Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: ENHANCED ANTISENSE OLIGONUCLEOTIDES

Inventors:  Brett P. Monia (Encinitas, CA, US)  Andrew M. Siwkowski (Encinitas, CA, US)  Sanjay Bhanot (Carlsbad, CA, US)
Assignees:  Isis Pharmaceuticals, Inc.
IPC8 Class: AA61K317088FI
USPC Class: 514 44 A
Class name: Nitrogen containing hetero ring polynucleotide (e.g., rna, dna, etc.) antisense or rna interference
Publication date: 2011-08-25
Patent application number: 20110207797



Abstract:

Described herein are gap-widened antisense oligonucleotides having improved therapeutic index as compared to 5-10-5 MOE gapmer antisense oligonucleotides of the same sequence. Also described are methods of reducing a target RNA in an animal using the gap-widened antisense oligonucleotides of the present invention. Further, are methods for selecting a gap-widened antisense oligonucleotides.

Claims:

1. A method of reducing expression of a target RNA in an animal, in need of reducing expression of said target RNA, comprising administering to said animal a gap-widened antisense oligonucleotide 18-24 linked nucleosides in length comprising: (a) a gap region having 12 to 18contiguous 2'-deoxyribonucleosides; and (b) a first wing region having 1 to 4 contiguous nucleosides; and (c) a second wing region having 1 to 4 contiguous nucleosides; wherein the gap region is located between said first wing region and said second wing region and, wherein each nucleoside of said first and second wing region is a 2'modified nucleoside thereby reducing expression of said target RNA in said animal.

2.-3. (canceled)

4. The method of claim 1, wherein the target RNA is associated with a metabolic or a cardiovascular disease or condition.

5. The method of claim 1, wherein the metabolic disease or condition is selected from metabolic syndrome, diabetes, obesity, hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, Type 2 diabetes, diet-induced obesity, hyperglycemia, insulin resistance, hepatic steatosis, fatty liver disease, or non-alcoholic steatohepatitis.

6. The method of claim 1, wherein the cardiovascular disease or condition is selected from familial hypercholesterolemia, nonfamilial hypercholesterolemia, mixed dyslipidemia, dysbetalipoproteinemia, atherosclerosis, coronary artery disease, myocardial infarction, hypertension, carotid artery diseases, carotid artery disease, stroke, cerebrovascular disease, peripheral vascular disease, thrombosis, or arterial aneurism.

7. The method of claim 1, wherein the gap-widened antisense oligonucleotide has a wing-gap-wing motif selected from 2-16-2, 3-14-3, 2-14-2, 3-12-3 or 4-12-4.

8. The method of claim 1, wherein the gap-widened antisense oligonucleotide has at least one phosphorothioate internucleotide linkage.

9. The method of claim 6, wherein the gap-widened antisense oligonucleotide has all phosphorothioate internucleotide linkages.

10. The method of claim 1, wherein gap-widened antisense oligonucleotide has at least one 5-methylcytosine.

11.-25. (canceled)

26. A method of modulating gene expression in an animal comprising the step of contacting said animal with the pharmaceutical composition comprising a gap-widened antisense oligoncuelotide 18-24 linked nucleosides in length comprising: (a) a gap region having 12 to 18 contiguous 2'-deoxyribonucleotides; (b) a first wing region having 1 to 4 contiguous nucleosides; and (c) a second wing region having 1 to 4 contiguous nucleosides; wherein the gap region is located between said first wing region and said second wing region and, wherein each nucleoside of said first and second wing region is a 2' modified nucleoside thereby modulating gene expression in said animal.

27.-28. (canceled)

Description:

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. application Ser. No. 11/231,243, filed Sep. 19, 2005, allowed Oct. 19, 2010, which claims priority under 35 USC 119(e) to U.S. Application No. 60/611,100, filed on Sep. 17, 2004 and to U.S. Application No. 60/663,442, filed on Mar. 18, 2005, each of which is herein incorporated by reference in its entirety. The instant application is also related to U.S. Application 60/718,685, filed Sep. 19, 2005, and U.S. Application 60/718,684, filed Sep. 19, 2005, each of which is herein incorporated by reference in its entirety.

SEQUENCE LISTING

[0002] The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled CORE0051USC1SEQ.txt, created on Jan. 17, 2011 which is 92 Kb in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0003] The present invention provides chimeric antisense compounds having enhanced in vivo potency and thus an improved therapeutic index. The compounds described herein have widened deoxy gaps and enhanced in vivo potency which is unexpected based on their in vitro activity.

BACKGROUND OF THE INVENTION

[0004] Antisense oligonucleotides are accepted therapeutic modalities and many thousands of patients have been treated with antisense compounds. The original "first generation" antisense compounds employed in the first antisense clinical trials were oligodeoxynucleotides having 2'-deoxy ribonucleotides and phosphorothioate intemucleoside linkages. Subsequently, chimeric "second generation" antisense oligonucleotides exhibited a marked improvement in potency over first generation antisense oligonucleotides. Second generation antisense oligonucleotides are chimeric oligonucleotides typically having a 2'-deoxy "gap" region flanked by "wings" having nucleotides with 2'-modified ribonucleotides, referred to as "gapmers." The most widely used of the "second generation" antisense motifs is often referred to as a "MOE gapmer" in which the 2'-modified ribonucleotide is a 2'-O-methoxyethyl (2'-MOE or simply MOE) modification, and each of the internucleotide linkages is a phosphorothioate. Predominantly, second generation oligonucleotides have a length of 20 nucleotides of which the 5 nucleotides at each terminus are 2'-MOE nucleotides and the center ten nucleotides are 2'-deoxyribonucleotides. These second generation oligonucleotides are referred to as "5-10-5 MOE gapmers" have a 5-10-5 wing-gap-wing motif. Chimeric antisense compounds with other arrangements of modifications have also been made. "Hemimers," are chimeric compounds in which there is a single 2'-modified "wing" adjacent to (on either the 5', or the 3' side of) a 2'-deoxy gap have been described (Geary et al., 2001, J. Pharm. Exp. Therap., 296, 898-904).

SUMMARY OF THE INVENTION

[0005] The present invention is directed to "gap-widened" antisense oligonucleotides having a gap region of greater than 11 2'deoxyribonucleotides flanked by two "wing" regions having from one to eight nucleotides which do not support RNase H activity. The gap-widened antisense oligonucleotide of the present invention have been shown to have an improved therapeutic index as compared to a corresponding antisense oligonucleotide having a 5-10-5 MOE gamer antisense oligonucletide with the same sequence. The gap-widened antisense oligonucleotides of the present invention exhibit increased in vivo potency or improved tissue exposure as compared with the corresponding 5-10-5 MOE gapmer antisense oligonucleotide with the same sequence. Most interestingly, there is a lack of correlation between the in vitro potency and the in vivo potency of the gap-widened antisense oligonucleotides described herein. The gap-widened antisense oligonucleotides of the present invention are 18 to 24 nucleotides in length. In particular, the gap-widened antisense oligonucleotides of the present invention have wing regions having 2'-O-(2-methoxyethyl)ribonucleotides.

[0006] In an additional embodiment of the present invention is a method of reducing expression of a target RNA in an animal in need of reducing expression of said target RNA, comprising administering to said animal a gap-widened antisense oligonucleotide 18 to 24 nucleotides in length comprising: a gap region having greater than 11 contiguous 2'-deoxyribonucleotides; and a first wing region and a second wing region flanking the gap region, wherein each of said first and second wing regions independently have 1 to 8 2'-O-(2-methoxyethyl)ribonucleotides, having an improved therapeutic index as compared to a corresponding 5-10-5 MOE gapmer antisense oligonucleotide having a gap region of 10 contiguous 2'-deoxyribonucleotides and a first wing region and a second wing region flanking the gap region of 5 2'-O-(2-methoxyethyl)ribonucleotides. The improvement in therapeutic index is characterized by equal or increased potency coupled with a reduction in tissue concentration, or increased potency coupled with equal tissue exposures as compared to a corresponding 5-10-5 MOE gapmer antisense oligonucleotide of the same sequence. In addition, the improvement in therapeutic index may be characterized by an increased liver to kidney concentration ratio as compared to a corresponding 5-10-5 MOE gapmer antisense oligonucleotide of the same sequence. In particular, the method of the present invention is useful in reducing the expression of RNA targets expressed in the kidney, liver, or adipose tissues. The method of the present invention is also useful in reducing the expression of target RNA associated with a metabolic or cardiovascular disease or condition. The method of the present invention is useful wherein the metabolic disease or condition is selected from diabetes, hepatic steatosis, fatty liver disease, non-alcoholic steatohepatitis, metabolic syndrome, obesity, or the like. In addition, the method of the present invention is useful wherein the cardiovascular disease or condition is selected from hypercholesterolemia, atherosclerosis, hyperlipidemia, familial hypercholesterolemia, or the like.

[0007] An additional method of the present invention is a method of selecting a gap-widened antisense oligonucleotide with an improved therapeutic index, the method comprising:

[0008] screening in vitro a plurality of antisense oligonucleotides targeting a human RNA and having a single wing-gap-wing motif;

[0009] identifying a parent antisense oligonucleotide from the plurality of antisense oligonucleotides having a potent in vitro activity;

[0010] synthesizing a plurality of gap-widened antisense oligonucleotides having the same sequence as the parent antisense oligonucleotide, wherein said gap-widened antisense oligonucleotide is 18 to 24 nucleotides in length comprising a gap region having greater than 11 contiguous 2'-deoxyribonucleotides; and a first wing region and a second wing region flanking the gap region, wherein each of said first and second wing regions independently has 1 to 8 2'-O-(2-methoxyethyl)ribonucleotides;

[0011] testing said plurality of gap-widened antisense oligonucleotides in a plurality of animals;

[0012] obtaining potency and tissue concentration data from said testing step; and

[0013] determining an optimized gap-widened oligonucleotide wing-gap-wing motif with an improved therapeutic index, improved potency, reduced tissue exposure, or reduced toxicity, or a combination thereof as compared to the parent antisense oligonucleotide.

[0014] In one embodiment, the method of selecting a gap-widened antisense oligonucleotide further comprises the step of designing a rodent sequence analogous or a non-human primate sequence to said parent antisense oligonucleotide. In one embodiment, the step of determining the optimized gap-widened antisense oligonucleotide wing-gap-wing motif with an improved therapeutic index includes identifying a gap-widened antisense oligonucleotide which has equal or increased potency as compared to the parent antisense oligonucleotide.

[0015] In the step of screening, each of said antisense oligonucleotides has the same wing-gap-wing motif selected from 2-16-2, 3-14-3, 4-12-4, or 5-10-5. In a further embodiment, the wing portions of the gap-widened antisense oligonucleotides are 2'-O-(2-methoxyethyl)ribonucleotides. In particular, the step of screening is performed in primary hepatocytes, HepG2, bEND, or HeLa cells. In the step of identifying, the potent in vitro activity is greater than 50% reduction in the target mRNA expression as compared to a saline control. In alternate embodiments, in the step of identifying, the potent in vitro activity is greater than 30%, greater than 40%, greater than 50%, greater than 60%, greater than 70%, greater than 80%, or greater than 90%

[0016] In the step of synthesizing, the gap-widened antisense oligonucleotides each have different wing-gap-wing motifs. In particular, the gap-widened antisense oligonucleotides have gaps of 12, 13, 14, 15, 16, 17, or 18 2'-deoxyribonucleotides in length. In the step of testing, the animals are selected from rodents such as mice and rats, and non-human primates, such as cynomolgous monkeys.

[0017] In the step of obtaining, the tissue concentration data are concentrations of full-length gap-widened antisense oligonucleotides particularly measured in the liver, kidney, or adipose tissue. In one embodiment, each optimized gap-widened antisense oligonucleotide is selected because of equal or improved potency data. In another embodiment, each optimized gap-widened antisense oligonucleotide is selected because of reduced tissue exposure. In another embodiment, each optimized gap-widened antisense oligonucleotide is selected because of reduced toxicity. In another embodiment, each optimized gap-widened antisense oligonucleotide is selected because of improved therapeutic index. In another embodiment, each optimized gap-widened antisense oligonucleotide is selected because of reduced tissue exposure, reduced toxicity, improved potency, or a combination thereof.

[0018] The gap-widened antisense oligonucleotides described herein may have various wing-gap-wing motifs selected from: 1-16-1, 2-15-1, 1-15-2, 1-14-3, 3-14-1, 2-14-2, 1-13-4, 4-13-1, 2-13-3, 3-13-2, 1-12-5, 5-12-1, 2-12-4, 4-12-2, 3-12-3, 1-11-6, 6-11-1, 2-11-5, 5-11-2, 3-11-4, 4-11-3, 1-17-1, 2-16-1, 1-16-2, 1-15-3, 3-15-1, 2-15-2, 1-14-4, 4-14-1, 2-14-3, 3-14-2, 1-13-5, 5-13-1, 2-13-4, 4-13-2, 3-13-3, 1-12-6, 6-12-1, 2-12-5, 5-12-2, 3-12-4, 4-12-3, 1-11-7, 7-11-1, 2-11-6, 6-11-2, 3-11-5, 5-11-3, 4-11-4, 1-18-1, 1-17-2, 2-17-1, 1-16-3, 1-16-3, 2-16-2, 1-15-4, 4-15-1, 2-15-3, 3-15-2, 1-14-5, 5-14-1, 2-14-4, 4-14-2, 3-14-3, 1-13-6, 6-13-1, 2-13-5, 5-13-2, 3-13-4, 4-13-3, 1-12-7, 7-12-1, 2-12-6, 6-12-2, 3-12-5, 5-12-3, 4-12-4, 1-11-8, 8-11-1, 2-11-7, 7-11-2, 3-11-6, 6-11-3, 4-11-5, 5-11-4, 1-18-1, 1-17-2, 2-17-1, 1-16-3, 3-16-1, 2-16-2, 1-15-4, 4-15-1, 2-15-3, 3-15-2, 1-14-5, 2-14-4, 4-14-2, 3-14-3, 1-13-6, 6-13-1, 2-13-5, 5-13-2, 3-13-4, 4-13-3, 1-12-7, 7-12-1, 2-12-6, 6-12-2, 3-12-5, 5-12-3, 4-12-4, 1-11-8, 8-11-1, 2-11-7, 7-11-2, 3-11-6, 6-11-3, 4-11-5, 5-11-4, 1-19-1, 1-18-2, 2-18-1, 1-17-3, 3-17-1, 2-17-2, 1-16-4, 4-16-1, 2-16-3, 3-16-2, 1-15-5, 2-15-4, 4-15-2, 3-15-3, 1-14-6, 6-14-1, 2-14-5, 5-14-2, 3-14-4, 4-14-3, 1-13-7, 7-13-1, 2-13-6, 6-13-2, 3-13-5, 5-13-3, 4-13-4, 1-12-8, 8-12-1, 2-12-7, 7-12-2, 3-12-6, 6-12-3, 4-12-5, 5-12-4, 2-11-8, 8-11-2, 3-11-7, 7-11-3, 4-11-6, 6-11-4, 5-11-5, 1-20-1, 1-19-2, 2-19-1, 1-18-3, 3-18-1, 2-18-2, 1-17-4, 4-17-1, 2-17-3, 3-17-2, 1-16-5, 2-16-4, 4-16-2, 3-16-3, 1-15-6, 6-15-1, 2-15-5, 5-15-2, 3-15-4, 4-15-3, 1-14-7, 7-14-1, 2-14-6, 6-14-2, 3-14-5, 5-14-3, 4-14-4, 1-13-8, 8-13-1, 2-13-7, 7-13-2, 3-13-6, 6-13-3, 4-13-5, 5-13-4, 2-12-8, 8-12-2, 3-12-7, 7-12-3, 4-12-6, 6-12-4, 5-12-5, 3-11-8, 8-11-3, 4-11-7, 7-11-4, 5-11-6, 6-11-5, 1-21-1, 1-20-2, 2-20-1, 1-20-3, 3-19-1, 2-19-2, 1-18-4, 4-18-1, 2-18-3, 3-18-2, 1-17-5, 2-17-4, 4-17-2, 3-17-3, 1-16-6, 6-16-1, 2-16-5, 5-16-2, 3-16-4, 4-16-3, 1-15-7, 7-15-1, 2-15-6, 6-15-2, 3-15-5, 5-15-3, 4-15-4, 1-14-8, 8-14-1, 2-14-7, 7-14-2, 3-14-6, 6-14-3, 4-14-5, 5-14-4, 2-13-8, 8-13-2, 3-13-7, 7-13-3, 4-13-6, 6-13-4, 5-13-5, 1-12-10, 10-12-1, 2-12-9, 9-12-2, 3-12-8, 8-12-3, 4-12-7, 7-12-4, 5-12-6, 6-12-5, 4-11-8, 8-11-4, 5-11-7, 7-11-5, 6-11-6, 1-22-1, 1-21-2, 2-21-1, 1-21-3, 3-20-1, 2-20-2, 1-19-4, 4-19-1, 2-19-3, 3-19-2, 1-18-5, 2-18-4, 4-18-2, 3-18-3, 1-17-6, 6-17-1, 2-17-5, 5-17-2, 3-17-4, 4-17-3, 1-16-7, 7-16-1, 2-16-6, 6-16-2, 3-16-5, 5-16-3, 4-16-4, 1-15-8, 8-15-1, 2-15-7, 7-15-2, 3-15-6, 6-15-3, 4-15-5, 5-15-4, 2-14-8, 8-14-2, 3-14-7, 7-14-3, 4-14-6, 6-14-4, 5-14-5, 3-13-8, 8-13-3, 4-13-7, 7-13-4, 5-13-6, 6-13-5, 4-12-8, 8-12-4, 5-12-7, 7-12-5, 6-12-6, 5-11-8, 8-11-5, 6-11-7, or 7-11-6. In a particular embodiment, the gap-widened antisense oligonucleotides of the present invention have a 2-16-2, 3-14-3, or 4-12-4 wing-gap-wing motif.

[0019] Another aspect of the present invention is the use of a gap-widened antisense oligonucleotide 18-24 nucleotides in length comprising: a gap region having greater than 11 contiguous 2'-deoxyribonucleotides; and a first wing region and a second wing region flanking the gap region, wherein each of said first and second wing regions independently have 1 to 8 2'-O-(2-methoxyethyl)ribonucleotides, having an improved therapeutic index as compared to a corresponding 5-10-5 antisense oligonucleotide having a gap region of 10 contiguous 2'-deoxyribonucleotides and a first wing region and a second wing region flanking the gap region of 5 2'-O-(2-methoxyethyl)ribonucleotides in the manufacture of a medicament for the treatment of disorders and diseases related to target RNA levels. Another embodiment of the present invention is a pharmaceutical composition comprising a gap-widened antisense oligonucleotide 18-24 nucleotides in length comprising: a gap region having greater than 11 contiguous 2'-deoxyribonucleotides; and a first wing region and a second wing region flanking the gap region, wherein each of said first and second wing regions independently have 1 to 8 2'-O-(2-methoxyethyl)ribonucleotides, having an improved therapeutic index as compared to a corresponding 5-10-5 antisense oligonucleotide having a gap region of 10 contiguous 2'-deoxyribonucleotides and a first wing region and a second wing region flanking the gap region of 5 2'-O-(2-methoxyethyl)ribonucleotides and optionally a pharmaceutically acceptable carrier, diluent, enhancer or excipient. Another embodiment of the present invention is a gap-widened antisense oligonucleotide 18-24 nucleotides in length comprising: a gap region having greater than 11 contiguous 2'-deoxyribonucleotides; and a first wing region and a second wing region flanking the gap region, wherein each of said first and second wing regions independently have 1 to 8 2'-O-(2-methoxyethyl)ribonucleotides, having lower kidney accumulation as compared to a corresponding 5-10-5 antisense oligonucleotide having a gap region of 10 contiguous 2'-deoxyribonucleotides and a first wing region and a second wing region flanking the gap region of 5 2'-O-(2-methoxyethyl)ribonucleotides as measured by plasma protein binding capacity of said gap-widened antisense oligonucleotide. Also provided is a method of modulating gene expression in an animal comprising the step of contacting said animal with the pharmaceutical composition. Another embodiment is a method of modulating gene expression in an animal comprising the step of contacting said animal with a gap-widened antisense oligonucleotide of the invention wherein the accumulation of the gap-widened antisense oligonucleotide in the kidney is less compared to a corresponding 5-10-5 antisense oligonucleotide having a gap region of 10 contiguous 2'-deoxyribonucleotides and a first wing region and a second wing region flanking the gap region of 5 2'-O-(2-methoxyethyl)ribonucleotides. In one embodiment, the kidney accumulation is measured by plasma protein binding capacity of said gap-widened antisense oligonucleotide.

[0020] Another embodiment of the present invention is a method of reducing levels of a preselected RNA target in the liver of an animal comprising administering to said animal a chimeric antisense compound 11 to 80 nucleobases in length which is targeted to said preselected RNA target wherein said chimeric antisense compound comprises a first gap region consisting of at least 10 contiguous 2'-deoxynucleotides and a wing region which consists of from 1 to 4 contiguous nucleosides or nucleoside analogs which are not substrates for RNaseH. In particular embodiments, said first gap region consists of at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, or at least 18 contiguous 2'-deoxynucleotides. In one embodiment, the chimeric antisense compound comprises second wing region which consists of from 1 to 7 contiguous nucleosides or nucleoside analogs which are not substrates for RNase H, and wherein said gap region is located between said first wing region and said second wing region. In another embodiment, the chimeric antisense compound is a chimeric antisense oligonucleotide, and the nucleosides or nucleoside analog which is not a substrate for RNase H is a nucleotide having a 2' modification of the sugar moiety. In one embodiment, the nucleotide having a 2' modification of the sugar moiety is a 2'-O-methoxyethyl nucleotide. In some embodiments the compound is a 2-16-2 MOE gapmer, a 3-12-3 MOE gapmer, a 3-10-7 MOE gapmer or a 7-10-3 MOE gapmer. In one embodiment, the chimeric antisense oligonucleotide has at least one phosphorothioate backbone linkage.

[0021] Another embodiment of the present invention is a pharmaceutical composition for use in reducing levels of a preselected RNA target in the liver of an animal comprising a chimeric antisense compound targeted to said preselected RNA target, wherein said chimeric antisense compound comprises a first gap region consisting of at least 10 contiguous 2'-deoxynucleotides and a wing region which consists of from 1 to 4 contiguous nucleosides or nucleoside analogs which are not substrates for RNase H.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1. Depicts a comparison of in vivo effects of a 5-10-5 MOE gapmer (SEQ ID NO: 1) and the corresponding gap-widened 2-16-2 MOE gapmer (SEQ ID NO: 1).

[0023] FIG. 2. Depicts a comparison the persistence of target mRNA modulation of a 5-10-5 MOE gapmer (SEQ ID NO: 1) and the corresponding gap-widened 2-16-2 MOE gapmer (SEQ ID NO: 1).

[0024] FIG. 3. Depicts a comparison of in vitro effects of a 5-10-5 MOE gapmer and the corresponding gap-widened 2-16-2 MOE gapmer.

[0025] FIG. 4. Depicts a comparison of the concentrations of a 5-10-5 MOE gapmer and the corresponding gap-widened 2-16-2 MOE gapmer in liver and kidney tissues.

[0026] FIG. 5. Depicts a comparison of the in vitro effects of oligonucleotides having the same sequence (SEQ ID NO:3) but varied wing-gap-wing motifs.

[0027] FIG. 6. Depicts a comparison of the in vivo effects of oligonucleotides having the same sequence (SEQ ID NO: 3) but varied wing-gap-wing motifs.

DETAILED DESCRIPTION OF THE INVENTION

[0028] Certain gap sizes are optimal for in vivo efficacy of antisense compounds. Surprisingly, improved potency (3-10× improvement) in mouse or rat liver has been demonstrated for gap-widened antisense oligonucleotides compared to standard 5-10-5 MOE gapmer (for example, 2-16-2, 2-14-2, 3-12-3 gapmers) antisense oligonucleotides. This has been shown for several distinct antisense targets and this improved potency is not observed in cultured cells transfected with the same gap-widened antisense oligonucleotides. Thus the "gap-widened" motifs appear to convey some benefit to in vivo potency, particularly in the liver. It is demonstrated herein that chimeric antisense compounds having a gap of greater than eleven contiguous deoxynucleotides flanked by wing regions consisting of from 1 to 4 nucleotides which are not substrates for RNase H are particularly effective at reducing target RNA levels in vivo, particularly in the liver.

Therapeutic Index

[0029] Therapeutic index is a measure which relates the dose of a drug required to produce a specified effect to that which produces an undesired effect. In one embodiment, improved therapeutic index of a gap-widened antisense oligonucleotide is characterized by equal or increased potency and a reduction in tissue concentration. In another embodiment, improved therapeutic index of a gap-widened antisense oligonucleotide is characterized by increased potency and equal tissue concentrations as compared to a corresponding 5-10-5 antisense oligonucleotide. In another embodiment, improved therapeutic index of a gap-widened antisense oligonucleotide is characterized by increased potency and decreased toxicity as compared to a corresponding 5-10-5 antisense oligonucleotide. In another embodiment, improved therapeutic index of a gap-widened antisense oligonucleotide is characterized by comparable potency and decreased toxicity as compared to a corresponding 5-10-5 antisense oligonucleotide. In some embodiments, the toxicity is renal toxicity. In some embodiments, the toxicity is hepatic toxicity.

Indications

[0030] An embodiment of the present invention is a method of treating a disease or condition wherein a target RNA is associated with said disease or condition by administering a compound of the invention. Another embodiment of the present invention is a method of preventing or delaying the onset of a disease or condition wherein a target RNA is associated with said disease or condition by administering a compound of the invention. Diseases or conditions include metabolic and cardiovascular diseases or conditions. In some embodiments, the disease or condition is metabolic syndrome, diabetes, obesity, hyperlipidemia, hypercholesterolemia, hypertriglyceridemia, Type 2 diabetes, diet-induced obesity, hyperglycemia, or insulin resistance. In one embodiment, the disease or condition is hepatic steatosis. In some embodiments, the steatosis is steatohepatitis or NASH. In some embodiments, the disease or condition is familial hypercholesterolemia, nonfamilial hypercholesterolemia, mixed dyslipidemia, dysbetalipoproteinemia, atherosclerosis, coronary artery disease, myocardial infarction, hypertension, carotid artery diseases, stroke, cerebrovascular disease, carotid artery disease, stroke, cerebrovascular disease, peripheral vascular disease, thrombosis, or arterial aneurism.

NAFLD and Metabolic Syndrome

[0031] The term "nonalcoholic fatty liver disease" (NAFLD) encompasses a disease spectrum ranging from simple triglyceride accumulation in hepatocytes (hepatic steatosis) to hepatic steatosis with inflammation (steatohepatitis), fibrosis, and cirrhosis. Nonalcoholic steatohepatitis (NASH) occurs from progression of NAFLD beyond deposition of triglycerides. A second-hit capable of inducing necrosis, inflammation, and fibrosis is required for development of NASH. Candidates for the second-hit can be grouped into broad categories: factors causing an increase in oxidative stress and factors promoting expression of proinflammatory cytokines. It has been suggested that increased liver triglycerides lead to increased oxidative stress in hepatocytes of animals and humans, indicating a potential cause-and-effect relationship between hepatic triglyceride accumulation, oxidative stress, and the progression of hepatic steatosis to NASH (Browning and Horton, J. Clin. Invest., 2004, 114, 147-152). Hypertriglyceridemia and hyperfattyacidemia can cause triglyceride accumulation in peripheral tissues (Shimamura et al., Biochem. Biophys. Res. Commun., 2004, 322, 1080-1085).

[0032] "Metabolic syndrome" is defined as a clustering of lipid and non-lipid cardiovascular risk factors of metabolic origin. It is closely linked to the generalized metabolic disorder known as insulin resistance. The National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATPIII) established criteria for diagnosis of metaolic syndrome when three or more of five risk determinants are present. The five risk determinants are abdominal obesity defined as waist circumference of greater than102 cm for men or greater than 88 cm for women, triglyceride levels greater than or equal to 150 mg/dL, HDL cholesterol levels of less than 40 mg/dL for men and less than 50 mg/dL for women, blood pressure greater than or equal to 130/85 mm Hg and fasting glucose levels greater than or equal to 110 mg/dL. These determinants can be readily measured in clinical practice (JAMA, 2001, 285, 2486-2497).

HbA1c

[0033] HbA1c is a stable minor hemoglobin variant formed in vivo via posttranslational modification by glucose, and it contains predominantly glycated NH2-terminal β-chains. There is a strong correlation between levels of HbA1c and the average blood glucose levels over the previous 3 months. Thus HbA1c is often viewed as the "gold standard" for measuring sustained blood glucose control (Bunn, H. F. et al., 1978, Science. 200, 21-7). HbA1c can be measured by ion-exchange HPLC or immunoassay; home blood collection and mailing kits for HbA1c measurement are now widely available. Serum fructosamine is another measure of stable glucose control and can be measured by a colorimetric method (Cobas Integra, Roche Diagnostics).

Cardiovascular Risk Profile

[0034] Conditions associated with risk of developing a cardiovascular disease include, but are not limited to, history of myocardial infarction, unstable angina, stable angina, coronary artery procedures (angioplasty or bypass surgery), evidence of clinically significant myocardial ischemia, noncoronary forms of atherosclerotic disease (peripheral arterial disease, abdominal aortic aneurysm, carotid artery disease), diabetes, cigarette smoking, hypertension, low HDL cholesterol, family history of premature CHD, obesity, physical inactivity, elevated triglyceride, or metabolic syndrome (Jama, 2001, 285, 2486-2497; Grundy et al., Circulation, 2004, 110, 227-239).

