Patent application title: COMPOSITIONS, METHODS AND USES FOR A NOVEL FAMILY OF PEPTIDES
Inventors:
Yi Wei Jiang (College Station, TX, US)
Assignees:
The Texas A&M University System
IPC8 Class: AA23K118FI
USPC Class:
426 2
Class name: Food or edible material: processes, compositions, and products treatment of live animal
Publication date: 2009-07-09
Patent application number: 20090175981
Claims:
1. A feed additive comprising: an isolated and purified, heat stable,
amino terminus-methylated, carboxy-terminus reduced peptide comprising
two or more D-amino acids isolated from Brevibacillus sp., wherein the
peptide is selected from at least one of SEQ ID NOS: 6-20.
2. The additive of claim 1, wherein the Vol is valine alcohol produced by reducing --COOH group of the C-terminal Valine to --CH2OH.
3. The additive of claim 1, wherein the carboxy-terminus --COOH group of the C-terminal Valine is reduced to --CH2OH and confers protease resistance to the peptide.
4. The additive of claim 1, wherein the peptide is stable at a pH of 1.0, at a pH 13.0, resistant to proteases or combinations thereof.
5. (canceled)
6. The additive of claim 1, wherein the peptide kills, gram positive bacteria, gram negative bacteria, fungi, protozoa or combinations thereof.
7. (canceled)
8. The additive of claim 1, wherein the peptide is added at between about 0.5 and about 100 ppm.
9. The additive of claim 1, wherein the peptide is added at between about 6 and about 12 ppm.
10. The additive of claim 1, wherein the peptide is added to a feed adapted for use by one or more of poultry, livestock, farm-raised fish, crabs, shrimp and fresh-water turtles.
11. The feed additive of claim 1, wherein the additive is added to a cereal-based animal feed comprising: at least one cereal selected from barley, soya, wheat, triticale, rye and maize; and an isolated and purified, heat stable, amino terminus-methylated, carboxy-terminus reduced peptide comprising two or more D-amino acids isolated from Brevibacillus sp., wherein the peptide comprises SEQ ID NOS: 2-20.
12-13. (canceled)
14. A biologically pure culture of microorganism Brevibacillus texasporus deposit No. ATCC PTA-5854) that produces an antimicrobial peptide that is carboxy-terminus reduced heat stable, amino terminus-methylated peptide and comprises two or more D-amino acids, wherein the peptide is selected from at least one of SEQ ID NOS: 1-20.
15. The microorganism of claim 14, wherein the microorganism is added to a feed.
16. The microorganism of claim 14, wherein the microorganism is mixed with a feed for livestock selected from the group consisting of a milk replacer, a grower feed, a finisher feed, a pre-starter feed and a starter feed.
17. A method for increasing body weight gain efficiency and feed efficiency in animals, comprising mixing the composition of claim 1 with an animal feed.
18. The method of claim 17, wherein the animal feed is adapted for feeding livestock selected from the group consisting of a cattle, a swine, a chicken, a horse, a turkey, a sheep, a goat, a farm-raised fish, crab, shrimp and a turtle.
19. The method of claim 17, wherein the animal feed is adapted for feeding birds selected from the group consisting of chicken, turkey, duck, quail, Cornish hens, and pigeon.
20. The method of claim 17, wherein said feed is selected from the group consisting of a cereal, soybean meal, isolated soybean protein, isolated soybean oil, isolated soybean fat, skimmed milk, fish meal, meat meal, bone meal, blood meal, blood plasma protein, whey, rice bran, wheat bran, a sweetener, a mineral, a vitamin, salt, and grass.
21. The method of claim 17, wherein the daily dose of the peptide ranges from about 1 milligram to about 10 grams per kg body weight of the animal.
22-23. (canceled)
24. An isolated and purified nucleic acid having the sequence of the BT operon (SEQ ID NO.: 21), or portions thereof, that express proteins that produce a heat stable, amino terminus-methylated, carboxy-terminus reduced peptide comprising two or more D-amino acids.
25. The isolated and purified nucleic acid of claim 24, wherein the nucleic acid encodes one or more polypeptide sequences for BT operon proteins (SEQ ID NOS.: 22 to 28) that comprise one or more enzymes used to make a heat stable, amino terminus-methylated, carboxy-terminus reduced peptide comprising two or more D-amino acids, wherein the peptide is selected from at least one of SEQ ID NOS: 1-20, and the nucleic acid has been transformed into a bacteria.
26-28. (canceled)
29. The microorganism of claim 14, wherein the organism is an isolated bacterial comprising Brevibacillus texasporus E58.
30-35. (canceled)
Description:
[0001]This application claims priority to U.S. Provisional Pat.
Application Ser. No. 60/540,569, filed Jan. 30, 2004, and U.S. patent
application Ser. No. 11/046,560, filed Jan. 28, 2005, now U.S. Pat. No.
______, issued ______, relevant portions incorporated herein by
reference. Without limiting the scope of the invention, its background is
described in connection with antibiotics and feed additives.
[0002]This application claims priority to U.S. Provisional Patent Application Ser. No. 60/540,569, filed Jan. 30, 2004, relevant portions incorporated herein by reference. Without limiting the scope of the invention, its background is described in connection with antibiotics and feed additives.
TECHNICAL FIELD OF THE INVENTION
[0003]The present invention relates in general to the field of novel isolated and purified peptides, and more particularly, to the identification, characterization and use of a novel group of peptides from the newly discovered organism Brevibacillus texasporus .
BACKGROUND OF THE INVENTION
[0004]Antibiotic overuse has led to widespread bacterial drug resistance. Novel antibiotics are needed to combat infections caused by bacterial resistant to conventional antibiotics. It is well known that microbes produce a huge variety of antibiotics to wage chemical warfare against competing microbes.
[0005]Many peptide antibiotics of microbial origin are synthesized by non-ribosomal peptide synthases (RPS) and they contain unusual amino acids. NRPS enzymes usually have a co-linear modular architecture (Mootz, et al., 2002). The N-terminal to C-terminal order and specificities of the individual modules correspond to the sequential order and identities of the amino acid residues in the peptide product. Each NRPS module recognizes a specific amino acid and catalyzes stepwise condensation to form a growing peptide chain. The identity of the amino acid recognized by a particular module can be predicted by comparisons to other modules of known specificities (Challis, et al., 2000). Such strict correlation made it possible to identify genes encoding the NRPS enzymes for a number of microbial non-ribosomal peptides with known structures, as demonstrated by the identification of the mycobactin biosynthesis operon in the genome of Mycobacterium tuberculosis (Quadri, et al., 1998). Nevertheless, the art recognizes the continuing need to isolate, identify and characterize novel antimicrobial agents.
[0006]Examples of feed additives are widely known in the art. For example, U.S. Pat. No. 6,682,762 issued to Register, discloses one such Poultry and livestock feed additive. Briefly, this patent teaches a poultry and livestock feed additive composition containing 36 wt. % electrolytes, roughage and mineral oil to increase their dietary electrolyte balance. Addition of the electrolyte additive composition improves breeder hen performance as to egg production, body weight, and reduced mortality from heat stress. Broiler chickens on this diet result in increased processing yield, feed conversion and body weight. A method of preparing this dietary electrolyte feed for poultry and livestock is also described.
[0007]Yet another example of a feed additive is a taught by Nagai, et al., in U.S. Pat. No. 6,503,544, which teaches an animal feed additive that includes at least two components selected from the group consisting of the following three components (a), (b) and (c): (a) at least one herb selected from Pine Needle, Hawthorn Fruit, Bighead Atractylodes Rhizome, Milkvetch Root, Skullcap Root, Tangerine Fruit and Mint Siftings; (b) a live bacteria mixture composed of a yeast cell wall and a live bacteria preparation containing Lactobacillus acidophilus and/or Enterococcus faecium; and (c) an organic acid.
[0008]Feed additives may also include the byproducts of fermentation and other precesses, such as those taught by U.S. Pat. No. 5,863,574 issued to Julien for a feed additive for ruminant animals containing fungal and/or bacterial fermentation byproducts. The feed additive for ruminants, includes dried fungal and/or bacterial fermentation by products which provide glutamic acid fermentation solubles, dried corn fermentation solubles, or a mixture of dried glutamic acid fermentation solubles and dried corn fermentation solubles, wherein the dried solubles have been dried to a total moisture content of less than 30% by weight at a temperature not less than about 80° F. and not more than about 900° F.
SUMMARY OF THE INVENTION
[0009]In one embodiment, the present invention is a feed additive that includes an isolated and purified, heat stable, amino terminus-methylated, carboxy-terminus reduced peptide comprising two or more D-amino acids isolated from Brevibacillus sp. The carboxy-terminus --COOH group of the C-terminal Valine of the peptide may be reduced to --CH2OH, and may confer protease resistance to the peptide. The peptide feed additive may be stable at a pH of 1.0, at a pH 13.0, resistant to proteases or combinations thereof. Examples of the peptide may be selected from one or more of SEQ ID NOS: 1 to 20 (collectively called the BT peptides). It has been found that the peptide kills, gram positive bacteria, gram negative bacteria, fungi, protozoa or combinations thereof. The peptide may be isolated from Brevibacillus texasporus (ATCC PTA-5854) and may be added to feed at between about 0.5 and about 100 ppm. In one use, the peptide was added at between about 6 and about 12 ppm and demonstrated statistically significant growth stimulation.
[0010]The additive peptide may be added to a feed adapted for use by one or more of poultry, livestock, farm-raised fish, crabs, shrimp and fresh-water turtles. For example, the peptide may be included in a cereal-based animal feed, e.g., at least one cereal selected from barley, soya, wheat, triticale, rye and maize; and an isolated and purified, heat stable, amino terminus-methylated, carboxy-terminus reduced peptide comprising two or more D-amino acids isolated from Brevibacillus sp. The peptide-based feed additive may be include at between about 1 and 1000 ppm of an isolated and purified, heat stable, amino terminus-methylated, carboxy-terminus reduced peptide having two or more D-amino acids isolated from Brevibacillus sp. In fact, the present invention may be used with any of a large variety of feeds.
[0011]The present invention also includes an antimicrobial peptide that has two or more D-amino acids, carboxy-terminus reduced pH and heat stable isolated from Brevibacillus sp. For example, the present invention includes a biologically pure culture of microorganism Brevibacillus texasporus deposit No. ATCC PTA-5854) that produces an antimicrobial peptide that is carboxy-terminus reduced heat stable, amino terminus-methylated peptide and may include two or more D-amino acids. The feed additive may even be an isolated and purified microorganism of ATCC PTA-5854. The additive may be mixed with a feed for livestock selected from the group consisting of a milk replacer, a grower feed, a finisher feed, a pre-starter feed and a starter feed.
[0012]The present invention also includes a method for increasing body weight gain efficiency and feed efficiency in animals, by providing one or more of the BT peptides in an effective amount sufficient to increase growth in an animal feed. The animal feed is adapted for feeding livestock selected from the group consisting of, e.g., cattle, swine, chicken, horse, turkey, sheep, goat, farm-raised fish, crab, shrimp and turtle. Examples of feeds also include those for feeding birds selected from the group consisting of, e.g., chicken, turkey, duck, quail, Cornish hens, and pigeon. As such, the feed may be selected from the group consisting of, e.g., a cereal, soybean meal, isolated soybean protein, isolated soybean oil, isolated soybean fat, skimmed milk, fish meal, meat meal, bone meal, blood meal, blood plasma protein, whey, rice bran, wheat bran, a sweetener, a mineral, a vitamin, salt, and grass. Daily dose of the peptide ranges from about 0.01 to about 10 grams per kg body weight of the animal.
[0013]In yet another embodiment, the present invention is a broad spectrum antimicrobial compound for topical use comprising a peptide having two or more D-amino acids, carboxy-terminus reduced, pH and heat stable isolated from Brevibacillus sp. For example, the peptide may have the sequence Me2Bmt-L-dO-I-V-V-dK-V-dL-K-dY-L-V-CH2OH (SEQ ID NO.: 1), or any one of SEQ ID NOS.: 1-20.
[0014]Yet another embodiment is an isolated and purified nucleic acid having the sequence of BT operon (SEQ ID NO.: 21) that produces a heat stable, amino terminus-methylated, carboxy-terminus reduced peptide comprising two or more D-amino acids. The isolated and purified nucleic acid that encode one or more polypeptide sequences for BT operon proteins (SEQ ID NOS.: 22 to 28) that include one or more enzymes used to make a heat stable, amino terminus-methylated, carboxy-terminus reduced peptide comprising two or more D-amino acids. The invention also includes those isolated nucleic acids having at least 75% homology to SEQ ID NO.: 21. More specifically, the nucleic acid may encodes one or more polypeptide sequences for peptide synthesis operon proteins (SEQ ID NOS.: 22 to 28) that are enzymes used to make a heat stable, amino terminus-methylated, carboxy-terminus reduced peptide comprising two or more D-amino acids. One or more BT operon polypeptides are expressed from SEQ ID NO.:21 and comprise one or more enzymes used to make a heat stable, amino terminus-methylated, carboxy-terminus reduced peptide comprising two or more D-amino acids.
[0015]An isolated bacterial sample for use with the present invention may include an isolated bacterial strain of Brevibacillus texasporus E58. Another embodiment is an isolated and purified, heat stable, amino terminus-methylated, carboxy-terminus reduced peptide having two or more D-amino acids isolated from Brevibacillus sp that inhibits the growth of at least one bacterium selected from the group consisting of: Staphylococcus, Enterococcus, Pneumococcus, Bacilli, Methanococcus, Haemophilus, Archaeoglobus, Borrelia, Synedrocyptis, Mycobacteria, Pseudomonas and E. coli. A bacteria may be transformed with an isolated and purified nucleic acid having the sequence of BT operon (SEQ ID NO.: 21) that produces a heat stable, amino terminus-methylated, carboxy-terminus reduced peptide comprising two or more D-amino acids. The protein expressed from the nucleic acid may include one or more BT operon proteins, or those related thereto. A vector may be modified or isolated that includes an isolated and purified nucleic acid having the sequence of BT operon (SEQ ID NO.: 21) that produces a heat stable, amino terminus-methylated, carboxy-terminus reduced peptide comprising two or more D-amino acids. One or more proteins may be expressed from the nucleic acid that encodes one or more BT operon proteins. The feed additive may also include an isolated and purified, heat stable, amino terminus-methylated, carboxy-terminus reduced peptide that has greater than 75% sequence homology to SEQ ID NOS.: 1-20.
[0016]The present invention also relates to peptides, and non-ribosomal peptide synthases that synthesize these peptides containing unusual amino acids and other types of modifications. The invention also includes methods of producing and using the peptides alone or synergistically with conventional antibiotics in the treatment and prevention of various microbial infections and protozoal infections and disorders related to such infections; tumor cell proliferation, growth and spread; or as an immune modulating agents.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017]For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:
[0018]FIG. 1A is a gel that shows the purification of peptide BT. Tricine gel separation of BT and the associated antibiotic activity. Chloroform extracted peptides were separated on a precast 16.5% Tricine gel (purchase from BioRad). One gel was stained with coomassie blue (left) to show peptide bands. Another gel (right) was overlaid with agar embedded with Bacillus cereus. Clear zones in the bacterial lawn correspond to the species that collapses into a single band with a molecular weight of ˜1500. Molecular weight markers are as follows: triosephosphate isomerase 26.6 kD, myoglobin 17.0 kD, alpha-lactalbumin 14.4 kD, aprotinin 6.5 kD, insulin b chain, oxidized 3.5 kD, and bacitracin 1.4 kD.
[0019]FIG. 1B is a graph of mass spectrometry of chloroform-extracted BT Chloroform-extracted BT was ionized by addition of sodium chloride and then subjected to mass spectrometry analysis. Five ionized BT isomer groups (BT1555, BT1571, BT1583, BT1599 and BT1613) were detected and labeled.
[0020]FIG. 1C is a graph of mass spectrometry of purified BT1583. Fraction 33 of the C18 reverse phase HPLC was subjected to mass spectrometry analysis. Only protonated, sodium and potassium ionized BT1583 were detected;
[0021]FIG. 2A is a graph of BT1583 tandem mass spectrometry data. FIG. 2B is a partial BT1583 sequence structure deduced from amino acid composition and MS/MS experiments (Tables 1 and 2) (for complete motif and sequences see Tables 5 and 6, respectively);
[0022]FIGS. 3A to 3D are maps of the BT NRPS operon. FIG. 3A is a map of the construction of a supercontig from two contigs linked by a mate pair. Contig1 and contig 2 share a mate pair from a clone. The contigs are ordered and arranged to form a supercontig, which contains the sequences of contig 1 and contig 2, separated by an unsequenced gap region;
[0023]FIG. 3B is a map of the region sequenced in this work and the location of 9 ORFs found in the region. Six ORFs btA through btF encode the BT NRPS subunits (BtA, BtB, BtC, BtD, BtE and BtF);
[0024]FIG. 3C is a map of the domain organization of the BT NRPS subunits. The predicted amino acid substrate specificity of each module is marked in each A-domain;
[0025]FIG. 3D is a Phylogenetic tree of a multiple sequence alignment of all 13 binding pocket constituents as described in Table 3. The putative specificity was assigned using the partial BT1583 sequence. It is shown that those binding pockets of A-domains that supposedly activate the same or similar substrate cluster together;
[0026]FIG. 3E is the nucleic acid sequence of the BT operon (SEQ ID NO.:21);
[0027]FIG. 3F is the amino acid sequence of BtA (SEQ ID NO.:22);
[0028]FIG. 3G is the amino acid sequence of BtB (SEQ ID NO.:23);
[0029]FIG. 3H is the amino acid sequence of BtC (SEQ ID NO.:24);
[0030]FIG. 3I is the amino acid sequence of BtD (SEQ ID NO.:25);
[0031]FIG. 3J is the amino acid sequence of BtE (SEQ ID NO.:26);
[0032]FIG. 3K is the amino acid sequence of BtF (SEQ ID NO.:27);
[0033]FIG. 3L is the amino acid sequence of BtG (SEQ ID NO.:28);
[0034]FIGS. 4A to 4E are sequence alignment of conserved motifs and alignments of the adenylation, consensation, thilation, epimerization and reductase domains from the BT NRPS modules, respectively. Conserved motifs were identified according to (Marahiel, 1997). Consensus sequences were placed under each alignment. Residues agree with consensus were black shaded. All 12 C-domains were aligned together, with the * symbols indicate the start C domains that are known to be less conserved;
[0035]FIGS. 5A to 5E are ATP-PPi exchange assays for the relative substrate specificities of the purified A-domains of Modules 8, 5, 7, 4 and 2, respectively, obtained from the ATP-PPi exchange assays were listed A) to D), respectively. The highest activity was defined as 100%. All 20 proteinogenic amino acids and L-Orn were tested in each assay, and background was usually below 1%. Apparent Km of the A-domains toward specific amino acids were listed underneath; and
[0036]FIG. 6A is a summary of synthetic BT variants and FIG. 6B is a correlation between the BT variants and their properties for antibiotic activity and Pronase resistance as previously described.
DETAILED DESCRIPTION OF THE INVENTION
[0037]While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.
[0038]To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as "a", "an" and "the" are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not limit the invention, except as outlined in the claims.
[0039]As used herein, the term "domestic animal" describes, e.g., swine, cattle, horse, goat, sheep, deer, dog, cat and any of a number of useful rodents. The term "poultry" as used herein includes, e.g., chicken, hen, quail, turkey, guinea fowl and so forth. The term "nursery fishes" used here includes, e.g., carp, catfish, rainbow trout, ayu (sweet fish), eel, tilapia, conger, salmon, trout, red seabream, yellow tail, flounder, globefish, and so forth. A number of other animals are contemplated to also be useful, e.g., shrimp and prawn.
[0040]As used herein, the terms "additive" and "feed additive" are used to describe compositions from bacteria that may be used in conjunction with animal feed as feed additive resulting in an improvement of the health of livestock, poultry and fish, and a reduction of economic loss due to reduced or low weight and/or increasing the rate of growth (e.g., weight) of existing health animals. For example, the feed additive of the present invention may be used from bacterial isolates, partially or wholly degraded bacteria, isolated, isolated and purified from bacteria and/or synthesized synthetically in whole or in part. The additive or feed additive for the domestic animals, poultry and fishes may be of powder, grain or liquid form and will be used in accordance with the feeding condition and installations of the farm and the target animal.
[0041]Suitable animal feedstuffs include, e.g., green feed, silages, dried green feed, roots, tubers, fleshy fruits, grains and seeds, brewer's grains, pomace, brewer's yeast, distiller's spent grains, milling byproducts, byproducts of the production of sugar, starch and oil recovery and various food wastes. The feed additive of the present invention may be used alone or in conjunction with other well-known feed additives such as antioxidants or mixtures of various substances (mineral mixtures, vitamin mixtures) that can be added to such feeds for enhancement. Specific feeds may also adapted for certain animal species depending on age and stages of development.
[0042]Base feeds suitable for use in conjunction with the peptides of the present invention may be prepared as is well-known to the artisan skilled in the art of preparing feeds, e.g., they may use those as described in Kirk-Othmer, Encyclopedia of Chemical Technology, 4th Ed., vol. 10, pp. 288-300, Wiley, N.Y., 1993, relevant portions incorporated herein by reference. For example, the base feed may include one or more of the following ingredients: corn, sorghum, barley, wheat, soybean, peanut, canola, fish meal, milk products, fats and oils, vitamins and minerals.
[0043]The present inventor recognized that an NRPS operon may be a source of information that allows one to learn certain structural details of the peptide product. The identification of the BT NRPS operon results in critical refinements of the BT1583 peptide structure. Soil microorganisms were screened for strains that produce novel antibiotics. A Bacillus spp. E58 (ATCC PTA-5854) was isolated for its ability to produce an antibiotic BT against Staphylococcal aureus that cause life-threatening hospital-acquired infections in immunity-compromised patients The strain was named Brevibacillus texasporus based on its relatedness to Brevibacillus laterosporus.
[0044]The modules of an NRPS are composed of smaller units or "domains" that each carries out a specific role in the recognition, activation, modification or joining of amino acid precursors to form the peptide product. One type of domain, the adenylation (A-) domain, is responsible for selectively recognizing and activating the amino acid that is to be incorporated by a particular module of the NRPS. Through analysis of the substrate-binding pocket of the A-domain of the PheA subunit of the Gramicidin S NRPS in combination with sequence comparison with other A-domains, it was possible to define ten residues that are the main determinants of the substrate specificity for an A-domain (Conti, et al., 1997; Stachelhaus, et al., 1999). The ten residues are considered an NRPS `codon`. The NRPS codon collection is still growing as new NRPS codons continue to be discovered. The present invention includes the isolated and purified nucleic acids and the proteins encoded thereby for a group of novel NRPS codons for Valine, Lysine, Ornithine and Tyrosine.
[0045]The amino acid activation step is ATP-dependent and involves the transient formation of an amino-acyl-adenylate. The activated amino acid is covalently attached to the peptide synthase through another type of domain, the thiolation (T-) domain that is generally located adjacent to the A-domain. The T-domain is post-translationally modified by the covalent attachment of a phosphopantetheinyl prosthetic arm to a conserved serine residue. The activated amino acid substrates are tethered onto the NRPS via a thioester bond to the phosphopantetheinyl prosthetic arm of the respective T-domains. Amino acids joined to successive units of the NRPS are subsequently covalently linked together by the formation of amide bonds catalyzed by another type of domain, the condensation (C-) domain. NRPS modules can also occasionally contain additional functional domains that carry out auxiliary reactions, the most common being epimerization of an amino acid substrate from the L- to the D-form. This reaction is catalyzed by a domain referred to as an epimerization (E-) domain that is generally located adjacent to the T-domain of a given NRPS module. Thus, a typical NRPS module has the following domain organization: C-A-T-(E).
[0046]Product assembly by NRPS involves three distinct phases, namely chain initiation, chain elongation, and chain termination (Keating & Walsh, 1999). Peptide chain initiation is carried out by specialized modules termed a "starter module" that comprises an A-domain and a T-domain. Elongation modules have, in addition, a C-domain that is located upstream of the A-domain. It has been experimentally demonstrated that such elongation domains cannot initiate peptide bond formation due to interference by the C-domain (Linne & Marahiel, 2000). All the growing peptide intermediates are covalently tethered to the NRPS during translocations as an elongating series of acyl-5-enzyme intermediates. To release the mature peptide product from the NRPS, the terminal acyl-5-enzyme bond must be broken. This process is the chain termination step and is usually catalyzed by a C-terminal thioesterase (TE) domain. Thioesterase-mediated release of the mature peptide from the NRPS enzyme involves the transient formation of an acyl-O-TE intermediate that is then hydrolyzed or hydrolyzed and concomitantly cyclized to release the mature peptide (Keating, et al., 2001). An alternative termination scheme involves reduction of the tethered C-terminal residue by a reductase (R-) domain that resides in the last NRPS module, resulting in release of a peptide with an alcoholic C-terminal residue (Gaitatzis, et al., 2001; Kessler, et al., 2004). Such reductase-mediated termination/C-terminal modification occurs in BT biosynthesis and contributes to super protease resistance of the BT peptides.
[0047]Identification and isolation of the NRPS operon was useful to the studies of a peptide antibiotic, however, identification of a specific NRPS operon remains a challenging task. Identification of an NRPS operon traditionally starts with identification of clones in a genomic BAC or cosmid library by hybridization with DNA probes from known NRPS genes or by gene fragments amplified by PCR of genomic DNA using degenerate primers. Because the amino acid sequences of NRPS domains are usually quite similar, such approaches can be successful, however, because probes or primers are often imperfect, some NRPS operons can be missed. Moreover, microbes often contain multiple NRPS operons, so that the probes or primers may reveal some NRPS operons but not the one sought. This often results in ill-fated efforts devoted towards an incorrect gene (Hopwood, 1997). A novel in silica approach was used as described herein to allow rapid and accurate identification of an NRPS operon.
[0048]Materials and Methods. Partial purification of BT. E58 B. texasporus cells were grown in one liter of LB in a 37° C. air shaker for three days. The culture was spun in a clinical centrifuge at 3000 rpm for 15 minutes. The supernatant was collected and 500 grams of ammonium sulfate was added and dissolved. The sample was spun in the clinical centrifuge at 3000 rpm for 15 minutes. The pellets were dissolved in 200 ml of distilled water. The solution was then boiled for 15 minutes and then cooled on ice. The sample was filtered with a 0.2 micron filter (Nalgen). The filtrate was mixed with 0.2 liter of chloroform at room temperature for 20 minutes with a stir bar. The mixture was separated into two phases through centrifugation in the clinical centrifuge at 3000 rpm for 15 minutes. The organic phase was collected and dried in a vacuum evaporator.
[0049]C18 reverse phase HPLC. The dried chloroform extract was dissolved in 2 ml of sterile distilled water. The solution was fractionated on a C18 reverse phase HPLC column in a gradient from 30% B to 55% Solution B (Solution B is 0.075% TFA in acetonitrile, Solution A is 0.1% TFA in water). Resultant fractions were dried and dissolved in sterile distilled water and analyzed for anti-S. aureus activity in a plate clear zone assay The peak fraction (Fraction 33) was subjected to amino acid composition, mass spectrometry, tandem mass spectrometry and chirality analyses.
[0050]Amino acid composition. Amino acid analysis was performed by the Protein Chemistry Laboratory at Texas A&M University in College Station, Tex. Samples were mixed with internal standards, dried in glass tubes in a vacuum concentrator and subjected to vapor phase hydrolysis by 6N HCl at 110° C. for 24 hours under argon atmosphere in the presence of phenol. The samples were subsequently reconstituted in borate buffer and transferred to a Hewlett Packard AminoQuant II system for automated derivatization and loading. The AminoQuant analyzes peptides and proteins by pre-column derivatization of hydrolyzed samples with o-phthalaldehyde (OPA) and 9-fluoromethyl-chloroformate (FMOC). The derivatized amino acids are separated by reverse phase HPLC and detected by UV absorbance with a diode array detector or by fluorescence using an in-line fluorescence detector.
[0051]Mass spectrometry and tandem mass spectrometry. Detection of D-form amino acid residues. The chiral analysis of amino acid residues in BT was performed by Commonwealth Biotechnologies, Inc. of Richmond, Va. BT was subjected to hydrolysis in 6N HCl in vacuum for 18 hours at 110° C. The amino acids were derivatized to FMOC amino acids and separated by HPLC chromatography. The elution profile of each amino acid was then determined on a chiral column. For both types of chromatography columns, peaks were identified by comparisons with appropriate standards.
[0052]Genomic DNA preparation. Log-phase E58 cells were harvested from an LB culture and lysed with Lysis Buffer [10 mM Tris (pH 8.0), 100 mM EDTA, 0.5% SDS]. RNase A was added to digest contaminating RNA. Genomic DNA was extracted with phenol/choloroform and then precipitated with ethanol. Dried DNA was resuspended in TE and an aliquot was run in 0.5% agarose gel for quality control.
[0053]Library construction and genome sequencing. The E58 genomic library construction, shot-gun sequencing and the assembly were performed by Agencourt Biosciences Corporation (Beverly, Mass.). Briefly, the whole genome library was constructed with an average insert length around 5 kb. 10,000 such clones were subject to automated DNA sequencing from both ends of the insert. 16,901 successfully sequenced reads were collected and assembled.
[0054]Nucleotide sequences and data analysis. All BLAST analyses against E58 genome were performed by use of WU BLAST software package (version 2.0) installed on a local computer (Gish, W. 1996-2003. http://blast.wustl.edu). Amino acid sequence homology searches were performed by use of the BLAST server at the National Center for Biotechnology Information (Bethesda, Md.) and nonredundant protein sequence database with default parameter values (Altschul, et al., 1990). Amino acid sequence alignments were performed by use of the CLUSTALW program (Thompson, et al., 1994) running at NPS (web server at Institute of Biology and Chemistry of Proteins (Lyon, France).
[0055]The BT NRPS operon. The BT NRPS operon (Supercontig 3) contained 11 contigs, spanning a region of at least 46 kb. There were unsequenced regions, regions that were just sequenced once, and regions with bad sequencing quality. Also, carboxyl region of the thirteenth module was not covered by Supercontig 3. Three rounds of primer extension sequencing and one round of genome walking were performed to achieve the finishing of the NRPS operon. All original sequencing reads in Superontig 3 were extracted and reassembled using the SeqMan (Lasergene, DNASTAR Inc.). The default parameters were used for the reassembly. A higher stringency adopted by SeqMan caused the reassembled Supercotig 3 to break into 17 contigs with 16 unsequenced gaps. All contigs were further examined manually for single coverage and bad quality regions. Primers were designed to sequence into a gap as well as to obtain additional reads in the single coverage and low quality regions. New sequencing reads were joined with the original reads to create a new supercotig. The new supercotig was checked again for gaps, single coverage and low quality regions. After three rounds of such primer extension and reassembly, the putative BT NRPS operon was assembled into a single contig of 48,997 bp in length. To verify the assembled sequence, an EcoRI plus HindIII double digestion was performed with 20 clones that collectively spanned the whole region. Resultant digestion patterns were in perfect agreement with the restriction map predicted by the contig (data not shown). To sequence the downstream region of the contig, genome walking was successfully performed with E58 genomic DNA using GenomeWalker kit from Clontech. The effort resulted in a DNA sequence of 50,674 bp covering the putative BT NRPS operon (Genbank accession # ______).
[0056]Cloning, overexpression, and purification of His10-tagged BT A-domain proteins. DNA fragments encoding the A-domains of the BT NRPS Modules 8, 5, 7, 4 and 2 (Bt8A, 8t5A, Bt7A, Bt4A and Bt2A) were PCR-amplified and the PCR products were inserted into the His10-tag recombinant protein expression vector pET16b (Novagen). The A-domain borders were determined as defined by (Konz, et al., 1999). The expression constructs were transformed into the E. coli BL21-AI strain (Invitrogen). Transformants were grown in L-broth at 37° C. to an A600 of 0.6 and then induced with 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) plus 0.2% L-arabinose. The cells were allowed to grow for two additional hours at 30° C. before being harvested. Purification of the His10-tag recombinant proteins was achieved using the TALON metal affinity resins (BD Biosciences) under conditions recommended in the manual with modifications. Briefly, the E. coli cells were broken by sonication. Cell lysates were cleared by centrifugation at 25,000×g for one hour. His-tagged recombinant proteins were then incubated with the TALON resin, washed, and eluted with 500 mM imidazole. Eluted proteins were dialyzed against a buffer (50 mM HEPES, pH 8.0, 100 mM sodium chloride, 10 mM magnesium chloride, and 1 mM EDTA) and then analyzed with SDS PAGE plus Coomassie Blue staining. The recombinant proteins displayed apparent molecular weights compatible with calculated ones, and they appeared to be purified to homogeneity. Concentrations of the purified proteins were determined by using the calculated molar extinction coefficient for the A280.
[0057]ATP-PPi exchange assay. ATP-PPi exchange assays were performed to determine the substrate specificity of an A-domain. ATP-PPi exchanges were assayed as previously described (Stachelhaus, et al., 1998) with minor modifications. The assay mixture contained 50 mM HEPES (pH 8.0), 100 mM NaCl, 10 mM MgCl2, 2 mM ATP, 0.5 mM amino acid, 0.05 mM PPi, 0.15 μCi tetrasodium [32P]pyrophosphate. Exchange was initiated by addition of purified recombinant A-domain proteins to a total volume of 0.1 ml. The protein concentrations were 0.2 μM for Module 4 and Module 5 A-domains while 2 μM for Module 7 and Module 8 A-domains. After incubation at 37° C. for 15 min, the reaction was stopped by addition of 0.5 ml of Terminaton Mix (100 mM tetrasodium pyrophosphate, 3.5% HClO4, and 1.6% [w/v] activated charcoal). The charcoal was pelleted by centrifugation, washed first with 40 mM pyrophosphate plus 1.4% perchloric acid and then with water, and was re-suspended in 0.5 ml of water. The charcoal/water suspension was added to a scintillation vial containing 5.0 ml of scintillation fluid, and the bound radioactivity was determined by liquid scintillation counting. The apparent Km values were determined with substrate concentrations ranging from 0.1 to 10 mM.
[0058]MIC determination assays. Staphylococcal aureus was grown to mid-log phase in LB at 37° C., and diluted by 500-fold with fresh LB and dispensed into 96-well micro-titer plates. Different concentrations of peptides were added, and the micro-titer plates were incubated at 37° C. with shaking. A minimal inhibition concentration (MIC) was determined as the lowest peptide concentration that produced a clear well. All experiments were performed in triplicates, and highly consistent MICs were obtained.
[0059]Identification of the BT peptides. The bacterial strain E58 was isolated from soil in an effort to identify soil microorganisms that produce novel antibiotics against Staphylococcus aureus. E58 was found to be closely related to Brevibacillus laterosporus based on the 16S rDNA sequence homology (98.5% identity). E58 was named Brevibacillus texasporus and deposited to ATCC (catalog number PTA-5854). The antibiotic produced by E58 was named BT and its activity could be detected in the supernatant of a liquid E58 LB culture. Cell-free culture supernatant was, therefore, the starting material for BT purification. The antibiotic activity was precipitated by ammonium sulfate, which suggested that the antibiotic be a protein or peptide (data not shown). The activity was further extracted into chloroform, indicating that BT is made of small molecules. The antibiotic chloroform extract was evaporated in a vacuum evaporator, dissolved in water and then run on a SDS tricine gel. The two halves of a gel with identical lanes in each half were either stained for proteins/peptides or overlaid with agar embedded with BT-sensitive bacteria Bacillus cereus to test for antibiotic activity (FIG. 1A). Three species were visible after staining: the Bromophenol Blue dye originated from the gel loading buffer, an unknown peptide with a mass <1.4 kD and a third species with an antibiotic activity. This third species ran as a ˜1.5 kD band at low concentrations (clearly visible on the original gel) and were later shown made up of a group of related peptides (see below). Their apparent masses increased with concentration suggesting that the peptides aggregate at higher concentrations. An antibiotic activity was seen associated with the peptides at higher concentrations, and we therefore concluded that the peptides likely conferred the BT antibiotic activity. The peptides were referred as the BT peptides. The BT peptides apparently were not toxic to B. cereus at the lower concentrations in this assay. Since the smallest detectable BT band ran at ˜1.5 kD, therefore the BT peptides contained approximately 13 residues.
[0060]The chloroform-extracted BT was subject to a mass spectrometry assay. A group of peptides were detected in a range between 1550 and 1650 Daltons (FIG. 1B). The main species showed a molecular weight of 1583, and it was named BT1583. The other peptides were later shown to be isomers of BT1583 (Tables 5 and 6).
[0061]Partial BT Sequence Determination. The chloroform-extracted BT was purified further by C18 reverse phase HPLC (see Materials and Methods for details). BT1583 was purified to homogeneity in Fraction 33 of the C18 HPLC (FIG. 1C). An amino acid composition analysis of BT1583 (Fraction 33) showed BT1583 contained residues of Tyr, Lys, Leu, Ile, Val and Orn. BT1583 was refractory to N-terminal sequencing and resistant to degradation by aminopeptidase M, suggesting that a non-standard N-terminal residue. BT1583 was also resistant to cleavage by carboxypeptidase Y, suggesting a non-standard C-terminal amino acid. Carboxyl-terminal sequencing was, therefore, not attempted.
[0062]Tandem mass spectrometry (MS/MS) was then chosen to sequence the BT1583 peptide. MS/MS data were obtained for BT1583 and they are shown in FIG. 2A and Table 2. The MS/MS data indicated that BT1583 contained 13 amino acid residues that correlated well with the amino acid composition. As expected, the masses of Residues 1 and 13 did not correspond to any standard amino acids. The last residue showed a mass of 103 daltons, which appeared to be compatible with a Valine having its C-terminus reduced from a carboxylic acid to an alcohol. The presence of a C-terminal alcoholic Valine was further confirmed by the presence of a reductase domain in the 13th Valine-specific module of the BT NRPS (see below). The identity of the N-terminal residue was more difficult to determine. Nonetheless, an N-terminal residue with a mass of 198 seemed to be compatible with the N,N-methylated form of Bmt {4-methyl-4-[(E)-2-butenyl]-4,N-methyl-Threonine} (Offenzeller, et al., 1996; Offenzeller, et al., 1993)
[0063]The presence of Ornithine in BT1583 indicated that BT1583 could not be synthesized by ribosomes. The presence of D-amino acids would strengthen this idea. We chose to assess the chiral properties of two of the most abundant residues in BT1583, Val and Leu. Chiral analyses revealed uniform L-Val residues but both L- and D-Leu residues at a ratio of 2:1.
