Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: FILTER AND PROCESS OF USE TO PRODUCE CARBON NANOTUBES FROM AUTOMOTIVE EXHAUSTS

Inventors:  Yousef Haik (Greensboro, NC, US)  Yousef Haik (Greensboro, NC, US)  Saud Aldajah (Al Ain, AE)  Emad Elnajjar (Al Ain, AE)
Assignees:  UNITED ARAB EMIRATES UNIVERSITY
IPC8 Class: AF01N3022FI
USPC Class: 60311
Class name: Power plants internal combustion engine with treatment or handling of exhaust gas by sorber or mechanical separator
Publication date: 2011-01-06
Patent application number: 20110000198



r and process that converts the wastes in automotive exhausts into carbon nanotubes. The filter surface is composed of iron of similar catalyst. The filter is placed along the pathway of exhaust streamlines preferably at an angle of more than 5° and less than 15°. The filter is heated to temperatures in the range of 200-1000° C. The filter described in this invention can work in its won or supplement existing filtration systems. The end product of this filtration system is a material that is commercially valuable. The synthesized carbon nanotubes are purified using ionic liquid solution that is capable of removing undesirable carbonated material and leaving 95% purified carbon nanotubes. The purified carbon nanotubes have a diameter of 20-50 nm and a length of 1-10 micro meters.

Claims:

1. A filter and a process to convert exhaust waste of automotive engines to carbon nanotubes

2. A filter in claim 1 composed of surface made out of iron

3. Filter in claim 1 is made out of carbonated steel

4. Filter in claim 1 is made out of thin layer of iron, nickel and or aluminum deposited on a metallic or nonmetallic surface

5. Said process in claim 1 consist ofa. Placing the filter in claim 1 along the pathway of exhaust streamb. Heating the filter location to above 200.degree. C.

6. Said filter in claim 1 is tilted along the streamlines of the exhaust in an angle less than 45.degree. and more preferably between 5.degree. and 15.degree..

7. Said heating process in claim 5 produces a filter temperature of 200-700.degree. C. and more preferably around 200-1000.degree. C.

8. Said filter in claim 1 can be utilized on its own or in conjunction with other filtration systems.

9. Said surface in claims 2, 3 and 4 is made out of Ni, Co or Al.

10. Said carbon nanotubes in claim 1 are multiwall carbon nanotubes with an average diameter of 20-50 nm and average length of 1-10 micrometer.

11. Said carbon nanotubes in claim 1 are purified using ionic liquid made out of molten salts.

12. Said purification in claim 11 produces 95% purified carbon nanotubes.

13. Said purification techniques in claim 11 includes gas and chemical oxidation techniques

14. Said purified carbon nanotubes in claim 12 have a diameter of 20-50 nm and a length of 1-10 micrometers.

Description:

SUMMARY OF THE INVENTION

[0001]We claim a filter and a process to synthesize carbon nanotubes from automotive engine exhaust waste. In one embodiment the filter is composed of iron plates that are polished prior to placement in the exhaust system. In another embodiment, metallic thin film made out of Fe, Al or Ni is deposited on metallic or nonmetallic layer and placed in the streamline of the exhaust waste. Minor modifications are required to current exhaust systems. The disclosed filter works on its own or in conjunction with other filtration systems. We further claim that the carbon nanotubes formed on the filter surface are recoverable and are utilized for many CNT applications.

FIELD OF THE INVENTION

[0002]This invention relates to a filter and method that converts automotive exhaust waist to carbon nanotubes.

BACKGROUND OF THE INVENTION

[0003]Incomplete combustion, particularly in diesel engines, produces black carbon and many hydrocarbon gases that can contribute to global warming and potential health hazards.

[0004]Oxidation catalysts that convert hydrocarbon and carbon monoxide into carbon dioxide and water are known in the literature. Ceramic filters that are known for their efficiency to remove 90% of the particulates require 500° C. and oxygen rich exhaust condition. Filtration systems to capture particulates have been disclosed in prior art, see Nielsen et al. U.S. Pat. No. 5,167,765 and Surgiura et al. U.S. Pat. No. 5,755,963.

[0005]Filters that are disclosed in prior art do not teach the conversion of waste from automotive exhaust to commercially viable product such as carbon nanotubes as disclosed in this invention.

BRIEF DESCRIPTION OF THE FIGURES

[0006]FIG. 1 SEM monograph showing the formation of particulates on a polymeric filter placed in the pathway of exhaust

[0007]FIG. 2 SEM monograph showing the formation of particulates on the filter material in absence of a localized heating

[0008]FIG. 3 SEM monograph showing the formation of carbon nanotubes when the filter is placed horizontally along the streamlines of the exhaust waste

[0009]FIG. 4 SEM monograph showing the formation of carbon nanotubes when the filter is placed at 5° from the exhaust streamlines.

DESCRIPTION OF THE INVENTION

[0010]Before disclosing embodiments of the invention, it is to be understood that the invention is not limited to the details of construction or process steps set forth in the following description. The invention is capable of other embodiments and of being practiced or being carried out in various ways.

[0011]As used in this specification and the appended claims, the singular forms "a", "an" and "the" include plural referents unless the context clearly indicates otherwise. Thus, for example, reference to "a filter" includes a mixture of two or more filters, and the like.

[0012]The invention describes a filter and a process that converts waist exhaust of automotive engines into carbon nanotubes. The aspects of the invention pertain to the filter material, treatment of the filter material, alignment of the filter material and process that yields the maximum amount of carbon nanotubes.

[0013]The filter material is made out of thin (less than 1 mm) thick iron metal, in a preferred embodiment the filter material is made out of pure iron sheets. In another embodiment the metallic filters are made of carbonated steal with low percentage of carbon. In yet another preferred embodiment, a thin layer of iron is posted on any polymeric or metallic sheets. This thin layer is produced by physical process known in the literature such as but not limited to pulse laser deposition or ablation processes.

[0014]In the event of using carbonated steel, or iron, a polishing scheme is needed to expose the iron grains on the surface. Such processes may not be needed for thin layer depositions as described before.

[0015]The filter material is placed in the path of the exhaust waste of an automotive engine. The filter material is preferably placed at an angle below 45° and most preferably below 15° measured from the streamline of the exhaust waste.

[0016]Localized heating of the filter material or its surrounding is required to activate the carbon nanotubes formation. Though a temperature in the range of 700° C. is preferred, temperatures as low as 200° C. showed carbon nanotubes formation. The efficiency of the tube formation is function of the filter angle and the temperature at the filter location.

EXAMPLES

[0017]The following examples are not to limit the scope of the invention but to illustrate the invention. A filter made out of polymeric structure was placed in the pathway of a diesel engine exhaust. The engine was allowed to run at normal operation condition for half an hour. The filter was recovered and evaluated using SEM. FIG. 1 shows a monograph of the material collected on the polymeric filter. It showed clumps of carbon particulates.

[0018]A filter made out of carbonated steel was polished using techniques known in the literature. The surface was examined using optical microscopy. The grains were clearly shown. The filter was placed in the pathway of a diesel engine exhaust. The engine was allowed to run for half an hour under normal operation conditions. The filter was collected and examined using SEM. FIG. 2 shows SEM monograph of the materials collected on the surface of the filter. It shows clumps of carbonated materials.

[0019]A similar filter made out of carbonated steel was polished and placed in the pathway of the exhaust horizontally to the exhaust streamlines. The filter zone was heated using a gas burner. The diesel engine was allowed to run in normal condition for half an hour. The filter material was collected and examined using SEM. FIG. 3 shows SEM monograph showing the formation of carbon nanotubes.

[0020]A similar filter made out of carbonated steel was polished and placed in the pathway of the exhaust of a diesel engine at an angle of 5° to the streamlines of the exhaust. A diesel engine was allowed to run under normal operating conditions for half an hour. The filter location was heated using a gas burner. The filter was collected an examined using SEM. FIG. 4 shows a monograph of the filter surface with carbon nanotubes formed on the surface. It is noticeable that the angle of 5° influenced the formation of more carbon nanotubes.

[0021]The produced carbon nanotubes are purified by immersing the filter plate in a ionic liquid bath. The purification process using ionic liquids produces 95% purified carbon nanotubes. Without limitation to the composition, ionic liquids have the ability to dissolve carbonated materials other than carbon nanotubes leaving a highly purified carbon nanotube stock.



Patent applications by Emad Elnajjar, Al Ain AE

Patent applications by Saud Aldajah, Al Ain AE

Patent applications by Yousef Haik, Greensboro, NC US

Patent applications by UNITED ARAB EMIRATES UNIVERSITY

Patent applications in class By sorber or mechanical separator

Patent applications in all subclasses By sorber or mechanical separator


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
Images included with this patent application:
FILTER AND PROCESS OF USE TO PRODUCE CARBON NANOTUBES FROM AUTOMOTIVE EXHAUSTS diagram and imageFILTER AND PROCESS OF USE TO PRODUCE CARBON NANOTUBES FROM AUTOMOTIVE EXHAUSTS diagram and image
FILTER AND PROCESS OF USE TO PRODUCE CARBON NANOTUBES FROM AUTOMOTIVE EXHAUSTS diagram and imageFILTER AND PROCESS OF USE TO PRODUCE CARBON NANOTUBES FROM AUTOMOTIVE EXHAUSTS diagram and image
FILTER AND PROCESS OF USE TO PRODUCE CARBON NANOTUBES FROM AUTOMOTIVE EXHAUSTS diagram and image
Similar patent applications:
DateTitle
2013-08-01Device and process for producing pressurized water and their use for producing beverages
2009-11-26Icing resistant reduced noise air motor exhaust
2013-08-01Process and device for air separation and steam generation in a combined system
2013-08-01Internal manifold for turning mid-turbine frame flow distribution
2012-03-22Process for co-producing synthesis gas and power
New patent applications in this class:
DateTitle
2016-12-29Cantilevered flow distributing apparatus
2016-04-28Exhaust gas treatment device, especially for an exhaust gas flow path of an internal combustion engine, and method for manufacturing an exhaust gas treatment device
2016-03-03Exhaust gas purification system
2016-02-25Inclined perforated plate at radial inlet
2015-05-28System and method of controlling exhaust temperature
New patent applications from these inventors:
DateTitle
2014-12-18Fluid distribution system for optimising consumption of energy
2014-05-22System for producing carbon nanotubes from combustion engine exhausts
2014-02-06Filter and process of use to produce carbon nanotubes from automotive exhausts
2013-07-11Nano-metallic alloy delivery system for treatment of infected cells and legions
Top Inventors for class "Power plants"
RankInventor's name
1Gabriel L. Suciu
2Patrick Benedict Melton
3Eugene V. Gonze
4Thomas Edward Johnson
5Frederick M. Schwarz
Website © 2025 Advameg, Inc.