EXAMPLES

Example 1

Oligonucleotide Sequences and Targets

TABLE-US-00001 [0035] TABLE 1 Oligonucleotide sequences (all are PS backbone) Modified nucleotides are shown in Bold (2'MOE unless otherwise indicated) and all cytosines are 5-methylcytosines SEQ ID ISIS No. Target Sequence NO Motif 116847 PTEN CTGCTAGCCTCTGGATTTGA 1 5-10-5 344266 PTEN CTGCTAGCCTCTGGATTTGA 1 2-16-2 141923 None (scrambled CCTTCCCTGAAGGTTCCTCC 2 5-10-5 117405 TRADD GCTCATACTCGTAGGCCA 3 4-10-4 325589 TRADD GCTCATACTCGTAGGCCA 3 5-8-5 325590 TRADD GCTCATACTCGTAGGCCA 3 6-6-6 29837 None (scrambled TCGATCTCCTTTTATGCCCG 4 5-10-5 325593 mTRADD CGCTCATACTCGTAGGCCAG 112 3-10-7 325594 TRADD CGCTCATACTCGTAGGCCAG 112 7-10-3 325584 TRADD CGCTCATACTCGTAGGCCAG 112 5-10-5 113715 PTP1B GCTCCTTCCACTGATCCTGC 113 5-10-5 344177 PTP1B GCTCCTTCCACTGATCCTGC 113 3-14-3 372350 GCCR TCTGTCTCTCCCATATACAG 5 2-16-2 372376 GCCR TGTTTCTGTCTCTCCCATAT 6 2-16-2 372331 GCCR CTTTTGTTTCTGTCTCTCCC 7 2-16-2 372341 GCCR ATCACTTTTGTTTCTGTCTC 8 2-16-2 352983 GCCR GTTTGCAATGCTTTCTTCCA 9 2-16-2 372365 GCCR TGAGGTTTGCAATGCTTTCT 10 2-16-2 372387 GCCR CTATTGAGGTTTGCAATGCT 11 2-16-2 372316 GCCR CGACCTATTGAGGTTTGCAA 12 2-16-2 372310 GCCR CTGGTCGACCTATTGAGGTT 13 2-16-2 372315 GCCR CTGTGGTATACAATTTCACA 14 2-16-2 372326 GCCR CTTTGGTCTGTGGTATACAA 15 2-16-2 372339 GCCR GTCAAAGGTGCTTTGGTCTG 16 2-16-2 372322 GCCR GGTTTAGTGTCCGGTAAAAT 17 2-16-2 372361 GCCR CTTTTTCTGTTTTCACTTGG 18 2-16-2 372308 GCCR TTCTCTTGCTTAATTACCCC 19 2-16-2 372304 GCCR CAGTTTCTCTTGCTTAATTA 20 2-16-2 352984 GCCR GCCCAGTTTCTCTTGCTTAA 21 2-16-2 372372 GCCR TTTATTACCAATTATATTTG 22 2-16-2 372327 GCCR ACATTTTATTACCAATTATA 23 2-16-2 372311 GCCR GCAGACATTTTATTACCAAT 24 2-16-2 372352 GCCR AATGGCAGACATTTTATTAC 25 2-16-2 372337 GCCR CAGAAATGGCAGACATTTTA 26 2-16-2 372323 GCCR TGAACAGAAATGGCAGACAT 27 2-16-2 372347 GCCR CCATGAACAGAAATGGCAGA 28 2-16-2 372383 GCCR CACACCATGAACAGAAATGG 29 2-16-2 372348 GCCR TACTCACACCATGAACAGAA 30 2-16-2 372363 GCCR GAGGTACTCACACCATGAAC 31 2-16-2 372334 GCCR TCCAGAGGTACTCACACCAT 32 2-16-2 372359 GCCR GTCCTCCAGAGGTACTCACA 33 2-16-2 372344 GCCR ATCTGTCCTCCAGAGGTACT 34 2-16-2 372307 GCCR GTACATCTGTCCTCCAGAGG 35 2-16-2 372370 GCCR AGTGGTACATCTGTCCTCCA 36 2-16-2 372374 GCCR TCATAGTGGTACATCTGTCC 37 2-16-2 372355 GCCR CATGTCATAGTGGTACATCT 38 2-16-2 372385 GCCR TATTCATGTCATAGTGGTAC 39 2-16-2 372319 GCCR GCTGTATTCATGTCATAGTG 40 2-16-2 372366 GCCR GGATGCTGTATTCATGTCAT 41 2-16-2 372330 GCCR AAAGGGATGCTGTATTCATG 42 2-16-2 372333 GCCR TGAGAAAGGGATGCTGTATT 43 2-16-2 372358 GCCR TGGTGGAATGACATTAAAAA 44 2-16-2 372381 GCCR GAATTGGTGGAATGACATTA 45 2-16-2 372377 GCCR GAGCTTACATCTGGTCTCAT 46 2-16-2 372309 GCCR AGGAGAGCTTACATCTGGTC 47 2-16-2 372388 GCCR ATGGAGGAGAGCTTACATCT 48 2-16-2 372321 GCCR CTGGATGGAGGAGAGCTTAC 49 2-16-2 372312 GCCR GAGCTGGATGGAGGAGAGCT 50 2-16-2 372324 GCCR TGTCCTTCCACTGCTCTTTT 51 2-16-2 372332 GCCR GTGCTGTCCTTCCACTGCTC 52 2-16-2 372335 GCCR AATTGTGCTGTCCTTCCACT 53 2-16-2 372342 GCCR AGGTAATTGTGCTGTCCTTC 54 2-16-2 372345 GCCR CGGCATGCTGGGCAGTTTTT 55 2-16-2 372356 GCCR ATAGCGGCATGCTGGGCAGT 56 2-16-2 372305 GCCR CGATAGCGGCATGCTGGGCA 57 2-16-2 372367 GCCR ATTCCAGCCTGAAGACATTT 58 2-16-2 372353 GCCR GTTCATTCCAGCCTGAAGAC 59 2-16-2 372364 GCCR TTCTTTGTTTTTCGAGCTTC 60 2-16-2 372340 GCCR TTTTTTCTTTGTTTTTCGAG 61 2-16-2 372369 GCCR CAGGAACTATTGTTTTGTTA 62 2-16-2 372378 GCCR TGCAGGAACTATTGTTTTGT 63 2-16-2 372317 GCCR GAGCTATCATATCCTGCATA 64 2-16-2 372351 GCCR AACAGAGCTATCATATCCTG 65 2-16-2 372389 GCCR CTGGAACAGAGCTATCATAT 66 2-16-2 372362 GCCR TTCACTGCTGCAATCACTTG 67 2-16-2 372328 GCCR CCATTTCACTGCTGCAATCA 68 2-16-2 372338 GCCR TTGCCCATTTCACTGCTGCA 69 2-16-2 372349 GCCR ATAATCAGATCAGGAGCAAA 70 2-16-2 372373 GCCR ATTAATAATCAGATCAGGAG 71 2-16-2 372360 GCCR GCTCATTAATAATCAGATCA 72 2-16-2 372384 GCCR CTCTGCTCATTAATAATCAG 73 2-16-2 372380 GCCR CATTCTCTGCTCATTAATAA 74 2-16-2 372320 GCCR AGCATGTGTTTACATTGGTC 75 2-16-2 372371 GCCR AAGGTTTTCATACAGAGATA 76 2-16-2 372382 GCCR CAGTAAGGTTTTCATACAGA 77 2-16-2 372306 GCCR GAAGCAGTAAGGTTTTCATA 78 2-16-2 372343 GCCR GAGAGAAGCAGTAAGGTTTT 79 2-16-2 372313 GCCR GCTTTTCCTAGCTCTTTGAT 80 2-16-2 372325 GCCR ATGGCTTTTCCTAGCTCTTT 81 2-16-2 372336 GCCR ATGGTCTTATCCAAAAATGT 82 2-16-2 372318 GCCR ACTCATGGTCTTATCCAAAA 83 2-16-2 372375 GCCR CAATACTCATGGTCTTATCC 84 2-16-2 372346 GCCR AATTCAATACTCATGGTCTT 85 2-16-2 372386 GCCR ATGATTTCAGCTAACATCTC 86 2-16-2 372354 GCCR GTGATGATTTCAGCTAACAT 87 2-16-2 372357 GCCR GAATATTTTGGTATCTGATT 88 2-16-2 372368 GCCR ATTTGAATATTTTGGTATCT 89 2-16-2 372379 GCCR TTCCATTTGAATATTTTGGT 90 2-16-2 372390 GCCR ATATTTCCATTTGAATATTT 91 2-16-2 372329 GCCR TTTTTGATATTTCCATTTGA 92 2-16-2 361132 GCCR TCTGTCTCTCCCATATACAG 5 5-10-5 361133 GCCR TGTTTCTGTCTCTCCCATAT 6 5-10-5 361134 GCCR CTTTTGTTTCTGTCTCTCCC 7 5-10-5 361135 GCCR ATCACTTTTGTTTCTGTCTC 8 5-10-5 180272 GCCR GTTTGCAATGCTTTCTTCCA 9 5-10-5 345188 GCCR TGAGGTTTGCAATGCTTTCT 10 5-10-5 361136 GCCR CTATTGAGGTTTGCAATGCT 11 5-10-5 361137 GCCR CGACCTATTGAGGTTTGCAA 12 5-10-5 180274 GCCR CTGGTCGACCTATTGAGGTT 13 5-10-5 180275 GCCR CTGTGGTATACAATTTCACA 14 5-10-5 180276 GCCR CTTTGGTCTGTGGTATACAA 15 5-10-5 345198 GCCR GTCAAAGGTGCTTTGGTCTG 16 5-10-5 180279 GCCR GGTTTAGTGTCCGGTAAAAT 17 5-10-5 361138 GCCR CTTTTTCTGTTTTCACTTGG 18 5-10-5 180280 GCCR TTCTCTTGCTTAATTACCCC 19 5-10-5 345218 GCCR CAGTTTCTCTTGCTTAATTA 20 5-10-5 180281 GCCR GCCCAGTTTCTCTTGCTTAA 21 5-10-5 361139 GCCR TTTATTACCAATTATATTTG 22 5-10-5 361140 GCCR ACATTTTATTACCAATTATA 23 5-10-5 361141 GCCR GCAGACATTTTATTACCAAT 24 5-10-5 361142 GCCR AATGGCAGACATTTTATTAC 25 5-10-5

361143 GCCR CAGAAATGGCAGACATTTTA 26 5-10-5 361144 GCCR TGAACAGAAATGGCAGACAT 27 5-10-5 180283 GCCR CCATGAACAGAAATGGCAGA 28 5-10-5 361145 GCCR CACACCATGAACAGAAATGG 29 5-10-5 361146 GCCR TACTCACACCATGAACAGAA 30 5-10-5 361147 GCCR GAGGTACTCACACCATGAAC 31 5-10-5 361148 GCCR TCCAGAGGTACTCACACCAT 32 5-10-5 361149 GCCR GTCCTCCAGAGGTACTCACA 33 5-10-5 361150 GCCR ATCTGTCCTCCAGAGGTACT 34 5-10-5 361151 GCCR GTACATCTGTCCTCCAGAGG 35 5-10-5 361152 GCCR AGTGGTACATCTGTCCTCCA 36 5-10-5 361153 GCCR TCATAGTGGTACATCTGTCC 37 5-10-5 361154 GCCR CATGTCATAGTGGTACATCT 38 5-10-5 361155 GCCR TATTCATGTCATAGTGGTAC 39 5-10-5 361156 GCCR GCTGTATTCATGTCATAGTG 40 5-10-5 361157 GCCR GGATGCTGTATTCATGTCAT 41 5-10-5 361158 GCCR AAAGGGATGCTGTATTCATG 42 5-10-5 180288 GCCR TGAGAAAGGGATGCTGTATT 43 5-10-5 180289 GCCR TGGTGGAATGACATTAAAAA 44 5-10-5 361159 GCCR GAATTGGTGGAATGACATTA 45 5-10-5 361160 GCCR GAGCTTACATCTGGTCTCAT 46 5-10-5 361161 GCCR AGGAGAGCTTACATCTGGTC 47 5-10-5 361162 GCCR ATGGAGGAGAGCTTACATCT 48 5-10-5 361163 GCCR CTGGATGGAGGAGAGCTTAC 49 5-10-5 361164 GCCR GAGCTGGATGGAGGAGAGCT 50 5-10-5 361165 GCCR TGTCCTTCCACTGCTCTTTT 51 5-10-5 361166 GCCR GTGCTGTCCTTCCACTGCTC 52 5-10-5 361167 GCCR AATTGTGCTGTCCTTCCACT 53 5-10-5 361168 GCCR AGGTAATTGTGCTGTCCTTC 54 5-10-5 361169 GCCR CGGCATGCTGGGCAGTTTTT 55 5-10-5 361170 GCCR ATAGCGGCATGCTGGGCAGT 56 5-10-5 361171 GCCR CGATAGCGGCATGCTGGGCA 57 5-10-5 361172 GCCR ATTCCAGCCTGAAGACATTT 58 5-10-5 361173 GCCR GTTCATTCCAGCCTGAAGAC 59 5-10-5 361174 GCCR TTCTTTGTTTTTCGAGCTTC 60 5-10-5 361175 GCCR TTTTTTCTTTGTTTTTCGAG 61 5-10-5 180297 GCCR CAGGAACTATTGTTTTGTTA 62 5-10-5 361176 GCCR TGCAGGAACTATTGTTTTGT 63 5-10-5 361177 GCCR GAGCTATCATATCCTGCATA 64 5-10-5 361178 GCCR AACAGAGCTATCATATCCTG 65 5-10-5 361179 GCCR CTGGAACAGAGCTATCATAT 66 5-10-5 361180 GCCR TTCACTGCTGCAATCACTTG 67 5-10-5 361181 GCCR CCATTTCACTGCTGCAATCA 68 5-10-5 361182 GCCR TTGCCCATTTCACTGCTGCA 69 5-10-5 361183 GCCR ATAATCAGATCAGGAGCAAA 70 5-10-5 361184 GCCR ATTAATAATCAGATCAGGAG 71 5-10-5 361185 GCCR GCTCATTAATAATCAGATCA 72 5-10-5 361186 GCCR CTCTGCTCATTAATAATCAG 73 5-10-5 180302 GCCR CATTCTCTGCTCATTAATAA 74 5-10-5 180304 GCCR AGCATGTGTTTACATTGGTC 75 5-10-5 361187 GCCR AAGGTTTTCATACAGAGATA 76 5-10-5 361188 GCCR CAGTAAGGTTTTCATACAGA 77 5-10-5 361189 GCCR GAAGCAGTAAGGTTTTCATA 78 5-10-5 180307 GCCR GAGAGAAGCAGTAAGGTTTT 79 5-10-5 361190 GCCR GCTTTTCCTAGCTCTTTGAT 80 5-10-5 361191 GCCR ATGGCTTTTCCTAGCTCTTT 81 5-10-5 361192 GCCR ATGGTCTTATCCAAAAATGT 82 5-10-5 361193 GCCR ACTCATGGTCTTATCCAAAA 83 5-10-5 361194 GCCR CAATACTCATGGTCTTATCC 84 5-10-5 361195 GCCR AATTCAATACTCATGGTCTT 85 5-10-5 361196 GCCR ATGATTTCAGCTAACATCTC 86 5-10-5 180311 GCCR GTGATGATTTCAGCTAACAT 87 5-10-5 361197 GCCR GAATATTTTGGTATCTGATT 88 5-10-5 361198 GCCR ATTTGAATATTTTGGTATCT 89 5-10-5 361199 GCCR TTCCATTTGAATATTTTGGT 90 5-10-5 361200 GCCR ATATTTCCATTTGAATATTT 91 5-10-5 361202 GCCR TTTTTGATATTTCCATTTGA 92 5-10-5 310457 GCGR GCACTTTGTGGTGCCAAGGC 93 5-10-5 325448 GCGR GCACTTTGTGGTGCCAAGGC 93 2-16-2 325568 GCGR GCACTTTGTGGTGCCAAGGC 93 3-14-3 356171 GCGR GCACTTTGTGGTACCAAGGT 94 5-10-5 357368 GCGR GCACTTTGTGGTACCAAGGT 94 Uniform deoxy 357369 GCGR GCACTTTGTGGTACCAAGGT 94 1-18-1 357370 GCGR GCACTTTGTGGTACCAAGGT 94 1-17-2 357371 GCGR GCACTTTGTGGTACCAAGGT 94 2-16-2 357372 GCGR GCACTTTGTGGTACCAAGGT 94 3-14-3 357373 GCGR GCACTTTGTGGTACCAAGGT 94 4-12-4 217328 DGAT2 GCATTGCCACTCCCATTCTT 95 5-10-5 334177 DGAT2 AGGACCCCGGAGTAGGCGGC 96 5-10-5 366710 DGAT2 GACCTATTGAGCCAGGTGAC 97 5-10-5 366714 DGAT2 GTAGCTGCTTTTCCACCTTG 98 5-10-5 370727 DGAT2 AGCTGCTTTTCCACCTTGGA 99 2-16-2 370747 DGAT2 TGGAGCTCAGAGACTCAGCC 100 2-16-2 370784 DGAT2 GCTGCATCCATGTCATCAGC 101 2-16-2

TABLE-US-00002 TABLE 2 Target sequences Target name Synonyms Species GENBANK Accession No or description SEQ ID NO PTEN MMAC1; TEP1; TGF beta regulated and mouse U92437.1 103 epithelial cell-enriched phosphatase; mutated in multiple advanced cancers 1; phosphatase and tensin homologue; putative protein tyrosine phosphatase TRADD TNF receptor 1 associated protein; mouse consensus sequence built from mouse ESTs: 104 TNFRSF1A-associated via death domain; aa013629, aa914725, aa013699, aa122508, aa881900, Tumor necrosis factor receptor associated aa423244, aa930854, w13708, aa201054, ai122320, death domain aa611848, aa546092, and aa939422 GCCR nuclear receptor subfamily 3, group C, human NM_000176.1 105 member 1; GR; GRL; NR3C1; rat NM_012576.1 106 glucocorticoid receptor; nuclear receptor mouse NM_008173.1 107 subfamily 3, group C, member 1 GCGR glucagon receptor; GR human NM_000160.1 108 rat M96674.1 109 DGAT2 ACYL-CoA: DIACYLGLYCEROL human NM_032564.2 110 ACYLTRANSFERASE 2; diacylglycerol rat the complement of nucleotides 15333000 to 111 acyltransferase 2; DIACYLGLYCEROL O- 15365000 of GENBANK ® accession number ACYLTRANSFERASE 2; GS1999full; NW_047561.1 LOC84649 PTP1B PTP-1B; PTPN1; RKPTP; protein tyrosine human M31724.1 114 phosphatase; protein tyrosine phosphatase 1B; protein tyrosine phosphatase, non- receptor type 1

Example 2

Assaying Modulation of Expression

[0036] Modulation of target RNA expression can be assayed in a variety of ways known in the art. GCCR mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA by methods known in the art. Methods of RNA isolation are taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993.

[0037] Northern blot analysis is routine in the art and is taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.2.1-4.2.9, John Wiley & Sons, Inc., 1996. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM® 7700 Sequence Detection System, available from PE-Applied Biosystems, Foster City, Calif. and used according to manufacturer's instructions.

[0038] Levels of proteins encoded by a target RNA can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to a protein encoded by a target RNA can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, Mich.), or can be prepared via conventional antibody generation methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.12.1-11.12.9, John Wiley & Sons, Inc., 1997. Preparation of monoclonal antibodies is taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.4.1-11.11.5, John Wiley & Sons, Inc., 1997.

[0039] Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.16.1-10.16.11, John Wiley & Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.8.1-10.8.21, John Wiley & Sons, Inc., 1997. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.2.1-11.2.22, John Wiley & Sons, Inc., 1991.

[0040] The effect of oligomeric compounds of the present invention on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. The effect of oligomeric compounds of the present invention on target nucleic acid expression can be routinely determined using, for example, PCR or Northern blot analysis. Cell lines are derived from both normal tissues and cell types and from cells associated with various disorders (e.g. hyperproliferative disorders). Cell lines derived from multiple tissues and species can be obtained from American Type Culture Collection (ATCC, Manassas, Va.), the Japanese Cancer Research Resources Bank (Tokyo, Japan), or the Centre for Applied Microbiology and Research (Wiltshire, United Kingdom).

[0041] Primary cells, or those cells which are isolated from an animal and not subjected to continuous culture, can be prepared according to methods known in the art or obtained from various commercial suppliers. Additionally, primary cells include those obtained from donor human subjects in a clinical setting (i.e. blood donors, surgical patients).

Cell Types

[0042] The effects of oligomeric compounds on target nucleic acid expression were tested in the following cell types:

b.END Cells:

[0043] The mouse brain endothelial cell line b.END was obtained from Dr. Werner Risau at the Max Plank Institute (Bad Nauheim, Germany). b.END cells were routinely cultured in DMEM, high glucose (Invitrogen Life Technologies, Carlsbad, Calif.) supplemented with 10% fetal bovine serum (Invitrogen Life Technologies, Carlsbad, Calif.). Cells were routinely passaged by trypsinization and dilution when they reached approximately 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of approximately 3000 cells/well for use in oligomeric compound transfection experiments.

HepG2 Cells:

[0044] The human hepatoblastoma cell line HepG2 was obtained from the American Type Culture Collection (Manassas, Va.). HepG2 cells were routinely cultured in Eagle's MEM supplemented with 10% fetal bovine serum, 1 mM non-essential amino acids, and 1 mM sodium pyruvate (Invitrogen Life Technologies, Carlsbad, Calif.). Cells were routinely passaged by trypsinization and dilution when they reached approximately 90% confluence. Multiwell culture plates are prepared for cell culture by coating with a 1:100 dilution of type 1 rat tail collagen (BD Biosciences, Bedford, Mass.) in phosphate-buffered saline. The collagen-containing plates were incubated at 37° C. for approximately 1 hour, after which the collagen was removed and the wells were washed twice with phosphate-buffered saline. Cells were seeded into 96-well plates (Falcon-Primaria #353872, BD Biosciences, Bedford, Mass.) at a density of approximately 8,000 cells/well for use in oligomeric compound transfection experiments.

Primary Rat Hepatocytes:

[0045] Primary rat hepatocytes are prepared from Sprague-Dawley rats purchased from Charles River Labs (Wilmington, Mass.) and are routinely cultured in DMEM, high glucose (Invitrogen Life Technologies, Carlsbad, Calif.) supplemented with 10% fetal bovine serum (Invitrogen Life Technologies, Carlsbad, Calif.), 100 units per mL penicillin, and 100 μg/mL streptomycin (Invitrogen Life Technologies, Carlsbad, Calif.). Cells are seeded into 96-well plates (Falcon-Primaria #353872, BD Biosciences, Bedford, Mass.) at a density of approximately 4,000-6,000 cells/well treatment with the oligomeric compounds of the invention.

Treatment with Oligomeric Compounds

[0046] When cells reached appropriate confluency, they were treated with oligonucleotide using a transfection method as described. Other suitable transfection reagents known in the art include, but are not limited to, LIPOFECTAMINE®, CYTOFECTIN®, OLIGOFECTAMINE®, and FUGENE®. Other suitable transfection methods known in the art include, but are not limited to, electroporation.

LIPOFECTIN®

[0047] When cells reach 65-75% confluency, they are treated with oligonucleotide. Oligonucleotide is mixed with UPOFECTIN® Invitrogen Life Technologies, Carlsbad, Calif.) in Opti-MEM®-1 reduced serum medium (Invitrogen Life Technologies, Carlsbad, Calif.) to achieve the desired concentration of oligonucleotide and a LIPOFECTIN® concentration of 2.5 or 3 μg/mL per 100 nM oligonucleotide. This transfection mixture is incubated at room temperature for approximately 0.5 hours. For cells grown in 96-well plates, wells are washed once with 100 μL OPTI-MEM®-1 and then treated with 130 μL of the transfection mixture. Cells grown in 24-well plates or other standard tissue culture plates are treated similarly, using appropriate volumes of medium and oligonucleotide. Cells are treated and data are obtained in duplicate or triplicate. After approximately 4-7 hours of treatment at 37° C., the medium containing the transfection mixture is replaced with fresh culture medium. Cells are harvested 16-24 hours after oligonucleotide treatment.

Example 3

Real-Time Quantitative PCR Analysis of GCCR mRNA Levels

[0048] Quantitation of GCCR mRNA levels was accomplished by real-time quantitative PCR using the ABI PRISM® 7600, 7700, or 7900 Sequence Detection System (PE-Applied Biosystems, Foster City, Calif.) according to manufacturer's instructions.

[0049] Gene target quantities obtained by RT, real-time PCR were normalized using either the expression level of GAPDH, a gene whose expression is constant, or by quantifying total RNA using RiboGreen® (Molecular Probes, Inc. Eugene, Oreg.). Total RNA was quantified using RiboGreen® RNA quantification reagent (Molecular Probes, Inc. Eugene, Oreg.). 170 μL of RiboGreen® working reagent (RiboGreen® reagent diluted 1:350 in 10 mM Tris-HCl, 1 mM EDTA, pH 7.5) was pipetted into a 96-well plate containing 30 μL purified cellular RNA. The plate was read in a CytoFluor 4000 (PE Applied Biosystems) with excitation at 485 nm and emission at 530 nm.

[0050] GAPDH expression was quantified by RT, real-time PCR, either simultaneously with the quantification of the target or separately. For measurement simultaneous with measurement of target levels, primer-probe sets specific to the target gene being measured were evaluated for their ability to be "multiplexed" with a GAPDH amplification reaction prior to quantitative PCR analysis. Multiplexing refers to the detection of multiple DNA species, in this case the target and endogenous GAPDH control, in a single tube, which requires that the primer-probe set for GAPDH does not interfere with amplification of the target.

[0051] Probes and primers for use in real-time PCR were designed to hybridize to target-specific sequences. Methods of primer and probe design are known in the art. Design of primers and probes for use in real-time PCR can be carried out using commercially available software, for example Primer Express®, PE Applied Biosystems, Foster City, Calif. The target-specific PCR probes have FAM covalently linked to the 5' end and TAMRA or MGB covalently linked to the 3' end, where FAM is the fluorescent dye and TAMRA or MGB is the quencher dye.

[0052] After isolation, the RNA is subjected to sequential reverse transcriptase (RT) reaction and real-time PCR, both of which are performed in the same well. RT and PCR reagents were obtained from Invitrogen Life Technologies (Carlsbad, Calif.). RT, real-time PCR was carried out in the same by adding 20 μL PCR cocktail (2.5× PCR buffer minus MgCl2, 6.6 mM MgCl2, 375 μM each of dATP, dCTP, dCTP and dGTP, 375 nM each of forward primer and reverse primer, 125 nM of probe, 4 Units RNAse inhibitor, 1.25 Units PLATINUM® Taq, 5 Units MuLV reverse transcriptase, and 2.5×ROX dye) to 96-well plates containing 30 μL total RNA solution (20-200 ng). The RT reaction was carried out by incubation for 30 minutes at 48° C. Following a 10 minute incubation at 95° C. to activate the PLATINUM® Taq, 40 cycles of a two-step PCR protocol were carried out: 95° C. for 15 seconds (denaturation) followed by 60° C. for 1.5 minutes (annealing/extension).

Example 4

Increased Potency of ISIS 344266 (2-16-2) In Vivo Compared to 5-10-5 Compound is not due to Enhanced Oligonucleotide Accumulation

[0053] Mice were dosed with ISIS 116847 (SEQ ID NO: 1) or ISIS 344266 (SEQ ID NO: 1) at 6, 3, 1.5 or 0.75 micromol/kg (approx 40, 20, 10 or 5 mg per kg), twice a week for three weeks and sacrificed 48 hours after the last dose was given. The left panel of FIG. 1 is a graph showing percent reduction of target RNA in liver following administration of saline, ISIS 141923 (negative unrelated control oligonucleotide, incorporated herein as SEQ ID NO: 2), ISIS 116847 at four concentrations, or ISIS 344266 at four concentrations. Both ISIS 116847 and ISIS 344266 are targeted to mouse PTEN (GENBANK® Accession No: U92437.1, herein incorporated as SEQ ID NO: 103), and are cross-species oligonucleotides with perfect complementary to human, rat, and rabbit PTEN. Neither saline nor negative control ISIS 141923 (6 micromoles/kg) reduced PTEN RNA levels. ISIS 116847 reduced PTEN RNA levels by approximately 21%, 44%, 64% and 81% at doses of 0.75, 1.5, 3 and 6 micromol/kg, respectively. ISIS 344266, the gap-widened antisense oligonucleotide, reduced PTEN RNA levels by approximately 54%, 79%, 88% and 91% at doses of 0.75, 1.5, 3 and 6 micromol/kg, respectively. A corresponding reduction of PTEN protein was demonstrated by Western blot as shown in the right panel of FIG. 1.

[0054] The ID50 (dose resulting in 50% reduction of PTEN RNA) calculated from these results was 1.9 micromol/kg for 116847 and 0.63 micromol/kg for 344266. The IC50 for ISIS 116847 was also over three-fold that of ISIS 344266. These results indicate that the gap-widened antisense oligonucleotide is three-fold more potent than the 5-10-5 compound of equivalent sequence.

[0055] ISIS 344266 (2-16-2) supports similar persistence of action compared to ISIS 116847 (5-10-5). Mice were treated as described above with ISIS 344266 (1.5 or 6 micromol/kg) or ISIS 116847 (6 micromol/kg), or with saline. PTEN RNA levels were measured in mouse liver at days 1, 7, 14 and 28. As shown in FIG. 2, the two compounds show similar durability of reduction of PTEN RNA levels, and even after 28 days the PTEN RNA levels in antisense-treated animals (either 116847 or 344266) had not returned to control levels.

[0056] The advantage conveyed by the gap-widened antisense oligonucleotides of the present invention for target reduction in vivo is surprising because it is not observed in vitro. An in vitro comparison of the same PTEN oligonucleotides, ISIS 116847 (5-10-5) and ISIS 344266 (2-16-2) was performed in cultured mouse bEND cells. Cells were transfected with oligonucleotide at doses of 0.1 nM, 0.3 nM, 0.9 nM, 2.7 nM, 8.1 nM and 24.3 nM in the presence of 3 microgram/ml LIPOFECTIN. Reduction of target expression was assayed by quantitative RT real-time PCR as described herein. FIG. 3 shows that the 5-10-5 gapmer was less potent than the 2-16-2 gapmer. The IC50 for reduction of PTEN RNA by the 5-10-5 gapmer (ISIS 116847) was 3.4 nM and 6.2 nM for the 2-16-2 gapmer (ISIS 344266). Thus the advantage conveyed by the gap-widened antisense oligonucleotides for target reduction in liver is not observed in cultured cells.

[0057] The enhanced potency of the gap-widened (2-16-2) PTEN antisense oligonucleotide in liver is not due to increased concentrations in liver compared to the 5-10-5 gapmer. Oligonucleotide concentration in kidney and liver tissue from mice treated as described above with ISIS 116847 or ISIS 344266 were determined. Methods to determine oligonucleotide concentration in tissues are known in the art (Geary et al., Anal Biochem, 1999, 274, 241-248). Oligonucleotide concentrations (micrograms/gram) in mouse liver and kidney were determined. As shown in FIG. 4, there was consistently less ISIS 344266 than ISIS 116847 in liver at every oligonucleotide dosage. The same is true for kidney although overall concentrations of both compounds were lower in kidney. Thus, the enhanced potency of the gap-widened antisense oligonucleotide (2-16-2 chimera) in the liver is not due to enhanced accumulation of compound in the liver.

[0058] Serum transaminases (AST/ALT) were higher for mice treated with 2-16-2 compound (ISIS 344266) than for those treated with ISIS 116847. However, because ISIS 344266 is more potent (active at lower doses), the therapeutic window for the two compounds is roughly comparable.

Example 5

Effect of Gap Size on In Vitro and In Vivo Potency

[0059] A series of MOE gapmers (2-14-2 through 6-6-6) were designed to target mouse TRADD (consensus sequence built from mouse ESTs: aa013629,aa914725,aa013699, aa122508, aa881900, aa423244, aa930854, w13708, aa201054, ai122320, aa611848, aa546092, and aa939422, incoporated herein as SEQ ID NO: 104). As shown in Table 2, a series of 18 mer chimeric antisense oligonucleotides were synthesized, all having the same sequence (GCTCATACTCGTAGGCCA, incorporated herein as SEQ ID NO: 3). Plain text indicates a deoxynucleotide, and nucleobases designated with bold, underlined text are 2'-O-(2-methoxyethyl)nucleotides. Internucleoside linkages are phosphorothioate throughout, and all cytosines are 5-methylcytosines. Indicated in Table 2 is the "motif' of each compound indicative of chemically distinct regions comprising the oligonucleotide.

TABLE-US-00003 TABLE 2 Antisense oligonucleotides targeting mouse TRADD ISIS Number Chemistry Motif ISIS 325589 GCTCATACTCGTAGGCCA 5-8-5 ISIS 117405 GCTCATACTCGTAGGCCA 4-10-4 ISIS 325588 GCTCATACTCGTAGGCCA 3-12-3 ISIS 325587 GCTCATACTCGTAGGCCA 2-14-2 ISIS 325590 GCTCATACTCGTAGGCCA 6-6-6

[0060] The compounds were tested in vitro in mouse bEND cells at concentrations of 0.1 nM, 0.5 nM, 2.5 nM, 12.5 nM and 62.5 nM for their ability to reduce target mRNA levels using real-time PCR as described herein. As shown in FIG. 5, in vitro IC50s for these compounds were 9.2 nM for the 5-8-5 gapmer (ISIS 325589), 11 nM for the 4-10-4 gapmer (ISIS 117405), 19 nM for the 3-12-3 gapmer (ISIS 325588), 49 nM for the 2-142 gapmer (ISIS 325587) and 82 nM for the 6-6-6 gapmer (ISIS 325590). Thus in this in vitro experiment, larger gaps did not appear to convey added potency.

[0061] When these compounds were tested in vivo, a different rank order potency was observed. Mice were treated with TRADD gapmer oligos (described above) ranging from 2-14-2 chimeras to 6-6-6 chimeras, each at doses of 1.56 micromole/kg, 3.12 micromol/kg and 6.24 micromol/kg. The negative control was ISIS 29837 (SEQ ID NO: 4) and animals treated with saline alone served as the control group to which data were normalized. As shown in FIG. 6, potency in liver increased with increasing gap size (from 6 to 14 contiguous deoxynucleotides). In a subsequent experiment (not shown) the 2-14-2 compound was approximately two-fold better than the 4-10-4 compound.

[0062] The effect of these gapmer compounds on mouse body weight, liver weight and spleen weights was compared and no meaningful differences were seen. Mice gained weight at roughly the same rate (indicating general good health) and liver and spleen weights were comparable to saline in all the treatment groups.

Example 6

Antisense Inhibition of Human GCCR Expression by 5-10-5 Gapmers or 2-16-2 Gapmers In Vitro

[0063] A series of oligomeric compounds was designed to target different regions of human GCCR, using published sequences (GENBANK® accession no: NM--000176.1, incoporated herein as SEQ ID NO: 105). The compounds are shown in Table 3. All compounds in Table 3 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of 10 2'-deoxynucleotides, which is flanked on both sides (5' and 3') by five-nucleotide "wings". The wings are composed of 2'-O-(2-methoxyethyl)nucleotides, also known as 2'-MOE nucleotides. The internucleoside (backbone) linkages are phosphorothioate throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. Shown in Table 3 is the sequence of the oligonucleotide, and the target site which is the first (5' most) position on the target sequence to which the compound binds. The compounds were analyzed for their effect on gene target mRNA levels by quantitative real-time PCR as described in other examples herein, using a primer-probe set designed to hybridize to human GCCR.

[0064] Data are averages from three experiments in which HepG2 cells were treated with 50 nM of the disclosed oligomeric compounds using LIPOFECTIN®. A reduction in expression is expressed as percent inhibition in Table 3. If present, "N.D." indicates "not determined". The target regions to which these oligomeric compounds are inhibitory are herein referred to as "validated target segments."

TABLE-US-00004 TABLE 3 Inhibition of human GCCR mRNA levels by 5-10-5 gapmers ISIS Target SEQ No of SEQ ID Target % Inhib ID 5-10-5 NO Site Sequence w/5-10-5 NO 361132 105 394 TCTGTCTCTCCCATATACAG 65 5 361133 105 398 TGTTTCTGTCTCTCCCATAT 56 6 361134 105 402 CTTTTGTTTCTGTCTCTCCC 60 7 361135 105 406 ATCACTTTTGTTTCTGTCTC 80 8 180272 105 497 GTTTGCAATGCTTTCTTCCA 74 9 345188 105 501 TGAGGTTTGCAATGCTTTCT 71 10 361136 105 505 CTATTGAGGTTTGCAATGCT 10 11 361137 105 509 CGACCTATTGAGGTTTGCAA 80 12 180274 105 514 CTGGTCGACCTATTGAGGTT 68 13 180275 105 672 CTGTGGTATACAATTTCACA 44 14 180276 105 679 CTTTGGTCTGTGGTATACAA 78 15 345198 105 689 GTCAAAGGTGCTTTGGTCTG 79 16 180279 105 877 GGTTTAGTGTCCGGTAAAAT 60 17 361138 105 954 CTTTTTCTGTTTTCACTTGG 70 18 180280 105 1000 TTCTCTTGCTTAATTACCCC 77 19 345218 105 1004 CAGTTTCTCTTGCTTAATTA 67 20 180281 105 1007 GCCCAGTTTCTCTTGCTTAA 74 21 361139 105 1058 TTTATTACCAATTATATTTG 0 22 361140 105 1062 ACATTTTATTACCAATTATA 35 23 361141 105 1066 GCAGACATTTTATTACCAAT 78 24 361142 105 1070 AATGGCAGACATTTTATTAC 40 25 361143 105 1074 CAGAAATGGCAGACATTTTA 63 26 361144 105 1078 TGAACAGAAATGGCAGACAT 61 27 180283 105 1081 CCATGAACAGAAATGGCAGA 69 28 361145 105 1085 CACACCATGAACAGAAATGG 30 29 361146 105 1089 TACTCACACCATGAACAGAA 60 30 361147 105 1093 GAGGTACTCACACCATGAAC 71 31 361148 105 1097 TCCAGAGGTACTCACACCAT 75 32 361149 105 1101 GTCCTCCAGAGGTACTCACA 69 33 361150 105 1105 ATCTGTCCTCCAGAGGTACT 53 34 361151 105 1109 GTACATCTGTCCTCCAGAGG 75 35 361152 105 1113 AGTGGTACATCTGTCCTCCA 62 36 361153 105 1117 TCATAGTGGTACATCTGTCC 52 37 361154 105 1121 CATGTCATAGTGGTACATCT 57 38 361155 105 1125 TATTCATGTCATAGTGGTAC 41 39 361156 105 1129 GCTGTATTCATGTCATAGTG 67 40 361157 105 1133 GGATGCTGTATTCATGTCAT 67 41 361158 105 1137 AAAGGGATGCTGTATTCATG 45 42 180288 105 1141 TGAGAAAGGGATGCTGTATT 62 43 180289 105 1181 TGGTGGAATGACATTAAAAA 54 44 361159 105 1185 GAATTGGTGGAATGACATTA 24 45 361160 105 1324 GAGCTTACATCTGGTCTCAT 59 46 361161 105 1328 AGGAGAGCTTACATCTGGTC 65 47 361162 105 1332 ATGGAGGAGAGCTTACATCT 18 48 361163 105 1336 CTGGATGGAGGAGAGCTTAC 50 49 361164 105 1339 GAGCTGGATGGAGGAGAGCT 49 50 361165 105 1468 TGTCCTTCCACTGCTCTTTT 61 51 361166 105 1472 GTGCTGTCCTTCCACTGCTC 65 52 361167 105 1476 AATTGTGCTGTCCTTCCACT 62 53 361168 105 1480 AGGTAATTGTGCTGTCCTTC 52 54 361169 105 1543 CGGCATGCTGGGCAGTTTTT 78 55 361170 105 1547 ATAGCGGCATGCTGGGCAGT 58 56 361171 105 1549 CGATAGCGGCATGCTGGGCA 65 57 361172 105 1570 ATTCCAGCCTGAAGACATTT 24 58 361173 105 1574 GTTCATTCCAGCCTGAAGAC 52 59 361174 105 1597 TTCTTTGTTTTTCGAGCTTC 62 60 361175 105 1601 TTTTTTCTTTGTTTTTCGAG 48 61 180297 105 1680 CAGGAACTATTGTTTTGTTA 33 62 361176 105 1682 TGCAGGAACTATTGTTTTGT 46 63 361177 105 1765 GAGCTATCATATCCTGCATA 71 64 361178 105 1769 AACAGAGCTATCATATCCTG 51 65 361179 105 1773 CTGGAACAGAGCTATCATAT 67 66 361180 105 1840 TTCACTGCTGCAATCACTTG 52 67 361181 105 1844 CCATTTCACTGCTGCAATCA 55 68 361182 105 1848 TTGCCCATTTCACTGCTGCA 70 69 361183 105 1999 ATAATCAGATCAGGAGCAAA 36 70 361184 105 2003 ATTAATAATCAGATCAGGAG 10 71 361185 105 2007 GCTCATTAATAATCAGATCA 43 72 361186 105 2011 CTCTGCTCATTAATAATCAG 0 73 180302 105 2015 CATTCTCTGCTCATTAATAA 23 74 180304 105 2053 AGCATGTGTTTACATTGGTC 73 75 361187 105 2119 AAGGTTTTCATACAGAGATA 38 76 361188 105 2123 CAGTAAGGTTTTCATACAGA 22 77 361189 105 2127 GAAGCAGTAAGGTTTTCATA 46 78 180307 105 2131 GAGAGAAGCAGTAAGGTTTT 32 79 361190 105 2212 GCTTTTCCTAGCTCTTTGAT 74 80 361191 105 2215 ATGGCTTTTCCTAGCTCTTT 68 81 361192 105 2347 ATGGTCTTATCCAAAAATGT 63 82 361193 105 2351 ACTCATGGTCTTATCCAAAA 66 83 361194 105 2355 CAATACTCATGGTCTTATCC 54 84 361195 105 2359 AATTCAATACTCATGGTCTT 69 85 361196 105 2383 ATGATTTCAGCTAACATCTC 1 86 180311 105 2386 GTGATGATTTCAGCTAACAT 59 87 361197 105 2407 GAATATTTTGGTATCTGATT 59 88 361198 105 2411 ATTTGAATATTTTGGTATCT 20 89 361199 105 2415 TTCCATTTGAATATTTTGGT 65 90 361200 105 2419 ATATTTCCATTTGAATATTT 51 91 361202 105 2425 TTTTTGATATTTCCATTTGA 20 92

[0065] Gap-widened oligonucleotides having the same sequences as the compounds described in Table 4 were also tested. All compounds in Table 4 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of 16 2'-deoxynucleotides, which is flanked on both sides (5' and 3') by two-nucleotide "wings". The wings are composed of 2'-O-(2-methoxyethyl)nucleotides, also known as 2'-MOE nucleotides. The internucleoside (backbone) linkages are phosphorothioate throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. Shown in Table 4 is the sequence of the oligonucleotide, and the target site which is the first (5' most) position on the target sequence to which the compound binds. The 2-16-2 motif compounds were analyzed for their effect on gene target mRNA levels by quantitative real-time PCR as described herein.

[0066] Data are averages from three experiments in which HepG2 cells were treated with 50 nM of the disclosed oligomeric compounds using LIPOFECTIN®. A reduction in expression is expressed as percent inhibition in Table 4. If present, "N.D." indicates "not determined". The target regions to which these oligomeric compounds are inhibitory are herein referred to as "validated target segments."

TABLE-US-00005 TABLE 4 Inhibition of human GCCR mRNA levels by 2-16-2 gapmers ISIS Target % SEQ No of SEQ ID Target Inhib ID 2-16-2 NO Site Sequence w/2-16-2 NO 372350 105 394 TCTGTCTCTCCCATATACAG 69 5 372376 105 398 TGTTTCTGTCTCTCCCATAT 72 6 372331 105 402 CTTTTGTTTCTGTCTCTCCC 67 7 372341 105 406 ATCACTTTTGTTTCTGTCTC 63 8 352983 105 497 GTTTGCAATGCTTTCTTCCA 64 9 372365 105 501 TGAGGTTTGCAATGCTTTCT 69 10 372387 105 505 CTATTGAGGTTTGCAATGCT 70 11 372316 105 509 CGACCTATTGAGGTTTGCAA 73 12 372310 105 514 CTGGTCGACCTATTGAGGTT 70 13 372315 105 672 CTGTGGTATACAATTTCACA 35 14 372326 105 679 CTTTGGTCTGTGGTATACAA 54 15 372339 105 689 GTCAAAGGTGCTTTGGTCTG 81 16 372322 105 877 GGTTTAGTGTCCGGTAAAAT 78 17 372361 105 954 CTTTTTCTGTTTTCACTTGG 70 18 372308 105 1000 TTCTCTTGCTTAATTACCCC 84 19 372304 105 1004 CAGTTTCTCTTGCTTAATTA 66 20 352984 105 1007 GCCCAGTTTCTCTTGCTTAA 80 21 372372 105 1058 TTTATTACCAATTATATTTG 0 22 372327 105 1062 ACATTTTATTACCAATTATA 11 23 372311 105 1066 GCAGACATTTTATTACCAAT 65 24 372352 105 1070 AATGGCAGACATTTTATTAC 54 25 372337 105 1074 CAGAAATGGCAGACATTTTA 36 26 372323 105 1078 TGAACAGAAATGGCAGACAT 73 27 372347 105 1081 CCATGAACAGAAATGGCAGA 86 28 372383 105 1085 CACACCATGAACAGAAATGG 73 29 372348 105 1089 TACTCACACCATGAACAGAA 82 30 372363 105 1093 GAGGTACTCACACCATGAAC 47 31 372334 105 1097 TCCAGAGGTACTCACACCAT 82 32 372359 105 1101 GTCCTCCAGAGGTACTCACA 69 33 372344 105 1105 ATCTGTCCTCCAGAGGTACT 72 34 372307 105 1109 GTACATCTGTCCTCCAGAGG 74 35 372370 105 1113 AGTGGTACATCTGTCCTCCA 69 36 372374 105 1117 TCATAGTGGTACATCTGTCC 0 37 372355 105 1121 CATGTCATAGTGGTACATCT 65 38 372385 105 1125 TATTCATGTCATAGTGGTAC 18 39 372319 105 1129 GCTGTATTCATGTCATAGTG 23 40 372366 105 1133 GGATGCTGTATTCATGTCAT 37 41 372330 105 1137 AAAGGGATGCTGTATTCATG 80 42 372333 105 1141 TGAGAAAGGGATGCTGTATT 68 43 372358 105 1181 TGGTGGAATGACATTAAAAA 67 44 372381 105 1185 GAATTGGTGGAATGACATTA 30 45 372377 105 1324 GAGCTTACATCTGGTCTCAT 45 46 372309 105 1328 AGGAGAGCTTACATCTGGTC 63 47 372388 105 1332 ATGGAGGAGAGCTTACATCT 55 48 372321 105 1336 CTGGATGGAGGAGAGCTTAC 51 49 372312 105 1339 GAGCTGGATGGAGGAGAGCT 60 50 372324 105 1468 TGTCCTTCCACTGCTCTTTT 73 51 372332 105 1472 GTGCTGTCCTTCCACTGCTC 81 52 372335 105 1476 AATTGTGCTGTCCTTCCACT 42 53 372342 105 1480 AGGTAATTGTGCTGTCCTTC 100 54 372345 105 1543 CGGCATGCTGGGCAGTTTTT 82 55 372356 105 1547 ATAGCGGCATGCTGGGCAGT 73 56 372305 105 1549 CGATAGCGGCATGCTGGGCA 80 57 372367 105 1570 ATTCCAGCCTGAAGACATTT 78 58 372353 105 1574 GTTCATTCCAGCCTGAAGAC 70 59 372364 105 1597 TTCTTTGTTTTTCGAGCTTC 47 60 372340 105 1601 TTTTTTCTTTGTTTTTCGAG 100 61 372369 105 1680 CAGGAACTATTGITTTGTTA 56 62 372378 105 1682 TGCAGGAACTATTGTTTTGT 41 63 372317 105 1765 GAGCTATCATATCCTGCATA 84 64 372351 105 1769 AACAGAGCTATCATATCCTG 69 65 372389 105 1773 CTGGAACAGAGCTATCATAT 76 66 372362 105 1840 TTCACTGCTGCAATCACTTG 64 67 372328 105 1844 CCATTTCACTGCTGCAATCA 81 68 372338 105 1848 TTGCCCATTTCACTGCTGCA 82 69 372349 105 1999 ATAATCAGATCAGGAGCAAA 10 70 372373 105 2003 ATTAATAATCAGATCAGGAG 30 71 372360 105 2007 GCTCATTAATAATCAGATCA 27 72 372384 105 2011 CTCTGCTCATTAATAATCAG 100 73 372380 105 2015 CATTCTCTGCTCATTAATAA 2 74 372320 105 2053 AGCATGTGTTTACATTGGTC 75 75 372371 105 2119 AAGGTTTTCATACAGAGATA 37 76 372382 105 2123 CAGTAAGGTTTTCATACAGA 44 77 372306 105 2127 GAAGCAGTAAGGTTTTCATA 48 78 372343 105 2131 GAGAGAAGCAGTAAGGTTTT 46 79 372313 105 2212 GCTTTTCCTAGCTCTTTGAT 66 80 372325 105 2215 ATGGCTTTTCCTAGCTCTTT 69 81 372336 105 2347 ATGGTCTTATCCAAAAATGT 65 82 372318 105 2351 ACTCATGGTCTTATCCAAAA 70 83 372375 105 2355 CAATACTCATGGTCTTATCC 85 84 372346 105 2359 AATTCAATACTCATGGTCTT 47 85 372386 105 2383 ATGATTTCAGCTAACATCTC 74 86 372354 105 2386 GTGATGATTTCAGCTAACAT 66 87 372357 105 2407 GAATATTTTGGTATCTGATT 13 88 372368 105 2411 ATTTGAATATTTTGGTATCT 0 89 372379 105 2415 TTCCATTTGAATATTTTGGT 44 90 372390 105 2419 ATATTTCCATTTGAATATTT 0 91 372329 105 2425 TTTTTGATATTTCCATTTGA 0 92

[0067] The 2-16-2 oligonucleotides shown in Table 4 and the 5-10-5 oligonucleotides shown in Table 3 which reduced GCCR expression by at least 30% are preferred. The target segments to which these preferred sequences are complementary are herein referred to as "preferred target segments" and are therefore preferred for targeting by compounds of the present invention.

Example 7

Cross-Species Oligonucleotides Targeting GCCR

[0068] Some oligonucleotides described in the previous example are complementary across species and are therefore expected to reduce expression of glucocorticoid receptor across species. Shown in Table 5 is the sequence of such cross-species oligonucleotides, and the ISIS numbers of the 5-10-5 motif version and the 2-16-2 motif version of the oligonucleotide. Also indicated for each sequence is the target site which is the first (5' most) position on the human target sequence (NM--000176.1, incorporated herein as SEQ ID NO: 105) to which the compound binds. The complementarity for human, cynomolgus monkey, rat, and mouse GCCR mRNA is indicated ("yes" means perfect complementarity and "1 mm" means one mismatch from perfect complementarity).

TABLE-US-00006 TABLE 5 Cross-species oligonucleotides targeted to GCCR Pos'n ISIS # of ISIS # of SEQ on 5-10-5 2-16-2 ID SEQ ID Perfect complement to: gapmer gapmer NO Sequence NO: 1 Human Monkey Rat Mouse 361137 372316 12 cgacctattgaggtttgcaa 509 yes yes yes yes 180276 372326 15 ctttggtctgtggtatacaa 679 yes 1 mm 1 mm yes 345198 372339 16 gtcaaaggtgctttggtctg 689 yes yes yes yes 180304 372320 75 agcatgtgtttacattggtc 2053 yes yes yes yes 180275 372315 14 ctgtggtatacaatttcaca 672 yes 1 mm 1 mm yes 361141 372311 24 gcagacattttattaccaat 1066 yes yes yes 1 mm 180281 352984 21 gcccagtttctcttgcttaa 1007 yes yes yes yes 361151 372307 35 gtacatctgtcctccagagg 1109 yes yes yes yes 180274 372310 13 ctggtcgacctattgaggtt 514 yes yes yes yes 361156 372319 40 gctgtattcatgtcatagtg 1129 yes yes yes yes

Example 8

Antisense Inhibition of Human and Rat GCCR mRNA Levels--Dose-Response Studies with 5-10-5 Gapmers

[0069] In a further embodiment of the present invention, eleven oligonucleotides were selected for additional dose-response studies. Primary rat hepatocytes were treated with 5, 10, 25, 50, 100 or 200 nM of ISIS 180274, ISIS 180275, ISIS 180276, ISIS 180281, ISIS 180304, ISIS 361137, ISIS 361141, ISIS 361151, ISIS 361156, ISIS 345198, ISIS 361137 or the negative control oligonucleotide ISIS 141923 (CCTTCCCTGAAGGTTCCTCC, incorporated herein as SEQ ID NO: 2), and mRNA levels were measured as described in other examples herein. ISIS 141923 is a 5-10-5 gapmer comprising a ten deoxynucleotide gap flanked by 2'-MOE wings and a phosphorothioate backbone. All cytosines are 5-methylcytosines. Untreated cells served as the control to which the data were normalized.

[0070] Results of these studies are shown in Table 6. Target mRNA levels were measured by real-time PCR as described herein. Data are averages from three experiments and are expressed as percent inhibition relative to untreated control.

TABLE-US-00007 TABLE 6 Dose-dependent inhibition of GCCR expression in rat primary hepatocytes % Inhibition Dose of Oligonucleotide (nM) ISIS # SEQ ID NO 5 10 25 50 100 200 180274 13 16 33 29 65 84 89 180275 14 0 13 56 84 84 90 180276 15 23 43 43 68 89 93 180281 21 0 20 33 75 86 87 180304 75 42 51 47 75 86 91 361137 12 40 30 48 81 83 89 361141 24 36 61 48 77 87 92 361151 35 10 28 42 77 90 94 361156 40 22 47 46 66 84 92 345198 16 0 35 53 81 77 85 361158 42 34 50 47 79 91 93 141923 2 0 10 18 43 0 12

[0071] In a further embodiment of the present invention, the same oligonucleotides were tested in the human HepG2 cell line for their ability to reduce GCCR mRNA expression at the indicated doses. Untreated cells served as the control to which the data were normalized.

[0072] Results of these studies are shown in Table 7. Target mRNA levels were measured by real-time PCR as described herein. Data are averages from three experiments and are expressed as percent inhibition relative to untreated control.

TABLE-US-00008 TABLE 7 Dose-dependent inhibition of GCCR expression in HepG2 cells % Inhibition Dose of Oligonucleotide (nM) ISIS # SEQ ID NO 1 10 25 50 100 200 180274 13 0 31 54 66 77 83 180275 14 13 54 75 86 93 94 180276 15 26 77 87 92 94 98 180281 21 3 46 68 80 90 84 180304 75 0 64 90 90 92 91 361137 12 18 71 84 91 92 86 361141 24 1 49 81 85 73 78 361151 35 22 42 71 82 89 91 361156 40 7 75 75 79 80 82 345198 16 17 71 79 86 80 82 361158 42 11 35 78 80 82 77 141923 2 15 12 20 12 14 3

[0073] As shown in Table 6 and Table 7, antisense oligonucleotides targeting GCCR are effective at reducing both human and rat target mRNA levels in a dose-dependent manner in vitro.

Example 9

Antisense Inhibition of Rat GCCR mRNA Levels--In Vivo Dose-Response Studies with 5-10-5 Gapmers

[0074] Five of the 5-10-5 gapmer motif oligonucleotides (ISIS 180281, ISIS 361137, ISIS 345198, ISIS 180304, and ISIS 361141) were evaluated at various doses in rats for their ability to reduce GCCR mRNA levels in liver. Eight week-old Sprague Dawley rats were divided into treatment groups which received doses of 50, 25 or 12.5 mg/kg of one the indicated oligonucleotides via injection. Each treatment group was comprised of four animals, and was dosed twice weekly for 3 weeks. Animals injected with saline alone served as a control group. The animals were evaluated weekly for standard blood parameters (ALT/AST, cholesterol, triglycerides, and glucose). Animals were sacrificed at the end of the study and liver tissue was collected and analyzed for target reduction using real-time PCR analysis methods described herein. Results are shown in Tables 8a and 8b (separate experiments) as the percentage reduction in GCCR mRNA measured after treatment with the indicated doses of the indicated oligonucleotides.

TABLE-US-00009 TABLE 8a In vivo rat screen- GCCR antisense oligonucleotides % Reduction in GCCR mRNA in rat liver (compared to saline-treated controls) Compound 50 mg/kg 25 mg/kg 12.5 mg/kg ISIS 180281 68 65 48 ISIS 180304 52 34 0 ISIS 345198 63 58 52

TABLE-US-00010 TABLE 8b In vivo rat screen- GCCR antisense oligonucleotides % Reduction in GCCR mRNA in rat liver (compared to saline-treated controls) Compound 50 mg/kg 25 mg/kg 12.5 mg/kg ISIS 180281 62 62 59 ISIS 361137 59 47 32 ISIS 361141 61 49 22

[0075] The data in Tables 8a and 8b show that antisense oligonucleotides targeted to GCCR are effective at reducing expression in vivo in a dose-dependent manner. ISIS 345198 (GTCAAAGGTGCTTTGGTCTG; SEQ ID NO: 16) was chosen for further evaluation in structure-activity experiments focusing on gap optimization. This compound is perfectly complementary to mouse, rat, human, monkey, rabbit and guinea pig glucocorticoid receptor RNA.

Example 10

Antisense Inhibition of GCCR mRNA Levels In Vivo--Gap Optimization Study

[0076] A series of oligomeric compounds were designed to target GCCR with varying sizes of the deoxynucleotide gap and 2'-MOE wings. Each of the oligonucleotides tested has the same nucleobase sequence (GTCAAAGGTGCTTTGGTCTG, incorporated herein as SEQ ID NO: 16) and therefore targets the same segment of SEQ ID NO: 105 (nucleobases 689 to 709). As shown in Example 7, this oligonucleotide is also perfectly complementary to rat GCCR.

[0077] The compounds are shown in Table 9. Plain text indicates a deoxynucleotide, and nucleobases designated with bold, underlined text are 2'-O-(2-methoxyethyl)nucleotides. Internucleoside linkages are phosphorothioate throughout, and all cytosines are 5-methylcytosines.

[0078] Indicated in Table 9 is the "motif' of each compound indicative of chemically distinct regions comprising the oligonucleotide.

TABLE-US-00011 TABLE 9 Antisense compounds targeting rat GCCR ISIS Number Chemistry Motif 345198 GTCAAAGGTGCTTTGGTCTG 5-10-5 gapmer 372339 GTCAAAGGTGCTTTGGTCTG 2-16-2 gapmer 377130 GTCAAAGGTGCTTTGGTCTG 3-14-3 gapmer 377131 GTCAAAGGTGCTTTGGTCTG 4-12-4 gapmer

[0079] Nine-week old Sprague-Dawley male rats were treated twice weekly for three weeks with doses of 50, 25, 12.5, and 6.25 mg/kg of the oligonucleotides presented in Table 9. Animals injected with saline alone served as controls. Each treatment group was comprised of four animals.

[0080] At the end of the study, animals were sacrificed, and tissues were collected for determination of target reduction and oligonucleotide concentration.

[0081] White adipose tissue was analyzed for target reduction using real-time PCR analysis methods described herein. Results are shown in Tables 10a, 10b, and 10c (separate experiments) as the percentage reduction in GCCR mRNA measured after treatment with the indicated doses of the indicated oligonucleotides. Tissues from animals treated with each gap-widened oligonucleotide were assayed for target reduction alongside tissues from animals treated with the 5-10-5 motif oligonucleotide for comparison.

TABLE-US-00012 TABLE 10a In vivo reduction of GCCR levels in white adipose tissue with 2-16-2 oligonucleotides % Inhibition Treatment Dose of oligonucleotide (mg/kg) group 50 25 12.5 6.25 ISIS 345198 56 26 17 7 ISIS 372339 34 0 8 8

TABLE-US-00013 TABLE 10b In vivo reduction of GCCR levels in white adipose tissue with 3-14-3 oligonucleotides % Inhibition Treatment Dose of oligonucleotide (mg/kg) group 50 25 12.5 6.25 ISIS 345198 59 49 27 22 ISIS 377130 54 37 21 18

TABLE-US-00014 TABLE 10c In vivo reduction of GCCR levels in white adipose tissue with 4-12-4 oligonucleotides % Inhibition Treatment Dose of oligonucleotide (mg/kg) group 50 25 12.5 6.25 ISIS 345198 56 23 21 7 ISIS 377131 55 23 15 0

[0082] Liver tissue was also analyzed for target reduction using real-time PCR analysis methods described herein. Results are shown in Tables 11a, 11b, and 11c (separate experiments) as the percentage reduction in GCCR mRNA measured after treatment with the indicated doses of the indicated oligonucleotides. Tissues from animals treated with each gap-widened oligonucleotide were assayed for target reduction alongside tissues from animals treated with the 5-10-5 motif oligonucleotide for comparison.