[0064]The above biochemical and structural analyses were able to provide us with a partial BT1583 peptide sequence (Table 2 and FIG. 2B). The structures of the N- and C-terminal residues were not fully determined. Isoleucine and Leucine could not be distinguished. The position of the D-form Leu was not specified. Chiral properties of other residues in the peptide were not determined.
[0065]Shot-gun sequencing of the E58 genome. To better understand the structure and biosynthesis of the BT1583 peptide, we decided to identify the gene or operon that is responsible for the BT biosynthesis. The presence of non-proteinogenic Ornithine and D-form amino acids in the peptide led us to believe that BT1583 was synthesized by the NRPS in vivo (Marahiel, 1997). Most of the NRPS genes are co-linear reflecting a strict correlation between NRPS modules and the amino acid residues in the peptide product. If the BT NRPS operon is co-linear, it should encode 13 modules corresponding to the 13 amino acid residues in the BT1583 peptide. Assuming that on average, each module is encoded by an average 3.5 kb DNA fragment, a DNA fragment of 46 kb long would be necessary to accommodate the BT NRPS operon. As mentioned before, the traditional method to identify an NRPS operon involves probing a cosmid library with a generic probe. Since an imperfect generic probe may miss the target gene and there are usually multiple NRPS operons in a bacterial genome, such method frequently causes researchers to chase the wrong NRPS operon. To avoid such pitfall, we developed a genomic approach that provides an unbiased in silica overview of all NRPS operons in a genome to allow direct comparisons of the NRPS operons and therefore rational candidate operon selection. This novel approach resulted in rapid and accurate identification of the BT NRPS operon.
[0066]The E58 genome was estimated to be 5 Mb. An E58 genomic library was constructed with an average insert size of 5 kb. The whole genome was sequenced for a two-fold coverage. After sequence assembly, the E58 genome was represented by 1919 contigs with sizes ranging from 700 bp to 22.6 kb and 932 singlets. Such coverage would allow 99.995% of the genome to be represented by clones. Also, the average length of the gap between two neighboring contigs would be as small as 250 bp so that supercontigs could be constructed (see below). Moreover, supercontigs at such resolution would contain sufficient information to allow accurate in silica NRPS operon identification.
[0067]In silica identification of the BT NRPS operon. A three-step procedure was used to select the candidate BT NRPS operon. First, all contigs and singlets were searched for sequences encoding NRPS modules. Since E58 is related to B. subtilis, the putative peptide synthetase PPS1 from B. subtilis was chosen as the query sequence for BLAST analysis against a database containing all assembled E58 contigs. 128 contigs showed translated amino acid sequence similarities to PPS1, with P-values arranging from 0 to 1.
[0068]Second, supercontigs were constructed from the 128 contigs. Two sequencing reads from the ends of the same insert form a mate pair. A supercontig is a collection of contigs joined mate pairs that reside in different contigs. Identification of mate pairs allowed neighboring contigs to be ordered and orientated to form a supercontig (FIG. 3A). 31 supercontigs were successfully constructed to represent the whole E58 NRPS operon portfolio.
[0069]The candidate BT NRPS operon was selected from the E58 NRPS operon portfolio. The 31 supercontigs were examined for the possibility of harboring the BT NRPS operon, and Supercontig 3 (whose genetic features based on finished sequence are shown in FIGS. 3B and 3C) was chosen as the candidate based on the following analyses.
[0070]Supercontig 3 potentially contained DNA sequence encoding 13 NRPS modules. Available information regarding the A-domain substrate specificities of Supercontig 3 showed compatibility with the partial BT1583 sequence. Complete sets of substrate specificity-conferring amino acid residues could be identified for eleven modules (except Modules 2 and 13 due to incomplete DNA sequence). Although not all specificity predictions could be made, good correlations were established between predicted NRPS amino acid substrates and the partial BT1583 sequence. Specifically, Module 4 was predicted to incorporate Ile, and Modules 9 and 12 were predicted to incorporate Leu (Table 3, see below for details). The partial BT1583 sequence had Leu or Ile at Positions 4, 9 and 12. Phylogenetic analysis of the substrate conferring amino acids of the eleven modules showed that modules expected to incorporate the same or highly similar amino acid did group together (FIG. 3D). For example, Modules 5, 6 and 8 that were all predicted to incorporate Val formed a cluster. Modules 7, 10 and 3 that were predicted to incorporate similar cationic amino acids (Lys and Orn respectively) formed another cluster.
[0071]The E-domain positions in the NRPS encoded by Supercontig 3 showed compatibility with the partial BT1583 peptide structure. Four E-domains were found in Modules 3, 7, 9 and 11 (FIG. 3C). Their positions were consistent with the aforementioned BT1583 chiral properties of all L-form Val residues and a 2:1 L- to D-form Leu residue ratio.
[0072]Supercontig 3 was therefore identified as the candidate locus for the BT NRPS operon. Primer extensions and genome walking were performed to obtain high quality sequence of the locus. The efforts resulted in a contig of 51,821 bp covering the putative BT NRPS operon (Genbank accession #), see FIG. 3F.
[0073]Putative BT NRPS subunits. Ten open reading frames (ORFs) were identified in the sequenced region through translation analysis and blast searches (Altschul, et al., 1997) (FIG. 3B). The middle six ORFs (named btA through btF) were predicted to encode six subunits of the BT NRPS (BtA through BtF), and their coordinates are listed in Table 4. Sequence analysis of the putative subunits confirmed the modular structure of a typical co-linear NRPS (FIG. 3C). The modules, each containing an A-domain and a T-domain, are linked by a C-- domain. The loading module BtA has an A-domain followed by a T-domain. There are two noticeable overall features for the putative BT NRPS subunits. First, four out of six subunits exhibit a two-module structure. Second, all auxiliary E-domains are present at the end rather than in the middle of the putative NRPS subunits. Sequence alignments of conserved domains are shown in FIG. 4.
[0074]A reductase domain in Module 13. A domain of about 500 amino acids was identified at the C-terminus of BtF or Module 13. BLAST analysis showed that it has high similarity with several NADPH-dependent reductases from other NRPSs and polyketide synthetases. Its alignment with the reductase domains from MxcG of S. aurantiaca and Lys2 of S. cereviciae is shown in FIG. 4E. A similar reductase domain has also been identified in the Gramicidin A NRPS (Kessler, et al., 2004). All three reductases have been experimentally demonstrated to reduce their substrates to corresponding aldehydes in an NADPH-dependent reaction (Gaitatzis, et al., 2001; Kessler, et al., 2004; Sagisaka & Shimura, 1959). For myxochelin A and gramicidin A, the aldehydes are further reduced to alcohols. The exact mechanism for the second reduction step has not been identified. Either those reductase themselves or another proteins carry out the second reduction step, or the second reduction step is spontaneous. The MS/MS experiment suggested that the C-terminal residue of BT1583 might be the alcoholic form of Valine (FIG. 2B). The A-domain specificity prediction of the last putative BT NRPS module and the presence of a reductase domain in the module confirmed this proposal.
[0075]btG encodes an ABC transporter. btG is an ORF that is immediately downstream of btF, and it is transcribed in the same direction as are other bt ORFs. The initiation codon ATG is located 61 bp downstream of the btF stop codon. Translated amino acid sequence showed high similarity to members of the ATP-binding cassette (ABC) transporter super-family (data not shown). ABC transporter ORFs are found in typical NRPS operons. Their roles have been proposed to provide host with resistance to the peptide antibiotic product by pumping the peptide out of the cells. The exact role of the putative BtG ABC transporter needs to be established.
[0076]BT1583 peptide sequence refinement. The substrate specificity-conferring residues (Stachelhaus, et al., 1999) were extracted from all 13 A-domains and were compared to the collection of the amino acid-binding pocket constituents in the public NRPS codon database (raynam.chmjhu.edu/˜nrps/index.html) (Challis, et al., 2000). Substrate specificity predictions were made based on the sequence alignments and they are listed in Table 3. The amino acid-binding pocket constituents of the first module showed a perfect match with an NRPS codon for Threonine/Dehydrothreonine, and it was predicted that Module 1 incorporates a Threonine derivative. N,N-methylated Bmt was proposed to be the N-terminal amino acid residue according to the MS/MS data (FIG. 2B and Table 2). Although the two proposals do not agree with each other 100%, both call for a Threonine derivative as the N-terminal amino acid residue.
[0077]As mentioned before three unambiguous specificity assignments could be made for Module 4 (Ile), Module 9 (Leu) and Module 12 (Leu) according to the NRPS codon database. These assignments were compatible with the partial BT1583 sequence and accordingly Positions 4, 9 and 12 of the BT1583 peptide were refined to Ile, Leu and Leu respectively. Since the only Ile of the BT1583 peptide had been assigned to Position 4, the remainder Leu was assigned to Position 2 of the BT1583 peptide. The A-domain specificity of Module 2 was therefore deduced to be Leu. These assignments in conjunction with the E-domain positional information allowed us to refine the BT1583 peptide sequence to (CH3)2-Bmt-Leu-dOrn-Ile-Val-Val-dLys-Val-dLeu-Ly- s-dTyr-Leu-Val-CH2OH.
[0078]Novel NRPS codons in BT biosynthesis. The amino acid-binding pocket constituents of Modules 5, 6 and 8 are identical. They differ with those of Module 13 by only one residue. No good matches were found for these sets of amino acid-binding pocket constituents in the NRPS codon database. However, they showed similarities to certain Ile, Leu or Val NRPS codons in the database. Since the partial BT1583 peptide sequence had Val residues at Positions 5, 6, 8 and 13, Modules 5, 6, 8 and 13 were deduced to incorporate Val. The amino acid-binding pocket constituents of Modules 5, 6, 8 and 13 represent potential novel NRPS codons for Val.
[0079]The amino acid-binding pocket constituents of Modules 7 and 10 are identical and they differ with those of Module 3 by only one residue. No match was found for these sets of amino acid-binding pocket constituents in the NRPS codon database. Since the partial BT1583 peptide sequence had Lys residues at Positions 7 and 10, the specificities of these modules were deduced to be Lys. Likewise the partial BT1583 peptide sequence had an Orn residue (which is highly similar to Lys in structure) at Position 3, and the specificity of Module 3 was therefore deduced to be Orn. The amino acid-binding pocket constituents of Modules 7 and 10 represent potentially the first NRPS codon for Lys, while those of Module 3 represent a potential novel NRPS codon for Orn.
[0080]The specificity prediction for Module 11 was quite ambiguous according the NRPS codon database. No good match was found for this set of amino acid-binding pocket constituents in the NRPS codon database. However, it showed similarities to certain Phe, Trp or Tyr NRPS codons in the database (data not shown). Since the partial BT1583 peptide sequence had Tyr residues at Position 11, the A-domain specificity of Module 11 was therefore deduced to be Tyr. The amino acid-binding pocket constituents of Module 11 represent a potential novel NRPS codon for Tyr.
[0081]Identity verification of the BT NRPS operon. Since the BT biosynthesis involves novel NRPS codons, experimental establishment of the novel codons (especially the novel Valine and Lysine codons) is critical to verifying the identity of the BT NRPS operon. In addition, since the placement of Ile at position 4 in BT1583 affects the placement of three Leu residues, the Module 4 codon also needed to be tested.
[0082]Since a purified recombinant A-domain of an NRPS module can selectively and efficiently activate the cognate amino acid substrate of the NRPS module in an ATP-PPi exchange assay (Konz, et al., 1999; Mootz & Marahiel, 1997), ATP-PPi exchange assays have been used to experimentally establish NRPS module specificities and novel NRPS codons. Recombinant A-domains of Modules 8, 5, 7, 4 and 2 of the BT NRPS were produced and purified as described in Methods and Materials. Almost completely soluble recombinant A-domain proteins were obtained. A-domain specificities were determined in ATP-PPi exchange and aa Km assays (see Methods and Materials), and the results are shown in FIG. 5. All 20 proteinogenic amino acids and L-Orn were tested for each A-domain protein, and background noise in the experiments was usually below 1%.
[0083]The Module 8 A-domain protein was shown to activate L-Val (100%), with minor activation of L-Lys (10%) and L-Ile (4%). The apparent Km was determined to be 2.75 mM for L-Val. These results confirmed the novel Valine NRPS codon. Similarly, the Module 5 A-domain protein was found to activate L-Val (100%), L-Ile (23%), and L-Leu (17%). The apparent Km was determined to be 1.11 mM for L-Val and 2.78 mM for L-Ile, clearly showing that L-Val is the preferred substrate for Module 5.
[0084]L-Lys was the only amino acid that activated by the Module 7 A-domain protein. The apparent Km value was determined to be 1.12 mM. These results established the first Lys NRPS codon.
[0085]The Module 4 A-domain protein was shown to selectively activate L-Ile (100%), with minor activation of L-Val (9%) and L-Leu (7%). The apparent Km value for L-Ile was measured at 0.5 mM.
[0086]The Module 2 A-domain protein was found to be quite ambiguous. It activated L-Leu (98%) and L-Met (100%) with nearly equal efficiency, with significant activation of L-Val (67%) and minor activation of L-Ile (19%) and L-Phe (3.5%).
[0087]In general, all purified A-domain proteins were found to selectively activate predicted amino acid substrates in the ATP-PPi exchange assays. These results experimentally confirmed the identity of the BT NRPS operon.
[0088]Synthetic peptides. To further verify the BT peptide sequence as well as the identity of the BT NRPS operon, a synthetic peptide P81 (FIG. 6) was made (by Biomer Technology, Concord, Calif.) and tested for its properties. Since Bmt is not commercially available, we were not able to synthesize a peptide according to the refined BT1583 sequence and we used octanic acid-modified Threonine to synthesize the lipopeptide P81 to mimic BT1583. P81 showed full antibiotic activity and Pronase resistance as BT1583. These results lend support to the refined BT1583 peptide sequence and the identity of the BT NRPS operon.
[0089]To investigate the significance of the C-terminal alcoholic modification, an amide form of P81 (P59) was synthesized. P59 displayed antibiotic activity but no Pronase resistance. These results indicated that the C-terminal alcoholic modification plays a key role in conferring protease resistance to P81 and likely BT1583 as well.
[0090]Since the codon for the first BT NRPS module matches perfectly with known Thr NRPS codons, the possibility of an active BT isomer with an unmodified Thr at Position 1 needed to be investigated. An amide form of P81 (P58) was therefore synthesized, and P58 displayed poor antibiotic activity. This result confirmed that a Thr derivative (rather than unmodified) Thr needs to be at Position 1 to confer antibiotic activity.
[0091]The L- and D-form residues alternate in the middle of BT1583 with the exception of Position 5 (Val). Since the alternating chirality is a key structural feature for the peptide antibiotic Gramicidine A, we decided to investigate whether we missed the coding sequence of an E-domain for Module 5. A D/L alternating version of P59 (P80) was synthesized. P80 displayed no antibiotic activity. The above results confirmed not only the BT1583 peptide structure (with the exception of the N-terminal residue) but also the identity of the BT NRPS operon.
[0092]The BT1583 peptide structure, the BT NRPS operon and the BT NRPS allow us to propose a degenerate formula for isomers of BT1583 (Table 5). Based on the relative substrate selectivity of each module, the BT isomers likely to be produced by E58 in significant amounts were predicted and listed in Table 6. Most of the predicted BT isomers were experimentally verified by MS/MS (data not shown).
[0093]The structure and biosynthesis of the BT peptides was determined using an integrated approach of biochemistry, biophysics and genomics. Amino acid composition and tandem mass spectrometry experiments with purified BT1583 (the main BT isomer) produced a partial peptide structure. The presence of Ornithine and D-form residues in the partial structure indicated that the peptide was synthesized by a non-ribosomal peptide synthase in vivo. The BT NRPS operon was rapidly and accurately identified via a novel in silica gene hunting scheme. Sequence analysis of the BT NRPS operon revealed that it encodes a co-linear modular NRPS. The co-linear nature of the BT NRPS enabled us to use the BT operon genomic information and refine the BT1583 peptide sequence to (CH3)2-Bmt-L-dO-I-V-V-dK-V-dL-K-dY-L-V-OH. Moreover, new NRPS codons for Valine, Lysine, Ornithine and Tyrosine were discovered and are reported here.
[0094]In silica NRPS operon identification. Traditional NRPS gene identification involves probing a genomic cosmid library with a generic probe. Such approach has the inherited shortcoming of causing researchers to chase the wrong gene in a genome with multiple NRPS operons. As shown herein, NRPS gene identification is improved for all NRPS operons in the genome when compared at the same time to find a best fit. Such comparison requires a draft genome. Fortunately, sequencing cost has decreased significantly to allow routine sequencing of microbial genomes. A two-fold coverage was sufficient for accurate NRPS operon identification. In actual BT NRPS operon selection, the following two sets of information are generated and compared to find the best candidate: the NRPS module clustering pattern of according to similarities of the substrate-binding pocket constituents; and positional information such as the positions of D-form residues. The module clustering technique is especially powerful in establishing the candidacy of an operon that involves novel NRPS codons (i.e., in the case of Modules 5, 6 and 8 of the BT NRPS operon). The in silica strategy is particularly useful for NRPS operon identification in strains (such as E58) that have a large number of NRPS operons in the genome.
TABLE-US-00001 TABLE 1 Amino acid composition of purified BT1583 peptide Molar ratios normalized to Residues Amino Acid nmoles Tyr Ile per peptide Tyrosine 1.75 1.00 1.16 1 Valine 4.58 2.62 3.05 3 Isoleucine 1.50 0.86 1.00 1 Leucine 5.32 3.04 3.54 3 Lysine 3.57 2.04 2.38 2 Ornithine 1.2 0.69 0.80 1 Total # of derivatizable residues 10.25 11.93 11
TABLE-US-00002 TABLE 2 Tandem mass spectrometry of BT1583 M/H+ Possible amino acid M/H+ y- Possible amino acid Compiled b-series ΔM residue series ΔM residue (N to C) 198.1 (CH3)2-Bmt(?) (CH3)2-Bmt(?) 311.16 113.06 L/I 1386.73 113.12 L/I L/I 425.21 114.05 O 1273.61 114.04 O O 538.28 113.07 L/I 1159.57 113.05 L/I L/I 637.32 99.04 V 1046.52 198.08 V + V V V 864.42 227.10 V + K 848.44 128.07 K K 963.46 99.04 V 720.37 99.04 V V 1076.52 113.06 L/I 621.33 L/I 1204.58 128.06 K K 1367.65 163.07 Y Y 1480.81 113.16 L/I L/I 1583.87 103.06 Val-CH2OH Val-CH2OH
TABLE-US-00003 TABLE 3 Predicted BT NRPS module substrate specificities and refinement of the BT1583 peptide structure. The residues were numbered according to the corresponding residues of PheA (Conti, et al., 1997). Predicted Partial Refined PheA Numbering Substrate BT1583 BT1583 Module 235 236 239 278 299 301 322 330 331 517 Specificity Seq. Seq. 1 D F W N I G M V H K Thr/Dht (CH3)2-Bmt* (CH3)2-Bmt 2 D G F L L G G V F K Ile/Leu Leu/Ile Leu** 3 D S G P S G A V D K Orn* Orn 4 D G F F L G V V Y K Ile* Leu/Ile Ile 5 D G F F V G G V F K Ile/Leu/Val Val* Val 6 D G F F V G G V F K Ile/Leu/Val Val* Val 7 D A G P S G A V D K Lys* Lys 8 D G F F V G G V F K Ile/Leu/Val Val* Val 9 D A W F L G N V V K Leu* Leu/Ile Leu 10 D A G P S G A V G K Lys* Lys 11 D A A A V V G V A K Phe/Trp/Tyr Tyr* Tyr 12 D A W F L G N V W K Leu* Leu/Ile Leu 13 D G F F A G G V F K Ile/Leu/Val Val-CH2OH* Val-CH2OH *The information was used for the BT1583 peptide sequence refinement. **The Leu at this position was deduced from the fact that the only Ile had been assigned to Position 4.
TABLE-US-00004 TABLE 4 The BT NRPS operon (see FIGS. 3G-3L). ORF Gene product Start End Length SEQ ID length MW Homology (nt) (nt) (bp) NO.: (amino acid) (kD) to btA 2,889 4,814 1,926 22 641 72.87 NRPS btB 4,817 12,409 7,593 23 2,530 288.99 NRPS btC 12,438 26,291 13,854 24 4,617 526.68 NRPS btD 26,321 33,946 7,626 25 2,541 289.31 NRPS btE 33,976 41,556 7,581 26 2,526 288.45 NRPS btF 41,584 49,059 7,476 27 2,491 284.46 NRPS btG 49,120 49,842 723 28 240 26.95 ABC transporter
TABLE-US-00005 TABLE 5 A degenerate formula for the BT isomers 1 2 3 4 5 6 7 8 9 10 11 12 13 Me2Bmt L dO I V V dK V dL K dY L V--CH2OH M V I V L I F Numbers indicate the amino acid residue positions.
TABLE-US-00006 TABLE 6 Summary of BT isomers Peptide sequences of the predicated Name products by the BT NRPS MW SEQ ID NO.: BT1583 Me2Bmt-L-dO-I-V-V-dK-V-dL-K-dY-L-V-CH2OH 1583 1 BT1601 Me2Bmt-M-dO-I-V-V-dK-V-dL-K-dY-L-V-CH2OH 1601 2 BT1569V2 Me2Bmt-V-dO-I-V-V-dK-V-dL-K-dY-L-V-CH2OH 1569 3 BT1583I2 Me2Bmt-I-dO-I-V-V-dK-V-dL-K-dY-L-V-CH2OH 1583 4 BT1617 Me2Bmt-F-dO-I-V-V-dK-V-dL-K-dY-L-V-CH2OH 1617 5 BT1597I5 Me2Bmt-L-dO-I-I-V-dK-V-dL-K-dY-L-V-CH2OH 1597 6 BT1597L5 Me2Bmt-L-dO-I-L-V-dK-V-dL-K-dY-L-V-CH2OH 1597 7 BT1615I5 Me2Bmt-M-dO-I-I-V-dK-V-dL-K-dY-L-V-CH2OH 1615 8 BT1615L5 Me2Bmt-M-dO-I-L-V-dK-V-dL-K-dY-L-V-CH2OH 1615 9 BT1583V2I5 Me2Bmt-V-dO-I-I-V-dK-V-dL-K-dY-L-V-CH2OH 1583 10 BT1583V2L5 Me2Bmt-V-dO-I-L-V-dK-V-dL-K-dY-L-V-CH2OH 1583 11 BT1597I2I5 Me2Bmt-I-dO-I-I-V-dK-V-dL-K-dY-L-V-CH2OH 1597 12 BT1597I2L5 Me2Bmt-I-dO-I-L-V-dK-V-dL-K-dY-L-V-CH2OH 1597 13 BT1631I5 Me2Bmt-F-dO-I-I-V-dK-V-dL-K-dY-L-V-CH2OH 1631 14 BT1631L5 Me2Bmt-F-dO-I-L-V-dK-V-dL-K-dY-L-V-CH2OH 1631 15 BT1569V4 Me2Bmt-L-dO-V-V-V-dK-V-dL-K-dY-L-V-CH2OH 1569 16 BT1587M2V4 Me2Bmt-M-dO-V-V-V-dK-V-dL-K-dY-L-V-CH2OH 1587 17 BT1555 Me2Bmt-V-dO-V-V-V-dK-V-dL-K-dY-L-V-CH2OH 1555 18 BT1569I2V4 Me2Bmt-I-dO-V-V-V-dK-V-dL-K-dY-L-V-CH2OH 1569 19 BT1603 Me2Bmt-F-dO-V-V-V-dK-V-dL-K-dY-L-V-CH2OH 1603 20 BT as a Feed Additive. (Semi-purified BT peptides rather than BT1583 were used in chicken growth promotion experiments.)
[0095]Based on the structure of the BT peptides and its biological and biochemical properties the present investigator produced sufficient material to test its use as a feed additive. In summary, the properties of the peptide used were as follows, 13 amino acid residues with numerous potential natural variants or isomers (>8) and derivatives (>30). Biologically, it was found that the BT peptides were a natural product produced by a Gram(+) bacterium. The BT peptide family is synthesized by a non-ribosome peptide synthase (NRPS), the cloning and characterization is disclosed herein. One such peptide, BT1583: Me2Bmt-L-dO-I-V-V-dK-V-dL-K-dY-L-V-CH2OH (SEQ ID NO.: 1) was selected for further studies because it is cationic and likely amphipathic, It contains unusual amino acid residues and/or includes multiple modifications.
[0096]BT1583 was also selected due to its high level of stability. The high stability observed for this peptide included one or more of the following characteristics: (1) no known enzymes can digest it; (2) it is not digested in the mouse or chicken GI track; (3) it can be autoclaved; (4) it survived the feed pelleting process; (5) it can stand extreme pHs (pH 1.0 and pH 13.0); and (6) the only known in vitro method to inactivate it is pH 1.0 plus 100° C. overnight.
[0097]In addition to the remarkable stability of BT1583, it demonstrated, in vitro, antibacterial against Gram-positive bacteria, e.g., for most Gram (+): MIC=1 microgram/ml. For Gram (-) the following were the antimicrobial activities observed: E. coli: MIC>20 microgram/ml; Pseudomonas and Salmonella: MIC>100 microgram/ml. BT1583 also shows antifungal, e.g., S. cerevisiae: MIC=50 microgram/ml. Anti-protozoal activity was also observed for BT1583 against, Tetrahymena: MIC=25 microgram/ml.
[0098]The E58 strain for producing BT1583 was selected because it was a fast growing and high peptide producer strain. Furthermore, in addition to fast peptide biosynthesis the strain is also grows in cheap media, e.g., with medium cost as low as 0.4 cents/L and a yield of, e.g., 0.5 g/L. Growth is generally carried out in an air shaker but may also be fermented. Furthermore, the peptide and the strain may be used without extensive adaptation of well-known procedures to an easy, one-step purification process.
[0099]The following tables and examples show the growth promotion capabilities and characteristics of the BT1583 peptide in Broiler Chicken, e.g., in a 21-day battery study.
TABLE-US-00007 TABLE 7 Summary of Growth Promoting Studies. Feed conversion Additional Study BT1583 concentration improvement (point) weight gain (%) 1-1 10 ppm 7 17 1-2 30 ppm 8 17 2-1 6 ppm 9 6.7 2-2 12 ppm 10 11 3-1 12 ppm 9 16 3-2 12 ppm with Coban 9 5.4 (vs Coban alone) 4-1 24 ppm with direct 13 7.1 coccidial challenge 4-2 48 ppm with direct 17 9.3 coccidial challenge
[0100]Briefly, the peptide was used in a semi-purified form to study the growth and feed conversion of 20-day old straight run broilers in batteries (Studies 2-1 and 2-2). Two amounts were tested against a feed control, peptide at 6 ppm and peptide at 12 ppm, 12 repetitions were carried out per treatment with 4 birds per pen. The diet used in the study was as follows.
TABLE-US-00008 TABLE 8 Basic Feed for Studies 2-1 and 2-2 PERCENT INGREDIENTS (Mash Feed) TAMU Corn 62.91 TAMU Dehulled Soybean Meal 30.67 DL Methionine 0.07 Blended A-V Fat 2.68 Limestone 1.45 Mono-Dicalcium Phosphate 1.58 Salt 0.33 TAMU Trace Minerals 0.05 TAMU Vitamins 0.25 NUTRIENT CONTENT (Calculated) Metabolizable Energy (kcal/kg) 3100 Protein (%) 20.0 Lysine (%) 1.05 Methionine + Cystine (%) 0.72 Threonine (%) 0.75 BT1583 added in 200 grams of corn meal carrier
Table 9 shows the Statistics for a Dependent Variable: 20-day cumulative weight gain.
TABLE-US-00009 Treatment Mean Std. Deviation Number Control 554.8236 38.13395 12 BT1583 @ 12 ppm 618.9340 46.79301 12 BT1583 @ 6 ppm 591.9750 47.93018 12 Total 588.5775 50.77136 36
Table 10 shows the Tests of Between-Subjects EffectsDependent Variable: 20-day cumulative weight gain
TABLE-US-00010 Type III Sum Source of Squares df Mean Square F Sig. Corrected 24868.642(a) 2 12434.321 6.279 .005 Model Intercept 12471247.008 1 12471247.008 6297.459 .000 TRE 24868.642 2 12434.321 .005 Error 65351.939 33 1980.362 6.279 Total 12561467.588 36 Corrected Total 90220.580 35 (a)R Squared = .276 (Adjusted R Squared = .232)
Table 11 shows the estimated marginal means for the study.Dependent Variable: 20-day cumulative weight gain
TABLE-US-00011 95% Confidence Interval Lower Treatment Mean Std. Error Bound Upper Bound Control 554.824 12.846 528.687 580.960 BT1583 @ 618.934 12.846 592.798 645.070 12 ppm BT1583 @ 6 ppm 591.975 12.846 565.839 618.111
Table 12 shows the Post Hoc Tests for Homogeneous SubsetsDependent Variable: 20-day cumulative weight gain Duncan
TABLE-US-00012 Subset Treatment N 1 2 Control 12 554.8236 BT1583 @ 6 ppm 12 591.9750 BT1583 @ 12 ppm 12 618.9340 Sig. 1.000 .147 Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares The error term is Mean Square(Error) = 1980.362. a Uses Harmonic Mean Sample Size = 12.000. b Alpha = .05.
Table 13 shows the Descriptive StatisticsDependent Variable: 20-day cumulative feed conversion rate
TABLE-US-00013 Treatment Mean Std. Deviation N Control 1.5922 .13721 12 BT1583 @ 12 ppm 1.4959 .10089 12 BT1583 @ 6 ppm 1.5065 .04795 12 Total 1.5315 .10841 36
Table 14 shows the Tests of Between-Subjects EffectsDependent Variable: 20-day cumulative feed conversion rate
TABLE-US-00014 Type III Sum of Source Squares df Mean Square F Sig. Corrected 6.702E-02(a) 2 3.351E-02 3.212 .005 Model Intercept 84.440 1 84.440 8092.585 .000 TRE 6.702E-02 2 3.351E-02 3.212 .053 Error .344 33 1.043E-02 6.279 Total 84.851 36 Corrected .411 35 Total (a)R Squared = .163 (Adjusted R Squared = .112)
Table 15 shows the Estimated Marginal MeansDependent Variable: 20-day cumulative feed conversion rate
TABLE-US-00015 95% Confidence Interval Treatment Mean Std. Error Lower Bound Upper Bound Control 1.592 .029 1.532 1.652 BT1583 @ 1.496 .029 1.436 1.556 12 ppm BT1583 @ 6 ppm 1.506 .029 1.446 1.566
Table 16 shows the Post Hoc Tests for Homogeneous SubsetsDependent Variable: 20-day cumulative feed conversion rate--Duncan
TABLE-US-00016 Subset Treatment N 1 2 BT1583 @ 12 ppm 12 1.4959 BT1583 @ 6 ppm 12 1.5065 Control 12 1.5922 Sig. .801 1.000 Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares The error term is Mean Square (Error) = 1.043E-02. a Uses Harmonic Mean Sample Size = 12.000. b Alpha = .05.
[0101]To evaluate TAMUS BT1583 on growth and feed conversion of 3-wk old straight run broilers fed an industry type pelleted starter feed (in batteries, Studies 3-1 and 3-2). Briefly, the following six treatment regimens were examined: Control, Monensin at 90 ppm, BMD 50 at 50 ppm, BT1583 at 12 ppm, Monensin+BMD 50, Monensin+ and BT1583 at 12 ppm. Eight (8) study repetitions per treatment were used, again with 4 birds per pen.
TABLE-US-00017 TABLE 17 Basic Feed for Studies 3-1 and 3-2. PERCENT INGREDIENTS (Pelleted Feed) TAMU Corn 56.11 TAMU Dehulled Soybean Meal 35.90 DL Methionine 0.22 Blended A-V Fat 4.02 Limestone 1.43 Mono-Dicalcium Phosphate 1.55 Salt 0.46 TAMU Trace Minerals 0.05 TAMU Vitamins 0.25 NUTRIENT CONTENT (Calculated) Metabolizable Energy (kcal/kg) 3100 Protein (%) 22.31 Lysine (%) 1.21 Methionine + Cystine (%) 0.92 Threonine (%) 0.84 BT1583 added via 200 grams of corn meal
Table 18 shows the Descriptive StatisticsDependent Variable: 21-day cumulative weight gain
TABLE-US-00018 Treatment Mean Std. Deviation Number BT1583 @ 12 ppm 831.7396 40.47789 8 BMD @ 50 ppm 832.9688 30.12576 8 COB @ 90 ppm 792.8438 67.05913 8 COB + BT1583 835.7604 62.00447 8 COB + BMD 810.2188 74.64333 8 Control 719.7813 71.97.115 8 Total 803.8854 70.02414 48
Table 19 shows the Tests of Between-Subjects EffectsDependent Variable: 21-day cumulative weight gain
TABLE-US-00019 Type III Sum of Source Squares df Mean Square F Sig. Corrected 78986.007(a) 5 15797.201 4.380 .003 Model Intercept 31019124.630 1 31019124.630 8600.903 .000 TRE 78986.007 5 15797.201 4.380 .003 Error 151472.835 42 3606.496 Total 31249583.472 48 Corrected 230458.842 47 Total (a)R Squared = .343 (Adjusted R Squared = .264)
Table 20 shows the Estimated Marginal MeansDependent Variable: 21-day cumulative weight gain
TABLE-US-00020 95% Confidence Interval Lower Upper Treatment Mean Std. Error Bound Bound BT1583 831.740 21.232 788.891 874.588 BMD 832.969 21.232 790.120 875.817 COB 792.844 21.232 749.995 835.692 COB + BT1583 835.760 21.232 792.912 878.609 COB + BMD 810.219 21.232 767.370 853.067 Control 719.781 21.232 676.933 762.630
Table 21 shows the Post Hoc Tests for Homogeneous SubsetsDependent Variable: 21-day cumulative weight vain--Duncan
TABLE-US-00021 Subset Treatment N 1 2 Control 8 719.7813 COB 8 792.8438 COB + BMD 8 810.2188 BT1583 8 831.7396 BMD 8 832.9688 COB + BT1583 8 835.7604 Sig. 1.000 .211 Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares The error term is Mean Square (Error) = 3606.496. a Uses Harmonic Mean Sample Size = 8.000. b Alpha = .05.
Table 22 shows the Descriptive StatisticsDependent Variable: 20-day cumulative feed conversion rate
TABLE-US-00022 Treatment Mean Std. Deviation N BT1583 1.3308 .03340 8 BMD 1.3397 .03132 8 COB 1.3712 .03023 8 COB + BT1583 1.2816 .02680 8 COB + BMD 1.3435 .02477 8 Control 1.4154 .03299 8 Total 1.3470 .04989 48
Table 23 shows the Tests of Between-Subjects EffectsDependent Variable: 21-day cumulative feed conversion rate
TABLE-US-00023 Type III Sum of Source Squares df Mean Square F Sig. Corrected 7.894E-02(a) 5 1.579E-02 17.442 .000 Model Intercept 87.096 1 87.096 96218.356 .000 TRE 7.894E-02 5 1.579E-02 17.442 .000 Error 3.802E-02 42 9.052E-04 Total 87.213 48 Corrected Total .117 47 (a)R Squared = .675 (Adjusted R Squared = .636)
Table 24 shows the Estimated Marginal MeansDependent Variable: 21-day cumulative feed conversion rate
TABLE-US-00024 95% Confidence Interval Treatment Mean Std. Error Lower Bound Upper Bound BT1583 1.331 .011 1.309 1.352 BMD 1.340 .011 1.318 1.361 COB 1.371 .011 1.350 1.393 COB + BT1583 1.282 .011 1.260 1.303 COB + BMD 1.344 .011 1.322 1.365 Control 1.415 .011 1.394 1.437
Table 25 shows the Dependent Variable:
[0102]20-day cumulative feed conversion rate--Duncan
TABLE-US-00025 Subset Treatment N 1 2 3 4 COB + BT1583 8 1.2816 BT1583 8 1.3308 BMD 8 1.3397 1.3397 COB + BMD 8 1.3435 1.3435 COB 8 1.3712 Control 8 1.4154 Sig. 1.000 .432 .053 1.000 Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares The error term is Mean Square (Error) = 9.052E-04. a Uses Harmonic Mean Sample Size = 8.000. b Alpha = .05.
[0103]A more complete study to evaluate TAMUS BT1583 on growth and feed conversion of 42 day old straight run broilers in floor pens may be as follows: Treatments of six (6) groups, Control, Monensin at 90 ppm, BT1583 at 12 ppm, Monensin+BMD at 50 ppm, Monensin+BT1583 at 12 ppm and BMD at 50 ppm. 10 study repetitions per treatment were used to evaluate the effect of using the BT1583 peptide as a feed additive, this time with 40 birds per pen.
[0104]When used to promote growth in food-producing animals it was found that the BT1583 peptide provided about 10 points in feed conversion plus extra weight gains. One distinct advantage of the present invention is that no or very little absorption by the chicken GI track, thereby making it useful for widespread use. Furthermore, unlike conventional antibiotics, the present invention may target the bacterial membrane, and there is currently not a drug target that can be altered with one or two mutations to allow development of drug resistance. Furthermore, it was found that growth promotion via possible host immunity modulation is intrinsic to chicken and independent of drug resistance. Alternatively, but in no way limiting the present invention, the present invention may be used as an animal-use only antibiotic for bacterial infections. Also, to date, there has been no observed decrease in the growth promoting activity of the peptide.
[0105]A broiler floor pen trial to compare the performance of a new anti-microbial designated for this project as BT1583 alone and in combination with the widely used coccidiostat monensin (MON) to MON fed alone, MON in combination with the also widely used antimicrobial Bacitracin MD (BMD) and BMD alone.
[0106]The following levels of each treatment were evaluated:
[0107]1: Non-supplemented
[0108]2: Monensin (MON) 99 ppm
[0109]3: BT1583 12 ppm
[0110]4: BT1583 12 ppm+MON 99 ppm
[0111]5: MON 99 ppm+BMD 55 ppm
[0112]6: BMD 55 ppm
[0113]The study design included 10 pens per treatment and 40 birds per pen housed on day of hatch. Two basal corn-soy based diets of decreasing protein (approximately 23 to 20%) and increasing metabolizable energy (approximately 1400 to 1455 kcal/lb) were used from Day 0 to 21 (starter feed) and Days 22 to 42 (grower feed), respectively. Treatment premixes were measured and blended into diets at required levels. Between days 0 and 21 mortality was less than 1% with all birds growing optimally and of high health across all groups.
