Patent application title: CANCER DIAGNOSIS USING KI-67
Inventors:
Jean-Marie Bruey (Encinitas, CA, US)
Albitar Maher (Coto De Caza, CA, US)
IPC8 Class: AC12Q102FI
USPC Class:
435 29
Class name: Chemistry: molecular biology and microbiology measuring or testing process involving enzymes or micro-organisms; composition or test strip therefore; processes of forming such composition or test strip involving viable micro-organism
Publication date: 2010-05-13
Patent application number: 20100120080
Claims:
1. A method for diagnosing an individual as having leukemia or lymphoma,
said method comprising,determining the level of Ki-67 protein in an
acellular body fluid sample from said individual;comparing the level of
Ki-67 protein from said individual to a pre-determined cutoff value,
andidentifying the individual as having leukemia or lymphoma when said
Ki-67 protein level of said individual is higher than said cutoff value.
2. The method according to claim 1, wherein said leukemia is acute lymphoblastic leukemia (ALL) or chronic lymphocytic leukemia (CLL).
3. The method according to claim 1, wherein said acellular body fluid is plasma.
4. The method according to claim 1, wherein said cutoff level is about 900-1500 U/ml.
5. The method according to claim 1, further comprising measuring the level of β2-microglobulin, wherein an elevated level of β2-microglobulin relative to the level measured in disease-free individuals is indicative of the individual having leukemia or lymphoma.
6. A method for diagnosing an individual as having leukemia or lymphoma, said method comprising,measuring the concentration of Ki-67 protein in an acellular body fluid sample from said individual;measuring the concentration of lymphocytes in blood;calculating a Ki-67 index by dividing the Ki-67 protein concentration by the lymphocyte concentration;comparing the Ki-67 index to a pre-determined cutoff value, andidentifying the individual as having leukemia or lymphoma when the Ki-67 protein index is higher than said cutoff value.
7. The method according to claim 6, wherein said leukemia is acute lymphoblastic leukemia (ALL) or chronic lymphocytic leukemia (CLL).
8. The method according to claim 6, wherein said acellular body fluid is plasma.
9. The method of claim 6, wherein the Ki-67 index is expressed as units of Ki-67 per number of lymphocytes.
10. The method of claim 9, wherein the cutoff value is about 1.5-2.25 U/1000 lymphocytes.
11. The method of claim 10, wherein the cutoff value is about 1.88 U/1000 lymphocytes.
12. A method for determining the prognosis of an individual with leukemia or lymphoma, said method comprising,measuring the concentration of Ki-67 protein in an acellular body fluid sample from said individual;measuring the concentration of lymphocytes in blood;calculating a Ki-67 index by dividing the Ki-67 protein concentration by the lymphocyte concentration;comparing the Ki-67 index to a pre-determined cutoff value, andidentifying the individual as having leukemia or lymphoma when the Ki-67 protein index is higher than said cutoff value.
13. The method of claim 11, wherein said leukemia is acute lymphoblastic leukemia (ALL) or chronic lymphocytic leukemia (CLL).
14. The method of claim 11, wherein said prognosis is selected from the group consisting of survival time, complete remission, and remission duration
15. The method of claim 12, wherein the Ki-67 index is expressed as units of Ki-67 per number of lymphocytes.
16. The method of claim 15, wherein the cutoff value is about 1.5-2.25 U/1000 lymphocytes.
17. The method of claim 16, wherein the cutoff value is about 1.88 U/1000 lymphocytes.
18. A method for modifying the dosage of chemotherapy administered to an individual diagnosed as having leukemia or lymphoma, said method comprising,determining a Ki-67 protein index in a first acellular body fluid sample from the individual;determining the Ki-67 protein index in a second acellular body fluid sample from the individual, wherein said second sample is obtained at a later time than said first sample, wherein chemotherapy is administered between obtaining the first and second sample; andmodifying said dosage of chemotherapy based on the difference in the Ki-67 protein index in the second sample relative to the first sample, wherein the dosage of chemotherapy in increased when the Ki-67 protein index is higher in the second sample compared to the first sample or decreasing or maintaining the dosage of chemotherapy when the Ki-67 protein index is lower in the second sample compared to the first sample.
19. The method of claim 18, wherein said leukemia is acute lymphoblastic leukemia (ALL) or chronic lymphocytic leukemia (CLL).
20. The method of claim 18, wherein the acellular body fluid is plasma.
21. The method of claim 18, wherein the Ki-67 protein index is the concentration of Ki-67 protein in the acellular body fluid.
22. The method of claim 18, wherein the Ki-67 protein index is the concentration of Ki-67 protein in the acellular body fluid normalized to the number of lymphocytes per unit volume of the acellular body fluid.
23. The method of claim 22, wherein the leukemia is CML in the chronic phase.
24. The method of claim 18, wherein the chemotherapy is Chlorambucil, Cytoxan, or Fludarabine.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001]This application claims the benefit of U.S. Provisional Applications 61/110,942, tiled Nov. 3, 2008 which is hereby incorporated by reference in its entirety.
FIELD OF THE INVENTION
[0002]Provided are methods and compositions related to the field of disease detection and, more specifically, for determining a diagnosis and/or prognosis of patients having hyperproliferative disorders.
BACKGROUND OF THE INVENTION
[0003]The following description is provided to assist the reader in understanding the invention and is not admitted to describe or constitute prior art to the invention.
[0004]Human Ki-67 protein is expressed in nuclei of proliferating cells in all active phases of the cell cycle, i.e. in G1, S, G2 and mitosis, but not in quiescent GO cells (Gerdes et al., J. Immunol. 133:1710-1715 (1984)). The cDNA of human Ki-67 and of the murine equivalent are known and show no significant homologies to other proteins (Schluter et al., J. Cell Biol. 123:513-522 (1993); Starborg et al., J. Cell Sci. 109:143-153 (1996)). Human Ki-67 protein has several nuclear localization signals and can physiologically be detected in the cell nucleus, except during mitosis (Heyden et al., Fur. J. Cell Biol. 42: 33 (1996)).
[0005]Acute lymphoblastic leukemia (ALL) is a form of leukemia (cancer of white blood cells) in which immature white blood cells rapidly multiply and crowd out normal cells in bone marrow. These immature cells do not develop into lymphocytes, which the body uses to fight infection. The immature white blood cells can spread throughout the body and adversely affect other organs. There are about 4,000 new cases of ALL in the United States each year. The earlier acute lymphoblastic leukemia is detected, the more effective the treatment.
[0006]White, et al., detects Ki-67 protein in bone marrow cells (J. Clin. Pathol 47(3): 209-13 (1994)). Jaroslav, et al., detect Ki-67 protein in chronic myelogenous leukemia (CML), ALL, acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) cells (Leuk Lymphoma 46(11): 1605-1612 (2005)). Xu, et al., detect Ki-67 protein by immunohistochemical staining in cells of children and adults with ALL (Zhonggou Shi Yan Xue Ye Xue Za Zhi 14(6): 887-890 (2006)). Rykova, E., et al., describes the detection of Ki-67 RNA in plasma and cell bound fraction of patients with breast cancer (Ann. NY Acad. Sci. 1075: 328-333 (2006)). U.S. Patent Application No. 2008/0026394 describes electrochemical detection of cancer markers.
SUMMARY OF THE INVENTION
[0007]The present invention provides methods and compositions for detection, diagnosis, prognosis, monitoring treatment and monitoring progression of cancer (e.g., a leukemia or lymphoma) in an individual by assessing Ki-67 protein in an acellular body fluid sample. As described herein, plasma Ki-67 reflects the entire body and not just the site of biopsy so provides information on tumor load, and/or provide more reproducible results.
[0008]In one aspect, the invention provides a method for diagnosing an individual as having leukemia or lymphoma by determining the level of Ki-67 protein in an acellular body fluid sample (e.g., serum or plasma) from the individual; comparing the measured level of Ki-67 protein from the individual to a pre-determined cutoff value, and identifying the individual as having leukemia or lymphoma when the Ki-67 protein level of the individual is higher than the cutoff value. Suitable cutoff levels may be determined based on the particular acellular body fluid sample assessed and the particular analytical technique used. Generally, suitable cutoff levels for diagnosis when using plasma are about 900-1500 U Ki-67/ml (e.g., about 1000, 1100, 1200, 1300, or 1400 U/ml). Optionally, the level of β2-microglobulin is also measured, wherein an elevated level compared to disease-free individuals is further diagnostic of leukemia or lymphoma.
[0009]The invention also provides a method for diagnosing an individual as having leukemia or lymphoma by measuring the level of Ki-67 protein in an acellular body fluid sample from the individual; calculating a Ki-67 index by normalizing the measured amount of Ki-67 protein to be expressed on a per cell (i.e., per lymphocyte) basis; comparing the Ki-67 index to a pre-determined cutoff value, and identifying the individual as having leukemia when the Ki-67 protein index is higher than said cutoff value. Suitable cutoff values are about 1.5-2.25 U/1000 lymphocytes (e.g., about 1.75, 1.88, 1.95, 2.0, 2.1, 2.2 U/1000 lymphocytes). In this embodiment, the Ki-67 index is calculated by dividing the concentration of Ki-67 (i.e., U/μl) by the concentration of lymphocytes in the same volume. The index may be expressed, for example, as units of Ki-67 per 1000 lymphocytes.
[0010]The invention also provides a method for determining the prognosis of an individual with leukemia by measuring the level of Ki-67 protein in an acellular body fluid sample from the individual; calculating a Ki-67 index (e.g., by normalizing the measured amount of Ki-67 protein to the concentration of lymphocytes);, comparing the Ki-67 index to a pre-determined cutoff value, and identifying the individual as having a poor prognosis when the Ki-67 protein index is higher than said cutoff value. The prognosis for the individual may be expressed as survival time, complete remission, or remission duration. The blood parameter used to normal the amount of Ki-67 may be the number of total lymphocytes or the number of lymphocytes per unit volume of the blood sample. Suitable cutoff values are about 1.5-2.25 U/1000 lymphocytes/μl (e.g., about 1.75, 1.88, 1.95, 2.0, 2.1, 2.2 U/1000 lymphocytes).
[0011]The invention also provides a method for modifying the dosage of chemotherapy administered to an individual diagnosed as having leukemia or lymphoma by determining a Ki-67 protein level index in a first acellular body fluid sample from the individual; determining the Ki-67 protein index in a second acellular body fluid sample from the individual, wherein said second sample is obtained at a later time than said first sample, wherein chemotherapy is administered between obtaining the first and second sample; and modifying said dosage of chemotherapy based on the difference in the Ki-67 protein index in the second sample relative to the first sample, wherein the dosage of chemotherapy in increased when the Ki-67 protein index is higher in the second sample compared to the first sample or reducing or maintaining the dosage of chemotherapy when the Ki-67 protein index is lower in the second sample compared to the first sample. The Ki-67 protein index may be the concentration of Ki-67 protein in the acellular body fluid, or it may be the concentration of Ki-67 protein in the acellular body fluid normalized to the concentration of lymphocytes per unit volume of the acellular body fluid. In one embodiment, the individual is diagnosed as having CML in the chronic phase. In other embodiments, the chemotherapy is Chlorambucil, Cytoxan, or Fludarabine.
[0012]In any of the inventive methods, the leukemia or lymphoma may be non-Hodgkin's lymphoma (NHL), acute lymphoblastic leukemia (ALL), Burkitt's lymphoma, acute myeloid leukemia (AML), acute undifferentiated leukemia (AUL), chronic lymphocytic leukemia (CLL), or chronic myeloid leukemia (CML).
[0013]One of skill in the art would readily recognize that the measurement of Ki-67 protein can he accomplished using various types of assays well-known in the art. In preferred embodiments, Ki-67 protein is detected using a specific binding agent, preferably an antibody. In another embodiment, the assay is an immunoassay such as an enzyme-linked immunosorbent assay (ELISA) or sandwich-type ELISA. In another embodiment, the assay can be flow cytometry. In the later case, a sandwich-type assay involving capture of an antibody-antigen complex on a bead or microparticle and binding of a labeled second antibody can provide useful assay materials to be evaluated by flow cytometry. In other embodiments, Ki-67 protein is detected by immunoprecipitation which separates proteins from other molecules in the sample. In other embodiments, the measurement of Ki-67 protein is accomplished by immunoblot. In yet other embodiments, the measurement of Ki-67 protein is accomplished by electrochemiluminescence such as by the Meso Scale Discovery (MSD) system. In other embodiments, the Ki-67 protein is detected using protein microarray platform. In one embodiment, the Ki-67 protein is captured directly on microarray solid surface. In another embodiment, the Ki-67 protein is captured is captured indirectly on the microarray solid surface such as through antibody.
[0014]"Ki-67 protein" is a marker associated with cancer, as recognized by specific sets of antibodies, which may be used to identify the cell type, stage of differentiation and activity state of a cell. Ki-67 protein and antibodies for detecting Ki-67 protein are described in for example, White, D. M., et al. 47 J. Clin. Pathol. 209-213 (1994); Schwarzenbach, H., et al., 9(5) Breast Cancer Research R66 (2007); Lokhorst, H. M., et al., 69(4) Br. J. Haematology 477-481 (1988); Girino M., et al., 85(1) Acta Haematology 26-30 (1991); and Genbank Accession No. NM--002417. In certain embodiments, Ki-67 protein is present in the liquid phase of a bodily fluid and which remain in the liquid phase after cells have been removed from the bodily fluid (i.e. an acellular body fluid). Ki-67 protein includes fragments of the native cell Ki-67 protein and/or Ki-67 may be physically associated with other biomolecules in the body fluid.
[0015]The term "level" as used herein refers to an amount or a concentration of Ki-67 protein. Typically, the level of Ki-67 protein will be expressed as a concentration, or an absolute amount of Ki-67 protein per volume or weight. The term "elevated levels" refers to levels of Ki-67 protein that are above the range of the reference value. In some embodiments, patients with "high" or "elevated" Ki-67 protein levels have activity levels that are higher than the median activity in a population of patients with that disease. In certain embodiments, "high" or "elevated" Ki-67 protein levels for a patient with a particular disease refers to levels that are above the median values for patients with that disorder and are in the upper 40% of patients with the disorder, or to levels that are in the upper 20% of patients with the disorder, or to levels that are in the upper 10% or patients with the disorder, or to levels that are in the upper 5% of patients with the disorder.
[0016]The term "determining the level of Ki-67" as used herein refers to measuring or otherwise assessing the amount of the Ki-67 protein in an acellular body fluid obtained from an individual. The assessment of Ki-67 protein level may be relative (e.g., expressed as greater or less than a reference standard or amount, or merely as the presence or absence of a detectable amount) or absolute (e.g., expressed as a concentration). Optionally, when used for detection, prognosis or monitoring cancer, the level of Ki-67 protein in a sample from an individual is compared to the Ki-67 protein level determined in a corresponding sample from person(s) without cancer, known to suffer from, or known to be at risk of a cancer. When determining an individual's prognosis, the level of Ki-67 protein in a sample from an individual diagnosed with cancer is compared to the Ki-67 level determined in a corresponding sample from individuals diagnosed with the same cancer for which the outcome of the cancer is known. In certain embodiments, a threshold (cut-off) level of Ki-67 protein may be established for a given diagnosis or prognosis, and the level of Ki-67 protein in an individual's sample can simply be compared to the threshold level.
[0017]The term "circulating Ki-67 index" as used herein refers to a value obtained by determining the ratio of the level of Ki-67 value per given number of lymphocytes/unit volume of acellular body fluid. In one embodiment, circulating Ki-67 index is determined by obtaining a ratio of the Ki-67 level per 1000 lymphocytes. The circulating Ki-67 index value may be indicative of prognosis of cancer patients. Exemplary cancers include but not limited to CLL, ALL, AML, CML, AUL.
[0018]The term "prognosis" as used herein refers to prediction of the probable course and outcome of a clinical condition or disease. A prognosis is usually made by evaluating factors or symptoms of a disease that are indicative of a favorable or unfavorable course or outcome of the disease. There are many ways that prognosis can be expressed. For example prognosis can be expressed in terms of complete remission rates (CR), overall survival (OS) which is the amount of time from entry to death, remission duration, which is the amount of time from remission to relapse or death.
[0019]The phrase "determining the prognosis" as used herein refers to the process by which the practitioner can predict the course or outcome of a condition in an individual. The term "prognosis" does not refer to the ability to predict the course or outcome of a condition with 100% accuracy. Instead, the skilled artisan will understand that the term "prognosis" refers to an increased probability that a certain course or outcome will occur; that is, that a course or outcome is more likely to occur in a patient exhibiting a given condition, when compared to those individuals not exhibiting the condition. A prognosis may be expressed as the amount of time a patient can be expected to survive. Alternatively, a prognosis may refer to the likelihood that the disease goes into remission or to the amount of time the disease can be expected to remain in remission. Prognosis can be expressed in various ways; for example prognosis can be expressed as a percent chance that a patient will survive after one year, five years, ten years or the like. Alternatively prognosis may be expressed as the number of years, on average that a patient can expect to survive as a result of a condition or disease. The prognosis of a patient may be considered as an expression of relativism, with many factors affecting the ultimate outcome. For example, for patients with certain conditions, prognosis can be appropriately expressed as the likelihood that a condition may be treatable or curable, or the likelihood that a disease will go into remission, whereas for patients with more severe conditions prognosis may be more appropriately expressed as likelihood of survival for a specified period of time.
[0020]In one embodiment, prognosis of CLL patients can be expressed based on the Rai staging system. According to Rai staging system, status of CLL patients can be divided into 5 stages 0-IV. Stage 0 indicates there are too many lymphocytes in the blood, but there are usually no other symptoms of leukemia. Lymph nodes and the spleen and liver are not swollen, and the number of red blood cells and platelets is normal. Stage 1 indicates there are too many lymphocytes in the blood and lymph nodes are swollen (lymphadenopathy). The spleen and liver are not swollen and the number of red blood cells and platelets is normal. Stage II indicates there are too many lymphocytes in the blood, lymph nodes are swollen, and either the liver is swollen (hepatomegaly) or the spleen is swollen (splenomegaly). Stage III indicates there are too many lymphocytes in the blood and too few red blood cells (anemia). Lymph nodes and the liver or spleen may be swollen. Stage IV indicates there are too many lymphocytes in the blood and too few platelets (thrombocytopenia). The lymph nodes, liver, or spleen may be swollen, and there may be too few red blood cells (anemia).
[0021]The phrase "specific binding agent" as used herein refers to any agent, molecule, or compound that specifically binds Ki-67 protein or portion thereof. Examples include, but are not limited to, antibodies or antibody fragments, ligands, or receptors. These binding agents could be naturally occurring or synthetic and include modified or recombinant proteins. In preferred embodiments the specific binding agent is an antibody. See e.g., White, D. M., et al. 47 J. Clin. Pathol. 209-213 (1994); Schwarzcnbach, H., et al., 9(5) Breast Cancer Research R66 (2007); Lokhorst, H. M., et al., 69(4) Br. J. Haematology 477-481 (1988); Girino M., et al., 85(1) Acta Haematology 26-30 (1991); and Genbank Accession No. NM--002417.
[0022]As used herein, an "acellular body fluid" is a fluid sample, obtained from a subject, which is substantially free of cells and include, for example, amniotic fluid, blood, cerebral spinal fluid, lactal duct fluid, lymph, peritoneal fluid, plasma, pleural fluid, saliva, serum, sputum, tears, and urine. Preferably, an acellular bodily fluid contains less than about 1% (w/w) whole cellular material. Plasma and serum are examples of acellular bodily fluids. A sample may include a specimen of natural or synthetic origin.
[0023]As used herein "absolute lymphocyte count" refers to total number of lymphocyte cells per unit volume of blood. In one embodiment the unit volume of blood may be microliter. In another embodiment, the unit volume of blood may be milliliter. In yet another embodiment, the unit volume of blood may be deciliter.
[0024]A "reference sample" comprises a sample of bodily fluid with a known Ki-67 level. The reference sample may contain a known absolute amount of Ki-67 such as an external standard used in a detection assay. Alternatively, a reference sample may be from known normal or diseased subjects wherein the Ki-67 level is designated as being "normal" or diseased.
[0025]The term "label" as used herein, refers to any physical molecule directly or indirectly associated with a specific binding agent or antigen which provides a means for detection for that antibody or antigen. A "detectable label" as used herein refers any moiety used to achieve signal to measure the amount of complex formation between a target and a binding agent. These labels are detectable by spectroscopic, photochemical, biochemical, immunochemical, electromagnetic, radiochemical, or chemical means, such as fluorescence, chemifluoresence, or chemiluminescence, electrochemiluminescence or any other appropriate means. Preferred detectable labels include fluorescent dye molecules or fluorophores.
[0026]The term "limit of detection (LODras used herein refers to a the point at which a measured value of an analyte in an assay is larger than the uncertainty associated with it. In one embodiment, LOD is defined as 3 standard deviations (SD) from the zero concentration.
[0027]The term "about" as used herein in reference to quantitative measurements or values, refers to the indicated value plus or minus 10%.
BRIEF DESCRIPTION OF THE FIGS.
[0028]FIG. 1 shows the cumulative proportion of ALL patients surviving in two populations of patients: 1) patients having plasma concentration of Ki-67 protein of less than 1,500 U/ml (solid line), and 2) patients having plasma concentration of Ki-67 protein of greater than 1,500 U/ml (dashed line).
[0029]FIG. 2 is the amino acid sequence of Ki-67 protein as provided at Genbank Accession No. NP--002408 (SEQ ID NO:1).
[0030]FIG. 3 shows a box plot of the levels of circulating Ki-67 protein in plasma in normal individuals (N) and ALL patients as determined by MSD® Electrochemiluminiscent method. The units of Ki-67 levels are expressed as units/ml (U/ml). Asterisks indicate outliers; open circles indicate extreme values. Median values of the levels of Ki-67 protein is represented as a horizontal line within the box in each case.
[0031]FIG. 4 shows a standard curve for the Ki-67 assay described in Example 1.
[0032]FIG. 5 shows the results of detection of Ki-67 protein in plasma in normal and CML patients by direct Western blotting and by immunoprecipitation followed by Western blotting. Albumin was used as a positive control in direct Western blotting and IgG was used as a negative control for immunoprecipitation by Ki-67 antibody.
[0033]FIG. 6 shows the effect of serum starvation on the expression level of Ki-67 protein in cultured cells. FIG. 6A shows a Western blot analysis of Ki-67 protein expression levels in cultured cells in presence of serum or in serum starved condition. Beta-actin served as a positive control for the assay. FIG. 6B shows the results of the analysis of cell lysates (in presence of serum versus serum starved) for the detection of Ki-67 protein using MSD® ECL method.
[0034]FIG. 7 shows a correlation of survival of CLL patients in months with the normalized level of Ki-67 protein (relative to the number of lymphocytes) in plasma. CLL patients were monitored for survival in months from the time of testing the absolute lymphocyte count and the plasma Ki-67 level of the individual. A normalized Ki-67 value is obtained by taking the ratio of the Ki-67 level to the absolute lymphocyte count. The solid line represents individual with a normalized Ki-67 level of less than 1.88 U/1000 lymphocytes. The broken line represents a normalized Ki-67 value of greater than or equal to 1.88 U/1000 lymphocytes.
[0035]FIG. 8 shows a correlation of the relative Ki-67 level with the prognosis of CLL patients. Prognosis of CLL patients were classified according to Rai classification from 0-IV.
[0036]Plasma Ki-67 values and absolute lymphocyte count were measured of the CLL patients. A normalized Ki-67 value is obtained by taking the ratio of the Ki-67 level to the absolute lymphocyte count. Normalized Ki-67 values were plotted against the Rai-classified CLL patient groups in box plots. The mean normalized Ki-67 for each group is indicated as a small square within each box. The standard deviation of measurement for each group is indicated.
[0037]FIG. 9 shows a box plot of the normalized Ki-67 levels in treated and untreated CLL patients. Plasma Ki-67 values and absolute lymphocyte count were measured from CLL patients treated with or without (untreated) Chlorambucil. A normalized Ki-67 value is obtained by taking the ratio of the Ki-67 level to the absolute lymphocyte count. The normalized Ki-67 values were plotted for the treated and untreated groups.
[0038]FIG. 10 shows a correlation of survival of CLL patients in months with the normalized level of Ki-67 protein (relative to the number of lymphocytes) in plasma after starting a new therapy. CLL patients were monitored for survival in months from the start of treatment with Cytoxan and Fludarabine. A normalized Ki-67 value is obtained by taking the ratio of the plasma Ki-67 level to the absolute lymphocyte count. The solid line (Group 1) represents the population of individuals with a normalized Ki-67 level of greater than 1.88 U/1000 lymphocytes. The dashed line (Group 2) represents the population of individuals with a normalized Ki-67 value of less than or equal to 1.88 U/1000 lymphocytes. An open circle (o) "complete" indicates dead and a plus (+) " Censored indicates alive.
[0039]FIG. 11 shows a box plot of the levels of circulating Ki-67 protein in plasma in normal individuals (N) and CLL patients as determined by MSD® Electrochemiluminiscent method. The units of Ki-67 levels are expressed as U/ml. Median values of the levels of Ki-67 protein is represented as a horizontal line within the box in each case.
[0040]FIG. 12 shows the distribution of normalized Ki-67 values in the plasma of 194 CLL patients. A normalized Ki-67 value is obtained by taking the ratio of the plasma Ki-67 level to the absolute lymphocyte count.
[0041]FIG. 13 shows the cumulative proportion of AML patients surviving in two populations of patients: 1) patients having plasma concentration of Ki-67 protein of less than 2100 U/ml (solid line), and 2) patients having plasma concentration of Ki-67 protein of greater than 2100 U/ml (dashed line).
[0042]FIG. 14 shows the cumulative proportion of CML patients surviving in two populations of patients: 1) patients having plasma concentration of Ki-67 protein of less than 354 U/ml (solid line), and 2) patients having plasma concentration of Ki-67 protein of greater than 354 U/ml (dashed line).
[0043]FIG. 15 shows the cumulative proportion of CML patients surviving in two populations of patients: 1) patients having circulating Ki-67 index of less than 1.20 U/1000 lymphocytes (dashed line), and 2) patients having circulating Ki-67 index of Ki-67 protein of greater than 1.20 U/ml (solid line).
DETAILED DESCRIPTION OF THE INVENTION
[0044]The present inventions described herein are based on the discovery and characterization that Ki-67 protein can be detected in acellular body fluid samples for the prognosis and diagnosis of certain cancers, including various leukemias.
[0045]Exemplary DNA sequence of Ki-67 includes but not limited to GenBank accession number NM--002417. Exemplary amino acid sequence of Ki-67 protein includes GenBank accession number NP--002408 and is provided in FIG. 2 (SEQ ID NO: 1).
[0046]The present invention provides methods for detecting the level of Ki-67 protein of an individual. The level of Ki-67 protein is determined by assaying a biological sample from an individual for Ki-67 protein. Ki-67 protein is assayed using assays known in the art and binding agents specific to the markers of interest. The levels of Ki-67 protein in the individual are compared to the levels in normal individuals free from any disorder or compared to another individual having particular disorder. Ki-67 protein levels which deviate from the normal levels can be used to diagnose a disorder or to determine the prognosis or treatment for an existing disorder. Further, changes in the Ki-67 protein levels over time can be used to assess progression of the disorder or success of the treatment thereof.
[0047]Plasma or Serum Preparation Methods
[0048]Methods of plasma and serum preparation are well known in the art. Either "fresh" blood plasma or serum, or frozen (stored) and subsequently thawed plasma or serum may be used. Frozen (stored) plasma or serum should optimally be maintained at storage conditions of -20 to -70 degrees centigrade until thawed and used. "Fresh" plasma or serum should be refrigerated or maintained on ice until used, with nucleic acid (e.g., RNA, DNA or total nucleic acid) extraction being performed as soon as possible. Exemplary methods are described below.
[0049]Blood can be drawn by standard methods into a collection tube, preferably siliconized glass, either without anticoagulant for preparation of serum, or with EDTA, sodium citrate, heparin, or similar anticoagulants for preparation of plasma. The preferred method if preparing plasma or serum for storage, although not an absolute requirement, is that plasma or serum be first fractionated from whole blood prior to being frozen. This reduces the burden of extraneous intracellular RNA released from lysis of frozen and thawed cells which might reduce the sensitivity of the amplification assay or interfere with the amplification assay through release of inhibitors to PCR such as porphyrins and hematin. "Fresh" plasma or serum may be fractionated from whole blood by centrifugation, using preferably gentle centrifugation at 300-800 times gravity for five to ten minutes, or fractionated by other standard methods. High centrifugation rates capable of fractionating out apoptotic bodies should be avoided.
[0050]Determination of Absolute Lymphocyte Count
[0051]Absolute counts are calculated by multiplying the total white blood cell count by the percent of the specific cell type of interest. While percentage reports are considered adequate for most patients, absolute values are more important for patients with hematologic disorders.
[0052]If lymphocyte or other counts are reported as percentages of the total white blood count (wbc), the absolute values can be calculated as follows: total wbc x % cell type reported/100. This formula can be used for calculating the absolute lymphocyte count, absolute neutrophil count, etc.
[0053]An exemplary reference range for total white blood cell counts in healthy individuals is 4.0-11.0×103 per microliter. The various types of white blood cells are often expressed as a percentage of the total white blood cell count. Exemplary percentage ranges are as follows:
[0054]Basophils--0 to 2%, Eosinophils--0% to 3%, Lymphocytes--25% to 35%, Monocytes--3% to 10%, Neutrophils--50% to 60%.
[0055]These percentages are derived from 1) a microscopic examination of blood performed manually in which some hundreds of cells are differentiated from each other (this procedure is called a differential) or 2) a machine scored differentiation based on cell patterns.
[0056]By way of example, if the total white count reported is 25,000 and the percentage of lymphocytes reported is 80%, the calculation is as follows: 25,000×80/100. The result is an absolute lymphocyte count of 20,000.
[0057]Protein Extraction from Acellular Body Fluids
[0058]The Ki-67 protein may be extracted from the acellular body fluid sample by any suitable method including, for example, by immobilization on a solid surface such as microwells, beads or microarray using Ki-67 specific antibodies anchored to the solid surface for detection and quantification.
[0059]Plasma purification methods are known in the art such. See e.g., Cohn, E. J., et al, Am. Chem. Soc. 62: 3396-3400.(1940); Cohn, E. J., et al., J. Am. Chem. Soc. 72: 465-474 (1950); Pennell, R. B. Fractionation and isolation of purified components by precipitation methods. p. 9-50. In The Plasma Proteins, Vol. 1. F. W. Putman (ed.). Academic Press, New York (1960); and U.S. Pat. No. 5,817,765.
[0060]Antibodies to Ki-67 Protein
[0061]Methods of generating antibodies are well known in the art, see, e.g., Sambrook, et al., 1989, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Press, Plainview, N.Y. Antibodies for Ki-67 are known in the art and are described, for example, in White, D. M., et al. 47 J. Clin. Pathol. 209-213 (1994); Schwarzenbach, H., et al., 9(5) Breast Cancer Research R66 (2007); Lokhorst, H. M., et al., 69(4) Br. J. Haematology 477-481 (1988); Girino M., et al., 85(1) Acta Haematology 26-30 (1991); and Genbank Accession No. NM 002417.
[0062]Antibodies may be detectably labeled by methods known in the art. Labels include, but are not limited to radioisotopes such as 3H, 14C, 35S, 32P, 123I, 125I, 131I), enzymes (e.g., peroxidase, alkaline phosphatase, beta-galactosidase, luciferase, alkaline phosphatase, acetylcholinesterase and glucose oxidase), enzyme substrates, luminescent substances (e.g., luminol), fluorescent substances (e.g., FITC, rhodamine, lanthanide phosphors), biotinyl groups (which can be detected by marked avidin e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or colorimetric methods), predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags) and colored substances. In binding these labeling agents to the antibody, the maleimide method (Kitagawa, T., et al., 79 J. Biochem. 233-236 (1976)), the activated biotin method (Hofinann, K., et al. 100 J. Am. Chem. Soc. 3585 (1978)) or the hydrophobic bond method, for instance, can be used.
[0063]In some embodiments, labels are attached via spacer arms of various lengths to reduce potential steric hindrance. Antibodies may also be coupled to electron dense substances, such as ferritin or colloidal gold, which are readily visualized by electron microscopy.
[0064]Where a radioactive label is used as a detectable substance, proteins may be localized by autoradiography. The results of autoradiography may be quantitated by determining the density of particles in the autoradiographs by various optical methods, or by counting the grains.
[0065]The antibody or sample may be immobilized on a carrier or solid support which is capable of immobilizing cells, antibodies etc. For example, the carrier or support may be nitrocellulose, or glass, polyacrylamides, gabbros, and magnetite. The support material may have any possible configuration including spherical (e.g. bead), cylindrical (e.g. inside surface of a test tube or well, or the external surface of a rod), or flat (e.g. sheet, test strip). Indirect methods may also be employed in which the primary antigen-antibody reaction is amplified by the introduction of a second antibody, having specificity for the antibody reactive against Ki-67.
[0066]Antibodies to Ki-67 protein are available commercially through multiple sources. For example, purified antibodies directed Ki-67 protein are available labeled or unlabeled through Abeam Inc. (Cambridge, Mass.).
[0067]Immunoassays to Detect Ki-67 Protein
[0068]Immunoassays, or assays to detect an antigen using an antibody, are well known in the art and can take many forms, e.g., radioimmunoassay, immunoprecipitation, Western blotting, enzyme-linked immunosorbent assay (ELISA), electrochemiluminescence assay, and 2-site or sandwich immunoassay.
[0069]In preferred embodiments, a sandwich ELISA is used. In this assay, two antibodies to different segments, or epitopes, of the antigen are used. The first antibody (capture antibody) is coupled to a solid support. When a sample of bodily fluid is contacted with the capture antibody on the solid support, the antigen contained in the bodily fluid is captured on the solid support through a specific interaction between antigen and antibody, resulting in the formation of a complex. Washing of the solid support removes unbound or non-specifically bound antigen. Subsequent exposure of the solid support to a detectably-labeled second antibody (detection antibody) to the antigen (generally to a different epitope than the capture antibody) enables the detection of bound or captured antigen. As would be readily recognized by one of skill in the art, assaying additional markers in parallel to assaying for Ki-67 protein is possible with the use of distinct pairs of specific antibodies, each of which is directed against a different marker. The capture and detection antibodies may be individually monoclonal or polyclonal antibodies.
[0070]Relative or actual amounts of Ki-67 protein in body fluids can be determined by methods well known in the art. See e.g., Drach, J., et al., 10(6) Cytometry 743-749 (1989). For example, a standard curve can be obtained in the ELISA using known amounts of Ki-67 protein. The actual amount of the Ki-67 protein in a body fluid may thus be determined using the standard curve. Another approach that does not use a standard curve is to determine the dilution of body fluid that gives a specified amount of signal. The dilution at which 50% of the signal is obtained is often used for this purpose. In this case, the dilution at 50% maximal binding of Ki-67 protein in a patient body fluid is compared with the dilution at 50% of maximal binding for Ki-67 protein obtained in the same assay using a reference sample (i.e., a sample taken from the corresponding bodily fluid of normal individuals, free of proliferative disorders).
[0071]Methods of identifying the binding of a specific binding agent to Ki-67 protein are known in the art and vary dependent on the nature of the label. In preferred embodiments, the detectable label is a fluorescent dye. In other embodiments, electrochemiluminescence ("ECL") assay is used for detection of Ki-67 protein. In one embodiment, this ECL assay employs Meso Scale Discovery (MSD®) technology which is an adaptation of ELISA assays. A capture antibody specific for Ki-67 (mouse anti human Ki-67) is coated onto the wells. Nonspecific binding was first blocked by overnight incubation at 4° C. with Blocker A solution provided by the manufacturer. Samples including standards of known Ki-67 concentrations, specimens and controls are diluted, added to the wells and incubated during 2 hours. Plates arc washed 3 times to remove the unbound samples and the detection antibody rabbit anti human Ki-67 is added and incubated. After washing to remove the unbound rabbit anti human Ki-67 antibody, SULFO-TAG anti rabbit antibody is added to the wells. The reading is achieved by adding a MSD® Read Buffer solution which contains Tripropylamine (TPA) to the plate. Each sample is measured in duplicate Standard curves for the estimation of Ki-67 concentration are generated by using serial dilutions of HL60 lysate. The plate is read using MSD Sector Imager 2400 Instrument for electrochemiluminescence RLU (relative light unit) signal. This RLU signal is analyzed and compared with RLU signals of standard to get the concentration of each sample.
[0072]Diagnosis of Cancer
[0073]The level of Ki-67 protein in a test sample can be used in conjunction with clinical factors other than Ki-67 protein to diagnose a disease. In these embodiments, the level of Ki-67 protein measured in the test sample is compared to a reference value to determine if the levels of Ki-67 protein is elevated or reduced relative to a reference value. Preferably, the reference value is the Ki-67 protein level measured in a comparable sample from one or more healthy individuals. An increase or decrease in Ki-67 protein may be used alone or in conjunction with clinical factors other than the level of Ki-67 protein to diagnose a disease.
[0074]Clinical factors of particular relevance in the diagnosis of cancer include, but are not limited to, the patient's medical history, a physical examination of the patient, complete blood count, examination of bone marrow cells, cytogenetics, and immunophenotyping of blood cells.
[0075]Monitoring Progression and/or Treatment
[0076]In one aspect of the invention, the level of Ki-67 protein in biological sample of a patient is used to monitor the effectiveness of treatment. In preferred embodiments, the level of a Ki-67 protein in a test sample obtained from a treated patient, can be compared to the level from a reference sample obtained from that patient prior to initiation of the same treatment. Clinical monitoring of treatment preferably entails that each patient serve as his or her own baseline control.
[0077]A decrease in Ki-67 protein in the patient test sample as compared to the patient's reference sample is indicative of an in vivo effect of the treatment at the time the test sample was obtained. In some embodiments, test samples are obtained at multiple time points following administration of the treatment. In these embodiments, measurement of Ki-67 protein in the test samples provides an indication of the extent and duration of in vivo effect of the treatment.
[0078]In another aspect of the invention, the level of Ki-67 protein relative to the absolute lymphocytes count in biological sample of a patient is used to monitor the effectiveness of treatment. In preferred embodiments, the level of a Ki-67 protein in a test sample obtained from a treated patient, a ratio of the level of Ki-67 protein to the absolute lymphocyte count is obtained and the ratio can be compared to the ratio from a reference sample obtained from that patient prior to initiation of the same treatment. Clinical monitoring of treatment preferably entails that each patient serve as his or her own baseline control.
[0079]A decrease in the ratio of Ki-67 protein to the absolute lymphocytes in the patient test sample as compared to the patient's reference sample is indicative of an in vivo effect of the treatment at the time the test sample was obtained. In some embodiments, test samples are obtained at multiple time points following administration of the treatment. In these embodiments, measurement of the ratio Ki-67 protein to the absolute lymphocytes in the test samples provides an indication of the extent and duration of in vivo effect of the treatment.
[0080]Determining Prognosis
[0081]Provided herein are methods of using Ki-67 protein level in a test sample from a patient in conjunction with clinical factors in determining the prognosis for a patient having cancer. In some embodiments, prognosis may be a prediction of the likelihood that a patient will survive for a particular period of time, or the prognosis is a prediction of how long a patient may live, or the prognosis is the likelihood that a patent will recover from a disease or disorder. There are many ways that prognosis can be expressed. For example prognosis can be expressed in terms of complete remission rates (CR), overall survival (OS) which is the amount of time from entry to death, remission duration, which is the amount of time from remission to relapse or death.
[0082]In certain embodiments high levels of Ki-67 protein are used as indicators of an unfavorable prognosis, for example, in ALL. In another embodiment, high levels of Ki-67 protein are used as indicators of an longer survival time, for example in CML and AML. According to the method, the determination of prognosis can be performed by comparing the measured Ki-67 protein level to levels determined in comparable samples from healthy individuals or to levels known to corresponding with favorable or unfavorable outcomes. The absolute Ki-67 protein levels obtained may depend on a number of factors, including but not limited to the laboratory performing the assays, the assay methods used, the type of body fluid sample used and the type of disease a patient is afflicted with. According to the method, values can be collected from a series of patients with a particular disorder to determine appropriate reference ranges of Ki-67 protein for that disorder. One of ordinary skill in the art is capable of performing a retrospective study that compares the determined Ki-67 protein levels to the observed outcome of the patients and establishing ranges of levels for each activity that can he used to designate the prognosis of the patients with a particular disorder. For example, Ki-67 protein levels in the lowest range would be indicative of a more favorable prognosis, while Ki-67 protein levels in the highest ranges would be indicative of an unfavorable prognosis.
[0083]Because the level of Ki-67 protein in a test sample from a patient relates to the prognosis of a patient in a continuous fashion, the determination of prognosis can be performed using statistical analyses to relate the determined activity levels to the prognosis of the patient. A skilled artisan is capable of designing appropriate statistical methods. For example the methods of the present invention may employ the chi-squared test, the Kaplan-Meier method, the log-rank test, multivariate logistic regression analysis, Cox's proportional-hazard model and the like in determining the prognosis. Computers and computer software programs may be used in organizing data and performing statistical analyses.
[0084]In some embodiments, a circulating Ki-67 index value is indicative of prognosis such as survival time. A circulating Ki-67 index value may be determined for example, by obtaining a ratio of the Ki-67 protein per 1000 circulating lymphocytes/μl of plasma. In some embodiment, higher circulating Ki-67 index value is indicative of poor prognosis such as in CLL, ALL, AML, CML, AUL.
[0085]In certain embodiments, the prognosis of ALL, AML, AUL, CLL or CML patients can he correlated to the clinical outcome of the disease using the level of Ki-67 protein and other clinical factors. Simple algorithms have been described and are readily adapted to this end. The approach by Giles et. al., British Journal of Homotology, 121:578-585, is exemplary. As in Giles et al., associations between categorical variables (e.g., proteasome activity levels and clinical characteristics) can be assessed via crosstabulation and Fisher's exact test. Unadjusted survival probabilities can be estimated using the method of Kaplan and Meier. The Cox proportional hazards regression model also can be used to assess the ability of patient characteristics (such as proteasome activity levels) to predict survival, with `goodness of fit` assessed by the Grambsch-Therneau test, Schoenfeld residual plots, martingale residual plots and likelihood ratio statistics (see Grambsch, 1995; Grambsch et al, 1995).
[0086]In some embodiments of the invention, multiple prognostic factors, including Ki-67 protein level, are considered when determining the prognosis of a patient. For example, the prognosis of an AML or ALL patient may be determined based on Ki-67 protein and one or more prognostic factors selected from the group consisting of cytogenetics, performance status, AHD (antecedent hematological disease), age, and diagnosis (e.g., MDS v. AML). In certain embodiments, other prognostic factors may be combined with the Ki-67 protein level in the algorithm to determine prognosis with greater accuracy.
[0087]In some embodiments, a ratio of the level of Ki-67 protein in acellular body fluid to the absolute lymphocyte count is indicative of prognosis of certain cancers including breast cancer, prostate cancer, lymphoma, and leukemia. The ratio is compared to a cutoff value or a reference value. A ratio of the level of Ki-67 protein in acellular body fluid to the absolute lymphocyte count lower than the cutoff value or a reference value is indicative of better prognosis as compared to a ratio higher than the cutoff or reference value.
Example 1
Reproducibility of the Assay for Detection of Ki-67 Protein by MSD® Electrochemiluminiscent Method
[0088]Standard Curve Reproducibility: Seven standards containing Ki-67 at various concentrations (500, 166.66, 55.55, 18.51, 6.17, 2.15, and 0.68 Units/ml) was run in a daily assay set up to generate a calibration curve. The slope of the curve was used as a conversion factor to calculate enzyme activity. The Ki-67 standard curve showed good linearity (R2) and reproducibility (CV %) (FIG. 4). The standard curve was run on various days over several months and showed excellent reproducibility.
[0089]Intra-Assay Variation: The intra-assay variation is defined as the reproducibility of a sample within an assay. Plasma controls (high and low control) involved 8 replicates to evaluate reproducibility within runs (Table 1). The terms "low," "medium" and "high" refer to relative levels of Ki-67 protein in the plasma samples. The intra-assay CV % for plasma Ki-67 was 5.22% for low normal, 5.56% for low patient and 1.54% for high patient.
TABLE-US-00001 TABLE 1 Intra-assay Variation and accuracy Patient Normal repeat low med high low low high 1 37061 171567 485095 57460 5991 74363 2 43240 174448 478073 62089 6650 55567 3 39913 167472 479059 60579 6474 61129 4 41812 161963 478472 59274 6157 47193 5 42662 161212 477979 56252 5996 54721 6 42040 158579 463003 57931 5800 45820 Mean 41121.33 165873.5 476946.8 58930.83 6178 56465.5 Ki-67 STDEV 2286.034 6304.356 7347.709 2151.623 323.0536 10442.46 % CV 5.55924 3.800701 1.540572 3.651098 5.229096 18.49353
[0090]Inter-Assay Variation: The inter-assay variation is defined as the reproducibility of a sample between assays. Five plasma controls (1 high, 2 med, and 2 low Ki-67 levels) were run 6 different days to determine inter-day assay reproducibility (Table 2). The Ki-67 assay has a CV % of less than 15 for the inter assay variation. The CV % for low, medium and high plasma concentration of Ki-67 protein was 4.11% (average of 4.97 and 3.25), 5.75% (average of 6.84 and 4.67) and 9.46%, respectively.
TABLE-US-00002 TABLE 2 Inter-Assay Variation and Accuracy Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 dates high med med low low Day 1 124986 68704 46657 3826 2631 Day 2 121214 65010 42044 3493 2847 Day 6 110414 65642 41696 3759 2626 Day 8 116377 68829 43876 3356 2785 Day 10 104208 63735 45903 3576 2676 Day 14 96819 56740 45398 3487 2734 Mean Ki-67 112336.3 64776.67 44262.33 3582.833 2716.5 SD 10636.79 4434.449 2067.476 178.28 88.50932 CV 9.468702 6.84575 4.670959 4.975951 3.258212
[0091]Selectivity is the ability of an analytical method to differentiate and quantify the analyte in the presence of other components in the sample. For selectivity, analyses of blank samples of the appropriate biological matrix were obtained, tested for interference and selectivity ensured at the lower limit of quantification. The Ki-67 Zero standard was run in 40 replicates each and the selectivity of the assay for detection of Ki-67 by MSD® Electrochemiluminiscent assay was found to be 2996.3 RLU. The limit of detection (LOD) is defined as the concentration of an analyte required to give a signal equal to the background (blank) plus three times the standard deviation of the blank.
Example 2
Serum Starvation Downregulates Ki-67 Protein Expression in Cultured Cells
[0092]K562, HL60, and Raji cells were cultured in media containing 10% FBS or 0.2% FBS. Cell lysates (100 μg) were prepared and analyzed by SDS-PAGE/immunoblotting using anti-Ki-67 or anti-actin antibodies. Antibody detection was accomplished by ECL, with exposure to x-ray film. Ki-67 protein is downregulated under serum starved condition as shown in FIG. 6A.
[0093]Similar results were obtained when the lysates were also analyzed using MSD® ECL method. Ki-67 protein is downregulated under serum starved condition and shown in FIG. 6B.
Example 3
Detection of Ki-67 Protein in the Plasma of CLL Patients
[0094]Plasma samples were obtained from normal individuals and chronic myelogenous leukemia (CML) patients. The detection of Ki-67 protein in plasma was evaluated by Western blotting (with or without prior immunoprecipitation) with anti-Ki-67 antibody (mouse monoclonal anti-Ki-67 antibody from Invitrogen®, Clone 7B11; and rabbit polyclonal anti-Ki-67 antibody from Santa Cruz Biotechnology, Inc., Clone H300). When Western blotting was performed after immunoprecipitation, the immunoprecipitate was diluted 1:1 in lysis buffer prior to Western blotting. The top row of results in FIG. 5 shows that Ki-67 was not detectable directly in any normal or patient plasma without pre-immunoprecipitation. The second row from the top in FIG. 5 shows that albumin was directly detectable in each plasma sample analyzed.
[0095]The bottom two rows in FIG. 5 depict immunopreciptation of Ki-67 followed by Western blotting using anti-Ki-67 antibody. The results in the third row from the top in FIG. 5 shows that Ki-67 was detectable in CML patient plasma but not in normal plasma.
[0096]Following qualitative detection of plasma Ki-67 in CLL patients, the plasma Ki-67 protein was quantified using Meso Scale Discovery (MSD) in the plasma of patients with CLL (n=194) and normal patients (n=96). Ki-67 protein levels were significantly higher in patients with CLL and shown in FIG. 11.
Example 4
Correlation of Circulating Ki-67 Levels with Other Clinical Markers in CLL Patients
[0097]The absolute plasma Ki-67 levels in CLL patients were correlated to other hematological parameters and CLL markers using the Kruskal-Wallis test and Spearman Rank. As shown in Table 4, there was little or no correlation of plasma Ki-67 protein levels in CLL patients with any of the markers.
TABLE-US-00003 TABLE 31 Patient Characteristics. Characteristic % Male 68 Rai III-IV 25 Splenomegaly 28 Hepatomegaly 4 Lymph nodes 65 Median (range) Age 61 (34-84) WBC (×103/uL) 21.25 (1.4-321) HGB (g/dL) 13 (3.3-16.8) B2M (mg/L) 3.1 (1.4-18.1) Platelets (×106/L) 177 (4-511)
TABLE-US-00004 TABLE 4 Correlation of circulating absolute Ki-67 levels with various clinical parameters Variable Valid - N Spearman - R t (N - 2) P HGB (g/dL) 194 0.047 0.654 0.51 PLT (×106/L) 194 0.100 1.399 0.16 WBC (×106/L) 194 0.021 0.287 0.77 Lymphocytes (%) 194 -0.047 -0.649 0.51 Liver enlargement (cm) 192 0.055 0.766 0.44 Spleen enlargement (cm) 187 0.023 0.314 0.75 Lymph node sites- 190 -0.059 0.815 0.42 enlarged B2M (mg/L) 194 0.024 0.336 0.74 BM Cellularity (%) 189 0.118 1.624 0.11 BM-Lymphocytes (%) 194 0.079 1.099 0.27 RAI Stage 0.034 0.4667 0.64 Albumin 0.026 0.364 0.72 Creatinine (mg/dL) 193 -0.091 -1.265 0.21 IgG (mg/dL) 184 0.038 0.519 0.60 IgA (mg/dL) 183 -0.079 -1.073 0.28 IgM (mg/dlL 184 0.010 0.134 0.89 Total Protein (g/dL) 58 -0.202 -1.541 0.13 CD11/CD22 (%) 194 -0.036 -0.501 0.62 CD11C (%) 194 -0.071 -0.990 0.32 CD22 (%) 194 0.019 0.262 0.79 Abbreviations: HGB: hemoglobin; PLT: platelet count; WBC: white blood cell count; B2M: β2 microglobulin; BM: Bone Marrow; Ig, immunoglobulin.
Example 5
Correlation of Circulating Ki-67 Index Values with the Survival of CLL Patients
[0098]The hematological parameters and CLL markers measured in Example 5 were normalized to the number of circulating lymphocytes in order to obtain a proliferation fraction. This normalization ensures that the Ki-67 levels reflect leukemic proliferation rather than disease volume. These normalized results are referred to as the Ki-67 index. Specifically, the Ki-67 index value is obtained by-measuring the ratio of the level of Ki-67 per 1000 circulating lymphocytes (Ki-67 U/1000 lymphocytes).
TABLE-US-00005 TABLE 5 Correlation of circulating Ki-67 index values with various clinical parameters. Variable Valid - N Spearman - R t (N - 2) P HGB (g/dL) 194 0.022 0.310 0.756 PLT (×106/L) 194 0.165 2.325 0.021 WBC (×106/L) 194 -0.865 -23.900 <0.001 Liver enlargement 192 .071 0.981 0.328 (cm) Spleen enlargement 187 -0.194 -2.684 0.008 (cm) Lymph node sites- 190 -0.299 -4.292 <0.001 enlarged Lymphocytes (%) 194 -0.717 -14.288 <0.001 B2M (mg/L) 194 -0.113 -1.575 0.116 BM Cellularity (%) 189 -0.401 -6.001 <0.001 BM-Lymphocytes (%) 194 -0.525 -8.567 <0.001 RAI Stage 193 -0.169 -2.363 0.019 Albumin 193 -0.067 -0.929 0.354 Creatinine (mg/dL) 193 -0.113 -1.575 0.116 IgG (mg/dL) 184 0.009 0.125 0.900 IgA (mg/dL) 183 0.095 1.296 0.194 IgM (mg/dlL 184 0.154 2.115 0.035 Total Protein (g/dL) 58 -0.096 -0.726 0.470 CD11/CD22 (%) 194 -0.111 -1.551 0.122 CD11C (%) 194 -0.152 -2.140 0.033 CD22 (%) 194 -0.099 -1.384 0.167 Abbreviations: HGB: hemoglobin; PLT: platelet count; WBC: white blood cell count; B2M: β2 microglobulin; BM: Bone Marrow; Ig. immunoglobulin.
[0099]The circulating Ki-67 index values in CLL patients (n=194) were plotted and shown in FIG. 12 which illustrates the range and population profile of the measured Ki-67 index. As shown in Table 4, there was a significant correlation between the circulating Ki-67 index and several hematological markers including white blood cell count, lymphocyte count, percent of bone marrow lymphocytes, RAI staging, spleen enlargement, and number of lymph node sites. However, the circulating Ki-67 index did not correlate with IgVH mutation status (p=0.62) in a Wilcoxon paired test. The Ki-67 index, as a continuous variable, was significantly associate with survival in a Cox regression model (p=0.02) and was a predictor of survival when a cut-off value of 1.20 U/1000 lymphocytes was used (p=0.005; log rank test), wherein patients having a higher Ki-67 index values had shorter survival than those with lower Ki-67 index values (FIG. 15).
[0100]The association of the Ki-67 index with survival was independent of the IgVH mutation status (Table 6, Model 1). However, in a multivariate model incorporating the Ki-67 index with β2-microglobulin and IgVH, only the Ki-67 index and β2-microglobulin remained significant predictors of survival (Table 6, Model 2).
TABLE-US-00006 TABLE 6 Multivariate Modeling Exponent- Wald - Beta S.E.M. t-value beta Statist. p Model #1 cKi-67 Index 0.926 0.412 2.250 2.257 5.064 0.024 IgVH -1.152 0.541 -2.129 0.316 4.533 0.033 Model #2 cKi-67 Index 1.012 0.415 2.44 2.751 5.954 0.015 IgVH -0.800 0.551 -1.453 0.449 2.111 0.146 B2M 0.287 0.062 4.599 1.332 21.151 <0.001
[0101]In another experiment, CLL patients were divided into two groups: those with a circulating Ki-67 index value of less than 1.88 U/1000 lymphocytes (upper quartile for survival) and those with a circulating Ki-67 index value grater than or equal to 1.88 U/1000 lymphocytes. Cumulative proportion of CLL patients surviving is plotted against months of survival. CLL patients with circulating Ki-67 index value lower than 1.88 U/1000 lymphocytes/μl plasma had higher survival rate than the CLL patients with circulating Ki-67 index value greater than or equal to 1.88 U/1000 lymphocytes/μl plasma and shown in FIG. 7
[0102]CLL patients were classified based on Rai classification into 5 stages 0, I, II, III, and IV based on increased risk of CLL patients, 0 is the lowest risk and IV has the highest risk. The circulating Ki-67 index value (Ki-67 U /1000 lymphocytes) was plotted against the Rai classifications and indicates a significant prognostic association (FIG. 8). CLL patients with Rai classification of III-IV had the highest relative Ki-67 values while CLL patients with Rai classification of 0 had the lowest relative Ki-67 values. CLL patients with Rai classification of I-II had intermediate Ki-67 values.
Example 6
Association of the K1-67 Index in CLL Patients Undergoing Chemotherapy
[0103]CLL patients were either untreated or treated with Cytoxan, and Fludarabine. Blood samples were collected from CLL patients at the time of initiation of treatment. Some CLL patients in the group had a history of prior treatment, but were off therapy at the time of obtaining blood samples. The circulating Ki-67 index value was obtained and expressed as Ki-67 units per 1000 circulating lymphocytes. The circulating Ki-67 index value of the treated and untreated CLL groups were plotted. FIG. 9 indicates following treatment with Cytoxan, and Fludarabine, CLL patients showed higher levels of circulating Ki-67 index value in plasma as compared to their untreated counterparts.
[0104]The Ki-67 index (Ki-67 U /1000 lymphocytes) was measured in CLL patients prior to initiating new therapy. Patients were divided into two groups: those with a normalized Ki-67 value of less than 1.88 U/1000 lymphocytes (Group 2) and those with a normalized Ki-67 value grater than or equal to 1.88 units per 1000 lymphocytes (Group I). Cumulative proportion of CLL patients surviving is plotted against months of survival. As shown in FIG. 10, CLL patients with a circulating Ki-67 index value lower than 1.88 units per 1000 lymphocytes had a higher survival rate than CLL patients with a circulating Ki-67 index value greater than or equal to 1.88 units per 1000 circulating lymphocytes.
Example 7
Ki-67 Protein in Patients with Chronic Myeloid Leukemia
[0105]Plasma Ki-67 levels were measured in a study of 81 CML patients in chronic phase and 46 CML patients in accelerated/blast phase. Overall, patients with CML had significantly (P<0.0001) higher levels of Ki-67 in plasma. However, there was no significant difference between accelerated/blast crisis group (median 709.50 U/ml, range: 100-3530.0 U/ml) and the chronic phase group (523 U/ml, range: 73-5857 U/ml) for Ki-67 levels in individual's plasma. Ki-67 levels did not correlate with white cell count or blast count in the chronic phase nor in the accelerated/blast crisis phase. There was no correlation between Ki-67 levels and response to imatinib therapy. However, patients in the chronic phase with higher levels of Ki-67 (>354 U/ml) had significantly longer survival (P=0.003) as shown in FIG. 14. It possible that higher levels of Ki-67 reflect that more stem cells in these patients are in cell cycle and this may make them more susceptible to chemotherapy. Levels of Ki-67 in patients with accelerated/blast phase did not correlate with outcome.
[0106]Thus, the data suggests higher proliferation is associated with better survival, most likely confirming that cells in progressing cell cycle may respond better to chemotherapy. This information is important while considering new therapeutic approaches that target cell cycle.
Example 8
Association of Plasma Ki-67 with Adult Acute Lymphoblastic Leukemia
[0107]Ki-67 protein was measured using Meso Scale Discovery (MSD) and Immunoblot in the plasma of patients with adult acute lymphoblastic leukemia (ALL) (n=27) and normal patients (n=114). Ki-67 protein levels were significantly higher in patients with ALL (median: 762.10 U/ml; range: 0-4574.03 U/ml) than the normal controls (median: 399.2 U/ml; range: 2830.7 U/ml) and shown in FIG. 3. Patients with higher plasma levels of Ki-67 protein had significantly shorter survival than patients with low levels (FIG. 1). Two of the 27 ALL cases were classified as Burkitt's lymphoma and showed high levels of Ki-67 protein in plasma (median: 999 U/ml; range: 1623 U/ml of plasma). Patients older than 70 years of age with ALL had significantly higher Ki-67 protein levels (P=0.05). These data show that measuring Ki-67 protein levels in plasma have a prognostic value in ALL and also demonstrate that Ki-67 protein can be used as a tumor marker in patients with ALL.
[0108]In a second study, the Ki-67 level was determined for a group of 106 newly diagnosed AML patients and 98 control. Patients with AML had significantly higher levels of Ki-67 (median: 1300.74 U/ml, range: 0-6789.0 U/ml) as compared with normal control (median: 339.20 U/ml, range: 0-35.76 U/ml) (P<0.00001). The Ki-67 level did not correlate with white cell count, hemoglobin, platelets, LDH, blast count, age, cytogenetic grouping, or performance status. However, patients with high levels of Ki-67 (above the upper quartile of 2100 U/ml) had significantly longer survival in older patient group (>70) (n=84) (P=0.02) as shown in FIG. 13. In addition patients in the poor cytogenetic group (n=38) with >2100 U/ml also had significantly longer survival (P=0.006).
[0109]The contents of the articles, patents, and patent applications, and all other documents and electronically available information mentioned or cited herein, arc hereby incorporated by reference in their entirety to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
[0110]Applicants reserve the right to physically incorporate into this application any and all materials and information from any such articles, patents, patent applications, or other physical and electronic documents.
[0111]The inventions illustratively described herein may suitably be practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. Thus, for example, the terms "comprising", "including," containing", etc. shall be read expansively and without limitation. Additionally, the terms and expressions employed herein have been used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the inventions embodied therein herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention.
[0112]The invention has been described broadly and generically herein. Each of the narrower species and subgeneric groupings falling within the generic disclosure also form part of the invention. This includes the generic description of the invention with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein. Other embodiments are within the following claims. In addition, where features or aspects of the invention are described in terms of Markush groups, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group.
Sequence CWU
1
113256PRTHomo sapiens 1Met Trp Pro Thr Arg Arg Leu Val Thr Ile Lys Arg Ser
Gly Val Asp1 5 10 15Gly
Pro His Phe Pro Leu Ser Leu Ser Thr Cys Leu Phe Gly Arg Gly20
25 30Ile Glu Cys Asp Ile Arg Ile Gln Leu Pro Val
Val Ser Lys Gln His35 40 45Cys Lys Ile
Glu Ile His Glu Gln Glu Ala Ile Leu His Asn Phe Ser50 55
60Ser Thr Asn Pro Thr Gln Val Asn Gly Ser Val Ile Asp
Glu Pro Val65 70 75
80Arg Leu Lys His Gly Asp Val Ile Thr Ile Ile Asp Arg Ser Phe Arg85
90 95Tyr Glu Asn Glu Ser Leu Gln Asn Gly Arg
Lys Ser Thr Glu Phe Pro100 105 110Arg Lys
Ile Arg Glu Gln Glu Pro Ala Arg Arg Val Ser Arg Ser Ser115
120 125Phe Ser Ser Asp Pro Asp Glu Lys Ala Gln Asp Ser
Lys Ala Tyr Ser130 135 140Lys Ile Thr Glu
Gly Lys Val Ser Gly Asn Pro Gln Val His Ile Lys145 150
155 160Asn Val Lys Glu Asp Ser Thr Ala Asp
Asp Ser Lys Asp Ser Val Ala165 170 175Gln
Gly Thr Thr Asn Val His Ser Ser Glu His Ala Gly Arg Asn Gly180
185 190Arg Asn Ala Ala Asp Pro Ile Ser Gly Asp Phe
Lys Glu Ile Ser Ser195 200 205Val Lys Leu
Val Ser Arg Tyr Gly Glu Leu Lys Ser Val Pro Thr Thr210
215 220Gln Cys Leu Asp Asn Ser Lys Lys Asn Glu Ser Pro
Phe Trp Lys Leu225 230 235
240Tyr Glu Ser Val Lys Lys Glu Leu Asp Val Lys Ser Gln Lys Glu Asn245
250 255Val Leu Gln Tyr Cys Arg Lys Ser Gly
Leu Gln Thr Asp Tyr Ala Thr260 265 270Glu
Lys Glu Ser Ala Asp Gly Leu Gln Gly Glu Thr Gln Leu Leu Val275
280 285Ser Arg Lys Ser Arg Pro Lys Ser Gly Gly Ser
Gly His Ala Val Ala290 295 300Glu Pro Ala
Ser Pro Glu Gln Glu Leu Asp Gln Asn Lys Gly Lys Gly305
310 315 320Arg Asp Val Glu Ser Val Gln
Thr Pro Ser Lys Ala Val Gly Ala Ser325 330
335Phe Pro Leu Tyr Glu Pro Ala Lys Met Lys Thr Pro Val Gln Tyr Ser340
345 350Gln Gln Gln Asn Ser Pro Gln Lys His
Lys Asn Lys Asp Leu Tyr Thr355 360 365Thr
Gly Arg Arg Glu Ser Val Asn Leu Gly Lys Ser Glu Gly Phe Lys370
375 380Ala Gly Asp Lys Thr Leu Thr Pro Arg Lys Leu
Ser Thr Arg Asn Arg385 390 395
400Thr Pro Ala Lys Val Glu Asp Ala Ala Asp Ser Ala Thr Lys Pro
Glu405 410 415Asn Leu Ser Ser Lys Thr Arg
Gly Ser Ile Pro Thr Asp Val Glu Val420 425
430Leu Pro Thr Glu Thr Glu Ile His Asn Glu Pro Phe Leu Thr Leu Trp435
440 445Leu Thr Gln Val Glu Arg Lys Ile Gln
Lys Asp Ser Leu Ser Lys Pro450 455 460Glu
Lys Leu Gly Thr Thr Ala Gly Gln Met Cys Ser Gly Leu Pro Gly465
470 475 480Leu Ser Ser Val Asp Ile
Asn Asn Phe Gly Asp Ser Ile Asn Glu Ser485 490
495Glu Gly Ile Pro Leu Lys Arg Arg Arg Val Ser Phe Gly Gly His
Leu500 505 510Arg Pro Glu Leu Phe Asp Glu
Asn Leu Pro Pro Asn Thr Pro Leu Lys515 520
525Arg Gly Glu Ala Pro Thr Lys Arg Lys Ser Leu Val Met His Thr Pro530
535 540Pro Val Leu Lys Lys Ile Ile Lys Glu
Gln Pro Gln Pro Ser Gly Lys545 550 555
560Gln Glu Ser Gly Ser Glu Ile His Val Glu Val Lys Ala Gln
Ser Leu565 570 575Val Ile Ser Pro Pro Ala
Pro Ser Pro Arg Lys Thr Pro Val Ala Ser580 585
590Asp Gln Arg Arg Arg Ser Cys Lys Thr Ala Pro Ala Ser Ser Ser
Lys595 600 605Ser Gln Thr Glu Val Pro Lys
Arg Gly Gly Arg Lys Ser Gly Asn Leu610 615
620Pro Ser Lys Arg Val Ser Ile Ser Arg Ser Gln His Asp Ile Leu Gln625
630 635 640Met Ile Cys Ser
Lys Arg Arg Ser Gly Ala Ser Glu Ala Asn Leu Ile645 650
655Val Ala Lys Ser Trp Ala Asp Val Val Lys Leu Gly Ala Lys
Gln Thr660 665 670Gln Thr Lys Val Ile Lys
His Gly Pro Gln Arg Ser Met Asn Lys Arg675 680
685Gln Arg Arg Pro Ala Thr Pro Lys Lys Pro Val Gly Glu Val His
Ser690 695 700Gln Phe Ser Thr Gly His Ala
Asn Ser Pro Cys Thr Ile Ile Ile Gly705 710
715 720Lys Ala His Thr Glu Lys Val His Val Pro Ala Arg
Pro Tyr Arg Val725 730 735Leu Asn Asn Phe
Ile Ser Asn Gln Lys Met Asp Phe Lys Glu Asp Leu740 745
750Ser Gly Ile Ala Glu Met Phe Lys Thr Pro Val Lys Glu Gln
Pro Gln755 760 765Leu Thr Ser Thr Cys His
Ile Ala Ile Ser Asn Ser Glu Asn Leu Leu770 775
780Gly Lys Gln Phe Gln Gly Thr Asp Ser Gly Glu Glu Pro Leu Leu
Pro785 790 795 800Thr Ser
Glu Ser Phe Gly Gly Asn Val Phe Phe Ser Ala Gln Asn Ala805
810 815Ala Lys Gln Pro Ser Asp Lys Cys Ser Ala Ser Pro
Pro Leu Arg Arg820 825 830Gln Cys Ile Arg
Glu Asn Gly Asn Val Ala Lys Thr Pro Arg Asn Thr835 840
845Tyr Lys Met Thr Ser Leu Glu Thr Lys Thr Ser Asp Thr Glu
Thr Glu850 855 860Pro Ser Lys Thr Val Ser
Thr Ala Asn Arg Ser Gly Arg Ser Thr Glu865 870
875 880Phe Arg Asn Ile Gln Lys Leu Pro Val Glu Ser
Lys Ser Glu Glu Thr885 890 895Asn Thr Glu
Ile Val Glu Cys Ile Leu Lys Arg Gly Gln Lys Ala Thr900
905 910Leu Leu Gln Gln Arg Arg Glu Gly Glu Met Lys Glu
Ile Glu Arg Pro915 920 925Phe Glu Thr Tyr
Lys Glu Asn Ile Glu Leu Lys Glu Asn Asp Glu Lys930 935
940Met Lys Ala Met Lys Arg Ser Arg Thr Trp Gly Gln Lys Cys
Ala Pro945 950 955 960Met
Ser Asp Leu Thr Asp Leu Lys Ser Leu Pro Asp Thr Glu Leu Met965
970 975Lys Asp Thr Ala Arg Gly Gln Asn Leu Leu Gln
Thr Gln Asp His Ala980 985 990Lys Ala Pro
Lys Ser Glu Lys Gly Lys Ile Thr Lys Met Pro Cys Gln995
1000 1005Ser Leu Gln Pro Glu Pro Ile Asn Thr Pro Thr
His Thr Lys Gln1010 1015 1020Gln Leu
Lys Ala Ser Leu Gly Lys Val Gly Val Lys Glu Glu Leu1025
1030 1035Leu Ala Val Gly Lys Phe Thr Arg Thr Ser Gly
Glu Thr Thr His1040 1045 1050Thr His
Arg Glu Pro Ala Gly Asp Gly Lys Ser Ile Arg Thr Phe1055
1060 1065Lys Glu Ser Pro Lys Gln Ile Leu Asp Pro Ala
Ala Arg Val Thr1070 1075 1080Gly Met
Lys Lys Trp Pro Arg Thr Pro Lys Glu Glu Ala Gln Ser1085
1090 1095Leu Glu Asp Leu Ala Gly Phe Lys Glu Leu Phe
Gln Thr Pro Gly1100 1105 1110Pro Ser
Glu Glu Ser Met Thr Asp Glu Lys Thr Thr Lys Ile Ala1115
1120 1125Cys Lys Ser Pro Pro Pro Glu Ser Val Asp Thr
Pro Thr Ser Thr1130 1135 1140Lys Gln
Trp Pro Lys Arg Ser Leu Arg Lys Ala Asp Val Glu Glu1145
1150 1155Glu Phe Leu Ala Leu Arg Lys Leu Thr Pro Ser
Ala Gly Lys Ala1160 1165 1170Met Leu
Thr Pro Lys Pro Ala Gly Gly Asp Glu Lys Asp Ile Lys1175
1180 1185Ala Phe Met Gly Thr Pro Val Gln Lys Leu Asp
Leu Ala Gly Thr1190 1195 1200Leu Pro
Gly Ser Lys Arg Gln Leu Gln Thr Pro Lys Glu Lys Ala1205
1210 1215Gln Ala Leu Glu Asp Leu Ala Gly Phe Lys Glu
Leu Phe Gln Thr1220 1225 1230Pro Gly
His Thr Glu Glu Leu Val Ala Ala Gly Lys Thr Thr Lys1235
1240 1245Ile Pro Cys Asp Ser Pro Gln Ser Asp Pro Val
Asp Thr Pro Thr1250 1255 1260Ser Thr
Lys Gln Arg Pro Lys Arg Ser Ile Arg Lys Ala Asp Val1265
1270 1275Glu Gly Glu Leu Leu Ala Cys Arg Asn Leu Met
Pro Ser Ala Gly1280 1285 1290Lys Ala
Met His Thr Pro Lys Pro Ser Val Gly Glu Glu Lys Asp1295
1300 1305Ile Ile Ile Phe Val Gly Thr Pro Val Gln Lys
Leu Asp Leu Thr1310 1315 1320Glu Asn
Leu Thr Gly Ser Lys Arg Arg Pro Gln Thr Pro Lys Glu1325
1330 1335Glu Ala Gln Ala Leu Glu Asp Leu Thr Gly Phe
Lys Glu Leu Phe1340 1345 1350Gln Thr
Pro Gly His Thr Glu Glu Ala Val Ala Ala Gly Lys Thr1355
1360 1365Thr Lys Met Pro Cys Glu Ser Ser Pro Pro Glu
Ser Ala Asp Thr1370 1375 1380Pro Thr
Ser Thr Arg Arg Gln Pro Lys Thr Pro Leu Glu Lys Arg1385
1390 1395Asp Val Gln Lys Glu Leu Ser Ala Leu Lys Lys
Leu Thr Gln Thr1400 1405 1410Ser Gly
Glu Thr Thr His Thr Asp Lys Val Pro Gly Gly Glu Asp1415
1420 1425Lys Ser Ile Asn Ala Phe Arg Glu Thr Ala Lys
Gln Lys Leu Asp1430 1435 1440Pro Ala
Ala Ser Val Thr Gly Ser Lys Arg His Pro Lys Thr Lys1445
1450 1455Glu Lys Ala Gln Pro Leu Glu Asp Leu Ala Gly
Leu Lys Glu Leu1460 1465 1470Phe Gln
Thr Pro Val Cys Thr Asp Lys Pro Thr Thr His Glu Lys1475
1480 1485Thr Thr Lys Ile Ala Cys Arg Ser Gln Pro Asp
Pro Val Asp Thr1490 1495 1500Pro Thr
Ser Ser Lys Pro Gln Ser Lys Arg Ser Leu Arg Lys Val1505
1510 1515Asp Val Glu Glu Glu Phe Phe Ala Leu Arg Lys
Arg Thr Pro Ser1520 1525 1530Ala Gly
Lys Ala Met His Thr Pro Lys Pro Ala Val Ser Gly Glu1535
1540 1545Lys Asn Ile Tyr Ala Phe Met Gly Thr Pro Val
Gln Lys Leu Asp1550 1555 1560Leu Thr
Glu Asn Leu Thr Gly Ser Lys Arg Arg Leu Gln Thr Pro1565
1570 1575Lys Glu Lys Ala Gln Ala Leu Glu Asp Leu Ala
Gly Phe Lys Glu1580 1585 1590Leu Phe
Gln Thr Arg Gly His Thr Glu Glu Ser Met Thr Asn Asp1595
1600 1605Lys Thr Ala Lys Val Ala Cys Lys Ser Ser Gln
Pro Asp Pro Asp1610 1615 1620Lys Asn
Pro Ala Ser Ser Lys Arg Arg Leu Lys Thr Ser Leu Gly1625
1630 1635Lys Val Gly Val Lys Glu Glu Leu Leu Ala Val
Gly Lys Leu Thr1640 1645 1650Gln Thr
Ser Gly Glu Thr Thr His Thr His Thr Glu Pro Thr Gly1655
1660 1665Asp Gly Lys Ser Met Lys Ala Phe Met Glu Ser
Pro Lys Gln Ile1670 1675 1680Leu Asp
Ser Ala Ala Ser Leu Thr Gly Ser Lys Arg Gln Leu Arg1685
1690 1695Thr Pro Lys Gly Lys Ser Glu Val Pro Glu Asp
Leu Ala Gly Phe1700 1705 1710Ile Glu
Leu Phe Gln Thr Pro Ser His Thr Lys Glu Ser Met Thr1715
1720 1725Asn Glu Lys Thr Thr Lys Val Ser Tyr Arg Ala
Ser Gln Pro Asp1730 1735 1740Leu Val
Asp Thr Pro Thr Ser Ser Lys Pro Gln Pro Lys Arg Ser1745
1750 1755Leu Arg Lys Ala Asp Thr Glu Glu Glu Phe Leu
Ala Phe Arg Lys1760 1765 1770Gln Thr
Pro Ser Ala Gly Lys Ala Met His Thr Pro Lys Pro Ala1775
1780 1785Val Gly Glu Glu Lys Asp Ile Asn Thr Phe Leu
Gly Thr Pro Val1790 1795 1800Gln Lys
Leu Asp Gln Pro Gly Asn Leu Pro Gly Ser Asn Arg Arg1805
1810 1815Leu Gln Thr Arg Lys Glu Lys Ala Gln Ala Leu
Glu Glu Leu Thr1820 1825 1830Gly Phe
Arg Glu Leu Phe Gln Thr Pro Cys Thr Asp Asn Pro Thr1835
1840 1845Thr Asp Glu Lys Thr Thr Lys Lys Ile Leu Cys
Lys Ser Pro Gln1850 1855 1860Ser Asp
Pro Ala Asp Thr Pro Thr Asn Thr Lys Gln Arg Pro Lys1865
1870 1875Arg Ser Leu Lys Lys Ala Asp Val Glu Glu Glu
Phe Leu Ala Phe1880 1885 1890Arg Lys
Leu Thr Pro Ser Ala Gly Lys Ala Met His Thr Pro Lys1895
1900 1905Ala Ala Val Gly Glu Glu Lys Asp Ile Asn Thr
Phe Val Gly Thr1910 1915 1920Pro Val
Glu Lys Leu Asp Leu Leu Gly Asn Leu Pro Gly Ser Lys1925
1930 1935Arg Arg Pro Gln Thr Pro Lys Glu Lys Ala Lys
Ala Leu Glu Asp1940 1945 1950Leu Ala
Gly Phe Lys Glu Leu Phe Gln Thr Pro Gly His Thr Glu1955
1960 1965Glu Ser Met Thr Asp Asp Lys Ile Thr Glu Val
Ser Cys Lys Ser1970 1975 1980Pro Gln
Pro Asp Pro Val Lys Thr Pro Thr Ser Ser Lys Gln Arg1985
1990 1995Leu Lys Ile Ser Leu Gly Lys Val Gly Val Lys
Glu Glu Val Leu2000 2005 2010Pro Val
Gly Lys Leu Thr Gln Thr Ser Gly Lys Thr Thr Gln Thr2015
2020 2025His Arg Glu Thr Ala Gly Asp Gly Lys Ser Ile
Lys Ala Phe Lys2030 2035 2040Glu Ser
Ala Lys Gln Met Leu Asp Pro Ala Asn Tyr Gly Thr Gly2045
2050 2055Met Glu Arg Trp Pro Arg Thr Pro Lys Glu Glu
Ala Gln Ser Leu2060 2065 2070Glu Asp
Leu Ala Gly Phe Lys Glu Leu Phe Gln Thr Pro Asp His2075
2080 2085Thr Glu Glu Ser Thr Thr Asp Asp Lys Thr Thr
Lys Ile Ala Cys2090 2095 2100Lys Ser
Pro Pro Pro Glu Ser Met Asp Thr Pro Thr Ser Thr Arg2105
2110 2115Arg Arg Pro Lys Thr Pro Leu Gly Lys Arg Asp
Ile Val Glu Glu2120 2125 2130Leu Ser
Ala Leu Lys Gln Leu Thr Gln Thr Thr His Thr Asp Lys2135
2140 2145Val Pro Gly Asp Glu Asp Lys Gly Ile Asn Val
Phe Arg Glu Thr2150 2155 2160Ala Lys
Gln Lys Leu Asp Pro Ala Ala Ser Val Thr Gly Ser Lys2165
2170 2175Arg Gln Pro Arg Thr Pro Lys Gly Lys Ala Gln
Pro Leu Glu Asp2180 2185 2190Leu Ala
Gly Leu Lys Glu Leu Phe Gln Thr Pro Ile Cys Thr Asp2195
2200 2205Lys Pro Thr Thr His Glu Lys Thr Thr Lys Ile
Ala Cys Arg Ser2210 2215 2220Pro Gln
Pro Asp Pro Val Gly Thr Pro Thr Ile Phe Lys Pro Gln2225
2230 2235Ser Lys Arg Ser Leu Arg Lys Ala Asp Val Glu
Glu Glu Ser Leu2240 2245 2250Ala Leu
Arg Lys Arg Thr Pro Ser Val Gly Lys Ala Met Asp Thr2255
2260 2265Pro Lys Pro Ala Gly Gly Asp Glu Lys Asp Met
Lys Ala Phe Met2270 2275 2280Gly Thr
Pro Val Gln Lys Leu Asp Leu Pro Gly Asn Leu Pro Gly2285
2290 2295Ser Lys Arg Trp Pro Gln Thr Pro Lys Glu Lys
Ala Gln Ala Leu2300 2305 2310Glu Asp
Leu Ala Gly Phe Lys Glu Leu Phe Gln Thr Pro Gly Thr2315
2320 2325Asp Lys Pro Thr Thr Asp Glu Lys Thr Thr Lys
Ile Ala Cys Lys2330 2335 2340Ser Pro
Gln Pro Asp Pro Val Asp Thr Pro Ala Ser Thr Lys Gln2345
2350 2355Arg Pro Lys Arg Asn Leu Arg Lys Ala Asp Val
Glu Glu Glu Phe2360 2365 2370Leu Ala
Leu Arg Lys Arg Thr Pro Ser Ala Gly Lys Ala Met Asp2375
2380 2385Thr Pro Lys Pro Ala Val Ser Asp Glu Lys Asn
Ile Asn Thr Phe2390 2395 2400Val Glu
Thr Pro Val Gln Lys Leu Asp Leu Leu Gly Asn Leu Pro2405
2410 2415Gly Ser Lys Arg Gln Pro Gln Thr Pro Lys Glu
Lys Ala Glu Ala2420 2425 2430Leu Glu
Asp Leu Val Gly Phe Lys Glu Leu Phe Gln Thr Pro Gly2435
2440 2445His Thr Glu Glu Ser Met Thr Asp Asp Lys Ile
Thr Glu Val Ser2450 2455 2460Cys Lys
Ser Pro Gln Pro Glu Ser Phe Lys Thr Ser Arg Ser Ser2465
2470 2475Lys Gln Arg Leu Lys Ile Pro Leu Val Lys Val
Asp Met Lys Glu2480 2485 2490Glu Pro
Leu Ala Val Ser Lys Leu Thr Arg Thr Ser Gly Glu Thr2495
2500 2505Thr Gln Thr His Thr Glu Pro Thr Gly Asp Ser
Lys Ser Ile Lys2510 2515 2520Ala Phe
Lys Glu Ser Pro Lys Gln Ile Leu Asp Pro Ala Ala Ser2525
2530 2535Val Thr Gly Ser Arg Arg Gln Leu Arg Thr Arg
Lys Glu Lys Ala2540 2545 2550Arg Ala
Leu Glu Asp Leu Val Asp Phe Lys Glu Leu Phe Ser Ala2555
2560 2565Pro Gly His Thr Glu Glu Ser Met Thr Ile Asp
Lys Asn Thr Lys2570 2575 2580Ile Pro
Cys Lys Ser Pro Pro Pro Glu Leu Thr Asp Thr Ala Thr2585
2590 2595Ser Thr Lys Arg Cys Pro Lys Thr Arg Pro Arg
Lys Glu Val Lys2600 2605 2610Glu Glu
Leu Ser Ala Val Glu Arg Leu Thr Gln Thr Ser Gly Gln2615
2620 2625Ser Thr His Thr His Lys Glu Pro Ala Ser Gly
Asp Glu Gly Ile2630 2635 2640Lys Val
Leu Lys Gln Arg Ala Lys Lys Lys Pro Asn Pro Val Glu2645
2650 2655Glu Glu Pro Ser Arg Arg Arg Pro Arg Ala Pro
Lys Glu Lys Ala2660 2665 2670Gln Pro
Leu Glu Asp Leu Ala Gly Phe Thr Glu Leu Ser Glu Thr2675
2680 2685Ser Gly His Thr Gln Glu Ser Leu Thr Ala Gly
Lys Ala Thr Lys2690 2695 2700Ile Pro
Cys Glu Ser Pro Pro Leu Glu Val Val Asp Thr Thr Ala2705
2710 2715Ser Thr Lys Arg His Leu Arg Thr Arg Val Gln
Lys Val Gln Val2720 2725 2730Lys Glu
Glu Pro Ser Ala Val Lys Phe Thr Gln Thr Ser Gly Glu2735
2740 2745Thr Thr Asp Ala Asp Lys Glu Pro Ala Gly Glu
Asp Lys Gly Ile2750 2755 2760Lys Ala
Leu Lys Glu Ser Ala Lys Gln Thr Pro Ala Pro Ala Ala2765
2770 2775Ser Val Thr Gly Ser Arg Arg Arg Pro Arg Ala
Pro Arg Glu Ser2780 2785 2790Ala Gln
Ala Ile Glu Asp Leu Ala Gly Phe Lys Asp Pro Ala Ala2795
2800 2805Gly His Thr Glu Glu Ser Met Thr Asp Asp Lys
Thr Thr Lys Ile2810 2815 2820Pro Cys
Lys Ser Ser Pro Glu Leu Glu Asp Thr Ala Thr Ser Ser2825
2830 2835Lys Arg Arg Pro Arg Thr Arg Ala Gln Lys Val
Glu Val Lys Glu2840 2845 2850Glu Leu
Leu Ala Val Gly Lys Leu Thr Gln Thr Ser Gly Glu Thr2855
2860 2865Thr His Thr Asp Lys Glu Pro Val Gly Glu Gly
Lys Gly Thr Lys2870 2875 2880Ala Phe
Lys Gln Pro Ala Lys Arg Lys Leu Asp Ala Glu Asp Val2885
2890 2895Ile Gly Ser Arg Arg Gln Pro Arg Ala Pro Lys
Glu Lys Ala Gln2900 2905 2910Pro Leu
Glu Asp Leu Ala Ser Phe Gln Glu Leu Ser Gln Thr Pro2915
2920 2925Gly His Thr Glu Glu Leu Ala Asn Gly Ala Ala
Asp Ser Phe Thr2930 2935 2940Ser Ala
Pro Lys Gln Thr Pro Asp Ser Gly Lys Pro Leu Lys Ile2945
2950 2955Ser Arg Arg Val Leu Arg Ala Pro Lys Val Glu
Pro Val Gly Asp2960 2965 2970Val Val
Ser Thr Arg Asp Pro Val Lys Ser Gln Ser Lys Ser Asn2975
2980 2985Thr Ser Leu Pro Pro Leu Pro Phe Lys Arg Gly
Gly Gly Lys Asp2990 2995 3000Gly Ser
Val Thr Gly Thr Lys Arg Leu Arg Cys Met Pro Ala Pro3005
3010 3015Glu Glu Ile Val Glu Glu Leu Pro Ala Ser Lys
Lys Gln Arg Val3020 3025 3030Ala Pro
Arg Ala Arg Gly Lys Ser Ser Glu Pro Val Val Ile Met3035
3040 3045Lys Arg Ser Leu Arg Thr Ser Ala Lys Arg Ile
Glu Pro Ala Glu3050 3055 3060Glu Leu
Asn Ser Asn Asp Met Lys Thr Asn Lys Glu Glu His Lys3065
3070 3075Leu Gln Asp Ser Val Pro Glu Asn Lys Gly Ile
Ser Leu Arg Ser3080 3085 3090Arg Arg
Gln Asn Lys Thr Glu Ala Glu Gln Gln Ile Thr Glu Val3095
3100 3105Phe Val Leu Ala Glu Arg Ile Glu Ile Asn Arg
Asn Glu Lys Lys3110 3115 3120Pro Met
Lys Thr Ser Pro Glu Met Asp Ile Gln Asn Pro Asp Asp3125
3130 3135Gly Ala Arg Lys Pro Ile Pro Arg Asp Lys Val
Thr Glu Asn Lys3140 3145 3150Arg Cys
Leu Arg Ser Ala Arg Gln Asn Glu Ser Ser Gln Pro Lys3155
3160 3165Val Ala Glu Glu Ser Gly Gly Gln Lys Ser Ala
Lys Val Leu Met3170 3175 3180Gln Asn
Gln Lys Gly Lys Gly Glu Ala Gly Asn Ser Asp Ser Met3185
3190 3195Cys Leu Arg Ser Arg Lys Thr Lys Ser Gln Pro
Ala Ala Ser Thr3200 3205 3210Leu Glu
Ser Lys Ser Val Gln Arg Val Thr Arg Ser Val Lys Arg3215
3220 3225Cys Ala Glu Asn Pro Lys Lys Ala Glu Asp Asn
Val Cys Val Lys3230 3235 3240Lys Ile
Arg Thr Arg Ser His Arg Asp Ser Glu Asp Ile3245 3250
3255
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20140356842 | METHOD AND SYSTEM FOR QUANTITATIVE ASSESSMENT OF VISUAL MOTOR RESPONSE |
20140356841 | METHOD AND SYSTEM FOR QUANTITATIVE ASSESSMENT OF FUNCTIONAL IMPAIRMENT |
20140356840 | COLLABORATIVE AND INTERACTIVE LEARNING |
20140356839 | METHOD AND SYSTEM FOR DEVELOPING PROCESS, PROJECT OR PROBLEM-BASED LEARNING SYSTEMS WITHIN A SEMANTIC COLLABORATIVE SOCIAL NETWORK |
20140356838 | Education Game Systems and Methods |