Patent application title: TUMOR MARKERS IN OVARIAN CANCER
Inventors:
Patrice J. Morin (Perry Hall, MD, US)
Cheryl A. Sherman-Baust (Laurel, MD, US)
Ellen S. Pizer (Bellevue, WA, US)
Colleen D. Hough (South Jordan, UT, US)
Assignees:
THE UNITED STATES OF AMERICA, as represented by the Secretary, Dept. of Health and Human
IPC8 Class: AA61K5110FI
USPC Class:
424 149
Class name: Drug, bio-affecting and body treating compositions radionuclide or intended radionuclide containing; adjuvant or carrier compositions; intermediate or preparatory compositions attached to antibody or antibody fragment or immunoglobulin; derivative
Publication date: 2010-07-22
Patent application number: 20100183507
Claims:
1. A method of detecting an ovarian tumor in a subject, said method
comprising measuring the expression level of an ovarian tumor marker gene
in said subject, wherein an increase in said expression level of said
ovarian tumor marker gene in said subject, relative to the expression
level of said ovarian tumor marker gene in a reference subject not having
an ovarian tumor, detects an ovarian tumor in said subject.
2. A method of identifying a subject at increased risk for developing ovarian cancer, said method comprising measuring the expression level of an ovarian tumor marker gene in said subject, wherein an increase in said expression level of said ovarian tumor marker gene in said subject, relative to the expression level of said ovarian tumor marker gene in a reference subject not at increased risk for developing ovarian cancer, identifies an individual at increased risk for developing ovarian cancer.
3. The method of claim 1 or 2, wherein said expression level of said ovarian tumor marker gene is determined in said subject by measuring the expression level of said tumor marker gene in a sample from said subject.
4. The method of claim 3, wherein said sample from said subject is selected from the group consisting of a tissue biopsy, ovarian epithelial cell scrapings, peritoneal fluid, blood, urine, and serum.
5. The method of claim 1 or 2, wherein said expression level of said tumor marker gene is measured in vivo in said subject.
6. The method of claim 1 or 2, wherein said expression level of said tumor marker gene is determined by measuring the level of ovarian tumor marker mRNA.
7. The method of claim 6, wherein said level of ovarian tumor marker mRNA is measured using RT-PCR, Northern hybridization, dot-blotting, or in situ hybridization.
8. The method of claim 1 or 2, wherein said expression level of said ovarian tumor marker gene is determined by measuring the level of ovarian tumor marker polypeptide encoded by said ovarian tumor marker gene.
9. The method of claim 8, wherein said level of ovarian tumor marker polypeptide is measured by ELISA, immunoblotting, or immunohistochemistry.
10. The method of claim 1 or 2, wherein said expression level of said tumor marker gene is compared to the expression level of said tumor marker gene in a reference subject diagnosed with ovarian cancer.
11. The method of claim 2, wherein said expression level of said ovarian tumor marker gene in said subject is compared to the expression level of said tumor marker gene in a reference subject that is identified as having an increased risk for developing ovarian cancer.
12. A method of identifying a tumor as an ovarian tumor, said method comprising measuring the expression level of an ovarian tumor marker gene in a tumor cell from said tumor, wherein an increase in said expression level of said ovarian tumor marker gene in said tumor cell, relative to the expression level of said ovarian tumor marker gene in a noncancerous ovarian cell, identifies the tumor as an ovarian tumor.
13. A method of treating or preventing an ovarian tumor in a subject, said method comprising modulating production or activity of a polypeptide encoded by an ovarian tumor marker gene in an ovarian epithelial cell in said subject.
14. A method of inhibiting the growth or metastasis of an ovarian tumor in a subject, said method comprising contacting an ovarian tumor cell with an antibody that specifically binds an ovarian tumor marker polypeptide encoded by an ovarian tumor marker gene, wherein the binding of said antibody to said ovarian tumor marker polypeptide inhibits the growth or metastasis of said ovarian tumor in said subject.
15. The method of claim 14, wherein said ovarian tumor marker polypeptide is on the surface of said ovarian tumor cell.
16. The method of claim 14, wherein said antibody is coupled to a radioisotope or a toxic compound.
17. A method of diagnosing ovarian cancer in a subject, said method comprising measuring the amount of an ovarian tumor marker polypeptide in said subject, wherein an amount of ovarian tumor marker polypeptide that is greater than the amount of ovarian tumor marker polypeptide measured in a subject not having ovarian cancer diagnoses an ovarian cancer in the subject.
18. The method of claim 17, wherein said ovarian tumor marker polypeptide is present at the surface of a cell.
19. The method of claim 17, wherein said ovarian tumor marker polypeptide is in soluble form.
20. The method of claim 1, 2, 12, 13, 14, or 17, wherein said ovarian tumor marker gene is selected from the group consisting of HLA-DR alpha chain; cysteine-rich protein 1; claudin 4; claudin 3; ceruloplastnin (ferroxidase); gluthathione perroxidase 3; secretory leukocyte protease inhibitor; HOST-1 (FLJ14303 fis); interferon-induced transmembrane protein 1; apolipoprotein J/clusterin; serine protease inhibitor, Kunitz type 2; apoplipoprotein E; complement component 1, r subcomponent; G1P3/IFI-6-16; Lutheran blood group (BCAM); collagen type III, alpha-1; Mal (T cell differentiation protein); collagen type I, alpha-2; HLA-DPB1; bone marrow stroma antigen 2 (BST-2); or HLA-Cw.
21. The method of claim 1, 2, 12, 13, 14, or 17, wherein said ovarian tumor is an epithelial ovarian tumor.
22. The method of claim 21, wherein said epithelial ovarian tumor is selected from the group consisting of a serous cystadenoma, a borderline serous tumor, a serous cystadenocarcinoma, a mucinous cystadenoma, a borderline mucinous tumor, a mucinous cystadenocarcinoma, an endometrioid carcinoma, an undifferentiated carcinoma, a clear cell adenocarcinoma, a cystadenofibroma, an adenofibroma, and a Brenner tumor.
23. A kit comprising an antibody for measuring the expression level of an ovarian tumor marker gene in a subject.
24. A kit comprising a nucleic acid for measuring the expression level of an ovarian tumor marker gene in a subject.
25. The kit of claim 23 or 24, wherein said ovarian tumor marker gene is selected from the group consisting of HLA-DR alpha chain; cysteine-rich protein 1; claudin 4; claudin 3; ceruloplasmin (ferroxidase); glutathione perroxidase 3; secretory leukocyte protease inhibitor; HOST-1 (FLJ14303 fis); interferon-induced transmembrane protein 1; apolipoprotein J/clusterin; serine protease inhibitor, Kunitz type 2; apoplipoprotein E; complement component 1, r subcomponent; G1P3/IFI-6-16; Lutheran blood group (BCAM); collagen type III, alpha-1; Mal (T cell differentiation protein); collagen type I, alpha-2; HLA-DPB1; bone marrow stroma antigen 2 (BST-2); or HLA-Cw.
Description:
[0001]This application is a continuation of U.S. application Ser. No.
11/895,326, filed Aug. 24, 2007, which is a continuation of U.S.
application Ser. No. 10/257,021, filed Oct. 3, 2002 (now U.S. Pat. No.
7,279,294, issued Oct. 9, 2007), which is the national stage of PCT
International Application No. PCT/US01/10947, filed on Apr. 3, 2001,
which claims the benefit of U.S. Provisional Application 60/194,336,
filed on Apr. 3, 2000, all of which are hereby incorporated by reference
in their entirety.
FIELD OF THE INVENTION
[0003]This invention relates generally to the identification of ovarian tumor markers and diagnostic, prognostic, and therapeutic methods for their use, as well as kits for use in the aforementioned methods.
BACKGROUND OF THE INVENTION
[0004]Ovarian cancer is one of the most common forms of neoplasia in women. Early diagnosis and treatment of any cancer ordinarily improves the likelihood of survival. However, ovarian cancer is difficult to detect in its early stages, and remains the leading cause of death among women with cancer of the female reproductive tract.
[0005]The low survival rate of ovarian cancer patients is in part due to the lack of good diagnostic markers for the detection of early stage neoplasms, and in part due to a deficit in the general understanding of ovarian cancer biology, which would facilitate the development of effective anti-tumor therapies. The present invention overcomes these shortcomings by providing much-needed improvements for the diagnosis, treatment, and prevention of ovarian tumors, based on the identification of a series of ovarian tumor marker genes that are highly expressed in ovarian epithelial tumor cells and are minimally expressed in normal ovarian epithelial cells. Over 75% of all ovarian tumors, and about 95% of all malignant ovarian tumors, arise from the ovarian surface epithelium (OSE). Because the tumor marker genes are broadly expressed in various types of ovarian epithelial tumors, the present invention should greatly improve the diagnosis and treatment of most ovarian cancers.
SUMMARY OF THE INVENTION
[0006]In a first aspect, the invention features a method of detecting an ovarian tumor in a subject. The method includes the step of measuring the expression level of an ovarian tumor marker gene in the subject, wherein an increase in the expression level of the ovarian tumor marker gene in the subject, relative to the expression level of the ovarian tumor marker gene in a reference subject not having an ovarian tumor, detects an ovarian tumor in the subject.
[0007]In a second aspect, the invention features a method of identifying a subject at increased risk for developing ovarian cancer. The method includes the step of measuring the expression level of an ovarian tumor marker gene in the subject, wherein an increase in the expression level of the ovarian tumor marker gene in the subject, relative to the expression level of the ovarian tumor marker gene in a reference subject not at increased risk for developing ovarian cancer, identifies an individual at increased risk for developing ovarian cancer.
[0008]In a preferred embodiment of the second aspect of the invention, the expression level of the ovarian tumor marker gene in the subject is compared to the expression level of the tumor marker gene in a reference subject that is identified as having an increased risk for developing ovarian cancer.
[0009]In a third aspect, the invention features a method of determining the effectiveness of an ovarian cancer treatment in a subject. The method includes the step of measuring the expression level of an ovarian tumor marker gene in the subject after treatment of the subject, wherein a modulation in the expression level of the ovarian tumor marker gene in the subject, relative to the expression level of the ovarian tumor marker gene in the subject prior to treatment, indicates an effective ovarian cancer treatment in the subject.
[0010]In a preferred embodiment of the first three aspects of the invention, the expression level of the ovarian tumor marker gene is determined in the subject by measuring the expression level of the tumor marker gene in a sample from the subject. The sample may be, for example, a tissue biopsy, ovarian epithelial cell scrapings, peritoneal fluid, blood, urine, or serum. In another preferred embodiment of the first three aspects of the invention, the expression level of the tumor marker gene is measured in vivo in the subject.
[0011]In yet another preferred embodiment of the first three aspects of the invention, the expression level of more than one ovarian tumor marker gene is measured. For example, the expression level of two, three, four, five, or more tumor marker genes may be measured.
[0012]In various other embodiments of the first three aspects of the invention, the expression level of the tumor marker gene may be determined by measuring the level of ovarian tumor marker mRNA. For example, the level of ovarian tumor marker mRNA may be measured using RT-PCR, Northern hybridization, dot-blotting, or in situ hybridization. In addition, or alternatively, the expression level of the ovarian tumor marker gene may be determined by measuring the level of ovarian tumor marker polypeptide encoded by the ovarian tumor marker gene. For example, the level of ovarian tumor marker polypeptide may be measured by ELISA, immunoblotting, or immunohistochemistry. The level of ovarian tumor marker polypeptide may also be measured in vivo in the subject using an antibody that specifically binds an ovarian tumor marker polypeptide, coupled to a paramagnetic label or other label used for in vivo imaging, and visualizing the distribution of the labeled antibody within the subject using an appropriate in vivo imaging method, such as magnetic resonance imaging.
[0013]In still another embodiment of the first three aspects of the invention, the expression level of the tumor marker gene may be compared to the expression level of the tumor marker gene in a reference subject diagnosed with ovarian cancer.
[0014]In a fourth aspect, the invention features a method of identifying a tumor as an ovarian tumor. The method includes the step of measuring the expression level of an ovarian tumor marker gene in a tumor cell from the tumor, wherein an increase in the expression level of the ovarian tumor marker gene in the tumor cell, relative to the expression level of the ovarian tumor marker gene in a noncancerous ovarian cell, identifies the tumor as an ovarian tumor.
[0015]In a fifth aspect, the invention features a method of treating or preventing an ovarian tumor in a subject. The method includes the step of modulating production or activity of a polypeptide encoded by an ovarian tumor marker gene in an ovarian epithelial cell in the subject.
[0016]In a sixth aspect, the invention features a method of inhibiting the growth or metastasis of an ovarian tumor cell in a subject. The method includes the step of modulating production or activity of a polypeptide encoded by an ovarian tumor marker gene in the ovarian tumor cell in the subject.
[0017]In a seventh aspect, the invention features a method of inhibiting the growth or metastasis of an ovarian tumor in a subject. The method includes the step of contacting an ovarian tumor cell with an antibody that specifically binds an ovarian tumor marker polypeptide encoded by an ovarian tumor marker gene, wherein the binding of the antibody to the ovarian tumor marker polypeptide inhibits the growth or metastasis of the ovarian tumor in the subject.
[0018]In various preferred embodiments of the seventh aspect of the invention, the ovarian tumor marker polypeptide may be on the surface of the ovarian tumor cell, and the antibody may be coupled to a radioisotope or to a toxic compound.
[0019]In an eighth aspect, the invention features a kit including an antibody for measuring the expression level of an ovarian tumor marker gene in a subject.
[0020]In a ninth aspect, the invention features a kit including a nucleic acid for measuring the expression level of an ovarian tumor marker gene in a subject.
[0021]In a tenth aspect, the invention features a method of diagnosing ovarian cancer in a subject. The method includes the step of measuring the amount of an ovarian tumor marker polypeptide in the subject, wherein an amount of ovarian tumor marker polypeptide that is greater than the amount of ovarian tumor marker polypeptide measured in a subject not having ovarian cancer diagnoses an ovarian cancer in the subject.
[0022]In various embodiments of the tenth aspect of the invention, the ovarian tumor marker polypeptide can be present at the surface of a cell (e.g., a cell-surface-localized polypeptide such as a cell adhesion molecule), or the ovarian tumor marker polypeptide may be in soluble form (e.g., secreted from a cell, released from a lysed cell, or otherwise detectable in a fluid-based assay).
[0023]In a preferred embodiment of all of the above aspects of the invention, the ovarian tumor may be an epithelial ovarian tumor. The epithelial ovarian tumor may be, for example, a serous cystadenoma, a borderline serous tumor, a serous cystadenocarcinoma, a mucinous cystadenoma, a borderline mucinous tumor, a mucinous cystadenocarcinoma, an endometrioid carcinoma, an undifferentiated carcinoma, a cystadenofibroma, an adenofibroma, or a Brenner tumor. The epithelial ovarian tumor may also be a clear cell adenocarcinoma.
[0024]In preferred embodiments of all of the above aspects of the invention, the ovarian tumor marker gene can be, but is not limited to, alpha prothymosin; beta polypeptide 2-like G protein subunit 1; tumor rejection antigen-1 (gp96)1; HSP90; Hepatoma-Derived Growth Factor (HGDF); DKFZp5860031; CD63 antigen (melanoma 1 antigen); protein kinase C substrate 80K-H; Polymerase II cofactor 4 (PC4); mitochondrial Tu translation elongation factor; hNRP H1; Solute carrier family 2; KIAA0591 protein; X-ray repair protein; DKFZP564M2423 protein; growth factor-regulated tyrosine kinase substrate; and eIF-2-associated p67. The ovarian tumor marker gene may also be HSP60 or Lutheran blood group (B-CAM). In other preferred embodiments of all aspects of the invention, the ovarian tumor marker gene may also be HLA-DR alpha chain; cysteine-rich protein 1; claudin 4; claudin 3; ceruloplasmin (ferroxidase); glutathione perroxidase 3; secretory leukocyte protease inhibitor; HOST-1 (FLJ14303 fis); interferon-induced transmembrane protein 1; apolipoprotein J/clusterin; serine protease inhibitor, Kunitz type 2; apoplipoprotein E; complement component 1, r subcomponent; G1P3/IFI-6-16; Lutheran blood group (BCAM); collagen type III, alpha-1; Mal (T cell differentiation protein); collagen type I, alpha-2; HLA-DPB1; bone marrow stroma antigen 2 (BST-2); or HLA-Cw.
[0025]The ovarian tumor marker gene may also be HOST-3 (Claudin-16) (e.g., Genbank® Accession No. XM--003150; SEQ ID NOs: 141 and 142); HOST-4 (e.g., a gene that comprises SEQ ID NO: 144); or HOST-5 (sodium dependent transporter isoform NaPi-Iib) (e.g., Genbank® Accession No. AF146796; SEQ ID NOs: 146 and 147).
[0026]In other preferred embodiments of all aspects of the invention, the ovarian tumor marker gene comprises a nucleotide sequence set forth in one of SEQ ID NOs: 84-102.
[0027]In still other preferred embodiments of all aspects of the invention, the ovarian tumor marker gene comprises a nucleotide sequence set forth in one of SEQ ID NOs: 103-129.
[0028]In yet other preferred embodiments of all aspects of the invention, the ovarian tumor marker gene comprises a nucleotide sequence set forth in one of SEQ ID NOs: 141, 143, or 145.
[0029]Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
DETAILED DESCRIPTION OF THE INVENTION
[0030]The low survival rate of ovarian cancer patients is in part due to the lack of good diagnostic markers allowing early detection of the disease. Further compounding this difficulty in early diagnosis is the lack of effective treatments for ovarian cancer, development of which has been impeded by a deficit in the general understanding of ovarian cancer biology. The present invention overcomes these deficits in the art by providing ovarian tumor markers that are expressed at elevated levels in ovarian epithelial tumor cells, relative to their expression in normal ovarian epithelial cells.
[0031]To identify marker genes that are up-regulated in ovarian tumor cells, SAGE (Serial Analysis of Gene Expression; Velculescu et al., Science 270:484-487, 1995) was employed to obtain global gene expression profiles of three ovarian tumors, five ovarian tumor cell lines of various histological types, a pool of ten ovarian tumor cell lines of various histological types, and normal human ovarian surface epithelium (HOSE). The expression patterns were generated by acquiring thousands of short sequence tags that contain sufficient information to uniquely identify transcripts due to the unique position of each tag within the transcript. Comparing the SAGE-generated expression profiles between ovarian cancer and HOSE revealed an abundance of genes that are expressed at elevated levels in ovarian tumor cells, relative to their expression in normal HOSE.
[0032]Selected SAGE results were further validated through immunohistochemical analysis of archival ovarian serous carcinoma samples. Ovarian tumor marker genes implicated in immune response pathways, regulation of cell proliferation, and protein folding were identified, many of which are membrane-localized or secreted. The ovarian tumor marker genes identified from these SAGE profiles are useful both as diagnostic and prognostic markers to detect and monitor a broad variety of ovarian cancers, and as therapeutic targets for the treatment of such ovarian cancers.
DEFINITIONS
[0033]In this specification and in the claims that follow, reference is made to a number of terms that shall be defined to have the following meanings.
[0034]As used in the specification and in the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. For example, "a cell" can mean a single cell or more than one cell.
[0035]By "ovarian cell" is meant a cell that is of ovarian origin or that is a descendent of a cell of ovarian origin (e.g., a metastatic tumor cell in the liver that is derived from a tumor originating in the ovary), irrespective of whether the cell is physically within the ovary at the time at which it is subjected to a diagnostic test or an anti-tumor treatment. For example, the ovarian cell may be a normal ovarian cell or an ovarian tumor cell, either within the ovary or at another location within the body. The ovarian cell may also be outside the body (for example, in a tissue biopsy). A preferred ovarian cell is an ovarian cell of epithelial origin.
[0036]By "ovarian tumor marker gene" is meant a gene of the invention, for which expression is increased (as described below) in ovarian tumor cells relative to normal ovarian cells. Preferably, an ovarian tumor marker gene has been observed to display increased expression in at least two ovarian tumor SAGE libraries (relative to a HOSE library), more preferably in at least three SAGE libraries, and most preferably in at least four SAGE libraries (relative to a HOSE library). Examples of ovarian tumor marker genes are provided in Tables 2 and 4 hereinbelow.
[0037]By "ovarian tumor marker polypeptide" is meant a polypeptide that is encoded by an ovarian tumor marker gene and is produced at an increased level in an ovarian tumor cell due to the increased expression of the ovarian tumor marker gene that encodes the polypeptide.
[0038]By "sample" is meant any body fluid (e.g., but not limited to, blood, serum, urine, cerebrospinal fluid, semen, sputum, saliva, tears, joint fluids, body cavity fluids (e.g., peritoneal fluid), or washings), tissue, or organ obtained from a subject; a cell (either within a subject, taken directly from a subject, or a cell maintained in culture or from a cultured cell line); a lysate (or lysate fraction) or extract derived from a cell; or a molecule derived from a cell or cellular material.
[0039]By "modulate" is meant to alter, by increase or decrease.
[0040]By "increase in gene expression level," "expressed at an increased level," "increased expression," and similar phrases is meant a rise in the relative amount of mRNA or protein, e.g., on account of an increase in transcription, translation, mRNA stability, or protein stability, such that the overall amount of a product of the gene, i.e., an mRNA or polypeptide, is augmented. Preferably the increase is by at least about 3-fold, more preferably, by at least about: 4-fold, 5-fold, 7-fold, 10-fold, 15-fold, 20-fold, 30-fold, 40-fold, 50-fold, 70-fold, or more. For example, as described herein, the expression level of the ovarian tumor marker genes of the invention is generally increased by at least 3-fold in ovarian tumor cells, relative to normal ovarian surface epithelial cells.
[0041]By "decrease in gene expression level" is meant a reduction in the relative amount of mRNA or protein transcription, translation, mRNA stability, or protein stability, such that the overall amount of a product of the gene, i.e., an mRNA or polypeptide, is reduced. Preferably the decrease is by at least about 20%-25%, more preferably by at least about 26%-50%, still more preferably by at least about 51%-75%, even more preferably by at least about 76%-95%, and most preferably, by about 96%-100%.
[0042]By "about" is meant ±10% of a recited value.
[0043]By "modulating production or activity of a polypeptide encoded by an ovarian tumor marker gene" is meant to increase or decrease gene expression level, as described above, or to stimulate or inhibit the ability of an ovarian tumor marker polypeptide to perform its intrinsic biological function (examples of such functions include, but are not limited to, enzymatic activity, e.g., kinase activity or GTPase activity; cell-signaling activity, e.g., activation of a growth factor receptor; or cell adhesion activity. The modulation may be an increase in the amount of the polypeptide produced or an increase in the activity of the polypeptide, of at least about: 2-fold, 4-fold, 6-fold, or 10-fold, or the modulation may be a decrease in the amount of the polypeptide produced or a decrease in the activity of the polypeptide, of at least about: 20%-25%, 26%-50%, 51%-75%, 76%-95%, or 96%-100%. These increases and/or decreases are compared with the amount of production and/or activity in a normal cell, sample, or subject.
[0044]By "effective amount" of a compound as provided herein is meant a nontoxic but sufficient amount of the compound to provide the desired effect, e.g., modulation of ovarian tumor marker gene expression or modulation of ovarian tumor marker polypeptide activity. As will be pointed out below, the exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity and type of disease that is being treated, the particular compound used, its mode of administration, and the like. Thus, it is not possible to specify an exact "effective amount." However, an appropriate "effective amount" may be determined by one of ordinary skill in the art using only routine experimentation.
[0045]By "pharmaceutically acceptable" is meant a material that is not biologically or otherwise undesirable, i.e., the material may be administered to an individual along with a molecule or compound of the invention (e.g., an antibody or nucleic acid molecule) without causing any undesirable biological effects or interacting in a deleterious manner with any of the other components of the pharmaceutical composition in which it is contained.
[0046]By "having an increased risk" is meant a subject that is identified as having a higher than normal chance of developing an ovarian tumor, compared to the general population. Such subjects include, for example, women that have a hereditary disposition to develop ovarian cancer, for example, those identified as harboring one or more genetic mutations (e.g., a mutation in the BRCA-1 gene) that are known indicators of a greater than normal chance of developing ovarian cancer, or who have a familial history of ovarian cancer. In addition, a subject who has had, or who currently has, an ovarian tumor is a subject who has an increased risk for developing an ovarian tumor, as such a subject may continue to develop new tumors. Subjects who currently have, or who have had, an ovarian tumor also have an increased risk for ovarian tumor metastases.
[0047]By "treat" is meant to administer a compound or molecule of the invention to a subject in order to: eliminate an ovarian tumor or reduce the size of an ovarian tumor or the number of ovarian tumors in a subject; arrest or slow the growth of an ovarian tumor in a subject; inhibit or slow the development of a new ovarian tumor or an ovarian tumor metastasis in a subject; or decrease the frequency or severity of symptoms and/or recurrences in a subject who currently has or who previously has had an ovarian tumor.
[0048]By "prevent" is meant to minimize the chance that a subject will develop an ovarian tumor or to delay the development of an ovarian tumor. For example, a woman at increased risk for an ovarian tumor, as described above, would be a candidate for therapy to prevent an ovarian tumor.
[0049]By "specifically binds" is meant that an antibody recognizes and physically interacts with its cognate antigen and does not significantly recognize and interact with other antigens.
[0050]By "probe," "primer," or "oligonucleotide" is meant a single-stranded DNA or RNA molecule of defined sequence that can base-pair to a second DNA or RNA molecule that contains a complementary sequence (the "target"). The stability of the resulting hybrid depends upon the extent of the base-pairing that occurs. The extent of base-pairing is affected by parameters such as the degree of complementarity between the probe and target molecules, and the degree of stringency of the hybridization conditions. The degree of hybridization stringency is affected by parameters such as temperature, salt concentration, and the concentration of organic molecules such as formamide, and is determined by methods known to one skilled in the art. Probes or primers specific for ovarian tumor marker nucleic acids (e.g., genes and/or mRNAs) preferably have at least 50%-55% sequence complementarity, more preferably at least 60%-75% sequence complementarity, even more preferably at least 80%-90% sequence complementarity, yet more preferably at least 91%-99% sequence complementarity, and most preferably 100% sequence complementarity to the ovarian tumor marker nucleic acid to be detected. Probes, primers, and oligonucleotides may be detectably-labeled, either radioactively, or non-radioactively, by methods well-known to those skilled in the art. Probes, primers, and oligonucleotides are used for methods involving nucleic acid hybridization, such as: nucleic acid sequencing, reverse transcription and/or nucleic acid amplification by the polymerase chain reaction, single stranded conformational polymorphism (SSCP) analysis, restriction fragment polymorphism (RFLP) analysis, Southern hybridization, Northern hybridization, in situ hybridization, electrophoretic mobility shift assay (EMSA).
[0051]By "specifically hybridizes" is meant that a probe, primer, or oligonucleotide recognizes and physically interacts (i.e., base-pairs) with a substantially complementary nucleic acid (e.g., an ovarian tumor marker mRNA of the invention) under high stringency conditions, and does not substantially base pair with other nucleic acids.
[0052]By "high stringency conditions" is meant conditions that allow hybridization comparable with the hybridization that occurs using a DNA probe of at least 500 nucleotides in length, in a buffer containing 0.5 M NaHPO4, pH 7.2, 7% SDS, 1 mM EDTA, and 1% BSA (fraction V), at a temperature of 65° C., or a buffer containing 48% formamide, 4.8×SSC, 0.2 M Tris-Cl, pH 7.6, 1×Denhardt's solution, 10% dextran sulfate, and 0.1% SDS, at a temperature of 42° C. (these are typical conditions for high stringency Northern or Southern hybridizations). High stringency hybridization is relied upon for the success of numerous techniques routinely performed by molecular biologists, such as high stringency PCR, DNA sequencing, single strand conformational polymorphism analysis, and in situ hybridization. In contrast to Northern and Southern hybridizations, these techniques are usually performed with relatively short probes (e.g., usually 16 nucleotides or longer for PCR or sequencing, and 40 nucleotides or longer for in situ hybridization). The high stringency conditions used in these techniques are well known to those skilled in the art of molecular biology, and may be found, for example, in F. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1997, herein incorporated by reference.
Examples of Ovarian Tumor Marker Genes
[0053]Examples of ovarian tumor marker genes of the invention include alpha prothymosin (e.g., Genbank® Accession No. M14483; SEQ ID NOs: 1 and 2); beta polypeptide 2-like G protein subunit 1 (e.g., Genbank® Accession No. M24194; SEQ ID NOs: 3 and 4); tumor rejection antigen-1 (gp96)1 (e.g., Genbank® Accession No. NM--003299; SEQ ID NOs: 7 and 8); HSP90 (e.g., Genbank® Accession No. AA071048; SEQ ID NOs: 9 and 10); Hepatoma-Derived Growth Factor (HGDF) (e.g., Genbank® Accession No. D16431; SEQ ID NOs: 13 and 14); DKFZp5860031 (e.g., Genbank® Accession No. AL117237; SEQ ID NOs: 15 and 16); CD63 antigen (melanoma 1 antigen) (e.g., Genbank® Accession No. AA041408; SEQ ID NOs: 17 and 18); protein kinase C substrate 80K-H (e.g., Genbank® Accession No. J03075; SEQ ID NOs: 19 and 20); Polymerase II cofactor 4 (PC4) (e.g., Genbank® Accession No. X79805; SEQ ID NOs: 21 and 22); mitochondrial Tu translation elongation factor (e.g., Genbank® Accession No. L38995; SEQ ID NOs: 23 and 24); hNRP H1 (e.g., Genbank® Accession No. L22009; SEQ ID NOs: 25 and 26); Solute carrier family 2 (e.g., Genbank® Accession No. AF070544; SEQ ID NOs: 27 and 28); KIAA0591 protein (e.g., Genbank® Accession No. AB011163; SEQ ID NOs: 29 and 30); X-ray repair protein (e.g., Genbank® Accession No. AF035587; SEQ ID Nos: 31 and 32); DKFZP564M2423 protein (e.g., Genbank® Accession No. BC003049; SEQ ID NOs: 35 and 139); growth factor-regulated tyrosine kinase substrate (e.g., Genbank®Accession No. D84064; SEQ ID NOs: 36 and 37); and/or eIF-2-associated p67 (e.g., Genbank® Accession No. U29607; SEQ ID NOs: 38 and 39). The ovarian tumor marker gene may also be HSP60 (e.g., Genbank® Accession No. M22382; SEQ ID NOs: 11 and 12) and Lutheran blood group protein (B-CAM) (e.g., Genbank® Accession No. NM--005581; SEQ ID NOs: 5 and 6).
[0054]Other examples of ovarian tumor marker genes of the invention include HLA-DR alpha chain (e.g., Genbank® Accession No. K01171; SEQ ID NOs: 40 and 41); cysteine-rich protein 1 (e.g., Genbank® Accession No. NM--001311; SEQ ID NOs: 42 and 43); claudin 4 (e.g., Genbank® Accession No. NM--001305; SEQ ID NOs: 44 and 45); HOST-2 (e.g., SEQ ID NO: 46); claudin 3 (e.g., Genbank® Accession No. NM--001306; SEQ ID NOs: 47 and 48); ceruloplasmin (ferroxidase) (e.g., Genbank® Accession No. M13699; SEQ ID NOs: 49 and 50); glutathione perroxidase 3 (e.g., Genbank® Accession No. D00632; SEQ ID NOs: 51 and 52); secretory leukocyte protease inhibitor (e.g., Genbank® Accession No. AF114471; SEQ ID NOs: 53 and 54); HOST-1 (FLJ14303 fis) (e.g., Genbank® Accession No. AK024365; SEQ ID NOs: 55 and 56); interferon-induced transmembrane protein 1 (e.g., Genbank® Accession No. J04164; SEQ ID NOs: 57 and 58); apolipoprotein J/clusterin (e.g., Genbank® Accession No. J02908; SEQ ID NOs: 59 and 60); serine protease inhibitor, Kunitz type 2 (e.g., Genbank® Accession No. AF027205; SEQ ID NOs: 61 and 62); apoplipoprotein E (e.g., Genbank® Accession No. BC003557; SEQ ID NOs: 63 and 64); complement component 1, r subcomponent (e.g., Genbank® Accession No. M14058; SEQ ID NOs: 65 and 66); G1P3/IFI-6-16 (e.g., Genbank® Accession No. X02492; SEQ ID NOs: 67 and 68); Lutheran blood group (BCAM) (e.g., Genbank® Accession No. X83425; SEQ ID NOs: 69 and 70); collagen type III, alpha-1 (e.g., Genbank® Accession No. X14420; SEQ ID NOs: 71 and 72); Mal (T cell differentiation protein) (e.g., Genbank® Accession No. M15800; SEQ ID NOs: 73 and 74); collagen type I, alpha-2 (e.g., Genbank® Accession No. J03464; SEQ ID NOs: 75 and 76); HLA-DPB1 (e.g., Genbank® Accession No. J03041; SEQ ID NOs: 77 and 78); bone marrow stroma antigen 2 (BST-2) (e.g., Genbank® Accession No. D28137; SEQ ID NOs: 79 and 80); and HLA-Cw (e.g., Genbank® Accession No. X17093; SEQ ID NOs: 81 and 82).
[0055]Still other examples of ovarian tumor marker genes of the invention include HOST-3 (Claudin-16) (e.g., Genbank® Accession No. XM--003150; SEQ ID NOs: 141 and 142); HOST-4 (e.g., a gene that comprises SEQ ID NO: 144); or HOST-5 (sodium dependent transporter isoform NaPi-Iib) (e.g., Genbank® Accession No. AF146796; SEQ ID NOs: 146 and 147).
[0056]Ovarian tumor marker genes of the invention may also be described by SAGE tags, as disclosed herein. For example, an ovarian tumor marker genes of the invention can include a nucleotide sequence set forth in one of SEQ ID NOs: 84-102; 103-129; or 141, 143, or 145.
Diagnostic Uses of Ovarian Tumor Marker Genes and Polypeptides
[0057]The ovarian tumor marker genes of the invention are overexpressed in a broad variety of ovarian epithelial tumor cells, relative to normal ovarian epithelial cells. This differential expression can be exploited in diagnostic tests for ovarian cancer, in prognostic tests for assessing the relative severity of ovarian cancer, in tests for monitoring a subject in remission from ovarian cancer, and in tests for monitoring disease status in a subject being treated for ovarian cancer. Increased expression of an ovarian tumor marker gene, i.e., detection of elevated levels of ovarian tumor marker mRNA and/or protein in a subject or in a sample from a subject (i.e., levels at least three-fold higher than in a normal subject or in an equivalent sample, e.g., blood, cells, or tissue from a normal subject) is diagnostic of ovarian cancer.
[0058]One of ordinary skill in the art will understand that in some instances, higher expression of a given ovarian tumor marker gene will indicate a worse prognosis for a subject having ovarian cancer. For example, relatively higher levels of ovarian tumor marker gene expression may indicate a relative large primary tumor, a higher tumor burden (e.g., more metastases), or a relatively more malignant tumor phenotype.
[0059]The diagnostic and prognostic methods of the invention involve using known methods, e.g., antibody-based methods to detect ovarian tumor marker polypeptides and nucleic acid hybridization- and/or amplification-based methods to detect ovarian tumor marker mRNA. One of ordinary skill in the art will understand how to choose the most appropriate method for measuring ovarian tumor marker expression, based upon the combination of the particular ovarian tumor marker to be measured, the information desired, and the particular type of diagnostic test to be used. For example, immunological tests such as enzyme-linked immunosorbent assays (ELISA), radioimmunoassays (RIA), and Western blots may be used to measure the level of an ovarian tumor marker polypeptide in a body fluid sample (such as blood, serum, sputum, urine, or peritoneal fluid). Biopsies, tissue samples, and cell samples (such as ovaries, lymph nodes, ovarian surface epithelial cell scrapings, lung biopsies, liver biopsies, and any fluid sample containing cells (such as peritoneal fluid, sputum, and pleural effusions) may be tested by disaggregating and/or solubilizing the tissue or cell sample and subjecting it to an immunoassay for polypeptide detection, such as ELISA, RIA, or Western blotting. Such cell or tissue samples may also be analyzed by nucleic acid-based methods, e.g., reverse transcription-polymerase chain reaction (RT-PCR) amplification, Northern hybridization, or slot- or dot-blotting. To visualize the three-dimensional distribution of tumor cells within a tissue sample, diagnostic tests that preserve the tissue structure of a sample, e.g., immunohistological staining, in situ RNA hybridization, or in situ RT-PCR may be employed to detect ovarian tumor marker polypeptide or mRNA, respectively. For in vivo localization of tumor masses, imaging tests such as magnetic resonance imaging (MRI) may be employed by introducing into the subject an antibody that specifically binds an ovarian tumor marker polypeptide (particularly a cell surface-localized polypeptide), wherein the antibody is conjugated or otherwise coupled to a paramagnetic tracer (or other appropriate detectable moiety, depending upon the imaging method used); alternatively, localization of an unlabeled tumor marker-specific antibody may be detected using a secondary antibody coupled to a detectable moiety.
[0060]The skilled artisan will understand that selection of a particular ovarian tumor marker polypeptide as the target for detection in any diagnostic test and selection of the particular test to be employed will depend upon the type of sample to be tested. For example, measurement of ovarian tumor marker polypeptides that are secreted from a cell (e.g., HDGF) may be preferred for serological tests. Moreover, ovarian tumor marker polypeptides that are not normally actively secreted from cells (e.g., intracellular or membrane-associated polypeptides), but that are found in blood and other fluid samples (e.g., peritoneal fluid or washings) at detectable levels in subjects having tumors (e.g., due to tumor cell lysis) are considered to be soluble ovarian tumor marker polypeptides that may be used in serological and other diagnostic assays of body fluids.
[0061]A fluid sample (such as blood, peritoneal fluid, sputum, or pleural effusions) from a subject with ovarian cancer, particularly metastatic cancer, may contain one or more ovarian tumor cells or ovarian tumor cell fragments. The presence of such cells or fragments allows detection of a tumor mRNA using an RT-PCR assay, e.g., but not limited to, real-time quantitative RT-PCR using the Taqman method (Heid and Stevens, Genome Res. 6:986-94, 1996).
[0062]In addition, since rapid tumor cell destruction often results in autoantibody generation, the ovarian tumor markers of the invention may be used in serological assays (e.g., an ELISA test of a subject's serum) to detect autoantibodies against ovarian tumor markers in a subject. Ovarian tumor marker polypeptide-specific autoantibody levels that are at least about 3-fold higher (and preferably at least 5-fold or 7-fold higher, most preferably at least 10-fold or 20-fold higher) than in a control sample are indicative of ovarian cancer.
[0063]Cell-surface localized, intracellular, and secreted ovarian tumor marker polypeptides may all be employed for analysis of biopsies, e.g., tissue or cell samples (including cells obtained from liquid samples such as peritoneal cavity fluid) to identify a tissue or cell biopsy as containing ovarian tumor cells. A biopsy may be analyzed as an intact tissue or as a whole-cell sample, or the tissue or cell sample may be disaggregated and/or solubilized as necessary for the particular type of diagnostic test to be used. For example, biopsies or samples may be subjected to whole-tissue or whole-cell analysis of ovarian tumor marker polypeptide or mRNA levels in situ, e.g., using immunohistochemistry, in situ mRNA hybridization, or in situ RT-PCR. The skilled artisan will know how to process tissues or cells for analysis of polypeptide or mRNA levels using immunological methods such as ELISA, immunoblotting, or equivalent methods, or analysis of mRNA levels by nucleic acid-based analytical methods such as RT-PCR, Northern hybridization, or slot- or dot-blotting.
[0064]All of the above methods are well-known in the art. For example, generation of antibodies against a given protein, ELISA, immunoblotting, selection of nucleic acid primers for PCR, RT-PCR, Northern hybridization, in situ hybridization, in situ RT-PCR, and slot- or dot-blotting are all well-described in Current Protocols in Molecular Biology (Ausubel et al., eds.), John Wiley and Sons, Inc., 1996.
Kits for Measuring Expression Levels of Ovarian Tumor Marker Genes
[0065]The present invention provides kits for detecting an increased expression level of an ovarian tumor marker gene in a subject. A kit for detecting ovarian tumor marker polypeptide will contain an antibody that specifically binds a chosen ovarian tumor marker polypeptide. A kit for detecting ovarian tumor marker mRNA will contain one or more nucleic acids (e.g., one or more oligonucleotide primers or probes, DNA probes, RNA probes, or templates for generating RNA probes) that specifically hybridize with a chosen ovarian tumor marker mRNA.
[0066]Particularly, the antibody-based kit can be used to detect the presence of, and/or measure the level of, an ovarian tumor marker polypeptide that is specifically bound by the antibody or an immunoreactive fragment thereof. The kit can include an antibody reactive with the antigen and a reagent for detecting a reaction of the antibody with the antigen. Such a kit can be an ELISA kit and can contain a control (e.g., a specified amount of a particular ovarian tumor marker polypeptide), primary and secondary antibodies when appropriate, and any other necessary reagents such as detectable moieties, enzyme substrates and color reagents as described above. The diagnostic kit can, alternatively, be an immunoblot kit generally comprising the components and reagents described herein.
[0067]A nucleic acid-based kit can be used to detect and/or measure the expression level of an ovarian tumor marker gene by detecting and/or measuring the amount of ovarian tumor marker mRNA in a sample, such as a tissue or cell biopsy (e.g., an ovary, ovarian cell scrapings, a bone marrow biopsy, a lung biopsy or lung aspiration, etc.). For example, an RT-PCR kit for detection of elevated expression of an ovarian tumor marker gene will contain oligonucleotide primers sufficient to perform reverse transcription of ovarian tumor marker mRNA to cDNA and PCR amplification of ovarian tumor marker cDNA, and will preferably also contain control PCR template molecules and primers to perform appropriate negative and positive controls, and internal controls for quantitation. One of ordinary skill in the art will understand how to select the appropriate primers to perform the reverse transcription and PCR reactions, and the appropriate control reactions to be performed. Such guidance is found, for example, in F. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y., 1997. Numerous variations of RT-PCR are known in the art. One example of a quantitative RT-PCR assay is the real-time quantitative RT-PCR assay described by Heid and Stevens (Genome Res. 6:986-94, 1996), in which the primers are labeled by a fluorescent tag, and the amount of amplification product may be measured in a Taqman® apparatus (Perkin-Elmer; Norwal, Conn.).
Targeted Delivery of Immunotoxins to Ovarian Tumor Cells
[0068]The tumor marker genes of the invention can be employed as therapeutic targets for the treatment or prevention of ovarian cancer. For example, an antibody molecule that specifically binds a cell surface-localized ovarian tumor marker polypeptide can be Conjugated to a radioisotope or other toxic compound. Antibody conjugates are administered to the subject such that the binding of the antibody to its cognate ovarian tumor marker polypeptide results in the targeted delivery of the therapeutic compound to ovarian tumor cells, thereby treating an ovarian cancer.
[0069]The therapeutic moiety can be a toxin, radioisotope, drug, chemical, or a protein (see, e.g., Bera et al. "Pharmacokinetics and antitumor activity of a bivalent disultide-stabilized Fv immunotoxin with improved antigen binding to erbB2" Cancer Res. 59:4018-4022 (1999)). For example, the antibody can be linked or conjugated to a bacterial toxin (e.g., diptheria toxin, pseudomonas exotoxin A, cholera toxin) or plant toxin (e.g., ricin toxin) for targeted delivery of the toxin to a cell expressing the ovarian tumor marker. This immunotoxin can be delivered to a cell and upon binding the cell surface-localized ovarian tumor marker polypeptide, the toxin conjugated to the ovarian tumor marker-specific antibody will be delivered to the cell.
[0070]In addition, for any ovarian tumor polypeptide for which there is a specific ligand (e.g., a ligand that binds a cell surface-localized protein), the ligand can be used in place of an antibody to target a toxic compound to an ovarian tumor cell, as described above.
Antibodies that Specifically Bind Ovarian Tumor Marker Polypeptides
[0071]The term "antibodies" is used herein in a broad sense and includes both polyclonal and monoclonal antibodies. In addition to intact immunoglobulin molecules, also included in the term "antibodies" are fragments or polymers of those immunoglobulin molecules and humanized versions of immunoglobulin molecules, so long as they exhibit any of the desired properties (e.g., specific binding of an ovarian tumor marker polypeptide, delivery of a toxin to an ovarian tumor cell expressing an ovarian tumor marker gene at an increased level, and/or inhibiting the activity of an ovarian tumor marker polypeptide) described herein.
[0072]Whenever possible, the antibodies of the invention may be purchased from commercial sources. The antibodies of the invention may also be generated using well-known methods. The skilled artisan will understand that either full length ovarian tumor marker polypeptides or fragments thereof may be used to generate the antibodies of the invention. A polypeptide to be used for generating an antibody of the invention may be partially or fully purified from a natural source, or may be produced using recombinant DNA techniques. For example, a cDNA encoding an ovarian tumor marker polypeptide, or a fragment thereof, can be expressed in prokaryotic cells (e.g., bacteria) or eukaryotic cells (e.g., yeast, insect, or mammalian cells), after which the recombinant protein can be purified and used to generate a monoclonal or polyclonal antibody preparation that specifically bind the ovarian tumor marker polypeptide used to generate the antibody.
[0073]In addition, one of skill in the art will know how to choose an antigenic peptide for the generation of monoclonal or polyclonal antibodies that specifically bind ovarian tumor antigen polypeptides. Antigenic peptides for use in generating the antibodies of the invention are chosen from non-helical regions of the protein that are hydrophilic. The PredictProtein Server or an analogous program may be used to select antigenic peptides to generate the antibodies of the invention. In one example, a peptide of about fifteen amino acids may be chosen and a peptide-antibody package may be obtained from a commercial source such as Anaspec (San Jose, Calif.). One of skill in the art will know that the generation of two or more different sets of monoclonal or polyclonal antibodies maximizes the likelihood of obtaining an antibody with the specificity and affinity required for its intended use (e.g., ELISA, immunohistochemistry, in vivo imaging, immunotoxin therapy). The antibodies are tested for their desired activity by known methods, in accordance with the purpose for which the antibodies are to be used (e.g., ELISA, immunohistochemistry, immunotherapy, etc.; for further guidance on the generation and testing of antibodies, see, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1988). For example, the antibodies may be tested in ELISA assays, Western blots, immunohistochemical staining of formalin-fixed ovarian cancers or frozen tissue sections. After their initial in vitro characterization, antibodies intended for therapeutic or in vivo diagnostic use are tested according to known clinical testing methods.
[0074]The term "monoclonal antibody" as used herein refers to an antibody obtained from a substantially homogeneous population of antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. The monoclonal antibodies herein specifically include "chimeric" antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired antagonistic activity (See, U.S. Pat. No. 4,816,567 and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)).
[0075]Monoclonal antibodies of the invention may be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro.
[0076]The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
[0077]In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly, Fab fragments, can be accomplished using routine techniques known in the art. For instance, digestion can be performed using papain. Examples of papain digestion are described in WO 94/29348 published Dec. 22, 1994 and U.S. Pat. No. 4,342,566. Papain digestion of antibodies typically produces two identical antigen binding fragments, called Fab fragments, each with a single antigen binding site, and a residual Fc fragment. Pepsin treatment yields a fragment that has two antigen combining sites and is still capable of cross-linking antigen.
[0078]The antibody fragments, whether attached to other sequences or not, can also include insertions, deletions, substitutions, or other selected modifications of particular regions or specific amino acids residues, provided the activity of the fragment is not significantly altered or impaired compared to the nonmodified antibody or antibody fragment. These modifications can provide for some additional property, such as to remove/add amino acids capable of disulfide bonding, to increase its bio-longevity, to alter its secretory characteristics, etc. In any case, the antibody fragment must possess a bioactive property, such as binding activity, regulation of binding at the binding domain, etc. Functional or active regions of the antibody may be identified by mutagenesis of a specific region of the protein, followed by expression and testing of the expressed polypeptide. Such methods are readily apparent to a skilled practitioner in the art and can include site-specific mutagenesis of the nucleic acid encoding the antibody fragment. (Zoller, M. J. Curr. Opin. Biotechnol. 3:348-354, 1992).
[0079]The antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab' or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., Nature, 321:522-525 (1986), Reichmann et al., Nature, 332:323-327 (1988), and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).
[0080]Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986), Riechmann et al., Nature, 332:323-327 (1988), Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
[0081]Transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production can be employed. For example, it has been described that the homozygous deletion of the antibody heavy chain joining region (J(H)) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array in such germ-line mutant mice will result in the production of human antibodies upon antigen challenge (see, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551-255 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggermann et al., Year in Immuno., 7:33 (1993)). Human antibodies can also be produced in phage display libraries (Hoogenboom et al., J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). The techniques of Cote et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147(1):86-95 (1991)].
Administration of Therapeutic and Diagnostic Antibodies
[0082]Antibodies of the invention are preferably administered to a subject in a pharmaceutically acceptable carrier. Suitable carriers and their formulations are described in Remington's Pharmaceutical Sciences, 16th ed., 1980, Mack Publishing Co., edited by Oslo et al. Typically, an appropriate amount of a pharmaceutically-acceptable salt is used in the formulation to render the formulation isotonic. Examples of the pharmaceutically-acceptable carrier include saline, Ringer's solution and dextrose solution. The pH of the solution is preferably from about 5 to about 8, and more preferably from about 7 to about 7.5. Further carriers include sustained release preparations such as semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, liposomes or microparticles. It will be apparent to those persons skilled in the art that certain carriers may be more preferable depending upon, for instance, the route of administration and concentration of antibody being administered.
[0083]The antibodies can be administered to the subject, patient, or cell by injection (e.g., intravenous, intraperitoneal, subcutaneous, intramuscular), or by other methods such as infusion that ensure its delivery to the bloodstream in an effective form. The antibodies may also be administered by intratumoral or peritumoral routes, to exert local as well as systemic therapeutic effects. Local or intravenous injection is preferred.
[0084]Effective dosages and schedules for administering the antibodies may be determined empirically, and making such determinations is within the skill in the art. Those skilled in the art will understand that the dosage of antibodies that must be administered will vary depending on, for example, the subject that will receive the antibody, the route of administration, the particular type of antibody used and other drugs being administered. Guidance in selecting appropriate doses for antibodies is found in the literature on therapeutic uses of antibodies, e.g., Handbook of Monoclonal Antibodies, Ferrone et al., eds., Noges Publications, Park Ridge, N.J., (1985) ch. 22 and pp. 303-357; Smith et al., Antibodies in Human Diagnosis and Therapy, Haber et al., eds., Raven Press, New York (1977) pp. 365-389. A typical daily dosage of the antibody used alone might range from about 1 μg/kg to up to 100 mg/kg of body weight or more per day, depending on the factors mentioned above.
[0085]Following administration of an antibody for treating ovarian cancer, the efficacy of the therapeutic antibody can be assessed in various ways well known to the skilled practitioner. For instance, the size, number, and/or distribution of ovarian tumors in a subject receiving treatment may be monitored using standard tumor imaging techniques. A therapeutically-administered antibody that arrests tumor growth, results in tumor shrinkage, and/or prevents the development of new tumors, compared to the disease course that would occurs in the absence of antibody administration, is an efficacious antibody for treatment of ovarian cancer.
Antisense and Gene Therapy Approaches for Inhibiting Ovarian Tumor Marker Gene Function
[0086]Because the ovarian tumor marker genes of the invention are highly expressed in ovarian tumor cells and are expressed at extremely low levels in normal ovarian cells, inhibition of ovarian tumor marker expression or polypeptide activity may be integrated into any therapeutic strategy for treating or preventing ovarian cancer.
[0087]The principle of antisense therapy is based on the hypothesis that sequence-specific suppression of gene expression (via transcription or translation) may be achieved by intracellular hybridization between genomic DNA or mRNA and a complementary antisense species. The formation of such a hybrid nucleic acid duplex interferes with transcription of the target tumor antigen-encoding genomic DNA, or processing/transport/translation and/or stability of the target tumor antigen mRNA.
[0088]Antisense nucleic acids can be delivered by a variety of approaches. For example, antisense oligonucleotides or antisense RNA can be directly administered (e.g., by intravenous injection) to a subject in a form that allows uptake into tumor cells. Alternatively, viral or plasmid vectors that encode antisense RNA (or RNA fragments) can be introduced into cells in vivo. Antisense effects can also be induced by sense sequences; however, the extent of phenotypic changes are highly variable. Phenotypic changes induced by effective antisense therapy are assessed according to changes in, e.g., target mRNA levels, target protein levels, and/or target protein activity levels.
[0089]In a specific example, inhibition of ovarian tumor marker function by antisense gene therapy may be accomplished by direct administration of antisense ovarian tumor marker RNA to a subject. The antisense tumor marker RNA may be produced and isolated by any standard technique, but is most readily produced by in vitro transcription using an antisense tumor marker cDNA under the control of a high efficiency promoter (e.g., the T7 promoter). Administration of antisense tumor marker RNA to cells can be carried out by any of the methods for direct nucleic acid administration described below.
[0090]An alternative strategy for inhibiting ovarian tumor marker polypeptide function using gene therapy involves intracellular expression of an anti-ovarian tumor marker antibody or a portion of an anti-ovarian tumor marker antibody. For example, the gene (or gene fragment) encoding a monoclonal antibody that specifically binds to an ovarian tumor marker polypeptide and inhibits its biological activity is placed under the transcriptional control of a specific (e.g., tissue- or tumor-specific) gene regulatory sequence, within a nucleic acid expression vector. The vector is then administered to the subject such that it is taken up by ovarian tumor cells or other cells, which then secrete the anti-ovarian tumor marker antibody and thereby block biological activity of the ovarian tumor marker polypeptide. Preferably, the ovarian tumor marker polypeptide is present at the extracellular surface of ovarian tumor cells.
Nucleic Acid Delivery
[0091]In the methods described above which include the administration and uptake of exogenous DNA into the cells of a subject (i.e., gene transduction or transfection), the nucleic acids of the present invention can be in the form of naked DNA or the nucleic acids can be in a vector for delivering the nucleic acids to the cells for inhibition of ovarian tumor marker protein expression. The vector can be a commercially available preparation, such as an adenovirus vector (Quantum Biotechnologies, Inc. (Laval, Quebec, Canada). Delivery of the nucleic acid or vector to cells can be via a variety of mechanisms. As one example, delivery can be via a liposome, using commercially available liposome preparations such as LIPOFECTIN, LIPOFECTAMINE (GIBCO-BRL, Inc., Gaithersburg, Md.), SUPERFECT (Qiagen, Inc. Hilden, Germany) and TRANSFECTAM (Promega Biotec, Inc., Madison, Wis.), as well as other liposomes developed according to procedures standard in the art. In addition, the nucleic acid or vector of this invention can be delivered in vivo by electroporation, the technology for which is available from Genetronics, Inc. (San Diego, Calif.) as well as by means of a SONOPORATION machine (ImaRx Pharmaceutical Corp., Tucson, Ariz.).
[0092]As one example, vector delivery can be via a viral system, such as a retroviral vector system which can package a recombinant retroviral genome (see e.g., Pastan et al., Proc. Natl. Acad. Sci. U.S.A. 85:4486, 1988; Miller et al., Mol. Cell. Biol. 6:2895, 1986). The recombinant retrovirus can then be used to infect and thereby deliver to the infected cells antisense nucleic acid that inhibits expression of an ovarian tumor marker gene. The exact method of introducing the altered nucleic acid into mammalian cells is, of course, not limited to the use of retroviral vectors. Other techniques are widely available for this procedure including the use of adenoviral vectors (Mitani et al., Hum. Gene Ther. 5:941-948, 1994), adeno-associated viral (AAV) vectors (Goodman et al., Blood 84:1492-1500, 1994), lentiviral vectors (Naidini et al., Science 272:263-267, 1996), pseudotyped retroviral vectors (Agrawal et al., Exper. Hematol. 24:738-747, 1996). Physical transduction techniques can also be used, such as liposome delivery and receptor-mediated and other endocytosis mechanisms (see, for example, Schwartzenberger et al., Blood 87:472-478, 1996). This invention can be used in conjunction with any of these or other commonly used gene transfer methods.
[0093]As one example, if the antisense nucleic acid of this invention is delivered to the cells of a subject in an adenovirus vector, the dosage for administration of adenovirus to humans can range from about 107 to 109 plaque forming units (pfu) per injection but can be as high as 1012 pfu per injection (Crystal, Hum. Gene Ther. 8:985-1001, 1997; Alvarez and Curiel, Hum. Gene Ther. 8:597-613, 1997). Ideally, a subject will receive a single injection. If additional injections are necessary, they can be repeated at six month intervals for an indefinite period and/or until the efficacy of the treatment has been established.
[0094]Parenteral administration of the nucleic acid or vector of the present invention, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution of suspension in liquid prior to injection, or as emulsions. A more recently revised approach for parenteral administration involves use of a slow release or sustained release system such that a constant dosage is maintained. See, e.g., U.S. Pat. No. 3,610,795, which is incorporated by reference herein. For additional discussion of suitable formulations and various routes of administration of therapeutic compounds, see, e.g., Remington: The Science and Practice of Pharmacy (19th ed.) ed. A. R. Gennaro, Mack Publishing Company, Easton, Pa. 1995.
Example I
Identification of Ovarian Tumor Marker Genes Using SAGE
[0095]Serial Analysis of Gene Expression is a method that enables the global analysis of gene expression from a tissue of interest (Velculescu et al., Science 270:484-487, 1995; Zhang et al., Science 276:1268-72, 1997). The advantages of SAGE over cDNA arrays, another method for the global analysis of gene expression, include: 1) the possibility of identifying novel genes, 2) determination of absolute levels of gene expression, which is difficult in hybridization-based techniques, and, 3) examination of gene expression as a whole instead of as a subset of genes.
[0096]Construction and Screening of SAGE Libraries
[0097]The SAGE technique has been described in detail (Velculescu et al., Science 270:484-487, 1995). The SAGE libraries disclosed herein were made as described by Velculescu, supra. First, total RNA was purified from the cells. Poly A+ RNA was then isolated and reverse transcription was performed using a biotinylated poly dT primer for first strand synthesis. The cDNA mixture was cut with NlaIII and the biotinylated 3' fragments were collected using streptavidin beads. The beads were divided into two aliquots (A and B) and linkers containing PCR primer sites and a site for class II restriction enzyme BsmFI were ligated to the DNA fragments attached to the beads from samples A and B. The mixture was treated with the restriction enzyme BsmFI, which recognizes the site in the linker but cuts 14 by downstream. The resulting fragments contained the linker and 10 by of "cDNA sequence" that is referred to as "tag". The tags from samples A and B were ligated together to form ditags, which were then amplified by PCR. Any repeated ditag (tags containing the same two individual tags) are an indication of PCR bias and were eliminated by the SAGE software (Velculescu et al., Science 270:484-487, 1995; Zhang et al., Science 276:1268-72, 1997). The tags were concatemerized and cloned into a sequencing vector. Sequencing revealed the identity and frequency of the different tags. As described above, the 10 by tag is sufficient to identify cDNA and the frequency of a particular tag represents the frequency of a particular message in the population. The SAGE software developed in the laboratories of Bert Vogelstein and Kenneth Kinzler at Johns Hopkins extracts the tags from the raw sequencing data, matches the tags to the corresponding genes (present in Genbank®) and makes frequency comparisons between the tags from an individual library or other libraries.
[0098]Verification of Ovarian Tumor Marker Genes Identified by SAGE
[0099]The most promising candidates are selected and verified by any expression analysis method, e.g., Northern analysis or reverse transcription-polymerase chain reaction (RT-PCR). For Northern analysis, radioactive probes are generated from expressed sequence tags (ESTs) corresponding to the candidate genes and are used to hybridize to membranes containing total RNA from various ovarian cancers and controls. The candidates may also be verified by real-time PCR using the Taqman® method (Heid and Stevens, Genome Res. 6:986-94, 1996). Amplification primers and fluorescent probes are synthesized according to instructions from the manufacturer (Perkin-Elmer; Norwalk, Conn.). Quantitative PCR is performed using a PE 5700 apparatus or an analogous instrument.
[0100]Sources of RNA for SAGE Library Construction
[0101]Eleven SAGE libraries were constructed, as shown in Table 1. The human ovarian surface epithelial cell (HOSE) library was constructed using RNA from HOSE cells that were obtained by gently scraping the ovarian surface from a hysterectomy patient followed by short-term in vitro culture (three passages) of the cells. Three of the ovarian tumor libraries (designated OVT6, OVT7, and OVT8) were constructed using RNA from one of three primary high grade serous adenocarcinomas. Libraries from individual ovarian tumor cell lines were generated using RNA from OV1063 (derived from an ovarian papillary adenocarcinoma; obtained from the American Type Culture Collection (ATCC; Manassas, Va.; CRL-2183)); ES-2 (derived from a clear cell adenocarcinoma; from the ATCC; CRL-1978); A2780 (derived from an ovarian cancer; obtained from Dr. Vilhelm Bohr, Baltimore, Md.); OVCA432 (derived from an ovarian serous cystadenocarcinoma; Bast et al., J. Clin. Invest. 68:1331-1337, 1981); ML10 (derived from an ovarian cystadenoma; Luo et al. Gyn. Oncol., 67:277-284, 1997); or IOSE29 (simian virus 40-immortalized OSE cells; Auersperg et al., Proc. Natl. Acad. Sci. USA 96:6249-6254, 1999).
[0102]The pooled library was generated using RNA from a pool of 10 cell lines: A2780; BG-1 (poorly differentiated ovarian cancer; obtained from Dr. Carl Barrett, Durham, N.C.); ES-2; OVCA432; MDAH 2774 (endometrioid adenocarcinoma; obtained from the ATCC); and five cell lines obtained from Dr. Michael Birrer (Rockville, Md.): AD10 (an adriamycin-resistant derivative of A2780); A222 (ovarian carcinoma); UCI101 (papillary ovarian adenocarcinoma); UCI107 (papillary ovarian adenocarcinoma); and A224 (ovarian carcinoma).
TABLE-US-00001 TABLE 1 Library Seq Tags (raw) Tags Genes At least 2 HOSE 2,290 49,394 47,881 16,034 4,532 OVT6 2,104 43,891 41,620 18,476 4,799 OVT7 2,089 57,725 53,898 19,523 5,669 OVT8 2,076 36,813 32,494 16,363 3,815 OV1063 2,146 41,131 37,862 15,231 4,746 ES-2 1,775 36,430 35,352 14,739 3,952 A2780 ** 475 9,269 8,246 5,179 1,021 OVCA432 384 3,011 2,824 1,940 310 Pool 2,201 10,952 10,554 5,956 1,627 ML10 1,935 61,083 55,700 18,727 6,637 IOSE29 * * * * * TOTAL 17,475 349,699 326,431 75,056 25,071 * To be sequenced ** Incomplete
[0103]Results of SAGE
[0104]Eleven ovarian SAGE libraries were constructed, ten of which have been sequenced to date. The overall data are summarized in Table 1 above. For each SAGE library, Table 1 shows the number of SAGE library clones sequenced, the number of raw tags sequenced, the number of tags obtained after correction for PCR bias, the total number of genes that are represented by the corrected pool of tags, and the number of genes that were represented at least twice in the corrected pool of tags. For most libraries, 35,000-61,000 tags were obtained, yielding anywhere from 14,000-20,000 genes. In total, 75,056 genes were identified.
[0105]In order to identify genes that are up-regulated in ovarian tumors and that may serve as diagnostic markers and therapeutic targets, we compared gene expression between the normal ovarian cells (HOSE) and the cancer cells (OVT6, OVT7, OVT8, OV1063, ES2, A2780, Pool). OVCA432 was not included in this analysis because of the poor number of tags obtained from this library. We looked for genes for which expression was absent or low (frequency smaller or equal to 2 tags per 100,000) in HOSE and at least 7- to 10-fold up-regulated in the majority of the tumor libraries, and detected a number of genes matching these criteria. Table 2 shows the libraries that were screened, the SAGE tags that were identified in the library screens, along with their corresponding genes and Genbank® accession numbers, and the relative expression of each gene in each library. Any one of these ovarian tumor marker genes may be used in the diagnostic and/or therapeutic methods of the invention.
TABLE-US-00002 TABLE 2 SEQ.ID NO.(Tag) Tag OVT8 OVT7 PVT6 A2780 OV1063 ES2 Pool HOSE Gene Product Genbank® 83 TCAGACGCAG 52 149 91 97 49 214 82 2 Prothymosin, alpha M14483 84 TTATGGGATC 57 80 57 140 83 126 274 2 G protein, beta polypeptide 2-like M24194 1 85 CCCGCCCCCG 136 166 52 22 7 0 146 2 Lutheran blood group (B-CAM) NM_005581 86 GAGGAAGAAG 14 38 57 76 53 80 100 2 Tumor rejection antigen-1 (gp96) 1 NM_003299 87 GAAGCTTTGC 27 43 43 22 27 66 73 2 HSP90 AA071048 88 TACCAGTGTA 30 16 14 140 22 30 100 2 HSP60 M22382 89 TCTTCTCCCT 8 42 32 22 27 25 46 2 Hepatoma-Derived Growth Factor D16431 (HDGF) 90 TTGGCTTTTC 14 12 71 32 10 22 18 0 DKFZp5860031 AL117237 91 GGAAGGGAGG 30 14 16 11 12 44 55 2 CD63 antigen (melanoma 1 antigen) AA041408 92 AAGCCAGCCC 19 17 36 22 17 27 18 2 Protein kinase C substrate 80K-H J03075 93 TTTCAGATTG 16 26 25 32 22 19 18 0 Polymerase II cofactor 4 (PC4) X79805 94 GCATAGGCTG 11 24 25 22 12 27 9 2 Tu translation elong. factor L38995 (mitochondrial) 95 TTTGTTAATT 30 16 16 43 17 19 18 2 hNRP H1 L22009 96 GAGACTCCTG 11 23 23 22 12 3 64 2 Solute carrier family 2 AF070544 97 CCTGTAATTC 19 10 27 32 15 8 27 2 KIAA0591 protein AB011163 98 GTGGTGCGTG 16 10 21 11 15 19 27 2 X-ray repair protein AF035587 99 TTGGACGTGG 11 19 9 11 27 16 18 2 ATP synthase (delta subunit) AA524164 100 CTTAAGGATT 11 12 18 11 15 27 9 0 DKFZP564M2423 protein BC003049 101 GTCTGTGAGA 8 17 9 22 12 22 18 0 Growth factor-regul. tyr kinase D84064 substrate 102 GAAACTGAAG 16 10 14 32 12 3 9 2 eIF-2-associated p67 U29607
Example II
Identification of Additional Ovarian Tumor Marker Genes Using SAGE
[0106]Serial Analysis of Gene Expression (SAGE) was used to generate global gene expression profiles from various ovarian cell lines and tissues, including primary cancers, ovarian surface epithelial (OSE) cells and cystadenoma cells. The profiles were used to compare overall patterns of gene expression and identify differentially expressed genes. We have sequenced a total of 385,000 tags, yielding over 56,000 genes expressed in ten different libraries derived from ovarian tissues.
[0107]In general, ovarian cancer cell lines showed relatively high levels of similarity to libraries from other cancer cell lines, regardless of the tissue of origin (ovarian or colon), indicating that these lines had lost many of their tissue specific expression patterns. In contrast, immortalized OSE (IOSE) and ovarian cystadenoma cells showed much higher similarity to primary ovarian carcinomas as compared to primary colon carcinomas. Primary tissue specimens therefore appeared to be a better model for gene expression analyses. Using the expression profiles described above and stringent selection criteria, we have identified a number of genes highly differentially expressed between non-transformed ovarian epithelia and ovarian carcinomas. Some of the genes identified are already known to be overexpressed in ovarian cancer but several represent novel candidates. Many of the genes up-regulated in ovarian cancer represent surface or secreted proteins such as Claudin-3 and -4, HE4, Mucin-1, Ep-CAM and Mesothelin. The genes encoding apolipoprotein E (ApoE) and apolipoprotein J (ApoJ), two proteins involved in lipid homeostasis are among the genes highly up-regulated in ovarian cancer. Selected SAGE results were further validated through immunohistochemical analysis of ApoJ, Claudin-3, Claudin-4 and Ep-CAM in archival material. These experiments provided additional evidence of the relevance of our findings in vivo.
A) Methods
[0108]Cell Culture and Tissue Samples
[0109]Ovarian cancer cell lines OV1063, ES2, and MDAH 2774 were obtained from the American Type Culture Collection (Manassas, Va.). Cell lines A222, AD10, UCI101 and UCI107 were obtained from Dr. Michael Birrer (Rockville, Md.). Cell line A2780 was obtained from Dr. Vilhelm Bohr (Baltimore, Md.). The SV40-immortalized cell lines IOSE29 (Auersperg, N., et al. Proc. Natl Acad. Sci. USA, 96:6249-6254, 1999) and ML10 (Luo, M. P., et al. Gynecol. Oncol. 67:277-284, 1997) were kindly provided by Dr. Nelly Auersperg (British Columbia, Canada) and Dr. Louis Dubeau (Los Angeles, Calif.), respectively. Except for IOSE29, ML-10 and HOSE-4, all cell lines were cultured in McCoy's 5A growth medium (Life Technologies, Inc, Gaithersburg, Md.) supplemented with 10% fetal bovine serum (FBS) and antibiotics (100 U/ml of Penicillin and 100 ug/ml Streptomycin). IOSE29 was cultivated in Medium 199 (Life Technologies, Inc, Gaithersburg, Md.) supplemented with 5% newborn calf serum (NCS). ML10 was cultivated in MEM (Life Technologies, Inc, Gaithersburg, Md.) supplemented with 10% FBS and antibiotics as above.
[0110]Three high-grade serous ovarian cancer specimens, OVT6, OVT7, and OVT8, composed of at least 80% tumor cells as determined by histopathology, were chosen for SAGE. The ovarian tumor samples were frozen immediately after surgical resection and were obtained form the Johns Hopkins gynecological tumor bank in accordance with institutional guidelines on the use of human tissue. Normal human ovarian surface epithelial (HOSE-4) cells were cultured from the right ovary of a patient undergoing hysterectomy and bilateral salpingo-oophorectomy for benign disease. The OSE cells were obtained by gently scraping the surface of the ovary with a cytobrush and grown for 2 passages in RPMI 1640 medium supplemented with 10% FBS and 10 ug/ml insulin-like growth factor (IGF).
[0111]Serial Analysis of Gene Expression (SAGE)
[0112]Total RNA was obtained from guanidinium isothiocyanate cell lysates by centrifugation on CsCl. Polyadenylated mRNA was purified from total RNA using the Messagemaker® kit (Life Technologies, Gaithersburg, Md.) and the cDNA generated using the cDNA Synthesis System (Life Technologies, Gaithersburg, Md.). For the "Pool" library, 100 ug of total RNA from each of 10 ovarian cancer cell lines (A222, A2780, AD10, BG-1, ES-2, MDAH 2774, OVCA432, OV1063, UCI101 and UCI107) were combined and mRNA purified. SAGE was performed essentially as described (Velculescu, V. E., et al. Science 270:484-487, 1995) for all the libraries except HOSE. To create the HOSE library, MicroSAGE, a modified SAGE technique developed for limited sample sizes (Datson, N. A., et al. Nucleic Acids Res. 27:1300-1307, 1999), was used. Approximately 1×106 OSE cells in short-term culture were lysed and the mRNA purified directly using Oligo (dT)25 Dynabeads® (Dynal, Norway). As part of the Cancer Genome Anatomy Project (CGAP) SAGE consortium, the SAGE libraries were arrayed at the Lawrence Livermore National Laboratories and sequenced at the Washington University Human Genome Center or NISC (NIH, Bethesda, Md.). The data has been posted on the CGAP website as part of the SAGEmap database (Lal, A., et al. Cancer Res. 59:5403-5407, 1999.).
[0113]Sequence data from each library were analyzed by the SAGE software (Velculescu, V. E., et al. Science 270:484-487, 1995.) to quantify tags and identify their corresponding transcripts. The data for the colon libraries NC1, NC2, Tu98, Tu102, HCT116 and SW837 were obtained from the SAGEmap database and analyzed in the same way. Because the different libraries contained various numbers of total tags, normalization (to 100,000 tags) was performed to allow meaningful comparisons. The 10,000 most highly expressed genes in each of the 16 SAGE libraries of interest were formatted in a Microsoft Excel spreadsheet and Pearson correlation coefficients were calculated for each pair-wise comparison using normalized tag values for each library. The value for the Pearson correlation coefficient (r) represents the degree of similarity (the strength of the relationship) between two libraries and is calculated using the following equation:
r = n ( xy ) - ( x ) ( y ) { n x 2 - ( x ) 2 ] { n y 2 - ( y ) 2 ##EQU00001##
where, xi=number of tags per 100,000 for tag i in the first library and yi=number of tags per 100,000 for tag i in the second library. For our purposes n equals 10,000 since 10,000 tags are compared. A dendrogram representing the hierarchical relationships between samples was then generated using hierarchical cluster analysis as described (Eisen, M. B., et al. Proc. Natl Acad. Sci. USA 95:14863-14868, 1998). In addition, the identification of differentially expressed genes was also done using this subset of the SAGE data.
[0114]Immunohistochemistry
[0115]Deparafinized 5-um sections of formalin-fixed ovarian cancer specimens were submitted to heat-induced antigen retrieval and processed using the LSAB2 system (DAKO, Carpinteria, Calif.) with 3,3'-diaminobenzidine as the chromatogen and a hematoxylin counterstain. Monoclonal antibody against ApoJ/Clusterin (Clone CLI-9) was obtained from Alexis Corporation (San Diego, Calif.) and used at a 1:500 Dilution. Monoclonal antibody against Ep-CAM (Clone 323/A3) from NeoMarkers® (Fremont, Calif.) was used at a 1:500 dilution. Polyclonal antibodies against Claudin-3 and 4 were a generous gift from Drs. M. Furuse and S. Tsukita (Kyoto, Japan) and were used at a dilution of 1:1000.
B) Results
[0116]Ovarian SAGE Library Construction and Analysis
[0117]Gene expression alterations that arise during malignant transformation can be identified a number of ways. We chose the unbiased, comprehensive method SAGE to create global gene expression profiles from ten different ovarian sources. The expression patterns are generated by sequencing thousands of short sequence tags that contain sufficient information to uniquely identify the corresponding transcripts (Velculescu, V. E., et al. Science 270:484-487, 1995). Ten different SAGE libraries were constructed and sequenced for this study (Table 3). Our libraries included two derived from OSE cells (IOSE29 and HOSE-4), one derived from immortalized cystadenoma cells (ML-10), three primary tumors (OVT-6, -7, -8) and four libraries derived from ovarian cancer cell lines (OV-1063, ES-2, A2780 and a pool of cell lines). Almost 20,000 sequencing reactions were performed yielding a total of 384,497 tags, of which, 82,533 were unique. Accounting for a SAGE tag error rate of 6.8% (due to sequencing errors; see Zhang, L., et al., Science 276:1268-1272, 1997), we estimate that we have identified a total of 56,387 genes expressed in ovarian tissues. Except for the A2780 cell line and the pooled lines (POOL) samples, a minimum of 12,000 genes were obtained from every library. Typically, for each library, 10% of the genes were expressed at levels of at least 0.01% and, collectively, these genes accounted for more than 50% of all the tags sequenced. Among the tags that appeared more than once, up to 95% matched to known sequences in the current Genbank® nr database. For example, of the 6637 tags that appeared more than once in ML10, only 311 had no matches in the current database, excluding the EST databases.
TABLE-US-00003 TABLE 3 Summary of SAGE library analyses Library a Sequence Tags b Unique tags c Genes d ≧2 tags e HOSE 2,290 47,881 16,034 12,778 4,532 IOSE 1,912 47,549 18,004 14,771 5,681 ML10 1,935 55,700 18,727 14,939 6,637 OVT6 2,104 41,620 18,476 15,646 4,799 OVT7 2,089 53,898 19,523 15,858 5,669 OVT8 2,076 32,494 16,363 14,153 3,815 OV1063 2,146 37,862 15,231 12,656 4,746 A2780 1,332 21,587 10,717 9,249 2,761 ES2 1,775 35,352 14,739 12,335 3,952 POOL 2,201 10,554 5,956 5,238 1,627 TOTAL 19,860 384,497 82,533 56,387 28,219 a The libraries are: HOSE, human ovarian surface epithelium from short term culture; IOSE, SV40-immortalized ovarian surface epithelium; ML10, SV40-immortalized benign cystadenoma; OVT6, OVT7, and OVT8, primary ovarian serous adenocarcinomas; OV1063, A2780, and ES2, ovarian cancer cell lines; POOL, a pool of ten ovarian cancer cell lines. b Tag numbers after elimination of linker-based tags and duplicate ditags. c The number of unique tags identified in each library. d The number of genes identified after correction for sequencing errors. e The number of genes represented at least twice.
[0118]Comparisons of Global Gene Expression Between Ovarian Tissue Samples
[0119]Although progression to malignancy requires a number of gene expression changes, the transcript levels from the vast majority of genes remain unaltered (Zhang, L., et al., Science 276:1268-1272, 1997; and Alon, U., et al., Proc. Natl Acad. Sci. USA 96:6745-6750, 1999). Similarities between the global expression profiles of two given samples can be readily visualized using scatterplots and quantitated through the calculation of Pearson correlation coefficients. Scatterplots of global gene expression analysis in IOSE (ovarian) vs. ML10 (ovarian), OVT6 (ovarian), or Tu98 (colon) cells were generated using the Spotfire® Pro 4.0 software (Cambridge, Mass.) and the Pearson correlation coefficients for each pair-wise comparison of the 16 ovarian and colon SAGE libraries were calculated.
[0120]As expected, the immortalized IOSE29 and ovarian cystadenoma strain ML10 are much more similar to ovarian tumors than to colon tumors (average correlation coefficients of 0.70 vs. 0.51, respectively). In addition, IOSE29 and ML10 are very similar to each other, with a correlation coefficient of 0.82. The primary culture of OSE cells (HOSE-4) exhibited higher similarities to the ovarian tumors than to the colon tumors, although the similarity levels were much lower than those observed for IOSE29. Interestingly, HOSE-4 and IOSE29 appear to be much more distantly related than expected considering the fact that they were both derived from "normal" OSE cells. The differences in gene expression between these cells may be due to a number of factors. The age of the patient, the pathological state of the ovaries, the presence of non-epithelial cells in the culture and the fact that IOSE29 is SV40-immortalized may all contribute to the gene expression differences observed. However, it is unlikely that the main differences are due to SV40-immortalization since IOSE29 is much more similar to normal colon (a non SV40-immortalized epithelium) than HOSE-4. It is, of course, possible that the lower degree of similarity between HOSE-4 and the ovarian tumors compared to IOSE29 and ML-10 reflects the fact that HOSE-4 represents a better approximation of the normal in vivo OSE cell.
[0121]Three dendrograms were created from hierarchical cluster analysis of all colon and ovarian SAGE libraries, ovarian samples only, and non-malignant ovarian and colon epithelia as well as ovarian and colon primary tumors, using Cluster software (Eisen, M. B., et al. Proc. Natl Acad. Sci. USA 95:14863-14868, 1998). When all the samples were included in the hierarchical clustering analysis, the primary colon tumors clustered with the normal colon epithelium, but colon cell lines clustered with the ovarian specimens. Clearly, the tissue clustering that was readily apparent when comparing primary tissues or immortalized lines was lost when including carcinoma cell lines. For example, A2780, a widely used ovarian cancer cell line was just as similar to colon cancer cell lines as it was to ovarian cancer cell lines. This observation supports the idea that in the process of establishment, cell lines may lose many of the gene expression characteristics of their tissue of origin, although tissue specific expression is clearly not completely lost in cancer cell lines (Ross, D. T., et al. Nat. Genet. 24:227-235, 2000).
[0122]It is widely believed that epithelial ovarian cancer and benign ovarian cysts, while not necessarily part of a progression sequence toward malignancy, are both derived from the ovarian surface epithelium (Scully, R. E. J. Cell Biochem. 23, Suppl.:208-218, 1995). OSE cells themselves are mesodermal in origin and are believed to undergo metaplasia before progressing to neoplasia (Scully, R. E. J. Cell Biochem. 23 Suppl.:208-218, 1995; and Maines-Bandiera, S. L. and Auersperg, N. Int. J. Gynecol. Pathol. 16:250-255, 1997). On the other hand, it has also been argued that ovarian cancers are not derived from OSE but rather from the secondary Mullerian system, structures lined by Mullerian epithelium but located outside the uterus, cervix and fallopian tubes (Schink, J. C. Semin. Oncol. 26 Suppl. 1: 2-7, 1999). This hypothesis would explain some of the shortcomings of the OSE model, such as the requirement for metaplasia and the lack of well-defined precursors in the ovary. While not wishing to be bound by theory, our results are consistent with the widely accepted dogma of the OSE origin of ovarian cancer. Indeed, IOSE29 showed high degrees of similarity to the ovarian tumors and both IOSE29 and HOSE were much more closely related to ovarian than colon primary cancers.
[0123]E-cadherin expression has been proposed to be a major determinant in the formation of metaplastic OSE (Auersperg, N., et al. Proc. Natl Acad. Sci. USA, 96:6249-6254, 1999; and Maines-Bandiera, S. L. and Auersperg, N. Int. J. Gynecol. Pathol. 16:250-255, 1997). Consistent with this hypothesis, E-cadherin was absent in IOSE29, HOSE and ML10 but was expressed in all three ovarian tumors (Table 4). Other cadherins are also shown for comparison. Interestingly, VE-cadherin is absent in most libraries except in two of the pre-neoplastic ovarian samples, again suggesting metaplasia. As expected, LI-Cadherin was expressed exclusively in the colon-derived libraries. Interestingly, vimentin, a mesenchymal marker, was present in essentially all the ovarian libraries but very low in the colon specimens. Although the specificity of vimentin as a mesenchymal marker has been questioned, this suggests that OSE may retain some of their mesenchymal characteristics, even after turning on the expression of E-cadherin.
[0124]The cytokeratins (CKs) and carcinoembryonic antigen (CEA) have been used to differentiate between colon cancer and ovarian cancer (Lagendijk, J. H., et al. Hum. Pathol. 29:491-497, 1998; and Berezowski, K., et al. Mod. Pathol. 9:426-429, 1996). Typically, colon cancer expresses CK20 and CEA while ovarian cancer expresses CK7. The expression patterns in our libraries were consistent with previously reported observations: CK20 and CEA were found in normal colon and colon tumors but absent from all of our ovarian samples (Table 4). Conversely, CK7 was expressed in all three primary ovarian tumors and, while not absent, was much lower in the colon samples. Examination of the differential expression patterns of a variety of established ovarian cancer markers thus provided validation of the SAGE database and cluster analysis.
[0125]Differential Gene Expression
[0126]The ultimate goal of comparing SAGE libraries is to identify differentially expressed genes. Criteria for differential expression can be determined for each comparison and transcripts within the determined range selected for study. We found a large number of genes that were up-regulated in only one or two of the three tumors on which SAGE was performed. For example, a total of 444 genes were up-regulated more than 10-fold in at least one of the three ovarian primary cancers compared to IOSE29. However, only 45 genes were overexpressed more than 10-fold in all three ovarian tumors analyzed compared to IOSE29.
[0127]Our analysis of three different primary ovarian cancers allowed us to reduce the number of candidates by looking for consistency between samples. In order to identify genes that are very likely to be frequently up-regulated during ovarian tumorigenesis we set the following conservative criteria for our analysis. First, the fold induction was calculated by adding the number of normalized tags from the three primary tumors and dividing this number by the total normalized tags in the three non-malignant specimens. Cell lines were not included here for reasons described above. In addition, although HOSE-4 appeared more distantly related to the other non-transformed specimens, we believe that the inclusion of HOSE-4, while possibly eliminating real candidates makes our analysis more conservative and more likely to identify truly overexpressed genes in ovarian cancer. Second, all three primary tumors were required to consistently show elevated levels (>12 tags/100,000) of the gene in question. This eliminated genes that may be very highly overexpressed in one tumor but not in others. Finally, the candidate genes were required to be expressed in at least one ovarian cell line at a level greater than 3 tags/100,000. This last criterion was used to reduce the possibility of identifying genes because of their high level of expression in inflammatory cells or in the stroma of the primary tumors. Using these criteria, the genes that exhibited more than 10-fold overexpression were identified and are shown in Table 4.
[0128]Two members of the Claudin family of tight junction proteins, Claudin-3 and -4 were found among the top six differentially expressed genes and likely represent transmembrane receptors. In addition, Apolipoprotein J (ApoJ) and Apolipoprotein E (ApoE) were both overexpressed in ovarian cancer.
[0129]Of the 27 overexpressed genes shown in Table 4, ten were relatively specific for the ovary (HLA-DR, two different ESTs, GA733-1, ceruloplasmin, glutathione peroxidase-3, the secretory leukocyte protease inhibitor, ApoJ, ApoE and mesothelin) while the others were also expressed in colon tissues. In any event, it is significant that MUC1, HE4, Ep-CAM and mesothelin, four genes already known to be up-regulated in epithelial ovarian cancer, were identified in this study. This fact validates our approach as well as our set of criteria used to determine the genes differentially expressed.
[0130]Similarly, stringent criteria were used to identify genes down-regulated in ovarian tumors compared to IOSE29, HOSE-4 and ML10. Again, the fold difference was calculated by adding tag frequency for all three "normal" specimens and dividing by the total number of tags in the three ovarian tumors. A candidate was required to be expressed at a level of 12 tags/100,000 or greater in all three normal samples. The genes found elevated more than ten-fold in normal tissue compared to tumors are shown in Table 4.
TABLE-US-00004 TABLE 4 A subset of genes differentially expressed in ovarian tumors compared to non-malignant ovarian samples SEQ ID EXPRESSIONc NO. OSE Ovarian Colon Colon (TAG) TAG GENE Fold ML10 Tumors Epithelium Tumors FUNCTION up-regulateda 103 GGGCATCTCT HLA-DR α chain 289 - ++ - - Major histocompatibility complex, class II/ antigen presentation 104 TTTGGGCCTA Cysteine-rich 123 - ++ + - LIM/double zinc finger protein 1 105 ATCGTGGCGG Claudin 4 109 - + ++ + Tight junction barrier function 106 TATTATGGTA ESTs (HOST-2) 101 - + - - Unknown 107 GCCTACCCGA Surface marker 93 - + - - Tumor Ag/Ca2+ signal 1/GA733-1/TROP2 transducer 108 CTCGCGCTGG Claudin 3 83 - + ++ + Tight junction barrier function 109 TTGCTTGCCA Ceruloplasmin 79 - + - - Secreted metalloprotein/ (ferroxidase) antioxidant 110 CCTGCTTGTC HE4 72 - ++ + - Secreted protease inhibitor 111 AGGGAGGGGC Glutathione 69 - + - - Secreted selenoprotein/ peroxidase 3 (plasma) peroxidase 112 TGTGGGAAAT Secretory leukocyte 60 - ++ - - Secreted seine protease protease inhibitor inhibitor 113 CCTGATCTGC ESTs (HOST-1) 56 - + - - Unknown 114 ACCATTGGAT Interferon-induced 49 - ++ - + Receptor for interferon transmembrane protein 1 signaling 115 AGTTTGTTAG Ep-CAM/EGP2/ 48 - + ++ + Tumor Ag/Ca2+ 1-independent TROP1/GA733-2 CAM/proliferation 116 CCTGGGAAGT Mucin 1 43 - ++ + + Tumor Ag/Type-I membrane glycoprotein 117 CAACTAATTC Apolipoprotein 39 - ++ - - Secreted chaperone/ J/clusterin cytoprotection 118 GCCTGCAGTC Serine protease 34 - ++ ++ + Transmembrane/protease inhibitor, Kunitz inhibitor type, 2 119 CGACCCCACG Apolipoprotein E 34 - ++ - - Lipoprotein particle binding, internalization and catabolism 120 TTCTGTGCTG Complement component 24 - + - - Serine protease of 1, r subcomponent complement system/ autoimmune diseases 121 CGCCGACGAT G1P3/1FI-6-16 24 - ++ + + Interferon primary response/α IFN-inducible 122 CCGCCCCCCG Lutheran blood group 17 - ++ - - Possible cell surface protein/BCAM receptor/immunoglobulin superfamily 123 GATCAGGCCA Collagen Type III, 16 - ++ - + Unknown alpha-1 124 GTGGAAGACG Mal (T cell 16 - + - - Trans-Golgi membrane differentiation protein (epithelial cells)/ protein) T-cell differentiation 125 GATGAGGAGA ESTs (Collagen Type 13 + ++ - + Unknown I, alpha-2 126 TTCCCTTCTT HLA-DPB1 13 - + - - Major histocompatibility complex, class II/antigen presentation 127 CCCCCTGCAG Mesothelin 12 - ++ - - GPI-anchored/mesothelioma and ovarian cancer antigen/ cell adhesion 128 TGCTGCCTGT Bone marrow stroma 12 - ++ - + Type II transmembrane antigen 2/BST-2 protein/pre-B-cell growth 129 TGCAGCACGA HLA-Cw 10 - ++ ++ + Major histocompatibility complex, class I/antigen presentation down-regulatedb 130 GGTTATTTTG Unknown 99 + - - - Unknown 131 TGTCATCACA Lysyl oxidase-like 2 73 + - - - Secreted/collagen and elastin crosslinker 132 AAAATAAACA Chloride 29 + - - - Ion transport intracellular channel 4 like 133 TAAAAATGTT Plasminogen activator 26 ++ - - - Serine protease inhibitor inhibitor, type 1 family/tPA inhibitor 134 GAGCTTTTGA EST 14 + - - - Unknown 135 GGCTGATGTG Glycine t-RNA 13 + - - - Protein synthesis synthetase 136 CGACGAGGAG Epithelial membrane 13 + - - - Proliferation, protein-3 differentiation, and apoptosis 137 GCCCCCAATA Galectin-1 10 ++ + - - β-galactoside binding lectin/ECM interaction and proliferation 138 GCAACTTGGA Vinexin β 10 + - - - Cell-adhesion and cytoarchitecture aCandidates up-regulated at least 30-fold in tumors bCandidates down-regulated at least 10-fold in tumors cExpression is defined as: -, 0-9 tags/100,000; +, 10-49 tags/100,000; ++, >49 tags/100,000
[0131]In order to validate the candidates identified by SAGE, we performed immunohistochemical analysis of thirteen cases of serous cancer of the ovary using antibodies against four of the genes identified as up-regulated in ovarian cancer (Table 5). This was particularly important since the SAGE analysis was initially performed from primary ovarian cancers, which contain a mixture of cell types. Ep-CAM exhibited diffuse, strong staining of tumor cell membranes in all thirteen tumors, without blood cell or stromal staining. Importantly, only one of six samples of the ovarian surface epithelium present in the cases showed weak focal staining, and the rest were negative. The strong immunoreactivity of all thirteen ovarian tumors confirms the validity of our approach to identify genes highly and consistently up-regulated in ovarian cancer. Similarly, ApoJ was found to be expressed in ovarian cancer cells and absent from the surface epithelium. While some expression was detected in non-tumor stroma and inflammatory cells, most of the immuno-reactivity was in tumor cells, and a majority (nine out of thirteen) of the cases showed staining. This observation represents the first report of ApoJ expression in ovarian cancer and provides a novel target for diagnosis or therapy. Claudin-3 and -4 also exhibited staining limited to the tumor component of the specimens. Most tumor cells showed strong membrane staining with weak cytoplasmic reactivity. Some tumors specimens showed decreased membrane staining with strong cytoplasmic reactivity. The normal surface epithelial component (or mesothelial cells) examined did not stain or only stained weakly with the Claudin-4 antibody, while the determination of Claudin-3 levels in normal epithelium was complicated by a low background reactivity with this antibody.
Incorporation by Reference
[0132]Throughout this application, various publications, patents, and/or patent applications are referenced in order to more fully describe the state of the art to which this invention pertains. The disclosures of these publications, patents, and/or patent applications are herein incorporated by reference in their entireties to the same extent as if each independent publication, patent, and/or patent application was specifically and individually indicated to be incorporated by reference.