[0114]Beginning on study day 22, the study director modulated house temperature and air flow to mimic industry conditions conducive to outbreaks of colibacillosis within naive broiler flocks. This was done to stimulate a natural challenge for this study. Mortality climbed to a house average of approximately 10% by Day 42. A majority of these deaths occurred in groups not receiving BT1583 or MON. Lesions were consistent with those of colibacillosis (air sac, pneumonia, peri-hepatitis, peri-carditis and extreme morbidity). All mortality was documented (weight at death and post-mortem observations). All birds and feeds were weighed at 42 days. All remaining birds were euthanized on Day 42 by asphyxiation with the carcasses submitted for rendering.
[0115]All data were analyzed as described below and are displayed in Tables 26 through 30. The following variables were tested: Response Variables: Gain Per Bird, Feed Per Gain, Mortality (%), Adjusted Feed Per Gain. F test from One Way ANOVA with one blocking factor=location, at Day 42 using 0.05 level of significance.
[0116]All Response Variables: LSD T-test procedure for pair-wise comparisons with Type 1 error of means when ANOVA F ratio is significant, overall significance level of 0.05 used. Lines below means (see Table 30, below) indicate groups with insignificant differences in means.
TABLE-US-00026 TABLE 26 Weight gains (in lb) per bird Treatment Day 42 Gain/Bird Non-supplemented 3.900d Monensin (MON) 99 ppm 4.111bcd BT1583 12 ppm 4.333ab MON 99 ppm + BT1583 12 ppm 4.385a MON 99 ppm + BMD 55 ppm 4.127c BMD 55 ppm 3.971cd
[0117]Weight gains were heaviest for the 2 groups of broilers receiving BT1583 measured at 42 days with the MON+BT1583 significantly heavier (p<0.05) than that provided by the MON+BMD and MON groups.
[0118]Feed/Gain: Table 27 shows that MON+BT1583 fed broilers had the feed/gain values which were lower (p<0.05) than all other groups with the exception of the group receiving BT1583 alone.
TABLE-US-00027 TABLE 27 Feed/Gain Treatment Day 42 Feed/Gain Non-supplemented 2.189c Monensin (MON) 99 ppm 1.854b BT1583 12 ppm 1.722ab MON 99 ppm + BT1583 12 ppm 1.689a MON 99 ppm + BMD 55 ppm 1.885bc BMD 55 ppm 2.147c
[0119]Adjusted Feed/Gain: The total weight of mortality in each pen was added to the final live weight, that value reduced by subtracting the initial weight and then dividing that value into the Total feed consumed to calculate the Adjusted Feed/Gain.
[0120]Table 28 demonstrates the effects of the natural challenge on feed/gain values. Even with the adjustments for mortality, MON+BT1583 fed broilers had an adjusted feed/gain value which again was significantly lower (p<0.05) than all other groups with the exception of the group receiving BT1583 alone.
TABLE-US-00028 TABLE 28 Feed/Gain Adjusted Treatment Day 42 Adjusted Feed/Gain Non-supplemented 1.928c Monensin (MON) 99 ppm 1.761b BT1583 12 ppm 1.704ab MON 99 ppm + BT1583 12 ppm 1.654a MON 99 ppm + BMD 55 ppm 1.725b BMD 55 ppm 1.838bc
[0121]Mortality: The majority of the deaths were caused by acute and chronic colibacillosis. Broilers receiving BT1583 or Monensin alone or in combination had lower mortality rates than the non-supplemented controls.
TABLE-US-00029 TABLE 29 Mortality by acute and chronic colibacillosis. Treatment Day 42 Mortality (%) Non-supplemented 17.50c Monensin (MON) 99 ppm 8.00a BT1583 2.75a MON 99 ppm + BT1583 12 ppm 3.50a MON 99 ppm + BMD 55 ppm 7.75abc BMD 55 ppm 18.25bc
[0122]Monensin is a polyether antibiotic that is approved and used as an anti-protozoal agent in the poultry industry. Slight efficacy by monensin and other polyether antibiotics against gram negative bacteria has been documented by many researchers and poultry industry personnel. BT1583 has also been stated to have efficacy against gram negative bacteria. Escherichia coli has been a major problem in the food industries both health wise and financially. Most products highly effective against this pathogen are too costly to use in broiler older than 21 days or have been pulled off the market due to similarities to human health products raising public health concerns. This study demonstrated that BT1583 is highly effective against colibacillosis in 3 to 4 week old naive broiler chickens raised under simulated commercial broiler conditions. The 20+point weight gain advantages and 10+point feed/gain advantages held by BT1583 over monensin and BMD fed alone and in combination observed on this trial is a strong indicator that this product may be an invaluable tool for the future of the poultry industry.
TABLE-US-00030 TABLE 30 P-Values Comparisons Day 42 Day 42 Day 42 Day 42 Day 42 Adjusted Day 42 Wt/Gain Indiv. Bird Gain/Bird Feed/Gain Feed/Gain Mortality WtGn (lb) Wt (lb) (lb) (FdWt/WTGn) (Adj Feed/Gn) (%) Controls vs. MON 0.216456 0.153695 0.001923 0.023562 0.013284 Controls vs. BT1583 0.000028 0.000023 0.000134 0.002449 0.001433 Controls vs. MON + BT1583 0.000421 0.000333 0.000115 0.000147 0.006250 Controls vs. MON + BMD 0.004270 0.002816 0.096440 0.003283 0.179121 Controls vs. BMD 0.523702 0.546456 0.754966 0.231502 0.845776 MON vs. BT1583 0.177311 0.192494 0.159703 0.425156 0.172685 MON vs. MON + BT1583 0.018776 0.022738 0.041045 0.033717 0.234506 MON vs. MON + BMD 0.805698 0.905725 0.840264 0.275135 0.967501 MON vs. BMD 0.521589 0.443090 0.123047 0.453955 0.031824 BT1583 vs. MON + BT1583 0.645444 0.638704 0.472007 0.338775 0.663743 BT1583 vs. MON + BMD 0.014212 0.011862 0.254035 0.712535 0.336982 BT1583 vs. BMD 0.005943 0.005142 0.017789 0.091063 0.006670 MON + BT1583 vs. MON + BMD 0.006085 0.004962 0.145588 0.037877 0.386550 MON + BT1583 vs. BMD 0.006044 0.005385 0.013376 0.034621 0.003991 MON + BMD vs BMD 0.244875 0.214655 0.181891 0.205577 0.134645 (Note: Bold type and underlining indicate comparisons where p-value is less than 0.05)
[0123]It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.
[0124]All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
[0125]All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
REFERENCES
[0126]Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. J Mol Biol 215(3), 403-10. [0127]Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17), 3389-402. [0128]Challis, G. L., Ravel, J. & Townsend, C. A. (2000). Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7(3), 211-24. [0129]Conti, E., Stachelhaus, T., Marahiel, M. A. & Brick, P. (1997). Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. Embo J 16(14), 4174-83. [0130]Gaitatzis, N., Kunze, B. & Muller, R. (2001). In vitro reconstitution of the myxochelin biosynthetic machinery of Stigmatella aurantiaca Sg a15: Biochemical characterization of a reductive release mechanism from nonribosomal peptide synthetases. Proc Natl Acad Sci USA 98(20), 11136-41. Epub 2001 Sep. 18. [0131]Gonzalez-Pastor, J. E., Hobbs, E. C. & Losick, R. (2003). Cannibalism by sporulating bacteria. Science 301(5632), 510-3. Epub 2003 Jun. 19. [0132]Hopwood, D. A. (1997). Genetic Contributions to Understanding Polyketide Synthases. Chem. Rev 97(7), 2465-2498. [0133]Keating, T. A., Ehmann, D. E., Kohli, R. M., Marshall, C. G., Trauger, J. W. & Walsh, C. T. (2001). Chain termination steps in nonribosomal peptide synthetase assembly lines: directed acyl-5-enzyme breakdown in antibiotic and siderophore biosynthesis. Chembiochem 2(2), 99-107. [0134]Keating, T. A. & Walsh, C. T. (1999). Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr Opin Chem Biol 3(5), 598-606. [0135]Kessler, N., Schuhmann, H., Morneweg, S., Linne, U. & Marahiel, M. A. (2004). The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biol Chem 279(9), 7413-9. [0136]Konz, D., Doekel, S. & Marahiel, M. A. (1999). Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol 181(1), 133-40. [0137]Linne, U. & Marahiel, M. A. (2000). Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. Biochemistry 39(34), 10439-47. [0138]Marahiel, M. A. (1997). Protein templates for the biosynthesis of peptide antibiotics. Chem Biol 4(8), 561-7. [0139]Mootz, H. D. & Marahiel, M. A. (1997). The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol 179(21), 6843-50. [0140]Mootz, H. D., Schwarzer, D. & Marahiel, M. A. (2002). Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3(6), 490-504. [0141]Offenzeller, M., Santer, G., Totschnig, K., Su, Z., Moser, H., Traber, R. & Schneider-Scherzer, E. (1996). Biosynthesis of the unusual amino acid (4R)-4-[(E)-2-butenyl]-4-methyl-L-threonine of cyclosporin A: enzymatic analysis of the reaction sequence including identification of the methylation precursor in a polyketide pathway. Biochemistry 35(25), 8401-12. [0142]Offenzeller, M., Su, Z., Santer, G., Moser, H., Traber, R., Memmert, K. & Schneider-Scherzer, E. (1993). Biosynthesis of the unusual amino acid (4R)-4-[(E)-2-butenyl]-4-methyl-L-threonine of cyclosporin A. Identification of 3(R)-hydroxy-4(R)-methyl-6(E)-octenoic acid as a key intermediate by enzymatic in vitro synthesis and by in vivo labeling techniques. J Biol Chem 268(35), 26127-34. [0143]Quadri, L. E., Sello, J., Keating, T. A., Weinreb, P. H. & Walsh, C. T. (1998). Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol 5(11), 631-45. [0144]Sagisaka, S. & Shimura, K. (1959). Enzymic reduction of alpha-amino-adipic acid by yeast enzyme. Nature 184(Suppl 22), 1709-10. [0145]Sanglier, J. J., Traber, R., Buck, R. H., Hofmann, H. & Kobel, H. (1990). Isolation of (4R)-4-[(E)-2-butenyl]-4-methyl-L-threonine, the characteristic structural element of cyclosporins, from a blocked mutant of Tolypocladium inflatum. J Antibiot (Tokyo) 43(6), 707-14. [0146]Stachelhaus, T., Mootz, H. D., Bergendahl, V. & Marahiel, M. A. (1998). Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain. J Biol Chem 273(35), 22773-81. [0147]Stachelhaus, T., Mootz, H. D. & Marahiel, M. A. (1999). The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6(8), 493-505. [0148]Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22), 4673-80.
Sequence CWU
1
28113PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 1Xaa Leu Xaa Ile Val
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
10213PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 2Xaa Met Xaa Ile Val
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
10313PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 3Xaa Val Xaa Ile Val
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
10413PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 4Xaa Ile Xaa Ile Val
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
10513PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 5Xaa Phe Xaa Ile Val
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
10613PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 6Xaa Leu Xaa Ile Ile
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
10713PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 7Xaa Leu Xaa Ile Leu
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
10813PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 8Xaa Met Xaa Ile Ile
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
10913PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 9Xaa Met Xaa Ile Leu
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
101013PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 10Xaa Val Xaa Ile Ile
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
101113PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 11Xaa Val Xaa Ile Leu
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
101213PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 12Xaa Ile Xaa Ile Ile
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
101313PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 13Xaa Ile Xaa Ile Leu
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
101413PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 14Xaa Phe Xaa Ile Ile
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
101513PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 15Xaa Phe Xaa Ile Leu
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
101613PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 16Xaa Leu Xaa Val Val
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
101713PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 17Xaa Met Xaa Val Val
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
101813PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 18Xaa Val Xaa Val Val
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
101913PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 19Xaa Ile Xaa Val Val
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
102013PRTBrevibacillus texasporusMOD_RES(1)..(1)N,N-methylated
(4R)-4-[(E)-2-butenyl]-4-methyl- L-threonine 20Xaa Phe Xaa Val Val
Val Xaa Val Xaa Lys Xaa Leu Xaa1 5
102150674DNABrevibacillus texasporus 21attcgttgga tccagtgtgg tggaattcaa
accctcagtg ggtaaagata ttgccagagt 60cttgaaatgt accaaacagg gaaatgggta
ccttgaaggc gacaaatatg tagtaacctg 120ggcatttggc catctggtta cgctggctga
tcctgaagcc tatggagaga catataaagc 180ttggaagctg gaggatttac cactgttgcc
gtctcgcctg caattaactg tcatcagaca 240gagctccaag caatatcaga ttgtaaaaaa
attattagcg cgtcaggata tttcagaagt 300gattattgct actgatgctg gtcgtgaagg
tgagctggtg gcgcgatgga ttttagaaaa 360ggcacatgtg aaaaagccta ttaaacgact
atggatttcc tctgtgactg ataaagcaat 420cagtgatggc ttcagaaagc tgcgagatgg
caaggaatac gagaatctct atgcttctgc 480tgtagctcgc gctgaagctg actggtttgt
cgggatcaat gccactcgtg ctcttacaac 540gaagcataat gcccagctct cctgcgggcg
tgtacaaact cctacagtgg caatgattgc 600caaacgtgag gaggagattc aaaggttcgt
tcctcgcccc tattatggtg ttcaagcgat 660cacaggtaat ggattaaagc ttacgtggca
ggatcagcaa accaaagata tgaagacgtt 720taccaaggag aaggctgaga aaattgtcga
aagcagtaaa aacaagcaag ctgaaattat 780tgacatcaag aaggctgaca agaaaagctt
cgccccagct ttatatgatc taactgagct 840acaacgtgat gcgaataagc gttttggttt
ttcggcaaag gaaaccctct ccattatgca 900agggctatac gaaacacata aggtactcac
atacccgcgg acagattctc gctatttgac 960atcagatatt gtcgaaacat tacctgatcg
attgagagcg atatctgtta agccatacac 1020tccgtttgca gctaagctgt taaagcaacc
gattcgagct ggtaaacatg tagtggataa 1080tagcaaggta tctgatcacc atgcgattat
tccaactgag caatctgtgc tgttaaataa 1140gcttagcgat aaggaacgta aaatttatga
ccttgtggtt aaacgctttc tggctgtgct 1200atatccgcct tttgaatatg aacaaattag
tattcgtgcc cgaattggca acgaggaatt 1260tctagcaaaa gggaagacga taacgcatca
gggctggaag gaaatttatg ataatcactt 1320tgatgaagag gatcaaggag atggattaaa
agaacagctt ttaccaacgc ttgtacaagg 1380tgagcaacta tctgtacaaa ccgtttcttt
tacaaaaggg gaaacaaaac ctccagagcc 1440atttacggag gctacactcc tttcagctat
ggagaatcct gtccgttata tgggacaggt 1500tgataagcag ctagccaaaa cattaggtga
gacaggtgga ttaggaactg ttgctactcg 1560cgccgatatt attgaaaaat tgtttaatag
cttcctcatt gaaaagcgca gcaagcatat 1620tcatattact tctaaaggaa agcaattact
tgagcttgta ccagaaggac ttcgctcacc 1680ggctcttact gctgaatggg aagtgaagct
tggagcgatc tcgaaaggaa gcctggctaa 1740aaacagcttc atacaggaaa tgaagaagta
tgcagagcaa atcgttcaac agatcaaatt 1800tagtgagcaa aagtttcgtc atgacaatct
gactcgctcc aaatgcccgg attgtggaaa 1860gctgatgctt gaggtaaatg ggaaaaaagg
aaaaatgtta gtttgtcagg atcgtgagtg 1920tggtcaccgt aaggccgtat ccaaggttac
aaatgccaga tgcccacaat gtcgaaagaa 1980gatggagatg cgtggggaag gagaaggaaa
gatattcgta tgcaaatgcg gacatcgtga 2040aaaactgtcg acgtttaacg acagacgtag
caaggagaaa cagacaaatg tttcgaaacg 2100agatgtagcc cagtatatga aaaatcagca
acgagatcaa gaaagcttag gtaatccagc 2160cttgatggag gcattaaaga attttaagct
agatcagtaa gtcattttat atagaaaaga 2220taggctcgaa aataaggcgc ccgctctctt
tattagctaa gagaaagggc gtctatttta 2280gcttctcttt tctatatgga aaaaaggaat
taacaaaatc tgaagaaaat ttcagaattt 2340attattttta tgttaagaga ttttgaaaga
agtgcatcta tttactttat ccataaatga 2400aagcaaaaat gagattgtta tattccataa
aatgtaaatg tttttatatc ttggaaaaca 2460tagagtcgag aacgctgttc actatacaag
aagactatag atacgagctt ttacggctat 2520ttttacgatt tgataacgcc ttcttttttt
agtctaataa aaaacagtaa cgaatcgaaa 2580aaataacaat aatttgattg gtaaataaca
ttgttactaa ttcacagaaa acaaaatcat 2640tatttttaca taataaaaac ataataataa
aatgtgatag aaaaatattg aagaaaatgt 2700ccattattgg tagtattgaa aaataaacct
gtaattttat gtattataat gcaattattt 2760gtcgcatatt tactagcata aatgttagcg
atgatgtgag caaatcgtta cctgttagaa 2820ggaagatcag ctacatatga ttcaaaattt
ttcgtttttt tattttaaaa gacaaagagg 2880tggtcctgat ggatttatct acattaaatt
ttttgggtga aacagaaaag cataagttat 2940tgaatcaatt caatgatacg gacgctaatt
ttcctcagga gatgaccatt catgggctgt 3000ttgaaaagca agtccaagaa agaccgaatc
aaactgcggt aatttttaat gaacaaagta 3060tgacgtataa agaaatgaat gaacgagcca
atcaagtagc acatagctta cggaagcatg 3120gagctgctcc agatgagatc gttggaattc
tagcagatcg caacatggac atgcttattt 3180ccattctcgg cgtattaaag gctggagctg
cttatatgcc tattgatcct acatacccta 3240cagaacgtat tctttatatg atccatgata
gccagaccaa aattgtctta gctgaacata 3300gagagatggt tccggaaggc tgtaatgcag
agctgatcct cttgcacgat agctcccttt 3360taaacgaaga gacatctgat ctagagcatg
taaataagcc tgaagatttg gcctatatta 3420tctatacatc aggttctact ggtaaaccaa
aaggggttat gattgaacat cgaaatgtca 3480ttcgcttgct atttaatgac agaaacctat
ttgattttac tagtgatgat gtctggaccg 3540ttttccattc gttctgtttt gacttctctg
tttgggagat gtatggggct ttactgtatg 3600gaggaaaaat cgttctcgtc tcttttgaga
tagctagaga tcctcaggcc ttccgagatt 3660tacttcagga gcaaaaggtt acgattttaa
atcaaacccc tacagctttt tatcagctct 3720cgtctcaaga gatgcagcac tcagacagca
atctatcgat tcgtaaaatc atttttggtg 3780gagaagcgtt gacgccatca cagttgaaag
catggaaaca aaaatatcca aatacagcct 3840tgattaatat gtacggtatt acagaaacaa
ctgttcatgt gacttataag gagtttcaat 3900tacatgatat ggacagcaca gttagcaata
tcggaaagcc tatcccaacg cttagaacct 3960atgttttaga ttccaagaga aacctagctc
caattggagt gaaaggtgaa ctgtatgtga 4020gcggcaaggg agtagcccgc ggttatttaa
acaaacctga attgacggaa gaacggttta 4080tggataaccc gtttgttgct ggagaaagaa
tgtatcgcac aggagaccta gctagatggc 4140tacctgaagg agagctagaa tatctaggca
ggattgacca tcaggtaaaa atcagaggct 4200atcgcattga actcggagaa atagaagccg
agctattgaa gcaaaaaggg attaaagaag 4260cagtagtttt agttacaaat gataaagatg
cacaaccaca attacatgcc tatttaacat 4320ctaaggaaga tttggcagca gcagatcttc
gtaatcaact tactacaaca ttaccctctt 4380acatgattcc ggctcatttc atttttgtgt
cgcaaatgcc tgttacgcca aatggaaaaa 4440ttgataaaga atcacttcgt aaaatagaac
catcacttca agaaagccct acagaagctt 4500atgtagctcc acaaacacct acagaaaagc
aattagtcca catatgggaa gaaaatattg 4560gaatgcaacc gatcagcata gacgataatt
attttgctct aggtggtgat tccatcaaag 4620cgattaagct attgcatgct ataaataaag
agtttcagat tagtttccaa attggagatt 4680tgtataagca tggaaccatt agagaaatgg
gacagcaaat cggtgaaaag ggcaagcaat 4740ctagcaatca aaaactgttg aaacttcagg
aattggaccg tttaaaagag aaaattttgg 4800gaagtgagaa atagtcatgt cggataagct
aagcaacgct aaagacctat ttccaatgag 4860cgatatacag ctagggatgg tctaccattc
gttaaaacat gtacacgaag ctgtatacca 4920tgatcaattt gtttatcaag tagatgatga
ttcatttgat gttcatgtgc tagagcaagc 4980gatgagaatg atggttgata agcacgacat
cttaaaaacc agctttcata ttgaggaatt 5040ttccactcca gttcaagtag tgcaccagga
ggtttctgtt cgaattgatg agacagacat 5100tacgcatctg ggagaaaaac aaaaagagta
tatccatcag tatttggcac aggatcgtca 5160atcccctttt gatgtaacaa ccgctcctct
atggagaatg agcgttttta aactgaatgc 5220aagccaagtt gctttagtct ggatctttca
tcatgctatt ttggatggat ggagtgttgc 5280atcttttatt acggaattaa ttgatgttta
tttcaaatta aagcacaaaa cttgcacttt 5340ggagcatttg aacacgacct ataaggatta
tgtgattgat cagatgctat tatctgagca 5400aaatgagctg cgtgaatatt ggaaagaaga
attaaaagat tacaaacggc tacagctccc 5460agtaaaagtg gatgaaaatg gcggtgttca
cgttaccgtt gttgagaagc tagaccctga 5520cattataaat aaatgcagag aaattgcaca
agctcatcac attccattaa agaccgtatg 5580cctaacagcc tttctttcta tgatgcatat
gatttcttat gagagagacc tgactgtggg 5640attgattgag aacaaccgac caattataga
agatgctgaa aaggtgttgg gatgttttct 5700taactcagtt ccattccgcg ccattataaa
gaaagatatg agctacagag agctattaga 5760gcagacacag caaaagcttg ttgagattaa
aacatatgga agactttcct ttgctaagat 5820tattgaagta attggcgata cgggaagcga
gcgtaatcca gtttttgact gtctttttaa 5880ctttgtcgac ttccatgtat ttaaagggat
aaaggatcat aaagtaaagt tttggttaga 5940tggatatgaa aaaacaaaca ccatgtttga
cttttctgtt tcgaccacaa tggatgacta 6000ttttgttcgg gttgtatctg cactgccaga
agaagatacg ataaaactaa ttaactatta 6060tcaacgaatt ttagaaaaga ttgctcttca
catagatgaa aaaatagata aacaagccaa 6120tcttgatgaa aaggaaagcc acttgctgct
agaggaatgg aatcaaacgt cagttgatta 6180tccagacaag caaacattgc ataaacggtt
tgaggagcaa gtagccaaaa atgaagatca 6240ggtagcgctg gaatatgagg ataagcagct
tacctatagg gaattgaacg ctaaagccaa 6300tcaattggca cgtgttttac agaagcataa
tacgctgcca actcaggtag ttggtctaat 6360ggcagagcgt tcactagaga tgataatagg
cattcttggg atattaaaag ccggcggagc 6420ttatatgcct attgacccta cgtatcctgc
ggagcgtatc caatatatgc tcgaagatag 6480tcgatcctat ctcttacttg tacaaaaagc
agaaatgatt ccagccaatt atcaggggga 6540agtacttatc ctcacagagg aactttgggc
agatgagaat acagagaacc tggaactagt 6600caatcagccg caggatgttg ccaatatcat
gtatacatct gggactacag gaaagccaaa 6660aggtatcctg atcactcatc gaaacattat
gactaccata atcaacaatg gctatctcga 6720tattttttca acagatcgaa tattgcaaat
atctaactat gcttttgatg gttctacctt 6780tgatatatac agtgctttgc taaacggagc
tactctcgtg ctagttccca agcaaacact 6840catgaatacg accgatctgt tagcaatcat
caaagatagc aatatcacgg tagctttaat 6900gacaacctct ctattcaata cgttggttga
tcttgatgta accagcttcc aacatacacg 6960taaggtttta tttggcgggg aaaaggcttc
atgtaagcat gtagaaaaag cattggatta 7020tttgggtgaa gggcgcctag taaatggata
tggtccgaca gaaacaacgg tgttcgctac 7080tacctataca gtcgataaca cgattaaaaa
gctgggaagt atcccgatcg gacgtccttt 7140gagcaacact tcggtatata tttttggatt
agatgatcaa ttacaaccac ttggagtacc 7200aggggagtta tgtgtagcag gagaatgcat
ttcgcctgga tatctgaatc gtcccgactt 7260aacggcagac aaatttattg ataatccact
taaaccaggt gagagaatgt accgtacagg 7320tgacctagtt cgttggctgc ctgaaggtgt
catggaatac atggggcgga ttgatgaaca 7380agtcaagatt cgtggacatc gtatcgagct
aggggagatt gaggcaaagc tgcttgagca 7440tccttcgatt cgagaaacag tgctggtggc
taaacaggat gcaaatggcc attctttttt 7500aggtgcgtat cttgttacag acaacttctg
ccctgtaacg gaattacgga attatctgat 7560ggaaaccttg ccagaatata tggttccttc
ttattttatc gagctggata gcctaccgct 7620tacttcaaat ggaaaagtag ataagcgagc
attgcccgaa ccggaatctc aggctttaca 7680cgcatatacc atgccggaga atgagacgga
agaaaaattg gttcagctat tccaggaagt 7740gatggatgta gagcgtgttg gtactcaaga
tagcttttat gaattaggcg gtcattcctt 7800aaaagcaatg cttttggttt cacgaattca
taaggatttt ggaataaaga taccgttgaa 7860ggaagtattc agtcgtccga ccgtgaagga
attggctgcc tatctgactg ggtcagaaga 7920agcaaactat attgaaattg aagcagcaga
agagaaacca tactatccag ttactgccgc 7980ccaaaaacgg atgtatatcg cccagcaatg
ggaggatggg gaagccacta gcagttatca 8040catgccgttt atgatggaaa tcacagggcc
tcttcaagta gaaaagctac aacaaacagt 8100aaagagtctt gtcgcaaggc acgagtcgtt
gcggacatca tttcacatga tcaatgaagt 8160attgatgcaa aagatacatg cagatgtatt
gtgggattta gacattgatc tagagtcagt 8220tgtcgcttca gagcaagaaa ttgatgaaaa
aatgttccaa ttcctccgca aatttgattt 8280gagtcaagct cctctcttta gagctaagct
gattcgtgtc aatgctagtc ggcatgtatt 8340gttattagat atgcaccata ttatttcgga
tggattttca taccagatat tttttgatga 8400gcttaccaag ctgtatcagg gcgatgaact
gccatctctc aaaatacaat ataaggatta 8460tgccgtttgg cagcattcgg aagaacaaca
gaagcgtttg caacagcaag aggattattg 8520gttaggtcaa ttccaagggg aaattcctgt
tctggaattg cctacggatt accagcgccc 8580ggttgataaa cagtttgctg gagcattatt
cacacacggg ttatctgctg gtctaacaga 8640gaagctgaga aaattagcga ttaaggaaaa
aacgacgtta tacaccgtac tgctgacggt 8700ctataacatt ctattgagca aatatacaag
tcaagaggac ctcattgtag gtacaccgat 8760tgctggacgt ccacatgctg atttagacag
agtatttggg atgtttgtaa acacgctggc 8820catcagaaca gctccaaaag tagagcattc
cttcttaacg tatctatctg aggtcaaaga 8880aacagtgcta ggtgcttatc aaaatccaga
ctatccattt gaggagctgg ttgaaaaaac 8940gctagttcag cgcgatgtaa gccgtaatcc
tttattcgat gtaatgttct ccgtagagaa 9000attaccatct gctgtacagt tcgatgattt
acgtttctgc ccacgcttat ttgattggaa 9060gaaggcaaaa tttgacttgg attggacagt
ggtggaaggt gaatcattgg aggttttggt 9120tgaatatagc acgagcttgt tcgatcgggc
gaccattgag cgcatggcta agcattttga 9180gcatattttg gagcaaatcc ttgatcagcc
agacctgtct atttctgaga ttgaactgct 9240gaccgaggca gaaaaacaac aaattttgat
tgagtttaat caatcggata aatcctttga 9300cagcgaaaaa acaattcagg agcaatttga
agaatgggca gaaaaagccc cgcacagcat 9360tgccttagtc tttaaagaca agcaaatgac
ctatcaggaa ttaaatcaac gtgctaacca 9420agttgcgcat ttattacgtg gcaatgggat
ttccgcaaat gattttatcg gtttaatggt 9480ggatcgatcg tttgagatga tcattagtat
gctaggtatt ttgaaggcgg gtggagccta 9540cctacctatt gatcctgatt atcctgagga
ccgtatcgat tatatgttat ctgacagcaa 9600agcgaagatt ctcttaaagc aaagtgacca
aactgcacca gcttcctttg aaggtaaagt 9660catcgctatt gatactccag aattgctaga
gatggatata gaaaatattc ctaaggtgaa 9720taactcatcc gacttggctt atatcattta
tacatctgga tcaaccggaa aaccaaaagg 9780agtattgatt aatcatcgat gcgtgatcaa
tatgcagctt acagctgaaa cctttggtat 9840ctatccttcg agtcgtattc tacagtttgc
atcctttagt tttgattcat ctgtgggcga 9900gattttttat acattattaa acggagcatg
cctgtatttg gtagaaaagg atttgctttt 9960atccggtaat gaattcgtgg catggctaaa
gaaaaatcgg attagctcga ttccatttat 10020ttcaccgtcg gctctgcgga tgcttcctta
tgaggattta cctgatctcg catatataag 10080tacgggtggg gagacattgc cggctgacct
tgttaaagcg tggggagaaa atcgtgtctt 10140cctaaatgca tatggcccga cggaaacaac
tgtagatgcc actgtcggtg tatgtacacc 10200agaagggaaa ccgcatatcg gtagacccgt
tacgaataaa aaggtgtacg tagtaaatag 10260taacaatcaa ttacagccga ttggtgttcc
tggcgagctt tgcattggcg gggaaggggt 10320tgcacttggc tatctaaaca gacctgatct
aacccaagaa aaattcgttt ccaatccgtt 10380tgccccgggt gaaagaatgt accgctccgg
agacttagtc agatggctac ctgatggaac 10440aattgagtac ttcggaagat tagacgatca
agtaaaaatt agaggtcacc gtattgaact 10500aggagagatt gaaacaaggc tactagagca
tccatccatt aaagaagcca ttgtcattcc 10560acgttctgat gagtcagagg ctacatattt
atgcagctat ttgattgcag aaggatcatg 10620gaatgcggct gacttacgta agtatttgaa
ggcttcttta ccggaatata tgataccttc 10680gtattttgtg gagctgcacg agctaccgct
aacacctaat ggaaaagtta ataaaaaagc 10740attaccaaaa ccagaaaagc aaatgcagag
agggaaggat tatgtagccc ctactaaccc 10800tatccaatcc attttatctc agatttggac
tgatgtgctt ggtgttgaaa atataggaat 10860tcacgacaat ttctttgaat taggtggaga
ttcaattaaa gccatccaaa tttcagctcg 10920acttaataag cataatctca aggttaaaat
gcgggaattg tttaagaacc caacgattgc 10980tgagctaagt ctgcttgtac aacagatcgt
tcaggagatc gatcaaggag tagtagaagg 11040aaatattccg cttacaccga tccagcattg
gttctttacc caatcattcc cgcaggtcaa 11100ccattacaat caatcggttc ttctttttaa
tgcggagggc tgggatgagc agaaagtaga 11160caaagctttt gagatgctaa cccagcacca
tgatgcactg cgaatcgtat atagcctcga 11220cgagcaaggg gttgtacagc gtaaccgggg
attggaaggc tcgaactatc atttcgaaat 11280cattgatgca agacaagatg gagaagatca
gtcgaactgg aaagcagcgg cgaatcggat 11340gcaggcaagt atggatatcg tagaaggacc
tttagtgcag atcggattgt tccgtgctaa 11400tgaaggagct tatttgttaa ttgccattca
tcacttagtg gtagatgggg tgtcttggcg 11460tatcctacta gaagacttct atcatttata
taacggaaac gactctttgc cattaaaaac 11520gacctcgttc caagcatggt ctcaaaagct
ccaagagtac gcccaaagca aggagctaga 11580acatgagctt tcctattggc gccatttaga
tgaagctatc acggactata ccttacacaa 11640agatatagaa gccgcaacct caaataagac
aacctatgag gaatttttaa ctgtatcgat 11700gtctttatca actgaggaaa cccaacagct
agtaacagag gctcataaag cgtaccaaac 11760ggaaataaat gatctgctac tcacggcact
ggctttagct ttgaaggaat ggacgaataa 11820agagcagttg ctagttagta tggaggggca
tggacgtgaa gaaattctag ataacgtaga 11880tatctcccgt acagttgggt ggtttacatc
agagtatccg gttgctattc atctgacgaa 11940aacagacatt tcgtttgcca ttaaacaagt
aaaggaaacg ttgcgtcgtg tacctaacaa 12000agggtttggc tatgggattc ttaaatattt
ggcaaaagag acgttcaagc ttaagccaga 12060aatcagtttt aactatctag gccaatttac
agataaggaa gaggggaact cctctttaat 12120gggtgatctg attagcccgg caaataccag
tgagctgtcc ctagatatca atggaagtat 12180agaagctgac agactgcaaa tgcactttag
ttataactct cgtgcgtact atccagagac 12240aatcgcaacc cttgttcaaa acttcaaatc
ctacttgctt gagattatca atcattgccg 12300ggcgaaagaa ggagtagagc atacaccaag
cgactttgat atcaatgatc tcaccatgga 12360agaactagat gatatttttg atgacctgga
agaagaggta tacaaataac taggcaaaaa 12420tatggagtga tttagatatg tttagcagaa
gtaatgtgca aaatttgtat cgcttatctc 12480ctatgcaaaa agggatctta tttcattcct
taaaagataa agaaaatcat gcctattttg 12540atcaactgat cttcactttg gaaggtaagg
tagagcttga atatttggaa gaagccttta 12600cccaattaat caaaaagcat gatattttac
gaactgtttt tcgttacaaa aaagtaaaag 12660aacctgtaca aatggtatta aaggaaagaa
gctccactat ttattttgaa gatatttctc 12720atctggagcc agaagaaaaa gtgaattaca
ttaagcagtt taaaatgagg gatcgggaga 12780aggggtttga cctctcccgg gacctcctca
tccgaatgtc attatttaag cttgatcagg 12840agcagtatca gttaataatg agtaatcacc
atatcattat ggatggttgg tgccttggca 12900ttatccttac tgatttctta cgtatgtata
aaggaatcgt gaatcatacc cctgttccat 12960acgagcatgt gacaccttac agtaagcata
ttcaatggct agaaaaacag gatcatcagg 13020aagcaaagga tttttatcaa cagctattag
agggatacga caaagtaaca ggtgttccac 13080agcaattagt acgggcgaat cacgaagaat
atactcacgg acaatgcatc gtgaaattaa 13140atcaagaaac tgccgaccga ttgattgcca
tagccaaagc ctaccaggtt acagtcaata 13200ccgtcttcca aacgatttgg gggatattat
tacaaaaata taataatacg gatgacatag 13260tatttggatc agttgtctcg gggagaccgg
cagagattcc tgatgttgaa aaaatggttg 13320ggctatttat caatacaatt cctgtgcgaa
tcaaagctga tcaacaagag cgatttgaca 13380cgctagtagc caaagtacag gaaatggcct
tggcttcaga atcatatgat tatctttcgt 13440tggcagatat tcatccagaa gctggcgatt
ttatcaatca tattattgcg tttgaaaatt 13500tttatatcga tatggacagc tttaatcagc
tagcagataa aaaagagctt ggattctcgc 13560tcgcattcgc cacagatcat cacgagcaaa
ccaattatga tctaagtgtg caggcgcaga 13620ttggtgatga atcttccatt aaaattttat
ataattccaa gctttataca tcggaataca 13680tagcaaatgt aattgatcat tttgttactg
tggctgacat agtggctgct aatcctagca 13740tccctgtaaa ggaaatcgat attttaacaa
aagataaaaa agatcagatt ctctatggtt 13800ttaacaatac ctatgcagat tatccaagag
agaagaccat ccatcagcta tttgaagaac 13860aagtagataa aaatccgaat cagatcgcac
ttgtgtttaa agaagagaag ctgacttacg 13920gtgaggtaaa tgcgaaagca aatcagttgg
catacgtgtt aagaaagcaa ggtgtacagc 13980ctaatgatgt aatcggcatc atcaccgaac
gctccccaga aatgatcata ggcattttgg 14040cgatttttaa agcaggcgga gcttatatgc
caattgatcc ttcttatccg gctgaacgca 14100ttcaatatat gctacaggat aatcaaacga
agctattatt agtgcaaaaa caagaaatga 14160taccagccaa ttatcaggga gaggtattgt
tcttaaccca agagagttgg atgcatgagg 14220aaacatctaa tccggctcat attactcaag
cacaggcttt agcatatgtg atgtatacct 14280ctggttctac aggagagcct aagggcattt
tgacaacaca tcaaaatatt atgaagaccg 14340tcattcataa cggttatgtt gagattacgc
caggagattg cttgtcgcag ctctccaatt 14400atgcctttga cggctctacc tttgaaatct
atggggcatt attgcatgga gctacattac 14460ttttagtaac aaaagaggct gtactcaata
tgaatgagct ggcacgtctt attaagaagg 14520agcaagtgac ggtttccttc atgacgactg
ctctgtttaa tacactggtg gatttggata 14580taacgtgctt tcaatcgata cgaaaggtgt
tgttcggagg agagcttgct tcggttaagc 14640atgtcctgaa agcccttgat tatttaggcg
agcaccgggt tatcaatgtg tatggaccaa 14700cggaaactac cgtgtatgct acctattact
ctgtagatca ctccatgctg acgagggcat 14760ctgttcctat cggaagaccg attaataaca
cgaaagctta cattgtaaat acagatggac 14820agcctcagcc aataggagta gtcggtgagc
tatgcattgg cggtgagggg gtagcatgtg 14880gttatcttaa ccgtccagag ctgacaaaga
aacatttcgt ggataatccg tttgtcttgg 14940gtgaacgaat gtattgtacc ggagatttag
cccgcttttt accagacggc aacatcgaat 15000acatcgggcg gatggatgaa caggtaaaga
ttcgtggtca ccggattgag ctgggcgaaa 15060tcgaaaaggt tcttttacag cacccagcta
tcagcgagac agtgctttta gcaaaacgag 15120atgagcaagg ccattcctat ctgtgtgcgt
atatagtagg tcaggtattt tggactgtta 15180cagagctgcg tcaacacttg atggaatcct
tgccagaata catggtgcct tcctacttta 15240tcgagattga gaaactaccg cttacggcaa
acgggaaggt agataagcga gcgttgcctg 15300aaccagacag aaaaatgggc agtgcttacg
ttgctccaga gaacgaaaca gaggagaagc 15360tggttcaatt tttccaagag attttgggtg
ttgagcgagt tggcacgcag gatacatttt 15420tcgagcttgg tggtcactcc cttaaggcaa
tgatgctcgt tttacagatt cataaagaaa 15480tgggcattga agtcccgtta aaggagatat
ttacacgtcc taccatcaaa gaattagcgg 15540cgtatattca taagatggat cgctctgcct
acagcatgat tgagccaact gccaaacaag 15600agtattatcc agtctccttt gcccaaagac
gaatgtttgt agtgcagcaa attagagata 15660cgaatacaac cagctacaat atgccgattt
tgctagaaat agaaggggct cttgataggg 15720aaaatgtgag acaaactctg aagaaattga
tagagcgtca tgaatcaatg agaacgtcat 15780tccatatgat tgacgagacc ttgctacaaa
aggtgcatga tgatgtgaca tgggaaatgg 15840aggagatgga agcgtctgag gaagaagttt
atgctttgac aaaatccttc attcgtcctt 15900ttgatctcgg tcaagctcca ttgtttagag
caggattaat tcgtgttaat tctgagcgtc 15960atttgctgct gctagatacg catcacatta
tctcagatgg cgtatctact aacatactct 16020ttcaagattt tacgcaatta tatcgtggac
gagagctgcc tgccctgcga attcaataca 16080aggatttcgc cgtctggcaa caaggagagg
ctcagcttgc tcgtttgcaa gaacaagaag 16140aatactggct gaaacaattt tcagagagtg
tgcctgtact agagcttcct actgattttc 16200cacgtccagc gatgcagcag tttgatggtg
acgtattgga ctttgcatta aatcagcaag 16260tatggcagga attacaacag ctcattgtta
aagagggctg tacggcttac atgatattgc 16320tggcggctta tcatgtcttg ctttccaagt
attcgtcgca aaacgatatt gtgataggtt 16380ccccgatagc aggccgaaca aatgctgatt
tgcaatcgat tgtcgggatg tttgttaaca 16440cgctggctat ccgcaccaaa tcagagggaa
ctcagacatt ccgcgagttt ctctctacga 16500ttaaacaact ggttcttcaa gctcaatcca
atgcagagta tccatttgaa gagctggttg 16560ataaggtaaa tccaagtcgc gatctaagtc
gccagccttt atttgacaca atctttgtca 16620tgcaaaacat ggatattacc gaggttgcga
tacaaggtct ttcaatcgta acgaaggaca 16680tggaatggaa gcattcaaaa tttgatctta
catgggcggc tgtagagaaa gaatccttgc 16740atttttcagt tgaatatagt acccgcttat
ttaagaaaga aacaatcgag cggatggcga 16800agcattttgc ccatttgcta aatcaagtgg
cggaaaatcc tgacttgagc ctttcagata 16860tggaattggc aacggatgaa gaagtgtacc
agcttttgga ggagtttaat aatacagaag 16920ctgattatcc gagtgataaa acgattcacc
agcagtttga gcagaaggta gaggaaaacc 16980ctgatcagat agcgttgtta tttaaagata
aggaaattac ttacggacag ttgaatgcaa 17040aagcaaatca atttgctcgc gtattaagaa
agcatggggt acagccggat caagtggttg 17100gattaatcac tgatcgttcc attgaaatga
tgataggaat tttggcaatc ttaaaagctg 17160gcggagccta tttgccaatt gatccttctt
atccattaga acggattacc tacatgctag 17220aggatagtca ggcacagctt ttgattgtgc
aggaagctgc tatgattcca gaggggtatc 17280agggcaaagt attgcttcta gcagaagagt
gttggatgca ggaggaagcg tccaacttag 17340agttgattaa tgatgcccag gatttggcgt
atgtgatgta tacctcaggg tctactggta 17400agccaaaggg caatctgacg actcaccaaa
acattttgag aaccatcatc aacaatggat 17460ttatcgagat tgtaccagca gaccgtctat
tacagctatc gaactacgcc tttgatggct 17520ctaccttcga tatctacagc gcgctattaa
atggagccac tcttgtactg gtgccaaaag 17580aggtcatgct aaatccaatg gagctggcga
ggatcgtccg cgagcaggat attacggttt 17640cgtttatgac cacgtccctg ttccatacgc
tagtggagct tgacgtgact agtatgaaat 17700ccatacgcaa ggttgtattt ggtggggaaa
aggcttcata caagcatgta gaaaaggctc 17760tggattatct cggagaaggc cgtttagtaa
atggatacgg ccctacagaa acaaccgttt 17820ttgctaccac atacacggtg gattctagta
tcaaggaaac gggaattgta ccgattggcc 17880gtccgttaaa caatacgagt gtctatattt
tgaatgagaa taatcaacca cagccgattg 17940gagtaccagg ggaattgtgc gttggcggag
caggaattgc acgtggatat ttaaaccgtc 18000cagagctgac agcagagcgc tttgtggata
atccgtttct tgtaggagat agaatgtatc 18060ggacgggaga tatggctaga ttcttaccag
atggcaacat tgagtacatc ggacgaatgg 18120atgaacaagt gaagattcgc ggacatcgaa
ttgaactggg cgaaattgaa aaaagtctcc 18180tggagtaccc tgctatcagt gaagcagtac
ttgtcgcaaa acgtgatgaa caaggtcatt 18240cctatctgtg cgcttatgtt gtaagcacgg
atcaatggac ggtggctaag gtacgtcaac 18300acatactgga ggctctgcca gagtacatgg
taccatccta tttcgttgag cttgaaaagc 18360tacctcttac ttctaatggc aaggtagaca
agcgtgcatt gcctgaacca gatcgagtga 18420ttaccaatga gtatgtggcg gcagtcaatg
agacagagga gaagctagtt cagtttttcc 18480aagagatctt agctgtagac cgagtcggaa
cgcaggatac attctttgaa ttgggtggtc 18540attccctaaa agcaatgatg ctggtttcaa
gaatacacaa ggaattagaa atagaggttc 18600cgttaaaaga agtattcgcc agacaaaccg
ttaaagaatt agcagcctat atcagacagg 18660ctgaacagtc ggattacagc gaaatccaac
cggccatgga gcaagaatac tacccggtat 18720ctaatgcaca gcgacggatg tatgtggttc
agcaaatgag agatgtagaa acaacaggct 18780acaatatgcc gttctattta gaaatggagg
gtgctcttga ggtagaaaag ctatctctag 18840ctttgaaaca actaattgag cgtcatgagt
cattgcgaac ctccttccat atggttgaag 18900atgaactgat gcaaaaggta catgcagaag
tcgcatggga gatggaaatg attcatgccg 18960tagaggaaga agttcaacag ctgaccgatt
cctttatgcg tcctttcgat cttgctaagg 19020cgccattatt ccgagcgaga ctcattcaaa
tcaatccgaa gcgacattta ttgatgctgg 19080atatgcatca tatcatctca gatggggtat
cgatgaatgt attgttccag gatataacgc 19140agttgtatca agggatagag ctgagtcctc
tcaagattca atacaaggat tttgcggtgt 19200ggcaacaagg catcgctcag gttgtccgtt
ttcaggagca ggaaaggtat tggttaaacc 19260aattctctgg tgacctacca attttggaaa
tggtaactga ttatccacga ccagccatac 19320agcagttcga cggagattcc tggtcatttg
aaattgatgc caaagtattg gacagcataa 19380agcaattgtc agctaagcaa ggcactacgt
tgtatatgac tctattggcg atttatcaaa 19440tcctgttagc caagtatacc cgtcaagatg
acatcattgt cggaactccg atcgcaggaa 19500gacctcatgc agacacagag agcattgtgg
ggatgtttgt caatacacta gccctacgtg 19560gtcaaccaaa agaagagcaa tctttcatct
cttacttatc agaagtgaaa gaaaacgtac 19620tacaagccta tgccaacgct gattatccat
ttgaagagtt ggtagagaag ctgcatttgc 19680aaagagatat gagtcgtcat ccattgtttg
atacgatgtt tgttttacaa aacatggata 19740tgtccgatat aaatatttct ggtctaaagc
ttcattcgcg tgatttaaac tggaaaaatg 19800caaaatttga tatgacctgg atgatagccg
aacaaaataa tctattgatt tcggttgagt 19860acagtaccaa cctgtttaaa catgaaacca
ttcaaaggct agaaaagcat ttcacttatt 19920tagtagaaca agtggctaag catccggatt
gcttactcag agatttagaa ctcacaacag 19980acgaagaaaa acagcaaata ctgacggtat
ttaacgatac tgctactgat gatttacagg 20040atttatccat ttgccatcta ttcgaacaac
aagtgcagcg tttttcagat cggccggcac 20100ttgtgtttaa agaaaagcag ctcacataca
gtgagttcca tgcaaaagta aatcaattag 20160cccgggtact cagaaagaaa ggtgtgcagc
cggatcaagc ggttggatta atcaccgatc 20220gttccattga gatgatgata gggattttcg
ccatcctaaa agcaggcgga gcttatatgc 20280caattgatcc ttcctatcca atcgatcgga
tcgagcacat gctagaggac agccggacta 20340agttgttatt cgtgcaaaaa acagaaatga
tccctgctag ctatcagggg gaggtattac 20400tcctagcgga agagtgctgg atgcatgaag
attcatcgaa tttggagctg atcaataaaa 20460cacaggattt ggcatatgtc atgtatacct
caggttctac tggtaaacca aagggcaacc 20520tgacaacgca ccaaaacatt ttgaccacca
tcatcaacaa tggctatatc gagatcgcgc 20580caacagaccg tctattacag ctatctaact
atgcttttga tggctctacc ttcgatatct 20640acagtgcgct attaaatgga gccactcttg
tactggtgcc aaaagaggtc atgttaaatc 20700caatggagct ggcgaagatc gtccgcgagc
aggatattac ggtttcgttt atgaccacgt 20760ccctgttcca tacgctagtg gagcttgacg
tgactagtat gaaatccatg cgcaaggttg 20820tatttggcgg ggaaaaggct tcatacaagc
atgtagaaaa ggctctggat tatctcggag 20880aaggccgttt agtaaatgga tacggcccta
cagaaacaac cgttttcgct accacataca 20940ccgtggattc tagcatcaag gaaacgggaa
tcgtaccgat tggacgtccg ttaaacaata 21000cgagtgtcta tgtcttaaat gagaataatc
agcttcagcc gattggagta ccaggggaat 21060tgtgcgttgg cggagcagga attgcacggg
gctatttaaa tcgtccagag ctaacagcag 21120agcgctttgt ggaaaatcct ttcgtgtcag
gagatagaat gtatcgtacc ggtgatttag 21180cacgttggtt gccggatgga agcatggagt
atttaggacg gatggatgag caggttaagg 21240tacgcggtta ccgaattgag ctgggagaaa
tagagacaag attattggag catccttcta 21300taagcgcagc ggttttacta gcaaagcaag
atgagcaagg gcattcgtac ctatgtgctt 21360acatcgttgc aaatggggta tggacggttg
cggaactacg taagcatcta agcgaggctt 21420tgccagaata catggtgcct acttattttg
ttgaactaga gcagatacca ttcacttcta 21480atggaaaggt gaacaaacgc gctttaccag
agccagaagg acaaatgacc agtgtatatg 21540tggccccaga aacggagaca gaagcaaaag
tagcagcgtt attccaagag attttgggtg 21600tcgagagagt tggtacacag gacatgttct
ttgagctggg tggtcattcg ctaaaagcga 21660tgatgctcgt tttacgaatg aataaagaac
tgggcatcga ggtgcctttg aaagaggtat 21720tcgcccatcc tactgtcaag gaattggcag
caacgatcga ccttcttgat cgatcaggcc 21780actcagagat tgagcctgcc ccaaggcagg
aattctatcc ggtatcttcc gcgcagagac 21840ggatgtacgt ggtgcagcat ttaggaaatg
tccaaacaac cagctacaat atgccgcttt 21900tccttgaagt ggagggagct ttagaaattg
ataagcttca tctagcactt gagaaattgg 21960tcgaaagaca cgagtcgcta cgaacctcct
ttcatatggt tgacgaagag ctgatgcagc 22020aggtgcatga agaggtggcc tgggatttag
agatcatgga tggaacggaa ggagaccttg 22080caagcatcac agcaggattt atacgtccgt
ttgatctcag ccaagctcca ttgttccgtg 22140caggcatcgt gcggattagc cctgagagat
tccttttcat gctagatatg caccatatca 22200tctcagacgg agtttctacc aatgtattgt
tcaaggatat aacgcagctc tatcaaggaa 22260aggacctgcc ccctcttccg atacagtaca
aggactacgc tgtgtggcaa caagctgatg 22320ctcaagtgac tcgcttacaa gatcaggaaa
gctattggtt acatcaattt gctggagaag 22380cttctgtctt ggaaatgccg acagatttcc
cgcgtcctgc agtccagcag ttcgaaggag 22440atgtatggac ctttgagatt gatgctgaca
ttctcagcca gttgaaaaaa ttatcagtga 22500gtcagggttc tactctatat atgactttat
tggcggttta tcaggtgttg ctggctaagt 22560ataccggtca agatgatatt attgtcggtt
caccaattgc cggacgccct catgcggatg 22620tagagagcat cgtcggtatg ttcgtcaaca
cgctagcttt acgtggacag cctgtaggag 22680agcagacgtt tattacctat ctggcacaag
ttaaggaaca ggttttacaa gcttatgcca 22740atgcagagta tccatttgag aaattggtag
agaagctcga tttacaacga gatatgagtc 22800gccatccact cttcgatacg atgtttactt
tgcaaaacat ggagatgact gatattgatt 22860tggcaggctt gaccttcaag ccatttgatt
ttgaatggaa aaatgccaag tttgacatgg 22920attggacaat gcttgaggaa gaaacactca
aggtagctat tgaatacagt acaagcctgt 22980atacaaaaga aaccattagc agaatggctc
aacatttcac ctatgtttta caacaaatta 23040ttgagcatcc agccattcgt ttggctgaaa
tcaaaattgc tactctacca gaaattgaac 23100agattttaac gcaatttaat gatactaggg
ccaattaccc tgataaccaa accattcata 23160gtctattcga gcaacaagtg gagcgtacac
cagaacagat agctgttgtc tatcaggatc 23220aatccatcac gtatcgtgag cttaatgaac
gtgcaaatag attggcacgt tgcttgatcg 23280acaaagggat acagagaaat caatttgttg
caatcatggc ggatcgttcc atagaaaccg 23340ttattggaat gatgggaatt ctcaaagcag
gaggagctta tgttccaatt gatcctgatt 23400accctctaga tcgaaagctg tatattcttg
aagacagcca tgcatcacta ttattgttcc 23460agcaaaagca tgaggtcccc tcagaattca
caggtgatcg gatattaatt gagcagatgc 23520agtggtacca agcggctgat acgaatgtgg
ggatcgtcaa tacagctcaa gatttggcgt 23580atatgatcta tacctcaggt tctacaggtc
aaccaaaagg ggtaatgatt gatcatcaag 23640cagtatgtaa cctatgctta atggcccaaa
cctatggaat ctttgcgaat agtcgcgttc 23700tacagtttgc ctcctttagc tttgacgctt
ccgtaggaga ggttttccat acccttacaa 23760atggagccac tctctatctg atggatcgca
atttgctcat ggctggcgtt gagtttgttg 23820aatggttacg agtaaatgaa ataacttcta
ttccgtttat ctcgccttct gcattgcgtg 23880cattgccgta tgaggattta ccagcattga
aatatatcag tacaggtggg gaagcattac 23940ctgtagattt agtcagacta tggggaactg
agcgaatctt cttaaatgca tatggcccga 24000ctgaaacaac agtagatgca acgattggct
tatgtacgcc agaggataag ccacatattg 24060gtaagcctgt gttgaataaa aaagcctaca
ttattaatcc aaattatcaa cttcagccaa 24120ttggggtacc gggtgagtta tgcatcggtg
gagtagggat tgctcctgga tattggaacc 24180gccctgaact aactagagag aaatttgtgg
ataatccatt tgcccaaggc gaaagaatgt 24240ataagacggg ggacttagta cgttggcttc
cagatggaaa tattgagttt ttaggacgta 24300ttgatgatca ggtgaaaatt cgtggacacc
gaattgaatt gggtgaaatt gagacgcggc 24360ttcttgagca tgagcaggta atagaggcgg
ttgtgctggc gcgtgaagat gaacaaggtc 24420aagcttatct gtgtgcttat ctggtagcag
cagatgaatg gacggtagca gaactgcgca 24480aacatctagg aaaaacactg cccgattata
tgattcctgc ttattttatc gagcttgagg 24540agtttccttt gacaccaagc gggaaggtga
ataaaaaagc tttaccagag cctgatggac 24600aaatacaaac gggagtggag tacgtagagg
ctactaccga aagccaaaaa atccttgttg 24660agctttggca agaggtgtta cgtgtcgagc
ggatcggtat ttacgataac ttctttgagc 24720tgggcggtga ctccatcaaa gcaattcaaa
tcacagcaag attgcgtcgc caccaccgca 24780agctggaaat cagccatctg tttaagcacc
caacgattgc agagcttgct ccatggatgc 24840aaaccagtca ggcattactt gaacaaggaa
ctgttgaagg cgaagttatg ctcacgccaa 24900ttcaaaaagc attctttgaa gaaaatcagg
aacagccgca gcattttaat caggattcgt 24960tactgtacag ctcgaatggc tggaaccaag
atgcgatcga gcaggtattt gaaaaaataa 25020cggagcatca cgatgccctg cgaatggtgt
atccgcatac cgagggcaag gtgactcaga 25080tcaacagggg acttgaggac aaggcgttca
cattgcaggt gttcgatttt acccaagaac 25140caactgatac gcaggcaacg aaaattgagc
aaatcgctac tcaattgcaa gcgagctttg 25200atttaaaaaa gggacctctg gtacgacttg
gcttatttac caccaaggct ggggattatt 25260tactgatcgt gatccatcac ctagtgattg
acggcgtctc ttggcgtata ttgcttgagg 25320attttcataa tgcttatcag caagtcattc
aaggtcaagc aattgtactt cctgaaaaaa 25380cgacctcctt taaaacatgg agtgagcgct
tgaatgaata tgcaaatagt catgctcttt 25440tacacgagat tccatattgg aagcagatgg
aagaaatatc gatcgcccct cttcctaaaa 25500aaggaaacaa tgacggtaga tattatgtga
aggacagcga atatgccacg atgagtctaa 25560cagaagaaga aacccaaaat cttcttactc
gtgtacatcg agcttatcga acggagatta 25620atgatctgtt gcttgctgca ttaggattag
caagtaagga atggacaaaa gagaatcgag 25680tggctatcca cttagagggt catggtcgtg
aggaaatagg tgaaggggta gatgtcaacc 25740gcactgttgg atggtttacc tccctgttcc
cattcgtgat tgatttagaa aatgacgaat 25800tgcctctcat cattaaatcg gtaaaagaaa
ccttgcgccg agttcctaat aaaggcatgg 25860gctacggcat actcaagcat ctgacaagcg
atgcgaacaa acaggagata accttctcgc 25920ttcgcccaga gatcagcttt aactatctgg
gggtatttga tcaacaagag gaggaaagcg 25980aatctgctgg gattcctact ggtcagccga
tcagcccgca atattatgac acgcacctgc 26040tggagtttaa tggagcggtc tcgaataacc
agttgcatgt aaattgccga tttgctcctg 26100cagccgttga tcgagcgatt gttgaaattt
tgatggagcg cttcaagcac catttacttc 26160taattagtaa gcattgcttg gaaaaggata
ccgtagaatt tacacctact gattttacag 26220aaaaggaatt aagccaagaa cagcttgacg
atctattaga tgatttgttt gaagacatag 26280atgatctgta atcgcaatga gataggtggt
gccacacatc gtgcaaaaaa aagacaagat 26340caaagatatc tattcacttt ctccgttgca
aaagggtatg ctatttcatt ccatgaaaga 26400cccgcagagc gatgcctatt tcgagcaggt
tacccttttg ctggaggggg ttgtaaaccc 26460aacctatttg gctgaaagta ttcagggact
cgtacaaaaa tacgacatgt tccgaagtgt 26520gttccgctat aaaaaagtag accctgttca
ggttgtgctt agtgaacgaa aaatagattt 26580acagattgag gaccttactc aaatcaatga
agaagagcaa cggaaattca ttgaggaata 26640tagaaaaaag gaccgggaaa gaggcttcga
cctttcccgg gatatcctgc tacgttttac 26700attgtttcaa acagccgcca atcggtatga
attactgtgg agtcatcatc atatcctgat 26760ggatggctgg tgtacgggta tcgtttttca
ggatttattt caaatgtacc aacgtcgctt 26820gtcaggacag gccttacttc cagaggtggc
ccctcaatat agcgaatata tacgctggtt 26880aaagaaacaa gatgaccaac aagcattggc
attttggaag gagtatctac aggggtttga 26940aaaccttacg ggaatcccgc gtctaaggtc
aggcaatcat ccctacaagc aagaggaatt 27000cattttctcc ttgggagagg aagctacaca
aaaactaacg caaacggctc aaaagtatca 27060ggtgacctta aatactgttg tgcaaacaat
ttggggagcg ttattgcaaa aatacaataa 27120cacgaatgac gcggcctacg gtgtggttgt
ctccggacga cccgccgagg tgccaaatgt 27180tgaacaaatg gtggggttat ttagtaatac
cattcctatt cgtattaaaa aagaagcagg 27240aaaaacgttt ggggaagtgc tgaaaaacgt
acagcaaaca gcgctggagg cagaaaaata 27300cggatatctt tctttagccg atattcaggc
gagcgcagct tatacgcatc aattgcttga 27360tcatatttta gcgtttgaaa atttcccgat
ggatcaagaa acatttaatc aagaaaacgt 27420tctcggattt gccgtgaagg atgcccacac
gtttgagcag acgcactatg atctgaccgt 27480gctagtcatt cctggcaagg aattaatctt
taagtttatg tataacgaaa gtgttcattc 27540aaaagagtac ctcaatcttt tagagctgaa
tatgaaaaag ctggtctctt tggttattga 27600gcagcaggat atctttgacc cagctaccga
gtttgtatct gatttggaaa aggataagct 27660tttaaccatt tttaatcgta cggatgcaaa
gtacccaaga gaaaaaacga ttcatgagct 27720gtttcaagag caggttgaca agaaccctga
tcaagtggca ctcgtatttg gcgaggctca 27780actaacatac cgcgagctga acgaaaaggc
gaatcaaatg gcccgcggtt tgcgcaaaca 27840aggggtttta cctgatcagg tgatagggtt
acttacggat cgttccttag agatgatcat 27900agccattcta gcgatcttta aagctggtgg
cgcttatatg cctatcgacc catcttatcc 27960gagtgaacgc attcaataca tgctagcaga
tagtcgtacc catttgctat tggtgcaaaa 28020agctgaaatg atcccagcta attatcaggg
tgaggtacta ctgttaacag aagatagctg 28080gatggacgag aatacagata atttagattt
ggtcaaccaa gcacaagacc ttgcttatgt 28140catgtatacc tcaggttcaa caggtaaacc
aaagggaaat ctgacaaccc atcaaaatat 28200cgtcaagacc atcatgaaca atggttacat
ggagattacg ccaaatgatc gtcttctcca 28260gttgtccaat tacgcgtttg atggatcaac
ctttgatata tacagcgcat tgttaaacgg 28320agcttctctt attttagtac caacgcatgt
actgatgaat ccgactgatt tggcatcggt 28380cattcaagac cagcatatta ccgtgtcctt
tatgacaaca tctctattta acactctggt 28440tgagctggat gtgactagtc tcaaacacat
gcgtaaggtg gtgtttggag gagaaaaggc 28500ttcgatcaag cacgtagaaa aagcgctgga
ttatttggga gctggacgtt tggtcaatgg 28560gtatggacca acagaaacta ctgtttttgc
cactacctat acggtggacc atacgatcaa 28620ggagacgggg attatgccga taggtcgccc
gttgaacaat acgaaggtgt ttattttagg 28680agcagacaat caactacagc cgataggtgc
attaggcgag ctatgtgtga gcggggaagg 28740gcttgcccgc gggtatctca atcttccaga
gctgactgct gatcgtttcg ttgaaaatcc 28800ttttatgcgg ggagagagaa tgtatcgcac
aggggattta gcgcgttggt taccggatgg 28860aagcattgag tacgtaggta gaatagatga
acaagttaag attcggggac atcggatcga 28920attaggtgaa attgaagcta gattactaga
gcatcctgct attagcgaga ccgttttgct 28980ggcgaagcag gatgagcagg ggcattcctt
cctatgtgcc tatctagtga caaatggtgc 29040ctggtcagtc gcagagcttc gcaagcatat
caaggaaaca ttgccggatt ctatggtgcc 29100atcttatttt atcgagatag ataaaatgcc
gctcacttca aatggcaagg cagacaagcg 29160tgcattgcca gagccagatg ttcaacaagt
aagctcttat attgctcctg agaccgaaac 29220agaggaaaag ctggttcaat tatttcaaga
aatcctaagt gttgaacaag tcggtacgca 29280ggataatttc ttcgagctgg gcggacattc
gttaaaagcg atgatgctgg tttcaagaat 29340gcacaaggaa ttagatatag aagtaccgct
caaggacgtg tttgctcgac cttcagtaaa 29400agaattggcc gcatttctta caaacacaga
agtgtcggat tatatagcga ttgaaccggc 29460ggcaaaacag gaattttatc cggtttcttc
tgcacagcgc cgaatgtatg tagtagagca 29520aatcggtagc agtaatacaa ccagctacaa
tatgcctttt ttgcttgaaa taggaggagc 29580cctcgatgta gtagggttac aaaaagcatt
aaagaaactg gtcataagac atgaatcgtt 29640gagaacgtcc tttcacatgg ttgatgaggt
attaatgcag aagatccatc ctgacgtgga 29700atgggattta atggtcatgg aagcaaaaga
cgaggacctt ccgcaaatca ttgatggttt 29760tatccagccg tttgatttaa gtgacgcttc
tttatttaga gcgggactcg tacgaatgga 29820agctgatcga catctactga tgcttgatat
gcaccatatt atttcagatg gggtatcaac 29880caatgtatta ttccaagacc tgatgcaaat
ctatcagggc aaggagctcc cttctcttag 29940aattcaatac aaggattatg ctgtttggca
gcaggcagaa gcccaggtta atcgtttacg 30000agaacaggag cagtattggc ttaaccaatt
ttcgggagag ttacctgtac tggaaatgcc 30060taccgattac actcgtccat ctattcagca
gtcagaaggg gatatatggt catttgaaat 30120tagtgccgag atcataaaca aagtaaagaa
actgtcctcc tcgcagggta caaccttgta 30180tatgacattg ctggccgcct accaagtatt
attgtcaaaa tatacggggc aagaggacgt 30240tattgtgggt tctcctattg ctggccgacc
tcatgcggat gtagaaaaga ttgttggtat 30300gttcgtgaac acgttagcct tcagagggca
gccaaaatca actcaaacct ttagtacata 30360tctgtccgag gttaaggagc aggtattgca
cgcctatgac aatgcagaat atccgtttga 30420ggaattactt gaaaagcttg atttagaaag
agatctaagt cgtcatccac tgtttgatac 30480catgtttgct ttgcagaata tggaaatggc
tgaaatcaat atcatggatc tctcctttca 30540gccgcgggat ttaacatgga aaaatgcaaa
attcgacctg acatggatga tggcggaagc 30600ggaaaatttg tatgtcacca ttgagtatag
tacctcgctc tttaagccag aaacaattga 30660gcgattaggt aaacgattca cccatttact
aaaacagatc ggggatgctc ctgaacgttt 30720gattgctgac ttagaagtag cgacggagga
tgaaaaacat cagattttat cggtatttaa 30780tttgactcaa tcggattatc cagtaaataa
aaccgttcat cagctctttg aggagcaagt 30840gcaaaatatg cctgatcaaa aggcgatagt
atttggtgaa gagcaagtaa catacaaaga 30900attaaacgcc aaagccaacc atctggctac
cctcttaaaa caaaaaggca taacaaacga 30960gcaacttgtg gctgttatga ttgagccttc
catcgagttt tttgtaggca ttctagctgt 31020tctaaaagca ggaggggctt atctaccaat
tgacccaact tatccgacgg aacgaattgc 31080ctatattttg gaggatagtc aatcaaaggt
tctgttagtg agaggtcatg aacaggtaca 31140gacacaattt gctggggaaa tcttggaaat
tgatagcaag aagttgtcta ccgaagagct 31200gaaagacgta cctatgaata acaaagtaac
cgatctagcc tatgtcattt atacatcggg 31260ttccactggg caaccaaaag gtgtcatggt
ggagcataga tcgttgatga atctttcagc 31320ttggcacgtt cagtattttg gcatcacaaa
ggatgatcga agcaccaaat acgcaggggt 31380tggatttgat gcatctgtat gggaggtctt
cccttactta atagctggtg caacgattta 31440cgtcatcgat caagagacaa gatacgatgt
agaaaaactg aatcagtacg taacagatca 31500agggattacg atcagctttt tacctacgca
atttgctgaa cagtttatgc tgacagatca 31560tacggatcat actgccctac gctggttgct
tatcggcggt gataaagccc agcaagccgt 31620tcagcagaag cagtatcaga ttgtaaataa
ctatgggcct actgagaaca cggttgtaac 31680aaccagctat atagtgagtc ctgaggataa
aaaaatcccg atagggcgtc caattgctaa 31740taatcaggta tttatcctga ataaagagaa
tcaattacag ccagtaggga ttccaggtga 31800actatgcgtt agcggcgaca gcctagcacg
cggctatctg catcgtccag agttaacgag 31860tgagcgtttt gtagctaatc cgtttgtccc
tggcgaacgc atgtataaaa ccggagatat 31920tgcccgctgg ttaccagatg gaaatattga
gtatctaggt agattggatg atcaaattaa 31980gatcagagga taccgggttg aattaggtga
gatagaatcc gctattttgg agcatgaagc 32040aattcatgag acagtagtgc tcgcaagaca
agacgatcag aatcagacat atctatgtgc 32100ttatgttgta ccgaaaaaat cttttgatgt
agccgagctt cgtcaatatc taggcagaaa 32160gctacctcac tttatgattc cggccttttt
tacggaaatg acagagttcc caattacatc 32220gaatgggaaa gtagataaaa aagcactccc
actaccggat ttgtccaagc aatcagagat 32280cgattacgtt gccccaacca ccacgttaga
agaaacgctg gcggaactat ggacagaagt 32340gctaggagtt tcccaagtgg gaatccatga
taacttcttt aaactgggtg gggattcgat 32400caaggctatt cagattgcag caagattaaa
tacgaagcaa ttaaaattgg aagttaagga 32460tttattccag gcacaaacga ttgctcaggt
tattccatac atcaaaacca aggaaagtaa 32520agctgagcaa ggaattgttc aaggaaaggt
agagctaacc cctatacagg aatggttttt 32580ccagcaatcc ttcgatattc cacatcattg
gaatcagtcc atgatgtttt atcgaaagga 32640agggtgggat cagcacgttg tacaaagggt
gttccaaaaa attgcagaac accatgatgc 32700cttgcgaatg gcttatcagc aggaaaatgg
caaaacgatt cagatcaatc gcggagtgga 32760aggcaagttg tttgagctaa gcatttttga
ctttaaacaa caggcgaatg tgccagagct 32820gatcgagcaa gcagctaatc gtctacaatc
cgcaatgaac ttgcaggacg gtccattggt 32880tcaactggga ctctttcaga catctgaggg
ggatcatctt ttgatagcaa ttcatcactt 32940agtggtcgat gccgtttcat ggcgaatcat
tacggaggat ttcatgaatg gctatcaaca 33000agatttgcag ggagagccga ttgcatttac
gagcaaaaca gactcctacc aaaaatgggc 33060caagagcctg ctagagtacg ctactagtga
agaaattcaa tcagagctga aatactggca 33120aagcatgatt gcaaaagggt tacctgcatt
gccaagagat tcaaaagtag gtgccccgta 33180tctactcaag gatatacaag aggtcgctat
ccaattgaca aaagagcaaa cgaataaact 33240attaacggat gcccataacg cctacaacac
acagattaac gatcttttgt tgacagcatt 33300agctctaact attcaggaat gggcacaaac
caattcaatc gcaattacac tagaaggaca 33360tggacgcgag gatattgggg tggacattga
cattaaccgt acagttggtt ggtttacgtc 33420catgtatcca gtggtatttg atttgcagaa
gcaagggatt gcaaatacgg ttaagcaagt 33480aaaagaagag ctgcgacaaa taccgaataa
agggattggc tatggggttg ttagatacct 33540atcgaatcaa ggaagtacag agctggatct
aagctcccat gcgataaatc cagagattag 33600cttcaattac cttgggcaaa tggatcaatc
tggacaggaa gaggagtatc aattgtcccc 33660attgtcttcc ggtcaacaga ttagtcagat
gaatcaaggc ttgttcccga taaatgtgag 33720tggaattgta gtggaaaatc agttgtccat
tcaaatatct tatgatagcc aagcttatca 33780tgattctact atggaaaagc tgattcaacg
ttatcaatat cacttgttgg agattattaa 33840tcattgtgtt cagcagacag aaacagaatt
aaccccgagt gatttttcca ccaaagagct 33900ttcgatggag gatttagaat cagtatttga
gttactagat gaataaactt tggttatgtc 33960attaggaggc tttatatgtt aagtaaagca
aatattaaag acatctatac attatctccg 34020ctacaaaaag gcatgttatt tcagcattta
aaagaagaaa gcacggctta ttttgagcaa 34080ttacacttta cgattaaggg acaactatat
gtagatagct ttgaagcaag ctttcagcat 34140ctcataaaca aatatgatgt gctacgaacc
gtttttctgt ataaaaatat gacccagccc 34200atgcaaatgg ttttaaaaga aagaaaaaca
agtgtgcatt ttgaagatat ctcccaccta 34260gattctaaag ccgtgagtga atatgttgaa
gagtttaaaa atcaggatcg ggagaaggga 34320tttgaactct cgaaggacat tctcatgcgt
tttgctattt tgaaggctgg tgctgagtcc 34380tatcatttaa tttggagctt ccatcatatt
ttaatggacg gctggtgcat gggcattgtg 34440ttacaggatt tgttcagaat gtatcagcag
catcgtcaaa atataccgat taccgttgag 34500agcgttcctg cctatagcga gtatatccgt
tggcttgaga agcagaatgt aacaaaggcg 34560agggattact ggaaaaatta cttagagggc
tatgaggaat taacaggtat cattcgtctc 34620gatacgaagc atacgagtca caacaacgag
gtacaggaat gcgcctttac actggataag 34680gacataacgg aaggacttac tcagcttgct
cgtcattatt cagtgacagt aaatacgctt 34740tttcaaacaa tttggggcat gctgttgcaa
aagtataaca ataaggatga tgttgtgttt 34800ggtgcggtcg tatctggccg cccctctgaa
atccatggcg tagaaaacat ggttggcttg 34860tttatcaaca ctgtccctat tcgtattcaa
aaacaaatga atgatacctt tagccattta 34920ttaaaaagag ttcacgaatc tacgctattg
tctaaacagt atgagtttgt atccttggca 34980gatattcaaa ccgatgcagg attttctggt
caattgctag atcacatctt agtttttgaa 35040aactatccga taagtgaagg ttcttttgag
gaagaagaat ttacgatgga tagtataaaa 35100acctatgaga aaacaagcta tgacctaaac
gtgatgattc ggcctaatga ggatcagctt 35160gatattgcct tccaattcaa cgatgacgtg
tactcaagcg aaaatgtaaa aagactgttc 35220cagcatatga agcaactggc tctagctgta
atcaagaatc cggatgtgcg cttggaagaa 35280atagcaatga tcacagaaga ggaacgctat
caaatcttgc acgatttcca aggggagata 35340gttgattttg taacagaaaa aacgcttcct
gaactgtttg aagaccaggt gaaacgaact 35400ccagaagcaa ttgcacttcg atttgaagat
caacaattga cctatcagga gctaaatcag 35460cgagtaaatc aattagcttg gacactaaga
atgaagggct tgcagcaaga agaactcgtt 35520ggaattatgg tgcagcgctc attagaaatg
atcgttggtg tgctagccgt tataaaagca 35580ggcggcgcat acgtaccaat tgatccggaa
tatccgcttg accgaatcca atatatgctg 35640gaagacagtg gaaccaattg gctgttaacc
acgaaacaga gcgaaattcc ttccatctat 35700ctagggcatg tcctgtatct tgaggaagat
acggtgtatc acgagcggtc ttcagatgta 35760gagattgtaa atcaatccag cgacttagct
tatattatct acacgtccgg ttctactggt 35820cagcctaagg gtgtcatgat tgatcatcgt
gctgttcata atttgcattt gtcagcagga 35880atctatggaa tcgcacaggg aagccaggtt
ttgcagtttg cctctttaag ctttgatgct 35940tcggtgggtg atatcttcca cagcctatta
acgggagcta ccttgcatct tgtaaaaaaa 36000gagcaattgc tatccggaca cgcctttatg
gagtggttag acgaagctgg cattacgact 36060attccgttta ttccaccaag cgtcctaaaa
gaattaccat atgcaaaact gcctaagctc 36120aaaacaatca gtactggcgg ggaagaatta
ccggctgatt tagtaaggat ttggggagca 36180aaccgcacat ttttaaatgc atatggtccg
acagaaacga cggttgatgc ttcgattggt 36240aattgtgtag agatgacgga taagccttcg
attggtacgc caaccgttaa taagcgagcg 36300tatattttgg atcaatacgg tcatattcag
ccaatcggtg ttcccgggga attatgcgta 36360ggtggagaag gcgtagctcg tggatattta
catagacctg agcttacaga tgaaaagttc 36420gtgaacgatc cttatgtacc aaacgggaga
atgtataaaa cgggagactt agctagatgg 36480ttgccggatg gaacaatcga atttttaggc
cgtatggatg gccaagtaaa aattcgtgga 36540tttaggattg agcttggaga aattgaagct
cggctaaacc aagccccatc tgtaaagcaa 36600gctgtggttc tagctcgttc aggagaacaa
aagcaggtat acctatgcgc atatttggtg 36660acggacaacg atttaaaggt ttctgcccta
cgtaaggaat taagtcaaac gttaccagac 36720tatatgattc catcgttttt tataaaagtc
gaaaagattc cagtcacagt aaacggcaag 36780atagacaaga aagccttgcc agaaccagaa
aaagaagtag agctgcaaac cgaatatgta 36840gctccaacga acccaacaga ggagattctt
gtacagattt ggcaaaaggt gctgggaatg 36900gagcgagtag ggatagagga taacttcttt
gagctaggtg gtcactctat caaggcaatg 36960atgcttgctt ccaatattta taaggaatta
aagattgatc tgcctttgcg tgagattttt 37020aagcatacga cagtaaaaga aatggcgcgt
tttatcgacg gtcgggatga ggaagaatac 37080gtcggaattc aacccgcagc caaacaagaa
tactaccctg tctcttctgc acaaaaaagg 37140atgtatgtca ttcaatcatt ggaagataag
gctcaaggca cgagctataa tatgccgtct 37200ttctataaaa tgaagggctc ggtagatgca
gagaaattag agaaggtatt ccaaacatta 37260ttggatcggc acgaatcatt acgaacctcc
tttcatatga tcgaggagca gctagttcaa 37320aaggttcacg aacaggtttc atggaaaatg
gacatgaaaa ccgtcagcgc caatgatgtt 37380tcaagattaa aggattcgtt tgtccaaccg
tttgacatca gtacagctcc tttgttccga 37440gccagtcttc ttacgattca taaagatgag
cacattctta tgatggatgt acaccatatt 37500gtaggagacg gtgtttcgac cacgatcttg
ttccaggagc ttatccagtt gtatcaaggg 37560caagcgctac ctgaagtgaa ggtacactat
aaagattacg ctgtgtggca attgtcccag 37620caggatcgtt tgaaagaaag tgaaaatttc
tggttgcagc aattttctgg agagttgccg 37680gtgttggagc tacctactga ttattctcgt
cccccaattc gccgattgga aggagaatat 37740gtaagccaaa gcctacgtgg tgatctccat
gaaagcgtaa aagccttcat gaaaaatcac 37800gaagtaacgc tatatatggt actgcttgcg
acatataacg ttcttctgca caaatacacg 37860aatcagcacg acattattgt tggtacgcct
gtttcggacc gaccgcatcc agatgtcatg 37920tccactgtcg gtatgtttgt aaatacgctg
gcagtccgaa atcagttgga gtctgagcaa 37980accttcgaaa agtttttagc aaatgtgaaa
aataaaatgc tagaggtcta tggtcatcag 38040gagtatccgt ttgaagatgt aattgaaaaa
gtaaaggttc aaagggatac aagcagacat 38100ccgctatttg acacaatgtt tggtgtacaa
aatctggaga tatcccacgt ggagctaccc 38160gattggggta tagaagcatt ggatattgac
tggactaact ccaagtttga tatgagctgg 38220atggtatttg aagcagacgg tctagaaatt
ggcgtggagt atagcacaag cctatttgag 38280cgcaatacga ttcagcgaat gatcggacac
tttgaacata tcatcgagca gattatggaa 38340aatcctcaaa ttcgtttagc tgatattcag
ttgacgacag aagatgagag aatccaaatc 38400ttagaggaat tcaatcatca accaacaaaa
ataacctacg atcaggcaat ccaaaacaga 38460tttgaagaac aggctatgaa gacacctgat
gcagtggcac ttgtatataa aggtcaggag 38520ttaacctatc gtgagcttaa ccaaagatca
aatcagatgg ctcgtacatt aagagagcat 38580ggggtcgggc gtgatcaaat aattgcggtc
atgattaatc gttcacatga gctgatcatt 38640agtatcctag ccgtattaaa ggcaggagga
gcatacctgc caattgatcc aacgtacccg 38700cttgatcgga ttgaacacat gctagaggat
agccagactg caatgctgtt aactcaaaaa 38760gaaatccaaa tacctacagg atattcaggg
gaagttctct tcgttgatca agctgatatt 38820tatcatgagg atgctacgga tttatctagt
atgaatcagc ctgcggattt ggcctatatt 38880atttacacat caggctctac tggaaagtcc
aagggagtaa tgatcgagca tcgttcatta 38940cataatctga ttcatatttc tcacccctat
aaaatgggag caggaagcag agtccttcaa 39000tttgcctcta gcagctttga tgcctcggta
gcagagatct ttccagctct tttaactgga 39060tcaactttat atatagaaga gaaagaggag
ctattaacca atttagttcc ctacttactt 39120gagaatcaaa taacaacagt agcattgccg
ccatctttat taagatccgt tccttatagg 39180gaactgccag ctttagagtg catagttagt
gtcggagaag cttgcacatt tgacattgta 39240caaacttggg ggcaaaaccg cacctttata
aacggatacg gccctacaga atcaactgtt 39300tgcagtgcct ttggtgtggt tacagcagag
gacaagcgta tcacgattgg taaaccgttc 39360cctaatcaaa aggtctatat catcaatgaa
aatcaacagc tacaaccaat cggggttcca 39420ggtgagcttt gcatagcagg ggctggatta
agccgtgggt acttgaatcg tccagagctg 39480acacaggaaa aatttgtaaa caaccccttt
gcacctggtg agcgtatgta taaaacagga 39540gacgtagctc gctggttgcc tgatggcaat
atcgaatatg ccggtcgtat ggatgatcag 39600gttaaagtac gcggaaatcg ggtcgagctt
ggggaggtta ccagccaatt acttacgcat 39660ccttcgatta cagaagctgt tgttgtacca
atagtcgata cacatggagc aacgacacta 39720tgcgcctatt tcatcgagga taaagaagtg
aaggtcaacg atttgcgcca tcatttggct 39780aaagctctac ctgagtttat gattcctact
tactttatta aagtagatca tattccattg 39840acaggaaacg gaaaggtaaa taaacaagca
ttacctgacc cttccgaatt catttcagca 39900caaacaggcc atgaaatcgt tgccccttct
tctcaggacg aggaaatact ggttcaggta 39960tgggaagaag tcctgcagtt caaaccgatt
ggggtagagg acaacttctt tgaacgaggc 40020ggagactcca ttaaggcatt gcaaatcgta
gctagactta gtaaatataa tcggaaattg 40080gatagtagac atatttttaa aaatccaacg
atttccatgc tggctcctta ccttgaacaa 40140agaggtgctt tgattgaaca agattcaatt
gaaggcgaag tgccgcttac accgattcaa 40200tcctggttct ttgaacaacc ctttgtgtat
ccacaccact ttaatcaatc tatgcttcta 40260ccaaatgaac aaggctggga tcgtcaacga
atagaacaag catttacaac cattgttaga 40320caccatgatg ccttaagaat gaagtaccag
tttagagaga agatcattca agaaaatcag 40380ggtatcgagg gagagttttt taccctgcat
gaggtggatg taaccaagga aagagactgg 40440caaatgcgca tcgaacaaga agcgaatcaa
ctccaagcaa gctttgattt gacaacaggc 40500cctcttgtaa agcttggctt ataccatacg
gcatatggcg attatcttct gattgttgta 40560catcatctct taattgatgg tgtctcatgg
cgcatcctgc tggaggattt ccagacgctt 40620tatgagcaaa agggtgagtt gccagcgaaa
accacttcct ttaaggcgtg ggctgtacaa 40680ctggaggggt atgctcgcag caaaaagcta
caagacgagg caagctactg gaaagggttg 40740ttgaataaat cgataagaga gctgcctgcg
gataaggaat caagcgatac attcctcttt 40800ggagatacaa aagaagtaca gcttaccttt
gatataaatg aaacccaaga cctgcttacg 40860gatgcccacc atgcttataa gacaaaagcg
gatgatttat tgctggcagc gttggttctt 40920agcataaatg agtggacgaa gcaaagcgat
atcatagtga atttggaagg tcatggccgt 40980gagacgatcg gcgaaggcat tgatttgagc
cgtacaattg gctggtttac tacaatttat 41040ccagttctgt ttgaagtaga gaaccatcaa
ctttccagcg tgattaaaca tgtaaaagaa 41100acgctgcgca atgtaccgaa taatggtatt
ggttttggga tcttacaaca catgtctcat 41160tctgatgtaa gccagagcca attaagttct
catcacataa gcttcaacta cctaggtcag 41220atgggagaag attccgctag tcagtctgag
acggataatg gagtccttat caatacagga 41280gaccagataa gcccaatgaa cgcaaatccg
ggctcgctta atatgacttg ccttgtaatg 41340aataatacgt tgcttgttac ttttgattat
aatccgcaac gttacgaaca ggagacaatt 41400caacgtctgg cagatcgtta taagagcaat
ttaaaagcag tcctcgatca ttgtgttcaa 41460cgagagcaga cagagcgaac acctagtgat
tttagtacga agaagctttc tttagaggac 41520ttagacgacg tgtttgcaac acttaaaaat
ctataaaggt atcctgagga ggagaagatt 41580aacttgatta atacctcaga cgtcaaagac
atttatagtt tatccccgat gcaacgagga 41640atgttatttc atacattaaa agacaaagaa
aaccttgcct attttgatca gacaactttt 41700caaatagaag gtgacatatg tgtcgaatcc
cttgagaaaa gttttaacga gctgattcgc 41760aagtatgatg ttctgcgtac gatcttttta
tatcagaaat taaaagagcc gatgcaggtt 41820gtgttaaagg agagaacagc aaacattcat
tatgaggatt tctctatgaa gagcgagtcg 41880gataaagcaa aggctcttcg tgtagcaaaa
cagagggacc gggacgaggg ctttgacctc 41940tcccgggaca tcctcatgcg gttatcttta
ttaaaagtcg cccctaacca atacgaatta 42000gtgatcagta gccaccatat tatcattgat
ggatggtgta caggaatttt gtatcaggag 42060ctgttttatt tttatcaatg cttcgtagca
aatcaaccta tccctgctga gaaatcgatt 42120ccgtatagca gatatattcg ttggcttgaa
gaacaggatg aagaggaagg aaaagcctat 42180tggggtgaat atctacaaga tttcgagggg
gcatctgtta tccctaagca aaacgctaag 42240ggagagaagg aagtatgctc cattgataag
gtaaccttcc actttgataa aaagctgacg 42300gaggaactgg tgcaggtagc aaaaacttgc
caagtaacaa taagtacctt gtttcaaaca 42360atgtggggca tcctgctcca aaagtataat
aactcgcagg aagctatatt tggatcggtt 42420atttcaggaa gatcaccaga gattcctgat
gtggaaaaaa tagttggaat ttttattaat 42480accattcctg ttcgcattcg tacattggac
aagcaaacct tcaaggaatt gctgatccag 42540gttcaggagg catctgtcaa ctctgaaaaa
tataattatc taacattggc tgatattcaa 42600gcggttaccg gatcgaatca tgcacttatc
catcatattg tggcatttga aaatttcccg 42660attgcctcgg acagcttcgt agattcgagc
gattccgatt cagaagaatt gaaagttgtg 42720aacgtcatag acgatcatga aaagaccaac
tttgatttta gtgtgcaagt tcagcttgat 42780acagagttac tagtaaaaat ctcttataat
caacatcttt atcatagaag ctttattgaa 42840aatatctttc atcacctgca acagattgcc
gggtctatca ctcataaccc agatattcaa 42900ataaatgaga tagctattgt ttctaaggaa
gagaagaagc aactattacg ctattccact 42960ccagccaagt cagattttcc aatggataaa
accattcatc agctatttga ggagcaggta 43020tcacggacac cagagcagat cgcggtcgtt
tttaaagggg agtccttcac ctatcgcgag 43080ttaaatgaaa aggcaaatca attggcatgg
gtgctaagaa aacgggaggt aagacctaac 43140gagatcgttg cgatcatggc agagcactct
ctagagatgc tggttggggt gattgggact 43200ttaaaggcag gtgcggccta tcttcctatt
gacccatcct acccagaaaa aagaatcgct 43260catatgctac aagatagcaa agcggagcaa
ctacttatcc agcctcattt gaatatgcca 43320caggacttta agggaagtgt cttatggtta
acagaagaga gctgggcgaa ggagagtacg 43380accgatctgc cgcttgcaac gagtgcaaat
gatctagcat acatgattta tacctcaggc 43440tcaacaggac tgccgaaggg agttatggtt
gagcatcaag ccttggttaa tttagttatg 43500tggcataacg aggcatttgg cgtaaccatg
actgatcaat gcacgaaatt ggcgggattt 43560ggattcgatg cgtcggtgtg ggagaccttc
cctccgctta tacagggagc gacgcttcat 43620gtgttagagg aatcgagacg tggagatatt
tatgctctgc atgaatactt tgaaaagaat 43680gcgatcacca ttagcttctt gcctactcaa
ttagccgaac aatttatgga gcttacaagc 43740agtacattac gtgtgttact cattggcggt
gaccgagccc aaaaggttaa agagacatcg 43800tatcaaatca taaacaacta cggtccaacc
gaaaatacag tagtcacgac gagcggtcaa 43860ctgcatcctg agcaggatgt cttccctatt
ggaaagccga tcaccaatca cagcgtttat 43920attttagatc agaacagaca tctacagccg
atcggaatac ctggcgagct gtgcgtcagt 43980ggtgcagggc ttgctagagg ctaccttaat
cagcctgaac tcaccgtaga acgctttgtt 44040gataatccct ttgtacctgg agagagaatg
tatcgcacag gggacttagt tcgttggaga 44100atcgatggta gcatcgaata tctgggaagg
attgacgagc aagtcaagat tcgaggatac 44160agaattgagt taggtgagat cgaaacaaag
cttcttgagc atccttccat tagtgaggcg 44220ctcgtcgtgg ctcgaaatga cgagcaaggt
tatacctatc tatgcgctta tgtggtagca 44280actggggcct ggagcgtatc ttcattacgt
gagcatttaa tcgaaacatt gcccgaatat 44340atgattccag cttacatgat ggaagtggaa
aaaatgccgc ttactgcaaa cggaaagata 44400gataagcgag cgttaccagt gcctgatagg
caaagaatga acgaatatgt ggcacctgca 44460acagagacag aggaaaagct agttctactg
ttccaagaga ttttaggact tgagcgtatt 44520ggtactaaag atcacttctt tgaattaggg
ggacattcgc tgaaggcgat gatgcttgtg 44580tctcgtatgc acaaggagct aggtgtggat
gtgcagttaa atgagatgtt tgctcgtcca 44640acggttaaag atctatctgc ttacatagat
cagatgaacg gctctgctta cacagcaatt 44700caaccagtgg aggaacagcc ttattatcct
gtttcttttg cccaaagaag aatgtatgtt 44760gtacagcaaa tgagagatag tgaaacgacg
agctataaca tgccgtttac gtttgagcta 44820aaaggaaagc tacatctgga caagctgcga
gaagcgttac agattctggt tctacgacat 44880gaaagtctgc gtacatcctt tcatatgatt
gatgaaaatc ttgttcaaaa agtgaataaa 44940gatatttcat gggatttaga agtaatagaa
gctcaggagt cagagataga agtaaaactg 45000gaggaattta tcagaccgtt ccatttaagt
gaggctccgc ttttcagagc tcgtttaatt 45060tgcttgaatc cacagcatca tcttttgagc
ttagacatgc atcatattat ttcagatgga 45120gtatctatga acctgttcct acaggaattc
atgacactct atcagggaga agcattgcca 45180gcgctctcta ttcaatacaa ggattacgcc
gtatggcaac aatcagacaa gcagcgagct 45240agattaaaag agcaggaaaa atattggtta
catcattttt ctggagagct gcctacctta 45300gaattgccaa cagattttcc acgccctgca
atacagcaat ttgatggaga tgaatgggcg 45360tttgaaatga atgctgatct tttagcgaag
gtcaaacaga tctgctctag ccaaggcacg 45420acgttatata tgacgcttct cgctgcttat
caggtgttct tagccagata taccgggcag 45480gaggatatca ttgtaggttc tccaattgct
ggacgttctc atgctgattt ggaaaacatg 45540ataggtatgt ttgtcaatac attagctttg
cgcggtaagc caaaggcaga tcaatccttc 45600ctctcctatt taaaacaggt aaaagagacc
gtattccaag catacgcgaa cgcagaatat 45660ccatttgaag agttgattga gaaactcgat
ttagaacgag atatgagccg tcatccgcta 45720tttgatacct tgttctcttt gcaaaatatg
gaaatatctg agttccaaat gaataatcta 45780gagatttttc cttatgaaac gggacaaaag
aatgcaaaat tcgctcttag ctggttaata 45840gcagaaggag agtcccttta tgtaacaatc
gaatacagca ccaaatgctt taagcgagaa 45900accattaaac gcatggcaag tcattttgaa
caactgctag cccaaattgt tgagcaaccg 45960gaagcgcgca ttggccaact ggagttagta
gcagatgccg aaagaaaaat gttactggaa 46020gactttaatc tgacaaaagt cgactatcca
cgggaaaaaa caattcaaga attatttgaa 46080gagcaggtgg acaaaaaccc tgatcaaatc
gcgcttatat gtggagagca acagtttacc 46140tacgaacaat taaatgtgaa atttaaccaa
ttagctcacg tattaagaag agaaggcgtt 46200caacccaatc aggtaatagg gctaattacg
gatcgatcgc tgtcgatgat tgtaggtatt 46260tttggaatta taaaagcagg tgggggctat
ctgccaatcg atccgaccta tcctaccgaa 46320agaattgaat acatgcttga agatagtcaa
actcacctat tgttggtaca acacagagac 46380atggttccag caggttatca gggagaggtt
ttgataatag aggatgagat aagtcgagat 46440gaacaagtag ctaacataga attgatcaat
cagccgcaag acttggctta tgtcatgtac 46500acatctggct ctacaggtaa accaaagggg
aacctgacta ctcatcgaaa cattatcaaa 46560acggtatgca ataacggata tattgagata
acgactgagg atcgtctttt gcagttatct 46620aattatgctt ttgacggctc tacctttgat
atattcagct cgttattaca cggagcaacg 46680ctggtactgg taccaaaaga agtgatcttg
aatccaacag acttgattac attgatacgc 46740gaacagcaga tcactgtatc gtttatgact
acctcattgt ttaatgcatt agtggaactg 46800gatgtaagca gtttccaaaa catgcgcaag
atcgcatttg gaggagaaaa ggcttccttt 46860aagcatgtgg aaaaggcatt ggatttcctc
ggaaatggac gattggtgaa tggatatggt 46920cccacagaaa caaccgtttt tgctacaacc
tacactgtgg atgagcgcat aaaggaatgg 46980gggattatac cgattggtcg accgctacat
aatactacgg tccacatttt aagcgctgat 47040gacaagctac agccaattgg agtcattgga
gaactgtgcg taagcggtga aggattggca 47100cgcggttacc ttaatctacc agagttgacg
atggagcgat ttgttgaaaa tccatttaga 47160cctggtgaaa gaatgtaccg cacaggggac
ttggctcgtt ggttaccgga tggggttctt 47220gaatatgtag gacgcaagga tgaacaagtg
aaaattcgcg gacatcgcat tgagcttagt 47280gaaattgaaa caaggatatt ggagcatcct
gcgatcagtg aaacggttct gctagccaag 47340cgaaatgagc aaggcagctc atacctgtgc
gcttatattg ttgcccatgg ccaatggaat 47400atccaagaat tgcgcaaaca tgtaagagat
gttttgccag aacacatggt gccttcttat 47460tttattggct tagacaaact tccacttacc
tccaatggta aagtcgacaa acgagcattg 47520ccagaaccag agggcagcct gcaactgact
agagaaattg ttgctccacg caatgaatct 47580gaaaaacagt tagttgaaat tgttgctgag
gttctgggac tagaagctag tgaaataagt 47640attaccgata atctttttga gctaggtgga
cattccctaa cgattctgag aatccttgct 47700aaggttcata catgtaactg gaagcttgaa
atgaaagact tctataattg caagaacctt 47760gaggaaatag caagcaaggc aactgatatg
caggaaaatc aaaatctgtc tggcagtggc 47820tcagtcttta aaaagggtgg gaagaaatca
atcccggtag tacccgtcca cgatagacaa 47880aaagaaatgg agcatgtttt attgctcggc
tccactggtt tcttaggtat tcatttgcta 47940catgagctgc tacagaaaac agaagcgaca
attctttgcg tcattcgtgc agaaaatgat 48000gaggctgcta tgcaacgact acgcaaaaaa
attgattttt actttacctc acagtacagt 48060agctctcaaa ttgatgagtg gtttacccgc
atccaaatca ttcacggtga tattacgcaa 48120gccaactttg gattagaggc aaaacattac
gagtcgctag gagctatcgt tgacactgtc 48180attcatacgg ctgcattggt gaagcactac
gggcactatg aagagtttga aagagcaaat 48240gtacatggaa ctcagcaagt agttaccttt
tgcttgaaca ataaattacc aatgcactat 48300gtttcaaccc tgagcgtttc gggaaccacc
gttgaagaag caacagagct tgtagaattt 48360accgagaagg acttttatgt tggtcaaaac
tatgagtcaa atgtatatct gagaagtaaa 48420tttgaagccg aagccgtact tgttggcgga
atggaaaacg gactcgatgc acgtatctac 48480cgggttggca atttaacagg acgctttcag
gatggatggt tccaggaaaa tatcaatgaa 48540aatatgtttt atctcctatc gaaagccttc
cttgagcttg gaggttttga tcaggaaatt 48600atgcagggta tggttgattt aacccctatt
gatatatgtg cacaagctat tatacacatc 48660atcaacagca aaggaattga ggaaagagtc
ttccatttac agaatccgca cttggtaaca 48720tacgatgata tgtatcgtgt atttgaaggg
cttggctttt ctagacgggt acaaagtcga 48780gaagatgtta cacgtgaact agatgtaatg
atgtctcagg gtaatgaaaa gctatttttg 48840gctgggattc tgaccacgat gttggatgat
gtagagcgtg ctgaacaatt taatgttgca 48900gtcgattcaa gtaggacaat gcagctatta
gaggatacct cgtttaccta tcctgttcct 48960gatgatgagt atttgcgcaa gctggctatg
catatgatca aagttgggtt tgttactcct 49020aatcatactg ttgctgaaaa gataggaact
agtcgttagc gctatgctag cgactggttc 49080ccaacctaaa tgaatagcta aaggaaggag
agggaaccca tggcagtcat tgaactaaaa 49140aaccttacga aaaagtataa tgaggtctat
gctgttgatc atctaaatat agaagtacct 49200caaggacata tttatgcgtt tttaggtagc
aatggggcgg gaaagacaac cacaattaaa 49260atgatgacgg gccaattgaa cccttcagag
ggagaggttc tatttctagg gcgcaatatt 49320tggcaggatc gtgaggcaag aagaattgcg
ggctatgctc cagacgttcc acttcttcat 49380gaaggattga cagtcagaga aatggtacgc
tttgtggggg ctctttatgg tagtgacgaa 49440gatctgaata aacgtgttga cacgttgtta
gaacattttg agctggcaga taaagcagac 49500cagcttatta aagaatactc attaggaatg
aaacgaaagg tttcgattgc ttgcgcattg 49560attcatcgcc ccaaaatctt gctattagac
gaagttacga atgggttgga cccaaaggcg 49620acccgtgaag tgaaaaatta tattcgacat
tttgccaaag aagagggtgg tactgttttt 49680attacgaccc atattttgga cattgttgaa
gaattagccg ataccatttc catcctgcat 49740aaaggaaaaa tcaaagtgac gggaagcatg
gaagaattgc gtcatgtggc aggcaatgaa 49800gaaggtcgat tggaagatat ctttttatcc
gctatcgagt agtaggaggt gacagaattg 49860tatgtgggca caaacgaaat ggattagttt
cttttacaca agacccttct ttaatcgctt 49920ttttatccat agtccttcta aatggatcat
ttatgtgggc ttgggaacca ttgctattgc 49980catgtacttt tcggagaatt ttgggcagct
tctcttacat gccagtctca gtgctagatt 50040gatgcttctc ataggggaat gtatttttgt
cggtttgctt cgtggcatga atacgttgac 50100acaacaaatg tacgctgatc gattactgac
attgttttat gtatcgggag tttctccgtt 50160tcggatgatc cttgggcaat ctacttcaag
tctacctctg tacacgtggt catccattat 50220gattgctatt ccattaacga ttggctattc
cgccatggaa agagttctgt atgttttgtt 50280attcctagtc gtttctctat tgatgatttg
gttaacagac atcttaagcc gatttttaat 50340ggttctgacc atgcggtttt tccctattat
tgtcaaaaca ttcgtaggta tctcctcgct 50400tgcctatgtt gctttaattg gcctattggt
ttgggcattg attgaggttg aaacaatttc 50460tccagaagct tggcagagct tagagcgttt
tatggtatat gttttgtgca ttttcgcggt 50520cggtcttgga gcgttgtttc tattctctga
acaaattgga gggttttatt acgaaagctg 50580gctgaaccat gcggagtcgc aagataggac
cagaccagaa acacaggaaa atctatcgaa 50640tttggtcaaa aacgctcatg atgccatcgt
tttt 5067422641PRTBrevibacillus texasporus
22Met Asp Leu Ser Thr Leu Asn Phe Leu Gly Glu Thr Glu Lys His Lys1
5 10 15Leu Leu Asn Gln Phe Asn
Asp Thr Asp Ala Asn Phe Pro Gln Glu Met20 25
30Thr Ile His Gly Leu Phe Glu Lys Gln Val Gln Glu Arg Pro Asn Gln35
40 45Thr Ala Val Ile Phe Asn Glu Gln Ser
Met Thr Tyr Lys Glu Met Asn50 55 60Glu
Arg Ala Asn Gln Val Ala His Ser Leu Arg Lys His Gly Ala Ala65
70 75 80Pro Asp Glu Ile Val Gly
Ile Leu Ala Asp Arg Asn Met Asp Met Leu85 90
95Ile Ser Ile Leu Gly Val Leu Lys Ala Gly Ala Ala Tyr Met Pro Ile100
105 110Asp Pro Thr Tyr Pro Thr Glu Arg
Ile Leu Tyr Met Ile His Asp Ser115 120
125Gln Thr Lys Ile Val Leu Ala Glu His Arg Glu Met Val Pro Glu Gly130
135 140Cys Asn Ala Glu Leu Ile Leu Leu His
Asp Ser Ser Leu Leu Asn Glu145 150 155
160Glu Thr Ser Asp Leu Glu His Val Asn Lys Pro Glu Asp Leu
Ala Tyr165 170 175Ile Ile Tyr Thr Ser Gly
Ser Thr Gly Lys Pro Lys Gly Val Met Ile180 185
190Glu His Arg Asn Val Ile Arg Leu Leu Phe Asn Asp Arg Asn Leu
Phe195 200 205Asp Phe Thr Ser Asp Asp Val
Trp Thr Val Phe His Ser Phe Cys Phe210 215
220Asp Phe Ser Val Trp Glu Met Tyr Gly Ala Leu Leu Tyr Gly Gly Lys225
230 235 240Ile Val Leu Val
Ser Phe Glu Ile Ala Arg Asp Pro Gln Ala Phe Arg245 250
255Asp Leu Leu Gln Glu Gln Lys Val Thr Ile Leu Asn Gln Thr
Pro Thr260 265 270Ala Phe Tyr Gln Leu Ser
Ser Gln Glu Met Gln His Ser Asp Ser Asn275 280
285Leu Ser Ile Arg Lys Ile Ile Phe Gly Gly Glu Ala Leu Thr Pro
Ser290 295 300Gln Leu Lys Ala Trp Lys Gln
Lys Tyr Pro Asn Thr Ala Leu Ile Asn305 310
315 320Met Tyr Gly Ile Thr Glu Thr Thr Val His Val Thr
Tyr Lys Glu Phe325 330 335Gln Leu His Asp
Met Asp Ser Thr Val Ser Asn Ile Gly Lys Pro Ile340 345
350Pro Thr Leu Arg Thr Tyr Val Leu Asp Ser Lys Arg Asn Leu
Ala Pro355 360 365Ile Gly Val Lys Gly Glu
Leu Tyr Val Ser Gly Lys Gly Val Ala Arg370 375
380Gly Tyr Leu Asn Lys Pro Glu Leu Thr Glu Glu Arg Phe Met Asp
Asn385 390 395 400Pro Phe
Val Ala Gly Glu Arg Met Tyr Arg Thr Gly Asp Leu Ala Arg405
410 415Trp Leu Pro Glu Gly Glu Leu Glu Tyr Leu Gly Arg
Ile Asp His Gln420 425 430Val Lys Ile Arg
Gly Tyr Arg Ile Glu Leu Gly Glu Ile Glu Ala Glu435 440
445Leu Leu Lys Gln Lys Gly Ile Lys Glu Ala Val Val Leu Val
Thr Asn450 455 460Asp Lys Asp Ala Gln Pro
Gln Leu His Ala Tyr Leu Thr Ser Lys Glu465 470
475 480Asp Leu Ala Ala Ala Asp Leu Arg Asn Gln Leu
Thr Thr Thr Leu Pro485 490 495Ser Tyr Met
Ile Pro Ala His Phe Ile Phe Val Ser Gln Met Pro Val500
505 510Thr Pro Asn Gly Lys Ile Asp Lys Glu Ser Leu Arg
Lys Ile Glu Pro515 520 525Ser Leu Gln Glu
Ser Pro Thr Glu Ala Tyr Val Ala Pro Gln Thr Pro530 535
540Thr Glu Lys Gln Leu Val His Ile Trp Glu Glu Asn Ile Gly
Met Gln545 550 555 560Pro
Ile Ser Ile Asp Asp Asn Tyr Phe Ala Leu Gly Gly Asp Ser Ile565
570 575Lys Ala Ile Lys Leu Leu His Ala Ile Asn Lys
Glu Phe Gln Ile Ser580 585 590Phe Gln Ile
Gly Asp Leu Tyr Lys His Gly Thr Ile Arg Glu Met Gly595
600 605Gln Gln Ile Gly Glu Lys Gly Lys Gln Ser Ser Asn
Gln Lys Leu Leu610 615 620Lys Leu Gln Glu
Leu Asp Arg Leu Lys Glu Lys Ile Leu Gly Ser Glu625 630
635 640Lys232530PRTBrevibacillus texasporus
23Met Ser Asp Lys Leu Ser Asn Ala Lys Asp Leu Phe Pro Met Ser Asp1
5 10 15Ile Gln Leu Gly Met Val
Tyr His Ser Leu Lys His Val His Glu Ala20 25
30Val Tyr His Asp Gln Phe Val Tyr Gln Val Asp Asp Asp Ser Phe Asp35
40 45Val His Val Leu Glu Gln Ala Met Arg
Met Met Val Asp Lys His Asp50 55 60Ile
Leu Lys Thr Ser Phe His Ile Glu Glu Phe Ser Thr Pro Val Gln65
70 75 80Val Val His Gln Glu Val
Ser Val Arg Ile Asp Glu Thr Asp Ile Thr85 90
95His Leu Gly Glu Lys Gln Lys Glu Tyr Ile His Gln Tyr Leu Ala Gln100
105 110Asp Arg Gln Ser Pro Phe Asp Val
Thr Thr Ala Pro Leu Trp Arg Met115 120
125Ser Val Phe Lys Leu Asn Ala Ser Gln Val Ala Leu Val Trp Ile Phe130
135 140His His Ala Ile Leu Asp Gly Trp Ser
Val Ala Ser Phe Ile Thr Glu145 150 155
160Leu Ile Asp Val Tyr Phe Lys Leu Lys His Lys Thr Cys Thr
Leu Glu165 170 175His Leu Asn Thr Thr Tyr
Lys Asp Tyr Val Ile Asp Gln Met Leu Leu180 185
190Ser Glu Gln Asn Glu Leu Arg Glu Tyr Trp Lys Glu Glu Leu Lys
Asp195 200 205Tyr Lys Arg Leu Gln Leu Pro
Val Lys Val Asp Glu Asn Gly Gly Val210 215
220His Val Thr Val Val Glu Lys Leu Asp Pro Asp Ile Ile Asn Lys Cys225
230 235 240Arg Glu Ile Ala
Gln Ala His His Ile Pro Leu Lys Thr Val Cys Leu245 250
255Thr Ala Phe Leu Ser Met Met His Met Ile Ser Tyr Glu Arg
Asp Leu260 265 270Thr Val Gly Leu Ile Glu
Asn Asn Arg Pro Ile Ile Glu Asp Ala Glu275 280
285Lys Val Leu Gly Cys Phe Leu Asn Ser Val Pro Phe Arg Ala Ile
Ile290 295 300Lys Lys Asp Met Ser Tyr Arg
Glu Leu Leu Glu Gln Thr Gln Gln Lys305 310
315 320Leu Val Glu Ile Lys Thr Tyr Gly Arg Leu Ser Phe
Ala Lys Ile Ile325 330 335Glu Val Ile Gly
Asp Thr Gly Ser Glu Arg Asn Pro Val Phe Asp Cys340 345
350Leu Phe Asn Phe Val Asp Phe His Val Phe Lys Gly Ile Lys
Asp His355 360 365Lys Val Lys Phe Trp Leu
Asp Gly Tyr Glu Lys Thr Asn Thr Met Phe370 375
380Asp Phe Ser Val Ser Thr Thr Met Asp Asp Tyr Phe Val Arg Val
Val385 390 395 400Ser Ala
Leu Pro Glu Glu Asp Thr Ile Lys Leu Ile Asn Tyr Tyr Gln405
410 415Arg Ile Leu Glu Lys Ile Ala Leu His Ile Asp Glu
Lys Ile Asp Lys420 425 430Gln Ala Asn Leu
Asp Glu Lys Glu Ser His Leu Leu Leu Glu Glu Trp435 440
445Asn Gln Thr Ser Val Asp Tyr Pro Asp Lys Gln Thr Leu His
Lys Arg450 455 460Phe Glu Glu Gln Val Ala
Lys Asn Glu Asp Gln Val Ala Leu Glu Tyr465 470
475 480Glu Asp Lys Gln Leu Thr Tyr Arg Glu Leu Asn
Ala Lys Ala Asn Gln485 490 495Leu Ala Arg
Val Leu Gln Lys His Asn Thr Leu Pro Thr Gln Val Val500
505 510Gly Leu Met Ala Glu Arg Ser Leu Glu Met Ile Ile
Gly Ile Leu Gly515 520 525Ile Leu Lys Ala
Gly Gly Ala Tyr Met Pro Ile Asp Pro Thr Tyr Pro530 535
540Ala Glu Arg Ile Gln Tyr Met Leu Glu Asp Ser Arg Ser Tyr
Leu Leu545 550 555 560Leu
Val Gln Lys Ala Glu Met Ile Pro Ala Asn Tyr Gln Gly Glu Val565
570 575Leu Ile Leu Thr Glu Glu Leu Trp Ala Asp Glu
Asn Thr Glu Asn Leu580 585 590Glu Leu Val
Asn Gln Pro Gln Asp Val Ala Asn Ile Met Tyr Thr Ser595
600 605Gly Thr Thr Gly Lys Pro Lys Gly Ile Leu Ile Thr
His Arg Asn Ile610 615 620Met Thr Thr Ile
Ile Asn Asn Gly Tyr Leu Asp Ile Phe Ser Thr Asp625 630
635 640Arg Ile Leu Gln Ile Ser Asn Tyr Ala
Phe Asp Gly Ser Thr Phe Asp645 650 655Ile
Tyr Ser Ala Leu Leu Asn Gly Ala Thr Leu Val Leu Val Pro Lys660
665 670Gln Thr Leu Met Asn Thr Thr Asp Leu Leu Ala
Ile Ile Lys Asp Ser675 680 685Asn Ile Thr
Val Ala Leu Met Thr Thr Ser Leu Phe Asn Thr Leu Val690
695 700Asp Leu Asp Val Thr Ser Phe Gln His Thr Arg Lys
Val Leu Phe Gly705 710 715
720Gly Glu Lys Ala Ser Cys Lys His Val Glu Lys Ala Leu Asp Tyr Leu725
730 735Gly Glu Gly Arg Leu Val Asn Gly Tyr
Gly Pro Thr Glu Thr Thr Val740 745 750Phe
Ala Thr Thr Tyr Thr Val Asp Asn Thr Ile Lys Lys Leu Gly Ser755
760 765Ile Pro Ile Gly Arg Pro Leu Ser Asn Thr Ser
Val Tyr Ile Phe Gly770 775 780Leu Asp Asp
Gln Leu Gln Pro Leu Gly Val Pro Gly Glu Leu Cys Val785
790 795 800Ala Gly Glu Cys Ile Ser Pro
Gly Tyr Leu Asn Arg Pro Asp Leu Thr805 810
815Ala Asp Lys Phe Ile Asp Asn Pro Leu Lys Pro Gly Glu Arg Met Tyr820
825 830Arg Thr Gly Asp Leu Val Arg Trp Leu
Pro Glu Gly Val Met Glu Tyr835 840 845Met
Gly Arg Ile Asp Glu Gln Val Lys Ile Arg Gly His Arg Ile Glu850
855 860Leu Gly Glu Ile Glu Ala Lys Leu Leu Glu His
Pro Ser Ile Arg Glu865 870 875
880Thr Val Leu Val Ala Lys Gln Asp Ala Asn Gly His Ser Phe Leu
Gly885 890 895Ala Tyr Leu Val Thr Asp Asn
Phe Cys Pro Val Thr Glu Leu Arg Asn900 905
910Tyr Leu Met Glu Thr Leu Pro Glu Tyr Met Val Pro Ser Tyr Phe Ile915
920 925Glu Leu Asp Ser Leu Pro Leu Thr Ser
Asn Gly Lys Val Asp Lys Arg930 935 940Ala
Leu Pro Glu Pro Glu Ser Gln Ala Leu His Ala Tyr Thr Met Pro945
950 955 960Glu Asn Glu Thr Glu Glu
Lys Leu Val Gln Leu Phe Gln Glu Val Met965 970
975Asp Val Glu Arg Val Gly Thr Gln Asp Ser Phe Tyr Glu Leu Gly
Gly980 985 990His Ser Leu Lys Ala Met Leu
Leu Val Ser Arg Ile His Lys Asp Phe995 1000
1005Gly Ile Lys Ile Pro Leu Lys Glu Val Phe Ser Arg Pro Thr Val1010
1015 1020Lys Glu Leu Ala Ala Tyr Leu
Thr Gly Ser Glu Glu Ala Asn Tyr1025 1030
1035Ile Glu Ile Glu Ala Ala Glu Glu Lys Pro Tyr Tyr Pro Val Thr1040
1045 1050Ala Ala Gln Lys Arg Met Tyr Ile
Ala Gln Gln Trp Glu Asp Gly1055 1060
1065Glu Ala Thr Ser Ser Tyr His Met Pro Phe Met Met Glu Ile Thr1070
1075 1080Gly Pro Leu Gln Val Glu Lys Leu
Gln Gln Thr Val Lys Ser Leu1085 1090
1095Val Ala Arg His Glu Ser Leu Arg Thr Ser Phe His Met Ile Asn1100
1105 1110Glu Val Leu Met Gln Lys Ile His
Ala Asp Val Leu Trp Asp Leu1115 1120
1125Asp Ile Asp Leu Glu Ser Val Val Ala Ser Glu Gln Glu Ile Asp1130
1135 1140Glu Lys Met Phe Gln Phe Leu Arg
Lys Phe Asp Leu Ser Gln Ala1145 1150
1155Pro Leu Phe Arg Ala Lys Leu Ile Arg Val Asn Ala Ser Arg His1160
1165 1170Val Leu Leu Leu Asp Met His His
Ile Ile Ser Asp Gly Phe Ser1175 1180
1185Tyr Gln Ile Phe Phe Asp Glu Leu Thr Lys Leu Tyr Gln Gly Asp1190
1195 1200Glu Leu Pro Ser Leu Lys Ile Gln
Tyr Lys Asp Tyr Ala Val Trp1205 1210
1215Gln His Ser Glu Glu Gln Gln Lys Arg Leu Gln Gln Gln Glu Asp1220
1225 1230Tyr Trp Leu Gly Gln Phe Gln Gly
Glu Ile Pro Val Leu Glu Leu1235 1240
1245Pro Thr Asp Tyr Gln Arg Pro Val Asp Lys Gln Phe Ala Gly Ala1250
1255 1260Leu Phe Thr His Gly Leu Ser Ala
Gly Leu Thr Glu Lys Leu Arg1265 1270
1275Lys Leu Ala Ile Lys Glu Lys Thr Thr Leu Tyr Thr Val Leu Leu1280
1285 1290Thr Val Tyr Asn Ile Leu Leu Ser
Lys Tyr Thr Ser Gln Glu Asp1295 1300
1305Leu Ile Val Gly Thr Pro Ile Ala Gly Arg Pro His Ala Asp Leu1310
1315 1320Asp Arg Val Phe Gly Met Phe Val
Asn Thr Leu Ala Ile Arg Thr1325 1330
1335Ala Pro Lys Val Glu His Ser Phe Leu Thr Tyr Leu Ser Glu Val1340
1345 1350Lys Glu Thr Val Leu Gly Ala Tyr
Gln Asn Pro Asp Tyr Pro Phe1355 1360
1365Glu Glu Leu Val Glu Lys Thr Leu Val Gln Arg Asp Val Ser Arg1370
1375 1380Asn Pro Leu Phe Asp Val Met Phe
Ser Val Glu Lys Leu Pro Ser1385 1390
1395Ala Val Gln Phe Asp Asp Leu Arg Phe Cys Pro Arg Leu Phe Asp1400
1405 1410Trp Lys Lys Ala Lys Phe Asp Leu
Asp Trp Thr Val Val Glu Gly1415 1420
1425Glu Ser Leu Glu Val Leu Val Glu Tyr Ser Thr Ser Leu Phe Asp1430
1435 1440Arg Ala Thr Ile Glu Arg Met Ala
Lys His Phe Glu His Ile Leu1445 1450
1455Glu Gln Ile Leu Asp Gln Pro Asp Leu Ser Ile Ser Glu Ile Glu1460
1465 1470Leu Leu Thr Glu Ala Glu Lys Gln
Gln Ile Leu Ile Glu Phe Asn1475 1480
1485Gln Ser Asp Lys Ser Phe Asp Ser Glu Lys Thr Ile Gln Glu Gln1490
1495 1500Phe Glu Glu Trp Ala Glu Lys Ala
Pro His Ser Ile Ala Leu Val1505 1510
1515Phe Lys Asp Lys Gln Met Thr Tyr Gln Glu Leu Asn Gln Arg Ala1520
1525 1530Asn Gln Val Ala His Leu Leu Arg
Gly Asn Gly Ile Ser Ala Asn1535 1540
1545Asp Phe Ile Gly Leu Met Val Asp Arg Ser Phe Glu Met Ile Ile1550
1555 1560Ser Met Leu Gly Ile Leu Lys Ala
Gly Gly Ala Tyr Leu Pro Ile1565 1570
1575Asp Pro Asp Tyr Pro Glu Asp Arg Ile Asp Tyr Met Leu Ser Asp1580
1585 1590Ser Lys Ala Lys Ile Leu Leu Lys
Gln Ser Asp Gln Thr Ala Pro1595 1600
1605Ala Ser Phe Glu Gly Lys Val Ile Ala Ile Asp Thr Pro Glu Leu1610
1615 1620Leu Glu Met Asp Ile Glu Asn Ile
Pro Lys Val Asn Asn Ser Ser1625 1630
1635Asp Leu Ala Tyr Ile Ile Tyr Thr Ser Gly Ser Thr Gly Lys Pro1640
1645 1650Lys Gly Val Leu Ile Asn His Arg
Cys Val Ile Asn Met Gln Leu1655 1660
1665Thr Ala Glu Thr Phe Gly Ile Tyr Pro Ser Ser Arg Ile Leu Gln1670
1675 1680Phe Ala Ser Phe Ser Phe Asp Ser
Ser Val Gly Glu Ile Phe Tyr1685 1690
1695Thr Leu Leu Asn Gly Ala Cys Leu Tyr Leu Val Glu Lys Asp Leu1700
1705 1710Leu Leu Ser Gly Asn Glu Phe Val
Ala Trp Leu Lys Lys Asn Arg1715 1720
1725Ile Ser Ser Ile Pro Phe Ile Ser Pro Ser Ala Leu Arg Met Leu1730
1735 1740Pro Tyr Glu Asp Leu Pro Asp Leu
Ala Tyr Ile Ser Thr Gly Gly1745 1750
1755Glu Thr Leu Pro Ala Asp Leu Val Lys Ala Trp Gly Glu Asn Arg1760
1765 1770Val Phe Leu Asn Ala Tyr Gly Pro
Thr Glu Thr Thr Val Asp Ala1775 1780
1785Thr Val Gly Val Cys Thr Pro Glu Gly Lys Pro His Ile Gly Arg1790
1795 1800Pro Val Thr Asn Lys Lys Val Tyr
Val Val Asn Ser Asn Asn Gln1805 1810
1815Leu Gln Pro Ile Gly Val Pro Gly Glu Leu Cys Ile Gly Gly Glu1820
1825 1830Gly Val Ala Leu Gly Tyr Leu Asn
Arg Pro Asp Leu Thr Gln Glu1835 1840
1845Lys Phe Val Ser Asn Pro Phe Ala Pro Gly Glu Arg Met Tyr Arg1850
1855 1860Ser Gly Asp Leu Val Arg Trp Leu
Pro Asp Gly Thr Ile Glu Tyr1865 1870
1875Phe Gly Arg Leu Asp Asp Gln Val Lys Ile Arg Gly His Arg Ile1880
1885 1890Glu Leu Gly Glu Ile Glu Thr Arg
Leu Leu Glu His Pro Ser Ile1895 1900
1905Lys Glu Ala Ile Val Ile Pro Arg Ser Asp Glu Ser Glu Ala Thr1910
1915 1920Tyr Leu Cys Ser Tyr Leu Ile Ala
Glu Gly Ser Trp Asn Ala Ala1925 1930
1935Asp Leu Arg Lys Tyr Leu Lys Ala Ser Leu Pro Glu Tyr Met Ile1940
1945 1950Pro Ser Tyr Phe Val Glu Leu His
Glu Leu Pro Leu Thr Pro Asn1955 1960
1965Gly Lys Val Asn Lys Lys Ala Leu Pro Lys Pro Glu Lys Gln Met1970
1975 1980Gln Arg Gly Lys Asp Tyr Val Ala
Pro Thr Asn Pro Ile Gln Ser1985 1990
1995Ile Leu Ser Gln Ile Trp Thr Asp Val Leu Gly Val Glu Asn Ile2000
2005 2010Gly Ile His Asp Asn Phe Phe Glu
Leu Gly Gly Asp Ser Ile Lys2015 2020
2025Ala Ile Gln Ile Ser Ala Arg Leu Asn Lys His Asn Leu Lys Val2030
2035 2040Lys Met Arg Glu Leu Phe Lys Asn
Pro Thr Ile Ala Glu Leu Ser2045 2050
2055Leu Leu Val Gln Gln Ile Val Gln Glu Ile Asp Gln Gly Val Val2060
2065 2070Glu Gly Asn Ile Pro Leu Thr Pro
Ile Gln His Trp Phe Phe Thr2075 2080
2085Gln Ser Phe Pro Gln Val Asn His Tyr Asn Gln Ser Val Leu Leu2090
2095 2100Phe Asn Ala Glu Gly Trp Asp Glu
Gln Lys Val Asp Lys Ala Phe2105 2110
2115Glu Met Leu Thr Gln His His Asp Ala Leu Arg Ile Val Tyr Ser2120
2125 2130Leu Asp Glu Gln Gly Val Val Gln
Arg Asn Arg Gly Leu Glu Gly2135 2140
2145Ser Asn Tyr His Phe Glu Ile Ile Asp Ala Arg Gln Asp Gly Glu2150
2155 2160Asp Gln Ser Asn Trp Lys Ala Ala
Ala Asn Arg Met Gln Ala Ser2165 2170
2175Met Asp Ile Val Glu Gly Pro Leu Val Gln Ile Gly Leu Phe Arg2180
2185 2190Ala Asn Glu Gly Ala Tyr Leu Leu
Ile Ala Ile His His Leu Val2195 2200
2205Val Asp Gly Val Ser Trp Arg Ile Leu Leu Glu Asp Phe Tyr His2210
2215 2220Leu Tyr Asn Gly Asn Asp Ser Leu
Pro Leu Lys Thr Thr Ser Phe2225 2230
2235Gln Ala Trp Ser Gln Lys Leu Gln Glu Tyr Ala Gln Ser Lys Glu2240
2245 2250Leu Glu His Glu Leu Ser Tyr Trp
Arg His Leu Asp Glu Ala Ile2255 2260
2265Thr Asp Tyr Thr Leu His Lys Asp Ile Glu Ala Ala Thr Ser Asn2270
2275 2280Lys Thr Thr Tyr Glu Glu Phe Leu
Thr Val Ser Met Ser Leu Ser2285 2290
2295Thr Glu Glu Thr Gln Gln Leu Val Thr Glu Ala His Lys Ala Tyr2300
2305 2310Gln Thr Glu Ile Asn Asp Leu Leu
Leu Thr Ala Leu Ala Leu Ala2315 2320
2325Leu Lys Glu Trp Thr Asn Lys Glu Gln Leu Leu Val Ser Met Glu2330
2335 2340Gly His Gly Arg Glu Glu Ile Leu
Asp Asn Val Asp Ile Ser Arg2345 2350
2355Thr Val Gly Trp Phe Thr Ser Glu Tyr Pro Val Ala Ile His Leu2360
2365 2370Thr Lys Thr Asp Ile Ser Phe Ala
Ile Lys Gln Val Lys Glu Thr2375 2380
2385Leu Arg Arg Val Pro Asn Lys Gly Phe Gly Tyr Gly Ile Leu Lys2390
2395 2400Tyr Leu Ala Lys Glu Thr Phe Lys
Leu Lys Pro Glu Ile Ser Phe2405 2410
2415Asn Tyr Leu Gly Gln Phe Thr Asp Lys Glu Glu Gly Asn Ser Ser2420
2425 2430Leu Met Gly Asp Leu Ile Ser Pro
Ala Asn Thr Ser Glu Leu Ser2435 2440
2445Leu Asp Ile Asn Gly Ser Ile Glu Ala Asp Arg Leu Gln Met His2450
2455 2460Phe Ser Tyr Asn Ser Arg Ala Tyr
Tyr Pro Glu Thr Ile Ala Thr2465 2470
2475Leu Val Gln Asn Phe Lys Ser Tyr Leu Leu Glu Ile Ile Asn His2480
2485 2490Cys Arg Ala Lys Glu Gly Val Glu
His Thr Pro Ser Asp Phe Asp2495 2500
2505Ile Asn Asp Leu Thr Met Glu Glu Leu Asp Asp Ile Phe Asp Asp2510
2515 2520Leu Glu Glu Glu Val Tyr Lys2525
2530244617PRTBrevibacillus texasporus 24Met Phe Ser Arg Ser
Asn Val Gln Asn Leu Tyr Arg Leu Ser Pro Met1 5
10 15Gln Lys Gly Ile Leu Phe His Ser Leu Lys Asp
Lys Glu Asn His Ala20 25 30Tyr Phe Asp
Gln Leu Ile Phe Thr Leu Glu Gly Lys Val Glu Leu Glu35 40
45Tyr Leu Glu Glu Ala Phe Thr Gln Leu Ile Lys Lys His
Asp Ile Leu50 55 60Arg Thr Val Phe Arg
Tyr Lys Lys Val Lys Glu Pro Val Gln Met Val65 70
75 80Leu Lys Glu Arg Ser Ser Thr Ile Tyr Phe
Glu Asp Ile Ser His Leu85 90 95Glu Pro
Glu Glu Lys Val Asn Tyr Ile Lys Gln Phe Lys Met Arg Asp100
105 110Arg Glu Lys Gly Phe Asp Leu Ser Arg Asp Leu Leu
Ile Arg Met Ser115 120 125Leu Phe Lys Leu
Asp Gln Glu Gln Tyr Gln Leu Ile Met Ser Asn His130 135
140His Ile Ile Met Asp Gly Trp Cys Leu Gly Ile Ile Leu Thr
Asp Phe145 150 155 160Leu
Arg Met Tyr Lys Gly Ile Val Asn His Thr Pro Val Pro Tyr Glu165
170 175His Val Thr Pro Tyr Ser Lys His Ile Gln Trp
Leu Glu Lys Gln Asp180 185 190His Gln Glu
Ala Lys Asp Phe Tyr Gln Gln Leu Leu Glu Gly Tyr Asp195
200 205Lys Val Thr Gly Val Pro Gln Gln Leu Val Arg Ala
Asn His Glu Glu210 215 220Tyr Thr His Gly
Gln Cys Ile Val Lys Leu Asn Gln Glu Thr Ala Asp225 230
235 240Arg Leu Ile Ala Ile Ala Lys Ala Tyr
Gln Val Thr Val Asn Thr Val245 250 255Phe
Gln Thr Ile Trp Gly Ile Leu Leu Gln Lys Tyr Asn Asn Thr Asp260
265 270Asp Ile Val Phe Gly Ser Val Val Ser Gly Arg
Pro Ala Glu Ile Pro275 280 285Asp Val Glu
Lys Met Val Gly Leu Phe Ile Asn Thr Ile Pro Val Arg290
295 300Ile Lys Ala Asp Gln Gln Glu Arg Phe Asp Thr Leu
Val Ala Lys Val305 310 315
320Gln Glu Met Ala Leu Ala Ser Glu Ser Tyr Asp Tyr Leu Ser Leu Ala325
330 335Asp Ile His Pro Glu Ala Gly Asp Phe
Ile Asn His Ile Ile Ala Phe340 345 350Glu
Asn Phe Tyr Ile Asp Met Asp Ser Phe Asn Gln Leu Ala Asp Lys355
360 365Lys Glu Leu Gly Phe Ser Leu Ala Phe Ala Thr
Asp His His Glu Gln370 375 380Thr Asn Tyr
Asp Leu Ser Val Gln Ala Gln Ile Gly Asp Glu Ser Ser385
390 395 400Ile Lys Ile Leu Tyr Asn Ser
Lys Leu Tyr Thr Ser Glu Tyr Ile Ala405 410
415Asn Val Ile Asp His Phe Val Thr Val Ala Asp Ile Val Ala Ala Asn420
425 430Pro Ser Ile Pro Val Lys Glu Ile Asp
Ile Leu Thr Lys Asp Lys Lys435 440 445Asp
Gln Ile Leu Tyr Gly Phe Asn Asn Thr Tyr Ala Asp Tyr Pro Arg450
455 460Glu Lys Thr Ile His Gln Leu Phe Glu Glu Gln
Val Asp Lys Asn Pro465 470 475
480Asn Gln Ile Ala Leu Val Phe Lys Glu Glu Lys Leu Thr Tyr Gly
Glu485 490 495Val Asn Ala Lys Ala Asn Gln
Leu Ala Tyr Val Leu Arg Lys Gln Gly500 505
510Val Gln Pro Asn Asp Val Ile Gly Ile Ile Thr Glu Arg Ser Pro Glu515
520 525Met Ile Ile Gly Ile Leu Ala Ile Phe
Lys Ala Gly Gly Ala Tyr Met530 535 540Pro
Ile Asp Pro Ser Tyr Pro Ala Glu Arg Ile Gln Tyr Met Leu Gln545
550 555 560Asp Asn Gln Thr Lys Leu
Leu Leu Val Gln Lys Gln Glu Met Ile Pro565 570
575Ala Asn Tyr Gln Gly Glu Val Leu Phe Leu Thr Gln Glu Ser Trp
Met580 585 590His Glu Glu Thr Ser Asn Pro
Ala His Ile Thr Gln Ala Gln Ala Leu595 600
605Ala Tyr Val Met Tyr Thr Ser Gly Ser Thr Gly Glu Pro Lys Gly Ile610
615 620Leu Thr Thr His Gln Asn Ile Met Lys
Thr Val Ile His Asn Gly Tyr625 630 635
640Val Glu Ile Thr Pro Gly Asp Cys Leu Ser Gln Leu Ser Asn
Tyr Ala645 650 655Phe Asp Gly Ser Thr Phe
Glu Ile Tyr Gly Ala Leu Leu His Gly Ala660 665
670Thr Leu Leu Leu Val Thr Lys Glu Ala Val Leu Asn Met Asn Glu
Leu675 680 685Ala Arg Leu Ile Lys Lys Glu
Gln Val Thr Val Ser Phe Met Thr Thr690 695
700Ala Leu Phe Asn Thr Leu Val Asp Leu Asp Ile Thr Cys Phe Gln Ser705
710 715 720Ile Arg Lys Val
Leu Phe Gly Gly Glu Leu Ala Ser Val Lys His Val725 730
735Leu Lys Ala Leu Asp Tyr Leu Gly Glu His Arg Val Ile Asn
Val Tyr740 745 750Gly Pro Thr Glu Thr Thr
Val Tyr Ala Thr Tyr Tyr Ser Val Asp His755 760
765Ser Met Leu Thr Arg Ala Ser Val Pro Ile Gly Arg Pro Ile Asn
Asn770 775 780Thr Lys Ala Tyr Ile Val Asn
Thr Asp Gly Gln Pro Gln Pro Ile Gly785 790
795 800Val Val Gly Glu Leu Cys Ile Gly Gly Glu Gly Val
Ala Cys Gly Tyr805 810 815Leu Asn Arg Pro
Glu Leu Thr Lys Lys His Phe Val Asp Asn Pro Phe820 825
830Val Leu Gly Glu Arg Met Tyr Cys Thr Gly Asp Leu Ala Arg
Phe Leu835 840 845Pro Asp Gly Asn Ile Glu
Tyr Ile Gly Arg Met Asp Glu Gln Val Lys850 855
860Ile Arg Gly His Arg Ile Glu Leu Gly Glu Ile Glu Lys Val Leu
Leu865 870 875 880Gln His
Pro Ala Ile Ser Glu Thr Val Leu Leu Ala Lys Arg Asp Glu885
890 895Gln Gly His Ser Tyr Leu Cys Ala Tyr Ile Val Gly
Gln Val Phe Trp900 905 910Thr Val Thr Glu
Leu Arg Gln His Leu Met Glu Ser Leu Pro Glu Tyr915 920
925Met Val Pro Ser Tyr Phe Ile Glu Ile Glu Lys Leu Pro Leu
Thr Ala930 935 940Asn Gly Lys Val Asp Lys
Arg Ala Leu Pro Glu Pro Asp Arg Lys Met945 950
955 960Gly Ser Ala Tyr Val Ala Pro Glu Asn Glu Thr
Glu Glu Lys Leu Val965 970 975Gln Phe Phe
Gln Glu Ile Leu Gly Val Glu Arg Val Gly Thr Gln Asp980
985 990Thr Phe Phe Glu Leu Gly Gly His Ser Leu Lys Ala
Met Met Leu Val995 1000 1005Leu Gln Ile
His Lys Glu Met Gly Ile Glu Val Pro Leu Lys Glu1010
1015 1020Ile Phe Thr Arg Pro Thr Ile Lys Glu Leu Ala
Ala Tyr Ile His1025 1030 1035Lys Met
Asp Arg Ser Ala Tyr Ser Met Ile Glu Pro Thr Ala Lys1040
1045 1050Gln Glu Tyr Tyr Pro Val Ser Phe Ala Gln Arg
Arg Met Phe Val1055 1060 1065Val Gln
Gln Ile Arg Asp Thr Asn Thr Thr Ser Tyr Asn Met Pro1070
1075 1080Ile Leu Leu Glu Ile Glu Gly Ala Leu Asp Arg
Glu Asn Val Arg1085 1090 1095Gln Thr
Leu Lys Lys Leu Ile Glu Arg His Glu Ser Met Arg Thr1100
1105 1110Ser Phe His Met Ile Asp Glu Thr Leu Leu Gln
Lys Val His Asp1115 1120 1125Asp Val
Thr Trp Glu Met Glu Glu Met Glu Ala Ser Glu Glu Glu1130
1135 1140Val Tyr Ala Leu Thr Lys Ser Phe Ile Arg Pro
Phe Asp Leu Gly1145 1150 1155Gln Ala
Pro Leu Phe Arg Ala Gly Leu Ile Arg Val Asn Ser Glu1160
1165 1170Arg His Leu Leu Leu Leu Asp Thr His His Ile
Ile Ser Asp Gly1175 1180 1185Val Ser
Thr Asn Ile Leu Phe Gln Asp Phe Thr Gln Leu Tyr Arg1190
1195 1200Gly Arg Glu Leu Pro Ala Leu Arg Ile Gln Tyr
Lys Asp Phe Ala1205 1210 1215Val Trp
Gln Gln Gly Glu Ala Gln Leu Ala Arg Leu Gln Glu Gln1220
1225 1230Glu Glu Tyr Trp Leu Lys Gln Phe Ser Glu Ser
Val Pro Val Leu1235 1240 1245Glu Leu
Pro Thr Asp Phe Pro Arg Pro Ala Met Gln Gln Phe Asp1250
1255 1260Gly Asp Val Leu Asp Phe Ala Leu Asn Gln Gln
Val Trp Gln Glu1265 1270 1275Leu Gln
Gln Leu Ile Val Lys Glu Gly Cys Thr Ala Tyr Met Ile1280
1285 1290Leu Leu Ala Ala Tyr His Val Leu Leu Ser Lys
Tyr Ser Ser Gln1295 1300 1305Asn Asp
Ile Val Ile Gly Ser Pro Ile Ala Gly Arg Thr Asn Ala1310
1315 1320Asp Leu Gln Ser Ile Val Gly Met Phe Val Asn
Thr Leu Ala Ile1325 1330 1335Arg Thr
Lys Ser Glu Gly Thr Gln Thr Phe Arg Glu Phe Leu Ser1340
1345 1350Thr Ile Lys Gln Leu Val Leu Gln Ala Gln Ser
Asn Ala Glu Tyr1355 1360 1365Pro Phe
Glu Glu Leu Val Asp Lys Val Asn Pro Ser Arg Asp Leu1370
1375 1380Ser Arg Gln Pro Leu Phe Asp Thr Ile Phe Val
Met Gln Asn Met1385 1390 1395Asp Ile
Thr Glu Val Ala Ile Gln Gly Leu Ser Ile Val Thr Lys1400
1405 1410Asp Met Glu Trp Lys His Ser Lys Phe Asp Leu
Thr Trp Ala Ala1415 1420 1425Val Glu
Lys Glu Ser Leu His Phe Ser Val Glu Tyr Ser Thr Arg1430
1435 1440Leu Phe Lys Lys Glu Thr Ile Glu Arg Met Ala
Lys His Phe Ala1445 1450 1455His Leu
Leu Asn Gln Val Ala Glu Asn Pro Asp Leu Ser Leu Ser1460
1465 1470Asp Met Glu Leu Ala Thr Asp Glu Glu Val Tyr
Gln Leu Leu Glu1475 1480 1485Glu Phe
Asn Asn Thr Glu Ala Asp Tyr Pro Ser Asp Lys Thr Ile1490
1495 1500His Gln Gln Phe Glu Gln Lys Val Glu Glu Asn
Pro Asp Gln Ile1505 1510 1515Ala Leu
Leu Phe Lys Asp Lys Glu Ile Thr Tyr Gly Gln Leu Asn1520
1525 1530Ala Lys Ala Asn Gln Phe Ala Arg Val Leu Arg
Lys His Gly Val1535 1540 1545Gln Pro
Asp Gln Val Val Gly Leu Ile Thr Asp Arg Ser Ile Glu1550
1555 1560Met Met Ile Gly Ile Leu Ala Ile Leu Lys Ala
Gly Gly Ala Tyr1565 1570 1575Leu Pro
Ile Asp Pro Ser Tyr Pro Leu Glu Arg Ile Thr Tyr Met1580
1585 1590Leu Glu Asp Ser Gln Ala Gln Leu Leu Ile Val
Gln Glu Ala Ala1595 1600 1605Met Ile
Pro Glu Gly Tyr Gln Gly Lys Val Leu Leu Leu Ala Glu1610
1615 1620Glu Cys Trp Met Gln Glu Glu Ala Ser Asn Leu
Glu Leu Ile Asn1625 1630 1635Asp Ala
Gln Asp Leu Ala Tyr Val Met Tyr Thr Ser Gly Ser Thr1640
1645 1650Gly Lys Pro Lys Gly Asn Leu Thr Thr His Gln
Asn Ile Leu Arg1655 1660 1665Thr Ile
Ile Asn Asn Gly Phe Ile Glu Ile Val Pro Ala Asp Arg1670
1675 1680Leu Leu Gln Leu Ser Asn Tyr Ala Phe Asp Gly
Ser Thr Phe Asp1685 1690 1695Ile Tyr
Ser Ala Leu Leu Asn Gly Ala Thr Leu Val Leu Val Pro1700
1705 1710Lys Glu Val Met Leu Asn Pro Met Glu Leu Ala
Arg Ile Val Arg1715 1720 1725Glu Gln
Asp Ile Thr Val Ser Phe Met Thr Thr Ser Leu Phe His1730
1735 1740Thr Leu Val Glu Leu Asp Val Thr Ser Met Lys
Ser Ile Arg Lys1745 1750 1755Val Val
Phe Gly Gly Glu Lys Ala Ser Tyr Lys His Val Glu Lys1760
1765 1770Ala Leu Asp Tyr Leu Gly Glu Gly Arg Leu Val
Asn Gly Tyr Gly1775 1780 1785Pro Thr
Glu Thr Thr Val Phe Ala Thr Thr Tyr Thr Val Asp Ser1790
1795 1800Ser Ile Lys Glu Thr Gly Ile Val Pro Ile Gly
Arg Pro Leu Asn1805 1810 1815Asn Thr
Ser Val Tyr Ile Leu Asn Glu Asn Asn Gln Pro Gln Pro1820
1825 1830Ile Gly Val Pro Gly Glu Leu Cys Val Gly Gly
Ala Gly Ile Ala1835 1840 1845Arg Gly
Tyr Leu Asn Arg Pro Glu Leu Thr Ala Glu Arg Phe Val1850
1855 1860Asp Asn Pro Phe Leu Val Gly Asp Arg Met Tyr
Arg Thr Gly Asp1865 1870 1875Met Ala
Arg Phe Leu Pro Asp Gly Asn Ile Glu Tyr Ile Gly Arg1880
1885 1890Met Asp Glu Gln Val Lys Ile Arg Gly His Arg
Ile Glu Leu Gly1895 1900 1905Glu Ile
Glu Lys Ser Leu Leu Glu Tyr Pro Ala Ile Ser Glu Ala1910
1915 1920Val Leu Val Ala Lys Arg Asp Glu Gln Gly His
Ser Tyr Leu Cys1925 1930 1935Ala Tyr
Val Val Ser Thr Asp Gln Trp Thr Val Ala Lys Val Arg1940
1945 1950Gln His Ile Leu Glu Ala Leu Pro Glu Tyr Met
Val Pro Ser Tyr1955 1960 1965Phe Val
Glu Leu Glu Lys Leu Pro Leu Thr Ser Asn Gly Lys Val1970
1975 1980Asp Lys Arg Ala Leu Pro Glu Pro Asp Arg Val
Ile Thr Asn Glu1985 1990 1995Tyr Val
Ala Ala Val Asn Glu Thr Glu Glu Lys Leu Val Gln Phe2000
2005 2010Phe Gln Glu Ile Leu Ala Val Asp Arg Val Gly
Thr Gln Asp Thr2015 2020 2025Phe Phe
Glu Leu Gly Gly His Ser Leu Lys Ala Met Met Leu Val2030
2035 2040Ser Arg Ile His Lys Glu Leu Glu Ile Glu Val
Pro Leu Lys Glu2045 2050 2055Val Phe
Ala Arg Gln Thr Val Lys Glu Leu Ala Ala Tyr Ile Arg2060
2065 2070Gln Ala Glu Gln Ser Asp Tyr Ser Glu Ile Gln
Pro Ala Met Glu2075 2080 2085Gln Glu
Tyr Tyr Pro Val Ser Asn Ala Gln Arg Arg Met Tyr Val2090
2095 2100Val Gln Gln Met Arg Asp Val Glu Thr Thr Gly
Tyr Asn Met Pro2105 2110 2115Phe Tyr
Leu Glu Met Glu Gly Ala Leu Glu Val Glu Lys Leu Ser2120
2125 2130Leu Ala Leu Lys Gln Leu Ile Glu Arg His Glu
Ser Leu Arg Thr2135 2140 2145Ser Phe
His Met Val Glu Asp Glu Leu Met Gln Lys Val His Ala2150
2155 2160Glu Val Ala Trp Glu Met Glu Met Ile His Ala
Val Glu Glu Glu2165 2170 2175Val Gln
Gln Leu Thr Asp Ser Phe Met Arg Pro Phe Asp Leu Ala2180
2185 2190Lys Ala Pro Leu Phe Arg Ala Arg Leu Ile Gln
Ile Asn Pro Lys2195 2200 2205Arg His
Leu Leu Met Leu Asp Met His His Ile Ile Ser Asp Gly2210
2215 2220Val Ser Met Asn Val Leu Phe Gln Asp Ile Thr
Gln Leu Tyr Gln2225 2230 2235Gly Ile
Glu Leu Ser Pro Leu Lys Ile Gln Tyr Lys Asp Phe Ala2240
2245 2250Val Trp Gln Gln Gly Ile Ala Gln Val Val Arg
Phe Gln Glu Gln2255 2260 2265Glu Arg
Tyr Trp Leu Asn Gln Phe Ser Gly Asp Leu Pro Ile Leu2270
2275 2280Glu Met Val Thr Asp Tyr Pro Arg Pro Ala Ile
Gln Gln Phe Asp2285 2290 2295Gly Asp
Ser Trp Ser Phe Glu Ile Asp Ala Lys Val Leu Asp Ser2300
2305 2310Ile Lys Gln Leu Ser Ala Lys Gln Gly Thr Thr
Leu Tyr Met Thr2315 2320 2325Leu Leu
Ala Ile Tyr Gln Ile Leu Leu Ala Lys Tyr Thr Arg Gln2330
2335 2340Asp Asp Ile Ile Val Gly Thr Pro Ile Ala Gly
Arg Pro His Ala2345 2350 2355Asp Thr
Glu Ser Ile Val Gly Met Phe Val Asn Thr Leu Ala Leu2360
2365 2370Arg Gly Gln Pro Lys Glu Glu Gln Ser Phe Ile
Ser Tyr Leu Ser2375 2380 2385Glu Val
Lys Glu Asn Val Leu Gln Ala Tyr Ala Asn Ala Asp Tyr2390
2395 2400Pro Phe Glu Glu Leu Val Glu Lys Leu His Leu
Gln Arg Asp Met2405 2410 2415Ser Arg
His Pro Leu Phe Asp Thr Met Phe Val Leu Gln Asn Met2420
2425 2430Asp Met Ser Asp Ile Asn Ile Ser Gly Leu Lys
Leu His Ser Arg2435 2440 2445Asp Leu
Asn Trp Lys Asn Ala Lys Phe Asp Met Thr Trp Met Ile2450
2455 2460Ala Glu Gln Asn Asn Leu Leu Ile Ser Val Glu
Tyr Ser Thr Asn2465 2470 2475Leu Phe
Lys His Glu Thr Ile Gln Arg Leu Glu Lys His Phe Thr2480
2485 2490Tyr Leu Val Glu Gln Val Ala Lys His Pro Asp
Cys Leu Leu Arg2495 2500 2505Asp Leu
Glu Leu Thr Thr Asp Glu Glu Lys Gln Gln Ile Leu Thr2510
2515 2520Val Phe Asn Asp Thr Ala Thr Asp Asp Leu Gln
Asp Leu Ser Ile2525 2530 2535Cys His
Leu Phe Glu Gln Gln Val Gln Arg Phe Ser Asp Arg Pro2540
2545 2550Ala Leu Val Phe Lys Glu Lys Gln Leu Thr Tyr
Ser Glu Phe His2555 2560 2565Ala Lys
Val Asn Gln Leu Ala Arg Val Leu Arg Lys Lys Gly Val2570
2575 2580Gln Pro Asp Gln Ala Val Gly Leu Ile Thr Asp
Arg Ser Ile Glu2585 2590 2595Met Met
Ile Gly Ile Phe Ala Ile Leu Lys Ala Gly Gly Ala Tyr2600
2605 2610Met Pro Ile Asp Pro Ser Tyr Pro Ile Asp Arg
Ile Glu His Met2615 2620 2625Leu Glu
Asp Ser Arg Thr Lys Leu Leu Phe Val Gln Lys Thr Glu2630
2635 2640Met Ile Pro Ala Ser Tyr Gln Gly Glu Val Leu
Leu Leu Ala Glu2645 2650 2655Glu Cys
Trp Met His Glu Asp Ser Ser Asn Leu Glu Leu Ile Asn2660
2665 2670Lys Thr Gln Asp Leu Ala Tyr Val Met Tyr Thr
Ser Gly Ser Thr2675 2680 2685Gly Lys
Pro Lys Gly Asn Leu Thr Thr His Gln Asn Ile Leu Thr2690
2695 2700Thr Ile Ile Asn Asn Gly Tyr Ile Glu Ile Ala
Pro Thr Asp Arg2705 2710 2715Leu Leu
Gln Leu Ser Asn Tyr Ala Phe Asp Gly Ser Thr Phe Asp2720
2725 2730Ile Tyr Ser Ala Leu Leu Asn Gly Ala Thr Leu
Val Leu Val Pro2735 2740 2745Lys Glu
Val Met Leu Asn Pro Met Glu Leu Ala Lys Ile Val Arg2750
2755 2760Glu Gln Asp Ile Thr Val Ser Phe Met Thr Thr
Ser Leu Phe His2765 2770 2775Thr Leu
Val Glu Leu Asp Val Thr Ser Met Lys Ser Met Arg Lys2780
2785 2790Val Val Phe Gly Gly Glu Lys Ala Ser Tyr Lys
His Val Glu Lys2795 2800 2805Ala Leu
Asp Tyr Leu Gly Glu Gly Arg Leu Val Asn Gly Tyr Gly2810
2815 2820Pro Thr Glu Thr Thr Val Phe Ala Thr Thr Tyr
Thr Val Asp Ser2825 2830 2835Ser Ile
Lys Glu Thr Gly Ile Val Pro Ile Gly Arg Pro Leu Asn2840
2845 2850Asn Thr Ser Val Tyr Val Leu Asn Glu Asn Asn
Gln Leu Gln Pro2855 2860 2865Ile Gly
Val Pro Gly Glu Leu Cys Val Gly Gly Ala Gly Ile Ala2870
2875 2880Arg Gly Tyr Leu Asn Arg Pro Glu Leu Thr Ala
Glu Arg Phe Val2885 2890 2895Glu Asn
Pro Phe Val Ser Gly Asp Arg Met Tyr Arg Thr Gly Asp2900
2905 2910Leu Ala Arg Trp Leu Pro Asp Gly Ser Met Glu
Tyr Leu Gly Arg2915 2920 2925Met Asp
Glu Gln Val Lys Val Arg Gly Tyr Arg Ile Glu Leu Gly2930
2935 2940Glu Ile Glu Thr Arg Leu Leu Glu His Pro Ser
Ile Ser Ala Ala2945 2950 2955Val Leu
Leu Ala Lys Gln Asp Glu Gln Gly His Ser Tyr Leu Cys2960
2965 2970Ala Tyr Ile Val Ala Asn Gly Val Trp Thr Val
Ala Glu Leu Arg2975 2980 2985Lys His
Leu Ser Glu Ala Leu Pro Glu Tyr Met Val Pro Thr Tyr2990
2995 3000Phe Val Glu Leu Glu Gln Ile Pro Phe Thr Ser
Asn Gly Lys Val3005 3010 3015Asn Lys
Arg Ala Leu Pro Glu Pro Glu Gly Gln Met Thr Ser Val3020
3025 3030Tyr Val Ala Pro Glu Thr Glu Thr Glu Ala Lys
Val Ala Ala Leu3035 3040 3045Phe Gln
Glu Ile Leu Gly Val Glu Arg Val Gly Thr Gln Asp Met3050
3055 3060Phe Phe Glu Leu Gly Gly His Ser Leu Lys Ala
Met Met Leu Val3065 3070 3075Leu Arg
Met Asn Lys Glu Leu Gly Ile Glu Val Pro Leu Lys Glu3080
3085 3090Val Phe Ala His Pro Thr Val Lys Glu Leu Ala
Ala Thr Ile Asp3095 3100 3105Leu Leu
Asp Arg Ser Gly His Ser Glu Ile Glu Pro Ala Pro Arg3110
3115 3120Gln Glu Phe Tyr Pro Val Ser Ser Ala Gln Arg
Arg Met Tyr Val3125 3130 3135Val Gln
His Leu Gly Asn Val Gln Thr Thr Ser Tyr Asn Met Pro3140
3145 3150Leu Phe Leu Glu Val Glu Gly Ala Leu Glu Ile
Asp Lys Leu His3155 3160 3165Leu Ala
Leu Glu Lys Leu Val Glu Arg His Glu Ser Leu Arg Thr3170
3175 3180Ser Phe His Met Val Asp Glu Glu Leu Met Gln
Gln Val His Glu3185 3190 3195Glu Val
Ala Trp Asp Leu Glu Ile Met Asp Gly Thr Glu Gly Asp3200
3205 3210Leu Ala Ser Ile Thr Ala Gly Phe Ile Arg Pro
Phe Asp Leu Ser3215 3220 3225Gln Ala
Pro Leu Phe Arg Ala Gly Ile Val Arg Ile Ser Pro Glu3230
3235 3240Arg Phe Leu Phe Met Leu Asp Met His His Ile
Ile Ser Asp Gly3245 3250 3255Val Ser
Thr Asn Val Leu Phe Lys Asp Ile Thr Gln Leu Tyr Gln3260
3265 3270Gly Lys Asp Leu Pro Pro Leu Pro Ile Gln Tyr
Lys Asp Tyr Ala3275 3280 3285Val Trp
Gln Gln Ala Asp Ala Gln Val Thr Arg Leu Gln Asp Gln3290
3295 3300Glu Ser Tyr Trp Leu His Gln Phe Ala Gly Glu
Ala Ser Val Leu3305 3310 3315Glu Met
Pro Thr Asp Phe Pro Arg Pro Ala Val Gln Gln Phe Glu3320
3325 3330Gly Asp Val Trp Thr Phe Glu Ile Asp Ala Asp
Ile Leu Ser Gln3335 3340 3345Leu Lys
Lys Leu Ser Val Ser Gln Gly Ser Thr Leu Tyr Met Thr3350
3355 3360Leu Leu Ala Val Tyr Gln Val Leu Leu Ala Lys
Tyr Thr Gly Gln3365 3370 3375Asp Asp
Ile Ile Val Gly Ser Pro Ile Ala Gly Arg Pro His Ala3380
3385 3390Asp Val Glu Ser Ile Val Gly Met Phe Val Asn
Thr Leu Ala Leu3395 3400 3405Arg Gly
Gln Pro Val Gly Glu Gln Thr Phe Ile Thr Tyr Leu Ala3410
3415 3420Gln Val Lys Glu Gln Val Leu Gln Ala Tyr Ala
Asn Ala Glu Tyr3425 3430 3435Pro Phe
Glu Lys Leu Val Glu Lys Leu Asp Leu Gln Arg Asp Met3440
3445 3450Ser Arg His Pro Leu Phe Asp Thr Met Phe Thr
Leu Gln Asn Met3455 3460 3465Glu Met
Thr Asp Ile Asp Leu Ala Gly Leu Thr Phe Lys Pro Phe3470
3475 3480Asp Phe Glu Trp Lys Asn Ala Lys Phe Asp Met
Asp Trp Thr Met3485 3490 3495Leu Glu
Glu Glu Thr Leu Lys Val Ala Ile Glu Tyr Ser Thr Ser3500
3505 3510Leu Tyr Thr Lys Glu Thr Ile Ser Arg Met Ala
Gln His Phe Thr3515 3520 3525Tyr Val
Leu Gln Gln Ile Ile Glu His Pro Ala Ile Arg Leu Ala3530
3535 3540Glu Ile Lys Ile Ala Thr Leu Pro Glu Ile Glu
Gln Ile Leu Thr3545 3550 3555Gln Phe
Asn Asp Thr Arg Ala Asn Tyr Pro Asp Asn Gln Thr Ile3560
3565 3570His Ser Leu Phe Glu Gln Gln Val Glu Arg Thr
Pro Glu Gln Ile3575 3580 3585Ala Val
Val Tyr Gln Asp Gln Ser Ile Thr Tyr Arg Glu Leu Asn3590
3595 3600Glu Arg Ala Asn Arg Leu Ala Arg Cys Leu Ile
Asp Lys Gly Ile3605 3610 3615Gln Arg
Asn Gln Phe Val Ala Ile Met Ala Asp Arg Ser Ile Glu3620
3625 3630Thr Val Ile Gly Met Met Gly Ile Leu Lys Ala
Gly Gly Ala Tyr3635 3640 3645Val Pro
Ile Asp Pro Asp Tyr Pro Leu Asp Arg Lys Leu Tyr Ile3650
3655 3660Leu Glu Asp Ser His Ala Ser Leu Leu Leu Phe
Gln Gln Lys His3665 3670 3675Glu Val
Pro Ser Glu Phe Thr Gly Asp Arg Ile Leu Ile Glu Gln3680
3685 3690Met Gln Trp Tyr Gln Ala Ala Asp Thr Asn Val
Gly Ile Val Asn3695 3700 3705Thr Ala
Gln Asp Leu Ala Tyr Met Ile Tyr Thr Ser Gly Ser Thr3710
3715 3720Gly Gln Pro Lys Gly Val Met Ile Asp His Gln
Ala Val Cys Asn3725 3730 3735Leu Cys
Leu Met Ala Gln Thr Tyr Gly Ile Phe Ala Asn Ser Arg3740
3745 3750Val Leu Gln Phe Ala Ser Phe Ser Phe Asp Ala
Ser Val Gly Glu3755 3760 3765Val Phe
His Thr Leu Thr Asn Gly Ala Thr Leu Tyr Leu Met Asp3770
3775 3780Arg Asn Leu Leu Met Ala Gly Val Glu Phe Val
Glu Trp Leu Arg3785 3790 3795Val Asn
Glu Ile Thr Ser Ile Pro Phe Ile Ser Pro Ser Ala Leu3800
3805 3810Arg Ala Leu Pro Tyr Glu Asp Leu Pro Ala Leu
Lys Tyr Ile Ser3815 3820 3825Thr Gly
Gly Glu Ala Leu Pro Val Asp Leu Val Arg Leu Trp Gly3830
3835 3840Thr Glu Arg Ile Phe Leu Asn Ala Tyr Gly Pro
Thr Glu Thr Thr3845 3850 3855Val Asp
Ala Thr Ile Gly Leu Cys Thr Pro Glu Asp Lys Pro His3860
3865 3870Ile Gly Lys Pro Val Leu Asn Lys Lys Ala Tyr
Ile Ile Asn Pro3875 3880 3885Asn Tyr
Gln Leu Gln Pro Ile Gly Val Pro Gly Glu Leu Cys Ile3890
3895 3900Gly Gly Val Gly Ile Ala Pro Gly Tyr Trp Asn
Arg Pro Glu Leu3905 3910 3915Thr Arg
Glu Lys Phe Val Asp Asn Pro Phe Ala Gln Gly Glu Arg3920
3925 3930Met Tyr Lys Thr Gly Asp Leu Val Arg Trp Leu
Pro Asp Gly Asn3935 3940 3945Ile Glu
Phe Leu Gly Arg Ile Asp Asp Gln Val Lys Ile Arg Gly3950
3955 3960His Arg Ile Glu Leu Gly Glu Ile Glu Thr Arg
Leu Leu Glu His3965 3970 3975Glu Gln
Val Ile Glu Ala Val Val Leu Ala Arg Glu Asp Glu Gln3980
3985 3990Gly Gln Ala Tyr Leu Cys Ala Tyr Leu Val Ala
Ala Asp Glu Trp3995 4000 4005Thr Val
Ala Glu Leu Arg Lys His Leu Gly Lys Thr Leu Pro Asp4010
4015 4020Tyr Met Ile Pro Ala Tyr Phe Ile Glu Leu Glu
Glu Phe Pro Leu4025 4030 4035Thr Pro
Ser Gly Lys Val Asn Lys Lys Ala Leu Pro Glu Pro Asp4040
4045 4050Gly Gln Ile Gln Thr Gly Val Glu Tyr Val Glu
Ala Thr Thr Glu4055 4060 4065Ser Gln
Lys Ile Leu Val Glu Leu Trp Gln Glu Val Leu Arg Val4070
4075 4080Glu Arg Ile Gly Ile Tyr Asp Asn Phe Phe Glu
Leu Gly Gly Asp4085 4090 4095Ser Ile
Lys Ala Ile Gln Ile Thr Ala Arg Leu Arg Arg His His4100
4105 4110Arg Lys Leu Glu Ile Ser His Leu Phe Lys His
Pro Thr Ile Ala4115 4120 4125Glu Leu
Ala Pro Trp Met Gln Thr Ser Gln Ala Leu Leu Glu Gln4130
4135 4140Gly Thr Val Glu Gly Glu Val Met Leu Thr Pro
Ile Gln Lys Ala4145 4150 4155Phe Phe
Glu Glu Asn Gln Glu Gln Pro Gln His Phe Asn Gln Asp4160
4165 4170Ser Leu Leu Tyr Ser Ser Asn Gly Trp Asn Gln
Asp Ala Ile Glu4175 4180 4185Gln Val
Phe Glu Lys Ile Thr Glu His His Asp Ala Leu Arg Met4190
4195 4200Val Tyr Pro His Thr Glu Gly Lys Val Thr Gln
Ile Asn Arg Gly4205 4210 4215Leu Glu
Asp Lys Ala Phe Thr Leu Gln Val Phe Asp Phe Thr Gln4220
4225 4230Glu Pro Thr Asp Thr Gln Ala Thr Lys Ile Glu
Gln Ile Ala Thr4235 4240 4245Gln Leu
Gln Ala Ser Phe Asp Leu Lys Lys Gly Pro Leu Val Arg4250
4255 4260Leu Gly Leu Phe Thr Thr Lys Ala Gly Asp Tyr
Leu Leu Ile Val4265 4270 4275Ile His
His Leu Val Ile Asp Gly Val Ser Trp Arg Ile Leu Leu4280
4285 4290Glu Asp Phe His Asn Ala Tyr Gln Gln Val Ile
Gln Gly Gln Ala4295 4300 4305Ile Val
Leu Pro Glu Lys Thr Thr Ser Phe Lys Thr Trp Ser Glu4310
4315 4320Arg Leu Asn Glu Tyr Ala Asn Ser His Ala Leu
Leu His Glu Ile4325 4330 4335Pro Tyr
Trp Lys Gln Met Glu Glu Ile Ser Ile Ala Pro Leu Pro4340
4345 4350Lys Lys Gly Asn Asn Asp Gly Arg Tyr Tyr Val
Lys Asp Ser Glu4355 4360 4365Tyr Ala
Thr Met Ser Leu Thr Glu Glu Glu Thr Gln Asn Leu Leu4370
4375 4380Thr Arg Val His Arg Ala Tyr Arg Thr Glu Ile
Asn Asp Leu Leu4385 4390 4395Leu Ala
Ala Leu Gly Leu Ala Ser Lys Glu Trp Thr Lys Glu Asn4400
4405 4410Arg Val Ala Ile His Leu Glu Gly His Gly Arg
Glu Glu Ile Gly4415 4420 4425Glu Gly
Val Asp Val Asn Arg Thr Val Gly Trp Phe Thr Ser Leu4430
4435 4440Phe Pro Phe Val Ile Asp Leu Glu Asn Asp Glu
Leu Pro Leu Ile4445 4450 4455Ile Lys
Ser Val Lys Glu Thr Leu Arg Arg Val Pro Asn Lys Gly4460
4465 4470Met Gly Tyr Gly Ile Leu Lys His Leu Thr Ser
Asp Ala Asn Lys4475 4480 4485Gln Glu
Ile Thr Phe Ser Leu Arg Pro Glu Ile Ser Phe Asn Tyr4490
4495 4500Leu Gly Val Phe Asp Gln Gln Glu Glu Glu Ser
Glu Ser Ala Gly4505 4510 4515Ile Pro
Thr Gly Gln Pro Ile Ser Pro Gln Tyr Tyr Asp Thr His4520
4525 4530Leu Leu Glu Phe Asn Gly Ala Val Ser Asn Asn
Gln Leu His Val4535 4540 4545Asn Cys
Arg Phe Ala Pro Ala Ala Val Asp Arg Ala Ile Val Glu4550
4555 4560Ile Leu Met Glu Arg Phe Lys His His Leu Leu
Leu Ile Ser Lys4565 4570 4575His Cys
Leu Glu Lys Asp Thr Val Glu Phe Thr Pro Thr Asp Phe4580
4585 4590Thr Glu Lys Glu Leu Ser Gln Glu Gln Leu Asp
Asp Leu Leu Asp4595 4600 4605Asp Leu
Phe Glu Asp Ile Asp Asp Leu4610
4615252541PRTBrevibacillus texasporus 25Met Gln Lys Lys Asp Lys Ile Lys
Asp Ile Tyr Ser Leu Ser Pro Leu1 5 10
15Gln Lys Gly Met Leu Phe His Ser Met Lys Asp Pro Gln Ser
Asp Ala20 25 30Tyr Phe Glu Gln Val Thr
Leu Leu Leu Glu Gly Val Val Asn Pro Thr35 40
45Tyr Leu Ala Glu Ser Ile Gln Gly Leu Val Gln Lys Tyr Asp Met Phe50
55 60Arg Ser Val Phe Arg Tyr Lys Lys Val
Asp Pro Val Gln Val Val Leu65 70 75
80Ser Glu Arg Lys Ile Asp Leu Gln Ile Glu Asp Leu Thr Gln
Ile Asn85 90 95Glu Glu Glu Gln Arg Lys
Phe Ile Glu Glu Tyr Arg Lys Lys Asp Arg100 105
110Glu Arg Gly Phe Asp Leu Ser Arg Asp Ile Leu Leu Arg Phe Thr
Leu115 120 125Phe Gln Thr Ala Ala Asn Arg
Tyr Glu Leu Leu Trp Ser His His His130 135
140Ile Leu Met Asp Gly Trp Cys Thr Gly Ile Val Phe Gln Asp Leu Phe145
150 155 160Gln Met Tyr Gln
Arg Arg Leu Ser Gly Gln Ala Leu Leu Pro Glu Val165 170
175Ala Pro Gln Tyr Ser Glu Tyr Ile Arg Trp Leu Lys Lys Gln
Asp Asp180 185 190Gln Gln Ala Leu Ala Phe
Trp Lys Glu Tyr Leu Gln Gly Phe Glu Asn195 200
205Leu Thr Gly Ile Pro Arg Leu Arg Ser Gly Asn His Pro Tyr Lys
Gln210 215 220Glu Glu Phe Ile Phe Ser Leu
Gly Glu Glu Ala Thr Gln Lys Leu Thr225 230
235 240Gln Thr Ala Gln Lys Tyr Gln Val Thr Leu Asn Thr
Val Val Gln Thr245 250 255Ile Trp Gly Ala
Leu Leu Gln Lys Tyr Asn Asn Thr Asn Asp Ala Ala260 265
270Tyr Gly Val Val Val Ser Gly Arg Pro Ala Glu Val Pro Asn
Val Glu275 280 285Gln Met Val Gly Leu Phe
Ser Asn Thr Ile Pro Ile Arg Ile Lys Lys290 295
300Glu Ala Gly Lys Thr Phe Gly Glu Val Leu Lys Asn Val Gln Gln
Thr305 310 315 320Ala Leu
Glu Ala Glu Lys Tyr Gly Tyr Leu Ser Leu Ala Asp Ile Gln325
330 335Ala Ser Ala Ala Tyr Thr His Gln Leu Leu Asp His
Ile Leu Ala Phe340 345 350Glu Asn Phe Pro
Met Asp Gln Glu Thr Phe Asn Gln Glu Asn Val Leu355 360
365Gly Phe Ala Val Lys Asp Ala His Thr Phe Glu Gln Thr His
Tyr Asp370 375 380Leu Thr Val Leu Val Ile
Pro Gly Lys Glu Leu Ile Phe Lys Phe Met385 390
395 400Tyr Asn Glu Ser Val His Ser Lys Glu Tyr Leu
Asn Leu Leu Glu Leu405 410 415Asn Met Lys
Lys Leu Val Ser Leu Val Ile Glu Gln Gln Asp Ile Phe420
425 430Asp Pro Ala Thr Glu Phe Val Ser Asp Leu Glu Lys
Asp Lys Leu Leu435 440 445Thr Ile Phe Asn
Arg Thr Asp Ala Lys Tyr Pro Arg Glu Lys Thr Ile450 455
460His Glu Leu Phe Gln Glu Gln Val Asp Lys Asn Pro Asp Gln
Val Ala465 470 475 480Leu
Val Phe Gly Glu Ala Gln Leu Thr Tyr Arg Glu Leu Asn Glu Lys485
490 495Ala Asn Gln Met Ala Arg Gly Leu Arg Lys Gln
Gly Val Leu Pro Asp500 505 510Gln Val Ile
Gly Leu Leu Thr Asp Arg Ser Leu Glu Met Ile Ile Ala515
520 525Ile Leu Ala Ile Phe Lys Ala Gly Gly Ala Tyr Met
Pro Ile Asp Pro530 535 540Ser Tyr Pro Ser
Glu Arg Ile Gln Tyr Met Leu Ala Asp Ser Arg Thr545 550
555 560His Leu Leu Leu Val Gln Lys Ala Glu
Met Ile Pro Ala Asn Tyr Gln565 570 575Gly
Glu Val Leu Leu Leu Thr Glu Asp Ser Trp Met Asp Glu Asn Thr580
585 590Asp Asn Leu Asp Leu Val Asn Gln Ala Gln Asp
Leu Ala Tyr Val Met595 600 605Tyr Thr Ser
Gly Ser Thr Gly Lys Pro Lys Gly Asn Leu Thr Thr His610
615 620Gln Asn Ile Val Lys Thr Ile Met Asn Asn Gly Tyr
Met Glu Ile Thr625 630 635
640Pro Asn Asp Arg Leu Leu Gln Leu Ser Asn Tyr Ala Phe Asp Gly Ser645
650 655Thr Phe Asp Ile Tyr Ser Ala Leu Leu
Asn Gly Ala Ser Leu Ile Leu660 665 670Val
Pro Thr His Val Leu Met Asn Pro Thr Asp Leu Ala Ser Val Ile675
680 685Gln Asp Gln His Ile Thr Val Ser Phe Met Thr
Thr Ser Leu Phe Asn690 695 700Thr Leu Val
Glu Leu Asp Val Thr Ser Leu Lys His Met Arg Lys Val705
710 715 720Val Phe Gly Gly Glu Lys Ala
Ser Ile Lys His Val Glu Lys Ala Leu725 730
735Asp Tyr Leu Gly Ala Gly Arg Leu Val Asn Gly Tyr Gly Pro Thr Glu740
745 750Thr Thr Val Phe Ala Thr Thr Tyr Thr
Val Asp His Thr Ile Lys Glu755 760 765Thr
Gly Ile Met Pro Ile Gly Arg Pro Leu Asn Asn Thr Lys Val Phe770
775 780Ile Leu Gly Ala Asp Asn Gln Leu Gln Pro Ile
Gly Ala Leu Gly Glu785 790 795
800Leu Cys Val Ser Gly Glu Gly Leu Ala Arg Gly Tyr Leu Asn Leu
Pro805 810 815Glu Leu Thr Ala Asp Arg Phe
Val Glu Asn Pro Phe Met Arg Gly Glu820 825
830Arg Met Tyr Arg Thr Gly Asp Leu Ala Arg Trp Leu Pro Asp Gly Ser835
840 845Ile Glu Tyr Val Gly Arg Ile Asp Glu
Gln Val Lys Ile Arg Gly His850 855 860Arg
Ile Glu Leu Gly Glu Ile Glu Ala Arg Leu Leu Glu His Pro Ala865
870 875 880Ile Ser Glu Thr Val Leu
Leu Ala Lys Gln Asp Glu Gln Gly His Ser885 890
895Phe Leu Cys Ala Tyr Leu Val Thr Asn Gly Ala Trp Ser Val Ala
Glu900 905 910Leu Arg Lys His Ile Lys Glu
Thr Leu Pro Asp Ser Met Val Pro Ser915 920
925Tyr Phe Ile Glu Ile Asp Lys Met Pro Leu Thr Ser Asn Gly Lys Ala930
935 940Asp Lys Arg Ala Leu Pro Glu Pro Asp
Val Gln Gln Val Ser Ser Tyr945 950 955
960Ile Ala Pro Glu Thr Glu Thr Glu Glu Lys Leu Val Gln Leu
Phe Gln965 970 975Glu Ile Leu Ser Val Glu
Gln Val Gly Thr Gln Asp Asn Phe Phe Glu980 985
990Leu Gly Gly His Ser Leu Lys Ala Met Met Leu Val Ser Arg Met
His995 1000 1005Lys Glu Leu Asp Ile Glu
Val Pro Leu Lys Asp Val Phe Ala Arg1010 1015
1020Pro Ser Val Lys Glu Leu Ala Ala Phe Leu Thr Asn Thr Glu
Val1025 1030 1035Ser Asp Tyr Ile Ala Ile
Glu Pro Ala Ala Lys Gln Glu Phe Tyr1040 1045
1050Pro Val Ser Ser Ala Gln Arg Arg Met Tyr Val Val Glu Gln
Ile1055 1060 1065Gly Ser Ser Asn Thr Thr
Ser Tyr Asn Met Pro Phe Leu Leu Glu1070 1075
1080Ile Gly Gly Ala Leu Asp Val Val Gly Leu Gln Lys Ala Leu
Lys1085 1090 1095Lys Leu Val Ile Arg His
Glu Ser Leu Arg Thr Ser Phe His Met1100 1105
1110Val Asp Glu Val Leu Met Gln Lys Ile His Pro Asp Val Glu
Trp1115 1120 1125Asp Leu Met Val Met Glu
Ala Lys Asp Glu Asp Leu Pro Gln Ile1130 1135
1140Ile Asp Gly Phe Ile Gln Pro Phe Asp Leu Ser Asp Ala Ser
Leu1145 1150 1155Phe Arg Ala Gly Leu Val
Arg Met Glu Ala Asp Arg His Leu Leu1160 1165
1170Met Leu Asp Met His His Ile Ile Ser Asp Gly Val Ser Thr
Asn1175 1180 1185Val Leu Phe Gln Asp Leu
Met Gln Ile Tyr Gln Gly Lys Glu Leu1190 1195
1200Pro Ser Leu Arg Ile Gln Tyr Lys Asp Tyr Ala Val Trp Gln
Gln1205 1210 1215Ala Glu Ala Gln Val Asn
Arg Leu Arg Glu Gln Glu Gln Tyr Trp1220 1225
1230Leu Asn Gln Phe Ser Gly Glu Leu Pro Val Leu Glu Met Pro
Thr1235 1240 1245Asp Tyr Thr Arg Pro Ser
Ile Gln Gln Ser Glu Gly Asp Ile Trp1250 1255
1260Ser Phe Glu Ile Ser Ala Glu Ile Ile Asn Lys Val Lys Lys
Leu1265 1270 1275Ser Ser Ser Gln Gly Thr
Thr Leu Tyr Met Thr Leu Leu Ala Ala1280 1285
1290Tyr Gln Val Leu Leu Ser Lys Tyr Thr Gly Gln Glu Asp Val
Ile1295 1300 1305Val Gly Ser Pro Ile Ala
Gly Arg Pro His Ala Asp Val Glu Lys1310 1315
1320Ile Val Gly Met Phe Val Asn Thr Leu Ala Phe Arg Gly Gln
Pro1325 1330 1335Lys Ser Thr Gln Thr Phe
Ser Thr Tyr Leu Ser Glu Val Lys Glu1340 1345
1350Gln Val Leu His Ala Tyr Asp Asn Ala Glu Tyr Pro Phe Glu
Glu1355 1360 1365Leu Leu Glu Lys Leu Asp
Leu Glu Arg Asp Leu Ser Arg His Pro1370 1375
1380Leu Phe Asp Thr Met Phe Ala Leu Gln Asn Met Glu Met Ala
Glu1385 1390 1395Ile Asn Ile Met Asp Leu
Ser Phe Gln Pro Arg Asp Leu Thr Trp1400 1405
1410Lys Asn Ala Lys Phe Asp Leu Thr Trp Met Met Ala Glu Ala
Glu1415 1420 1425Asn Leu Tyr Val Thr Ile
Glu Tyr Ser Thr Ser Leu Phe Lys Pro1430 1435
1440Glu Thr Ile Glu Arg Leu Gly Lys Arg Phe Thr His Leu Leu
Lys1445 1450 1455Gln Ile Gly Asp Ala Pro
Glu Arg Leu Ile Ala Asp Leu Glu Val1460 1465
1470Ala Thr Glu Asp Glu Lys His Gln Ile Leu Ser Val Phe Asn
Leu1475 1480 1485Thr Gln Ser Asp Tyr Pro
Val Asn Lys Thr Val His Gln Leu Phe1490 1495
1500Glu Glu Gln Val Gln Asn Met Pro Asp Gln Lys Ala Ile Val
Phe1505 1510 1515Gly Glu Glu Gln Val Thr
Tyr Lys Glu Leu Asn Ala Lys Ala Asn1520 1525
1530His Leu Ala Thr Leu Leu Lys Gln Lys Gly Ile Thr Asn Glu
Gln1535 1540 1545Leu Val Ala Val Met Ile
Glu Pro Ser Ile Glu Phe Phe Val Gly1550 1555
1560Ile Leu Ala Val Leu Lys Ala Gly Gly Ala Tyr Leu Pro Ile
Asp1565 1570 1575Pro Thr Tyr Pro Thr Glu
Arg Ile Ala Tyr Ile Leu Glu Asp Ser1580 1585
1590Gln Ser Lys Val Leu Leu Val Arg Gly His Glu Gln Val Gln
Thr1595 1600 1605Gln Phe Ala Gly Glu Ile
Leu Glu Ile Asp Ser Lys Lys Leu Ser1610 1615
1620Thr Glu Glu Leu Lys Asp Val Pro Met Asn Asn Lys Val Thr
Asp1625 1630 1635Leu Ala Tyr Val Ile Tyr
Thr Ser Gly Ser Thr Gly Gln Pro Lys1640 1645
1650Gly Val Met Val Glu His Arg Ser Leu Met Asn Leu Ser Ala
Trp1655 1660 1665His Val Gln Tyr Phe Gly
Ile Thr Lys Asp Asp Arg Ser Thr Lys1670 1675
1680Tyr Ala Gly Val Gly Phe Asp Ala Ser Val Trp Glu Val Phe
Pro1685 1690 1695Tyr Leu Ile Ala Gly Ala
Thr Ile Tyr Val Ile Asp Gln Glu Thr1700 1705
1710Arg Tyr Asp Val Glu Lys Leu Asn Gln Tyr Val Thr Asp Gln
Gly1715 1720 1725Ile Thr Ile Ser Phe Leu
Pro Thr Gln Phe Ala Glu Gln Phe Met1730 1735
1740Leu Thr Asp His Thr Asp His Thr Ala Leu Arg Trp Leu Leu
Ile1745 1750 1755Gly Gly Asp Lys Ala Gln
Gln Ala Val Gln Gln Lys Gln Tyr Gln1760 1765
1770Ile Val Asn Asn Tyr Gly Pro Thr Glu Asn Thr Val Val Thr
Thr1775 1780 1785Ser Tyr Ile Val Ser Pro
Glu Asp Lys Lys Ile Pro Ile Gly Arg1790 1795
1800Pro Ile Ala Asn Asn Gln Val Phe Ile Leu Asn Lys Glu Asn
Gln1805 1810 1815Leu Gln Pro Val Gly Ile
Pro Gly Glu Leu Cys Val Ser Gly Asp1820 1825
1830Ser Leu Ala Arg Gly Tyr Leu His Arg Pro Glu Leu Thr Ser
Glu1835 1840 1845Arg Phe Val Ala Asn Pro
Phe Val Pro Gly Glu Arg Met Tyr Lys1850 1855
1860Thr Gly Asp Ile Ala Arg Trp Leu Pro Asp Gly Asn Ile Glu
Tyr1865 1870 1875Leu Gly Arg Leu Asp Asp
Gln Ile Lys Ile Arg Gly Tyr Arg Val1880 1885
1890Glu Leu Gly Glu Ile Glu Ser Ala Ile Leu Glu His Glu Ala
Ile1895 1900 1905His Glu Thr Val Val Leu
Ala Arg Gln Asp Asp Gln Asn Gln Thr1910 1915
1920Tyr Leu Cys Ala Tyr Val Val Pro Lys Lys Ser Phe Asp Val
Ala1925 1930 1935Glu Leu Arg Gln Tyr Leu
Gly Arg Lys Leu Pro His Phe Met Ile1940 1945
1950Pro Ala Phe Phe Thr Glu Met Thr Glu Phe Pro Ile Thr Ser
Asn1955 1960 1965Gly Lys Val Asp Lys Lys
Ala Leu Pro Leu Pro Asp Leu Ser Lys1970 1975
1980Gln Ser Glu Ile Asp Tyr Val Ala Pro Thr Thr Thr Leu Glu
Glu1985 1990 1995Thr Leu Ala Glu Leu Trp
Thr Glu Val Leu Gly Val Ser Gln Val2000 2005
2010Gly Ile His Asp Asn Phe Phe Lys Leu Gly Gly Asp Ser Ile
Lys2015 2020 2025Ala Ile Gln Ile Ala Ala
Arg Leu Asn Thr Lys Gln Leu Lys Leu2030 2035
2040Glu Val Lys Asp Leu Phe Gln Ala Gln Thr Ile Ala Gln Val
Ile2045 2050 2055Pro Tyr Ile Lys Thr Lys
Glu Ser Lys Ala Glu Gln Gly Ile Val2060 2065
2070Gln Gly Lys Val Glu Leu Thr Pro Ile Gln Glu Trp Phe Phe
Gln2075 2080 2085Gln Ser Phe Asp Ile Pro
His His Trp Asn Gln Ser Met Met Phe2090 2095
2100Tyr Arg Lys Glu Gly Trp Asp Gln His Val Val Gln Arg Val
Phe2105 2110 2115Gln Lys Ile Ala Glu His
His Asp Ala Leu Arg Met Ala Tyr Gln2120 2125
2130Gln Glu Asn Gly Lys Thr Ile Gln Ile Asn Arg Gly Val Glu
Gly2135 2140 2145Lys Leu Phe Glu Leu Ser
Ile Phe Asp Phe Lys Gln Gln Ala Asn2150 2155
2160Val Pro Glu Leu Ile Glu Gln Ala Ala Asn Arg Leu Gln Ser
Ala2165 2170 2175Met Asn Leu Gln Asp Gly
Pro Leu Val Gln Leu Gly Leu Phe Gln2180 2185
2190Thr Ser Glu Gly Asp His Leu Leu Ile Ala Ile His His Leu
Val2195 2200 2205Val Asp Ala Val Ser Trp
Arg Ile Ile Thr Glu Asp Phe Met Asn2210 2215
2220Gly Tyr Gln Gln Asp Leu Gln Gly Glu Pro Ile Ala Phe Thr
Ser2225 2230 2235Lys Thr Asp Ser Tyr Gln
Lys Trp Ala Lys Ser Leu Leu Glu Tyr2240 2245
2250Ala Thr Ser Glu Glu Ile Gln Ser Glu Leu Lys Tyr Trp Gln
Ser2255 2260 2265Met Ile Ala Lys Gly Leu
Pro Ala Leu Pro Arg Asp Ser Lys Val2270 2275
2280Gly Ala Pro Tyr Leu Leu Lys Asp Ile Gln Glu Val Ala Ile
Gln2285 2290 2295Leu Thr Lys Glu Gln Thr
Asn Lys Leu Leu Thr Asp Ala His Asn2300 2305
2310Ala Tyr Asn Thr Gln Ile Asn Asp Leu Leu Leu Thr Ala Leu
Ala2315 2320 2325Leu Thr Ile Gln Glu Trp
Ala Gln Thr Asn Ser Ile Ala Ile Thr2330 2335
2340Leu Glu Gly His Gly Arg Glu Asp Ile Gly Val Asp Ile Asp
Ile2345 2350 2355Asn Arg Thr Val Gly Trp
Phe Thr Ser Met Tyr Pro Val Val Phe2360 2365
2370Asp Leu Gln Lys Gln Gly Ile Ala Asn Thr Val Lys Gln Val
Lys2375 2380 2385Glu Glu Leu Arg Gln Ile
Pro Asn Lys Gly Ile Gly Tyr Gly Val2390 2395
2400Val Arg Tyr Leu Ser Asn Gln Gly Ser Thr Glu Leu Asp Leu
Ser2405 2410 2415Ser His Ala Ile Asn Pro
Glu Ile Ser Phe Asn Tyr Leu Gly Gln2420 2425
2430Met Asp Gln Ser Gly Gln Glu Glu Glu Tyr Gln Leu Ser Pro
Leu2435 2440 2445Ser Ser Gly Gln Gln Ile
Ser Gln Met Asn Gln Gly Leu Phe Pro2450 2455
2460Ile Asn Val Ser Gly Ile Val Val Glu Asn Gln Leu Ser Ile
Gln2465 2470 2475Ile Ser Tyr Asp Ser Gln
Ala Tyr His Asp Ser Thr Met Glu Lys2480 2485
2490Leu Ile Gln Arg Tyr Gln Tyr His Leu Leu Glu Ile Ile Asn
His2495 2500 2505Cys Val Gln Gln Thr Glu
Thr Glu Leu Thr Pro Ser Asp Phe Ser2510 2515
2520Thr Lys Glu Leu Ser Met Glu Asp Leu Glu Ser Val Phe Glu
Leu2525 2530 2535Leu Asp
Glu2540262526PRTBrevibacillus texasporus 26Met Leu Ser Lys Ala Asn Ile
Lys Asp Ile Tyr Thr Leu Ser Pro Leu1 5 10
15Gln Lys Gly Met Leu Phe Gln His Leu Lys Glu Glu Ser
Thr Ala Tyr20 25 30Phe Glu Gln Leu His
Phe Thr Ile Lys Gly Gln Leu Tyr Val Asp Ser35 40
45Phe Glu Ala Ser Phe Gln His Leu Ile Asn Lys Tyr Asp Val Leu
Arg50 55 60Thr Val Phe Leu Tyr Lys Asn
Met Thr Gln Pro Met Gln Met Val Leu65 70
75 80Lys Glu Arg Lys Thr Ser Val His Phe Glu Asp Ile
Ser His Leu Asp85 90 95Ser Lys Ala Val
Ser Glu Tyr Val Glu Glu Phe Lys Asn Gln Asp Arg100 105
110Glu Lys Gly Phe Glu Leu Ser Lys Asp Ile Leu Met Arg Phe
Ala Ile115 120 125Leu Lys Ala Gly Ala Glu
Ser Tyr His Leu Ile Trp Ser Phe His His130 135
140Ile Leu Met Asp Gly Trp Cys Met Gly Ile Val Leu Gln Asp Leu
Phe145 150 155 160Arg Met
Tyr Gln Gln His Arg Gln Asn Ile Pro Ile Thr Val Glu Ser165
170 175Val Pro Ala Tyr Ser Glu Tyr Ile Arg Trp Leu Glu
Lys Gln Asn Val180 185 190Thr Lys Ala Arg
Asp Tyr Trp Lys Asn Tyr Leu Glu Gly Tyr Glu Glu195 200
205Leu Thr Gly Ile Ile Arg Leu Asp Thr Lys His Thr Ser His
Asn Asn210 215 220Glu Val Gln Glu Cys Ala
Phe Thr Leu Asp Lys Asp Ile Thr Glu Gly225 230
235 240Leu Thr Gln Leu Ala Arg His Tyr Ser Val Thr
Val Asn Thr Leu Phe245 250 255Gln Thr Ile
Trp Gly Met Leu Leu Gln Lys Tyr Asn Asn Lys Asp Asp260
265 270Val Val Phe Gly Ala Val Val Ser Gly Arg Pro Ser
Glu Ile His Gly275 280 285Val Glu Asn Met
Val Gly Leu Phe Ile Asn Thr Val Pro Ile Arg Ile290 295
300Gln Lys Gln Met Asn Asp Thr Phe Ser His Leu Leu Lys Arg
Val His305 310 315 320Glu
Ser Thr Leu Leu Ser Lys Gln Tyr Glu Phe Val Ser Leu Ala Asp325
330 335Ile Gln Thr Asp Ala Gly Phe Ser Gly Gln Leu
Leu Asp His Ile Leu340 345 350Val Phe Glu
Asn Tyr Pro Ile Ser Glu Gly Ser Phe Glu Glu Glu Glu355
360 365Phe Thr Met Asp Ser Ile Lys Thr Tyr Glu Lys Thr
Ser Tyr Asp Leu370 375 380Asn Val Met Ile
Arg Pro Asn Glu Asp Gln Leu Asp Ile Ala Phe Gln385 390
395 400Phe Asn Asp Asp Val Tyr Ser Ser Glu
Asn Val Lys Arg Leu Phe Gln405 410 415His
Met Lys Gln Leu Ala Leu Ala Val Ile Lys Asn Pro Asp Val Arg420
425 430Leu Glu Glu Ile Ala Met Ile Thr Glu Glu Glu
Arg Tyr Gln Ile Leu435 440 445His Asp Phe
Gln Gly Glu Ile Val Asp Phe Val Thr Glu Lys Thr Leu450
455 460Pro Glu Leu Phe Glu Asp Gln Val Lys Arg Thr Pro
Glu Ala Ile Ala465 470 475
480Leu Arg Phe Glu Asp Gln Gln Leu Thr Tyr Gln Glu Leu Asn Gln Arg485
490 495Val Asn Gln Leu Ala Trp Thr Leu Arg
Met Lys Gly Leu Gln Gln Glu500 505 510Glu
Leu Val Gly Ile Met Val Gln Arg Ser Leu Glu Met Ile Val Gly515
520 525Val Leu Ala Val Ile Lys Ala Gly Gly Ala Tyr
Val Pro Ile Asp Pro530 535 540Glu Tyr Pro
Leu Asp Arg Ile Gln Tyr Met Leu Glu Asp Ser Gly Thr545
550 555 560Asn Trp Leu Leu Thr Thr Lys
Gln Ser Glu Ile Pro Ser Ile Tyr Leu565 570
575Gly His Val Leu Tyr Leu Glu Glu Asp Thr Val Tyr His Glu Arg Ser580
585 590Ser Asp Val Glu Ile Val Asn Gln Ser
Ser Asp Leu Ala Tyr Ile Ile595 600 605Tyr
Thr Ser Gly Ser Thr Gly Gln Pro Lys Gly Val Met Ile Asp His610
615 620Arg Ala Val His Asn Leu His Leu Ser Ala Gly
Ile Tyr Gly Ile Ala625 630 635
640Gln Gly Ser Gln Val Leu Gln Phe Ala Ser Leu Ser Phe Asp Ala
Ser645 650 655Val Gly Asp Ile Phe His Ser
Leu Leu Thr Gly Ala Thr Leu His Leu660 665
670Val Lys Lys Glu Gln Leu Leu Ser Gly His Ala Phe Met Glu Trp Leu675
680 685Asp Glu Ala Gly Ile Thr Thr Ile Pro
Phe Ile Pro Pro Ser Val Leu690 695 700Lys
Glu Leu Pro Tyr Ala Lys Leu Pro Lys Leu Lys Thr Ile Ser Thr705
710 715 720Gly Gly Glu Glu Leu Pro
Ala Asp Leu Val Arg Ile Trp Gly Ala Asn725 730
735Arg Thr Phe Leu Asn Ala Tyr Gly Pro Thr Glu Thr Thr Val Asp
Ala740 745 750Ser Ile Gly Asn Cys Val Glu
Met Thr Asp Lys Pro Ser Ile Gly Thr755 760
765Pro Thr Val Asn Lys Arg Ala Tyr Ile Leu Asp Gln Tyr Gly His Ile770
775 780Gln Pro Ile Gly Val Pro Gly Glu Leu
Cys Val Gly Gly Glu Gly Val785 790 795
800Ala Arg Gly Tyr Leu His Arg Pro Glu Leu Thr Asp Glu Lys
Phe Val805 810 815Asn Asp Pro Tyr Val Pro
Asn Gly Arg Met Tyr Lys Thr Gly Asp Leu820 825
830Ala Arg Trp Leu Pro Asp Gly Thr Ile Glu Phe Leu Gly Arg Met
Asp835 840 845Gly Gln Val Lys Ile Arg Gly
Phe Arg Ile Glu Leu Gly Glu Ile Glu850 855
860Ala Arg Leu Asn Gln Ala Pro Ser Val Lys Gln Ala Val Val Leu Ala865
870 875 880Arg Ser Gly Glu
Gln Lys Gln Val Tyr Leu Cys Ala Tyr Leu Val Thr885 890
895Asp Asn Asp Leu Lys Val Ser Ala Leu Arg Lys Glu Leu Ser
Gln Thr900 905 910Leu Pro Asp Tyr Met Ile
Pro Ser Phe Phe Ile Lys Val Glu Lys Ile915 920
925Pro Val Thr Val Asn Gly Lys Ile Asp Lys Lys Ala Leu Pro Glu
Pro930 935 940Glu Lys Glu Val Glu Leu Gln
Thr Glu Tyr Val Ala Pro Thr Asn Pro945 950
955 960Thr Glu Glu Ile Leu Val Gln Ile Trp Gln Lys Val
Leu Gly Met Glu965 970 975Arg Val Gly Ile
Glu Asp Asn Phe Phe Glu Leu Gly Gly His Ser Ile980 985
990Lys Ala Met Met Leu Ala Ser Asn Ile Tyr Lys Glu Leu Lys
Ile Asp995 1000 1005Leu Pro Leu Arg Glu
Ile Phe Lys His Thr Thr Val Lys Glu Met1010 1015
1020Ala Arg Phe Ile Asp Gly Arg Asp Glu Glu Glu Tyr Val Gly
Ile1025 1030 1035Gln Pro Ala Ala Lys Gln
Glu Tyr Tyr Pro Val Ser Ser Ala Gln1040 1045
1050Lys Arg Met Tyr Val Ile Gln Ser Leu Glu Asp Lys Ala Gln
Gly1055 1060 1065Thr Ser Tyr Asn Met Pro
Ser Phe Tyr Lys Met Lys Gly Ser Val1070 1075
1080Asp Ala Glu Lys Leu Glu Lys Val Phe Gln Thr Leu Leu Asp
Arg1085 1090 1095His Glu Ser Leu Arg Thr
Ser Phe His Met Ile Glu Glu Gln Leu1100 1105
1110Val Gln Lys Val His Glu Gln Val Ser Trp Lys Met Asp Met
Lys1115 1120 1125Thr Val Ser Ala Asn Asp
Val Ser Arg Leu Lys Asp Ser Phe Val1130 1135
1140Gln Pro Phe Asp Ile Ser Thr Ala Pro Leu Phe Arg Ala Ser
Leu1145 1150 1155Leu Thr Ile His Lys Asp
Glu His Ile Leu Met Met Asp Val His1160 1165
1170His Ile Val Gly Asp Gly Val Ser Thr Thr Ile Leu Phe Gln
Glu1175 1180 1185Leu Ile Gln Leu Tyr Gln
Gly Gln Ala Leu Pro Glu Val Lys Val1190 1195
1200His Tyr Lys Asp Tyr Ala Val Trp Gln Leu Ser Gln Gln Asp
Arg1205 1210 1215Leu Lys Glu Ser Glu Asn
Phe Trp Leu Gln Gln Phe Ser Gly Glu1220 1225
1230Leu Pro Val Leu Glu Leu Pro Thr Asp Tyr Ser Arg Pro Pro
Ile1235 1240 1245Arg Arg Leu Glu Gly Glu
Tyr Val Ser Gln Ser Leu Arg Gly Asp1250 1255
1260Leu His Glu Ser Val Lys Ala Phe Met Lys Asn His Glu Val
Thr1265 1270 1275Leu Tyr Met Val Leu Leu
Ala Thr Tyr Asn Val Leu Leu His Lys1280 1285
1290Tyr Thr Asn Gln His Asp Ile Ile Val Gly Thr Pro Val Ser
Asp1295 1300 1305Arg Pro His Pro Asp Val
Met Ser Thr Val Gly Met Phe Val Asn1310 1315
1320Thr Leu Ala Val Arg Asn Gln Leu Glu Ser Glu Gln Thr Phe
Glu1325 1330 1335Lys Phe Leu Ala Asn Val
Lys Asn Lys Met Leu Glu Val Tyr Gly1340 1345
1350His Gln Glu Tyr Pro Phe Glu Asp Val Ile Glu Lys Val Lys
Val1355 1360 1365Gln Arg Asp Thr Ser Arg
His Pro Leu Phe Asp Thr Met Phe Gly1370 1375
1380Val Gln Asn Leu Glu Ile Ser His Val Glu Leu Pro Asp Trp
Gly1385 1390 1395Ile Glu Ala Leu Asp Ile
Asp Trp Thr Asn Ser Lys Phe Asp Met1400 1405
1410Ser Trp Met Val Phe Glu Ala Asp Gly Leu Glu Ile Gly Val
Glu1415 1420 1425Tyr Ser Thr Ser Leu Phe
Glu Arg Asn Thr Ile Gln Arg Met Ile1430 1435
1440Gly His Phe Glu His Ile Ile Glu Gln Ile Met Glu Asn Pro
Gln1445 1450 1455Ile Arg Leu Ala Asp Ile
Gln Leu Thr Thr Glu Asp Glu Arg Ile1460 1465
1470Gln Ile Leu Glu Glu Phe Asn His Gln Pro Thr Lys Ile Thr
Tyr1475 1480 1485Asp Gln Ala Ile Gln Asn
Arg Phe Glu Glu Gln Ala Met Lys Thr1490 1495
1500Pro Asp Ala Val Ala Leu Val Tyr Lys Gly Gln Glu Leu Thr
Tyr1505 1510 1515Arg Glu Leu Asn Gln Arg
Ser Asn Gln Met Ala Arg Thr Leu Arg1520 1525
1530Glu His Gly Val Gly Arg Asp Gln Ile Ile Ala Val Met Ile
Asn1535 1540 1545Arg Ser His Glu Leu Ile
Ile Ser Ile Leu Ala Val Leu Lys Ala1550 1555
1560Gly Gly Ala Tyr Leu Pro Ile Asp Pro Thr Tyr Pro Leu Asp
Arg1565 1570 1575Ile Glu His Met Leu Glu
Asp Ser Gln Thr Ala Met Leu Leu Thr1580 1585
1590Gln Lys Glu Ile Gln Ile Pro Thr Gly Tyr Ser Gly Glu Val
Leu1595 1600 1605Phe Val Asp Gln Ala Asp
Ile Tyr His Glu Asp Ala Thr Asp Leu1610 1615
1620Ser Ser Met Asn Gln Pro Ala Asp Leu Ala Tyr Ile Ile Tyr
Thr1625 1630 1635Ser Gly Ser Thr Gly Lys
Ser Lys Gly Val Met Ile Glu His Arg1640 1645
1650Ser Leu His Asn Leu Ile His Ile Ser His Pro Tyr Lys Met
Gly1655 1660 1665Ala Gly Ser Arg Val Leu
Gln Phe Ala Ser Ser Ser Phe Asp Ala1670 1675
1680Ser Val Ala Glu Ile Phe Pro Ala Leu Leu Thr Gly Ser Thr
Leu1685 1690 1695Tyr Ile Glu Glu Lys Glu
Glu Leu Leu Thr Asn Leu Val Pro Tyr1700 1705
1710Leu Leu Glu Asn Gln Ile Thr Thr Val Ala Leu Pro Pro Ser
Leu1715 1720 1725Leu Arg Ser Val Pro Tyr
Arg Glu Leu Pro Ala Leu Glu Cys Ile1730 1735
1740Val Ser Val Gly Glu Ala Cys Thr Phe Asp Ile Val Gln Thr
Trp1745 1750 1755Gly Gln Asn Arg Thr Phe
Ile Asn Gly Tyr Gly Pro Thr Glu Ser1760 1765
1770Thr Val Cys Ser Ala Phe Gly Val Val Thr Ala Glu Asp Lys
Arg1775 1780 1785Ile Thr Ile Gly Lys Pro
Phe Pro Asn Gln Lys Val Tyr Ile Ile1790 1795
1800Asn Glu Asn Gln Gln Leu Gln Pro Ile Gly Val Pro Gly Glu
Leu1805 1810 1815Cys Ile Ala Gly Ala Gly
Leu Ser Arg Gly Tyr Leu Asn Arg Pro1820 1825
1830Glu Leu Thr Gln Glu Lys Phe Val Asn Asn Pro Phe Ala Pro
Gly1835 1840 1845Glu Arg Met Tyr Lys Thr
Gly Asp Val Ala Arg Trp Leu Pro Asp1850 1855
1860Gly Asn Ile Glu Tyr Ala Gly Arg Met Asp Asp Gln Val Lys
Val1865 1870 1875Arg Gly Asn Arg Val Glu
Leu Gly Glu Val Thr Ser Gln Leu Leu1880 1885
1890Thr His Pro Ser Ile Thr Glu Ala Val Val Val Pro Ile Val
Asp1895 1900 1905Thr His Gly Ala Thr Thr
Leu Cys Ala Tyr Phe Ile Glu Asp Lys1910 1915
1920Glu Val Lys Val Asn Asp Leu Arg His His Leu Ala Lys Ala
Leu1925 1930 1935Pro Glu Phe Met Ile Pro
Thr Tyr Phe Ile Lys Val Asp His Ile1940 1945
1950Pro Leu Thr Gly Asn Gly Lys Val Asn Lys Gln Ala Leu Pro
Asp1955 1960 1965Pro Ser Glu Phe Ile Ser
Ala Gln Thr Gly His Glu Ile Val Ala1970 1975
1980Pro Ser Ser Gln Asp Glu Glu Ile Leu Val Gln Val Trp Glu
Glu1985 1990 1995Val Leu Gln Phe Lys Pro
Ile Gly Val Glu Asp Asn Phe Phe Glu2000 2005
2010Arg Gly Gly Asp Ser Ile Lys Ala Leu Gln Ile Val Ala Arg
Leu2015 2020 2025Ser Lys Tyr Asn Arg Lys
Leu Asp Ser Arg His Ile Phe Lys Asn2030 2035
2040Pro Thr Ile Ser Met Leu Ala Pro Tyr Leu Glu Gln Arg Gly
Ala2045 2050 2055Leu Ile Glu Gln Asp Ser
Ile Glu Gly Glu Val Pro Leu Thr Pro2060 2065
2070Ile Gln Ser Trp Phe Phe Glu Gln Pro Phe Val Tyr Pro His
His2075 2080 2085Phe Asn Gln Ser Met Leu
Leu Pro Asn Glu Gln Gly Trp Asp Arg2090 2095
2100Gln Arg Ile Glu Gln Ala Phe Thr Thr Ile Val Arg His His
Asp2105 2110 2115Ala Leu Arg Met Lys Tyr
Gln Phe Arg Glu Lys Ile Ile Gln Glu2120 2125
2130Asn Gln Gly Ile Glu Gly Glu Phe Phe Thr Leu His Glu Val
Asp2135 2140 2145Val Thr Lys Glu Arg Asp
Trp Gln Met Arg Ile Glu Gln Glu Ala2150 2155
2160Asn Gln Leu Gln Ala Ser Phe Asp Leu Thr Thr Gly Pro Leu
Val2165 2170 2175Lys Leu Gly Leu Tyr His
Thr Ala Tyr Gly Asp Tyr Leu Leu Ile2180 2185
2190Val Val His His Leu Leu Ile Asp Gly Val Ser Trp Arg Ile
Leu2195 2200 2205Leu Glu Asp Phe Gln Thr
Leu Tyr Glu Gln Lys Gly Glu Leu Pro2210 2215
2220Ala Lys Thr Thr Ser Phe Lys Ala Trp Ala Val Gln Leu Glu
Gly2225 2230 2235Tyr Ala Arg Ser Lys Lys
Leu Gln Asp Glu Ala Ser Tyr Trp Lys2240 2245
2250Gly Leu Leu Asn Lys Ser Ile Arg Glu Leu Pro Ala Asp Lys
Glu2255 2260 2265Ser Ser Asp Thr Phe Leu
Phe Gly Asp Thr Lys Glu Val Gln Leu2270 2275
2280Thr Phe Asp Ile Asn Glu Thr Gln Asp Leu Leu Thr Asp Ala
His2285 2290 2295His Ala Tyr Lys Thr Lys
Ala Asp Asp Leu Leu Leu Ala Ala Leu2300 2305
2310Val Leu Ser Ile Asn Glu Trp Thr Lys Gln Ser Asp Ile Ile
Val2315 2320 2325Asn Leu Glu Gly His Gly
Arg Glu Thr Ile Gly Glu Gly Ile Asp2330 2335
2340Leu Ser Arg Thr Ile Gly Trp Phe Thr Thr Ile Tyr Pro Val
Leu2345 2350 2355Phe Glu Val Glu Asn His
Gln Leu Ser Ser Val Ile Lys His Val2360 2365
2370Lys Glu Thr Leu Arg Asn Val Pro Asn Asn Gly Ile Gly Phe
Gly2375 2380 2385Ile Leu Gln His Met Ser
His Ser Asp Val Ser Gln Ser Gln Leu2390 2395
2400Ser Ser His His Ile Ser Phe Asn Tyr Leu Gly Gln Met Gly
Glu2405 2410 2415Asp Ser Ala Ser Gln Ser
Glu Thr Asp Asn Gly Val Leu Ile Asn2420 2425
2430Thr Gly Asp Gln Ile Ser Pro Met Asn Ala Asn Pro Gly Ser
Leu2435 2440 2445Asn Met Thr Cys Leu Val
Met Asn Asn Thr Leu Leu Val Thr Phe2450 2455
2460Asp Tyr Asn Pro Gln Arg Tyr Glu Gln Glu Thr Ile Gln Arg
Leu2465 2470 2475Ala Asp Arg Tyr Lys Ser
Asn Leu Lys Ala Val Leu Asp His Cys2480 2485
2490Val Gln Arg Glu Gln Thr Glu Arg Thr Pro Ser Asp Phe Ser
Thr2495 2500 2505Lys Lys Leu Ser Leu Glu
Asp Leu Asp Asp Val Phe Ala Thr Leu2510 2515
2520Lys Asn Leu2525272491PRTBrevibacillus texasporus 27Met Ile Asn
Thr Ser Asp Val Lys Asp Ile Tyr Ser Leu Ser Pro Met1 5
10 15Gln Arg Gly Met Leu Phe His Thr Leu
Lys Asp Lys Glu Asn Leu Ala20 25 30Tyr
Phe Asp Gln Thr Thr Phe Gln Ile Glu Gly Asp Ile Cys Val Glu35
40 45Ser Leu Glu Lys Ser Phe Asn Glu Leu Ile Arg
Lys Tyr Asp Val Leu50 55 60Arg Thr Ile
Phe Leu Tyr Gln Lys Leu Lys Glu Pro Met Gln Val Val65 70
75 80Leu Lys Glu Arg Thr Ala Asn Ile
His Tyr Glu Asp Phe Ser Met Lys85 90
95Ser Glu Ser Asp Lys Ala Lys Ala Leu Arg Val Ala Lys Gln Arg Asp100
105 110Arg Asp Glu Gly Phe Asp Leu Ser Arg Asp
Ile Leu Met Arg Leu Ser115 120 125Leu Leu
Lys Val Ala Pro Asn Gln Tyr Glu Leu Val Ile Ser Ser His130
135 140His Ile Ile Ile Asp Gly Trp Cys Thr Gly Ile Leu
Tyr Gln Glu Leu145 150 155
160Phe Tyr Phe Tyr Gln Cys Phe Val Ala Asn Gln Pro Ile Pro Ala Glu165
170 175Lys Ser Ile Pro Tyr Ser Arg Tyr Ile
Arg Trp Leu Glu Glu Gln Asp180 185 190Glu
Glu Glu Gly Lys Ala Tyr Trp Gly Glu Tyr Leu Gln Asp Phe Glu195
200 205Gly Ala Ser Val Ile Pro Lys Gln Asn Ala Lys
Gly Glu Lys Glu Val210 215 220Cys Ser Ile
Asp Lys Val Thr Phe His Phe Asp Lys Lys Leu Thr Glu225
230 235 240Glu Leu Val Gln Val Ala Lys
Thr Cys Gln Val Thr Ile Ser Thr Leu245 250
255Phe Gln Thr Met Trp Gly Ile Leu Leu Gln Lys Tyr Asn Asn Ser Gln260
265 270Glu Ala Ile Phe Gly Ser Val Ile Ser
Gly Arg Ser Pro Glu Ile Pro275 280 285Asp
Val Glu Lys Ile Val Gly Ile Phe Ile Asn Thr Ile Pro Val Arg290
295 300Ile Arg Thr Leu Asp Lys Gln Thr Phe Lys Glu
Leu Leu Ile Gln Val305 310 315
320Gln Glu Ala Ser Val Asn Ser Glu Lys Tyr Asn Tyr Leu Thr Leu
Ala325 330 335Asp Ile Gln Ala Val Thr Gly
Ser Asn His Ala Leu Ile His His Ile340 345
350Val Ala Phe Glu Asn Phe Pro Ile Ala Ser Asp Ser Phe Val Asp Ser355
360 365Ser Asp Ser Asp Ser Glu Glu Leu Lys
Val Val Asn Val Ile Asp Asp370 375 380His
Glu Lys Thr Asn Phe Asp Phe Ser Val Gln Val Gln Leu Asp Thr385
390 395 400Glu Leu Leu Val Lys Ile
Ser Tyr Asn Gln His Leu Tyr His Arg Ser405 410
415Phe Ile Glu Asn Ile Phe His His Leu Gln Gln Ile Ala Gly Ser
Ile420 425 430Thr His Asn Pro Asp Ile Gln
Ile Asn Glu Ile Ala Ile Val Ser Lys435 440
445Glu Glu Lys Lys Gln Leu Leu Arg Tyr Ser Thr Pro Ala Lys Ser Asp450
455 460Phe Pro Met Asp Lys Thr Ile His Gln
Leu Phe Glu Glu Gln Val Ser465 470 475
480Arg Thr Pro Glu Gln Ile Ala Val Val Phe Lys Gly Glu Ser
Phe Thr485 490 495Tyr Arg Glu Leu Asn Glu
Lys Ala Asn Gln Leu Ala Trp Val Leu Arg500 505
510Lys Arg Glu Val Arg Pro Asn Glu Ile Val Ala Ile Met Ala Glu
His515 520 525Ser Leu Glu Met Leu Val Gly
Val Ile Gly Thr Leu Lys Ala Gly Ala530 535
540Ala Tyr Leu Pro Ile Asp Pro Ser Tyr Pro Glu Lys Arg Ile Ala His545
550 555 560Met Leu Gln Asp
Ser Lys Ala Glu Gln Leu Leu Ile Gln Pro His Leu565 570
575Asn Met Pro Gln Asp Phe Lys Gly Ser Val Leu Trp Leu Thr
Glu Glu580 585 590Ser Trp Ala Lys Glu Ser
Thr Thr Asp Leu Pro Leu Ala Thr Ser Ala595 600
605Asn Asp Leu Ala Tyr Met Ile Tyr Thr Ser Gly Ser Thr Gly Leu
Pro610 615 620Lys Gly Val Met Val Glu His
Gln Ala Leu Val Asn Leu Val Met Trp625 630
635 640His Asn Glu Ala Phe Gly Val Thr Met Thr Asp Gln
Cys Thr Lys Leu645 650 655Ala Gly Phe Gly
Phe Asp Ala Ser Val Trp Glu Thr Phe Pro Pro Leu660 665
670Ile Gln Gly Ala Thr Leu His Val Leu Glu Glu Ser Arg Arg
Gly Asp675 680 685Ile Tyr Ala Leu His Glu
Tyr Phe Glu Lys Asn Ala Ile Thr Ile Ser690 695
700Phe Leu Pro Thr Gln Leu Ala Glu Gln Phe Met Glu Leu Thr Ser
Ser705 710 715 720Thr Leu
Arg Val Leu Leu Ile Gly Gly Asp Arg Ala Gln Lys Val Lys725
730 735Glu Thr Ser Tyr Gln Ile Ile Asn Asn Tyr Gly Pro
Thr Glu Asn Thr740 745 750Val Val Thr Thr
Ser Gly Gln Leu His Pro Glu Gln Asp Val Phe Pro755 760
765Ile Gly Lys Pro Ile Thr Asn His Ser Val Tyr Ile Leu Asp
Gln Asn770 775 780Arg His Leu Gln Pro Ile
Gly Ile Pro Gly Glu Leu Cys Val Ser Gly785 790
795 800Ala Gly Leu Ala Arg Gly Tyr Leu Asn Gln Pro
Glu Leu Thr Val Glu805 810 815Arg Phe Val
Asp Asn Pro Phe Val Pro Gly Glu Arg Met Tyr Arg Thr820
825 830Gly Asp Leu Val Arg Trp Arg Ile Asp Gly Ser Ile
Glu Tyr Leu Gly835 840 845Arg Ile Asp Glu
Gln Val Lys Ile Arg Gly Tyr Arg Ile Glu Leu Gly850 855
860Glu Ile Glu Thr Lys Leu Leu Glu His Pro Ser Ile Ser Glu
Ala Leu865 870 875 880Val
Val Ala Arg Asn Asp Glu Gln Gly Tyr Thr Tyr Leu Cys Ala Tyr885
890 895Val Val Ala Thr Gly Ala Trp Ser Val Ser Ser
Leu Arg Glu His Leu900 905 910Ile Glu Thr
Leu Pro Glu Tyr Met Ile Pro Ala Tyr Met Met Glu Val915
920 925Glu Lys Met Pro Leu Thr Ala Asn Gly Lys Ile Asp
Lys Arg Ala Leu930 935 940Pro Val Pro Asp
Arg Gln Arg Met Asn Glu Tyr Val Ala Pro Ala Thr945 950
955 960Glu Thr Glu Glu Lys Leu Val Leu Leu
Phe Gln Glu Ile Leu Gly Leu965 970 975Glu
Arg Ile Gly Thr Lys Asp His Phe Phe Glu Leu Gly Gly His Ser980
985 990Leu Lys Ala Met Met Leu Val Ser Arg Met His
Lys Glu Leu Gly Val995 1000 1005Asp Val
Gln Leu Asn Glu Met Phe Ala Arg Pro Thr Val Lys Asp1010
1015 1020Leu Ser Ala Tyr Ile Asp Gln Met Asn Gly Ser
Ala Tyr Thr Ala1025 1030 1035Ile Gln
Pro Val Glu Glu Gln Pro Tyr Tyr Pro Val Ser Phe Ala1040
1045 1050Gln Arg Arg Met Tyr Val Val Gln Gln Met Arg
Asp Ser Glu Thr1055 1060 1065Thr Ser
Tyr Asn Met Pro Phe Thr Phe Glu Leu Lys Gly Lys Leu1070
1075 1080His Leu Asp Lys Leu Arg Glu Ala Leu Gln Ile
Leu Val Leu Arg1085 1090 1095His Glu
Ser Leu Arg Thr Ser Phe His Met Ile Asp Glu Asn Leu1100
1105 1110Val Gln Lys Val Asn Lys Asp Ile Ser Trp Asp
Leu Glu Val Ile1115 1120 1125Glu Ala
Gln Glu Ser Glu Ile Glu Val Lys Leu Glu Glu Phe Ile1130
1135 1140Arg Pro Phe His Leu Ser Glu Ala Pro Leu Phe
Arg Ala Arg Leu1145 1150 1155Ile Cys
Leu Asn Pro Gln His His Leu Leu Ser Leu Asp Met His1160
1165 1170His Ile Ile Ser Asp Gly Val Ser Met Asn Leu
Phe Leu Gln Glu1175 1180 1185Phe Met
Thr Leu Tyr Gln Gly Glu Ala Leu Pro Ala Leu Ser Ile1190
1195 1200Gln Tyr Lys Asp Tyr Ala Val Trp Gln Gln Ser
Asp Lys Gln Arg1205 1210 1215Ala Arg
Leu Lys Glu Gln Glu Lys Tyr Trp Leu His His Phe Ser1220
1225 1230Gly Glu Leu Pro Thr Leu Glu Leu Pro Thr Asp
Phe Pro Arg Pro1235 1240 1245Ala Ile
Gln Gln Phe Asp Gly Asp Glu Trp Ala Phe Glu Met Asn1250
1255 1260Ala Asp Leu Leu Ala Lys Val Lys Gln Ile Cys
Ser Ser Gln Gly1265 1270 1275Thr Thr
Leu Tyr Met Thr Leu Leu Ala Ala Tyr Gln Val Phe Leu1280
1285 1290Ala Arg Tyr Thr Gly Gln Glu Asp Ile Ile Val
Gly Ser Pro Ile1295 1300 1305Ala Gly
Arg Ser His Ala Asp Leu Glu Asn Met Ile Gly Met Phe1310
1315 1320Val Asn Thr Leu Ala Leu Arg Gly Lys Pro Lys
Ala Asp Gln Ser1325 1330 1335Phe Leu
Ser Tyr Leu Lys Gln Val Lys Glu Thr Val Phe Gln Ala1340
1345 1350Tyr Ala Asn Ala Glu Tyr Pro Phe Glu Glu Leu
Ile Glu Lys Leu1355 1360 1365Asp Leu
Glu Arg Asp Met Ser Arg His Pro Leu Phe Asp Thr Leu1370
1375 1380Phe Ser Leu Gln Asn Met Glu Ile Ser Glu Phe
Gln Met Asn Asn1385 1390 1395Leu Glu
Ile Phe Pro Tyr Glu Thr Gly Gln Lys Asn Ala Lys Phe1400
1405 1410Ala Leu Ser Trp Leu Ile Ala Glu Gly Glu Ser
Leu Tyr Val Thr1415 1420 1425Ile Glu
Tyr Ser Thr Lys Cys Phe Lys Arg Glu Thr Ile Lys Arg1430
1435 1440Met Ala Ser His Phe Glu Gln Leu Leu Ala Gln
Ile Val Glu Gln1445 1450 1455Pro Glu
Ala Arg Ile Gly Gln Leu Glu Leu Val Ala Asp Ala Glu1460
1465 1470Arg Lys Met Leu Leu Glu Asp Phe Asn Leu Thr
Lys Val Asp Tyr1475 1480 1485Pro Arg
Glu Lys Thr Ile Gln Glu Leu Phe Glu Glu Gln Val Asp1490
1495 1500Lys Asn Pro Asp Gln Ile Ala Leu Ile Cys Gly
Glu Gln Gln Phe1505 1510 1515Thr Tyr
Glu Gln Leu Asn Val Lys Phe Asn Gln Leu Ala His Val1520
1525 1530Leu Arg Arg Glu Gly Val Gln Pro Asn Gln Val
Ile Gly Leu Ile1535 1540 1545Thr Asp
Arg Ser Leu Ser Met Ile Val Gly Ile Phe Gly Ile Ile1550
1555 1560Lys Ala Gly Gly Gly Tyr Leu Pro Ile Asp Pro
Thr Tyr Pro Thr1565 1570 1575Glu Arg
Ile Glu Tyr Met Leu Glu Asp Ser Gln Thr His Leu Leu1580
1585 1590Leu Val Gln His Arg Asp Met Val Pro Ala Gly
Tyr Gln Gly Glu1595 1600 1605Val Leu
Ile Ile Glu Asp Glu Ile Ser Arg Asp Glu Gln Val Ala1610
1615 1620Asn Ile Glu Leu Ile Asn Gln Pro Gln Asp Leu
Ala Tyr Val Met1625 1630 1635Tyr Thr
Ser Gly Ser Thr Gly Lys Pro Lys Gly Asn Leu Thr Thr1640
1645 1650His Arg Asn Ile Ile Lys Thr Val Cys Asn Asn
Gly Tyr Ile Glu1655 1660 1665Ile Thr
Thr Glu Asp Arg Leu Leu Gln Leu Ser Asn Tyr Ala Phe1670
1675 1680Asp Gly Ser Thr Phe Asp Ile Phe Ser Ser Leu
Leu His Gly Ala1685 1690 1695Thr Leu
Val Leu Val Pro Lys Glu Val Ile Leu Asn Pro Thr Asp1700
1705 1710Leu Ile Thr Leu Ile Arg Glu Gln Gln Ile Thr
Val Ser Phe Met1715 1720 1725Thr Thr
Ser Leu Phe Asn Ala Leu Val Glu Leu Asp Val Ser Ser1730
1735 1740Phe Gln Asn Met Arg Lys Ile Ala Phe Gly Gly
Glu Lys Ala Ser1745 1750 1755Phe Lys
His Val Glu Lys Ala Leu Asp Phe Leu Gly Asn Gly Arg1760
1765 1770Leu Val Asn Gly Tyr Gly Pro Thr Glu Thr Thr
Val Phe Ala Thr1775 1780 1785Thr Tyr
Thr Val Asp Glu Arg Ile Lys Glu Trp Gly Ile Ile Pro1790
1795 1800Ile Gly Arg Pro Leu His Asn Thr Thr Val His
Ile Leu Ser Ala1805 1810 1815Asp Asp
Lys Leu Gln Pro Ile Gly Val Ile Gly Glu Leu Cys Val1820
1825 1830Ser Gly Glu Gly Leu Ala Arg Gly Tyr Leu Asn
Leu Pro Glu Leu1835 1840 1845Thr Met
Glu Arg Phe Val Glu Asn Pro Phe Arg Pro Gly Glu Arg1850
1855 1860Met Tyr Arg Thr Gly Asp Leu Ala Arg Trp Leu
Pro Asp Gly Val1865 1870 1875Leu Glu
Tyr Val Gly Arg Lys Asp Glu Gln Val Lys Ile Arg Gly1880
1885 1890His Arg Ile Glu Leu Ser Glu Ile Glu Thr Arg
Ile Leu Glu His1895 1900 1905Pro Ala
Ile Ser Glu Thr Val Leu Leu Ala Lys Arg Asn Glu Gln1910
1915 1920Gly Ser Ser Tyr Leu Cys Ala Tyr Ile Val Ala
His Gly Gln Trp1925 1930 1935Asn Ile
Gln Glu Leu Arg Lys His Val Arg Asp Val Leu Pro Glu1940
1945 1950His Met Val Pro Ser Tyr Phe Ile Gly Leu Asp
Lys Leu Pro Leu1955 1960 1965Thr Ser
Asn Gly Lys Val Asp Lys Arg Ala Leu Pro Glu Pro Glu1970
1975 1980Gly Ser Leu Gln Leu Thr Arg Glu Ile Val Ala
Pro Arg Asn Glu1985 1990 1995Ser Glu
Lys Gln Leu Val Glu Ile Val Ala Glu Val Leu Gly Leu2000
2005 2010Glu Ala Ser Glu Ile Ser Ile Thr Asp Asn Leu
Phe Glu Leu Gly2015 2020 2025Gly His
Ser Leu Thr Ile Leu Arg Ile Leu Ala Lys Val His Thr2030
2035 2040Cys Asn Trp Lys Leu Glu Met Lys Asp Phe Tyr
Asn Cys Lys Asn2045 2050 2055Leu Glu
Glu Ile Ala Ser Lys Ala Thr Asp Met Gln Glu Asn Gln2060
2065 2070Asn Leu Ser Gly Ser Gly Ser Val Phe Lys Lys
Gly Gly Lys Lys2075 2080 2085Ser Ile
Pro Val Val Pro Val His Asp Arg Gln Lys Glu Met Glu2090
2095 2100His Val Leu Leu Leu Gly Ser Thr Gly Phe Leu
Gly Ile His Leu2105 2110 2115Leu His
Glu Leu Leu Gln Lys Thr Glu Ala Thr Ile Leu Cys Val2120
2125 2130Ile Arg Ala Glu Asn Asp Glu Ala Ala Met Gln
Arg Leu Arg Lys2135 2140 2145Lys Ile
Asp Phe Tyr Phe Thr Ser Gln Tyr Ser Ser Ser Gln Ile2150
2155 2160Asp Glu Trp Phe Thr Arg Ile Gln Ile Ile His
Gly Asp Ile Thr2165 2170 2175Gln Ala
Asn Phe Gly Leu Glu Ala Lys His Tyr Glu Ser Leu Gly2180
2185 2190Ala Ile Val Asp Thr Val Ile His Thr Ala Ala
Leu Val Lys His2195 2200 2205Tyr Gly
His Tyr Glu Glu Phe Glu Arg Ala Asn Val His Gly Thr2210
2215 2220Gln Gln Val Val Thr Phe Cys Leu Asn Asn Lys
Leu Pro Met His2225 2230 2235Tyr Val
Ser Thr Leu Ser Val Ser Gly Thr Thr Val Glu Glu Ala2240
2245 2250Thr Glu Leu Val Glu Phe Thr Glu Lys Asp Phe
Tyr Val Gly Gln2255 2260 2265Asn Tyr
Glu Ser Asn Val Tyr Leu Arg Ser Lys Phe Glu Ala Glu2270
2275 2280Ala Val Leu Val Gly Gly Met Glu Asn Gly Leu
Asp Ala Arg Ile2285 2290 2295Tyr Arg
Val Gly Asn Leu Thr Gly Arg Phe Gln Asp Gly Trp Phe2300
2305 2310Gln Glu Asn Ile Asn Glu Asn Met Phe Tyr Leu
Leu Ser Lys Ala2315 2320 2325Phe Leu
Glu Leu Gly Gly Phe Asp Gln Glu Ile Met Gln Gly Met2330
2335 2340Val Asp Leu Thr Pro Ile Asp Ile Cys Ala Gln
Ala Ile Ile His2345 2350 2355Ile Ile
Asn Ser Lys Gly Ile Glu Glu Arg Val Phe His Leu Gln2360
2365 2370Asn Pro His Leu Val Thr Tyr Asp Asp Met Tyr
Arg Val Phe Glu2375 2380 2385Gly Leu
Gly Phe Ser Arg Arg Val Gln Ser Arg Glu Asp Val Thr2390
2395 2400Arg Glu Leu Asp Val Met Met Ser Gln Gly Asn
Glu Lys Leu Phe2405 2410 2415Leu Ala
Gly Ile Leu Thr Thr Met Leu Asp Asp Val Glu Arg Ala2420
2425 2430Glu Gln Phe Asn Val Ala Val Asp Ser Ser Arg
Thr Met Gln Leu2435 2440 2445Leu Glu
Asp Thr Ser Phe Thr Tyr Pro Val Pro Asp Asp Glu Tyr2450
2455 2460Leu Arg Lys Leu Ala Met His Met Ile Lys Val
Gly Phe Val Thr2465 2470 2475Pro Asn
His Thr Val Ala Glu Lys Ile Gly Thr Ser Arg2480 2485
249028240PRTBrevibacillus texasporus 28Met Ala Val Ile Glu
Leu Lys Asn Leu Thr Lys Lys Tyr Asn Glu Val1 5
10 15Tyr Ala Val Asp His Leu Asn Ile Glu Val Pro
Gln Gly His Ile Tyr20 25 30Ala Phe Leu
Gly Ser Asn Gly Ala Gly Lys Thr Thr Thr Ile Lys Met35 40
45Met Thr Gly Gln Leu Asn Pro Ser Glu Gly Glu Val Leu
Phe Leu Gly50 55 60Arg Asn Ile Trp Gln
Asp Arg Glu Ala Arg Arg Ile Ala Gly Tyr Ala65 70
75 80Pro Asp Val Pro Leu Leu His Glu Gly Leu
Thr Val Arg Glu Met Val85 90 95Arg Phe
Val Gly Ala Leu Tyr Gly Ser Asp Glu Asp Leu Asn Lys Arg100
105 110Val Asp Thr Leu Leu Glu His Phe Glu Leu Ala Asp
Lys Ala Asp Gln115 120 125Leu Ile Lys Glu
Tyr Ser Leu Gly Met Lys Arg Lys Val Ser Ile Ala130 135
140Cys Ala Leu Ile His Arg Pro Lys Ile Leu Leu Leu Asp Glu
Val Thr145 150 155 160Asn
Gly Leu Asp Pro Lys Ala Thr Arg Glu Val Lys Asn Tyr Ile Arg165
170 175His Phe Ala Lys Glu Glu Gly Gly Thr Val Phe
Ile Thr Thr His Ile180 185 190Leu Asp Ile
Val Glu Glu Leu Ala Asp Thr Ile Ser Ile Leu His Lys195
200 205Gly Lys Ile Lys Val Thr Gly Ser Met Glu Glu Leu
Arg His Val Ala210 215 220Gly Asn Glu Glu
Gly Arg Leu Glu Asp Ile Phe Leu Ser Ala Ile Glu225 230
235 240
User Contributions:
Comment about this patent or add new information about this topic: