gtttgatttc ttatagaaaa atgcaaggtg
gcacaaaaag atggaaagcc 360cgacctatca agcatacgaa gggtcatgtt cacaccctct
gaaatcttca gagtctcacc 420ctatgttgga cgctaatcaa tgggatcacg ctgaaacata
tcgtaaatga cgaatcaatc 480aatcaatcat tgaaaaatat accagataac tcctacgatg
gaggggatta tttgcgtacc 540ctccgcgtgg gtgggcacat tgggcaggtc ctttggtaag
tcttggagac agagtcacgt 600ttccataatt gaagtggaca tttatgaatc tttcgaaagt
tgtagaactc ttaattttcg 660acggaatagt ttgacacgtt ttgtacgatc tggtttttcc
ggggaacgcc aattttggtt 720tctgaaggac agcatttaca atattgtctg tcgttgacca
ggacagctgg ctcggaactc 780gggtttccga tgcgcaggaa gcgcattgaa atgagaatat
aatctagttc tacctgtgga 840gctatcacaa aatactaaaa ctggtggaca tacctcttgt
ctgttctcga aatcggccaa 900aatgggaaag aagagggtag agctgaaacg cattcaaaac
cctagcagtc gacatgctac 960tttctctaaa cgcaagaatg gattgctaaa aaaggcgttc
gagctttctg tcctctgtga 1020tgctgaagtc gctctcatca ttttctctga aactggcaag
atttacgaat ttgcgagcaa 1080taacgatatg gcagcaattc tgggaaaata ccgagtacac
gaagaaggca ctgaaacgtc 1140cagtccaaca tcgcttcaaa acgtaaagta tcatgaatca
gggcttgaga aattgcaaga 1200gaagttgacc gctttgcaaa agaaggaaaa gaacttgatt
ggtgaagact tggaggtatt 1260aacaatgaaa gaactgcaac ggcttgaaaa acagttacaa
attggcataa aaaggttagt 1320gataga
13261211504DNAEucalyptus grandis 121atccactagt
tatataaaaa taataataat atcaaatata tctcgtgatt tatgtatcta 60tgaattatat
atcataattt ggtaattaga catgtgggcc acttcaatgc atggacattt 120agttcatctt
gactcaatac tcaacctcaa cttaaataca tcctgattat tgatggcaac 180cgaccaattt
gacgtagagg ggacaaggat tgcaacttgg gtttgtgtgt tgggcaaagt 240gagctcaaat
aactcatgag ttcctcaact tgtttgtgtt gcccttgctc aacaatcata 300acaaagctag
ctaaacacaa atgaacaatc aagtatatcc acaaaaaaac aaaaacaaaa 360aaacaagaaa
acccaagcac tgataagaaa atctaaattt ccaccaaaaa tgacaaatag 420acattgccta
tactttcatt tgccgattat cgaaggaatt tacgcataga atgacccatt 480tttttgacaa
atgagatttg cataattatt caacggcatt tcgtggtata ttccatctgc 540atgggtgttc
caaaaatagg catcgaatat tcttctggtg gaaaaaaagg ggcggggcgt 600gaaaaatgaa
agaaagaagc atcaagtggg actgaatcgc cgagtaaatc gtgccgagcc 660gtacgtcaga
agatacacac ttggctcaag tgggcgtcaa agcgatggcg cttgattggg 720acctttgacc
tttcgtcacc tccccatcct ccgtcctcct ccctgtcgcc cgttcattcc 780ctccctccaa
taaaaacaaa aaaacaaaaa aacaaaaaaa ctgtgctctc ttttactcgg 840tcaaaacctt
aaaagaagcc ccccgcccac gcaaatccac ttgccacgtc accaaatcca 900aatcccacac
gtggcgcaca ctgaatcgca ttcaacttgg aacagctggc ggggttttac 960ttggagtccc
agtcacttag attctttgca gccatgacga tgacagtgac gctggctttt 1020ctgcgtcctc
tccgtaggaa ggaactccca gtacagactg gatcctccta atcccgtgtc 1080ctcttcctga
caatccccgt tcatataaag gaacccgaac tcactccctc cgctcccaat 1140tcaagcacat
gttctactcc accttcatct cacaataaaa accagcagtc cagcacgagc 1200acattatcca
cttccactcc agaactcaag cgcagacgta ctccaatgaa ccacttcttc 1260tcttcttact
ccgatcccag ctcctgcagc ctcgactttg ctgaagcgtc gtcctcctcg 1320tcgccgctgt
ccgatggcag gagtgctatg gtgcccggga acttttctga tgaggaggtg 1380ctcctggcgt
cgcaccagcc gaagaagcgc gccgggcgga agaagttcca ggagacgcgc 1440caccccgtgt
accgcggggt gcggcggcga agctcgggca agtgggtctg cgaggtccgc 1500gagc
15041221202DNAPinus radiata 122caataattat ctcaattaat atagtctaac
acaatttgaa tttcaaaata aacttaccta 60tcaaatttga aaattttcac acttgtccat
tcgccatcct atctttacag ctgccaagaa 120aaaaattgac aaatttgcaa actaatatct
tttatctata ttggatgagg gcaaatcatc 180caataaaaag aaaacacaac aaaataaagg
aatatccttt gaaaatactg ccagctgaat 240ttccaattca actaaaactt tgaaccgtcc
ggaatgagaa actcaattct cctctccgcg 300tctttaggag taaactatgc tgtacaatcc
gttaatttct gacacacaat tcctcacgat 360aaaagaaaaa tctgtcagtc tatcgggtag
ctggcggcac accgtttaac ggacgaccgg 420tagctttgcc ctttagatcc accatccagt
aactggcaat aggcggtggc ttactggccc 480accttgagct tgccaattca ccgacatgaa
cgcgtgtcag acggaagaag caacacaatt 540ggacacagaa atacgactcg tttgcaacca
caaaggaacc atccgttgtc gtgtattaat 600taaaaaatga gatgttaaaa attcaaaaaa
tgatttataa tagaaaaatt atatatatat 660ggatctgaat atgcttctcg ttgcttgttt
cgtaggataa ttcagaggga gaagtcgctt 720atattctata ctgacaccca ttccttgaag
gaagcgctcc agtgttagag gccctggggt 780ttgaaagctg attggtagca gggtcttcta
tcagtgtacc tcctggttta attttaattt 840ctatgaatga catgcatcct tattaggaca
aggggtttga tatatcaatt gcaaagggtt 900tgagagaagc cagggtttgg tctttgtgtc
aggcgagaat ttgttaatct ccagacgcca 960tggacgctga attatgggcg gctcgtgtca
cggcagcaaa gcgccatcac gcagttcatc 1020attatcatca tcatacagat cggcagttta
actttgatga attggagggc gatgatgaca 1080tacgggcgga tttcacttgc ccattttgtt
ttgaggattt tgatatcgca ttgctctgct 1140gccatcttga ggatgaacat tgcatcgaca
caaaaaatgc gctatgtcct gtgtgcgcag 1200ct
12021231397DNAEucalyptus grandis
123ccttcctaaa gagctaccat ttctcctcat catccccgcc gccagaagaa gaagaagata
60tttgcgatca tgaccatcag gatgatcatg atcgggtcag tggatttaag tggaagctca
120agaggtcgat gaagggtttt aatgagtcgg cagcgggaat cgtaatggag gtccgtcgag
180gactaacgtc ccagaggagg ctcaaaatca gggttttcag ggccaagctc aatcttcact
240cttctttggt tgccttaacc acgagatgtt tcattccttg gtttagcaaa gttgagcatg
300cgcagtgacc cacagttcaa ttagctttca ctccagaagt tctctatgtg aatatagttt
360gaggttaaaa aaggttgcaa ccactctcct tctaagcacc atatgctcct gtcaatatcg
420attgacctct tgtgagtttg gcaggaagta ctcatgtcca cagaatttct tgaaaataat
480taacactttt gtcgtaaaga acgtagggta aaaggagaaa ttctacttct cgacatccta
540cttttacctc ttcaaaatta tgcgattaat accatacgat acgtcttgac gatcctatct
600cgcatggcac gtgttattgt caaaggtatg attttgattt ttcgacaatc aaagcaacgt
660caatccccat tcaagattga tgtactatgt cgaggaacca taaaggatct gttctctctg
720aggacggctc acccacatgg ggggtctgac cccaccaaag acttggtgga tgttgtggat
780ttcatgcttt tgattcgggc caaaactcat atctccttat cttctctcgc cccttgactg
840tccaccaaac actctcgggt atcttgccct caccaatcat ccacgcgcac aaacagacga
900acgcaacaat atctctctga ccctcctctt tctttcattc tccctccacc tcttgatact
960ctatttctct tgttctctta attgcgaaaa ttactcttga acttgtctgt ttgtcctctc
1020agcgtggcct gagatgggca tttttcaaaa ttaaacattg ctgcttggtt tagagacttc
1080acttgatgag gttgataggt gaagaagaag aagaagaaga agaagaagaa gaagaagaag
1140atgaagatac agtgtgatgt gtgcgagaga gcgccggcga cagtgatatg ttgcgcggat
1200gaagctgcgc tgtgtgagaa atgtgatgtg gagattcacg cagcgaacaa actcgcgagc
1260aagcaccaga ggcttctcct caactgcctc tccaacaaac tccctctctg tgacatttgc
1320cgggagaagg ccgcgttcat cttctgtgtc gaagaccgag ctctcttctg tcaggactgt
1380gatgaaccaa tccattc
13971241142DNAPinus radiata 124atctgataca attgtgaagg tgttattaat
aatattttca tttctctgaa atctaggttt 60agtcaattac atatttgata attttcttca
tttccttacg caaatgattc catgaacgaa 120attttgtttt ttgatttttt tgtttcgttt
atttctacca cgtgttgcat ttatatttga 180aagcataagg agcacagtta gttttgatac
ctgcaatgcc acgttttttc tgcaattcca 240tcttccacca cacattcaaa gataatgtcg
gtcatcacat tcttcagaac gcaatttgtc 300atcaatgggt cacatgctgc catcagtatt
ctgaattttc aaagcagaca aacccaaata 360cacctggatt gcagtgggta cattatagtg
acatgataaa tatcccacat cacattcttc 420agaacgcaat ttgtcatcaa tgggtcacat
actgccatca gtattccgaa ttttcaaagt 480agacaaaccc aaaatacaac tggagtgcag
tgggtacatt atagtgacat gataaatatc 540ccacatcaca ttcttccgaa tgcaatttgt
catcaatagg tcacatactg ccatcagtat 600tcttaatttt cacagtagac aaacccaaaa
tacaactgga ttgcagtggg tacattatag 660tgacatgata aatatcctac cgttttgata
gtaaacttga gctgcaagta aactacatgt 720gcactcatgg tggggcttgt gctgccaatt
gccctttaaa atggagtcca tcaacatctt 780tttaacataa gaattcttta gactgggagt
tgatttgagc tttattttgg tgtatcatct 840tgtagtctga aaaagaagat tcacagtacc
agcttaatta tttcatcatg gccactgcaa 900ccttcataga tatcttgttg gccatacttc
tgccaccttt gggagtcttt ctcaaatatg 960agtgccattc tgaattctgg atatgtgtgc
tgctgactct tttggggtgg ctaccaggga 1020ttatatatgc cgtctatatt ctcaccaagt
gaaaatgaat attctttgtt tggagcttgg 1080tgccacttaa ttgtcatgag taaacataat
tgaatttgtt tattcacttg ttttttatgc 1140at
11421251489DNAEucalyptus grandis
125atcattgcac agatgctggc ctatcaagcg tccatcgatt aatgtcatga tgattcgtgt
60catcaatttt cccatagcga gtcagcgacc accgcatgca cgatgccgat gtcgccgtgc
120gaaaaacatc gagcagacgg catgctaaag acatgcattt cggtcctctc tgatggtgaa
180ttgcaatgca gaagagactc ggatggattt gatttcaaag tgacgacact gacttctgcg
240cattcgttta tacatgcata ttcttcaaaa ggatgcttct gccacttctc tttttcagtg
300gctttcagtt caagaaaccc cattaatttc aaaagagaaa gcaggtggct atctgcacgg
360aagaatggtc tcattgttct atttaagcat ttcctttttt cattgcacgt gtggtctaga
420agagtttttc ctttcctcat atgaagccaa aataccatgt ccgagtttca cataatacaa
480aacatttccc aggaagaaaa tgttcccaga gaccacatga gttctcttga aatctttgaa
540atttataacc ctgacccatg aaatcgggca agaaaaactg taatggcatc agcaggatgt
600gaagagaatg gaggcggcgt acacctaatg cggttttacc gagtcggata tggttgtcgt
660atggacaaca ggctgttgat ttggtaagtg tcggattttt tagggagaca aaagtccaac
720ctatccccaa gcaaatccgg ggaattcgat ggtctcttga atatgtaaat gcttttgaac
780ttcagtgact gagtccaaat gatcttcttc ttctgcaagc taactaacct tcggtccttc
840tcttggctgc tttttgcaac tactactata ttattgcttt tagtaatggt ggtagttgca
900atagaagtaa gcatagtgaa aaagtgttga tcggcaacaa acaaagaagc ttaattatta
960ccgatccagc acaccttaat catctccaac tgttctctat tcttgcatct tcaaccgtaa
1020tcagcagata atcctcgtca ttaatcatta ttctgaaaca acctgttgcc ccaccaaaga
1080aaactcatag gtgactctgc tttgttctct tgcaatgcca tatatacacc tgaaattctg
1140atcgctctca ctcatctgtc gcattcaaag cctcaaagcc gcttgtttct tgaactttgc
1200cttggcttca aagaagaaag tcctcaaata gaagatcgac catatgggac tgaagatatt
1260ctcagtcggc tttgctcttc tttgttgctt ctgttcactt ggcttctgtg atcaagacgg
1320ttttctgagt ttagcttgtg gtggaactac caattacacg gattcatcca acatctggtg
1380gattaccgac agtgatttca taagcacagg aaagactacc tatgttgaca atatcgaggg
1440caattcatct ggtgtttcgc ttcggttctt cccagattcc aaagtccat
14891261273DNAEucalyptus grandis 126ttgtaaatta tgtgtgctta atagggtctt
gttaatcaat gatcagtgta ttttttacgc 60atgtgatgaa aaagtaattg cttttgagaa
tatagttaca tcgaaaggac aatcaattcg 120tttgacattg taatttttta tttgatagtt
taacaagtgc ctcggaacac tcttcaacat 180atcctttcac tttattttgc atatttatgc
ttgtacaaca acattttcaa ttgggtgatc 240ataattcgta atatttataa ttttttgtta
acaatgagta actctatact cctggattga 300gcaaacatat ttgtaaagta gttatgagag
tattacttat acttagacgt tgtgagatac 360tcatgatcgt atcatatgtc cactagagga
tatagattta cctagatgaa gcccctttct 420tagaagtagg aaaaaaaaaa ctattatatt
gacttgaacc catatcataa aaagtacgag 480actcaaaatc caatcttaca tgtatatgtg
tatatatata tgttcgcaaa tgataacaat 540cttttcaaga atcaagacac cagaaaacca
tattttcaat atccgtcaat gtcaatgtcc 600tactcacatc gaacaggact gccgcgtaca
caacaagttc cccagctaca gatttaccta 660caattaggaa atgcaacccg aaaagacagg
tctccatttc ttccttcact ttcccactca 720tgaaaatgaa atatataatc acaaaatgcc
tgagcgacac taaaggaacc aaagaacaac 780gattccaact cagagagaga gagagagaga
gagagaggca ctaatttttg gctgctcaac 840aaaggaagca actttattca aatccatttt
gctttagcgt gcccgtaatt ccaaccaaac 900atatcctcaa agccctaata tatactccca
caagcgcacc tcgtttccta cacacaagta 960caaagcgtca acttcttctt cgctaaactg
gtctcacaga cactcgcttg tccctcagtc 1020cacactttgg cttagctcac agcaactatg
gctgagacag cggaacccca gaagctggtc 1080gagctcgaga aggtgcccga ccccgaggcc
ggcgtgcccc cgaaaggaga ggaggcgccc 1140ccagaacccc cacttccgcc cccagtgccg
gcgccgccgg tggaaacttg cgtcttggtt 1200gacgtggcac ttagggtttt gctcttcgca
gcgacactga ccgctgtggt ggtgatggtc 1260acggcgaacc aaa
12731273720DNAEucalyptus grandis
127cgaagttcag ctcccgcttc cctgatgttt tcaaatcttc tttcaagtta gaagtacata
60tacagcaaac aagatccaac ccttttctta tcatgagccc ttacttccac aagtgacatt
120tggcactagt cccacaattt aatcattcta tttccattct ctgtaaatgt accctattca
180aagttgggac ataatgaccc ttttgaagcg ttaggatcac actttattaa aagggaacaa
240caacattgac agcaaatgca cgcactttcg ataaagttca gacagtataa taagttctca
300ttccaaaagg ccccaatgtg gaaggtacga cttctctaac cctgttttga tttgattttt
360tcgcagagga aaaatcatca ccaaagactt ataaaaattg aagtagcaaa gaaaagaaaa
420gcaagattag caaacagaga ggagaaagag aggggaagga gtgatgggcc aacagccatt
480ctcccagaaa ccacataaaa aacaaacaca gaatgatcac ttgtgaagaa cacgcggagt
540tccaagcaaa gcatctcgag aatcaatgtc gctctttctt cacaagcatt ggacagaaaa
600aaagagcaag ctctaagttt tccagcgaaa gcccgaaaat taggacgaag ggcgacgaga
660aaacgaaaaa ctagaaggaa acaaaaatca aaataaaaag gaaagagagg cctgtgcgag
720taataacgat tgtaaggcaa gacgatgaac cggcaaagct tgattcctgg ttgcaaattg
780gggacgaaga tggctcaaaa taggagtgac gggcggtgat tttaccgcga agcgaaacct
840agaatgcaag gagcaaagaa gagggtggtg gcagaatcga cgccgacagt ggcagcagag
900tcgacgccag cagcagcggc ggagtgtatg agcggagaag gcgtagtagc tgatggtggt
960ggagtcgaca agaggagaag gcaagaagga agagtcgtcc ggaaccaatg tgtttggctt
1020tgggtgtgga tgttttgtat tttggtgaga tgagagaacg tgtttgtttc attgtttaag
1080attaataatg tgttcacgag ccgaacaatg tttcgacctt aacccgactc aaaacatggt
1140tgtttgcttg ttttgtaatt gttacctaaa taatattaag acctaaaaca tcgtgttcgg
1200gttgagtttt tggacactcc tacctgtgat agccaccgcg agcgtagact actggatttg
1260atatttggaa gcacgaccac cttttattgc caattggaaa gataaaaacg aggcacgaat
1320gggaccaaaa tgagcaagaa atacggtatc tttggatgcc atgtttgcca tttgtcacct
1380tacgcagagt gctagtgtaa attctcaatc aaagagcacg ggatacgttt tgttcagaac
1440ttcacaccat gagcaggctt ggaaaaggag gaccgtaaag gaaatcacca tattgtagat
1500gttcaaaata agttaacgaa tcagaaaaag aatacccatt tagccgaatt taattaacgt
1560aatctttacg tgggacaact aaagtggaaa tttttttaac ttgtgctgat gttttagctt
1620taaaatgcaa tcaccagcct aaaatatatc ttgattcatt atttgaaatc tcgaatgtaa
1680attttagtag tatatcataa atatctccgt ttggcctact ttctaatgca gcatccgttt
1740gatagggtgt cgacgactca actctacgta cgtaaaaaaa aaaaattaaa aaatgccata
1800ttgactttat agtgtagcac gtcatcaaat tgggcgagca gtcgtcggat ggaattaaaa
1860ttacatcaaa tggaaattgt ttgttggttg cactttgggt caattttttt tggactttga
1920tgtaagtaat taagttaagt aatgatttcc attcactagg aagtcgaagc ccacacaacc
1980ttgaaaaaaa aaaaaaaaaa agacatcagt ccatgcaaac aacgaattaa ctgaatttaa
2040tgaagaatac gagaaacgta aaaacttgat aagtttatta aacgatagga atgacattta
2100gattaatgta agtacaagta tctatagaga gttatacaaa tatatatata tatatatata
2160tatatataat atttcagata gttttatgaa aatacttaaa attaaataga agaaaaaata
2220tcaaactgat attgctctaa atgggattct acttttacta tcatagagat aataagctaa
2280ggtataatta agtagaacta tcgtaatata tataatatca ataagataaa aaagtaaata
2340gaaagatagc cacttttttt gttattgagg aaatggattg aaatgaaata atattacgaa
2400atcaacaata gtgatagaag gaatgatttg acctagttat ggaatatcga gtgactaaat
2460caggcaaatc gaaagtttaa gaatttaggt tgcacattta gctatgttta aagaccatat
2520tgtatctgtc atgatagttt agagacttgc gactctctct cttgcgcatt caaacaaaag
2580aagaacaaaa aatttaagaa tgacgttgtg cactcggtca gagttaaaga actattagtg
2640tgattttttc atttttaagt aaacaaaaca cgatgtggga gatgtgggag attggaaaag
2700tgatggctaa aatttggaag aaaaatagaa atatgatcat gattgaagat ttataaaata
2760aataatcatg gtacggactg aaactttaaa aaaatagtaa atgtactatg gtagacaaaa
2820acaaattgag agtgtatatg gtaagggcaa cgctctttcc attccttata taactaaatt
2880cacctaactc ttccaaaaat acaaagttgc atctatttta cattagtagt cccaaattta
2940tttacttttt ttttttttag tttttatatc tacataagat ttacttacca tagttaagaa
3000tttatatgtt taattttagt taattttata ttttctatgt atattagagg cactatcttt
3060cttttatccg ataatgcaat tttctttgat acgctaacaa acaaaacatg tgaaaagctt
3120aattatggca attatcataa atagaaaaaa attagaaaaa aagagaggaa atgggccatt
3180atttaaattg caatcgaaag attgagggca attctgtttc tctagtgtaa ataagggtgt
3240atttaataat tgagggatgg aaatagcatg gtcactcggt aattatcaag gaaagcaaga
3300ataaaaatgg aaaaaaaaaa aaaaaaagct tgaagaggcc aatgtcgaaa ttatgagcgc
3360gagatgagga cactcctggg aaacgaaaaa tggcattcgc ggggggtgct atataaagcc
3420tcgtgtaagg gtgcgttcct cactctcaaa ccctaatcct gcccttccct tctgctgctg
3480ctgctcgtca cctctctcct ccctctcgcg gccagctgcg agatctgccg agtttaagcc
3540tcgtacatca aaatgggtaa ggagaagatt cacatcagca ttgtggtcat tggccatgtc
3600gattctggga agtcaaccac aactggccac ttgatataca agctcggagg aatcgacaag
3660cgtgtgattg agagattcga gaaggaagct gctgagatga acaagagatc gttcaagtat
372012825DNAEucalyptus grandis 128tgagcggata acaatttcac acagg
2512925DNAEucalyptus grandis 129tcgagttttt
tgatttcacg ggttg
2513054PRTPinus radiata 130Met Ala Thr Ala Thr Phe Ile Asp Ile Leu Leu
Ala Ile Leu Leu Pro1 5 10
15Pro Leu Gly Val Phe Leu Lys Tyr Glu Cys His Ser Glu Phe Trp Ile
20 25 30Cys Val Leu Leu Thr Leu Leu
Gly Trp Leu Pro Gly Ile Ile Tyr Ala 35 40
45Val Tyr Ile Leu Thr Lys 50131285DNAPinus radiata
131catacgtctc gagaagcgtg acggatgtgc gaccggatga ccctgtataa cccaccgaca
60cagccagcgc acagtataca cgtgtcattt ctctattgga aaatgtcgtt gttatccccg
120ctggtacgca accaccgatg gtgacaggtc gtctgttgtc gtgtcgcgta gcgggagaag
180ggtctcatcc aacgctatta aatactcgcc ttcaccgcgt tacttctcat cttttctctt
240gcgttgtata atcagtgcga tattctcaga gagcttttca ttcaa
285132458DNAPinus radiata 132aatttatttc ttttatttac ttaaaaaaac aaaaagttta
tttattttac ttaaatggca 60taatgacata tcggagatcc ctcgaacgag aatcttttat
ctccctggtt ttgtattaaa 120aagtaattta ttgtggggtc cacgcggagt tggaatccta
cagacgcgct ttacatacgt 180ctcgagaagc gtgacggatg tgcgaccgga tgaccctgta
taacccaccg acacagccag 240cgcacagtat acacgtgtca tttctctatt ggaaaatgtc
gttgttatcc ccgctggtac 300gcaaccaccg atggtgacag gtcgtctgtt gtcgtgtcgc
gtagcgggag aagggtctca 360tccaacgcta ttaaatactc gccttcaccg cgttacttct
catcttttct cttgcgttgt 420ataatcagtg cgatattctc agagagcttt tcattcaa
458133536DNAPinus radiata 133ttttcctact tcaccgttaa
ttacattcct taagagtaga taaagaaata aagtaaataa 60aagtattcac aaaccaacaa
tttatttctt ttatttactt aaaaaaacaa aaagtttatt 120tattttactt aaatggcata
atgacatatc ggagatccct cgaacgagaa tcttttatct 180ccctggtttt gtattaaaaa
gtaatttatt gtggggtcca cgcggagttg gaatcctaca 240gacgcgcttt acatacgtct
cgagaagcgt gacggatgtg cgaccggatg accctgtata 300acccaccgac acagccagcg
cacagtatac acgtgtcatt tctctattgg aaaatgtcgt 360tgttatcccc gctggtacgc
aaccaccgat ggtgacaggt cgtctgttgt cgtgtcgcgt 420agcgggagaa gggtctcatc
caacgctatt aaatactcgc cttcaccgcg ttacttctca 480tcttttctct tgcgttgtat
aatcagtgcg atattctcag agagcttttc attcaa 536134663DNAPinus radiata
134caggacacct aaaattttga agtttaacaa aaataacttg gatctacaaa aatccgtatc
60ggattttctc taaatataac tagaattttc ataactttca aagcaactcc tcccctaacc
120gtaaaacttt tcctacttca ccgttaatta cattccttaa gagtagataa agaaataaag
180taaataaaag tattcacaaa ccaacaattt atttctttta tttacttaaa aaaacaaaaa
240gtttatttat tttacttaaa tggcataatg acatatcgga gatccctcga acgagaatct
300tttatctccc tggttttgta ttaaaaagta atttattgtg gggtccacgc ggagttggaa
360tcctacagac gcgctttaca tacgtctcga gaagcgtgac ggatgtgcga ccggatgacc
420ctgtataacc caccgacaca gccagcgcac agtatacacg tgtcatttct ctattggaaa
480atgtcgttgt tatccccgct ggtacgcaac caccgatggt gacaggtcgt ctgttgtcgt
540gtcgcgtagc gggagaaggg tctcatccaa cgctattaaa tactcgcctt caccgcgtta
600cttctcatct tttctcttgc gttgtataat cagtgcgata ttctcagaga gcttttcatt
660caa
663135843DNAPinus radiata 135attgatgtac aagtttgaga ggataagaca ttggaatcgt
ctaaccagga ggcggaggaa 60ttccctagac agttaaaagt ggccggaatc ccggtaaaaa
agattaaaat ttttttgtag 120agggagtgct tgaatcatgt tttttatgat ggaaatagat
tcagcaccat caaaaacatt 180caggacacct aaaattttga agtttaacaa aaataacttg
gatctacaaa aatccgtatc 240ggattttctc taaatataac tagaattttc ataactttca
aagcaactcc tcccctaacc 300gtaaaacttt tcctacttca ccgttaatta cattccttaa
gagtagataa agaaataaag 360taaataaaag tattcacaaa ccaacaattt atttctttta
tttacttaaa aaaacaaaaa 420gtttatttat tttacttaaa tggcataatg acatatcgga
gatccctcga acgagaatct 480tttatctccc tggttttgta ttaaaaagta atttattgtg
gggtccacgc ggagttggaa 540tcctacagac gcgctttaca tacgtctcga gaagcgtgac
ggatgtgcga ccggatgacc 600ctgtataacc caccgacaca gccagcgcac agtatacacg
tgtcatttct ctattggaaa 660atgtcgttgt tatccccgct ggtacgcaac caccgatggt
gacaggtcgt ctgttgtcgt 720gtcgcgtagc gggagaaggg tctcatccaa cgctattaaa
tactcgcctt caccgcgtta 780cttctcatct tttctcttgc gttgtataat cagtgcgata
ttctcagaga gcttttcatt 840caa
8431361164DNAPinus radiata 136catacgtctc
gagaagcgtg acggatgtgc gaccggatga ccctgtataa cccaccgaca 60cagccagcgc
acagtataca cgtgtcattt ctctattgga aaatgtcgtt gttatccccg 120ctggtacgca
accaccgatg gtgacaggtc gtctgttgtc gtgtcgcgta gcgggagaag 180ggtctcatcc
aacgctatta aatactcgcc ttcaccgcgt tacttctcat cttttctctt 240gcgttgtata
atcagtgcga tattctcaga gagcttttca ttcaaaggta tggagttttg 300aagggcttta
ctcttaacat ttgtttttct ttgtaaattg ttaatggtgg tttctgtggg 360ggaagaatct
tttgccaggt ccttttgggt ttcgcatgtt tatttgggtt atttttctcg 420actatggctg
acattactag ggctttcgtg ctttcatctg tgttttcttc ccttaatagg 480tctgtctctc
tggaatattt aattttcgta tgtaagttat gagtagtcgc tgtttgtaat 540aggctcttgt
ctgtaaaggt ttcagcaggt gtttgcgttt tattgcgtca tgtgtttcag 600aaggcctttg
cagattattg cgttgtactt taatattttg tctccaacct tgttatagtt 660tccctccttt
gatctcacag gaaccctttc ttctttgagc attttcttgt ggcgttctgt 720agtaatattt
taattttggg cccgggttct gagggtaggt gattattcac agtgatgtgc 780tttccctata
aggtcctcta tgtgtaagct gttagggttt gtgcgttact attgacatgt 840cacatgtcac
atattttctt cctcttatcc ttcgaactga tggttctttt tctaattcgt 900ggattgctgg
tgccatattt tatttctatt gcaactgtat tttagggtgt ctctttcttt 960ttgatttctt
gttaatattt gtgttcaggt tgtaactatg ggttgctagg gtgtctgccc 1020tcttcttttg
tgcttctttc gcagaatctg tccgttggtc tgtatttggg tgatgaatta 1080tttattcctt
gaagtatctg tctaattagc ttgtgatgat gtgcaggtat attcgttagt 1140catatttcaa
tttcaagatg caga
11641371337DNAPinus radiata 137aatttatttc ttttatttac ttaaaaaaac
aaaaagttta tttattttac ttaaatggca 60taatgacata tcggagatcc ctcgaacgag
aatcttttat ctccctggtt ttgtattaaa 120aagtaattta ttgtggggtc cacgcggagt
tggaatccta cagacgcgct ttacatacgt 180ctcgagaagc gtgacggatg tgcgaccgga
tgaccctgta taacccaccg acacagccag 240cgcacagtat acacgtgtca tttctctatt
ggaaaatgtc gttgttatcc ccgctggtac 300gcaaccaccg atggtgacag gtcgtctgtt
gtcgtgtcgc gtagcgggag aagggtctca 360tccaacgcta ttaaatactc gccttcaccg
cgttacttct catcttttct cttgcgttgt 420ataatcagtg cgatattctc agagagcttt
tcattcaaag gtatggagtt ttgaagggct 480ttactcttaa catttgtttt tctttgtaaa
ttgttaatgg tggtttctgt gggggaagaa 540tcttttgcca ggtccttttg ggtttcgcat
gtttatttgg gttatttttc tcgactatgg 600ctgacattac tagggctttc gtgctttcat
ctgtgttttc ttcccttaat aggtctgtct 660ctctggaata tttaattttc gtatgtaagt
tatgagtagt cgctgtttgt aataggctct 720tgtctgtaaa ggtttcagca ggtgtttgcg
ttttattgcg tcatgtgttt cagaaggcct 780ttgcagatta ttgcgttgta ctttaatatt
ttgtctccaa ccttgttata gtttccctcc 840tttgatctca caggaaccct ttcttctttg
agcattttct tgtggcgttc tgtagtaata 900ttttaatttt gggcccgggt tctgagggta
ggtgattatt cacagtgatg tgctttccct 960ataaggtcct ctatgtgtaa gctgttaggg
tttgtgcgtt actattgaca tgtcacatgt 1020cacatatttt cttcctctta tccttcgaac
tgatggttct ttttctaatt cgtggattgc 1080tggtgccata ttttatttct attgcaactg
tattttaggg tgtctctttc tttttgattt 1140cttgttaata tttgtgttca ggttgtaact
atgggttgct agggtgtctg ccctcttctt 1200ttgtgcttct ttcgcagaat ctgtccgttg
gtctgtattt gggtgatgaa ttatttattc 1260cttgaagtat ctgtctaatt agcttgtgat
gatgtgcagg tatattcgtt agtcatattt 1320caatttcaag atgcaga
13371381415DNAPinus radiata
138ttttcctact tcaccgttaa ttacattcct taagagtaga taaagaaata aagtaaataa
60aagtattcac aaaccaacaa tttatttctt ttatttactt aaaaaaacaa aaagtttatt
120tattttactt aaatggcata atgacatatc ggagatccct cgaacgagaa tcttttatct
180ccctggtttt gtattaaaaa gtaatttatt gtggggtcca cgcggagttg gaatcctaca
240gacgcgcttt acatacgtct cgagaagcgt gacggatgtg cgaccggatg accctgtata
300acccaccgac acagccagcg cacagtatac acgtgtcatt tctctattgg aaaatgtcgt
360tgttatcccc gctggtacgc aaccaccgat ggtgacaggt cgtctgttgt cgtgtcgcgt
420agcgggagaa gggtctcatc caacgctatt aaatactcgc cttcaccgcg ttacttctca
480tcttttctct tgcgttgtat aatcagtgcg atattctcag agagcttttc attcaaaggt
540atggagtttt gaagggcttt actcttaaca tttgtttttc tttgtaaatt gttaatggtg
600gtttctgtgg gggaagaatc ttttgccagg tccttttggg tttcgcatgt ttatttgggt
660tatttttctc gactatggct gacattacta gggctttcgt gctttcatct gtgttttctt
720cccttaatag gtctgtctct ctggaatatt taattttcgt atgtaagtta tgagtagtcg
780ctgtttgtaa taggctcttg tctgtaaagg tttcagcagg tgtttgcgtt ttattgcgtc
840atgtgtttca gaaggccttt gcagattatt gcgttgtact ttaatatttt gtctccaacc
900ttgttatagt ttccctcctt tgatctcaca ggaacccttt cttctttgag cattttcttg
960tggcgttctg tagtaatatt ttaattttgg gcccgggttc tgagggtagg tgattattca
1020cagtgatgtg ctttccctat aaggtcctct atgtgtaagc tgttagggtt tgtgcgttac
1080tattgacatg tcacatgtca catattttct tcctcttatc cttcgaactg atggttcttt
1140ttctaattcg tggattgctg gtgccatatt ttatttctat tgcaactgta ttttagggtg
1200tctctttctt tttgatttct tgttaatatt tgtgttcagg ttgtaactat gggttgctag
1260ggtgtctgcc ctcttctttt gtgcttcttt cgcagaatct gtccgttggt ctgtatttgg
1320gtgatgaatt atttattcct tgaagtatct gtctaattag cttgtgatga tgtgcaggta
1380tattcgttag tcatatttca atttcaagat gcaga
14151391542DNAPinus radiata 139caggacacct aaaattttga agtttaacaa
aaataacttg gatctacaaa aatccgtatc 60ggattttctc taaatataac tagaattttc
ataactttca aagcaactcc tcccctaacc 120gtaaaacttt tcctacttca ccgttaatta
cattccttaa gagtagataa agaaataaag 180taaataaaag tattcacaaa ccaacaattt
atttctttta tttacttaaa aaaacaaaaa 240gtttatttat tttacttaaa tggcataatg
acatatcgga gatccctcga acgagaatct 300tttatctccc tggttttgta ttaaaaagta
atttattgtg gggtccacgc ggagttggaa 360tcctacagac gcgctttaca tacgtctcga
gaagcgtgac ggatgtgcga ccggatgacc 420ctgtataacc caccgacaca gccagcgcac
agtatacacg tgtcatttct ctattggaaa 480atgtcgttgt tatccccgct ggtacgcaac
caccgatggt gacaggtcgt ctgttgtcgt 540gtcgcgtagc gggagaaggg tctcatccaa
cgctattaaa tactcgcctt caccgcgtta 600cttctcatct tttctcttgc gttgtataat
cagtgcgata ttctcagaga gcttttcatt 660caaaggtatg gagttttgaa gggctttact
cttaacattt gtttttcttt gtaaattgtt 720aatggtggtt tctgtggggg aagaatcttt
tgccaggtcc ttttgggttt cgcatgttta 780tttgggttat ttttctcgac tatggctgac
attactaggg ctttcgtgct ttcatctgtg 840ttttcttccc ttaataggtc tgtctctctg
gaatatttaa ttttcgtatg taagttatga 900gtagtcgctg tttgtaatag gctcttgtct
gtaaaggttt cagcaggtgt ttgcgtttta 960ttgcgtcatg tgtttcagaa ggcctttgca
gattattgcg ttgtacttta atattttgtc 1020tccaaccttg ttatagtttc cctcctttga
tctcacagga accctttctt ctttgagcat 1080tttcttgtgg cgttctgtag taatatttta
attttgggcc cgggttctga gggtaggtga 1140ttattcacag tgatgtgctt tccctataag
gtcctctatg tgtaagctgt tagggtttgt 1200gcgttactat tgacatgtca catgtcacat
attttcttcc tcttatcctt cgaactgatg 1260gttctttttc taattcgtgg attgctggtg
ccatatttta tttctattgc aactgtattt 1320tagggtgtct ctttcttttt gatttcttgt
taatatttgt gttcaggttg taactatggg 1380ttgctagggt gtctgccctc ttcttttgtg
cttctttcgc agaatctgtc cgttggtctg 1440tatttgggtg atgaattatt tattccttga
agtatctgtc taattagctt gtgatgatgt 1500gcaggtatat tcgttagtca tatttcaatt
tcaagatgca ga 15421401722DNAPinus radiata
140attgatgtac aagtttgaga ggataagaca ttggaatcgt ctaaccagga ggcggaggaa
60ttccctagac agttaaaagt ggccggaatc ccggtaaaaa agattaaaat ttttttgtag
120agggagtgct tgaatcatgt tttttatgat ggaaatagat tcagcaccat caaaaacatt
180caggacacct aaaattttga agtttaacaa aaataacttg gatctacaaa aatccgtatc
240ggattttctc taaatataac tagaattttc ataactttca aagcaactcc tcccctaacc
300gtaaaacttt tcctacttca ccgttaatta cattccttaa gagtagataa agaaataaag
360taaataaaag tattcacaaa ccaacaattt atttctttta tttacttaaa aaaacaaaaa
420gtttatttat tttacttaaa tggcataatg acatatcgga gatccctcga acgagaatct
480tttatctccc tggttttgta ttaaaaagta atttattgtg gggtccacgc ggagttggaa
540tcctacagac gcgctttaca tacgtctcga gaagcgtgac ggatgtgcga ccggatgacc
600ctgtataacc caccgacaca gccagcgcac agtatacacg tgtcatttct ctattggaaa
660atgtcgttgt tatccccgct ggtacgcaac caccgatggt gacaggtcgt ctgttgtcgt
720gtcgcgtagc gggagaaggg tctcatccaa cgctattaaa tactcgcctt caccgcgtta
780cttctcatct tttctcttgc gttgtataat cagtgcgata ttctcagaga gcttttcatt
840caaaggtatg gagttttgaa gggctttact cttaacattt gtttttcttt gtaaattgtt
900aatggtggtt tctgtggggg aagaatcttt tgccaggtcc ttttgggttt cgcatgttta
960tttgggttat ttttctcgac tatggctgac attactaggg ctttcgtgct ttcatctgtg
1020ttttcttccc ttaataggtc tgtctctctg gaatatttaa ttttcgtatg taagttatga
1080gtagtcgctg tttgtaatag gctcttgtct gtaaaggttt cagcaggtgt ttgcgtttta
1140ttgcgtcatg tgtttcagaa ggcctttgca gattattgcg ttgtacttta atattttgtc
1200tccaaccttg ttatagtttc cctcctttga tctcacagga accctttctt ctttgagcat
1260tttcttgtgg cgttctgtag taatatttta attttgggcc cgggttctga gggtaggtga
1320ttattcacag tgatgtgctt tccctataag gtcctctatg tgtaagctgt tagggtttgt
1380gcgttactat tgacatgtca catgtcacat attttcttcc tcttatcctt cgaactgatg
1440gttctttttc taattcgtgg attgctggtg ccatatttta tttctattgc aactgtattt
1500tagggtgtct ctttcttttt gatttcttgt taatatttgt gttcaggttg taactatggg
1560ttgctagggt gtctgccctc ttcttttgtg cttctttcgc agaatctgtc cgttggtctg
1620tatttgggtg atgaattatt tattccttga agtatctgtc taattagctt gtgatgatgt
1680gcaggtatat tcgttagtca tatttcaatt tcaagatgca ga
17221411193DNAPinus radiata 141aaaacccctc acaaatacat aaaaaaaatt
ctttatttaa ttatcaaact ctccactacc 60tttcccacca accgttacaa tcctgaatgt
tggaaaaaac taactacatt gatataaaaa 120aactacatta cttcctaaat catatcaaaa
ttgtataaat atatccactc aaaggagtct 180agaagatcca cttggacaaa ttgcccatag
ttggaaagat gttcaccaag tcaacaagat 240ttatcaatgg aaaaatccat ctaccaaact
tactttcaag aaaatccaag gattatagag 300taaaaaatct atgtattatt aagtcaaaaa
gaaaaccaaa gtgaacaaat attgatgtac 360aagtttgaga ggataagaca ttggaatcgt
ctaaccagga ggcggaggaa ttccctagac 420agttaaaagt ggccggaatc ccggtaaaaa
agattaaaat ttttttgtag agggagtgct 480tgaatcatgt tttttatgat ggaaatagat
tcagcaccat caaaaacatt caggacacct 540aaaattttga agtttaacaa aaataacttg
gatctacaaa aatccgtatc ggattttctc 600taaatataac tagaattttc ataactttca
aagcaactcc tcccctaacc gtaaaacttt 660tcctacttca ccgttaatta cattccttaa
gagtagataa agaaataaag taaataaaag 720tattcacaaa ccaacaattt atttctttta
tttacttaaa aaaacaaaaa gtttatttat 780tttacttaaa tggcataatg acatatcgga
gatccctcga acgagaatct tttatctccc 840tggttttgta ttaaaaagta atttattgtg
gggtccacgc ggagttggaa tcctacagac 900gcgctttaca tacgtctcga gaagcgtgac
ggatgtgcga ccggatgacc ctgtataacc 960caccgacaca gccagcgcac agtatacacg
tgtcatttct ctattggaaa atgtcgttgt 1020tatccccgct ggtacgcaac caccgatggt
gacaggtcgt ctgttgtcgt gtcgcgtagc 1080gggagaaggg tctcatccaa cgctattaaa
tactcgcctt caccgcgtta cttctcatct 1140tttctcttgc gttgtataat cagtgcgata
ttctcagaga gcttttcatt caa 11931422077DNAPinus radiata
142aaaacccctc acaaatacat aaaaaaaatt ctttatttaa ttatcaaact ctccactacc
60tttcccacca accgttacaa tcctgaatgt tggaaaaaac taactacatt gatataaaaa
120aactacatta cttcctaaat catatcaaaa ttgtataaat atatccactc aaaggagtct
180agaagatcca cttggacaaa ttgcccatag ttggaaagat gttcaccaag tcaacaagat
240ttatcaatgg aaaaatccat ctaccaaact tactttcaag aaaatccaag gattatagag
300taaaaaatct atgtattatt aagtcaaaaa gaaaaccaaa gtgaacaaat attgatgtac
360aagtttgaga ggataagaca ttggaatcgt ctaaccagga ggcggaggaa ttccctagac
420agttaaaagt ggccggaatc ccggtaaaaa agattaaaat ttttttgtag agggagtgct
480tgaatcatgt tttttatgat ggaaatagat tcagcaccat caaaaacatt caggacacct
540aaaattttga agtttaacaa aaataacttg gatctacaaa aatccgtatc ggattttctc
600taaatataac tagaattttc ataactttca aagcaactcc tcccctaacc gtaaaacttt
660tcctacttca ccgttaatta cattccttaa gagtagataa agaaataaag taaataaaag
720tattcacaaa ccaacaattt atttctttta tttacttaaa aaaacaaaaa gtttatttat
780tttacttaaa tggcataatg acatatcgga gatccctcga acgagaatct tttatctccc
840tggttttgta ttaaaaagta atttattgtg gggtccacgc ggagttggaa tcctacagac
900gcgctttaca tacgtctcga gaagcgtgac ggatgtgcga ccggatgacc ctgtataacc
960caccgacaca gccagcgcac agtatacacg tgtcatttct ctattggaaa atgtcgttgt
1020tatccccgct ggtacgcaac caccgatggt gacaggtcgt ctgttgtcgt gtcgcgtagc
1080gggagaaggg tctcatccaa cgctattaaa tactcgcctt caccgcgtta cttctcatct
1140tttctcttgc gttgtataat cagtgcgata ttctcagaga gcttttcatt caaaggtatg
1200gagttttgaa gggctttact cttaacattt gtttttcttt gtaaattgtt aatggtggtt
1260tctgtggggg aagaatcttt tgccaggtcc ttttgggttt cgcatgttta tttgggttat
1320ttttctcgac tatggctgac attactaggg ctttcgtgct ttcatctgtg ttttcttccc
1380ttaataggtc tgtctctctg gaatatttaa ttttcgtatg taagttatga gtagtcgctg
1440tttgtaatag gctcttgtct gtaaaggttt cagcaggtgt ttgcgtttta ttgcgtcatg
1500tgtttcagaa ggcctttgca gattattgcg ttgtacttta atattttgtc tccaaccttg
1560ttatagtttc cctcctttga tctcacagga accctttctt ctttgagcat tttcttgtgg
1620cgttctgtag taatatttta attttgggcc cgggttctga gggtaggtga ttattcacag
1680tgatgtgctt tccctataag gtcctctatg tgtaagctgt tagggtttgt gcgttactat
1740tgacatgtca catgtcacat attttcttcc tcttatcctt cgaactgatg gttctttttc
1800taattcgtgg attgctggtg ccatatttta tttctattgc aactgtattt tagggtgtct
1860ctttcttttt gatttcttgt taatatttgt gttcaggttg taactatggg ttgctagggt
1920gtctgccctc ttcttttgtg cttctttcgc agaatctgtc cgttggtctg tatttgggtg
1980atgaattatt tattccttga agtatctgtc taattagctt gtgatgatgt gcaggtatat
2040tcgttagtca tatttcaatt tcaagatgca gaaatca
20771433084DNAPinus radiata 143aaaacccctc acaaatacat aaaaaaaatt
ctttatttaa ttatcaaact ctccactacc 60tttcccacca accgttacaa tcctgaatgt
tggaaaaaac taactacatt gatataaaaa 120aactacatta cttcctaaat catatcaaaa
ttgtataaat atatccactc aaaggagtct 180agaagatcca cttggacaaa ttgcccatag
ttggaaagat gttcaccaag tcaacaagat 240ttatcaatgg aaaaatccat ctaccaaact
tactttcaag aaaatccaag gattatagag 300taaaaaatct atgtattatt aagtcaaaaa
gaaaaccaaa gtgaacaaat attgatgtac 360aagtttgaga ggataagaca ttggaatcgt
ctaaccagga ggcggaggaa ttccctagac 420agttaaaagt ggccggaatc ccggtaaaaa
agattaaaat ttttttgtag agggagtgct 480tgaatcatgt tttttatgat ggaaatagat
tcagcaccat caaaaacatt caggacacct 540aaaattttga agtttaacaa aaataacttg
gatctacaaa aatccgtatc ggattttctc 600taaatataac tagaattttc ataactttca
aagcaactcc tcccctaacc gtaaaacttt 660tcctacttca ccgttaatta cattccttaa
gagtagataa agaaataaag taaataaaag 720tattcacaaa ccaacaattt atttctttta
tttacttaaa aaaacaaaaa gtttatttat 780tttacttaaa tggcataatg acatatcgga
gatccctcga acgagaatct tttatctccc 840tggttttgta ttaaaaagta atttattgtg
gggtccacgc ggagttggaa tcctacagac 900gcgctttaca tacgtctcga gaagcgtgac
ggatgtgcga ccggatgacc ctgtataacc 960caccgacaca gccagcgcac agtatacacg
tgtcatttct ctattggaaa atgtcgttgt 1020tatccccgct ggtacgcaac caccgatggt
gacaggtcgt ctgttgtcgt gtcgcgtagc 1080gggagaaggg tctcatccaa cgctattaaa
tactcgcctt caccgcgtta cttctcatct 1140tttctcttgc gttgtataat cagtgcgata
ttctcagaga gcttttcatt caaaggtatg 1200gagttttgaa gggctttact cttaacattt
gtttttcttt gtaaattgtt aatggtggtt 1260tctgtggggg aagaatcttt tgccaggtcc
ttttgggttt cgcatgttta tttgggttat 1320ttttctcgac tatggctgac attactaggg
ctttcgtgct ttcatctgtg ttttcttccc 1380ttaataggtc tgtctctctg gaatatttaa
ttttcgtatg taagttatga gtagtcgctg 1440tttgtaatag gctcttgtct gtaaaggttt
cagcaggtgt ttgcgtttta ttgcgtcatg 1500tgtttcagaa ggcctttgca gattattgcg
ttgtacttta atattttgtc tccaaccttg 1560ttatagtttc cctcctttga tctcacagga
accctttctt ctttgagcat tttcttgtgg 1620cgttctgtag taatatttta attttgggcc
cgggttctga gggtaggtga ttattcacag 1680tgatgtgctt tccctataag gtcctctatg
tgtaagctgt tagggtttgt gcgttactat 1740tgacatgtca catgtcacat attttcttcc
tcttatcctt cgaactgatg gttctttttc 1800taattcgtgg attgctggtg ccatatttta
tttctattgc aactgtattt tagggtgtct 1860ctttcttttt gatttcttgt taatatttgt
gttcaggttg taactatggg ttgctagggt 1920gtctgccctc ttcttttgtg cttctttcgc
agaatctgtc cgttggtctg tatttgggtg 1980atgaattatt tattccttga agtatctgtc
taattagctt gtgatgatgt gcaggtatat 2040tcgttagtca tatttcaatt tcaagatgca
gatctttgtc aagactctca ccggtaagac 2100catcactctc gaggtcgaga gctctgacac
cattgacaat gttaaagcta agatccagga 2160caaggaaggg attccccccg accagcagcg
tctgatcttc gcaggaaagc agcttgagga 2220cggccgaacc cttgccgatt acaacatcca
gaaagaatct accctccacc ttgttctccg 2280tttgaggggt ggcatgcaaa tctttgtaaa
aacactaact ggaaagacaa ttacattgga 2340agttgagagc tcggacacca ttgacaacgt
caaggccaag atccaggaca aggaaggaat 2400tccccctgac cagcagaggc ttatcttcgc
tggtaagcag ctggaggatg gcaggacctt 2460ggctgattac aatattcaaa aggaatcgac
cctgcatttg gtgcttcgtc taagaggagg 2520catgcaaatc tttgtgaaaa cccttacagg
taaaaccatt actctggaag tggaaagctc 2580ggacaccatt gacaatgtga aggctaagat
ccaggacaag gagggaattc cacctgacca 2640gcagaggttg atctttgccg gtaagcagct
ggaagatggt cgtactctcg ccgattacaa 2700tattcagaag gaatcgaccc ttcacctggt
gctccgtctc cgcggtggct tttaggtttg 2760ggtgttattt gtggataata aattcgggtg
atgttcagtg tttgtcgtat ttctcacgaa 2820taaattgtgt ttatgtatgt gttagtgttg
tttgtctgtt tcagaccctc ttatgttata 2880tttttctttt cgtcggtcag ttgaagccaa
tactggtgtc ctggccggca ctgcaatacc 2940atttcgttta atataaagac tctgttatcc
gttatgtaat tccatgttat gtggtgaaat 3000gtggatgaaa ttcttagaaa ttattattgt
aatttgaaac ttccttcgtc aataatctgc 3060acaacacatt taccaaaaaa aaaa
3084
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20220115418 | PHOTO SENSOR ELEMENT |
20220115417 | GLOSSY DISPLAY PANEL, MANUFACTURING METHOD THEREOF AND DISPLAY DEVICE |
20220115416 | ARRAY SUBSTRATE, DISPLAY PANEL AND DISPLAY DEVICE |
20220115415 | METHOD OF MANUFACTURING DISPLAY PANEL AND DISPLAY PANEL |
20220115414 | ARRAY SUBSTRATE AND DISPLAY DEVICE |