Patent application title: HUMAN ANTIBODIES THAT HAVE MN BINDING AND CELL ADHESION-NEUTRALIZING ACTIVITY
Inventors:
Toshihiko Takeuchi (Oakland, CA, US)
Toshihiko Takeuchi (Oakland, CA, US)
Nathalie Dubois-Stringfellow (Berkeley, CA, US)
John E. Murphy (Oakland, CA, US)
Julie Rinkenberger (Moraga, CA, US)
IPC8 Class: AC12P2100FI
USPC Class:
435 696
Class name: Micro-organism, tissue cell culture or enzyme using process to synthesize a desired chemical compound or composition recombinant dna technique included in method of making a protein or polypeptide blood proteins
Publication date: 2010-09-23
Patent application number: 20100240100
Claims:
1-16. (canceled)
17. A nucleotide sequence that codes for a purified preparation of a human antibody, wherein the antibody binds MN protein.
18. The purified preparation of claim 17 wherein the nucleotide sequence comprises a VH3-CDR1 region selected from the group consisting of SEQ ID NOS: 1-13.
19. The purified preparation of claim 17 wherein the nucleotide sequence comprises a VH3-CDR3 region comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 14-33.
20. The purified preparation of claim 17 wherein the nucleotide sequence comprises a VLλ1-CDR3 region comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 34-36.
21. The purified preparation of claim 17 wherein the nucleotide sequence comprises a VL2-CDR1 region comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 37-38.
22. The purified preparation of claim 17 wherein the nucleotide sequence comprises a VLλ2-CDR3 region comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 39-44.
23. The purified preparation of claim 17 wherein the nucleotide sequence comprises VH3-CDR1, VH3-CDR3 and VL2-CDR3 nucleotide sequences selected from the group consisting of SEQ ID: 1 and 14 and 41, SEQ ID: 2 and 14 and 41, SEQ ID: 3 and 14 and 41, and SEQ ID: 4 and 14 and 41.
24. The purified preparation of claim 17 wherein the nucleotide sequence comprises VH3-CDR3, VL2-CDR1, and VL2-CDR3 nucleotide sequences selected from the group consisting of SEQ ID: 14 and 37 and 41, and SEQ ID: 14 and 38 and 41.
25. The purified preparation of claim 17 wherein the nucleotide sequence comprises VH3-CDR3, VL2-CDR3 and VH3-CDR1 nucleotide sequences selected from the group consisting of SEQ ID: 14 and 41 and 1, SEQ ID: 14 and 41 and 2, SEQ ID: 14 and 41 and 3, SEQ ID: 14 and 41 and 4, SEQ ID: 14 and 41 and 5, SEQ ID: 14 and 41 and 6, SEQ ID: 14 and 41 and 7, SEQ ID: 14 and 41 and 8, SEQ ID: 14 and 41 and 9, and SEQ ID: 14 and 41 and 10.
26. The purified preparation of claim 17 wherein the nucleotide sequence comprises VH3-CDR3, VL2-CDR3 nucleotide sequences selected from the group consisting of SEQ ID: 14 and 39, SEQ ID: 15 and 42, SEQ ID: 16 and 44, SEQ ID: 17 and 39, SEQ ID: 18 and 39, SEQ ID: 19 and 40, and SEQ ID: 20 and 43.
27. The purified preparation of claim 17 wherein the nucleotide sequence comprises VH3-CDR3, VL1-CDR3 nucleotide sequences selected from the group consisting of SEQ ID: 14 and 34, SEQ ID: 22 and 34, SEQ ID: 22 and 35, SEQ ID: 22 and 36, and SEQ ID: 23 and 34.
28. The purified preparation of claim 17 wherein the nucleotide sequence comprises VH3-CDR3, VL2-CDR3 nucleotide sequences selected from the group consisting of SEQ ID: 14 and 41, SEQ ID: 14 and 40, SEQ ID: 14 and 42, SEQ ID: 14 and 43, SEQ ID: 14 and 44, SEQ ID: 16 and 41, SEQ ID: 16 and 40, SEQ ID: 16 and 42, SEQ ID: 16 and 43, and SEQ ID: 16 and 39.
29. The purified preparation of claim 17 wherein the nucleotide sequence comprises VH3-CDR3, VL2-CDR3 nucleotide sequences selected from the group consisting of SEQ ID: 24 and 42, SEQ ID: 14 and 42, SEQ ID: 25 and 42, SEQ ID: 26 and 42, SEQ ID: 27 and 42, SEQ ID: 28, and 42, SEQ ID: 29 and 42, SEQ ID: 30 and 42, SEQ ID: 31 and 42, SEQ ID: 32 and 42 and SEQ ID: 33 and 42.
30. An expression vector comprising the polynucleotide of claim 17, wherein said vector codes for MN binding antibody.
31. An expression vector comprising the polynucleotide of claim 18, wherein said vector codes for MN binding antibody.
32. An expression vector comprising the polynucleotide of claim 19, wherein said vector codes for MN binding antibody.
33. An expression vector comprising the polynucleotide of claim 20, wherein said vector codes for MN binding antibody.
34. An expression vector comprising the polynucleotide of claim 21, wherein said vector codes for MN binding antibody.
35. An expression vector comprising the polynucleotide of claim 22, wherein said vector codes for MN binding antibody.
36. An expression vector comprising the polynucleotide of claim 23, wherein said vector codes for MN binding antibody.
37. An expression vector comprising the polynucleotide of claim 24, wherein said vector codes for MN binding antibody.
38. An expression vector comprising the polynucleotide of claim 25, wherein said vector codes for MN binding antibody.
39. An expression vector comprising the polynucleotide of claim 26, wherein said vector codes for MN binding antibody.
40. An expression vector comprising the polynucleotide of claim 27, wherein said vector codes for MN binding antibody.
41. An expression vector comprising the polynucleotide of claim 28, wherein said vector codes for MN binding antibody.
42. An expression vector comprising the polynucleotide of claim 29, wherein said vector codes for MN binding antibody.
43. A host cell comprising the expression vector of claim 30, wherein said cell expresses MN binding antibody.
44. A host cell comprising the expression vector of claim 31, wherein said cell expresses MN binding antibody.
45. A host cell comprising the expression vector of claim 32, wherein said cell expresses MN binding antibody.
46. A host cell comprising the expression vector of claim 33, wherein said cell expresses MN binding antibody.
47. A host cell comprising the expression vector of claim 34, wherein said cell expresses MN binding antibody.
48. A host cell comprising the expression vector of claim 35, wherein said cell expresses MN binding antibody.
49. A host cell comprising the expression vector of claim 36, wherein said cell expresses MN binding antibody.
50. A host cell comprising the expression vector of claim 37, wherein said cell expresses MN binding antibody.
51. A host cell comprising the expression vector of claim 38, wherein said cell expresses MN binding antibody.
52. A host cell comprising the expression vector of claim 39, wherein said cell expresses MN binding antibody.
53. A host cell comprising the expression vector of claim 40, wherein said cell expresses MN binding antibody.
54. A host cell comprising the expression vector of claim 41, wherein said cell expresses MN binding antibody.
55. A host cell comprising the expression vector of claim 42, wherein said cell expresses MN binding antibody.
56. A method of making a human antibody, comprising the steps of: culturing the host cell of claim 31 under conditions whereby the antibody is expressed; and purifying the human antibody from the host cell culture.
57. A method of making a human antibody, comprising the steps of: culturing the host cell of claim 32 under conditions whereby the antibody is expressed; and purifying the human antibody from the host cell culture.
58. A method of making a human antibody, comprising the steps of: culturing the host cell of claim 33 under conditions whereby the antibody is expressed; and purifying the human antibody from the host cell culture.
59. A method of making a human antibody, comprising the steps of: culturing the host cell of claim 34 under conditions whereby the antibody is expressed; and purifying the human antibody from the host cell culture.
60. A method of making a human antibody, comprising the steps of: culturing the host cell of claim 35 under conditions whereby the antibody is expressed; and purifying the human antibody from the host cell culture.
61. A method of making a human antibody, comprising the steps of: culturing the host cell of claim 36 under conditions whereby the antibody is expressed; and purifying the human antibody from the host cell culture.
62. A method of making a human antibody, comprising the steps of: culturing the host cell of claim 37 under conditions whereby the antibody is expressed; and purifying the human antibody from the host cell culture.
63. A method of making a human antibody, comprising the steps of: culturing the host cell of claim 38 under conditions whereby the antibody is expressed; and purifying the human antibody from the host cell culture.
64. A method of making a human antibody, comprising the steps of: culturing the host cell of claim 39 under conditions whereby the antibody is expressed; and purifying the human antibody from the host cell culture.
65. A method of making a human antibody, comprising the steps of: culturing the host cell of claim 40 under conditions whereby the antibody is expressed; and purifying the human antibody from the host cell culture.
66. A method of making a human antibody, comprising the steps of: culturing the host cell of claim 41 under conditions whereby the antibody is expressed; and purifying the human antibody from the host cell culture.
67. A method of making a human antibody, comprising the steps of: culturing the host cell of claim 42 under conditions whereby the antibody is expressed; and purifying the human antibody from the host cell culture.
68. A method of making a human antibody, comprising the steps of: culturing the host cell of claim 43 under conditions whereby the antibody is expressed; and purifying the human antibody from the host cell culture.