Other Embodiments
[0133]It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Sequence CWU
1
1471490DNAHomo sapiens 1tccttgcccg ccgcagtcgc ctccgccgcg cgcctcctcc
gccgccgcgg actccggcag 60ctttatcgcc agagtccctg aactctcgct ttctttttaa
tcccctgcat cggatcaccg 120gcgtgcccca ccatgtcaga cgcagccgta gacaccagct
ccgaaatcac caccaaggac 180ttaaaggaga agaaggaagt tgtggaagag gcagaaaatg
gaagagacgc ccctgctaac 240gggaatgcta atgaggaaaa cggggagcag gaggctgaca
atgaggtaga cgaagaagag 300gaagaaggtg gggaggaaga ggaggaggaa gaagaaggtg
atggtgagga agaggatgga 360gatgaagatg aggaagctga gtcagctacg ggcaagcggg
cagctgaaga tgatgaggat 420gacgatgtcg ataccaagaa gcagaagacc gacgaggatg
actagacagc aaaaaaggaa 480aagttaaact
4902110PRTHomo sapiens 2Met Ser Asp Ala Ala Val
Asp Thr Ser Ser Glu Ile Thr Thr Lys Asp 1 5
10 15Leu Lys Glu Lys Lys Glu Val Val Glu Glu Ala Glu
Asn Gly Arg Asp 20 25 30Ala
Pro Ala Asn Gly Asn Ala Asn Glu Glu Asn Gly Glu Gln Glu Ala 35
40 45Asp Asn Glu Val Asp Glu Glu Glu Glu
Glu Gly Gly Glu Glu Glu Glu 50 55
60Glu Glu Glu Glu Gly Asp Gly Glu Glu Glu Asp Gly Asp Glu Asp Glu65
70 75 80Glu Ala Glu Ser Ala
Thr Gly Lys Arg Ala Ala Glu Asp Asp Glu Asp 85
90 95Asp Asp Val Asp Thr Lys Lys Gln Lys Thr Asp
Glu Asp Asp 100 105
11031093DNAHomo sapiens 3ctgcaaggcg gcggcaggag aggttgtggt gctagtttct
ctaagccatc cagtgccatc 60ctcgtcgctg cagcgacacc gctctcgccg ccgccatgac
tgagcagatg acccttcgtg 120gcaccctcaa gggccacaac ggctgggtaa cccagatcgc
tactaccccg cagttcccgg 180acatgatcct ctccgcctct cgagataaga ccatcatcat
gtggaaactg accagggatg 240agaccaacta tggaattcca cagcgtgctc tgcggggtca
ctcccacttt gttagtgatg 300tggttatctc ctcagatggc cagtttgccc tctcaggctc
ctgggatgga accctgcgcc 360tctgggatct cacaacgggc accaccacga ggcgatttgt
gggccatacc aaggatgtgc 420tgagtgtggc cttctcctct gacaaccggc agattgtctc
tggatctcga gataaaacca 480tcaagctatg gaataccctg ggtgtgtgca aatacactgt
ccaggatgag agccactcag 540agtgggtgtc ttgtgtccgc ttctcgccca acagcagcaa
ccctatcatc gtctcctgtg 600gctgggacaa gctggtcaag gtatggaacc tggctaactg
caagctgaag accaaccaca 660ttggccacac aggctatctg aacacggtga ctgtctctcc
agatggatcc ctctgtgctt 720ctggaggcaa ggatggccag gccatgttat gggatctcaa
cgaaggcaaa cacctttaca 780cgctagatgg tggggacatc atcaacgccc tgtgcttcag
ccctaaccgc tactggctgt 840gtgctgccac aggccccagc atcaagatct gggatttaga
gggaaagatc attgtagatg 900aactgaagca agaagttatc agtaccagca gcaaggcaga
accaccccag tgcacttccc 960tggcctggtc tgctgatggc cagactctgt ttgctggcta
cacggacaac ctggtgcgag 1020tgtggcaggt gaccattggc acacgctaga agtttatggc
agagctttac aaataaaaaa 1080aaaatggctt ttc
10934317PRTHomo sapiens 4Met Thr Glu Gln Met Thr
Leu Arg Gly Thr Leu Lys Gly His Asn Gly 1 5
10 15Trp Val Thr Gln Ile Ala Thr Thr Pro Gln Phe Pro
Asp Met Ile Leu 20 25 30Ser
Ala Ser Arg Asp Lys Thr Ile Ile Met Trp Lys Leu Thr Arg Asp 35
40 45Glu Thr Asn Tyr Gly Ile Pro Gln Arg
Ala Leu Arg Gly His Ser His 50 55
60Phe Val Ser Asp Val Val Ile Ser Ser Asp Gly Gln Phe Ala Leu Ser65
70 75 80Gly Ser Trp Asp Gly
Thr Leu Arg Leu Trp Asp Leu Thr Thr Gly Thr 85
90 95Thr Thr Arg Arg Phe Val Gly His Thr Lys Asp
Val Leu Ser Val Ala 100 105
110Phe Ser Ser Asp Asn Arg Gln Ile Val Ser Gly Ser Arg Asp Lys Thr
115 120 125Ile Lys Leu Trp Asn Thr Leu
Gly Val Cys Lys Tyr Thr Val Gln Asp 130 135
140Glu Ser His Ser Glu Trp Val Ser Cys Val Arg Phe Ser Pro Asn
Ser145 150 155 160Ser Asn
Pro Ile Ile Val Ser Cys Gly Trp Asp Lys Leu Val Lys Val
165 170 175Trp Asn Leu Ala Asn Cys Lys
Leu Lys Thr Asn His Ile Gly His Thr 180 185
190Gly Tyr Leu Asn Thr Val Thr Val Ser Pro Asp Gly Ser Leu
Cys Ala 195 200 205Ser Gly Gly Lys
Asp Gly Gln Ala Met Leu Trp Asp Leu Asn Glu Gly 210
215 220Lys His Leu Tyr Thr Leu Asp Gly Gly Asp Ile Ile
Asn Ala Leu Cys225 230 235
240Phe Ser Pro Asn Arg Tyr Trp Leu Cys Ala Ala Thr Gly Pro Ser Ile
245 250 255Lys Ile Trp Asp Leu
Glu Gly Lys Ile Ile Val Asp Glu Leu Lys Gln 260
265 270Glu Val Ile Ser Thr Ser Ser Lys Ala Glu Pro Pro
Gln Cys Thr Ser 275 280 285Leu Ala
Trp Ser Ala Asp Gly Gln Thr Leu Phe Ala Gly Tyr Thr Asp 290
295 300Asn Leu Val Arg Val Trp Gln Val Thr Ile Gly
Thr Arg305 310 31552402DNAHomo sapiens
5agtctccgcc gccgccgtga acatggagcc cccggacgca ccggcccagg cgcgcggggc
60cccgcggctg ctgttgctcg cagtcctgct ggcggcgcac ccagatgccc aggcggaggt
120gcgcttgtct gtacccccgc tggtggaggt gatgcgagga aagtctgtca ttctggactg
180cacccctacg ggaacccacg accattatat gctggaatgg ttccttaccg accgctcggg
240agctcgcccc cgcctagcct cggctgagat gcagggctct gagctccagg tcacaatgca
300cgacacccgg ggccgcagtc ccccatacca gctggactcc caggggcgcc tggtgctggc
360tgaggcccag gtgggcgacg agcgagacta cgtgtgcgtg gtgagggcag gggcggcagg
420cactgctgag gccactgcgc ggctcaacgt gtttgcaaag ccagaggcca ctgaggtctc
480ccccaacaaa gggacactgt ctgtgatgga ggactctgcc caggagatcg ccacctgcaa
540cagccggaac gggaacccgg cccccaagat cacgtggtat cgcaacgggc agcgcctgga
600ggtgcccgta gagatgaacc cagagggcta catgaccagc cgcacggtcc gggaggcctc
660gggcctgctc tccctcacca gcaccctcta cctgcggctc cgcaaggatg accgagacgc
720cagcttccac tgcgccgccc actacagcct gcccgagggc cgccacggcc gcctggacag
780ccccaccttc cacctcaccc tgcactatcc cacggagcac gtgcagttct gggtgggcag
840cccgtccacc ccagcaggct gggtacgcga gggtgacact gtccagctgc tctgccgggg
900ggacggcagc cccagcccgg agtatacgct tttccgcctt caggatgagc aggaggaagt
960gctgaatgtg aatctcgagg ggaacttgac cctggaggga gtgacccggg gccagagcgg
1020gacctatggc tgcagagtgg aggattacga cgcggcagat gacgtgcagc tctccaagac
1080gctggagctg cgcgtggcct atctggaccc cctggagctc agcgagggga aggtgctttc
1140cttacctcta aacagcagtg cagtcgtgaa ctgctccgtg cacggcctgc ccacccctgc
1200cctacgctgg accaaggact ccactcccct gggcgatggc cccatgctgt cgctcagttc
1260tatcaccttc gattccaatg gcacctacgt atgtgaggcc tccctgccca cagtcccggt
1320cctcagccgc acccagaact tcacgctgct ggtccaaggc tcgccagagc taaagacagc
1380ggaaatagag cccaaggcag atggcagctg gagggaagga gacgaagtca cactcatctg
1440ctctgcccgc ggccatccag accccaaact cagctggagc caattggggg gcagccccgc
1500agagccaatc cccggacggc agggttgggt gagcagctct ctgaccctga aagtgaccag
1560cgccctgagc cgcgatggca tctcctgtga agcctccaac ccccacggga acaagcgcca
1620tgtcttccac ttcggcgccg tgagccccca gacctcccag gctggagtgg ccgtcatggc
1680cgtggccgtc agcgtgggcc tcctgctcct cgtcgttgct gtcttctact gcgtgagacg
1740caaagggggc ccctgctgcc gccagcggcg ggagaagggg gctccgccgc caggggagcc
1800agggctgagc cactcggggt cggagcaacc agagcagacc ggccttctca tgggaggtgc
1860ctccggagga gccaggggtg gcagcggggg cttcggagac gagtgctgag ccaagaacct
1920cctagaggct gtccctggac ctggagctgc aggcatcaga gaaccagccc tgctcacgcc
1980atgcccgccc ccgccttccc tcttccctct tccctctccc tgcccagccc tcccttcctt
2040cctctgccgg caaggcaggg acccacagtg gctgcctgcc tccgggaggg aaggagaggg
2100agggtgggtg ggtgggaggg ggccttcctc cagggaatgt gactctccca ggccccagaa
2160tagctcctgg acccaagccc aaggcccagc ctgggacaag gctccgaggg tcggctggcc
2220ggagctattt ttacctcccg cctcccctgc tggtcccccc acctgacgtc ttgctgcaga
2280gtctgacact ggattccccc ccctcacccc gcccctggtc ccactcctgc ccccgcccta
2340cctccgcccc accccatcat ctgtggacac tggagtctgg aataaatgct gtttgtcaca
2400tc
24026628PRTHomo sapiens 6Met Glu Pro Pro Asp Ala Pro Ala Gln Ala Arg Gly
Ala Pro Arg Leu 1 5 10
15Leu Leu Leu Ala Val Leu Leu Ala Ala His Pro Asp Ala Gln Ala Glu
20 25 30Val Arg Leu Ser Val Pro Pro
Leu Val Glu Val Met Arg Gly Lys Ser 35 40
45Val Ile Leu Asp Cys Thr Pro Thr Gly Thr His Asp His Tyr Met
Leu 50 55 60Glu Trp Phe Leu Thr Asp
Arg Ser Gly Ala Arg Pro Arg Leu Ala Ser65 70
75 80Ala Glu Met Gln Gly Ser Glu Leu Gln Val Thr
Met His Asp Thr Arg 85 90
95Gly Arg Ser Pro Pro Tyr Gln Leu Asp Ser Gln Gly Arg Leu Val Leu
100 105 110Ala Glu Ala Gln Val Gly
Asp Glu Arg Asp Tyr Val Cys Val Val Arg 115 120
125Ala Gly Ala Ala Gly Thr Ala Glu Ala Thr Ala Arg Leu Asn
Val Phe 130 135 140Ala Lys Pro Glu Ala
Thr Glu Val Ser Pro Asn Lys Gly Thr Leu Ser145 150
155 160Val Met Glu Asp Ser Ala Gln Glu Ile Ala
Thr Cys Asn Ser Arg Asn 165 170
175Gly Asn Pro Ala Pro Lys Ile Thr Trp Tyr Arg Asn Gly Gln Arg Leu
180 185 190Glu Val Pro Val Glu
Met Asn Pro Glu Gly Tyr Met Thr Ser Arg Thr 195
200 205Val Arg Glu Ala Ser Gly Leu Leu Ser Leu Thr Ser
Thr Leu Tyr Leu 210 215 220Arg Leu Arg
Lys Asp Asp Arg Asp Ala Ser Phe His Cys Ala Ala His225
230 235 240Tyr Ser Leu Pro Glu Gly Arg
His Gly Arg Leu Asp Ser Pro Thr Phe 245
250 255His Leu Thr Leu His Tyr Pro Thr Glu His Val Gln
Phe Trp Val Gly 260 265 270Ser
Pro Ser Thr Pro Ala Gly Trp Val Arg Glu Gly Asp Thr Val Gln 275
280 285Leu Leu Cys Arg Gly Asp Gly Ser Pro
Ser Pro Glu Tyr Thr Leu Phe 290 295
300Arg Leu Gln Asp Glu Gln Glu Glu Val Leu Asn Val Asn Leu Glu Gly305
310 315 320Asn Leu Thr Leu
Glu Gly Val Thr Arg Gly Gln Ser Gly Thr Tyr Gly 325
330 335Cys Arg Val Glu Asp Tyr Asp Ala Ala Asp
Asp Val Gln Leu Ser Lys 340 345
350Thr Leu Glu Leu Arg Val Ala Tyr Leu Asp Pro Leu Glu Leu Ser Glu
355 360 365Gly Lys Val Leu Ser Leu Pro
Leu Asn Ser Ser Ala Val Val Asn Cys 370 375
380Ser Val His Gly Leu Pro Thr Pro Ala Leu Arg Trp Thr Lys Asp
Ser385 390 395 400Thr Pro
Leu Gly Asp Gly Pro Met Leu Ser Leu Ser Ser Ile Thr Phe
405 410 415Asp Ser Asn Gly Thr Tyr Val
Cys Glu Ala Ser Leu Pro Thr Val Pro 420 425
430Val Leu Ser Arg Thr Gln Asn Phe Thr Leu Leu Val Gln Gly
Ser Pro 435 440 445Glu Leu Lys Thr
Ala Glu Ile Glu Pro Lys Ala Asp Gly Ser Trp Arg 450
455 460Glu Gly Asp Glu Val Thr Leu Ile Cys Ser Ala Arg
Gly His Pro Asp465 470 475
480Pro Lys Leu Ser Trp Ser Gln Leu Gly Gly Ser Pro Ala Glu Pro Ile
485 490 495Pro Gly Arg Gln Gly
Trp Val Ser Ser Ser Leu Thr Leu Lys Val Thr 500
505 510Ser Ala Leu Ser Arg Asp Gly Ile Ser Cys Glu Ala
Ser Asn Pro His 515 520 525Gly Asn
Lys Arg His Val Phe His Phe Gly Ala Val Ser Pro Gln Thr 530
535 540Ser Gln Ala Gly Val Ala Val Met Ala Val Ala
Val Ser Val Gly Leu545 550 555
560Leu Leu Leu Val Val Ala Val Phe Tyr Cys Val Arg Arg Lys Gly Gly
565 570 575Pro Cys Cys Arg
Gln Arg Arg Glu Lys Gly Ala Pro Pro Pro Gly Glu 580
585 590Pro Gly Leu Ser His Ser Gly Ser Glu Gln Pro
Glu Gln Thr Gly Leu 595 600 605Leu
Met Gly Gly Ala Ser Gly Gly Ala Arg Gly Gly Ser Gly Gly Phe 610
615 620Gly Asp Glu Cys62572780DNAHomo sapiens
7gtgggcggac cgcgcggctg gaggtgtgag gatccgaacc caggggtggg gggtggaggc
60ggctcctgcg atcgaagggg acttgagact caccggccgc acgccatgag ggccctgtgg
120gtgctgggcc tctgctgcgt cctgctgacc ttcgggtcgg tcagagctga cgatgaagtt
180gatgtggatg gtacagtaga agaggatctg ggtaaaagta gagaaggatc aaggacggat
240gatgaagtag tacagagaga ggaagaagct attcagttgg atggattaaa tgcatcacaa
300ataagagaac ttagagagaa gtcggaaaag tttgccttcc aagccgaagt taacagaatg
360atgaaactta tcatcaattc attgtataaa aataaagaga ttttcctgag agaactgatt
420tcaaatgctt ctgatgcttt agataagata aggctaatat cactgactga tgaaaatgct
480ctttctggaa atgaggaact aacagtcaaa attaagtgtg ataaggagaa gaacctgctg
540catgtcacag acaccggtgt aggaatgacc agagaagagt tggttaaaaa ccttggtacc
600atagccaaat ctgggacaag cgagttttta aacaaaatga ctgaagcaca ggaagatggc
660cagtcaactt ctgaattgat tggccagttt ggtgtcggtt tctattccgc cttccttgta
720gcagataagg ttattgtcac ttcaaaacac aacaacgata cccagcacat ctgggagtct
780gactccaatg aattttctgt aattgctgac ccaagaggaa acactctagg acggggaacg
840acaattaccc ttgtcttaaa agaagaagca tctgattacc ttgaattgga tacaattaaa
900aatctcgtca aaaaatattc acagttcata aactttccta tttatgtatg gagcagcaag
960actgaaactg ttgaggagcc catggaggaa gaagaagcag ccaaagaaga gaaagaagaa
1020tctgatgatg aagctgcagt agaggaagaa gaagaagaaa agaaaccaaa gactaaaaaa
1080gttgaaaaaa ctgtctggga ctgggaactt atgaatgata tcaaaccaat atggcagaga
1140ccatcaaaag aagtagaaga agatgaatac aaagctttct acaaatcatt ttcaaaggaa
1200agtgatgacc ccatggctta tattcacttt actgctgaag gggaagttac cttcaaatca
1260attttatttg tacccacatc tgctccacgt ggtctgtttg acgaatatgg atctaaaaag
1320agcgattaca ttaagctcta tgtgcgccgt gtattcatca cagacgactt ccatgatatg
1380atgcctaaat acctcaattt tgtcaagggt gtggtggact cagatgatct ccccttgaat
1440gtttcccgcg agactcttca gcaacataaa ctgcttaagg tgattaggaa gaagcttgtt
1500cgtaaaacgc tggacatgat caagaagatt gctgatgata aatacaatga tactttttgg
1560aaagaatttg gtaccaacat caagcttggt gtgattgaag accactcgaa tcgaacacgt
1620cttgctaaac ttcttaggtt ccagtcttct catcatccaa ctgacattac tagcctagac
1680cagtatgtgg aaagaatgaa ggaaaaacaa gacaaaatct acttcatggc tgggtccagc
1740agaaaagagg ctgaatcttc tccatttgtt gagcgacttc tgaaaaaggg ctatgaagtt
1800atttacctca cagaacctgt ggatgaatac tgtattcagg cccttcccga atttgatggg
1860aagaggttcc agaatgttgc caaggaagga gtgaagttcg atgaaagtga gaaaactaag
1920gagagtcgtg aagcagttga gaaagaattt gagcctctgc tgaattggat gaaagataaa
1980gcccttaagg acaagattga aaaggctgtg gtgtctcagc gcctgacaga atctccgtgt
2040gctttggtgg ccagccagta cggatggtct ggcaacatgg agagaatcat gaaagcacaa
2100gcgtaccaaa cgggcaagga catctctaca aattactatg cgagtcagaa gaaaacattt
2160gaaattaatc ccagacaccc gctgatcaga gacatgcttc gacgaattaa ggaagatgaa
2220gatgataaaa cagttttgga tcttgctgtg gttttgtttg aaacagcaac gcttcggtca
2280gggtatcttt taccagacac taaagcatat ggagatagaa tagaaagaat gcttcgcctc
2340agtttgaaca ttgaccctga tgcaaaggtg gaagaagagc ccgaagaaga acctgaagag
2400acagcagaag acacaacaga agacacagag caagacgaag atgaagaaat ggatgtggga
2460acagatgaag aagaagaaac agcaaaggaa tctacagctg aaaaagatga attgtaaatt
2520atactctcac catttggatc ctgtgtggag agggaatgtg aaatttacat catttctttt
2580tgggagagac ttgttttgga tgccccctaa tccccttctc ccctgcactg taaaatgtgg
2640gattatgggt cacaggaaaa agtgggtttt ttagttgaat tttttttaac attcctcatg
2700aatgtaaatt tgtactattt aactgactat tcttgatgta aaatcttgtc atgtgtataa
2760aaataaaaaa gatcccaaat
27808838PRTHomo sapiens 8Val Gly Gly Pro Arg Gly Trp Arg Cys Glu Asp Pro
Asn Pro Gly Val 1 5 10
15Gly Gly Gly Gly Gly Ser Cys Asp Arg Arg Gly Leu Glu Thr His Arg
20 25 30Pro His Ala Met Arg Ala Leu
Trp Val Leu Gly Leu Cys Cys Val Leu 35 40
45Leu Thr Phe Gly Ser Val Arg Ala Asp Asp Glu Val Asp Val Asp
Gly 50 55 60Thr Val Glu Glu Asp Leu
Gly Lys Ser Arg Glu Gly Ser Arg Thr Asp65 70
75 80Asp Glu Val Val Gln Arg Glu Glu Glu Ala Ile
Gln Leu Asp Gly Leu 85 90
95Asn Ala Ser Gln Ile Arg Glu Leu Arg Glu Lys Ser Glu Lys Phe Ala
100 105 110Phe Gln Ala Glu Val Asn
Arg Met Met Lys Leu Ile Ile Asn Ser Leu 115 120
125Tyr Lys Asn Lys Glu Ile Phe Leu Arg Glu Leu Ile Ser Asn
Ala Ser 130 135 140Asp Ala Leu Asp Lys
Ile Arg Leu Ile Ser Leu Thr Asp Glu Asn Ala145 150
155 160Leu Ser Gly Asn Glu Glu Leu Thr Val Lys
Ile Lys Cys Asp Lys Glu 165 170
175Lys Asn Leu Leu His Val Thr Asp Thr Gly Val Gly Met Thr Arg Glu
180 185 190Glu Leu Val Lys Asn
Leu Gly Thr Ile Ala Lys Ser Gly Thr Ser Glu 195
200 205Phe Leu Asn Lys Met Thr Glu Ala Gln Glu Asp Gly
Gln Ser Thr Ser 210 215 220Glu Leu Ile
Gly Gln Phe Gly Val Gly Phe Tyr Ser Ala Phe Leu Val225
230 235 240Ala Asp Lys Val Ile Val Thr
Ser Lys His Asn Asn Asp Thr Gln His 245
250 255Ile Trp Glu Ser Asp Ser Asn Glu Phe Ser Val Ile
Ala Asp Pro Arg 260 265 270Gly
Asn Thr Leu Gly Arg Gly Thr Thr Ile Thr Leu Val Leu Lys Glu 275
280 285Glu Ala Ser Asp Tyr Leu Glu Leu Asp
Thr Ile Lys Asn Leu Val Lys 290 295
300Lys Tyr Ser Gln Phe Ile Asn Phe Pro Ile Tyr Val Trp Ser Ser Lys305
310 315 320Thr Glu Thr Val
Glu Glu Pro Met Glu Glu Glu Glu Ala Ala Lys Glu 325
330 335Glu Lys Glu Glu Ser Asp Asp Glu Ala Ala
Val Glu Glu Glu Glu Glu 340 345
350Glu Lys Lys Pro Lys Thr Lys Lys Val Glu Lys Thr Val Trp Asp Trp
355 360 365Glu Leu Met Asn Asp Ile Lys
Pro Ile Trp Gln Arg Pro Ser Lys Glu 370 375
380Val Glu Glu Asp Glu Tyr Lys Ala Phe Tyr Lys Ser Phe Ser Lys
Glu385 390 395 400Ser Asp
Asp Pro Met Ala Tyr Ile His Phe Thr Ala Glu Gly Glu Val
405 410 415Thr Phe Lys Ser Ile Leu Phe
Val Pro Thr Ser Ala Pro Arg Gly Leu 420 425
430Phe Asp Glu Tyr Gly Ser Lys Lys Ser Asp Tyr Ile Lys Leu
Tyr Val 435 440 445Arg Arg Val Phe
Ile Thr Asp Asp Phe His Asp Met Met Pro Lys Tyr 450
455 460Leu Asn Phe Val Lys Gly Val Val Asp Ser Asp Asp
Leu Pro Leu Asn465 470 475
480Val Ser Arg Glu Thr Leu Gln Gln His Lys Leu Leu Lys Val Ile Arg
485 490 495Lys Lys Leu Val Arg
Lys Thr Leu Asp Met Ile Lys Lys Ile Ala Asp 500
505 510Asp Lys Tyr Asn Asp Thr Phe Trp Lys Glu Phe Gly
Thr Asn Ile Lys 515 520 525Leu Gly
Val Ile Glu Asp His Ser Asn Arg Thr Arg Leu Ala Lys Leu 530
535 540Leu Arg Phe Gln Ser Ser His His Pro Thr Asp
Ile Thr Ser Leu Asp545 550 555
560Gln Tyr Val Glu Arg Met Lys Glu Lys Gln Asp Lys Ile Tyr Phe Met
565 570 575Ala Gly Ser Ser
Arg Lys Glu Ala Glu Ser Ser Pro Phe Val Glu Arg 580
585 590Leu Leu Lys Lys Gly Tyr Glu Val Ile Tyr Leu
Thr Glu Pro Val Asp 595 600 605Glu
Tyr Cys Ile Gln Ala Leu Pro Glu Phe Asp Gly Lys Arg Phe Gln 610
615 620Asn Val Ala Lys Glu Gly Val Lys Phe Asp
Glu Ser Glu Lys Thr Lys625 630 635
640Glu Ser Arg Glu Ala Val Glu Lys Glu Phe Glu Pro Leu Leu Asn
Trp 645 650 655Met Lys Asp
Lys Ala Leu Lys Asp Lys Ile Glu Lys Ala Val Val Ser 660
665 670Gln Arg Leu Thr Glu Ser Pro Cys Ala Leu
Val Ala Ser Gln Tyr Gly 675 680
685Trp Ser Gly Asn Met Glu Arg Ile Met Lys Ala Gln Ala Tyr Gln Thr 690
695 700Gly Lys Asp Ile Ser Thr Asn Tyr
Tyr Ala Ser Gln Lys Lys Thr Phe705 710
715 720Glu Ile Asn Pro Arg His Pro Leu Ile Arg Asp Met
Leu Arg Arg Ile 725 730
735Lys Glu Asp Glu Asp Asp Lys Thr Val Leu Asp Leu Ala Val Val Leu
740 745 750Phe Glu Thr Ala Thr Leu
Arg Ser Gly Tyr Leu Leu Pro Asp Thr Lys 755 760
765Ala Tyr Gly Asp Arg Ile Glu Arg Met Leu Arg Leu Ser Leu
Asn Ile 770 775 780Asp Pro Asp Ala Lys
Val Glu Glu Glu Pro Glu Glu Glu Pro Glu Glu785 790
795 800Thr Ala Glu Asp Thr Thr Glu Asp Thr Glu
Gln Asp Glu Asp Glu Glu 805 810
815Met Asp Val Gly Thr Asp Glu Glu Glu Glu Thr Ala Lys Glu Ser Thr
820 825 830Ala Glu Lys Asp Glu
Leu 83592912DNAHomo sapiens 9cagttgcttc agcgtcccgg tgtggctgtg
ccgttggtcc tgtgcggtca cttagccaag 60atgcctgagg aaacccagac ccaagaccaa
ccgatggagg aggaggaggt tgagacgttc 120gcctttcagg cagaaattgc ccagttgatg
tcattgatca tcaatacttt ctactcgaac 180aaagagatct ttctgagaga gctcatttca
aattcatcag atgcattgga caaaatccgg 240tatgaaactt tgacagatcc cagtaaatta
gactctggga aagagctgca tattaacctt 300ataccgaaca aacaagatcg aactctcact
attgtggata ctggaattgg aatgaccaag 360gctgacttga tcaataacct tggtactatc
gccaagtctg ggaccaaagc gttcatggaa 420gctttgcagg ctggtgcaga tatctctatg
attggccagt tcggtgttgg tttttattct 480gcttatttgg ttgctgagaa agtaactgtg
atcaccaaac ataacgatga tgagcagtac 540gcttgggagt cctcagcagg gggatcattc
acagtgagga cagacacagg tgaacctatg 600ggtcgtggaa caaaagttat cctacacctg
aaagaagacc aaactgagta cttggaggaa 660cgaagaataa aggagattgt gaagaaacat
tctcagttta ttggatatcc cattactctt 720tttgtggaga aggaacgtga taaagaagta
agcgatgatg aggctgaaga aaaggaagac 780aaagaagaag aaaaagaaaa agaagagaaa
gagtcggaag acaaacctga aattgaagat 840gttggttctg atgaggaaga agaaaagaag
gatggtgaca agaagaagaa gaagaagatt 900aaggaaaagt acatcgatca agaagagctc
aacaaaacaa agcccatctg gaccagaaat 960cccgacgata ttactaatga ggagtacgga
gaattctata agagcttgac caatgactgg 1020gaagatcact tggcagtgaa gcatttttca
gttgaaggac agttggaatt cagagccctt 1080ctatttgtcc cacgacgtgc tccttttgat
ctgtttgaaa acagaaagaa aaagaacaat 1140atcaaattgt atgtacgcag agttttcatc
atggataact gtgaggagct aatccctgaa 1200tatctgaact tcattagagg ggtggtagac
tcggaggatc tccctctaaa catatcccgt 1260gagatgttgc aacaaagcaa aattttgaaa
gttatcagga agaatttggt caaaaaatgc 1320ttagaactct ttactgaact ggcggaagat
aaagagaact acaagaaatt ctatgagcag 1380ttctctaaaa acataaagct tggaatacac
gaagactctc aaaatcggaa gaagctttca 1440gagctgttaa ggtactacac atctgcctct
ggtgatgaga tggtttctct caaggactac 1500tgcaccagaa tgaaggagaa ccagaaacat
atctattata tcacaggtga gaccaaggac 1560caggtagcta actcagcctt tgtggaacgt
cttcggaaac atggcttaga agtgatctat 1620atgattgagc ccattgatga gtactgtgtc
caacagctga aggaatttga ggggaagact 1680ttagtgtcag tcaccaaaga aggcctggaa
cttccagagg atgaagaaga gaaaaagaag 1740caggaagaga aaaaaacaaa gtttgagaac
ctctgcaaaa tcatgaaaga catattggag 1800aaaaaagttg aaaaggtggt tgtgtcaaac
cgattggtga catctccatg ctgtattgtc 1860acaagcacat atggctggac agcaaacatg
gagagaatca tgaaagctca agccctaaga 1920gacaactcaa caatgggtta catggcagca
aagaaacacc tggagataaa ccctgaccat 1980tccattattg agaccttaag gcaaaaggca
gaggctgata agaacgacaa gtctgtgaag 2040gatctggtca tcttgcttta tgaaactgcg
ctcctgtctt ctggcttcag tctggaagat 2100ccccagacac atgctaacag gatctacagg
atgatcaaac ttggtctggg tattgatgaa 2160gatgacccta ctgctgatga taccagtgct
gctgtaactg aagaaatgcc accccttgaa 2220ggagatgacg acacatcacg catggaagaa
gtagactaat ctctggctga gggatgactt 2280acctgttcag tactctacaa ttcctctgat
aatatatttt caaggatgtt tttctttatt 2340tttgttaata ttaaaaagtc tgtatggcat
gacaactact ttaaggggaa gataagattt 2400ctgtctacta agtgatgctg tgatacctta
ggcactaaag cagagctagt aatgcttttt 2460gagtttcatg ttggttcttt cacagatggg
gtaacgtgca ctgtaagacg tatgtaacat 2520gatgttaact ttgtgtggtc taaagtgttt
agctgtcaag ccggatgcct aagtagacca 2580aatcttgtta ttgaagtgtt ctgagctgta
tcttgatgtt tagaaaagta ttcgttacat 2640cttgtaggat ctactttttg aacttttcat
tccctgtagt tgacaattct gcatgtacta 2700gtcctctaga aataggttaa actgaagcaa
cttgatggaa ggatctctcc acagggcttg 2760ttttccaaag aaaagtattg tttggaggag
caaagttaaa agcctaccta agcatatcgt 2820aaagctgttc aaatactcga gcccagtctt
gtggatggaa atgtagtgct cgagtcacat 2880tctgcttaaa gttgtaacaa atacagatga
gt 291210732PRTHomo sapiens 10Met Pro Glu
Glu Thr Gln Thr Gln Asp Gln Pro Met Glu Glu Glu Glu 1 5
10 15Val Glu Thr Phe Ala Phe Gln Ala Glu
Ile Ala Gln Leu Met Ser Leu 20 25
30Ile Ile Asn Thr Phe Tyr Ser Asn Lys Glu Ile Phe Leu Arg Glu Leu
35 40 45Ile Ser Asn Ser Ser Asp Ala
Leu Asp Lys Ile Arg Tyr Glu Thr Leu 50 55
60Thr Asp Pro Ser Lys Leu Asp Ser Gly Lys Glu Leu His Ile Asn Leu65
70 75 80Ile Pro Asn Lys
Gln Asp Arg Thr Leu Thr Ile Val Asp Thr Gly Ile 85
90 95Gly Met Thr Lys Ala Asp Leu Ile Asn Asn
Leu Gly Thr Ile Ala Lys 100 105
110Ser Gly Thr Lys Ala Phe Met Glu Ala Leu Gln Ala Gly Ala Asp Ile
115 120 125Ser Met Ile Gly Gln Phe Gly
Val Gly Phe Tyr Ser Ala Tyr Leu Val 130 135
140Ala Glu Lys Val Thr Val Ile Thr Lys His Asn Asp Asp Glu Gln
Tyr145 150 155 160Ala Trp
Glu Ser Ser Ala Gly Gly Ser Phe Thr Val Arg Thr Asp Thr
165 170 175Gly Glu Pro Met Gly Arg Gly
Thr Lys Val Ile Leu His Leu Lys Glu 180 185
190Asp Gln Thr Glu Tyr Leu Glu Glu Arg Arg Ile Lys Glu Ile
Val Lys 195 200 205Lys His Ser Gln
Phe Ile Gly Tyr Pro Ile Thr Leu Phe Val Glu Lys 210
215 220Glu Arg Asp Lys Glu Val Ser Asp Asp Glu Ala Glu
Glu Lys Glu Asp225 230 235
240Lys Glu Glu Glu Lys Glu Lys Glu Glu Lys Glu Ser Glu Asp Lys Pro
245 250 255Glu Ile Glu Asp Val
Gly Ser Asp Glu Glu Glu Glu Lys Lys Asp Gly 260
265 270Asp Lys Lys Lys Lys Lys Lys Ile Lys Glu Lys Tyr
Ile Asp Gln Glu 275 280 285Glu Leu
Asn Lys Thr Lys Pro Ile Trp Thr Arg Asn Pro Asp Asp Ile 290
295 300Thr Asn Glu Glu Tyr Gly Glu Phe Tyr Lys Ser
Leu Thr Asn Asp Trp305 310 315
320Glu Asp His Leu Ala Val Lys His Phe Ser Val Glu Gly Gln Leu Glu
325 330 335Phe Arg Ala Leu
Leu Phe Val Pro Arg Arg Ala Pro Phe Asp Leu Phe 340
345 350Glu Asn Arg Lys Lys Lys Asn Asn Ile Lys Leu
Tyr Val Arg Arg Val 355 360 365Phe
Ile Met Asp Asn Cys Glu Glu Leu Ile Pro Glu Tyr Leu Asn Phe 370
375 380Ile Arg Gly Val Val Asp Ser Glu Asp Leu
Pro Leu Asn Ile Ser Arg385 390 395
400Glu Met Leu Gln Gln Ser Lys Ile Leu Lys Val Ile Arg Lys Asn
Leu 405 410 415Val Lys Lys
Cys Leu Glu Leu Phe Thr Glu Leu Ala Glu Asp Lys Glu 420
425 430Asn Tyr Lys Lys Phe Tyr Glu Gln Phe Ser
Lys Asn Ile Lys Leu Gly 435 440
445Ile His Glu Asp Ser Gln Asn Arg Lys Lys Leu Ser Glu Leu Leu Arg 450
455 460Tyr Tyr Thr Ser Ala Ser Gly Asp
Glu Met Val Ser Leu Lys Asp Tyr465 470
475 480Cys Thr Arg Met Lys Glu Asn Gln Lys His Ile Tyr
Tyr Ile Thr Gly 485 490
495Glu Thr Lys Asp Gln Val Ala Asn Ser Ala Phe Val Glu Arg Leu Arg
500 505 510Lys His Gly Leu Glu Val
Ile Tyr Met Ile Glu Pro Ile Asp Glu Tyr 515 520
525Cys Val Gln Gln Leu Lys Glu Phe Glu Gly Lys Thr Leu Val
Ser Val 530 535 540Thr Lys Glu Gly Leu
Glu Leu Pro Glu Asp Glu Glu Glu Lys Lys Lys545 550
555 560Gln Glu Glu Lys Lys Thr Lys Phe Glu Asn
Leu Cys Lys Ile Met Lys 565 570
575Asp Ile Leu Glu Lys Lys Val Glu Lys Val Val Val Ser Asn Arg Leu
580 585 590Val Thr Ser Pro Cys
Cys Ile Val Thr Ser Thr Tyr Gly Trp Thr Ala 595
600 605Asn Met Glu Arg Ile Met Lys Ala Gln Ala Leu Arg
Asp Asn Ser Thr 610 615 620Met Gly Tyr
Met Ala Ala Lys Lys His Leu Glu Ile Asn Pro Asp His625
630 635 640Ser Ile Ile Glu Thr Leu Arg
Gln Lys Ala Glu Ala Asp Lys Asn Asp 645
650 655Lys Ser Val Lys Asp Leu Val Ile Leu Leu Tyr Glu
Thr Ala Leu Leu 660 665 670Ser
Ser Gly Phe Ser Leu Glu Asp Pro Gln Thr His Ala Asn Arg Ile 675
680 685Tyr Arg Met Ile Lys Leu Gly Leu Gly
Ile Asp Glu Asp Asp Pro Thr 690 695
700Ala Asp Asp Thr Ser Ala Ala Val Thr Glu Glu Met Pro Pro Leu Glu705
710 715 720Gly Asp Asp Asp
Thr Ser Arg Met Glu Glu Val Asp 725
730112227DNAHomo sapiens 11gacgacctgt ctcgccgagc gcacgcttgc cgccgccccg
cagaaatgct tcggttaccc 60acagtctttc gccagatgag accggtgtcc agggtactgg
ctcctcatct cactcgggct 120tatgccaaag atgtaaaatt tggtgcagat gcccgagcct
taatgcttca aggtgtagac 180cttttagccg atgctgtggc cgttacaatg gggccaaagg
gaagaacagt gattattgag 240cagagttggg gaagtcccaa agtaacaaaa gatggtgtga
ctgttgcaaa gtcaattgac 300ttaaaagata aatacaagaa cattggagct aaacttgttc
aagatgttgc caataacaca 360aatgaagaag ctggggatgg cactaccact gctactgtac
tggcacgctc tatagccaag 420gaaggcttcg agaagattag caaaggtgct aatccagtgg
aaatcaggag aggtgtgatg 480ttagctgttg atgctgtaat tgctgaactt aaaaagcagt
ctaaacctgt gaccacccct 540gaagaaattg cacaggttgc tacgatttct gcaaacggag
acaaagaaat tggcaatatc 600atctctgatg caatgaaaaa agttggaaga aagggtgtca
tcacagtaaa ggatggaaaa 660acactgaatg atgaattaga aattattgaa ggcatgaagt
ttgatcgagg ctatatttct 720ccatacttta ttaatacatc aaaaggtcag aaatgtgaat
tccaggatgc ctatgttctg 780ttgagtgaaa agaaaatttc tagtatccag tccattgtac
ctgctcttga aattgccaat 840gctcaccgta agcctttggt cataatcgct gaagatgttg
atggagaagc tctaagtaca 900ctcgtcttga ataggctaaa ggttggtctt caggttgtgg
cagtcaaggc tccagggttt 960ggtgacaata gaaagaacca gcttaaagat atggctattg
ctactggtgg tgcagtgttt 1020ggagaagagg gattgaccct gaatcttgaa gacgttcagc
ctcatgactt aggaaaagtt 1080ggagaggtca ttgtgaccaa agacgatgcc atgctcttaa
aaggaaaagg tgacaaggct 1140caaattgaaa aacgtattca agaaatcatt gagcagttag
atgtcacaac tagtgaatat 1200gaaaaggaaa aactgaatga acggcttgca aaactttcag
atggagtggc tgtgctgaag 1260gttggtggga caagtgatgt tgaagtgaat gaaaagaaag
acagagttac agatgccctt 1320aatgctacaa gagctgctgt tgaagaaggc attgttttgg
gagggggttg tgccctcctt 1380cgatgcattc cagccttgga ctcattgact ccagctaatg
aagatcaaaa aattggtata 1440gaaattatta aaagaacact caaaattcca gcaatgacca
ttgctaagaa tgcaggtgtt 1500gaaggatctt tgatagttga gaaaattatg caaagttcct
cagaagttgg ttatgatgct 1560atggctggag attttgtgaa tatggtggaa aaaggaatca
ttgacccaac aaaggttgtg 1620agaactgctt tattggatgc tgctggtgtg gcctctctgt
taactacagc agaagttgta 1680gtcacagaaa ttcctaaaga agagaaggac cctggaatgg
gtgcaatggg tggaatggga 1740ggtggtatgg gaggtggcat gttctaactc ctagactagt
gctttacctt tattaatgaa 1800ctgtgacagg aagcccaagg cagtgttcct caccaataac
ttcagagaag tcagttggag 1860aaaatgaaga aaaaggctgg ctgaaaatca ctataaccat
cagttactgg tttcagttga 1920caaaatatat aatggtttac tgctgtcatt gtccatgcct
acagataatt tattttgtat 1980ttttgaataa aaaacatttg tacattcctg atactgggta
caagagccat gtaccagtgt 2040actgctttca acttaaatca ctgaggcatt tttactacta
ttctgttaaa atcaggattt 2100tagtgcttgc caccaccaga tgagaagtta agcagccttt
ctgtggagag tgagaataat 2160tgtgtacaaa gtagagaagt atccaattat gtgacaacct
ttgtgtaata aaaatttgtt 2220taaagtt
222712573PRTHomo sapiens 12Met Leu Arg Leu Pro Thr
Val Phe Arg Gln Met Arg Pro Val Ser Arg 1 5
10 15Val Leu Ala Pro His Leu Thr Arg Ala Tyr Ala Lys
Asp Val Lys Phe 20 25 30Gly
Ala Asp Ala Arg Ala Leu Met Leu Gln Gly Val Asp Leu Leu Ala 35
40 45Asp Ala Val Ala Val Thr Met Gly Pro
Lys Gly Arg Thr Val Ile Ile 50 55
60Glu Gln Ser Trp Gly Ser Pro Lys Val Thr Lys Asp Gly Val Thr Val65
70 75 80Ala Lys Ser Ile Asp
Leu Lys Asp Lys Tyr Lys Asn Ile Gly Ala Lys 85
90 95Leu Val Gln Asp Val Ala Asn Asn Thr Asn Glu
Glu Ala Gly Asp Gly 100 105
110Thr Thr Thr Ala Thr Val Leu Ala Arg Ser Ile Ala Lys Glu Gly Phe
115 120 125Glu Lys Ile Ser Lys Gly Ala
Asn Pro Val Glu Ile Arg Arg Gly Val 130 135
140Met Leu Ala Val Asp Ala Val Ile Ala Glu Leu Lys Lys Gln Ser
Lys145 150 155 160Pro Val
Thr Thr Pro Glu Glu Ile Ala Gln Val Ala Thr Ile Ser Ala
165 170 175Asn Gly Asp Lys Glu Ile Gly
Asn Ile Ile Ser Asp Ala Met Lys Lys 180 185
190Val Gly Arg Lys Gly Val Ile Thr Val Lys Asp Gly Lys Thr
Leu Asn 195 200 205Asp Glu Leu Glu
Ile Ile Glu Gly Met Lys Phe Asp Arg Gly Tyr Ile 210
215 220Ser Pro Tyr Phe Ile Asn Thr Ser Lys Gly Gln Lys
Cys Glu Phe Gln225 230 235
240Asp Ala Tyr Val Leu Leu Ser Glu Lys Lys Ile Ser Ser Ile Gln Ser
245 250 255Ile Val Pro Ala Leu
Glu Ile Ala Asn Ala His Arg Lys Pro Leu Val 260
265 270Ile Ile Ala Glu Asp Val Asp Gly Glu Ala Leu Ser
Thr Leu Val Leu 275 280 285Asn Arg
Leu Lys Val Gly Leu Gln Val Val Ala Val Lys Ala Pro Gly 290
295 300Phe Gly Asp Asn Arg Lys Asn Gln Leu Lys Asp
Met Ala Ile Ala Thr305 310 315
320Gly Gly Ala Val Phe Gly Glu Glu Gly Leu Thr Leu Asn Leu Glu Asp
325 330 335Val Gln Pro His
Asp Leu Gly Lys Val Gly Glu Val Ile Val Thr Lys 340
345 350Asp Asp Ala Met Leu Leu Lys Gly Lys Gly Asp
Lys Ala Gln Ile Glu 355 360 365Lys
Arg Ile Gln Glu Ile Ile Glu Gln Leu Asp Val Thr Thr Ser Glu 370
375 380Tyr Glu Lys Glu Lys Leu Asn Glu Arg Leu
Ala Lys Leu Ser Asp Gly385 390 395
400Val Ala Val Leu Lys Val Gly Gly Thr Ser Asp Val Glu Val Asn
Glu 405 410 415Lys Lys Asp
Arg Val Thr Asp Ala Leu Asn Ala Thr Arg Ala Ala Val 420
425 430Glu Glu Gly Ile Val Leu Gly Gly Gly Cys
Ala Leu Leu Arg Cys Ile 435 440
445Pro Ala Leu Asp Ser Leu Thr Pro Ala Asn Glu Asp Gln Lys Ile Gly 450
455 460Ile Glu Ile Ile Lys Arg Thr Leu
Lys Ile Pro Ala Met Thr Ile Ala465 470
475 480Lys Asn Ala Gly Val Glu Gly Ser Leu Ile Val Glu
Lys Ile Met Gln 485 490
495Ser Ser Ser Glu Val Gly Tyr Asp Ala Met Ala Gly Asp Phe Val Asn
500 505 510Met Val Glu Lys Gly Ile
Ile Asp Pro Thr Lys Val Val Arg Thr Ala 515 520
525Leu Leu Asp Ala Ala Gly Val Ala Ser Leu Leu Thr Thr Ala
Glu Val 530 535 540Val Val Thr Glu Ile
Pro Lys Glu Glu Lys Asp Pro Gly Met Gly Ala545 550
555 560Met Gly Gly Met Gly Gly Gly Met Gly Gly
Gly Met Phe 565 570132376DNAHomo sapiens
13gaggaggagt ggggaccggg cggggggtgg aggaagaggc ctcgcgcaga ggagggagca
60attgaatttc aaacacaaac aactcgacga gcgcgcaccc accgcgccgg agccttgccc
120cgatccgcgc ccgccccgtc cgtgcggcgc gcgggcggag acgccgtggc cgcgccggag
180ctcgggccgg gggccaccat cgaggcgggg gccgcgcgag ggccggagcg gagcggcgcc
240gccaccgccg cacgcgcaaa cttgggctcg cgcttcccgg cccggcgcgg agcccggggc
300gcccggagcc ccgccatgtc gcgatccaac cggcagaagg agtacaaatg cggggacctg
360gtgttcgcca agatgaaggg ctacccacac tggccggccc ggattgacga gatgcctgag
420gctgccgtga aatcaacagc caacaaatac caagtctttt ttttcgggac ccacgagacg
480gcattcctgg gccccaaaga cctcttccct tacgaggaat ccaaggagaa gtttggcaag
540cccaacaaga ggaaagggtt cagcgagggg ctgtgggaga tcgagaacaa ccctactgtc
600aaggcttccg gctatcagtc ctcccagaaa aagagctgtg tggaagagcc tgaaccagag
660cccgaagctg cagagggtga cggtgataag aaggggaatg cagagggcag cagcgacgag
720gaagggaagc tggtcattga tgagccagcc aaggagaaga acgagaaagg agcgttgaag
780aggagagcag gggacttgct ggaggactct cctaaacgtc ccaaggaggc agaaaaccct
840gaaggagagg agaaggaggc agccaccttg gaggttgaga ggccccttcc tatggaggtg
900gaaaagaata gcaccccctc tgagcccggc tctggccggg ggcctcccca agaggaagaa
960gaagaggagg atgaagagga agaggctacc aaggaagatg ctgaggcccc aggcatcaga
1020gatcatgaga gcctgtagcc accaatgttt caagaggagc ccccaccctg ttcctgctgc
1080tgtctgggtg ctactgggga aactggccat ggcctgcaaa ctgggaaccc ctttcccacc
1140ccaacctgct ctcctcttct actcactttt cccactccaa gcccagccca tggagattga
1200cctggatggg gcaggccacc tggctctcac ctctaggtcc ccatactcct atgatctgag
1260tcagagccat gtcttctccc tggaatgagt tgaggccact gtgttccttc cgcttggagc
1320tattttccag gcttctgctg gggcctggga caactgctcc cacctcctga cacccttctc
1380ccactctcct aggcattctg gacctctggg ttgggatcag gggtaggaat ggaaggatgg
1440agcatcaaca gcagggtggg cttgtggggc ctgggagggg caatcctcaa atgcggggtg
1500ggggcagcac aggagggcgg cctccttctg agctcctgtc ccctgctaca cctattatcc
1560cagctgccta gattcaggga aagtgggaca gcttgtaggg gaggggctcc tttccataaa
1620tccttgatga ttgacaacac ccatttttcc ttttgccgac cccaagagtt ttgggagttg
1680tagttaatca tcaagagaat ttggggcttc caagttgttc gggccaagga cctgagacct
1740gaagggttga ctttacccat ttgggtggga gtgttgagca tctgtccccc tttagatctc
1800tgaagccaca aataggatgc ttgggaagac tcctagctgt cctttttcct ctccacacag
1860tgctcaaggc cagcttatag tcatatatat cacccagaca taaaggaaaa gacacatttt
1920ttaggaaatg tttttaataa aagaaaatta caaaaaaaaa ttttaaagac ccctaaccct
1980ttgtgtgctc tccattctgc tccttcccca tcgttgcccc catttctgag gtgcactggg
2040aggctcccct tctatttggg gcttgatgac tttctttttg tagctggggc tttgatgttc
2100cttccagtgt catttctcat ccacataccc tgacctggcc ccctcagtgt tgtcaccaga
2160tctgatttgt aacccactga gaggacagag agaaataagt gccctctccc accctcttcc
2220tactggtctc tctatgcctc tctacagtct cgtctctttt accctggccc ctctcccttg
2280ggctctgatg aaaaattgct gactgtagct ttggaagttt agctctgaga accgtagatg
2340atttcagttc taggaaaata aaacccgttg attact
237614240PRTHomo sapiens 14Met Ser Arg Ser Asn Arg Gln Lys Glu Tyr Lys
Cys Gly Asp Leu Val 1 5 10
15Phe Ala Lys Met Lys Gly Tyr Pro His Trp Pro Ala Arg Ile Asp Glu
20 25 30Met Pro Glu Ala Ala Val Lys
Ser Thr Ala Asn Lys Tyr Gln Val Phe 35 40
45Phe Phe Gly Thr His Glu Thr Ala Phe Leu Gly Pro Lys Asp Leu
Phe 50 55 60Pro Tyr Glu Glu Ser Lys
Glu Lys Phe Gly Lys Pro Asn Lys Arg Lys65 70
75 80Gly Phe Ser Glu Gly Leu Trp Glu Ile Glu Asn
Asn Pro Thr Val Lys 85 90
95Ala Ser Gly Tyr Gln Ser Ser Gln Lys Lys Ser Cys Val Glu Glu Pro
100 105 110Glu Pro Glu Pro Glu Ala
Ala Glu Gly Asp Gly Asp Lys Lys Gly Asn 115 120
125Ala Glu Gly Ser Ser Asp Glu Glu Gly Lys Leu Val Ile Asp
Glu Pro 130 135 140Ala Lys Glu Lys Asn
Glu Lys Gly Ala Leu Lys Arg Arg Ala Gly Asp145 150
155 160Leu Leu Glu Asp Ser Pro Lys Arg Pro Lys
Glu Ala Glu Asn Pro Glu 165 170
175Gly Glu Glu Lys Glu Ala Ala Thr Leu Glu Val Glu Arg Pro Leu Pro
180 185 190Met Glu Val Glu Lys
Asn Ser Thr Pro Ser Glu Pro Gly Ser Gly Arg 195
200 205Gly Pro Pro Gln Glu Glu Glu Glu Glu Glu Asp Glu
Glu Glu Glu Ala 210 215 220Thr Lys Glu
Asp Ala Glu Ala Pro Gly Ile Arg Asp His Glu Ser Leu225
230 235 240153689DNAHomo sapiens
15aagatctcat aaaatctatg ctgaggaatg agcgacagtt caaggaggag aagcttgcag
60agcagctcaa gcaagctgag gagctcaggc aatataaagt cctggttcac gctcaggaac
120gagagctgac ccagttaagg gagaagttgc gggaagggag agatgcctcc cgctcattga
180atgagcatct ccaggccctc ctcactccgg atgagccgga caagtcccag gggcaggacc
240tccaagaaca gctggctgag gggtgtagac tggcacagca ccttgtccaa aagctcagcc
300cagaaaatga caacgatgac gatgaagatg ttcaagttga ggtggctgag aaagtgcaga
360aatcgtctgc ccccagggag atgcagaagg ctgaagaaaa ggaagtccct gaggactcac
420tggaggaatg tgccatcact tgttcaaata gccatggccc ttatgactcc aaccagccac
480ataggaaaac caaaatcaca tttgaggaag acaaagtcga ctcaactctc attggctcat
540cctctcatgt tgaatgggag gatgctgtac acattattcc agaaaatgaa agtgatgatg
600aggaagagga agaaaaagga ccagtgtctc ccaggaatct gcaggagtct gaagaggagg
660aagtccccca ggagtcctgg gatgaaggtt attcgactct ctcaattcct cctgaaatgt
720tggcctcgta caagtcttac agcagcacat ttcactcatt agaggaacag caagtctgca
780tggctgttga cataggcaga catcggtggg atcaagtgaa aaaggaggac cacgaggcaa
840caggtcccag gctcagcaga gagctgctgg atgagaaagg gcctgaagtc ttgcaggact
900cactggatag atgttattca actccttcag gttgtcttga actgactgac tcatgccagc
960cctacagaag tgccttttac gtattggagc aacagcgtgt tggcttggct gttaacatgg
1020atgaaattga aaagtaccaa gaagtggaag aagaccaaga cccatcatgc cccaggctca
1080gcagggagct gctggatgag aaagagcctg aagtcttgca ggactcactg ggtagatgtt
1140attcgactcc ttcaggttat cttgaactgc ctgacttagg ccagccctac agcagtgctg
1200tttactcatt ggaggaacag taccttggct tggctcttga cgtggacaga attaaaaagg
1260accaagaaga ggaagaagac caaggcccac catgccccag gctcagcagg gagctgctgg
1320aggtagtaga gcctgaagtc ttgcaggact cactggatag atgttattca actccttcca
1380gttgtcttga acagcctgac tcctgccagc cctatggaag ttccttttat gcattggagg
1440aaaagcatgt tggcttttct cttgacgtgg gagaaattga aaagaagggg aaggggaaga
1500aaagaagggg aagaagatca aagaaggaaa gaagaagggg aagaaaagaa ggggaagaag
1560atcaaaaccc accatgcccc aggctcagca gggagctgct ggatgagaaa gggcctgaag
1620tcttgcagga ctcactggat agatgttatt caactccttc aggttgtctt gaactgactg
1680actcatgcca gccctacaga agtgcctttt acatattgga gcaacagcgt gttggcttgg
1740ctgttgacat ggatgaaatt gaaaagtacc aagaagtgga agaagaccaa gacccatcat
1800gccccaggct cagcggggag ctgttggatg agaaagagcc tgaagtcttg caggagtcac
1860tggatagatg ctattcaact ccttcaggtt gtcttgaact gactgactca tgccagccct
1920acagaagtgc cttttacata ttggagcaac agcgtgttgg cttggctgtt gacatggatg
1980aaattgaaaa gtaccaagaa gtggaagaag accaagaccc atcatgcccc aggctcagca
2040gggagctgct ggatgagaaa gagcctgaag tcttgcagga ctcactgggt agatgttatt
2100cgactccttc aggttatctt gaactgcctg acttaggcca gccctacagc agtgctgttt
2160actcattgga ggaacagtac cttggcttgg ctcttgacgt ggacagaatt aaaaaggacc
2220aagaagagga agaagaccaa ggcccaccat gccccaggct cagcagggag ctgctggagg
2280tagtagagcc tgaagtcttg caggactcac tggatagatg ttattcaact ccttccagtt
2340gtcttgaaca gcctgactcc tgccagccct atggaagttc cttttatgca ttggaggaaa
2400aacatgttgg cttttctctt gacgtgggag aaattgaaaa gaaggggaag gggaagaaaa
2460gaaggggaag aagatcaaag aaggaaagaa gaaggggaag aaaagaaggg gaagaagatc
2520aaaacccacc atgccccagg ctcaacagca tgctgatgga agtggaagag cctgaagtct
2580tgcaggactc actggatata tgttattcga ctccgtcaat gtactttgaa ctacctgact
2640cattccagca ctacagaagt gtgttttact catttgagga agagcatatc agcttcgccc
2700tttacgtgga caataggttt tttactttga cggtgacaag tctccacctg gtgttccaga
2760tgggagtcat attcccacaa taagcagccc ttactaagcc gagaggtgtc attcctgcag
2820gcaggaccta taggcacgtg aagatttgaa tgaaagtaca gttccatttg gaagcccaga
2880cataggatgg gtcagtgggc atggctctat tcctattctc aaaccatgcc agtggcaacc
2940tgtgctcagt ctgaagacaa tggacccacg ttaggtgtga cacgttcaca taactgtgca
3000gcacatgccg ggagtgatca gtcagacatt ttaatttgaa ccacgtatct ctgggtagct
3060acaaaattcc tcagggatgt cattttgcag gcatgtctct gagcttctat acctgctcaa
3120ggtcattgtc atctttgtgt ttagctcatc caaaggtgtt accctggttt caatgaacct
3180aacctcattc tttgtgtctt cagtgttggc ttgttttagc tgatccatct gtaacacagg
3240agggatcctt ggctgaggat tgtatttcag aaccaccaac tgctcttgac aattgttaac
3300ccgctaggct cctttggtta gagaagccac agtccttcag cctccaattg gtgtcagtac
3360ttaggaagac cacagctaga tggacaaaca gcattgggag gccttagccc tgctcctctc
3420aattccatcc tgtagagaac aggagtcagg agccgctggc aggagacagc atgtcaccca
3480ggactctgcc ggtgcagaat atgagcaatg ccatgttctt gcagaaaacg cttaacctga
3540gtttcatagg aggtaatcac cagacaactg cagaatgtag aacactgagc aggacaactg
3600acctgtctcc ttcacatagt ccatatcacc acaaatcaca caacaaaaag gagaagagat
3660attttcggtt gaaaaaaagt aaaaagata
368916921PRTHomo sapiens 16Met Leu Arg Asn Glu Arg Gln Phe Lys Glu Glu
Lys Leu Ala Glu Gln 1 5 10
15Leu Lys Gln Ala Glu Glu Leu Arg Gln Tyr Lys Val Leu Val His Ala
20 25 30Gln Glu Arg Glu Leu Thr Gln
Leu Arg Glu Lys Leu Arg Glu Gly Arg 35 40
45Asp Ala Ser Arg Ser Leu Asn Glu His Leu Gln Ala Leu Leu Thr
Pro 50 55 60Asp Glu Pro Asp Lys Ser
Gln Gly Gln Asp Leu Gln Glu Gln Leu Ala65 70
75 80Glu Gly Cys Arg Leu Ala Gln His Leu Val Gln
Lys Leu Ser Pro Glu 85 90
95Asn Asp Asn Asp Asp Asp Glu Asp Val Gln Val Glu Val Ala Glu Lys
100 105 110Val Gln Lys Ser Ser Ala
Pro Arg Glu Met Gln Lys Ala Glu Glu Lys 115 120
125Glu Val Pro Glu Asp Ser Leu Glu Glu Cys Ala Ile Thr Cys
Ser Asn 130 135 140Ser His Gly Pro Tyr
Asp Ser Asn Gln Pro His Arg Lys Thr Lys Ile145 150
155 160Thr Phe Glu Glu Asp Lys Val Asp Ser Thr
Leu Ile Gly Ser Ser Ser 165 170
175His Val Glu Trp Glu Asp Ala Val His Ile Ile Pro Glu Asn Glu Ser
180 185 190Asp Asp Glu Glu Glu
Glu Glu Lys Gly Pro Val Ser Pro Arg Asn Leu 195
200 205Gln Glu Ser Glu Glu Glu Glu Val Pro Gln Glu Ser
Trp Asp Glu Gly 210 215 220Tyr Ser Thr
Leu Ser Ile Pro Pro Glu Met Leu Ala Ser Tyr Lys Ser225
230 235 240Tyr Ser Ser Thr Phe His Ser
Leu Glu Glu Gln Gln Val Cys Met Ala 245
250 255Val Asp Ile Gly Arg His Arg Trp Asp Gln Val Lys
Lys Glu Asp His 260 265 270Glu
Ala Thr Gly Pro Arg Leu Ser Arg Glu Leu Leu Asp Glu Lys Gly 275
280 285Pro Glu Val Leu Gln Asp Ser Leu Asp
Arg Cys Tyr Ser Thr Pro Ser 290 295
300Gly Cys Leu Glu Leu Thr Asp Ser Cys Gln Pro Tyr Arg Ser Ala Phe305
310 315 320Tyr Val Leu Glu
Gln Gln Arg Val Gly Leu Ala Val Asn Met Asp Glu 325
330 335Ile Glu Lys Tyr Gln Glu Val Glu Glu Asp
Gln Asp Pro Ser Cys Pro 340 345
350Arg Leu Ser Arg Glu Leu Leu Asp Glu Lys Glu Pro Glu Val Leu Gln
355 360 365Asp Ser Leu Gly Arg Cys Tyr
Ser Thr Pro Ser Gly Tyr Leu Glu Leu 370 375
380Pro Asp Leu Gly Gln Pro Tyr Ser Ser Ala Val Tyr Ser Leu Glu
Glu385 390 395 400Gln Tyr
Leu Gly Leu Ala Leu Asp Val Asp Arg Ile Lys Lys Asp Gln
405 410 415Glu Glu Glu Glu Asp Gln Gly
Pro Pro Cys Pro Arg Leu Ser Arg Glu 420 425
430Leu Leu Glu Val Val Glu Pro Glu Val Leu Gln Asp Ser Leu
Asp Arg 435 440 445Cys Tyr Ser Thr
Pro Ser Ser Cys Leu Glu Gln Pro Asp Ser Cys Gln 450
455 460Pro Tyr Gly Ser Ser Phe Tyr Ala Leu Glu Glu Lys
His Val Gly Phe465 470 475
480Ser Leu Asp Val Gly Glu Ile Glu Lys Lys Gly Lys Gly Lys Lys Arg
485 490 495Arg Gly Arg Arg Ser
Lys Lys Glu Arg Arg Arg Gly Arg Lys Glu Gly 500
505 510Glu Glu Asp Gln Asn Pro Pro Cys Pro Arg Leu Ser
Arg Glu Leu Leu 515 520 525Asp Glu
Lys Gly Pro Glu Val Leu Gln Asp Ser Leu Asp Arg Cys Tyr 530
535 540Ser Thr Pro Ser Gly Cys Leu Glu Leu Thr Asp
Ser Cys Gln Pro Tyr545 550 555
560Arg Ser Ala Phe Tyr Ile Leu Glu Gln Gln Arg Val Gly Leu Ala Val
565 570 575Asp Met Asp Glu
Ile Glu Lys Tyr Gln Glu Val Glu Glu Asp Gln Asp 580
585 590Pro Ser Cys Pro Arg Leu Ser Gly Glu Leu Leu
Asp Glu Lys Glu Pro 595 600 605Glu
Val Leu Gln Glu Ser Leu Asp Arg Cys Tyr Ser Thr Pro Ser Gly 610
615 620Cys Leu Glu Leu Thr Asp Ser Cys Gln Pro
Tyr Arg Ser Ala Phe Tyr625 630 635
640Ile Leu Glu Gln Gln Arg Val Gly Leu Ala Val Asp Met Asp Glu
Ile 645 650 655Glu Lys Tyr
Gln Glu Val Glu Glu Asp Gln Asp Pro Ser Cys Pro Arg 660
665 670Leu Ser Arg Glu Leu Leu Asp Glu Lys Glu
Pro Glu Val Leu Gln Asp 675 680
685Ser Leu Gly Arg Cys Tyr Ser Thr Pro Ser Gly Tyr Leu Glu Leu Pro 690
695 700Asp Leu Gly Gln Pro Tyr Ser Ser
Ala Val Tyr Ser Leu Glu Glu Gln705 710
715 720Tyr Leu Gly Leu Ala Leu Asp Val Asp Arg Ile Lys
Lys Asp Gln Glu 725 730
735Glu Glu Glu Asp Gln Gly Pro Pro Cys Pro Arg Leu Ser Arg Glu Leu
740 745 750Leu Glu Val Val Glu Pro
Glu Val Leu Gln Asp Ser Leu Asp Arg Cys 755 760
765Tyr Ser Thr Pro Ser Ser Cys Leu Glu Gln Pro Asp Ser Cys
Gln Pro 770 775 780Tyr Gly Ser Ser Phe
Tyr Ala Leu Glu Glu Lys His Val Gly Phe Ser785 790
795 800Leu Asp Val Gly Glu Ile Glu Lys Lys Gly
Lys Gly Lys Lys Arg Arg 805 810
815Gly Arg Arg Ser Lys Lys Glu Arg Arg Arg Gly Arg Lys Glu Gly Glu
820 825 830Glu Asp Gln Asn Pro
Pro Cys Pro Arg Leu Asn Ser Met Leu Met Glu 835
840 845Val Glu Glu Pro Glu Val Leu Gln Asp Ser Leu Asp
Ile Cys Tyr Ser 850 855 860Thr Pro Ser
Met Tyr Phe Glu Leu Pro Asp Ser Phe Gln His Tyr Arg865
870 875 880Ser Val Phe Tyr Ser Phe Glu
Glu Glu His Ile Ser Phe Ala Leu Tyr 885
890 895Val Asp Asn Arg Phe Phe Thr Leu Thr Val Thr Ser
Leu His Leu Val 900 905 910Phe
Gln Met Gly Val Ile Phe Pro Gln 915
92017664DNAHomo sapiens 17aacccaatga tcctgcagca gcccttgcag cgaggccccc
agggaggggc ccagcgcctc 60ccgcgggccg ccttgggggt gacttggggc ctggacgcca
gctcccctct ccgaggagct 120gtgcccatga gcaccaagcg gcgcctggag gaggagcagg
agcctctgcg caagcagttt 180ctgtctgagg agaacatggc cacccacttc tctcaactca
gcctgcacaa tgaccacccc 240tactgcagcc cccccatgac cttctcccca gccctgcccc
cactcaggag cccttgctct 300gagctgcttc tctggcgcta tcctggcagc ctcatccctg
aggccctccg tctgctgagg 360ctgggggaca cccccagtcc cccctaccct gcaaccccag
ctggggacat aatggagctc 420tgagtgctgg tggacagtgc ccctcccacc ttccttcttc
cccacaacag aagagaccag 480cgactcccgc aaagggacaa ggttcctccc tctcctgcag
agtaggcatc tgggcaccaa 540gaccttccct caacagagga cactgagccc aacggagttc
tgggatggga ggggtgggag 600catgggaagg gaggcatccc acccccaaga agaactgaat
aaagattgct gagcaaagga 660aggc
66418138PRTHomo sapiens 18Met Ile Leu Gln Gln Pro
Leu Gln Arg Gly Pro Gln Gly Gly Ala Gln 1 5
10 15Arg Leu Pro Arg Ala Ala Leu Gly Val Thr Trp Gly
Leu Asp Ala Ser 20 25 30Ser
Pro Leu Arg Gly Ala Val Pro Met Ser Thr Lys Arg Arg Leu Glu 35
40 45Glu Glu Gln Glu Pro Leu Arg Lys Gln
Phe Leu Ser Glu Glu Asn Met 50 55
60Ala Thr His Phe Ser Gln Leu Ser Leu His Asn Asp His Pro Tyr Cys65
70 75 80Ser Pro Pro Met Thr
Phe Ser Pro Ala Leu Pro Pro Leu Arg Ser Pro 85
90 95Cys Ser Glu Leu Leu Leu Trp Arg Tyr Pro Gly
Ser Leu Ile Pro Glu 100 105
110Ala Leu Arg Leu Leu Arg Leu Gly Asp Thr Pro Ser Pro Pro Tyr Pro
115 120 125Ala Thr Pro Ala Gly Asp Ile
Met Glu Leu 130 135192056DNAHomo sapiens 19ggaaccgcgg
ctgctggaca agaggggtgc ggtggatact gacctttgct ccggcctcgt 60cgtgaagaca
cagcgcatct ccccgctgta ggcttctccc acagaacccg tttcgggcct 120cagagcgtct
ggtgagatgc tgttgccgct gctgctgctg ctacccatgt gctgggccgt 180ggaggtcaag
aggccccggg gcgtctccct caccaatcat cacttctacg atgagtccaa 240gcctttcacc
tgcctggacg gttcggccac catcccattt gatcaggtca acgatgacta 300ttgcgactgc
aaagatggct ctgacgagcc aggcacggct gcctgtccta atggcagctt 360ccactgcacc
aacactggct ataagcccct gtatatcccc tccaaccggg tcaacgatgg 420tgtttgtgac
tgctgcgatg gaacagacga gtacaacagc ggcgtcatct gtgagaacac 480ctgcaaagag
aagggccgta aggagagaga gtccctgcag cagatggccg aggtcacccg 540cgaagggttc
cgtctgaaga agatccttat tgaggactgg aagaaggcac gggaggagaa 600gcagaaaaag
ctcattgagc tacaggctgg gaagaagtct ctggaagacc aggtggagat 660gctgcggaca
gtgaaggagg aagctgagaa gccagagaga gaggccaaag agcagcacca 720gaagctgtgg
gaagagcagc tggctgctgc caaggcccaa caggagcagg agctggcggc 780tgatgccttc
aaggagctgg atgatgacat ggacgggacg gtctcggtga ctgagctgca 840gactcacccg
gagctggaca cagatgggga tggggcgttg tcagaagcgg aagctcaggc 900cctcctcagt
ggggacacac agacagacgc cacctctttc tacgaccgcg tctgggccgc 960catcagggac
aagtaccggt ccgaggcact gcccaccgac cttccagcac cttctgcccc 1020tgacttgacg
gagcccaagg aggagcagcc gccagtgccc tcgtcgccca cagaggagga 1080ggaggaggag
gaggaggagg aagaagaggc tgaagaagag gaggaggagg aggattccga 1140ggaggcccca
ccgccactgt cacccccgca gccggccagc cctgctgagg aagacaaaat 1200gccgccctac
gacgagcaga cgcaggcctt catcgatgct gcccaggagg cccgcaacaa 1260gttcgaggag
gccgagcggt cgctgaagga catggaggag tccatcagga acctggagca 1320agagatttct
tttgactttg gccccaacgg ggagtttgct tacctgtaca gccagtgcta 1380cgagctcacc
accaacgaat acgtctaccg cctctgcccc ttcaagcttg tctcgcagaa 1440acccaaactc
gggggctctc ccaccagcct tggcacctgg ggctcatgga ttggccccga 1500ccacgacaag
ttcagtgcca tgaagtatga gcaaggcacg ggctgctggc agggccccaa 1560ccgctccacc
accgtgcgcc tcctgtgcgg gaaagagacc atggtgacca gcaccacaga 1620gcccagtcgc
tgcgagtacc tcatggagct gatgacgcca gccgcctgcc cggagccacc 1680gcctgaagca
cccaccgaag acgaccatga cgagctctag ctggatgggc gcagagaacc 1740tcaagaaggc
atgaagccag cccctgcagt gccgtccacc cgcccctctg ggcctgcctg 1800tggctctgtt
gccctcctct gtggcggcag gacctttgtg gggcttcgtg ccctgctctg 1860gggcccaggc
ggggctggtc cacattccca ggccccaaca gcctccaaag atgggtaaag 1920gagcttgccc
tccctgggcc ccccaccttg gtgactcgcc ccaccacccc cagccctgtc 1980cctgccaccc
ctcctagtgg ggactagtga atgacttgac ctgtgacctc aatacaataa 2040atgtgatccc
ccaccc 205620527PRTHomo
sapiens 20Met Leu Leu Pro Leu Leu Leu Leu Leu Pro Met Cys Trp Ala Val Glu
1 5 10 15Val Lys Arg Pro
Arg Gly Val Ser Leu Thr Asn His His Phe Tyr Asp 20
25 30Glu Ser Lys Pro Phe Thr Cys Leu Asp Gly Ser
Ala Thr Ile Pro Phe 35 40 45Asp
Gln Val Asn Asp Asp Tyr Cys Asp Cys Lys Asp Gly Ser Asp Glu 50
55 60Pro Gly Thr Ala Ala Cys Pro Asn Gly Ser
Phe His Cys Thr Asn Thr65 70 75
80Gly Tyr Lys Pro Leu Tyr Ile Pro Ser Asn Arg Val Asn Asp Gly
Val 85 90 95Cys Asp Cys
Cys Asp Gly Thr Asp Glu Tyr Asn Ser Gly Val Ile Cys 100
105 110Glu Asn Thr Cys Lys Glu Lys Gly Arg Lys
Glu Arg Glu Ser Leu Gln 115 120
125Gln Met Ala Glu Val Thr Arg Glu Gly Phe Arg Leu Lys Lys Ile Leu 130
135 140Ile Glu Asp Trp Lys Lys Ala Arg
Glu Glu Lys Gln Lys Lys Leu Ile145 150
155 160Glu Leu Gln Ala Gly Lys Lys Ser Leu Glu Asp Gln
Val Glu Met Leu 165 170
175Arg Thr Val Lys Glu Glu Ala Glu Lys Pro Glu Arg Glu Ala Lys Glu
180 185 190Gln His Gln Lys Leu Trp
Glu Glu Gln Leu Ala Ala Ala Lys Ala Gln 195 200
205Gln Glu Gln Glu Leu Ala Ala Asp Ala Phe Lys Glu Leu Asp
Asp Asp 210 215 220Met Asp Gly Thr Val
Ser Val Thr Glu Leu Gln Thr His Pro Glu Leu225 230
235 240Asp Thr Asp Gly Asp Gly Ala Leu Ser Glu
Ala Glu Ala Gln Ala Leu 245 250
255Leu Ser Gly Asp Thr Gln Thr Asp Ala Thr Ser Phe Tyr Asp Arg Val
260 265 270Trp Ala Ala Ile Arg
Asp Lys Tyr Arg Ser Glu Ala Leu Pro Thr Asp 275
280 285Leu Pro Ala Pro Ser Ala Pro Asp Leu Thr Glu Pro
Lys Glu Glu Gln 290 295 300Pro Pro Val
Pro Ser Ser Pro Thr Glu Glu Glu Glu Glu Glu Glu Glu305
310 315 320Glu Glu Glu Glu Ala Glu Glu
Glu Glu Glu Glu Glu Asp Ser Glu Glu 325
330 335Ala Pro Pro Pro Leu Ser Pro Pro Gln Pro Ala Ser
Pro Ala Glu Glu 340 345 350Asp
Lys Met Pro Pro Tyr Asp Glu Gln Thr Gln Ala Phe Ile Asp Ala 355
360 365Ala Gln Glu Ala Arg Asn Lys Phe Glu
Glu Ala Glu Arg Ser Leu Lys 370 375
380Asp Met Glu Glu Ser Ile Arg Asn Leu Glu Gln Glu Ile Ser Phe Asp385
390 395 400Phe Gly Pro Asn
Gly Glu Phe Ala Tyr Leu Tyr Ser Gln Cys Tyr Glu 405
410 415Leu Thr Thr Asn Glu Tyr Val Tyr Arg Leu
Cys Pro Phe Lys Leu Val 420 425
430Ser Gln Lys Pro Lys Leu Gly Gly Ser Pro Thr Ser Leu Gly Thr Trp
435 440 445Gly Ser Trp Ile Gly Pro Asp
His Asp Lys Phe Ser Ala Met Lys Tyr 450 455
460Glu Gln Gly Thr Gly Cys Trp Gln Gly Pro Asn Arg Ser Thr Thr
Val465 470 475 480Arg Leu
Leu Cys Gly Lys Glu Thr Met Val Thr Ser Thr Thr Glu Pro
485 490 495Ser Arg Cys Glu Tyr Leu Met
Glu Leu Met Thr Pro Ala Ala Cys Pro 500 505
510Glu Pro Pro Pro Glu Ala Pro Thr Glu Asp Asp His Asp Glu
Leu 515 520 52521384DNAHomo
sapiens 21atgcctaaat caaaggaact tgtttcttca agctcttctg gcagtgattc
tgacagtgag 60gttgacaaaa agttaaagag gaaaaagcaa gttgctccag aaaaacctgt
aaagaaacaa 120aagacaggtg agacttcgag agccctgtca tcttctaaac agagcagcag
cagcagagat 180gataacatgt ttcagattgg gaaaatgagg tacgttagtg ttcgcgattt
taaaggcaaa 240gtgctaattg atattagaga atattggatg gatcctgaag gtgaaatgaa
accaggaaga 300aaaggtattt ctttaaatcc agaacaatgg agccagctga aggaacagat
ctctgatata 360gatgacgcag taagaaagct gtga
38422127PRTHomo sapiens 22Met Pro Lys Ser Lys Glu Leu Val Ser
Ser Ser Ser Ser Gly Ser Asp 1 5 10
15Ser Asp Ser Glu Val Asp Lys Lys Leu Lys Arg Lys Lys Gln Val
Ala 20 25 30Pro Glu Lys Pro
Val Lys Lys Gln Lys Thr Gly Glu Thr Ser Arg Ala 35
40 45Leu Ser Ser Ser Lys Gln Ser Ser Ser Ser Arg Asp
Asp Asn Met Phe 50 55 60Gln Ile Gly
Lys Met Arg Tyr Val Ser Val Arg Asp Phe Lys Gly Lys65 70
75 80Val Leu Ile Asp Ile Arg Glu Tyr
Trp Met Asp Pro Glu Gly Glu Met 85 90
95Lys Pro Gly Arg Lys Gly Ile Ser Leu Asn Pro Glu Gln Trp
Ser Gln 100 105 110Leu Lys Glu
Gln Ile Ser Asp Ile Asp Asp Ala Val Arg Lys Leu 115
120 125231554DNAHomo sapiens 23gaccacaatg gcggccgcca
ccctgctgcg cgcgacgccc cacttcagcg gtctcgccgc 60cggccggacc ttcctgctgc
agggtctgtt gcggctgctg aaagccccgg cattgcctct 120cttgtgccgc ggcctggccg
tggaggccaa gaagacttac gtgcgcgaca agccacatgt 180gaatgtgggt accatcggcc
atgtggacca cgggaagacc acgctgactg cagccatcac 240gaagattcta gctgagggag
gtggggctaa gttcaagaag tacgaggaga ttgacaatgc 300cccggaggag cgagctcggg
gtatcaccat caatgcggct catgtggagt atagcactgc 360cgcccgccac tacgcccaca
cagactgccc gggtcatgca gattatgtta agaatatgat 420cacaggcact gcacccctcg
acggctgcat cctggtggta gcagccaatg acggccccat 480gccccagacc cgagagcact
tattactggc cagacagatt ggggtggagc atgtggtggt 540gtatgtgaac aaggctgacg
ctgtccagga ctctgagatg gtggaactgg tggaactgga 600gatccgggag ctgctcaccg
agtttggcta taaaggggag gagaccccag tcatcgtagg 660ctctgctctc tgtgcccttg
agggtcggga ccctgagtta ggcctgaagt ctgtgcagaa 720gctactggat gctgtggaca
cttacatccc agtgcccgcc cgggacctgg agaagccttt 780cctgctgcct gtggaggcgg
tgtactccgt ccctggccgt ggcaccgtgg tgacaggtac 840actagagcgt ggcattttaa
agaagggaga cgagtgtgag ctcctaggac atagcaagaa 900catccgcact gtggtgacag
gcattgagat gttccacaag agcctggaga gggccgaggc 960cggagataac ctcggggccc
tggtccgagg cttgaagcgg gaggacttgc ggcggggcct 1020ggtcatggtc aagccaggtt
ccatcaagcc ccaccagaag gtggaggccc aggtttacat 1080cctcagcaag gaggaaggtg
gccgccacaa gccctttgtg tcccacttca tgcctgtcat 1140gttctccctg acttggaaca
tggcctgtcg gattatcctg cccccagaga aggagcttgc 1200catgcccggg gaggacctga
agttcaacct aatcttgcgg cagccaatga tcttagagaa 1260aggccagcgt ttcaccctgc
gagatggcaa ccggactatt ggcaccggtc tagtcaccaa 1320cacgctggcc atgactgagg
aggagaagaa tatcaaatgg ggttgagtgt gcagatctct 1380gctcagcttc ccttgcgttt
aaggcctgcc ctagccaggg ctccctcctg cttccagtac 1440cctctcatgg cataggctgc
aacccagcag agggcagcta gatggacatt tcccctgctc 1500ggaagggttg gcctgcctgg
ctggggaggt cagtaaactt tgaatagtaa gcca 155424452PRTHomo sapiens
24Met Ala Ala Ala Thr Leu Leu Arg Ala Thr Pro His Phe Ser Gly Leu 1
5 10 15Ala Ala Gly Arg Thr Phe
Leu Leu Gln Gly Leu Leu Arg Leu Leu Lys 20 25
30Ala Pro Ala Leu Pro Leu Leu Cys Arg Gly Leu Ala Val
Glu Ala Lys 35 40 45Lys Thr Tyr
Val Arg Asp Lys Pro His Val Asn Val Gly Thr Ile Gly 50
55 60His Val Asp His Gly Lys Thr Thr Leu Thr Ala Ala
Ile Thr Lys Ile65 70 75
80Leu Ala Glu Gly Gly Gly Ala Lys Phe Lys Lys Tyr Glu Glu Ile Asp
85 90 95Asn Ala Pro Glu Glu Arg
Ala Arg Gly Ile Thr Ile Asn Ala Ala His 100
105 110Val Glu Tyr Ser Thr Ala Ala Arg His Tyr Ala His
Thr Asp Cys Pro 115 120 125Gly His
Ala Asp Tyr Val Lys Asn Met Ile Thr Gly Thr Ala Pro Leu 130
135 140Asp Gly Cys Ile Leu Val Val Ala Ala Asn Asp
Gly Pro Met Pro Gln145 150 155
160Thr Arg Glu His Leu Leu Leu Ala Arg Gln Ile Gly Val Glu His Val
165 170 175Val Val Tyr Val
Asn Lys Ala Asp Ala Val Gln Asp Ser Glu Met Val 180
185 190Glu Leu Val Glu Leu Glu Ile Arg Glu Leu Leu
Thr Glu Phe Gly Tyr 195 200 205Lys
Gly Glu Glu Thr Pro Val Ile Val Gly Ser Ala Leu Cys Ala Leu 210
215 220Glu Gly Arg Asp Pro Glu Leu Gly Leu Lys
Ser Val Gln Lys Leu Leu225 230 235
240Asp Ala Val Asp Thr Tyr Ile Pro Val Pro Ala Arg Asp Leu Glu
Lys 245 250 255Pro Phe Leu
Leu Pro Val Glu Ala Val Tyr Ser Val Pro Gly Arg Gly 260
265 270Thr Val Val Thr Gly Thr Leu Glu Arg Gly
Ile Leu Lys Lys Gly Asp 275 280
285Glu Cys Glu Leu Leu Gly His Ser Lys Asn Ile Arg Thr Val Val Thr 290
295 300Gly Ile Glu Met Phe His Lys Ser
Leu Glu Arg Ala Glu Ala Gly Asp305 310
315 320Asn Leu Gly Ala Leu Val Arg Gly Leu Lys Arg Glu
Asp Leu Arg Arg 325 330
335Gly Leu Val Met Val Lys Pro Gly Ser Ile Lys Pro His Gln Lys Val
340 345 350Glu Ala Gln Val Tyr Ile
Leu Ser Lys Glu Glu Gly Gly Arg His Lys 355 360
365Pro Phe Val Ser His Phe Met Pro Val Met Phe Ser Leu Thr
Trp Asn 370 375 380Met Ala Cys Arg Ile
Ile Leu Pro Pro Glu Lys Glu Leu Ala Met Pro385 390
395 400Gly Glu Asp Leu Lys Phe Asn Leu Ile Leu
Arg Gln Pro Met Ile Leu 405 410
415Glu Lys Gly Gln Arg Phe Thr Leu Arg Asp Gly Asn Arg Thr Ile Gly
420 425 430Thr Gly Leu Val Thr
Asn Thr Leu Ala Met Thr Glu Glu Glu Lys Asn 435
440 445Ile Lys Trp Gly 450252201DNAHomo sapiens
25tttttttttt cgtcttagcc acgcagaagt cgcgtgtcta gtttgtttcg acgccggacc
60gcgtaagaga cgatgatgtt gggcacggaa ggtggagagg gattcgtggt gaaggtccgg
120ggcttgccct ggtcttgctc ggccgatgaa gtgcagaggt ttttttctga ctgcaaaatt
180caaaatgggg ctcaaggtat tcgtttcatc tacaccagag aaggcagacc aagtggcgag
240gcttttgttg aacttgaatc agaagatgaa gtcaaattgg ccctgaaaaa agacagagaa
300actatgggac acagatatgt tgaagtattc aagtcaaaca acgttgaaat ggattgggtg
360ttgaagcata ctggtccaaa tagtcctgac acggccaatg atggctttgt acggcttaga
420ggacttccct ttggatgtag caaggaagaa attgttcagt tcttctcagg gttggaaatc
480gtgccaaatg ggataacatt gccggtggac ttccagggga ggagtacggg ggaggccttc
540gtgcagtttg cttcacagga aatagctgaa aaggctctaa agaaacacaa ggaaagaata
600gggcacaggt atattgaaat ctttaagagc agtagagctg aagttagaac tcattatgat
660ccaccacgaa agcttatggc catgcagcgg ccaggtcctt atgacagacc tggggctggt
720agagggtata acagcattgg cagaggagct ggctttgaga ggatgaggcg tggtgcttat
780ggtggaggct atggaggcta tgatgattac aatggctata atgatggcta tggatttggg
840tcagatagat ttggaagaga cctcaattac tgtttttcag gaatgtctga tcacagatac
900ggggatggtg gctctacttt ccagagcaca acaggacact gtgtacacat gcggggatta
960ccttacagag ctactgagaa tgacatttat aatttttttt caccgctcaa ccctgtgaga
1020gtacacattg aaattggtcc tgatggcaga gtaactggtg aagcagatgt cgagttcgca
1080actcatgaag atgctgtggc agctatgtca aaagacaaag caaatatgca acacagatat
1140gtagaactct tcttgaattc tacagcagga gcaagcggtg gtgcttacga acacagatat
1200gtagaactct tcttgaattc tacagcagga gcaagcggtg gtgcttatgg tagccaaatg
1260atgggaggca tgggcttgtc aaaccagtcc agctacgggg gcccagccag ccagcagctg
1320agtgggggtt acggaggcgg ctacggtggc cagagcagca tgagtggata cgaccaagtt
1380ttacaggaaa actccagtga ttttcaatca aacattgcat aggtaaccaa ggagcagtga
1440acagcagcta ctacagtagt ggaagccgtg catctatggg cgtgaacgga atgggagggt
1500tgtctagcat gtccagtatg agtggtggat ggggaatgta attgatcgat cctgatcact
1560gactcttggt caaccttttt tttttttttt ttttctttaa gaaaacttca gtttaacagt
1620ttctgcaata caagcttgtg atttatgctt actctaagtg gaaatcagga ttgttatgaa
1680gacttaaggc ccagtatttt tgaatacaat actcatctag gatgtaacag tgaagctgag
1740taaactataa ctgttaaact taagttccag cttttctcaa gttagttata ggatgtactt
1800aagcagtaag cgtatttagg taaaagcagt tgaattatgt taaatgttgc cctttgccac
1860gttaaattga acactgtttt ggatgcatgt tgaaagacat gcttttattt tttttgtaaa
1920acaatatagg agctgtgtct actattaaaa gtgaaacatt ttggcatgtt tgttaattct
1980agtttcattt aataacctgt aaggcacgta agtttaagct tttttttttt ttaagttaat
2040gggaaaaatt tgagacgcaa taccaatact taggattttg gtcttggtgt ttgtatgaaa
2100ttctgaggcc ttgatttaaa tctttcattg tattgtgatt tccttttagg tatattgcgc
2160taagtgaaac ttgtcaaata aatcctcctt ttaaaaactg c
220126449PRTHomo sapiens 26Met Met Leu Gly Thr Glu Gly Gly Glu Gly Phe
Val Val Lys Val Arg 1 5 10
15Gly Leu Pro Trp Ser Cys Ser Ala Asp Glu Val Gln Arg Phe Phe Ser
20 25 30Asp Cys Lys Ile Gln Asn Gly
Ala Gln Gly Ile Arg Phe Ile Tyr Thr 35 40
45Arg Glu Gly Arg Pro Ser Gly Glu Ala Phe Val Glu Leu Glu Ser
Glu 50 55 60Asp Glu Val Lys Leu Ala
Leu Lys Lys Asp Arg Glu Thr Met Gly His65 70
75 80Arg Tyr Val Glu Val Phe Lys Ser Asn Asn Val
Glu Met Asp Trp Val 85 90
95Leu Lys His Thr Gly Pro Asn Ser Pro Asp Thr Ala Asn Asp Gly Phe
100 105 110Val Arg Leu Arg Gly Leu
Pro Phe Gly Cys Ser Lys Glu Glu Ile Val 115 120
125Gln Phe Phe Ser Gly Leu Glu Ile Val Pro Asn Gly Ile Thr
Leu Pro 130 135 140Val Asp Phe Gln Gly
Arg Ser Thr Gly Glu Ala Phe Val Gln Phe Ala145 150
155 160Ser Gln Glu Ile Ala Glu Lys Ala Leu Lys
Lys His Lys Glu Arg Ile 165 170
175Gly His Arg Tyr Ile Glu Ile Phe Lys Ser Ser Arg Ala Glu Val Arg
180 185 190Thr His Tyr Asp Pro
Pro Arg Lys Leu Met Ala Met Gln Arg Pro Gly 195
200 205Pro Tyr Asp Arg Pro Gly Ala Gly Arg Gly Tyr Asn
Ser Ile Gly Arg 210 215 220Gly Ala Gly
Phe Glu Arg Met Arg Arg Gly Ala Tyr Gly Gly Gly Tyr225
230 235 240Gly Gly Tyr Asp Asp Tyr Asn
Gly Tyr Asn Asp Gly Tyr Gly Phe Gly 245
250 255Ser Asp Arg Phe Gly Arg Asp Leu Asn Tyr Cys Phe
Ser Gly Met Ser 260 265 270Asp
His Arg Tyr Gly Asp Gly Gly Ser Thr Phe Gln Ser Thr Thr Gly 275
280 285His Cys Val His Met Arg Gly Leu Pro
Tyr Arg Ala Thr Glu Asn Asp 290 295
300Ile Tyr Asn Phe Phe Ser Pro Leu Asn Pro Val Arg Val His Ile Glu305
310 315 320Ile Gly Pro Asp
Gly Arg Val Thr Gly Glu Ala Asp Val Glu Phe Ala 325
330 335Thr His Glu Asp Ala Val Ala Ala Met Ser
Lys Asp Lys Ala Asn Met 340 345
350Gln His Arg Tyr Val Glu Leu Phe Leu Asn Ser Thr Ala Gly Ala Ser
355 360 365Gly Gly Ala Tyr Glu His Arg
Tyr Val Glu Leu Phe Leu Asn Ser Thr 370 375
380Ala Gly Ala Ser Gly Gly Ala Tyr Gly Ser Gln Met Met Gly Gly
Met385 390 395 400Gly Leu
Ser Asn Gln Ser Ser Tyr Gly Gly Pro Ala Ser Gln Gln Leu
405 410 415Ser Gly Gly Tyr Gly Gly Gly
Tyr Gly Gly Gln Ser Ser Met Ser Gly 420 425
430Tyr Asp Gln Val Leu Gln Glu Asn Ser Ser Asp Phe Gln Ser
Asn Ile 435 440
445Ala271852DNAHomo sapiens 27acagcccttc gtggggccct gggcaccctg caccagctgg
gcatcgtcgt cggcatcctc 60atcgcccagg tgttcggcct ggactccatc atgggcaaca
aggacctgtg gcccctgctg 120ctgagcatca tcttcatccc ggccctgctg cagtgcatcg
tgctgccctt ctgccccgag 180agtccccgct tcctgctcat caaccgcaac gaggagaacc
gggccaagag tgtgctaaag 240aagctgcgcg ggacagctga cgtgacccat gacctgcagg
agatgaagga agagagtcgg 300cagatgatgc gggagaagaa ggtcaccatc ctggagctgt
tccgctcccc cgcctaccgc 360cagcccatcc tcatcgctgt ggtgctgcag ctgtcccagc
agctgtctgg catcaacgct 420gtcttctatt actccacgag catcttcgag aaggcggggg
tgcagcagcc tgtgtatgcc 480accattggct ccggtatcgt caacacggcc ttcactgtcg
tgtcgctgtt tgtggtggag 540cgagcaggcc ggcggaccct gcacctcata ggcctcgctg
gcatggcggg ttgtgccata 600ctcatgacca tcgcgctagc actgctggag cagctaccct
ggatgtccta tctgagcatc 660gtggccatct ttggctttgt ggccttcttt gaagtgggtc
ctggccccat cccatggttc 720atcgtggctg aactcttcag ccagggtcca cgtccagctg
ccattgccgt tgcaggcttc 780tccaactgga cctcaaattt cattgtgggc atgtgcttcc
agtatgtgga gcaactgtgt 840ggtccctacg tcttcatcat cttcactgtg ctcctggttc
tgttcttcat cttcacctac 900ttcaaagttc ctgagactaa aggccggacc ttcgatgaga
tcgcttccgg cttccggcag 960gggggagcca gccaaagtga caagacaccc gaggagctgt
tccatcccct gggggctgat 1020tcccaagtgt gagtcgcccc agatcaccag cccggcctgc
tcccagcagc cctaaggatc 1080tctcaggagc acaggcagct ggatgagact tccaaacctg
acagatgtca gccgagccgg 1140gcctggggct cctttctcca gccagcaatg atgtccagaa
gaatattcag gacttaacgg 1200ctccaggatt ttaacaaaag caagactgtt gctcaaatct
attcagacaa gcaacaggtt 1260ttataatttt tttattactg attttgttat ttttatatca
gcctgagtct cctgtgccca 1320catcccaggc ttcaccctga atggttccat gcctgagggt
ggagactaag ccctgtcgag 1380acacttgcct tcttcaccca gctaatctgt agggctggac
ctatgtccta aggacacact 1440aatcgaacta tgaactacaa agcttctatc ccaggaggtg
gctatggcca cccgttctgc 1500tggcctggat ctccccactc taggggtcag gctccattag
gatttgcccc ttcccatctc 1560ttcctaccca accactcaaa ttaatctttc tttacctgag
accagttggg agcactggag 1620tgcagggagg agaggggaag ggccagtctg ggctgccggg
ttctagtctc ctttgcactg 1680agggccacac tattaccatg agaagagggc ctgtgggagc
ctgcaaactc actgctcaag 1740aagacatgga gactcctgcc ctgttgtgta tagatgcaag
atatttatat atatttttgg 1800ttgtcaatat taaatacaga cactaagtta tagtaaaaaa
aaaaaaaaaa aa 185228343PRTHomo sapiens 28Thr Ala Leu Arg Gly
Ala Leu Gly Thr Leu His Gln Leu Gly Ile Val 1 5
10 15Val Gly Ile Leu Ile Ala Gln Val Phe Gly Leu
Asp Ser Ile Met Gly 20 25
30Asn Lys Asp Leu Trp Pro Leu Leu Leu Ser Ile Ile Phe Ile Pro Ala
35 40 45Leu Leu Gln Cys Ile Val Leu Pro
Phe Cys Pro Glu Ser Pro Arg Phe 50 55
60Leu Leu Ile Asn Arg Asn Glu Glu Asn Arg Ala Lys Ser Val Leu Lys65
70 75 80Lys Leu Arg Gly Thr
Ala Asp Val Thr His Asp Leu Gln Glu Met Lys 85
90 95Glu Glu Ser Arg Gln Met Met Arg Glu Lys Lys
Val Thr Ile Leu Glu 100 105
110Leu Phe Arg Ser Pro Ala Tyr Arg Gln Pro Ile Leu Ile Ala Val Val
115 120 125Leu Gln Leu Ser Gln Gln Leu
Ser Gly Ile Asn Ala Val Phe Tyr Tyr 130 135
140Ser Thr Ser Ile Phe Glu Lys Ala Gly Val Gln Gln Pro Val Tyr
Ala145 150 155 160Thr Ile
Gly Ser Gly Ile Val Asn Thr Ala Phe Thr Val Val Ser Leu
165 170 175Phe Val Val Glu Arg Ala Gly
Arg Arg Thr Leu His Leu Ile Gly Leu 180 185
190Ala Gly Met Ala Gly Cys Ala Ile Leu Met Thr Ile Ala Leu
Ala Leu 195 200 205Leu Glu Gln Leu
Pro Trp Met Ser Tyr Leu Ser Ile Val Ala Ile Phe 210
215 220Gly Phe Val Ala Phe Phe Glu Val Gly Pro Gly Pro
Ile Pro Trp Phe225 230 235
240Ile Val Ala Glu Leu Phe Ser Gln Gly Pro Arg Pro Ala Ala Ile Ala
245 250 255Val Ala Gly Phe Ser
Asn Trp Thr Ser Asn Phe Ile Val Gly Met Cys 260
265 270Phe Gln Tyr Val Glu Gln Leu Cys Gly Pro Tyr Val
Phe Ile Ile Phe 275 280 285Thr Val
Leu Leu Val Leu Phe Phe Ile Phe Thr Tyr Phe Lys Val Pro 290
295 300Glu Thr Lys Gly Arg Thr Phe Asp Glu Ile Ala
Ser Gly Phe Arg Gln305 310 315
320Gly Gly Ala Ser Gln Ser Asp Lys Thr Pro Glu Glu Leu Phe His Pro
325 330 335Leu Gly Ala Asp
Ser Gln Val 340295368DNAHomo sapiens 29ggaatcagag aagatcattg
ctgagttgaa tgaaacttgg gaagagaagc ttcgtaaaac 60agaggccatc agaatggaga
gagaggcttt gttggctgag atgggagttg ccattcggga 120agatggagga accctagggg
ttttctcacc taaaaagacc ccacatcttg ttaacctcaa 180tgaagaccca ctaatgtctg
agtgcctact ttattacatc aaagatggaa ttacaagggt 240tggccaagca gatgctgagc
ggcgccagga catagtgctg agcggggctc acattaaaga 300agagcattgt atcttccgga
gtgagagaag caacagcggg gaagttatcg tgaccttaga 360gccctgtgag cgctcagaaa
cctacgtaaa tggcaagagg gtgtcccagc ctgttcagct 420gcgctcagga aaccgtatca
tcatgggtaa aaaccatgtt ttccgcttta accacccgga 480acaagcacga gctgagcgag
agaagactcc ttctgctgag accccctctg agcctgtgga 540ctggacattt gcccagaggg
agcttctgga aaaacaagga attgatatga aacaagagat 600ggagaaaagg ctacaggaaa
tggagatctt atacaaaaag gagaaggaag aagcagatct 660tcttttggag cagcagagac
tggactatga gagtaaattg caggccttgc agaagcaggt 720tgaaacccga tctctggctg
cagaaacaac tgaagaggag gaagaagagg aagaagttcc 780ttggacacag catgaatttg
agttggccca atgggccttc cggaaatgga agtctcatca 840gtttacttca ttacgggact
tactctgggg caatgccgtg tacctaaagg aggccaatgc 900catcagtgtg gaactgaaaa
agaaggtgca gtttcagttt gttctgctga ctgacacact 960gtactcccct ttgcctcctg
aattacttcc cactgagatg gaaaaaactc atgaggacag 1020gcctttccct cgcacagtgg
tagcagtaga agtccaggat ttgaagaatg gagcaacaca 1080ctattggtct ttggagaaac
tcaagcagag gctggatttg atgcgagaga tgtatgatag 1140ggcaggggag atggcctcca
gtgcccaaga cgaaagcgaa accactgtga ctggcagcga 1200tcccttctat gatcggttcc
actggttcaa acttgtgggg agctccccca ttttccacgg 1260ctgtgtgaac gagcgccttg
ccgaccgcac accctccccc actttttcca cggccgattc 1320cgacatcact gagctggctg
acgagcagca agatgagatg gaggattttg atgatgaggc 1380attcgtggat gacgccggct
ctgacgcagg gacggaggag ggatcagatc tcttcagtga 1440cgggcatgac ccgttttacg
accgatcccc ttggttcatt ttagtgggaa gggcatttgt 1500ttacctgagc aatctgctgt
atcccgtgcc cctgatccac agggtggcca tcgtcagtga 1560gaaaggtgaa gtgcggggat
ttctgcgtgt ggctgtacag gccatcgcag cggatgaaga 1620agctcctgat tatggctctg
gaattcgaca gtcaggaaca gctaaaatat cttttgataa 1680tgaatacttt aatcagagtg
acttttcgtc tgttgcaatg actcgttctg gtctgtcctt 1740ggaggagttg aggattgtgg
aaggacaggg tcagagttct gaggtcatca ctcctccaga 1800agaaatcagt cgaattaatg
acttggattt gaagtcaagc actttgctgg atggtaagat 1860ggtaatggaa gggttttctg
aagagattgg caaccacctg aaactgggca gtgccttcac 1920tttccgagta acagtgttgc
aggccagtgg aatcctccca gagtatgcag atatcttctg 1980tcagttcaac tttttgcatc
gccatgatga agcattctcc acggagcccc tcaaaaacaa 2040tggcagagga agtcccctgg
ccttttatca tgtgcagaat attgcagtgg agatcactga 2100atcatttgtg gattacatca
aaaccaagcc tattgtattt gaagtctttg ggcattatca 2160gcagcaccca cttcatctgc
aaggacagga gcttaacagt ccgcctcagc cgtgccgccg 2220attcttccct ccacccatgc
cactgtccaa gccagttcca gccaccaagt taaacacgat 2280gagcaaaacc agccttggcc
agagcatgag caagtatgac ctcctggttt ggtttgagat 2340cagtgaactg gagcctacag
gagagtatat cccagctgtg gttgaccaca cagcaggctt 2400gccttgccag gggacatttt
tgcttcatca gggcatccag cgaaggatca cagtgaccat 2460tatccatgag aaggggagcg
agctccattg gaaagatgtt cgtgaactgg tggtaggtcg 2520tattcggaat aagcctgagg
tggatgaagc tgcagttgat gccatcctct ccctaaatat 2580tatttctgcc aagtacctga
agtcttccca caactctagc aggaccttct accgctttga 2640ggctgtgtgg gatagctctc
tgcataactc ccttcttctg aaccgagtga caccctatgg 2700agaaaagatc tacatgacct
tgtcggccta cctagagctg gatcattgca tccagccggc 2760tgtcatcacc aaggatgtgt
gcatggtctt ctactcccga gatgccaaga tctcaccacc 2820acgctctctg cgtagcctct
ttggcagcgg ctactcaaag tcaccagatt cgaatcgagt 2880cactggcatt tacgaactca
gcttatgcaa aatgtcagac acaggtagtc caggtatgca 2940gagaaggaga agaaaaatct
tagatacgtc agtggcatat gtgcggggag aagagaactt 3000agcaggctgg cggccccgtg
gagacagcct catccttgag caccagtggg agctggagaa 3060gctggagctc ctacatgagg
tggaaaaaac ccgccacttt ttgctgctgc gtgagagact 3120tggtgacagc atccccaaat
ccctgagcga ctcgttatcc cccagcctca gcagtgggac 3180cctcagcacc tccaccagta
tctcctctca gatctcaacc actacctttg aaagcgccat 3240cacacctagc gagagcagtg
gctatgattc aggagacatc gaaagcctgg tggaccgaga 3300gaaagagctg gctaccaagt
gcctgcaact tctcacccac actttcaaca gagaattcag 3360ccaggtgcac ggcagcgtca
gtgactgtaa gttgtctgat atctctccaa ttggacggga 3420tccctctgag tccagtttca
gcagtgccac cctcactccc tcctccacct gtccctctct 3480ggtagactct aggagcaact
ctctggatca gaagacccca gaagccaatt cccgggcctc 3540tagtccctgc ccagaatttg
aacagtttca gattgtccca gctgtggaaa caccatattt 3600ggcccgagca ggaaaaaacg
aatttctcaa tcttgttcca gatattgaag aaattagacc 3660aagctcagtg gtctctaaga
aaggatacct tcatttcaag gagcctcttt acagtaactg 3720ggctaaacat tttgttgtcg
tccgtcggcc ttatgtcttc atctataaca gtgacaaaga 3780ccctgtggag cgtggaatca
ttaacctgtc cacagcacag gtggagtaca gtgaggacca 3840gcaggccatg gtgaagacac
caaacacctt tgctgtctgc acaaagcacc gtggggtcct 3900tttgcaggcc ctcaatgaca
aagacatgaa cgactggttg tatgccttca acccacttct 3960agctggcaca atacggtcaa
agctttcccg cagatgcccg agccagtcga aatactaagt 4020gactctgccg agtgccctca
ctcgccttcg agagataaag aaagcgttac ctctcatttc 4080tctttgtgat tcttgacggt
gactcttgta tgtaatcctg tggcttaact acttctccct 4140ccttgtccag cacttttcta
gctctcccgt tccccatctc cattgctctg tactcttttc 4200ttttttcttg tgctgagaat
ctcgttagta gcatgtggcc taacaaaagg aaaaaatgtt 4260tttaaacaca cacacacaca
cacacacaca cacacacata cacagacaaa aacacaaaaa 4320ctctgagggg atctggtgaa
tctccaaatt attgtgggtg tactttggct tccttttgta 4380tgataggtcc ccatcatgac
cacctctgat gtctgtgctg ctgtcaccag gcacctttgt 4440ttttcaagac aacatacttt
ttttttcttt tctctgtttg tgatatcact ttaatttttc 4500ttgggtggct tagagactaa
gggaggagac atctggcctt tttagaacct gagaggaaaa 4560aaagagtctt tttttcccct
ctgtctcttt ttgccatggc taatccctgc atttccattc 4620agggaaaagg tggtagtgag
catagaactg caacagttat attctgagtc aaagttgggg 4680ctttttacgg cataattatg
gaatttttat ttactggtag agaggagacg agaggctttt 4740tcagtgggcc tgggacagtg
gctgctcttg actttgtgtg aagggaaatg ccaaggatgc 4800ttctggtgga cttcagggga
ccccagggtt tggccgtggg ccgtgatggc agcaggcggt 4860gggatgcttg tagctcctca
cagcaggatt cctgcccact gttttttctc tgttgggagg 4920gaagctcttt tctaggagtg
tctcagttct gcttttggca ttagtgatgg tggtggtaca 4980gttggaatta gtgccatgtc
atacacaaat gttccacaag gcgggagtgt ttcactttct 5040ggtgataaac ttgatggtca
ttgttatgat taagataatg ccgggcaggc cgggcacagt 5100ggctcacgcc tgtaatccaa
gcacttgggg aggccgaggc gggcagatca cgagatcagg 5160agttcaagac cagcctggcc
aatgtgatga aaccccgtct ctactaaaaa tacaaaatta 5220gtcgggtatg gtggcacatg
cctgtaattc cagctgcttg ggagcctgag gcaggagaac 5280tgcttgaacc caggaggcag
aggttgcagt gagccaagat cgcgctattg cactccagcc 5340tgggtgacag agcaagactc
tgcctcag 5368301338PRTHomo sapiens
30Glu Ser Glu Lys Ile Ile Ala Glu Leu Asn Glu Thr Trp Glu Glu Lys 1
5 10 15Leu Arg Lys Thr Glu Ala
Ile Arg Met Glu Arg Glu Ala Leu Leu Ala 20 25
30Glu Met Gly Val Ala Ile Arg Glu Asp Gly Gly Thr Leu
Gly Val Phe 35 40 45Ser Pro Lys
Lys Thr Pro His Leu Val Asn Leu Asn Glu Asp Pro Leu 50
55 60Met Ser Glu Cys Leu Leu Tyr Tyr Ile Lys Asp Gly
Ile Thr Arg Val65 70 75
80Gly Gln Ala Asp Ala Glu Arg Arg Gln Asp Ile Val Leu Ser Gly Ala
85 90 95His Ile Lys Glu Glu His
Cys Ile Phe Arg Ser Glu Arg Ser Asn Ser 100
105 110Gly Glu Val Ile Val Thr Leu Glu Pro Cys Glu Arg
Ser Glu Thr Tyr 115 120 125Val Asn
Gly Lys Arg Val Ser Gln Pro Val Gln Leu Arg Ser Gly Asn 130
135 140Arg Ile Ile Met Gly Lys Asn His Val Phe Arg
Phe Asn His Pro Glu145 150 155
160Gln Ala Arg Ala Glu Arg Glu Lys Thr Pro Ser Ala Glu Thr Pro Ser
165 170 175Glu Pro Val Asp
Trp Thr Phe Ala Gln Arg Glu Leu Leu Glu Lys Gln 180
185 190Gly Ile Asp Met Lys Gln Glu Met Glu Lys Arg
Leu Gln Glu Met Glu 195 200 205Ile
Leu Tyr Lys Lys Glu Lys Glu Glu Ala Asp Leu Leu Leu Glu Gln 210
215 220Gln Arg Leu Asp Tyr Glu Ser Lys Leu Gln
Ala Leu Gln Lys Gln Val225 230 235
240Glu Thr Arg Ser Leu Ala Ala Glu Thr Thr Glu Glu Glu Glu Glu
Glu 245 250 255Glu Glu Val
Pro Trp Thr Gln His Glu Phe Glu Leu Ala Gln Trp Ala 260
265 270Phe Arg Lys Trp Lys Ser His Gln Phe Thr
Ser Leu Arg Asp Leu Leu 275 280
285Trp Gly Asn Ala Val Tyr Leu Lys Glu Ala Asn Ala Ile Ser Val Glu 290
295 300Leu Lys Lys Lys Val Gln Phe Gln
Phe Val Leu Leu Thr Asp Thr Leu305 310
315 320Tyr Ser Pro Leu Pro Pro Glu Leu Leu Pro Thr Glu
Met Glu Lys Thr 325 330
335His Glu Asp Arg Pro Phe Pro Arg Thr Val Val Ala Val Glu Val Gln
340 345 350Asp Leu Lys Asn Gly Ala
Thr His Tyr Trp Ser Leu Glu Lys Leu Lys 355 360
365Gln Arg Leu Asp Leu Met Arg Glu Met Tyr Asp Arg Ala Gly
Glu Met 370 375 380Ala Ser Ser Ala Gln
Asp Glu Ser Glu Thr Thr Val Thr Gly Ser Asp385 390
395 400Pro Phe Tyr Asp Arg Phe His Trp Phe Lys
Leu Val Gly Ser Ser Pro 405 410
415Ile Phe His Gly Cys Val Asn Glu Arg Leu Ala Asp Arg Thr Pro Ser
420 425 430Pro Thr Phe Ser Thr
Ala Asp Ser Asp Ile Thr Glu Leu Ala Asp Glu 435
440 445Gln Gln Asp Glu Met Glu Asp Phe Asp Asp Glu Ala
Phe Val Asp Asp 450 455 460Ala Gly Ser
Asp Ala Gly Thr Glu Glu Gly Ser Asp Leu Phe Ser Asp465
470 475 480Gly His Asp Pro Phe Tyr Asp
Arg Ser Pro Trp Phe Ile Leu Val Gly 485
490 495Arg Ala Phe Val Tyr Leu Ser Asn Leu Leu Tyr Pro
Val Pro Leu Ile 500 505 510His
Arg Val Ala Ile Val Ser Glu Lys Gly Glu Val Arg Gly Phe Leu 515
520 525Arg Val Ala Val Gln Ala Ile Ala Ala
Asp Glu Glu Ala Pro Asp Tyr 530 535
540Gly Ser Gly Ile Arg Gln Ser Gly Thr Ala Lys Ile Ser Phe Asp Asn545
550 555 560Glu Tyr Phe Asn
Gln Ser Asp Phe Ser Ser Val Ala Met Thr Arg Ser 565
570 575Gly Leu Ser Leu Glu Glu Leu Arg Ile Val
Glu Gly Gln Gly Gln Ser 580 585
590Ser Glu Val Ile Thr Pro Pro Glu Glu Ile Ser Arg Ile Asn Asp Leu
595 600 605Asp Leu Lys Ser Ser Thr Leu
Leu Asp Gly Lys Met Val Met Glu Gly 610 615
620Phe Ser Glu Glu Ile Gly Asn His Leu Lys Leu Gly Ser Ala Phe
Thr625 630 635 640Phe Arg
Val Thr Val Leu Gln Ala Ser Gly Ile Leu Pro Glu Tyr Ala
645 650 655Asp Ile Phe Cys Gln Phe Asn
Phe Leu His Arg His Asp Glu Ala Phe 660 665
670Ser Thr Glu Pro Leu Lys Asn Asn Gly Arg Gly Ser Pro Leu
Ala Phe 675 680 685Tyr His Val Gln
Asn Ile Ala Val Glu Ile Thr Glu Ser Phe Val Asp 690
695 700Tyr Ile Lys Thr Lys Pro Ile Val Phe Glu Val Phe
Gly His Tyr Gln705 710 715
720Gln His Pro Leu His Leu Gln Gly Gln Glu Leu Asn Ser Pro Pro Gln
725 730 735Pro Cys Arg Arg Phe
Phe Pro Pro Pro Met Pro Leu Ser Lys Pro Val 740
745 750Pro Ala Thr Lys Leu Asn Thr Met Ser Lys Thr Ser
Leu Gly Gln Ser 755 760 765Met Ser
Lys Tyr Asp Leu Leu Val Trp Phe Glu Ile Ser Glu Leu Glu 770
775 780Pro Thr Gly Glu Tyr Ile Pro Ala Val Val Asp
His Thr Ala Gly Leu785 790 795
800Pro Cys Gln Gly Thr Phe Leu Leu His Gln Gly Ile Gln Arg Arg Ile
805 810 815Thr Val Thr Ile
Ile His Glu Lys Gly Ser Glu Leu His Trp Lys Asp 820
825 830Val Arg Glu Leu Val Val Gly Arg Ile Arg Asn
Lys Pro Glu Val Asp 835 840 845Glu
Ala Ala Val Asp Ala Ile Leu Ser Leu Asn Ile Ile Ser Ala Lys 850
855 860Tyr Leu Lys Ser Ser His Asn Ser Ser Arg
Thr Phe Tyr Arg Phe Glu865 870 875
880Ala Val Trp Asp Ser Ser Leu His Asn Ser Leu Leu Leu Asn Arg
Val 885 890 895Thr Pro Tyr
Gly Glu Lys Ile Tyr Met Thr Leu Ser Ala Tyr Leu Glu 900
905 910Leu Asp His Cys Ile Gln Pro Ala Val Ile
Thr Lys Asp Val Cys Met 915 920
925Val Phe Tyr Ser Arg Asp Ala Lys Ile Ser Pro Pro Arg Ser Leu Arg 930
935 940Ser Leu Phe Gly Ser Gly Tyr Ser
Lys Ser Pro Asp Ser Asn Arg Val945 950
955 960Thr Gly Ile Tyr Glu Leu Ser Leu Cys Lys Met Ser
Asp Thr Gly Ser 965 970
975Pro Gly Met Gln Arg Arg Arg Arg Lys Ile Leu Asp Thr Ser Val Ala
980 985 990Tyr Val Arg Gly Glu Glu
Asn Leu Ala Gly Trp Arg Pro Arg Gly Asp 995 1000
1005Ser Leu Ile Leu Glu His Gln Trp Glu Leu Glu Lys Leu Glu
Leu Leu 1010 1015 1020His Glu Val Glu
Lys Thr Arg His Phe Leu Leu Leu Arg Glu Arg Leu1025 1030
1035 1040Gly Asp Ser Ile Pro Lys Ser Leu Ser
Asp Ser Leu Ser Pro Ser Leu 1045 1050
1055Ser Ser Gly Thr Leu Ser Thr Ser Thr Ser Ile Ser Ser Gln Ile
Ser 1060 1065 1070Thr Thr Thr
Phe Glu Ser Ala Ile Thr Pro Ser Glu Ser Ser Gly Tyr 1075
1080 1085Asp Ser Gly Asp Ile Glu Ser Leu Val Asp Arg
Glu Lys Glu Leu Ala 1090 1095 1100Thr
Lys Cys Leu Gln Leu Leu Thr His Thr Phe Asn Arg Glu Phe Ser1105
1110 1115 1120Gln Val His Gly Ser Val
Ser Asp Cys Lys Leu Ser Asp Ile Ser Pro 1125
1130 1135Ile Gly Arg Asp Pro Ser Glu Ser Ser Phe Ser Ser
Ala Thr Leu Thr 1140 1145
1150Pro Ser Ser Thr Cys Pro Ser Leu Val Asp Ser Arg Ser Asn Ser Leu
1155 1160 1165Asp Gln Lys Thr Pro Glu Ala
Asn Ser Arg Ala Ser Ser Pro Cys Pro 1170 1175
1180Glu Phe Glu Gln Phe Gln Ile Val Pro Ala Val Glu Thr Pro Tyr
Leu1185 1190 1195 1200Ala
Arg Ala Gly Lys Asn Glu Phe Leu Asn Leu Val Pro Asp Ile Glu
1205 1210 1215Glu Ile Arg Pro Ser Ser Val
Val Ser Lys Lys Gly Tyr Leu His Phe 1220 1225
1230Lys Glu Pro Leu Tyr Ser Asn Trp Ala Lys His Phe Val Val
Val Arg 1235 1240 1245Arg Pro Tyr
Val Phe Ile Tyr Asn Ser Asp Lys Asp Pro Val Glu Arg 1250
1255 1260Gly Ile Ile Asn Leu Ser Thr Ala Gln Val Glu Tyr
Ser Glu Asp Gln1265 1270 1275
1280Gln Ala Met Val Lys Thr Pro Asn Thr Phe Ala Val Cys Thr Lys His
1285 1290 1295Arg Gly Val Leu Leu
Gln Ala Leu Asn Asp Lys Asp Met Asn Asp Trp 1300
1305 1310Leu Tyr Ala Phe Asn Pro Leu Leu Ala Gly Thr Ile
Arg Ser Lys Leu 1315 1320 1325Ser
Arg Arg Cys Pro Ser Gln Ser Lys Tyr 1330
1335313094DNAHomo sapiens 31tttgactggc cgtagagtct gcgcagttgg tgaatggcgt
tggtggcggg aaagttgagt 60ctctcctgcg ccgagccttc ggggcgatgt gtagtgcctt
ccatagggct gagtctggga 120ccgagctcct tgcccgactt gaaggtagaa gttccttgaa
agaaatagaa ccaaatctgt 180ttgctgatga agattcacct gtgcatggtg atattcttga
atttcatggc ccagaaggaa 240caggaaaaac agaaatgctt tatcacctaa cagcacgatg
tatacttccc aaatcagaag 300gtggcctgga agtagaagtc ttatttattg atacagatta
ccactttgat atgctccggc 360tagttacaat tcttgagcac agactatccc aaagctctga
agaaataatc aaatactgcc 420tgggaagatt ttttttggtg tactgcagta gtagcaccca
cttacttctt acactttact 480cactagaaag tatgttttgt agtcacccat ctctctgcct
tttgattttg gatagcctgt 540cagcttttta ctggatagac cgcgtcaatg gaggagaaag
tgtgaactta caggagtcta 600ctctgaggaa atgttctcag tgcttagaga agcttgtaaa
tgactatcgc ctggttcttt 660ttgcaacgac acaaactata atgcagaaag cctcgagctc
atcagaagaa ccttctcatg 720cctctcgacg actgtgtgat gtggacatag actacagacc
ttatctctgt aaggcatggc 780agcaactggt gaagcacagg atgtttttct ccaaacaaga
tgattctcaa agcagcaacc 840aattttcatt agtttcacgt tgtttaaaaa gtaacagttt
aaaaaaacat ttttttatta 900ttggagaaag tggggttgaa ttttgttgat atacatcata
aaatagtctt ttgcagggta 960ctacgcaagc cttaaaattt ttcttaagac agagtcttgc
tctgtctccc aggctggagt 1020gcagtggcac aatcatggct cactgcagcc ttgaactcct
ggcctcaagg gatcctccta 1080tgtgtgcctc ctagagtgca gggattacag gcgtgagcca
ctgctcgtgg ccaaaagttt 1140tctttttttt tttttttctt tttgaaacag tcttactctg
tctcccaggc tgctggagtg 1200cagtggcaca atctcggccc gctgcagcct ctgcctcttg
ggttcaagtg attcttccac 1260ctcagcctcc caggtagctg ggattacagg cacccaccac
cacgcctggc taatttttgt 1320atttttaata gagacggggt ttcaccatgt tggccaggct
ggtctcgaac tcctgacctc 1380aagtgatcca cccacctcgg cctcccaaag tgctaggatt
acaggcccgt gcccagccct 1440aaagttttaa actctagggg aattaacagt atttctttac
agaatggatt tgttaaacta 1500gcacagtaaa agtaaagact attctgtttc taggctgttg
aatcaaagtg attttagcaa 1560ttaaactttg tattaattta ccaccaatat ttcttcacaa
aggaactttt aaaagattat 1620ctcagaaagt aaatctgaga ggtaagaagt aataatgagt
aaatggtaag tacttgagta 1680aatctaaaga aatattgata gtaaggcaat cctaagcaaa
aagaacaaag ctggaggcat 1740cacgctaccc agcttcaaac tatactacaa ggctacagta
accaaaacag catagtactg 1800gcacaaaaac acacgtagac tgatggaaca gaatagagaa
tttagaaatg agaccacaca 1860cctataattt ttttgatctt cgatgaacct gacaaaaaca
agcaatgggc aatggattct 1920ctattcaata aatcgtgctg ggataactgg ccagccatat
ggaaaagatt gaaaatggac 1980gccttcctta tgccatatac aaaaattaac tcaagatgga
ttaaagactt aatgtaaaac 2040ccaaaacagt aaaaatcctg gaagacaacc caggcagtac
cattcaggac ataggcacag 2100gcaaagattt catgacgaag acgccaaaaa caattgcaac
agaagcaaaa attcacaaat 2160gggatctaat taaactaaag agctgcacag caaaagaaac
tatcaagaga gtaaacagac 2220agcttacaga atgggagaaa attgttgcaa actatgcatc
tgagaaaggt ctgaaatcca 2280gcatctatac gtaatttaaa caaatttaga agaaaaaacc
accccattaa aaagtgggca 2340aaggacatga acagacactt ttcaaaagaa gacatctgtg
gccaacaatc ctatggaaaa 2400aagcccagca tcactgatca ttagagaaat gcaaatcgaa
acaacaacga gataccatct 2460cacaccagtc caaatggcta ttataaaaat gtcagaaaat
aacagatgct ggtgaggttg 2520tggagaaaaa gatatgctta tacactgttg gtggaaatgt
aaattaaatt agttcagcca 2580ttgtggaaga cagtgtgggg ataaagacag agataccatt
caacccagca atctcattac 2640tgggtatata cccaaaggaa tagaaatcat tgttataaag
acacatgcac gcgtatgttc 2700gttgcagcac tgcccatcag tgacagactg gattaaaaaa
atgtggtaca tacacaccag 2760ggaatactat acagccataa aaaggaacaa gactgactgg
gcgtggtggc tcatgcctgt 2820gatcctagca ctttgcgagg ccgaggtggg tggattgccc
gcgctcagga ggtcaagacc 2880agcctgggca acacggtgaa accccatctc tattaaaata
caaaaaatta gctgggcatg 2940gtggtgcgtg cctgtagtgc cagctactca ggaggccgag
gcaggagaat tgctggaacc 3000caggaggtgg aggttgcagt gagctgagat cgcgccattg
cactcccgcc tgggcgactc 3060catctctaaa aaaaaaaaaa aaaaaaaaaa aaaa
309432280PRTHomo sapiens 32Met Cys Ser Ala Phe His
Arg Ala Glu Ser Gly Thr Glu Leu Leu Ala 1 5
10 15Arg Leu Glu Gly Arg Ser Ser Leu Lys Glu Ile Glu
Pro Asn Leu Phe 20 25 30Ala
Asp Glu Asp Ser Pro Val His Gly Asp Ile Leu Glu Phe His Gly 35
40 45Pro Glu Gly Thr Gly Lys Thr Glu Met
Leu Tyr His Leu Thr Ala Arg 50 55
60Cys Ile Leu Pro Lys Ser Glu Gly Gly Leu Glu Val Glu Val Leu Phe65
70 75 80Ile Asp Thr Asp Tyr
His Phe Asp Met Leu Arg Leu Val Thr Ile Leu 85
90 95Glu His Arg Leu Ser Gln Ser Ser Glu Glu Ile
Ile Lys Tyr Cys Leu 100 105
110Gly Arg Phe Phe Leu Val Tyr Cys Ser Ser Ser Thr His Leu Leu Leu
115 120 125Thr Leu Tyr Ser Leu Glu Ser
Met Phe Cys Ser His Pro Ser Leu Cys 130 135
140Leu Leu Ile Leu Asp Ser Leu Ser Ala Phe Tyr Trp Ile Asp Arg
Val145 150 155 160Asn Gly
Gly Glu Ser Val Asn Leu Gln Glu Ser Thr Leu Arg Lys Cys
165 170 175Ser Gln Cys Leu Glu Lys Leu
Val Asn Asp Tyr Arg Leu Val Leu Phe 180 185
190Ala Thr Thr Gln Thr Ile Met Gln Lys Ala Ser Ser Ser Ser
Glu Glu 195 200 205Pro Ser His Ala
Ser Arg Arg Leu Cys Asp Val Asp Ile Asp Tyr Arg 210
215 220Pro Tyr Leu Cys Lys Ala Trp Gln Gln Leu Val Lys
His Arg Met Phe225 230 235
240Phe Ser Lys Gln Asp Asp Ser Gln Ser Ser Asn Gln Phe Ser Leu Val
245 250 255Ser Arg Cys Leu Lys
Ser Asn Ser Leu Lys Lys His Phe Phe Ile Ile 260
265 270Gly Glu Ser Gly Val Glu Phe Cys 275
28033691DNAHomo sapiens 33gtcctcctcg ccctccaggc cgcccgcgcc
gcgccggagt ccgctgtccg ccagctaccc 60gcttcctgcc gcccgccgct gccatgctgc
ccgccgcgct gctccgccgc ccgggacttg 120gccgcctcgt ccgccacgcc cgtgcctatg
ccgaggccgc cgccgccccg gctgccgcct 180ctggccccaa ccagatgtcc ttcaccttcg
cctctcccac gcaggtgttc ttcaacggtg 240ccaacgtccg gcaggtggac gtgcccacgc
tgaccggagc cttcggcatc ctggcggccc 300acgtgcccac gctgcaggtc ctgcggccgg
ggctggtcgt ggtgcatgca gaggacggca 360ccacctccaa atactttgtg agcagcggtt
ccatcgcagt gaacgccgac tcttcggtgc 420agttgttggc cgaagaggcc gtgacgctgg
acatgttgga cctgggggca gccaaggcaa 480acttggagaa ggcccaggcg gagctggtgg
ggacagctga cgaggccacg cgggcagaga 540tccagatccg aatcgaggcc aacgaggccc
tggtgaaggc cctggagtag gcgagccagc 600cgccaaggtt gacctcagct tcggagccac
ctctggatga actgccccca gcccccgccc 660cattaaagac ccggaagcct gaaaaaaaaa a
69134168PRTHomo sapiens 34Met Leu Pro
Ala Ala Leu Leu Arg Arg Pro Gly Leu Gly Arg Leu Val 1 5
10 15Arg His Ala Arg Ala Tyr Ala Glu Ala
Ala Ala Ala Pro Ala Ala Ala 20 25
30Ser Gly Pro Asn Gln Met Ser Phe Thr Phe Ala Ser Pro Thr Gln Val
35 40 45Phe Phe Asn Gly Ala Asn Val
Arg Gln Val Asp Val Pro Thr Leu Thr 50 55
60Gly Ala Phe Gly Ile Leu Ala Ala His Val Pro Thr Leu Gln Val Leu65
70 75 80Arg Pro Gly Leu
Val Val Val His Ala Glu Asp Gly Thr Thr Ser Lys 85
90 95Tyr Phe Val Ser Ser Gly Ser Ile Ala Val
Asn Ala Asp Ser Ser Val 100 105
110Gln Leu Leu Ala Glu Glu Ala Val Thr Leu Asp Met Leu Asp Leu Gly
115 120 125Ala Ala Lys Ala Asn Leu Glu
Lys Ala Gln Ala Glu Leu Val Gly Thr 130 135
140Ala Asp Glu Ala Thr Arg Ala Glu Ile Gln Ile Arg Ile Glu Ala
Asn145 150 155 160Glu Ala
Leu Val Lys Ala Leu Glu 165351378DNAHomo sapiens
35gcgcggcccg ctgcaatccg tggaggaacg cgccgccgag ccaccatcat gcctgggcac
60ttacaggaag gcttcggctg cgtggtcacc aaccgattcg accagttatt tgacgacgaa
120tcggacccct tcgaggtgct gaaggcagca gagaacaaga aaaaagaagc cggcgggggc
180ggcgttgggg gccctggggc caagagcgca gctcaggccg cggcccagac caactccaac
240gcggcaggca aacagctgcg caaggagtcc cagaaagacc gcaagaaccc gctgcccccc
300agcgttggcg tggttgacaa gaaagaggag acgcagccgc ccgtggcgct taagaaagaa
360ggaataagac gagttggaag aagacctgat caacaacttc agggtgaagg gaaaataatt
420gatagaagac cagaaaggcg accacctcgt gaacgaagat tcgaaaagcc acttgaagaa
480aagggtgaag gaggcgaatt ttcagttgat agaccgatta ttgaccgacc tattcgaggt
540cgtggtggtc ttggaagagg tcgagggggc cgtggacgtg gaatgggccg aggagatgga
600tttgattctc gtggcaaacg tgaatttgat aggcatagtg gaagtgatag atcttctttt
660tcacattaca gtggcctgaa gcacgaggac aaacgtggag gtagcggatc tcacaactgg
720ggaactgtca aagacgaatt aacagagtcc cccaaataca ttcagaaaca aatatcttat
780aattacagtg acttggatca atcaaatgtg actgaggaaa cacctgaagg tgaagaacat
840catccagtgg cagacactga aaataaggag aatgaagttg aagaggtaaa agaggagggt
900ccaaaagaga tgactttgga tgagtggaag gctattcaaa ataaggaccg ggcaaaagta
960gaatttaata tccgaaaacc aaatgaaggt gctgatgggc agtggaagaa gggatttgtt
1020cttcataaat caaagagtga agaggctcat gctgaagatt cggttatgga ccatcatttc
1080cggaagccag caaatgatat aacgtctcag ctggagatca attttggaga ccttggccgc
1140ccaggacgtg gcggcagggg aggacgaggt ggacgtgggc gtggtgggcg cccaaaccgt
1200ggcagcagga ccgacaagtc aagtgcttct gctcctgatg tggatgaccc agaggcattc
1260ccagctctgg cttaactgga tgccataaga caaccctggt tcctttgtga acccttctgt
1320tcaaagcttt tgcatgctta aggattccaa acgactaaga aaaaaaaaaa aaaaaaaa
1378362896DNAHomo sapiens 36gggcgcgcca gctcgtagca ggggagcgcc cgcggcgtcg
ggtttgggct ggaggtcgcc 60atggggcgag gcagcggcac cttcgagcgt ctcctagaca
aggcgaccag ccagctcctg 120ttggagacag attgggagtc cattttgcag atctgcgacc
tgatccgcca aggggacaca 180caagcaaaat atgctgtgaa ttccatcaag aagaaagtca
acgacaagaa cccacacgtc 240gccttgtatg ccctggaggt catggaatct gtggtaaaga
actgtggcca gacagttcat 300gatgaggtgg ccaacaagca gaccatggag gagctgaagg
acctgctgaa gagacaagtg 360gaggtaaacg tccgtaacaa gatcctgtac ctgatccagg
cctgggcgca tgccttccgg 420aacgagccca agtacaaggt ggtccaggac acctaccaga
tcatgaaggt ggaggggcac 480gtctttccag aattcaaaga gagcgatgcc atgtttgctg
ccgagagagc cccagactgg 540gtggacgctg aggaatgcca ccgctgcagg gtgcagttcg
gggtgatgac ccgtaagcac 600cactgccggg cgtgtgggca gatattctgt ggaaagtgtt
cttccaagta ctccaccatc 660cccaagtttg gcatcgagaa ggaggtgcgc gtgtgtgagc
cctgctacga gcagctgaac 720aggaaagcgg agggaaaggc cacttccacc actgagctgc
cccccgagta cctgaccagc 780cccctgtctc agcagtccca gctgcccccc aagagggacg
agacggccct gcaggaggag 840gaggagctgc agctggccct ggcgctgtca cagtcagagg
cggaggagaa ggagaggctg 900agacagaagt ccacgtacac ttcgtacccc aaggcggagc
ccatgccctc ggcctcctca 960gcgccccccg ccagcagcct gtactcttca cctgtgaact
cgtcggcgcc tctggctgag 1020gacatcgacc ctgagctcgc acggtatctc aaccggaact
actgggagaa gaagcaggag 1080gaggctcgca agagccccac gccatctgcg cccgtgcccc
tgacggagcc ggctgcacag 1140cctggggaag ggcacgcagc ccccaccaac gtggtggaga
accccctccc ggagacagac 1200tctcagccca ttcctccctc tggtggcccc tttagtgagc
cacagttcca caatggcgag 1260tctgaggaga gccacgagca gttcctgaag gcgctgcaga
acgccgtcac caccttcgtg 1320aaccgcatga agagtaacca catgcggggc cgcagcatca
ccaatgactc ggccgtgctc 1380tcactcttcc agtccatcaa cggcatgcac ccgcagctgc
tggagctgct caaccagctg 1440gacgagcgca ggctgtacta tgaggggctg caggacaagc
tggcacagat ccgcgatgcc 1500cggggggcgc tgagtgccct gcgcgaagag caccgggaga
agcttcgccg ggcagccgag 1560gaggcagagc gccagcgcca gatccagctg gcccagaagc
tggagataat gcggcagaag 1620aagcaggagt acctggaggt gcagaggcag ctggccatcc
agcgcctgca ggagcaggag 1680aaggagcggc agatgcggct ggagcagcag aagcagacgg
tccagatgcg cgcgcagatg 1740cccgccttcc ccctgcccta cgcccagctc caggccatgc
ccgcagccgg aggtgtgctc 1800taccagccct cgggaccagc cagcttcccc agcaccttca
gccctgccgg ctcggtggag 1860ggctccccaa tgcacggcgt gtacatgagc cagccggccc
ctgccgctgg cccctacccc 1920agcatgccca gcactgcggc tgatcccagc atggtgagtg
cctacatgta cccagcaggg 1980gccactgggg cgcaggcggc cccccaggcc caggccggac
ccaccgccag ccccgcttac 2040tcatcctacc agcctactcc cacagcgggc taccagaacg
tggcctccca ggccccacag 2100agcctcccgg ccatctctca gcctccgcag tccagcacca
tgggctacat ggggagccag 2160tcagtctcca tgggctacca gccttacaac atgcagaatc
tcatgaccac cctcccaagc 2220caggatgcgt ctctgccacc ccagcagccc tacatcgcgg
ggcagcagcc catgtaccag 2280cagatggcac cctctggcgg tcccccccag cagcagcccc
ccgtggccca gcaaccgcag 2340gcacaggggc cgccggcaca gggcagcgag gcccagctca
tttcattcga ctgacccagg 2400ccatgctcac gtccggagta acactacata cagttcacct
gaaacgcctc gtctctaact 2460gccgtcgtcc tgcctccctg tcctctactg ccggtagtgt
cccttctctg cgagtgaggg 2520ggggccttca ccccaagccc acctcccttg tcctcagcct
actgcagtcc ctgagttagt 2580ctctgctttc tttccccagg gctgggccat ggggagggaa
ggactttctc ccaggggaag 2640cccccagccc tgtgggtcat ggtctgtgag aggtggcagg
aatggggacc ctcacccccc 2700aagcagcctg tgccctctgg ccgcactgtg agctggctgt
ggtgtctggg tgtggcctgg 2760ggctccctct gcaggggcct ctctcggcag ccacagccaa
gggtggaggc ttcaggtctc 2820cagcttctct gcttctcagc tgccatctcc agtgccccag
aatggtacag cgataataaa 2880atgtatttca gaaagg
289637777PRTHomo sapiens 37Met Gly Arg Gly Ser Gly
Thr Phe Glu Arg Leu Leu Asp Lys Ala Thr 1 5
10 15Ser Gln Leu Leu Leu Glu Thr Asp Trp Glu Ser Ile
Leu Gln Ile Cys 20 25 30Asp
Leu Ile Arg Gln Gly Asp Thr Gln Ala Lys Tyr Ala Val Asn Ser 35
40 45Ile Lys Lys Lys Val Asn Asp Lys Asn
Pro His Val Ala Leu Tyr Ala 50 55
60Leu Glu Val Met Glu Ser Val Val Lys Asn Cys Gly Gln Thr Val His65
70 75 80Asp Glu Val Ala Asn
Lys Gln Thr Met Glu Glu Leu Lys Asp Leu Leu 85
90 95Lys Arg Gln Val Glu Val Asn Val Arg Asn Lys
Ile Leu Tyr Leu Ile 100 105
110Gln Ala Trp Ala His Ala Phe Arg Asn Glu Pro Lys Tyr Lys Val Val
115 120 125Gln Asp Thr Tyr Gln Ile Met
Lys Val Glu Gly His Val Phe Pro Glu 130 135
140Phe Lys Glu Ser Asp Ala Met Phe Ala Ala Glu Arg Ala Pro Asp
Trp145 150 155 160Val Asp
Ala Glu Glu Cys His Arg Cys Arg Val Gln Phe Gly Val Met
165 170 175Thr Arg Lys His His Cys Arg
Ala Cys Gly Gln Ile Phe Cys Gly Lys 180 185
190Cys Ser Ser Lys Tyr Ser Thr Ile Pro Lys Phe Gly Ile Glu
Lys Glu 195 200 205Val Arg Val Cys
Glu Pro Cys Tyr Glu Gln Leu Asn Arg Lys Ala Glu 210
215 220Gly Lys Ala Thr Ser Thr Thr Glu Leu Pro Pro Glu
Tyr Leu Thr Ser225 230 235
240Pro Leu Ser Gln Gln Ser Gln Leu Pro Pro Lys Arg Asp Glu Thr Ala
245 250 255Leu Gln Glu Glu Glu
Glu Leu Gln Leu Ala Leu Ala Leu Ser Gln Ser 260
265 270Glu Ala Glu Glu Lys Glu Arg Leu Arg Gln Lys Ser
Thr Tyr Thr Ser 275 280 285Tyr Pro
Lys Ala Glu Pro Met Pro Ser Ala Ser Ser Ala Pro Pro Ala 290
295 300Ser Ser Leu Tyr Ser Ser Pro Val Asn Ser Ser
Ala Pro Leu Ala Glu305 310 315
320Asp Ile Asp Pro Glu Leu Ala Arg Tyr Leu Asn Arg Asn Tyr Trp Glu
325 330 335Lys Lys Gln Glu
Glu Ala Arg Lys Ser Pro Thr Pro Ser Ala Pro Val 340
345 350Pro Leu Thr Glu Pro Ala Ala Gln Pro Gly Glu
Gly His Ala Ala Pro 355 360 365Thr
Asn Val Val Glu Asn Pro Leu Pro Glu Thr Asp Ser Gln Pro Ile 370
375 380Pro Pro Ser Gly Gly Pro Phe Ser Glu Pro
Gln Phe His Asn Gly Glu385 390 395
400Ser Glu Glu Ser His Glu Gln Phe Leu Lys Ala Leu Gln Asn Ala
Val 405 410 415Thr Thr Phe
Val Asn Arg Met Lys Ser Asn His Met Arg Gly Arg Ser 420
425 430Ile Thr Asn Asp Ser Ala Val Leu Ser Leu
Phe Gln Ser Ile Asn Gly 435 440
445Met His Pro Gln Leu Leu Glu Leu Leu Asn Gln Leu Asp Glu Arg Arg 450
455 460Leu Tyr Tyr Glu Gly Leu Gln Asp
Lys Leu Ala Gln Ile Arg Asp Ala465 470
475 480Arg Gly Ala Leu Ser Ala Leu Arg Glu Glu His Arg
Glu Lys Leu Arg 485 490
495Arg Ala Ala Glu Glu Ala Glu Arg Gln Arg Gln Ile Gln Leu Ala Gln
500 505 510Lys Leu Glu Ile Met Arg
Gln Lys Lys Gln Glu Tyr Leu Glu Val Gln 515 520
525Arg Gln Leu Ala Ile Gln Arg Leu Gln Glu Gln Glu Lys Glu
Arg Gln 530 535 540Met Arg Leu Glu Gln
Gln Lys Gln Thr Val Gln Met Arg Ala Gln Met545 550
555 560Pro Ala Phe Pro Leu Pro Tyr Ala Gln Leu
Gln Ala Met Pro Ala Ala 565 570
575Gly Gly Val Leu Tyr Gln Pro Ser Gly Pro Ala Ser Phe Pro Ser Thr
580 585 590Phe Ser Pro Ala Gly
Ser Val Glu Gly Ser Pro Met His Gly Val Tyr 595
600 605Met Ser Gln Pro Ala Pro Ala Ala Gly Pro Tyr Pro
Ser Met Pro Ser 610 615 620Thr Ala Ala
Asp Pro Ser Met Val Ser Ala Tyr Met Tyr Pro Ala Gly625
630 635 640Ala Thr Gly Ala Gln Ala Ala
Pro Gln Ala Gln Ala Gly Pro Thr Ala 645
650 655Ser Pro Ala Tyr Ser Ser Tyr Gln Pro Thr Pro Thr
Ala Gly Tyr Gln 660 665 670Asn
Val Ala Ser Gln Ala Pro Gln Ser Leu Pro Ala Ile Ser Gln Pro 675
680 685Pro Gln Ser Ser Thr Met Gly Tyr Met
Gly Ser Gln Ser Val Ser Met 690 695
700Gly Tyr Gln Pro Tyr Asn Met Gln Asn Leu Met Thr Thr Leu Pro Ser705
710 715 720Gln Asp Ala Ser
Leu Pro Pro Gln Gln Pro Tyr Ile Ala Gly Gln Gln 725
730 735Pro Met Tyr Gln Gln Met Ala Pro Ser Gly
Gly Pro Pro Gln Gln Gln 740 745
750Pro Pro Val Ala Gln Gln Pro Gln Ala Gln Gly Pro Pro Ala Gln Gly
755 760 765Ser Glu Ala Gln Leu Ile Ser
Phe Asp 770 775382569DNAHomo sapiens 38tccctcgtct
ctctcgggca acatggcggg cgtggaggag gtagcggcct ccgggagcca 60cctgaatggc
gacctggatc cagacgacag ggaagaagga gctgcctcta cggctgagga 120agcagccaag
aaaaaaagac gaaagaagaa gaagagcaaa gggccttctg cagcagggga 180acaggaacct
gataaagaat caggagcctc agtggatgaa gtagcaagac agttggaaag 240atcagcattg
gaagataaag aaagagatga agatgatgaa gatggagatg gcgatggaga 300tggagcaact
ggaaagaaga agaaaaagaa gaagaagaag agaggaccaa aagttcaaac 360agaccctccc
tcagttccaa tatgtgacct gtatcctaat ggtgtatttc ccaaaggaca 420agaatgcgaa
tacccaccca cacaagatgg gcgaacagct gcttggagaa ctacaagtga 480agaaaagaaa
gcattagatc aggcaagtga agagatttgg aatgattttc gagaagctgc 540agaagcacat
cgacaagtta gaaaatacgt aatgagctgg atcaagcctg ggatgacaat 600gatagaaatc
tgtgaaaagt tggaagactg ttcacgcaag ttaataaaag agaatggatt 660aaatgcaggc
ctggcatttc ctactggatg ttctctcaat aattgtgctg cccattatac 720tcccaatgcc
ggtgacacaa cagtattaca gtatgatgac atctgtaaaa tagactttgg 780aacacatata
agtggtagga ttattgactg tgcttttact gtcactttta atcccaaata 840tgatacgtta
ttaaaagctg taaaagatgc tactaacact ggaataaagt gtgctggaat 900tgatgttcgt
ctgtgtgatg ttggtgaggc catccaagaa gttatggagt cctatgaagt 960tgaaatagat
gggaagacat atcaagtgaa accaatccgt aatctaaatg gacattcaat 1020tgggcaatat
agaatacatg ctggaaaaac agtgccgatt gtgaaaggag gggaggcaac 1080aagaatggag
gaaggagaag tatatgcaat tgaaaccttt ggtagtacag gaaaaggtgt 1140tgttcatgat
gatatggaat gttcacatta catgaaaaat tttgatgttg gacatgtgcc 1200aataaggctt
ccaagaacaa aacacttgtt aaatgtcatc aatgaaaact ttggaaccct 1260tgccttctgc
cgcagatggc tggatcgctt gggagaaagt aaatacttga tggctctgaa 1320gaatctgtgt
gacttgggca ttgtagatcc atatccacca ttatgtgaca ttaaaggatc 1380atatacagcg
caatttgaac ataccatcct gttgcgtcca acatgtaaag aagttgtcag 1440cagaggagat
gactattaaa cttagtccaa agccacctca acacctttat tttctgagct 1500ttgttggaaa
acatgatacc agaattaatt tgccacatgt tgtctgtttt aacagtggac 1560ccatgtaata
cttttatcca tgtttaaaaa agaaggaatt tggacaaagg caaaccgtct 1620aatgtaatta
accaacgaaa aagctttccg gacttttaaa tgctaactgt ttttcccctt 1680cctgtctagg
aaaatgctat aaagctcaaa ttagttagga atgacttata cgttttgttt 1740tgaataccta
agagatactt tttggatatt tatattgcca tattcttact tgaatgcttt 1800gaatgactac
atccagttct gcacctatac cctctggtgt tgctttttaa ccttcctgga 1860atccattttc
taaaaaataa agacacattc ttctcagcac cacacaacac ctattccaaa 1920atcgaccaca
tatttggaag taaagctctc ctcagcaaat gtaaaagaac agaaattata 1980acaaactgtc
tctcagacca cagtataacc aaactagaac tcaggattaa gaaactcact 2040caaaaccaca
caactacatg gaaactgaac aacctgctcc tgaatgacta ctggatacat 2100aacaaaatga
aggcagaaat aaagatgttc tttaaaacca atgagaacaa agacacaaca 2160taccagaatc
tctgggacac attcaaagca gtgtgtagag ggaaatttat agcactaaat 2220gcccacaaga
gaaagcagga aatatctaaa attgacaccc taacatcaca attaaaagaa 2280ctagagaagc
aagagcaaac acattgaaaa gctaagagaa ggcaagaaat aactaagatc 2340agagcagaac
tgaaggaaat agagacacaa aaaactcttc aaaaaatcaa tgaatccagg 2400agctggtttt
ttgaaacgat caacaaaatt gatagacact agcaagacta ataaagaaga 2460aaggagagaa
gaatcaaata gaagcaataa aaaatgataa aggggatatc accaccaatc 2520ccacagaaat
aaaccaccat cagagaatac tacaaacacc tctacgcaa 256939478PRTHomo
sapiens 39Met Ala Gly Val Glu Glu Val Ala Ala Ser Gly Ser His Leu Asn Gly
1 5 10 15Asp Leu Asp Pro
Asp Asp Arg Glu Glu Gly Ala Ala Ser Thr Ala Glu 20
25 30Glu Ala Ala Lys Lys Lys Arg Arg Lys Lys Lys
Lys Ser Lys Gly Pro 35 40 45Ser
Ala Ala Gly Glu Gln Glu Pro Asp Lys Glu Ser Gly Ala Ser Val 50
55 60Asp Glu Val Ala Arg Gln Leu Glu Arg Ser
Ala Leu Glu Asp Lys Glu65 70 75
80Arg Asp Glu Asp Asp Glu Asp Gly Asp Gly Asp Gly Asp Gly Ala
Thr 85 90 95Gly Lys Lys
Lys Lys Lys Lys Lys Lys Lys Arg Gly Pro Lys Val Gln 100
105 110Thr Asp Pro Pro Ser Val Pro Ile Cys Asp
Leu Tyr Pro Asn Gly Val 115 120
125Phe Pro Lys Gly Gln Glu Cys Glu Tyr Pro Pro Thr Gln Asp Gly Arg 130
135 140Thr Ala Ala Trp Arg Thr Thr Ser
Glu Glu Lys Lys Ala Leu Asp Gln145 150
155 160Ala Ser Glu Glu Ile Trp Asn Asp Phe Arg Glu Ala
Ala Glu Ala His 165 170
175Arg Gln Val Arg Lys Tyr Val Met Ser Trp Ile Lys Pro Gly Met Thr
180 185 190Met Ile Glu Ile Cys Glu
Lys Leu Glu Asp Cys Ser Arg Lys Leu Ile 195 200
205Lys Glu Asn Gly Leu Asn Ala Gly Leu Ala Phe Pro Thr Gly
Cys Ser 210 215 220Leu Asn Asn Cys Ala
Ala His Tyr Thr Pro Asn Ala Gly Asp Thr Thr225 230
235 240Val Leu Gln Tyr Asp Asp Ile Cys Lys Ile
Asp Phe Gly Thr His Ile 245 250
255Ser Gly Arg Ile Ile Asp Cys Ala Phe Thr Val Thr Phe Asn Pro Lys
260 265 270Tyr Asp Thr Leu Leu
Lys Ala Val Lys Asp Ala Thr Asn Thr Gly Ile 275
280 285Lys Cys Ala Gly Ile Asp Val Arg Leu Cys Asp Val
Gly Glu Ala Ile 290 295 300Gln Glu Val
Met Glu Ser Tyr Glu Val Glu Ile Asp Gly Lys Thr Tyr305
310 315 320Gln Val Lys Pro Ile Arg Asn
Leu Asn Gly His Ser Ile Gly Gln Tyr 325
330 335Arg Ile His Ala Gly Lys Thr Val Pro Ile Val Lys
Gly Gly Glu Ala 340 345 350Thr
Arg Met Glu Glu Gly Glu Val Tyr Ala Ile Glu Thr Phe Gly Ser 355
360 365Thr Gly Lys Gly Val Val His Asp Asp
Met Glu Cys Ser His Tyr Met 370 375
380Lys Asn Phe Asp Val Gly His Val Pro Ile Arg Leu Pro Arg Thr Lys385
390 395 400His Leu Leu Asn
Val Ile Asn Glu Asn Phe Gly Thr Leu Ala Phe Cys 405
410 415Arg Arg Trp Leu Asp Arg Leu Gly Glu Ser
Lys Tyr Leu Met Ala Leu 420 425
430Lys Asn Leu Cys Asp Leu Gly Ile Val Asp Pro Tyr Pro Pro Leu Cys
435 440 445Asp Ile Lys Gly Ser Tyr Thr
Ala Gln Phe Glu His Thr Ile Leu Leu 450 455
460Arg Pro Thr Cys Lys Glu Val Val Ser Arg Gly Asp Asp Tyr465
470 475401183DNAHomo
sapiensmisc_feature(0)...(0)n = a, t, c or g 40cgcccaagaa gaaaatggcc
ataagtggag tccctgtgct aggatttttc atcatagctg 60tgctgatgag cgctcaggaa
tcatgggcta tcaaagaaga acatgtgatc atccaggccg 120agttctatct gaatcctgac
caatcaggcg agtttatgtt tgactttgat ggtgatgaga 180ttttccatgt ggatatggca
aagaaggaga cggtctggcg gcttgaagaa tttggacgat 240ttgccagctt tgaggctcaa
ggtgcattgg ccaacatagc tgtggacaaa gccaacttgg 300aaatcatgac aaagcgctcc
aactatactc cgatcaccaa tgtacctcca gaggtaactg 360tgctcacgaa cagccctgtg
gaactgagag agcccaacgt cctcatctgt ttcatcgaca 420agttcacccc accagtggtc
aatgtcacgt ggcttcgaaa tggaaaacct gtcaccacag 480gagtgtcaga gacagtcttc
ctgcccaggg aagaccacct tttccgcaag ttccactatc 540tccccttcct gccctcaact
gaggacgttt acgactgcag ggtggagcac tggggcttgg 600atgagcctct tctcaagcac
tgggagtttg atgctccaag ccctctccca gagactacag 660agaacgtggt gtgtgccctg
ggcctgactg tgggtctggt gggcatcatt attgggacca 720tcttcatcat caagggagtg
cgcaaaagca atgcagcaga acgcaggggg cctctgtaag 780gcacatggag gtgatgatgt
ttcttagaga gaagatcact gaagaaactt ctgctttaat 840gactttacaa agctggcaat
attacaatcc ttgacctcag tgaaagcagt catcttcagc 900gttttccagc cctatagcca
ccccaagtgt ggttatgcct cctcgattgc tccgtactct 960aacatctagc tggcttccct
gtctattgcc ttttcctgta tctattttcc tctatttcct 1020atcattttat tatcaccatg
caatgcctct ggaataaaac atacaggagt ctgtctctgc 1080tatggaatgc cccatggggc
atctcttgtg tacttattgt ttaaggtttc ctcaaactgn 1140gattcttctg aacacaataa
actattttga tgatcttggg tgg 118341254PRTHomo sapiens
41Met Ala Ile Ser Gly Val Pro Val Leu Gly Phe Phe Ile Ile Ala Val 1
5 10 15Leu Met Ser Ala Gln Glu
Ser Trp Ala Ile Lys Glu Glu His Val Ile 20 25
30Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly
Glu Phe Met 35 40 45Phe Asp Phe
Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys 50
55 60Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe
Ala Ser Phe Glu65 70 75
80Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu
85 90 95Ile Met Thr Lys Arg Ser
Asn Tyr Thr Pro Ile Thr Asn Val Pro Pro 100
105 110Glu Val Thr Val Leu Thr Asn Ser Pro Val Glu Leu
Arg Glu Pro Asn 115 120 125Val Leu
Ile Cys Phe Ile Asp Lys Phe Thr Pro Pro Val Val Asn Val 130
135 140Thr Trp Leu Arg Asn Gly Lys Pro Val Thr Thr
Gly Val Ser Glu Thr145 150 155
160Val Phe Leu Pro Arg Glu Asp His Leu Phe Arg Lys Phe His Tyr Leu
165 170 175Pro Phe Leu Pro
Ser Thr Glu Asp Val Tyr Asp Cys Arg Val Glu His 180
185 190Trp Gly Leu Asp Glu Pro Leu Leu Lys His Trp
Glu Phe Asp Ala Pro 195 200 205Ser
Pro Leu Pro Glu Thr Thr Glu Asn Val Val Cys Ala Leu Gly Leu 210
215 220Thr Val Gly Leu Val Gly Ile Ile Ile Gly
Thr Ile Phe Ile Ile Lys225 230 235
240Gly Val Arg Lys Ser Asn Ala Ala Glu Arg Arg Gly Pro Leu
245 25042266DNAHomo sapiens 42atgcccaagt
gtcccaagtg caacaaggag gtgtacttcg ccgagagggt gacctctctg 60ggcaaggact
ggcatcggcc ctgcctgaag tgcgagaaat gtgggaagac gctgacctct 120gggggccacg
ctgagcacga aggcaaaccc tactgcaacc acccctgcta cgcagccatg 180tttgggccta
aaggctttgg gcggggcgga gccgagagcc acactttcaa gtaaaccagg 240tggtggagac
ccatccttgg ctgctt 2664377PRTHomo
sapiens 43Met Pro Lys Cys Pro Lys Cys Asn Lys Glu Val Tyr Phe Ala Glu Arg
1 5 10 15Val Thr Ser Leu
Gly Lys Asp Trp His Arg Pro Cys Leu Lys Cys Glu 20
25 30Lys Cys Gly Lys Thr Leu Thr Ser Gly Gly His
Ala Glu His Glu Gly 35 40 45Lys
Pro Tyr Cys Asn His Pro Cys Tyr Ala Ala Met Phe Gly Pro Lys 50
55 60Gly Phe Gly Arg Gly Gly Ala Glu Ser His
Thr Phe Lys65 70 75441665DNAHomo
sapiens 44gaaggaactg gttctgctca cacttgctgg cttgcgcatc aggactggct
ttatctcctg 60actcacggtg caaaggtgca ctctgcgaac gttaagtccg tccccagcgc
ttggaatcct 120acggccccca cagccggatc ccctcagcct tccaggtcct caactcccgt
ggacgctgaa 180caatggcctc catggggcta caggtaatgg gcatcgcgct ggccgtcctg
ggctggctgg 240ccgtcatgct gtgctgcgcg ctgcccatgt ggcgcgtgac ggccttcatc
ggcagcaaca 300ttgtcacctc gcagaccatc tgggagggcc tatggatgaa ctgcgtggtg
cagagcaccg 360gccagatgca gtgcaaggtg tacgactcgc tgctggcact gccgcaggac
ctgcaggcgg 420cccgcgccct cgtcatcatc agcatcatcg tggctgctct gggcgtgctg
ctgtccgtgg 480tggggggcaa gtgtaccaac tgcctggagg atgaaagcgc caaggccaag
accatgatcg 540tggcgggcgt ggtgttcctg ttggccggcc ttatggtgat agtgccggtg
tcctggacgg 600cccacaacat catccaagac ttctacaatc cgctggtggc ctccgggcag
aagcgggaga 660tgggtgcctc gctctacgtc ggctgggccg cctccggcct gctgctcctt
ggcggggggc 720tgctttgctg caactgtcca ccccgcacag acaagcctta ctccgccaag
tattctgctg 780cccgctctgc tgctgccagc aactacgtgt aaggtgccac ggctccactc
tgttcctctc 840tgctttgttc ttccctggac tgagctcagc gcaggctgtg accccaggag
ggccctgcca 900cgggccactg gctgctgggg actggggact gggcagagac tgagccaggc
aggaaggcag 960cagccttcag cctctctggc ccactcggac aacttcccaa ggccgcctcc
tgctagcaag 1020aacagagtcc accctcctct ggatattggg gagggacgga agtgacaggg
tgtggtggtg 1080gagtggggag ctggcttctg ctggccagga tagcttaacc ctgactttgg
gatctgcctg 1140catcggcgtt ggccactgtc cccatttaca ttttccccac tctgtctgcc
tgcatctcct 1200ctgttccggg taggccttga tatcacctct gggactgtgc cttgctcacc
gaaacccgcg 1260cccaggagta tggctgaggc cttgcccacc cacctgcctg ggaagtgcag
agtggatgga 1320cgggtttaga ggggaggggc gaaggtgctg taaacaggtt tgggcagtgg
tgggggaggg 1380ggccagagag gcggctcagg ttgcccagct ctgtggcctc aggactctct
gcctcacccg 1440cttcagccca gggcccctgg agactgatcc cctctgagtc ctctgcccct
tccaaggaca 1500ctaatgagcc tgggagggtg gcagggagga ggggacagct tcacccttgg
aagtcctggg 1560gtttttcctc ttccttcttt gtggtttctg ttttgtaatt taagaagagc
tattcatcac 1620tgtaattatt attattttct acaataaatg ggacctgtgc acagg
166545209PRTHomo sapiens 45Met Ala Ser Met Gly Leu Gln Val Met
Gly Ile Ala Leu Ala Val Leu 1 5 10
15Gly Trp Leu Ala Val Met Leu Cys Cys Ala Leu Pro Met Trp Arg
Val 20 25 30Thr Ala Phe Ile
Gly Ser Asn Ile Val Thr Ser Gln Thr Ile Trp Glu 35
40 45Gly Leu Trp Met Asn Cys Val Val Gln Ser Thr Gly
Gln Met Gln Cys 50 55 60Lys Val Tyr
Asp Ser Leu Leu Ala Leu Pro Gln Asp Leu Gln Ala Ala65 70
75 80Arg Ala Leu Val Ile Ile Ser Ile
Ile Val Ala Ala Leu Gly Val Leu 85 90
95Leu Ser Val Val Gly Gly Lys Cys Thr Asn Cys Leu Glu Asp
Glu Ser 100 105 110Ala Lys Ala
Lys Thr Met Ile Val Ala Gly Val Val Phe Leu Leu Ala 115
120 125Gly Leu Met Val Ile Val Pro Val Ser Trp Thr
Ala His Asn Ile Ile 130 135 140Gln Asp
Phe Tyr Asn Pro Leu Val Ala Ser Gly Gln Lys Arg Glu Met145
150 155 160Gly Ala Ser Leu Tyr Val Gly
Trp Ala Ala Ser Gly Leu Leu Leu Leu 165
170 175Gly Gly Gly Leu Leu Cys Cys Asn Cys Pro Pro Arg
Thr Asp Lys Pro 180 185 190Tyr
Ser Ala Lys Tyr Ser Ala Ala Arg Ser Ala Ala Ala Ser Asn Tyr 195
200 205Val461009DNAHomo sapiens 46ggcagtagct
tgctgatgct cccagctgaa taaagccctt ccttctacaa tttggtgtct 60gaggggtttt
gtctgcggct cgtcctgcta catttcttgg ttccctgacc aggaaacgag 120gtaactgatg
gacagccgag gcagcccctt aggcggctta ggcctcccct gtggagcatc 180cctgaggcgg
actccggcca gcccgagtga tgcgatccaa agagcactcc cgggtaggaa 240attgccccgg
tggaatgcct caccagagca gcgtgtagca gttccctgtg gaggattaac 300acagtggctg
aacaccggga aggaactggc acttggagtc cggacatctg aaacttggta 360agactagtct
ttggaacttg ccccactcca tctaggtgga agtgtggcct gatcacccac 420gacatgcctg
cattggcact tctgttctgg ttttgacttg acttagattg tgtgatactt 480tggttttggt
tttggtttga cctggcttgg attctagata ctctgatttg gttttgattt 540tggtttggtg
taaactgcaa gagtgtgtat gcccttttta cctgtttttt tgtttgtggc 600atgtgtgtgg
tgtgggtgtg gtgttttgtc tcgaagaagc atgggtcagg tacaaataag 660cccaccccac
taggaactat gttaaaaaaa aattcaagaa agaatttaag ggagattaca 720gtgttactgt
gacaccagga aaacttagaa ctttgtgtga aatagactgg ccagcattag 780aggtgggttg
gccatcagaa ggaagcctgg acaggtccct tgtttcaaag gtatgacaca 840aggtaacacc
aattctaagt taatttgaag tttgcttaaa gttaacagtg taacatgtat 900tatggtaact
tctaatcttg tggccttaga cagtctagtc caaaggcata aagaaagttt 960gctttaaaaa
aaaaaaaaag gaatggttat cttcaaaaaa aaaaaaaaa
1009471250DNAHomo sapiens 47aattcggcac gagggcaggt gcaggcgcac gcggcgagag
cgtatggagc cgagccgtta 60gcgcgcgccg tcggtgagtc agtccgtccg tccgtccgtc
cgtcggggcg ccgcagctcc 120cgccaggccc agcggccccg gcccctcgtc tccccgcacc
cggagccacc cggtggagcg 180ggccttgccg cggcagccat gtccatgggc ctggagatca
cgggcaccgc gctggccgtg 240ctgggctggc tgggcaccat cgtgtgctgc gcgttgccca
tgtggcgcgt gtcggccttc 300atcggcagca acatcatcac gtcgcagaac atctgggagg
gcctgtggat gaactgcgtg 360gtgcagagca ccggccagat gcagtgcaag gtgtacgact
cgctgctggc actgccacag 420gaccttcagg cggcccgcgc cctcatcgtg gtggccatcc
tgctggccgc cttcgggctg 480ctagtggcgc tggtgggcgc ccagtgcacc aactgcgtgc
aggacgacac ggccaaggcc 540aagatcacca tcgtggcagg cgtgctgttc cttctcgccg
ccctgctcac cctcgtgccg 600gtgtcctggt cggccaacac cattatccgg gacttctaca
accccgtggt gcccgaggcg 660cagaagcgcg agatgggcgc gggcctgtac gtgggctggg
cggccgcggc gctgcagctg 720ctggggggcg cgctgctctg ctgctcgtgt cccccacgcg
agaagaagta cacggccacc 780aaggtcgtct actccgcgcc gcgctccacc ggcccgggag
ccagcctggg cacaggctac 840gaccgcaagg actacgtcta agggacagac gcagggagac
cccaccacca ccaccaccac 900caacaccacc accaccaccg cgagctggag cgcgcaccag
gccatccagc gtgcagcctt 960gcctcggagg ccagcccacc cccagaagcc aggaagcccc
cgcgctggac tggggcagct 1020tccccagcag ccacggcttt gcgggccggg cagtcgactt
cggggcccag ggaccaacct 1080gcatggactg tgaaacctca cccttctgga gcacggggcc
tgggtgaccg ccaatacttg 1140accaccccgt cgagccccat cgggccgctg cccccatgtc
gcgctgggca gggaccggca 1200gccctggaag gggcacttga tatttttcaa taaaagcctc
tcgttttagc 125048220PRTHomo sapiens 48Met Ser Met Gly Leu
Glu Ile Thr Gly Thr Ala Leu Ala Val Leu Gly 1 5
10 15Trp Leu Gly Thr Ile Val Cys Cys Ala Leu Pro
Met Trp Arg Val Ser 20 25
30Ala Phe Ile Gly Ser Asn Ile Ile Thr Ser Gln Asn Ile Trp Glu Gly
35 40 45Leu Trp Met Asn Cys Val Val Gln
Ser Thr Gly Gln Met Gln Cys Lys 50 55
60Val Tyr Asp Ser Leu Leu Ala Leu Pro Gln Asp Leu Gln Ala Ala Arg65
70 75 80Ala Leu Ile Val Val
Ala Ile Leu Leu Ala Ala Phe Gly Leu Leu Val 85
90 95Ala Leu Val Gly Ala Gln Cys Thr Asn Cys Val
Gln Asp Asp Thr Ala 100 105
110Lys Ala Lys Ile Thr Ile Val Ala Gly Val Leu Phe Leu Leu Ala Ala
115 120 125Leu Leu Thr Leu Val Pro Val
Ser Trp Ser Ala Asn Thr Ile Ile Arg 130 135
140Asp Phe Tyr Asn Pro Val Val Pro Glu Ala Gln Lys Arg Glu Met
Gly145 150 155 160Ala Gly
Leu Tyr Val Gly Trp Ala Ala Ala Ala Leu Gln Leu Leu Gly
165 170 175Gly Ala Leu Leu Cys Cys Ser
Cys Pro Pro Arg Glu Lys Lys Tyr Thr 180 185
190Ala Thr Lys Val Val Tyr Ser Ala Pro Arg Ser Thr Gly Pro
Gly Ala 195 200 205Ser Leu Gly Thr
Gly Tyr Asp Arg Lys Asp Tyr Val 210 215
220493321DNAHomo sapiens 49atgaagattt tgatacttgg tatttttctg tttttatgta
gtaccccagc ctgggcgaaa 60gaaaagcatt attacattgg aattattgaa acgacttggg
attatgcctc tgaccatggg 120gaaaagaaac ttatttctgt tgacacggaa cattccaata
tctatcttca aaatggccca 180gatagaattg ggagactata taagaaggcc ctttatcttc
agtacacaga tgaaaccttt 240aggacaacta tagaaaaacc ggtctggctt gggtttttag
gccctattat caaagctgaa 300actggagata aagtttatgt acacttaaaa aaccttgcct
ctaggcccta cacctttcat 360tcacatggaa taacttacta taaggaacat gagggggcca
tctaccctga taacaccaca 420gattttcaaa gagcagatga caaagtatat ccaggagagc
agtatacata catgttgctt 480gccactgaag aacaaagtcc tggggaagga gatggcaatt
gtgtgactag gatttaccat 540tcccacattg atgctccaaa agatattgcc tcaggactca
tcggaccttt aataatctgt 600aaaaaagatt ctctagataa agaaaaagaa aaacatattg
accgagaatt tgtggtgatg 660ttttctgtgg tggatgaaaa tttcagctgg tacctagaag
acaacattaa aacctactgc 720tcagaaccag agaaagttga caaagacaac gaagacttcc
aggagagtaa cagaatgtat 780tctgtgaatg gatacacttt tggaagtctc ccaggactct
ccatgtgtgc tgaagacaga 840gtaaaatggt acctttttgg tatgggtaat gaagttgatg
tgcacgcagc tttctttcac 900gggcaagcac tgactaacaa gaactaccgt attgacacaa
tcaacctctt tcctgctacc 960ctgtttgatg cttatatggt ggcccagaac cctggagaat
ggatgctcag ctgtcagaat 1020ctaaaccatc tgaaagccgg tttgcaagcc tttttccagg
tccaggagtg taacaagtct 1080tcatcaaagg ataatatccg tgggaagcat gttagacact
actacattgc cgctgaggaa 1140atcatctgga actatgctcc ctctggtata gacatcttca
ctaaagaaaa cttaacagca 1200cctggaagtg actcagcggt gttttttgaa caaggtacca
caagaattgg aggctcttat 1260aaaaagctgg tttatcgtga gtacacagat gcctccttca
caaatcgaaa ggagagaggc 1320cctgaagaag agcatcttgg catcctgggt cctgtcattt
gggcagaggt gggagacacc 1380atcagagtaa ccttccataa caaaggagca tatcccctca
gtattgagcc gattggggtg 1440agattcaata agaacaacga gggcacatac tattccccaa
attacaaccc ccagagcaga 1500agtgtgcctc cttcagcctc ccatgtggca cccacagaaa
cattcaccta tgaatggact 1560gtccccaaag aagtaggacc cactaatgca gatcctgtgt
gtctagctaa gatgtattat 1620tctgctgtgg atcccactaa agatatattc actgggctta
ttgggccaat gaaaatatgc 1680aagaaaggaa gtttacatgc aaatgggaga cagaaagatg
tagacaagga attctatttg 1740tttcctacag tatttgatga gaatgagagt ttactcctgg
aagataatat tagaatgttt 1800acaactgcac ctgatcaggt ggataaggaa gatgaagact
ttcaggaatc taataaaatg 1860cactccatga atggattcat gtatgggaat cagccgggtc
tcactatgtg caaaggagat 1920tcggtcgtgt ggtacttatt cagcgccgga aatgaggccg
atgtacatgg aatatacttt 1980tcaggaaaca catatctgtg gagaggagaa cggagagaca
cagcaaacct cttccctcaa 2040acaagtctta cgctccacat gtggcctgac acagagggga
cttttaatgt tgaatgcctt 2100acaactgatc attacacagg cggcatgaag caaaaatata
ctgtgaacca atgcaggcgg 2160cagtctgagg attccacctt ctacctggga gagaggacat
actatatcgc agcagtggag 2220gtggaatggg attattcccc acaaagggag tgggaaaagg
agctgcatca tttacaagag 2280cagaatgttt caaatgcatt tttagataag ggagagtttt
acataggctc aaagtacaag 2340aaagttgtgt atcggcagta tactgatagc acattccgtg
ttccagtgga gagaaaagct 2400gaagaagaac atctgggaat tctaggtcca caacttcatg
cagatgttgg agacaaagtc 2460aaaattatct ttaaaaacat ggccacaagg ccctactcaa
tacatgccca tggggtacaa 2520acagagagtt ctacagttac tccaacatta ccaggtgaaa
ctctcactta cgtatggaaa 2580atcccagaaa gatctggagc tggaacagag gattctgctt
gtattccatg ggcttattat 2640tcaactgtgg atcaagttaa ggacctctac agtggattaa
ttggccccct gattgtttgt 2700cgaagacctt acttgaaagt attcaatccc agaaggaagc
tggaatttgc ccttctgttt 2760ctagtttttg atgagaatga atcttggtac ttagatgaca
acatcaaaac atactctgat 2820caccccgaga aagtaaacaa agatgatgag gaattcatag
aaagcaataa aatgcatgct 2880attaatggaa gaatgtttgg aaacctacaa ggcctcacaa
tgcacgtggg agatgaagtc 2940aactggtatc tgatgggaat gggcaatgaa atagacttac
acactgtaca ttttcacggc 3000catagcttcc aatacaagca caggggagtt tatagttctg
atgtctttga cattttccct 3060ggaacatacc aaaccctaga aatgtttcca agaacacctg
gaatttggtt actccactgc 3120catgtgaccg accacattca tgctggaatg gaaaccactt
acaccgttct acaaaatgaa 3180gacaccaaat ctggctgaat gaaataaatt ggtgataagt
ggaaaaaaga gaaaaaccaa 3240tgattcataa caatgtatgt gaaagtgtaa aatagaatgt
tactttggaa tgactataaa 3300cattaaaaga gactggagca t
3321501065PRTHomo sapiens 50Met Lys Ile Leu Ile Leu
Gly Ile Phe Leu Phe Leu Cys Ser Thr Pro 1 5
10 15Ala Trp Ala Lys Glu Lys His Tyr Tyr Ile Gly Ile
Ile Glu Thr Thr 20 25 30Trp
Asp Tyr Ala Ser Asp His Gly Glu Lys Lys Leu Ile Ser Val Asp 35
40 45Thr Glu His Ser Asn Ile Tyr Leu Gln
Asn Gly Pro Asp Arg Ile Gly 50 55
60Arg Leu Tyr Lys Lys Ala Leu Tyr Leu Gln Tyr Thr Asp Glu Thr Phe65
70 75 80Arg Thr Thr Ile Glu
Lys Pro Val Trp Leu Gly Phe Leu Gly Pro Ile 85
90 95Ile Lys Ala Glu Thr Gly Asp Lys Val Tyr Val
His Leu Lys Asn Leu 100 105
110Ala Ser Arg Pro Tyr Thr Phe His Ser His Gly Ile Thr Tyr Tyr Lys
115 120 125Glu His Glu Gly Ala Ile Tyr
Pro Asp Asn Thr Thr Asp Phe Gln Arg 130 135
140Ala Asp Asp Lys Val Tyr Pro Gly Glu Gln Tyr Thr Tyr Met Leu
Leu145 150 155 160Ala Thr
Glu Glu Gln Ser Pro Gly Glu Gly Asp Gly Asn Cys Val Thr
165 170 175Arg Ile Tyr His Ser His Ile
Asp Ala Pro Lys Asp Ile Ala Ser Gly 180 185
190Leu Ile Gly Pro Leu Ile Ile Cys Lys Lys Asp Ser Leu Asp
Lys Glu 195 200 205Lys Glu Lys His
Ile Asp Arg Glu Phe Val Val Met Phe Ser Val Val 210
215 220Asp Glu Asn Phe Ser Trp Tyr Leu Glu Asp Asn Ile
Lys Thr Tyr Cys225 230 235
240Ser Glu Pro Glu Lys Val Asp Lys Asp Asn Glu Asp Phe Gln Glu Ser
245 250 255Asn Arg Met Tyr Ser
Val Asn Gly Tyr Thr Phe Gly Ser Leu Pro Gly 260
265 270Leu Ser Met Cys Ala Glu Asp Arg Val Lys Trp Tyr
Leu Phe Gly Met 275 280 285Gly Asn
Glu Val Asp Val His Ala Ala Phe Phe His Gly Gln Ala Leu 290
295 300Thr Asn Lys Asn Tyr Arg Ile Asp Thr Ile Asn
Leu Phe Pro Ala Thr305 310 315
320Leu Phe Asp Ala Tyr Met Val Ala Gln Asn Pro Gly Glu Trp Met Leu
325 330 335Ser Cys Gln Asn
Leu Asn His Leu Lys Ala Gly Leu Gln Ala Phe Phe 340
345 350Gln Val Gln Glu Cys Asn Lys Ser Ser Ser Lys
Asp Asn Ile Arg Gly 355 360 365Lys
His Val Arg His Tyr Tyr Ile Ala Ala Glu Glu Ile Ile Trp Asn 370
375 380Tyr Ala Pro Ser Gly Ile Asp Ile Phe Thr
Lys Glu Asn Leu Thr Ala385 390 395
400Pro Gly Ser Asp Ser Ala Val Phe Phe Glu Gln Gly Thr Thr Arg
Ile 405 410 415Gly Gly Ser
Tyr Lys Lys Leu Val Tyr Arg Glu Tyr Thr Asp Ala Ser 420
425 430Phe Thr Asn Arg Lys Glu Arg Gly Pro Glu
Glu Glu His Leu Gly Ile 435 440
445Leu Gly Pro Val Ile Trp Ala Glu Val Gly Asp Thr Ile Arg Val Thr 450
455 460Phe His Asn Lys Gly Ala Tyr Pro
Leu Ser Ile Glu Pro Ile Gly Val465 470
475 480Arg Phe Asn Lys Asn Asn Glu Gly Thr Tyr Tyr Ser
Pro Asn Tyr Asn 485 490
495Pro Gln Ser Arg Ser Val Pro Pro Ser Ala Ser His Val Ala Pro Thr
500 505 510Glu Thr Phe Thr Tyr Glu
Trp Thr Val Pro Lys Glu Val Gly Pro Thr 515 520
525Asn Ala Asp Pro Val Cys Leu Ala Lys Met Tyr Tyr Ser Ala
Val Asp 530 535 540Pro Thr Lys Asp Ile
Phe Thr Gly Leu Ile Gly Pro Met Lys Ile Cys545 550
555 560Lys Lys Gly Ser Leu His Ala Asn Gly Arg
Gln Lys Asp Val Asp Lys 565 570
575Glu Phe Tyr Leu Phe Pro Thr Val Phe Asp Glu Asn Glu Ser Leu Leu
580 585 590Leu Glu Asp Asn Ile
Arg Met Phe Thr Thr Ala Pro Asp Gln Val Asp 595
600 605Lys Glu Asp Glu Asp Phe Gln Glu Ser Asn Lys Met
His Ser Met Asn 610 615 620Gly Phe Met
Tyr Gly Asn Gln Pro Gly Leu Thr Met Cys Lys Gly Asp625
630 635 640Ser Val Val Trp Tyr Leu Phe
Ser Ala Gly Asn Glu Ala Asp Val His 645
650 655Gly Ile Tyr Phe Ser Gly Asn Thr Tyr Leu Trp Arg
Gly Glu Arg Arg 660 665 670Asp
Thr Ala Asn Leu Phe Pro Gln Thr Ser Leu Thr Leu His Met Trp 675
680 685Pro Asp Thr Glu Gly Thr Phe Asn Val
Glu Cys Leu Thr Thr Asp His 690 695
700Tyr Thr Gly Gly Met Lys Gln Lys Tyr Thr Val Asn Gln Cys Arg Arg705
710 715 720Gln Ser Glu Asp
Ser Thr Phe Tyr Leu Gly Glu Arg Thr Tyr Tyr Ile 725
730 735Ala Ala Val Glu Val Glu Trp Asp Tyr Ser
Pro Gln Arg Glu Trp Glu 740 745
750Lys Glu Leu His His Leu Gln Glu Gln Asn Val Ser Asn Ala Phe Leu
755 760 765Asp Lys Gly Glu Phe Tyr Ile
Gly Ser Lys Tyr Lys Lys Val Val Tyr 770 775
780Arg Gln Tyr Thr Asp Ser Thr Phe Arg Val Pro Val Glu Arg Lys
Ala785 790 795 800Glu Glu
Glu His Leu Gly Ile Leu Gly Pro Gln Leu His Ala Asp Val
805 810 815Gly Asp Lys Val Lys Ile Ile
Phe Lys Asn Met Ala Thr Arg Pro Tyr 820 825
830Ser Ile His Ala His Gly Val Gln Thr Glu Ser Ser Thr Val
Thr Pro 835 840 845Thr Leu Pro Gly
Glu Thr Leu Thr Tyr Val Trp Lys Ile Pro Glu Arg 850
855 860Ser Gly Ala Gly Thr Glu Asp Ser Ala Cys Ile Pro
Trp Ala Tyr Tyr865 870 875
880Ser Thr Val Asp Gln Val Lys Asp Leu Tyr Ser Gly Leu Ile Gly Pro
885 890 895Leu Ile Val Cys Arg
Arg Pro Tyr Leu Lys Val Phe Asn Pro Arg Arg 900
905 910Lys Leu Glu Phe Ala Leu Leu Phe Leu Val Phe Asp
Glu Asn Glu Ser 915 920 925Trp Tyr
Leu Asp Asp Asn Ile Lys Thr Tyr Ser Asp His Pro Glu Lys 930
935 940Val Asn Lys Asp Asp Glu Glu Phe Ile Glu Ser
Asn Lys Met His Ala945 950 955
960Ile Asn Gly Arg Met Phe Gly Asn Leu Gln Gly Leu Thr Met His Val
965 970 975Gly Asp Glu Val
Asn Trp Tyr Leu Met Gly Met Gly Asn Glu Ile Asp 980
985 990Leu His Thr Val His Phe His Gly His Ser Phe
Gln Tyr Lys His Arg 995 1000
1005Gly Val Tyr Ser Ser Asp Val Phe Asp Ile Phe Pro Gly Thr Tyr Gln
1010 1015 1020Thr Leu Glu Met Phe Pro Arg
Thr Pro Gly Ile Trp Leu Leu His Cys1025 1030
1035 1040His Val Thr Asp His Ile His Ala Gly Met Glu Thr
Thr Tyr Thr Val 1045 1050
1055Leu Gln Asn Glu Asp Thr Lys Ser Gly 1060
1065511603DNAHomo sapiens 51ggccagggat caggcagcgg ctcaggcgac cctgagtgtg
cccccacccc gccatggccc 60ggctgctgca ggcgtcctgc ctgctttccc tgctcctggc
cggcttcgtc tcgcagagcc 120ggggacaaga gaagtcgaag atggactgcc atggtggcat
aagtggcacc atttacgagt 180acggagccct caccattgat ggggaggagt acatcccctt
caagcagtat gctggcaaat 240acgtcctctt tgtcaacgtg gccagctact gaggcctgac
gggccagtac attgaactga 300atgcactaca ggaagagctt gcaccattcg gtctggtcat
tctgggcttt ccctgcaacc 360aatttggaaa acaggaacca ggagagaact cagagatcct
tcctaccctc aagtatgtcc 420gaccaggtgg aggctttgtc cctaatttcc agctctttga
gaaaggggat gtcaatggag 480agaaagagca gaaattctac actttcctaa agaactcctg
tcctcccacc tcggagctcc 540tgggtacatc tgaccgcctc ttctgggaac ccatgaaggt
tcacgacatc cgctggaact 600ttgagaagtt cctggtgggg ccagatggta tacccatcat
gcgctggcac caccggacca 660cggtcagcaa cgtcaagatg gacatcctgt cctacatgag
gcggcaggca gccctggggg 720tcaagaggaa gtaactgaag gccgtctcat cccatgtcca
ccatgtaggg gagggacttt 780gttcaggaag aaatccgtgt ctccaaccac actatctacc
catcacagac ccctttccta 840tcactcaagg ccccagcctg gcacaaatgg atgcatacag
ttctgtgtac tgccaggcat 900gtgggtgtgg gtgcatgtgg gtgtttacac acatgcctac
aggtatgcgt gattgtgtgt 960gtgtgcatgg gtgtacagcc acgtgtccta cctatgtgtc
tttctgggaa tgtgtaccat 1020ctgtgtgcct gcagctgtgt agtgctggac agtgacaacc
ctttctctcc agttctccac 1080tccaatgata atagttcact tacacctaaa cccaaaggaa
aaaccagctc taggtccaat 1140tgttctgctc taactgatac ctcaaccttg gggccagcat
ctcccactgc ctccaaatat 1200tagtaactat gactgacgtc cccagaagtt tctgggtcta
ccacactccc caacccccca 1260ctcctacttc ctgaagggcc ctcccaaggc tacatcccca
ccccacagtt ctccctgaga 1320gagatcaacc tccctagatc aaccaaggca gatgtgacaa
gcaagggcca cggaccccat 1380aggcaggggt ggcgtcttca tgagggaggg gcccaaagcc
cttgtgggcg gacctcccct 1440gagcctgtct gaggggccag cccttagtgc attcaggcta
aggcccctgg gcagggatgc 1500caccctgctc cttcggagga cgtgccctca cccctcactg
gtccactggc ttgagactca 1560ccccgtctgc ccagtaaaag cctttctgca gcaaaaaacc
ccc 160352226PRTHomo sapiensVARIANT0-00Xaa = any
amino acid 52Met Ala Arg Leu Leu Gln Ala Ser Cys Leu Leu Ser Leu Leu Leu
Ala 1 5 10 15Gly Phe Val
Ser Gln Ser Arg Gly Gln Glu Lys Ser Lys Met Asp Cys 20
25 30His Gly Gly Ile Ser Gly Thr Ile Tyr Glu
Tyr Gly Ala Leu Thr Ile 35 40
45Asp Gly Glu Glu Tyr Ile Pro Phe Lys Gln Tyr Ala Gly Lys Tyr Val 50
55 60Leu Phe Val Asn Val Ala Ser Tyr Xaa
Gly Leu Thr Gly Gln Tyr Ile65 70 75
80Glu Leu Asn Ala Leu Gln Glu Glu Leu Ala Pro Phe Gly Leu
Val Ile 85 90 95Leu Gly
Phe Pro Cys Asn Gln Phe Gly Lys Gln Glu Pro Gly Glu Asn 100
105 110Ser Glu Ile Leu Pro Thr Leu Lys Tyr
Val Arg Pro Gly Gly Gly Phe 115 120
125Val Pro Asn Phe Gln Leu Phe Glu Lys Gly Asp Val Asn Gly Glu Lys
130 135 140Glu Gln Lys Phe Tyr Thr Phe
Leu Lys Asn Ser Cys Pro Pro Thr Ser145 150
155 160Glu Leu Leu Gly Thr Ser Asp Arg Leu Phe Trp Glu
Pro Met Lys Val 165 170
175His Asp Ile Arg Trp Asn Phe Glu Lys Phe Leu Val Gly Pro Asp Gly
180 185 190Ile Pro Ile Met Arg Trp
His His Arg Thr Thr Val Ser Asn Val Lys 195 200
205Met Asp Ile Leu Ser Tyr Met Arg Arg Gln Ala Ala Leu Gly
Val Lys 210 215 220Arg
Lys22553399DNAHomo sapiens 53atgaagtcca gcggcctctt ccccttcctg gtgctgcttg
ccctgggaac tctggcacct 60tgggctgtgg aaggctctgg aaagtccttc aaagctggag
tctgtcctcc taagaaatct 120gcccagtgcc ttagatacaa gaaacctgag tgccagagtg
actggcagtg tccagggaag 180aagagatgtt gtcctgacac ttgtggcatc aaatgcctgg
atcctgttga caccccaaac 240ccaacaagga ggaagcctgg gaagtgccca gtgacttatg
gccaatgttt gatgcttaac 300ccccccaatt tctgtgagat ggatggccag tgcaagcgtg
acttgaagtg ttgcatgggc 360atgtgtggga aatcctgcgt ttcccctgtg aaagcttga
39954132PRTHomo sapiens 54Met Lys Ser Ser Gly Leu
Phe Pro Phe Leu Val Leu Leu Ala Leu Gly 1 5
10 15Thr Leu Ala Pro Trp Ala Val Glu Gly Ser Gly Lys
Ser Phe Lys Ala 20 25 30Gly
Val Cys Pro Pro Lys Lys Ser Ala Gln Cys Leu Arg Tyr Lys Lys 35
40 45Pro Glu Cys Gln Ser Asp Trp Gln Cys
Pro Gly Lys Lys Arg Cys Cys 50 55
60Pro Asp Thr Cys Gly Ile Lys Cys Leu Asp Pro Val Asp Thr Pro Asn65
70 75 80Pro Thr Arg Arg Lys
Pro Gly Lys Cys Pro Val Thr Tyr Gly Gln Cys 85
90 95Leu Met Leu Asn Pro Pro Asn Phe Cys Glu Met
Asp Gly Gln Cys Lys 100 105
110Arg Asp Leu Lys Cys Cys Met Gly Met Cys Gly Lys Ser Cys Val Ser
115 120 125Pro Val Lys Ala
130553557DNAHomo sapiens 55gagagggtcc ttcagggtct gcttatgccc ttgttcaaga
acaccagtgt cagctctctg 60tactctggtt gcagactgac cttgctcagg cctgagaagg
atggggcagc caccagagtg 120gatgctgtct gcacccatcg tcctgacccc aaaagccctg
gactggacag agagcggctg 180tactggaagc tgagccagct gacccacggc atcactgagc
tgggccccta caccctggac 240aggcacagtc tctatgtcaa tggtttcacc catcagagct
ctatgacgac caccagaact 300cctgatacct ccacaatgca cctggcaacc tcgagaactc
cagcctccct gtctggacct 360acgaccgcca gccctctcct ggtgctattc acaattaact
tcaccatcac taacctgcgg 420tatgaggaga acatgcatca ccctggctct agaaagttta
acaccacgga gagagtcctt 480cagggtctgc tcaggcctgt gttcaagaac accagtgttg
gccctctgta ctctggctgc 540agactgacct tgctcaggcc caagaaggat ggggcagcca
ccaaagtgga tgccatctgc 600acctaccgcc ctgatcccaa aagccctgga ctggacagag
agcagctata ctgggagctg 660agccagctaa cccacagcat cactgagctg ggcccctaca
ccctggacag ggacagtctc 720tatgtcaatg gtttcacaca gcggagctct gtgcccacca
ctagcattcc tgggaccccc 780acagtggacc tgggaacatc tgggactcca gtttctaaac
ctggtccctc ggctgccagc 840cctctcctgg tgctattcac tctcaacttc accatcacca
acctgcggta tgaggagaac 900atgcagcacc ctggctccag gaagttcaac accacggaga
gggtccttca gggcctgctc 960aggtccctgt tcaagagcac cagtgttggc cctctgtact
ctggctgcag actgactttg 1020ctcaggcctg aaaaggatgg gacagccact ggagtggatg
ccatctgcac ccaccaccct 1080gaccccaaaa gccctaggct ggacagagag cagctgtatt
gggagctgag ccagctgacc 1140cacaatatca ctgagctggg ccactatgcc ctggacaacg
acagcctctt tgtcaatggt 1200ttcactcatc ggagctctgt gtccaccacc agcactcctg
ggacccccac agtgtatctg 1260ggagcatcta agactccagc ctcgatattt ggcccttcag
ctgccagcca tctcctgata 1320ctattcaccc tcaacttcac catcactaac ctgcggtatg
aggagaacat gtggcctggc 1380tccaggaagt tcaacactac agagagggtc cttcagggcc
tgctaaggcc cttgttcaag 1440aacaccagtg ttggccctct gtactctggc tccaggctga
ccttgctcag gccagagaaa 1500gatggggaag ccaccggagt ggatgccatc tgcacccacc
gccctgaccc cacaggccct 1560gggctggaca gagagcagct gtatttggag ctgagccagc
tgacccacag catcactgag 1620ctgggcccct acacactgga cagggacagt ctctatgtca
atggtttcac ccatcggagc 1680tctgtaccca ccaccagcac cggggtggtc agcgaggagc
cattcacact gaacttcacc 1740atcaacaacc tgcgctacat ggcggacatg ggccaacccg
gctccctcaa gttcaacatc 1800acagacaacg tcatgaagca cctgctcagt cctttgttcc
agaggagcag cctgggtgca 1860cggtacacag gctgcagggt catcgcacta aggtctgtga
agaacggtgc tgagacacgg 1920gtggacctcc tctgcaccta cctgcagccc ctcagcggcc
caggtctgcc tatcaagcag 1980gtgttccatg agctgagcca gcagacccat ggcatcaccc
ggctgggccc ctactctctg 2040gacaaagaca gcctctacct taacggttac aatgaacctg
gtctagatga gcctcctaca 2100actcccaagc cagccaccac attcctgcct cctctgtcag
aagccacaac agccatgggg 2160taccacctga agaccctcac actcaacttc accatctcca
atctccagta ttcaccagat 2220atgggcaagg gctcagctac attcaactcc accgaggggg
tccttcagca cctgctcaga 2280cccttgttcc agaagagcag catgggcccc ttctacttgg
gttgccaact gatctccctc 2340aggcctgaga aggatggggc agccactggt gtggacacca
cctgcaccta ccaccctgac 2400cctgtgggcc ccgggctgga catacagcag ctttactggg
agctgagtca gctgacccat 2460ggtgtcaccc aactgggctt ctatgtcctg gacagggata
gcctcttcat caatggctat 2520gcaccccaga atttatcaat ccggggcgag taccagataa
atttccacat tgtcaactgg 2580aacctcagta atccagaccc cacatcctca gagtacatca
ccctgctgag ggacatccag 2640gacaaggtca ccacactcta caaaggcagt caactacatg
acacattccg cttctgcctg 2700gtcaccaact tgacgatgga ctccgtgttg gtcactgtca
aggcattgtt ctcctccaat 2760ttggacccca gcctggtgga gcaagtcttt ctagataaga
ccctgaatgc ctcattccat 2820tggctgggct ccacctacca gttggtggac atccatgtga
cagaaatgga gtcatcagtt 2880tatcaaccaa caagcagctc cagcacccag cacttctacc
cgaatttcac catcaccaac 2940ctaccatatt cccaggacaa agcccagcca ggcaccacca
attaccagag gaacaaaagg 3000aatattgagg atgcgctcaa ccaactcttc cgaaacagca
gcatcaagag ttatttttct 3060gactgtcaag tttcaacatt caggtctgtc cccaacaggc
accacaccgg ggtggactcc 3120ctgtgtaact tctcgccact ggctcggaga gtagacagag
ttgccatcta tgaggaattt 3180ctgcggatga cccggaatgg tacccagctg cagaacttca
ccctggacag gagcagtgtc 3240cttgtggatg ggtattctcc caacagaaat gagcccttaa
ctgggaattc tgaccttccc 3300ttctgggctg tcatcttcat cggcttggca ggactcctgg
gactcatcac atgcctgatc 3360tgcggtgtcc tggtgaccac ccgccggcgg aagaaggaag
gagaatacaa cgtccagcaa 3420cagtgcccag gctactacca gtcacaccta gacctggagg
atctgcaatg actggaactt 3480gccggtgcct ggggtgcctt tcccccagcc agggtccaaa
gaagcttggc tggggcagaa 3540ataaaccata ttggtcg
3557561148PRTHomo sapiens 56Met Pro Leu Phe Lys Asn
Thr Ser Val Ser Ser Leu Tyr Ser Gly Cys 1 5
10 15Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala
Ala Thr Arg Val 20 25 30Asp
Ala Val Cys Thr His Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp 35
40 45Arg Glu Arg Leu Tyr Trp Lys Leu Ser
Gln Leu Thr His Gly Ile Thr 50 55
60Glu Leu Gly Pro Tyr Thr Leu Asp Arg His Ser Leu Tyr Val Asn Gly65
70 75 80Phe Thr His Gln Ser
Ser Met Thr Thr Thr Arg Thr Pro Asp Thr Ser 85
90 95Thr Met His Leu Ala Thr Ser Arg Thr Pro Ala
Ser Leu Ser Gly Pro 100 105
110Thr Thr Ala Ser Pro Leu Leu Val Leu Phe Thr Ile Asn Phe Thr Ile
115 120 125Thr Asn Leu Arg Tyr Glu Glu
Asn Met His His Pro Gly Ser Arg Lys 130 135
140Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Arg Pro Val
Phe145 150 155 160Lys Asn
Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu
165 170 175Leu Arg Pro Lys Lys Asp Gly
Ala Ala Thr Lys Val Asp Ala Ile Cys 180 185
190Thr Tyr Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu
Gln Leu 195 200 205Tyr Trp Glu Leu
Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro 210
215 220Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly
Phe Thr Gln Arg225 230 235
240Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Pro Thr Val Asp Leu
245 250 255Gly Thr Ser Gly Thr
Pro Val Ser Lys Pro Gly Pro Ser Ala Ala Ser 260
265 270Pro Leu Leu Val Leu Phe Thr Leu Asn Phe Thr Ile
Thr Asn Leu Arg 275 280 285Tyr Glu
Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe Asn Thr Thr 290
295 300Glu Arg Val Leu Gln Gly Leu Leu Arg Ser Leu
Phe Lys Ser Thr Ser305 310 315
320Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu
325 330 335Lys Asp Gly Thr
Ala Thr Gly Val Asp Ala Ile Cys Thr His His Pro 340
345 350Asp Pro Lys Ser Pro Arg Leu Asp Arg Glu Gln
Leu Tyr Trp Glu Leu 355 360 365Ser
Gln Leu Thr His Asn Ile Thr Glu Leu Gly His Tyr Ala Leu Asp 370
375 380Asn Asp Ser Leu Phe Val Asn Gly Phe Thr
His Arg Ser Ser Val Ser385 390 395
400Thr Thr Ser Thr Pro Gly Thr Pro Thr Val Tyr Leu Gly Ala Ser
Lys 405 410 415Thr Pro Ala
Ser Ile Phe Gly Pro Ser Ala Ala Ser His Leu Leu Ile 420
425 430Leu Phe Thr Leu Asn Phe Thr Ile Thr Asn
Leu Arg Tyr Glu Glu Asn 435 440
445Met Trp Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln 450
455 460Gly Leu Leu Arg Pro Leu Phe Lys
Asn Thr Ser Val Gly Pro Leu Tyr465 470
475 480Ser Gly Ser Arg Leu Thr Leu Leu Arg Pro Glu Lys
Asp Gly Glu Ala 485 490
495Thr Gly Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro Thr Gly Pro
500 505 510Gly Leu Asp Arg Glu Gln
Leu Tyr Leu Glu Leu Ser Gln Leu Thr His 515 520
525Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser
Leu Tyr 530 535 540Val Asn Gly Phe Thr
His Arg Ser Ser Val Pro Thr Thr Ser Thr Gly545 550
555 560Val Val Ser Glu Glu Pro Phe Thr Leu Asn
Phe Thr Ile Asn Asn Leu 565 570
575Arg Tyr Met Ala Asp Met Gly Gln Pro Gly Ser Leu Lys Phe Asn Ile
580 585 590Thr Asp Asn Val Met
Lys His Leu Leu Ser Pro Leu Phe Gln Arg Ser 595
600 605Ser Leu Gly Ala Arg Tyr Thr Gly Cys Arg Val Ile
Ala Leu Arg Ser 610 615 620Val Lys Asn
Gly Ala Glu Thr Arg Val Asp Leu Leu Cys Thr Tyr Leu625
630 635 640Gln Pro Leu Ser Gly Pro Gly
Leu Pro Ile Lys Gln Val Phe His Glu 645
650 655Leu Ser Gln Gln Thr His Gly Ile Thr Arg Leu Gly
Pro Tyr Ser Leu 660 665 670Asp
Lys Asp Ser Leu Tyr Leu Asn Gly Tyr Asn Glu Pro Gly Leu Asp 675
680 685Glu Pro Pro Thr Thr Pro Lys Pro Ala
Thr Thr Phe Leu Pro Pro Leu 690 695
700Ser Glu Ala Thr Thr Ala Met Gly Tyr His Leu Lys Thr Leu Thr Leu705
710 715 720Asn Phe Thr Ile
Ser Asn Leu Gln Tyr Ser Pro Asp Met Gly Lys Gly 725
730 735Ser Ala Thr Phe Asn Ser Thr Glu Gly Val
Leu Gln His Leu Leu Arg 740 745
750Pro Leu Phe Gln Lys Ser Ser Met Gly Pro Phe Tyr Leu Gly Cys Gln
755 760 765Leu Ile Ser Leu Arg Pro Glu
Lys Asp Gly Ala Ala Thr Gly Val Asp 770 775
780Thr Thr Cys Thr Tyr His Pro Asp Pro Val Gly Pro Gly Leu Asp
Ile785 790 795 800Gln Gln
Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Gly Val Thr Gln
805 810 815Leu Gly Phe Tyr Val Leu Asp
Arg Asp Ser Leu Phe Ile Asn Gly Tyr 820 825
830Ala Pro Gln Asn Leu Ser Ile Arg Gly Glu Tyr Gln Ile Asn
Phe His 835 840 845Ile Val Asn Trp
Asn Leu Ser Asn Pro Asp Pro Thr Ser Ser Glu Tyr 850
855 860Ile Thr Leu Leu Arg Asp Ile Gln Asp Lys Val Thr
Thr Leu Tyr Lys865 870 875
880Gly Ser Gln Leu His Asp Thr Phe Arg Phe Cys Leu Val Thr Asn Leu
885 890 895Thr Met Asp Ser Val
Leu Val Thr Val Lys Ala Leu Phe Ser Ser Asn 900
905 910Leu Asp Pro Ser Leu Val Glu Gln Val Phe Leu Asp
Lys Thr Leu Asn 915 920 925Ala Ser
Phe His Trp Leu Gly Ser Thr Tyr Gln Leu Val Asp Ile His 930
935 940Val Thr Glu Met Glu Ser Ser Val Tyr Gln Pro
Thr Ser Ser Ser Ser945 950 955
960Thr Gln His Phe Tyr Pro Asn Phe Thr Ile Thr Asn Leu Pro Tyr Ser
965 970 975Gln Asp Lys Ala
Gln Pro Gly Thr Thr Asn Tyr Gln Arg Asn Lys Arg 980
985 990Asn Ile Glu Asp Ala Leu Asn Gln Leu Phe Arg
Asn Ser Ser Ile Lys 995 1000
1005Ser Tyr Phe Ser Asp Cys Gln Val Ser Thr Phe Arg Ser Val Pro Asn
1010 1015 1020Arg His His Thr Gly Val Asp
Ser Leu Cys Asn Phe Ser Pro Leu Ala1025 1030
1035 1040Arg Arg Val Asp Arg Val Ala Ile Tyr Glu Glu Phe
Leu Arg Met Thr 1045 1050
1055Arg Asn Gly Thr Gln Leu Gln Asn Phe Thr Leu Asp Arg Ser Ser Val
1060 1065 1070Leu Val Asp Gly Tyr Ser
Pro Asn Arg Asn Glu Pro Leu Thr Gly Asn 1075 1080
1085Ser Asp Leu Pro Phe Trp Ala Val Ile Phe Ile Gly Leu Ala
Gly Leu 1090 1095 1100Leu Gly Leu Ile
Thr Cys Leu Ile Cys Gly Val Leu Val Thr Thr Arg1105 1110
1115 1120Arg Arg Lys Lys Glu Gly Glu Tyr Asn
Val Gln Gln Gln Cys Pro Gly 1125 1130
1135Tyr Tyr Gln Ser His Leu Asp Leu Glu Asp Leu Gln
1140 114557853DNAHomo sapiens 57ctagtcctga cttcacttct
gatgaggaag cctctctcct tagccttcag cctttcctcc 60caccctgcca taagtaattt
gatcctcaag aagttaaacc acacctcatt ggtccctggc 120taattcacca atttacaaac
agcaggaaat agaaacttaa gagaaataca cacttctgag 180aaactgaaac gacaggggaa
aggaggtctc actgagcacc gtcccagcat ccggacacca 240cagcggccct tcgctccacg
cagaaaacca cacttctcaa accttcactc aacacttcct 300tccccaaagc cagaagatgc
acaaggagga acatgaggtg gctgtgctgg gggcaccccc 360cagcaccatc cttccaaggt
ccaccgtgat caacatccac agcgagacct ccgtgcccga 420ccatgtcgtc tggtccctgt
tcaacaccct cttcttgaac tggtgctgtc tgggcttcat 480agcattcgcc tactccgtga
agtctaggga caggaagatg gttggcgacg tgaccggggc 540ccaggcctat gcctccaccg
ccaagtgcct gaacatctgg gccctgattc tgggcatcct 600catgaccatt ggattcatcc
tgtcactggt attcggctct gtgacagtct accatattat 660gttacagata atacaggaaa
aacggggtta ctagtagccg cccatagcct gcaacctttg 720cactccactg tgcaatgctg
gccctgcacg ctggggctgt tgcccctgcc cccttggtcc 780tgcccctaga tacagcagtt
tatacccaca cacctgtcta cagtgtcatt caataaagtg 840cacgtgcttg tga
85358125PRTHomo sapiens
58Met His Lys Glu Glu His Glu Val Ala Val Leu Gly Ala Pro Pro Ser 1
5 10 15Thr Ile Leu Pro Arg Ser
Thr Val Ile Asn Ile His Ser Glu Thr Ser 20 25
30Val Pro Asp His Val Val Trp Ser Leu Phe Asn Thr Leu
Phe Leu Asn 35 40 45Trp Cys Cys
Leu Gly Phe Ile Ala Phe Ala Tyr Ser Val Lys Ser Arg 50
55 60Asp Arg Lys Met Val Gly Asp Val Thr Gly Ala Gln
Ala Tyr Ala Ser65 70 75
80Thr Ala Lys Cys Leu Asn Ile Trp Ala Leu Ile Leu Gly Ile Leu Met
85 90 95Thr Ile Gly Phe Ile Leu
Ser Leu Val Phe Gly Ser Val Thr Val Tyr 100
105 110His Ile Met Leu Gln Ile Ile Gln Glu Lys Arg Gly
Tyr 115 120 125591512DNAHomo
sapiens 59ttccggtccc ccaggacatg tccaatcagg gaagtaagta cgtcaataag
gaaattcaaa 60atgctgtcaa cggggtgaaa cagataaaga ctctcataga aaaaacaaac
gaagagcgca 120agacactgct cagcaaccta gaagaagcca agaagaagaa agaggatgcc
ctaaatgaga 180ccagggaatc agagacaaag ctgaaggagc tcccaggagt gtgcaatgag
accatgatgg 240ccctctggga agagtgtaag ccctgcctga aacagacctg catgaagttc
tacgcacgcg 300tctgcagaag tggctcaggc ctggttggcc gccagcttga ggagttcctg
aaccagagct 360cgcccttcta cttctggatg aatggtgacc gcatcgactc cctgctggag
aacgaccggc 420agcagacgca catgctggat gtcatgcagg accacttcag ccgcgcgtcc
agcatcatag 480acgagctctt ccaggacagg ttcttcaccc gggagcccca ggatacctac
cactacctgc 540ccttcagcct gccccaccgg aggcctcact tcttctttcc caagtcccgc
atcgtccgca 600gcttgatgcc cttctctccg tacgagcccc tgaacttcca cgccatgttc
cagcccttcc 660ttgagatgat acacgaggct cagcaggcca tggacatcca cttccacagc
ccggccttcc 720agcacccgcc aacagaattc atacgagaag gcgacgatga ccggactgtg
tgccgggaga 780tccgccacaa ctccacgggc tgcctgcgga tgaaggacca gtgtgacaag
tgccgggaga 840tcttgtctgt ggactgttcc accaacaacc cctcccaggc taagctgcgg
cgggagctcg 900acgaatccct ccaggtcgct gagaggttga ccaggaaata caacgagctg
ctaaagtcct 960accagtggaa gatgctcaac acctcctcct tgctggagca gctgaacgag
cagtttaact 1020gggtgtcccg gctggcaaac ctcacgcaag gcgaagacca gtactatctg
cgggtcacca 1080cggtggcttc ccacacttct gactcggacg ttccttccgg tgtcactgag
gtggtcgtga 1140agctctttga ctctgatccc atcactgtga cggtccctgt agaagtctcc
aggaagaacc 1200ctaaatttat ggagaccgtg gcggagaaag cgctgcagga ataccgcaaa
aagcaccggg 1260aggagtgaga tgtggatgtt gcttttgcac ctacgggggc atctgagtcc
agctcccccc 1320aagatgagct gcagcccccc agagagagct ctgcacgtca ccaagtaacc
aggccccagc 1380ctccaggccc ccaactccgc ccagcctctc cccgctctgg atcctgcact
ctaacactcg 1440actctgctgc tcatgggaag aacagaattg ctcctgcatg caactaattc
aataaaactg 1500tcttgtgagc tg
151260416PRTHomo sapiens 60Met Ser Asn Gln Gly Ser Lys Tyr Val
Asn Lys Glu Ile Gln Asn Ala 1 5 10
15Val Asn Gly Val Lys Gln Ile Lys Thr Leu Ile Glu Lys Thr Asn
Glu 20 25 30Glu Arg Lys Thr
Leu Leu Ser Asn Leu Glu Glu Ala Lys Lys Lys Lys 35
40 45Glu Asp Ala Leu Asn Glu Thr Arg Glu Ser Glu Thr
Lys Leu Lys Glu 50 55 60Leu Pro Gly
Val Cys Asn Glu Thr Met Met Ala Leu Trp Glu Glu Cys65 70
75 80Lys Pro Cys Leu Lys Gln Thr Cys
Met Lys Phe Tyr Ala Arg Val Cys 85 90
95Arg Ser Gly Ser Gly Leu Val Gly Arg Gln Leu Glu Glu Phe
Leu Asn 100 105 110Gln Ser Ser
Pro Phe Tyr Phe Trp Met Asn Gly Asp Arg Ile Asp Ser 115
120 125Leu Leu Glu Asn Asp Arg Gln Gln Thr His Met
Leu Asp Val Met Gln 130 135 140Asp His
Phe Ser Arg Ala Ser Ser Ile Ile Asp Glu Leu Phe Gln Asp145
150 155 160Arg Phe Phe Thr Arg Glu Pro
Gln Asp Thr Tyr His Tyr Leu Pro Phe 165
170 175Ser Leu Pro His Arg Arg Pro His Phe Phe Phe Pro
Lys Ser Arg Ile 180 185 190Val
Arg Ser Leu Met Pro Phe Ser Pro Tyr Glu Pro Leu Asn Phe His 195
200 205Ala Met Phe Gln Pro Phe Leu Glu Met
Ile His Glu Ala Gln Gln Ala 210 215
220Met Asp Ile His Phe His Ser Pro Ala Phe Gln His Pro Pro Thr Glu225
230 235 240Phe Ile Arg Glu
Gly Asp Asp Asp Arg Thr Val Cys Arg Glu Ile Arg 245
250 255His Asn Ser Thr Gly Cys Leu Arg Met Lys
Asp Gln Cys Asp Lys Cys 260 265
270Arg Glu Ile Leu Ser Val Asp Cys Ser Thr Asn Asn Pro Ser Gln Ala
275 280 285Lys Leu Arg Arg Glu Leu Asp
Glu Ser Leu Gln Val Ala Glu Arg Leu 290 295
300Thr Arg Lys Tyr Asn Glu Leu Leu Lys Ser Tyr Gln Trp Lys Met
Leu305 310 315 320Asn Thr
Ser Ser Leu Leu Glu Gln Leu Asn Glu Gln Phe Asn Trp Val
325 330 335Ser Arg Leu Ala Asn Leu Thr
Gln Gly Glu Asp Gln Tyr Tyr Leu Arg 340 345
350Val Thr Thr Val Ala Ser His Thr Ser Asp Ser Asp Val Pro
Ser Gly 355 360 365Val Thr Glu Val
Val Val Lys Leu Phe Asp Ser Asp Pro Ile Thr Val 370
375 380Thr Val Pro Val Glu Val Ser Arg Lys Asn Pro Lys
Phe Met Glu Thr385 390 395
400Val Ala Glu Lys Ala Leu Gln Glu Tyr Arg Lys Lys His Arg Glu Glu
405 410 415611564DNAHomo sapiens
61cggacgcgtg ggcggacgcg tgggcgaggg cgcgagtgag gagcagaccc aggcatcgcg
60cgccgagaag gccggagcgt cggcacctga acgcgaggcg ctccattgcg cgtgcgcgtt
120gaggggcttc ccgcacctga tcgcgagacc ccaacggctg gtggcgtcgc ctgcgcgggc
180gtccccacac tgccggtccg gaaaggcgac ttccgggggc tttggcacct ggcggacgct
240cccggagcgt cggcacctga acgcgaggcg ctccattgcg cgtgcgcgtt gaggggcttc
300ccgcacctga tcgcgagacc ccaacggctg gtggcgtcgc ctgcgcgtct cggctgagct
360ggccatggcg cacctgtgcg ggctgaggcg gagccgggcg tttctcgccc tgctgggatc
420gctgctcctc tctggggtcc tggcggccga ccgagaacgc agcatccacg acttctgcct
480ggtgtcgaag gtggtgggca gatgccgggc ctccatgcct aagtggtggt acaatgtcac
540tgacggatcc tgccagctgt ttgtgtatgg gggctgtgac ggaaacagca ataattacct
600gaccaaggag gagtgcctca agaaatgtgc cactgtcaca gagaatgcca cgggtgacct
660ggccaccagc aggaatgcag cggattcctc tgtcccaagt gctcccagaa ggcaggattc
720tgaagaccac tccagcgata tgttcaacta tgaagaatac tgcaccgcca acgcagtcac
780tgggccttgc cgtgcatcct tcccacgctg gtactttgac gtggagagga actcctgcaa
840taacttcatc tatggaggct gccggggcaa taagaacagc taccgctctg aggaggcctg
900catgctccgc tgcttccgcc agcaggagaa tcctcccctg ccccttggct caaaggtggt
960ggttctggcg gggctgttcg tgatggtgtt gatcctcttc ctgggagcct ccatggtcta
1020cctgatccgg gtggcacgga ggaaccagga gcgtgccctg cgcaccgtct ggagctccgg
1080acatgacaag gagcagctgg tgaagaacac atatgtcctg tgaccgccct gtcgccaaga
1140ggactgggga agggagggga gactatgtgt gagctttttt taaatagcgg gattgactcg
1200gatttgagtg atcattaggg ctgaggtgtg tttctctggg aggtaggacg gctgcttcct
1260ggtctggcag ggatgggttt gctttggaaa tcctctagga ggctcctcct cgcatggcct
1320gcagtctggc agcagccccg agttgtttcc tcgctgatcg atttctttcc tccaggtaga
1380gttttctttg cttatgttga attccattgc ctcttttctc atcacagaag tgatgttgga
1440atcgtttctt ttgtttgtct gatttatggt ttttttaagt ataaacaaaa gttttttatt
1500aacatctgaa agaaggaaag taaaatgtac aagtttaata aaaaggggcc ttccccttta
1560gaat
156462252PRTHomo sapiens 62Met Ala His Leu Cys Gly Leu Arg Arg Ser Arg
Ala Phe Leu Ala Leu 1 5 10
15Leu Gly Ser Leu Leu Leu Ser Gly Val Leu Ala Ala Asp Arg Glu Arg
20 25 30Ser Ile His Asp Phe Cys Leu
Val Ser Lys Val Val Gly Arg Cys Arg 35 40
45Ala Ser Met Pro Lys Trp Trp Tyr Asn Val Thr Asp Gly Ser Cys
Gln 50 55 60Leu Phe Val Tyr Gly Gly
Cys Asp Gly Asn Ser Asn Asn Tyr Leu Thr65 70
75 80Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Val
Thr Glu Asn Ala Thr 85 90
95Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp Ser Ser Val Pro Ser
100 105 110Ala Pro Arg Arg Gln Asp
Ser Glu Asp His Ser Ser Asp Met Phe Asn 115 120
125Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr Gly Pro Cys
Arg Ala 130 135 140Ser Phe Pro Arg Trp
Tyr Phe Asp Val Glu Arg Asn Ser Cys Asn Asn145 150
155 160Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys
Asn Ser Tyr Arg Ser Glu 165 170
175Glu Ala Cys Met Leu Arg Cys Phe Arg Gln Gln Glu Asn Pro Pro Leu
180 185 190Pro Leu Gly Ser Lys
Val Val Val Leu Ala Gly Leu Phe Val Met Val 195
200 205Leu Ile Leu Phe Leu Gly Ala Ser Met Val Tyr Leu
Ile Arg Val Ala 210 215 220Arg Arg Asn
Gln Glu Arg Ala Leu Arg Thr Val Trp Ser Ser Gly His225
230 235 240Asp Lys Glu Gln Leu Val Lys
Asn Thr Tyr Val Leu 245 250631147DNAHomo
sapiens 63ggacgtcctt ccccaggagc cgactggcca atcacaggca ggaagatgaa
ggttctgtgg 60gctgcgttgc tggtcacatt cctggcagga tgccaggcca aggtggagca
agcggtggag 120acagagccgg agcccgagct gcgccagcag accgagtggc agagcggcca
gcgctgggaa 180ctggcactgg gtcgcttttg ggattacctg cgctgggtgc agacactgtc
tgagcaggtg 240caggaggagc tgctcagctc ccaggtcacc caggaactga gggcgctgat
ggacgagacc 300atgaaggagt tgaaggccta caaatcggaa ctggaggaac aactgacccc
ggtggcggag 360gagacgcggg cacggctgtc caaggagctg caggcggcgc aggcccggct
gggcgcggac 420atggaggacg tgtgcggccg cctggtgcag taccgcggcg aggtgcaggc
catgctcggc 480cagagcaccg aggagctgcg ggtgcgcctc gcctcccacc tgcgcaagct
gcgtaagcgg 540ctcctccgcg atgccgatga cctgcagaag cgcctggcag tgtaccaggc
cggggcccgc 600gagggcgccg agcgcggcct cagcgccatc cgcgagcgcc tggggcccct
ggtggaacag 660ggccgcgtgc gggccgccac tgtgggctcc ctggccggcc agccgctaca
ggagcgggcc 720caggcctggg gcgagcggct gcgcgcgcgg atggaggaga tgggcagccg
gacccgcgac 780cgcctggacg aggtgaagga gcaggtggcg gaggtgcgcg ccaagctgga
ggagcaggcc 840cagcagatac gcctgcaggc cgaggccttc caggcccgcc tcaagagctg
gttcgagccc 900ctggtggaag acatgcagcg ccagtgggcc gggctggtgg agaaggtgca
ggctgccgtg 960ggcaccagcg ccgcccctgt gcccagcgac aatcactgaa cgccgaagcc
tgcagccatg 1020cgaccccacg ccaccccgtg cctcctgcct ccgcgcagcc tgcagcggga
gaccctgtcc 1080ccgccccagc cgtcctcctg gggtggaccc tagtttaata aagattcacc
aagtttcacg 1140caaaaaa
114764317PRTHomo sapiens 64Met Lys Val Leu Trp Ala Ala Leu Leu
Val Thr Phe Leu Ala Gly Cys 1 5 10
15Gln Ala Lys Val Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu
Leu 20 25 30Arg Gln Gln Thr
Glu Trp Gln Ser Gly Gln Arg Trp Glu Leu Ala Leu 35
40 45Gly Arg Phe Trp Asp Tyr Leu Arg Trp Val Gln Thr
Leu Ser Glu Gln 50 55 60Val Gln Glu
Glu Leu Leu Ser Ser Gln Val Thr Gln Glu Leu Arg Ala65 70
75 80Leu Met Asp Glu Thr Met Lys Glu
Leu Lys Ala Tyr Lys Ser Glu Leu 85 90
95Glu Glu Gln Leu Thr Pro Val Ala Glu Glu Thr Arg Ala Arg
Leu Ser 100 105 110Lys Glu Leu
Gln Ala Ala Gln Ala Arg Leu Gly Ala Asp Met Glu Asp 115
120 125Val Cys Gly Arg Leu Val Gln Tyr Arg Gly Glu
Val Gln Ala Met Leu 130 135 140Gly Gln
Ser Thr Glu Glu Leu Arg Val Arg Leu Ala Ser His Leu Arg145
150 155 160Lys Leu Arg Lys Arg Leu Leu
Arg Asp Ala Asp Asp Leu Gln Lys Arg 165
170 175Leu Ala Val Tyr Gln Ala Gly Ala Arg Glu Gly Ala
Glu Arg Gly Leu 180 185 190Ser
Ala Ile Arg Glu Arg Leu Gly Pro Leu Val Glu Gln Gly Arg Val 195
200 205Arg Ala Ala Thr Val Gly Ser Leu Ala
Gly Gln Pro Leu Gln Glu Arg 210 215
220Ala Gln Ala Trp Gly Glu Arg Leu Arg Ala Arg Met Glu Glu Met Gly225
230 235 240Ser Arg Thr Arg
Asp Arg Leu Asp Glu Val Lys Glu Gln Val Ala Glu 245
250 255Val Arg Ala Lys Leu Glu Glu Gln Ala Gln
Gln Ile Arg Leu Gln Ala 260 265
270Glu Ala Phe Gln Ala Arg Leu Lys Ser Trp Phe Glu Pro Leu Val Glu
275 280 285Asp Met Gln Arg Gln Trp Ala
Gly Leu Val Glu Lys Val Gln Ala Ala 290 295
300Val Gly Thr Ser Ala Ala Pro Val Pro Ser Asp Asn His305
310 315652493DNAHomo sapiens 65ggatcgattt gagtaagagc
atagctgtcg ggagagccca ggattcaaca cgggccttga 60gaaatgtggc tcttgtacct
cctggtgccg gccctgttct gcagggcagg aggctccatt 120cccatccctc agaagttatt
tggggaggtg acttcccctc tgttccccaa gccttacccc 180aacaactttg aaacaaccac
tgtgatcaca gtccccacgg gatacagggt gaagctcgtc 240ttccagcagt ttgacctgga
gccttctgaa ggctgcttct atgattatgt caagatctct 300gctgataaga aaagcctggg
gaggttctgt gggcaactgg gttctccact gggcaacccc 360ccgggaaaga aggaatttat
gtcccaaggg aacaagatgc tgctgacctt ccacacagac 420ttctccaacg aggagaatgg
gaccatcatg ttctacaagg gcttcctggc ctactaccaa 480gctgtggacc ttgatgaatg
tgcttcccgg agcaaatcag gggaggagga tccccagccc 540cagtgccagc acctgtgtca
caactacgtt ggaggctact tctgttcctg ccgtccaggc 600tatgagcttc aggaagacag
gcattcctgc caggctgagt gcagcagcga gctgtacacg 660gaggcatcag gctacatctc
cagcctggag taccctcggt cctacccccc tgacctgcgc 720tgcaactaca gcatccgggt
ggagcggggc ctcaccctgc acctcaagtt cctggagcct 780tttgatattg atgaccacca
gcaagtacac tgcccctatg accagctaca gatctatgcc 840aacgggaaga acattggcga
gttctgtggg aagcaaaggc cccccgacct cgacaccagc 900agcaatgctg tggatctgct
gttcttcaca gatgagtcgg gggacagccg gggctggaag 960ctgcgctaca ccaccgagat
catcaagtgc ccccagccca agaccctaga cgagttcacc 1020atcatccaga acctgcagcc
tcagtaccag ttccgtgact acttcattgc tacctgcaag 1080caaggctacc agctcataga
ggggaaccag gtgctgcatt ccttcacagc tgtctgccag 1140gatgatggca cgtggcatcg
tgccatgccc agatgcaaga tcaaggactg tgggcagccc 1200cgaaacctgc ctaatggtga
cttccgttac accaccacaa tgggagtgaa cacctacaag 1260gcccgtatcc agtactactg
ccatgagcca tattacaaga tgcagaccag agctggcagc 1320agggagtctg agcaaggggt
gtacacctgc acagcacagg gcatttggaa gaatgaacag 1380aagggagaga agattcctcg
gtgcttgcca gtgtgtggga agcccgtgaa ccccgtggaa 1440cagaggcagc gcataatcgg
agggcaaaaa gccaagatgg gcaacttccc ctggcaggtg 1500ttcaccaaca tccacgggcg
cgggggcggg gccctgctgg gcgaccgctg gatcctcaca 1560gctgcccaca ccctgtatcc
caaggaacac gaagcgcaaa gcaacgcctc tttggatgtg 1620ttcctgggcc acacaaatgt
ggaagagctc atgaagctag gaaatcaccc catccgcagg 1680gtcagcgtcc acccggacta
ccgtcaggat gagtcctaca attttgaggg ggacatcgcc 1740ctgctggagc tggaaaatag
tgtcaccctg ggtcccaacc tcctccccat ctgcctccct 1800gacaacgata ccttctacga
cctgggcttg atgggctatg tcagtggctt cggggtcatg 1860gaggagaaga ttgctcatga
cctcaggttt gtccgtctgc ccgtagctaa tccacaggcc 1920tgtgagaact ggctccgggg
aaagaatagg atggatgtgt tctctcaaaa catgttctgt 1980gctggacacc catctctaaa
gcaggacgcc tgccaggggg atagtggggg cgtttttgca 2040gtaagggacc cgaacactga
tcgctgggtg gccacgggca tcgtgtcctg gggcatcggg 2100tgcagcaggg gctatggctt
ctacaccaaa gtgctcaact acgtggactg gatcaagaaa 2160gagatggagg aggaggactg
agcccagaat tcactaggtt cgaatccaga gagcagtgtg 2220gaaaaaaaaa aaacaaaaaa
caactgacca gttgttgata accactaaga gtctctatta 2280aaattactga tgcagaaaga
ccgtgtgtga aattctcttt cctgtagtcc cattgatgta 2340ctttacctga aacaacccaa
aggccccttt ctttcttctg aggattgcag aggatatagt 2400tatcaatctc tagttgtcac
tttcctcttc cactttgata ccattgggtc attgaatata 2460actttttcca aataaagttt
tatgagaaat gcc 249366705PRTHomo sapiens
66Met Trp Leu Leu Tyr Leu Leu Val Pro Ala Leu Phe Cys Arg Ala Gly 1
5 10 15Gly Ser Ile Pro Ile Pro
Gln Lys Leu Phe Gly Glu Val Thr Ser Pro 20 25
30Leu Phe Pro Lys Pro Tyr Pro Asn Asn Phe Glu Thr Thr
Thr Val Ile 35 40 45Thr Val Pro
Thr Gly Tyr Arg Val Lys Leu Val Phe Gln Gln Phe Asp 50
55 60Leu Glu Pro Ser Glu Gly Cys Phe Tyr Asp Tyr Val
Lys Ile Ser Ala65 70 75
80Asp Lys Lys Ser Leu Gly Arg Phe Cys Gly Gln Leu Gly Ser Pro Leu
85 90 95Gly Asn Pro Pro Gly Lys
Lys Glu Phe Met Ser Gln Gly Asn Lys Met 100
105 110Leu Leu Thr Phe His Thr Asp Phe Ser Asn Glu Glu
Asn Gly Thr Ile 115 120 125Met Phe
Tyr Lys Gly Phe Leu Ala Tyr Tyr Gln Ala Val Asp Leu Asp 130
135 140Glu Cys Ala Ser Arg Ser Lys Ser Gly Glu Glu
Asp Pro Gln Pro Gln145 150 155
160Cys Gln His Leu Cys His Asn Tyr Val Gly Gly Tyr Phe Cys Ser Cys
165 170 175Arg Pro Gly Tyr
Glu Leu Gln Glu Asp Arg His Ser Cys Gln Ala Glu 180
185 190Cys Ser Ser Glu Leu Tyr Thr Glu Ala Ser Gly
Tyr Ile Ser Ser Leu 195 200 205Glu
Tyr Pro Arg Ser Tyr Pro Pro Asp Leu Arg Cys Asn Tyr Ser Ile 210
215 220Arg Val Glu Arg Gly Leu Thr Leu His Leu
Lys Phe Leu Glu Pro Phe225 230 235
240Asp Ile Asp Asp His Gln Gln Val His Cys Pro Tyr Asp Gln Leu
Gln 245 250 255Ile Tyr Ala
Asn Gly Lys Asn Ile Gly Glu Phe Cys Gly Lys Gln Arg 260
265 270Pro Pro Asp Leu Asp Thr Ser Ser Asn Ala
Val Asp Leu Leu Phe Phe 275 280
285Thr Asp Glu Ser Gly Asp Ser Arg Gly Trp Lys Leu Arg Tyr Thr Thr 290
295 300Glu Ile Ile Lys Cys Pro Gln Pro
Lys Thr Leu Asp Glu Phe Thr Ile305 310
315 320Ile Gln Asn Leu Gln Pro Gln Tyr Gln Phe Arg Asp
Tyr Phe Ile Ala 325 330
335Thr Cys Lys Gln Gly Tyr Gln Leu Ile Glu Gly Asn Gln Val Leu His
340 345 350Ser Phe Thr Ala Val Cys
Gln Asp Asp Gly Thr Trp His Arg Ala Met 355 360
365Pro Arg Cys Lys Ile Lys Asp Cys Gly Gln Pro Arg Asn Leu
Pro Asn 370 375 380Gly Asp Phe Arg Tyr
Thr Thr Thr Met Gly Val Asn Thr Tyr Lys Ala385 390
395 400Arg Ile Gln Tyr Tyr Cys His Glu Pro Tyr
Tyr Lys Met Gln Thr Arg 405 410
415Ala Gly Ser Arg Glu Ser Glu Gln Gly Val Tyr Thr Cys Thr Ala Gln
420 425 430Gly Ile Trp Lys Asn
Glu Gln Lys Gly Glu Lys Ile Pro Arg Cys Leu 435
440 445Pro Val Cys Gly Lys Pro Val Asn Pro Val Glu Gln
Arg Gln Arg Ile 450 455 460Ile Gly Gly
Gln Lys Ala Lys Met Gly Asn Phe Pro Trp Gln Val Phe465
470 475 480Thr Asn Ile His Gly Arg Gly
Gly Gly Ala Leu Leu Gly Asp Arg Trp 485
490 495Ile Leu Thr Ala Ala His Thr Leu Tyr Pro Lys Glu
His Glu Ala Gln 500 505 510Ser
Asn Ala Ser Leu Asp Val Phe Leu Gly His Thr Asn Val Glu Glu 515
520 525Leu Met Lys Leu Gly Asn His Pro Ile
Arg Arg Val Ser Val His Pro 530 535
540Asp Tyr Arg Gln Asp Glu Ser Tyr Asn Phe Glu Gly Asp Ile Ala Leu545
550 555 560Leu Glu Leu Glu
Asn Ser Val Thr Leu Gly Pro Asn Leu Leu Pro Ile 565
570 575Cys Leu Pro Asp Asn Asp Thr Phe Tyr Asp
Leu Gly Leu Met Gly Tyr 580 585
590Val Ser Gly Phe Gly Val Met Glu Glu Lys Ile Ala His Asp Leu Arg
595 600 605Phe Val Arg Leu Pro Val Ala
Asn Pro Gln Ala Cys Glu Asn Trp Leu 610 615
620Arg Gly Lys Asn Arg Met Asp Val Phe Ser Gln Asn Met Phe Cys
Ala625 630 635 640Gly His
Pro Ser Leu Lys Gln Asp Ala Cys Gln Gly Asp Ser Gly Gly
645 650 655Val Phe Ala Val Arg Asp Pro
Asn Thr Asp Arg Trp Val Ala Thr Gly 660 665
670Ile Val Ser Trp Gly Ile Gly Cys Ser Arg Gly Tyr Gly Phe
Tyr Thr 675 680 685Lys Val Leu Asn
Tyr Val Asp Trp Ile Lys Lys Glu Met Glu Glu Glu 690
695 700Asp70567777DNAHomo sapiens 67gctccgggct gaagattgct
tctcttctct cctccaaggt ctagtgacgg agcccgcgcg 60cgcgccacca tgcggcagaa
ggcggtatcc gttttcttgt gctacctgct gctcttcact 120tgcagtgggg tggaggcagg
taagaaaaag tgctcggaga gctcggacag cggctccggg 180ttctggaagg ccctgacctt
catggccgtc ggaggaggac tcgcagtcgc cgggctgccc 240gcgctgggct tcaccggcgc
cggcatcgcg gccaactcgg tggctgcctc gctgatgagc 300tggtctgcga tcctgaatgg
gggcggcgtg cccgccgggg ggctagtggc cacgctgcag 360agcctcgggg ctggtggcag
cagcgtcgtc ataggtaata ttggtgccct gatgcggtac 420gccacccaca agtatctcga
tagtgaggag gatgaggagt agccagcagc tcccagaacc 480tcttcttcct tcttggccta
actcttccag ttaggatcta gaactttgcc tttttttttt 540tttttttttt tttgagatgg
gttctcacta tattgtccag gctagagtgc agtggctatt 600cacagatgcg aacatagtac
actgcagcct ccaactccta gcctcaagtg atcctcctgt 660ctcaacctcc caagtaggat
tacaagcatg cgccgacgat gcccagaatc cagaactttg 720tctatcactc tccccaacaa
cctagatgtg aaaacagaat aaacttcacc cagaaaa 77768130PRTHomo sapiens
68Met Arg Gln Lys Ala Val Ser Val Phe Leu Cys Tyr Leu Leu Leu Phe 1
5 10 15Thr Cys Ser Gly Val Glu
Ala Gly Lys Lys Lys Cys Ser Glu Ser Ser 20 25
30Asp Ser Gly Ser Gly Phe Trp Lys Ala Leu Thr Phe Met
Ala Val Gly 35 40 45Gly Gly Leu
Ala Val Ala Gly Leu Pro Ala Leu Gly Phe Thr Gly Ala 50
55 60Gly Ile Ala Ala Asn Ser Val Ala Ala Ser Leu Met
Ser Trp Ser Ala65 70 75
80Ile Leu Asn Gly Gly Gly Val Pro Ala Gly Gly Leu Val Ala Thr Leu
85 90 95Gln Ser Leu Gly Ala Gly
Gly Ser Ser Val Val Ile Gly Asn Ile Gly 100
105 110Ala Leu Met Arg Tyr Ala Thr His Lys Tyr Leu Asp
Ser Glu Glu Asp 115 120 125Glu Glu
130692402DNAHomo sapiens 69agtctccgcc gccgccgtga acatggagcc cccggacgca
ccggcccagg cgcgcggggc 60cccgcggctg ctgttgctcg cagtcctgct ggcggcgcac
ccagatgccc aggcggaggt 120gcgcttgtct gtacccccgc tggtggaggt gatgcgagga
aagtctgtca ttctggactg 180cacccctacg ggaacccacg accattatat gctggaatgg
ttccttaccg accgctcggg 240agctcgcccc cgcctagcct cggctgagat gcagggctct
gagctccagg tcacaatgca 300cgacacccgg ggccgcagtc ccccatacca gctggactcc
caggggcgcc tggtgctggc 360tgaggcccag gtgggcgacg agcgagacta cgtgtgcgtg
gtgagggcag gggcggcagg 420cactgctgag gccactgcgc ggctcaacgt gtttgcaaag
ccagaggcca ctgaggtctc 480ccccaacaaa gggacactgt ctgtgatgga ggactctgcc
caggagatcg ccacctgcaa 540cagccggaac gggaacccgg cccccaagat cacgtggtat
cgcaacgggc agcgcctgga 600ggtgcccgta gagatgaacc cagagggcta catgaccagc
cgcacggtcc gggaggcctc 660gggcctgctc tccctcacca gcaccctcta cctgcggctc
cgcaaggatg accgagacgc 720cagcttccac tgcgccgccc actacagcct gcccgagggc
cgccacggcc gcctggacag 780ccccaccttc cacctcaccc tgcactatcc cacggagcac
gtgcagttct gggtgggcag 840cccgtccacc ccagcaggct gggtacgcga gggtgacact
gtccagctgc tctgccgggg 900ggacggcagc cccagcccgg agtatacgct tttccgcctt
caggatgagc aggaggaagt 960gctgaatgtg aatctcgagg ggaacttgac cctggaggga
gtgacccggg gccagagcgg 1020gacctatggc tgcagagtgg aggattacga cgcggcagat
gacgtgcagc tctccaagac 1080gctggagctg cgcgtggcct atctggaccc cctggagctc
agcgagggga aggtgctttc 1140cttacctcta aacagcagtg cagtcgtgaa ctgctccgtg
cacggcctgc ccacccctgc 1200cctacgctgg accaaggact ccactcccct gggcgatggc
cccatgctgt cgctcagttc 1260tatcaccttc gattccaatg gcacctacgt atgtgaggcc
tccctgccca cagtcccggt 1320cctcagccgc acccagaact tcacgctgct ggtccaaggc
tcgccagagc taaagacagc 1380ggaaatagag cccaaggcag atggcagctg gagggaagga
gacgaagtca cactcatctg 1440ctctgcccgc ggccatccag accccaaact cagctggagc
caattggggg gcagccccgc 1500agagccaatc cccggacggc agggttgggt gagcagctct
ctgaccctga aagtgaccag 1560cgccctgagc cgcgatggca tctcctgtga agcctccaac
ccccacggga acaagcgcca 1620tgtcttccac ttcggcgccg tgagccccca gacctcccag
gctggagtgg ccgtcatggc 1680cgtggccgtc agcgtgggcc tcctgctcct cgtcgttgct
gtcttctact gcgtgagacg 1740caaagggggc ccctgctgcc gccagcggcg ggagaagggg
gctccgccgc caggggagcc 1800agggctgagc cactcggggt cggagcaacc agagcagacc
ggccttctca tgggaggtgc 1860ctccggagga gccaggggtg gcagcggggg cttcggagac
gagtgctgag ccaagaacct 1920cctagaggct gtccctggac ctggagctgc aggcatcaga
gaaccagccc tgctcacgcc 1980atgcccgccc ccgccttccc tcttccctct tccctctccc
tgcccagccc tcccttcctt 2040cctctgccgg caaggcaggg acccacagtg gctgcctgcc
tccgggaggg aaggagaggg 2100agggtgggtg ggtgggaggg ggccttcctc cagggaatgt
gactctccca ggccccagaa 2160tagctcctgg acccaagccc aaggcccagc ctgggacaag
gctccgaggg tcggctggcc 2220ggagctattt ttacctcccg cctcccctgc tggtcccccc
acctgacgtc ttgctgcaga 2280gtctgacact ggattccccc ccctcacccc gcccctggtc
ccactcctgc ccccgcccta 2340cctccgcccc accccatcat ctgtggacac tggagtctgg
aataaatgct gtttgtcaca 2400tc
240270628PRTHomo sapiens 70Met Glu Pro Pro Asp Ala
Pro Ala Gln Ala Arg Gly Ala Pro Arg Leu 1 5
10 15Leu Leu Leu Ala Val Leu Leu Ala Ala His Pro Asp
Ala Gln Ala Glu 20 25 30Val
Arg Leu Ser Val Pro Pro Leu Val Glu Val Met Arg Gly Lys Ser 35
40 45Val Ile Leu Asp Cys Thr Pro Thr Gly
Thr His Asp His Tyr Met Leu 50 55
60Glu Trp Phe Leu Thr Asp Arg Ser Gly Ala Arg Pro Arg Leu Ala Ser65
70 75 80Ala Glu Met Gln Gly
Ser Glu Leu Gln Val Thr Met His Asp Thr Arg 85
90 95Gly Arg Ser Pro Pro Tyr Gln Leu Asp Ser Gln
Gly Arg Leu Val Leu 100 105
110Ala Glu Ala Gln Val Gly Asp Glu Arg Asp Tyr Val Cys Val Val Arg
115 120 125Ala Gly Ala Ala Gly Thr Ala
Glu Ala Thr Ala Arg Leu Asn Val Phe 130 135
140Ala Lys Pro Glu Ala Thr Glu Val Ser Pro Asn Lys Gly Thr Leu
Ser145 150 155 160Val Met
Glu Asp Ser Ala Gln Glu Ile Ala Thr Cys Asn Ser Arg Asn
165 170 175Gly Asn Pro Ala Pro Lys Ile
Thr Trp Tyr Arg Asn Gly Gln Arg Leu 180 185
190Glu Val Pro Val Glu Met Asn Pro Glu Gly Tyr Met Thr Ser
Arg Thr 195 200 205Val Arg Glu Ala
Ser Gly Leu Leu Ser Leu Thr Ser Thr Leu Tyr Leu 210
215 220Arg Leu Arg Lys Asp Asp Arg Asp Ala Ser Phe His
Cys Ala Ala His225 230 235
240Tyr Ser Leu Pro Glu Gly Arg His Gly Arg Leu Asp Ser Pro Thr Phe
245 250 255His Leu Thr Leu His
Tyr Pro Thr Glu His Val Gln Phe Trp Val Gly 260
265 270Ser Pro Ser Thr Pro Ala Gly Trp Val Arg Glu Gly
Asp Thr Val Gln 275 280 285Leu Leu
Cys Arg Gly Asp Gly Ser Pro Ser Pro Glu Tyr Thr Leu Phe 290
295 300Arg Leu Gln Asp Glu Gln Glu Glu Val Leu Asn
Val Asn Leu Glu Gly305 310 315
320Asn Leu Thr Leu Glu Gly Val Thr Arg Gly Gln Ser Gly Thr Tyr Gly
325 330 335Cys Arg Val Glu
Asp Tyr Asp Ala Ala Asp Asp Val Gln Leu Ser Lys 340
345 350Thr Leu Glu Leu Arg Val Ala Tyr Leu Asp Pro
Leu Glu Leu Ser Glu 355 360 365Gly
Lys Val Leu Ser Leu Pro Leu Asn Ser Ser Ala Val Val Asn Cys 370
375 380Ser Val His Gly Leu Pro Thr Pro Ala Leu
Arg Trp Thr Lys Asp Ser385 390 395
400Thr Pro Leu Gly Asp Gly Pro Met Leu Ser Leu Ser Ser Ile Thr
Phe 405 410 415Asp Ser Asn
Gly Thr Tyr Val Cys Glu Ala Ser Leu Pro Thr Val Pro 420
425 430Val Leu Ser Arg Thr Gln Asn Phe Thr Leu
Leu Val Gln Gly Ser Pro 435 440
445Glu Leu Lys Thr Ala Glu Ile Glu Pro Lys Ala Asp Gly Ser Trp Arg 450
455 460Glu Gly Asp Glu Val Thr Leu Ile
Cys Ser Ala Arg Gly His Pro Asp465 470
475 480Pro Lys Leu Ser Trp Ser Gln Leu Gly Gly Ser Pro
Ala Glu Pro Ile 485 490
495Pro Gly Arg Gln Gly Trp Val Ser Ser Ser Leu Thr Leu Lys Val Thr
500 505 510Ser Ala Leu Ser Arg Asp
Gly Ile Ser Cys Glu Ala Ser Asn Pro His 515 520
525Gly Asn Lys Arg His Val Phe His Phe Gly Ala Val Ser Pro
Gln Thr 530 535 540Ser Gln Ala Gly Val
Ala Val Met Ala Val Ala Val Ser Val Gly Leu545 550
555 560Leu Leu Leu Val Val Ala Val Phe Tyr Cys
Val Arg Arg Lys Gly Gly 565 570
575Pro Cys Cys Arg Gln Arg Arg Glu Lys Gly Ala Pro Pro Pro Gly Glu
580 585 590Pro Gly Leu Ser His
Ser Gly Ser Glu Gln Pro Glu Gln Thr Gly Leu 595
600 605Leu Met Gly Gly Ala Ser Gly Gly Ala Arg Gly Gly
Ser Gly Gly Phe 610 615 620Gly Asp Glu
Cys625715460DNAHomo sapiens 71cgggcccggt gctgaagggc agggaacaac ttgatggtgc
tactttgaac tgcttttctt 60ttctcctttt tgcacaaaga gtctcatgtc tgatatttag
acatgatgag ctttgtgcaa 120aaggggagct ggctacttct cgctctgctt catcccacta
ttattttggc acaacaggaa 180gctgttgaag gaggatgttc ccatcttggt cagtcctatg
cggatagaga tgtctggaag 240ccagaaccat gccaaatatg tgtctgtgac tcaggatccg
ttctctgcga tgacataata 300tgtgacgatc aagaattaga ctgccccaac ccagaaattc
catttggaga atgttgtgca 360gtttgcccac agcctccaac tgctcctact cgccctccta
atggtcaagg acctcaaggc 420cccaagggag atccaggccc tcctggtatt cctgggagaa
atggtgaccc tggtattcca 480ggacaaccag ggtcccctgg ttctcctggc ccccctggaa
tctgtgaatc atgccctact 540ggtcctcaga actattctcc ccagtatgat tcatatgatg
tcaagtctgg agtagcagta 600ggaggactcg caggctatcc tggaccagct ggccccccag
gccctcccgg tccccctggt 660acatctggtc atcctggttc ccctggatct ccaggatacc
aaggaccccc tggtgaacct 720gggcaagctg gtccttcagg ccctccagga cctcctggtg
ctataggtcc atctggtcct 780gctggaaaag atggagaatc aggtagaccc ggacgacctg
gagagcgagg attgcctgga 840cctccaggta tcaaaggtcc agctgggata cctggattcc
ctggtatgaa aggacacaga 900ggcttcgatg gacgaaatgg agaaaagggt gaaacaggtg
ctcctggatt aaagggtgaa 960aatggtcttc caggcgaaaa tggagctcct ggacccatgg
gtccaagagg ggctcctggt 1020gagcgaggac ggccaggact tcctggggct gcaggtgctc
ggggtaatga cggtgctcga 1080ggcagtgatg gtcaaccagg ccctcctggt cctcctggaa
ctgccggatt ccctggatcc 1140cctggtgcta agggtgaagt tggacctgca gggtctcctg
gttcaaatgg tgcccctgga 1200caaagaggag aacctggacc tcagggacac gctggtgctc
aaggtcctcc tggccctcct 1260gggattaatg gtagtcctgg tggtaaaggc gaaatgggtc
ccgctggcat tcctggagct 1320cctggactga tgggagcccg gggtcctcca ggaccagccg
gtgctaatgg tgctcctgga 1380ctgcgaggtg gtgcaggtga gcctggtaag aatggtgcca
aaggagagcc cggaccacgt 1440ggtgaacgcg gtgaggctgg tattccaggt gttccaggag
ctaaaggcga agatggcaag 1500gatggatcac ctggagaacc tggtgcaaat gggcttccag
gagctgcagg agaaaggggt 1560gcccctgggt tccgaggacc tgctggacca aatggcatcc
caggagaaaa gggtcctgct 1620ggagagcgtg gtgctccagg ccctgcaggg cccagaggag
ctgctggaga acctggcaga 1680gatggcgtcc ctggaggtcc aggaatgagg ggcatgcccg
gaagtccagg aggaccagga 1740agtgatggga aaccagggcc tcccggaagt caaggagaaa
gtggtcgacc aggtcctcct 1800gggccatctg gtccccgagg tcagcctggt gtcatgggct
tccccggtcc taaaggaaat 1860gatggtgctc ctggtaagaa tggagaacga ggtggccctg
gaggacctgg ccctcagggt 1920cctcctggaa agaatggtga aactggacct caaggacccc
cagggcctac tgggcctggt 1980ggtgacaaag gagacacagg accccctggt ccacaaggat
tacaaggctt gcctggtaca 2040ggtggtcctc caggagaaaa tggaaaacct ggggaaccag
gtccaaaggg tgatgccggt 2100gcacctggag ctccaggagg caagggtgat gctggtgccc
ctggtgaacg tggacctcct 2160ggattggcag gggccccagg acttagaggt ggagctggtc
cccctggtcc cgaaggagga 2220aagggtgctg ctggtcctcc tgggccacct ggtgctgctg
gtactcctgg tctgcaagga 2280atgcctggag aaagaggagg tcttggaagt cctggtccaa
agggtgacaa gggtgaacca 2340ggcggcccag gtgctgatgg tgtcccaggg aaagatggcc
caaggggtcc tactggtcct 2400attggtcctc ctggcccagc tggccagcct ggagataagg
gtgaaggtgg tgcccccgga 2460cttccaggta tagctggacc tcgtggtagc cctggtgaga
gaggtgaaac tggccctcca 2520ggacctgctg gtttccctgg tgctcctgga cagaatggtg
aacctggtgg taaaggagaa 2580agaggggctc cgggtgagaa aggtgaagga ggccctcctg
gagttgcagg accccctgga 2640ggttctggac ctgctggtcc tcctggtccc caaggtgtca
aaggtgaacg tggcagtcct 2700ggtggacctg gtgctgctgg cttccctggt gctcgtggtc
ttcctggtcc tcctggtagt 2760aatggtaacc caggaccccc aggtcccagc ggttctccag
gcaaggatgg gcccccaggt 2820cctgcgggta acactggtgc tcctggcagc cctggagtgt
ctggaccaaa aggtgatgct 2880ggccaaccag gagagaaggg atcgcctggt gcccagggcc
caccaggagc tccaggccca 2940cttgggattg ctgggatcac tggagcacgg ggtcttgcag
gaccaccagg catgccaggt 3000cctaggggaa gccctggccc tcagggtgtc aagggtgaaa
gtgggaaacc aggagctaac 3060ggtctcagtg gagaacgtgg tccccctgga ccccagggtc
ttcctggtct ggctggtaca 3120gctggtgaac ctggaagaga tggaaaccct ggatcagatg
gtcttccagg ccgagatgga 3180tctcctggtg gcaagggtga tcgtggtgaa aatggctctc
ctggtgcccc tggcgctcct 3240ggtcatccag gcccacctgg tcctgtcggt ccagctggaa
agagtggtga cagaggagaa 3300agtggccctg ctggccctgc tggtgctccc ggtcctgctg
gttcccgagg tgctcctggt 3360cctcaaggcc cacgtggtga caaaggtgaa acaggtgaac
gtggagctgc tggcatcaaa 3420ggacatcgag gattccctgg taatccaggt gccccaggtt
ctccaggccc tgctggtcag 3480cagggtgcaa tcggcagtcc aggacctgca ggccccagag
gacctgttgg acccagtgga 3540cctcctggca aagatggaac cagtggacat ccaggtccca
ttggaccacc agggcctcga 3600ggtaacagag gtgaaagagg atctgagggc tccccaggcc
acccagggca accaggccct 3660cctggacctc ctggtgcccc tggtccttgc tgtggtggtg
ttggagccgc tgccattgct 3720gggattggag gtgaaaaagc tggcggtttt gccccgtatt
atggagatga accaatggat 3780ttcaaaatca acaccgatga gattatgact tcactcaagt
ctgttaatgg acaaatagaa 3840agcctcatta gtcctgatgg ttctcgtaaa aaccccgcta
gaaactgcag agacctgaaa 3900ttctgccatc ctgaactcaa gagtggagaa tactgggttg
accctaacca aggatgcaaa 3960ttggatgcta tcaaggtatt ctgtaatatg gaaactgggg
aaacatgcat aagtgccaat 4020cctttgaatg ttccacggaa acactggtgg acagattcta
gtgctgagaa gaaacacgtt 4080tggtttggag agtccatgga tggtggtttt cagtttagct
acggcaatcc tgaacttcct 4140gaagatgtcc ttgatgtgca gctggcattc cttcgacttc
tctccagccg agcttcccag 4200aacatcacat atcactgcaa aaatagcatt gcatacatgg
atcaggccag tggaaatgta 4260aagaaggccc tgaagctgat ggggtcaaat gaaggtgaat
tcaaggctga aggaaatagc 4320aaattcacct acacagttct ggaggatggt tgcacgaaac
acactgggga atggagcaaa 4380acagtctttg aatatcgaac acgcaaggct gtgagactac
ctattgtaga tattgcaccc 4440tatgacattg gtggtcctga tcaagaattt ggtgtggacg
ttggccctgt ttgcttttta 4500taaaccaaac tctatctgaa atcccaacaa aaaaaattta
actccatatg tgttcctctt 4560gttctaatct tgtcaaccag tgcaagtgac cgacaaaatt
ccagttattt atttccaaaa 4620tgtttggaaa cagtataatt tgacaaagaa aaatgatact
tctctttttt tgctgttcca 4680ccaaatacaa ttcaaatgct ttttgtttta tttttttacc
aattccaatt tcaaaatgtc 4740tcaatggtgc tataataaat aaacttcaac actctttatg
ataacaacac tgtgttatat 4800tctttgaatc ctagcccatc tgcagagcaa tgactgtgct
caccagtaaa agataacctt 4860tctttctgaa atagtcaaat acgaaattag aaaagccctc
cctattttaa ctacctcaac 4920tggtcagaaa cacagattgt attctatgag tcccagaaga
tgaaaaaaat tttatacgtt 4980gataaaactt ataaatttca ttgattaatc tcctggaaga
ttggtttaaa aagaaaagtg 5040taatgcaaga atttaaagaa atatttttaa agccacaatt
attttaatat tggatatcaa 5100ctgcttgtaa aggtgctcct cttttttctt gtcattgctg
gtcaagatta ctaatatttg 5160ggaaggcttt aaagacgcat gttatggtgc taatgtactt
tcacttttaa actctagatc 5220agaattgttg acttgcattc agaacataaa tgcacaaaat
ctgtacatgt ctcccatcag 5280aaagattcat tggcatgcca cagggattct cctccttcat
cctgtaaagg tcaacaataa 5340aaaccaaatt atggggctgc ttttgtcaca ctagcataga
gaatgtgttg aaatttaact 5400ttgtaagctt gtatgtggtt gttgatcttt tttttcctta
cagacaccca taataaaata 5460721466PRTHomo sapiens 72Met Met Ser Phe Val
Gln Lys Gly Ser Trp Leu Leu Leu Ala Leu Leu 1 5
10 15His Pro Thr Ile Ile Leu Ala Gln Gln Glu Ala
Val Glu Gly Gly Cys 20 25
30Ser His Leu Gly Gln Ser Tyr Ala Asp Arg Asp Val Trp Lys Pro Glu
35 40 45Pro Cys Gln Ile Cys Val Cys Asp
Ser Gly Ser Val Leu Cys Asp Asp 50 55
60Ile Ile Cys Asp Asp Gln Glu Leu Asp Cys Pro Asn Pro Glu Ile Pro65
70 75 80Phe Gly Glu Cys Cys
Ala Val Cys Pro Gln Pro Pro Thr Ala Pro Thr 85
90 95Arg Pro Pro Asn Gly Gln Gly Pro Gln Gly Pro
Lys Gly Asp Pro Gly 100 105
110Pro Pro Gly Ile Pro Gly Arg Asn Gly Asp Pro Gly Ile Pro Gly Gln
115 120 125Pro Gly Ser Pro Gly Ser Pro
Gly Pro Pro Gly Ile Cys Glu Ser Cys 130 135
140Pro Thr Gly Pro Gln Asn Tyr Ser Pro Gln Tyr Asp Ser Tyr Asp
Val145 150 155 160Lys Ser
Gly Val Ala Val Gly Gly Leu Ala Gly Tyr Pro Gly Pro Ala
165 170 175Gly Pro Pro Gly Pro Pro Gly
Pro Pro Gly Thr Ser Gly His Pro Gly 180 185
190Ser Pro Gly Ser Pro Gly Tyr Gln Gly Pro Pro Gly Glu Pro
Gly Gln 195 200 205Ala Gly Pro Ser
Gly Pro Pro Gly Pro Pro Gly Ala Ile Gly Pro Ser 210
215 220Gly Pro Ala Gly Lys Asp Gly Glu Ser Gly Arg Pro
Gly Arg Pro Gly225 230 235
240Glu Arg Gly Leu Pro Gly Pro Pro Gly Ile Lys Gly Pro Ala Gly Ile
245 250 255Pro Gly Phe Pro Gly
Met Lys Gly His Arg Gly Phe Asp Gly Arg Asn 260
265 270Gly Glu Lys Gly Glu Thr Gly Ala Pro Gly Leu Lys
Gly Glu Asn Gly 275 280 285Leu Pro
Gly Glu Asn Gly Ala Pro Gly Pro Met Gly Pro Arg Gly Ala 290
295 300Pro Gly Glu Arg Gly Arg Pro Gly Leu Pro Gly
Ala Ala Gly Ala Arg305 310 315
320Gly Asn Asp Gly Ala Arg Gly Ser Asp Gly Gln Pro Gly Pro Pro Gly
325 330 335Pro Pro Gly Thr
Ala Gly Phe Pro Gly Ser Pro Gly Ala Lys Gly Glu 340
345 350Val Gly Pro Ala Gly Ser Pro Gly Ser Asn Gly
Ala Pro Gly Gln Arg 355 360 365Gly
Glu Pro Gly Pro Gln Gly His Ala Gly Ala Gln Gly Pro Pro Gly 370
375 380Pro Pro Gly Ile Asn Gly Ser Pro Gly Gly
Lys Gly Glu Met Gly Pro385 390 395
400Ala Gly Ile Pro Gly Ala Pro Gly Leu Met Gly Ala Arg Gly Pro
Pro 405 410 415Gly Pro Ala
Gly Ala Asn Gly Ala Pro Gly Leu Arg Gly Gly Ala Gly 420
425 430Glu Pro Gly Lys Asn Gly Ala Lys Gly Glu
Pro Gly Pro Arg Gly Glu 435 440
445Arg Gly Glu Ala Gly Ile Pro Gly Val Pro Gly Ala Lys Gly Glu Asp 450
455 460Gly Lys Asp Gly Ser Pro Gly Glu
Pro Gly Ala Asn Gly Leu Pro Gly465 470
475 480Ala Ala Gly Glu Arg Gly Ala Pro Gly Phe Arg Gly
Pro Ala Gly Pro 485 490
495Asn Gly Ile Pro Gly Glu Lys Gly Pro Ala Gly Glu Arg Gly Ala Pro
500 505 510Gly Pro Ala Gly Pro Arg
Gly Ala Ala Gly Glu Pro Gly Arg Asp Gly 515 520
525Val Pro Gly Gly Pro Gly Met Arg Gly Met Pro Gly Ser Pro
Gly Gly 530 535 540Pro Gly Ser Asp Gly
Lys Pro Gly Pro Pro Gly Ser Gln Gly Glu Ser545 550
555 560Gly Arg Pro Gly Pro Pro Gly Pro Ser Gly
Pro Arg Gly Gln Pro Gly 565 570
575Val Met Gly Phe Pro Gly Pro Lys Gly Asn Asp Gly Ala Pro Gly Lys
580 585 590Asn Gly Glu Arg Gly
Gly Pro Gly Gly Pro Gly Pro Gln Gly Pro Pro 595
600 605Gly Lys Asn Gly Glu Thr Gly Pro Gln Gly Pro Pro
Gly Pro Thr Gly 610 615 620Pro Gly Gly
Asp Lys Gly Asp Thr Gly Pro Pro Gly Pro Gln Gly Leu625
630 635 640Gln Gly Leu Pro Gly Thr Gly
Gly Pro Pro Gly Glu Asn Gly Lys Pro 645
650 655Gly Glu Pro Gly Pro Lys Gly Asp Ala Gly Ala Pro
Gly Ala Pro Gly 660 665 670Gly
Lys Gly Asp Ala Gly Ala Pro Gly Glu Arg Gly Pro Pro Gly Leu 675
680 685Ala Gly Ala Pro Gly Leu Arg Gly Gly
Ala Gly Pro Pro Gly Pro Glu 690 695
700Gly Gly Lys Gly Ala Ala Gly Pro Pro Gly Pro Pro Gly Ala Ala Gly705
710 715 720Thr Pro Gly Leu
Gln Gly Met Pro Gly Glu Arg Gly Gly Leu Gly Ser 725
730 735Pro Gly Pro Lys Gly Asp Lys Gly Glu Pro
Gly Gly Pro Gly Ala Asp 740 745
750Gly Val Pro Gly Lys Asp Gly Pro Arg Gly Pro Thr Gly Pro Ile Gly
755 760 765Pro Pro Gly Pro Ala Gly Gln
Pro Gly Asp Lys Gly Glu Gly Gly Ala 770 775
780Pro Gly Leu Pro Gly Ile Ala Gly Pro Arg Gly Ser Pro Gly Glu
Arg785 790 795 800Gly Glu
Thr Gly Pro Pro Gly Pro Ala Gly Phe Pro Gly Ala Pro Gly
805 810 815Gln Asn Gly Glu Pro Gly Gly
Lys Gly Glu Arg Gly Ala Pro Gly Glu 820 825
830Lys Gly Glu Gly Gly Pro Pro Gly Val Ala Gly Pro Pro Gly
Gly Ser 835 840 845Gly Pro Ala Gly
Pro Pro Gly Pro Gln Gly Val Lys Gly Glu Arg Gly 850
855 860Ser Pro Gly Gly Pro Gly Ala Ala Gly Phe Pro Gly
Ala Arg Gly Leu865 870 875
880Pro Gly Pro Pro Gly Ser Asn Gly Asn Pro Gly Pro Pro Gly Pro Ser
885 890 895Gly Ser Pro Gly Lys
Asp Gly Pro Pro Gly Pro Ala Gly Asn Thr Gly 900
905 910Ala Pro Gly Ser Pro Gly Val Ser Gly Pro Lys Gly
Asp Ala Gly Gln 915 920 925Pro Gly
Glu Lys Gly Ser Pro Gly Ala Gln Gly Pro Pro Gly Ala Pro 930
935 940Gly Pro Leu Gly Ile Ala Gly Ile Thr Gly Ala
Arg Gly Leu Ala Gly945 950 955
960Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro Gly Pro Gln Gly Val
965 970 975Lys Gly Glu Ser
Gly Lys Pro Gly Ala Asn Gly Leu Ser Gly Glu Arg 980
985 990Gly Pro Pro Gly Pro Gln Gly Leu Pro Gly Leu
Ala Gly Thr Ala Gly 995 1000
1005Glu Pro Gly Arg Asp Gly Asn Pro Gly Ser Asp Gly Leu Pro Gly Arg
1010 1015 1020Asp Gly Ser Pro Gly Gly Lys
Gly Asp Arg Gly Glu Asn Gly Ser Pro1025 1030
1035 1040Gly Ala Pro Gly Ala Pro Gly His Pro Gly Pro Pro
Gly Pro Val Gly 1045 1050
1055Pro Ala Gly Lys Ser Gly Asp Arg Gly Glu Ser Gly Pro Ala Gly Pro
1060 1065 1070Ala Gly Ala Pro Gly Pro
Ala Gly Ser Arg Gly Ala Pro Gly Pro Gln 1075 1080
1085Gly Pro Arg Gly Asp Lys Gly Glu Thr Gly Glu Arg Gly Ala
Ala Gly 1090 1095 1100Ile Lys Gly His
Arg Gly Phe Pro Gly Asn Pro Gly Ala Pro Gly Ser1105 1110
1115 1120Pro Gly Pro Ala Gly Gln Gln Gly Ala
Ile Gly Ser Pro Gly Pro Ala 1125 1130
1135Gly Pro Arg Gly Pro Val Gly Pro Ser Gly Pro Pro Gly Lys Asp
Gly 1140 1145 1150Thr Ser Gly
His Pro Gly Pro Ile Gly Pro Pro Gly Pro Arg Gly Asn 1155
1160 1165Arg Gly Glu Arg Gly Ser Glu Gly Ser Pro Gly
His Pro Gly Gln Pro 1170 1175 1180Gly
Pro Pro Gly Pro Pro Gly Ala Pro Gly Pro Cys Cys Gly Gly Val1185
1190 1195 1200Gly Ala Ala Ala Ile Ala
Gly Ile Gly Gly Glu Lys Ala Gly Gly Phe 1205
1210 1215Ala Pro Tyr Tyr Gly Asp Glu Pro Met Asp Phe Lys
Ile Asn Thr Asp 1220 1225
1230Glu Ile Met Thr Ser Leu Lys Ser Val Asn Gly Gln Ile Glu Ser Leu
1235 1240 1245Ile Ser Pro Asp Gly Ser Arg
Lys Asn Pro Ala Arg Asn Cys Arg Asp 1250 1255
1260Leu Lys Phe Cys His Pro Glu Leu Lys Ser Gly Glu Tyr Trp Val
Asp1265 1270 1275 1280Pro
Asn Gln Gly Cys Lys Leu Asp Ala Ile Lys Val Phe Cys Asn Met
1285 1290 1295Glu Thr Gly Glu Thr Cys Ile
Ser Ala Asn Pro Leu Asn Val Pro Arg 1300 1305
1310Lys His Trp Trp Thr Asp Ser Ser Ala Glu Lys Lys His Val
Trp Phe 1315 1320 1325Gly Glu Ser
Met Asp Gly Gly Phe Gln Phe Ser Tyr Gly Asn Pro Glu 1330
1335 1340Leu Pro Glu Asp Val Leu Asp Val Gln Leu Ala Phe
Leu Arg Leu Leu1345 1350 1355
1360Ser Ser Arg Ala Ser Gln Asn Ile Thr Tyr His Cys Lys Asn Ser Ile
1365 1370 1375Ala Tyr Met Asp Gln
Ala Ser Gly Asn Val Lys Lys Ala Leu Lys Leu 1380
1385 1390Met Gly Ser Asn Glu Gly Glu Phe Lys Ala Glu Gly
Asn Ser Lys Phe 1395 1400 1405Thr
Tyr Thr Val Leu Glu Asp Gly Cys Thr Lys His Thr Gly Glu Trp 1410
1415 1420Ser Lys Thr Val Phe Glu Tyr Arg Thr Arg
Lys Ala Val Arg Leu Pro1425 1430 1435
1440Ile Val Asp Ile Ala Pro Tyr Asp Ile Gly Gly Pro Asp Gln Glu
Phe 1445 1450 1455Gly Val
Asp Val Gly Pro Val Cys Phe Leu 1460
1465731051DNAHomo sapiens 73cgcggagtct gagcggcgct cgtcccgtcc caaggccgac
gccagcacgc cgtcatggcc 60cccgcagcgg cgacgggggg cagcaccctg cccagtggct
tctcggtctt caccaccttg 120cccgacttgc tcttcatctt tgagtttatc ttcgggggcc
tggtgtggat cctggtggcc 180tcctccctgg tgccctggcc cctggtccag ggctgggtga
tgttcgtgtc tgtgttctgc 240ttcgtggcca ccaccacctt gatcatcctg tacataattg
gagcccacgg tggagagact 300tcctgggtca ccttggacgc agcctaccac tgcaccgctg
ccctctttta cctcagcgcc 360tcagtcctgg aggccctggc caccatcacg atgcaagacg
gcttcaccta caggcactac 420catgaaaaca ttgctgccgt ggtgttctcc tacatagcca
ctctgctcta cgtggtccat 480gcggtgttct ctttaatcag atggaagtct tcataaagcc
gcagtagaac ttgagctgaa 540aacccagatg gtgttaactg gccgccccac tttccggcat
aactttttag aaaacagaaa 600tgcccttgat ggtggaaaaa agaaaacaac caccccccca
ctgcccaaaa aaaaaagccc 660tgccctgttg ctcgtgggtg ctgtgtttac tctcccgtgt
gccttcgcgt ccgggttggg 720agcttgctgt gtctaacctc caactgctgt gctgtctgct
agggtcacct cctgtttgtg 780aaaggggacc ttcttgttcg ggggtgggaa gtggcgaccg
tgacctgaga aggaaagaaa 840gatcctctgc tgacccctgg agcagctctc gagaactacc
tgttggtatt gtccacaagc 900tctcccgagc gccccatctt gtgccatgtt ttaagtcttc
atggatgttc tgcatgtcat 960ggggactaaa actcacccaa cagatctttc cagaggtcca
tggtggaaga cgataaccct 1020gtgaaatact ttataaaatg tcttaatgtt c
105174153PRTHomo sapiens 74Met Ala Pro Ala Ala Ala
Thr Gly Gly Ser Thr Leu Pro Ser Gly Phe 1 5
10 15Ser Val Phe Thr Thr Leu Pro Asp Leu Leu Phe Ile
Phe Glu Phe Ile 20 25 30Phe
Gly Gly Leu Val Trp Ile Leu Val Ala Ser Ser Leu Val Pro Trp 35
40 45Pro Leu Val Gln Gly Trp Val Met Phe
Val Ser Val Phe Cys Phe Val 50 55
60Ala Thr Thr Thr Leu Ile Ile Leu Tyr Ile Ile Gly Ala His Gly Gly65
70 75 80Glu Thr Ser Trp Val
Thr Leu Asp Ala Ala Tyr His Cys Thr Ala Ala 85
90 95Leu Phe Tyr Leu Ser Ala Ser Val Leu Glu Ala
Leu Ala Thr Ile Thr 100 105
110Met Gln Asp Gly Phe Thr Tyr Arg His Tyr His Glu Asn Ile Ala Ala
115 120 125Val Val Phe Ser Tyr Ile Ala
Thr Leu Leu Tyr Val Val His Ala Val 130 135
140Phe Ser Leu Ile Arg Trp Lys Ser Ser145
150755416DNAHomo sapiens 75gtgtcccata gtgtttccaa acttggaaag ggcgggggag
ggcgggagga tgcggagggc 60ggaggtatgc agacaacgag tcagagtttc cccttgaaag
cctcaaaagt gtccacgtcc 120tcaaaaagaa tggaaccaat ttaagaagcc agccccgtgg
ccacgtccct tcccccattc 180gggccctcct ctgcgccccc gcaggctcct cccagctgtg
gctgcccggg cccccagccc 240cagccctccc attggtggag gcccttttgg aggcacccta
gggccaggga aacttttgcc 300gtataaatag ggcagatccg ggatttgtta ttttagcacc
acggcagcag gaggtttcgg 360ctaagttgga ggtactggcc acgactgcat gcccgcgccc
gccatgtgat acctccgccg 420gtgacccagg gctctgcgac acaaggagtc gcatgtctaa
gtgctagaca tgctcagctt 480tgtggatacg cggactttgt tgctgcttgc agtaacctta
tgcctagcaa catgccaatc 540tttacaagag gaaactgtaa gaaagggccc agccggagat
agaggaccac gtggagaaag 600gggtccacca ggccccccag gcagagatgg tgaagatggt
cccacaggcc ctcctggtcc 660acctggtcct cctggccccc ctggtctcgg tgggaacttt
gctgctcagt atgatggaaa 720aggagttgga cttggccctg gaccaatggg cttaatggga
cctagaggcc cacctggtgc 780agctggagcc ccaggccctc aaggtttcca aggacctgct
ggtgagcctg gtgaacctgg 840tcaaactggt cctgcaggtg ctcgtggtcc agctggccct
cctggcaagg ctggtgaaga 900tggtcaccct ggaaaacccg gacgacctgg tgagagagga
gttgttggac cacagggtgc 960tcgtggtttc cctggaactc ctggacttcc tggcttcaaa
ggcattaggg gacacaatgg 1020tctggatgga ttgaagggac agcccggtgc tcctggtgtg
aagggtgaac ctggtgcccc 1080tggtgaaaat ggaactccag gtcaaacagg agcccgtggt
cttcctggtg agagaggacg 1140tgttggtgcc cctggtccag ctggtgcccg tggaagtgat
ggaagtgtgg gtcccgtagg 1200tcctgctggt cctaatgggt ctgctggccc tccaggtttc
ccaggtgccc ctggtcccaa 1260gggtgaaatt ggagctgttg gtaacgctgg tcctactgga
cccgccggtc cccgtggtga 1320agtgggtctt ccaggcctct ccggccccgt tggacctcct
ggtaatcctg gagcaaacgg 1380ccttactggt gccaagggtg ctgctggcct tcccggcgtt
gctggggctc ccggcctccc 1440tggaccccgc ggtattcctg gccctcctgg tgctgccggt
actactggtg ccagaggact 1500tgttggtgag cctggtccag ctggctccaa aggagagagc
ggtaacaagg gtgagcccgg 1560ctccgctggt ccccaaggtc ctcctggtcc cagtggtgaa
gaaggaaaga gaggccctaa 1620tggggaagct ggatctgccg gccctccagg acctcctggg
ctgagaggta gtcctggttc 1680tcgtggtctt cctggagctg atggcagagc tggcgtcatg
ggccctcctg gtagtcgtgg 1740tgcaagtggc cctgctggag tccgaggacc taatggagat
gctggtcgcc ctggggagcc 1800tggtctcatg ggacccagag gtcttcctgg ttcccctgga
aatatcggcc ccgctggaaa 1860agaaggtcct gtcggcctcc ctggcatcga cggcaggcct
ggcccaattg gccccgttgg 1920agcaagagga gagcctggca acattggatt ccctggaccc
aaaggcccca ctggtgaccc 1980tggcaaaaac ggtgataaag gtcatgctgg tcttgctggt
gctcggggtg ctccaggtcc 2040tgatggaaac aatggtgctc agggacctcc tggaccacag
ggtgttcaag gtggaaaagg 2100tgaacagggt cccgctggtc ctccaggctt ccagggtctg
cctggcccct caggtcccgc 2160tggtgaagtt ggcaaaccag gagaaagggg tctccatggt
gagtttggtc tccctggtcc 2220tgctggtcca agaggggaac gcggtccccc aggtgagagt
ggtgctgccg gtcctactgg 2280tcctattgga agccgaggtc cttctggacc cccagggcct
gatggaaaca agggtgaacc 2340tggtgtggtt ggtgctgtgg gcactgctgg tccatctggt
cctagtggac tcccaggaga 2400gaggggtgct gctggcatac ctggaggcaa gggagaaaag
ggtgaacctg gtctcagagg 2460tgaaattggt aaccctggca gagatggtgc tcgtggtgct
catggtgctg taggtgcccc 2520tggtcctgct ggagccacag gtgaccgggg cgaagctggg
gctgctggtc ctgctggtcc 2580tgctggtcct cggggaagcc ctggtgaacg tggcgaggtc
ggtcctgctg gccccaacgg 2640atttgctggt ccggctggtg ctgctggtca accgggtgct
aaaggagaaa gaggaggcaa 2700agggcctaag ggtgaaaacg gtgttgttgg tcccacaggc
cccgttggag ctgctggccc 2760agctggtcca aatggtcccc ccggtcctgc tggaagtcgt
ggtgatggag gcccccctgg 2820tatgactggt ttccctggtg ctgctggacg gactggtccc
ccaggaccct ctggtatttc 2880tggccctcct ggtccccctg gtcctgctgg gaaagaaggg
cttcgtggtc ctcgtggtga 2940ccaaggtcca gttggccgaa ctggagaagt aggtgcagtt
ggtccccctg gcttcgctgg 3000tgagaagggt ccctctggag aggctggtac tgctggacct
cctggcactc caggtcctca 3060gggtcttctt ggtgctcctg gtattctggg tctccctggc
tcgagaggtg aacgtggtct 3120acctggtgtt gctggtgctg tgggtgaacc tggtcctctt
ggcattgccg gccctcctgg 3180ggcccgtggt cctcctggtg ctgtgggtag tcctggagtc
aacggtgctc ctggtgaagc 3240tggtcgtgat ggcaaccctg ggaacgatgg tcccccaggt
cgcgatggtc aacccggaca 3300caagggagag cgcggttacc ctggcaatat tggtcccgtt
ggtgctgcag gtgcacctgg 3360tcctcatggc cccgtgggtc ctgctggcaa acatggaaac
cgtggtgaaa ctggtccttc 3420tggtcctgtt ggtcctgctg gtgctgttgg cccaagaggt
cctagtggcc cacaaggcat 3480tcgtggcgat aagggagagc ccggtgaaaa ggggcccaga
ggtcttcctg gcttcaaggg 3540acacaatgga ttgcaaggtc tgcctggtat cgctggtcac
catggtgatc aaggtgctcc 3600tggctccgtg ggtcctgctg gtcctagggg ccctgctggt
ccttctggcc ctgctggaaa 3660agatggtcgc actggacatc ctggtacggt tggacctgct
ggcattcgag gccctcaggg 3720tcaccaaggc cctgctggcc cccctggtcc ccctggccct
cctggacctc caggtgtaag 3780cggtggtggt tatgactttg gttacgatgg agacttctac
agggctgacc agcctcgctc 3840agcaccttct ctcagaccca aggactatga agttgatgct
actctgaagt ctctcaacaa 3900ccagattgag acccttctta ctcctgaagg ctctagaaag
aacccagctc gcacatgccg 3960tgacttgaga ctcagccacc cagagtggag cagcggttac
tactggattg accccaacca 4020aggatgcact atggaagcca tcaaagtata ctgtgatttc
cctaccggcg aaacctgtat 4080ccgggcccaa cctgaaaaca tcccagccaa gaactggtat
aggagctcca aggacaagaa 4140acacgtctgg ctaggagaaa ctatcaatgc tggcagccag
tttgaatata atgttgaagg 4200agtgacttcc aaggaaatgg ctacccaact tgccttcatg
cgcctgctgg ccaactatgc 4260ctctcagaac atcacctacc actgcaagaa cagcattgca
tacatggatg aggagactgg 4320caacctgaaa aaggctgtca ttctacaggg ctctaatgat
gttgaacttg ttgctgaggg 4380caacagcagg ttcacttaca ctgttcttgt agatggctgc
tctaaaaaga caaatgaatg 4440gggaaagaca atcattgaat acaaaacaaa taagccatca
cgcctgccct tccttgatat 4500tgcacctttg gacatcggtg gtgctgacca tgaattcttt
gtggacattg gcccagtctg 4560tttcaaataa atgaactcaa tctaaattaa aaaagaaaga
aatttgaaaa aactttctct 4620ttgccatttc ttcttcttct tttttaactg aaagctgaat
ccttccattt cttctgcaca 4680tctacttgct taaattgtgg gcaaaagaga aaaagaagga
ttgatcagag cattgtgcaa 4740tacagtttca ttaactcctt cccccgctcc cccaaaaatt
tgaatttttt tttcaacact 4800cttacacctg ttatggaaaa tgtcaacctt tgtaagaaaa
ccaaaataaa aattgaaaaa 4860taaaaaccat aaacatttgc accacttgtg gcttttgaat
atcttccaca gagggaagtt 4920taaaacccaa acttccaaag gtttaaacta cctcaaaaca
ctttcccatg agtgtgatcc 4980acattgttag gtgctgacct agacagagat gaactgaggt
ccttgttttg ttttgttcat 5040aatacaaagg tgctaattaa tagtatttca gatacttgaa
gaatgttgat ggtgctagaa 5100gaatttgaga agaaatactc ctgtattgag ttgtatcgtg
tggtgtattt tttaaaaaat 5160ttgatttagc attcatattt tccatcttat tcccaattaa
aagtatgcag attatttgcc 5220caaagttgtc ctcttcttca gattcagcat ttgttctttg
ccagtctcat tttcatcttc 5280ttccatggtt ccacagaagc tttgtttctt gggcaagcag
aaaaattaaa ttgtacctat 5340tttgtatatg tgagatgttt aaataaattg tgaaaaaaat
gaaataaagc atgtttggtt 5400ttccaaaaga acatat
5416761366PRTHomo sapiens 76Met Leu Ser Phe Val Asp
Thr Arg Thr Leu Leu Leu Leu Ala Val Thr 1 5
10 15Leu Cys Leu Ala Thr Cys Gln Ser Leu Gln Glu Glu
Thr Val Arg Lys 20 25 30Gly
Pro Ala Gly Asp Arg Gly Pro Arg Gly Glu Arg Gly Pro Pro Gly 35
40 45Pro Pro Gly Arg Asp Gly Glu Asp Gly
Pro Thr Gly Pro Pro Gly Pro 50 55
60Pro Gly Pro Pro Gly Pro Pro Gly Leu Gly Gly Asn Phe Ala Ala Gln65
70 75 80Tyr Asp Gly Lys Gly
Val Gly Leu Gly Pro Gly Pro Met Gly Leu Met 85
90 95Gly Pro Arg Gly Pro Pro Gly Ala Ala Gly Ala
Pro Gly Pro Gln Gly 100 105
110Phe Gln Gly Pro Ala Gly Glu Pro Gly Glu Pro Gly Gln Thr Gly Pro
115 120 125Ala Gly Ala Arg Gly Pro Ala
Gly Pro Pro Gly Lys Ala Gly Glu Asp 130 135
140Gly His Pro Gly Lys Pro Gly Arg Pro Gly Glu Arg Gly Val Val
Gly145 150 155 160Pro Gln
Gly Ala Arg Gly Phe Pro Gly Thr Pro Gly Leu Pro Gly Phe
165 170 175Lys Gly Ile Arg Gly His Asn
Gly Leu Asp Gly Leu Lys Gly Gln Pro 180 185
190Gly Ala Pro Gly Val Lys Gly Glu Pro Gly Ala Pro Gly Glu
Asn Gly 195 200 205Thr Pro Gly Gln
Thr Gly Ala Arg Gly Leu Pro Gly Glu Arg Gly Arg 210
215 220Val Gly Ala Pro Gly Pro Ala Gly Ala Arg Gly Ser
Asp Gly Ser Val225 230 235
240Gly Pro Val Gly Pro Ala Gly Pro Asn Gly Ser Ala Gly Pro Pro Gly
245 250 255Phe Pro Gly Ala Pro
Gly Pro Lys Gly Glu Ile Gly Ala Val Gly Asn 260
265 270Ala Gly Pro Thr Gly Pro Ala Gly Pro Arg Gly Glu
Val Gly Leu Pro 275 280 285Gly Leu
Ser Gly Pro Val Gly Pro Pro Gly Asn Pro Gly Ala Asn Gly 290
295 300Leu Thr Gly Ala Lys Gly Ala Ala Gly Leu Pro
Gly Val Ala Gly Ala305 310 315
320Pro Gly Leu Pro Gly Pro Arg Gly Ile Pro Gly Pro Pro Gly Ala Ala
325 330 335Gly Thr Thr Gly
Ala Arg Gly Leu Val Gly Glu Pro Gly Pro Ala Gly 340
345 350Ser Lys Gly Glu Ser Gly Asn Lys Gly Glu Pro
Gly Ser Ala Gly Pro 355 360 365Gln
Gly Pro Pro Gly Pro Ser Gly Glu Glu Gly Lys Arg Gly Pro Asn 370
375 380Gly Glu Ala Gly Ser Ala Gly Pro Pro Gly
Pro Pro Gly Leu Arg Gly385 390 395
400Ser Pro Gly Ser Arg Gly Leu Pro Gly Ala Asp Gly Arg Ala Gly
Val 405 410 415Met Gly Pro
Pro Gly Ser Arg Gly Ala Ser Gly Pro Ala Gly Val Arg 420
425 430Gly Pro Asn Gly Asp Ala Gly Arg Pro Gly
Glu Pro Gly Leu Met Gly 435 440
445Pro Arg Gly Leu Pro Gly Ser Pro Gly Asn Ile Gly Pro Ala Gly Lys 450
455 460Glu Gly Pro Val Gly Leu Pro Gly
Ile Asp Gly Arg Pro Gly Pro Ile465 470
475 480Gly Pro Val Gly Ala Arg Gly Glu Pro Gly Asn Ile
Gly Phe Pro Gly 485 490
495Pro Lys Gly Pro Thr Gly Asp Pro Gly Lys Asn Gly Asp Lys Gly His
500 505 510Ala Gly Leu Ala Gly Ala
Arg Gly Ala Pro Gly Pro Asp Gly Asn Asn 515 520
525Gly Ala Gln Gly Pro Pro Gly Pro Gln Gly Val Gln Gly Gly
Lys Gly 530 535 540Glu Gln Gly Pro Ala
Gly Pro Pro Gly Phe Gln Gly Leu Pro Gly Pro545 550
555 560Ser Gly Pro Ala Gly Glu Val Gly Lys Pro
Gly Glu Arg Gly Leu His 565 570
575Gly Glu Phe Gly Leu Pro Gly Pro Ala Gly Pro Arg Gly Glu Arg Gly
580 585 590Pro Pro Gly Glu Ser
Gly Ala Ala Gly Pro Thr Gly Pro Ile Gly Ser 595
600 605Arg Gly Pro Ser Gly Pro Pro Gly Pro Asp Gly Asn
Lys Gly Glu Pro 610 615 620Gly Val Val
Gly Ala Val Gly Thr Ala Gly Pro Ser Gly Pro Ser Gly625
630 635 640Leu Pro Gly Glu Arg Gly Ala
Ala Gly Ile Pro Gly Gly Lys Gly Glu 645
650 655Lys Gly Glu Pro Gly Leu Arg Gly Glu Ile Gly Asn
Pro Gly Arg Asp 660 665 670Gly
Ala Arg Gly Ala His Gly Ala Val Gly Ala Pro Gly Pro Ala Gly 675
680 685Ala Thr Gly Asp Arg Gly Glu Ala Gly
Ala Ala Gly Pro Ala Gly Pro 690 695
700Ala Gly Pro Arg Gly Ser Pro Gly Glu Arg Gly Glu Val Gly Pro Ala705
710 715 720Gly Pro Asn Gly
Phe Ala Gly Pro Ala Gly Ala Ala Gly Gln Pro Gly 725
730 735Ala Lys Gly Glu Arg Gly Gly Lys Gly Pro
Lys Gly Glu Asn Gly Val 740 745
750Val Gly Pro Thr Gly Pro Val Gly Ala Ala Gly Pro Ala Gly Pro Asn
755 760 765Gly Pro Pro Gly Pro Ala Gly
Ser Arg Gly Asp Gly Gly Pro Pro Gly 770 775
780Met Thr Gly Phe Pro Gly Ala Ala Gly Arg Thr Gly Pro Pro Gly
Pro785 790 795 800Ser Gly
Ile Ser Gly Pro Pro Gly Pro Pro Gly Pro Ala Gly Lys Glu
805 810 815Gly Leu Arg Gly Pro Arg Gly
Asp Gln Gly Pro Val Gly Arg Thr Gly 820 825
830Glu Val Gly Ala Val Gly Pro Pro Gly Phe Ala Gly Glu Lys
Gly Pro 835 840 845Ser Gly Glu Ala
Gly Thr Ala Gly Pro Pro Gly Thr Pro Gly Pro Gln 850
855 860Gly Leu Leu Gly Ala Pro Gly Ile Leu Gly Leu Pro
Gly Ser Arg Gly865 870 875
880Glu Arg Gly Leu Pro Gly Val Ala Gly Ala Val Gly Glu Pro Gly Pro
885 890 895Leu Gly Ile Ala Gly
Pro Pro Gly Ala Arg Gly Pro Pro Gly Ala Val 900
905 910Gly Ser Pro Gly Val Asn Gly Ala Pro Gly Glu Ala
Gly Arg Asp Gly 915 920 925Asn Pro
Gly Asn Asp Gly Pro Pro Gly Arg Asp Gly Gln Pro Gly His 930
935 940Lys Gly Glu Arg Gly Tyr Pro Gly Asn Ile Gly
Pro Val Gly Ala Ala945 950 955
960Gly Ala Pro Gly Pro His Gly Pro Val Gly Pro Ala Gly Lys His Gly
965 970 975Asn Arg Gly Glu
Thr Gly Pro Ser Gly Pro Val Gly Pro Ala Gly Ala 980
985 990Val Gly Pro Arg Gly Pro Ser Gly Pro Gln Gly
Ile Arg Gly Asp Lys 995 1000
1005Gly Glu Pro Gly Glu Lys Gly Pro Arg Gly Leu Pro Gly Phe Lys Gly
1010 1015 1020His Asn Gly Leu Gln Gly Leu
Pro Gly Ile Ala Gly His His Gly Asp1025 1030
1035 1040Gln Gly Ala Pro Gly Ser Val Gly Pro Ala Gly Pro
Arg Gly Pro Ala 1045 1050
1055Gly Pro Ser Gly Pro Ala Gly Lys Asp Gly Arg Thr Gly His Pro Gly
1060 1065 1070Thr Val Gly Pro Ala Gly
Ile Arg Gly Pro Gln Gly His Gln Gly Pro 1075 1080
1085Ala Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly
Val Ser 1090 1095 1100Gly Gly Gly Tyr
Asp Phe Gly Tyr Asp Gly Asp Phe Tyr Arg Ala Asp1105 1110
1115 1120Gln Pro Arg Ser Ala Pro Ser Leu Arg
Pro Lys Asp Tyr Glu Val Asp 1125 1130
1135Ala Thr Leu Lys Ser Leu Asn Asn Gln Ile Glu Thr Leu Leu Thr
Pro 1140 1145 1150Glu Gly Ser
Arg Lys Asn Pro Ala Arg Thr Cys Arg Asp Leu Arg Leu 1155
1160 1165Ser His Pro Glu Trp Ser Ser Gly Tyr Tyr Trp
Ile Asp Pro Asn Gln 1170 1175 1180Gly
Cys Thr Met Glu Ala Ile Lys Val Tyr Cys Asp Phe Pro Thr Gly1185
1190 1195 1200Glu Thr Cys Ile Arg Ala
Gln Pro Glu Asn Ile Pro Ala Lys Asn Trp 1205
1210 1215Tyr Arg Ser Ser Lys Asp Lys Lys His Val Trp Leu
Gly Glu Thr Ile 1220 1225
1230Asn Ala Gly Ser Gln Phe Glu Tyr Asn Val Glu Gly Val Thr Ser Lys
1235 1240 1245Glu Met Ala Thr Gln Leu Ala
Phe Met Arg Leu Leu Ala Asn Tyr Ala 1250 1255
1260Ser Gln Asn Ile Thr Tyr His Cys Lys Asn Ser Ile Ala Tyr Met
Asp1265 1270 1275 1280Glu
Glu Thr Gly Asn Leu Lys Lys Ala Val Ile Leu Gln Gly Ser Asn
1285 1290 1295Asp Val Glu Leu Val Ala Glu
Gly Asn Ser Arg Phe Thr Tyr Thr Val 1300 1305
1310Leu Val Asp Gly Cys Ser Lys Lys Thr Asn Glu Trp Gly Lys
Thr Ile 1315 1320 1325Ile Glu Tyr
Lys Thr Asn Lys Pro Ser Arg Leu Pro Phe Leu Asp Ile 1330
1335 1340Ala Pro Leu Asp Ile Gly Gly Ala Asp His Glu Phe
Phe Val Asp Ile1345 1350 1355
1360Gly Pro Val Cys Phe Lys 1365771082DNAHomo sapiens
77agctcccttt agcgagtcct tcttttcctg actgcagctc ttttcatttt gccatccttt
60tccagcacca tgatggttct gcaggtttct gcggcccccc ggacagtggc tctgacggcg
120ttactgatgg tgctgctcac atctgtggtc cagggcaggg ccactccaga gaattacctt
180ttccagggac ggcaggaatg ctacgcgttt aatgggacac agcgcttcct ggagagatac
240atctacaacc gggaggagtt cgcgcgcttc gacagcgacg tgggggagtt ccgggcggtg
300acggagctgg ggcggcctgc tgcggagtac tggaacagcc agaaggacat cctggaggag
360aagcgggcag tgccggacag gatgtgcaga cacaactacg agctgggcgg gcccatgacc
420ctgcagcgcc gagtccagcc tagggtgaat gtttccccct ccaagaaggg gcccttgcag
480caccacaacc tgcttgtctg ccacgtgacg gatttctacc caggcagcat tcaagtccga
540tggttcctga atggacagga ggaaacagct ggggtcgtgt ccaccaacct gatccgtaat
600ggagactgga ccttccagat cctggtgatg ctggaaatga ccccccagca gggagatgtc
660tacacctgcc aagtggagca caccagcctg gatagtcctg tcaccgtgga gtggaaggca
720cagtctgatt ctgcccggag taagacattg acgggagctg ggggcttcgt gctggggctc
780atcatctgtg gagtgggcat cttcatgcac aggaggagca agaaagttca acgaggatct
840gcataaacag ggttcctgag ctcactgaaa agactattgt gccttaggaa aagcatttgc
900tgtgtttcgt tagcatctgg ctccaggaca gaccttcaac ttccaaattg atactgctgc
960caagaagttg ctctgaagtc agtttctatc attctgctct ttgattcaaa gcactgtttc
1020tctcactggg cctccaacca tgttcccttc ttcttagcac cacaaataat caaaacccaa
1080ca
108278258PRTHomo sapiens 78Met Met Val Leu Gln Val Ser Ala Ala Pro Arg
Thr Val Ala Leu Thr 1 5 10
15Ala Leu Leu Met Val Leu Leu Thr Ser Val Val Gln Gly Arg Ala Thr
20 25 30Pro Glu Asn Tyr Leu Phe Gln
Gly Arg Gln Glu Cys Tyr Ala Phe Asn 35 40
45Gly Thr Gln Arg Phe Leu Glu Arg Tyr Ile Tyr Asn Arg Glu Glu
Phe 50 55 60Ala Arg Phe Asp Ser Asp
Val Gly Glu Phe Arg Ala Val Thr Glu Leu65 70
75 80Gly Arg Pro Ala Ala Glu Tyr Trp Asn Ser Gln
Lys Asp Ile Leu Glu 85 90
95Glu Lys Arg Ala Val Pro Asp Arg Met Cys Arg His Asn Tyr Glu Leu
100 105 110Gly Gly Pro Met Thr Leu
Gln Arg Arg Val Gln Pro Arg Val Asn Val 115 120
125Ser Pro Ser Lys Lys Gly Pro Leu Gln His His Asn Leu Leu
Val Cys 130 135 140His Val Thr Asp Phe
Tyr Pro Gly Ser Ile Gln Val Arg Trp Phe Leu145 150
155 160Asn Gly Gln Glu Glu Thr Ala Gly Val Val
Ser Thr Asn Leu Ile Arg 165 170
175Asn Gly Asp Trp Thr Phe Gln Ile Leu Val Met Leu Glu Met Thr Pro
180 185 190Gln Gln Gly Asp Val
Tyr Thr Cys Gln Val Glu His Thr Ser Leu Asp 195
200 205Ser Pro Val Thr Val Glu Trp Lys Ala Gln Ser Asp
Ser Ala Arg Ser 210 215 220Lys Thr Leu
Thr Gly Ala Gly Gly Phe Val Leu Gly Leu Ile Ile Cys225
230 235 240Gly Val Gly Ile Phe Met His
Arg Arg Ser Lys Lys Val Gln Arg Gly 245
250 255Ser Ala79996DNAHomo sapiens 79gtggaattca
tggcatctac ttcgtatgac tattgcagag tgcccatgga agacggggat 60aagcgctgta
agcttctgct ggggatagga attctggtgc tcctgatcat cgtgattctg 120ggggtgccct
tgattatctt caccatcaag gccaacagcg aggcctgccg ggacggcctt 180cgggcagtga
tggagtgtcg caatgtcacc catctcctgc aacaagagct gaccgaggcc 240cagaagggct
ttcaggatgt ggaggcccag gccgccacct gcaaccacac tgtgatggcc 300ctaatggctt
ccctggatgc agagaaggcc caaggacaaa agaaagtgga ggagcttgag 360ggagagatca
ctacattaaa ccataagctt caggacgcgt ctgcagaggt ggagcgactg 420agaagagaaa
accaggtctt aagcgtgaga atcgcggaca agaagtacta ccccagctcc 480caggactcca
gctccgctgc ggcgccccag ctgctgattg tgctgctggg cctcagcgct 540ctgctgcagt
gagatcccag gaagctggca catcttggaa ggtccgtcct gctcggcttt 600tcgcttgaac
attcccttga tctcatcagt tctgagcggg tcatggggca acacggttag 660cggggagagc
acggggtagc cggagaaggg cctctggagc aggtctggag gggccatggg 720gcagtcctgg
gtgtggggac acagtcgggt tgacccaggg ctgtctccct ccagagcctc 780cctccggaca
atgagtcccc cctcttgtct cccaccctga gattgggcat ggggtgcggt 840gtggggggca
tgtgctgcct gttgttatgg gttttttttg cggggggggt tgcttttttc 900tggggtcttt
gagctccaaa aaataaacac ttcctttgag ggagagcaaa aaaaaaaaaa 960aaaaaaaaaa
aaaaaaaaaa aaagaattcc accaca 99680180PRTHomo
sapiens 80Met Ala Ser Thr Ser Tyr Asp Tyr Cys Arg Val Pro Met Glu Asp Gly
1 5 10 15Asp Lys Arg Cys
Lys Leu Leu Leu Gly Ile Gly Ile Leu Val Leu Leu 20
25 30Ile Ile Val Ile Leu Gly Val Pro Leu Ile Ile
Phe Thr Ile Lys Ala 35 40 45Asn
Ser Glu Ala Cys Arg Asp Gly Leu Arg Ala Val Met Glu Cys Arg 50
55 60Asn Val Thr His Leu Leu Gln Gln Glu Leu
Thr Glu Ala Gln Lys Gly65 70 75
80Phe Gln Asp Val Glu Ala Gln Ala Ala Thr Cys Asn His Thr Val
Met 85 90 95Ala Leu Met
Ala Ser Leu Asp Ala Glu Lys Ala Gln Gly Gln Lys Lys 100
105 110Val Glu Glu Leu Glu Gly Glu Ile Thr Thr
Leu Asn His Lys Leu Gln 115 120
125Asp Ala Ser Ala Glu Val Glu Arg Leu Arg Arg Glu Asn Gln Val Leu 130
135 140Ser Val Arg Ile Ala Asp Lys Lys
Tyr Tyr Pro Ser Ser Gln Asp Ser145 150
155 160Ser Ser Ala Ala Ala Pro Gln Leu Leu Ile Val Leu
Leu Gly Leu Ser 165 170
175Ala Leu Leu Gln 180814316DNAHomo sapiens 81ctgcagctaa
taaaaaaaaa aaaagaaaga aagaaactgg tctctgtcct atttcatatg 60ctcaggtaca
acttttccag agaagaagag gaggggggcg gggaggagca ggaggaggag 120gaaagaagga
ggagaaggag aaggagaaga agaggaagag gaagaggaag aagaagaaga 180agaagaagag
gaagaggaag aggaagaaga agaagaagaa gaagaagaag aagaagaaga 240agaagaagaa
gaagaagaag aagaagaaga ggaagaagag gaagaagaag aaactgtctc 300tagaccttca
ttctcaggac aagttcattg tctggcacca agctccttgg ggtgaatttt 360cttccaaaag
agtccgggga gtccaggtat ggaatgggag gcagaaagtt caatcaaggg 420actgggattt
cggaatgaat aatgaaggga gatggactgg gtccatgccg aaggtttctc 480cctggtttct
cagcccccgg gcgaagactc agggagacat tgagacacac cctgcacagg 540agggggaggg
ggagggggag ggcaaagtcc cagggcccca ggagtggctc tcaagggctc 600aggccccgag
gcggtgtctg gggttggaag gctcagtatt gagaattccc catctcccca 660gagtttctct
ttctctccca acccgtgtca ggtccttcat cctggatact cataacgcgg 720ccccatttct
cactcccatt gggcgtcgcg tttctagaga agccaatcag tgtcgccgca 780gttcccaggt
tctaaagtcc cacgcacccc gcgggactca tatttttccc agacgcggag 840gttggggtca
tggcgccccg aagcctcctc ctgctgctct caggggccct ggccctgacc 900gatacttggg
cgggtgagtg cggggtccag agagaaacgg cctctgtggg gaggagtgag 960gggcccgccc
ggtgggggcg caggactcag ggagccgcgc ccggaggagg gtctggcggg 1020tctcaccccc
tcctcgcccc caggctccca ctccttgagg tatttcagca ccgctgtgtc 1080gcggcccggc
cgcggggagc cccgctacat cgccgtggag tacgtagacg acacgcaatt 1140cctgcggttc
gacagcgacg ccgcgattcc gaggatggag ccgcgggagc cgtgggtgga 1200gcaagagggg
ccgcagtatt gggagtggac cacagggtac gccaaggcca acgcacagac 1260tgaccgagtg
gccctgagga acctgctccg ccgctacaac cagagcgagg ctggtgagtg 1320aacccggccg
ggggcgcagg tcacgaccac cccccatccg ccacggaccg cccgggtccc 1380cccgagtctc
cggatccgaa atctaccccg aggcagcgga cccgcccaga ccctccaccc 1440gggagagtcc
caggcgcctt taccgaggtt cattttcagt ttaggccaaa atccccgcgg 1500gttgggcggg
gagggggcgg ggctagctgg gcggggctga ctgcggggac cggctagggt 1560ctcacaccct
ccagggaatg aatggctgcg acatggggcc cgacggacgc ctcctccgcg 1620ggtatcacca
gcacgcgtac gacggcaagg attacatctc cctgaacgag gacctgcgct 1680cctggaccgc
ggcggacacc gtggctcaga tcacccagcg cttctatgag gcagaggaat 1740atgcagagga
gttcaggacc tacctggagg gcgagtgcct ggagttgctc cgcagatact 1800tggagaatgg
gaaggagacg ctacagcgcg caggtaccag gggccatggg cgccttccct 1860atctcctgta
gatctcttgg gatggcctcg cacaaggttg ggaggaaagt gggcccaatg 1920ctaggatatc
gccctccctc tagtcctgag taggaagaat cttcctggct ttcgagatcc 1980ggtaccagag
agtgactgtg agagtccgcc ctgctctctg ggacaattaa gggatgaaat 2040ctctgaggga
atggagggaa gacagtccct ggaataccga tccgcggtcc cctttgagcc 2100ctccaacagc
cttgggcccc gtgacttttc tctcaagttt tgttctctgc ctcacactca 2160atgtgtttgg
ggctctgatt ccagtccctc ggcctccact taggtcaggg ccagaagtcc 2220ctgctcccca
ctcagagact cgaactttcc aaggaatagg agattttccc aggtgtctgt 2280gtccaggctg
gtgtctgggt tctgtgctcc cttccccacc ccaggtgtcc tgtccattct 2340caggttggtc
acatgggtgc tgctggggtt tcccatgagg agtgcaaagt gcctgaattt 2400tctgactctt
ctcagatcct ccaaaggcac acgttgccca ccaccccatc tctgaccatg 2460aggccaccct
gaggtgctgg gccctgggct tctaccctgc ggagatcacg ctgacctggc 2520agcgggatgg
ggaggaacag acccaggaca cagagcttgt ggagaccagg cctgcagggg 2580atggaacctt
ccagaagtgg gccgctgtgg tggtgccttc tggagaggaa cagagataca 2640catgccatgt
gcagcacgag gggctgcccc agcccctcat cctgagatgg ggtaaggagg 2700gagatgggta
aagaggggaa cgaggggtca tgtcttttct cagggaaagc aggagccctt 2760ctggagctct
tcagcagggt cagggctgag gcctggagat cagggcccct caccttccct 2820tcctttccca
gagcagtctc cccagcccac catccccatc gtgggcatcg ttgctggcct 2880tgttgtcctt
ggagctgtgg tcactggagc tgtggtcgct gctgtgatgt ggaggaagaa 2940gagctcaggt
aggaaggggt gaggagtgga gtctgagttt tcttgtccca ctgggggttg 3000caagccccaa
gtagaagtgt gccctgcctc attactggga agcaccatcc acactcatgg 3060gtctacccag
cctgggccct gtgtgccagc acctactcat ttgtaaagct cctgtgaaaa 3120tgaaggacag
attcttcact tcgatgatta tggtggtgat gggacctgat cccagcagtc 3180acaaatcaca
ggggaaggtc cctgctgatg acagacctca ggagggcagt tggtccagga 3240cccacatctg
ctttcttcat atttcttgat cctgccctgg atctacagtt acacttttct 3300ggaaacttct
ctgggatcaa agactagggg tttgctctag gaccttatgg ccctgcctcc 3360tttctggcct
ctcacaggac attttcttcc catagataga aacagaggga gctactctca 3420ggctgcaggt
aagatgaagg aggctgatcc ctgagattgt tgggatattg tggtcaggag 3480cctatgaggg
agctcaccca ccccacagtt cctctagcca catctgtggg ctctgaccag 3540gtcctgtttt
tgttctaccc caatcactga cagtgcccag ggctctgggg tgtctctcac 3600agctaataaa
ggtgacactc cagggcaggg gccctgatgt gagtggggtg ttggggggga 3660acagagggga
ctcagctgtg ctattgggtt tctttgactt ggatgtcttg agcatgaaat 3720gggctattta
gagtgttacc tctcactgtg actgatacga atttgttcat gaatattttc 3780tctatagtgt
gagacagctt ccttgtgtgg gactgagaag caagatatca atgtagcaga 3840attgcacttg
tgcctcacga acatacataa attttaaaaa taaagaataa aaatatatct 3900ttttatagat
acaggtagat atgtttttat agcatgcacg taaatgtgtg tgtgtgtgtg 3960tgtgtgtgaa
gagaaagagt gaatagagag attaagattc ttttaatggt gaaaagatat 4020acatatattt
ggaattagcc agcttgactc agtttaggtg atcccaattt tggtggcaac 4080aaccaaagca
tcgtagtcag gagccagtcg aacatatgcc ttcctctctc catcagactg 4140aatcagagtg
ttgactttgg ccacatcaat gtcacaaact tcttcacagc ctgtttgatc 4200tggtgcttgt
tggctttaac atccacagtg aacacaagta ggctgttgtt ttctatcttc 4260ttcacagcct
actcagtggt cagcggaaac ttgatgataa catggtggtc aagctt 431682362PRTHomo
sapiens 82Met Ala Pro Arg Ser Leu Leu Leu Leu Leu Ser Gly Ala Leu Ala Leu
1 5 10 15Thr Asp Thr Trp
Ala Gly Ser His Ser Leu Arg Tyr Phe Ser Thr Ala 20
25 30Val Ser Arg Pro Gly Arg Gly Glu Pro Arg Tyr
Ile Ala Val Glu Tyr 35 40 45Val
Asp Asp Thr Gln Phe Leu Arg Phe Asp Ser Asp Ala Ala Ile Pro 50
55 60Arg Met Glu Pro Arg Glu Pro Trp Val Glu
Gln Glu Gly Pro Gln Tyr65 70 75
80Trp Glu Trp Thr Thr Gly Tyr Ala Lys Ala Asn Ala Gln Thr Asp
Arg 85 90 95Val Ala Leu
Arg Asn Leu Leu Arg Arg Tyr Asn Gln Ser Glu Ala Gly 100
105 110Ser His Thr Leu Gln Gly Met Asn Gly Cys
Asp Met Gly Pro Asp Gly 115 120
125Arg Leu Leu Arg Gly Tyr His Gln His Ala Tyr Asp Gly Lys Asp Tyr 130
135 140Ile Ser Leu Asn Glu Asp Leu Arg
Ser Trp Thr Ala Ala Asp Thr Val145 150
155 160Ala Gln Ile Thr Gln Arg Phe Tyr Glu Ala Glu Glu
Tyr Ala Glu Glu 165 170
175Phe Arg Thr Tyr Leu Glu Gly Glu Cys Leu Glu Leu Leu Arg Arg Tyr
180 185 190Leu Glu Asn Gly Lys Glu
Thr Leu Gln Arg Ala Asp Pro Pro Lys Ala 195 200
205His Val Ala His His Pro Ile Ser Asp His Glu Ala Thr Leu
Arg Cys 210 215 220Trp Ala Leu Gly Phe
Tyr Pro Ala Glu Ile Thr Leu Thr Trp Gln Arg225 230
235 240Asp Gly Glu Glu Gln Thr Gln Asp Thr Glu
Leu Val Glu Thr Arg Pro 245 250
255Ala Gly Asp Gly Thr Phe Gln Lys Trp Ala Ala Val Val Val Pro Ser
260 265 270Gly Glu Glu Gln Arg
Tyr Thr Cys His Val Gln His Glu Gly Leu Pro 275
280 285Gln Pro Leu Ile Leu Arg Trp Glu Gln Ser Pro Gln
Pro Thr Ile Pro 290 295 300Ile Val Gly
Ile Val Ala Gly Leu Val Val Leu Gly Ala Val Val Thr305
310 315 320Gly Ala Val Val Ala Ala Val
Met Trp Arg Lys Lys Ser Ser Asp Arg 325
330 335Asn Arg Gly Ser Tyr Ser Gln Ala Ala Val Thr Asp
Ser Ala Gln Gly 340 345 350Ser
Gly Val Ser Leu Thr Ala Asn Lys Val 355
3608310DNAHomo sapiens 83tcagacgcag
108410DNAHomo sapiens 84ttatgggatc
108510DNAHomo sapiens
85cccgcccccg
108610DNAHomo sapiens 86gaggaagaag
108710DNAHomo sapiens 87gaagctttgc
108810DNAHomo sapiens
88taccagtgta
108910DNAHomo sapiens 89tcttctccct
109010DNAHomo sapiens 90ttggcttttc
109110DNAHomo sapiens
91ggaagggagg
109210DNAHomo sapiens 92aagccagccc
109310DNAHomo sapiens 93tttcagattg
109410DNAHomo sapiens
94gcataggctg
109510DNAHomo sapiens 95tttgttaatt
109610DNAHomo sapiens 96gagactcctg
109710DNAHomo sapiens
97cctgtaattc
109810DNAHomo sapiens 98gtggtgcgtg
109910DNAHomo sapiens 99ttggacctgg
1010010DNAHomo sapiens
100cttaaggatt
1010110DNAHomo sapiens 101gtctgtgaga
1010210DNAHomo sapiens 102gaaactgaac
1010310DNAHomo sapiens
103gggcatctct
1010410DNAHomo sapiens 104tttgggccta
1010510DNAHomo sapiens 105atcgtggcgg
1010610DNAHomo sapiens
106tattatggta
1010710DNAHomo sapiens 107gcctacccga
1010810DNAHomo sapiens 108ctcgcgctgg
1010910DNAHomo sapiens
109ttgcttgcca
1011010DNAHomo sapiens 110cctgcttgtc
1011110DNAHomo sapiens 111agggaggggc
1011210DNAHomo sapiens
112tgtgggaaat
1011310DNAHomo sapiens 113cctgatctgc
1011410DNAHomo sapiens 114accattggat
1011510DNAHomo sapiens
115agtttgttag
1011610DNAHomo sapiens 116cctgggaagt
1011710DNAHomo sapiens 117caactaattc
1011810DNAHomo sapiens
118gcctgcagtc
1011910DNAHomo sapiens 119cgaccccacg
1012010DNAHomo sapiens 120ttctgtgctg
1012110DNAHomo sapiens
121cgccgacgat
1012210DNAHomo sapiens 122cccgcccccg
1012310DNAHomo sapiens 123gatcaggcca
1012410DNAHomo sapiens
124gtggaagacg
1012510DNAHomo sapiens 125gatgaggaga
1012610DNAHomo sapiens 126ttcccttctt
1012710DNAHomo sapiens
127ccccctgcag
1012810DNAHomo sapiens 128tgctgcctgt
1012910DNAHomo sapiens 129tgcagcacga
1013010DNAHomo sapiens
130ggttattttg
1013110DNAHomo sapiens 131tgtcatcaca
1013210DNAHomo sapiens 132aaaataaaca
1013310DNAHomo sapiens
133taaaaatgtt
1013410DNAHomo sapiens 134gagcttttga
1013510DNAHomo sapiens 135ggctgatgtg
1013610DNAHomo sapiens
136cgacgaggag
1013710DNAHomo sapiens 137gcccccaata
1013810DNAHomo sapiens 138gcaacttgga
10139408PRTHomo sapiens
139Met Pro Gly His Leu Gln Glu Gly Phe Gly Cys Val Val Thr Asn Arg 1
5 10 15Phe Asp Gln Leu Phe Asp
Asp Glu Ser Asp Pro Phe Glu Val Leu Lys 20 25
30Ala Ala Glu Asn Lys Lys Lys Glu Ala Gly Gly Gly Gly
Val Gly Gly 35 40 45Pro Gly Ala
Lys Ser Ala Ala Gln Ala Ala Ala Gln Thr Asn Ser Asn 50
55 60Ala Ala Gly Lys Gln Leu Arg Lys Glu Ser Gln Lys
Asp Arg Lys Asn65 70 75
80Pro Leu Pro Pro Ser Val Gly Val Val Asp Lys Lys Glu Glu Thr Gln
85 90 95Pro Pro Val Ala Leu Lys
Lys Glu Gly Ile Arg Arg Val Gly Arg Arg 100
105 110Pro Asp Gln Gln Leu Gln Gly Glu Gly Lys Ile Ile
Asp Arg Arg Pro 115 120 125Glu Arg
Arg Pro Pro Arg Glu Arg Arg Phe Glu Lys Pro Leu Glu Glu 130
135 140Lys Gly Glu Gly Gly Glu Phe Ser Val Asp Arg
Pro Ile Ile Asp Arg145 150 155
160Pro Ile Arg Gly Arg Gly Gly Leu Gly Arg Gly Arg Gly Gly Arg Gly
165 170 175Arg Gly Met Gly
Arg Gly Asp Gly Phe Asp Ser Arg Gly Lys Arg Glu 180
185 190Phe Asp Arg His Ser Gly Ser Asp Arg Ser Ser
Phe Ser His Tyr Ser 195 200 205Gly
Leu Lys His Glu Asp Lys Arg Gly Gly Ser Gly Ser His Asn Trp 210
215 220Gly Thr Val Lys Asp Glu Leu Thr Glu Ser
Pro Lys Tyr Ile Gln Lys225 230 235
240Gln Ile Ser Tyr Asn Tyr Ser Asp Leu Asp Gln Ser Asn Val Thr
Glu 245 250 255Glu Thr Pro
Glu Gly Glu Glu His His Pro Val Ala Asp Thr Glu Asn 260
265 270Lys Glu Asn Glu Val Glu Glu Val Lys Glu
Glu Gly Pro Lys Glu Met 275 280
285Thr Leu Asp Glu Trp Lys Ala Ile Gln Asn Lys Asp Arg Ala Lys Val 290
295 300Glu Phe Asn Ile Arg Lys Pro Asn
Glu Gly Ala Asp Gly Gln Trp Lys305 310
315 320Lys Gly Phe Val Leu His Lys Ser Lys Ser Glu Glu
Ala His Ala Glu 325 330
335Asp Ser Val Met Asp His His Phe Arg Lys Pro Ala Asn Asp Ile Thr
340 345 350Ser Gln Leu Glu Ile Asn
Phe Gly Asp Leu Gly Arg Pro Gly Arg Gly 355 360
365Gly Arg Gly Gly Arg Gly Gly Arg Gly Arg Gly Gly Arg Pro
Asn Arg 370 375 380Gly Ser Arg Thr Asp
Lys Ser Ser Ala Ser Ala Pro Asp Val Asp Asp385 390
395 400Pro Glu Ala Phe Pro Ala Leu Ala
40514010DNAHomo sapiens 140atgataatgg
101411024DNAHomo sapiens 141ccccacccga
aacacactca gcccttgcac tgacctgcct tctgattgga ggctggttgc 60ttcggataat
gacctccagg accccactgt tggttacagc ctgtttgtat tattcttact 120gcaactcaag
acacctgcag cagggcgtga gaaaaagtaa aagaccagta ttttcacatt 180gccaggtacc
agaaacacag aagactgaca cccgccactt aagtggggcc agggctggtg 240tctgcccatg
ttgccatcct gatgggctgc ttgccacaat gagggatctt cttcaataca 300tcgcttgctt
ctttgccttt ttctctgctg ggtttttgat tgtggccacc tggactgact 360gttggatggt
gaatgctgat gactctctgg aggtgagcac aaaatgccga ggcctctggt 420gggaatgcgt
cacaaatgct tttgatggga ttcgcacctg tgatgagtac gattccatac 480ttgcggagca
tcccttgaag ctggtggtaa ctcgagcgtt gatgattact gcagatattc 540tagctgggtt
tggatttctc accctgctcc ttggtcttga ctgcgtgaaa ttcctccctg 600atgagccgta
cattaaagtc cgcatctgct ttgttgctgg agccacgtta ctaatagcag 660gtaccccagg
aatcattggc tctgtgtggt atgctgttga tgtgtatgtg gaacgttcta 720ctttggtttt
gcacaatata tttcttggta tccaatataa atttggttgg tcctgttggc 780tcggaatggc
tgggtctctg ggttgctttt tggctggagc tgttctcacc tgctgcttat 840atctttttaa
agatgtggga cctgagaaaa ctagccttat cccttgagga aagcctattc 900agccgcgagg
tgtttccatg gccaagtcat actcagcccc tcgcacagag acggccaaaa 960tgtatgctgt
agacacaagg gtgtaaaatg cacgtttcag ggtgtgtttg catatgattt 1020aatc
1024142294PRTHomo
sapiens 142Pro Pro Glu Thr His Ser Ala Leu Ala Leu Thr Cys Leu Leu Ile
Gly 1 5 10 15Gly Trp Leu
Leu Arg Ile Met Thr Ser Arg Thr Pro Leu Leu Val Thr 20
25 30Ala Cys Leu Tyr Tyr Ser Tyr Cys Asn Ser
Arg His Leu Gln Gln Gly 35 40
45Val Arg Lys Ser Lys Arg Pro Val Phe Ser His Cys Gln Val Pro Glu 50
55 60Thr Gln Lys Thr Asp Thr Arg His Leu
Ser Gly Ala Arg Ala Gly Val65 70 75
80Cys Pro Cys Cys His Pro Asp Gly Leu Leu Ala Thr Met Arg
Asp Leu 85 90 95Leu Gln
Tyr Ile Ala Cys Phe Phe Ala Phe Phe Ser Ala Gly Phe Leu 100
105 110Ile Val Ala Thr Trp Thr Asp Cys Trp
Met Val Asn Ala Asp Asp Ser 115 120
125Leu Glu Val Ser Thr Lys Cys Arg Gly Leu Trp Trp Glu Cys Val Thr
130 135 140Asn Ala Phe Asp Gly Ile Arg
Thr Cys Asp Glu Tyr Asp Ser Ile Leu145 150
155 160Ala Glu His Pro Leu Lys Leu Val Val Thr Arg Ala
Leu Met Ile Thr 165 170
175Ala Asp Ile Leu Ala Gly Phe Gly Phe Leu Thr Leu Leu Leu Gly Leu
180 185 190Asp Cys Val Lys Phe Leu
Pro Asp Glu Pro Tyr Ile Lys Val Arg Ile 195 200
205Cys Phe Val Ala Gly Ala Thr Leu Leu Ile Ala Gly Thr Pro
Gly Ile 210 215 220Ile Gly Ser Val Trp
Tyr Ala Val Asp Val Tyr Val Glu Arg Ser Thr225 230
235 240Leu Val Leu His Asn Ile Phe Leu Gly Ile
Gln Tyr Lys Phe Gly Trp 245 250
255Ser Cys Trp Leu Gly Met Ala Gly Ser Leu Gly Cys Phe Leu Ala Gly
260 265 270Ala Val Leu Thr Cys
Cys Leu Tyr Leu Phe Lys Asp Val Gly Pro Glu 275
280 285Lys Thr Ser Leu Ile Pro 29014310DNAHomo sapiens
143gtgggcacag
101441851DNAHomo sapiens 144ggatatcgtc gacccagcgt ccggaccggg acagctcgcg
gccccccgag agctctagcc 60gtcgaggagc tgcctgggga cgtttccctg ggccccagcc
tggcccgggt caccctggca 120tgaggagatg ggcctgttgc tcctggtccc gttgctcctg
ctgcccggct cctacggact 180gcccttctac aacggcttct actactccaa cagcgccaac
gaccagaacc taggcaacgg 240tcatggcaaa gacctcctta atggagtgaa gctggtggtg
gagacacccg aggagaccct 300gttcacctac caaggggcca gtgtgatcct gccctgcgta
ccgctacgag ccggccctgg 360tctccccgcg gcgtgtgcgt gtcaaatggt ggaagctgtc
ggagaacggg gccccagaga 420aggacgtgct ggtggccatc gggctgaggc accgctcctt
tgggactacc aaggccgcgt 480gcactgcggc aggacaaaga gcatgagctc tcgctggaga
tccagatctc gctggaggac 540tatggggctt accgctgtga ggtcattgac gggctggagg
atgaaagcgg tctggtggag 600ctggagctgc ggggtgtggt ctttccttac cagtccccaa
cgggcgctac cagttcaact 660tccacgaggg ccagcaggtc tgtgcagagc aggctgcggt
ggtggcctcc tttgagcagc 720tcttccgggc ctgggaggag ggcctggact ggtgcaacgc
gggctggctg caggatgcca 780cggtgcagta ccccatcatg ttgccccggc agccctgcgg
tggcccgggc ctggcacctg 840gcgtgcgaag ctacggcccc cgccaccgcc gcctgcaccg
ctatgatgta ttctcgttcg 900ctactgccct caaggggcgg gtgtactacc tggagcaccc
tgagaacgtg acgctgacag 960aggcaaggga ggcctgccag gaagatgatg ccacgattgc
caaggtggac agctctttgc 1020cgcctggaag ttccatggcc tggaccgctg cgacgctggc
tggctggcag atggcagcgt 1080ccgctaccct gtggttcacc cgcatcctaa ctgtgggccc
ccagagcctg gggtccgaag 1140ctttggcttc cccgacccgc agagccgctt gtacggtgtt
tactgtaccg ccagcactag 1200gacctggggc cctcccctgc cgcattccct cactggctgt
gtatttattg agtggttcgt 1260tttcccttgt gggttggagc cattttaact gtttttatac
ttctcaattt aaattttctt 1320taaacatttt tttactattt tttgtaaagc aaacagaacc
caatgcctcc ctttgctcct 1380ggatgcccca ctccaggaat catgcttgct ccccgggctt
ctggagggtt ccccgccatc 1440caggctggtc tccctccctt aaggaggttg gtgcccagag
tgggcggtgg cctgtctaga 1500atgccgccgg gagtccgggc atggtgggca cagttctccc
tgcccctcag cctgggggaa 1560gaagagggcc tcgggggctc cggagctggg ctttgggcct
ctcctgccca cctctacttc 1620tctgtgaagc cgctgacccc agtctgccca ctgaggggct
agggctggaa gccagttcta 1680ggcttccagg cgaaagctga gggaaggaag aaactccctc
cccgttcccc ttcccctctc 1740ggttccaaag aatctgtttg ttgtcatttg tttctcctgt
ttccctgtgt ggggaggggc 1800cctcaggtgt gtgtactttg gacaataaat ggtgctatga
ctgccttccg c 185114510DNAHomo sapiens 145cctgccccgc
101464111DNAHomo sapiens
146ctcacagccc agcacctgcg gagggagcgc tgaccatggc tccctggcct gaattgggag
60atgcccagcc caaccccgat aagtacctcg aaggggccgc aggtcagcag cccactgccc
120ctgataaaag caaagagacc aacaaaaata acactgaggc acctgtaacc aagattgaac
180ttctgccgtc ctactccacg gctacactga tagatgagcc cactgaggtg gatgacccct
240ggaacctacc cactcttcag gactcgggga tcaagtggtc agagagagac accaaaggga
300agattctctg tttcttccaa gggattggga gattgatttt acttctcgga tttctctact
360ttttcgtgtg ctccctggat attcttagta gcgccttcca gctggttgga ggaaaaatgg
420caggacagtt cttcagcaac agctctatta tgtccaaccc tttgttgggg ctggtgatcg
480gggtgctggt gaccgtcttg gtgcagagct ccagcacctc aacgtccatc gttgtcagca
540tggtgtcctc ttcattgctc actgttcggg ctgccatccc cattatcatg ggggccaaca
600ttggaacgtc aatcaccaac actattgttg cgctcatgca ggtgggagat cggagtgagt
660tcagaagagc ttttgcagga gccactgtcc atgacttctt caactggctg tccctgttgg
720tgctcttgcc cgtggaggtg gccacccatt acctcgagat cataacccag cttatagtgg
780agagcttcca cttcaagaat ggagaagatg ccccagatct tctgaaagtc atcactaagc
840ccttcacaaa gctcattgtc cagctggata aaaaagttat cagccaaatt gcaatgaacg
900atgaaaaagc gaaaaacaag agtcttgtca agatttggtg caaaactttt accaacaaga
960cccagattaa cgtcactgtt ccctcgactg ctaactgcac ctccccttcc ctctgttgga
1020cggatggcat ccaaaactgg accatgaaga atgtgaccta caaggagaac atcgccaaat
1080gccagcatat ctttgtgaat ttccacctcc cggatcttgc tgtgggcacc atcttgctca
1140tactctccct gctggtcctc tgtggttgcc tgatcatgat tgtcaagatc ctgggctctg
1200tgctcaaggg gcaggtcgcc actgtcatca agaagaccat caacactgat ttcccctttc
1260cctttgcatg gttgactggc tacctggcca tcctcgtcgg ggcaggcatg accttcatcg
1320tacagagcag ctctgtgttc acgtcggcct tgacccccct gattggaatc ggcgtgataa
1380ccattgagag ggcttatcca ctcacgctgg gctccaacat cggcaccacc accaccgcca
1440tcctggccgc cttagccagc cctggcaatg cattgaggag ttcactccag atcgccctgt
1500gccacttttt cttcaacatc tccggcatct tgctgtggta cccgatcccg ttcactcgcc
1560tgcccatccg catggccaag gggctgggca acatctctgc caagtatcgc tggttcgccg
1620tcttctacct gatcatcttc ttcttcctga tcccgctgac ggtgtttggc ctctcgctgg
1680ccggctggcg ggtgctggtt ggtgtcgggg ttcccgtcgt cttcatcatc atcctggtac
1740tgtgcctccg actcctgcag tctcgctgcc cacgcgtcct gccgaagaaa ctccagaact
1800ggaacttcct gccgctgtgg atgcgctcgc tgaagccctg ggatgccgtc gtctccaagt
1860tcaccggctg cttccagatg cgctgctgct gctgctgccg cgtgtgctgc cgcgcgtgct
1920gcttgctgtg tggctgcccc aagtgctgcc gctgcagcaa gtgctgcgag gacttggagg
1980aggcgcagga ggggcaggat gtccctgtca aggctcctga gacctttgat aacataacca
2040ttagcagaga ggctcagggt gaggtccctg cctcggactc aaagaccgaa tgcacggcct
2100tgtaggggac gccccagatt gtcagggatg gggggatggt ccttgagttt tgcatgctct
2160cctccctccc acttctgcac cctttcacca cctcgaggag atttgctccc cattagcgaa
2220tgaaattgat gcagtcctac ctaactcgat tccctttggc ttggtgggta ggcctgcagg
2280gcacttttat tccaacccct ggtcactcag taatctttta ctccaggaag gcacaggatg
2340gtacctaaag agaattagag aatgaacctg gcgggacgga tgtctaatcc tgcacctagc
2400tgggttggtc agtagaacct attttcagac tcaaaaacca tcttcagaaa gaaaaggccc
2460agggaaggaa tgtatgagag gctctcccag atgaggaagt gtactctcta tgactatcaa
2520gctcaggcct ctcccttttt ttaaaccaaa gtctggcaac caagagcagc agctccatgg
2580cctccttgcc ccagatcagc ctgggtcagg ggacatagtg tcattgtttg gaaactgcag
2640accacaaggt gtgggtctat cccacttcct agtgctcccc acattcccca tcagggcttc
2700ctcacgtgga caggtgtgct agtccaggca gttcacttgc agtttccttg tcctcatgct
2760tcggggatgg gagccacgcc tgaactagag ttcaggctgg atacatgtgc tcacctgctg
2820ctcttgtctt cctaagagac agagagtggg gcagatggag gagaagaaag tgaggaatga
2880gtagcatagc attctgccaa aagggcccca gattcttaat ttagcaaact aagaagccca
2940attcaaaagc attgtggcta aagtctaacg ctcctctctt ggtcagataa caaaagccct
3000ccctgttgga tcttttgaaa taaaacgtgc aagttatcca ggctcgtagc ctgcatgctg
3060ccaccttgaa tcccagggag tatctgcacc tggaatagct ctccacccct ctctgcctcc
3120ttactttctg tgcaagatga tttcctgggt taacttcctt ctttccatcc acccacccac
3180tggaatctct ttccaaacat ttttccattt tcccacagat gggctttgat tagctgtcct
3240ctctccatgc ctgcaaagct ccagattttt ggggaaagct gtacccaact ggactgccca
3300gtgaactggg atcattgagt acagtcgagc acacgtgtgt gcatgggtca aaggggtgtg
3360ttccttctca tcctagatgc cttctctgtg ccttccacag cctcctgcct gattacacca
3420ctgcccccgc cccaccctca gccatcccaa ttcttcctgg ccagtgcgct ccagccttat
3480ctaggaaagg aggagtgggt gtagccgtgc agcaagattg gggcctcccc catcccagct
3540tctccaccat cccagcaagt caggatatca gacagtcctc ccctgaccct cccccttgta
3600gatatcaatt cccaaacaga gccaaatact ctatatctat agtcacagcc ctgtacagca
3660tttttcataa gttatatagt aaatggtctg catgatttgt gcttctagtg ctctcatttg
3720gaaatgaggc aggcttcttc tatgaaatgt aaagaaagaa accactttgt atattttgta
3780ataccacctc tgtggccatg cctgccccgc ccactctgta tatatgtaag ttaaacccgg
3840gcaggggctg tggccgtctt tgtactctgg tgatttttaa aaattgaatc tttgtacttg
3900cattgattgt ataataattt tgagaccagg tctcgctgtg ttgctcaggc tggtctcaaa
3960ctcctgagat caagcaatcc gcccacctca gcctcccaaa gtgctgagat cacaggcgtg
4020agccaccacc aggcctgatt gtaatttttt tttttttttt tactggttat gggaagggag
4080aaataaaatc atcaaacccc aaaaaaaaaa a
4111147689PRTHomo sapiens 147Met Ala Pro Trp Pro Glu Leu Gly Asp Ala Gln
Pro Asn Pro Asp Lys 1 5 10
15Tyr Leu Glu Gly Ala Ala Gly Gln Gln Pro Thr Ala Pro Asp Lys Ser
20 25 30Lys Glu Thr Asn Lys Asn Asn
Thr Glu Ala Pro Val Thr Lys Ile Glu 35 40
45Leu Leu Pro Ser Tyr Ser Thr Ala Thr Leu Ile Asp Glu Pro Thr
Glu 50 55 60Val Asp Asp Pro Trp Asn
Leu Pro Thr Leu Gln Asp Ser Gly Ile Lys65 70
75 80Trp Ser Glu Arg Asp Thr Lys Gly Lys Ile Leu
Cys Phe Phe Gln Gly 85 90
95Ile Gly Arg Leu Ile Leu Leu Leu Gly Phe Leu Tyr Phe Phe Val Cys
100 105 110Ser Leu Asp Ile Leu Ser
Ser Ala Phe Gln Leu Val Gly Gly Lys Met 115 120
125Ala Gly Gln Phe Phe Ser Asn Ser Ser Ile Met Ser Asn Pro
Leu Leu 130 135 140Gly Leu Val Ile Gly
Val Leu Val Thr Val Leu Val Gln Ser Ser Ser145 150
155 160Thr Ser Thr Ser Ile Val Val Ser Met Val
Ser Ser Ser Leu Leu Thr 165 170
175Val Arg Ala Ala Ile Pro Ile Ile Met Gly Ala Asn Ile Gly Thr Ser
180 185 190Ile Thr Asn Thr Ile
Val Ala Leu Met Gln Val Gly Asp Arg Ser Glu 195
200 205Phe Arg Arg Ala Phe Ala Gly Ala Thr Val His Asp
Phe Phe Asn Trp 210 215 220Leu Ser Leu
Leu Val Leu Leu Pro Val Glu Val Ala Thr His Tyr Leu225
230 235 240Glu Ile Ile Thr Gln Leu Ile
Val Glu Ser Phe His Phe Lys Asn Gly 245
250 255Glu Asp Ala Pro Asp Leu Leu Lys Val Ile Thr Lys
Pro Phe Thr Lys 260 265 270Leu
Ile Val Gln Leu Asp Lys Lys Val Ile Ser Gln Ile Ala Met Asn 275
280 285Asp Glu Lys Ala Lys Asn Lys Ser Leu
Val Lys Ile Trp Cys Lys Thr 290 295
300Phe Thr Asn Lys Thr Gln Ile Asn Val Thr Val Pro Ser Thr Ala Asn305
310 315 320Cys Thr Ser Pro
Ser Leu Cys Trp Thr Asp Gly Ile Gln Asn Trp Thr 325
330 335Met Lys Asn Val Thr Tyr Lys Glu Asn Ile
Ala Lys Cys Gln His Ile 340 345
350Phe Val Asn Phe His Leu Pro Asp Leu Ala Val Gly Thr Ile Leu Leu
355 360 365Ile Leu Ser Leu Leu Val Leu
Cys Gly Cys Leu Ile Met Ile Val Lys 370 375
380Ile Leu Gly Ser Val Leu Lys Gly Gln Val Ala Thr Val Ile Lys
Lys385 390 395 400Thr Ile
Asn Thr Asp Phe Pro Phe Pro Phe Ala Trp Leu Thr Gly Tyr
405 410 415Leu Ala Ile Leu Val Gly Ala
Gly Met Thr Phe Ile Val Gln Ser Ser 420 425
430Ser Val Phe Thr Ser Ala Leu Thr Pro Leu Ile Gly Ile Gly
Val Ile 435 440 445Thr Ile Glu Arg
Ala Tyr Pro Leu Thr Leu Gly Ser Asn Ile Gly Thr 450
455 460Thr Thr Thr Ala Ile Leu Ala Ala Leu Ala Ser Pro
Gly Asn Ala Leu465 470 475
480Arg Ser Ser Leu Gln Ile Ala Leu Cys His Phe Phe Phe Asn Ile Ser
485 490 495Gly Ile Leu Leu Trp
Tyr Pro Ile Pro Phe Thr Arg Leu Pro Ile Arg 500
505 510Met Ala Lys Gly Leu Gly Asn Ile Ser Ala Lys Tyr
Arg Trp Phe Ala 515 520 525Val Phe
Tyr Leu Ile Ile Phe Phe Phe Leu Ile Pro Leu Thr Val Phe 530
535 540Gly Leu Ser Leu Ala Gly Trp Arg Val Leu Val
Gly Val Gly Val Pro545 550 555
560Val Val Phe Ile Ile Ile Leu Val Leu Cys Leu Arg Leu Leu Gln Ser
565 570 575Arg Cys Pro Arg
Val Leu Pro Lys Lys Leu Gln Asn Trp Asn Phe Leu 580
585 590Pro Leu Trp Met Arg Ser Leu Lys Pro Trp Asp
Ala Val Val Ser Lys 595 600 605Phe
Thr Gly Cys Phe Gln Met Arg Cys Cys Cys Cys Cys Arg Val Cys 610
615 620Cys Arg Ala Cys Cys Leu Leu Cys Gly Cys
Pro Lys Cys Cys Arg Cys625 630 635
640Ser Lys Cys Cys Glu Asp Leu Glu Glu Ala Gln Glu Gly Gln Asp
Val 645 650 655Pro Val Lys
Ala Pro Glu Thr Phe Asp Asn Ile Thr Ile Ser Arg Glu 660
665 670Ala Gln Gly Glu Val Pro Ala Ser Asp Ser
Lys Thr Glu Cys Thr Ala 675 680
685Leu
User Contributions:
Comment about this patent or add new information about this topic: