Patent application title: Plant defense signal peptides
Inventors:
Clarence A. Ryan (Pullman, WA, US)
Patricia Louise Ryan (Pullman, WA, US)
Gregory L. Pearce (Palouse, WA, US)
Alisa Huffaker (Pullman, WA, US)
Yube Yamaguchi (Pullman, WA, US)
IPC8 Class: AA01H500FI
USPC Class:
800298
Class name: Multicellular living organisms and unmodified parts thereof and related processes plant, seedling, plant seed, or plant part, per se higher plant, seedling, plant seed, or plant part (i.e., angiosperms or gymnosperms)
Publication date: 2009-12-03
Patent application number: 20090300802
Claims:
1. An isolated polynucleotide encoding a polypeptide comprising a 10 amino
acid peptide motif wherein said 10 amino acid peptide motif consists of a
glycine residue at position C-7 of said peptide, wherein said polypeptide
causes a change of at least 0.2 pH units at a concentration of 25 pM/ml
in a plant cell suspension, wherein said polynucleotide is isolated from
genomic DNA, or synthesized based on genomic DNA, wherein said genomic
DNA encodes three or more structural elements selected from the group
consisting of: a first EDKR repeat, a 1-5-10 helix motif, a serine
repeat, a second EDKR repeat, and a K/R positive charge region, wherein
said structural elements are positioned 5' of said polynucleotide.
2. A transgenic plant comprising said isolated polynucleotide of claim 1.
3. The isolated polynucleotide of claim 1, wherein said isolated polynucleotide encodes a defense signal peptide selected from the group consisting of TcPep1, GhPep2, SePep1, PtPep2, VvPep2, VvPep3, HaPep1, HaPep2, OsPep3b, OsPep8, SoPep1a, SoPep2a, PvPep1, OsPep3c, OsPep4b, OsPep4c, OsPep5b, OsPep5c, OsPep6b, ZmPep4b, ZmPep4c, TaPep3b, TaPep3c, HvPep1b, HvPep1c, SoPep1b, SoPep1c, SoPep1d, SoPep1e, SoPep1f, SoPep2b, SoPep2c, SoPep2d, and SoPep2e.
4. A transgenic plant comprising said isolated polynucleotide of claim 3.
5. The polypeptide of claim 1, wherein said polypeptide is an isolated polypeptide.
6. A transgenic plant comprising said isolated polypeptide of claim 5.
7. The polypeptide of claim 5, wherein said isolated polypeptide comprises a defense signal peptide selected from the group consisting of TcPep1, GhPep2, SePep1, PtPep2, VvPep2, VvPep3, HaPep1, HaPep2, OsPep3b, OsPep8, SoPep1a, SoPep2a, PvPep1, OsPep3c, OsPep4b, OsPep4c, OsPep5b, OsPep5c, OsPep6b, ZmPep4b, ZmPep4c, TaPep3b, TaPep3c, HvPep1b, HvPep1c, SoPep1b, SoPep1c, SoPep1d, SoPep1e, SoPep1f, SoPep2b, SoPep2c, SoPep2d, and SoPep2e.
8. A transgenic plant comprising said isolated polypeptide of claim 7.
9. The polypeptide of claim 5, wherein said polypeptide is a propeptide.
10. The propeptide of claim 9, wherein said propeptide is between 75 and 154 amino acid residues in length.
11. The propeptide of claim 9, wherein said propeptide comprises one or more defense signal peptides selected from the group consisting of TcPep1, GhPep2, SePep1, PtPep2, VvPep2, VvPep3, HaPep1, HaPep2, OsPep3b, OsPep8, SoPep1a, SoPep2a, PvPep1, OsPep3c, OsPep4b, OsPep4c, OsPep5b, OsPep5c, OsPep6b, ZmPep4b, ZmPep4c, TaPep3b, TaPep3c, HvPep1b, HvPep1c, SoPep1b, SoPep1c, SoPep1d, SoPep1e, SoPep1f, SoPep2b, SoPep2c, SoPep2d, and SoPep2e.
12. A transgenic plant comprising said propeptide of claim 11.
13. The propeptide of claim 9, wherein said propeptide is processed in a plant to produced one or more defense signal peptides selected from the group consisting of TcPep1, GhPep2, SePep1, PtPep2, VvPep2, VvPep3, HaPep1, HaPep2, OsPep3b, OsPep8, SoPep1a, SoPep2a, PvPep1, OsPep3c, OsPep4b, OsPep4c, OsPep5b, OsPep5c, OsPep6b, ZmPep4b, ZmPep4c, TaPep3b, TaPep3c, HvPep1b, HvPep1c, SoPep1b, SoPep1c, SoPep1d, SoPep1e, SoPep1f, SoPep2b, SoPep2c, SoPep2d, and SoPep2e.
14. An isolated polynucleotide encoding a polypeptide comprising a defense signal peptide receptor protein, wherein said defense signal peptide receptor protein is selected from the group consisting of AtPepR1, AtPepR2, GmPepR1a, GmPepR1b, GmPepR2, P93194 (In), 803073 (Pt), 765043 (Pt), CAO23192 (Vv), OsPepR1, OsPepR2, GRMZM2G011806 (Zm), GRMZM2G128602 (Zm), and Sb07g021950 (Sb).
15. A transgenic plant comprising said isolated polynucleotide of claim 14.
16. The isolated polypeptide of claim 14.
17. A transgenic plant comprising said isolated polypeptide of claim 16.
18. The transgenic plant of claim 17, further comprising one or more defense signal peptides selected from the group consisting of TcPep1, GhPep2, SePep1, PtPep2, VvPep2, VvPep3, HaPep1, HaPep2, OsPep3b, OsPep8, SoPep1a, SoPep2a, PvPep1, OsPep3c, OsPep4b, OsPep4c, OsPep5b, OsPep5c, OsPep6b, ZmPep4b, ZmPep4c, TaPep3b, TaPep3c, HvPep1b, HvPep1c, SoPep1b, SoPep1c, SoPep1d, SoPep1e, SoPep1f, SoPep2b, SoPep2c, SoPep2d, and SoPep2e.
19. The isolated polynucleotide of claim 1, further comprising a promoter, wherein expression of said isolated polynucleotide in a cell of a plant causes said plant to exhibit an improvement compared to a control plant lacking said polynucleotide, wherein said improvement is selected from the group consisting of improved yield of plant product, reduced disease symptoms, and enhanced resistance to disease infestation.
20. A composition comprising one or more of said defense signal peptides of claim 7 and a biologically acceptable carrier.
21. A plant comprising said composition of claim 20 applied to a surface of said plant.
22. A seed comprising said composition of claim 20 applied to a surface of said seed.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001]This application is a Continuation-in-Part of U.S. patent application Ser. No. 11/795,733, filed Jun. 4, 2008, which is a national stage entry of PCT/US2006/002661, filed Jan. 24, 2006, which claims priority to U.S. Provisional Patent Application No. 60/647,708, filed Jan. 26, 2005, this application also claims the benefit of U.S. Provisional Patent Application No. 61/124,199, filed Apr. 14, 2008, all of which are hereby incorporated by reference in their entirety.
FIELD
[0003]The present disclosure relates to materials and methods for enhancing plant disease resistance.
BACKGROUND
[0004]Plants are exposed to numerous denizens of their environment, including bacteria, viruses, fungi, and nematodes. Although many of the interactions between these organisms and plants, particularly via the roots of the plants, are beneficial, many of the interactions are harmful to the plants. The decimation of agricultural crops, ornamental plants, and other plants by diseases caused by plant pathogens is a worldwide problem that has enormous economic impact.
[0005]Damage to plants is caused by pathogens of multiple genera. These genera include Alternaria, Ascochyta, Aspergillus, Botrytis, Cercospora, Colletotrichum, Diplodia, Erwinia, Erysiphe, Fusarium, Gaeumanomyces, Helminthosporium, Macrophomina, Magnaporthe, Mycosphaerella, Nectria, Peronospora, Phoma, Phymatotrichum, Phytophthora, Plasmopara, Podosphaera, Pseudomonas, Puccinia, Puthium, Pyrenophora, Pyricularia, Pythium, Rhizoctonia, Scerotium, Sclerotinia, Septoria, Thielaviopsis, Uncinula, Venturia, Verticillium, and Xanthomonas.
[0006]Many chemical compounds have been developed to combat these various pathogens. The activity of these compounds is typically limited to several species. As a consequence of the large number and diversity of plant pathogens, these compounds have not provided an effective solution to limiting infections in plants.
[0007]An alternative approach to controlling pathogenic infections in plants involves exploiting the natural defense mechanisms of plants to confer resistance. Many plants have developed natural resistance to some pathogens. However, resistance may be limited to certain genera of pathogens, or crops of agronomic interest may not exhibit sufficient resistance. Thus, natural plant defenses often do not provide sufficient protection against pathogens. By broadening the spectrum of pathogen defense or strengthening the defense response, it may be possible to enhance existing resistance mechanisms and promote pathogen defense in otherwise susceptible plants.
[0008]When present and active, the natural defense mechanisms of plants can be highly effective in preventing pathogen colonization and disease. Resistance is multi-tiered, with passive and active, constitutive and inducible elements.
[0009]Following the invasion of a plant by a potential pathogen, the pathogen either successfully proliferates in the host, causing associated disease symptoms, or its growth is halted by the defenses of the host plant. One such defense is the hypersensitive response (HR), rapid apoptotic cell death near the site of the infection that correlates with the generation of activated oxygen species, production of antimicrobial compounds, and reinforcement of host cell walls (Dixon and Lamb, Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:339-367, 1990). Other defenses include systemic acquired resistance, which effectively protects the plant against subsequent attack by a broad range of pathogens (Ryals et al., Proc. Natl. Acad. Sci. USA 92:4202-4205, 1995).
[0010]Pathogens that elicit an HR on a given host are "avirulent" on that host, the host is "resistant," and the plant-pathogen interaction is "incompatible." If a pathogen proliferates and causes disease to the host, the pathogen is "virulent," the host is "susceptible," and the plant-pathogen interaction is "compatible."
[0011]In many cases in which strains ("races") of a particular fungal or bacterial pathogen differ regarding virulence on various cultivars (or wild accessions) of a particular host species, avirulent strains of the pathogen, but not virulent strains, possess one or more avirulence (avr) genes corresponding to "resistance" genes in the host. Resistance gene products are activated in response to pathogen signal molecules termed elicitors, production of which is controlled by pathogen avirulence genes. This observation is the basis for the "gene-for-gene" model of plant disease resistance (Crute et al., pp. 197-309 in Mechanisms of Resistance to Plant Disease, Fraser, ed., 1985; Ellingboe, Annu. Rev. Phytopathol. 19:125-143, 1981; Flor, Annu. Rev. Phytopathol. 9:275-296, 1971; and Keen et al., in Application of Biotechnology to Plant Pathogen Control, Chet, ed., John Wiley & Sons, 1993, pp. 65-88).
[0012]Normally avirulence and resistance genes are organized in functional pairs. A given resistance gene is generally effective only against pathogen strains that express a specific cognate avirulence gene (Flor, Annu. Rev. Phytopathol. 9:275-296, 1971; Keen, Annu. Rev. Genet. 24:447-463, 1990). However, exceptions to this rule exist. For example the Arabidopsis RPM1 gene product (Grant et al., Science 269:843-846, 1995) is involved in the recognition of elicitors produced by P. syringae expressing the avirulence genes avrRpm1 or avrB (Bisgrove et al., Plant Cell 6:927-933, 1994), suggesting that resistance gene products may function as common points in transduction of distinct pathogen signals.
[0013]A number of avirulence genes have been cloned. Many cloned avirulence genes have been shown to correspond to individual resistance genes in the cognate host plants and confer an avirulent phenotype when transferred to an otherwise virulent strain. A number of plant disease resistance genes have also been cloned. Similar features have been discovered among many of these resistance genes, in spite of the diversity of pathogens against which they act. These features include a leucine-rich-repeat (LRR), a motif found in a multitude of eukaryotic proteins with roles in signal transduction (Kobe and Deisenhofer, Trends Biochem. Sci. 19:415-421, 1994). The LRR motif is thought to be involved in protein-protein interactions and may allow interaction with other proteins that are involved in plant disease resistance. In addition, sequences predicted to encode nucleotide binding sites and leucine zippers are shared among many resistance genes (Dangl, Cell 80:383-386, 1995; Staskawicz et al., Science 268:661-667, 1995). These motifs are present and similarly organized among resistance gene products from plants as diverse as tobacco, tomato, rice, flax, and Arabidopsis, suggesting a common mechanism underlying disease resistance signal transduction throughout the plant kingdom.
[0014]The local perception of pathogen attack is conveyed to distant tissues via a transmissible signal that involves salicylic acid (SA), further activating gene expression and conditioning a state known as systemic acquired resistance (SAR). It has subsequently been found that resistance can be expressed near the region of pathogen attack, as local acquired resistance, or can be induced systemically, depending on triggering signal and plant species. Thus, the systemic and local responses collectively are referred to as acquired resistance (AR). Establishment of AR is a powerful line of plant defense because it can provide broad-spectrum resistance against viral, bacterial, and fungal challenges that would otherwise cause disease. The AR response triggers the transcriptional activation of a suite of genes encoding pathogenesis-related (PR) proteins. Included among these are hydrolases, cell-wall strengthening proteins, proteins involved in oxidative burst, the combination of which are believed to promote heightened resistance. Biochemical and genetic analyses have identified genes and molecular signals associated with acquired resistance. The Npr1/Nim1 gene plays a key regulatory role in the AR defense in Arabidopsis against a broad spectrum of fungal and bacterial pathogens (WO 98/06748; WO 94/16077; WO 98/26082). The central importance of Npr1 in dicots was further substantiated by transgenic overexpression of the cloned gene, which led to heightened disease resistance in Arabidopsis against both fungal and bacterial pathogens (WO 98/06748).
[0015]Although the bulk of AR research has defined the pathway in dicotyledonous plants, monocotyledonous plants, such as wheat, rice, and barley, have an inducible pathway that protects against pathogen attack. Acquired resistance can be conditioned by different external stimuli, including avirulent pathogen challenge, pathogen elicitor exposure, and chemical treatments, including application of SA or SA analogs, such as 2,6-dichloroisonicotinic acid (INA) or benzo(1,2,3) thiodiazole-7-carbothioic acid S-methyl ester (BTH). Given the inducibility of the AR pathway by the same classes of activating compounds in monocot and dicot plants, there is likely to be partial conservation of signaling pathways, as subsets of PR genes appear to be induced in both groups. In monocots, induced acquired resistance is broad-spectrum, extending to fungal and bacterial pests, irrespective of pathogen race, with activated resistance persisting for weeks to months. Thus, manipulation of the AR pathway in plants may promote resistance to pathogens for which there exists no genetic source of resistance.
[0016]Thus, there is a need to identify genes that may play key roles in disease defense. Expression of these genes in transgenic plants may enhance the level of disease resistance against certain pathogens.
[0017]Within the past decade, the mechanisms by which plants activate innate immunity have been found to share a number of similarities with the innate immune responses of animals (Nimchuk et al., Annu. Rev. Gen. 37:579-609, 2003; Jones and Takemoto, Curr. Opin. Immun. 16:48-62, 2004; Nurnberger and Scheel, Trends Plant Sci. 8:372-379, 2001; Numberger et al., Immun. Rev. 198:249-266, 2004; Guttman, Biotech. Adv. 22:363-382, 2004; Staskawicz et al., Science 292:2285-2289, 2001; Nurnberger and Brunner, Curr. Opin. Plant Biol. 5:1-7, 2002). Innate immunity is initiated in animals and plants through the recognition of a variety of pathogen associated molecules that in animals are called "pathogen-associated molecular patterns," or PAMPS, and in plants are called elicitors. Peptides derived from pathogens can be powerful elicitors of plant defense responses (Hahlbrock et al., Proc. Natl. Acad. Sci. USA 92:4150-4157, 1995; van den Askerveken et al., Plant Physiol. 103:91-96, 1993; Kammpren, Curr. Opin. Plant Biol. 4:295-300, 2001; Kunze et al., Plant Cell, 16:3496-3507, 2004; Navarro et al., Plant Physiol. 135:1113-1128, 2004; Fellbrich et al., Plant J. 32:375-390, 2002); He et al., Cell 73:1255-1266, 1993).
[0018]We previously identified a number of novel defense signal peptides from dicot and monocot plant species that are useful for enhancing plant resistance against various biotic or abiotic stresses, including, but not limited to, disease resistance. See U.S. provisional patent application Ser. No. 06/647,708, filed Jan. 26, 2005, and PCT/US2006/002661, filed Jan. 24, 2006.
BRIEF SUMMARY
[0019]An embodiment provides for an isolated polynucleotide that encodes a polypeptide comprising a 10 amino acid peptide motif, where the 10 amino acid peptide motif consists of a glycine residue at position C-7 of the peptide, and the polypeptide causes a change of at least 0.2 pH units at a concentration of 25 pM/ml in a plant cell suspension. The polynucleotide may be isolated from genomic DNA, or synthesized based on genomic DNA, where the genomic DNA encodes three or more structural elements including a first EDKR repeat, a 1-5-10 helix motif, a serine repeat, a second EDKR repeat, and a K/R positive charge region, where the structural elements are positioned 5' upstream of the polynucleotide. An additional embodiment provides for a transgenic plant comprising the isolated polynucleotide.
[0020]According to another embodiment, the isolated polynucleotide may encode one more defense signal peptides including TcPep1, GhPep2, SePep1, PtPep2, VvPep2, VvPep3, HaPep1, HaPep2, OsPep3b, OsPep8, SoPep1a, SoPep2a, PvPep1, OsPep3c, OsPep4b, OsPep4c, OsPep5b, OsPep5c, OsPep6b, ZmPep4b, ZmPep4c, TaPep3b, TaPep3c, HvPep1b, HvPep1c, SoPep1b, SoPep1c, SoPep1d, SoPep1e, SoPep1f, SoPep2b, SoPep2c, SoPep2d, and SoPep2e. An additional embodiment provides for a transgenic plant comprising one or more of the defense signal peptides.
[0021]According to another aspect, an isolated polypeptide is provided that comprises a 10 amino acid peptide motif, where the 10 amino acid peptide motif consists of a glycine residue at position C-7 of the peptide, and the polypeptide causes a change of at least 0.2 pH units at a concentration of 25 pM/ml in a plant cell suspension. An additional embodiment provides for a transgenic plant comprising the isolated polypeptide.
[0022]According to another embodiment, the isolated polypeptide may encode one more defense signal peptides including TcPep1, GhPep2, SePep1, PtPep2, VvPep2, VvPep3, HaPep1, HaPep2, OsPep3b, OsPep8, SoPep1a, SoPep2a, PvPep1, OsPep3c, OsPep4b, OsPep4c, OsPep5b, OsPep5c, OsPep6b, ZmPep4b, ZmPep4c, TaPep3b, TaPep3c, HvPep1b, HvPep1c, SoPep1b, SoPep1c, SoPep1d, SoPep1e, SoPep1f, SoPep2b, SoPep2c, SoPep2d, and SoPep2e. An additional embodiment provides for a transgenic plant comprising one or more of the defense signal peptides.
[0023]According to a further embodiment, the polypeptide is a propeptide. In a preferred embodiment, the propeptide is between 75 and 154 amino acid residues in length and may comprise one or more defense signal peptides including TcPep1, GhPep2, SePep1, PtPep2, VvPep2, VvPep3, HaPep1, HaPep2, OsPep3b, OsPep8, SoPep1a, SoPep2a, PvPep1, OsPep3c, OsPep4b, OsPep4c, OsPep5b, OsPep5c, OsPep6b, ZmPep4b, ZmPep4c, TaPep3b, TaPep3c, HvPep1b, HvPep1c, SoPep1b, SoPep1c, SoPep1d, SoPep1e, SoPep1f, SoPep2b, SoPep2c, SoPep2d, and SoPep2e. An additional embodiment provides for a transgenic plant comprising the propeptide.
[0024]According to another embodiment, the propeptide may be processed in a plant to produced one or more defense signal peptides including TcPep1, GhPep2, SePep1, PtPep2, VvPep2, VvPep3, HaPep1, HaPep2, OsPep3b, OsPep8, SoPep1a, SoPep2a, PvPep1, OsPep3c, OsPep4b, OsPep4c, OsPep5b, OsPep5c, OsPep6b, ZmPep4b, ZmPep4c, TaPep3b, TaPep3c, HvPep1b, HvPep1c, SoPep1b, SoPep1c, SoPep1d, SoPep1e, SoPep1f, SoPep2b, SoPep2c, SoPep2d, and SoPep2e.
[0025]According to another aspect, an isolated polynucleotide is provided that encodes a polypeptide comprising a defense signal peptide receptor protein, where the defense signal peptide receptor protein may include AtPepR1, AtPepR2, GmPepR1a, GmPepR1b, GmPepR2, P93194 (In), 803073 (Pt), 765043 (Pt), CAO23192 (Vv), OsPepR1, OsPepR2, GRMZM2G011806 (Zm), GRMZM2G128602 (Zm), and Sb07g021950 (Sb). An additional embodiment provides for a transgenic plant comprising the isolated polynucleotide.
[0026]According to an additional embodiment, an isolated polypeptide is provided that comprises a defense signal peptide receptor protein, where the defense signal peptide receptor protein may include AtPepR1, AtPepR2, GmPepR1a, GmPepR1b, GmPepR2, P93194 (In), 803073 (Pt), 765043 (Pt), CAO23192 (Vv), OsPepR1, OsPepR2, GRMZM2G011806 (Zm), GRMZM2G128602 (Zm), and Sb07g021950 (Sb). An additional embodiment provides for a transgenic plant comprising the isolated polypeptide.
[0027]According to a further embodiment, the transgenic plant may further comprise one or more defense signal peptides including TcPep1, GhPep2, SePep1, PtPep2, VvPep2, VvPep3, HaPep1, HaPep2, OsPep3b, OsPep8, SoPep1a, SoPep2a, PvPep1, OsPep3c, OsPep4b, OsPep4c, OsPep5b, OsPep5c, OsPep6b, ZmPep4b, ZmPep4c, TaPep3b, TaPep3c, HvPep1b, HvPep1c, SoPep1b, SoPep1c, SoPep1d, SoPep1e, SoPep1f, SoPep2b, SoPep2c, SoPep2d, and SoPep2e.
[0028]According to another embodiment, an isolated polynucleotide is provided that encodes a polypeptide comprising a 10 amino acid peptide motif, where the 10 amino acid peptide motif consists of a glycine residue at position C-7 of the peptide, and the polypeptide causes a change of at least 0.2 pH units at a concentration of 25 pM/ml in a plant cell suspension, where the isolated polynucleotide further comprises a promoter, where the expression of the isolated polynucleotide in a cell of a plant causes the plant to exhibit an improvement compared to a control plant lacking the polynucleotide. The improvement may be an improved yield of plant product, reduced disease symptoms, or enhanced resistance to disease infestation.
[0029]According to an additional embodiment, a composition is provided comprising one or more defense signal peptides and a biologically acceptable carrier. The one or more defense signal peptides may include TcPep1, GhPep2, SePep1, PtPep2, VvPep2, VvPep3, HaPep1, HaPep2, OsPep3b, OsPep8, SoPep1a, SoPep2a, PvPep1, OsPep3c, OsPep4b, OsPep4c, OsPep5b, OsPep5c, OsPep6b, ZmPep4b, ZmPep4c, TaPep3b, TaPep3c, HvPep1b, HvPep1c, SoPep1b, SoPep1c, SoPep1d, SoPep1e, SoPep1f, SoPep2b, SoPep2c, SoPep2d, and SoPep2e. In a further embodiment, a plant is provided where a surface of the plant has been treated with the composition. In yet a further embodiment, a seed is provided where the surface of the seed has been treated with the composition.
[0030]According to another aspect, compositions are provided that comprise one or more isolated defense signal peptides that are 10 or more amino acid residues in length and that have substantial defense signal peptide activity. Such defense signal peptides may be longer, e.g., 15, 20, 23 or more amino acid residues in length. For example, they are more easily synthesized. Accordingly, according to various embodiments, the defense signal peptide is between about 10 and about 50 amino acid residues in length, or between about 15 and about 50 amino acid residues in length. However, longer defense signal peptides may be made and used in the practice.
[0031]According to another embodiment, compositions are provided that comprise one or more polypeptides that are processed in a plant cell to produce defense signal peptides, for example, a defense signal peptide that comprises a sequence having at least 75 percent homology, or 80 percent homology, or 85 percent homology, or 90 percent homology, or complete homology with a polypeptide selected from the group consisting of TcPep1, GhPep2, SePep1, PtPep2, VvPep2, VvPep3, HaPep1, HaPep2, OsPep3b, OsPep8, SoPep1a, SoPep2a, PvPep1, OsPep3c, OsPep4b, OsPep4c, OsPep5b, OsPep5c, OsPep6b, ZmPep4b, ZmPep4c, TaPep3b, TaPep3c, HvPep1b, HvPep1c, SoPep1b, SoPep1c, SoPep1d, SoPep1e, SoPep1f, SoPep2b, SoPep2c, SoPep2d, and SoPep2e, that is, any of the plant defense peptides provided in Tables 2 and 3. Alternatively, the defense signal peptide comprises a sequence having at least 90 percent homology, or complete homology, with a dicot or monocot defense signal peptide consensus sequence, as discussed herein.
[0032]Such compositions comprising peptide or polypeptide compositions may further comprise biologically acceptable carriers and/or other substances used in formulating peptides and polypeptides. For example, such compositions may be agricultural formulations that are suitable for application to plants. Accordingly, in another embodiment, plants or seeds of plants are provided that comprise such a composition applied to a plant or seed surface, respectively. When applied to plants under suitable conditions, such compositions induce the plants' innate immunity and enhance their defense against attack by pathogens.
[0033]According to another aspect, polynucleotides that express defense signal peptides (or polypeptides, including, for example, pro-forms of defense signal peptides that are processed in plant cells to produce defense signal peptides) in plants are provided. Transgenic expression of such defense signal peptides induces the plants' innate immunity. Accordingly, one embodiment is an isolated polynucleotide comprising a sequence that encodes a defense signal peptide (as described above) operably linked to a plant promoter. Expression of the polynucleotide in a cell of a plant causes the plant to exhibit an improvement compared to a control plant lacking the polynucleotide that is selected from the group consisting of improved yield of plant product, reduced disease symptoms, and enhanced resistance to disease infestation. The encoded defense signal peptide is 10 or more, or 15 or more, or 20 or more, 23 or more amino acid residues in length. Alternatively, such a polynucleotide comprises a sequence that encodes a polypeptide that is processed in a plant cell to produce the defense signal peptide.
[0034]According to one embodiment, such polynucleotides encoding defense signal peptides have at least 80 percent, or at least 90 percent, or at least 95 percent, or complete sequence similarity to a polynucleotide sequence that encodes a plant defense signal peptide selected from the group consisting of TcPep1, GhPep2, SePep1, PtPep2, VvPep2, VvPep3, HaPep1, HaPep2, OsPep3b, OsPep8, SoPep1a, SoPep2a, PvPep1, OsPep3c, OsPep4b, OsPep4c, OsPep5b, OsPep5c, OsPep6b, ZmPep4b, ZmPep4c, TaPep3b, TaPep3c, HvPep1b, HvPep1c, SoPep1b, SoPep1c, SoPep1d, SoPep1e, SoPep1f, SoPep2b, SoPep2c, SoPep2d, and SoPep2e, that is, any of the plant defense peptides provided in Tables 2 and 3.
[0035]According to another embodiment, an isolated polynucleotide is provided that comprises a sequence that encodes a defense signal peptide operably linked to a heterologous promoter. Polynucleotides for expression in plant, bacterial, fungal (including yeast), insect, and other types of cells are contemplated. In one embodiment, expression of the polynucleotide in a cell of a plant causes the plant to exhibit an improvement compared to a control plant lacking the polynucleotide that is selected from the group consisting of improved yield of plant product, reduced disease symptoms, and enhanced resistance to disease infestation. The heterologous promoter may, for example, be a constitutive promoter or a non-constitutive promoter, including, but not limited to, an organ- or tissue-specific promoter or an inducible promoter.
[0036]According to another embodiment, cells are provided that comprise one or more of the above-mentioned polynucleotides, including, but not limited to, plant, bacterial, fungal (including yeast), and insect cells. According to another embodiment, plants that comprise such cells are provided, including, but not limited to, plants such as: acacia, alfalfa, aneth, apple, apricot, artichoke, arugula, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussels sprouts, cabbage, cantaloupe, carrot, cassaya, castorbean, cauliflower, celery, cherry, chicory, cilantro, citrus, clementines, clover, coconut, coffee, corn, cotton, cucumber, Douglas fir, eggplant, endive, escarole, eucalyptus, fennel, figs, garlic, gourd, grape, grapefruit, honey dew, jicama, kiwifruit, lettuce, leeks, lemon, lime, Loblolly pine, linseed, mango, melon, mushroom, nectarine, nut, oat, oil palm, oil seed rape, okra, olive, onion, orange, an ornamental plant, palm, papaya, parsley, parsnip, pea, peach, peanut, pear, pepper, persimmon, pine, pineapple, plantain, plum, pomegranate, poplar, potato, pumpkin, quince, radiata pine, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, Southern pine, soybean, spinach, squash, strawberry, sugarbeet, sugarcane, sunflower, sweet potato, sweetgum, tangerine, tea, tobacco, tomato, triticale, turf grass, turnip, a vine, watermelon, wheat, yams, and zucchini. According to another embodiment, such a plant exhibits reduced symptoms from, or enhanced resistance to, a disease caused by an organism of a genus selected from the group consisting of Alternaria, Ascochyta, Aspergillus, Botrytis, Cercospora, Colletotrichum, Diplodia, Erwinia, Erysiphe, Fusarium, Gaeumanomyces, Helminthosporium, Macrophomina, Magnaporthe, Mycosphaerella, Nectria, Peronospora, Phoma, Phymatotrichum, Phytophthora, Plasmopara, Podosphaera, Pseudomonas, Puccinia, Puthium, Pyrenophora, Pyricularia, Pythium, Rhizoctonia, Scerotium, Sclerotinia, Septoria, Thielaviopsis, Uncinula, Venturia, Verticillium, and Xanthomonas. An embodiment further encompasses parts of such plants, including, but not limited to, seeds, seed pods, flowers, fruit, tubers, stems, cuttings, and pollen. Products resulting from processing of such plants or parts thereof are also encompassed.
[0037]Formulations of such polynucleotides are also provided. Therefore, according to another aspect, a composition is provided that comprises one or more of the above-described polynucleotides and a biologically acceptable carrier.
[0038]According to another embodiment, methods are provided for making a defense signal peptide comprising expressing in a cell a polynucleotide as described above. Included are, for example, plant cells, bacterial cells, fungal cells, and insect cells. Such methods may further comprise purifying the defense signal peptide.
[0039]According to an additional embodiment, methods are provided for making a transgenic plant, comprising introducing into a cell of a plant one or more of the above-described polynucleotides, thereby producing a transformed cell, and regenerating a transgenic plant from the transformed cell, wherein, compared to a control plant lacking the polynucleotide, the transgenic plant exhibits a characteristic selected from the group consisting of substantially improved yield of plant product, substantially reduced disease symptoms, and substantially enhanced resistance to disease infestation.
[0040]According to another embodiment, methods are provided for making a plant that comprises a transgene comprising a sequence that encodes a defense signal peptide operably linked to a plant promoter, such methods comprising sexually crossing a plant that comprises the transgene with a plant that lacks the transgene, thereby producing a plurality of progeny plants, and selecting a progeny plant comprising the transgene.
[0041]According to another embodiment, methods are provided for making a plant that comprises a transgene comprising a sequence that encodes a defense signal peptide operably linked to a plant promoter, the method comprising asexually reproducing a plant that comprises the transgene, thereby producing a plurality of progeny plants, and selecting a progeny plant comprising the transgene.
[0042]According to an additional embodiment, methods are provided for growing a plant comprising planting a seed that comprises one or more of the above-mentioned polynucleotides, and growing the seed to produce a plant, wherein, compared to a control plant lacking said polynucleotide sequence, the plant grown from the seed exhibits a characteristic selected from the group consisting of substantially improved yield of plant product, substantially reduced disease symptoms, and substantially enhanced resistance to disease infestation.
[0043]According to another embodiment, methods are provided for detecting a plant cell comprising one or more of the above-mentioned polynucleotides of the disclosure in a biological sample, the method comprising contacting the biological sample with a probe that binds specifically to the polynucleotide, and detecting said binding. One such probe is a PCR primer, in which case the method comprises performing PCR on the sample and detecting said binding by detecting an amplification product diagnostic of the presence of the polynucleotide in the sample.
[0044]According to another embodiment, kits are provided for detecting a plant cell comprising a polynucleotide in a biological sample, the kit comprising one or more probes that bind specifically to the polynucleotide, or to the defense signal peptide encoded by the polynucleotide, and instructions for use.
[0045]According to another embodiment, methods are provided for detecting a plant cell comprising a polynucleotide in a biological sample, the method comprising contacting the biological sample with a probe that binds specifically to the polynucleotide, or with a probe that binds to the defense signal peptide encoded by the polypeptide (such as, for example, an antibody probe), and detecting said binding.
[0046]According to another embodiment, plant cells are provided that comprise an insertion of a foreign promoter upstream of a coding sequence for a defense signal protein, wherein the foreign promoter is operably linked to the coding sequence for the defense signal protein and the plant is characterized by a substantially enhanced resistance to a disease compared to a control plant lacking the insertion of the foreign promoter.
[0047]According to another embodiment, methods of making a transgenic plant are provided that comprise (a) introducing into cells of a plant a polynucleotide that comprises a heterologous promoter, thereby producing a cell comprising an insertion of the heterologous promoter upstream of a coding sequence for a defense signal protein, wherein expression of the defense signal protein is controlled by the foreign promoter, and (b) regenerating a transgenic plant from said cell comprising the insertion.
[0048]According to another embodiment, methods of identifying a defense signal peptide are provided, such methods comprising: (a) providing a plurality of candidate peptides having a length of at least 10 amino acids; (b) assaying said plurality of candidate peptides for defense signal peptide activity in an alkalinization assay; and (c) selecting a candidate peptide that has substantial defense signal peptide activity. The candidate peptides may be provided for such methods by, for example, chemically synthesizing the candidate peptides. Such methods may further comprise administering the candidate peptide to a plant by applying a composition comprising the candidate peptide to the plant. Alternatively, such methods may comprise administering the candidate peptide to a plant by expressing within a cell of the plant a polynucleotide that comprises a sequence that encodes the candidate peptide, thereby producing the candidate peptide within the cell of the plant.
[0049]According to another embodiment, methods are provided for identifying a substance that enhances defense of a plant against a disease comprising (a) contacting an isolated AtPep1 receptor with a plurality of candidate substances (e.g., peptides or non-peptide compounds); (b) selecting a candidate substance that has a detectable interaction with the isolated AtPep1 receptor; and (c) applying the selected candidate substance to a plant to determine whether the selected candidate substance enhances defense of the plant against a disease.
[0050]According to another embodiment, methods are provided for conferring on a plant cell a response to a plant defense signal peptide to which the plant cell would not normally respond, the method comprising expressing in the plant cell a polynucleotide comprising a sequence encoding a receptor for the plant defense signal peptide (including, for example, AtPepR1 or AtPepR2) operably linked to a promoter that is expressible in the plant cell. The plant cell response could include, for example, alkalinization of the plant cell in response to administration of the plant defense signal peptide, transcription of pathogen defense genes, enhanced resistance to a pathogen, etc.
[0051]According to another embodiment, plant cells are provided that comprise a polynucleotide comprising a sequence encoding a receptor for the plant defense signal peptide operably linked to a promoter that is expressible in the plant cell, wherein expression of the polynucleotide confers on the plant cell a response to a plant defense signal peptide to which the plant cell would otherwise be unresponsive.
[0052]The foregoing and other aspects of the preferred embodiments will become more apparent from the following detailed description, accompanying drawings, and the claims.
[0053]Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present embodiments, suitable methods and materials are described below. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
BRIEF DESCRIPTION OF THE FIGURES
[0054]The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
[0055]FIG. 1 provides the nucleotide and deduced amino acid sequences for the precursor protein for AtPep1, AtproPep1, and a number of paralogs and orthologs. Sequences that correspond to AtPep1 are underlined.
[0056](a) AtproPep1 nucleotide (SEQ ID NO: 81) and amino acid (SEQ ID NO: 82) sequences (Locus tag At5g64900; Gene: GenBank GeneID: 836613, Arabidopsis thaliana Chromosome V [GenBank ID#AB019236], region 25954396-25955302; mRNA: NCBI RefSeq ID#NM--125888-499 bp; Protein: NCBI RefSeq ID#NP--569001-92 aa)
[0057]Paralogs (Arabidopsis thaliana):
[0058](b) AtproPep3 nucleotide (SEQ ID NO: 83) and amino acid (SEQ ID NO: 84) sequences (Locus tag At5g64890; Gene: GenBank GeneID: 836612, Arabidopsis thaliana Chromosome V [GenBank ID#AB019236], region 25951798-25952735; mRNA: NCBI RefSeq ID#NM--125887-568 bp; Protein: NCBI RefSeq ID#NP--569000-109 aa)
[0059](c) AtproPep4 nucleotide (SEQ ID NO: 85) and amino acid (SEQ ID NO: 86) sequences (Locus tag At5g64905; Gene: GenBank GeneID: 836614, Arabidopsis thaliana Chromosome V [GenBank ID#AB019236], region 25956800-25957285; mRNA: NCBI RefSeq ID#NM--125889-486 bp; Protein: NCBI RefSeq ID#NP--569002-96 aa)
[0060](d) AtproPep5 nucleotide (SEQ ID NO: 87) and amino acid (SEQ ID NO: 88) sequences (Locus tag At5g09980; Gene: GenBank GeneID: 830859, Arabidopsis thaliana Chromosome V [GenBank ID#AB019236], region 3122757-3123909; mRNA: NCBI RefSeq ID#NM--121035-460 bp; Protein: NCBI RefSeq ID#NP--568223-81 aa)
[0061](e) AtproPep2 nucleotide (SEQ ID NO: 89) and amino acid (SEQ ID NO: 90) sequences (Locus tag At5g09990; Gene: GenBank GeneID: 830860, Arabidopsis thaliana Chromosome V [GenBank ID#AB019236], region 3124569-3125073; mRNA: NCBI RefSeq ID#NM--121036-412 bp; Protein: NCBI RefSeq ID#NP--568224-86 aa)
[0062](f) AtproPep6 nucleotide (SEQ ID NO: 91) and amino acid (SEQ ID NO: 92) sequences (Locus tag At2g22000; Gene: GenBank GeneID: 816736, Arabidopsis thaliana Chromosome II [GenBank ID#AC007019], region 9369406-9370082; mRNA: NCBI RefSeq ID#NM--127769-397 bp; Protein: NCBI RefSeq ID#NP--179791-104 aa)
[0063](g) AtproPep7 nucleotide (SEQ ID NO: 93) and amino acid (SEQ ID NO: 94) sequences (Unannotated AtproPep; Gene: No GenBank GeneID, located on Arabidopsis thaliana Chromosome V [GenBank ID#AB019236], region 3121350-3121577; mRNA: No mRNA predicted, therefore no ID#; a 228 bp open reading frame (ORF) is encoded in genomic DNA as shown; Protein: Not predicted, therefore no ID #, Translation of ORF encoded on chromosome V yields the 75 aa sequence shown.)
[0064]Orthologs:
[0065](h) BnproPep1 from canola (Brassica napus) (SEQ ID NO: 95; GenBank ID#CD816645, Protein: 95 aa)
[0066](i) StproPep1 from potato (Solanum tuberosum) (SEQ ID NO: 96; GenBank ID#CV505388, Protein: 116 aa)
[0067](j) PbproPep1 from poplar (Populus balsamifera) (SEQ ID NO: 97; GenBank ID#CV230975, Protein: 121 aa)
[0068](k) BeproPep1 from birch (SEQ ID NO: 98; GenBank ID#CD276952, Protein: 110 aa)
[0069](l) GmproPep1 from soybean (Glycine max) (SEQ ID NO: 99; GenBank ID#CD401281, Protein: 115 aa)
[0070](m) MsproPep1 from alfalfa (Medicago sativa) (SEQ ID NO: 100; GenBank ID#BI311441, Protein: 127 aa)
[0071](n) VvproPep1 from grape (Vitis vinifera) (SEQ ID NO: 101; GenBank ID#CF604664, Protein: 83 aa)
[0072](o) OsproPep1 from rice (Oryza sativa) (SEQ ID NO: 102; GenBank ID#CF333408; Locus tag:Os04g54590, Protein 154 aa)
[0073](p) OsproPep2 from rice (Oryza sativa) (SEQ ID NO: 103; GenBank ID#AK111113; Locus tag:Os08g07600, Protein: 93 aa)
[0074](q) TaproPep1 from wheat (Triticum aestivum) (SEQ ID NO: 104; GenBank ID#AL809059, Protein: 82 aa)
[0075](r) TaproPep2 from wheat (Triticum aestivum) (SEQ ID NO: 105; GenBank ID#BF201609, Protein: 75 aa)
[0076](s) ZmproPep1 from maize (Zea mays) (SEQ ID NO: 106; GenBank ID#DN214793, Protein: 142 aa)
[0077](t) HvproPep1 from barley (Hordeum vulgare) (SEQ ID NO: 107; GenBank ID#BQ763246, Protein: 93 aa)
[0078]FIG. 2 shows the sequence of an AtPep1 receptor gene (SEQ ID NO: 108; At1g73080), designated as AtPEPR1, and its deduced amino acid sequence (SEQ ID NO: 109; Also noted are several features of the receptor polypeptide: a signal sequence (residues 1-24); cysteine pairs (residues 64 and 71; and residues 836 and 854); leucine-rich repeats (residues 76-827); transmembrane domain (residues 870-892); kinase domain (residues 927-1208); and an intron (between residues 1099 and 1100).
[0079]FIG. 3 shows the structure of a second AtPep1 receptor gene (SEQ ID NO: 110; At1g17750) designated as AtPEPR2, and its deduced amino acid sequence (SEQ ID NO: 111). Also noted are several features of the receptor polypeptide: a signal sequence (residues 1-26); cysteine pairs (residues 62 and 71; and residues 709 and 727); leucine-rich repeats (residues 99-697); transmembrane domain (residues 738-760); kinase domain (residues 793-1079); and an intron (between residues 966 and 967).
[0080]FIG. 4 shows the concentration dependence of synthetic AtPep peptides deduced from the seven members of the AtproPep1 gene family in the alkalinization assay. Peptide concentrations (left to right for each peptide): 0.25 nM, 2.5 nM, 25 nM, 250 nM.
[0081]FIG. 5 shows activity of synthetic AtPep1 peptides from the C-terminus of AtPep1 in the alkalinization assay, from a 9-mer (SSGRPGQHN (SEQ ID NO: 75)) to a full-length 23-mer. The 15-mer (RGKEKVSSGRPGQHN (SEQ ID NO: 78)) is also shown. Ten microliter aliquots of each peptide solution were tested for activity at 0.25 nM (gray), 2.5 nM (dotted), and 25 nM (black).
[0082]FIG. 6 shows the activity of single alanine amino acid substitutions at every position in the 15-mer peptide at the carboxy terminus of AtPep1 (RGKEKVSSGRPGQHN (SEQ ID NO: 78)) in the alkalinization assay. The set of substituted 15-mer peptides was assayed using four-day-old Arabidopsis cells. Ten ml of each peptide (2.5 pmoles) was added to 1 ml of cells to make a final concentration of 2.5 nM. After 20 min, the pH of the media was recorded. The data is the average of three separate experiments.
[0083]FIG. 7 shows nucleotide sequence information for precursors of the novel plant signal defense peptides of Table 2: OsPep8 nucleotide (SEQ ID NO: 112) and amino acid (SEQ ID NO: 113) sequences; TcPep1 nucleotide (SEQ ID NO: 114) and amino acid (SEQ ID NO: 115) sequences; GhPep2 nucleotide (SEQ ID NO: 116) and amino acid (SEQ ID NO: 117) sequences; PtPep2 nucleotide (SEQ ID NO: 118) and amino acid (SEQ ID NO: 119) sequences; VvPep2 nucleotide (SEQ ID NO: 120) and amino acid (SEQ ID NO: 121) sequences; VvPep3 nucleotide (SEQ ID NO: 122) and amino acid (SEQ ID NO: 123) sequences; HaPep1 nucleotide (SEQ ID NO: 124) and amino acid (SEQ ID NO: 125) sequences; HaPep2 nucleotide (SEQ ID NO: 126) and amino acid (SEQ ID NO: 127) sequences; SoPep1a nucleotide (SEQ ID NO: 128) and amino acid (SEQ ID NO: 129) sequences; SoPep2a nucleotide (SEQ ID NO: 130) and amino acid (SEQ ID NO: 131) sequences; PvPep1 nucleotide (SEQ ID NO: 132) and amino acid (SEQ ID NO: 133) sequences. A (*) denotes a stop codon.
[0084]FIG. 8 shows representative monocot propeptide sequences containing multiple peptides. Nucleotide sequence information for precursors of the novel plant defense signal peptides of Table 3 are shown: Barley (SEQ ID NO: 134); Sugarcane1 (SEQ ID NO: 135); Sugarcane2 (SEQ ID NO: 136). Multiple peptides from the same precursor are named using letters starting from the carboxyl end of the precursor as shown.
[0085]FIG. 9 shows (A) an amino acid sequence alignment of predicted proAtPep1 orthologs (ProAtPep1 (SEQ ID NO: 82); ProAtPep2 (SEQ ID NO: 90); At2g22000 (SEQ ID NO: 137); Canola (SEQ ID NO: 138); Potato (SEQ ID NO: 139); Rice (SEQ ID NO: 140); Poplar (SEQ ID NO: 141); Medicago (SEQ ID NO: 142); Soybean (SEQ ID NO: 143) and (B) a gene domain model for proATPep1-like genes.
[0086]FIG. 10 shows a phylogenic tree of AtPEPRs homologues.
[0087]FIG. 11 shows an amino acid alignment of AtPEPR homologues (A) and the DNA and amino acid sequences of identified AtPEPR homologues (B).
[0088]FIG. 12 shows a consensus amino acid sequence (SEQ ID NO: 172) of the protein kinase domain of AtPEPRs homologues.
DETAILED DESCRIPTION
[0089]We have identified defense signal peptides from Arabidopsis and a variety of other plants, including crop plants of commercial importance. In addition, we have identified genes that encode polypeptides, which are processed in plant cells to produce the shorter peptides, as well as receptors for the peptides. Transgenic plants in which these defense signal peptides are expressed under the control of a heterologous promoter, such as a constitutive promoter, exhibit improved yield of plant product, reduced disease symptoms, and/or enhanced resistance to disease infestation. Peptides that comprise as few as 10 amino acid residues from the carboxy-terminus of AtPep1, a 23 amino acid defense signal peptide from Arabidopsis thaliana, retain significant activity. In addition, individual amino acid residues that are important for activity have been defined by amino acid substitutions. Peptides and other substances that have defense signal peptide activity can be readily screened using an alkalinization assay that is described herein, and their identity can be confirmed by exogenous application to plants or transgenic expression in plants.
[0090]We have isolated novel defense peptides AtPep1 and AtPep2 from Arabidopsis. This is the first demonstration of the involvement of a plant-derived peptide signal in defense against pathogens. The proAtPep1 and 2 precursor genes have been identified and belong to a seven-member gene family. The DNA sequence of the gene from Arabidopsis thaliana that encodes AtproPep1 and the deduced amino acid sequence of AtproPep1 are provided in FIG. 1. Orthologs have been identified in such dicots as canola, potato, poplar, alfalfa, soybean, grape, and tomato, and in such monocots as rice, wheat, maize, and barley, and are likely commonly found across the plant kingdom. The sequences of several paralogs and orthologs of AtPep1 are also provided in FIG. 1.
[0091]The rapid, sensitive alkalinization assay that was used to identify and purify the AtPep1 and 2 peptides is useful for identifying defense signal peptides from any plant whose signaling pathways result from peptide-receptor interactions that initiate intracellular signaling through MAP kinases and proton pumps in the plasma membrane. Within minutes after adding systemin to cells, an ATP-driven proton pump is inhibited, causing the extracellular medium of the cells to become alkaline. When aliquots (e.g., 1-10 μL) from fractions from plant tissues that eluted from HPLC columns were added to 1 mL of suspension cultured plant cells grown at low pH (e.g., pH 5), some fractions caused the cell medium to increase in pH. The identification of a peptide as a defense signal peptide is confirmed by application of the peptide (e.g., as a plant fraction or isolated peptide) to plants or by expression of a transgene encoding the peptide, including, but not limited to, the gene encoding a pro-form of the peptide (such as, for example, AtproPep1, the pro-form of AtPep1) in plants and observation of detectable defense signal peptide activity, such as, for example, enhanced disease resistance.
[0092]We established a suspension cultured Arabidopsis cell line to be used in the alkalinization assay to seek novel peptides in Arabidopsis leaf extracts. Cells are grown unbuffered near pH 5 or less in order to record an alkalinization of about 1 pH unit in response to peptide signals. In order to establish an Arabidopsis suspension cell culture for use in the alkalinization assay, Arabidopsis cells were regularly transferred and maintained in the growth chamber room for several months, when they equilibrate at a pH of about 5.0 during exponential growth. Cell cultures that grow at low pH from several other plant species, including tomato (Lycopersicon esculentum), tobacco (Nicotiana tabacum), alfalfa (Medicago sativa), maize (Zea mays), petunia (Petunia hybrida), nightshade (Solanum nigrum), and sweet potato (Ipomoea batatus) have been developed for use in the alkalinization assay, and developing similar cultures from other plants is readily accomplished.
[0093]For the work described in Example 1, we used a typical purified peptide fraction from Arabidopsis leaves. Kilogram quantities of leaf material were extracted and peptides were separated on an HPLC column. A 10 microliter (μL) aliquot from each fraction eluting from the column was assayed with the alkalinization assay using suspension cultured Arabidopsis cells. Two novel peaks were identified that were called AtPep1 and AtPep2. The peptides were purified through several additional column separations until homogeneous, as verified by MALDI-MS and amino-terminal sequencing. The peptides were each 23 amino acids in length and the amino acids sequences of the two were identical at 10 residues. Neither peptide was post-translationally modified. The two peptides were chemically synthesized and, in alkalinization assays exhibited identical activities as the native peptides, in the sub-nanomolar concentration range. Searches of protein data bases revealed that the peptides were derived from the C-terminus of two members of a seven-member gene family. The deduced precursors were from 92 to more than 100 amino acids in length and did not have leader sequences at their N-termini.
[0094]These properties are similar to tomato systemin (Pearce et al., Science 253:895-897, 1991). Other similarities between proAtPep1 prosystemin were the absence of a leader sequence in the precursors, the low nanomolar concentrations needed to activate the alkalinization response, the processing of the peptides from the C-termini of their precursor proteins, and the presence of KEK motifs in the precursors that are commonly found in proteins that are involved in protein-protein interactions. The expression of the proAtPep1 gene in excised Arabidopsis leaves was induced by AtPep1, similar to the expression of the prosystemin gene in tomato plants being induced by systemin.
[0095]The tissue-specific expression of the proAtPep1 gene was analyzed using RT-PCR analyses. All tissues of the plant expressed the gene at low levels, which did not reveal a clue as to its function. To assess whether stresses to Arabidopsis plants might affect AtPep1 gene expression, the plants were subjected to cold and drought stresses and treatments with abscissic acid (ABA), methyl jasmonate (MeJA), methyl salicylate (MeSA), UV-B, and wounding. Only MeJA and wounding induced a strong expression of the gene. These results indicated that the gene was behaving in Arabidopsis in a similar manner as systemin in tomato plants (Ryan et al., Plant Cell. 14:251-264, 2002) and suggested that the peptide may be a defense signaling peptide.
[0096]Pathogen defense is well characterized in Arabidopsis, where two defense pathways have been identified in which jasmonate is a signaling component (Lorenzo and Solano, Curr. Opin. Plant Biol 8:532-540, 2005; Lorenzo et al., Plant Cell 16:1938-1950, 2004.). In one pathway, wounding and jasmonate activate defensive genes through the octadecanoid pathway, with COI1 and AMYC2 playing major roles in transcription of defensive genes that includes LOX2 and VSP2 (Lorenzo et al., Plant Cell 16:1938-1950, 2004). In the second pathway jasmonate, in concert with ethylene, activates PDF1.2, and several PR proteins, with active oxygen playing a key signaling role (Lorenzo et al., Plant Cell 15:165-178, 2003; Penninckx et al., Plant Cell 10:2103-2113, 1998; Penninckx et al., Plant Cell 8:2309-2323, 1996; Coego et al., Plant Cell 17:2123-2137, 2005; Mackerness et al., Plant Cell Environ. 22:1413-1423, 1999). To assess the possible involvement of AtPep1 with the known pathways, Arabidopsis plants were excised and supplied with the AtPep1 peptide at 10 nM concentrations, and several known wound-inducible genes and pathogen defense genes were assayed for expression levels two hours later. Only the pathogen defense genes were induced, with PDF2.2 and PR-1 being most strongly expressed, with PR-3, PR-4, and TAT expressed at lower levels. LOX2 and VSP2 genes were not induced by the peptide.
[0097]Arabidopsis plants were transformed with a 35S-AtPep1 fused gene, and many stable transformants that strongly expressed the gene were recovered. The overexpression of the gene did not visibly affect the growth of the transgenic plants compared to wild type plants. The progeny of a stable transformant that strongly expressed the gene was analyzed to determine if the overexpression of the gene would affect the expression of defense genes. Plants constitutively overexpressing the proAtPep1 gene also constitutively overexpressed the AtPep1-inducible genes.
[0098]To determine if the transgenic plants were more resistant to a pathogen, the soil of plants in which the transgenic line was grown was inoculated with the root pathogen Pythium irregulare and the plants were monitored with time to assess pathogenicity. The aerial parts of the transgenic plants infected with Pythium were visibly more robust than infected wild type plants. However, the roots of the infected transgenic plants were much denser and healthier than roots of infected wild type plants. The transgenic plants were growing almost as well as uninfected wild type plants. These experiments indicated that overexpression of the gene was enhancing resistance to the root pathogen.
[0099]Using photoaffinity labeling of AtPep1, a high affinity binding protein for the peptide was identified on the surface of Arabidopsis suspension cultured cells by photoaffinity labeling. The protein was purified to homogeneity. The binding of the photoaffinity label to the receptor is strongly competed by unlabeled AtPep1, but not by tomato systemin. The binding of AtPep1 is powerfully competed by suramin, a potent inhibitor of many ligand-receptor interactions, including the binding of systemin with its receptor. Amino acid sequence analysis has shown the protein to be a leucine-rich repeat (LRR) receptor kinase. The gene (At1G73080) contains 27 LRR motifs, a 23 amino acid membrane-spanning region, and an intracellular protein kinase domain. The protein is glycosylated, as evidenced by the loss of about 20% of its mass by enzymatic deglycosylation. An ortholog (At1G17750) is present in Arabidopsis, and LRR receptor kinase orthologs from rice and morning glory have been reported in GenBank that share a high percentage of amino acid identity with the AtPep1 receptor. The paralog in Arabidopsis shares more than 90% amino acid identity with AtPep1, but it has only 24 LRRs and does not have either a transmembrane domain or a kinase domain. The DNA and deduced amino acid sequences for the AtPep1 receptors are provided in FIG. 2 (Ag1g73080) and FIG. 3 (At1g17750).
[0100]The AtPep1 peptide, like systemin, is apparently a cytosol-derived peptide that involves the jasmonate/ethylene signaling pathway. How the peptide is processed from a precursor and arrives at the cell surface to activate a signaling pathway is unknown, but, like systemin, transport of either the precursor or the processed peptide to the cell surface may occur in order for the peptide to react with its receptor.
[0101]AtPep1 is a component of the defense signaling of Arabidopsis plants and is therefore the first plant peptide hormone to be associated with a known pathogen defense pathway in any plant.
[0102]Table 1 shows examples of the C-terminal sequences of paralogs and orthologs of AtproPep1 that we have identified in a wide variety of plants. In addition to the examples listed in Table 1, for example, two orthologs of the AtPep1 precursor gene (called preproLePep1) have been identified in tomato plants. The tomato cDNA has been isolated and shown to code for an AtPep1-like defense peptide. Other paralogs and orthologs of AtproPep1 in these and other plant species may be found by amino acid sequence homology. Additional defense signal peptides may be identified by screening plants for peptides having defense peptide activity, as described herein.
TABLE-US-00001 TABLE 1 AtPep1, Paralogs, Orthologs, and Dicot and Monocot Consensus Sequences SEQ ID Peptide Source Alignment of C-terminal Sequences NO: AtPep1 Arabidopsis thaliana ##STR00001## 1 Paralogs AtPep2 Arabidopsis -SLNVM RKGIR KQPVS SGKRG GVN 2 thaliana AtPep3 Arabidopsis -DNKAK SKKRD KEKPS SGRPG QTN 3 thaliana AtPep4 Arabidopsis -EIKAR GKNKT KPTPS SGKGG KHN 4 thaliana AtPep5 Arabidopsis -GLPGK KNVLK KSRES SGKPG GTN 5 thaliana AtPep6 Arabidopsis -ITAVL RRRPR PPPYS SGRPG QNN 6 thaliana AtPep7 Arabidopsis -VSGNV AARKG KQQTS SGKGG GTN 7 thaliana Orthologs BnPep1 Canola -VARLT RRRPR PP-YS SGQPG QIN 8 (Brassica napus) StPep1 Potato -PTERR GRPPS RPKVG SGPPP QNN 9 (Solanum tuberosum) PbPep1 Poplar -DAAVS ALARR TPPVS RGGGG QTN 10 (Populus balsamifera) BePep1 Birch -DLVMA VNAPP RPSLT PGSGA QIN 11 (Betula spp.) GmPep1 Soybean -ASLMA TRGSR GSKIS DGSGP QHN 12 (Glycine max) MsPep1 Alfalfa -LSSMG RGGPR RTPLT QGPPP QHN 13 (Medicago sativa) VvPep1 Grape -EKVRE KQKKG EDGES VGRPG KKN 14 (Vitis vinifera) Dicot consensus sequence ##STR00002## Residues 2-13 are rich in K and R 15 OsPep1 Rice (Oryza -ARLRP KPPGN PREGS GGNGG HHH 16 sativa) OsPep2 Rice (Oryza -DDSKP TRPGA PAEGS GGNGG AIH 17 sativa) TaPep1 Wheat -AVRRP RPPTT PREGR GGGGG SHN 18 (Triticum aestivum) TaPep2 Wheat -AAPAP QRPGA PAEGA GGQGG IIH 19 (Triticum aestivum) ZmPep1 Maize (Zea -VRRRP TTPGR PREGS GGNGG NHH 20 mays) HvPep1 Barley -QLARP RPPGP PRQGH GGDGG AIH 21 (Hordeum vulgare) Monocot consensus sequence ##STR00003## 22
Among the native defense signal peptides identified so far, the shortest deduced peptide sequence is 23 amino acids in length (for example, AtPep1) and the longest is 36 amino acids (AtPep3).
[0103]The dicot and monocot disease signal peptides in particular have a substantial degree of homology in the C-terminal region of the peptides, allowing us to define consensus sequences as shown in Table 1, which shows C-terminal alignments for AtPep paralogs and orthologs that correspond to the sequence of AtPep1 and dicot and monocot consensus sequences for defense signal peptides.
[0104]According to one aspect, defense signal peptides are provided that comprise a dicot or monocot consensus sequence or have a high degree of amino acid sequence homology to such a consensus sequence, e.g., 75 percent homology, or 80 percent homology, or 90 percent homology. In one embodiment, such defense signal peptides are 10 amino acid residues in length or longer and have defense signal peptide activity.
[0105]Analogs of AtPep1 were synthesized and assayed in the alkalinization assay. An analog of AtPep1 missing the carboxy-terminal amino acid was completely inactive, whereas deletions from the amino-terminus of the peptide resulted in a sequential reduction in activity, until peptides with 9 carboxy-terminal amino acids remaining (SSGRPGQHN (SEQ ID NO: 75)) were inactive. A peptide consisting of only the 15 C-terminal amino acids was nearly as active as the native peptide (at approximately 2.5 nM), but analogs of 14 amino acids and smaller were progressively less active.
[0106]AtPep1 is 23 amino acid residues in length. However, truncated forms of AtPep1 of 10 amino acid residues from the C-terminus of AtPep1 retain activity, and peptides having 15 residues retain substantially full defense signal peptide activity (Example 3). As a result of the foregoing studies of shorter defense signal peptides, according to another embodiment, defense signal peptides comprising at least 10 amino acid residues, particularly those including sequences from the C-terminus of native defense signal peptides or including consensus dicot or monocot sequences are provided. Such shorter peptides may be 11 or more, 12 or more, or 15 or more amino acid residues in length, provided that they retain substantial defense signal peptide activity.
[0107]The 15-mer was substituted with alanine in each position to assess which amino acids were necessary for the alkalinating activity. A Ser to Ala substitution at position 7, counting from the amino-terminus of the 15-mer, and a Gly to Ala substitution at position 9 exhibited little activity. Computer modeling predicted that these two amino acids would be involved in a hairpin-turn within the peptide region of -SSGR- (compare with residues 15-18 of the sequence of AtPep1 shown in Table 1). Substituting Ala for Ser (-ASGR-) abolished the predicted turn and severely reduced activity (half-maximal activity at approximately 25 nM), while substituting Ala for Gly was even less active (half-maximal activity of >250 nM). However, neither of these analogs were able to compete with the non-substituted 15-mer for receptor binding, indicating that the structural changes in this region may have severely modified the conformation without competing for the receptor binding site. Other Ala substitutions had no effect on activity. These results will guide the skilled artisan in making desired substitutions in other defense signal peptides.
Additional Plant Signal Defense Peptides
[0108]In addition to the plant signal defense peptides that are shown in Table 1 above, we have discovered additional plant signal defense peptides from a number of dicot and monocot plant species. These include the AtPep1 orthologs shown in Table 2.
TABLE-US-00002 TABLE 2 AtPep1 and Additional Dicot and Monocot Orthologs Peptide Source Alignment of C-terminal Sequences SEQ ID NO: AtPep1 Arabidopsis thaliana ##STR00004## 23 Orthologs TcPep1 Alpine -VTKFK AKMKE REKVS TGRSG QHN 24 pennycress (Thlaspi caerulescens) GhPep2 Cotton -LPMVS LFTPK RPGTS AGSGP QIN 25 (Gossypium hirsutum) SePep1 Tomato -ATDRR GRPPS RPKVG SGPPP QNN 26 (Solanum lycopersicum) PtPep2 Poplar -AVTVS ALARR TPPVS SGSGG QIN 27 (Populus balsamifera) VvPep2 Grape (Vitis -LRRGP TRPPI SFESR PGGGS QIN 28 vinifera) VvPep3 Grape (Vitis -KMSSD FRQPP RPPID PGQGG QIN 29 vinifera) HaPep1 Sunflower -RGLTR RPPPP RGPIS SGGGG QTN 30 (Helianthus annuus) HaPep2 Sunflower -RVNLV GYDYS GYGQS TGKPS ECN 31 (Helianthus annuus) OsPep8 Rice (Oryza -QRNEI RSRGV DPSVS GGKQP GIN 32 sativa) SoPep1a Sugarcane -ASVLM RGPAQ PVPPT EGAXG RGG 33 (Saccharum officinarum) SoPep2a Sugarcane -ASVLM RGPAQ PGPPT EGAGR RGG 34 (Saccharum officinarum) PvPep1 Switchgrass -VVTRV WAVRR PREGS GGNGG VHH 35 (Panicum virgatum)
[0109]FIG. 7 shows nucleotide sequence information for precursors of the novel plant signal defense peptides of Table 2.
[0110]We have also identified additional plant signal defense peptides in precursor nucleotide sequences in which only one plant signal defense peptide had been identified previously. These are shown in Table 3.
TABLE-US-00003 TABLE 3 AtPep1 and Additional Monocot Orthologs from Precursor Genes that Encode Multiple Peptides Peptide Source Alignment of C-terminal Sequences SEQ ID NO: AtPep1 Arabidopsis thaliana ##STR00005## 36 Orthologs OsPep3b Rice (Oryza -RRPTP PGGAG PREGS GGRGG VIH 37 sativa) OsPep3c Rice (Oryza -SLAGA NVLVR DAPPE TGGGP HHN 38 sativa) OsPep4b Rice (Oryza -RRPTP PGGAG PREGS GGRGG VIH 39 sativa) OsPep4c Rice (Oryza -LAGAN VLLRD DAPPE GGRGP HHN 40 sativa) OsPep5b Rice (Oryza -RRPTP PGGAG PREGR GGRGG VIH 41 sativa) OsPep5c Rice (Oryza -QLAGA KVLVR DAPPE TGGGP HHN 42 sativa) OsPep6b Rice (Oryza -GGVRP TPPGN PREAQ KGGGV IRA 43 sativa) ZmPep4b Maize (Zea -ALRGP APPAR PKEGS GGKVH VVS 44 mays) ZmPep4c Maize (Zea -LWPAP SPKGR PGAPR QGSGG QVH 45 mays) TaPep3b Wheat -DASSL APQLR RTSPG EGTSG RIH 46 (Triticum aestivum) TaPep3c Wheat -IAPTL QPSSA PVEGT GGQVM VLN 47 (Triticum aestivum) HvPep1b Barley -DASSL PLQLM RTPPG EGAGG RIH 48 (Hordeum vulgare) HvPep1c Barley -SVLPD QPPSA PAEGT GGQVM VLN 49 (Hordeum vulgare) SoPep1b Sugarcane -ASVLL RGPAP PGRPV EGSGG KVH 50 (Saccharum officinarum) SoPep1c Sugarcane -AHMVI RGPAR PGLPA QGSGG KVH 51 (Saccharum officinarum) SoPep1d Sugarcane -MATPM RRPTP PGPPA QGSGG KTN 52 (Saccharum officinarum) SoPep1e Sugarcane -SRAAP SPKGS PGAPR QGSGG HVH 53 (Saccharum officinarum) SoPep1f Sugarcane -APASP LRRQL LRYVS SGLVA ALH 54 (Saccharum officinarum) SoPep2b Sugarcane -AHMVI RGPAR PGLPA QGRGG KVH 55 (Saccharum officinarum) SoPep2c Sugarcane -MATPM RRPTS PGPPA QGSGG KTN 56 (Saccharum officinarum) SoPep2d Sugarcane -SRAVP SLKGR PGAPR QGSGG HVH 57 (Saccharum officinarum) SoPep2e Sugarcane -APASP LRRQL LRYVS SGLVA ALH 58 (Saccharum officinarum)
[0111]FIG. 8 shows nucleotide sequence information for precursors of the novel plant defense signal peptides of Table 3.
DEFINITIONS AND METHODS
[0112]The following definitions and methods are provided to better define the preferred embodiments and to guide those of ordinary skill in the art in the practice of the disclosed embodiments. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art. Definitions of common terms in molecular biology may also be found in Rieger et al., Glossary of Genetics: Classical and Molecular, 5th edition, Springer-Verlag: New York, 1991; and Lewin, Genes V, Oxford University Press: New York, 1994. The nomenclature for DNA bases as set forth at 37 CFR 1.822 is used. The standard one- and three-letter nomenclature for amino acid residues is used.
Polynucleotides
[0113]"Polynucleotide." The term "polynucleotide" refers to a polymer of nucleotide monomers, including but not limited to ribonucleotides or deoxyribonucleotides or nucleotide analogues. Polynucleotides include, for example, DNA and RNA molecules, including cDNA, genomic DNA, primers, probes, vectors, and so on, and include single- and double-stranded forms thereof. Polynucleotides may be chemically modified by well known methods by labeling, coupling to solid supports, etc.
[0114]"Defense signal peptide (or polypeptide) polynucleotide". The term "defense signal peptide polynucleotide" refers to a polynucleotide that encodes a defense signal peptide, and a "defense signal polypeptide polynucleotide" refers to a polynucleotide that encodes a defense signal polypeptide (i.e., a polypeptide that, when processed in a plant cell, produces a defense signal peptide), whether a cDNA or genomic sequence or synthetic form thereof. Such polynucleotides may comprise wild type polynucleotides sequences encoding defense signal polypeptides, such as those listed in Table 1, operably linked to a heterologous promoter, i.e., a promoter not associated in nature with such native, or wild type, polynucleotide sequences. Alternatively, such polynucleotides may comprise non-naturally occurring recombinant polynucleotides that comprise a sequence that encodes a defense signal peptide operably linked to a suitable promoter. For expression of defense signal peptides for exogenous application to plants, a defense signal peptide polynucleotide may be operably linked to a promoter suitable for expression in a bacterial, fungal, insect, or other suitable cell. For transformation of plants or plant cells or tissues, a defense signal peptide may be operably linked to a promoter suitable for expression in a plant cell, i.e., a plant promoter. According to another embodiment, a heterologous promoter may be introduced into a plant or a plant cell or tissue for insertion into the genome, thereby producing an insertion of the promoter upstream of a sequence that encodes a defense signal peptide, operably linking the sequence encoding the defense signal peptide to the heterologous promoter. Such an expression unit, including the heterologous promoter and the sequence encoding the defense control peptide, is another embodiment of a defense signal peptide (or polypeptide) polynucleotide.
[0115]"Native." The term "native" refers to a naturally-occurring ("wild type") polynucleotide, polypeptide or peptide.
[0116]"Isolated." An "isolated" polynucleotide is one that has been substantially separated or purified away from other polynucleotide sequences in the cell of the organism in which the polynucleotide naturally occurs, i.e., other chromosomal and extrachromosomal DNA and RNA, by conventional purification methods. The term also embraces recombinant polynucleotides (including promoter insertions operably linked to a defense signal peptide gene) and chemically synthesized polynucleotides.
[0117]"Heterologous." A heterologous polynucleotide is one that is not normally present in a particular context. For example, with reference to a cell, tissue or organism, heterologous polynucleotide sequence is one that is not found in such a cell, tissue or organism in nature unless introduced into such cell, tissue or organism. As another example, a heterologous promoter is a promoter not associated in nature with a particular protein coding sequence.
Fragments, Probes, and Primers
[0118]A fragment of a polynucleotide is a portion of a polynucleotide that is less than full-length and comprises at least a minimum length capable of hybridizing specifically with a native polynucleotide sequence under stringent hybridization conditions. The length of such a fragment is preferably at least 15 nucleotides, more preferably at least 20 nucleotides, and most preferably at least 30 nucleotides of a native polynucleotide sequence.
[0119]A "probe" is an isolated polynucleotide to which is attached a conventional detectable label or reporter molecule, e.g., a radioactive isotope, ligand, chemiluminescent agent, or enzyme. "Primers" are isolated polynucleotides that are annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, then extended along the target DNA strand by a polymerase, e.g., a DNA polymerase. Primer pairs can be used for amplification of a polynucleotide sequence, e.g., by the polymerase chain reaction (PCR) or other conventional nucleic-acid amplification methods.
[0120]Probes and primers are generally 15 nucleotides or more in length, preferably 20 nucleotides or more, more preferably 25 nucleotides, and most preferably 30 nucleotides or more. Such probes and primers hybridize specifically to the target polynucleotide sequence under high stringency hybridization conditions under at least moderately stringent conditions.
[0121]Methods for preparing and using probes and primers are described, for example, in Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, ed. Sambrook et al., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989 (hereinafter, "Sambrook et al., 1989"); Current Protocols in Molecular Biology, ed. Ausubel et al., Greene Publishing and Wiley-Interscience, New York, 1992 (with periodic updates) (hereinafter, "Ausubel et al., 1992"); and Innis et al., PCR Protocols: A Guide to Methods and Applications, Academic Press: San Diego, 1990. PCR-primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such-as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge, Mass.).
[0122]Primers and probes based on the native defense signal polypeptide polynucleotide sequences that are disclosed herein can be used to confirm (and, if necessary, to correct) the disclosed polynucleotide sequences by conventional methods, e.g., by re-cloning and re-sequencing.
[0123]"Substantial similarity." A first polynucleotide is "substantially similar" to a second polynucleotide if, when optimally aligned (with appropriate nucleotide insertions or deletions) with the other polynucleotide (or its complementary strand), there is at least about 75% nucleotide sequence identity, preferably at least about 80% identity, more preferably at least about 85% identity, and most preferably at least about 90% identity. Sequence similarity can be determined by comparing the nucleotide sequences of two polynucleotides using sequence analysis software such as the Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, Madison, Wis.
[0124]Alternatively, two polynucleotides are substantially similar if they hybridize under stringent conditions.
[0125]"Operably Linked." A first nucleic-acid sequence is "operably linked" with a second nucleic-acid sequence when the first nucleic-acid sequence is placed in a functional relationship with the second nucleic-acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein coding regions, in reading frame.
[0126]"Recombinant." A "recombinant" polynucleotide is made by an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of polynucleotides by genetic engineering techniques. Techniques for nucleic-acid manipulation are well-known (see, e.g., Sambrook et al., 1989, and Ausubel et al., 1992). Methods for chemical synthesis of polynucleotides are discussed, for example, in Beaucage and Carruthers, Tetra. Letts. 22:1859-1862, 1981, and Matteucci et al., J. Am. Chem. Soc. 103:3185, 1981. Chemical synthesis of polynucleotides can be performed, for example, on commercial automated oligonucleotide synthesizers.
Preparation of Recombinant or Chemically Synthesized Polynucleotides; Vectors, Transformation, Host Cells
[0127]Natural or synthetic polynucleotides according to the present disclosure can be incorporated into recombinant nucleic-acid constructs, typically DNA constructs, capable of introduction into and replication in a host cell. Such a construct preferably is a vector that includes a replication system and sequences that are capable of transcription and translation of a polypeptide-encoding sequence in a given host cell.
[0128]For the practice of the present embodiments, conventional compositions and methods for preparing and using vectors and host cells are employed, as discussed, inter alia, in Sambrook et al., 1989, or Ausubel et al., 1992.
[0129]A cell, tissue, organ, or organism into which has been introduced a foreign polynucleotide, such as a recombinant vector, is considered "transformed", "transfected", or "transgenic." A "transgenic" or "transformed" cell or organism also includes progeny of the cell or organism and progeny produced from a breeding program employing such a "transgenic" plant as a parent in a cross and exhibiting an altered phenotype resulting from the presence of a recombinant polynucleotide construct.
[0130]A number of vectors suitable for stable transfection of plant cells or for the establishment of transgenic plants have been described in, e.g., Pouwels et al., Cloning Vectors: A Laboratory Manual, 1985, supp. 1987); Weissbach and Weissbach, Methods for Plant Molecular Biology, Academic Press, 1989; and Gelvin et al., Plant Molecular Biology Manual, Kluwer Academic Publishers, 1990. Typically, plant expression vectors include, for example, one or more cloned plant genes under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant expression vectors also can contain a promoter regulatory region (e.g., a regulatory region controlling inducible or constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site, and/or a polyadenylation signal.
[0131]Examples of constitutive plant promoters include, but are not limited to, the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant tissues (see, e.g., Odel et al., Nature 313:810, 1985), including monocots (see, e.g., Dekeyser et al., Plant Cell 2:591, 1990; Terada and Shimamoto, Mol. Gen. Genet. 220:389, 1990); the nopaline synthase promoter (An et al., Plant Physiol. 88:547, 1988) and the octopine synthase promoter (Fromm et al., Plant Cell 1:977, 1989).
[0132]A variety of plant gene promoters that are regulated in response to environmental, hormonal, chemical, and/or developmental signals, also can be used for expression of defense signal peptides in plant cells, including promoters regulated by (1) heat (Callis et al., Plant Physiol. 88:965, 1988), (2) light (e.g., pea rbcS-3A promoter, Kuhlemeier et al., Plant Cell 1:471, 1989; maize rbcS promoter, Schaffner and Sheen, Plant Cell 3:997, 1991; or chlorophyll a/b-binding protein promoter, Simpson et al., EMBO J. 4:2723, 1985), (3) hormones, such as abscisic acid (Marcotte et al., Plant Cell 1:969, 1989), (4) wounding (e.g., wunl, Siebertz et al., Plant Cell 1:961, 1989); or (5) chemicals such as methyl jasminate, salicylic acid, or Safener. It may also be advantageous to employ (6) organ-specific promoters (e.g., Roshal et al., EMBO J. 6:1155, 1987; Schernthaner et al., EMBO J. 7:1249, 1988; Bustos et al., Plant Cell 1:839, 1989), including promoters that express specifically in the root, leaf, seed, etc.
[0133]Plant expression vectors optionally include RNA processing signals, e.g., introns, which may be positioned upstream or downstream of a polypeptide-encoding sequence in the transgene. In addition, the expression vectors may also include additional regulatory sequences from the 3'-untranslated region of plant genes (Thornburg et al., Proc. Natl. Acad. Sci. USA 84:744 (1987); An et al., Plant Cell 1:115 (1989), e.g., a 3' terminator region to increase mRNA stability of the mRNA, such as the PI-II terminator region of potato or the octopine or nopaline synthase 3' terminator regions.
[0134]Useful dominant selectable marker genes include genes encoding antibiotic resistance genes (e.g., resistance to hygromycin, kanamycin, bleomycin, G418, streptomycin, or spectinomycin); and herbicide resistance genes (e.g., phosphinothricin acetyltransferase). A useful strategy for selection of transformants for herbicide resistance is described, e.g., in Vasil, Cell Culture and Somatic Cell Genetics of Plants, Vols. I-III, Laboratory Procedures and Their Applications Academic Press, New York, 1984.
[0135]An expression vector for expression of a defense signal peptide or polypeptide in a plant may also comprise a gene encoding another polypeptide, including a herbicide-tolerance gene (e.g., tolerance to glyphosate, glufosinate, etc.); a polypeptide conferring insect resistance (e.g., a Bacillus thuringensis insecticidal protein or a Xenorhabdus insecticidal protein); a pathogen protein (e.g., virus coat protein); a trait for improving yield, drought resistance, cold tolerance, etc.; a trait for modifying the oil, protein or starch composition of seeds; or another gene that has a desirable activity when expressed in a plant. For example, U.S. Pat. No. 5,571,706 describes the introduction of the N gene into tobacco to confer resistance to tobacco mosaic virus; WO 95/28423 describes the expression of the Rps2 gene from Arabidopsis thaliana in plants as a means of creating resistance to bacterial pathogens including Pseudomonas syringae; WO 98/02545 describes the introduction of the Prf gene into plants to obtain broad-spectrum pathogen resistance; and U.S. Pat. No. 6,762,285 describes the expression of the Bs2 resistance proteins in plants to confer resistance to Xanthomonas campestris. Such plant defense genes may also be co-expressed on the same or a different expression vector with a defense signal polypeptide or peptide.
Nucleic-Acid Hybridization; "Stringent Conditions"; "Specific"
[0136]The term "stringent conditions" is functionally defined with regard to the hybridization of a nucleic-acid probe to a target polynucleotide (i.e., to a particular nucleic-acid sequence of interest) by the specific hybridization procedure discussed in Sambrook et al., 1989, at 9.52-9.55. See also, Sambrook et al., 1989 at 9.47-9.52, 9.56-9.58; Kanehisa, Nucl. Acids Res. 12:203-213, 1984; and Wetmur and Davidson, J. Mol. Biol. 31:349-370, 1968.
[0137]Regarding the amplification of a target nucleic-acid sequence (e.g., by PCR) using a particular amplification primer pair, "stringent conditions" are conditions that permit the primer pair to hybridize only to the target nucleic-acid sequence to which a primer having the corresponding wild type sequence (or its complement) would bind and preferably to produce a unique amplification product.
[0138]The term "specific for (a target sequence)" indicates that a probe or primer hybridizes under given hybridization conditions only to the target sequence in a sample comprising the target sequence.
Nucleic-Acid Amplification
[0139]As used herein, "amplified DNA" refers to the product of nucleic-acid amplification of a target nucleic-acid sequence. Nucleic-acid amplification can be accomplished by any of the various nucleic-acid amplification methods known in the art, including the polymerase chain reaction (PCR). A variety of amplification methods are known in the art and are described, inter alia, in U.S. Pat. Nos. 4,683,195 and 4,683,202 and in PCR Protocols: A Guide to Methods and Applications, ed. Innis et al., Academic Press, San Diego, 1990.
[0140]See also the examples below regarding RT-PCR, for example.
Nucleotide-Sequence Variants of Native Defense Signal Polypeptide Polynucleotides and Amino Acid Sequence Variants of Native Defense Signal Proteins and Peptides
[0141]Using the nucleotide and the amino-acid sequences disclosed herein, those skilled in the art can create DNA molecules, polypeptides, and peptides that have minor variations in their nucleotide or amino acid sequence, respectively.
[0142]"Variant" DNA molecules are DNA molecules containing minor changes in a native sequence, i.e., changes in which one or more nucleotides of a native sequence is deleted, added, and/or substituted, preferably while substantially maintaining a desired biological activity. Variant DNA molecules can be produced, for example, by standard DNA mutagenesis techniques or by chemically synthesizing the variant DNA molecule or a portion thereof. Such variants preferably do not change the reading frame of the protein-coding region of the polynucleotide and preferably encode a protein having no change, only a minor reduction, or an increase in a desired biological activity.
[0143]Amino-acid substitutions are preferably substitutions of single amino-acid residues. DNA insertions are preferably of about 1 to 10 contiguous nucleotides and deletions are preferably of about 1 to 30 contiguous nucleotides. Insertions and deletions are preferably insertions or deletions from an end of the protein-coding or non-coding sequence and are preferably made in adjacent base pairs. Substitutions, deletions, insertions or any combination thereof can be combined to arrive at a final construct.
[0144]Preferably, variant polynucleotides according are "silent" or "conservative" variants. "Silent" variants are variants of a native sequence or a homolog thereof in which there has been a substitution of one or more base pairs but no change in the amino-acid sequence of the polypeptide or peptide encoded by the sequence. "Conservative" variants are variants of a native (or consensus) sequence in which at least one codon in the protein-coding region of the gene has been changed, resulting in a conservative change in one or more amino acid residues of the encoded polypeptide encoded, i.e., an amino acid substitution. A number of conservative amino acid substitutions are listed below. In addition, one or more codons encoding cysteine residues can be substituted for, resulting in a loss of a cysteine residue and affecting disulfide linkages in the polypeptide.
TABLE-US-00004 TABLE 4 Conservative Amino-Acid Substitutions Original Residue Conservative Substitutions Ala Ser Arg Lys Asn Gln, His Asp Glu Cys Ser Gln Asn Glu Asp Gly Pro His Asn; Gln Ile Leu; Val Leu Ile; Val Lys Arg; Gln; Glu Met Leu; Ile Phe Met; Leu; Tyr Ser Thr Thr Ser Trp Tyr Tyr Trp; Phe Val Ile; Leu
[0145]Substantial changes in function are made by selecting substitutions that are less conservative than those listed above, e.g., causing changes in: (a) the structure of the polypeptide backbone in the area of the substitution; (b) the charge or hydrophobicity of the polypeptide at the target site; or (c) the bulk of an amino acid side chain. Substitutions generally expected to produce the greatest changes in protein properties are those in which: (a) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl, or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histadyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine.
Polypeptides and Peptides
[0146]For the polypeptide and peptide sequences presented herein, either the three-letter code or the one-letter code may be used for representing amino acid residues, as provided in Table 5 below.
TABLE-US-00005 TABLE 5 Three-letter Code and One-letter Code for Amino Acids Amino Acid Three-Letter Code One-Letter Code Alanine Ala A Cysteine Cys C Aspartic acid Asp D Glutamic acid Glu E Phenylalanine Phe F Glycine Gly G Histidine His H Isoleucine Ile I Lysine Lys K Leucine Leu L Methionine Met M Asparagine Asn N Proline Pro P Glutamine Gln Q Arginine Arg R Serine Ser S Threonine Thr T Valine Val V Tryptophan Trp W Tyrosine Tyr Y Unknown or Xaa X Unspecified
"Defense Signal Polypeptide"; "Defense Signal Peptide"
[0147]In general, a peptide is considered a short polypeptide. The term "defense signal polypeptide" (or protein) refers to a polypeptide encoded by a defense signal protein polynucleotide, including, but not limited to, the polynucleotides listed in Table 1, and other polynucleotides that encode orthologs, paralogs, homologs, and variants of a native defense signal polypeptide. Defense signal peptides result from the processing of a native defense signal polypeptide, such as AtproPep1, in a plant cell. As a result, a native defense signal polypeptide includes sequences in addition to defense signal peptide sequences. Recombinant polypeptides that are not processed intracellularly, but that have defense signal peptide activity, are also considered defense signal polypeptides or peptides.
[0148]Recombinant fusion polypeptides may be made that, when processed in a plant cell, result in the production of more than one defense signal peptide, or in the production of a defense signal peptide and another biologically active polypeptide or peptide.
[0149]The term "defense signal peptide" refers to a peptide about 10 or more amino acids in length that has substantial defense signal peptide activity. Such defense signal peptides may have a length of 11, 12, 13, 14, 15, or more amino acids. AtPep1 is a native defense signal peptide from Arabidopsis that is 23 amino acids in length, although sequences from the C-terminal end of AtPep1 as short as 10 amino acids retain substantial defense signal peptide activity, and such truncated peptides increase in activity with increasing length. Defense signal peptides longer than 23 amino acids retain defense signal peptide activity. The native defense signal polypeptides that we have identified range encodes propeptides of 75 to 154 amino acids that are processed intracellularly to produce the shorter defense signal peptides. Defense signal peptides up to about 160 amino acid residues, or 100, or 90, or 80, or 70, or 60, or 50, or 40, or 30, or 23, or 20 amino acid residues are included among the defense signal peptides disclosed herein.
[0150]Defense signal peptides may be produced by expression of a polynucleotide that encodes such a peptide intracellularly, e.g., in a plant cell, or in a non-plant cell, e.g., a bacterial, fungal, insect, or other cell used in recombinant production of polypeptides. Alternatively, defense signal peptides may be produced by chemical synthesis. Techniques for chemical synthesis of polypeptides are described, for example, in Merrifield, J. Amer. Chem. Soc. 85:2149-2156, 1963, and peptide synthesizers are commercially available. For chemical synthesis, shorter forms of the defense signal peptides are preferable to longer forms, including but not limited to, defense signal peptides between about 10 and about 30 amino acids in length.
Polypeptide Sequence Homology
[0151]Ordinarily, defense signal peptides encompassed by the present disclosure are at least about 75 percent homologous to a native defense signal peptide, including but not limited to any of the defense signal peptides listed in Tables 1, 2, or 3 or a dicot or monocot consensus defense signal peptide sequence, or at least about 80 percent, 85 percent, 90 percent, or 100 percent (complete) homology, and that has substantial defense signal peptide activity. Such homology is considered to be "substantial homology," although more important than shared amino-acid sequence homology is the possession of characteristic structural features and highly conserved amino acid residues from the C-terminal region of native defense signal peptides or consensus sequences.
[0152]Polypeptide homology is typically analyzed using sequence analysis software such as the Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, Madison, Wis.). Polypeptide sequence analysis software matches homologous sequences using measures of homology assigned to various substitutions, deletions, substitutions, and other modifications.
"Isolated," "Purified," "Homogeneous" Polypeptides and Peptides
[0153]An "isolated" polypeptide or peptide has been separated from the cellular components (polynucleotides, lipids, carbohydrates, and other polypeptides) that naturally accompany it. Such a polypeptide or peptide can also be referred to as "pure" or "homogeneous" or "substantially" pure or homogeneous. Thus, a polypeptide that is chemically synthesized is isolated. A defense signal peptide or polypeptide is also considered "isolated" if it is the product of the expression of a recombinant polynucleotide (even if expressed in a homologous cell type). Thus, if AtPep1, for example, is recombinantly expressed in an Arabidopsis plant, it is considered "isolated" if the polynucleotide that encodes it is under the control of a promoter that is different from the native AtproPep1 promoter, or if the polynucleotide encodes a polypeptide other than the wild type, or native, AtproPep1 polypeptide but, when processed in a plant cell produces a native AtPep1 peptide, or the AtPep1 peptide produced by expression of the polynucleotide and processing of the encoded polypeptide differs from that of the native AtPep1 peptide in any way, for example in length or sequence.
[0154]A monomeric polypeptide or peptide is isolated when at least 60% by weight of a sample is composed of the polypeptide or peptide, or 90% or more, or 95% or more, or more than 99%. Protein purity or homogeneity is indicated, for example, by polyacrylamide gel electrophoresis of a protein sample, followed by visualization of a single polypeptide band upon staining the polyacrylamide gel; high pressure liquid chromatography; or other conventional methods.
Protein Purification
[0155]The polypeptides and peptides of the present disclosure can be purified by any of the means known in the art. Various methods of protein purification are described, e.g., in Guide to Protein Purification, ed. Deutscher, Meth. Enzymol. 185, Academic Press, San Diego, 1990; and Scopes, Protein Purification: Principles and Practice, Springer Verlag, New York, 1982.
Variant and Modified Forms of Defense Signal Peptides and Polypeptides
[0156]Encompassed by the defense signal peptides and polypeptides of the present disclosure are variant peptides and polypeptides in which there have been substitutions, deletions, insertions or other modifications of a native (i.e., wild type) peptide or polypeptide. The variants substantially retain structural characteristics and biological activities of a corresponding native peptide or polypeptide and are preferably silent or conservative substitutions of one or a small number of contiguous amino acid residues.
[0157]Regarding the terms "paralog" and "ortholog", homologous polynucleotide sequences and homologous polypeptide sequences may be paralogs or orthologs of the claimed polynucleotide or polypeptide sequence. Orthologs and paralogs are evolutionarily related genes that have similar sequence and similar functions. Orthologs are structurally related genes in different species that are derived by a speciation event. Paralogs are structurally related genes within a single species that are derived by a duplication event. Sequences that are sufficiently similar to one another will be appreciated by those of skill in the art and may be based upon percentage identity of the complete sequences, percentage identity of a conserved domain or sequence within the complete sequence, percentage similarity to the complete sequence, percentage similarity to a conserved domain or sequence within the complete sequence, and/or an arrangement of contiguous nucleotides or peptides particular to a conserved domain or complete sequence. Sequences that are sufficiently similar to one another will also bind in a similar manner to the same DNA binding sites of transcriptional regulatory elements using methods well known to those of skill in the art.
[0158]The term "equivalog" describes members of a set of homologous proteins that are conserved with respect to function since their last common ancestor. Related proteins are grouped into equivalog families, and otherwise into protein families with other hierarchically defined homology types. This definition is provided at the Institute for Genomic Research (TIGR) website, "tigr.org" under the heading "Terms associated with TIGRFAMs".
[0159]"Allelic variant" or "polynucleotide allelic variant" refers to any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in phenotypic polymorphism within populations. Gene mutations may be "silent" or may encode polypeptides having altered amino acid sequence. "Allelic variant" and "polypeptide allelic variant" may also be used with respect to polypeptides, and in this case the terms refer to a polypeptide encoded by an allelic variant of a gene.
[0160]"Splice variant" or "polynucleotide splice variant" as used herein refers to alternative forms of RNA transcribed from a gene. Splice variation naturally occurs as a result of alternative sites being spliced within a single transcribed RNA molecule or between separately transcribed RNA molecules, and may result in several different forms of mRNA transcribed from the same gene. Thus, splice variants may encode polypeptides having different amino acid sequences, which may or may not have similar functions in the organism. "Splice variant" or "polypeptide splice variant" may also refer to a polypeptide encoded by a splice variant of a transcribed mRNA.
[0161]As used herein, "polynucleotide variants" may also refer to polynucleotide sequences that encode paralogs and orthologs of the presently disclosed polypeptide sequences. "Polypeptide variants" may refer to polypeptide sequences that are paralogs and orthologs of the presently disclosed polypeptide sequences.
[0162]A native defense signal peptide or polypeptide sequence can be modified by conventional methods, e.g., by acetylation, carboxylation, phosphorylation, glycosylation, ubiquitination, and labeling, whether accomplished by in vivo or in vitro enzymatic treatment or by the synthesis of a defense signal peptide or polypeptide using modified amino acids.
Labeling
[0163]There are a variety of conventional methods and reagents for labeling polypeptides and fragments thereof. Typical labels include radioactive isotopes, ligands or ligand receptors, fluorophores, chemiluminescent agents, and enzymes. Methods for labeling and guidance in the choice of labels appropriate for various purposes are discussed, e.g., in Sambrook et al., 1989 and Ausubel et al., 1992.
Peptide Fragments
[0164]The present disclosure also encompasses fragments of a defense signal peptide that lacks at least one residue of a native full-length defense signal peptide. Preferably, such a fragment retains substantial defense signal peptide activity, including but not limited to substantial activity in an alkalinization assay and/or the ability to enhance disease resistance in a plant.
"Defense Signal Peptide Activity"; Biological Activity of Polypeptides or Peptides
[0165]The terms "biological activity", "biologically active", "activity" and "active" refer primarily to the characteristic biological activity or activities of a native defense signal peptide or polypeptide. Defense signal peptide activity includes activity in an alkalinization assay. Substantial defense signal peptide activity in an alkalinization assay includes a change of at least 0.2 pH units when a 10 microliter aliquot of a solution having a concentration of 25 nM of the peptide is added to 1 mL of plant cells in the assay. More substantial defense signal peptide activity in the assay is the observation of a change in pH of at least 0.2 pH units using a solution having concentrations of 2.5 nM or 0.25 nM of the peptide, or when a change of at least 0.5 pH units are observed at a given peptide concentration, or when the activity is at least 25 percent, or 50 percent, or 75 percent that of a native defense signal polypeptide.
[0166]For the alkalinization assay, cells suspensions are grown in a volume of 40 ml in a 125 ml flask. Tobacco and Arabidopsis cells are typically grown for 3-5 days before use. Tomato cells are typically grown for 4-7 days before use. Soybean cells are generally grown for 3-7 days before use. Preferably, cells are in mid to log or log phase when they are to be used for the alkalinization assay. A 1 ml pipette tip with the end cut off (to prevent clogging of the tip with the cells) is used to aliquot 1 ml of the cells from the suspension into a well in a 24-well culture cluster plate. The flask is swirled between aliquots to ensure that the cells remain evenly dispersed throughout the cell suspension and an roughly equivalent number of cells is provided to each well. The plate(s) are then shaken at 160 rpm for 1 hour. Small aliquots (1-10 ml) of extracted peptide fractions are then added to the wells. After 20 min, the pH of the cell media is measured and recorded.
[0167]Alternatively, a substantial defense signal peptide activity is the ability to enhance plant disease resistance and substantially improve yield of plant product, with enhancement of plant disease resistance evidenced by reduced disease symptoms, enhanced resistance to disease infestation, etc., when a defense signal peptide is applied to a plant exogenously or recombinantly expressed within a plant. A defense signal peptide substantially enhances disease resistance of a plant if it increases the resistance of a plant to a pathogen of at least 10 percent as compared to a control plant under similar conditions, or more substantially, of at least 25, or 50, or 75, or 100 percent, as measured by standard quantitative measures of plant disease resistance to a given pathogen, e.g., the number or size of lesions, increased growth, survival rate, rate of disease progression, higher root mass, better seed viability, seed quantity and quality, etc. Alternatively, a substantial defense signal peptide activity is present where the peptide, when applied to a plant exogenously or recombinantly expressed within a plant, confers a substantial change in any resistance to a biotic or abiotic stress that involves the jasmonate/ethylene or salicylic acid pathways, as measured by standard methods.
Fusion Polypeptides
[0168]The present disclosure also provides fusion polypeptides including, for example, heterologous fusion polypeptides in which a defense signal polypeptide coding sequence is joined to a heterologous promoter (i.e., a promoter from gene other than the promoter that is operably linked to that coding sequence in nature), or in which the coding sequence for the defense signal peptide is joined to a fusion partner, i.e., a protein-coding sequence other than sequences with which the coding sequence for the defense signal peptide is joined in nature. Such fusion polypeptides can exhibit biological properties (such as substrate or ligand binding, enzymatic activity, antigenic determinants, etc.) derived from each of the fused sequences.
Polypeptide Sequence Determination
[0169]The sequence of a polypeptide of the present disclosure can be determined by any of the various methods known in the art.
Polypeptide Coupling to a Solid-Phase Support
[0170]The polypeptides of the present disclosure can be free in solution or coupled to a solid-phase support, e.g., nitrocellulose, nylon, column packing materials (e.g., Sepharose beads), magnetic beads, or glass wool, by conventional methods.
Antibodies
[0171]The present disclosure also encompasses polyclonal and/or monoclonal antibodies capable of specifically binding to a particular defense signal peptide and/or fragments thereof. Such antibodies are raised against a defense signal peptide or fragment thereof and are capable of distinguishing a defense signal peptide from other polypeptides, i.e., are specific for the particular defense signal peptide.
[0172]For the preparation and use of antibodies according to the present disclosure, including various immunoassay techniques and applications, see, e.g., Goding, Monoclonal Antibodies: Principles and Practice, 2d ed, Academic Press, New York, 1986; and Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1988. Defense signal peptide-specific antibodies are useful, for example in: purifying a defense signal peptide polypeptide from a biological sample, such as a host cell expressing a recombinant defense signal peptide; in cloning a paralog, ortholog, or homolog from an expression library; as antibody probes for protein blots and immunoassays; etc.
[0173]Antibodies can be labeled by any of a variety of conventional methods. Suitable labels include, but are not limited to, radionucleotides, enzymes, substrates, cofactors, inhibitors, fluorescent agents, chemiluminescent agents, magnetic particles, etc.
Obtaining Paralogs, Orthologs, and Homologs of Defense Signal Peptides
[0174]As discussed in the examples below, defense signal peptides homologous to AtPep1 and other defense signal peptides exist in many plant species. Based upon the availability of the defense signal peptide and polypeptide sequences and their corresponding gene sequences disclosed herein, paralogs and orthologs can be obtained by conventional methods, e.g., by screening a cDNA or genomic library with a probe that specifically hybridizes to a native defense signal peptide sequence under at least moderately stringent conditions, by PCR or another amplification method using a primer or primers that specifically hybridize to a native defense signal peptide or polypeptide sequence under at least moderately stringent conditions, or by screening an expression library using defense signal peptide-specific antibodies.
EDKR Repeat Regions
[0175]Highly negatively charged glutamate/aspartate repeat interrupted by lysine/arginine residues in the precursor region of the molecule.
1-5-10 Helix Motifs
[0176]The precursor genes encode a hydrophobic motif interrupted by a conserved lysine and cysteine, with a consensus sequence of xXxxxXCxxx, where x denotes some hydrophobic residue, X represents any nonhydrophobic amino acid, and x specifically designates F, I, L, or V. The protein secondary structure prediction programs SSpro version 2.0 (Pollastri et al. 2001) and SSpro8 (Baldi et al. 1999) predict that this region to be helical in gene family members. This consensus sequence coincides with the 1-5-10 calmodulin recognition domain motif, which requires an F, I, L, or V in the 1, 5 and 10 positions interspersed with cationic charges. This motif generates an amphipathic alpha helix that has the potential to interact with calmodulin in the presence of calcium (Rhoads and Friedberg 1997).
Serine Repeat
[0177]A stretch of multiple serines in a row in the precursor region. In some precursors, there are stretches of repeated alanines rather than serines. Note that this structural characteristic is common, but does not occur in every precursor.
K/R Positive Region
[0178]The region comprising the proposed amino end of the processed peptide, is positively charged, having in Arabidopsis between 3 and 7 lysine or arginine residues encoded in this area by each family member. Other plant species may have fewer lysines or arginines here (for instance poplar has just two), but all predicted peptides have at least on lysine or arginine in this region.
Core Peptide Motif
[0179]The carboxyl terminal of the predicted peptide region. All orthologs contain the conserved glycine residue at the C-7 position (7 amino acids prior to the predicted carboxy terminus of the peptide). Each precursor also encodes a conserved asparagine or histidine as the final amino acid in the predicted peptide followed by a stop codon. Most dicots encode a serine or threonine in the C-9 position, whereas this position is less conserved in the monocot sequences.
Plant Transformation and Regeneration; Transformed Plant Cells, Plants, and Parts and Products of Transformed Plants
[0180]Various polynucleotide constructs that include a sequence that encodes a defense signal polypeptide or a defense signal peptide are useful for producing plants having enhanced disease resistance or enhanced resistance to another biotic and abiotic stress that involves the jasmonate/ethylene or salicylic acid pathways.
[0181]Polynucleotides that comprise a sequence that encodes a defense related polypeptide or a defense related peptide can be expressed in plants or plant cells under the control of an operably linked promoter that is capable of expression in the plant or plant cell. Any well-known method can be employed for plant cell transformation, culture, and regeneration in the practice of the present disclosure with regard to a particular plant species. Conventional methods for introduction of foreign DNA into plant cells include, but are not limited to: (1) Agrobacterium-mediated transformation (Lichtenstein and Fuller In: Genetic Engineering, Vol 6, Rigby, ed., London, Academic Press, 1987; and Lichtenstein and Draper, in: DNA Cloning, Vol II, Glover, ed., Oxford, IRI Press, 1985); (2) particle delivery (see, e.g., Gordon-Kamm et al., Plant Cell 2:603, 1990; or BioRad Technical Bulletin 1687), (3) microinjection (see, e.g., Green et al., Plant Tissue and Cell Culture, Academic Press, New York, 1987), (4) polyethylene glycol (PEG) procedures (see, e.g., Draper et al., Plant Cell Physiol. 23:451, 1982); Zhang and Wu, Theor. Appl. Genet. 76:835, 1988), (5) liposome-mediated DNA uptake (see, e.g., Freeman et al., Plant Cell Physiol. 25:1353, 1984), (6) electroporation (see, e.g., Fromm et al., Nature 319:791, 1986); and (7) vortexing method (see, e.g., Kindle, Proc. Natl. Acad. Sci. USA 87:1228, 1990).
[0182]Once a transformed plant cell or tissue has been obtained, it is possible to regenerate a full-grown plant from it. Means for regeneration vary from species to species. In one approach a suspension of transformed protoplasts or a petri plate containing transformed explants is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced in the callus tissue. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is usually reproducible and repeatable. Plant regeneration is described, for example, in Evans, et al., Handbook of Plant Cell Cultures, Vol. 1: (MacMillan Publishing Co., New York, 1983); and Vasil I. R. (ed.), Cell Culture and Somatic Cell Genetics of Plants, Acad. Press, Orlando, Vol. I, 1984, and Vol. III, 1986). Practically all plants can be regenerated from cultured cells or tissues, including monocots, dicots, gymnosperms, etc.
[0183]After the DNA construct is stably incorporated in transgenic plants, it can be transferred to other plants by sexual crosses or by asexual propagation. With respect to sexual crossing, any of a number of standard breeding techniques can be used depending upon the species to be crossed. Cultivars can be propagated in accord with common agricultural procedures known to those in the field.
[0184]The term "plant" encompasses any higher plant and progeny thereof, including monocots, dicots, gymnosperms, and other plants and includes parts of plants, including reproductive units of a plant (e.g., seeds), fruit, flowers, etc.
[0185]A "reproductive unit" of a plant is any totipotent part or tissue of the plant from which one can obtain a progeny of the plant, including, for example, seeds, cuttings, tubers, buds, bulbs, somatic embryos, cultured cells (e.g., callus or suspension cultures), etc.
[0186]According to one aspect of the disclosure, plant cells are provided that comprise a polynucleotide sequence that comprises a sequence that encodes a defense signal peptide or polypeptide operably linked to a plant promoter. Another aspect of the disclosure is directed to plants comprising such cells, i.e., transformed or transgenic plants. Another aspect is a part or product of such plants.
[0187]Agronomically and commercially important products and/or compositions of matter derived from transgenic plants according to the disclosure include, but are not limited to, animal feed, commodities, products and by-products that are intended for use as food for human consumption or for use in compositions and commodities that are intended for human consumption, including but not limited to plant parts, including but not limited to seeds, seed pods, flowers (including flower buds), fruit, tubers, stems, cuttings, pollen, and products derived from processing such plant parts, including but not limited to flour, meal, syrup, oil, starch, cakes, cereals, and the like. Such compositions may be defined as containing detectable amounts of a polynucleotide sequence as set forth herein, and thus are also diagnostic for any transgenic event containing such nucleotide sequences. These products are more likely to be derived from crops propagated with fewer pesticides and organophosphates as a result of their incorporation of the nucleotides of the present disclosure for controlling plant disease. For example, such commodities and commodity products can be produced from seed produced from a transgenic plant, wherein the transgenic plant comprises cells that express a defense signal protein of the present disclosure.
Identifying Transgenic Plants According to the Disclosure and Parts and Products Thereof
[0188]Transgenic plants according to the present disclosure, parts of such plants, and products derived from the processing of such plants, can be readily identified by using probes and primers to specifically identify the presence of a transgene that encodes a defense signal peptide or the presence of a specific defense signal peptide. In order to perform such an identification, a biological sample thought to contain such a plant, part or product is contacted with a probe that binds specifically to the transgene containing a defense signal peptide- or polypeptide-encoding polynucleotide (such as one or more PCR primers, cDNA probe, etc.), and detecting such binding (e.g., by identifying the production of an amplification product of a diagnostic size after gel electrophoresis, or by autoradiography). Alternatively, one may use a probe that binds specifically to the defense signal peptide or polypeptide itself, such as an antibody probe, wherein binding can be detected by an enzyme-linked immunosorbent assay (ELISA), etc.
Conferring Resistance to Biotic and Abiotic Stresses to Plants and Enhancing Plant Growth
[0189]As one aspect of the disclosure, resistance to disease resistance, or to another biotic and abiotic stress that involves the jasmonate/ethylene pathway or the salicylic acid pathway, is conferred on a plant, or resistance may be enhanced in the plant, or growth of the plant is enhanced, by expression of polynucleotides that encode one or more defense peptides in cells of the plant.
[0190]As another aspect of the disclosure, methods are provided that comprise growing a seed into a plant, wherein the plant comprises cells comprising a polynucleotide sequence comprising a sequence that encodes a defense signal protein or polypeptide, wherein the plant exhibits one or more of the following: improved yield of plant product, reduced disease symptoms, or enhanced resistance to disease infestation; compared to a control plant lacking the recombinant polynucleotide.
[0191]According to another aspect of the disclosure, improved yield, reduced disease symptoms, or enhanced resistance to disease infestation is conferred or enhanced, by application of compositions comprising one or more defense signal peptides to a plant.
[0192]Where absolute immunity against infection by a pathogen or detrimental affects or other stresses is not to be conferred, the severity of the disease is reduced and symptom development is delayed. This method of imparting resistance has the potential for enhancing plant resistance to a variety of diseases for which other approaches were ineffective in providing effective control.
[0193]The methods of the present disclosure are useful in imparting resistance to a wide variety of pathogens including viruses, bacteria, and fungi.
[0194]With regard to the use of the compositions and methods of the present disclosure to enhance plant growth, various forms of plant growth enhancement or promotion can be achieved. This can occur as early as when plant growth begins from seeds or later in the life of a plant. For example, plant growth according to the present disclosure encompasses greater yield, increased percentage of seeds germinated, increased plant size, greater biomass, more and bigger fruit, earlier fruit coloration, earlier flower opening, improved flower longevity (i.e., shelf-life), and earlier fruit and plant maturation. As a result, the present disclosure provides significant economic benefit to growers. For example, early germination and early maturation permit crops to be grown in areas where short growing seasons would otherwise preclude their growth in that locale. Increased percentage of seed germination results in improved crop stands and more efficient seed use. Greater yield, increased size, and enhanced biomass production allow greater revenue generation from a given plot of land.
[0195]To confer such enhanced resistance, one may express a single gene copy, or in order to express a defense signal peptide at high levels, e.g., expression of multiple copies of a transgene encoding such a defense signal peptide and/or the use of strong promoters to drive expression may be employed. Expression of a transgene encoding a defense signal peptide in plant cells at a sufficiently high level may initiate the plant defense response constitutively in the absence of signals from the pathogen. A constitutive plant promoter can be used. Alternatively, an inducible promoter, or an organ- or tissue-specific promoter, for example, can be used.
[0196]If a plant cell is selected to be transformed, it may be of any type capable of being transformed, preferably one with an agronomic, horticultural, ornamental, economic, or commercial value. Examples of such plant cells include, but are not limited to: acacia, alfalfa, aneth, apple, apricot, artichoke, arugula, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussels sprouts, cabbage, canola, cantaloupe, carrot, cassaya, castorbean, cauliflower, celery, cherry, chicory, cilantro, citrus, clementines, clover, coconut, coffee, corn, cotton, cucumber, Douglas fir, eggplant, endive, escarole, eucalyptus, fennel, figs, garlic, gourd, grape, grapefruit, honey dew, jicama, kiwifruit, lettuce, leeks, lemon, lime, Loblolly pine, linseed, mango, melon, mushroom, nectarine, nut, oat, oil palm, oil seed rape, okra, olive, onion, orange, an ornamental plant, palm, papaya, parsley, parsnip, pea, peach, peanut, pear, pepper, persimmon, pine, pineapple, plantain, plum, pomegranate, poplar, potato, pumpkin, quince, radiata pine, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, Southern pine, soybean, spinach, squash, strawberry, sugarbeet, sugarcane, sunflower, sweet potato, sweetgum, tangerine, tea, tobacco, tomato, triticale, turf grass, turnip, a vine, watermelon, wheat, yams, and zucchini.
Compositions Comprising Defense Signal Peptides for Application to Plants
[0197]According to one embodiment, compositions for application to plants comprise an oil flowable suspension, comprising purified defense signal peptides or unpurified forms of the peptides, including lysed or unlysed bacterial cells or fractions thereof that contain one or more of the defense signal peptides disclosed herein. Any such bacterial host cell expressing the novel polynucleotides disclosed herein and producing a defense signal peptide is contemplated to be useful, such as Bacillus spp., including B. thuringiensis, B. megaterium, B. subtilis, B. cereus, Escherichia spp., including E. coli, and/or Pseudomonas spp., including P. cepacia, P. aeruginosa, and P. fluorescens.
[0198]In another embodiment, compositions for application to plants comprise a water dispersible granule or powder comprising purified or unpurified defense signal peptides.
[0199]In another embodiment, compositions for application to plants comprise a wettable powder, spray, emulsion, colloid, aqueous or organic solution, dust, pellet, or colloidal concentrate comprising purified or unpurified defense signal peptides. Such dry forms of the insecticidal compositions may be formulated to dissolve immediately upon wetting, or alternatively, dissolve in a controlled-release, sustained-release, or other time-dependent manner. Alternatively, such a composition may consist of a combination of one or more of the following compositions: lysed or unlysed bacterial cells, spores, crystals, and/or purified crystal proteins.
[0200]In another embodiment, compositions for application to plants comprise an aqueous solution or suspension comprising purified or unpurified defense signal peptides. Such aqueous solutions or suspensions may be provided as a concentrated stock solution which is diluted prior to application, or alternatively, as a diluted solution ready-to-apply.
[0201]Such compositions may be formulated in a variety of ways. They may be employed as wettable powders, granules or dusts, by mixing with various inert materials, such as inorganic minerals (phyllosilicates, carbonates, sulfates, phosphates, and the like) or botanical materials (powdered corncobs, rice hulls, walnut shells, and the like). The formulations may include spreader-sticker adjuvants, stabilizing agents, other pesticidal additives, or surfactants. Liquid formulations may be aqueous-based or non-aqueous and employed as foams, suspensions, emulsifiable concentrates, or the like. The ingredients may include rheological agents, surfactants, emulsifiers, dispersants, or polymers. Detergents may be included to facilitate uptake of the defense signal peptides by plant tissues and cells.
[0202]Regardless of the method of application, the amount of the active component(s) are applied at an amount that is effective to confer enhanced disease resistance to plants, which will vary depending on such factors as, for example, the specific disease to be controlled, the specific plant or crop to be treated, the environmental conditions, and the method, rate, and quantity of application of the composition.
[0203]Such compositions may be made by formulating purified or unpurified defense signal peptides with the desired biologically-acceptable carrier. The compositions may be formulated prior to administration in an appropriate means such as lyophilized, freeze-dried, desiccated, or in an aqueous carrier, medium or suitable diluents, such as saline or other buffer, for example. The formulated compositions may be in the form of a dust or granular material, or a suspension in oil (vegetable or mineral), or water or oil/water emulsions, or as a wettable powder, or in combination with any other carrier material suitable for agricultural application. Suitable agricultural carriers can be solid or liquid and are well known in the art.
[0204]The term "biologically-acceptable carrier" refers to all carriers that are compatible with the growth and development of a cultured cell or tissue, an excised plant part, a seed, a plant grown under greenhouse or field conditions, or other biological entity, e.g., aqueous solutions, buffers, adjuvants, etc. that are ordinarily used in connection with the biological entity, including but not limited to any carrier used in bacterial or plant cell or tissue culture and agriculturally-acceptable carriers. The term "agriculturally-acceptable carrier" covers all adjuvants, e.g., inert components, dispersants, surfactants, tackifiers, binders, etc. that are ordinarily used in formulation technology for compositions used in agriculture to be applied to plants, soils, etc. The formulations may be mixed with one or more solid or liquid adjuvants and prepared by various means, e.g., by homogeneously mixing, blending and/or grinding.
[0205]Such compositions are applied to the environment of the plant for uptake into plant tissues and cells, typically onto the foliage of the plant or crop to be protected, by conventional methods, such as by spraying. The strength and duration of application will be set with regard to conditions specific to the particular pest(s), crop(s) to be treated and particular environmental conditions. The proportional ratio of active ingredient to carrier will naturally depend on the chemical nature, solubility, and stability of the defense signal protein(s), as well as the particular formulation contemplated.
[0206]Other application techniques, e.g., dusting, sprinkling, soaking, soil injection, seed coating, seedling coating, spraying, aerating, misting, atomizing, and the like, are also feasible and may be required under certain circumstances.
[0207]The defense signal peptides may be employed in such compositions singly, in a mixture of defense signal peptides, or in combination with other compounds, including and not limited to other proteins or chemical compounds used for treatment of plants, including but not limited to proteins or chemical compounds used to treat plants for pathogens, insect pests, etc. The method may also be used in conjunction with other treatments such as surfactants, detergents, polymers or time-release formulations.
[0208]The compositions of the present disclosure may be formulated for either systemic or topical use. The concentration of insecticidal composition which is used for environmental, systemic, or foliar application will vary widely depending upon the nature of the particular formulation, means of application, environmental conditions, and degree of biocidal activity. Typically, the composition will be present in the applied formulation at a concentration of at least about 0.1% by weight and may be up to and including about 99% by weight. Dry formulations of the compositions may be from about 0.1% to about 99% or more by weight of the composition, while liquid formulations may generally comprise from about 0.1% to about 99% or more of the active ingredient by weight.
[0209]The formulation may be administered to a particular plant or target area in one or more applications as needed, with a typical field application rate per hectare ranging on the order of from about 0.1 g to about 1 kg, 2 kg, 5, kg, or more of active ingredient.
Identifying Defense Signal Proteins
[0210]According to one aspect of the disclosure, methods are provided for identifying native defense signal peptides from plants and also for screening synthetic peptides for defense signal peptide activity.
[0211]A sensitive, rapid "alkalinization assay" (see Examples) is useful for isolate native defense signal peptides from plants or synthetic defense signal peptides produced by chemical synthesis or other means. Cultured plant cells, for example suspension cell cultures that grow at about pH 5 are used. Several laboratories have developed such cell cultures for Arabidopsis, tomato (Lycopersicon esculentum), tobacco (Nicotiana tabacum), alfalfa (Medicago sativa), maize (Zea mays), petunia (Petunia hybrida), nightshade (Solanum nigrum), and sweet potato (Ipomoea batatus), for example. Within minutes after adding systemin to cells, an ATP-driven proton pump is inhibited, causing the extracellular medium of the cells to become alkaline. When 1-10 μL aliquots from fractions from plant tissues, e.g., leaves, that have eluted from HPLC columns were added to 1 mL of suspension cultured cells, some fractions caused the cell medium to increase in pH. In order to confirm that a candidate peptide is a defense signal peptide, the peptide is applied to a plant as described in the Examples below or a polynucleotide sequence encoding the candidate peptide is expressed in a plant in order to observe whether disease resistance is enhanced in the plant. Confirmation of the identity of a candidate peptide may be obtained by determining whether the peptide induces defense gene expression (for example, of PDF1.2 and PR-1), e.g., by supplying a solution of the peptide to excised leaves through their cut petioles then analyzing transcript levels, e.g., by semi-quantitative RT-PCR.
Identifying Compounds that Interact with Receptors for Defense Signal Proteins and that Enhance Plant Disease Resistance
[0212]According to another aspect of the disclosure, substances other than peptides and polypeptides, for example, chemical compounds, are screened for their ability to enhance plant defense against diseases. In one approach, the alkalinization assay is used to screen such substances. Candidate substances are added to cultured plant cells and a rise in pH indicates that a candidate substance interacts with a receptor. In a second approach, candidate substances are assayed for binding by an AtPep1 receptor or another receptor for a defense signal peptide. A composition comprising one or more candidate substances that are selected after being screened in an alkalinization assay or receptor binding assay may then be administered to plants in a greenhouse or field trial to assess whether the candidate substance(s) confer enhanced plant defense against a disease. Substances that have activity in conferring enhanced plant defense may be formulated according to standard formulation approaches for application to plants, to seeds, to the soil, etc. The present disclosure also includes compositions comprising an amount of such substances that is effective to enhance plant defense against a disease and a biologically (including agriculturally) compatible carrier. Such compositions may also include other ingredients that are used in formulations for application to plants as detailed above.
[0213]Preferred embodiments will be better understood by reference to the following examples, which are intended to merely illustrate the best mode now known for practicing the embodiments. The scope of the disclosure is not to be considered limited thereto.
Example 1
Isolation and Analysis of AtPep1 and Paralogs and Orthologs Thereof
[0214]Innate immunity is initiated in animals and plants through the recognition of a variety of pathogen associated molecules that in animals are called "pathogen-associated molecular patterns," or PAMPS, and in plants are called elicitors. Peptides derived from pathogens can be powerful elicitors of plant defense responses (Hahlbrock et al., Proc. Natl. Acad. Sci. USA 92:4150-4157, 1995; van den Askerveken et al., Plant Physiol. 103:91-96, 1993; Kammpren, Curr. Opin. Plant Biol. 4:295-300, 2001; Kunze et al., Plant Cell, 16:3496-3507, 2004; Navarro et al., Plant Physiol. 135:1113-1128, 2004; Fellbrich et al., Plant J. 32:375-390, 2002; He et al., Cell 73:1255-1266, 1993), but plant-derived peptides have not been identified previously that are elicitors of immune responses directed against pathogens.
[0215]We have isolated and characterized a 23 amino acid peptide, called AtPep1, that is a signaling component of the innate immune system of Arabidopsis. The peptide precursor gene is transcribed in response to elicitors generated by pathogens, and AtPep1 is produced to amplify the signaling pathways. Seven paralogs of the AtproPep1 gene are present in the Arabidopsis genome, and orthologs have been identified in species of several agriculturally important families including Solanaceae, Poaceae, Salicaceae, Vitaceae, and Fabaceae. AtPep1 and its paralogs and orthologs play important roles as endogenous signals to amplify innate immunity.
Materials and Methods
[0216]Plant growth conditions. Arabidopsis thaliana ecotype Columbia seeds were grown in soil in four-inch square pots for six days under low light at approximately 18° C. Germinated seedlings were then grown under day lengths of 16 hours at 21° C. Mutant plants were grown in autoclaved soil.
[0217]Alkalinization Assay. Arabidopsis suspension cells were grown with shaking in the dark in 125 mL flasks, using 40 mL NT media as previously described (Pearce et al., Proc. Natl. Acad. Sci. USA 98:12843-12847, 2001). The cells were transferred weekly (2.5 mL) and used for assays 3-5 days after transfer. One mL aliquots of cells were transferred to wells of 24-well culture plates and allowed to equilibrate for one hour while agitated on a rotary shaker at 160 rpm. Aliquots of 1-10 μL from extracts or fractions eluted from HPLC columns were added to cells and the pH of the media was monitored after 20 min.
[0218]Purification of AtPep1. Arabidopsis thaliana (Columbia ecotype), 28 days after planting, consisting of rosettes, flowers, stems and seed pods, were harvested, frozen in liquid nitrogen, ground to a powder, and stored at -20° C. Peptides were extracted from 600 g of powder as previously described (Pearce et al., Nature 411:817-820, 2001; Pearce and Ryan, J. Biol. Chem. 278:30044-30050, 2003), using 1200 mL 1% trifluoroacetic acid (TFA). The clear extract was applied to a reversed-phase C18 flash column (Bondesil, Varian Analytical Instruments, Walnut Creek, Calif.) that was equilibrated with 0.1% TFA/H2O. After washing with equilibration buffer, the column was eluted with 50% methanol/0.1% TFA. The eluate was vacuum-evaporated and lyophilized to dryness. This material was dissolved in 0.1% TFA and chromatographed on a G-25 Sephadex column (2.5×33 cm), and the fractions were monitored with the alkalinization assay. The broad peak of activity that eluted between 1-1.5 void volumes was collected and lyophilized. The yield of dry powder was 109 mgs.
[0219]Two hundred forty mg of the powder was dissolved in 9 mL of 0.1% TFA/H2O, centrifuged, and the clarified solution was applied to a 5 micron, 10×250 mm semi-preparative C18 column (#218TP510, Vydac, Hesperia, Calif. with a flow rate of 2 ml/min and monitored at 225 nm. After 2 min, a gradient from 0-40% acetonitrile/0.1% TFA was applied to the column and 1 min fractions were collected and assayed as above. A defined activity peak was identified in fractions 36-37 and designated Arabidopsis Peptide 1 (AtPep1). AtPep1 was further purified by strong cation exchange chromatography on a 5 μm, 4.6×200 mm PolySulfoethyl Aspartamide® column (The Nest Group, Southborough, Mass.) equilibrated with 5 mM potassium phosphate, pH 3, in 25% acetonitrile. Two min after applying AtPep1 to the column, a gradient of 0-100% elution buffer consisting of 5 mM potassium phosphate, 1 M potassium chloride, pH 3, in 25% acetonitrile was applied for 60 min. Absorbance was monitored at 214 nm and the flow rate was 1 mL/min. Fractions were collected at minute intervals and 10 μL aliquots were assayed for alkalinization activity. The fractions with activity, 58 and 59, were pooled and lyophilized. Further purification of AtPep1 was performed on a narrow-bore reversed-phase 218TP52, 5 μm, 2.1×250 mm C18 column (Vydac, Hesperia, Calif.) that had been equilibrated with 0.1% TFA/H20. The lyophilized material was dissolved in the equilibration buffer and applied to the column. After two min, a gradient of 0-50% acetonitrile in 0.1% TFA was applied over 90 min with a flow rate of 0.25 mL/min, and monitored at 214 nm. Fractions were collected at 1 min intervals and assayed as above. The activity was present in fractions 48-50, which were pooled and lyophilized. Further purification was obtained on the same narrow-bore column but using a 0-50% methanol/0.05% TFA gradient over 90 min for elution. The activity was found exclusively in fractions 63-64. These fractions were pooled and subjected to amino acid sequence analysis and MALDI-mass spectroscopy.
[0220]Peptide sequence analysis and synthesis. N-terminal sequence analysis was performed using Edman chemistry on an Applied Biosystems Procise Model 492 protein sequencer. MALDI-mass spectroscopy was performed on a PerSeptive Biosystems Voyager time-of-flight mass spectrometer equipped with a nitrogen laser (337 nm) with α-cyano-4-hydroxycinnamic acid as the matrix. Peptide synthesis was performed using Fmoc (N-(9-fluorenyl)methoxycarbonyl) chemistry by solid phase techniques using an Applied Biosystems Model 431 synthesizer. Synthetic peptides were purified by reversed-phase C18 HPLC. Peptide stocks (250 μM) were assayed for purity and the mass verified with a Finnigan LC/Q mass spectrometer using direct injection.
[0221]Plant stress and hormone treatments. To examine effects of cold stress, plants were placed in a refrigerated growth chamber set to 2° C. To simulate drought stress conditions, plants grown under standard growth chamber conditions were grown without watering. Methyl jasmonate (Bedoukian Research Inc., Danbury Conn.) was applied as a 625 μM solution in 0.1% Triton X-100 to the upper surface of leaves and the plants were incubated in plexiglass boxes. Methyl salicylate (Sigma-Aldrich, St. Louis Mo.), was applied to leaf surfaces at 2 mM in a 0.1% Triton X-100 solution. Ethephon (Phytotechnology Laboratories, Shawnee Mission Kans.) was sprayed on plants as a 7 mM solution in 0.1% Triton X-100 (Sigma-Aldrich, St. Louis Mo.). ABA effects were analyzed by spraying plants with a 100 μM solution (mixed isomer, Sigma-Aldrich, St. Louis Mo.) in 0.1% Triton X-100 (Denekamp and Smeekens, Plant Physiol. 132, 1415-1423, 2003).
[0222]Excised-leaf assays. AtPep1 peptide dissolved in double distilled water was supplied to excised leaves of 3 to 4 week old Arabidopsis plants. Leaves were excised and the petioles were immersed in 800 μL centrifuge tubes containing either the peptide solution or distilled water, and placed in a closed clear plexiglass box containing a thin layer of water for humidity, and a small opening to allow air to enter. Boxes were incubated in a growth chamber under the plant growth conditions described above and sprayed with a fine mist of distilled water every half hour to ensure humidity and prevent wilting. To determine variations in basal levels of the AtproPep1 transcript among assays, four different leaves from four different plants were used for each treatment, and leaves supplied with either water or AtPep1 were taken from the same plants. Assays were terminated by immersing the leaves in liquid nitrogen.
[0223]Hydrogen peroxide accumulation was visualized using diaminobenzidine (DAB) (Thordal-Christensen et al., Plant J. 11:1187-1194, 1997).
[0224]Semi-quantitative RT-PCR analysis of relative gene expression levels. RNA was isolated using Trizol reagent and manufacturer's instructions (Invitrogen, Carlsbad Calif.), and 2 μg of RNA template was reverse transcribed with a RETROscript kit (Ambion, Austin Tex.). PCR reactions were carried out with ExTaq Hot Start polymerase and reagents (Fisher Scientific, Pittsburgh Pa.). The AtproPep1 forward and reverse primers with the respective sequences of 5' CTT ATC AGA TCT CAA TGG AGA AAT C 3' (SEQ ID NO: 59) and 5' CAA TGT AAC TTA AAG TGC CTA ATT ATG 3' (SEQ ID NO: 60) generated a 310 bp intron-spanning product. Primers to β-tubulin (At5g62690) of 5' CAA CGC TAC TCT GTC TGT CC 3' (SEQ ID NO: 73) and 5' TCT GTG AAT TCC ATC TCG TC 3' (SEQ ID NO: 74) generated a 681 base pair intron-spanning product. An initial denaturing/polymerase activating step of 5 minutes at 94° C. was followed by 31 repetitions of the following three steps: a thirty second denaturation phase at 94° C., a thirty second annealing period at 55.5° C., and a one minute elongation step at 72° C. The amplification program was terminated with a 10 minute final 72° C. elongation phase.
[0225]The products of each reaction were separated by electrophoresis and were visualized on a Bio Imaging System (SynGene, Frederick Md.) using GeneSnap version 6.00.26 software (SynGene, Frederick Md.). A high resolution image of the gel was analyzed using GeneTools analysis software version. 3.02.00 (SynGene, Frederick Md.). Relative band intensities for each band were normalized to the β-tubulin band. A numerical ratio of amplified AtproPep1 cDNA to amplified tubulin cDNA was obtained for every sample. To calculate average values, semi-quantitative RT-PCR assays were performed in duplicate, and RNA extractions were performed in triplicate.
[0226]Transformation of Arabidopsis with a CaMV 35S:proAtPep1 gene. Genomic DNA was isolated from Arabidopsis leaves using the DNAzol reagent (Invitrogen, Carlsbad Calif.). The genomic sequence encoding AtproPep1 was amplified using a forward primer 5' ATA AAG AGT CAC ACC CAA TAC CG 3' (SEQ ID NO: 76) and a reverse primer 5' TGA TAC TGG TTA TGA ACT TAT GAT GG 3' (SEQ ID NO: 77) to generate a 1078 base pair product. A 5' Xho I recognition site and a 3' BamH I site were amplified onto the genomic fragment for ligation into the pART-7 vector (Gleave, Plant Mol. Biol. 20:1203-1207, 1992). Both the proAtPep1 genomic product and the pART-7 vector were digested with BamH I and Xho I enzymes (Promega Biosciences Inc., San Luis Obispo CA), and ligated using the LigaFast rapid DNA ligation system (Promega Biosciences Inc., San Luis Obispo CA). The construct was transformed into chemically-competent E. coli TOP10F' cells (Invitrogen, Carlsbad Calif.) that were plated out on LB-ampicillin (50 μg/mL). A plasmid clone containing the full AtproPep1 genomic DNA insert with no nucleotide errors was used to generate an AtproPep1/pBART construct. Both pBART and AprotPep1/PART-7 plasmid were digested with Not I (Promega Biosciences Inc., San Luis Obispo CA) to enable ligation of the CaMV 35S/AtproPep1 expression cassette into the digested pBART plasmid using the Promega LigaFast kit (Promega Biosciences Inc., San Luis Obispo CA). An empty pART-7 vector was digested with Not I to generate a control pBART construct. TOP10F' chemically competent cells were transformed with the constructs and grown in Luria-Berftani media containing 100 μg/mL spectinomycin (Sigma-Aldrich, St. Louis Mo.), 40 μL of a 40 mg/mL solution of X-Gal (Sigma-Aldrich, St. Louis Mo.) and 40 μL of a 100 mM IPTG (Sigma-Aldrich, St. Louis Mo.) stock. A pBART clone containing the CaMV 35S/proAtPep1 construct, and a second clone containing the empty CaMV 35S construct, were transformed into Agrobacterium tumefaciens strain AGLO cells (Lazo and Ludwig, Biotechnology (N Y) 9:963-967, 1991) by electroporation using a BioRad electroporator (BioRad Laboratories, Hercules, Calif.). The transformed cells were grown on 2XYT media (Lazo et al., Biotechnology (N Y) 9:963-967, 1991) containing 100 μg/mL spectinomycin, and viable colonies were screened using RT-PCR with the pART F and pART R primers.
[0227]Liquid cultures of Agrobacterium carrying the CaMV 35S:AtproPep1 or empty CaMV 35S constructs were grown in 2XYT media and used for floral dip transformation of Arabidopsis plants (Clough and Bent, Plant J. 16:735-743, 1998). Transformed plants were grown to maturity, and the seed was collected and planted. Newly germinated seedlings were treated with a 350 μM solution of the herbicide BASTA (glufosinate ammonium, brand name Finale; Farnam Companies Inc., Phoenix Ariz.) four times at three day intervals, and healthy plants were screened for the proAtPep1 transgene via PCR. Plants that were both glufosinate-resistant and that amplified products of the appropriate size were grown to maturity and the seeds planted to recover T2 progeny.
[0228]Growth and inoculation of plants with Pythium irregulare. Two strains of the oomycete root pathogen Pythium irregulare, strain 110305) were grown on water-agar (1%) plates for maintenance of stock cultures and, after growing at room temperature in the dark for one week, were stored at 4° C. Pythium stocks for infection assays were grown on 1× potato dextrose agar (Sigma-Aldrich, St. Louis Mo.) in the dark for one week at room temperature.
[0229]Week-old P. irregulare cultures were scraped from the plates into 20 mL of sterile distilled water, the mixture was lightly ground with a mortar and pestle to produce a uniform suspension. Aliquots (250 μL) of the suspension or water were pipetted into the soil of plants having a rosette diameter of 2-3 cm. Plants were grown for 25 days as described above and assayed. The experiments were repeated five times. After two and a half weeks, the plants were photographed to show rosette morphology, and at three and a half weeks were harvested and the roots examined. The day prior to harvest, plants were not watered, so that the soil would easily separate from the roots. Soil was gently rinsed from the roots of each plant with water, taking care to minimize damage, and each plant was trimmed at the base of the rosette to fully expose the root structure, and photographed.
[0230]Identification the AtproPep1 gene and homologous genes. The gene locus encoding the AtPep1 peptide precursor was identified using the National Center for Biotechnology Information (NCBI) TBLASTN version 2.2.7 algorithm (Altschul et al., Nucleic Acids Res. 25:3389-3402, 1997) to search genomic sequences from Arabidopsis thaliana. To determine possible localization of the protein in the cell, several predictive programs were employed, including pSORT (Nakai and Kanehisa, Proteins 11:95-110, 1991), ChloroP41 and MitoProt (Emanuelsson et al., J. Mol. Biol. 300:1005-1016, 2000; Emanuelsson et al., Prot. Sci. 8:978-984, 1999). Orthologs to the AtproPep1 gene were identified using the NCBI TBLASTN version 2.2.7 and Institute of Genomic Research (TIGR) TBLASTN 2.0 MP algorithms (Gish, TBLASTN 2.0 MP-WashU [27 Aug. 2000] [linux-i686 21:46:47 28 Aug. 2000] Copyright 1996-2000 Washington University, Saint Louis, Mo. USA. [http://blast.wustl.edu]). The predicted protein sequence for each was aligned using the program Clustal W version 1.8, available at the Baylor College of Medicine Search Launcher website.
[0231]Analysis of gene expression using RT-PCR. Gene expression was analyzed using RT-PCR (Nishimura et al., Plant Cell 16:1365-1377, 2004). Forward and reverse primers used for RT-PCR analysis are shown in Table 6.
Results
[0232]We have isolated a 23 amino acid peptide called AtPep1 from extracts of Arabidopsis leaves that exhibits characteristics of an elicitor of the innate immune response. Endogenous peptide elicitors of innate immunity have not been previously known. The identification and isolation of the peptide from soluble extracts of Arabidopsis leaves was facilitated by its ability, at sub-nanomolar concentrations, to cause an alkalinization response that is typical of elicitors (Moyen and Johannes, Plant Cell Environ. 19:464-470, 1996; Felix and Boller, Plant J. 7:381-389, 1999; Pearce et al., Proc. Natl. Acad. Sci. USA 98:12843-12847, 2001; Pearce et al., Nature 411:817-820, 2001; Pearce and Ryan, J. Biol. Chem. 278:30044-30050, 2003).
[0233]A bioactive component, AtPep1, was identified and purified to homogeneity. Peptides present in a 1% TFA/water extract of Arabidopsis tissues were passed through a reverse phase semi-preparative C18 flash chromatography column and separated on a G-25 Sepharose column. The breakthrough peak was applied to a C18 HPLC column and 10 μL from 2 mL fractions from the column were assayed for alkalinization activity. The peak identified as AtPep1 was further purified through two additional chromatography steps and finally purified by narrow bore HPLC. Fractions were assayed for alkalinization activity and the active peak was analyzed by MALDI mass spectroscopy. The amino acid sequence of the purified peptide was determined by Edman degradation. Its identity as a peptide was established by its molecular mass (M/Z, 2492.65) and amino acid sequence (from amino terminus to carboxy terminus, ATKVKAKQRGKEKVSSGRPGQHN (SEQ ID NO: 1; see Table 1) with a calculated molecular mass of 2491.8). The kD determined by mass spectroscopy matched the kD calculated from the amino acid sequence, indicating that the peptide was not post-translationally modified. The chemically synthesized peptide was found to be as active as the native AtPep1, with a 1/2 maximal activity of 0.25 nM.
[0234]The sequence of AtPep1 was identified in GenBank as being derived from the accession At5g64900, which encodes a small protein of 92 amino acids, with its C-terminal 23 amino acids comprising AtPep1. FIG. 1 shows the amino acid sequence of the AtPep1 precursor protein, AtproPep1, deduced from the protein encoded by the gene At5g64900. The AtPep1 sequence at the carboxyl terminus of the precursor protein, is underlined. The amino acid sequence of the precursor protein is highly charged and lacks a leader sequence, indicating that it is not synthesized through the secretory pathway, but rather on cytoplasmic ribosomes.
[0235]Expression analysis of AtproPep1 in response to abiotic and biotic cues. As a first step in seeking a possible function for AtproPep1 and its encoded peptide, the basal expression level of the gene was assessed in leaves, stems, roots and flowers of Arabidopsis plants was studied using semi-quantitative RT-PCR analysis of AtproPep1 gene expression in response to treatment of leaves with MeJA, ethephon, MeSA, and AtPep1. The relative abundance of the proAtPep1 transcript was estimated from the expression of the β-tubulin gene as a control. Leaves were wounded by crushing once across the mid-vein with a hemostat. Plants were sprayed with a 250 μM solution of MeJA in 0.1% Triton X-100; with a 2 μM solution of MeSA in 0.1% Triton X-100 or with a 7 mM solution of ethephon in 0.1% Triton X-100. AtPep1 peptide (10 nM in water) was supplied through cut petioles of excised leaves. Total RNA was extracted and analyzed. The forward and reverse primers for real-time PCR (RT-PCR) analysis are shown in Table 6 below.
TABLE-US-00006 TABLE 6 RT-PCR primers Product Gene Primers size AtproPep1 SEQ ID NO: 59: 310 bp 5' CTTATCAGATCTCAATGGAGAAATC 3' (F*) (At5g64900) SEQ ID NO: 60: 5' CAATGTAACTTAAAGTGCCTAATTATG 3' (R) PDF1.2 SEQ ID NO: 61: 243 bp 5' ATGGCTAAGTTTGCTTCCA 3' (F) (At5g44420) SEQ ID NO: 62: 5' TTAACATGGGACGTAACAGATAC 3' (R) PR-1 SEQ ID NO: 63: 306 bp 5' GGAGCTACGCAGAACAACTA 3' (F) (At2g14610) SEQ ID NO: 64: 5' AGTATGGCTTCTCGTTCAGA 3' (R) TAT3 SEQ ID NO: 65: 330 bp 5' TACAGGGGTAGTTGAAGCAA 3' (F) (At2g24850) SEQ ID NO: 66: 5' CCTAGAGCCAGTCGTGGTAT 3' (R) LOX2 SEQ ID NO: 67: 312 bp 5' ACGGTAGAAGACTACGCACA 3' (F) (At3g45140) SEQ ID NO: 68: 5' TAAGGTCTCGAGCTCCTCTT 3' (R) VSP2 SEQ ID NO: 69: 317 bp 5' CAAAATATGGATACGGGACA 3' (F) (At5g24770) SEQ ID NO: 70: 5' ATTGCCAACGATGTTGTATC 3' (R) ATTI3 SEQ ID NO: 71: 231 bp 5' TGGCAATGAAGTCAGTTTCT 3' (F) (At2g43530) SEQ ID NO: 72: 5'AGAAGTCGCAGAAGCACTTA 3' (R) β-tubulin SEQ ID NO: 73: 681 bp 5' CAACGCTACTCTGTCTGTCC 3' (F) (At5g62690) SEQ ID NO: 74: 5' TCTGTGAATTCCATCTCGTC 3' (R) *F = Forward primers; R = Reverse primers.
[0236]The AtproPep1 gene was expressed at low levels in all tissues, giving no clues as to its possible function. Monitoring the expression of AtproPep1 in intact plants exposed to different environmental conditions and chemicals, including drought and cold stress, UV-B irradiation, wounding, methyl jasmonate (MeJA), methyl salicylate (MeSA), abscissic acid (ABA) and Ethephon®, provided more definitive clues. Whereas most treatments did not cause changes in expression of AtproPep, wounding, MeJA, ethephon, and AtPep1 all induced expression of AtproPep1, indicating a possible relationship of the gene and its encoded peptide in plant defense. Transcription of the gene in response to wounding was detected within about 8 h, whereas spraying the plants with a 250 μM solution of MeJA or 7 mM ethephon induced a strong expression of the gene within an hour. Supplying 10 nM AtPep1 through cut petioles of excised leaves induced expression of the AtproPep1 gene within two hours.
[0237]AtPep1 regulates transcription of pathogen defense genes. The expression of AtproPep1 in response to MeJA and ethylene (Et) suggested that the encoded peptide might have a role in activating innate immunity in Arabidopsis, although an endogenous peptide had not previously been reported in the innate immune system of any plant. The jasmonic acid (JA)/Et signaling pathway in Arabidopsis activates the expression of defensive genes including PDF1.2 (defensin), while the salicylic acid (SA) pathway activates several pathogen-related (PR) genes (Penninckx et al., Plant Cell 8:2309-2323, 1996; Lorenzo et al., Plant Cell 15:165-178, 2003; Zimmerli et al., Plant J. 40:633-646, 2004; Penninckx et al., Plant Cell 10:2103-2113, 1998; Hammond-Kosack and Parker, Curr. Opin. Biotechnol. 14:177-193, 2003; Mauch-Mass and Matreau, Ann. Bot. 82:535-540, 1998).
[0238]In order to determine whether AtPep1 regulates defense gene expression, we determined the fold induction of defense related genes in excised Arabidopsis leaves in response to 10 nM AtPep1 supplied through their cut petioles. After 2 hr, transcript levels were analyzed for expression levels of PDF1.2 (defensin), PR-1 (pathogenesis-related 1) LOX2 (lipoxygenase 2), VSP2 (vegetative storage protein2) and ATTI3 (Arabidopsis thaliana trypsin inhibitor 3), relative to levels in untreated excised leaves. Expression was determined by semi-quantitative RT-PCR using a β-tubulin gene as a control. Supplying excised Arabidopsis leaves with solutions of AtPep1 through their cut petioles induced a strong expression of PDF1.2 and PR-1.
[0239]We also performed similar assays with an Arabidopsis triple mutant (fad3-2, fad7-2, fad8; McConn and Browse, Plant Cell 8:403-416, 1996) that is incapable of synthesizing jasmonic acid, and a mutant (ein2-1; Guzman and Ecker, Plant Cell 2:513-523, 1990) that is incapable of perceiving ethylene. AtPep1 was supplied at 10 nM for 2 hr, and RNA isolated and assayed by semi-quantitative RT-PCR for gene expression levels. AtPep1 did not induce the expression of AtproPep1, PDF1.2 or PR-1. These experiments suggested that AtPep1 acts upstream from the JA/Et and SA pathways to activate PDF1.2; PR-1 and AtproPep1.
[0240]We also studied the accumulation of H2O2 in leaves supplied for 2 hr with water, 10 nM AtPep1, or with 10 nM AtPep1, all containing 1 mg/mL of DAB to visualize H2O2 accumulation. Leaves treated with AtPep1 and DAB were also co-supplied with 100 μM DPI, an inhibitor of NADPH oxidase. We also studied the transcription of PDF1.2 and PR-1 in leaves of wild type plants in response to supplying with 10 nM AtPep1 in the presence or absence of DPI (diphenylene iodonium chloride), an inhibitor of NADPH oxidase in both plants and animals (O'Donnell et al., Biochem. J. 290:41-49, 1993). The expression of each gene was analyzed by RT-PCR and compared to expression in excised plants treated only with water. The results indicated that reactive oxygen species (ROS) generated in both the JA/Et and SA pathways is required for PDF1.2 and PR-1 transcription (Penninckx et al., Plant Cell 8:2309-2323, 1996; Hammond-Kosack and Parker, Curr. Opin. Biotechnol. 14:177-193, 2003; Mackerness et al., Plant Cell and Environ. 22:1413-1423, 1999).
[0241]AtproPep1 over-expression in Arabidopsis enhances innate immunity. Arabidopsis plants were transformed with a CaMV-35S-AtproPep1 transgene in order to assess the effects of the constitutive synthesis of AtPep1 on the expression of defense genes using semi-quantitative RT-PCR. In previous studies, overexpression of the tomato prosystemin precursor gene (McGurl et al., Proc. Natl. Acad. Sci. USA 91:9799-9802, 1994) caused a constitutive over-expression of defense genes. This is apparently due to the constitutive synthesis of prosystemin in the cytoplasm of cells (prosystemin, like AtproPep1, lacks a leader sequence) where it is processed to systemin. Analysis of transgenic Arabidopsis plants overexpressing AtproPep1 behaved in a similar manner as the prosystemin gene in that it caused an over-expression of defense genes, in this case of PDF1.2 and PR-1. The fold expression of the various genes (compared to wild type) was found to be: AtproPep1, 12.7±6.4; PDF1.2, 4.4±0.5; PR-1, 2.1±0.4; LOX2, 1.0±0.2; VSP-2, 0.9±0.1; and ATT13, 1.2±0.1. These results indicated that plants over-expressing AtproPep1 were synthesizing AtPep1 in the absence of pathogen attacks or elicitors, constitutively signaling the defense response.
[0242]Transgenic Arabidopsis plants constitutively over-expressing AtproPep1 were assayed for enhanced resistance against a root pathogen, Pythium irregulare, an oomycete that has been employed previously to demonstrate the effects of signaling mutants of Arabidopsis on disease resistance (Staswick et al., Plant J. 15:747-754, 1998; Vijayan et al., Proc. Natl. Acad. Sci. USA 95:7209-7214, 1998). The soils of young wild type (Columbia) and transgenic plants overexpressing a 35S:AtproPep1 gene (having rosette diameters of 2-3 cm) were inoculated with either a suspension of Pythium irregulare strain 110305 propagules, or with sterile water, and the plants were grown for 25 days post-inoculation. Five repetitions were performed with 16 plants of each genotype in each experiment. The aerial parts of the wild type plants inoculated with Pythium were slightly smaller than uninoculated wild type or transgenic plants. However, the roots of plants from duplicate experiments in which the root masses of uninoculated wild type and transgenic plants are compared to the roots of inoculated wild type and transgenic plants clearly showed that the over-expression of AtproPep1 had enhanced the resistance of the plants toward the root pathogen.
[0243]AtProPep1 paralogs. AtproPep1 belongs to a seven-member gene family in Arabidopsis of which one gene is unannotated. Three paralogs, At5g64890, At5g64900 (AtproPep1), and At5g64905, are sequentially encoded in a 5.5 kilobase region of chromosome V (NCBI Arabidopsis Genome Database). Paralogs At5g09980 and At5g09990 and the unannotated gene are also found on chromosome V, but in a 3.8 kb region at a distal region on the second arm of the chromosome. At2g22000 is found on chromosome II. In comparing the amino acid sequences of the open reading frames of the paralogs, a low overall amino acid sequence identity was found, but within the C-terminal region of each gene where the putative AtPep1 sequences reside, the amino acid identities ranged from 35% to 65%. Four genes, At5g64905, At5g64900, At5g64890 and At5g09980, are expressed relatively strongly in excised Arabidopsis leaves in response to supplying either AtPep1 through cut petioles, or by spraying with MeJA. However, spraying plants with MeSA strongly induced only two of the genes that are induced by AtPep1 and MeJA, i.e. At5g64890 and At5g64905. This differential regulation of AtproPep1 paralogs suggests that a complex signaling network is at play in the leaves, and that cross-talk occurs between the JA/Et and SA pathways, regulating the expression levels of the paralogs. This differential expression of AtproPep1 paralogs was also found in the results from several recent microarray analyses of Arabidopsis genes transcribed in response to pathogens and elicitors. In these analyses the AtproPep1 paralogs were included without any knowledge of their possible signaling roles.
[0244]We performed a transcript analysis in order to determine the increases in transcription of AtproPep1 paralogs in Arabidopsis leaves in response to the pathogens P. infestans (oomycete), B. cineria (fungus), and Ps. syringae DC 3000 (bacteria) (Toufighi et al., Plant J. 43:153-163, 2005; Craigon et al., Nucleic Acids Res. 32:D575-577, 2004), and to the elicitors NPP1, HrpZ, flg22, and elf18, derived from oomycetes, and bacteria, respectively (Kammpren, Curr. Opin. Plant Biol. 4:295-300, 2001; Kunze et al., Plant Cell, 16:3496-3507, 2004; Navarro et al., Plant Physiol. 135:1113-1128, 2004; Fellbrich et al., Plant J. 32:375-390, 2002); He et al., Cell 73:1255-1266, 1993). All of these treatments strongly induce the transcription of At5g64890 and At5g64905, the two paralogs that are strongly induced by treating leaves with MeJA, MeSA and AtPep1. However, the lack of induction of At5g64900 by the pathogens, a gene induced by MeJA and AtPep1, and the induction of At5g64900, At5g64890 and At5g64905 by elicitors as well as by the pathogens, indicates that differential induction of the AtproPep family of genes may be governed by the types of elicitors related to individual pathogens. The data presented herein supports a model in which the paralogs At5g64900, At5g64905, and At5g64890 are transcribed in response to elicitors of the JA/Et signaling pathway, while the genes At5g64905, and At5g64890 are transcribed in response to elicitors of SA. The nascent proproteins or processed peptides are transported to the apoplast, where they interact with a cell surface receptor(s) to amplify the immune response. Thus, the AtproPep1 paralogs are components of an amplification system for a broad spectrum of elicitors that activate the innate immune response.
Discussion
[0245]Some fundamental similarities are found among signaling components of animal and plant innate immune systems, including the recognition of PAMPS and/or elicitors from pathogens, the involvement of LRR receptor kinases that monitor the signals, and the resulting activation of defense gene transcription of genes involved in early steps of innate immunity. Several peptides originating from plant pathogens can activate the plant innate immune response, including Pep13, AVR9, and elicitins derived from fungi (Hahlbrock et al., Proc. Natl. Acad. Sci. USA 92:4150-4157, 1995; van den Askerveken et al., Plant Physiol. 103:91-96, 1993; Kammpren, Curr. Opin. Plant Biol. 4:295-300, 2001), and the peptides hrpZ, NPP1, flg22 and elf13 from bacteria (Kunze et al., Plant Cell, 16:3496-3507, 2004; Navarro et al., Plant Physiol. 135:1113-1128, 2004; Fellbrich et al., Plant J. 32:375-390, 2002; He et al., Cell 73:1255-1266, 1993), as examples. However until this report endogenous plant peptides have not been reported that are involved with signaling roles directed against pathogen attacks. We have discovered a family of genes that encode small peptides are rapidly and are strongly transcribed along with defense genes in response to pathogens and their elicitors, appearing to assure a rapid, strong amplification of the innate immune response. The low expression or lack of expression of some of the AtproPep genes demonstrates that the paralogs are differentially expressed in response to pathogen infections and elicitors. Fusions of all paralogs with green fluorescent protein (GFP) and beta-glucuronidase (GUS) are used to investigate expression of the paralogs to determine their tissue-specific expression and their roles in defense responses.
[0246]The induction of the defense responses by AtPep1 is mediated by a binding protein on the cell surface of Arabidopsis suspension cultured cells that interacts with AtPep1 with the characteristics of a receptor, further supporting the fundamental concept proposed in the model described above in which the AtproPep1 paralogs serve as components of an amplification system for a broad spectrum of elicitors that activate the innate immune response.
[0247]Searches of plant genomic databases and EST collections identified AtproPep orthologs in species from several plant families. Table 1, supra, shows the C-terminal sequences of paralogs and orthologs of AtproPep1 aligned with the AtPep1 peptide sequence. Paralogs are grouped above and dicot and monocot orthologs are grouped below.
[0248]The regions with the highest amino acid identities among the deduced proteins occur within the C-terminal residues of each where the AtPep homologs are found. The deduced canola peptide exhibited the highest identity with the AtPep peptides, being a Brassicaceae species. All of the putative AtPep homologs have a conserved glycine at residue #17 (numbers aligned with AtPep1), and all but paralogs from the Poeceae family contain an asparagine at residue #23. Each peptide contains several proline, glycine, and serine residues within a 10 amino acid C-terminal region that may be important for receptor recognition.
[0249]The chemical and physiological properties of the AtPep1 family members, their precursor proteins, and their genes, are strikingly similar to the properties of the 18 amino acid peptide signal systemin, its precursor prosystemin, and its gene, that are components of the signaling pathway for defense against herbivorous pests of the Solanaceae family (Ryan and Pearce, "Peptide hormones/systemins," in Encyclopedia of Biological Chemistry, ed. Lennarz and Lane, vol 3, pp. 381-384, Elsevier, 2004). Both AtPep1 homologs and tomato systemin homologs are cleaved from the carboxy (C)-termini of precursor proteins that lack leader peptides, both precursors are small, highly positively charged proteins, and each activates defense genes. The mechanism for processing AtPep1 is not known, nor is it known if it is the AtPep1 or its peptide precursor that is transported to the apoplast, or if more than one receptor is involved in recognizing the different peptides.
[0250]These results indicate that the major role for receptor-mediated defense-signaling peptides in plants is to amplify signaling that is initiated by wounding and elicitors to mount a rapid, strong defense against herbivores and pathogens. If AtproPep orthologs behave in the same manner when over-expressed in other plant species by constitutively expressing defense genes, they may provide an important new approach to enhance innate immunity in a broad spectrum of agriculturally important crops.
Example 2
An LRR Receptor Kinase is a Component of AtPep1 Amplification of Innate Immunity in Arabidopsis
[0251]Over 200 LRR receptor kinases are present in the Arabidopsis genome. Only a few LRR receptor kinases have been identified that interact with the peptide signals in plants. This includes the receptor for the defense peptide signal, systemin (Scheer and Ryan, Proc. Natl. Acad. Sci. 99:9585-9590, 2002) and receptors for the developmental peptide signals CLAVATA1 (Clark and Meyerowitz, Cell 89:575-585, 1997), phytosulfokine-alpha (Matsubayashi et al., Science 296:1470-1472, 2002) and the pathogen-derived peptide flg22 (Gomez-Gomez and Boller, Trends Plant Sci. 7:251-256, 2000).
[0252]The discovery that the AtPep family of endogenous peptides from Arabidopsis leaf extracts cause an alkalinization of the medium of Arabidopsis suspension cultured cells indicates that the peptide plays a role in plant cells by interacting with a cell surface receptor. Investigations of the biological role of the peptide in Arabidopsis plants indicated that it activates the innate immune system of the plants and functions through an interaction with a cell surface-receptor.
[0253]We have isolated from Arabidopsis a cell surface LRR Thr/Ser kinase receptor for AtPep1, a 23 amino acid signal that that amplifies defense genes for innate immunity. The interaction of AtPep1 with the receptor is saturable and exhibits a Kd of 0.25 nM. Two SALK mutant lines with T-DNA insertions in exons of At1g73080 do not express the receptor gene and are not labeled by an AtPep1 photoaffinity analog that was used to identify and isolate the receptor protein. However, in contrast to wild type plants, the SALK insertional lines constitutively expressed high levels of PDF1.2 and PR-1, indicting that the receptor was negatively regulating defense gene expression in the absence of AtPep1. The AtPep1 receptor plays a central role in amplifying innate immunity activating defense gene expression when interacting with AtPep peptides that are synthesized in response to elicitors.
Methods
[0254]Synthesis of AtPep1 analogs. AtPep1, Cys-AtPep1 and Tyr-AtPep1 were synthesized using solid-phase instrumentation, (peptide synthesizer Model 431A; Applied Biosystems, Foster City, Calif.). After synthesis, the polypeptides were purified using C18 reverse-phase, high-performance liquid chromatography (HPLC), as previously described (Pearce and Ryan, J. Biol. Chem. 278:30044-30050, 2003; Pearce et al., Proc. Natl. Acad. Sci. USA 98:12843-12847, 2001; Pearce et al., Nature 411:817-820, 2001; Scheer and Ryan, The Plant Cell 11:1525-1535, 1999; Shevchenko et al., Anal. Chem. 68:850-858, 1996). Stock solutions of the peptides (2.5 mM) were prepared in water and stored at -20° C. Iodination of Tyr-AtPep1 was performed using IODO-GEN Pre-Coated Iodination Tubes (Pierce, Rockford, Ill.). Two hundred μl of NaI (20 mM in 0.1 M phosphate buffer, pH 8.0) solution was oxidized in the IODO-GEN Pre-Coated Iodination Tube for 6 min. Oxidized NaI solution was transferred into a 1.5 ml tube containing 100 nmol Tyr-AtPep1, and maintained at room temperature for 6 min in the dark gently agitating the tube every 30 sec. Iodinated Tyr-AtPep1 was purified using HPLC as described previously (Scheer and Ryan, The Plant Cell 11:1525-1535, 1999), and quantified with bicinchoninic acid (Pierce, Rockford, Ill.). All analogs were analyzed by LCQ ion trap mass spectrometry (Finnigan, San Jose, Calif.). Cys-AtPep1 was coupled through a disulfide bond to the photoaffinity cross-linker, N-(4-[p-azidosalicylamido]butyl)-3'-(2'-pyridyldithio)propionamide (APDP) (Pierce, Rockford, Ill.) to produce azido-Cys-AtPep1, which was purified by HPLC by methods previously described (Scheer and Ryan, Proc. Natl. Acad. Sci. 99:9585-9590, 2002).
[0255]Radioactive iodinations of Tyr-AtPep1 and azido-Cys-AtPep1 were performed using 2 mCi of Na125I and 12.5 nmol and the products were purified by HPLC (Scheer and Ryan, Proc. Natl. Acad. Sci. 99:9585-9590, 2002). The specific activity of the purified mono-iodinated Tyr-AtPep1 and azido-Cys-AtPep1 were 2.58 mCi/nmol, while the specific activity of the diiodinated forms was 5.15 mCi/nmol. The mono-iodinated analog of azido-Cys-AtPep1 was found to comprise 90% of the iodinated analog and was employed for photoaffinity labeling.
[0256]Alkalinization assay. Medium alkalinization activity of Arabidopsis suspension cultured cells by AtPep1 analogs was analyzed as previously described for systemin (Pearce et al., Science 253:895-897, 1991), RALF (Pearce et al., Proc. Natl. Acad. Sci. USA 98:12843-12847, 2001), HypSys peptides (Pearce and Ryan, J. Biol. Chem. 278:30044-30050, 2003; Pearce et al., Nature 411:817-820, 2001), and AtPep1 (supra). The alkalinization activity of azido-Cys-AtPep1 were carried out after incubation the analog with cells in darkness for 10 min, when the pH was recorded.
[0257]Binding assays. Binding assays of Arabidopsis cells with 125I1-Tyr-AtPep1 were performed by the methods of Scheer and Ryan (Pearce et al., Nature 411:817-820, 2001) modified as follows: Arabidopsis suspension cultured cells were subcultured and grown for 4-5 days, washed with culture medium, and diluted with medium to a level of 0.2 mg fresh weight/ml. Two mL of cells were aliquoted into each well of 12-well culture plates and allowed to equilibrate on an orbital shaker (160 rpm) at room temperature for 1 hr. 125I1-Tyr-AtPep1 was added to the medium, and 500 μL of cells were removed at selected times and filtered through a 2.5 cm Type A/E Glass Fiber Filter (Pall Corporation, Ann Arbor, Mich.) using a 12-well vacuum filtration manifold (Millipore, Bedford, Mass.). The filtered cells were washed three times with 5 mL of cold MS medium containing 3% sucrose, suspended in 1 mL MS medium containing 3% sucrose in a glass test tube, and analyzed for total radioactivity in a gamma-ray counter (Isodata 2020; Isodata Inc., Palatine, Ill.). Specific binding was calculated by subtracting nonspecific binding (binding in the presence of 250-fold native AtPep1) from total binding. 125I1-Tyr-AtPep1 bound to the cell surface within a minute, and equilibrated within 4 min.
[0258]Photoaffinity labeling. To 1 mL of cultured cells in darkness was added 125I-azido-Cys-AtPep1 (0.25 nM final concentration as described above) and the cells were shaken for 10 min on an orbital shaker (160 rpm) at room temperature. The cells were transferred to a 1.5 mL glass tube, centrifuged at 10,000×g and the sedimented cells were dispersed in 1 mL cold MS medium containing 3% sucrose and centrifuged as above. This wash was repeated twice. The cells were resuspended in 1 mL MS medium and irradiated with UV-B for 10 min on ice to photoactivate the azido group to effect the crosslinking. The cells were washed with 1 mL MS medium, centrifuged as above, and resuspended in 400 μL of 5% SDS. The cells were disrupted by boiling for 30 min, and the insoluble debris was removed by centrifugation at 10,000×g. Proteins in the clear supernatant were precipitated by adding 1.25 volumes of methanol/chloroform (vol/vol). After centrifugation at 10,000×g, the pellet was recovered and dissolved in 100 μL of Laemmli sample buffer containing 5% SDS, boiled for 10 min, and separated using 8% SDS-PAGE. The gels were dried and exposed to X-ray film for 50 hr to visualize labeled proteins. In competition assays, unlabeled AtPep1 and suramin were added to the cells and incubated for 10 min before adding 125I-azido-Cys-AtPep1. The same procedures described above were employed to detect labeled proteins.
[0259]Purification of AtPep1-binding protein. 125I-azido-Cys-AtPep1 (0.25 nM) was added to 1 L of Arabidopsis suspension cultured cells and incubated for 10 min in the dark as described above, and collected on Miracloth (Calbiochem, San Diego, Calif.). After washing the cells with 1 L of cold water, the cells were suspended in 500 ml of MS medium containing 3% sucrose, and irradiated with UV-B for 15 min while being mixed on an orbital shaker at 160 rpm. The cells were again collected on Miracloth and washed with 1 L cold water. Microsomal fractions were prepared by differential centrifugation as previously described (Pearce et al., Proc. Natl. Acad. Sci. USA 98:12843-12847, 2001), and stored at -80° C. This process was repeated three times and the microsomal proteins were pooled. Protein was measured by Bio-Rad Protein Assay reagent (BIO-RAD, Hercules, Calif.) using bovine serum albumin as a standard.
[0260]Purification of AtPep1-binding protein from the membranes was performed as described previously with modifications (Pearce et al., Proc. Natl. Acad. Sci. USA 98:12843-12847, 2001). Briefly, 25 and 55 mg of radiolabeled and unlabeled microsomal proteins, respectively, were mixed and separated by 2 sets of 7.5% SDS-PAGE (0.6×14×9 cm) for 16 with 37 V at room temperature. The gels were sliced horizontally into 5 mm width and the radioactivity measured with a gamma-counter (Isodata 2020; Isodata Inc., Palatine, Ill.). The gel slices near 180 kD, containing the highest radioactivity were pooled. The gel slices were mascerated and the proteins were recovered by incubating the mascerate three times for 30 min with 25 mL of 20 mM Tris-HCl, 0.5 M NaCl, pH 7.5. The eluted proteins were pooled and incubated with 75 μL of Conconavalin A-Sepharose 4B (Amersham Bioscience, Piscataway, N.J.) for 6 h at room temperature to trap the Con A-protein complexes. The Con A-Sepharose was washed with 50 mL of 0.5 M alpha-methyl-D-glucoside three times, followed by 50 mL of H2O three times, to elute loosely bound proteins. Bound proteins were eluted by boiling the Con A-Sepharose in 500 μL of 5% SDS, and the eluted proteins were precipitated by adding 1.25 volumes of methanol/chloroform (2:1, vol/vol). Half of the eluted proteins were separated using 7.5% SDS-PAGE (0.15×14×8.5 cm) at 100 V for 8 h at room temperature. The gel was sliced horizontally into 1 mm widths, and the gel slice containing highest radioactivity was digested with trypsin (Promega, Madison, Wis.) according to Shevchenko et al. (Anal. Chem. 68:850-858, 1996). The other half of the eluted proteins were digested with Peptide-N-Glycosidase F (PNGase F) (Prozyme, San Leandro, Calif.), separated by 7.5% SDS-PAGE, recovered as above, and digested with trypsin. Peptides generated in the trypsin digests were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF MS), Voyager-DE RP Biospectrometry Workstation (Applied Biosystems, Framingham, Mass.). Protein was identified by searching in the National Center for Biotechnology Information database using Mascot (www.matrixscience.com).
[0261]Analysis of T-DNA insertional lines. Arabidopsis thaliana T-DNA insertional lines, SALK 014538, SALK 059281 and SALK 064539, were obtained from ABRC (Ohio State University) through The Arabidopsis Information Resource. The plants were screened by RT-PCR using gene-specific primer pairs and a primer specific for the T-DNA left border. Total RNA was purified from rosette leaves.
[0262]Microsomal fractions were prepared from one-month-old plants by differential centrifugation as previously described (Scheer and Ryan, Proc. Natl. Acad. Sci. 99:9585-9590, 2002). The membranes were photoaffinity labeled (Takayama et al, Nature 413:534-538, 2001) using the radiolabeled azido analog used with suspension cultured cells. The membranes were incubated for 60 min at approximately 4° C., irradiated with UV-B for 15 min, separated by SDS-PAGE, dried and analyzed by radioautography to identify labeled proteins.
Results
[0263]An analog of AtPep1 was synthesized with a Tyr residue attached to its N-terminus and radiolabeled with 125I to quantify binding. The Tyr analog and mono- and di-iodo-Tyr-AtPep1 analogs were separated by HPLC, and the concentration-dependent activities of AtPep1 and these analogs where tested in the alkalinization assay. All were found to be as fully active as AtPep1 in the alkalinization assay. The mono-iodinated Tyr-AtPep1 comprised about 95% of the iodinated proteins and was employed for binding studies. Saturation kinetics of the binding of mono-125I-Tyr-AtPep1 with Arabidopsis suspension cultured cells (six repetitions using 106 cells/assay) showed that the 125I-labeled peptide was maximally bound to Arabidopsis cells within about 10 min, saturating the sites at about 0.1 nM peptide. A Kd of 0.25 nM was estimated from Scatchard analysis of the saturation data, which is typical of ligand-receptor interactions and indicates that AtPep1 was interacting with a cell surface binding protein with the characteristics of a receptor.
[0264]A photoaffinity labeled AtPep1 was prepared by synthesizing an analog with a Cys residue at its N-terminus so that an 125I-labeled azido adduct, APDP, could be crosslinked to the peptide through a disulfide bond. All procedures were in darkness unless otherwise specified. The azido-Cys-AtPep1 was purified by HPLC and assayed for its alkalinization response under red light to avoid photoactivating the azido group. The analog was as fully active as the native peptide in the alkalinization assay. The azido analog was iodinated with 125I and incubated with Arabidopsis suspension cultured cells for 10 min and subjected to UV-B irradiation to activate the azido group for crosslinking with binding proteins. SDS-PAGE analyses of the radiolabeled membrane proteins revealed a single labeled protein band of Mr approximately 180 kD. Pre-incubation of 2.5 nM AtPep1 to cells totally abolished labeling. Tomato systemin (LeSys), a nonhomologous 18 amino acid peptide signal from tomato plants (Pearce et al., Science 253:895-897, 1991) did not compete for binding with the labeled analog and had not effect on photoaffinity labeling. Suramin, a polycyclic non-specific inhibitor of peptide hormone-receptor interactions in both animals and plants (Stratmann et al., Proc. Natl. Acad. Sci. USA, 97:8862-8867, 2000), inhibited the labeling of the 180 kD protein by the photoaffinity AtPep1 analog at 100 nM, supporting a membrane association for the 180 kD labeled protein. The labeled protein band from SDS-PAGE gels was eluted and incubated with the carbohydrase PNGaseF to enzymatically remove covalently bound carbohydrates. This enzyme caused a decrease in the kD of the photoaffinity labeled protein from about 180 kD to about 150 kD, indicating that the binding protein was glycosylated.
[0265]Purification of the radiolabeled protein from 1 L of Arabidopsis cells in late log phase was achieved using final steps of ConA-Sepharose affinity chromatography followed by SDS-PAGE. After electrophoresis, the labeled 180 kD protein band was excised from the gel and the protein recovered. Half of the protein was digested with trypsin and the fragments were analyzed by MALDI-TOF mass spectroscopy. The other half of the eluted protein was treated with the enzyme PNGase F to remove carbohydrate and was subjected to gel electrophoresis. The protein in the 150 kD band was recovered, digested with trypsin, and was also analyzed by mass spectroscopy. The amino acid sequences of 18 tryptic fragments from the 180 kD peptide exactly matched sequences of the Arabidopsis LRR receptor kinase gene, At1g73080. The deglycosylated protein yielded three large fragments of from 12 to 18 amino acids in length that were also exact matches to sequences within the At1g73080 gene. The nucleotide sequence of the AtPep1 receptor gene (At1g73080) the deduced receptor polypeptide is provided in FIG. 2 shows the structure of the At1g73080 gene, which is comprised of an 646 amino acid extracellular domain containing 27 LRR motifs; a 22 amino acid transmembrane domain; and a 280 amino acid Ser/Thr receptor kinase domain.
[0266]The leaves of two SALK T-DNA insertional lines having insertions in the exons of the gene At1g73080, SALK 014538 and SALK 059281, did not express the gene when analyzed by RT-PCR, using wild type plants and a SALK 059281 insertional mutant of gene At5g55480 as controls. Microsomal membrane proteins from the two At1g73080 mutant lines, and from wild type plants and the control SALK 059281 line, were analyzed for proteins that were specifically photoaffinity labeled by 125I-azido-Cys-AtPep1. A protein was labeled in the membranes from wild type plants and the SALK 059281 plants, but not from the SALK mutants unable to express the receptor gene. The label was found in a 180 kD protein band and in a slightly lower doublet band that appears to be degradation products of the receptor protein, since they were labeled. The proteins labeled in the wild type and SALK 059281 microsomal membranes were absent when the membranes were preincubated with 2.5 nM AtPep1 and then photoaffinity labeled, indicating that the proteins labeled in the membranes of wild type and SALK 059281, and not in membranes from the lines with mutants in the At1g73080 gene, were the AtPep1 receptor and its biologically active fragments.
[0267]To further investigate the role of the 180 kD protein as the receptor of AtPep1, competition experiments were performed between the 125I1-Tyr-AtPep1 analog and synthetic peptide homologs derived from sequences at the N-termini of all seven of the AtPep family members that corresponded to the 23 amino acid AtPep1 (gene At5g684900). The peptides were purified after synthesis on HPLC and each assayed for biological activities at increasing concentrations in the alkalinization assay to determine the concentration of each that caused maximal activity. FIG. 4 shows the concentration dependence of synthetic AtPep peptides deduced from the seven members of the AtproPep1 gene family in the alkalinization assay. All peptides except those derived from At1g09980 gene and the unannotated gene were fully active at about 2.5 nM concentrations. The two genes with diminished activity were from Subfamily II, which reside relatively close together on Chromosome V. All seven synthetic peptides competed with the 1251I1-Tyr-AtPep1 analog for binding with Arabidopsis suspension cultured cells, with a pattern similar to their biological activities in the alkalinization response. As in the alkalinization assay, the peptides derived from the At5g09980 gene and the unannotated gene were much weaker competitors than peptides derived from the other genes.
Example 3
Shorter Peptides from the C-Terminus of AtPep1 Possess Substantial Defense Signal Peptide Activity
[0268]Analogs of AtPep1 from the C-terminus of AtPep1 were synthesized and assayed in the alkalinization assay. One mL aliquots of 4 day old Arabidopsis cells were allowed to equilibrate on an orbital shaker at 180 rpm for one hour. A 10 μL aliquot of each peptide solution was added to the cells. Peptide concentrations of 0.25 nM, 2.5 nM, and 25 nM were tested. After 20 min, the pH of the media was recorded. The results are shown in FIG. 5. An analog of AtPep1 missing the carboxy-terminal amino acid was completely inactive, whereas deletions from the amino-terminus of the peptide resulted in a sequential reduction in activity, until peptides with 9 carboxy-terminal amino acids remaining (SSGRPGQHN (SEQ ID NO: 75)) were inactive. A peptide with 10 carboxy-terminal amino acids remaining had substantial defense signal peptide activity at the 25 nM peptide concentration, causing a change in pH of over 0.20 units, and longer analogs had progressively greater activity. A peptide consisting of only the 15 C-terminal amino acids was nearly as active as the native peptide at approximately 2.5 nM and had substantial activity even at the lowest concentration tested. It is expected that substantial defense signal peptide activity will be retained by analogs of other defense signal peptides that comprise sequences from the C-terminus of the peptides.
Example 4
Alanine Substitutions in Residues of a 15-Mer Analogs from the C-Terminus of AtPep1
[0269]The 5-mer from the carboxy-terminus of AtPep1 (RGKEKVSSGRPGQHN (SEQ ID NO: 78)) was substituted with alanine at each position to assess which amino acids were necessary for the alkalinizing activity. FIG. 6 shows the effect of these single alanine amino acid substitutions on the activity of the 5-mer peptide in the alkalinization assay. The set of substituted 15-mer peptides was assayed using four-day-old Arabidopsis cells. Ten ml of each peptide (2.5 pmoles) was added to 1 ml of cells to make a final concentration of 2.5 nM. After 20 min, the pH of the media was recorded. The data is the average of three separate experiments.
[0270]A Ser to Ala substitution at position 7, counting from the amino-terminus of the 15-mer, and a Gly to Ala substitution at position 9, exhibited little activity. Computer modeling predicted that these two amino acids would be involved in a beta-turn within the peptide region of -SSGR- (SEQ ID NO: 79) (compare with residues 15-18 of the sequence of AtPep1 shown in Table 1). Substituting Ala for Ser (-ASGR-) (SEQ ID NO: 80) abolished the predicted turn and severely abolished activity (half-maximal activity at ˜250 nM), while substituting Ala for Gly was even less active (half-maximal activity of >250 nM. However, neither of these analogs were able to compete with the non-substituted 5-mer for receptor binding, indicating that the structural changes in this region may have severely modified the conformation without competing for the receptor binding site. Peptides with alanine substitutions at all residues were synthesized and assayed, with most showing no differences in activity than the native AtPep1 .
Example 5
Identification of Additional Plant Defense Signal Peptides from Various Dicot and Monocot Plant Species
[0271]Additional searching of nucleotide sequence databases has revealed additional plant defense signal peptides, shown in Table 2. In addition, it was discovered that a single precursor gene may encode multiple plant defense signal peptides. Additional plant defense signal peptides shown in Table 3 are encoded by such precursor genes.
[0272]Identification of orthologs of the proAtPep1 gene in other plant species. To search for orthologs to the proAtPep1 gene in other plants, the NCBI protein query versus translated database (TBLASTN version 2.2.7) search algorithm (Altschul et al. 1997) was employed to search both plant genomic sequence and EST databases. For these searches no search filter was used and the expect value was set for either 10,000 or 20,000. Additionally, each individual plant EST database maintained by the Institute of Genomic Research (TIGR) was searched using the algorithm TBLASTN 2.0 MP (Gish) with no filter and an expect value of 10,000. Each member of the Arabidopsis proAtPep1 family was used as the input sequence for the database searches, and as orthologs in other plants were identified, they were also used as input sequences to search for other orthologous genes.
[0273]In order for a gene found in database searches to be classified as a proAtPep1 ortholog, the sequence had to fulfill several criteria. First, the gene had to encode a small protein--the proAtPep1 orthologs identified encode proteins ranging in size from 95 amino acids (canola) to 151 amino acids (rice). Next, each ortholog had to have a region in the encoded precursor protein that was glutamate or aspartate and lysine or arginine rich (designated E/DK/R repeats). The precursor region of the protein was required to contain some variation of the amphipathic helical hydrophobic/cationic 1-5-10 motif. Finally, each predicted protein was required to have several conserved characteristics in the carboxyl region from which the active peptide would likely be cleaved. A high concentration of cationic charges in the amino end of the peptide region was a criterion, and in the carboxyl end a conserved glycine residue at position C-7 was required. In addition to these obligatory elements, several distinguishing features helped identify a gene as orthologous, but were not absolutely required. Most proteins encoded by the orthologs have repetitive serine residues in the precursor region. Additionally, in most predicted proteins a conserved asparagine is found as the carboxyl-terminal amino acid (C-1 position), immediately followed by a stop codon. Also, two residues prior to the conserved glycine in the peptide, all but one of the predicted proteins contain a serine or threonine residue.
[0274]Predicting secondary structure of proteins encoded by proAtPep1 and homologs. To predict secondary structure of the proAtPep1 protein and predicted proteins encoded by homologous genes, the SCRATCH server from the Institute for Genomics and Bioinformatics at the University of California at Irvine, Calif. was used. This server simultaneously integrates predictions from four different programs into a single output. One of these programs is SSpro version 2.0 (Pollastri et al. 2002a), which predicts three different classes of secondary structure; helix, strand, or neither. A second program SSpro8 (Baldi et al. 1999) further refines predictions into eight classifications, including three different types of helix, extended strand, β-bridge, turn, bend or none of the above. To predict whether the number of contacts each residue is involved in is above or below average for that residue, the program CONpro (Pollastri et al. 2001) was used. Finally, the ACCpro program (Pollastri et al. 2002b) was employed to estimate the relative solvent accessibility of each residue.
[0275]FIG. 7 shows nucleotide sequence information for precursors of the novel plant signal defense peptides of Table 2.
[0276]FIG. 8 shows nucleotide sequence information for precursors of the novel plant defense signal peptides of Table 3.
[0277]FIG. 9 shows an amino acid sequence alignment of predicted proAtPep1 orthologs (A) and a gene domain model for proATPep1-like genes (B).
Example 6
PROPEP Family Regulation of Pathogen Defense in Arabidopsis thaliana
[0278]AtPep1 is a 23 amino acid peptide derived from the carboxyl terminus of a precursor protein encoded by the PROPEP1 gene of Arabidopsis thaliana. Expression of the PROPEP1 gene is induced by methyl jasmonate and wounding, and the AtPep1 peptide specifically interacts with an LRR-RK, PEPR1, to regulate expression of genes encoding the pathogen-defense proteins PDF1.2 (plant defensin) and PR-1 (pathogenesis response protein 1). Transgenic plants constitutively expressing the PROPEP1 gene also express PDF1.2 and PR-1 at levels higher than in wild type plants and are more resistant to the root pathogen Pythium irregulare. Arabidopsis encodes five other PROPEP genes, raising the question of whether these genes act redundantly, synergistically or differ functionally. Expression studies of the individual PROPEP gene family members reveal differential induction in response to pathogens, elicitors and the defense-related hormones methyl salicylate, methyl jasmonate and ethylene. The AtPep peptides encoded by these PROPEP genes differentially regulate expression of PDF1.2 and PR-1. To better understand the regulatory role of individual PROPEP genes, we are employing microarray analysis of global gene expression patterns in transgenic plants overexpressing the different PROPEP genes. Additionally, we are investigating the role of individual AtPeps PROPEP genes in salicylate-associated defense responses by studying resistance of PROPEP-overexpression plants to infection with Pseudomonas syringae pv. tomato DC3000. Based on our studies we hypothesize that peptides encoded by the PROPEP gene family enhance pathogen defense responses by acting as endogenous signals to amplify defense signaling initiated by pathogens through both the jasmonate/ethylene and salicylate pathways.
Example 7
Tobacco Transgenic Cells Expressing AtPEPR1
[0279]To further investigate the role of AtPEPR1 as the AtPep1 receptor, gain-of-function experiments were carried out with tobacco suspension-cultured cells that do not respond to AtPep1 by alkalinating the cell medium. Tobacco cells were transformed with a CaMV-35S-AtPEPR1 gene to determine whether the foreign receptor protein was targeted to the cell surface, where, in response to AtPep1, it would activate intracellular signaling to effect the alkalinization of the medium of the transgenic tobacco cells. Expression of the AtPEPR1 gene was confirmed by RT-PCR analysis of RNA from three independently transformed tobacco cell lines. All three of the tobacco lines responded to the addition of nanomolar concentrations of AtPep1 by producing a strong, reproducible alkalinization of the cell culture medium, whereas no alkalinization was detected in the culture medium of wild type cells challenged with AtPep1. These results not only confirm the identity of AtPEPR1 as the AtPep1 receptor, but they indicate that the receptor-mediated intracellular signaling pathway in tobacco cells that regulates alkalinization in response to peptide ligands can accommodate signaling by AtPEPR1 and its peptide ligand. AtPep2-7 was also supplied to the transgenic tobacco cells expressing AtPEPR1. At 2.5 nanomolar, AtPep2, AtPep3, Atpep5 and Atpep6 caused a change in pH of up to 0.6 units. But AtPep4 and AtPep7 did not increase medium pH. This is a similar pattern to their activities in the alkalinization response and in the competition with 125I1-Tyr-AtPep1 analog for binding with Arabidopsis suspension-cultured cells.
[0280]Expression analysis of AtPEPR1 and AtPEPR2. In the Arabidopsis genome, there is a gene encoding a receptor kinase, which is very similar to AtPEPR1 (At1g73080) with 72% amino acid similarity for the entire sequence and was designated as AtPEPR2 (At1g17750). In order to elucidate the role of AtPEPR2 in AtPeps signal transduction, the gene expression patterns were analyzed in comparison with AtPEPR1. Northern hybridization and quantitative RT-PCR analysis showed that the expression patterns of AtPEPR1 and AtPEPR2 were very similar. The transcripts of AtPEPR1 and AtPEPR2 were induced by wounding, methyl jasmonate and AtPep supplying within 30 min, but not by methyl salicylate or aminocyclopropanecarboxylic acid, a precursor of ethylene. Of the 6 AtPeps, AtPep1, AtPep2 and AtPep3 were strong inducer of AtPEPR1 and AtPEPR2 transcripts.
[0281]The induction of AtproPep1 and MPK3 gene expression upon supplying AtPep1 using T-DNA insertional mutants. In addition to T-DNA insertional mutants of AtPEPR1 (SALK--059281 and SALK--014538), T-DNA insertional mutants of AtPEPR2 (SALK--036564 and SALK--004447) were obtained from The Arabidopsis Information Resource (http://www.arabidopsis.org/index.jsp). In order to elucidate how much AtPEPR1 and AtPEPR2 contribute to the AtPeps perception, SALK--014538 and SALK--004447 were crossed to obtain a double mutant. Another double mutant of AtPEPR1 and AtPEPR2 (SALK--059281 and SALK--036564) was provided by Dr. Frans Tax (Arizona University). It was confirmed that full length mRNAs of AtPEPR1 and/or AtPERP2 are not transcribed in the mutant lines by RT-PCR.
[0282]Using AtproPep1 and MPK3 as marker genes, the response to AtPep1 of the T-DNA insertional mutants was analyzed. Two-week-old seedlings grown in liquid medium were supplied with 10 nM AtPep1 for 30 min. The AtPEPR1 mutants (SALK--059281 and SALK--014538) showed more than a 50% reduction of AtproPep1 and MPK3 induction when supplied with AtPep1, but still responded, indicating that AtPEPR1 is not a sole receptor for AtPep1. The AtPEPR2 mutants (SALK--036564 and SALK--004447) did not show the clear reduction of the response to AtPep1. However, the double mutants of AtPEPR1 and AtPEPR2 completely lost the response when supplied with AtPep1. These data indicated that AtPEPR1 is the primary receptor for AtPep1, and AtPEPR2 is also involved in AtPep1 perception and signal transduction in Arabidopsis.
Example 8
Identification of Orthologs of the AtPEPR Gene in Other Plant Species
[0283]Proteins and putative proteins, which are highly homologous to AtPEPR, were searched from several databases including NCBI, PlantGDB, and Phytozome by the BLAST program. Secondly, a phylogenic tree was made using these proteins and members of Arabidopsis leucine-rich repeat receptor-like kinase (LRR-RLK) XI subfamily. Then the proteins, which belong to same clade with AtPEPR1 and AtPEPR2, were selected as AtPEPR homologues.
[0284]FIG. 10 is a simplified version of the AtPEPRs homolog phylogenic tree. Among them, OsPEPR1 and OsPEPR2 were confirmed their ability for perception of monocot defense peptides. Amino acid sequences were compared by the Clustal W program and phylogenic tree was drawn by the Tree View program. AtPEPR homologues are indicated in color. The numbers indicate bootstrap values. Arabidopsis BRII was used as an out group. At, Arabidopsis thaliana. Pt, Populus trichocarpa. Vv, Vitis vinifera. Zm, Zea mays. Sb, Sorghum bicolor. Os, Oriza sativa. Gm, Glycine max. In, Ipomoea nill.
[0285]The plant LRR-RLK family is a very large family, and more than 200 and 600 LRR-RLKs were predicted in the Arabidopsis and rice, respectively. All of them have an N-terminal signal sequence, an extracellular LRR region, two sets of cystein pairs around the LRR region, a transmembrane region, and an intracellular protein kinase domain. LRR regions are repeats of a leucine-rich motif consisted of 24 amino acids, and vary in length.
[0286]FIG. 11 is an amino acid alignment of AtPEPR homologues. Conserved amino acids are written in white letter with black background, and conserved similar amino acids are written with gray background. The intracellular protein kinase domain was indicated by red ruler.
[0287]FIG. 12 is a consensus amino acid sequence of the protein kinase domain of AtPEPRs homologues.
Example 9
AtPEPR1 is a Receptor for All AtPep Peptides and AtPEPR2 for AtPep1 and AtPep2
[0288]AtPEPR1 and AtPEPR2 mutants are unable to respond to AtPEP1. To further examine the importance of AtPEPR1 and AtPEPR2 in AtPep1 signaling, the expression level of WRKY transcription factor genes, WRKY22, WRKY29, WRKY33, WRKY53 and WRKY55, were monitored by qRT-PCR after supplying AtPep1 to wild type Arabidopsis and T-DNA insertional mutants of AtPEPR1 and AtPEPR2. These WRKY genes were reported to be induced by the fungal PAMP, chitin (Wan et al., Plant Cell 20: 471-481, 2008), and the bacterial PAMPs, flg22 and elf18 (Zipfel et al., Cell 125:749-760, 2006). Two-week-old seedlings grown in liquid medium were incubated with AtPep1 (10 nM) for 30 min and subjected to qRT-PCR analysis. WRKY33, WRKY53, WRKY22, WRKY29 and WRKY55 were highly induced by 10 nM AtPep1 within 30 min in wild type. In pepr2-1 and pepr2-2 (SALK--059281 and SALK--014538, respectively) seedlings, these genes were induced by AtPep1 to similar levels as wild type seedlings. A 50% lower induction of these genes by AtPep1 was observed with pepr1-1 and pepr1-2 (SALK--036564 and SALK--004447) seedlings. In the double mutants, pepr1-1/pepr2-1 and pepr1-2/pepr2-2, the responses were completely abolished. We also examined the effect of supplying AtPep1 to the double mutants on the expression of the antimicrobial protein genes, defensin (PDF1.2) and pathogenesis related protein (PR-1) genes, since AtPep peptides are known to induced these genes (Huffaker and Ryan, Proc. Natl. Acad. Sci. USA 104: 10732-10736, 2007). Since the expression levels of PDF1.2 and PR-1 gene in Arabidopsis seedlings grown in liquid medium were already high, the method of supplying AtPep1 was changed. Four-week-old Arabidopsis plants grown in soil were sprayed with 1 μM AtPep1 in 0.01% Silwet L-77, and subjected to qRT-PCR analysis after 6 hours. The PDF1.2 and PR-1 genes were induced by 30- and 60-fold, respectively in wild type plants, and were not induced by AtPep1 in the double mutants.
[0289]AtPEPR2 binds to AtPep1. The results shown above strongly suggested that AtPEPR2 was also a receptor for AtPep1 in addition to AtPEPR1, whose ability to bind AtPep peptides was confirmed by loss of function and gain of function experiments (Yamaguchi et al., Proc. Natl. Acad. Sci. USA 103: 10104-10109, 2006). In these experiments, photoaffinity labeling using microsomal fractions of the T-DNA insertional mutants of AtPEPR1, pepr1-1 and pepr1-2, did not show any AtPep1 binding proteins (Yamaguchi et al., Proc. Natl. Acad. Sci. USA 103: 10104-10109, 2006). However, if the protein level of AtPEPR2 or binding capacity of AtPEPR2 to AtPep1 is much lower than AtPEPR1, it would be difficult to detect binding between AtPEPR2 and AtPep1 using Arabidopsis plants grown under normal condition. To clarify whether AtPEPR2 binds to AtPep1, the AtPEPR2 coding region was fused to the CaMV 35S promoter and introduced into tobacco suspension-cultured cells by Agrobacterium. Tobacco cells expressing AtPEPR1 and GUS genes were also created as positive and negative controls, respectively. RT-PCR analysis revealed that transgenic cells selected on kanamycin-containing medium expressed each transgene. These transgenic lines were analyzed for alkalinizing activity as previously described (Pearce et al., Proc. Natl. Acad. Sci. USA 98, 12843-12847, 2001). The cells expressing AtPEPR1 and AtPEPR2 caused alkalinization of the media in response to AtPep1, whereas wild type tobacco and GUS expressing cells did not respond to AtPep1. The level of response to AtPep1 for the AtPEPR2-expressing cells was similar to that of AtPEPR1-expressing cells and to Arabidopsis cells (Yamaguchi et al., Proc. Natl. Acad. Sci. USA 103: 10104-10109, 2006, Huffaker et al., Proc. Natl. Acad. Sci. USA 103: 10098-10103, 2006), with a maximal change of 1-1.2 pH units and a half-maximal peptide activity of 0.25 nM.
[0290]For final confirmation, a photoaffinity-labeling experiment was performed using the transgenic tobacco cells. The transgenic cells were incubated with 0.25 nM 125I1-azido-Cys-AtPep1 (Yamaguchi et al., Proc. Natl. Acad. Sci. USA 103: 10104-10109, 2006) and irradiated with UV-B to cross-link the AtPep1-binding proteins. After separation of extracted proteins by SDS-PAGE, the labeled proteins were detected on X-ray film. A major protein band of 170 kDa, consistent with the size of AtPEPR1 in Arabidopsis (Yamaguchi et al., Proc. Natl. Acad. Sci. USA 103: 10104-10109, 2006), and 150 kDa were labeled in AtPEPR1 and AtPEPR2 expressing cells, respectively, but not in the cells incubated with 50 nM unlabeled AtPep1 as a competitor in addition to 125I1-azido-Cys-AtPep1. The intensity of the 170 kDa protein was greater than that of the 150 kDa protein, requiring a one-tenth dilution of extract from AtPEPR1 expressing cells for use in SDS-PAGE to give comparable intensities to undiluted AtPEPR2 expressing cell extract. Since no specific labeling was detected in wild type tobacco and GUS expressing cells, the proteins labeled specifically by 125I1-azido-Cys-AtPep1 in AtPEPR1 and AtPEPR2 expressing cells were products from the AtPEPR1 and AtPEPR2 genes.
[0291]AtPEPR2 contributes to AtPep1 and AtPep2 perception. The response to all AtPep peptides in transgenic tobacco cells expressing either AtPEPR1 or AtPEPR2 was analyzed by the medium alkalinization assay. As reported previously, for AtPEPR1 expressing cells, AtPep1, AtPep2, AtPep3, AtPep5 and AtPep6 showed strong activity with a maximal change of 1.2 pH units and a half-maximal activity of 0.25 nM, and AtPep4 and AtPep7 showed weaker activity with a half-maximal activity of 2.5 nM. In contrast, only AtPep1 and AtPep2 showed strong activity to the AtPEPR2 expressing cells with a maximal change of 1.2 pH unit and a half-maximal activity at =0.25 nM with the other peptides showing very weak or no activity, indicating that AtPEPR2 contributes to AtPep1 and AtPep2 perception by itself.
Example 10
AtPep Peptides Pre-Infiltration Reduces Symptom Development by P. syringae
[0292]Overexpression of AtPROPEP1 showed increased resistance to a root pathogen, Pythium irregulare (Huffaker et al., Proc. Natl. Acad. Sci. USA 103: 10098-10103, 2006). The resistance to P. irregulare requires the JA signaling pathway in Arabidopsis (Staswick et al, Plant J. 15: 747-754, 1998), and AtPep peptides induced PDF1.2, a marker gene for the JA response (Huffaker et al., Proc. Natl. Acad. Sci. USA 103: 10098-10103, Huffaker and Ryan, Proc. Natl. Acad. Sci. USA 104: 10732-10736, 2007). In addition to PDF1.2, supplying AtPep peptides also induced expression of the PR-1 gene, a marker gene for the SA response (Huffaker et al., Proc. Natl. Acad. Sci. USA 103: 10098-10103, Huffaker and Ryan, Proc. Natl. Acad. Sci. USA 104: 10732-10736, 2007), suggesting that AtPep peptides may be involved in the SA signaling pathway, which increases resistance to Pseudomonas syringae. In order to examine this possibility, Arabidopsis plants were inoculated with P. syringae pv. tomato DC3000 (Pst DC3000) with or without AtPep1 pre-infiltration. Pst DC3000 was extracted from the infected leaves 4 days after infection and colony forming units (cfu/cm2) were calculated. Pre-infiltration of a 10 nM solution of AtPep1 reduced Pst DC3000 growth in leaves and this reduction was concentration-dependent. AtPep1 pre-infiltration was more effective than flg22 pre-infiltration, which was reported to cause growth reduction of Pst DC3000 (Zipfel et al., Nature 428: 764-767, 2004). The reduction of Pst DC3000 growth was not observed when [A17]AtPep1(9-23), an inactive derivative of AtPep1 (Pearce et al., Peptides. 29: 2083-2089, 2008) was pre-infiltrated. The reduction of Pst DC3000 growth was also not observed when the double mutant, pepr1-1/pepr2-1, was pre-infiltrated with AtPep1. These results indicated that reduction of Pst DC3000 growth by AtPep1 was specific. Pre-infiltration of AtPep2-6 also attenuated Pst DC3000 growth to different degrees. The attenuation of Pst DC3000 by AtPep1 pre-infiltration was differentially diminished in leaves of JA deficient (fad3, 7, 8), SA signaling (npr1-1) and SA biosynthesis (sid2-2) mutants, indicating that JA and SA signaling pathway are required for full activity of AtPep1.
[0293]To assess the importance of AtPEPR1 and AtPEPR2 in the resistance to Pst DC3000 after infiltration of AtPep1, T-DNA insertional mutants were inoculated. When 1 μM AtPep1 was infiltrated into leaves one day prior to Pst DC3000 inoculation, the size of the necrotic regions were reduced in both wild type and single mutant lines, pepr1-1 and pepr2-1. On the other hand, AtPep1 pre-infiltration did not affect symptom development by Pst DC3000 infection in double mutants, pepr1-1/pepr2-1. The bacterial growth was reduced to 1/100 in wild type and pepr2-1, and to 1/25 in pepr1-1 by AtPep1 pre-infiltration, but no decrease in colony growth was observed with the double mutants. Similar results were obtained when another set of mutant lines, pepr1-2, pepr2-2 and pepr1-2/pepr2-2, was used. These results were consistent with the results obtained in the analysis of defense gene induction by AtPep1 in the mutant lines, and indicated that AtPEPR1 contributed more to AtPep1 signaling than AtPEPR2.
Example 11
Rice Homologues of AtPEPR1 are Receptors for Rice Peptides
[0294]We identified rice homologues of AtPEPR1 in the Rice Annotation Project database (http://rapdb.dna.affrc.go.jp/). The rice homologues, OsPEPR1 (Os08g0446200) and OsPEPR2 (Os08g0446400), have 60% and 62% amino acid similarities, respectively. The OsPEPR1 has 26 LRRs in the extracellular region, which is the same as AtPEPR1. The OsPEPR2 has a shorter extracellular region with 22 LRRs. Transgenic tobacco cells expressing either OsPEPR1 or OsPEPR2 were created to examine the possibility of receptor binding to monocot peptides. OsPep3a, OsPep3b, OsPep3c, ZmPep1 and ZmPep4a were supplied to suspension cultured transgenic tobacco cells, and medium pH was measured. OsPep3a, OsPep3b, ZmPep1 and ZmPep4a caused medium alkalinization in OsPEPR1 expressing cells with a 1.2 pH unit increase and a half-maximal activity of 0.25 nM. OsPep3c did not show any activity to OsPEPR1 expressing cells. However, OsPep3c showed weak activity to OsPEPR2 expressing cell with a 0.5 pH unit increase when the cells were incubated with peptide at 250 nM. These results indicated that OsPEPR1 and OsPEPR2 are receptors for monocot peptides.
Example 12
Soybean Homologues of AtPep Peptide and AtPEPR
[0295]Precursor gene expression of soybean homologues of the AtPep peptide, GmPROPEP1, GmPROPEP2 and GmPROPEP3, were analyzed by semi-quantitative RT-PCR. GmPROPEP2 and GmPROPEP3 were expressed in leaves, stems and roots. GmPROPEP1 was expressed mainly in roots, and very weakly in leaves and stems. The transcripts of GmPROPEP1 increased 4-fold 1 hour after supplying MeJA and 3-fold 8 hours after wounding. The transcripts of GmPROPEP2 increased 5-fold 2 hours after supplying MeJA. GmPep1-3 also affected the precursor gene expression. The GmPROPEP1 was induced by infiltration of GmPep1-3 (50 nM), and GmPROPEP2 was induced by GmPep2 (50 nM) and GmPep3 (50 nM) infiltration.
[0296]To examine whether GmPep1-3 are involved in defense responses, expression of soybean defense-related genes were analyzed by semi-quantitative RT-PCR after GmPep1-3 infiltration. The transcripts of D6aH/CYP93a1, a biosynthetic enzyme of the soybean phytoalexin glyceollin (Schopfer et al., FEBS Lett. 432: 182-1860, 1998), were induced 2 to 3-fold by GmPep1-3 infiltration. The expression of three chitinase genes, Chib1-b, Chi III and Chi I (Watanabe et al., Biosci. Biotechnol. Bioche. 63: 251-256, 1999, Gijzen et al., J. Exp. Bot. 52: 2283-2289, 2001), was also induced 3 to 15-fold by GmPep1-3 infiltration.
[0297]We found soybean homologues of AtPEPR1 and AtPEPR2, GmPEPR1a (Glyma10g33970), GmPEPR1b (Glyma20g33620) and GmPEPR2 (Glyma15g00360), which have more than 60% amino acid similarities with AtPEPR1, in the soybean genome database (http://www.phytozome.net/soybean.php). The GmPEPR1a and GmPEPR1b have 26 leucine-rich repeats in the extracellular region, similar to the AtPEPR1. The GmPEPR2 has a shorter extracellular region with 25 leucine-rich repeats, similar to AtPEPR2. A phylogenetic analysis of amino acid sequences revealed that GmPEPRs are more closely related to AtPEPRs than OsPEPRs, indicating that soybean homologues of AtPEPR1 and AtPEPR2 are possible receptors for soybean defense peptides.
Sequence CWU
1
SEQUENCE LISTING
<160> NUMBER OF SEQ ID NOS: 172
<210> SEQ ID NO 1
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 1
Ala Thr Lys Val Lys Ala Lys Gln Arg Gly Lys Glu Lys Val Ser Ser
1 5 10 15
Gly Arg Pro Gly Gln His Asn
20
<210> SEQ ID NO 2
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 2
Ser Leu Asn Val Met Arg Lys Gly Ile Arg Lys Gln Pro Val Ser Ser
1 5 10 15
Gly Lys Arg Gly Gly Val Asn
20
<210> SEQ ID NO 3
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 3
Asp Asn Lys Ala Lys Ser Lys Lys Arg Asp Lys Glu Lys Pro Ser Ser
1 5 10 15
Gly Arg Pro Gly Gln Thr Asn
20
<210> SEQ ID NO 4
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 4
Glu Ile Lys Ala Arg Gly Lys Asn Lys Thr Lys Pro Thr Pro Ser Ser
1 5 10 15
Gly Lys Gly Gly Lys His Asn
20
<210> SEQ ID NO 5
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 5
Gly Leu Pro Gly Lys Lys Asn Val Leu Lys Lys Ser Arg Glu Ser Ser
1 5 10 15
Gly Lys Pro Gly Gly Thr Asn
20
<210> SEQ ID NO 6
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 6
Ile Thr Ala Val Leu Arg Arg Arg Pro Arg Pro Pro Pro Tyr Ser Ser
1 5 10 15
Gly Arg Pro Gly Gln Asn Asn
20
<210> SEQ ID NO 7
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 7
Val Ser Gly Asn Val Ala Ala Arg Lys Gly Lys Gln Gln Thr Ser Ser
1 5 10 15
Gly Lys Gly Gly Gly Thr Asn
20
<210> SEQ ID NO 8
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Brassica napus
<400> SEQUENCE: 8
Val Ala Arg Leu Thr Arg Arg Arg Pro Arg Pro Pro Tyr Ser Ser Gly
1 5 10 15
Gln Pro Gly Gln Ile Asn
20
<210> SEQ ID NO 9
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Solanum tuberosum
<400> SEQUENCE: 9
Pro Thr Glu Arg Arg Gly Arg Pro Pro Ser Arg Pro Lys Val Gly Ser
1 5 10 15
Gly Pro Pro Pro Gln Asn Asn
20
<210> SEQ ID NO 10
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Populus balsamifera
<400> SEQUENCE: 10
Asp Ala Ala Val Ser Ala Leu Ala Arg Arg Thr Pro Pro Val Ser Arg
1 5 10 15
Gly Gly Gly Gly Gln Thr Asn
20
<210> SEQ ID NO 11
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Betula spp.
<400> SEQUENCE: 11
Asp Leu Val Met Ala Val Asn Ala Pro Pro Arg Pro Ser Leu Thr Pro
1 5 10 15
Gly Ser Gly Ala Gln Ile Asn
20
<210> SEQ ID NO 12
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Glycine max
<400> SEQUENCE: 12
Ala Ser Leu Met Ala Thr Arg Gly Ser Arg Gly Ser Lys Ile Ser Asp
1 5 10 15
Gly Ser Gly Pro Gln His Asn
20
<210> SEQ ID NO 13
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Medicago sativa
<400> SEQUENCE: 13
Leu Ser Ser Met Gly Arg Gly Gly Pro Arg Arg Thr Pro Leu Thr Gln
1 5 10 15
Gly Pro Pro Pro Gln His Asn
20
<210> SEQ ID NO 14
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Vitis vinifera
<400> SEQUENCE: 14
Glu Lys Val Arg Glu Lys Gln Lys Lys Gly Glu Asp Gly Glu Ser Val
1 5 10 15
Gly Arg Pro Gly Lys Lys Asn
20
<210> SEQ ID NO 15
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Dicot consensus sequence
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18,
22
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
<223> OTHER INFORMATION: Xaa = Rich in Lysine and Arginine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 19, 20
<223> OTHER INFORMATION: Xaa = Proline or Glycine
<400> SEQUENCE: 15
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ser Ser
1 5 10 15
Gly Xaa Xaa Xaa Gln Xaa Asn
20
<210> SEQ ID NO 16
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 16
Ala Arg Leu Arg Pro Lys Pro Pro Gly Asn Pro Arg Glu Gly Ser Gly
1 5 10 15
Gly Asn Gly Gly His His His
20
<210> SEQ ID NO 17
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 17
Asp Asp Ser Lys Pro Thr Arg Pro Gly Ala Pro Ala Glu Gly Ser Gly
1 5 10 15
Gly Asn Gly Gly Ala Ile His
20
<210> SEQ ID NO 18
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Triticum aestivum
<400> SEQUENCE: 18
Ala Val Arg Arg Pro Arg Pro Pro Thr Thr Pro Arg Glu Gly Arg Gly
1 5 10 15
Gly Gly Gly Gly Ser His Asn
20
<210> SEQ ID NO 19
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Triticum aestivum
<400> SEQUENCE: 19
Ala Ala Pro Ala Pro Gln Arg Pro Gly Ala Pro Ala Glu Gly Ala Gly
1 5 10 15
Gly Gln Gly Gly Ile Ile His
20
<210> SEQ ID NO 20
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Zea mays
<400> SEQUENCE: 20
Val Arg Arg Arg Pro Thr Thr Pro Gly Arg Pro Arg Glu Gly Ser Gly
1 5 10 15
Gly Asn Gly Gly Asn His His
20
<210> SEQ ID NO 21
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Hordeum vulgare
<400> SEQUENCE: 21
Gln Leu Ala Arg Pro Arg Pro Pro Gly Pro Pro Arg Gln Gly His Gly
1 5 10 15
Gly Asp Gly Gly Ala Ile His
20
<210> SEQ ID NO 22
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Monocot consensus sequence
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 1, 2, 3, 4, 5, 6, 7, 10, 15, 18, 21
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 2, 3, 4, 5, 6, 7
<223> OTHER INFORMATION: Xaa = Rich in Lysine and Arginine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 12
<223> OTHER INFORMATION: Xaa = Arginine or Alanine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 22
<223> OTHER INFORMATION: Xaa = Histidine or Isoleucine
<400> SEQUENCE: 22
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Pro Gly Xaa Pro Xaa Glu Gly Xaa Gly
1 5 10 15
Gly Xaa Gly Gly Xaa Xaa His
20
<210> SEQ ID NO 23
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 23
Ala Thr Lys Val Lys Ala Lys Gln Arg Gly Lys Glu Lys Val Ser Ser
1 5 10 15
Gly Arg Pro Gly Gln His Asn
20
<210> SEQ ID NO 24
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Thlaspi caerulescens
<400> SEQUENCE: 24
Val Thr Lys Phe Lys Ala Lys Met Lys Glu Arg Glu Lys Val Ser Thr
1 5 10 15
Gly Arg Ser Gly Gln His Asn
20
<210> SEQ ID NO 25
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Gossypium hirsutum
<400> SEQUENCE: 25
Leu Pro Met Val Ser Leu Phe Thr Pro Lys Arg Pro Gly Thr Ser Ala
1 5 10 15
Gly Ser Gly Pro Gln Ile Asn
20
<210> SEQ ID NO 26
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Solanum lycopersicum
<400> SEQUENCE: 26
Ala Thr Asp Arg Arg Gly Arg Pro Pro Ser Arg Pro Lys Val Gly Ser
1 5 10 15
Gly Pro Pro Pro Gln Asn Asn
20
<210> SEQ ID NO 27
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Populus balsamifera
<400> SEQUENCE: 27
Ala Val Thr Val Ser Ala Leu Ala Arg Arg Thr Pro Pro Val Ser Ser
1 5 10 15
Gly Ser Gly Gly Gln Ile Asn
20
<210> SEQ ID NO 28
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Vitis vinifera
<400> SEQUENCE: 28
Leu Arg Arg Gly Pro Thr Arg Pro Pro Ile Ser Phe Glu Ser Arg Pro
1 5 10 15
Gly Gly Gly Ser Gln Ile Asn
20
<210> SEQ ID NO 29
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Vitis vinifera
<400> SEQUENCE: 29
Lys Met Ser Ser Asp Phe Arg Gln Pro Pro Arg Pro Pro Ile Asp Pro
1 5 10 15
Gly Gln Gly Gly Gln Ile Asn
20
<210> SEQ ID NO 30
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Helianthus annuus
<400> SEQUENCE: 30
Arg Gly Leu Thr Arg Arg Pro Pro Pro Pro Arg Gly Pro Ile Ser Ser
1 5 10 15
Gly Gly Gly Gly Gln Thr Asn
20
<210> SEQ ID NO 31
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Helianthus annuus
<400> SEQUENCE: 31
Arg Val Asn Leu Val Gly Tyr Asp Tyr Ser Gly Tyr Gly Gln Ser Thr
1 5 10 15
Gly Lys Pro Ser Glu Cys Asn
20
<210> SEQ ID NO 32
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 32
Gln Arg Asn Glu Ile Arg Ser Arg Gly Val Asp Pro Ser Val Ser Gly
1 5 10 15
Gly Lys Gln Pro Gly Ile Asn
20
<210> SEQ ID NO 33
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 19
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 33
Ala Ser Val Leu Met Arg Gly Pro Ala Gln Pro Val Pro Pro Thr Glu
1 5 10 15
Gly Ala Xaa Gly Arg Gly Gly
20
<210> SEQ ID NO 34
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<400> SEQUENCE: 34
Ala Ser Val Leu Met Arg Gly Pro Ala Gln Pro Gly Pro Pro Thr Glu
1 5 10 15
Gly Ala Gly Arg Arg Gly Gly
20
<210> SEQ ID NO 35
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Panicum virgatum
<400> SEQUENCE: 35
Val Val Thr Arg Val Trp Ala Val Arg Arg Pro Arg Glu Gly Ser Gly
1 5 10 15
Gly Asn Gly Gly Val His His
20
<210> SEQ ID NO 36
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 36
Ala Thr Lys Val Lys Ala Lys Gln Arg Gly Lys Glu Lys Val Ser Ser
1 5 10 15
Gly Arg Pro Gly Gln His Asn
20
<210> SEQ ID NO 37
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 37
Arg Arg Pro Thr Pro Pro Gly Gly Ala Gly Pro Arg Glu Gly Ser Gly
1 5 10 15
Gly Arg Gly Gly Val Ile His
20
<210> SEQ ID NO 38
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 38
Ser Leu Ala Gly Ala Asn Val Leu Val Arg Asp Ala Pro Pro Glu Thr
1 5 10 15
Gly Gly Gly Pro His His Asn
20
<210> SEQ ID NO 39
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 39
Arg Arg Pro Thr Pro Pro Gly Gly Ala Gly Pro Arg Glu Gly Ser Gly
1 5 10 15
Gly Arg Gly Gly Val Ile His
20
<210> SEQ ID NO 40
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 40
Leu Ala Gly Ala Asn Val Leu Leu Arg Asp Asp Ala Pro Pro Glu Gly
1 5 10 15
Gly Arg Gly Pro His His Asn
20
<210> SEQ ID NO 41
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 41
Arg Arg Pro Thr Pro Pro Gly Gly Ala Gly Pro Arg Glu Gly Arg Gly
1 5 10 15
Gly Arg Gly Gly Val Ile His
20
<210> SEQ ID NO 42
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 42
Gln Leu Ala Gly Ala Lys Val Leu Val Arg Asp Ala Pro Pro Glu Thr
1 5 10 15
Gly Gly Gly Pro His His Asn
20
<210> SEQ ID NO 43
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 43
Gly Gly Val Arg Pro Thr Pro Pro Gly Asn Pro Arg Glu Ala Gln Lys
1 5 10 15
Gly Gly Gly Val Ile His Ala
20
<210> SEQ ID NO 44
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Zea mays
<400> SEQUENCE: 44
Ala Leu Arg Gly Pro Ala Pro Pro Ala Arg Pro Lys Glu Gly Ser Gly
1 5 10 15
Gly Lys Val His Val Val Ser
20
<210> SEQ ID NO 45
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Zea mays
<400> SEQUENCE: 45
Leu Trp Pro Ala Pro Ser Pro Lys Gly Arg Pro Gly Ala Pro Arg Gln
1 5 10 15
Gly Ser Gly Gly Gln Val His
20
<210> SEQ ID NO 46
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Triticum aestivum
<400> SEQUENCE: 46
Asp Ala Ser Ser Leu Ala Pro Gln Leu Arg Arg Thr Ser Pro Gly Glu
1 5 10 15
Gly Thr Ser Gly Arg Ile His
20
<210> SEQ ID NO 47
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Triticum aestivum
<400> SEQUENCE: 47
Ile Ala Pro Thr Leu Gln Pro Ser Ser Ala Pro Val Glu Gly Thr Gly
1 5 10 15
Gly Gln Val Met Val Leu Asn
20
<210> SEQ ID NO 48
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Hordeum vulgare
<400> SEQUENCE: 48
Asp Ala Ser Ser Leu Pro Leu Gln Leu Met Arg Thr Pro Pro Gly Glu
1 5 10 15
Gly Ala Gly Gly Arg Ile His
20
<210> SEQ ID NO 49
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Hordeum vulgare
<400> SEQUENCE: 49
Ser Val Leu Pro Asp Gln Pro Pro Ser Ala Pro Ala Glu Gly Thr Gly
1 5 10 15
Gly Gln Val Met Val Leu Asn
20
<210> SEQ ID NO 50
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<400> SEQUENCE: 50
Ala Ser Val Leu Leu Arg Gly Pro Ala Pro Pro Gly Arg Pro Val Glu
1 5 10 15
Gly Ser Gly Gly Lys Val His
20
<210> SEQ ID NO 51
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<400> SEQUENCE: 51
Ala His Met Val Ile Arg Gly Pro Ala Arg Pro Gly Leu Pro Ala Gln
1 5 10 15
Gly Ser Gly Gly Lys Val His
20
<210> SEQ ID NO 52
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<400> SEQUENCE: 52
Met Ala Thr Pro Met Arg Arg Pro Thr Pro Pro Gly Pro Pro Ala Gln
1 5 10 15
Gly Ser Gly Gly Lys Thr Asn
20
<210> SEQ ID NO 53
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<400> SEQUENCE: 53
Ser Arg Ala Ala Pro Ser Pro Lys Gly Ser Pro Gly Ala Pro Arg Gln
1 5 10 15
Gly Ser Gly Gly His Val His
20
<210> SEQ ID NO 54
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<400> SEQUENCE: 54
Ala Pro Ala Ser Pro Leu Arg Arg Gln Leu Leu Arg Tyr Val Ser Ser
1 5 10 15
Gly Leu Val Ala Ala Leu His
20
<210> SEQ ID NO 55
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<400> SEQUENCE: 55
Ala His Met Val Ile Arg Gly Pro Ala Arg Pro Gly Leu Pro Ala Gln
1 5 10 15
Gly Arg Gly Gly Lys Val His
20
<210> SEQ ID NO 56
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<400> SEQUENCE: 56
Met Ala Thr Pro Met Arg Arg Pro Thr Ser Pro Gly Pro Pro Ala Gln
1 5 10 15
Gly Ser Gly Gly Lys Thr Asn
20
<210> SEQ ID NO 57
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<400> SEQUENCE: 57
Ser Arg Ala Val Pro Ser Leu Lys Gly Arg Pro Gly Ala Pro Arg Gln
1 5 10 15
Gly Ser Gly Gly His Val His
20
<210> SEQ ID NO 58
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<400> SEQUENCE: 58
Ala Pro Ala Ser Pro Leu Arg Arg Gln Leu Leu Arg Tyr Val Ser Ser
1 5 10 15
Gly Leu Val Ala Ala Leu His
20
<210> SEQ ID NO 59
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 59
cttatcagat ctcaatggag aaatc 25
<210> SEQ ID NO 60
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 60
caatgtaact taaagtgcct aattatg 27
<210> SEQ ID NO 61
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 61
atggctaagt ttgcttcca 19
<210> SEQ ID NO 62
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 62
ttaacatggg acgtaacaga tac 23
<210> SEQ ID NO 63
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 63
ggagctacgc agaacaacta 20
<210> SEQ ID NO 64
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 64
agtatggctt ctcgttcaca 20
<210> SEQ ID NO 65
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 65
tacaggggta gttcaagcaa 20
<210> SEQ ID NO 66
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 66
cctagagcca ctcctggtat 20
<210> SEQ ID NO 67
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 67
acggtagaag actacgcaca 20
<210> SEQ ID NO 68
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 68
taaggtctcg agctcctctt 20
<210> SEQ ID NO 69
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 69
caaaatatgg atacgggaca 20
<210> SEQ ID NO 70
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 70
attgccaacg atgttgtatc 20
<210> SEQ ID NO 71
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 71
tggcaatgaa gtcagtttct 20
<210> SEQ ID NO 72
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 72
agaagtcgca gaagcactta 20
<210> SEQ ID NO 73
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 73
caacgctact ctgtctgtcc 20
<210> SEQ ID NO 74
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 74
tctgtgaatt ccatctcgtc 20
<210> SEQ ID NO 75
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 75
Ser Ser Gly Arg Pro Gly Gln His Asn
1 5
<210> SEQ ID NO 76
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 76
ataaagagtc acacccaata ccg 23
<210> SEQ ID NO 77
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 77
tgatactggt tatgaactta tgatgg 26
<210> SEQ ID NO 78
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 78
Arg Gly Lys Glu Lys Val Ser Ser Gly Arg Pro Gly Gln His Asn
1 5 10 15
<210> SEQ ID NO 79
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 79
Ser Ser Gly Arg
1
<210> SEQ ID NO 80
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized Construct
<400> SEQUENCE: 80
Ala Ser Gly Arg
1
<210> SEQ ID NO 81
<211> LENGTH: 499
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 81
actcacatat aaaaaacagc ttcactcctc tcaccaaaac taatcagatt aataaaagtt 60
ttcctctgtc ttatcagatc tcaatggaga aatcagatag acgaagcgaa gaaagtcacc 120
tatggattcc tcttcagtgc ctcgaccaaa ccctcagagc tatcttgaaa tgccttggtc 180
tttttcatca agattctccg acaacgtcct ctcccggaac ttcgaaacag ccgaaggagg 240
aaaaagaaga cgttaccatg gaaaaggagg aggtcgttgt gacgagtaga gccacaaagg 300
tcaaggcaaa gcaaaggggg aaggagaaag ttagctcagg ccgtcctggc caacataatt 360
aggcacttta agttacattg tttagtctaa ttatttgcag tcgaaatgtg ttaatttaat 420
atcactgttt tactttttta ttatatcaac aatctacaga caaacaaaat ttcattaagt 480
tcttgttcac tatacgagt 499
<210> SEQ ID NO 82
<211> LENGTH: 92
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 82
Met Glu Lys Ser Asp Arg Arg Ser Glu Glu Ser His Leu Trp Ile Pro
1 5 10 15
Leu Gln Cys Leu Asp Gln Thr Leu Arg Ala Ile Leu Lys Cys Leu Gly
20 25 30
Leu Phe His Gln Asp Ser Pro Thr Thr Ser Ser Pro Gly Thr Ser Lys
35 40 45
Gln Pro Lys Glu Glu Lys Glu Asp Val Thr Met Glu Lys Glu Glu Val
50 55 60
Val Val Thr Ser Arg Ala Thr Lys Val Lys Ala Lys Gln Arg Gly Lys
65 70 75 80
Glu Lys Val Ser Ser Gly Arg Pro Gly Gln His Asn
85 90
<210> SEQ ID NO 83
<211> LENGTH: 568
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 83
acattgagag atacaaagtt gtctctctga catataccta gctgctcgat aactcaccaa 60
actattggat ttcaatggag aaattagata aacggaggga agaagaaact tatctatgga 120
ttccagttca gtttctcgac caagctctca tagctgtctt gaaatgtatt ggtcttcttt 180
gtcagccagc gaagaaaact gcgccgtctc cggtaacttt taaccagccg gaggaacaag 240
aggaagacta tggtgttgct ctgaaagacg atgatgtcgt tgtgttgctt agggacaaca 300
aggccaaatc aaagaaaagg gataaagaaa agcctagttc aggtcgtcct ggccaaacta 360
atagtgtacc caacgcggca atacaagttt ataaggagga ttaagaagtc aaaaattgag 420
tcgaaaaatc caagaggcca atgagtcagt cattgctcct tttttttttt tactcaaact 480
tctatgaaaa actcgtacgt agtttatttt ggtttcctca tttttcaaga cagcaaaatt 540
gaccagaatg tatatacttt tgaatcgg 568
<210> SEQ ID NO 84
<211> LENGTH: 109
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 84
Met Glu Lys Leu Asp Lys Arg Arg Glu Glu Glu Thr Tyr Leu Trp Ile
1 5 10 15
Pro Val Gln Phe Leu Asp Gln Ala Leu Ile Ala Val Leu Lys Cys Ile
20 25 30
Gly Leu Leu Cys Gln Pro Ala Lys Lys Thr Ala Pro Ser Pro Val Thr
35 40 45
Phe Asn Gln Pro Glu Glu Gln Glu Glu Asp Tyr Gly Val Ala Leu Lys
50 55 60
Asp Asp Asp Val Val Val Leu Leu Arg Asp Asn Lys Ala Lys Ser Lys
65 70 75 80
Lys Arg Asp Lys Glu Lys Pro Ser Ser Gly Arg Pro Gly Gln Thr Asn
85 90 95
Ser Val Pro Asn Ala Ala Ile Gln Val Tyr Lys Glu Asp
100 105
<210> SEQ ID NO 85
<211> LENGTH: 486
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 85
atcaacctaa taacacacaa cactaaatct ctttcccaaa aaaagattaa gaagtcaacg 60
atggagaatc tcagaaatgg agaagataac ggttctttga tcccatttac gttctttgat 120
caatcttcag tgacgattcc tctcttgaag tgttccggtc tcgaaagttc atcatcatca 180
tcttcttctt gcgatctttc gtcatcacac agcgaggaag atgagagtat cgatataaag 240
gaggaggaag aagaagaaga agaagatggc atgaccattg aaatcaaagc gagagggaag 300
aacaagacta agcctacgcc aagttcagga aaaggaggca aacacaatta gagttcattc 360
atataccgag gaaattaaac aaataaatgc atttgtataa aatacttaga gctataatac 420
agtggagttt ttttatagtc atttgtttcg aatatgaatt ggattaataa agatcgagtt 480
ttattt 486
<210> SEQ ID NO 86
<211> LENGTH: 96
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 86
Met Glu Asn Leu Arg Asn Gly Glu Asp Asn Gly Ser Leu Ile Pro Phe
1 5 10 15
Thr Phe Phe Asp Gln Ser Ser Val Thr Ile Pro Leu Leu Lys Cys Ser
20 25 30
Gly Leu Glu Ser Ser Ser Ser Ser Ser Ser Ser Cys Asp Leu Ser Ser
35 40 45
Ser His Ser Glu Glu Asp Glu Ser Ile Asp Ile Lys Glu Glu Glu Glu
50 55 60
Glu Glu Glu Glu Asp Gly Met Thr Ile Glu Ile Lys Ala Arg Gly Lys
65 70 75 80
Asn Lys Thr Lys Pro Thr Pro Ser Ser Gly Lys Gly Gly Lys His Asn
85 90 95
<210> SEQ ID NO 87
<211> LENGTH: 460
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 87
acttagctct cacgaagcag aattgaagaa aaacatggag agaggagttt cttattatct 60
atggattcct tttaagttca tccaccaaac tttcggatct cttttactca agcttctcgg 120
tttgcgatct ccatctgatc atagttttcc ggaggatggg gaggaggaag ttaaggttgt 180
ggaagtgtcg tcgaggggtc ttcccgggaa aaagaatgta ctaaagaagt cgagagaaag 240
ttccggcaag ccgggaggca ccaacaagaa gccgttttag tttttcactt caactaataa 300
tatttgacgg agaaattctt ccttacattt tcatctattt agtgtaagat ctaagagaat 360
agtttcatat ttgtatcgta taattcctga agattgcaac tcctacgagt cctttatttt 420
ttttctttaa gacaataact aaagagagac gtgaatcata 460
<210> SEQ ID NO 88
<211> LENGTH: 81
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 88
Met Glu Arg Gly Val Ser Tyr Tyr Leu Trp Ile Pro Phe Lys Phe Ile
1 5 10 15
His Gln Thr Phe Gly Ser Leu Leu Leu Lys Leu Leu Gly Leu Arg Ser
20 25 30
Pro Ser Asp His Ser Phe Pro Glu Asp Gly Glu Glu Glu Val Lys Val
35 40 45
Val Glu Val Ser Ser Arg Gly Leu Pro Gly Lys Lys Asn Val Leu Lys
50 55 60
Lys Ser Arg Glu Ser Ser Gly Lys Pro Gly Gly Thr Asn Lys Lys Pro
65 70 75 80
Phe
<210> SEQ ID NO 89
<211> LENGTH: 412
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 89
acaaagaaaa tttgaggaga aagtcacata tagaggaact tagaagatag cgaagatgca 60
gcaagagaga gatcacaaaa gagattgttg caagctcatg cctcaaactg tcaaggcttt 120
cttcaagtgt ctgagattca gacgttcttc ttcttcttct tcagacatgg tgaaagctag 180
agcaagaaat gaagagaaag aagaaccttc atctatcgaa acttcaacta ggagtctcaa 240
cgtaatgagg aaagggataa ggaaacaacc agttagctcg ggaaaacgag gtggagttaa 300
cgactacgac atgtaactag aatcttgatg tagaattgga taatcttgtt tggtagttac 360
tctacaacat actttctttg catctcatga atcatcatga tatattgata tt 412
<210> SEQ ID NO 90
<211> LENGTH: 86
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 90
Met Gln Gln Glu Arg Asp His Lys Arg Asp Cys Cys Lys Leu Met Pro
1 5 10 15
Gln Thr Val Lys Ala Phe Phe Lys Cys Leu Arg Phe Arg Arg Ser Ser
20 25 30
Ser Ser Ser Ser Asp Met Val Lys Ala Arg Ala Arg Asn Glu Glu Lys
35 40 45
Glu Glu Pro Ser Ser Ile Glu Thr Ser Thr Arg Ser Leu Asn Val Met
50 55 60
Arg Lys Gly Ile Arg Lys Gln Pro Val Ser Ser Gly Lys Arg Gly Gly
65 70 75 80
Val Asn Asp Tyr Asp Met
85
<210> SEQ ID NO 91
<211> LENGTH: 397
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 91
ggtcaaacta gacacaacac ttaatgcatt gagcagaaga agaagaagaa gaagaattaa 60
gaagagaaag aaaacaaaaa acatggaagt taatggagaa gaagagagaa gaagtagaag 120
agaagatgaa gaaaaagaag attactacta ctctcttctc aactctccat gttctgtttg 180
taacaaattt gttcaagcca tattgaagtg tcttggtctt gagtcatcat caataccacc 240
atcttcatca tcatcatcac catccttagt agaagaagaa gattcaggaa ctgaaactgt 300
tgaagaaaca ggatttatgg cgaggataac agcagtgtta agaaggagac caagaccacc 360
accttatagc tcaggacgac ctggtcaaaa caattga 397
<210> SEQ ID NO 92
<211> LENGTH: 104
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 92
Met Glu Val Asn Gly Glu Glu Glu Arg Arg Ser Arg Arg Glu Asp Glu
1 5 10 15
Glu Lys Glu Asp Tyr Tyr Tyr Ser Leu Leu Asn Ser Pro Cys Ser Val
20 25 30
Cys Asn Lys Phe Val Gln Ala Ile Leu Lys Cys Leu Gly Leu Glu Ser
35 40 45
Ser Ser Ile Pro Pro Ser Ser Ser Ser Ser Ser Pro Ser Leu Val Glu
50 55 60
Glu Glu Asp Ser Gly Thr Glu Thr Val Glu Glu Thr Gly Phe Met Ala
65 70 75 80
Arg Ile Thr Ala Val Leu Arg Arg Arg Pro Arg Pro Pro Pro Tyr Ser
85 90 95
Ser Gly Arg Pro Gly Gln Asn Asn
100
<210> SEQ ID NO 93
<211> LENGTH: 228
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 93
atgaatgttt ttttttttgt ttctgaatta ttgtcacatc tttcttttca atatgaaatt 60
tctaatggaa aatgtgtata tgtaataatg ttggtgacga agatatcaca agaagtagag 120
gaagagacag aggtagtgaa tataccgagg agtgtggtgt cggggaacgt tgcagcgcga 180
aagggtaagc agcaaacgag ttccgggaag ggtggaggta ccaactag 228
<210> SEQ ID NO 94
<211> LENGTH: 75
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 94
Met Asn Val Phe Phe Phe Val Ser Glu Leu Leu Ser His Leu Ser Phe
1 5 10 15
Gln Tyr Glu Ile Ser Asn Gly Lys Cys Val Tyr Val Ile Met Leu Val
20 25 30
Thr Lys Ile Ser Gln Glu Val Glu Glu Glu Thr Glu Val Val Asn Ile
35 40 45
Pro Arg Ser Val Val Ser Gly Asn Val Ala Ala Arg Lys Gly Lys Gln
50 55 60
Gln Thr Ser Ser Gly Lys Gly Gly Gly Thr Asn
65 70 75
<210> SEQ ID NO 95
<211> LENGTH: 95
<212> TYPE: PRT
<213> ORGANISM: Brassica napus
<400> SEQUENCE: 95
Met Glu Val Asn Gly Glu Glu Lys Arg Ser Tyr Arg Arg Glu Asp Glu
1 5 10 15
Glu Lys Glu Val Tyr Tyr Pro Leu Leu Asn Ser Pro Cys Ser Ala Phe
20 25 30
His Lys Thr Val Gln Ala Ile Leu Lys Cys Leu Gly Leu Glu Ser Ser
35 40 45
Ser Ile Ser Pro Ser Ser Ser Ser Ser Gln Asp Pro Gly Thr Glu Thr
50 55 60
Val Gln Glu Thr Gly Phe Met Ala Met Val Ala Arg Leu Thr Arg Arg
65 70 75 80
Arg Pro Arg Pro Pro Tyr Ser Ser Gly Gln Pro Gly Gln Ile Asn
85 90 95
<210> SEQ ID NO 96
<211> LENGTH: 116
<212> TYPE: PRT
<213> ORGANISM: Solanum tuberosum
<400> SEQUENCE: 96
Met Phe Tyr Leu Gln Glu Gly Ile Lys Ala Ile Leu Lys Cys Leu Gly
1 5 10 15
Phe Glu Ser Ser Lys Leu Val His Gln Ala Ser Ser Ser Ser Ser Ser
20 25 30
Ser Ser Met Ser Asp Ile Asn Lys Asn Glu Glu Glu Glu Ser Glu Lys
35 40 45
Gln Glu Gln Glu Cys Val Leu Phe Gln Glu Asp Gly Asn Lys Gln Gly
50 55 60
Ser Asp Ser Thr Asn Asp Asn Tyr Lys Asn Asp Pro Pro Val Glu Asn
65 70 75 80
Asp Asp Glu Asp Pro Pro Gln Ser Glu Thr Leu Ile Leu Pro Thr Glu
85 90 95
Arg Arg Gly Arg Pro Pro Ser Arg Pro Lys Val Gly Ser Gly Pro Pro
100 105 110
Pro Gln Asn Asn
115
<210> SEQ ID NO 97
<211> LENGTH: 121
<212> TYPE: PRT
<213> ORGANISM: Populus balsamifera
<400> SEQUENCE: 97
Met Asp Lys Gly Ser Ser Thr Lys Glu Glu Ile Gln Gly Asp Val Leu
1 5 10 15
Gln Ile Ser His Ser Pro Ser Ile Phe Val Glu Ala Phe Asn Ala Leu
20 25 30
Leu Arg Cys Leu Gly Leu Gly Thr Val Asp His Gln Arg Ile Thr Gln
35 40 45
Glu Ser Ser Ser Thr Ser Ser Ser Lys Gln Glu Asp Asp Glu Lys Ala
50 55 60
Ser Glu Glu Ser Pro Gln Tyr Pro Pro Pro Thr Arg Thr Ser Asp Pro
65 70 75 80
Gln Ala Asp Pro Pro Thr Asp Thr Ser Glu Asp Pro Ser Thr Asp Ala
85 90 95
Ala Val Ser Ala Leu Ala Arg Arg Thr Pro Pro Val Ser Arg Gly Gly
100 105 110
Gly Gly Gln Thr Asn Thr Thr Thr Ser
115 120
<210> SEQ ID NO 98
<211> LENGTH: 110
<212> TYPE: PRT
<213> ORGANISM: Betula spp.
<400> SEQUENCE: 98
Met Glu Glu Ser Ser Ala Asn Asp Gln Ala Thr Thr Ala His Thr Lys
1 5 10 15
Val Val Tyr Phe Leu Glu Glu Ala Leu Arg Ala Ile Phe Lys Cys Leu
20 25 30
Gly Leu Glu Thr Lys Pro Gln Asp Asp Pro Pro Ser Ser Gln Leu Glu
35 40 45
Asp Ala Ser Ser Thr Thr Lys Gln Ala Val Ala Asp Asn Ser Ser Thr
50 55 60
Ala Asp Pro Glu Leu Ala Asp Pro Pro Ser Thr Thr Glu Thr Ser Glu
65 70 75 80
Val Ala Ala Thr Ala Ser Ile Asp Leu Val Met Ala Val Asn Ala Pro
85 90 95
Pro Arg Pro Ser Leu Thr Pro Gly Ser Gly Ala Gln Ile Asn
100 105 110
<210> SEQ ID NO 99
<211> LENGTH: 115
<212> TYPE: PRT
<213> ORGANISM: Glycine max
<400> SEQUENCE: 99
Met Glu Gly Ser Ser Pro Ser Ile Glu Glu Glu Arg Thr Ala Thr Phe
1 5 10 15
Tyr Val Tyr His Pro Cys Tyr Phe Leu Gln Gln Ala Leu Arg Ala Leu
20 25 30
Leu Lys Cys Val Gly Ile Asp Glu Ser Glu Asn Thr Met Cys Ser Gln
35 40 45
Ala Asn Lys Gln Glu Lys Ser Ser Leu Pro Gln Thr Pro Ser Ala Asp
50 55 60
Asp Pro Ile Thr Asn Ser Pro Thr His Lys Ser Ser Pro Asp Ala Ala
65 70 75 80
Asp Pro Pro Ser Thr Thr Asn Gln Thr Ile Ile Ile Ala Ser Leu Met
85 90 95
Ala Thr Arg Gly Ser Arg Gly Ser Lys Ile Ser Asp Gly Ser Gly Pro
100 105 110
Gln His Asn
115
<210> SEQ ID NO 100
<211> LENGTH: 127
<212> TYPE: PRT
<213> ORGANISM: Medicago sativa
<400> SEQUENCE: 100
Met Glu Glu Thr Thr Glu Arg Leu Ser Thr Lys Lys Glu Glu Lys Thr
1 5 10 15
Met Thr Phe Tyr Val Tyr His Pro Cys Tyr Cys Leu Glu Glu Ile Phe
20 25 30
Lys Thr Phe Leu Arg Cys Phe Gly Ile Glu Ser Thr Gln Thr Lys Glu
35 40 45
Glu Glu Asp Ser Ser Thr Ser Leu Leu Lys Pro His Ala Cys Ala Cys
50 55 60
Ala Ser Asp Ser Asn Val Ala Leu Lys Asp Arg Tyr Tyr Ser Ser Ser
65 70 75 80
Ser Asn Lys Lys Ser Ser Gln Glu Glu Gly Val Ala Asp Pro Pro Pro
85 90 95
Ser Thr Ser Thr Gln Thr Ile Asn Leu Ser Ser Met Gly Arg Gly Gly
100 105 110
Pro Arg Arg Thr Pro Leu Thr Gln Gly Pro Pro Pro Gln His Asn
115 120 125
<210> SEQ ID NO 101
<211> LENGTH: 84
<212> TYPE: PRT
<213> ORGANISM: Vitis vinifera
<400> SEQUENCE: 101
Met Asn Asp Asp Ala Glu Gln Arg Gln Arg Ser His Ala Gly Asp Asp
1 5 10 15
Gly Gln Glu Gly Leu Asp Leu Gly Arg Leu Pro Pro Asn Pro Cys Gly
20 25 30
His Gly Val Asp Arg Ser Ser Trp Arg Pro His Gly Gly Gly Pro Phe
35 40 45
Val Phe Cys Phe Cys Pro Cys Leu Ala Gly Glu Lys Val Arg Glu Lys
50 55 60
Gln Lys Lys Gly Glu Asp Gly Glu Ser Val Gly Arg Pro Gly Lys Lys
65 70 75 80
Asn Glu Ile Leu
<210> SEQ ID NO 102
<211> LENGTH: 154
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 102
Met Asp Arg Val Glu Glu Lys Glu Gly Asn Arg Phe Gln Glu Pro Ala
1 5 10 15
Ser Asp Arg Cys Glu Asp Asn Glu Asp Lys Glu Gln Asp Asn Ser Glu
20 25 30
Glu Ser Ser Ser Val Asp Gln Arg Lys Glu Glu Glu Glu Glu Glu Lys
35 40 45
Glu Gly Cys Glu Glu Ala Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala
50 55 60
Pro Ser Phe Phe Ala His Pro Cys Ser Leu Leu Gln Tyr Ile Ala Arg
65 70 75 80
Val Cys Ala Cys Cys Leu Gly Leu Ser Asp Ser Phe Cys Asp Pro Lys
85 90 95
Ala Ser Ser Val Leu Val Pro Glu Pro Glu Pro Ala Ala Ala Asp Pro
100 105 110
Ser Gln Glu Gly Glu Glu Asp Met Lys Ser Ser Glu Ala Thr Thr Arg
115 120 125
Val Arg Ala Ala Arg Leu Arg Pro Lys Pro Pro Gly Asn Pro Arg Glu
130 135 140
Gly Ser Gly Gly Asn Gly Gly His His His
145 150
<210> SEQ ID NO 103
<211> LENGTH: 93
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 103
Met Ala Met Ser Ser Ser Pro Ala Ser Pro Pro Pro Ser Phe Leu Ile
1 5 10 15
Gly Gly Ala Gln Ala Gln Leu Leu Arg His Arg Glu Glu Met Leu Leu
20 25 30
Val Leu Pro Ser Pro Pro Ser Gly Arg Gln Leu Pro Ser Glu Glu Glu
35 40 45
Glu Ala Ala Pro Cys Ala Val Asn Gly Arg Ser Thr Ile Leu Ala Ala
50 55 60
Ala Asp Asp Ser Lys Pro Thr Arg Pro Gly Ala Pro Ala Glu Gly Ser
65 70 75 80
Gly Gly Asn Gly Gly Ala Ile His Thr Ala Ala Ser Ser
85 90
<210> SEQ ID NO 104
<211> LENGTH: 82
<212> TYPE: PRT
<213> ORGANISM: Triticum aestivum
<400> SEQUENCE: 104
Met Gly Met Ala Asp Trp Phe Gly Gly Gly Gly Thr Arg Pro Ser Ala
1 5 10 15
Ala Pro Ala Ala Ser Leu Asn Ser Ser Arg Glu Glu Ala Gly Glu Ala
20 25 30
Ala Asp Ile Gly Thr Arg Glu Ile Ser Lys Thr Thr Thr Gly Arg Gly
35 40 45
Phe Tyr Met Arg Glu Val Ile Met Arg Val Arg Ala Val Arg Arg Pro
50 55 60
Arg Pro Pro Thr Thr Pro Arg Glu Gly Arg Gly Gly Gly Gly Gly Ser
65 70 75 80
His Asn
<210> SEQ ID NO 105
<211> LENGTH: 75
<212> TYPE: PRT
<213> ORGANISM: Triticum aestivum
<400> SEQUENCE: 105
Met Ala Ser Pro Ser Pro Ser Phe Leu Leu Gln Leu Val Arg Tyr Val
1 5 10 15
Trp Ser Leu Pro Ser Gln Phe Met Gly Ala Thr Ala Arg Ala Leu Pro
20 25 30
Ala Ser Arg Glu Gly Ala Gly Gly Ala Ile Arg Pro Ser Phe Ala Ala
35 40 45
Pro Ala Pro Gln Arg Pro Gly Ala Pro Ala Glu Gly Ala Gly Gly Gln
50 55 60
Gly Gly Ile Ile His Glu Ala Ser Pro Val Pro
65 70 75
<210> SEQ ID NO 106
<211> LENGTH: 142
<212> TYPE: PRT
<213> ORGANISM: Zea mays
<400> SEQUENCE: 106
Met Asp Glu Arg Gly Glu Lys Glu Glu Glu His Gly Val Val Glu Glu
1 5 10 15
Glu Thr Ala Ala Val Val Leu Lys Glu Val Glu Val Glu Met Glu Met
20 25 30
Val Gly Gly Ser Glu Glu Ala Ser Ala Ala Pro Leu Leu Leu Ala His
35 40 45
Pro Cys Ser Leu Leu Gln Leu Leu Leu Arg Ala Cys Ala Gly Cys Leu
50 55 60
Val Arg Leu Leu His Gly His Cys Ser Asp Gly Ala Asn Asp Asp Pro
65 70 75 80
Lys Ala Ala Ala Asp Asp Asp Asp Ala Ala Pro Glu Ala Ala Ala Ala
85 90 95
Ala Ala Ala Ala Ala Gly Asp Gly Gly Asp Lys Ala Ala Thr Tyr Leu
100 105 110
Tyr Met Gln Glu Val Trp Ala Val Arg Arg Arg Pro Thr Thr Pro Gly
115 120 125
Arg Pro Arg Glu Gly Ser Gly Gly Asn Gly Gly Asn His His
130 135 140
<210> SEQ ID NO 107
<211> LENGTH: 93
<212> TYPE: PRT
<213> ORGANISM: Hordeum vulgare
<400> SEQUENCE: 107
Met Ala Ser Ser Ala Pro Pro Ala Phe Leu Pro Gln Leu Val Gln Pro
1 5 10 15
Val Ser Val Leu Pro Asp Gln Pro Pro Ser Ala Pro Ala Glu Gly Thr
20 25 30
Gly Gly Gln Val Met Val Leu Asn Asp Ala Ser Ser Leu Pro Leu Gln
35 40 45
Leu Met Arg Thr Pro Pro Gly Glu Gly Ala Gly Gly Arg Ile His Arg
50 55 60
Gln Leu Ala Arg Pro Arg Pro Pro Gly Pro Pro Arg Gln Gly His Gly
65 70 75 80
Gly Asp Gly Gly Ala Ile His Ala Ile Leu Leu Glu Leu
85 90
<210> SEQ ID NO 108
<211> LENGTH: 4509
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 108
tgaaagaccc aaacctaatg aatgttaacc actaattgac cattcaccaa ccaattattt 60
aatgaaatat ctttgttagt ttcgttattt agtattgtta acggtttctt actctttttg 120
actacatcag acggacgtaa aacgacatcg ttgtcgaata ttcaaaagat tcacaatttg 180
acaaagagaa acagagacga cttgtttcta aaaaaaccac gtgtgtctga aaacggaaaa 240
aaagaagact gaatgagaaa cggcgtgtaa aaagaaaacg cgttgaaggt taggctctca 300
caatcgttgg tatacagaga gaccaaacat ctcgtcataa aaaacggcaa gaatcatcag 360
ttactttata cccatcaatc aagtcttgtc ctttttctcc ttctctctct catacgagct 420
tctttcctgc tgatgaggct tgagctttaa attttcaatc ttgattgaga ttctgcatgt 480
ttctcgatct ttaaactcag atgaagaatc ttggggggtt gttcaaaatt cttctgcttt 540
tcttctgtct ctttctatcg acccacataa tttccgtttc ttgtttaaac tcagatgggc 600
taactctact ctctcttctg aagcatttgg atagagtacc accacaagtt acttcgacat 660
ggaaaataaa cgcatctgaa gcaactccat gtaactggtt cggtatcact tgtgacgatt 720
ctaagaatgt tgcgtctctc aacttcactc gttctagggt ttcaggtcaa ttgggtccgg 780
aaattgggga gctcaaaagc ttgcagattt tggatctgag tactaacaat ttctccggga 840
ctataccttc cactttagga aactgtacca aactcgctac tctagatttg tctgaaaatg 900
gattctctga taagatccca gatactctcg atagcttgaa gaggttggag gtgctttatc 960
tttacataaa cttcctcact ggtgagttac ctgaatcctt gtttcgaatt ccgaagctgc 1020
aggttttata tcttgactat aacaatctca ccggtccgat tcctcaaagt attggtgatg 1080
ctaaggagct tgtggagctg agtatgtatg cgaatcagtt ctctggtaac atccctgagt 1140
cgattgggaa tagcagtagt ctgcagattc tttatttgca caggaacaag ttagttggtt 1200
cattacctga aagtctcaat cttttgggga atctcactac tctgtttgtt ggtaacaaca 1260
gtctacaagg gccggttcgt ttcggatcac ctaattgcaa gaatttgttg actttagatt 1320
tgtcatacaa tgaattcgaa ggcggtgttc cacctgcatt gggaaattgc agtagccttg 1380
acgctttagt cattgtgagt ggtaacttgt caggtacaat cccttcctca ttgggtatgt 1440
tgaagaatct cacaattctt aacctttccg agaatcgtct ctctgggagt atccccgcag 1500
agctcgggaa ctgcagtagc ttgaacttgt tgaagctgaa cgataaccag cttgtaggcg 1560
gaataccgag tgcattaggt aagctgagga agctagaaag tctggagctt ttcgaaaacc 1620
ggttttcggg tgagattcct attgagatat ggaagagtca gagtcttacg cagttgctag 1680
tttatcaaaa caatctcact ggtgaactac ctgtggaaat gactgagatg aagaagctaa 1740
agatcgctac gctgttcaac aacagctttt atggagcgat accaccgggt ttaggtgtga 1800
acagcagctt agaagaggtt gactttattg gtaacaaact tacaggagag ataccgccaa 1860
atctatgcca tggaaggaag ttgagaatac tcaacttggg ttctaatctg cttcatggta 1920
caataccagc ttctattggt cactgtaaga ccatcaggag attcatcctt agagaaaata 1980
acctttcagg tcttcttcct gagttttctc aggatcatag tctttctttt cttgatttca 2040
atagcaacaa cttcgaagga ccaatcccgg gcagcctcgg aagctgtaag aatctctcga 2100
gtattaacct atctcgaaac agattcacgg ggcagatacc tccacaactt gggaatctac 2160
aaaaccttgg ttacatgaat ctttctcgta atcttcttga agggtctcta ccagctcagc 2220
tatctaactg tgtgagttta gagcgttttg atgttggctt caactcatta aacggttcag 2280
ttccttcaaa ctttagtaac tggaaaggct tgacgacttt agttctcagc gagaaccggt 2340
tttcaggagg tattccacag ttcttgcctg agcttaagaa gctgtcaact ctgcagattg 2400
ctagaaatgc ttttggtggt gagattcctt cgtcgattgg gttgatagag gatctgatct 2460
atgacttgga ccttagtgga aacggattga caggtgaaat tccagccaag ttgggagatc 2520
tcatcaagtt aacaagactc aacatatcta acaacaattt gacaggatct ttatcggttc 2580
tcaaaggtct tacctcattg ctacatgttg atgtctccaa caatcagttc acaggtccaa 2640
taccagataa cttggagggt cagttgttat ctgagccgtc gtcgttttca ggaaatccaa 2700
acctctgcat tccacattcc ttctctgcta gcaacaatag ccgcagcgcg ttaaagtact 2760
gtaaagatca atctaaaagc aggaagagtg gccttagcac ctggcaaatc gtgctaatag 2820
cggtcttatc gtctttatta gtcttggttg tggtccttgc tcttgttttc atttgcctac 2880
gtcgtcgcaa aggaagacca gagaaagatg cttatgtctt cactcaggag gaaggcccat 2940
ctttgttgtt gaacaaagtt cttgcagcaa ctgacaatct aaatgaaaag tacaccattg 3000
gaagaggagc tcatggaatt gtgtacagag cttctttagg ctccggaaag gtctacgctg 3060
tgaagagact tgtattcgcg tctcacatcc gcgctaacca gagtatgatg agggagattg 3120
atacaatcgg taaagtcagg cacaggaatc tgattaagtt agaagggttt tggctgagga 3180
aagacgacgg tttaatgctg tatagataca tgccaaaagg aagtctttac gacgttctcc 3240
acggtgttag cccgaaagaa aatgtgctag actggtctgc acggtacaat gtagcacttg 3300
gtgtcgctca tggactagcc tatctacact atgactgcca tcccccgatt gttcaccgtg 3360
acatcaaacc agagaacata ctcatggact cagatttgga gcctcacatt ggggatttcg 3420
gtttggctcg ccttcttgat gactcaacgg tttcaactgc aactgttaca ggcaccaccg 3480
gctacattgc accaggtaat gcatcttctc attatacata gtggacttgg tataatctgg 3540
tttagtgttc aaaccgagtt agttaccggt taaaaaagtc tgttaggaag atactctgtt 3600
tcttattagc taatttcaca attaaactgc agaaaacgct ttcaaaaccg tgaggggaag 3660
agaatcagac gtttacagtt atggagtcgt gttacttgag ctggttacga ggaagagagc 3720
ggtggacaaa tctttcccgg aaagtacaga tatagtaagc tgggtgagat ctgccttgag 3780
cagcagcaac aacaatgtgg aggatatggt aacaacaatc gtcgatccga ttctcgtgga 3840
cgagcttctg gattcgagtc ttagggagca ggtgatgcaa gtgacggaac tggcactgag 3900
ttgtacacag caagatccgg caatgagacc aacgatgaga gatgcggtga aactgttgga 3960
agatgtgaaa catctggcaa gaagctgctc ctctgattca gttcggtaat ctcgttactt 4020
tgtgcagagc agaaggagga aactaaagga ctgttatcag tggtaacgta actgggctta 4080
ccggtaatgt aactgggcca ataatgtaaa atatggctta ttgaaggccc aaatatgacg 4140
gccctttaat tgtaaccgtg tttgtttgtg aaataaaatc tcgtttatca aatttctgtt 4200
tcctatttta tttttaaaaa aagtgttggg aaaattttcg tttggccgga gatgaagata 4260
ggggcggttc aggagagttg gcttatacgg actccggtac ttaggccggc ggttcaaggc 4320
tcaattcgcc ggaatggaaa gccgcagctt gagtttcctc tctcgaacag tgagcttaag 4380
ctcttctttc ttccattgaa tttttttttt gggaacgcat tatcttgtgc acacttgtag 4440
taacttggtc tatatcaaat tgaggttgaa gatgaaagtt cagttatttc ctgtgatttg 4500
caatttcct 4509
<210> SEQ ID NO 109
<211> LENGTH: 1123
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 109
Met Lys Asn Leu Gly Gly Leu Phe Lys Ile Leu Leu Leu Phe Phe Cys
1 5 10 15
Leu Phe Leu Ser Thr His Ile Ile Ser Val Ser Cys Leu Asn Ser Asp
20 25 30
Gly Leu Thr Leu Leu Ser Leu Leu Lys His Leu Asp Arg Val Pro Pro
35 40 45
Gln Val Thr Ser Thr Trp Lys Ile Asn Ala Ser Glu Ala Thr Pro Cys
50 55 60
Asn Trp Phe Gly Ile Thr Cys Asp Asp Ser Lys Asn Val Ala Ser Leu
65 70 75 80
Asn Phe Thr Arg Ser Arg Val Ser Gly Gln Leu Gly Pro Glu Ile Gly
85 90 95
Glu Leu Lys Ser Leu Gln Ile Leu Asp Leu Ser Thr Asn Asn Phe Ser
100 105 110
Gly Thr Ile Pro Ser Thr Leu Gly Asn Cys Thr Lys Leu Ala Thr Leu
115 120 125
Asp Leu Ser Glu Asn Gly Phe Ser Asp Lys Ile Pro Asp Thr Leu Asp
130 135 140
Ser Leu Lys Arg Leu Glu Val Leu Tyr Leu Tyr Ile Asn Phe Leu Thr
145 150 155 160
Gly Glu Leu Pro Glu Ser Leu Phe Arg Ile Pro Lys Leu Gln Val Leu
165 170 175
Tyr Leu Asp Tyr Asn Asn Leu Thr Gly Pro Ile Pro Gln Ser Ile Gly
180 185 190
Asp Ala Lys Glu Leu Val Glu Leu Ser Met Tyr Ala Asn Gln Phe Ser
195 200 205
Gly Asn Ile Pro Glu Ser Ile Gly Asn Ser Ser Ser Leu Gln Ile Leu
210 215 220
Tyr Leu His Arg Asn Lys Leu Val Gly Ser Leu Pro Glu Ser Leu Asn
225 230 235 240
Leu Leu Gly Asn Leu Thr Thr Leu Phe Val Gly Asn Asn Ser Leu Gln
245 250 255
Gly Pro Val Arg Phe Gly Ser Pro Asn Cys Lys Asn Leu Leu Thr Leu
260 265 270
Asp Leu Ser Tyr Asn Glu Phe Glu Gly Gly Val Pro Pro Ala Leu Gly
275 280 285
Asn Cys Ser Ser Leu Asp Ala Leu Val Ile Val Ser Gly Asn Leu Ser
290 295 300
Gly Thr Ile Pro Ser Ser Leu Gly Met Leu Lys Asn Leu Thr Ile Leu
305 310 315 320
Asn Leu Ser Glu Asn Arg Leu Ser Gly Ser Ile Pro Ala Glu Leu Gly
325 330 335
Asn Cys Ser Ser Leu Asn Leu Leu Lys Leu Asn Asp Asn Gln Leu Val
340 345 350
Gly Gly Ile Pro Ser Ala Leu Gly Lys Leu Arg Lys Leu Glu Ser Leu
355 360 365
Glu Leu Phe Glu Asn Arg Phe Ser Gly Glu Ile Pro Ile Glu Ile Trp
370 375 380
Lys Ser Gln Ser Leu Thr Gln Leu Leu Val Tyr Gln Asn Asn Leu Thr
385 390 395 400
Gly Glu Leu Pro Val Glu Met Thr Glu Met Lys Lys Leu Lys Ile Ala
405 410 415
Thr Leu Phe Asn Asn Ser Phe Tyr Gly Ala Ile Pro Pro Gly Leu Gly
420 425 430
Val Asn Ser Ser Leu Glu Glu Val Asp Phe Ile Gly Asn Lys Leu Thr
435 440 445
Gly Glu Ile Pro Pro Asn Leu Cys His Gly Arg Lys Leu Arg Ile Leu
450 455 460
Asn Leu Gly Ser Asn Leu Leu His Gly Thr Ile Pro Ala Ser Ile Gly
465 470 475 480
His Cys Lys Thr Ile Arg Arg Phe Ile Leu Arg Glu Asn Asn Leu Ser
485 490 495
Gly Leu Leu Pro Glu Phe Ser Gln Asp His Ser Leu Ser Phe Leu Asp
500 505 510
Phe Asn Ser Asn Asn Phe Glu Gly Pro Ile Pro Gly Ser Leu Gly Ser
515 520 525
Cys Lys Asn Leu Ser Ser Ile Asn Leu Ser Arg Asn Arg Phe Thr Gly
530 535 540
Gln Ile Pro Pro Gln Leu Gly Asn Leu Gln Asn Leu Gly Tyr Met Asn
545 550 555 560
Leu Ser Arg Asn Leu Leu Glu Gly Ser Leu Pro Ala Gln Leu Ser Asn
565 570 575
Cys Val Ser Leu Glu Arg Phe Asp Val Gly Phe Asn Ser Leu Asn Gly
580 585 590
Ser Val Pro Ser Asn Phe Ser Asn Trp Lys Gly Leu Thr Thr Leu Val
595 600 605
Leu Ser Glu Asn Arg Phe Ser Gly Gly Ile Pro Gln Phe Leu Pro Glu
610 615 620
Leu Lys Lys Leu Ser Thr Leu Gln Ile Ala Arg Asn Ala Phe Gly Gly
625 630 635 640
Glu Ile Pro Ser Ser Ile Gly Leu Ile Glu Asp Leu Ile Tyr Asp Leu
645 650 655
Asp Leu Ser Gly Asn Gly Leu Thr Gly Glu Ile Pro Ala Lys Leu Gly
660 665 670
Asp Leu Ile Lys Leu Thr Arg Leu Asn Ile Ser Asn Asn Asn Leu Thr
675 680 685
Gly Ser Leu Ser Val Leu Lys Gly Leu Thr Ser Leu Leu His Val Asp
690 695 700
Val Ser Asn Asn Gln Phe Thr Gly Pro Ile Pro Asp Asn Leu Glu Gly
705 710 715 720
Gln Leu Leu Ser Glu Pro Ser Ser Phe Ser Gly Asn Pro Asn Leu Cys
725 730 735
Ile Pro His Ser Phe Ser Ala Ser Asn Asn Ser Arg Ser Ala Leu Lys
740 745 750
Tyr Cys Lys Asp Gln Ser Lys Ser Arg Lys Ser Gly Leu Ser Thr Trp
755 760 765
Gln Ile Val Leu Ile Ala Val Leu Ser Ser Leu Leu Val Leu Val Val
770 775 780
Val Leu Ala Leu Val Phe Ile Cys Leu Arg Arg Arg Lys Gly Arg Pro
785 790 795 800
Glu Lys Asp Ala Tyr Val Phe Thr Gln Glu Glu Gly Pro Ser Leu Leu
805 810 815
Leu Asn Lys Val Leu Ala Ala Thr Asp Asn Leu Asn Glu Lys Tyr Thr
820 825 830
Ile Gly Arg Gly Ala His Gly Ile Val Tyr Arg Ala Ser Leu Gly Ser
835 840 845
Gly Lys Val Tyr Ala Val Lys Arg Leu Val Phe Ala Ser His Ile Arg
850 855 860
Ala Asn Gln Ser Met Met Arg Glu Ile Asp Thr Ile Gly Lys Val Arg
865 870 875 880
His Arg Asn Leu Ile Lys Leu Glu Gly Phe Trp Leu Arg Lys Asp Asp
885 890 895
Gly Leu Met Leu Tyr Arg Tyr Met Pro Lys Gly Ser Leu Tyr Asp Val
900 905 910
Leu His Gly Val Ser Pro Lys Glu Asn Val Leu Asp Trp Ser Ala Arg
915 920 925
Tyr Asn Val Ala Leu Gly Val Ala His Gly Leu Ala Tyr Leu His Tyr
930 935 940
Asp Cys His Pro Pro Ile Val His Arg Asp Ile Lys Pro Glu Asn Ile
945 950 955 960
Leu Met Asp Ser Asp Leu Glu Pro His Ile Gly Asp Phe Gly Leu Ala
965 970 975
Arg Leu Leu Asp Asp Ser Thr Val Ser Thr Ala Thr Val Thr Gly Thr
980 985 990
Thr Gly Tyr Ile Ala Pro Glu Asn Ala Phe Lys Thr Val Arg Gly Arg
995 1000 1005
Glu Ser Asp Val Tyr Ser Tyr Gly Val Val Leu Leu Glu Leu Val Thr
1010 1015 1020
Arg Lys Arg Ala Val Asp Lys Ser Phe Pro Glu Ser Thr Asp Ile Val
1025 1030 1035 1040
Ser Trp Val Arg Ser Ala Leu Ser Ser Ser Asn Asn Asn Val Glu Asp
1045 1050 1055
Met Val Thr Thr Ile Val Asp Pro Ile Leu Val Asp Glu Leu Leu Asp
1060 1065 1070
Ser Ser Leu Arg Glu Gln Val Met Gln Val Thr Glu Leu Ala Leu Ser
1075 1080 1085
Cys Thr Gln Gln Asp Pro Ala Met Arg Pro Thr Met Arg Asp Ala Val
1090 1095 1100
Lys Leu Leu Glu Asp Val Lys His Leu Ala Arg Ser Cys Ser Ser Asp
1105 1110 1115 1120
Ser Val Arg
<210> SEQ ID NO 110
<211> LENGTH: 4353
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 110
attctagtgt agacgacaga taccagagat cttgattaaa ttccaatata taatgtttat 60
gaaagattta aatctaacaa agtaacagta ggatgaaatg tcaatagaaa attagcgtcc 120
aaagaagctt tctcttgaat aagctaagaa aacaaaacgt ggaaaatgga atatttaaaa 180
ccacgaaaca gtctccgagt agtaatggaa atagcgagaa agaaacacga aacagcgttg 240
aaggtcgcca attcgtaaag ttaggttcac aatctctgac gaagagttaa ccaaaaagcg 300
cgctcttttt ctctctcacc aaactcatcg atcgtttctt aaataatgca atctgttcct 360
gtcactaaat ccagataccc tttcaaatcc aaaagctctc tctttttttt ttccgcctct 420
cattctgggt tcaagggttg ttgagtgagg ttactacgta cgagtgtttc atatttcagt 480
ctcttgagct ctaatctcaa atgaggaatc ttgggttact cgaaattact ctgctttgct 540
ctctctttgt ctatttccgt atagattctg tctctagttt aaactcagat ggtttggctt 600
tactctcgct tctcaagcac tttgataaag tcccacttga agtagcttcg acgtggaagg 660
agaacacatc tgaaaccact ccatgtaata ataactggtt tggtgtcatt tgtgatcttt 720
ctggtaatgt cgtcgagacc cttaatttgt ctgcttctgg gctttcaggc caattaggtt 780
ctgaaattgg ggagcttaag agcttggtca cattggatct cagtcttaac agtttctctg 840
gtttattgcc ttccacttta ggaaactgta cttcacttga gtatttggat ttgtctaaca 900
atgatttttc tggagaagtt cctgatattt ttggtagctt gcagaatttg acgtttctgt 960
atcttgatcg caataatctt agtggtctca ttcctgcaag tgttggtggg ttgatagagc 1020
tcgtagatct gaggatgtca tataataact tgtctggtac cattccagag ttgcttggga 1080
actgtagtaa gctggaatat ctggctttga acaacaacaa gttaaatggt tctttgccag 1140
caagtctcta tctactcgag aatcttggtg agctatttgt cagtaacaac agccttggag 1200
ggaggcttca ttttggttct agcaactgca agaaattggt ttctttagat ctctcgttca 1260
atgatttcca aggcggtgtt ccacctgaga taggcaactg cagtagcctt cactctttag 1320
tcatggtgaa atgcaacttg acaggtacaa tcccatcatc aatgggtatg ttgagaaagg 1380
tttcggttat tgacctttcc gataatcgtc tctcggggaa tatccctcaa gagcttggga 1440
actgcagcag cttggaaacc ttgaagctga acgacaacca gctccaaggc gagataccac 1500
ctgcattgag taagctaaag aagctacaaa gcctggagct tttttttaat aagctgtccg 1560
gtgagattcc tattggcata tggaagattc agagtctgac acagatgctc gtttataaca 1620
acactctcac cggggaacta ccagttgaag taactcagct gaagcacctt aagaagctta 1680
cactgtttaa caacggcttt tatggagata taccaatgag tttaggcctg aatcgaagct 1740
tagaggaggt ggaccttctt ggtaaccgtt ttacagggga gataccaccc catctctgcc 1800
atggacagaa gttgagattg ttcatcttgg gttctaatca gcttcatggt aagataccag 1860
cgtctattcg tcagtgtaag acccttgagc gagtcagact tgaagataac aaactttcag 1920
gtgttcttcc ggaattccct gagagtctta gtctttccta tgtgaacctc ggaagcaata 1980
gctttgaagg atccatcccg cgcagcttgg gaagctgtaa aaatctcttg actattgacc 2040
tttctcaaaa caaactcacg ggtctgatac ctccagaact gggaaatctg caaagccttg 2100
gactgttgaa cctttcacat aattatctgg aaggtcctct gccatcccag ctatcaggct 2160
gtgcgagact tctgtatttt gatgttggat ccaactcatt gaacggttct attccatcaa 2220
gcttcagaag ctggaaaagc ttgtccactt tagttctcag tgacaataat tttctaggag 2280
ctattccaca gttcttggca gagcttgacc gactctcaga tctgcggata gctcgaaatg 2340
cttttggagg taagattcct tcctcggttg gcttgttgaa gagtctacgc tatggcttag 2400
acctcagtgc gaacgtattt acgggtgaga ttccaaccac actgggggct cttatcaatc 2460
ttgaacgtct caacatatcc aacaacaagt tgacagggcc tttatcggtt cttcaaagtc 2520
ttaagtcatt gaatcaagtt gacgtctcgt ataatcagtt cacgggtcca atacccgtaa 2580
atctgttatc aaattcttca aagttttctg gaaatccaga cctctgcatt caagcttctt 2640
actcagtgag tgccataatc cgcaaagagt ttaaatcttg caaaggtcaa gtcaaactta 2700
gcacgtggaa gatcgccctt atagcagctg ggtcctcact atccgtattg gctttgcttt 2760
ttgctctctt tttggtttta tgccggtgca aaagaggaac caagacagaa gatgctaata 2820
tcctcgcaga ggaaggtctg tccttgttgc tgaacaaagt tctagcagcc actgacaatc 2880
tagatgacaa gtacatcatt ggaagaggag ctcatggagt tgtttacaga gcttctttag 2940
gatcaggcga agaatacgcc gtgaagaaac tcatctttgc ggaacacatt cgcgcaaacc 3000
aaaatatgaa gcgggagatc gaaacaatcg ggctagtcag gcacagaaat ctcattcggt 3060
tagaaagatt ttggatgagg aaagaagatg gcttaatgct gtatcagtac atgcccaatg 3120
gaagcctaca cgacgttttg cacagaggta atcaaggaga agcagttctt gactggtctg 3180
cacggttcaa catagccctt gggatttcac atggactggc gtatttacat catgattgtc 3240
atccaccaat aattcaccgc gacatcaaac cagagaacat actcatggac tcggatatgg 3300
agcctcacat tggagatttc ggattggctc ggattctaga tgactcaaca gtttcaacgg 3360
ccactgttac tggcacaact gggtacattg caccaggtat atatacttct caacataaca 3420
cgttcgtatt ttgttcaccg ttaccttatt catgctctga tgaccatatt tctatcaaac 3480
agaaaatgcg tacaagacgg tgaggagcaa ggaatcagat gtttacagtt atggagttgt 3540
tttgctcgag ctggtaacag gaaagagagc actggacaga tctttcccgg aagatatcaa 3600
cattgtgagc tgggtcagat ctgtattaag cagctacgag gatgaagacg atactgctgg 3660
tccaatcgtt gatccaaaac ttgtggatga gcttctggat acgaagctca gggaacaagc 3720
aatccaagtc acagacttgg ctcttagatg tacagacaag aggccggaga acagaccatc 3780
gatgagagat gtggtgaaag atttgactga tttggaaagt tttgtaagaa gcacttcggg 3840
ttcagttcac tagtttcata agttgcaggt ttatatagtg tactgttctt tgaaaccact 3900
aatataattg taactaccat tgaataccgt gaagatttga gaaacatata tatccaaaga 3960
gacttaattt tattgcataa gttggaattg ttgggggaaa taaattacaa gtattaagag 4020
aggcttcaca aatttgccaa tctcagtata ttttagccag tgctaccaga aagctcgcca 4080
gagaaggcac taccatacga tgtggaaccg gttggtgtct gtgatgatgt tgcgatccct 4140
cgagctttcc gcatctgcct tagtctgaaa acatctgtgg gcaaaggctg gctttgtaca 4200
gttgctgtat catcttcttc ttgccctgtt aacagagaga tagaataaga taagtaacta 4260
tcatttaacg gttgttctaa gggatagtag aagttatatg catctgcagc taagaagtgc 4320
caaacatttg agtgatgaca tagtcatgag cca 4353
<210> SEQ ID NO 111
<211> LENGTH: 1088
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 111
Met Arg Asn Leu Gly Leu Leu Glu Ile Thr Leu Leu Cys Ser Leu Phe
1 5 10 15
Val Tyr Phe Arg Ile Asp Ser Val Ser Ser Leu Asn Ser Asp Gly Leu
20 25 30
Ala Leu Leu Ser Leu Leu Lys His Phe Asp Lys Val Pro Leu Glu Val
35 40 45
Ala Ser Thr Trp Lys Glu Asn Thr Ser Glu Thr Thr Pro Cys Asn Asn
50 55 60
Asn Trp Phe Gly Val Ile Cys Asp Leu Ser Gly Asn Val Val Glu Thr
65 70 75 80
Leu Asn Leu Ser Ala Ser Gly Leu Ser Gly Gln Leu Gly Ser Glu Ile
85 90 95
Gly Glu Leu Lys Ser Leu Val Thr Leu Asp Leu Ser Leu Asn Ser Phe
100 105 110
Ser Gly Leu Leu Pro Ser Thr Leu Gly Asn Cys Thr Ser Leu Glu Tyr
115 120 125
Leu Asp Leu Ser Asn Asn Asp Phe Ser Gly Glu Val Pro Asp Ile Phe
130 135 140
Gly Ser Leu Gln Asn Leu Thr Phe Leu Tyr Leu Asp Arg Asn Asn Leu
145 150 155 160
Ser Gly Leu Ile Pro Ala Ser Val Gly Gly Leu Ile Glu Leu Val Asp
165 170 175
Leu Arg Met Ser Tyr Asn Asn Leu Ser Gly Thr Ile Pro Glu Leu Leu
180 185 190
Gly Asn Cys Ser Lys Leu Glu Tyr Leu Ala Leu Asn Asn Asn Lys Leu
195 200 205
Asn Gly Ser Leu Pro Ala Ser Leu Tyr Leu Leu Glu Asn Leu Gly Glu
210 215 220
Leu Phe Val Ser Asn Asn Ser Leu Gly Gly Arg Leu His Phe Gly Ser
225 230 235 240
Ser Asn Cys Lys Lys Leu Val Ser Leu Asp Leu Ser Phe Asn Asp Phe
245 250 255
Gln Gly Gly Val Pro Pro Glu Ile Gly Asn Cys Ser Ser Leu His Ser
260 265 270
Leu Val Met Val Lys Cys Asn Leu Thr Gly Thr Ile Pro Ser Ser Met
275 280 285
Gly Met Leu Arg Lys Val Ser Val Ile Asp Leu Ser Asp Asn Arg Leu
290 295 300
Ser Gly Asn Ile Pro Gln Glu Leu Gly Asn Cys Ser Ser Leu Glu Thr
305 310 315 320
Leu Lys Leu Asn Asp Asn Gln Leu Gln Gly Glu Ile Pro Pro Ala Leu
325 330 335
Ser Lys Leu Lys Lys Leu Gln Ser Leu Glu Leu Phe Phe Asn Lys Leu
340 345 350
Ser Gly Glu Ile Pro Ile Gly Ile Trp Lys Ile Gln Ser Leu Thr Gln
355 360 365
Met Leu Val Tyr Asn Asn Thr Leu Thr Gly Glu Leu Pro Val Glu Val
370 375 380
Thr Gln Leu Lys His Leu Lys Lys Leu Thr Leu Phe Asn Asn Gly Phe
385 390 395 400
Tyr Gly Asp Ile Pro Met Ser Leu Gly Leu Asn Arg Ser Leu Glu Glu
405 410 415
Val Asp Leu Leu Gly Asn Arg Phe Thr Gly Glu Ile Pro Pro His Leu
420 425 430
Cys His Gly Gln Lys Leu Arg Leu Phe Ile Leu Gly Ser Asn Gln Leu
435 440 445
His Gly Lys Ile Pro Ala Ser Ile Arg Gln Cys Lys Thr Leu Glu Arg
450 455 460
Val Arg Leu Glu Asp Asn Lys Leu Ser Gly Val Leu Pro Glu Phe Pro
465 470 475 480
Glu Ser Leu Ser Leu Ser Tyr Val Asn Leu Gly Ser Asn Ser Phe Glu
485 490 495
Gly Ser Ile Pro Arg Ser Leu Gly Ser Cys Lys Asn Leu Leu Thr Ile
500 505 510
Asp Leu Ser Gln Asn Lys Leu Thr Gly Leu Ile Pro Pro Glu Leu Gly
515 520 525
Asn Leu Gln Ser Leu Gly Leu Leu Asn Leu Ser His Asn Tyr Leu Glu
530 535 540
Gly Pro Leu Pro Ser Gln Leu Ser Gly Cys Ala Arg Leu Leu Tyr Phe
545 550 555 560
Asp Val Gly Ser Asn Ser Leu Asn Gly Ser Ile Pro Ser Ser Phe Arg
565 570 575
Ser Trp Lys Ser Leu Ser Thr Leu Val Leu Ser Asp Asn Asn Phe Leu
580 585 590
Gly Ala Ile Pro Gln Phe Leu Ala Glu Leu Asp Arg Leu Ser Asp Leu
595 600 605
Arg Ile Ala Arg Asn Ala Phe Gly Gly Lys Ile Pro Ser Ser Val Gly
610 615 620
Leu Leu Lys Ser Leu Arg Tyr Gly Leu Asp Leu Ser Ala Asn Val Phe
625 630 635 640
Thr Gly Glu Ile Pro Thr Thr Leu Gly Ala Leu Ile Asn Leu Glu Arg
645 650 655
Leu Asn Ile Ser Asn Asn Lys Leu Thr Gly Pro Leu Ser Val Leu Gln
660 665 670
Ser Leu Lys Ser Leu Asn Gln Val Asp Val Ser Tyr Asn Gln Phe Thr
675 680 685
Gly Pro Ile Pro Val Asn Leu Leu Ser Asn Ser Ser Lys Phe Ser Gly
690 695 700
Asn Pro Asp Leu Cys Ile Gln Ala Ser Tyr Ser Val Ser Ala Ile Ile
705 710 715 720
Arg Lys Glu Phe Lys Ser Cys Lys Gly Gln Val Lys Leu Ser Thr Trp
725 730 735
Lys Ile Ala Leu Ile Ala Ala Gly Ser Ser Leu Ser Val Leu Ala Leu
740 745 750
Leu Phe Ala Leu Phe Leu Val Leu Cys Arg Cys Lys Arg Gly Thr Lys
755 760 765
Thr Glu Asp Ala Asn Ile Leu Ala Glu Glu Gly Leu Ser Leu Leu Leu
770 775 780
Asn Lys Val Leu Ala Ala Thr Asp Asn Leu Asp Asp Lys Tyr Ile Ile
785 790 795 800
Gly Arg Gly Ala His Gly Val Val Tyr Arg Ala Ser Leu Gly Ser Gly
805 810 815
Glu Glu Tyr Ala Val Lys Lys Leu Ile Phe Ala Glu His Ile Arg Ala
820 825 830
Asn Gln Asn Met Lys Arg Glu Ile Glu Thr Ile Gly Leu Val Arg His
835 840 845
Arg Asn Leu Ile Arg Leu Glu Arg Phe Trp Met Arg Lys Glu Asp Gly
850 855 860
Leu Met Leu Tyr Gln Tyr Met Pro Asn Gly Ser Leu His Asp Val Leu
865 870 875 880
His Arg Gly Asn Gln Gly Glu Ala Val Leu Asp Trp Ser Ala Arg Phe
885 890 895
Asn Ile Ala Leu Gly Ile Ser His Gly Leu Ala Tyr Leu His His Asp
900 905 910
Cys His Pro Pro Ile Ile His Arg Asp Ile Lys Pro Glu Asn Ile Leu
915 920 925
Met Asp Ser Asp Met Glu Pro His Ile Gly Asp Phe Gly Leu Ala Arg
930 935 940
Ile Leu Asp Asp Ser Thr Val Ser Thr Ala Thr Val Thr Gly Thr Thr
945 950 955 960
Gly Tyr Ile Ala Pro Glu Asn Ala Tyr Lys Thr Val Arg Ser Lys Glu
965 970 975
Ser Asp Val Tyr Ser Tyr Gly Val Val Leu Leu Glu Leu Val Thr Gly
980 985 990
Lys Arg Ala Leu Asp Arg Ser Phe Pro Glu Asp Ile Asn Ile Val Ser
995 1000 1005
Trp Val Arg Ser Val Leu Ser Ser Tyr Glu Asp Glu Asp Asp Thr Ala
1010 1015 1020
Gly Pro Ile Val Asp Pro Lys Leu Val Asp Glu Leu Leu Asp Thr Lys
1025 1030 1035 1040
Leu Arg Glu Gln Ala Ile Gln Val Thr Asp Leu Ala Leu Arg Cys Thr
1045 1050 1055
Asp Lys Arg Pro Glu Asn Arg Pro Ser Met Arg Asp Val Val Lys Asp
1060 1065 1070
Leu Thr Asp Leu Glu Ser Phe Val Arg Ser Thr Ser Gly Ser Val His
1075 1080 1085
<210> SEQ ID NO 112
<211> LENGTH: 249
<212> TYPE: DNA
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 112
atggccagct acgcggcgca gctcaaggac atgttcttcg gcctcgtcga gcgcgtcacc 60
ggctacggac gcggcgagga caaggacgtc gctgcaggtg tagatgagcc cagcaagttg 120
gcatctgaag aggttgcagt aagcagcgaa gaggttgtga ttgtacagcg caatgagatc 180
agatcaagag gcgtagatcc ctccgtgtca ggcgggaaac agccagggat caatgcggcc 240
ggtatctag 249
<210> SEQ ID NO 113
<211> LENGTH: 82
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 113
Met Ala Ser Tyr Ala Ala Gln Leu Lys Asp Met Phe Phe Gly Leu Val
1 5 10 15
Glu Arg Val Thr Gly Tyr Gly Arg Gly Glu Asp Lys Asp Val Ala Ala
20 25 30
Gly Val Asp Glu Pro Ser Lys Leu Ala Ser Glu Glu Val Ala Val Ser
35 40 45
Ser Glu Glu Val Val Ile Val Gln Arg Asn Glu Ile Arg Ser Arg Gly
50 55 60
Val Asp Pro Ser Val Ser Gly Gly Lys Gln Pro Gly Ile Asn Ala Ala
65 70 75 80
Gly Ile
<210> SEQ ID NO 114
<211> LENGTH: 534
<212> TYPE: DNA
<213> ORGANISM: Thlaspi caerulescens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 483
<223> OTHER INFORMATION: n = A,T,C or G
<400> SEQUENCE: 114
actttaattt cagatctcaa tggagaaaga gagacgaaac gaagaagaaa cttatcgatg 60
tttttctttt cagttcctcg accaaattct taaagctagc ttaaagtgtt ttggtcttct 120
tcatcatgat tcaccgccga cgacgacgaa aacagcgtcg tatcccgtac ctttaaacca 180
gccggaggaa gaagaagagg aaaatgttgg cgtgaaagac cacgtcgttg tgacgcccag 240
tggcagtaaa aacggcgtcg ttgtcacgag tagggtcaca aagttcaaag caaagatgaa 300
ggagagggaa aaagttagca ctggccggtc tggccagcat aactagcact taattaaaat 360
tgtttagttc aattaattcg cagtcaataa ttctatttat tttatagttg cacttaatat 420
aatgtttagt ggcatcattg tacttatttg tatgaattta taaatgaaat ttaacagctt 480
acnggcccca aatgataaat ctagttcatc aatatgaaaa caaccttaaa cttc 534
<210> SEQ ID NO 115
<211> LENGTH: 170
<212> TYPE: PRT
<213> ORGANISM: Thlaspi caerulescens
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 156
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 115
Leu Phe Gln Ile Ser Met Glu Lys Glu Arg Arg Asn Glu Glu Glu Thr
1 5 10 15
Tyr Arg Cys Phe Ser Phe Gln Phe Leu Asp Gln Ile Leu Lys Ala Ser
20 25 30
Leu Lys Cys Phe Gly Leu Leu His His Asp Ser Pro Pro Thr Thr Thr
35 40 45
Lys Thr Ala Ser Tyr Pro Val Pro Leu Asn Gln Pro Glu Glu Glu Glu
50 55 60
Glu Glu Asn Val Gly Val Lys Asp His Val Val Val Thr Pro Ser Gly
65 70 75 80
Ser Lys Asn Gly Val Val Val Thr Ser Arg Val Thr Lys Phe Lys Ala
85 90 95
Lys Met Lys Glu Arg Glu Lys Val Ser Thr Gly Arg Ser Gly Gln His
100 105 110
Asn His Leu Ile Lys Ile Val Phe Asn Phe Ala Val Asn Asn Ser Ile
115 120 125
Tyr Phe Ile Val Ala Leu Asn Ile Met Phe Ser Gly Ile Ile Val Leu
130 135 140
Ile Cys Met Asn Leu Met Lys Phe Asn Ser Leu Xaa Ala Pro Asn Asp
145 150 155 160
Lys Ser Ser Ser Ser Ile Lys Gln Pro Thr
165 170
<210> SEQ ID NO 116
<211> LENGTH: 675
<212> TYPE: DNA
<213> ORGANISM: Gossypium hirsutum
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 600, 604, 617, 618, 619, 623, 626, 627, 628, 637,
642,
647
<223> OTHER INFORMATION: n = A,T,C or G
<400> SEQUENCE: 116
gggaagatac ttcatcagca aaggaagtaa cgttgcaagg aactccagct aattacttcc 60
ccaggtcctt ccatgaagtt gtaggtgcca ttctcaggtg tttgggactt gaaactggat 120
tccaacaaaa ccctaatcca tgtccaaaga aagaagatga cagtaaagcc aatcataatc 180
aatctgtttc tcagaaggaa agtccagatc caccttcatc aacagacaat tcagatccat 240
caaccactgt gatcgaccca ccagctgatc ctcctccttc caccactgga gacacgaacg 300
atggcgaact tcccatggtt tctctcttta ctcctaaaag gccagggaca agcgccggca 360
gtggacctca gattaattaa cttgagttgt caagatcgac gctttgtggg caaaaacaag 420
ctttggcaac tgcagcgata ttcaagagag gtttatatgg ggtccttgac tgttgttttc 480
atcttgttct tggatgtttt ttttttagga gaatggaaaa tcgagtgagt tgtgaataat 540
ttgtataaaa tatcataaac ccatgtattt taagagtata ttaatttcaa taacgttgcn 600
gaanaaaaaa aaaaaannna aanaannnaa aaaaaanaaa anaaaanaaa aaaaaaactc 660
ggaaagtcct tctac 675
<210> SEQ ID NO 117
<211> LENGTH: 218
<212> TYPE: PRT
<213> ORGANISM: Gossypium hirsutum
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 194, 195, 199, 200, 201, 202, 203, 206, 208, 209
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 117
Glu Asp Thr Ser Ser Ala Lys Glu Val Thr Leu Gln Gly Thr Pro Ala
1 5 10 15
Asn Tyr Phe Pro Arg Ser Phe His Glu Val Val Gly Ala Ile Leu Arg
20 25 30
Cys Leu Gly Leu Glu Thr Gly Phe Gln Gln Asn Pro Asn Pro Cys Pro
35 40 45
Lys Lys Glu Asp Asp Ser Lys Ala Asn His Asn Gln Ser Val Ser Gln
50 55 60
Lys Glu Ser Pro Asp Pro Pro Ser Ser Thr Asp Asn Ser Asp Pro Ser
65 70 75 80
Thr Thr Val Ile Asp Pro Pro Ala Asp Pro Pro Pro Ser Thr Thr Gly
85 90 95
Asp Thr Asn Asp Gly Glu Leu Pro Met Val Ser Leu Phe Thr Pro Lys
100 105 110
Arg Pro Gly Thr Ser Ala Gly Ser Gly Pro Gln Ile Asn Leu Glu Leu
115 120 125
Ser Arg Ser Thr Leu Cys Gly Gln Lys Gln Ala Leu Ala Thr Ala Ala
130 135 140
Ile Phe Lys Arg Gly Leu Tyr Gly Val Leu Asp Cys Cys Phe His Leu
145 150 155 160
Val Leu Gly Cys Phe Phe Phe Arg Arg Met Glu Asn Arg Val Ser Cys
165 170 175
Glu Val Asn Ile Ile Asn Pro Cys Ile Leu Arg Val Tyr Phe Gln Arg
180 185 190
Cys Xaa Xaa Lys Lys Lys Xaa Xaa Xaa Xaa Xaa Lys Lys Xaa Lys Xaa
195 200 205
Xaa Lys Lys Lys Thr Arg Lys Val Leu Leu
210 215
<210> SEQ ID NO 118
<211> LENGTH: 534
<212> TYPE: DNA
<213> ORGANISM: Populus balsamifera
<400> SEQUENCE: 118
atgggttcct atctctcttc cttctttatt gaagctcata atgctcttct acagttcttg 60
ggactggtta ttgttgatca tcaaagtaag acccaagaag gctcgtcaac ttccagttca 120
gagaaacaag aggatgaaaa agcctctgaa gaaagctccc aagatcctcc tccaacaaca 180
accgacccaa aagctgatcc tcccacagat aactctgaag atcctcctgc agtcactgta 240
agtgctcttg cgaggcggac tccaccagta agcagcggga gcggtggtca gattaattaa 300
ttccacctca gcttaagaat cgcagaagct caaagatctg tcggtcacac catgctagct 360
tcgctaaagt ccaaaaaatc atcttctcta tagatttcac gagtactagt tgtaattatt 420
gtgtgtgcgc ttagggatac tctccccccc cccccccccc tttttttttt ttgggggaaa 480
tgaacttgaa aatcttggac ccgttatacc tatatgaata ttacatatgt ttag 534
<210> SEQ ID NO 119
<211> LENGTH: 173
<212> TYPE: PRT
<213> ORGANISM: Populus balsamifera
<400> SEQUENCE: 119
Met Gly Ser Tyr Leu Ser Ser Phe Phe Ile Glu Ala His Asn Ala Leu
1 5 10 15
Leu Gln Phe Leu Gly Leu Val Ile Val Asp His Gln Ser Lys Thr Gln
20 25 30
Glu Gly Ser Ser Thr Ser Ser Ser Glu Lys Gln Glu Asp Glu Lys Ala
35 40 45
Ser Glu Glu Ser Ser Gln Asp Pro Pro Pro Thr Thr Thr Asp Pro Lys
50 55 60
Ala Asp Pro Pro Thr Asp Asn Ser Glu Asp Pro Pro Ala Val Thr Val
65 70 75 80
Ser Ala Leu Ala Arg Arg Thr Pro Pro Val Ser Ser Gly Ser Gly Gly
85 90 95
Gln Ile Asn Phe His Leu Ser Leu Arg Ile Ala Glu Ala Gln Arg Ser
100 105 110
Val Gly His Thr Met Leu Ala Ser Leu Lys Ser Lys Lys Ser Ser Ser
115 120 125
Leu Ile Ser Arg Val Leu Val Val Ile Ile Val Cys Ala Leu Arg Asp
130 135 140
Thr Leu Pro Pro Pro Pro Pro Leu Phe Phe Phe Trp Gly Lys Thr Lys
145 150 155 160
Ser Trp Thr Arg Tyr Thr Tyr Met Asn Ile Thr Tyr Val
165 170
<210> SEQ ID NO 120
<211> LENGTH: 495
<212> TYPE: DNA
<213> ORGANISM: Vitis vinifera
<400> SEQUENCE: 120
atgtgtcaaa aactgaagca gtatagcatt cattcaaaag aaggtacacc accaaacccc 60
attaaagagc tagatattga aggaggagga ggagaagaag aagaaaaata tgatctagag 120
atggaggagc catcaaccgg ggagatgaca cagagaccaa caactgttta ctactctcac 180
aatccatgct attatcttca agaagctata agggctattc tcaagtgttt gggcctggaa 240
tcttctactt ctagggactc ttcgtcaagc agttcagaac aaaaggatga tgacgacact 300
gaagcaagtc cccaacaatc tcgttcttct acacaacaag gagcacactc atcgtcagct 360
gactctcctt caactacaca acaagataac aacaccttcg aggatgctga aagtgcgcgt 420
gtattgagga gagggcctac aaggccacca ataagttttg aaagcaggcc tggaggtggt 480
tctcagatta actga 495
<210> SEQ ID NO 121
<211> LENGTH: 164
<212> TYPE: PRT
<213> ORGANISM: Vitis vinifera
<400> SEQUENCE: 121
Met Cys Gln Lys Leu Lys Gln Tyr Ser Ile His Ser Lys Glu Gly Thr
1 5 10 15
Pro Pro Asn Pro Ile Lys Glu Leu Asp Ile Glu Gly Gly Gly Gly Glu
20 25 30
Glu Glu Glu Lys Tyr Asp Leu Glu Met Glu Glu Pro Ser Thr Gly Glu
35 40 45
Met Thr Gln Arg Pro Thr Thr Val Tyr Tyr Ser His Asn Pro Cys Tyr
50 55 60
Tyr Leu Gln Glu Ala Ile Arg Ala Ile Leu Lys Cys Leu Gly Leu Glu
65 70 75 80
Ser Ser Thr Ser Arg Asp Ser Ser Ser Ser Ser Ser Glu Gln Lys Asp
85 90 95
Asp Asp Asp Thr Glu Ala Ser Pro Gln Gln Ser Arg Ser Ser Thr Gln
100 105 110
Gln Gly Ala His Ser Ser Ser Ala Asp Ser Pro Ser Thr Thr Gln Gln
115 120 125
Asp Asn Asn Thr Phe Glu Asp Ala Glu Ser Ala Arg Val Leu Arg Arg
130 135 140
Gly Pro Thr Arg Pro Pro Ile Ser Phe Glu Ser Arg Pro Gly Gly Gly
145 150 155 160
Ser Gln Ile Asn
<210> SEQ ID NO 122
<211> LENGTH: 237
<212> TYPE: DNA
<213> ORGANISM: Vitis vinifera
<400> SEQUENCE: 122
atgaagtctt gtgcagagaa gtggataaaa gtagtagagt tcaaccagag ccggggctat 60
ctcctgaaac tagtcttgaa gcctttcttg aagcgccttg gagctcatgc ctcaactact 120
gatcaagcca agcaagaaaa gcttgcaagc aagtctaaaa tgtcttcaga tttcagacag 180
ccaccaagac cgccaataga ccctggtcaa ggtgggcaga tcaactcttc atcttaa 237
<210> SEQ ID NO 123
<211> LENGTH: 78
<212> TYPE: PRT
<213> ORGANISM: Vitis vinifera
<400> SEQUENCE: 123
Met Lys Ser Cys Ala Glu Lys Trp Ile Lys Val Val Glu Phe Asn Gln
1 5 10 15
Ser Arg Gly Tyr Leu Leu Lys Leu Val Leu Lys Pro Phe Leu Lys Arg
20 25 30
Leu Gly Ala His Ala Ser Thr Thr Asp Gln Ala Lys Gln Glu Lys Leu
35 40 45
Ala Ser Lys Ser Lys Met Ser Ser Asp Phe Arg Gln Pro Pro Arg Pro
50 55 60
Pro Ile Asp Pro Gly Gln Gly Gly Gln Ile Asn Ser Ser Ser
65 70 75
<210> SEQ ID NO 124
<211> LENGTH: 581
<212> TYPE: DNA
<213> ORGANISM: Helianthus annuus
<400> SEQUENCE: 124
gcgggggatt tacatatcta accttccctt cattctattc attctctttg acttgaaaaa 60
agatatatgc aaacacatat ataaaataat ggtggaggaa agggctgaag ttgtgtatga 120
tattggatat ggttatggta acccttgtag gtatttacaa gaagttttta gaagcttttt 180
aaggtgtttg gggttagaga aacaagaagg aaaagaaaga aacactagtg gtggtgttgg 240
tggcggcgac acaggcggtg gtgacggtga cggtgacggt gacggtgacg gaggtggagg 300
tgaggtggat ccacctacaa cttctcctat tatggatcct actgatgaac ctatgtctac 360
aaggggactc acaagaagac cccctccgcc aagggggccg attagctctg gaggaggcgg 420
tcaaaccaac taactagtta gatcgttcgc ttttctcccc ttcaaccagt atatcaatgt 480
cgtaattgtc gtttttaatg ttctgaaatt taggatttct taaactatca tatccgattt 540
catcgtaaat atgattatat gtgcttgatt tcaaaaaaac c 581
<210> SEQ ID NO 125
<211> LENGTH: 191
<212> TYPE: PRT
<213> ORGANISM: Helianthus annuus
<400> SEQUENCE: 125
Met Arg Gly Ile Tyr Ile Ser Asn Leu Pro Phe Ile Leu Phe Ile Leu
1 5 10 15
Phe Asp Leu Lys Lys Asp Ile Cys Lys His Ile Tyr Lys Ile Met Val
20 25 30
Glu Glu Arg Ala Glu Val Val Tyr Asp Ile Gly Tyr Gly Tyr Gly Asn
35 40 45
Pro Cys Arg Tyr Leu Gln Glu Val Phe Arg Ser Phe Leu Arg Cys Leu
50 55 60
Gly Leu Glu Lys Gln Glu Gly Lys Glu Arg Asn Thr Ser Gly Gly Val
65 70 75 80
Gly Gly Gly Asp Thr Gly Gly Gly Asp Gly Asp Gly Asp Gly Asp Gly
85 90 95
Asp Gly Gly Gly Gly Glu Val Asp Pro Pro Thr Thr Ser Pro Ile Met
100 105 110
Asp Pro Thr Asp Glu Pro Met Ser Thr Arg Gly Leu Thr Arg Arg Pro
115 120 125
Pro Pro Pro Arg Gly Pro Ile Ser Ser Gly Gly Gly Gly Gln Thr Asn
130 135 140
Leu Val Arg Ser Phe Ala Phe Leu Pro Phe Asn Gln Tyr Ile Asn Val
145 150 155 160
Val Ile Val Val Phe Asn Val Leu Lys Phe Arg Ile Ser Thr Ile Ile
165 170 175
Ser Asp Phe Ile Val Asn Met Ile Ile Cys Ala Phe Gln Lys Asn
180 185 190
<210> SEQ ID NO 126
<211> LENGTH: 931
<212> TYPE: DNA
<213> ORGANISM: Helianthus annuus
<400> SEQUENCE: 126
gggacaagcg ttggcattcg ccgccacctc tacaacaccc cacgcgccaa tcatccaaac 60
cccacgcgcc gcccccacca ccaccacata gcagctcacc accatctccc cacacccttt 120
tgccctcaca tctccaaacc cacctcaaaa ccaagatctg aacactccaa ttctcataaa 180
gtttcaaact ttatttatga acaacaacaa caacaacaac aataatcaat gggaggagtg 240
acgtcatcaa ttgctgcaaa gtttgcattt ttccctccca ctccgccgtc gtacacggtg 300
gaggacgacg gtggtggtca gctggttatc ccggaggtgc cacggaggga gggtgtggat 360
gtgttgaagc ttagaactaa aaaggggaat gagattgtga ctgtttatat taagcatcct 420
aaagctaatg ctaccctttt gtattctcat ggtaatgctg ctgatttggg tcaaatgttt 480
gagctttttg tggagttgag ccttcgtctc cgagttaatc ttgttggata cgactactct 540
ggctatgggc aatcaaccgg aaagccatcc gagtgcaata catacgcgga cgttgacgca 600
gtgtataaat gcctcaagga gaaatacggt gttaaagatg accaactaat cgtatacggt 660
caatctgttg gtagcggtcc caccattgat cttgcatcac gtatacccga cttaagaggt 720
gtggttctac acagtcccat cctctcgggc ctgagggtgc tatatcctgt caaaagaacc 780
tattggtttg atatttataa gaacattgac aagatcggtt tagttaactg cccggttctt 840
gtcatacacg gtacggcaga tgaagttgtt gatcattctc atgggaaaca gctatgggaa 900
ctttgcaaga acaagtatga accgttgtgg c 931
<210> SEQ ID NO 127
<211> LENGTH: 309
<212> TYPE: PRT
<213> ORGANISM: Helianthus annuus
<400> SEQUENCE: 127
Gly Thr Ser Val Gly Ile Arg Arg His Leu Tyr Asn Thr Pro Arg Ala
1 5 10 15
Asn His Pro Asn Pro Thr Arg Arg Pro His His His His Ile Ala Ala
20 25 30
His His His Leu Pro Thr Pro Phe Cys Pro His Ile Ser Lys Pro Thr
35 40 45
Ser Lys Pro Arg Ser Glu His Ser Asn Ser His Lys Val Ser Asn Phe
50 55 60
Ile Tyr Glu Gln Gln Gln Gln Gln Gln Gln Ser Met Gly Gly Val Thr
65 70 75 80
Ser Ser Ile Ala Ala Lys Phe Ala Phe Phe Pro Pro Thr Pro Pro Ser
85 90 95
Tyr Thr Val Glu Asp Asp Gly Gly Gly Gln Leu Val Ile Pro Glu Val
100 105 110
Pro Arg Arg Glu Gly Val Asp Val Leu Lys Leu Arg Thr Lys Lys Gly
115 120 125
Asn Glu Ile Val Thr Val Tyr Ile Lys His Pro Lys Ala Asn Ala Thr
130 135 140
Leu Leu Tyr Ser His Gly Asn Ala Ala Asp Leu Gly Gln Met Phe Glu
145 150 155 160
Leu Phe Val Glu Leu Ser Leu Arg Leu Arg Val Asn Leu Val Gly Tyr
165 170 175
Asp Tyr Ser Gly Tyr Gly Gln Ser Thr Gly Lys Pro Ser Glu Cys Asn
180 185 190
Thr Tyr Ala Asp Val Asp Ala Val Tyr Lys Cys Leu Lys Glu Lys Tyr
195 200 205
Gly Val Lys Asp Asp Gln Leu Ile Val Tyr Gly Gln Ser Val Gly Ser
210 215 220
Gly Pro Thr Ile Asp Leu Ala Ser Arg Ile Pro Asp Leu Arg Gly Val
225 230 235 240
Val Leu His Ser Pro Ile Leu Ser Gly Leu Arg Val Leu Tyr Pro Val
245 250 255
Lys Arg Thr Tyr Trp Phe Asp Ile Tyr Lys Asn Ile Asp Lys Ile Gly
260 265 270
Leu Val Asn Cys Pro Val Leu Val Ile His Gly Thr Ala Asp Glu Val
275 280 285
Val Asp His Ser His Gly Lys Gln Leu Trp Glu Leu Cys Lys Asn Lys
290 295 300
Tyr Glu Pro Leu Trp
305
<210> SEQ ID NO 128
<211> LENGTH: 612
<212> TYPE: DNA
<213> ORGANISM: Saccharum officinarum
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 592
<223> OTHER INFORMATION: n = A,T,C or G
<400> SEQUENCE: 128
atggcgttgt cgccgtctgc gccagctagc ccgctccggc ggcagctgtt gcgctacgtg 60
tcgtccggcc ttgtcgccgc ccttcaccgc ccagctccaa tcatcagtct tccgattgcg 120
ctgcggggag tggaagcggc ggcgtcccag cggctccaaa ccgcgagcag agccgctcct 180
tccccgaaag ggagccccgg cgcgccgagg caaggcagtg gcggacatgt ccatgccgcc 240
gctccggcga tggcgacgat agcgcgcatg gctacgccta tgcgacggcc cacgccgcct 300
ggtcccccgg cacagggcag cggtggcaaa acgaacgccg tgacgacggc gacgactgcg 360
cacatggtga tacgaggacc cgcccggcct ggtctccctg cacaaggcag cggtggaaaa 420
gttcatgccg tgtcgctggc ggcgacggcg agtgtgcttc tgcgagggcc tgctccgcca 480
ggtcgccctg tggaaggcag cggcggaaaa gttcatgctg tgtcgccggc agcgacggcc 540
agtgtgctta tgcgagggcc cgcccagcct gttcccccga cagaaggcgc cngcgggcgt 600
ggtggagtca tc 612
<210> SEQ ID NO 129
<211> LENGTH: 204
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 198
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 129
Met Ala Leu Ser Pro Ser Ala Pro Ala Ser Pro Leu Arg Arg Gln Leu
1 5 10 15
Leu Arg Tyr Val Ser Ser Gly Leu Val Ala Ala Leu His Arg Pro Ala
20 25 30
Pro Ile Ile Ser Leu Pro Ile Ala Leu Arg Gly Val Glu Ala Ala Ala
35 40 45
Ser Gln Arg Leu Gln Thr Ala Ser Arg Ala Ala Pro Ser Pro Lys Gly
50 55 60
Ser Pro Gly Ala Pro Arg Gln Gly Ser Gly Gly His Val His Ala Ala
65 70 75 80
Ala Pro Ala Met Ala Thr Ile Ala Arg Met Ala Thr Pro Met Arg Arg
85 90 95
Pro Thr Pro Pro Gly Pro Pro Ala Gln Gly Ser Gly Gly Lys Thr Asn
100 105 110
Ala Val Thr Thr Ala Thr Thr Ala His Met Val Ile Arg Gly Pro Ala
115 120 125
Arg Pro Gly Leu Pro Ala Gln Gly Ser Gly Gly Lys Val His Ala Val
130 135 140
Ser Leu Ala Ala Thr Ala Ser Val Leu Leu Arg Gly Pro Ala Pro Pro
145 150 155 160
Gly Arg Pro Val Glu Gly Ser Gly Gly Lys Val His Ala Val Ser Pro
165 170 175
Ala Ala Thr Ala Ser Val Leu Met Arg Gly Pro Ala Gln Pro Val Pro
180 185 190
Pro Thr Glu Gly Ala Xaa Gly Arg Gly Gly Val Ile
195 200
<210> SEQ ID NO 130
<211> LENGTH: 539
<212> TYPE: DNA
<213> ORGANISM: Saccharum officinarum
<400> SEQUENCE: 130
atggcgttgt cgccgtctgc gccagctagc ccgctccggc ggcagctgct gcgctacgtg 60
tcctccggcc ttgtcgccgc cctccaccgc ccagctccaa tcatcagtct gccgattgcg 120
ccgcggggag tggattcgtc ggcgtcccag cggctccaaa ccgcgagcag agccgttcct 180
tccctgaaag ggcgccccgg cgcgccgagg caaggcagcg gcggacatgt ccatgccgcc 240
gctccggcgt tggcgacgat agcgcgcatg gctacgccta tgcgacggcc cacgtcgcct 300
ggtcccccgg cacagggcag cggtggcaaa acgaacgccg tgacgacggc ggcgactgcg 360
cacatggtga tacgaggacc cgcccggcct ggtctccctg cacaaggcag aggtggaaaa 420
gttcatgtcg tgtcgccggc agcaacggcg agtgtgctta tgcgagggcc cgcccagcct 480
ggtcccccga cagaaggcgc tggacggcgt ggtggagtca tccatgcaat tgcttcttg 539
<210> SEQ ID NO 131
<211> LENGTH: 179
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<400> SEQUENCE: 131
Met Ala Leu Ser Pro Ser Ala Pro Ala Ser Pro Leu Arg Arg Gln Leu
1 5 10 15
Leu Arg Tyr Val Ser Ser Gly Leu Val Ala Ala Leu His Arg Pro Ala
20 25 30
Pro Ile Ile Ser Leu Pro Ile Ala Pro Arg Gly Val Asp Ser Ser Ala
35 40 45
Ser Gln Arg Leu Gln Thr Ala Ser Arg Ala Val Pro Ser Leu Lys Gly
50 55 60
Arg Pro Gly Ala Pro Arg Gln Gly Ser Gly Gly His Val His Ala Ala
65 70 75 80
Ala Pro Ala Leu Ala Thr Ile Ala Arg Met Ala Thr Pro Met Arg Arg
85 90 95
Pro Thr Ser Pro Gly Pro Pro Ala Gln Gly Ser Gly Gly Lys Thr Asn
100 105 110
Ala Val Thr Thr Ala Ala Thr Ala His Met Val Ile Arg Gly Pro Ala
115 120 125
Arg Pro Gly Leu Pro Ala Gln Gly Arg Gly Gly Lys Val His Val Val
130 135 140
Ser Pro Ala Ala Thr Ala Ser Val Leu Met Arg Gly Pro Ala Gln Pro
145 150 155 160
Gly Pro Pro Thr Glu Gly Ala Gly Arg Arg Gly Gly Val Ile His Ala
165 170 175
Ile Ala Ser
<210> SEQ ID NO 132
<211> LENGTH: 591
<212> TYPE: DNA
<213> ORGANISM: Panicum virgatum
<400> SEQUENCE: 132
gctccgcgcc tgcgccggct gcctgggcct gcacggctac tgcagcagcg acgagcccga 60
cccgaagccg gccgctgtcg ctgcgccgga cgccgcggcg gatgcggcgt cgaaggaagg 120
agagggcggc ggcgaggagg ctaataactt cttgtacatg caggaggagg tggtgaccag 180
ggtgtgggcg gtgaggaggc cgagggaggg cagcgggggc aatggcggag tacaccacta 240
gacggcgcga acaaaacaag ccggtgatga aactacggtg acgcgtcggc ctccgcggca 300
ggcggcagct gatgtatttt gttcgtcgaa gctatggccg tgtgtagcat cttttaactt 360
ggtataaata aagtagtagg tgtggctatg gggttcttgt ttgcgtaggc ttctctgatc 420
tgaacttgaa ataagactct gaaagtgtgt agttatctgt atagttatct tcgtgtttaa 480
gctgcaatac ccgatacgtg cgtttgctac tcgatgtgtg tgggtggtag aattaattgt 540
ttgttgtctt cagaattcag atcatagttt gttgctgctg gtgtatatat a 591
<210> SEQ ID NO 133
<211> LENGTH: 135
<212> TYPE: PRT
<213> ORGANISM: Panicum virgatum
<400> SEQUENCE: 133
Leu Arg Ala Cys Ala Gly Cys Leu Gly Leu His Gly Tyr Cys Ser Ser
1 5 10 15
Asp Glu Pro Asp Pro Lys Pro Ala Ala Val Ala Ala Pro Asp Ala Ala
20 25 30
Ala Asp Ala Ala Ser Lys Glu Gly Glu Gly Gly Gly Glu Glu Ala Asn
35 40 45
Asn Phe Leu Tyr Met Gln Glu Glu Val Val Thr Arg Val Trp Ala Val
50 55 60
Arg Arg Pro Arg Glu Gly Ser Gly Gly Asn Gly Gly Val His His Thr
65 70 75 80
Ala Arg Thr Lys Gln Ala Gly Asp Glu Thr Thr Val Thr Arg Arg Pro
85 90 95
Pro Arg Gln Ala Ala Ala Asp Val Phe Cys Ser Ser Lys Leu Trp Pro
100 105 110
Cys Val Ala Ser Phe Asn Leu Val Ile Lys Val Trp Leu Trp Gly Ser
115 120 125
Cys Leu Arg Arg Leu Leu Ser
130 135
<210> SEQ ID NO 134
<211> LENGTH: 93
<212> TYPE: PRT
<213> ORGANISM: Hordeum vulgare
<400> SEQUENCE: 134
Met Ala Ser Ser Ala Pro Pro Ala Phe Leu Pro Gln Leu Val Gln Pro
1 5 10 15
Val Ser Val Leu Pro Asp Gln Pro Pro Ser Ala Pro Ala Glu Gly Thr
20 25 30
Gly Gly Gln Val Met Val Leu Asn Asp Ala Ser Ser Leu Pro Leu Gln
35 40 45
Leu Met Arg Thr Pro Pro Gly Glu Gly Ala Gly Gly Arg Ile His Arg
50 55 60
Gln Leu Ala Arg Pro Arg Pro Pro Gly Pro Pro Arg Gln Gly His Gly
65 70 75 80
Gly Asp Gly Gly Ala Ile His Ala Ile Leu Leu Glu Leu
85 90
<210> SEQ ID NO 135
<211> LENGTH: 204
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 198
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 135
Met Ala Leu Ser Pro Ser Ala Pro Ala Ser Pro Leu Arg Arg Gln Leu
1 5 10 15
Leu Arg Tyr Val Ser Ser Gly Leu Val Ala Ala Leu His Arg Pro Ala
20 25 30
Pro Ile Ile Ser Leu Pro Ile Ala Leu Arg Gly Val Glu Ala Ala Ala
35 40 45
Ser Gln Arg Leu Gln Thr Ala Ser Arg Ala Ala Pro Ser Pro Lys Gly
50 55 60
Ser Pro Gly Ala Pro Arg Gln Gly Ser Gly Gly His Val His Ala Ala
65 70 75 80
Ala Pro Ala Met Ala Thr Ile Ala Arg Met Ala Thr Pro Met Arg Arg
85 90 95
Pro Thr Pro Pro Gly Pro Pro Ala Gln Gly Ser Gly Gly Lys Thr Asn
100 105 110
Ala Val Thr Thr Ala Thr Thr Ala His Met Val Ile Arg Gly Pro Ala
115 120 125
Arg Pro Gly Leu Pro Ala Gln Gly Ser Gly Gly Lys Val His Ala Val
130 135 140
Ser Leu Ala Ala Thr Ala Ser Val Leu Leu Arg Gly Pro Ala Pro Pro
145 150 155 160
Gly Arg Pro Val Glu Gly Ser Gly Gly Lys Val His Ala Val Ser Pro
165 170 175
Ala Ala Thr Ala Ser Val Leu Met Arg Gly Pro Ala Gln Pro Val Pro
180 185 190
Pro Thr Glu Gly Ala Xaa Gly Arg Gly Gly Val Ile
195 200
<210> SEQ ID NO 136
<211> LENGTH: 179
<212> TYPE: PRT
<213> ORGANISM: Saccharum officinarum
<400> SEQUENCE: 136
Met Ala Leu Ser Pro Ser Ala Pro Ala Ser Pro Leu Arg Arg Gln Leu
1 5 10 15
Leu Arg Tyr Val Ser Ser Gly Leu Val Ala Ala Leu His Arg Pro Ala
20 25 30
Pro Ile Ile Ser Leu Pro Ile Ala Pro Arg Gly Val Asp Ser Ser Ala
35 40 45
Ser Gln Arg Leu Gln Thr Ala Ser Arg Ala Val Pro Ser Leu Lys Gly
50 55 60
Arg Pro Gly Ala Pro Arg Gln Gly Ser Gly Gly His Val His Ala Ala
65 70 75 80
Ala Pro Ala Leu Ala Thr Ile Ala Arg Met Ala Thr Pro Met Arg Arg
85 90 95
Pro Thr Ser Pro Gly Pro Pro Ala Gln Gly Ser Gly Gly Lys Thr Asn
100 105 110
Ala Val Thr Thr Ala Ala Thr Ala His Met Val Ile Arg Gly Pro Ala
115 120 125
Arg Pro Gly Leu Pro Ala Gln Gly Arg Gly Gly Lys Val His Val Val
130 135 140
Ser Pro Ala Ala Thr Ala Ser Val Leu Met Arg Gly Pro Ala Gln Pro
145 150 155 160
Gly Pro Pro Thr Glu Gly Ala Gly Arg Arg Gly Gly Val Ile His Ala
165 170 175
Ile Ala Ser
<210> SEQ ID NO 137
<211> LENGTH: 104
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 137
Met Glu Val Asn Gly Glu Glu Glu Arg Arg Ser Arg Arg Glu Asp Glu
1 5 10 15
Glu Lys Glu Asp Tyr Tyr Tyr Ser Leu Leu Asn Ser Pro Cys Ser Val
20 25 30
Cys Asn Lys Phe Val Gln Ala Ile Leu Lys Cys Leu Gly Leu Glu Ser
35 40 45
Ser Ser Ile Pro Pro Ser Ser Ser Ser Ser Ser Pro Ser Leu Val Glu
50 55 60
Glu Glu Asp Ser Gly Thr Glu Thr Val Glu Glu Thr Gly Phe Met Ala
65 70 75 80
Arg Ile Thr Ala Val Leu Arg Arg Arg Pro Arg Pro Pro Pro Tyr Ser
85 90 95
Ser Gly Arg Pro Gly Gln Asn Asn
100
<210> SEQ ID NO 138
<211> LENGTH: 95
<212> TYPE: PRT
<213> ORGANISM: Brassica napus
<400> SEQUENCE: 138
Met Glu Val Asn Gly Glu Glu Lys Arg Ser Tyr Arg Arg Glu Asp Glu
1 5 10 15
Glu Lys Glu Val Tyr Tyr Pro Leu Leu Asn Ser Pro Cys Ser Ala Phe
20 25 30
His Lys Thr Val Gln Ala Ile Leu Lys Cys Leu Gly Leu Glu Ser Ser
35 40 45
Ser Ile Ser Pro Ser Ser Ser Ser Ser Gln Asp Pro Gly Thr Glu Thr
50 55 60
Val Gln Glu Thr Gly Phe Met Ala Met Val Ala Arg Leu Thr Arg Arg
65 70 75 80
Arg Pro Arg Pro Pro Tyr Ser Ser Gly Gln Pro Gly Gln Ile Asn
85 90 95
<210> SEQ ID NO 139
<211> LENGTH: 116
<212> TYPE: PRT
<213> ORGANISM: Solanum tuberosum
<400> SEQUENCE: 139
Met Phe Tyr Leu Gln Glu Gly Ile Lys Ala Ile Leu Lys Cys Leu Gly
1 5 10 15
Phe Glu Ser Ser Lys Leu Val His Gln Ala Ser Ser Ser Ser Ser Ser
20 25 30
Ser Ser Met Ser Asp Ile Asn Lys Asn Glu Glu Glu Glu Ser Glu Lys
35 40 45
Gln Glu Gln Glu Cys Val Leu Phe Gln Glu Asp Gly Asn Lys Gln Gly
50 55 60
Ser Asp Ser Thr Asn Asp Asn Tyr Lys Asn Asp Pro Pro Val Glu Asn
65 70 75 80
Asp Asp Glu Asp Pro Pro Gln Ser Glu Thr Leu Ile Leu Pro Thr Glu
85 90 95
Arg Arg Gly Arg Pro Pro Ser Arg Pro Lys Val Gly Ser Gly Pro Pro
100 105 110
Pro Gln Asn Asn
115
<210> SEQ ID NO 140
<211> LENGTH: 154
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 140
Met Asp Arg Val Glu Glu Lys Glu Gly Asn Arg Phe Gln Glu Pro Ala
1 5 10 15
Ser Asp Arg Cys Glu Asp Asn Glu Asp Lys Glu Gln Asp Asn Ser Glu
20 25 30
Glu Ser Ser Ser Val Asp Gln Arg Lys Glu Glu Glu Glu Glu Glu Lys
35 40 45
Glu Gly Cys Glu Glu Ala Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala
50 55 60
Pro Ser Phe Phe Ala His Pro Cys Ser Leu Leu Gln Tyr Ile Ala Arg
65 70 75 80
Val Cys Ala Cys Cys Leu Gly Leu Ser Asp Ser Phe Cys Asp Pro Lys
85 90 95
Ala Ser Ser Val Leu Val Pro Glu Pro Glu Pro Ala Ala Ala Asp Pro
100 105 110
Ser Gln Glu Gly Glu Glu Asp Met Lys Ser Ser Glu Ala Thr Thr Arg
115 120 125
Val Arg Ala Ala Arg Leu Arg Pro Lys Pro Pro Gly Asn Pro Arg Glu
130 135 140
Gly Ser Gly Gly Asn Gly Gly His His His
145 150
<210> SEQ ID NO 141
<211> LENGTH: 121
<212> TYPE: PRT
<213> ORGANISM: Populus balsamifera
<400> SEQUENCE: 141
Met Asp Lys Gly Ser Ser Thr Lys Glu Glu Ile Gln Gly Asp Val Leu
1 5 10 15
Gln Ile Ser His Ser Pro Ser Ile Phe Val Glu Ala Phe Asn Ala Leu
20 25 30
Leu Arg Cys Leu Gly Leu Gly Thr Val Asp His Gln Arg Ile Thr Gln
35 40 45
Glu Ser Ser Ser Thr Ser Ser Ser Lys Gln Glu Asp Asp Glu Lys Ala
50 55 60
Ser Glu Glu Ser Pro Gln Tyr Pro Pro Pro Thr Arg Thr Ser Asp Pro
65 70 75 80
Gln Ala Asp Pro Pro Thr Asp Thr Ser Glu Asp Pro Ser Thr Asp Ala
85 90 95
Ala Val Ser Ala Leu Ala Arg Arg Thr Pro Pro Val Ser Arg Gly Gly
100 105 110
Gly Gly Gln Thr Asn Thr Thr Thr Ser
115 120
<210> SEQ ID NO 142
<211> LENGTH: 111
<212> TYPE: PRT
<213> ORGANISM: Medicago sativa
<400> SEQUENCE: 142
Met Thr Phe Tyr Val Tyr His Pro Cys Tyr Cys Leu Glu Glu Ile Phe
1 5 10 15
Lys Thr Phe Leu Arg Cys Phe Gly Ile Glu Ser Thr Gln Thr Lys Glu
20 25 30
Glu Glu Asp Ser Ser Thr Ser Leu Leu Lys Pro His Ala Cys Ala Cys
35 40 45
Ala Ser Asp Ser Asn Val Ala Leu Lys Asp Arg Tyr Tyr Ser Ser Ser
50 55 60
Ser Asn Lys Lys Ser Ser Gln Glu Glu Gly Val Ala Asp Pro Pro Pro
65 70 75 80
Ser Thr Ser Thr Gln Thr Ile Asn Leu Ser Ser Met Gly Arg Gly Gly
85 90 95
Pro Arg Arg Thr Pro Leu Thr Gln Gly Pro Pro Pro Gln His Asn
100 105 110
<210> SEQ ID NO 143
<211> LENGTH: 115
<212> TYPE: PRT
<213> ORGANISM: Glycine max
<400> SEQUENCE: 143
Met Glu Gly Ser Ser Pro Ser Ile Glu Glu Glu Arg Thr Ala Thr Phe
1 5 10 15
Tyr Val Tyr His Pro Cys Tyr Phe Leu Gln Gln Ala Leu Arg Ala Leu
20 25 30
Leu Lys Cys Val Gly Ile Asp Glu Ser Glu Asn Thr Met Cys Ser Gln
35 40 45
Ala Asn Lys Gln Glu Lys Ser Ser Leu Pro Gln Thr Pro Ser Ala Asp
50 55 60
Asp Pro Ile Thr Asn Ser Pro Thr His Lys Ser Ser Pro Asp Ala Ala
65 70 75 80
Asp Pro Pro Ser Thr Thr Asn Gln Thr Ile Ile Ile Ala Ser Leu Met
85 90 95
Ala Thr Arg Gly Ser Arg Gly Ser Lys Ile Ser Asp Gly Ser Gly Pro
100 105 110
Gln His Asn
115
<210> SEQ ID NO 144
<211> LENGTH: 3372
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 144
atgaagaatc ttggggggtt gttcaaaatt cttctgcttt tcttctgtct ctttctatcg 60
acccacataa tttccgtttc ttgtttaaac tcagatgggc taactctact ctctcttctg 120
aagcatttgg atagagtacc accacaagtt acttcgacat ggaaaataaa cgcatctgaa 180
gcaactccat gtaactggtt cggtatcact tgtgacgatt ctaagaatgt tgcgtctctc 240
aacttcactc gttctagggt ttcaggtcaa ttgggtccgg aaattgggga gctcaaaagc 300
ttgcagattt tggatctgag tactaacaat ttctccggga ctataccttc cactttagga 360
aactgtacca aactcgctac tctagatttg tctgaaaatg gattctctga taagatccca 420
gatactctcg atagcttgaa gaggttggag gtgctttatc tttacataaa cttcctcact 480
ggtgagttac ctgaatcctt gtttcgaatt ccgaagctgc aggttttata tcttgactat 540
aacaatctca ccggtccgat tcctcaaagt attggtgatg ctaaggagct tgtggagctg 600
agtatgtatg cgaatcagtt ctctggtaac atccctgagt cgattgggaa tagcagtagt 660
ctgcagattc tttatttgca caggaacaag ttagttggtt cattacctga aagtctcaat 720
cttttgggga atctcactac tctgtttgtt ggtaacaaca gtctacaagg gccggttcgt 780
ttcggatcac ctaattgcaa gaatttgttg actttagatt tgtcatacaa tgaattcgaa 840
ggcggtgttc cacctgcatt gggaaattgc agtagccttg acgctttagt cattgtgagt 900
ggtaacttgt caggtacaat cccttcctca ttgggtatgt tgaagaatct cacaattctt 960
aacctttccg agaatcgtct ctctgggagt atccccgcag agctcgggaa ctgcagtagc 1020
ttgaacttgt tgaagctgaa cgataaccag cttgtaggcg gaataccgag tgcattaggt 1080
aagctgagga agctagaaag tctggagctt ttcgaaaacc ggttttcggg tgagattcct 1140
attgagatat ggaagagtca gagtcttacg cagttgctag tttatcaaaa caatctcact 1200
ggtgaactac ctgtggaaat gactgagatg aagaagctaa agatcgctac gctgttcaac 1260
aacagctttt atggagcgat accaccgggt ttaggtgtga acagcagctt agaagaggtt 1320
gactttattg gtaacaaact tacaggagag ataccgccaa atctatgcca tggaaggaag 1380
ttgagaatac tcaacttggg ttctaatctg cttcatggta caataccagc ttctattggt 1440
cactgtaaga ccatcaggag attcatcctt agagaaaata acctttcagg tcttcttcct 1500
gagttttctc aggatcatag tctttctttt cttgatttca atagcaacaa cttcgaagga 1560
ccaatcccgg gcagcctcgg aagctgtaag aatctctcga gtattaacct atctcgaaac 1620
agattcacgg ggcagatacc tccacaactt gggaatctac aaaaccttgg ttacatgaat 1680
ctttctcgta atcttcttga agggtctcta ccagctcagc tatctaactg tgtgagttta 1740
gagcgttttg atgttggctt caactcatta aacggttcag ttccttcaaa ctttagtaac 1800
tggaaaggct tgacgacttt agttctcagc gagaaccggt tttcaggagg tattccacag 1860
ttcttgcctg agcttaagaa gctgtcaact ctgcagattg ctagaaatgc ttttggtggt 1920
gagattcctt cgtcgattgg gttgatagag gatctgatct atgacttgga ccttagtgga 1980
aacggattga caggtgaaat tccagccaag ttgggagatc tcatcaagtt aacaagactc 2040
aacatatcta acaacaattt gacaggatct ttatcggttc tcaaaggtct tacctcattg 2100
ctacatgttg atgtctccaa caatcagttc acaggtccaa taccagataa cttggagggt 2160
cagttgttat ctgagccgtc gtcgttttca ggaaatccaa acctctgcat tccacattcc 2220
ttctctgcta gcaacaatag ccgcagcgcg ttaaagtact gtaaagatca atctaaaagc 2280
aggaagagtg gccttagcac ctggcaaatc gtgctaatag cggtcttatc gtctttatta 2340
gtcttggttg tggtccttgc tcttgttttc atttgcctac gtcgtcgcaa aggaagacca 2400
gagaaagatg cttatgtctt cactcaggag gaaggcccat ctttgttgtt gaacaaagtt 2460
cttgcagcaa ctgacaatct aaatgaaaag tacaccattg gaagaggagc tcatggaatt 2520
gtgtacagag cttctttagg ctccggaaag gtctacgctg tgaagagact tgtattcgcg 2580
tctcacatcc gcgctaacca gagtatgatg agggagattg atacaatcgg taaagtcagg 2640
cacaggaatc tgattaagtt agaagggttt tggctgagga aagacgacgg tttaatgctg 2700
tatagataca tgccaaaagg aagtctttac gacgttctcc acggtgttag cccgaaagaa 2760
aatgtgctag actggtctgc acggtacaat gtagcacttg gtgtcgctca tggactagcc 2820
tatctacact atgactgcca tcccccgatt gttcaccgtg acatcaaacc agagaacata 2880
ctcatggact cagatttgga gcctcacatt ggggatttcg gtttggctcg ccttcttgat 2940
gactcaacgg tttcaactgc aactgttaca ggcaccaccg gctacattgc accagaaaac 3000
gctttcaaaa ccgtgagggg aagagaatca gacgtttaca gttatggagt cgtgttactt 3060
gagctggtta cgaggaagag agcggtggac aaatctttcc cggaaagtac agatatagta 3120
agctgggtga gatctgcctt gagcagcagc aacaacaatg tggaggatat ggtaacaaca 3180
atcgtcgatc cgattctcgt ggacgagctt ctggattcga gtcttaggga gcaggtgatg 3240
caagtgacgg aactggcact gagttgtaca cagcaagatc cggcaatgag accaacgatg 3300
agagatgcgg tgaaactgtt ggaagatgtg aaacatctgg caagaagctg ctcctctgat 3360
tcagttcggt aa 3372
<210> SEQ ID NO 145
<211> LENGTH: 1123
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 145
Met Lys Asn Leu Gly Gly Leu Phe Lys Ile Leu Leu Leu Phe Phe Cys
1 5 10 15
Leu Phe Leu Ser Thr His Ile Ile Ser Val Ser Cys Leu Asn Ser Asp
20 25 30
Gly Leu Thr Leu Leu Ser Leu Leu Lys His Leu Asp Arg Val Pro Pro
35 40 45
Gln Val Thr Ser Thr Trp Lys Ile Asn Ala Ser Glu Ala Thr Pro Cys
50 55 60
Asn Trp Phe Gly Ile Thr Cys Asp Asp Ser Lys Asn Val Ala Ser Leu
65 70 75 80
Asn Phe Thr Arg Ser Arg Val Ser Gly Gln Leu Gly Pro Glu Ile Gly
85 90 95
Glu Leu Lys Ser Leu Gln Ile Leu Asp Leu Ser Thr Asn Asn Phe Ser
100 105 110
Gly Thr Ile Pro Ser Thr Leu Gly Asn Cys Thr Lys Leu Ala Thr Leu
115 120 125
Asp Leu Ser Glu Asn Gly Phe Ser Asp Lys Ile Pro Asp Thr Leu Asp
130 135 140
Ser Leu Lys Arg Leu Glu Val Leu Tyr Leu Tyr Ile Asn Phe Leu Thr
145 150 155 160
Gly Glu Leu Pro Glu Ser Leu Phe Arg Ile Pro Lys Leu Gln Val Leu
165 170 175
Tyr Leu Asp Tyr Asn Asn Leu Thr Gly Pro Ile Pro Gln Ser Ile Gly
180 185 190
Asp Ala Lys Glu Leu Val Glu Leu Ser Met Tyr Ala Asn Gln Phe Ser
195 200 205
Gly Asn Ile Pro Glu Ser Ile Gly Asn Ser Ser Ser Leu Gln Ile Leu
210 215 220
Tyr Leu His Arg Asn Lys Leu Val Gly Ser Leu Pro Glu Ser Leu Asn
225 230 235 240
Leu Leu Gly Asn Leu Thr Thr Leu Phe Val Gly Asn Asn Ser Leu Gln
245 250 255
Gly Pro Val Arg Phe Gly Ser Pro Asn Cys Lys Asn Leu Leu Thr Leu
260 265 270
Asp Leu Ser Tyr Asn Glu Phe Glu Gly Gly Val Pro Pro Ala Leu Gly
275 280 285
Asn Cys Ser Ser Leu Asp Ala Leu Val Ile Val Ser Gly Asn Leu Ser
290 295 300
Gly Thr Ile Pro Ser Ser Leu Gly Met Leu Lys Asn Leu Thr Ile Leu
305 310 315 320
Asn Leu Ser Glu Asn Arg Leu Ser Gly Ser Ile Pro Ala Glu Leu Gly
325 330 335
Asn Cys Ser Ser Leu Asn Leu Leu Lys Leu Asn Asp Asn Gln Leu Val
340 345 350
Gly Gly Ile Pro Ser Ala Leu Gly Lys Leu Arg Lys Leu Glu Ser Leu
355 360 365
Glu Leu Phe Glu Asn Arg Phe Ser Gly Glu Ile Pro Ile Glu Ile Trp
370 375 380
Lys Ser Gln Ser Leu Thr Gln Leu Leu Val Tyr Gln Asn Asn Leu Thr
385 390 395 400
Gly Glu Leu Pro Val Glu Met Thr Glu Met Lys Lys Leu Lys Ile Ala
405 410 415
Thr Leu Phe Asn Asn Ser Phe Tyr Gly Ala Ile Pro Pro Gly Leu Gly
420 425 430
Val Asn Ser Ser Leu Glu Glu Val Asp Phe Ile Gly Asn Lys Leu Thr
435 440 445
Gly Glu Ile Pro Pro Asn Leu Cys His Gly Arg Lys Leu Arg Ile Leu
450 455 460
Asn Leu Gly Ser Asn Leu Leu His Gly Thr Ile Pro Ala Ser Ile Gly
465 470 475 480
His Cys Lys Thr Ile Arg Arg Phe Ile Leu Arg Glu Asn Asn Leu Ser
485 490 495
Gly Leu Leu Pro Glu Phe Ser Gln Asp His Ser Leu Ser Phe Leu Asp
500 505 510
Phe Asn Ser Asn Asn Phe Glu Gly Pro Ile Pro Gly Ser Leu Gly Ser
515 520 525
Cys Lys Asn Leu Ser Ser Ile Asn Leu Ser Arg Asn Arg Phe Thr Gly
530 535 540
Gln Ile Pro Pro Gln Leu Gly Asn Leu Gln Asn Leu Gly Tyr Met Asn
545 550 555 560
Leu Ser Arg Asn Leu Leu Glu Gly Ser Leu Pro Ala Gln Leu Ser Asn
565 570 575
Cys Val Ser Leu Glu Arg Phe Asp Val Gly Phe Asn Ser Leu Asn Gly
580 585 590
Ser Val Pro Ser Asn Phe Ser Asn Trp Lys Gly Leu Thr Thr Leu Val
595 600 605
Leu Ser Glu Asn Arg Phe Ser Gly Gly Ile Pro Gln Phe Leu Pro Glu
610 615 620
Leu Lys Lys Leu Ser Thr Leu Gln Ile Ala Arg Asn Ala Phe Gly Gly
625 630 635 640
Glu Ile Pro Ser Ser Ile Gly Leu Ile Glu Asp Leu Ile Tyr Asp Leu
645 650 655
Asp Leu Ser Gly Asn Gly Leu Thr Gly Glu Ile Pro Ala Lys Leu Gly
660 665 670
Asp Leu Ile Lys Leu Thr Arg Leu Asn Ile Ser Asn Asn Asn Leu Thr
675 680 685
Gly Ser Leu Ser Val Leu Lys Gly Leu Thr Ser Leu Leu His Val Asp
690 695 700
Val Ser Asn Asn Gln Phe Thr Gly Pro Ile Pro Asp Asn Leu Glu Gly
705 710 715 720
Gln Leu Leu Ser Glu Pro Ser Ser Phe Ser Gly Asn Pro Asn Leu Cys
725 730 735
Ile Pro His Ser Phe Ser Ala Ser Asn Asn Ser Arg Ser Ala Leu Lys
740 745 750
Tyr Cys Lys Asp Gln Ser Lys Ser Arg Lys Ser Gly Leu Ser Thr Trp
755 760 765
Gln Ile Val Leu Ile Ala Val Leu Ser Ser Leu Leu Val Leu Val Val
770 775 780
Val Leu Ala Leu Val Phe Ile Cys Leu Arg Arg Arg Lys Gly Arg Pro
785 790 795 800
Glu Lys Asp Ala Tyr Val Phe Thr Gln Glu Glu Gly Pro Ser Leu Leu
805 810 815
Leu Asn Lys Val Leu Ala Ala Thr Asp Asn Leu Asn Glu Lys Tyr Thr
820 825 830
Ile Gly Arg Gly Ala His Gly Ile Val Tyr Arg Ala Ser Leu Gly Ser
835 840 845
Gly Lys Val Tyr Ala Val Lys Arg Leu Val Phe Ala Ser His Ile Arg
850 855 860
Ala Asn Gln Ser Met Met Arg Glu Ile Asp Thr Ile Gly Lys Val Arg
865 870 875 880
His Arg Asn Leu Ile Lys Leu Glu Gly Phe Trp Leu Arg Lys Asp Asp
885 890 895
Gly Leu Met Leu Tyr Arg Tyr Met Pro Lys Gly Ser Leu Tyr Asp Val
900 905 910
Leu His Gly Val Ser Pro Lys Glu Asn Val Leu Asp Trp Ser Ala Arg
915 920 925
Tyr Asn Val Ala Leu Gly Val Ala His Gly Leu Ala Tyr Leu His Tyr
930 935 940
Asp Cys His Pro Pro Ile Val His Arg Asp Ile Lys Pro Glu Asn Ile
945 950 955 960
Leu Met Asp Ser Asp Leu Glu Pro His Ile Gly Asp Phe Gly Leu Ala
965 970 975
Arg Leu Leu Asp Asp Ser Thr Val Ser Thr Ala Thr Val Thr Gly Thr
980 985 990
Thr Gly Tyr Ile Ala Pro Glu Asn Ala Phe Lys Thr Val Arg Gly Arg
995 1000 1005
Glu Ser Asp Val Tyr Ser Tyr Gly Val Val Leu Leu Glu Leu Val Thr
1010 1015 1020
Arg Lys Arg Ala Val Asp Lys Ser Phe Pro Glu Ser Thr Asp Ile Val
1025 1030 1035 1040
Ser Trp Val Arg Ser Ala Leu Ser Ser Ser Asn Asn Asn Val Glu Asp
1045 1050 1055
Met Val Thr Thr Ile Val Asp Pro Ile Leu Val Asp Glu Leu Leu Asp
1060 1065 1070
Ser Ser Leu Arg Glu Gln Val Met Gln Val Thr Glu Leu Ala Leu Ser
1075 1080 1085
Cys Thr Gln Gln Asp Pro Ala Met Arg Pro Thr Met Arg Asp Ala Val
1090 1095 1100
Lys Leu Leu Glu Asp Val Lys His Leu Ala Arg Ser Cys Ser Ser Asp
1105 1110 1115 1120
Ser Val Arg
<210> SEQ ID NO 146
<211> LENGTH: 3267
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 146
atgaggaatc ttgggttact cgaaattact ctgctttgct ctctctttgt ctatttccgt 60
atagattctg tctctagttt aaactcagat ggtttggctt tactctcgct tctcaagcac 120
tttgataaag tcccacttga agtagcttcg acgtggaagg agaacacatc tgaaaccact 180
ccatgtaata ataactggtt tggtgtcatt tgtgatcttt ctggtaatgt cgtcgagacc 240
cttaatttgt ctgcttctgg gctttcaggc caattaggtt ctgaaattgg ggagcttaag 300
agcttggtca cattggatct cagtcttaac agtttctctg gtttattgcc ttccacttta 360
ggaaactgta cttcacttga gtatttggat ttgtctaaca atgatttttc tggagaagtt 420
cctgatattt ttggtagctt gcagaatttg acgtttctgt atcttgatcg caataatctt 480
agtggtctca ttcctgcaag tgttggtggg ttgatagagc tcgtagatct gaggatgtca 540
tataataact tgtctggtac cattccagag ttgcttggga actgtagtaa gctggaatat 600
ctggctttga acaacaacaa gttaaatggt tctttgccag caagtctcta tctactcgag 660
aatcttggtg agctatttgt cagtaacaac agccttggag ggaggcttca ttttggttct 720
agcaactgca agaaattggt ttctttagat ctctcgttca atgatttcca aggcggtgtt 780
ccacctgaga taggcaactg cagtagcctt cactctttag tcatggtgaa atgcaacttg 840
acaggtacaa tcccatcatc aatgggtatg ttgagaaagg tttcggttat tgacctttcc 900
gataatcgtc tctcggggaa tatccctcaa gagcttggga actgcagcag cttggaaacc 960
ttgaagctga acgacaacca gctccaaggc gagataccac ctgcattgag taagctaaag 1020
aagctacaaa gcctggagct tttttttaat aagctgtccg gtgagattcc tattggcata 1080
tggaagattc agagtctgac acagatgctc gtttataaca acactctcac cggggaacta 1140
ccagttgaag taactcagct gaagcacctt aagaagctta cactgtttaa caacggcttt 1200
tatggagata taccaatgag tttaggcctg aatcgaagct tagaggaggt ggaccttctt 1260
ggtaaccgtt ttacagggga gataccaccc catctctgcc atggacagaa gttgagattg 1320
ttcatcttgg gttctaatca gcttcatggt aagataccag cgtctattcg tcagtgtaag 1380
acccttgagc gagtcagact tgaagataac aaactttcag gtgttcttcc ggaattccct 1440
gagagtctta gtctttccta tgtgaacctc ggaagcaata gctttgaagg atccatcccg 1500
cgcagcttgg gaagctgtaa aaatctcttg actattgacc tttctcaaaa caaactcacg 1560
ggtctgatac ctccagaact gggaaatctg caaagccttg gactgttgaa cctttcacat 1620
aattatctgg aaggtcctct gccatcccag ctatcaggct gtgcgagact tctgtatttt 1680
gatgttggat ccaactcatt gaacggttct attccatcaa gcttcagaag ctggaaaagc 1740
ttgtccactt tagttctcag tgacaataat tttctaggag ctattccaca gttcttggca 1800
gagcttgacc gactctcaga tctgcggata gctcgaaatg cttttggagg taagattcct 1860
tcctcggttg gcttgttgaa gagtctacgc tatggcttag acctcagtgc gaacgtattt 1920
acgggtgaga ttccaaccac actgggggct cttatcaatc ttgaacgtct caacatatcc 1980
aacaacaagt tgacagggcc tttatcggtt cttcaaagtc ttaagtcatt gaatcaagtt 2040
gacgtctcgt ataatcagtt cacgggtcca atacccgtaa atctgttatc aaattcttca 2100
aagttttctg gaaatccaga cctctgcatt caagcttctt actcagtgag tgccataatc 2160
cgcaaagagt ttaaatcttg caaaggtcaa gtcaaactta gcacgtggaa gatcgccctt 2220
atagcagctg ggtcctcact atccgtattg gctttgcttt ttgctctctt tttggtttta 2280
tgccggtgca aaagaggaac caagacagaa gatgctaata tcctcgcaga ggaaggtctg 2340
tccttgttgc tgaacaaagt tctagcagcc actgacaatc tagatgacaa gtacatcatt 2400
ggaagaggag ctcatggagt tgtttacaga gcttctttag gatcaggcga agaatacgcc 2460
gtgaagaaac tcatctttgc ggaacacatt cgcgcaaacc aaaatatgaa gcgggagatc 2520
gaaacaatcg ggctagtcag gcacagaaat ctcattcggt tagaaagatt ttggatgagg 2580
aaagaagatg gcttaatgct gtatcagtac atgcccaatg gaagcctaca cgacgttttg 2640
cacagaggta atcaaggaga agcagttctt gactggtctg cacggttcaa catagccctt 2700
gggatttcac atggactggc gtatttacat catgattgtc atccaccaat aattcaccgc 2760
gacatcaaac cagagaacat actcatggac tcggatatgg agcctcacat tggagatttc 2820
ggattggctc ggattctaga tgactcaaca gtttcaacgg ccactgttac tggcacaact 2880
gggtacattg caccagaaaa tgcgtacaag acggtgagga gcaaggaatc agatgtttac 2940
agttatggag ttgttttgct cgagctggta acaggaaaga gagcactgga cagatctttc 3000
ccggaagata tcaacattgt gagctgggtc agatctgtat taagcagcta cgaggatgaa 3060
gacgatactg ctggtccaat cgttgatcca aaacttgtgg atgagcttct ggatacgaag 3120
ctcagggaac aagcaatcca agtcacagac ttggctctta gatgtacaga caagaggccg 3180
gagaacagac catcgatgag agatgtggtg aaagatttga ctgatttgga aagttttgta 3240
agaagcactt cgggttcagt tcactag 3267
<210> SEQ ID NO 147
<211> LENGTH: 1088
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 147
Met Arg Asn Leu Gly Leu Leu Glu Ile Thr Leu Leu Cys Ser Leu Phe
1 5 10 15
Val Tyr Phe Arg Ile Asp Ser Val Ser Ser Leu Asn Ser Asp Gly Leu
20 25 30
Ala Leu Leu Ser Leu Leu Lys His Phe Asp Lys Val Pro Leu Glu Val
35 40 45
Ala Ser Thr Trp Lys Glu Asn Thr Ser Glu Thr Thr Pro Cys Asn Asn
50 55 60
Asn Trp Phe Gly Val Ile Cys Asp Leu Ser Gly Asn Val Val Glu Thr
65 70 75 80
Leu Asn Leu Ser Ala Ser Gly Leu Ser Gly Gln Leu Gly Ser Glu Ile
85 90 95
Gly Glu Leu Lys Ser Leu Val Thr Leu Asp Leu Ser Leu Asn Ser Phe
100 105 110
Ser Gly Leu Leu Pro Ser Thr Leu Gly Asn Cys Thr Ser Leu Glu Tyr
115 120 125
Leu Asp Leu Ser Asn Asn Asp Phe Ser Gly Glu Val Pro Asp Ile Phe
130 135 140
Gly Ser Leu Gln Asn Leu Thr Phe Leu Tyr Leu Asp Arg Asn Asn Leu
145 150 155 160
Ser Gly Leu Ile Pro Ala Ser Val Gly Gly Leu Ile Glu Leu Val Asp
165 170 175
Leu Arg Met Ser Tyr Asn Asn Leu Ser Gly Thr Ile Pro Glu Leu Leu
180 185 190
Gly Asn Cys Ser Lys Leu Glu Tyr Leu Ala Leu Asn Asn Asn Lys Leu
195 200 205
Asn Gly Ser Leu Pro Ala Ser Leu Tyr Leu Leu Glu Asn Leu Gly Glu
210 215 220
Leu Phe Val Ser Asn Asn Ser Leu Gly Gly Arg Leu His Phe Gly Ser
225 230 235 240
Ser Asn Cys Lys Lys Leu Val Ser Leu Asp Leu Ser Phe Asn Asp Phe
245 250 255
Gln Gly Gly Val Pro Pro Glu Ile Gly Asn Cys Ser Ser Leu His Ser
260 265 270
Leu Val Met Val Lys Cys Asn Leu Thr Gly Thr Ile Pro Ser Ser Met
275 280 285
Gly Met Leu Arg Lys Val Ser Val Ile Asp Leu Ser Asp Asn Arg Leu
290 295 300
Ser Gly Asn Ile Pro Gln Glu Leu Gly Asn Cys Ser Ser Leu Glu Thr
305 310 315 320
Leu Lys Leu Asn Asp Asn Gln Leu Gln Gly Glu Ile Pro Pro Ala Leu
325 330 335
Ser Lys Leu Lys Lys Leu Gln Ser Leu Glu Leu Phe Phe Asn Lys Leu
340 345 350
Ser Gly Glu Ile Pro Ile Gly Ile Trp Lys Ile Gln Ser Leu Thr Gln
355 360 365
Met Leu Val Tyr Asn Asn Thr Leu Thr Gly Glu Leu Pro Val Glu Val
370 375 380
Thr Gln Leu Lys His Leu Lys Lys Leu Thr Leu Phe Asn Asn Gly Phe
385 390 395 400
Tyr Gly Asp Ile Pro Met Ser Leu Gly Leu Asn Arg Ser Leu Glu Glu
405 410 415
Val Asp Leu Leu Gly Asn Arg Phe Thr Gly Glu Ile Pro Pro His Leu
420 425 430
Cys His Gly Gln Lys Leu Arg Leu Phe Ile Leu Gly Ser Asn Gln Leu
435 440 445
His Gly Lys Ile Pro Ala Ser Ile Arg Gln Cys Lys Thr Leu Glu Arg
450 455 460
Val Arg Leu Glu Asp Asn Lys Leu Ser Gly Val Leu Pro Glu Phe Pro
465 470 475 480
Glu Ser Leu Ser Leu Ser Tyr Val Asn Leu Gly Ser Asn Ser Phe Glu
485 490 495
Gly Ser Ile Pro Arg Ser Leu Gly Ser Cys Lys Asn Leu Leu Thr Ile
500 505 510
Asp Leu Ser Gln Asn Lys Leu Thr Gly Leu Ile Pro Pro Glu Leu Gly
515 520 525
Asn Leu Gln Ser Leu Gly Leu Leu Asn Leu Ser His Asn Tyr Leu Glu
530 535 540
Gly Pro Leu Pro Ser Gln Leu Ser Gly Cys Ala Arg Leu Leu Tyr Phe
545 550 555 560
Asp Val Gly Ser Asn Ser Leu Asn Gly Ser Ile Pro Ser Ser Phe Arg
565 570 575
Ser Trp Lys Ser Leu Ser Thr Leu Val Leu Ser Asp Asn Asn Phe Leu
580 585 590
Gly Ala Ile Pro Gln Phe Leu Ala Glu Leu Asp Arg Leu Ser Asp Leu
595 600 605
Arg Ile Ala Arg Asn Ala Phe Gly Gly Lys Ile Pro Ser Ser Val Gly
610 615 620
Leu Leu Lys Ser Leu Arg Tyr Gly Leu Asp Leu Ser Ala Asn Val Phe
625 630 635 640
Thr Gly Glu Ile Pro Thr Thr Leu Gly Ala Leu Ile Asn Leu Glu Arg
645 650 655
Leu Asn Ile Ser Asn Asn Lys Leu Thr Gly Pro Leu Ser Val Leu Gln
660 665 670
Ser Leu Lys Ser Leu Asn Gln Val Asp Val Ser Tyr Asn Gln Phe Thr
675 680 685
Gly Pro Ile Pro Val Asn Leu Leu Ser Asn Ser Ser Lys Phe Ser Gly
690 695 700
Asn Pro Asp Leu Cys Ile Gln Ala Ser Tyr Ser Val Ser Ala Ile Ile
705 710 715 720
Arg Lys Glu Phe Lys Ser Cys Lys Gly Gln Val Lys Leu Ser Thr Trp
725 730 735
Lys Ile Ala Leu Ile Ala Ala Gly Ser Ser Leu Ser Val Leu Ala Leu
740 745 750
Leu Phe Ala Leu Phe Leu Val Leu Cys Arg Cys Lys Arg Gly Thr Lys
755 760 765
Thr Glu Asp Ala Asn Ile Leu Ala Glu Glu Gly Leu Ser Leu Leu Leu
770 775 780
Asn Lys Val Leu Ala Ala Thr Asp Asn Leu Asp Asp Lys Tyr Ile Ile
785 790 795 800
Gly Arg Gly Ala His Gly Val Val Tyr Arg Ala Ser Leu Gly Ser Gly
805 810 815
Glu Glu Tyr Ala Val Lys Lys Leu Ile Phe Ala Glu His Ile Arg Ala
820 825 830
Asn Gln Asn Met Lys Arg Glu Ile Glu Thr Ile Gly Leu Val Arg His
835 840 845
Arg Asn Leu Ile Arg Leu Glu Arg Phe Trp Met Arg Lys Glu Asp Gly
850 855 860
Leu Met Leu Tyr Gln Tyr Met Pro Asn Gly Ser Leu His Asp Val Leu
865 870 875 880
His Arg Gly Asn Gln Gly Glu Ala Val Leu Asp Trp Ser Ala Arg Phe
885 890 895
Asn Ile Ala Leu Gly Ile Ser His Gly Leu Ala Tyr Leu His His Asp
900 905 910
Cys His Pro Pro Ile Ile His Arg Asp Ile Lys Pro Glu Asn Ile Leu
915 920 925
Met Asp Ser Asp Met Glu Pro His Ile Gly Asp Phe Gly Leu Ala Arg
930 935 940
Ile Leu Asp Asp Ser Thr Val Ser Thr Ala Thr Val Thr Gly Thr Thr
945 950 955 960
Gly Tyr Ile Ala Pro Glu Asn Ala Tyr Lys Thr Val Arg Ser Lys Glu
965 970 975
Ser Asp Val Tyr Ser Tyr Gly Val Val Leu Leu Glu Leu Val Thr Gly
980 985 990
Lys Arg Ala Leu Asp Arg Ser Phe Pro Glu Asp Ile Asn Ile Val Ser
995 1000 1005
Trp Val Arg Ser Val Leu Ser Ser Tyr Glu Asp Glu Asp Asp Thr Ala
1010 1015 1020
Gly Pro Ile Val Asp Pro Lys Leu Val Asp Glu Leu Leu Asp Thr Lys
1025 1030 1035 1040
Leu Arg Glu Gln Ala Ile Gln Val Thr Asp Leu Ala Leu Arg Cys Thr
1045 1050 1055
Asp Lys Arg Pro Glu Asn Arg Pro Ser Met Arg Asp Val Val Lys Asp
1060 1065 1070
Leu Thr Asp Leu Glu Ser Phe Val Arg Ser Thr Ser Gly Ser Val His
1075 1080 1085
<210> SEQ ID NO 148
<211> LENGTH: 3252
<212> TYPE: DNA
<213> ORGANISM: Glycine max
<400> SEQUENCE: 148
atggggtatc tgtatctctt gctgcttcta tgtttttctt ccttgttata tgctgcttct 60
gcattgaact ctgatggttt ggctttgttg tccctcttga gggattggac tactgtgcct 120
agtgacataa actccacatg gaggttgtct gattccactc catgctcatc ttgggcagga 180
gtgcattgtg ataatgccaa caatgtggtt tctctaaacc tcactagtta ttcgattttg 240
ggtcaattag gacctgatct tggacgtttg gttcacttgc aaaccataga cttatcatat 300
aatgatttct ttgggaaaat ccccccagaa ttagagaact gtagcatgct tgagtacttg 360
aacctttctg taaacaactt tagcggagga atacctgaga gcttcaaaag cttgcaaaat 420
ttgaagcata tatacctttt atctaatcac cttaatggtg aaattcctga atccttgttt 480
gaaatttctc acctggaaga agtggatctt agcagaaaca gtttaactgg ttcaatcccc 540
ttaagtgttg ggaatatcac taagcttgtc actctggatc tttcttataa tcagttgtca 600
gggacaattc caatatccat tggaaattgt agtaacttag agaatctgta tttggaaagg 660
aatcaattag agggagttat tcctgagagt ctaaataatc tcaaaaatct tcaagagtta 720
tatctcaatt ataataacct tggaggtact gttcaattgg gatctggata ttgcaaaaag 780
ttgtctattt tgagtatttc ttacaataac tttagtgggg gtataccatc aagcttgggg 840
aattgtagtg gtctaataga gttttatgct tcagggaata acttagttgg cactatacca 900
tcaaccttcg gcctcctgcc caacctttct atgttattca ttccggagaa cctattgtca 960
gggaaaatac ctccacagat tggtaattgc aaatcactga aagagttgag tttgaattcc 1020
aatcaacttg aaggagaaat tccaagcgaa ttaggaaact tgagtaaatt gcgtgatctt 1080
agattgtttg aaaaccattt gacaggagaa attccacttg gcatatggaa aattcaaagc 1140
cttgagcaga tccatatgta cattaataac ctctcgggcg agctaccact tgagatgaca 1200
gagcttaaac atcttaagaa tgtctccttg tttaacaacc agttctccgg agtcatacct 1260
caaagcttag gaatcaatag cagtttggtg gtgttagatt ttatgtataa taatttcact 1320
ggtaccctcc caccaaatct ttgttttgga aagcacctgg tcaggctgaa tatgggtggc 1380
aatcaattta ttggcagcat acctcctgat gtaggaaggt gtacaactct tacaaggttg 1440
agacttgaag ataataattt aactggggca cttcctgatt ttgaaactaa tccaaacctc 1500
tcttacatga gcatcaacaa caacaatatc agtggagcaa ttccatcaag tttgggaaac 1560
tgcacaaatc tctctctttt agatttgtcc atgaacagct tgacgggtct tgtaccttca 1620
gagctaggaa accttgtgaa tcttcagact ttggatcttt ctcacaataa cttgcaaggt 1680
cctttgccac atcagctgtc aaactgtgcc aaaatgatca agtttaatgt cggattcaat 1740
tctttgaatg gttcggttcc ttcaagtttt cagagctgga caacattaac aactttaatt 1800
ctctcagaga atcgttttaa tggtggtatt ccagctttct tgtcagaatt taaaaagctc 1860
aacgagttac gacttggtgg aaatacgttt ggaggaaaca ttcctagatc aattggagaa 1920
ttggtgaatt tgatatatga gctaaattta agtgctaatg ggctgatagg tgaacttcct 1980
agggagattg gaaacctgaa gaatctgcta agcctggatc tatcttggaa caatttgaca 2040
ggaagtatac aagttcttga tgagctcagt tcattatctg aattcaacat ctcatttaat 2100
tcttttgaag gtcctgtgcc acaacagcta acaacattac caaattcttc tttatcattt 2160
ttgggcaatc ctggtctgtg tgactcgaat ttcactgtga gcagctattt acagccatgt 2220
agcacaaatt caaaaaagtc aaaaaagctg agtaaagttg aagctgtgat gatagcactt 2280
ggatccttag tatttgttgt tctgctgctg gggttaatct gtatattctt tatcagaaaa 2340
attaagcagg aagccataat cattgaggag gatgattttc caacacttct taatgaagta 2400
atggaagcga cagaaaatct aaatgatcaa tatattattg gcagaggagc tcaaggagtg 2460
gtttacaaag cagcaatagg tccagacaaa attttggcta taaagaaatt tgtatttgct 2520
catgatgaag ggaaaagctc aagcatgacc agagaaattc aaaccattgg aaagattagg 2580
catcgaaatt tggtcaaatt ggaagggtgc tggttgagag aaaactatgg tctaattgca 2640
tacaaataca tgccaaatgg aagccttcat ggtgctttgc atgagaggaa tccaccatac 2700
tccttagaat ggaatgtccg gaataggata gctcttggaa ttgctcatgg attggcttat 2760
ctccattatg actgtgatcc tgtcatagtg cacagagaca tcaaaaccag caatatactt 2820
ctagattctg acatggagcc tcatattgca gattttggta tttccaagct tttagatcag 2880
ccttctacct caacacagtc gtcatctgtt actggtacac ttggatatat agcaccagag 2940
aaatcctata caacaacaaa gggtaaggaa tctgatgtat acagttatgg ggtagttttg 3000
ctggaactga tatccagaaa gaagccattg gatgcatcat ttatggaagg gacggatata 3060
gttaattggg ctagatctgt ctgggaggaa acaggagtta ttgacgaaat tgttgatcca 3120
gagatggctg atgaaatttc aaattctgat gtgatgaaac aagttgccaa ggtgcttttg 3180
gtggctttga gatgcacatt aaaggatcca cgcaagagac ctacgatgag ggatgttatc 3240
aagcatttgt ag 3252
<210> SEQ ID NO 149
<211> LENGTH: 1083
<212> TYPE: PRT
<213> ORGANISM: Glycine max
<400> SEQUENCE: 149
Met Gly Tyr Leu Tyr Leu Leu Leu Leu Leu Cys Phe Ser Ser Leu Leu
1 5 10 15
Tyr Ala Ala Ser Ala Leu Asn Ser Asp Gly Leu Ala Leu Leu Ser Leu
20 25 30
Leu Arg Asp Trp Thr Thr Val Pro Ser Asp Ile Asn Ser Thr Trp Arg
35 40 45
Leu Ser Asp Ser Thr Pro Cys Ser Ser Trp Ala Gly Val His Cys Asp
50 55 60
Asn Ala Asn Asn Val Val Ser Leu Asn Leu Thr Ser Tyr Ser Ile Leu
65 70 75 80
Gly Gln Leu Gly Pro Asp Leu Gly Arg Leu Val His Leu Gln Thr Ile
85 90 95
Asp Leu Ser Tyr Asn Asp Phe Phe Gly Lys Ile Pro Pro Glu Leu Glu
100 105 110
Asn Cys Ser Met Leu Glu Tyr Leu Asn Leu Ser Val Asn Asn Phe Ser
115 120 125
Gly Gly Ile Pro Glu Ser Phe Lys Ser Leu Gln Asn Leu Lys His Ile
130 135 140
Tyr Leu Leu Ser Asn His Leu Asn Gly Glu Ile Pro Glu Ser Leu Phe
145 150 155 160
Glu Ile Ser His Leu Glu Glu Val Asp Leu Ser Arg Asn Ser Leu Thr
165 170 175
Gly Ser Ile Pro Leu Ser Val Gly Asn Ile Thr Lys Leu Val Thr Leu
180 185 190
Asp Leu Ser Tyr Asn Gln Leu Ser Gly Thr Ile Pro Ile Ser Ile Gly
195 200 205
Asn Cys Ser Asn Leu Glu Asn Leu Tyr Leu Glu Arg Asn Gln Leu Glu
210 215 220
Gly Val Ile Pro Glu Ser Leu Asn Asn Leu Lys Asn Leu Gln Glu Leu
225 230 235 240
Tyr Leu Asn Tyr Asn Asn Leu Gly Gly Thr Val Gln Leu Gly Ser Gly
245 250 255
Tyr Cys Lys Lys Leu Ser Ile Leu Ser Ile Ser Tyr Asn Asn Phe Ser
260 265 270
Gly Gly Ile Pro Ser Ser Leu Gly Asn Cys Ser Gly Leu Ile Glu Phe
275 280 285
Tyr Ala Ser Gly Asn Asn Leu Val Gly Thr Ile Pro Ser Thr Phe Gly
290 295 300
Leu Leu Pro Asn Leu Ser Met Leu Phe Ile Pro Glu Asn Leu Leu Ser
305 310 315 320
Gly Lys Ile Pro Pro Gln Ile Gly Asn Cys Lys Ser Leu Lys Glu Leu
325 330 335
Ser Leu Asn Ser Asn Gln Leu Glu Gly Glu Ile Pro Ser Glu Leu Gly
340 345 350
Asn Leu Ser Lys Leu Arg Asp Leu Arg Leu Phe Glu Asn His Leu Thr
355 360 365
Gly Glu Ile Pro Leu Gly Ile Trp Lys Ile Gln Ser Leu Glu Gln Ile
370 375 380
His Met Tyr Ile Asn Asn Leu Ser Gly Glu Leu Pro Leu Glu Met Thr
385 390 395 400
Glu Leu Lys His Leu Lys Asn Val Ser Leu Phe Asn Asn Gln Phe Ser
405 410 415
Gly Val Ile Pro Gln Ser Leu Gly Ile Asn Ser Ser Leu Val Val Leu
420 425 430
Asp Phe Met Tyr Asn Asn Phe Thr Gly Thr Leu Pro Pro Asn Leu Cys
435 440 445
Phe Gly Lys His Leu Val Arg Leu Asn Met Gly Gly Asn Gln Phe Ile
450 455 460
Gly Ser Ile Pro Pro Asp Val Gly Arg Cys Thr Thr Leu Thr Arg Leu
465 470 475 480
Arg Leu Glu Asp Asn Asn Leu Thr Gly Ala Leu Pro Asp Phe Glu Thr
485 490 495
Asn Pro Asn Leu Ser Tyr Met Ser Ile Asn Asn Asn Asn Ile Ser Gly
500 505 510
Ala Ile Pro Ser Ser Leu Gly Asn Cys Thr Asn Leu Ser Leu Leu Asp
515 520 525
Leu Ser Met Asn Ser Leu Thr Gly Leu Val Pro Ser Glu Leu Gly Asn
530 535 540
Leu Val Asn Leu Gln Thr Leu Asp Leu Ser His Asn Asn Leu Gln Gly
545 550 555 560
Pro Leu Pro His Gln Leu Ser Asn Cys Ala Lys Met Ile Lys Phe Asn
565 570 575
Val Gly Phe Asn Ser Leu Asn Gly Ser Val Pro Ser Ser Phe Gln Ser
580 585 590
Trp Thr Thr Leu Thr Thr Leu Ile Leu Ser Glu Asn Arg Phe Asn Gly
595 600 605
Gly Ile Pro Ala Phe Leu Ser Glu Phe Lys Lys Leu Asn Glu Leu Arg
610 615 620
Leu Gly Gly Asn Thr Phe Gly Gly Asn Ile Pro Arg Ser Ile Gly Glu
625 630 635 640
Leu Val Asn Leu Ile Tyr Glu Leu Asn Leu Ser Ala Asn Gly Leu Ile
645 650 655
Gly Glu Leu Pro Arg Glu Ile Gly Asn Leu Lys Asn Leu Leu Ser Leu
660 665 670
Asp Leu Ser Trp Asn Asn Leu Thr Gly Ser Ile Gln Val Leu Asp Glu
675 680 685
Leu Ser Ser Leu Ser Glu Phe Asn Ile Ser Phe Asn Ser Phe Glu Gly
690 695 700
Pro Val Pro Gln Gln Leu Thr Thr Leu Pro Asn Ser Ser Leu Ser Phe
705 710 715 720
Leu Gly Asn Pro Gly Leu Cys Asp Ser Asn Phe Thr Val Ser Ser Tyr
725 730 735
Leu Gln Pro Cys Ser Thr Asn Ser Lys Lys Ser Lys Lys Leu Ser Lys
740 745 750
Val Glu Ala Val Met Ile Ala Leu Gly Ser Leu Val Phe Val Val Leu
755 760 765
Leu Leu Gly Leu Ile Cys Ile Phe Phe Ile Arg Lys Ile Lys Gln Glu
770 775 780
Ala Ile Ile Ile Glu Glu Asp Asp Phe Pro Thr Leu Leu Asn Glu Val
785 790 795 800
Met Glu Ala Thr Glu Asn Leu Asn Asp Gln Tyr Ile Ile Gly Arg Gly
805 810 815
Ala Gln Gly Val Val Tyr Lys Ala Ala Ile Gly Pro Asp Lys Ile Leu
820 825 830
Ala Ile Lys Lys Phe Val Phe Ala His Asp Glu Gly Lys Ser Ser Ser
835 840 845
Met Thr Arg Glu Ile Gln Thr Ile Gly Lys Ile Arg His Arg Asn Leu
850 855 860
Val Lys Leu Glu Gly Cys Trp Leu Arg Glu Asn Tyr Gly Leu Ile Ala
865 870 875 880
Tyr Lys Tyr Met Pro Asn Gly Ser Leu His Gly Ala Leu His Glu Arg
885 890 895
Asn Pro Pro Tyr Ser Leu Glu Trp Asn Val Arg Asn Arg Ile Ala Leu
900 905 910
Gly Ile Ala His Gly Leu Ala Tyr Leu His Tyr Asp Cys Asp Pro Val
915 920 925
Ile Val His Arg Asp Ile Lys Thr Ser Asn Ile Leu Leu Asp Ser Asp
930 935 940
Met Glu Pro His Ile Ala Asp Phe Gly Ile Ser Lys Leu Leu Asp Gln
945 950 955 960
Pro Ser Thr Ser Thr Gln Ser Ser Ser Val Thr Gly Thr Leu Gly Tyr
965 970 975
Ile Ala Pro Glu Lys Ser Tyr Thr Thr Thr Lys Gly Lys Glu Ser Asp
980 985 990
Val Tyr Ser Tyr Gly Val Val Leu Leu Glu Leu Ile Ser Arg Lys Lys
995 1000 1005
Pro Leu Asp Ala Ser Phe Met Glu Gly Thr Asp Ile Val Asn Trp Ala
1010 1015 1020
Arg Ser Val Trp Glu Glu Thr Gly Val Ile Asp Glu Ile Val Asp Pro
1025 1030 1035 1040
Glu Met Ala Asp Glu Ile Ser Asn Ser Asp Val Met Lys Gln Val Ala
1045 1050 1055
Lys Val Leu Leu Val Ala Leu Arg Cys Thr Leu Lys Asp Pro Arg Lys
1060 1065 1070
Arg Pro Thr Met Arg Asp Val Ile Lys His Leu
1075 1080
<210> SEQ ID NO 150
<211> LENGTH: 3186
<212> TYPE: DNA
<213> ORGANISM: Glycine max
<400> SEQUENCE: 150
atggggtatt tgtatctctt gctgatttca tatttgtctg ccttgttgta tgctgcttct 60
gcattgaact ctgatgggtt ggctttgttg tccctcttga gggactggac tattgtgcct 120
agtgacataa actccacatg gaagttgtct gattccactc cgtgctcatc ttgggcagga 180
gtgcattgtg ataatgccaa taatgtggtt tctctaaacc tcactaactt atcatataat 240
gatctatttg gaaaaattcc cccagaatta gacaactgta ccatgcttga gtacttggac 300
ctttctgtaa acaactttag tggaggaata cctcagagct tcaaaaactt gcaaaatttg 360
aagcatatag acctttcatc taatccgctg aatggtgaaa ttcctgaacc cttgtttgac 420
atttatcacc tggaagaagt gtatcttagc aacaacagtt tgactggttc aatttcctca 480
agtgttggga atatcactaa gcttgtcaca ctggatcttt cttataatca gctgtcaggg 540
acaattccca tgtccattgg aaattgtagt aacttagaga atctatattt ggaaaggaat 600
caattagagg gagttattcc tgagagtcta aataatctca aaaatcttca ggagttattt 660
ctcaattata ataaccttgg aggcactgtt caattgggaa ctggaaattg caaaaagttg 720
tctagtttaa gtctttctta caataacttc agtgggggta taccatcaag cttggggaat 780
tgtagcggtc taatggagtt ttatgctgca cggagtaact tagttggcag tataccatca 840
accttgggcc tcatgcccaa cctttctctt ctaatcattc cagagaacct attgtctggg 900
aaaatacctc cacagattgg taattgcaaa gcactggaag agttgcgttt gaattccaat 960
gaacttgagg gagaaattcc cagtgaattg ggaaacttga gtaaattacg cgaccttaga 1020
ttgtatgaaa accttttgac aggagaaatt ccacttggca tatggaaaat tcaaagcctt 1080
gagcagatct atctgtacat taataacctt tcgggggagc taccttttga gatgacagag 1140
ctcaaacatc ttaagaatat ctccttgttt aacaaccagt tctccggagt catacctcaa 1200
agtttaggaa tcaatagcag tttggtggtg ttagacttca tgtataataa tttcactggt 1260
acccttccac caaatctttg ttttggaaag caactggtga agctgaatat gggtgtcaat 1320
caattttatg gtaacatacc tccagatgtg ggaaggtgta caactcttac aagggtgaga 1380
cttgaagaaa atcatttcac tgggtctctt cctgattttt atattaatcc aaatctctct 1440
tacatgagca tcaacaacaa caatatcagt ggagcaattc catcaagttt gggaaaatgc 1500
acaaatctct ctcttttaaa tttgtccatg aacagcttga cgggtcttgt accttcagag 1560
cttggaaacc ttgagaatct ccagactttg gatctttctc acaataactt ggaaggtcct 1620
ttgccacatc agctgtcaaa ctgtgccaaa atgatcaagt ttgatgtcag attcaattcc 1680
ttgaatggtt cggttccatc aagttttcgg agctggacaa cattaacagc tttaattctc 1740
tcagagaatc attttaatgg tggtatccca gctttcttgt cagaatttaa aaagctcaac 1800
gagttacaac ttggtggaaa catgtttgga ggaaacattc ctagatcaat cggagagctg 1860
gtgaatttga tatatgaact aaatctaagt gctactgggc tgataggtga gcttcctagg 1920
gagattggaa acctgaagag tctgctaagc ctggatctat cttggaacaa tttgacagga 1980
agtatacaag ttcttgatgg gctcagttca ttatctgaat tcaacatctc atataattct 2040
tttgaaggtc ctgtgccaca acagctaaca acattaccaa actcttcttt atcatttttg 2100
ggcaatcctg gcctgtgtgg ctcgaatttc actgagagca gctatttaaa gccttgtgac 2160
acaaattcaa aaaagtcaaa aaagctcagt aaagttgcaa ctgtgatgat agcacttgga 2220
tctgcaatat ttgttgttct gctgctgtgg ttagtatata tattctttat cagaaaaatt 2280
aagcaagaag ccataatcat taaggaagat gattctccaa cccttcttaa cgaagtgatg 2340
gaagctacag aaaatctaaa tgatgagtat attattggca gaggagctca aggagttgtt 2400
tataaagcag caataggtcc agacaaaaca ttggctataa agaagtttgt attttctcat 2460
gaagggaaaa gctcaagcat gaccagagaa attcaaaccc ttggaaagat taggcatcga 2520
aatttagtca aattggaagg gtgctggttg agagaaaact atggtctaat tgcatacaaa 2580
tacatgccaa atggaagcct acatgatgct ttgcatgaga agaatccacc atactcctta 2640
gaatggattg ttcggaataa catagcactt ggaattgctc acggattgac ttatctccat 2700
tatgactgtg atcctgtcat agtgcacaga gatatcaaaa caagcaacat acttctagat 2760
tcagaaatgg agcctcatat tgcagatttt ggtattgcta aacttataga tcagccttct 2820
acctcaacac agttatcatc tgttgctggt acacttggtt atatagcacc agagaatgct 2880
tatacaacaa caaagggtaa ggaatctgat gtatacagtt atggggtagt tttgctggag 2940
ctgatatcca gaaagaagcc attggatgca tcatttatgg aaggaacgga tatagttaat 3000
tgggcaagat ctgtctggga ggaaacggga gttgttgatg aaattgttga tccagagctg 3060
gctgatgaaa tttcaaattc tgaagtgatg aaacaagtta ccaaggtgct tttggtggct 3120
ttgagatgca ctgaaaagga tccacgtaag agacctacga tgagggatgt tatcaggcat 3180
ttgtag 3186
<210> SEQ ID NO 151
<211> LENGTH: 1082
<212> TYPE: PRT
<213> ORGANISM: Glycine max
<400> SEQUENCE: 151
Met Gly Tyr Leu Tyr Leu Leu Leu Ile Ser Tyr Leu Ser Ala Leu Leu
1 5 10 15
Tyr Ala Ala Ser Ala Leu Asn Ser Asp Gly Leu Ala Leu Leu Ser Leu
20 25 30
Leu Arg Asp Trp Thr Ile Val Pro Ser Asp Ile Asn Ser Thr Trp Lys
35 40 45
Leu Ser Asp Ser Thr Pro Cys Ser Ser Trp Ala Gly Val His Cys Asp
50 55 60
Asn Ala Asn Asn Val Val Ser Leu Asn Leu Thr Ser Tyr Ser Ile Phe
65 70 75 80
Gly Gln Leu Gly Pro Asp Leu Gly Arg Met Val His Leu Gln Thr Ile
85 90 95
Asp Leu Ser Tyr Asn Asp Leu Phe Gly Lys Ile Pro Pro Glu Leu Asp
100 105 110
Asn Cys Thr Met Leu Glu Tyr Leu Asp Leu Ser Val Asn Asn Phe Ser
115 120 125
Gly Gly Ile Pro Gln Ser Phe Lys Asn Leu Gln Asn Leu Lys His Ile
130 135 140
Asp Leu Ser Ser Asn Pro Leu Asn Gly Glu Ile Pro Glu Pro Leu Phe
145 150 155 160
Asp Ile Tyr His Leu Glu Glu Val Tyr Leu Ser Asn Asn Ser Leu Thr
165 170 175
Gly Ser Ile Ser Ser Ser Val Gly Asn Ile Thr Lys Leu Val Thr Leu
180 185 190
Asp Leu Ser Tyr Asn Gln Leu Ser Gly Thr Ile Pro Met Ser Ile Gly
195 200 205
Asn Cys Ser Asn Leu Glu Asn Leu Tyr Leu Glu Arg Asn Gln Leu Glu
210 215 220
Gly Val Ile Pro Glu Ser Leu Asn Asn Leu Lys Asn Leu Gln Glu Leu
225 230 235 240
Phe Leu Asn Tyr Asn Asn Leu Gly Gly Thr Val Gln Leu Gly Thr Gly
245 250 255
Asn Cys Lys Lys Leu Ser Ser Leu Ser Leu Ser Tyr Asn Asn Phe Ser
260 265 270
Gly Gly Ile Pro Ser Ser Leu Gly Asn Cys Ser Gly Leu Met Glu Phe
275 280 285
Tyr Ala Ala Arg Ser Asn Leu Val Gly Ser Ile Pro Ser Thr Leu Gly
290 295 300
Leu Met Pro Asn Leu Ser Leu Leu Ile Ile Pro Glu Asn Leu Leu Ser
305 310 315 320
Gly Lys Ile Pro Pro Gln Ile Gly Asn Cys Lys Ala Leu Glu Glu Leu
325 330 335
Arg Leu Asn Ser Asn Glu Leu Glu Gly Glu Ile Pro Ser Glu Leu Gly
340 345 350
Asn Leu Ser Lys Leu Arg Asp Leu Arg Leu Tyr Glu Asn Leu Leu Thr
355 360 365
Gly Glu Ile Pro Leu Gly Ile Trp Lys Ile Gln Ser Leu Glu Gln Ile
370 375 380
Tyr Leu Tyr Ile Asn Asn Leu Ser Gly Glu Leu Pro Phe Glu Met Thr
385 390 395 400
Glu Leu Lys His Leu Lys Asn Ile Ser Leu Phe Asn Asn Gln Phe Ser
405 410 415
Gly Val Ile Pro Gln Ser Leu Gly Ile Asn Ser Ser Leu Val Val Leu
420 425 430
Asp Phe Met Tyr Asn Asn Phe Thr Gly Thr Leu Pro Pro Asn Leu Cys
435 440 445
Phe Gly Lys Gln Leu Val Lys Leu Asn Met Gly Val Asn Gln Phe Tyr
450 455 460
Gly Asn Ile Pro Pro Asp Val Gly Arg Cys Thr Thr Leu Thr Arg Val
465 470 475 480
Arg Leu Glu Glu Asn His Phe Thr Gly Ser Leu Pro Asp Phe Tyr Ile
485 490 495
Asn Pro Asn Leu Ser Tyr Met Ser Ile Asn Asn Asn Asn Ile Ser Gly
500 505 510
Ala Ile Pro Ser Ser Leu Gly Lys Cys Thr Asn Leu Ser Leu Leu Asn
515 520 525
Leu Ser Met Asn Ser Leu Thr Gly Leu Val Pro Ser Glu Leu Gly Asn
530 535 540
Leu Glu Asn Leu Gln Thr Leu Asp Leu Ser His Asn Asn Leu Glu Gly
545 550 555 560
Pro Leu Pro His Gln Leu Ser Asn Cys Ala Lys Met Ile Lys Phe Asp
565 570 575
Val Arg Phe Asn Ser Leu Asn Gly Ser Val Pro Ser Ser Phe Arg Ser
580 585 590
Trp Thr Thr Leu Thr Ala Leu Ile Leu Ser Glu Asn His Phe Asn Gly
595 600 605
Gly Ile Pro Ala Phe Leu Ser Glu Phe Lys Lys Leu Asn Glu Leu Gln
610 615 620
Leu Gly Gly Asn Met Phe Gly Gly Asn Ile Pro Arg Ser Ile Gly Glu
625 630 635 640
Leu Val Asn Leu Ile Tyr Glu Leu Asn Leu Ser Ala Thr Gly Leu Ile
645 650 655
Gly Glu Leu Pro Arg Glu Ile Gly Asn Leu Lys Ser Leu Leu Ser Leu
660 665 670
Asp Leu Ser Trp Asn Asn Leu Thr Gly Ser Ile Gln Val Leu Asp Gly
675 680 685
Leu Ser Ser Leu Ser Glu Phe Asn Ile Ser Tyr Asn Ser Phe Glu Gly
690 695 700
Pro Val Pro Gln Gln Leu Thr Thr Leu Pro Asn Ser Ser Leu Ser Phe
705 710 715 720
Leu Gly Asn Pro Gly Leu Cys Gly Ser Asn Phe Thr Glu Ser Ser Tyr
725 730 735
Leu Lys Pro Cys Asp Thr Asn Ser Lys Lys Ser Lys Lys Leu Ser Lys
740 745 750
Val Ala Thr Val Met Ile Ala Leu Gly Ser Ala Ile Phe Val Val Leu
755 760 765
Leu Leu Trp Leu Val Tyr Ile Phe Phe Ile Arg Lys Ile Lys Gln Glu
770 775 780
Ala Ile Ile Ile Lys Glu Asp Asp Ser Pro Thr Leu Leu Asn Glu Val
785 790 795 800
Met Glu Ala Thr Glu Asn Leu Asn Asp Glu Tyr Ile Ile Gly Arg Gly
805 810 815
Ala Gln Gly Val Val Tyr Lys Ala Ala Ile Gly Pro Asp Lys Thr Leu
820 825 830
Ala Ile Lys Lys Phe Val Phe Ser His Glu Gly Lys Ser Ser Ser Met
835 840 845
Thr Arg Glu Ile Gln Thr Leu Gly Lys Ile Arg His Arg Asn Leu Val
850 855 860
Lys Leu Glu Gly Cys Trp Leu Arg Glu Asn Tyr Gly Leu Ile Ala Tyr
865 870 875 880
Lys Tyr Met Pro Asn Gly Ser Leu His Asp Ala Leu His Glu Lys Asn
885 890 895
Pro Pro Tyr Ser Leu Glu Trp Ile Val Arg Asn Asn Ile Ala Leu Gly
900 905 910
Ile Ala His Gly Leu Thr Tyr Leu His Tyr Asp Cys Asp Pro Val Ile
915 920 925
Val His Arg Asp Ile Lys Thr Ser Asn Ile Leu Leu Asp Ser Glu Met
930 935 940
Glu Pro His Ile Ala Asp Phe Gly Ile Ala Lys Leu Ile Asp Gln Pro
945 950 955 960
Ser Thr Ser Thr Gln Leu Ser Ser Val Ala Gly Thr Leu Gly Tyr Ile
965 970 975
Ala Pro Glu Asn Ala Tyr Thr Thr Thr Lys Gly Lys Glu Ser Asp Val
980 985 990
Tyr Ser Tyr Gly Val Val Leu Leu Glu Leu Ile Ser Arg Lys Lys Pro
995 1000 1005
Leu Asp Ala Ser Phe Met Glu Gly Thr Asp Ile Val Asn Trp Ala Arg
1010 1015 1020
Ser Val Trp Glu Glu Thr Gly Val Val Asp Glu Ile Val Asp Pro Glu
1025 1030 1035 1040
Leu Ala Asp Glu Ile Ser Asn Ser Glu Val Met Lys Gln Val Thr Lys
1045 1050 1055
Val Leu Leu Val Ala Leu Arg Cys Thr Glu Lys Asp Pro Arg Lys Arg
1060 1065 1070
Pro Thr Met Arg Asp Val Ile Arg His Leu
1075 1080
<210> SEQ ID NO 152
<211> LENGTH: 3261
<212> TYPE: DNA
<213> ORGANISM: Glycine max
<400> SEQUENCE: 152
atgtccatga tttggattgt tttcttttcc ttgtcttgca tgtcttgtgc tgttgtttct 60
tcactcacct ccgatggggt gactctcttg tcactcttga ggcactggac atccgtgcct 120
ccttccataa acgccacctg gcttgcctcc gataccactc catgctcctc ctgggtagga 180
gtacaatgtg accattccca ccatgtcgtc aaccttaccc tcccagatta tggtattgct 240
ggtcaattag gacctgaaat tggaaattta agtcgcctag agtacttaga acttgctagc 300
aacaacctta ctggtcaaat acctgacgcc ttcaaaaaca tgcacaacct caatttactc 360
agccttccat ataatcaact gtctggtgaa attccagatt ccttgactca tgctccccaa 420
ctaaatcttg ttgatctttc tcataacact ttaagtggat ccatccccac aagtattggg 480
aacatgactc agctcttgca gttgtatctt cagagtaacc agttgtctgg gacaattccc 540
tcatccattg ggaactgcag caaattacaa gaattgtttt tggataaaaa tcacttggag 600
ggtatcctgc ctcagagtct taacaatctc aatgatcttg cttattttga tgttgccagc 660
aatagactta agggtaccat tccttttggt tctgctgcca gttgtaaaaa tttgaagaat 720
ttggatctct cattcaatga ctttagtgga ggccttccct caagcttggg gaactgtagc 780
gctttatctg aattttctgc cgtgaactgc aatttggatg gcaatattcc tccctccttt 840
ggtctactga ccaagctttc tattctatac cttcccgaga accacttatc tggaaaagta 900
cctccagaaa ttggcaactg catgtctttg acagagttac atctgtattc caatcaactt 960
gagggaaaca ttccaagtga actgggaaaa ctaagaaaac tagtggatct tgaattgttt 1020
tcaaatcaat tgacgggtga aattccactc agcatctgga agattaaatc tctgaagcat 1080
ctccttgtgt ataataacag tctttctggg gaacttcctt tggagatgac agagctcaag 1140
caactgaaaa acatctcatt gtttagcaac cagttctccg gagtcatacc gcaaagcttg 1200
ggaattaaca gcagtttagt tcttttggat tttacaaata ataaattcac tggcaacatc 1260
ccaccaaatc tgtgttttgg caagaaatta aacatcctga atttgggcat caaccaactt 1320
caaggcagca ttcctcctga tgttgggaga tgtacaaccc ttagaaggtt aattcttcaa 1380
caaaataact ttactgggcc tcttcctgat ttcaaaagca atccaaatct cgaacatatg 1440
gatatcagca gcaacaaaat ccatggtgaa attccatcaa gtttgcgaaa ttgcagacat 1500
atcactcacc taattttgtc catgaacaaa tttaatgggc ctataccctc agagctaggg 1560
aacattgtca atcttcaaac tttgaatctc gctcacaaca acttagaagg tcctttgccc 1620
tctcagctgt caaagtgtac caaaatggac aggtttgatg ttggatttaa tttcctaaat 1680
ggttcattgc catcaggtct gcagagctgg acaaggctaa ccacattaat tttgagtgag 1740
aatcacttta gtgggggcct cccagctttc ttgtcggaat ataaaatgct ttctgaacta 1800
caacttggtg gcaatatgtt tggtggcaga attcctagat cggttggagc attgcagagt 1860
ttgaggtatg gtatgaatct gagttcaaat gggctgatag gagacattcc tgttgagatt 1920
ggaaacttga actttttgga aagactggat ctgtctcaga acaatttgac cggaagcata 1980
gaagttcttg gtgaactcct ctccttagtt gaagtcaata tttcatacaa ttcttttcat 2040
ggtcgtgtac caaagaagct aatgaaattg ctcaagtctc ccttgtcatc atttttgggc 2100
aatcctggcc tatgtaccac caccaggtgt tcagcatctg atggcttggc ttgcactgca 2160
agaagctcta taaaaccatg tgatgacaaa tctactaaac agaaaggcct cagtaaagtt 2220
gaaattgtga tgatagctct cgggtcctca atacttgttg ttttgctgtt gctgggatta 2280
gtttatattt tttattttgg aagaaaagct taccaggaag tccatatctt tgctgaaggg 2340
ggttcttctt cccttcttaa cgaagtcatg gaggctacag caaacctaaa tgatcggtat 2400
attattggca gaggagccta tggagttgtt tataaagccc tggtgggtcc agacaaagcc 2460
tttgctgcga agaagatagg atttgctgcg agcaaaggta agaacttgag catggccaga 2520
gaaattgaaa cccttgggaa aattcggcat cgaaatctgg tcaaattgga agacttttgg 2580
ttgagagaag attatggtat aattttgtac agctacatgg caaatggaag tcttcatgat 2640
gttttgcacg aaaagacacc accactaacc ttagagtgga atgtccggaa taagatagct 2700
gttggaattg ctcatggatt ggcttatctc cattatgact gtgatcctcc catagtgcac 2760
cgagacatca agccaagcaa tatacttcta gactctgata tggagcctca cattgctgac 2820
tttggtattg ccaaacttct ggatcagtct tctgcttcaa atccttccat ttctgttccg 2880
ggtacaattg gttatattgc accagagaat gcttatacaa caacaaatag tagggagtct 2940
gatgtataca gttacggggt agttttgctt gagctgataa ccagaaagaa ggcagcagaa 3000
tcagatcctt ccttcatgga gggtactata gtagtggatt gggttaggtc tgtgtggagg 3060
gaaacaggag acattaatca aattgttgat tcaagccttg cagaggaatt tctagatatc 3120
catataatgg aaaatattac caaagtgctt atggtggctc tgagatgtac tgagaaggat 3180
ccacacaaga gacccacaat gagagatgtt accaagcagt tagcagatgc taatccacgg 3240
gcaagaagta caaagggcta g 3261
<210> SEQ ID NO 153
<211> LENGTH: 1086
<212> TYPE: PRT
<213> ORGANISM: Glycine max
<400> SEQUENCE: 153
Met Ser Met Ile Trp Ile Val Phe Phe Ser Leu Ser Cys Met Ser Cys
1 5 10 15
Ala Val Val Ser Ser Leu Thr Ser Asp Gly Val Thr Leu Leu Ser Leu
20 25 30
Leu Arg His Trp Thr Ser Val Pro Pro Ser Ile Asn Ala Thr Trp Leu
35 40 45
Ala Ser Asp Thr Thr Pro Cys Ser Ser Trp Val Gly Val Gln Cys Asp
50 55 60
His Ser His His Val Val Asn Leu Thr Leu Pro Asp Tyr Gly Ile Ala
65 70 75 80
Gly Gln Leu Gly Pro Glu Ile Gly Asn Leu Ser Arg Leu Glu Tyr Leu
85 90 95
Glu Leu Ala Ser Asn Asn Leu Thr Gly Gln Ile Pro Asp Ala Phe Lys
100 105 110
Asn Met His Asn Leu Asn Leu Leu Ser Leu Pro Tyr Asn Gln Leu Ser
115 120 125
Gly Glu Ile Pro Asp Ser Leu Thr His Ala Pro Gln Leu Asn Leu Val
130 135 140
Asp Leu Ser His Asn Thr Leu Ser Gly Ser Ile Pro Thr Ser Ile Gly
145 150 155 160
Asn Met Thr Gln Leu Leu Gln Leu Tyr Leu Gln Ser Asn Gln Leu Ser
165 170 175
Gly Thr Ile Pro Ser Ser Ile Gly Asn Cys Ser Lys Leu Gln Glu Leu
180 185 190
Phe Leu Asp Lys Asn His Leu Glu Gly Ile Leu Pro Gln Ser Leu Asn
195 200 205
Asn Leu Asn Asp Leu Ala Tyr Phe Asp Val Ala Ser Asn Arg Leu Lys
210 215 220
Gly Thr Ile Pro Phe Gly Ser Ala Ala Ser Cys Lys Asn Leu Lys Asn
225 230 235 240
Leu Asp Leu Ser Phe Asn Asp Phe Ser Gly Gly Leu Pro Ser Ser Leu
245 250 255
Gly Asn Cys Ser Ala Leu Ser Glu Phe Ser Ala Val Asn Cys Asn Leu
260 265 270
Asp Gly Asn Ile Pro Pro Ser Phe Gly Leu Leu Thr Lys Leu Ser Ile
275 280 285
Leu Tyr Leu Pro Glu Asn His Leu Ser Gly Lys Val Pro Pro Glu Ile
290 295 300
Gly Asn Cys Met Ser Leu Thr Glu Leu His Leu Tyr Ser Asn Gln Leu
305 310 315 320
Glu Gly Asn Ile Pro Ser Glu Leu Gly Lys Leu Arg Lys Leu Val Asp
325 330 335
Leu Glu Leu Phe Ser Asn Gln Leu Thr Gly Glu Ile Pro Leu Ser Ile
340 345 350
Trp Lys Ile Lys Ser Leu Lys His Leu Leu Val Tyr Asn Asn Ser Leu
355 360 365
Ser Gly Glu Leu Pro Leu Glu Met Thr Glu Leu Lys Gln Leu Lys Asn
370 375 380
Ile Ser Leu Phe Ser Asn Gln Phe Ser Gly Val Ile Pro Gln Ser Leu
385 390 395 400
Gly Ile Asn Ser Ser Leu Val Leu Leu Asp Phe Thr Asn Asn Lys Phe
405 410 415
Thr Gly Asn Ile Pro Pro Asn Leu Cys Phe Gly Lys Lys Leu Asn Ile
420 425 430
Leu Asn Leu Gly Ile Asn Gln Leu Gln Gly Ser Ile Pro Pro Asp Val
435 440 445
Gly Arg Cys Thr Thr Leu Arg Arg Leu Ile Leu Gln Gln Asn Asn Phe
450 455 460
Thr Gly Pro Leu Pro Asp Phe Lys Ser Asn Pro Asn Leu Glu His Met
465 470 475 480
Asp Ile Ser Ser Asn Lys Ile His Gly Glu Ile Pro Ser Ser Leu Arg
485 490 495
Asn Cys Arg His Ile Thr His Leu Ile Leu Ser Met Asn Lys Phe Asn
500 505 510
Gly Pro Ile Pro Ser Glu Leu Gly Asn Ile Val Asn Leu Gln Thr Leu
515 520 525
Asn Leu Ala His Asn Asn Leu Glu Gly Pro Leu Pro Ser Gln Leu Ser
530 535 540
Lys Cys Thr Lys Met Asp Arg Phe Asp Val Gly Phe Asn Phe Leu Asn
545 550 555 560
Gly Ser Leu Pro Ser Gly Leu Gln Ser Trp Thr Arg Leu Thr Thr Leu
565 570 575
Ile Leu Ser Glu Asn His Phe Ser Gly Gly Leu Pro Ala Phe Leu Ser
580 585 590
Glu Tyr Lys Met Leu Ser Glu Leu Gln Leu Gly Gly Asn Met Phe Gly
595 600 605
Gly Arg Ile Pro Arg Ser Val Gly Ala Leu Gln Ser Leu Arg Tyr Gly
610 615 620
Met Asn Leu Ser Ser Asn Gly Leu Ile Gly Asp Ile Pro Val Glu Ile
625 630 635 640
Gly Asn Leu Asn Phe Leu Glu Arg Leu Asp Leu Ser Gln Asn Asn Leu
645 650 655
Thr Gly Ser Ile Glu Val Leu Gly Glu Leu Leu Ser Leu Val Glu Val
660 665 670
Asn Ile Ser Tyr Asn Ser Phe His Gly Arg Val Pro Lys Lys Leu Met
675 680 685
Lys Leu Leu Lys Ser Pro Leu Ser Ser Phe Leu Gly Asn Pro Gly Leu
690 695 700
Cys Thr Thr Thr Arg Cys Ser Ala Ser Asp Gly Leu Ala Cys Thr Ala
705 710 715 720
Arg Ser Ser Ile Lys Pro Cys Asp Asp Lys Ser Thr Lys Gln Lys Gly
725 730 735
Leu Ser Lys Val Glu Ile Val Met Ile Ala Leu Gly Ser Ser Ile Leu
740 745 750
Val Val Leu Leu Leu Leu Gly Leu Val Tyr Ile Phe Tyr Phe Gly Arg
755 760 765
Lys Ala Tyr Gln Glu Val His Ile Phe Ala Glu Gly Gly Ser Ser Ser
770 775 780
Leu Leu Asn Glu Val Met Glu Ala Thr Ala Asn Leu Asn Asp Arg Tyr
785 790 795 800
Ile Ile Gly Arg Gly Ala Tyr Gly Val Val Tyr Lys Ala Leu Val Gly
805 810 815
Pro Asp Lys Ala Phe Ala Ala Lys Lys Ile Gly Phe Ala Ala Ser Lys
820 825 830
Gly Lys Asn Leu Ser Met Ala Arg Glu Ile Glu Thr Leu Gly Lys Ile
835 840 845
Arg His Arg Asn Leu Val Lys Leu Glu Asp Phe Trp Leu Arg Glu Asp
850 855 860
Tyr Gly Ile Ile Leu Tyr Ser Tyr Met Ala Asn Gly Ser Leu His Asp
865 870 875 880
Val Leu His Glu Lys Thr Pro Pro Leu Thr Leu Glu Trp Asn Val Arg
885 890 895
Asn Lys Ile Ala Val Gly Ile Ala His Gly Leu Ala Tyr Leu His Tyr
900 905 910
Asp Cys Asp Pro Pro Ile Val His Arg Asp Ile Lys Pro Ser Asn Ile
915 920 925
Leu Leu Asp Ser Asp Met Glu Pro His Ile Ala Asp Phe Gly Ile Ala
930 935 940
Lys Leu Leu Asp Gln Ser Ser Ala Ser Asn Pro Ser Ile Ser Val Pro
945 950 955 960
Gly Thr Ile Gly Tyr Ile Ala Pro Glu Asn Ala Tyr Thr Thr Thr Asn
965 970 975
Ser Arg Glu Ser Asp Val Tyr Ser Tyr Gly Val Val Leu Leu Glu Leu
980 985 990
Ile Thr Arg Lys Lys Ala Ala Glu Ser Asp Pro Ser Phe Met Glu Gly
995 1000 1005
Thr Ile Val Val Asp Trp Val Arg Ser Val Trp Arg Glu Thr Gly Asp
1010 1015 1020
Ile Asn Gln Ile Val Asp Ser Ser Leu Ala Glu Glu Phe Leu Asp Ile
1025 1030 1035 1040
His Ile Met Glu Asn Ile Thr Lys Val Leu Met Val Ala Leu Arg Cys
1045 1050 1055
Thr Glu Lys Asp Pro His Lys Arg Pro Thr Met Arg Asp Val Thr Lys
1060 1065 1070
Gln Leu Ala Asp Ala Asn Pro Arg Ala Arg Ser Thr Lys Gly
1075 1080 1085
<210> SEQ ID NO 154
<211> LENGTH: 3339
<212> TYPE: DNA
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 154
atgaggctgg ttgtgtggca ctggtttttc ttcttcttct tcacttctgt ttcatcgtct 60
tggagtttga cttcagatgg tctagccctt ctttctctgt ctagggatct catattacct 120
cattccataa gctccacttg gaaagcttct gatacaactc cttgtaattg ggatggggtt 180
tcctgcaaca aaaagaatag tgtggtttct cttgacctgt catcttctgg agtttctggt 240
tctcttggac cccaaatagg acttatgaag agcctacaag tactcagttt gtcaaataac 300
agcatatctg gttcaatccc tcaagaattg ggcaattgta gcatgcttga tcaattggat 360
ttgtccagta acagtttttc tggtgagata ccagcatccc ttggtgacat caaaaagctt 420
tcgtctctct ctttgtacag taactccctc actggtgaaa taccagaggg gttgttcaag 480
aatcagtttc tggagcaagt gtacctccat tacaataaac tcagtggttc tatccccttg 540
acagttggag aaatgactag ccttaggtac ctgtggctgc atggcaataa attatctgga 600
gttctaccag attcaattgg caactgcacc aagttggagg agctctatct actagataat 660
caattgagtg ggagtcttcc gaaaaccttg agctatatca aaggactgaa gattttcgat 720
attaccgcaa atagtttcac aggtgagatc acatttagtt ttgaggattg caagcttgag 780
gtattcatat tgtcattcaa tcagattagc aacgaaattc catcatggct agggaattgt 840
agtagcttga cacagcttgc atttgtcaac aataatatat ctggccagat tccatcgtct 900
ctgggtttat tgagaaacct ctctcaactt ttactttctg agaactcact ttctgggcca 960
attcctcctg agataggtaa ctgccagttg ctggtgtggc tggagttgga tgcaaaccag 1020
ctcaatggca ctgttcctaa agagctggca aatctgagaa aattggagaa actctttctg 1080
tttgaaaacc gcctcattgg ggagttccct gaggatattt ggagcatcaa gagcctgcaa 1140
agtgtcctta tctatgaaaa cagttttact gggaggctac ctccagtgct agctgagctg 1200
aagttcctga agaacattac acttttcaac aatttcttca ctggagttat accaccagat 1260
ttgggtgtta atagtcgttt aacccaaatt gatttcacaa acaacagttt tgttggtgga 1320
atcccgccta acatttgttc agggaaaaga ttgagaattt tggacttggg gcttaatctt 1380
ctcaatggta gcatcccatc caatgttatg gactgcccaa gtttggaacg atttattctc 1440
caaaacaaca atctaagtgg gcccattcca caatttagga actgtgcaaa tctgagctat 1500
atagatctga gtcataattc cttaagtggc aacattccag caagcttggg gagatgtgta 1560
aatattacga tgataaaatg gtcagaaaac aagttggttg gtccaatacc atctgaaatt 1620
agagacttgg tgaatttgag agtgctaaac ctctcgcaaa acagcctgca aggtgttctt 1680
ccagtgcaga tttctagttg ctccaagctg tacttgcttg acttgagttt caactctttg 1740
aatggttcgg cactcacaac cgtaagcaac cttaagtttc tgtcacaact acggttacaa 1800
gagaataaat tcagtggagg catacctgat tccctctcgc agttggatat gcttattgag 1860
ctgcaacttg gtggcaacgt tcttgggggc agtatccctt catcgttagg aaggttggta 1920
aaactgggca ttgcattgaa tatttgtagc aatggactcg ttggtggcat tccgccatta 1980
ttgagcaatt tggtggagct gcaaagttta gatttgtcac ttaatggcct cactggagac 2040
ctagacatgt taggaaactt acaattactg catgtattga atgtttccta caatagattc 2100
agtggtccgg tcccagaaaa tcttctgaat tttctggttt cctcaccgag ctcctttaat 2160
ggcaatccag acctctgtat ctcttgccat accaatggtt cttattgcaa ggggtctaat 2220
gttttgaaac cttgtggaga gaccaaaaaa ctacacaaac acgtcaagat tgctgttata 2280
gttattggtt cattgttcgt tggagcagtt tccatactta tactgagttg catcctttta 2340
aagttttatc atccaaagac aaaaaattta gaatcagtca gtactctgtt tgaaggttct 2400
tcttctaaat taaatgaggt tatagaggct actgaaaact ttgatgacaa gtatatcatc 2460
ggtactggtg ctcatggaac tgtttacaag gcaacactga ggtcaggaga agtatatgct 2520
gtaaagaagc ttgcaatatc tgcacagaaa ggttcgtaca aaagcatgat cagagaactg 2580
aagacattag gcaaaatcaa gcatcggaac ttgataaagc tgaaagagtt ttggttaaga 2640
agtgagtatg ggttcatgct ttatgtttat atggagcaag gtagccttca agatgttctg 2700
catgggatcc aacctcctcc aagtttggac tggagtgtgc gctataccat agctcttggt 2760
actgcccatg ggctagcgta tcttcatgat gactgtcaac ctgcaattat tcaccgagat 2820
attaagccca gtaatatact tctgaatggg gacatggttc cacatatagc agattttggc 2880
attgcaaagc tcatggacca gtcttcttct gctccacaga ctactggagt tattggcacc 2940
tttggatata tggccccaga gttggcattt tccaccagga gtagtatcga gtccgatgta 3000
tacagctacg gcgtcatact ccttgagctg ctaacaaaaa aacaggtggt ggatccctcg 3060
ttccccgaca acatggacat tgtcggttgg gtgaccgcaa cgctcaacgg caccgaccaa 3120
atcgaactcg tctgcgactc gacgctgatg gaggaagtct atggcacggt ggaaatagag 3180
gaagtcagca aggtcctgtc cttggctctt aggtgcgcag cgaaggaagc gagccgaagg 3240
ccgcccatgg ccgatgttgt gaaggagctg actgatgtca ggaaatccgc cgggaagttg 3300
tccaagccgg agaagacggc ctcccggagc tcgtcctga 3339
<210> SEQ ID NO 155
<211> LENGTH: 1112
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 155
Met Arg Leu Val Val Trp His Trp Phe Phe Phe Phe Phe Phe Thr Ser
1 5 10 15
Val Ser Ser Ser Trp Ser Leu Thr Ser Asp Gly Leu Ala Leu Leu Ser
20 25 30
Leu Ser Arg Asp Leu Ile Leu Pro His Ser Ile Ser Ser Thr Trp Lys
35 40 45
Ala Ser Asp Thr Thr Pro Cys Asn Trp Asp Gly Val Ser Cys Asn Lys
50 55 60
Lys Asn Ser Val Val Ser Leu Asp Leu Ser Ser Ser Gly Val Ser Gly
65 70 75 80
Ser Leu Gly Pro Gln Ile Gly Leu Met Lys Ser Leu Gln Val Leu Ser
85 90 95
Leu Ser Asn Asn Ser Ile Ser Gly Ser Ile Pro Gln Glu Leu Gly Asn
100 105 110
Cys Ser Met Leu Asp Gln Leu Asp Leu Ser Ser Asn Ser Phe Ser Gly
115 120 125
Glu Ile Pro Ala Ser Leu Gly Asp Ile Lys Lys Leu Ser Ser Leu Ser
130 135 140
Leu Tyr Ser Asn Ser Leu Thr Gly Glu Ile Pro Glu Gly Leu Phe Lys
145 150 155 160
Asn Gln Phe Leu Glu Gln Val Tyr Leu His Tyr Asn Lys Leu Ser Gly
165 170 175
Ser Ile Pro Leu Thr Val Gly Glu Met Thr Ser Leu Arg Tyr Leu Trp
180 185 190
Leu His Gly Asn Lys Leu Ser Gly Val Leu Pro Asp Ser Ile Gly Asn
195 200 205
Cys Thr Lys Leu Glu Glu Leu Tyr Leu Leu Asp Asn Gln Leu Ser Gly
210 215 220
Ser Leu Pro Lys Thr Leu Ser Tyr Ile Lys Gly Leu Lys Ile Phe Asp
225 230 235 240
Ile Thr Ala Asn Ser Phe Thr Gly Glu Ile Thr Phe Ser Phe Glu Asp
245 250 255
Cys Lys Leu Glu Val Phe Ile Leu Ser Phe Asn Gln Ile Ser Asn Glu
260 265 270
Ile Pro Ser Trp Leu Gly Asn Cys Ser Ser Leu Thr Gln Leu Ala Phe
275 280 285
Val Asn Asn Asn Ile Ser Gly Gln Ile Pro Ser Ser Leu Gly Leu Leu
290 295 300
Arg Asn Leu Ser Gln Leu Leu Leu Ser Glu Asn Ser Leu Ser Gly Pro
305 310 315 320
Ile Pro Pro Glu Ile Gly Asn Cys Gln Leu Leu Val Trp Leu Glu Leu
325 330 335
Asp Ala Asn Gln Leu Asn Gly Thr Val Pro Lys Glu Leu Ala Asn Leu
340 345 350
Arg Lys Leu Glu Lys Leu Phe Leu Phe Glu Asn Arg Leu Ile Gly Glu
355 360 365
Phe Pro Glu Asp Ile Trp Ser Ile Lys Ser Leu Gln Ser Val Leu Ile
370 375 380
Tyr Glu Asn Ser Phe Thr Gly Arg Leu Pro Pro Val Leu Ala Glu Leu
385 390 395 400
Lys Phe Leu Lys Asn Ile Thr Leu Phe Asn Asn Phe Phe Thr Gly Val
405 410 415
Ile Pro Pro Asp Leu Gly Val Asn Ser Arg Leu Thr Gln Ile Asp Phe
420 425 430
Thr Asn Asn Ser Phe Val Gly Gly Ile Pro Pro Asn Ile Cys Ser Gly
435 440 445
Lys Arg Leu Arg Ile Leu Asp Leu Gly Leu Asn Leu Leu Asn Gly Ser
450 455 460
Ile Pro Ser Asn Val Met Asp Cys Pro Ser Leu Glu Arg Phe Ile Leu
465 470 475 480
Gln Asn Asn Asn Leu Ser Gly Pro Ile Pro Gln Phe Arg Asn Cys Ala
485 490 495
Asn Leu Ser Tyr Ile Asp Leu Ser His Asn Ser Leu Ser Gly Asn Ile
500 505 510
Pro Ala Ser Leu Gly Arg Cys Val Asn Ile Thr Met Ile Lys Trp Ser
515 520 525
Glu Asn Lys Leu Val Gly Pro Ile Pro Ser Glu Ile Arg Asp Leu Val
530 535 540
Asn Leu Arg Val Leu Asn Leu Ser Gln Asn Ser Leu Gln Gly Val Leu
545 550 555 560
Pro Val Gln Ile Ser Ser Cys Ser Lys Leu Tyr Leu Leu Asp Leu Ser
565 570 575
Phe Asn Ser Leu Asn Gly Ser Ala Leu Thr Thr Val Ser Asn Leu Lys
580 585 590
Phe Leu Ser Gln Leu Arg Leu Gln Glu Asn Lys Phe Ser Gly Gly Ile
595 600 605
Pro Asp Ser Leu Ser Gln Leu Asp Met Leu Ile Glu Leu Gln Leu Gly
610 615 620
Gly Asn Val Leu Gly Gly Ser Ile Pro Ser Ser Leu Gly Arg Leu Val
625 630 635 640
Lys Leu Gly Ile Ala Leu Asn Ile Cys Ser Asn Gly Leu Val Gly Gly
645 650 655
Ile Pro Pro Leu Leu Ser Asn Leu Val Glu Leu Gln Ser Leu Asp Leu
660 665 670
Ser Leu Asn Gly Leu Thr Gly Asp Leu Asp Met Leu Gly Asn Leu Gln
675 680 685
Leu Leu His Val Leu Asn Val Ser Tyr Asn Arg Phe Ser Gly Pro Val
690 695 700
Pro Glu Asn Leu Leu Asn Phe Leu Val Ser Ser Pro Ser Ser Phe Asn
705 710 715 720
Gly Asn Pro Asp Leu Cys Ile Ser Cys His Thr Asn Gly Ser Tyr Cys
725 730 735
Lys Gly Ser Asn Val Leu Lys Pro Cys Gly Glu Thr Lys Lys Leu His
740 745 750
Lys His Val Lys Ile Ala Val Ile Val Ile Gly Ser Leu Phe Val Gly
755 760 765
Ala Val Ser Ile Leu Ile Leu Ser Cys Ile Leu Leu Lys Phe Tyr His
770 775 780
Pro Lys Thr Lys Asn Leu Glu Ser Val Ser Thr Leu Phe Glu Gly Ser
785 790 795 800
Ser Ser Lys Leu Asn Glu Val Ile Glu Ala Thr Glu Asn Phe Asp Asp
805 810 815
Lys Tyr Ile Ile Gly Thr Gly Ala His Gly Thr Val Tyr Lys Ala Thr
820 825 830
Leu Arg Ser Gly Glu Val Tyr Ala Val Lys Lys Leu Ala Ile Ser Ala
835 840 845
Gln Lys Gly Ser Tyr Lys Ser Met Ile Arg Glu Leu Lys Thr Leu Gly
850 855 860
Lys Ile Lys His Arg Asn Leu Ile Lys Leu Lys Glu Phe Trp Leu Arg
865 870 875 880
Ser Glu Tyr Gly Phe Met Leu Tyr Val Tyr Met Glu Gln Gly Ser Leu
885 890 895
Gln Asp Val Leu His Gly Ile Gln Pro Pro Pro Ser Leu Asp Trp Ser
900 905 910
Val Arg Tyr Thr Ile Ala Leu Gly Thr Ala His Gly Leu Ala Tyr Leu
915 920 925
His Asp Asp Cys Gln Pro Ala Ile Ile His Arg Asp Ile Lys Pro Ser
930 935 940
Asn Ile Leu Leu Asn Gly Asp Met Val Pro His Ile Ala Asp Phe Gly
945 950 955 960
Ile Ala Lys Leu Met Asp Gln Ser Ser Ser Ala Pro Gln Thr Thr Gly
965 970 975
Val Ile Gly Thr Phe Gly Tyr Met Ala Pro Glu Leu Ala Phe Ser Thr
980 985 990
Arg Ser Ser Ile Glu Ser Asp Val Tyr Ser Tyr Gly Val Ile Leu Leu
995 1000 1005
Glu Leu Leu Thr Lys Lys Gln Val Val Asp Pro Ser Phe Pro Asp Asn
1010 1015 1020
Met Asp Ile Val Gly Trp Val Thr Ala Thr Leu Asn Gly Thr Asp Gln
1025 1030 1035 1040
Ile Glu Leu Val Cys Asp Ser Thr Leu Met Glu Glu Val Tyr Gly Thr
1045 1050 1055
Val Glu Ile Glu Glu Val Ser Lys Val Leu Ser Leu Ala Leu Arg Cys
1060 1065 1070
Ala Ala Lys Glu Ala Ser Arg Arg Pro Pro Met Ala Asp Val Val Lys
1075 1080 1085
Glu Leu Thr Asp Val Arg Lys Ser Ala Gly Lys Leu Ser Lys Pro Glu
1090 1095 1100
Lys Thr Ala Ser Arg Ser Ser Ser
1105 1110
<210> SEQ ID NO 156
<211> LENGTH: 3033
<212> TYPE: DNA
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 156
atgggactgc acatatggtg ttggttggtt gtcttgttca gcttggcccc attgtgttgt 60
agtttgagcg cagatggcct ggctcttctg gatctagcca agactctgat actgcccagc 120
tccataagct cgaattggag tgctgatgat gcaactccgt gtacatggaa aggagttgat 180
tgtgatgaaa tgagcaatgt ggtttctctt aacttatcat attctggatt gtctggttct 240
ctaggtcctc agataggact catgaagcac ctgaaagtca ttgatttatc aggtaatggt 300
atatcaggac caatgcccag ttccattggc aactgcacca aactggaggt gctccatcta 360
ctacgtaatc gattgagtgg gatccttcca gatacattga gcaatattga agcattaagg 420
gtttttgatc tctcccgcaa tagcttcaca ggcaaggtca atttcagatt tgagaactgc 480
aagcttgagg agttcatctt gtcattcaat tatctcagag gcgaaatccc ggtgtggata 540
gggaattgca gcagcttgac acagcttgca tttgtcaaca atagtatcac cggtcaaata 600
ccaagttcaa tcggtttatt gagaaacctt tcttaccttg tactttccca gaactccttg 660
tctggcacaa tccctcctga gattggtaac tgccaattgc tgatatggct gcatctagat 720
gcaaaccagc tcgagggcac tataccaaaa gaactagcaa acctgaggaa cttgcagaag 780
ctctatcttt ttgagaattg cctcactggg gagtttcctg aagatatatg gggaatccaa 840
agcctactat ctgtcgacat ctataaaaac aatttcactg ggcagctgcc tatagtgttg 900
gctgagatga agcagctcca gcaaattacg ctattcaata attcattcac tggtgtcata 960
ccacaggggt tgggtgtaaa tagcagtttg tccgtaattg atttcataaa caatagtttt 1020
gttggcacaa tccctccaaa aatttgttca gggggaagat tggaagtttt gaacttgggt 1080
tcaaatcttc tcaatggtag catcccctct ggtatcgctg actgcccaac tttgagacga 1140
gtaattctca accaaaataa tctcattgga tcaattccac aatttgtaaa ttgtagcagt 1200
cttaattata ttgatctcag ctataattta ttaagtgggg acattcctgc tagcttgagc 1260
aaatgtatca atgttacatt tgtgaactgg tcatggaaca agcttgctgg tctaatacca 1320
tcagaaattg ggaacttagg gaacttaagt agtcttaacc tctcaggaaa cagactatat 1380
ggtgaactcc ctgtggaaat ttctggatgc tccaagttat ataagcttga tttgagctac 1440
aactctttga acggttcggc actcacaact gtaagtagcc ttaaatttct gtcacagcta 1500
cggttgcagg agaataaatt cagtggaggt atacctgatt ctttatctca gttggatatg 1560
cttattgaac tgcaacttgg tggcaacatt cttgggggta gtatcccttc atcgttagga 1620
aagttagtta aactgggcat tgcattaaac ctcagtagaa atggactagt tggtgacatt 1680
ccaccactag gcaatttggt ggagctgcag agtttagatt tgtcatttaa taacctcacc 1740
ggaggtcttg cttcattagg aaacctacag tttttgtatt tcttgaatgt ttcctacaac 1800
atgtttagtg gaccagtacc aaaaaatctt gtgaggtttc tgaattccac tccaagttca 1860
tttagtggaa atgcagatct atgtatctct tgccatgaaa atgattcatc ttgcacaggt 1920
tctaatgttt tgagaccttg tggttcaatg agtaaaaaaa gtgcactcac accactcaag 1980
gttgctatga tagttcttgg ttcggttttt gctggtgcat ttctgatact ctgtgtcctt 2040
ctaaaatata atttcaagcc taagattaac agtgatttag gtatattatt tcaaggatct 2100
tcttctaaat taaatgaggc tgtagaagtg actgaaaact tcaataacaa gtacattatc 2160
ggttccgggg cccatggaat tgtctacaag gcagtactga ggtcaggaga agtatatgct 2220
gtaaagaagc ttgtacatgc tgctcacaag ggctcaaatg caagcatgat ccgcgagctg 2280
cagacgcttg gtcaaattag gcacaggaac ctgataagac ttaatgaatt cttgtttaag 2340
catgagtatg gtttgatcct atatgatttt atggagaatg gtagcctgta tgatgtgttg 2400
catgggactg agcccactcc aactttggac tggagcatcc gctacagcat agctcttgga 2460
acagcccatg gtctagcata tctccataat gactgtcacc ctgctatcat acatcgagat 2520
attaaaccaa aaaatatatt gctggacaac gacatggtac cgcatatctc agattttggc 2580
attgcaaagc tcatggatca atatcctgct gctttacaga ccacaggaat cgttggtact 2640
attggatata tggccccaga aatggccttt tcaaccaagg ctaccacaga attcgatgtg 2700
tacagttacg gtgtggtatt acttgagttg atcaccagaa agatggctgt ggattcctca 2760
ttccctggca acatggacat agttagctgg gtatcctcca agttgaatga gactaatcag 2820
atcgaaacta tttgcgaccc agctctcatt actgaagtat atggaacaca tgaaatggaa 2880
gaagtgcgca agctgttgtc attagctctt agatgcacag caaaggaggc aagccaaagg 2940
ccttccatgg ccgttgttgt caaagagctg acagatgcaa gacatgttgc tggctcatac 3000
tcgaagcaga attcaggccc cagcaattct tga 3033
<210> SEQ ID NO 157
<211> LENGTH: 1010
<212> TYPE: PRT
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 157
Met Gly Leu His Ile Trp Cys Trp Leu Val Val Leu Phe Ser Leu Ala
1 5 10 15
Pro Leu Cys Cys Ser Leu Ser Ala Asp Gly Leu Ala Leu Leu Asp Leu
20 25 30
Ala Lys Thr Leu Ile Leu Pro Ser Ser Ile Ser Ser Asn Trp Ser Ala
35 40 45
Asp Asp Ala Thr Pro Cys Thr Trp Lys Gly Val Asp Cys Asp Glu Met
50 55 60
Ser Asn Val Val Ser Leu Asn Leu Ser Tyr Ser Gly Leu Ser Gly Ser
65 70 75 80
Leu Gly Pro Gln Ile Gly Leu Met Lys His Leu Lys Val Ile Asp Leu
85 90 95
Ser Gly Asn Gly Ile Ser Gly Pro Met Pro Ser Ser Ile Gly Asn Cys
100 105 110
Thr Lys Leu Glu Val Leu His Leu Leu Arg Asn Arg Leu Ser Gly Ile
115 120 125
Leu Pro Asp Thr Leu Ser Asn Ile Glu Ala Leu Arg Val Phe Asp Leu
130 135 140
Ser Arg Asn Ser Phe Thr Gly Lys Val Asn Phe Arg Phe Glu Asn Cys
145 150 155 160
Lys Leu Glu Glu Phe Ile Leu Ser Phe Asn Tyr Leu Arg Gly Glu Ile
165 170 175
Pro Val Trp Ile Gly Asn Cys Ser Ser Leu Thr Gln Leu Ala Phe Val
180 185 190
Asn Asn Ser Ile Thr Gly Gln Ile Pro Ser Ser Ile Gly Leu Leu Arg
195 200 205
Asn Leu Ser Tyr Leu Val Leu Ser Gln Asn Ser Leu Ser Gly Thr Ile
210 215 220
Pro Pro Glu Ile Gly Asn Cys Gln Leu Leu Ile Trp Leu His Leu Asp
225 230 235 240
Ala Asn Gln Leu Glu Gly Thr Ile Pro Lys Glu Leu Ala Asn Leu Arg
245 250 255
Asn Leu Gln Lys Leu Tyr Leu Phe Glu Asn Cys Leu Thr Gly Glu Phe
260 265 270
Pro Glu Asp Ile Trp Gly Ile Gln Ser Leu Leu Ser Val Asp Ile Tyr
275 280 285
Lys Asn Asn Phe Thr Gly Gln Leu Pro Ile Val Leu Ala Glu Met Lys
290 295 300
Gln Leu Gln Gln Ile Thr Leu Phe Asn Asn Ser Phe Thr Gly Val Ile
305 310 315 320
Pro Gln Gly Leu Gly Val Asn Ser Ser Leu Ser Val Ile Asp Phe Ile
325 330 335
Asn Asn Ser Phe Val Gly Thr Ile Pro Pro Lys Ile Cys Ser Gly Gly
340 345 350
Arg Leu Glu Val Leu Asn Leu Gly Ser Asn Leu Leu Asn Gly Ser Ile
355 360 365
Pro Ser Gly Ile Ala Asp Cys Pro Thr Leu Arg Arg Val Ile Leu Asn
370 375 380
Gln Asn Asn Leu Ile Gly Ser Ile Pro Gln Phe Val Asn Cys Ser Ser
385 390 395 400
Leu Asn Tyr Ile Asp Leu Ser Tyr Asn Leu Leu Ser Gly Asp Ile Pro
405 410 415
Ala Ser Leu Ser Lys Cys Ile Asn Val Thr Phe Val Asn Trp Ser Trp
420 425 430
Asn Lys Leu Ala Gly Leu Ile Pro Ser Glu Ile Gly Asn Leu Gly Asn
435 440 445
Leu Ser Ser Leu Asn Leu Ser Gly Asn Arg Leu Tyr Gly Glu Leu Pro
450 455 460
Val Glu Ile Ser Gly Cys Ser Lys Leu Tyr Lys Leu Asp Leu Ser Tyr
465 470 475 480
Asn Ser Leu Asn Gly Ser Ala Leu Thr Thr Val Ser Ser Leu Lys Phe
485 490 495
Leu Ser Gln Leu Arg Leu Gln Glu Asn Lys Phe Ser Gly Gly Ile Pro
500 505 510
Asp Ser Leu Ser Gln Leu Asp Met Leu Ile Glu Leu Gln Leu Gly Gly
515 520 525
Asn Ile Leu Gly Gly Ser Ile Pro Ser Ser Leu Gly Lys Leu Val Lys
530 535 540
Leu Gly Ile Ala Leu Asn Leu Ser Arg Asn Gly Leu Val Gly Asp Ile
545 550 555 560
Pro Pro Leu Gly Asn Leu Val Glu Leu Gln Ser Leu Asp Leu Ser Phe
565 570 575
Asn Asn Leu Thr Gly Gly Leu Ala Ser Leu Gly Asn Leu Gln Phe Leu
580 585 590
Tyr Phe Leu Asn Val Ser Tyr Asn Met Phe Ser Gly Pro Val Pro Lys
595 600 605
Asn Leu Val Arg Phe Leu Asn Ser Thr Pro Ser Ser Phe Ser Gly Asn
610 615 620
Ala Asp Leu Cys Ile Ser Cys His Glu Asn Asp Ser Ser Cys Thr Gly
625 630 635 640
Ser Asn Val Leu Arg Pro Cys Gly Ser Met Ser Lys Lys Ser Ala Leu
645 650 655
Thr Pro Leu Lys Val Ala Met Ile Val Leu Gly Ser Val Phe Ala Gly
660 665 670
Ala Phe Leu Ile Leu Cys Val Leu Leu Lys Tyr Asn Phe Lys Pro Lys
675 680 685
Ile Asn Ser Asp Leu Gly Ile Leu Phe Gln Gly Ser Ser Ser Lys Leu
690 695 700
Asn Glu Ala Val Glu Val Thr Glu Asn Phe Asn Asn Lys Tyr Ile Ile
705 710 715 720
Gly Ser Gly Ala His Gly Ile Val Tyr Lys Ala Val Leu Arg Ser Gly
725 730 735
Glu Val Tyr Ala Val Lys Lys Leu Val His Ala Ala His Lys Gly Ser
740 745 750
Asn Ala Ser Met Ile Arg Glu Leu Gln Thr Leu Gly Gln Ile Arg His
755 760 765
Arg Asn Leu Ile Arg Leu Asn Glu Phe Leu Phe Lys His Glu Tyr Gly
770 775 780
Leu Ile Leu Tyr Asp Phe Met Glu Asn Gly Ser Leu Tyr Asp Val Leu
785 790 795 800
His Gly Thr Glu Pro Thr Pro Thr Leu Asp Trp Ser Ile Arg Tyr Ser
805 810 815
Ile Ala Leu Gly Thr Ala His Gly Leu Ala Tyr Leu His Asn Asp Cys
820 825 830
His Pro Ala Ile Ile His Arg Asp Ile Lys Pro Lys Asn Ile Leu Leu
835 840 845
Asp Asn Asp Met Val Pro His Ile Ser Asp Phe Gly Ile Ala Lys Leu
850 855 860
Met Asp Gln Tyr Pro Ala Ala Leu Gln Thr Thr Gly Ile Val Gly Thr
865 870 875 880
Ile Gly Tyr Met Ala Pro Glu Met Ala Phe Ser Thr Lys Ala Thr Thr
885 890 895
Glu Phe Asp Val Tyr Ser Tyr Gly Val Val Leu Leu Glu Leu Ile Thr
900 905 910
Arg Lys Met Ala Val Asp Ser Ser Phe Pro Gly Asn Met Asp Ile Val
915 920 925
Ser Trp Val Ser Ser Lys Leu Asn Glu Thr Asn Gln Ile Glu Thr Ile
930 935 940
Cys Asp Pro Ala Leu Ile Thr Glu Val Tyr Gly Thr His Glu Met Glu
945 950 955 960
Glu Val Arg Lys Leu Leu Ser Leu Ala Leu Arg Cys Thr Ala Lys Glu
965 970 975
Ala Ser Gln Arg Pro Ser Met Ala Val Val Val Lys Glu Leu Thr Asp
980 985 990
Ala Arg His Val Ala Gly Ser Tyr Ser Lys Gln Asn Ser Gly Pro Ser
995 1000 1005
Asn Ser
1010
<210> SEQ ID NO 158
<211> LENGTH: 3330
<212> TYPE: DNA
<213> ORGANISM: Ipomoea nil
<400> SEQUENCE: 158
atgaaggttg ctgtgaacac attcttgttg tttttgtgct ccacttcatc aatctatgct 60
gcttttgctt tgaattctga tggagcagct ctgctctcac tcactagaca ttggacttca 120
atcccttctg acataaccca gagctggaat gcttcagatt ccactccttg ttcatggctg 180
ggagtagaat gtgacaggag acaatttgtt gatactctga acctctcctc ctatggaatc 240
tcaggcgaat tcgggcccga aatctcgcat ttgaagcatt tgaagaaggt tgttctcagt 300
ggcaatggtt tctttggctc aattccttcc cagctaggca attgcagtct tcttgaacac 360
atagatctgt cctccaacag ctttactggt aatatccctg acacccttgg agctttgcag 420
aatttaagga acttaagcct gttctttaat tctctgattg gcccatttcc tgagtcttta 480
ctttcaattc cacatttaga aactgtttat ttcactggca atggtcttaa tggttcaatc 540
ccttcaaata ttggaaacat gagtgagctt acaactctgt ggcttgatga taatcaattt 600
tcagggccag tgccttcatc cttaggaaac attaccaccc tgcaagaact ttatttgaat 660
gataacaatc ttgttggaac cttgcctgtc actttaaata atctcgagaa ccttgtttac 720
ttagatgtaa ggaataacag tttagtggga gctattcctt tggactttgt tagttgcaaa 780
cagattgaca cgattagctt gtccaacaac caattcacgg gaggactccc acctggtttg 840
ggaaattgca ctagcttaag ggaattcggt gccttttctt gtgccttgag tggtcctata 900
ccttcctgtt ttggccaact cactaagtta gacactcttt accttgctgg aaaccatttt 960
tcgggaagaa taccacccga gctaggcaag tgcaagtcca tgattgattt gcaacttcaa 1020
caaaatcaac ttgagggtga aattccgggt gaactaggga tgctcagtca attgcaatat 1080
ctccatctat ataccaacaa tttatctggt gaagttccac tcagcatttg gaaaattcaa 1140
agcctccaaa gtcttcagtt gtaccaaaac aatctctccg gggagctacc tgttgatatg 1200
accgagctaa agcaactagt gagccttgcc ttatatgaaa accattttac tggagttatt 1260
cctcaagatt tgggggctaa cagcagttta gaggttctag atttgaccag aaacatgttc 1320
acaggtcata ttccaccgaa cctatgctcc caaaagaaac tgaagagact gctcttgggt 1380
tataactatc tggaaggtag tgttccttct gatttggggg gctgttccac tttggaaagg 1440
ctaattctcg aagagaataa cctcagaggt ggcctcccag attttgttga gaagcaaaat 1500
cttctgttct ttgatcttag tggcaataac ttcactggac cgatacctcc aagcttagga 1560
aacctaaaaa atgttactgc catttacttg tcatcgaatc agctctcagg gagtatccca 1620
cccgagcttg gtagccttgt gaaacttgaa catttgaacc tttctcacaa catccttaaa 1680
ggtatacttc catctgaact gtcgaactgt cataaactgt cagaacttga tgcgagtcac 1740
aatttgttga atggctctat tccatccact ttaggaagct tgacagaact gaccaaattg 1800
agtctcggtg agaacagttt ctcaggaggt attccaactt cattgttcca atccaataag 1860
ctcttaaatc tgcagctcgg tggaaattta ctagctggag atattccacc agtgggagct 1920
ttgcaggcac tgaggtcatt aaatttgagc agtaacaaac tgaatggtca actccctata 1980
gatctaggga aattaaagat gctagaggaa ttggatgtat ctcacaacaa tctatctggt 2040
acgttgagag ttttgtctac aatccaatca ttgacattca tcaacatttc tcacaatctg 2100
ttttctggcc ccgtaccacc ttcattgacc aagttcttga actcatctcc cacttcattt 2160
tccgggaact ctgacctttg tattaactgc cctgctgatg gcttagcttg cccggagagc 2220
agcattttgc gaccatgtaa tatgcaatcc aacactggga agggtggcct tagtactttg 2280
ggaatagcaa tgatagttct tggggcattg ttatttatca tctgtctatt ccttttctct 2340
gctttcctgt ttctacattg caaaaaatca gtacaagaaa tagcaatttc tgctcaagag 2400
ggtgatggtt ccttgctcaa taaagtattg gaagctacag agaatctaaa tgataagtat 2460
gttattggga agggagcaca tggaacaata tacaaggcca cattaagtcc agataaagtg 2520
tatgctgtga aaaagcttgt gtttactggg atcaagaatg gaagtgtaag catggttcgg 2580
gaaattgaaa caattgggaa agtcaggcac cggaatctta ttaaactgga agagttttgg 2640
ctgagaaagg agtatggact aattctatac acttatatgg aaaatggcag ccttcatgat 2700
atcctccatg agacaaatcc tcctaagccg ttagattgga gcacacgtca taatattgct 2760
gtagggactg cccatggact tgcgtatctc cattttgact gtgatcctgc cattgtgcat 2820
cgagatatta aaccgatgaa tatcctgtta gactctgatc tcgagcctca catttcagac 2880
tttggcattg ccaagcttct ggatcagtct gctacttcaa tcccgtccaa cacagttcaa 2940
gggacaatcg gctatatggc tccagaaaat gcattcacta ctgtgaagag cagagagtca 3000
gatgtataca gttatggggt cgttctgttg gaattgataa ctcgtaagaa ggccttggat 3060
ccttcgttca atggtgaaac cgatattgtt ggctgggtta ggtcggtttg gacacaaact 3120
ggagaaattc agaagatagt ggatccgagc cttttggatg aattgataga ttccagcgtg 3180
atggaacaag taactgaagc gctttcactg gctttgaggt gtgcagagaa ggaggtggac 3240
aaaagaccca caatgagaga tgtagtgaag caactaacac gctggagcat acgctcctat 3300
tcgtcgagtg ttagaaacaa gtctaagtag 3330
<210> SEQ ID NO 159
<211> LENGTH: 1109
<212> TYPE: PRT
<213> ORGANISM: Ipomoea nil
<400> SEQUENCE: 159
Met Lys Val Ala Val Asn Thr Phe Leu Leu Phe Leu Cys Ser Thr Ser
1 5 10 15
Ser Ile Tyr Ala Ala Phe Ala Leu Asn Ser Asp Gly Ala Ala Leu Leu
20 25 30
Ser Leu Thr Arg His Trp Thr Ser Ile Pro Ser Asp Ile Thr Gln Ser
35 40 45
Trp Asn Ala Ser Asp Ser Thr Pro Cys Ser Trp Leu Gly Val Glu Cys
50 55 60
Asp Arg Arg Gln Phe Val Asp Thr Leu Asn Leu Ser Ser Tyr Gly Ile
65 70 75 80
Ser Gly Glu Phe Gly Pro Glu Ile Ser His Leu Lys His Leu Lys Lys
85 90 95
Val Val Leu Ser Gly Asn Gly Phe Phe Gly Ser Ile Pro Ser Gln Leu
100 105 110
Gly Asn Cys Ser Leu Leu Glu His Ile Asp Leu Ser Ser Asn Ser Phe
115 120 125
Thr Gly Asn Ile Pro Asp Thr Leu Gly Ala Leu Gln Asn Leu Arg Asn
130 135 140
Leu Ser Leu Phe Phe Asn Ser Leu Ile Gly Pro Phe Pro Glu Ser Leu
145 150 155 160
Leu Ser Ile Pro His Leu Glu Thr Val Tyr Phe Thr Gly Asn Gly Leu
165 170 175
Asn Gly Ser Ile Pro Ser Asn Ile Gly Asn Met Ser Glu Leu Thr Thr
180 185 190
Leu Trp Leu Asp Asp Asn Gln Phe Ser Gly Pro Val Pro Ser Ser Leu
195 200 205
Gly Asn Ile Thr Thr Leu Gln Glu Leu Tyr Leu Asn Asp Asn Asn Leu
210 215 220
Val Gly Thr Leu Pro Val Thr Leu Asn Asn Leu Glu Asn Leu Val Tyr
225 230 235 240
Leu Asp Val Arg Asn Asn Ser Leu Val Gly Ala Ile Pro Leu Asp Phe
245 250 255
Val Ser Cys Lys Gln Ile Asp Thr Ile Ser Leu Ser Asn Asn Gln Phe
260 265 270
Thr Gly Gly Leu Pro Pro Gly Leu Gly Asn Cys Thr Ser Leu Arg Glu
275 280 285
Phe Gly Ala Phe Ser Cys Ala Leu Ser Gly Pro Ile Pro Ser Cys Phe
290 295 300
Gly Gln Leu Thr Lys Leu Asp Thr Leu Tyr Leu Ala Gly Asn His Phe
305 310 315 320
Ser Gly Arg Ile Pro Pro Glu Leu Gly Lys Cys Lys Ser Met Ile Asp
325 330 335
Leu Gln Leu Gln Gln Asn Gln Leu Glu Gly Glu Ile Pro Gly Glu Leu
340 345 350
Gly Met Leu Ser Gln Leu Gln Tyr Leu His Leu Tyr Thr Asn Asn Leu
355 360 365
Ser Gly Glu Val Pro Leu Ser Ile Trp Lys Ile Gln Ser Leu Gln Ser
370 375 380
Leu Gln Leu Tyr Gln Asn Asn Leu Ser Gly Glu Leu Pro Val Asp Met
385 390 395 400
Thr Glu Leu Lys Gln Leu Val Ser Leu Ala Leu Tyr Glu Asn His Phe
405 410 415
Thr Gly Val Ile Pro Gln Asp Leu Gly Ala Asn Ser Ser Leu Glu Val
420 425 430
Leu Asp Leu Thr Arg Asn Met Phe Thr Gly His Ile Pro Pro Asn Leu
435 440 445
Cys Ser Gln Lys Lys Leu Lys Arg Leu Leu Leu Gly Tyr Asn Tyr Leu
450 455 460
Glu Gly Ser Val Pro Ser Asp Leu Gly Gly Cys Ser Thr Leu Glu Arg
465 470 475 480
Leu Ile Leu Glu Glu Asn Asn Leu Arg Gly Gly Leu Pro Asp Phe Val
485 490 495
Glu Lys Gln Asn Leu Leu Phe Phe Asp Leu Ser Gly Asn Asn Phe Thr
500 505 510
Gly Pro Ile Pro Pro Ser Leu Gly Asn Leu Lys Asn Val Thr Ala Ile
515 520 525
Tyr Leu Ser Ser Asn Gln Leu Ser Gly Ser Ile Pro Pro Glu Leu Gly
530 535 540
Ser Leu Val Lys Leu Glu His Leu Asn Leu Ser His Asn Ile Leu Lys
545 550 555 560
Gly Ile Leu Pro Ser Glu Leu Ser Asn Cys His Lys Leu Ser Glu Leu
565 570 575
Asp Ala Ser His Asn Leu Leu Asn Gly Ser Ile Pro Ser Thr Leu Gly
580 585 590
Ser Leu Thr Glu Leu Thr Lys Leu Ser Leu Gly Glu Asn Ser Phe Ser
595 600 605
Gly Gly Ile Pro Thr Ser Leu Phe Gln Ser Asn Lys Leu Leu Asn Leu
610 615 620
Gln Leu Gly Gly Asn Leu Leu Ala Gly Asp Ile Pro Pro Val Gly Ala
625 630 635 640
Leu Gln Ala Leu Arg Ser Leu Asn Leu Ser Ser Asn Lys Leu Asn Gly
645 650 655
Gln Leu Pro Ile Asp Leu Gly Lys Leu Lys Met Leu Glu Glu Leu Asp
660 665 670
Val Ser His Asn Asn Leu Ser Gly Thr Leu Arg Val Leu Ser Thr Ile
675 680 685
Gln Ser Leu Thr Phe Ile Asn Ile Ser His Asn Leu Phe Ser Gly Pro
690 695 700
Val Pro Pro Ser Leu Thr Lys Phe Leu Asn Ser Ser Pro Thr Ser Phe
705 710 715 720
Ser Gly Asn Ser Asp Leu Cys Ile Asn Cys Pro Ala Asp Gly Leu Ala
725 730 735
Cys Pro Glu Ser Ser Ile Leu Arg Pro Cys Asn Met Gln Ser Asn Thr
740 745 750
Gly Lys Gly Gly Leu Ser Thr Leu Gly Ile Ala Met Ile Val Leu Gly
755 760 765
Ala Leu Leu Phe Ile Ile Cys Leu Phe Leu Phe Ser Ala Phe Leu Phe
770 775 780
Leu His Cys Lys Lys Ser Val Gln Glu Ile Ala Ile Ser Ala Gln Glu
785 790 795 800
Gly Asp Gly Ser Leu Leu Asn Lys Val Leu Glu Ala Thr Glu Asn Leu
805 810 815
Asn Asp Lys Tyr Val Ile Gly Lys Gly Ala His Gly Thr Ile Tyr Lys
820 825 830
Ala Thr Leu Ser Pro Asp Lys Val Tyr Ala Val Lys Lys Leu Val Phe
835 840 845
Thr Gly Ile Lys Asn Gly Ser Val Ser Met Val Arg Glu Ile Glu Thr
850 855 860
Ile Gly Lys Val Arg His Arg Asn Leu Ile Lys Leu Glu Glu Phe Trp
865 870 875 880
Leu Arg Lys Glu Tyr Gly Leu Ile Leu Tyr Thr Tyr Met Glu Asn Gly
885 890 895
Ser Leu His Asp Ile Leu His Glu Thr Asn Pro Pro Lys Pro Leu Asp
900 905 910
Trp Ser Thr Arg His Asn Ile Ala Val Gly Thr Ala His Gly Leu Ala
915 920 925
Tyr Leu His Phe Asp Cys Asp Pro Ala Ile Val His Arg Asp Ile Lys
930 935 940
Pro Met Asn Ile Leu Leu Asp Ser Asp Leu Glu Pro His Ile Ser Asp
945 950 955 960
Phe Gly Ile Ala Lys Leu Leu Asp Gln Ser Ala Thr Ser Ile Pro Ser
965 970 975
Asn Thr Val Gln Gly Thr Ile Gly Tyr Met Ala Pro Glu Asn Ala Phe
980 985 990
Thr Thr Val Lys Ser Arg Glu Ser Asp Val Tyr Ser Tyr Gly Val Val
995 1000 1005
Leu Leu Glu Leu Ile Thr Arg Lys Lys Ala Leu Asp Pro Ser Phe Asn
1010 1015 1020
Gly Glu Thr Asp Ile Val Gly Trp Val Arg Ser Val Trp Thr Gln Thr
1025 1030 1035 1040
Gly Glu Ile Gln Lys Ile Val Asp Pro Ser Leu Leu Asp Glu Leu Ile
1045 1050 1055
Asp Ser Ser Val Met Glu Gln Val Thr Glu Ala Leu Ser Leu Ala Leu
1060 1065 1070
Arg Cys Ala Glu Lys Glu Val Asp Lys Arg Pro Thr Met Arg Asp Val
1075 1080 1085
Val Lys Gln Leu Thr Arg Trp Ser Ile Arg Ser Tyr Ser Ser Ser Val
1090 1095 1100
Arg Asn Lys Ser Lys
1105
<210> SEQ ID NO 160
<211> LENGTH: 3246
<212> TYPE: DNA
<213> ORGANISM: Populus trichocarpa
<400> SEQUENCE: 160
atgtcactct tgaggaaatg ggattctgtg cctacttcca ttacttcaag ttggaattct 60
tcagactcga ctccttgttc ttggctaggt ataggatgtg atcatagaag tcattgtgtg 120
gtttctttga acctttctgg cttaggaatt tctggtcctt tgggacctga aactgggcag 180
ttaaagcagt taaagactgt tgatttgaac accaattatt tctctggtga tataccctca 240
cagttgggaa attgtagtct ccttgagtac ttggatttgt ctgcaaatag ctttactggt 300
ggaatacctg atagctttaa gtacttgcaa aatttacaaa cattgattat tttctcgaat 360
tcactgtctg gtgaaatacc tgaatcattg ttccaagatt tggctttaca agttttgtat 420
ttggacacca ataaattcaa tggttccatt cctaggagtg ttggtaactt gactgagctt 480
ttagaactgt ccttatttgg aaatcaatta tctgggacaa tccctgagtc tattggaaat 540
tgtagaaaat tgcaatctct ccctctgagt tataacaagt taagtggttc tttgcctgag 600
attctaacca atcttgaaag ccttgttgaa ttatttgtta gtcataatag tcttgagggt 660
agaattcctt taggtttcgg caaatgcaag aatttggaaa ccttagattt gtcattcaat 720
agctatagtg ggggtcttcc accagattta ggcaattgta gtagcttagc aaccttggcc 780
attatccata gcaacttaag aggcgctatc ccatcttcct ttggccaact gaaaaagctt 840
tctgtgctcg acctttctga gaatcgactg tctgggacga ttcctcctga acttagtaat 900
tgcaagtcct tgatgacctt aaatttatac acaaatgagc ttgagggaaa gattccgagt 960
gagttgggga ggctaaacaa attggaggac ctcgaattgt tcaacaatca tttgagtggt 1020
gcaattccta ttagcatctg gaagattgcg agccttaagt acctccttgt gtataacaac 1080
agtctttctg gtgaattgcc tcttgagatc actcatctca agaacctaaa gaacttgtca 1140
ctatacaaca accagttctt tggtgtcata ccccaaagtt tgggaatcaa cagcagtttg 1200
ttgcagctgg acttcacaga taataagttc acaggtgaaa ttcccccaaa cctttgccat 1260
ggaaagcagt tgagagttct taatatgggc cggaaccaac ttcaaggcag cattccttct 1320
gatgtgggag gctgcttaac gctctggaga ttgatcctca aggagaacaa cctctcaggt 1380
gcccttccag aattttcaga aaatccaatc ctctatcaca tggacgtcag caaaaataat 1440
attacaggtc caattccacc cagcattggg aactgttctg gtctcacttc cattcatctt 1500
tccatgaaca agcttacagg gtttataccc tcagagctag gaaatcttgt aaaccttctg 1560
gtagtggatc tttcatccaa ccaactggaa ggttctttgc catcgcagct gtcaaagtgt 1620
cacaacttag gcaagtttga tgtagggttc aattcactga acggctcagt tccatcgagt 1680
ttaaggaact ggaccagctt gtccactttg attttaaaag agaatcattt tattggggga 1740
attccacctt tcctctcaga acttgaaaag cttacagaga tacaacttgg tggaaatttt 1800
ctgggaggtg agattccttc atggattggg tctttacaga gtctgcaata tgcattgaat 1860
ctcagcagta atggattgtt tggagagctt ccttcagagc tggggaactt gatcaagctt 1920
gaacagcttc agttatcaaa caataatctg acaggaactc tagcacctct tgataaaatc 1980
cattcgttgg tccaggtcga tatttcatac aatcacttca gtggtccaat accagaaaca 2040
ctaatgaact tgcttaactc atcgccgtca tcattctggg gcaatcccga tctatgtgtc 2100
agttgtcttc catcaggtgg cttaacatgc accaaaaaca gaagtatcaa gccatgtgac 2160
tctcagtcaa gcaagcgaga cagcttttct agagtggctg tcgcgctgat agctattgct 2220
tctgtggttg ctgttttcat gcttgttgga ctggtttgca tgtttatctt gtgcagaaga 2280
tgtaagcagg atcttgggat cgaccatgat gttgaaattg ctgctcaaga gggcccttct 2340
tccctactca acaaagtgat gcaagctact gagaatctaa atgacagaca tatagttggg 2400
aggggaaccc atggaaccgt ttataaggct tcattgggtg gagacaaaat atttgcagtt 2460
aagaagatag tatttacagg ccacaaagga ggaaacaaaa gtatggttac agaaattcaa 2520
accattggga aaatcaggca ccggaatctg ctcaaattgg aaaacttttg gttacggaag 2580
gattatggtc tgatcctgta tgcctacatg caaaatggga gcgttcatga tgtcttacat 2640
gggagcacac caccgcaaac cctggagtgg agcatacgcc ataaaatagc tttaggaact 2700
gcccatggtt tggaatatct ccactatgat tgcaatcctc ctattgtgca tcgagacatc 2760
aaaccagaaa acattctctt agactctgat atggagcctc atatctctga tttcggtata 2820
gctaagctac ttgatcagtc ttctgcttca gcacagtctt tcctggttgc aggcacaatt 2880
ggatatatag caccagaaaa cgccttgtcg acaataaaga gcaaggaatc ggatgtttat 2940
agctacgggg ttgttttgct tgagctgata actagaaaga aggcattgga tccattattt 3000
gtgggggaaa cagatattgt agagtgggtc agatctgttt ggagcagcac agaagacatc 3060
aacaagattg ctgattcaag cctaagggag gagtttttgg attcaaatat catgaatcaa 3120
gccattgatg tgcttttggt ggctttgaga tgcactgaaa aggcgcctag gagaagaccc 3180
acaatgagag atgttgtcaa gcgattagta aaaagagatg ccagcattag aggcaaacgc 3240
agctga 3246
<210> SEQ ID NO 161
<211> LENGTH: 1081
<212> TYPE: PRT
<213> ORGANISM: Populus trichocarpa
<400> SEQUENCE: 161
Met Ser Leu Leu Arg Lys Trp Asp Ser Val Pro Thr Ser Ile Thr Ser
1 5 10 15
Ser Trp Asn Ser Ser Asp Ser Thr Pro Cys Ser Trp Leu Gly Ile Gly
20 25 30
Cys Asp His Arg Ser His Cys Val Val Ser Leu Asn Leu Ser Gly Leu
35 40 45
Gly Ile Ser Gly Pro Leu Gly Pro Glu Thr Gly Gln Leu Lys Gln Leu
50 55 60
Lys Thr Val Asp Leu Asn Thr Asn Tyr Phe Ser Gly Asp Ile Pro Ser
65 70 75 80
Gln Leu Gly Asn Cys Ser Leu Leu Glu Tyr Leu Asp Leu Ser Ala Asn
85 90 95
Ser Phe Thr Gly Gly Ile Pro Asp Ser Phe Lys Tyr Leu Gln Asn Leu
100 105 110
Gln Thr Leu Ile Ile Phe Ser Asn Ser Leu Ser Gly Glu Ile Pro Glu
115 120 125
Ser Leu Phe Gln Asp Leu Ala Leu Gln Val Leu Tyr Leu Asp Thr Asn
130 135 140
Lys Phe Asn Gly Ser Ile Pro Arg Ser Val Gly Asn Leu Thr Glu Leu
145 150 155 160
Leu Glu Leu Ser Leu Phe Gly Asn Gln Leu Ser Gly Thr Ile Pro Glu
165 170 175
Ser Ile Gly Asn Cys Arg Lys Leu Gln Ser Leu Pro Leu Ser Tyr Asn
180 185 190
Lys Leu Ser Gly Ser Leu Pro Glu Ile Leu Thr Asn Leu Glu Ser Leu
195 200 205
Val Glu Leu Phe Val Ser His Asn Ser Leu Glu Gly Arg Ile Pro Leu
210 215 220
Gly Phe Gly Lys Cys Lys Asn Leu Glu Thr Leu Asp Leu Ser Phe Asn
225 230 235 240
Ser Tyr Ser Gly Gly Leu Pro Pro Asp Leu Gly Asn Cys Ser Ser Leu
245 250 255
Ala Thr Leu Ala Ile Ile His Ser Asn Leu Arg Gly Ala Ile Pro Ser
260 265 270
Ser Phe Gly Gln Leu Lys Lys Leu Ser Val Leu Asp Leu Ser Glu Asn
275 280 285
Arg Leu Ser Gly Thr Ile Pro Pro Glu Leu Ser Asn Cys Lys Ser Leu
290 295 300
Met Thr Leu Asn Leu Tyr Thr Asn Glu Leu Glu Gly Lys Ile Pro Ser
305 310 315 320
Glu Leu Gly Arg Leu Asn Lys Leu Glu Asp Leu Glu Leu Phe Asn Asn
325 330 335
His Leu Ser Gly Ala Ile Pro Ile Ser Ile Trp Lys Ile Ala Ser Leu
340 345 350
Lys Tyr Leu Leu Val Tyr Asn Asn Ser Leu Ser Gly Glu Leu Pro Leu
355 360 365
Glu Ile Thr His Leu Lys Asn Leu Lys Asn Leu Ser Leu Tyr Asn Asn
370 375 380
Gln Phe Phe Gly Val Ile Pro Gln Ser Leu Gly Ile Asn Ser Ser Leu
385 390 395 400
Leu Gln Leu Asp Phe Thr Asp Asn Lys Phe Thr Gly Glu Ile Pro Pro
405 410 415
Asn Leu Cys His Gly Lys Gln Leu Arg Val Leu Asn Met Gly Arg Asn
420 425 430
Gln Leu Gln Gly Ser Ile Pro Ser Asp Val Gly Gly Cys Leu Thr Leu
435 440 445
Trp Arg Leu Ile Leu Lys Glu Asn Asn Leu Ser Gly Ala Leu Pro Glu
450 455 460
Phe Ser Glu Asn Pro Ile Leu Tyr His Met Asp Val Ser Lys Asn Asn
465 470 475 480
Ile Thr Gly Pro Ile Pro Pro Ser Ile Gly Asn Cys Ser Gly Leu Thr
485 490 495
Ser Ile His Leu Ser Met Asn Lys Leu Thr Gly Phe Ile Pro Ser Glu
500 505 510
Leu Gly Asn Leu Val Asn Leu Leu Val Val Asp Leu Ser Ser Asn Gln
515 520 525
Leu Glu Gly Ser Leu Pro Ser Gln Leu Ser Lys Cys His Asn Leu Gly
530 535 540
Lys Phe Asp Val Gly Phe Asn Ser Leu Asn Gly Ser Val Pro Ser Ser
545 550 555 560
Leu Arg Asn Trp Thr Ser Leu Ser Thr Leu Ile Leu Lys Glu Asn His
565 570 575
Phe Ile Gly Gly Ile Pro Pro Phe Leu Ser Glu Leu Glu Lys Leu Thr
580 585 590
Glu Ile Gln Leu Gly Gly Asn Phe Leu Gly Gly Glu Ile Pro Ser Trp
595 600 605
Ile Gly Ser Leu Gln Ser Leu Gln Tyr Ala Leu Asn Leu Ser Ser Asn
610 615 620
Gly Leu Phe Gly Glu Leu Pro Ser Glu Leu Gly Asn Leu Ile Lys Leu
625 630 635 640
Glu Gln Leu Gln Leu Ser Asn Asn Asn Leu Thr Gly Thr Leu Ala Pro
645 650 655
Leu Asp Lys Ile His Ser Leu Val Gln Val Asp Ile Ser Tyr Asn His
660 665 670
Phe Ser Gly Pro Ile Pro Glu Thr Leu Met Asn Leu Leu Asn Ser Ser
675 680 685
Pro Ser Ser Phe Trp Gly Asn Pro Asp Leu Cys Val Ser Cys Leu Pro
690 695 700
Ser Gly Gly Leu Thr Cys Thr Lys Asn Arg Ser Ile Lys Pro Cys Asp
705 710 715 720
Ser Gln Ser Ser Lys Arg Asp Ser Phe Ser Arg Val Ala Val Ala Leu
725 730 735
Ile Ala Ile Ala Ser Val Val Ala Val Phe Met Leu Val Gly Leu Val
740 745 750
Cys Met Phe Ile Leu Cys Arg Arg Cys Lys Gln Asp Leu Gly Ile Asp
755 760 765
His Asp Val Glu Ile Ala Ala Gln Glu Gly Pro Ser Ser Leu Leu Asn
770 775 780
Lys Val Met Gln Ala Thr Glu Asn Leu Asn Asp Arg His Ile Val Gly
785 790 795 800
Arg Gly Thr His Gly Thr Val Tyr Lys Ala Ser Leu Gly Gly Asp Lys
805 810 815
Ile Phe Ala Val Lys Lys Ile Val Phe Thr Gly His Lys Gly Gly Asn
820 825 830
Lys Ser Met Val Thr Glu Ile Gln Thr Ile Gly Lys Ile Arg His Arg
835 840 845
Asn Leu Leu Lys Leu Glu Asn Phe Trp Leu Arg Lys Asp Tyr Gly Leu
850 855 860
Ile Leu Tyr Ala Tyr Met Gln Asn Gly Ser Val His Asp Val Leu His
865 870 875 880
Gly Ser Thr Pro Pro Gln Thr Leu Glu Trp Ser Ile Arg His Lys Ile
885 890 895
Ala Leu Gly Thr Ala His Gly Leu Glu Tyr Leu His Tyr Asp Cys Asn
900 905 910
Pro Pro Ile Val His Arg Asp Ile Lys Pro Glu Asn Ile Leu Leu Asp
915 920 925
Ser Asp Met Glu Pro His Ile Ser Asp Phe Gly Ile Ala Lys Leu Leu
930 935 940
Asp Gln Ser Ser Ala Ser Ala Gln Ser Phe Leu Val Ala Gly Thr Ile
945 950 955 960
Gly Tyr Ile Ala Pro Glu Asn Ala Leu Ser Thr Ile Lys Ser Lys Glu
965 970 975
Ser Asp Val Tyr Ser Tyr Gly Val Val Leu Leu Glu Leu Ile Thr Arg
980 985 990
Lys Lys Ala Leu Asp Pro Leu Phe Val Gly Glu Thr Asp Ile Val Glu
995 1000 1005
Trp Val Arg Ser Val Trp Ser Ser Thr Glu Asp Ile Asn Lys Ile Ala
1010 1015 1020
Asp Ser Ser Leu Arg Glu Glu Phe Leu Asp Ser Asn Ile Met Asn Gln
1025 1030 1035 1040
Ala Ile Asp Val Leu Leu Val Ala Leu Arg Cys Thr Glu Lys Ala Pro
1045 1050 1055
Arg Arg Arg Pro Thr Met Arg Asp Val Val Lys Arg Leu Val Lys Arg
1060 1065 1070
Asp Ala Ser Ile Arg Gly Lys Arg Ser
1075 1080
<210> SEQ ID NO 162
<211> LENGTH: 3102
<212> TYPE: DNA
<213> ORGANISM: Populus trichocarpa
<400> SEQUENCE: 162
atgagttctg ttttgaatca tgtcttgctg ttatgttggt actttgtgtc tgtctatacc 60
gtgtctggct tgaactatga tgggtcgact ctgttgtcac tcttgaggca gtggaattct 120
gtgcctcctt ccataacttc aagctggaat gcatcagact caactccatg ttcttggcta 180
ggtataggat gtgatagtag aacccatagt gtagtttctt tgaacctctc tggttatgca 240
acttctggtc aattgggacc agagattgga ctcttaaagc atttgaaaac catcgatttg 300
cacaccagta atttctctgg tgacataccc tcacagttag gcaattgtag tctacttgag 360
cacttggatt tgtccataaa tagctttacg cgaaaaatac ctgatggctt taagtacctt 420
caaaatttgc agtatttgag tctttccttt aattcactct ctggtgagat acctgagagt 480
ctaaccaagc ttgaaagcct tgccgagttg cttctcgatc ataatagtct tgagggtaga 540
attcctacag gtttcagcaa ttgcaagaat ttggacacct tagatttgtc cttcaatagc 600
tttagtgggg gtttcccttc agaccttggc aattttagca gcttagcaat cttggccatt 660
attaatagtc acttaagagg tgccatccca tcttcctttg gccacctaaa aaagctttct 720
taccttgacc tctcccagaa tcaattgtct gggaggattc ctcctgaact tggggattgc 780
gagtcgttga cgaccttaaa cttgtacaca aatcaactcg agggagagat tccgggtgaa 840
ttggggaggc taagcaaatt agagaacctg gaattgtttg acaatcgctt gagtggtgaa 900
attcctatca gcatttggaa gattgcaagt cttaagagca tctatgtgta caacaacagt 960
ctttctggtg aattaccgct tgagatgact gagctcaggc aactacagaa tatctcactg 1020
gcacaaaatc aattctacgg ggtcattccc caaactttgg gaatcaacag cagcttattg 1080
tggctcgatt tctttggcaa taagttcact ggtgaaattc cgccaaatct ttgctacggg 1140
cagcaattga gaattcttgt tatgggttcc aaccaacttc aaggcagcat tccttctgat 1200
gtgggaggct gcccaacact ctggagattg accctcgagg agaacaacct ctcaggtacc 1260
cttccacagt tcgcagaaaa tcctatcctc ctgtacatgg acatcagcaa aaataatatt 1320
acaggcccaa ttccgcccag cattgggaat tgtagtggtc tcactttcat tcgtctttcc 1380
atgaacaagc ttacagggtc cataccctca gagctaggta atcttataaa ccttctggta 1440
gtggatcttt catccaacca actggaaggt tctttgccat ctcagctgtc aaggtgttac 1500
aaattaggcc agtttgatgt ggggtttaat tcactgaatg gcacaattcc gtcaagtttg 1560
aggaactgga cgagcttatc cactttggtt ttaagtgaga atcattttac cgggggcatt 1620
ccacctttcc tgccagaact tggaatgctt acagagctac aacttggtgg gaatattcta 1680
ggaggtgtga ttccttcatc cattggatcg gtgcggagtc tgaagtatgc cttgaatctc 1740
agcagcaatg gattcgtcgg aaaacttcct tccgagctag ggaacttgaa aatgcttgaa 1800
agacttgata tatcaaacaa taatctgaca ggaactctag caattcttga ttatatcctt 1860
tcatgggaca aggtcaatgt ttcaaacaat catttcacag gtgcaatacc ggaaacactg 1920
atggacttgc ttaactattc tccgtcatca ttcttgggca atcctggcct atgtgtcatg 1980
tgttctccat caagccgcat agcatgcccc aagaacagaa atttcttgcc atgtgacagt 2040
caaacaagca atcaaaatgg actatctaaa gtggcaatcg taatgatagc ccttgctcct 2100
gttgctgctg tttctgtgct tcttggagtg gtttacttgt ttatcaggcg cagaagatat 2160
aatcaggatg ttgagatcac ttctctagat ggtccatctt cactactcaa caaggtgctg 2220
gaagttactg agaatctaaa tgacagacat atcattggga ggggagctca tggaacagtt 2280
tataaggctt cattgggagg agacaaaatc tttgcagtaa aaaaaattgt atttgcaggc 2340
cacaaagaaa ggaacaaaag catggttaga gaaattcaga ccattgggaa aatcaagcac 2400
cggaatctga tcaaattgga ggagttttgg tttcaaaagg actacggtct aatcctgtat 2460
acttacatgc aaaatgggag cctctatgat gtcttacatg gaaccagagc accaccaatc 2520
ctggattggg aaatgcggta taagatagct attggaattg cacatggatt ggaatatatc 2580
cattatgatt gtgatcctcc tatagtgcat agagacatca aaccagaaaa cattctttta 2640
gactctgata tggagcctca tatctctgat tttggcatag ctaagctaat ggatcagtct 2700
tctgcttcag cacagtccct ctctgttgcg ggaactattg gatatatagc tccagaaaac 2760
gcatttacga caataaagac gaaggaatct gatgtttata gttatggggt tgttttgctt 2820
gtgcttataa ctagaaagaa ggcactggat ccctcattta cggagggaac agctattgta 2880
gggtgggtta ggtctgtttg gaacatcacg gaagacatca acaggattgc tgattcaagt 2940
cttggagagg aatttttgag ttcttacagc atcaaggatc aagtcattaa cgtgcttttg 3000
atggctttga gatgtactga agaagagcct agcaaaagac cctcaatgag agatgttgtc 3060
aggcaattag taaaagcaaa cgatcgcaga aggaggaggt ga 3102
<210> SEQ ID NO 163
<211> LENGTH: 1033
<212> TYPE: PRT
<213> ORGANISM: Populus trichocarpa
<400> SEQUENCE: 163
Met Ser Ser Val Leu Asn His Val Leu Leu Leu Cys Trp Tyr Phe Val
1 5 10 15
Ser Val Tyr Thr Val Ser Gly Leu Asn Tyr Asp Gly Ser Thr Leu Leu
20 25 30
Ser Leu Leu Arg Gln Trp Asn Ser Val Pro Pro Ser Ile Thr Ser Ser
35 40 45
Trp Asn Ala Ser Asp Ser Thr Pro Cys Ser Trp Leu Gly Ile Gly Cys
50 55 60
Asp Ser Arg Thr His Ser Val Val Ser Leu Asn Leu Ser Gly Tyr Ala
65 70 75 80
Thr Ser Gly Gln Leu Gly Pro Glu Ile Gly Leu Leu Lys His Leu Lys
85 90 95
Thr Ile Asp Leu His Thr Ser Asn Phe Ser Gly Asp Ile Pro Ser Gln
100 105 110
Leu Gly Asn Cys Ser Leu Leu Glu His Leu Asp Leu Ser Ile Asn Ser
115 120 125
Phe Thr Arg Lys Ile Pro Asp Gly Phe Lys Tyr Leu Gln Asn Leu Gln
130 135 140
Tyr Leu Ser Leu Ser Phe Asn Ser Leu Ser Gly Glu Ile Pro Glu Ser
145 150 155 160
Leu Thr Lys Leu Glu Ser Leu Ala Glu Leu Leu Leu Asp His Asn Ser
165 170 175
Leu Glu Gly Arg Ile Pro Thr Gly Phe Ser Asn Cys Lys Asn Leu Asp
180 185 190
Thr Leu Asp Leu Ser Phe Asn Ser Phe Ser Gly Gly Phe Pro Ser Asp
195 200 205
Leu Gly Asn Phe Ser Ser Leu Ala Ile Leu Ala Ile Ile Asn Ser His
210 215 220
Leu Arg Gly Ala Ile Pro Ser Ser Phe Gly His Leu Lys Lys Leu Ser
225 230 235 240
Tyr Leu Asp Leu Ser Gln Asn Gln Leu Ser Gly Arg Ile Pro Pro Glu
245 250 255
Leu Gly Asp Cys Glu Ser Leu Thr Th r Leu Asn Leu Tyr Thr Asn Gln
260 265 270
Leu Glu Gly Glu Ile Pro Gly Glu Leu Gly Arg Leu Ser Lys Leu Glu
275 280 285
Asn Leu Glu Leu Phe Asp Asn Arg Leu Ser Gly Glu Ile Pro Ile Ser
290 295 300
Ile Trp Lys Ile Ala Ser Leu Lys Ser Ile Tyr Val Tyr Asn Asn Ser
305 310 315 320
Leu Ser Gly Glu Leu Pro Leu Glu Met Thr Glu Leu Arg Gln Leu Gln
325 330 335
Asn Ile Ser Leu Ala Gln Asn Gln Phe Tyr Gly Val Ile Pro Gln Thr
340 345 350
Leu Gly Ile Asn Ser Ser Leu Leu Trp Leu Asp Phe Phe Gly Asn Lys
355 360 365
Phe Thr Gly Glu Ile Pro Pro Asn Leu Cys Tyr Gly Gln Gln Leu Arg
370 375 380
Ile Leu Val Met Gly Ser Asn Gln Leu Gln Gly Ser Ile Pro Ser Asp
385 390 395 400
Val Gly Gly Cys Pro Thr Leu Trp Arg Leu Thr Leu Glu Glu Asn Asn
405 410 415
Leu Ser Gly Thr Leu Pro Gln Phe Ala Glu Asn Pro Ile Leu Leu Tyr
420 425 430
Met Asp Ile Ser Lys Asn Asn Ile Thr Gly Pro Ile Pro Pro Ser Ile
435 440 445
Gly Asn Cys Ser Gly Leu Thr Phe Ile Arg Leu Ser Met Asn Lys Leu
450 455 460
Thr Gly Ser Ile Pro Ser Glu Leu Gly Asn Leu Ile Asn Leu Leu Val
465 470 475 480
Val Asp Leu Ser Ser Asn Gln Leu Glu Gly Ser Leu Pro Ser Gln Leu
485 490 495
Ser Arg Cys Tyr Lys Leu Gly Gln Phe Asp Val Gly Phe Asn Ser Leu
500 505 510
Asn Gly Thr Ile Pro Ser Ser Leu Arg Asn Trp Thr Ser Leu Ser Thr
515 520 525
Leu Val Leu Ser Glu Asn His Phe Thr Gly Gly Ile Pro Pro Phe Leu
530 535 540
Pro Glu Leu Gly Met Leu Thr Glu Leu Gln Leu Gly Gly Asn Ile Leu
545 550 555 560
Gly Gly Val Ile Pro Ser Ser Ile Gly Ser Val Arg Ser Leu Lys Tyr
565 570 575
Ala Leu Asn Leu Ser Ser Asn Gly Phe Val Gly Lys Leu Pro Ser Glu
580 585 590
Leu Gly Asn Leu Lys Met Leu Glu Arg Leu Asp Ile Ser Asn Asn Asn
595 600 605
Leu Thr Gly Thr Leu Ala Ile Leu Asp Tyr Ile Leu Ser Trp Asp Lys
610 615 620
Val Asn Val Ser Asn Asn His Phe Thr Gly Ala Ile Pro Glu Thr Leu
625 630 635 640
Met Asp Leu Leu Asn Tyr Ser Pro Ser Ser Phe Leu Gly Asn Pro Gly
645 650 655
Leu Cys Val Met Cys Ser Pro Ser Ser Arg Ile Ala Cys Pro Lys Asn
660 665 670
Arg Asn Phe Leu Pro Cys Asp Ser Gln Thr Ser Asn Gln Asn Gly Leu
675 680 685
Ser Lys Val Ala Ile Val Met Ile Ala Leu Ala Pro Val Ala Ala Val
690 695 700
Ser Val Leu Leu Gly Val Val Tyr Leu Phe Ile Arg Arg Arg Arg Tyr
705 710 715 720
Asn Gln Asp Val Glu Ile Thr Ser Leu Asp Gly Pro Ser Ser Leu Leu
725 730 735
Asn Lys Val Leu Glu Val Thr Glu Asn Leu Asn Asp Arg His Ile Ile
740 745 750
Gly Arg Gly Ala His Gly Thr Val Tyr Lys Ala Ser Leu Gly Gly Asp
755 760 765
Lys Ile Phe Ala Val Lys Lys Ile Val Phe Ala Gly His Lys Glu Arg
770 775 780
Asn Lys Ser Met Val Arg Glu Ile Gln Thr Ile Gly Lys Ile Lys His
785 790 795 800
Arg Asn Leu Ile Lys Leu Glu Glu Phe Trp Phe Gln Lys Asp Tyr Gly
805 810 815
Leu Ile Leu Tyr Thr Tyr Met Gln Asn Gly Ser Leu Tyr Asp Val Leu
820 825 830
His Gly Thr Arg Ala Pro Pro Ile Leu Asp Trp Glu Met Arg Tyr Lys
835 840 845
Ile Ala Ile Gly Ile Ala His Gly Leu Glu Tyr Ile His Tyr Asp Cys
850 855 860
Asp Pro Pro Ile Val His Arg Asp Ile Lys Pro Glu Asn Ile Leu Leu
865 870 875 880
Asp Ser Asp Met Glu Pro His Ile Ser Asp Phe Gly Ile Ala Lys Leu
885 890 895
Met Asp Gln Ser Ser Ala Ser Ala Gln Ser Leu Ser Val Ala Gly Thr
900 905 910
Ile Gly Tyr Ile Ala Pro Glu Asn Ala Phe Thr Thr Ile Lys Thr Lys
915 920 925
Glu Ser Asp Val Tyr Ser Tyr Gly Val Val Leu Leu Val Leu Ile Thr
930 935 940
Arg Lys Lys Ala Leu Asp Pro Ser Phe Thr Glu Gly Thr Ala Ile Val
945 950 955 960
Gly Trp Val Arg Ser Val Trp Asn Ile Thr Glu Asp Ile Asn Arg Ile
965 970 975
Ala Asp Ser Ser Leu Gly Glu Glu Phe Leu Ser Ser Tyr Ser Ile Lys
980 985 990
Asp Gln Val Ile Asn Val Leu Leu Met Ala Leu Arg Cys Thr Glu Glu
995 1000 1005
Glu Pro Ser Lys Arg Pro Ser Met Arg Asp Val Val Arg Gln Leu Val
1010 1015 1020
Lys Ala Asn Asp Arg Arg Arg Arg Arg
1025 1030
<210> SEQ ID NO 164
<211> LENGTH: 3222
<212> TYPE: DNA
<213> ORGANISM: Vitis vinifera
<400> SEQUENCE: 164
atggctctca agagcaaatg ggcagtgccc actttcatgg aagagagctg gaacgcctct 60
cattccaccc catgttcatg ggttggagtt tcatgtgatg aaacccacat tgtggtttct 120
cttaacgtct ccggtttggg aatatccggc catttgggtc cggagattgc agatttgagg 180
cacttgacca gtgtcgattt cagctacaac agtttctcag gtccaattcc gccggagttt 240
ggaaattgca gtcttctgat ggatttagac ctgtctgtga atggttttgt tggtgaaata 300
ccccaaaact tgaacagttt ggggaagtta gaatatctga gcttttgtaa taattcattg 360
actggtgcag tccctgaatc cttgtttcgg attccgaatt tggaaatgct ttacctgaat 420
tccaacaaac tcagtggttc aatccctttg aatgttggaa atgctactca gattatagcc 480
ctatggttgt atgataatgc attatcaggc gacattcctt cttccattgg aaattgtagt 540
gaattggagg agctttactt gaatcacaac caatttttag gggttttgcc tgaaagtata 600
aacaatcttg agaacctagt ttatttagat gtgagcaata acaatttaga gggtaaaatt 660
cctttgggtt caggctattg caagaaattg gatactttgg ttctgtcaat gaatggtttt 720
ggtggcgaaa ttccaccagg tttgggcaac tgcactagct tatcgcagtt tgctgctttg 780
aacaataggt tatcaggtag tattccatct tcctttggac tgctacataa gctcttgctt 840
ttgtacctct ctgaaaatca tttgtcggga aagataccac ctgagattgg gcaatgcaag 900
tccttgagaa gcttgcattt atacatgaac caacttgagg gggaaatccc aagtgaatta 960
gggatgttga atgagttaca agacctccgt ttatttaata accggttaac tggtgagatt 1020
cctattagta tttggaagat tccaagcctc gagaatgttc ttgtgtacaa taacactctt 1080
tctggagaac tgcctgtaga gataactgag ctcaagcacc tgaagaacat ttccttgttc 1140
aacaatcggt tctctggagt catacctcaa cgtttgggga ttaacagtag tttggtgcag 1200
ttggatgtta caaataataa gttcactggt gaaatcccaa aaagtatttg ctttggaaaa 1260
caactgagcg tgctgaatat gggtctgaat ctacttcaag gtagtattcc ttctgctgta 1320
ggaagctgtt caactttgag aagattgatt cttaggaaga ataatctgac tggggttctt 1380
cccaattttg caaaaaatcc taaccttttg ttgttggacc tcagcgagaa tggcatcaat 1440
ggaacaattc cattaagctt ggggaactgt accaatgtca cctccatcaa cttgtcaatg 1500
aacaggcttt caggactaat accccaagag ctaggaaacc ttaatgttct tcaggctttg 1560
aatctttctc ataatgattt aggaggtcca ttgccatctc aactgtcaaa ttgtaagaat 1620
ttgtttaaat ttgatgtggg gtttaattca ttgaatggtt cattcccatc aagtttaagg 1680
agcttagaaa atttgtcagt tttgattttg agggagaatc gttttactgg gggtattcca 1740
tctttcttgt ctgaactaca atatctttca gagatacagc ttggtggaaa ttttctggga 1800
ggaaatatcc cttcatcgat tggaatgttg cagaatctaa tctattcatt gaatatcagt 1860
cataacagat tgacaggttc acttccctta gagcttggga agttgatcat gctagagcga 1920
ttagatatat ctcacaacaa tctttcaggg actctatcag ctcttgatgg actccattcg 1980
ttggtcgtgg ttgatgtttc atacaatctt ttcaatggtc ctctcccaga aactctactt 2040
ttgtttttga attcatctcc ttcatcactt cagggcaatc ctgacctttg tgtcaaatgt 2100
cctcaaactg gtggcttaac ttgcatccag aataggaatt tcagaccatg tgagcattac 2160
tcaagcaacc ggagagccct tggaaaaatt gaaattgcat ggatagcttt cgcatcattg 2220
ctctcatttc ttgtgcttgt tggacttgtt tgcatgtttc tctggtacaa aagaacaaaa 2280
caggaagaca agatcactgc tcaagagggt tcatcttctc tactcaacaa agtaatagaa 2340
gctactgaga atctcaaaga atgctatatc gttggaaaag gagcccatgg aactgtttat 2400
aaggcttcgc tgggtccaaa taatcagtat gccttaaaga aacttgtgtt tgcagggctt 2460
aaaggaggaa gtatggctat ggttacagaa attcaaacag ttggaaagat cagacaccgg 2520
aatttggtca agttggaaga tttctggata agaaaggaat atggttttat cttgtacagg 2580
tacatggaaa atggaagcct tcatgatgtt ttacatgaga ggaatccccc accaattttg 2640
aagtgggatg ttcgctacaa gatagccatt ggaacagccc atggattaac atatctgcac 2700
tatgactgtg atcctgcaat tgtgcatcga gatgtcaaac cagataacat acttctagac 2760
tcagatatgg agcctcatat ctctgatttt ggtattgcta agctgctgga tcagtcctct 2820
tctttgtcac catccatctc agttgtgggt acaattggat atattgcacc agagaatgca 2880
tttacaacaa caaagagcaa agagtctgat gtgtatagct ttggggttgt cctgcttgaa 2940
ctgattacca gaaaaagggc actggatcct tcatttatgg aggaaactga cattgtgggg 3000
tgggttcagt ctatttggag gaacttggaa gaagttgata agattgttga cccaagcctt 3060
ctggaggaat ttatagatcc aaatatcatg gatcaagtgg tttgtgtgct tttagtagct 3120
ttaagatgta cgcaaaagga ggcaagcaaa aggcctacaa tgagagatgt tgttaatcag 3180
ttaacagatg caaacgctcc tgccagaggc aaaaacagct ag 3222
<210> SEQ ID NO 165
<211> LENGTH: 1073
<212> TYPE: PRT
<213> ORGANISM: Vitis vinifera
<400> SEQUENCE: 165
Met Ala Leu Lys Ser Lys Trp Ala Val Pro Thr Phe Met Glu Glu Ser
1 5 10 15
Trp Asn Ala Ser His Ser Thr Pro Cys Ser Trp Val Gly Val Ser Cys
20 25 30
Asp Glu Thr His Ile Val Val Ser Leu Asn Val Ser Gly Leu Gly Ile
35 40 45
Ser Gly His Leu Gly Pro Glu Ile Ala Asp Leu Arg His Leu Thr Ser
50 55 60
Val Asp Phe Ser Tyr Asn Ser Phe Ser Gly Pro Ile Pro Pro Glu Phe
65 70 75 80
Gly Asn Cys Ser Leu Leu Met Asp Leu Asp Leu Ser Val Asn Gly Phe
85 90 95
Val Gly Glu Ile Pro Gln Asn Leu Asn Ser Leu Gly Lys Leu Glu Tyr
100 105 110
Leu Ser Phe Cys Asn Asn Ser Leu Thr Gly Ala Val Pro Glu Ser Leu
115 120 125
Phe Arg Ile Pro Asn Leu Glu Met Leu Tyr Leu Asn Ser Asn Lys Leu
130 135 140
Ser Gly Ser Ile Pro Leu Asn Val Gly Asn Ala Thr Gln Ile Ile Ala
145 150 155 160
Leu Trp Leu Tyr Asp Asn Ala Leu Ser Gly Asp Ile Pro Ser Ser Ile
165 170 175
Gly Asn Cys Ser Glu Leu Glu Glu Leu Tyr Leu Asn His Asn Gln Phe
180 185 190
Leu Gly Val Leu Pro Glu Ser Ile Asn Asn Leu Glu Asn Leu Val Tyr
195 200 205
Leu Asp Val Ser Asn Asn Asn Leu Glu Gly Lys Ile Pro Leu Gly Ser
210 215 220
Gly Tyr Cys Lys Lys Leu Asp Thr Leu Val Leu Ser Met Asn Gly Phe
225 230 235 240
Gly Gly Glu Ile Pro Pro Gly Leu Gly Asn Cys Thr Ser Leu Ser Gln
245 250 255
Phe Ala Ala Leu Asn Asn Arg Leu Ser Gly Ser Ile Pro Ser Ser Phe
260 265 270
Gly Leu Leu His Lys Leu Leu Leu Leu Tyr Leu Ser Glu Asn His Leu
275 280 285
Ser Gly Lys Ile Pro Pro Glu Ile Gly Gln Cys Lys Ser Leu Arg Ser
290 295 300
Leu His Leu Tyr Met Asn Gln Leu Glu Gly Glu Ile Pro Ser Glu Leu
305 310 315 320
Gly Met Leu Asn Glu Leu Gln Asp Leu Arg Leu Phe Asn Asn Arg Leu
325 330 335
Thr Gly Glu Ile Pro Ile Ser Ile Trp Lys Ile Pro Ser Leu Glu Asn
340 345 350
Val Leu Val Tyr Asn Asn Thr Leu Ser Gly Glu Leu Pro Val Glu Ile
355 360 365
Thr Glu Leu Lys His Leu Lys Asn Ile Ser Leu Phe Asn Asn Arg Phe
370 375 380
Ser Gly Val Ile Pro Gln Arg Leu Gly Ile Asn Ser Ser Leu Val Gln
385 390 395 400
Leu Asp Val Thr Asn Asn Lys Phe Thr Gly Glu Ile Pro Lys Ser Ile
405 410 415
Cys Phe Gly Lys Gln Leu Ser Val Leu Asn Met Gly Leu Asn Leu Leu
420 425 430
Gln Gly Ser Ile Pro Ser Ala Val Gly Ser Cys Ser Thr Leu Arg Arg
435 440 445
Leu Ile Leu Arg Lys Asn Asn Leu Thr Gly Val Leu Pro Asn Phe Ala
450 455 460
Lys Asn Pro Asn Leu Leu Leu Leu Asp Leu Ser Glu Asn Gly Ile Asn
465 470 475 480
Gly Thr Ile Pro Leu Ser Leu Gly Asn Cys Thr Asn Val Thr Ser Ile
485 490 495
Asn Leu Ser Met Asn Arg Leu Ser Gly Leu Ile Pro Gln Glu Leu Gly
500 505 510
Asn Leu Asn Val Leu Gln Ala Leu Asn Leu Ser His Asn Asp Leu Gly
515 520 525
Gly Pro Leu Pro Ser Gln Leu Ser Asn Cys Lys Asn Leu Phe Lys Phe
530 535 540
Asp Val Gly Phe Asn Ser Leu Asn Gly Ser Phe Pro Ser Ser Leu Arg
545 550 555 560
Ser Leu Glu Asn Leu Ser Val Leu Ile Leu Arg Glu Asn Arg Phe Thr
565 570 575
Gly Gly Ile Pro Ser Phe Leu Ser Glu Leu Gln Tyr Leu Ser Glu Ile
580 585 590
Gln Leu Gly Gly Asn Phe Leu Gly Gly Asn Ile Pro Ser Ser Ile Gly
595 600 605
Met Leu Gln Asn Leu Ile Tyr Ser Leu Asn Ile Ser His Asn Arg Leu
610 615 620
Thr Gly Ser Leu Pro Leu Glu Leu Gly Lys Leu Ile Met Leu Glu Arg
625 630 635 640
Leu Asp Ile Ser His Asn Asn Leu Ser Gly Thr Leu Ser Ala Leu Asp
645 650 655
Gly Leu His Ser Leu Val Val Val Asp Val Ser Tyr Asn Leu Phe Asn
660 665 670
Gly Pro Leu Pro Glu Thr Leu Leu Leu Phe Leu Asn Ser Ser Pro Ser
675 680 685
Ser Leu Gln Gly Asn Pro Asp Leu Cys Val Lys Cys Pro Gln Thr Gly
690 695 700
Gly Leu Thr Cys Ile Gln Asn Arg Asn Phe Arg Pro Cys Glu His Tyr
705 710 715 720
Ser Ser Asn Arg Arg Ala Leu Gly Lys Ile Glu Ile Ala Trp Ile Ala
725 730 735
Phe Ala Ser Leu Leu Ser Phe Leu Val Leu Val Gly Leu Val Cys Met
740 745 750
Phe Leu Trp Tyr Lys Arg Thr Lys Gln Glu Asp Lys Ile Thr Ala Gln
755 760 765
Glu Gly Ser Ser Ser Leu Leu Asn Lys Val Ile Glu Ala Thr Glu Asn
770 775 780
Leu Lys Glu Cys Tyr Ile Val Gly Lys Gly Ala His Gly Thr Val Tyr
785 790 795 800
Lys Ala Ser Leu Gly Pro Asn Asn Gln Tyr Ala Leu Lys Lys Leu Val
805 810 815
Phe Ala Gly Leu Lys Gly Gly Ser Met Ala Met Val Thr Glu Ile Gln
820 825 830
Thr Val Gly Lys Ile Arg His Arg Asn Leu Val Lys Leu Glu Asp Phe
835 840 845
Trp Ile Arg Lys Glu Tyr Gly Phe Ile Leu Tyr Arg Tyr Met Glu Asn
850 855 860
Gly Ser Leu His Asp Val Leu His Glu Arg Asn Pro Pro Pro Ile Leu
865 870 875 880
Lys Trp Asp Val Arg Tyr Lys Ile Ala Ile Gly Thr Ala His Gly Leu
885 890 895
Thr Tyr Leu His Tyr Asp Cys Asp Pro Ala Ile Val His Arg Asp Val
900 905 910
Lys Pro Asp Asn Ile Leu Leu Asp Ser Asp Met Glu Pro His Ile Ser
915 920 925
Asp Phe Gly Ile Ala Lys Leu Leu Asp Gln Ser Ser Ser Leu Ser Pro
930 935 940
Ser Ile Ser Val Val Gly Thr Ile Gly Tyr Ile Ala Pro Glu Asn Ala
945 950 955 960
Phe Thr Thr Thr Lys Ser Lys Glu Ser Asp Val Tyr Ser Phe Gly Val
965 970 975
Val Leu Leu Glu Leu Ile Thr Arg Lys Arg Ala Leu Asp Pro Ser Phe
980 985 990
Met Glu Glu Thr Asp Ile Val Gly Trp Val Gln Ser Ile Trp Arg Asn
995 1000 1005
Leu Glu Glu Val Asp Lys Ile Val Asp Pro Ser Leu Leu Glu Glu Phe
1010 1015 1020
Ile Asp Pro Asn Ile Met Asp Gln Val Val Cys Val Leu Leu Val Ala
1025 1030 1035 1040
Leu Arg Cys Thr Gln Lys Glu Ala Ser Lys Arg Pro Thr Met Arg Asp
1045 1050 1055
Val Val Asn Gln Leu Thr Asp Ala Asn Ala Pro Ala Arg Gly Lys Asn
1060 1065 1070
Ser
<210> SEQ ID NO 166
<211> LENGTH: 3372
<212> TYPE: DNA
<213> ORGANISM: Zea mays
<400> SEQUENCE: 166
atgaagctgg ttttctggca ttggattttt ctattcttcg tgttgctttc aacatcacag 60
ggtatgagtt cagatggcct agctcttctt gctctgtcca aaaccctaat actaccaagt 120
ttcataagga ccaactggag tgcttctgat gcaactcctt gtacatggaa cggtgttggc 180
tgcaatggaa ggaacagagt gatttctctc gacctatcgt catcagaggt ctcaggtttt 240
ataggacctg aaatagggcg tctgaaatac ctgcaggttc tcattttatc tgctaacaac 300
atatctggtt tgatccctct agaattgggc aactgcagta tgcttgaaca attggatctg 360
tcccaaaact tgctttctgg caatataccg gcatcaatgg gcagcctcaa gaaattgtca 420
tcactgtcgc tgtactacaa ctctttccat ggaacaatac cagaggagtt gttcaagaac 480
cagtttctgg agcaagtgta cctacatgga aatcagctca gtggttggat acccttctcg 540
gttggtgaaa tgacaagcct taagtcattg tggttgcacg aaaatatgtt gtccggagtt 600
ttgcccagtt caattggcaa ctgcaccaag ttggaggagc tgtatctact ccataatcaa 660
ctgagtggca gtattccaga aaccttgagt aagatcgaag gcctcaaggt ttttgatgcc 720
actgccaata gtttcacggg cgagatctct ttcagttttg agaactgcaa gctggaaata 780
ttcatcttgt cattcaataa tataaagggt gaaattccgt catggctagg gaattgcagg 840
agcttgcaac aacttggatt tgtcaataat agtctgtctg gcaaaattcc aaattttata 900
ggcttattca gcaacctcac gtatctttta ctttcacaga actccctgac tgggctgatc 960
ccacctgaga ttggtaactg tcggttgctg cagtggctag agctagatgc aaatcagctg 1020
gagggcactg ttcctgaaga atttgcaaat ttaaggtatt tgtcaaagct ctttcttttc 1080
gagaatcacc tcatgggaga cttccctgag agtatttgga gtatccaaac cctcgagagt 1140
gtccttcttt atagcaacaa attcacaggg aggctacctt cagtgttagc tgagctgaag 1200
tccctaaaga acatcacact gtttgataat ttcttcactg gagtcatacc acaggagctg 1260
ggtgttaata gccccttggt ccagatagat ttcacaaata acagttttgt tggtggtatc 1320
ccaccaaaca tttgttcagg aaaagcattg agaattttgg acttggggtt taatcatctc 1380
aacggtagca tcccatccag tgttctggac tgcccaagtc tggagcgagt cattgtcgaa 1440
aacaataacc ttgttgggtc tattccgcaa tttataaact gtgcaaatct aagttatatg 1500
gatctgagcc acaattcctt gagtggtaac ataccatcaa gtttcagcag gtgtgtaaaa 1560
attgctgaga taaactggtc agagaacaat atttttgggg caataccacc agaaattgga 1620
aagttggtga atctgaaaag gcttgacctc tcacacaatc tattgcatgg ttcgatccct 1680
gtgcaaattt ctagttgctc caagttgtat tcacttgatt tgggttttaa ctctttgaat 1740
ggttcggccc tcagcacagt aagcagcctg aagtttctga cacagctacg attgcaagag 1800
aatagattca gcggaggttt gcctgatcct ttctcacaat tggaaatgct tattgagctg 1860
caacttggtg gaaatattct tgggggcagt atcccttcat cattaggaca gctggtgaaa 1920
ctgggtacaa ccttgaacct tagtagcaat ggtctagtgg gtgacattcc atcacaattc 1980
ggtaatttgg tggagttgca aaacttagat ttgtcattta ataatctcac aggaggcctt 2040
gctacattgc gaagtctacg ctttttgcag gccttgaatg tttcttacaa ccaatttagt 2100
ggaccagttc cagataatct tgtgaagttt ctgagttcca caacaaattc ttttgatgga 2160
aacccaggcc tctgtatctc ttgcagcacc agtgattctt cttgcatggg agctaatgtt 2220
ctgaaacctt gtggcgggtc aaagaaaaga gcagtgcatg gccgattcaa aattgttctc 2280
atagttcttg gctcattatt tgtgggagca gttctggtac tcatactctg gtgcatcctt 2340
ctgaaatctc gagatcagaa gaagaatagt gaggaagcag tcagtcatat gtttgaaggt 2400
tcctcatcta aattaaatga ggttatagag gcaactgaat gttttgatga caagtatatc 2460
attggtaaag gtggtcacgg aaccgtttac aaggcaacac tgaggtcagg ggatgtttat 2520
gctataaaga aacttgtgat ttctgcacac aaaggttcat acaaaagcat ggttggagaa 2580
ctgaagacac taggtaaaat caagcacagg aacttgatta agctgaaaga atcttggttg 2640
agaaatgaca atggattcat actgtatgat tttatggaaa aaggtagcct tcatgatgtt 2700
ctacatgtag ttcagccagc accagcctta gactggtgtg tgcggtatga catagccctc 2760
ggcactgccc atgggttagc atatctacat gatgactgcc gccctgcgat cattcatcgc 2820
gacatcaagc caagtaatat actgctggac aaggacatgg tgccacatat ttcagatttt 2880
ggcattgcaa agctcttgga gcagccttct actgctcctc agaccactgg tgttgttggc 2940
accattggat atatggcccc agagttagcg ttctccacca agagcagcat ggagtccgac 3000
gtgtacagct acggcgtggt gctgctggag ctgctcacga ggagggcggc ggtggatccc 3060
tcgtttcccg acggcacgga catagtcagc tgggcgtcgt ccgccctgaa cggcactgac 3120
aaaatcgagg ccgtctgcga cccggccctc atggaggaag tcttcggcac ggtggagatg 3180
gaggaggtga gtaaggtcct gtcagtggcg ctgcggtgcg cggccaggga ggcgagccaa 3240
aggccctcca tgaccgcggt cgtgaaggag ctgacggatg cacggcctgc cactggcggc 3300
ggccggtcgt tgtccaagtc gaagcagggg aaaccaggat cgcaatccaa cagcagcgcc 3360
taccggcagt ag 3372
<210> SEQ ID NO 167
<211> LENGTH: 1123
<212> TYPE: PRT
<213> ORGANISM: Zea mays
<400> SEQUENCE: 167
Met Lys Leu Val Phe Trp His Trp Ile Phe Leu Phe Phe Val Leu Leu
1 5 10 15
Ser Thr Ser Gln Gly Met Ser Ser Asp Gly Leu Ala Leu Leu Ala Leu
20 25 30
Ser Lys Thr Leu Ile Leu Pro Ser Phe Ile Arg Thr Asn Trp Ser Ala
35 40 45
Ser Asp Ala Thr Pro Cys Thr Trp Asn Gly Val Gly Cys Asn Gly Arg
50 55 60
Asn Arg Val Ile Ser Leu Asp Leu Ser Ser Ser Glu Val Ser Gly Phe
65 70 75 80
Ile Gly Pro Glu Ile Gly Arg Leu Lys Tyr Leu Gln Val Leu Ile Leu
85 90 95
Ser Ala Asn Asn Ile Ser Gly Leu Ile Pro Leu Glu Leu Gly Asn Cys
100 105 110
Ser Met Leu Glu Gln Leu Asp Leu Ser Gln Asn Leu Leu Ser Gly Asn
115 120 125
Ile Pro Ala Ser Met Gly Ser Leu Lys Lys Leu Ser Ser Leu Ser Leu
130 135 140
Tyr Tyr Asn Ser Phe His Gly Thr Ile Pro Glu Glu Leu Phe Lys Asn
145 150 155 160
Gln Phe Leu Glu Gln Val Tyr Leu His Gly Asn Gln Leu Ser Gly Trp
165 170 175
Ile Pro Phe Ser Val Gly Glu Met Thr Ser Leu Lys Ser Leu Trp Leu
180 185 190
His Glu Asn Met Leu Ser Gly Val Leu Pro Ser Ser Ile Gly Asn Cys
195 200 205
Thr Lys Leu Glu Glu Leu Tyr Leu Leu His Asn Gln Leu Ser Gly Ser
210 215 220
Ile Pro Glu Thr Leu Ser Lys Ile Glu Gly Leu Lys Val Phe Asp Ala
225 230 235 240
Thr Ala Asn Ser Phe Thr Gly Glu Ile Ser Phe Ser Phe Glu Asn Cys
245 250 255
Lys Leu Glu Ile Phe Ile Leu Ser Phe Asn Asn Ile Lys Gly Glu Ile
260 265 270
Pro Ser Trp Leu Gly Asn Cys Arg Ser Leu Gln Gln Leu Gly Phe Val
275 280 285
Asn Asn Ser Leu Ser Gly Lys Ile Pro Asn Phe Ile Gly Leu Phe Ser
290 295 300
Asn Leu Thr Tyr Leu Leu Leu Ser Gln Asn Ser Leu Thr Gly Leu Ile
305 310 315 320
Pro Pro Glu Ile Gly Asn Cys Arg Leu Leu Gln Trp Leu Glu Leu Asp
325 330 335
Ala Asn Gln Leu Glu Gly Thr Val Pro Glu Glu Phe Ala Asn Leu Arg
340 345 350
Tyr Leu Ser Lys Leu Phe Leu Phe Glu Asn His Leu Met Gly Asp Phe
355 360 365
Pro Glu Ser Ile Trp Ser Ile Gln Thr Leu Glu Ser Val Leu Leu Tyr
370 375 380
Ser Asn Lys Phe Thr Gly Arg Leu Pro Ser Val Leu Ala Glu Leu Lys
385 390 395 400
Ser Leu Lys Asn Ile Thr Leu Phe Asp Asn Phe Phe Thr Gly Val Ile
405 410 415
Pro Gln Glu Leu Gly Val Asn Ser Pro Leu Val Gln Ile Asp Phe Thr
420 425 430
Asn Asn Ser Phe Val Gly Gly Ile Pro Pro Asn Ile Cys Ser Gly Lys
435 440 445
Ala Leu Arg Ile Leu Asp Leu Gly Phe Asn His Leu Asn Gly Ser Ile
450 455 460
Pro Ser Ser Val Leu Asp Cys Pro Ser Leu Glu Arg Val Ile Val Glu
465 470 475 480
Asn Asn Asn Leu Val Gly Ser Ile Pro Gln Phe Ile Asn Cys Ala Asn
485 490 495
Leu Ser Tyr Met Asp Leu Ser His Asn Ser Leu Ser Gly Asn Ile Pro
500 505 510
Ser Ser Phe Ser Arg Cys Val Lys Ile Ala Glu Ile Asn Trp Ser Glu
515 520 525
Asn Asn Ile Phe Gly Ala Ile Pro Pro Glu Ile Gly Lys Leu Val Asn
530 535 540
Leu Lys Arg Leu Asp Leu Ser His Asn Leu Leu His Gly Ser Ile Pro
545 550 555 560
Val Gln Ile Ser Ser Cys Ser Lys Leu Tyr Ser Leu Asp Leu Gly Phe
565 570 575
Asn Ser Leu Asn Gly Ser Ala Leu Ser Thr Val Ser Ser Leu Lys Phe
580 585 590
Leu Thr Gln Leu Arg Leu Gln Glu Asn Arg Phe Ser Gly Gly Leu Pro
595 600 605
Asp Pro Phe Ser Gln Leu Glu Met Leu Ile Glu Leu Gln Leu Gly Gly
610 615 620
Asn Ile Leu Gly Gly Ser Ile Pro Ser Ser Leu Gly Gln Leu Val Lys
625 630 635 640
Leu Gly Thr Thr Leu Asn Leu Ser Ser Asn Gly Leu Val Gly Asp Ile
645 650 655
Pro Ser Gln Phe Gly Asn Leu Val Glu Leu Gln Asn Leu Asp Leu Ser
660 665 670
Phe Asn Asn Leu Thr Gly Gly Leu Ala Thr Leu Arg Ser Leu Arg Phe
675 680 685
Leu Gln Ala Leu Asn Val Ser Tyr Asn Gln Phe Ser Gly Pro Val Pro
690 695 700
Asp Asn Leu Val Lys Phe Leu Ser Ser Thr Thr Asn Ser Phe Asp Gly
705 710 715 720
Asn Pro Gly Leu Cys Ile Ser Cys Ser Thr Ser Asp Ser Ser Cys Met
725 730 735
Gly Ala Asn Val Leu Lys Pro Cys Gly Gly Ser Lys Lys Arg Ala Val
740 745 750
His Gly Arg Phe Lys Ile Val Leu Ile Val Leu Gly Ser Leu Phe Val
755 760 765
Gly Ala Val Leu Val Leu Ile Leu Trp Cys Ile Leu Leu Lys Ser Arg
770 775 780
Asp Gln Lys Lys Asn Ser Glu Glu Ala Val Ser His Met Phe Glu Gly
785 790 795 800
Ser Ser Ser Lys Leu Asn Glu Val Ile Glu Ala Thr Glu Cys Phe Asp
805 810 815
Asp Lys Tyr Ile Ile Gly Lys Gly Gly His Gly Thr Val Tyr Lys Ala
820 825 830
Thr Leu Arg Ser Gly Asp Val Tyr Ala Ile Lys Lys Leu Val Ile Ser
835 840 845
Ala His Lys Gly Ser Tyr Lys Ser Met Val Gly Glu Leu Lys Thr Leu
850 855 860
Gly Lys Ile Lys His Arg Asn Leu Ile Lys Leu Lys Glu Ser Trp Leu
865 870 875 880
Arg Asn Asp Asn Gly Phe Ile Leu Tyr Asp Phe Met Glu Lys Gly Ser
885 890 895
Leu His Asp Val Leu His Val Val Gln Pro Ala Pro Ala Leu Asp Trp
900 905 910
Cys Val Arg Tyr Asp Ile Ala Leu Gly Thr Ala His Gly Leu Ala Tyr
915 920 925
Leu His Asp Asp Cys Arg Pro Ala Ile Ile His Arg Asp Ile Lys Pro
930 935 940
Ser Asn Ile Leu Leu Asp Lys Asp Met Val Pro His Ile Ser Asp Phe
945 950 955 960
Gly Ile Ala Lys Leu Leu Glu Gln Pro Ser Thr Ala Pro Gln Thr Thr
965 970 975
Gly Val Val Gly Thr Ile Gly Tyr Met Ala Pro Glu Leu Ala Phe Ser
980 985 990
Thr Lys Ser Ser Met Glu Ser Asp Val Tyr Ser Tyr Gly Val Val Leu
995 1000 1005
Leu Glu Leu Leu Thr Arg Arg Ala Ala Val Asp Pro Ser Phe Pro Asp
1010 1015 1020
Gly Thr Asp Ile Val Ser Trp Ala Ser Ser Ala Leu Asn Gly Thr Asp
1025 1030 1035 1040
Lys Ile Glu Ala Val Cys Asp Pro Ala Leu Met Glu Glu Val Phe Gly
1045 1050 1055
Thr Val Glu Met Glu Glu Val Ser Lys Val Leu Ser Val Ala Leu Arg
1060 1065 1070
Cys Ala Ala Arg Glu Ala Ser Gln Arg Pro Ser Met Thr Ala Val Val
1075 1080 1085
Lys Glu Leu Thr Asp Ala Arg Pro Ala Thr Gly Gly Gly Arg Ser Leu
1090 1095 1100
Ser Lys Ser Lys Gln Gly Lys Pro Gly Ser Gln Ser Asn Ser Ser Ala
1105 1110 1115 1120
Tyr Arg Gln
<210> SEQ ID NO 168
<211> LENGTH: 3423
<212> TYPE: DNA
<213> ORGANISM: Zea mays
<400> SEQUENCE: 168
atgaagctgg ttttatggca tcagtttttt ctcttcttcg tgttagtttc aacatcacag 60
ggtatgagtt cagatggcct agctcttctt gctctgtcca aaagcctcat actaccaagt 120
cccataagaa ccaactggag tgattctgat gcaactccct gtacatggag cggtgttggt 180
tgcaatggaa ggaacagagt catctctctc gacctatcat cgtcaggtgt ttcgggttct 240
ataggacctg caatagggcg tctgaaatac ctgcggattc tcatcttatc agctaacaac 300
atatctggtt tgatccctct agaattggga gactgcaata tgcttgaaga actggatttg 360
tcccaaaacc tgttttctgg caatatacca gcatcattgg gcaacctcaa gaaattgtca 420
tcactgtcac tgtaccgcaa ctccttcaat ggaacaatac cagaggagtt gttcaagaac 480
cagtttctgg agcaagtgta cctacatgac aatcagctca gtggttcggt gcccttatcg 540
gttggtgaaa tgacaagcct taagtcactg tggttacagg aaaatatgtt gtctggagtt 600
ttgcccagtt caattggaaa ctgcaccaag ttggaggatc tgtatctact cgataatcaa 660
ctgagtggca gtattcctga aaccttgggt atgatcaaag gtctcaaggt ttttgatgct 720
actaccaata gtttcacagg tgagatctct ttcagttttg aggactgcaa gctagaaata 780
ttcatcttgt ctttcaataa tataaaaggt gaaattccat catggctggg gaactgcatg 840
agcttgcaac aacttggatt tgtcaataat agtttgtatg gcaaaattcc aaattctctt 900
ggcttattga gcaacctcac atatctttta ctttcacaga actccctttc tgggccgatc 960
ccacctgaga ttggtaactg tcagtcgctg cagtggctag agttagatgc aaaccagctg 1020
gatggcactg ttcctgaaga atttgcaaat ttacggagtt tgtcaaagct ctttcttttt 1080
gagaatcgcc tcatgggaga cttccctgag aatatttgga gtatccaaac cctcgagagt 1140
gtcctacttt atagcaacag attcacaggg aagctacctt cagtgttagc tgagctgaag 1200
ttcctaaaga acatcacact gtttgataat ttcttcactg gagtcatacc acaggagcta 1260
ggtgttaata gccccttggt ccagatagat ttcacaaaca acagttttgt tggtagtatc 1320
ccaccaaaca tctgttcaag aaaagcattg agaattttgg acttagggtt taatcatctc 1380
aacggtagca tcccatccag tgttgtggac tgcccaagtt tgaagcgagt cattttacaa 1440
aacaataacc ttaacgggtc tattccacaa tttgtaaact gtgcaaatct aagttatatg 1500
gacctaagcc acaattcctt gagtggtaac attccagcaa gcttcagcag atgtgtaaac 1560
attactgaga taaactggtc agagaacaag ctttttggag caataccacc tgaaattgga 1620
aacttagtga atctgaaaag acttgacctc tcacacaaca tattgcatgg ttcgatccct 1680
gtgcaaattt ccagttgctc caagttgtac tcacttgatt tgagttttaa ctcattgaat 1740
ggttcggccc tccgcaccgt aagcaacttg aagtttctga cacagctacg attgcaagag 1800
aatagattca gcggaggctt gcctgattct ctctcacaat tggaaatgct tattgagctg 1860
caacttggtg gaaatattct tgggggtagt atcccttcgt cattaggaca gctggtgaaa 1920
ctgggcacag ccttgaacct tagtagcaat ggcctaatgg gtgacattcc aacacaattg 1980
ggtaatttgg tggagttgca aaacttagat ttttcattta ataatctcac aggaggcctt 2040
gctacattga gaagtctagg ctttttgcag gccttgaatg tttcttacaa ccaatttagt 2100
ggaccagtcc cagataatct tctgaagttt ctgagttcca caccatattc ttttgatgga 2160
aacccaggcc tctgtatctc ctgcagcacc agtggctctt cttgcatggg agctaatgtt 2220
ttgaaacctt gtggtgggtc gaagaaaaga ggagtacatg gccaattgaa aattgttctc 2280
atagttctcg gttcattatt tgtgggagga gttcttgtac ttgtactgtg ttgcatcctt 2340
ctgaaatctc gagattggaa gaaaaataaa gtcagtaaca tgtttgaagg ttcctcatct 2400
aaattaaatg aggttacaga ggccactgaa aatttcgatg acaagtatat catcggtaca 2460
ggtgctcacg gaactgttta caaggcaaca ctgaggtcag gggatgttta tgctataaag 2520
aagcttgcga tttctgcaca caaaggttca tacaaaagca tggttagaga actgaagaca 2580
ctgggtgaaa ttaagcacag aaacttgata aagctgaaag aattttggtt gagaagtgat 2640
aatggattca tactgtatga ttttatggaa aagggcagcc tccatgatat tctgcatgta 2700
attcagccag caccagcttt ggactggtgt gtgaggtatg acatagctct tggcaccgcc 2760
catgggttag catatcttca tgatgactgc cgccctgcga tcattcaccg tgatattaaa 2820
ccaagaaata tactgctcga caaggacatg gtgccacata tttcagattt tggcattgca 2880
aagcacatgg accagtcttc tactactgct ccacagacca ctggaatcgt tggcactatt 2940
ggatatatgg ccccagaata cacaccgatg accgacgcat acttacattg catgcgctgt 3000
cttgcagaat tggcgttttc caccaagagc agcatggagt ctgacgtgta cagctacggt 3060
gtggtgctac tggagctgtt gaccaggagg acggcggtgg atcctttgtt ccccgacagc 3120
gcggacatag tcggctgggt gtcgtccgtg ctggacggca ccgacaaaat cgaggccgtc 3180
tgtgacccgg ccctcatgga ggaagtcttc ggcacggtgg agatggagga ggtgcgtaag 3240
gtcctgtcgg tggcgctccg gtgcgcggcc agggaggtga gccaaaggcc ctccatgact 3300
gccgtcgtga aggagctgac ggatgcgcgg ccagcctctg ccagcagcgg cagccggtcg 3360
ttgtccaagt cgagggaagg gaaaccggga ttgcaatcca gcagcagcgc gtactggcag 3420
tag 3423
<210> SEQ ID NO 169
<211> LENGTH: 1123
<212> TYPE: PRT
<213> ORGANISM: Zea mays
<400> SEQUENCE: 169
Met Lys Leu Val Leu Trp His Gln Phe Phe Leu Phe Phe Val Leu Val
1 5 10 15
Ser Thr Ser Gln Gly Met Ser Ser Asp Gly Leu Ala Leu Leu Ala Leu
20 25 30
Ser Lys Ser Leu Ile Leu Pro Ser Pro Ile Arg Thr Asn Trp Ser Asp
35 40 45
Ser Asp Ala Thr Pro Cys Thr Trp Ser Gly Val Gly Cys Asn Gly Arg
50 55 60
Asn Arg Val Ile Ser Leu Asp Leu Ser Ser Ser Gly Val Ser Gly Ser
65 70 75 80
Ile Gly Pro Ala Ile Gly Arg Leu Lys Tyr Leu Arg Ile Leu Ile Leu
85 90 95
Ser Ala Asn Asn Ile Ser Gly Leu Ile Pro Leu Glu Leu Gly Asp Cys
100 105 110
Asn Met Leu Glu Glu Leu Asp Leu Ser Gln Asn Leu Phe Ser Gly Asn
115 120 125
Ile Pro Ala Ser Leu Gly Asn Leu Lys Lys Leu Ser Ser Leu Ser Leu
130 135 140
Tyr Arg Asn Ser Phe Asn Gly Thr Ile Pro Glu Glu Leu Phe Lys Asn
145 150 155 160
Gln Phe Leu Glu Gln Val Tyr Leu His Asp Asn Gln Leu Ser Gly Ser
165 170 175
Val Pro Leu Ser Val Gly Glu Met Thr Ser Leu Lys Ser Leu Trp Leu
180 185 190
Gln Glu Asn Met Leu Ser Gly Val Leu Pro Ser Ser Ile Gly Asn Cys
195 200 205
Thr Lys Leu Glu Asp Leu Tyr Leu Leu Asp Asn Gln Leu Ser Gly Ser
210 215 220
Ile Pro Glu Thr Leu Gly Met Ile Lys Gly Leu Lys Val Phe Asp Ala
225 230 235 240
Thr Thr Asn Ser Phe Thr Gly Glu Ile Ser Phe Ser Phe Glu Asp Cys
245 250 255
Lys Leu Glu Ile Phe Ile Leu Ser Phe Asn Asn Ile Lys Gly Glu Ile
260 265 270
Pro Ser Trp Leu Gly Asn Cys Met Ser Leu Gln Gln Leu Gly Phe Val
275 280 285
Asn Asn Ser Leu Tyr Gly Lys Ile Pro Asn Ser Leu Gly Leu Leu Ser
290 295 300
Asn Leu Thr Tyr Leu Leu Leu Ser Gln Asn Ser Leu Ser Gly Pro Ile
305 310 315 320
Pro Pro Glu Ile Gly Asn Cys Gln Ser Leu Gln Trp Leu Glu Leu Asp
325 330 335
Ala Asn Gln Leu Asp Gly Thr Val Pro Glu Glu Phe Ala Asn Leu Arg
340 345 350
Ser Leu Ser Lys Leu Phe Leu Phe Glu Asn Arg Leu Met Gly Asp Phe
355 360 365
Pro Glu Asn Ile Trp Ser Ile Gln Thr Leu Glu Ser Val Leu Leu Tyr
370 375 380
Ser Asn Arg Phe Thr Gly Lys Leu Pro Ser Val Leu Ala Glu Leu Lys
385 390 395 400
Phe Leu Lys Asn Ile Thr Leu Phe Asp Asn Phe Phe Thr Gly Val Ile
405 410 415
Pro Gln Glu Leu Gly Val Asn Ser Pro Leu Val Gln Ile Asp Phe Thr
420 425 430
Asn Asn Ser Phe Val Gly Ser Ile Pro Pro Asn Ile Cys Ser Arg Lys
435 440 445
Ala Leu Arg Ile Leu Asp Leu Gly Phe Asn His Leu Asn Gly Ser Ile
450 455 460
Pro Ser Ser Val Val Asp Cys Pro Ser Leu Lys Arg Val Ile Leu Gln
465 470 475 480
Asn Asn Asn Leu Asn Gly Ser Ile Pro Gln Phe Val Asn Cys Ala Asn
485 490 495
Leu Ser Tyr Met Asp Leu Ser His Asn Ser Leu Ser Gly Asn Ile Pro
500 505 510
Ala Ser Phe Ser Arg Cys Val Asn Ile Thr Glu Ile Asn Trp Ser Glu
515 520 525
Asn Lys Leu Phe Gly Ala Ile Pro Pro Glu Ile Gly Asn Leu Val Asn
530 535 540
Leu Lys Arg Leu Asp Leu Ser His Asn Ile Leu His Gly Ser Ile Pro
545 550 555 560
Val Gln Ile Ser Ser Cys Ser Lys Leu Tyr Ser Leu Asp Leu Ser Phe
565 570 575
Asn Ser Leu Asn Gly Ser Ala Leu Arg Thr Val Ser Asn Leu Lys Phe
580 585 590
Leu Thr Gln Leu Arg Leu Gln Glu Asn Arg Phe Ser Gly Gly Leu Pro
595 600 605
Asp Ser Leu Ser Gln Leu Glu Met Leu Ile Glu Leu Gln Leu Gly Gly
610 615 620
Asn Ile Leu Gly Gly Ser Ile Pro Ser Ser Leu Gly Gln Leu Val Lys
625 630 635 640
Leu Gly Thr Ala Leu Asn Leu Ser Ser Asn Gly Leu Met Gly Asp Ile
645 650 655
Pro Thr Gln Leu Gly Asn Leu Val Glu Leu Gln Asn Leu Asp Phe Ser
660 665 670
Phe Asn Asn Leu Thr Gly Gly Leu Ala Thr Leu Arg Ser Leu Gly Phe
675 680 685
Leu Gln Ala Leu Asn Val Ser Tyr Asn Gln Phe Ser Gly Pro Val Pro
690 695 700
Asp Asn Leu Leu Lys Phe Leu Ser Ser Thr Pro Tyr Ser Phe Asp Gly
705 710 715 720
Asn Pro Gly Leu Cys Ile Ser Cys Ser Thr Ser Gly Ser Ser Cys Met
725 730 735
Gly Ala Asn Val Leu Lys Pro Cys Gly Gly Ser Lys Lys Arg Gly Val
740 745 750
His Gly Gln Leu Lys Ile Val Leu Ile Val Leu Gly Ser Leu Phe Val
755 760 765
Gly Gly Val Leu Val Leu Val Leu Cys Cys Ile Leu Leu Lys Ser Arg
770 775 780
Asp Trp Lys Lys Asn Lys Val Ser Asn Met Phe Glu Gly Ser Ser Ser
785 790 795 800
Lys Leu Asn Glu Val Thr Glu Ala Thr Glu Asn Phe Asp Asp Lys Tyr
805 810 815
Ile Ile Gly Thr Gly Ala His Gly Thr Val Tyr Lys Ala Thr Leu Arg
820 825 830
Ser Gly Asp Val Tyr Ala Ile Lys Lys Leu Ala Ile Ser Ala His Lys
835 840 845
Gly Ser Tyr Lys Ser Met Val Arg Glu Leu Lys Thr Leu Gly Glu Ile
850 855 860
Lys His Arg Asn Leu Ile Lys Leu Lys Glu Phe Trp Leu Arg Ser Asp
865 870 875 880
Asn Gly Phe Ile Leu Tyr Asp Phe Met Glu Lys Gly Ser Leu His Asp
885 890 895
Ile Leu His Val Ile Gln Pro Ala Pro Ala Leu Asp Trp Cys Val Arg
900 905 910
Tyr Asp Ile Ala Leu Gly Thr Ala His Gly Leu Ala Tyr Leu His Asp
915 920 925
Asp Cys Arg Pro Ala Ile Ile His Arg Asp Ile Lys Pro Arg Asn Ile
930 935 940
Leu Leu Asp Lys Asp Met Val Pro His Ile Ser Asp Phe Gly Ile Ala
945 950 955 960
Lys His Met Asp Gln Ser Ser Thr Thr Ala Pro Gln Thr Thr Gly Ile
965 970 975
Val Gly Thr Ile Gly Tyr Met Ala Pro Glu Leu Ala Phe Ser Thr Lys
980 985 990
Ser Ser Met Glu Ser Asp Val Tyr Ser Tyr Gly Val Val Leu Leu Glu
995 1000 1005
Leu Leu Thr Arg Arg Thr Ala Val Asp Pro Leu Phe Pro Asp Ser Ala
1010 1015 1020
Asp Ile Val Gly Trp Val Ser Ser Val Leu Asp Gly Thr Asp Lys Ile
1025 1030 1035 1040
Glu Ala Val Cys Asp Pro Ala Leu Met Glu Glu Val Phe Gly Thr Val
1045 1050 1055
Glu Met Glu Glu Val Arg Lys Val Leu Ser Val Ala Leu Arg Cys Ala
1060 1065 1070
Ala Arg Glu Val Ser Gln Arg Pro Ser Met Thr Ala Val Val Lys Glu
1075 1080 1085
Leu Thr Asp Ala Arg Pro Ala Ser Ala Ser Ser Gly Ser Arg Ser Leu
1090 1095 1100
Ser Lys Ser Arg Glu Gly Lys Pro Gly Leu Gln Ser Ser Ser Ser Ala
1105 1110 1115 1120
Tyr Trp Gln
<210> SEQ ID NO 170
<211> LENGTH: 3366
<212> TYPE: DNA
<213> ORGANISM: Sorghum bicolor
<400> SEQUENCE: 170
atgaagctgg tttggcattg ggtttttcta ttcttcctgt tagtctcaac atcacagggt 60
atgagttcag atggcctagc tcttcttgct ctgtccaaaa gcctcatact accaagttcc 120
ataagatcca actggagcac ttctgcaaat ccttgtacat ggagcggtgt tgattgcaat 180
ggaaggaaca gagtcatttc tctcgaccta tcatcatcag aggtttcagg atctatagga 240
ccagatatag ggcgtctgaa atacctgcaa gttctcattt tgtctactaa caacatatct 300
ggttcgattc ctctagaatt aggcaactgc agtatgcttg aacaattgga tttgtcccaa 360
aacttgcttt ctggcaatat accagcatca atgggcaacc tcaagaaatt gtcatcactg 420
tcactgtact ctaactcttt gaatggatca ataccagagg agttgttcaa gaaccagttt 480
ctggaggaag tgtacctaca tgacaatcag ctcagtggtt cgataccctt cgcggttggt 540
gaaatgacaa gccttaagtc attgtggttg catgtaaata tgttgtctgg agttttgccc 600
agttcaattg gcaactgcac caagttggag gagctgtatc tactctataa tcaactgagt 660
ggcagtcttc cagaaacctt gagtgagatc aaaggcctca gggtttttga tgccactagc 720
aacagcttca caggcgagat caatttcagt ttcgagaact gcaagctgga aatattcatc 780
ttgtcattca attatataaa gggagaaatt ccatcatggc tggtgaattg caggagcatg 840
caacagcttg gatttgtcaa taatagtctg tctggcaaga ttccaaattc tctagggtta 900
ttgagcaacc tcacacatct tttactttct cagaattccc tgtctgggcc aatccctcct 960
gagattagta actgtcggtt gctgcagtgg ctagagttgg atgcaaacca gctggagggc 1020
actgttcctg aagggttggc aaatttacgg aacctctcaa ggctctttct gtttgagaat 1080
catctcatgg gagagtttcc tgagagtatt tggagtatcc aaaccctcga gagtgtgctt 1140
ctttatagaa acagattcac tgggaagcta ccttcagtgt tagctgagct gaagtacctg 1200
gagaacatta cactgtttga taatttcttc actggagtca taccacagga gctgggtgtt 1260
aatagcccct tggtgcagat agatttcaca aataacagtt ttgttggtgg tatcccacca 1320
aaaatttgtt caggaaaagc attgagaatt ctggacttgg ggtttaatca tctcaacggt 1380
agcatcccat ccaatgttgt ggactgccca agtctggaga gagtcattgt cgaaaacaat 1440
aaccttgatg ggtctattcc gcaatttaaa aactgtgcaa atctaagtta tatggatctg 1500
agccacaatt ccttaagtgg taacattcct gcaagcttca gcagatgtgt aaacattact 1560
gagataaact ggtcagagaa caagctatct ggggcaatac cacctgaaat tggaaactta 1620
gtgaatctga aaagacttga cctctcacac aacgtattac atggttcagt tcctgtgcag 1680
atttccagtt gctccaagtt gtattcactt gatttgagtt ttaactcttt gaatggttcg 1740
gcccttagca cagtaagcaa cttgaagtat ctgacacaac tacgattgca agagaataga 1800
ttcagcggag gctttcctaa gtctctctcc caattggaaa tgcttattga gctgcaactt 1860
ggtggaaata ttattggggg tagtatccct tcatcattag gacagctggt gaaactgggc 1920
acagccttga accttagtag caatggtcta attggtgata ttccaccaca attgggcaat 1980
ttagtggact tgcaaaactt agatttgtca tttaataatc tcacaggagg ccttgctaca 2040
ttgagaagtc taggtttttt gcatgccttg aatgtttctt acaaccaatt tagtggacct 2100
gtcccagata atcttctgaa gtttctgagt tcgacaccaa attcttttaa tggaaaccca 2160
ggcctctgtg tctcttgcag caccagtgat tcttcttgca tgggagctaa tgttttgaaa 2220
ccttgtggtg ggtcgaagaa taggggtgtg catggccgat tcaaaattgt cctcatagtt 2280
cttggttcat tatttgtggg agcagttttg gtacttgtac tgtgttgcat ctttctgaaa 2340
tctcgagatc ggaagaaaaa tactgaggaa gcagtcagta gtatgtttga aggttcctca 2400
tctaaattaa atgagattat agaggctact gaaaattttg atgacaagta tatcatcggt 2460
acaggtggtc acggaactgt ttacaaggca acactgaggt caggagatgt ttatgctata 2520
aagaaacttg tgatttctgc acacaaaggt tcatacaaaa gcatggttag ggaactgaag 2580
acactaggaa aaattaagca cagaaacttg ataaagttga aagaattttg gttcagacgt 2640
gataatggat tcatactgta tgattttatg gaaaaaggta gccttcatga tgtgctgcat 2700
gtaattcagc cagcaccaac tttggactgg tgtgtgaggt atgacatagc cctcggcacc 2760
gcccatgggt tagcatatct tcacgatgac tgccgccctg cgatcattca ccgtgatatc 2820
aagccaagta atatactgct ggacaaggac atggtgccac atatttcaga ctttggcatt 2880
gcaaagctca tggaccagcc ttctactgct tcacagacca ctggaatcgt tggaaccatt 2940
ggatatatgg ccccagaatt ggcgttttcc accaagagca gcatggagtc cgacgtatac 3000
agctacggcg tggtgctact ggagctgctc accaggagga cggcggtgga tccttcgttc 3060
cccgacagca cggacatagt tggctgggtg tcgtccgcgc taaacggcac cgacaaaatc 3120
gaggccgtct gcgacccagc cctcatggag gaagtcttcg gcacggtgga gatggaggag 3180
gtgcgcaagg tgctgtcggt ggcgctgcgg tgcgcggcca gggaggcgag ccaaaggccg 3240
tccatggccg acgtcgtgaa ggagctgacg ggcgtacggc ttgccactgg cagtggcggc 3300
ggccggtcgt tgtccaagtc gaagcagggg aaaccgggat cgcaatccca cagcagcgcg 3360
tactag 3366
<210> SEQ ID NO 171
<211> LENGTH: 1121
<212> TYPE: PRT
<213> ORGANISM: Sorghum bicolor
<400> SEQUENCE: 171
Met Lys Leu Val Trp His Trp Val Phe Leu Phe Phe Leu Leu Val Ser
1 5 10 15
Thr Ser Gln Gly Met Ser Ser Asp Gly Leu Ala Leu Leu Ala Leu Ser
20 25 30
Lys Ser Leu Ile Leu Pro Ser Ser Ile Arg Ser Asn Trp Ser Thr Ser
35 40 45
Ala Asn Pro Cys Thr Trp Ser Gly Val Asp Cys Asn Gly Arg Asn Arg
50 55 60
Val Ile Ser Leu Asp Leu Ser Ser Ser Glu Val Ser Gly Ser Ile Gly
65 70 75 80
Pro Asp Ile Gly Arg Leu Lys Tyr Leu Gln Val Leu Ile Leu Ser Thr
85 90 95
Asn Asn Ile Ser Gly Ser Ile Pro Leu Glu Leu Gly Asn Cys Ser Met
100 105 110
Leu Glu Gln Leu Asp Leu Ser Gln Asn Leu Leu Ser Gly Asn Ile Pro
115 120 125
Ala Ser Met Gly Asn Leu Lys Lys Leu Ser Ser Leu Ser Leu Tyr Ser
130 135 140
Asn Ser Leu Asn Gly Ser Ile Pro Glu Glu Leu Phe Lys Asn Gln Phe
145 150 155 160
Leu Glu Glu Val Tyr Leu His Asp Asn Gln Leu Ser Gly Ser Ile Pro
165 170 175
Phe Ala Val Gly Glu Met Thr Ser Leu Lys Ser Leu Trp Leu His Val
180 185 190
Asn Met Leu Ser Gly Val Leu Pro Ser Ser Ile Gly Asn Cys Thr Lys
195 200 205
Leu Glu Glu Leu Tyr Leu Leu Tyr Asn Gln Leu Ser Gly Ser Leu Pro
210 215 220
Glu Thr Leu Ser Glu Ile Lys Gly Leu Arg Val Phe Asp Ala Thr Ser
225 230 235 240
Asn Ser Phe Thr Gly Glu Ile Asn Phe Ser Phe Glu Asn Cys Lys Leu
245 250 255
Glu Ile Phe Ile Leu Ser Phe Asn Tyr Ile Lys Gly Glu Ile Pro Ser
260 265 270
Trp Leu Val Asn Cys Arg Ser Met Gln Gln Leu Gly Phe Val Asn Asn
275 280 285
Ser Leu Ser Gly Lys Ile Pro Asn Ser Leu Gly Leu Leu Ser Asn Leu
290 295 300
Thr His Leu Leu Leu Ser Gln Asn Ser Leu Ser Gly Pro Ile Pro Pro
305 310 315 320
Glu Ile Ser Asn Cys Arg Leu Leu Gln Trp Leu Glu Leu Asp Ala Asn
325 330 335
Gln Leu Glu Gly Thr Val Pro Glu Gly Leu Ala Asn Leu Arg Asn Leu
340 345 350
Ser Arg Leu Phe Leu Phe Glu Asn His Leu Met Gly Glu Phe Pro Glu
355 360 365
Ser Ile Trp Ser Ile Gln Thr Leu Glu Ser Val Leu Leu Tyr Arg Asn
370 375 380
Arg Phe Thr Gly Lys Leu Pro Ser Val Leu Ala Glu Leu Lys Tyr Leu
385 390 395 400
Glu Asn Ile Thr Leu Phe Asp Asn Phe Phe Thr Gly Val Ile Pro Gln
405 410 415
Glu Leu Gly Val Asn Ser Pro Leu Val Gln Ile Asp Phe Thr Asn Asn
420 425 430
Ser Phe Val Gly Gly Ile Pro Pro Lys Ile Cys Ser Gly Lys Ala Leu
435 440 445
Arg Ile Leu Asp Leu Gly Phe Asn His Leu Asn Gly Ser Ile Pro Ser
450 455 460
Asn Val Val Asp Cys Pro Ser Leu Glu Arg Val Ile Val Glu Asn Asn
465 470 475 480
Asn Leu Asp Gly Ser Ile Pro Gln Phe Lys Asn Cys Ala Asn Leu Ser
485 490 495
Tyr Met Asp Leu Ser His Asn Ser Leu Ser Gly Asn Ile Pro Ala Ser
500 505 510
Phe Ser Arg Cys Val Asn Ile Thr Glu Ile Asn Trp Ser Glu Asn Lys
515 520 525
Leu Ser Gly Ala Ile Pro Pro Glu Ile Gly Asn Leu Val Asn Leu Lys
530 535 540
Arg Leu Asp Leu Ser His Asn Val Leu His Gly Ser Val Pro Val Gln
545 550 555 560
Ile Ser Ser Cys Ser Lys Leu Tyr Ser Leu Asp Leu Ser Phe Asn Ser
565 570 575
Leu Asn Gly Ser Ala Leu Ser Thr Val Ser Asn Leu Lys Tyr Leu Thr
580 585 590
Gln Leu Arg Leu Gln Glu Asn Arg Phe Ser Gly Gly Phe Pro Lys Ser
595 600 605
Leu Ser Gln Leu Glu Met Leu Ile Glu Leu Gln Leu Gly Gly Asn Ile
610 615 620
Ile Gly Gly Ser Ile Pro Ser Ser Leu Gly Gln Leu Val Lys Leu Gly
625 630 635 640
Thr Ala Leu Asn Leu Ser Ser Asn Gly Leu Ile Gly Asp Ile Pro Pro
645 650 655
Gln Leu Gly Asn Leu Val Asp Leu Gln Asn Leu Asp Leu Ser Phe Asn
660 665 670
Asn Leu Thr Gly Gly Leu Ala Thr Leu Arg Ser Leu Gly Phe Leu His
675 680 685
Ala Leu Asn Val Ser Tyr Asn Gln Phe Ser Gly Pro Val Pro Asp Asn
690 695 700
Leu Leu Lys Phe Leu Ser Ser Thr Pro Asn Ser Phe Asn Gly Asn Pro
705 710 715 720
Gly Leu Cys Val Ser Cys Ser Thr Ser Asp Ser Ser Cys Met Gly Ala
725 730 735
Asn Val Leu Lys Pro Cys Gly Gly Ser Lys Asn Arg Gly Val His Gly
740 745 750
Arg Phe Lys Ile Val Leu Ile Val Leu Gly Ser Leu Phe Val Gly Ala
755 760 765
Val Leu Val Leu Val Leu Cys Cys Ile Phe Leu Lys Ser Arg Asp Arg
770 775 780
Lys Lys Asn Thr Glu Glu Ala Val Ser Ser Met Phe Glu Gly Ser Ser
785 790 795 800
Ser Lys Leu Asn Glu Ile Ile Glu Ala Thr Glu Asn Phe Asp Asp Lys
805 810 815
Tyr Ile Ile Gly Thr Gly Gly His Gly Thr Val Tyr Lys Ala Thr Leu
820 825 830
Arg Ser Gly Asp Val Tyr Ala Ile Lys Lys Leu Val Ile Ser Ala His
835 840 845
Lys Gly Ser Tyr Lys Ser Met Val Arg Glu Leu Lys Thr Leu Gly Lys
850 855 860
Ile Lys His Arg Asn Leu Ile Lys Leu Lys Glu Phe Trp Phe Arg Arg
865 870 875 880
Asp Asn Gly Phe Ile Leu Tyr Asp Phe Met Glu Lys Gly Ser Leu His
885 890 895
Asp Val Leu His Val Ile Gln Pro Ala Pro Thr Leu Asp Trp Cys Val
900 905 910
Arg Tyr Asp Ile Ala Leu Gly Thr Ala His Gly Leu Ala Tyr Leu His
915 920 925
Asp Asp Cys Arg Pro Ala Ile Ile His Arg Asp Ile Lys Pro Ser Asn
930 935 940
Ile Leu Leu Asp Lys Asp Met Val Pro His Ile Ser Asp Phe Gly Ile
945 950 955 960
Ala Lys Leu Met Asp Gln Pro Ser Thr Ala Ser Gln Thr Thr Gly Ile
965 970 975
Val Gly Thr Ile Gly Tyr Met Ala Pro Glu Leu Ala Phe Ser Thr Lys
980 985 990
Ser Ser Met Glu Ser Asp Val Tyr Ser Tyr Gly Val Val Leu Leu Glu
995 1000 1005
Leu Leu Thr Arg Arg Thr Ala Val Asp Pro Ser Phe Pro Asp Ser Thr
1010 1015 1020
Asp Ile Val Gly Trp Val Ser Ser Ala Leu Asn Gly Thr Asp Lys Ile
1025 1030 1035 1040
Glu Ala Val Cys Asp Pro Ala Leu Met Glu Glu Val Phe Gly Thr Val
1045 1050 1055
Glu Met Glu Glu Val Arg Lys Val Leu Ser Val Ala Leu Arg Cys Ala
1060 1065 1070
Ala Arg Glu Ala Ser Gln Arg Pro Ser Met Ala Asp Val Val Lys Glu
1075 1080 1085
Leu Thr Gly Val Arg Leu Ala Thr Gly Ser Gly Gly Gly Arg Ser Leu
1090 1095 1100
Ser Lys Ser Lys Gln Gly Lys Pro Gly Ser Gln Ser His Ser Ser Ala
1105 1110 1115 1120
Tyr
<210> SEQ ID NO 172
<211> LENGTH: 294
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 3
<223> OTHER INFORMATION: Xaa = Lysine or Glutamic Acid
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 15
<223> OTHER INFORMATION: Xaa = Tyrosine or Histidine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 17
<223> OTHER INFORMATION: Xaa = Isoleucine or Valine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 25
<223> OTHER INFORMATION: Xaa = Valine or Isoleucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 27
<223> OTHER INFORMATION: Xaa = Lysine or Arginine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 30
<223> OTHER INFORMATION: Xaa = Leucine or Isoleucine or Valine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 40
<223> OTHER INFORMATION: Xaa = Lysine or Arginine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 57
<223> OTHER INFORMATION: Xaa = Leucine or Isoleucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 60
<223> OTHER INFORMATION: Xaa = Leucine or Isoleucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 63
<223> OTHER INFORMATION: Xaa = Valine or Isoleucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 64
<223> OTHER INFORMATION: Xaa = Arginine or Lysine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 69
<223> OTHER INFORMATION: Xaa = Leucine or Isoleucine or Valine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 70
<223> OTHER INFORMATION: Xaa = Arginine or Lysine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 77
<223> OTHER INFORMATION: Xaa = Arginine or Lysine or Glutamine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 83
<223> OTHER INFORMATION: Xaa = Methionine or Isoleucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 86
<223> OTHER INFORMATION: Xaa = Tyrosine or Phenylalanine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 92
<223> OTHER INFORMATION: Xaa = Leucine or Valine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 113
<223> OTHER INFORMATION: Xaa = Isoleucine or Valine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 115
<223> OTHER INFORMATION: Xaa = Leucine or Isoleucine or Valine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 118
<223> OTHER INFORMATION: Xaa = Alanine or Serine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 124
<223> OTHER INFORMATION: Xaa = Isoleucine or Leucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 133
<223> OTHER INFORMATION: Xaa = Isoleucine or Valine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 137
<223> OTHER INFORMATION: Xaa = Isoleucine or Valine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 144
<223> OTHER INFORMATION: Xaa = Leucine or Methionine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 145
<223> OTHER INFORMATION: Xaa = Aspartic Acid or Asparagine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 147
<223> OTHER INFORMATION: Xaa = Aspartic Acid or Glutamic Acid
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 148
<223> OTHER INFORMATION: Xaa = Methionine or Leucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 157
<223> OTHER INFORMATION: Xaa = Isoleucine or Leucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 158
<223> OTHER INFORMATION: Xaa = Alanine or Serine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 159
<223> OTHER INFORMATION: Xaa = Lysine or Arginine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 161
<223> OTHER INFORMATION: Xaa = Leucine or Methionine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 162
<223> OTHER INFORMATION: Xaa = Aspartic Acid or Glutamic Acid
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 173
<223> OTHER INFORMATION: Xaa = Valine or Isoleucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 180
<223> OTHER INFORMATION: Xaa = Methionine or Isoleucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 185
<223> OTHER INFORMATION: Xaa = Alanine or Serine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 199
<223> OTHER INFORMATION: Xaa = Tyrosine or Phenylalanine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 202
<223> OTHER INFORMATION: Xaa = Valine or Isoleucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 207
<223> OTHER INFORMATION: Xaa = Valine or Isoleucine or Leucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 208
<223> OTHER INFORMATION: Xaa = Threonine or Serine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 210
<223> OTHER INFORMATION: Xaa = Lysine or Arginine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 223
<223> OTHER INFORMATION: Xaa = Valine or Isoleucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 229
<223> OTHER INFORMATION: Xaa = Serine or Alanine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 240
<223> OTHER INFORMATION: Xaa = Valine or Isoleucine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 245
<223> OTHER INFORMATION: Xaa = Leucine or Methionine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 264
<223> OTHER INFORMATION: Xaa = Valine or Leucine or Methionine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 19, 21,
22,24,
29, 31, 32, 33, 34, 35, 36, 38, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 54, 55, 58, 62, 72, 73, 74, 75, 76, 78,
79, 80, 82, 84, 88, 89, 93, 94, 95, 98, 99, 100, 101, 102
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 103, 104, 106, 108, 109, 111, 112, 117, 122, 126,
129,
131, 139, 140, 146, 149, 153, 160, 163, 164, 165, 166, 167,
168, 169, 170, 171, 172, 174, 177, 184, 186, 187, 189, 190,
191, 192, 194, 205, 209, 211, 212, 213, 215, 216, 218, 219
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 220, 221, 222, 225, 227, 228, 230, 231, 232, 233,
234,
235, 236, 237, 238, 239, 241, 243, 244, 246, 247, 249, 250,
251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262,
263, 267, 269, 270, 271, 272, 273, 274, 275, 278, 280, 281,
282, 283, 284, 285, 287, 288, 289, 290, 291, 292, 293, 294
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 172
Leu Asn Xaa Xaa Xaa Xaa Xaa Thr Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1 5 10 15
Xaa Gly Xaa Gly Xaa Xaa Gly Xaa Xaa Tyr Xaa Ala Xaa Xaa Xaa Xaa
20 25 30
Xaa Xaa Xaa Xaa Ala Xaa Lys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
35 40 45
Xaa Xaa Xaa Xaa Met Xaa Xaa Glu Xaa Xaa Thr Xaa Gly Xaa Xaa Xaa
50 55 60
His Arg Asn Leu Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
65 70 75 80
Gly Xaa Xaa Xaa Tyr Xaa Met Xaa Xaa Gly Ser Xaa Xaa Xaa Xaa Leu
85 90 95
His Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Trp Xaa Xaa Arg Xaa Xaa
100 105 110
Xaa Ala Xaa Gly Xaa Xaa His Gly Leu Xaa Tyr Xaa His Xaa Asp Cys
115 120 125
Xaa Pro Xaa Ile Xaa His Arg Asp Xaa Lys Xaa Xaa Asn Ile Leu Xaa
130 135 140
Xaa Xaa Xaa Xaa Xaa Pro His Ile Xaa Asp Phe Gly Xaa Xaa Xaa Xaa
145 150 155 160
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Thr
165 170 175
Xaa Gly Tyr Xaa Ala Pro Glu Xaa Xaa Xaa Xaa Thr Xaa Xaa Xaa Xaa
180 185 190
Glu Xaa Gly Val Tyr Ser Xaa Gly Val Xaa Leu Leu Xaa Leu Xaa Xaa
195 200 205
Xaa Xaa Xaa Xaa Xaa Asp Xaa Xaa Phe Xaa Xaa Xaa Xaa Xaa Xaa Val
210 215 220
Xaa Trp Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
225 230 235 240
Xaa Asp Xaa Xaa Xaa Xaa Xaa Glu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
245 250 255
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala Leu Xaa Cys Xaa Xaa Xaa Xaa
260 265 270
Xaa Xaa Xaa Arg Pro Xaa Met Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa
275 280 285
Xaa Xaa Xaa Xaa Xaa Xaa
290
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20120001751 | Body Area Network Pairing Improvements for Clinical Workflows |
20120001750 | CENTRAL FACILITY THAT COMMUNICATES WITH PORTABLE CONTAINER VIA MOBILE DEVICE |
20120001748 | METHODS AND APPARATUS FOR VISUALLY SUPPLEMENTING A GRAPHICAL USER INTERFACE |
20120001746 | Vehicular electric charge control apparatus and emergency notification system |
20120001744 | VEHICLE STATISTICAL MEASUREMENT GAME |