Patent application title: NUCLEOTIDE SEQUENCES REGULATING GENE EXPRESSION AND CONSTRUCTS AND METHODS UTILIZING SAME
Inventors:
Hagai Karchi (Moshav Sitriya Doar-Na Emek Soreq, IL)
Rafael Meissner (Rechovot, IL)
Gil Ronen (Emek Hefer, IL)
Gil Ronen (Emek Hefer, IL)
Ezekiel Golan (Tel-Aviv, IL)
Larisa Rabinovich (Rishon-Lezion, IL)
Naama Zeliger (Moshav Mechora, IL)
Noa Savir (Givat Brenner, IL)
Assignees:
Evogene Ltd.
IPC8 Class: AC12N1582FI
USPC Class:
800278
Class name: Multicellular living organisms and unmodified parts thereof and related processes method of introducing a polynucleotide molecule into or rearrangement of genetic material within a plant or plant part
Publication date: 2010-08-12
Patent application number: 20100205691
Claims:
1. An isolated polynucleotide comprising a nucleic acid sequence selected
from the group consisting of SEQ ID NOs: 136, 1, 6, 11, 16, 21, 26, 31,
36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 11, 116, 121,
126, 131, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196,
201, 202, 203, 210 and 213 wherein the isolated polynucleotide is capable
of regulating expression of at least one heterologous polynucleotide
sequence operably linked thereto.
2. An isolated polynucleotide consisting of the nucleic acid sequence selected from the group consisting of SEQ ID NOs: 136, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 11, 116, 121, 126, 131, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.
3. A nucleic acid construct, comprising the isolated polynucleotide of claim 1.
4. A nucleic acid construct, comprising the isolated polynucleotide of claim 2.
5. The nucleic acid construct of claim 3, further comprising at least one heterologous polynucleotide operably linked to the isolated polynucleotide.
6. The nucleic acid construct of claim 4, further comprising at least one heterologous polynucleotide operably linked to the isolated polynucleotide.
7. The nucleic acid construct of claim 5, wherein said heterologous polynucleotide is an expressed nucleic acid sequence.
8. The nucleic acid construct of claim 5, wherein said heterologous polynucleotide is a reporter gene.
9. The isolated polynucleotide of claim 1, wherein said regulating is effected in a constitutive manner.
10. The isolated polynucleotide of claim 1, wherein said regulating is effected in an inductive manner.
11. The isolated polynucleotide of claim 1, wherein said regulating is effected in a tissue specific manner.
12. The isolated polynucleotide of claim 1, wherein said regulating is effected in a developmental stage specific manner.
13. The nucleic acid contrast of claim 5, wherein said at least one heterologous polynucleotide is at least two heterologous polynucleotides each being operably linked to an end of the isolated polynucleotide such that said two heterologous polynucleotides flank the isolated polynucleotide.
14. A transgenic cell comprising the isolated polynucleotide of claim 1.
15. A transgenic cell comprising the nucleic acid construct of claim 3.
16. A transgenic non-human organism comprising the isolated polynucleotide of claim 1.
17. A transgenic non-human organism comprising the nucleic acid construct of claim 3.
18. A transgenic plant comprising the isolated polynucleotide of claim 1.
19. A transgenic plant comprising the nucleic acid construct of claim 3.
20. A method of producing a transgenic plant, comprising transforming a plant with the polynucleotide of claim 1.
21. A method of producing a transgenic plant, comprising transforming a plant with the nucleic acid construct of claim 3.
22. A method of producing a transgenic plant, comprising transforming a plant with the nucleic acid construct of claim 5.
23. A method of producing a transgenic plant, comprising transforming a plant with the nucleic acid construct of claim 7.
24. A method of expressing a polypeptide of interest in a cell comprising transforming the cell with a nucleic acid construct including a polynucleotide sequence encoding the polypeptide of interest operably linked to a regulatory nucleic acid sequence selected from the group consisting of SEQ ID NOs: 136, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 11, 116, 121, 126, 131, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213 thereby expressing the polypeptide of interest in the cell.
25. A method of co-expressing two polypeptides of interest in a cell comprising transforming the cell with a nucleic acid construct including two polynucleotide sequences encoding the two polypeptides of interest operably linked to a regulatory nucleic acid sequence selected from the group consisting of SEQ ID NOS: 136, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 11, 116, 121, 126, 131, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213 such that said two polynucleotide sequences flank said regulatory nucleic acid sequence, thereby expressing the two polypeptides of interest in the cell.
Description:
RELATED PATENT APPLICATIONS
[0001]This application is a continuation of pending U.S. patent application Ser. No. 10/548,548 filed Sep. 12, 2005, which is a National Phase of PCT Patent Application No. PCT/IL2004/000235 having International Filing Date of Mar. 11, 2004, which claims the benefit of U.S. Provisional Patent Application No. 60/453,843 filed Mar. 12, 2003. The contents of the above applications are all incorporated herein by reference.
FIELD AND BACKGROUND OF THE INVENTION
[0002]The present invention relates to isolated polynucleotides which are capable of regulating gene expression in an organism and more specifically, to novel nucleic acid sequences which include constitutive, inducible, tissue-specific and developmental stage-specific promoters which are capable of directing gene expression in plants.
[0003]A promoter is a nucleic acid sequence approximately 200-1500 base pairs (bp) in length which is typically located upstream of coding sequences. A promoter functions in directing transcription of an adjacent coding sequence and thus acts as a switch for gene expression in an organism. Thus, all cellular processes are ultimately governed by the activity of promoters, making such regulatory elements important research and commercial tools.
[0004]Promoters are routinely utilized for heterologous gene expression in commercial expression systems, gene therapy and a variety of research applications.
[0005]The choice of the promoter sequence determines when, where and how strongly the heterologous gene of choice is expressed. Accordingly, when a constitutive expression throughout an organism is desired, a constitutive promoter is preferably utilized. On the other hand, when triggered gene expression is desired, an inductive promoter is preferred. Likewise, when an expression is to be confined to a particular tissue, or a particular physiological or developmental stage, a tissue specific or a stage specific promoter is respectively preferred.
[0006]Constitutive promoters are active throughout the cell cycle and have been utilized to express heterologous genes in transgenic plants, such that the expression of traits encoded by the heterologous genes is effected throughout the plant at all time. Examples of known constitutive promoters often used for plant transformation include the cauliflower heat shock protein 80 (hsp80) promoter, 35S cauliflower mosaic virus promoter, nopaline synthase (nos) promoter, octopine (ocs) Agrobacterium promoter and the mannopine synthase (mas) Agrobacterium promoter.
[0007]Inducible promoters can be switched on by an inducing agent and are typically active as long as they are exposed to the inducing agent. The inducing agent can be a chemical agent, such as a metabolite, growth regulator, herbicide, or phenolic compound, or a physiological stress directly imposed upon the plant such as cold, heat, salt, toxins, or through the action of a microbial pathogen or an insecticidal pest. Accordingly, inducible promoters can be utilized to regulate expression of desired traits, such as genes that control insect pests or microbial pathogens, whereby the protein is only produced shortly upon infection or first bites of the insect and transiently so as to decrease selective pressure for resistant insects. For example, plants can be transformed to express insecticidal or fungicidal traits such as the Bacillus thuringiensis (Bt) toxins, viruses coat proteins, glucanases, chitinases or phytoalexins. In another example, plants can be transformed to tolerate herbicides by overexpressing, upon exposure to a herbicide, the acetohydroxy acid synthease enzyme, which neutralizes multiple types of herbicides [Hattori, J. et al., Mol. General. Genet. 246: 419 (1995)].
[0008]Several fruit-specific promoters have been described, including an apple-isolated Thi promoter (U.S. Pat. No. 6,392,122); a strawberry-isolated promoter (U.S. Pat. No. 6,080,914); tomato-isolated E4 and E8 promoters (U.S. Pat. No. 5,859,330); a polygalacturonase promoter (U.S. Pat. No. 4,943,674); and the 2AII tomato gene promoter [Van Haaren et al., Plant Mol. Biol. 21: 625-640 (1993)]. Such fruit specific promoters can be utilized, for example, to modify fruit ripening by regulating expression of ACC deaminase which inhibits biosynthesis of ethylene. Other gene products which may be desired to express in fruit tissue include genes encoding flavor or color traits, such as thaumatin, cyclase or sucrose phosphate synthase.
[0009]Seed specific promoters have been described in U.S. Pat. Nos. 6,403,862, 5,608,152 and 5,504,200; and in U.S. patent application Ser. Nos. 09/998,059 and 10/137,964. Such seed specific promoters can be utilized, for example, to alter the levels of saturated or unsaturated fatty acids; to increase levels of lysine- or sulfur-containing amino acids, or to modify the amount of starch contained in seeds.
[0010]Several promoters which regulate gene expression specifically during germination stage have been described, including the α-glucoronidase and the cystatin-1 barely-isolated promoters (U.S. Pat. No. 6,359,196), and the hydrolase promoter [Skriver et al., Proc. Natl. Acad. Sci. USA, 88:7266-7270 (1991)].
[0011]While reducing the present invention to practice, the present inventors have uncovered several regulatory sequences which exhibit a wide range of promoter activities in plants, as is further described hereinunder, such regulatory sequences can be used in a variety of commercial and research applications.
SUMMARY OF THE INVENTION
[0012]According to one aspect of the present invention there is provided an isolated polynucleotide comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 211, 210 and 213, wherein the isolated polynucleotide is capable of regulating expression of at least one polynucleotide sequence operably linked thereto.
[0013]According to another aspect of the present invention there is provided a nucleic acid construct which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.
[0014]According to yet another aspect of the present invention there is provided a transgenic cell which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.
[0015]According to still another aspect of the present invention there is provided a transgenic cell comprising the nucleic acid construct which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.
[0016]According to yet an additional aspect of the present invention there is provided a transgenic organism comprising a nucleic acid construct which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.
[0017]According to yet an additional aspect of the present invention there is provided a transgenic organism comprising a nucleic acid construct which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 11, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.
[0018]According to still an additional aspect of the present invention there is provided a transgenic plant which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.
[0019]According to a further aspect of the present invention there is provided a transgenic plant comprising a nucleic acid construct which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.
[0020]According to yet a further aspect of the present invention there is provided a method of producing a transgenic plant comprising transforming a plant with an isolated polynucleotide which includes a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.
[0021]According to still a further aspect of the present invention there is provided a method of producing a transgenic plant comprising transforming a plant with a nucleic acid construct which includes the isolated polynucleotide comprising the nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213.
[0022]According to still a further aspect of the present invention there is provided a method of expressing a polypeptide of interest in a cell comprising transforming the cell with a nucleic acid construct including a polynucleotide sequence encoding the polypeptide of interest operably linked to a regulatory nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213 thereby expressing the polypeptide of interest in the cell.
[0023]According to still a further aspect of the present invention there is provided a method of co-expressing two polypeptides of interest in a cell comprising transforming the cell with a nucleic acid construct including two polynucleotide sequences encoding the two polypeptides of interest operably linked to a regulatory nucleic acid sequence selected from the group consisting of SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202, 203, 210 and 213 such that said two polynucleotide sequences flank said regulatory nucleic acid sequence, thereby expressing the two polypeptides of interest in the cell.
[0024]According to further features in preferred embodiments of the invention described below, the isolated polynucleotide includes at least one promoter region.
[0025]According to still further features in the described preferred embodiments the nucleic acid sequence is selected from the group consisting of SEQ ID NOS: 1, 6, 41, 46, 51, 61, 86, 121, 136, 171, 181 and 202, and whereas the at least one promoter region is capable of directing transcription of said at least one polynucleotide sequence in a constitutive manner.
[0026]According to still further features in the described preferred embodiments the nucleic acid sequence is selected from the group consisting of SEQ ID NOS: 1, 11, 16, 21, 26, 31, 36, 56, 66, 71, 76, 81, 91, 96, 101, 116, 126, 141, 146, 151, 156, 161, 166, 176, 186, 191, 196, 201, 203, 210 and 213, and whereas the at least one promoter region is capable of directing transcription of said at least one polynucleotide sequence in an inductive manner.
[0027]According to still further features in the described preferred embodiments the nucleic acid sequence is selected from the group consisting of SEQ ID NOS: 1, 11, 16, 21, 26, 31, 36, 56, 61, 66, 71, 76, 91, 116, 126, 141, 146, 151, 156, 161, 166, 176, 186, 191, 196, 201, 203, 210 and 213, and whereas the at least one promoter region is capable of directing transcription of said at least one polynucleotide sequence in a tissue specific manner.
[0028]According to still further features in the described preferred embodiments the nucleic acid sequence is selected from the group consisting of SEQ ID NOS: 81, 96, 101, 106 and 131, and whereas the at least one promoter region is capable of directing transcription of said at least one polynucleotide sequence in a developmental stage specific manner.
[0029]According to still further features in the described preferred embodiments the nucleic acid construct further includes at least one heterologous polynucleotide operably linked to the isolated polynucleotide.
[0030]According to still further features in the described preferred embodiments the at least one heterologous polynucleotide is a reporter gene.
[0031]According to still further features in the described preferred embodiments the nucleic acid construct further includes two heterologous polynucleotides each being operably linked to an end of the isolated polynucleotide such that the two heterologous polynucleotides flank the isolated polynucleotide.
[0032]The present invention successfully addresses the shortcomings of the presently known configurations by providing a plurality of isolated polynucleotide sequences which exhibit a wide spectrum of promoter function patterns. These polynucleotides can be used to generate nucleic acid constructs, such as expression vectors suitable for transforming an organism. Such nucleic acid constructs can be used to promote expression of desired traits or expression products in transgenic organisms, such as plants, in a constitutive, induced, tissue specific, or a developmental stage specific manner.
BRIEF DESCRIPTION OF THE DRAWINGS
[0033]The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
[0034]In the drawings:
[0035]FIGS. 1a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 11 operably linked to a luciferase encoding sequence. FIG. 1a shows the transgenic plant under normal light. FIG. 1b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression luciferase in flower tissue.
[0036]FIGS. 2a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 21 operably linked to a luciferase encoding sequence. FIG. 2a shows the transgenic plant under normal light. FIG. 2b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in root tissue.
[0037]FIGS. 3a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 36 operably linked to a luciferase encoding sequence. FIG. 3a shows the transgenic plant under normal light. FIG. 3b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in root and flower tissue.
[0038]FIGS. 4a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 61 operably linked to a luciferase encoding sequence. FIG. 4a shows the transgenic plant under normal light. FIG. 4b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in young tissue.
[0039]FIGS. 5a-b are photographs showing an Arabidopsis thaliana seedling transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 66 operably linked to a luciferase encoding sequence. FIG. 5a shows the transgenic plant under normal light. FIG. 5b is an ultra-low light photograph of the same plant in the dark, illustrating an expression of luciferase in leaf tissue.
[0040]FIGS. 6a-b are photographs showing an Arabidopsis thaliana mature plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 66 operably linked to a luciferase encoding sequence. FIG. 6a shows the transgenic plant under normal light. FIG. 6b is an ultra-low light photograph of the same plant in the dark, illustrating an expression of luciferase in stem tissue.
[0041]FIGS. 7a-b are photographs showing an Arabidopsis thaliana plant seedlings transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 81 operably linked to a luciferase encoding sequence. FIG. 7a shows the transgenic plant under normal light. FIG. 7b is an ultra-low light photograph of the same plant in the dark, illustrating an expression of luciferase in above ground tissue.
[0042]FIGS. 8a-b are photographs showing an Arabidopsis thaliana mature plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 81 operably linked to a luciferase encoding sequence. FIG. 8a shows the transgenic plant under normal light. FIG. 8b is an ultra-low light photograph of the same plant in the dark, illustrating an expression of luciferase in flower tissue.
[0043]FIGS. 9a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 91 operably linked to a luciferase encoding sequence. FIG. 9a shows the transgenic plant under normal light. FIG. 9b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in root and flower tissue.
[0044]FIGS. 10a-b are photographs showing an Arabidopsis thaliana seedling transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 96 operably linked to a luciferase encoding sequence. FIG. 10a shows the transgenic plant under normal light. FIG. 10b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in above ground tissue.
[0045]FIGS. 11a-b are photographs showing an Arabidopsis thaliana mature plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 96 operably linked to a luciferase encoding sequence. FIG. 11a shows the transgenic plant under normal light. FIG. 11b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in above ground tissue.
[0046]FIGS. 12a-b are photographs showing seeds of an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 111 operably linked to a luciferase encoding sequence. FIG. 12a shows the seeds under normal light. FIG. 12b is an ultra-low light photograph of the same seeds in the dark, illustrating a specific expression of luciferase in seeds.
[0047]FIGS. 13a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 111 operably linked to a luciferase encoding sequence. FIG. 13a shows the transgenic plant under normal light. FIG. 13b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in roots.
[0048]FIGS. 14a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 121 operably linked to a luciferase encoding sequence. FIG. 14a shows the transgenic plant under normal light. FIG. 14b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in meristematic tissue.
[0049]FIGS. 15a-b are photographs showing an Arabidopsis thaliana seedling transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 126 operably linked to a luciferase encoding sequence. FIG. 15a shows the transgenic plant under normal light. FIG. 15b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in root meristematic tissue.
[0050]FIGS. 16a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 126 operably linked to a luciferase encoding sequence. FIG. 16a shows the transgenic plant under normal light. FIG. 16b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in flower meristematic tissue.
[0051]FIGS. 17a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 131 operably linked to a luciferase encoding sequence. FIG. 17a shows the transgenic plant under normal light. FIG. 17b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in leaf tissue.
[0052]FIGS. 18a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 136 operably linked to a luciferase encoding sequence. FIG. 18a shows the transgenic plant under normal light. FIG. 18b is an ultra-low light photograph of the same plant in the dark, illustrating a non-specific constitutive expression of luciferase.
[0053]FIGS. 19a-b are photographs showing an Arabidopsis thaliana seedling transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 156 operably linked to a luciferase encoding sequence. FIG. 19a shows the transgenic plant under normal light. FIG. 19b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in above ground tissue.
[0054]FIGS. 20a-b are photographs showing an Arabidopsis thaliana mature plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 156 operably linked to a luciferase encoding sequence. FIG. 20a shows the transgenic plant under normal light. FIG. 20b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in above ground tissue.
[0055]FIGS. 21a-b are photographs showing seeds of an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 161 operably linked to a luciferase encoding sequence. FIG. 21a shows the seeds under normal light. FIG. 21b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in seed tissue.
[0056]FIGS. 22a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 186 operably linked to a luciferase encoding sequence. FIG. 22a shows the transgenic plant under normal light. FIG. 22b is an ultra-low light photograph of the same plant in the dark, illustrating an expression of luciferase in stalk and stem tissue.
[0057]FIGS. 23a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 191 operably linked to a luciferase encoding sequence. FIG. 23a shows the transgenic plant under normal light. FIG. 23b is an ultra-low light photograph of the same plant in the dark, illustrating a weak expression of luciferase in vegetative tissue.
[0058]FIGS. 24a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 201 operably linked to a luciferase encoding sequence. FIG. 24a shows the transgenic plant under normal light. FIG. 24b is an ultra-low light photograph of the same plant in the dark, illustrating an above ground tissue specific expression of luciferase.
[0059]FIGS. 25a-b are photographs showing an Arabidopsis thaliana plant transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 176 operably linked to a luciferase encoding sequence. FIG. 25a shows the transgenic plant under normal light. FIG. 25b is an ultra-low light photograph of the same plant in the dark, illustrating a specific expression of luciferase in flower tissue.
[0060]FIGS. 26a-b are photographs showing transformed Arabidopsis thaliana plants transformed with nucleic acid constructs including partial DREs operably each linked to a GUS encoding sequence. FIG. 26a shows a plant transformed with a nucleic acid construct including the nucleic acid sequence set forth in SEQ ID NO: 210 operably linked to a GUS encoding sequence. FIG. 26b shows root tips of a plant, transformed with a nucleic acid construct comprising the nucleic acid sequence set forth in SEQ ID NO: 213 operably linked to a GUS encoding sequence.
[0061]FIG. 27 is a nucleic acid sequence alignment between DRE 6669 (SEQ ID NO: 61, QUERY) and a prior art sequence (SEQ ID NO: 214, SBJCT), revealing a different 5' sequence which is important for constitutive expression, as is exemplified in the Examples section hereinbelow.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0062]The present invention provides isolated polynucleotides capable of regulating the expression of operably linked heterologous polynucleotides, and more specifically, novel nucleic acid sequences which are capable of promoting gene expression in a constitutive, inductive, tissue specific and/or developmental stage specific manner. The present invention also provides nucleic acid constructs, as well transgenic organisms which carry the polynucleotides of the present invention and methods of producing thereof.
[0063]The principles and operation of the present invention may be better understood with reference to the accompanying descriptions.
[0064]Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following descriptions or illustrated in the Examples section. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
[0065]The term "polynucleotide" or the phrase "nucleic acid sequence" are used herein interchangeably and refer to a polymer of deoxyribonucleotide (DNA) or ribonucleotide (RNA).
[0066]The phrase "heterologous polynucleotide" refers to a polynucleotide sequence which originates from a heterologous organism or to a polynucleotide sequence which is linked to a regulatory sequence of the same organism which does not normally regulate expression of the polynucleotide sequence in the organism.
[0067]PCT Publication WO 02/07989 describes a unique approach developed by the present inventors in order to uncover novel regulatory sequences in organisms such as plants. This approach combines molecular and bioinformatics techniques for high throughput isolation of DNA regulating elements (DREs), located within the non-transcribed (non-coding) regions of the genome and which include, for example, promoters, enhancers, suppressors, silencers, locus control regions and the like.
[0068]Utilizing this approach, the present inventors have uncovered several novel polynucleotide sequences which, as illustrated in the Examples section which follows, exhibit regulatory activity in plants.
[0069]Thus, according to one aspect of the present invention, there is provided isolated polynucleotides which are capable of regulating the expression of at least one polynucleotide operably linked thereto. As is further described in the Examples section which follows, these isolated polynucleotides are as set forth in SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202 and 203, or fragments (e.g., SEQ ID NOS: 210 and 213), variants or derivatives thereof.
[0070]A coding nucleic acid sequence is "operably linked" to a regulatory sequence if it is capable of exerting a regulatory effect on the coding sequence linked thereto. Preferably, the regulatory sequence is positioned 1-500 by upstream of the ATG codon of the coding nucleic acid sequence, although it will be appreciated that regulatory sequences can also exert their effect when positioned elsewhere with respect to the coding nucleic acid sequence (e.g., within an intron).
[0071]As is clearly illustrated in the Examples section which follows, the isolated polynucleotides of the present invention are capable of regulating expression of a coding nucleic acid sequence (e.g., luciferase) operably linked thereto (see FIGS. 1-25).
[0072]The isolated polynucleotides of the present invention range in length from 174 to 3, 348 nucleotides and include one or more sequence regions which are capable of recognizing and binding RNA polymerase II and other proteins (trans-acting transcription factors) involved in transcription.
[0073]Although most of the isolated polynucleotides described herein include one promoter region, some include two distinct promoter regions each positioned on a different strand of the same genomic sequence. Such bidirectional DREs are further described in the Examples section which follows (see for example, Tables 3-17).
[0074]As is further illustrated by the Examples section which follows, the isolated polynucleotides of the present invention exhibit a range of activities and tissue specificities.
[0075]Thus for example, the nucleic acid sequences set forth in SEQ ID NOS:1, 6, 41, 46, 51, 61, 86, 121, 136, 171, 181 and 202 or fragment, variants or derivatives thereof, are capable of directing transcription of coding nucleic acid sequences operably linked thereto in a constitutive manner and thus include a constitutive promoter region.
[0076]In another example, the nucleic acid sequences set forth in SEQ ID NOS: 1, 11, 16, 21, 26, 31, 36, 56, 66, 71, 76, 81, 91, 96, 101, 116, 126, 141, 146, 151, 156, 161, 166, 176, 186, 191, 196, 201 and 203, or fragments (e.g., SEQ ID NOS: 210 and 213), variants or derivatives thereof, are capable of directing transcription of coding nucleic acid sequences operably linked thereto in an inductive manner and thus include an inductive promoter region.
[0077]In yet another example, the nucleic acid sequences set forth in SEQ ID NOS: 1, 11, 16, 21, 26, 31, 36, 56, 61, 66, 71, 76, 91, 116, 126, 141, 146, 151, 156, 161, 166, 176, 186, 191, 196, 201 and 203, or fragments (e.g., SEQ ID NOS: 210 and 213), variants or derivatives thereof, are capable of directing transcription of coding nucleic acid sequences operably linked thereto in a tissue specific manner and thus include a tissue specific promoter region.
[0078]In further yet another example, the nucleic acid sequences set forth in SEQ ID NOS: 81, 96, 101, 106 and 131, or fragment, variants or derivatives thereof, are capable of directing transcription of coding nucleic acid sequences operably linked thereto in a developmental stage specific manner and thus include a developmental stage specific promoter region.
[0079]Preferably, the polynucleotide of the present invention are modified to create variations in the molecule sequences such as to enhance their promoting activities, using methods known in the art, such as PCR-based DNA modification, or standard DNA mutagenesis techniques, or by chemically synthesizing the modified polynucleotides.
[0080]Accordingly, the sequences set forth in SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 11, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202 and 203 may be truncated or deleted and still retain the capacity of directing the transcription of an operably linked DNA sequence (e.g., SEQ ID NOS: 210 and 213). The minimal length of a promoter region can be determined by systematically removing sequences from the 5' and 3'-ends of the isolated polynucleotide by standard techniques known in the art, including but not limited to removal of restriction enzyme fragments or digestion with nucleases. Consequently, any sequence fragments, portions, or regions of the disclosed polypeptide sequences of the present invention can be used as regulatory sequences. It will be appreciated that modified sequences (mutated, truncated and the like) can acquire different transcriptional properties such as the direction of different pattern of gene expression as compared to the unmodified element (e.g., SEQ ID NO: 61 as compared to SEQ ID NO: 213, see the Examples section which follows).
[0081]Optionally, the sequences set forth in SEQ ID NOS: 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 202 and 203 may be modified, for example for expression in a range of plant systems. In another approach, novel hybrid promoters can be designed or engineered by a number of methods. Many promoters contain upstream sequences which activate, enhance or define the strength and/or specificity of the promoter, such as described, for example, by Atchison [Ann. Rev. Cell Biol. 4:127 (1988)]. T-DNA genes, for example contain "TATA" boxes defining the site of transcription initiation and other upstream elements located upstream of the transcription initiation site modulate transcription levels [Gelvin In: Transgenic Plants (Kung, S.-D. and Us, R., eds, San Diego: Academic Press, pp. 49-87, (1988)]. Another chimeric promoter combined a trimer of the octopine synthase (ocs) activator to the mannopine synthase (mas) activator plus promoter and reported an increase in expression of a reporter gene [Min Ni et al., The Plant Journal 7:661 (1995)]. The upstream regulatory sequences of the polynucleotide sequences of present invention can be used for the construction of such chimeric or hybrid promoters. Methods for construction of variant promoters include, but are not limited to, combining control elements of different promoters or duplicating portions or regions of a promoter (see for example, U.S. Pat. Nos. 5,110,732 and 5,097,025). Those of skill in the art are familiar with the specific conditions and procedures for the construction, manipulation and isolation of macromolecules (e.g., DNA molecules, plasmids, etc.), generation of recombinant organisms and the screening and isolation of genes, [see for example Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, (1989); Mailga et al., Methods in Plant Molecular Biology, Cold Spring Harbor Press, (1995); Birren et al., Genome Analysis: volume 1, Analyzing DNA, (1997); volume 2, Detecting Genes, (1998); volume 3, Cloning Systems, (1999); and volume 4, Mapping Genomes, (1999), Cold Spring Harbor, N.Y].
[0082]The polynucleotides of the present invention, or fragment, variants or derivatives thereof, can be incorporated into nucleic acid constructs, preferably expression constructs (i.e., expression vectors) which can be introduced and replicate in a host cell.
[0083]Thus, according to another aspect of the present invention there is a provided a nucleic acid construct which includes at least one of the polynucleotides of the present invention, or fragments, variants or derivatives thereof.
[0084]Preferably, the nucleic acid construct of the present invention includes at least one operably linked heterologous polynucleotide. More preferably, at least one operably linked reporter gene.
[0085]The phrase "reporter gene" used herein refers to a gene encoding a selectable, screenable or detectable phenotype.
[0086]Reporter genes which may be utilized in the present invention may include, but not limited to, LUX or LUC coding for luciferase, GUS coding for β-glucoronidase, GFP coding for green-fluorescent protein, or antibiotic or herbicide tolerance genes. A general review of suitable markers is found in Wilmink and Dons, Plant Mol. Biol. Reprt. 11:165-185 (1993).
[0087]Further preferably, the nucleic acid construct of the present invention includes at least one heterologous polynucleotide encoding a desirable trait or an expression product.
[0088]A desirable trait which may be utilized in this invention may include, but not limited to, any phenotype associated with organism's morphology, physiology, growth and development, yield, produce quality, nutritional enhancement, disease or pest resistance, or stress tolerance.
[0089]Alternatively, the heterologous polynucleotide can encode any naturally occurring or man-made recombinant protein, such as pharmaceutical proteins [e.g., growth factors and antibodies Schillberg Naturwissenschaften. (2003) April; 90(4):145-55] and food additives. It will be appreciated that molecular farming is a well-proven way of producing a range of recombinant proteins, as described in details in Ma Nat Rev Genet. 2003 October; 4(10):794-805; Twyman Trends Biotechnol. 2003 December; 21(12):570-8.
[0090]An expression product which may be utilized in this invention may include, but not limited to, pharmaceutical polypeptides, industrial enzymes, oils, dyes, flavors, biofuels, or industrial biopolymers.
[0091]In cases of bidirectional DREs, the nucleic acid construct of this invention may include two heterologous polynucleotides each being operably linked to an end of the isolated polynucleotide of this invention, such that the two heterologous polynucleotides flank the isolated polynucleotide of this invention.
[0092]The nucleic acid construct can be, for example, a plasmid, a bacmid, a phagemid, a cosmid, a phage, a virus or an artificial chromosome. Preferably, the nucleic acid construct of the present invention is a plasmid vector, more preferably a binary vector.
[0093]The phrase "binary vector" refers to an expression vector which carries a modified T-region from Ti plasmid, enable to be multiplied both in E. coli and in Agrobacterium cells, and usually comprising reporter gene(s) for plant transformation between the two boarder regions. A binary vector suitable for the present invention includes pBI2113, pBI121, pGA482, pGAH, pBIG, pBI101 (Clonetech), or a modification thereof such as pVER1 which is a modified pBI101 plasmid, where the GUS gene was replaced by the LucII gene from pGL3-Basic (Promega).
[0094]The nucleic acid construct of the present invention can be utilized to transform a host cell. Thus, according to another aspect of the present invention there is provided a transgenic cell, a transgenic organism or a transgenic plant which is transformed with an isolated polynucleotide of the present invention. Preferably the transgenic cell, the transgenic organism or the transgenic plant is transformed with the nucleic acid construct of the present invention.
[0095]As used herein, the terms "transgenic" or "transformed" are used interchangeably referring to a cell or an organism into which cloned genetic material has been transferred.
[0096]Methods of introducing nucleic acid constructs into a cell, an organism or a plant are well known in the art. Accordingly, suitable methods for introducing nucleic acid sequences into plants include, but are not limited to, bacterial infection, direct delivery of DNA (e.g., via PEG-mediated transformation, desiccation/inhibition-mediated DNA uptake, electroporation, agitation with silicon carbide fibers, and acceleration of DNA coated particles, such as described by Potrykus Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:205-225 (1991).
[0097]Methods for specifically transforming dicots primarily use Agrobacterium tumefaciens. For example, transgenic plants reported include but are not limited to cotton (U.S. Pat. Nos. 5,004,863, 5,159,135, 5,518,908; and WO 97/43430), soybean [U.S. Pat. Nos. 5,569,834, 5,416,011; McCabe et al., Bio/Technology, 6:923 (1988); and Christou et al., Plant Physiol., 87:671, (1988)]; Brassica (U.S. Pat. No. 5,463,174), and peanut [Cheng et al., Plant Cell Rep., 15: 653, (1996)].
[0098]Similar methods have been reported in the transformation of monocots. Transformation and plant regeneration using these methods have been described for a number of crops including but not limited to asparagus [Asparagus officinalis; Bytebier et al., Proc. Natl. Acad. Sci. U.S.A., 84: 5345, (1987); barley (Hordeum vulgarae; Wan and Lemaux, Plant Physiol., 104: 37, (1994)]; maize [Zea mays; Rhodes, C. A., et al., Science, 240: 204, (1988); Gordon-Kamm, et al., Plant Cell, 2: 603, (1990); Fromm, et al., Bio/Technology, 8: 833, (1990); Koziel, et al., Bio/Technology, 11: 194, (1993)]; oats [Avena sativa; Somers, et al., Bio/Technology, 10: 1589, (1992)]; orchardgrass [Dactylis glomerata; Horn, et al., Plant Cell Rep., 7: 469, (1988); rice [Oryza sativa, including indica and japonica varieties, Toriyama, et al., Bio/Technology, 6: 10, (1988); Zhang, et al., Plant Cell Rep., 7: 379, (1988); Luo and Wu, Plant Mol. Biol. Rep., 6: 165, (1988); Zhang and Wu, Theor. Appl. Genet., 76: 835, (1988); Christou, et al., Bio/Technology, 9: 957, (1991); sorghum [Sorghum bicolor; Casas, A. M., et al., Proc. Natl. Acad. Sci. U.S.A., 90: 11212, (1993)]; sugar cane [Saccharum spp.; Bower and Birch, Plant J., 2: 409, (1992)]; tall fescue [Festuca arundinacea; Wang, Z. Y. et al., Bio/Technology, 10: 691, (1992)]; turfgrass [Agrostis palustris; Zhong et al., Plant Cell Rep., 13: 1, (1993)]; wheat [Triticum aestivum; Vasil et al., Bio/Technology, 10: 667, (1992); Weeks T., et al., Plant Physiol., 102: 1077, (1993); Becker, et al., Plant, J. 5: 299, (1994)], and alfalfa [Masoud, S. A., et al., Transgen. Res., 5: 313, (1996)]. It is apparent to those of skill in the art that a number of transformation methodologies can be used and modified for production of stable transgenic plants from any number of target crops of interest.
[0099]The transformed plants can be analyzed for the expression features conferred by the polynucleotides of the present invention, using methods known in the art for the analysis of transformed plants. A variety of methods are used to assess gene expression and determine if the introduced gene(s) is integrated, functioning properly, and inherited as expected. Preferably, the promoters can are evaluated by determining the expression levels and the expression features of genes to which the promoters are operatively linked. A preliminary assessment of promoter function can be determined by a transient assay method using reporter genes, but a more definitive promoter assessment can be determined from the analysis of stable plants. Methods for plant analysis include but are not limited to Southern blots or northern blots, PCR-based approaches, biochemical analyses, phenotypic screening methods, field evaluations, and immunodiagnostic assays.
[0100]Preferably, the capacity of isolated polynucleotides of this invention to promote gene expression in plants is evaluated according to phenotypic expression of reporter genes using procedures as described in the Examples section that follows. Briefly, the expression of luciferase in transgenic Arabidopsis is determined and consistently classified by quantitatively scoring certain features of expression, such as the intensity, specificity, development stage and positioning of expression. Accordingly, a luciferase gene that is expressed in a constitutive manner would indicate a putative constitutive promoter activity of the isolated polynucleotide. Likewise, a luciferase gene that is expressed in an inductive, tissue specific or a development-stage specific manner, would respectively indicate a putative inductive, a tissue specific or a stage specific promoter activity.
[0101]Hence, the present invention provides a plurality of isolated polynucleotide sequences which exhibit a wide spectrum of promoter function patterns. These polynucleotides can be used to generate nucleic acid constructs, such as expression vectors suitable for transforming an organism. Such nucleic acid constructs can be used to promote expression of desired traits or expression products in transgenic organisms, such as plants, in a constitutive, induced, tissue specific, or a developmental stage specific manner.
[0102]Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.
Examples
[0103]Reference is now made to the following examples, which together with the above descriptions, illustrate the invention in a non limiting fashion.
[0104]Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, "Molecular Cloning: A laboratory Manual" Sambrook et al., (1989); "Current Protocols in Molecular Biology" Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., "Current Protocols in Molecular Biology", John Wiley and Sons, Baltimore, Md. (1989); Perbal, "A Practical Guide to Molecular Cloning", John Wiley & Sons, New York (1988); Watson et al., "Recombinant DNA", Scientific American Books, New York; Birren et al. (eds) "Genome Analysis: A Laboratory Manual Series", Vols. 1-4, Cold Spring Harbor Laboratory Press, New York (1998); methodologies as set forth in U.S. Pat. Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057; "Cell Biology: A Laboratory Handbook", Volumes I-III Cellis, J. E., ed. (1994); "Current Protocols in Immunology" Volumes I-III Coligan J. E., ed. (1994); Stites et al. (eds), "Basic and Clinical Immunology" (8th Edition), Appleton & Lange, Norwalk, Conn. (1994); Mishell and Shiigi (eds), "Selected Methods in Cellular Immunology", W. H. Freeman and Co., New York (1980); available immunoassays are extensively described in the patent and scientific literature, see, for example, U.S. Pat. Nos. 3,791,932; 3,839,153; 3,850,752; 3,850,578; 3,853,987; 3,867,517; 3,879,262; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; 4,879,219; 5,011,771 and 5,281,521; "Oligonucleotide Synthesis" Gait, M. J., ed. (1984); "Nucleic Acid Hybridization" Hames, B. D., and Higgins S. J., eds. (1985); "Transcription and Translation" Hames, B. D., and Higgins S. J., eds. (1984); "Animal Cell Culture" Freshney, R. I., ed. (1986); "Immobilized Cells and Enzymes" IRL Press, (1986); "A Practical Guide to Molecular Cloning" Perbal, B., (1984) and "Methods in Enzymology" Vol. 1-317, Academic Press; "PCR Protocols: A Guide To Methods And Applications", Academic Press, San Diego, Calif. (1990); Marshak et al., "Strategies for Protein Purification and Characterization--A Laboratory Course Manual" CSHL Press (1996); all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference.
Identification, Isolation and Characterization of DNA Regulating Elements (DREs)
[0105]Novel DREs were identified by luciferase expression assay driven by bioinformatically identified DNA fragments from Arabidopsis thaliana genomic DNA. Positive DREs were fused upstream a reporter gene in a vector which was used to transform Arabidopsis thaliana plants. The reporter gene expression driven by these DREs was characterized.
Materials and Experimental Methods
[0106]Isolation of DREs: A high throughput method of cloning DNA regulating elements (DREs) using a single reaction tube, referred to herein as the "one-tube" method, was utilized in order to enable large scale production of DRE transformed plants. Accordingly, genomic DNA (gDNA) was extracted from leaves of Arabidopsis thaliana Col1 using DNAeasy Plant Mini Kit (Qiagen, Germany). Primers for PCR amplification of DREs were designed using PRIMER3© software and modified to contain restriction sites absent from the DRE sequence, for PCR product insertion into pVER1 binary plasmid, which is a pBI101 (clontech) modified plasmid, where the GUS reporter gene was replaced by LucII gene from pGL3-Basic (promega). Briefly, GUS gene was cut out of pBI101 using the blunt restriction enzymes Ecl136II and SmaI. The pGL-Basic plasmid [after eliminating the HindIII and BamHI sites, by digestion, fill-in using klenow fragment (Roche) and self ligating the plasmid, using T4 DNA ligase (Roche)] was cut Sad and XbaI and the LucII gene insert was inserted into pBluescript, digested with the same enzymes. The new plasmid was digested SmaI, as a result a blunt ends LucII gene was cut out. The LucII gene was inserted into The pBI plasmid instead of the GUS gene. To eliminate all possible read-through of the Nos-promoter, which regulates Kanamycin resistance gene on pBI101, a poly-A signal was added between the Nos-terminator and the LucII gene. Poly-A signal was amplified from pGL3-Basic using proof reading Taq polymerase PFU (Promega) and using primers 5'-aggtacttggagcggccgca-3' and 5'-tagagaaatgttctggcacctg-3'. The Product was inserted into HindIII site on pVerI after filling the overhang 5' ends, using Klenow fragment (Roche).
[0107]Polymerase chain reaction analyses were performed using Taq Expand Long Template PCR kit (Roche), according to the manufacturer's instructions, using as thermal cycle: 92° C./2 min→10×[94° C./10 min→55° C./30 sec→68° C./5 min]→18×[94° C./10 min→55° C./30 sec→68° C./5 min (+20 sec each cycle)]→68° C./7 min. PCR products were double-digested with restriction endonucleases according to the protocols described in Table 1.
TABLE-US-00001 TABLE 1 DRE double digestion protocols Digest Heat Digest Heat Enzyme First Buffer time inactivation Second time inactivation combination digest (Roche) (min) conditions digest Buffer (min) conditions HindIII, SalI HindIII M 90 20 min, SalI M + 60 20 min, 70° C. NaCl + 70° C. Tris HindIII, HindIII B 30 No BamHI B 60 20 min, BamHI 70° C. SalI, BamHI BamHI M 60 20 min, SalI M + 60 20 min, 80° C. NaCl + 70° C. Tris HindIII, HindIII B 30 No EcoRV B 60 20 min, EcoRV 70° C. SalI, ScaI SalI, ScaI H 60 20 min, 80° C. BamHI, SmaI SmaI A 60 20 min, BamHI A 60 20 min, (30° C.) 70° C. 80° C. SalI, PvuII PvuII M 60 20 min, SalI M + 60 20 min 80° C. NaCl + Tris HindIII, HindIII M 30 No PvuII M 60 20 min, PvuII 80° C. HindIII, StuI HindIII, B 90 20 min, StuI 80° C. BamHI, StuI StuI B 30 No BamHI B 60 20 min, 80° C.
[0108]Cloning of DREs in luciferase reporter gene expression: PCR amplified DREs were cloned into a luciferase reporter gene expression vector pVER1, derived from the binary vector pBI101 (Clontech), was double-digested using the same restriction endonucleases used to excise cloned DREs from vector, purified using PCR Purification Kit (Qiagen, Germany), treated with alkaline-phosphatase (Roche) according to the manufacturer's instructions and re-purified using PCR Purification Kit (Qiagen, Germany). Insertion of DRE into vector pVER1 was performed by adding to DRE digests: 500 ng of double digested pVer1 plasmid, 1 μl of T4 DNA ligase (40 U/μl; Roche) and 6 μl of T4 buffer (Roche). Following overnight incubation of ligation mixes at 4° C., Agrobacterium tumefaciens GV303 competent cells were transformed using 1-2 μl of ligation reaction mixture by electroporation, using a MicroPulser electroporator (Biorad), 0.2 cm cuvettes (Biorad) and EC-2 electroporation program (Biorad). Agrobacterium cells were grown on LB at 28° C. for 3 h and plated on LB-agar plates supplemented with the antibiotics gentamycin 50 mg/L (Sigma) and kanamycin 50 mg/L (Sigma). Plates were then incubated at 28° C. for 48 h. Cloned DREs were identified by PCR analysis of bacterial colony DNA using the vector specific, insert flanking upstream and downstream primers 5'-AGGTACTTGGAGCGGCCGCA-3' and 5'-CGAACACCACGGTAGGCTG-3', respectively and the thermal cycle: 92° C./3 min→31×[94° C./30 sec→54° C./30 sec→72° C./X min (X=length (kb) of longest PCR product expected)]→72° C./10 min. Positive Agrobacterium colonies were subsequently used for Arabidopsis plant transformation.
[0109]Plant transformation and cultivation: Arabidopsis thaliana Columbia (T0 plants) were transformed using the Floral Dip procedure described by Clough S J and Bent A F [The Plant J. 16:735-743 (1998)] and by Desfeux et al. [Plant Physiology 123:895-904 (2000)] with minor modifications. Briefly, T0 Plants were sown in 250 ml pots filled with wet peat-based growth mix. The pots were covered with aluminum foil and a plastic dome, kept at 4° C. for 3-4 days, then uncovered and incubated in a growth chamber at 18-24° C. under 16/8 hr light/dark cycle. The T0 plants were ready for transformation six days before anthesis.
[0110]Single colonies of Agrobacterium carrying plant DREs were cultured in LB medium supplemented with kanamycin (50 mg/L) and gentamycin (50 mg/L). The cultures were incubated at 28° C. for 48 hours under vigorous shaking and centrifuged at 4000 rpm for 5 minutes. The pellets comprising Agrobacterium cells were resuspended in a transformation medium which contained half-strength (2.15 g/L) Murashig-Skoog (Duchefa); 0.044 μM benzylamino purine (Sigma); 112 μg/L B5 Gambourg vitamins (Sigma); 5% sucrose; and 0.2 ml/L Silwet L-77 (OSI Specialists, CT) in double-distilled water, at pH of 5.7.
[0111]Transformation of T0 plants was effected by inverting each plant into an Agrobacterium suspension such that the above ground plant tissue was submerged for 3-5 seconds. Each inoculated T0 plant was immediately placed in a plastic tray, then covered with clear plastic dome to maintain humidity and kept in the dark at room temperature for eighteen hours to facilitate infection and transformation. Transformed (transgenic) plants were then uncovered and transferred to a greenhouse for recovery and maturation. The transgenic T0 plants were grown in the greenhouse for 3-5 weeks until siliques were brown and dry then seeds were harvested from plants and kept at room temperature until sowing
[0112]Generating T1 and T2 transgenic plants harboring DREs: Seeds collected from transgenic T0 plants were surface-sterilized by soaking in 70% ethanol for 1 minute, followed by soaking in 5% sodium hypochloride and 0.05% triton for 5 minutes. The surface-sterilized seeds were thoroughly washed in sterile distilled water then placed on culture plates containing half-strength Murashig-Skoog (Duchefa); 2% sucrose; 0.8% plant agar; 50 mM kanamycin; and 200 mM carbenicylin (Duchefa). The culture plates were incubated at 4° C. for 48 hours then transferred to a growth room at 25° C. for an additional week of incubation. Vital T1 Arabidopsis plants were transferred to a fresh culture plates for another week of incubation. Following incubation the T1 plants were removed from culture plates and planted in growth mix contained in 250 ml pots. The transgenic were allowed to grow in a greenhouse to maturity. Seeds harvested from T1 plants were cultured and grown to maturity as T2 plants under the same conditions as used for culturing and growing the T1 plants.
[0113]Evaluating DRE gene-promoting activity in transgenic plants: The ability of DREs to promote gene expression in plants was determined based on the expression of luciferase reporter gene. Accordingly, transgenic Arabidopsis plantlets at a development stage of 2-3 true leaves were subjected to luminescence assays using the procedure described by Messinner R. [Plant. J. 22:265 (2000)]. The imaging of luciferase was performed in a darkroom using ultra-low light detection camera (Princeton Instruments Inc., USA). Using the procedure described by Messinner R. [Plant. J. 22:265 (2000)].
[0114]Scoring promoter activity in transgenic plants: DREs promoting gene expression was characterized based luciferase expression in transgenic plants using quantitative values such as to enable consistent evaluations of a large volume of transgenic plants, as follows:
[0115]Scoring distribution and intensity of expression: The distribution of reporter genes' expression in transgenic plants was presented in a three variables functions, as follows: (i) plant ID (X axis), (ii) plant organ (Y axis), and (iii) development stage (Z axis). The intensity of expression, relevant to any of these three variables, was measured by a distribution function value (DF), referred hereinbelow as fx,y,z(Promoter). The DF received a value ranging from 0 to 5, representing no expression and the highest expression intensity, respectively.
[0116]Scoring specificity of expression: The specificity of reporter genes' expression in transgenic plants was calculated by summing two independent addends: (a) the zero value/nonzero values ratio, as described in table 2 below and which further referred to as the Binary Function B( ) and (b) the variance of the nonzero values only.
TABLE-US-00002 TABLE 2 No. of non zero No. of zero values values 0 1 2 3 4 0 0 0 0 0 1 0 0.7 1.5 2 2 0 0.6 1 3 0 0.5 4 0
[0117]The Organ Specificity expression value (SpOr) was calculated according to the following equation:
SpOr(promoter)=Vary(Avx,z(fx,y,z(promoter))|y>0)+B(- Avx,z(fx,y,z(promoter)))
Whereas Var is the variance, Av is the average and B is the Binary Function.
[0118]The development Stage Specificity expression value (SpDs) was calculated according to the following equation:
SpDS(promoter)=Varz(Avx,y(fx,y,z(promoter))|z>0)+B(- Avx,y(fx,y,z(promoter)))
Whereas Var is the variance, Av is the average and B is the Binary Function.
[0119]Scoring position effect: Similarly to the Binary Factor approach described above, position values were also classified as either zero or nonzero values. Accordingly, the reporter genes' expression in a given organ in a given development stage was measured by a Local Position Effect value (LoPoEf). The Position Effect value (PoEf) was the average of all the Local Position Effects, calculate in three steps as follows:
h x , y , z ( promoter ) = { 0 f x , y , z ( promoter ) = 0 1 f x , y , z ( promoter ) = 1 , 2 , 3 , 4 , 5. ( 1 ) LoPoEf ( promoter , organ , development_stage ) = min ( no_of _ 0 s_in ( h x , y = Y , z = Z ( promoter ) ) no_of _non _ 0 s_in ( h x , y = Y , z = Z ( promoter ) ) , no_of _non _ 0 s_in ( h x , y = Y , z = Z ( promoter ) ) no_of _ 0 s_in ( h x , y = Y , z = Z ( promoter ) ) ) ( 2 ) PoEf ( promoter ) = Av ( LoPoEf ( promoter , Y , Z ) ) . ( 3 ) ##EQU00001##
[0120]Scoring expression level: The average expression level value (ExLe) and the ExLe variance (VrExLe) were calculated per each DRE promoter x plant organ x plant development stage combination, according the following equations:
ExLe(promoter, organ, development_stage)=Avx(fx,y,z(promoter))
VrExLe(promoter, organ, development_stage)=varx(fx,y,z(promoter)).
[0121]Scoring evaluation reliability: The General Reliability value (Grel) was the number of independent plants that were used for evaluating a specific DRE promoter activity. Hence, Grel(promoter)=Countx(fx,y,z(promoter)). The Development Stage Reliability value (Rel(DS)) was the number of independent plants that were used for evaluating a specific DRE promoter activity in any given plant developing stage. Rel(promoter, development_stage)=Countx|z=development--stage(fx,y,z- (promoter)).
[0122]Creation of partial fragments from vDREs 4209 and 6669: Genomic DNA derived from Arabidopsis thaliana var Col0 was extracted and PCR-amplified using oligonucleotide primers complementary to sequences within vDRE 4209 (SEQ ID NO:36) [sense primer 5'-GTTGGTTCGTCGACTAGAGAAGGT-3' (SEQ ID NO: 208), antisense primer 5'-TTGGATCCGGGAGGCAATGATGCTTTAG-3' (SEQ ID NO: 209)], and vDRE 6669 (SEQ ID NO:61) [sense primer 5'-TTGTAAGCTTGCAGGGATACGGATGGGTAG-3' (SEQ ID NO: 211), antisense primer 5'-AAATATTGGATCCTTTGGGGTTCTC-3' (SEQ ID NO: 212)].
[0123]The above PCR amplifications resulted in a 470 by fragment, containing by 76-548 of the original vDRE 4209 (SEQ ID NO:210) and a 1569 by fragment, containing by 748-2316 of the original vDRE 6669 (SEQ ID NO:213), respectively.
[0124]PCR products were digested with HindIII and BamHI and ligated into the binary vector, pBI121 (Clontech, accession number: AF485783) upstream to the GUS gene, generating plasmids p4209short-GUS, and p6669short-GUS, respectively. Arabidopsis plants (var col0) were transformed with the binary constructs generated (p4209short-GUS and p6669short-GUS), and GUS activity was analyzed on 10 independent T1 transformed plants using standard GUS staining protocol [Jefferson R A, Kavanagh T A, Bevan M W. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6(13): 3901-7]. Genomic DNA extraction, PCR amplification, DNA restriction, ligation and transformation of Arabidopsis plant were preformed according to the protocols described above.
Experimental Results
Characterization of DREs
[0125]Various features of the isolated DREs of the present invention are described in Tables 3-17 which follow. As is clearly evident from the Table provided data, the DREs of the present invention exhibit a wide range of gene-promoting activities including: constitutive, inductive, tissue specific, and stage specific activities.
TABLE-US-00003 TABLE 3 DRE number1 1345 1495 2176 Cluster reference2 Z18125 Z17428 ATBIBBI Cluster position2 Upstream Upstream Upstream DRE regulatory direction3 Bidirectional Unidirectional Unidirectional DRE length (bp) 1611 901 2192 DRE sequence SEQ ID NO: 1 SEQ ID NO: 6 SEQ ID NO: 11 Internal forward primer SEQ ID NO: 2 SEQ ID NO: 7 SEQ ID NO: 12 sequence4 External forward primer SEQ ID NO: 3 SEQ ID NO: 8 SEQ ID NO: 13 sequence4 Internal reverse primer SEQ ID NO: 4 SEQ ID NO: 9 SEQ ID NO: 14 sequence4 External reverse primer SEQ ID NO: 5 SEQ ID NO: 10 SEQ ID NO: 15 sequence4 Position Effect Value5 0.37 0.21 8.33 Development Stage 1.09 0.32 0.62 Specificity Value5 Organ Specificity Value5 1.56 0.38 2.60 Number of transgenic 11 10 7 plants Young roots score (No., 10, 12, 3.36 6, 2.333, 1.555 4, 0, 0 Ave., Var)6 Mature roots score (No., 7, 1.571, 3.387 7, 3, 2.285 5, 0, 0 Ave., Var)6 Young above-ground 10, 3.3, 2.21 6, 4.16, 0.13 4, 0, 0 Tissue (No., Ave., Var)6 Mature above-ground 7, 3, 2 7, 3.28, 1.06 5, 0, 0 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 4.33, 0.88 3, 2, 2 3, 1.67, 5.56 Var)6 Flowers (No., Ave., Var)6 7, 1.42, 3.10 7, 3.14, 4.40 5, 4.2, 2.56 Description Constitutive. Constitutive. Specific to flower tissue. Strong in seeds. Strong in flower buds. Lower expression in open flowers. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00004 TABLE 4 DRE number1 2524 3560 3583 Cluster reference2 Z17778 Z17937 av558751 Cluster position2 Upstream Upstream Upstream DRE regulatory direction Bidirectional Bidirectional Bidirectional DRE length (bp) 1975 3126 2501 DRE sequence SEQ ID NO: 16 SEQ ID NO: 21 SEQ ID NO: 26 Internal forward primer SEQ ID NO: 17 SEQ ID NO: 22 SEQ ID NO: 27 sequence4 External forward primer SEQ ID NO: 18 SEQ ID NO: 23 SEQ ID NO: 28 sequence4 Internal reverse primer SEQ ID NO: 19 SEQ ID NO: 24 SEQ ID NO: 29 sequence4 External reverse primer SEQ ID NO: 20 SEQ ID NO: 25 SEQ ID NO: 30 sequence4 Position Effect Value5 0.15 0.3 5.555 Development Stage 0.69 0.77 1.5 Specificity Value5 Organ Specificity Value5 1.16 1.14 2 Number of transgenic 8 11 6 plants Young roots score (No., 5, 0, 0 6, 3.5, 1.92 5, 0, 0 Ave., Var)6 Mature roots score (No., 5, 0, 0 7, 3.71, 1.63 4, 0, 0 Ave., Var)6 Young above-ground 5, 0.4, 0.24 6, 1.83, 2.14 5, 0, 0 Tissue (No., Ave., Var)6 Mature above-ground 5, 2, 0.8 7, 1.43, 1.10 4, 0.25, 0.19 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 0, 0 3, 0.67, 0.89 3, 0, 0 Var)6 Flowers (No., Ave., Var)6 5, 0.4, 0.64 7, 1.86, 1.55 4, 0, 0 Description Specific to above ground Specific to root tissue. Weak in above ground tissue. Strong expression, tissue. mainly in root meristems. Weak expression in above ground tissues. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00005 TABLE 5 DRE number1 3714 4209 5095 Cluster reference2 Z25961 Z29176 AI996150 Cluster position2 Upstream Downstream Downstream DRE regulatory direction Unidirectional Bidirectional Bidirectional DRE length (bp) 513 1022 1056 DRE sequence SEQ ID NO: 31 SEQ ID NO: 36 SEQ ID NO: 41 Internal forward primer SEQ ID NO: 32 SEQ ID NO: 37 SEQ ID NO: 42 sequence4 External forward primer SEQ ID NO: 33 SEQ ID NO: 38 SEQ ID NO: 43 sequence4 Internal reverse primer SEQ ID NO: 34 SEQ ID NO: 39 SEQ ID NO: 44 sequence4 External reverse primer SEQ ID NO: 35 SEQ ID NO: 40 SEQ ID NO: 45 sequence4 Position Effect Value5 0.3625 0.40 0.6 Development Stage 0.11241 0.57 0 Specificity Value5 Organ Specificity Value5 0.377 0.40 0.85 Number of transgenic 11 18 3 plants Young roots score (No., 9, 0.611, 0.987 14, 3.46, 2.87 2, 0.5, 0.25 Ave., Var)6 Mature roots score (No., 3, 0, 0 9, 2.11, 3.65 2, 1, 1 Ave., Var)6 Young above-ground 9, 2.38, 1.20 14, 2.89, 2.36 2, 1.5, 1.25 Tissue (No., Ave., Var)6 Mature above-ground 3, 1, 2 9, 2.44, 1.80 2, 2, 0 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 1.66, 0.22 3, 1.33, 1.56 Not available Var)6 Flowers (No., Ave., Var)6 3, 1.33, 3.55 9, 2, 3.78 2, 0, 0 Description Weak in above ground tissue Strong in roots, mainly roo Constitutive, weak. tips, and flower buds. Lower expression in veins. Very low expression in seeds. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00006 TABLE 6 DRE number1 5311 5532 5587 Cluster reference2 ATHCOL2A ATASCO Z26363 Cluster position2 Upstream Upstream Upstream DRE regulatory direction Bidirectional Unidirectional Unidirectional DRE length (bp) 435 3348 1331 DRE sequence SEQ ID NO: 46 SEQ ID NO: 51 SEQ ID NO: 56 Internal forward primer SEQ ID NO: 47 SEQ ID NO: 52 SEQ ID NO: 57 sequence4 External forward primer SEQ ID NO: (none) SEQ ID NO: 53 SEQ ID NO: 58 sequence4 Internal reverse primer SEQ ID NO: 49 SEQ ID NO: 54 SEQ ID NO: 59 sequence4 External reverse primer SEQ ID NO: (none) SEQ ID NO: 55 SEQ ID NO: 60 sequence4 Position Effect Value5 0.36 0.25 8.33 Development Stage 1.15 1.30932 1.5 Specificity Value5 Organ Specificity Value5 0.332 1.246 2 Number of transgenic 8 6 4 plants Young roots score (No., 7, 0.36, 0.48 5, 2.2, 1.36 4, 0, 0 Ave., Var)6 Mature roots score (No., 4, 0.5, 0.75 4, 4.25, 0.187 3, 0, 0 Ave., Var)6 Young above-ground 7, 1.57, 1.74 5, 3.6, 1.84 4, 0, 0 Tissue (No., Ave., Var)6 Mature above-ground 4, 1.5, 2.25 4, 3.5, 0.25 3, 0, 0 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., Not available 3, 0.67, 0.22 3, 1.33, 3.55 Var)6 Flowers (No. Ave., Var)6 4, 0.25, 0.18 4, 2, 4.5 3, 0, 0 Description Constitutive, weak. Constitutive, mainly in Siliques specific. vegetative tissue. High position effect. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00007 TABLE 7 DRE number1 6669 6762 7357 Cluster reference2 Z26440 Z17588 F13952 Cluster position2 Upstream Upstream Upstream DRE regulatory direction Unidirectional Bidirectional Unidirectional DRE length (bp) 2316 379 979 DRE sequence SEQ ID NO: 61 SEQ ID NO: 66 SEQ ID NO: 71 Internal forward primer SEQ ID NO: 62 SEQ ID NO: 67 SEQ ID NO: 72 sequence4 External forward primer SEQ ID NO: 63 SEQ ID NO: 68 SEQ ID NO: 73 sequence4 Internal reverse primer SEQ ID NO: 64 SEQ ID NO: 69 SEQ ID NO: 74 sequence4 External reverse primer SEQ ID NO: 65 SEQ ID NO: 70 SEQ ID NO: 75 sequence4 Position Effect Value5 0.28 9.72 0.32 Development Stage 1.18 0.16 0.6 Specificity Value5 Organ Specificity Value5 1.32 1.42 0.64 Number of transgenic 4 11 7 plants Young roots score (No., 3, 2.67, 0.22 8, 1.25, 4.69 6, 0.5, 0.58 Ave., Var)6 Mature roots score (No., 4, 4.75, 0.19 9, 0.33, 0.89 5, 0, 0 Ave., Var)6 Young above-ground 3, 3.67, 3.56 8, 4.19, 0.87 6, 0.43, 0.47 Tissue (No., Ave., Var)6 Mature above-ground 4, 1, 3 9, 3.61, 1.10 5, 0.8, 0.16 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 4, 0.75, 0.69 3, 3.33, 1.56 3, 0, 0 Var)6 Flowers (No., Ave., Var)6 4, 3, 4.5 9, 3.11, 2.57 5, 1.2, 1.36 Description Specific to young and Strong in above ground Weak in above ground meristematic tissue. tissue. tissue. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00008 TABLE 8 DRE number1 7617 8463 9136 Cluster reference2 Z17636 Z26728 F15462 Cluster position2 Upstream Downstream Downstream DRE regulatory direction Bidirectional Unidirectional Unidirectional DRE length (bp) 665 2834 486 DRE sequence SEQ ID NO: 76 SEQ ID NO: 81 SEQ ID NO: 86 Internal forward primer SEQ ID NO: 77 SEQ ID NO: 82 SEQ ID NO: 87 sequence4 External forward primer SEQ ID NO: 78 SEQ ID NO: 83 SEQ ID NO: 88 sequence4 Internal reverse primer SEQ ID NO: 79 SEQ ID NO: 84 SEQ ID NO: 89 sequence4 External reverse primer SEQ ID NO: 80 SEQ ID NO: 85 SEQ ID NO: 90 sequence4 Position Effect Value5 0.42 0.16 0.48 Development Stage 0.16 0.68 0.60 Specificity Value5 Organ Specificity Value5 0.41 2.02 0.53 Number of transgenic 3 12 13 plants Young roots score (No., 3, 0, 0 6, 0, 0 9, 0.778, 2.617 Ave., Var)6 Mature roots score (No., 3, 0, 0 7, 1.14, 3.55 11, 0.73, 1.107 Ave., Var)6 Young above-ground 3, 0.17, 5.56 6, 3.33, 3.32 9, 0.778, 0.84 Tissue (No., Ave., Var)6 Mature above-ground 3, 0.33, 0.22 7, 2, 2.57 11, 1.18, 2.51 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 2, 1, 1 4, 0, 0 3, 0, 0 Var)6 Flowers (No., Ave., Var)6 3, 0.33, 0.22 7, 3.57, 3.96 11, 0.55, 0.98 Description Very weak in above ground. Strong in above ground Constitutive, weak. tissue. tissue of seedlings. Strong in flower tissue of mature plants. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00009 TABLE 9 DRE number1 10826 12582 13257 Cluster reference2 Z30896 Z33953 Z17541 Cluster position2 Upstream Downstream Upstream DRE regulatory direction Bidirectional Unidirectional Bidirectional DRE length (bp) 1840 1665 807 DRE sequence SEQ ID NO: 91 SEQ ID NO: 96 SEQ ID NO: 101 Internal forward primer SEQ ID NO: 92 SEQ ID NO: 97 SEQ ID NO: 102 sequence4 External forward primer SEQ ID NO: 93 SEQ ID NO: 98 SEQ ID NO: 103 sequence4 Internal reverse primer SEQ ID NO: 94 SEQ ID NO: 99 SEQ ID NO: 104 sequence4 External reverse primer SEQ ID NO: 95 SEQ ID NO: 100 SEQ ID NO: 105 sequence4 Position Effect Value5 0.27 0.19 0 Development Stage 0.50 0.32 1.5 Specificity Value5 Organ Specificity Value5 8.19 1.38 1.14 Number of transgenic 5 20 2 plants Young roots score (No., 3, 1.67, 2.89 18, 0.56, 1.36 2, 0, 0 Ave., Var)6 Mature roots score (No., 4, 3.38, 4.17 10, 0.5, 1.05 2, 0, 0 Ave., Var)6 Young above-ground 3, 2, 2.67 18, 2.39, 3.90 2, 0, 0 Tissue (No., Ave., Var)6 Mature above-ground 4, 3.12, 1.55 10, 3.2, 0.36 2, 2.5, 0.25 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., Not available 3, 1, 0 2, 0, 0 Var)6 Flowers (No., Ave., Var)6 4, 3.25, 3.06 10, 4.4, 1.84 2, 2, 1 Description Strong in root and flower Strong in above ground Specific to above ground tissue. tissue of seedlings. tissue of mature plants. Lower expression in mature plants. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00010 TABLE 10 DRE number1 13277 15980 16665 Cluster reference2 Z18392 BE522497 T04806 Cluster position2 Upstream Downstream Downstream DRE regulatory direction Bidirectional Unidirectional Bidirectional DRE length (bp) 3297 2183 1358 DRE sequence SEQ ID NO: 106 SEQ ID NO: 111 SEQ ID NO: 116 Internal forward primer SEQ ID NO: 107 SEQ ID NO: 112 SEQ ID NO: 117 sequence4 External forward primer SEQ ID NO: 108 SEQ ID NO: 113 SEQ ID NO: 118 sequence4 Internal reverse primer SEQ ID NO: 109 SEQ ID NO: 114 SEQ ID NO: 119 sequence4 External reverse primer SEQ ID NO: 110 SEQ ID NO: 115 SEQ ID NO: 120 sequence4 Position Effect Value5 0.22 0.38 0.33 Development Stage 1.5 1.18 4.44 Specificity Value5 Organ Specificity Value5 1 1.45 1.5 Number of transgenic 5 16 5 plants Young roots score (No., 5, 0.6, 0.24 10, 2.1, 1.49 5, 0, 0 Ave., Var)6 Mature roots score (No., 3, 0, 0 13, 2.46, 0.86 2, 0, 0 Ave., Var)6 Young above-ground 5, 0.4, 0.24 10, 12, 1.76 5, 0.6, 0.34 Tissue (No., Ave., Var)6 Mature above-ground 3, 0, 0 13, 0.46, 0.86 2, 0.5, 0.25 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 0, 0 4, 3.75, 1.69 Not available Var)6 Flowers (No., Ave., Var)6 3, 0, 0 13, 0.92, 1.76 2, 0, 0 Description Weak in seedlings. Root tissue, mainly root Above ground vegetative tips; and seeds. tissue of mature plants. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00011 TABLE 11 DRE number1 16900 17109 17809 Cluster reference2 Z25996 Z17897 Z18103 Cluster position2 Upstream Upstream Upstream DRE regulatory direction Bidirectional Bidirectional Bidirectional DRE length (bp) 824 2927 3165 DRE sequence SEQ ID NO: 121 SEQ ID NO: 126 SEQ ID NO: 131 Internal forward primer SEQ ID NO: 122 SEQ ID NO: 127 SEQ ID NO: 132 sequence4 External forward primer SEQ ID NO: 123 SEQ ID NO: 128 SEQ ID NO: 133 sequence4 Internal reverse primer SEQ ID NO: 124 SEQ ID NO: 129 SEQ ID NO: 134 sequence4 External reverse primer SEQ ID NO: 125 SEQ ID NO: 130 SEQ ID NO: 135 sequence4 Position Effect Value5 4.17 0.26 0.21 Development Stage 0.21 0.63 0.60 Specificity Value5 Organ Specificity Value5 0.22 1.85 1.38 Number of transgenic 5 10 10 plants Young roots score (No., 4, 3.5, 0.75 6, 4, 1.25 5, 0.8, 0.56 Ave., Var)6 Mature roots score (No., 5, 3.2, 0.56 7, 3.07, 2.60 7, 1.5, 1.5 Ave., Var)6 Young above-ground 4, 4, 0 6, 0.42, 0.37 5, 4, 0.8 Tissue (No., Ave., Var)6 Mature above-ground 5, 3.8, 0.56 7, 1.05, 1.07 7, 3.07, 1.03 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 4.67, 0.22 3, 0, 0 3, 0, 0 Var)6 Flowers (No., Ave., Var)6 5, 4, 4 7, 1.07, 2.89 7, 2.71, 2.99 Description Constitutive pattern. Strong in root, flower and Strong in leaf tissue of Strong in meristematic tissue meristematic tissue. seedlings. and seeds. Variable in mature plants. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00012 TABLE 12 DRE number1 19672 19678 19827 Cluster reference2 Z25683 BE523552 Z17577 Cluster position2 Upstream Upstream Upstream DRE regulatory direction Unidirectional Bidirectional Bidirectional DRE length (bp) 1155 2877 578 DRE sequence SEQ ID NO: 136 SEQ ID NO: 141 SEQ ID NO: 146 Internal forward primer SEQ ID NO: 137 SEQ ID NO: 142 SEQ ID NO: 147 sequence4 External forward primer SEQ ID NO: 138 SEQ ID NO: 143 SEQ ID NO: 148 sequence4 Internal reverse primer SEQ ID NO: 139 SEQ ID NO: 144 SEQ ID NO: 149 sequence4 External reverse primer SEQ ID NO: 140 SEQ ID NO: 145 SEQ ID NO: 150 sequence4 Position Effect Value5 0.03 5.55 0.37 Development Stage 9.78 1.5 0.60 Specificity Value5 Organ Specificity Value5 3.99 2 0.64 Number of transgenic 17 5 12 plants Young roots score (No., 15, 4.33, 0.76 5, 0, 0 10, 0, 0 Ave., Var)6 Mature roots score (No., 17, 4, 1.76 4, 0, 0 5, 0.1, 0.04 Ave., Var)6 Young above-ground 15, 4.53, 0.38 5, 0, 0 10, 2.9, 2.29 Tissue (No., Ave., Var)6 Mature above-ground 17, 3.12, 2.22 4, 0.25, 0.18 5, 0.8, 1.36 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 4.33, 0.22 3, 0, 0 3, 0, 0 Var)6 Flowers (No., Ave., Var)6 17, 4.06, 2.17 4, 0, 0 5, 0.8, 1.36 Description Strong, constitutive. Very weak. Above ground tissue. Lower expression in mature High position effect. Weak. leaf tissue. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00013 TABLE 13 DRE number1 20607 22397 22604 Cluster reference2 AI998130 ATHD12A ATHFEDAA Cluster position2 Upstream Upstream Downstream DRE regulatory direction Bidirectional Unidirectional Bidirectional DRE length (bp) 2819 1313 2080 DRE sequence SEQ ID NO: 151 SEQ ID NO: 156 SEQ ID NO: 161 Internal forward primer SEQ ID NO: 152 SEQ ID NO: 157 SEQ ID NO: 162 sequence4 External forward primer SEQ ID NO: 153 SEQ ID NO: 158 SEQ ID NO: 163 sequence4 Internal reverse primer SEQ ID NO: 154 SEQ ID NO: 159 SEQ ID NO: 164 sequence4 External reverse primer SEQ ID NO: 155 SEQ ID NO: 160 SEQ ID NO: 165 sequence4 Position Effect Value5 0.25 0.38 9.72 Development Stage 2.50 0.89 0.71 Specificity Value5 Organ Specificity Value5 0.916 1.33 1.10 Number of transgenic 5 12 17 plants Young roots score (No., 5, 0, 0 12, 1.13, 2.09 15, 0, 0 Ave., Var)6 Mature roots score (No., 3, 0, 0 12, 1.67, 4.22 13, 0, 0 Ave., Var)6 Young above-ground 5, 2.2, 2.16 12, 3.33, 0.89 15, 0.2, 0.16 Tissue (No., Ave., Var)6 Mature above-ground 3, 2, 2 12, 2.63, 2.69 13, 0, 0 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., Not available 3, 4, 0.67 4, 0.75, 1.69 Var)6 Flowers (No., Ave., Var)6 3, 1, 2 12, 1.21, 3.06 13, 0, 0 Description Above ground tissue. Above ground tissue and Above ground tissue and seed. seed. High position effect. Very weak. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00014 TABLE 14 DRE number1 24136 24291 24728 Cluster reference2 Z34788 Z17960 AV530349 Cluster position2 Downstream Upstream Upstream DRE regulatory direction Unidirectional Bidirectional Unidirectional DRE length (bp) 174 2096 1617 DRE sequence SEQ ID NO: 166 SEQ ID NO: 171 SEQ ID NO: 176 Internal forward primer SEQ ID NO: 167 SEQ ID NO: 172 SEQ ID NO: 177 sequence4 External forward primer SEQ ID NO: none SEQ ID NO: 173 SEQ ID NO: 178 sequence4 Internal reverse primer SEQ ID NO: 169 SEQ ID NO: 174 SEQ ID NO: 179 sequence4 External reverse primer SEQ ID NO: none SEQ ID NO: 175 SEQ ID NO: 180 sequence4 Position Effect Value5 0.17 0.56 5.71 Development Stage 1.5 7.76 0.17 Specificity Value5 Organ Specificity Value5 2 6.93 1.75 Number of transgenic 5 12 9 plants Young roots score (No., 1, 0, 0 9, 1.56, 3.14 8, 0, 0 Ave., Var)6 Mature roots score (No., 2, 0, 0 8, 2.37, 1.48 8, 0.5, 1.75 Ave., Var)6 Young above-ground 1, 0, 0 9, 2.33, 3.11 8, 2.63, 0.48 Tissue (No., Ave., Var)6 Mature above-ground 2, 0.25, 0.06 8, 1.62, 2.33 8, 2.5, 1.5 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 0, 0 4, 2, 1.5 Not available Var)6 Flowers (No., Ave., Var)6 2, 0, 0 8, 1.37, 1.98 8, 3.38, 2.73 Description Above ground tissue. Constitutive. Strong in flower tissue. Very weak. Low expression in veins. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00015 TABLE 15 DRE number1 24811 4209 5095 Cluster reference2 H36200 H36237 Z29720 Cluster position2 Upstream Upstream Upstream DRE regulatory direction Bidirectional Bidirectional Bidirectional DRE length (bp) 428 1022 1056 DRE sequence SEQ ID NO: 181 SEQ ID NO: 186 SEQ ID NO: 191 Internal forward primer SEQ ID NO: 182 SEQ ID NO: 187 SEQ ID NO: 192 sequence4 External forward primer SEQ ID NO: none SEQ ID NO: 188 SEQ ID NO: 193 sequence4 Internal reverse primer SEQ ID NO: 184 SEQ ID NO: 189 SEQ ID NO: 194 sequence4 External reverse primer SEQ ID NO: none SEQ ID NO: 190 SEQ ID NO: 195 sequence4 Position Effect Value5 0.53 0.60 0.33 Development Stage 8.11 0.28 0.61 Specificity Value5 Organ Specificity Value5 0.23 0.49 1.35 Number of transgenic 4 5 3 plants Young roots score (No., 4, 0.75, 1.69 5, 0.4, 0.34 3, 0.33, 0.22 Ave., Var)6 Mature roots score (No., 3, 1, 2 4, 1.2, 2.16 2, 1, 1 Ave., Var)6 Young above-ground 4, 1, 3 5, 2.4, 1.84 3, 1.33, 1.56 Tissue (No., Ave., Var)6 Mature above-ground 3, 1.33, 3.56 5, 2, 2.8 2, 2, 0 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., Not available 5, 0.4, 0.24 2, 0, 0 Var)6 Flowers (No., Ave., Var)6 3, 2, 4 5, 1.6, 3.44 2, 0, 0 Description Constitutive, weak. Leaf-stalk and stem tissue. Vegetative tissue, weak. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00016 TABLE 16 DRE number1 17109 20607 24811 Cluster reference2 R29912 R90407 T22055 Cluster position2 Downstream Downstream Downstream DRE regulatory direction Bidirectional Bidirectional Bidirectional DRE length (bp) 2027 2834 428 DRE sequence SEQ ID NO: 196 SEQ ID NO: 201 SEQ ID NO: 202 Internal forward primer SEQ ID NO: 197 SEQ ID NO: 168 SEQ ID NO: 48 sequence4 External forward primer SEQ ID NO: 198 SEQ ID NO: 170 SEQ ID NO: none sequence4 Internal reverse primer SEQ ID NO: 199 SEQ ID NO: 183 SEQ ID NO: 50 sequence4 External reverse primer SEQ ID NO: 200 SEQ ID NO: 185 SEQ ID NO: none sequence4 Position Effect Value5 0.46 0.26 0.24 Development Stage 0 0.60 0.61 Specificity Value5 Organ Specificity Value5 0.49 1.16 0.51 Number of transgenic 5 5 5 plants Young roots score (No., 5, 0.6, 0.64 5, 0, 0 4, 0.75, 1.69 Ave., Var)6 Mature roots score (No., Not available 5, 0, 0 5, 0.6, 1.44 Ave., Var)6 Young above-ground 5, 2, 2 5, 2.2, 2.16 4, 1, 3 Tissue (No., Ave., Var)6 Mature above-ground Not available 5, 1.8, 2.16 5, 0.8, 2.56 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., Not available 4, 0, 0 3, 0, 0 Var)6 Flowers (No., Ave., Var)6 Not available 5, 1.2, 1.36 5, 0.8, 2.56 Description Above ground tissue, weak Above ground tissue, Constitutive, weak mainly in leaves. 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
TABLE-US-00017 TABLE 17 DRE number1 16665 Cluster reference2 Z26101 Cluster position2 Upstream DRE regulatory direction Bidirectional DRE length (bp) 1358 DRE sequence SEQ ID NO: 203 Internal forward primer SEQ ID NO: 204 sequence4 External forward primer SEQ ID NO: 206 sequence4 Internal reverse primer SEQ ID NO: 206 sequence4 External reverse primer SEQ ID NO: 207 sequence4 Position Effect Value5 0.51 Development Stage 8.82 Specificity Value5 Organ Specificity Value5 0.403 Number of transgenic 12 plants Young roots score (No., 10, 0, 0 Ave., Var)6 Mature roots score (No., 5, 0.6, 0.64 Ave., Var)6 Young above-ground 10, 1.5, 3.05 Tissue (No., Ave., Var)6 Mature above-ground 5, 2, 2.08 tissue (No., Ave., Var)6 Siliques/Seed (No., Ave., 3, 1, 0.66 Var)6 Flowers (No., Ave., Var)6 5, 1.8, 3.76 Description Above ground tissue 1ID number of the DRE as assigned by the present inventors. 2Internal reference assigned by the present inventors to a cluster of Arabidopsis genes (contig) downstream or upstream of the DRE. 3Unidirectional implies that only the sense strand of the DRE is capable of regulating gene expression; Bidirectional implies that both the sense and antisense strands of the DRE are capable of regulating gene expression. 4A PCR primer for isolating the DRE from Arabidopsis genomic DNA. 5Position Effect Values (PoEf), Development Stage-Specificity Values (SpDs) and Organ Specificity Values (SpOr) were calculated as described in the materials and methods section hereinabove. 6No. = number; Ave. = average; Var. = variance.
[0126]Deletion Analysis of DREs 4209 and 6669:
[0127]The ability of partial DRE sequences to modify in vivo gene expression pattern, was tested by comparing reporter gene expression driven by unmodified DREs (SEQ ID NO:36 and 61) with that of deletion mutants thereof (SEQ ID NO:210 and 213, respectively).
[0128]GUS expression pattern in p4209short-GUS (including the DRE 4209 partial sequence set forth in SEQ ID NO:210) transformed plants was similar to that driven by the full length promoter sequence, DRE 4209 (SEQ ID NO:36). As is shown in FIG. 26a, expression was strong in roots, mainly root tips, as well as in flower buds. Interestingly, p4209short-GUS transformed plants exhibited lower reporter gene expression in veins, while leaves exhibited higher expression. Note, expression in seeds was not examined.
[0129]GUS expression pattern in the p6669short-GUS (comprising the DRE 6669 partial sequence set forth in SEQ ID NO:213) transformed plants was restricted to the root tips (FIG. 26b) while expression in other young or meristematic tissues, as was obtained by the full length DRE 6669 promoter (SEQ ID NO:61), was lost.
[0130]These results demonstrate that the 5' nucleic acid sequence of SEQ ID NO: 61 (e.g., nucleotide coordinates 1-747), is important for constitutive gene expression. Indeed, a DNA sequence (SEQ ID NO: 214, see FIG. 27 WO 02/16655) which does not include the 5' first 400 nucleotides of SEQ ID NO: 61 has been implicated in stress regulated gene expression.
[0131]These results indicate that the promoters of the present invention may be modified by partial deletions, to generate inductive or tissue specific expression pattern as demonstrated for DRE 6669 (SEQ ID NO:61).
[0132]As is clearly illustrated by Tables 3-17 and FIGS. 1-26, the DREs isolated according to the teachings of the present invention exhibit a wide range of activities as well as a wide range of tissue and developmental stage specificities. The DREs of the present invention were classified according to function as determined using the Arabidopsis assay described hereinabove.
[0133]The luciferase gene was expressed in a constitutive manner in Arabidopsis when functionally linked to SEQ ID NOS: 1, 6, 41, 46, 51, 61, 86, 121, 136, 171, 181 and 202 (illustrated in FIG. 18), thus the promoters of these DREs are putatively classified herein as constitutive promoters.
[0134]The luciferase gene was expressed in an inductive manner in Arabidopsis when functionally linked to SEQ ID NOS: 1, 11, 16, 21, 26, 31, 36, 56, 66, 71, 76, 81, 91, 96, 101, 116, 126, 141, 146, 151, 156, 161, 166, 176 and 203, thus the promoters of these DREs are putatively classified herein as inductive promoters.
[0135]The luciferase gene was expressed in a young or meristematic, tissue-specific manner in Arabidopsis when functionally linked to SEQ ID NOS: 61, 121, 126, 213 (illustrated in FIGS. 4, 14, 15, 16 and 26b), thus the promoters of these DREs are putatively classified herein as young or meristematic, tissue-specific promoters.
[0136]The luciferase gene was expressed in root tissue specific manner in Arabidopsis when functionally linked to SEQ ID NOS: 21, 36, 91, 111, and 126 (illustrated in FIGS. 2, 3, 9, and 13), thus the promoters of these DREs are putatively classified herein as root tissue-specific promoters
[0137]The luciferase gene was expressed in an above ground tissue-specific manner in Arabidopsis when functionally linked to SEQ ID NOS: 16, 26, 31, 66, 71, 76, 81, 96, 106, 101, 116, 131, 146, 151, 156, 161, 166, 196, 201 and 203 (illustrate in FIGS. 10, 11, 17, 19 and 20), thus the promoters of these DREs are putatively classified herein as above ground tissue-specific promoters.
[0138]The luciferase gene was expressed in a stem tissue specific manner in Arabidopsis when functionally linked to SEQ ID NO: 186 (illustrated in FIG. 22), thus the promoter(s) of this DRE are putatively classified herein as stem tissue specific promoter(s).
[0139]The luciferase gene was expressed in a flower tissue specific manner in Arabidopsis when functionally linked to SEQ ID NOS: 11, 36, 81, 91, 126, 176 and 210 (illustrated in FIGS. 1, 3, 9 and 26a), thus the promoters of these DREs are putatively classified herein as flower tissue-specific promoters.
[0140]The luciferase gene was expressed in a fruit (silique) tissue specific manner in Arabidopsis when functionally linked to SEQ ID NO: 56, thus the promoter(s) of this DRE are putatively classified herein as fruit (silique) tissue specific promoter(s).
[0141]The luciferase gene was expressed in a seed tissue specific manner in Arabidopsis when functionally linked to SEQ ID NOS: 1, 156, and 161 (illustrated in FIGS. 12 and 21), thus the promoters of these DREs are putatively classified herein as seed tissue specific promoters.
[0142]The luciferase gene was expressed in a developmental stage specific manner in Arabidopsis when functionally linked to SEQ ID NOS: 81, 96, 101, 106, and 131 (illustrated comparatively in FIGS. 5-6, 7-8, 10-11 and 15-16), thus the promoters of these DREs are putatively classified herein as developmental stage specific promoters.
[0143]The GUS gene was expressed in an inductive manner in Arabidopsis when functionally linked to SEQ ID NOS: 210 and 213 (illustrated in FIG. 26b), thus the promoters of these partial DREs sequences are putatively classified herein as inductive promoters.
[0144]The GUS gene was expressed in a root, as well as in a flower bud tissue specific manner in Arabidopsis when functionally linked to SEQ ID NO: 210 (illustrated in FIG. 26a), thus the promoter of this partial DRE sequence is putatively classified herein as a root as well as a flower tissue-specific promoter.
[0145]The GUS gene was expressed in a root-tip tissue specific manner in Arabidopsis when functionally linked to SEQ ID NO: 213 (illustrated in FIG. 26b), thus this promoter is putatively classified herein as a root tissue-specific promoter.
[0146]Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents, patent applications and sequences identified by their accession numbers mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent, patent application or sequence identified by their accession number was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
Sequence CWU
1
21411611DNAArabidopsis thaliana 1aagcttatag cgtatacgtg tgtatatttt
tagtgaggaa cagctggatt ttgtggaaag 60caaaataaaa gaagaagttt gtgttgtctt
tgtttttcat gtgcgtcggc ttaaatttag 120gccgttgtaa attattgaaa aagtggattt
tgttgtgacc gtggaaactt tagttaatta 180atttggctaa ttatagagtc tgcttttgtt
tggataatca atttgtcatc tttttcttta 240atggtttttg gctggtaaat actcatacta
tccaagttta atctaaaaat atacctcttt 300cttgttaatc gtaattttac aatcctaatt
ttatccagat acggatgaac tatatttgaa 360aaaaaggaac taaagtgaag ttaagaaaac
aaaagagaga tcgagtgttg ttttttcttg 420gatacgttta ttaaaagatg ttcttaatga
ggtcaaagga gactatctga gtttttactg 480ctaaacttaa aactaaaaaa aaaatcgatt
agtaatattg atgtatcaac gaaatgtata 540tggttaaata ttaagtgaaa agaaaaagaa
gagagatcga cgcggtttgg gataatgcca 600ttggcccatt ggacacgtgt ttgtaggagg
aatagtttgg agtttgaaca ctacggacca 660aagtcaaaga gattcgaagt atgaagatgt
tgttgaggaa gctgattcga agtaactttt 720accgacacgc tttagccatt tgttatgctt
tctttgggaa aagaagatcc gcgtccatgt 780ctcattgtta acagtttatt gtcattttca
atgacatggt tacactcatt gcacacacac 840acaaaccacg taattttgta tttttttaat
taaatcccat ccttattttt tgcaataaca 900aattaccatt gttacttttt aatgatatca
cataaaataa tcgatgccac tcgatagccc 960tttagactaa caatatgttt gttgaagtat
gccacaatgt ttgaagtgag ccggctcaat 1020gctctcatgg tggtttagta gtttaacttg
agaacttaca acagttttct ccttctccac 1080actatttgta tccaagaagg ggcattacaa
tatagaattg cataatacga tttaaacttt 1140taccaaaaaa aaaaaagaaa aaaaaagaaa
gaattgcgta atacagaatt tatctttaag 1200ggaatacaaa tataatttgg tttcagaatc
atctcaatag gctttccttt aaccaaactt 1260gggttttatt gatgtgcttg ctttaatggg
cctaaagccc atacaacagc atcactatcc 1320acgccgttgt ctattcttat tattcacccc
acccggtaca ccgaccaaac cttggccaac 1380acgtccataa tatttcatcc tccctcctaa
tttactttaa tatcctcaac tttcctaatc 1440gttcagggaa tattctcata taccctagac
atatgcgtct tttccaatct aaaatgttga 1500gagtatattt ttatttatat atatatgagt
gacccctgcg agagacaacg gccactgaac 1560actatcgatc taatcttttc agctctctcc
atcgtcgtcg tatctgtcga c 1611224DNAArtificial sequenceSingle
strand DNA oligonucleotide 2ccgttttgta aagcttatac gtgt
24322DNAArtificial sequenceSingle strand DNA
oligonucleotide 3gtgtcttgat aaagttagcc ac
22423DNAArtificial sequenceSingle strand DNA oligonucleotide
4gatcacgaga gtcgacagat acg
23522DNAArtificial sequenceSingle strand DNA oligonucleotide 5caattgagat
gctacacata cc
226901DNAArabidopsis thaliana 6aagcttctat aagtaaaaag tgatccatcg
ttcataagct ctactatagc aattgacggg 60acaggactca taagtaacaa caaagtacac
ttcgaaacaa atttcacatg taatacttgt 120ttttttttcc cgtttaaatt cacatgtaat
aatttaattc acgtaaatac taaagtgatt 180cacccatcac gaagtatttt ttgaattaaa
tacatcaact aatcgagttt ttgataggga 240cttttgcttt tttgaatatt gcttatcaaa
tcaaaatttt caaattcttg tccatatacg 300cctatcaaat atcttctttt aaagaaagtc
tcctaaagag ttgaaaactt gaaatatata 360cttttctaaa atataatttt atttgggcgt
tacgttctag aaaatggaac ccgtctacta 420aaatgggccg ctcgtgaact cgtggcagtc
aaacactggt cggcgcataa aagcatatcc 480aaatacgctg cgtttcatgc ttacccgacc
cgtcttaaat atttaaagaa tattccagat 540tagcgcgtga gatgcagttg ccatgtctcg
cctcaggaat gacgacattt gccaaaataa 600cagagctaca acggtaaata aggaaaatga
ttaagggcaa tttggtcttt taggttaaga 660aaagtattga atcagatctg actttttggc
caagaaaaac tctcagccac tagatcattc 720cgacccctcc tccacgttct tctctctttt
aaataacctc ttcacggaac ccttctcact 780cacctatctc actctaaaat ctctctctgc
caatctcatc ttcaacctct ctctaactct 840cgttttcgat tctacaatgg gttagtctct
cgcttttact aatctctcgt cccgtggatc 900c
901722DNAArtificial sequenceSingle
strand DNA oligonucleotide 7tcatacgcgt caagaggtat ca
22821DNAArtificial sequenceSingle strand DNA
oligonucleotide 8tggagaacaa ctctagcaac c
21923DNAArtificial sequenceSingle strand DNA oligonucleotide
9acgtaaaata ggatccacgg gac
231022DNAArtificial sequenceSingle strand DNA oligonucleotide
10gatcattggg aatgttgaaa gg
22112192DNAArabidopsis thaliana 11aagcttaaaa agtcggtgaa tgaatgggtc
agctctctcc actttcatta tctctctatg 60ctctatctct ccaatcataa aacttgctat
tccaattaaa cttatacact atccattagt 120attttatgta gtattcttat taagatattt
taacgtggtc catcattcta cttaataagt 180ttttctcttc ttttaaattt attggcagca
gtttgagaaa acgattagat tgattaagaa 240tgcaacgaat gtcaaatccc aaaccattat
cttataccag ttatattatg agtgcttcat 300atttatatat taacttgcca aagttttgaa
gattatacta tgaaggctac tcaaagggac 360attgattcct agaagatgat tttatgatgt
taagccgttg actttggtaa ctaaatcatt 420tgacctttga tgtttctgcc ccctttagca
aatagaaact taataagaaa attttcattg 480aaatttagca tcccaaagaa aggtgtagaa
aagttatagt gtaatgtgat tggtgaggtg 540catgttcgac actcttcaaa tgttgattga
aacttttttt tgtgtgcaaa gttgattgaa 600actttaatat tttttcatta atcgcttaaa
gtgtagtagt gtcaaaatat tgagatgtca 660agtatagaac atactatcat tttcaaaaca
attgtgcaat ttcagtataa tcagtattta 720aatcattaat aacctcatgt gtaattaact
ctattatatt atcgatttta aaacacaagc 780cccaagacaa tgtccctcat tctatctcat
caaatgctca actttttttt tttagtaaga 840acattaattg ggtgcattaa tgaaggtcac
agaaaagaag ggttatagag ggtaaattaa 900aggtgattgc acacaaaagt atgtctttca
gtttttcaca gaggaagctc atgacactca 960ccaaagcagc acgaatgaag ttcaagttct
taattaggct tcacatactc tacatcatct 1020cctcaaaatt tatatcattt catatgttcg
atcttgtttt catgtgactc tctcctcttc 1080tctaccgtga gtctcttcaa tttcctaacc
ctttgttaac gatcatatat accttgtttc 1140tcgccgtact atttcatccc aaattttact
tttaccactt gcgataatat atcatgaagt 1200ctcttcttct ccttgccttt ttcctctctt
tcttctttgg ctctctcttg gctaggcatt 1260taccaacatc ctcccatcca agtatgtatc
tatgcacatc tttcttactc cagctctttc 1320actatcttca agatctctaa cttgttcatg
tctgcgtgca tgtgcaggtc atcatcatgt 1380aggaatgacc ggggcattga agcgtcagag
gaggaggccg gacacggtgc aggtggctgg 1440gtctaggttg ccagattgct cacacgcgtg
tggctcgtgt tctccatgcc gtcttgtgat 1500ggttagcttt gtgtgtgcat ccgtcgaaga
ggctgagact tgtccaatgg cttataaatg 1560catgtgcaac aataagtcct accctgtccc
ttgatcagcc tcttctacac ttattctatg 1620cattcaaccg ttttgttttc cttttgcttc
tccgggacat gaccatgtgt acgtatacaa 1680tgcatcttta attagtttct ttcttattat
taataggaat cttaaacaca gtttgatccg 1740agattaatta atcagaaaat atatggatat
caaaaaatga aagccactca cctatttggg 1800ctctctcgct gtattatggt ccatgaggcc
gtatttaaga cagcaacaac aaaagttgta 1860gacagaatta tatttaaaag gcaacaacaa
aagtacgtat acgttgttac caccaaactt 1920tggaggctcg ctaataataa ccacactacc
catttgttac acacccttta ttttcaacca 1980tatcatctca ccttcgttaa atgttcccac
aattagctca gtattttact atatacatac 2040acacacattc cctccacagg atcaaacaaa
cacacgagct ttctcctcta caacaaaata 2100aaataaaatt aatggcttct tcacttatca
cctccgcagt cattgtcgtg gttttaagcc 2160tagtgcttgg atctgtagag caagtgagtg
ga 21921224DNAArtificial sequenceSingle
strand DNA oligonucleotide 12atgcacatcg tcgacagtat ggtc
241322DNAArtificial sequenceSingle strand DNA
oligonucleotide 13gactcaagac accaaaacag ac
221423DNAArtificial sequenceSingle strand DNA
oligonucleotide 14ggaacgtgac gggatccact cac
231521DNAArtificial sequenceSingle strand DNA
oligonucleotide 15tggggcttaa ctaagatgtt g
21161975DNAArabidopsis thaliana 16aagctttact ttgtttgaaa
aaatatcaaa ttgtttataa gtacagaaaa ctaaacccta 60agaatggtag ggaacccaaa
caacaaaatc tgaaaccccc aatttagatt ttgtaaaatt 120tgaagttttg cctctgtaaa
tcaaaacccc aattcaattt aatcaaaaac cctataagtc 180acttcaggaa attaattgca
ttgcttccat cgtcaatata cctctgctga ttgttggcaa 240aattagaagt ttcagaaaag
gtggactgca acttattaga gctaaaactc tgtttgaaag 300ttaacagttg gtgaaagaga
agaattgggt tcctgcgaaa agaagaagat gatgagcgtg 360tttctcaaac aaggataatg
ttgccattat tacaaaaaat acaaacaata tacgttactt 420ttttgtggag tgttagtttc
ttaaatataa tatttttgta gattataagc ccaaatttct 480ctaaaattta catacttcta
tctaataata gagttacata cttctatcta aaaagtataa 540tagagtcaca tacttctatc
taatatgtaa caatataaca taacacgtaa tttgttttat 600tatgaaataa aaatcatgta
attataaaat aaaaatacat gtgataaaat tgtctagtga 660ttaatcaatg gttcctacac
aatgttctaa atattttagt aaattttact agctaataga 720tggaaactta tcgcatgtta
caggagtagt tcatcgtggc cttagtaagt tattgataaa 780gttgtccatt ttatgtgttg
ttgtcaaatt gtttttgttt tttgtatttt tttttgaata 840agttgttatc aaattataat
gtctaatact actatagaaa tttatcactt ttatcctctc 900tttttgttat gtctttttcc
tttcaaaatt gcataccatt ttgtattctt ttctcaccaa 960acttattcaa actaaatttc
caaacatatt atagagaact atcaaaatac aaatagttac 1020ataaacaaca taagtacaaa
caaaatcacg agaaaaagtg aaattatatt acaaaatgct 1080atattttttt ctcacactct
atattaatgt caaatatgag taatttcaat caaaagccat 1140ttttcttttg cataattcat
gtttattttt ttattttttt catcttgcat aattcatgtt 1200taaaaggata tatacatggg
tctactacat tcacctgaca ttacgtttta tgtgtttgtc 1260ttctgaaaat aatcatcaaa
atatttcagg acttgtttac gttttcagga gaaaaaaaat 1320aactgtaccc ttttcaatat
agaaataaca tttgtagaaa tcgtggattt tccttaataa 1380acaatccaaa acacgaccac
cgttgtctcc tcgactcggt aacacccgat cgccgacttg 1440aaaattagaa gaaaaatgaa
aagaataata aaaaaaaaaa aggaatgatt attgaagctg 1500tcatatatgt cgaccctatc
acagtcaatc caatagccta tattcgccaa ctgatatatc 1560caacggctca caaattttca
caaacttttc aaaaaagtat aaataaaaga ggctgtctga 1620cagccatgtc acgttatact
ttttccgtat gatcgaaatg attcgtcttt gtcgaattta 1680attatttcca aaattgatga
ctctaaagaa aaaaaaatag tttttcagat aaacccgcct 1740atataaatag ttcaacactc
ggtttatttc ttctcccctc tttgaattgc ctcgtcgtct 1800tcagcttcat cggccgttgc
atttcccggc gataagagag agaaagagga gaaagagtga 1860gccagatctt catcgtcgtg
gttcttgttt cttcctcgat ctctcgatct tctgcttttg 1920cttttccgat taaggtaatt
aaaacctccg atctacttgt tcttgtgttg gatcc 19751722DNAArtificial
sequenceSingle strand DNA oligonucleotide 17acaatgaaga gctgaggtga gc
221821DNAArtificial
sequenceSingle strand DNA oligonucleotide 18ggatcgattt caaatacaac g
211922DNAArtificial
sequenceSingle strand DNA oligonucleotide 19cgtaatcggg atccaacaca ag
222021DNAArtificial
sequenceSingle strand DNA oligonucleotide 20tcaaagcgaa cagctaaaat c
21213126DNAArabidopsis thaliana
21aaaagtcaga aactctcata cctccccaac ttgaatttct tttgccccct cctcctttac
60tatcttggcg agaaaaccct cttccatgca ttccatttcg actgttgctt tgtcctaaaa
120tattaagatt gagataagtg ttttattcct ggcataagaa tcaatacagg aagagattca
180atcaggatta tcattacagt ttcaacttca caaagcactt caccaggagc aactttatca
240ccttctttct tcagccacct ggcaatgtta ccctgaagtt tcaacagata tctttagtag
300aatgataaaa caataaacca tgttaatttt cgtaagaggt attcagaggt acatgcctca
360gtcattgttg gcgaaagaga aggcattcca atctcttgat gaggaggaag atctgaaaca
420tattttaaaa agttatcagt aaaacaaacc atgtatgctg catatacaca gtgacagaaa
480tatgatggcc gcaaaaggca caaaaaccaa gtcagatgct cacaaaaaaa agtacaattc
540aagtgaaaat atatgttaga acaagcggga agttacaata aagaactaaa tacctgaact
600ggatgaaaat cctctcactg atcgcatctg ggagctaaaa gcaagaaaag aagcttacag
660ttaggataga agtattcata caggaaggta gcaagttgta ttctcatcgg taaatggatt
720acatacctta taaattcttt aaatagtttt ggtcctgcca ttgggctgct tagttttgtg
780ctcgttgttg aaataccact aagcattgtt acctatataa tgcagctaat gacattacga
840ccaaaaaaac acagacgatt acgtgacaaa gcaaagacga gaaaggaaac tgaacagcag
900ggacttacat tgccagtacc acattttgaa attctctcta cagaggaata attcaggcgg
960gccttgaaga tatctgaaga ccaaataaaa atagaaaaat aaatgcttaa gcgagaagca
1020taatatatac tcaaaacata ccaactttca attaattaaa gttggaacgt tgttatgttc
1080ttcatgttga aaacgatgtg aaagtcaaac ttggactatt catcccagag tactgtgtgg
1140tgcttgttac cgtatcaaat aaaagaaacc accacacatt tctacataaa atgaacttaa
1200ggatagcaat gaagaggaca ctaagaaagc tgactggatt accttctctt ccaacgagag
1260aggggtgggt actgttggag aaacagcgga ctgccacagc atggtcacgc cgcagtaaag
1320cggaaacatg tttcaactgg tcagataaca caacaatcgt caaaatagtg tttacaaaga
1380gcaacataca attactctgc tgtaaaagta gagtcttctt gtactaataa aatgaatagc
1440taataccaca attgaatcat aaagcgaagc tactacatta atcacaattc agattacaag
1500gaggttacta aagctctcaa tagcaaaatg cagaattgcc catgatcaaa ttaaaaatac
1560caaattcatg attagattaa gtcaaacccg gaaaacgaac ctcagttcag aaaaaaatga
1620ttggcagagc aaaacacata agaacgaatg cataaactca gttttacaag atcaaaaatg
1680gtagtcaaac cacagaaaaa aatgaaaaat agagaaagag aaaccttttt ggaatgattg
1740atgatacgag aagccattgt tgtgcaatcg gagctgcgtc agccgatccg aattcgcaac
1800tgcaaataac aaaaaaaatg gtgggaatgt ttgttagggg gtttctcctt tttccctcgg
1860caactatatc agagatcgag atcgatgaat ttgacttgta ctcaatccaa ttttgaaaca
1920gtaaatatgt ggatggaaga taggattcga tctagaactc accaagagtc agaagaacgg
1980taaatcgcag tatagagagt gaaggatcac ttggaagaaa gctgggattt gatgatgatg
2040atgaagatag ttttgtgttt aggtttttca gaaatggcaa aatgctgcct tacatgtacc
2100agattgtatc gtaccaacac caattctacc ataaccgata taaaagtatt taaaccgact
2160aattaagctt cacaaatttc ggtttgtact ttattatatt gggccctatt attattctct
2220gagcttttgc gtctcaccaa aagacagaga tcatcaggtg cgttagtgat tacgtaggca
2280tctaatgaac ggcagggatt agtcaaactt attaatgggc ctaatctttg gcccatcgtt
2340ttccctcgat tcctgtcaca caaaaaactc ctagctcttc ctctacctac acaagctaaa
2400tacatatttt ttgcttatcc taagcatcat gattatgttt tgccctctcc agctttttct
2460tcaatggcaa cagattctaa gaaagtctct tgaggctaaa atcaaagcat tttttgttga
2520agatagatag caacttgctg cttcttcata ctagctagtt accttcttct tactcaatgt
2580gttttgcttc gtttcaagga ttcttcatat cacttgtgga acaattacat gattaaacat
2640tcaacataga gagatagatg tgttaataag taaagacatt ttcagataaa acgttcttat
2700cagtcacttt attcttctaa tatcctcgtt gtaatcggga aaatgctttg taacgtcaaa
2760aagcaataaa agttgcagga gaaagaaagc tttggaaaag aaaataaaat aaatgaagaa
2820tattttcttt gctagtcaca aaataaatga agaatttatg ttcctaattt cccactagat
2880atttgtttat ttatttttgc caaaatcaag ttaagacaat gagctaagtg ttggaaaacc
2940ttgtccgagc caaaagagta aaaagaaagg gaataaaggg gtaaaaccgg aaatccgaaa
3000aagaaaagga gaagatttcc aaaggagaaa accctaaaga cggagtatat aaacaaggta
3060acgcgttttc tctcagcctc tttcggatat tccaccagtc tctcgcaatc ttcgctcttc
3120tctttg
31262225DNAArtificial sequenceSingle strand DNA oligonucleotide
22taattaacaa gtcgacaaaa gtcag
252321DNAArtificial sequenceSingle strand DNA oligonucleotide
23agagactaac ctagccgtaa c
212424DNAArtificial sequenceSingle strand DNA oligonucleotide
24gagagaggga tccaagagaa gagc
242522DNAArtificial sequenceSingle strand DNA oligonucleotide
25cttcatcttc aactgtgata gc
22262501DNAArabidopsis thaliana 26ggtacgttat attcggggta ttttggcctg
agaaatttgg agatagtaag aatggttgca 60tcatgagagg aacaaatata acgtcccttg
gcggctgctt gttcgtataa gaagatatga 120gcgttgcata agtcgtccaa atgcacatac
tgtccttgtc ttatgatcga gtaatgcgcc 180tcgttcccta aaacattata atatattcaa
cgttttagat ttaacatttt cacatttcca 240acaaaagaag aagcacacac acgtacgagt
gataggagag agcgcggtga taaggctagg 300cggcatagac gttgtgatga atggaccgac
caccaatgtt ggaataatac taatgaaatc 360taatcctttc tcttcggcga aatcccacgc
tgctttctcc gctaacgttt ttgacacgaa 420atacatctgc cacacaaata tatatgaact
ttaaattact tcaaaaaacc gtaacttgag 480tttaattaat atgtatattc ttacccatcc
tgtcatcttt ttggacatga taaactcaag 540atcactccaa tcattttcat catagacatt
cttctgatgt tcttctacat taacggttcc 600ggcagatgaa gtaaatacga atcttcgtac
ggtctttgcc ttaacacatg ctttcattat 660ccccaacatt ccattcactg tcggctttat
cacttcgttc tgattcgcaa atacaaaagt 720caagttaagc taggttgacg caaaaaccaa
aagaagtttc ctaatataga gaaactcacc 780tcaggatctt ttgattcaaa atccatgggt
gttgccacgt ggaaaacacc gtcacatccg 840tttatggcat catcgtagct tccttcctca
gataaatcag ccttccataa agtgagtagc 900gtcttggcgt ttggcaaatc aagaagatgt
tgtactttct tcaaattacc ttgacaatcc 960aaaaaaaccc gtaaataaac gttatattaa
tatacataat cttaggagaa atgagtttgt 1020aagaacatat agatatgtac cgggatctcg
aacggtggca cgaacaaagt aaccacgttc 1080tagtaatcgc atcactagcc atgaaccgat
gaaacccgaa gcgccggtta cacacacggt 1140ctctttctga ctaaccattt ttgtggttat
atgatagatt gtgctttggg aaagattcaa 1200ctatgtatgt tcggtacaaa tctttgtgat
gtgaagacat tataaataag acactagaga 1260ttatgaatcg ttattgaaga aaacagataa
taagaacgag aagctgccgg tcacgtgagt 1320accaaccgga gaagcacgtg gggaacgttg
gttgacgaag gactaaagag atgtgtggta 1380cgtaacaatc tggtaagttg attttattat
ttccttaggt gtgtattttg ttgttgtacc 1440ggtgggtgaa atacgttgac ttcgatttgt
ttggtgagac gtgtgggtga cttcagttca 1500gtttgttttt gtttttgttc cccacccact
tttacgaaat aaatcaaaat ttgtctaaac 1560aaattaacat tttgatagaa tatatacaga
aatacatttt acttaagtaa tattttaatt 1620ttaattgaaa tctaaaaatc agacacctaa
aataattata aatcttggaa aagcttaaat 1680gaaaaatatg tttatatttt agatttatga
attaggagtt tcttattaca aaattgtaaa 1740attataaaac atattaattt ataaatatga
cttctagatt tattgcaatc taaatattat 1800aagcatttac ataaaataca taaactaaaa
ctttaaaaga tgtaattatc caattgtgtc 1860ccatgtcagc tttttcatta ttatttcacg
aattattata aaaataattg atatgttaaa 1920atattgtttt caaaaattta tttatttcca
gttttcgcaa agaaaataaa ataaaattag 1980aaggacagtg aatcacttaa tctcataaag
taagaaataa cacgtggtgg ttacctcgtc 2040cacgtggatt ctaaaacaca gaatcaatat
aactcttgta ttttcaattt gttgtatcgt 2100aagacgtcag agaagaggtc agcttaattt
tgactctcct ccaaacagag agacaaagta 2160agccaagcgt ctttggtgta gtccaccacc
acgtttgagc tcgacgcaga gagagaagaa 2220tacttcaaag ctctccttct tcttcttcaa
ccactagaaa tcttcgttct ctattcaatt 2280gcattgcgtt agcaaaattc tggtgaattg
atttgatcag atcttcgctt gatttcgatt 2340ttaaaaatcg aagaattttg tatcgcatgg
agatgatttt ggaggagaaa gatgcatcag 2400attggattta cagaggcgaa ggtggtgcca
atctcgttct tgcttacgct ggatcttctc 2460cactttttgt tagtctcttc ttcttcgatc
tctcttcctt t 25012722DNAArtificial sequenceSingle
strand DNA oligonucleotide 27aaaggaagag aggtcgacga ag
222825DNAArtificial sequenceSingle strand DNA
oligonucleotide 28ataccatcgg ttaaaccatc tcaag
252925DNAArtificial sequenceSingle strand DNA
oligonucleotide 29ggtacgttgg atccggggta ttttg
253023DNAArtificial sequenceSingle strand DNA
oligonucleotide 30tcttcataga agaagagagc cac
2331513DNAArabidopsis thaliana 31gtctctctga ttctttcgta
tggttggttg caggcaacgg tgggatttac tttgtttggg 60aaggagacac tagtggaaat
tgacatcaat gaacttgttc ctgagattca atcttaaata 120gtttgttcac tagaatgtga
attttttggt ttgaaatata aatccatgat cacttcacat 180gttttggaag ttttggtgtg
tttgttctgt taaattcgcc aaacgattgc aacgacgacg 240ttctatcttc atttgaaaga
tgagagcctt tactggttaa atgggcctaa tttgtgaaaa 300ggcccaacaa acaagagccg
tcagatcaga atgaagcaaa caggcacgaa ccgttagatt 360aagattcaca aagaaaaccc
tagaggttcc cttatcctca ggccaaatcg tgaactataa 420aacggctgat accaaaaccc
taatttcttt acgtcaaact ctctctatac acagagttaa 480attgagtttg tgtctcgtaa
cttatcctgt gag 5133223DNAArtificial
sequenceSingle strand DNA oligonucleotide 32gtctctctga agctttcgta tgg
233322DNAArtificial
sequenceSingle strand DNA oligonucleotide 33tatccgaagc tataatcaca ca
223424DNAArtificial
sequenceSingle strand DNA oligonucleotide 34ctcacaggat aagtcgacga gaca
243523DNAArtificial
sequenceSingle strand DNA oligonucleotide 35caagagaaag cagatagtga gta
23361022DNAArabidopsis thaliana
36tagagaaggt ccggagaatg gaagaaagca gatctatctc cggcgcttct ccattgtttt
60ttttttgctg ctctgaagct tagaagctaa aagaagccgc gaagaattgt gaagaagaag
120gaaagtttcc attattgcct tttattttat tttatttaat aatttaaggg tttttgattt
180taaaatgaat aataataata aatacaaaaa agaaaggaca gaaggaagga gtgatgtgtg
240gtagagagag acagttcacc gtcggcgagt ccagctggcg gtggtgggag cccaccgtgt
300caccttaatc atcgctgcgc tgccctgtct tttttccatt attaattttt agcaagaaga
360agactgggct ttctaaatta gttattaatg ggctttgggc tttcgtggtt agggttgtgt
420aggggcttaa tcgtcatttc ggagatagaa taaaccctaa tctccatgga tgggctctcc
480gatgtttgtc tttttgattt ttgaaatttg attttcaaaa ataaactaaa gcatcattgc
540ctcccattat cgtcacgcac gcagatcaat gattctctca ctctgcttct cattcacgct
600tcttctttga attcactttt ctattccttt ctttttctcc gtccgagaga gtatagagag
660acccatttct tcgatccatc cgctgagaaa aaaaaggtac cgtcgtattg ttctctcatg
720tttctgggtt tctttttgtt tcgaaatata ttcttctcgt ttgcagtgtg attttgaggg
780tttccttgtc taaaaaatgc agtttttaat taatggattt acaatagaaa tgtagttaga
840ttcttcgaca ccatcttcgt tttcgattgg atctacatgt tatgctctct ctttttcctt
900ggaatactat gtcagattga gtaatggttg tccttgtatt gaattacaga agaaaaccaa
960gcagtagtag aatggatcat tcagcgaaaa ccacacagaa ccgtgttttg tcagtgaaga
1020tg
10223724DNAArtificial sequenceSingle strand DNA oligonucleotide
37gttggttcgt cgactagaga aggt
243821DNAArtificial sequenceSingle strand DNA oligonucleotide
38gcaatgaaga tgatgatgtg c
213924DNAArtificial sequenceSingle strand DNA oligonucleotide
39cttactcggg atccacatct tcac
244021DNAArtificial sequenceSingle strand DNA oligonucleotide
40aactcctgtt gctaaaacgg a
21411056DNAArabidopsis thaliana 41gtcgaccctc ttttggattt atatttctct
tcagatcagt tatttgaggt tcttgtgacc 60ttgccaataa tattccgcca cctggaccgt
aatcttgtat tactctcaat tcaagaaata 120tacatacact ccaattttta tctttttttt
tttctccgaa taggaaatcg atactctttt 180tatgcccgtc gttacataat aatcgtttgc
ctttacacgg ataaaaatcg aataaaatcg 240aataagtaca gaaatagtta agattcgttc
aagatactgt ttctttaaga aaaaacaaat 300tataacgtta ggctacaata ttaaaagcat
attagcatgt agaaaagatg tataaaacca 360tcaagagtta atatgtagca ccgtggacca
taatattaat tagtttataa gtttttttct 420tgaattgcaa acgtcttgta tatcactaat
ttactataca tattgtcata atgttgaact 480ccaggacaga aaacataaga caaacgcatc
attttcaatt aaaaatagtg gcaacaggct 540tataaagata caaagatggt gttttgataa
gagaaagaaa aattatgagg ttcgtatcat 600ttctaatttt taatttttaa gagctgccga
gattattgat cagattagct aatgtctaaa 660tttgacggta gagagtttac cacgtcaact
acacaagagg acctttggat ccggaaagag 720gtttcgttag tctgggtctc aagtttctca
accatagact tatatgctaa tccagtgaac 780ccatgattat gaaaacctat taaaattttc
ctttttagaa tttagagcca aagatgcgtc 840tgaaagttac actcaaagag aaagattttg
tgaggacgta gttccctgcg ttttcttaag 900gctgaggtta agtactggga tttttaagag
attgtgaagt ctacatcatc agtcgagaga 960cactgcaatc tcatcgtcat cattgcacaa
caggtggcca agtggatgtg taggcaccaa 1020attgacccag taaacctttc ggtctggtct
aagctt 10564223DNAArtificial sequenceSingle
strand DNA oligonucleotide 42cccttatctc tcagtcgacc ctc
234321DNAArtificial sequenceSingle strand DNA
oligonucleotide 43gaagagagga tatgtgtgaa g
214425DNAArtificial sequenceSingle strand DNA
oligonucleotide 44ttcaaaataa gcttctagac cagac
254520DNAArtificial sequenceSingle strand DNA
oligonucleotide 45aagagatttt caaagtgtgg
2046435DNAArabidopsis thaliana 46aagcttatta cttaccatgt
atgttccaat aagaaaagtt tccatctttg cttaaaagca 60aaaaactaaa ataccaaaag
attcaaaaaa aaaccaaaac agtaaaagta aatagcaatc 120tctgagaatc ttatccacgt
cagctcacgg gtcctacaga gaaagctaca ataggaagag 180atgttttcac ttacagaaga
tttacttggt ctagatttgt tctcctttgt gaaggttatg 240agaaaaaaac ttttttgatg
attcatgacc ttgttcaaaa ctcagacagc cacaagatga 300tccaactact tttaacaacc
actaactctg cgccacgtgt atatctccaa agattctatc 360tttcccctct caccacctag
atatagtctc attagccttc cctcctttct aattacaatc 420tctccttttg tcgac
4354721DNAArtificial
sequenceSingle strand DNA oligonucleotide 47gcaatgattg tcgacaaaag g
214823DNAArtificial
sequenceSingle strand DNA oligonucleotide 48ccggagaggg atcctacgaa agt
234925DNAArtificial
sequenceSingle strand DNA oligonucleotide 49ttggtcacaa gcttattact tacca
255019DNAArtificial
sequenceSingle strand DNA oligonucleotide 50gggaggagga tccagccac
19513333DNAArabidopsis thaliana
51aagcttgcca agtacggctg cttcaatgct tcatccactg tcaaattaaa acatattgtt
60agtatatttc acattccatt tatagcatca caaagtagta aaacaacgtg ataagcacct
120gtgatgcgct ttgaaggatc gaaaactagc atcttttcag caagatctag agccattggg
180gaaatgtttg gaaacttttc tctgaatgat tgtttttgaa catgtgggag ttgttttacg
240tacttccgcg cattatcgct tctcaagaag tcgagatccg agtcatctgg tgaccctaag
300agctaaaaac aacccaaaac aaaacagaga aatgcttcca acaaccaaca cacacacaca
360cacaaaccaa aatgatagat tttggattaa ggttttaatt tgcttacctc agtaataagt
420ttcagctgct gaacgtaatc tttaccaggg aaaagcgtct ctcttctaag tatctccatg
480aaaatgcaac caacagacca aatgtcaata gctcctgtgt attcagagct gttgagaagc
540aattcaggtg cacggtacca tctcgtcaca acatactcag tcattatctc tgtctcattc
600gacgttcttg ctagcccaaa atcacagatt ttcaggtcac agttcgtatt cagaaccaag
660ttgctcggtt tcagatcgcg gtgaagaaca tttgcagagt gtatgtactt aaggcctctc
720aaaatttggt aaaggaagta ctggagacaa caaaaaagta tatcaaacaa tgctaaatgt
780taggaaacat tatgtaaaag ctctaattag gaatgtgtcc actgatcatc acctgacaat
840ggtcatcagt tagagtttga gtggatctaa tgatctggtg caaatctgta tccatcaact
900cataaacaat atatacatct tcgaaccttt ctttctctgg tagctcaatt atatctttaa
960ttttgataac ctgtgtagca atatgaacgt aataagccaa ctatatgagt gttcatcaaa
1020gtgaagaaga agagattaca ttgtcatgat ccatgtggga aaggagcttg atctctcgga
1080gagttctttt agcatcaact ctgttgtcaa acgcgtttgc tatcttcttt atagcaacct
1140cttcatttgt ctctgagttt gtagcacagc tgtaatcata aaaaaggatt tgagattaag
1200attgtattca agaatggtat gtttttttat tgaaagtgat aaagacttac cagacaatac
1260cataagcacc tcggccgatg ggttcaatag gagggatgta ttttgaagat agctcgaaaa
1320tgttaccgag tacattgtac ataacatatc taccatcata tgtcaagatc cctccatctt
1380cccttttctc catctcttct ttggaagaag aactcggatc aagacaggtt ttaagattaa
1440aaaaggaagc aagttttaaa agactgtttc tcaagtagct gttgttgccg ttaaaaaggc
1500aaagcagtga gtaagaggag agaaaatggt ggcacctttt gcttttggtg ggccaaatga
1560agacaaactt ttttatttga tccgttgaac ttcgaaattt gaatgagaat tattattaca
1620aggttaaaac ttgacttctg catcattaaa gaaaaattca aaagaaacaa aagagaagta
1680tactatagaa aaagctatct cattgtggat caataggtcc ctaggaacca atagtaagta
1740aaaagcaaag tggtaaacat acaaaagcga gattattctc aagtctcatt tcaatgtcaa
1800aactctctct tgtgtgctaa gtaaacagaa cctgtgtgaa agtaaaacac ctctgaactc
1860attttcacta tctcacaaac ctgcattatc gatccaattc tcccatctta tatcttctta
1920catattaagg atcagagaag gtgatcaaac ctgataatta tgtagatgta gctgaagcta
1980agatataagg ctcaggaacc acaaaaacat atcactgaat atttcaaatt agcttcagca
2040ttttatgagt caaaatacta agaaacaatg caaattctct catgaaaagg ctctcacatt
2100gcttttgcat tctccgcaat tatgatccaa accttaacca aaaacaacta ccctataaga
2160gtataagacc atgtctgcag aaatcagtag taacacaaga atttcatgag atattaaaga
2220agaagaaaag taggccacac aatagaattg aggaatcaag aaaacagata catacacttg
2280ggaaggacca gcacagcaga cgtctgttac tactaactaa ctcagacttg tcattgaact
2340atattatata cggctcactt gttttgctgc agtaactggc ttatcttctt ttctggcttg
2400cgttaataac atgagtagag agaaaacacg acttccgtcg agtagattcc tatcaaacaa
2460caccggttct cgaatctttc gacaagccaa gcaaaagtag gtgggcatga aaatttgttc
2520cccatgaaac agaggacatt cgttgttacc tattctaata accgattcaa aattccgaat
2580cgcagactta ataaatgtgg acaattaacc aaaccgtgca ttgctaggtc taaaccgcat
2640tggtttatga cccaccaatc aaggagcgat gggtgagaaa cctaataaca ctgctgctgt
2700gactttatca tatccttagt ccaattggga tcttcgtctg cgtgagacgc gttcacacct
2760gcgacagatg aaatcacgga aataccactg cccaacgtgt tcgcaataaa agtcctctga
2820tgcctaattt cgtcaattta ctgaagaaaa ttcaacatca acgccctttt tgataatttc
2880cccaaagtta gtgggccctc cacacgaagc atgtatcctc caattgcata ttgccaatta
2940tttcctaata atattgaagg attattcttt tcccatctat ataccaccaa ccctaagatc
3000cgaacgtcca ttttaaagcc gtgcgtttaa tcatgatcgt caattatatt ggcaaatttg
3060accacacgat atccgtcatc taacggcatc tacagatcta ccagaacgtt ctcattcatg
3120actctatata tttcgcattt cttctcctca acgctctcat aaaaagtagt actcgtgtct
3180tactcgtgcc agccactcgc atttctccag attttattat ccttcctcga aacaaggtat
3240gacggaaact ctctctctcc ctctctgatc cgtcgttgct gcttccattt tcatcttgac
3300tcgatcggat cattgttatg cttggctgga tcc
33335223DNAArtificial sequenceSingle strand DNA oligonucleotide
52gatctcatgg aagcttgcca agt
235321DNAArtificial sequenceSingle strand DNA oligonucleotide
53aaaacagctt catacgagtg g
215424DNAArtificial sequenceSingle strand DNA oligonucleotide
54cattaagcac ggatccagcc aagc
245521DNAArtificial sequenceSingle strand DNA oligonucleotide
55tcactattcc ccacagctta g
21561331DNAArabidopsis thaliana 56gtcgacttgg tacgacttgt aatatgaaat
aataatgtac aaagaagttc tacgcttaag 60ggaactgttt tgttttgagc tttgtattag
gacgtctagt gtacaacaac gaacgtcgtg 120tataagcgat cgttgactct gcacatgtaa
ctctttcctg aataaaaaat ctttaagtct 180ttaatttcta catcttttag gattatataa
acgttactat ataaataaaa aagaaaaaaa 240aatcagttca ctaacatgcg agactttggg
ctaaatatag tgattccaaa gaaaatgagt 300tataatatta attaatataa agctcatttt
ctttggaata tcgttataag aatattttaa 360cttggatata actgggctta cgccatttgc
atctcgagga ttttttgttt ttgtttttgt 420ttttttaata cattctcgca cttacacact
aaaaatcata atgatcttct taattcttta 480gcggaaccac caattaatct ttttattaag
aactttatta cttatttcac ttatttgtgc 540atacgtgcat tattttggca gtaacaaata
tcgcgttata tatactgaaa tccggacgca 600ttaataatag ggatatgatt atatgaacca
ctatctagct ttggtagaaa cccaattata 660atcaaataat ttaccattat tgaataaatt
aggctatata agttcattaa tagatgctat 720aggtttttct tacaaggcac acatttgatt
gttattttct ttcatataca ctgaatgtac 780atgtgtacac ttggcataca tggcaagatt
atgtgttaca atatagactg tgccattgcc 840atgcaatgtg actcctgtgg ccatttctat
cacaatgtgt caatcttgga gtatccgttg 900tttatcctct aatttactga ttaatttatg
aacatgtata attatttata tcatatgatc 960tcgtaagata tcttagcatt ttccaccata
tgttattagt aaatcatcta gatggattga 1020tgtaaatagg aaagttaaat taacacacca
aaaaagtaac tgattaaaag catacaactt 1080aatattcaga ttatggtaac taaatcagtc
tcatgcaaac tccaaaaaat tatacgagtc 1140acaactcttg atttttttcc ggttaaacaa
aatacatatt ttcatttgta tgcaaccaga 1200ataaaacact aactatctcc tttaaatacc
attttcccta cgagtctacg acgctctcta 1260aacttcttat acaaaacaaa acacacccaa
atatgcataa gcttttgttt tctcttctct 1320ccgtcggatc c
13315724DNAArtificial sequenceSingle
strand DNA oligonucleotide 57tctaaaggtc gacttggtac gact
245822DNAArtificial sequenceSingle strand DNA
oligonucleotide 58ttaggtcttg atcaaaaagc gt
225923DNAArtificial sequenceSingle strand DNA
oligonucleotide 59agaaatgaga gggatccgac gga
236021DNAArtificial sequenceSingle strand DNA
oligonucleotide 60gcggacagtt actagtcgtg g
21612316DNAArabidopsis thaliana 61aagctttaag ctccaagccc
acatctatgc acttcaacat atctttttct agatgagttg 60gtaaaagtag aaaaagatat
gatgatttta aatttgtttc tatttatatg tgttcatcga 120aacttcattt tttttagttt
taatagagag tttatatgac ttttaaaaat tgatttaaaa 180ctgtgtcaaa aattaaaagg
acaataaaaa atttgcatac aaccgaaaat acttatattt 240agacaagaaa aaataatact
tgtgatgctg attttatttt attatatatc atgaatcatg 300atcatccaat tttccggata
agccaaagtc aaaatgatgg gttcccccta atcttttatg 360ctgagaaata gatgtatatt
cttagatagt aatataaaat tgggttaaag aatgatgatt 420cgattatagc ctcaactaga
agatacgtgt agtgcaggtg tgtagttaac tggtggtagt 480ggcagacaac cagattagga
gttaaataaa gcctttagat ttgagagatt gaaatattcg 540attggaacct ttctagattt
ttacagccat ctaaaattag atgcagatca cctactacca 600ttcaaaaatg aacaaaataa
tttcatttac attttcctag cataagatat aataataaaa 660tagtgctcat tttaattact
ttttctaaat attttcgtta ttttaaattt tgcttgtcta 720tactctacag ctcatttaat
aacggaaaca aaaataattg cagggatacg gatgggtagc 780tttcaaaact tacatcatct
tctgtttctt gagatcaact atttttggag ctttgtctca 840atcgtaccaa aggataatgg
tcctacctcc ttttgcattc ttaactttat cttctctact 900tatttctttt ttgggatttt
tgggggtatt attttatctt ttgtagatat acacattgat 960ttactacaaa cgtatactac
tatccatctt caactcttcg gaatatgatt tcgaaaaaac 1020tatgaagatt aacgggtatc
ttaaacatgt taagatacac cggacaattt tcatttagaa 1080gaattgatat gcaattaaca
ataaatagtt gatgatcttt tagttttgaa gatgtgcgtt 1140aagacttaag cgtgtggtaa
caaggtggga ctcgggcaac gcaaagcctt gtagagtcca 1200cttgctcaac ttgtctttct
tttatctctt ttccaagtct caagattcaa tgaactccgt 1260gtaacacaaa cacgcccata
gatgagctca tttttggtat ttccaatatt gccactccat 1320gataatatca tctagggatg
gggttcattt attttgaaat ctcaacaaat ctcgtcgatt 1380ctaacacaca tgattgattt
gtttacttac ttgaaagttg gcaactatct gggattaaaa 1440tttatctttt tctactgcta
gctagaagca tctatatatg ttagcctaat acgtggaaga 1500tgtcattgct aataatggct
aaagatgtgt attaattttt cttctttttt ccttgaattt 1560ttgttctttg acataaacta
tgctgtcaaa atgtgtagaa tctttttaca taaatcattc 1620cctgttacac actaaaaggt
tcacaacgga cgattgtatt ggacttccag atcataaacc 1680atgcaaaact gaaaaccaca
agaataatta gttctaactt tagaacgttc gtacgtgttt 1740catgttcaaa aagcgtcaat
tataaaagtt gggaaattac ttttgagttt tgacatttct 1800aaggacagtc aaatatgaca
acattgggat gcaacttacc ttgtattaac ttattttgtt 1860ataaaaccat atattacata
ttttaaaggg ttgataaata atcaaatata ccaaaacata 1920gcttttcaat atatttgtaa
aacacgtttg gtctactagc taattatgag aacatttgtt 1980caatgcatga ttatctagta
tctactagtg gattatgaaa attagatatt ttcattgcat 2040gattatcttc catatatagt
gataacatca aaagaatcta caccaattat tgcatttttt 2100cattatataa taagcactaa
actgtaaaat tatattcagc cacccaaacc atgacaaatc 2160accttaaagg cttaaacaca
taacagccat tacgagtcac aggtaagggt ataatagtaa 2220agaatcaatc tatataatat
acgacccacc ctttctcatt ctttctggag agtaacatcg 2280agacaaagaa gaaaaactaa
aaaagagaac cccaaa 23166222DNAArtificial
sequenceSingle strand DNA oligonucleotide 62tagtttggtc agatgggaaa cg
226321DNAArtificial
sequenceSingle strand DNA oligonucleotide 63tataccagtg gagacgaaag c
216425DNAArtificial
sequenceSingle strand DNA oligonucleotide 64aaatattgga tcctttgggg ttctc
256521DNAArtificial
sequenceSingle strand DNA oligonucleotide 65taaactaccc gtcgttctct g
2166379DNAArabidopsis thaliana
66ttcatatgta tcaagacctg taatattgag tttttacaac acaagttata aataaaatac
60aaacacttta tgagaaaaaa gactattaaa gtgtagatta tggactaaat cttttaaaaa
120aaagatagta ggttcttcaa agtgtatcct actaaattac aagggtttga acgcaaatat
180ttctttgaaa atctcataat ccagaaagaa ccaacgagag aatgccacat catccatccg
240taatcgtatc ctcacaaaca aaatcttctt ctgcttcttc tcctgcttgc cagaatccaa
300aaccaaacct tcagatcata aatccaaaac cactcatttt tctattactg aaatttttct
360tagagaagaa gaagaagaa
3796723DNAArtificial sequenceSingle strand DNA oligonucleotide
67gtcgggaatt attaagctta ctt
236820DNAArtificial sequenceSingle strand DNA oligonucleotide
68actgacgtac tccttagcac
206924DNAArtificial sequenceSingle strand DNA oligonucleotide
69ggccattttg cgtcgacttc ttct
247022DNAArtificial sequenceSingle strand DNA oligonucleotide
70gaattatgga ctcttattgg ct
2271979DNAArabidopsis thaliana 71ggatccgaaa cgaagacgat acagtagagt
aagagtagcg agcaaaaatg caaacgcatg 60gtgtttgtga ttgaaccaac aagttgagga
aattattgaa cccaaaaaaa gacatatcaa 120agatttgcta tatatatgtt attttaagcc
gcctttacta aatatgtggg gtttaaatgt 180cacgtgaaat gtctacgagt cacatttgtt
catgaagtaa attccacgtg gacatctctg 240actatataac tgggagttat agttgactgt
taaaattggc ttcaaaattt agcaacaaga 300ggaaatcaac actcagcaat ttactctcat
tggatcaaat gaacgcacat taatatgacg 360taacgatgat gacaattctg tttaatagta
tcttattgtt tacagataca gaaaaataaa 420ttaagtgggc ctttcaataa ttaataggtt
ggtgaaatgt taccttctct tgatattttt 480ttaattttca tttattatga gtatgttgcg
ttatgaaaca actcgcatta atttggttat 540agattggaga aagaagaagt catggtcaaa
actcaaaaat gtaaaaggaa acaagacgtg 600tatgacgacg tgattgataa tctgaggaga
tacctttggg ccttataaga tgggccgaaa 660aagtaatagt attagcctct attcggcccg
attaatttca ggggaaattt tggtaataaa 720gtggaaacga cgtcgtgaca aaactactgt
gtagactgag aaataaagaa gcccttgatt 780ttgcccattg cagtcatctc tctcgaatct
ctctctataa tccgatctga gaaatttcgc 840cggagctagg ttttgttgtt taccgatcaa
tcctttaatc aatggcaatg gctgttttcc 900gtcgcgaagg gaggcgtctc ctcccttcaa
tcgccgctcg cccaatcgct gctatccgat 960ctcctctctc ttcggatcc
9797222DNAArtificial sequenceSingle
strand DNA oligonucleotide 72acactgcttt ccactcaatc ac
227322DNAArtificial sequenceSingle strand DNA
oligonucleotide 73taggaaattc aacgaaacga gc
227423DNAArtificial sequenceSingle strand DNA
oligonucleotide 74gatctcacgg atccgaagag aga
237522DNAArtificial sequenceSingle strand DNA
oligonucleotide 75tgaagaatca gagaagaacc gg
2276665DNAArabidopsis thaliana 76aagctttact ggaacataca
tgtaccttac catcaccctc acttacaacg gtgcaacatt 60cacgattgat tttttgaaac
aagttaccac aaaacttaga ttcaattcga ttcttttctt 120ctttccaaaa tgttataatt
agcttcattc tttaaacgat ttcttgtgta aatctttgtt 180ctttttgaca caacacacaa
aattctcaga gcagaatatc agatatagtt cacagcaaca 240taggtgttgt tcgttctttg
ggttgttata tattgcaatc tggatgcagt ttattatgat 300gtatcagtag agaagagaga
aaaagattgt gttggaggga aagagatgaa atatgacacg 360tggagggcgt cgattggtgg
agtatggata gaagcatatc caagttagat ggcttgtgtt 420ggttcgaaca gattttttat
ccaccacata tttatgtttg atccaaaagc caacacaagc 480aaagaaatta aaagtgttct
tgttgctgta gaacacaaac agaacaaaca aaaaatcaat 540tgaagagtct ctcagtcgtt
aggggaagca aatagagaaa tggctagctt tactgcctcc 600gcttccaccg tctccgccgc
tcgtccggct ctccttctca agcctaccgt cgccatctcg 660gatcc
6657724DNAArtificial
sequenceSingle strand DNA oligonucleotide 77gacaagtaca agctttactg gaac
247821DNAArtificial
sequenceSingle strand DNA oligonucleotide 78acttcttgtt gattcaccac c
217923DNAArtificial
sequenceSingle strand DNA oligonucleotide 79ccaagaacag gatccgagat ggc
238021DNAArtificial
sequenceSingle strand DNA oligonucleotide 80gtggcttatg tccgtcaata g
21812834DNAArabidopsis thaliana
81ttgaaagtgg gcatttgagt gtgtataaaa aattggtttg gtgagttgaa taatgtaaga
60atcttttgta tttttctaat taaactgttt atgatcatta ggagaacaat atatggggat
120gtgttggaat catgaatcgt aggttaaatc ctacaagagg aaaagcttca ggagacagag
180aagatgaaga gaagagaaga aaggaagaag aagaagaagt cgtgacaaag aaagtcagct
240aatagacata tctccgctat ttaaagtcga gtctaagcct ttatacactt aaaggttgag
300ggttcgaacc cttgttatgt ctttttgccc taaaagaaaa aaactttctc atgaaattcc
360gtgagatgat tcttccattc taagcatttg gttctgttag attgataaag aagtctccta
420cagtaccaag gcaatgtgcc atccatctac aatttgtata actatatctt ttggtaacat
480gttcccatca agtgggaatc taattcccct gttattcttt tcacgttcta agcatttttc
540aagctgttta ccattttgaa acttagtaac gatcaaaaag aataagggat ttcgtcacgt
600aaattaaata gaatctgtat acaggtcatt taaaaaaata ttttagtaag atacacaggc
660acagctcaac gtctgatctt ggtttgtcat aaacagcaga gaattctacc acaaggaagc
720tctggtacta tctttctcat taagcatccg cgactacaat attccccaat ttattaaata
780aacttttcca tgatgcaaaa gtacctttta ttaaacacta cgaataaata aataaaggtg
840aaacacccat ttcaaagaaa tggtaacgtg tctttttcat taggcgagac tagccaatct
900aagcaaacag agtcgtcttt atatctaaac gaacattttg tgaaagaaag agagactaag
960gtgaatccat ggcgtccaag attgtctcag ccatagtatt tgtgtttaac ctcattgcct
1020ttggtttagc cgttgctgct gaacaaagaa gaagcactgt gagtcacatc tccacagcga
1080tatctaattt gaacaagatg ataattatgt gatctatctt aatattttgg agttaaatat
1140tttttggtgg ggcaggcaag ggttgtgcag gacactgagg tgcaatataa ctactgtgtg
1200tatgactcgg acagagctac agggtatgga gttggagcct ttttgttctc agtggctagt
1260caaatcctta tcatgctcgt tagccgttgc ttctgttgtg gaaagcctct caagcctggc
1320ggttcacgcg ctcttgccct cattctcttc attgttagct ggtttgttat tataactcaa
1380ttagtacatc acatatatat ccctagctta agctagctta gacatatctg gcgtttttat
1440ttcgttcaaa gatgattcaa aactcacaat caaacattta caatagatct tagtttatag
1500aactagaatt atcattaatc tatcatggta tcaaaatcgc agtaaatctt attatcagct
1560tacacatttt cattctcttt tcaatgcaca gttaataatt caaatctaac atgcgtctct
1620taatccgtta tgaagctaaa cgtgcttatt aaacaaccga cattgtgcta atatttttac
1680aacttgaatg ttgttttgtt ggcgaaaaaa aggatgttct tcttgatagc ggagatatgt
1740ctattagctg gatcggtaga gaatgcatac cacacaaagt acaggacaat gttcatggac
1800aatcctcctg attgtcaaac tctacgtaaa ggcgtctttg cagcaggcgc ctcattcgtc
1860ttcttcaacg ccattgtctc tcagttctac tatttcttct atttctctgc tgctgaggcc
1920tctctttcac cttactagag gttcttaacc aacaaataag ttttattttt tttctctcta
1980aatgtgctat ttgatatgct aatatcatat tttgaggtgg gttttctatg tacaactatg
2040atgaaatgtt acaactatga caaaattatt tgaaagtgat ggtacacatg agatttgtag
2100atttatttgt atggttatta gatcgagttg aaatgttgtt ttaaaaagag tggatgtaat
2160ttgacgattt tgtgacatat gacataatgc tcttattcat tgaataaggt ttgagctatt
2220ctcgtgaatg cgtaaattca aattcgtata atgcatactt ttgacagagt aacaattgtt
2280tattactgga gaaacttatc caaacatgag aacgtccata acaactagta gcaagcaact
2340agctctatct atctccttct cccatgccaa agggtatgga atcccatcaa caccaatcag
2400caatcaccat ccctttattg caactgttcc atttgttaac ccaaaaaaat agtttaaaga
2460cattaaaata aaatatctaa ggagaaggaa atctaattct caaattctca ttggatatta
2520aacgacgacg tggcagatac ttagttcaag ataatgctat ccacacatct tcggtgacct
2580ctgtggggac caatcttcct ttgtccgaat atctcatttg ctagtacata aacgcacata
2640ctctctttcg caaaatatcc actacgatag ttttcttcag caatcacact ctctctttgt
2700tcgagtacca acaatggccc ttcaagctgc ttctttggtc tcctctgctt tctctgttcg
2760caaagatgcg aagttgaatg cttcttcatc atctttcaag gactcgagtc tttttggtgc
2820ctccattacc gacc
28348224DNAArtificial sequenceSingle strand DNA oligonucleotide
82gttgtttaaa gctttgaaag tggg
248321DNAArtificial sequenceSingle strand DNA oligonucleotide
83tattatttct caccagcggt c
218424DNAArtificial sequenceSingle strand DNA oligonucleotide
84tcggattgga tccggtcggt aatg
248521DNAArtificial sequenceSingle strand DNA oligonucleotide
85ctttaaggaa gtctctgcac g
2186484DNAArabidopsis thaliana 86aagcttctta ttgaatgata acacacatat
gtgatgagaa taaaaaagaa aagaatacag 60aatttatgtg acatatatct tattcacaac
catagtattg atccattgat taacatatca 120aggaaagtaa ttataaagtt aaaggaaaaa
aaaaaaaaaa aaaaagctaa acaaaaaaca 180aaaaaggaag agacaactaa gcgcgtgtag
ttcacaaacc agaagccgag agtcggttaa 240gaaaccgtct taagctgttc ttggacacgc
tgaagcaaat ttaatcgtgt ataaaactat 300ccttcttcca ccttctcatt atattcattt
ccatctttct aatttatctt tccatttccg 360agccgttgag aattttttct gagagataat
ttaacaaatt tcttcttctt cttctgtttc 420tgaaccacca aatctgcctt tctcaattag
ctatgggcgt cgctgttcta aatccccagg 480attg
4848725DNAArtificial sequenceSingle
strand DNA oligonucleotide 87tcaaatttgt aagcttatct atcgc
258822DNAArtificial sequenceSingle strand DNA
oligonucleotide 88agtgatatgg tcagcacaga ac
228924DNAArtificial sequenceSingle strand DNA
oligonucleotide 89gaatggatct gtcgaccaat cctg
249022DNAArtificial sequenceSingle strand DNA
oligonucleotide 90aaccagatct gaagtctcct tg
22911840DNAArabidopsis thaliana 91aagctttcaa gttcatttcc
caaagctgtt tttatgatat tttgtcttgt gtattctcag 60ttctccggtt ccatatttct
acccgatata ccttctgata ctattgatat ggagagaacg 120aagagacgag gttcgatgtg
cagagaagta caaggagata tgggcagagt atcttagact 180tgtcccctgg agaatacttc
cttatgttta ttagatgtgc caagagccaa gtcatgaatc 240ctttcagatt catcctcttg
tgtcttattt tttcataatc ttgttttatt ttagcaatgc 300tcgagtgaaa ctttgtagta
cacgtttgag aataacttca gtccttatta ttattttagc 360attgatatca gcattttcgg
attttatttt ttgggttgtt taaaaaccag agattttaca 420aaagacattt gtttgatgta
aaatgtcatg ataaagtaat attgtactta tgtaaaactg 480agaaaaatac taatagagga
acagagtggt gttgataaat gataatgctg atggatatgt 540ttataggaga aaatggaaaa
ttatcacaaa aatagaaatt gacgattacg aagtttctag 600atgtaccatc ttaatcgact
tggagacaat ttaaatggac catacacatc cgtgtttcta 660tttacatgtc aatatacata
tattctttgt ctttttagta tatttccttc ttttccccta 720ttttcttttt aaatattgta
tgttctatat cagtttcttt cttaagatat tatggcatat 780cgtaacagtt gtttccattt
ataatcatat tttattttta gtatgtcata gagtttttta 840aaatttattt atttgtcaac
gaggttttat taaaaaatta tatacacata ttaaaaaaat 900gttgaaaata cgtgtaaaaa
tctcataatt tgttataata ataagatgtt tcattttata 960atcacttgaa cctaaaagat
aagaaacaat aaaaccattg aagatcctaa aagacacctt 1020taaaacttca aaatgtatac
aacaacaata gcaacaaaaa agttctagac tacatacata 1080ctgtgtcggt agaaagcaaa
agactttgat agtttttgat tattcatgcg tttgaagagt 1140cgcagctgtt ttccggttat
atgtctctat ctaaatctaa gatcttaatt ttctatgttc 1200ggagatatca aagtcgcact
ttttctgtga atctagaaac acataacatt tccaataaga 1260atattctatt gagattcgta
gtcaactatt aagtgtttat tacgattaaa aaactactat 1320aatcaatgat taatgtaatt
tattatctta cgatctcaat tatacaattc gtctgacggt 1380ttgggccgtc gtaaggccga
agtcatgctt ttccttaaat aacactacga gttaccaaat 1440tacccctcag ctaatttgct
gagaatccac gctattaagg ggtagaatta agattagcca 1500acattgccaa ttagagatcc
aacggctgaa aaagctattt cttggggaac atgcaaagat 1560ctgaccctta attaatattt
tcaccaacca atagactctc atccgcagct ataaaaccaa 1620cccttttcct ctactggtcc
accactcgtc tgccttcttc cgcatctctt ttcatttctc 1680tctgatttct cgatctctcc
gtccaactat gtctgccttc acaagcaaat tcgccggtaa 1740gatctcgatc tctatctctc
ttaagttctt tattcatgtt tagattcgtg tattggattc 1800gattcgttat cccgtgtttt
gattcttatt agcgtgttta 18409222DNAArtificial
sequenceSingle strand DNA oligonucleotide 92acttatctct tccaaacaac tg
229322DNAArtificial
sequenceSingle strand DNA oligonucleotide 93caccataaga gaacaacaac ag
229425DNAArtificial
sequenceSingle strand DNA oligonucleotide 94actagatcta gtcgactaaa cacgc
259521DNAArtificial
sequenceSingle strand DNA oligonucleotide 95gagtaatttc tcctagaacg g
21961665DNAArabidopsis thaliana
96aagcttatat aaaaaattta aagtttaaaa attataaaat atgtcaacaa tattttagta
60cttaaaatta ttatgcgaaa tatttagatc aatggactac tcatctaata tatttgcacc
120taattttaaa gtataaattc aaccaataat tagaaaatga tagcttatac tcaaattcaa
180caaattatat ataaatgtat agatactaca atatcattaa caaaagtcac cttaaataaa
240tacacatatc ttttatgttc tctattgttt tgcgtacgct aacacaattt ctcatatgca
300aaaggatgaa tgagtaacaa attacctcat aagaacaatc atctttgctt acatactaat
360acaataatca ctcaatcaac caataacatc aatcacatag gtttacatac aataatcact
420caatcaactt cataagaaga atcatgttta cttaattcat caattatccc caaaaacact
480actattaagt ataaactata acatatttgt agtgatgggt caacattttt atcatattta
540aactcgggtt tcctcaaatc gagaaatagt gaacatgtaa tattaatttt aaatcgcaat
600tacagaaatt aattgaattt ggtcaaatgg acagaatttt ataaattggg tggaactaga
660aaaaaaaaaa aaaagagtat agggtgaatt gagtacatga aagtacatgg taatcctagt
720taaacgcata atacatgtgg gttcatttgt atttttttgt aacttacgag taaactggct
780acaacaaaaa aaaattagaa gatttttttg ttttgtagaa aaccctaatt ttagttatag
840ttgtataact ttgataaaat tataaaattg tattacgaaa aaagtaataa gatattcaaa
900aaagcctaga ataacgtata tgactatgag catgaaactg caagtcaaat gctgacagac
960aaccataaac aaaagaaatt aaatagagat acctttaaaa taagtaaaat ttcatttata
1020aaaaatctac tttcttgtga atctgtcacg ttcaataatt tgaagaccac tcaacataca
1080aggtaaataa tgaaaaataa aatctaccaa aatttcaatt attattatct tccaaaaaaa
1140caaaattata cagatgatga tggtgatatg gaacttcgat tggctaatat tcactgtgtc
1200tctaaaaacc atccacttat caagataaga tggaccctac actcatccaa tctaaaccag
1260tatctcaaga ttcttatcta attacatcat tctctaccgt tagatgaaat tgaccattaa
1320ccctaccata actccataca ccgcgagata ctggattaac caaatcgaga tcatcgtagc
1380cgtccgatca acaagtacca tctcttgaaa tactcgaaat cctcataagt ccgtccctct
1440ttgctctcac tatcaaaact ctgaatttcg atttcaatgg agtcacgcgt gctgttacgc
1500gccaccgcga atgtcgttgg aattccgaaa ttgagacgac caatcggagc gatccaccgt
1560caattcagca ctgcatcgtc ttcctcgttc tcggttaaac caatcggagg aatcggagag
1620ggagcgaatc tgatctccgg tcgtcagctt cgtccaattc ttctt
16659722DNAArtificial sequenceSingle strand DNA oligonucleotide
97cgactaattg aacagctttc tg
229822DNAArtificial sequenceSingle strand DNA oligonucleotide
98ctaatcttcc atgcactaaa ct
229923DNAArtificial sequenceSingle strand DNA oligonucleotide
99ccgacgagtc gacaagaaga att
2310022DNAArtificial sequenceSingle strand DNA oligonucleotide
100cataagaatc tgctaaagtg cg
22101807DNAArabidopsis thaliana 101aagcttttag ttttctagat aagatcttag
ctttggtcac gtaaaaaaaa ttaaaagtga 60attggttaac aatataggag tactttgtat
ccaaaggtca ttgcaataaa taaacactta 120agtactctgt agtcacacat ctctaggagc
ttaatattgg ataatcgctt gtagacttgt 180attaaaatat ttagtaggtc aaatccctat
cttctacagt ttctactctc gtccgtacag 240actacagaca ctatgctata gttttgtgtt
gaattctaca aagtacaaat tcttctttcg 300gtgccaataa caaataaaca caattctcaa
attacatttg tctaaatttt tatttgattc 360ggtataaatg taacgctatg ttgggaatca
tatgataaat ccagattaag acttcttatt 420taatttattt ttgtatatat aaaatataat
atccaaccat aaagtttttt taccgatcga 480tgataatgtg aatccaaata ttttaacagg
atgataaata attgatgtgg cttttataac 540cgcagcaatt ctggcgtgac tctctccgca
gcatttattt ttctctctat aaattaaaaa 600cattacttac tctttctctc ttccacttaa
ctcatatcaa ccttcgccgg aaataatggc 660tttcccgcga tttctttctc tcctcgccgt
cgtcactctc tctcttttcc tcaccaccac 720tgatgcttcc tctcgctctc tatccactcc
acctaaaacg aacgtactcg acgtcgtttc 780atctctccag caaacacaaa ctatcct
80710222DNAArtificial sequenceSingle
strand DNA oligonucleotide 102aaagttgcac cagtaatcag cc
2210321DNAArtificial sequenceSingle strand DNA
oligonucleotide 103cactcaagtt ttgagcatgt g
2110423DNAArtificial sequenceSingle strand DNA
oligonucleotide 104aagaaggggg aaggatccgt tct
2310522DNAArtificial sequenceSingle strand DNA
oligonucleotide 105tcttgtagct tcctccacaa ct
221063297DNAArabidopsis thaliana 106gtcgactcca agattcccgg
acgttggtcc aagggtatca ctctacaaaa taattataaa 60aaatgacgag gcatttcatt
ttctaatcaa tgtattttct gataaaggat gtcatataaa 120cttggtatct cataaataaa
gtatctaaac ttcaaaacga acaactacta ttacttgatg 180aaaataacaa cactattata
attaatggtt agttgagaaa caatacataa aaaatttgat 240ggaactatga gagccagcca
gttactatcc ttctcacctt ccaatgggtt gcggcaagaa 300ccttcacaac ctcctttata
tttgcgatgt gtatctagtc ttttgcaatg gtctcaaaac 360actttgggtt tcataagttt
aactataatg gtgtccctga tattttcggt ctaatatctc 420ttaaaaaaga aaaatactta
tgattcattt caattaatca aggttcaaga agatatataa 480acactagccc tgacacatga
aacttcgatg ccgaaaagct ctaagatcaa agccgaatct 540ttttaaaaca tacacgtgat
ttttgtgtct cccaagacca tcttaaccgg tccatgtttt 600catgttttag ttagaaatct
agattaagtc attaaactaa tccgtatcag taattaccag 660cttgcatctc agaagtccat
tattatttac atatcatcat cacatgctag acacaatcaa 720taccttatgt caatatctaa
aataagtcta taatcattaa tacttgtatt tataccaata 780gtatatcgtt tattaaatat
tattcatact ttatacataa atattccact aggttctgaa 840cttgtagtac tactattaat
aactccgtca aataactact caaaagaacc tctttatctc 900tctcgtttta tgatctctct
cgtctatcat tcaaagaaac aaaaagaatg agaaagaaag 960taagtagtag tggtgacgaa
ggaaacaatg agtacaagaa aggtttgtgg acagtagaag 1020aagacaaaat cctcatggat
tatgtcaaag ctcatggcaa aggtcactgg aatcgtattg 1080ccaaaaagac tggtctcttt
cctctctatc tctctctcta atcgtattga cataatttat 1140gaattctttg tcacatgatt
ttcttttacg aatggtttaa agttaaggtt ctatatatta 1200tatatgttat tttagattta
acttttaatc tatgttaata gagtccatat atcgcaaaag 1260caacttgaat caggatattt
atctagggtc acctttttgt tgtttttatt tttatgaatt 1320aaggtcctca gttaaataat
tgtatatgtg tgttaggttt aaagagatgt ggaaagagtt 1380gtagattgag gtggatgaat
tatctcagcc ctaatgtgaa aagaggcaat ttcaccgagc 1440aagaagagga tcttatcatt
aggctccaca agttgcttgg taataggtat aacttcattt 1500gctcaaaatt agtttctcta
ctcaattaat cataaaaaca gctatttcta tccattttgt 1560atcaagttaa ataatcataa
atattcgtga ttgtcttcac aaacttgctt ggtaacacat 1620gtttttattc tcaaaatttc
aatacattat atttcacatg ataattatat tgtttatctg 1680tgtgtttaat taggtggtct
ttaattgcta aaagagtgcc gggtcgaacg gataatcaag 1740tgaagaacta ttggaacacg
catcttagta agaaactcgg aatcaaagat cagaaaacca 1800aacagagcaa tggtgatatt
gtttatcaaa tcaatctccc gaatcctacc gaaacatcag 1860aagaaacgaa aatctcgaat
attgtcgata acaataatat cctcggagat gaaattcaag 1920aagatcatca aggaagtaac
tacttgagtt cactttgggt tcatgaggat gagtttgagc 1980ttagcacact caccaacatg
atggacttta tagatggaca ctgtttttga tgtgttttct 2040gcttttgtta ttttagtatt
cgtttatgtt ttgttatttt caaagctgat caaacactaa 2100tacatcaaca gtcttagatt
aaaagttgtt gatgtggtag tgtatgattg gctaagtcta 2160ttaattaggt gaactttctt
gggttaactc taatgtatat gcttaaaaac tctatatgca 2220tcgattaatg ttttaaatgt
ttcttcaatt tcttcctaag caaaattttg gattttcttt 2280tgtgaattgt tcatataatc
ttattaaatg ttggttcaag atataagcta aaattaaaag 2340agtcgaacga taacggtagg
ttagaaggag tatagtttat ttttattttt attttacttt 2400gagacgtacg tcccttaatt
aatcttcaaa tttgaaaaga agaaatttcc aattaagtgg 2460atactactac gtaccttttt
gtcaactaaa tttcgattgt agttaaaacg atgctaatgt 2520gtatgtaaac gagaaattag
acagaaacct tgattgccct ggcgagttta cttgaaacga 2580acaaaattaa tactagtcag
acaatataat gggtcaaatt gtcacacttc cctaaaaaat 2640tctataaatt gctatgacaa
agctgtcccc cttcttaata gtttaattta tgttctgtgt 2700ctttggtttt taatatgttc
tttgaaagct tgtcccccac tccttccttg attataattg 2760ctcagacagt tatatacaat
gcatgaaact atagtagtat atatattcta attctaaagg 2820aaggttttcg attatcgaca
tggggacatg ttggtcatgt ataagtataa tggaaatgaa 2880gaggttagta tcaatcttaa
tgtatactat agtagccata tctctaatca agacaaacgg 2940ttttaacatt tttaatatag
atagtacaac gcaacattca atgaaaatag caaaataaca 3000tttccatttc tcaaattttc
gtttgacaaa taaataaaat ttatacgatt ttgttattct 3060ctcgtgttgt aaatcaaagc
aacttcagca aaacgatatc tgtgaaagta aacatgattt 3120atttatttat tttataactg
gataatgaag gaaaagaagc tcatcgcaag taaatgtata 3180ccattacaag tagcaattaa
ataagagtaa aacatttata tatgaagatg ctgatcatga 3240tgatgacgac gatgatgatg
tttgtgatgg tggtggtagc gatggtgatg gggatcc 329710724DNAArtificial
sequenceSingle strand DNA oligonucleotide 107ggaaatcgtc gactccaaga ttcc
2410822DNAArtificial
sequenceSingle strand DNA oligonucleotide 108gtgaatgtgt cactagcaaa cc
2210924DNAArtificial
sequenceSingle strand DNA oligonucleotide 109gaactaacgg atccccatca ccat
2411022DNAArtificial
sequenceSingle strand DNA oligonucleotide 110tcccaagaga gtcaaagtgt cc
221112183DNAArabidopsis thaliana
111ggcctggtga atcttctgaa gttattaagg agctgatgca aatggagttg tttagttttt
60ggatgaaatg ttactctttc gtgtcttcaa aatacatgac tcttcaaacc tttcaagaag
120ttttagtttt cccctacttg ttttctcaac tctttttatg atatcccaaa tacactgttc
180tgatttaaca actatcgttt ctgttttaaa cttttgggaa cgttttcatt tgtaaaactt
240aaacagtgtt cctcatggac acacaaacgc tttcactatg tttgaatccg tattttccat
300tttctcttaa tcagactcgt ttttattggt tctcgctatg tttcgcggtt ttgtggaatt
360tttccatgca cgtaattcct cttaagattt tgaccttgtg agagtatgat cacacatcac
420tatgcatatg tacataacgg cttatcttga ttaccacata ttatatctgc ttaatcctta
480ttcctcttgc aggtaattta agagcaagct gaacggtcaa cacttacgcc caacaaaaat
540ctatggggta ccaaatattt gaatgccacc tatctgcttt ttcttttata tatactgaaa
600agtgaaaagg gatgaatcta tgaattggta gctttataac taaagaacga attaagcaaa
660agttgttttc ttgtttaact tagctaggca tctacctgaa tccaaaagag caacttgttt
720tgttttgtac taataagtat caacaagtct tgacctgcac atgtcaagtt tttgacttga
780tttagagcag cttgtttctt gtgtgtcctt ggagttctct actgtttcta tagctttgaa
840tgagctttcc atttgaccac atctcaaaaa atttggtaat gtgccttaga ataacaccga
900gtttggtaac acagctggaa ttggtgtttt gctgtggcat catgggagct ctgaaatgtc
960ttcccagtta aaggtgagta taactgtttg cattgtgaag atttgtatta actatagaac
1020attgaattga tggtgttaag ttcttacaca agcgtgcttc tcggtttgaa ctgtttcttt
1080tgtatgttga atcagagctt agtttatagg aaccagagta tctacttagt cattctctaa
1140tgctaagtgc taaggttcta cctagttgcc ctctaggccc ttatgttatt gataacttat
1200gaagctattt gaacacttga ttcttaggag acctaagttg gtacagccag atagagtgta
1260tgttcttgtt ctctatgtga caggatcaag ctgccacaca tagttcaagg gtatgctctg
1320tgtgggtttg ctcagattga ggacaaatct atacaaggaa gtagagtctt tgacattttg
1380atgttgtatg ataagaagaa gaaaggagag taataaagaa agagaaaagg gaaacagaaa
1440cacgtgggag aacatcccaa agaggaagca cacgcggatc ttcatgcaaa gctccccgat
1500tctcccatgt ggtccctttc tccctttgtc cccctcctct ttcttctttt ctcattttac
1560tccttttttt accattatac aacgaatctt ttttatcata attttttggt tttggtttat
1620tttccaataa caccttcttg gttacttccc attctcactt tttcatataa gaaactcact
1680ttgggaaact tatgtttgag aatgacaagt ctttttagag aaagtgatgt aacaaatcta
1740aagtgattat ataataacct tgcacaatgt ttttgatttt ttgtaagatt cgaatattag
1800gtttattatt cgtagggaat aaacttactt tcaaaagcgt tcataagtta atactttcat
1860atatgatcat aagtacggac actattgttt tttgtttgtt tgtgtttatt ctaaaagaaa
1920gtagctttta attgaaatgt cctcagaggc acagtttaaa gttcgagtgt aacagtttct
1980aaggcaaaat aagctctctt tctactattt ctctttctct ttctactatt tctctcctgt
2040ggagaaactc aggagataga gagagagaga gagaagagaa gagagcatgt atgtttggtt
2100ttataatctc tctactcata ccaaagattt gtctcagacc caccacttgg acagagagaa
2160cccaagctcc tttctctctt ttt
218311224DNAArtificial sequenceSingle strand DNA oligonucleotide
112cagtactttt taagcttggc ctgg
2411322DNAArtificial sequenceSingle strand DNA oligonucleotide
113ccttgtgtat ttcaagacat gg
2211424DNAArtificial sequenceSingle strand DNA oligonucleotide
114ggagtaggtc gacaaaaaga gaga
2411522DNAArtificial sequenceSingle strand DNA oligonucleotide
115ataggctctt caatgtttcc tc
221161358DNAArabidopsis thaliana 116ggatccacaa gcgaagccat tttgcggctg
ctggattctc caaacgttga attcgaagag 60gagaggatag gagaagagat gaatcgtttt
ttgttggttg tctcttacac tttttgagct 120ccaagtggga gtttatgatt ctctcatcgg
taaacgcttc ggaccaagga actaaaaaag 180aagcgttggt tttgaaggta agtggtgaga
gggaaggaca cgtggacgaa tagttacgga 240agaagggaga gtctacttgt gaggttgagt
tttgtcggat gtatatccgc ttgggacaat 300gagatggact ttgctggcct ctgattggct
cattgagatt tctattcata ttttcatggt 360ttgggagtgt ggatattgag tgtcttattt
tctttactta tttgacaagt atttttatgt 420tgctctcttg aagatcgtat ttgcggtttc
agccatgtaa aagattcttt tccgatgacg 480acacttttac taggcatatt cgtcgggtag
ccggtttaat ccggtctaga ttttgtataa 540tttttggttc agctaggtct ggtttgatat
ttttctactt atttcttaaa aactggcttt 600aatcttttaa ggtaaactca ggatttttct
ttgaaaacga aatttgaaat atcagactca 660taacaattgt aacaacaaat gtaaaagtta
aaacactcta aaatgtactc aaaattttga 720tcatcatcat cactattttt tttataataa
atggatgtaa aaacttatca tgtttcaata 780tttaaaactt tttttttttt caatatttaa
aacttacata aaatatataa ttaaaagaaa 840gtttatgaat tagaatatta agttatatgt
aattaaatgg agcaatacat gtagcctact 900agtattgttg ttgcatgagt tgcatcatat
tcgaagatat acaatatgtt tttttgatat 960aagagtaccg cttcattctc tttttttttt
ttgtcatttc ccaagtgtaa tattgttatt 1020aatacatggg ctatactaaa agccccacga
aaagtttact gaactatttg aggcccaaca 1080agagcctatc ggattaacgc ctactgcaga
agaaaatctg tctgcactcc acccaagaaa 1140acgcagacta attaatgaaa tcaacgaaac
ggataggtcg ggtctaaggt tgaccatgaa 1200ccgcaacctg aaccaggagc aaagtggtca
agttttgcca tccggtccga gtcccttgga 1260ggaataatac cagaacagaa aaaaacagaa
aagtcgacaa taaacaaaag agacaaattt 1320gatttgattg gttccagaaa ttcgcagaga
aaaagctt 135811724DNAArtificial sequenceSingle
strand DNA oligonucleotide 117gagacaaaaa gctttttctc tgcg
2411821DNAArtificial sequenceSingle strand DNA
oligonucleotide 118tcgcagaagt tgttgtaagt g
2111923DNAArtificial sequenceSingle strand DNA
oligonucleotide 119gtgaatggag gatccacaag cga
2312021DNAArtificial sequenceSingle strand DNA
oligonucleotide 120ttacatactg agggaagctc g
21121824DNAArabidopsis thaliana 121aagatgaagc tcatatacat
acataaagat aattatatat gaagatttgt gaaagattct 60aaaatgatga aatatgattt
ttgtatgaac ttatgaatag taaccacagc taaattagta 120agatatgtat attaagcaag
aacggcttat cagagttttg ttccaaagct gatcaatcta 180ctcgtgctta agtgtatatt
tgtggtaatg tgttaagagt tcctattaat taccataagt 240aaatcacaaa cataaataaa
atgaaaataa ttatgggctt taaggtctgg aggactactg 300aaatttggga gaagtagttg
gaaaaagaat attagtcgat aggtaggaaa ttgatattgc 360ttgtggaatg gaggaaaaaa
ttgaacgaaa aagaagtttc tagaattcta atcacataac 420ataaataggg tgaatatttg
ggaaaagtaa aacaataggg gtcggtttga tattactaga 480agataagaaa caaaaaggaa
aataagaata aaggaaaaaa aaagagctct cttttccaac 540aagaaacgta gagagatata
attagagaaa atctgtgctc tttcagatcc cattatcaca 600aatccatctc tctctctctc
tcagagaaga aaccaaagaa gaagaaaaag ctctcaactt 660tcttcgattt ctcagggaac
tctttcgtta atctcaaact caatcatgtc taccccagct 720gaatcttcag actcgtaagt
acccagatct ctgattttgg ttttccgatc gggatttttt 780tcggatcttc ttaaagtctg
ggtttttcga ttttggggat tagg 82412224DNAArtificial
sequenceSingle strand DNA oligonucleotide 122ctagcgagat caagcttaag ctca
2412321DNAArtificial
sequenceSingle strand DNA oligonucleotide 123gatgagaatg gtatcaccac g
2112424DNAArtificial
sequenceSingle strand DNA oligonucleotide 124gatcaaccag gatcctaatc ccca
2412521DNAArtificial
sequenceSingle strand DNA oligonucleotide 125gtgtaaaagc ttcgagagac g
211262027DNAArabidopsis thaliana
126ctacagtact cactcaattt cgttaatctc atagccgagc aaatagctta ccgtttcgtt
60gatcttgacg ccggctttgg gaacccaggc gaatttgttc tgatgcttcg gtggtccttg
120ccgtgagccc attttcgatg agctgtgaat ttagatcgga aaaaaacaga ggaagcgatt
180ttatctggaa gtcgaagaag aggacatgta caagcgagcg gcgcgaaaag aagtcggagc
240acccaattag gttatgttat ggaatatgtg ttcatgacgg cccaatccat aaactttaaa
300agcccatcta tttcagctac atttgtgata cttgttgcct tgttgggttt atcctttcca
360aattttggga ggtgtaaatt gttataagta gaaaataata atttaacgtc aatgttccat
420attgtttaat actgtaaata aagtgtgaga tctacctatc atattttata ggttcacgtt
480ccatttgtaa tgttttaaag gtttcttttt ttaaaagacg atgtttagtg gaattttcac
540gatgcatgca atgatcaaac gcaacgtgct tcgacgacct tcccacgacg tataaaatca
600aagtccaatg atttttattg ttattagata aacaaaatga atttgttcat aataattgtt
660ttttagtgaa atttcgtgaa atgcataatc attttcatca tataataaaa taattattaa
720tagttatcat ccgtggtttc ttttatcatc aatgtactaa tccgtatatt gatgataaaa
780aaaaaatcgt atagtatatt cataagtgta aggaatgtca aaacttaaaa taagttttga
840gattcagctt cccacaatgc cacatgcgaa tgttccttcc atacatagta aagtagatcg
900aggacagttt ttaatttatt attcccgtta gtaaaaagcc taattacatt ctctaattaa
960cacctttatt gatgttacac tccggtcaaa aagtattcaa ttattgttcg gtttttgtat
1020ccccccatct tttaattctc acgaacgact ttttttgttt gttaaaaacg ctcacacacg
1080aattgaggta cattgatggt aatgtaacta atttaagtaa gaaacaatgg taagcagaaa
1140tgaattaaat tgctagctga aagatctatc cttcgcaagg ttatgtagac cggccaaaaa
1200aaaagaggtt agctagacct actattctaa actgttcaat ttcctctaag tctaaaactg
1260attataagta taacaaaaaa aaaaaaacct aaacgaacaa gaaacaaaac tttttaactt
1320attaaaaagc cttaaatcaa aacaaaattc acaattatat aattaataat aaatgatcaa
1380aactgaggtt ttgtgatttt tgttggtcag aaatttaata ttgaccacta aaatttgaga
1440aacaaattta ttttgaatct tttgaccttt taattaacca aaataagtta gtttctaaaa
1500ttcaaatgtc ttgacaacaa ttttattttt ctgttgacaa caagttataa aaccaaaagt
1560gtaactgaaa tatataaatc catattagtt cgtaggtata tctgataatt taatttaata
1620actaaacaag aatatcaaaa agtatggata ttcttcaaaa gtatctgttt aaaaagattg
1680acaattattt tattttattt gtggtgataa atatctaaaa tataatctct agacaatatt
1740ataagcttct atttttatgg gaaattaatt aacaaatgtt ttctaaacca ataagacaaa
1800ttattaatag cctagaaaac ggacaattaa gagacaaaat agtaaagtct tcacttcctc
1860accataacaa ggttaaaaat tcttttgacc tggtgaacga cttataatcc accacgtgtc
1920aaaactcaca caaagccctc tcacgtgcca actaatataa aagccaaagc gacggtcttc
1980agagtctccc atcacctccg atctcaaatc tcacaatctt ttctctc
202712725DNAArtificial sequenceSingle strand DNA oligonucleotide
127atcaagggtc gacctacagt actca
2512822DNAArtificial sequenceSingle strand DNA oligonucleotide
128tctcaaactg aacctatgaa ga
2212925DNAArtificial sequenceSingle strand DNA oligonucleotide
129cagagagaag aggatccgga gagaa
2513022DNAArtificial sequenceSingle strand DNA oligonucleotide
130caacagagaa tgacaaagaa ga
221313154DNAArabidopsis thaliana 131aagcttctct ctttatgaca aattttgagc
atttaacata gaataaaatg gaaacgcaaa 60acaaaagagg tatcttaaaa ctgatccaat
gaagcagcaa aaaaaaaaaa aaaaaaaagc 120agaaacagcc gtatacgttt ggagataata
cagatattcg aattgtccaa aacacaatat 180atcaaacaag caaaagcaaa cacattgaga
tacatacacg taaccaccga gaagctcttt 240tgaaccaagg agagtctatt atgcgaattg
gcgcgttgta ccttataaca gatattgggt 300attgaaggtg aacttccggc ggggatttaa
aatctggtgg tggatagcga cggcggacgg 360cggcggctgc ggccaagcga tgtggaagcg
gccgagcgga taagtgagag aaagcggact 420aaatttagga attaatttta ttaaaaataa
aaataaaaat caaatgagga ggaggaaaaa 480caagaaaatg agaggaccga tcatgtccag
gtgtcatgat catgttggct aatggctagt 540ggtggtatca accataacgg catcgttagg
taaaaaagga aactaggctc gagtcggtgg 600gctctagtag cgagagtggt tcgagttggc
gatgcttgga gaatttgtta aaaagccgag 660gcgcttgtag attaaaaatt gttggcccaa
taataagtat gggcttttat ataggtgata 720aatggcccaa ctgttttttt aaaaaggctc
gaatcttcct catttgaaat ttctaaggaa 780tttgattttc caaaactttt gttgaataca
tttgaattta aatttgtagg aactttgagg 840agcaatttgt cttggcaaat tttgttttga
aatgtaaatt ttaattgata tatccaaaat 900ttggtgtcta atctttttat ccatgatgtt
atttcaaaac tttaaaaact attgattcat 960actagtattg atggtattgt acttgtgaat
tgttcagaac tcttttgtca aaaaaagaaa 1020aaagagaaca aaatgtttca aaattaaata
atccaagaga ggtggaagtg gggactgtaa 1080cgcaacggga atattgggag tgggcatgca
attattgcac tcatgaaaaa taaaactaaa 1140aatgatttta ctatttggct gaaggtgaca
agtgtttggg tggcttggtc ggtttttgta 1200tacgtaagtt tatgccacgt gtcctcttat
ccatggattg gacggcttgg aatcgtggaa 1260tattttattc tcataccaaa gtccaaatat
attacaacct cccccttttt ttcccttcac 1320aaaaagctaa aagccattgc ttaaaaaacc
aagaaatact aaaaggattt ggaaaagtag 1380caatcctgat tttgattgat agtactataa
tggaacacca gtagttgaaa ttagatacat 1440aggttgaatg gaattgtaac ataggtttat
tttattccct tttttttttg tgaatacatg 1500acaaaatggt attgaattgt aaatgaactt
ttcagaattg tgtgaatggc caaaaaaatt 1560gcaaaatata aaagactatt ctaatatcga
cagaatttac taatcaagat caaactcata 1620ccaaaataaa tataggccgt tcaataaata
atttcattat ggatgtgagt ttaacttcat 1680tatggagcat gtacatggtt tgggacacgg
gaaaggcgat aacataactt ctgcactata 1740caccgtttaa agagggaatt taccagggaa
atttggtgca tggtcagatc aaatttggtc 1800catatgagag cttggacggt aataaaagaa
ggcaagcgat agaacataac gaaatttggt 1860aatgggacta gaagaaaaca gcacgtgggt
aggacatagt gttacaccca aaaagacaac 1920aaagcaacga agcaaccata attgtttagt
cctttttttc tttcttttgg cttaaacgtt 1980gtctttcctt tttggcaaat agtggattgc
tgccgaatat tacactatcc aatcttcttc 2040tttaacctca ttaaaaccca ctattcatca
tgcatttatt ttacacattc atggtgaaac 2100tacttggtat atatatgcaa atgaatatgc
atgtggatgg tacatggcgt ttgattttgc 2160atataggcaa tttattgatc aatacttggt
gtagttggta cattaaagtt gcattataga 2220caaacaaaat tcggctgtca tgcttgattg
atctatagat gatttcataa taaaaaaata 2280ttgtcatgga taaaaatagt gaagatgata
acaaaaagaa cagaacacaa agaagaatct 2340catttctttt ttgattaata aaaggatata
aagtcattag tttttttatt cgtctcactc 2400gacactaata ataactaaaa ttgttggaga
attaaaagta agaaagcaat gctataaaat 2460aaagtaattg ttgggaatgg agcatgtaaa
attatcactc ataactaaaa ttagcaatgt 2520tataaagtat ttaagtaaga aaatgttgta
gataatttgt taaatgaggt gtccctatgt 2580cttttaggtg cggtgagtcc atgtgcttat
cctgacagcg gtccaactta accggcggtt 2640catctcgacc acatattcaa ctgctttttt
aatatgattt tctgtatttt cttacctgtc 2700ataatctaca tttaaacgtt aaaaaatgtc
cacaatttta tttattttat tagggtacaa 2760taacgacatt tgattagagt aaagaaaata
gttgcaaagc gggatttgaa actctgtcca 2820catactttaa ttatcattaa tcaataacaa
gcattatcag tattcagcag cagcaaagat 2880gataacgtta attatactat catgcaatta
agttaactaa ttaactatca tcttgtttat 2940gttttaattt tgtttccatc atcttccaac
cttgagtttc ggtcactata aaaagccacc 3000actctctctg cttctctgca acacataacc
cactcacaga aaaacctaga aagctctaga 3060gagaaagaga gagagagatg gaaggtaaag
aagaagatgt tagagtcgga gctaacaagt 3120ttccggagag gcaaccgatc ggaacttcgg
ctca 315413221DNAArtificial sequenceSingle
strand DNA oligonucleotide 132catgtaatga agaaccgtgt c
2113322DNAArtificial sequenceSingle strand DNA
oligonucleotide 133gtattattac accatcagct cc
2213423DNAArtificial sequenceSingle strand DNA
oligonucleotide 134gctctttgtc gaccttgtca ctc
2313521DNAArtificial sequenceSingle strand DNA
oligonucleotide 135tacgctacct agctaacaca g
211361155DNAArabidopsis thaliana 136aagcttctgc tttttatcca
tgaggatatg aagctgacag taattggtga gtgccatggc 60cttagatttg catccactac
cacaagcaac acaattacca gccttaacgc catcgttgtt 120gttattatca ttatctccgc
taccttcaat ttcatcccca gtttgtcctt caaccttacg 180tctcttgttt tggtgataat
tctcatcttt gaaaggacta acaccatagt tccagctata 240atatctatgt tgtgccttga
gatcctccat tagagcccag taatggtctc tgtagcatct 300agagagctgc ttcaggttgt
gcgatctgcg tcggagaagc tccgggcgag tgaggtgatt 360ggaatttccc aggatctgat
cctccaccgc catcgaaatc ggtgaattcg atgacgtcga 420cgggttatta gggtttcgaa
attgggattc ctccaataca ccggatttcg agggggttga 480agcaatgatc ggagatggat
gcctaggagg tttggaagaa gaagggtttt gcttggaagc 540tgacgccatt gttactgttg
gaaaacaagg gagagagaaa gagagtggcg aagagtggct 600agaggaaaga caaggacgag
acaggaaact ctggcaaaat tgacatttat agaaaggcct 660tacttaaaag cccaatgggc
cataacatga accgaaaacc catgaaaaaa atcgaagtag 720accgattggt ttaaatcagg
ttctgctggt gtgcggctgt cggtggaagg ctccacttca 780gtaaagtagg gcccacaaca
cgaaccaggc tgtcttgtct aaccgacaca tacattacac 840caaacgcaat cttcaccgtt
gattgttctc taatccaacg gttgatagag actgctgatc 900cgtcacccgc tttagtttag
tgtttcttct tcctcctctc tttcccaaga atctcttcct 960tattttctcg gcaacgaagc
aaaaagggta atttttgtcg gttgaattca caagctagtt 1020ttctcgatct ctctctggat
ctatagctga tctgcattgc gggtaagcat tttttccaca 1080agtacttatg cctaattttg
gtaacgattt agctaaatct tgactagaga attttgtttc 1140gttgcttggt tattg
115513722DNAArtificial
sequenceSingle strand DNA oligonucleotide 137gatgatggct gattacagtc ct
2213821DNAArtificial
sequenceSingle strand DNA oligonucleotide 138ctacaagctg caaacatcaa c
2113924DNAArtificial
sequenceSingle strand DNA oligonucleotide 139gagatcacgg atccaataac caag
2414021DNAArtificial
sequenceSingle strand DNA oligonucleotide 140tgaaagctgg agattgttgt c
211412877DNAArabidopsis thaliana
141gtcgacagga gccagagatt tattcactta tttgttttcc ttgtattttt agtacacaac
60atgagaggtc ataaatagac tgagtagacc cattgtgtga gttgatcaac ccctcaatga
120atacttcttc ccagagaaag cttgaaactt gggctcgtct ttcttctctt gttcctcttt
180ctttgtctct tttgcagctc caacctgaaa aaaaaaatta agagatgaac aatcatatgc
240atttgtctct caattccatt acagtttttg ttttgtcaat tatcaataaa ctctgaatgc
300gtactttcgg agcagcttct tttggagcac ggtttccgtt agccccaaat acaagctttc
360cctgagctcg tgtagctttc tctgagctac ttgctacaga tgactgtcca ttaccattag
420cgacaacagg ttgtttgcct tttgagctag aggctggcgc tggctcatag gcaagaggtc
480tcccatctaa ccgtcttcca gatccggtga aagggttgaa ctttggttca ggttcatcca
540caacctcctc agctgtgaaa tttggaaaga aaagaacaca tgagaatcta acaacttgaa
600gctgatagta agtccatctg atgatttcat gtccatggat agataccttt tgccggaccc
660ttagctgcag aaggtgctgt gggacgttca ggctccttgt aatcgagggg aggtgcgaaa
720tcaacctcac agtctgtttc tatgatgctg attgcgttag caggctttgt ttcaactata
780tctatgaagt acttcttatt gttgtatgga accataatgc tatccccact agttaggcat
840gaataatttc tcaaagcagt ctccaagctg caacgttcac tcaattatca gtaaagaata
900ttgggaacaa gataaaaaga gtgacatcaa acaactacga gccagaaaac gggaagaact
960tagatataat aatacattct ctaagcaata aacaacatga tgtgggaaag tatatgaggg
1020ctcaaataca agagggtaga aataagtcgg actcacatgg ctttcgggtt ggatatatcc
1080aggaagtctg ttgtgtgggg ctgtagttta acgtaagttc cctttggaag agtgacattt
1140ctaactctca caatgtctcc ttcttgcagc agcagattct gcatcatctg gattatatca
1200aagaagcaaa caatcagtct ggtaagtcca catgatccag agtacttcga ttcacaaaca
1260aagaggaaac tgattcttac ccaatatggc atgtaaatca tgccttcttc tgcaatgaac
1320tcaaggactc cacagtgtgt aacacgttca attccagcat tacgaagctc aaacagcatc
1380ggatagtcaa tatgcaaaga ggctgtaaag tccccaatat tagcgatttg atatgtttct
1440aagttaaaca aatattagac caaatccaaa agagaaaacc agtaggagca tacctagacg
1500atcaagggct gatggtggca ttataactga aatagaatta acacaaatta aaacctcagg
1560cttgaacaat acagatggaa acaaacattg gtgtctagat agaagactta ctcttgtcac
1620cactttcaag ttgtggctgc agggaagaga aaaggaaata gaaattagat actagatctc
1680agctttctta tagaacttac ttagtagaac atgacaacga ctaagattct aacattacaa
1740aagagcactc tcagattcac ttatcaggga attaaactaa aagtagagag atgaaatcaa
1800accttgtcga taaaagatgc cggataacac cggtaactct gctcaaaggt tgttccatga
1860taatggtatc catcgaaaaa ctgcatcgag tttaaattcc aaaggtttag acaaacaaac
1920caagggtgcg agatataaaa gctagagtga agactaacgg ttaaaaagga aagctttgaa
1980tacacttacc atagttattg gtggtagtag actaacagag taagttaaca aatggcaacc
2040tacagaaaaa gaaacctcac acaagtcaat tacaagagat ccaaatcata aaagagaaaa
2100agagggcact ctttaattta agggtttcaa taatcaattg tggccaacaa ttccgaccgg
2160aaggaacatc aaagttagtg actttaacag ataactaaac aagctattat caaaaaccta
2220agacctcaat ttcgaatctc agcagaagaa tagaaaccta caaaatcgaa gaaccatcta
2280caacttgcaa aatcccacct tttgaaacaa acccaagtaa gatccttgga aacctattcc
2340taaacaattc accggaaatc cccagaacag aagattccga tcaaaagttg agagtgggat
2400cgatacaaac aataccaaag ctaaaaactt tacaaaatta aaagctcgtc ttgagattat
2460cagagaagaa taagaactca gaaaccaccg attgagctgc ccgaccaata aaattacctt
2520taggaagtaa ttgattccag acacaaccca agtaaagatg caaactttga ggacctgtga
2580taacgttgct tgtatatata tatacccata cggtgcgtat tgattcatgt ctttgtaaaa
2640cagtttgggc ttcacaaaaa acggtactag cccattgggc ctcgaatagt gaggaatcat
2700gaccacttta tattgacgtg tgcgttacca acttaccata ctgggaaact ctcaattctg
2760agcagatatc tacccaatca cggattgagg agagaagcaa gaagaagaaa tggagattac
2820actgaacagt ggcttcaaaa tgccgatcat cggcttagga gtttggagaa tggatcc
287714222DNAArtificial sequenceSingle strand DNA oligonucleotide
142aacaagccgc gtcgacagga gc
2214322DNAArtificial sequenceSingle strand DNA oligonucleotide
143actcactcac atgcaaagaa ac
2214425DNAArtificial sequenceSingle strand DNA oligonucleotide
144gctcttctgg atccattctc caaac
2514522DNAArtificial sequenceSingle strand DNA oligonucleotide
145agagatcaca gatgtgttga gg
22146578DNAArabidopsis thaliana 146aagcttaagc cttgacgaag tcatgaggcg
agacgtcttt cacagtttta ccagttgcca 60tggctcaagt tatcaaaaga ctaatcactg
atcttcgtct gggattttgc ccaacgcagc 120tgaatctctc tccgcaaaga ctagggtttt
tattctccaa taacaaaact tatatatacg 180gccacgatat ttcgattagg gttttctccc
catatccggg tcaaaaaatc caacccgttc 240tcagcccaca ctaatgggcc taattcttca
tacggcctta ctatctaacc agtatgaata 300atgttctttg atacgataat gcgcctacta
cggccttatt atatcagttg actagtatta 360tgtcctaaac gacaccgttc ttaattagta
acattaaatg acgtcgtttt ataatcgctt 420aaccactggc tattagttcg catctcaagt
cgtctctgcc atttttggct ttttaatcaa 480accctagaga gattgagaga gcgaagagaa
gccatcatca gccatggcga tgaagaatct 540actgtcccta gctcgccgat ctcagaggcg
ttggatcc 57814723DNAArtificial sequenceSingle
strand DNA oligonucleotide 147cttgagatga gaagcttaag cct
2314821DNAArtificial sequenceSingle strand DNA
oligonucleotide 148ctcagtagcg actcgtagac c
2114924DNAArtificial sequenceSingle strand DNA
oligonucleotide 149tggcttgagt gaggatccaa cgcc
2415021DNAArtificial sequenceSingle strand DNA
oligonucleotide 150ggtctcgtga aaaccaaaac a
211512819DNAArabidopsis thaliana 151acttgcgtca ctctcatgat
ttcatttatt cttgtataat ataaaggtag cggtagtgtg 60caaatatcaa ataagtagtt
taattagtac caatcatttt attcattatt ttttttagta 120gaatatttgg atgttgaaaa
tataaattta attttgtatt tgttgatgtt ataaatttat 180tgattgtata aacattctta
gtcatcagtt tcgttaagtc catatctaaa cacttcatat 240ctgctaaata gtcaatagat
tataaaattg gatcaggaaa aagtaaatcg gagctataaa 300aaaatagtgt gcaacgaaaa
gacaattaat tagttaaaaa tacatacaaa tctaaacaaa 360ttcaaaattt caatagtgga
aaacaccaat caaatggata atgctgtcga agattatcta 420caaagcatca ataaaagtaa
ataattaata ttatcttaca tgctattata aaagattatg 480agattaggag tataattgtc
aagcaactga gcaagagggt aaggtttggt tattatatat 540gtggagccct atacgaagtt
atgtagaaac aaagaaatat caagttgctt caaatcatat 600cctagcaaga caaccctaca
agacaagcaa tttgatgaat ttgtctctcc tttttattcg 660agtgaaagtc attatcttct
tatcttttta ctcgaatgtg aatatgcaaa atatcttttg 720atatttaaga gcttacctag
tgagtcatta ctactacgaa aatcatatat caatcttatc 780ataaaacttt taagataaaa
aaaaaaaaga aaaaactttt gagagattgg cttttaaaga 840cttaagttac gattataaac
actagtagtt caagtctttt tggttttggt ttgtgttatg 900ttttagattt aaaatttcaa
atgaacctac gtccttaacc aactcaatca aaattctagt 960taaaaaaaat aatcaccatt
ttgttagcat tcagcttagg attcgaacca tgggtagctc 1020aaggtatttt aaactctaga
ggaataaaat ggatgttagt gaaatttgtc agcatcatag 1080acaagatcaa gttggcacaa
cttgaagggt cctgacaaaa tatcttaagt tgcctccata 1140aatgtttaat ggataagact
tggccccaca gagttaaacc agagagacac agagagagac 1200ttttgacacc tcacccatgg
ctgcgttaac acatgtttag gattcctttc tttatatagc 1260caacaatatc atcaaaactt
tttcttcaaa caccacttgc agtttttctt attctcctgt 1320cttgtctaaa gaaaaaagag
agaggaagaa atggagactt ttgaggaaag ctctgatttg 1380gatgttatac agaaacatct
atttgaagac ttgatgatcc ctgatggttt cattgaagat 1440tttgtctttg atgatactgc
ttttgtctcc ggactctggt ctctagaacc ctttaaccca 1500gttccgaaac tggaacctag
ttcacctgtt cttgatccag attcctatgt ccaagagatt 1560ctgcaaatgg aagcagaatc
atcatcatca tcatcaacaa caacgtcacc tgaggttgag 1620actgtctcaa accggaaaaa
aacaaagagg tttgaagaaa cgagacatta cagaggcgtg 1680agaaggaggc catgggggaa
atttgcagca gagattcgag atccggcaaa gaaaggatcc 1740aggatttggt taggcacttt
tgagagtgat attgatgctg caagggctta cgactatgca 1800gcttttaagc tcaggggaag
aaaagctgtt ctcaactttc ctttggatgc cggaaagtat 1860gatgctccgg tcaattcatg
ccgaaaaagg aggagaaccg atgtaccaca gcctcaagga 1920acaacaacaa gtacttcatc
atcgtcatca aactaatggg ggaatagtga tgtttaatta 1980gtatatatag gttaatatct
taagtatgtg aagcatcatg tatagagcca agaacctgtt 2040agactagtgt actgaaaaga
actcttgcaa aatatgtact aaagagttcc tgtaacaatg 2100gaacttctgc gttttctctt
gtcttaaaga gcttaaggtt ctagaaacaa agttcttgtc 2160ctttcggttt attcagagta
cactatttgg gaagacaaga ggacctaaat ctatcgacta 2220catttattta ttaatctact
gtgatactta aaatcgaatt tctacctgaa agaccttaac 2280ataagcctta aagtttctcc
aatgacacaa acagtaccgt acagtggctt cagtattcac 2340tattcgatat cactgaggta
ttaattagtt cacatgtcca gaaagcgtga atcagtgaat 2400tgagtagaaa gatgaacaag
ttgcaagagg gaccaagttt aaagaatata gcagccagag 2460ttttgtctca tggttgggta
caagtcagca ttcatttttt aaatatgaca aagaattgga 2520tggaccacac gcaacagctc
aagaggggag agatgcacaa gttgcaatat ggaaaagtaa 2580acagaggaag atatgtatta
acatctcaac ctcatcgttg agatggatgt tgattattat 2640tattaggaat aactaaaacc
aaagaattct tataagttat aacaatgaaa ttacttcatg 2700gttttttgat aaagatatct
cctatgcata tatatctagt atacatttgg aacagttgat 2760gaatatcaac tgacctgttt
cttagataga agagatcttc atgttatcga tcttttctt 281915224DNAArtificial
sequenceSingle strand DNA oligonucleotide 152atcgacatgg aagcttaaga aaag
2415321DNAArtificial
sequenceSingle strand DNA oligonucleotide 153ggtgacggaa gtgacaaata c
2115423DNAArtificial
sequenceSingle strand DNA oligonucleotide 154gtacgatgac ggatccactt gcg
2315521DNAArtificial
sequenceSingle strand DNA oligonucleotide 155gggttaaagt ggaggaagaa g
211561313DNAArabidopsis thaliana
156ttgtatgacg ccttttattc atattcttgt tatctccgtt atgtcatgtg tgtgaatcac
60ttatataatt ttcgtaagat tttctgaata tgttggagtc tttgctaact gtttgaatcg
120agatcagtta acacttatta agaacaaaaa tgtggtttct tgtgagaaaa atggtttaat
180aaaaatccgt gattgataga agaaaaagat caaaataaat ggttggtgac gggtgatctt
240aaaaatgttg aaattaaggt gtgtcgtcgt tatacgcggt aaatagatag atagaaaaat
300agaagtccaa tgcaagagac ttaacttaat catcccaatt aattgattgc attaacttgt
360acttgtattt tccgtccgcc acctaatttg attaataata taataaagat tacaattgaa
420aacataaaca agagaaaatc cgcacgaatc taccaaagtg catcacgttt gggtatccat
480acacgtgacc accagtccac cacaacacaa tgtctgtaga tattttaatg tttcacatga
540tagaagaagc caaacgtaag aactctcttt tccactttta gccctttccc cgcctaccac
600tgcttacgac ttgtgtaagt ggcaaactag taataataga gacgaaactt aaatataaaa
660aagttgaatc caaccaagtt ggtgttaatc aaatggttaa gttataatgg tgaaagattt
720gccatgtgta ttgtattaag agttaagacc aaggtttggt tcccatcact tacgattctt
780tcttttcata tgattctaaa gttagttatt ataaacatct taatttacta cacaatattc
840ggtaatttct acatatttta gagattagtt tgagtttcaa tccatacttt actagtgatt
900ataaattaat atacgtactt ttcgactata aagtgaaact aagtaaatta gaacgtgata
960ttaaaaagtt aatgttcact gttatatttt tttcacaagt aaaaaatggg ttatttgcgg
1020taaataaaaa taccagatat tttgaattga ttaaaaaggt tgaaataaga gaggagggga
1080aagaaaagaa ggtgggggcc cagtatgaaa gggaaaggtg tcatcaaatc atctctctct
1140ctctctctct accttcgacc cacgggccgt gtccatttaa agccctgtct cttgccattc
1200cccatctgac caccagaaga agagccacac actcacaaat taaaaagaga gagagagaga
1260gagagacaga gagagagaga gattctgcgg aggagcttct tcttcgtagg gtg
131315723DNAArtificial sequenceSingle strand DNA oligonucleotide
157cagtggttaa gcttgtatga cgc
2315822DNAArtificial sequenceSingle strand DNA oligonucleotide
158gcaacatatc gttttgtaga cg
2215924DNAArtificial sequenceSingle strand DNA oligonucleotide
159cgttaataac gtcgaccacc ctac
2416021DNAArtificial sequenceSingle strand DNA oligonucleotide
160gtgatagatg tcactttgct c
211612080DNAArabidopsis thaliana 161catcgttcct tgctggcttc ttctctcgaa
gtcacgatgg ctcttatttt tttattattt 60aagtaatagt ttacttattg aattattttt
ggttaattta agaggtatat taataaatgt 120gggacctaca aattccaatt ctatcggttc
tttagtgact gagacgtcgc tatatgtgaa 180aaggatattt tagttgtcac agaattgcgt
ctatttctta ttttttcatc tttttgcaat 240ttgccgattc tacgagaaca tcatttgttt
attggatatg ctttttttaa agaatcaaga 300gaatacgaaa acaacttgta ctcaagaatg
tttactataa ttctctagtg gatctttata 360agagctggag attagtttgg attttatctt
aaagtatcca gttatcaaaa aatgagattg 420ttaggacttt ttttacccga gagtatttag
ttacaaaaaa gaaagttagt ttaatattag 480ataaactata attgcaacta acggtcagta
gaaagctata taagttatat aacgaatctg 540aatatgactt agttatcttg ttggattgtc
tagatatgtt tttgcctttt acggaaagat 600tcgatttgga acaacttctg aattaacctg
aaaaacgtaa ttaaacattg acttgttggt 660tgtttgtaga atggttggtt tatactttcc
gaatgtggct atgtgaaatc acattttgat 720tatatgtata aagttgagat ataattttaa
aatttgcaaa aaattattag ttttgttaaa 780ataataggag atgcaaacta aataaattct
cttcttaact aaaaaagcaa tagatttgtt 840acattgaatg atggatagat ttgtgagttg
tgactttgct taagctaccc caacagataa 900cggatatatc atatagatgt tgagtaagaa
agaaaaaaaa acatttacga ttgcattctc 960gtaatgggct ttatgatttt aaggcccaat
agatgaagta aggctaatgc acaactttaa 1020gaaacgtaat tctagcaagt gtttatcgac
tgcgttgtag gtttcttgtg ttcgtggcac 1080tatggattag gttttaatat ggtttctaat
ttcgttgatt tcagtggcat aagtccagtt 1140gttgcttgtg gcaaactgtt tcatgtacaa
aaacacttac atcattacta aattatgtca 1200tgggtttggt ttcgttaaca ataagtcaat
ctccttgatg agttttatct atatgattat 1260ctatttgtct atttgcaaca tgtagtagat
tgaaatgggg ctgcaaaata tgctcttgca 1320attcctagtt agatctagct tttgataata
cgattatcta atttgtcatt tcgatatgat 1380agatagattg tttttaaaag agatctcaac
cacttttctt taactaaaat aaaaaattta 1440gtcacttttt attaaaaata actaaaaagt
tttaaaccta tcaggacact tccatcaaca 1500gtatttaaaa gagatattta ttattaaaat
aatacaaagt ggtgaaaaga agagagaagt 1560gagaatcgtc tctgttttca gaaactctga
aaaatgttta tggccacgtg tttttccaga 1620aatgattgat tttattcttt ttattaaaat
ttaatacttt atctaaattc aattaaaata 1680agcaatattt tattcatgag aaactctttt
ttgagaatca accgatgtag atggtctcat 1740actctacttt gttgattgtg tttaagtttc
tgaggatttt tctactttcc gacgttatgc 1800caagaggctg gtcttcacta gaaaactact
tccacccaat tcaagcaagt atgacctctt 1860ctcccaacaa tttattcatg tactgaaagg
ccattagaag ttgactgaag tgtgaaggtg 1920gagattatgt attcacttgt tgatttggta
tacattctat gtaaggttca attatttacg 1980ttatataatt ataatggagt aatttacagt
aattgggtta aaatggtttg attcggtcag 2040gttgatacgg tttggaagtt aaacccggcc
tagatatgat 208016223DNAArtificial sequenceSingle
strand DNA oligonucleotide 162tgatgccgta ataagcttca tcg
2316321DNAArtificial sequenceSingle strand DNA
oligonucleotide 163gacaatgaac cagtactatg c
2116425DNAArtificial sequenceSingle strand DNA
oligonucleotide 164gactggttgt cgacatcata tctag
2516522DNAArtificial sequenceSingle strand DNA
oligonucleotide 165cgtggagaaa gattaaaagg tg
22166174DNAArabidopsis thaliana 166aagctttgtc atttctgaat
accgcaaagt cttacgggtt agtttattca tttacaagct 60atttcatcac gtatggctta
ttcaaacgaa aaggaacaat agctttatat aaaaaaaaat 120ggtcctaata tgaaatatct
cactatctcc tctaaatttc atcaatacgt cgac 17416724DNAArtificial
sequenceSingle strand DNA oligonucleotide 167tgactacgta agctttgtca tttc
2416823DNAArtificial
sequenceSingle strand DNA oligonucleotide 168atcgacatgg aagcttaaga aaa
2316924DNAArtificial
sequenceSingle strand DNA oligonucleotide 169gtaactagta atgtcgacgt attg
2417021DNAArtificial
sequenceSingle strand DNA oligonucleotide 170ggtgacggaa gtgacaaata c
211712096DNAArabidopsis thaliana
171aagcttaaga aatcaacaat attaacctgt aactataaga atgtttagtg aagagactaa
60ctcgcaagca gaggaccaaa taccaacttc aaatctctca agacaaaact tcataaactc
120ttcagcaaac ggtctcttat acactaaaca acaaaacaaa cacaaataaa ctataaatac
180aaaaaaggta gcaaagttaa taaaagaata atgaaacgtt accaagattt ggcccacaag
240aagcatcagg agagcggttc ttgggtttct tacgcaactc ttttttgtgg actctgtgaa
300gaagaagacc acttagactc aagaccaaga gtttcttttt ctccgtctta ggttctagac
360taagtttatc aagaatcgaa ctcagttctg tctgatctga aactgtatca cctcttgagt
420actcatcgtc gctgtcgtcc gcagcaagca agctcttctt gatcttttct tcagccattg
480tattgaatga gattgatcaa actcatatgg tgcatatata tatatactag gtgagtcatt
540taaggtggtg actaatggcg atttggcttc acgagatcaa aaccatttat ttggcgtttt
600tcttcaagcg gctctttgga tactcacaaa tcttttttgt acttatcctt aatttctctc
660tttttttttt tttttttttt ttttcctgta tccaacttgg tagtgtgaat cgacttacag
720cgaccaatca gaaaattcca cctgtcagca gttgttatac atggacaaaa gtcgatacat
780caattaatcg acgctgattt gtcgagttat atttcccgtt taccattttg ttttcttgtt
840atgatttggg gaatctctca cgaattctat caaaagaaat agcactaaag gctcggagga
900agcctgatga aacatggaag attgtgctct attttcttct gacaattttt acataagtaa
960aacgcatttg tttactattt ttttcatata aaacatgaaa aacttatatt tgaattaatc
1020gaaattaaaa ttattaacag aaatatctaa gtttatatga accttttaac aaaaaaaaaa
1080gtttataaga acataaaaat cataatagtt tagcaacatt taaattattt tcaaaaatta
1140gtaacttaga ttaaaataaa tattagatca cctcataatc ttgagtttga aactccaaag
1200tccaaagagc atccaaaaat ccgacgcaaa caccacattt tgataagaat tatagaacta
1260gtgatttgca ttttaaatgt tgatacatat agaataagca taatcaaaca atgattactg
1320aaaaatatgg tccattaata tcgtataaaa atggttgatg gacattgaaa ccctagtgga
1380gaatttgtca cataagtaag gcccaaagtt tttgacccac aaacatatcc attaagttat
1440agtttagcga aaccccttta acaaaaaaga aaattttcaa ctagtgaatt gtttctagag
1500agttctgtac aaccatccaa atttcaaaca tggtataaaa gatgttattg acaaaataaa
1560aatggaaaca gtgaaacgta tagtcggaaa atggaataaa atctagatgc catatattat
1620tcttacttgt tctaaagtct ttaataaaaa tagtcggtat tacttggaca aggagcaaaa
1680caatatggaa aaaactcttc tattctgcaa aaggcgtgca gcgcatcgtt ttggcttctt
1740gcatcagagc tgactgttct catccaacgg ctgttattaa aacaatccaa cggttttggc
1800taaatccgtg acgtctttat atatcgaacc agaccaccaa cccatttcct cagctactac
1860tgttgaagcg attctcacta aaaccctcga acacatcgcc tttatctctt tctctagatc
1920tactcgctat ggctactatc accgttgtta aggctagaca gatcttcgac agtcgtggta
1980atcccaccgt tgaggttagt ttctccgatc acttttgtat ttcccagtca ctttccggct
2040ttgtacagta ttcgtgacgg atctgtttgt ttgatgacta tccgatgcta aaacca
209617221DNAArtificial sequenceSingle strand DNA oligonucleotide
172ttggatcacc tagcttcatc a
2117321DNAArtificial sequenceSingle strand DNA oligonucleotide
173cagctgctgt aaccttaata c
2117424DNAArtificial sequenceSingle strand DNA oligonucleotide
174tagccttgtc gacggtgata gtag
2417522DNAArtificial sequenceSingle strand DNA oligonucleotide
175ctatttctcg tttaccagtt gt
221761617DNAArabidopsis thaliana 176gtgtcgtgct atgtgtgtgt gctcgtttct
tttgtctttg agcttaaaag ttaaaactct 60agtctatatg gacctgaata aaaatatttc
caccaccttg aggttttggt gtttgcggtt 120atggacggtt tattgaatgt aatattttcg
taccaaatcg gtttactaga tttgagacgg 180atcatatggc tcttcttgga aaaagagacg
gtttaaatcg gtttatcttt agctctgctt 240tttttcttcc cggaatttgc ggaccaattt
tgattgtgtt ggttcagata tagaaaccta 300gtatattgta gcaattactc tccaaaaata
gcattagatc catccaagac aattggagaa 360acagagagga gagaaagaga acttgtgttt
atatacgttt atcaaaacta aatttatgtt 420ggttaatagt tataccatga tggagtaaaa
tcagatattg tatacaatag ctttagtatt 480caatctaact actataagtc tacatcttca
atacatgtag tcacatgaaa actcagccac 540aaccgcaaat aaaagggaga tcaaattagt
tggctgtatt aatggtaatg gatccaccta 600ctttacacta caactatatc attggaaagc
catttataat atacattcca tatagctaga 660gccatatcca ctacgtaacc gaatctaaaa
tttctaaacc cttctctttc tttctgcatg 720ctgattaaaa ccgacgctgc agaagttcga
tcagttatat gagtgcatta aatagaatcg 780attttagaaa aagaagaaga aagaatcgat
ttaacttaaa gtcaagctgt ttgcttaggc 840tagaccggat ctgatcttca tgtataggtc
tcaaggatca tgcgatcgat gtatataaat 900atgttttggg gttgggacca aattaaagta
gtatatagtg gtatttctct tggctcccca 960attaatttta tcggttgggt tgtctgtctt
tttatgctca tttacctaac tatcacggca 1020tctccatagg aattaatact tttgtgtaac
tatatatgtg taagtgtcta tactgaatat 1080aatccggtaa tatgtgaata tatgcacgtg
aatttaattt aaatatatgt gtcccgcctc 1140ttgcaaaaat agttatgata ataagatgac
taaaatttaa gaatgtataa aaccaacaaa 1200aatatgttta agaatgtaag ttttgtgtat
cacatcccat gttttaaggt tgttaggaat 1260ctcacatgca cattgaaaag agactaacac
taattaatgt acgagagttg attgatgcta 1320tgtttaatct ctttgtatac aaatacatat
cgtttgacat agaaatacaa atacatatcg 1380tttgacattg tactctttga aaagagacta
acactaatat gttagtaaga ctaatttata 1440tttagctaca ttgtactcaa ggtcctatat
ccaaagtttt atctgcattt attgcacact 1500tacattacgt atgtgtgtgt atacataaca
gcctatatat atggtcttgt aacacagctc 1560agggattcac cataaacaaa aagaatttga
accaacaaag caaaacatga aaggcac 161717724DNAArtificial sequenceSingle
strand DNA oligonucleotide 177agatgtggtt aagcttgtgt cgtg
2417821DNAArtificial sequenceSingle strand DNA
oligonucleotide 178ctagtagcaa gacctttttg g
2117925DNAArtificial sequenceSingle strand DNA
oligonucleotide 179acaagcaagt tagtcgacgt gcctt
2518021DNAArtificial sequenceSingle strand DNA
oligonucleotide 180aggaaagatc actagagaag c
21181428DNAArabidopsis thaliana 181ggatcctagc cacacgcact
aatctcgcca ttgcagaaag agaaatgtag agagatagaa 60gcggcttgag ctttgagctt
accctaaaca agaacgtgca cgaacatatg ctctttagat 120tcttttccca ttttgcccta
aagttaactg acgtggcatg tgactttttc tctgagatca 180tggttacatc atctgacacg
tgtaataacc caactccacg agattaacca acggtatgag 240aaaatcgatt tcgattttaa
attgggatta ttattatttt cagctttctc tggaagcaac 300aatggcgatt gctctctcgt
cgtcgtcgac gatcacgtcc attactctgc agccgaagct 360gaagacgatt catggattag
ggacagtact tcctggttat tcggtcaaat ctcactttcg 420taggatcc
42818223DNAArtificial
sequenceSingle strand DNA oligonucleotide 182ccggagaggg atcctacgaa agt
2318323DNAArtificial
sequenceSingle strand DNA oligonucleotide 183gtacgatgac ggatccactt gcg
2318419DNAArtificial
sequenceSingle strand DNA oligonucleotide 184gggaggagga tccagccac
1918521DNAArtificial
sequenceSingle strand DNA oligonucleotide 185gggttaaagt ggaggaagaa g
211861022DNAArabidopsis thaliana
186catcttcact gacaaaacac ggttctgtgt ggttttcgct gaatgatcca ttctactact
60gcttggtttt cttctgtaat tcaatacaag gacaaccatt actcaatctg acatagtatt
120ccaaggaaaa agagagagca taacatgtag atccaatcga aaacgaagat ggtgtcgaag
180aatctaacta catttctatt gtaaatccat taattaaaaa ctgcattttt tagacaagga
240aaccctcaaa atcacactgc aaacgagaag aatatatttc gaaacaaaaa gaaacccaga
300aacatgagag aacaatacga cggtaccttt tttttctcag cggatggatc gaagaaatgg
360gtctctctat actctctcgg acggagaaaa agaaaggaat agaaaagtga attcaaagaa
420gaagcgtgaa tgagaagcag agtgagagaa tcattgatct gcgtgcgtga cgataatggg
480aggcaatgat gctttagttt atttttgaaa atcaaatttc aaaaatcaaa aagacaaaca
540tcggagagcc catccatgga gattagggtt tattctatct ccgaaatgac gattaagccc
600ctacacaacc ctaaccacga aagcccaaag cccattaata actaatttag aaagcccagt
660cttcttcttg ctaaaaatta ataatggaaa aaagacaggg cagcgcagcg atgattaagg
720tgacacggtg ggctcccacc accgccagct ggactcgccg acggtgaact gtctctctct
780accacacatc actccttcct tctgtccttt cttttttgta tttattatta ttattcattt
840taaaatcaaa aacccttaaa ttattaaata aaataaaata aaaggcaata atggaaactt
900tccttcttct tcacaattct tcgcggcttc ttttagcttc taagcttcag agcagcaaaa
960aaaaaacaat ggagaagcgc cggagataga tctgctttct tccattctcc ggaccttctc
1020ta
102218723DNAArtificial sequenceSingle strand DNA oligonucleotide
187gttggttcgt cgactagaga agg
2318821DNAArtificial sequenceSingle strand DNA oligonucleotide
188gcaatgaaga tgatgatgtg c
2118924DNAArtificial sequenceSingle strand DNA oligonucleotide
189cttactcggg atccacatct tcac
2419021DNAArtificial sequenceSingle strand DNA oligonucleotide
190aactcctgtt gctaaaacgg a
211911056DNAArabidopsis thaliana 191aagcttagac cagaccgaaa ggtttactgg
gtcaatttgg tgcctacaca tccacttggc 60cacctgttgt gcaatgatga cgatgagatt
gcagtgtctc tcgactgatg atgtagactt 120cacaatctct taaaaatccc agtacttaac
ctcagcctta agaaaacgca gggaactacg 180tcctcacaaa atctttctct ttgagtgtaa
ctttcagacg catctttggc tctaaattct 240aaaaaggaaa attttaatag gttttcataa
tcatgggttc actggattag catataagtc 300tatggttgag aaacttgaga cccagactaa
cgaaacctct ttccggatcc aaaggtcctc 360ttgtgtagtt gacgtggtaa actctctacc
gtcaaattta gacattagct aatctgatca 420ataatctcgg cagctcttaa aaattaaaaa
ttagaaatga tacgaacctc ataatttttc 480tttctcttat caaaacacca tctttgtatc
tttataagcc tgttgccact atttttaatt 540gaaaatgatg cgtttgtctt atgttttctg
tcctggagtt caacattatg acaatatgta 600tagtaaatta gtgatataca agacgtttgc
aattcaagaa aaaaacttat aaactaatta 660atattatggt ccacggtgct acatattaac
tcttgatggt tttatacatc ttttctacat 720gctaatatgc ttttaatatt gtagcctaac
gttataattt gttttttctt aaagaaacag 780tatcttgaac gaatcttaac tatttctgta
cttattcgat tttattcgat ttttatccgt 840gtaaaggcaa acgattatta tgtaacgacg
ggcataaaaa gagtatcgat ttcctattcg 900gagaaaaaaa aaaagataaa aattggagtg
tatgtatatt tcttgaattg agagtaatac 960aagattacgg tccaggtggc ggaatattat
tggcaaggtc acaagaacct caaataactg 1020atctgaagag aaatataaat ccaaaagagg
gtcgac 105619223DNAArtificial sequenceSingle
strand DNA oligonucleotide 192cccttatctc tcagtcgacc ctc
2319321DNAArtificial sequenceSingle strand DNA
oligonucleotide 193gaagagagga tatgtgtgaa g
2119424DNAArtificial sequenceSingle strand DNA
oligonucleotide 194ttcaaaataa gcttctagac caga
2419520DNAArtificial sequenceSingle strand DNA
oligonucleotide 195aagagatttt caaagtgtgg
201962027DNAArabidopsis thaliana 196gagagaaaag attgtgagat
ttgagatcgg aggtgatggg agactctgaa gaccgtcgct 60ttggctttta tattagttgg
cacgtgagag ggctttgtgt gagttttgac acgtggtgga 120ttataagtcg ttcaccaggt
caaaagaatt tttaaccttg ttatggtgag gaagtgaaga 180ctttactatt ttgtctctta
attgtccgtt ttctaggcta ttaataattt gtcttattgg 240tttagaaaac atttgttaat
taatttccca taaaaataga agcttataat attgtctaga 300gattatattt tagatattta
tcaccacaaa taaaataaaa taattgtcaa tctttttaaa 360cagatacttt tgaagaatat
ccatactttt tgatattctt gtttagttat taaattaaat 420tatcagatat acctacgaac
taatatggat ttatatattt cagttacact tttggtttta 480taacttgttg tcaacagaaa
aataaaattg ttgtcaagac atttgaattt tagaaactaa 540cttattttgg ttaattaaaa
ggtcaaaaga ttcaaaataa atttgtttct caaattttag 600tggtcaatat taaatttctg
accaacaaaa atcacaaaac ctcagttttg atcatttatt 660attaattata taattgtgaa
ttttgttttg atttaaggct ttttaataag ttaaaaagtt 720ttgtttcttg ttcgtttagg
tttttttttt tttgttatac ttataatcag ttttagactt 780agaggaaatt gaacagttta
gaatagtagg tctagctaac ctcttttttt ttggccggtc 840tacataacct tgcgaaggat
agatctttca gctagcaatt taattcattt ctgcttacca 900ttgtttctta cttaaattag
ttacattacc atcaatgtac ctcaattcgt gtgtgagcgt 960ttttaacaaa caaaaaaagt
cgttcgtgag aattaaaaga tggggggata caaaaaccga 1020acaataattg aatacttttt
gaccggagtg taacatcaat aaaggtgtta attagagaat 1080gtaattaggc tttttactaa
cgggaataat aaattaaaaa ctgtcctcga tctactttac 1140tatgtatgga aggaacattc
gcatgtggca ttgtgggaag ctgaatctca aaacttattt 1200taagttttga cattccttac
acttatgaat atactatacg attttttttt tatcatcaat 1260atacggatta gtacattgat
gataaaagaa accacggatg ataactatta ataattattt 1320tattatatga tgaaaatgat
tatgcatttc acgaaatttc actaaaaaac aattattatg 1380aacaaattca ttttgtttat
ctaataacaa taaaaatcat tggactttga ttttatacgt 1440cgtgggaagg tcgtcgaagc
acgttgcgtt tgatcattgc atgcatcgtg aaaattccac 1500taaacatcgt cttttaaaaa
aagaaacctt taaaacatta caaatggaac gtgaacctat 1560aaaatatgat aggtagatct
cacactttat ttacagtatt aaacaatatg gaacattgac 1620gttaaattat tattttctac
ttataacaat ttacacctcc caaaatttgg aaaggataaa 1680cccaacaagg caacaagtat
cacaaatgta gctgaaatag atgggctttt aaagtttatg 1740gattgggccg tcatgaacac
atattccata acataaccta attgggtgct ccgacttctt 1800ttcgcgccgc tcgcttgtac
atgtcctctt cttcgacttc cagataaaat cgcttcctct 1860gtttttttcc gatctaaatt
cacagctcat cgaaaatggg ctcacggcaa ggaccaccga 1920agcatcagaa caaattcgcc
tgggttccca aagccggcgt caagatcaac gaaacggtaa 1980gctatttgct cggctatgag
attaacgaaa ttgagtgagt actgtag 202719723DNAArtificial
sequenceSingle strand DNA oligonucleotide 197atcaagggtc gacctacagt act
2319822DNAArtificial
sequenceSingle strand DNA oligonucleotide 198tctcaaactg aacctatgaa ga
2219921DNAArtificial
sequenceSingle strand DNA oligonucleotide 199cagagagaag aggatccgga g
2120022DNAArtificial
sequenceSingle strand DNA oligonucleotide 200caacagagaa tgacaaagaa ga
222012819DNAArabidopsis thaliana
201aagaaaagat cgataacatg aagatctctt ctatctaaga aacaggtcag ttgatattca
60tcaactgttc caaatgtata ctagatatat atgcatagga gatatcttta tcaaaaaacc
120atgaagtaat ttcattgtta taacttataa gaattctttg gttttagtta ttcctaataa
180taataatcaa catccatctc aacgatgagg ttgagatgtt aatacatatc ttcctctgtt
240tacttttcca tattgcaact tgtgcatctc tcccctcttg agctgttgcg tgtggtccat
300ccaattcttt gtcatattta aaaaatgaat gctgacttgt acccaaccat gagacaaaac
360tctggctgct atattcttta aacttggtcc ctcttgcaac ttgttcatct ttctactcaa
420ttcactgatt cacgctttct ggacatgtga actaattaat acctcagtga tatcgaatag
480tgaatactga agccactgta cggtactgtt tgtgtcattg gagaaacttt aaggcttatg
540ttaaggtctt tcaggtagaa attcgatttt aagtatcaca gtagattaat aaataaatgt
600agtcgataga tttaggtcct cttgtcttcc caaatagtgt actctgaata aaccgaaagg
660acaagaactt tgtttctaga accttaagct ctttaagaca agagaaaacg cagaagttcc
720attgttacag gaactcttta gtacatattt tgcaagagtt cttttcagta cactagtcta
780acaggttctt ggctctatac atgatgcttc acatacttaa gatattaacc tatatatact
840aattaaacat cactattccc ccattagttt gatgacgatg atgaagtact tgttgttgtt
900ccttgaggct gtggtacatc ggttctcctc ctttttcggc atgaattgac cggagcatca
960tactttccgg catccaaagg aaagttgaga acagcttttc ttcccctgag cttaaaagct
1020gcatagtcgt aagcccttgc agcatcaata tcactctcaa aagtgcctaa ccaaatcctg
1080gatcctttct ttgccggatc tcgaatctct gctgcaaatt tcccccatgg cctccttctc
1140acgcctctgt aatgtctcgt ttcttcaaac ctctttgttt ttttccggtt tgagacagtc
1200tcaacctcag gtgacgttgt tgttgatgat gatgatgatg attctgcttc catttgcaga
1260atctcttgga cataggaatc tggatcaaga acaggtgaac taggttccag tttcggaact
1320gggttaaagg gttctagaga ccagagtccg gagacaaaag cagtatcatc aaagacaaaa
1380tcttcaatga aaccatcagg gatcatcaag tcttcaaata gatgtttctg tataacatcc
1440aaatcagagc tttcctcaaa agtctccatt tcttcctctc tcttttttct ttagacaaga
1500caggagaata agaaaaactg caagtggtgt ttgaagaaaa agttttgatg atattgttgg
1560ctatataaag aaaggaatcc taaacatgtg ttaacgcagc catgggtgag gtgtcaaaag
1620tctctctctg tgtctctctg gtttaactct gtggggccaa gtcttatcca ttaaacattt
1680atggaggcaa cttaagatat tttgtcagga cccttcaagt tgtgccaact tgatcttgtc
1740tatgatgctg acaaatttca ctaacatcca ttttattcct ctagagttta aaataccttg
1800agctacccat ggttcgaatc ctaagctgaa tgctaacaaa atggtgatta ttttttttaa
1860ctagaatttt gattgagttg gttaaggacg taggttcatt tgaaatttta aatctaaaac
1920ataacacaaa ccaaaaccaa aaagacttga actactagtg tttataatcg taacttaagt
1980ctttaaaagc caatctctca aaagtttttt cttttttttt tttatcttaa aagttttatg
2040ataagattga tatatgattt tcgtagtagt aatgactcac taggtaagct cttaaatatc
2100aaaagatatt ttgcatattc acattcgagt aaaaagataa gaagataatg actttcactc
2160gaataaaaag gagagacaaa ttcatcaaat tgcttgtctt gtagggttgt cttgctagga
2220tatgatttga agcaacttga tatttctttg tttctacata acttcgtata gggctccaca
2280tatataataa ccaaacctta ccctcttgct cagttgcttg acaattatac tcctaatctc
2340ataatctttt ataatagcat gtaagataat attaattatt tacttttatt gatgctttgt
2400agataatctt cgacagcatt atccatttga ttggtgtttt ccactattga aattttgaat
2460ttgtttagat ttgtatgtat ttttaactaa ttaattgtct tttcgttgca cactattttt
2520ttatagctcc gatttacttt ttcctgatcc aattttataa tctattgact atttagcaga
2580tatgaagtgt ttagatatgg acttaacgaa actgatgact aagaatgttt atacaatcaa
2640taaatttata acatcaacaa atacaaaatt aaatttatat tttcaacatc caaatattct
2700actaaaaaaa ataatgaata aaatgattgg tactaattaa actacttatt tgatatttgc
2760acactaccgc tacctttata ttatacaaga ataaatgaaa tcatgagagt gacgcaagt
2819202428DNAArabidopsis thaliana 202ggatcctacg aaagtgagat ttgaccgaat
aaccaggaag tactgtccct aatccatgaa 60tcgtcttcag cttcggctgc agagtaatgg
acgtgatcgt cgacgacgac gagagagcaa 120tcgccattgt tgcttccaga gaaagctgaa
aataataata atcccaattt aaaatcgaaa 180tcgattttct cataccgttg gttaatctcg
tggagttggg ttattacacg tgtcagatga 240tgtaaccatg atctcagaga aaaagtcaca
tgccacgtca gttaacttta gggcaaaatg 300ggaaaagaat ctaaagagca tatgttcgtg
cacgttcttg tttagggtaa gctcaaagct 360caagccgctt ctatctctct acatttctct
ttctgcaatg gcgagattag tgcgtgtggc 420taggatcc
4282031358DNAArabidopsis thaliana
203aagctttttc tctgcgaatt tctggaacca atcaaatcaa atttgtctct tttgtttatt
60gtcgactttt ctgttttttt ctgttctggt attattcctc caagggactc ggaccggatg
120gcaaaacttg accactttgc tcctggttca ggttgcggtt catggtcaac cttagacccg
180acctatccgt ttcgttgatt tcattaatta gtctgcgttt tcttgggtgg agtgcagaca
240gattttcttc tgcagtaggc gttaatccga taggctcttg ttgggcctca aatagttcag
300taaacttttc gtggggcttt tagtatagcc catgtattaa taacaatatt acacttggga
360aatgacaaaa aaaaaaaaga gaatgaagcg gtactcttat atcaaaaaaa catattgtat
420atcttcgaat atgatgcaac tcatgcaaca acaatactag taggctacat gtattgctcc
480atttaattac atataactta atattctaat tcataaactt tcttttaatt atatatttta
540tgtaagtttt aaatattgaa aaaaaaaaaa gttttaaata ttgaaacatg ataagttttt
600acatccattt attataaaaa aaatagtgat gatgatgatc aaaattttga gtacatttta
660gagtgtttta acttttacat ttgttgttac aattgttatg agtctgatat ttcaaatttc
720gttttcaaag aaaaatcctg agtttacctt aaaagattaa agccagtttt taagaaataa
780gtagaaaaat atcaaaccag acctagctga accaaaaatt atacaaaatc tagaccggat
840taaaccggct acccgacgaa tatgcctagt aaaagtgtcg tcatcggaaa agaatctttt
900acatggctga aaccgcaaat acgatcttca agagagcaac ataaaaatac ttgtcaaata
960agtaaagaaa ataagacact caatatccac actcccaaac catgaaaata tgaatagaaa
1020tctcaatgag ccaatcagag gccagcaaag tccatctcat tgtcccaagc ggatatacat
1080ccgacaaaac tcaacctcac aagtagactc tcccttcttc cgtaactatt cgtccacgtg
1140tccttccctc tcaccactta ccttcaaaac caacgcttct tttttagttc cttggtccga
1200agcgtttacc gatgagagaa tcataaactc ccacttggag ctcaaaaagt gtaagagaca
1260accaacaaaa aacgattcat ctcttctcct atcctctcct cttcgaattc aacgtttgga
1320gaatccagca gccgcaaaat ggcttcgctt gtggatcc
135820424DNAArtificial sequenceSingle strand DNA oligonucleotide
204gagacaaaaa gctttttctc tgcg
2420521DNAArtificial sequenceSingle strand DNA oligonucleotide
205tcgcagaagt tgttgtaagt g
2120623DNAArtificial sequenceSingle strand DNA oligonucleotide
206gtgaatggag gatccacaag cga
2320721DNAArtificial sequenceSingle strand DNA oligonucleotide
207ttacatactg agggaagctc g
2120824DNAArtificial sequenceSingle strand DNA oligonucleotide
208gttggttcgt cgactagaga aggt
2420928DNAArtificial sequenceSingle strand DNA oligonucleotide
209ttggatccgg gaggcaatga tgctttag
28210470DNAArabidopsis thaliana 210aagcttagaa gctaaaagaa gccgcgaaga
attgtgaaga agaaggaaag tttccattat 60tgccttttat tttattttat ttaataattt
aagggttttt gattttaaaa tgaataataa 120taataaatac aaaaaagaaa ggacagaagg
aaggagtgat gtgtggtaga gagagacagt 180tcaccgtcgg cgagtccagc tggcggtggt
gggagcccac cgtgtcacct taatcatcgc 240tgcgctgccc tgtctttttt ccattattaa
tttttagcaa gaagaagact gggctttcta 300aattagttat taatgggctt tgggctttcg
tggttagggt tgtgtagggg cttaatcgtc 360atttcggaga tagaataaac cctaatctcc
atggatgggc tctccgatgt ttgtcttttt 420gatttttgaa atttgatttt caaaaataaa
ctaaagcatc attgcctccc 47021130DNAArtificial sequenceSingle
strand DNA oligonucleotide 211ttgtaagctt gcagggatac ggatgggtag
3021225DNAArtificial sequenceSingle strand DNA
oligonucleotide 212aaatattgga tcctttgggg ttctc
252131569DNAArabidopsis thaliana 213aagcttgcag ggatacggat
gggtagcttt caaaacttac atcatcttct gtttcttgag 60atcaactatt tttggagctt
tgtctcaatc gtaccaaagg ataatggtcc tacctccttt 120tgcattctta actttatctt
ctctacttat ttcttttttg ggatttttgg gggtattatt 180ttatcttttg tagatataca
cattgattta ctacaaacgt atactactat ccatcttcaa 240ctcttcggaa tatgatttcg
aaaaaactat gaagattaac gggtatctta aacatgttaa 300gatacaccgg acaattttca
tttagaagaa ttgatatgca attaacaata aatagttgat 360gatcttttag ttttgaagat
gtgcgttaag acttaagcgt gtggtaacaa ggtgggactc 420gggcaacgca aagccttgta
gagtccactt gctcaacttg tctttctttt atctcttttc 480caagtctcaa gattcaatga
actccgtgta acacaaacac gcccatagat gagctcattt 540ttggtatttc caatattgcc
actccatgat aatatcatct agggatgggg ttcatttatt 600ttgaaatctc aacaaatctc
gtcgattcta acacacatga ttgatttgtt tacttacttg 660aaagttggca actatctggg
attaaaattt atctttttct actgctagct agaagcatct 720atatatgtta gcctaatacg
tggaagatgt cattgctaat aatggctaaa gatgtgtatt 780aatttttctt cttttttcct
tgaatttttg ttctttgaca taaactatgc tgtcaaaatg 840tgtagaatct ttttacataa
atcattccct gttacacact aaaaggttca caacggacga 900ttgtattgga cttccagatc
ataaaccatg caaaactgaa aaccacaaga ataattagtt 960ctaactttag aacgttcgta
cgtgtttcat gttcaaaaag cgtcaattat aaaagttggg 1020aaattacttt tgagttttga
catttctaag gacagtcaaa tatgacaaca ttgggatgca 1080acttaccttg tattaactta
ttttgttata aaaccatata ttacatattt taaagggttg 1140ataaataatc aaatatacca
aaacatagct tttcaatata tttgtaaaac acgtttggtc 1200tactagctaa ttatgagaac
atttgttcaa tgcatgatta tctagtatct actagtggat 1260tatgaaaatt agatattttc
attgcatgat tatcttccat atatagtgat aacatcaaaa 1320gaatctacac caattattgc
attttttcat tatataataa gcactaaact gtaaaattat 1380attcagccac ccaaaccatg
acaaatcacc ttaaaggctt aaacacataa cagccattac 1440gagtcacagg taagggtata
atagtaaaga atcaatctat ataatatacg acccaccctt 1500tctcattctt tctggagagt
aacatcgaga caaagaagaa aaactaaaaa agagaacccc 1560aaaggatcc
15692142000DNAArabidopsis
thaliana 214ggttaaagaa tgatgattcg attatagcct caactagaag atacgtgtag
tgcaggtgtg 60tagttaactg gtggtagtgg cagacaacca gattaggagt taaataaagc
ctttagattt 120gagagattga aatattcgat tggaaccttt ctagattttt acagccatct
aaaattagat 180gcagatcacc tactaccatt caaaaatgaa caaaataatt tcatttacat
tttcctagca 240taagatataa taataaaata gtgctcattt taattacttt ttctaaatat
tttcgttatt 300ttaaattttg cttgtctata ctctacagct catttaataa cggaaacaaa
aataattgca 360gggatacgga tgggtagctt tcaaaactta catcatcttc tgtttcttga
gatcaactat 420ttttggagct ttgtctcaat cgtaccaaag gataatggtc ctacctcctt
ttgcattctt 480aactttatct tctctactta tttctttttt gggatttttg ggggtattat
tttatctttt 540gtagatatac acattgattt actacaaacg tatactacta tccatcttca
actcttcgga 600atatgatttc gaaaaaacta tgaagattaa cgggtatctt aaacatgtta
agatacaccg 660gacaattttc atttagaaga attgatatgc aattaacaat aaatagttga
tgatctttta 720gttttgaaga tgtgcgttaa gacttaagcg tgtggtaaca aggtgggact
cgggcaacgc 780aaagccttgt agagtccact tgctcaactt gtctttcttt tatctctttt
ccaagtctca 840agattcaatg aactccgtgt aacacaaaca cgcccataga tgagctcatt
tttggtattt 900ccaatattgc cactccatga taatatcatc tagggatggg gttcatttat
tttgaaatct 960caacaaatct cgtcgattct aacacacatg attgatttgt ttacttactt
gaaagttggc 1020aactatctgg gattaaaatt tatctttttc tactgctagc tagaagcatc
tatatatgtt 1080agcctaatac gtggaagatg tcattgctaa taatggctaa agatgtgtat
taatttttct 1140tcttttttcc ttgaattttt gttctttgac ataaactatg ctgtcaaaat
gtgtagaatc 1200tttttacata aatcattccc tgttacacac taaaaggttc acaacggacg
attgtattgg 1260acttccagat cataaaccat gcaaaactga aaaccacaag aataattagt
tctaacttta 1320gaacgttcgt acgtgtttca tgttcaaaaa gcgtcaatta taaaagttgg
gaaattactt 1380ttgagttttg acatttctaa ggacagtcaa atatgacaac attgggatgc
aacttacctt 1440gtattaactt attttgttat aaaaccatat attacatatt ttaaagggtt
gataaataat 1500caaatatacc aaaacatagc ttttcaatat atttgtaaaa cacgtttggt
ctactagcta 1560attatgagaa catttgttca atgcatgatt atctagtatc tactagtgga
ttatgaaaat 1620tagatatttt cattgcatga ttatcttcca tatatagtga taacatcaaa
agaatctaca 1680ccaattattg cattttttca ttatataata agcactaaac tgtaaaatta
tattcagcca 1740cccaaaccat gacaaatcac cttaaaggct taaacacata acagccatta
cgagtcacag 1800gtaagggtat aatagtaaag aatcaatcta tataatatac gacccaccct
ttctcattct 1860ttctggagag taacatcgag acaaagaaga aaaactaaaa aagagaaccc
caaagaatcg 1920aatatttatt atttcgcccc gaagattcta tttctgatca tttacacccc
taaaaagagt 1980agagctttcg tgaagccacc
2000
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20150284805 | MITOCHONDRIAL MUTATIONS AND REARRANGEMENTS AS A DIAGNOSTIC TOOL FOR THE DETECTION OF SUN EXPOSURE, PROSTATE CANCER AND OTHER CANCERS |
20150284804 | Prognostic Method for Individuals with Prostate Cancer |
20150284803 | METHODS FOR DETERMINING THE CAUSE OF SOMATIC MUTAGENESIS |
20150284802 | ncRNA AND USES THEREOF |
20150284801 | METHODS FOR ASSESSING LIVER PATHOLOGIES |