TABLE-US-00015 TABLE 11a In vivo reduction of GCCR levels in liver with 2-16-2 oligonucleotides % Inhibition Treatment Dose of oligonucleotide (mg/kg) group 50 25 12.5 6.25 ISIS 345198 78 77 65 51 ISIS 372339 83 77 56 44

TABLE-US-00016 TABLE 11b In vivo reduction of GCCR levels in liver with 3-14-3 oligonucleotides % Inhibition Treatment Dose of oligonucleotide (mg/kg) group 50 25 12.5 6.25 ISIS 345198 78 80 67 54 ISIS 377130 87 78 68 43

TABLE-US-00017 TABLE 11c In vivo reduction of GCCR levels in liver with 4-12-4 oligonucleotides % Inhibition Treatment Dose of oligonucleotide (mg/kg) group 50 25 12.5 6.25 ISIS 345198 76 75 58 49 ISIS 377131 82 64 60 61

[0083] As shown in Tables 11a, 11b, and 11c, all of the gap-widened oligonucleotides tested were effective at reducing GCCR levels in a dose-dependent manner in vivo. In addition, the gap-widened oligonucleotides show a trend toward greater potency than the 5-10-5 gapmer in the liver.

[0084] In addition, to determine effects of altering the gap size on pharmacokinetics, oligonucleotide concentration in kidney and liver were determined. Methods to determine oligonucleotide concentration in tissues are known in the art (Geary et al., Anal Biochem, 1999, 274, 241-248). Total oligonucleotide is the sum of all oligonucleotides metabolites detected in the tissue. Shown in Table 12 are the total concentration and the concentration of full length oligonucleotide (in μg/g) in the liver of animals treated with the indicated oligonucleotide at the indicated concentration.

TABLE-US-00018 TABLE 12 GCCR oligonucleotide concentration in rat liver Liver Liver Total Full- Treatment Motif Dose oligo length ISIS 345198 5-10-5 25 mg/kg 507 408 12.5 mg/kg 318 224 ISIS 372339 2-16-2 25 mg/kg 450 306 12.5 mg/kg 311 183 ISIS 377130 3-14-3 25 mg/kg 575 315 12.5 mg/kg 350 212 ISIS 377131 4-12-4 25 mg/kg 584 424 12.5 mg/kg 354 265

[0085] As shown in Table 12, the levels of full-length oligonucleotide in the liver are comparable or reduced for ISIS 372339 and ISIS 377130 as compared to ISIS 345198. Coupled with the target reduction as shown in Table 11, these data show that the enhanced potency of the gap-widened compounds is not due to enhanced accumulation of the compound in the liver. Thus, preferred oligonucleotides of the present invention include gap-widened oligonucleotides that show enhanced or comparable potency with regard to target reduction to the corresponding 5-10-5 gapmer without enhanced accumulation of the compound in a target tissue. In some embodiments, the target tissue is adipose and in some embodiments, the target tissue is liver.

Example 11

Design of "Gap-Widened" Antisense Oligonucleotides Targeting Human GCGR

[0086] A series of oligomeric compounds were designed to target human GCGR (Genbank accession number: NM--000160.1, incorporated herein as SEQ ID NO: 108), with varying sizes of the deoxynucleotide gap and 2'-MOE wings. Each of the oligonucleotides is 20 nucleobases in length and has the same nucleobase sequence (GCACTTTGTGGTGCCAAGGC, incorporated herein as SEQ ID NO: 93), and therefore targets the same segment of SEQ ID NO: 108 (nucleobases 532 to 551). The compounds are shown in Table 13. Plain text indicates a deoxynucleotide, and nucleotides designated with bold, underlined text are 2'-O-(2-methoxyethyl)nucleotides. Internucleoside linkages are phosphorothioate throughout, and all cytosines are 5-methylcytosines. Indicated in Table 13 is the "motif' of each compound, indicative of chemically distinct regions comprising the oligonucleotide.

TABLE-US-00019 TABLE 13 Antisense compounds targeting human GCGR ISIS Number Chemistry Motif 310457 GCACTTTGTGGTGCCAAGGC 5-10-5 gapmer 325448 GCACTTTGTGGTGCCAAGGC 2-16-2 gapmer 325568 GCACTTTGTGGTGCCAAGGC 3-14-3 gapmer

[0087] The 5-10-5 gapmer, ISIS 310457, was tested for its ability to reduce target mRNA levels in vitro. HepG2 cells were treated with ISIS 310457 using methods as described herein. ISIS 310457 was analyzed for its effect on human glucagon receptor mRNA levels by quantitative real-time PCR and was found to reduce expression of GCGR by about 96%.

Example 12

Design of "Gap-Widened" Antisense Oligonucleotides Targeting Rat GCGR

[0088] A series of oligomeric compounds were designed to target rat GCGR (Genbank accession number: M96674.1, incorporated herein as SEQ ID NO: 109) with varying sizes of the deoxynucleotide gap and 2'-MOE wings. Each of the oligonucleotides tested has the same nucleobase sequence (GCACTTTGTGGTACCAAGGT, incorporated herein as SEQ ID NO: 94) and therefore targets the same segment of SEQ ID NO: 109 (nucleobases 402 to 421). The segment targeted by the rat oligonucleotides corresponds to the segment of human GCGR targeted by ISIS 310457 (SEQ ID NO: 93). The compounds are shown in Table 14. Plain text indicates a deoxynucleotide, and nucleotides designated with bold, underlined text are 2'-O-(2-methoxyethyl)nucleotides. Internucleoside linkages are phosphorothioate throughout, and all cytosines are 5-methylcytosines. Indicated in Table 14 is the "motif' of each compound indicative of chemically distinct regions comprising the oligonucleotide.

TABLE-US-00020 TABLE 14 Antisense compounds targeting rat GCGR ISIS Number Chemistry Motif 356171 GCACTTTGTGGTACCAAGGT 5-10-5 gapmer 357368 GCACTTTGTGGTACCAAGGT Uniform deoxy 357369 GCACTTTGTGGTACCAAGGT 1-18-1 gapmer 357370 GCACTTTGTGGTACCAAGGT 1-17-2 gapmer 357371 GCACTTTGTGGTACCAAGGT 2-16-2 gapmer 357372 GCACTTTGTGGTACCAAGGT 3-14-3 gapmer 357373 GCACTTTGTGGTACCAAGGT 4-12-4 gapmer

Example 13

Effects of Antisense Oligonucleotides Targeting GCGR--In Vivo Rat Study

[0089] In accordance with the present invention, the oligonucleotides designed to target rat GCGR were tested in vivo. Male Sprague Dawley rats, eight weeks of age, were injected with 50, 25, 12.5, or 6.25 mg/kg of ISIS 356171, ISIS 357368, ISIS 357369, ISIS 357370, ISIS 357371, ISIS 357372, or ISIS 357373 twice weekly for 3 weeks for a total of 6 doses. Saline-injected animals served as a control. Each of the oligonucleotides tested has the same nucleobase sequence (GCACTTTGTGGTACCAAGGT, incorporated herein as SEQ ID NO: 94), and the chemistry and motif of each compound is described above.

[0090] After the treatment period, rats were sacrificed and target nucleic acid levels were evaluated in liver. RNA isolation and target mRNA expression level quantitation are performed as described by other examples herein using RIBOGREEN®. RNA from each treatment group was assayed alongside RNA from the group treated with ISIS 356171. Results are presented in Table 15a, 15b, 15c, 15d, 15e, and 15f as a percentage of saline-treated control levels.

TABLE-US-00021 TABLE 15a Reduction of target levels in liver of rats treated with 2-16-2 antisense oligonucleotides targeted to GCGR % Control Dose of oligonucleotide (mg/kg) Treatment Motif 50 25 12.5 6.25 ISIS 356171 5-10-5 7 20 26 36 ISIS 357371 2-16-2 11 22 35 39

TABLE-US-00022 TABLE 15b Reduction of target levels in liver of rats treated with 3-14-3 antisense oligonucleotides targeted to GCGR % Control Dose of oligonucleotide (mg/kg) Treatment Motif 50 25 12.5 6.25 ISIS 356171 5-10-5 10 24 28 50 ISIS 357372 3-14-3 12 23 37 56

TABLE-US-00023 TABLE 15c Reduction of target levels in liver of rats treated with 4-12-4 antisense oligonucleotides targeted to GCGR % Control Dose of oligonucleotide (mg/kg) Treatment Motif 50 25 12.5 6.25 ISIS 356171 5-10-5 10 25 36 47 ISIS 357373 4-12-4 13 22 48 47

TABLE-US-00024 TABLE 15d Reduction of target levels in liver of rats treated with 1-17-2 antisense oligonucleotides targeted to GCGR % Control Dose of oligonucleotide (mg/kg) Treatment Motif 50 25 12.5 6.25 ISIS 356171 5-10-5 8 24 32 43 ISIS 357370 1-17-2 20 41 62 68

TABLE-US-00025 TABLE 15e Reduction of target levels in liver of rats treated with 1-18-1 antisense oligonucleotides targeted to GCGR % Control Dose of oligonucleotide (mg/kg) Treatment Motif 50 25 12.5 6.25 ISIS 356171 5-10-5 9 27 34 46 ISIS 357369 1-18-1 33 35 58 70

TABLE-US-00026 TABLE 15f Reduction of target levels in liver of rats treated with uniform deoxy oligonucleotides targeted to GCGR % Control Dose of oligonucleotide (mg/kg) Treatment Motif 50 25 12.5 6.25 ISIS 356171 5-10-5 8 23 30 45 ISIS 357368 Uniform deoxy 31 43 77 73

[0091] As shown in Tables 15a, 15b, 15c, 15d, and 15e the gap-widened antisense oligonucleotides were effective at reducing GCGR levels in vivo in a dose-dependent manner.

[0092] In addition, oligonucleotide concentration in kidney and liver were determined. Methods to determine oligonucleotide concentration in tissues are known in the art (Geary et al., Anal. Biochem., 1999, 274, 241-248). Shown in Table 16 are the total oligonucleotide concentration and the concentration of full length oligonucleotide (in μg/g) in the kidney or liver of animals treated with 25 mg/kg of the indicated oligonucleotide. Total oligonucleotide is the sum of all oligonucleotides metabolites detected in the tissue.

TABLE-US-00027 TABLE 16 Concentration of oligonucleotide in liver and kidney Kidney Kidney Liver Liver Total Full- Total Full- Treatment Motif oligo length oligo length ISIS 356171 5-10-5 gapmer 1814 1510 621 571 ISIS 356368 Uniform deoxy 801 183 282 62 ISIS 356369 1-18-1 1237 475 309 171 ISIS 356370 1-17-2 1127 590 370 271 ISIS 356371 2-16-2 871 515 345 253 ISIS 356372 3-14-3 1149 774 497 417 ISIS 356373 4-12-4 902 687 377 326

[0093] As shown in Table 16, the concentrations of the gap-widened oligonucleotides in kidney were generally reduced with respect to those found for ISIS 356171 in these tissues. Taken with the target reduction data shown in Table 15 wherein potency was maintained with ISIS 356371, ISIS 356372, and ISIS 356373 with respect to ISIS 356171, these data suggest that gap-widened oligos, particularly ISIS 356371, ISIS 356372, and ISIS 356373 are, in essence, more effective than ISIS 356171 at reducing target levels in the liver.

Example 14

Effects of Antisense Oligonucleotides Targeting GCGR--In Vivo Study in Cynomolgus Monkeys

[0094] To evaluate alterations in tissue distribution, potency, or therapeutic index caused by modification of the antisense oligonucleotide motif in a primate, cynomolgus monkeys were injected with ISIS 310457 (5-10-5 motif) or ISIS 325568 (2-16-2 motif) at doses of 3, 10, or 20 mg/kg per week. These antisense compounds show 100% complementarity to the monkey GCGR target sequence. Animals injected with saline alone served as controls. The duration of the study was 7 weeks, and the animals were dosed three times during the first week, followed by once-weekly dosing for 6 weeks. Each treatment group was comprised of 5 animals. One group treated with 20 mg/kg of ISIS 310457 and one group treated with 20 mg/kg of ISIS 325568 recovered for three weeks after cessation of dosing prior to sacrifice ("20 mg/kg recovery"). Other treatment groups were sacrificed at the end of the study. Liver tissues were collected to assess target reduction.

[0095] RNA isolation and target mRNA expression level quantitation were performed as described by other examples herein using RIBOGREEN®. Results are presented in Table 17 as a percentage of saline-treated control levels.

TABLE-US-00028 TABLE 17 Reduction of target levels in liver of monkeys treated with antisense oligonucleotides targeted to GCGR % Control Dose of oligonucleotide 20 mg/kg, Treatment Motif recovery 20 mg/kg 10 mg/kg 3 mg/kg ISIS 310457 5-10-5 27 34 43 71 ISIS 325568 2-16-2 43 45 54 49

[0096] As shown in Table 17, treatment with ISIS 310457 and 325568 caused decreases in GCGR levels at all of the doses tested, and reduction in target levels was still observed in the 20 mg/kg recovery groups. ISIS 325568 caused greater reduction than ISIS 310457 at the 3 mg/kg dose.

[0097] In addition, oligonucleotide concentration in kidney and liver were determined. Methods to determine oligonucleotide concentration in tissues are known in the art (Geary et al., Anal Biochem, 1999, 274, 241-248). Shown in Table 18 are the total concentration and the concentration of full length oligonucleotide (in μg/g) in the kidney or liver of animals treated with the indicated oligonucleotide.

TABLE-US-00029 TABLE 18 Concentration of oligonucleotide in liver and kidney Kidney Kidney Liver Liver Total Full- Total Full- Treatment Motif Dose oligo length oligo length ISIS 310457 5-10-5 3 mg/kg 471 423 449 330 10 mg/kg 1011 911 710 606 20 mg/kg 1582 1422 981 867 20 mg/kg 449 347 648 498 recovery ISIS 325568 2-16-2 3 mg/kg 356 298 309 228 10 mg/kg 830 685 477 339 20 mg/kg 1390 1101 739 544 20 mg/kg 264 161 344 205 recovery

[0098] As shown in Table 18, the kidney concentration of the 5-10-5 motif oligonucleotide ISIS 310457 is higher than that measured for the 2-16-2 motif oligonucleotide ISIS 325568 at all concentrations tested. Taken with the target reduction data in Table 9 for the 2-16-2 motif oligonucleotide, these data suggest that the gap-widened oligonucleotide is more potent than the corresponding 5-10-5 motif oligonucleotide, providing a more robust lowering of target mRNA levels in the liver without enhanced accumulation of oligonucleotide.

Example 15

Effects of Gap-Widened Oligonucleotides on Reduction of DGAT2 mRNA Levels--In Vitro Analysis

[0099] In accord with the present invention, oligonucleotides were designed to target DGAT2.

[0100] Shown in Table 19 is the sequence of each oligonucleotide. Plain text indicates a deoxynucleotide, and nucleotides designated with bold, underlined text are 2'-O-(2-methoxyethyl)nucleotides. Also shown for each oligonucleotide in Table 19 is its motif, the target site on human DGAT2 mRNA (GENBANK® accession number NM--032564.2, incorporated herein as SEQ ID NO: 110), and its cross-species identity. For each species listed, an "X" denotes perfect complementarity to the target sequence for that species, "1 MM" denotes one mismatch to the target sequence for the species, etc.

TABLE-US-00030 TABLE 19 Antisense compounds targeting DGAT2 SEQ ID Target ISIS # Sequence NO Site Motif Human Monkey Rat Mouse 217328 GCATTGCCACTCCCATTCTT 95 909 5-10-5 X X 1 MM X 334177 AGGACCCCGGAGTAGGCGGC 96 246 5-10-5 X X 1 MM X 366710 GACCTATTGAGCCAGGTGAC 97 396 5-10-5 X X 2 MM 2 MM 366714 GTAGCTGCTTTTCCACCTTG 98 416 5-10-5 X X 2 MM 3 MM 370727 AGCTGCTTTTCCACCTTGGA 99 414 2-16-2 X X 2 MM 2 MM 370747 TGGAGCTCAGAGACTCAGCC 100 953 2-16-2 X X 3 MM 2 MM 370784 GCTGCATCCATGTCATCAGC 101 2099 2-16-2 X X >3 MM >3 MM

[0101] Each of these oligonucleotides was tested in vitro for their ability to reduce human DGAT2 mRNA levels using real time RT-PCR methods as described herein. In HepG2 and A549 cells, each of the oligonucleotides in Table 19 demonstrated IC50 values of about 20 nM.

Example 16

Effects of Gap-Widened Oligonucleotides on Reduction of DGAT2 mRNA Levels--In Vivo Analysis

[0102] The oligonucleotides described in Table 19, along with ISIS 217357 (ACACACTAGAAGTGAGCTTA, SEQ ID NO: 102), which is targeted to rat DGAT2, the complement of nucleotides 15333000 to 15365000 of GENBANK® accession number NW--047561.1, herein incorporated as SEQ ID NO: 111 were tested for their ability to reduce DGAT2 levels in vivo. Eight week-old male Sprague-Dawley rats were injected with 20 mg/kg of oligonucleotide per week for 2 weeks. Each treatment group was comprised of 6 animals. Animals injected with saline alone served as controls.

[0103] At the end of the treatment period, animals were sacrificed and liver and kidney tissues were harvested. To determine effects of altering the gap size on pharmacokinetics, oligonucleotide concentration in kidney and liver were determined. Methods to determine oligonucleotide concentration in tissues are known in the art (Geary et al., Anal Biochem, 1999, 274, 241-248). Total oligonucleotide is the sum of all oligonucleotides metabolites detected in the tissue. Shown in Table 20 are the total concentration and the concentration of full length oligonucleotide (in μg/g) in the liver of animals treated with the indicated oligonucleotide concentration.

TABLE-US-00031 TABLE 20 Concentration of DGAT2 oligonucleotides in rat liver and kidney Treatment Total Full length group Motif Liver Kidney Liver Kidney ISIS 217357 5-10-5 91 441 70 328 ISIS 217328 5-10-5 145 399 121 294 ISIS 334177 5-10-5 164 650 114 392 ISIS 366710 5-10-5 166 625 123 401 ISIS 366714 5-10-5 278 674 214 488 ISIS 370727 2-16-2 209 355 131 166 ISIS 370747 2-16-2 195 480 150 342 ISIS 370784 2-16-2 303 669 256 421

[0104] As shown in Table 20, kidney concentrations of gap-widened oligonucleotides, particularly ISIS 370727 and ISIS 370747, were generally lower than those of oligonucleotides with a 10-deoxynucleotide gap.

Example 17

Effects of Gap-Widened Oligonucleotides on Reduction of DGAT2 mRNA Levels--In Vivo Analysis

[0105] In another arm of the experiment described in Example 16, eight-week old male Sprague-Dawley rats were treated with the oligonucleotides at doses of 50 mg/kg per week for four weeks. Each treatment group was comprised of 4 animals. At the end of the treatment period, animals were sacrificed and target mRNA levels were determined using real-time RT-PCR as described herein. Results are shown in Table 21 as the average % inhibition for each treatment group.

TABLE-US-00032 TABLE 21 Reduction of target levels in rat liver with oligonucleotides targeting DGAT2 Treatment % group Motif Inhibition ISIS 217357 5-10-5 25 ISIS 217328 5-10-5 48 ISIS 334177 5-10-5 51 ISIS 366710 5-10-5 63 ISIS 366714 5-10-5 67 ISIS 370727 2-16-2 77 ISIS 370747 2-16-2 79 ISIS 370784 2-16-2 52

[0106] As shown in Table 21, the gap-widened oligonucleotides targeted to DGAT2 show excellent inhibitory activity in the liver. ISIS 370727 and ISIS 370747, in particular, showed superior ability to reduce target expression. Taken with the distribution of these oligonucleotides in the liver as shown in Table 20, these data suggest that gap-widened oligonucleotides provide excellent to superior target reduction without enhanced accumulation of oligonucleotide in target tissues. In addition, the gap-widened oligonucleotides possess a preferred liver to kidney ratio as compared to the 5-10-5 motif oligonucleotides targeting DGAT2.

Example 18

Effects of Gap-Widened Oligonucleotides on Reduction of CRP mRNA Levels--In Vivo Analysis

[0107] Monkey-human cross-species oligonucleotides targeted to C-reactive protein (CRP) were designed to target CRP using sequences known in the art (see US application publication number US2005-0014257, herein incorporated by reference in its entirety). Shown in Table 22 is the sequence of oligonucleotides targeted to CRP tested in cynomologus monkeys. Plain text indicates a deoxynucleotide, and nucleotides designated with bold, underlined text are 2'-O-(2-methoxyethyl)nucleotides. Also shown for each oligonucleotide in Table 22 is its motif.

TABLE-US-00033 TABLE 22 Antisense oligonucleotides targeting CRP SEQ ID Isis # Sequence NO Motif 353512 TCCCATTTCAGGAGACCTGG 115 3-14-3 330012 TCCCATTTCAGGAGACCTGG 115 5-10-5 353491 GCACTCTGGACCCAAACCAG 116 3-14-3 133726 GCACTCTGGACCCAAACCAG 116 5-10-5

[0108] Methods of assaying for activity of CRP compounds in vivo and in vitro are known in the art (see US application publication number US2005-0014257, herein incorporated by reference). Toxicity profiles of gap-widened oligonucleotides were compared to the 5-10-5 oligonucleotides by treating monkeys with 14 or 40 mg/kg/wk for 4 weeks. Activity was compared in a dose-escalation study with each cycle containing four subcutaneous doses administered (Mon., Wed., Fri., Mon.) in 4 dosing cycles over 8 weeks. Doses were 2, 4 and 10 mg/kg. At 48 hr following the last dose in each treatment cycle, monkeys were challenged with 1 to 2 μg/kg IL-6 (administered subcutaneously) and serum CRP levels were quantified over 36 hours. Serum CRP levels may be measured by ELISA using a commercially available kit (for example, ALerCHEK Inc., Portland, Me.). Animals were sacrificed after the second and fourth cycles and liver CRP mRNA, tissue oligonucleotide concentration, clinical signs, serum chemistry, hematology, body weight, and histology were assessed. With regard to tissue oligonucleotide concentration and histology, the primary difference was 30% lower kidney concentration and fewer histologic changes in the 3-14-3 treated animals. Plasma cytokine and CRP levels were examined but not significantly increased.

[0109] Several CRP inhibitors were pharmacologically active, with the greatest reductions in serum CRP (30-66%) and hepatic CRP mRNA (60-85%) observed at both the 4 and 10 mg/kg treatment cycles.

[0110] We have surprisingly found that chimeric antisense compounds with gaps at least 11 nucleobases long and wings which are from independently from 1 to 4 nucleobases in length which are 2'-MOE-modified. This enhanced efficacy is not predicted by the rank order potency of these compounds in vitro (cell culture). 2-16-2 and 3-14-3 gapmer compounds as well as 3-10-7 and 7-10-3 gapmer compounds have been shown to be more effective than 5-10-5 chimeras of the equivalent sequence and wing modification. 4-12-4 gapmers are also believed to be a useful embodiment.

DETAILED DESCRIPTION OF EMBODIMENTS

[0111] Non-limiting examples of 2'-modified nucleosides useful in the compounds of the present invention, include but are not limited to 2'-O-alkyl, 2'-O-alkyl-O-alkyl wherein alkyl is a C1 to C6 alkyl or C1 to C6 alkylene when alkyl is not a terminal substituent. These include 2'-O-methyl, 2'-O-propyl and 2'-O-methoxyethyl nucleosides.

Details

[0112] The present invention uses antisense compounds which are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, increased stability and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNAse H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide-mediated inhibition of gene expression. The cleavage of RNA:RNA hybrids can, in like fashion, be accomplished through the actions of endoribonucleases, such as RNAseL which cleaves both cellular and viral RNA. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

[0113] Chimeric antisense compounds of the invention may be formed as compositestructures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been, referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, each of which is herein incorporated by reference in its entirety.

Synthesis of Nucleoside Phosphoramidites

[0114] The following compounds, including amidites and their intermediates were prepared as described in U.S. Pat. No. 6,426,220 and published PCT WO 02/36743; 5'-ODimethoxytrityl-thymidine intermediate for 5-methyl dC amidite, 5'-O-Dimethoxytrityl2'-deoxy-5-methylcytidine intermediate for 5-methyl-dC amidite, 5'-O-Dimethoxytrityl2'-deoxy-N4-benzoyl-5-methylcytidine penultimate intermediate for 5-methyl dC amidite, [5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-deoxy-N4-benzoyl-5-methylcytidin- -3'O-yl]-2-cyanoethyl-N,N-diisopropylphosphoramidite(5-methyl dC amidite), 2'-Fluorodeoxyadenosine, 2'-Fluorodeoxyguanosine, 2'-Fluorouridine, 2'Fluorodeoxycytidine, 2'-O-(2-Methoxyethyl) modified amidites, 2'-O-(2-methoxyethyl)5-methyluridine intermediate, 5'-O-DMT-2'-O-(2-methoxyethyl)-5-methyluridine penultimate intermediate, [5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-O-(2-methoxyethyl)5-methyluridin- -3'-O-yl]-2-cyanoethyl-N,N-diisopropylphosphoramidite (MOE T amidite), 5'-O-Dimethoxytrityl-2'-O-(2-methoxyethyl)-5-methylcytidine intermediate, 5'O-dimethoxytrityl-2'-O-(2-methoxyethyl)-N4-benzoyl-5-methyl-cytidine penultimate intermediate, [5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-O-(2-methoxyethyl)-N4-benzoyl5-m- ethylcytidin-3'-O-yl]-2-cyanoethyl-N,N-diisopropylphosphoramidite (MOE 5-Me-C amidite), [5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-O-(2-methoxyethyl)-N6benzoyladen- osin-3'-O-yl]-2-cyanoethyl-N,N-diisopropylphosphoramidite (MOE A amdite), [5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-O-(2-methoxyethyl)-N4isobutyrylg- uanosin-3'-O-yl]-2-cyanoethyl-N,N-diisopropylphosphoramidite (MOE G amidite), 2'-O-(Aminooxyethyl) nucleoside amidites and 2'-O-(dimethylaminooxyethyl)nucleoside amidites, 2'-(Dimethylaminooxyethoxy)nucleoside amidites, 5'-O-tertButyldiphenylsilyl-O2-2'-anhydro-5-methyluridine, 5'-O-tert-Butyldiphenylsilyl-2'-O-(2hydroxyethyl)-5-methyluridine, 2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine, 5'-O-tert-butyldiphenylsilyl-2'-O-[(2-formadoximinooxy)ethyl]-5methylurid- ine, 5'-O-tert-Butyldiphenylsilyl-2'-O-[N,N dimethylaminooxyethyl]-5methyluridine, 2'-O-(dimethylaminooxyethyl)-5-methyluridine, 5'-O-DMT-2'-O(dimethylaminooxyethyl)-5-methyluridine, 5'-O-DMT-2'-O-(2-N,Ndimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoet- hyl)-N,N-diisopropylphosphoramidite], 2'-(Aminooxyethoxy)nucleoside amidites, N2-isobutyryl6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4- ,4'-dimethoxytrityl)guanosine-3'-[(2cyanoethyl)-N,N-diisopropylphosphorami- dite], 2'-dimethylaminoethoxyethoxy (2'DMAEOE) nucleoside amidites, 2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl]-5-methyl uridine, 5'-O-dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy)-ethyl)]-5-methyl uridine and 5'-O-Dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy)-ethyl)]-5-methyl uridine-3'-O-(cyanoethyl-N,N-diisopropyl)phosphoramidite.

Oligonucleotide and Oligonucleoside Synthesis

[0115] The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives. Oligonucleotides: Unsubstituted and substituted phosphodiester (P═O) oligonucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 394) using standard phosphoramidite chemistry with oxidation by iodine. Phosphorothioates (P═S) are synthesized similar to phosphodiester oligonucleotides with the following exceptions: thiation was effected by utilizing a 10% w/v solution of 3,H-1,2-benzodithiole-3-one 1,1-dioxide in acetonitrile for the oxidation of the phosphite linkages. The thiation reaction step time was increased to 180 sec and preceded by the normal capping step. After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55° C. (12-16 hr), the oligonucleotides were recovered by precipitating with >3 volumes of ethanol from a 1 M NH4OAc solution. Phosphinate oligonucleotides are prepared as described in U.S. Pat. No. 5,508,270, herein incorporated by reference. Alkyl phosphonate oligonucleotides are prepared as described in U.S. Pat. No. 4,469,863, herein incorporated by reference.3'-Deoxy-3'-methylene phosphonate oligonucleotides are prepared as described in U.S. Pat. Nos. 5,610,289 or 5,625,050, herein incorporated by reference. Phosphoramidite oligonucleotides are prepared as described in U.S. Pat. No. 5,256,775 or U.S. Pat. No. 5,366,878, herein incorporated by reference. Alkylphosphonothioate oligonucleotides are prepared as described in published PCT applications PCT/US94/00902 and PCT/US93/06976 (published as WO 94/17093 and WO 94/02499, respectively), herein incorporated by reference. 3'-Deoxy-3'-amino phosphoramidate oligonucleotides are prepared as described in U.S. Pat. No. 5,476,925, herein incorporated by reference. Phosphotriester oligonucleotides are prepared as described in U.S. Pat. No. 5,023,243, herein incorporated by reference. Borano phosphate oligonucleotides are prepared as described in U.S. Pat. Nos. 5,130,302 and 5,177,198, both herein incorporated by reference. Oligonucleosides: Methylenemethylimino linked oligonucleosides, also identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as MDH linked oligonucleosides, and methylenecarbonyl amino linked oligonucleosides, also identified as amide-3 linked oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for instance, alternating MMI and P═O or P═S linkages are prepared as described in U.S. Pat. Nos. 5,378,825, 5,386,023, 5,489,677, 5,602,240 and 5,610,289, all of which are herein incorporated by reference. Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Pat. Nos. 5,264,562 and 5,264,564, herein incorporated by reference. Ethylene oxide linked oligonucleosides are prepared as described in U.S. Pat. No. 5,223,618, herein incorporated by reference.

RNA Synthesis

[0116] In general, RNA synthesis chemistry is based on the selective incorporation of various protecting groups at strategic intermediary reactions. Although one of ordinary skill in the art will understand the use of protecting groups in organic synthesis, a useful class of protecting groups includes silyl ethers. In particular bulky silyl ethers are used to protect the 5'-hydroxyl in combination with an acid-labile orthoester protecting group on the 2'hydroxyl. This set of protecting groups is then used with standard solid-phase synthesis technology. It is important to lastly remove the acid labile orthoester protecting group after all other synthetic steps. Moreover, the early use of the silyl protecting groups during synthesis ensures facile removal when desired, without undesired deprotection of 2' hydroxyl. Following this procedure for the sequential protection of the 5'-hydroxyl in combination with protection of the 2'-hydroxyl by protecting groups that are differentially removed and are differentially chemically labile, RNA oligonucleotides were synthesized. RNA oligonucleotides are synthesized in a stepwise fashion. Each nucleotide is added sequentially (3'- to 5'-direction) to a solid support-bound oligonucleotide. The first nucleoside at the 3'-end of the chain is covalently attached to a solid support. The nucleotide precursor, a ribonucleoside phosphoramidite, and activator are added, coupling the second base onto the 5'-end of the first nucleoside. The support is washed and any unreacted 5'-hydroxyl groups are capped with acetic anhydride to yield 5'-acetyl moieties. The linkage is then oxidized to the more stable and ultimately desired P(V) linkage. At the end of the nucleotide addition cycle, the 5'-silyl group is cleaved with fluoride. The cycle is repeated for each subsequent nucleotide.

[0117] Following synthesis, the methyl protecting groups on the phosphates are cleaved in 30 minutes utilizing 1 M disodium-2-carbamoyl-2-cyanoethylene-1,1-dithiolate trihydrate (S2Na2) in DMF. The deprotection solution is washed from the solid supportbound oligonucleotide using water. The support is then treated with 40% methylamine in water for 10 minutes at 55 ° C. This releases the RNA oligonucleotides into solution, deprotects the exocyclic amines, and modifies the 2'-groups. The oligonucleotides can be analyzed by anion exchange HPLC at this stage.

[0118] The 2'-orthoester groups are the last protecting groups to be removed. The ethylene glycol monoacetate orthoester protecting group developed by Dharmacon Research, Inc. (Lafayette, Colo.), is one example of a useful orthoester protecting group which, has the following important properties. It is stable to the conditions of nucleoside phosphoramidite synthesis and oligonucleotide synthesis. However, after oligonucleotide synthesis the oligonucleotide is treated with methylamine which not only cleaves the oligonucleotide from the solid support but also removes the acetyl groups from the orthoesters. The resulting 2-ethyl-hydroxyl substituents on the orthoester are less electron withdrawing than the acetylated precursor. As a result, the modified orthoester becomes more labile to acid-catalyzed hydrolysis. Specifically, the rate of cleavage is approximately 10 times faster after the acetyl groups are removed, Therefore, this orthoester possesses sufficient stability in order to be compatible with oligonucleotide synthesis and yet, when subsequently modified, permits deprotection to be carried out under relatively mild aqueous conditions compatible with the final RNA oligonucleotide product. Additionally, methods of RNA synthesis are well known in the art (Scaringe, S. A. Ph.D. Thesis, University of Colorado, 1996; Scaringe, S. A., et al., J. Am. Chem. Soc., 1''8, 120, 11820-11821; Matteucci, M. D. and Caruthers, M. H. J. Am. Chem. Soc., 1981, 103, 3185-3191; Beaucage, S. L. and Caruthers, M. H. Tetrahedron Lett., 1981, 22, 1859-1862; Dahl, B. J., et al., Acta Chem. Scand,. 1990, 44, 639-641; Reddy, M. P., et al., Tetrahedrom Lett., 1994, 25, 4311-4314; Wincott, F. et al., Nucleic Acids Res., 1995, 23, 2677-2684; Griffin, B. E., et al., Tetrahedron, 1967, 23, 2301-2313; Griffin, B. E., et al., Tetrahedron, 1967, 23, 2315-2331).

[0119] RNA antisense compounds (RNA oligonucleotides) of the present invention can be synthesized by the methods herein or purchased from Dharmacon Research, Inc (Lafayette, Colo.). Once synthesized, complementary RNA antisense compounds can then be annealed by methods known in the art to form double stranded (duplexed) antisense compounds. For example, duplexes can be formed by combining 30 μl of each of the complementary strands of RNA oligonucleotides (50 uM RNA oligonucleotide solution) and 15 tl of 5× annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH pH 7.4, 2 mM magnesium acetate) followed by heating for 1 minute at 90° C., then 1 hour at 37° C. The resulting duplexed antisense compounds can be used in kits, assays, screens, or other methods to investigate the role of a target nucleic acid.

Synthesis of Chimeric Oligonucleotides

[0120] Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the "gap" segment of linked nucleosides is positioned between 5' and 3' "wing" segments of linked nucleosides and a second "open end" type wherein the "gap" segment is located at either the 3' or the 5' terminus of the oligomeric compound. Oligonucleotides of the first type are also known in the art as "gapmers" or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as "hemimers" or "wingmers".

[2'-O-Me]-[2'-deoxy]-[2'-O-Me]Chimeric Phosphorothioate Oligonucleotides

[0121] Chimeric oligonucleotides having 2'-O-alkyl phosphorothioate and 2'-deoxy phosphorothioate oligonucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 394, as above. Oligonucleotides are synthesized using the automated synthesizer and 2'-deoxy-5'-dimethoxytrityl-3'-O-phosphoramidite for the DNA portion and 5'-dimethoxytrityl-2'-O-methyl-3'-O-phosphoramidite for 5' and 3' wings. The standard synthesis cycle is modified by incorporating coupling steps with increased reaction times for the 5'-dimethoxytrityl-2'-O-methyl-3'-O-phosphoramidite. The fully protected oligonucleotide is cleaved from the support and deprotected in concentrated ammonia (NH4OH) for 12-16 hr at 55° C. The deprotected oligo is then recovered by an appropriate method (precipitation, column chromatography, volume reduced in vacuo and analyzed spetrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.

[2'-O-(2-Methoxyethyl)]-[2'-deoxy]; -[2'-O-(Methoxyethyl)]Chimeric Phosphorothioate Oligonucleotides

[0122] [2'-O-(2-methoxyethyl)]-[2'-deoxy]-[-2'-O-(methoxyethyl)] chimeric phosphorothioate oligonucleotides were prepared as per the procedure above for the 2'0-methyl chimeric oligonucleotide, with the substitution of 2'-O-(methoxyethyl)amidites for the 2'-O-methyl amidites.

[2'-O-(2-Methoxyethyl)Phosphodiester]-[2'-deoxy Phosphorothioate]-[2'-O-(2-Methoxyethyl)Phosphodiester]Chimeric Oligonucleotides

[0123] [2'-O-(2-methoxyethyl phosphodiester]-[2'-deoxy phosphorothioate]-[2'-O(methoxyethyl)phosphodiester]chimeric oligonucleotides are prepared as per the above procedure for the 2'-O-methyl chimeric oligonucleotide with the substitution of 2'-O(methoxyethyl)amidites for the 2'-O-methyl amidites, oxidation with iodine to generate the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) to generate the phosphorothioate internucleotide linkages for the center gap.

[0124] Other chimeric oligonucleotides, chimeric oligonucleosides and mixed chimeric oligonucleotides/oligonucleosides are synthesized according to U.S. Pat. No. 5,623,065, herein incorporated by reference.

[0125] The methods of the present invention are particularly useful in antisense therapeutics. It is not necessary that the antisense target be associated with liver disease per se, since many current antisense targets are expressed to high levels in liver and other organs. In particular, targets associated with metabolic and cardiovascular diseases and conditions are particularly amenable to knockdown in the liver and have been shown in animals and in clinical studies to have therapeutic effects).

[0126] The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor-targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

Sequence CWU 1

116120DNAArtificial SequenceOligomeric Compound 1ctgctagcct ctggatttga 20220DNAArtificial SequenceOligomeric Compound 2ccttccctga aggttcctcc 20318DNAArtificial SequenceOligomeric Compound 3gctcatactc gtaggcca 18420DNAArtificial SequenceOligomeric Compound 4tcgatctcct tttatgcccg 20520DNAArtificial SequenceOligomeric Compound 5tctgtctctc ccatatacag 20620DNAArtificial SequenceOligomeric Compound 6tgtttctgtc tctcccatat 20720DNAArtificial SequenceOligomeric Compound 7cttttgtttc tgtctctccc 20820DNAArtificial SequenceOligomeric Compound 8atcacttttg tttctgtctc 20920DNAArtificial SequenceOligomeric Compound 9gtttgcaatg ctttcttcca 201020DNAArtificial SequenceOligomeric Compound 10tgaggtttgc aatgctttct 201120DNAArtificial SequenceOligomeric Compound 11ctattgaggt ttgcaatgct 201220DNAArtificial SequenceOligomeric Compound 12cgacctattg aggtttgcaa 201320DNAArtificial SequenceOligomeric Compound 13ctggtcgacc tattgaggtt 201420DNAArtificial SequenceOligomeric Compound 14ctgtggtata caatttcaca 201520DNAArtificial SequenceOligomeric Compound 15ctttggtctg tggtatacaa 201620DNAArtificial SequenceOligomeric Compound 16gtcaaaggtg ctttggtctg 201720DNAArtificial SequenceOligomeric Compound 17ggtttagtgt ccggtaaaat 201820DNAArtificial SequenceOligomeric Compound 18ctttttctgt tttcacttgg 201920DNAArtificial SequenceOligomeric Compound 19ttctcttgct taattacccc 202020DNAArtificial SequenceOligomeric Compound 20cagtttctct tgcttaatta 202120DNAArtificial SequenceOligomeric Compound 21gcccagtttc tcttgcttaa 202220DNAArtificial SequenceOligomeric Compound 22tttattacca attatatttg 202320DNAArtificial SequenceOligomeric Compound 23acattttatt accaattata 202420DNAArtificial SequenceOligomeric Compound 24gcagacattt tattaccaat 202520DNAArtificial SequenceOligomeric Compound 25aatggcagac attttattac 202620DNAArtificial SequenceOligomeric Compound 26cagaaatggc agacatttta 202720DNAArtificial SequenceOligomeric Compound 27tgaacagaaa tggcagacat 202820DNAArtificial SequenceOligomeric Compound 28ccatgaacag aaatggcaga 202920DNAArtificial SequenceOligomeric Compound 29cacaccatga acagaaatgg 203020DNAArtificial SequenceOligomeric Compound 30tactcacacc atgaacagaa 203120DNAArtificial SequenceOligomeric Compound 31gaggtactca caccatgaac 203220DNAArtificial SequenceOligomeric Compound 32tccagaggta ctcacaccat 203320DNAArtificial SequenceOligomeric Compound 33gtcctccaga ggtactcaca 203420DNAArtificial SequenceOligomeric Compound 34atctgtcctc cagaggtact 203520DNAArtificial SequenceOligomeric Compound 35gtacatctgt cctccagagg 203620DNAArtificial SequenceOligomeric Compound 36agtggtacat ctgtcctcca 203720DNAArtificial SequenceOligomeric Compound 37tcatagtggt acatctgtcc 203820DNAArtificial SequenceOligomeric Compound 38catgtcatag tggtacatct 203920DNAArtificial SequenceOligomeric Compound 39tattcatgtc atagtggtac 204020DNAArtificial SequenceOligomeric Compound 40gctgtattca tgtcatagtg 204120DNAArtificial SequenceOligomeric Compound 41ggatgctgta ttcatgtcat 204220DNAArtificial SequenceOligomeric Compound 42aaagggatgc tgtattcatg 204320DNAArtificial SequenceOligomeric Compound 43tgagaaaggg atgctgtatt 204420DNAArtificial SequenceOligomeric Compound 44tggtggaatg acattaaaaa 204520DNAArtificial SequenceOligomeric Compound 45gaattggtgg aatgacatta 204620DNAArtificial SequenceOligomeric Compound 46gagcttacat ctggtctcat 204720DNAArtificial SequenceOligomeric Compound 47aggagagctt acatctggtc 204820DNAArtificial SequenceOligomeric Compound 48atggaggaga gcttacatct 204920DNAArtificial SequenceOligomeric Compound 49ctggatggag gagagcttac 205020DNAArtificial SequenceOligomeric Compound 50gagctggatg gaggagagct 205120DNAArtificial SequenceOligomeric Compound 51tgtccttcca ctgctctttt 205220DNAArtificial SequenceOligomeric Compound 52gtgctgtcct tccactgctc 205320DNAArtificial SequenceOligomeric Compound 53aattgtgctg tccttccact 205420DNAArtificial SequenceOligomeric Compound 54aggtaattgt gctgtccttc 205520DNAArtificial SequenceOligomeric Compound 55cggcatgctg ggcagttttt 205620DNAArtificial SequenceOligomeric Compound 56atagcggcat gctgggcagt 205720DNAArtificial SequenceOligomeric Compound 57cgatagcggc atgctgggca 205820DNAArtificial SequenceOligomeric Compound 58attccagcct gaagacattt 205920DNAArtificial SequenceOligomeric Compound 59gttcattcca gcctgaagac 206020DNAArtificial SequenceOligomeric Compound 60ttctttgttt ttcgagcttc 206120DNAArtificial SequenceOligomeric Compound 61ttttttcttt gtttttcgag 206220DNAArtificial SequenceOligomeric Compound 62caggaactat tgttttgtta 206320DNAArtificial SequenceOligomeric Compound 63tgcaggaact attgttttgt 206420DNAArtificial SequenceOligomeric Compound 64gagctatcat atcctgcata 206520DNAArtificial SequenceOligomeric Compound 65aacagagcta tcatatcctg 206620DNAArtificial SequenceOligomeric Compound 66ctggaacaga gctatcatat 206720DNAArtificial SequenceOligomeric Compound 67ttcactgctg caatcacttg 206820DNAArtificial SequenceOligomeric Compound 68ccatttcact gctgcaatca 206920DNAArtificial SequenceOligomeric Compound 69ttgcccattt cactgctgca 207020DNAArtificial SequenceOligomeric Compound 70ataatcagat caggagcaaa 207120DNAArtificial SequenceOligomeric Compound 71attaataatc agatcaggag 207220DNAArtificial SequenceOligomeric Compound 72gctcattaat aatcagatca 207320DNAArtificial SequenceOligomeric Compound 73ctctgctcat taataatcag 207420DNAArtificial SequenceOligomeric Compound 74cattctctgc tcattaataa 207520DNAArtificial SequenceOligomeric Compound 75agcatgtgtt tacattggtc 207620DNAArtificial SequenceOligomeric Compound 76aaggttttca tacagagata 207720DNAArtificial SequenceOligomeric Compound 77cagtaaggtt ttcatacaga 207820DNAArtificial SequenceOligomeric Compound 78gaagcagtaa ggttttcata 207920DNAArtificial SequenceOligomeric Compound 79gagagaagca gtaaggtttt 208020DNAArtificial SequenceOligomeric Compound 80gcttttccta gctctttgat 208120DNAArtificial SequenceOligomeric Compound 81atggcttttc ctagctcttt 208220DNAArtificial SequenceOligomeric Compound 82atggtcttat ccaaaaatgt 208320DNAArtificial SequenceOligomeric Compound 83actcatggtc ttatccaaaa 208420DNAArtificial SequenceOligomeric Compound 84caatactcat ggtcttatcc 208520DNAArtificial SequenceOligomeric Compound 85aattcaatac tcatggtctt 208620DNAArtificial SequenceOligomeric Compound 86atgatttcag ctaacatctc 208720DNAArtificial SequenceOligomeric Compound 87gtgatgattt cagctaacat 208820DNAArtificial SequenceOligomeric Compound 88gaatattttg gtatctgatt 208920DNAArtificial SequenceOligomeric Compound 89atttgaatat tttggtatct 209020DNAArtificial SequenceOligomeric Compound 90ttccatttga atattttggt 209120DNAArtificial SequenceOligomeric Compound 91atatttccat ttgaatattt 209220DNAArtificial SequenceOligomeric Compound 92tttttgatat ttccatttga 209320DNAArtificial SequenceOligomeric Compound 93gcactttgtg gtgccaaggc 209420DNAArtificial SequenceOligomeric Compound 94gcactttgtg gtaccaaggt 209520DNAArtificial SequenceOligomeric Compound 95gcattgccac tcccattctt 209620DNAArtificial SequenceOligomeric Compound 96aggaccccgg agtaggcggc 209720DNAArtificial SequenceOligomeric Compound 97gacctattga gccaggtgac 209820DNAArtificial SequenceOligomeric Compound 98gtagctgctt ttccaccttg 209920DNAArtificial SequenceOligomeric Compound 99agctgctttt ccaccttgga 2010020DNAArtificial SequenceOligomeric Compound 100tggagctcag agactcagcc 2010120DNAArtificial SequenceOligomeric Compound 101gctgcatcca tgtcatcagc 2010220DNAArtificial SequenceOligomeric Compound 102acacactaga agtgagctta 201032160DNAM. musculus 103ggcgccctgc tctcccggcg gggcggcgga gggggcgggc tggccggcgc acggtgatgt 60ggcgggactc tttgtgcact gcggcaggat acgcgcttgg gcgtcgggac gcggctgcgc 120tcagctctct cctctcggaa gctgcagcca tgatggaagt ttgagagttg agccgctgtg 180aggccaggcc cggcgcaggc gagggagatg agagacggcg gcggccacgg cccagagccc 240ctctcagcgc ctgtgagcag ccgcgggggc agcgccctcg gggagccggc cgggcggcgg 300cggcggcagc ggcggcgggc ctcgcctcct cgtcgtctgt tctaaccggg cagcttctga 360gcagcttcgg agagagacgg tggaagaagc cgtgggctcg agcgggagcc ggcgcaggct 420cggcggctgc acctcccgct cctggagcgg gggggagaag cggcggcggc ggccgcggct 480ccggggaggg ggtcggagtc gcctgtcacc attgccaggg ctgggaacgc cggagagttg 540ctctctcccc ttctcctgcc tccaacacgg cggcggcggc ggcggcacgt ccagggaccc 600gggccggtgt taagcctccc gtccgccgcc gccgcacccc ccctggcccg ggctccggag 660gccgccggag gaggcagccg ctgcgaggat tatccgtctt ctccccattc cgctgcctcg 720gctgccaggc ctctggctgc tgaggagaag caggcccagt ctctgcaacc atccagcagc 780cgccgcagca gccattaccc ggctgcggtc cagggccaag cggcagcaga gcgaggggca 840tcagcgaccg ccaagtccag agccatttcc atcctgcaga agaagcctcg ccaccagcag 900cttctgccat ctctctcctc ctttttcttc agccacaggc tcccagacat gacagccatc 960atcaaagaga tcgttagcag aaacaaaagg agatatcaag aggatggatt cgacttagac 1020ttgacctata tttatccaaa tattattgct atgggatttc ctgcagaaag acttgaaggt 1080gtatacagga acaatattga tgatgtagta aggtttttgg attcaaagca taaaaaccat 1140tacaagatat acaatctatg tgctgagaga cattatgaca ccgccaaatt taactgcaga 1200gttgcacagt atccttttga agaccataac ccaccacagc tagaacttat caaacccttc 1260tgtgaagatc ttgaccaatg gctaagtgaa gatgacaatc atgttgcagc aattcactgt 1320aaagctggaa agggacggac tggtgtaatg atttgtgcat atttattgca tcggggcaaa 1380tttttaaagg cacaagaggc cctagatttt tatggggaag taaggaccag agacaaaaag 1440ggagtcacaa ttcccagtca gaggcgctat gtatattatt atagctacct gctaaaaaat 1500cacctggatt acagacccgt ggcactgctg tttcacaaga tgatgtttga aactattcca 1560atgttcagtg gcggaacttg caatcctcag tttgtggtct gccagctaaa ggtgaagata 1620tattcctcca attcaggacc cacgcggcgg gaggacaagt tcatgtactt tgagttccct 1680cagccattgc ctgtgtgtgg tgatatcaaa gtagagttct tccacaaaca gaacaagatg 1740ctcaaaaagg acaaaatgtt tcacttttgg gtaaatacgt tcttcatacc aggaccagag 1800gaaacctcag aaaaagtgga aaatggaagt ctttgtgatc aggaaatcga tagcatttgc 1860agtatagagc gtgcagataa tgacaaggag tatcttgtac tcaccctaac aaaaaacgat 1920cttgacaaag caaacaaaga caaggccaac cgatacttct ctccaaattt taaggtgaaa 1980ctatacttta caaaaacagt agaggagcca tcaaatccag aggctagcag ttcaacttct 2040gtgactccag atgttagtga caatgaacct gatcattata gatattctga caccactgac 2100tctgatccag agaatgaacc ttttgatgaa gatcagcatt cacaaattac aaaagtctga 2160104986DNAM. musculus 104ttgaattaca tcttagccca gaagcccgac cggctcagga cgaaggaact cgcggagctg 60gaggatgagc tctgcaaact gacgtgtgac tgcactggcc agggtggagc catacaggta 120gcttctgcag gttcgaagtt cccggtttcc tctccgaccg aggagaaacc actgccggcc 180gcctgccaga cttttctgtt ccacgggcag ctcgtagtga accggccact gactcttcaa 240gaccagcaga cgtttgcgcg ctcggtgggt ctcaagtggc gcagggtggg gcgctccctg 300cagcgtaact gtcgggcact gagagatcct gccctcgact cgctggccta cgagtatgag 360cgtgatgggc tatacgagca ggccttccag ctgctgcgcc gtttcatgca agccgagggc 420cgccgtgcca cactgcagcg cctggtggag gcgctggagg agaacgaact cactagtcta 480gcagaggatc tgttgggcca ggcggagccg gatggcggcc tggcctaagt ctagtactgt 540ggggaagggc ggccaaccag cagttcagtg tttgaaaccc acgggtggct gttggggtat 600ttttttaccg ctgatgttgc tactgctgac cactttccat ctactggact tggagagcat 660acgcacgccc cacctagctg agctgctgga gtgcaactaa ctgcccctcc ccccgccccc 720caggagccag gcaagcagcg caggggtaaa tcactgatga tcatacaaaa agaggacttg 780ctgcaaagac cctctaagta cccggacctt ctgaaaccta gctcaaggtg ctacaaaaac 840tgtcgggagc aggatgcacg attttccccg cccttggcat atactcatcg tgggaccgaa 900gcaccttgtc tgcagcgata ataaaatgta actcttttac agacatgcgg agatgctgag 960gtctagacct ggttggggtt agtcac 9861054788DNAH. sapiens 105tttttagaaa aaaaaaatat atttccctcc tgctccttct gcgttcacaa gctaagttgt 60ttatctcggc tgcggcggga actgcggacg gtggcgggcg agcggctcct ctgccagagt 120tgatattcac tgatggactc caaagaatca ttaactcctg gtagagaaga aaaccccagc 180agtgtgcttg ctcaggagag gggagatgtg atggacttct ataaaaccct aagaggagga 240gctactgtga aggtttctgc gtcttcaccc tcactggctg tcgcttctca atcagactcc 300aagcagcgaa gacttttggt tgattttcca aaaggctcag taagcaatgc gcagcagcca 360gatctgtcca aagcagtttc actctcaatg ggactgtata tgggagagac agaaacaaaa 420gtgatgggaa atgacctggg attcccacag cagggccaaa tcagcctttc ctcgggggaa 480acagacttaa agcttttgga agaaagcatt gcaaacctca ataggtcgac cagtgttcca 540gagaacccca agagttcagc atccactgct gtgtctgctg cccccacaga gaaggagttt 600ccaaaaactc actctgatgt atcttcagaa cagcaacatt tgaagggcca gactggcacc 660aacggtggca atgtgaaatt gtataccaca gaccaaagca cctttgacat tttgcaggat 720ttggagtttt cttctgggtc cccaggtaaa gagacgaatg agagtccttg gagatcagac 780ctgttgatag atgaaaactg tttgctttct cctctggcgg gagaagacga ttcattcctt 840ttggaaggaa actcgaatga ggactgcaag cctctcattt taccggacac taaacccaaa 900attaaggata atggagatct ggttttgtca agccccagta atgtaacact gccccaagtg 960aaaacagaaa aagaagattt catcgaactc tgcacccctg gggtaattaa gcaagagaaa 1020ctgggcacag tttactgtca ggcaagcttt cctggagcaa atataattgg taataaaatg 1080tctgccattt ctgttcatgg tgtgagtacc tctggaggac agatgtacca ctatgacatg 1140aatacagcat ccctttctca acagcaggat cagaagccta tttttaatgt cattccacca 1200attcccgttg gttccgaaaa ttggaatagg tgccaaggat ctggagatga caacttgact 1260tctctgggga ctctgaactt ccctggtcga acagtttttt ctaatggcta ttcaagcccc 1320agcatgagac cagatgtaag ctctcctcca tccagctcct caacagcaac aacaggacca 1380cctcccaaac tctgcctggt gtgctctgat gaagcttcag gatgtcatta tggagtctta 1440acttgtggaa gctgtaaagt tttcttcaaa agagcagtgg aaggacagca caattaccta 1500tgtgctggaa ggaatgattg catcatcgat aaaattcgaa gaaaaaactg cccagcatgc 1560cgctatcgaa aatgtcttca ggctggaatg aacctggaag ctcgaaaaac

aaagaaaaaa 1620ataaaaggaa ttcagcaggc cactacagga gtctcacaag aaacctctga aaatcctggt 1680aacaaaacaa tagttcctgc aacgttacca caactcaccc ctaccctggt gtcactgttg 1740gaggttattg aacctgaagt gttatatgca ggatatgata gctctgttcc agactcaact 1800tggaggatca tgactacgct caacatgtta ggagggcggc aagtgattgc agcagtgaaa 1860tgggcaaagg caataccagg tttcaggaac ttacacctgg atgaccaaat gaccctactg 1920cagtactcct ggatgtttct tatggcattt gctctggggt ggagatcata tagacaatca 1980agtgcaaacc tgctgtgttt tgctcctgat ctgattatta atgagcagag aatgactcta 2040ccctgcatgt acgaccaatg taaacacatg ctgtatgttt cctctgagtt acacaggctt 2100caggtatctt atgaagagta tctctgtatg aaaaccttac tgcttctctc ttcagttcct 2160aaggacggtc tgaagagcca agagctattt gatgaaatta gaatgaccta catcaaagag 2220ctaggaaaag ccattgtcaa gagggaagga aactccagcc agaactggca gcggttttat 2280caactgacaa aactcttgga ttctatgcat gaagtggttg aaaatctcct taactattgc 2340ttccaaacat ttttggataa gaccatgagt attgaattcc ccgagatgtt agctgaaatc 2400atcaccaatc agataccaaa atattcaaat ggaaatatca aaaaacttct gtttcatcaa 2460aagtgactgc cttaataaga atggttgcct taaagaaagt cgaattaata gcttttattg 2520tataaactat cagtttgtcc tgtagaggtt ttgttgtttt attttttatt gttttcatct 2580gttgttttgt tttaaatacg cactacatgt ggtttataga gggccaagac ttggcaacag 2640aagcagttga gtcgtcatca cttttcagtg atgggagagt agatggtgaa atttattagt 2700taatatatcc cagaaattag aaaccttaat atgtggacgt aatctccaca gtcaaagaag 2760gatggcacct aaaccaccag tgcccaaagt ctgtgtgatg aactttctct tcatactttt 2820tttcacagtt ggctggatga aattttctag actttctgtt ggtgtatccc ccccctgtat 2880agttaggata gcatttttga tttatgcatg gaaacctgaa aaaaagttta caagtgtata 2940tcagaaaagg gaagttgtgc cttttatagc tattactgtc tggttttaac aatttccttt 3000atatttagtg aactacgctt gctcattttt tcttacataa ttttttattc aagttattgt 3060acagctgttt aagatgggca gctagttcgt agctttccca aataaactct aaacattaat 3120caatcatctg tgtgaaaatg ggttggtgct tctaacctga tggcacttag ctatcagaag 3180accacaaaaa ttgactcaaa tctccagtat tcttgtcaaa aaaaaaaaaa aaaaagctca 3240tattttgtat atatctgctt cagtggagaa ttatataggt tgtgcaaatt aacagtccta 3300actggtatag agcacctagt ccagtgacct gctgggtaaa ctgtggatga tggttgcaaa 3360agactaattt aaaaaataac taccaagagg ccctgtctgt acctaacgcc ctatttttgc 3420aatggctata tggcaagaaa gctggtaaac tatttgtctt tcaggacctt ttgaagtagt 3480ttgtataact tcttaaaagt tgtgattcca gataaccagc tgtaacacag ctgagagact 3540tttaatcaga caaagtaatt cctctcacta aactttaccc aaaaactaaa tctctaatat 3600ggcaaaaatg gctagacacc cattttcaca ttcccatctg tcaccaattg gttaatcttt 3660cctgatggta caggaaagct cagctactga tttttgtgat ttagaactgt atgtcagaca 3720tccatgtttg taaaactaca catccctaat gtgtgccata gagtttaaca caagtcctgt 3780gaatttcttc actgttgaaa attattttaa acaaaataga agctgtagta gccctttctg 3840tgtgcacctt accaactttc tgtaaactca aaacttaaca tatttactaa gccacaagaa 3900atttgatttc tattcaaggt ggccaaatta tttgtgtaat agaaaactga aaatctaata 3960ttaaaaatat ggaacttcta atatattttt atatttagtt atagtttcag atatatatca 4020tattggtatt cactaatctg ggaagggaag ggctactgca gctttacatg caatttatta 4080aaatgattgt aaaatagctt gtatagtgta aaataagaat gatttttaga tgagattgtt 4140ttatcatgac atgttatata ttttttgtag gggtcaaaga aatgctgatg gataacctat 4200atgatttata gtttgtacat gcattcatac aggcagcgat ggtctcagaa accaaacagt 4260ttgctctagg ggaagaggga gatggagact ggtcctgtgt gcagtgaagg ttgctgaggc 4320tctgacccag tgagattaca gaggaagtta tcctctgcct cccattctga ccacccttct 4380cattccaaca gtgagtctgt cagcgcaggt ttagtttact caatctcccc ttgcactaaa 4440gtatgtaaag tatgtaaaca ggagacagga aggtggtgct tacatcctta aaggcaccat 4500ctaatagcgg gttactttca catacagccc tcccccagca gttgaatgac aacagaagct 4560tcagaagttt ggcaatagtt tgcatagagg taccagcaat atgtaaatag tgcagaatct 4620cataggttgc caataataca ctaattcctt tctatcctac aacaagagtt tatttccaaa 4680taaaatgagg acatgttttt gttttctttg aatgcttttt gaatgttatt tgttattttc 4740agtattttgg agaaattatt taataaaaaa acaatcattt gctttttg 47881066322DNAR. norvegicusmisc_feature(1)...(6322)n = A,T,C or G 106gacgctgcgg gggtggggga cctncggcgg cacggagtcc ccccccgggc tcacattaat 60atttgccaat ggactccaaa gaatccttag ctccccctgg tagagacgaa gtccctggca 120gtttgcttgg ccaagggagg gggagcgtaa tggactttta taaaagcctg aggggaggag 180ctacagtcaa ggtttctgca tcttcgccct cagtggctgc tgcttctcag gcagattcca 240agcagcagag gattctcctt gatttctcga aaggctccac aagcaatgtg cagcagcgac 300agcagcagca gcagcagcag cagcagcagc agcagcagca gcagcagcag cagcagccag 360gcttatccaa agccgtttca ctgtccatgg ggctgtatat gggagagaca gaaacaaaag 420tgatggggaa tgacttgggc tacccacagc agggccaact tggcctttcc tctggggaaa 480cagactttcg gcttctggaa gaaagcattg caaacctcaa taggtcgacc agcgttccag 540agaaccccaa gagttcaacg tctgcaactg ggtgtgctac cccgacagag aaggagtttc 600ccaaaactca ctcggatgca tcttcagaac agcaaaatcg aaaaagccag accggcacca 660acggaggcag tgtgaaattg tatcccacag accaaagcac ctttgacctc ttgaaggatt 720tggagttttc cgctgggtcc ccaagtaaag acacaaacga gagtccctgg agatcagatc 780tgttgataga tgaaaacttg ctttctcctt tggcgggaga agatgatcca ttccttctcg 840aagggaacac gaatgaggat tgtaagcctc ttattttacc ggacactaaa cctaaaatta 900aggatactgg agatacaatc ttatcaagtc ccagcagtgt ggcactaccc caagtgaaaa 960cagaaaaaga tgatttcatt gaactttgca cccccggggt aattaagcaa gagaaactgg 1020gcccagttta ttgtcaggca agcttttctg ggacaaatat aattggtaat aaaatgtctg 1080ccatttctgt tcatggtgtg agtacctctg gaggacagat gtaccactat gacatgaata 1140cagcatccct ttctcagcag caggatcaga agcctgtttt taatgtcatt ccaccaattc 1200ctgttggttc tgaaaactgg aataggtgcc aaggctccgg agaggacagc ctgacttcct 1260tgggggctct gaacttccca ggccggtcag tgttttctaa tgggtactca agccctggaa 1320tgagaccaga tgtaagctct cctccatcca gctcgtcagc agccacggga ccacctccca 1380agctctgcct ggtgtgctcc gatgaagctt caggatgtca ttacggggtg ctgacatgtg 1440gaagctgcaa agtattcttt aaaagagcag tggaaggaca gcacaattac ctttgtgctg 1500gaagaaacga ttgcatcatt gataaaattc gaaggaaaaa ctgcccagca tgccgctatc 1560ggaaatgtct tcaggctgga atgaaccttg aagctcgaaa aacaaagaaa aaaatcaaag 1620ggattcagca agccactgca ggagtctcac aagacacttc ggaaaatcct aacaaaacaa 1680tagttcctgc agcattacca cagctcaccc ctaccttggt gtcactgctg gaggtgattg 1740aacccgaggt gttgtatgca ggatatgata gctctgttcc agattcagca tggagaatta 1800tgaccacact caacatgtta ggtgggcgtc aagtgattgc agcagtgaaa tgggcaaagg 1860cgatactagg cttgagaaac ttacacctcg atgaccaaat gaccctgcta cagtactcat 1920ggatgtttct catggcattt gccttgggtt ggagatcata cagacaatca agcggaaacc 1980tgctctgctt tgctcctgat ctgattatta atgagcagag aatgtctcta ccctgcatgt 2040atgaccaatg taaacacatg ctgtttgtct cctctgaatt acaaagattg caggtatcct 2100atgaagagta tctctgtatg aaaaccttac tgcttctctc ctcagttcct aaggaaggtc 2160tgaagagcca agagttattt gatgagattc gaatgactta tatcaaagag ctaggaaaag 2220ccatcgtcaa aagggaaggg aactccagtc agaactggca acggttttac caactgacaa 2280agcttctgga ctccatgcat gaggtggttg agaatctcct tacctactgc ttccagacat 2340ttttggataa gaccatgagt attgaattcc cagagatgtt agctgaaatc atcactaatc 2400agataccaaa atattcaaat ggaaatatca aaaagcttct gtttcatcaa aaatgactgc 2460cttactaaga aaggttgcct taaagaaagt tgaatttata gcttttactg tacaaactta 2520tcaatttgtc ttgtagatgt tttgttgttc tttttgtttc tgtcttgttt tgttttaaac 2580acgcagtaca tgtggtttat agagggccaa gacttggcga cagaagcagt tgagtcaaca 2640ctctgaagtg atgacacagc acacagtgaa gtgtattgtt ggtgtatcac agaaactaac 2700agttacgtgg aggcatggcc actgtcagag agggaccgca cctaaaccac cgtgcccaag 2760tccatgtggt tcaactttct gactcagaac tttacagttg gctgggtaaa actttctaga 2820ctttctgttg gtgtattttt cccatgtata gttaggatgg tattttgatt tatgcatgca 2880aacctgaaaa aagtttacaa gtgtatatca gaaaagggaa gttgtgcctt ttatagctat 2940tactgtctgg ttttaacaat ttcctttata ttcagtgaac tatgcttgct cgtttctctt 3000caataatttt tgtattccag ttattgtaca gctgtttaag atgggcagct gcttcacagc 3060tttcctagac gctaacatta atttccgtgt gaaaatgggt cggtgcttct accctgttgg 3120caccagctat cagaagacca cagaaattga ctcagatctc cagtattctt gttaaaaagc 3180tcttactctg tatatatctg cttccatgga gaattacata ggctgagcag attacatagg 3240ctgagcagat taaccgtcct aactggtgta gagcacctag tccagtgacc ttctgggtaa 3300accgtggatg atggttacag aagactggtg ggaaaacagt aactaccaaa aggccccttt 3360ccatctaatg caccatctct tcaatgggga gatagcaacc aagcccgtaa atcagctctt 3420tcaggacctt ctggagtggt ttgcataaca ttttaaaatg tattattcca gatagccagc 3480tctgataaag ccgagagatt gtttaatcag accaagtaac ttctctcatt aaacttaccc 3540ccaactaaat cgctaataca gcaagaatgg ctagacaccc attttcacat ctcacccgca 3600ccgattggtc tagctctcat ggtggtcagg agaatcagct actgattttt gttacttaga 3660atnttcagga ctcgcatttn tccnnctaca catccctaca tgtgccatag aatttaacac 3720aagtcctgtg aacttcttca cattgagaat tatcatttta aacaaaacag aagcagtagt 3780agccctttct ntgtgcacct taccnncttt ctntgactca aagcttaata tgcttactaa 3840gccacaagaa atcngatttc nacttaaagg cgccaaatta tttgtgtaat agaaaaactg 3900aaaatctaat attaaaaata tgaaacttct aatatatttt tatatttagt tatagtttcg 3960atatatatca tatcggtatt cactgatctt gggaaaggga aagggctact gcagctttac 4020atgcaattta ttaactgact gtaaaatagc tgtatagtaa taagaatgac ttttagtgag 4080attgctttat catgacatgt tatatatttt tcgtaggggt caaagaaata ttgatggata 4140tgatagccta tatgatttaa tngtatataa aagcatncaa acaggcctta acgcgtcttg 4200gaaannaaaa tacctttgtt ctaagctagg gaagggagcn ggagannggc cccgtgtgta 4260tnggaggttc cgaggctcgg atnnaagaga tcnanagggg atctaattcc ntacctccat 4320ctaattacct caccacccat gatcctgtca gtgnaggnnn ggttattaaa tcccccgtta 4380tactaatata aatagganag aagggtggcg ctcacgtctg ttccaggcgc cgcagtagca 4440gggttatttt ccatgcagcc tcccgacaag gttagcagag ggaggctttg gcaagtttgg 4500cgtggcgtgc atagaggcac cagcaacatg taaacctaaa gagcccatag gaagccaaga 4560atacactaat cctccccacc cttcaatagt ccatttccaa gtaagatgag gacatgctta 4620tgttttcttt gaatgctttt agaatgttgt tattttcagt attttgcaga aattatttaa 4680taaaaaagta taatttgaat tctctctaaa agggattgtt cagtttgtaa tggtttaaat 4740tggtctcaaa gtactttaag ataattgtaa cccagctgga tgtgaaattt atggtgccta 4800agaaatacca cttgaatatt atcaagacag tgttaagttt taaaatgagc ttctcaaaaa 4860tagattattg tacatttatg gaatgttata tggttaaacc caaaaaagca catcacacat 4920aaatctgctt tcagcttggc tttcaaaaat agagctccaa aaacgaaaaa ggagaagaaa 4980aagtatatat atgcgttgtt attaacagaa ggcaacagac attcataaaa ctactaccga 5040agctttcctt gaagcgtata aagagccatg ctcctttagt atgtggggaa gaagagagcc 5100gtcatagttt cgagtacaga gagaagatgc ggtactgtct ccgtgtgtgg cttcataccg 5160ttcctaacta tttaggttta taataacttc agtgagactc ggtgacatgc ctgtatgact 5220catgaccgat cttgaaagat atctttaatt actggtagga caaaagggac actctggtta 5280ttttaggcct tggcttggga tactgtatat ccagaagaaa ggagacagga aacttgggga 5340agggaaggga acctaggaag cactgccttc tgtaggaaag aacacaccaa taagtgagag 5400tacccaaagg gacaaggcca cacagtgtgg ggtctaagga tgagtcaggg tgagctctgg 5460tgggcatgga gaagccagca actccagtgc tacagagcag ggcagggcag ggatgggaca 5520agatggatgc ggatcccagt cccagtagtt tgctccctct tatttaccat gggatgaacc 5580atggagtatt gatctgtcag cactcaagga tcatggagct tgagattccg gttggtcacc 5640ccaacggtaa gctgagattg aatgtgtttc ttatgtgccg gtttcagtgt tagaaggcga 5700aacagagtgt acagaagaca ctgcaaaccg gtcagatgaa agtcttctca ttcccaaact 5760attttcagtc agcctgctct atcaggactg gtgaccagct gctaggacag ggtcggcgct 5820tctgtctaga atatgcctga aaggatttta ttttctgata aatggctgta tgaaaatacc 5880ctcctcaata acctgcttaa ctacatagag atttcagtgt gtcaatattc tattttgtat 5940attaaacaaa ggctatataa tggggacaaa tctatattat actgtgtatg gcattattaa 6000gaagcttttn nannattttt tatcacagta atttttaaat gtgtaaaaaa ttaaaaatta 6060gtgantccng tttaaaaata aaagttgtag ttttttattc atgctgaata acctgtagtt 6120taaaaatccg tctttctacc tacanagtga aatgtcagac ngtaaaattt tgtgtggaaa 6180tgtttaactt ttatttttct ttaaatttgc tgtcttggta ttaccaaacc acacattgta 6240ctgaattggc agtaaatgtt agtcagccat ttacagcaat gccaaatatg gataaacatc 6300ataataaaat atctgctttt tc 63221072575DNAM. musculus 107ggaagttaat atttgccaat ggactccaaa gaatccttag ctccccctgg tagagacgaa 60gtccccagca gtttgcttgg ccgggggagg ggaagcgtga tggacttgta taaaaccctg 120aggggtggag ctacagtcaa ggtttctgcg tcttcaccct cagtggctgc tgcttctcag 180gcagattcca agcagcagag gattctcctt gatttttcaa aaggctcagc aagcaatgca 240cagcagcagc agcagcagca gcagccgcag ccagatttat ccaaagccgt ttcactgtcc 300atgggactgt atatgggaga gaccgaaaca aaagtgatgg ggaatgactt gggctaccca 360cagcagggcc agcttggcct ctcctctggg gaaacagact ttcggcttct ggaagaaagc 420attgcaaacc tcaataggtc gaccagccgt ccagagaatc ccaagagttc aacacctgca 480gctgggtgtg ctaccccgac agagaaggag tttccccaga ctcactctga tccatcttca 540gaacagcaaa atagaaaaag ccagcctggc accaacggtg gcagtgtgaa attgtatacc 600acagaccaaa gcacctttga catcttgcag gatttggagt tttctgccgg gtccccaggt 660aaagagacaa acgagagtcc ttggaggtca gacctgttga tagatgaaaa cttgctttct 720cctttggcgg gagaagatga tccattcctt ctggaagggg acgtgaatga ggattgcaag 780cctcttattt taccggacac taaacctaaa attcaggata ctggagatac aatcttatca 840agccccagca gtgtggcact gccccaagtg aaaacagaga aagatgattt cattgagctt 900tgcacccctg gggtaattaa gcaagagaaa ctgggcccgg tttattgcca ggcaagcttt 960tctgggacaa atataattgg gaataaaatg tctgccattt ctgttcatgg cgtgagtacc 1020tctggaggac agatgtacca ctatgacatg aatacagcat ccctttctca gcagcaggat 1080cagaagcctg tttttaatgt cattccacca attcctgttg gttctgaaaa ctggaatagg 1140tgccaagggt ctggagagga caacctgact tccttggggg ctatgaactt cgcaggccgc 1200tcagtgtttt ctaatggata ttcaagccct ggaatgagac cagatgtgag ttctcctccg 1260tccagctcct ccacagcaac gggaccacct cccaaactct gcctggtgtg ctccgatgaa 1320gcttcggtat gccattatgg ggtgctgacg tgtggaagct gtaaagtctt ctttaaaaga 1380gcagtggaag gacagcacaa ttacctttgt gctggaagaa atgattgcat cattgataaa 1440attcgaagaa aaaactgtcc agcatgccgc tatcgaaaat gtcttcaagc tggaatgaac 1500ctggaagctc gaaaaacgaa gaaaaaaatt aaaggaattc agcaagccac tgcaggagtc 1560tcacaagaca cttctgaaaa cgctaacaaa acaatagttc ctgccgcgct gccacagctt 1620acccctaccc tggtgtcact gctggaggtg atcgagcctg aggtgttata tgcaggatat 1680gacagctctg ttccagactc agcatggaga attatgacca cgctcaacat gttaggtggg 1740cgccaagtga ttgccgcagt gaaatgggca aaggcgatac caggattcag aaacttacac 1800ctggatgacc aaatgaccct tctacagtac tcatggatgt ttctcatggc atttgccctg 1860ggttggagat catacagaca agcaagtgga aacctgctat gctttgctcc tgatctgatt 1920attaatgagc agagaatgac tctaccctgc atgtatgacc aatgtaaaca catgctgttt 1980atctccactg aattacaaag attgcaggta tcctatgaag agtatctctg tatgaaaacc 2040ttactgcttc tctcctcagt tcctaaggaa ggtctgaaga gccaagagtt atttgatgag 2100attcgaatga cttatatcaa agagctagga aaagccattg tcaaaaggga aggaaactcc 2160agtcagaatt ggcagcggtt ttatcaactg acaaaacttt tggactccat gcatgatgtg 2220gttgaaaatc tccttagcta ctgcttccaa acatttttgg ataagtccat gagtattgaa 2280ttcccagaga tgttagctga aatcatcact aatcagatac caaaatactc aaatggaaat 2340atcaaaaagc ttctgtttca tcagaaatga ctgccttact aagaaaggct gccttaaaga 2400aagttgaatt tatagctttt actgtacaaa cttatcaact tgtcttgtag atgttttgtc 2460gttctttttg tttgtcttgt ttgttttcta tacgcactac atgtggtctc tagagggcca 2520agacttggca acagaagcag atgagccatc acttttcagt gacaggaaag cagac 25751082034DNAH. sapiens 108ggatctggca gcgccgcgaa gacgagcggt caccggcgcc cgacccgagc gcgcccagag 60gacggcgggg agccaagccg acccccgagc agcgccgcgc gggccctgag gctcaaaggg 120gcagcttcag gggaggacac cccactggcc aggacgcccc aggctctgct gctctgccac 180tcagctgccc tcggaggagc gtacacacac accaggactg cattgcccca gtgtgcagcc 240cctgccagat gtgggaggca gctagctgcc cagaggcatg cccccctgcc agccacagcg 300acccctgctg ctgttgctgc tgctgctggc ctgccagcca caggtcccct ccgctcaggt 360gatggacttc ctgtttgaga agtggaagct ctacggtgac cagtgtcacc acaacctgag 420cctgctgccc cctcccacgg agctggtgtg caacagaacc ttcgacaagt attcctgctg 480gccggacacc cccgccaata ccacggccaa catctcctgc ccctggtacc tgccttggca 540ccacaaagtg caacaccgct tcgtgttcaa gagatgcggg cccgacggtc agtgggtgcg 600tggaccccgg gggcagcctt ggcgtgatgc ctcccagtgc cagatggatg gcgaggagat 660tgaggtccag aaggaggtgg ccaagatgta cagcagcttc caggtgatgt acacagtggg 720ctacagcctg tccctggggg ccctgctcct cgccttggcc atcctggggg gcctcagcaa 780gctgcactgc acccgcaatg ccatccacgc gaatctgttt gcgtccttcg tgctgaaagc 840cagctccgtg ctggtcattg atgggctgct caggacccgc tacagccaga aaattggcga 900cgacctcagt gtcagcacct ggctcagtga tggagcggtg gctggctgcc gtgtggccgc 960ggtgttcatg caatatggca tcgtggccaa ctactgctgg ctgctggtgg agggcctgta 1020cctgcacaac ctgctgggcc tggccaccct ccccgagagg agcttcttca gcctctacct 1080gggcatcggc tggggtgccc ccatgctgtt cgtcgtcccc tgggcagtgg tcaagtgtct 1140gttcgagaac gtccagtgct ggaccagcaa tgacaacatg ggcttctggt ggatcctgcg 1200gttccccgtc ttcctggcca tcctgatcaa cttcttcatc ttcgtccgca tcgttcagct 1260gctcgtggcc aagctgcggg cacggcagat gcaccacaca gactacaagt tccggctggc 1320caagtccacg ctgaccctca tccctctgct gggcgtccac gaagtggtct ttgccttcgt 1380gacggacgag cacgcccagg gcaccctgcg ctccgccaag ctcttcttcg acctcttcct 1440cagctccttc cagggcctgc tggtggctgt cctctactgc ttcctcaaca aggaggtgca 1500gtcggagctg cggcggcgtt ggcaccgctg gcgcctgggc aaagtgctat gggaggagcg 1560gaacaccagc aaccacaggg cctcatcttc gcccggccac ggccctccca gcaaggagct 1620gcagtttggg aggggtggtg gcagccagga ttcatctgcg gagaccccct tggctggtgg 1680cctccctaga ttggctgaga gccccttctg aaccctgctg ggaccccagc tagggctgga 1740ctctggcacc cagaggcgtc gctggacaac ccagaactgg acgcccagct gaggctgggg 1800gcgggggagc caacagcagc ccccacctac cccccacccc cagtgtggct gtctgcgaga 1860ttgggcctcc tctccctgca cctgccttgt ccctggtgca gaggtgagca gaggagtcca 1920gggcgggagt gggggctgtg ccgtgaactg cgtgccagtg tccccacgta tgtcggcacg 1980tcccatgtgc atggaaatgt cctccaacaa taaagagctc aagtggtcac cgtg 20341091875DNAR. norvegicus 109gaattcgcgg ccgccgccgg gccccagatc ccagtgcgcg aggagcccag tcctagaccc 60agcaacctga ggagaggtgc acacaccccc aaggacccag gcacccaacc tctgccagat 120gtgggggggt ggctacccag aggcatgctc ctcacccagc tccactgtcc ctacctgctg 180ctgctgctgg tggtgctgtc atgtctgcca aaggcaccct ctgcccaggt aatggacttt 240ttgtttgaga agtggaagct ctatagtgac cagtgccacc acaacctaag cctgctgccc 300ccacctactg agctggtctg caacagaact ttcgacaagt actcctgctg gcctgacacc 360cctcccaaca ccactgccaa catttcctgc ccctggtacc taccttggta ccacaaagtg 420cagcaccgcc tagtgttcaa gaggtgtggg cctgatgggc agtgggttcg agggccacgg 480gggcagtcat ggcgcgacgc ctcccaatgt cagatggatg atgacgagat cgaggtccag 540aagggggtag ccaagatgta tagcagctac caggtgatgt acactgtggg ctacagtctg 600tccctggggg ccttgctcct ggcgctggtc atcctgctgg gcctcaggaa gctgcactgc 660acccggaact acatccacgg gaacctgttc gcgtccttcg tgctcaaggc tggctctgtg 720ctggtcattg attggctgct caagacacgc tatagccaga agattggaga tgacctcagt

780gtgagcgtct ggctcagtga tggggcggtg gctggctgca gagtggccac agtgatcatg 840cagtacggca tcatagccaa ctactgctgg ttgctggtgg agggtgtgta cctgtacagc 900ctgctgagca tcaccacctt ctcggagaag agcttcttct ccctctatct gtgcatcggc 960tggggatctc ccctgctgtt tgtcatcccc tgggtggtgg tcaagtgtct gtttgagaat 1020gtccagtgct ggaccagcaa tgacaatatg ggattctggt ggatcctgcg tatccctgta 1080ctcctggcca tactgatcaa ttttttcatc tttgtccgca tcattcatct tcttgtggcc 1140aagctgcgtg cccatcagat gcactatgct gattacaagt tccggctagc caggtccacg 1200ctgaccctca ttcctctgct gggagtccac gaagtggtct ttgcctttgt gactgatgag 1260catgcccagg gcaccctgcg ctccaccaag ctcttttttg acctgttctt cagctccttt 1320cagggtctgc tggtggctgt tctctactgt ttcctcaaca aggaggtgca ggcagagcta 1380ctgcggcgtt ggaggcgatg gcaagaaggc aaagctcttc aggaggaaag gatggccagc 1440agccatggca gccacatggc cccagcaggg acttgtcatg gtgatccctg tgagaaactt 1500cagcttatga gtgcaggcag cagcagtggg actggctgtg agccctctgc gaagacctca 1560ttggccagta gtctcccaag gctggctgac agccccacct gaatctccac tggactccag 1620ccaagttgga ttcagaaagg gcctcacaag acaacccaga aacagatgcc tggccaaggc 1680tgaagaggca aagcagcaag acagcagctt gtactatcca cactccccta acctgtcctg 1740gccgggtaca ggccacattg atggagtagg ggctggatat gatggagtag ccatgctatg 1800aactatgggt gttcccatga gtgttgccat gttccatgca cacagatatg accttcagta 1860aagagctccc gtagg 18751102439DNAH. sapiens 110ctccgggaac gccagcgccg cggctgccgc ctctgctggg gtctaggctg tttctctcgc 60gccaccactg gccgccggcc gcagctccag gtgtcctagc cgcccagcct cgacgccgtc 120ccgggacccc tgtgctctgc gcgaagccct ggccccgggg gccggggcat gggccagggg 180cgcggggtga agcggcttcc cgcggggccg tgactgggcg ggcttcagcc atgaagaccc 240tcatagccgc ctactccggg gtcctgcgcg gcgagcgtca ggccgaggct gaccggagcc 300agcgctctca cggaggacct gcgctgtcgc gcgaggggtc tgggagatgg ggcactggat 360ccagcatcct ctccgccctc caggacctct tctctgtcac ctggctcaat aggtccaagg 420tggaaaagca gctacaggtc atctcagtgc tccagtgggt cctgtccttc cttgtactgg 480gagtggcctg cagtgccatc ctcatgtaca tattctgcac tgattgctgg ctcatcgctg 540tgctctactt cacttggctg gtgtttgact ggaacacacc caagaaaggt ggcaggaggt 600cacagtgggt ccgaaactgg gctgtgtggc gctactttcg agactacttt cccatccagc 660tggtgaagac acacaacctg ctgaccacca ggaactatat ctttggatac cacccccatg 720gtatcatggg cctgggtgcc ttctgcaact tcagcacaga ggccacagaa gtgagcaaga 780agttcccagg catacggcct tacctggcta cactggcagg caacttccga atgcctgtgt 840tgagggagta cctgatgtct ggaggtatct gccctgtcag ccgggacacc atagactatt 900tgctttcaaa gaatgggagt ggcaatgcta tcatcatcgt ggtcgggggt gcggctgagt 960ctctgagctc catgcctggc aagaatgcag tcaccctgcg gaaccgcaag ggctttgtga 1020aactggccct gcgtcatgga gctgacctgg ttcccatcta ctcctttgga gagaatgaag 1080tgtacaagca ggtgatcttc gaggagggct cctggggccg atgggtccag aagaagttcc 1140agaaatacat tggtttcgcc ccatgcatct tccatggtcg aggcctcttc tcctccgaca 1200cctgggggct ggtgccctac tccaagccca tcaccactgt tgtgggagag cccatcacca 1260tccccaagct ggagcaccca acccagcaag acatcgacct gtaccacacc atgtacatgg 1320aggccctggt gaagctcttc gacaagcaca agaccaagtt cggcctcccg gagactgagg 1380tcctggaggt gaactgagcc agccttcggg gccaactccc tggaggaacc agctgcaaat 1440cacttttttg ctctgtaaat ttggaagtgt catgggtgtc tgtgggttat ttaaaagaaa 1500ttataacaat tttgctaaac cattacaatg ttaggtcttt tttaagaagg aaaaagtcag 1560tatttcaagt tctttcactt ccagcttgcc ctgttctagg tggtggctaa atctgggcct 1620aatctgggtg gctcagctaa cctctcttct tcccttcctg aagtgacaaa ggaaactcag 1680tcttcttggg gaagaaggat tgccattagt gacttggacc agttagatga ttcacttttt 1740gcccctaggg atgagaggcg aaagccactt ctcatacaag cccctttatt gccactaccc 1800cacgctcgtc tagtcctgaa actgcaggac cagtttctct gccaagggga ggagttggag 1860agcacagttg ccccgttgtg tgagggcagt agtaggcatc tggaatgctc cagtttgatc 1920tcccttctgc cacccctacc tcacccctag tcactcatat cggagcctgg actggcctcc 1980aggatgagga tgggggtggc aatgacaccc tgcaggggaa aggactgccc cccatgcacc 2040attgcaggga ggatgccgcc accatgagct aggtggagta actggttttt cttgggtggc 2100tgatgacatg gatgcagcac agactcagcc ttggcctgga gcacatgctt actggtggcc 2160tcagtttacc ttccccagat cctagattct ggatgtgagg aagagatccc tcttcagaag 2220gggcctggcc ttctgagcag cagattagtt ccaaagcagg tggcccccga acccaagcct 2280cacttttctg tgccttcctg agggggttgg gccggggagg aaacccaacc ctctcctgtg 2340tgttctgtta tctcttgatg agatcattgc accatgtcag acttttgtat atgccttgaa 2400aataaatgaa agtgagaatc caaaaaaaaa aaaaaaaaa 243911131737DNAR. norvegicusmisc_feature(1)...(31737)n = A,T,C or G 111aaccccccac aaaaacatgg tacagtccgg ggcggaccct tttgccccgc cctatagcgt 60catgacccgc cccgttgtga ggttataaag cgcgcgcgcg cgcggcggcg ctaggcgccg 120tggccgcgct tcgctagctt tctgattgcc tagggtggca gcggctacct acctcggatc 180tcgacctgct gccaccacgg cctgagcgct gtccctcggc tcccggagct cagcgcgaag 240ccctggcccc ggcggctggg gcatggatca ggggcgctgc gtgaggcggc ttcctgcacg 300gccgtgacgt gcaccggctt cagcatgaag accctcatcg ctgcctactc cggggtcctg 360cggggtgagc gtcgggccga agctgcccgc agcgagaaca agaataaagg atctgccctg 420tcacgcgagg ggtctgggcg atggggtgag tgccagtcat ccctagggct ttcatcctga 480gggacaagga cccacagcaa gacgactttc agggactatg gccaaggcgt gctgccctgt 540gctggacgga cggctagcta gttcaggttg gcgtcccaga caattacttc cagtttttaa 600aaggtctcac cttgtagcct aggctggctt ccaactctca ccccctgtct cggcatccca 660ggtgccggga ttgcaggtgt gccaacacag ctggcttctc tttaggggaa cctgacttct 720gcatcctgtc attttggtca aggatgaggc aagattcacg cttacctagt ttggttaccc 780agtttgagtc tgccaacctg gtatcctagt ctagcctggg ttcattctcc atcctggtac 840tcaccaatgt tgcaacatgt gttacatcac ttcccatccc ccagctgatg agggcgacac 900cacctactca gctcagttat tagtgatatt tcactctcca gcccccagta ctgttctacc 960tcacaaggtg gagcaggatt tggctgggag gaactggatg gggtggtaag tagggttttg 1020caatcccccg aaacagccac tggatggaga acatgcctgc ctggaacagg tgtgccccaa 1080ctgtcctctt ccccagcttt tgtgtgccaa cccagactgt gaaaccccta ggcacaaccc 1140tgagtctgac atacttagaa gtggagtggg agacccttgg ggtttttttc gttttttagt 1200tggtctctgt gtaacaactc ggtttgtcct ggtactctat agaccaggct ggccttgaac 1260tcacagagat ccacctaagt tgattttcct cctggaaggg tctgccttta aggtagaact 1320gaggccttca gggaatggag gagggggaca tataatttaa attacaccac agcttttccc 1380atacaaggca aagcacccca cattgcttag ctgaagttgc agaaactggg tgaggaagaa 1440catgctaccc aagttttcct tagaagggca acggcggtgc agaccttcaa tcccagtgct 1500tgggaggcag aggcgggtgg atctcttgag tctgagtcta gcctggtcta cagaaggagt 1560tccaggacat gctaattatg gtaatcttga aagtataggc aatcaggaag gaaggaagat 1620tgctggcaca tcaactatct agtggttaca tccactagta catgttatat aaagtcaaga 1680acatgatata tatatatata tatatatata tatatatata tatatatata tatatataaa 1740attctaaatt ccgtcttctc ttaatggtac agcgtgagta tttctcgcca ttcgtacatc 1800tgccactctc ctatgctgga gctccatccc ggctttccca cttggcattg gcgctagtcc 1860tgattggcac tagtcctggc tgactgctgc tgtggttatc tgcccctgga gaggtcctca 1920agcgtttcca tcctaggggg caagccttcg gagctgcccc gcacacagcc tacagcttct 1980gatggcctct tttcccagtg cttctctctt cactgtgcct tttgatgccc taacagggaa 2040ggatgtgact tgctggtgtt gatgctttta agtactctca gtcactgggt aatgggacgg 2100gtctgctgtc tgctgtggct cctcctggag gttacttgtt cttcctgggc tcccctctgt 2160cttccaagat cagggcacct gttaaattca tttttttgac agggttttgt gttttatttt 2220ttttagctca ggagaatttg tcctccctca gctcttgagc agttcttcgt agcaagggga 2280tttctccatg ttgttgttca gtgtagaaaa tacagtggaa gaaagtgggt gtggttacct 2340catagactag ggactaatat gagaagcaaa ctagtcagtt tagctctctg ggatctgctt 2400gggtgaagga ctaggtggag agggcagggt gctcaagcaa attttatgtt atcttgacat 2460cttcaggagg cctccttcta cctccttggt ccgtgtagac actccctcgt ggcctagttt 2520gcctccgcag atcagttccc actaaccacc ctgcttagtg gcagtgttca agtaaggaag 2580gaagatcatg gattctctga agggaagctc tgtaatgggt gagagattgc actgacagct 2640tggtaacttg gttttttgtt gaagtttgga tggtgtgcaa agtttgttgg aagagaggag 2700tcttttttta atgttttttt atttatgtgt gtgtggggag gggtggtttt tcaagacagg 2760tgtttttgtt ttgttttgtc ttgtttgttt tttcttgctg gctgtcctgt aactccctct 2820ttagaccagg ttggccttag agaaccacct gcctgcctcc tgagtgccac gattaaaggc 2880atgtgccgcc catcctggct tgccttggta ttttctgatc tccgaaagac tggcttagac 2940tgtggcttag aggctggtaa gaggcagcag gtacatccct gcctttgctc ctggataggg 3000aacttctcat ggtagagccc ttggatgctt gtggctattc ttagtttagt ccaggaccca 3060gtatgaggta ggggcagtag agttctgagc tgggacattg tgtggcttcc aaagcctagg 3120acaggggtgg agtcatagtt gggattttaa tagaagaatc ccagcagctg tttgttgatg 3180actgcatagc ttggatggtg gagatggaga tcccctcccc tgggtatacg ctaggtggag 3240ggtaaaacta agtggccaga ttgttggggg ataattctgg aactgagagt tggcaggcat 3300ctgacatagt cctgtagttc tgtgatcgag gaaagaaaac cccggttgcc cctactcctc 3360ggttccgtgt ggcttttctc ttggttgagg tatatctgtt gccaaaggct cacctctgcc 3420agaaaaggag ggcccagtac agtgctttct tagcagggaa gtgactcagt tgcaagtgtg 3480gaaatcctgc tccacctcta ccctccttct cctgaatcca gcagcaagta cctgaattat 3540cgaattacag ctaccatggt gctgggtctg gcccaacctt cagagcacag actaaaaact 3600tgatttcccc aagaaggact ggtccaggag tagaaaagac atgctagaac cccgatccat 3660ctctgtctgt gcctatcagc ctccttaaac ccgagatgta tggggacagg aacacatagg 3720taccgcgcag ttgccagatg aatgctgatc caaactgcat gctgggtatg gtgtctcctc 3780ccaagctttc tgaggaaact cccccaggct tggtggctag ggagatacca acaacccaca 3840gaacttttgt ctggcttgat aaattgctcc cctctcccca atacttcaga cctcagctcc 3900tgtggggttg cccaaacact tcccaccatc tcacgatgtc ctgtggtgag gacgctacgt 3960gccacgtgct ggtggtcttt ctgaccctcc accattgtct gtagtagctc tctctcaggg 4020tctctgccct tggttaccct tctcagatct tggcgtgcct gcccagatgg tcagagcatc 4080ctccagctcc caaagcttgt gctttggtag tccttatcat tacctagtta tgacatgtgg 4140gtattgttta ggtaattgtc agcccttgag gacagggaac tcgttggtct tcctcagtgc 4200cgtgtctcta gtgtctgacc ctgtgcaggc aggtggtagg agccctagag gtatttattg 4260agtgagtgaa tcattagtgg gacttccagg tcctctaggc agaaagccct gcttttagct 4320tcagtgtaat tcctcagctg tccccagagc tctttgcttg tgtgtgctga gtgtccttga 4380gatactcagt ctggctaaga gcttgtcttg ggggggttga gtgccaagtg ggtagaggca 4440ggtgtactgt gatccacaca gagttccata ctgtacaagg ccaaagccag gattcctatc 4500ccacctttat tcctgccccc tctgggacac gatgggtttg ctgtctctga agatttcatt 4560ttcctgtttt gaaatagatt ccaagctggg tgtggtggtg cacaccttaa tcccagcact 4620caggcagagg ctggtggatc tccgagttcc cagacagcca gggtgttggg aacctggtat 4680cctaagtggc atactccctt ggccgcatca tcaaagacga ctaccttact ttgtaaaaac 4740ggagtatgtg aagactctag ttcctggagc ggactctcct gggtatgagc ttgcagtctg 4800gtggctgaac acttgtgtgt cagccagcct gcctgacttt gcctcagcaa gccacggtct 4860cttgctgatt gtcagtccct tccaatggga gacggacaag ggtgtggtca aagtgtttcc 4920actgttctgg tgctgagcct gtgagaccct tgtgctaagc cacaggagca gaagcctgag 4980ggtctgccct cagagcaact ggtaattctg tgccaggaca gggacctcgc tctgcttctg 5040ctttccacat ggagccagct cctcggtgcg gtcagagagc ccctgtggtt ccttccagac 5100ctggccccct gctcttcctc atttgtgtcc tcccagaaaa tggggcttgc atcctcctta 5160gggccctggt aagtacccta gagaaagtac ctccccgtgg attgtcataa ggacctattc 5220tggggactcc ttggtgacgc acatgcaagc tggtggtgtt gccatagcag cccctcctac 5280tccaggattg aatgtgctgg gtcagggagt tggggctgag aaaactggtt gctagggtct 5340catgtcactc atggtggtcc tggttagctg atgagaacct ggcatcctac ctctcaggac 5400tctcccttac ttaatgaaaa ctagatgtgt taggccctga ccctctgggg tagccctcgt 5460gggagccagt gttcctatta gaaagatcgt ttgtagatta aaaatccatt aggaattcaa 5520gcagagtaca ataggtccaa gttggcaaga cctcaggcct catctgctct gttcttatta 5580tgtagtgctc gagggaaacc tagagagaag gagggtccca gaaaatcact gggatggtgg 5640gctctctgta tcaggctctt gatggcctgg ctaggtacta cccaagtcca gcatggatcc 5700gtgttgagtt ggcctttcct tagggccaga tgtctctatg gacactattt taggacttat 5760cgtttctata atagctctca aaggagattg ctcatctctg tggggaagaa ctcaccagtg 5820cgttagcagg taagtggcta gcttgtgccc tgtccacagt tgttggaaag agtggaactg 5880gataggcttt ttctggtgtt catggtagag gtcagcattt catggccttc tagtccttcc 5940tgcctgcctc tgtcacttcc aattcagtct ctggactaga cttttatccg taagtcctca 6000ggtttgtcct ctctttgtag atgccagttg cagggcccat gacttcctca catcagtctg 6060acacctcagc tgagctgtta caccctcccc aggatagtct ggtgacagac atccctctgt 6120gcctggtcct ttcaagccct ctatctaatt cataccctgt ctcctcagct gtgtctaggg 6180tgggtagtcc aagagctaac acctctggca ggtgcctggg aagcagaagg gagtcagggc 6240tgaaaggttc ctcttggctc aggatcctta ggaagtttct ctctggagcc ttgctgttgt 6300ccctgacatt agcccactag cagaaaaacc ttccacatag aagaaaatct ttcctgtgtg 6360gcacaggtcg actgacttct cacccaggcc cttttaaatt gattgcagtc ccttcaagca 6420ttcaggcatc agccagggac ctgctcttgg tatggctccg ttctgggcat aggaacccag 6480acagagtgag atgtagttct tgcaaatgaa cacacacctc atagtctaag gggctttgag 6540tataggattg agaggcaacc tgtcagcatg ggcaggccac cccagttggg tacaggaaga 6600cttcccaggg gagagtgaca aggccagttg gcaaagccag tgtctgatag ggatccccaa 6660agtatgtgct gctaaacaac tgaccagggg gacgatgcct ggtggcactg caggctgggt 6720taagagcctg tgaggcggtg gttggggaca gctctgtgca cagggattgg cagagcctgg 6780cactatggta ggactgcagc aggcctgacc gtccagagct ggtagttccg ccatgatggc 6840cctgtcatca tcacatgtgt ggactttggc cgagagtacc tccctgaggt cacccagaag 6900acagccagct cagctctggc ctcaaagaag ttgcagcagt ttgtcacttg atggggcctc 6960ctgacttccc agcccctcat aaccatgtgg cttgtgcaca gtccttggag caacttaaaa 7020gtagtttccc ccctcctcaa accaaggtaa agtttcagtc caggtggccc agatgcagat 7080gtggcatcct tcggacctga gaatgtggac agggtgcttt tctgctcagg gggcctaggg 7140cccttgctgc ctctgatttc taggtctttc catctcttaa tagctgggcc ggttctgatt 7200ggttcttacc acaagttatt tgggttcctt acagggaccc tgggttataa ctaaggacac 7260tggatctcaa ggagggtggc aattcgcaaa gtgttaaatc ctgggtttgt attgctttaa 7320ggagaggcag gtgttgttac atccataagg caatgaaagg ctattgatgc tcacagataa 7380ttagctgccg ctcatgtaga tccttgccta aacatgatcc cacctaattc cctcagcagt 7440cttcccgagg taggtattag ccccactgtc caggtgagga aacccaggct tgtatagacg 7500tgactcatcc aagccacact tcctgtaggt tagaggccag ttttcctcac ttgggttctg 7560tggacttctc ctgggtgtag tttctccaca gatacttctg tggaggcgac agaggagcca 7620tgggggctgc cctaggacat ggcctcccag ctgctgtgtg tggcacatgc ttctacacct 7680atgctcccac ctcccctgct caggccaggg actctcaggc ctggctctgg ctctggctct 7740ggctcgttat cccaaattct tcctttatag ctcgtctcca cctgatagca cattctctcc 7800cttatcagtt cttgagcttc cagacaggtg gggctgatcc ccacccccac cagcactccc 7860acccctggca gcgcctttta accaaccgct catgaatttg ggtcctatgt gtcacactgc 7920tttgactata cagtcctctg tttccaactt ctctctggga cattccgatt accacccccc 7980acctttctgg gttgttgatg acgcaccttg accctgcctt attggaacac cccgtctttg 8040ttttgcctgt tctaccagca accgtctctg ctcgccttcc tccaaagccc attctgtgcc 8100gtttctccta atgcacagcc ttgtcccacc attagcacac tgagtgaaaa gccgtctgcc 8160cagtctttat gtccttccca ctgggaggag aaggctgcaa ctgcctcgcc ttactggcca 8220cacgcacaca ctcacacacg tgcacacaca cacacaagca tgcacacaag ttacaatccc 8280tgtatggaag tcagagcaca gcttgaagga gctggtgctc tccaccatgt gtgtccaggg 8340attgggactc cgctcatcag gtctggtagc agctgccatg tattttctca tttaatcttt 8400cccaacaagc ccttgaggtt attctcaagg gttatgctca gggcgctgtc ttactcatct 8460catgttacag ccccacaggg ttgcccttcc ccacattacg ctcttaggtg cattctgcca 8520ctcttgggca aaggtgagag agagccaaga ggccccgggg agcagtctcc ttgctcaccg 8580atattaggta ttgaacaaga agggtctaac acaggtcacg tcattcccat tcgtgggtcc 8640cgagatcagg cagctctggt gacctcagca ggagcttggc tatgggaacc actgggtggg 8700gttctccctt ctcgcacagc cagtctgcac agacctgtcc ccgtgacagt gaggcacagt 8760gtaggcagag cgggcggccc ttctcatcca ggtgttaact cggcgtttgg gtgtagactt 8820gccatgttta gtaggggaac ccgccctctg taccatggca ttgttcaagt gattgaaggg 8880attggtgtcc aaatacctac tctgagtctg gctggcattc tgtgccttct ccgtgaggtc 8940aatctcttcg agtttcatca tgctggttcc ctccttgtct tgtgccctcc taagaagtac 9000tatgagatag tggcatggcg tagggtggta agacatctgc tctgggccta tctggcattc 9060ccttccatct gtcctccaga catggagtag cacatgagct gtgtgcaggg atctgcctcc 9120tgagtggcct gtgggaaccc tgacttcaca ggactagtct atttatacta tcaatgttta 9180cacgtggagg ttcccttcgt aagtcaggga gcccgtgctt agagatggca ggagaggctc 9240agcattttcg tagcagggtt tggattcttg aaagcaaccc agtgaaattg ggcacccagc 9300ttcctctgga gccagccatg ttggatttgt ccaaccatac agcaaatctt tatattgtgc 9360ccctccccct cgccatatcc ctgtgtgatg ttctatacac acagatgagt caggtccagt 9420cttggcactc acaagtcact gagagaggtg ggtgagcaag ggattctgtg agactggagc 9480cgtgttaaga acacagaaga gtgggtgtgc ccagggaggc ttgggatgag gaagttggat 9540ttggctggat gctaagactc tcttaccacc caacctccga gtcaagcagg cagggcgtgg 9600aggtggtggc atttgattgt agcttcctca ccagctggac ttctgccaac caagctggag 9660taggggaagt ataacaacca gatggcaaag actggttatg ccctgtggat gtacaaggga 9720accttcactt cctggttccc caggtgattg tcccagggct gctgcaagct ggtgaacttg 9780aaggcccaaa ttatgaccag gaggtggaca ccagggatca tgagcttgat ctaactcact 9840ccagaaagga aaagtcccct gaccagcttg cattggtggc acagctggaa ccagatagag 9900cctgaaggcc tttgcccctc gctgctcttt aagaagcctt ctgtagcatg ctggtcattc 9960agcactcagg aagctgcagc ggaattgcaa gtttgaagcc atcctgagct atacaagact 10020caacaaaacc aaagctaatc actgaaacac aaaatgcaaa caaaaagaac atgaaacggg 10080ttctaattta ccctcaggtt aatttccatc ccttcccagc attccccagc ttccctgtgg 10140ggagaagaca gaagggactt gagaccagca gcactggggc aaatgcaagc ctgaatttgg 10200gttcgaatag agtcccacac tcatgctggt tccctccttg tcttgtgccc ccctaaggag 10260tactatgaga cagtggcatg atcagcatca cattggggtg atgatggtag attcccagga 10320ttccaaactt taggagctcc tcctcaggta ccattcttgc tgttctgccc taggatcctg 10380aatggctaga gttgagtgcc tttctcttat actagccagg ccttgtcagg gcactgggaa 10440cccagatgta gatcagaact gaccaggcct cgggcagtat tgctctcacg tgacaatcaa 10500cttgaactat gtcctttgta caaggaagag agtacaggag ctgagaggga gaacttcctt 10560ttcatcccct gctgctctct cctcacttta ctgtcacaga caacctcccg gggggctaga 10620aagcctctgt caggctccag gcttgggtgg tccccaggga agaaaagatt gtacctccct 10680ggaggtacag tacagccctc tccatcggaa aagcatagtg tgtcaagcag gatgtcacct 10740ctaaggggca gtcactgttt cctaggtccc ttagggcttc cactggagcc tggacttgag 10800gcaggccagg cagggaggat tgtaggagtg catctgagga atgtagtgtt gcagtccacc 10860cccaacctct ccagacatct gccatttcct ctcccagaaa tgcagcaggt cctccctgga 10920ctacattccc gttttgctgg cagggcaggc agtaggtggt tggtccagtg aggcaggata 10980agaacaggat gggctctggc ctgcatagat atggcctgcg cagagtctct caggcccttg 11040gttttgtctg tataatggga tgagagctta acaaaatggg gtattcctct attttaagca 11100gtttcaaaag attggaggga cttgggatgt tgtgtgtgtt ttttgttttg ttttgttttg 11160cttttttcct tatttaggct tactcagttt tggatggggc atataaccag taaggagttt 11220ctacatgcct cccccaagct gagtgctgta ccagctacag ttggctgtgt tgactaaaat 11280gcaaggcctg ctggcctagg gtgagggttt caggcctggg cttgggcctc actttccagc 11340aggctcaagg

tgtcttccta tgccccgtgt gcctttcctt aaacattcct ccaaactcta 11400gcctgaggtt tttcctgctg tagtggtggg gctgataaca gaaggcattt gccatgcatt 11460catttcctga caagcagaag gctgaaccct ggttcactca cttactccat gggagactaa 11520atagttctag ttgttgttcc tcaaatttag cacctggggg tattgtcaac tgcagaatcg 11580actcattgga ccctgtcatt tctaacctgc tcacaggtga catgatgtgt cctagaccat 11640gcttaggaca agacattgct acagaacctt ttgtcttcct gccagtaggg tacctggcct 11700gcccgatggt tacctatgct taaccctcac ctccattgtt gctgacagtg atgtagccaa 11760ccagccttac gtcaggagtt tagactgcat cttggaggtt cattcctctt atacatatgt 11820gtgagacttg tccccacata cagtccaggg aaggtcatga gacctttaga tataattgtg 11880accaagtcat ttatctaggc tcaactggtg ggcagatgta ccaggccctg agtttggtcc 11940acccttgaac ttgatatgtc caatggtcag agtcctttgc attcattggg tgctgtattg 12000aacccaatat aaagtataga gaataatgtg ccctgaacag aggcaggaat cctgggttgt 12060tctgcctggt aactctgctc atgctaaaat gtgtgatccc tttagggctc aggatgaaac 12120ctaaagagca agtctggttg ggggaagggc ccataagaga aaggggccta cgacagaaga 12180tttacaaaag aggtgaaggg gcaatgcacc agtctctgaa atggctgtgg gatccaactc 12240tgtttttgtg cctttgcccc accattcctg ttgtatatta ttgagtactc agtgtgtgac 12300ggtcattggc attgaatcct atactctccc ctggggtcac acatatagag tgagacggag 12360agtttgcctc tacagtgcca cgccctcttc atctggttta ttagatcagg aggtgaaagg 12420actggaatgt ctggcatttc ctacttacgt ctgaaaatca gagaggctgt gagctttcag 12480ctgagaggag ttatacttct ttctgaactt ggctgtgacc tttctgctat caattttgac 12540agagagcaaa gactcaaatg tgaacccttc gatcccttct ttcctggttc ccagcttgtg 12600ggccagggcg gatggtcagg agacattcaa ggtcaagact gacaggcatc tgtcctgggc 12660cctgggcagt gggcagtagg aaaggagtgt ttgggtggca cacagtaggc actcaaaata 12720ggctgacaaa gggacacagc tgggctcaac atttagtgtg tgaagtggcc tctttttagt 12780ctaagactgg aatgagtggt cttgggacct cacccatact cttctctagt gccacctctc 12840ctgtaggcac caggcttcct ggccacacta cctgtcagct gctggagccc aggggtcatc 12900ctaggtctcc aactacagag ccagtgaatt gagcacattt tgtcctgatt tccagtcttg 12960gcacttgctt agaagcaaac ataggtacag ccctagctca ggtgcttccc cgtgtcctgt 13020gtgtctttgc ttattaaaca ccactccaaa caccagcttg ggttttatct gcagtgtttg 13080ggagcatagc ttccccaaca agataccccc tggatcctcc ctgagcccca agctttgggg 13140actacagtga agacgcatgt aaatccctct tgagttgctg gcggtatagg attggttgtt 13200gggatgggaa tgagagccaa cttaatggaa agaagggtgc ccagaataaa gggagtgggg 13260cagtgatcca ggatgctcaa agtacacttg gacaaaaatc aaaacaaaat attgcaaatt 13320ggatgttgaa cttctgtcct tgacctcata gccacagata tcaaagatta aatatttgta 13380ctaggcccag ataaaggaag atatgtgttt ggggcatagg agatagaaga gatctggcct 13440cctatatata tggcccaagt ccagggcaag ctcttagatt ccccagtacc atatcccctt 13500gtttcctatg tagaaactat gattcaggga aggcagtaaa acagctatta ggaagacatt 13560tggtggctga gtggggttca gttatttttg attctgtggc ccacattcac ttatctagca 13620aggcatctgt gggatgtgtg ttatgttgag gtgtctgatg ctggagaaca ggctcttttt 13680tttgttggat attttttatt tacatttcaa atgttatccc ctttccctca cccaaccacc 13740catcccttcc cgcctccctg ccctgacatt cccctacact gggaggtcca gccttgggca 13800ggaccaaggg tttctcctcc ctttggtgcc caacaaggcc atcctctgct acataggctg 13860ctggaaccat gggtctgtcc atgtgtactc tttggatggt ggtttagtct ctctgagctc 13920tggttggttg gtattgttct tatagggttg caaacacctt cagctccttc aatcttttct 13980ctaactcctc caatggggac ccagttctca gttcaatggt tggcttcgag catccacctc 14040tgtatttgtc atgctctggc agagcctctc aggagacagc tatatcaggc tcctgtcagc 14100atgcacttct tggcatcagc aatattgtgt ggatctggta gctgtatgta tatgggctgg 14160attcccaggt ggggcaggct ctgaatggcc attccttcag tctctgctcc aaactttgtc 14220tccatatctc ctgtgaatat tttgttctta cttctaagaa ggattggagc atccacactt 14280tgatcgtcct tcttcttgag cttcatgtga tctgtggatt gtatcttggg taatccaagc 14340ttttgggcta atataagaga tagaagagag aatctcaggg gcagaagata tcatagaaaa 14400catcaaccca accattaaag aaaagtgtaa aacgcaaaaa tctcctaacc caaaacatcc 14460aggaatgaga agaccaaacc taaggataat agttttagaa gaaaacaaag attcccaact 14520taaagggcca gtaaatatct tcaataaaat tatagaagaa aactccccta aacctaaaga 14580aagagataca ggaagcctac cgaactccaa ataaattgga ccagaaaaga aattcctcct 14640gtcacataat agtcaaaata ccaaataccc aaagcaaaga aagaatatta aaagcaataa 14700gggaaaaagg tcaagtaaca catagaggca gacctatcag aatcacacca gacttctcac 14760ctgagactat gaaagcctgg atagatgtca tacagatcct aagagaatac gaatgccagc 14820ccaggctatt atatccagca aaactctcca ttaacataga tgagagcggg tttataacaa 14880acgaacatcc tctcctgcag gcactggctc cagcatcctc tcggccctcc aagacatctt 14940ctctgtcacc tggctcaaca gatccaaggt ggaaaaacac ctacaggtca tctcagtcct 15000acagtgggtc ctatccttcc tggtgctagg taagctcacc tagggtggtg ctgagtgggg 15060cggacatggt tgcattcagt gaggttatct tcttccccag cctcttgcca cttactccca 15120tgttttaggt caaacactcc accattaggt atgcaggaaa acataatcca tagatatagt 15180atggctttat tttgcagctt aacttgccca acttcctgga ctctggttct gtgggatgcc 15240tgaagcatgt gcccctctta cagtcagtcc caccttgtct gtcggcaaag agcaggtgtg 15300ttgctttgcc ttagagcatg catcgccaag tttgagaccc actccagaca agctctgact 15360ttacgtaggc ttcttgacct ctcagaacaa gtaccctcct cttgaatgtg aaggtgctgc 15420tgctcacctc acatgccttt tgtaggcatc ccggggattg aagatgaagg ttgaaagccc 15480ctacacagag cctgctggtg gtcccattgc atggatgctg tggttagagt gttctaggat 15540tccaatgcca ggcctaatcc cctttgctga gtctatcccc agccactccc ctgcctgtgc 15600tggctttgtg acactgcctg tgcagactgg ctaggtgctt caatgtttgc cagctaggaa 15660cacccgggac cttctcatgc ccaggcctta tgtcctcagc acaggctagc gtctgataga 15720cctgctgcag agcaccacgt gtctggctct tgtggccagg ccttcaggct ctctcttcaa 15780actgcccagg atgatgggag cttggcagac atccagacaa tagagaacag ctgtccttga 15840ggcaggcata gagcctcagc cctcggtgta gaccaaaggg aacaaatccc acatgtgcca 15900ggttcttgga atgtcttttg tcaagttccc actgcacagg tgggagttgg agtttgagcc 15960aaagcccagt gcattccctt actactccat tcagaattaa tggagaggct gtggtgattc 16020attgattaca tttaattaaa attaaatgta agaccatgta tgcactttta ttgctaggaa 16080ggctggagct atcctcagat tcttgcaggg tcacatggtc ccagaaaggt gaagaagcag 16140aggtttgagg acagggccca gcccctgagt gtggtttgca tttggcctct tgttagaata 16200ccagagtaga ggagataatg caatctcatc tttgttcaga caggaaggaa ggacctagtg 16260gggacagagc cttgtctaga gctacagaaa aaaatggaag gaaccaagac aagacttgag 16320tgaccccagc ctctcggtcc tctcctagtc tgttttggca gctcctgatg tctctgtttg 16380cactagaagc caccacttgc cttagtgggt cagaacttgg ctgtggggca ctgagtaaat 16440tgtgcaatcc tagcccagag agcatgtgat aggaactagg gactggcccc gagctgtagg 16500ttaatgatct gtgaggccca gccacagccc agaaactggc ctggcgtgtc tttccaatat 16560gctagttggt gtaggtgaga gctagacctg ggcaagatga tcaggcctgc ttaagctgct 16620gttaattact acatgagcag tcacagccac tccctctgtg tcccaaacct gccggcagag 16680gcttgctata ctgtgaagct gcaatggagc ccctttatgt ttttcttaaa cagtctttgg 16740ttttgttttt ataatgtgcc atctagtcca ctagaattct ggtgaaagct gtgggccttc 16800ttggttcttt taattgtata aataaagtac attgggtttt aaaggagcta atattgccgg 16860aatgtaacta tgtaaacatt tgaaacccag ctggacattc agtaatgtgt gctcttttat 16920tatgtcgagt gagaaagtgg cggcagctat aataattact aatcttaagt agtaataaat 16980ggagtatcaa gattgctgag gctgtcataa ttcagtatga acacaccctt gtcatctgta 17040ggtatcgtgt caacaggctt tgctaatact tctgtgactt agtgaaggaa atgctgaatt 17100tccatgtgaa tccagaagga aatctggatg tcatttttgc tcccccatac aggcccataa 17160gcacttactg tattccagat cgtgtgttac atcccaacat catgtcattt catcttgcca 17220gccctctata agaaaggaaa ggcccggggg tggccaagtc tctgactatg cttggtccta 17280gagtccctct ctccacagcc ctgttgctgt gtgtccttcc aaagggcacc cacacactgc 17340cctgtacacc agcgggggtc agagctctgc tgtgtgagtt gtgtgaggct gccatgtaca 17400gggaggcatg tacgcaggta gttctgagca gtctctgtgg aacagcagga tgcttcagtc 17460actgtgctaa caggtcctgg gcccagtggc attggagggc ttcagcctga ggacatggca 17520caggcagctg ttgtaggttc tccaaaaggg agaccatttt atgggctagt tcattgttgt 17580cttcccaagc ctcctctgtg aggtttttgg atacaggatc tcattgtgta gccctaattg 17640gcatatctgt cagtctgtct gtctgtctgt atccacattc ctctgcctcc agagactcta 17700aagttttcag cctccatccc agcaggtggc tcattctttt tacttaaagc cctttctgtg 17760ttggtggctg ggctggagag attaatctca ccttgttcta gctccagagt ttctcatgga 17820cttagctctg ttagacaggc aggtggtgag agaaaatgta catcttgagg ggcggggggg 17880ggggggcagc tgcgtagcgc cagggctgga attaccaacc ttgggctttt ctcgcttagt 17940catgcagaaa ggacaggtat gaagtgataa ccttcctccc catggcaacc agcctcccgg 18000cagcaagggc tgtaggatgt tttcactaca ccctttctga actctgagtc ctggccccct 18060tggactgaac tgagccttcc tctctttgct ttggacactg cagaggctgg cgccggagga 18120acctttttct gggaccaagg aagggggcac gaggcaaatt gttggaacgg tgtcgtatgt 18180gcagcctaaa tataagcagg attcttctca gctgccttag gacctacatt atcctcaaca 18240gggtgtgtgg gctgcagacg cctcccacga ctcagcgtcc tatgtgcgtg ccactgctaa 18300actgtcctaa gaaaccacat gcctgttctc cagaaactgt cgtctggttt tagttctcct 18360gggctcagga gagagggtga gagccacaat ttccctgttc tgagggtcac agagatctgc 18420actcagacct gttctttgca atggaaacaa ctcaggctta acagtgtaga cggaaagggt 18480catgaaacct gagttccgcc cccatccagt gccccttttg aggcaagaga ttgtaggtgg 18540ggtagtttga tatggaggag cactctgcag gaacaaggat ctgactgggg cttaaagact 18600gggtaaaaag aagccatgat gaagggatct aggggtggcc atgagatact ggctctcctt 18660cctctgggcc aggccattca gctgcatggc ctgccaggag gtccaaagta gatgttccag 18720gagactctta agtgtttggg gacagggagc ctggtgggct ttggctctgt cccggggctg 18780cctagcctcc tgtatgttaa aggggacagc tctcctgtga caacagtccc cttcactcct 18840gactctaccc ctcaccatcc acccccatca caatctgaga gttgtcatct ttggtgaact 18900tctaaggccg agtatggacc ttggacttca aagtctgagt ttaaaccctg gctctcctct 18960gggtaagcat gggcaagtca ctcttgccaa gttctcctct aaaacaaaat aaaagtcacc 19020cagctttagt gactcagtgg cttagcccat ctccaaaagg aaagggagat acttgatatt 19080cctttcctgt gtccagtgtc tttgctggca aaggggccgt tcaaggagca gacatgaagg 19140attgcttcac gagaaactga ggtctccctg tactgctcgt cctgctcaag ccaggtgccc 19200ctggcactag gactcaccag aatcttaaga agtgaggcct gtgctggctc tgcactgagc 19260cagccaccca cccactactc ccagtgccta ggcatccggg ccctctgcct agattagcac 19320catgggaaac ttcatccctt ccaaggggga agccttggcc cagccaggag gcccgggaac 19380ctgacctgtt gtcctctgcc cctcaggagt ggcctgcagt gtcatcctca tgtacacctt 19440ctgcactgac tgctggctga tagctgctct ctacttcacc tggctggcat ttgactggaa 19500cacgcccaag aaaggtgagc gtccgcgtct cccacctgtg ttcaccccgc gccctagaaa 19560gctttctgcg cagctgccgc cccgcctcct ggctgctgcg tccttttttg gaacacctac 19620tttgtgaagg acctgggcta ggctgtgtat ggcttggggt gggcgattca aagctccttt 19680ggtgtgttca cagagctcac ctttcttaag ggatggtggg agggaatgta tgtgggaagg 19740ggcccactgg gcagggacag tgatcctatg tgggctggta gacacataca tccctcaggg 19800ttcttactgt ctctgtctcg cctcgcctgc attgctcaaa tgcccctcgc gcccactcct 19860tcccaacact gtgctttgtt tcctggaagg tggcaggaga tcacagtggg tgcgaaactg 19920ggccgtgtgg cgctattttc gagactactt tcccatccag gtaaagacgt ggtgtgctgt 19980gttgggagga tgtagacggt gtgctgggct gaactgtctg gggttcccac catgagcgtc 20040ggtccagact ctactgactc catgccagac aggagtttgt tggatctgtg tactgggaag 20100tgaaatcaag gtctttgaga cagagcacta ctattttcag ccataaagag gcagagttgc 20160cgcagttgga ctaggcagcc aaggcgatgg gagaaagcat ggtattcact ggcttctcgt 20220ttgattcttt ggggaaagca agacttgttt ggttctaaaa gataattctg cactgagggt 20280ctgtacgatg taaggggcag gcaggcaggc aggcaggcgg gcatcgctgt gctttgtggc 20340cttgcttctc ctacttaaga ttgaggttat aacttaaaat gtggtgaccc aagaggtgaa 20400gcacttagag ggtggggcta gactgttaag gcggtgtggc actgagaggg cagggagaga 20460gcttaagcct gagtgtgaga aacagctgtg tgaggtgtga ggagaaaggg agcctctgtc 20520cttctccaca ctgctccctc cactaccctt tggaccaaag aggaacctgg aggttagaga 20580agaacagttt ggtgaagcca gtgaacagct gaatggtttc ctgttgctgc cctgcctcag 20640cgcccgggtt cctcccactg gggcgcagtg cctctctact cagagcagag tccagtggag 20700tccaggtgct cacgctggga gatggaggcc agtatcatcc agggtgggac tctgtcttcc 20760aggacacagc ctcctgccat gtcccctgtg ggtttcttcc tagtgtgcct ttggctattt 20820gagggctctt tgcttgggag gggggcattt gtgtccccca ccccaccagg aacaatgttg 20880gtttcttgtt ggctccaact ggccctgcct tgtatgcagg cttacagagg attgtgagtg 20940gtgtaggttt ccccacagtg ggaacctgtc tggccagcac tctgagcacc gagccctgac 21000acacccttgc tgctaaggcc acccagcaga aggcagagaa ctgaaaacag aggcagtaag 21060tgagtgtgaa agtgttctgt gcctgacagg gggtggtgtg cctttgttgt tgtgagtcag 21120gcattgagat gtccagatga gctgccccag gaggtagaag tggccctgca ttcctcccct 21180gcactgctct tgggacttga ccccagccat ctctacaact tggaagattt cctcttccca 21240aatcttgact agaaccaggg tttaagtttt tttttttccc ccggagctgg ggaccgaacc 21300cagggccttg cggatgctag gcaagcactc taccactgag ctaaatcccc aacccccagg 21360gtttaagttc ttgctctgcc atccattcac cgacctgccg gtgttggggc tgtcaggtgc 21420tgctcttggc catggtgatg gaggagagag agccctgggc tttcggtcta gtgaatccta 21480tcacggtttt actcagtgtt agctttctca gccttcccaa atgccatttg tctcaactgc 21540aagttggagc tgttaagtga aggcaagtga gttaatgcta gggagacgct acgaggtctg 21600ctctgctgtc ttcccagcca ggctggtagt cccctacctg cagcaagtga ccagagcatt 21660caattgttct actccaacgg atcctctacc acctcaaaag acccaaatga caggctggag 21720agatggctca gtagttaaca gggctggctg ctcttccaga taacctgggt tcgaatccca 21780gcacctacat ggcagctcat agctgtccat gactccagtt ccagaggatc cagtaccttc 21840ttctggcctt tgagagccct gcatgtacat ggtacataga catacatgca agtaaaacca 21900ccagacacgt gagtaaaaat aaatctcgtg gggcatggta gcacatgcct taggcagaca 21960cagctggatt ttcaacctgg tctgcataga aaagttctag gctagccaaa gctatggagt 22020gagaccctct tgtctcaaat aaataaatga gtaaatctta aaaagagcca gtgagccaac 22080attttcacta tttgtgtccc actgagctca tggggcatct gttgagctgc cctgtgaggg 22140tatctgggcc tcacccggag cgtgacgggc tctacccttt gtcctttgct gctttacgtc 22200gggtctgagg ctctgcgccc tagagctgtg tgtgacttgc ctgttctgcc tctttttcct 22260gagctcctgc cacgagctct ataacagaga tctccagcta gacccaagtg tcacttgctc 22320cattcctctt tggagctccc cctccaaagt caccgagctg gcccagggca tctcttgtgg 22380cagtgggagg gttggctctt tctgcagcca ctgggactat aaccacctgt aacagaagtg 22440tcccatgtcc tgggattctg ctccctttgg aaactaggaa aggctctctg ggcttcagat 22500cagctctcta attgcctgat ttcatagatt gcagaccaag gttcagagag gagagactgt 22560gtcacaagac gctgctgacg tgccctgctg taagcctggg caagctgctg ctgttctctc 22620tctgggactg agagcctttc tctgaatggg gctagggtat aagcctgtcc tgggagcagg 22680gtgtggggag tgatctgcca aggatgtgcc caggcttcta ctcaccacct ggcctgtcgt 22740gagcaccact gggctgggac tttgctaccc agtaggcatg tcaacagcag tcagcagcag 22800tgaccttcgc cctccctaca tcctgtccag tcttgggaag gatagtgtga caggaatcag 22860atcaggacta tatccaaagt ctctattctt tttggtactg catgggggcc attaaccagt 22920acagtgaccc aaagatgtta agaaccttgt gtcctatcag ataagagcct tggggaggga 22980cgggattgtt taaagggcca gcttggttcc tgagagtagc ccatcactac cacagggtcg 23040tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtttcattg taacttccct 23100aggggaggta gtgactcctt tctctagact tgtttagttt gtcatcaaga aatagcctag 23160atcatcaggg tactgtaacc ctttctgtgc tttgtctcac agtctagcca ctggctccag 23220agacagtacc agctcccccc tcagtgcctg ccttgcagta gacactggcc acagtgcttc 23280agtaagagct ggctggggag tggacctgcc tgctgtctca agcagagcac agagcagcag 23340cctgtacata cagtgggtgt gcccagctcc gtggggattc ccttgctgtc caccccatcc 23400ctggcggcgc ccactcccat tccctggtta tttggtggcc agctgagagt tgtttgctgg 23460acagtattaa cctgcttgcc aaagggaaat gagagtcacc aacagggatg acatggaggg 23520aggcctgctc acatttacac atgcttccac cccagagctg agagcagcag ctgaccccgc 23580tcagtcccca cctccccagc tgagcagaag ggctaggagg gtcctgggac tgaagcagag 23640gaaagttggg tgatgaacat ccgtccacag ccagggactc tgctagccag tgcaggaagg 23700gatgctgtca ggcacttaga tggggatggt gtgagtgccc ctccctgggg cagggcagcc 23760tctccagatc aggaattgta cttctggaag tttatctgga tctggaaata tagataaaag 23820ggggctattt atcaaagcat tattctagga ggggaagttt ggatacattt taaatatcta 23880ccagtcagga tttgagtact gtcgttacag catggctgtg aggcagggaa gtgccccttg 23940gaggacacca atactgaggg gactgtgata agctcctcag agaggatatg tttcctagaa 24000gacagtactg atgctgcggc tgtgtggtgt gtgggatggg gggaatggta tcaccaccac 24060tgtcatcacc accaccatca tcagtgccag tctctcactg tgtagccctg aattgcctgg 24120cacttactat gtagacaagc ctggaatttt gtggtttttg aagaaagacc tgtgcctatt 24180taagtaggaa aatgatcaag tggtttattt caatggaagt aatagtgcag atgttcattt 24240tcttcttact ttcctataaa aaaattctga atattgggcc ataatgggag tgcagtttga 24300ggcaagccta caaacttaca taggtctaca aagtgagccc aggatagcca gggctctgta 24360acacgaagaa acctgtctcg gggggggggg tctattttct aatctaagag agtgatgttt 24420taggaacaga gagcctttcc tcctcctccc ctcagcagct ccatatgcac tttaccctag 24480tgagctgtct cagtctcagg cttgggggcc ccctgtggct tggggtttcc cagggactca 24540acctcaggct ccttaggaag ccagttatcc ctcagaacat ctcaggacaa cttgttgata 24600gaacaggagt tcagaccatt agctgccaca gccacacagc cagccacctc ccccgcctcc 24660cacagatagg gctgcctggc acgagggcga tgttgtcctg tcctatcctg cctcagaacc 24720taagttgagc ctggatgttc ggcaaaagct ttgctctagc aggcagtact gtccttttgt 24780cacactggag tatgaagagg tgggtggagg gctgcatgct ttgtcctttg atctgttaaa 24840gatcctgcag tgtgcaggga ccaggcagac cctgctctga ggaatactta gtgggagacc 24900tgaagccgtg gttctacttg ccaaacttgg gatctagact gtacccagtg aaggctagat 24960gctccagtga tgtctgagtg tcccggcttg gttatgagtt tgggaagtca ctgtgctgag 25020gagcccagaa gcaggaaggc aggaggctgg tggaattagt ggctttgggc tgtggttggc 25080tgggctataa ggagaaggaa gggaaaagca gccacccggg gactctgagc ccagtagctg 25140ccaaccactg gcactggacg tccaataaga agaactgagg acaggtttgg aaagtctctg 25200ctgtcctact tgcctagtga caaggcacga gatgtaggtc ccttcccctt tctgggtctg 25260ccctgtactc ctcgcccaga tgggcctaac acaggatttc cttttagctg gtgaagacac 25320acaacctgct gaccaccagg aactatatct ttggatacca tccccatggc atcatgggcc 25380tgggtgcctt ctgtaacttc agcacggagg ccaccgaagt tagcaagaag ttccctggca 25440taaggcctta tttggccaca ttggctggca acttccggat gcctgtgctt cgggagtacc 25500tgatgtctgg aggtaaggat ccacttcagc tactcctcct tggctccact gtcaaagctt 25560gagcctccct gttgatccgc aggaagttct gttccctggg cccatacagg aagacagcct 25620gcagcagata ctctaggggc atcatgggtg acatcctctc acccacttcc tagatggacc 25680agccgttgtg ctgcctcatc tgtgcccctg ccgtggtccc caccggtgga cttcagagct 25740agggcttctt agatcttgct taattgtttt ctcaaaacta ctctgtatct ccttccccca 25800ttttacagat cagtaaactg agaatcagaa aaagtgagtt gcttaggtag gaaggaagga 25860ccataatctt ctgagaggga aacaggtctg ggacctagct atagagattt ttatttcatc 25920cctgattgta tattaggaca gggcatgcat ccatgagcaa tcctgattgt gtgtcccctc 25980gccccaggca tctgccctgt caacagagac accatagact acttgctttc caagaatggg 26040agtggtaatg ccattgtcat cgtggtggga ggtgcagctg aatccctgag ctccatgcct 26100ggcaagaacg cagtcaccct gcggaaccgc aaaggctttg taaagctggc cctgcgccat 26160gggtaagtgc ctacacacac agcggcagga tttcttctaa ccaggacaat gggtcccaga 26220ccctaggaag gcaaagaagt gtccacactg catggcttga ccaggtgttg cgcaaaggtg 26280tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgggtgaa atgtgtgtat 26340atgtgtatgt gtgtgtgtat atatatgggg gcggcggggg ggatgtacac acgtacgcac 26400agggtggggg

ggagacttct gaatcctttc agatggtaat ctgaggcttt ggaatggaag 26460agaatgctgg gtggctcagg gtggacttcc ctctgccttc cctccctcca gacttcacat 26520gtaaaagtcg tacatagatt tttcacccct acaagtctct ccccactttc tgctttcctc 26580ttttccagct ttctccgggt ctcggggcac acgactctcc tccactccat gcccccttct 26640ccccaatcct gtcatatttc tagaggggcc ctggtaataa atatatcaga gaagagagaa 26700accatgtgtt ttgaggtaaa actttaacag aagaaagaat gctgtttatc tttggtcttt 26760gagaaggccc aggagcgtcc aggaagaccc tccttgaaag tttccaccca ctgtctttta 26820ttaaaccctg gtcttcccag gatgtcaaag cccaaaggtg aactttaaaa atcctgtgta 26880gaaactttta actcttttaa ttaattacgt ttctgctcaa aggtatattt tccagcagtt 26940tctgatagaa atgcattgtg ttctaagtgg taagcctttg tccccttgtc tcannnnnnn 27000nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 27060nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 27120nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 27180nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 27240nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 27300nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 27360nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 27420nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 27480nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 27540nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 27600nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 27660nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnncttgta 27720ctctgtcatt gctttccgct cacatcccaa ctgtgggagc cttgactagg gtgagaggac 27780tcactgcact gacccagtag gccccatgaa tcttagaatg agctcctctc gggttttagg 27840agaggctgtt tgatggtgtg ctctattaga ccaaactaat gacagggagc gacagggaca 27900gctagtgtgc tgaggccata acatgaggtg aatctggggc tgtaagggag ttgagttggg 27960ctggacagca gacatcctgt tggatgaggt cttctaggtc cccagtgatg gagtctgact 28020aatctgggcc tccctcttac agagctgatc tggttcccac ctattccttt ggagagaatg 28080aggtatacaa gcaggtgatc tttgaggagg gctcctgggg ccgatgggtc cagaagaagt 28140tccagaagta tattggtttc gccccctgca tcttccatgg ccgaggtctc ttctcctctg 28200acacctgggg gctggtgccc tactccaagc ccatcaccac cgttggtgag tcctaacctg 28260cacgctgaag gccatcctga gcatggcaag atcctgggca agtcacctgg cttacataac 28320aaccttgtca caggggcctg agcagttggg tcctgggggt gaggaagttg agccagggct 28380gcaacctatt aggaaagggt attgattcca gcactggcca tgcagctgta aggaggaggc 28440tgtcgggtta tgctgctgtt ctactcgaca gcatgcccac ccaggagaca gcctgccctg 28500ctgcctggga actcaaagcg gaaatgaggg aggaagagcc gtacagttgt acaagcctgg 28560aatcccagta gggagggcag aaacagaatt gctgcaagtt tggggccagt ctgatctaca 28620tagcaagttc caggctagct ggggctacat aatgaaaccc tggctcaaaa taaaataaaa 28680actgcctaac gagagttcta aaaaaaaggt attgattctt tgaggaacag aaagaaaagt 28740aagcgaacat agacctaagg ggaagaccag ccgtgtatgt ttgtcttttg ggacaagtca 28800gagcattcag aaaatcaacg atcagggctg tgggtgtgta tgcgtgcatg tgggcgtgtg 28860tttaaggtca cagacctgag atctcatggg tacatagggc cctgaagagt ggactggaat 28920gtccaaaggt caggcagtac ctgtgtgttg agggtaggcg tttgcctgtc ctcggtgcag 28980ggcagcactc ctcacatggg tggctgaggg acctgggctt gagccagtgc agcctcttca 29040actgcaggtt gtgggcagtt gggaggagct caagcacaat tgatttattc tagtgatgcc 29100tgtgtgcacg ggatttcaga gctaagctcc tagtgttgga ctaccaaagg ggatttattc 29160ctgggagaag acttaattct tcctctcagc catcattagt tgtgtgtggt tcttagtcta 29220ggagtaccac ccccaagagt tccccttctg tgctagtgtt tctctgtctg gccattgttc 29280aagcctggtt tcaggtacca tgttgttgaa atatggtcta gcttccctgt catttctagg 29340agaccaaatc tcttatcaga ctttctgctc ccctggttct cacaatcttt ctgtctcctc 29400ctctgagatg ctccccagct ttgggtgtgg ggttggattg tagacctgtc agttagggct 29460gagcacccca ggatgagatt ttgaccagtt gtggctttct gtaatcatct ctgcctgctg 29520tgaagagaag ctactttgag gactgggtga gagccattcg tatctacaac tttaagtgat 29580ccctggtgct gttaggtcga ggggaaaaca aaggttagca tgggccaaaa gcagaagcca 29640ggcagccagc ctagggtttt cagtagcctg cactgaaggg gtggtggtgg ggagggtatg 29700tatgcatctg ggagaagtct cagaacagtg ctgctgggct gggttgccgg gcttgaacaa 29760gaaacaggat gagacaaatt aagcatggtg tgaggaccgt cctcctctct ggccctcaca 29820gctgctcaag catggtcttt cttcccagaa gccttagaag gaaagctcta tgatacagat 29880gctgggtggg caggtggcag atgggtaaac tgaggctcta aagtagtggg gtttgtcctg 29940agtgaagcaa aagcaaagtt tttggtccac agcttactcc ggaactccca gcagagtgtg 30000gagcagggct tcaccagtac tcagaggcca cactcttgtg tggggtcttt cccacactgc 30060taggctgtag tctcatctgg gcaaaaggac aggccatgat ggtcagcaca cagcatgggg 30120tcatatcaca ttgggcaccc aagaatgggc tactccgtga cattgactga cggaacctct 30180gtccctcttc tgcagtgggg gagcccatca ccgtccctaa gctggagcac ccgacccaga 30240aagacatcga cctgtaccac accatgtaca tggaggccct ggtgaagctc tttgacaatc 30300acaagaccaa attcggcctt ccagagactg aggtgctgga ggtgaactga cccagcccat 30360gggtgccagc tcctggaagg aatgactgca aatccttttc taccaagttc tcaagtgcat 30420tttgttctgt aaatttggaa gcgtcatggg tgtctgtggg ttatttaaaa gaaattataa 30480tttgttaaac cattgcaatg ttagatcttt tttaagaagg gaagagtcag tattttaagc 30540tcacttctag tgtgtcctgc ctaaggtggt ggctgacatt tataggcctt gatggtttct 30600atccacccct tctagtgttc cccaaacaac agacacttgg ccctagttaa ttggggaagg 30660gcagccctta gtgactcagc catttaatcc tcttcgctct agggattctc aagagacgga 30720ggccacgttt aaaaacacct ccattcccac ccacaacacg tgactgctgg tcaggttttt 30780cttacttagg ggaggatgag ggggcatagc tggttccgct tggggagagt ggtagataac 30840atctggaatg cccggctcga gtgtcctctg ctccccacct actcctcttc tccaatctga 30900gcctaccctg gcctcctgta cactgtgcta gggacagggc tgtcccacag gtgccatgtt 30960gggttatctc gctgctgttg gctggtttta ctctggagat tggcatcgtg aacacagctc 31020agcgtcattc tggagatgtt ctcccagcca cctgagctct cctgagccac accccaagtc 31080tggtgtgagg agaggcctct gttcttcaca gaggtgcctg gcttcctgtg cagcacactg 31140ggtccaggac aggaggccac ccccaaccaa gcctcacctg tgtgccttta tgaggcgtcg 31200ggagaaagcc accctcctgt gtattctgct ttctccatga gattttgcca tgtcacactt 31260ttgtatattc ctagactaat aaatggaaac aagaacagcc tatgcgttgt tgcttaatgc 31320tgtactcaca ctgtctatcc cactgcacag ggcgcacttc gagggctctt tctggctggg 31380taacaattgg cttcaaaatt tagtggctac agggatggag agatggctca atggttaaga 31440acactgggtc ctgggggctg gggatttagc tcagtggtag agcgcttacc taggaagcgc 31500aaggccctgg gttcggtccc cagctccgag aaaaaaaaaa aaaaaaaaaa aaaaaagaac 31560actgggtcct gtttaggacc ctggtttgat ttctgatatc ctcatggcag cttacaacta 31620tccgtagttc cagtcctggg agatttgata tcctctgtgg gcacaaggca cataggtggt 31680gcaacagaca tgtgcacgca acaatgccca tacacacaag cttttgtttt agaagaa 31737112264DNAArtificial SequenceOligomeric Compound 112aaaagtagtg actttaagca tttgctctat tgtcctaagc taggtggttt cagggccctc 60tgcttgctgg tgttggccag tgctaaaagc ttcccaagcc tgagcaagga agcgtcccac 120tgttgatgcg ggtgacggca ggacgcctcc ctcactgact gttagcagag gccactgcag 180ctcctagccc tgtattcctt tccacagggc ggctcactgc agggctgaga ggagcaagca 240cacagcaagg agcacaagct gctg 26411320DNAArtificial SequenceOligomeric Compound 113gctccttcca ctgatcctgc 201143247DNAH.sapiens 114gggcgggcct cggggctaag agcgcgacgc ctagagcggc agacggcgca gtgggccgag 60aaggaggcgc agcagccgcc ctggcccgtc atggagatgg aaaaggagtt cgagcagatc 120gacaagtccg ggagctgggc ggccatttac caggatatcc gacatgaagc cagtgacttc 180ccatgtagag tggccaagct tcctaagaac aaaaaccgaa ataggtacag agacgtcagt 240ccctttgacc atagtcggat taaactacat caagaagata atgactatat caacgctagt 300ttgataaaaa tggaagaagc ccaaaggagt tacattctta cccagggccc tttgcctaac 360acatgcggtc acttttggga gatggtgtgg gagcagaaaa gcaggggtgt cgtcatgctc 420aacagagtga tggagaaagg ttcgttaaaa tgcgcacaat actggccaca aaaagaagaa 480aaagagatga tctttgaaga cacaaatttg aaattaacat tgatctctga agatatcaag 540tcatattata cagtgcgaca gctagaattg gaaaacctta caacccaaga aactcgagag 600atcttacatt tccactatac cacatggcct gactttggag tccctgaatc accagcctca 660ttcttgaact ttcttttcaa agtccgagag tcagggtcac tcagcccgga gcacgggccc 720gttgtggtgc actgcagtgc aggcatcggc aggtctggaa ccttctgtct ggctgatacc 780tgcctcctgc tgatggacaa gaggaaagac ccttcttccg ttgatatcaa gaaagtgctg 840ttagaaatga ggaagtttcg gatggggttg atccagacag ccgaccagct gcgcttctcc 900tacctggctg tgatcgaagg tgccaaattc atcatggggg actcttccgt gcaggatcag 960tggaaggagc tttcccacga ggacctggag cccccacccg agcatatccc cccacctccc 1020cggccaccca aacgaatcct ggagccacac aatgggaaat gcagggagtt cttcccaaat 1080caccagtggg tgaaggaaga gacccaggag gataaagact gccccatcaa ggaagaaaaa 1140ggaagcccct taaatgccgc accctacggc atcgaaagca tgagtcaaga cactgaagtt 1200agaagtcggg tcgtgggggg aagtcttcga ggtgcccagg ctgcctcccc agccaaaggg 1260gagccgtcac tgcccgagaa ggacgaggac catgcactga gttactggaa gcccttcctg 1320gtcaacatgt gcgtggctac ggtcctcacg gccggcgctt acctctgcta caggttcctg 1380ttcaacagca acacatagcc tgaccctcct ccactccacc tccacccact gtccgcctct 1440gcccgcagag cccacgcccg actagcaggc atgccgcggt aggtaagggc cgccggaccg 1500cgtagagagc cgggccccgg acggacgttg gttctgcact aaaacccatc ttccccggat 1560gtgtgtctca cccctcatcc ttttactttt tgccccttcc actttgagta ccaaatccac 1620aagccatttt ttgaggagag tgaaagagag taccatgctg gcggcgcaga gggaaggggc 1680ctacacccgt cttggggctc gccccaccca gggctccctc ctggagcatc ccaggcggcg 1740cacgccaaca gcccccccct tgaatctgca gggagcaact ctccactcca tatttattta 1800aacaattttt tccccaaagg catccatagt gcactagcat tttcttgaac caataatgta 1860ttaaaatttt ttgatgtcag ccttgcatca agggctttat caaaaagtac aataataaat 1920cctcaggtag tactgggaat ggaaggcttt gccatgggcc tgctgcgtca gaccagtact 1980gggaaggagg acggttgtaa gcagttgtta tttagtgata ttgtgggtaa cgtgagaaga 2040tagaacaatg ctataatata taatgaacac gtgggtattt aataagaaac atgatgtgag 2100attactttgt cccgcttatt ctcctccctg ttatctgcta gatctagttc tcaatcactg 2160ctcccccgtg tgtattagaa tgcatgtaag gtcttcttgt gtcctgatga aaaatatgtg 2220cttgaaatga gaaactttga tctctgctta ctaatgtgcc ccatgtccaa gtccaacctg 2280cctgtgcatg acctgatcat tacatggctg tggttcctaa gcctgttgct gaagtcattg 2340tcgctcagca atagggtgca gttttccagg aataggcatt tgctaattcc tggcatgaca 2400ctctagtgac ttcctggtga ggcccagcct gtcctggtac agcagggtct tgctgtaact 2460cagacattcc aagggtatgg gaagccatat tcacacctca cgctctggac atgatttagg 2520gaagcaggga caccccccgc cccccacctt tgggatcagc ctccgccatt ccaagtcaac 2580actcttcttg agcagaccgt gatttggaag agaggcacct gctggaaacc acacttcttg 2640aaacagcctg ggtgacggtc ctttaggcag cctgccgccg tctctgtccc ggttcacctt 2700gccgagagag gcgcgtctgc cccaccctca aaccctgtgg ggcctgatgg tgctcacgac 2760tcttcctgca aagggaactg aagacctcca cattaagtgg ctttttaaca tgaaaaacac 2820ggcagctgta gctcccgagc tactctcttg ccagcatttt cacattttgc ctttctcgtg 2880gtagaagcca gtacagagaa attctgtggt gggaacattc gaggtgtcac cctgcagagc 2940tatggtgagg tgtggataag gcttaggtgc caggctgtaa gcattctgag ctggcttgtt 3000gtttttaagt cctgtatatg tatgtagtag tttgggtgtg tatatatagt agcatttcaa 3060aatggacgta ctggtttaac ctcctatcct tggagagcag ctggctctcc accttgttac 3120acattatgtt agagaggtag cgagctgctc tgctatatgc cttaagccaa tatttactca 3180tcaggtcatt attttttaca atggccatgg aataaaccat ttttacaaaa ataaaaacaa 3240aaaaagc 324711520DNAArtificial SequenceOligomeric compound 115tcccatttca ggagacctgg 2011620DNAArtificial SequenceOligomeric compound 116gcactctgga cccaaaccag 20


Patent applications by Brett P. Monia, Encinitas, CA US

Patent applications by Sanjay Bhanot, Carlsbad, CA US

Patent applications by Isis Pharmaceuticals, Inc.

Patent applications in class Antisense or RNA interference

Patent applications in all subclasses Antisense or RNA interference


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
Images included with this patent application:
ENHANCED ANTISENSE OLIGONUCLEOTIDES diagram and imageENHANCED ANTISENSE OLIGONUCLEOTIDES diagram and image
ENHANCED ANTISENSE OLIGONUCLEOTIDES diagram and imageENHANCED ANTISENSE OLIGONUCLEOTIDES diagram and image
ENHANCED ANTISENSE OLIGONUCLEOTIDES diagram and imageENHANCED ANTISENSE OLIGONUCLEOTIDES diagram and image
Similar patent applications:
DateTitle
2009-01-01Ache antisense oligonucleotide as an anti-inflammatory agent
2008-09-04Aptamer-mediated intracellular delivery of oligonucleotides
2008-11-20Antisense oligonucleotides against cpla2, compositions and uses thereof
2008-12-25Antisense oligonucleotides against thymidylate synthase
2008-10-30Nucleic acid binding oligonucleotides
New patent applications in this class:
DateTitle
2022-05-05Kit, device, and method for detecting uterine leiomyosarcoma
2022-05-05Prevention or treatment of fibrotic disease
2022-05-05Compositions for suppressing trim28 and uses thereof
2022-05-05Immunostimulatory bacteria engineered to colonize tumors, tumor-resident immune cells, and the tumor microenvironment
2022-05-05Anti-mirna carrier conjugated with a peptide binding to a cancer cell surface protein and use thereof
New patent applications from these inventors:
DateTitle
2022-03-10Methods and compositions for modulating alpha-1-antitrypsin expression
2021-11-11Glp-1 receptor ligand moiety conjugated oligonucleotides and uses thereof
2017-06-15Compositions and methods for modulating growth hormone receptor expression
2015-12-03Compounds and methods for modulating gene expression
Top Inventors for class "Drug, bio-affecting and body treating compositions"
RankInventor's name
1Anthony W. Czarnik
2Ulrike Wachendorff-Neumann
3Ken Chow
4John E. Donello
5Rajinder Singh
Website © 2025 Advameg, Inc.