69-87. (canceled)
Description:
[0001]This application claims priority to and incorporates by reference
co-pending provisional application Ser. No. 60/343,657 filed Oct. 18,
2001, and co-pending provisional application Ser. No. 60/377,716 filed
May 3, 2002.
[0002]This application incorporates by reference the sequence listing contained on a compact disc, which is part of this application. The sequence listing is a 1.44 MB ASCII file named "Human Antibodies That Have Mn Binding And Cell Adhesion-Neutralizing Activity", created on Oct. 3, 2002
FIELD OF THE INVENTION
[0003]This invention relates to MN binding human antibodies
BACKGROUND OF THE INVENTION
[0004]MN is a cell surface protein that is detected in a number of clinical carcinoma samples but is absent in the normal tissue of the corresponding organs. The MN cDNA has been cloned (Pastorek, J. et al, Oncogene (1994), 9, 2877-2888) and the predicted protein consists of a signal peptide, a proteoglycan-related sequence, a carbonic anhydrase domain, a transmembrane segment, and a short intracellular tail. MN is normally expressed in stomach and bile duct mucosa (Liao, S. Y., et al, Am J Pathol (1994), 145, 598-609) and in highly proliferative normal cells located in the small intestine (Saarnio, J. et al, J Histochem Cytochem (1998) 46, 497-504). However, MN is ectopically expressed in 100% renal cell carcinomas (Liao, S. Y., Cancer Res (1997) 57, 2827-2831), 100% of carcinomas of the esophagus (Turner, J. R. Hum Pathol, (1997) 28, 740-744), greater than 90% of cervical carcinomas (Liao, S. Y., et al, Am J Pathol (1994), 145, 598-609), 76% of malignant colon carcinomas, (Saarnio, J. et al, Am J Pathol (1998) 153, 279-285), 80% of non-small cell lung carcinomas (Vermylen, P. et al, Eur Respir J (1999), 14, 806-811), and in 48% of breast cancers (Chia, S. K. et al, J. Clin. Oncol. (2001) 19, 3660-3668).
[0005]Antibodies against MN have been described. Mouse monoclonal antibody G250 is effective in the reduction of renal cell carcinoma tumor size in a mouse model (van Dijk, J. et al, Int. J. Cancer (1994) 56, 262-268). This antibody was subsequently made into a chimeric antibody containing human Fc regions and the mouse variable regions. The chimeric G250 antibody is only 66% human, leading to a greater chance of immunogenicity in humans compared to a comparable fully human antibody. Therefore, treatment with the 33% mouse antibody may lead to a human anti-mouse immunogenic response, rendering the anti-cancer treatment ineffective. These problems with chimeric antibodies clearly raise the need for fully human antibodies against MN.
BRIEF SUMMARY OF THE INVENTION
[0006]The invention is composed of monoclonal human MN antibodies or MN antibody fragments that target the GEEDLP repeat within the proteoglycan domain. The proteoglycan domain of the MN cell surface protein contains four of these identical GEEDLP repeats. Binding to the desired epitope is verified by competition ELISA, where ELISA signal can be attenuated by co-incubation with a peptide containing this repeat (PGEEDLPGEEDLP). This inhibition of binding can also be verified using Biacore assays, where binding of desired antibodies to immobilized MN or proteoglycan peptides can be inhibited by the peptide repeat. In addition to binding to the peptide repeat, human anti-MN antibodies can inhibit the cell adhesion of CGL-1 cells to MN coated plastic plates. Human anti-MN antibodies have been used to diagnose and quantify MN expression in cancer cells and tumors using FACS and immunohistochemical methods. An example is also provided where a human anti-MN IgG1 mediates tumor cell lysis though antibody-dependent cell-mediated cytotoxicity. Therefore, these antibodies will be useful for the treatment of cancers in which MN is upregulated or can be useful for the diagnosis of cancers in which MN is upregulated.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007]FIG. 1 PC3 mm2 human prostate cancer cells express MN as assayed by FACS.
[0008]FIG. 2 Sequence identifications for SEQ ID #1 through SEQ ID #83
[0009]FIG. 3 Fab display vector pMORPH18 Fab 1
[0010]FIG. 4 Vector map of pMORPHx9_Fab1_FS
[0011]FIG. 5 Images of Blocking of Cell Adhesion with Anti-MN Antibody MN-3
[0012]FIG. 6 Antibody binding pairs for MN antibodies 1 through 39. BIAcore binding affinity is displayed.
DETAILED DESCRIPTION OF THE INVENTION
[0013]The invention provides human antibodies that bind to MN. These antibodies are useful for a variety of therapeutic and diagnostic purposes. These purposes include:
Characteristics of Human MN Antibodies
[0014]"Antibody" as used herein includes intact immunoglobulin molecules (e.g., IgG1, IgG2a, IgG2b, IgG3, IgM, IgD, IgE, IgA), as well as fragments thereof, such as Fab, F(ab')2, scFv, and Fv, which are capable of specific binding to an epitope of a human MN protein. Antibodies that specifically bind to MN provide a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in an immunochemical assay. Preferably, antibodies that specifically bind to human MN do not detect other proteins in immunochemical assays and can immunoprecipitate the MN from solution.
[0015]References to VL2 and/or VL3 in this specification are intended to denote the lambda (λ) class of light chain.
[0016]The Kd of human antibody binding to MN can be assayed using any method known in the art, including technologies such as real-time Bimolecular Interaction Analysis (BIA) (Sjolander & Urbaniczky, Anal. Chem. 63, 2338-2345, 1991, and Szabo et al., Curr. Opin. Struct. Biol. 5, 699-705, 1995). BIA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore®). Changes in the optical phenomenon surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.
[0017]In a BIAcore® assay, human antibodies of the present invention specifically bind to human MN with a Kd in the range from about 0.6 nM (6×10-10 nM) to about 1800 nM (1.8×10-6 nM) see FIG. 6. More preferred human antibodies of the present invention specifically bind to human MN with a Kd of approximately 0.6 nM to about 90 nM, with the most preferred antibodies of this invention binding human MN protein with a Kd of approximately 4 nM.
[0018]Preferably, antibodies of this invention as envisioned will bind to the GEEDLP repeat within the proteoglycan domain, which contains four of these identical repeats. Binding to the desired epitope can be verified using any method known in the art, including techniques like competition ELISA (Zavada et al, Br. J. of Cancer 82, 1808-1813, 2000), where ELISA signal can be attenuated by co-incubation with a peptide containing this repeat (PGEEDLPGEEDLP), but not inhibited by a similar peptide (PSEEDSPREEDP), which is also within the proteoglycan domain. This pattern of binding inhibition also can be verified using BIAcore® technologies, where binding of desired antibodies to immobilized MN or proteoglycan peptides can be inhibited by incubation with the peptide repeat. Preferably antibodies of this invention also can inhibit the cell adhesion of MN expressing cells to MN coated plastic plates ELISA (Zavada et al, Br. J. of Cancer 82, 1808-1813, 2000).
[0019]This invention uses Morphosys phage-antibody technology to generate fully human antibodies against the MN protein. The Morphosys library is based upon human backbones, greatly reducing the probability of immunogenicity.
[0020]A number of human antibodies having the MN binding and cell adhesion neutralizing characteristics described above have been identified by screening the MorphoSys HuCAL Fab library. The CDR cassettes assembled for the HuCAL library were designed to achieve a length distribution ranging from 5 to 28 amino acid residues, covering the stretch from position 95 to 102. Knappik et al., J. Mol. Biol. 296, 57-86, 2000. A number of human antibodies having the MN binding and cell adhesion neutralizing characteristics described above have been identified by screening the MorphoSys HuCAL Fab library. The CDR cassettes assembled for the HuCAL library were designed to achieve a length distribution ranging from 5 to 28 amino acid residues, covering the stretch from position 95 to 102. Knappik et al., J. Mol. Biol. 296, 57-86, 2000. In some embodiments of the invention, the VH3-CDR3 region of a human antibody has an amino acid sequence shown in FIG. 2 in SEQ ID NOS: 61-80. In other embodiments of the invention, the VLλ1-CDR3, VLλ2-CDR3, and VLλ2-CDR1 regions of a human MN antibody has amino acid sequences as shown in FIG. 2 in SEQ ID NOS: 81-89 with optimized VH3-CDR1 sequences as shown in SEQ ID NOS: 48-60, both are shown in FIG. 2. Human antibodies that have MN binding and cell adhesion-neutralizing activity are as shown in Tables 1 and 2; the variable regions within these antibodies (the CDR3 loops) are shown in Tables 1 & 2.
Obtaining Human Antibodies
[0021]Human antibodies with the MN binding and cell adhesion-neutralizing activity described above can be identified from the MorphoSys HuCAL library as follows. Human MN is coated on a microtiter plate and incubated with the MorphoSys HuCAL-Fab phage library (see: Example 1). Those phage-linked Fabs not binding to MN can be washed away from the plate, leaving only phage that tightly bind to MN. The bound phage can be eluted by a change in pH and amplified by infection of E. coli hosts. This panning process can be repeated once or twice to enrich for a population of phage-linked antibodies that tightly bind to MN. The Fabs from the enriched pool are then expressed, purified, and screened in an ELISA assay. The identified hits are then tested for binding using a BIAcore® assay, and these hits can be further screened in the cell adhesion assay as described above.
[0022]The initial panning of the HuCAL-Fab library also can be performed with MN as the antigen in round one, followed in round 2 by MN peptides fused to carrier proteins, such as BSA or transferrin, and in round 3 by MN antigen again. Human MN peptides that can be used for panning include human MN SEQ I.D. 45-47. These peptide sequences are derived from the MN proteoglycan sequence, which are thought to be involved in cell adhesion.
[0023]Alternatively, panning could be performed using MN expressing cells as antigen. For example, cells transfected with MN antigen can be labeled with biotin. These transfected cells are then mixed with unlabled, non-MN transfected cells at a labeled: unlabeled ratio of 1:10. The phage library is added to the cells, and the biotinylated, MN-bearing cells are captured with streptavidin-bound magnetic beads that are bound to a magnet. Non-specific phage are washed away, and the MN-bearing cells are specifically eluted by removing the magnetic field. These specifically bound phage can be amplified for further rounds of cell panning or can be alternated with peptide and/or protein panning.
[0024]Details of the screening process are described in the specific examples, below. Other selection methods for highly active specific antibodies or antibody fragments can be envisioned by those skilled in the art and used to identify human MN antibodies.
[0025]Human antibodies with the characteristics described above also can be purified from any cell that expresses the antibodies, including host cells that have been transfected with antibody-encoding expression constructs. The host cells are cultured under conditions whereby the human antibodies are expressed. A purified human antibody is separated from other compounds that normally associate with the antibody in the cell, such as certain proteins, carbohydrates, or lipids, using methods well known in the art. Such methods include, but are not limited to, size exclusion chromatography, ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis. A preparation of purified human antibodies is at least 80% pure; preferably, the preparations are 90%, 95%, or 99% pure. Purity of the preparations can be assessed by any means known in the art, such as SDS-polyacrylamide gel electrophoresis. A preparation of purified human antibodies of the invention can contain more than one type of human antibody with the MN binding and neutralizing characteristics described above.
[0026]Alternatively, human antibodies can be produced using chemical methods to synthesize its amino acid sequence, such as by direct peptide synthesis using solid-phase techniques (Merrifield, J. Am. Chem. Soc. 85, 2149-2154, 1963; Roberge et al., Science 269, 202-204, 1995). Protein synthesis can be performed using manual techniques or by automation. Automated synthesis can be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Optionally, fragments of human antibodies can be separately synthesized and combined using chemical methods to produce a full-length molecule.
[0027]The newly synthesized molecules can be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, PROTEINS: STRUCTURES AND MOLECULAR PRINCIPLES, WH Freeman and Co., New York, N.Y., 1983). The composition of a synthetic polypeptide can be confirmed by amino acid analysis or sequencing (e.g., using Edman degradation).
Assessment of Therapeutic Utility of Human Antibodies
[0028]To assess the ability of a particular antibody to be therapeutically useful to treat cancer, as an example, the antibody can be tested in vivo in a mouse xenograft tumor model. If desired, human Fab MN antibodies can be converted into IgG1 antibodies before therapeutic assessment. This conversion is described in Example 5, and an example of a therapeutic model is detailed in Example 9. Utility also can be tested using an antibody dependent cell-mediated cytotoxicity assay as described in Example 13.
Polynucleotides Encoding Human Mn Antibodies
[0029]The invention also provides polynucleotides encoding human MN antibodies. These polynucleotides can be used, for example, to produce quantities of the antibodies for therapeutic or diagnostic use.
[0030]Polynucleotides that can be used to encode the VH-CDR3 regions shown in SEQ ID NOS: 14-33. Polynucleotides that can be used to encode the VL-CDR3 regions shown are shown in SEQ ID NOS: 34-44. Polynucleotides that encode heavy chains and light chains of human antibodies of the invention that have been isolated from the MorphoSys HuCAL library are shown in FIG. 2. Additional optimized VH3-CDR1 sequences are shown in SEQ ID NOS: 1-13.
[0031]Polynucleotides of the invention present in a host cell can be isolated free of other cellular components such as membrane components, proteins, and lipids. Polynucleotides can be made by a cell and isolated using standard nucleic acid purification techniques, or synthesized using an amplification technique, such as the polymerase chain reaction (PCR), or by using an automatic synthesizer. Methods for isolating polynucleotides are routine and are known in the art. Any such technique for obtaining a polynucleotide can be used to obtain isolated polynucleotides encoding antibodies of the invention. For example, restriction enzymes and probes can be used to isolate polynucleotides which encode the antibodies. Isolated polynucleotides are in preparations that are free or at least 70, 80, or 90% free of other molecules.
[0032]Human antibody-encoding cDNA molecules of the invention can be made with standard molecular biology techniques, using mRNA as a template. Thereafter, cDNA molecules can be replicated using molecular biology techniques known in the art and disclosed in manuals such as Sambrook et al. (1989). An amplification technique, such as PCR, can be used to obtain additional copies of the polynucleotides.
[0033]Alternatively, synthetic chemistry techniques can be used to synthesize polynucleotides encoding antibodies of the invention. The degeneracy of the genetic code allows alternate nucleotide sequences to be synthesized that will encode an antibody having, for example one of the VH-CDR3, VH-CDR1 or VL-CDR3, light chain or heavy chain amino acid sequences shown in SEQ ID NOS: 48-89 respectively.
Expression of Polynucleotides
[0034]To express a polynucleotide encoding a human antibody of the invention, the polynucleotide can be inserted into an expression vector that contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods that are well known to those skilled in the art can be used to construct expression vectors containing sequences encoding human antibodies and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described, for example, in Sambrook et al. (1989) and in Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1995. See also Examples 1-3, below.
[0035]A variety of expression vector/host systems can be utilized to contain and express sequences encoding a human antibody of the invention. These include, but are not limited to, microorganisms, such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors, insect cell systems infected with virus expression vectors (e.g., baculovirus), plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids), or animal cell systems.
[0036]The control elements or regulatory sequences are those non-translated regions of the vector--enhancers, promoters, 5' and 3' untranslated regions--which interact with host cellular proteins to carry out transcription and translation. Such elements can vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, can be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, LaJolla, Calif.) or pSPORT1 plasmid (Life Technologies) and the like can be used. The baculovirus polyhedrin promoter can be used in insect cells. Promoters or enhancers derived from the genomes of plant cells (e.g., heat shock, RUBISCO, and storage protein genes) or from plant viruses (e.g., viral promoters or leader sequences) can be cloned into the vector. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of a nucleotide sequence encoding a human antibody, vectors based on SV40 or EBV can be used with an appropriate selectable marker.
Pharmaceutical Compositions
[0037]Any of the human MN antibodies described above can be provided in a pharmaceutical composition comprising a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier preferably is non-pyrogenic. The compositions can be administered alone or in combination with at least one other agent, such as stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water. A variety of aqueous carriers may be employed, e.g., 0.4% saline, 0.3% glycine, and the like. These solutions are sterile and generally free of particulate matter. These solutions may be sterilized by conventional, well known sterilization techniques (e.g., filtration). The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, etc. The concentration of the antibody of the invention in such pharmaceutical formulation can vary widely, i.e., from less than about 0.5%, usually at or at least about 1% to as much as 15 or 20% by weight and will be selected primarily based on fluid volumes, viscosities, etc., according to the particular mode of administration selected. See U.S. Pat. No. 5,851,525. If desired, more than one type of human antibody, for example with different Kd for MN binding, can be included in a pharmaceutical composition.
[0038]The compositions can be administered to a patient alone, or in combination with other agents, drugs or hormones. In addition to the active ingredients, these pharmaceutical compositions can contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries that facilitate processing of the active compounds into preparations which can be used pharmaceutically. Pharmaceutical compositions of the invention can be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, parenteral, topical, sublingual, or rectal means.
[0039]After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. Such labeling would include amount, frequency, and method of administration.
Diagnostic Methods
[0040]The invention also provides diagnostic methods, with which human MN can be detected in a test preparation, including without limitation a sample of serum, lung, liver, heart, breast, kidney, colon, a cell culture system, or a cell-free system (e.g., a tissue homogenate). Such diagnostic methods can be used, for example, to diagnose disorders in which MN is elevated. Such disorders include, but are not limited to carcinomas of the kidney, esophagus, breast, cervix, colon, and lung. When used for diagnosis, detection of an amount of the antibody-MN complex in a test sample from a patient which is greater than an amount of the complex in a normal sample identifies the patient as likely to have the disorder. An immunohistochemical method for the detection of MN in cancer tissues is described in Example 12.
[0041]The test preparation is contacted with a human antibody of the invention, and the test preparation is then assayed for the presence of an antibody-MN complex. If desired, the human antibody can comprise a detectable label, such as a fluorescent, radioisotopic, chemiluminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase. A fluorescence-based assay for the detection of MN expressing tumor cells is shown in Example 11.
[0042]Optionally, the antibody can be bound to a solid support, which can accommodate automation of the assay. Suitable solid supports include, but are not limited to, glass or plastic slides, tissue culture plates, microtiter wells, tubes, silicon chips, or particles such as beads (including, but not limited to, latex, polystyrene, or glass beads). Any method known in the art can be used to attach the antibody to the solid support, including use of covalent and non-covalent linkages, passive absorption, or pairs of binding moieties attached to the antibody and the solid support. Binding of MN and the antibody can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and microcentrifuge tubes.
Therapeutic Methods
[0043]The invention also provides methods of ameliorating symptoms of a disorder in which MN is elevated. These disorders include, without limitation, carcinomas of the kidney, esophagus, breast, cervix, colon, and lung. See, e.g., (Liao, S. Y., Cancer Res (1997) 57, 2827-2831), (Turner, J. R. Hum Pathol, (1997) 28, 740-744), (Liao, S. Y., et al, Am J Pathol (1994), 145, 598-609), (Saarnio, J. et al, Am J Pathol (1998) 153, 279-285), and (Vermylen, P. et al, Eur Respir J (1999), 14, 806-811).
[0044]In one embodiment of the invention, a therapeutically effective dose of a human antibody of the invention is administered to a patient having a disorder in which MN is elevated, such as those cancers described above.
Determination of a Therapeutically Effective Dose
[0045]The determination of a therapeutically effective dose is well within the capability of those skilled in the art. A therapeutically effective dose refers to the amount of human antibody that is used to effectively treat a cancer compared with the efficacy that is evident in the absence of the therapeutically effective dose.
[0046]The therapeutically effective dose can be estimated initially in animal models, usually rats, mice, rabbits, dogs, or pigs. The animal model also can be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. A subcutaneous mouse xenograft model is described in Example 9.
[0047]Therapeutic efficacy and toxicity, e.g., ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population) of a human antibody, can be determined by standard pharmaceutical procedures in cell cultures or experimental animals. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD50/ED50.
[0048]Pharmaceutical compositions that exhibit large therapeutic indices are preferred. The data obtained from animal studies is used in formulating a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.
[0049]The exact dosage will be determined by the practitioner, in light of factors related to the patient who requires treatment. Dosage and administration are adjusted to provide sufficient levels of the human antibody or to maintain the desired effect. Factors that can be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on the half-life and clearance rate of the particular formulation.
[0050]Polynucleotides encoding human antibodies of the invention can be constructed and introduced into a cell either ex vivo or in vivo using well-established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, "gene gun," and DEAE- or calcium phosphate-mediated transfection.
[0051]Effective in vivo dosages of an antibody are in the range of about 5 μg to about 50 μg/kg, about 50 μg to about 5 mg/kg, about 100 μg to about 500 μg/kg of patient body weight, and about 200 to about 250 μg/kg of patient body weight. For administration of polynucleotides encoding the antibodies, effective in vivo dosages are in the range of about 100 ng to about 200 ng, 500 ng to about 50 mg, about 1 μg to about 2 mg, about 5 μg to about 500 μg, and about 20 μg to about 100 μg of DNA.
[0052]The mode of administration of human antibody-containing pharmaceutical compositions of the invention can be any suitable route which delivers the antibody to the host. Pharmaceutical compositions of the invention are particularly useful for parenteral administration, i.e., subcutaneous, intramuscular, intravenous, or intranasal administration.
[0053]All patents and patent applications cited in this disclosure are expressly incorporated herein by reference. The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples, which are provided for purposes of illustration only and are not intended to limit the scope of the invention.
Example 1
Construction of a Human Combinatorial Antibody Library (HuCAL-Fab 1)
[0054]Cloning of HuCAL-Fab 1. HuCAL-Fab 1 is a fully synthetic, modular human antibody library in the Fab antibody fragment format. HuCAL-Fab 1 was assembled starting from an antibody library in the single-chain format (HuCAL-scFv; Knappik et al., J. Mol. Biol. 296 (2000) 55). HuCAL-Fab 1 was cloned into a phagemid expression vector pMORPH18 Fab1 (FIG. 3). This vector comprises the Fd fragment with a phoA signal sequence fused at the C-terminus to a truncated gene III protein of filamentous phage, and further comprises the light chain VL-CL with an ompA signal sequence. Both chains are under the control of the lac operon. The constant domains Cλ, Ck, and CH are synthetic genes fully compatible with the modular system of HuCAL (Knappik et al., 2000).
[0055]First, the Vλ and Vκ libraries were isolated from HuCAL-scFv by restriction digest using EcoRV/DraIII and EcoRV/BsiWI, respectively. These Vλ and Vκ libraries were cloned into pMORPH18 Fab1 cut with EcoRV/DraIII and EcoRV/BsiWI, respectively. After ligation and transformation in E. coli TG-1, library sizes of 4.14×108 and 1.6×108, respectively, were obtained, in both cases exceeding the VL diversity of HuCAL-scFv.
[0056]Similarly, the VH library was isolated from HuCAL-scFv by restriction digest using StyI/MunI. This VH library was cloned into the pMORPH18-Vλ and Vκ libraries cut with StyI/MunI. After ligation and transformation in E. coli TG-1, a total library size of 2.09×1010 was obtained, with 67% correct clones (as identified by sequencing of 207 clones).
[0057]Phagemid rescue, phage amplification and purification. HuCAL-Fab was amplified in 2×TY medium containing 34 μg/ml chloramphenicol and 1% glucose (2×TY-CG). After helper phage infection (VCSM13) at 37° C. at an OD600 of about 0.5, centrifugation and resuspension in 2×TY/34 μg/ml chloramphenicol/50 μg/ml kanamycin, cells were grown overnight at 30° C. Phage were PEG-precipitated from the supernatant (Ausubel et al., 1998), resuspended in PBS/20% glycerol, and stored at -80° C. Phage amplification between two panning rounds was conducted as follows: mid-log phase TG1-cells were infected with eluted phage and plated onto LB-agar supplemented with 1% of glucose and 34 μg/ml of chloramphenicol. After overnight incubation at 30° C., colonies were scraped off and adjusted to an OD600 of 0.5. Helper phage were added as described above.
Example 2
Solid Phase Panning
[0058]Wells of MaxiSorp® microtiter plates (Nunc) were coated with human MN protein in PBS (2 μg/well). After blocking with 5% non-fat dried milk in PBS, 1-5×1012 HuCAL-Fab phage purified as above were added for 1 h at 20° C. After several washing steps, bound phage were eluted by pH-elution with 100 mM triethylamine and subsequent neutralization with 1M TRIS-CI pH 7.0. Three rounds of panning were performed with phage amplification conducted between each round as described above.
Example 3
Subcloning of Selected Fab Fragments for Expression
[0059]The Fab-encoding inserts of the selected HuCAL Fab fragments were subcloned into the expression vector pMORPHx7_FS to facilitate rapid expression of soluble Fab. The DNA preparation of the selected HuCAL Fab clones was digested with XbaI/EcoRI, thus cutting out the Fab encoding insert (ompA-VL and phoA-Fd). Subcloning of the purified inserts into the XbaI/EcoRI cut vector pMORPHx7, previously carrying a scFv insert, leads to a Fab expression vector designated pMORPHx9_Fab1_FS (FIG. 4). Fabs expressed in this vector carry two C-terminal tags (FLAG and Strep) for detection and purification.
Example 4
Identification of Mn-Binding Fab Fragments by ELISA
[0060]The wells of a Maxisorp ELISA plates were coated with 100 μl/well solutions of human MN at a concentration of 5 μg/ml diluted in coating buffer. Expression of individual Fab was induced with 0.5 mM IPTG for 12 h at 30° C. Soluble Fab was extracted from the periplasm by osmotic shock (Ausubel et al., 1998) and used in an ELISA. The Fab fragment was detected with an anti-Fab antibody (Dianova). Values at 370 nm were read out after addition of horseradish peroxidase-conjugated anti-mouse IgG antibody and POD soluble substrate (Roche Diagnostics).
Example 5
Construction of HuCAL Immunoglobulin Expression Vectors
[0061]Heavy chain cloning. The multiple cloning site of pcDNA3.1+ (Invitrogen) was removed (NheI/ApaI), and a stuffer compatible with the restriction sites used for HuCAL design was inserted for the ligation of the leader sequences (NheI/EcoRI), VH-domains (EcoRI/BlpI), and the immunoglobulin constant regions (BlpI/ApaI). The leader sequence (EMBL M83133) was equipped with a Kozak sequence (Kozak, 1987). The constant regions of human IgG1 (PIR J00228), IgG4 (EMBL K01316), and serum IgA1 (EMBL J00220) were dissected into overlapping oligonucleotides with lengths of about 70 bases. Silent mutations were introduced to remove restriction sites non-compatible with the HuCAL design. The oligonucleotides were spliced by overlap extension-PCR.
[0062]Light chain cloning. The multiple cloning site of pcDNA3.1/Zeo+ (Invitrogen) was replaced by two different stuffers. The κ-stuffer provided restriction sites for insertion of a κ-leader (NheI/EcoRV), HuCAL-scFv Vk-domains (EcoRV/BsiWI,) and the κ-chain constant region (BsiWI/ApaI). The corresponding restriction sites in the λ-stuffer were NheI/EcoRV (I-leader), EcoRV/HpaI (VI-domains), and HpaI/ApaI (λ-chain constant region). The κ-leader (EMBL Z00022) as well as the λ-leader (EMBL L27692) were both equipped with Kozak sequences. The constant regions of the human κ- (EMBL J00241) and λ-chain (EMBL M18645) were assembled by overlap extension-PCR as described above.
[0063]Generation of IgG-expressing CHO-cells. CHO-K1 cells were co-transfected with an equimolar mixture of IgG heavy and light chain expression vectors. Double-resistant transfectants were selected with 600 μg/ml G418 and 300 μg/ml Zeocin (Invitrogen) followed by limiting dilution. The supernatant of single clones was assessed for IgG expression by capture-ELISA (see below). Positive clones were expanded in RPMI-1640 medium supplemented with 10% ultra-low IgG-FCS (Life Technologies). After adjusting the pH of the supernatant to 8.0 and sterile filtration, the solution was subjected to standard protein A column chromatography (Poros 20 A, PE Biosystems).
Example 6
Design of the CDR3 Libraries
[0064]Vλ positions 1 and 2. The original HuCAL master genes were constructed with their authentic N-termini: VLλ1: QS (CAGAGC), VLλ2: QS (CAGAGC), and VLλ3: SY (AGCTAT). Sequences containing these amino acids are shown in WO 97/08320. During HuCAL library construction, the first two amino acids were changed to DI to facilitate library cloning (EcoRI site). All HuCAL libraries contain VLλ genes with the EcoRV site GATATC (DI) at the 5'-end. All HuCAL kappa genes (master genes and all genes in the library) contain DI at the 5'-end.
[0065]VH position 1. The original HuCAL master genes were constructed with their authentic N-termini: VH1A, VH1B, VH2, VH4, and VH6 with Q (=CAG) as the first amino acid and VH3 and VH5 with E (=GAA) as the first amino acid. Sequences containing these amino acids are shown in WO 97/08320. In the HuCAL Fab 1 library, all VH chains contain 0 (═CAG) at the first position.
[0066]Vκ1/Vκ3 position 85. Because of the cassette mutagenesis procedure used to introduce the CDR3 library (Knappik et al., J. Mol. Biol. 296, 57-86, 2000), position 85 of Vκ1 and Vκ3 can be either T or V. Thus, during HuCAL scFv 1 library construction, position 85 of Vκ1 and Vκ3 was varied as follows: Vk1 original, 85T (codon ACC);
[0067]Vκ1 library, 85T or 85V (TRIM codons ACT or GTT); Vκ3 original, 85V (codon GTG); Vκ3 library, 85T or 85V (TRIM codons ACT or GTT); the same applies to HuCAL Fab1
[0068]CDR3 design. All CDR3 residues which were kept constant are indicated in Tables 1 & 2.
[0069]CDR3 length. The designed CDR3 length distribution is as follows. Residues which were varied are shown in the Sequence Listing as shown in FIG. 2. V kappa CDR3, 8 amino acid residues (position 89 to 96) (occasionally 7 residues), with Q90 fixed; V lambda CDR3, 8 to 10 amino acid residues (position 89 to 96) (occasionally 7-10 residues), with Q89, S90, and D92 fixed; and VH CDR3, 5 to 28 amino acid residues (position 95 to 102) (occasionally 4-28), with D101 fixed.
Example 7
Competition ELISA for Epitope Mapping
[0070]Nunc Maxisorb microtiter plates were coated overnight at 4° C. with 100 μL of MN or MN-peptide-coupled BSA in PBS at a concentration of 5 μg/mL. Each well is blocked with 5% non-fat milk in PBS for 2 hours at RT on a microtiter plate shaker. The plate is washed with PBS with 0.05% Tween-20. 200 μL per well of antibody or antibody+proteoglycan peptide A, B, or C (SEQ ID 20-22) is added to the well. Antibody and proteoglycan peptide concentrations were optimized to yield greatest ease in determining the 50% end point. These antibody/peptide mixtures were incubated for 1.5 hours at RT on a microtiter plate shaker. The ELISA plates are washed 5× quickly with TBS containing 0.05% Tween-20. Bound antibody was tested using peroxidase conjugated goat anti-Fab IgG (Sigma). After further washing with TBS-Tween, 100 μL of BM Blue POD Substrate (Roche) is added. After 30 minutes of incubation, the absorbance is read at 370 nm.
Example 8
Cell Adhesion Assay
[0071]1 μg/mL of purified MN in 50 mM bicarbonate buffer pH 9.2 was adsorbed in 30 μL drops on the bottom of bacteriological 5 cm Petri dishes for 1.5 hours. The drops were removed and rinsed 3 times with PBS. Subsequently the drops were blocked with 50% fetal calf serum in DMEM. The drops were further treated with 30 mL of 20-100 μg/mL anti-MN IgGs or with PBS and irrelevant antibodies as a control. After washing the drops with PBS, the spots were incubated with 30 μL of CGL-1 cell suspension (105 cells/mL) and incubated overnight. The ability of anti-MN antibodies to block adhesion of CGL-1 cells to MN coated plates was assessed after washing the drops with PBS. An example of this experiment in shown in FIG. 5 where 20 μg/ml of Anti-MN antibody MN-3 (FIG. 5A) inhibits cell adhesion compared to control gamma globulin (FIG. 5B) and to no antibody treatment (FIG. 5C).
Example 9
Subcutaneous Xenograft Cancer Model
[0072]Antitumor effects of anti-MN antibodies were evaluated using subcutaneous xenograft models in immunodeficient mice. HT-29 cells were maintained as adherent cultures in DMEM supplemented with 10% FBS. SCID mice of 6-7 weeks age were inoculated subcutaneously in the right flank with 1×107 cells in 0.1 mL of medium. Monoclonal antibodies were administered i.p. daily at a dose of 500 μg. Control mice were treated with PBS or an irrelevant monoclonal antibody. Tumors were measured twice a week with a sliding caliper. Anti-tumor efficacy was evaluated by comparing the tumor size of anti-MN antibody treatment versus control treatment.
Example 10
Subcutaneous Xenograft Cancer Model with Immunoconjugate
[0073]Anti-MN antibodies were conjugated to cytotoxic small molecules using protocols that are known in the art (e.g. C. Liu et al., Proc. Natl. Acad. Sci. (1996), 93, 8618-8623.) HT-29 cells were maintained as adherent cultures in DMEM supplemented with 10% FBS. Female CB-17 SCID mice, 6-7 weeks of age were inoculated subcutaneously at the right flank with 1×10e7 tumor cells in 0.1 mL of medium. After tumor sizes reach from 65 mm3, animals were injected daily with 0.5 mg of antibody conjugate for five consecutive days. Control mice were treated with PBS, an irrelevant monoclonal antibody, or free unconjugated drug. Tumors were measured twice a week with a sliding caliper. Anti-tumor efficacy was evaluated by comparing the tumor size of anti-MN antibody treatment versus control treatment.
Example 11
Fluorescence-Activated Cell Sorting Assay (FACS Assay)
[0074]Cells can be assayed for MN expression as a diagnostic tool. For adherent cell lines, detach cells from their flask by first removing their culture medium, rinsing them once with ice cold PBS, and treating them with 1 mM EDTA in PBS for 5 to 10 min depending on the cell line (encourage by periodically tapping the flask). Spin the cells down (1500 rpm, 5 min) and wash the cells once with ice cold Staining Buffer (10% FBS, 0.1% sodium azide, PBS). Resuspend the cells in ice-cold Staining Buffer at 1 million cells in 200 ul. Add the primary antibody at 3.2 E-11 to 3.2 E-8 M and incubate on ice for 1 h. Wash the unbound antibody with the ice-cold Staining Buffer. Resuspend the cell pellet in 200 ul of ice cold Staining Buffer and add 20 ul per 200 ul of cells of FITC-conjugated anti-human secondary antibody (Pharmingen). Incubate on ice for 1 h. Wash the unbound antibody and resuspend the cells in 200 ul of 2.5 ug/ml Propidium Iodide (PI) (Sigma) in the Staining Buffer (to gate for dead cells). Proceed with the FACS analysis gating out the cells that take up PI. PC3 mm2 human prostate cancer cells express MN as assayed by FACS as shown in FIG. 7. The red line represents staining with human anti-MN antibody, while the black line represents a control, isotype-matched human antibody.
Example 12
Immunohistochemical Analysis of Tumor Samples
[0075]Tumor sections can be tested for MN expression. Since MN is highly expressed in cancer and low expression levels are present in normal tissue, analyzing MN expression is of utility for the diagnosis and detection of cancer in patient samples. For analysis of tissue sections, standard immunohistochemical techniques can be used. Tissue sections containing a PC-3 prostate carcinoma were implanted in SCID mice. 20 micrograms/mL of anti-MN antibody was incubated with the dewaxed paraffin section and the slide was developed using a peroxidase conjugated secondary antibody, and developed using DAB chromogen. A strong membrane-associated signal was readily observed and is characteristic of high MN expression in the prostate cancer cells.
Example 13
Antibody-Dependent Cell Mediated Cytotoxicity Assays (ADCC Assays)
[0076]Anti-tumor activity of anti-MN IgGgs can be mediated by ADCC activity. MN-expressing PC-3 mm2 cells and non-MN expressing HCT-116 cells are incubated with 250 ng/mL, 1000 ng/mL or 2000 ng/mL human anti-MN IgG1 or control human IgG1 anti-digoxin antibody. Human PBMCs are added to these cells at effector: target ratios of 50:1, 25:1, and 5:1 ratios. A chromium-51 release assay is performed to determine the level of target cell lysis. A small amount of lysis is observed upon incubation of control antibody or no antibody in the presence of HCT-116 or PC-3 mm2 cells. This spontaneous level of lysis is 10-15%, 5-10%, or 2-3% for 50:1, 25:1, and 5:1 target effector ratios respectively. Similarly, lysis of non-MN expressing HCT-116 cells was in the 0-10% range when incubated with the anti-MN antibodies. However, lysis of PC-3 mm2 cells when incubated with the human anti-MN IgGs was significantly higher than the controls.
[0077]Lysis of 40, 50, and 60% was observed when using 250 ng/mL, 1000 ng/mL and 2000 ng/mL at 50:1 target:effector ratios. Similarly, 30, 33, and 38% lysis was observed at 25:1 ratios, and finally, 8, 10, and 15% lysis was observed at 5:1 target:effector ratios. These experiments show that human anti-MN antibodies mediate anti-tumor ADCC activity and may be used for the therapeutic treatment of cancer.
Sequence CWU
1
SEQUENCE LISTING
<160> NUMBER OF SEQ ID NOS: 123
<210> SEQ ID NO 1
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 1
ggatttacct ttagcgagag ggccatgacc 30
<210> SEQ ID NO 2
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 2
ggatttacct ttagcgcggc catgatgacg 30
<210> SEQ ID NO 3
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 3
ggatttacct ttagcgggag catgatggcc 30
<210> SEQ ID NO 4
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 4
ggatttacct ttagcgactg ggcgatgacg 30
<210> SEQ ID NO 5
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 5
ggatttacct ttgtgaagag catggtggtg 30
<210> SEQ ID NO 6
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 6
ggatttacct ttagcaggaa cctgatgacc 30
<210> SEQ ID NO 7
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 7
ggatttacct ttgagcggtg gatgggggcg 30
<210> SEQ ID NO 8
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 8
ggatttacct ttagcaggag gatgatggtc 30
<210> SEQ ID NO 9
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 9
ggatttacct ttagcaggtg gatgatggtc 30
<210> SEQ ID NO 10
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 10
ggatttacct ttagcgagag catgatgacg 30
<210> SEQ ID NO 11
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 11
ggatttacct ttagctggca catgatgacg 30
<210> SEQ ID NO 12
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 12
ggatttacct ttagctccgt gatgatgacg 30
<210> SEQ ID NO 13
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 13
ggatttacct ttagcgggag catgattacg 30
<210> SEQ ID NO 14
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 14
tctgctactc gttttgatta t 21
<210> SEQ ID NO 15
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 15
aatggtactc gtatggatgt t 21
<210> SEQ ID NO 16
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 16
ggtattgttc gtggtatgga tcat 24
<210> SEQ ID NO 17
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 17
ggtggttctc gttatgatgt t 21
<210> SEQ ID NO 18
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 18
aatattacta agtctgattg tt 22
<210> SEQ ID NO 19
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 19
ggtggtactc gttttgatta t 21
<210> SEQ ID NO 20
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 20
aatggtcgta atcttgatta t 21
<210> SEQ ID NO 21
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 21
actgctactc gttttgatta t 21
<210> SEQ ID NO 22
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 22
aagcctttta ctggtaagta ttggggtcat actggttttg atatt 45
<210> SEQ ID NO 23
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 23
aaacctttta ctggtaagta ttggggtcat actggttttg atatt 45
<210> SEQ ID NO 24
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 24
aatggcctgc gtatggatgt t 21
<210> SEQ ID NO 25
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 25
aatctgctgc gtatggatgt t 21
<210> SEQ ID NO 26
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 26
aatgcggtgc gtatggatgt t 21
<210> SEQ ID NO 27
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 27
aatgcgatgc gtatggatgt t 21
<210> SEQ ID NO 28
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 28
aatgccctcc gtatggatgt t 21
<210> SEQ ID NO 29
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 29
aatgtgctgc gtatggatgt t 21
<210> SEQ ID NO 30
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 30
ggggggacgc gtatggatgt t 21
<210> SEQ ID NO 31
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 31
cagggcaccc gtatggatgt t 21
<210> SEQ ID NO 32
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 32
aatggcgtgc gtatggatgt t 21
<210> SEQ ID NO 33
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 33
aatggcatcc gtatggatgt t 21
<210> SEQ ID NO 34
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 34
cagagccgtg actatgagaa gcctatgatt 30
<210> SEQ ID NO 35
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 35
cagagccgag actatgagaa gcctatgatt 30
<210> SEQ ID NO 36
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 36
cagagccgcg actatgagaa gcctatgatt 30
<210> SEQ ID NO 37
<211> LENGTH: 42
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 37
acgggtacta gcagcgatag gacgcgcccg ccgaagtacg cc 42
<210> SEQ ID NO 38
<211> LENGTH: 42
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 38
acgggtacta gcagcgatgt gtccggcctc aacatcgtgt cc 42
<210> SEQ ID NO 39
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 39
cagagctatg accgtgcttt taagtctgtt 30
<210> SEQ ID NO 40
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 40
cagagctatg accataagaa gactgag 27
<210> SEQ ID NO 41
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 41
cagagctatg acatgtttgc tcgtgttatt 30
<210> SEQ ID NO 42
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 42
cagagctatg accgtcttta taagaagctt 30
<210> SEQ ID NO 43
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 43
cagagctatg accgggctta tcgacttctt 30
<210> SEQ ID NO 44
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 44
cagagctatg accgttctcg ttatgct 27
<210> SEQ ID NO 45
<211> LENGTH: 30
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 45
Gly Glu Glu Asp Leu Pro Ser Glu Glu Asp Ser Pro Arg Glu Glu Asp
1 5 10 15
Pro Pro Gly Glu Glu Asp Leu Pro Gly Glu Glu Asp Leu Pro
20 25 30
<210> SEQ ID NO 46
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 46
Pro Gly Glu Glu Asp Leu Pro Gly Glu Glu Asp Leu Pro
1 5 10
<210> SEQ ID NO 47
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 47
Pro Ser Glu Glu Asp Ser Pro Arg Glu Glu Asp Pro
1 5 10
<210> SEQ ID NO 48
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 48
Gly Phe Thr Phe Ser Glu Arg Ala Met Thr
1 5 10
<210> SEQ ID NO 49
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 49
Gly Phe Thr Phe Ser Ala Ala Met Met Thr
1 5 10
<210> SEQ ID NO 50
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 50
Gly Phe Thr Phe Ser Gly Ser Met Met Ala
1 5 10
<210> SEQ ID NO 51
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 51
Gly Phe Thr Phe Ser Asp Trp Ala Met Thr
1 5 10
<210> SEQ ID NO 52
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 52
Gly Phe Thr Phe Val Lys Ser Met Val Val
1 5 10
<210> SEQ ID NO 53
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 53
Gly Phe Thr Phe Ser Arg Asn Leu Met Thr
1 5 10
<210> SEQ ID NO 54
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 54
Gly Phe Thr Phe Glu Arg Trp Met Gly Ala
1 5 10
<210> SEQ ID NO 55
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 55
Gly Phe Thr Phe Ser Arg Arg Met Met Val
1 5 10
<210> SEQ ID NO 56
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 56
Gly Phe Thr Phe Ser Arg Trp Met Met Val
1 5 10
<210> SEQ ID NO 57
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 57
Gly Phe Thr Phe Ser Glu Ser Met Met Thr
1 5 10
<210> SEQ ID NO 58
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 58
Gly Phe Thr Phe Ser Trp His Met Met Thr
1 5 10
<210> SEQ ID NO 59
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 59
Gly Phe Thr Phe Ser Ser Val Met Met Thr
1 5 10
<210> SEQ ID NO 60
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 60
Gly Phe Thr Phe Ser Gly Ser Met Met Thr
1 5 10
<210> SEQ ID NO 61
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 61
Ser Ala Thr Arg Phe Asp Tyr
1 5
<210> SEQ ID NO 62
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 62
Asn Gly Thr Arg Met Asp Val
1 5
<210> SEQ ID NO 63
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 63
Gly Ile Val Arg Gly Met Asp His
1 5
<210> SEQ ID NO 64
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 64
Gly Gly Ser Arg Tyr Asp Val
1 5
<210> SEQ ID NO 65
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 65
Asn Ile Thr Lys Ser Asp Val
1 5
<210> SEQ ID NO 66
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 66
Gly Gly Thr Arg Phe Asp Tyr
1 5
<210> SEQ ID NO 67
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 67
Asn Gly Arg Asn Leu Asp Tyr
1 5
<210> SEQ ID NO 68
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 68
Thr Ala Thr Arg Phe Asp Tyr
1 5
<210> SEQ ID NO 69
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 69
Lys Pro Phe Thr Gly Lys Tyr Trp Gly His Thr Gly Phe Asp Ile
1 5 10 15
<210> SEQ ID NO 70
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 70
Lys Pro Phe Thr Gly Lys Tyr Trp Gly His Thr Gly Phe Asp Ile
1 5 10 15
<210> SEQ ID NO 71
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 71
Asn Gly Leu Arg Met Asp Val
1 5
<210> SEQ ID NO 72
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 72
Asn Leu Leu Arg Met Asp Val
1 5
<210> SEQ ID NO 73
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 73
Asn Ala Val Arg Met Asp Val
1 5
<210> SEQ ID NO 74
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 74
Asn Ala Met Arg Met Asp Val
1 5
<210> SEQ ID NO 75
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 75
Asn Ala Leu Arg Met Asp Val
1 5
<210> SEQ ID NO 76
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 76
Asn Val Leu Arg Met Asp Val
1 5
<210> SEQ ID NO 77
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 77
Gly Gly Thr Arg Met Asp Val
1 5
<210> SEQ ID NO 78
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 78
Gln Gly Thr Arg Met Asp Val
1 5
<210> SEQ ID NO 79
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 79
Asn Gly Val Arg Met Asp Val
1 5
<210> SEQ ID NO 80
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 80
Asn Gly Ile Arg Met Asp Val
1 5
<210> SEQ ID NO 81
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 81
Gln Ser Arg Asp Tyr Glu Lys Pro Met Ile
1 5 10
<210> SEQ ID NO 82
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 82
Thr Gly Thr Ser Ser Asp Arg Thr Arg Pro Pro Lys Tyr Ala
1 5 10
<210> SEQ ID NO 83
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 83
Thr Gly Thr Ser Ser Asp Val Ser Gly Leu Asn Ile Val Ser
1 5 10
<210> SEQ ID NO 84
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 84
Gln Ser Tyr Asp Arg Ala Phe Lys Ser Val
1 5 10
<210> SEQ ID NO 85
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 85
Gln Ser Tyr Gly His Lys Lys Thr Glu
1 5
<210> SEQ ID NO 86
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 86
Gln Ser Tyr Asp Met Phe Ala Arg Val Ile
1 5 10
<210> SEQ ID NO 87
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 87
Gln Ser Tyr Asp Arg Leu Tyr Lys Lys Leu
1 5 10
<210> SEQ ID NO 88
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 88
Gln Ser Tyr Asp Arg Ala Tyr Arg Leu Leu
1 5 10
<210> SEQ ID NO 89
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 89
Gln Ser Tyr Asp Arg Ser Arg Tyr Ala
1 5
<210> SEQ ID NO 90
<211> LENGTH: 109
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 85
<223> OTHER INFORMATION: Xaa = Thr or Val
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 90, 92, 93, 94, 95, 96, 97
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 90
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Tyr
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Glu Asp Phe Ala Xaa Tyr Tyr Cys Xaa Gln Xaa Xaa Xaa Xaa Xaa Xaa
85 90 95
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr
100 105
<210> SEQ ID NO 91
<211> LENGTH: 114
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 94, 96, 97, 98, 99, 100, 101
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 91
Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
20 25 30
Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45
Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro
50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Xaa Gln Xaa
85 90 95
Xaa Xaa Xaa Xaa Xaa Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105 110
Arg Thr
<210> SEQ ID NO 92
<211> LENGTH: 110
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 91, 93, 94, 95, 96, 97, 98
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 86
<223> OTHER INFORMATION: Xaa = Thr or Val
<400> SEQUENCE: 92
Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
20 25 30
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
35 40 45
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser
50 55 60
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu
65 70 75 80
Pro Glu Asp Phe Ala Xaa Tyr Tyr Cys Xaa Gln Xaa Xaa Xaa Xaa Xaa
85 90 95
Xaa Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr
100 105 110
<210> SEQ ID NO 93
<211> LENGTH: 115
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 95, 97, 98, 99, 100, 101, 102
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 93
Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Glu Arg Ala Thr Ile Asn Cys Arg Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30
Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60
Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80
Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Xaa Gln
85 90 95
Xaa Xaa Xaa Xaa Xaa Xaa Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110
Lys Arg Thr
115
<210> SEQ ID NO 94
<211> LENGTH: 111
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 92, 94, 95, 96, 97, 98, 99
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 94
Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
1 5 10 15
Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn
20 25 30
Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45
Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
50 55 60
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln
65 70 75 80
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Xaa Asp Xaa Xaa Xaa
85 90 95
Xaa Xaa Xaa Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105 110
<210> SEQ ID NO 95
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 93, 95, 96, 97, 98, 99, 100
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 95
Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
1 5 10 15
Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30
Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
35 40 45
Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
50 55 60
Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
65 70 75 80
Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Xaa Asp Xaa Xaa
85 90 95
Xaa Xaa Xaa Xaa Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105 110
<210> SEQ ID NO 96
<211> LENGTH: 109
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 90, 92, 93, 94, 95, 96, 97
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 96
Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln
1 5 10 15
Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala
20 25 30
Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
35 40 45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser
50 55 60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu
65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Xaa Asp Xaa Xaa Xaa Xaa Xaa
85 90 95
Xaa Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105
<210> SEQ ID NO 97
<211> LENGTH: 120
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109,
110, 111, 112, 113, 114, 116
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 97
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
20 25 30
Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45
Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe
50 55 60
Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
100 105 110
Xaa Xaa Asp Xaa Trp Gly Gln Gly
115 120
<210> SEQ ID NO 98
<211> LENGTH: 127
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109,
110, 111, 112, 113, 114, 116
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 98
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45
Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe
50 55 60
Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
100 105 110
Xaa Xaa Asp Xaa Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125
<210> SEQ ID NO 99
<211> LENGTH: 128
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,
110,
111, 112, 113, 114, 115, 117
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 99
Gln Val Gln Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln
1 5 10 15
Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser
20 25 30
Gly Val Gly Val Gly Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu
35 40 45
Trp Leu Ala Leu Ile Asp Trp Asp Asp Asp Lys Tyr Tyr Ser Thr Ser
50 55 60
Leu Lys Thr Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val
65 70 75 80
Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr
85 90 95
Cys Ala Arg Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
100 105 110
Xaa Xaa Xaa Asp Xaa Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125
<210> SEQ ID NO 100
<211> LENGTH: 127
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109,
110, 111, 112, 113, 114, 116
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 100
Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
100 105 110
Xaa Xaa Asp Xaa Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125
<210> SEQ ID NO 101
<211> LENGTH: 126
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 115
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 101
Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile Ser Ser Tyr
20 25 30
Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile
35 40 45
Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Asn Tyr Asn Pro Ser Leu Lys
50 55 60
Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser Leu
65 70 75 80
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95
Arg Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
100 105 110
Xaa Asp Xaa Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125
<210> SEQ ID NO 102
<211> LENGTH: 127
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109,
110, 111, 112, 113, 114, 116
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 102
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Glu
1 5 10 15
Ser Leu Lys Ile Ser Cys Lys Gly Ser Gly Tyr Ser Phe Thr Ser Tyr
20 25 30
Trp Ile Gly Trp Val Arg Gln Met Pro Gly Lys Gly Leu Glu Trp Met
35 40 45
Gly Ile Ile Tyr Pro Gly Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe
50 55 60
Gln Gly Gln Val Thr Ile Ser Ala Asp Lys Ser Ile Ser Thr Ala Tyr
65 70 75 80
Leu Gln Trp Ser Ser Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95
Ala Arg Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
100 105 110
Xaa Xaa Asp Xaa Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125
<210> SEQ ID NO 103
<211> LENGTH: 130
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
112,
113, 114, 115, 116, 117, 119
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 103
Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
1 5 10 15
Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn
20 25 30
Ser Ala Ala Trp Asn Trp Ile Arg Gln Ser Pro Gly Arg Gly Leu Glu
35 40 45
Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala
50 55 60
Val Ser Val Lys Ser Arg Ile Thr Ile Asn Pro Asp Thr Ser Lys Asn
65 70 75 80
Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val
85 90 95
Tyr Tyr Cys Ala Arg Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
100 105 110
Xaa Xaa Xaa Xaa Xaa Asp Xaa Trp Gly Gln Gly Thr Leu Val Thr Val
115 120 125
Ser Ser
130
<210> SEQ ID NO 104
<211> LENGTH: 327
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 253, 254
<223> OTHER INFORMATION: n, n = ag or ct
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (265)...(288)
<223> OTHER INFORMATION: n = a, t, c, or g
<400> SEQUENCE: 104
gatatccaga tgacccagag cccgtctagc ctgagcgcga gcgtgggtga tcgtgtgacc 60
attacctgca gagcgagcca gggcattagc agctatctgg cgtggtacca gcagaaacca 120
ggtaaagcac cgaaactatt aatttatgca gccagcagct tgcaaagcgg ggtcccgtcc 180
cgttttagcg gctctggatc cggcactgat tttaccctga ccattagcag cctgcaacct 240
gaagactttg cgnnttatta ttgcnnncag nnnnnnnnnn nnnnnnnnac ctttggccag 300
ggtacgaaag ttgaaattaa acgtacg 327
<210> SEQ ID NO 105
<211> LENGTH: 342
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (280)...(303)
<223> OTHER INFORMATION: n = a, t, c, or g
<400> SEQUENCE: 105
gatatcgtga tgacccagag cccactgagc ctgccagtga ctccgggcga gcctgcgagc 60
attagctgca gaagcagcca aagcctgctg catagcaacg gctataacta tctggattgg 120
taccttcaaa aaccaggtca aagcccgcag ctattaattt atctgggcag caaccgtgcc 180
agtggggtcc cggatcgttt tagcggctct ggatccggca ccgattttac cctgaaaatt 240
agccgtgtgg aagctgaaga cgtgggcgtg tattattgcn nncagnnnnn nnnnnnnnnn 300
nnnacctttg gccagggtac gaaagttgaa attaaacgta cg 342
<210> SEQ ID NO 106
<211> LENGTH: 330
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 256, 257
<223> OTHER INFORMATION: n, n = ag or ct
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (268)...(291)
<223> OTHER INFORMATION: n = a, c, g or t
<400> SEQUENCE: 106
gatatcgtgc tgacccagag cccggcgacc ctgagcctgt ctccgggcga acgtgcgacc 60
ctgagctgca gagcgagcca gagcgtgagc agcagctatc tggcgtggta ccagcagaaa 120
ccaggtcaag caccgcgtct attaatttat ggcgcgagca gccgtgcaac tggggtcccg 180
gcgcgtttta gcggctctgg atccggcacg gattttaccc tgaccattag cagcctggaa 240
cctgaagact ttgcgnntta ttattgcnnn cagnnnnnnn nnnnnnnnnn nacctttggc 300
cagggtacga aagttgaaat taaacgtacg 330
<210> SEQ ID NO 107
<211> LENGTH: 345
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (283)...(306)
<223> OTHER INFORMATION: n = a, t, c, or g
<400> SEQUENCE: 107
gatatcgtga tgacccagag cccggatagc ctggcggtga gcctgggcga acgtgcgacc 60
attaactgca gaagcagcca gagcgtgctg tatagcagca acaacaaaaa ctatctggcg 120
tggtaccagc agaaaccagg tcagccgccg aaactattaa tttattgggc atccacccgt 180
gaaagcgggg tcccggatcg ttttagcggc tctggatccg gcactgattt taccctgacc 240
atttcgtccc tgcaagctga agacgtggcg gtgtattatt gcnnncagnn nnnnnnnnnn 300
nnnnnnacct ttggccaggg tacgaaagtt gaaattaaac gtacg 345
<210> SEQ ID NO 108
<211> LENGTH: 345
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (277)...(306)
<223> OTHER INFORMATION: n = a, t, c, or g
<400> SEQUENCE: 108
gatatcgcac tgacccagcc agcttcagtg agcggctcac caggtcagag cattaccatc 60
tcgtgtacgg gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag 120
catcccggga aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240
caagcggaag acgaagcgga ttattattgc cagtctnnng atnnnnnnnn nnnnnnnnnn 300
nnnnnngtgt ttggcggcgg cacgaagtta accgttcttg gccag 345
<210> SEQ ID NO 109
<211> LENGTH: 330
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (268)...(291)
<223> OTHER INFORMATION: n = a, t, c, or g
<400> SEQUENCE: 109
gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60
tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg 120
caggcgccag ttctggtgat ttatgatgat tctgaccgtc cctcaggcat cccggaacgc 180
tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240
gacgaagcgg attattattg ccagtctnnn gatnnnnnnn nnnnnnnnnn ngtgtttggc 300
ggcggcacga agttaaccgt tcttggccag 330
<210> SEQ ID NO 110
<211> LENGTH: 330
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (268)...(291)
<223> OTHER INFORMATION: n = a, t, c, or g
<400> SEQUENCE: 110
gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 60
tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg 120
caggcgccag ttctggtgat ttatgatgat tctgaccgtc cctcaggcat cccggaacgc 180
tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 240
gacgaagcgg attattattg ccagtctnnn gatnnnnnnn nnnnnnnnnn ngtgtttggc 300
ggcggcacga agttaaccgt tcttggccag 330
<210> SEQ ID NO 111
<211> LENGTH: 383
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (295)...(348)
<223> OTHER INFORMATION: n = A,T,C or G
<400> SEQUENCE: 111
caggtgcaat tggttcagtc tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg 60
agctgcaaag cctccggagg cacttttagc agctatgcga ttagctgggt gcgccaagcc 120
cctgggcagg gtctcgagtg gatgggcggc attattccga tttttggcac ggcgaactac 180
gcgcagaagt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat 240
atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtnnnnnn 300
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nngatnnntg gggccaaggc 360
accctggtga cggttagctc agc 383
<210> SEQ ID NO 112
<211> LENGTH: 383
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (295)...(348)
<223> OTHER INFORMATION: n = A,T,C or G
<400> SEQUENCE: 112
caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgcgag cgtgaaagtg 60
agctgcaaag cctccggata tacctttacc agctattata tgcactgggt ccgccaagcc 120
cctgggcagg gtctcgagtg gatgggctgg attaacccga atagcggcgg cacgaactac 180
gcgcagaagt ttcagggccg ggtgaccatg acccgtgata ccagcattag caccgcgtat 240
atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtnnnnnn 300
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nngatnnntg gggccaaggc 360
accctggtga cggttagctc agc 383
<210> SEQ ID NO 113
<211> LENGTH: 386
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (298)...(351)
<223> OTHER INFORMATION: n = A,T,C or G
<400> SEQUENCE: 113
caggtgcaat tgaaagaaag cggcccggcc ctggtgaaac cgacccaaac cctgaccctg 60
acctgtacct tttccggatt tagcctgtcc acgtctggcg ttggcgtggg ctggattcgc 120
cagccgcctg ggaaagccct cgagtggctg gctctgattg attgggatga tgataagtat 180
tatagcacca gcctgaaaac gcgtctgacc attagcaaag atacttcgaa aaatcaggtg 240
gtgctgacta tgaccaacat ggacccggtg gatacggcca cctattattg cgcgcgtnnn 300
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnngatnn ntggggccaa 360
ggcaccctgg tgacggttag ctcagc 386
<210> SEQ ID NO 114
<211> LENGTH: 383
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (295)...(358)
<223> OTHER INFORMATION: n = A,T,C or G
<400> SEQUENCE: 114
caggtgcaat tggtggaaag cggcggcggc ctggtgcaac cgggcggcag cctgcgtctg 60
agctgcgcgg cctccggatt tacctttagc agctatgcga tgagctgggt gcgccaagcc 120
cctgggaagg gtctcgagtg ggtgagcgcg attagcggta gcggcggcag cacctattat 180
gcggatagcg tgaaaggccg ttttaccatt tcacgtgata attcgaaaaa caccctgtat 240
ctgcaaatga acagcctgcg tgcggaagat acggccgtgt attattgcgc gcgtnnnnnn 300
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nngatnnntg gggccaaggc 360
accctggtga cggttagctc agc 383
<210> SEQ ID NO 115
<211> LENGTH: 380
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (291)...(345)
<223> OTHER INFORMATION: n = A,T,C or G
<400> SEQUENCE: 115
caggtgcaat tgcaagaaag tggtccgggc ctggtgaaac cgagcgaaac cctgagcctg 60
acctgcaccg tttccggagg cagcattagc agctattatt ggagctggat tcgccagccg 120
cctgggaagg gtctcgagtg gattggctat atttattata gcggcagcac caactataat 180
ccgagcctga aaagccgggt gaccattagc gttgatactt cgaaaaacca gtttagcctg 240
aaactgagca gcgtgacggc ggcggatacg gccgtgtatt attgcgcgcg tnnnnnnnnn 300
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnng atnnntgggg ccaaggcacc 360
ctggtgacgg ttagctcagc 380
<210> SEQ ID NO 116
<211> LENGTH: 383
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (295)...(348)
<223> OTHER INFORMATION: n = A,T,C or G
<400> SEQUENCE: 116
caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgaaag cctgaaaatt 60
agctgcaaag gttccggata ttcctttacg agctattgga ttggctgggt gcgccagatg 120
cctgggaagg gtctcgagtg gatgggcatt atttatccgg gcgatagcga tacccgttat 180
tctccgagct ttcagggcca ggtgaccatt agcgcggata aaagcattag caccgcgtat 240
cttcaatgga gcagcctgaa agcgagcgat acggccatgt attattgcgc gcgtnnnnnn 300
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nngatnnntg gggccaaggc 360
accctggtga cggttagctc agc 383
<210> SEQ ID NO 117
<211> LENGTH: 392
<212> TYPE: DNA
<213> ORGANISM: homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (304)...(357)
<223> OTHER INFORMATION: n = a, t, c, or g
<400> SEQUENCE: 117
caggtgcaat tgcaacagtc tggtccgggc ctggtgaaac cgagccaaac cctgagcctg 60
acctgtgcga tttccggaga tagcgtgagc agcaacagcg cggcgtggaa ctggattcgc 120
cagtctcctg ggcgtggcct cgagtggctg ggccgtacct attatcgtag caaatggtat 180
aacgattatg cggtgagcgt gaaaagccgg attaccatca acccggatac ttcgaaaaac 240
cagtttagcc tgcaactgaa cagcgtgacc ccggaagata cggccgtgta ttattgcgcg 300
cgtnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn ngatnnntgg 360
ggccaaggca ccctggtgac ggttagctca gc 392
<210> SEQ ID NO 118
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 118
Gly Glu Glu Asp Leu Pro
1 5
<210> SEQ ID NO 119
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 119
Pro Gly Glu Glu Asp Leu Pro Gly Glu Glu Asp Leu Pro
1 5 10
<210> SEQ ID NO 120
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 120
Pro Ser Glu Glu Asp Ser Pro Arg Glu Glu Asp Pro
1 5 10
<210> SEQ ID NO 121
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 121
Cys Ala Gly Ala Gly Cys
1 5
<210> SEQ ID NO 122
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 122
Ala Gly Cys Thr Ala Thr
1 5
<210> SEQ ID NO 123
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: homo sapiens
<400> SEQUENCE: 123
Gly Ala Thr Ala Thr Cys
1 5
User Contributions:
Comment about this patent or add new information about this topic: